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Preface

The 26th European Symposium on Research in Computer Security (ESORICS 2021)
was held together with the affiliated workshops during the week of October 4-8, 2021.
Due to the COVID-19 pandemic the conference and the workshops took place digi-
tally, hosted by the Fraunhofer Institute for Secure Information Technology (Fraun-
hofer SIT), within the National Research Center for Applied Cybersecurity ATHENE,
Germany.

This year’s ESORICS introduced for the first time in the ESORICS conference
series two review cycles: a winter cycle and a spring cycle. This follows the general
trends for conferences of providing multiple submission deadlines and is not only more
convenient for the authors but also allows revision and resubmission for papers. In the
case of ESORICS, papers submitted in the winter cycle could be recommended for
revision and resubmission to the spring cycle.

In response to the call for papers 351 papers were submitted to the conference.
These papers were peer reviewed and subsequently discussed based on their novelty,
quality, and contribution by the members of the Program Committee. The submissions
were single blind, and all the members of the Program Committee had access to all the
submissions and their reviews at all times to facilitate discussions among the members.
The submission of the papers and the review process were carried out using the
Easychair platform. Based on the reviews and the discussion 71 papers were selected
for presentation at the conference. As a result ESORICS had an interesting program
covering timely and interesting security and privacy topics in theory, systems, net-
works, and applications.

The papers that were selected for presentation at ESORICS 2021 were published in
a two volume set of proceedings: LNCS 12972 and LNCS 12973.

ESORICS is a flagship European security conference. The aim of ESORICS is to
advance the research in computer security and privacy by establishing a European
forum, bringing together researchers in these areas, and promoting the exchange of
ideas with the developers, standardization bodies, and policy makers and by encour-
aging links with researchers in related fields.

We were honoured to have four keynote speakers: Shafi Goldwasser, Christof Paar,
Nicolas Papernot, and Yuval Yarom. Their talks provided interesting insights and
research directions in important research areas. The program was complemented by six
tutorials given by Anna Cinzia Squicciarini, Yossi Oren, Michael Schwarz, Avishai
Wool, and Daphne Yao. For tutorials, ESORICS introduced a novel organization, in
that tutorials were given in advance with respect to the conference dates, with the first
tutorial given on June 30, 2021, and the last one on September 8, 2021. Tutorial
presentations were recorded and are available online. This arrangement takes advantage
of today’s availability of content dissemination platforms and allows researchers to
access the tutorial contents at their own pace.



vi Preface

The Program Committee consisted of 185 members across 31 countries. There were
submissions from a total of 1150 authors across 41 countries, with 25 countries rep-
resented among the accepted papers. We would like to thank the members of the
Program Committee and the external referees for their hard work in supporting the
review process as well as everyone who supported the organization of ESORICS. We
are grateful to the workshops chairs, Adrian Perrig and David Hay, and all of the
workshop co-chairs, the poster chair, Simone Fischer-Hiibner, and the ESORICS
Steering Committee. We are also grateful to Huawei and IBM Research — Haifa, Israel,
for supporting the organization of ESORICS 2021. Finally, we would like to thank the
authors for submitting their papers to ESORICS 2021. We hope that the proceedings
will promote the research and facilitate future work in the field of security.

September 2021 Elisa Bertino
Haya Shulman
Michael Waidner
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Abstract. Dynamic searchable symmetric-key encryption (DSSE) is a
promising crypto-tool that enables secure keyword searching over dynam-
ically added or deleted ciphertexts. Currently, many works on DSSE
devote their efforts to obtaining forward and backward security and prac-
tical performance. However, it is still challenging to design a single DSSE
scheme that simultaneously achieves this security, high performance, and
real deletion. Note that real deletion is a critical feature to guarantee the
right of the user to be forgotten stipulated by GDPR. Due to this fact,
we propose a new forward-and-backward secure DSSE scheme named
Bestie. To achieve high search performance, Bestie takes the tradi-
tional hash and pseudorandom functions and symmetric-key encryption
as building blocks and supports parallel keyword search. Bestie also
achieves non-interactive real deletion for avoiding the client to do a clean-
up process. This feature not only guarantees the above GDPR rule but
also makes Bestie more suitable for managing large-scale data. Bestie
also saves the client’s computation and communication costs. Finally, we
experimentally compare Bestie with five previous well-known works and
show that Bestie is much better in most respects. For example, Bestie
requires approximately 3.66 microseconds to find a matching ciphertext.
In contrast, Bestie has search performance at least 2 times faster than
both Mitra®* (CCS’18) and Dianage; (CCS’17), 1,032 faster than Fides
(CCS’17), and 38,332 faster than Janus++ (CCS’18), respectively. Com-
pared with Mitra (CCS’18), Bestie saves at least 80% client time cost
during a search.
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Keywords: Dynamic searchable symmetric-key encryption - Forward
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1 Introduction

Dynamic searchable symmetric-key encryption (DSSE) [18] originates from
searchable symmetric-key encryption [25] (SSE). DSSE allows a client to delegate
keyword searches over ciphertexts to an honest-but-curious server while preserv-
ing the keyword privacy as SSE does. Additionally, DSSE uniquely enables the
client to dynamically update his ciphertexts on the server, such as adding a new
ciphertext or deleting an existing ciphertext.

A DSSE scheme usually consists of two parties, namely, a client and an honest-
but-curious server, and three protocols between these two parties, such as Setup,
Update, and Search. In the beginning, the client runs the Setup protocol to gen-
erate his/her symmetric keys, and the server initializes an empty database. The
Update protocol allows the client to add a new ciphertext to or delete an existing
ciphertext from the server. Each ciphertext contains a keyword-and-file-identifier
entry. The Search protocol enables the client to delegate a secure keyword search
to the server. The server then returns all found ciphertexts (namely, the cipher-
texts containing the expected keyword) to the client.

In terms of the DSSE security, the research community continues to attempt
to reduce the information leakage caused by Update and Search protocols as
much as possible. The possible information leakage includes keyword privacy
and access and search patterns. Recently, researchers have devoted their efforts
to developing DSSE schemes with forward and backward security [1,2]. Forward
security can resist file-injection attack [31] by hiding the relationship between a
newly issued Update query and any previously issued Search queries. Backward
security can hide the historically deleted ciphertexts from the server when run-
ning a Search operation. Hence, forward and backward security is widely accepted
and strong security in practice.

In terms of the DSSE performance, we say that a DSSE scheme is practical if
it achieves high search performance, low client overhead, and non-interactive real
deletion. The importance of the first two features is very evident. High search
performance means that a DSSE scheme can search over large-scale encrypted
data. Low client overhead alleviates the minimum limits on the capability of the
client’s device. The client, even with a mobile device, can also apply a DSSE
scheme. Non-interactive real deletion allows a DSSE scheme to erase the deleted
or invalid ciphertexts from the server without the client’s help. This not only
saves the storage cost of the server but also benefits a DSSE scheme to man-
age large-scale ciphertexts. Moreover, (non-interactive) real deletion satisfies the
GDPR stipulation that a data subject should have the right to have his or her per-
sonal data erased and no longer processed where the personal data are no longer
necessary in relation to the purposes for which they are collected or otherwise
processed [23].

However, it is still challenging to design a single DSSE scheme with forward
and backward security and practical performance. We extensively investigate
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Table 1. SSE Scheme Comparison. Note that column “Search Cost” presents the
average time cost to find one matching ciphertext if no Delete query was issued before.
Symbol n,, denotes the number of ciphertexts matching a keyword search. Column
“Encryption Cost” is the average time cost for the client to generate one ciphertext.
Column “Real Deletion” describes the deletion type a DSSE scheme can achieve.

Scheme BP Search cost (us) Round trips | Encryption cost (us) | Real deletion
Client Server Total

Fides [2] 11 4,142.63 24.18 4,166.81 2 4,145.22 Interactive
Mitra [4] I 5.91 0.53 6.44 2 5.81 Failed

Mitra™ [4] II | 12.06 3.92 15.98 2 7.38 Interactive
Dianage; [2] | IIT | 82.73/n,, | 11.83 | >11.83 |2 13.21 Failed

Janus++ [29] III | 480.58/n4, | 154,569 | >154,569 | 1 154,692 Non-interactive
Bestie (ours) | III | 0.89 2.77 3.66 2 7.83 Non-interactive

previous well-known DSSE schemes with forward and backward security. Table 1
lists some of these schemes and shows that they are still not effective in terms of
performance. Concretely, both Fides [2] and Janus++ [29] suffer from low search
performance and high client overhead during encryption. Fides also introduces
high client time cost into a search process. Fides and Dianage; both from [2] and
Mitra*! [4] consume more bandwidth to transfer re-encrypted ciphertexts or to
determine which ciphertexts should be deleted. Both Dianage; and Mitra [4] fail
to achieve real deletion. Both Fides and Mitra* achieve interactive real dele-
tion. It means that both Fides and Mitra* require the client to re-encrypt and
re-upload all matching and still-valid ciphertexts to the server. Clearly, achiev-
ing interactive real deletion is not practical for handling large-scale data. The
above observations motivate us to develop a practical forward-and-backward-
secure DSSE scheme that achieves high search performance, low client overhead,
and non-interactive real deletion, simultaneously.

In this paper, we present Bestie, a very practical and forward-and-Type-I1I-
backward-secure DSSE scheme. As shown in Table 1, Bestie achieves a Search
protocol with the highest search performance and the non-interactive real dele-
tion. Hence, Bestie is very suitable for managing large-scale data. In the Search
protocol, Bestie only offers a slightly higher client time cost during a search
than both Dianagy.; and Janus++, since the Bestie client requires some time
cost to decrypt the returned file identifiers from the server. However, the decryp-
tion cost of Bestie does not influence the practicality because modern CPUs
are equipped with hardware instructions to accelerate the decryption process,
such as AES-NI of Intel CPUs. In addition, although Bestie slightly increases
the client’s time cost, the total time cost of Bestie during a search is still the
best one compared with all the above-mentioned schemes.

Some may worry that forward and Type-1II-backward security is not strong
enough. However, it is a fact that forward and Type-III-backward security is
enough to mitigate the widely-concerned file-injection attack. Meanwhile, it

! Mitra* is a variant of Mitra that achieves interactive real deletion by the client to
re-encrypt and re-upload the still-valid searchable ciphertexts.
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seems impossible to achieve Type-I or Type-1I backward security and practical
performance, simultaneously. To achieve Type-I or Type-II backward security,
we have to adopt the costly cryptographic primitive oblivious random access
machine (ORAM) (or similar techniques, e.g., Horus [4] and FB-DSSE [32]),
occupy client storage resources to stash deletion queries (e.g., Aura [28]), or
simply omit (non-interactive) real deletion (e.g., Mitra and Mitra* both from
[4], 8D, and SD4 both from [8], and CLOSE-FB [13]). Adopting ORAM (or similar
techniques) means that a DSSE scheme must transfer largely redundant data or
consume a considerable computation cost.
In summary, we outline our main contributions as below:

— We propose a new DSSE scheme, named Bestie, and prove that it is forward-
and- Type-I11-backward secure;

— We comprehensively compare Bestie with previous DSSE schemes and show
that Bestie offers much better performance;

— We introduce the parallelization method to implement the Search protocol of
Bestie and experimentally evaluate its efficiency.

We organize the remaining sections of this paper as follows. Section 2 reviews
the background knowledge of DSSE. Section3 presents our Bestie. Section4
experimentally compares Bestie with previous works. We introduce the related
works in Sect. 5. Section 6 finally concludes this paper.

2 Background

Notations. In the remaining sections, we use A € N to denote the security

parameter. We use symbol e & X to denote randomly choosing an element e
from space or set X. Symbol {0, 1}* indicates all strings that are of binary length
k € N, and symbol {0,1}* represents all strings of arbitrary binary length. Let
0* be the string of binary length A\ whose bits are all zero. We assume that no
file has the identifier 0*. Let symbol poly(A) denote a polynomial with input
parameter A. Let symbol | denote the abort operation.

Definition 1 (DSSE). A DSSE scheme X' consists of three protocols between
the client and the server, such as X.Setup, X.Update, and X.Search. Their defi-
nitions are given below:

— Protocol X.Setup(\): In this protocol, the client initializes his secret key K
and an empty state-set o for the given security parameter \ and sends an
empty encrypted database EDB to the server. The client keeps both his key
K and state-set o private.

— Protocol X.Update(Kx;, 0, 0p, (w,id); EDB): In this protocol, the client either
adds a new keyword-and-file-identifier entry (w,id) to or deletes an existing
entry from the server according to parameter op € {add,del}. Given key Kx
and state-set o, the client sends a new ciphertext of entry (w,id) to the server
if op = add; otherwise (namely, op = del), he sends a delete token of entry
(w,id) to the server. When receiving the above message, the server updates
its database EDB correspondingly.
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— Protocol X.Search(K 5;, 0,w; EDB): In this protocol, given key Kx and state-
set o, the client sends a search trapdoor of the expected keyword w to the
server. Then, the server searches the keyword over the database EDB and
returns all valid file identifiers to the client.

A DSSE scheme must be correct in the sense that all valid file identifiers can
always be found. The formal definition can be found in [18].

A popular method to define the adaptive security of DSSE is to define the
indistinguishability between a real game and an ideal game of DSSE. In both
games, the adversary can adaptively issue Update and Search queries. In the real
game, all keyword-and-file-identifier entries and secret keys are real, and both
protocols X.Update and X'.Search are correctly implemented. In contrast, in the
ideal game, a simulator only uses leakage functions to simulate the responses to
all queries of the adversary. We say that DSSE is adaptively secure if a simulator
can simulate an ideal game that is indistinguishable from the real game. The
fewer leakage functions the simulator uses, the more secure DSSE is.

Definition 2 (Adaptive Security of DSSE). Given leakage functions L =
(£Stp, LUpdt rSreh) o DSSE scheme X is said to be L-adaptively secure if for
any sufficiently large security parameter A € N and adversary A, there exists an
efficient simulator S = (S.Setup, S.Update, S.Search) for which |Pr{Real’ (\) =
1] — Pr{Ideal% s (\) = 1]| is negligible in X\, where games Real(\) and
Ideal s »(\) are defined as below:

~ Real% (\): The real game exactly implements all DSSE protocols. Adversary A
can adaptively issue Update and Search queries with input (op, (w,id)) and w,
respectively, and observe the real transcripts generated by the DSSE protocols.
At the end, adversary A outputs a bit.

- Ideal% s »(X\): All transcripts are simulated by the simulator S. Adversary A
can issue the same queries as in the real game. The simulator S simulates
the corresponding transcripts by taking leakage functions L as input. At the
end, adversary A outputs a bit.

Let list @ be a set of all Update and Search queries, where each entry in list
@ has the form of either (u,op, (w,id)) or (u,w) for Update and Search queries,
respectively, where parameter v denotes the timestamp of issuing a query. Given
a keyword w, let function sp(w) return all timestamps of the Search queries about
keyword w, function TimeDB(w) return all undeleted file identifiers of keyword
w and the history timestamps for adding these files, and function DelHist(w)
return the history timestamps of all paired Add and Delete operations about
keyword w. The formal definitions of the above three functions are given below.

sp(w) = {ul(u,,w) € Q}
TimeDB(w) = {(u,id)|(u, add, (w,id)) € Q and V', (v, del, (w,id)) & Q}
DelHist(w) = {(u®?, u?)|3id, (u*, add, (w,id)) € Q
and (u?®, del, (w,id)) € Q}
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With the above functions, forward and Type-III-backward security is defined
as follows.

Definition 3 (Forward and Type-III-Backward Security [1,2]). An L-
adaptively secure DSSE scheme X' is forward-and-Type-III-backward secure iff
the Update and Search leakage functions LYP% and L7 can be written as

LY (op,w,id) = L' (op) and L5 (w) = L" (sp(w), TimeDB(w), DelHist(w))
where L' and L" are two stateless functions.

Besides the Type-III backward security, there exist two other levels of back-
ward security, namely Type-I backward security and Type-II backward security.
Type-I backward security requires that a Search query leaks only TimeDB(w)
and the total number of updating w. In contrast, Type-II backward security addi-
tionally allows a Search query to leak the timestamps of updating w. This paper
focuses on the Type-III backward security. The formal definitions of Type-I and
Type-1I backward securities can be found in [2].

3 Construction of Bestie

As shown in Table 1, our proposed Bestie is practical in almost all aspects. To
achieve this, the construction of Bestie adopts the following three core ideas:

— To achieve high search performance, Bestie generates searchable ciphertexts
in a counter-based design and collects all found ciphertexts into a group for
each Search query. This method avoids redundant computation in the next-
time search on these ciphertexts. The counter-based design enables the server
to find all matching ciphertexts by traversing all valid counter values, and
the resulting search complexity is sub-linear with respect to the total num-
ber of ciphertexts. Additionally, Bestie avoids any expensive cryptographic
operation and adopts some hash computations. Hence, Bestie achieves faster
search performance than the previous works, such as Fides and Janus++.

— To realize non-interactive real deletion while ensuring minimal information
leakage, we apply the idea of combining logical deletion and real deletion
introduced by Xu et al. [30]. Bestie additionally achieves higher security (less
information leakage) than the scheme in [30]. In short, when issuing an Update
query to delete a historical ciphertext, Bestie uploads a new ciphertext to
the server. This ciphertext contains the index of a historical ciphertext that
the client expects to delete. When a Search query finds this new ciphertext,
the server can decrypt the contained index, and this index can guide the
server to really delete the corresponding historical ciphertext.

— To achieve forward security, Bestie chooses a new key for a keyword to
generate the keyword ciphertexts after each search for the keyword. In other
words, after each search for a keyword, Bestie chooses a new key to generate
the following ciphertexts of the keyword. To avoid storing many keys for a
keyword on the client-side, Bestie allows the client to maintain a Search
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counter for each keyword and dynamically generate any historical key of a
keyword. Moreover, the use of a group on the server-side enables Bestie
to send a constant-size search trapdoor for each Search query, instead of
delegating many search trapdoors generated by the different historical keys
of a keyword to the server. To achieve backward security, Bestie encrypts
all file identifiers such that the server learns nothing about the deleted file
identifier.

3.1 Our Construction

Let A be the security parameter. Bestie utilizes a PRF function F : g X Xp —
YVr, where Kp = {0,1}* is the secret key space, XA = {0,1}* is the domain
and Vg = {0,1}* is the range. The security of PRF ensures that the output
of F is indistinguishable from a randomly sampled value from Vg, except for a
negligible probability in the parameter \. Bestie also uses a semantically secure
and probabilistic symmetric encryption scheme £. £ comprises of a probabilistic
encryption algorithm &£ : K¢ x M¢ — C¢ and the corresponding decryption algo-
rithm D : K¢ x C¢ — M U{L}, where K¢ = {0,1}* is the symmetric key space,
M = {0,1}* is the plaintext space, and C¢ = {0,1}* is the ciphertext space.
Algorithm 1 presents the pseudocode of protocols Bestie.Setup, Bestie.Update,
and Bestie.Search. The following content explains the details of Bestie.

Bestie.Setup Protocol. Upon inputting a security parameter A, this protocol
mainly initializes two keys K¢ and .S and some empty storage structures Count
and EDB = (CDB, GRP). Key K, will be used as a symmetric key to encrypt
(or decrypt, resp.) file identifiers when updating an entry (or receiving the search
results from the server, resp.). Key S is a master key. When issuing an Update
query or a Search query of a keyword, the client will dynamically generate two
sub-keys from the master key for the keyword to complete the query. Such a
method avoids storing many keys on the client-side. Structure Count stores
the update times of a keyword after the last search of the keyword and the
keyword search times. The client must locally store structure Count and ensure
its privacy. The server uses structure CDB to store all newly updated ciphertexts
that are never searched and uses group GRP to group the still-valid ciphertexts
of the same keyword when receiving a Search query.

Bestie.Update Protocol. This protocol enables the client to issue an Update
query for adding or deleting a keyword-and-file-identifier entry, such as (w, id).
For a given entry (w, id), the client locally queries structure Count to obtain the
existing update times cP% after the last search of keyword w and the existing
search times c57" of keyword w (refer to Steps 1 to 3). Then, the client computes
two special keys K,, and K/ with the master key S and the search times 57"
of keyword w (refer to Step 4). As a result, the client will use a new key K, to
generate the subsequent ciphertexts of keyword w after each search of this key-
word. Each ciphertext consists of three parts, namely, (L, D, C). Part L is taken
as a unique address to store the ciphertext in structure CDB. Part D encrypts
the inputted operation type op and a hash value G(K],,id). When searching



10 T. Chen et al.

Algorithm 1. Protocols Bestie.Setup, Bestie.Update and Bestie.Search.

Setup(\)

1: Choose two hash functions H : {0,1}" —
{0,1}>‘ TA+L where X = poly()\) and G :
{0,1}* — {0,1}*

2: Initialize three empty maps Count, CDB,
and GRP, and let EDB = (CDB, GRP)

3: Let op € {add,del} with the binary codes
add =1 and del =0

4: Pick a symmetric key K¢ & K¢ and a secret

key S & K, and set K5 = (S, K¢)
5: Store EDB on the server
Update(K 5, Count, op, (w, id); EDB)
Client:

1: Retrieve the current
(cupdt csrehy Count[w]
inputted keyword w

2: Initialize (c“P%*, cS7") « (0,0) if Count|w]
is NULL

3: Accumulate the update times of keyword w
by setting c“p‘“ — chdt +1 and update such
modification to Count[w]

4: Compute two special keys Ky —
F(S, w||ci") and K/ « F(S,w|| — 1) for
encrypting keyword w

5: Encrypt keyword w as (L||D) —
H(K,, ci?%) @ (0 ||op||G(I, , id)), where
L represents the most significant A" bits of
the result and D denotes the remaining A+ 1
bits (Note that we have assumed that id
cannot be 0% in Section 2)

6: Encrypt the inputted file identifier as C' «—
E(Ke, id)

7: Send ciphertext (L, D, C) to the server

Server:

1: Store the received ciphertext by setting

CDBJ[L] — (D, C)
Search(K 5>, Count, w; EDB)
Client:

1: Retrieve the current
(cupdt csrehy  Count|w]

2: Abort if Count[w] is NULL

values
the

count
with

count values

3: Compute two special keys K., —
F(S, w||ci ") and K/ « F(S,w|| — 1) for
generating the search trapdoor of keyword w

4: Compute index I «— G(K,fu,())‘) for the
server to group the search results of this time
with the results of the previous searches of
the same keyword

5: Send search trapdoor (cszdf’,Kw,Iﬂfp) to
the server

Server:

updt

1: Initialize an empty set D, and set i < c;

2: repeat
3: Break if ¢ =0
4:  Compute (L||D’') « H(Ky,1), where L
represents the most significant A’ bits of
the hash value and D’ denotes the remain-
ing A + 1 bits
Retrieve ciphertext (D,C) «— CDBJ[L]
according to index L
Decrypt (op||X) «— D & D’
if op = del then
Record X into D «— DU {X}
Remove all old ciphertexts (X', C’) €
GRP[I9"P] with X' = X that already
exist in GRP[I?"P] before this search
10: else if op = add then

o

S R

11: Record (X, C) into group GRP[IJ?]
if X ¢ D
12: end if

13: Seti=1¢—1

14: until (i = 0)

15: Remove all above ciphertexts found from
structure CDB

16: Return all remaining file identifier cipher-
texts in group GRP[IJ"?] to the client

Client:

1: Use the symmetric key K¢ to decrypt all
received ciphertexts and return the obtained
file identifiers

2: Accumulate the search times of keyword w
by setting c“‘h — c”°h + 1 and updating

Count|w)]

3: Update Count[w] by setting c%P4* =0

w

keyword w in the future, this hash value will inform the server which ciphertext
must be deleted if op = del. Part C encrypts the inputted file identifier.

Bestie.Search Protocol. This protocol allows the client and the server to com-
plete a search task together. The protocol contains three steps: the client gen-
erates and uploads a search trapdoor to the server, the server then finds and
returns the matching ciphertexts, and finally, the client receives and decrypts the
returned file identifiers. For searching a keyword w, the generated search trap-
door consists of three parts: the current counter value c?% . the sub-key K,,, and
a group index I97P. The value c“P% denotes the number of newly updated cipher-
texts of keyword w after the last search of keyword w. Upon receiving both c#P4¢
and K, the server can find the matching ciphertexts from these newly updated
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ones. The group index 19" allows the server to retrieve the historical matching
ciphertexts from group GRP. The final search results include these two parts.
When searching a keyword w, first, the server finds all new matching cipher-
texts from structure CDB (refer to Steps 2 to 14). The server handles these
matching ciphertexts as two cases according to their contained operation types
(refer to Steps 7 to 12). In the case of op = del, the decrypted value X means
that the server will remove a ciphertext from either structure CDB or group
GRP[I97P] if the ciphertext contains the same value X . Note that when using the
value X to delete ciphertexts from group GRP[I97?], the server only removes the
old ciphertexts found in previous search queries. This guarantees that a Delete
query only removes the early corresponding Add queries, not the subsequent Add
queries. In the case of op = add, the server will add the corresponding ciphertext
into group GRP[IJ?] if the ciphertext is still valid (not deleted). Second, the
server retrieves all matching and still-valid ciphertexts from group GRP[IZ?]
and returns them to the client. Finally, the client decrypts the matching file iden-

tifiers, accumulates the search times ch“‘h, and clears the counter value cﬁ)pdt.

Correctness of Bestie. The correctness of Bestie comes straightforwardly
from the collision-resistant property of hash functions H and G. Concretely,
when searching a keyword w, the server repeats computing hash value H(K,,, i)
for i decreasing successively from c¢“P% to 1 and obtains the number of cuPdt
distinct addresses. These addresses guarantee the search correctness of finding all
matching ciphertexts from structure CDB. The uniqueness of hash value 197 =
G(K!,,0") guarantees that group GRP[IJ?] contains all historical matching
ciphertexts. In addition, the uniqueness of hash value G(K,, id) guarantees that
the server can correctly delete the expected ciphertext.

Security of Bestie. In terms of security, Bestie is forward-and-Type-III-
backward secure. Formally, we have the following theorem, which is proven in
Appendix A.

Theorem 1. Suppose that the hash function H is a random oracle, G is a
cryptographic hash function, function F is a secure PRF function, and & is a
CPA-secure symmetric encryption scheme; then, Bestie is an adaptively secure
DSSE scheme with leakage functions L5P(\) = X\, LUP%(op,w,id) = 0, and
L57h(w) = {sp(w), TimeDB(w), DelHist(w)}.

Remarks on Improving the Performance. To reduce the hash function
iterations as much as possible, Bestie computes the partial ciphertexts L and
D by only one hash computation (refer to Step 5 in protocol Update), instead of
independently generating them by running a hash function twice. This approach
is very effective in reducing the time cost. For example, our experiment shows
that the time cost to run hash function SHA-256 twice by the OpenSSL library
is approximately 20% more than running hash function SHA-512 once.

When searching for a keyword, the server can find the matching ciphertexts
by a parallel method to improve the performance. Refer to Steps 2 to 14 in
protocol Search. The repeated computations to find all matching ciphertexts
from structure CDB can be transformed into a parallel algorithm since each
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computation relies on the sub-key K, and the parameter i € [1,c'P%]. The
server can traverse all possible values of parameter ¢ in parallel to improve the
search performance. We will show a parallel execution of protocol Search to
demonstrate its significant advantage in Sect. 4.

3.2 An Example of Bestie

Client
| DB — () o (|G i €0k 2y ""'c']{p'177] """ |
! CDBIL,| = (H 'w., w 1=
Countfuwl — et =4, ! CDBILy) - (Hy (K, idh),) |
ountfuw] = on _ | CDB(Ly] - (Hx Keid), ¢ !
Cw ! CDBIL| = (Hx (Kevidy) ) 1
_______ Search trapdoor of keyword w __ |
(Search w over CDB and GRP)
(E(Ke idy), E(Ke,ids), E(Ke,ids)}
e e _____
[ Decrypt returned search results)
|
TTT=------------------------= e —so o= v
updt CDBIL,] = NULL ! GRP[I] !
Count[w] = =0, i CDB[1,] = NULL (G ide). 5(1\5 id)).) !
T ) esreh — o : CDB|L;] = NULL 1 VS (G(E, ids), E(Ke,ids)), p 1
w ! CDBJLy] = NULL U @ ids), £ ids) )

Fig. 1. Example of Bestie. Note that Hr denotes the least significant A + 1 bits of
the output of hash function H. The ciphertexts with op = del colored with red or
blue mean to delete the corresponding ciphertexts with op = add of the same color,
respectively.

We introduce an example to clearly present the search procedures of Bestie.
For keyword w, suppose that in the first time search of this keyword, the server
finds three matching ciphertexts from structure CDB and transfers them to
group GRP[IJ"P]. Then, the client issues four Update queries for adding entries
(w,id4) and (w,ids) and deleting entries (w,ids) and (w,id;). The two upper-
side rectangles of Fig. 1 shows the states of both the client and the server after
completing the above operations, respectively. The client records the current
counter values. The server stores the four newly uploaded ciphertexts in structure
CDB.

Now, suppose the client to issue the search query of keyword w again. Upon
receiving the corresponding search trapdoor, the server first finds the four match-
ing ciphertexts CDB[L4] CDBJ[L;], CDB[LQ] and CDB[L ] and decrypts
del||G(K,,id1), del||G(K],,id4), add||G(K],,ids), and add||G(K],,id4), sequen-
tially. Secondly7 the server performs the followmg steps: (1) use del||G( K idy)
to delete entry (G(K,,id1),E(Ke,id1)) from group GRP[I9?] and temporarily
store G (K, idy) for future (possible) deletions, (2) temporarily store G (K7, idy)
for future (possible) deletions, (3) store entry (G(K,,ids),E(Ke, ids)) in group
GRP[IZP], and (4) ignore ciphertext CDB[L;] since it contains G (K7, ,idy).
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Thirdly, the server empties structures CDB[L4/L3/L2/L1] and returns the three
matching and still-valid ciphertexts in group GRP[IJP] to the client. Finally,
the client decrypts the returned search results and updates his counter values.
The lower-side rectangles of Fig. 1 shows the new states of both the client and
the server after the search, respectively.

4 Evaluation

We code Bestie and comprehensively evaluate its performance. To show the
significant advantages of Bestie, we compare Bestie with five existing forward-
and-backward-secure DSSE schemes, such as Fides and Dianage both from [2],
Mitra and Mitra® both from [4], and Janus++ [29].

4.1 Implementation

We code Bestie and recode the above five existing DSSE schemes for unifying
their security parameters and testing environments.

Table 2. Hardware and software configuration

Hardware platform

CPU | Intel E5-2630 v3 | Memory |64 CB
Software environment
Operation system CentOS 7.3.1611 x64 | Compiler GCC 4.8.5

Cryptographic library | OpenSSL 1.1.1c [10] | Mathematical library | GMP Library 6.1.2 [9]

Programming Environment. Table 2 lists the hardware and software config-
urations. We code the above mentioned six DSSE schemes with C++ language
and choose suitable security parameters to guarantee that they satisfy the 128-bit
security level. To mitigate the influence of hard disk I/O, we store all generated
ciphertexts in memory with the C++ STL library’s data structures, such as
unordered_map. Some graphs of our experiment are produced with Matplotlib
[15].

Cryptographic Primitives. We apply the OpenSSL library and choose the
SHA-2 hash family, the SHA-256-based HMAC, and AES-128 encryption to
realize the hash function, the PRF function, and the symmetric encryption that
appear in above mentioned six DSSE schemes, respectively. Janus++ is the most
complex one to be coded compared with others. In Janus++, each ciphertext
includes a unique tag. When the client wants to delete a ciphertext, he gener-
ates a punctured key according to the ciphertext tag. This key can revoke the
capability of the server to decrypt the ciphertext. The chosen binary length of
the tag (namely, 16 bits) in [29] is too short to support a large volume of data.
Hence, we apply the SHA-256-based HMAC algorithm to securely generate 256-
bit tag. In addition, we set the maximum deletion number of Janus++ to be
2,000 and apply Dianagy.; as a building block to realize Janus++. We apply the
GMP library to realize the 2048-bit RSA-based trapdoor permutation employed
by Fides.
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4.2 Data Description

Table 3. The 18 representative keywords and their frequencies

Keyword | Freq. Keyword | Freq. Keyword | Freq. Keyword | Freq. Keyword | Freq.
2001 246,613 | pst 218,860 | 2000 208,551 | call 102,807 | thu 93,835
question 83,882 | follow 75,409 | regard 68,923 | contact 60,270 | energi 54,090
current 47,707 | legal 39,923 | problem 31,282 | industri 21,472 | transport | 12,879
target 7,311 | exactli 4,644 | enterpris 3,130

We run the Porter Stemming algorithm [24] on the Enron dataset [20] to extract
keywords as [16] does. We extract a total of 42,014,587 keyword-and-file-identifier
entries after excluding stop words, such as “a”, “an”, and “the”. The total num-
ber of distinct keywords is 856,131. To succinctly present experimental results,
we choose the 18 representative keywords listed in Table 3. These keywords have
distinct frequencies. In particular, we choose the keyword “2001”, which has the
highest frequency, as a representative one. Ultimately, our test dataset includes
1,381,588 keyword-and-file-identifier entries. In addition, for each email, we set
its file identifier to be the hexadecimal representation of the SHA-256 hash digest
of its full path. Each file identifier consists of 64 bytes.

4.3 Experimental Results

—>— Bestie
3.5 —— Mitra

—=— Dianage
—— Mitra"

—v— Fides —e— Janus++

Search Time Cost (min)
<
n

Search Time Cost (min)
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(a) Bestie, Mitra, Dianag.;, and Mitra™. (b) Fides. (C) Janus++.

Fig. 2. Total Search time cost without deletion.

Search Performance without Any Deletion. The search performance con-
sists of three respects, such as total Search time cost, bandwidth cost, and client
time cost. Note that the search performance here does not contain any deletion
operation. Figure 2 compares the above-mentioned six schemes in terms of total
Search time cost, namely the sum of both the server and the client time costs.
The numerical results demonstrate that Bestie is the best one. It achieves a
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out deletion.

Search time cost that is at least 2, 1,032, and 38,332 times faster than both
Mitra* and Dianagy.;, Fides, and Janus++, respectively. Bestie is also faster
than Mitra. Bestie takes approximately 3.66 microseconds to find one match-
ing ciphertext in average.

Figure 3 gives comparisons in terms of bandwidth cost. The bandwidth cost
means the transferred data during a search. Figure 3 shows that Bestie achieves
the lowest bandwidth cost compared with those schemes that need the client to
return file identifiers to the server, like Mitra, Mitra*, and Fides. Both Janus++
and Dianag.; achieve the cheapest bandwidth cost, since they allow the server
to learn the file identifiers without the help of the client.

Figure 4 compares Bestie, Mitra, Mitra®, and Fides in terms of client time
cost. We omit the comparisons with both Janus++ and Dianag.;, since both of
them require quite small client time cost during a search. The numerical results
show that the client time cost of Bestie to find one matching ciphertext is
approximately 0.89 microsecond, which is the minimum one in Fig. 4.

Search Performance with Deletions. In this part, we consider deletion oper-
ations and test the search performance again. This experiment selects keyword
“2001” as a representation and its corresponding file identifiers as the test dataset
for testing Bestie, Mitra, Mitra*, Fides, and Dianagy. In contrast, we select
keyword “enterpris” for testing Janus++. The difference is caused by the rea-
sons that the maximum deletion number of Janus++ is set to be 2,000, and
this number is much smaller than the total number of file identifiers of keyword
“2001”. If we set the maximum deletion number to be a much bigger one, the
Search time cost of Janus++ is too high. To test the search performance, we add
246,613 (3,130, resp.) ciphertexts for keyword “2001” (“enterpris”, resp.) at first.
Secondly, we issue different number of Delete queries and then search keyword
“2001” (“enterpris”, resp.) over these ciphertexts. Each Delete query is to delete
a randomly chosen file identifier.

Figure5 shows how the different number of Delete queries affect the total
Search time cost of a scheme. The numerical results show that Bestie achieves
the lowest total Search time cost compared with others. Moreover, the increasing
number of Delete queries has very little influence on the total Search time cost of
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Bestie. This is because that the total number of memory-writing operations in
protocol Bestie.Search is decreasing along with the increasing number of Delete
queries. The saved time cost caused by the decreasing number of memory-writing
operations nearly counteracts the time cost caused by the increasing number of
Delete queries.

Figure 6 show that Bestie achieves the lowest bandwidth cost compared with
Mitra, Mitra®, and Fides. Moreover, the bandwidth cost of Bestie is decreasing
along with the increasing number of Delete queries. We omit the comparison with
Janus++ in terms of bandwidth cost, since Janus++ does not need the client to
help the server get the matching file identifiers.

Figure 7 shows that Bestie saves at least 80% client time cost compared with
others except Janus++ if gﬁﬁﬁ;‘ gff ADSEEC:Y‘; x 100% > 10%. We also omit to test
the client time cost of Janus++ due to the same reason as the last experiment.
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Update Time Cost. This experiment tests the time cost to generate one Update
query, including Add and Delete queries. The above-mentioned six schemes has
an identical time cost in generating that two kinds of queries, except Dianagye
and Janus++. Figure 8 shows that Bestie has a little more Update time cost only
than both Mitra and Mitra*. But Bestie is more useful since both Mitra and
Mitra* cannot achieve non-interactive real deletion.
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Fig. 9. Time costs of Bestie.Search with different threads.

Parallel Keyword Search. Section 3 explains that Bestie can achieve parallel
keyword search. This means that compared with other schemes, Bestie can
also retain its performance advantage when searching a keyword in the multi-
threading setting. To highlight this feature, we implement the search procedures
of the Bestie.Search protocol with different numbers of threads, such as two,
four, eight, and sixteen threads. According to the numerical results shown in
Fig.9, generally, the more threads the server uses, the more efficient the search
performance Bestie can obtain. The opposite results are observed only in the
case of two threads when the number of matching ciphertexts is too small. The
main reason for such an exception is the competition among threads for writing
memory.

5 Other Related Works

Traditional SSE Schemes. The seminal work of Song et al. in 2000 [25]
started the research on SSE. The proposed SSE scheme needs to scan the whole
database during the search therefore is not efficient. In 2006, Curtmola et al.
firstly improved the search efficiency of SSE to the sub-linear setting [7]. However,
their construction with sub-linear search efficiency is not secure against adaptive
chosen-keyword attacks (CKA2). Chase et al. exhibited the first CKA2-secure
SSE scheme that has sub-linear search complexity [6] in 2010. Their work adopts
padding in the encryption algorithm, which results in waste of storage and band-
width resources. In 2012, Islam et al. introduced the first attack against SSE,
which relies on the access pattern leakage of SSE and some background knowl-
edge [16], such as the distribution of the keyword space.

Early DSSE Schemes. In 2010, Liesdonk et al. proposed the first CKA2-secure
DSSE scheme, for which the search efficiency is logarithmic with the number of
unique keywords [22]. However, the underlying cryptographical primitives pro-
duce redundant data, which results in a non-optimal search bandwidth. Addi-
tionally, the scheme is not scalable enough to support a large number of file
identifiers. In 2012, Kamara et al. formally defined the security notion of DSSE
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over information leakage [7] and presented a CKA2-secure DSSE construction
with sub-linear search efficiency [18]. In 2013, Kamara et al. presented a CKA2-
secure DSSE scheme that is built upon a keyword red-black tree, and the scheme
supports parallel search [17]. However, the generated encrypted index of their
construction is very large. Cash et al. later proposed a counter-based DSSE
scheme that supports very large datasets [3]. In the same year, Stefanov et al.
proposed a DSSE scheme that is forward secure [27]. However, the Update pro-
tocol of their scheme is costly because it requires the client to interact with the
server to perform re-encryption operations. In 2014, Hahn et al. constructed an
efficient DSSE scheme [12]. However, when adding searchable ciphertexts, the
scheme directly classifies the ever-searched keywords and stores the correspond-
ing ciphertexts in specific places, which reveals the semantic information of the
ciphertexts. In 2017, Xu et al. proposed a DSSE scheme with sub-linear search
efficiency and small leakage [30]. The scheme constructs a hidden chain in those
generated ciphertexts that contain the same keyword and combines the physi-
cal and logical deletion. In 2016, Zhang et al. presented the file-injection attack
against DSSE [31]. The file-injection attack is a proactive attack wherein the
adversary injects files into the target scheme.

Forward-and-Backward-Secure DSSE Schemes. As illustrated by Zhang
et al., forward security is an important property that can defend against file-
injection attacks [31]. The first forward-secure DSSE scheme was proposed by
Chang et al. in 2005 [5]. In 2014, Stefanov et al. first formally defined forward
security with leakage functions [27]. Later, Bost improved the performance of the
proposed scheme in the aspects of both computation and bandwidth by using
the trapdoor permutation [1]. In 2016, Garg et al. constructed a forward-secure
DSSE scheme based on their TWORAM [11], but it suffers from low Update and
Search efficiency. In 2017, Kim et al. utilized the dual dictionary to construct
a forward-secure DSSE scheme that supports real deletion [19]. In 2018, Song
et al. proposed a counter-based forward-secure DSSE scheme with real deletion
support [26]. Their proposed scheme achieves 1/0 efficiency by caching historical
search results.

In 2014, Stefanov et al. proposed backward security, which requires that
search queries cannot be executed over deleted ciphertexts [27]. In 2016, Hoang
et al. presented forward-and-backward-secure DOD-DSSE [14]. The core idea
of DOD-DSSE is to let the client fetch all related data from the server and to
perform Search or Update operations locally. In 2017, Bost et al. formulated back-
ward security with leakage functions [2]. In their work, they defined three types
of backward security for ensuring different levels of security strength. In work [2],
Bost et al. constructed four forward-and-backward-secure DSSE schemes: Fides,
Dianape;, Moneta and Janus. Moneta is based on TWORAM, which is not prac-
tical. In 2019, Li et al. constructed a forward-and-backward-secure DSSE with
the hidden pointer ciphertext structure and partition search technique [21]. In
2020, He et al. [13] presented a forward-and-backward-secure DSSE scheme with
constant client storage. He et al.’s approach is to combine the counter and chain
structure and use the global counter to find all chain structures of ciphertexts.
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In the same year, Demertzis et al. [8] proposed three forward-and-backward-
secure DSSE scheme with constant client storage. The first two schemes in [8]
achieve interactive real deletion, and the third scheme uses oblivious map and a
tree-based encrypted index as building blocks. Recently in 2021, Sun et al. [2§]
proposed a forward-and-backward-secure DSSE scheme Aura, which achieves non-
interactive real deletion in the cost of extra client-side storage resources to stash
Delete queries.

6 Conclusion

In this paper, we analyse the requirements for a DSSE scheme to be practical
and note that most existing forward-and-backward-secure DSSE schemes are not
practical enough in terms of performance or real deletion. This fact motivates
us to propose Bestie, a very practical and forward-and-backward-secure DSSE
scheme. Bestie also supports non-interactive real deletion and parallel keyword
search. The experimental results show that Bestie achieves the best Search
time cost compared with Fides, Mitra, Mitra*, Dianag.;, and Janus++. During
a search, Bestie achieves the lowest client time cost and the lowest bandwidth
cost compared with Fides, Mitra, and Mitra*. Although Bestie introduces a
little more client time cost and bandwidth cost during a search than Janus++
and Dianag, it is much faster than Janus++ during a search and achieves non-
interactive real deletion that Dianage; fails to achieve. In summary, Bestie is
very practical, especially for managing large-scale data.
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A Proof of Theorem 1

Proof. To prove the forward and Type-III-backward security of the proposed
Bestie, we construct a S simulator, which takes as inputs leakage functions
L3%(\) = A, LYPU(op,w,id) = 0, and L5"(w) = {sp(w), TimeDB(w),
DelHist(w)} to simulate protocols Bestie.Setup, Bestie.Update, and Bestie.
Search, respectively. We will demonstrate that the simulated Bestie is indistin-
guishable from the real Bestie under the adaptive attacks. Algorithm 2 describes
the simulator S. Specifically, the simulator S consists of the following three
phases.

Protocol S.Setup. This protocol simulates protocol Bestie.Setup. In this pro-
tocol, simulator S takes leakage function L£5?(\) = X as input and initial-
izes five empty maps CDB, GRP, CipherList, GIndlist, and Xlist, where
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Algorithm 2. Construction of Simulator S in the Ideal Game of Bestie

Setup(L5P (X))
1: Initialize five empty maps CDB, GRP, CipherList, GIndlist and Xlist and a timestamp
parameter u «— 0
2: Send EDB « (CDB, GRP) to the server
Update([lUpdt(op, (w, id)))
1: Accumulate the timestamp parameter by setting v «— uw + 1
2: Randomly pick a triplet (L, D, C) & {o, 1}>‘, x {0,131 x C¢ as the generated ciphertext
3: Record the triplet (L, D,C) in CipherList[u]
4: Send the triplet (L, D, C) to the server
Search(£57¢" (w) = (sp(w), TimeDB(w), DelHist(w))
1: Accumulate the timestamp parameter by setting v «— u 4+ 1
2: Extract the timestamp uo of the last Search query from sp(w), where ug = 0 if sp(w) =0
3: Extract all timestamps {u1, ..., u,} between ug and w from both TimeDB(w) and DellHist(w),
where u; < uj if i < j
4: Abort if n = 0 and up = 0 (namely, keyword w never appears in any historical Update query)
5: Extract the timestamp ugs of the first Search query from sp(w), where us = u if no earlier Search
query of keyword w occurs
6: If the index I"” stored in GIndlist[u,] is NULL, then randomly choose Ij]"” & {0,1}* and
update GIndlist(u,] « I7"

7: Randomly choose a key K & {0,1}> for searching keyword w, and retrieve I9™" « GIndlist[us]

8: for i =1 ton do

9: Retrieve the simulated ciphertext (Ly;, Du;,Cu;) <+ CipherList[u;]

10: If the timestamp u; was extracted from TimeDB(w) in the above Step 3, then set parameter
Umin = Ui

11: Otherwise (namely, the timestamp u; was extracted from DelHist(w)), set parameter wmin

to be the smaller of the timestamp u; and the timestamp paired with u,; in DelHist(w)
12: If Xlist[umin] is NULL, then randomly set Xlist[wy,in] & {0,1}*
13: If the Update query at timestamp wu; has operation type add, then program oracle H such
’
that H(K,4) = (Lu;||Du;) @ (0™ ||add||Xlist[umin])
14: Otherwise, program oracle H such that H(K, i) = (Luy,||Du;) @ (OA/ ||del||X1ist[wmin])
15: end for
16: Send search trapdoor (n, K, I9™7) to the server
17: return all file identifiers in TimeDB(w) after receiving the response from the server

(CDB, GRP) will be sent to the server and the remaining maps are kept as
internal states of simulator S. The map CipherList records the ciphertexts
generated by simulator §. The map GIndList records the group indexes for
the following Search queries. Map XList records the simulated values of hash
function G. Clearly, the simulated protocol is indistinguishable from the real
one in the view of adversary A.

Protocol S.Update. This protocol simulates protocol Bestie.Update. In this
protocol, simulator S takes nothing as input. It randomly chooses a random
triplet (L, D, C') as the generated ciphertext and uploads it to the server. In the
real world, H is a collision-free hash function, and £ is a semantically secure sym-
metric encryption scheme. Hence, the random triplet is indistinguishable from a
real ciphertext if adversary A does not know the corresponding search trapdoor.
The following content will prove that the random triplet is still indistinguishable
from a real ciphertext, even in the opposite case.
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Protocol S.Search. This protocol simulates protocol Bestie.Search. In this
protocol, simulator S takes the leaked information sp(w), TimeDB(w), and
DelHist(w) as inputs. Simulator S first checks whether there exists any his-
torical Update query about keyword w. If not, simulator S aborts, as the real
protocol does (refer to Steps 2 to 4). Otherwise, simulator S sets or retrieves the
group index 9" of keyword w (refer to Steps 5 and 6). In the following content,
simulator § must program oracle H such that the randomly generated search
trapdoor is still valid in the view of adversary A (refer to Steps 8 and 15).

In this part, simulator S mainly achieves two aims: (1) simulate hash values
of function G for all Update queries of keyword w as well as guarantee that the
Update queries of the same keyword-and-file-identifier entry have the same hash
value (refer to Steps 10 to 12) and (2) program oracle H such that all simulated
ciphertexts of keyword w can be correctly found by the server with the randomly
generated search trapdoor (refer to Steps 13 and 14). Finally, simulator S sends
the randomly generated search trapdoor to the server. The transcripts generated
by the simulated Search protocol are indistinguishable from those of the real
protocol since all operations are consistent with the real protocol in the view of
adversary A.

To summarize, there exists a S simulator to simulate Bestie with the given
leakage functions, and the simulation is indistinguishable from the real Bestie.
Thus, Theorem 1 is true. [l
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Abstract. Driven by the cloud-first initiative taken by various govern-
ments and companies, it has become a common practice to outsource spa-
tial data to cloud servers for a wide range of applications such as location-
based services and geographic information systems. Searchable encryp-
tion is a common practice for outsourcing spatial data which enables
search over encrypted data by sacrificing the full security via leaking
some information about the queries to the server. However, these inher-
ent leakages could equip the server to learn beyond what is considered in
the scheme, in the worst-case allowing it to reconstruct of the database.
Recently, a novel form of database reconstruction attack against such
kind of outsourced spatial data was introduced (Markatou and Tamas-
sia, IACR ePrint 2020/284), which is performed using common leakages
of searchable encryption schemes, i.e., access and search pattern leak-
ages. An access pattern leakage is utilized to achieve an order recon-
struction attack, whereas both access and search pattern leakages are
exploited for the full database reconstruction attack. In this paper, we
propose two novel schemes for outsourcing encrypted spatial data sup-
porting dynamic range search. Our proposed schemes leverage RTtree to
partition the dataset and binary secret sharing to support secure range
search. They further provide backward and content privacy and do not
leak the access pattern, therefore being resilient against the above men-
tioned database reconstruction attacks. Our evaluation shows the prac-
ticality of our schemes, due to (a) the minimal round-trip between the
client and the server, and (b) low overhead in the client side in terms of
computation and storage.

1 Introduction

The information retrieval community has been studying geometric range search
(GRS) for decades [1,21] and it has a wide range of applications in geosciences,
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location-based services, geographical information system, geo-medical engineer-
ing, and so on. Besides its use in applications assisting in our daily life activities
such as taking an Uber, finding nearby locations on Google Maps or friends
on Facebook, GRS can be used in some significant emerging public health and
safety applications. For instance, with the current COVID-19 outbreak, govern-
ments and researchers need to collect information (e.g. number of the test taken,
confirmed cases, death toll, etc.) in a specific geometric area. The need is the
same in other emergency situations, e.g., a bushfire emergency situation.

Driven by the cloud-first policy of many companies and governments, out-
sourcing the spatial data to a cloud server is a common practice around the
world. The cloud provides the scalable infrastructure to handle large datasets
and supports on-demand access through its highly available services. Data pri-
vacy is a necessity in such scenarios. Although public cloud providers are trusted
in providing their services, they cannot be fully trusted for data privacy. One
obvious solution is to only store encrypted data in the cloud. However, down-
loading and decrypting large datasets every time a search or update operation
needs to be performed is completely impractical. Hence, searchable encryption
(SE) is considered as a solution to correctly perform queries (search/update)
over outsourced encrypted data.

Searchable Symmetric Encryption (SSE) efficiently enables search over
encrypted data at the cost of revealing some well-defined information to the
server, known as the leakage. The most common SSE leakage functions are
access pattern and search pattern. Access pattern leaks all file identifiers that
are matching a search query. In contrast, search pattern leaks the repetition of
search queries (i.e., it is possible to determine if two search tokens correspond to
the same query). Exploiting SSE leakages might enable an adversary (often an
honest-but-curious cloud server) to infer information about the database beyond
what is considered in an SSE scheme (e.g. leakage abuse attacks [8,23]).

Most of the existing SSE schemes that support geometric range search are
designed in the static setting (i.e., updates of the database records after the
setup are not possible or come at the cost of re-encryption and re-upload of
the database). Although the dynamic setting provides more flexibility to the
schemes and supports more real-world applications, it introduces more leakages.
To capture new leakages in a dynamic setting, Bost et al. [5] introduced security
notions for dynamic SSE, so called forward and backward privacy. Recently,
Kasra-Kermanshahi et al. [15] showed that there might be additional leakages
when dealing with geometric data that are not captured by Bost’s forward and
backward privacy models, and introduced a new security notion for dynamic SSE
over spatial data (called content privacy) that hides the access pattern both in
search and update operations.

Different cryptographic primitives have been used to support secure range
search over geometric data such as order-preserving encryption (OPE), some-
what /fully homomorphic encryption, Geohash, and so on [15,19,27-29,31-33].
However, due to the inherent leakages associated with geometric range search,
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the majority of them fail to resist the newly developed leakage abuse attacks
that target SSE schemes designed for GRS [20,24].

1.1 Owur Contributions

In this paper, we propose two dynamic searchable symmetric encryption schemes
to support geometric range search, Geo-DRS and Geo-DRS™T. The first scheme
illustrates a novel approach to support geometric range search using RTtree
where more round trips between the client and the server are required to achieve
content privacy (alternatively homomorphic encryption can be used at higher
computational cost). Our Geo-DRS™ scheme provides an efficient dynamic range
search by leveraging R¥tree and secret sharing in Z,. Moreover, it uses two
non-colluding servers to avoid multiple rounds of client-to-server interactions.
Thus, it has only one round trip between the client and the servers during
searches and updates, with a logarithmic number of communication rounds
between the two servers. Geo-DRS™ is efficient and scalable while resilient
against Full Database Reconstruction (FDR) and Approxzimate Database Recon-
struction (ADR) attacks. Our security analysis shows that Geo-DRS™ is back-
ward and content private.

1.2 Motivation and Related Works

Order Preserving Encryption (OPE) [2] is one of the most popular approaches
to perform range search over encrypted data due to its efficiency. However, sev-
eral studies have shown that it is possible to perform inference attacks on one-
dimensional datasets using OPE leakages [10,14,16,17]. The search and access
pattern leakages are the most common leakages used in performing inference
attacks. For example, Naveed et al. [23] used frequency analysis to perform
sorting and cumulative attack. Later, Durak et al. [8] discovered two more
types of attacks (Inter-column correlation-based attacks and Inter+Intra-column
correlation-based attack) using OPE leakages that have not been considered
by Naveed’s work. Grubbs et al. [10] designed a leakage abuse attack which
takes advantages of both frequency and order leakage of OPE. Grubbs’s attack
is faster, with a higher recovery rate in comparison with Naveed’s cumulative
attack. Furthermore, a passive adversary is also able to perform FDR without
requiring auxiliary information, as discussed by Kellaris et al. [14].

The above discussed attacks mainly focused on one-dimensional data.
Recently, Pan et al. [24] investigated data inference attacks against multi-
dimensional OPE-encrypted databases. They designed a greedy and polynomial-
time algorithm with approximation guarantees. The FDR attacks for geometric
datasets were introduced recently by Markatou and Tamassia [20]. They utilized
access pattern leakage to reconstruct the horizontal and vertical order of the
points, and both access and search pattern leakages to recover the coordinates
of the points.

Several studies have begun to support range search over encrypted spatial
data [15,19,27-29,31-33]. For example, Wang et al. [27-29] proposed several
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constructions for geometric range search using SSW! encryption [26], which is
a pairing-based public-key encryption (PBKE). The main idea of these works is
to enumerate all possible points and then check whether they are in the queried
range. Due to the use of SSW, it is necessary to perform a pairing computation
for each database point. Similarly, bilinear pairing operations are used by Zhu
et al. [33] to support range search for location-based services. Both Xu et al. [31]
and Zheng et al. [32] proposed an OPE-based scheme which utilizes R-tree for
range search over spatial data. Luo et al. [19] used asymmetric scalar-product-
preserving encryption (ASPE) [30] and a geometric transformation to achieve
efficient range search. However, Li et al. [18] showed that Luo’s scheme has some
security flaws and cannot achieve the stated security notion. They proposed an
enhanced version of Luo’s scheme to overcome the security issues. However, both
schemes are designed in a static setting; hence the update (insertion/deletion)
of the points in the datasets is either not possible or requires re-encryption of
the entire dataset. Guo et al. [11] proposed a dynamic searchable encryption
scheme for geometric range search called GeoMix. They utilized Geohash and
predicate symmetric searchable encryption to achieve efficient linear search and
update. Although, the scheme supports update of the dataset points, there is no
discussion about forward and backward privacy of the scheme as well as resilience
against leakage abuse attacks.

Unlike other existing works in the area of geometric range search, Kasra-
Kermanshahi et al. [15] proposed two constructions which consider forward and
backward privacy. Moreover, they have defined a new security notion for spatial
data named content privacy. Their constructions utilize binary tree and a special
type of additive symmetric homomorphic encryption (ASHE). To the best of our
knowledge, only three of the state-of-the-art symmetric searchable encryption
schemes that support geometric range search are presented in a dynamic setting.
Only one of them, Kasra-Kermanshahi et al. [15], considered forward, backward,
and content privacy. However, the constructions are not scalable as the size of
the utilized binary tree grows linearly with the number of grid points in each
dimension of the environment.

2 Building Blocks

2.1 Notation

Some of the notations that are used more frequently in the work are given in
Table 1.

2.2 R-Tree and Rttree

R-tree was first introduced by Antonin Guttman in 1984 [12], to handle spatial
data efficiently. This data structure is a height-balanced tree-structure with index
records in its leaf nodes containing pointers to data objects. In this paper, we

L Shen-Shi- Waters.
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Table 1. Table of notations.

Notation Description

D Spatial dataset

N Number of objects in D

4 Bit length of database objects (64 bits)
[«] A secret share of z over Zs

ID; € {0,1}* | £-bit object identifier

m Maximum number of objects per leaf node
& Encrypted dataset

ST Search token

R Search results

use Rt tree [25], a variation of R-tree in which overlapping rectangles in interme-
diate nodes are avoided. Moreover, R trees have better searching performance
compared to R-trees [25].

We briefly review the example from [25] as shown in Figs. 1, 2 and 3 to see
how a RTtree is formed (for the sake of simplicity, the values of the bounding
boxes (Rect) are not mentioned in this example).

E
E

]

Fig. 1. The sample dataset.

In RTtrees leaf nodes consist of (ID,Rect), where ID is the object identi-
fier and Rect represents the bounding box where the object is located. That is,
Rect = (Tmin, Tmazs Ymin, Ymaz) Which are the coordinates of the lower left cor-
ner and the coordinate of the upper right corner. Non-leaf nodes contain entries
of the form (p,Rect), where p is the pointer to the address of the lower nodes
(children nodes) and Rect covers the rectangles in the lower node’s entries. A
R*tree has the following properties:
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Fig. 3. The R+tree built for Fig. 2.

For each entry (p,Rect) in an intermediate node, the corresponding subtree
contains a rectangle R if and only if R is covered by Rect unless R is a
rectangle at a leaf node; in which case R must just overlap with Rect.

— There is no overlap in any two entries in an intermediate node.

— The root has at least two children unless it is a leaf.

All leaves are at the same level/height.

2.3 Secure Bitwise Comparison

This work uses secure two-party computation based on bitwise secret sharings.
An additively secret sharing of x € Zs consists of two shares z; and x5 chosen
uniformly at random subject to the constraint that x = z; + x5 mod 2. The
two shares are distributed to two servers, respectively. We will denote this secret
sharing by [«]. All secret sharing operations are modulo 2 and the modular nota-
tion is omitted for conciseness. Note that modulo 2, addition and subtraction
are equivalent. Given secret sharings [z] and [y], the two servers can locally
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compute in a trivial way secret sharings corresponding to z = z + y. This oper-
ation will be denoted by [z] < [z] + [y]. It is also trivial to add the constant 1
to a secret sharing, one of the servers simply adds it locally.

In this work, secure multiplications of secret shared values are performed in
a standard way using pre-distributed multiplications triples [3,7], which consist
of ([a], [0], [€]) for uniformly random a and b, and ¢ = ab. These triples are
pre-distributed by the data owner to the two computing servers. In order to
improve the communication costs, a pseudorandom function (PRF) is used to
generate the triples: (1) the data owner sends a key K1 of the PRF to S1 and a
key K2 to S2; (2) the data owner and S1 use the PRF to obtain pseudorandom
values a1,b1,c1 € Zs, while the data owner and S2 use the PRF to obtain
pseudorandom values ag, by € Zs; (3) the data owner fixes ¢ such that ¢ = ab
and transmits the share ¢y to S2. With this optimization the communication
cost for pre-distributing each multiplication triple is reduced to a single bit.

For performing secure bitwise comparison, we use the same protocol as De
Cock et al. [6], which is a variant of the protocol of Garay et al. [9] using bitwise
secret sharings in the field Zo (a detailed description of the underlying protocol
can be found in Sect. 4.3.3 of De Hoogh’s PhD thesis [13]). For ¢-bits values x and
y, the two servers have as inputs secret shares [z;] and [y;] for ¢ € {0,...,¢—1},
where x = Ef;olxﬂi and y = Zf;olyﬂi. The protocol GEQ outputs a secret
shared value [z], where z is equal to 1 if z > y; and equal to 0 otherwise. The
protocol, which uses the divide and conquer paradigm, is presented in Algorithm
1. It outputs the inverse of the output of the protocol LT that outputs a secret
shared value [z], where z is equal to 1 if < y; and equal to 0 otherwise. LT
uses as a subprotocol LTEQ, which outputs ([z], [w]) such that z is equal to 1
if and only if z < y and w is equal to 1 if and only if x = y. The protocol GEQ
has log ¢ 4+ 1 rounds and needs to perform 3¢ — log ¢ — 2 secure multiplications
of values that are secret shared in Zs.

3 Definitions, Security Notions and Model

3.1 Syntax of Our Geometric Dynamic Range Search (Geo-DRST)

Our geometric dynamic range search (Geo-DRS™) scheme consists of the follow-
ing algorithms:

1. Setup(DB): The first step is to generate the shares of the database records to
be outsourced to the servers. This phase is run by the data owner as follows:
— Build.R*tree(DB,m) — (RT): Given a database DB and the tree
parameter m (which determines the maximum number of the points in
each node), this algorithm outputs a height-balanced R*tree.
— SecretShare(RT) — (S1,S2): This algorithm gets the R tree as input
and outputs its bitwise secret shares.
The Setup phase also generates the multiplications triples (that will be needed
for the executions of Protocol GEQ) and the database state §. S1 is given to
the first server and S2 to the second server.
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Algorithm 1. Comparison Protocols
GEQ(Y, [z¢], - .-, [z11, [yel, - - -, [val)

Input: ¢, [z.], ..., [z1], [yel, ..., [v1]

Output: [z]

1: return [z] « 1+ LT, [z], ..., [z1], [yel, - - -, [y1])
LT(k, [zx], - - -, [z1], [yk], - - - [31])

Input: k, [zx], ..., [z1], lyx], ..., [v1]

Output: [z]

1: if k =1 then

% | return [z] < [y1] + [y1][=z1]

4% ke

5 ([a], [b]) < LTEQ(k — &', [wx], - - -, [zwry1]s Tywl, - - - Tynr 11])
6: lIc]]<_LT(I€/7|III¢/]]7"')[ml]]’llyk/]]v"'v[[ylﬂ)

7: return [z] < [a] + [b][c]

8: end if

LTEQ(k, [z]. - .-, [=1], [yl - - -, [v1D)

Input: k, [zx], .. ., [P 7% PR [v1]
Output: [z], [w]

if £ =1 then
[2] — [y1] + [y2 111
[w] — 1+ [21] + [v1]
return ([z], [w])
else
k' — |k/2]
([a], [8]) < LTEQ(k — K/, [=&], - - -, [zpr 4], [yl - - -5 [ywrga D)
(Ie], [d]) — LTEQ(K', [y, - -, [wal, [yg D, - - D)
[21 — [a] + [b1(c]
10: [w] < [b]1d]
11: return ([z], [w])
12: end if

2. Search(Rect,/S1/S2) is a protocol between a client and the servers. To find
the desirable range query Recty, the client secret shares the query coordinates
with the servers whom run the GEQ protocol over their stored shares S1/S2
traversing the R tree jointly to find the minimum bounding boxes (leaf nodes)
that cover the query. The servers output the shares of the result set, R1 and
R2.

3. Update(n;, d,S1/S2) is a protocol between the data owner and the servers.
To insert or delete an object, the data owner should generate the new shares
of the corresponding leaf node. Upon receiving the shares, the servers update
their stored shares S1/S2 by replacing them with the new shares. At the end,
the servers update the dataset state to § + 1.

Remark. Note that, in our model we assume that the data owner sets m large
enough according to the size of the environment such that the insertion of new
objects would not require node splitting (see [25] for more details). Thus, to
add/delete an object only the corresponding leaf nodes would be updated. More-
over, even if the number of objects in a leaf node become larger than m, the data
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owner can proceed with splitting the corresponding leaf node and updating the
encrypted records accordingly.

3.2 Generic Dynamic SSE Leakage Functions

The leakage function £ keeps as state the query list Q, i.e., the list of all
queries issued so far. The entries are (t,w) for a search query on keyword w,
or (t,op, (w,ind)) for an update query, where t is the timestamp, w is the search
keyword, op € {Add, Del} denoting the operation, and ind is a list of file identi-
fiers to be updated. According to Bost [5] the general leakage functions associated
with dynamic SSE schemes are the following:

— sp(w) = {t: (t,w) € Q} is the search pattern which leaks if two search queries
correspond to the same keyword w.

— UpHist(w) is a history which outputs the list of all updates on keyword w.
Each element of this list is an update query tuple g, = (t, op, (w, ind)).

— TimeDB(w) is the list of all documents matching w, excluding the deleted
ones, together with the timestamp of when they were inserted in the database.

— Updates(w) is the list of timestamps of updates on w.

— DelHist(w) is the deletion history of w, which is the list of timestamps for
all deletion operations together with the timestamp of the inserted entry it
removed.

3.3 Range Search Leakage Functions

We denote the leakage function of our Geo-DRS™ scheme by £. That is, the
information which each server is allowed to learn about the dataset and the

queries. This leakage function corresponds to the Setup, Search and Update of
Geo-DRSt; £ = (L5t £5rch pUpdL)

— Search pattern (s): Similar to most of the existing searchable encryption
schemes, our scheme leaks some information about whether any two queries
are generated from the same range search or not. In our design, the servers
learn if the minimum bounding boxes match the minimum bounding boxes of
previous searches. That is, every time a search happens, the client will gener-
ate new random secret shares of the coordinates. So, even if the same search
query happens twice or more, the random secret shares of the coordinates
will be different from the point of view of any single server, and he cannot
link the search queries using this part of the protocol. But the servers learns
the resulting minimum bounding boxes and can compare with the respective
boxes of previous search queries.

— Number of updates (Nu): The server learns how many updates are performed
on the dataset but he cannot recognize the type of the update (insertion,
deletion, modification) and also on which point the update is performed.
Therefore, the update does not leak any information about the dataset and
the search queries.
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~ Range search size (rs): the server learns which minimum bounding boxes cover
the range for each search query.

— Range update size (ru): the server learns which minimum bounding boxes
cover the range for each update query.

— R tree structure (R ): The structure of R*tree is leaked to the servers.

Therefore, Geo-DRS™ leakage consists of L5(D) = RT, L5 (r) = (s, rs),
and LUP(op,1D;) = (ru, Nu).

3.4 Security Notions and Definitions

Kasra-Kermanshahi et al. [15] introduced a new security notion for spatial data
called content privacy. They formulated a leakage that was not captured in pre-
vious definitions such as forward/backward privacy [4,5]. In short, there should
be no leakage on updated points neither in the search phase nor during the
update. Content privacy and backward privacy (Type-II) have some common
properties: both protect the content and do not leak anything about the docu-
ments’ identifiers in the update queries. However, backward privacy (Type-1I)
leaks information about the content in the search queries via the access pattern.

Backward privacy (Type-II) reveals all of the information contained in Back-
ward privacy (Type-I1)? and also reveals when all updates over the search keyword
happened without their content.

Definition 1 (Backward Security with Update Pattern). A L-adaptively-
secure SSE scheme is update pattern revealing backward-secure if, and only if,
the search and update leakage functions £L57", LUP can be written as: LYP
(op,w,ind) = L'(op,w) and L5M(w) = L"(TimeDB(w), Updates(w), sp(w)),
where L' and L are stateless.

Definition 2 (Content Privacy for Spatial Dataset). A L-adaptively-
secure SSE scheme is content-private if, and only if, the search and update
leakage functions L7, LUPA can be written as: LYP%(op,r, P) = L'(op,7)
and L7 (r) = L"(r) where L' and L are stateless. Here, r represents a range
of coordinates and a point identifier is denoted by P.

3.5 Security Model

The security model of the proposed constructions is formulated using two games;
REAL%(A) and IDEALY s(X), for a security parameter A. The former is executed
using our Geo-DRS™ scheme (denoted by X), whereas the latter is simulated
using the leakage of our scheme as defined in Sect. 3.3. The leakage is parame-
terised by a function £ = (L5, £57¢h £UPdt) which describes what information
is leaked to the adversary A. If the adversary A cannot distinguish these two
games, then we can say that there is no leakage beyond what is defined in the
leakage function. These games can be formally defined as followed;

2 The document identifiers matching the issued search keyword when they were
inserted, and the total number a,, of updates over the search keyword.
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- REALﬁ()\): On input a dataset chosen by the adversary A, it outputs the
shares of the R*tree nodes by using Setup(DB) to A. The adversary can
repeatedly perform search and update queries. The game outputs the results
generated by running Search(Rect,/S1/S2) and
Update(n;, §,S1/S2) to A. Eventually, A outputs a bit.

~ IDEALY 5(A): On input a database chosen by A, it outputs the shares of
Rt*tree nodes to the adversary A by using a simulator S(£5%P). Then, it
simulates the results for search queries using the leakage function S(L£57¢")
and uses S(LYP) to simulate the results for update queries. Eventually, A
outputs a bit.

Definition 3. The scheme X is L-adaptively-secure if for every PPT adver-
sary A, there exists an efficient simulator S such that |Pr[REALZ(N) = 1] —
Pr[IDEALY 5(A) = 1]| < negl()).

4 Dynamic Secure Range Search on Encrypted Spatial
Data

This section first presents the Geo-DRS scheme to address the challenge of secure
range search on spatial data in a dynamic manner. Figure4 demonstrates the
overview of Geo-DRS scheme. This base scheme imposes a logarithmic num-
ber of communication rounds between the client and the server to perform the
search. One possible solution to avoid this communication overhead is to store
the RTtree structure from root to the leaf nodes on the client side and put the
rest on the server. However, this is not desirable as it contradicts the main goal of
outsourcing the data and also is not appropriate for resource constrained devices.
Therefore, we design Geo-DRS™, an enhanced version of the Geo-DRS scheme in
which the single-server model of Geo-DRS is replaced with a two non-colluding
server model, see Fig. 5. This enables us to shift the communication between the
client and a server to the communication between the two non-colluding servers.
To enable the servers to perform secure computation over the outsourced data
and achieve backward and content privacy, we utilize binary secret sharing in
Geo-DRS™.

4.1 Geo-DRS Scheme

To explain the ideas underlying our main construction (Geo-DRS+), we first
describe the details of the Geo-DRS scheme in Algorithm 2. This scheme consists
of three main algorithms: SETUP, SEARCH, UPDATE.

— SETUP: The data owner proceeds as follows:
e On input the dataset D, security parameter A and the tree parameter m,
she partitions the environment and builds a height-balanced R*tree.
e Encrypt each of the tree nodes and outsource it to the server.
— SEARCH: The protocol is executed between the client and the server as follows:
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Fig. 5. The system model of Geo-DRS™ scheme

e Client: Given the desired range query Recty = ([z1(q), zur(q)],
[vrr(q9), yur(q)]), the client generates the search token ST for the tree
root and sends it to the server. Upon receiving the corresponding result
R from the server, he decrypts it to find the next node in the R*tree and
continues this procedure to reach the desirable object.

e Server: Given the encrypted dataset £ and the search token S7, it outputs
‘R which contains the ciphertext of the nodes corresponding to the issued
search token.

— UPDATE?: The data owner and the server perform the following protocol:

3 Tt is also possible to use additive homomorphic encryption to perform the update at
the server side (e.g. update in [15]), here we want to show only a basic scenario.
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e Data Owner: Given the update query Q,, = ID,, whether it is an insertion
or a deletion, they first perform the SEARCH protocol so that the data
owner finds the corresponding leaf node, n;. Then, the data owner re-
encrypts n; and sends the re-encryption to the server.

e Server: The server replaces the corresponding entry for n; with the given
value from the data owner and updates the encrypted dataset £ state.

4.2 Geo-DRST: Optimised Geometric Dynamic Range Search

In our model, we use a Rt tree to categorise the data before creating the inverted
index. We applied the technique of De Cock et al. [6] with the secret sharing
of [9] in the field Zs to perform the secure search. The protocols for the setup,
search and update work as follows (Fig. 6 illustrates the details of Geo-DRS™
scheme):

— Setup(D): This algorithm is performed by the data owner that inputs the
the spatial dataset D. He first partitions the environment to build the R tree.
Then he creates bitwise secret sharings of the inverted index based on each
node in the tree, and sends the sets of shares S1 and S2 to S1 and S2, respec-
tively. He also pre-distributes to the servers the multiplications triples that
will be needed for the executions of the GEQ protocol.*

— Search(Rect,/S1/S2): This protocol is executed by the client and the servers.
On an input query Recty = ([z1n(q), zur(Q)], [yrL(q), yur(q)]), the client
generates bitwise secret sharings of those coordinates and send the set of
shares S7'1 and S72 to the corresponding servers. Given the shares of the
search token and of the inverted index, the servers S1 and S2 jointly perform
the search and return shares of the results, (R1,R2), to the client. Finally,
the client reconstructs the results, R.

— Update(n;, §,S1/S2): This protocol is executed between the data owner and
the servers. To update (i.e., insertion/deletion) an object in the outsourced
dataset, the data owner should update the corresponding leaf node. That is,
it first updates the object and then generates the new shares of that leaf node.
As the entire entry for the leaf node is getting updated the servers would not
learn which particular object is being updated. To update the leaf node n;,
the data owner generates the corresponding shares U1 and U2 for the servers.
Given such shares, the servers update their shares by replacing them with the
new shares. Finally, the servers update the dataset state to § + 1.

Remark. The security analysis of our scheme is presented in Appendix A.

4 The data owner can initially distribute some reasonable number of multiplication
triples, and once the servers are about to run out of triples, they can request more
triples to the data owner.
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Algorithm 2. Geo-DRS Construction

Setup(\, D, m)
Input: \,D,m
Output: &, K
. The data owner partitions D
RT «— R+tree(D, m) // generates a Rt tree where each node has m entries, filling up the empty
spaces with dummy values
Append each partition of size m of ID; € D to the corresponding leaf node
: Initialize UT < 0 indexed by nodes’ Tag
Ko, Ky < {0,1}*, € — {}, 6 — 1 // state of £
for all n; € RT do

K,; «— F(Ks,n;) J/F is a pseudo-random function (PRF)

Tag; « F(K¢,n;)

for j=1,...,m do

for Rj(n;) € RT do J/Rj(n;) is the records associated with a node
e; «— Encr, (Rj(n:)
UT(Tag;) <« e;
end for

end for
. end for
: Append UT to &
17: return &, K, K¢ /| The data owner stores K = (K, K;) and the identifier of the root of RT

which is ng, and sends £ to the server

SRt —oORTDRU B b

Search(Rectg, £)

Input: Rectq = ([z2L(q), zur(9)]; [yrL(2), yur(a)]), no, €

Output: R

1: The client starts from the root ng and performs Sch(ng)

2: Returns R as the list of objects which overlap with the queried rectangle

Sch(n;)

1: The client computes Tag; «+ F(Ky,n;)

2: K; «— F(Ks,n;)

3: Send Tag; to the server

4: The server computes e; «+— UT(Tag;) and send e; to the client

5: if n, is a leaf node then

6: R ={R;(n:) = (ID,,rect)}; N Decye, (es)

7 return R

8: else

9: R ={Rj(ni) = (n., rectc)};iilm"} « Deck;, (ei)

10: for j=1,...,m do

11: // Check if Rectq collides with recty,

12: Nllg ((yrr(ni) <yur(e) < yur(ni)) OR (yrr(ni) < yrr(e) < yur(ni)))
((wrr(ni) <zrr(q) < xvr(ni)) OR (L (ni) < wur(q) < zur(ni))) then

13: Sch(n.)

14: end if

15: end for
16: return R
17: end if

Update(ID;; &, 6)

Input: ID;; &, 6

Output: &,

1: if op = Add then

2: The data owner append ID; to R;(n;)

3: else

4: The data owner replaces ID; with dummy value in R;(n;)
5: end if

6: Tag; — F(K¢,n;)

7: e «— Enck,(Rj(n;)) and send (T'ags, e;) to the server

8: The server finds e; « UT(Tag;) and replace e; with e} in €
9 6—6+1
10: return &,6
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Setup(D)

1. The data owner generates the R tree, RT < R¥tree(D,m)

2. For each n; € RT and for j € {0,...,£ — 1} (where £ is the bit-length used to
represent the coordinates), the data owner secret shares between S1 and S2 the
values ([, (na)], [vh . ()], [2h 5 (1)1, [yl gr(n:)])- Let S1 denote the shares of S1,
and S2 those of S2.

3. The data owner sets the state § =0

4. The data owner generates the multiplication triples that are necessary to execute
the GEQ protocol and sends the respective shares of the triples, as well as §, to S1
and S2.

Search(Recty; /S1/S2)

1. The client C secret shares the query coordinates ([27 . (q)], [vi. (D], [=35(a)],
[vi2(9)]) between the servers S1 and S2.

2. S1 and S2 run the protocol GEQ over the shared query coordinates and R tree
nodes starting from the root to determine which children need to be searched.

If the following condition hold (the output of comparison is “1”) then S1 and S2
traverse the R tree via that node until they reach the leaf node

((yre(ni) < yor(e) < yor(ni)) OR (yrr(ni) < wyrr(e) < yur(ni))) AND
((xrr(ni) <wre(q) < wur(ng)) OR (zre(ni) < zur(q) < zur(n)).

3. Once S1 and S2 reach the leaf nodes they output their shares of the result set, R1
and R2.

4. The client C reconstructs the results R using the given shares R1 and R2.

Update(n;, d,S1/S2)

1. The data owner sends the new shares of the entries to be updated, U1 and U2, to
the servers S1 and S2, respectively.

2. S1 and S2 replace their old shares with the new ones and update the state § < d+1.

Fig. 6. Geo-DRS™ scheme

5 Evaluation

We consider that the dataset objects are represented in a metre scale where
coordinate values are 64 bits (¢ = 64). To compare the queried coordinate value
with the bounding box coordinates in each level of the RTtree, we require a
Boolean circuit of depth log ¢ 4+ 1 for ¢-bit integers. Note that, this logarithmic-
round protocol for secure integer comparison is performed between the two non-
colluding servers during the search, hence no overhead to the client. For each
comparison 3¢ — log ¢ — 2 bit multiplications are required. Therefore, the size of
the circuit is 184 secure multiplication with the depth of 7.

Our scheme requires the pre-distribution of random binary multiplication
triples by the data owner to the servers in the setup phase which are needed for
the secure comparisons during the search. This enables the servers to perform
the search without further online interaction with the data owner. With the
optimization explained in Sect. 2.3, the communication cost for pre-distributing
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Table 2a. Comparison

Scheme Guo2019 Li 2019 Zheng 2020 | Kasra-I 2020 | Kasra-IT 2020 | Geo-DRS™
Search complexity (server) O(N) O(nnlog N) | O(mlogmN) | O(log(2R)N) | O(log(2R)N) | O(¢mlogm)
Search complexity (client) O(0) O((n+d)n*) O(1) O((log R)N) | O((log R)N) | O(1)
Update complexity (server) O(N) NA NA o(1) O(2'N) o(1)
Update complexity (client) o(1) NA NA O(ktN) o(1) O(1)
#client-server roundtrips (search) |2 1 1 1 1 1
#client-server roundtrips (update) | 2 NA NA O(log R) 1 1

Dynamic v X X v v v

Avoid Search pattern leakage X X X X X X

Avoid access pattern leakage X X X v v v

Content privacy X NA NA v v v
Cryptographic primitive Geohash and PBKE | ASPE OPE SE ASHE SS

SE: Symmetric Encryption; ASHE: Additive Symmetric Homomorphic Encryption;
PBPKE: Pairing-based Public Key Encryption; OPE: Order Preserving Encryption;
Geohash: public domain geocoding system [22]; ASPE: Asymmetric Scalar-product-
Preserving Encryption; SS: Secret Sharing R: Radius of the circle query; t: Bit length
of coordinates (x and y); N: Number of the data points in the dataset; Ngeq: highest
degree of a term in the used fitted polynomial 0: size of Bloom filter; n: number of
the matching result; k: number of update point; Te.p exponentiation time in token
generation of SSW; n: Plain-text vector size; d: number of dimensions; ¢: Bit length of
database objects (64 bits)

Table 2b. Comparison

Scheme Zhu 2015 Wang 2015 | Wang 2016 | Luo 2017 | Wang 2017 | Xu 2019
Search complexity (server) O(RNT,Tmu) | O(R*N) | O(ON) O(N&d') | O(2") O(Nt*N},,)
Search Complexity (Client) 0o(1) O(RTeap) |O(2*Tewp) | O(6d') O(R*2'Tesp) | O(Nyegt?)
Update complexity (server) NA NA NA NA O(2'N) O(1)
Update complexity (client) NA NA NA NA o(1) O(kt)

# client-server roundtrips (Search) |3 1 2 ) § 1

# client-server roundtrips (Update) | NA NA NA NA NA 1
Dynamic X X X X X v

Avoid search pattern leakage X X X X X X

Avoid access pattern leakage X X X X X X
Content privacy NA NA NA NA NA X
Cryptographic primitive PBKE PBKE PBKE ASPE PBKE OPE

each multiplication triple is a single bit. To compare the search query with
each bonding box, four comparisons are required. As mentioned earlier each
comparison costs less than 3¢ secure multiplications in Zs. Therefore, the overall
search complexity in the worst-case scenario is 4mlogm x 3¢ = 12¢mlogm
multiplications in Zs. Here, m is the maximum number of entries that can fit
in each node in the tree. The number of roundtrips between the two servers is
logm(log ¢ 4+ 1) as the four comparisons of the search query with each bonding
box can be performed in parallel. Finally, to perform the update the client should
generate new shares for the leaf node to be updated. There is only one round
of communication to send these values to the servers. Moreover, the server only
require to replace the current value of a leaf node with the updated values.
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Table2a and Table2b illustrate the comparison between our Geo-DRST
scheme with the state-of-the-art schemes supporting spatial range queries of
encrypted data from different aspects. Except our scheme and Wang-2017, the
search complexity on the server side in all of the existing related works is lin-
early dependent to the number of data points/records in the database. The token
generation (search on client side) complexity is constant only in Geo-DRS™, Zhu-
2015, and Zheng-2020, whereas in the rest of the related works it varies from
scheme to scheme and depends on different factors such as radius of the cir-
cle query, bit length of coordinates, and number of data points/records in the
database.

Beside of our Geo-DRS™ scheme, about half of the proposed schemes for geo-
metric range search are presented in the dynamic setting, the rest have limited
application as the update of the database cost the re-encryption and re-uploading
the entire database. Among the dynamic schemes in this domain only our con-
struction, Xu-2019, and Kasra-I1-2020 have only one round of communication
between the client and the server for search and update queries.

In terms of the leakages, the search pattern is inherent and unavoidable in
all of the discussed schemes. Both constructions of Kasra-2020 and Geo-DRS™
support content privacy as they are not leaking the access pattern. More impor-
tantly the access pattern leakage is required to perform the order reconstruction
attack, whereas both access and search pattern leakages are exploited for the
full database reconstruction attack [20].

6 Conclusion

We first proposed a dynamic scheme for secure range search over spatial data
and then extend it to a more efficient (in terms of client storage and round
trips between client and server) version which we named Geo-DRS™. In terms
of security and data privacy, Geo-DRS™ scheme has backward and content pri-
vacy. As Geo-DRS™ does not leak access pattern and does not rely on OPE,
it is resilient against recently developed ADR and FDR attacks targeting the
searchable encryption schemes supporting geometric range search. The compar-
isons between Geo-DRS™ and state-of-the-art schemes indicates that it is more
appealing in practice due to lower computation and communication overhead.

A Security analysis

In our construction, each search result is a share of a list associated with a leaf
node and client is the one who reconstructs the final result using these shares.
To insert or delete an object within a list, the client generates the new shares
of the list and the servers will replace the old shares with the new ones. Thus,
1) there is no leakage regarding the content of the dataset (object’s identifier),
2) it is impossible to distinguish which object was being updated, 3) the search
queries do not leak matching objects after they have been deleted. As a result,
our construction is content and backward private as proved below.
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Theorem 1. Let £ denote the leakage function of our Geo-DRST scheme as
defined in Sect. 3.3. Our constructed Geo-DRST is L-adaptively-secure, if the
protocol of De Cock et al.(we call it 7s) [6] is secure. Let X represents Geo-
DRS*, and A be the adversary (the honest-but-curious server)®, who breaks the
security of X. Suppose A make at most q,, > 0 update queries. One can construct
an algorithm B that can break the UC-security of De Cock et al. [6] protocol by
running A as a subroutine with non-negligible probability if log, qs + £ > X, for
security parameter .

Proof
The proof proceeds using a hybrid argument, by game hopping, starting from
the real-world game REAL% ()).

— Game Gg: This game is exactly the same as the real world security game
REAL% (). Hence, we have

P [REALZ(\) = 1] =P[Go = 1].

— Game G7: In this game, we pick random values instead of the output of =
as a share of a search query and store it in a table to be reused if same query
is issued. The advantage of the adversary in distinguishing between G, and
(G is exactly the same as advantage for 7. Thus, we can build a reduction
B which is able to distinguish between 74 and a truly random function.

P[Go=1]-P[G; =1]| < AdVgﬁ,S,B()‘)-

— Game G5: To update (delete/insert) an object from the list associated to a
leaf node on the R*tree, this game replaces the shares of the leaf node with
random shares. For update token, it uses the leakage to learn which node
should be updated. The adversary A cannot distinguish the real shares from
the truly random shares. Suppose A makes at most ¢, > 0 update queries,
then we have

IP[Ge=1]-P[G1 =1]| < 1 7

— Simulator. We can simulate the IDEAL game like Game G». Let S;_ be the
simulator for De Cock et al. [6] protocol; then we construct a simulator S for
our construction to perform the search. The algorithm B uses Sy, to construct
the simulator S in order to answer the queries issued by A. We just need to
use Sy, for A, to construct S for A. We have that

1

|P [REAL{(\) = 1] — P [IDEALY s(\) = 1] | < Adv 5(A) + P

For the update, simulator S works the same as G; without knowing the con-
tent (objects’ identifiers). The simulator only uses ru to identify the bounding
box of the update query and not the object’s identifier. Therefore, it can sim-
ulate the attacker’s view using only £YP4,

5 Who follows the protocol instructions correctly, but try to learn additional informa-
tion.
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As a result, our construction satisfies content and backward privacy as the

search leakage does not include TimeDB(w) or Updates(w). O
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Abstract. Order-revealing encryption (ORE) is a cryptographic primi-
tive that enables ciphertext comparison while leaking nothing about the
underlying plaintext beyond their lexicographic ordering. However, how
to achieve efficient and secure ciphertext comparison for multi-user set-
tings is still a challenging problem. In this work, we propose an efficient
multi-client order-revealing encryption scheme (named m-ORE) by intro-
ducing a new token-based comparison method. Specifically, data owner
is enabled to delegate token generation ability to some authorized users
without revealing his secret key, and then each authorized user can per-
form comparison on ciphertexts from multiple data owners by generat-
ing the associated comparison tokens. Benefiting from our new method,
m-ORE can not only reduce ciphertext size but also improve compari-
son efficiency, compared with the state-of-the-art (Cash et al. Asiacrypt
2018). Further, we present a non-interactive multi-client range query
scheme by extending m-ORE. Finally, we show a formal security analysis
and implement our scheme. The evaluation result demonstrates that m-
ORE outperforms the scheme by Cash et al. in terms of both query and
storage cost while achieving the same level of security.

Keywords: Order-revealing encryption + Property-presering hash -
Range query + Multi-client searchable encryption

1 Introduction

Order-revealing encryption (ORE) [5], as a generation of order-preserving
encryption (OPE) [2], enables client to perform efficient range queries on
encrypted data while ensuring strong security guarantee. Different from OPE,
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E. Bertino et al. (Eds.): ESORICS 2021, LNCS 12973, pp. 44-63, 2021.
https://doi.org/10.1007/978-3-030-88428-4_3


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-88428-4_3&domain=pdf
https://doi.org/10.1007/978-3-030-88428-4_3

Efficient m-ORE and Its Applications 45

the ciphertexts of ORE can be represented as arbitrary form rather than only
numeric-valued in OPE. Furthermore, an additional publicly comparison algo-
rithm is introduced to perform ciphertext comparison.

Boneh et al. [5] first formalized the notion of ORE and presented an ORE
scheme based on multilinear maps that satisfies the “best-possible” security, i.e.,
IND-OCPA security. It means that the ciphertext should reveal nothing about
the underlying plaintexts other than the ordering. However, the proposed scheme
is too impractical to deploy in real-world scenarios. To overcome the efficiency
limit of ORE, Chenette et al. [8] proposed an efficient ORE scheme from sym-
metric cryptographic primitives at the cost of certain security loss, which leaks
the most significant different bit. Subsequently, Lewi and Wu [16] designed a
new ORE scheme that leaks the position of the most significant differing blocks.
Recently, a line of works [6,9,19] investigated vulnerability of ORE schemes.
Surprisingly, an ideal ORE scheme may be insecure even only the order of the
plaintexts is leaked. That is, a significant amount of useful information can be
inferred by the order of plaintexts. The underlying reason is that the adver-
sary can compromise the privacy of plaintext when enough knowledge on prior
distribution is obtained. To address this drawback, Cash et al. [7] introduced
the notion of parameter-hiding ORE that leaks less than all existing (practi-
cal) ORE schemes. The main idea is to use a new primitive named property-
preserving hash (PPH), where it only allows the server to reveal whether two

messages (c1,c2) satisfy the following equation ¢; ~ c2 + 1. Due to the prop-
erty of PPH, the adversary cannot count how many elements two ciphertexts
have in common. As a consequence, the location of the first differing bit will not
be leaked. Nevertheless, the proposed scheme can only support comparisons on
ciphertexts from a single user. Li et al. [17] presented the notion of delegatable
ORE, which enables ciphertext comparisons among different users by delegating
the ciphertext comparison privilege. However, their proposed scheme leaks the
most significant different bit. Therefore, a natural question following the above
discussion is that:

Is there an efficient multi-client ORE scheme without leaking the location of
the first differing bit?

In this paper, we first introduce the notion of multi-client order-revealing
encryption (m-ORE). Then we put forward a concrete construction by employing
PPH, which achieves better comparison efficiency than the state-of-the-art [7]
while supporting cross-users ciphertext comparison. The main contributions are
summarized as follows:

— We first formalize the notion of multi-client order-revealing encryption (m-
ORE), where the server can perform ciphertext comparison among different
clients by receiving the comparison token. We propose, to the best of our
knowledge, the first m-ORE scheme without leaking the location of the differ-
ing bit. For ciphertext comparison, our scheme m-ORE requires O(n) pairings
in contrast to O(n?) in [7].

— We present an efficient multi-client range query scheme from m-ORE and
multi-client searchable encryption. The proposed construction only requires
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Table 1. Comparison with existing ORE schemes

Scheme Ciphertext size | Encrypt cost Compare cost | Leakage | Multi client | Token size
Chenette et al. [8] | [n logM ] nPrf nM MSDB | x —

Lewi et al. [16] | b(2d+[logd]) |b(d+1)Prf bdM MSDB | x -

Cash et al. [7] 2n(7g, +7G,) 2n(Exp; +Expy) 4an?P EQ X —

Li et al. [17] dnTg, 6nExp; 8nP MSDB |v 276,

Our m-ORE (n+1)7g, nExp; 3nP EQ v (2n+1)7g,
Our s-ORE n(1G, +276,) | n(Expy + 2Expy) | 3nP EQ -

n is the bit-length of the plaintext; M denotes the modulo as in [8]; b and d are the amount of block in

a plaintext and the bit-length of one block respectively as in [16]; 7g; and 7¢, is the size of elements

of groups Gi and Go; Prf, M, Expy, Expy, P are pseudorandom function, modular comparison, group
exponentiation in G; and G2 and bilinear pairing, respectively; MSDB refers to leak most-significant
differing bit/block, EQ refers to the Equality pattern of most-significant differing bit; Our s-ORE denotes
a variant of our m-ORE scheme in single-user setting.

the data owner to generate an authorized query key to the client. Then each
authorized client can generate a comparison token from the query key in a
non-interactive manner.

We implement our proposed m-ORE in both multi-user and single-user set-
tings and perform a comprehensive comparison with existing constructions
(as shown in Table1). The results demonstrate that m-ORE in single-user
settings brings a saving of 23% in server storage cost and achieves a speedup
of 50x in comparison latency compared to [7].

1.1 Related Work

Agrawal et al. [2] first introduced the notion of order-preserving encryption
(OPE), where the ciphertext preserves the numerical ordering of the plaintext.
Subsequently, Boldyreva et al. [3] formalized the security model of OPE, namely
indistinguishability under ordered chosen-plaintext attack (IND-OCPA). Infor-
mally, it means that given two ciphertexts, nothing is leaked other than the
order-relations among the plaintexts, which is known as the best possible secu-
rity under the order-preserving constraint. However, Boldyreva et al. also pointed
out that this security cannot be achieved unless the size of its ciphertext-space
is exponential in the size of its plaintext-space.

The first OPE scheme that achieves IND-OCPA security was presented by
Popa et al. [20]. Their scheme mOPE (mutable order-preserving encoding) adopt-
ing a stateful structure and interactive protocol is inefficient since it requires a
large communication complexity of O(logn) rounds for answering range queries.
For other existing OPE schemes [4,10,14,15,21] with different levels of security,
they are either interactive or less secure.

To achieve better security guarantees with a non-interactive and stateless
approach, Boneh et al. [5] introduced the notion of order-revealing encryption
(ORE), where the ciphertexts have no particular order and look more like seman-
tically secure encryption. The first ORE scheme was achieved by the primitive of
multilinear map. To improve the efficiency, Chenette et al. [8] presented a prac-
tical ORE scheme by employing pseudorandom function. However, their scheme
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leaks the location of the first differing bit. Subsequently, Lewi et al. [16] presented
an improved ORE scheme that leaks only the location of the first differing block.
Note that a block can be a byte or can be flexibly adjusted to balance efficiency
and security. Nonetheless, Cash et al. [7] pointed out that these leakage pro-
files are still unacceptable and introduced the notion of parameter-hiding ORE,
which only leaks the equality pattern of most-significant differing bit.

Recently, another line of work is to design ORE scheme supports ciphertexts
comparison among multiple clients, which can strengthen the applicability of
ORE. Eom et al. [11] initially introduced multi-client ORE by depending on a
trusted third party. Subsequently, Li et al. [17] presented a delegatable ORE
scheme that allows clients to search other client’s data after being authorized.
However, it also leaks the index of the first differing bit.

2 Preliminaries

2.1 Notation

We use [n] to denote a set of integers {1,2,---,n}. For a decimal integer
m = (bybabs -+ - by )2, the string bibabs - - - b, is the binary form of m where by
is the highest digit bit and b,, is the lowest digit bit. Let A be the security
parameter. For a string « and a string (3, we use a|8 to denote the concate-
nation of the two strings. PPT is stands for probabilistic polynomial time and
x «— A9:02(my my, - -+ ) means that x is the output of the algorithm A which
runs with the inputs mq,mo, -+ and access to the random oracles 01,05, - - .
When Z, is a group, we use r < Zj, to denote r is chosen from group Z, uni-
formly and randomly. If P is a predicate on x, we write 1(P(z)) to denote the
indicator function for P: that is 1(P(x))=1 if and only if P(z) = 1.

2.2 Bilinear Maps

Let Gy, Gy and Gr be three cyclic multiplicative groups of prime order p, and
g1, g2 be the generators of G, Go respectively. A bilinear pairing is a mapping
e : Gy x Gy — G with the following properties:

1. Bilinearity: e(u®,v®) = e(u,v)? for all u € Gy, v € Ga, and a,b € Z,.

2. Non-degeneracy: e(g1,g2) # 1, where 1 represents the identity of group Gr.

3. Computability: there exists an algorithm to efficiently compute e(u, v) for any
u € Gy and v € Gs.

A pairing is Type-3 if there is no efficient computable isomorphism between
G1 and Go, we use Type-3 bilinear map in this work. Then we recall the following
assumption.



48 C. Lv et al.

2.3 Complexity Assumption

Definition 1. Symmetric eXternal Diffie-Hellman (SXDH) Assump-
tion: We say the symmetric external Diffie-Hellman (SXDH) assumption holds
with respect to these groups and pairing if for all probabilistic polynomial-time
adversary A, the advantage €szqn, = max{e, e} is negligible for a,b,c,d,r1,m9 €
Z,,. Where

e1 =| PrlA(g1,9¢, 97, 91") = 1] — Pr[A(g1, 97, 93, 91*) = 1] |

and

e2 =| Pr[A(g2, 95, 93, 95") = 1] — Pr[A(g2, 95, 95, 95°) = 1] |
This essentially says that the Decisional Diffie-Hellman (DDH) assumption holds
for both Gy and Go.

3 Property-Preserving Hash

In this section, we first recall the definitions of Property-Preserving Hash (PPH)
[7]. Then we present a concrete PPH from Bilinear Maps.

Definition 2. A property-preserving hash (PPH) scheme consists of three algo-
rithms I' = (PPH.KeyGen, PPH.Hash, PPH. Test) as follows:

~ PPH.KeyGen(1*): The key generation algorithm takes as input the security
parameter and outputs (pp, hk, tk) that denotes as the public parameter, hash
key and test key. These implicitly define a domain D and range R for the
hash.

— PPH.Hash(hk, x): The hash evaluation algorithm takes as input the hash key
hk, an input x € D, and emits a single output h € R that we refer to as the
hash of x.

— PPH.Test(tk, hi, he): The test algorithm takes as input the test key tk and
two hashes hy, ha, and outputs a bit b € {0,1}.

Correctness: Let P be some predicate. We say that I" is computationally cor-
rect with respect to P if the probability

(pp, hk, tk) «— PPH.KeyGen(1*)
Pr | PPH.Test(tk, h, k') # P(x,y) : h «— PPH.Hash(hk, z)
h' — PPH.Hash(hk, )

is a negligible function of A.

Security: Let P be some predicate and I' = (PPH.KeyGen, PPH.Hash, PPH.Test)
be a PPH scheme with respect to P. For a PPT adversary A, we define its
advantage as Advvliffh(/\) = 2Pr[INDY%P"(A) = 1] — 1. Here IND\PP"(A) is a
furter restricted version of the PPH security game in [7] and the adversary is not
allowed to query = = z*. If for all PPT adversaries, the advantage Adv%:i{)h(/\)
is negligible, we say that I" is restricted-chosen-input secure.
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Game IND%PP"(A) :
(pp, hk, tk) <« PPH.KeyGen(1*); 2* «— A(tk)

ho < PPH.Hash(hk,2*); hy & R;b & {0,1};6 « AMsh(tk, 2*, hy)
Return(b < b')

Hash(x) :

If P(z,2*) =1 or = ¥, then h — L, Else h — PPH.Hash(hk, x)
Return(h)

3.1 PPH from Bilinear Maps

We present a concrete PPH scheme for the predicate P where P(x,y) = 1
if and only if # = y + 1. The PPH consists of a tuple of algorithms I' =
(PPH.KeyGen, PPH.Hash, PPH.Test) as follows:

~ PPH.KeyGen(1*): It takes as input a security parameter ), then picks
ki,ko1,ke o «— Z, and sets the hash key hk = (ki, (k21,k22)). Let H :
{0,1}* x {0,1}* — Z, be a secure PRF. It samples groups Gi, G2 and
G with prime order p and an associated bilinear map e : G; x Gy — Gr.
Then it randomly chooses generators g1 € Gi, g2 € Go and sets the test key
as tk = (952‘1,952’2). Let (G1,Ga,Gr,e€) be the public parameter pp. Finally
it outputs (pp, hk, tk).

— PPH.Hash(hk, z): It takes as input the prime hash key hk and a message z,
then outputs the hash value:

E’ _ (hl _ gf(lﬂ,m)-kg,l 7 hg _ gf(kl,x+1)-k2,27h3 _ g2H(k1,a371)<k2,2)

—

— PPH.Test(tk, 77 ﬁ'): It takes as input two hash values 7, h'’ and the test
key tk = (gfz‘l,gSQ‘z), and computes e(hl,gl;”), e(ngQ’l,h'z) and e(g, h).

Then it returns 1 if e(hl,g§2’2) = e(g]f2’1,h’2) or e(hl,g];“) = e(gfz’l,hg),
otherwise returns 0.

Correctness: The correctness of PPH depends on whether H (k1,2) = H(k1,y+
1). If so, the correctness holds. Otherwise, we can show that finding such a pair
(z,y) that satisfies this property with non-negligible probability will deduce an
adversary that can break the security of PRF.

Remark 1. Informally, the proposed PPH is similar to that in [7]. The main
difference is that the hash value of our PPH is deterministic while random in
[7]. In additon, tk and hk here are reorganized for our application.
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3.2 Security Analysis

Theorem 1. Assuming that H is a secure PRF and the SXDH assumption
holds, the proposed restrictive PPH scheme I is restricted-chosen-input secure.

Proof. The proof is very similar to that in [7]. For completeness, we show the
details below. The theorem is proved via a sequence of games. Particularly, we
start from the real game and end with a game that perfectly hides the random
bit b. Then we need to show any two adjacent games are indistinguishable. Here,
we denote by Pr[G; = 1] the probability of Game G; outputting 1.

— Game Gq: This is exactly the real game. The challenger generates the test
key tk and the challenge hash value (hq, ha, h3) € Gy x G3.

— Game G71: G is exactly the same as Gy except that we repalce the pseudo-
random function H (kq,-) with a real random function H*(-).

— Game G3: G» is exactly the same as G; except the challenge hash values are

$
replace by (7, ho, h3), where r < Gy.
— Game G3: G3 can be obtained by slightly modifying the challenge hash values

of Gy to (r,7, hs), where 7 & G,
— Game G4: G4 is exactly the same as G5 except the challenge hash values are

replaced by (r,7,T), where 7 & G,.
Then by the definition of PPH security, we have
AdVRY (N) = [Pr[Go = 1] — Pr[Gy = 1]|

It is easy to obtain that Gy and G; are computationally indistinguishable
based on the security of PRF. Next, we argue G; and G are computationally
indistinguishable by the following lemma.

Lemma 1. G; = G2 assuming that SXDH assumption holds.

Proof. Assume that there is an adversary A that can distinguish between G,
and G, we define its advantage as € = |Pr[G1 = 1] — Pr[G2 = 1]|. Then we can
deduce an adversary B that can solve SXDH problem with the same advantage
e. On input of (g1, 92, B,C) and the challenge term T', the adversary B executes
the following steps:

1. First, B randomly chooses ks 2 & Ly, sets tk = (C, gé“) and sends it to A.
Then, A sends z* to B. B simulates the random function H* and it implicitly
sets H*(x*) = b, the discrete logarithm of B. It then computes

(hy =T, hg = QQH*(%—H).@’Q,% = QQH*(x*_l).km)

and sends (hy, ha, hs) to A. Note that ¢ = k1 and C = gf.
2. Second, to answer a new hash query satisfying « # «* and = + 1 # z* from
A, B computes:

(hy = CH'@) py = gl @0 k2z g JH @)k

3. Finally, the output of B is equal to that of A.
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We say that B correctly simulates the game (without querying A(xz* +1) and
A(x*)). If the challenge term T = g%¢, it means that B simulates Gy, and if T is
a random group element of Gy, then B simulates G. As a result, B can break
the SXDH assumption with advantage e. We complete the proof.

Similarly, we have the following lemmas:

Lemma 2. G ~ G5 assuming that SXDH assumption holds.
Lemma 3. G3 =~ G4 assuming that SXDH assumption holds.

The proofs of both Lemma 2 and 3 are similar to the proof of Lemma 1,
so we omit the details here. By combining the above lemmas, we complete the
proof of Theorem 1.

4 Multi-client Order-Revealing Encryption (m-ORE)

In this section, we first formalize the definition of m-ORE. We then present a
concrete m-ORE scheme from the PPH scheme I

4.1 Definition of m-ORE

Definition 3. A m-ORE scheme consists of four algorithms II, =(m-
ORE.KGen, m-ORE.Enc, m-ORE.TGen, m-ORE.Cmp) as follows:

~ m-ORE.KGen(1*): On input the security parameter \, the key generation algo-
rithm m-ORE.KGen outputs master key msk and query key gk.

— m-ORE.Enc(msk, m): On input the master key msk and a message m, the
encryption algorithm m-ORE.Enc outputs a ciphertext c.

- m-ORE.TGen(gk,m): On input the query key gk and a queried message m,
the token generation algorithm m-ORE.TGen outputs a token t.

— m-ORE.Cmp(c,t): On input a ciphertext ¢ and a token t, the compariton algo-
rithm m-ORE.Cmp outputs a bit b € {0,1}.

Correctness: We say that I1, is computationally correct if the probability

msk, gk < m-ORE.KGen(1%)
Pr | m-ORE.Cmp(c,t) # 1(my > mz) : ¢ < m-ORE.Enc(msk, m1)
t < m-ORE.TGen(gk, m2)

is negligible of .

Security: Similar to Cash et al. [7], Our m-ORE scheme can achieve non-
adaptive simulation-based security. We provide the formal definition as follows:

Definition 4. Let II,, = (m-ORE.KGen, m-ORE.Enc, m-ORE.TGen, m-
ORE.Cmp) be an m-ORE scheme. For a PPT adversary A, a simulator S and
leakage function L(-), we define the non-adaptive experiments Real’y ™ (\) and

m-ore

Sim’y 7% (A) as follows.
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Real () : SimR7%s(A) :
msk, gk « m-ORE.KGen(1*) sts « S(A)
(m1,...,my) — AN (ma,...,mg) < A(N)
for1 <i<gq: ((017"°7Cq)7(t17"'7tq))<_S(St$7
¢; < m-ORE.Enc(msk, m;) L(m1,...,mq))
t; «— m-ORE.TGen(qk, m;) output (c1,...,¢q) and (t1,...,1%;)
output (c1,...,¢q) and (t1,...,tq)

Then II, is a secure m-ORE scheme with leakage function £(-), if for any
PPT adversary A, there exists a polynomial-size simulator S such that the out-
puts of the two distributions Real’y**(\) and Sim’j 7°s()\) are computationally
indistinguishable.

We remark that the notion of m-ORE is compatible with that of single-user
ORE. In particular, we will obtain a single-user ORE s-ORE by appending token

t to the corresponding ciphertext c.

4.2 m-ORE Scheme from PPH

Let A be the security parameter and F : [n] x {0,1}" — {0,1}* be a secure
PRF. Let I' = (PPH.KeyGen, PPH.Hash, PPH.Test) be a PPH scheme w.r.t. a
predicate P that P(z,y) = 1 iff + = y = 1. Then our m-ORE scheme IT,, =
(m-ORE.KGen, m-ORE.Enc, m-ORE.TGen, m-ORE.Cmp) is as follows:.

~ m-ORE.KGen(1%): It takes as input a security parameter A, and obtains
pp = (G1,Ga, Gy, e),hk = (k1, (k2,1,k2,2)) and tk = (952’17952‘2) by running
PPH.KeyGen(1*). And then it sets msk = hk, gk = (kl,g];z’Q) and outputs
(msk, gk).

— m-ORE.Enc(msk, m): With input msk and message m, it picks r < Z, and
computes the binary representation of m = (by,--- ,b,) and ¢y = glfQ'l'r. Then
it sets ka1 « ko1 -7, hk = (k1, (k2.1,k2,2)) and for i = 1,--- ,n computes:

w; = F(i,byby - - - b;_1]|0" 1) 4 b; mod 2*,v; = hy « PPH.Hash(hk,u;).

Finally it chooses a random permutation 7 : [n] — [n], sets ¢; = v,(;, and

outputs the ciphertext ¢ = (co,c1, - ,¢pn).

— m-ORE.TGen(qgk,7): It takes as input the query key gk = (k:l,ggz’z) and
message m and computes the binary representation of m = (b1, -+ ,b,) and
tog = g];“'r/, where 1/« Z,,. Then for i = 1,--- ,n, it computes

U; = F(i, biby - -- bi_1‘|0n7i+1) + b; mod 2)\,
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kzyg’T’H(kl,ui-‘rl) kzyz"l‘/H(kl,ui—l)
2 2

ti1=g y Lig=g

Finally it chooses a random permutation 7© : [n] — |[n], sets ¢; =
(tx(i),15 tr(i),2), and outputs the token t = (o, (t1,1,t1,2), -+ , (tn,1,tn,2)). Note
that this algorithm generates the hash value using the query key rather than
hk, and the self-generated hash value is applicable to the PPH.Test function.
— m-ORE.Cmp(c, t): Taking as input a ciphertext ¢ = (¢g, ¢, -+ ,¢) and a token

k2,1~r k}212-7“/

t = (to, (tl,l,tLg), s ,(tn,l,tnyg)), it extracts tk = (Co,to) = (gl » 92 )
and runs PPH.Test(tk,c;,t;1) and PPH.Test(tk,c;,t;2) for every i,j € [n].
If there exists a pair (i*,j*) such that PPH.Test(tk, ¢;«,¢;+ 1) = 1, it returns
1 and stops, meaning m > m; else if there exists a pair (¢*,j*) such that
PPH.Test(tk, ¢;«, ¢« 2), it returns 0 and stops, meaning m < m; otherwise it
returns |, meaning m = m, where m is the underlied plaintext of ciphertext
c and m is the underlied plaintext of token t.

Correctness: Let (by---b,) and (0] ---b.) be the binary form of m and m
respectively. If m > 7, there must exist an index i* € [n] such that b;» = b}. +1.
Therefore the correctness of I1,, is followed by correctness of PPH. For m < m
or m = m, we use the same argument.

Remark 2. Note that our m-ORE scheme can perform ciphertext comparison
only by receiving the associated token. Given a ciphertext ¢ = (cg,c1,-+ ,Cn)

and a search token t = (to, (t1,1,%1,2), -+, (tn,1,tn,2)), it needs to compare all

(ci,tj1) and (¢;,t;2) pair in sequence. That is, the server tests if e(c;, g’;”'r ) =

e(ngQ‘l'T,tj’l) or e(ci,ggw'r ) = e(ng’l'r,tj,z) for every i, j € [n]. It seems that m-
ORE requires O(n?) pairings for ciphertext comparison. However, we argue that
it only requires to compute e(c;, g§2‘2'r ) once for some ¢; due to that all (;,1,;2)
shares a unique random value g’;”'r . Similarly, e(glfz’l'r,tj,l) and e(gfz‘l'r,tjg)
are reusable. As a result, the required computation of each ciphertext reduced
to 3n pairings.

4.3 Security Analysis
Note that the leakage of m-ORE scheme is identical to that of [7]. That is,

‘Cf(mh' o ,mq) :(Vl S iajak S Q|1(ml < m])7
1(msdb(m;, m;) = msdb(m;, my)))

It basically means that apart from the order of underlying plaintexts, the leakage
is only whether msdb(m;, m;) equals to msdb(m;, my) for any three messages
1,7, k. Then following the analysis of parameter-hiding ORE [7], we have the
following theorem.

Theorem 2. Assuming that the underlying PPH scheme I is restricted-chosen-
input secure, our m-ORE I, scheme is Lg-non-adaptively-simulation secure.
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Proof. We prove the security of our m-ORE scheme through a series of games
that are defined as following.

— Game G_;: This is exactly the real game Real’y*"(\).

— Game Gy: This game is same as G_; except the the pseudorandom function
F in the m-ORE.Enc algorithm is replaced by a truely random function F™.

— Game Gj.q+;: These games are the same as G except during the m-ORE.Enc
algorithm, for every two adjacent games, u] may be replaced by a random
string depending on a predicate Switch.

~ Game Ggp+1: This game is exactly the simulation Simy 7% s(A).

We prove that any two consecutive games are indistinguishable, and then we
construct an efficient simulator S such that the output of G, and Sim'75 ()
are indistinguishable. To define the predicate Switch, following the idea of [7], we
say that Switch; ; = 1if VI € [q], msdb(m;, m;) # i, it implies that the i-th bit of
m; can be replaced by a random string. When Switch; ; = 0, there must exists ui
such that uf = ui + 1, this property can be revealed by the PPH.Test algorithm
hence we can not switch the ¢-th bit of m; to a random string. Therefore, we
say this bit (i.e. m?) is leaked.

First, we have G_1 ~ G due to the security of pseudorandom function F'. Then
we have the following lemma:

Lemma 4. Assuming that our PPH scheme I is restricted-chosen-input secure,
we have Gr_1 = Gy, for any k € [1,qn].

Proof. To prove Gi_1 ~ G}, for any k € [1, qn], we argue that it is sufficient to
prove Gjs.qtj+—1 = Gy».q1;+ where i* € [0,n — 1], j* € [1, ¢] under the condition
Switch;- j» = 1. Note that for Switch;- j» = 0, we have Giv.qj-—1 = Gjx.q4j
because there is no alteration between these two games. We show that if there
exists an adversary A that can distinguish Gy from Gj_; with non-negligible
advantage €, then we obtain a simulator B that can win the restricted-chosen-
input game with the same advantage €. B executes the following steps:

1. Tt first runs IND%PP" and sends tk to .A. After receiving a vector of plain-
text mq,- -+ ,mg, it uses the truely random function F™* to sets the challenge

ciphertext bit as uf = F*(i*, b} bl --«bf:_1||0"*i*+1) + bf mod 2* where
bf* is the *-th bit of m;« in binary form.
2. Then B sends the challenge bit uJ* to the challenger in the IND¥%PP" game.

After receiving the challenge term 7', it sets c7 =T.
3. To simulate the other bit in the ciphertext vector, B executes the followings.

4. If for all the ciphertext bit ug,, after u{ (i.e. i'q+7' > i*q+j*), B first selects
q elements 71, - -+ , 174 < Z, for every j € [1, ¢g] and computes:

wly = F*(i' b b3 - b7 ]]0" "+ + b7 mod 2%

¢} = hy — PPH.Hash(hk, ).
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Else if for all the ciphertext bit uj/ before uj* (iie. i'qg+j < i*q+ j*) and
SWItChZ g =0, then the same as above else for Switchy j» = 1, it computes

ul, & {0,1}*;¢), = hy « PPH.Hash(hk, u?, )

5. Fmally, after B 51mulates all the 01phertext bits, for all j* € [q], it picks a
random permutation m;« and outputs cj« = (c;j*(l), e ,c; *(n),gl ") to A.
Then B outputs to its challenger a bit based on the output of A.

Then we say that B correctly simulates the encryptlon oracle since F'* is a
truly random function and the probability of u]. = uj =+ 1 is negligible for all
i'q+ j' # i*q + j*, which means B fails to snnulate the encryption oracle with
only negligible probablhty Also, B correctly simulates Gy—; when T = hy «—
PPH.Hash(hk, u, )7 and if T' is random, due to the security of pseudorandom
function F', B s1mulates Gy, correctly. Hence, if A’s advantage in distinguishing
Gy, from Gj_1 is noticeable, then B’s advantage in wining the IND";’pph game is
also noticeable. Since we already proved that an adversary’s advantage in wining
IND"}!’pph game is negligible, we have Gj_1 ~ Gy, for any k € [1,¢n]. Note that
we skip the prove of Gi_1 ~ G} with respect to token due to the fact that it
is very similar from the proof of ciphertexts. This will complete the proof of
Lemma 4.
We then have the following lemma:

Lemma 5. There exists an efficient simulator S that the output of G4n and
Gant1 are indistinguishable.

Proof. To simulate the encryption function correctly, for any i-th of m; that
Switch; ; = 1, we first set uf as a random string since it would not affect the
leakage profile. Thus it is sufficient to only simulate the bit that Switch; ; = 0.
Before we give the description of the simulator S, we first introduce an recursive
algorithm FillMatrix(¢, j, k,m, M) as presented in Algorithm 1. This algorithm
takes a set of messages (mq,--- ,my), which we assume mq > --- > m, without

Algorithm 1. FillMatrix(é, j, k, m, M)
Input: (7,7, k) where i € [n],7 < k € [q], a set of messages m = (mi,---,mq), an
matrix Mgxn.

Output: a filled matrix M

1: if j = k then

2:  for all i’ € [i,n], set M[j][i'] = r where r & {0,1}%;

3 return 0;

4: else

5:  search for the smallest j* € [j, k] such that msdb(m;, m;=) = msdb(m;, mx);
6

7

8

9

for all j € [j,5* — 1], set M[j'][{] = r’ where 1’ & {0,1}*;

for all j € [§*, k], set M[§'][i]] =" — 1;

runs FillMatrix(i 4+ 1,7, 5" — 1, m, M) and FillMatrix(i + 1, j*, k,m, M);
: end if
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loss of generality, and (i, j, k) that i € [n],j < k € [q], where n is the bit-length
of every message and ¢ is the total number of messages, it outputs a matrix M.

To simulate the encryption oracle for a set of messages m = (mq,--- ,my),
the simulator S first calls the FillMatrix(1,1,q,m, M) to get a matrix Mgxpn,
then it calls the PPH.KeyGen(1*) to get hk = (ki, (ka1,k22)) and tk. After

that, & chooses g elements ry,---,7y < Z, and ¢ random permutations
71, ,mq for every j € [1,q] and sets ¢y = g’fz’l‘”, ko1 < koq - r; and
hk = (ki1, (kz2.1,k22)), then it computes ¢/ = h; « PPH.Hash(hk, M[j][i]) for
every i € [n],j € [g]. Finally, it outputs a set of ciphertexts (c1,--- ,¢q) such

that ¢; = (co,cjrj(l), e 7czrj(n)) for every j € [q].
Additionally, in order to simulate m-ORE.TGen function, S constructs the

tokens as follows. After simulating the ciphertexts, S chooses ¢ new elements

r1,--- ,rq < Zp and ¢ new random permutations mq,--- ,m, for every j € [1,¢]
and sets ty = 9521”1‘7,5;"1 - 952,2<7’1H(k1,M[J][z]+1) and tf; = géQ,Q‘TjH(kl,M[J][z]fl)

for every i € [n],j € [g]. Then, it outputs a set of token (¢1,--- ,%,) such that
t; = (to, (tirj(l),l7t3rj(l),2)’ e ,(t;j(n))l,t;j(n)’g)) for every j € [q].

Note that during the simulation, the probability of 3i,i* € [n] that satisfies
Mjl[i] = M[j][i*] for any j € [q] is negligible, hence the restriction of the
security definition of our PPH (i.e. the adversary is not allowed to query « = z*)
is reasonable and it does not affect the security of our m-ORE.

We argue that the simulator S is correct for the following reasons. First, the
simulator identifies how many leaked bits for a set of messages (mq,--- ,my) just
like the game G,,. The FillMatrix algorithm first identifies that if (mq,--- ,mg)
share the same 1st prefix. If there exists the first m;- such that msdb(m;, m;-) =
msdb(mi, mg), we can infer that messages (m,--- ,mj«_1) have 1 on their first
bit, and messages (m;«,--- ,ms) have 0 on their first bit. It means that the Ist
bit of total ¢ messages is leaked. Then this algorithm runs recursively to identify
other leaked bit and get a total number of leaked bit. This information also can
be identified in the game G4, by counting the number of Switch; ; = 0 for all
i € [n],J € [g]. Note that the simulator § and game G, do not only identify the
total number of leaked bit but also the exact position of this leaked bit due to
the ordered messages set. Hence the output of ciphertext set also leaks the msdb
of any two ciphertexts. But the random permutation 7 will hide these indexes of
the leaked bit except the total number both for this game and G,,. Accordingly,
the simulation Simy 7% () is identical to Ggp, hence we establish the proof of
Lemma 5.

By combining proofs of Lemma 4 and Lemma 5, we complete the proof of
Theorem 2.

5 Multi-client Range Query from m-ORE

Refer to the construction of multi-party searchable encryption (MPSE) scheme
[22]. We now describe how to build a multi-client range query scheme using
our m-ORE construction IT,, = (m-ORE.KGen, m-ORE.Enc, m-ORE.TGen, m-
ORE.Cmp) from Sect.4. At a high level, the server’s encrypted database DB
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consists of different data owners’ ciphertexts generated by m-ORE.Enc algorithm,
each query q consists of tokens generated by m-ORE.TGen. To answer a range
query, the server performs m-ORE.Cmp algorithm to find the lower and upper
boundaries in the encrypted database corresponding to its query and returns all
ciphertexts lying within those bounds. The client then decrypts the ciphertexts
to learn the response.

Our multi-client range query scheme involves a server and a group of users.
Users are divided into data owners and followers. The data owners are respon-
sible for outsourcing ciphertext to the server. The followers are authorized to
generate query tokens using query keys. The server can perform range query
over ciphertext by receiving the query token. Note that every user can be data
owner and follower concurrently or individually.

5.1 The Proposed Construction

We present a concrete multi-client range query scheme from our m-ORE con-
struction IT,, = (m-ORE.KGen, m-ORE.Enc, m-ORE.TGen, m-ORE.Cmp). Let
Hy : {0,1}* — Z, and H> : {0,1}* — Gz be two secure PRFs. Formally,
we define our multi-client range query scheme X = (Setup, Update, Search) as
follows. Without loss of generality, we assume that a client j is authorized by
client 1.

— Setup(1*): The setup algorithm between the clients proceeds as follows:

e All Clients(1*): The clients take as input the security parameter ), gen-
erate the master key and query key msk,qk < m-ORE.KGen(1%), and
generate a secret key and a public key sk = x <+ Z,,, pk = g3.

e Client i(qk;, sk;, pk;): The client ¢ takes as input his own query key qk;,
parses gk, as (kl,g§2’2), secret key sk; = x;, and client j’s public key pk;,
encrypts his query key as QK;—.; = (pki, H1(pk;*||j]|7) - k1, Ha2(pk3" |[7][7) -
gég“). Then client ¢ sends QK;_.; to client j.

o Client j(QK;_j, sk;): The client j takes as input the encrypted query key
QKi—; = (pke, Hy (pk?||j1]0) - kv, Ha(pk?*[|j]]i) - g5*7) and his own secret
key sk; = x;, first computes a Hy (pk;”||j||i) =, H2(pk;”||j]|i)~! and then
decrypts QK;_.; to get the gk; = (k1 g§2’2). The gk; will be used for token
generation.

— Update(msk;, M): The update algorithm between the client and server pro-
ceeds as follows:

e Client i(msk;, M): The client ¢ takes as input his own master key msk;
and a set of messages M, for each m € M, client i computes ¢ =
m-ORE.Enc(msk;, m), and sends C; = {c} to the server.

e Server(C;): The server simply sets DB; « C;.

— Search(gk;, DB;): The search algorithm between the client and server pro-
ceeds as follows:
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e Client j(gk;): The client j takes as input the query key gk, and range
query for the range [z,y], produces the query token q = (t1,t2) =
(m-ORE.TGen(gk;, ), m-ORE.TGen(qgk;,y)) which is sent to the server.

e Server(DB;, q): The server takes as input the current database DB; = {c}
of client ¢ and the query token q = (t1,t2). It performs m-ORE.Cmp(c, t1)
and m-ORE.Cmp(c, t2) for every ¢ € DB; to find the ciphertext ¢ in DB,
that the underlied plaintexts are at least z and at most y. Let res be the
set of ciphertexts lying in this interval. The server sends the response res
to client j.

e Client j(res): The client j takes as input the response res, decrypt to
get the plaintext set S < m-ORE.Dec(key,c) for every ¢ € res. (Our
m-ORE scheme can be attached with a decryption algorithm. That is,
each m-ORE.Enc is accompanied by a CPA-secure symmetric encryption
scheme).

Remark 3. Note that our range query scheme is insusceptible to the sorting
attack presented by Naveed et al. [19]. Sorting attack basically means that an
adversary is able to find a one-to-one correspondence between the plaintext and
the sorted ciphertext thus recovering all ciphertexts trivially. We circumvent
this problem by outsourcing only the m-ORE ciphertext to the server. That is,
our ciphertext alone cannot be compared without a token. Note that even after
the ciphertext being queried with tokens, the server cannot obtain the order of
all ciphertexts but only the relative order between the tokens and ciphertexts.
Therefore our range query scheme is insusceptible to sorting attacks.

Due to space constraints, the detailed security analysis is presented in
Appendix A.

6 Experimental Evaluation

In this section, we provide a thorough experimental evaluation of our proposed
m-ORE scheme. We first depict the configuration of the experiment environment
and the selection of parameters. Then we evaluate our scheme by comparing it
with Chenette et al.’s scheme [8], Lewi et al.’s scheme [16], Cash et al.’s scheme
[7] and Li et al.’s delegatable ORE scheme [17].

6.1 Setup

We implement the compared schemes in C and use OpenSSL [1] library to imple-
ment cryptographic primitives, i.e., SHA-256 and HMAC-SHA-256. We use SHA-
256 as pseudorandom function for our m-ORE scheme, Lewi et al.’s scheme [16]
and Li et al.’s scheme [17], while HMAC-SHA-256 as keyed PRF for our m-ORE
scheme, schemes [8] and [7]. Besides, we use GMP library [12] to implement big
integer arithmetic, and PBC library [18] to implement bilinear pairing,.
Regarding experiments, we deploy the compared schemes on a virtual
machine with 4-cores Intel(R) Core(TM) i5-9500 CPU @ 3.00 GHz, 4 GB of
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Fig. 1. Performance comparison

RAM and 21GB SSD disk, running on Ubuntu 18.04 LTS. For comparison, we
use the opensource code of FastORE! for the implementation of [8] and [16].
The code of m-ORE and scheme of [7] and [17] are published at GitHub?.

6.2 Evaluation

We implement the compared schemes in the aspect of the ciphertext size, the
time cost for encryption and comparison. Note that m-ORE and the schemes
of [7,8] and [17] encrypt a message bit-by-bit, while the scheme [16] encrypts a
message block-by-block. Specifically, the block size is 8-bit for 8-bit plaintext,
and the block size is 16-bit for larger plaintext. We implement m-ORE both in
single-user setting and multi-user setting, the magenta line denotes the single-
user setting and the yellow line denotes the multi-user setting. In Fig. 1, the
first row (Fig.1(a), 1(b), 1(c)) compares all the single-user ORE scheme, and
the second row (Fig.1(d), 1(e), 1(f)) compares the ORE scheme in multi-client
settings.

Ciphertext Size Comparison. In Fig. 1(a) and 1(d), we evaluate the cipher-
text size of the schemes. The experimental results show that Lewi et al.’s scheme
[16] has a good performance when the size of the plaintext is small. However,
the ciphertext size expands immensely when the plaintext size is larger than 8
bits. Specifically, the ciphertext expansion of their scheme is about 10x to the
single-user mode of our scheme regarding a 64-bit plaintext. We also achieve less
ciphertext expansion than Cash et al.’s scheme [7] in single-user settings. As for

! https://github.com /kevinlewi/fastore.
2 https://github.com/collisionl/m-ORE.
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multi-client settings of our scheme, the ciphertext size is about one-third com-
pare to the single-user settings and it outperforms the delegatable ORE scheme
[17] immensely as shown in Fig. 1(d).

Encryption Cost Comparison. As depicted in Figure 1(b) and 1(e), regarding
the encryption efficiency, despite our scheme is only slightly efficient than Cash et
al.’s scheme [7] in single-user mode, for encrypting a 64-bit plaintext, we achieve
a speedup of 17x in the multi-client settings compared to our single-user mode.
As for the comparison to Li et al.’s scheme [17] which is depicted in Fig.1(e),
our scheme takes 20.12ms to encrypt a 64-bit plaintext in multi-client settings,
which achieves a speedup of 14x compared to their scheme. Note that Chenette
et al.’s scheme [8] has a good performance on encryption efficiency at the cost
of degrading the security.

Comparison Time Comparison. In Fig. 1(c) and 1(f), we evaluate the com-
parative efficiency of the five schemes. Note the comparison time of our m-ORE
scheme in single-user settings performs identically to multi-user settings. As seen,
our scheme outperforms Cash et al.’s scheme [7] because of less pairing compu-
tation. Specifically, for 64-bit plaintext, our scheme achieves a speedup of 50x
compared to theirs. Despite Li et al.’s scheme [17] outperforms ours when the
plaintext size is less than 48-bit, it soon increases and exceeds ours. In particular,
for a 64-bit plaintext, we achieve less than half of the comparison time compared
to their scheme. Moreover, we note that our m-ORE achieved a fine-grained access
control on ciphertext comparison, that is the server can only compare the cipher-
text with the uploaded token. While their scheme only achieved coarse-grained
access control on ciphertext comparison, that is the server is able to compare all
the ciphertexts of a user once it received the token of the corresponding user. In
addition, although schemes [16] and [8] have a speedup in comparison efficiency,
they cannot achieve the same security level as ours.

In conclusion, our scheme achieves multi-client comparison with the same
security level as scheme [7] while achieving less ciphertext expansion and com-
parable efficiency of encryption and comparison.

7 Conclusion

In this paper, we presented a multi-client ORE (m-ORE) scheme that allows
the data owner to securely delegate the token generation ability to authorized
users, which enables the server to perform ciphertext comparison for multi-user
settings. Compared with the state-of-the-art [7], our m-ORE is superior to it in
comparison complexity and storage overhead. Furthermore, we extend m-ORE
to an non-interactive multi-client range query scheme. Note that our proposed
scheme requires that the number of tokens is linear with the number of data
owners. Thus, how to design a multi-client ORE scheme with only a single com-
parison token remains a challenging problem.
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Appendix
A Security Analysis of Range Query Scheme

To define the security of multi-client range query scheme in Sect.5.1, we first
introduce a slight modification to the security notions that by our m-ORE scheme
from Sect.4. Recall that an m-ORE scheme is secure with respect to a leakage
profile £¢(-) if for any adversarially-chosen sequence of messages (m1,- - ,mq),
there is an efficient simulator S that can simulate the real m-ORE ciphertext
and token given the leakage Lf(m1,---,mq).

Similar to [16], we define a leakage function L(-,-) that if there exists an
efficient simulator such that for any two adversarially-chosen collections of plain-
texts (mq,--- ,my) and (mq,--- ,my), the simulator can simulate the outputs of
m-ORE.Enc(-,m;) and m-ORE.TGen(-,m;) for all i € [¢],j € [k] given only the
leakage L¢((m1,- -+ ,mq), (m1,---,my)). That is:

‘Cf((mla e 7mq)a (mla' ©e 7mk)) :(V]- < Zvl S Q7]- SJ S k|1(mz < mj)a
1(msdb(m;, m;) = msdb(m,;,m;)))

in which ¢ = k. We argue that this leakage profile is essentially the same as
Ef(mlﬂ T 7mq)'

We then define the security of our range query scheme X in two differ-
ent aspects, online and offline security. Online security models the information
revealed to a malicious server during Update and Search, while offline secu-
rity considers the situation of an adversary obtains a one-time snapshot of the
encrypted database from the server which was studied by Naveed et al. [19] and
Grubbs et al. [13]. First, we formalize the online security as follows:

Theorem 3. For a database DB; containing user i’s data which is essentially

a set of m-ORE ciphertext (c1,- - ,cq) on the server and a sequence of queries g;
from user i which is a set of m-ORE token (t1,--- ,t;). Let Lrg be the leakage
Sfunction.

ERQ(DBlqu) = Ef((mh >mq)a(m17"' amk>)

We say that the range query scheme X achieves online security with respect to
the leakage function Lrq.

Proof. The proof follows the proof of Theorem 2 except the leakage profile were
substituted by Lf((m1,---,mq), (m1,- - ,mg)) which is very similar. And the
simulator S only needs to output the ciphertexts for m; where Vi € [¢] and token
for m; where Vj € [k].
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Note that we define the leakage function Lrg under a condition that DB and
q are from the same user. It is clear that the leakage will be none if these are
from different users. The reason is that m-ORE.Cmp will not work in this case
and msdb(m;, m;) = msdb(m;, m;) will always hold for all ¢ and j.

The offline security of our range query scheme follows directly from the fact
that the encrypted database stored on the server only contains a collection group
elements from G; and were generated with random factor, which is simulatable
given just the size of the collection.

Theorem 4. The range query scheme X is offline secure.

Proof. The proof follows the proof of Theorem 2 except the simulator S only
needs to simulate the ciphertext for all the messages.
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Abstract. Timed-release encryption (TRE) makes it possible to send
messages “into the future” such that a pre-determined amount of time
needs to pass before a message can be accessed. Malavolta and Thya-
garajan (CRYPTO’19) recently introduced an interesting variant of TRE
called homomorphic time-lock puzzles (HTLPs), making TRE more ver-
satile and greatly extending its applications. Here one considers multiple
independently generated puzzles and the homomorphic evaluation of a
circuit over these puzzles. Solving the so obtained puzzle yields the out-
put of a circuit evaluated on the messages locked by the original puzzles.

We observe that viewing HTLPs more abstractly gives rise to a sim-
ple generic construction of homomorphic TRE (HTRE) that is not nec-
essarily based on sequential squaring, but can be instantiated based on
any TLP, e.g., from the LWE assumption (via randomized encodings).
This construction has slightly different properties, but provides essen-
tially the same functionality for applications. It makes TRE versatile
and can be used beyond HTRE, for instance to construct timed-release
functional encryption. Interestingly, it achieves a new “solve one, get
many for free” property, which supports that an arbitrary number of
independently time-locked (homomorphically evaluated) messages can
all be obtained simultaneously after solving only a single puzzle. This
puzzle is independent of the number of time-locked messages and thus
achieves optimal amortized cost.

Moreover, we define and construct sequential TLPs as a particularly
useful generalization of TLPs and TRE. Such puzzles can be solved
sequentially in a way that solving a puzzle additionally considers the
previous solution and the time required to solve the puzzle is determined
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by the difference in the time parameters. When instantiated from sequen-
tial squaring, this allows to realize public “sequential squaring services”,
where everyone can time-lock messages, but only one entity needs to per-
form the computations required to solve puzzles. Thus, this removes the
burden of wasting computational resources by every receiver and makes
TRE economically and ecologically more sustainable.

1 Introduction

Timed-release encryption (TRE) has the goal of sending information into the
future in a way that the sender can be sure that a pre-determined amount of
time needs to pass before the information can be decrypted. This idea was firstly
discussed by May [25], who introduced this notion and proposed a solution based
on trusted agents, which after the pre-determined time has passed releases some
secret which allows to obtain the information (see also [10,12]). In this work
we will focus on an alternative idea proposed by Rivest et al. in [29] and called
time-lock puzzles (TLPs), which does not require trusted agents. TLPs allow to
seal messages in such a way that one is able to obtain the sealed message only
by executing an expensive sequential computation. The amount of time required
to perform this sequential computation is determined by a hardness parameter
T of the TLP, which can be freely chosen. Here, a sender can just publish a
puzzle whose solution hides the message until enough time has elapsed for the
puzzle to be solved. TLPs have found numerous applications such as sealed-
bid auctions [29], fair contract signing [6], zero-knowledge arguments [13], or
non-malleable commitments [20].

TLP Constructions. The TLP proposed by Rivest et al. in [29] uses sequential
squaring in an RSA group Z}, i.e., for hardness T' compute s = 22" An inter-
esting feature of this TLP construction is that creating a puzzle, i.e., knowing
the factorization of IV, is much faster than the expensive sequential computation
to solve the puzzle. This is an important property of TLPs when the required
amount of time until the puzzle should be solved is very large. Interestingly,
TLPs with this property seem hard to find. In [23] Mahmoody et al. show that
in the random-oracle model it is impossible to construct TLPs from one-way per-
mutations and collision-resistant hash-functions that require more parallel time
to solve than the total work required to generate a puzzle and thus ruling out
black-box constructions of such TLPs. On the positive side, Bitansky et al. [4]
show how to construct TLPs with the aforementioned property from randomized
encodings [2,18] relying on indistinguishability obfuscation. Interestingly, when
slightly relaxing the requirements and allowing efficient parallel computation in
the generation of the puzzles or a solution independent preprocessing (so-called
weak TLPs), then such TLPs can be constructed generically from one-way func-
tions and directly from the learning with errors (LWE) assumption, respectively,
via randomized encodings.

Homomorphic TLPs. Recently, Malavolta and Thyagarajan [24] (MT19
henceforth) proposed an interesting variant called homomorphic TLPs (HTLPs).
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Here one considers multiple puzzles (Z1,...,Z,) with hardness parameter T,
which can be independently generated by different entities. Without knowing the
corresponding solutions (s1, ..., s,) one can homomorphically evaluate a circuit
C' over these puzzles to obtain as result a puzzle Z with solution C(815---,8n),
where the hardness of this resulting puzzle does not depend on the size of the
circuit C' that was evaluated (which is called compactness). Consequently, this
allows to aggregate a potentially large number of puzzles in a way that only a
single puzzle needs to be solved. While this concept is interesting on its own,
MT19 also shows that it extends the applications of TLPs and in particular
present applications to e-voting, multi-party coin flipping as well as multi-party
contract signing, or more recently verifiable timed signatures [31], again yielding
a number of interesting further applications.

MT19 conjecture that any application that involves a large number of users
and thus the constraint of requiring to solve multiple puzzles (in parallel) consti-
tute one of the main obstacles that so far prevented the large scale adoption of
TLPs. As already, mentioned, this can be partly mitigated via HTLPs by MT19
and in particular if one is only interested in homomorphic evaluations over multi-
ple messages. We additionally stress that applications requiring to solve multiple
puzzles will also represent a huge waste of resources and are thus problematic
from an economic and ecological perspective. Moreover, even the requirement for
a receiver to only solve a single puzzle on its own may already prevent the appli-
cation of TRE, e.g., for resource constrained receivers of messages as omnipresent
within the Internet of Things (IoT).

Motivation for Our Work. The motivation of our work is twofold. Firstly,
our goal is to make TRE more versatile in order to improve on existing applica-
tions and to broaden the scope of applications even further. For instance, when
we look at the HTLPs in MT19, they construct a linearly homomorphic TLP
(LHTLP) from the sequential squaring TLP and Paillier encryption [28] which is
linearly homomorphic and the evaluation is independent of the hardness T' (and
one can also turn this into a multiplicatively homomorphic TLP). In order to
extend this to fully HTLPs (FHTLPs), MT19 requires sub-exponentially hard
indistinguishability obfuscation, whereas in follow-up work Brakerski et al. in [§]
proposed FHTLPs from standard assumption which itself requires an LHTLP
(where to the best of our knowledge the aforementioned is the only known con-
struction). In particular, the idea in [8] is to use a multi-key fully-homomorphic
encryption (MK-FHE) scheme [22] to encrypt every message with a fresh key
and an LHTP to lock the respective MK-FHE secret keys. To be compatible
with the LHTLP, Brakerski et al. in particular require a MK-FHE scheme with
a linear decryption algorithm.

Unfortunately, all these constructions are not generic as they rely on a single
particular construction of an HTLP from sequential squaring (and additionally a
very specific MK-FHE scheme in [8]). Moreover, for every such puzzle including
the one obtained from homomorphically evaluating on many such puzzles, one
can only start to solve it after having produced it. Consequently, although the
homomorphic property makes it scalable in a setting where one is only inter-
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ested in the homomorphic evaluation over all encrypted messages, it would be
convenient to have an approach that also supports a “solve one, get many for
free” property. And this even if one wants to obtain all encrypted messages in
full, instead of only the result of a homomorphic evaluation. Note that, if in
contrast to the homomorphically evaluated function over all the messages, one
wants to unlock n of the input messages with the approaches in [8,24], it requires
to solve n puzzles. Consequently, we ask whether it is possible to come up with
an approach that provides the “solve one, get many for free” property on an
arbitrary number of independently time-locked messages such that it is possible
to decrypt all single messages and at the same time. So essentially having a
solution that can be homomorphic but does not need to be if one is only inter-
ested in the single messages and all with only solving a single puzzle. Ideally this
approach is generic in nature and thus would allow to construct (homomorphic)
timed-release encryption (TRE) generically from any TLP.

Secondly, a central drawback of TRE is that it puts considerable compu-
tational overhead on the message receiver, i.e., the receiver has to invest lots
of computational resources to solve the puzzle to obtain the time-locked mes-
sage. This makes it undesirable for real-life scenarios from an economic as well as
ecological perspective. While HTLPs of MT19 address this problem from a differ-
ent angle, i.e., homomorphically combine many TLPs such that only one puzzle
needs to be solved, this will not reveal the individual messages without solving
all puzzles. And while this functionality is a helpful feature in certain applica-
tions, it can not be considered a general purpose solution, because the amount
of recoverable data is bounded by the amount of data that can be encapsulated
in a single ciphertext. Moreover, it still requires the receiver to waste potentially
significant resources for solving a new puzzle. Consequently, we ask whether this
can be avoided.

Due to the lack of space we defer a discussion on recent concurrent and
independent work on TLPs to Appendix A.

2 Technical Overview and Contributions

Before we discuss our contributions we stress, that the terms time-lock puz-
zle (TLP) [29], timed-release encryption (TRE) [25], and time-lock encryption
(TLE) [21] are often used interchangeably in the literature. For our construc-
tions we need to distinguish between them. In particular, TRE will denote an
encryption scheme which allows us send messages “into the future”. A TLP pro-
vides the core functionality of a puzzle that needs a certain amount of time to
be solved, without considering any messages. TLPs will be used as a building
block for TRE. Now, we are ready to discuss our contributions.

Versatile Timed-Release Encryption. We introduce a generic approach to
construct TRE. The basic and indeed very simple idea is that given any TLP
we can use it to generate a puzzle Z and its solution s, and we can use s as
the random coins for the key generation algorithm Gen(1%;s) of a public key
encryption (PKE) scheme. Then, we provide the respective public key pk as
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parameters of the TRE and solving the puzzle Z reveals s and thus sk allowing
to decrypt all of the ciphertexts computed with respect to pk. Note that when
using s as the random coins for a partially homomorphic encryption scheme,
e.g., ElGamal [14], or a fully homomorphic encryption scheme, e.g., BGV [9],
this immediately yields (fully) homomorphic TRE. Interestingly, this approach
then allows us to obtain the “solve one, get many for free” property for both, the
result of a homomorphic evaluation of many ciphertexts, but also if we want to
decrypt all ciphertexts individually. Consequently, solving one puzzle allows to
decrypt all ciphertexts associated to a hardness parameter (generated by many
potentially independent entities). We note that our approach to HTRE satisfies
the basic definition of HTLPs from MT19, where the time required to solve the
puzzles starts with the generation of the parameters. In contrast, MT19 also
provides the notion of a reusable setup for their LHTLP, where one can use
the same parameters to generate many puzzles in a way that for every single
puzzle the time only starts to run from the point where the puzzle is generated
(this characteristic is also inherited by [8]). However, we observe that for all the
applications discussed in [24] it seems sufficient, and in some applications even
more desirable, when the runtime of the puzzle is counted from the point of
running the puzzle setup algorithm. For instance, MT19 discuss an application
to e-voting, where it rather seems to complicate issues when one can only start
solving the puzzle after the last voter cast its vote. It seems more practical to
set-up the puzzle such that the solution can be made available at a certain pre-
defined point in time. And even if this is not required, it might be easy to adjust
the setup in a way that it outputs a set of public parameters, and a user can
choose which public parameters to use when computing a puzzle. We defer a
detailed discussion of the applications to Appendix B.

Moreover, we demonstrate that our TRE framework can be used to obtain
other variants of TRE in a generic way. We showcase this using the regime
of functional encryption. In particular, we introduce timed-release functional
encryption (TRFE) which allows to time-lock a function f. After a certain time
has passed everyone can learn the function f(x) of any ever encrypted message
x. As an application we discuss identity-based encryption (IBE) [5] with locked
keys, where the key generator at registration gives locked IBE secret keys for
various validity periods (e.g., each for a month) to the user and the respective
secret keys then unlock over time.

Sustainable Timed-Release Encryption. We introduce the notion of sequen-
tial TLPs as a particularly useful generalization of TLPs, which yields practical
and particularly sustainable TRE schemes (from the perspective of consumption
of computational resources). The basic idea is that the puzzle generation takes
a sequence of hardness parameters 17, ...,7T, (where we assume that T; < T;41
for all i € [n — 1]) and outputs a sequence of puzzles and solutions (Z;, s;);cn]-
Now the distinguishing feature is that puzzles can be solved sequentially in a way
that solving Z; additionally considers solution s;_; and the time required to solve
puzzle Z; is determined by the hardness T; — T;_1 (note that having n =1 this
yields a conventional TLP). From this, we then build a sequential TRE scheme,
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where security is based on the security of a sequential TLP. Unfortunately, it
turns out that such a construction is non-trivial. For a TRE scheme to be secure,
we require that any adversary that runs in time 7" < T} is not able to break the
security of an encryption with respect to time slot T;. For such an adversary, we
need to simulate all values up to T;_1, in particular all TLP solutions s1,...,$;_1
up to T;_1, properly, as otherwise the reduction would not simulate the secu-
rity experiment properly for an adversary running in time T = T;_; < Tj, for
instance. However, it is not possible to build a reduction which receives as input
$1,...,8;_1 as part of the TLP instance, because then the reduction would only
be able to break the assumption that the puzzle is hard if it runs in time less than
T; —T;—1. Our solution to overcome this difficulty is to construct a TRE scheme
which does not directly use the real solutions s;, but instead F(Tj}, s;), where one
can think of F as a hard-to-invert function. This way we are able to formulate a
hardness assumption for TLPs where the reduction in the security proof of the
TRE scheme receives F(T1,s1),...,F(Ti—1,8i—1), F(Ti+1, Si+1), ..., F(Th, $n) as
additional “advice”, and thus is able to provide a proper simulation. At the
same time it is reasonable to assume that no adversary is able to distinguish
F(T;, s;) from random, even if it runs in time up to T" < T;, which is exactly
the upper bound that we have on the TRE adversary. We note that MT19 [24,
Section 5.2] also proposed a construction that allows to use multiple time slots,
by describing a specific construction which is similar to our notion of sequential
TRE. The technical difficulty that we encounter should arise in their construc-
tion as well. Unfortunately, they do not provide a formal security analysis, so
that this is not clarified. We, however, believe that a similar assumption involv-
ing an “advice” for the reduction is also necessary for a security proof of the
construction suggested in their work.

In order to construct sequential TLPs, we introduce the so called gap sequen-
tial squaring assumption, which extends the sequential squaring assumption by
an oracle which takes as input the hardness parameter 77 and a value 3’ and
outputs 1 if and only if 3/ = 22" mod N. This is akin to other gap problems [26]
such as the well known gap Diffie-Hellman problem. As evidence for the hard-
ness of this assumption, we provide an analysis in the strong algebraic group
model (SAGM) and in particular show that our assumption holds as long as
factoring is hard. The SAGM was introduced by Katz et al. [19] as a variant of
the algebraic group model (AGM) [16] and enables to work with time-sensitive
assumption. Finally, when modeling the above mentioned function F as a ran-
dom oracle, we obtain a provably secure construction of a sequential TLP and
finally a sequential TRE.

Summary and Discussion of Properties of Our Approach. There exist
different approaches to construct TRE in the literature, which all aim at achiev-
ing a similar goal from a high-level perspective, but which provide very different
properties from a low-level perspective, with sometimes subtle but crucial dif-
ferences. We briefly summarize the properties achieved by our (sequential) TRE
approach again and discuss how it enables novel applications.
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Homomorphic TRE. We recall that the homomorphic timed-release encryp-
tion from MT19 (called HTLPs in [24]) supports homomorphic evaluation of
functions on encrypted messages and avoids expensive parallel computations to
solve one puzzle per ciphertext, while it still achieves the desired security against
time-bounded adversaries. In some applications it may be desirable to enable the
homomorphic evaluation of ciphertexts before decryption. This might be useful
to save space, since it does not require storage of n encryptions of my, ..., my,
but only of their homomorphic evaluation. Also a sufficiently expressive homo-
morphic encryption scheme that supports the homomorphic evaluation of func-
tion f is required in order to take advantage of the “solve one, get many” prop-
erty. Practically efficient instantiations of additively and multiplicatively homo-
morphic schemes are readily available, but fully-homomorphic schemes [17] are
currently still much less practical. So for applications that require a complex
function f, the homomorphic approach from [24] is conceptually interesting, but
not yet practical.

Our modular TRE costruction follows a different approach, which supports
this in a black-box manner by simply replacing the PKE scheme with a homomor-
phic PKE scheme that supports homomorphic evaluation of ciphertexts. Since
the existence of an additional homomorphic evaluation algorithm is merely an
additional functional feature of the encryption scheme, the security analysis
carries over without any modifications. In particular, note that our construction
readily supports any (additively/multiplicatively/fully) homomorphic encryp-
tion scheme in a modular way. It thus can be based on arbitrary hardness
assumptions and without introducing further requirements, such as the need
for indistinguishability obfuscation for the fully-homomorphic TLP construc-
tion in [24], or the need for a specific multi-key fully-homomorphic encryption
scheme [22] as in [8]. We note also that our construction of sequential TRE
equally provides homomorphic computations within a single time period. Homo-
morphic computations across different time slots can easily be realized using any
multi-key homomorphic encryption scheme [22].

Optimal Amortized Costs. Note that while MT19 [24] achieve the “solve one,
get many” property only for homomorphic evaluations over many time-locked
messages and thus only for functions evaluated over the time-locked messages,
our TRE construction achieves this even without requiring an underlying homo-
morphic encryption scheme, but for all the original ciphertexts. This is because
solving a puzzle yields the randomness to generate the secret key sk of the PKE
scheme, which makes it possible to decrypt all ciphertexts efficiently without
requiring to solve many puzzles in parallel. Note that the approach of MT19
is thus limited with respect to applicability. The homomorphic evaluation of
ciphertexts is only useful when an application needs to decrypt only a function
flmq,...,my,) of all encrypted messages ms, ..., m,. However, if it needs to
learn all n messages myq, ..., m, explicitly, then MT19 still requires to solve n
puzzles in parallel.

With our TRE approach it is possible to achieve the “solve one, get
many” property even for applications that require the full decryption of all
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independently encrypted messages. Note that for a number n of independently
time-locked messages my, ..., m, our scheme is thus the first one to achieve an
optimal amortized cost of decryption per ciphertext of (n-Tpke.pec+11p)/n Where
Trke.Dec 18 the time required to run the decryption algorithm PKE.Dec and Trrp
is the time required to solve the puzzle. Note that this approaches Tpkg.pec With
increasing n. We note that this equally applies to our sequential TRE approach.

Public Verifiability. In [15], Ephraim et al. recently introduced the notion
of public verifiability for TLPs, meaning that after a party solves the puzzle,
they can publish the underlying solution together with a proof which can be
later used by anyone to quickly verify the correctness of the solution. Ephraim
et al. require this property to hold even if the puzzle is maliciously generated
and might have no valid solution. We briefly discuss how our TRE construc-
tion provides a public verifiability property, but since in our TRE the puzzles
are honestly generated and part of the public parameters, we do not consider
malicious puzzle generation. Note that in our TRE construction from the gen-
erated puzzle (Z,s) « TLP.Gen(T') the solution s is used as the random coins
to obtain (pk,sk) « PKE.Gen(1%;s). Now, our public TRE parameters include
pp. := pk and pp; = Z and given a potential solution s’ one wants to guarantee
that (pk,sk) < PKE.Gen(1%;s’) generates the same public key and an equivalent
secret key. Therefore, if the used PKE scheme PKE = (PKE.Gen, PKE.Enc, PKE.Dec)
provides perfect correctness, this public verifiability property is perfectly satis-
fied, i.e.,. for one pk there cannot be different secret keys output by PKE.Gen that
behave differently in their decryption behavior. In particular, the publicly verifi-
able proof is then simply the solution s’ and the verification is to check whether
s’ € R, to run (pk’,sk’) « PKE.Gen(1%;s’) and to check whether pk’ = pp,,
which represents an efficient check.

Sequential TRE with Public Servers. One particularly interesting feature
of our notion of sequential TRE is that one can use a single centralized server
that continuously computes and publishes solutions s; = Solve(s;_1) to decrypt
an arbitrary number of ciphertexts. Most importantly, the server would be inde-
pendent of these ciphertexts, which is not achieved by prior constructions. This
yields TRE where the decrypting parties would not have to solve any puzzle, but
merely would have to wait until the server publishes a solution. Note that here
the fact that the amortized complexity of decrypting n ciphertexts approaches
the complexity of running PKE.Dec with increasing n is particularly useful.

We stress that this must not be confused with TRE schemes in a trusted-
agent based setting. Loosely speaking, in such schemes a so called time server
publishes a single time-dependent trapdoor that then allows decryption of cipher-
texts. As shown in [10], this concept is essentially equivalent to identity-based
encryption (IBE) [5]. Most importantly, in any such agent-based TRE scheme
there is a trusted party which is not only involved in running the setup, but this
party then also needs to be online and, in particular, needs to be trusted to keep
the secret keys that are supposed to be released at a later point in time confi-
dential until the time has passed. In our approach of sequential TRE with public
servers, however, only the setup needs to be trusted. Even for the service that



72 P. Chvojka et al.

actually performs the squaring there are no shortcuts to revealing the decryption
keys before the respective time has passed.

If one is worried about a trusted setup performed by a third-party server, or
about the fact that one server might run out of service, then one could use N > 1
servers. The public parameters of each server would be used to encrypt a share of
the message, using an (K, N)-threshold secret sharing scheme (e.g., [30]). Even
with K — 1 colluding servers, the message would remain hidden. Even if up to
N — K servers go out of service, messages would still be recoverable using the
K shares obtained from the remaining servers.

3 Definitions and Constructions of Time Lock-Puzzles

Simple Time-Lock Puzzles. In this section we give a new definition for time-
lock puzzles (TLPs) and explain how it relates to the old definition.

Definition 1. A time-lock puzzle is pair of algorithms TLP = (Gen, Solve) with
the following syntaz.

- (Z,s) « Gen(T) is a probabilistic algorithm which takes as input a hardness
parameter T' € N and outputs a puzzle Z together with the unique solution
s of the puzzle. We require that Gen runs in time at most poly(logT, \) for
some polynomial poly.

— s « Solve(Z) is a deterministic algorithm which takes as input a puzzle Z
and outputs a solution s € S, where S is a finite set. We require that Solve
runs in time at most T - poly(\). There will also be a lower bound on the
running time, which is part of the security definition.

We say TLP is correct if for all A € N and for all polynomials T in X it holds:

Prls =5 :(Z,s) < Gen(T), s" «— Solve(Z)] = 1.

Relation to Prior Definitions. In the definitions of TLPs from Bitansky et
al. [4] and Malavolta and Thyagarajan [24] algorithm Gen receives s as an addi-
tional input and output a puzzle Z. This immediately yields a timed-release
encryption (TRE) scheme by viewing s as a message that is encrypted. Our def-
inition enables a slightly simpler generic construction of (homomorphic) TRE.
Intuitively, our new definitions relates to the prior one in a similar way like a
key encapsulation mechanism relates to an encryption scheme. Concretely, let
TLP = (Gen, Solve) be a puzzle according to our new definition. Then we obtain
a puzzle TLP' = (Gen’, Solve’) of the old form as follows:

— Gen'(T,m) computes Z « Gen(T) outputs Z’ = (Z,m @ s).
— Solve'(Z' = (Z,c)) computes s « Solve(Z) and outputs ¢ @ s.
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ExpTLP%()\):

(Z,s) < Gen(T'(N))
ifb=0:c:=s
ifb=1:c 8
return ' — Ax(Z,c)

Fig. 1. Security experiment for time-lock puzzles.

Security. For security we require that the solution of a TLP is indistinguish-
able from random, unless the adversary has sufficient running time to solve the
puzzle. The following definition is inspired by those from Bitansky et al. [4] and
Malavolta and Thyagarajan [24], but adopted to our slightly modified definition
of the Gen algorithm.

Definition 2. Consider the security experiment ExpTLPZ()\) in Fig. 1. We say
that a time-lock puzzle TLP is secure with gap € < 1, if there exists a polynomial
T(-) such that for all polynomials T(-) > T(-) and every polynomial-size adver-
sary A = {Ax}ren of depth < T<(\) there exists a negligible function negl(-)
such that for all X € N it holds

AdvT = [Pr [ExpTLPY(\) = 1] — Pr [ExpTLPYL(A) = 1]| < negl(\).

Other Variants of TLPs. In the full version we also discuss weaker forms
of TLPs as introduced by Bitansky et al. [4]. Moreover, we present instantia-
tions of TLPs based on different variants of randomized encodings [2,18] and in
particular the approach of constructing TLPs from them by Bitansky et al. [4].
Furthermore, we discuss how they can be cast into our TLP framework.

Instantiating TLPs from Sequential Squaring. Subsequently, we discuss
instantiations of TLPs based on the sequential squaring. Therefore, we recall a
definition of the sequential squaring assumption which was implicitly introduced
by Rivest et al. [29]. Let p be an odd prime number. We say that p is a strong
prime, if p = 2p’ + 1 for some prime number p’. Let GenMod be a probabilistic
polynomial-time algorithm which, on input 1*, outputs two A-bit strong primes
p and ¢ and modulus N that is the product of p and ¢. Let ¢(-) denotes Euler’s
totient function. We denote by QR 5 the cyclic group of quadratic residues which
has order |QRy| = ‘p(iv) = (pfll(q*l).

Definition 3 (The Sequential Squaring Assumption). The sequential
squaring assumption with gap 0 < € < 1 holds relative to GenMod if there
exists a polynomial T'(-) such that for all polynomials T'(-) > T(-) and for every
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non-uniform polynomial-size adversary A = {Ax}xen, where the depth of Ay is
at most T<(\), there exists a negligible function negl(:) such that for all A\ € N

r (p,q, N) « GenMod(1*)]
z < QRy,b < {0,1}

1

Prib=10 : ifb=0:y:= xQTW mod N | — 5 < negl(A).

ifb=1:y< QR y
b, — .A,\(N,T()\),x,y)_

The instantiation of TLP from the sequential squaring assumption is straight-
forward:

— Gen(T): Run (p,q,N) «— GenMod(1*). Randomly sample = < QR and
compute the value s := 22" mod N. Notice that value s can be efficiently
computed knowing the values p and ¢q. Set Z := (N, T, z) and output (Z,s).

2

— Solve(Z): compute s := x " mod N by repeated squaring.

The security of this construction is directly implied by the security of the
sequential squaring assumption.

4 Sequential Time-Lock Puzzles

In this section we introduce sequential time-lock puzzles along with their security
and propose an instantiation which we prove secure under a new assumption
called the gap sequential squaring assumption. We also show this assumption to
hold, assuming factoring is hard, in the strong algebraic group model (SAGM)
of Katz et al. [19].

Defining Sequential Time-Lock Puzzles. Sequential time-lock puzzles are a
particularly useful generalization of basic TLPs, which yields particularly prac-
tical time-lock encryption schemes. To this end, we generalize Definition 1 by
allowing the Gen algorithm to take multiple different time parameters as input,
which then produces a corresponding set of puzzles.

Definition 4. A sequential time-lock puzzle is tuple of algorithms sTLP = (Gen,
Solve) with the following syntaz.

~ (Zi,84)iem) — Gen((Ti)iem)) is a probabilistic algorithm which takes as
input n integers (T;);cn) and outputs n puzzles together with their solutions
(Zi, 8)iemn) in time at most poly((log T;)ie[n), A). Without loss of generality
we assume in the sequel that set (T});ec[n) is ordered and hence T; < Tiyy for
alli e [n—1].

— s; < Solve(Z;, s;—1) is a deterministic algorithm which takes as input a puzzle
Z; and a solution for puzzle Z;_1 and outputs a solution s;, where we define
so := L. We require that Solve runs in time at most (T; — T;—1) - poly(}),
where we define Ty := 0.
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We say a sequential time-lock puzzle is correct if for all \,n € N, for all i € [n]
and for polynomials T; in A such that T; < T;11 it holds:

Pr [sz =s,: (Z;, $i)icin) < Gen((T3)icn)) s; « Solve(Z;, si_l)] =1.

Security. In order to define a security notion for sequential time-lock puzzles
that is useful for our application of constructing particularly efficient timed-
release encryption schemes, we need to introduce an additional function F :
N x § — Y, which takes as input a pair a hardness parameter T" € N together
with solution s € .S and outputs elements of some set Y. Instead of requiring that
elements s; are indistinguishable from random, we require that y; = F(T}, s;) is
indistinguishable from random.

ExpsTLPY (\):

(Zj,55)jem) — Gen(1*, (T; (X)) jepm))
(yj = F(T5(N), 55))je i\ {i}}
ifo=0:y;, :=F(T3:(N\),s:)
ifb=1:y; Ey

return b’ «— A x((Z5,Y5)jen))

Fig. 2. Security experiment for sequential time-lock puzzles.

Definition 5. Consider the security experiment ExpsTLPfL\i(/\) in Fig. 2. We
say that a sequential time-lock puzzle sTLP is secure with gap 0 < € < land with
respect to the function F, if for all polynomials n in X\ there exists a polynomial
T(-) such that for all sets of polynomials (T5(:))jem fulfilling that V5 € [n] :
Tj(-) > T(-), for alli € [n] and every polynomial-size adversary A; = {A; x }ren,
where the depth of A; x is bounded from above by Tf(X), there exists a negligible
function negl(-) such that for all A € N it holds

AV = [Pr [EpsTLPY, (1) = 1] — Pr [BxpsTLP, (3) = 1]| < negl).

Instantiating Sequential TLPs from Sequential Squaring. In order to
obtain a sequential TLP, we define a variant of the sequential squaring assump-
tion in which an adversary is given oracle access to a decisional sequential squar-
ing verification function DSSvf. DSSvf takes as input hardness parameter 77 and

value 3y € QR and outputs 1 if 3/ = xZT, mod N, otherwise it outputs 0. The
values x and N are defined in security experiment. The assumption essentially
states that computational sequential squaring assumption remains hard, even if
the adversary is given access to DSSvf, akin to other gap assumptions [26]. We
discuss the necessity of this assumption in Appendix C.
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Definition 6 (The Gap Sequential Squaring (GGS) Assumption). The
gap sequential squaring assumption with gap 0 < € < 1 holds relative to GenMod
if there exists a polynomial T(-) such that for all polynomials T(-) > T(-) and
for every polynomial-size adversary A = {Ax}ren, where the depth of Ay is
bounded from above by T¢(\), there exists a negligible function negl(-) such that
for all A € N it holds

(p,q, N) — GenMod(1*), z < QR y

Advi‘ss =Pr|y= 22" mod N:
y = AN, T(N), 2)

< negl(\).

where DSSVE(+,+) is an oracle which takes as input a hardness parameter T' and

a value y' and outputs 1 if and only if y' = 22" mod N.

Now we are ready to construct our sequential TLP:

~ Gen((T})ie[n)): Run (p,q, N) < GenMod(1*). Randomly sample x £ QRy
and compute values s; := 22 ' mod N for alli € [n]. Value s; can be efficiently
computed knowing the values p and q. Output ((N,z,T;, Ti—1), 8i))ic[n]-

i—Ti—1

‘1 mod N by repeated

—~

=

— Solve((N,z,T;,T;—1), $i—1): Compute value s
squaring.

<0

Theorem 1. If the gap sequential squaring assumption with gap € holds relative
to GenMod and F is modelled as a random oracle, then for any ¢ < e, the
STLP = (Gen,Solve) defined above is a secure sequential time-lock puzzle with
gap € and with respect to the function F.

In the full version we prove that the gap sequential squaring problem is at
least as hard as factoring N in the Strong Algebraic Group Model (SAGM),
which was introduced by Katz et al. [19] to consider time-sensitive assumptions.

Theorem 2. If the factoring assumption holds relative to GenMod, then the gap
sequential squaring assumption with gap € holds relative to GenMod in the SAGM
forany 0 < e < 1.

5 (Sequential) Timed-Release Encryption

In this section we give generic constructions of (sequential) timed-release encryp-
tion (TRE) schemes based on (sequential) TLPs. There exist several definitions
for TRE and we base ours on that of Unruh [32]. However, we introduce two
additional algorithms Setup and Solve which leads to better modularity and
applicability of TRE, as we will illustrate in Supplementary Material B.

Definition 7. A sequential timed-release encryption scheme with message space
M is tuple of algorithms TRE = (Setup, Enc, Solve, Dec) with the following syntaz.
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= (PPe.i» PPa,i)icm] < Setup(lA,(Ti)ie[n]) is a probabilistic algorithm which
takes as input a security parameter 1 and a set of time hardness parameters
(T)iem) with Ty < Tyyq for all i € [n — 1], and outputs set of public encryp-
tion pammeters and public decryption parameters PP := (ppevi,ppdﬂv)ie[n].
We require that Setup runs in time poly((log T3)ie[n]; A)-

— 8; < Solve(ppy;, si—1) is a deterministic algorithm which takes as input public
decryption parameters pp,; and a solution from a previous iteration s;—1,
where sq := L, and outputs a solution s;. We require that Solve runs in time
at most (T; — T;—1) - poly()).

— ¢ « Enc(pp.;,m) is a probabilistic algorithm that takes as input public
encryption parameters PP, and message m € M, and outputs a ciphertext
c.

- m/L « Dec(T;,s;i,c) is a deterministic algorithm which takes as input a
hardness parameter T;, a solution s; and a ciphertext c, and outputs m € M
or L.

We say a sequential timed-release encryption scheme is correct if for all
A,n €N, for all sets of hardness parameters (T;) cn) such that Vj € [n —1] :
Tj; < Tjy1, for all i € [n] and for all messages m € M it holds:

)

PP «— Setup(1*, (T}) je[m)), i — Solve(pp,,i; i1
m' « Dec(T;, 54, Enc(pp,, ;,m;))

/.

Prim=m =1.

Note that the above definition also defines “non-sequential” TRE, by setting
n = 1. In that case the value T; is not needed as an input for Dec algorithm,
however, for sequential TRE, this value is necessary. For ease of the notation, it
is unified.

Definition 8. A sequential timed-release encryption scheme is secure with gap
0 < e < 1 if for all polynomials n in X there exists a polynomial T() such that
for all sets of polynomials (T}) ;e fulfilling that V5 € [n] : T;(-) > T(-), for all
i € [n] and every polynomial-size adversary A = {(A1,x, A21)}ren there exists
a negligible function negl(-) such that for all A € N it holds

PP<—Setup( A ( )je[n])
AdvTE — [Pr [b=1' - Gymoymy, ) = AR 1) negl(\)
A b<—{0 1}; ¢ « Enc(pp, ;> ms) 2|~
)

,<_~/42)\(7

We require that |mg| = |m1| and an adversary Ay = (Aq x, A2\) where Ay »
outputs i in the second step of the above security experiment consists of two
circuits with total depth at most Tf(\) (i.e., the total depth is the sum of the
depth of A1 x and Az ).
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Setup(1*,T) Solve(ppy)

(Z,s) < TLP.Gen(T) s «— TLP.Solve(pp,)
(pk,sk) < PKE.Gen(1%;s)  return s

return pp, := pk, pp, := Z

Enc(pp.,m) Dec(s, ¢)
return ¢ < PKE.Enc(pp,,m) (pk,sk) « PKE.Gen(1%;s)
return m « PKE.Dec(sk, c)

Fig. 3. Construction of TRE

5.1 Basic TRE Construction

Building Blocks. Our construction combines a time-lock puzzle (TLP) with a
CPA secure public-key encryption (PKE) scheme. We refer to [11] for standard
formal syntactical and security definitions of PKE. We require standard CPA
security of the PKE scheme, since this is sufficient to construct a TRE scheme
achieving Definition 8.

Construction. Let TLP = (TLP.Gen, TLP.Solve) be a TLP with solution space S
and let PKE = (PKE.Gen, PKE.Enc, PKE.Dec) be a PKE scheme. Figure 3 describes
our construction of a TRE scheme. As we have already mentioned, the hardness
parameter T is not necessary as input for Dec, hence we leave it out in the
construction. Observe that correctness is directly implied by correctness of the
PKE scheme and the TLP.

Theorem 3. If TLP = (TLP.Gen, TLP.Solve) is secure time-lock puzzle with gap
€ in the sense of Definition 2 and PKE = (PKE.Gen, PKE.Enc, PKE.Dec) is a CPA
secure encryption scheme, then TRE = (Setup, Solve, Enc, Dec) defined in Fig. 3 is

a secure timed-release encryption scheme with gap € < € in the sense of Definition
8.

5.2 Sequential TRE

In the sequel let sTLP = (sTLP.Gen, sTLP.Solve) be a sequential TLP in the sense
of Definition 4 and let PKE = (PKE.Gen, PKE.Enc, PKE.Dec) be a PKE scheme. Let
F:N xS — Y be a function that maps the hardness parameter space N and
the solution space S of sTLP to the randomness space of algorithm PKE.Gen. Our
constructions of a sequential TRE scheme TRE = (Setup, Enc, Solve, Dec) is given
in Fig.4. Note that correctness of the scheme is directly implied by correctness
of the PKE scheme and the sequential TLP.

! We note that by replacing the PKE with a CCA secure one, we can straightforwardly
obtain a CCA secure TRE. This is easily achieved as our puzzles are included in the
public parameters and thus do not need to be non-malleable and we only require
non-malleability on the ciphertexts.
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Setup(1*, (T3)ie(n)) Solve(ppy,;; 5i—1)

(Z»;, si)ie[n] — sTLP.Gen((Ti)ie[n]) Si — STLP.SO|Ve(ppd,i, 87;71)
((pk;,ski) < PKE.Gen(1*; F(T%, 8:)))ic[n) Teturn s;

return (pp, ; = pk;, PPy,; = Zi)ie[n]

Enc(pp, ;,m) Dec(T3, s, ¢)
return ¢ < PKE.Enc(pp, ;,m) (pk;, sk;) < PKE.Gen(1%; F(T3, 5:))
return m < PKE.Dec(sk;, )

Fig. 4. Construction of sequential TRE

Gen(1>‘,.7-', (Ty)jem)) Enc(pk, x)

(pk, msk) < FE.Gen(1*, F) return ¢ < FE.Enc(pk, x)
(PP..;+ PPa;)icln) — TRE.Setup(1*, (T)je(n))

return (pk, msk, (ppe_’j, de,j)]’e[n])

KeyGen(msk, (pp, ;)jen]; f; 1) Dec(dk;, T}, si, )

sky «— FE.KeyGen(msk, f) ci = dk;

¢; « TRE.Enc(pp, ;, sky) sky := TRE.Dec(T3, s;, ¢;)
return dk; :=¢; return f(z) := FE.Dec(sky, ¢)

Solve(pp,,;, si-1)
return s; := TRE.Solve(pp, ;, Si—1)

Fig. 5. Construction of TRFE.

Theorem 4. If sTLP = (sTLP.Gen, sTLP.Solve) is a secure sequential time-lock
puzzle with gap € w.r.t. function F and PKE = (PKE.Gen, PKE.Enc, PKE.Dec) is a
CPA secure encryption scheme, then TRE = (Setup, Enc, Solve, Dec) defined in
Fig. 4 is a secure sequential timed-release encryption with gap € < e.

5.3 Integrating Timed-Release Features into Functional Encryption

In this section, we connect sequential timed-release features with functional
encryption (FE) [7,27] and introduce the notion of a (sequential) timed-release
functional encryption (TRFE) scheme. The basic idea is that in such a scheme,
similarly to an FE scheme, there is a public key pk used for encryption of any
message x and a main secret key msk which is associated to a class of functions
F : X — Y. In contrast to an FE scheme, however, in a TRFE scheme, msk can
be used to generate decryption keys for a function f € F which is associated
to a time hardness parameter T; (and, hence, to its solution s;). Decryption
takes the associated decryption key dk;, the solution s;, a function f € F, and a
ciphertext to message x and outputs f(z). Security-wise, an adversary is allowed
to query any secret function key for any public encryption parameter associated
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to T; as long as its solution s; is not retrievable. Due to limited space, we present
the formal definitions of FE, the formal framework of timed-release functional
encryption (TRFE) as well as the proof that the construction in Fig. 5 is a secure
TRFE in the full version.

Construction of TRFE. Let TRE = (TRE.Setup, TRE.Solve, TRE.Enc, TRE.Dec)
be a (sequential) TRE scheme and FE = (FE.Gen, FE.KeyGen, FE.Enc, FE.Dec) be
an FE scheme. We construct a TRFE scheme TRFE = (Setup, KeyGen, Enc, Solve,
Dec) as given in Fig. 5. Let the message space of TRE be the functional-secret-key
space of FE which is the output of FE.KeyGen and all functional secret keys for
function f € F and any main secret key of FE are of equal length.

Application to Locked-Key IBE. With TRFE, we are able to lock secret
keys of an IBE scheme with a sequential timed-release feature. When the central
authority in an IBE scheme generates the identity-based secret keys, it can attach
hardness parameters to it such that those keys only become usable sequentially.
This, for example, enables an IBE central authority to produce all secret keys
in the beginning and afterwards go off-line.

A Concurrent and Independent Work

Recently, there have been some independent and concurrent works investigat-
ing different aspects of TLPs, which we want to briefly discuss. Most closely
related to our work is the one of Katz et al. [19] who show that sequential squar-
ing is as hard as factoring in the strong algebraic group model (SAGM) and
construct non-malleable timed commitments based upon a novel building block
called timed public-key encryption (TPKE). The similarities are that we will
also rely on the SAGM to prove the generic hardness of our new gap sequential
squaring assumption. However, their TRPKE approach is different to our TRE
approach. Firstly, they support a fast and a slow decryption, where former uses
the secret key and latter requires solving a TLP. Secondly, while in our set-
ting encryption is efficient, in their TPKE which is constructed from sequential
squaring and the Naor-Yung double encryption paradigm one has to compute
twice a T-times sequential squaring. This construction achieves CCA security,
but they also discuss a CPA secure version where encryption is equivalently
expensive. Note that in contrast to our TRE, in their TPKE time starts running
with encryption and not with parameter generation.

In [15] Ephraim et al. investigate efficient constructions of concurrent non-
malleable TLPs in the auxiliary-input random oracle model (whereas previous
constructions in the plain model [3] are not practically efficient). The idea, which
is similar to our idea, is essentially to evaluate random oracle on hardness param-
eter T and solution s of a puzzle Z and use the output of the oracle as a ran-
domness for Gen algorithm of any TLP. An interesting property introduced and
investigated in [15] is public verifiability of TLPs. As we have already discussed
we can achieve public verifiability for our generic TRE when basing them on
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perfectly correct PKE schemes. We note however that while Ephraim et al. con-
sider this notion in a setting with malicious puzzle generation, we consider a
weaker notion with honest puzzle generation which is sufficient for our TRE.
Abadi and Kiayias [1] construct so-called Multi-Instance Time-Lock Puzzles
(MITLPs) which are similar to our notion of sequential TRE. The crucial dif-
ference is that MILTPs allow to encrypt messages with respect to consecutive
multiples of one hardness parameter by chaining TLPs which requires that all
messages of interest must be known at the time when MITLP is generated.

B Applications: Simpler and More Efficient Instantiations

Subsequently, we discuss the applications in [24] when we use our (homomorphic)
TRE approach in contrast to HTLPs of MT19. All the following application have
in common that they require decrypting a set of encrypted messages at some
required time. Our approach to TRE allows to decrypt arbitrary number of
messages at the specified time by solving one puzzle. In [24] this is achieved
by homomorphic evaluation of puzzles and then solving one or more resulting
puzzles. The drawback of this solution is that one needs to wait until all puzzles
of interest have been collected, then execute homomorphic evaluation and only
after that the resulting puzzles can be solved. Our scheme allows to start to solve
the puzzle immediately after Setup is run. In all of this applications we are able
to use our TRE approach without any homomorphic property.

E-voting. We focus on designing an e-voting protocol in absence of trusted
party, where voters are able to cast their preference without any bias. Similarly
to [24], we do not consider privacy nor authenticity of the votes. The crucial
property of our TRE is that setup can be reused for producing an arbitrary
number of ciphertexts and for that reason it is enough to run Solve only once.
The output s of Solve allows to obtain the secret key which is then used to decrypt
all ciphertexts that have been produced using corresponding pp,. Therefore, if
we encrypt all votes using the same pp,, we are able to decrypt all ciphertexts
at the same time. Then it is easy to obtain final result by combining decrypted
plaintexts. Notice that the security of the TRE scheme guarantees that all votes
remain hidden during the whole voting phase. In the e-voting protocol proposed
in [24], we have to wait until the voting phase is finished and then we can
combine puzzles from voting phase to m resulting puzzles (one per candidate
where votes are encoded as 0 and 1 respectively). Then, these m puzzles can be
solved, which requires at least time T" and solving m puzzles in parallel. Hence, it
requires time T after the voting phase is over to be able to announce the results.
This is in contrast to what we can do with our TRE, in which we can encrypt
the respective encoding of the candidate, e.g., i € [m] directly, and can start to
solve a single puzzle immediately after Setup is run and hence the results are
available at the beginning of the counting phase.

Multi-party Coin Flipping. In multi-party coin flipping we assume n parties
which want to flip a coin in the following way: 1) The value of the coin is unbiased
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even if n — 1 parties collude and 2) all parties agree on the same value for the
coin. The approach proposed in [24] relies on HTLPs and their protocol consist
of three phases: Setup, Coin Flipping and Announcement of the result. Similarly
to the e-voting protocol, one is only able to start solving the puzzle in the last
phase and hence obtains the results after time 7. We are able to avoid this
problem, by using our TRE approach, where we can start to solve the puzzle
already after the Setup phase.

Sealed Bid Auctions. Here we consider an auction with n bidders. The proto-
col consist of two phases - the bidding phase and the opening phase. Bids should
be kept secret during the bidding phase and later revealed in opening phase.
Time-lock puzzles are used in this scenario to mitigate the issue that some bid-
ders can go offline after the bidding phase. If we use only standard time-lock
puzzles, then the number of puzzles which has to be solved in the opening phase
is equal to number of bidders who went offline. In [24] this problem was resolved
by using HLTPs. Again, this solution has the same issues as the ones discussed
above and can be avoided using our TRE approach.

Multi-party Contract Signing. In multi-party contract signing we assume n
parties which want to jointly sign a contract. The parties are mutually distrust-
ing and the contract is valid only if it is signed by all parties. The protocol in [24]
consists of four phases - Setup, Key Generation, Signing and Aggregation, and
combines aggregate signatures from RSA with multiplicatively homomorphic
time-lock puzzles with a setup that allows producing puzzles for multiple hard-
ness parameters. We remark that this type of time-lock puzzles are in some sense
equivalent to our sequential timed-release encryption.? The protocol runs in ¢-
rounds and in the i-th round every party should create a puzzle with hardness
Ty—;+1 which contains a signature of the required message. Hence, the hardness
of the puzzles decrease in every round. If some parties have not broadcasted
their puzzles in any round, the parties will homomorphically evaluate puzzles
from the previous round and solve the resulting puzzle.

Consider a scenario, where in the i-th round some party does not broadcast
its puzzle. Then if we do not take into account time for homomorphic evaluation,
we need time Ty_; 11 to solve the resulting puzzle after this event happened. On
the other hand, if we use sequential TRE, we are able to obtain result in time
Ty—_;11 after the setup was executed. Moreover, we can combine sequential TRE
with an arbitrary aggregate signature scheme, because we do not need to perform
any homomorphic evaluation.

C On the Necessity of the Gap Sequential Squaring
Assumption

One might ask why the following seemingly simple solution does not yield a
secure sequential TLP:

2 Though they only discuss them informally in [24] and as mentioned in Sect.1 it
seems that it is not possible to prove it secure as it is proposed.
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— Generate a set of (non-sequential) puzzles (Z1, s1), ..., (Zn, Sn), such that the
delay parameter for puzzle ¢ is T; — T;_1.

— Let (Enc, Dec) be some CPA-secure symmetric encryption scheme.

— Publish (73, (Encs,_, (Z;))1,).

Unfortunately, this approach does not work (see also page 16 of the full
version [11]). Concretely, suppose we have an adversary which has sufficient
running time to solve n— 1 puzzles, and then successfully attacks the n-th puzzle
(say, with success probability 1, for instance). Now note that we cannot use the
CPA security of any of the first n — 1 encryptions to “hide” any intermediate
puzzle, because the adversary has enough time to notice this (as it has enough
running time to solve all the first n — 1 puzzles). However, then, since we cannot
use the CPA security as an argument in the proof, we can equivalently consider
the first n — 1 encryption as completely insecure.

But if we have no security guarantees for the first n — 1 encryptions, this
means that we also cannot argue that the adversary cannot obtain the n-th
puzzle instance Z,, quickly, without solving n — 1 prior instances, because it
could simply “break” the (n — 1)-th encryption to obtain Z, (which might be
very quick, e.g., in just a few computational steps, because we cannot argue that
the scheme is secure in the sense of CPA or some other notion). And then an
adversary with sufficient running time to solve n — 1 puzzles can simply solve
only the last puzzle using the standard Solve algorithm.

So in conclusion, we do not claim that the construction is insecure, but only
that CPA security or a similar notion seems not sufficient, as we cannot perform
a reduction to the CPA security in the usual way. It might be possible to prove
security under a non-standard assumption (e.g., by essentially assuming that
the proposed construction is secure), however, this would also be an additional
assumption, which we want to avoid.
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Abstract. In a multipath key exchange protocol (Costea et al., CCS’18)
the parties communicate over multiple connection lines, implemented for
example with the multipath extension of TCP. Costea et al. show that, if
one assumes that an adversary cannot attack all communication paths in
an active and synchronized way, then one can securely establish a shared
key under mild cryptographic assumptions. This holds even if classical
authentication methods like certificate-based signatures fail. They show
how to slightly modify TLS to achieve this security level.

Here we discuss that the multipath security can also be achieved for
TLS 1.3 without having to modify the crypto part of protocol at all. To
this end one runs a regular handshake over one communication path and
then a key update (or resumption) over the other path. We show that
this already provides the desired security guarantees. At the same time,
if only a single communication path is available, then one obtains the
basic security properties of TLS 1.3 as a fall back guarantee.

1 Introduction

Secure connection establishment ultimately relies on the ability to authenticate
the intended communication partner. Otherwise sensitive data may be transmit-
ted to the wrong party, rendering any attempt to protect data-in-transit useless.
Modern key establishment methods such as TLS therefore use various forms
of authenticating the partner (unilaterally or mutually), ranging from shared
secrets to the common certificate-based signatures.

However, the reliable binding of certified keys to identities is often hard to
realize. These may be due to rogue certificates, issued to the wrong party such
as in the Comodo and DigiNotar cases [20]. Another source of problems are mis-
configured libraries which skip (parts of ) the verification [14] or implementation
errors as in Apple’s goto fail [18]. Sometimes, connection proxies may also
break up end-to-end connections and thereby weaken security, e.g., by insuffi-
cient certificate checks [4].

1.1 Multipath Key Exchange

Some solutions towards hedging against certificate misbinding have been pro-
posed, including certificate pinning [10] to temporarily store known links, and
certificate transparency [19] to log valid certificates. Recently, Costea et al. [5]
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discussed another possibility to enhance security by using the multipath exten-
sion of the TCP connection protocol (MPTCP) in [13]. Roughly, the multipath
extension allows to establish further sub flows in a TCP connection to ensure
reliable and possibly parallel data transmission over different communication
channels (such as WiFi and mobile networks). While being primarily a tool for
network efficiency, Costea et al. [5] point out that it can also be used to build
multipath key exchange protocols.

In a multipath key exchange protocol the two parties send partial information
of the key exchange protocol over different connections to create a shared key.
One usually assumes that there are two connections available. The optimistic
assumption is that an adversary can either be active on both connections but
then cannot synchronize during the execution, called A/A adversary in [5]. This
happens if the latency of the sub connections is small. Or, the adversary may be
able to synchronize during the key establishment but then does not have means
to actively attack both connections and thus only passively eavesdrop on one of
the connections. This is called an A—P attacker in [5].

Costea et al. [5] continue by designing a multipath key exchange scheme
SMKEX based on the Diffie-Hellman problem. The protocol only requires a
Diffie-Hellman exchange over one flow, and the exchange of nonces over the
other flow, together with a hash confirmation value. No further authentication
is required. They prove their protocol to be secure in a multipath variant of the
Canetti-Krawcyzk (CK) model [3] in the random oracle model, against A/A and
A—P adversaries. In addition, they also comprehensively discuss the practical
feasibility of the multipath approach, and how to modify the crypto part of TLS
slightly to incorporate the enhanced security guarantees. The resulting protocol
is called MTLS.

1.2 Owur Contribution

We adopt the idea to relax the assumption about authentication guarantees
by using multiple communication paths. We present here a TLS 1.3 compliant
protocol [21] to enhance the security of the key establishment. The idea is to run
a regular handshake execution over the MPTCP main flow, followed by the key
update sub protocol of TLS 1.3 over the MPTCP sub flow. See Fig. 1. The key
update step renews the traffic secrets. Alternatively, one may run the resumption
sub protocol of TLS 1.3 over the sub flow. The advantage of running the more
expensive resumption step is that it updates all keys which TLS 1.3 established,
including for example the resumption and exporter master secrets.

In comparison to the SMKEX and MTLS proposals in [5], our approach has
some advantages:

— Our protocol works on top of existing TLS 1.3 implementation, without
requiring any modifications of the cryptography. This is contrast to SMKEX
which is built from scratch, and MTLS which modifies TLS slightly.

— Our protocol provides security against A/A and A— P adversaries simultane-
ously, even if the TLS certificates are completely broken, relying on network
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Multipath TLS 1.3

Client Server

TLS 1.3 key update or resumption

Fig. 1. MPTCP-TLS 1.3 overview

assumptions instead. However, since it runs the basic TLS 1.3 mechanisms,
even if the network assumptions turn out to be false, e.g., the parties exchange
the information only over a single connection, then one still has the original
TLS 1.3 security guarantees as fallback. MTLS in [5] is also considered to
have this property.

— We discuss our approach concretely for TLS 1.3, but the idea of running
the key exchange step over one flow, and then some form of key update or
confirmation message over the other flow, should be applicable in general.

In terms of the security model, we introduce a multipath extension of the
Bellare-Rogaway (BR) model [1,2]. The difference to the CK model [3] essentially
is the latter allows for session-state reveals. But TLS 1.3 has not been designed
to withstand such attacks and so far has been analyzed only in (multi-stage
extensions [11] of) the BR model [8,9]. We note that we only consider security of
the traffic secrets such that we restrict ourselves to a single-stage security model
here. We also introduce some minor strengthenings compared to the model in

[5].

We finally prove the TLS 1.3 (EC)DHE key exchange followed by a key
update to be secure against A/A and A— P adversaries in our security model. We
do not rely on the random oracle assumption but need some standard assump-
tions about the Diffie-Hellman problem, the pseudorandomness of HKDF, and
the integrity of the record protocol (which follows from the security of the AEAD
schemes stipulated in TLS 1.3). In the A—P case we also need a slightly stronger
integrity assumption for the record protocol and discuss its plausibility.

2 Preliminaries

2.1 Multipath TCP

The MPTCP protocol [13] allows to establish multiple TCP subflows under-
neath an (MPTCP) connection. This allows for an improved and more reliable
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throughput. For establishing an MPTCP connection the initiator and responder
start a regular TCP connection but use a special flag MP_CAPABLE, i.e., both
sides agree on an MPTCP connection by setting the MP_CAPABLE flag in the
TCP flow of SYN,SYN/ACK, and ACK messages. In the course of this the parties
also pick random cryptographic keys and a locally unique 32-bit token, which
are all transmitted (in clear) to the other side. The token is in fact a truncated
hash value of the responder’s key.

To open up a new subflow between addresses either party can start a new
TCP connection, but this time include the MP_JOIN flag in the SYN,SYN/ACK,ACK
flow. The link to the initial connection is via the token which is included in the
MP_JOIN part. During the new establishment both parties exchange nonces, and
authenticate both nonces via a (truncated) HMAC computation for the keys
from the initial MPTCP connection. The nonces should prevent replay attacks.

While the deployment of MPTCP should be transparent for TCP-only con-
nections, the sender of data over an MPTCP connection in principle has full
control over the distribution of data through different sub flows. The routing
can be set arbitrarily through the scheduler, albeit not all operating system may
support arbitrary choices by default. The receiver may request to prioritize a
sub flow via the MP_PRIO flag, and the sender should obey to this request. For
our advanced security guarantees, however, we require that the second part of
our key agreement protocol indeed runs over a fresh sub flow. If not then one
falls back to the ordinary security of TLS 1.3 against active network attackers.

2.2 Transport Layer Security

We give a high-level overview of the Transport Layer Security (TLS) protocol,
in particular version 1.3 [21]. Given that our focus in this work is on multipath
connection security without authentication we omit the mechanisms for server
and client authentication in the description here; our model and security proof
still takes this part into account. Instead in the description here we focus on
the main anonymous handshake, the record protocol, as well as the protocol to
update the record layer keys for an existing connection. More details, which are
especially relevant for the proof, appear in Appendix A.

The (EC)DHE handshake of TLS 1.3 runs a Diffie-Hellman-based key deriva-
tion. The client initiates the communication with its client hello message CH,
including a nonce, and a client key share CKS carrying a Diffie-Hellman value.
The server responds with its server hello SH message with its nonce, and its SKS
part with a Diffie-Hellman value. The server computes the finished message SF,
including a MAC under the derived key, and the client responds with its finished
message CF.

For us, the most relevant part is key derivation. With a convoluted key deriva-
tion schedule based on the HKDF functions HKDF.Extract and HKDF.Expand,
the parties compute (among others) a resumption master secret RM S, a client
application traffic secret client_application_traffic_secret, and a server application
traffic secret server_application_traffic_secret. The former key is used for the session
resumption step only, and the latter keys are used to protect the communication
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Client Server
CATS <+ HKDF.Expand(
CATS, "traffic upd")

[KeyUpdateRequest] CATS <« HKDF.Expand(
CATS, "traffic upd")

SATS <+ HKDF.Expand(

[KeyUpdateResponse] SATS, "traffic upd")

SATS <+ HKDF.Expand(
SATS, "traffic upd")

Fig. 2. The TLS 1.3 key update protocol. All messages are protected by the TLS record
protocol using the current CATS and SATS, this is indicated by the square brackets.

via the record layer protocol (with an individual key for each sending party).
We usually abbreviate the latter keys as CATS and SATS.

We omit the details about session resumption here and instead focus on
the key update step. Figure 2 depicts the sub protocol to update the application
traffic secrets, as well as the associated computations [21, Section 7.2]. In essence
the initiator sends a fixed message requesting a key update and updates their
sender secret which the responder is required to respond to with a fixed message,
repeating the key updates as well as updating their keys.

Finally, the record layer protocol for TLS 1.3 enforces the use of an authenti-
cated encryption with associated data (AEAD) scheme. It uses a secret IV as the
initial nonce, derived from CATS or SATS, depending on whether the sender is
the client or the server. The IV is derived as HKDF.Expand(CATS, "iv") for the
client, and analogously for the server and its traffic secret. The keys are derived
similarly as HKDF.Expand(CATS, "key") using a different label. The nonce is
incremented with each sent message.

3 Security Model

3.1 Overview

We follow the description in [5] to motivate the different attacker models, espe-
cially A—P and A/A. We always assume there are two communication paths
between parties on which messages can be exchanged. The parties can choose
the path for each message. On each path we assume there is one adversarial
instance present, either active or passive. An active attacker may intercept and
change messages. A passive attacker can monitor the communication between
the two parties, but cannot modify it. Both types of adversaries can delay deliv-
ery of network messages at will.

We next distinguish between the communication between the different path
attackers while a certain attacked execution is running. We let X;—X5 denote
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two path instances which can communicate arbitrarily during the execution,
and X1/Xs to be two instances with restrictions. That is, let X;—X5 (resp.
X1/X32) denote a pair of synchronized (resp. unsynchronized) attackers, which
can (resp. cannot) exchange information during the protocol execution. In both
cases the attackers may exchange information before or after the protocol execu-
tion. The variable X; can be either A for an active attacker (capable of altering
messages) or P for a passive attacker.

Observe that we can disregard the scenario of A—A where we have two syn-
chronized active attackers. This scenario degenerates to a single attacker on a
single path since the attackers can act as a single entity then. Also, according to
our model A—P and P—A describe the same set of admissible adversaries. As
pointed out by [5] it then suffices to consider types A—P and A/A, synchronized
adversaries with one passive party, and active but unsynchronized adversaries.

3.2 Security of Multi-path Key Exchange

We next define security of multi-path key exchange by adopting the common
game-based security models, similar to [5]. We assume that we have n parties
Py, ..., P, all running the key exchange protocol. Each party may receive a pair
of public and secret keys. When executing the protocol both parties obtain a
session key which can be used to secure subsequent data flow. In TLS 1.3 these
session keys are actually pairs, consisting of the client_application_traffic_secret key
(for the communication from client to server) and server_application_traffic_secret
key (for the communication from server to client). It is usually assumed that in
a genuine execution both parties derive identical session keys.

Attack Model. Neglecting the restrictions due to synchronization, the adver-
sary against the key exchange protocol has full control over the network and
can inject, modify, or drop network messages. It can interact with each party by
initiating a session between parties P; (as client) and P; (as server) for adminis-
trative identifier id, and then send protocol messages to either of the two parties,
receiving immediately the party’s response. In addition the adversary can ask
to reveal session keys, modeling leakage of session keys, e.g., if used in weak
applications. The adversary can also corrupt parties in which case it receives the
long-term secrets like the secret key or the PSK in TLS 1.3.

The goal of the adversary is to distinguish a genuine session key from a
random string, significantly better than with the guessing probability of 1/2.
For this the adversary can call a Test oracle which, initialized with a random bit
b <& {0,1}, returns either the session key (if b = 0) or an independently chosen
random key (if b = 1), but answering queries consistently. There are usually
some restrictions on testing a session, namely, that neither the session key of the
tested session nor of its partner have been revealed. Here, partnering is usually
defined by session identifiers sid.

To capture the different communication paths we distinguish between main
and sub connection of a session id. That is, id.main denotes the identity of the
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initial connection and id.sub of the joined sub flow. We restrict ourselves to
a single sub flow here but the model can be easily extended to handle more
sub flows. To deal with the different attack models we assume that we have
two adversarial instances, Amain and Agyp, both initialized with independent
randomness. The main adversary Apn.i, can initialize new sessions, test or reveal
session keys, and corrupt users, and can communicate (only) with the main part
of a session. In contrast, Agy, can only interact with sessions with identifier sub
via Send queries. The two algorithms can interact via special Sync oracle, which
allows to pass arbitrary information between the two algorithms, and Relinquish
to go idle and hand over control to the other adversarial instance (but passing
no further information).

Formally, we assume that the adversary Ay ., can make the following queries
during the attack:

— NewSession(P;, P;, role) creates a new session for party P; with role role €
{client, server}, supposedly communicating with P;, picks a fresh adminis-
trative identifier id with two sub identifiers id.main and id.sub, and returns
id. One also creates entries id.user < P;, id.partner < P;, id.role «— role, and
id.key < L for the session key. It notes its status as id.status < running and
holds two other entries id.main.sid and id.sub.sid for the session identifiers of
the two flows (where id.sid = (id.main.sid, id.sub.sid)).

— Send(m, id.main) sends the next protocol message to the session with identity
id.main (resp. drops the request and returns L if no session with identifier
id has been initialized). The message m may be of the special form init if
the party is supposed to start the communication. The session is invoked for
this protocol message and may return a protocol message (which is forwarded
to the adversary). In addition, the session may change its status id.status to
accepted or rejected. In the former case it also sets the session key id.key to
some bit string and the session identifier id.sid to be (parts of) the ordered
sequence of incoming and outgoing messages for each flow; details are provided
as part of the protocol description.

Analogously, adversary Ag,, may call Send(m,id.sub), which is processed as
above.

— Reveal(id) ignores the request if id.status # accepted, else returns id.key and
sets the status to id.status < revealed.

— Corrupt(P) returns the long-term signing key of the party P. We keep this
oracle here for sake of compatibility with ordinary models, but since we are
interested in trading authentication for multiple paths we will later assume
that the adversary immediately corrupts all parties anyway.

— Testy(id) ignores the request if id.status # accepted, else returns id.key for
b = 0 resp. a random string from {0, 1}d¥eYl if p = 1, and sets the status to
id.status < tested. We assume that Test is only called once during the attack
(by Amain) and denote the corresponding identity by idest.

Both adversaries A .n and Ag,p have access to two additional oracles:

— Sync(z) can be called by either adversary and forwards z to the other adver-
sary. This is immediately followed by a Relinquish execution.



Multipath TLS 1.3 93

— Relinquish() lets the other adversary become active (and the calling adversary
inactive). We assume that initially A,.i, is active and Ag,y, inactive, and that
only the active adversary can make oracle calls.

At the end of the execution algorithm Aj,,i, outputs a guess a € {0, 1} for the
hidden bit b. We declare the adversary to lose if it tests the session idtes: (with
idTest.Status = tested) and reveals the session key of an honest partner, that is, if
there is a session id’ # idtest such that id’.sid = idtest.sid and id’ .status = revealed.
If this happens we automatically set a Boolean variable lose « true (which
initially is false).

In addition, we also declare the adversary to lose if it violates the A/A or A—P
properties for the test session. For the former we let the lifetime of the test session
idTest cover all the actions of the adversaries between the NewSession call which
returned idres; and the call which changes the status to idest.status # running.
Let T be the set of session identities id" # idTest which Apain either calls an oracle
about or has received from a NewSession call during the lifetime of idtes;. Then
we set lose <+ true unless

— there is another session id’ # idest to the tested session idtest Which is part-
nered in one of the flows, i.e., such that id’.main.sid = idyest.main.sid or
id’.sub.sid = idTes.sub.sid (A— P property satisfied), or

— there is no Sync call and at most one Relinquish call during the lifetime of idest,
and no Send call of Agy, to some identity id’ € Z (A/A property satisfied).

In the A/A case we forbid the adversary Ag,p to make any call to some “alive”
session id’ € Z. This prevents the adversary from communicating by, say, observ-
ing the behavior of other sessions. An example could be Ay .in putting session
id’ into a certain state which triggers a certain response when Ay, calls id” after
the handover. This could allow A, to pass arbitrary bit strings to Ag,p while
the test session is still active, thus violating the A/A property.

Note also that we do not make any stipulations about corruptions of party.
The idea of the multipath extension of TLS is exactly to withstand attacks
where no authentication happens, or where the adversary controls the long-term
signing key used for authentications.

We have defined security with respect to a single-test setting, i.e., where the
adversary can only test a single session during the attack. This simplifies the
definition compared to a multi-test scenario where the same secret bit b is used
in multiple Test calls of the adversary. In the latter case one would need to
make the above stipulation for each test session, preventing the adversary from
communicating for any of the tested sessions. Depending on the scheme it may
then be possible to show via a hybrid argument that the multi-test case can be
reduced to the single-test case.

Security Definitions. We always assume that two accepting sessions with
the same session identifier also derive the same session key. This is always the
case in TLS 1.3 and in the following we do not discuss this further. We also
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note that, because of the freshly chosen nonces, the probability of three honest
parties deriving the same (sub) session identifiers is negligible. This is called
Match-security:

Definition 1 (Match-Security). For a multi-path key exchange protocol KE
and adversary pair A = (Amain, Asup) in the experiment above let Advm?fj’ be
the probability that A manages to make three sessions have the same session
identifier, id,id’,id"” with id.sid = id’.sid = id” .sid, or that two sessions have the
same session identifier but different keys, id.sid = id’.sid but id.key # id’.key. The
protocol is Match-secure if for any efficient adversary pair A = (Amain, Asub)

the advantage is negligible.
Next we define key secrecy for simultaneous A/A and A—P attacks:

Definition 2 (Key Secrecy). A multi-path key exchange protocol KE is simul-
taneously key-secret against A/A and A—P adversaries if for any efficient adver-
sary pair A = (Amain, Asup) in the experiment above

Adv‘égi@A/A_semcy := Prob[a = b A —lose] — 3 < negl.

In comparison to previous models we make the following changes:

— The work by Costea et al. [5] models A/A adversaries by splitting the adver-
sary when communicating with the test session. We split the adversary from
the beginning but allow for an explicit information transfer through Sync
queries (and disallow such queries when attacking the test session).

— Unlike [5] we do not enable session state reveals where the adversary receives
the ephemeral randomness of the protocol participant. The reason is that
TLS 1.3 does not account for such attacks.

— We account for security against A—P and A/A simultaneously. That is, the
adversary can decide during the attack on the type of attempt.

— Costea et al. [5] in the A—P case explicitly consider adversaries which are
passive on one of the two flows for the attacked session. Here we only demand
that there exists a sub flow with some honest session, not necessarily in the
same attacked session, where the adversary remains passive. Our model hence
also captures cross-over attacks for different sessions.

— We do not consider multi-stage security of the TLS 1.3 session keys [11]. This
notion is useful when one argues security of the intermediate keys derived
during the handshake protocol, but we aim to protect the actual session
keys client_application_traffic_secret and server_application_traffic_secret which
are only derived at the very end.

4 Multipath Extension for TLS 1.3

4.1 Protocol

We present the MPTCP extension of the TLS 1.3 protocol in Fig. 3. The client
and server first execute a regular (EC)DHE handshake to derive application



Multipath TLS 1.3 95

traffic secrets CATS, SATS. Then they run a key update on the added sub flow
to derive the new keys CATS®, SATS*. Note that the protocol messages in the
update step on the sub flow are still secured under the current keys, namely
client_write_iv < HKDF.Expand(CATS, "iv") for the initialization vector and
client_write_key < HKDF.Expand(CATS, "key") for the key for the client, and
analogously for the server.

We view the multipath protocol execution as consisting of both flows. The
protocol session accepts only after a successful key update, and only then status
changes from running to accepted. The session key pair, which is subsequently
used to protect communication, is the updated pair CATS®™, SATS®™. In partic-
ular; this means that Reveal queries of the adversary in the attack only make
sense after completion of the sub flow. The adversary then receives the key
pair CATS*, SATS*® but still does not have access to the intermediate key pair
CATS, SATS.

MPTCP TLS 1.3 with key update

Client Server

TLS 1.3 (EC)DHE handshake

CATS, SATS main.sid = (CH, CKS, .. ., SF) CATS, SATS

TLS 1.3 Update

CATS™ SATS™ sub.sid = (CKeyUpd, SKeyUpd) CATS™, SATS™

Fig. 3. Protocol Overview over MPTCP-TLS 1.3 with key update. The final session
key(s) are the application-traffic-secrets CATS®, SATS* after the key update. CKeyUpd
and SKeyUpd denote the (secured) record-layer messages for the key update.

We note that the cryptographic part of TLS 1.3 remains unaltered. Only
the socket interface to MPTCP would need to be changed, possibly enabling
TLS 1.3 to demand a path change for the key update or resumption. Still, if for
some reason MPTCP only runs plain TCP in backward compatibility mode, the
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network communication of our protocol looks like a common TLS 1.3 execution.
Furthermore, even if the TLS application was not aware that the connection
runs plain TCP, we would still have the basic security guarantees of TLS 1.3.

4.2 Security Assumptions

To show security we need several assumptions about the cryptographic primi-
tives. We define them briefly below. Some assumptions like collision resistance
of the hash function H are standard and can be found also in text books like
[15]. For assumptions about the authenticated encryption with associated data
(AEAD) in the record layer see [22]. We also need some slightly non-standard
assumptions which nonetheless appear to be highly reasonable.

We let Advg%H()\) be the advantage of an algorithm D deciding Diffie-

Hellman values in the group G. That is, Advg%H (M) denotes the absolute dif-

ference between the probabilities that D, on input a description of the group G
with generator g and three values g*, g¥, g*¥ resp. g%, ¢¥, g* for random x,y, z,
outputs 1. In our case we assume that G is the weakest of the elliptic curve
groups of TLS 1.3.

We assume that the hash function H for computing the transcript hash is
collision resistant. In other words, letting Advﬁﬁg be the probability that an
algorithm C outputs a collision = # «/ with H(z) = H(2’) is small.

We also assume that HKDF.Extract and HKDF.Expand are pseudorandom
functions (for random inputs in the second input for Extract and in the first
input for Expand, distributed according to some distribution D). That is, let
AdvﬁrKfDF_Extract DD for an algorithm D be the absolute difference in outputting
1 when having oracle access to HKDF.Extract(key, ) for key <= D resp. to a
random function with the same input-output size. Define AdVEHKfDF.Expand, DD
analogously for function HKDF.Expand(-, key).

For A/A attacks we sometimes even consider pseudorandomness of HKDF for
partially adversarial chosen distributions key < D(z;7) where an adversary can
choose the input z after learning the distribution’s randomness r. The distin-
guisher D, however, does not get to learn x,r (such that the key still has high
entropy) but only gets oracle access to HKDF.Expand(-, key) or a random func-
tion. In other words, we assume that HKDF.Expand is a good extractor for the
adaptively biased source D. This seems to be very plausible given that HKDF
was designed to have this property [16,17].

Finally, for the record layer protocol we assume that the probability of send-
ing a protocol message through the record layer which is not rejected is infeasible.
That is, let AdeEAD’B be the probability that an algorithm B first outputs a
message m, then a key key is generated for the AEAD scheme, and an initial
random nonce Ny according to the record layer is picked. Then the adversary
receives C' « AEAD.Enc(key, Ny, m) and is supposed to output C* # C such
that AEAD.Dec(key, Ny, C*) # L. The fact that the adversary’s success proba-
bility is small is implied by the common authentication or integrity assumption
for AEAD schemes [22].
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We also need a stronger but still reasonable assumption about the ability to
use a different key key’ and nonce N’ to generate a valid record which can be suc-
cessfully decrypted under the original key key and nonce N. We define this “cor-
relation” property in combination with HKDF because the alternative key key’
cannot be chosen directly but needs to be generated by calling HKDF, making
attacks less likely. That is, for any adversary £ define Advigap pkpr e to be the
probability that £ outputs (M S, x) # (MS’,z’), and m such that the following
holds: Let CATS «— HKDF.Expand(M S, z), key «— HKDF.Expand(CATS, "key"),
N « HKDF.Expand(CATS, "iv"), as well as CATS’ «+ HKDF.Expand(MS’, '),
key’ «+ HKDF.Expand(CATS', "key"), N’ «+ HKDF.Expand(CATS', "iv"), C’ «
AEAD.Enc(key’, N’,m), and check that AEAD.Dec(key, N,C") # L.

The assumption appears to hold for common AEAD schemes. If we assume
that HKDF behaves like a random oracle then the different inputs (MS,z) #
(MS’, 2') yield independently distributed outputs. But then the probability that
two random key-nonce combinations can be used to encrypt and successfully
decrypt is unlikely. Otherwise one could attack the AEAD scheme by trying to
decrypt with a fresh random key-nonce pair and succeed with high probability.

4.3 Security

We first show Match-security. Note that we count the number s of sessions via
the NewSession calls of the (main) adversary, and the (full) session identifiers
consist of both sub identifiers.

Proposition 1. The MPTCP TLS 1.3 extension, (EC)DHE handshake with
key update, is Match-secure. More precisely, for any adversary A initiating a
mazimum number s of sessions and for monce length |nonce| = 256 we have
AdV’p\(/IEtj < s2. 27\nonce|'

Proof. The property follows as for regular TLS 1.3 in [8,9]. The probability that
there are three sessions among the s sessions with the same sid is bounded
from above by s2 - 27[moncel gince the probability that an honest party picks
the same nonce as the (potentially partnered) other two sessions is given by
the birthday bound. The fact that the same sid yields the same key follows
straightforwardly, because the session identifier contains all information which
enters the key derivation for CATS and SATS and if this key is identical, then
the same update messages CKeyUpd, SKeyUpd also cause the same update step to
CATS* and SATS*. O

Theorem 1. The MPTCP TLS 1.3 extension, (EC)DHE handshake with key
update, is simultaneously key-secret against A—P and A/A adversaries. More
precisely, for any adversary A = (Amain, Asup) initiating at most s sessions we
have that there are algorithms D,D1,...,Dig, D', B, B, C, £ and distributions
Dl, ey D16, D’ with
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Here the other algorithms have roughly the same run time as A plus the time to
execute the attack on the key exchange protocol.

Proof. Consider an adversary A = (Apain, Asub) against the key secrecy of the
key exchange protocol. We discuss first the A—P case. That is, the adversary
may be active in one flow and passive in the other one. More formally, assume
that for the test session idtest there exists another session id’” with the same
session identifier in either the main or sub flow. We assume that we know the
right sessions idtes; and id” in advance; this can be accomplished by guessing the
sessions with probability at least 1/s? among all s sessions.

Further note that we can make all Corrupt queries at the outset, such that
the adversary immediately knows the signing keys. This is valid since key secrecy
does not depend on authentication. Note that this in particular means that A
could simulate all other sessions different from idvest and id itself.

An important observation for the proof steps below is to note, once more,
that Reveal queries of the adversary only make sense after the successful update
step. Then the status changes to accepted and the Reveal queries returns the
updated key pair CATS®™, SATS* (but not the keys CATS, SATS). We will take
advantage of this observation multiple times below.

We next make a case distinction, depending on whether the main or sub flow
of id7est and id” match:

Case A: Passive in Main Flow, id’.main.sid = idyest.main.sid. In this case
we argue that the session key CATS,SATS in the two sessions is secure. To see
this we can perform a sequence of game hops, where we let G4 ; denote the event
that A wins in the corresponding game.

Game G 4 . Is the original attack, with the simplifications about knowing idrest
and id" at the beginning and corrupting all long-term keys at the outset.

Game G 41. Modify the game and replace the internally used Diffie-Hellman
value ¢g®¥ in the two main executions of idtes; and id’ by a random value g~.
A simple reduction to the DDH problem shows that this cannot decrease the
adversary’s success probability in the key secrecy game G 4.1 by more than the
advantage against the DDH problem:

Prob[Ga.0] < Prob[Ga1] + Advg%H.

The reduction D receives (g%, gY,g*) as input, runs the entire key exchange
attack with A, also picking the test bit b, and inserts g* and ¢¥ into the test
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session idtest as well as the partner session id’ on the honest parties side. But
when both parties are supposed to compute ¢g*¥ reduction D uses g* instead.
Eventually, D checks if A succeeds in predicting b and does not lose. Algorithm
D outputs 1 if this is the case. Note that if g* = ¢g®¥ we perfectly simulate G4 ¢
whereas for a random g* we perfectly simulate G 4 1. It follows that the difference
in probabilities is bounded by the advantage against the DDH problem (for the
admissible group G used in the execution).

Game G 45. Replace all output values in the HKDF evaluations (after, and
including the computation of HS «— HKDF.Extract(zES, g%)) in the two main
executions of sessions idtest and id” by random values. This includes the Expand
calls to derive SS, server_finished_key, C'S, client_finished_key, xHS, RMS and
SATS as well as CATS, but also the Extract step to compute M S. Finally, we also
replace the derived data client_write_key, client_write_iv, and CATS™ from CATS,
and server_write_key, server_write_iv, and SATS®™ from SATS by random values.
Note that we can already replace the keys CATS®™ and SATS™ as if they were
computed, although we have not yet shown that they are actually derived; this
will be shown below.

The proof replaces all the key values step wise, starting with computation
of HS from the input source g#, such that we can argue that the derivation
of SS from the now random HS via Expand can be substituted by picking S.S
randomly etc. In each of the in total 16 steps we have an input distribution D;
and a distinguisher D; such that we can show that the winning difference in each
step is bounded by Advf_’HKfDFExtract/Expand@i. Altogether we thus have

16
rf
Prob[Ga.1] < Prob[Ga.] + Z AdvﬂKDF.Extract/Expand,Di,Di'
i=1

In particular, we now have that CATS and SATS and the channel key-iv values
derived from them, as well as CATS™ and SATS®, are random keys which are
independent of the protocol messages between idess and id’.

Game G 4.3. Declare the adversary to lose if it successfully executes the key
update in the sub flow of session idtest or id" with idtest.sub.sid # id".sub.sid.
Note that the adversary can only make any of the two sessions accept if it sends
a valid record layer message to the corresponding party, either under the now
random channel key-nonce pair client_write_key, client_write_iv or server_write_key,
server_write_iv. The adversary may first receive a message under the other key
from the honest client or server before producing a successful forgery against
the other party’s key. We can simulate this by a single query before creating the
forgery which is admissible in the integrity game. But then we give a reduction
B to the security of either of the two keys, such that

Prob[Ga.2] < Prob[Gas] + 2+ AdVatap 5.

Here we use that Reveal queries do not reveal the intermediate keys and only
give reasonable answers after completion of the entire execution.
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We finally note that, in this game, sessions idtest and id’ can only complete
the sub flow execution if the adversary relays the communication between the
two sessions which update the keys to CATS™ and SATS®. In particular, the
adversary cannot Reveal the session key in session id’ since it is partnered with
the test session in both flows.

In the final game the adversary has no advantage to predict the secret bit
b because this game does not depend on b anymore; the final session keys are
independent random values in both cases. It follows that Prob[G 4 3] < %

Case B: Passive in Sub Flow, id’.sub.sid = idyes.sub.sid. Note that this
stipulates that id’.main.sid # idtes.sub.sid or else we are again in case A. But
then, since the session identifier in the main flow contain exactly the data enter-
ing the transcript hash, we can conclude that key derivation uses different inputs,
at least if we assume collision resistance of the hash function:

Gp.o- Is the simplified starting attack as above.

Gp.1. As game Gpo but declare the adversary to lose if H(idyest-main.sid) =
H(id".main.sid). This would immediately contradict the collision-resistance, i.e.,
we can give a reduction C such that

Prob[Gpo] < Prob[Gp1] + AdVCH(jg-

Gp.2. As game G .1 but declare the adversary to lose if idrest or id” accept. We
can again give a reduction £ against the correlation intractability of the AEAD
scheme (in combination with HKDF). Adversary £ can impersonate the client
resp. server in the sessions idtest and id’ such that it knows the keys M Stest
and M S’ on both sides. These keys may or may not match. But for sure the
transcript hashes do not match by the previous game hop, such that we obtain
key derivation inputs (M Stest, ) # (MS’, ") which the (relayed) sub flow would
make both sides accept. This, however, would contradict the correlation integrity
of the AEAD scheme:

In the final game it follows that neither party idtest nor id’ has accepted, such
that the adversary cannot do any better than guessing the bit b:

PYOb[GB,Q] S %

Case C: Active in Both Flows But Acting Independently. Finally, we
need to argue that A/A attacker cannot predict the bit b significantly beyond
guessing it. For this consider the test session idtes; as before. We assume that
there is no other flow with identical session identifier, neither in the main step
nor in the sub flow. Else we would be already in cases A or B.

First note that, once the test session idtest has been started by Apain, the
sub adversaries cannot exchange information through Sync calls, nor via any
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other oracle calls during the lifetime of session idtest. It follows that the main
flow uses random inputs such as the party’s nonce to compute the transcript
hash H(CH||SH]||...). We can therefore cast this input to HKDF.Expand via some
distribution D’(z;r) where the r part describes the honest party’s contribution
to the transcript, and = the contribution of A ain, possibly chosen adaptively.
Note that, while the transcript hash has no entropy from A,,i,’s point of view,
for Agyp it is still unknown, because no information flows from A ain to Asup.
We next define the following game hops:

Gc.o. Is the attack as above.
Ge.1. As game G g but declare A to lose if the sub flow in idtest accepts.

It follows from the pseudorandomness of HKDF.Expand for the transcript-
hash input distribution D’ above that we can replace CATS and SATS computed
over the transcript in the moment when Agyy, is active in idtest by random val-
ues. We argue that the probability that Ag,, makes the sub flow accept cannot
change significantly, else we derive a contradiction to the pseudorandomness of
HKDF.Expand via some reduction D’. Note that for this we merely need to wait
for Agyp to make the sub flow accept or to hand over to Amain again (or abort
the execution).

Once we have replaced the traffic application secrets by random values we
immediately get a reduction B’ to the integrity of AEAD, as in Case A. Hence,

£
Prob[Gc.o] < Prob[Gea] + AdvarKDF.Expand,D/,D/ + AdVZOEr/f\D,HKDF,B"

In the final game the adversary Ag,;, does not make the sub flow accept. It follows
that A does not learn any information about b from the Test query (since the
session key is not set). It follows that the probability of predicting b is bounded
by %

Summing over all possibilities yields the claimed bound. O

4.4 Sub Flow Resumption

Instead of using the simple key update procedure we may alternatively use
resumption to update the keys over the sub flow. The advantage is that all
TLS 1.3 keys are updated by this, not only the application traffic secrets. The
security argument would be very similar to the one above, only that we need to
take the key RM S into account.

A noteworthy point is that we can actually relax the correlation integrity
condition on the AEAD scheme if we run resumption in the mode with the
(EC)DHE step. In this case the sub flow would create a fresh Diffie-Hellman
share in the sub flow as well, and we can argue that in Case B with relayed sub
flow the adversary thus cannot distinguish the derived keys from random, just
as we argue along the DDH assumption for passive adversaries in the main flow.

4.5 Practical Considerations

We discuss here some aspects when running the above multipath TLS 1.3 ver-
sion. The first thing to note is that, in order to take advantage of the stronger
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security guarantees, the parties need to ensure that the communication of the
update step is routed through the second communication channel. Luckily, even
if the parties are not aware of this, or cannot ensure this, they can still rely on
the basic security of TLS 1.3. Hence, from a security viewpoint the failure of
using multiple communication lines does not make our protocol insecure.

Concerning efficiency observe that MPTCP in principle allows for parallel
communication through the different channels. Our protocol, on the other hand,
needs to complete the regular handshake execution before being able to run the
update via the other communication line.

Next suppose that the key update step fails—if the handshake already fails
then the protocol execution cannot be continued. At this point the two parties
have already established a joint key via the handshake part. It may thus be
tempting to still use that key. For security reasons and for compatibility it is
nevertheless recommend to cautiously follow the TLS 1.3 specification [21] that
the connection must be closed.

5 Conclusions

We have shown that update steps in key exchange protocols can be used to
provide multipath security. We have discussed this specifically for the case of
TLS 1.3, assuming that one can reliably assign protocol messages to commu-
nication paths. An interesting question is to analyze what kind of security can
still be achieved if some of the messages may be unexpectedly transmitted over
the other path. Also, we have not investigated the possibility of ORTT modes
and the security of the intermediate session keys. Note that any cryptographic
analysis of ORTT modes must take into account the possibility of replay attacks
[12].

Our security analysis provides a non-tight security bound with respect to the
underlying cryptographic primitives, in the sense that the key secrecy bound
depends quadratically on the number s of sessions. Furthermore, we work in
the single-test setting, and a potential hybrid argument to extend this to the
multi-test setting would incur another factor s. Recent efforts for TLS 1.3 [6,7],
however, have shown that it is possible to derive tight security bounds. It would
be interesting to see if this is applicable here in the split adversary model as
well.

Another interesting question is how smoothly one can use multipath con-
nections. The work by Costea et al. [5] already provides a comprehensive set of
experiments, indicating that it is doable in practice. It remains to investigate if
this is also true for applications which rely on fast connection times of TLS 1.3,
inciting the development of ORTT modes.
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A Transport Layer Security

Figure 4 depicts the basic TLS 1.3 anonymous (EC)DHE handshakes including
the essential steps of the Diffie-Hellman-based key derivation. The key update
step has already been explained in Sect.2.2. A session resumption is similar to
the handshake but adds some additional steps. It requires the server to have

Client Server
re <% {0,137
X & g ClientHello : 7.
ClientKeyShare : X & 0, 1}256
y & gy
ES « HKDF.Extract("", "")
zES + HKDF.Expand(ES, "derived")
HS « HKDF.Extract(zES, X")
SS «+ HKDF.Expand(H S,
"s hs traffic"||H(CH| ... ||SKS))
server_finished__key <— HKDF.Expand(SS,
"finished")
SF <~ HMAC(server_ finished key,
ServerHello : 74 H(CHH L ||EE))
ServerKeyShare : Y
{EncryptedExtensions™ }
{ServerFinished}
ES < HKDF.Extract("","")
zES < HKDF.Expand(ES, "derived")
HS <+ HKDF.Extract(zES, Y ™)
compute SS, server_ finished__key
check SF
C'S < HKDF.Expand(H S,
"c hs traffic"||H(CH| ... ||SKS))
client_ finished key «+— HKDF.Expand(C'S,
"finished")
CF +— HMAC(client_ finished_ key,
H(CH|| ... ||SF)) A o
{ClientFinished} check CF
xHS < HKDF.Expand(H S, "derived")
M S <+ HKDF.Extract("",zHS)
RM S <+ HKDF.Expand(M S, "res master"||H(CH| ...||CF))
client__application__traffic_secret <— HKDF.Expand(M S, "c ap traffic"|H(CH||...||SF))
server__application__traffic_secret «+— HKDF.Expand(M S, "s ap traffic"||H(CH] ... ||SF))

Fig. 4. The TLS 1.3 anonymous (EC)DHE handshake protocol. Starred messages are
situation-dependent and not always sent. Messages enclosed in curly brackets are pro-
tected by the handshake traffic secrets C'S resp. SS.
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issued a ticket to the client containing a nonce and identifying information
which are used for the resumption handshake. The client uses an additional
extension ClientPreSharedKey in the first message to indicate potential iden-
tifiers. The server acknowledges one in its ServerPreSharedKey extension with
the second message. The parties then use the resumption secret RM.S from
before to compute a pre-shared key PSK, which this time enters the computa-
tion ES « HKDF.Extract("", PSK). They also derive a binder key BK which is
used to verify the key. From there on the steps are identical to the one of a hand-
shake execution. We note that resumption can be executed with and without the
Diffie-Hellman step.
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Abstract. Privacy preserving mechanisms are essential for protecting
data in IoT environments. This is particularly challenging as IoT envi-
ronments often contain heterogeneous resource-constrained devices. One
method for protecting privacy is to encrypt data with a pattern or meta-
data. To prevent information leakage, an evaluation using the pattern
must be performed before the data can be retrieved. However, the compu-
tational costs associated with typical privacy preserving mechanisms can
be costly. This makes such methods ill-suited for resource-constrained
devices, as the high energy consumption will quickly drain the bat-
tery. This work solves this challenging problem by proposing SyLPE-
nloT — Symmetric Lightweight Predicate Encryption for IoT, which is
lightweight and efficient compared with existing encryption schemes.
Based on the bitwise-XOR operation, we use this basic gate to construct
a scheme that transfers encrypted data onto more powerful machines.
Furthermore, for resource-constrained IoT devices, the requester can
authenticate devices at different levels based on the type of communica-
tion. SyLPEnlIoT was meticulously designed to run on a gamut of IoT
devices, including ultra low-power sensors that are constrained in terms
of CPU processing, memory and energy consumption, which are widely
deployed in real IoT ecosystems.

1 Introduction

The Internet of Things (IoT) was recognized as one of the Gartner Hype Cycle’s
emerging technologies in 2018. IoT devices are getting increasingly popular, and
are hence becoming a core element in the next generation of information and
communication architectures, e.g., smart cities, smart factories, smart homes,
smart healthcare systems and many others. Current statistics show that there
are 30 billion objects connected to the Internet due to IoT technology [13].

IoT systems comprise of heterogeneous embedded devices with limited com-
puting capacity and battery power, such as sensors and actuators. They can
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only afford lightweight computation to conserve their energy. The search for
advanced cryptographic solutions for IoT devices remains an intriguing problem
due to these restrictions, i.e. heterogeneity and limited resources.

o Motivating Scenarios. To improve the body’s health, many people wear
smart watches to track things like walking time, heart rate, blood pressure, and
so on. Data collected from a user’s smart watch is sent to the cloud for storage.
This data can be retrieved and analyzed at a later stage based on a selection cri-
teria, such as data type or time window, through a specific application program
on a user’s mobile device. However, user health data is sensitive, and requires
a data privacy mechanism in place to protect the data. In practice, there is a
lot of information that can be collected by a smart watch on a daily basis. This
requires large storage space and results in increased latency when retrieving data
for IoT devices. When using a mobile device to query the collected data stored
in the cloud, the user may only want specific information, such as heart rate,
blood pressure, or GPS location. As the amount of data can be very large, a
secure mechanism is required to evaluate the specific data before downloading
and decrypting it.

Some representative topics include secure search over encrypted data [14,17,
37] and enhanced data privacy in range queries [33—-35], which enable interest-
ing applications in IoT infrastructure. Existing research has demonstrated that
the heterogeneity of IoT devices, as well as the data they produce, are further
aggravated by the lack of metadata associated with these devices [5]. Therefore,
the use of privacy computational methods is often very challenging due to the
type of device, the nature of the data being produced, and their compatibility
for secure data integration tasks.

¢ Security and Resource Constraints. IoT technology enables connections
among various things, including sensors, actuators, and their compositions, for
applications ranging from connected vehicles to online services and social net-
works. Hence, in typical IoT environments, many different types of processors
with various resource constraints are embedded in IoT devices. For example,
based on the wearable devices and low-cost environmental sensors categorized
on the official NXP website [28], the ARM Cortex-53 processor and the ARM-
Cortex M3/M4 are the main processors embedded in smartphones and wear-
able devices, respectively. In addition, there are recent low-power and ultra low-
power micro-controllers, such as the 32-bit ARM Cortex-M0+ processor, which
is very heavily resource-constrained. As such, security issues are increasingly
challenging when it comes to these low resource devices. There will definitely
be trade-offs in the design of new cryptographic algorithms in theory and when
deploying them on these devices in practice. In general, although solutions to
the aforementioned problems have been developed by the cryptographic research
community in recent years, existing solutions require resource intensive compu-
tations, which make them impractical for IoT environments. These two require-
ments seem contradictory, as advanced cryptographic algorithms usually require
expensive computation (such as pairing), while IoT devices can only cope with
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simple algorithms to reduce energy consumption. Driven by practical require-
ments, in this paper we aim to bridge the gap between the need for constructing
such advanced cryptographic algorithms and the capabilities of lightweight ToT
devices. To achieve this, we aimed to produce a predicate encryption scheme to
support lightweight computation. The reason why we targeted predicate encryp-
tion, is because it can support complex and expressive inner product queries.

¢ Predicate Encryption. Predicate Encryption (PE) [9,22] is a promising
candidate to address the problems of search and pattern matching on encrypted
data. A PE scheme allows the owner to create a master secret key and to issue
secret key tokens to other users. Tokens are associated with predicates that can
be evaluated over encrypted data. Specifically, encrypted data x can be evaluated
using a token TK[ associated with a predicate f to determine whether f(x) = 1.
In the IoT scenario that was previously shown in Fig. 1, a smart watch encrypts
the data, while a mobile device has the token to decrypt it. The devices can share
the master key, since they are owned by the same user. The use of symmetric PE
on the client’s side is sufficient for users to preserve the privacy of their private
data. While the underlying strategy of our method is based on the PE in [22],
the purpose of our method is for lightweight symmetric PE.

The implementation of this type of encryption gives rise to a practical prob-
lem, which prevents clients from efficiently accessing and using their data. Specif-
ically, Katz et al.’s [22] proposed PE is based on composite bilinear pairing order
groups introduced by [15], which is inefficient when it comes to computation on
lightweight devices. As shown in [15], the pairing operation in composite order
groups requires extensive computational power. To evaluate the computational
cost of [22], we conducted an experiment to test the encryption and decryp-
tion times of an arbitrary binary vector on a Raspberry Pi 3 Model B V1.2
with an ARM Cortex-A53 processor. As depicted in Fig. 1, the encryption and
decryption times increase linearly with vector length. It is impractical in real
applications for the decryption process to take over 15s for a 100-bit vector.
Hence, the existing method is ill-suited for practical deployment in IoT environ-
ments. IoT devices with limited computational resources do not have sufficient
capacity to realize current search or evaluation operations on encrypted data.
Moreover, this method also increases the encrypted data storage requirements,
which does not suit resource-constrained devices. The PE schemes in [9,22] are
based on composite order bilinear pairing groups introduced by [15], which is
too expensive for computation on resource-constrained devices.

To reduce the cost, Bishop et al. [7,23] proposed a function private secret-
key PE scheme for the inner product functionality that supports any arbitrary
polynomial number of key and message queries. The construction makes use of
asymmetric bilinear maps for greater efficiency in reducing ciphertext and key
sizes. Recently, due to the threat of quantum computers, the security of PE
schemes is in jeopardy. Shor’s efficient quantum algorithm [36] for discrete loga-
rithms for elliptic curve groups can solve problems beyond integer factorization.
It was shown that a 160-bit elliptic curve cryptographic key can be broken on a
hypothetical quantum computer.
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Fig. 1. Encryption and decryption times of [22] on a Raspberry Pi 3 with an ARM
Cortex-Ab3 processor.

Whilst quantum computers pose a great threat to public key cryptography,
the security of symmetric key cryptography remains unchanged. According to
the evaluation criteria of the NIST Post Quantum Cryptography standardization
project [27], hard lattice problems (e.g., Learning With Errors (LWE) [29,31]),
and symmetric primitives (e.g., AES and PRF) are resistant to quantum attacks.
In [2,7,18], LWE was used to construct PE schemes. Abdalla et al. [2] proposed
Multi Input Functional Encryption for inner products under LWE assumptions,
which is an instantiation of a single input PE construction. However, most PE
schemes [2—4] constructed from the LWE problem are complex when it comes to
generating the ciphertext and secret key, and are too computationally expensive
for deployment on practical applications. In addition, in the new direction of
lightweight constructions, PRF is considered to be a useful tool for dealing with
many efficient protocols in [12,30]. Hence, an ideal PE scheme is conjectured to
achieve both efficiency and quantum resistance, which uses PRF to construct PE
schemes supporting inner products. This gives rise to the question:

“Can we utilize the fundamentals of symmetric primitives to construct a new
efficient Predicate Encryption scheme for practical deployment on IoT environ-
ments?”

Therefore, our goal in this work is to construct a lightweight symmetric-key
PE scheme that supports inner product queries.

1.1 Overview of SyLPEnloT

This paper proposes SyLPEnloT, a symmetric lightweight predicate encryp-
tion that accommodates resource constraints. SyLPEnloT encrypts the message
using a application-specific predicate, and generates the token using the query-
specific predicate. When these two predicates match, the encrypted message
is decrypted. In this work, we only investigate the symmetric scenario, where
the key for encryption and the key for generation are agreed via a common
key exchange protocol. Similar to [22], SyLPEnIoT uses the same master secret
key to create the ciphertext and tokens. Let ¢' be a non-zero vector, indicat-
ing the application-specific predicate, and & be a vector of the same length,
indicating the query-specific predicate. SyLPEnlIoT uses the exclusive-or oper-
ation as a critical component for reducing the high computational cost that
current PE schemes suffer from. For this, we employ pseudo-random function
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and symmetric-key encryption primitives to realize our proposed scheme. In
conjunction with the pseudo-random function, we exploit the exclusive-or (@)
operation to compute the inner product of two vectors (¥, Z) in a lightweight set-
ting. However, using the & operation to determine the value of the inner product
of two vectors is a challenging problem, since the inner product requires the sum
of multiplications of each pairwise number between two vectors. Moreover, the
predicates ¥ and & must be kept secret in the cloud, making it more challenging
to compute their inner product using the XOR gate.

Our Strategy. We will illustrate our strategy with the following two examples;
the first case is when the inner product of two vectors is NON-ZERO, while the
second case is when the inner product of two vectors is ZERO.

The Inner Product of Two Vectors Equals to NON-ZERO.
¥ =(11,02,15,04),Z = (11, 12,03,04).

We consider two binary vectors ¢, and Z. Obviously, the inner product of the
two vectors does not equal to zero, since v; = x; = 1 at position one. Rather
than relying on the usual inner product computation between two vectors, i.e.
Zle v; - ¢; = 1, we only require computation using the @ gate. We propose a
way to detect whether there exists at least one position ¢, where v; = z; = 1,
as the existence of v; = 1,x; = 1 leads to a non-zero inner product between two
vectors.

Suppose that there is a Pseudo-Random Function PRF : {0,1} x {0,1}* —
{0,1}* and a master secret key SK = {0, 1}*. We also need a typical symmetric-
key encryption system SKE including the three main algorithms, namely, Key-
Gen, Encrypt, and Decrypt. Briefly, the KeyGen algorithm takes the security
parameter A as input and outputs a secret-key SK; the Encrypt algorithm takes a
key SK and a plaintext x as input to perform encryption; the Decrypt algorithm
takes a key SK and a ciphertext ¢ as input and outputs the decrypted plaintext
T.

We consider that ¥ is generated in the ciphertext, and Z is generated in the
user’s token. We then present our strategy for detecting whether the position @
exists between the vector ¥ and &, where v; = z; = 1 for ¢ € [1,4] in a secure
manner using the PRF. The encoding function is computed as:

0ui = PRF(SK, ul]7) (1)

where u is the arbitrary input, and ¢ is the number.
With the input vector ¥ = (11,02, 13,04), we generate the encoding as:

c =011 P b2 P 013 D doa. (2)

With the input vector & is (11,12,03,04), we similarly generate the encoding
as:
t =011 @ 012 D do3 D Jo4- (3)
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However, when ¢ @t = g @ d12 P 913 DB do3 returns, the value at position one
that we want to detect is unavailable. Therefore, our strategy is to transform
the original ¥ = (11,09, 13,04) to the complementary vector ' = (1; — 17,15 —
02,15 — 15,14 — 04) = (01, 12,03, 14), which leads to the new encoding for ¢:

¢ =601 ® 12 B o3 P d14. (4)

In addition, we employ the wildcard symbol ‘*’ to generate d,; to attach to the
position where the original v; equals to 1. This will conveniently enable to detect
the positions ¢, where v; = z; = 1. Hence, c is regenerated as:

€ =041 D do1 B 012 D i3 P S03 B 014. (5)
Then, we XOR ¢ from (5) with ¢:

COt=0,1 D11 P01 D 0Ox3DI1aDIosa - (6)
—_——

redundant components

Redundant Cancellation. From (6), we can extract the full-fledged values at
position one. We also observe that at positions three and four, the value of ¥
equals to zero. In the next step, we present the strategy on how to cancel out
the values at positions three and four.

Based on the returned value of redundant components, we generate the
adding component ¢; from ¢ = 1 — 4 based on the input value of the origi-
nal ¥ = (11,02, 15,04). If v; = 1, it will set d,;. Otherwise, it sets d1; ® dp;. Then
c; is as follows:

(ch,cy, s, cy) = (841,012 D So2, 0u3, 514 B Jo4)- (7)

Furthermore, Z is (11, 13,03, 04), we only select the positions ¢, where z; = 0. As
the observation from (5), we only extract ¢4, ¢j at positions three, four, which
is derived from the positions z3 = x4 = 0 of vector Z. Then, we compute:

C@t@céeBcil:é*l@(;ll@éOL (8)

The aggregate @ value at (8) equals non-zero, meaning that the inner product
of two vectors, ¥ and , is non-zero.

Collusion Resistance. Suppose that Alice queries #; = (1,1,0,0) to get t4 =
011 D 012 ® do3 D doa, with regards to the Eq. (3). In addition, when querying
Zy = (0,0,1,1), Bob can obtain t5 = dp1 ® Jp2 D d13 D d14. Subsequently, even if
the inner products of <¥, ¥ >, <t, 1> equal to non-zero, Alice and Bob together
can produce t together through

t=1ta®tp =011 D 12 D do3 D Josa ® do1 D do2 © 013 D 14
Eventually, they can use the colluded value t to compute:

C5) DL BB Dy =0.
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To prevent such collusion attacks, we present a solution to achieve collusion
resistance.

Based on the original equation of (4): ¢ = dp1 D d12 B do3 D 014, We reproduce
¢; by separating each components in c:

¢ = (do1, 012, 003, 014) 9)

To prevent the collusion attack, in the generation of Z = (11, 12,03,04) side, we

uniformly sample Uy, Uz, Us ki3 SKE.KeyGen(1*). Then, we add the component
as
(t1,t2) = (611 ® Up, 012 ® Us), (10)

where we only consider the positions ¢ = {1,2} in &, which 1 = a9 = 1.
Then we set tg = SKE.Encrypt(U; @ Uz, Up). We also XOR Uy to t in (3)

t =011 ® 512 P o3 D doa D Up. (11)

In the first step, we compute: U} = @5:1,17;:172’ DéE =1, D Bty ®E. Then
use U} to decrypt tg to recover Uy as U}l = SKE.Decrypt (U}, to).
We note that the SKE.Decrypt algorithm is deterministic, then we can use
U{ to compute this later even though we do not know the exact value U.
Then, we achieve the computation similar to (8) as

c5) D t1o) D c3 ® ¢y ® Uy = i1 @ 611 ® dor. (12)

Consequently, by adding the components ¢;,t;, even when the adversaries col-
lude to attack the ciphertext corresponding to ¥ = (1,0, 1,0), he/she attempts
to make many queries as #; = (1,1,0,0),Z2 = (0,0,1,1), .... Eventually, the
aggregate values as in (12) cannot be canceled out.

Based on the strategy in case 1, with ¢ = (11,09, 15,04), Z = (11, 12,03,04)
associated with the ciphertext generation and token generation, respectively,
we also demonstrate the case where the inner product of two vectors, such as
v = (11,02, 15,04) and Z = (01, 12,03, 04), equals to ZERO, in a more condensed
manner.

The Inner Product of Two Vectors Equals to ZERO.
¥ =(11,02,15,04),Z = (01, 12,03,04).

Obviously, when the inner product of two vectors ¢, & equals zero, there does
not exist any pair of v; = 2; = 1, where ¢ € [1,4]. Having presented the strategy
in case 1, we show the solution in case 2 compactly as.

Ciphertext Generation. From the original ¢ = (11,02, 13,04), we generate the
complementary vector U as (11 — 11, 12 702, 13 — 13, 14 704) = (01, 12, 03, 14)
Then we apply c¢(s), (¢})(7), Ci(9) to generate c,cj, ¢; for i € [1,4] as follows:

77

éi = ((5017 (512, (503, 504)7 Cc = 6*1 ) (501 ©® 512 ©® 5*3 @ 503 3] 6147
¢ = (841,012 ® o2, 643, 614 D G0a)
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Token Generation. From Z = (01, 12,03,04), we uniformly sample Uy, Us &
SKE.KeyGen(1*). Then, we add the component on the side of ¥ as f; = 012 @
Us. Then, we apply (11) to generate t as follows: ¢t = dg1 D d12 P do3 D 54 D U,
In addition, we create tg = SKE.Encrypt(Us, Up).

Decryption. In the first step, we compute Uj = t3 @ c2, where we only
extract ¢ in terms of é;. Then, we use U] to decrypt ty to recover Uj as
Ul = SKE.Decrypt(U{, to). In terms of ¢, we extract ¢}, ¢}, ¢}, where we only
consider positions x1 = x3 = x4 = 0 in the token.

K=cotododad
——
xr1=x3=x4=0
= 041 P 601 D d12 P 643 B 003 D d14 B 001 B d12 P So3 D doa B Up
B D iz D14 B s ®UF =0

— -

Since Uy = U, K equals to zero, meanwhile we can conclude that <@, > =
0, which means that pairs of (v; = 1,2; = 1) do not exist as <v,Z> = 0.

1.2 Owur Contributions
Main Contributions: We summarize our contributions as follows:

— Our SyLPEnlIoT scheme is based on the fundamental primitives of PRF and
symmetric cryptography, which uses the exclusive-or operation to determine
the inner product of two vectors, which will either evaluate to zero or non-
zero. However, using an exclusive-or operation to determine the value of the
inner product of two vectors is tricky, since the under-workings of an inner
product requires summing the multiplications of each pairwise component
between two vectors. In this work, we propose an encoding solution to eval-
uate the inner product between two binary vectors to determine whether it
equals to zero. Therefore, SyLPEnloT provides a new lightweight construc-
tion from the original definition of PE [22] in the symmetric setting. We
prove that SyLPEnIoT is secure under the selective simulation-secure stan-
dard model against probabilistic polynomial-time adversaries that can make
an unrestricted number of ciphertext generation and secret key generation
queries.

— With the low-priced data storage and computation services offered by cloud
providers, people outsource their large-scale data to the cloud to reduce their
cost in spending on local devices.

Evaluations: We use SyLPEnloT to encrypt the pattern, generate the token,
and in the decryption phase. We then integrated it on a spectrum of IoT devices.
First, we ran it on a typical machine, i.e. a laptop. Second, we deployed it on a
high-end IoT device, i.e. a Raspberry Pi 3 Model B V1.2 with an ARM Cortex-
A53 processor. To prove our expressive SyLPEnloT model, we demonstrate its
feasibility on an ultra low-power micro-controller of a typical device in the form
of an Arduino Nano 33 IoT Board, which uses a 32-bit ARM Cortex-M0 CPU
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with 256 KB Flash and 16 KB RAM. In terms of the physical configuration, the
Raspberry Pi 3’s performance is an order of magnitude slower than the Laptop’s
performance, and its performance on the Arduino Nano 33 board is an additional
two-to-three order of magnitude slower.

2 Related Work

Low-Powered Devices via Garbled Circuits. Kamara et al. [20] investigated
garbled-circuit-based protocols, a set of mutually distrustful parties to evaluate
a function of their joint inputs without revealing their inputs to each other.
Later, Cater et al. [10] created a protocol that allows mobile devices to securely
outsource the majority of computation required to evaluate a garbled circuit,
which builds on the most efficient garbled circuit evaluation techniques.

Research on privacy-preserving wildcard pattern matching has become a hot
topic in recent years. Hazay and Toft [19] showed that wildcard pattern matching
can be converted to exact pattern matching using additive homomorphic encryp-
tion. However, their solution is impractical to deploy on resource-constrained IoT
devices.

Predicate Encryption. A predicate encryption system [8,9,22,23,26,34,35]
makes use of the bilinear/composite group order for the construction. In order
to protect the predicate, Shi et al. [33] proposed predicate-only encryption. Mov-
ing a step forward, Abdalla et al. [1] propose a simple inner-product encryp-
tion scheme, meaning that decrypting an encrypted vector ¢ with a key for
a vector i will reveal only <z,y> and nothing else. However, privacy of the
predicate is not achieved. As a type of predicate encryption, a Hidden Vec-
tor Encryption (HVE) scheme [25,32] supports equality test, which can include
wildcard symbols. However, in HVE schemes, wildcard symbols will appear in
the attribute string associated with the user secret key rather than that of the
ciphertext. In another cryptographic primitive, Sergey et al. [18] constructed a
leveled predicate encryption scheme for all circuits, assuming the hardness of the
sub-exponential Learning With Errors (LWE) problem. In addition, Agrawal et
al. [3] proposed a lattice-based functional encryption scheme for inner product
predicates whose security follows from the difficulty of the LWE problem. This
construction enables applications such as range and subset queries, polynomial
evaluation, and CNF/DNF formulas on encrypted data. Gay et al. [16] pro-
duced a lattice-based predicate encryption scheme for multi-dimensional range
and multi-dimensional subset queries. Lai et al. [24] proposed lightweight HVE
to hide the pattern when boolean querying is issued [11]. Abdalla et al. [2]
proposed a Multi Input Functional Encryption for inner products under the
Decisional Diffie-Hellman (DDH), LWE, and Decisional Composite Residuosity
(DCR) assumptions. Very recently, Agrawal et al. [4] constructed the inner prod-
uct encryption, which achieves adaptive simulation-security for an unbounded
number of key queries and a single challenge ciphertext under DDH, DCR, and
LWE assumptions. Also, Katsumata et al. [21] proposed the lattice-based adap-
tively secure inner product encryption over integers Z.
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3 Background and Assumptions

3.1 SyLPEnlIoT’s Model and Threat Model

We consider the environment of an IoT system typically assumed in the lit-
erature, as depicted in Fig.2. The system consists of three main entities: a
lightweight device A such as the smart watch, a mobile device B, and cloud
storage provider C. A encrypts message M, and pattern; using the key /C, then
stores it in cloud C. B will use pattern; and the key K for evaluation. We also note
that key K is set up and managed by owners of mobile devices in any preferred
way.

Fig. 2. Applying SyLPEnIoT to an IoT system.

On commencement, the smartwatch A uses pattern; and key K to generate
the predicate ciphertext (Enci(¥)), and generates a data ciphertext (Encx(M))
by encrypting the collected data M. The smartwatch uploads both predicate
and data ciphertexts to a cloud server. Later, a mobile device B first downloads
predicate ciphertext Enci (¥), and uses its predicate pattern pattern; and key K
for evaluation. If the evaluation is true, which means pattern; matches patterng,
B will download and decrypt the corresponding Ency (M) and obtain the data
M. Note that we aim to hide both the pattern; and data M from the cloud
server, thus providing both predicate and data (or payload) privacy.

3.2 Definitions

Lightweight Symmetric-Key Predicate Encryption. Let X denote a set
{0,1}*, and F a finite set of predicates f : X — {0,1}. We say that v € X satisfies
a predicate f if fz(¥) = 1. Suppose that the input is described as a vector ¥,
and a predicate is defined as a vector #, and the evaluation returns fz(7) = 1
iff the inner product <#, > = 0. A symmetric-key predicate encryption scheme
for the class of predicates F over the set of binaries X' consists of the following
probabilistic polynomial time (PPT) algorithms.

— Setup(1?*, £): The algorithm inputs the security parameter 1* and ¢, and out-
puts a secret key SK.

— Encryption(SK, ¥, M): The algorithm inputs a secret key SK, a vector ¢ € X,
a message M, and outputs a ciphertext CT.

— GenToken(SK, Z): The algorithm inputs a secret key SK, a vector Z, and out-
puts a token TK.
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— Decrypt(TK, CT): The algorithm inputs a token TK, and a ciphertext CT. It
outputs M iff <v,Z> =0, and L otherwise.

Correctness:
For all SK « Setup(1*,£), all CT <« Encryption(SK,#, M), all TK «
GenToken(SK, Z):

— If <9, > =0, Decrypt(TK,CT) = M;
— If <4, > # 0, Pr[EvalThenDecrypt(TK,CT) = L] > 1 — negl(\);

where negl()) is a negligible function in A.

Security Definition. This section formally defines the security of our SyLPE-
nloT scheme. We define the notion Qtx, as the total number of token queries,
and the notion Qgnc as the total number of ciphertext queries.

Definition 1 (Token Query Pattern). Given a query history (fi,..., fon.) of
the SyLPEnloT scheme, we set f; = (xj1,...,xj¢) for each j € [1,Q1in], where
¢ is the length of f in SyLPEnloT. The token query pattern o(f1,..., fon,) S
a set of values

1, mp =1k

{0ijktijen,Quaken,g such that: a;jr = { , where i,j €

1, Q1knl, k € [1,4] .

0, otherwise

Definition 2 (Decryption Pattern). Let CT denote a ciphertext obtained upon
encryption of plaintext (Z, M). From the SyLPEnIoT scheme, it provides a query
history (Z, M, f1,..., fQn.), and a secret key TKj, corresponding to the pred-
icate fj, where j € [1,Q1kn]. The output of decrypting CT using TKy, is a
decryption pattern as a set of values {B;};cn,0n,], which is also defined as:
@:{M,L@)l

, where j € [1, .
1, otherwise 7 € L@l

We define the security notions of SyLPEnIoT scheme in the simulation setting,
which analyze the security of SyLPEnIoT in a real experiment and a simulation
experiment. In the real experiment, a probabilistic polynomial time algorithm
A interacts with a challenger who knows the master key SK. Firstly, A invokes
the ciphertext and token queries corresponding to the plaintext and predicate
chosen by A to the challenger. In the experiment, a probabilistic polynomial
time simulator algorithm S plays the challenger role, which only has access to
the decryption pattern corresponding to the chosen query by A, and has no
permission to obtain the master secret key SK.

Selective Simulation-Secure SyLPEnlIoT. We define the selective simu-
lation security for SyLPEnloT where the adversary must specify the entire
query history non-adaptively at the beginning of both real and simulation
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experiments. For a security parameter A € N, a SyLPEnloT scheme with four
algorithms (Setup, Encryption, GenToken, Decrypt), and a uniform probabilistic
polynomial-time algorithm A4, we define the real and simulation experiments

Exptgsf_’;,eérlﬂot A(A,n) as follows:

sk & Setup(1*)

R
((Ilﬂ Ml)’ CER (IQEnc’ MQEnc)7 fla ceey fQTkn) — A(l/\)
For i € [1, Qgnc], CT; £ Encryption(SK, Z;, M;)
For j € [1, Qrin], TKy, & GenToken(SK, f;)
OUtPUt ({CTi}iE[LQEnc}? {TKfj }je[l,QTkn])v

where Qgnc, @Tin < p0|}’(/\)-

Let S be a uniform probabilistic polynomial-time simulator. We then define
. sel,sim
a second experiment Exptg'peyor 4(A) as follows:

St W o=

L. ((Ille)v ) (IQEnc’MQEnc)7fla .- '7-fQTkn) £ A(l)\)

R
2. {CTi}ier, Qe {TKE Fiemona)) < SO,
a(fla cee 7fQTkn)7ﬁ(fl7 cee 7fQTkn))
3. Output ({CTi}ic1,Qenls { TKY; Fiel1,@rial)-

Definition 3. A SyLPEnloT is selectively simulation-secure if for any uniform
probabilistic polynomial-time algorithm A, there exists a uniform probabilistic
polynomial time simulator S, such that the following ensemble distributions:

R sel,real
({CTi}ie[vaEnc]7 { TKf] }je[vaTkn]) — EXptsyL:‘rjeEanloT,A()\)

R el,si .
and ({CT}ien, e L TKE, b iet,oml) < EXpt;;%g;IoT,A,S(A) are computation-
ally indistinguishable.

4 Main Constructions in SyLPEnlIoT

In this section, we first present our SylPEnloT construction in the standard
model. Unlike existing PE constructions in the literature, our construction does
not use bilinear pairings. Instead we use the following cryptographic primitives:

4.1 Pseudo-Random Function

A Pseudo-Random Function (PRF) is a polynomial time computable function
PRF : {0,1} x {0,1}* — {0, 1}* such that for all polynomial-size algorithms .A:

T W =1:K « {0, —Pr V) =1:g+ Func({,m)|| < negl(}N),
PrAPRFE) — 12 |k & {0, 134 = PriA90) = 1: g & Func(¢ I(A
where the probabilities are taken over all possible choices of K and g.
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4.2 Symmetric-Key Encryption

A symmetric-key encryption system SKE may be described as an ensemble of
the following polynomial-time algorithms:

— SKE.KeyGen(1): A probabilistic algorithm that takes the security parameter
A as input and outputs a secret-key SK.

— SKE.Encrypt(SK, s): A deterministic algorithm that takes as input a key SK
and a plaintext x. It outputs a ciphertext c.

— SKE.Decrypt(SK, ¢): A deterministic algorithm that takes as input a key SK
and a ciphertext c. It outputs the decrypted plaintext x.

4.3 Construction

In the construction, we use the definition of [22]; we take the class of attributes
tobe X = {0,1}* U, and F a finite set of predicates f : ¥ — {0,1}. We say that
T € X satisfies a predicate f if f(Z) = 1. Suppose that the input 7 is described
as a vector ¥, and a predicate is defined as a vector #. Then the evaluation
returns the inner product <#, > = 0, which means that f(Z) = 1 . In addition,
we assume a message space M is a small subset of {0,1}*, |IM| < 2*/poly(}).

Our SyLPEnIoT scheme for the class of predicates F over the set of binaries
X consists of the following probabilistic polynomial time (PPT) algorithms. Our
construction utilizes a pseudo-random function: PRF : {0,1} x {0,1}* — {0,1}*,
and a secure symmetric-key encryption SKE with the key-space {0,1}*, where
A € N is the security parameter. This makes our construction more lightweight
and efficiently implementable.

— Setup(1*,£): On taking the security parameter A\ and the fixed length ¢ of
vectors as input, the setup algorithm samples SK « {0, 1}*, and outputs SK.
— Encryption(SK, ¥, M): The encryption algorithm takes as input the secret key
SK, a vector ¥ = (vy,...,v;) € {0,1}, and message M. First, with i from

0 to ¢, the algorithm uniformly samples K bl SKE.KeyGen(1*). Second, it
generates the ciphertext as:
1: for each i € [1,¢] do
N {PRF(SK, 1—wlli), ifv; =1
" | PRF(SK,1 —v;||i), otherwise
o {PRF SK, x||i) @ PRF(SK, 1 — v;]|d), ifv; =1
’ PRF(SK, 1 —v;||4), otherwise
P {PRF SK, #[|i), if v; = 1
! PRF(SK,1 — v;]]z) ® PRF(SK,v;]]7), otherwise
5. c=0_ ;0K
It then computes ¢y = SKE.Encrypt(K, M). Finally, it produces the ciphertext
as CT = (co, ¢, {¢i, ¢j }icp,n)-

~~ o~~~
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— GenToken(SK, Z): The algorithm takes as input the secret key SK, and a vector
Z = (x1,...,2¢) € {0,1}. With ¢ from 1 to ¢ and z; = 1, the algorithm
uniformly samples Uy, U; kid SKE.KeyGen(1?*). In addition, for ¢ from 1 to ¢
and x; = 0, it uniformly samples R; ki3 {0,1}*. Next, the algorithm generates
the token as:

1: for each i € [1,¢] do
). i PRF(SK, z;||i) ® U;, ifx; =1
’ R;, otherwise
3: t; = PRF(SK, z;]|i)
4: t=0f t; @ U
It then sets Uy = @{_, . _,U;, and computes to = SKE.Encrypt(Uj, Up). Then,
the token is generated as: TK = (to,t, {t; }ie[1,¢))-

— Decrypt(TK, CT): the algorithm takes as input a ciphertext
CT = (co,¢,{¢i, i tiep,q) and a token TK = (to,, {ti}ic[1,¢). The decryption
algorithm computes the following: Uj) = @ff:m:lt; D é.

Then uses U} to decrypt to to recover Uy as Uy = SKE.Decrypt(Uy, U).

Finally, it computes: K =t & ¢ &_, , _o ¢; ® Up.
M = SKE.Decrypt(K, cg), which means that <@, Z> == 0. Otherwise, the

decryption outputs L.

Correctness. Consider a ciphertext CT = (co, ¢1,¢2,{C}}icj1,) corresponding
to ¥, and a token TK = (¢1,t”) corresponding to &. Hence, the correctness of the
SyLPEnIoT scheme is established as follows:

1. If <¢,&> = 0, then there does not exist any pair (v; = 1,2; = 1). Firstly,
we can recover the key Uy correctly by computing Ujj = @le’mizot; @ ¢, and
decrypting Uy = SKE.Decrypt(Uj, Up). Then T =t @ c®i_, , _o¢; & Uy = K,
which in turn implies that M = SKE.Decrypt(T, ¢), Therefore <¢,Z> = 0,
the payload message is recovered correctly.

2. If <¥, &> # 0, then there exists at least a pair (v = 1,2, = 1). Subsequently,
there is z; = 1 with ¢, = PRF(SK,1||k), and ¢, = PRF(SK,0|k) & K.
Firstly, Uy cannot be recovered successfully. If we keep using the uncorrected
form Uy, the key K cannot be recovered successfully, and returns the message
M' = SKE.Decrypt(K, c), which is a uniformly random string in {0, 1}*. Since
the payload message space M is assumed to be small, the probability of
a uniformly random message M’ lies in message space M. Meanwhile, if
<U,Z> # 0, the decryption algorithm returns | with overwhelming large
probability.

Theorem 1. The SyLPEnloT scheme is selectively simulation-secure in the
standard model under the assumption that PRF is a pseudo-random function.
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5 Evaluation

5.1 Microbenchmarks

The first benchmark was produced on a DELL laptop with an Intel Core I7-
7820HQ CPU @ 2.90 GHz. The second benchmark was on a Raspberry Pi 3
Model B V1.2 with an ARM Corter-A53 @ 1.4 Ghz. Finally, we conducted a
feasibility test of SyLPEnloT on an ultra low-power device, an Arduino Nano
33 micro-controller using 32-bit ARM Cortex-M0 CPU with 256 KB Flash and
16 KB RAM.

5.2 SyLPEnloT Construction

In this implementation, we generated the zero inner product pair of two binary
vectors ¥/, Z, and the non-zero inner product pair of two binary vectors v, . We
ran this experiment by varying the lengths of two vectors. Figure3 illustrate
the encryption and decryption times of the original PE schemes and the pro-
posed SyLPEnlIoT schemes. Because the bilinear pairing operations in PE [22]
require heavy computation, we only ran samples from five to one hundred order
to compare the computational cost with our SyLPEnlIoT. As can be seen, the
encryption and decryption times of SyLPEnIoT are significantly reduced in com-
parison with the original PE scheme. The computation time marginally increases
with the size of the data. Even with a large set (e.g., ¢ = 100), both encryption
and decryption operations can be completed in the order of milliseconds.

() (b) © ()

Fig. 3. (a)(b) Comparison of encryption and decryption times between the original PE
and SyLPEnIoT on a Windows 10 Core i7 processor with 16 GB RAM. (c¢)(d) Com-
parison of encryption and decryption times between the original PE and SyLPEnloT
on a Linux Raspberry Pi 3 ARM Corter-A53 processor.

In addition, we demonstrate the practicality of SyLPEnlIoT on IoT devices
through experiments on the ARM Cortex-53 processor and the ARM Cortex-
MO+ processor, which are embedded in Raspberry Pi 3. In (c)(d) of Fig.3,
we show its performance in terms of encryption time (seconds), total storage
cost (KB), token generation time (seconds), and evaluation to decryption time
(seconds). The experiments were conducted in real-time without optimization,
and the evaluation to decryption algorithm requires O(log,) search time. This
can be improved by executing search time synchronously to reduce the overall
decryption time.
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5.3 SyLPEnlIoT on Ultra Low-Power Devices

Fig. 4. Comparisons of the total encryption time, token generation time, and evaluation
to decryption time (miliseconds) of SyLPEnIoT on a Windows 10 Core i7 processor
with 16 GB RAM, a Linux Raspberry Pi 3 ARM Corter-A53 processor, and an Arduino
Nano 33 IoT 32-bit ARM Cortex-M0 CPU with 256 KB Flash and 16 KB RAM.

We first reprogrammed the SALSA20 [6] encryption to be compatible with Rasp-
berry Pi 3, as well as to enable it to function on the Arduino Nano 33, which
is an ultra low-power device. The Arduino Nano 33 device is heavily resource-
constrained, as it only has a 32-bit ARM Cortex-M0 CPU with 256 KB Flash
and 16 KB RAM. WiFi and Bluetooth connectivity is performed with a module
from u-blox, NINA-W10, a low power chipset operating in the 2.4 GHz range.
Our target was to validate that SyLPEnIoT is practical for an ultra low sensor
platform like Arduino Nano 33, which uses one of the common ultra low pro-
cessors. We show the feasibility our SyLPEnloT on the Arduino Nano 33 by
conducting experiments for encryption, token generation, decryption, then pro-
vide a comparison in Fig.4. From the results, the performance of SyLPEnloT
on Arduino 33 is reasonably good, which demonstrates that it can be extended
to the other ultra low-power embedded devices. To the best of our knowledge,
SyLPEnIoT is the first lightweight predicate encryption scheme that can run on
such ultra low-end devices with a maximum vector length of 50-bits.

A Security Proof

Theorem 2. The SyLPEnloT scheme is selectively simulation-secure in the
standard model under the assumption that PRF is a pseudo-random function.

Again, we use the notion Qrg, as the total number of token queries, and the
notion Qgnc as the total number of ciphertext queries.

Proof. We show that for any uniform probabilistic polynomial-time algorithm
A, there exists a uniform probabilistic polynomial-time simulator S, such that

the ensemble distribution: ({CT;}icpr,0e.): 1 TKY, Fiel,0ma]) & Exptgjll_’;eérlﬂotA
(A, £) and the ensemble distribution: ({CTi}icpr 0> {TKY, }ien, @mal) &

Exptzsf_’;ignlﬂ (A, £) are computationally indistinguishable. We then construct

the simulator S in the experiment sim. First, we consider the simplest scenario
where A makes Qgnc = 1 ciphertext query and Qi < poly(\) gen-token queries.
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Since in our main SyLPEnIoT scheme, the input Z is described as a vector v,
and a predicate is defined as a vector Z, and the evaluation returns fz(v) = 1 iff
the inner product <¥, #> = 0. In this proof, we describe directly the simulation
of U, Z instead of attribute Z, predicate f.

— Inputs to Simulator S. Let Qg,c = 1, we assume that 4 queries the simu-
lator with a query history of the form H = (¥, M, Z1,...,%g). S receives the
security parameter 1* along with the query history H. We recall the definition
of query pattern «(H), and decryption pattern 3(H) as:

e Given a query history H = (¥, M, Z1,...,%Qy,) for SYLPEnIoT scheme,

we set &; = (zj1,...,x¢) for each j € [1, Qrkn], where £ is the length
of f in SyLPEnloT scheme. The token query pattern a(H) is a set of of
values

1, xip =z,

{aijk}ijen,onal ke, g such that: a; jx = { , where 4,7 €

[1aQTkn]; ke [1,£] .

e Then let TKy, be the gen-token corresponding to Z; in H =
(U, M, %1,...,Z0m,), where j € [1,Qtkn]. Also, let CT denotes a cipher-
text upon the encryption of the plaintext ¢, M. The decryption pat-
tern B3(H) received by S is defined as a set of values {8;};ci1,on.:

g = M, <v,Z;> =0
T 1, otherwise

0, otherwise

We choose the values W7, ..., W, & {0,1}* to simulate the PRF(SK, x||k) for
ke [1,4).

— Simulating GenToken. The simulator S now generates GenToken
{TKy, }je,@n,) using the algorithm below. Note that since the GenToken
algorithm is deterministic, S ensures the GenToken generate are consistent
with the predicate vectors.

1: Initialize a @ x ¢ matrix d to empty, T'=0
2: for each j € [1,Q)] do do
3: for each k € [1,4] do do

4: Uniformly samples Uy, Uy, kil SKE.KeyGen(1%).
5: if there exists i € [1,7 — 1]; o 5 = 1 then
6: tik =tix ® Uy T =SUkitir = tik
7 else
8: tig & {0,118, & {0, 13>
9: if T =0 then
10: tio, & {0, 1}
11: else
12: tjo < SKE.Encrypt(T, Up)

13ty =®p_ gty A
14: TKfj = (L‘jo,tj,tj,k,...,tj,g)

— Simulating the Ciphertext. The plaintext (¥, M) is not known to S. The
only things that the simulator can learn are the various leakages of encrypted
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data and the secret keys. To simulate the components including the wild-
card ¥ the values Wy, Wo, ..., W, k2 {0,1}* are used by S to simulate
PRF(SK, *||k) for k € [1,4].
e If some j € [1, QTn], <U,Z;> = 0, then at the positions k where &;, =1,
it can deduce ¥, = 0, and from &;, = 0; it can infer ¥ = 1 or ¥ = 0.
This information allows S to simulate the ciphertext components as:

1: if there exists j € [1,Q1in] A 5; #L then

2: M — ﬁj

3: else

¢ ME {01

5: Uniformly samples K & SKE.KeyGen(1%).

6: for each k € [1,/] do do

T if j €[1,Qrunl : B #1 A a(j, k) =0A zjr =1 then
8: i, =tjcr, =t ®Wiid, =Wy

9: else

10: if j e [LQTkn] : ﬁj #1 A Oé(],k) =0Azj,=0 then
11: Ciy = tjic1, =t Tk & {0, 1})‘;c’hC =t Ok
12: else

13: i, =& {0,112 e1, =& {0,134 ¢4, =& {0,1}*

14: ¢ = @f;zlclk e K
15: ¢ = SKE.Encrypt(K, M).

e The final step is to simulate the ¢ component. Recall that the decryption
pattern is the set of value f1,...,8g. For j € [1, QTnl], §; output of 1 if
<v,Z> =0, then M is a message. Otherwise, then M is set as the string
{L}*. Later, M is used to generate the ¢ = SKE.Encrypt(K, M) as in the
real world. This ensures that decrypting C' using TKy,, the message M
is recovered correctly. On the other hand, <7,%;> =1 for j € [1, QTknl,
decrypting with any the token TKy, always returns the string {13

— The Indistinguishability Argument. This argues that a probabilis-
tic polynomial-time distinguisher D cannot computationally distinguish

R sel,real
(CT7 {TKfj }je[vaTkn]) - EXptSyLE’eénloT,A(Aﬂ E) from
(CTATKY, e, omal) & EXPtéilL’é'ﬂuoT,A(/\a £). The indistinguishability is pre-
sented as: _
e At the first simulation of Exptgjf_’;'gnloT,A as ((Z1, M), ..., (Zoe.. Mae..),

firoos fona) & A(1%), it does not include the secret key SK with all but
negligible probability, and the secret keys generated in the real mode of
experiment using the pseudo-random function PRF are indistinguishable
from the uniformly random secret keys generated by the simulator S.
Then, this can distinguish between the output of PRF and a uniformly
random string of size A without knowing the corresponding secret key
SK. In the same way, the components of the ciphertext CT in the real
experiment must also be indistinguishable from those generated by the
simulator S.
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o Finally, if there exists at least one j € [1, Qtkn] such that <¥,#;> =0,
S gains knowledge of the message M, which is used to generate ¢ =
SKE.Encrypt(K, M) as in the real world. In this case, the indistinguisha-
bility is trivial. On the other hand, <¥,Z;> = 1for j € [1, QT«n|, decrypt-
ing CT using any TKy, does not reveal the secret key K, which is used
to encrypt M.

— Polynomial Ciphertext Queries. The simulator S can address polyno-
mially many ciphertext queries of the form {(Z;, M;)}ic(1,Qg,)- The simu-
lator S essentially repeats the same ciphertext simulation phase for each
such query. As our security definition, the simulator S receives as input the
decryption pattern corresponding to each ciphertext query (Z;, M;). Hence,
it can either infer the corresponding payload message M; or a string { L}*.
Additionally, the components for CT; are chosen consistently with the token-
gen {TKy, }ie[1,Qra)- This ensures that, if f;(Z;) = 1 for some j € [1, Qtkn),
then decrypting CT; using TKjy, correctly recovers the string {0, 1}*. Finally,
the simulation of two ciphertexts CT; and CT, can proceed independent of
whether the corresponding attributes Z; and Z] match in one or more com-
ponents. This completes the proof of Theorem 1.
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Abstract. As people become more and more privacy conscious, the need
for end-to-end encryption (E2EE) has become widely recognized. We
study the security of SFrame, an E2EE mechanism recently proposed to
IETF for video/audio group communications over the Internet. Although
a quite recent project, SFrame is going to be adopted by a number of real-
world applications. We inspected the original specification of SFrame.
We found a critical issue that will lead to an impersonation (forgery)
attack by a malicious group member with a practical complexity. We
also investigated the several publicly-available SFrame implementations,
and confirmed that this issue is present in these implementations.

Keywords: End-to-End Encryption - SFrame - Authenticated
encryption - Signature - Impersonation

1 Introduction

End-to-end encryption (E2EE) is a technology that ensures the secrecy and
authenticity of communications from the intermediaries between the communi-
cating parties. When E2EE is deployed in a communication application over the
Internet, even the servers that facilitate communications cannot read or tamper
the messages between the users of this application.

Due to the numerous evidences of massive surveillance, most notably by the
case of Snowden, E2EE has received significant attentions and deemed as a key
feature to protect users’ privacy and integrity for a wide range of communication
applications. This also holds for the video calling/meeting applications, such as
Zoom' or Webex?. The end-to-end security of video group meeting applications
has been actively studied, and various approaches to E2EE have been proposed.
Studying the security of E2EE systems in practice is also a hot topic, as shown
by [6,12-14,31].

! https://zoom.us/.
2 https:/ /www.webex.com.
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In this article, we study SFrame, which is one such approach aiming to pro-
viding E2EE over the Internet. Technically, it is a mechanism to encrypt RTC
(Real-Time Communication) traffic in an end-to-end manner. RTC (or WebRTC,
an RTC protocol between web browsers) is a popular protocol used by video/au-
dio communication, and SFrame is carefully designed to suppress communication
overheads that would be introduced when E2EE is deployed. It was proposed
to IETF by a team of Google and CoSMo Software (Omara, Uberti, Gouaillard
and Murillo) at 2020 as a form of Internet draft [26]. Although a quite recent
proposal, it quickly gains lots of attentions. One can find a large variety of ongo-
ing plans to adopt SFrame as a crucial component for E2EE including major
proprietary software to open-source applications, such as Google Duo [25], Cisco
Webex [4,5], and Jitsi Meet [15,32].

1.1 Owur Contributions

We looked into the original specification of SFrame [26], and made several obser-
vations. Most notably, we found an issue regarding the use of authenticated
encryption with associated data (AEAD) and signature algorithm. The spec-
ification [26] defines two AEAD algorithms, namely a generic composition of
AES-CTR and HMAC-SHA256, dubbed AES-CM-HMAC, and AES-GCM for
encryption of video/audio packets. We show an impersonation (forgery) attack
by a malicious group member who owns a shared group key for the specified
AEAD algorithm. The attack complexity depends on the AEAD algorithm. More
specifically for AES-CM-HMAC the complexity depends on the tag length, and
for AES-GCM the complexity is negligible for any tag length. We observe that
AES-CM-HMAC is specified with particularly short tags, such as 4 or 8 bytes,
making the attack complexity practical. The following shows the overview of our
security analysis.

AFEAD Security. In Sect. 4.1, we study the classical AEAD security (namely, con-
fidentiality and integrity) of SFrame encryption scheme. While SFrame adopts
existing, well-analyzed AEAD schemes, they are used in a way different from
what standard security analysis assumes, hence the existing AEAD security
proofs do not necessarily carry over to the entire protocol. Despite this discrep-
ancy, we show that encryption schemes defined by SFrame are provably secure
in the context of standard AEAD.

Impersonation Against AES-CM-HMAC with Short Tags. In Sect. 4.2, we show
an impersonation attack on AES-CM-HMAC with short tags by a malicious
group member. This attack exploits a vulnerability of very short tag length.
Since the malicious group member owns a shared group key, she can precom-
pute multiple ciphertext/tag pairs from any input set, and store them into a
precomputation table. After that, she can forge by intercepting a target mes-
sage frame and replacing the ciphertext in that frame with a properly selected
ciphertext from the precomputation table. For example, when the tag length
is 4 bytes, she can practically perform an impersonation attack with a success
probability of almost one by preparing 232 precomputation tables in advance.
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Security of AES-CM-HMAC with Long Tags. In Sect. 4.3, we discuss the security
of AES-CM-HMAC with long tags. We show that AES-CM-HMAC with long
tags is secure against the impersonation attack proposed in Sect.4.2. In more
detail, we prove that AES-CM-HMAC is second-ciphertext unforgeability (SCU)
security, which was defined by Dodis et al. [7], and SCU security covers the class
of impersonation attacks described above, i.e., forging a ciphertext using the
knowledge of the secret key so that the forged ciphertext has the same tag value
as a previously observed ciphertext. Concretely, we show that the SCU security
of AES-CM-HMAC depends on the security of SHA256, which is the underlying
hash function of SFrame. Since SHA256 has an everywhere second-preimage
resistance, which was defined by Rogaway and Shrimpton [30], AES-CM-HMAC
with long tags can be considered as the SCU-secure AEAD.

Impersonation Against AES-GCM with Any Long Tags. In Sect. 4.4, we show
an impersonation attack on AES-GCM with any long tags by a malicious group
member. This attack exploits a vulnerability of the linearity of GHASH function
in the known key setting. The malicious group member who owns the GCM key
and observes a legitimate GCM input/output set including a tag is able to create
another distinct set with the same tag. The remaining value in this set, excluding
the tag, can be chosen almost freely from the linearity of GHASH function
and the knowledge of the GCM key; thus, this attack works with negligible
complexity irrespective of the tag length unlike the case of AES-CM-HMAC.

Authentication Key Recovery against AES-GCM with Short Tags. In Sect. 4.5,
we consider an authentication key recovery attack on AES-GCM with short
tags. This attack exploits the fact that there is no restriction regarding the
NIST requirements on the usage of GCM with short tags. Actually, available
implementations of the original [33], Cisco Webex [4], and Jitsi Meet [15] have
no restriction regarding such requirements. When these available implementa-
tions employ the 4-byte tag, the authentication key is recovered with the data
complexity of 232, which is practically available in by the adversary.

Our results are based solely on the Internet draft [26] and publicly available
source code [4,15,33], and we have not implemented the proposed attacks to ver-
ify their feasibility. It is difficult to implement the proposed attacks because the
SFrame specification is still a draft version and no product that implements the
current version of SFrame [26] has actually been deployed. Accordingly, instead
of implementing the proposed attacks, we discussed with the designers to confirm
the feasibility of the proposed attacks.

Since the specification remains abstract at some points and may be subject
to change, besides the real-world implementation often do not strictly follow
what was specified in [26], this issue does not immediately mean the practical
attacks against the existing E2EE video communication applications that adopt
SFrame. Nevertheless, considering the practicality of our attacks, we think there
is a need to improvement of the current SFrame specification.
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Responsible Disclosure. In March 2021, we reported our results in this article
to the SFrame designers via email and video conference. They acknowledged that
our attacks are feasible under the existence of a malicious group member, quickly
decided to remove the signature mechanism [10] and extend tag calculation to
cover nonces [9], and updated the specification in the Internet draft on March
29, 2021 [27]. They have a plan to review the SFrame specification and support
signature mechanism again in the future.

Organization of the Paper. The paper is organized as follows. Section 2
provides the specification of SFrame including the underlying AEAD, and also
a brief survey on the publicly available implementations of SFrame. Section 3
describes the security goals of E2EE recently proposed. We present our analy-
sis in Sect. 4 which shows impersonation attacks against SFrame. Several other
observations are also made, followed by our recommendations. Section5 con-
cludes the article.

2 SFrame

2.1 Specification

Overview. SFrame is a group communication protocol for end-to-end encryp-
tion (E2EE) used by video/audio meeting systems. It involves multiple users
and a (media) server which mediates communication between users. They are
connected via the server, and communication between a user and the server
is protected by a standard Internet client-server encryption protocol, specifi-
cally Datagram Transport Layer Security-Secure Real-time Transport Protocol
(DTLS-SRTP).

SFrame is specified in the Internet draft [26]. However, it does not specify the
key exchange protocol between the parties and the choice is left to the imple-
mentors. In practice Signal protocol [28], Olm protocol [20], or Message Layer
Security (MLS) protocol [2] could be used. With SFrame, users encrypt/decrypt
video and audio frames prior to RTP packetization. A generic RTP packetizer
splits the encrypted frame into one or more RTP packets and adds an original
SFrame header to the beginning of the first packet and an authentication tag to
the end of the last packet. The SFrame header contains a signature flag S, a key
ID number KID, and a counter value CTR for a nonce used for encryption/de-
cryption.

Cryptographic Protocol. Suppose there is a group of users, G. All users in
G first perform a predetermined key exchange protocol as suggested above, and
share multiple group keys K bKJSZ associated with the key ID number KID, which is
called base key in the original specification [26]. In addition, each user establishes
a digital signature key pair, (Kig, Kvert)-

An E2EE session for SFrame uses a single ciphersuite that consists of the
following primitives:
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Fig. 1. Media frame encryption flow.

— A hash function used for key derivation, tag generation, and hashing signature
inputs, e.g., SHA256 and SHA512.

— An authenticated encryption with associated data (AEAD) [22,29] used for
frame encryption, e.g., AES-GCM and AES-CM-HMAC. The authentication
tag may be truncated.

— An optional signature algorithm, e.g., EdADSA over Ed25519 and ECDSA over
P-521.

Specifically, the original specification [26] defines the following symmetric-key
primitives for the ciphersuite:

— AES-GCM with a 128- or 256-bit key and no specified tag length.
— AES-CM-HMAC, which is a combination of AES-CTR with a 128-bit key
and HMAC-SHA256 with a 4- or 8-byte truncated authentication tag.
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Algorithm 1. Media frame encryption scheme
Input: S:signature flag, KID: key ID, CTR: counter value,frame_metadata: frame meta-
data, M: frame
Output: C: encrypted frame, T: authentication tag
1: procedure ENCRYPTION(S, KID, CTR, frame_metadata, M)
2: if An AEAD encryption algorithm is AES-GCM then

3: KX'P salt"'® = KeyStore[KID]

4: else

5: KXP KKXIP salt"'° = KeyStore[KID]

6: end if

7: ctr = encode(CTR, NonceLen) > encode CTR as a big-endian of NonceLen.
8: N = salt“'® @ ctr > N is a Nonce.
9: header = encode(S, KID, CTR)

10: aad = header + frame_metadata > aad is an additional associated data.
11: if an AEAD encryption algorithm is AES-GCM then

12: C,T = AEAD.ENCRYPTION(KX'® | N, aad, M)

13: else

14: C,T = AEAD.ENcryPTION(KKP, KK'P N, aad, M)

15: end if

16: end procedure

Figure 1 and Algorithm 1 show the media frame encryption flow in an E2EE
session for SFrame using the above ciphersuites. When AES-GCM is adopted
as the ciphersuite, AEAD.ENCRYPTION in Algorithm 1 is executed according to
NIST SP 800-38D [8]. Before performing by the AEAD encryption procedure by
AES-GCM, HKDF [19] is used to generate the encryption key KXP and the salt
5altX'P for encrypting/decrypting media frames as follows:

SFrameSecret = HKDF(KKD 'SFramel0’),

KXIP — HKDF(SFrameSecret, 'key’, KeyLen),
salt¥'® = HKDF(SFrameSecret, ’salt’, NonceLen),

where KeyLen and NonceLen are the length (byte) of an encryption key and a
nonce for the encryption algorithm, respectively. Then, each user stores KXP
and saltk'P, such as KeyStore[KID] = (KX'P saltX'P). When AES-CM-HMAC
is adopted as the ciphersuite, AEAD.ENCRYPTION in Algorithm 1 is executed
according to Algorithm 2. Before performing AES-CM-HMAC, HKDF [19] is
used as well as the case of AES-GCM, however in a slightly different manner:

AEADSecret = HKDF(K{2, 'SFrame10 AES CM AEAD’),
KXP — HKDF(AEADSecret, 'key’, KeyLen),
KXID — HKDF(AEADSecret, auth’, HashLen),
salt"'® = HKDF(AEADSecret, 'salt’, NonceLen),
where HashLen is the output length (byte) of the hash function. Also, each

user stores the encryption key KX'P| the authentication key KKIP and the salt
salt’'P | such as KeyStore[KID] = (KXIP, KKID sq[tKID).
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Algorithm 2. AEAD encryption by AES-CM-HMAC

Input: KKP: authentication key, aad: additional associated data, C: encrypted frame
Output: T truncated authentication tag

1: procedure TAG.GENERATION(KKP aad, C)

2: aadLen = encode(len(aad),8) > encode aad length as a big-endian of 8 bytes
D = aadLen +aad + C
tag = HMAC(KKX'®, D)
T = trancate(tag, TagLen)

6: end procedure
Input: KKP KKP N: Nonce, aad, M: frame

Output: C, T

1: procedure AEAD.ENcRYPTION(KK®, KX N, aad, M)

2:  C = AES-CTR.ENcRrYPTION(KKP N, M)

3: T = TAG.GENERATION(KK'® aad, C)

4: end procedure

While an AEAD enables to detect forgeries by an entity who does not own
K, t'fa'i, it does not prevent from an impersonation by a malicious group member
who owns a shared group key. To detect such an impersonation, a common
countermeasure is to attach a signature for each encrypted packet. This can
incur a significant overhead both in time and bandwidth. SFrame addresses this
problem by reducing the frequency and input length of signature computations.
Namely a signature Sig is computed over a list of authentication tags with a

fixed size, (T3, Ti—1,...,Ti—y), as follows:
Slg = Sign(Ksig7E H T"7;—1) || e || Ti—m)y

where Sign denotes the signature function. This signature is appended to the
end of the data which consists of SFrame header, the current encrypted pay-
load, its corresponding authentication tag T;, and the list of authentication tags
(Ti-1,...,T;—,) which correspond to the previously encrypted payload so that
any group user can verify the authenticity of the entire payload.

2.2 Available Implementations

We list some implementations of SFrame that are publicly available. Some of
them do not strictly follow the original specification [26] and exhibit some vari-
eties. In this article, we particularly focus on the specified AEAD schemes and
the allowed tag length in each of the implementation since this determines the
complexity of our attack.

The Original. There is a Javascript implementation by one of the designers of
SFrame (Sergio Garcia Murillo) [33]. It is based on webcrypt. In his implemen-
tation, it supports

— AES-CM-HMAC with 4 or 10-byte tag, where 4 (10) byte tag is used for
audio (video) packets.
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Google Duo. Duo? is a video calling application developed by Google. For group
calling, it adopts Signal protocol as a key exchange mechanism and SFrame as a
E2EE mechanism. There is a technical paper [25] written by one of the coauthors
(Emad Omera) of the original specification [26]. The source code is not available,
however, according to the technical paper, it supports

- AES-CM-HMAC.

The technical paper does not describe the tag length. Note that we confirmed
that Google Duo does not currently use the signature feature.

Cisco Webex. Webex is a major video meeting application developed by Cisco.
There is a recent whitepaper entitled “Zero-Trust Security for Webex White
Paper” [5]. The whitepaper describes the path to their goal called Zero-Trust
Security, and suggests to use MLS protocol as a key exchange mechanism and
SFrame as a media encryption to enhance the end-to-end security of Webex. The
corresponding SFrame implementation is available at Github [4]. The repository
maintainer warns that the specification is in progress. As of March 2021, it
supports

— AES-GCM with 128 or 256-bit key, with 16-byte tag,
— AES-CM-HMAC with 4 or 8-byte tag.

Jitsi Meet. An open-source video communication application called Jitsi Meet*
was presented at FOSDEM 2021, a major conference for open source projects®.
Although a quite recent project, it is getting popularity as an open-source alter-
native to other major systems. It adopts SFrame with Olm protocol as the
underlying key exchange protocol. The source code is available [15]. It supports

— AES-CM-HMAC with 4 or 10-byte tag, where 4 (10) byte tag is used for
audio (video) packets.

3 Adversary Models and Security Goals

3.1 Adversary Models

The designers did not define adversary models in the original specification [26].
Then, we define the adversary models for our security analysis with reference to
them defined by Isobe and Minematsu [14].

Definition 1 (Malicious User). A malicious user, who is a legitimate user
but does not possess a shared group key, tries to break one of the subsequently
defined security goals of the other E2EE session by maliciously manipulating the
protocol.

3 https://duo.google.com/about/.
* https://meet.jit.si/.
5 https:/ /fosdem.org/2021 /schedule/.
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Definition 2 (Malicious Group Member). A malicious group member, who
is a legitimate group member and possesses a shared group key, tries to break the
subsequently defined security goals by deviating from the protocol.

In addition, E2E adversary is defined in [14], however, we do not explain this
definition because this adversary is out of scope for our security analysis.

3.2 Security Goals of E2EE

In February 2021, the Internet draft entitled “Definition of End-to-end Encryp-
tion” was released [17]. According to this draft, the fundamental features for
E2EE require authenticity, confidentiality, and integrity, which are defined as
follows:

Definition 3 (Authenticity). A system provides message authenticity if the
recipient is certain who sent the message and the sender is certain who received
it.

Definition 4 (Confidentiality). A system provides message confidentiality if
only the sender and intended recipient(s) can read the message plaintext, i.e.,
messages are encrypted by the sender such that only the intended recipient(s)
can decrypt them.

Definition 5 (Integrity). A system provides message integrity when it guar-
antees that messages has not been modified in transit, i.e. a recipient is assured
that the message they have received is exactly what the sender intented to sent.

In addition, availability, deniability, forward secrecy, and post-compromise secu-
rity are defined in this draft as the optional/desirable features to enhance the
E2EE systems, however, we do not explain these definitions because these fea-
tures are out of scope for our security analysis.

3.3 Security Goals of AEAD for E2EE

Dodis et al. [7] proposed a new primitive called encryptment for the message
franking scheme, which enables cryptographically verifiable reporting of mali-
cious content in end-to-end encrypted messaging. In addition, they defined con-
fidentiality and second-ciphertext unforgeability (SCU) as security goals to ensure
the securily level of the encryptment scheme.

Definition 6 (Second-Ciphertext Unforgeability (SCU)). An adversary

A is given K & K, which means a randomly chosen key K form the key space
K, and is allowed to perform AEAD encryption/decryption in the local environ-
ment. Then, we define the second-ciphertext unforgeability (SCU) advantage of
A against AEAD for E2EFE as

AdviERp(A) = Pr[K & K : A(K) — (N, A,C,N*, A*,C",T),
Dec(K,N,A,C,T) = M,
Dec(K,N*, A*,C*,T) = M* for some M, M* #+ L],
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where Dec denotes the decryption algorithm of AEAD, N and N* denote nonces,
A and A* denote associated data, C and C* denote ciphertexts, M and M*
denote plaintexts, T denotes a tag, and L denotes a symbol that represents a
decryption failure.

The adversary in SCU game is given with key, hence this is not captured by
the standard AEAD security notions of confidentiality and integrity [3,29]. When
there exists a malicious group member in an E2EE application, she can actually
work as a SCU adversary A by intercepting the target frame (N, A, C,T) since
she knows the shared group key K.

3.4 Security Goals of Hash Functions

A secure hash function H typically has three fundamental properties: preimage
resistance, second-preimage resistance, and collision resistance. Here, we focus
on two types of second-preimage resistance, and define them with references
to [23,30] as follows:

Definition 7 (Second-Preimage Resistance). Let A be an adversary
attempting to find any second input which has the same output as any specified
input, i.e., for any given message M & M, which means a randomly chosen
message M form the message space M, to find a second-preimage M* # M
such that H(M) = H(M*). Then, we define the second-preimage (Sec) resis-
tance advantage of A against H as

AdvSF(A) = Pr[M & M; M* — A: (M # M*) A (H(M) = H(M))].

Definition 8 (Everywhere Second-Preimage Resistance). For a positive
integer n, let {0,1}=" be a set of bit strings not longer than n. Let M = {0,1}*
and Y = {0,1}"™. Suppose H : Kx M — Y be a keyed hash function. Let A be an
adversary against H to find a second preimage for the target input M € M that
is fized with |M| < £. Then, we define the everywhere second-preimage (eSec)
resistance advantage of A against H as

Adve=t )

= Mer?o?ﬁw{Pr [K & K M* — A(K) : (M # M*)A (Hg (M) = Hg(M™))] }

The everywhere second-preimage or eSec resistance, introduced by Rogaway and
Shrimpton [30], is called (a slight extension of) a strong form of second-preimage
resistance. In this article, we assume the standard hash function (SHA2) as an
instantiation of keyed function, say by using I'V as a key, since otherwise standard
security reduction is not possible (see [30]). For simplicity, we assume this key
is implicit and do not describe it in the proofs.
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4 Security Analysis

4.1 Security of AEAD Under SFrame

We first discuss on the security of AEAD used by SFrame. Here we view Algo-
rithm 1 as an encryption of AEAD for the reason that viewing Algorithm 2 as a
full-fledged AEAD does not make sense (see below). Then, effectively, the keys
are contained by KeyStore[KID] and the nonce is CTR, the associated data is a
tuple (S, KID, frame_metadata), and the plaintext is M.

In Algorithm 1, the variable N is a sum of salt“'° and ctr (Line 8), where
the former is essentially a part of key (via HKDF), the latter is an encoded
form of CTR. This IV serves as nonce for the internal AEAD algorithm at Line
12/14. The data aad serves as AD for the internal AEAD and consists of header
and frame_metadata, where the former contains an encoded form of (S, KID,CTR).
Since aad contains CTR as well as IV, if the internal AEAD is AES-CM-HMAC of
Algorithm 2, HMAC takes the nonce (CTR) in addition to AD (frame_metadata)
and the ciphertext C'. Hence the lack of N = salt“'® & ctr is not a problem.
Moreover, adding a pseudorandom value to the nonce of AES-CTR does not
degrade security as long as that value is computationally independent of the key
of AES-CTR.

A slightly more formal analysis is given below. Algorithm 1 combined with
AES-CM-HMAC can be interpreted as an encryption routine the encryption-
then-MAC AEAD construction. More specifically, it takes nonce N = CTR,
associated data A = (S, KID, frame_metadata), and plaintext M to produce the
ciphertext C' and the tag 7"

C = Enck (N, M)
T = MACx/ (N, A,C),

where K and {(\’/ are derived via a master key with a key derivation function
(HKDF), and Encg denotes the plain counter mode encryption with a pseudo-
random offset to nonce (i.e., saltKlD, which is derived via HKDF), and WK/
denotes the HMAC with a certain bijective input encoding. This means that
Algorithm 1 is exactly reduced to the encryption-then-MAC generic composi-
tion (assuming HKDF as a PRF) whose security is proved when Enc is IND-CPA
secure and MAC is a PRF [18,24]. Proving the latter claim is trivial. Hence Algo-
rithm 1 is secure under the standard assumptions that AES is a pseudorandom
permutation and HMAC is a PRF. We remark that Algorithm 2 itself is not a
generically secure (i.e., when nonce N and AD aad are independently chosen)
AEAD as it ignores N in the computation of tag. This issue was raised at the
discussion in CFRGY and our analysis provides an answer.

5 https://mailarchive.ietf.org/arch/browse/cfrg/?q=SFrame.
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4.2 Impersonation Against AES-CM-HMAC with Short Tags

While the AEAD security of Algorithm 1 is sound, it does not necessarily mean
the full E2EE security. In this section we point out that there is a risk of imper-
sonation by a malicious group member who owns the group key. The imper-
sonation attack implies that the scheme does not achieve the security goal of
integrity in E2EE.

Hereafter, we simplify the model and stick to the standard AEAD nota-
tion, namely the input is (N, A, M) for nonce N, associated data A, plaintext
M and the output is (C,T) for ciphertext C' and tag T'. Also we consider the
case that the signature is computed for each tag for simplicity. The notational
discrepancies from Algorithm 1 and Algorithm 2 do not change the essential pro-
cedure of our attacks. With this simplified model, each group member sends
an encrypted frame to all other members, and this frame consists of an AEAD
output (N, A,C,T) and a signature Sig = Sign(Ksis,T) signed by the user’s
signing key Kgg. The encryption input is (IV, A, M) and the frame encryption
by AES-CM-HMAC is abstracted as follows:

C « AES-CTR(KX° N, M)
T « truncate(HMAC-SHA256(KX'P (N, A, 0)), 1), (8)

where 7 denotes the tag length in bits. Note that IV is included as a part of
HMAC’s input, for the reason described at Sect. 4.1.

Suppose there is a communication group G containing a malicious group
member Uy, and another member Ur which we call a target user. This Uy, is
able to mount a forgery attack (impersonation) by manipulating a frame sent
by Ur. The forgery attack by Ujps consists of offline and online phases.

In the offline phase, Uy determines (N, A, M), and precomputes a set of
(ciphertext,tag) tuples (C,T) by using KX'P and KX'®  which are known to all
group members, and stores these into a table th. Here, N and A are determined
so that it is likely to be used by Ur (these information are public and N is a
counter so this is practical).

In the online phase, the malicious group member observes the frames sent
by Ur. If she finds the frame (N, A, C’,T’,Sig) such that (C*,T*) is included
in tb and T* = T, C* # C’, then she replaces C’ in that frame with C*. Since
the signature Sig is computed over the tag T’ which is not changed after the
replacement, this manipulated frame will pass the verification. Figure2 shows
the overview of the attack. The details of attack procedures are given as follows.

Offline Phase

1. Ups chooses the encryption input tuple (N, A, M).

2. Ups computes a ciphertext C' and a 7-bit tag T for (N, A, M) following Eq. (8),
where KID is set to point the target user.

Uy stores a set of (M, C, T) into the table tb.

4. Uy repeats Step 1-3 2! times with different messages.

@
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Fig. 2. Impersonation against AES-CM-HMAC with short tags. In the offline phase, a
malicious group member Uxs stores a set of (M, C, T') into the table tb. In the online
phase, Uy intercepts a target frame (N', A’,C’,T',Sig) sent by the target user Ur,
searches a tuple (M*,C*,T™) in tb such that T* = T’ and C* # C’, replaces C’ with
C* in the target frame, and sends (N’, A’, C*,T’, Sig) to other group members.

Online Phase

1. Ups intercepts a target frame (N', A’,C’,T',Sig) sent by the target user,
where N = N and A’ = A.

2. Uy searches a tuple (M*,C*,T*) in tb such that 7* =T’ and C* # C".

3. If Uy finds such a tuple, replaces C’ with C* in the target frame, and sends
(N', A", C*,T’,Sig) to other group members.

The manipulated frame including (C*,T”) successfully pass the signature veri-
fication by other group members due to a tag collision, i.e., no one can detect
that the frame is manipulated by Uy, and the group members will accept M*
as a valid message from Ur. The above is for the case where z = 1, i.e., each
tag is independently signed by the signature key. It is naturally extend to the
case where z is more than one, namely the case where a list of tags is signed
altogether for efficiency.

To mount the attack described above, the adversary needs to intercept a
legitimate message. It implies the adversary may collude with an intermediate
server, or E2EE adversary, which is the central operating server. The practicality
of this is beyond the scope of this article, however we remark that preventing
colluding attack with E2EE adversary is one of the fundamental goals of E2EE.

We note that the attack without intercept is also possible by creating a
forged tuple (N', A’,C’",T",Sig) such that 7" =T and (N’, A’,C") # (N, A,C)
by observing some legitimate tuple (N, A, C,T,Sig) that was previously sent
without corruption; here (N’, A’) is chosen so that it is likely to be used by Ur
in the next frame which is yet sent. This is essentially a reply of signature and
we guess whether it is detected as replay depends on the actual system, so we
keep it open. The cost of detecting a reply of randomized algorithm is generally
high since the receiver must keep the all random IVs used.

Complexity Evaluation. The computational cost to make the precomputation
table tb in the offline phase is estimated as 2¢, and the success probability of
Step 2 in the online phase is estimated as 27711,



140 T. Isobe et al.

Practical effects on SFrame. In case 7 = 32 (i.e. 4-byte tags) if Uys prepares 232
precomutation tables in the offline, the success probability is almost one. Thus,
this forgery attack is practically feasible with a high success probability for the 4-
byte tag. Besides, in this attack, the adversary fully controls the decryption result
(M*) of the manipulated frame except 32 bits which are used for generating 232
different tags in the offline phase.

To perform an actual attack on SFrame, since each SFrame header includes
the frame counter to avoid replay attacks, the adversary has to decide the target
frame and set the target frame counter to the SFrame header file in M when
generating tags in the offline phase.

Even in the case of 8 and 10-byte tag, if Uy; prepares 26 tables, which is
feasible by the nation-level adversary, the success probability is non-negligible,
278 and 2724, respectively.

4.3 Security of AES-CM-HMAC with Long Tags

We first discuss the security of AES-CM-HMAC with long tags, e.g., 16-byte
tags, against impersonation attack as described in Sect. 4.2. Even if a malicious
group member prepares 2°6 precomputation tables, it is infeasible because the
success probability of the attack is 2772; therefore, AES-CM-HMAC with long
tags can be secure against the impersonation attack proposed in Sect. 4.2.

We justify the above observation by showing SCU security of AES-CM-
HMAC with long tags. According to Algorithm 2, let D and D* be (N, 4, C)
and (N*, A*, C*), respectively (see Line 3 in TAG.GENERATION procedure). Note
that NV is included in A (aad) as partial information (see Lines 7-10 in Algo-
rithm 1). For simplicity, the tag generation by HMAC is abstracted as follows:

HMAC(K'"®, D) = H((K @ opad) || H((K & ipad) || D)),

where H denotes a hash function, e.g., SHA256 used in SFrame, ipad and opad
denote fixed padding values, and K is generated from KKIP according to the
padding rule in HMAC algorithm (see [34] for details). The following theorem is
simple to prove.

Theorem 1. Let A be a SCU adversary against AES-CM-HMAC with the target
encryption output being at most £ bits. Then, SCU advantage of A against AES-
CM-HMAC is bounded as

AdVSA(]:EUS—CM-HMAC (A) < 2AdVe}?ec[Sw)] (-A/)

for some eSec adversary A’ against H, which denotes the underlying SHA256
hash function, where ¢’ = £+ 512 (i.e., one block larger).

Proof. Let K be the key of HMAC. Thanks to the generic composition, we can
assume that the adversary is given the key for the counter mode. The resulting
game is that, given a transcript of encryption query (N, A, M,C,T) derived on



Security Analysis of SFrame 141

o —{ N LN WL

L]
~) [/
g

Dy Di_4

K @ ipad — I—‘ I—‘
) e ) WS

L]
~) >/
L

Fig. 3. SCU scenario against AES-CM-HMAC with long tags for E2EE. In this sce-
nario, given a transcript of encryption query (N, A, M,C,T) derived on K, the adver-
sary A is required to find a successful forgery (N*, A*,C*,T*) on K such that 7" =T
and D* # D, i.e., (N*,A*,C*) # (N, A, C).

K, the adversary is required to find a successful forgery (N*, A*, C*,T) on K
such that D* # D, i.e., (N*, A* C*) # (N, A,C). Note that the tag T is the
output of HMAC taking K and D = (N, A,C) and thus the plaintext M is
not needed in the attack. Figure 3 illustrates this scenario, where IV denotes the
initial hash value, D = Dg| ... | Di—1, D* = Dg| ... | Dj_y, S = H((K &
ipad) || D), and S* = H((K @ ipad) || D*). Each D; and D; denotes an input
block to HMAC. The last block may need padding but we simply ignore this (the
analysis is pretty much the same). In this scenario, we consider the following two
cases: A finds S* = S (Case 1) which implies T = T* or S* # S and T = T*
(Case 2).

For Case 1, observe that S = S* means H(K @ipad|| D) = H(K ®ipad|| D*),
hence a second preimage against the target input K @ ipad|| D is obtained. For
Case 2, when S # S* and T = T*, it means the adversary finds a second
preimage against the target (2-block, thus 1024-bit) input K @ opad|| S. Both
cases are covered by the eSec security of H, hence we have

AdVERs onrmarac(4) < Advi=O ) + Adv=o ()
S o
< 2AdvS =),
which concludes the proof. O

Theorem 1 tells that the SCU security of AES-CM-HMAC with long tags
depends on the security of underlying hash function. According to the Internet
draft [26], SFrame adopts SHA256 as the hash function used in AES-CM-HMAC.
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Second-Preimage Security of SHA256. Ideally, a n-bit hash function provides
a mn-bit security level against second-preimage attacks. That is, we can find a
second-preimage on SHA256 with a time complexity of 22°6. Khovratovich et
al. [16] proposed a new concept of biclique as a technique for preimage attacks,
and applied it to the reduced-round SHA2 family. Their second-preimage attack
on the reduced-round SHA256 performs up to 45 rounds (out of 64) with a
time complexity of 2255 and a memory complexity of 26 words. After that,
Andreeva et al. [1] presented new generic second-preimage attacks on the basic
Merkle-Damgard hash functions. Their best attack allow us to find a second-
preimage on the full SHA256 with a time complexity of 2'"® and a memory
complexity of 283, but this attack is required too long message blocks, e.g., a
2118_block message.

To the best of our knowledge, no study has been reported on a second-
preimage attack that is more efficient than the above described attacks; therefore,
AES-CM-HMAC with long tags can be considered as the SCU-secure AEAD.

4.4 Impersonation Against AES-GCM with Any Long Tags

The impersonation attacks described above is a generic attack and the offline
attack complexity depends on the tag length. In contrast, if we use AES-GCM,
it is easy to mount a similar attack without the offline phase. This is because,
the adversary who owns the GCM key and observes a legitimate GCM output
of (N, A,C,T) is able to create another distinct tuple of (N’, A", C",T") with
T’ = T. The remaining (N', A’,C") # (N, A,C) can be chosen almost freely
from the linearity of GHASH and the knowledge of the key. In particular, the
attack works with negligible complexity irrespective of the tag length unlike the
case of AES-CM-HMAC.

Once the adversary intercepts a legitimate tuple (N, A,C,T) created by
GCM, it is trivial to compute (N', A’, C’,T") such that T/ = T and (N', A", C") #
(N, A, C), for almost any choice of (N’, A, C").

For example, suppose GCM with 96-bit nonce and 128-bit tag, which is one of
the most typical settings. Given any GCM encryption output tuple (N, A, C,T)
with 2-block C' = (C1,C5) and 1-block A = A;, we have

T — GHASH(L, A || C || len(A, ©)) @ Ex (N | 132)
=A-L*eC - LPaCy - L*®len(A,C)- L & Ex(N | 132),

C1 = Exg(N || 232) © My,

Co = Ex (N || 332) © My,

where M = (M;, Ms) is the plaintext. Here, len(A, C) is a 128-bit encoding of
lengths of A and C, and multiplications are over GF(2!?8). E () denotes the
encryption by AES with key K and L = Ex(0'%%), and i3, for a non-negative
integer ¢ denotes the 32-bit encoding of i. It is straightforward to create a valid
tuple (N', A", C",T") such that T =T and (N', A’,C") # (N, A, C) as we know
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Table 1. NIST requirements on the usage of GCM with short tags.

t 32 64

Lol 192 [93 [94 [95 [96 |91l 913 [ 915 [ 917 [919 [ 921
q

c

222 220 218 215 213 211 232 229 226 223 220 217
262 262 261 265 266 267 275 274 273 272 271 270

K. Say, we first arbitrary choose N’ and A’ and the fake plaintext block M] to
compute C}, and finally set C so that

Cy-LP=T' oA -L*aCy - L*@len(A,C') - L ® Ex(N'| 132)

holds. This will make the last decrypted plaintext block M} random. It works
even if the tag is truncated. That is, the malicious group member can imper-
sonate other member and the forged plaintext is almost arbitrary except the
last block. We note that the plaintext is video or audio hence a tiny random
block will not be recognized. This attack severely harms the integrity of group
communication.

This difference from the case of AES-CM-HMAC is rooted in the authenti-
cation mechanism — while HMAC maintains a collision resistance once the key
is known, GHASH with a known key is a simple function without any sort of
known-key security.

4.5 Considerations on Authentication Key Recovery

The specification [26] appears to implicitly allow 4 and 8-byte tags with AES-
GCM. In addition to the attacks described above, it is known that the use of
short tags in GCM will lead to a complete recovery of the authentication key
(i.e., the key of GHASH) by a class of attacks called reforging. This leads to a
universal forgery.

Ferguson [11] first pointed out this attack, and Mattsson and Wester-
lund [21] further refined the attack and provided a concrete complexity esti-
mation. According to [21], they point out that the security levels are only 62-67
bits and 70-75 bits for 32-bit and 64-bit tags, respectively, even if we follow
NIST requirements on the usage of GCM with short tags, which is shown in
Table 1. In Table1, L is the maximum combined length of A and C, and q is
the maximum number of invocations of the authenticated decryption function.
Table1 also shows the required data complexity ¢ for the authentication key
recovery under each restriction of L and ¢. For example, for L = 2% and ¢ = 2'8,
the required data to recover the key of GHASH is 261,

If there is no restriction regarding L and ¢, the authenticated key is recovered
with data complexity of 2! as the complexity of the first forgery is dominated.
Thus, for 4-byte (= 32-bit) tag length, the authenticated key recovery is feasible
with 232 data complexity. It seems that the specification [26] does not explicitly
mention the restrictions of ¢ and L.



144 T. Isobe et al.

Practical effects on SFrame. As far as we checked available implementations
of the original [33], Cisco Webex [4], and Jitsi Meet [15], there is no restriction
regarding L and g. In this case, for the 4-byte tag, the authenticated key is recov-
ered with data complexity of 232, which is practically available by a malicious
user.

4.6 Recommendations

From the vulnerabilities shown in Sects. 4.2 to 4.5, we recommend the followings.

— For AES-CM-HMAC, short tags, especially 4-byte tag, should not be used.

— For AES-GCM, a signature should be computed over a whole frame, not only
tags.

— For AES-GCM, the specification should clearly forbid short tags, or refer to
NIST requirements on the usage of GCM with short tags.

— As discussed at Sect. 3, switch to other ciphersuite that works as a secure
encryptment scheme, such as HFC [7], with a sufficiently long tag is another
option.

5 Conclusions

We have shown our security analysis on SFrame, a recently proposed end-to-end
encryption mechanism built on RTC, developed by Google and CoSMo Software
and proposed to IETF. SFrame is a young project but going to be adopted
by a number of real-world products. Our results show that there is a practical
risk of impersonation by a malicious group member. This problem is caused by
the digital signature computed only on (a list of) AEAD tags, and the attack
becomes practical when tags are short or the used AEAD algorithm allows to
create a collision on tags with the knowledge of the key. The former applies to
the case of AES-CM-HMAC, and the latter applies to the case of AES-GCM.
We also showed that AES-CM-HMAC with a long tag avoids this problem as
it fulfills a “committing” property introduced by Dodis et al. [7]. Moreover,
AES-CM-HMAC is, if it is correctly used by the upper layer, a provably secure
AEAD because it can be interpreted as a standard encryption-then-MAC generic
composition. We notify our findings to the designers, and they acknowledged
them and revised the specification including the removal of the signature feature
and a patch for the AEAD algorithm. Considering its quick deployment, we think
SFrame should be studied more actively and hope our work help its improvement.
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Abstract. Attribute-based conditional proxy re-encryption (AB-
CPRE) allows delegators to carry out attribute-based control on the
delegation of decryption by setting policies and attribute vectors. The
fine-grained control of AB-CPRE makes it suitable for a variety of appli-
cations, such as cloud storage and distributed file systems. However,
all existing AB-CPRE schemes are constructed under classical number-
theoretic assumptions, which are vulnerable to quantum cryptoanalysis.
Therefore, we propose the first AB-CPRE scheme based on the learning
with errors (LWE) assumption. Constructed from fully key-homomorphic
encryption (FKHE) and key-switching techniques, our scheme is unidi-
rectional, single-hop, and enables a polynomial-depth boolean circuit as
its policy. Furthermore, we split the ciphertext into two independent
parts to avoid two-level or multi-level encryption/decryption mecha-
nisms. Taking advantage of it, we then extend our single-hop AB-CPRE
into an efficient and concise multi-hop one. No matter how many transfor-
mations are performed, the re-encrypted ciphertext is in constant size,
and only one encryption/decryption algorithm is needed. Both of our
schemes are proved to be selective secure against chosen-plaintext attacks
(CPA) in the standard model.

Keywords: Conditional proxy re-encryption + Learning with errors -
Fine-grained control

1 Introduction

Proxy re-encryption (PRE) allows a semi-trusted proxy with a re-encryption key
to transform a ciphertext intended for Alice (i.e. delegator) to another ciphertext
intended for Bob (i.e.delegatee) without revealing the underlying plaintext [5].
PRE schemes can be classified into two types: one is single-hop, whose ciphertext
can be transformed at most once, e.g., a ciphertext can be converted from Alice
to Bob and cannot be further converted; the other is multi-hop, which means a
ciphertext can be transformed multiple times, e.g., a ciphertext can be converted
from Alice to Bob and to Carol, and so on. Based on the direction of transforma-
tion, PRE can be further categorized into bidirectional and unidirectional. In a
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E. Bertino et al. (Eds.): ESORICS 2021, LNCS 12973, pp. 147-168, 2021.
https://doi.org/10.1007/978-3-030-88428-4_8


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-88428-4_8&domain=pdf
https://doi.org/10.1007/978-3-030-88428-4_8

148 X. Liang et al.

bidirectional scheme, a re-encryption key enables the transformation from Alice
to Bob and vise versa. Whereas, in the unidirectional setting, a re-encryption key
only supports the transformation from Alice to Bob. Notice that a bidirectional
scheme can be built by running a unidirectional one in both directions.

PRE has found lots of applications that require delegation, but it may not
be sufficient to facilitate flexible delegation. More specifically, once the proxy
obtains a re-encryption key, it can re-encrypt all ciphertexts for delegator into
the ciphertexts for delegate without any discrimination. Suppose that some of
Alice’s ciphertexts are highly confidential, and they should remain secret from
Bob. To implement the delegation control, a trusted proxy is needed. Such a
trusted model makes PRE unrealistic in complex applications.

To address the above problem, conditional proxy re-encryption (CPRE) was
introduced by Weng et al. [32]. A CPRE is a variant of PRE supporting control
on re-encryption. The ciphertext is associated with a condition, and the proxy
can perform a transformation correctly only if the re-encryption key is associated
with the same condition. The delegation control of CPRE makes it applicable
to complex applications, such as encrypted email systems [30], online medical
systems [13], distributed files systems [33] and cloud storage systems [18,19].

An open problem left by Weng et al. is how to construct a CPRE scheme sup-
porting expressive predicates over the condition [32]. To address this problem,
two types of CPRE are proposed: one is fuzzy conditional proxy re-encryption
(F-CPRE), which does not require the condition in the re-encryption key and
ciphertext to exactly match [12]; the other is attribute-based conditional proxy
re-encryption (AB-CPRE), which supports attribute-based control on delega-
tion [24,33,34]. Accurately, AB-CPRE is a kind of CPRE with fine-grained con-
trol, in which the ciphertext is associated with an attribute vector x and the
re-encryption key is related to a policy f. The proxy is able to perform a trans-
formation if f(x) = 0 only. However, as far as our knowledge, there only exist
CPRE [23] and F-CPRE [17] based on learning with errors (LWE). In other
words, there is no quantum-resistant AB-CPRE construction to date.

On the other hand, several multi-hop PRE schemes are available in the liter-
ature [3,9,15,16,22,29,31]. However, the majority of them do not capture condi-
tional re-encryption property. To achieve delegation control, Mo et al. proposed
a unidirectional multi-hop conditional proxy re-encryption [26]. Liang et al. sug-
gested a bidirectional multi-hop identity-based conditional proxy re-encryption
(IBCPRE) with constant-size ciphertexts [18]. But, how to construct a multi-hop
CPRE with fine-grained control remains open.

The existing lattice-based CPRE and multi-hop IBCPRE leave us two
interesting problems: AB-CPRE over lattices and multi-hop AB-CPRE with
constant-size ciphertexts. Therefore, the new scheme should be secure under
lattice-based assumptions, e.g., LWE, but it should also enjoy constant-size
ciphertexts no matter how many transformations are performed.
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1.1 Contribution

We first formalize the definition and security notation for unidirectional multi-
hop AB-CPRE. Specially, to achieve multi-hop, we require that a ciphertext with
an attribute vector x for user a could be transformed into another ciphertext
with a different attribute vector y for user 8. Regarding security notation of AB-
CPRE, we define a selective security and key privacy against chosen-plaintext
attacks.

We also present two LWE-based unidirectional AB-CPRE schemes: the first
one is single-hop; the second one is multi-hop. Our designs are obtained from fully
key-homomorphic encryption (FKHE) and key-switching techniques. Table 1
makes a comparison between existing lattice-based CPRE, multi-hop CPRE,
and ours. Our LWE-based constructions have the following features:

— The majority of PRE schemes are built with 2-level encryption/decryption
mechanisms, where the second-level ciphertext allows to be transformed into
the first-level one. To make CPRE more concise, we split ciphertext CT into
two parts: one is ct, the ciphertext for message; the other is cc, the ciphertext
for attributes. As a result, only one encryption/decryption is needed. More-
over, by reconstructing cc, our single-hop AB-CPRE can be extended into a
multi-hop one with constant-size ciphertexts.

— Combining with FKHE, the delegation policy enables any polynomial-depth
boolean circuit. As a consequence, our schemes support fine-grained delega-
tion control.

— Our schemes enjoy selective indistinguishability of re-encryption keys and
encryptions against chosen-plaintext attacks (sKP-CPA, sIND-CPA) in the
standard model.

Table 1. Comparison between ours and existing schemes

Schemes Types Policy Assumption | Security | Key Standard | Direction | Multi-hop
Privacy model
[23] IBCPRE |\ LWE CPA v x - x
[17] F-CPRE Threshold |LWE sCPA X ' —
[34] AB-CPRE | Access 3-QDBDH |sCCA X v —
Tree
[33] AB-CPRE | Access BDH CPA X X — X
Tree
[24] AAB-CPRE | LSSS 3-wDBDHI | RCCA X ' —
Scheme I | AB-CPRE |Boolean LWE sCPA v v —
Circuit
[26] CPRE AN DDH CCA X X — v
[18] IBCPRE AN 3-wBDHI CCA X v — '
Scheme II | AB-CPRE | Boolean LWE sCPA v v — v
Circuit
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1.2 Related Work

In 2010, Zhao et al. [34] supposed the first AB-CPRE scheme to improve the
expressiveness and flexibility of the condition construction. Later, Yang et al. [33]
presented a ciphertext-policy AB-CPRE, whose re-encryption key is related to a
set of attributes whereas the ciphertext is associated with a policy. In 2018, Mao
et al. [24] constructed the first anonymous AB-CPRE (AAB-CPRE) by linear
secret sharing schemes (LSSS), which achieved replayable CCA (RCCA) security
[10] in the standard model. But all stated AB-CPRE schemes were constructed
under classical number-theoretic assumptions and none of them considers multi-
hop case. We are thus motivated to propose AB-CPRE schemes over lattices
that is secure against quantum attacks.

1.3 Organization

The rest of paper is organized as follows. The introductions of lattices, such
as LWE;, lattice trapdoor, and Gaussian sampling are presented in Sect. 2. The
definition and security notation of universal AB-CPRE are formalized in Sect. 3.
In Sect. 4, we propose our single-hop AB-CPRE scheme in the standard model
and give the corresponding security proof. In Sect.5, we give a multi-hop AB-
CPRE scheme as an extension from our single-hop one. Finally, Sect. 6 concludes
this paper.

2 Preliminaries

In this paper, we use a lower-case bold letter to denote a column vector a,
while an upper-case bold letter to denote a matrix A. The (centered) discrete
Gaussian distribution over £ with parameter o is denoted D,(L). For vector
u, we let |lul| denote its ¢» norm. For matrix R € Z¥*™ we denote by ||R||
the maximum length of column vector of R. |[R||gs := ||[R|| where R is the
Gram-Schmidt(GS) orthogonalization of R, and [|R(|2 := supje=1 [[Re|. Then,
we have [Rlas < [R| < [R]l2 < VE[R| and RSz < |R]l> - Sz Moreover,
we denote horizontal concatenation of vectors and/or matrices using a vertical
bar, e.g., [A|B], and vertical concatenation of vectors and/or matrices using a
semicolon, e.g., [A; B].

2.1 Lattice Background

We use m-dimensional full-rank integers lattices A, which are discrete additive
subgroups of Z™. A g-ary integer lattice and a “shift” integer lattice are defined
as follows.

Definition 1. (g-ary Lattices) Given a matriz A € Zy*™ for some positive
integers n,m, q and a vector u € Zy, we define:

L m . —
A7 (A)={x€Z™:Ax=0 mod g}.

AY(A)={x€Z™: Ax=u mod ¢}.

q
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Definition 2. A noise distribution x over Z is B-bounded, if Pr [|x| > B] <
T—X
2790,

Definition 3. (Decisional learning with errors) Given integersm, ¢ > 1, m >
O(nlogq), and a B-bounded noise distribution x over integers, the LW E, ,
problem is to distinguish the following two distributions:

(A,ATs +e) and (A, u)
where A — Zg*™,s «— Zj,e < X", u < L' are sampled independently.

Theorem 1. ([8,27,28]) If there exists an efficient algorithm for deciding the
LWE, 4 problem for some B = B(n),q/B > 27" m = poly(n), then there is an
efficient quantum algorithm for SIV P, and a classical algorithm for GapSV P,
for~v = 22(n%) i the worst case.

Corollary 1. (Hermite normal form [4]) There exists a useful transformation
that reduces LW E,, 4 problem into one where the secret is chosen from its noise
distributions x, which illustrates that distinguish the following two distributions
is no easier than solving LW E,, ;. problem.

(A,ATs +e) and (A, u)
where A — Zg*™, s« x",e « X", u « Zg' are sampled independently.

Corollary 2. ([21]) Applying standard hybrid argument, these distributions
below are computational indistinguishable. Otherwise, there exists an efficient
algorithm to solve LW E,, 4, problem.

- (A,ATX + E) and (A, U), where A « Zy*™, X — X E — ym U —
meﬁl
q
- (A,D,ATX+E,DTX+E’) and (A,D, ATX+E,DTX'+E’) where A,D «
ngm,X7X/ — X7L><€’E7E/ — mee‘
- (A {ATX; + Ei}ticiy)) and (A, {Ui}iciy)), where A «— Zyp*™ X;
X" By — ™ Uy — 27 for all i € [t],t = poly(n).

Lemma 1. ([1]) Given ¢ > 2 and m > (n+1)log ¢+ w(logn), for some polyno-
mial k = k(n), choose three uniformly random matrices U € {—1,1}"*F A €
Zy*™, and B € ZZ;X’“. For all vectors r € Zy', the distributions (A, AU, UTy)
and (A, B, UTr) are statistically indistinguishable.

2.2 Trapdoor and Sampling

The following lemmas show the properties of lattice trapdoor and efficient Gaus-
sian preimage sampling respectively.

Definition 4. (Gadget matriz [6,25]) For integers ¢ > 2 and n > 1, there is
a special, structured matriz G = I, ® g7 € ZZXk” where k = [log(q)],g =
(1,2,...2""Y) e zk.
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~ The lattice A} (G) has a public known basis Tg € ZF"** with | Tg|as <
V5.

- For any m > kn, G € ZZX’“” can be extended to a matriz G' € Zy*™ by
adding zero columns on the right of G.

Lemma 2. ([1,6,11]) Given n > 1 , ¢ > 2 and m > [6nlogq|, we have the
following polynomial-time algorithms:

— There is a randomized algorithm TrapGen(1™,1™, q) that outputs a full-
rank matric A € Z2*™ and a short basis T € Z™*™ for Ay (A) such that
A s statistically close to uniform and ||Talas = O(vnlogq), with all but
negligible probability in n.

— There is a deterministic algorithm ExtendRight(A,T4,B) that given
matrices A, B € Zy*™ and a basis Ta of Aj(A) outputs a basis Tap of
A (A|B) such that | Tallas = [ Tallas-

— There is a deterministic algorithm ExtendLeft(A, G, Tq,S) that given full-
rank matrices A,G € Zy*™ and a basis Tg of /lj(G) outputs a basis

Tajastc of 47 (A|AS+G) such that | Tajasiclles < [ITalles (1+]/S]2)-

Lemma 3. ([2,11,14]) Given integers n,q > 2 and m > n. Let A € Zy*™ and
Ta be a basis for AL (A), for any o > | Tallas - w(v/Iogm). We have

- A random vector x sampled from D, (A} (A)) has €3 norm less than ov/m all
but with negiligible probability in m.

— There is a randomized algorithm SamplePre(A, Ta,D, o), which outputs a
random matriz X € AP (A) such that AX = D from a distribution that is
statistically close to Dy (AD(A)).

— There is a randomized algorithm RandBasis(A, Ta, o), which outputs a ran-
dom basis T’y of A(JI‘(A) sampled from a distribution that is statistically close
to Do (AP (A)).

2.3 Key Homomorphism and Vector Decomposition

Let us recall some notions, used in fully homomorphic encryption.

Definition 5. For any positive integers £, d, we define the family of functions
Fra={f:{0,1}* — {0,1}}, where f is a boolean circuit of depth < d.

Lemma 4. ([6,22]) Given positive integers n,q, £, d,m where m > [nlog(q)]
and a B-bounded noise distribution x, for any matrices By, ...,By € Zy*™, any
boolean circuit f € Fyq and any x € {0,1}¢, if

Vi € [ﬂ] 1C; = (:ElG + Bi)TS +e;

where s «— Z;,e; < X™ for i € [{], then we have,

— A deterministic algorithm Evalpy(f, {Bi}icjg) that given a circuit f and ¢
matrices {Bi}icig, outputs a matriz By.
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~ A deterministic algorithm Evale:(f, {(z:, Bi, i) }iepg) that given a circuit f,
a vector x € {0,1}¢, ¢ matrices {Bi}icig and { vectors {c;}icpg, outputs a
vector c¢, satisfying

Cr = (f(X)G + Bf)TS + ey
where By = Evalp(f, {Bi}ticig) and |lef|| < Bym(m + 1)¢ with all but
negligible probability.
~ For all i € [€], it holds that B; = AS; — 7G where x* = {a} };¢ig € {0,1}
and S; € {—1,1}m*™. A deterministic algorithm Evalgw (f, {*],Si}ici, A)
that given a circuit f, a vector x* € {0,1}*, ¢ matrices {Si}ieg and a matriz
A, outputs a matriz Sy satisfying

ASy - f(x")G =By

where By = Evalyi(f, {Bi}ticig) and ||S¢llz < 20y/m(m + 1)? with all but
negligible probability.

Definition 6. (Vector Decomposition [3,7]) We define the function mapping
vectors to their bit representations as below:

— A deterministic function Bitsq( v) that given a vector v € Zy, let v; € {0,1}"
be such that v Zﬂogq vi, outputs a vector v € {0,1}™ o84l yhere
{7 = (Vo; ey V“qu"_l)

— A deterministic function Power2,(X) that given a matriz X € Zy*™, out-
puts a matriz X € Zgﬂog'ﬂ XM where X = [X;2X;. .. ;2Megdl-1X],

~ For all positive integers q,n,m € Z , a vector v € Zy and a matriz X € Z"*™,
it holds that vI'X = Bits,(v)" - Power2,(X) =v'X € Z*™.

3 Model of Attribute-Based CPRE

In this section, we present the formalization of unidirectional AB-CPRE and
its corresponding security notation. We start with multi-hop AB-CPRE, which
implies single-hop AB-CPRE.

3.1 Multi-hop AB-CPRE

Definition 7. (Multi-hop AB-CPRE) A wunidirectional multi-hop attribute-
based conditional prory re-encryption scheme comprises the following siz algo-
rithms:

- Setup(n): the setup algorithm is run by a semi-trusted agent. Given a security
parameter n as input, it outputs the public parameters pp.

- KeyGen(pp, a): the key generation algorithm is run by a user in the sys-
tem. Given the public parameters pp, it generates the public/private key pair
(pka, ska) for user a.
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— Enc(pp, pka, pb, X): the encryption algorithm, takes as input the public param-
eters pp, a public key pky, a plaintext p, and an attribute vector x. It outputs
a ciphertext C'Ty, associated with x under public key pk.,.

- Dec(pp, sk, CT,): the decryption algorithm, takes as input the public param-
eters pp, a private key sk, and a ciphertext CT,, under public key pky. It
outputs a message .

- ReKeyGen(pp, ska,pkg, f,y): the re-encryption key generation algorithm is
run by user «, takes as input the public parameters pp, the private key skq
for user o, the public key pkg for another user 3, a control policy/function f
and an attribute vector y. It outputs a re-encryption key rkq s,y associated
with f.

- ReEnc(pp, CTy, ko, r—p,y): the re-encryption algorithm run by the proxy,
takes as input a ciphertext CT,, associated with x under a public key pk,, for
user o, a public key pkg for user B and a re-encryption key vk f—p.y. It
outputs a ciphertext C'Tg associated with y under the public key pkg when
f(x) =0 holds, otherwise outputs 1.

Remark 1. In AB-CPRE scheme, a ciphertext can be associated with null
attribute, which means vector x in Enc algorithm or vector y in ReKeyGen
and ReEnc algorithms may be a null vector. Specially, a ciphertext with null
attribute cannot be re-encrypted. For simplification, if the attribute vector is a
null vector, we will omit it, e.g., rkq, ;3 < ReKeyGen(pp, skq, pkg, f).

Correctness. In a unidirectional multi-hop attribute-based proxy re-encryption
scheme. We require the correctness for encryption and re-encryption as follows,

— For any key pair (pk,, ska) «— KeyGen(pp, a), any attribute vector x and
any message p, it holds that

Pr[Dec(pp, ska, Enc(pp, pko, p,x)) = p] = 1 — negl(n).

— For any attribute vectors yi,...,y:, any key pairs (pkg,, skg,)..-(ks,, sks,),
and any message u, for all ¢ € {2,...,t}, fi—1(yi—1) = 0, it holds that

Tk, _y fio1—piy: — ReKeyGen(pp, sks,_,, pks,, fi—1,¥i),
CT[gzil) = ReEnc(pp, CT[g’:jlz)7 rkﬁi*hfi—l"ﬁi,y/i )’
Pr[Dec(pp, skg,, CTS V) = p] =1 — negl(n)

where t = poly(n), CTY) = Enc(pp, pkg, , 1. ¥1)-

3.2 Single-Hop AB-CPRE

Unidirectional single-hop AB-CPRE, whose ciphertext can be transformed at
most once, can be viewed as a weak concept of unidirectional multi-hop AB-
CPRE. CPRE scheme does not require the attribute vector (or conditional
vector) as an input to decrypt the transformed ciphertext. Thus, different
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from multi-hop one, single-hop AB-CPRE does not require delegator to set an
attribute vector y in ReKeyGen and ReEnc algorithms. Particularly, in single-
hop scheme, we would call the ciphertext with attributes as original ciphertext,
and the ciphertext with null attribute as transformed ciphertext.

3.3 Security Notation

In this section, we concentrate on formulating the universal security notation
for unidirectional AB-CPRE. Before proceeding, we define the notations used in
security definitions.

— Delegation chain. Suppose in an unidirectional AB-CPRE scheme there
is a re-encryption key set RK = {rkg, f,—8sy2r-sTKkB 1. fo_1—Be,ye}» OF
RK' = {rkﬂl,flﬂﬁmym ""Tkﬁt—2yft—2"ﬁt—ly)’t—l’Tkﬁt—l;ft—l"ﬁt}) where t > 2
and f;(y;) = 0 for all ¢ € {1,...,t — 1}. Specially, we can learn that users
081, B2, ..., B¢ are able to decrypt all ciphertexts with y; for user 8;. Thus, we
say that there exists a delegation chain under (81,y1) from user $; to user
0. For convenience, we denote this delegation chain as (y1, 51, ..., Bt)-

— Uncorrupted/corrupted user. If the private key of a user is compromised
by an adversary, then we consider this user as a corrupted user. Otherwise,
this user is an uncorrputed user.

— Uncorrupted/corrupted delegation chain. Suppose there exists a dele-
gation chain (y1, 01, ..., 8¢). If all users on the chain are uncorrputed users,
then it is an uncorrputed chain. Otherwise, it is a corrupted chain, which
implies at least one corrupted user could decrypt all ciphertexts with y; for
user 3.

Remark 2. In single-hop AB-CPRE, the delegation chain at most contains two
users, e.g., (X, «, 3). Whereas, in multi-hop one, the delegation chain could con-
tain O(n) users.

sIND-CPA Game. The selective security of AB-CPRE on ciphertext is defined
through the following security game between a challenger C and an adversary A.

Init Adversary A announces an attributes vector x* before seeing public param-
eters pp.

Setup Challenger C runs the Setup algorithm to generate public parameters pp,
and then executes KeyGen algorithm with a random user identity 6 to get a
key pair (pke, ske). Finally, the challenger passes pp and pky to the adversary
A.

Phase 1 C initializes three empty collections ¥,,, ¥., and ¥,,. Then, C inserts
(pky, skg) into ¥,.. A sends queries ¢y, ...,q: to C. Each query is one of the
following:

1) Uncorrupted key generation query O,(8): C first runs algorithm
KeyGen(pp, 3) to get a key pair (pkgs, skg), and then inserts it into
collection ¥,,. Finally, C outputs a public key pkg.
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2) Corrupted key generation query O.((3): C first executes algorithm
KeyGen(pp, 3) to get a key pair (pkgs, skg), and then inserts it into
collection ¥,. Finally, C outputs a key pair (pkg, skg).

3) Re-encryption key query O,i(pka,pks, f,y): If o =  or pko ¢ ¥, U,
or pkg ¢ W, UV, then C outputs L. C generates a re-encryption key
Tko, f—py by executing ReKeyGen(pp, sk, pkg, f,y). If there exists a
corrupted delegation chain (x*,6,...) in ¥, U{rkq, s—sy}, then C outputs
L. Otherwise, C inserts rk,, g3,y into ¥, and then outputs rkq r—g3.y-

4) Re-encryption query Or.(CTu,7ka,t— gy): If Tka - 3y € Yri, then C
outputs ReEnc(pp, CT,, rka,f—p,y). Otherwise, C outputs L.

Challenge A submits two equal-length messages p and p}. C flips a random coin
b € {0,1}, executes CT* «— Enc(pp, pkg,x*, pu}), and returns the original
ciphertext CT™* to A.

Phase 2 The same as Phase 1.

Guess A outputs a bit b, which is a guess on b.

sKP-CPA Game. The selective security of AB-CPRE on re-encryption key is
the same as SIND-CPA game, except the Challenge phase.

Challenge A submits an uncorrupted user’s public key pkg and a policy f. If
there exists a re-encryption key rkg s—9 € WY or rkgsoy € Wrr where
y is an attribute vector, then C outputs 1. Otherwise, C tosses a ran-
dom coin b € {0,1}, outputs a re-encryption key rks y_o by executing
ReKeyGen(pp, skg,pkg, f) if b = 1, or returns random re-encryption key
rk* in re-encryption key space if b = 0.

Definition 8. (sIND-CPA Security) An attribute-based CPRE scheme is selec-
tive secure against chosen-plaintext attacks if for any probabilistic polynomial
time (PPT) adversary A, it holds that Pr[b' = b] = 1/2+ negl(n) in sIND-CPA
game, where negl is a negligible function.

Definition 9. (sKP-CPA security) An attribute-based CPRE scheme is selec-
tive key privacy under chosen-plaintext attacks if for any PPT adversary A,
it holds that Prlt/ = b] = 1/2 4+ negl(n) in sKP-CPA game, where negl is a
negligible function.

4 Single-Hop AB-CPRE Scheme

In this section, we propose the single-hop AB-CPRE scheme. Firstly, we intro-
duce the core techniques and the main idea behind our scheme. Then, we present
our concrete scheme, its correctness as well as security proof.

4.1 Technique Review

We start with a brief overview of fully key-homomorphic public-key encryption
(FKHE) [6] and key switching [3], which are the core techniques of our scheme.
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In [6], Boneh et al. put forward a kind of FKHE. For any boolean circuit
f:{0,1}* — {0,1} and its ¢ bits input x € {0,1}*, there exist three efficient
algorithms Evalpy, Eval.; and Evalgy, (See Lemma 4 for more details).

Applying FKHE, a KP-ABE system can be constructed. The master public
key contains ¢ attribute matrices {Bi}z‘e[e] and two matrices A, D. The master
secret key is a short basis T for lattice A-(A).

— For a user with policy f, use T to extract a secret key R; such that
[A‘Bf]Rf = —D, where Bf = Evalpk(f, {Bl}zG[Z])

— For a ciphertext (ATs + e;,,, DT's + eour + [q/2] 1, {(2:G + Bi) s + €;}ic)
of a message p with an attribute vector x, the user can execute the Evalg
to assemble a ciphertext ¢y = (By + f(x)G)Ts + e. The user can recover
the message p correctly by secret key Ry if his policy f satisfies f(x) = 0.

First Attempt. Easily, we can construct a naive AB-CPRE scheme by FKHE.
Firstly, a random matrix D and / attribute matrices {B;},c| are chosen and
shared among users. Then, each user chooses his public key A and the corre-
sponding private key T, the short basis of lattice A+ (A). At last, if user o wants
to delegate the decryption right with policy f to user 3, user a could use T, to
extract the re-encryption key Rq g such that [A,|B¢|Rq r—3 = Ag.

Although this naive scheme seems to work, there is no formal proof to show
the indistinguishability under chosen-plaintext attack. The FKHE system of [6]
only achieves selective IND-CPA secure. In other words, in FKHE system, A
would announce an attribute vector x* in the beginning, and C does not need to
answer the query on function f such that f(x*) = 0. But the security notation
of AB-CPRE needs C to answer the query on O,k (pkg, pkg, f). In the case that
f(x*) = 0 and pkg € ¥, C cannot generate the corresponding re-encryption key
by ExtendLeft, and then abort.

To address the constrain in the naive scheme, we have to apply the key-
switching technique, which was originally used in fully homomorphic encryp-
tion [7]. Aono et al. [3] constructed an interactive PRE with key privacy using
key-switching. Intuitively, we can convert it into a non-interactive one as follows,

— For user «, the public key is a pair of LWE instance (A,,D,) while the
private key is S, where D, = R, — A,S, and R,,S, are sampled from
error distribution.

— The re-encryption key is a matrix Qq—g as below,

EiAs+E: E;Dg+ E3+ Power2,(S,)

where E1, Eo, E5 are chosen from error distribution.

— In the transformation process, the proxy converts user «’s ciphertext
(Cin, Cout) into (Bits,(cin), Cour) and then returns [Bits(ci,)? |cl,;]Qa—p as
transformed ciphertext (Power2, and Bits, are defined as Definition 6).
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Combining key-switching technique with our naive scheme, we propose a
provably-secure single-hop AB-CPRE scheme. The main idea is showed as fol-
lows,

— £ attribute matrices {B;};c[q are chosen uniformly at random and shared
among users.

— Each user chooses two matrices A, D as their public key, and the short basis
T for lattice A+(A) as their private key.

— Ciphertext of message p with attribute vector x under pk,, is CT, = (ct, cc),

ct = (Als+ein,Dis+ e+ [q/2]p) , cc={(2:G+Bi) s +e}icy

where A,,D, is the public key of user a and s is selected uniformly at
random.

— Since user « has the short basis T, only ct is needed in decryption process.
Whereas cc only works for delegation of decryption.

— If user a wants to delegate the decryption right with policy f to user 3, then
user « extracts a matrix R, ¢ with small norm such that (A,|Bf)Ra ¢ =
—D,, and returns a matrix Q,,s—.g as re-encryption key.

4.2 Construction
Before giving our AB-CPRE scheme, we list the parameters that will be used.

— (n,q,m,x) - lattice parameters, where m > [6nlogq] , ¢/4 > B-(m+1)9(®
and y is a B-bounded (B > /- w(logn) ) distribution.

— £ - number of attributes.

— d - the maximum depth of the boolean circuit.

— ¢ - Gaussian parameter, where o = w((m + 1)) - w(y/logm).

Our scheme works for ¢,d, ¢ = poly(n), k = [logq].

— Setup(n): Choose ¢ random uniform matrices By, ...,B; « Z;*™ and an
error sampling algorithm y, which is a B-bounded distribution. Output public

parameters pp := ({Bi}iepg, X)-
— KeyGen(pp, a): Select a matrix D, « Zg*™ uniformly at random and gen-
erate a pair (A, To) < TrapGen(1”,1™,q). Then run

R, < SamplePre(A,, Ty, —D,,0) s.t. AyR, = —D,.

Output public key pky = (A, D, ) and private key skq = (To, Ra).
~ Enc(pp, pka, p, x): Given pp = ({Bi}icq), ), Pka = (Aa,Da), a plaintext
p € {0,1}™ and an attribute vector x = {;};cg. Choose a random vector
S «— Z;‘ and error vectors €;,, €,y — X". Compute ct = (cm7 cout) as
Cin = Als + ein, Cour = DJs + eour + |q/2] .

If x is none or null, then set cc = (). Otherwise, choose ¢ uniformly random
matrices S; «— {—1,1}™*™ and compute

CcC = ({Ci = (l‘iG + Bi)TS + S;rem}ie[g]) S ng.
Output ciphertext CT, := (ct, cc).
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— Dec(pp, skq,CT,): Parse sk, = (Ta,Ra) and CT, = (ct,cc). Let ct =
(Cin, Cout), then compute

A= leh <[]

mXm
For j € [m], set pu; = 1if |;u; — [¢/2]| < g/4, otherwise set p; = 0. Finally,
output p € {0,1}™.

— ReKeyGen(pp, ska, pkgs, f): Given pp = ({Bi}ici; X) 5 ska = (Ta,Ra),
pkg = (Ag,Dg) and a policy f € Fo,a- Let Bf = Evalpk(f, {Bi}ie[é])

and F = (A,4By) € Z"?™. To construct Rgy, build the
basis To,s for F as T,y « ExtendRight(A,,T,,Bs). Then run
SamplePre(F,Ta’f,—Da,U) to generate R ¢ such that FR, ; = —Dg

where R, s € Z*™*™. Set R,,; = Power2,(R,,f), sample matrices E; «—
XM By, Ez « x2*™*™ and build matrix

_ |E1Ag+E; EDg+E;z+ R ¢  7,(2km+m)x2m
$ :

Om><m Ime

Q

Output 7k, r—3 = Q as re-encryption key.

~ ReEnc(pp, 7ka,;—p,CTys): Parse pp = ({Bi}icis X), 7ka,f—p = Q, and
CT, = (ct,cc). If f(x) # 0 or cc = @ then output L, otherwise let
ct = (Cin,Cout), cC = {Ci}ie[é]a set ¢y = Evalct(fa{(xiaBiaci)}ie[E]) and
Cin,f = Bitsy([cin; cf)),

(cinlehu) = €l flegu] - Q-

Output CTp = (ct’ = (c},,,Cl),cc’ =0) as transformed ciphertext.

wn? Cout

4.3 Correctness

According to the parameters given at the beginning, the correctness is as follows.

Original Ciphertext. (Cip, Cout) is the ct of ciphertext under pk, as follows,
Cin = AZ;S + €in, Cout = D?):S + €out + I_Q/QJ”

Since, A, - R, = —D, where |R,||2 < mo with overwhelming probability.
Therefore, we have

mxXm

R,
el [ | = ehRa el /2"

where |e! R, + el || < mymoB+ /mB < B - (m +1)°4 < ¢/4 with over-

n
whelming probability, which ensures correct decryption of .

Transformed Ciphertext. (ct = (Cin, Cout), cc = ({Ci}iclg)) is the original cipher-
text associated with attribute vector x under pk,. rk, r—.g is a re-encryption
key, where f(x) = 0. By Lemma6 and Lemma 4, we have

o Rap = (5" [Aa|By] + [e],|ef)Ra s = —s" Da + [ef,|ef|Ra.f
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where R, ; < v2mo and ||e;|| < By/m(m+1)? with overwhelming probability.
Then, the transformed ciphertext is computed as follows,

pu]

T ][E1A5+E2 E;Ds +E; + R f

[einle

Cin,f

out
Om Xm Im><m

=[c}, ;(E1Ag + Ey)|cf, (E1Dg + Es) + [e], e} |Ra s + €l + [4/2] 1]

where Ag and Dg is public key of user 8, |E1| < v2kmB, |Ez| < v2kmB
and ||Es|| < v2kmB with overwhelming probability. Therefore, we have

R "
[l lein] - [I 7 } =¢,, /EsRp + ¢}, ;Es+ [e],|ef Ra s + el + lq/2|p

mXxXm

where [|€], ;EosRp+c], ;Es+[e] |} |Ra j+el, |l < 2km?\/moB+2kmy/mB+

2my/m(m+1)%eB4+/mB < B(m+1)°@ < ¢/4 with overwhelming probability,
which means that decryption of p is correct.

4.4 Security Proof

In this subsection, we show that our AB-CPRE scheme is SIND-CPA secure and
sKP-CPA secure in the standard model.

Theorem 2. Our single-hop AB-CPRE scheme is sSIND-CPA secure and sKP-
CPA secure in the standard model under LW E,, 4\ assumption.

The full proof can be found in Appendix A. Here, we outline our proof sketch
only. Our security proof employs proof idea from [1,6]. We build a challenger C,
who solves LW E,, , 5, problem by invocating a PPT adversary A.

Given a random matrix [Ag|Dy], C will be given a uniform vector u or an
LWE instance [Ag|Dg]”s + e, where e is sampled from error distribution y.
Then A announces a challenge attribute vector x* € {0,1}* before C selects
the public parameters and the specific public key. After receiving x*, C gen-
erates ¢ matrices {S]};cfyq with small norm uniformly at random, computes
{Bi = AyS; — 27 G}y, sets ({Bi}icpg, X) as the public parameters pp and sets
(Ap,Dy) as the specific public key pkg. When adversary A makes a query on
O, (pko, pks, f) such that f(x*) # 0, challenger C would check whether there
exists a corrupted delegation chain (x*, 6, ...). If not, C executes Evalg,, defined
as Lemma 4, produces a short basis Ty, ; for lattice A+ (Ay|B;) by ExtendLeft
and then compute a re-encryption key rky 3 = Q. In Challenge phase, chal-
lenger C assembles a challenge ciphertext by LWE instance [Ag|Dy]”s + e or a
uniform vector u. Finally, challenger C outputs adversary A’s answer as result.

However, adversary A may make a query on O, (pkg, pks, f) where f(x*) =0
and pks € ¥,. In this case, Bf = AyS¢, challenger C cannot generate the
corresponding short basis Ty ; by ExtendLeft, which will make C abort.
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To fix such a problem, we have to use key-switching technique to avoid to gen-
erate Ty y, where f(x*) = 0. By LWE assumption, E;Dg+E;3;+Power2,(R,, )
is computational indistinguishable from uniform matrix M. As a result, we will
sample a random M instead of computing E;Dg + E3 + Power2,(R, s) when
asking for rkg ., f(x*) = 0 and pkg € ¥,.

5 Extension: Multi-hop AB-CPRE Scheme

In this section, we construct a multi-hop AB-CPRE scheme from the single-hop
scheme in Sect. 4.

Let us show transformed ciphertext CTg = (ct,cc = 0) in single-hop AB-
CPRE, detailedly,

/T T ] ElA[j+E2 E1D5+E3 Jrﬁoz,f

G = [Eln,f |Cout

Ome Ime

~ (¢}, jE1) - [Ag+ error| Dg + error’] + [0 | [q/2] p] € Z)*™.

Method 1. Obviously, ct is in the form of dual Regev’s ciphertext [14]. Thus,
we can apply key-switching to generate a re-encryption key rkg_., from user
0 to user m (mentioned in Subsect.4.1). However, in such way, once the proxy
obtains a re-encryption key rkg_.., the proxy could transform all ciphertext of
user ( to user m without any discrimination.

Method 2. Compared to original ciphertext, transformed ciphertext does not
contain any cc = {(2;G + B;)Ts + €; }ic[¢), which plays an important role in del-
egation. Thus, we can make subtle change in ReKeyGen algorithm to achieve
multi-hop capacity. ReKeyGen would return a re-encryption key in single-hop
AB-CPRE together with an extra matrix,

P = [E,(11G + By) + Ep, |...|E1 (3G + By) + Ep,]

where y is the attribute vector set by delegator, E; is the same as in ReKeyGen,
and the elements of Ep, are chosen from error distribution y. With matrix P,
the proxy could compute the new cc for the transformed ciphertext

cc” =[ey;.5el” =€, (P

= ¢} ;- [E1(1G + B1) + Ep, |..|[E1 (4G + By) + Ep,].

Therefore, the transformed ciphertext (ct, cc) would be associated with a new
attribute vector y set by delegator.

5.1 Construction

The parameters are the same as in Sect. 4, and our scheme works for ¢,d,q =
poly(n), m > [6nlogql,q/4 > B~ (m +1)°?, o = w((m +1)"*") - wy/logm,
k = [logq].
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— Setup(n): the same as Setup(n) in Sect. 4.

— Enc(pp, pka, p,x): the same as Enc(pp, pka, g, x) in Sect. 4.

— Dec(pp, ska, CT,,): the same as Dec(pp, sk, CT,,) in Sect. 4.

— ReKeyGen(pp, ska,pks, f,y): Parse pp = ({Bi}ici, X) 5 ska = (Ta; Ra),
pks = (A, Dg), a policy f € Fyq and an attribute vector y = {y;};cjq. Let
By = Eval,(f, {Bi}icjq) and F = (A,|By) € Z"*?™. To construct Rq f,
build the basis T, s for F as T, ; «— ExtendRight(A,, T,,By). Then
run R, ; «+ SamplePre(F, T, ,—D,,0) s.t. FR, y = —D, where R,y €
Z2mxm - Qe Raﬁf = Power2,(R,,), sample matrices E; <«
ZEmxn By Es «— x2¥m*™ and build matrix

Q= EiAs+E; EDsg+E;+R,; ¢ 7,(2km+m)x2m.
Omxm Ime q

If y is none or null, then set P as a null matrix. Otherwise, samples ¢ matrices
Ep, from error distribution x?*”*™ and compute,

P= [(El(in + Bl) + EB1) ‘ ‘ (El(yZG + BZ) + EBZ)] c ngmxém.

Output 7kq4, 55y = (Q,P) as re-encryption key.

- ReEnc(pp, Tka,f—%?,y7CTa): Parse pbp = ({Bl}le[f]vx)’ rka,f—‘ﬁ = (QvP)7
and CT, = (ct,cc). If f(x) # 0 or cc = () then L, otherwise let ¢t =
(Cins Cout)s cc = {Ci}ticpy, set ¢y = Evale(f, {(xi, Bi, i) }icy) and Ciny =
Bits,([cin; cy]), then compute

( |Cout) = [AJT out] Q

If P is a null matrix, then set c¢’ = (). Otherwise, compute

[c);..sc))" =¢f, ;- P.

and then set cc’ = {cj}icfg. Output CTp = (ct’ = (cj,,C,y;), cC’) as trans-
formed ciphertext.

5.2 Correctness and Security Proof

Theorem 3. Our multi-hop scheme supports O(n) times transformations.

Suppose t = O(n) and (ct® = (c 527 Sgt) cclt) = {c ®) }Ze[g]) is the ciphertext
that has been transformed ¢ tunes then we have ||e0ut | < v/mB +2km+\/mBt+
2v/2km?(m+1)4 aBt and ||e || < 2km+/mB (See Appendix B for more details).

Therefore, ||e(t R, te, t) | < 2km?/moB + /mB + 2km~/mB - O(n) +
2v/2km?(m + 1)%0B - O(n) S B - (m 4+ 1)°@ < ¢/4 holds with overwhelming
probability, which ensures the correctness.

Theorem 4. Our multi-hop AB-CPRE scheme is SIND-CPA secure and sKP-
CPA secure in standard model under LW E,, 4, assumption.
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Due to the space limitations, we just outline our proof sketch here. Our proof
idea is similar to single-hop one. The difference between multi-hop scheme and
single-hop scheme is the form of re-encryption key. In single-hop scheme, the
re-encryption key rkg s_.5 contains a matrix Q € Zézkm+m)xzm. Whereas, in
the multi-hop scheme, the re-encryption key rkg ¢—. 3y would contain an extra
Pe ngmxfm. Thus, in the sequence of SIND-CPA game or sKP-CPA game, C
would generate an extra matrix P honestly, when asking for a re-encryption key
(see Appendix C for more details).

6 Conclusion

In this paper, we propose two LWE-based AB-CPRE schemes against quantum-
attack. Single-hop one is unidirectional, and supports fine-grained delegation of
control as polynomial-depth circuit. Multi-hop one, an extension of single-hop
scheme, is the first multi-hop AB-CPRE scheme. No matter how many trans-
formations are performed, the ciphertext of multi-hop AB-CPRE is in constant
size. Besides, we prove that both of our schemes are SIND-CPA and sKP-CPA
without relying on random oracle.

At last, we leave two open problems. One is to construct an IND-CCA secure
AB-CPRE scheme from lattices. Another is to construct a multi-hop lattice-
based IND-CPA secure AB-CPRE scheme in adaptive model.
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A Proof for Single-hop AB-CPRE

All details of proof can be found in full version [20]. Due to space limitations,
we only present the simulator algorithms used in our proof.

— Setupgys(n,x*): Let x* = {2} };cq to be the attribute vector selected by
adversary A. Sample a uniform matrix Dy « Z;*™ and generate a ran-
dom identity’s public key Ay « Zy*™ | then choose ¢ random matrices
Si,..,8) «— {—1,1}*™. Set B; = ApS} — 2;G for all i € [{]. Select an
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error sampling algorithm , which is a B—bounded distribution. Keep matri-
ces {Sj }icjq as secret and output public parameters pp := ({Bi}iec[g, x) and
specific public key pky := (Ag, Dy).

— Encsia (pp, pko, o, x*): Let pp = ({Bi}icig; X), pko = (Ag,Dy), a chal-
lenge message pp € {0,1}™, and a selected attribute vector x* = ({z }ic(g)-
Choose a random vector s «— ZZ} and two error vectors €;,, €,y — X"'. Com-
pute ¢t = (Cin, Cout) a8

= (AG)TS + €in, Cout = (DG)TS + €out + |_q/2J Hb-

Use {S] }icqg chosen in Setupgyys instead of uniform matrices in {—1, 1}

and then assemble cc* = ({c; = (2]G + By)Ts + (S]) e ici) € Zi™

Output a challenge ciphertext CT* = (ct*, cc*).

— ReKeyGeng;,,(pp, pks, f): Parse pp = ({Bi}icig, X) » ks = (Ag,Dg), and

a policy f € Fyq. Let ST = Evalgin(f, (27, S})iciq, Ao)-

1) In the case that f(x*) # 0, let By = A4S} — f(x*)G and set F =
[Ag|Bf — f(x*)G] € Z"*?™. Compute the basis Ty ¢ for F as Ty ¢ «
ExtendLeft(Ay, G, Tg,Ss). Then generate a matrix Ry y € Z2m*™
such that FRg ; = —Dy by executing SamplePre(F, Ty s, —Dg, o), set
Ra’f = Power2,(R, ), sample E; « YZEmxn By Bg «— x2FmXm and
compute

mXxXm

o |

2) In the case that f(x*) = 0, sample two matrices E; « x> By «
x2kmxm - choose a matrices M/ «— Z2Fm>*™ ypiformly at random, and

compute

EiAg+E; E;Dg+Es +R0,f] € 7,2km+m)x2m
q .

Ome Ime

o ElAﬁ +E2 M/ (2km+m) x2m
Q N |: O xm Loxm < Zq '

Output rke r—.g = Q as re-encryption key.

B Correctness for Multi-hop AB-CPRE

The correctness of original ciphertext is the same as the correctness in Sect. 4.
Then the correctness of transformed ciphertext is presented as follows.

Transformed Ciphertext. (ctt=1) = (™D {71 celt-1) = {cz(-tfl)}ie[g]) is

n ’ ou
the ciphertext which has been transformed ¢ — 1 times and associated with
attribute vector x under pk,. For convenience, 7k, ;—py = (Q,P) is the
re-encryption key, where f(x) = 0. Set Nz(':ufl) = Bits,([c;, =, cgf 1)}) and

R.,; = Power2,(R,, ). Then the ¢ times transformed ciphertext (ct*), cc(®)) is
showed as following;

cf) = (") As +ef)) = @ ) BiAs + (&, ) Ee,
conr = (€ /) "EaDs + (& ) Ba el s el TV Ra s + () + La/2)m,
{el” = (") (G + Bi) + ()" = &, )" E1<yLG+B>+<~EZ ) En Yicin



AB-CPRE in the Standard Model Under LWE 165

For any ¢ > 0, we can learn that, [|e'”)|| < 2km/mB and ||e{” || < 2km/mB.
Because [|el,),|| < /mB and |le}|| < v2mkB(m +1)4, we have,

e, || < vmB + 2kmy/mBt + 2v/2km2(m + 1)%oBt.

Therefore, for the ¢ times transformed ciphertext (ct®, cc(®)),

[T (@T] - [ | = e Ra + () + Lo/

I7n><’m

where [[(el))TRq + (el) 7] < [1(e)7] - IRall + [[(el))7|| < 2km?/mo B +

VmB + 2kmy/mBt 4 2v/2km?(m + 1)%0Bt < B - (m + 1)°@ < ¢/4 with over-
whelming probability, which ensures the correctness.

C Simulator Algorithms for Multi-hop AB-CPRE

We only present ReKeyGeng;,, for multi-hop scheme and the other simulator
algorithms can be found in the full version [20].

- ReKeyGenS’I]W(ppapkﬁva y) Parse pp = ({BZ}ZE[Z]7X)7 pk,ﬁ = (AﬁvDﬁ)v
a policy f € Fyq and an attribute vector y = {yi}ici. Compute S}
by executing Evalswm (f, (27, S} )icj, Ag), sample matrices E; xZkmxn

EQ,E3 - X2km><m-

1) In the case that f(x*) # 0, let By = ApS} — f(x*)G and set F =
[Ag|B; — f(x*)G] € Z™?™. Compute the basis Ty s for F as Ty <
ExtendLeft(Ay, G, Tg,Ss). Then generate a matrix Ry y € Z*™*™
such that FRg ; = —Dyg by executing SamplePre(F, Ty ;, —Dg, ), set
R, ; = Power2,(R,, /), and compute

Q- |:E1A5 +E; E;Dg+E;+ Re,f] c Z((]ka—&-m)x?m.

Ome Im><m
2) In the case that f(x*) = 0, choose a matrices M « Z2¥™*™ uniformly
at random, and compute
EiAg+E;, M
Q- [ 10 g+ ko . } c Z((]ka+m)><2m'
mXxXm mXm

If y is none or null, then set P as a null matrix. Otherwise, samples ¢ matrices
Ep, from error distribution x2*™*™ and compute,

P =[(Ei(y;G +B1) +Ep,) | .. | (E (3G + By) + Ep,)] € z2Fmxtm,

Output 7kg 53y = (Q,P) as re-encryption key.
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Abstract. Proxy re-encryption (PRE), introduced by Blaze, Bleumer,
and Strauss at EUROCRYPT 98, offers delegation of decryption rights,
i.e., it securely enables the re-encryption of ciphertexts from one key to
another, without relying on trusted parties. PRE allows a semi-trusted
third party termed as a “proxy” to securely divert ciphertexts of a user
(delegator) to another user (delegatee) without revealing any informa-
tion about the underlying messages to the proxy. Attribute-based proxy
re-encryption (ABPRE) generalizes PRE by allowing such transforma-
tion of ciphertext under an access-policy into another ciphertext under a
new access policy. Such a primitive facilitates fine-grained secure sharing
of encrypted data in the cloud.

In order to capture the application goals of PRE, the security
model of (Attribute-based) PRE evolves over the decades. There are
two well-established notions of security for (Attribute-based) proxy re-
encryption schemes: security under chosen-plaintext attacks (CPA) and
security under chosen-ciphertext attacks (CCA). Both definitions aim to
address the security that the delegator enjoys against both proxy and del-
egatee. Recently, at PKC 19, Cohen points out that CPA security guar-
antees much less security against delegatee than was previously under-
stood. In particular, CPA security does not prevent delegatee from learn-
ing delegator’s secret key after receiving a single honestly re-encrypted
ciphertext. To circumvent this issue, Cohen proposes security against
honest re-encryption attacks (HRA) to strengthen CPA security that
better captures the goals of PRE, and shows that two existing proxy re-
encryption schemes are HRA-secure, one of them is quantum-safe, which
is constructed from fully homomorphic encryption scheme (FHE).

In this work, we advance the studies on HRA-secure PRE for the
ABE setting. We first formalize the definition of HRA-secure Key-Policy
ABPRE (KP-ABPRE) and propose a construction, which is quantum-
safe and secure in the standard model based on the hardness of the
LWE. As an important consequence, we have the first quantum-safe HRA-
secure Identity-based PRE. Moreover, the underlying PRE of the pro-
posed KP-ABPRE is the first quantum-safe HRA-secure PRE without
FHE.
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1 Introduction

Consider a scenario when Alice wants to allow Bob to decrypt a message
encrypted under her public key without giving her secret key to Bob. A naive way
for Alice to have a proxy implementing such a mechanism is to simply store her
private key at the proxy: when a ciphertext arrives for Alice, the proxy decrypts
it using the stored secret key and re-encrypts the plaintext using Bob’s public
key and sends to Bob. The obvious problem with this strategy is that the proxy
learns the plaintext and Alice’s secret key. Blaze, Bleumer, and Strauss [5] intro-
duced the concept of PRE to achieve an elegant solution that offers delegation
of decryption rights without compromising privacy of underlying message and
Alice’s secret key. Here, Alice provides a piece of secret information to a semi-
trusted proxy called re-encryption key (but not her secret key) that allows it
to re-encrypt a ciphertext computed under Alice’s public key into one that can
be opened using Bob’s secret key. Since Alice delegates her decryption rights
to Bob, Alice is termed as a ‘delegator’ and Bob as a ‘delegatee’. Based on
the direction of the delegation, PRE schemes are classified into bidirectional and
unidirectional schemes. In unidirectional schemes, a proxy can re-encrypt cipher-
texts from Alice to Bob but not from Bob to Alice, while in the bidirectional
schemes, the proxy is allowed to re-encrypt ciphertexts in both directions. It is
worth mentioning that unidirectional constructions are much desirable because
bidirectional construction can be easily implemented using a unidirectional one.
PRE schemes are also classified into single-hop and multi-hop schemes. In a
single-hop scheme, a proxy cannot re-encrypt ciphertexts that have been re-
encrypted once. In a multi-hop scheme, the proxy can further re-encrypt the
re-encrypted ciphertexts. PRE has various interesting applications ranging from
encrypted email forwarding [4,5,23], securing distributed file systems [4], single-
writer many-reader encrypted storage [28], to digital rights management systems
[30]. We notice a real-world file system employing a PRE scheme by Toshiba Cor-
poration [26]. On the other hand, various emerging ideas and techniques have
shown connections between re-encryption with other cryptographic primitives,
such as program obfuscation [12,22], and fully-homomorphic encryption [10].
Hence, further studies along this line are both important and interesting for
theory and practice.

In a PRE scheme, the communication model is one-to-one, in the sense that a
ciphertext can be re-encrypted only towards a particular public key. In practice,
however many scenarios require the re-encryption functionality without exact
knowledge of the set of intended recipients. One such major application is data
sharing in untrusted cloud storage. In the cloud, a data owner may wish to share
her encrypted data with users satisfying a specified access policy. Attribute-based
proxy re-encryption (ABPRE) [18,24] enables such fine-grained data sharing.
ABPRE designates a semi-trusted proxy to transform ciphertexts of delegators
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satisfying an access policy into ciphertexts of delegatees satisfying a new access
policy. ABPRE integrates the notion of PRE with attribute-based encryption
(ABE) to effectively enhance the flexibility of delegation of decryption capability.

1.1 Motivation and Related Works

Recently, Cohen [13] demonstrates the insufficiency of CPA-secure PRE for var-
ious applications, viz., encrypted email forwarding, key escrow, single-writer
many-reader encrypted storage. In particular, CPA security does not prevent
delegatee from learning delegator’s secret key after receiving a single honestly
re-encrypted ciphertext. Such an attack can be withstood by a CCA-secure PRE.
However, CCA-secure PRE is much more expensive than CPA-secure PRE. To
this end, Cohen proposes security under honest re-encryption attacks (HRA) to
strengthen CPA security that better captures the goals of proxy re-encryption.
Informally, both notions of CPA and HRA security are typically defined using
a security game between an adversary and a challenger in which the adver-
sary’s task is to distinguish between encryptions of two messages. Both notions
allow the adversary to corrupt either delegatee (learning secret key of delegatee)
or proxy (learning the re-encryption key). However, in a CPA security game,
the adversary is not allowed to have access to re-encryption oracle of honestly
generated ciphertexts. In contrast, HRA security provides the adversary with a
restricted re-encryption oracle which re-encrypt honestly generated ciphertexts.

In [13], Cohen shows that two existing proxy re-encryption schemes are HRA-
secure — one of them is quantum-safe, which is constructed from FHE using
the procedure based on double encryption of plaintext and evaluation of the
decryption circuit [19]. However, this approach relies on heavyweight tools gen-
erally used for bootstrapping for FHE, which is very inefficient. Two subsequent
recent works [14,17] forward the studies on HRA-secure proxy re-encryption.
Fuchsbauer et al. [17] study HRA-secure proxy re-encryption in an adaptive cor-
ruption model. Very recently, Dottling and Nishimaki [14] extend HRA security
to the universal setting, where ciphertexts can be converted between different
public-key encryption schemes — a problem that is coined as universal PRE.
However, to address efficiently the wider horizon of application by removing
certificate respiratory or to embed fine-grained access control, it is required to
extend HRA security for the identity-based and attribute-based PRE schemes.

1.2 Our Contributions and Future Direction

To date, HRA security has not been introduced for identity-based and attribute-
based PRE schemes, which leaves a research gap. In this work, we fill this gap in
the literature by formalizing the definition of HRA-secure Key-Policy Attribute-
based PRE (KP-ABPRE) and proposing a construction. The proposed construc-
tion is quantum-safe and secure in the standard model based on the hardness of
the learning with errors problem. We show that HRA-secure KP-ABPRE is also
CPA-secure KP-ABPRE. While HRA is a stronger security notion than CPA, we
show that if a CPA-secure KP-ABPRE scheme has an additional property, viz.,
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re-encryption simulatability (see Sect.3.1), then it must also be HRA-secure. It
is worth mentioning that KP-ABPRE was first formalized in [18] and proposed a
CCA-secure construction. Unfortunately, in [18], re-encrypted ciphertext follows
the phenomena of Ciphertext-Policy Attribute-based PRE instead of KP-ABPRE.
Hence, this work first presents the precise definition of CPA-secure KP-ABPRE
as well. In nutshell, contributions of this paper are as follows:

— Formalization of HRA-secure KP-ABPRE and CPA-secure KP-ABPRE.

— Construction of single-hop unidirectional HRA-secure KP-ABPRE scheme.
The proposed scheme enjoys the properties of proxy transparency, non-
interactivity, key optimality, non-transitivity. The proposed construction is
quantum-safe and secure in the standard model based on the hardness of the
learning with errors problem (LWE).

— Considering attribute set as an identity, we will have the first HRA-secure
Identity-based PRE in the selective identity model®.

— Underlying PRE of the proposed KP-ABPRE is the first HRA-secure
quantum-safe PRE without FHE.

This work left open interesting problems to construct variants of pro-
posed constructions in multi-hop setting and initiate the study of HRA-secure
Ciphertext-Policy Attribute-based PRE.

1.3 Technical Overview

A possible way to construct KP-ABPRE is to use Attribute-based FHE [21] fol-
lowing the procedure based on double encryption of plaintext and evaluation of
the decryption circuit [19]. However, this approach relies on heavyweight tools
generally used for bootstrapping. Instead, we convert KP-ABE by Boneh et al.
[6] to KP-ABPRE by using the idea of “key switching” technique from [7].
KP-ABPRE consists of six algorithms, namely, SetUp, KeyGen, ReKeyGen, Enc,
ReEnc, Dec. To construct KP-ABPRE, we design re-encryption key generation
algorithm (ReKeyGen) and re-encryption algorithm (ReEnc) maintaining com-
patibility with SetUp, KeyGen, Enc, Dec algorithms of [6]. Let us assume attribute
vectors for KP-ABPRE are /-tuples over Z, and the supported key-policies are
functions in F := {f : Zé — Zg}. Let f: Zg — Zg be a function represented
as a polynomial-size arithmetic circuit. It is required to use evaluation algorithms
[6], namely Eval,y, Eval;, Evalgy,, for the underlying key-homomorphic features
of KP-ABE - hence to construct KP-ABPRE. Informally, Eval,; helps to compute
public parameters under some functions, such as f; Eval.; translates the cipher-
text encrypted under the attribute vectors x to a ciphertext under the function
f, and Evalg,, is only useful in the simulation for the security reduction. For
SetUp, we generate (Ao, Ta,) using TrapGen algorithm [2,3,25], where Ay is a
random n X m matrix over Zg, and Ta, € ZI"™™ is a basis of A7 (Ag). We call
T a, the associated trapdoor for Ag. Also, choose ¢ random n x m matrices over

! It may possible to prove HRA security for the Identity-based constructions by Dutta
et al. [15,16] with appropriate modifications.
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Zgq, denoted by Aq,---, Ay and U. Let G be the gadget matrix, whose associated
trapdoor Tg (i.e., a short basis for the g-ary lattice A (G)) is publicly known
(see [25] for details). We set {Ag, Ay,---,Aq,U,G} as the public parameters
and Ty, as the master secret key. One of the main challenging tasks to design
the proposed KP-ABPRE is the design of re-encryption key, which we describe
briefly in next paragraph:

In KP-ABPRE, every secret key sky is associated with some function f and
an encryption of a message p is labeled with a public attribute vector x € Zf;.
The encryption of p can be decrypted using sky only if f(x) = 0 € Z,.
To compute a re-encryption key from the policy f to g (rks—g), we need to
ensure that the re-encrypted ciphertext (suppose labeled with the attribute
vector y) should be decrypted only by sk, while g(y) = 0. We first choose
an attribute vectors y, which satisfies the policy ¢ i.e. g(y) = 0. Treating
H, = [Ao‘ylG—l—Al‘---‘ng—i—Ag] as the public key for y and the secret
key sky for the policy f, we construct the unidirectional re-encryption key

R1Hy+R2 R,U + R3 _PQ(Sk’f)
T/{Zfﬂg = 0 I 5

where P2 represents power of 2 (Suppose x € Zy, we denote (x,2-%x,- -, 2Mlogal.

X) € Zg‘ﬂog d by P2(x)), Ri is chosen uniformly random from Z, of order
2mk x n, and R, R3 are chosen from y-distribution (see Definition 1) of order
2mk x (£ + 1)m and 2mk x m respectively. Note that, we embed y at Hy, which
ensure that the re-encrypted ciphertexts can not be decrypted by sk, while
g(y) # 0. Since, the order and structure of the original ciphertext and the
re-encrypted ciphertext are same in our scheme, we can use same decryption
algorithm for both original and re-encrypted ciphertext to decrypt.

We prove the security of Selective-KP-ABPRE under the hardness of deci-
sional LWE (dLWE). Here, adversary announces the target set of attributes

x* = (z7,--- ,x}) before seeing the public parameters. During security reduc-
tion, Ay, -+, Ay from the public parameter change as follows: A; = A(S; —
zfG for i € {1,--- , ¢}, where S},---,S; «— {+1, —1}"*"™ are random matri-

ces. We show that AyS? are uniform in ngnﬁ so that A;’s are distributed as
required. Also, the challenger chooses a low-norm matrix Ry« from the discrete
Gaussian distribution and construct U as [Ao‘sz + A4 ‘ . ~‘sz + Ag] ‘Ryr =
U. Ry~ will play a vital role during the simulation of re-encryption query. Now,
to respond to secret key query for policy f, where f(x*) # 0, the challenger
must produce a low-norm matrix Ry satisfying [Ao‘Af] Ry = U, where
Ap=AoS} — f(x*)G and low-norm matrix S} is the output of Eval;,, taking
7,--+,8; as input. It is worth mentioning that the challenger cannot con-
struct a secret key that decrypts ciphertexts under the target set of attributes
x* — hence, secret key sky can not be constructed for the functions f, where
f(x*) = 0. Otherwise, the challenger can generate secret keys for the functions
f for which f(x*) # 0.
To respond to re-encryption key query from the policy f to g, the challenger
will construct the secret key for f whenever f(x*) # 0, then following ReKeyGen
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algorithm, the challenger will create the re-encryption key. For functions f where
f(x*) = 0, the challenger does not have secret key. So, it is not possible for
the challenger to construct re-encryption key following ReKeyGen algorithm. In
such case, the challenger simulates re-encryption key in the following way: for
f(x*) =0 and g(x*) = 0, the challenger simulates the re-encryption key rkys_.,
as X X2] , where X1, X5 are randomly chosen matrices over Z, of

Om><(€+1)m Lxm ?
order (2mk x n) and (2mk x m) respectively; otherwise, challenger outputs L.

One of the main challenges to achieve the HRA security is to provide access
of re-encryption of honestly generated ciphertexts to the adversary. That is,
the challanger needs to re-encrypt the ciphertext under the set of attributes x
(except the challenge ciphertext) from the policy f to g when f(x) = 0 and also
f(x*) = 0. Since, f(x*) =0, challenger does not have corresponding secret key
— hence, challenger does not have actual re-encryption key, which rises a non-
trivial challenge to simulate re-encryption oracle. To construct honestly gener-
ated re-encrypted ciphertext, challenger first choose y satisfies g(y) = 0 and then
construct a dummy re-encryption key k7, V. For x = x*, challenger uses Ry~
from SetUp; Otherwise, chooses a low-norm matrix Ry satisfying Hy - Ry = U
to create the dummy re-encryption key

RlHy +R2 R1U+R3 — PQ(RX*)OI‘(PQ(RX))
Omx(€+1)7n Lnxm

Here, Ry is chosen uniformly random from Z, of order (¢4 1)mk x n, and
Ry,R3 are chosen from x-distribution of order (¢4 1)mk x ({+1)m and
(¢ + 1)mk x m respectively. Note that, to compute Ry for x # x*, challenger
needs to have a trapdoor for Hy. Thanks to publicly known trapdoor Tq of G to
compute trapdoor for Hy. Since, x # x*, there exist at least one i € {1,--- | ¢}
for which (z; —2}) # 0. Without loss of generality, we assume that (z,—x}) # 0.
Challenger constructs Hy = [Ag|(z1 — 27)G + A¢S}| - | (z¢ — 2})G + AoS; .
Since, Tq is a trapdoor for G and (x¢ — z}) # 0, Tq is also a trapdoor for
(x¢ — z;)G. By using this trapdoor, challenger can compute a trapdoor for
H,. Multiplying the binary decomposition of ciphertext with this dummy re-
encryption key, challenger constructs the re-encrypted ciphertext. Finally, for
the target set of attributes x* the challenger can produce a challenge ciphertext
and solves the given dLWE challenge using the decision of the adversary.

Efficiency. Table1l summarizes the asymptotic bit-size of public parameter,
master secret key, secret key, re-encryption key, ciphertext and re-encrypted
ciphertext. We can see that the public parameter size is a linear function in the
size of attribute vectors £. The master secret key size and secret key size are
independent of ¢. The re-encryption key size is a linear function in ¢. Lastly,
the ciphertext size and the re-encrypted ciphertext size are same, and linear
function of £. Note that, after converting KP-ABE of [6] to KP-ABPRE, sizes of
public parameter, master secret key, secret Key and ciphertext are remain same.
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Table 1. Data sizes of proposed KP-ABPRE

Public parameter size O((£ + 3) - n?log? q)
Master Secret key size O(n*log®q)

Secret Key size 0O(2n?log® q)
Re-encryption key size O((£+2) - (n*log*q))
Ciphertext size O((£+2) - nlog?q))
Re-encrypted Ciphertext size | O((£ + 2) - nlog? q))

**{ is the size of attribute vectors; n is an integer; ¢ = poly(n).

2 Preliminaries

We denote the real numbers and the integers by R, Z, respectively. We denote
column-vectors by lower-case bold letters (e.g. b), so row-vectors are represented
via transposition (e.g. b'). Matrices are denoted by upper-case bold letters and
treat a matrix X interchangeably with its ordered set {xi,Xa,...} of column
vectors. We use I for the identity matrix and O for the zero matrix, where the
dimension will be clear from context. We use [#|«] to denote the concatena-

. . n
tion of vectors or matrices. For x € Z?, we denote (ug,--- ,Ufiog47) € Zjy [log g1

by BD(x), where z = Z;:gcﬂ 2/ - u; and u; € Zy. For x € Z, we denote

(x,2 - x,---,20ledl . x) ¢ Z;“qu] by P2(x). By Lemma 2 of [7], we have
BD(x)! - P2(y) = x'y. A negligible function, denoted by negl(\). We say
that a probability is overwhelming if it is 1 — negl()\). The statistical distance
between two distributions X and Y over a countable domain 2 defined as
3> wen |PrX = w] — PrlY = w]|. We say that a distribution over 2 is e-far if
its statistical distance from the uniform distribution is at most e.

Lattices: A lattice A is a discrete additive subgroup of R™. Specially, a lattice A
in R™ with basis B = [by|--+|[b, ] € R™*" is defined as A := {3} | bja;|z; € Z
Vi=1,...,n} CR™. We call n the rank of A and if n = m we say that A is a
full rank lattice. The dual lattice A* is the set of all vectors y € R™ satisfying
(x,y) € Z for all vectors x € A. If B is a basis of an arbitrary lattice A, then
B* = B(B'B) ! is a basis for A*. For a full-rank lattice, B* = B~'. We refer
to B as a Gram-Schmidt orthogonalization of B.

In this paper, we mainly consider full rank lattices containing ¢Z™, called
g-ary lattices, defined as the following, for a given matrix A € Zy*™ and u € Zy:
Ay (A):={z€Z™: Az=0mod q}; Ay(A) :={z€Z™:3s€ L] st. z=
ATsmod ¢}; AY(A) = {z€Z™:Az=umod ¢} = A;(A) +x for x €
A7(A)}

Matrix Norms: For a vector u, we let ||u|| denotes its ¢5 norm. For a matrix

R € ZF*™ | let R is the result of applying Gram-Schmidt (GS) orthogonalization
to the columns of R. We denote three matrix norms as follows:

|IR|| denotes the ¢35 length of the longest column of R.
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IR ag = HR , where R is the GS orthogonalization of R.
IR, is the operator norm of R defined as [[R||, = supj =1 [|Rx].

Gaussian on Lattices: Let 4 C Z™ be a lattice. For a vector ¢ € R™ and
_ 2

a positive parameter ¢ € R, define: pe,(x) = exp (7‘(%) and peo(A) =

> xen Peo(x). The discrete Gaussian distribution over A with center ¢ and

parameter o is D¢ ,(A)(y) = ZZ’:EZ;,Vy e A

Lemma 1. (Lemma 2.5. [6]). Let n,m,k,q,0 > 0 and A € Z3*™, U €
ZZX’“, For R € Z™*F sampled from Dy (AF(A)) and S sampled uniformly from
{+1, =1}™*™ the followings hold with overwhelming probability in m:

IRT|, < oVmk, R, <oVmk and |S|, < 20Vm.

Learning With Errors (LWE) [29]: The Learning with Errors (LWE) problem
was introduced by Regev [29]. Here we define the decisional version of LWE. The
security of our schemes are based on this hardness assumption.

Definition 1 (Decisional LWE (dLWE)). Consider a prime integer q, posi-
tive integers n,m, and a noise distribution x over Zq. The dLWE,, ,, 4. problem
1s to distinguish the following two distributions:

(A,ATs+e) and (A, u)

Where A & Zq*™, s Sgnud Zq' and e & x™ are sampled.

q )
Let the noise distribution x is B- bounded if its support is in [—B, B]. For any
constant d > 0 and sufficiently large ¢, Regev [29] through a quantum reduc-
tion showed that taking y as a ¢/n%-bounded discretized Gaussian distribution,
the dLWE,, ,,, 4, DProblem is as hard as approximating the worst-case GapSV P
to n?@ factors, which is believed to be hard. In subsequent works, (partial)
dequantization of the Regev’s reduction were achieved [8,27]. More generally, let
Xmaz < ¢ be the bound on the noise distribution. The difficulty of the problem
is measured by the ratio ¢/Xmaz- The problem appears to remain hard even
when ¢/ Xmaz < 2n° for some fixed € that is 0 < € < 1/2. We refer the reader to
[6,9,27,29] for more information.

Trapdoor Generators and Related Algorithms: Here, we briefly describe
the properties of algorithms for generating short basis of lattices and algorithms
for finding a low-norm matrix X € Z™** such that AX = U.

Lemma 2. Let n,m,q > 0 be integers with q prime. There are polynomial time
algorithms as follows:

1. (A, TA) «— TrapGen(1™,1™,q) [2,3,25]: A randomized algorithm that, when
m = O(nlogq), outputs a full-rank matriz A € Z3*™, and a basis Ta €
<™ for AL(A) such that A is negl(\)-close to uniform and |T|gs =
O(v/nlog q) with all but negligible probability in n.
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2. T(a|B) «— ExtendRight(A,Ta,B) [11]: A deterministic algorithm that given
full-rank matrices A,B € Zy*™, and a basis Ta of AqL(A) outputs a basis
T(A\B) OfA(JI‘(A‘B) such that |'Tallgs = ||T(A\B)||GS~

3. Tym «— ExtendLeft(A, G, Tg,R), where M = [A|G + AR [1]: A deter-
ministic algorithm that given full-rank matrices A, G € Zy*™, and a basis
Tc of Ay (G) outputs a basis Tn of Ay (M) such that | Tamllas < [ Tal as-
(L+[R]l2).

Lemma 3. Let A € Zy*™, Ta € Z™*™ be a basis for A(JI-(A) and U € ZZX’C,
There are polynomial time algorithms that output X € Z™*F satisfying AX = U
with the properties below:

1. X «— SampleD(A,Ta,U,0) [20]: A randomized algorithm that, when o =
ITallgs: w(v/Iogm), outputs a random sample X from a distribution that is
statistically close to Dy (AY(A)).

2. T'y — RandBasis(A,Ta,0) [11]: A randomized algorithm that, when o =
ITAllGs - w(vIogm), outputs a basis Ty of Ay (A) sampled from a distribu-
tion that is statistically close to (Dy(Ag (A)))™. Here I T'sllas < ov/m with
all but negligible probability.

Lemma 4. 1. X «— SampleRight(A,Ta,B,U,0): A randomized algorithm
that given full-rank matrices A,B € Zy*™, and a matric U € Zi*™, a
basis Ta of Ay (A) and 0 = || Tallgs - w(vIogm), outputs a random sample
X € Z2™*™ from a distribution that is statistically close to Dy (A2 ((A[B))).
This algorithm is the composition of two algorithms:

TaB) «— ExtendRight(A,Ta,B) and X «— SampleD((A[B), T (a|B),
U,o).

2. X «— SampleLeft(A,S,y,U,0): A randomized algorithm that given full-rank
matriz A € Zy*™, and matrices S,U € Zy*™, y #0 € Z, and 0 = V5 (14
IS|ly) - w(v/1og m), outputs a random sample X € Z*™*™ from a distribution
that is statistically close to Dy(AY((AlyG + AS))). This algorithm is the
composition of two algorithms: T(alycias) «— ExtendlLeft(A,yG,Tq,S)
and X «— SampleD((A|yG + AS)7 T(A|yG+AS)7 U, O').

Next, we define three types of evaluation algorithms from [6]. Let n and
q = q(n), and m = O(nlogq) be positive integers. Let G € Zy*™ be the fixed
matrix. For x € Z,,B € Z*™,s € Zy;, and ¢ > 0 define the set

Es5(2,B)={(2G +B) s +ec Zy',where|le| < d}.

Lemma 5 (Evaluation Algorithms (Sect. 4. [6])). The three efficient deter-
ministic evaluation algorithms Evalyy, Evale, Evalgy, satisfy the following proper-
ties with respect to the family of functions F = {f : (Zy)* — Z4}, in which each
function can be computed by some circuit of a family of depth d, polynomial-size
arithmetic circuits (Cx)xen and a positive integer-valued function ax : 7 — Z:

1. By «— Evalp(f € F,{B;}{_,), where By and each B; € Z}*™.
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2. ¢y «+— Bvaly(f € F,{z;,Bi,c;}i_,), where cy € Ly, and each x; € L4, B; €
Zy*™, and ¢; € FEggs(z;,B;) for some s € Zy and § > 0. The output cy
must satisfy ¢; € Fs a(f(x),By), where By «— Eval,,(f € F,{B;}{_,),
x = (z1, - ,2¢), and A < 6 - ag(n), where ax(n) measures the increase in
the noise magnitude in cy compared to the input ciphertext.

3. Ry «— Evalgn(f € F,{z},Ri}{_1,A), where Ry and each R; € Zyxm,
and each x} € Zq. For x* = (a7, - ,x}), the output Ry satisfies the relation
AR; — f(x*)G = By, where By «— Eval,,(f € F,{AR,; — 2;G}{_,). For

al f € F, and for Ry, -+ Ry & {41, =1}™*™ |[Ry||, < az(n) with all but
negligible probability.

Next, we state a variant of the Left-over Hash Lemma from [1].

Lemma 6 (Left-over Hash Lemma (Lemma 13. [1])). Suppose that m >
(n 4+ 1)logy g + w(logn) and that ¢ > 2 is prime. Let R be an m x k matriz
chosen uniformly in {1,—1}Y™** mod q, where k = k(n) is polynomial in n. Let
A and B be matrices chosen uniformly in Z™™ and Z™** respectively. Then,
Jor all vectors e € Zy", the distribution (A, AR,R"e) is statistically close to the
distribution (A, B,R"e).

3 Key-Policy Attribute-Based Proxy Re-Encryption

In this section, we define the HRA-secure KP-ABPRE and it’s relation with CPA-
secure KP-ABPRE.

Definition 2 (KP-ABPRE). Let F = {f : X' — Y} be the family of func-
tions. Attribute vectors for the ABPRE are ¢-tuples over X and the supported
Key-Policies are functions in F. A single-hop unidirectional KP-ABPRE scheme
is a tuple of algorithms (SetUp, KeyGen, ReKeyGen, Enc, ReEnc, Dec) :

- (PP,msk) «— SetUp(1*,£) : On input a security parameter 1%, and the
number of attributes £, output the public parameter PP and a master secret
key msk.

- sky «—— KeyGen(PP,msk, f) : On input the public parameter PP, the master
secret key msk, and a policy f € F, output a secret key sky for the policy f.

— rky_y < ReKeyGen(PP, sky, f,g) : On input the public parameter PP, two
policy f,g, and a secret key sky for the policy f, output the unidirectional re-
encryption key rky_.q. This key can be used to re-encrypt a ciphertext under
attribute vector x to a ciphertext under attribute vector y, where f(x) = 0
and g(y) = 0.

~ ct «—— Enc(PP,x € X%, i) : On input the public parameter PP, an attribute
vector x, and a plaintext p € M, output a ciphertext ct along with the
attribute vector x.

— ¢t «— ReEnc(PP,rks_q,ct) : On input the public parameter PP, an original
ciphertezt ct under the attribute vector X and a re-encryption key rky_.g,
output a re-encrypted ciphertext ct along with attribute vector'y if f(x) =0
or the error symbol L indicating ct is invalid.
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— p «— Dec(PP, sky,ct) : On input the ciphertext ct under the attribute vector
x and a secret key sky of a policy f, output a plaintext p if f(x) = 0, otherwise
output the error symbol 1.

Definition 3 (KP-ABPRE Correctness). A single-hop unidirectional Key-
Policy Attribute-Based Proxy Re-Encryption scheme (SetUp, KeyGen, ReKeyGen,
Enc, ReEnc, Dec) decrypts correctly for the message € M if :

— For all sky output by KeyGen under policy f and for the message u € M, it
holds that
Dec(PP, sky,Enc(PP,x, 1)) = p if f(x) = 0.

— For any re-encryption key rky_., output by ReKeyGen(PP, sky, f,g) and any
ct = Enc(PP,x, ), it holds that Dec(PP, sky,ct) = p if g(y) = 0, Where
ct «— ReEnc(PP,rks_q4,ct) and f(x) = 0.

Security Game of Selectively Secure Single-hop Unidirectional KP-
ABPRE against Honest Re-Encryption Attacks (IND-HRA-ABPRE): Let
A be the PPT adversary and II = (SetUp,KeyGen, ReKeyGen, Enc, ReEnc, Dec)
be an KP-ABPRE scheme with a plaintext space M and a ciphertext space C.
Let F = {f : X — Y} be the family of functions. Attribute vectors for the
KP-ABPRE are ¢-tuples over X and the supported Key-Policies are functions in
F. Security game is defined according to the following game Exp'ED'HRA'ABPRE()\)

between .4 and the challenger:

1. Initial: A sends the target set of attributes x*.

2. SetUp: The challenger runs SetUp(1*, ¢) to get (PP, msk) and give the public
parameter PP to A. Also, the challenger introduces a counter numCt to 0,
a key-value store H to be empty, and a set Derive to be empty.

3. Query Phase 1: The adversary A may make queries polynomially many

times in any order to the following oracles:

— OKe¥Gen: an oracle that on input a policy f € F, outputs L
whenever f(x*) = 0; Otherwise, outputs the secret key sk; «—
KeyGen(PP, msk, f) for the policy f.

OReKeyGen. an oracle that on input two policy f, g, outputs L whenever

f(x*) = 0 and g(x*) # 0; Otherwise, outputs the re-encryption key

rky_.q <— ReKeyGen(PP, sky, f,g).

— OF": an oracle that on input the set of attributes x, and message pu,

outputs ciphertext ¢t «— Enc(PP,x € X°, ) under x. Increment numC't

and add ct to the set H with key (x, numC').

OReEnc: an oracle that on input the policy f,g, and (x,k) where k <
numCt, outputs L if there is no value in H with key (x, k). Otherwise,
let ¢t be that value in H. If f(x) # 0, output L indicating ct is invalid.
Otherwise, outputs re-encrypted ciphertext ct’ «— ReEnc(PP,rky;_.,, ct).

4. Challenge: A submits two messages o, 11 € M under the set of attributes

x* to the challenger. The challenger outputs a challenge ciphertext ctj; «—
Enc(PP,x* € X% u) for either 3 = 0 or 8 = 1, by choosing a random bit
B € {0,1}. Increment numCt and add numCt to the set Derive. Store the
value ct; to the set H with key (x*, numCt).
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5. Query Phase 2: After receiving the challenge ciphertext, .4 continues to
have access to the OKeyGen  (OReKeyGen ' (HEnc 5pq OReEnc 45 in Query Phase
1 except the following constraints for OR€EN® oracle: Outputs L if g(x*) #
0 Ak € Derive.

6. Guess: On input ' from A, this oracle outputs 1 if 3 = 3 and 0 otherwise.

The advantage of an adversary in the above experiment Exp'}D_HRA_ABPRE(A) is

defined as |Pr[8’ = 3] — 1|.

Definition 4. An KP-ABPRE scheme is IND-HRA-ABPRE secure if all

PPT adversaries A have at most a negligible advantage in experiment
EXPLRID—HRA—ABPRE(A)'

We can get the Chosen Plaintext Attacks (CPA) game from the Honest Re-
encryption Attacks (HRA) game by the following modifications:

1. In SetUp, the challenger does not need to add numCt, H and Derive.

2. There will be no O in both the Query phases.

3. In OReErc outputs | whenever f(x*) =0 and g(x*) # 0 in the both phases.
Otherwise, outputs the re-encrypted ciphertext.

The resulting notion is selectively secure single-hop unidirectional KP-ABPRE
Scheme against chosen plaintext attack and is denoted by IND-CPA-ABPRE.

Remark 1. Ge et al. [18] introduced KP-ABPRE. Unfortunately, according to [18]
and its follow-up works, only the secret key sk, can decrypt the re-encrypted
ciphertext ct’ «— ReEnc(PP,rks_4,ct), which is the property CP-ABE. How-
ever, for KP-ABPRE, re-encrypted ciphertext should follow the property of
KP-ABE instead of CP-ABE. In this paper, we remove this inconsistency.

Theorem 1. Let KP-ABPRE be an IND-HRA-ABPRE secure scheme, then
KP-ABPRE is IND-CPA-ABPRE secure.

Proof. Follows from the similar argument of [13, Theorem 3]. O

3.1 Re-Encryption Simulatability

We show that IND-HRA-ABPRE follows from IND-CPA-ABPRE if the KP-ABPRE
scheme has an additional property, namely, re-encryption simulatability. Infor-
mally, re-encryption simulatability means that the resulting ciphertexts from
ReEnc(rkys_.q, ctx) can be simulated without knowledge of the delegator’s secret
key sk, but with knowledge of the plaintext message 1 and the delegatee’s secret
key sk4. Note that, Re-encryption Simulatability is not a necessary condition to
prove HRA security.

Definition 5 (Re-encryption Simulatability). KP-ABPRE is Re-encryption
Simulatable if there exists a probabilistic polynomial-time algorithm ReEncSim
such that with high probability over aux, for all u € M: (ReEncSim(aux), aux) ~,
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(ReEnc(rky_. 4, ctx),aux), where ~, denotes statistical indistinguishability, and
ctx, aux are sampled according to

(PP, msk) «— SetUp(1*, £);
sky «— KeyGen(PP, msk, f);
sk, «—— KeyGen(PP, msk, g);
rky_4 <— ReKeyGen(PP, sky, f,g);
cty — Enc(PP,x € X* p);

where aux = (PP, f,g,skg,ctx, ) and f(x) = 0. Re-encrypted ciphertext gen-
erated under some attribute vector, say, y. g is some policy that satisfies by y.
Here, skg can be a secret key of any policy g that is satisfies by the corresponding
vector'y.

Theorem 2. Let KP-ABPRE be an IND-CPA-ABPRE secure and Re-encryption
Simulatable scheme, then KP-ABPRE is IND-HRA-ABPRE secure.

Proof. We construct an algorithm Agcpa (the CPA adversary) from any proba-
bilistic polynomial-time algorithm Aggra (the HRA adversary), such that

Adv pep,(N) > Advay ., (X)) —negl(X). Since, KP-ABPRE is an IND-CPA-ABPRE
secure, Adv s, p, () is negl(A) — hence, Adv.a,,,,(N) is negl(A), completing the
proof.

Acpa runs Agpra and simulates the HRA security game. If Agga does
not follow the specification of the HRA security game, Acpa simply aborts.
To answer oracle calls by Agra to any oracle other than ORE Acp 4 simply
forwards the calls and answers unaltered to the corresponding CPA oracles.

To answer oracle calls to ORE™ Ao p 4 considers following cases to re-encrypt
from a policy f to g. For f(x*) # 0, adversary has the secret key for that policy
f, otherwise not. Lets consider the following cases:

case 1: f(x*) # 0 and g(x*) #£ 0;
case 2 : f(x*) =0 and g(x*) = 0;
case 3: f(x*) # 0 and g(x*) = 0;
case 4 : f(x*) =0 and g(x*) # 0.

For case 1, 2, and 3, Acpa simply forwards the calls and answers unaltered to
the corresponding CPA oracles. On the other hand, for case 4, Acpa simulates
the re-encryption using ReEncSim, which is possible because Acpa knows the
underlying message p along with the other information in aux. Re-encryption
simulatability implies that the views of Ay r4 in the real security game using the
original OReE"® and the simulated security game using ReEncSim are statistically
close. Hence, Acpa wins the CPA security game if and only if Apra wins in
the simulated HRA game. O
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4 Construction of HRA-secure KP-ABPRE

In this section, we present our construction of KP-ABPRE. We set the parameters
as the following:

— G € Zy*™ is a gadget matrix for integer n, large enough prime power ¢ =
poly(n), and m = O(nlogq). Let k = [logq].

— consider the message space is M = {0,1}™.

— Let x be a xmqz-bounded distribution for which dLWE,, 2, 4,5 is hard.

— For the trapdoor algorithms to work correctly and the security to work, set

the Gaussian parameters o = w(ar - v/logm), where ax > /nlogm.
— Let F = {f: Zg — Zg} be the family of functions. Attribute vectors are

{-tuples over Z, and the supported Key-Policies are functions in F.

The proposed KP-ABPRE consists of the following algorithms:

SetUp(1*,¢) : On input a security parameter A, and ¢, do as follows:

L. Generate (Ag, Ta,) «— TrapGen(1",1™,q), where Ay « Zg*™, and Ta, €
Z7*™, a basis of Al (Ap).

2. Choose £ + 1 uniformly random matrices Aq,---, Ay, U € Zg*™.

3. Output the public parameter PP = {Ag, A1, -+, Ay, U, G} and the master
secret key msk = {Ta,}.

KeyGen(PP,msk, f € F) : On input the public parameter PP, master secret
key msk, and a policy f € F, do as follows:

Evaluate Ay «— Eval,,({A;}_1, f).
Compute TFEO‘Af) «—— ExtendRight(Ag, A s, Ta,).

1.

2.

3. sample Ry «+— SampleD ([Ao‘Af] ’T?§U|Af)’U7U)'

4. Output the secret key sky = Ry € Z2™*™ for the policy f.

Enc(PP,x € Zg,u € {0,1}™) : On input the public parameter PP, the set of

attributes x = (z1, -+ ,x¢) € Zg, and message p € {0,1}™, do as follows:

1. Choose a uniformly random vector s « Zg.

2. Choose ¢ uniformly random matrices S; «— {+1,—1}"*™ fori € 1,--- , L.

3. Choose error vectors eg, €,y € X™.

4. Set Hy = [Ag|21G + Ay |- -[2,G + A, ] ez D™,

T ¢

5. Set e = [L,|S1]--[S¢] -eg=(e],,e],--,e/)T € Zc(z +hm

6. Computec =H]s+e € Z((IHl)m and cour = UTs +epus + [q/2] -1 € Zy'.
Here, ¢ = [cinlc1---Jcg] € foﬂ)m, where c;, = AJs + e, and ¢; =
(z;G+A;)'s+e; forallie{l, - ¢}

7. Output the ciphertext ¢t = (cin, €1, ,Cp, Cout) € deﬂ)m along with the

set of attributes x.
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Dec(PP, sky,(ct,x)) : On input the public parameter PP, the secret key sky =
Ry, and a ciphertext ct under the set of attributes x, do as follows:

1. If f(x) # 0, output L.
2. Otherwise, do as follows:
— Parse ct as (¢ip, €1, , Cp, Cout), and
evaluate ¢y «— Evale({w;, Aj,ci}i_y, f). Let c;c = [Cinlcy] € Z2™.
— Compute g = (p1, 5 fhn) = Cout —R;c}. For each i, if |u;] < ¢/4, take
i = 0, otherwise take pu; = 1.
- ()utput K= (lu’la T 7/Lm)

ReKeyGen(PP, sky, f, g) On input the public parameter PP, two policy f, g and
the secret key sk; = Ry for the policy f, do as follows:

Choose Ry «— x and R3 «— x
Construct the unidirectional re-encryption key

1. Select an attribute set y = (y1,--- ,ye) such that g(y) = 0.

2. Construct Hy = [Ao‘ylG + Ayl yG+ Ag] € ZQX(”l)m.
3. Choose a uniformly random matrix Ry « Z2™*".

4. 2mkx (€+1)m 2mkxm_

5.

R.H, + R» R,U+ Rs — PQ(Rf) c Z(2mk+m)><(é+2)m
g .

0m><(l+1)m Lnxm
6. Output rky_4 along with the attribute vector y.

rkfg =

ReEnc(PP,rks_.4, (ct,x)) On input the public parameter, the re-encryption key
rky_g4, and ciphertext ct under the set of attributes x, do as follows:

1. If f(x) # 0, output L.
2. Otherwise, do as follows:

— parse ct as (Cijp, €1, ,Cp, Cont ), and
evaluate ¢; «— Evale({w;, Aj,ci}e_;, f). Let c; = [cinlcy] € Z?Im.
— Compute the re-encrypted ciphertext ¢t = (€;,C1," - , €, Cout) as fol-
loyrvs: (e42)
—, ’ 1X(4+2)m
il = [BD((cf)T)‘cZut} rhyy € To .

— Output the re-encrypted ciphertext ct along with the attribute vector y.

4.1 Correctness and Security
In this section, we analyze the correctness and security of the proposed scheme.

Theorem 3 (Correctness). The KP-ABPRE scheme is correct with respect to
Fif 30(%_— “Xmaz - M < q/4.

Proof. To show that the decryption algorithm outputs a correct message, it is
required for Eval.; that for f(x) = 0, the resulting ciphertext cy € Eg A(0,By)
so that ¢y = Afs + ey with [ef[| < A < azF - Xmas- Using Lemma 4.6, 4.7 and
5.3 of [6], we have the bound function az(n) = O((p°m)P+/m), where the upper
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bound on the intermediate values in the circuit is p < ¢ and F is computable by
depth D circuits.

We consider correct decryption of both original and re-encrypted ciphertext.
Let sky = Ry and sk; = Ry be the secret key for the policy f and g respectively.
From ReKeyGen(PP, sky, f, g) algorithm, we get

R;H, +R; R,U+R;— P2(Ry)

rkr_, =
U 0m><(€+1)m Lnxm
Let ¢t = (Cin,C1, " ,Cp Cout) be the original ciphertext of a message
p € {0,1}™ under the set of attributes x and ¢t = (€ipn, €1, ,Cp, Cout) =

(ReEnc(PP, rks_g4,ct)) be the re-encrypted ciphertext under the set of attributes
y. Thus, we need to prove that Dec(PP, sky, ct) = Dec(PP, sky,ct) = p.

For correctness of the original ciphertext, when f(x) = 0, we know by the
requirement on Eval.; that the resulting ciphertext ¢y € Eg, A(0,B 7). After eval-
uating ¢, «— Evalq({yi, Ai, € }i_;,9), we have the magnitude of the noise
in cg, ie., |leg]] < A. Consequently, c/f = [cinlcs] = (AglAf)Ts + (einley),
where ||(eimlef)] < A+ Xmaz < (@F + 1)Ximaz- Since, Ry € Z2™*™ is sam-
pled from the distribution D, (A} ((Ao|Ay))), we have (AglAy) - Ry = U,

and HRTH < 2mo with overwhelming probability by Lemma 1. Now, u =

Cout — RJ €y = (UTs + eut + [¢/2] - 1) — (UTS—I—R}—(em|ef)) = q/2] - p+
(eout - Rf (einle f)) To get a correct decryption, the norm of the error term

should be less than ¢/4, i.e.,

€out — R}(em|ef)H < q/4.

Now,

Cout — R}r(e7n|ef)” S Xmazx + 2mao - (Ol]:+ I)Xmar S 30‘_27-‘ * Xmaz * T with

overwhelming probability. By choosing the parameters such that, 3a2}-~xmm m <
q/4, the decryption of the original ciphertext is correct.
Now, for the re-encrypted ciphertext ct, we have

= [ BD(()) D)eda | - Thr—g

— | BD(())T)(RiHy + R2) BD((c)) ) (R1U + Rs — P2(Ry)) + ¢l |

Hence, ct = [HTS—Fe‘UTs—&—eout—l— lg/2] - p] = [€|con ]| =

(€in, €1, , €, Cout) € Z((f“)m, where § = (BD((c ;c) Ry T,

&= (BD((c;)")R2)", and &, = (BD((c})")R3)" + eout — R] (einley).
After evaluating ¢, «— Eval.;({y;, A;,€;}¢_1, g), we have the magnitude of

the noise in ¢y, i.e., ||e4|| < A. For correctness of the re-encrypted ciphertext,

when ¢(y) = 0, we know by the requirement on Eval.; that the resulting cipher-

text ¢ € Eg A(0,A,). Consequently, clg = [cinleg] = (AolAy) s + (eimley),

where |(einleg)| < A+ Xmaz < (aF + 1)Xmaz- Since, R, € Z*™*™ is

sampled from the distribution D, (A ((Ao|Ay))), we have (AO\A )-R, = U,

and HR;H2 < 2mo with overwhelming probability by Lemma 1. Novv, n =
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Cout —RJcy = (UTs+epu + [q/2] - 1) — (UTs + R (einley)) = [a/2] - +
(eout — R;(em\eg)). To get a correct decryption, the norm of the error term
should be less than ¢/4, i.e., |lequ: — RgT(em\eg)H < q/4.

NOW7 €out — RqT (ein‘eg)H < Xmaz +2mo - (Oé]: + 1)X’maw < 30{27-' * Xmazx * 1 with
overwhelming probability. By choosing the parameters such that, 3a%Xmaz-m <
q/4, the decryption of the re-encrypted ciphertext is correct. a

Theorem 4 (Security). The above scheme is IND-HRA-ABPRE secure assum-
ing the hardness of dALWE,, 2y, g,y -

Proof. Let x* = (x},23,- -+ ,2}) € Z, be the target set of attributes. The chal-
lenger introduces a counter numC't to 0, a key-value store H to be empty, and

a set Derive to be empty. First, we define the following simulation algorithms
Sim.SetUp, Sim.KeyGen, Sim.ReKeyGen and Sim.ReEny, Sim.ReEns.

Sim.SetUp((1*, £)): The algorithm does the following:

1. Choose a random A from ngm.

2. Choose ¢ uniformly random matrices S} «— {+1,—1}™*™ for i € {1,--- ,{}
and set A; = ApS; — ;G forie {1,---,¢}.

3. choose Ry~ from D distribution of order (£ + 1)m x m and construct U as
[Ao‘m’{G + Al‘ . ‘LL’ZG + Af] ~Rx* = U; i.e., [Ao‘AoSﬂ . ‘Aosj] . Rx* =
U

4. Output the public parameter PP = {Ag, A1,--- , Ay, U, G}.

Sim.KeyGen(PP, f € F,wheref(x*) # 0) : The algorithm does the following:

1. Evaluate Ay «— Eval,,({A;}_;, f).

2. Run S} «— Evalgin (f, {27, Si}_,,Ap) and let Ay = AoS} — f(x*)G, where
‘S} , < ag. Since, Tg is a trapdoor for G and f(x*) # 0, it is also a

trapdoor for f(x*)G.
3. Obtain a trapdoor T?ALolAf) «— ExtendLeft(Ao, f(x*)G, Tq, S%).

4. Sample Ry «— SampleD ([AO‘A]«] ’TEEkO|Af)vUvJ)'
5. Output the secret key sky = Ry.

Sim.ReKeyGen(PP, f,g € F,wheref(x*) = 0) : The algorithm does as follows:

1. For f(x*) =0, outputs L if g(x*) # 0.
2. For f(x*) = 0 and g(x*) = 0, simulate the re-encryption key rky_,, as follows:
X3 X5
0m><(£+1)m Lxm
order (2mk x n) and (2mk x m) respectively.
3. Output the re-encryption key rk;_.4.

, where X, X are randomly chosen matrices over Z, of

Sim.ReEny (PP, (ct,x*), f,g € F) : The algorithm does the following:
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1. If f(x*) # 0, output L.
2. Otherwise for f(x*) =0, do as follows:

e Select an attribute set y = (y1,--- ,y¢) such that g(y) = 0.

e Construct Hy = [Ag‘y1G+A1‘~~~‘y4G+Ag}.

e Choose a uniformly random matrix Ry « z{ ™"

o Choose Ry « y(FDmkx(EHm apnq Ry « y (L 1)mbkxm,
e Construct a dummy key for re-encryption from x* to y as follows:
Y |:R1Hy +R2 RiU+R3— P2(Rx*)} ¢ g DmE£m)x(¢+2)m
sum Omx(€+1)m Lnxm B 4 .
e Compute the re-encrypted ciphertext ct = (ézn7 1, €, Cout) @S

= [BD(([cin‘Cl""‘Cz] ‘cout] kx —y e le(l+2)

s1m

e Qutput the re-encrypted ciphertext ct with the attribute vector y.

Sim.ReEny (PP, (ct,x(# x*)), f,g € F,where f(x*) = 0) : The algorithm does
the following:

1. If f(x) # 0, output L.
2. Otherwise for f(x) =0, do as follows:
e Since, x # x*, there exist atleast one s € {1,--- , ¢} for which (z;—z}) # 0.
Without loss of generality, assume that (z, — x}) # 0. Construct

H :[A0‘1‘1G+A1""‘$KG+A5]
=[Ao|(z1 — 27)G + AoSi|- -+ (ze — 27)G + AeS} | .

e Since, T is a trapdoor for G and (z, — z}) # 0, it is also a trapdoor for
(x¢ — z;)G. To obtain a trapdoor for Hy, first compute
Tg:ol(w—xz)G-s-AoSZ) «—— ExtendLeft (Ag, (z¢ — 2})G, Te,S;). Then

ER :
compute a trapdoor T(Ao\uG+A;|m1G+A1|»--m_1G+Ag_1) by running
ExtendRight ((A0|ng + AT iay (@01G ALl 21 G+ Ag,l)).
By switching the rows of the matrix T(AOmGJrAelleJrAllmm \GtAL 1)’
ER . .
get T(Ao‘le"FAl"‘ 0 1 GtAr 1 |20G+AL) which is a trapdoor for Hy.
. aqq ER _ mER
Let us assume T T(Ao\leJrAl\ 2o Gt Ar 1|20 GAAL)"
Here, HT%&HGS < | Tallgs - 1Sy, < V5ar by Lemma 2.
e Sample Ry «— SampleD (Hy, TFY, U, 0).
e Select an attribute set y = (y1,--- ,y¢) such that g(y) = 0.
3. Construct Hy = [Ao‘ylG + Aq ‘ . -‘ng + Ag].

e Choose a uniformly random matrix R, « Z(Hl)mkxn.

e Choose Ry « y(HDmkx(E+)m and Ry « x Z+1)mk><m.
e Construct a dummy key for re-encryption from x to y as follows:
Y — |:R1Hy + Ro R1U+R3 — P2(Rx)i| c 7@+ 1) mk+m)x (+2)m
swm 07n><(2+1)m Imxm B g
e Compute the re-encrypted ciphertext ¢t = (Cin, €1, , Cs, Cout) aS
— 1x €+2
= [BD([emler -+-Jea]))[cha] - A € 2L

e Output the re-encrypted ciphertext ct with the attrlbute vector y.
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The simulated re-encrypted ciphertexts generated by Sim.ReEn; or Sim.ReEn;
need to be decrypted correctly. For the correctness of the simulated re-
encrypted ciphertext, when ¢g(y) = 0, we know by the requirement on Eval
that the resulting ciphertext ¢, € Ega(0,A ). After evaluating ¢, «—
Evale:({yi, Ai €161, 9), we have the magnitude of the noise in c,, ie.,
legll < A. Consequently, c; = [cinlcy] = (AolAy)Ts + (einley), where
[(einleg)] < A+ Xmaz < (aF + 1)Xmaz. Since, R, € Z2>™*™ is sam-
pled from the distribution Dy (A ((AglAy))), we have (AglA,) - R, = U,
and HR;H2 < 2mo with overwhelming probability by Lemma 1. Now,
n = Cout — R;c;} = (UTs+e0ut + q/2] ~u) - (UTs+RgT(ein|eg)) =
lg/2] - p+ (eout — R;(em|eg)). To get a correct decryption, the norm of the
error term should be less than ¢/4, ie., |eout —R;—(em|eg)H < ¢q/4. Now,
||eout - R;(ein\eg)H < Xmaz +2mo - (ar + D) Xmaz < 304%— “Xmaz * ™M With over-
whelming probability. By choosing the parameters such that, 3043,— *Xmaz - M <
q/4, the decryption of the simulated re-encrypted ciphertext is correct.

The rest of the proof proceeds in a sequence of games. The first game is
identical to the original IND-HRA-ABPRE game from the Definition 4. The last
two games are indistinguishable due to the hardness of the dLWE problem.

Game 0: This is the original IND-HRA-ABPRE game from definition between
an adversary A against scheme and an IND-HRA-ABPRE challenger.

Game 1: Here, the challenger generates the public parameter PP as in
Sim.SetUp. Due to Lemma 6, AoS7, -, AoS} are statistically indistinguishable
with uniform distribution. So, Ay, -, Ay, as defined in Sim.SetUp, are close to
uniform. Also, due to Lemma 6, [ Ag|A¢S7 |- --|AoS; | -Rx- is statistically indis-
tinguishable with uniform distribution. Hence, U is statistically indistinguishable
with uniform distribution. In Query Phase 1, adversary issues following queries
adaptively and the challenger does as follows:

OKevGen: Given a policy f, challenger does as follows:
1. Output L whenever f(x*) = 0.
2. Otherwise, runs Sim.KeyGen to get the secret key sk for the policy f.

OReKeyGen: Op input two policy f, g, challenger does as follows:

— For f(x*) =0, runs Sim.ReKeyGen.

— For f(x*) # 0, first computes sk; = Ry by running Sim.KeyGen, then use
ReKeyGen algorithm to compute the re-encryption key rks_4. Outputs the
re-encryption key rky_.,.

OF"e: On input the set of attributes x, and message 1, outputs ciphertext ct «—
Enc(PP,x € X’ i) under x. Increment numCt and add ct to the set H with
key (x, numC').
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OReEnc. On input the policy f,g and (x, k) where k < numC't, challenger does
as follows:

If x = x*, outputs L if there is no value in ‘H with key (x*, k). Otherwise,
let ¢t = (Cin, €1, ,Cp, Cout) be that value in H and compute re-encrypted
ciphertext by running Sim.ReEnc;.

If x # x*, outputs L if there is no value in H with key (x, k). Otherwise, let
ct = (Cin,C1,+ "+ ,Cp, Cout) be that value in H and consider the following cases:

— If f(x*) =0, compute the re-encrypted ciphertext by running Sim.ReEnc;.
— If f(x*) # 0, compute 7ks_, «— OReKeyGen [sing this re-encryption key,
compute the re-encrypted ciphertext according to the ReEnc algorithm.

Game 1 is otherwise same as Game (. Since the public parameters and
responses to the queries are statistically close to those in Game 0, the adver-
sary A’s advantage in Game 1 is at most negligibly different from its advantage
in Game 0.

Game 2: Game 2 is identical to Game 1 except that the challenge ciphertext

Z((IHQ)m. Therefore, the adver-

ct* = (Cin,C1,-** , Cp, Cout) chosen randomly from
sary A’s advantage in Game 2 is zero.
We show that Game 1 and Game 2 are computationally indistinguishable for

a PPT adversary, by giving a reduction from the dLWE problem.

Reduction from dLWE: Suppose A has non-negligible advantage in distinguish-
ing Game 1 and Game 2. Using .4, we construct a dLWE solver B.

e dLWE instance: B begins by obtaining an dLWE challenge consisting of two
random matrices Ag, U € ZZ}X’" and two C;p,, Cour € ZZ”. Here, c;y,, Cour are

either random in Zg* or ¢;, = Ag"s+ ey and cpyr = UTS + ey for some
random vector s € Zg and ep, €,y € X The goal of B is to distinguish these
two cases with non-negligible advantage by using A.

e Initial: A announces the target set of attributes x* = (z},25,--- ,2}) € Zg
that it intends to attack.

e SetUp: B constructs the public parameter as Game 1: choose ¢ random
matrices Sf from {+1,—1}">*™ for ¢ € {1,---,¢} and set Ay,---,Ay as
A, = A¢Sf—a2iG fori € {1,---,¢}. Sends PP = {Ag, A1, - ,A;, U, G}
to A.

e Query Phase 1: B answers A’s all key queries as in Game 1.

e Challenge: A sends two messages g, 41 € {0,1}™ to B. B chooses a random
bit 8 € {0,1} and compute c* = [I,,,|S7|-- -‘S’E]T “Cin € Zg”l)m
Cout + [4/2] - pg € Zy'. B sends ct* = (c*,c;,,) € fo””” to A as the

challenge ciphertext. Increment numCt and add numC't to the set Derive.
Store the value ct* to the set H with key (x*, numC').

*

and ¢}, =
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— Suppose Cjp,Coyut are generated by dLWE, i.e., ¢;, = Ay's + ey and
Cout = UTs + e,y Then from the Enc algorithm, we have,
Z7L><(€+1)m
q

(Substituting the value of Ay and A;’s). Then, ¢* = [L,,,|S}|-- ~‘S§]T .

(Ao's+ey) =H].s+e, where e = [L.|S7l- ~‘S;Jr-r -eg. It is easy to see
that c* is computed as in Game 1. Also, ¢, = U's + eous + [q/2] - p15-
Then ct* = (c*, c},,;) is a valid ciphertext of p5 under x*.

— When ¢ip, cour are random in Zg', we have ¢* is random in Z

standard left over hash lemma. Also, ¢,y is uniform. So, c¢t* is uniform
in Z{+I™
q

14 m
§ T by

, as in Game 2.

e Query Phase 2: As in Query Phase 1 with the following constrain: ReEnc
oracle output L if g(x*) # 0 A k € Derive.

e Guess: A guesses if it is interacting with a Game 1 or Game 2 challenger. B
outputs A’s guess as the answer to the corresponding dLWE challenge.

Hence, B’s advantage in solving dLWE is the same as A’s advantage in dis-
tinguishing Game 1 and Game 2, as required. This completes the description of
algorithm B. This completes the proof. a

Remark 2. We have proved the HRA security of the proposed scheme by follow-
ing the HRA security game of Sect. 3. Theorem 2 may be easier to prove HRA
security for pairing-based scheme.
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Abstract. Attribute-based encryption (ABE) is a promising crypto-
graphic primitive achieving fine-grained access control on encrypted data.
However, efficient user revocation is always essential to keep the system
dynamic and protect data privacy. Cui et al. (ESORICS 2016) proposed
the first server-aided revocable attribute-based encryption (SR-ABE)
scheme, in which an untrusted server manages all the long-term trans-
form keys and update keys generated by key generation center (KGC) in
order to achieve efficient user revocation. So, there’s no need for any user
to communicate with KGC to update his/her decryption key regularly.
In addition, the most part of computational overhead of decryption is
outsourced to the server and user keeps a small size of private key to
decrypt the final ciphertext. Then, Qin et al.’s (CANS 2017) extended
Cui et al.s’ work to be decryption key exposure resistant (DKER).

Unfortunately, current SR-ABE schemes could only be provably
secure in one-user setting, which means there’s only one “target user”
id* with an attribute set S;q+ satisfying the access structure (M*, p) in
the challenge ciphertext, i.e., S;q= F (M", p). However, a more reasonable
security model, i.e., multi-user setting, requires that any user id in the
system can be with an attribute set S;q F (M*, p), and the adversary
is allowed to query on any user’s private key SK;q and his/her long-
term transform key PKjq,s,, as long as his/her identity id is revoked at
or before the challenge time ¢t*. How to construct a SR-ABE secure in
multi-user setting is still an open problem.

In this paper, we propose the first SR-ABE scheme provably secure in
multi-user setting. In addition, our SR-ABE is fully secure and decryp-
tion key exposure resistant. Our scheme is constructed based on dual sys-
tem encryption methodology and novelly combines a variant of Lewko et
al.’s work in EUROCRYPT 2010 and Lewko et al.’s work in TCC 2010.
As a result, we solve the remaining open problem.

Keywords: Attribute-based encryption - Revocation - Server-aided -
Multi-user setting - Fully secure
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1 Introduction

Attribute-based Encryption (ABE)[22], as an extension of identity-based encryp-
tion (IBE), is a powerful cryptographic primitive achieving fine-grained access
control on encrypted data. ABE schemes are usually divided into two types:
Key-Policy ABE (KP-ABE) [9] and Ciphertext-Policy ABE (CP-ABE) [3]. In
this paper, we only focus on CP-ABE. In CP-ABE scheme, the data owner is
allowed to define a specific access policy in the ciphertext which can only be
decrypted by users with attributes satisfying the policy. CP-ABE is very suit-
able for encrypted data sharing in public cloud storage scenarios.

In the IBE or ABE system, when users lose their secret keys or exit the
system, efficient user revocation is very crucial for preserving data privacy and
keeping the system dynamic. In 2001, Boneh et al. [6] proposed a simple identity
revocation mechanism, in which the Key Generation Center (KGC) has to gen-
erate O(N —r) new secret keys for all unrevoked users at time period ¢, where N
is the total number of users and r is the number of revoked users. To reduce the
workload of KGC, Boldyreva et al. [4] proposed a more efficient identity revoca-
tion mechanism based on the binary-tree structure of [15]. In [4], each user keeps
O(log N) long-term secret keys and the KGC broadcasts O(r log(N/r)) update
keys at time period t. Only non-revoked users can obtain their corresponding
update keys. However, there are two drawbacks in [4]: every user needs to keep
at least O(log N) long-term secret keys; all non-revoked users are required to
communicate with the KGC regularly. As a result, [4] is not suitable for users
with limited resources or who cannot communicate with KGC in real-time.

To solve this problem, Qin et al. [17] proposed a novel system model i.e.,
server-aided revocation in IBE scenario (SR-IBE). In [17], user’s original long-
term secret keys and update keys are all managed by an untrusted server, which
honestly follows the protocol but is curious about data encrypted in the cipher-
text, and each user keeps only one short private key. Since the original long-term
secret keys are stored in the server, those keys are renamed as long-term trans-
form keys. In this case, user no longer needs to communication with KGC for
key updating regularly. To extend server-aided revocation mechanism from IBE
to ABE scenario, in 2016, Cui et al. [8] proposed the first server-aided revocable
ABE (SR-ABE). [8] not only inherits the advantages of server-aided revocation
mechanism, but also achieves the decryption outsourcing, i.e., user could decrypt
the ciphertext with little computational overhead. However, the scheme fails to
satisfy (local) decryption key exposure resistance (DKER). Specifically, in [§],
user’s decryption key is his/her private key, which does not change with time,
so exposing the user’s decryption key will make the scheme completely insecure.
Seo and Emura [23] has shown that the exposure of decryption keys is a very
realistic threat to many revocable cryptosystems. Then, Qin et al. [18,19] revis-
ited the security model of [8] and enhanced it by capturing the decryption key
exposure attacks on user’s local decryption keys while allowing the adversary to
fully corrupt the server. In [18,19], the user keeps just a short private key, and
can delegate his/her decryption capacity to a decryption key with any specified
time period. Even if the local decryption key of a certain time period is leaked,
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the security of the decryption key of other time periods will not be affected. Sim-
ilarly, [18,19] maintain the properties of server-aided revocation and outsourced
decryption.

In general, the system framework of SR-ABE is shown in Fig.1. The ABE
ciphertext generated by data owner is transformed by an untrusted server using
a short-term transformation key which is generated by combining the long-term
transformation key and the key update message. However, once a user is revoked,
the server cannot assist him/her to accomplish the transformation. In [8], user’s
private key is the decryption key, so once the decryption key is exposed, user’s
privacy is totally leaked. However, in [18,19], user’s decryption key is derived
from the private key, so even a decryption key of time period ¢ is exposed, it will
not affect decryption keys in other time periods.

Master key Privzy
~
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R I
n
KGC

Long-term ‘ “‘ Key Update LR
Transformation | | Message Decryption key

e | | w0

b | | L} \ A
; [B1F] B a
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Untrusted ciphertext
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Fig. 1. System framework of SR-ABE

1.1 Motivation

The existing SR-ABE schemes [8,18,19] can only prove secure under “one-user
setting”, in which only one user id* (called “target user”) has the capacity to
access the challenge ciphertext and the adversary can corrupt his private key.
In [8,18,19], the adversary is divided into two distinct types: (1) the adversary
is allowed to corrupt id*’s private key, but id* has to be revoked at or before
the challenge time period ¢*; (2) the adversary is not allowed to corrupt id*’s
private key, then id* is not revoked but the adversary can obtain decryption
keys for any time period except t*. Note that [8,18,19] can only simulate the
security game for these two types of adversaries separately, which do not cross
with each other. However, this is too restrictive in a real world scenario, since
the two different adversaries may exist simultaneously even for two target users.



SR-ABE Revised: Multi-User Setting and Fully Secure 195

But unfortunately, the restriction seems necessary for the proof technique used
in [8,18,19].

Let us analyze why this is the case. In this paper, we focus on SR-ABE
scheme with DKER. Note that [8] is improved by [18,19] which achieves DKER,
so we take [18,19] as example. The analysis works similarly for [8] as well. First,
we briefly recall some algorithms in the construction of [18,19]:

Setup(1*): This algorithm outputs master secret key msk = a, the public
parameter par = (g,w,v,u, h,ug, ho,e(g,g)®), along with a revocation list
RL and a state st, where g is the generator of a group G, w, v, u, h, ug, hg are
randomly chosen from G, « is randomly chosen from Z,, st is set to be the
binary tree BT (BT is introduced in Sect. 2.3).

UserKG (par, msk, id, S, st): This algorithm randomly chooses ;4 € Z, and set
skiq = g%. Then, it chooses an undefined leaf node 6,4 from BT, stores id in
this node. For each = € Path(BT, 6;4), it runs as follows.

1. It fetches g, from the node x. If x has not been defined, it randomly
chooses g, € G, computes g, = g* % /g, and stores g, in the node z.
2. It randomly chooses 74,741, ..,k € Zyp, computes
Poo=g,-w'™, Py1=g", P(g =g, P(% = (u’h)"=i g7,

Z, xZ,
3. it outputs pkias = {JU,Px,o,Pa:,upgggangg}zepath(BT,emme[1,k] as the
long-term transformation key and sk;q = g as the secret key.
TKeyUp(par, msk,RL, ¢, st): This algorithm inputs par, msk, a revocation list
RL, a time period ¢t and a state st. For each « € KUNodes(BT,RL,t), it
randomly chooses s, € Z,, fetches g, from the node z, outputs a key update

message thus = {2, Qz,1, Q2,2 } seKUNodes(BT,RL,¢), Where
Qm,O =0z (uth)swa Qm,l = gsw'

Encrypt(par, (M, p),t, M): This algorithm inputs par, an LSSS access struc-
ture (M, p), a time period ¢t and a message M, randomly chooses v =
(8,42, yn)t € Zy and i, ..., € Zp, computes \; = M; - v, outputs
the ciphertext CT = {C, Cy,{C;1,Ci2,Cis},Cs}, where

O:e(g’g)as.M, 00:987 Ci,lzwvi‘vuia
Ci’Q = (usp(i)h)_ﬂ'i7 Ci,3 _ gm’ Cy = (uth)s.

As we can see, Qin et al. [18,19] used the “random splitting technique” to
divide a master secret key “a” into two parts. Specifically, “a” is split into
“a—Biq” and “B;q” for identity id, where ;4 is randomly chosen and g% serves
as the user’s private key in UserKG. In order to achieve user revocation, g® %
will be further divided into random g, and g;m- 4 to generate key update message
in TKeyUp and long-term transformation key in UserKG respectively (g, is
stored in the node x of BT, and does not change once stored; gémd changes with

different identities), such that
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9o Goia =9 ", x € Path(BT, ;). (1)

The security of the SR-ABE scheme [18,19] is reduced to the Rouselakis-
Waters CP-ABE scheme [20]. It seems that [18,19] cannot prove secure in
multi-user setting. This is because if the adversary A, who attacks the SR-
ABE scheme [18,19], is allowed to simultaneously corrupt two separate users in
two different types, as we mentioned at the beginning of this section, then the
simulator B, who was built using A to attack [20], can break [20] itself, which
leads to the failure of the security reduction. The detail is as follows.

The simulator B is given the public parameters of Rouselakis-Waters, and
the master key « is hidden from B. Assume that there are two identities idj
and ¢d; with attribute sets Sy and S; satisfying the challenge access structure
(M*, p) such that:

(1) A corrupts id}’s private key and idj is revoked before the time period t*;
(2) A doesn’t corrupts id;j’s private key and idj is not revoked.

According to Eq. (1), we have

9z - g;,idg = ga_ﬂidoa z € Path(BT, 6;4,) (2)
9z - g;:,idl = ga_mdl y T E Path(BT7 0id1) (3)

Since Sy | (M*,p), ¢, ;4, for € Path(BT,0;4,), are known to B in order to
generate the long-term transformation key pkiq, s, for A; Since A corrupts id;’s
private key, B;q4, is a known value to B; Since id; is non-revoked, B has to know
9. for © € Path(BT, 0,4,) to generate the key update message at time period ¢*
for A, especially the value g, for * € Path(BT, 6;4,)NPath(BT, 0,4, ). According
to Equation (2), B knows the value

9 = (9o~ * G iay) - 971,

which enables B to break the underlying Rouselakis-Waters CP-ABE
scheme [20], and thus the security reduction fails. For the similar reason, [§]
also cannot prove secure in multi-user setting and it is still a practical open
problem to construct an SR-ABE scheme probably secure under such setting.

1.2 Our Approach

As we analyzed above, in previous SR-ABE schemes [8,18,19], if the adversary
A is allowed to simultaneously corrupt two separate users in two different types,
then the simulator B is able to compute g* (« is the master secret key) and solve
the underlying complexity assumption itself, thus the security reduction breaks
down. This hints that we need to find a new construction and proof system
so that the exposure of g% will not lead to the failure of the security reduction.
Fortunately, Waters et al. [11,13,24] introduced dual system methodology, which
opens up a new way to prove security of IBE, ABE and other related encryption
systems.
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Briefly speaking, in the dual encryption system [11,13], both ciphertext and
private key can be in one of two indistinguishable forms: normal and semi-
functional. Unless both the key and ciphertext are semi-functional, the key will
decrypt the ciphertext correctly. However, when a semi-functional key is used
to decrypt a semi-functional ciphertext, the semi-functional components of the
key and ciphertext will interact to generate an additional random term, and
decryption will fail. In the real system, the normal keys and ciphertexts are
used, while semi-functional objects are gradually presented in hybrid security
proof: firstly in Gameg, the normal challenge ciphertext is switched to a semi-
functional one; then, from Game; to Game,, the secret keys given the adversary
are changed from normal to semi-functional one by one and Game, is a security
game where the simulator only generates semi-functional objects; finally, we end
up in Gameg;,, where the challenge ciphertext is a semi-function encryption on a
random group element and all of the private key queries result in semi-functional
key, hence security can be proved straightforward.

When arguing that Game,_; and Game;, are indistinguishable for &k € [1, q],
the simulator B who attacks the underlying assumptions (Assumption 1 and
2 in Sect.2.1) always chooses the master secret key « by himself so that he is
ready to make any key and any challenge ciphertext for adversary A who attacks
the scheme. When claiming that Game, and Gamerin, are indistinguishable, the
simulator B who attacks Assumption 3 (Sect.2.1) takes as input parameters
9,9% X2, X3,9°Y2, Zo, T (T is either e(g,g)* or a random element in Gr), then
it makes use of the Assumption 3 parameter g*Xs to generate semi-functional
objections to answer any key query from A.

Based on this observation, the dilemma encountered in proving multi-user
security in the previous SR-ABE schemes could be overcome, because we no
longer need to worry about the exposure of g* or g® Xs. In other words, leverag-
ing dual system methodology into SR-ABE may lead us down the right path to
prove the security under multi-user setting. Therefore, we novelly combine the
ABE scheme [11] and the IBE scheme [13] in the dual system to construct our
SR-ABE scheme. Thanks to the powerful dual system encryption methodology,
in our security proof, even the adversary A corrupts two separate users in two
different types simultaneously, the simulator B, who knows « or g® X5, is able to
answer any key query on these two users from .4, and thus the security reduc-
tion works. As a result, our SR-ABE is provably secure in multi-user setting.
The only remaining question is how to combine those two schemes in the dual
system organically to obtain a concrete SR-ABE scheme. We put this detail at
the beginning of Sect. 4.

1.3 Owur Contributions

In this paper, we construct the first (fully secure) server-aided revocable
attribute-based encryption scheme with decryption key exposure resistance,
achieving the security requirement in the multi-user setting. We solve the open
problem of how to construct a SR-ABE scheme that is provably secure in the
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Table 1. Comparison between our scheme and other indirect revocable ABE schemes.

[4] [1] [21] 8] (18] Ours
Revocation Mode Indirect |Indirect Indirect & Direct, Indirect Indirect Indirect
Type of ABE KP-ABE | KP-ABE KP-ABE & CP-ABE CP-ABE | CP-ABE |CP-ABE
Server Untrusted | Untrusted | Untrusted
Decryption Outsource No No No Yes Yes Yes
DKER No No No No Yes Yes
Fully Secure No No No No No Yes
Secure Channel Yes Yes Yes No Yes/No Yes/No
Multi-User Setting Yes Yes Yes No No Yes
Size of Key Updates O(rlog ¥) | O(rlog &) & ~| O(rlog &) O(rlog &) |O(rlog &) | O(rlog &)
Size of Key Stored by User | O(llog N) | O(llog N) O(llog N) & O(klog N) O(1) O(1) O(1)

multi-user setting. Specifically, our scheme novelly combines a variant of a fully
secure (H)IBE [13] and a fully secure ABE [11] in the dual encryption system.

In Tablel, we compare our SR-ABE scheme with several related indirect
revocable ABE schemes [1,4,8,18,21]. Let N be the number of user in the system,
7 be the number of revoked users, | be the number of attributes presented in
an access structure, and k be the size of the attribute set associated with an
attribute-key. Also, let “-” denote not-applicable. As shown in Table 1, compared
with [1,4,21], our scheme has inherited the wonderful merits of SR-ABE schemes
[8] and [18], i.e., decryption outsourced and small size of key storage in the user
side. There’s no need for any user to communicate with KGC to update his/her
decryption key regularly as well. In addition, compared with [8] and [18], our
scheme is fully secure and provably secure in multi-user setting. Furthermore,
different from [8], our SR-ABE satisfies DKER.

2 Preliminaries

In this section, we briefly introduce some basic cryptographic definitions.

2.1 Composite Order Bilinear Groups

We recall the definition of composite order bilinear groups in [13]. A group
generator G is defined as an algorithm that takes a security parameter \ as
input and outputs (p1,p2,p3, G,Gr,e), where p1,pa, ps are distinct primes, G
and G are two cyclic groups of order N = p1pop3, and e : G X G — G is a
bilinear map with the following properties:

Bilinear: Vu,v € G and a,b € Z,, we have e(u®,v?) = e(u,v)®.

Non-degenerate: 3g € G such that e(g, g) € Gr is the generator of Gr.

The group operations in G and G as well as the bilinear map e are com-
putable in polynomial time. Let G),,Gp,, Gy, denote the subgroups of order
P1, P2, p3 in G respectively, then when h; € G, and h; € Gy, for i # j, e(hi, hy)
is the identity element in G7. This orthogonality property of G, , Gp,, Gp, will
be used to implement semi-functionality in our SR-ABE.

We now introduce the complexity assumptions [11,12]. Let G, p, and Gp, p,
denote the subgroup of order p1ps and p1ps in G, respectively.
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Assumption 1. (Subgroup decision problem for 3 primes). Given a
group generator G, we define the following distribution:

G = (N = p1p2p3aGa GT,@) (i gag i Gp1aX3 (i Gp37D = (G7gaX3)
T L GP1P27T2 M Gp1'
The advantage of an algorithm A in breaking Assumption 1 is defined as:
Advlg o(N) :=| Pr[A(D, Th)] — Pr[A(D, T%)] | .

Definition 1. We say that G satisfies Assumption 1 if Advlg a(\) is a negligible
function of A for any polynomial time algorithm A.

Note that T can be written uniquely as the product of an element of G,, and
an element of G,,. We refer to these elements as the G}, part of T} for i =1, 2.

Assumption 2. Given a group generator G, we define the following distribu-
tion:

G = (N :p1p2p37G7GT7e) L g7gvX1 (i GPI’X27Y2 i sza
X3, Yy < Gy, D = (G, 9, X1 X0, X3,YsY3), Ty <= G, Ty <= Gy, .
The advantage of an algorithm A in breaking Assumption 2 is defined as:
Adv2g A(N) :=| Pr[A(D, Th)] — Pr[A(D, T»)] | .

Definition 2. We say that G satisfies Assumption 2 if Adv2g () is a negligible
function of A for any polynomial time algorithm A.

Note that 77 can be written uniquely as the product of an element of G,,,
an element of G, and an element of G,,. We refer to these elements as the G,
part of T for i = 1,2,3. T5 can be written as the product of an element of G,
and an element of G, similarly.

Assumption 3. Given a group generator G, we define the following distribu-
tion:

G= (N:p1p2p3,G,GT,€) i g7a75 i Z]\fag<i Gp17X2a}/éaZ2 i G;D27
R s o7 R
X3 — GpgaD = (G7gagaX27X37g( }/Q)ZQ)aTl = e(gag) 97T2 — GT'

The advantage of an algorithm A in breaking Assumption 3 is defined as:
Adv3g A(N) :=| Pr[A(D, Th)] — Pr[A(D, T»)] | .

Definition 3. We say that G satisfies Assumption 3 if Adv3g, () is a negligible
function of A for any polynomial time algorithm A.
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2.2 Access Structures and Linear Secret Sharing

Definition 4 (Access structure(3]). Let {Py, Ps, ..., P,} be a set of parties. A
collection A C 21P1P2Pu} 4o monotone if VB,C:if B€ A and B C C thenC €
A. An access structure (respectively, monotone access structure) is a collection
(respectively, monotone collection) A of non-empty subsets of {P1, Pa, ..., P,},
ice., A C 2P0 Puk\ LOL The sets in A are called the authorized sets, and
the sets not in A are called the unauthorized sets.

Definition 5 (Linear Secret Sharing Schemes (LSSS)[3]). 4 secret shar-
ing scheme II over a set of parties P is a linear secret-sharing scheme over

Z, if

— The shares for each party form a vector over Zy.

— There exists a matrix M with [ rows and n columns, called the share generating
matriz, for . Fori=1,...,1, the i*" row of matriz M, i.e., M, is labelled
by a party p(i), where p : {1,...,1} — P is a function that maps a row to
a party for labelling. Considering that the column vector ¥ = (s,7a,...,7y),
where s € Z, is the secret to be shared and ra,...,r, € Z, are randomly
chosen, then M4 is the vector of | shares of the secret s according to 1. The
share M; ¥ belongs to party p(i).

The linear reconstruction property states that there exist constants {w; € Zp }icr
such that, for any valid shares {);}; of a secret s according to II, we have:
Yicrwih; = s, where I = {i | p(i) € S} for an authorized set S [2]. We note that
for unauthorized sets, no such constants {w;} exist.

2.3 Binary Tree

We recall the definition of binary-tree data structure, as with [5,7,10,16,23]. This
structure uses a node selection algorithm called KUNodes. In the algorithm, we
use the following notations: BT denotes a binary-tree. root denotes the root
node of BT. x denotes a node in the binary tree and 6 emphasizes that the
node x is a leaf node. The set Path(BT,#) stands for the collection of nodes
on the path from the leaf 6 to the root (including 6 and the root). If x is a
non-leaf node, then xy, z,- denote the left and right child of x, respectively. The
KUNodes algorithm takes as input a binary tree BT, a revocation list RL and
a time ¢, and outputs the minimal set Y of nodes, such that the corresponding
key update information can only be used by the non-revoked users to generate
a valid short-term transformation key. Specifically, the KUNodes algorithm first
marks all ancestor of users that were revoked by ¢ as revoked nodes, then outputs
all the non-revoked children of revoked nodes. The description of the KUNodes
algorithm is as follows:

KUNodes(BT, RL, t):
X, Y —0; V(0;,t;) €RL, and t; < ¢, add Path(BT, 6;) to X;
Vo € X:if xp ¢ X then add x4 to Y, if 2, ¢ X then add z, to Y;
If Y = () then add root to Y; Return Y.
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3 Framework and Security Model

Our SR-ABE scheme involves four types of entities: a key generation center
(KGC), data owners, data users and an untrusted server.

Setup(1*,U) — (PK,MSK,RL,st): Taking as input a security parameter A
and an attribute set U containing all possible attributes, KGC runs this
algorithm to generate the public key PK, the master secret key MSK, an
initially empty revocation list RL and a state st.

UserKG(PK,MSK,id, S, st) — (PKia,s,SKiq,st): KGC runs the user key
generation algorithm and outputs user’s long-term transformation key PK;q s
for the untrusted server and a private key SK;q for the user, then updates
the state st.

TKeyUp(PK, MSK,RL,t,st) — (tkuy,st): KGC runs the transformation key
update algorithm and outputs a key update message tku; for server and an
updated state st.

TranKG(PK,id, PK;q s, tkus) — tkiq:/ L: The server runs the transformation
key generation algorithm and outputs a short-term transformation key tk;q
for id if id is not revoked at t. Otherwise, it outputs L.

DecKG(PK,id,SK;q,t) — dk;q,.: The user runs the decryption key generation
algorithm and outputs a decryption key dk;q ¢ for id in time period t.

Enc(PK,(M, p),t, M) — CT: Taking the public key PK, an access structure
(M, p), a time period ¢ and a message M as the input, the data owner runs
the encryption algorithm to generate a ciphertext C'T" and then submits CT
to server.

Transform(PK,id, S,tkiq;, CT) — CT’/ L: The server runs the ciphertext
transformation algorithm to generate a partially decrypted ciphertext C'T”
for id if the attribute set S associated with the transformation key tk;q:
satisfies the access structure of the ciphertext C'T'. Otherwise, it outputs L.

Decrypt(PK,id, dk;q¢, CT") — M/ L: The user runs the decryption algorithm
and outputs the message M or a failure symbol L.

Revoke(id, t,RL, st) — RL: KGC runs the revocation algorithm and outputs an
updated revocation list RL.

3.1 Security Model

Now, we introduce the security definition of indistinguishability under chosen
plaintext attacks (IND-CPA security) for SR-ABE between an adversary A and
the challenger B.

Setup: B runs the Setup algorithm, and returns the public key to A, then keeps
the master secret key M SK, an initially empty revocation list RL, a state st,
and two empty sets T,T" by itself.

Phase 1: A adaptively issues a sequence of following queries to B :

— Create(id,S). B runs UserKG(PK,MSK,id,S,st) to obtain the pair
(PK,q,5,5K,q), stores in table T' the entry (id,S,PK,qs,5K;q) and
returns PK;q g to A.
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— Corrupt(id). If there exists an entry indexed by id in table T, then B
retrieves the entry (id, S, PK;q 5, SK;q), sets T' = T" U {(id, S)}, returns
SK;q. If no such entry exists, then it returns L.

— TKeyUp(t). B runs TKeyUp(PK, MSK,RL,t, st) and returns tku;.

— DecKG(id,t). If there exists an entry indexed by id in table T, then
B retrieves the entry (id, S, PK;q s, SK;q), runs DecKG(PK,id, SK;q4,1t)
and returns dk;q¢. If no such entry exists, then it returns L.

— Revocation(id,t). B runs Revoke(id,t,RL, st) and outputs an updated
revocation list RL.

Challenge: A submits two messages (Mg, M7) of the same size, an access struc-
ture (M*, p) and a time period ¢t* with the following restrictions:

- If (id,S) € T and S F (M*, p), then A must query the revocation oracle
on (id,t) at or before t*.

— If there exists a tuple (id,S, PKqs,5Kiq) € T, S F (M*,p) and id
is not revoked at or before t*, then A cannot query Corrupt(id) and
DecKG(id,t*).

B picks a random bit 8 € {0, 1}, and returns the challenge ciphertext CT* «—
Enc(PK, (M*, p),t*, M) to A.

Phase 2: A continues submits queries to B as in Phase 1, with the restrictions
defined in the Challenge phase.

Guess: A outputs a guess 3’ of 3, and it wins the game if 3’ = 3. The advantage
of A in this game is defined as Adv4(l) =| Pr[#' = 8] — 1/2|.

Definition 6. An SR-ABE scheme is adaptively IND-CPA secure if the advan-
tage Adv 4 (1) is negligible in  for all polynomial time adversary A.

4 Construction

In this section, we propose the construction of our SR-ABE with DKER, which
is fully secure in multi-user setting. As we have discussed in Sect. 1.2, we try
to construct an SR-ABE by the dual system encryption technique. However, we
find that if we trivially follow the construction of SR-ABE with DKER [18,19]
by just replacing their underlying ABE block [20] with dual ABE [11], then it
will cause “authority abuse”: (1) anyone can generate a valid private key, since
it is computed without the system master secret key; (2) user id with his private
key SK;; can easily change the identity embedded in his long-term transform
key PK;q s from id to id’. Adding up these two points, user id can maliciously
generate a new SK;y and PK;y g/, where S” C S, for an unauthorized user id’
by the key re-randomization technique, resulting in the authority abuse.

In our scheme, we novelly combine dual ABE [11] and dual IBE [13]. Firstly,
we embed the system master key into user’s private key to ensure that only the
KGC can distribute users’ private keys. Specifically, we view the system master
key « as the master key of a variant of the 2-level HIBE [13] to generate 1-level
user private key SK;q (id as identity), which is then used to delegate a 2-level
decryption key dk;q ¢ ((id || t) as identity). It should be noted that the exposure
of decryption key dk;q+ on time ¢ will not affect the decryption key dk;q+ on
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time ¢’ # ¢, so that our SR-ABE is decryption key exposure resistant (DKER).
Secondly, we generate user’s long-term transformation key PK;4 s by combining
the key generation algorithms of both [11] and the variant of [13]. The unique
random 7 embedded in both SK;; and PK;4 g guarantees that, without knowing
r, anyone cannot change the identity embedded in SK;4 and PK;q4 g, so that the
authority abuse is prevented. The detail of our scheme is shown as follows.

~ Setup(1*,U) — (PK, MSK): The setup algorithm chooses a bilinear group
G of order N = pipaps, where p1,p2, ps are three distinct primes. We let G,
denote the subgroup of order p; in G. It then chooses random exponents «, a €
Zn, and random group elements g, u, h, ug, hog € Gp,. For each attribute i €
U, it chooses a random value s; € Zy. Then, the algorithm outputs the public
parameters PK and master secret key M SK as follows:

PK = {N7g7ga7u7h7u07h076(g7g)a7{111' = gs’i}iEU}vMSK = {OZ,X3} (4)

where X3 is a generator of Gp,.

- UserKG(PK, MSK,id, S, st) — (PKiq,s,SK;q, st): The algorithm chooses
an undefined leaf node @ from the binary tree BT, and stores id in this node.
Then, it randomly chooses r € Zy. For each node x € Path(BT,#), it runs as
follows.

o [t fetches g, from the node x. If  has not been defined, it randomly picks
gz € Gyp,, then stores g, in node z.

e It randomly chooses t, € Zy, Ry,0, Rz,0, Rz,i € Gp,, and computes

Kgc = gaJratwr((uidh)r/gm) ' Rx,07 Lz = gtzr . RI,O
PKiy 5. = { . (5

{Koi=T/"" Rao}ies
Then, the algorithm picks a random element R3 € G, and computes
SKiq = g*(u'h)" - Rs. (6)

Finally, the algorithm outputs the long-term transformation key PK;4 g =
{#, PK;q,5,2 }cepath(BT,0), the private key SK;q and updates the state st.

- TKeyUp(PK, MSK,RL,t, st) — (thuy, st):
For each « € KUNodes(BT, RL, t), the algorithm fetches g, from z (g, should
always be predefined in the above UserKG algorithm), randomly chooses Rz’g,
Rx}g € Gp,, 5S¢ € Zy, and computes

Qm,O,t = goch : (UBhO)Sz‘éx,Su Qz,l,t = gSz Rz,3~ (7)

Finally, the algorithm generates the transformation key update information
tkut = {I, QLO’t, Qz,l,t}zeKUNodes(BT,RL,t) and updates the state st.

— TranKG(PK,id, PK;4s,tku;) — tka:/ L: Suppose 6 is the leaf node
corresponding with id. If Path(BT,0) (| KUNodes(BT,RL,¢) = @, the algo-
rithm returns L. Otherwise, there must exist one node x such that z €
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Path(BT, ) () KUNodes(BT, RL, ¢). Then, it computes

tho = Ko Quo = g2 " (W) (uhho)* - Ry 0Ra3
tk'l = Lw = thT . Rl‘,O
tk2,i = Kx,i = Titerx,i VieS
ths = Qui1t=9""Ray3
Finally, it returns the transformation key tk;q; = {tko, tk1, {tks}ies, ths}.
— DecKG(PK,id, SK;q,t) — dkiq: It randomly chooses r; € Zy and outputs
a decryption key dk;q; = {SK;a(ubho)™, g™} = {g*(w'?h)" (ubho)™ Rs, g™ }.
— Enc(PK, (M, p),t, M) — CT: Given an LSSS access st