
Elisa Bertino
Haya Shulman
Michael Waidner (Eds.)

LN
CS

 1
29

73

26th European Symposium
on Research in Computer Security
Darmstadt, Germany, October 4–8, 2021, Proceedings, Part II

Computer Security –
ESORICS 2021

Lecture Notes in Computer Science 12973

Founding Editors

Gerhard Goos
Karlsruhe Institute of Technology, Karlsruhe, Germany

Juris Hartmanis
Cornell University, Ithaca, NY, USA

Editorial Board Members

Elisa Bertino
Purdue University, West Lafayette, IN, USA

Wen Gao
Peking University, Beijing, China

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Gerhard Woeginger
RWTH Aachen, Aachen, Germany

Moti Yung
Columbia University, New York, NY, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0001-8816-2693

More information about this subseries at http://www.springer.com/series/7410

http://www.springer.com/series/7410

Elisa Bertino • Haya Shulman •

Michael Waidner (Eds.)

Computer Security –

ESORICS 2021
26th European Symposium
on Research in Computer Security
Darmstadt, Germany, October 4–8, 2021
Proceedings, Part II

123

Editors
Elisa Bertino
Purdue University
West Lafayette, IN, USA

Haya Shulman
National Research Center for Applied
Cybersecurity ATHENE
Fraunhofer Institute for Secure Information
Technology SIT
Darmstadt, Germany

Michael Waidner
National Research Center for Applied
Cybersecurity ATHENE
Technische Universität Darmstadt,
Fraunhofer Institute for Secure Information
Technology SIT
Darmstadt, Germany

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-88427-7 ISBN 978-3-030-88428-4 (eBook)
https://doi.org/10.1007/978-3-030-88428-4

LNCS Sublibrary: SL4 – Security and Cryptology

© Springer Nature Switzerland AG 2021
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0002-4029-7051
https://orcid.org/0000-0002-8130-0472
https://orcid.org/0000-0001-7919-9961
https://doi.org/10.1007/978-3-030-88428-4

Preface

The 26th European Symposium on Research in Computer Security (ESORICS 2021)
was held together with the affiliated workshops during the week of October 4–8, 2021.
Due to the COVID-19 pandemic the conference and the workshops took place digi-
tally, hosted by the Fraunhofer Institute for Secure Information Technology (Fraun-
hofer SIT), within the National Research Center for Applied Cybersecurity ATHENE,
Germany.

This year’s ESORICS introduced for the first time in the ESORICS conference
series two review cycles: a winter cycle and a spring cycle. This follows the general
trends for conferences of providing multiple submission deadlines and is not only more
convenient for the authors but also allows revision and resubmission for papers. In the
case of ESORICS, papers submitted in the winter cycle could be recommended for
revision and resubmission to the spring cycle.

In response to the call for papers 351 papers were submitted to the conference.
These papers were peer reviewed and subsequently discussed based on their novelty,
quality, and contribution by the members of the Program Committee. The submissions
were single blind, and all the members of the Program Committee had access to all the
submissions and their reviews at all times to facilitate discussions among the members.
The submission of the papers and the review process were carried out using the
Easychair platform. Based on the reviews and the discussion 71 papers were selected
for presentation at the conference. As a result ESORICS had an interesting program
covering timely and interesting security and privacy topics in theory, systems, net-
works, and applications.

The papers that were selected for presentation at ESORICS 2021 were published in
a two volume set of proceedings: LNCS 12972 and LNCS 12973.

ESORICS is a flagship European security conference. The aim of ESORICS is to
advance the research in computer security and privacy by establishing a European
forum, bringing together researchers in these areas, and promoting the exchange of
ideas with the developers, standardization bodies, and policy makers and by encour-
aging links with researchers in related fields.

We were honoured to have four keynote speakers: Shafi Goldwasser, Christof Paar,
Nicolas Papernot, and Yuval Yarom. Their talks provided interesting insights and
research directions in important research areas. The program was complemented by six
tutorials given by Anna Cinzia Squicciarini, Yossi Oren, Michael Schwarz, Avishai
Wool, and Daphne Yao. For tutorials, ESORICS introduced a novel organization, in
that tutorials were given in advance with respect to the conference dates, with the first
tutorial given on June 30, 2021, and the last one on September 8, 2021. Tutorial
presentations were recorded and are available online. This arrangement takes advantage
of today’s availability of content dissemination platforms and allows researchers to
access the tutorial contents at their own pace.

The Program Committee consisted of 185 members across 31 countries. There were
submissions from a total of 1150 authors across 41 countries, with 25 countries rep-
resented among the accepted papers. We would like to thank the members of the
Program Committee and the external referees for their hard work in supporting the
review process as well as everyone who supported the organization of ESORICS. We
are grateful to the workshops chairs, Adrian Perrig and David Hay, and all of the
workshop co-chairs, the poster chair, Simone Fischer-Hübner, and the ESORICS
Steering Committee. We are also grateful to Huawei and IBM Research – Haifa, Israel,
for supporting the organization of ESORICS 2021. Finally, we would like to thank the
authors for submitting their papers to ESORICS 2021. We hope that the proceedings
will promote the research and facilitate future work in the field of security.

September 2021 Elisa Bertino
Haya Shulman

Michael Waidner

vi Preface

Organization

General Chair

Michael Waidner National Research Center for Applied Cybersecurity
ATHENE/Technische Universität
Darmstadt/Fraunhofer SIT, Germany

Program Committee Chairs

Elisa Bertino Purdue University, USA
Haya Shulman National Research Center for Applied Cybersecurity

ATHENE/Fraunhofer SIT, Germany

Steering Committee

Joachim Biskup
Véronique Cortier
Frédéric Cuppens
Sabrina De Capitani di Vimercati
Joaquin Garcia-Alfaro
Dieter Gollmann
Sokratis Katsikas
Mirosław Kutyłowski
Javier Lopez
Jean-Jacques Quisquater
Peter RYAN
Pierangela Samarati
Einar Arthur Snekkenes
Michael Waidner

Program Committee

Ruba Abu-Salma International Computer Science Institute / University
of California, Berkeley, USA

Yehuda Afek Tel Aviv University, Israel
Mitsuaki Akiyama NTT, Japan
Cristina Alcaraz UMA, Spain
Mark Allman International Computer Science Institute, USA
Vijay Atluri Rutgers University, USA
Erman Ayday Case Western Reserve University, USA
Guangdong Bai University of Queensland, Australia
Lejla Batina Radboud University, The Netherlands

Steven M. Bellovin Columbia University, USA
Antonio Bianchi Purdue University, USA
Marina Blanton University at Buffalo, USA
Carlo Blundo Università degli Studi di Salerno, Italy
Tamara Bonaci Northeastern University, USA
Nora Boulahia Cuppens Polytechnique Montréal, Canada
Alejandro Cabrera Aldaya Tampere University of Technology, Finland
Lorenzo Cavallaro King’s College London, UK
Berkay Celik Purdue University, USA
Aldar C.-F. Chan BIS Innovation Hub Hong Kong Centre, Hong Kong
Liqun Chen University of Surrey, UK
Rongmao Chen National University of Defense Technology, China
Xiaofeng Chen Xidian University, China
Yu Chen School of Cyber Science and Technology, Shandong

University, China
Sherman Chow Chinese University of Hong Kong, Hong Kong
Mauro Conti University of Padua, Italy
Scott Coull FireEye, Inc., USA
Bruno Crispo University of Trento, Italy
Michel Cukier University of Maryland, USA
Frédéric Cuppens Polytechnique Montréal, Canada
George Danezis University College London, UK
Sanchari Das University of Denver, USA
Sabrina De Capitani di

Vimercati
Università degli Studi di Milano, Italy

Hervé Debar Télécom SudParis, France
Roberto Di Pietro Hamad Bin Khalifa University, Qatar
Wenrui Diao Shandong University, China
Tassos Dimitriou Computer Technology Institute, Greece/Kuwait

University, Kuwait
Shlomi Dolev Ben-Gurion University, Israel
Josep Domingo-Ferrer Universitat Rovira i Virgili, Spain
Changyu Dong Newcastle University, UK
Haixin Duan Tsinghua University, China
François Dupressoir University of Surrey, UK
Pardis Emami Naeini Carnegie Mellon University, USA
Paulo Esteves-Veríssimo Université du Luxembourg, Luxembourg
Jose-Luis Ferrer-Gomila University of the Balearic Islands, Spain
Sara Foresti Università degli Studi di Milano, Italy
Michael Franz University of California, Irvine, USA
David Galindo University of Birmingham, UK
Debin Gao Singapore Management University, Singapore
Joaquin Garcia-Alfaro Telecom SudParis, France
Siddharth Garg New York University, USA
Thanassis Giannetsos Technical University of Denmark, Denmark
Dieter Gollmann Hamburg University of Technology, Germany

viii Organization

Neil Gong Duke University, USA
Stefanos Gritzalis University of Piraeus, Greece
Daniel Gruss Graz University of Technology, Austria
Zhongshu Gu IBM T.J. Watson Research Center, USA
Thomas Haines Norwegian University of Science and Technology,

Norway
Feng Hao University of Warwick, UK
Juan Hernández-Serrano Universitat Politècnica de Catalunya, Spain
Xinyi Huang Fujian Normal University, China
Syed Hussain Pennsylvania State University, USA
Sotiris Ioannidis Technical University of Crete, Greece
Tibor Jager Bergische Universität Wuppertal, Germany
Philipp Jeitner Fraunhofer SIT, Germany
Yuseok Jeon Ulsan National Institute of Science and Technology,

South Korea
Shouling Ji Zhejiang University, China
Ghassan Karame NEC Laboratories Europe, Germany
Sokratis Katsikas Norwegian University of Science and Technology,

Norway
Aggelos Kiayias University of Edinburgh, UK
Hyoungshick Kim Sungkyunkwan University, South Korea
Ryan Ko University of Queensland, Australia
Juliane Krämer TU Darmstadt, Germany
Steve Kremer Inria France
Marina Krotofil Honeywell Industrial Cyber Security Lab, USA
Christopher Kruegel University of California, Santa Barbara, USA
Yonghwi Kwon University of Virginia, USA
Costas Lambrinoudakis University of Piraeus, Greece
Shir Landau-Feibish The Open University of Israel, Israel
Kyu Hyung Lee University of Georgia, USA
Corrado Leita VMware, UK
Shujun Li University of Kent, UK
Zitao Li Purdue University, USA
Kaitai Liang Delft University of Technology, The Netherlands
Xiaojing Liao Indiana University Bloomington, USA
Hoon Wei Lim Trustwave, Singapore
Zhiqiang Lin Ohio State University, USA
Xiangyu Liu Alibaba Group, China
Joseph Liu Monash University, Australia
Rongxing Lu University of New Brunswick, Canada
Xiapu Luo Hong Kong Polytechnic University, Hong Kong
Shiqing Ma Rutgers University, USA
Leandros Maglaras De Montfort University, UK
Fabio Martinelli IIT-CNR, Italy
Sjouke Mauw Université du Luxembourg, Luxembourg
Weizhi Meng Technical University of Denmark, Denmark

Organization ix

Nele Mentens KU Leuven, Belgium
Mira Mezini TU Darmstadt, Germany
Chris Mitchell Royal Holloway, University of London, UK
Tal Moran Interdisciplinary Center Herzliya, Israel
Tatsuya Mori Waseda University, Japan
Johannes Mueller University of Luxembourg, Luxembourg
Max Mühlhäuser TU Darmstadt, Germany
David Naccache Ecole normale suprieure, France
Siaw-Lynn Ng Royal Holloway, University of London, UK
Nick Nikiforakis Stony Brook University, USA
Jianting Ning National University of Singapore/Singapore

Management University, Singapore
Satoshi Obana Hosei University, Japan
Martín Ochoa AppGate Inc., Colombia
Rolf Oppliger eSECURITY Technologies, Switzerland
Rebekah Overdorf Ecole Polytechnique Fédérale de Lausanne,

Switzerland
Sikhar Patranabis Visa Research, Palo Alto, USA
Jiaxin Pan Norwegian University of Science and Technology,

Norway
Radia Perlman Dell EMC, USA
Günther Pernul Universität Regensburg, Germany
Tran Viet Xuan Phuong University of Wollongong, Australia
Frank Piessens KU Leuven, Belgium
Joachim Posegga University of Passau, Germany
Jean-Jacques Quisquater Université Catholique de Louvain, Belgium
Siddharth Prakash Rao Nokia Bell Labs, USA
Awais Rashid University of Bristol, UK
Michael Reiter Duke University, USA
Kui Ren Zhejiang University, China
Junghwan Rhee University of Central Oklahoma, USA
Giovanni Russello University of Auckland, New Zealand
Peter Ryan University of Luxembourg, Luxembourg
Reihaneh Safavi-Naini University of Calgary, Canada
Merve Sahin SAP Security Research, France
Amin Sakzad Monash University, Australia
Pierangela Samarati Università degli Studi di Milano, Italy
Damien Sauveron University of Limoges/CNRS, France
Sebastian Schinzel FH Münster, Germany
Steve Schneider University of Surrey, UK
Bruce Schneier BT, USA
Dominique Schröder Friedrich-Alexander-Universität Erlangen-Nürnberg,

Germany
Michael Schwarz CISPA Helmholtz Center for Information Security,

Germany
Joerg Schwenk Ruhr-Universität Bochum, Germany

x Organization

Kent Seamons Brigham Young University, UK
Bardin Sébastien CEA LIST, France
Jean-Pierre Seifert TU Berlin, Germany
Siamak F. Shahandashti University of York, UK
Kris Shrishak TU Darmstadt, Germany
Radu Sion Stony Brook University, USA
Nigel Smart KU Leuven, Belgium
Einar Snekkenes Norwegian University of Science and Technology,

Norway
Juraj Somorovsky Ruhr-Universität Bochum, Germany
Thorsten Strufe KIT, Germany
Willy Susilo University of Wollongong, Australia
Paul Syverson U.S. Naval Research Laboratory, USA
Qiang Tang Luxembourg Institute of Science and Technology,

Luxembourg
Qiang Tang University of Sydney, USA
Dave Tian Purdue University, USA
Laura Tinnel SRI International, USA
Nils Ole Tippenhauer CISPA Helmholtz Center for Information Security,

Germany
Jacob Torrey Amazon Web Services, USA
Ari Trachtenberg Boston University, USA
Helen Treharne University of Surrey, UK
Aggeliki Tsohou Ionian University, Greece
Mathy Vanhoef New York University Abu Dhabi, Abu Dhabi
Luca Viganò King’s College London, UK
Michael Waidner Fraunhofer SIT/National Research Center for Applied

Cybersecurity ATHENE, Germany
Cong Wang City University of Hong Kong, Hong Kong
Haining Wang Virginia Tech Research Center - Arlington, USA
Lingyu Wang Concordia University, Canada
Weihang Wang SUNY University at Buffalo, USA
Bing Wang University of Connecticut, USA
Edgar Weippl University of Vienna/SBA Research, Austria
Avishai Wool Tel Aviv University, Israel
Christos Xenakis University of Piraeus, Greece
Yang Xiang Swinburne University of Technology, Australia
Minhui Xue University of Adelaide, Australia
Guomin Yang University of Wollongong, Australia
Jie Yang Florida State University, USA
Kang Yang State Key Laboratory of Cryptology, China
Yuval Yarom University of Adelaide, Australia
Xun Yi RMIT University, Australia
Yu Yu Shanghai Jiao Tong University, China
Fengwei Zhang SUSTech, China
Kehuan Zhang The Chinese University of Hong Kong, Hong Kong

Organization xi

Yang Zhang CISPA Helmholtz Center for Information Security,
Germany

Yinqian Zhang Southern University of Science and Technology, China
Yuan Zhang Fudan University, China
Zhenfeng Zhang Chinese Academy of Sciences, China
Yunlei Zhao Fudan University, China
Jianying Zhou Singapore University of Technology and Design,

Singapore
Sencun Zhu Pennsylvania State University, USA

Workshop Chairs

David Hay Hebrew University of Jerusalem, Israel
Adrian Perrig ETH Zurich, Switzerland

Posters Chair

Simone Fischer-Hübner Karlstad University, Sweden

Publication Chairs

Philipp Jeitner Fraunhofer SIT, Germany
Hervais Simo Fraunhofer SIT, Germany

Publicity Chairs

Oliver Küch Fraunhofer SIT, Germany
Anna Spiegel Fraunhofer SIT, Germany

Sponsorship Chair

Ute Richter Fraunhofer SIT, Germany

Local Arrangements Chair

Linda Schreiber National Research Center for Applied
Cybersecurity ATHENE, Germany

Web Chair

Ingo Siedermann Fraunhofer SIT, Germany

xii Organization

Posters Program Committee

Patricia Arias KIT, Germany
Xinlei He CISPA Helmholtz Center for Information Security,

Germany
Juliane Krämer TU Darmstadt, Germany
Erwin Quiring TU Braunschweig, Germany
Neta Shiff Rozen Hebrew University of Jerusalem, Israel
Tobias Urban Westphalian University of Applied Sciences, Germany
Di Wang King Abdullah University of Science and Technology,

Saudi Arabia
Zhikun Zhang CISPA Helmholtz Center for Information Security,

Germany

Additional Reviewers

Alexopoulos, Nikolaos
Amiri Eliasi, Parisa
Andreina, Sebastien
Angelogianni, Anna
Avizheh, Sepideh
Bag, Samiran
Bagheri, Sima
Bamiloshin, Michael
Bampatsikos, Michail
Baumer, Thomas
Baumgärtner, Lars
Binun, Alexander
Bolgouras, Vaios
Bonte, Charlotte
Brighente, Alessandro
Böhm, Fabian
Cao, Yanmei
Caprolu, Maurantonio
Catuogno, Luigi
Cecconello, Stefano
Chen, Jinrong
Chen, Long
Chen, Min
Chen, Xihui
Ciampi, Michele
Cicala, Fabrizio
Dang, Hai-Van
Daudén, Cristòfol
Davies, Gareth

Diemert, Denis
Ding, Hailun
Divakaran, Dinil Mon
Dolev, Shlomi
Dong, Naipeng
Du, Jianqi
Du, Minxin
Duman, Onur
Dutta, Sabyasachi
Eckhart, Matthias
Ehsanpour, Maryam
El Kassem, Nada
Empl, Philip
Esgin, Muhammed F.
Feng, Qi
Ferrag, Mohamed Amine
Freisleben, Bernd
Gaballah, Sarah
Gangwal, Ankit
Gellert, Kai
Ghaedi Bardeh, Navid
Gong, Boru
Han, Donggyun
Handirk, Tobias
Hao, Shuai
Hassan, Fadi
Hatzivasilis, George
Hou, Huiying
Huang, Mengdie

Organization xiii

Huang, Zonghao
Ismail, Maliha
Jiang, Hetong
Jiang, Shaoquan
Judmayer, Aljosha
Junming, Ke
Kantarcioglu, Murat
Karim, Imtiaz
Kasinathan, Prabhakaran
Kasra Kermanshahi, Shabnam
Kelarev, Andrei
Kern, Andreas
Kern, Sascha
Kim, Hyungsub
Klement, Felix
Komissarov, Rony
Koutroumpouchos, Nikolaos
Kuchta, Veronika
Kumar, Manish
Kwon, Yonghwi
Köstler, Johannes
Lai, Jianchang
Lakka, Eftychia
Lal, Chhagan
Lampropoulos, Konstantinos
Lee, Jehyun
Li, Rui
Li, Yanan
Li, Yannan
Liber, Matan
Lima Pereira, Hilder Vitor
Lin, Chengyu
Lin, Yan
Liu, Guannan
Liu, Lin
Livsey, Lee
Lopez, Christian
Loss, Julian
Lyu, Lin
Ma, Haoyu
Ma, Jack P. K.
Ma, Mimi
Makriyannis, Nikolaos
Mariot, Luca
Marson, Giorgia Azzurra
Martínez, Sergio

Mateu, Victor
Merzouk, Mohamed-Amine
Mestel, David
Mitropoulos, Charalambos
Mohammadi, Farnaz
Niehues, David
Noorman, Job
O’Connell, Sioli
Oppermann, Alexander
Palamidessi, Catuscia
Pan, Jing
Pang, Bo
Panwar, Nisha
Park, Jeongeun
Petroulakis, Nikolaos
Poeplau, Sebastian
Pradel, Gaëtan
Qiu, Tian
Qiu, Zhi
Rabbani, Md Masoom
Ramírez-Cruz, Yunior
Ringerud, Magnus
Rivera, Esteban
Rizomiliotis, Panagiotis
Román-García, Fernando
Saha, Sayandeep
Sanchez-Rola, Iskander
Schindler, Philipp
Schlette, Daniel
Sentanoe, Stewart
Setayeshfar, Omid
Sharifian, Setareh
Shen, Jun
Shen, Xinyue
Silde, Tjerand
Singla, Ankush
Skrobot, Marjan
Song, Zirui
Spolaor, Riccardo
Stifter, Nicholas
Striecks, Christoph
Struck, Patrick
Tabatabaei, Masoud
Tan, Teik Guan
Teague, Vanessa
Tengana, Lizzy

xiv Organization

Tian, Guangwei
Trujillo, Rolando
Tschorsch, Florian
Tu, Binbin
Turrin, Federico
Van Strydonck, Thomas
Vielberth, Manfred
Wang, Coby
Wang, Jiafan
Wang, Kailong
Wang, Qian
Wang, Xiaofeng
Wang, Xiaolei
Wang, Yi
Watanabe, Yohei
Wen, Rui
Wisiol, Nils
Wong, Harry W. H.
Wu, Chen
Wu, Huangting

Xu, Fenghao
Xu, Jia
Yang, Rupeng
Yang, S. J.
Yang, Shishuai
Yang, Xu
Yang, Xuechao
Yang, Zheng
Ying, Jason
Yung, Moti
Zhang, Cong
Zhang, Min
Zhang, Wenlu
Zhang, Yanjun
Zhang, Yubao
Zhang, Yuexin
Zhang, Zhiyi
Zhao, Yongjun
Zou, Yang
Zuo, Cong

Additional Reviewers for Posters

Alexopoulos, Nikolaos
Ma, Yihan
Wang, Cheng-Long

Wen, Rui
Xiang, Zihang
Zhang, Minxing

Organization xv

Contents – Part II

Encryption

Bestie: Very Practical Searchable Encryption with Forward
and Backward Security . 3

Tianyang Chen, Peng Xu, Wei Wang, Yubo Zheng, Willy Susilo,
and Hai Jin

Geo-DRS: Geometric Dynamic Range Search on Spatial Data
with Backward and Content Privacy . 24

Shabnam Kasra Kermanshahi, Rafael Dowsley, Ron Steinfeld,
Amin Sakzad, Joseph K. Liu, Surya Nepal, and Xun Yi

Efficient Multi-client Order-Revealing Encryption and Its Applications 44
Chunyang Lv, Jianfeng Wang, Shi-Feng Sun, Yunling Wang, Saiyu Qi,
and Xiaofeng Chen

Versatile and Sustainable Timed-Release Encryption and Sequential
Time-Lock Puzzles (Extended Abstract) . 64

Peter Chvojka, Tibor Jager, Daniel Slamanig, and Christoph Striecks

Multipath TLS 1.3 . 86
Marc Fischlin, Sven-André Müller, Jean-Pierre Münch, and Lars Porth

SyLPEnIoT: Symmetric Lightweight Predicate Encryption for Data Privacy
Applications in IoT Environments . 106

Tran Viet Xuan Phuong, Willy Susilo, Guomin Yang, Jongkil Kim,
Yang-Wai Chow, and Dongxi Liu

Security Analysis of SFrame . 127
Takanori Isobe, Ryoma Ito, and Kazuhiko Minematsu

Attribute-Based Conditional Proxy Re-encryption in the Standard Model
Under LWE . 147

Xiaojian Liang, Jian Weng, Anjia Yang, Lisha Yao, Zike Jiang,
and Zhenghao Wu

Lattice-Based HRA-secure Attribute-Based Proxy Re-Encryption
in Standard Model. 169

Willy Susilo, Priyanka Dutta, Dung Hoang Duong,
and Partha Sarathi Roy

Server-Aided Revocable Attribute-Based Encryption Revised: Multi-User
Setting and Fully Secure . 192

Leixiao Cheng and Fei Meng

Cryptography

Precomputation for Rainbow Tables has Never Been so Fast 215
Gildas Avoine, Xavier Carpent, and Diane Leblanc-Albarel

Cache-Side-Channel Quantification and Mitigation for Quantum
Cryptography . 235

Alexandra Weber, Oleg Nikiforov, Alexander Sauer, Johannes Schickel,
Gernot Alber, Heiko Mantel, and Thomas Walther

Genetic Algorithm Assisted State-Recovery Attack
on Round-Reduced Xoodyak . 257

Zimin Zhang, Wenying Zhang, and Hongfang Shi

Moving the Bar on Computationally Sound Exclusive-Or. 275
Catherine Meadows

Optimal Verifiable Data Streaming Protocol with Data Auditing 296
Jianghong Wei, Guohua Tian, Jun Shen, Xiaofeng Chen,
and Willy Susilo

One-More Unforgeability of Blind ECDSA . 313
Xianrui Qin, Cailing Cai, and Tsz Hon Yuen

MPC-in-Multi-Heads: A Multi-Prover Zero-Knowledge Proof System:
(or: How to Jointly Prove Any NP Statements in ZK) 332

Hongrui Cui, Kaiyi Zhang, Yu Chen, Zhen Liu, and Yu Yu

Complexity and Performance of Secure Floating-Point Polynomial
Evaluation Protocols . 352

Octavian Catrina

SERVAS! Secure Enclaves via RISC-V Authenticryption Shield. 370
Stefan Steinegger, David Schrammel, Samuel Weiser, Pascal Nasahl,
and Stefan Mangard

Privacy

Privacy-Preserving Gradient Descent for Distributed
Genome-Wide Analysis . 395

Yanjun Zhang, Guangdong Bai, Xue Li, Caitlin Curtis, Chen Chen,
and Ryan K. L. Ko

xviii Contents – Part II

Privug: Using Probabilistic Programming for Quantifying Leakage
in Privacy Risk Analysis . 417

Raúl Pardo, Willard Rafnsson, Christian W. Probst,
and Andrzej Wąsowski

Transparent Electricity Pricing with Privacy . 439
Daniël Reijsbergen, Zheng Yang, Aung Maw, Tien Tuan Anh Dinh,
and Jianying Zhou

CoinJoin in the Wild: An Empirical Analysis in Dash 461
Dominic Deuber and Dominique Schröder

One-Time Traceable Ring Signatures. 481
Alessandra Scafuro and Bihan Zhang

PACE with Mutual Authentication – Towards an Upgraded eID
in Europe . 501

Patryk Kozieł, Przemysław Kubiak, and Mirosław Kutyłowski

Differential Privacy

Secure Random Sampling in Differential Privacy . 523
Naoise Holohan and Stefano Braghin

Training Differentially Private Neural Networks with Lottery Tickets 543
Lovedeep Gondara, Ricardo Silva Carvalho, and Ke Wang

Locality Sensitive Hashing with Extended Differential Privacy 563
Natasha Fernandes, Yusuke Kawamoto, and Takao Murakami

Zero Knowledge

MLS Group Messaging: How Zero-Knowledge Can Secure Updates 587
Julien Devigne, Céline Duguey, and Pierre-Alain Fouque

More Efficient Amortization of Exact Zero-Knowledge Proofs for LWE 608
Jonathan Bootle, Vadim Lyubashevsky, Ngoc Khanh Nguyen,
and Gregor Seiler

Zero Knowledge Contingent Payments for Trained Neural Networks 628
Zhelei Zhou, Xinle Cao, Jian Liu, Bingsheng Zhang, and Kui Ren

Key Exchange

Identity-Based Identity-Concealed Authenticated Key Exchange 651
Huanhuan Lian, Tianyu Pan, Huige Wang, and Yunlei Zhao

Contents – Part II xix

Privacy-Preserving Authenticated Key Exchange: Stronger Privacy
and Generic Constructions . 676

Sebastian Ramacher, Daniel Slamanig, and Andreas Weninger

Multi-party Computation

Correlated Randomness Teleportation via Semi-trusted
Hardware—Enabling Silent Multi-party Computation. 699

Yibiao Lu, Bingsheng Zhang, Hong-Sheng Zhou, Weiran Liu, Lei Zhang,
and Kui Ren

Polynomial Representation is Tricky: Maliciously Secure Private Set
Intersection Revisited. 721

Aydin Abadi, Steven J. Murdoch, and Thomas Zacharias

Posters

RIoTPot: A Modular Hybrid-Interaction IoT/OT Honeypot. 745
Shreyas Srinivasa, Jens Myrup Pedersen,
and Emmanouil Vasilomanolakis

Towards Automatically Generating Security Analyses from Machine-
Learned Library Models. 752

Maria Kober and Steven Arzt

Jamming of NB-IoT Synchronisation Signals . 759
Gabriela Morillo and Utz Roedig

TPRou: A Privacy-Preserving Routing for Payment Channel Networks 764
Zijian Bao, Qinghao Wang,Yongxin Zhang, Hong Lei, and Wenbo Shi

Determining Asset Criticality in Cyber-Physical Smart Grid 770
Yazeed Alrowaili, Neetesh Saxena and Pete Burnap

Signature-in-signature: the Last Line of Defence in Case of Signing Key
Compromise . 777

Przemysław Błaskiewicz, Mirosław Kutyłowski, and Marcin Słowik

Author Index . 783

xx Contents – Part II

http://dx.doi.org/10.1007/978-3-030-88428-4_35

Contents – Part I

Network Security

More Efficient Post-quantum KEMTLS with Pre-distributed Public Keys 3
Peter Schwabe, Douglas Stebila, and Thom Wiggers

How to (Legally) Keep Secrets from Mobile Operators 23
Ghada Arfaoui, Olivier Blazy, Xavier Bultel, Pierre-Alain Fouque,
Thibaut Jacques, Adina Nedelcu, and Cristina Onete

A Formal Security Analysis of Session Resumption Across Hostnames 44
Kai Gellert and Tobias Handirk

Attacks

Caught in the Web: DoS Vulnerabilities in Parsers for Structured Data 67
Shawn Rasheed, Jens Dietrich, and Amjed Tahir

POW-HOw: An Enduring Timing Side-Channel to Evade Online
Malware Sandboxes. 86

Antonio Nappa, Panagiotis Papadopoulos, Matteo Varvello,
Daniel Aceituno Gomez, Juan Tapiador, and Andrea Lanzi

Characterizing GPU Overclocking Faults . 110
Eldad Zuberi and Avishai Wool

Fuzzing

ARIstoteles – Dissecting Apple’s Baseband Interface. 133
Tobias Kröll, Stephan Kleber, Frank Kargl, Matthias Hollick,
and Jiska Classen

webFuzz: Grey-Box Fuzzing for Web Applications 152
Orpheas van Rooij, Marcos Antonios Charalambous, Demetris Kaizer,
Michalis Papaevripides, and Elias Athanasopoulos

My Fuzzer Beats Them All! Developing a Framework for Fair Evaluation
and Comparison of Fuzzers . 173

David Paaßen, Sebastian Surminski, Michael Rodler, and Lucas Davi

Malware

Rope: Covert Multi-process Malware Execution
with Return-Oriented Programming . 197

Daniele Cono D’Elia, Lorenzo Invidia, and Leonardo Querzoni

Towards Automating Code-Reuse Attacks Using Synthesized
Gadget Chains . 218

Moritz Schloegel, Tim Blazytko, Julius Basler, Fabian Hemmer,
and Thorsten Holz

Peeler: Profiling Kernel-Level Events to Detect Ransomware 240
Muhammad Ejaz Ahmed, Hyoungshick Kim, Seyit Camtepe,
and Surya Nepal

User Behaviour and Underground Economy

Mingling of Clear and Muddy Water: Understanding and Detecting
Semantic Confusion in Blackhat SEO . 263

Hao Yang, Kun Du, Yubao Zhang, Shuai Hao, Haining Wang,
Jia Zhang, and Haixin Duan

An Explainable Online Password Strength Estimator 285
Liron David and Avishai Wool

Detecting Video-Game Injectors Exchanged in Game Cheating
Communities . 305

Panicos Karkallis, Jorge Blasco, Guillermo Suarez-Tangil,
and Sergio Pastrana

Blockchain

Revocable Policy-Based Chameleon Hash . 327
Shengmin Xu, Jianting Ning, Jinhua Ma, Guowen Xu, Jiaming Yuan,
and Robert H. Deng

Fair Peer-to-Peer Content Delivery via Blockchain 348
Songlin He, Yuan Lu, Qiang Tang, Guiling Wang, and Chase Qishi Wu

Conclave: A Collective Stake Pool Protocol . 370
Dimitris Karakostas, Aggelos Kiayias, and Mario Larangeira

Probabilistic Micropayments with Transferability . 390
Taisei Takahashi and Akira Otsuka

xxii Contents – Part I

MINILEDGER: Compact-Sized Anonymous and Auditable
Distributed Payments . 407

Panagiotis Chatzigiannis and Foteini Baldimtsi

Succinct Scriptable NIZK via Trusted Hardware . 430
Bingsheng Zhang, Yuan Chen, Jiaqi Li, Yajin Zhou, Phuc Thai,
Hong-Sheng Zhou, and Kui Ren

Machine Learning

CONTRA: Defending Against Poisoning Attacks in Federated Learning 455
Sana Awan, Bo Luo, and Fengjun Li

Romoa: Robust Model Aggregation for the Resistance of Federated
Learning to Model Poisoning Attacks . 476

Yunlong Mao, Xinyu Yuan, Xinyang Zhao, and Sheng Zhong

FLOD: Oblivious Defender for Private Byzantine-Robust Federated
Learning with Dishonest-Majority . 497

Ye Dong, Xiaojun Chen, Kaiyun Li, Dakui Wang, and Shuai Zeng

MediSC: Towards Secure and Lightweight Deep Learning as a Medical
Diagnostic Service . 519

Xiaoning Liu, Yifeng Zheng, Xingliang Yuan, and Xun Yi

TAFA: A Task-Agnostic Fingerprinting Algorithm for Neural Networks 542
Xudong Pan, Mi Zhang, Yifan Lu, and Min Yang

DA3G: Detecting Adversarial Attacks by Analysing Gradients 563
Jan-Philipp Schulze, Philip Sperl, and Konstantin Böttinger

Common Component in Black-Boxes Is Prone to Attacks 584
Jiyi Zhang, Wesley Joon-Wie Tann, Ee-Chien Chang,
and Hwee Kuan Lee

LiMNet: Early-Stage Detection of IoT Botnets with Lightweight
Memory Networks . 605

Lodovico Giaretta, Ahmed Lekssays, Barbara Carminati, Elena Ferrari,
and Šarūnas Girdzijauskas

Adversarial Activity Detection Using Keystroke Acoustics 626
Amin Fallahi and Vir V. Phoha

Contents – Part I xxiii

Automotive

Tell Me How You Re-Charge, I Will Tell You Where You Drove To:
Electric Vehicles Profiling Based on Charging-Current Demand 651

Alessandro Brighente, Mauro Conti, and Izza Sadaf

CAN-SQUARE - Decimeter Level Localization of Electronic Control Units
on CAN Buses . 668

Bogdan Groza, Pal-Stefan Murvay, Lucian Popa, and Camil Jichici

Shadow-Catcher: Looking into Shadows to Detect Ghost Objects in
Autonomous Vehicle 3D Sensing . 691

Zhongyuan Hau, Soteris Demetriou, Luis Muñoz-González,
and Emil C. Lupu

Anomaly Detection

AutoGuard: A Dual Intelligence Proactive Anomaly Detection at
Application-Layer in 5G Networks . 715

Taous Madi, Hyame Assem Alameddine, Makan Pourzandi,
Amine Boukhtouta, Moataz Shoukry, and Chadi Assi

MORTON: Detection of Malicious Routines in Large-Scale DNS Traffic. . . . 736
Yael Daihes, Hen Tzaban, Asaf Nadler, and Asaf Shabtai

Iterative Selection of Categorical Variables for Log Data
Anomaly Detection . 757

Max Landauer, Georg Höld, Markus Wurzenberger, Florian Skopik,
and Andreas Rauber

Author Index . 779

xxiv Contents – Part I

Encryption

Bestie: Very Practical Searchable
Encryption with Forward and Backward

Security

Tianyang Chen1, Peng Xu1(B), Wei Wang2, Yubo Zheng1, Willy Susilo3,
and Hai Jin1

1 National Engineering Research Center for Big Data Technology and System,
Services Computing Technology and System Lab,

Hubei Engineering Research Center on Big Data Security, School of Cyber Science
and Engineering, Huazhong University of Science and Technology,

Wuhan 430074, China
{chentianyang,xupeng,zhengyubo,hjin}@mail.hust.edu.cn

2 Cyber-Physical-Social Systems Lab, School of Computer Science and Technology,
Huazhong University of Science and Technology, Wuhan 430074, China

viviawangwei@hust.edu.cn
3 Institute of Cybersecurity and Cryptology,

School of Computing and Information Technology,
University of Wollongong, Wollongong, Australia

wsusilo@uow.edu.au

Abstract. Dynamic searchable symmetric-key encryption (DSSE) is a
promising crypto-tool that enables secure keyword searching over dynam-
ically added or deleted ciphertexts. Currently, many works on DSSE
devote their efforts to obtaining forward and backward security and prac-
tical performance. However, it is still challenging to design a single DSSE
scheme that simultaneously achieves this security, high performance, and
real deletion. Note that real deletion is a critical feature to guarantee the
right of the user to be forgotten stipulated by GDPR. Due to this fact,
we propose a new forward-and-backward secure DSSE scheme named
Bestie. To achieve high search performance, Bestie takes the tradi-
tional hash and pseudorandom functions and symmetric-key encryption
as building blocks and supports parallel keyword search. Bestie also
achieves non-interactive real deletion for avoiding the client to do a clean-
up process. This feature not only guarantees the above GDPR rule but
also makes Bestie more suitable for managing large-scale data. Bestie
also saves the client’s computation and communication costs. Finally, we
experimentally compare Bestie with five previous well-known works and
show that Bestie is much better in most respects. For example, Bestie
requires approximately 3.66 microseconds to find a matching ciphertext.
In contrast, Bestie has search performance at least 2 times faster than
both Mitra∗ (CCS’18) and Dianadel (CCS’17), 1,032× faster than Fides

(CCS’17), and 38,332× faster than Janus++ (CCS’18), respectively. Com-
pared with Mitra (CCS’18), Bestie saves at least 80% client time cost
during a search.

c© Springer Nature Switzerland AG 2021
E. Bertino et al. (Eds.): ESORICS 2021, LNCS 12973, pp. 3–23, 2021.
https://doi.org/10.1007/978-3-030-88428-4_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-88428-4_1&domain=pdf
https://doi.org/10.1007/978-3-030-88428-4_1

4 T. Chen et al.

Keywords: Dynamic searchable symmetric-key encryption · Forward
and backward security · High performance · Real deletion

1 Introduction

Dynamic searchable symmetric-key encryption (DSSE) [18] originates from
searchable symmetric-key encryption [25] (SSE). DSSE allows a client to delegate
keyword searches over ciphertexts to an honest-but-curious server while preserv-
ing the keyword privacy as SSE does. Additionally, DSSE uniquely enables the
client to dynamically update his ciphertexts on the server, such as adding a new
ciphertext or deleting an existing ciphertext.

A DSSE scheme usually consists of two parties, namely, a client and an honest-
but-curious server, and three protocols between these two parties, such as Setup,
Update, and Search. In the beginning, the client runs the Setup protocol to gen-
erate his/her symmetric keys, and the server initializes an empty database. The
Update protocol allows the client to add a new ciphertext to or delete an existing
ciphertext from the server. Each ciphertext contains a keyword-and-file-identifier
entry. The Search protocol enables the client to delegate a secure keyword search
to the server. The server then returns all found ciphertexts (namely, the cipher-
texts containing the expected keyword) to the client.

In terms of the DSSE security, the research community continues to attempt
to reduce the information leakage caused by Update and Search protocols as
much as possible. The possible information leakage includes keyword privacy
and access and search patterns. Recently, researchers have devoted their efforts
to developing DSSE schemes with forward and backward security [1,2]. Forward
security can resist file-injection attack [31] by hiding the relationship between a
newly issued Update query and any previously issued Search queries. Backward
security can hide the historically deleted ciphertexts from the server when run-
ning a Search operation. Hence, forward and backward security is widely accepted
and strong security in practice.

In terms of the DSSE performance, we say that a DSSE scheme is practical if
it achieves high search performance, low client overhead, and non-interactive real
deletion. The importance of the first two features is very evident. High search
performance means that a DSSE scheme can search over large-scale encrypted
data. Low client overhead alleviates the minimum limits on the capability of the
client’s device. The client, even with a mobile device, can also apply a DSSE
scheme. Non-interactive real deletion allows a DSSE scheme to erase the deleted
or invalid ciphertexts from the server without the client’s help. This not only
saves the storage cost of the server but also benefits a DSSE scheme to man-
age large-scale ciphertexts. Moreover, (non-interactive) real deletion satisfies the
GDPR stipulation that a data subject should have the right to have his or her per-
sonal data erased and no longer processed where the personal data are no longer
necessary in relation to the purposes for which they are collected or otherwise
processed [23].

However, it is still challenging to design a single DSSE scheme with forward
and backward security and practical performance. We extensively investigate

Bestie: Very Practical DSSE with Forward and Backward Security 5

Table 1. SSE Scheme Comparison. Note that column “Search Cost” presents the
average time cost to find one matching ciphertext if no Delete query was issued before.
Symbol nw denotes the number of ciphertexts matching a keyword search. Column
“Encryption Cost” is the average time cost for the client to generate one ciphertext.
Column “Real Deletion” describes the deletion type a DSSE scheme can achieve.

Scheme BP Search cost (µs) Round trips Encryption cost (µs) Real deletion

Client Server Total

Fides [2] II 4,142.63 24.18 4,166.81 2 4,145.22 Interactive

Mitra [4] II 5.91 0.53 6.44 2 5.81 Failed

Mitra∗ [4] II 12.06 3.92 15.98 2 7.38 Interactive

Dianadel [2] III 82.73/nw 11.83 >11.83 2 13.21 Failed

Janus++ [29] III 480.58/nw 154,569 >154,569 1 154,692 Non-interactive

Bestie (ours) III 0.89 2.77 3.66 2 7.83 Non-interactive

previous well-known DSSE schemes with forward and backward security. Table 1
lists some of these schemes and shows that they are still not effective in terms of
performance. Concretely, both Fides [2] and Janus++ [29] suffer from low search
performance and high client overhead during encryption. Fides also introduces
high client time cost into a search process. Fides and Dianadel both from [2] and
Mitra∗1 [4] consume more bandwidth to transfer re-encrypted ciphertexts or to
determine which ciphertexts should be deleted. Both Dianadel and Mitra [4] fail
to achieve real deletion. Both Fides and Mitra∗ achieve interactive real dele-
tion. It means that both Fides and Mitra∗ require the client to re-encrypt and
re-upload all matching and still-valid ciphertexts to the server. Clearly, achiev-
ing interactive real deletion is not practical for handling large-scale data. The
above observations motivate us to develop a practical forward-and-backward-
secure DSSE scheme that achieves high search performance, low client overhead,
and non-interactive real deletion, simultaneously.

In this paper, we present Bestie, a very practical and forward-and-Type-III-
backward-secure DSSE scheme. As shown in Table 1, Bestie achieves a Search
protocol with the highest search performance and the non-interactive real dele-
tion. Hence, Bestie is very suitable for managing large-scale data. In the Search
protocol, Bestie only offers a slightly higher client time cost during a search
than both Dianadel and Janus++, since the Bestie client requires some time
cost to decrypt the returned file identifiers from the server. However, the decryp-
tion cost of Bestie does not influence the practicality because modern CPUs
are equipped with hardware instructions to accelerate the decryption process,
such as AES-NI of Intel CPUs. In addition, although Bestie slightly increases
the client’s time cost, the total time cost of Bestie during a search is still the
best one compared with all the above-mentioned schemes.

Some may worry that forward and Type-III-backward security is not strong
enough. However, it is a fact that forward and Type-III-backward security is
enough to mitigate the widely-concerned file-injection attack. Meanwhile, it

1 Mitra∗ is a variant of Mitra that achieves interactive real deletion by the client to
re-encrypt and re-upload the still-valid searchable ciphertexts.

6 T. Chen et al.

seems impossible to achieve Type-I or Type-II backward security and practical
performance, simultaneously. To achieve Type-I or Type-II backward security,
we have to adopt the costly cryptographic primitive oblivious random access
machine (ORAM) (or similar techniques, e.g., Horus [4] and FB-DSSE [32]),
occupy client storage resources to stash deletion queries (e.g., Aura [28]), or
simply omit (non-interactive) real deletion (e.g., Mitra and Mitra∗ both from
[4], SDa and SDd both from [8], and CLOSE-FB [13]). Adopting ORAM (or similar
techniques) means that a DSSE scheme must transfer largely redundant data or
consume a considerable computation cost.

In summary, we outline our main contributions as below:

– We propose a new DSSE scheme, named Bestie, and prove that it is forward-
and-Type-III-backward secure;

– We comprehensively compare Bestie with previous DSSE schemes and show
that Bestie offers much better performance;

– We introduce the parallelization method to implement the Search protocol of
Bestie and experimentally evaluate its efficiency.

We organize the remaining sections of this paper as follows. Section 2 reviews
the background knowledge of DSSE. Section 3 presents our Bestie. Section 4
experimentally compares Bestie with previous works. We introduce the related
works in Sect. 5. Section 6 finally concludes this paper.

2 Background

Notations. In the remaining sections, we use λ ∈ N to denote the security
parameter. We use symbol e

$← X to denote randomly choosing an element e
from space or set X . Symbol {0, 1}k indicates all strings that are of binary length
k ∈ N, and symbol {0, 1}∗ represents all strings of arbitrary binary length. Let
0λ be the string of binary length λ whose bits are all zero. We assume that no
file has the identifier 0λ. Let symbol poly(λ) denote a polynomial with input
parameter λ. Let symbol ⊥ denote the abort operation.

Definition 1 (DSSE). A DSSE scheme Σ consists of three protocols between
the client and the server, such as Σ.Setup, Σ.Update, and Σ.Search. Their defi-
nitions are given below:

– Protocol Σ.Setup(λ): In this protocol, the client initializes his secret key KΣ

and an empty state-set σ for the given security parameter λ and sends an
empty encrypted database EDB to the server. The client keeps both his key
KΣ and state-set σ private.

– Protocol Σ.Update(KΣ , σ, op, (w, id);EDB): In this protocol, the client either
adds a new keyword-and-file-identifier entry (w, id) to or deletes an existing
entry from the server according to parameter op ∈ {add, del}. Given key KΣ

and state-set σ, the client sends a new ciphertext of entry (w, id) to the server
if op = add; otherwise (namely, op = del), he sends a delete token of entry
(w, id) to the server. When receiving the above message, the server updates
its database EDB correspondingly.

Bestie: Very Practical DSSE with Forward and Backward Security 7

– Protocol Σ.Search(KΣ , σ, w;EDB): In this protocol, given key KΣ and state-
set σ, the client sends a search trapdoor of the expected keyword w to the
server. Then, the server searches the keyword over the database EDB and
returns all valid file identifiers to the client.

A DSSE scheme must be correct in the sense that all valid file identifiers can
always be found. The formal definition can be found in [18].

A popular method to define the adaptive security of DSSE is to define the
indistinguishability between a real game and an ideal game of DSSE. In both
games, the adversary can adaptively issue Update and Search queries. In the real
game, all keyword-and-file-identifier entries and secret keys are real, and both
protocols Σ.Update and Σ.Search are correctly implemented. In contrast, in the
ideal game, a simulator only uses leakage functions to simulate the responses to
all queries of the adversary. We say that DSSE is adaptively secure if a simulator
can simulate an ideal game that is indistinguishable from the real game. The
fewer leakage functions the simulator uses, the more secure DSSE is.

Definition 2 (Adaptive Security of DSSE). Given leakage functions L =
(LStp,LUpdt,LSrch), a DSSE scheme Σ is said to be L-adaptively secure if for
any sufficiently large security parameter λ ∈ N and adversary A, there exists an
efficient simulator S = (S.Setup,S.Update,S.Search) for which |Pr[RealΣA(λ) =
1] − Pr[IdealΣA,S,L(λ) = 1]| is negligible in λ, where games RealΣA(λ) and
IdealΣA,S,L(λ) are defined as below:

– RealΣA(λ): The real game exactly implements all DSSE protocols. Adversary A
can adaptively issue Update and Search queries with input (op, (w, id)) and w,
respectively, and observe the real transcripts generated by the DSSE protocols.
At the end, adversary A outputs a bit.

– IdealΣA,S,L(λ): All transcripts are simulated by the simulator S. Adversary A
can issue the same queries as in the real game. The simulator S simulates
the corresponding transcripts by taking leakage functions L as input. At the
end, adversary A outputs a bit.

Let list Q be a set of all Update and Search queries, where each entry in list
Q has the form of either (u, op, (w, id)) or (u,w) for Update and Search queries,
respectively, where parameter u denotes the timestamp of issuing a query. Given
a keyword w, let function sp(w) return all timestamps of the Search queries about
keyword w, function TimeDB(w) return all undeleted file identifiers of keyword
w and the history timestamps for adding these files, and function DelHist(w)
return the history timestamps of all paired Add and Delete operations about
keyword w. The formal definitions of the above three functions are given below.

sp(w) = {u|(u, , w) ∈ Q}
TimeDB(w) = {(u, id)|(u, add, (w, id)) ∈ Q and ∀u′, (u′, del, (w, id)) /∈ Q}

DelHist(w) = {(uadd, udel)|∃id, (uadd, add, (w, id)) ∈ Q

and (udel, del, (w, id)) ∈ Q}

8 T. Chen et al.

With the above functions, forward and Type-III-backward security is defined
as follows.

Definition 3 (Forward and Type-III-Backward Security [1,2]). An L-
adaptively secure DSSE scheme Σ is forward-and-Type-III-backward secure iff
the Update and Search leakage functions LUpdt and LSrch can be written as

LUpdt(op, w, id) = L′(op) and LSrch(w) = L′′(sp(w),TimeDB(w),DelHist(w))

where L′ and L′′ are two stateless functions.

Besides the Type-III backward security, there exist two other levels of back-
ward security, namely Type-I backward security and Type-II backward security.
Type-I backward security requires that a Search query leaks only TimeDB(w)
and the total number of updating w. In contrast, Type-II backward security addi-
tionally allows a Search query to leak the timestamps of updating w. This paper
focuses on the Type-III backward security. The formal definitions of Type-I and
Type-II backward securities can be found in [2].

3 Construction of Bestie

As shown in Table 1, our proposed Bestie is practical in almost all aspects. To
achieve this, the construction of Bestie adopts the following three core ideas:

– To achieve high search performance, Bestie generates searchable ciphertexts
in a counter-based design and collects all found ciphertexts into a group for
each Search query. This method avoids redundant computation in the next-
time search on these ciphertexts. The counter-based design enables the server
to find all matching ciphertexts by traversing all valid counter values, and
the resulting search complexity is sub-linear with respect to the total num-
ber of ciphertexts. Additionally, Bestie avoids any expensive cryptographic
operation and adopts some hash computations. Hence, Bestie achieves faster
search performance than the previous works, such as Fides and Janus++.

– To realize non-interactive real deletion while ensuring minimal information
leakage, we apply the idea of combining logical deletion and real deletion
introduced by Xu et al. [30]. Bestie additionally achieves higher security (less
information leakage) than the scheme in [30]. In short, when issuing an Update
query to delete a historical ciphertext, Bestie uploads a new ciphertext to
the server. This ciphertext contains the index of a historical ciphertext that
the client expects to delete. When a Search query finds this new ciphertext,
the server can decrypt the contained index, and this index can guide the
server to really delete the corresponding historical ciphertext.

– To achieve forward security, Bestie chooses a new key for a keyword to
generate the keyword ciphertexts after each search for the keyword. In other
words, after each search for a keyword, Bestie chooses a new key to generate
the following ciphertexts of the keyword. To avoid storing many keys for a
keyword on the client-side, Bestie allows the client to maintain a Search

Bestie: Very Practical DSSE with Forward and Backward Security 9

counter for each keyword and dynamically generate any historical key of a
keyword. Moreover, the use of a group on the server-side enables Bestie
to send a constant-size search trapdoor for each Search query, instead of
delegating many search trapdoors generated by the different historical keys
of a keyword to the server. To achieve backward security, Bestie encrypts
all file identifiers such that the server learns nothing about the deleted file
identifier.

3.1 Our Construction

Let λ be the security parameter. Bestie utilizes a PRF function F : KF ×XF →
YF, where KF = {0, 1}λ is the secret key space, XF = {0, 1}∗ is the domain
and YF = {0, 1}λ is the range. The security of PRF ensures that the output
of F is indistinguishable from a randomly sampled value from YF, except for a
negligible probability in the parameter λ. Bestie also uses a semantically secure
and probabilistic symmetric encryption scheme ξ. ξ comprises of a probabilistic
encryption algorithm E : Kξ × Mξ → Cξ and the corresponding decryption algo-
rithm D : Kξ × Cξ → Mξ ∪ {⊥}, where Kξ = {0, 1}λ is the symmetric key space,
Mξ = {0, 1}∗ is the plaintext space, and Cξ = {0, 1}∗ is the ciphertext space.
Algorithm 1 presents the pseudocode of protocols Bestie.Setup, Bestie.Update,
and Bestie.Search. The following content explains the details of Bestie.

Bestie.Setup Protocol. Upon inputting a security parameter λ, this protocol
mainly initializes two keys Kξ and S and some empty storage structures Count
and EDB = (CDB,GRP). Key Kξ will be used as a symmetric key to encrypt
(or decrypt, resp.) file identifiers when updating an entry (or receiving the search
results from the server, resp.). Key S is a master key. When issuing an Update
query or a Search query of a keyword, the client will dynamically generate two
sub-keys from the master key for the keyword to complete the query. Such a
method avoids storing many keys on the client-side. Structure Count stores
the update times of a keyword after the last search of the keyword and the
keyword search times. The client must locally store structure Count and ensure
its privacy. The server uses structure CDB to store all newly updated ciphertexts
that are never searched and uses group GRP to group the still-valid ciphertexts
of the same keyword when receiving a Search query.

Bestie.Update Protocol. This protocol enables the client to issue an Update
query for adding or deleting a keyword-and-file-identifier entry, such as (w, id).
For a given entry (w, id), the client locally queries structure Count to obtain the
existing update times cupdt

w after the last search of keyword w and the existing
search times csrch

w of keyword w (refer to Steps 1 to 3). Then, the client computes
two special keys Kw and K ′

w with the master key S and the search times csrch
w

of keyword w (refer to Step 4). As a result, the client will use a new key Kw to
generate the subsequent ciphertexts of keyword w after each search of this key-
word. Each ciphertext consists of three parts, namely, (L,D,C). Part L is taken
as a unique address to store the ciphertext in structure CDB. Part D encrypts
the inputted operation type op and a hash value G(K ′

w, id). When searching

10 T. Chen et al.

Algorithm 1. Protocols Bestie.Setup, Bestie.Update and Bestie.Search.
Setup(λ)

1: Choose two hash functions H : {0, 1}∗ →
{0, 1}λ′+λ+1, where λ′ = poly(λ) and G :

{0, 1}∗ → {0, 1}λ

2: Initialize three empty maps Count, CDB,
and GRP, and let EDB = (CDB,GRP)

3: Let op ∈ {add, del} with the binary codes
add = 1 and del = 0

4: Pick a symmetric key Kξ
$← Kξ and a secret

key S
$← KF, and set KΣ = (S, Kξ)

5: Store EDB on the server

Update(KΣ ,Count, op, (w, id);EDB)

Client:

1: Retrieve the current count values
(cupdt

w , csrch
w) ← Count[w] with the

inputted keyword w
2: Initialize (cupdt

w , csrch
w) ← (0, 0) if Count[w]

is NULL
3: Accumulate the update times of keyword w

by setting cupdt
w ← cupdt

w +1 and update such
modification to Count[w]

4: Compute two special keys Kw ←
F(S, w||csrch

w) and K′
w ← F(S, w|| − 1) for

encrypting keyword w
5: Encrypt keyword w as (L||D) ←

H(Kw, cupdt
w) ⊕ (0λ′ ||op||G(K′

w, id)), where
L represents the most significant λ′ bits of
the result and D denotes the remaining λ+1
bits (Note that we have assumed that id

cannot be 0λ in Section 2)
6: Encrypt the inputted file identifier as C ←

E(Kξ, id)
7: Send ciphertext (L, D, C) to the server

Server:

1: Store the received ciphertext by setting
CDB[L] ← (D, C)

Search(KΣ ,Count, w;EDB)

Client:

1: Retrieve the current count values
(cupdt

w , csrch
w) ← Count[w]

2: Abort if Count[w] is NULL

3: Compute two special keys Kw ←
F(S, w||csrch

w) and K′
w ← F(S, w|| − 1) for

generating the search trapdoor of keyword w
4: Compute index Igrp

w ← G(K′
w, 0λ) for the

server to group the search results of this time
with the results of the previous searches of
the same keyword

5: Send search trapdoor (cupdt
w , Kw, Igrp

w) to
the server

Server:

1: Initialize an empty set D, and set i ← cupdt
w

2: repeat
3: Break if i = 0
4: Compute (L||D′) ← H(Kw, i), where L

represents the most significant λ′ bits of
the hash value and D′ denotes the remain-
ing λ + 1 bits

5: Retrieve ciphertext (D, C) ← CDB[L]
according to index L

6: Decrypt (op||X) ← D ⊕ D′

7: if op = del then
8: Record X into D ← D ∪ {X}
9: Remove all old ciphertexts (X′, C′) ∈

GRP[Igrp
w] with X′ = X that already

exist in GRP[Igrp
w] before this search

10: else if op = add then
11: Record (X, C) into group GRP[Igrp

w]
if X /∈ D

12: end if
13: Set i = i − 1
14: until (i = 0)
15: Remove all above ciphertexts found from

structure CDB
16: Return all remaining file identifier cipher-

texts in group GRP[Igrp
w] to the client

Client:

1: Use the symmetric key Kξ to decrypt all
received ciphertexts and return the obtained
file identifiers

2: Accumulate the search times of keyword w
by setting csrch

w ← csrch
w + 1 and updating

Count[w]

3: Update Count[w] by setting cupdt
w = 0

keyword w in the future, this hash value will inform the server which ciphertext
must be deleted if op = del. Part C encrypts the inputted file identifier.

Bestie.Search Protocol. This protocol allows the client and the server to com-
plete a search task together. The protocol contains three steps: the client gen-
erates and uploads a search trapdoor to the server, the server then finds and
returns the matching ciphertexts, and finally, the client receives and decrypts the
returned file identifiers. For searching a keyword w, the generated search trap-
door consists of three parts: the current counter value cupdt

w , the sub-key Kw, and
a group index Igrp

w . The value cupdt
w denotes the number of newly updated cipher-

texts of keyword w after the last search of keyword w. Upon receiving both cupdt
w

and Kw, the server can find the matching ciphertexts from these newly updated

Bestie: Very Practical DSSE with Forward and Backward Security 11

ones. The group index Igrp
w allows the server to retrieve the historical matching

ciphertexts from group GRP. The final search results include these two parts.
When searching a keyword w, first, the server finds all new matching cipher-

texts from structure CDB (refer to Steps 2 to 14). The server handles these
matching ciphertexts as two cases according to their contained operation types
(refer to Steps 7 to 12). In the case of op = del, the decrypted value X means
that the server will remove a ciphertext from either structure CDB or group
GRP[Igrp

w] if the ciphertext contains the same value X. Note that when using the
value X to delete ciphertexts from group GRP[Igrp

w], the server only removes the
old ciphertexts found in previous search queries. This guarantees that a Delete
query only removes the early corresponding Add queries, not the subsequent Add
queries. In the case of op = add, the server will add the corresponding ciphertext
into group GRP[Igrp

w] if the ciphertext is still valid (not deleted). Second, the
server retrieves all matching and still-valid ciphertexts from group GRP[Igrp

w]
and returns them to the client. Finally, the client decrypts the matching file iden-
tifiers, accumulates the search times csrch

w , and clears the counter value cupdt
w .

Correctness of Bestie. The correctness of Bestie comes straightforwardly
from the collision-resistant property of hash functions H and G. Concretely,
when searching a keyword w, the server repeats computing hash value H(Kw, i)
for i decreasing successively from cupdt

w to 1 and obtains the number of cupdt
w

distinct addresses. These addresses guarantee the search correctness of finding all
matching ciphertexts from structure CDB. The uniqueness of hash value Igrp

w =
G(K ′

w, 0λ) guarantees that group GRP[Igrp
w] contains all historical matching

ciphertexts. In addition, the uniqueness of hash value G(K ′
w, id) guarantees that

the server can correctly delete the expected ciphertext.

Security of Bestie. In terms of security, Bestie is forward-and-Type-III-
backward secure. Formally, we have the following theorem, which is proven in
Appendix A.

Theorem 1. Suppose that the hash function H is a random oracle, G is a
cryptographic hash function, function F is a secure PRF function, and ξ is a
CPA-secure symmetric encryption scheme; then, Bestie is an adaptively secure
DSSE scheme with leakage functions LStp(λ) = λ, LUpdt(op, w, id) = ∅, and
LSrch(w) = {sp(w),TimeDB(w),DelHist(w)}.

Remarks on Improving the Performance. To reduce the hash function
iterations as much as possible, Bestie computes the partial ciphertexts L and
D by only one hash computation (refer to Step 5 in protocol Update), instead of
independently generating them by running a hash function twice. This approach
is very effective in reducing the time cost. For example, our experiment shows
that the time cost to run hash function SHA-256 twice by the OpenSSL library
is approximately 20% more than running hash function SHA-512 once.

When searching for a keyword, the server can find the matching ciphertexts
by a parallel method to improve the performance. Refer to Steps 2 to 14 in
protocol Search. The repeated computations to find all matching ciphertexts
from structure CDB can be transformed into a parallel algorithm since each

12 T. Chen et al.

computation relies on the sub-key Kw and the parameter i ∈ [1, cupdt
w]. The

server can traverse all possible values of parameter i in parallel to improve the
search performance. We will show a parallel execution of protocol Search to
demonstrate its significant advantage in Sect. 4.

3.2 An Example of Bestie

CDB[L1] = (HR(Kw, 1) ⊕ (add||G(K ′
w, id4)), E(Kξ, id4))

CDB[L2] = (HR(Kw, 2) ⊕ (add||G(K ′
w, id5)), E(Kξ, id5))

CDB[L3] = (HR(Kw, 3) ⊕ (del ||G(K ′
w, id4)), E(Kξ, id4))

CDB[L4] = (HR(Kw, 4) ⊕ (del ||G(K ′
w, id1)), E(Kξ, id1))

Client Server

Count[w] =
cupdt
w = 4,

csrch
w = 1

{E(Kξ, id2), E(Kξ, id3), E(Kξ, id5)}

Count[w] =
cupdt
w = 0,

csrch
w = 2

Decrypt returned search results

CDB[L1] = NULL
CDB[L2] = NULL
CDB[L3] = NULL
CDB[L4] = NULL

GRP[Igrp
w] =⎧⎪⎨

⎪⎩

(G(K ′
w, id1), E(Kξ, id1)),

(G(K ′
w, id2), E(Kξ, id2)),

(G(K ′
w, id3), E(Kξ, id3))

⎫⎪⎬
⎪⎭

GRP[Igrp
w] =⎧⎪⎨

⎪⎩

(G(K ′
w, id2), E(Kξ, id2)),

(G(K ′
w, id3), E(Kξ, id3)),

(G(K ′
w, id5), E(Kξ, id5))

⎫⎪⎬
⎪⎭

Search w over CDB and GRP

Search trapdoor of keyword w

Fig. 1. Example of Bestie. Note that HR denotes the least significant λ + 1 bits of
the output of hash function H. The ciphertexts with op = del colored with red or
blue mean to delete the corresponding ciphertexts with op = add of the same color,
respectively.

We introduce an example to clearly present the search procedures of Bestie.
For keyword w, suppose that in the first time search of this keyword, the server
finds three matching ciphertexts from structure CDB and transfers them to
group GRP[Igrp

w]. Then, the client issues four Update queries for adding entries
(w, id4) and (w, id5) and deleting entries (w, id4) and (w, id1). The two upper-
side rectangles of Fig. 1 shows the states of both the client and the server after
completing the above operations, respectively. The client records the current
counter values. The server stores the four newly uploaded ciphertexts in structure
CDB.

Now, suppose the client to issue the search query of keyword w again. Upon
receiving the corresponding search trapdoor, the server first finds the four match-
ing ciphertexts CDB[L4], CDB[L3], CDB[L2], and CDB[L1] and decrypts
del||G(K ′

w, id1), del||G(K ′
w, id4), add||G(K ′

w, id5), and add||G(K ′
w, id4), sequen-

tially. Secondly, the server performs the following steps: (1) use del||G(K ′
w, id1)

to delete entry (G(K ′
w, id1), E(Kξ, id1)) from group GRP[Igrp

w] and temporarily
store G(K ′

w, id1) for future (possible) deletions, (2) temporarily store G(K ′
w, id4)

for future (possible) deletions, (3) store entry (G(K ′
w, id5), E(Kξ, id5)) in group

GRP[Igrp
w], and (4) ignore ciphertext CDB[L1] since it contains G(K ′

w, id4).

Bestie: Very Practical DSSE with Forward and Backward Security 13

Thirdly, the server empties structures CDB[L4/L3/L2/L1] and returns the three
matching and still-valid ciphertexts in group GRP[Igrp

w] to the client. Finally,
the client decrypts the returned search results and updates his counter values.
The lower-side rectangles of Fig. 1 shows the new states of both the client and
the server after the search, respectively.

4 Evaluation

We code Bestie and comprehensively evaluate its performance. To show the
significant advantages of Bestie, we compare Bestie with five existing forward-
and-backward-secure DSSE schemes, such as Fides and Dianadel both from [2],
Mitra and Mitra∗ both from [4], and Janus++ [29].

4.1 Implementation

We code Bestie and recode the above five existing DSSE schemes for unifying
their security parameters and testing environments.

Table 2. Hardware and software configuration

Hardware platform

CPU Intel E5-2630 v3 Memory 64 GB

Software environment

Operation system CentOS 7.3.1611 x64 Compiler GCC 4.8.5

Cryptographic library OpenSSL 1.1.1c [10] Mathematical library GMP Library 6.1.2 [9]

Programming Environment. Table 2 lists the hardware and software config-
urations. We code the above mentioned six DSSE schemes with C++ language
and choose suitable security parameters to guarantee that they satisfy the 128-bit
security level. To mitigate the influence of hard disk I/O, we store all generated
ciphertexts in memory with the C++ STL library’s data structures, such as
unordered map. Some graphs of our experiment are produced with Matplotlib
[15].

Cryptographic Primitives. We apply the OpenSSL library and choose the
SHA-2 hash family, the SHA-256-based HMAC, and AES-128 encryption to
realize the hash function, the PRF function, and the symmetric encryption that
appear in above mentioned six DSSE schemes, respectively. Janus++ is the most
complex one to be coded compared with others. In Janus++, each ciphertext
includes a unique tag. When the client wants to delete a ciphertext, he gener-
ates a punctured key according to the ciphertext tag. This key can revoke the
capability of the server to decrypt the ciphertext. The chosen binary length of
the tag (namely, 16 bits) in [29] is too short to support a large volume of data.
Hence, we apply the SHA-256-based HMAC algorithm to securely generate 256-
bit tag. In addition, we set the maximum deletion number of Janus++ to be
2,000 and apply Dianadel as a building block to realize Janus++. We apply the
GMP library to realize the 2048-bit RSA-based trapdoor permutation employed
by Fides.

14 T. Chen et al.

4.2 Data Description

Table 3. The 18 representative keywords and their frequencies

Keyword Freq. Keyword Freq. Keyword Freq. Keyword Freq. Keyword Freq.

2001 246,613 pst 218,860 2000 208,551 call 102,807 thu 93,835

question 83,882 follow 75,409 regard 68,923 contact 60,270 energi 54,090

current 47,707 legal 39,923 problem 31,282 industri 21,472 transport 12,879

target 7,311 exactli 4,644 enterpris 3,130

We run the Porter Stemming algorithm [24] on the Enron dataset [20] to extract
keywords as [16] does. We extract a total of 42,014,587 keyword-and-file-identifier
entries after excluding stop words, such as “a”, “an”, and “the”. The total num-
ber of distinct keywords is 856,131. To succinctly present experimental results,
we choose the 18 representative keywords listed in Table 3. These keywords have
distinct frequencies. In particular, we choose the keyword “2001”, which has the
highest frequency, as a representative one. Ultimately, our test dataset includes
1,381,588 keyword-and-file-identifier entries. In addition, for each email, we set
its file identifier to be the hexadecimal representation of the SHA-256 hash digest
of its full path. Each file identifier consists of 64 bytes.

4.3 Experimental Results

(a) Bestie, Mitra, Dianadel, and Mitra∗. (b) Fides. (c) Janus++.

Fig. 2. Total Search time cost without deletion.

Search Performance without Any Deletion. The search performance con-
sists of three respects, such as total Search time cost, bandwidth cost, and client
time cost. Note that the search performance here does not contain any deletion
operation. Figure 2 compares the above-mentioned six schemes in terms of total
Search time cost, namely the sum of both the server and the client time costs.
The numerical results demonstrate that Bestie is the best one. It achieves a

Bestie: Very Practical DSSE with Forward and Backward Security 15

Fig. 3. Bandwidth cost with-
out deletion.

(a) Fides. (b) Bestie, Mitra, and Mitra∗.

Fig. 4. Client time cost without deletion.

Search time cost that is at least 2, 1, 032, and 38, 332 times faster than both
Mitra∗ and Dianadel, Fides, and Janus++, respectively. Bestie is also faster
than Mitra. Bestie takes approximately 3.66 microseconds to find one match-
ing ciphertext in average.

Figure 3 gives comparisons in terms of bandwidth cost. The bandwidth cost
means the transferred data during a search. Figure 3 shows that Bestie achieves
the lowest bandwidth cost compared with those schemes that need the client to
return file identifiers to the server, like Mitra, Mitra∗, and Fides. Both Janus++
and Dianadel achieve the cheapest bandwidth cost, since they allow the server
to learn the file identifiers without the help of the client.

Figure 4 compares Bestie, Mitra, Mitra∗, and Fides in terms of client time
cost. We omit the comparisons with both Janus++ and Dianadel, since both of
them require quite small client time cost during a search. The numerical results
show that the client time cost of Bestie to find one matching ciphertext is
approximately 0.89 microsecond, which is the minimum one in Fig. 4.

Search Performance with Deletions. In this part, we consider deletion oper-
ations and test the search performance again. This experiment selects keyword
“2001” as a representation and its corresponding file identifiers as the test dataset
for testing Bestie, Mitra, Mitra∗, Fides, and Dianadel. In contrast, we select
keyword “enterpris” for testing Janus++. The difference is caused by the rea-
sons that the maximum deletion number of Janus++ is set to be 2,000, and
this number is much smaller than the total number of file identifiers of keyword
“2001”. If we set the maximum deletion number to be a much bigger one, the
Search time cost of Janus++ is too high. To test the search performance, we add
246,613 (3,130, resp.) ciphertexts for keyword “2001” (“enterpris”, resp.) at first.
Secondly, we issue different number of Delete queries and then search keyword
“2001” (“enterpris”, resp.) over these ciphertexts. Each Delete query is to delete
a randomly chosen file identifier.

Figure 5 shows how the different number of Delete queries affect the total
Search time cost of a scheme. The numerical results show that Bestie achieves
the lowest total Search time cost compared with others. Moreover, the increasing
number of Delete queries has very little influence on the total Search time cost of

16 T. Chen et al.

(a) Bestie, Mitra, and Mitra∗. (b) Fides, Janus++, and Dianadel.

Fig. 5. Total Search time cost with deletions. Fig. 6. Bandwidth cost with
deletions.

Bestie. This is because that the total number of memory-writing operations in
protocol Bestie.Search is decreasing along with the increasing number of Delete
queries. The saved time cost caused by the decreasing number of memory-writing
operations nearly counteracts the time cost caused by the increasing number of
Delete queries.

Figure 6 show that Bestie achieves the lowest bandwidth cost compared with
Mitra, Mitra∗, and Fides. Moreover, the bandwidth cost of Bestie is decreasing
along with the increasing number of Delete queries. We omit the comparison with
Janus++ in terms of bandwidth cost, since Janus++ does not need the client to
help the server get the matching file identifiers.

Figure 7 shows that Bestie saves at least 80% client time cost compared with
others except Janus++ if Number of Deletions

Number of Additions × 100% ≥ 10%. We also omit to test
the client time cost of Janus++ due to the same reason as the last experiment.

(a) Bestie, Mitra, and Mitra∗. (b) Dianadel and Fides.

Fig. 7. Client time cost with deletions. Fig. 8. Update time cost.

Update Time Cost. This experiment tests the time cost to generate one Update
query, including Add and Delete queries. The above-mentioned six schemes has
an identical time cost in generating that two kinds of queries, except Dianadel

and Janus++. Figure 8 shows that Bestie has a little more Update time cost only
than both Mitra and Mitra∗. But Bestie is more useful since both Mitra and
Mitra∗ cannot achieve non-interactive real deletion.

Bestie: Very Practical DSSE with Forward and Backward Security 17

Keywords

Fig. 9. Time costs of Bestie.Search with different threads.

Parallel Keyword Search. Section 3 explains that Bestie can achieve parallel
keyword search. This means that compared with other schemes, Bestie can
also retain its performance advantage when searching a keyword in the multi-
threading setting. To highlight this feature, we implement the search procedures
of the Bestie.Search protocol with different numbers of threads, such as two,
four, eight, and sixteen threads. According to the numerical results shown in
Fig. 9, generally, the more threads the server uses, the more efficient the search
performance Bestie can obtain. The opposite results are observed only in the
case of two threads when the number of matching ciphertexts is too small. The
main reason for such an exception is the competition among threads for writing
memory.

5 Other Related Works

Traditional SSE Schemes. The seminal work of Song et al. in 2000 [25]
started the research on SSE. The proposed SSE scheme needs to scan the whole
database during the search therefore is not efficient. In 2006, Curtmola et al.
firstly improved the search efficiency of SSE to the sub-linear setting [7]. However,
their construction with sub-linear search efficiency is not secure against adaptive
chosen-keyword attacks (CKA2). Chase et al. exhibited the first CKA2-secure
SSE scheme that has sub-linear search complexity [6] in 2010. Their work adopts
padding in the encryption algorithm, which results in waste of storage and band-
width resources. In 2012, Islam et al. introduced the first attack against SSE,
which relies on the access pattern leakage of SSE and some background knowl-
edge [16], such as the distribution of the keyword space.

Early DSSE Schemes. In 2010, Liesdonk et al. proposed the first CKA2-secure
DSSE scheme, for which the search efficiency is logarithmic with the number of
unique keywords [22]. However, the underlying cryptographical primitives pro-
duce redundant data, which results in a non-optimal search bandwidth. Addi-
tionally, the scheme is not scalable enough to support a large number of file
identifiers. In 2012, Kamara et al. formally defined the security notion of DSSE

18 T. Chen et al.

over information leakage [7] and presented a CKA2-secure DSSE construction
with sub-linear search efficiency [18]. In 2013, Kamara et al. presented a CKA2-
secure DSSE scheme that is built upon a keyword red-black tree, and the scheme
supports parallel search [17]. However, the generated encrypted index of their
construction is very large. Cash et al. later proposed a counter-based DSSE
scheme that supports very large datasets [3]. In the same year, Stefanov et al.
proposed a DSSE scheme that is forward secure [27]. However, the Update pro-
tocol of their scheme is costly because it requires the client to interact with the
server to perform re-encryption operations. In 2014, Hahn et al. constructed an
efficient DSSE scheme [12]. However, when adding searchable ciphertexts, the
scheme directly classifies the ever-searched keywords and stores the correspond-
ing ciphertexts in specific places, which reveals the semantic information of the
ciphertexts. In 2017, Xu et al. proposed a DSSE scheme with sub-linear search
efficiency and small leakage [30]. The scheme constructs a hidden chain in those
generated ciphertexts that contain the same keyword and combines the physi-
cal and logical deletion. In 2016, Zhang et al. presented the file-injection attack
against DSSE [31]. The file-injection attack is a proactive attack wherein the
adversary injects files into the target scheme.

Forward-and-Backward-Secure DSSE Schemes. As illustrated by Zhang
et al., forward security is an important property that can defend against file-
injection attacks [31]. The first forward-secure DSSE scheme was proposed by
Chang et al. in 2005 [5]. In 2014, Stefanov et al. first formally defined forward
security with leakage functions [27]. Later, Bost improved the performance of the
proposed scheme in the aspects of both computation and bandwidth by using
the trapdoor permutation [1]. In 2016, Garg et al. constructed a forward-secure
DSSE scheme based on their TWORAM [11], but it suffers from low Update and
Search efficiency. In 2017, Kim et al. utilized the dual dictionary to construct
a forward-secure DSSE scheme that supports real deletion [19]. In 2018, Song
et al. proposed a counter-based forward-secure DSSE scheme with real deletion
support [26]. Their proposed scheme achieves I/O efficiency by caching historical
search results.

In 2014, Stefanov et al. proposed backward security, which requires that
search queries cannot be executed over deleted ciphertexts [27]. In 2016, Hoang
et al. presented forward-and-backward-secure DOD-DSSE [14]. The core idea
of DOD-DSSE is to let the client fetch all related data from the server and to
perform Search or Update operations locally. In 2017, Bost et al. formulated back-
ward security with leakage functions [2]. In their work, they defined three types
of backward security for ensuring different levels of security strength. In work [2],
Bost et al. constructed four forward-and-backward-secure DSSE schemes: Fides,
DianaDel, Moneta and Janus. Moneta is based on TWORAM, which is not prac-
tical. In 2019, Li et al. constructed a forward-and-backward-secure DSSE with
the hidden pointer ciphertext structure and partition search technique [21]. In
2020, He et al. [13] presented a forward-and-backward-secure DSSE scheme with
constant client storage. He et al.’s approach is to combine the counter and chain
structure and use the global counter to find all chain structures of ciphertexts.

Bestie: Very Practical DSSE with Forward and Backward Security 19

In the same year, Demertzis et al. [8] proposed three forward-and-backward-
secure DSSE scheme with constant client storage. The first two schemes in [8]
achieve interactive real deletion, and the third scheme uses oblivious map and a
tree-based encrypted index as building blocks. Recently in 2021, Sun et al. [28]
proposed a forward-and-backward-secure DSSE scheme Aura, which achieves non-
interactive real deletion in the cost of extra client-side storage resources to stash
Delete queries.

6 Conclusion

In this paper, we analyse the requirements for a DSSE scheme to be practical
and note that most existing forward-and-backward-secure DSSE schemes are not
practical enough in terms of performance or real deletion. This fact motivates
us to propose Bestie, a very practical and forward-and-backward-secure DSSE
scheme. Bestie also supports non-interactive real deletion and parallel keyword
search. The experimental results show that Bestie achieves the best Search
time cost compared with Fides, Mitra, Mitra∗, Dianadel, and Janus++. During
a search, Bestie achieves the lowest client time cost and the lowest bandwidth
cost compared with Fides, Mitra, and Mitra∗. Although Bestie introduces a
little more client time cost and bandwidth cost during a search than Janus++
and Dianadel, it is much faster than Janus++ during a search and achieves non-
interactive real deletion that Dianadel fails to achieve. In summary, Bestie is
very practical, especially for managing large-scale data.

Acknowledgements. We would like to thank our shepherd Prof. Xun Yi and the
anonymous reviewers for their insightful comments and valuable suggestions. This work
was partly supported by the National Natural Science Foundation of China under
Grant No. 61872412, the Wuhan Applied Foundational Frontier Project under Grant
No. 2020010601012188, and the Guangdong Provincial Key R&D Plan Project under
Grant No. 2019B010139001.

A Proof of Theorem 1

Proof. To prove the forward and Type-III-backward security of the proposed
Bestie, we construct a S simulator, which takes as inputs leakage functions
LStp(λ) = λ, LUpdt(op, w, id) = ∅, and LSrch(w) = {sp(w),TimeDB(w),
DelHist(w)} to simulate protocols Bestie.Setup, Bestie.Update, and Bestie.
Search, respectively. We will demonstrate that the simulated Bestie is indistin-
guishable from the real Bestie under the adaptive attacks. Algorithm 2 describes
the simulator S. Specifically, the simulator S consists of the following three
phases.

Protocol S.Setup. This protocol simulates protocol Bestie.Setup. In this pro-
tocol, simulator S takes leakage function LStp(λ) = λ as input and initial-
izes five empty maps CDB, GRP, CipherList, GIndlist, and Xlist, where

20 T. Chen et al.

Algorithm 2. Construction of Simulator S in the Ideal Game of Bestie
Setup(LStp(λ))
1: Initialize five empty maps CDB, GRP, CipherList, GIndlist and Xlist and a timestamp

parameter u ← 0
2: Send EDB ← (CDB,GRP) to the server

Update(LUpdt(op, (w, id)))

1: Accumulate the timestamp parameter by setting u ← u + 1

2: Randomly pick a triplet (L, D, C)
$← {0, 1}λ′ × {0, 1}λ+1 × Cξ as the generated ciphertext

3: Record the triplet (L, D, C) in CipherList[u]
4: Send the triplet (L, D, C) to the server

Search(LSrch(w) = (sp(w), TimeDB(w), DelHist(w))

1: Accumulate the timestamp parameter by setting u ← u + 1
2: Extract the timestamp u0 of the last Search query from sp(w), where u0 = 0 if sp(w) = ∅
3: Extract all timestamps {u1, ..., un} between u0 and u from both TimeDB(w) and DellHist(w),

where ui < uj if i < j
4: Abort if n = 0 and u0 = 0 (namely, keyword w never appears in any historical Update query)
5: Extract the timestamp us of the first Search query from sp(w), where us = u if no earlier Search

query of keyword w occurs

6: If the index Igrp
us

stored in GIndlist[us] is NULL, then randomly choose Igrp
us

$← {0, 1}λ and

update GIndlist[us] ← Igrp
us

7: Randomly choose a key K
$← {0, 1}λ for searching keyword w, and retrieve Igrp

us
← GIndlist[us]

8: for i = 1 to n do
9: Retrieve the simulated ciphertext (Lui

, Dui
, Cui

) ← CipherList[ui]
10: If the timestamp ui was extracted from TimeDB(w) in the above Step 3, then set parameter

umin = ui

11: Otherwise (namely, the timestamp ui was extracted from DelHist(w)), set parameter umin

to be the smaller of the timestamp ui and the timestamp paired with ui in DelHist(w)

12: If Xlist[umin] is NULL, then randomly set Xlist[umin]
$← {0, 1}λ

13: If the Update query at timestamp ui has operation type add, then program oracle H such

that H(K, i) = (Lui
||Dui

) ⊕ (0λ′ ||add||Xlist[umin])

14: Otherwise, program oracle H such that H(K, i) = (Lui
||Dui

) ⊕ (0λ′ ||del||Xlist[umin])
15: end for
16: Send search trapdoor (n, K, Igrp

w) to the server
17: return all file identifiers in TimeDB(w) after receiving the response from the server

(CDB,GRP) will be sent to the server and the remaining maps are kept as
internal states of simulator S. The map CipherList records the ciphertexts
generated by simulator S. The map GIndList records the group indexes for
the following Search queries. Map XList records the simulated values of hash
function G. Clearly, the simulated protocol is indistinguishable from the real
one in the view of adversary A.

Protocol S.Update. This protocol simulates protocol Bestie.Update. In this
protocol, simulator S takes nothing as input. It randomly chooses a random
triplet (L,D,C) as the generated ciphertext and uploads it to the server. In the
real world, H is a collision-free hash function, and ξ is a semantically secure sym-
metric encryption scheme. Hence, the random triplet is indistinguishable from a
real ciphertext if adversary A does not know the corresponding search trapdoor.
The following content will prove that the random triplet is still indistinguishable
from a real ciphertext, even in the opposite case.

Bestie: Very Practical DSSE with Forward and Backward Security 21

Protocol S.Search. This protocol simulates protocol Bestie.Search. In this
protocol, simulator S takes the leaked information sp(w), TimeDB(w), and
DelHist(w) as inputs. Simulator S first checks whether there exists any his-
torical Update query about keyword w. If not, simulator S aborts, as the real
protocol does (refer to Steps 2 to 4). Otherwise, simulator S sets or retrieves the
group index Igrp

us
of keyword w (refer to Steps 5 and 6). In the following content,

simulator S must program oracle H such that the randomly generated search
trapdoor is still valid in the view of adversary A (refer to Steps 8 and 15).

In this part, simulator S mainly achieves two aims: (1) simulate hash values
of function G for all Update queries of keyword w as well as guarantee that the
Update queries of the same keyword-and-file-identifier entry have the same hash
value (refer to Steps 10 to 12) and (2) program oracle H such that all simulated
ciphertexts of keyword w can be correctly found by the server with the randomly
generated search trapdoor (refer to Steps 13 and 14). Finally, simulator S sends
the randomly generated search trapdoor to the server. The transcripts generated
by the simulated Search protocol are indistinguishable from those of the real
protocol since all operations are consistent with the real protocol in the view of
adversary A.

To summarize, there exists a S simulator to simulate Bestie with the given
leakage functions, and the simulation is indistinguishable from the real Bestie.
Thus, Theorem 1 is true. �

References

1. Bost, R.:
∑

oϕoς: forward secure searchable encryption. In: Proceedings of the 2016
ACM SIGSAC Conference on Computer and Communications Security, Vienna,
Austria, pp. 1143–1154 (2016)

2. Bost, R., Minaud, B., Ohrimenko, O.: Forward and backward private searchable
encryption from constrained cryptographic primitives. In: Proceedings of the 2017
ACM SIGSAC Conference on Computer and Communications Security, CCS 2017,
Dallas, TX, USA, pp. 1465–1482 (2017)

3. Cash, D., et al.: Dynamic searchable encryption in very-large databases: data struc-
tures and implementation. In: 21st Annual Network and Distributed System Secu-
rity Symposium, NDSS 2014, San Diego, California, USA (2014)

4. Chamani, J.G., Papadopoulos, D., Papamanthou, C., Jalili, R.: New constructions
for forward and backward private symmetric searchable encryption. In: Proceedings
of the 2018 ACM SIGSAC Conference on Computer and Communications Security,
CCS 2018, Toronto, ON, Canada, pp. 1038–1055 (2018)

5. Chang, Y.-C., Mitzenmacher, M.: Privacy preserving keyword searches on remote
encrypted data. In: Ioannidis, J., Keromytis, A., Yung, M. (eds.) ACNS 2005.
LNCS, vol. 3531, pp. 442–455. Springer, Heidelberg (2005). https://doi.org/10.
1007/11496137 30

6. Chase, M., Kamara, S.: Structured encryption and controlled disclosure. In: Abe,
M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 577–594. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-17373-8 33

7. Curtmola, R., Garay, J.A., Kamara, S., Ostrovsky, R.: Searchable symmetric
encryption: improved definitions and efficient constructions. In: Proceedings of

https://doi.org/10.1007/11496137_30
https://doi.org/10.1007/11496137_30
https://doi.org/10.1007/978-3-642-17373-8_33

22 T. Chen et al.

the 13th ACM Conference on Computer and Communications Security, CCS 2006,
Alexandria, VA, USA, pp. 79–88 (2006)

8. Demertzis, I., Chamani, J.G., Papadopoulos, D., Papamanthou, C.: Dynamic
searchable encryption with small client storage. In: 27th Annual Network and Dis-
tributed System Security Symposium, NDSS 2020, San Diego, California, USA.
The Internet Society (2020)

9. Foundation, F.S.: The GNU MP bignum library. https://gmplib.org/. Accessed 8
Oct 2019

10. Foundation, O.S.: OpenSSL. https://www.openssl.org/. Accessed 8 Oct 2019
11. Garg, S., Mohassel, P., Papamanthou, C.: TWORAM: efficient oblivious RAM in

two rounds with applications to searchable encryption. In: Robshaw, M., Katz, J.
(eds.) CRYPTO 2016, Part III. LNCS, vol. 9816, pp. 563–592. Springer, Heidelberg
(2016). https://doi.org/10.1007/978-3-662-53015-3 20

12. Hahn, F., Kerschbaum, F.: Searchable encryption with secure and efficient updates.
In: Ahn, G., Yung, M., Li, N. (eds.) Proceedings of the 2014 ACM SIGSAC Confer-
ence on Computer and Communications Security, Scottsdale, AZ, USA, pp. 310–
320. ACM (2014)

13. He, K., Chen, J., Zhou, Q., Du, R., Xiang, Y.: Secure dynamic searchable symmet-
ric encryption with constant client storage cost. IEEE Trans. Inf. Forensics Secur.
16, 1538–1549 (2021)

14. Hoang, T., Yavuz, A.A., Guajardo, J.: Practical and secure dynamic searchable
encryption via oblivious access on distributed data structure. In: Schwab, S.,
Robertson, W.K., Balzarotti, D. (eds.) Proceedings of the 32nd Annual Confer-
ence on Computer Security Applications, ACSAC 2016, Los Angeles, CA, USA,
pp. 302–313. ACM (2016)

15. Hunter, J.D.: Matplotlib: a 2D graphics environment. Comput. Sci. Eng. 9(3), 90–
95 (2007)

16. Islam, M.S., Kuzu, M., Kantarcioglu, M.: Access pattern disclosure on searchable
encryption: ramification, attack and mitigation. In: 19th Annual Network and Dis-
tributed System Security Symposium, NDSS 2012, San Diego, California, USA
(2012)

17. Kamara, S., Papamanthou, C.: Parallel and dynamic searchable symmetric encryp-
tion. In: Sadeghi, A.-R. (ed.) FC 2013. LNCS, vol. 7859, pp. 258–274. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-39884-1 22

18. Kamara, S., Papamanthou, C., Roeder, T.: Dynamic searchable symmetric encryp-
tion. In: the ACM Conference on Computer and Communications Security, CCS
2012, Raleigh, NC, USA, pp. 965–976 (2012)

19. Kim, K.S., Kim, M., Lee, D., Park, J.H., Kim, W.: Forward secure dynamic search-
able symmetric encryption with efficient updates. In: Thuraisingham, B.M., Evans,
D., Malkin, T., Xu, D. (eds.) Proceedings of the 2017 ACM SIGSAC Conference on
Computer and Communications Security, CCS 2017, Dallas, TX, USA, pp. 1449–
1463. ACM (2017)

20. Klimt, B., Yang, Y.: Introducing the Enron corpus. In: CEAS 2004 - First Confer-
ence on Email and Anti-Spam, Mountain View, California, USA (2004)

21. Li, J., et al.: Searchable symmetric encryption with forward search privacy. IEEE
Trans. Dependable Secur. Comput. 18(1), 460–474 (2021)

22. van Liesdonk, P., Sedghi, S., Doumen, J., Hartel, P., Jonker, W.: Computationally
efficient searchable symmetric encryption. In: Jonker, W., Petković, M. (eds.) SDM
2010. LNCS, vol. 6358, pp. 87–100. Springer, Heidelberg (2010). https://doi.org/
10.1007/978-3-642-15546-8 7

https://gmplib.org/
https://www.openssl.org/
https://doi.org/10.1007/978-3-662-53015-3_20
https://doi.org/10.1007/978-3-642-39884-1_22
https://doi.org/10.1007/978-3-642-15546-8_7
https://doi.org/10.1007/978-3-642-15546-8_7

Bestie: Very Practical DSSE with Forward and Backward Security 23

23. Parliament, E., Council: on the protection of natural persons with regard to the
processing of personal data and on the free movement of such data, and repeal-
ing directive 95/46/ec (general data protection regulation) (2016). https://eur-lex.
europa.eu/eli/reg/2016/679/oj. Accessed 16 Jan 2020

24. Porter, M.F.: An algorithm for suffix stripping. Program 14(3), 130–137 (1980)
25. Song, D.X., Wagner, D.A., Perrig, A.: Practical techniques for searches on

encrypted data. In: 2000 IEEE Symposium on Security and Privacy, Berkeley, Cal-
ifornia, USA, pp. 44–55 (2000)

26. Song, X., Dong, C., Yuan, D., Xu, Q., Zhao, M.: Forward private searchable sym-
metric encryption with optimized I/O efficiency. IEEE Trans. Dependable Secur.
Comput. 17(5), 912–927 (2020)

27. Stefanov, E., Papamanthou, C., Shi, E.: Practical dynamic searchable encryption
with small leakage. In: 21st Annual Network and Distributed System Security Sym-
posium, NDSS 2014, San Diego, California, USA (2014)

28. Sun, S., et al.: Practical non-interactive searchable encryption with forward
and backward privacy. In: 28th Annual Network and Distributed System
Security Symposium, NDSS 2021, virtually, 21–25 February 2021. The Inter-
net Society (2021). https://www.ndss-symposium.org/ndss-paper/practical-non-
interactive-searchable-encryption-with-forward-and-backward-privacy/

29. Sun, S., et al.: Practical backward-secure searchable encryption from symmetric
puncturable encryption. In: Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security, CCS 2018, Toronto, ON, Canada, pp.
763–780 (2018)

30. Xu, P., Liang, S., Wang, W., Susilo, W., Wu, Q., Jin, H.: Dynamic searchable
symmetric encryption with physical deletion and small leakage. In: Pieprzyk, J.,
Suriadi, S. (eds.) ACISP 2017, Part I. LNCS, vol. 10342, pp. 207–226. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-60055-0 11

31. Zhang, Y., Katz, J., Papamanthou, C.: All your queries are belong to us: the
power of file-injection attacks on searchable encryption. In: 25th USENIX Security
Symposium, USENIX Security 16, Austin, TX, USA, pp. 707–720 (2016)

32. Zuo, C., Sun, S.-F., Liu, J.K., Shao, J., Pieprzyk, J.: Dynamic searchable symmetric
encryption with forward and stronger backward privacy. In: Sako, K., Schneider,
S., Ryan, P.Y.A. (eds.) ESORICS 2019, Part II. LNCS, vol. 11736, pp. 283–303.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-29962-0 14

https://eur-lex.europa.eu/eli/reg/2016/679/oj
https://eur-lex.europa.eu/eli/reg/2016/679/oj
https://www.ndss-symposium.org/ndss-paper/practical-non-interactive-searchable-encryption-with-forward-and-backward-privacy/
https://www.ndss-symposium.org/ndss-paper/practical-non-interactive-searchable-encryption-with-forward-and-backward-privacy/
https://doi.org/10.1007/978-3-319-60055-0_11
https://doi.org/10.1007/978-3-030-29962-0_14

Geo-DRS: Geometric Dynamic Range
Search on Spatial Data with Backward

and Content Privacy

Shabnam Kasra Kermanshahi1(B), Rafael Dowsley2, Ron Steinfeld2,
Amin Sakzad2, Joseph K. Liu2, Surya Nepal3, and Xun Yi1

1 RMIT University, Melbourne, VIC 3000, Australia
{shabnam.kasra.kermanshahi,xun.yi}@rmit.edu.au
2 Monash University, Melbourne, VIC 3800, Australia

{rafael.dowsley,ron.steinfeld,amin.sakzad,joseph.liu}@monash.edu
3 CSIRO Data 61, Epping, NSW 1710, Australia

surya.nepal@data61.csiro.au

Abstract. Driven by the cloud-first initiative taken by various govern-
ments and companies, it has become a common practice to outsource spa-
tial data to cloud servers for a wide range of applications such as location-
based services and geographic information systems. Searchable encryp-
tion is a common practice for outsourcing spatial data which enables
search over encrypted data by sacrificing the full security via leaking
some information about the queries to the server. However, these inher-
ent leakages could equip the server to learn beyond what is considered in
the scheme, in the worst-case allowing it to reconstruct of the database.
Recently, a novel form of database reconstruction attack against such
kind of outsourced spatial data was introduced (Markatou and Tamas-
sia, IACR ePrint 2020/284), which is performed using common leakages
of searchable encryption schemes, i.e., access and search pattern leak-
ages. An access pattern leakage is utilized to achieve an order recon-
struction attack, whereas both access and search pattern leakages are
exploited for the full database reconstruction attack. In this paper, we
propose two novel schemes for outsourcing encrypted spatial data sup-
porting dynamic range search. Our proposed schemes leverage R+tree to
partition the dataset and binary secret sharing to support secure range
search. They further provide backward and content privacy and do not
leak the access pattern, therefore being resilient against the above men-
tioned database reconstruction attacks. Our evaluation shows the prac-
ticality of our schemes, due to (a) the minimal round-trip between the
client and the server, and (b) low overhead in the client side in terms of
computation and storage.

1 Introduction

The information retrieval community has been studying geometric range search
(GRS) for decades [1,21] and it has a wide range of applications in geosciences,
c© Springer Nature Switzerland AG 2021
E. Bertino et al. (Eds.): ESORICS 2021, LNCS 12973, pp. 24–43, 2021.
https://doi.org/10.1007/978-3-030-88428-4_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-88428-4_2&domain=pdf
https://doi.org/10.1007/978-3-030-88428-4_2

Geo-DRS: Geometric Dynamic Range Search on Spatial Data 25

location-based services, geographical information system, geo-medical engineer-
ing, and so on. Besides its use in applications assisting in our daily life activities
such as taking an Uber, finding nearby locations on Google Maps or friends
on Facebook, GRS can be used in some significant emerging public health and
safety applications. For instance, with the current COVID-19 outbreak, govern-
ments and researchers need to collect information (e.g. number of the test taken,
confirmed cases, death toll, etc.) in a specific geometric area. The need is the
same in other emergency situations, e.g., a bushfire emergency situation.

Driven by the cloud-first policy of many companies and governments, out-
sourcing the spatial data to a cloud server is a common practice around the
world. The cloud provides the scalable infrastructure to handle large datasets
and supports on-demand access through its highly available services. Data pri-
vacy is a necessity in such scenarios. Although public cloud providers are trusted
in providing their services, they cannot be fully trusted for data privacy. One
obvious solution is to only store encrypted data in the cloud. However, down-
loading and decrypting large datasets every time a search or update operation
needs to be performed is completely impractical. Hence, searchable encryption
(SE) is considered as a solution to correctly perform queries (search/update)
over outsourced encrypted data.

Searchable Symmetric Encryption (SSE) efficiently enables search over
encrypted data at the cost of revealing some well-defined information to the
server, known as the leakage. The most common SSE leakage functions are
access pattern and search pattern. Access pattern leaks all file identifiers that
are matching a search query. In contrast, search pattern leaks the repetition of
search queries (i.e., it is possible to determine if two search tokens correspond to
the same query). Exploiting SSE leakages might enable an adversary (often an
honest-but-curious cloud server) to infer information about the database beyond
what is considered in an SSE scheme (e.g. leakage abuse attacks [8,23]).

Most of the existing SSE schemes that support geometric range search are
designed in the static setting (i.e., updates of the database records after the
setup are not possible or come at the cost of re-encryption and re-upload of
the database). Although the dynamic setting provides more flexibility to the
schemes and supports more real-world applications, it introduces more leakages.
To capture new leakages in a dynamic setting, Bost et al. [5] introduced security
notions for dynamic SSE, so called forward and backward privacy. Recently,
Kasra-Kermanshahi et al. [15] showed that there might be additional leakages
when dealing with geometric data that are not captured by Bost’s forward and
backward privacy models, and introduced a new security notion for dynamic SSE
over spatial data (called content privacy) that hides the access pattern both in
search and update operations.

Different cryptographic primitives have been used to support secure range
search over geometric data such as order-preserving encryption (OPE), some-
what/fully homomorphic encryption, Geohash, and so on [15,19,27–29,31–33].
However, due to the inherent leakages associated with geometric range search,

26 S. K. Kermanshahi et al.

the majority of them fail to resist the newly developed leakage abuse attacks
that target SSE schemes designed for GRS [20,24].

1.1 Our Contributions

In this paper, we propose two dynamic searchable symmetric encryption schemes
to support geometric range search, Geo-DRS and Geo-DRS+. The first scheme
illustrates a novel approach to support geometric range search using R+tree
where more round trips between the client and the server are required to achieve
content privacy (alternatively homomorphic encryption can be used at higher
computational cost). Our Geo-DRS+ scheme provides an efficient dynamic range
search by leveraging R+tree and secret sharing in Z2. Moreover, it uses two
non-colluding servers to avoid multiple rounds of client-to-server interactions.
Thus, it has only one round trip between the client and the servers during
searches and updates, with a logarithmic number of communication rounds
between the two servers. Geo-DRS+ is efficient and scalable while resilient
against Full Database Reconstruction (FDR) and Approximate Database Recon-
struction (ADR) attacks. Our security analysis shows that Geo-DRS+ is back-
ward and content private.

1.2 Motivation and Related Works

Order Preserving Encryption (OPE) [2] is one of the most popular approaches
to perform range search over encrypted data due to its efficiency. However, sev-
eral studies have shown that it is possible to perform inference attacks on one-
dimensional datasets using OPE leakages [10,14,16,17]. The search and access
pattern leakages are the most common leakages used in performing inference
attacks. For example, Naveed et al. [23] used frequency analysis to perform
sorting and cumulative attack. Later, Durak et al. [8] discovered two more
types of attacks (Inter-column correlation-based attacks and Inter+Intra-column
correlation-based attack) using OPE leakages that have not been considered
by Naveed’s work. Grubbs et al. [10] designed a leakage abuse attack which
takes advantages of both frequency and order leakage of OPE. Grubbs’s attack
is faster, with a higher recovery rate in comparison with Naveed’s cumulative
attack. Furthermore, a passive adversary is also able to perform FDR without
requiring auxiliary information, as discussed by Kellaris et al. [14].

The above discussed attacks mainly focused on one-dimensional data.
Recently, Pan et al. [24] investigated data inference attacks against multi-
dimensional OPE-encrypted databases. They designed a greedy and polynomial-
time algorithm with approximation guarantees. The FDR attacks for geometric
datasets were introduced recently by Markatou and Tamassia [20]. They utilized
access pattern leakage to reconstruct the horizontal and vertical order of the
points, and both access and search pattern leakages to recover the coordinates
of the points.

Several studies have begun to support range search over encrypted spatial
data [15,19,27–29,31–33]. For example, Wang et al. [27–29] proposed several

Geo-DRS: Geometric Dynamic Range Search on Spatial Data 27

constructions for geometric range search using SSW1 encryption [26], which is
a pairing-based public-key encryption (PBKE). The main idea of these works is
to enumerate all possible points and then check whether they are in the queried
range. Due to the use of SSW, it is necessary to perform a pairing computation
for each database point. Similarly, bilinear pairing operations are used by Zhu
et al. [33] to support range search for location-based services. Both Xu et al. [31]
and Zheng et al. [32] proposed an OPE-based scheme which utilizes R-tree for
range search over spatial data. Luo et al. [19] used asymmetric scalar-product-
preserving encryption (ASPE) [30] and a geometric transformation to achieve
efficient range search. However, Li et al. [18] showed that Luo’s scheme has some
security flaws and cannot achieve the stated security notion. They proposed an
enhanced version of Luo’s scheme to overcome the security issues. However, both
schemes are designed in a static setting; hence the update (insertion/deletion)
of the points in the datasets is either not possible or requires re-encryption of
the entire dataset. Guo et al. [11] proposed a dynamic searchable encryption
scheme for geometric range search called GeoMix. They utilized Geohash and
predicate symmetric searchable encryption to achieve efficient linear search and
update. Although, the scheme supports update of the dataset points, there is no
discussion about forward and backward privacy of the scheme as well as resilience
against leakage abuse attacks.

Unlike other existing works in the area of geometric range search, Kasra-
Kermanshahi et al. [15] proposed two constructions which consider forward and
backward privacy. Moreover, they have defined a new security notion for spatial
data named content privacy. Their constructions utilize binary tree and a special
type of additive symmetric homomorphic encryption (ASHE). To the best of our
knowledge, only three of the state-of-the-art symmetric searchable encryption
schemes that support geometric range search are presented in a dynamic setting.
Only one of them, Kasra-Kermanshahi et al. [15], considered forward, backward,
and content privacy. However, the constructions are not scalable as the size of
the utilized binary tree grows linearly with the number of grid points in each
dimension of the environment.

2 Building Blocks

2.1 Notation

Some of the notations that are used more frequently in the work are given in
Table 1.

2.2 R-Tree and R+tree

R-tree was first introduced by Antonin Guttman in 1984 [12], to handle spatial
data efficiently. This data structure is a height-balanced tree-structure with index
records in its leaf nodes containing pointers to data objects. In this paper, we
1 Shen-Shi-Waters.

28 S. K. Kermanshahi et al.

Table 1. Table of notations.

Notation Description

D Spatial dataset

N Number of objects in D
� Bit length of database objects (64 bits)

�x� A secret share of x over Z2

IDi ∈ {0, 1}� �-bit object identifier

m Maximum number of objects per leaf node

E Encrypted dataset

ST Search token

R Search results

use R+tree [25], a variation of R-tree in which overlapping rectangles in interme-
diate nodes are avoided. Moreover, R+trees have better searching performance
compared to R-trees [25].

We briefly review the example from [25] as shown in Figs. 1, 2 and 3 to see
how a R+tree is formed (for the sake of simplicity, the values of the bounding
boxes (Rect) are not mentioned in this example).

Fig. 1. The sample dataset.

In R+trees leaf nodes consist of (ID,Rect), where ID is the object identi-
fier and Rect represents the bounding box where the object is located. That is,
Rect = (xmin, xmax, ymin, ymax) which are the coordinates of the lower left cor-
ner and the coordinate of the upper right corner. Non-leaf nodes contain entries
of the form (p,Rect), where p is the pointer to the address of the lower nodes
(children nodes) and Rect covers the rectangles in the lower node’s entries. A
R+tree has the following properties:

Geo-DRS: Geometric Dynamic Range Search on Spatial Data 29

Fig. 2. The rectangles of Fig. 1 grouped to form an R+tree.

Fig. 3. The R+tree built for Fig. 2.

– For each entry (p,Rect) in an intermediate node, the corresponding subtree
contains a rectangle R if and only if R is covered by Rect unless R is a
rectangle at a leaf node; in which case R must just overlap with Rect.

– There is no overlap in any two entries in an intermediate node.
– The root has at least two children unless it is a leaf.
– All leaves are at the same level/height.

2.3 Secure Bitwise Comparison

This work uses secure two-party computation based on bitwise secret sharings.
An additively secret sharing of x ∈ Z2 consists of two shares x1 and x2 chosen
uniformly at random subject to the constraint that x = x1 + x2 mod 2. The
two shares are distributed to two servers, respectively. We will denote this secret
sharing by �x�. All secret sharing operations are modulo 2 and the modular nota-
tion is omitted for conciseness. Note that modulo 2, addition and subtraction
are equivalent. Given secret sharings �x� and �y�, the two servers can locally

30 S. K. Kermanshahi et al.

compute in a trivial way secret sharings corresponding to z = x + y. This oper-
ation will be denoted by �z� ← �x� + �y�. It is also trivial to add the constant 1
to a secret sharing, one of the servers simply adds it locally.

In this work, secure multiplications of secret shared values are performed in
a standard way using pre-distributed multiplications triples [3,7], which consist
of (�a�, �b�, �c�) for uniformly random a and b, and c = ab. These triples are
pre-distributed by the data owner to the two computing servers. In order to
improve the communication costs, a pseudorandom function (PRF) is used to
generate the triples: (1) the data owner sends a key K1 of the PRF to S1 and a
key K2 to S2; (2) the data owner and S1 use the PRF to obtain pseudorandom
values a1, b1, c1 ∈ Z2, while the data owner and S2 use the PRF to obtain
pseudorandom values a2, b2 ∈ Z2; (3) the data owner fixes c2 such that c = ab
and transmits the share c2 to S2. With this optimization the communication
cost for pre-distributing each multiplication triple is reduced to a single bit.

For performing secure bitwise comparison, we use the same protocol as De
Cock et al. [6], which is a variant of the protocol of Garay et al. [9] using bitwise
secret sharings in the field Z2 (a detailed description of the underlying protocol
can be found in Sect. 4.3.3 of De Hoogh’s PhD thesis [13]). For �-bits values x and
y, the two servers have as inputs secret shares �xi� and �yi� for i ∈ {0, . . . , �−1},
where x = Σ�−1

i=0 xi2i and y = Σ�−1
i=0 yi2i. The protocol GEQ outputs a secret

shared value �z�, where z is equal to 1 if x ≥ y; and equal to 0 otherwise. The
protocol, which uses the divide and conquer paradigm, is presented in Algorithm
1. It outputs the inverse of the output of the protocol LT that outputs a secret
shared value �z�, where z is equal to 1 if x < y; and equal to 0 otherwise. LT
uses as a subprotocol LTEQ, which outputs (�z�, �w�) such that z is equal to 1
if and only if x < y and w is equal to 1 if and only if x = y. The protocol GEQ
has log � + 1 rounds and needs to perform 3� − log � − 2 secure multiplications
of values that are secret shared in Z2.

3 Definitions, Security Notions and Model

3.1 Syntax of Our Geometric Dynamic Range Search (Geo-DRS+)

Our geometric dynamic range search (Geo-DRS+) scheme consists of the follow-
ing algorithms:

1. Setup(DB): The first step is to generate the shares of the database records to
be outsourced to the servers. This phase is run by the data owner as follows:

– Build.R+tree(DB,m) → (RT): Given a database DB and the tree
parameter m (which determines the maximum number of the points in
each node), this algorithm outputs a height-balanced R+tree.

– SecretShare(RT) → (S1,S2): This algorithm gets the R+tree as input
and outputs its bitwise secret shares.

The Setup phase also generates the multiplications triples (that will be needed
for the executions of Protocol GEQ) and the database state δ. S1 is given to
the first server and S2 to the second server.

Geo-DRS: Geometric Dynamic Range Search on Spatial Data 31

Algorithm 1. Comparison Protocols
GEQ(�, �x��, . . . , �x1�, �y��, . . . , �y1�)

Input: �, �x��, . . . , �x1�, �y��, . . . , �y1�
Output: �z�

1: return �z� ← 1 + LT(�, �x��, . . . , �x1�, �y��, . . . , �y1�)

LT(k, �xk�, . . . , �x1�, �yk�, . . . , �y1�)

Input: k, �xk�, . . . , �x1�, �yk�, . . . , �y1�
Output: �z�

1: if k = 1 then
2: return �z� ← �y1� + �y1��x1�
3: else
4: k′ ← �k/2�
5: (�a�, �b�) ← LTEQ(k − k′, �xk�, . . . , �xk′+1�, �yk�, . . . , �yk′+1�)

6: �c� ← LT(k′, �xk′�, . . . , �x1�, �yk′ �, . . . , �y1�)
7: return �z� ← �a� + �b��c�
8: end if

LTEQ(k, �xk�, . . . , �x1�, �yk�, . . . , �y1�)

Input: k, �xk�, . . . , �x1�, �yk�, . . . , �y1�
Output: �z�, �w�

1: if k = 1 then
2: �z� ← �y1� + �y1��x1�
3: �w� ← 1 + �x1� + �y1�
4: return (�z�, �w�)
5: else
6: k′ ← �k/2�
7: (�a�, �b�) ← LTEQ(k − k′, �xk�, . . . , �xk′+1�, �yk�, . . . , �yk′+1�)

8: (�c�, �d�) ← LTEQ(k′, �xk′ �, . . . , �x1�, �yk′�, . . . , �y1�)
9: �z� ← �a� + �b��c�
10: �w� ← �b��d�
11: return (�z�, �w�)
12: end if

2. Search(Rectq/S1/S2) is a protocol between a client and the servers. To find
the desirable range query Rectq, the client secret shares the query coordinates
with the servers whom run the GEQ protocol over their stored shares S1/S2
traversing the R+tree jointly to find the minimum bounding boxes (leaf nodes)
that cover the query. The servers output the shares of the result set, R1 and
R2.

3. Update(ni, δ,S1/S2) is a protocol between the data owner and the servers.
To insert or delete an object, the data owner should generate the new shares
of the corresponding leaf node. Upon receiving the shares, the servers update
their stored shares S1/S2 by replacing them with the new shares. At the end,
the servers update the dataset state to δ + 1.

Remark. Note that, in our model we assume that the data owner sets m large
enough according to the size of the environment such that the insertion of new
objects would not require node splitting (see [25] for more details). Thus, to
add/delete an object only the corresponding leaf nodes would be updated. More-
over, even if the number of objects in a leaf node become larger than m, the data

32 S. K. Kermanshahi et al.

owner can proceed with splitting the corresponding leaf node and updating the
encrypted records accordingly.

3.2 Generic Dynamic SSE Leakage Functions

The leakage function L keeps as state the query list Q, i.e., the list of all
queries issued so far. The entries are (t, w) for a search query on keyword w,
or (t, op, (w, ind)) for an update query, where t is the timestamp, w is the search
keyword, op ∈ {Add,Del} denoting the operation, and ind is a list of file identi-
fiers to be updated. According to Bost [5] the general leakage functions associated
with dynamic SSE schemes are the following:

– sp(w) = {t : (t, w) ∈ Q} is the search pattern which leaks if two search queries
correspond to the same keyword w.

– UpHist(w) is a history which outputs the list of all updates on keyword w.
Each element of this list is an update query tuple qu = (t, op, (w, ind)).

– TimeDB(w) is the list of all documents matching w, excluding the deleted
ones, together with the timestamp of when they were inserted in the database.

– Updates(w) is the list of timestamps of updates on w.
– DelHist(w) is the deletion history of w, which is the list of timestamps for

all deletion operations together with the timestamp of the inserted entry it
removed.

3.3 Range Search Leakage Functions

We denote the leakage function of our Geo-DRS+ scheme by L. That is, the
information which each server is allowed to learn about the dataset and the
queries. This leakage function corresponds to the Setup, Search and Update of
Geo-DRS+; L = (LStp,LSrch,LUpdt).

– Search pattern (s): Similar to most of the existing searchable encryption
schemes, our scheme leaks some information about whether any two queries
are generated from the same range search or not. In our design, the servers
learn if the minimum bounding boxes match the minimum bounding boxes of
previous searches. That is, every time a search happens, the client will gener-
ate new random secret shares of the coordinates. So, even if the same search
query happens twice or more, the random secret shares of the coordinates
will be different from the point of view of any single server, and he cannot
link the search queries using this part of the protocol. But the servers learns
the resulting minimum bounding boxes and can compare with the respective
boxes of previous search queries.

– Number of updates (Nu): The server learns how many updates are performed
on the dataset but he cannot recognize the type of the update (insertion,
deletion, modification) and also on which point the update is performed.
Therefore, the update does not leak any information about the dataset and
the search queries.

Geo-DRS: Geometric Dynamic Range Search on Spatial Data 33

– Range search size (rs): the server learns which minimum bounding boxes cover
the range for each search query.

– Range update size (ru): the server learns which minimum bounding boxes
cover the range for each update query.

– R+tree structure (R+): The structure of R+tree is leaked to the servers.

Therefore, Geo-DRS+ leakage consists of LStp(D) = R+, LSrch(r) = (s, rs),
and LUpdt(op, IDi) = (ru,Nu).

3.4 Security Notions and Definitions

Kasra-Kermanshahi et al. [15] introduced a new security notion for spatial data
called content privacy. They formulated a leakage that was not captured in pre-
vious definitions such as forward/backward privacy [4,5]. In short, there should
be no leakage on updated points neither in the search phase nor during the
update. Content privacy and backward privacy (Type-II) have some common
properties: both protect the content and do not leak anything about the docu-
ments’ identifiers in the update queries. However, backward privacy (Type-II)
leaks information about the content in the search queries via the access pattern.

Backward privacy (Type-II) reveals all of the information contained in Back-
ward privacy (Type-I)2 and also reveals when all updates over the search keyword
happened without their content.

Definition 1 (Backward Security with Update Pattern). A L-adaptively-
secure SSE scheme is update pattern revealing backward-secure if, and only if,
the search and update leakage functions LSrch, LUpdt can be written as: LUpdt

(op, w, ind) = L′(op, w) and LSrch(w) = L′′(TimeDB(w),Updates(w), sp(w)),
where L′ and L′′ are stateless.

Definition 2 (Content Privacy for Spatial Dataset). A L-adaptively-
secure SSE scheme is content-private if, and only if, the search and update
leakage functions LSrch, LUpdt can be written as: LUpdt(op, r, P) = L′(op, r)
and LSrch(r) = L′′(r) where L′ and L′′ are stateless. Here, r represents a range
of coordinates and a point identifier is denoted by P .

3.5 Security Model

The security model of the proposed constructions is formulated using two games;
REALΣ

A(λ) and IDEALΣ
A,S(λ), for a security parameter λ. The former is executed

using our Geo-DRS+ scheme (denoted by Σ), whereas the latter is simulated
using the leakage of our scheme as defined in Sect. 3.3. The leakage is parame-
terised by a function L = (LStp,LSrch,LUpdt), which describes what information
is leaked to the adversary A. If the adversary A cannot distinguish these two
games, then we can say that there is no leakage beyond what is defined in the
leakage function. These games can be formally defined as followed;
2 The document identifiers matching the issued search keyword when they were

inserted, and the total number aw of updates over the search keyword.

34 S. K. Kermanshahi et al.

– REALΣ
A(λ): On input a dataset chosen by the adversary A, it outputs the

shares of the R+tree nodes by using Setup(DB) to A. The adversary can
repeatedly perform search and update queries. The game outputs the results
generated by running Search(Rectq/S1/S2) and
Update(ni, δ,S1/S2) to A. Eventually, A outputs a bit.

– IDEALΣ
A,S(λ): On input a database chosen by A, it outputs the shares of

R+tree nodes to the adversary A by using a simulator S(LStp). Then, it
simulates the results for search queries using the leakage function S(LSrch)
and uses S(LUpdt) to simulate the results for update queries. Eventually, A
outputs a bit.

Definition 3. The scheme Σ is L-adaptively-secure if for every PPT adver-
sary A, there exists an efficient simulator S such that |Pr[REALΣ

A(λ) = 1] −
Pr[IDEALΣ

A,S(λ) = 1]| ≤ negl(λ).

4 Dynamic Secure Range Search on Encrypted Spatial
Data

This section first presents the Geo-DRS scheme to address the challenge of secure
range search on spatial data in a dynamic manner. Figure 4 demonstrates the
overview of Geo-DRS scheme. This base scheme imposes a logarithmic num-
ber of communication rounds between the client and the server to perform the
search. One possible solution to avoid this communication overhead is to store
the R+tree structure from root to the leaf nodes on the client side and put the
rest on the server. However, this is not desirable as it contradicts the main goal of
outsourcing the data and also is not appropriate for resource constrained devices.
Therefore, we design Geo-DRS+, an enhanced version of the Geo-DRS scheme in
which the single-server model of Geo-DRS is replaced with a two non-colluding
server model, see Fig. 5. This enables us to shift the communication between the
client and a server to the communication between the two non-colluding servers.
To enable the servers to perform secure computation over the outsourced data
and achieve backward and content privacy, we utilize binary secret sharing in
Geo-DRS+.

4.1 Geo-DRS Scheme

To explain the ideas underlying our main construction (Geo-DRS+), we first
describe the details of the Geo-DRS scheme in Algorithm 2. This scheme consists
of three main algorithms: Setup, Search, Update.

– Setup: The data owner proceeds as follows:
• On input the dataset D, security parameter λ and the tree parameter m,

she partitions the environment and builds a height-balanced R+tree.
• Encrypt each of the tree nodes and outsource it to the server.

– Search: The protocol is executed between the client and the server as follows:

Geo-DRS: Geometric Dynamic Range Search on Spatial Data 35

Fig. 4. The system model of Geo-DRS scheme

Fig. 5. The system model of Geo-DRS+ scheme

• Client: Given the desired range query Rectq = ([xLL(q), xUR(q)],
[yLL(q), yUR(q)]), the client generates the search token ST for the tree
root and sends it to the server. Upon receiving the corresponding result
R from the server, he decrypts it to find the next node in the R+tree and
continues this procedure to reach the desirable object.

• Server: Given the encrypted dataset E and the search token ST , it outputs
R which contains the ciphertext of the nodes corresponding to the issued
search token.

– Update3: The data owner and the server perform the following protocol:

3 It is also possible to use additive homomorphic encryption to perform the update at
the server side (e.g. update in [15]), here we want to show only a basic scenario.

36 S. K. Kermanshahi et al.

• Data Owner: Given the update query Qu = IDi, whether it is an insertion
or a deletion, they first perform the Search protocol so that the data
owner finds the corresponding leaf node, ni. Then, the data owner re-
encrypts ni and sends the re-encryption to the server.

• Server: The server replaces the corresponding entry for ni with the given
value from the data owner and updates the encrypted dataset E state.

4.2 Geo-DRS+: Optimised Geometric Dynamic Range Search

In our model, we use a R+tree to categorise the data before creating the inverted
index. We applied the technique of De Cock et al. [6] with the secret sharing
of [9] in the field Z2 to perform the secure search. The protocols for the setup,
search and update work as follows (Fig. 6 illustrates the details of Geo-DRS+

scheme):

– Setup(D): This algorithm is performed by the data owner that inputs the
the spatial dataset D. He first partitions the environment to build the R+tree.
Then he creates bitwise secret sharings of the inverted index based on each
node in the tree, and sends the sets of shares S1 and S2 to S1 and S2, respec-
tively. He also pre-distributes to the servers the multiplications triples that
will be needed for the executions of the GEQ protocol.4

– Search(Rectq/S1/S2): This protocol is executed by the client and the servers.
On an input query Rectq = ([xLL(q), xUR(q)], [yLL(q), yUR(q)]), the client
generates bitwise secret sharings of those coordinates and send the set of
shares ST 1 and ST 2 to the corresponding servers. Given the shares of the
search token and of the inverted index, the servers S1 and S2 jointly perform
the search and return shares of the results, (R1,R2), to the client. Finally,
the client reconstructs the results, R.

– Update(ni, δ,S1/S2): This protocol is executed between the data owner and
the servers. To update (i.e., insertion/deletion) an object in the outsourced
dataset, the data owner should update the corresponding leaf node. That is,
it first updates the object and then generates the new shares of that leaf node.
As the entire entry for the leaf node is getting updated the servers would not
learn which particular object is being updated. To update the leaf node ni,
the data owner generates the corresponding shares U1 and U2 for the servers.
Given such shares, the servers update their shares by replacing them with the
new shares. Finally, the servers update the dataset state to δ + 1.

Remark. The security analysis of our scheme is presented in Appendix A.

4 The data owner can initially distribute some reasonable number of multiplication
triples, and once the servers are about to run out of triples, they can request more
triples to the data owner.

Geo-DRS: Geometric Dynamic Range Search on Spatial Data 37

Algorithm 2. Geo-DRS Construction
Setup(λ, D, m)

Input: λ, D, m
Output: E, K
1: The data owner partitions D
2: RT ← R+tree(D, m) // generates a R+tree where each node has m entries, filling up the empty

spaces with dummy values
3: Append each partition of size m of IDi ∈ D to the corresponding leaf node
4: Initialize UT ← ∅ indexed by nodes’ Tag

5: Ks, Kt
$←− {0, 1}λ, E ← {}, δ ← 1 // state of E

6: for all ni ∈ RT do
7: Ki ← F (Ks, ni) //F is a pseudo-random function (PRF)
8: Tagi ← F (Kt, ni)
9: for j = 1, ..., m do
10: for Rj(ni) ∈ RT do //Rj(ni) is the records associated with a node
11: ei ← EncKi

(Rj(ni))

12: UT (Tagi) ← ei

13: end for
14: end for
15: end for
16: Append UT to E
17: return E, Ks, Kt // The data owner stores K = (Ks, Kt) and the identifier of the root of RT

which is n0, and sends E to the server

Search(Rectq, E)
Input: Rectq = ([xLL(q), xUR(q)], [yLL(q), yUR(q)]), n0, E
Output: R
1: The client starts from the root n0 and performs Sch(n0)
2: Returns R as the list of objects which overlap with the queried rectangle

Sch(ni)

1: The client computes Tagi ← F (Kt, ni)
2: Ki ← F (Ks, ni)
3: Send Tagi to the server
4: The server computes ei ← UT (Tagi) and send ei to the client
5: if ni is a leaf node then

6: R = {Rj(ni) = (IDo, recto)}o∈{1,...,N}
j=1,...,m ← DecKi

(ei)

7: return R
8: else
9: R = {Rj(ni) = (nc, rectc)}c∈{1,...,n}

j=1,...,m ← DecKi
(ei)

10: for j = 1, ..., m do
11: // Check if Rectq collides with rectnc
12: if ((yLL(ni) ≤ yUR(q) ≤ yUR(ni)) OR (yLL(ni) ≤ yLL(q) ≤ yUR(ni)))

AND
((xLL(ni) ≤ xLL(q) ≤ xUR(ni)) OR (xLL(ni) ≤ xUR(q) ≤ xUR(ni))) then

13: Sch(nc)
14: end if
15: end for
16: return R
17: end if

Update(IDi; E, δ)

Input: IDi; E, δ
Output: E, δ
1: if op = Add then
2: The data owner append IDi to Rj(ni)
3: else
4: The data owner replaces IDi with dummy value in Rj(ni)
5: end if
6: Tagi ← F (Kt, ni)
7: e′

i ← EncKi
(Rj(ni)) and send (Tagi, e′

i) to the server

8: The server finds ei ← UT (Tagi) and replace ei with e′
i in E

9: δ ← δ + 1
10: return E, δ

38 S. K. Kermanshahi et al.

Fig. 6. Geo-DRS+ scheme

5 Evaluation

We consider that the dataset objects are represented in a metre scale where
coordinate values are 64 bits (� = 64). To compare the queried coordinate value
with the bounding box coordinates in each level of the R+tree, we require a
Boolean circuit of depth log � + 1 for �-bit integers. Note that, this logarithmic-
round protocol for secure integer comparison is performed between the two non-
colluding servers during the search, hence no overhead to the client. For each
comparison 3� − log � − 2 bit multiplications are required. Therefore, the size of
the circuit is 184 secure multiplication with the depth of 7.

Our scheme requires the pre-distribution of random binary multiplication
triples by the data owner to the servers in the setup phase which are needed for
the secure comparisons during the search. This enables the servers to perform
the search without further online interaction with the data owner. With the
optimization explained in Sect. 2.3, the communication cost for pre-distributing

Geo-DRS: Geometric Dynamic Range Search on Spatial Data 39

Table 2a. Comparison

Scheme Guo2019 Li 2019 Zheng 2020 Kasra-I 2020 Kasra-II 2020 Geo-DRS+

Search complexity (server) O(N) O(nη log N) O(m log mN) O(log(2R)N) O(log(2R)N) O(�m log m)

Search complexity (client) O(θ) O((n + d)η2) O(1) O((log R)N) O((log R)N) O(1)

Update complexity (server) O(N) NA NA O(1) O(2tN) O(1)

Update complexity (client) O(1) NA NA O(ktN) O(1) O(1)

#client-server roundtrips (search) 2 1 1 1 1 1

#client-server roundtrips (update) 2 NA NA O(log R) 1 1

Dynamic ✓ ✗ ✗ ✓ ✓ ✓

Avoid Search pattern leakage ✗ ✗ ✗ ✗ ✗ ✗

Avoid access pattern leakage ✗ ✗ ✗ ✓ ✓ ✓

Content privacy ✗ NA NA ✓ ✓ ✓

Cryptographic primitive Geohash and PBKE ASPE OPE SE ASHE SS

SE: Symmetric Encryption; ASHE: Additive Symmetric Homomorphic Encryption;
PBPKE: Pairing-based Public Key Encryption; OPE: Order Preserving Encryption;
Geohash: public domain geocoding system [22]; ASPE: Asymmetric Scalar-product-
Preserving Encryption; SS: Secret Sharing R: Radius of the circle query; t: Bit length
of coordinates (x and y); N : Number of the data points in the dataset; Ndeg: highest
degree of a term in the used fitted polynomial θ: size of Bloom filter; n: number of
the matching result; k: number of update point; Texp exponentiation time in token
generation of SSW; η: Plain-text vector size; d: number of dimensions; �: Bit length of
database objects (64 bits)

Table 2b. Comparison

Scheme Zhu 2015 Wang 2015 Wang 2016 Luo 2017 Wang 2017 Xu 2019

Search complexity (server) O(RNTpTmul) O(R2N) O(θN) O(Nδd′) O(2t) O(Nt2N3
deg)

Search Complexity (Client) O(1) O(RTexp) O(22tTexp) O(δd′) O(R22tTexp) O(N4
degt2)

Update complexity (server) NA NA NA NA O(2tN) O(1)

Update complexity (client) NA NA NA NA O(1) O(kt)

client-server roundtrips (Search) 3 1 2 δ δ 1

client-server roundtrips (Update) NA NA NA NA NA 1

Dynamic ✗ ✗ ✗ ✗ ✗ ✓

Avoid search pattern leakage ✗ ✗ ✗ ✗ ✗ ✗

Avoid access pattern leakage ✗ ✗ ✗ ✗ ✗ ✗

Content privacy NA NA NA NA NA ✗

Cryptographic primitive PBKE PBKE PBKE ASPE PBKE OPE

each multiplication triple is a single bit. To compare the search query with
each bonding box, four comparisons are required. As mentioned earlier each
comparison costs less than 3� secure multiplications in Z2. Therefore, the overall
search complexity in the worst-case scenario is 4m log m × 3� = 12�m log m
multiplications in Z2. Here, m is the maximum number of entries that can fit
in each node in the tree. The number of roundtrips between the two servers is
log m(log � + 1) as the four comparisons of the search query with each bonding
box can be performed in parallel. Finally, to perform the update the client should
generate new shares for the leaf node to be updated. There is only one round
of communication to send these values to the servers. Moreover, the server only
require to replace the current value of a leaf node with the updated values.

40 S. K. Kermanshahi et al.

Table 2a and Table 2b illustrate the comparison between our Geo-DRS+

scheme with the state-of-the-art schemes supporting spatial range queries of
encrypted data from different aspects. Except our scheme and Wang-2017, the
search complexity on the server side in all of the existing related works is lin-
early dependent to the number of data points/records in the database. The token
generation (search on client side) complexity is constant only in Geo-DRS+, Zhu-
2015, and Zheng-2020, whereas in the rest of the related works it varies from
scheme to scheme and depends on different factors such as radius of the cir-
cle query, bit length of coordinates, and number of data points/records in the
database.

Beside of our Geo-DRS+ scheme, about half of the proposed schemes for geo-
metric range search are presented in the dynamic setting, the rest have limited
application as the update of the database cost the re-encryption and re-uploading
the entire database. Among the dynamic schemes in this domain only our con-
struction, Xu-2019, and Kasra-II-2020 have only one round of communication
between the client and the server for search and update queries.

In terms of the leakages, the search pattern is inherent and unavoidable in
all of the discussed schemes. Both constructions of Kasra-2020 and Geo-DRS+

support content privacy as they are not leaking the access pattern. More impor-
tantly the access pattern leakage is required to perform the order reconstruction
attack, whereas both access and search pattern leakages are exploited for the
full database reconstruction attack [20].

6 Conclusion

We first proposed a dynamic scheme for secure range search over spatial data
and then extend it to a more efficient (in terms of client storage and round
trips between client and server) version which we named Geo-DRS+. In terms
of security and data privacy, Geo-DRS+ scheme has backward and content pri-
vacy. As Geo-DRS+ does not leak access pattern and does not rely on OPE,
it is resilient against recently developed ADR and FDR attacks targeting the
searchable encryption schemes supporting geometric range search. The compar-
isons between Geo-DRS+ and state-of-the-art schemes indicates that it is more
appealing in practice due to lower computation and communication overhead.

A Security analysis

In our construction, each search result is a share of a list associated with a leaf
node and client is the one who reconstructs the final result using these shares.
To insert or delete an object within a list, the client generates the new shares
of the list and the servers will replace the old shares with the new ones. Thus,
1) there is no leakage regarding the content of the dataset (object’s identifier),
2) it is impossible to distinguish which object was being updated, 3) the search
queries do not leak matching objects after they have been deleted. As a result,
our construction is content and backward private as proved below.

Geo-DRS: Geometric Dynamic Range Search on Spatial Data 41

Theorem 1. Let L denote the leakage function of our Geo-DRS+ scheme as
defined in Sect. 3.3. Our constructed Geo-DRS+ is L-adaptively-secure, if the
protocol of De Cock et al.(we call it πs) [6] is secure. Let Σ represents Geo-
DRS+, and A be the adversary (the honest-but-curious server)5, who breaks the
security of Σ. Suppose A make at most qu > 0 update queries. One can construct
an algorithm B that can break the UC-security of De Cock et al. [6] protocol by
running A as a subroutine with non-negligible probability if log2 qs + � ≥ λ, for
security parameter λ.

Proof
The proof proceeds using a hybrid argument, by game hopping, starting from
the real-world game REALΣ

A(λ).

– Game G0: This game is exactly the same as the real world security game
REALΣ

A(λ). Hence, we have

P
[
REALΣ

A(λ) = 1
]

= P [G0 = 1] .

– Game G1: In this game, we pick random values instead of the output of πs

as a share of a search query and store it in a table to be reused if same query
is issued. The advantage of the adversary in distinguishing between G0 and
G1 is exactly the same as advantage for πs. Thus, we can build a reduction
B which is able to distinguish between πs and a truly random function.

|P [G0 = 1] − P [G1 = 1] | ≤ Advπs
Sπs ,B(λ).

– Game G2: To update (delete/insert) an object from the list associated to a
leaf node on the R+tree, this game replaces the shares of the leaf node with
random shares. For update token, it uses the leakage to learn which node
should be updated. The adversary A cannot distinguish the real shares from
the truly random shares. Suppose A makes at most qu > 0 update queries,
then we have

|P [G2 = 1] − P [G1 = 1] | ≤ 1
qu · 2�

.

– Simulator. We can simulate the IDEAL game like Game G2. Let Sπs
be the

simulator for De Cock et al. [6] protocol; then we construct a simulator S for
our construction to perform the search. The algorithm B uses Sπs

to construct
the simulator S in order to answer the queries issued by A. We just need to
use Sπs

for Aπs
, to construct S for A. We have that

|P
[
REALΣ

A(λ) = 1
]
− P

[
IDEALΣ

A,S(λ) = 1
]
| ≤ Advπs

Sπs ,B(λ) +
1

qu · 2�
.

For the update, simulator S works the same as G1 without knowing the con-
tent (objects’ identifiers). The simulator only uses ru to identify the bounding
box of the update query and not the object’s identifier. Therefore, it can sim-
ulate the attacker’s view using only LUpdt.

5 Who follows the protocol instructions correctly, but try to learn additional informa-
tion.

42 S. K. Kermanshahi et al.

As a result, our construction satisfies content and backward privacy as the
search leakage does not include TimeDB(w) or Updates(w). ��

References

1. Agarwal, P.K., Erickson, J., et al.: Geometric range searching and its relatives.
Contemp. Math. 223, 1–56 (1999)

2. Agrawal, R., Kiernan, J., Srikant, R., Xu, Y.: Order preserving encryption for
numeric data. In: Proceedings of the 2004 ACM SIGMOD, pp. 563–574. ACM
(2004)

3. Beaver, D.: Commodity-based cryptography (extended abstract). In: Proceedings
of the Twenty-Ninth Annual ACM Symposium on the Theory of Computing, El
Paso, Texas, USA, 4–6 May 1997, pp. 446–455 (1997)

4. Bost, R.: σoϕoς: forward secure searchable encryption. In: Proceedings of the 2016
ACM SIGSAC Conference on Computer and Communications Security, pp. 1143–
1154. ACM (2016)

5. Bost, R., Minaud, B., Ohrimenko, O.: Forward and backward private searchable
encryption from constrained cryptographic primitives. In: Proceedings of the 2017
ACM SIGSAC Conference on Computer and Communications Security, pp. 1465–
1482. ACM (2017)

6. Cock, M.D., et al.: Efficient and private scoring of decision trees, support vector
machines and logistic regression models based on pre-computation. IEEE TDSC
16(2), 217–230 (2019)

7. Dowsley, R.: Cryptography based on correlated data: foundations and practice.
Ph.D. thesis, Karlsruhe Institute of Technology, Germany (2016)

8. Durak, F.B., DuBuisson, T.M., Cash, D.: What else is revealed by order-revealing
encryption? In: Proceedings of the 2016 ACM SIGSAC Conference on Computer
and Communications Security, pp. 1155–1166. ACM (2016)

9. Garay, J., Schoenmakers, B., Villegas, J.: Practical and secure solutions for integer
comparison. In: Okamoto, T., Wang, X. (eds.) PKC 2007. LNCS, vol. 4450, pp.
330–342. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-71677-
8 22

10. Grubbs, P., Lacharité, M., Minaud, B., Paterson, K.G.: Learning to reconstruct:
statistical learning theory and encrypted database attacks. In: 2019 IEEE Sympo-
sium on Security and Privacy, pp. 1067–1083 (2019)

11. Guo, R., Qin, B., Wu, Y., Liu, R., Chen, H., Li, C.: MixGeo: efficient secure
range queries on encrypted dense spatial data in the cloud. In: Proceedings of the
International Symposium on Quality of Service, pp. 1–10 (2019)

12. Guttman, A.: R-trees: a dynamic index structure for spatial searching. In: Pro-
ceedings of the 1984 ACM SIGMOD International Conference on Management of
Data, SIGMOD 1984, pp. 47–57. ACM, New York (1984)

13. de Hoogh, S.: Design of large scale applications of secure multiparty computa-
tion: secure linear programming. Ph.D. thesis, Department of Mathematics and
Computer Science (2012)

14. Kellaris, G., Kollios, G., Nissim, K., O’neill, A.: Generic attacks on secure out-
sourced databases. In: Proceedings of the 2016 ACM SIGSAC, pp. 1329–1340.
ACM (2016)

15. Kermanshahi, S.K., et al.: Geometric range search on encrypted data with for-
ward/backward security. IEEE Trans. Dependable Secure Comput. 1–20 (2020)

https://doi.org/10.1007/978-3-540-71677-8_22
https://doi.org/10.1007/978-3-540-71677-8_22

Geo-DRS: Geometric Dynamic Range Search on Spatial Data 43

16. Kornaropoulos, E.M., Papamanthou, C., Tamassia, R.: Data recovery on encrypted
databases with k-nearest neighbor query leakage. In: 2019 IEEE Symposium on
Security and Privacy, San Francisco, CA, USA, 19–23 May 2019, pp. 1033–1050
(2019)

17. Lacharité, M.-S., Minaud, B., Paterson, K.G.: Improved reconstruction attacks on
encrypted data using range query leakage. In: 2018 IEEE Symposium on Security
and Privacy (SP), pp. 297–314. IEEE (2018)

18. Li, X., Zhu, Y., Wang, J., Zhang, J.: Efficient and secure multi-dimensional geo-
metric range query over encrypted data in cloud. J. Parallel Distrib. Comput. 131,
44–54 (2019)

19. Luo, Y., Fu, S., Wang, D., Xu, M., Jia, X.: Efficient and generalized geometric
range search on encrypted spatial data in the cloud. In: 2017 IEEE/ACM 25th
International Symposium on Quality of Service (IWQoS), pp. 1–10. IEEE (2017)

20. Markatou, E.A., Tamassia, R.: Database reconstruction attacks in two dimensions.
Cryptology ePrint Archive, Report 2020/284 (2020). https://eprint.iacr.org/2020/
284

21. Matoušek, J.: Geometric range searching. ACM Comput. Surv. (CSUR) 26(4),
422–461 (1994)

22. Morton, G.M.: A computer oriented geodetic data base and a new technique in file
sequencing. Technical report, IBM (1966)

23. Naveed, M., Kamara, S., Wright, C.V.: Inference attacks on property-preserving
encrypted databases. In: Proceedings of the 22nd ACM SIGSAC Conference on
Computer and Communications Security, pp. 644–655. ACM (2015)

24. Pan, Y., et al.: Data inference from encrypted databases: a multi-dimensional order-
preserving matching approach. arXiv:2001.08773 (2020)

25. Sellis, T., Roussopoulos, N., Faloutsos, C.: The R+-tree: a dynamic index for multi-
dimensional objects. Technical report, University of Maryland (1987)

26. Shen, E., Shi, E., Waters, B.: Predicate privacy in encryption systems. In: Reingold,
O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 457–473. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-00457-5 27

27. Wang, B., Li, M., Wang, H.: Geometric range search on encrypted spatial data.
IEEE Trans. Inf. Forensics Secur. 11(4), 704–719 (2016)

28. Wang, B., Li, M., Wang, H., Li, H.: Circular range search on encrypted spatial
data. In: 2015 IEEE CNS, pp. 182–190. IEEE (2015)

29. Wang, B., Li, M., Xiong, L.: FastGeo: efficient geometric range queries on encrypted
spatial data. IEEE TDSC 16(2), 245–258 (2019)

30. Wong, W.K., Cheung, D.W.-L., Kao, B., Mamoulis, N.: Secure kNN computation
on encrypted databases. In: Proceedings of the 2009 ACM SIGMOD International
Conference on Management of data, pp. 139–152 (2009)

31. Xu, G., Li, H., Dai, Y., Yang, K., Lin, X.: Enabling efficient and geometric range
query with access control over encrypted spatial data. IEEE Trans. Inf. Forensics
Secur. 14(4), 870–885 (2019)

32. Zheng, Z., Shen, J., Cao, Z.: Practical and secure circular range search on private
spatial data. Cryptology ePrint Archive, Report 2020/242 (2020). https://eprint.
iacr.org/2020/242

33. Zhu, H., Lu, R., Huang, C., Chen, L., Li, H.: An efficient privacy-preserving
location-based services query scheme in outsourced cloud. IEEE Trans. Veh. Tech-
nol. 65(9), 7729–7739 (2015)

https://eprint.iacr.org/2020/284
https://eprint.iacr.org/2020/284
http://arxiv.org/abs/2001.08773
https://doi.org/10.1007/978-3-642-00457-5_27
https://eprint.iacr.org/2020/242
https://eprint.iacr.org/2020/242

Efficient Multi-client Order-Revealing
Encryption and Its Applications

Chunyang Lv1,2, Jianfeng Wang1,2(B), Shi-Feng Sun3, Yunling Wang4,
Saiyu Qi5, and Xiaofeng Chen1,2(B)

1 State Key Laboratory of Integrated Service Networks (ISN), Xidian University,
Xi’an 710071, China

cylv 1@stu.xidian.edu.cn, {jfwang,xfchen}@xidian.edu.cn
2 State Key Laboratory of Cryptology, P. O. Box 5159, Beijing 100878, China

3 Shanghai Jiao Tong University, Shanghai 200240, China
shifeng.sun@sjtu.edu.cn

4 School of Cyberspace Security, Xi’an University of Posts and Telecommunications,
Xi’an 710121, China
ylwang@xupt.edu.cn

5 School of Computer Science and Technology, Xi’an Jiaotong University,
Xi’an 710049, China
syqi@connect.ust.hk

Abstract. Order-revealing encryption (ORE) is a cryptographic primi-
tive that enables ciphertext comparison while leaking nothing about the
underlying plaintext beyond their lexicographic ordering. However, how
to achieve efficient and secure ciphertext comparison for multi-user set-
tings is still a challenging problem. In this work, we propose an efficient
multi-client order-revealing encryption scheme (named m-ORE) by intro-
ducing a new token-based comparison method. Specifically, data owner
is enabled to delegate token generation ability to some authorized users
without revealing his secret key, and then each authorized user can per-
form comparison on ciphertexts from multiple data owners by generat-
ing the associated comparison tokens. Benefiting from our new method,
m-ORE can not only reduce ciphertext size but also improve compari-
son efficiency, compared with the state-of-the-art (Cash et al. Asiacrypt
2018). Further, we present a non-interactive multi-client range query
scheme by extending m-ORE. Finally, we show a formal security analysis
and implement our scheme. The evaluation result demonstrates that m-
ORE outperforms the scheme by Cash et al. in terms of both query and
storage cost while achieving the same level of security.

Keywords: Order-revealing encryption · Property-presering hash ·
Range query · Multi-client searchable encryption

1 Introduction

Order-revealing encryption (ORE) [5], as a generation of order-preserving
encryption (OPE) [2], enables client to perform efficient range queries on
encrypted data while ensuring strong security guarantee. Different from OPE,

c© Springer Nature Switzerland AG 2021
E. Bertino et al. (Eds.): ESORICS 2021, LNCS 12973, pp. 44–63, 2021.
https://doi.org/10.1007/978-3-030-88428-4_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-88428-4_3&domain=pdf
https://doi.org/10.1007/978-3-030-88428-4_3

Efficient m-ORE and Its Applications 45

the ciphertexts of ORE can be represented as arbitrary form rather than only
numeric-valued in OPE. Furthermore, an additional publicly comparison algo-
rithm is introduced to perform ciphertext comparison.

Boneh et al. [5] first formalized the notion of ORE and presented an ORE
scheme based on multilinear maps that satisfies the “best-possible” security, i.e.,
IND-OCPA security. It means that the ciphertext should reveal nothing about
the underlying plaintexts other than the ordering. However, the proposed scheme
is too impractical to deploy in real-world scenarios. To overcome the efficiency
limit of ORE, Chenette et al. [8] proposed an efficient ORE scheme from sym-
metric cryptographic primitives at the cost of certain security loss, which leaks
the most significant different bit. Subsequently, Lewi and Wu [16] designed a
new ORE scheme that leaks the position of the most significant differing blocks.
Recently, a line of works [6,9,19] investigated vulnerability of ORE schemes.
Surprisingly, an ideal ORE scheme may be insecure even only the order of the
plaintexts is leaked. That is, a significant amount of useful information can be
inferred by the order of plaintexts. The underlying reason is that the adver-
sary can compromise the privacy of plaintext when enough knowledge on prior
distribution is obtained. To address this drawback, Cash et al. [7] introduced
the notion of parameter-hiding ORE that leaks less than all existing (practi-
cal) ORE schemes. The main idea is to use a new primitive named property-
preserving hash (PPH), where it only allows the server to reveal whether two
messages (c1, c2) satisfy the following equation c1

?= c2 + 1. Due to the prop-
erty of PPH, the adversary cannot count how many elements two ciphertexts
have in common. As a consequence, the location of the first differing bit will not
be leaked. Nevertheless, the proposed scheme can only support comparisons on
ciphertexts from a single user. Li et al. [17] presented the notion of delegatable
ORE, which enables ciphertext comparisons among different users by delegating
the ciphertext comparison privilege. However, their proposed scheme leaks the
most significant different bit. Therefore, a natural question following the above
discussion is that:

Is there an efficient multi-client ORE scheme without leaking the location of
the first differing bit?

In this paper, we first introduce the notion of multi-client order-revealing
encryption (m-ORE). Then we put forward a concrete construction by employing
PPH, which achieves better comparison efficiency than the state-of-the-art [7]
while supporting cross-users ciphertext comparison. The main contributions are
summarized as follows:

– We first formalize the notion of multi-client order-revealing encryption (m-
ORE), where the server can perform ciphertext comparison among different
clients by receiving the comparison token. We propose, to the best of our
knowledge, the first m-ORE scheme without leaking the location of the differ-
ing bit. For ciphertext comparison, our scheme m-ORE requires O(n) pairings
in contrast to O(n2) in [7].

– We present an efficient multi-client range query scheme from m-ORE and
multi-client searchable encryption. The proposed construction only requires

46 C. Lv et al.

Table 1. Comparison with existing ORE schemes

Scheme Ciphertext size Encrypt cost Compare cost Leakage Multi client Token size

Chenette et al. [8] �n logM� nPrf nM MSDB ✗ −
Lewi et al. [16] b(2d+�logd�) b(d+1)Prf bdM MSDB ✗ −
Cash et al. [7] 2n(τG1+τG2) 2n(Exp1+Exp2) 4n2P EQ ✗ −
Li et al. [17] 4nτG1 6nExp1 8nP MSDB ✓ 2τG2
Our m-ORE (n+1)τG1 nExp1 3nP EQ ✓ (2n+1)τG2
Our s-ORE n(τG1+2τG2) n(Exp1 + 2Exp2) 3nP EQ − −

n is the bit-length of the plaintext; M denotes the modulo as in [8]; b and d are the amount of block in

a plaintext and the bit-length of one block respectively as in [16]; τG1 and τG2 is the size of elements

of groups G1 and G2; Prf, M, Exp1, Exp2, P are pseudorandom function, modular comparison, group

exponentiation in G1 and G2 and bilinear pairing, respectively; MSDB refers to leak most-significant

differing bit/block, EQ refers to the Equality pattern of most-significant differing bit; Our s-ORE denotes

a variant of our m-ORE scheme in single-user setting.

the data owner to generate an authorized query key to the client. Then each
authorized client can generate a comparison token from the query key in a
non-interactive manner.

– We implement our proposed m-ORE in both multi-user and single-user set-
tings and perform a comprehensive comparison with existing constructions
(as shown in Table 1). The results demonstrate that m-ORE in single-user
settings brings a saving of 23% in server storage cost and achieves a speedup
of 50× in comparison latency compared to [7].

1.1 Related Work

Agrawal et al. [2] first introduced the notion of order-preserving encryption
(OPE), where the ciphertext preserves the numerical ordering of the plaintext.
Subsequently, Boldyreva et al. [3] formalized the security model of OPE, namely
indistinguishability under ordered chosen-plaintext attack (IND-OCPA). Infor-
mally, it means that given two ciphertexts, nothing is leaked other than the
order-relations among the plaintexts, which is known as the best possible secu-
rity under the order-preserving constraint. However, Boldyreva et al. also pointed
out that this security cannot be achieved unless the size of its ciphertext-space
is exponential in the size of its plaintext-space.

The first OPE scheme that achieves IND-OCPA security was presented by
Popa et al. [20]. Their scheme mOPE (mutable order-preserving encoding) adopt-
ing a stateful structure and interactive protocol is inefficient since it requires a
large communication complexity of O(log n) rounds for answering range queries.
For other existing OPE schemes [4,10,14,15,21] with different levels of security,
they are either interactive or less secure.

To achieve better security guarantees with a non-interactive and stateless
approach, Boneh et al. [5] introduced the notion of order-revealing encryption
(ORE), where the ciphertexts have no particular order and look more like seman-
tically secure encryption. The first ORE scheme was achieved by the primitive of
multilinear map. To improve the efficiency, Chenette et al. [8] presented a prac-
tical ORE scheme by employing pseudorandom function. However, their scheme

Efficient m-ORE and Its Applications 47

leaks the location of the first differing bit. Subsequently, Lewi et al. [16] presented
an improved ORE scheme that leaks only the location of the first differing block.
Note that a block can be a byte or can be flexibly adjusted to balance efficiency
and security. Nonetheless, Cash et al. [7] pointed out that these leakage pro-
files are still unacceptable and introduced the notion of parameter-hiding ORE,
which only leaks the equality pattern of most-significant differing bit.

Recently, another line of work is to design ORE scheme supports ciphertexts
comparison among multiple clients, which can strengthen the applicability of
ORE. Eom et al. [11] initially introduced multi-client ORE by depending on a
trusted third party. Subsequently, Li et al. [17] presented a delegatable ORE
scheme that allows clients to search other client’s data after being authorized.
However, it also leaks the index of the first differing bit.

2 Preliminaries

2.1 Notation

We use [n] to denote a set of integers {1, 2, · · · , n}. For a decimal integer
m = (b1b2b3 · · · bn)2, the string b1b2b3 · · · bn is the binary form of m where b1
is the highest digit bit and bn is the lowest digit bit. Let λ be the security
parameter. For a string α and a string β, we use α‖β to denote the concate-
nation of the two strings. PPT is stands for probabilistic polynomial time and
x ← AO1,O2,···(m1,m2, · · ·) means that x is the output of the algorithm A which
runs with the inputs m1,m2, · · · and access to the random oracles O1,O2, · · · .
When Zp is a group, we use r ← Zp to denote r is chosen from group Zp uni-
formly and randomly. If P is a predicate on x, we write 1(P(x)) to denote the
indicator function for P: that is 1(P(x))=1 if and only if P(x) = 1.

2.2 Bilinear Maps

Let G1, G2 and GT be three cyclic multiplicative groups of prime order p, and
g1, g2 be the generators of G1, G2 respectively. A bilinear pairing is a mapping
e : G1 × G2 → GT with the following properties:

1. Bilinearity: e(ua, vb) = e(u, v)ab for all u ∈ G1, v ∈ G2, and a, b ∈ Zp.
2. Non-degeneracy: e(g1, g2) �= 1, where 1 represents the identity of group GT .
3. Computability: there exists an algorithm to efficiently compute e(u, v) for any

u ∈ G1 and v ∈ G2.

A pairing is Type-3 if there is no efficient computable isomorphism between
G1 and G2, we use Type-3 bilinear map in this work. Then we recall the following
assumption.

48 C. Lv et al.

2.3 Complexity Assumption

Definition 1. Symmetric eXternal Diffie-Hellman (SXDH) Assump-
tion: We say the symmetric external Diffie-Hellman (SXDH) assumption holds
with respect to these groups and pairing if for all probabilistic polynomial-time
adversary A, the advantage εsxdh = max{ε1, ε2} is negligible for a, b, c, d, r1, r2 ∈
Zp. Where

ε1 =| Pr[A(g1, ga
1 , gb

1, g
ab
1) = 1] − Pr[A(g1, ga

1 , gb
1, g

r1
1) = 1] |

and
ε2 =| Pr[A(g2, gc

2, g
d
2 , gcd

2) = 1] − Pr[A(g2, gc
2, g

d
2 , gr2

2) = 1] |
This essentially says that the Decisional Diffie-Hellman (DDH) assumption holds
for both G1 and G2.

3 Property-Preserving Hash

In this section, we first recall the definitions of Property-Preserving Hash (PPH)
[7]. Then we present a concrete PPH from Bilinear Maps.

Definition 2. A property-preserving hash (PPH) scheme consists of three algo-
rithms Γ = (PPH.KeyGen,PPH.Hash,PPH.Test) as follows:

– PPH.KeyGen(1λ): The key generation algorithm takes as input the security
parameter and outputs (pp, hk, tk) that denotes as the public parameter, hash
key and test key. These implicitly define a domain D and range R for the
hash.

– PPH.Hash(hk, x): The hash evaluation algorithm takes as input the hash key
hk, an input x ∈ D, and emits a single output h ∈ R that we refer to as the
hash of x.

– PPH.Test(tk, h1, h2): The test algorithm takes as input the test key tk and
two hashes h1, h2, and outputs a bit b ∈ {0, 1}.

Correctness: Let P be some predicate. We say that Γ is computationally cor-
rect with respect to P if the probability

Pr

⎡
⎣

(pp, hk, tk) ← PPH.KeyGen(1λ)
PPH.Test(tk, h, h′) �= P (x, y) : h ← PPH.Hash(hk, x)

h′ ← PPH.Hash(hk, y)

⎤
⎦

is a negligible function of λ.

Security: Let P be some predicate and Γ = (PPH.KeyGen,PPH.Hash,PPH.Test)
be a PPH scheme with respect to P . For a PPT adversary A, we define its
advantage as Advw pph

P,A (λ) = 2Pr[INDw pph
P (A) = 1] − 1. Here INDw pph

P (A) is a
furter restricted version of the PPH security game in [7] and the adversary is not
allowed to query x = x∗. If for all PPT adversaries, the advantage Advw pph

P,A (λ)
is negligible, we say that Γ is restricted-chosen-input secure.

Efficient m-ORE and Its Applications 49

Game INDw pph
P (A) :

(pp, hk, tk) ← PPH.KeyGen(1λ);x∗ ← A(tk)

h0 ← PPH.Hash(hk, x∗);h1
$← R; b $← {0, 1}; b′ ← AHash(tk, x∗, hb)

Return(b ?= b′)
Hash(x) :

If P (x, x∗) = 1 or x = x∗, then h ←⊥,Else h ← PPH.Hash(hk, x)
Return(h)

3.1 PPH from Bilinear Maps

We present a concrete PPH scheme for the predicate P where P (x, y) = 1
if and only if x = y ± 1. The PPH consists of a tuple of algorithms Γ =
(PPH.KeyGen,PPH.Hash,PPH.Test) as follows:

– PPH.KeyGen(1λ): It takes as input a security parameter λ, then picks
k1, k2,1, k2,2 ← Zp and sets the hash key hk = (k1, (k2,1, k2,2)). Let H :
{0, 1}λ × {0, 1}λ → Zp be a secure PRF. It samples groups G1, G2 and
GT with prime order p and an associated bilinear map e : G1 × G2 → GT .
Then it randomly chooses generators g1 ∈ G1, g2 ∈ G2 and sets the test key
as tk = (gk2,1

1 , g
k2,2
2). Let (G1,G2,GT , e) be the public parameter pp. Finally

it outputs (pp, hk, tk).
– PPH.Hash(hk, x): It takes as input the prime hash key hk and a message x,

then outputs the hash value:

−→
h = (h1 = g

H(k1,x)·k2,1
1 , h2 = g

H(k1,x+1)·k2,2
2 , h3 = g

H(k1,x−1)·k2,2
2)

– PPH.Test(tk,
−→
h ,

−→
h ′): It takes as input two hash values

−→
h ,

−→
h ′ and the test

key tk = (gk2,1
1 , g

k2,2
2), and computes e(h1, g

k2,2
2), e(gk2,1

1 , h′
2) and e(g1, h′

3).
Then it returns 1 if e(h1, g

k2,2
2) = e(gk2,1

1 , h′
2) or e(h1, g

k2,2
2) = e(gk2,1

1 , h′
3),

otherwise returns 0.

Correctness: The correctness of PPH depends on whether H(k1, x) = H(k1, y±
1). If so, the correctness holds. Otherwise, we can show that finding such a pair
(x, y) that satisfies this property with non-negligible probability will deduce an
adversary that can break the security of PRF.

Remark 1. Informally, the proposed PPH is similar to that in [7]. The main
difference is that the hash value of our PPH is deterministic while random in
[7]. In additon, tk and hk here are reorganized for our application.

50 C. Lv et al.

3.2 Security Analysis

Theorem 1. Assuming that H is a secure PRF and the SXDH assumption
holds, the proposed restrictive PPH scheme Γ is restricted-chosen-input secure.

Proof. The proof is very similar to that in [7]. For completeness, we show the
details below. The theorem is proved via a sequence of games. Particularly, we
start from the real game and end with a game that perfectly hides the random
bit b. Then we need to show any two adjacent games are indistinguishable. Here,
we denote by Pr[Gi = 1] the probability of Game Gi outputting 1.

– Game G0: This is exactly the real game. The challenger generates the test
key tk and the challenge hash value (h1, h2, h3) ∈ G1 × G

2
2.

– Game G1: G1 is exactly the same as G0 except that we repalce the pseudo-
random function H(k1, ·) with a real random function H∗(·).

– Game G2: G2 is exactly the same as G1 except the challenge hash values are
replace by (r, h2, h3), where r

$← G1.
– Game G3: G3 can be obtained by slightly modifying the challenge hash values

of G2 to (r, r, h3), where r
$← G2.

– Game G4: G4 is exactly the same as G3 except the challenge hash values are
replaced by (r, r, r), where r

$← G2.

Then by the definition of PPH security, we have

Advw pph
Γ,P,A(λ) = |Pr[G0 = 1] − Pr[G4 = 1]|

It is easy to obtain that G0 and G1 are computationally indistinguishable
based on the security of PRF. Next, we argue G1 and G2 are computationally
indistinguishable by the following lemma.

Lemma 1. G1 ≈ G2 assuming that SXDH assumption holds.

Proof. Assume that there is an adversary A that can distinguish between G1

and G2, we define its advantage as ε = |Pr[G1 = 1] − Pr[G2 = 1]|. Then we can
deduce an adversary B that can solve SXDH problem with the same advantage
ε. On input of (g1, g2, B,C) and the challenge term T , the adversary B executes
the following steps:

1. First, B randomly chooses k2,2
$← Zp, sets tk = (C, g

k2,2
2) and sends it to A.

Then, A sends x∗ to B. B simulates the random function H∗ and it implicitly
sets H∗(x∗) = b, the discrete logarithm of B. It then computes

(h1 = T, h2 = g
H∗(x∗+1)·k2,2
2 , h3 = g

H∗(x∗−1)·k2,2
2)

and sends (h1, h2, h3) to A. Note that c = k2,1 and C = gc
1.

2. Second, to answer a new hash query satisfying x �= x∗ and x ± 1 �= x∗ from
A, B computes:

(h1 = CH∗(x), h2 = g
H∗(x+1)·k2,2
2 , h3 = g

H∗(x−1)·k2,2
2)

3. Finally, the output of B is equal to that of A.

Efficient m-ORE and Its Applications 51

We say that B correctly simulates the game (without querying A(x∗ ±1) and
A(x∗)). If the challenge term T = gbc

1 , it means that B simulates G1, and if T is
a random group element of G1, then B simulates G2. As a result, B can break
the SXDH assumption with advantage ε. We complete the proof.

Similarly, we have the following lemmas:

Lemma 2. G2 ≈ G3 assuming that SXDH assumption holds.

Lemma 3. G3 ≈ G4 assuming that SXDH assumption holds.

The proofs of both Lemma 2 and 3 are similar to the proof of Lemma 1,
so we omit the details here. By combining the above lemmas, we complete the
proof of Theorem 1.

4 Multi-client Order-Revealing Encryption (m-ORE)

In this section, we first formalize the definition of m-ORE. We then present a
concrete m-ORE scheme from the PPH scheme Γ .

4.1 Definition of m-ORE

Definition 3. A m-ORE scheme consists of four algorithms Πm =(m-
ORE.KGen, m-ORE.Enc, m-ORE.TGen, m-ORE.Cmp) as follows:

– m-ORE.KGen(1λ): On input the security parameter λ, the key generation algo-
rithm m-ORE.KGen outputs master key msk and query key qk.

– m-ORE.Enc(msk,m): On input the master key msk and a message m, the
encryption algorithm m-ORE.Enc outputs a ciphertext c.

– m-ORE.TGen(qk,m): On input the query key qk and a queried message m,
the token generation algorithm m-ORE.TGen outputs a token t.

– m-ORE.Cmp(c, t): On input a ciphertext c and a token t, the compariton algo-
rithm m-ORE.Cmp outputs a bit b ∈ {0, 1}.

Correctness: We say that Πm is computationally correct if the probability

Pr

⎡
⎣

msk, qk ← m-ORE.KGen(1λ)
m-ORE.Cmp(c, t) �= 1(m1 > m2) : c ← m-ORE.Enc(msk,m1)

t ← m-ORE.TGen(qk,m2)

⎤
⎦

is negligible of λ.

Security: Similar to Cash et al. [7], Our m-ORE scheme can achieve non-
adaptive simulation-based security. We provide the formal definition as follows:

Definition 4. Let Πm = (m-ORE.KGen, m-ORE.Enc, m-ORE.TGen, m-
ORE.Cmp) be an m-ORE scheme. For a PPT adversary A, a simulator S and
leakage function L(·), we define the non-adaptive experiments Realm-ore

A (λ) and
Simm-ore

A,L,S(λ) as follows.

52 C. Lv et al.

Realm-ore
A (λ) :

msk, qk ← m-ORE.KGen(1λ)
(m1, . . . , mq) ← A(λ)
for 1 ≤ i ≤ q :

ci ← m-ORE.Enc(msk,mi)

ti ← m-ORE.TGen(qk,mi)

output (c1, . . . , cq) and (t1, . . . , tq)

Simm-ore
A,L,S(λ) :

stS ← S(λ)
(m1, . . . , mq) ← A(λ)
((c1, . . . , cq), (t1, . . . , tq)) ← S(stS ,

L(m1, . . . , mq))
output (c1, . . . , cq) and (t1, . . . , tq)

Then Πm is a secure m-ORE scheme with leakage function L(·), if for any
PPT adversary A, there exists a polynomial-size simulator S such that the out-
puts of the two distributions Realm-ore

A (λ) and Simm-ore
A,L,S(λ) are computationally

indistinguishable.
We remark that the notion of m-ORE is compatible with that of single-user

ORE. In particular, we will obtain a single-user ORE s-ORE by appending token
t to the corresponding ciphertext c.

4.2 m-ORE Scheme from PPH

Let λ be the security parameter and F : [n] × {0, 1}n → {0, 1}λ be a secure
PRF. Let Γ = (PPH.KeyGen,PPH.Hash,PPH.Test) be a PPH scheme w.r.t. a
predicate P that P (x, y) = 1 iff x = y ± 1. Then our m-ORE scheme Πm =
(m-ORE.KGen, m-ORE.Enc, m-ORE.TGen, m-ORE.Cmp) is as follows:.

– m-ORE.KGen(1λ): It takes as input a security parameter λ, and obtains
pp = (G1,G2,GT , e), hk = (k1, (k2,1, k2,2)) and tk = (gk2,1

1 , g
k2,2
2) by running

PPH.KeyGen(1λ). And then it sets msk = hk, qk = (k1, g
k2,2
2) and outputs

(msk, qk).
– m-ORE.Enc(msk,m): With input msk and message m, it picks r ← Zp and

computes the binary representation of m = (b1, · · · , bn) and c0 = g
k2,1·r
1 . Then

it sets k2,1 ← k2,1 · r, hk = (k1, (k2,1, k2,2)) and for i = 1, · · · , n computes:

ui = F (i, b1b2 · · · bi−1||0n−i+1) + bi mod 2λ, vi = h1 ← PPH.Hash(hk,ui).

Finally it chooses a random permutation π : [n] → [n], sets ci = vπ(i), and
outputs the ciphertext c = (c0, c1, · · · , cn).

– m-ORE.TGen(qk,m): It takes as input the query key qk = (k1, g
k2,2
2) and

message m and computes the binary representation of m = (b1, · · · , bn) and
t0 = g

k2,2·r′

2 , where r′ ← Zp. Then for i = 1, · · · , n, it computes

ui = F (i, b1b2 · · · bi−1||0n−i+1) + bi mod 2λ,

Efficient m-ORE and Its Applications 53

ti,1 = g
k2,2·r′H(k1,ui+1)
2 , ti,2 = g

k2,2·r′H(k1,ui−1)
2

Finally it chooses a random permutation π : [n] → [n], sets ti =
(tπ(i),1, tπ(i),2), and outputs the token t = (t0, (t1,1, t1,2), · · · , (tn,1, tn,2)). Note
that this algorithm generates the hash value using the query key rather than
hk, and the self-generated hash value is applicable to the PPH.Test function.

– m-ORE.Cmp(c, t): Taking as input a ciphertext c = (c0, c1, · · · , cn) and a token
t = (t0, (t1,1, t1,2), · · · , (tn,1, tn,2)), it extracts tk = (c0, t0) = (gk2,1·r

1 , g
k2,2·r′

2)
and runs PPH.Test(tk, ci, tj,1) and PPH.Test(tk, ci, tj,2) for every i, j ∈ [n].
If there exists a pair (i∗, j∗) such that PPH.Test(tk, ci∗ , tj∗,1) = 1, it returns
1 and stops, meaning m > m; else if there exists a pair (i∗, j∗) such that
PPH.Test(tk, ci∗ , tj∗,2), it returns 0 and stops, meaning m < m; otherwise it
returns ⊥, meaning m = m, where m is the underlied plaintext of ciphertext
c and m is the underlied plaintext of token t.

Correctness: Let (b1 · · · bn) and (b′
1 · · · b′

n) be the binary form of m and m
respectively. If m > m, there must exist an index i∗ ∈ [n] such that bi∗ = b′

i∗ +1.
Therefore the correctness of Πm is followed by correctness of PPH. For m < m
or m = m, we use the same argument.

Remark 2. Note that our m-ORE scheme can perform ciphertext comparison
only by receiving the associated token. Given a ciphertext c = (c0, c1, · · · , cn)
and a search token t = (t0, (t1,1, t1,2), · · · , (tn,1, tn,2)), it needs to compare all
(ci, tj,1) and (ci, tj,2) pair in sequence. That is, the server tests if e(ci, g

k2,2·r′

2) =
e(gk2,1·r

1 , tj,1) or e(ci, g
k2,2·r′

2) = e(gk2,1·r
1 , tj,2) for every i, j ∈ [n]. It seems that m-

ORE requires O(n2) pairings for ciphertext comparison. However, we argue that
it only requires to compute e(ci, g

k2,2·r′

2) once for some ci due to that all (tj,1, tj,2)
shares a unique random value g

k2,2·r′

2 . Similarly, e(gk2,1·r
1 , tj,1) and e(gk2,1·r

1 , tj,2)
are reusable. As a result, the required computation of each ciphertext reduced
to 3n pairings.

4.3 Security Analysis

Note that the leakage of m-ORE scheme is identical to that of [7]. That is,

Lf (m1, · · · ,mq) =(∀1 ≤ i, j, k ≤ q|1(mi < mj),
1(msdb(mi,mj) = msdb(mi,mk)))

It basically means that apart from the order of underlying plaintexts, the leakage
is only whether msdb(mi,mj) equals to msdb(mi,mk) for any three messages
i, j, k. Then following the analysis of parameter-hiding ORE [7], we have the
following theorem.

Theorem 2. Assuming that the underlying PPH scheme Γ is restricted-chosen-
input secure, our m-ORE Πm scheme is Lf -non-adaptively-simulation secure.

54 C. Lv et al.

Proof. We prove the security of our m-ORE scheme through a series of games
that are defined as following.

– Game G−1: This is exactly the real game Realm-ore
A (λ).

– Game G0: This game is same as G−1 except the the pseudorandom function
F in the m-ORE.Enc algorithm is replaced by a truely random function F ∗.

– Game Gi·q+j : These games are the same as G0 except during the m-ORE.Enc

algorithm, for every two adjacent games, uj
i may be replaced by a random

string depending on a predicate Switch.
– Game Gqn+1: This game is exactly the simulation Simm-ore

A,Lf ,S(λ).

We prove that any two consecutive games are indistinguishable, and then we
construct an efficient simulator S such that the output of Gqn and Simm-ore

A,Lf ,S(λ)
are indistinguishable. To define the predicate Switch, following the idea of [7], we
say that Switchi,j = 1 if ∀l ∈ [q],msdb(mj ,ml) �= i, it implies that the i-th bit of
mj can be replaced by a random string. When Switchi,j = 0, there must exists ul

i

such that uj
i = ul

i ± 1, this property can be revealed by the PPH.Test algorithm
hence we can not switch the i-th bit of mj to a random string. Therefore, we
say this bit (i.e. mj

i) is leaked.

First, we have G−1 ≈ G0 due to the security of pseudorandom function F . Then
we have the following lemma:

Lemma 4. Assuming that our PPH scheme Γ is restricted-chosen-input secure,
we have Gk−1 ≈ Gk for any k ∈ [1, qn].

Proof. To prove Gk−1 ≈ Gk for any k ∈ [1, qn], we argue that it is sufficient to
prove Gi∗·q+j∗−1 ≈ Gi∗·q+j∗ where i∗ ∈ [0, n − 1], j∗ ∈ [1, q] under the condition
Switchi∗,j∗ = 1. Note that for Switchi∗,j∗ = 0, we have Gi∗·q+j∗−1 = Gi∗·q+j∗

because there is no alteration between these two games. We show that if there
exists an adversary A that can distinguish Gk from Gk−1 with non-negligible
advantage ε, then we obtain a simulator B that can win the restricted-chosen-
input game with the same advantage ε. B executes the following steps:

1. It first runs INDw pph
P and sends tk to A. After receiving a vector of plain-

text m1, · · · ,mq, it uses the truely random function F ∗ to sets the challenge
ciphertext bit as uj∗

i∗ = F ∗(i∗, bj∗
1 bj∗

2 · · · bj∗
i∗−1||0n−i∗+1) + bj∗

i∗ mod 2λ where
bj∗
i∗ is the i∗-th bit of mj∗ in binary form.

2. Then B sends the challenge bit uj∗
i∗ to the challenger in the INDw pph

P game.
After receiving the challenge term T , it sets cj∗

i∗ = T .
3. To simulate the other bit in the ciphertext vector, B executes the followings.
4. If for all the ciphertext bit uj′

i′ after uj∗
i∗ (i.e. i′q + j′ > i∗q + j∗), B first selects

q elements r1, · · · , rq ← Zp for every j ∈ [1, q] and computes:

uj′
i′ = F ∗(i′, bj′

1 bj′
2 · · · bj′

i′−1||0n−i′+1) + bj′
i′ mod 2λ;

cj′
i′ = h1 ← PPH.Hash(hk, uj′

i′).

Efficient m-ORE and Its Applications 55

Else if for all the ciphertext bit uj′
i′ before uj∗

i∗ (i.e. i′q + j′ < i∗q + j∗) and
Switchi′,j′ = 0, then the same as above, else for Switchi′,j′ = 1, it computes

uj′
i′

$← {0, 1}λ; cj′
i′ = h1 ← PPH.Hash(hk, uj′

i′).
5. Finally, after B simulates all the ciphertext bits, for all j∗ ∈ [q], it picks a

random permutation πj∗ and outputs cj∗ = (cj∗

πj∗ (1), · · · , cj∗

πj∗ (n); g
rj∗
1) to A.

Then B outputs to its challenger a bit based on the output of A.

Then we say that B correctly simulates the encryption oracle since F ∗ is a
truly random function and the probability of uj∗

i∗ = uj′
i′ ± 1 is negligible for all

i′q + j′ �= i∗q + j∗, which means B fails to simulate the encryption oracle with
only negligible probability. Also, B correctly simulates Gk−1 when T = h1 ←
PPH.Hash(hk, uj′

i′), and if T is random, due to the security of pseudorandom
function F , B simulates Gk correctly. Hence, if A’s advantage in distinguishing
Gk from Gk−1 is noticeable, then B’s advantage in wining the INDw pph

P game is
also noticeable. Since we already proved that an adversary’s advantage in wining
INDw pph

P game is negligible, we have Gk−1 ≈ Gk for any k ∈ [1, qn]. Note that
we skip the prove of Gk−1 ≈ Gk with respect to token due to the fact that it
is very similar from the proof of ciphertexts. This will complete the proof of
Lemma 4.

We then have the following lemma:

Lemma 5. There exists an efficient simulator S that the output of Gqn and
Gqn+1 are indistinguishable.

Proof. To simulate the encryption function correctly, for any i-th of mj that
Switchi,j = 1, we first set uj

i as a random string since it would not affect the
leakage profile. Thus it is sufficient to only simulate the bit that Switchi,j = 0.
Before we give the description of the simulator S, we first introduce an recursive
algorithm FillMatrix(i, j, k,m,M) as presented in Algorithm 1. This algorithm
takes a set of messages (m1, · · · ,mq), which we assume m1 > · · · > mq without

Algorithm 1. FillMatrix(i, j, k,m,M)
Input: (i, j, k) where i ∈ [n], j ≤ k ∈ [q], a set of messages m = (m1, · · · ,mq), an
matrix Mq×n.
Output: a filled matrix M

1: if j = k then

2: for all i′ ∈ [i, n], set M [j][i′] = r where r
$← {0, 1}λ;

3: return 0;
4: else
5: search for the smallest j∗ ∈ [j, k] such that msdb(mj ,mj∗) = msdb(mj ,mk);

6: for all j′ ∈ [j, j∗ − 1], set M [j′][i] = r′ where r′ $← {0, 1}λ;
7: for all j′ ∈ [j∗, k], set M [j′][i] = r′ − 1;
8: runs FillMatrix(i + 1, j, j∗ − 1,m,M) and FillMatrix(i + 1, j∗, k,m,M);
9: end if

56 C. Lv et al.

loss of generality, and (i, j, k) that i ∈ [n], j ≤ k ∈ [q], where n is the bit-length
of every message and q is the total number of messages, it outputs a matrix M .

To simulate the encryption oracle for a set of messages m = (m1, · · · ,mq),
the simulator S first calls the FillMatrix(1, 1, q,m,M) to get a matrix Mq×n,
then it calls the PPH.KeyGen(1λ) to get hk = (k1, (k2,1, k2,2)) and tk. After
that, S chooses q elements r1, · · · , rq ← Zp and q random permutations
π1, · · · , πq for every j ∈ [1, q] and sets c0 = g

k2,1·rj

1 , k2,1 ← k2,1 · rj and
hk = (k1, (k2,1, k2,2)), then it computes cj

i = h1 ← PPH.Hash(hk,M [j][i]) for
every i ∈ [n], j ∈ [q]. Finally, it outputs a set of ciphertexts (c1, · · · , cq) such
that cj = (c0, c

j
πj(1)

, · · · , cj
πj(n)

) for every j ∈ [q].
Additionally, in order to simulate m-ORE.TGen function, S constructs the

tokens as follows. After simulating the ciphertexts, S chooses q new elements
r1, · · · , rq ← Zp and q new random permutations π1, · · · , πq for every j ∈ [1, q]
and sets t0 = g

k2,2·rj

2 , tji,1 = g
k2,2·rjH(k1,M [j][i]+1)
2 and tji,2 = g

k2,2·rjH(k1,M [j][i]−1)
2

for every i ∈ [n], j ∈ [q]. Then, it outputs a set of token (t1, · · · , tq) such that
tj = (t0, (t

j
πj(1),1

, tjπj(1),2
), · · · , (tjπj(n),1

, tjπj(n),2
)) for every j ∈ [q].

Note that during the simulation, the probability of ∃i, i∗ ∈ [n] that satisfies
M [j][i] = M [j][i∗] for any j ∈ [q] is negligible, hence the restriction of the
security definition of our PPH (i.e. the adversary is not allowed to query x = x∗)
is reasonable and it does not affect the security of our m-ORE.

We argue that the simulator S is correct for the following reasons. First, the
simulator identifies how many leaked bits for a set of messages (m1, · · · ,mq) just
like the game Gqn. The FillMatrix algorithm first identifies that if (m1, · · · ,mq)
share the same 1st prefix. If there exists the first mj∗ such that msdb(m1,mj∗) =
msdb(m1,mq), we can infer that messages (m1, · · · ,mj∗−1) have 1 on their first
bit, and messages (mj∗ , · · · ,mk) have 0 on their first bit. It means that the 1st
bit of total q messages is leaked. Then this algorithm runs recursively to identify
other leaked bit and get a total number of leaked bit. This information also can
be identified in the game Gqn by counting the number of Switchi,j = 0 for all
i ∈ [n], j ∈ [q]. Note that the simulator S and game Gqn do not only identify the
total number of leaked bit but also the exact position of this leaked bit due to
the ordered messages set. Hence the output of ciphertext set also leaks the msdb
of any two ciphertexts. But the random permutation π will hide these indexes of
the leaked bit except the total number both for this game and Gqn. Accordingly,
the simulation Simm-ore

A,Lf ,S(λ) is identical to Gqn, hence we establish the proof of
Lemma 5.

By combining proofs of Lemma 4 and Lemma 5, we complete the proof of
Theorem 2.

5 Multi-client Range Query from m-ORE

Refer to the construction of multi-party searchable encryption (MPSE) scheme
[22]. We now describe how to build a multi-client range query scheme using
our m-ORE construction Πm = (m-ORE.KGen, m-ORE.Enc, m-ORE.TGen, m-
ORE.Cmp) from Sect. 4. At a high level, the server’s encrypted database DB

Efficient m-ORE and Its Applications 57

consists of different data owners’ ciphertexts generated by m-ORE.Enc algorithm,
each query q consists of tokens generated by m-ORE.TGen. To answer a range
query, the server performs m-ORE.Cmp algorithm to find the lower and upper
boundaries in the encrypted database corresponding to its query and returns all
ciphertexts lying within those bounds. The client then decrypts the ciphertexts
to learn the response.

Our multi-client range query scheme involves a server and a group of users.
Users are divided into data owners and followers. The data owners are respon-
sible for outsourcing ciphertext to the server. The followers are authorized to
generate query tokens using query keys. The server can perform range query
over ciphertext by receiving the query token. Note that every user can be data
owner and follower concurrently or individually.

5.1 The Proposed Construction

We present a concrete multi-client range query scheme from our m-ORE con-
struction Πm = (m-ORE.KGen, m-ORE.Enc, m-ORE.TGen, m-ORE.Cmp). Let
H1 : {0, 1}λ → Zp and H2 : {0, 1}λ → G2 be two secure PRFs. Formally,
we define our multi-client range query scheme Σ = (Setup, Update, Search) as
follows. Without loss of generality, we assume that a client j is authorized by
client i.

– Setup(1λ): The setup algorithm between the clients proceeds as follows:
• All Clients(1λ): The clients take as input the security parameter λ, gen-

erate the master key and query key msk, qk ← m-ORE.KGen(1λ), and
generate a secret key and a public key sk = x ← Zp, pk = gx

2 .
• Client i(qki, ski, pkj): The client i takes as input his own query key qki,

parses qki as (k1, g
k2,2
2), secret key ski = xi, and client j’s public key pkj ,

encrypts his query key as QKi→j = (pki,H1(pkxi
j ||j||i) ·k1,H2(pkxi

j ||j||i) ·
g

k2,2
2). Then client i sends QKi→j to client j.

• Client j(QKi→j , skj): The client j takes as input the encrypted query key
QKi→j = (pki,H1(pkxi

j ||j||i) · k1,H2(pkxi
j ||j||i) · gk2,2

2) and his own secret
key skj = xj , first computes a H1(pk

xj

i ||j||i)−1,H2(pk
xj

i ||j||i)−1 and then
decrypts QKi→j to get the qki = (k1, g

k2,2
2). The qki will be used for token

generation.
– Update(mski,M): The update algorithm between the client and server pro-

ceeds as follows:
• Client i(mski,M): The client i takes as input his own master key mski

and a set of messages M, for each m ∈ M, client i computes c =
m-ORE.Enc(mski,m), and sends Ci = {c} to the server.

• Server(Ci): The server simply sets DBi ← Ci.

– Search(qki,DBi): The search algorithm between the client and server pro-
ceeds as follows:

58 C. Lv et al.

• Client j(qki): The client j takes as input the query key qki and range
query for the range [x, y], produces the query token q = (t1, t2) =
(m-ORE.TGen(qki, x),m-ORE.TGen(qki, y)) which is sent to the server.

• Server(DBi, q): The server takes as input the current database DBi = {c}
of client i and the query token q = (t1, t2). It performs m-ORE.Cmp(c, t1)
and m-ORE.Cmp(c, t2) for every c ∈ DBi to find the ciphertext c in DBi

that the underlied plaintexts are at least x and at most y. Let res be the
set of ciphertexts lying in this interval. The server sends the response res
to client j.

• Client j(res): The client j takes as input the response res, decrypt to
get the plaintext set S ← m-ORE.Dec(key, c) for every c ∈ res. (Our
m-ORE scheme can be attached with a decryption algorithm. That is,
each m-ORE.Enc is accompanied by a CPA-secure symmetric encryption
scheme).

Remark 3. Note that our range query scheme is insusceptible to the sorting
attack presented by Naveed et al. [19]. Sorting attack basically means that an
adversary is able to find a one-to-one correspondence between the plaintext and
the sorted ciphertext thus recovering all ciphertexts trivially. We circumvent
this problem by outsourcing only the m-ORE ciphertext to the server. That is,
our ciphertext alone cannot be compared without a token. Note that even after
the ciphertext being queried with tokens, the server cannot obtain the order of
all ciphertexts but only the relative order between the tokens and ciphertexts.
Therefore our range query scheme is insusceptible to sorting attacks.

Due to space constraints, the detailed security analysis is presented in
Appendix A.

6 Experimental Evaluation

In this section, we provide a thorough experimental evaluation of our proposed
m-ORE scheme. We first depict the configuration of the experiment environment
and the selection of parameters. Then we evaluate our scheme by comparing it
with Chenette et al.’s scheme [8], Lewi et al.’s scheme [16], Cash et al.’s scheme
[7] and Li et al.’s delegatable ORE scheme [17].

6.1 Setup

We implement the compared schemes in C and use OpenSSL [1] library to imple-
ment cryptographic primitives, i.e., SHA-256 and HMAC-SHA-256. We use SHA-
256 as pseudorandom function for our m-ORE scheme, Lewi et al.’s scheme [16]
and Li et al.’s scheme [17], while HMAC-SHA-256 as keyed PRF for our m-ORE
scheme, schemes [8] and [7]. Besides, we use GMP library [12] to implement big
integer arithmetic, and PBC library [18] to implement bilinear pairing.

Regarding experiments, we deploy the compared schemes on a virtual
machine with 4-cores Intel(R) Core(TM) i5-9500 CPU @ 3.00 GHz, 4 GB of

Efficient m-ORE and Its Applications 59

(a) Ciphertext size (single) (b) Encryption cost (single) (c) Comparison time (single)

(d) Ciphertext size (e) Encryption cost (f) Comparison time

Fig. 1. Performance comparison

RAM and 21GB SSD disk, running on Ubuntu 18.04 LTS. For comparison, we
use the opensource code of FastORE1 for the implementation of [8] and [16].
The code of m-ORE and scheme of [7] and [17] are published at GitHub2.

6.2 Evaluation

We implement the compared schemes in the aspect of the ciphertext size, the
time cost for encryption and comparison. Note that m-ORE and the schemes
of [7,8] and [17] encrypt a message bit-by-bit, while the scheme [16] encrypts a
message block-by-block. Specifically, the block size is 8-bit for 8-bit plaintext,
and the block size is 16-bit for larger plaintext. We implement m-ORE both in
single-user setting and multi-user setting, the magenta line denotes the single-
user setting and the yellow line denotes the multi-user setting. In Fig. 1, the
first row (Fig. 1(a), 1(b), 1(c)) compares all the single-user ORE scheme, and
the second row (Fig. 1(d), 1(e), 1(f)) compares the ORE scheme in multi-client
settings.

Ciphertext Size Comparison. In Fig. 1(a) and 1(d), we evaluate the cipher-
text size of the schemes. The experimental results show that Lewi et al.’s scheme
[16] has a good performance when the size of the plaintext is small. However,
the ciphertext size expands immensely when the plaintext size is larger than 8
bits. Specifically, the ciphertext expansion of their scheme is about 10× to the
single-user mode of our scheme regarding a 64-bit plaintext. We also achieve less
ciphertext expansion than Cash et al.’s scheme [7] in single-user settings. As for
1 https://github.com/kevinlewi/fastore.
2 https://github.com/collisionl/m-ORE.

https://github.com/kevinlewi/fastore
https://github.com/collisionl/m-ORE

60 C. Lv et al.

multi-client settings of our scheme, the ciphertext size is about one-third com-
pare to the single-user settings and it outperforms the delegatable ORE scheme
[17] immensely as shown in Fig. 1(d).

Encryption Cost Comparison. As depicted in Figure 1(b) and 1(e), regarding
the encryption efficiency, despite our scheme is only slightly efficient than Cash et
al.’s scheme [7] in single-user mode, for encrypting a 64-bit plaintext, we achieve
a speedup of 17× in the multi-client settings compared to our single-user mode.
As for the comparison to Li et al.’s scheme [17] which is depicted in Fig. 1(e),
our scheme takes 20.12ms to encrypt a 64-bit plaintext in multi-client settings,
which achieves a speedup of 14× compared to their scheme. Note that Chenette
et al.’s scheme [8] has a good performance on encryption efficiency at the cost
of degrading the security.

Comparison Time Comparison. In Fig. 1(c) and 1(f), we evaluate the com-
parative efficiency of the five schemes. Note the comparison time of our m-ORE
scheme in single-user settings performs identically to multi-user settings. As seen,
our scheme outperforms Cash et al.’s scheme [7] because of less pairing compu-
tation. Specifically, for 64-bit plaintext, our scheme achieves a speedup of 50×
compared to theirs. Despite Li et al.’s scheme [17] outperforms ours when the
plaintext size is less than 48-bit, it soon increases and exceeds ours. In particular,
for a 64-bit plaintext, we achieve less than half of the comparison time compared
to their scheme. Moreover, we note that our m-ORE achieved a fine-grained access
control on ciphertext comparison, that is the server can only compare the cipher-
text with the uploaded token. While their scheme only achieved coarse-grained
access control on ciphertext comparison, that is the server is able to compare all
the ciphertexts of a user once it received the token of the corresponding user. In
addition, although schemes [16] and [8] have a speedup in comparison efficiency,
they cannot achieve the same security level as ours.

In conclusion, our scheme achieves multi-client comparison with the same
security level as scheme [7] while achieving less ciphertext expansion and com-
parable efficiency of encryption and comparison.

7 Conclusion

In this paper, we presented a multi-client ORE (m-ORE) scheme that allows
the data owner to securely delegate the token generation ability to authorized
users, which enables the server to perform ciphertext comparison for multi-user
settings. Compared with the state-of-the-art [7], our m-ORE is superior to it in
comparison complexity and storage overhead. Furthermore, we extend m-ORE
to an non-interactive multi-client range query scheme. Note that our proposed
scheme requires that the number of tokens is linear with the number of data
owners. Thus, how to design a multi-client ORE scheme with only a single com-
parison token remains a challenging problem.

Efficient m-ORE and Its Applications 61

Acknowledgments. This work was supported by the National Natural Science Foun-
dation of China (Nos. 62072357 and 61960206014), the Preferential Funding for Scien-
tific and Technological Activities of Overseas Students in Shaanxi Province (No. 2019-
25), the Fundamental Research Funds for the Central Universities (No. JB211503), and
Innovation Fund of Xidian University (No. YJS2114).

Appendix

A Security Analysis of Range Query Scheme

To define the security of multi-client range query scheme in Sect. 5.1, we first
introduce a slight modification to the security notions that by our m-ORE scheme
from Sect. 4. Recall that an m-ORE scheme is secure with respect to a leakage
profile Lf (·) if for any adversarially-chosen sequence of messages (m1, · · · ,mq),
there is an efficient simulator S that can simulate the real m-ORE ciphertext
and token given the leakage Lf (m1, · · · ,mq).

Similar to [16], we define a leakage function Lf (·, ·) that if there exists an
efficient simulator such that for any two adversarially-chosen collections of plain-
texts (m1, · · · ,mq) and (m1, · · · ,mk), the simulator can simulate the outputs of
m-ORE.Enc(·,mi) and m-ORE.TGen(·,mj) for all i ∈ [q], j ∈ [k] given only the
leakage Lf ((m1, · · · ,mq), (m1, · · · ,mk)). That is:

Lf ((m1, · · · ,mq), (m1, · · · ,mk)) =(∀1 ≤ i, l ≤ q, 1 ≤ j ≤ k|1(mi < mj),
1(msdb(mj ,mi) = msdb(mj ,ml)))

in which q = k. We argue that this leakage profile is essentially the same as
Lf (m1, · · · ,mq).

We then define the security of our range query scheme Σ in two differ-
ent aspects, online and offline security. Online security models the information
revealed to a malicious server during Update and Search, while offline secu-
rity considers the situation of an adversary obtains a one-time snapshot of the
encrypted database from the server which was studied by Naveed et al. [19] and
Grubbs et al. [13]. First, we formalize the online security as follows:

Theorem 3. For a database DBi containing user i’s data which is essentially
a set of m-ORE ciphertext (c1, · · · , cq) on the server and a sequence of queries qi

from user i which is a set of m-ORE token (t1, · · · , tk). Let LRQ be the leakage
function.

LRQ(DBi, qi) = Lf ((m1, · · · ,mq), (m1, · · · ,mk))

We say that the range query scheme Σ achieves online security with respect to
the leakage function LRQ.

Proof. The proof follows the proof of Theorem 2 except the leakage profile were
substituted by Lf ((m1, · · · ,mq), (m1, · · · ,mk)) which is very similar. And the
simulator S only needs to output the ciphertexts for mi where ∀i ∈ [q] and token
for mj where ∀j ∈ [k].

62 C. Lv et al.

Note that we define the leakage function LRQ under a condition that DB and
q are from the same user. It is clear that the leakage will be none if these are
from different users. The reason is that m-ORE.Cmp will not work in this case
and msdb(mj ,mi) = msdb(mj ,ml) will always hold for all i and j.

The offline security of our range query scheme follows directly from the fact
that the encrypted database stored on the server only contains a collection group
elements from G1 and were generated with random factor, which is simulatable
given just the size of the collection.

Theorem 4. The range query scheme Σ is offline secure.

Proof. The proof follows the proof of Theorem 2 except the simulator S only
needs to simulate the ciphertext for all the messages.

References

1. OpenSSL: Cryptography and SSL/TLS toolkit. https://www.openssl.org/
2. Agrawal, R., Kiernan, J., Srikant, R., Xu, Y.: Order preserving encryption for

numeric data. In: Proceedings of the 2004 ACM SIGMOD International Conference
on Management of Data, SIGMOD 2004, pp. 563–574 (2004)

3. Boldyreva, A., Chenette, N., Lee, Y., O’Neill, A.: Order-preserving symmetric
encryption. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 224–241.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-01001-9 13

4. Boldyreva, A., Chenette, N., O’Neill, A.: Order-preserving encryption revis-
ited: improved security analysis and alternative solutions. In: Rogaway, P. (ed.)
CRYPTO 2011. LNCS, vol. 6841, pp. 578–595. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-22792-9 33

5. Boneh, D., Lewi, K., Raykova, M., Sahai, A., Zhandry, M., Zimmerman, J.: Seman-
tically secure order-revealing encryption: multi-input functional encryption with-
out obfuscation. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS,
vol. 9057, pp. 563–594. Springer, Heidelberg (2015). https://doi.org/10.1007/978-
3-662-46803-6 19

6. Cash, D., Grubbs, P., Perry, J., Ristenpart, T.: Leakage-abuse attacks against
searchable encryption. In: Ray, I., Li, N., Kruegel, C. (eds.) Proceedings of the
22nd ACM SIGSAC Conference on Computer and Communications Security, CCS
2015, pp. 668–679. ACM (2015)

7. Cash, D., Liu, F.-H., O’Neill, A., Zhandry, M., Zhang, C.: Parameter-hiding order
revealing encryption. In: Peyrin, T., Galbraith, S. (eds.) ASIACRYPT 2018. LNCS,
vol. 11272, pp. 181–210. Springer, Cham (2018). https://doi.org/10.1007/978-3-
030-03326-2 7

8. Chenette, N., Lewi, K., Weis, S.A., Wu, D.J.: Practical order-revealing encryption
with limited leakage. In: Peyrin, T. (ed.) FSE 2016. LNCS, vol. 9783, pp. 474–493.
Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-52993-5 24

9. Durak, F.B., DuBuisson, T.M., Cash, D.: What else is revealed by order-revealing
encryption? In: Proceedings of the 2016 ACM SIGSAC Conference on Computer
and Communications Security, CCS 2016, pp. 1155–1166 (2016)

10. Dyer, J., Dyer, M., Djemame, K.: Order-preserving encryption using approximate
common divisors. J. Inform. Secur. Appl. 49, 102391 (2019)

https://www.openssl.org/
https://doi.org/10.1007/978-3-642-01001-9_13
https://doi.org/10.1007/978-3-642-22792-9_33
https://doi.org/10.1007/978-3-662-46803-6_19
https://doi.org/10.1007/978-3-662-46803-6_19
https://doi.org/10.1007/978-3-030-03326-2_7
https://doi.org/10.1007/978-3-030-03326-2_7
https://doi.org/10.1007/978-3-662-52993-5_24

Efficient m-ORE and Its Applications 63

11. Eom, J., Lee, D.H., Lee, K.: Multi-client order-revealing encryption. IEEE Access
6, 45458–45472 (2018)

12. Granlund, T., the GMP development team: GNU MP: the GNU multiple precision
arithmetic library. https://gmplib.org/

13. Grubbs, P., Sekniqi, K., Bindschaedler, V., Naveed, M., Ristenpart, T.: Leakage-
abuse attacks against order-revealing encryption. In: Proceedings of the 2017 IEEE
Symposium on Security and Privacy, S&P 2017, pp. 655–672. IEEE (2017)

14. Kerschbaum, F.: Frequency-hiding order-preserving encryption. In: Proceedings of
the 22nd ACM SIGSAC Conference on Computer and Communications Security,
CCS 2015, pp. 656–667 (2015)

15. Kerschbaum, F., Schröpfer, A.: Optimal average-complexity ideal-security order-
preserving encryption. In: Proceedings of the 2014 ACM SIGSAC Conference on
Computer and Communications Security, CCS 2014, pp. 275–286 (2014)

16. Lewi, K., Wu, D.J.: Order-revealing encryption: new constructions, applications,
and lower bounds. In: Proceedings of the 2016 ACM SIGSAC Conference on Com-
puter and Communications Security, CCS 2016, pp. 1167–1178 (2016)

17. Li, Y., Wang, H., Zhao, Y.: Delegatable order-revealing encryption. In: Proceedings
of the 2019 ACM Asia Conference on Computer and Communications Security,
AsiaCCS 2019, pp. 134–147 (2019)

18. Lynn, B., other contributors: The pairing-based cryptography library. https://
crypto.stanford.edu/pbc/

19. Naveed, M., Kamara, S., Wright, C.V.: Inference attacks on property-preserving
encrypted databases. In: Proceedings of the 22nd ACM SIGSAC Conference on
Computer and Communications Security, CCS 2015, pp. 644–655 (2015)

20. Popa, R.A., Li, F.H., Zeldovich, N.: An ideal-security protocol for order-preserving
encoding. In: Proceedings of the 2013 IEEE Symposium on Security and Privacy,
S&P 2013, pp. 463–477. IEEE (2013)

21. Roche, D.S., Apon, D., Choi, S.G., Yerukhimovich, A.: POPE: partial order pre-
serving encoding. In: Proceedings of the 2016 ACM SIGSAC Conference on Com-
puter and Communications Security, CCS 2016, pp. 1131–1142 (2016)

22. Tang, Q.: Nothing is for free: security in searching shared and encrypted data.
IEEE Trans. Inf. Forensics Secur. 9(11), 1943–1952 (2014)

https://gmplib.org/
https://crypto.stanford.edu/pbc/
https://crypto.stanford.edu/pbc/

Versatile and Sustainable Timed-Release
Encryption and Sequential Time-Lock

Puzzles (Extended Abstract)

Peter Chvojka1(B), Tibor Jager1, Daniel Slamanig2, and Christoph Striecks2

1 University of Wuppertal, Wuppertal, Germany
{chvojka,tibor.jager}@uni-wuppertal.de

2 AIT Austrian Institute of Technology, Vienna, Austria
{daniel.slamanig,christoph.striecks}@ait.ac.at

Abstract. Timed-release encryption (TRE) makes it possible to send
messages “into the future” such that a pre-determined amount of time
needs to pass before a message can be accessed. Malavolta and Thya-
garajan (CRYPTO’19) recently introduced an interesting variant of TRE
called homomorphic time-lock puzzles (HTLPs), making TRE more ver-
satile and greatly extending its applications. Here one considers multiple
independently generated puzzles and the homomorphic evaluation of a
circuit over these puzzles. Solving the so obtained puzzle yields the out-
put of a circuit evaluated on the messages locked by the original puzzles.

We observe that viewing HTLPs more abstractly gives rise to a sim-
ple generic construction of homomorphic TRE (HTRE) that is not nec-
essarily based on sequential squaring, but can be instantiated based on
any TLP, e.g., from the LWE assumption (via randomized encodings).
This construction has slightly different properties, but provides essen-
tially the same functionality for applications. It makes TRE versatile
and can be used beyond HTRE, for instance to construct timed-release
functional encryption. Interestingly, it achieves a new “solve one, get
many for free” property, which supports that an arbitrary number of
independently time-locked (homomorphically evaluated) messages can
all be obtained simultaneously after solving only a single puzzle. This
puzzle is independent of the number of time-locked messages and thus
achieves optimal amortized cost.

Moreover, we define and construct sequential TLPs as a particularly
useful generalization of TLPs and TRE. Such puzzles can be solved
sequentially in a way that solving a puzzle additionally considers the
previous solution and the time required to solve the puzzle is determined

This work was supported by the German Federal Ministry of Education and Research
(BMBF) project REZEIVER, the European Research Council (ERC) under the Euro-
pean Union’s Horizon 2020 research and innovation programme, grant agreement
n◦802823, the EU’s Horizon 2020 ECSEL Joint Undertaking under grant agreement
n◦783119 (SECREDAS) and by the Austrian Science Fund (FWF) and netidee SCI-
ENCE under grant agreement P31621-N38 (PROFET). This is an extended abstract,
the full version of this paper is available at [11].

c© Springer Nature Switzerland AG 2021
E. Bertino et al. (Eds.): ESORICS 2021, LNCS 12973, pp. 64–85, 2021.
https://doi.org/10.1007/978-3-030-88428-4_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-88428-4_4&domain=pdf
https://doi.org/10.1007/978-3-030-88428-4_4

Versatile and Sustainable Timed-Release Encryption 65

by the difference in the time parameters. When instantiated from sequen-
tial squaring, this allows to realize public “sequential squaring services”,
where everyone can time-lock messages, but only one entity needs to per-
form the computations required to solve puzzles. Thus, this removes the
burden of wasting computational resources by every receiver and makes
TRE economically and ecologically more sustainable.

1 Introduction

Timed-release encryption (TRE) has the goal of sending information into the
future in a way that the sender can be sure that a pre-determined amount of
time needs to pass before the information can be decrypted. This idea was firstly
discussed by May [25], who introduced this notion and proposed a solution based
on trusted agents, which after the pre-determined time has passed releases some
secret which allows to obtain the information (see also [10,12]). In this work
we will focus on an alternative idea proposed by Rivest et al. in [29] and called
time-lock puzzles (TLPs), which does not require trusted agents. TLPs allow to
seal messages in such a way that one is able to obtain the sealed message only
by executing an expensive sequential computation. The amount of time required
to perform this sequential computation is determined by a hardness parameter
T of the TLP, which can be freely chosen. Here, a sender can just publish a
puzzle whose solution hides the message until enough time has elapsed for the
puzzle to be solved. TLPs have found numerous applications such as sealed-
bid auctions [29], fair contract signing [6], zero-knowledge arguments [13], or
non-malleable commitments [20].

TLP Constructions. The TLP proposed by Rivest et al. in [29] uses sequential
squaring in an RSA group Z

∗
N , i.e., for hardness T compute s = x2T

. An inter-
esting feature of this TLP construction is that creating a puzzle, i.e., knowing
the factorization of N , is much faster than the expensive sequential computation
to solve the puzzle. This is an important property of TLPs when the required
amount of time until the puzzle should be solved is very large. Interestingly,
TLPs with this property seem hard to find. In [23] Mahmoody et al. show that
in the random-oracle model it is impossible to construct TLPs from one-way per-
mutations and collision-resistant hash-functions that require more parallel time
to solve than the total work required to generate a puzzle and thus ruling out
black-box constructions of such TLPs. On the positive side, Bitansky et al. [4]
show how to construct TLPs with the aforementioned property from randomized
encodings [2,18] relying on indistinguishability obfuscation. Interestingly, when
slightly relaxing the requirements and allowing efficient parallel computation in
the generation of the puzzles or a solution independent preprocessing (so-called
weak TLPs), then such TLPs can be constructed generically from one-way func-
tions and directly from the learning with errors (LWE) assumption, respectively,
via randomized encodings.

Homomorphic TLPs. Recently, Malavolta and Thyagarajan [24] (MT19
henceforth) proposed an interesting variant called homomorphic TLPs (HTLPs).

66 P. Chvojka et al.

Here one considers multiple puzzles (Z1, . . . , Zn) with hardness parameter T ,
which can be independently generated by different entities. Without knowing the
corresponding solutions (s1, . . . , sn) one can homomorphically evaluate a circuit
C over these puzzles to obtain as result a puzzle ̂Z with solution C(s1, . . . , sn),
where the hardness of this resulting puzzle does not depend on the size of the
circuit C that was evaluated (which is called compactness). Consequently, this
allows to aggregate a potentially large number of puzzles in a way that only a
single puzzle needs to be solved. While this concept is interesting on its own,
MT19 also shows that it extends the applications of TLPs and in particular
present applications to e-voting, multi-party coin flipping as well as multi-party
contract signing, or more recently verifiable timed signatures [31], again yielding
a number of interesting further applications.

MT19 conjecture that any application that involves a large number of users
and thus the constraint of requiring to solve multiple puzzles (in parallel) consti-
tute one of the main obstacles that so far prevented the large scale adoption of
TLPs. As already, mentioned, this can be partly mitigated via HTLPs by MT19
and in particular if one is only interested in homomorphic evaluations over multi-
ple messages. We additionally stress that applications requiring to solve multiple
puzzles will also represent a huge waste of resources and are thus problematic
from an economic and ecological perspective. Moreover, even the requirement for
a receiver to only solve a single puzzle on its own may already prevent the appli-
cation of TRE, e.g., for resource constrained receivers of messages as omnipresent
within the Internet of Things (IoT).

Motivation for Our Work. The motivation of our work is twofold. Firstly,
our goal is to make TRE more versatile in order to improve on existing applica-
tions and to broaden the scope of applications even further. For instance, when
we look at the HTLPs in MT19, they construct a linearly homomorphic TLP
(LHTLP) from the sequential squaring TLP and Paillier encryption [28] which is
linearly homomorphic and the evaluation is independent of the hardness T (and
one can also turn this into a multiplicatively homomorphic TLP). In order to
extend this to fully HTLPs (FHTLPs), MT19 requires sub-exponentially hard
indistinguishability obfuscation, whereas in follow-up work Brakerski et al. in [8]
proposed FHTLPs from standard assumption which itself requires an LHTLP
(where to the best of our knowledge the aforementioned is the only known con-
struction). In particular, the idea in [8] is to use a multi-key fully-homomorphic
encryption (MK-FHE) scheme [22] to encrypt every message with a fresh key
and an LHTP to lock the respective MK-FHE secret keys. To be compatible
with the LHTLP, Brakerski et al. in particular require a MK-FHE scheme with
a linear decryption algorithm.

Unfortunately, all these constructions are not generic as they rely on a single
particular construction of an HTLP from sequential squaring (and additionally a
very specific MK-FHE scheme in [8]). Moreover, for every such puzzle including
the one obtained from homomorphically evaluating on many such puzzles, one
can only start to solve it after having produced it. Consequently, although the
homomorphic property makes it scalable in a setting where one is only inter-

Versatile and Sustainable Timed-Release Encryption 67

ested in the homomorphic evaluation over all encrypted messages, it would be
convenient to have an approach that also supports a “solve one, get many for
free” property. And this even if one wants to obtain all encrypted messages in
full, instead of only the result of a homomorphic evaluation. Note that, if in
contrast to the homomorphically evaluated function over all the messages, one
wants to unlock n of the input messages with the approaches in [8,24], it requires
to solve n puzzles. Consequently, we ask whether it is possible to come up with
an approach that provides the “solve one, get many for free” property on an
arbitrary number of independently time-locked messages such that it is possible
to decrypt all single messages and at the same time. So essentially having a
solution that can be homomorphic but does not need to be if one is only inter-
ested in the single messages and all with only solving a single puzzle. Ideally this
approach is generic in nature and thus would allow to construct (homomorphic)
timed-release encryption (TRE) generically from any TLP.

Secondly, a central drawback of TRE is that it puts considerable compu-
tational overhead on the message receiver, i.e., the receiver has to invest lots
of computational resources to solve the puzzle to obtain the time-locked mes-
sage. This makes it undesirable for real-life scenarios from an economic as well as
ecological perspective. While HTLPs of MT19 address this problem from a differ-
ent angle, i.e., homomorphically combine many TLPs such that only one puzzle
needs to be solved, this will not reveal the individual messages without solving
all puzzles. And while this functionality is a helpful feature in certain applica-
tions, it can not be considered a general purpose solution, because the amount
of recoverable data is bounded by the amount of data that can be encapsulated
in a single ciphertext. Moreover, it still requires the receiver to waste potentially
significant resources for solving a new puzzle. Consequently, we ask whether this
can be avoided.

Due to the lack of space we defer a discussion on recent concurrent and
independent work on TLPs to Appendix A.

2 Technical Overview and Contributions

Before we discuss our contributions we stress, that the terms time-lock puz-
zle (TLP) [29], timed-release encryption (TRE) [25], and time-lock encryption
(TLE) [21] are often used interchangeably in the literature. For our construc-
tions we need to distinguish between them. In particular, TRE will denote an
encryption scheme which allows us send messages “into the future”. A TLP pro-
vides the core functionality of a puzzle that needs a certain amount of time to
be solved, without considering any messages. TLPs will be used as a building
block for TRE. Now, we are ready to discuss our contributions.

Versatile Timed-Release Encryption. We introduce a generic approach to
construct TRE. The basic and indeed very simple idea is that given any TLP
we can use it to generate a puzzle Z and its solution s, and we can use s as
the random coins for the key generation algorithm Gen(1λ; s) of a public key
encryption (PKE) scheme. Then, we provide the respective public key pk as

68 P. Chvojka et al.

parameters of the TRE and solving the puzzle Z reveals s and thus sk allowing
to decrypt all of the ciphertexts computed with respect to pk. Note that when
using s as the random coins for a partially homomorphic encryption scheme,
e.g., ElGamal [14], or a fully homomorphic encryption scheme, e.g., BGV [9],
this immediately yields (fully) homomorphic TRE. Interestingly, this approach
then allows us to obtain the “solve one, get many for free” property for both, the
result of a homomorphic evaluation of many ciphertexts, but also if we want to
decrypt all ciphertexts individually. Consequently, solving one puzzle allows to
decrypt all ciphertexts associated to a hardness parameter (generated by many
potentially independent entities). We note that our approach to HTRE satisfies
the basic definition of HTLPs from MT19, where the time required to solve the
puzzles starts with the generation of the parameters. In contrast, MT19 also
provides the notion of a reusable setup for their LHTLP, where one can use
the same parameters to generate many puzzles in a way that for every single
puzzle the time only starts to run from the point where the puzzle is generated
(this characteristic is also inherited by [8]). However, we observe that for all the
applications discussed in [24] it seems sufficient, and in some applications even
more desirable, when the runtime of the puzzle is counted from the point of
running the puzzle setup algorithm. For instance, MT19 discuss an application
to e-voting, where it rather seems to complicate issues when one can only start
solving the puzzle after the last voter cast its vote. It seems more practical to
set-up the puzzle such that the solution can be made available at a certain pre-
defined point in time. And even if this is not required, it might be easy to adjust
the setup in a way that it outputs a set of public parameters, and a user can
choose which public parameters to use when computing a puzzle. We defer a
detailed discussion of the applications to Appendix B.

Moreover, we demonstrate that our TRE framework can be used to obtain
other variants of TRE in a generic way. We showcase this using the regime
of functional encryption. In particular, we introduce timed-release functional
encryption (TRFE) which allows to time-lock a function f . After a certain time
has passed everyone can learn the function f(x) of any ever encrypted message
x. As an application we discuss identity-based encryption (IBE) [5] with locked
keys, where the key generator at registration gives locked IBE secret keys for
various validity periods (e.g., each for a month) to the user and the respective
secret keys then unlock over time.

Sustainable Timed-Release Encryption. We introduce the notion of sequen-
tial TLPs as a particularly useful generalization of TLPs, which yields practical
and particularly sustainable TRE schemes (from the perspective of consumption
of computational resources). The basic idea is that the puzzle generation takes
a sequence of hardness parameters T1, . . . , Tn (where we assume that Ti < Ti+1

for all i ∈ [n − 1]) and outputs a sequence of puzzles and solutions (Zi, si)i∈[n].
Now the distinguishing feature is that puzzles can be solved sequentially in a way
that solving Zi additionally considers solution si−1 and the time required to solve
puzzle Zi is determined by the hardness Ti − Ti−1 (note that having n = 1 this
yields a conventional TLP). From this, we then build a sequential TRE scheme,

Versatile and Sustainable Timed-Release Encryption 69

where security is based on the security of a sequential TLP. Unfortunately, it
turns out that such a construction is non-trivial. For a TRE scheme to be secure,
we require that any adversary that runs in time T < Ti is not able to break the
security of an encryption with respect to time slot Ti. For such an adversary, we
need to simulate all values up to Ti−1, in particular all TLP solutions s1, . . . , si−1

up to Ti−1, properly, as otherwise the reduction would not simulate the secu-
rity experiment properly for an adversary running in time T = Ti−1 < Ti, for
instance. However, it is not possible to build a reduction which receives as input
s1, . . . , si−1 as part of the TLP instance, because then the reduction would only
be able to break the assumption that the puzzle is hard if it runs in time less than
Ti −Ti−1. Our solution to overcome this difficulty is to construct a TRE scheme
which does not directly use the real solutions si, but instead F(Ti, si), where one
can think of F as a hard-to-invert function. This way we are able to formulate a
hardness assumption for TLPs where the reduction in the security proof of the
TRE scheme receives F(T1, s1), . . . ,F(Ti−1, si−1),F(Ti+1, si+1), . . . ,F(Tn, sn) as
additional “advice”, and thus is able to provide a proper simulation. At the
same time it is reasonable to assume that no adversary is able to distinguish
F(Ti, si) from random, even if it runs in time up to T < Ti, which is exactly
the upper bound that we have on the TRE adversary. We note that MT19 [24,
Section 5.2] also proposed a construction that allows to use multiple time slots,
by describing a specific construction which is similar to our notion of sequential
TRE. The technical difficulty that we encounter should arise in their construc-
tion as well. Unfortunately, they do not provide a formal security analysis, so
that this is not clarified. We, however, believe that a similar assumption involv-
ing an “advice” for the reduction is also necessary for a security proof of the
construction suggested in their work.

In order to construct sequential TLPs, we introduce the so called gap sequen-
tial squaring assumption, which extends the sequential squaring assumption by
an oracle which takes as input the hardness parameter T ′ and a value y′ and
outputs 1 if and only if y′ = x2T ′

mod N . This is akin to other gap problems [26]
such as the well known gap Diffie-Hellman problem. As evidence for the hard-
ness of this assumption, we provide an analysis in the strong algebraic group
model (SAGM) and in particular show that our assumption holds as long as
factoring is hard. The SAGM was introduced by Katz et al. [19] as a variant of
the algebraic group model (AGM) [16] and enables to work with time-sensitive
assumption. Finally, when modeling the above mentioned function F as a ran-
dom oracle, we obtain a provably secure construction of a sequential TLP and
finally a sequential TRE.

Summary and Discussion of Properties of Our Approach. There exist
different approaches to construct TRE in the literature, which all aim at achiev-
ing a similar goal from a high-level perspective, but which provide very different
properties from a low-level perspective, with sometimes subtle but crucial dif-
ferences. We briefly summarize the properties achieved by our (sequential) TRE
approach again and discuss how it enables novel applications.

70 P. Chvojka et al.

Homomorphic TRE. We recall that the homomorphic timed-release encryp-
tion from MT19 (called HTLPs in [24]) supports homomorphic evaluation of
functions on encrypted messages and avoids expensive parallel computations to
solve one puzzle per ciphertext, while it still achieves the desired security against
time-bounded adversaries. In some applications it may be desirable to enable the
homomorphic evaluation of ciphertexts before decryption. This might be useful
to save space, since it does not require storage of n encryptions of m1, . . . ,mn,
but only of their homomorphic evaluation. Also a sufficiently expressive homo-
morphic encryption scheme that supports the homomorphic evaluation of func-
tion f is required in order to take advantage of the “solve one, get many” prop-
erty. Practically efficient instantiations of additively and multiplicatively homo-
morphic schemes are readily available, but fully-homomorphic schemes [17] are
currently still much less practical. So for applications that require a complex
function f , the homomorphic approach from [24] is conceptually interesting, but
not yet practical.

Our modular TRE costruction follows a different approach, which supports
this in a black-box manner by simply replacing the PKE scheme with a homomor-
phic PKE scheme that supports homomorphic evaluation of ciphertexts. Since
the existence of an additional homomorphic evaluation algorithm is merely an
additional functional feature of the encryption scheme, the security analysis
carries over without any modifications. In particular, note that our construction
readily supports any (additively/multiplicatively/fully) homomorphic encryp-
tion scheme in a modular way. It thus can be based on arbitrary hardness
assumptions and without introducing further requirements, such as the need
for indistinguishability obfuscation for the fully-homomorphic TLP construc-
tion in [24], or the need for a specific multi-key fully-homomorphic encryption
scheme [22] as in [8]. We note also that our construction of sequential TRE
equally provides homomorphic computations within a single time period. Homo-
morphic computations across different time slots can easily be realized using any
multi-key homomorphic encryption scheme [22].

Optimal Amortized Costs. Note that while MT19 [24] achieve the “solve one,
get many” property only for homomorphic evaluations over many time-locked
messages and thus only for functions evaluated over the time-locked messages,
our TRE construction achieves this even without requiring an underlying homo-
morphic encryption scheme, but for all the original ciphertexts. This is because
solving a puzzle yields the randomness to generate the secret key sk of the PKE
scheme, which makes it possible to decrypt all ciphertexts efficiently without
requiring to solve many puzzles in parallel. Note that the approach of MT19
is thus limited with respect to applicability. The homomorphic evaluation of
ciphertexts is only useful when an application needs to decrypt only a function
f(m1, . . . ,mn) of all encrypted messages m1, . . . ,mn. However, if it needs to
learn all n messages m1, . . . ,mn explicitly, then MT19 still requires to solve n
puzzles in parallel.

With our TRE approach it is possible to achieve the “solve one, get
many” property even for applications that require the full decryption of all

Versatile and Sustainable Timed-Release Encryption 71

independently encrypted messages. Note that for a number n of independently
time-locked messages m1, . . . ,mn our scheme is thus the first one to achieve an
optimal amortized cost of decryption per ciphertext of (n·TPKE.Dec+TTLP)/n where
TPKE.Dec is the time required to run the decryption algorithm PKE.Dec and TTLP

is the time required to solve the puzzle. Note that this approaches TPKE.Dec with
increasing n. We note that this equally applies to our sequential TRE approach.

Public Verifiability. In [15], Ephraim et al. recently introduced the notion
of public verifiability for TLPs, meaning that after a party solves the puzzle,
they can publish the underlying solution together with a proof which can be
later used by anyone to quickly verify the correctness of the solution. Ephraim
et al. require this property to hold even if the puzzle is maliciously generated
and might have no valid solution. We briefly discuss how our TRE construc-
tion provides a public verifiability property, but since in our TRE the puzzles
are honestly generated and part of the public parameters, we do not consider
malicious puzzle generation. Note that in our TRE construction from the gen-
erated puzzle (Z, s) ← TLP.Gen(T) the solution s is used as the random coins
to obtain (pk, sk) ← PKE.Gen(1λ; s). Now, our public TRE parameters include
ppe := pk and ppd = Z and given a potential solution s′ one wants to guarantee
that (pk, sk) ← PKE.Gen(1λ; s′) generates the same public key and an equivalent
secret key. Therefore, if the used PKE scheme PKE = (PKE.Gen, PKE.Enc, PKE.Dec)
provides perfect correctness, this public verifiability property is perfectly satis-
fied, i.e.,. for one pk there cannot be different secret keys output by PKE.Gen that
behave differently in their decryption behavior. In particular, the publicly verifi-
able proof is then simply the solution s′ and the verification is to check whether
s′ ∈ R, to run (pk′, sk′) ← PKE.Gen(1λ; s′) and to check whether pk′ = ppe,
which represents an efficient check.

Sequential TRE with Public Servers. One particularly interesting feature
of our notion of sequential TRE is that one can use a single centralized server
that continuously computes and publishes solutions si = Solve(si−1) to decrypt
an arbitrary number of ciphertexts. Most importantly, the server would be inde-
pendent of these ciphertexts, which is not achieved by prior constructions. This
yields TRE where the decrypting parties would not have to solve any puzzle, but
merely would have to wait until the server publishes a solution. Note that here
the fact that the amortized complexity of decrypting n ciphertexts approaches
the complexity of running PKE.Dec with increasing n is particularly useful.

We stress that this must not be confused with TRE schemes in a trusted-
agent based setting. Loosely speaking, in such schemes a so called time server
publishes a single time-dependent trapdoor that then allows decryption of cipher-
texts. As shown in [10], this concept is essentially equivalent to identity-based
encryption (IBE) [5]. Most importantly, in any such agent-based TRE scheme
there is a trusted party which is not only involved in running the setup, but this
party then also needs to be online and, in particular, needs to be trusted to keep
the secret keys that are supposed to be released at a later point in time confi-
dential until the time has passed. In our approach of sequential TRE with public
servers, however, only the setup needs to be trusted. Even for the service that

72 P. Chvojka et al.

actually performs the squaring there are no shortcuts to revealing the decryption
keys before the respective time has passed.

If one is worried about a trusted setup performed by a third-party server, or
about the fact that one server might run out of service, then one could use N > 1
servers. The public parameters of each server would be used to encrypt a share of
the message, using an (K,N)-threshold secret sharing scheme (e.g., [30]). Even
with K − 1 colluding servers, the message would remain hidden. Even if up to
N − K servers go out of service, messages would still be recoverable using the
K shares obtained from the remaining servers.

3 Definitions and Constructions of Time Lock-Puzzles

Simple Time-Lock Puzzles. In this section we give a new definition for time-
lock puzzles (TLPs) and explain how it relates to the old definition.

Definition 1. A time-lock puzzle is pair of algorithms TLP = (Gen,Solve) with
the following syntax.

– (Z, s) ← Gen(T) is a probabilistic algorithm which takes as input a hardness
parameter T ∈ N and outputs a puzzle Z together with the unique solution
s of the puzzle. We require that Gen runs in time at most poly(log T, λ) for
some polynomial poly.

– s ← Solve(Z) is a deterministic algorithm which takes as input a puzzle Z
and outputs a solution s ∈ S, where S is a finite set. We require that Solve
runs in time at most T · poly(λ). There will also be a lower bound on the
running time, which is part of the security definition.

We say TLP is correct if for all λ ∈ N and for all polynomials T in λ it holds:

Pr[s = s′ : (Z, s) ← Gen(T), s′ ← Solve(Z)] = 1.

Relation to Prior Definitions. In the definitions of TLPs from Bitansky et
al. [4] and Malavolta and Thyagarajan [24] algorithm Gen receives s as an addi-
tional input and output a puzzle Z. This immediately yields a timed-release
encryption (TRE) scheme by viewing s as a message that is encrypted. Our def-
inition enables a slightly simpler generic construction of (homomorphic) TRE.
Intuitively, our new definitions relates to the prior one in a similar way like a
key encapsulation mechanism relates to an encryption scheme. Concretely, let
TLP = (Gen,Solve) be a puzzle according to our new definition. Then we obtain
a puzzle TLP′ = (Gen′,Solve′) of the old form as follows:

– Gen′(T,m) computes Z ← Gen(T) outputs Z ′ = (Z,m ⊕ s).
– Solve′(Z ′ = (Z, c)) computes s ← Solve(Z) and outputs c ⊕ s.

Versatile and Sustainable Timed-Release Encryption 73

ExpTLPb
A(λ):

(Z, s) ← Gen(T (λ))
if b = 0 : c := s

if b = 1 : c
$← S

return b′ ← Aλ(Z, c)

Fig. 1. Security experiment for time-lock puzzles.

Security. For security we require that the solution of a TLP is indistinguish-
able from random, unless the adversary has sufficient running time to solve the
puzzle. The following definition is inspired by those from Bitansky et al. [4] and
Malavolta and Thyagarajan [24], but adopted to our slightly modified definition
of the Gen algorithm.

Definition 2. Consider the security experiment ExpTLPb
A(λ) in Fig. 1. We say

that a time-lock puzzle TLP is secure with gap ε < 1, if there exists a polynomial
T̃ (·) such that for all polynomials T (·) ≥ T̃ (·) and every polynomial-size adver-
sary A = {Aλ}λ∈N of depth ≤ T ε(λ) there exists a negligible function negl(·)
such that for all λ ∈ N it holds

AdvTLP
A =

∣

∣Pr
[

ExpTLP0
A(λ) = 1

] − Pr
[

ExpTLP1
A(λ) = 1

]∣

∣ ≤ negl(λ).

Other Variants of TLPs. In the full version we also discuss weaker forms
of TLPs as introduced by Bitansky et al. [4]. Moreover, we present instantia-
tions of TLPs based on different variants of randomized encodings [2,18] and in
particular the approach of constructing TLPs from them by Bitansky et al. [4].
Furthermore, we discuss how they can be cast into our TLP framework.

Instantiating TLPs from Sequential Squaring. Subsequently, we discuss
instantiations of TLPs based on the sequential squaring. Therefore, we recall a
definition of the sequential squaring assumption which was implicitly introduced
by Rivest et al. [29]. Let p be an odd prime number. We say that p is a strong
prime, if p = 2p′ + 1 for some prime number p′. Let GenMod be a probabilistic
polynomial-time algorithm which, on input 1λ, outputs two λ-bit strong primes
p and q and modulus N that is the product of p and q. Let ϕ(·) denotes Euler’s
totient function. We denote by QRN the cyclic group of quadratic residues which
has order |QRN | = ϕ(N)

4 = (p−1)(q−1)
4 .

Definition 3 (The Sequential Squaring Assumption). The sequential
squaring assumption with gap 0 < ε < 1 holds relative to GenMod if there
exists a polynomial T̃ (·) such that for all polynomials T (·) ≥ T̃ (·) and for every

74 P. Chvojka et al.

non-uniform polynomial-size adversary A = {Aλ}λ∈N, where the depth of Aλ is
at most T ε(λ), there exists a negligible function negl(·) such that for all λ ∈ N

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

Pr

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

b = b′ :

(p, q,N) ← GenMod(1λ)

x
$← QRN , b

$← {0, 1}
if b = 0 : y := x2T (λ)

mod N

if b = 1 : y
$← QRN

b′ ← Aλ(N,T (λ), x, y)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

− 1
2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

≤ negl(λ).

The instantiation of TLP from the sequential squaring assumption is straight-
forward:

– Gen(T): Run (p, q,N) ← GenMod(1λ). Randomly sample x
$← QRN and

compute the value s := x2T

mod N . Notice that value s can be efficiently
computed knowing the values p and q. Set Z := (N,T, x) and output (Z, s).

– Solve(Z): compute s := x2T

mod N by repeated squaring.

The security of this construction is directly implied by the security of the
sequential squaring assumption.

4 Sequential Time-Lock Puzzles

In this section we introduce sequential time-lock puzzles along with their security
and propose an instantiation which we prove secure under a new assumption
called the gap sequential squaring assumption. We also show this assumption to
hold, assuming factoring is hard, in the strong algebraic group model (SAGM)
of Katz et al. [19].

Defining Sequential Time-Lock Puzzles. Sequential time-lock puzzles are a
particularly useful generalization of basic TLPs, which yields particularly prac-
tical time-lock encryption schemes. To this end, we generalize Definition 1 by
allowing the Gen algorithm to take multiple different time parameters as input,
which then produces a corresponding set of puzzles.

Definition 4. A sequential time-lock puzzle is tuple of algorithms sTLP = (Gen,
Solve) with the following syntax.

– (Zi, si)i∈[n] ← Gen((Ti)i∈[n]) is a probabilistic algorithm which takes as
input n integers (Ti)i∈[n] and outputs n puzzles together with their solutions
(Zi, si)i∈[n] in time at most poly((log Ti)i∈[n], λ). Without loss of generality
we assume in the sequel that set (Ti)i∈[n] is ordered and hence Ti < Ti+1 for
all i ∈ [n − 1].

– si ← Solve(Zi, si−1) is a deterministic algorithm which takes as input a puzzle
Zi and a solution for puzzle Zi−1 and outputs a solution si, where we define
s0 := ⊥. We require that Solve runs in time at most (Ti − Ti−1) · poly(λ),
where we define T0 := 0.

Versatile and Sustainable Timed-Release Encryption 75

We say a sequential time-lock puzzle is correct if for all λ, n ∈ N, for all i ∈ [n]
and for polynomials Ti in λ such that Ti < Ti+1 it holds:

Pr
[

si = s′
i : (Zi, si)i∈[n] ← Gen((Ti)i∈[n]), s′

i ← Solve(Zi, si−1)
]

= 1.

Security. In order to define a security notion for sequential time-lock puzzles
that is useful for our application of constructing particularly efficient timed-
release encryption schemes, we need to introduce an additional function F :
N × S → Y , which takes as input a pair a hardness parameter T ∈ N together
with solution s ∈ S and outputs elements of some set Y . Instead of requiring that
elements si are indistinguishable from random, we require that yi = F(Ti, si) is
indistinguishable from random.

ExpsTLPb
Ai

(λ):
(Zj , sj)j∈[n] ← Gen(1λ, (Tj(λ))j∈[n])
(yj := F(Tj(λ), sj))j∈{[n]\{i}}
if b = 0 : yi := F(Ti(λ), si)
if b = 1 : yi

$← Y
return b′ ← Ai,λ((Zj , yj)j∈[n])

Fig. 2. Security experiment for sequential time-lock puzzles.

Definition 5. Consider the security experiment ExpsTLPb
Ai

(λ) in Fig. 2. We
say that a sequential time-lock puzzle sTLP is secure with gap 0 < ε < 1and with
respect to the function F, if for all polynomials n in λ there exists a polynomial
T̃ (·) such that for all sets of polynomials (Tj(·))j∈[n] fulfilling that ∀j ∈ [n] :
Tj(·) ≥ T̃ (·), for all i ∈ [n] and every polynomial-size adversary Ai = {Ai,λ}λ∈N,
where the depth of Ai,λ is bounded from above by T ε

i (λ), there exists a negligible
function negl(·) such that for all λ ∈ N it holds

AdvsTLP
Ai

=
∣

∣Pr
[

ExpsTLP0
Ai

(λ) = 1
] − Pr

[

ExpsTLP1
Ai

(λ) = 1
]∣

∣ ≤ negl(λ).

Instantiating Sequential TLPs from Sequential Squaring. In order to
obtain a sequential TLP, we define a variant of the sequential squaring assump-
tion in which an adversary is given oracle access to a decisional sequential squar-
ing verification function DSSvf. DSSvf takes as input hardness parameter T ′ and
value y′ ∈ QRN and outputs 1 if y′ = x2T ′

mod N , otherwise it outputs 0. The
values x and N are defined in security experiment. The assumption essentially
states that computational sequential squaring assumption remains hard, even if
the adversary is given access to DSSvf, akin to other gap assumptions [26]. We
discuss the necessity of this assumption in Appendix C.

76 P. Chvojka et al.

Definition 6 (The Gap Sequential Squaring (GGS) Assumption). The
gap sequential squaring assumption with gap 0 < ε < 1 holds relative to GenMod
if there exists a polynomial T̃ (·) such that for all polynomials T (·) ≥ T̃ (·) and
for every polynomial-size adversary A = {Aλ}λ∈N, where the depth of Aλ is
bounded from above by T ε(λ), there exists a negligible function negl(·) such that
for all λ ∈ N it holds

AdvGSS
A = Pr

[

y = x2T

mod N :
(p, q,N) ← GenMod(1λ), x $← QRN

y ← ADSSvf(·,·)
λ (N,T (λ), x)

]

≤ negl(λ),

where DSSvf(·, ·) is an oracle which takes as input a hardness parameter T ′ and
a value y′ and outputs 1 if and only if y′ = x2T ′

mod N .

Now we are ready to construct our sequential TLP:

– Gen((Ti)i∈[n]): Run (p, q,N) ← GenMod(1λ). Randomly sample x
$← QRN

and compute values si := x2Ti mod N for all i ∈ [n]. Value si can be efficiently
computed knowing the values p and q. Output ((N,x, Ti, Ti−1), si))i∈[n].

– Solve((N,x, Ti, Ti−1), si−1): Compute value s
Ti−Ti−1
i−1 mod N by repeated

squaring.

Theorem 1. If the gap sequential squaring assumption with gap ε holds relative
to GenMod and F is modelled as a random oracle, then for any ε < ε, the
sTLP = (Gen,Solve) defined above is a secure sequential time-lock puzzle with
gap ε and with respect to the function F.

In the full version we prove that the gap sequential squaring problem is at
least as hard as factoring N in the Strong Algebraic Group Model (SAGM),
which was introduced by Katz et al. [19] to consider time-sensitive assumptions.

Theorem 2. If the factoring assumption holds relative to GenMod, then the gap
sequential squaring assumption with gap ε holds relative to GenMod in the SAGM
for any 0 < ε < 1.

5 (Sequential) Timed-Release Encryption

In this section we give generic constructions of (sequential) timed-release encryp-
tion (TRE) schemes based on (sequential) TLPs. There exist several definitions
for TRE and we base ours on that of Unruh [32]. However, we introduce two
additional algorithms Setup and Solve which leads to better modularity and
applicability of TRE, as we will illustrate in Supplementary Material B.

Definition 7. A sequential timed-release encryption scheme with message space
M is tuple of algorithms TRE = (Setup,Enc, Solve,Dec) with the following syntax.

Versatile and Sustainable Timed-Release Encryption 77

– (ppe,i, ppd,i)i∈[n] ← Setup(1λ, (Ti)i∈[n]) is a probabilistic algorithm which
takes as input a security parameter 1λ and a set of time hardness parameters
(Ti)i∈[n] with Ti < Ti+1 for all i ∈ [n − 1], and outputs set of public encryp-
tion parameters and public decryption parameters PP := (ppe,i, ppd,i)i∈[n].
We require that Setup runs in time poly((log Ti)i∈[n], λ).

– si ← Solve(ppd,i, si−1) is a deterministic algorithm which takes as input public
decryption parameters ppd,i and a solution from a previous iteration si−1,
where s0 := ⊥, and outputs a solution si. We require that Solve runs in time
at most (Ti − Ti−1) · poly(λ).

– c ← Enc(ppe,i,m) is a probabilistic algorithm that takes as input public
encryption parameters ppe,i and message m ∈ M, and outputs a ciphertext
c.

– m/⊥ ← Dec(Ti, si, c) is a deterministic algorithm which takes as input a
hardness parameter Ti, a solution si and a ciphertext c, and outputs m ∈ M
or ⊥.

We say a sequential timed-release encryption scheme is correct if for all
λ, n ∈ N, for all sets of hardness parameters (Tj)j∈[n] such that ∀j ∈ [n − 1] :
Tj < Tj+1, for all i ∈ [n] and for all messages m ∈ M it holds:

Pr

[

m = m′ :
PP ← Setup(1λ, (Tj)j∈[n]), si ← Solve(ppd,i, si−1)

m′ ← Dec(Ti, si,Enc(ppe,i,mi))

]

= 1.

Note that the above definition also defines “non-sequential” TRE, by setting
n = 1. In that case the value Ti is not needed as an input for Dec algorithm,
however, for sequential TRE, this value is necessary. For ease of the notation, it
is unified.

Definition 8. A sequential timed-release encryption scheme is secure with gap
0 < ε < 1 if for all polynomials n in λ there exists a polynomial T̃ (·) such that
for all sets of polynomials (Tj)j∈[n] fulfilling that ∀j ∈ [n] : Tj(·) ≥ T̃ (·), for all
i ∈ [n] and every polynomial-size adversary A = {(A1,λ,A2,λ)}λ∈N there exists
a negligible function negl(·) such that for all λ ∈ N it holds

AdvTRE
A =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

Pr

⎡

⎢

⎢

⎢

⎢

⎣

b = b′ :

PP ← Setup(1λ, (Tj)j∈[n])
(i,m0,m1, ,) ← A1,λ(PP)

b
$← {0, 1}; c ← Enc(ppe,i,mb)

b′ ← A2,λ(c,)

⎤

⎥

⎥

⎥

⎥

⎦

− 1
2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

≤ negl(λ).

We require that |m0| = |m1| and an adversary Aλ = (A1,λ,A2,λ) where A1,λ

outputs i in the second step of the above security experiment consists of two
circuits with total depth at most T ε

i (λ) (i.e., the total depth is the sum of the
depth of A1,λ and A2,,λ).

78 P. Chvojka et al.

Setup(1λ, T) Solve(ppd)
(Z, s) ← TLP.Gen(T) s ← TLP.Solve(ppd)
(pk, sk) ← PKE.Gen(1λ; s) return s
return ppe := pk, ppd := Z

Enc(ppe, m) Dec(s, c)
return c ← PKE.Enc(ppe, m) (pk, sk) ← PKE.Gen(1λ; s)

return m ← PKE.Dec(sk, c)

Fig. 3. Construction of TRE

5.1 Basic TRE Construction

Building Blocks. Our construction combines a time-lock puzzle (TLP) with a
CPA secure public-key encryption (PKE) scheme. We refer to [11] for standard
formal syntactical and security definitions of PKE. We require standard CPA
security of the PKE scheme, since this is sufficient to construct a TRE scheme
achieving Definition 81.

Construction. Let TLP = (TLP.Gen, TLP.Solve) be a TLP with solution space S
and let PKE = (PKE.Gen, PKE.Enc, PKE.Dec) be a PKE scheme. Figure 3 describes
our construction of a TRE scheme. As we have already mentioned, the hardness
parameter T is not necessary as input for Dec, hence we leave it out in the
construction. Observe that correctness is directly implied by correctness of the
PKE scheme and the TLP.

Theorem 3. If TLP = (TLP.Gen, TLP.Solve) is secure time-lock puzzle with gap
ε in the sense of Definition 2 and PKE = (PKE.Gen, PKE.Enc, PKE.Dec) is a CPA
secure encryption scheme, then TRE = (Setup,Solve,Enc,Dec) defined in Fig. 3 is
a secure timed-release encryption scheme with gap ε < ε in the sense of Definition
8.

5.2 Sequential TRE

In the sequel let sTLP = (sTLP.Gen, sTLP.Solve) be a sequential TLP in the sense
of Definition 4 and let PKE = (PKE.Gen, PKE.Enc, PKE.Dec) be a PKE scheme. Let
F : N × S → Y be a function that maps the hardness parameter space N and
the solution space S of sTLP to the randomness space of algorithm PKE.Gen. Our
constructions of a sequential TRE scheme TRE = (Setup,Enc,Solve,Dec) is given
in Fig. 4. Note that correctness of the scheme is directly implied by correctness
of the PKE scheme and the sequential TLP.

1 We note that by replacing the PKE with a CCA secure one, we can straightforwardly
obtain a CCA secure TRE. This is easily achieved as our puzzles are included in the
public parameters and thus do not need to be non-malleable and we only require
non-malleability on the ciphertexts.

Versatile and Sustainable Timed-Release Encryption 79

Setup(1λ, (Ti)i∈[n]) Solve(ppd,i, si−1)
(Zi, si)i∈[n] ← sTLP.Gen((Ti)i∈[n]) si ← sTLP.Solve(ppd,i, si−1)
((pki, ski) ← PKE.Gen(1λ;F(Ti, si)))i∈[n] return si

return (ppe,i := pki, ppd,i := Zi)i∈[n]

Enc(ppe,i, m) Dec(Ti, si, c)
return c ← PKE.Enc(ppe,i, m) (pki, ski) ← PKE.Gen(1λ;F(Ti, si))

return m ← PKE.Dec(ski, c)

Fig. 4. Construction of sequential TRE

Gen(1λ, F , (Tj)j∈[n]) Enc(pk, x)
(pk,msk) ← FE.Gen(1λ, F) return c ← FE.Enc(pk, x)
(ppe,j , ppd,j)j∈[n] ← TRE.Setup(1λ, (Tj)j∈[n])
return (pk,msk, (ppe,j , ppd,j)j∈[n])

KeyGen(msk, (ppe,j)j∈[n], f, i) Dec(dki, Ti, si, c)
skf ← FE.KeyGen(msk, f) ci := dki

ci ← TRE.Enc(ppe,i, skf) skf := TRE.Dec(Ti, si, ci)
return dki := ci return f(x) := FE.Dec(skf , c)

Solve(ppd,i, si−1)
return si := TRE.Solve(ppd,i, si−1)

Fig. 5. Construction of TRFE.

Theorem 4. If sTLP = (sTLP.Gen, sTLP.Solve) is a secure sequential time-lock
puzzle with gap ε w.r.t. function F and PKE = (PKE.Gen, PKE.Enc, PKE.Dec) is a
CPA secure encryption scheme, then TRE = (Setup,Enc,Solve,Dec) defined in
Fig. 4 is a secure sequential timed-release encryption with gap ε < ε.

5.3 Integrating Timed-Release Features into Functional Encryption

In this section, we connect sequential timed-release features with functional
encryption (FE) [7,27] and introduce the notion of a (sequential) timed-release
functional encryption (TRFE) scheme. The basic idea is that in such a scheme,
similarly to an FE scheme, there is a public key pk used for encryption of any
message x and a main secret key msk which is associated to a class of functions
F : X → Y. In contrast to an FE scheme, however, in a TRFE scheme, msk can
be used to generate decryption keys for a function f ∈ F which is associated
to a time hardness parameter Ti (and, hence, to its solution si). Decryption
takes the associated decryption key dki, the solution si, a function f ∈ F , and a
ciphertext to message x and outputs f(x). Security-wise, an adversary is allowed
to query any secret function key for any public encryption parameter associated

80 P. Chvojka et al.

to Ti as long as its solution si is not retrievable. Due to limited space, we present
the formal definitions of FE, the formal framework of timed-release functional
encryption (TRFE) as well as the proof that the construction in Fig. 5 is a secure
TRFE in the full version.

Construction of TRFE. Let TRE = (TRE.Setup, TRE.Solve, TRE.Enc, TRE.Dec)
be a (sequential) TRE scheme and FE = (FE.Gen, FE.KeyGen, FE.Enc, FE.Dec) be
an FE scheme. We construct a TRFE scheme TRFE = (Setup,KeyGen,Enc,Solve,
Dec) as given in Fig. 5. Let the message space of TRE be the functional-secret-key
space of FE which is the output of FE.KeyGen and all functional secret keys for
function f ∈ F and any main secret key of FE are of equal length.

Application to Locked-Key IBE. With TRFE, we are able to lock secret
keys of an IBE scheme with a sequential timed-release feature. When the central
authority in an IBE scheme generates the identity-based secret keys, it can attach
hardness parameters to it such that those keys only become usable sequentially.
This, for example, enables an IBE central authority to produce all secret keys
in the beginning and afterwards go off-line.

A Concurrent and Independent Work

Recently, there have been some independent and concurrent works investigat-
ing different aspects of TLPs, which we want to briefly discuss. Most closely
related to our work is the one of Katz et al. [19] who show that sequential squar-
ing is as hard as factoring in the strong algebraic group model (SAGM) and
construct non-malleable timed commitments based upon a novel building block
called timed public-key encryption (TPKE). The similarities are that we will
also rely on the SAGM to prove the generic hardness of our new gap sequential
squaring assumption. However, their TRPKE approach is different to our TRE
approach. Firstly, they support a fast and a slow decryption, where former uses
the secret key and latter requires solving a TLP. Secondly, while in our set-
ting encryption is efficient, in their TPKE which is constructed from sequential
squaring and the Naor-Yung double encryption paradigm one has to compute
twice a T -times sequential squaring. This construction achieves CCA security,
but they also discuss a CPA secure version where encryption is equivalently
expensive. Note that in contrast to our TRE, in their TPKE time starts running
with encryption and not with parameter generation.

In [15] Ephraim et al. investigate efficient constructions of concurrent non-
malleable TLPs in the auxiliary-input random oracle model (whereas previous
constructions in the plain model [3] are not practically efficient). The idea, which
is similar to our idea, is essentially to evaluate random oracle on hardness param-
eter T and solution s of a puzzle Z and use the output of the oracle as a ran-
domness for Gen algorithm of any TLP. An interesting property introduced and
investigated in [15] is public verifiability of TLPs. As we have already discussed
we can achieve public verifiability for our generic TRE when basing them on

Versatile and Sustainable Timed-Release Encryption 81

perfectly correct PKE schemes. We note however that while Ephraim et al. con-
sider this notion in a setting with malicious puzzle generation, we consider a
weaker notion with honest puzzle generation which is sufficient for our TRE.

Abadi and Kiayias [1] construct so-called Multi-Instance Time-Lock Puzzles
(MITLPs) which are similar to our notion of sequential TRE. The crucial dif-
ference is that MILTPs allow to encrypt messages with respect to consecutive
multiples of one hardness parameter by chaining TLPs which requires that all
messages of interest must be known at the time when MITLP is generated.

B Applications: Simpler and More Efficient Instantiations

Subsequently, we discuss the applications in [24] when we use our (homomorphic)
TRE approach in contrast to HTLPs of MT19. All the following application have
in common that they require decrypting a set of encrypted messages at some
required time. Our approach to TRE allows to decrypt arbitrary number of
messages at the specified time by solving one puzzle. In [24] this is achieved
by homomorphic evaluation of puzzles and then solving one or more resulting
puzzles. The drawback of this solution is that one needs to wait until all puzzles
of interest have been collected, then execute homomorphic evaluation and only
after that the resulting puzzles can be solved. Our scheme allows to start to solve
the puzzle immediately after Setup is run. In all of this applications we are able
to use our TRE approach without any homomorphic property.

E-voting. We focus on designing an e-voting protocol in absence of trusted
party, where voters are able to cast their preference without any bias. Similarly
to [24], we do not consider privacy nor authenticity of the votes. The crucial
property of our TRE is that setup can be reused for producing an arbitrary
number of ciphertexts and for that reason it is enough to run Solve only once.
The output s of Solve allows to obtain the secret key which is then used to decrypt
all ciphertexts that have been produced using corresponding ppe. Therefore, if
we encrypt all votes using the same ppe, we are able to decrypt all ciphertexts
at the same time. Then it is easy to obtain final result by combining decrypted
plaintexts. Notice that the security of the TRE scheme guarantees that all votes
remain hidden during the whole voting phase. In the e-voting protocol proposed
in [24], we have to wait until the voting phase is finished and then we can
combine puzzles from voting phase to m resulting puzzles (one per candidate
where votes are encoded as 0 and 1 respectively). Then, these m puzzles can be
solved, which requires at least time T and solving m puzzles in parallel. Hence, it
requires time T after the voting phase is over to be able to announce the results.
This is in contrast to what we can do with our TRE, in which we can encrypt
the respective encoding of the candidate, e.g., i ∈ [m] directly, and can start to
solve a single puzzle immediately after Setup is run and hence the results are
available at the beginning of the counting phase.

Multi-party Coin Flipping. In multi-party coin flipping we assume n parties
which want to flip a coin in the following way: 1) The value of the coin is unbiased

82 P. Chvojka et al.

even if n − 1 parties collude and 2) all parties agree on the same value for the
coin. The approach proposed in [24] relies on HTLPs and their protocol consist
of three phases: Setup, Coin Flipping and Announcement of the result. Similarly
to the e-voting protocol, one is only able to start solving the puzzle in the last
phase and hence obtains the results after time T . We are able to avoid this
problem, by using our TRE approach, where we can start to solve the puzzle
already after the Setup phase.

Sealed Bid Auctions. Here we consider an auction with n bidders. The proto-
col consist of two phases - the bidding phase and the opening phase. Bids should
be kept secret during the bidding phase and later revealed in opening phase.
Time-lock puzzles are used in this scenario to mitigate the issue that some bid-
ders can go offline after the bidding phase. If we use only standard time-lock
puzzles, then the number of puzzles which has to be solved in the opening phase
is equal to number of bidders who went offline. In [24] this problem was resolved
by using HLTPs. Again, this solution has the same issues as the ones discussed
above and can be avoided using our TRE approach.

Multi-party Contract Signing. In multi-party contract signing we assume n
parties which want to jointly sign a contract. The parties are mutually distrust-
ing and the contract is valid only if it is signed by all parties. The protocol in [24]
consists of four phases - Setup, Key Generation, Signing and Aggregation, and
combines aggregate signatures from RSA with multiplicatively homomorphic
time-lock puzzles with a setup that allows producing puzzles for multiple hard-
ness parameters. We remark that this type of time-lock puzzles are in some sense
equivalent to our sequential timed-release encryption.2 The protocol runs in �-
rounds and in the i-th round every party should create a puzzle with hardness
T�−i+1 which contains a signature of the required message. Hence, the hardness
of the puzzles decrease in every round. If some parties have not broadcasted
their puzzles in any round, the parties will homomorphically evaluate puzzles
from the previous round and solve the resulting puzzle.

Consider a scenario, where in the i-th round some party does not broadcast
its puzzle. Then if we do not take into account time for homomorphic evaluation,
we need time T�−i+1 to solve the resulting puzzle after this event happened. On
the other hand, if we use sequential TRE, we are able to obtain result in time
T�−i+1 after the setup was executed. Moreover, we can combine sequential TRE
with an arbitrary aggregate signature scheme, because we do not need to perform
any homomorphic evaluation.

C On the Necessity of the Gap Sequential Squaring
Assumption

One might ask why the following seemingly simple solution does not yield a
secure sequential TLP:
2 Though they only discuss them informally in [24] and as mentioned in Sect. 1 it

seems that it is not possible to prove it secure as it is proposed.

Versatile and Sustainable Timed-Release Encryption 83

– Generate a set of (non-sequential) puzzles (Z1, s1), ..., (Zn, sn), such that the
delay parameter for puzzle i is Ti − Ti−1.

– Let (Enc,Dec) be some CPA-secure symmetric encryption scheme.
– Publish (Z1, (Encsi−1(Zi))n

i=2).

Unfortunately, this approach does not work (see also page 16 of the full
version [11]). Concretely, suppose we have an adversary which has sufficient
running time to solve n−1 puzzles, and then successfully attacks the n-th puzzle
(say, with success probability 1, for instance). Now note that we cannot use the
CPA security of any of the first n − 1 encryptions to “hide” any intermediate
puzzle, because the adversary has enough time to notice this (as it has enough
running time to solve all the first n−1 puzzles). However, then, since we cannot
use the CPA security as an argument in the proof, we can equivalently consider
the first n − 1 encryption as completely insecure.

But if we have no security guarantees for the first n − 1 encryptions, this
means that we also cannot argue that the adversary cannot obtain the n-th
puzzle instance Zn quickly, without solving n − 1 prior instances, because it
could simply “break” the (n − 1)-th encryption to obtain Zn (which might be
very quick, e.g., in just a few computational steps, because we cannot argue that
the scheme is secure in the sense of CPA or some other notion). And then an
adversary with sufficient running time to solve n − 1 puzzles can simply solve
only the last puzzle using the standard Solve algorithm.

So in conclusion, we do not claim that the construction is insecure, but only
that CPA security or a similar notion seems not sufficient, as we cannot perform
a reduction to the CPA security in the usual way. It might be possible to prove
security under a non-standard assumption (e.g., by essentially assuming that
the proposed construction is secure), however, this would also be an additional
assumption, which we want to avoid.

References

1. Abadi, A., Kiayias, A.: Multi-instance publicly verifiable time-lock puzzle and its
applications. In: Financial Cryptography and Data Security (2021)

2. Applebaum, B., Ishai, Y., Kushilevitz, E.: Computationally private randomizing
polynomials and their applications. Comput. Complex 15, 115–162 (2006)

3. Ball, M., Dachman-Soled, D., Kulkarni, M., Lin, H., Malkin, T.: Non-malleable
codes against bounded polynomial time tampering. Cryptology ePrint Archive,
Report 2018/1015. https://eprint.iacr.org/2018/1015

4. Bitansky, N., Goldwasser, S., Jain, A., Paneth, O., Vaikuntanathan, V., Waters, B.:
Time-lock puzzles from randomized encodings. In: 7th Conference on Innovations
in Theoretical Computer Science, ITCS 2016 (2016)

5. Boneh, D., Franklin, M.: Identity-based encryption from the Weil pairing. In: Kil-
ian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg
(2001). https://doi.org/10.1007/3-540-44647-8 13

6. Boneh, D., Naor, M.: Timed commitments. In: Bellare, M. (ed.) CRYPTO 2000.
LNCS, vol. 1880, pp. 236–254. Springer, Heidelberg (2000). https://doi.org/10.
1007/3-540-44598-6 15

https://eprint.iacr.org/2018/1015
https://doi.org/10.1007/3-540-44647-8_13
https://doi.org/10.1007/3-540-44598-6_15
https://doi.org/10.1007/3-540-44598-6_15

84 P. Chvojka et al.

7. Boneh, D., Sahai, A., Waters, B.: Functional encryption: definitions and challenges.
In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 253–273. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-19571-6 16

8. Brakerski, Z., Döttling, N., Garg, S., Malavolta, G.: Leveraging linear decryp-
tion: rate-1 fully-homomorphic encryption and time-lock puzzles. In: Hofheinz, D.,
Rosen, A. (eds.) TCC 2019, Part II. LNCS, vol. 11892, pp. 407–437. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-36033-7 16

9. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (Leveled) fully homomorphic
encryption without bootstrapping. In: 3rd Innovations in Theoretical Computer
Science, ITCS 2012 (2012)

10. Cheon, J.H., Hopper, N., Kim, Y., Osipkov, I.: Provably secure timed-release public
key encryption. ACM Trans. Inf. Syst. Secur. 11, 1–44 (2008)

11. Chvojka, P., Jager, T., Slamanig, D., Striecks, C.: Versatile and sustainable timed-
release encryption and sequential time-lock puzzles. Cryptology ePrint Archive,
Report 2020/739. https://eprint.iacr.org/2020/739

12. Di Crescenzo, G., Ostrovsky, R., Rajagopalan, S.: Conditional oblivious trans-
fer and timed-release encryption. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS,
vol. 1592, pp. 74–89. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-
48910-X 6

13. Dwork, C., Naor, M.: Zaps and their applications. In: 41st Annual Symposium on
Foundations of Computer Science (2000)

14. ElGamal, T.: A public key cryptosystem and a signature scheme based on discrete
logarithms. In: Blakley, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196,
pp. 10–18. Springer, Heidelberg (1985). https://doi.org/10.1007/3-540-39568-7 2

15. Ephraim, N., Freitag, C., Komargodski, I., Pass, R.: Non-malleable time-lock puz-
zles and applications. Cryptology ePrint Archive, Report 2020/779. https://eprint.
iacr.org/2020/779

16. Fuchsbauer, G., Kiltz, E., Loss, J.: The algebraic group model and its applications.
In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018, Part II. LNCS, vol. 10992,
pp. 33–62. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96881-0 2

17. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: 41st Annual
ACM Symposium on Theory of Computing (2009)

18. Ishai, Y., Kushilevitz, E.: Randomizing polynomials: a new representation with
applications to round-efficient secure computation. In: 41st Annual Symposium on
Foundations of Computer Science (2000)

19. Katz, J., Loss, J., Xu, J.: On the security of time-lock puzzles and timed commit-
ments. In: Pass, R., Pietrzak, K. (eds.) TCC 2020, Part III. LNCS, vol. 12552, pp.
390–413. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64381-2 14

20. Lin, H., Pass, R., Soni, P.: Two-round and non-interactive concurrent non-
malleable commitments from time-lock puzzles. In: 58th Annual Symposium on
Foundations of Computer Science (2017)

21. Liu, J., Jager, T., Kakvi, S.A., Warinschi, B.: How to build time-lock encryption.
Des. Codes Cryptogr. 86(11), 2549–2586 (2018). https://doi.org/10.1007/s10623-
018-0461-x

22. López-Alt, A., Tromer, E., Vaikuntanathan, V.: On-the-fly multiparty computation
on the cloud via multikey fully homomorphic encryption. In: 44th Annual ACM
Symposium on Theory of Computing (2012)

23. Mahmoody, M., Moran, T., Vadhan, S.: Time-lock puzzles in the random oracle
model. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 39–50. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-22792-9 3

https://doi.org/10.1007/978-3-642-19571-6_16
https://doi.org/10.1007/978-3-030-36033-7_16
https://eprint.iacr.org/2020/739
https://doi.org/10.1007/3-540-48910-X_6
https://doi.org/10.1007/3-540-48910-X_6
https://doi.org/10.1007/3-540-39568-7_2
https://eprint.iacr.org/2020/779
https://eprint.iacr.org/2020/779
https://doi.org/10.1007/978-3-319-96881-0_2
https://doi.org/10.1007/978-3-030-64381-2_14
https://doi.org/10.1007/s10623-018-0461-x
https://doi.org/10.1007/s10623-018-0461-x
https://doi.org/10.1007/978-3-642-22792-9_3

Versatile and Sustainable Timed-Release Encryption 85

24. Malavolta, G., Thyagarajan, S.A.K.: Homomorphic time-lock puzzles and applica-
tions. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019, Part I. LNCS, vol.
11692, pp. 620–649. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
26948-7 22

25. May, T.C.: Timed-release crypto. Technical report (1993)
26. Okamoto, T., Pointcheval, D.: The gap-problems: a new class of problems for the

security of cryptographic schemes. In: Kim, K. (ed.) PKC 2001. LNCS, vol. 1992,
pp. 104–118. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44586-
2 8

27. O’Neill, A.: Definitional issues in functional encryption. Cryptology ePrint Archive,
Report 2010/556. https://eprint.iacr.org/2010/556

28. Paillier, P.: Public-key cryptosystems based on composite degree residuosity
classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238.
Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48910-X 16

29. Rivest, R.L., Shamir, A., Wagner, D.A.: Time-lock puzzles and timed-release
crypto. Technical report (1996)

30. Shamir, A.: How to share a secret. Commun. ACM (1979)
31. Thyagarajan, S.A.K., Bhat, A., Malavolta, G., Döttling, N., Kate, A., Schröder, D.:

Verifiable timed signatures made practical. In: ACM CCS 2020 (2020, to appear).
https://verifiable-timed-signatures.github.io/web/assets/paper.pdf

32. Unruh, D.: Revocable quantum timed-release encryption. In: Nguyen, P.Q.,
Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 129–146. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-642-55220-5 8

https://doi.org/10.1007/978-3-030-26948-7_22
https://doi.org/10.1007/978-3-030-26948-7_22
https://doi.org/10.1007/3-540-44586-2_8
https://doi.org/10.1007/3-540-44586-2_8
https://eprint.iacr.org/2010/556
https://doi.org/10.1007/3-540-48910-X_16
https://verifiable-timed-signatures.github.io/web/assets/paper.pdf
https://doi.org/10.1007/978-3-642-55220-5_8

Multipath TLS 1.3

Marc Fischlin(B), Sven-André Müller, Jean-Pierre Münch, and Lars Porth

Technische Universität Darmstadt, Darmstadt, Germany
marc.fischlin@cryptoplexity.de

Abstract. In a multipath key exchange protocol (Costea et al., CCS’18)
the parties communicate over multiple connection lines, implemented for
example with the multipath extension of TCP. Costea et al. show that, if
one assumes that an adversary cannot attack all communication paths in
an active and synchronized way, then one can securely establish a shared
key under mild cryptographic assumptions. This holds even if classical
authentication methods like certificate-based signatures fail. They show
how to slightly modify TLS to achieve this security level.

Here we discuss that the multipath security can also be achieved for
TLS 1.3 without having to modify the crypto part of protocol at all. To
this end one runs a regular handshake over one communication path and
then a key update (or resumption) over the other path. We show that
this already provides the desired security guarantees. At the same time,
if only a single communication path is available, then one obtains the
basic security properties of TLS 1.3 as a fall back guarantee.

1 Introduction

Secure connection establishment ultimately relies on the ability to authenticate
the intended communication partner. Otherwise sensitive data may be transmit-
ted to the wrong party, rendering any attempt to protect data-in-transit useless.
Modern key establishment methods such as TLS therefore use various forms
of authenticating the partner (unilaterally or mutually), ranging from shared
secrets to the common certificate-based signatures.

However, the reliable binding of certified keys to identities is often hard to
realize. These may be due to rogue certificates, issued to the wrong party such
as in the Comodo and DigiNotar cases [20]. Another source of problems are mis-
configured libraries which skip (parts of) the verification [14] or implementation
errors as in Apple’s goto fail [18]. Sometimes, connection proxies may also
break up end-to-end connections and thereby weaken security, e.g., by insuffi-
cient certificate checks [4].

1.1 Multipath Key Exchange

Some solutions towards hedging against certificate misbinding have been pro-
posed, including certificate pinning [10] to temporarily store known links, and
certificate transparency [19] to log valid certificates. Recently, Costea et al. [5]
c© Springer Nature Switzerland AG 2021
E. Bertino et al. (Eds.): ESORICS 2021, LNCS 12973, pp. 86–105, 2021.
https://doi.org/10.1007/978-3-030-88428-4_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-88428-4_5&domain=pdf
https://doi.org/10.1007/978-3-030-88428-4_5

Multipath TLS 1.3 87

discussed another possibility to enhance security by using the multipath exten-
sion of the TCP connection protocol (MPTCP) in [13]. Roughly, the multipath
extension allows to establish further sub flows in a TCP connection to ensure
reliable and possibly parallel data transmission over different communication
channels (such as WiFi and mobile networks). While being primarily a tool for
network efficiency, Costea et al. [5] point out that it can also be used to build
multipath key exchange protocols.

In a multipath key exchange protocol the two parties send partial information
of the key exchange protocol over different connections to create a shared key.
One usually assumes that there are two connections available. The optimistic
assumption is that an adversary can either be active on both connections but
then cannot synchronize during the execution, called A/A adversary in [5]. This
happens if the latency of the sub connections is small. Or, the adversary may be
able to synchronize during the key establishment but then does not have means
to actively attack both connections and thus only passively eavesdrop on one of
the connections. This is called an A−P attacker in [5].

Costea et al. [5] continue by designing a multipath key exchange scheme
SMKEX based on the Diffie-Hellman problem. The protocol only requires a
Diffie-Hellman exchange over one flow, and the exchange of nonces over the
other flow, together with a hash confirmation value. No further authentication
is required. They prove their protocol to be secure in a multipath variant of the
Canetti-Krawcyzk (CK) model [3] in the random oracle model, against A/A and
A−P adversaries. In addition, they also comprehensively discuss the practical
feasibility of the multipath approach, and how to modify the crypto part of TLS
slightly to incorporate the enhanced security guarantees. The resulting protocol
is called MTLS.

1.2 Our Contribution

We adopt the idea to relax the assumption about authentication guarantees
by using multiple communication paths. We present here a TLS 1.3 compliant
protocol [21] to enhance the security of the key establishment. The idea is to run
a regular handshake execution over the MPTCP main flow, followed by the key
update sub protocol of TLS 1.3 over the MPTCP sub flow. See Fig. 1. The key
update step renews the traffic secrets. Alternatively, one may run the resumption
sub protocol of TLS 1.3 over the sub flow. The advantage of running the more
expensive resumption step is that it updates all keys which TLS 1.3 established,
including for example the resumption and exporter master secrets.

In comparison to the SMKEX and MTLS proposals in [5], our approach has
some advantages:

– Our protocol works on top of existing TLS 1.3 implementation, without
requiring any modifications of the cryptography. This is contrast to SMKEX
which is built from scratch, and MTLS which modifies TLS slightly.

– Our protocol provides security against A/A and A−P adversaries simultane-
ously, even if the TLS certificates are completely broken, relying on network

88 M. Fischlin et al.

Fig. 1. MPTCP-TLS 1.3 overview

assumptions instead. However, since it runs the basic TLS 1.3 mechanisms,
even if the network assumptions turn out to be false, e.g., the parties exchange
the information only over a single connection, then one still has the original
TLS 1.3 security guarantees as fallback. MTLS in [5] is also considered to
have this property.

– We discuss our approach concretely for TLS 1.3, but the idea of running
the key exchange step over one flow, and then some form of key update or
confirmation message over the other flow, should be applicable in general.

In terms of the security model, we introduce a multipath extension of the
Bellare-Rogaway (BR) model [1,2]. The difference to the CK model [3] essentially
is the latter allows for session-state reveals. But TLS 1.3 has not been designed
to withstand such attacks and so far has been analyzed only in (multi-stage
extensions [11] of) the BR model [8,9]. We note that we only consider security of
the traffic secrets such that we restrict ourselves to a single-stage security model
here. We also introduce some minor strengthenings compared to the model in
[5].

We finally prove the TLS 1.3 (EC)DHE key exchange followed by a key
update to be secure against A/A and A−P adversaries in our security model. We
do not rely on the random oracle assumption but need some standard assump-
tions about the Diffie-Hellman problem, the pseudorandomness of HKDF, and
the integrity of the record protocol (which follows from the security of the AEAD
schemes stipulated in TLS 1.3). In the A−P case we also need a slightly stronger
integrity assumption for the record protocol and discuss its plausibility.

2 Preliminaries

2.1 Multipath TCP

The MPTCP protocol [13] allows to establish multiple TCP subflows under-
neath an (MPTCP) connection. This allows for an improved and more reliable

Multipath TLS 1.3 89

throughput. For establishing an MPTCP connection the initiator and responder
start a regular TCP connection but use a special flag MP CAPABLE, i.e., both
sides agree on an MPTCP connection by setting the MP CAPABLE flag in the
TCP flow of SYN,SYN/ACK, and ACK messages. In the course of this the parties
also pick random cryptographic keys and a locally unique 32-bit token, which
are all transmitted (in clear) to the other side. The token is in fact a truncated
hash value of the responder’s key.

To open up a new subflow between addresses either party can start a new
TCP connection, but this time include the MP JOIN flag in the SYN,SYN/ACK,ACK
flow. The link to the initial connection is via the token which is included in the
MP JOIN part. During the new establishment both parties exchange nonces, and
authenticate both nonces via a (truncated) HMAC computation for the keys
from the initial MPTCP connection. The nonces should prevent replay attacks.

While the deployment of MPTCP should be transparent for TCP-only con-
nections, the sender of data over an MPTCP connection in principle has full
control over the distribution of data through different sub flows. The routing
can be set arbitrarily through the scheduler, albeit not all operating system may
support arbitrary choices by default. The receiver may request to prioritize a
sub flow via the MP PRIO flag, and the sender should obey to this request. For
our advanced security guarantees, however, we require that the second part of
our key agreement protocol indeed runs over a fresh sub flow. If not then one
falls back to the ordinary security of TLS 1.3 against active network attackers.

2.2 Transport Layer Security

We give a high-level overview of the Transport Layer Security (TLS) protocol,
in particular version 1.3 [21]. Given that our focus in this work is on multipath
connection security without authentication we omit the mechanisms for server
and client authentication in the description here; our model and security proof
still takes this part into account. Instead in the description here we focus on
the main anonymous handshake, the record protocol, as well as the protocol to
update the record layer keys for an existing connection. More details, which are
especially relevant for the proof, appear in Appendix A.

The (EC)DHE handshake of TLS 1.3 runs a Diffie–Hellman-based key deriva-
tion. The client initiates the communication with its client hello message CH,
including a nonce, and a client key share CKS carrying a Diffie-Hellman value.
The server responds with its server hello SH message with its nonce, and its SKS
part with a Diffie-Hellman value. The server computes the finished message SF,
including a MAC under the derived key, and the client responds with its finished
message CF.

For us, the most relevant part is key derivation. With a convoluted key deriva-
tion schedule based on the HKDF functions HKDF.Extract and HKDF.Expand,
the parties compute (among others) a resumption master secret RMS, a client
application traffic secret client application traffic secret, and a server application
traffic secret server application traffic secret. The former key is used for the session
resumption step only, and the latter keys are used to protect the communication

90 M. Fischlin et al.

Fig. 2. The TLS 1.3 key update protocol. All messages are protected by the TLS record
protocol using the current CATS and SATS, this is indicated by the square brackets.

via the record layer protocol (with an individual key for each sending party).
We usually abbreviate the latter keys as CATS and SATS.

We omit the details about session resumption here and instead focus on
the key update step. Figure 2 depicts the sub protocol to update the application
traffic secrets, as well as the associated computations [21, Section 7.2]. In essence
the initiator sends a fixed message requesting a key update and updates their
sender secret which the responder is required to respond to with a fixed message,
repeating the key updates as well as updating their keys.

Finally, the record layer protocol for TLS 1.3 enforces the use of an authenti-
cated encryption with associated data (AEAD) scheme. It uses a secret IV as the
initial nonce, derived from CATS or SATS, depending on whether the sender is
the client or the server. The IV is derived as HKDF.Expand(CATS, "iv") for the
client, and analogously for the server and its traffic secret. The keys are derived
similarly as HKDF.Expand(CATS, "key") using a different label. The nonce is
incremented with each sent message.

3 Security Model

3.1 Overview

We follow the description in [5] to motivate the different attacker models, espe-
cially A−P and A/A. We always assume there are two communication paths
between parties on which messages can be exchanged. The parties can choose
the path for each message. On each path we assume there is one adversarial
instance present, either active or passive. An active attacker may intercept and
change messages. A passive attacker can monitor the communication between
the two parties, but cannot modify it. Both types of adversaries can delay deliv-
ery of network messages at will.

We next distinguish between the communication between the different path
attackers while a certain attacked execution is running. We let X1−X2 denote

Multipath TLS 1.3 91

two path instances which can communicate arbitrarily during the execution,
and X1/X2 to be two instances with restrictions. That is, let X1−X2 (resp.
X1/X2) denote a pair of synchronized (resp. unsynchronized) attackers, which
can (resp. cannot) exchange information during the protocol execution. In both
cases the attackers may exchange information before or after the protocol execu-
tion. The variable Xi can be either A for an active attacker (capable of altering
messages) or P for a passive attacker.

Observe that we can disregard the scenario of A−A where we have two syn-
chronized active attackers. This scenario degenerates to a single attacker on a
single path since the attackers can act as a single entity then. Also, according to
our model A−P and P−A describe the same set of admissible adversaries. As
pointed out by [5] it then suffices to consider types A−P and A/A, synchronized
adversaries with one passive party, and active but unsynchronized adversaries.

3.2 Security of Multi-path Key Exchange

We next define security of multi-path key exchange by adopting the common
game-based security models, similar to [5]. We assume that we have n parties
P1, . . . , Pn all running the key exchange protocol. Each party may receive a pair
of public and secret keys. When executing the protocol both parties obtain a
session key which can be used to secure subsequent data flow. In TLS 1.3 these
session keys are actually pairs, consisting of the client application traffic secret key
(for the communication from client to server) and server application traffic secret
key (for the communication from server to client). It is usually assumed that in
a genuine execution both parties derive identical session keys.

Attack Model. Neglecting the restrictions due to synchronization, the adver-
sary against the key exchange protocol has full control over the network and
can inject, modify, or drop network messages. It can interact with each party by
initiating a session between parties Pi (as client) and Pj (as server) for adminis-
trative identifier id, and then send protocol messages to either of the two parties,
receiving immediately the party’s response. In addition the adversary can ask
to reveal session keys, modeling leakage of session keys, e.g., if used in weak
applications. The adversary can also corrupt parties in which case it receives the
long-term secrets like the secret key or the PSK in TLS 1.3.

The goal of the adversary is to distinguish a genuine session key from a
random string, significantly better than with the guessing probability of 1/2.
For this the adversary can call a Test oracle which, initialized with a random bit
b $←− {0, 1}, returns either the session key (if b = 0) or an independently chosen
random key (if b = 1), but answering queries consistently. There are usually
some restrictions on testing a session, namely, that neither the session key of the
tested session nor of its partner have been revealed. Here, partnering is usually
defined by session identifiers sid.

To capture the different communication paths we distinguish between main
and sub connection of a session id. That is, id.main denotes the identity of the

92 M. Fischlin et al.

initial connection and id.sub of the joined sub flow. We restrict ourselves to
a single sub flow here but the model can be easily extended to handle more
sub flows. To deal with the different attack models we assume that we have
two adversarial instances, Amain and Asub, both initialized with independent
randomness. The main adversary Amain can initialize new sessions, test or reveal
session keys, and corrupt users, and can communicate (only) with the main part
of a session. In contrast, Asub can only interact with sessions with identifier sub
via Send queries. The two algorithms can interact via special Sync oracle, which
allows to pass arbitrary information between the two algorithms, and Relinquish
to go idle and hand over control to the other adversarial instance (but passing
no further information).

Formally, we assume that the adversary Amain can make the following queries
during the attack:

– NewSession(Pi, Pj , role) creates a new session for party Pi with role role ∈
{client, server}, supposedly communicating with Pj , picks a fresh adminis-
trative identifier id with two sub identifiers id.main and id.sub, and returns
id. One also creates entries id.user ← Pi, id.partner ← Pj , id.role ← role, and
id.key ← ⊥ for the session key. It notes its status as id.status ← running and
holds two other entries id.main.sid and id.sub.sid for the session identifiers of
the two flows (where id.sid = (id.main.sid, id.sub.sid)).

– Send(m, id.main) sends the next protocol message to the session with identity
id.main (resp. drops the request and returns ⊥ if no session with identifier
id has been initialized). The message m may be of the special form init if
the party is supposed to start the communication. The session is invoked for
this protocol message and may return a protocol message (which is forwarded
to the adversary). In addition, the session may change its status id.status to
accepted or rejected. In the former case it also sets the session key id.key to
some bit string and the session identifier id.sid to be (parts of) the ordered
sequence of incoming and outgoing messages for each flow; details are provided
as part of the protocol description.
Analogously, adversary Asub may call Send(m, id.sub), which is processed as
above.

– Reveal(id) ignores the request if id.status �= accepted, else returns id.key and
sets the status to id.status ← revealed.

– Corrupt(P) returns the long-term signing key of the party P . We keep this
oracle here for sake of compatibility with ordinary models, but since we are
interested in trading authentication for multiple paths we will later assume
that the adversary immediately corrupts all parties anyway.

– Testb(id) ignores the request if id.status �= accepted, else returns id.key for
b = 0 resp. a random string from {0, 1}|id.key| if b = 1, and sets the status to
id.status ← tested. We assume that Test is only called once during the attack
(by Amain) and denote the corresponding identity by idTest.

Both adversaries Amain and Asub have access to two additional oracles:

– Sync(x) can be called by either adversary and forwards x to the other adver-
sary. This is immediately followed by a Relinquish execution.

Multipath TLS 1.3 93

– Relinquish() lets the other adversary become active (and the calling adversary
inactive). We assume that initially Amain is active and Asub inactive, and that
only the active adversary can make oracle calls.

At the end of the execution algorithm Amain outputs a guess a ∈ {0, 1} for the
hidden bit b. We declare the adversary to lose if it tests the session idTest (with
idTest.status = tested) and reveals the session key of an honest partner, that is, if
there is a session id′ �= idTest such that id′.sid = idTest.sid and id′.status = revealed.
If this happens we automatically set a Boolean variable lose ← true (which
initially is false).

In addition, we also declare the adversary to lose if it violates the A/A or A−P
properties for the test session. For the former we let the lifetime of the test session
idTest cover all the actions of the adversaries between the NewSession call which
returned idTest and the call which changes the status to idTest.status �= running.
Let I be the set of session identities id′ �= idTest which Amain either calls an oracle
about or has received from a NewSession call during the lifetime of idTest. Then
we set lose ← true unless

– there is another session id′ �= idTest to the tested session idTest which is part-
nered in one of the flows, i.e., such that id′.main.sid = idTest.main.sid or
id′.sub.sid = idTest.sub.sid (A−P property satisfied), or

– there is no Sync call and at most one Relinquish call during the lifetime of idTest,
and no Send call of Asub to some identity id′ ∈ I (A/A property satisfied).

In the A/A case we forbid the adversary Asub to make any call to some “alive”
session id′ ∈ I. This prevents the adversary from communicating by, say, observ-
ing the behavior of other sessions. An example could be Amain putting session
id′ into a certain state which triggers a certain response when Asub calls id′ after
the handover. This could allow Amain to pass arbitrary bit strings to Asub while
the test session is still active, thus violating the A/A property.

Note also that we do not make any stipulations about corruptions of party.
The idea of the multipath extension of TLS is exactly to withstand attacks
where no authentication happens, or where the adversary controls the long-term
signing key used for authentications.

We have defined security with respect to a single-test setting, i.e., where the
adversary can only test a single session during the attack. This simplifies the
definition compared to a multi-test scenario where the same secret bit b is used
in multiple Test calls of the adversary. In the latter case one would need to
make the above stipulation for each test session, preventing the adversary from
communicating for any of the tested sessions. Depending on the scheme it may
then be possible to show via a hybrid argument that the multi-test case can be
reduced to the single-test case.

Security Definitions. We always assume that two accepting sessions with
the same session identifier also derive the same session key. This is always the
case in TLS 1.3 and in the following we do not discuss this further. We also

94 M. Fischlin et al.

note that, because of the freshly chosen nonces, the probability of three honest
parties deriving the same (sub) session identifiers is negligible. This is called
Match-security:

Definition 1 (Match-Security). For a multi-path key exchange protocol KE
and adversary pair A = (Amain,Asub) in the experiment above let AdvMatch

KE,A be
the probability that A manages to make three sessions have the same session
identifier, id, id′, id′′ with id.sid = id′.sid = id′′.sid, or that two sessions have the
same session identifier but different keys, id.sid = id′.sid but id.key �= id′.key. The
protocol is Match-secure if for any efficient adversary pair A = (Amain,Asub)
the advantage is negligible.

Next we define key secrecy for simultaneous A/A and A−P attacks:

Definition 2 (Key Secrecy). A multi-path key exchange protocol KE is simul-
taneously key-secret against A/A and A−P adversaries if for any efficient adver-
sary pair A = (Amain,Asub) in the experiment above

AdvA−P&A/A-secrecy
KE,A := Prob[a = b ∧ ¬lose] − 1

2 ≤ negl.

In comparison to previous models we make the following changes:

– The work by Costea et al. [5] models A/A adversaries by splitting the adver-
sary when communicating with the test session. We split the adversary from
the beginning but allow for an explicit information transfer through Sync
queries (and disallow such queries when attacking the test session).

– Unlike [5] we do not enable session state reveals where the adversary receives
the ephemeral randomness of the protocol participant. The reason is that
TLS 1.3 does not account for such attacks.

– We account for security against A−P and A/A simultaneously. That is, the
adversary can decide during the attack on the type of attempt.

– Costea et al. [5] in the A−P case explicitly consider adversaries which are
passive on one of the two flows for the attacked session. Here we only demand
that there exists a sub flow with some honest session, not necessarily in the
same attacked session, where the adversary remains passive. Our model hence
also captures cross-over attacks for different sessions.

– We do not consider multi-stage security of the TLS 1.3 session keys [11]. This
notion is useful when one argues security of the intermediate keys derived
during the handshake protocol, but we aim to protect the actual session
keys client application traffic secret and server application traffic secret which
are only derived at the very end.

4 Multipath Extension for TLS 1.3

4.1 Protocol

We present the MPTCP extension of the TLS 1.3 protocol in Fig. 3. The client
and server first execute a regular (EC)DHE handshake to derive application

Multipath TLS 1.3 95

traffic secrets CATS,SATS. Then they run a key update on the added sub flow
to derive the new keys CATSku,SATSku. Note that the protocol messages in the
update step on the sub flow are still secured under the current keys, namely
client write iv ← HKDF.Expand(CATS, "iv") for the initialization vector and
client write key ← HKDF.Expand(CATS, "key") for the key for the client, and
analogously for the server.

We view the multipath protocol execution as consisting of both flows. The
protocol session accepts only after a successful key update, and only then status
changes from running to accepted. The session key pair, which is subsequently
used to protect communication, is the updated pair CATSku,SATSku. In partic-
ular, this means that Reveal queries of the adversary in the attack only make
sense after completion of the sub flow. The adversary then receives the key
pair CATSku,SATSku but still does not have access to the intermediate key pair
CATS,SATS.

Fig. 3. Protocol Overview over MPTCP-TLS 1.3 with key update. The final session
key(s) are the application-traffic-secrets CATSku, SATSku after the key update. CKeyUpd
and SKeyUpd denote the (secured) record-layer messages for the key update.

We note that the cryptographic part of TLS 1.3 remains unaltered. Only
the socket interface to MPTCP would need to be changed, possibly enabling
TLS 1.3 to demand a path change for the key update or resumption. Still, if for
some reason MPTCP only runs plain TCP in backward compatibility mode, the

96 M. Fischlin et al.

network communication of our protocol looks like a common TLS 1.3 execution.
Furthermore, even if the TLS application was not aware that the connection
runs plain TCP, we would still have the basic security guarantees of TLS 1.3.

4.2 Security Assumptions

To show security we need several assumptions about the cryptographic primi-
tives. We define them briefly below. Some assumptions like collision resistance
of the hash function H are standard and can be found also in text books like
[15]. For assumptions about the authenticated encryption with associated data
(AEAD) in the record layer see [22]. We also need some slightly non-standard
assumptions which nonetheless appear to be highly reasonable.

We let AdvDDH
G,D (λ) be the advantage of an algorithm D deciding Diffie-

Hellman values in the group G. That is, AdvDDH
G,D (λ) denotes the absolute dif-

ference between the probabilities that D, on input a description of the group G

with generator g and three values gx, gy, gxy resp. gx, gy, gz for random x, y, z,
outputs 1. In our case we assume that G is the weakest of the elliptic curve
groups of TLS 1.3.

We assume that the hash function H for computing the transcript hash is
collision resistant. In other words, letting Advcoll

H,C be the probability that an
algorithm C outputs a collision x �= x′ with H(x) = H(x′) is small.

We also assume that HKDF.Extract and HKDF.Expand are pseudorandom
functions (for random inputs in the second input for Extract and in the first
input for Expand, distributed according to some distribution D). That is, let
Advprf

HKDF.Extract,D,D for an algorithm D be the absolute difference in outputting
1 when having oracle access to HKDF.Extract(key, ·) for key $←− D resp. to a
random function with the same input-output size. Define Advprf

HKDF.Expand,D,D
analogously for function HKDF.Expand(·, key).

For A/A attacks we sometimes even consider pseudorandomness of HKDF for
partially adversarial chosen distributions key ← D(x; r) where an adversary can
choose the input x after learning the distribution’s randomness r. The distin-
guisher D, however, does not get to learn x, r (such that the key still has high
entropy) but only gets oracle access to HKDF.Expand(·, key) or a random func-
tion. In other words, we assume that HKDF.Expand is a good extractor for the
adaptively biased source D. This seems to be very plausible given that HKDF
was designed to have this property [16,17].

Finally, for the record layer protocol we assume that the probability of send-
ing a protocol message through the record layer which is not rejected is infeasible.
That is, let Advint

AEAD,B be the probability that an algorithm B first outputs a
message m, then a key key is generated for the AEAD scheme, and an initial
random nonce N0 according to the record layer is picked. Then the adversary
receives C ← AEAD.Enc(key, N0,m) and is supposed to output C∗ �= C such
that AEAD.Dec(key, N0, C

∗) �= ⊥. The fact that the adversary’s success proba-
bility is small is implied by the common authentication or integrity assumption
for AEAD schemes [22].

Multipath TLS 1.3 97

We also need a stronger but still reasonable assumption about the ability to
use a different key key′ and nonce N ′ to generate a valid record which can be suc-
cessfully decrypted under the original key key and nonce N . We define this “cor-
relation” property in combination with HKDF because the alternative key key′

cannot be chosen directly but needs to be generated by calling HKDF, making
attacks less likely. That is, for any adversary E define Advcorr

AEAD,HKDF,E to be the
probability that E outputs (MS,x) �= (MS′, x′), and m such that the following
holds: Let CATS ← HKDF.Expand(MS,x), key ← HKDF.Expand(CATS, "key"),
N ← HKDF.Expand(CATS, "iv"), as well as CATS′ ← HKDF.Expand(MS′, x′),
key′ ← HKDF.Expand(CATS′, "key"), N ′ ← HKDF.Expand(CATS′, "iv"), C ′ ←
AEAD.Enc(key′, N ′,m), and check that AEAD.Dec(key, N,C ′) �= ⊥.

The assumption appears to hold for common AEAD schemes. If we assume
that HKDF behaves like a random oracle then the different inputs (MS,x) �=
(MS′, x′) yield independently distributed outputs. But then the probability that
two random key-nonce combinations can be used to encrypt and successfully
decrypt is unlikely. Otherwise one could attack the AEAD scheme by trying to
decrypt with a fresh random key-nonce pair and succeed with high probability.

4.3 Security

We first show Match-security. Note that we count the number s of sessions via
the NewSession calls of the (main) adversary, and the (full) session identifiers
consist of both sub identifiers.

Proposition 1. The MPTCP TLS 1.3 extension, (EC)DHE handshake with
key update, is Match-secure. More precisely, for any adversary A initiating a
maximum number s of sessions and for nonce length |nonce| = 256 we have
AdvMatch

KE,A ≤ s2 · 2−|nonce|.

Proof. The property follows as for regular TLS 1.3 in [8,9]. The probability that
there are three sessions among the s sessions with the same sid is bounded
from above by s2 · 2−|nonce|, since the probability that an honest party picks
the same nonce as the (potentially partnered) other two sessions is given by
the birthday bound. The fact that the same sid yields the same key follows
straightforwardly, because the session identifier contains all information which
enters the key derivation for CATS and SATS and if this key is identical, then
the same update messages CKeyUpd, SKeyUpd also cause the same update step to
CATSku and SATSku. �	
Theorem 1. The MPTCP TLS 1.3 extension, (EC)DHE handshake with key
update, is simultaneously key-secret against A−P and A/A adversaries. More
precisely, for any adversary A = (Amain,Asub) initiating at most s sessions we
have that there are algorithms D,D1, . . . ,D16, D′, B, B′, C, E and distributions
D1, . . . , D16,D

′ with

98 M. Fischlin et al.

AdvA−P&A/A-secrecy
KE,A

≤ s2 ·
(
AdvDDH

G,D +
16∑
i=1

Advprf
HKDF.Extract/Expand,Di,Di

+ 2 · Advint
AEAD,B

+Advcoll
H,C + Advcorr

AEAD,HKDF,E

+Advprf
HKDF.Expand,D′,D′ + Advcorr

AEAD,HKDF,E
)
.

Here the other algorithms have roughly the same run time as A plus the time to
execute the attack on the key exchange protocol.

Proof. Consider an adversary A = (Amain,Asub) against the key secrecy of the
key exchange protocol. We discuss first the A−P case. That is, the adversary
may be active in one flow and passive in the other one. More formally, assume
that for the test session idTest there exists another session id′ with the same
session identifier in either the main or sub flow. We assume that we know the
right sessions idTest and id′ in advance; this can be accomplished by guessing the
sessions with probability at least 1/s2 among all s sessions.

Further note that we can make all Corrupt queries at the outset, such that
the adversary immediately knows the signing keys. This is valid since key secrecy
does not depend on authentication. Note that this in particular means that A
could simulate all other sessions different from idTest and id′ itself.

An important observation for the proof steps below is to note, once more,
that Reveal queries of the adversary only make sense after the successful update
step. Then the status changes to accepted and the Reveal queries returns the
updated key pair CATSku,SATSku (but not the keys CATS,SATS). We will take
advantage of this observation multiple times below.

We next make a case distinction, depending on whether the main or sub flow
of idTest and id′ match:

Case A: Passive in Main Flow, id′.main.sid = idTest.main.sid. In this case
we argue that the session key CATS,SATS in the two sessions is secure. To see
this we can perform a sequence of game hops, where we let GA.i denote the event
that A wins in the corresponding game.

Game GA.0. Is the original attack, with the simplifications about knowing idTest
and id′ at the beginning and corrupting all long-term keys at the outset.

Game GA.1. Modify the game and replace the internally used Diffie-Hellman
value gxy in the two main executions of idTest and id′ by a random value gz.
A simple reduction to the DDH problem shows that this cannot decrease the
adversary’s success probability in the key secrecy game GA.1 by more than the
advantage against the DDH problem:

Prob[GA.0] ≤ Prob[GA.1] + AdvDDH
G,D .

The reduction D receives (gx, gy, gz) as input, runs the entire key exchange
attack with A, also picking the test bit b, and inserts gx and gy into the test

Multipath TLS 1.3 99

session idTest as well as the partner session id′ on the honest parties side. But
when both parties are supposed to compute gxy reduction D uses gz instead.
Eventually, D checks if A succeeds in predicting b and does not lose. Algorithm
D outputs 1 if this is the case. Note that if gz = gxy we perfectly simulate GA.0

whereas for a random gz we perfectly simulate GA.1. It follows that the difference
in probabilities is bounded by the advantage against the DDH problem (for the
admissible group G used in the execution).

Game GA.2. Replace all output values in the HKDF evaluations (after, and
including the computation of HS ← HKDF.Extract(xES, gz)) in the two main
executions of sessions idTest and id′ by random values. This includes the Expand
calls to derive SS, server finished key, CS, client finished key, xHS, RMS and
SATS as well as CATS, but also the Extract step to compute MS. Finally, we also
replace the derived data client write key, client write iv, and CATSku from CATS,
and server write key, server write iv, and SATSku from SATS by random values.
Note that we can already replace the keys CATSku and SATSku as if they were
computed, although we have not yet shown that they are actually derived; this
will be shown below.

The proof replaces all the key values step wise, starting with computation
of HS from the input source gz, such that we can argue that the derivation
of SS from the now random HS via Expand can be substituted by picking SS
randomly etc. In each of the in total 16 steps we have an input distribution Di

and a distinguisher Di such that we can show that the winning difference in each
step is bounded by Advprf

HKDF.Extract/Expand,Di
. Altogether we thus have

Prob[GA.1] ≤ Prob[GA.2] +
16∑
i=1

Advprf
HKDF.Extract/Expand,Di,Di

.

In particular, we now have that CATS and SATS and the channel key-iv values
derived from them, as well as CATSku and SATSku, are random keys which are
independent of the protocol messages between idTest and id′.

Game GA.3. Declare the adversary to lose if it successfully executes the key
update in the sub flow of session idTest or id′ with idTest.sub.sid �= id′.sub.sid.
Note that the adversary can only make any of the two sessions accept if it sends
a valid record layer message to the corresponding party, either under the now
random channel key-nonce pair client write key, client write iv or server write key,
server write iv. The adversary may first receive a message under the other key
from the honest client or server before producing a successful forgery against
the other party’s key. We can simulate this by a single query before creating the
forgery which is admissible in the integrity game. But then we give a reduction
B to the security of either of the two keys, such that

Prob[GA.2] ≤ Prob[GA.3] + 2 · Advint
AEAD,B.

Here we use that Reveal queries do not reveal the intermediate keys and only
give reasonable answers after completion of the entire execution.

100 M. Fischlin et al.

We finally note that, in this game, sessions idTest and id′ can only complete
the sub flow execution if the adversary relays the communication between the
two sessions which update the keys to CATSku and SATSku. In particular, the
adversary cannot Reveal the session key in session id′ since it is partnered with
the test session in both flows.

In the final game the adversary has no advantage to predict the secret bit
b because this game does not depend on b anymore; the final session keys are
independent random values in both cases. It follows that Prob[GA.3] ≤ 1

2 .

Case B: Passive in Sub Flow, id′.sub.sid = idTest.sub.sid. Note that this
stipulates that id′.main.sid �= idTest.sub.sid or else we are again in case A. But
then, since the session identifier in the main flow contain exactly the data enter-
ing the transcript hash, we can conclude that key derivation uses different inputs,
at least if we assume collision resistance of the hash function:

GB.0. Is the simplified starting attack as above.

GB.1. As game GB.0 but declare the adversary to lose if H(idTest.main.sid) =
H(id′.main.sid). This would immediately contradict the collision-resistance, i.e.,
we can give a reduction C such that

Prob[GB.0] ≤ Prob[GB.1] + Advcoll
H,C .

GB.2. As game GB.1 but declare the adversary to lose if idTest or id′ accept. We
can again give a reduction E against the correlation intractability of the AEAD
scheme (in combination with HKDF). Adversary E can impersonate the client
resp. server in the sessions idTest and id′ such that it knows the keys MSTest

and MS′ on both sides. These keys may or may not match. But for sure the
transcript hashes do not match by the previous game hop, such that we obtain
key derivation inputs (MSTest, x) �= (MS′, x′) which the (relayed) sub flow would
make both sides accept. This, however, would contradict the correlation integrity
of the AEAD scheme:

Prob[GB.1] ≤ Prob[GB.2] + Advcorr
AEAD,HKDF,E .

In the final game it follows that neither party idTest nor id′ has accepted, such
that the adversary cannot do any better than guessing the bit b:

Prob[GB.2] ≤ 1
2 .

Case C: Active in Both Flows But Acting Independently. Finally, we
need to argue that A/A attacker cannot predict the bit b significantly beyond
guessing it. For this consider the test session idTest as before. We assume that
there is no other flow with identical session identifier, neither in the main step
nor in the sub flow. Else we would be already in cases A or B.

First note that, once the test session idTest has been started by Amain, the
sub adversaries cannot exchange information through Sync calls, nor via any

Multipath TLS 1.3 101

other oracle calls during the lifetime of session idTest. It follows that the main
flow uses random inputs such as the party’s nonce to compute the transcript
hash H(CH||SH|| . . .). We can therefore cast this input to HKDF.Expand via some
distribution D′(x; r) where the r part describes the honest party’s contribution
to the transcript, and x the contribution of Amain, possibly chosen adaptively.
Note that, while the transcript hash has no entropy from Amain’s point of view,
for Asub it is still unknown, because no information flows from Amain to Asub.

We next define the following game hops:

GC.0. Is the attack as above.

GC.1. As game GC.0 but declare A to lose if the sub flow in idTest accepts.

It follows from the pseudorandomness of HKDF.Expand for the transcript-
hash input distribution D′ above that we can replace CATS and SATS computed
over the transcript in the moment when Asub is active in idTest by random val-
ues. We argue that the probability that Asub makes the sub flow accept cannot
change significantly, else we derive a contradiction to the pseudorandomness of
HKDF.Expand via some reduction D′. Note that for this we merely need to wait
for Asub to make the sub flow accept or to hand over to Amain again (or abort
the execution).

Once we have replaced the traffic application secrets by random values we
immediately get a reduction B′ to the integrity of AEAD, as in Case A. Hence,

Prob[GC.0] ≤ Prob[GC.1] + Advprf
HKDF.Expand,D′,D′ + Advcorr

AEAD,HKDF,B′ .

In the final game the adversary Asub does not make the sub flow accept. It follows
that A does not learn any information about b from the Test query (since the
session key is not set). It follows that the probability of predicting b is bounded
by 1

2 .
Summing over all possibilities yields the claimed bound. �	

4.4 Sub Flow Resumption

Instead of using the simple key update procedure we may alternatively use
resumption to update the keys over the sub flow. The advantage is that all
TLS 1.3 keys are updated by this, not only the application traffic secrets. The
security argument would be very similar to the one above, only that we need to
take the key RMS into account.

A noteworthy point is that we can actually relax the correlation integrity
condition on the AEAD scheme if we run resumption in the mode with the
(EC)DHE step. In this case the sub flow would create a fresh Diffie-Hellman
share in the sub flow as well, and we can argue that in Case B with relayed sub
flow the adversary thus cannot distinguish the derived keys from random, just
as we argue along the DDH assumption for passive adversaries in the main flow.

4.5 Practical Considerations

We discuss here some aspects when running the above multipath TLS 1.3 ver-
sion. The first thing to note is that, in order to take advantage of the stronger

102 M. Fischlin et al.

security guarantees, the parties need to ensure that the communication of the
update step is routed through the second communication channel. Luckily, even
if the parties are not aware of this, or cannot ensure this, they can still rely on
the basic security of TLS 1.3. Hence, from a security viewpoint the failure of
using multiple communication lines does not make our protocol insecure.

Concerning efficiency observe that MPTCP in principle allows for parallel
communication through the different channels. Our protocol, on the other hand,
needs to complete the regular handshake execution before being able to run the
update via the other communication line.

Next suppose that the key update step fails—if the handshake already fails
then the protocol execution cannot be continued. At this point the two parties
have already established a joint key via the handshake part. It may thus be
tempting to still use that key. For security reasons and for compatibility it is
nevertheless recommend to cautiously follow the TLS 1.3 specification [21] that
the connection must be closed.

5 Conclusions

We have shown that update steps in key exchange protocols can be used to
provide multipath security. We have discussed this specifically for the case of
TLS 1.3, assuming that one can reliably assign protocol messages to commu-
nication paths. An interesting question is to analyze what kind of security can
still be achieved if some of the messages may be unexpectedly transmitted over
the other path. Also, we have not investigated the possibility of 0RTT modes
and the security of the intermediate session keys. Note that any cryptographic
analysis of 0RTT modes must take into account the possibility of replay attacks
[12].

Our security analysis provides a non-tight security bound with respect to the
underlying cryptographic primitives, in the sense that the key secrecy bound
depends quadratically on the number s of sessions. Furthermore, we work in
the single-test setting, and a potential hybrid argument to extend this to the
multi-test setting would incur another factor s. Recent efforts for TLS 1.3 [6,7],
however, have shown that it is possible to derive tight security bounds. It would
be interesting to see if this is applicable here in the split adversary model as
well.

Another interesting question is how smoothly one can use multipath con-
nections. The work by Costea et al. [5] already provides a comprehensive set of
experiments, indicating that it is doable in practice. It remains to investigate if
this is also true for applications which rely on fast connection times of TLS 1.3,
inciting the development of 0RTT modes.

Acknowledgments. We thank the anonymous reviewers for valuable comments.
Marc Fischlin has been [co-]funded by the Deutsche Forschungsgemeinschaft (DFG)
– SFB 1119 – 236615297.

Multipath TLS 1.3 103

A Transport Layer Security

Figure 4 depicts the basic TLS 1.3 anonymous (EC)DHE handshakes including
the essential steps of the Diffie–Hellman-based key derivation. The key update
step has already been explained in Sect. 2.2. A session resumption is similar to
the handshake but adds some additional steps. It requires the server to have

Fig. 4. The TLS 1.3 anonymous (EC)DHE handshake protocol. Starred messages are
situation-dependent and not always sent. Messages enclosed in curly brackets are pro-
tected by the handshake traffic secrets CS resp. SS.

104 M. Fischlin et al.

issued a ticket to the client containing a nonce and identifying information
which are used for the resumption handshake. The client uses an additional
extension ClientPreSharedKey in the first message to indicate potential iden-
tifiers. The server acknowledges one in its ServerPreSharedKey extension with
the second message. The parties then use the resumption secret RMS from
before to compute a pre-shared key PSK, which this time enters the computa-
tion ES ← HKDF.Extract("", PSK). They also derive a binder key BK which is
used to verify the key. From there on the steps are identical to the one of a hand-
shake execution. We note that resumption can be executed with and without the
Diffie-Hellman step.

References

1. Bellare, M., Pointcheval, D., Rogaway, P.: Authenticated key exchange secure
against dictionary attacks. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol.
1807, pp. 139–155. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-
45539-6 11

2. Bellare, M., Rogaway, P.: Entity authentication and key distribution. In: Stinson,
D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 232–249. Springer, Heidelberg
(1994). https://doi.org/10.1007/3-540-48329-2 21

3. Canetti, R., Krawczyk, H.: Analysis of key-exchange protocols and their use for
building secure channels. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol.
2045, pp. 453–474. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-
44987-6 28

4. de Carnavalet, X.C., Mannan, M.: Killed by proxy: analyzing client-end TLS inter-
ception software. In: 23rd Annual Network and Distributed System Security Sym-
posium, NDSS 2016, San Diego, California, USA, 21–24 February 2016. The Inter-
net Society (2016)

5. Costea, S., Choudary, M.O., Gucea, D., Tackmann, B., Raiciu, C.: Secure oppor-
tunistic multipath key exchange. In: Lie, D., Mannan, M., Backes, M., Wang, X.
(eds.) Proceedings of the 2018 ACM SIGSAC Conference on Computer and Com-
munications Security, CCS 2018, Toronto, ON, Canada, 15–19 October 2018, pp.
2077–2094. ACM (2018)

6. Davis, H., Günther, F.: Tighter proofs for the SIGMA and TLS 1.3 key exchange
protocols. IACR Cryptol. ePrint Arch. 2020, 1029 (2020). https://eprint.iacr.org/
2020/1029

7. Diemert, D., Jager, T.: On the tight security of TLS 1.3: theoretically-sound crypto-
graphic parameters for real-world deployments. IACR Cryptol. ePrint Arch. 2020,
726 (2020). https://eprint.iacr.org/2020/726

8. Dowling, B., Fischlin, M., GÃnther, F., Stebila, D.: A cryptographic analysis of
the TLS 1.3 handshake protocol. Cryptology ePrint Archive, Report 2020/1044
(2020). https://eprint.iacr.org/2020/1044

9. Dowling, B., Fischlin, M., Günther, F., Stebila, D.: A cryptographic analysis of the
TLS 1.3 handshake protocol candidates. In: Ray, I., Li, N., Kruegel, C. (eds.) Pro-
ceedings of the 22nd ACM SIGSAC Conference on Computer and Communications
Security, Denver, CO, USA, 12–16 October 2015, pp. 1197–1210. ACM (2015)

10. Evans, C., Palmer, C., Sleevi, R.: Public key pinning extension for HTTP. RFC
7469, April 2015. https://rfc-editor.org/rfc/rfc7469.txt

https://doi.org/10.1007/3-540-45539-6_11
https://doi.org/10.1007/3-540-45539-6_11
https://doi.org/10.1007/3-540-48329-2_21
https://doi.org/10.1007/3-540-44987-6_28
https://doi.org/10.1007/3-540-44987-6_28
https://eprint.iacr.org/2020/1029
https://eprint.iacr.org/2020/1029
https://eprint.iacr.org/2020/726
https://eprint.iacr.org/2020/1044
https://rfc-editor.org/rfc/rfc7469.txt

Multipath TLS 1.3 105

11. Fischlin, M., Günther, F.: Multi-stage key exchange and the case of Google’s QUIC
protocol. In: Ahn, G., Yung, M., Li, N. (eds.) Proceedings of the 2014 ACM
SIGSAC Conference on Computer and Communications Security, Scottsdale, AZ,
USA, 3–7 November 2014, pp. 1193–1204. ACM (2014)

12. Fischlin, M., Günther, F.: Replay attacks on zero round-trip time: the case of the
TLS 1.3 handshake candidates. In: 2017 IEEE European Symposium on Security
and Privacy, EuroS&P 2017, Paris, France, 26–28 April 2017, pp. 60–75. IEEE
(2017). https://doi.org/10.1109/EuroSP.2017.18

13. Ford, A., Raiciu, C., Handley, M.J., Bonaventure, O., Paasch, C.: TCP extensions
for multipath operation with multiple addresses. RFC 8684, March 2020. https://
rfc-editor.org/rfc/rfc8684.txt

14. Georgiev, M., Iyengar, S., Jana, S., Anubhai, R., Boneh, D., Shmatikov, V.: The
most dangerous code in the world: validating SSL certificates in non-browser soft-
ware. In: Yu, T., Danezis, G., Gligor, V.D. (eds.) The ACM Conference on Com-
puter and Communications Security, CCS 2012, Raleigh, NC, USA, 16–18 October
2012, pp. 38–49. ACM (2012)

15. Katz, J., Lindell, Y.: Introduction to Modern Cryptography, 2nd edn. CRC Press,
Boca Raton (2014)

16. Krawczyk, D.H., Eronen, P.: HMAC-based extract-and-expand key derivation func-
tion (HKDF). RFC 5869, May 2010. https://rfc-editor.org/rfc/rfc5869.txt

17. Krawczyk, H.: Cryptographic extraction and key derivation: the HKDF scheme. In:
Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 631–648. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-14623-7 34

18. Langley, A.: Apple’s SSL/TLS bug. ImperialViolet (2014). https://www.
imperialviolet.org/2014/02/22/applebug.html

19. Laurie, B., Langley, A., Kasper, E.: Certificate transparency. RFC 6962, June 2013.
https://rfc-editor.org/rfc/rfc6962.txt

20. Menn, J.: E-mail breach in Iran raises surveillance fears. Financial Times, 31
August 2011 (2011)

21. Rescorla, E.: The Transport Layer Security (TLS) Protocol Version 1.3. RFC 8446,
August 2018. https://rfc-editor.org/rfc/rfc8446.txt

22. Rogaway, P.: Authenticated-encryption with associated-data. In: Atluri, V. (ed.)
Proceedings of the 9th ACM Conference on Computer and Communications Secu-
rity, CCS 2002, Washington, DC, USA, 18–22 November 2002, pp. 98–107. ACM
(2002)

https://doi.org/10.1109/EuroSP.2017.18
https://rfc-editor.org/rfc/rfc8684.txt
https://rfc-editor.org/rfc/rfc8684.txt
https://rfc-editor.org/rfc/rfc5869.txt
https://doi.org/10.1007/978-3-642-14623-7_34
https://www.imperialviolet.org/2014/02/22/applebug.html
https://www.imperialviolet.org/2014/02/22/applebug.html
https://rfc-editor.org/rfc/rfc6962.txt
https://rfc-editor.org/rfc/rfc8446.txt

SyLPEnIoT: Symmetric Lightweight
Predicate Encryption for Data Privacy

Applications in IoT Environments

Tran Viet Xuan Phuong1(B), Willy Susilo1, Guomin Yang1, Jongkil Kim1,
Yang-Wai Chow1, and Dongxi Liu2

1 Institute of Cybersecurity and Cryptology, School of Computing and Information
Technology, University of Wollongong, Wollongong, Australia

{wsusilo,gyang,jongkil,caseyc}@uow.edu.au
2 Data61, CSIRO, Syndey, Australia

Dongxi.Liu@data61.csiro.au

Abstract. Privacy preserving mechanisms are essential for protecting
data in IoT environments. This is particularly challenging as IoT envi-
ronments often contain heterogeneous resource-constrained devices. One
method for protecting privacy is to encrypt data with a pattern or meta-
data. To prevent information leakage, an evaluation using the pattern
must be performed before the data can be retrieved. However, the compu-
tational costs associated with typical privacy preserving mechanisms can
be costly. This makes such methods ill-suited for resource-constrained
devices, as the high energy consumption will quickly drain the bat-
tery. This work solves this challenging problem by proposing SyLPE-
nIoT – Symmetric Lightweight Predicate Encryption for IoT, which is
lightweight and efficient compared with existing encryption schemes.
Based on the bitwise-XOR operation, we use this basic gate to construct
a scheme that transfers encrypted data onto more powerful machines.
Furthermore, for resource-constrained IoT devices, the requester can
authenticate devices at different levels based on the type of communica-
tion. SyLPEnIoT was meticulously designed to run on a gamut of IoT
devices, including ultra low-power sensors that are constrained in terms
of CPU processing, memory and energy consumption, which are widely
deployed in real IoT ecosystems.

1 Introduction

The Internet of Things (IoT) was recognized as one of the Gartner Hype Cycle’s
emerging technologies in 2018. IoT devices are getting increasingly popular, and
are hence becoming a core element in the next generation of information and
communication architectures, e.g., smart cities, smart factories, smart homes,
smart healthcare systems and many others. Current statistics show that there
are 30 billion objects connected to the Internet due to IoT technology [13].

IoT systems comprise of heterogeneous embedded devices with limited com-
puting capacity and battery power, such as sensors and actuators. They can
c© Springer Nature Switzerland AG 2021
E. Bertino et al. (Eds.): ESORICS 2021, LNCS 12973, pp. 106–126, 2021.
https://doi.org/10.1007/978-3-030-88428-4_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-88428-4_6&domain=pdf
https://doi.org/10.1007/978-3-030-88428-4_6

SyLPEnIoT: Symmetric Lightweight Predicate Encryption 107

only afford lightweight computation to conserve their energy. The search for
advanced cryptographic solutions for IoT devices remains an intriguing problem
due to these restrictions, i.e. heterogeneity and limited resources.

� Motivating Scenarios. To improve the body’s health, many people wear
smart watches to track things like walking time, heart rate, blood pressure, and
so on. Data collected from a user’s smart watch is sent to the cloud for storage.
This data can be retrieved and analyzed at a later stage based on a selection cri-
teria, such as data type or time window, through a specific application program
on a user’s mobile device. However, user health data is sensitive, and requires
a data privacy mechanism in place to protect the data. In practice, there is a
lot of information that can be collected by a smart watch on a daily basis. This
requires large storage space and results in increased latency when retrieving data
for IoT devices. When using a mobile device to query the collected data stored
in the cloud, the user may only want specific information, such as heart rate,
blood pressure, or GPS location. As the amount of data can be very large, a
secure mechanism is required to evaluate the specific data before downloading
and decrypting it.

Some representative topics include secure search over encrypted data [14,17,
37] and enhanced data privacy in range queries [33–35], which enable interest-
ing applications in IoT infrastructure. Existing research has demonstrated that
the heterogeneity of IoT devices, as well as the data they produce, are further
aggravated by the lack of metadata associated with these devices [5]. Therefore,
the use of privacy computational methods is often very challenging due to the
type of device, the nature of the data being produced, and their compatibility
for secure data integration tasks.

� Security and Resource Constraints. IoT technology enables connections
among various things, including sensors, actuators, and their compositions, for
applications ranging from connected vehicles to online services and social net-
works. Hence, in typical IoT environments, many different types of processors
with various resource constraints are embedded in IoT devices. For example,
based on the wearable devices and low-cost environmental sensors categorized
on the official NXP website [28], the ARM Cortex-53 processor and the ARM-
Cortex M3/M4 are the main processors embedded in smartphones and wear-
able devices, respectively. In addition, there are recent low-power and ultra low-
power micro-controllers, such as the 32-bit ARM Cortex-M0+ processor, which
is very heavily resource-constrained. As such, security issues are increasingly
challenging when it comes to these low resource devices. There will definitely
be trade-offs in the design of new cryptographic algorithms in theory and when
deploying them on these devices in practice. In general, although solutions to
the aforementioned problems have been developed by the cryptographic research
community in recent years, existing solutions require resource intensive compu-
tations, which make them impractical for IoT environments. These two require-
ments seem contradictory, as advanced cryptographic algorithms usually require
expensive computation (such as pairing), while IoT devices can only cope with

108 T. Viet Xuan Phuong et al.

simple algorithms to reduce energy consumption. Driven by practical require-
ments, in this paper we aim to bridge the gap between the need for constructing
such advanced cryptographic algorithms and the capabilities of lightweight IoT
devices. To achieve this, we aimed to produce a predicate encryption scheme to
support lightweight computation. The reason why we targeted predicate encryp-
tion, is because it can support complex and expressive inner product queries.

� Predicate Encryption. Predicate Encryption (PE) [9,22] is a promising
candidate to address the problems of search and pattern matching on encrypted
data. A PE scheme allows the owner to create a master secret key and to issue
secret key tokens to other users. Tokens are associated with predicates that can
be evaluated over encrypted data. Specifically, encrypted data x can be evaluated
using a token TKf associated with a predicate f to determine whether f(x) = 1.
In the IoT scenario that was previously shown in Fig. 1, a smart watch encrypts
the data, while a mobile device has the token to decrypt it. The devices can share
the master key, since they are owned by the same user. The use of symmetric PE
on the client’s side is sufficient for users to preserve the privacy of their private
data. While the underlying strategy of our method is based on the PE in [22],
the purpose of our method is for lightweight symmetric PE.

The implementation of this type of encryption gives rise to a practical prob-
lem, which prevents clients from efficiently accessing and using their data. Specif-
ically, Katz et al.’s [22] proposed PE is based on composite bilinear pairing order
groups introduced by [15], which is inefficient when it comes to computation on
lightweight devices. As shown in [15], the pairing operation in composite order
groups requires extensive computational power. To evaluate the computational
cost of [22], we conducted an experiment to test the encryption and decryp-
tion times of an arbitrary binary vector on a Raspberry Pi 3 Model B V1.2
with an ARM Cortex-A53 processor. As depicted in Fig. 1, the encryption and
decryption times increase linearly with vector length. It is impractical in real
applications for the decryption process to take over 15 s for a 100-bit vector.
Hence, the existing method is ill-suited for practical deployment in IoT environ-
ments. IoT devices with limited computational resources do not have sufficient
capacity to realize current search or evaluation operations on encrypted data.
Moreover, this method also increases the encrypted data storage requirements,
which does not suit resource-constrained devices. The PE schemes in [9,22] are
based on composite order bilinear pairing groups introduced by [15], which is
too expensive for computation on resource-constrained devices.

To reduce the cost, Bishop et al. [7,23] proposed a function private secret-
key PE scheme for the inner product functionality that supports any arbitrary
polynomial number of key and message queries. The construction makes use of
asymmetric bilinear maps for greater efficiency in reducing ciphertext and key
sizes. Recently, due to the threat of quantum computers, the security of PE
schemes is in jeopardy. Shor’s efficient quantum algorithm [36] for discrete loga-
rithms for elliptic curve groups can solve problems beyond integer factorization.
It was shown that a 160-bit elliptic curve cryptographic key can be broken on a
hypothetical quantum computer.

SyLPEnIoT: Symmetric Lightweight Predicate Encryption 109

0 20 40 60 80 100
0

10

20

30

40

50

Length of vector (bits)

E
nc

ry
pt
io
n
T
im

e
(S
ec
on

ds
)

0 20 40 60 80 100

5

10

15

Length of vector (bits)

D
ec
ry
pt
io
n
T
im

e
(S
ec
on

ds
)

Fig. 1. Encryption and decryption times of [22] on a Raspberry Pi 3 with an ARM
Cortex-A53 processor.

Whilst quantum computers pose a great threat to public key cryptography,
the security of symmetric key cryptography remains unchanged. According to
the evaluation criteria of the NIST Post Quantum Cryptography standardization
project [27], hard lattice problems (e.g., Learning With Errors (LWE) [29,31]),
and symmetric primitives (e.g., AES and PRF) are resistant to quantum attacks.
In [2,7,18], LWE was used to construct PE schemes. Abdalla et al. [2] proposed
Multi Input Functional Encryption for inner products under LWE assumptions,
which is an instantiation of a single input PE construction. However, most PE
schemes [2–4] constructed from the LWE problem are complex when it comes to
generating the ciphertext and secret key, and are too computationally expensive
for deployment on practical applications. In addition, in the new direction of
lightweight constructions, PRF is considered to be a useful tool for dealing with
many efficient protocols in [12,30]. Hence, an ideal PE scheme is conjectured to
achieve both efficiency and quantum resistance, which uses PRF to construct PE
schemes supporting inner products. This gives rise to the question:

“Can we utilize the fundamentals of symmetric primitives to construct a new
efficient Predicate Encryption scheme for practical deployment on IoT environ-
ments?”

Therefore, our goal in this work is to construct a lightweight symmetric-key
PE scheme that supports inner product queries.

1.1 Overview of SyLPEnIoT

This paper proposes SyLPEnIoT, a symmetric lightweight predicate encryp-
tion that accommodates resource constraints. SyLPEnIoT encrypts the message
using a application-specific predicate, and generates the token using the query-
specific predicate. When these two predicates match, the encrypted message
is decrypted. In this work, we only investigate the symmetric scenario, where
the key for encryption and the key for generation are agreed via a common
key exchange protocol. Similar to [22], SyLPEnIoT uses the same master secret
key to create the ciphertext and tokens. Let �v be a non-zero vector, indicat-
ing the application-specific predicate, and �x be a vector of the same length,
indicating the query-specific predicate. SyLPEnIoT uses the exclusive-or oper-
ation as a critical component for reducing the high computational cost that
current PE schemes suffer from. For this, we employ pseudo-random function

110 T. Viet Xuan Phuong et al.

and symmetric-key encryption primitives to realize our proposed scheme. In
conjunction with the pseudo-random function, we exploit the exclusive-or (⊕)
operation to compute the inner product of two vectors (�v, �x) in a lightweight set-
ting. However, using the ⊕ operation to determine the value of the inner product
of two vectors is a challenging problem, since the inner product requires the sum
of multiplications of each pairwise number between two vectors. Moreover, the
predicates �v and �x must be kept secret in the cloud, making it more challenging
to compute their inner product using the XOR gate.

Our Strategy. We will illustrate our strategy with the following two examples;
the first case is when the inner product of two vectors is NON-ZERO, while the
second case is when the inner product of two vectors is ZERO.

The Inner Product of Two Vectors Equals to NON-ZERO.

�v = (11,02,13,04),�x = (11,12,03,04).

We consider two binary vectors �v, and �x. Obviously, the inner product of the
two vectors does not equal to zero, since v1 = x1 = 1 at position one. Rather
than relying on the usual inner product computation between two vectors, i.e.∑4

i=1 vi · xi = 1, we only require computation using the ⊕ gate. We propose a
way to detect whether there exists at least one position i, where vi = xi = 1,
as the existence of vi = 1, xi = 1 leads to a non-zero inner product between two
vectors.

Suppose that there is a Pseudo-Random Function PRF : {0, 1} × {0, 1}λ →
{0, 1}λ and a master secret key SK = {0, 1}λ. We also need a typical symmetric-
key encryption system SKE including the three main algorithms, namely, Key-
Gen, Encrypt, and Decrypt. Briefly, the KeyGen algorithm takes the security
parameter λ as input and outputs a secret-key SK; the Encrypt algorithm takes a
key SK and a plaintext x as input to perform encryption; the Decrypt algorithm
takes a key SK and a ciphertext c as input and outputs the decrypted plaintext
x.

We consider that �v is generated in the ciphertext, and �x is generated in the
user’s token. We then present our strategy for detecting whether the position i
exists between the vector �v and �x, where vi = xi = 1 for i ∈ [1, 4] in a secure
manner using the PRF. The encoding function is computed as:

δui = PRF(SK, u||i) (1)

where u is the arbitrary input, and i is the number.
With the input vector �v = (11,02,13,04), we generate the encoding as:

c = δ11 ⊕ δ02 ⊕ δ13 ⊕ δ04. (2)

With the input vector �x is (11,12,03,04), we similarly generate the encoding
as:

t = δ11 ⊕ δ12 ⊕ δ03 ⊕ δ04. (3)

SyLPEnIoT: Symmetric Lightweight Predicate Encryption 111

However, when c ⊕ t = δ02 ⊕ δ12 ⊕ δ13 ⊕ δ03 returns, the value at position one
that we want to detect is unavailable. Therefore, our strategy is to transform
the original �v = (11, 02, 13, 04) to the complementary vector �v′ = (11 − 11, 12 −
02, 13 − 13, 14 − 04) = (01, 12, 03, 14), which leads to the new encoding for c:

c = δ01 ⊕ δ12 ⊕ δ03 ⊕ δ14. (4)

In addition, we employ the wildcard symbol ‘*’ to generate δ∗i to attach to the
position where the original vi equals to 1. This will conveniently enable to detect
the positions i, where vi = xi = 1. Hence, c is regenerated as:

c = δ∗1 ⊕ δ01 ⊕ δ12 ⊕ δ∗3 ⊕ δ03 ⊕ δ14. (5)

Then, we XOR c from (5) with t:

c ⊕ t = δ∗1 ⊕ δ11 ⊕ δ01 ⊕ δ∗3 ⊕ δ14 ⊕ δ04︸ ︷︷ ︸
redundant components

. (6)

Redundant Cancellation. From (6), we can extract the full-fledged values at
position one. We also observe that at positions three and four, the value of �x
equals to zero. In the next step, we present the strategy on how to cancel out
the values at positions three and four.

Based on the returned value of redundant components, we generate the
adding component c′

i from i = 1 → 4 based on the input value of the origi-
nal �v = (11, 02, 13, 04). If vi = 1, it will set δ∗i. Otherwise, it sets δ1i ⊕ δ0i. Then
c′
i is as follows:

(c′
1, c

′
2, c

′
3, c

′
4) = (δ∗1, δ12 ⊕ δ02, δ∗3, δ14 ⊕ δ04). (7)

Furthermore, �x is (11, 12, 03, 04), we only select the positions i, where xi = 0. As
the observation from (5), we only extract c′

3, c
′
4 at positions three, four, which

is derived from the positions x3 = x4 = 0 of vector �x. Then, we compute:

c ⊕ t ⊕ c′
3 ⊕ c′

4 = δ∗1 ⊕ δ11 ⊕ δ01. (8)

The aggregate ⊕ value at (8) equals non-zero, meaning that the inner product
of two vectors, �v and �x, is non-zero.

Collusion Resistance. Suppose that Alice queries �x1 = (1, 1, 0, 0) to get tA =
δ11 ⊕ δ12 ⊕ δ03 ⊕ δ04, with regards to the Eq. (3). In addition, when querying
�x2 = (0, 0, 1, 1), Bob can obtain tB = δ01 ⊕ δ02 ⊕ δ13 ⊕ δ14. Subsequently, even if
the inner products of <�v, �x1>,<�v, �x1> equal to non-zero, Alice and Bob together
can produce t together through

t = tA ⊕ tB = δ11 ⊕ δ12 ⊕ δ03 ⊕ δ04 ⊕ δ01 ⊕ δ02 ⊕ δ13 ⊕ δ14

Eventually, they can use the colluded value t to compute:

c(5) ⊕ t ⊕ c′
1 ⊕ c′

2 ⊕ c′
3 ⊕ c′

4 = 0.

112 T. Viet Xuan Phuong et al.

To prevent such collusion attacks, we present a solution to achieve collusion
resistance.

Based on the original equation of (4): c = δ01 ⊕ δ12 ⊕ δ03 ⊕ δ14, we reproduce
ĉi by separating each components in c:

ĉi = (δ01, δ12, δ03, δ14) (9)

To prevent the collusion attack, in the generation of �x = (11, 12, 03, 04) side, we
uniformly sample U0, U1, U2

R← SKE.KeyGen(1λ). Then, we add the component
as

(t̂1, t̂2) = (δ11 ⊕ U1, δ12 ⊕ U2), (10)

where we only consider the positions i = {1, 2} in �x, which x1 = x2 = 1.
Then we set t0 = SKE.Encrypt(U1 ⊕ U2, U0). We also XOR U0 to t in (3)

t = δ11 ⊕ δ12 ⊕ δ03 ⊕ δ04 ⊕ U0. (11)

In the first step, we compute: U ′
0 = ⊕�

i=1,xi=1t̂i ⊕ ĉi = t̂1 ⊕ ĉ1 ⊕ t̂2 ⊕ ĉ2. Then
use U ′

0 to decrypt t0 to recover U0 as U ′′
0 = SKE.Decrypt(U ′

0, t0).
We note that the SKE.Decrypt algorithm is deterministic, then we can use

U ′′
0 to compute this later even though we do not know the exact value U0.

Then, we achieve the computation similar to (8) as

c(5) ⊕ t(10) ⊕ c′
3 ⊕ c′

4 ⊕ U ′′
0 = δ∗1 ⊕ δ11 ⊕ δ01. (12)

Consequently, by adding the components ĉi, t̂i, even when the adversaries col-
lude to attack the ciphertext corresponding to �v = (1, 0, 1, 0), he/she attempts
to make many queries as �x1 = (1, 1, 0, 0), �x2 = (0, 0, 1, 1), Eventually, the
aggregate values as in (12) cannot be canceled out.

Based on the strategy in case 1, with �v = (11, 02, 13, 04), �x = (11, 12, 03, 04)
associated with the ciphertext generation and token generation, respectively,
we also demonstrate the case where the inner product of two vectors, such as
�v = (11, 02, 13, 04) and �x = (01, 12, 03, 04), equals to ZERO, in a more condensed
manner.

The Inner Product of Two Vectors Equals to ZERO.

�v = (11,02,13,04),�x = (01,12,03,04).

Obviously, when the inner product of two vectors �v, �x equals zero, there does
not exist any pair of vi = xi = 1, where i ∈ [1, 4]. Having presented the strategy
in case 1, we show the solution in case 2 compactly as.

Ciphertext Generation. From the original �v = (11, 02, 13, 04), we generate the
complementary vector �v′ as (11−11, 12−02, 13−13, 14−04) = (01, 12, 03, 14).
Then we apply c(5), (c′

i)(7), ĉi(9) to generate c, c′
i, ĉi for i ∈ [1, 4] as follows:

ĉi = (δ01, δ12, δ03, δ04), c = δ∗1 ⊕ δ01 ⊕ δ12 ⊕ δ∗3 ⊕ δ03 ⊕ δ14,

c′
i = (δ∗1, δ12 ⊕ δ02, δ∗3, δ14 ⊕ δ04)

SyLPEnIoT: Symmetric Lightweight Predicate Encryption 113

Token Generation. From �x = (01, 12, 03, 04), we uniformly sample U0, U2
R←

SKE.KeyGen(1λ). Then, we add the component on the side of �x as t̂i = δ12 ⊕
U2. Then, we apply (11) to generate t as follows: t = δ01⊕δ12⊕δ03⊕δ04⊕U0,
In addition, we create t0 = SKE.Encrypt(U2, U0).
Decryption. In the first step, we compute U ′

0 = t2 ⊕ c2, where we only
extract ĉ2 in terms of ĉi. Then, we use U ′

0 to decrypt t0 to recover U0 as
U ′′
0 = SKE.Decrypt(U ′

0, t0). In terms of c′
i, we extract c′

1, c
′
3, c

′
4, where we only

consider positions x1 = x3 = x4 = 0 in the token.

K = c ⊕ t ⊕ c′
1 ⊕ c′

3 ⊕ c′
4︸ ︷︷ ︸

x1=x3=x4=0

= δ∗1 ⊕ δ01 ⊕ δ12 ⊕ δ∗3 ⊕ δ03 ⊕ δ14 ⊕ δ01 ⊕ δ12 ⊕ δ03 ⊕ δ04 ⊕ U0

⊕δ∗1 ⊕ δ∗3 ⊕ δ14 ⊕ δ04 ⊕ U ′′
0 = 0

Since U0 = U ′′
0 , K equals to zero, meanwhile we can conclude that <�v, �x> =

0, which means that pairs of (vi = 1, xi = 1) do not exist as <�v, �x> = 0.

1.2 Our Contributions

Main Contributions: We summarize our contributions as follows:

– Our SyLPEnIoT scheme is based on the fundamental primitives of PRF and
symmetric cryptography, which uses the exclusive-or operation to determine
the inner product of two vectors, which will either evaluate to zero or non-
zero. However, using an exclusive-or operation to determine the value of the
inner product of two vectors is tricky, since the under-workings of an inner
product requires summing the multiplications of each pairwise component
between two vectors. In this work, we propose an encoding solution to eval-
uate the inner product between two binary vectors to determine whether it
equals to zero. Therefore, SyLPEnIoT provides a new lightweight construc-
tion from the original definition of PE [22] in the symmetric setting. We
prove that SyLPEnIoT is secure under the selective simulation-secure stan-
dard model against probabilistic polynomial-time adversaries that can make
an unrestricted number of ciphertext generation and secret key generation
queries.

– With the low-priced data storage and computation services offered by cloud
providers, people outsource their large-scale data to the cloud to reduce their
cost in spending on local devices.

Evaluations: We use SyLPEnIoT to encrypt the pattern, generate the token,
and in the decryption phase. We then integrated it on a spectrum of IoT devices.
First, we ran it on a typical machine, i.e. a laptop. Second, we deployed it on a
high-end IoT device, i.e. a Raspberry Pi 3 Model B V1.2 with an ARM Cortex-
A53 processor. To prove our expressive SyLPEnIoT model, we demonstrate its
feasibility on an ultra low-power micro-controller of a typical device in the form
of an Arduino Nano 33 IoT Board, which uses a 32-bit ARM Cortex-M0 CPU

114 T. Viet Xuan Phuong et al.

with 256 KB Flash and 16 KB RAM. In terms of the physical configuration, the
Raspberry Pi 3’s performance is an order of magnitude slower than the Laptop’s
performance, and its performance on the Arduino Nano 33 board is an additional
two-to-three order of magnitude slower.

2 Related Work

Low-Powered Devices via Garbled Circuits. Kamara et al. [20] investigated
garbled-circuit-based protocols, a set of mutually distrustful parties to evaluate
a function of their joint inputs without revealing their inputs to each other.
Later, Cater et al. [10] created a protocol that allows mobile devices to securely
outsource the majority of computation required to evaluate a garbled circuit,
which builds on the most efficient garbled circuit evaluation techniques.

Research on privacy-preserving wildcard pattern matching has become a hot
topic in recent years. Hazay and Toft [19] showed that wildcard pattern matching
can be converted to exact pattern matching using additive homomorphic encryp-
tion. However, their solution is impractical to deploy on resource-constrained IoT
devices.

Predicate Encryption. A predicate encryption system [8,9,22,23,26,34,35]
makes use of the bilinear/composite group order for the construction. In order
to protect the predicate, Shi et al. [33] proposed predicate-only encryption. Mov-
ing a step forward, Abdalla et al. [1] propose a simple inner-product encryp-
tion scheme, meaning that decrypting an encrypted vector �v with a key for
a vector �y will reveal only <x, y> and nothing else. However, privacy of the
predicate is not achieved. As a type of predicate encryption, a Hidden Vec-
tor Encryption (HVE) scheme [25,32] supports equality test, which can include
wildcard symbols. However, in HVE schemes, wildcard symbols will appear in
the attribute string associated with the user secret key rather than that of the
ciphertext. In another cryptographic primitive, Sergey et al. [18] constructed a
leveled predicate encryption scheme for all circuits, assuming the hardness of the
sub-exponential Learning With Errors (LWE) problem. In addition, Agrawal et
al. [3] proposed a lattice-based functional encryption scheme for inner product
predicates whose security follows from the difficulty of the LWE problem. This
construction enables applications such as range and subset queries, polynomial
evaluation, and CNF/DNF formulas on encrypted data. Gay et al. [16] pro-
duced a lattice-based predicate encryption scheme for multi-dimensional range
and multi-dimensional subset queries. Lai et al. [24] proposed lightweight HVE
to hide the pattern when boolean querying is issued [11]. Abdalla et al. [2]
proposed a Multi Input Functional Encryption for inner products under the
Decisional Diffie-Hellman (DDH), LWE, and Decisional Composite Residuosity
(DCR) assumptions. Very recently, Agrawal et al. [4] constructed the inner prod-
uct encryption, which achieves adaptive simulation-security for an unbounded
number of key queries and a single challenge ciphertext under DDH, DCR, and
LWE assumptions. Also, Katsumata et al. [21] proposed the lattice-based adap-
tively secure inner product encryption over integers Z.

SyLPEnIoT: Symmetric Lightweight Predicate Encryption 115

3 Background and Assumptions

3.1 SyLPEnIoT’s Model and Threat Model

We consider the environment of an IoT system typically assumed in the lit-
erature, as depicted in Fig. 2. The system consists of three main entities: a
lightweight device A such as the smart watch, a mobile device B, and cloud
storage provider C. A encrypts message M , and pattern�v using the key K, then
stores it in cloud C. B will use pattern�x and the key K for evaluation. We also note
that key K is set up and managed by owners of mobile devices in any preferred
way.

Fig. 2. Applying SyLPEnIoT to an IoT system.

On commencement, the smartwatch A uses pattern�v and key K to generate
the predicate ciphertext (EncK(�v)), and generates a data ciphertext (EncK(M))
by encrypting the collected data M . The smartwatch uploads both predicate
and data ciphertexts to a cloud server. Later, a mobile device B first downloads
predicate ciphertext EncK(�v), and uses its predicate pattern pattern�x and key K
for evaluation. If the evaluation is true, which means pattern�v matches pattern�x,
B will download and decrypt the corresponding EncK(M) and obtain the data
M . Note that we aim to hide both the pattern�v and data M from the cloud
server, thus providing both predicate and data (or payload) privacy.

3.2 Definitions

Lightweight Symmetric-Key Predicate Encryption. Let Σ denote a set
{0, 1}�, and F a finite set of predicates f : Σ → {0, 1}. We say that v ∈ Σ satisfies
a predicate f if f�x(�v) = 1. Suppose that the input is described as a vector �v,
and a predicate is defined as a vector �x, and the evaluation returns f�x(�v) = 1
iff the inner product <�v, �x> = 0. A symmetric-key predicate encryption scheme
for the class of predicates F over the set of binaries Σ consists of the following
probabilistic polynomial time (PPT) algorithms.

– Setup(1λ, �): The algorithm inputs the security parameter 1λ and �, and out-
puts a secret key SK.

– Encryption(SK, �v,M): The algorithm inputs a secret key SK, a vector �v ∈ Σ,
a message M , and outputs a ciphertext CT.

– GenToken(SK, �x): The algorithm inputs a secret key SK, a vector �x, and out-
puts a token TK.

116 T. Viet Xuan Phuong et al.

– Decrypt(TK,CT): The algorithm inputs a token TK, and a ciphertext CT. It
outputs M iff <�v, �x> = 0, and ⊥ otherwise.

Correctness:
For all SK ← Setup(1λ, �), all CT ← Encryption(SK, �v,M), all TK ←
GenToken(SK, �x):

– If <�v, �x> = 0, Decrypt(TK,CT) = M ;
– If <�v, �x> �= 0, P r[EvalThenDecrypt(TK,CT) = ⊥] ≥ 1 − negl(λ);

where negl(λ) is a negligible function in λ.

Security Definition. This section formally defines the security of our SyLPE-
nIoT scheme. We define the notion QTkn as the total number of token queries,
and the notion QEnc as the total number of ciphertext queries.

Definition 1 (Token Query Pattern). Given a query history (f1, . . . , fQTkn
) of

the SyLPEnIoT scheme, we set fj = (xj,1, . . . , xj,�) for each j ∈ [1, QTkn], where
� is the length of f in SyLPEnIoT. The token query pattern α(f1, . . . , fQTkn

) is
a set of values

{αi,j,k}i,j∈[1,QTkn],k∈[1,�] such that: αi,j,k =

{
1, xi,k = xj,k

0, otherwise
, where i, j ∈

[1, QTkn], k ∈ [1, �] .

Definition 2 (Decryption Pattern). Let CT denote a ciphertext obtained upon
encryption of plaintext (I,M). From the SyLPEnIoT scheme, it provides a query
history (I,M, f1, . . . , fQTkn

), and a secret key TKfj
corresponding to the pred-

icate fj, where j ∈ [1, QTkn]. The output of decrypting CT using TKfj
is a

decryption pattern as a set of values {βj}j∈[1,QTkn], which is also defined as:

βj =

{
M, fj(I) = 1
⊥, otherwise

, where j ∈ [1, QTkn].

We define the security notions of SyLPEnIoT scheme in the simulation setting,
which analyze the security of SyLPEnIoT in a real experiment and a simulation
experiment. In the real experiment, a probabilistic polynomial time algorithm
A interacts with a challenger who knows the master key SK. Firstly, A invokes
the ciphertext and token queries corresponding to the plaintext and predicate
chosen by A to the challenger. In the experiment, a probabilistic polynomial
time simulator algorithm S plays the challenger role, which only has access to
the decryption pattern corresponding to the chosen query by A, and has no
permission to obtain the master secret key SK.

Selective Simulation-Secure SyLPEnIoT. We define the selective simu-
lation security for SyLPEnIoT where the adversary must specify the entire
query history non-adaptively at the beginning of both real and simulation

SyLPEnIoT: Symmetric Lightweight Predicate Encryption 117

experiments. For a security parameter λ ∈ N, a SyLPEnIoT scheme with four
algorithms (Setup, Encryption, GenToken, Decrypt), and a uniform probabilistic
polynomial-time algorithm A, we define the real and simulation experiments
Exptsel,real

SyLPEnIoT,A(λ, n) as follows:

1. SK
R← Setup(1λ)

2. ((I1,M1), . . . , (IQEnc
,MQEnc

), f1, . . . , fQTkn
) R← A(1λ)

3. For i ∈ [1, QEnc],CTi
R← Encryption(SK, Ii,Mi)

4. For j ∈ [1, QTkn],TKfj

R← GenToken(SK, fj)
5. Output ({CTi}i∈[1,QEnc], {TKfj

}j∈[1,QTkn]),

where QEnc, QTkn ≤ poly(λ).
Let S be a uniform probabilistic polynomial-time simulator. We then define

a second experiment Exptsel,sim
SyLPEnIoT,A(λ) as follows:

1. ((I1,M1), . . . , (IQEnc
,MQEnc

), f1, . . . , fQTkn
) R← A(1λ)

2. {CTi}i∈[1,QEnc], {TKfj
}j∈[1,QTkn])

R← S(1λ,
α(f1, . . . , fQTkn

), β(f1, . . . , fQTkn
))

3. Output ({CTi}i∈[1,QEnc], {TKfj
}j∈[1,QTkn]).

Definition 3. A SyLPEnIoT is selectively simulation-secure if for any uniform
probabilistic polynomial-time algorithm A, there exists a uniform probabilistic
polynomial time simulator S, such that the following ensemble distributions:

({CTi}i∈[1,QEnc], {TKfj
}j∈[1,QTkn])

R← Exptsel,real
SyLPEnIoT,A(λ)

and ({CTi}i∈[1,QEnc], {TKfj
}j∈[1,QTkn])

R← Exptsel,sim
SyLPEnIoT,A,S(λ) are computation-

ally indistinguishable.

4 Main Constructions in SyLPEnIoT

In this section, we first present our SylPEnIoT construction in the standard
model. Unlike existing PE constructions in the literature, our construction does
not use bilinear pairings. Instead we use the following cryptographic primitives:

4.1 Pseudo-Random Function

A Pseudo-Random Function (PRF) is a polynomial time computable function
PRF : {0, 1}×{0, 1}λ → {0, 1}λ such that for all polynomial-size algorithms A:

|Pr[APRF(K,·) = 1 : K
R← {0, 1}λ]−Pr[Ag(·) = 1 : g

R← Func(�,m)]| ≤ negl(λ),
where the probabilities are taken over all possible choices of K and g.

118 T. Viet Xuan Phuong et al.

4.2 Symmetric-Key Encryption

A symmetric-key encryption system SKE may be described as an ensemble of
the following polynomial-time algorithms:

– SKE.KeyGen(1λ): A probabilistic algorithm that takes the security parameter
λ as input and outputs a secret-key SK.

– SKE.Encrypt(SK, s): A deterministic algorithm that takes as input a key SK
and a plaintext x. It outputs a ciphertext c.

– SKE.Decrypt(SK, c): A deterministic algorithm that takes as input a key SK
and a ciphertext c. It outputs the decrypted plaintext x.

4.3 Construction

In the construction, we use the definition of [22]; we take the class of attributes
to be Σ = {0, 1}λ∪∗, and F a finite set of predicates f : Σ → {0, 1}. We say that
I ∈ Σ satisfies a predicate f if f(I) = 1. Suppose that the input I is described
as a vector �v, and a predicate is defined as a vector �x. Then the evaluation
returns the inner product <�v, �x> = 0, which means that f(I) = 1 . In addition,
we assume a message space M is a small subset of {0, 1}λ, |M| < 2λ/poly(λ).

Our SyLPEnIoT scheme for the class of predicates F over the set of binaries
Σ consists of the following probabilistic polynomial time (PPT) algorithms. Our
construction utilizes a pseudo-random function: PRF : {0, 1}×{0, 1}λ → {0, 1}λ,
and a secure symmetric-key encryption SKE with the key-space {0, 1}λ, where
λ ∈ N is the security parameter. This makes our construction more lightweight
and efficiently implementable.

– Setup(1λ, �): On taking the security parameter λ and the fixed length � of
vectors as input, the setup algorithm samples SK ← {0, 1}λ, and outputs SK.

– Encryption(SK, �v,M): The encryption algorithm takes as input the secret key
SK, a vector �v = (v1, . . . , v�) ∈ {0, 1}, and message M . First, with i from
0 to �, the algorithm uniformly samples K

R← SKE.KeyGen(1λ). Second, it
generates the ciphertext as:
1: for each i ∈ [1, �] do

2: ĉi =

{
PRF(SK, 1 − vi||i), if vi = 1
PRF(SK, 1 − vi||i), otherwise

3: ci =

{
PRF(SK, ∗||i) ⊕ PRF(SK, 1 − vi||i), if vi = 1
PRF(SK, 1 − vi||i), otherwise

4: c′
i =

{
PRF(SK, ∗||i), if vi = 1
PRF(SK, 1 − vi||i) ⊕ PRF(SK, vi||i), otherwise

5: c = ⊕�
i=1ci ⊕ K

It then computes c0 = SKE.Encrypt(K,M). Finally, it produces the ciphertext
as CT = (c0, c, {ĉi, c

′
i}i∈[1,�]).

SyLPEnIoT: Symmetric Lightweight Predicate Encryption 119

– GenToken(SK, �x): The algorithm takes as input the secret key SK, and a vector
�x = (x1, . . . , x�) ∈ {0, 1}. With i from 1 to � and xi = 1, the algorithm
uniformly samples U0, Ui

R← SKE.KeyGen(1λ). In addition, for i from 1 to �

and xi = 0, it uniformly samples Ri
R← {0, 1}λ. Next, the algorithm generates

the token as:
1: for each i ∈ [1, �] do

2: t̂i =

{
PRF(SK, xi||i) ⊕ Ui, if xi = 1
Ri, otherwise

3: ti = PRF(SK, xi||i)
4: t = ⊕�

i=1ti ⊕ U0

It then sets U ′
0 = ⊕�

i=1,xi=1Ui, and computes t0 = SKE.Encrypt(U ′
0, U0). Then,

the token is generated as: TK = (t0, t, {t̂i}i∈[1,�]).
– Decrypt(TK, CT): the algorithm takes as input a ciphertext
CT = (c0, c, {ĉi, c

′
i}i∈[1,�]) and a token TK = (t0, t, {t̂i}i∈[1,�]). The decryption

algorithm computes the following: U ′
0 = ⊕�

i=1,xi=1t̂i ⊕ ĉi.
Then uses U ′

0 to decrypt t0 to recover U0 as U0 = SKE.Decrypt(U ′
0, U0).

Finally, it computes: K = t ⊕ c ⊕�
i=1,xi=0 c′

i ⊕ U0.
M = SKE.Decrypt(K, c0), which means that <�v, �x> == 0. Otherwise, the
decryption outputs ⊥.

Correctness. Consider a ciphertext CT = (c0, c1, c2, {c′
i}i∈[1,�]) corresponding

to �v, and a token TK = (t1, t′′) corresponding to �x. Hence, the correctness of the
SyLPEnIoT scheme is established as follows:

1. If <�v, �x> = 0, then there does not exist any pair (vi = 1, xi = 1). Firstly,
we can recover the key U0 correctly by computing U ′

0 = ⊕�
i=1,xi=0t̂i ⊕ ĉi, and

decrypting U0 = SKE.Decrypt(U ′
0, U0). Then T = t ⊕ c ⊕�

i=1,xi=0 c′
i ⊕ U0 = K,

which in turn implies that M = SKE.Decrypt(T, c), Therefore <�v, �x> = 0,
the payload message is recovered correctly.

2. If <�v, �x> �= 0, then there exists at least a pair (vk = 1, xk = 1). Subsequently,
there is xk = 1 with tk = PRF(SK, 1||k), and cxkk = PRF(SK, 0||k) ⊕ Kk.
Firstly, U0 cannot be recovered successfully. If we keep using the uncorrected
form U0, the key K cannot be recovered successfully, and returns the message
M ′ = SKE.Decrypt(K, c), which is a uniformly random string in {0, 1}λ. Since
the payload message space M is assumed to be small, the probability of
a uniformly random message M ′ lies in message space M. Meanwhile, if
<�v, �x> �= 0, the decryption algorithm returns ⊥ with overwhelming large
probability.

Theorem 1. The SyLPEnIoT scheme is selectively simulation-secure in the
standard model under the assumption that PRF is a pseudo-random function.

120 T. Viet Xuan Phuong et al.

5 Evaluation

5.1 Microbenchmarks

The first benchmark was produced on a DELL laptop with an Intel Core I7-
7820HQ CPU @ 2.90 GHz. The second benchmark was on a Raspberry Pi 3
Model B V1.2 with an ARM Corter-A53 @ 1.4 Ghz. Finally, we conducted a
feasibility test of SyLPEnIoT on an ultra low-power device, an Arduino Nano
33 micro-controller using 32-bit ARM Cortex-M0 CPU with 256 KB Flash and
16 KB RAM.

5.2 SyLPEnIoT Construction

In this implementation, we generated the zero inner product pair of two binary
vectors �v, �x, and the non-zero inner product pair of two binary vectors �v, �x. We
ran this experiment by varying the lengths of two vectors. Figure 3 illustrate
the encryption and decryption times of the original PE schemes and the pro-
posed SyLPEnIoT schemes. Because the bilinear pairing operations in PE [22]
require heavy computation, we only ran samples from five to one hundred order
to compare the computational cost with our SyLPEnIoT. As can be seen, the
encryption and decryption times of SyLPEnIoT are significantly reduced in com-
parison with the original PE scheme. The computation time marginally increases
with the size of the data. Even with a large set (e.g., � = 100), both encryption
and decryption operations can be completed in the order of milliseconds.

0 20 40 60 80 100

0

1,000

2,000

3,000

Length of vector (bits)

E
nc

ry
pt
io
n
T
im

e
(M

ili
se
co
nd

s)

Original Scheme

Ours

(a)

0 20 40 60 80 100

0

500

1,000

1,500

2,000

Length of vector (bits)

E
va
lu
at
io
n-
th
en

-D
ec
ry
pt
io
n
T
im

e
(M

ili
ec
on

ds
)

Original Scheme

Ours

(b)

0 20 40 60 80 100

0

2

4

6

·104

Length of vector (bits)

E
nc

ry
pt
io
n
T
im

e
(M

ili
se
co
nd

s)

Original PE

SyLPEnIoT

(c)

0 20 40 60 80 100

0

0.5

1

1.5

·104

Length of vector (bits)

D
ec
ry
pt
io
n
T
im

e
(M

ili
se
co
nd

s)

Original-PE

SyLPEnIoT

(d)

Fig. 3. (a)(b) Comparison of encryption and decryption times between the original PE
and SyLPEnIoT on a Windows 10 Core i7 processor with 16 GB RAM. (c)(d) Com-
parison of encryption and decryption times between the original PE and SyLPEnIoT
on a Linux Raspberry Pi 3 ARM Corter-A53 processor.

In addition, we demonstrate the practicality of SyLPEnIoT on IoT devices
through experiments on the ARM Cortex-53 processor and the ARM Cortex-
M0+ processor, which are embedded in Raspberry Pi 3. In (c)(d) of Fig. 3,
we show its performance in terms of encryption time (seconds), total storage
cost (KB), token generation time (seconds), and evaluation to decryption time
(seconds). The experiments were conducted in real-time without optimization,
and the evaluation to decryption algorithm requires O(logn) search time. This
can be improved by executing search time synchronously to reduce the overall
decryption time.

SyLPEnIoT: Symmetric Lightweight Predicate Encryption 121

5.3 SyLPEnIoT on Ultra Low-Power Devices

0 10 20 30 40 50
0

20

40

60

80

100

Length of vector (bits)

E
nc

ry
pt
io
n
T
im

e
(M

ili
se
co
nd

s)

Windows

Raspberry PI 3

Arduino Nano 33

0 10 20 30 40 50
0

5

10

15

Length of vector (bits)

T
ok

en
G
en

er
at
io
n
T
im

e
(M

ili
se
co
nd

s) Windows

Raspberry PI 3

Arduino

0 10 20 30 40 50
0

50

100

150

200

250

Length of vector (bits)

D
ec
ry
pt
io
n
T
im

e
(M

ili
se
co
nd

s)

Windows

Raspberry PI 3

Arduino

Fig. 4. Comparisons of the total encryption time, token generation time, and evaluation
to decryption time (miliseconds) of SyLPEnIoT on a Windows 10 Core i7 processor
with 16GB RAM, a Linux Raspberry Pi 3 ARM Corter-A53 processor, and an Arduino
Nano 33 IoT 32-bit ARM Cortex-M0 CPU with 256 KB Flash and 16 KB RAM.

We first reprogrammed the SALSA20 [6] encryption to be compatible with Rasp-
berry Pi 3, as well as to enable it to function on the Arduino Nano 33, which
is an ultra low-power device. The Arduino Nano 33 device is heavily resource-
constrained, as it only has a 32-bit ARM Cortex-M0 CPU with 256 KB Flash
and 16 KB RAM. WiFi and Bluetooth connectivity is performed with a module
from u-blox, NINA-W10, a low power chipset operating in the 2.4 GHz range.
Our target was to validate that SyLPEnIoT is practical for an ultra low sensor
platform like Arduino Nano 33, which uses one of the common ultra low pro-
cessors. We show the feasibility our SyLPEnIoT on the Arduino Nano 33 by
conducting experiments for encryption, token generation, decryption, then pro-
vide a comparison in Fig. 4. From the results, the performance of SyLPEnIoT
on Arduino 33 is reasonably good, which demonstrates that it can be extended
to the other ultra low-power embedded devices. To the best of our knowledge,
SyLPEnIoT is the first lightweight predicate encryption scheme that can run on
such ultra low-end devices with a maximum vector length of 50-bits.

A Security Proof

Theorem 2. The SyLPEnIoT scheme is selectively simulation-secure in the
standard model under the assumption that PRF is a pseudo-random function.

Again, we use the notion QTkn as the total number of token queries, and the
notion QEnc as the total number of ciphertext queries.

Proof. We show that for any uniform probabilistic polynomial-time algorithm
A, there exists a uniform probabilistic polynomial-time simulator S, such that
the ensemble distribution: ({CTi}i∈[1,QEnc], {TKfj

}j∈[1,QTkn])
R← Exptsel,real

SyLPEnIoT,A
(λ, �) and the ensemble distribution: ({CTi}i∈[1,QEnc], {TKfj

}j∈[1,QTkn])
R←

Exptsel,sim
SyLPEnIoT,A(λ, �) are computationally indistinguishable. We then construct

the simulator S in the experiment sim. First, we consider the simplest scenario
where A makes QEnc = 1 ciphertext query and QTkn ≤ poly(λ) gen-token queries.

122 T. Viet Xuan Phuong et al.

Since in our main SyLPEnIoT scheme, the input I is described as a vector �v,
and a predicate is defined as a vector �x, and the evaluation returns f�x(�v) = 1 iff
the inner product <�v, �x> = 0. In this proof, we describe directly the simulation
of �v, �x instead of attribute I, predicate f .

– Inputs to Simulator S. Let QEnc = 1, we assume that A queries the simu-
lator with a query history of the form H = (�v,M, �x1, . . . , �xQ). S receives the
security parameter 1λ along with the query history H. We recall the definition
of query pattern α(H), and decryption pattern β(H) as:

• Given a query history H = (�v,M, �x1, . . . , �xQTkn
) for SyLPEnIoT scheme,

we set �xj = (xj,1, . . . , xj,�) for each j ∈ [1, QTkn], where � is the length
of f in SyLPEnIoT scheme. The token query pattern α(H) is a set of of
values

{αi,j,k}i,j∈[1,QTkn],k∈[1,�] such that: αi,j,k =

{
1, xi,k = xj,k

0, otherwise
, where i, j ∈

[1, QTkn], k ∈ [1, �] .
• Then let TKfj

be the gen-token corresponding to �xj in H =
(�v,M, �x1, . . . , �xQTkn

), where j ∈ [1, QTkn]. Also, let CT denotes a cipher-
text upon the encryption of the plaintext �v,M . The decryption pat-
tern β(H) received by S is defined as a set of values {βj}j∈[1,QTkn]:

βj =

{
M, <�v, �xj> = 0
⊥, otherwise

,

We choose the values W1, . . . , W�
R← {0, 1}λ to simulate the PRF(SK, ∗||k) for

k ∈ [1, �].
– Simulating GenToken. The simulator S now generates GenToken

{TKfj
}j∈[1,QTkn] using the algorithm below. Note that since the GenToken

algorithm is deterministic, S ensures the GenToken generate are consistent
with the predicate vectors.
1: Initialize a Q × � matrix d to empty, T = 0
2: for each j ∈ [1, Q] do do
3: for each k ∈ [1, �] do do

4: Uniformly samples U0, Uk
R← SKE.KeyGen(1λ).

5: if there exists i ∈ [1, j − 1];αi,j,k = 1 then
6: ˆtj,k = ˆti,k ⊕ Uk;T = ⊕Uk; tj,k = ti,k
7: else
8: tj,k

R← {0, 1}λ; ˆtj,k
R← {0, 1}λ

9: if T = 0 then
10: tj0,

R← {0, 1}λ

11: else
12: tj0 ← SKE.Encrypt(T,U0)
13: tj = ⊕�

k=1tj,k
14: TKfj

= (tj0, tj , ˆtj,k, . . . , ˆtj,�)

– Simulating the Ciphertext. The plaintext (�v,M) is not known to S. The
only things that the simulator can learn are the various leakages of encrypted

SyLPEnIoT: Symmetric Lightweight Predicate Encryption 123

data and the secret keys. To simulate the components including the wild-
card ‘*’, the values W1,W2, . . . , W�

R← {0, 1}λ are used by S to simulate
PRF(SK, ∗||k) for k ∈ [1, �].

• If some j ∈ [1, QTkn], <�v, �xj> = 0, then at the positions k where �xjk = 1,
it can deduce �vk = 0, and from �xjk = 0; it can infer �vk = 1 or �vk = 0.
This information allows S to simulate the ciphertext components as:
1: if there exists j ∈ [1, QTkn] ∧ βj �=⊥ then
2: M ← βj

3: else
4: M

R← {0, 1}λ

5: Uniformly samples K
R← SKE.KeyGen(1λ).

6: for each k ∈ [1, �] do do
7: if j ∈ [1, QTkn] : βj �=⊥ ∧ α(j, k) = 0 ∧ xj,k = 1 then
8: ˆc1k = ˆtjk ; c1k = tjk ⊕ Wk; c′

1k
= Wk

9: else
10: if j ∈ [1, QTkn] : βj �=⊥ ∧ α(j, k) = 0 ∧ xj,k = 0 then

11: ˆc1k = ˆtjk ; c1k = tjk ; rk
R← {0, 1}λ; c′

1k
= tjk ⊕ rk

12: else
13: ˆc1k = R← {0, 1}λ; c1k = R← {0, 1}λ; c′

1k
= R← {0, 1}λ

14: ck = ⊕�
k=1c1k ⊕ K

15: c = SKE.Encrypt(K,M).
• The final step is to simulate the c component. Recall that the decryption

pattern is the set of value β1, . . . , βQ. For j ∈ [1, QTkn], βj output of 1 if
<�v, �x> = 0, then M is a message. Otherwise, then M is set as the string
{⊥}λ. Later, M is used to generate the c = SKE.Encrypt(K,M) as in the
real world. This ensures that decrypting C using TKfj

, the message M
is recovered correctly. On the other hand, <�v, �xj> = 1 for j ∈ [1, QTkn],
decrypting with any the token TKfj

always returns the string {⊥}λ .
– The Indistinguishability Argument. This argues that a probabilis-

tic polynomial-time distinguisher D cannot computationally distinguish
(CT, {TKfj

}j∈[1,QTkn])
R← Exptsel,real

SyLPEnIoT,A(λ, �) from

(CT, {TKfj
}j∈[1,QTkn])

R← Exptsel,sim
SyLPEnIoT,A(λ, �). The indistinguishability is pre-

sented as:
• At the first simulation of Exptsel,sim

SyLPEnIoT,A as ((I1,M1), . . . , (IQEnc
,MQEnc

),

f1, . . . , fQTkn
) R← A(1λ), it does not include the secret key SK with all but

negligible probability, and the secret keys generated in the real mode of
experiment using the pseudo-random function PRF are indistinguishable
from the uniformly random secret keys generated by the simulator S.
Then, this can distinguish between the output of PRF and a uniformly
random string of size λ without knowing the corresponding secret key
SK. In the same way, the components of the ciphertext CT in the real
experiment must also be indistinguishable from those generated by the
simulator S.

124 T. Viet Xuan Phuong et al.

• Finally, if there exists at least one j ∈ [1, QTkn] such that <�v, �xj> = 0,
S gains knowledge of the message M , which is used to generate c =
SKE.Encrypt(K,M) as in the real world. In this case, the indistinguisha-
bility is trivial. On the other hand, <�v, �xj> = 1 for j ∈ [1, QTkn], decrypt-
ing CT using any TKfj

does not reveal the secret key K, which is used
to encrypt M .

– Polynomial Ciphertext Queries. The simulator S can address polyno-
mially many ciphertext queries of the form {(Ii,Mi)}i∈[1,QEnc]]. The simu-
lator S essentially repeats the same ciphertext simulation phase for each
such query. As our security definition, the simulator S receives as input the
decryption pattern corresponding to each ciphertext query (Ii,Mi). Hence,
it can either infer the corresponding payload message Mi or a string {⊥}λ.
Additionally, the components for CTi are chosen consistently with the token-
gen {TKfj

}j∈[1,QTkn]. This ensures that, if fj(Ii) = 1 for some j ∈ [1, QTkn],
then decrypting CTi using TKfj

correctly recovers the string {0, 1}λ. Finally,
the simulation of two ciphertexts CTi and CT′

i can proceed independent of
whether the corresponding attributes Ii and I ′

i match in one or more com-
ponents. This completes the proof of Theorem 1.

References

1. Abdalla, M., Bourse, F., De Caro, A., Pointcheval, D.: Simple functional encryption
schemes for inner products. In: Katz, J. (ed.) PKC 2015. LNCS, vol. 9020, pp. 733–
751. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46447-2 33

2. Abdalla, M., Catalano, D., Fiore, D., Gay, R., Ursu, B.: Multi-input functional
encryption for inner products: function-hiding realizations and constructions with-
out pairings. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol.
10991, pp. 597–627. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
96884-1 20

3. Agrawal, S., Freeman, D.M., Vaikuntanathan, V.: Functional encryption for inner
product predicates from learning with errors. In: Lee, D.H., Wang, X. (eds.) ASI-
ACRYPT 2011. LNCS, vol. 7073, pp. 21–40. Springer, Heidelberg (2011). https://
doi.org/10.1007/978-3-642-25385-0 2

4. Agrawal, S., Libert, B., Maitra, M., Titiu, R.: Adaptive simulation security for
inner product functional encryption. In: Kiayias, A., Kohlweiss, M., Wallden, P.,
Zikas, V. (eds.) PKC 2020. LNCS, vol. 12110, pp. 34–64. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-45374-9 2

5. Atzori, L., Iera, A., Morabito, G.: The internet of things: a survey. Comput. Netw.
54(15), 2787–2805 (2010)

6. Bernstein, D.J.: The Salsa20 family of stream ciphers. In: Robshaw, M., Billet, O.
(eds.) New Stream Cipher Designs. LNCS, vol. 4986, pp. 84–97. Springer, Heidel-
berg (2008). https://doi.org/10.1007/978-3-540-68351-3 8

7. Bishop, A., Jain, A., Kowalczyk, L.: Function-hiding inner product encryption. In:
Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015. LNCS, vol. 9452, pp. 470–491.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48797-6 20

8. Boneh, D., Di Crescenzo, G., Ostrovsky, R., Persiano, G.: Public key encryption
with keyword search. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004.

https://doi.org/10.1007/978-3-662-46447-2_33
https://doi.org/10.1007/978-3-319-96884-1_20
https://doi.org/10.1007/978-3-319-96884-1_20
https://doi.org/10.1007/978-3-642-25385-0_2
https://doi.org/10.1007/978-3-642-25385-0_2
https://doi.org/10.1007/978-3-030-45374-9_2
https://doi.org/10.1007/978-3-540-68351-3_8
https://doi.org/10.1007/978-3-662-48797-6_20

SyLPEnIoT: Symmetric Lightweight Predicate Encryption 125

LNCS, vol. 3027, pp. 506–522. Springer, Heidelberg (2004). https://doi.org/10.
1007/978-3-540-24676-3 30

9. Boneh, D., Waters, B.: Conjunctive, subset, and range queries on encrypted data.
In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 535–554. Springer, Heidel-
berg (2007). https://doi.org/10.1007/978-3-540-70936-7 29

10. Carter, H., Mood, B., Traynor, P., Butler, K.: Secure outsourced garbled circuit
evaluation for mobile devices. In: Proceedings of the 22nd USENIX, pp. 289–304
(2013)

11. Cash, D., Jarecki, S., Jutla, C., Krawczyk, H., Roşu, M.-C., Steiner, M.: Highly-
scalable searchable symmetric encryption with support for Boolean queries. In:
Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 353–373.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40041-4 20

12. Chase, M., Miao, P.: Private set intersection in the internet setting from lightweight
oblivious PRF. In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO 2020. LNCS,
vol. 12172, pp. 34–63. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
56877-1 2

13. CISCO: Cisco IoT System Security: Mitigate Risk, Simplify Compliance, and Build
Trust (2015)

14. Curtmola, R., Garay, J., Kamara, S., Ostrovsky, R.: Searchable symmetric encryp-
tion: improved definitions and efficient constructions. In: Proceedings of the 13th
ACM CCS 2006, pp. 79–88 (2006)

15. Freeman, D.M.: Converting pairing-based cryptosystems from composite-order
groups to prime-order groups. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS,
vol. 6110, pp. 44–61. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-
642-13190-5 3

16. Gay, R., Méaux, P., Wee, H.: Predicate encryption for multi-dimensional range
queries from lattices. In: Katz, J. (ed.) PKC 2015. LNCS, vol. 9020, pp. 752–776.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46447-2 34

17. Golle, P., Staddon, J., Waters, B.: Secure conjunctive keyword search over
encrypted data. In: Jakobsson, M., Yung, M., Zhou, J. (eds.) ACNS 2004. LNCS,
vol. 3089, pp. 31–45. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-
540-24852-1 3

18. Gorbunov, S., Vaikuntanathan, V., Wee, H.: Predicate encryption for circuits from
LWE. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9216, pp.
503–523. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48000-
7 25

19. Hazay, C., Toft, T.: Computationally secure pattern matching in the presence of
malicious adversaries. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp.
195–212. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17373-
8 12

20. Kamara, S., Mohassel, P., Riva, B.: Salus: a system for server-aided secure function
evaluation. In: Proceedings of the 2012 ACM CCS, pp. 797–808 (2012)

21. Katsumata, S., Nishimaki, R., Yamada, S., Yamakawa, T.: Adaptively secure inner
product encryption from LWE. Cryptology ePrint Archive, Report 2020/1135
(2020). https://eprint.iacr.org/2020/1135

22. Katz, J., Sahai, A., Waters, B.: Predicate encryption supporting disjunctions, poly-
nomial equations, and inner products. In: Smart, N. (ed.) EUROCRYPT 2008.
LNCS, vol. 4965, pp. 146–162. Springer, Heidelberg (2008). https://doi.org/10.
1007/978-3-540-78967-3 9

https://doi.org/10.1007/978-3-540-24676-3_30
https://doi.org/10.1007/978-3-540-24676-3_30
https://doi.org/10.1007/978-3-540-70936-7_29
https://doi.org/10.1007/978-3-642-40041-4_20
https://doi.org/10.1007/978-3-030-56877-1_2
https://doi.org/10.1007/978-3-030-56877-1_2
https://doi.org/10.1007/978-3-642-13190-5_3
https://doi.org/10.1007/978-3-642-13190-5_3
https://doi.org/10.1007/978-3-662-46447-2_34
https://doi.org/10.1007/978-3-540-24852-1_3
https://doi.org/10.1007/978-3-540-24852-1_3
https://doi.org/10.1007/978-3-662-48000-7_25
https://doi.org/10.1007/978-3-662-48000-7_25
https://doi.org/10.1007/978-3-642-17373-8_12
https://doi.org/10.1007/978-3-642-17373-8_12
https://eprint.iacr.org/2020/1135
https://doi.org/10.1007/978-3-540-78967-3_9
https://doi.org/10.1007/978-3-540-78967-3_9

126 T. Viet Xuan Phuong et al.

23. Kim, S., Lewi, K., Mandal, A., Montgomery, H., Roy, A., Wu, D.J.: Function-
hiding inner product encryption is practical. In: Catalano, D., De Prisco, R. (eds.)
SCN 2018. LNCS, vol. 11035, pp. 544–562. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-98113-0 29

24. Lai, S., et al.: Result pattern hiding searchable encryption for conjunctive queries.
In: Proceedings of the 2018 ACM CCS 2018, pp. 745–762 (2018)

25. Lee, K., Lee, D.H.: Improved hidden vector encryption with short ciphertexts
and tokens. Des. Codes Cryptogr. 58(3), 297–319 (2011). https://doi.org/10.1007/
s10623-010-9412-x

26. Lewko, A., Okamoto, T., Sahai, A., Takashima, K., Waters, B.: Fully secure
functional encryption: attribute-based encryption and (hierarchical) inner prod-
uct encryption. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp.
62–91. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5 4

27. NIST: Post-Quantum Cryptography PQC, Security (Evaluation Criteria) (2020).
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-
cryptography-standardization/evaluation-criteria/security-(evaluation-criteria)

28. NXP: https://www.nxp.com/applications/solutions/mobile/wearables/smart-
watches:wrist-worn-wearable-smart-watch

29. Peikert, C.: Public-key cryptosystems from the worst-case shortest vector problem:
extended abstract. In: Proceedings of the Forty-First Annual ACM Symposium on
Theory of Computing, pp. 333–342 (2009)

30. Pinkas, B., Rosulek, M., Trieu, N., Yanai, A.: SpOT-light: lightweight private set
intersection from sparse OT extension. In: Boldyreva, A., Micciancio, D. (eds.)
CRYPTO 2019. LNCS, vol. 11694, pp. 401–431. Springer, Cham (2019). https://
doi.org/10.1007/978-3-030-26954-8 13

31. Regev, O.: On lattices, learning with errors, random linear codes, and cryptography
(2009)

32. Sedghi, S., van Liesdonk, P., Nikova, S., Hartel, P., Jonker, W.: Searching keywords
with wildcards on encrypted data. In: Garay, J.A., De Prisco, R. (eds.) SCN 2010.
LNCS, vol. 6280, pp. 138–153. Springer, Heidelberg (2010). https://doi.org/10.
1007/978-3-642-15317-4 10

33. Shen, E., Shi, E., Waters, B.: Predicate privacy in encryption systems. In: Reingold,
O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 457–473. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-00457-5 27

34. Shi, E., Bethencourt, J., Chan, T.H., Song, D., Perrig, A.: Multi-dimensional range
query over encrypted data. In: 2007 IEEE Symposium on Security and Privacy.
SP 2007, pp. 350–364 (2007)

35. Shi, E., Waters, B.: Delegating capabilities in predicate encryption systems. In:
Aceto, L., Damg̊ard, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A.,
Walukiewicz, I. (eds.) ICALP 2008. LNCS, vol. 5126, pp. 560–578. Springer, Hei-
delberg (2008). https://doi.org/10.1007/978-3-540-70583-3 46

36. Shor, P.W.: Algorithms for quantum computation: discrete logarithms and factor-
ing. In: Proceedings 35th FOCS, pp. 124–134 (1994)

37. Song, D.X., Wagner, D., Perrig, A.: Practical techniques for searches on encrypted
data. In: Proceedings of the SP 2000, p. 44 (2000)

https://doi.org/10.1007/978-3-319-98113-0_29
https://doi.org/10.1007/978-3-319-98113-0_29
https://doi.org/10.1007/s10623-010-9412-x
https://doi.org/10.1007/s10623-010-9412-x
https://doi.org/10.1007/978-3-642-13190-5_4
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/evaluation-criteria/security-(evaluation-criteria)
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/evaluation-criteria/security-(evaluation-criteria)
https://www.nxp.com/applications/solutions/mobile/wearables/smart-watches:wrist-worn-wearable-smart-watch
https://www.nxp.com/applications/solutions/mobile/wearables/smart-watches:wrist-worn-wearable-smart-watch
https://doi.org/10.1007/978-3-030-26954-8_13
https://doi.org/10.1007/978-3-030-26954-8_13
https://doi.org/10.1007/978-3-642-15317-4_10
https://doi.org/10.1007/978-3-642-15317-4_10
https://doi.org/10.1007/978-3-642-00457-5_27
https://doi.org/10.1007/978-3-540-70583-3_46

Security Analysis of SFrame

Takanori Isobe1,2,3, Ryoma Ito2(B), and Kazuhiko Minematsu4

1 University of Hyogo, Kobe, Japan
takanori.isobe@ai.u-hyogo.ac.jp

2 National Institute of Information and Communications Technology, Koganei, Japan
itorym@nict.go.jp

3 PRESTO, Japan Science and Technology Agency, Kawaguchi, Japan
4 NEC Corporation, Kawasaki, Japan

k-minematsu@nec.com

Abstract. As people become more and more privacy conscious, the need
for end-to-end encryption (E2EE) has become widely recognized. We
study the security of SFrame, an E2EE mechanism recently proposed to
IETF for video/audio group communications over the Internet. Although
a quite recent project, SFrame is going to be adopted by a number of real-
world applications. We inspected the original specification of SFrame.
We found a critical issue that will lead to an impersonation (forgery)
attack by a malicious group member with a practical complexity. We
also investigated the several publicly-available SFrame implementations,
and confirmed that this issue is present in these implementations.

Keywords: End-to-End Encryption · SFrame · Authenticated
encryption · Signature · Impersonation

1 Introduction

End-to-end encryption (E2EE) is a technology that ensures the secrecy and
authenticity of communications from the intermediaries between the communi-
cating parties. When E2EE is deployed in a communication application over the
Internet, even the servers that facilitate communications cannot read or tamper
the messages between the users of this application.

Due to the numerous evidences of massive surveillance, most notably by the
case of Snowden, E2EE has received significant attentions and deemed as a key
feature to protect users’ privacy and integrity for a wide range of communication
applications. This also holds for the video calling/meeting applications, such as
Zoom1 or Webex2. The end-to-end security of video group meeting applications
has been actively studied, and various approaches to E2EE have been proposed.
Studying the security of E2EE systems in practice is also a hot topic, as shown
by [6,12–14,31].

1 https://zoom.us/.
2 https://www.webex.com.

c© Springer Nature Switzerland AG 2021
E. Bertino et al. (Eds.): ESORICS 2021, LNCS 12973, pp. 127–146, 2021.
https://doi.org/10.1007/978-3-030-88428-4_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-88428-4_7&domain=pdf
https://zoom.us/
https://www.webex.com
https://doi.org/10.1007/978-3-030-88428-4_7

128 T. Isobe et al.

In this article, we study SFrame, which is one such approach aiming to pro-
viding E2EE over the Internet. Technically, it is a mechanism to encrypt RTC
(Real-Time Communication) traffic in an end-to-end manner. RTC (or WebRTC,
an RTC protocol between web browsers) is a popular protocol used by video/au-
dio communication, and SFrame is carefully designed to suppress communication
overheads that would be introduced when E2EE is deployed. It was proposed
to IETF by a team of Google and CoSMo Software (Omara, Uberti, Gouaillard
and Murillo) at 2020 as a form of Internet draft [26]. Although a quite recent
proposal, it quickly gains lots of attentions. One can find a large variety of ongo-
ing plans to adopt SFrame as a crucial component for E2EE including major
proprietary software to open-source applications, such as Google Duo [25], Cisco
Webex [4,5], and Jitsi Meet [15,32].

1.1 Our Contributions

We looked into the original specification of SFrame [26], and made several obser-
vations. Most notably, we found an issue regarding the use of authenticated
encryption with associated data (AEAD) and signature algorithm. The spec-
ification [26] defines two AEAD algorithms, namely a generic composition of
AES-CTR and HMAC-SHA256, dubbed AES-CM-HMAC, and AES-GCM for
encryption of video/audio packets. We show an impersonation (forgery) attack
by a malicious group member who owns a shared group key for the specified
AEAD algorithm. The attack complexity depends on the AEAD algorithm. More
specifically for AES-CM-HMAC the complexity depends on the tag length, and
for AES-GCM the complexity is negligible for any tag length. We observe that
AES-CM-HMAC is specified with particularly short tags, such as 4 or 8 bytes,
making the attack complexity practical. The following shows the overview of our
security analysis.

AEAD Security. In Sect. 4.1, we study the classical AEAD security (namely, con-
fidentiality and integrity) of SFrame encryption scheme. While SFrame adopts
existing, well-analyzed AEAD schemes, they are used in a way different from
what standard security analysis assumes, hence the existing AEAD security
proofs do not necessarily carry over to the entire protocol. Despite this discrep-
ancy, we show that encryption schemes defined by SFrame are provably secure
in the context of standard AEAD.

Impersonation Against AES-CM-HMAC with Short Tags. In Sect. 4.2, we show
an impersonation attack on AES-CM-HMAC with short tags by a malicious
group member. This attack exploits a vulnerability of very short tag length.
Since the malicious group member owns a shared group key, she can precom-
pute multiple ciphertext/tag pairs from any input set, and store them into a
precomputation table. After that, she can forge by intercepting a target mes-
sage frame and replacing the ciphertext in that frame with a properly selected
ciphertext from the precomputation table. For example, when the tag length
is 4 bytes, she can practically perform an impersonation attack with a success
probability of almost one by preparing 232 precomputation tables in advance.

Security Analysis of SFrame 129

Security of AES-CM-HMAC with Long Tags. In Sect. 4.3, we discuss the security
of AES-CM-HMAC with long tags. We show that AES-CM-HMAC with long
tags is secure against the impersonation attack proposed in Sect. 4.2. In more
detail, we prove that AES-CM-HMAC is second-ciphertext unforgeability (SCU)
security, which was defined by Dodis et al. [7], and SCU security covers the class
of impersonation attacks described above, i.e., forging a ciphertext using the
knowledge of the secret key so that the forged ciphertext has the same tag value
as a previously observed ciphertext. Concretely, we show that the SCU security
of AES-CM-HMAC depends on the security of SHA256, which is the underlying
hash function of SFrame. Since SHA256 has an everywhere second-preimage
resistance, which was defined by Rogaway and Shrimpton [30], AES-CM-HMAC
with long tags can be considered as the SCU-secure AEAD.

Impersonation Against AES-GCM with Any Long Tags. In Sect. 4.4, we show
an impersonation attack on AES-GCM with any long tags by a malicious group
member. This attack exploits a vulnerability of the linearity of GHASH function
in the known key setting. The malicious group member who owns the GCM key
and observes a legitimate GCM input/output set including a tag is able to create
another distinct set with the same tag. The remaining value in this set, excluding
the tag, can be chosen almost freely from the linearity of GHASH function
and the knowledge of the GCM key; thus, this attack works with negligible
complexity irrespective of the tag length unlike the case of AES-CM-HMAC.

Authentication Key Recovery against AES-GCM with Short Tags. In Sect. 4.5,
we consider an authentication key recovery attack on AES-GCM with short
tags. This attack exploits the fact that there is no restriction regarding the
NIST requirements on the usage of GCM with short tags. Actually, available
implementations of the original [33], Cisco Webex [4], and Jitsi Meet [15] have
no restriction regarding such requirements. When these available implementa-
tions employ the 4-byte tag, the authentication key is recovered with the data
complexity of 232, which is practically available in by the adversary.

Our results are based solely on the Internet draft [26] and publicly available
source code [4,15,33], and we have not implemented the proposed attacks to ver-
ify their feasibility. It is difficult to implement the proposed attacks because the
SFrame specification is still a draft version and no product that implements the
current version of SFrame [26] has actually been deployed. Accordingly, instead
of implementing the proposed attacks, we discussed with the designers to confirm
the feasibility of the proposed attacks.

Since the specification remains abstract at some points and may be subject
to change, besides the real-world implementation often do not strictly follow
what was specified in [26], this issue does not immediately mean the practical
attacks against the existing E2EE video communication applications that adopt
SFrame. Nevertheless, considering the practicality of our attacks, we think there
is a need to improvement of the current SFrame specification.

130 T. Isobe et al.

Responsible Disclosure. In March 2021, we reported our results in this article
to the SFrame designers via email and video conference. They acknowledged that
our attacks are feasible under the existence of a malicious group member, quickly
decided to remove the signature mechanism [10] and extend tag calculation to
cover nonces [9], and updated the specification in the Internet draft on March
29, 2021 [27]. They have a plan to review the SFrame specification and support
signature mechanism again in the future.

Organization of the Paper. The paper is organized as follows. Section 2
provides the specification of SFrame including the underlying AEAD, and also
a brief survey on the publicly available implementations of SFrame. Section 3
describes the security goals of E2EE recently proposed. We present our analy-
sis in Sect. 4 which shows impersonation attacks against SFrame. Several other
observations are also made, followed by our recommendations. Section 5 con-
cludes the article.

2 SFrame

2.1 Specification

Overview. SFrame is a group communication protocol for end-to-end encryp-
tion (E2EE) used by video/audio meeting systems. It involves multiple users
and a (media) server which mediates communication between users. They are
connected via the server, and communication between a user and the server
is protected by a standard Internet client-server encryption protocol, specifi-
cally Datagram Transport Layer Security-Secure Real-time Transport Protocol
(DTLS-SRTP).

SFrame is specified in the Internet draft [26]. However, it does not specify the
key exchange protocol between the parties and the choice is left to the imple-
mentors. In practice Signal protocol [28], Olm protocol [20], or Message Layer
Security (MLS) protocol [2] could be used. With SFrame, users encrypt/decrypt
video and audio frames prior to RTP packetization. A generic RTP packetizer
splits the encrypted frame into one or more RTP packets and adds an original
SFrame header to the beginning of the first packet and an authentication tag to
the end of the last packet. The SFrame header contains a signature flag S, a key
ID number KID, and a counter value CTR for a nonce used for encryption/de-
cryption.

Cryptographic Protocol. Suppose there is a group of users, G. All users in
G first perform a predetermined key exchange protocol as suggested above, and
share multiple group keys KKID

base associated with the key ID number KID, which is
called base key in the original specification [26]. In addition, each user establishes
a digital signature key pair, (Ksig,Kverf).

An E2EE session for SFrame uses a single ciphersuite that consists of the
following primitives:

Security Analysis of SFrame 131

Fig. 1. Media frame encryption flow.

– A hash function used for key derivation, tag generation, and hashing signature
inputs, e.g., SHA256 and SHA512.

– An authenticated encryption with associated data (AEAD) [22,29] used for
frame encryption, e.g., AES-GCM and AES-CM-HMAC. The authentication
tag may be truncated.

– An optional signature algorithm, e.g., EdDSA over Ed25519 and ECDSA over
P-521.

Specifically, the original specification [26] defines the following symmetric-key
primitives for the ciphersuite:

– AES-GCM with a 128- or 256-bit key and no specified tag length.
– AES-CM-HMAC, which is a combination of AES-CTR with a 128-bit key

and HMAC-SHA256 with a 4- or 8-byte truncated authentication tag.

132 T. Isobe et al.

Algorithm 1. Media frame encryption scheme
Input: S: signature flag, KID: key ID, CTR: counter value,frame metadata: frame meta-

data, M : frame
Output: C: encrypted frame, T : authentication tag
1: procedure Encryption(S, KID, CTR, frame metadata, M)
2: if An AEAD encryption algorithm is AES-GCM then
3: KKID

e , saltKID = KeyStore[KID]
4: else
5: KKID

e , KKID
a , saltKID = KeyStore[KID]

6: end if
7: ctr = encode(CTR, NonceLen) � encode CTR as a big-endian of NonceLen.
8: N = saltKID ⊕ ctr � N is a Nonce.
9: header = encode(S,KID,CTR)

10: aad = header + frame metadata � aad is an additional associated data.
11: if an AEAD encryption algorithm is AES-GCM then
12: C, T = AEAD.Encryption(KKID

e , N, aad, M)
13: else
14: C, T = AEAD.Encryption(KKID

e , KKID
a , N, aad, M)

15: end if
16: end procedure

Figure 1 and Algorithm 1 show the media frame encryption flow in an E2EE
session for SFrame using the above ciphersuites. When AES-GCM is adopted
as the ciphersuite, AEAD.Encryption in Algorithm 1 is executed according to
NIST SP 800-38D [8]. Before performing by the AEAD encryption procedure by
AES-GCM, HKDF [19] is used to generate the encryption key KKID

e and the salt
saltKID for encrypting/decrypting media frames as follows:

SFrameSecret = HKDF(KKID
base,

′SFrame10′),
KKID

e = HKDF(SFrameSecret, ′key′,KeyLen),
saltKID = HKDF(SFrameSecret, ′salt′,NonceLen),

where KeyLen and NonceLen are the length (byte) of an encryption key and a
nonce for the encryption algorithm, respectively. Then, each user stores KKID

e

and saltKID, such as KeyStore[KID] = (KKID
e , saltKID). When AES-CM-HMAC

is adopted as the ciphersuite, AEAD.Encryption in Algorithm 1 is executed
according to Algorithm 2. Before performing AES-CM-HMAC, HKDF [19] is
used as well as the case of AES-GCM, however in a slightly different manner:

AEADSecret = HKDF(KKID
base,

′SFrame10 AES CM AEAD′),
KKID

e = HKDF(AEADSecret, ′key′,KeyLen),
KKID

a = HKDF(AEADSecret, ′auth′,HashLen),
saltKID = HKDF(AEADSecret, ′salt′,NonceLen),

where HashLen is the output length (byte) of the hash function. Also, each
user stores the encryption key KKID

e , the authentication key KKID
a , and the salt

saltKID, such as KeyStore[KID] = (KKID
e ,KKID

a , saltKID).

Security Analysis of SFrame 133

Algorithm 2. AEAD encryption by AES-CM-HMAC
Input: KKID

a : authentication key, aad: additional associated data, C: encrypted frame
Output: T : truncated authentication tag
1: procedure Tag.Generation(KKID

a , aad, C)
2: aadLen = encode(len(aad), 8) � encode aad length as a big-endian of 8 bytes
3: D = aadLen + aad + C
4: tag = HMAC(KKID

a , D)
5: T = trancate(tag, TagLen)
6: end procedure

Input: KKID
e , KKID

a , N : Nonce, aad, M : frame
Output: C, T
1: procedure AEAD.Encryption(KKID

e , KKID
a , N , aad, M)

2: C = AES-CTR.Encryption(KKID
e , N, M)

3: T = Tag.Generation(KKID
a , aad, C)

4: end procedure

While an AEAD enables to detect forgeries by an entity who does not own
KKID

base, it does not prevent from an impersonation by a malicious group member
who owns a shared group key. To detect such an impersonation, a common
countermeasure is to attach a signature for each encrypted packet. This can
incur a significant overhead both in time and bandwidth. SFrame addresses this
problem by reducing the frequency and input length of signature computations.
Namely a signature Sig is computed over a list of authentication tags with a
fixed size, (Ti, Ti−1, . . . , Ti−x), as follows:

Sig = Sign(Ksig, Ti ‖ Ti−1, ‖ · · · ‖ Ti−x),

where Sign denotes the signature function. This signature is appended to the
end of the data which consists of SFrame header, the current encrypted pay-
load, its corresponding authentication tag Ti, and the list of authentication tags
(Ti−1, . . . , Ti−x) which correspond to the previously encrypted payload so that
any group user can verify the authenticity of the entire payload.

2.2 Available Implementations

We list some implementations of SFrame that are publicly available. Some of
them do not strictly follow the original specification [26] and exhibit some vari-
eties. In this article, we particularly focus on the specified AEAD schemes and
the allowed tag length in each of the implementation since this determines the
complexity of our attack.

The Original. There is a Javascript implementation by one of the designers of
SFrame (Sergio Garcia Murillo) [33]. It is based on webcrypt. In his implemen-
tation, it supports

– AES-CM-HMAC with 4 or 10-byte tag, where 4 (10) byte tag is used for
audio (video) packets.

134 T. Isobe et al.

Google Duo. Duo3 is a video calling application developed by Google. For group
calling, it adopts Signal protocol as a key exchange mechanism and SFrame as a
E2EE mechanism. There is a technical paper [25] written by one of the coauthors
(Emad Omera) of the original specification [26]. The source code is not available,
however, according to the technical paper, it supports

– AES-CM-HMAC.

The technical paper does not describe the tag length. Note that we confirmed
that Google Duo does not currently use the signature feature.

Cisco Webex. Webex is a major video meeting application developed by Cisco.
There is a recent whitepaper entitled “Zero-Trust Security for Webex White
Paper” [5]. The whitepaper describes the path to their goal called Zero-Trust
Security, and suggests to use MLS protocol as a key exchange mechanism and
SFrame as a media encryption to enhance the end-to-end security of Webex. The
corresponding SFrame implementation is available at Github [4]. The repository
maintainer warns that the specification is in progress. As of March 2021, it
supports

– AES-GCM with 128 or 256-bit key, with 16-byte tag,
– AES-CM-HMAC with 4 or 8-byte tag.

Jitsi Meet. An open-source video communication application called Jitsi Meet4

was presented at FOSDEM 2021, a major conference for open source projects5.
Although a quite recent project, it is getting popularity as an open-source alter-
native to other major systems. It adopts SFrame with Olm protocol as the
underlying key exchange protocol. The source code is available [15]. It supports

– AES-CM-HMAC with 4 or 10-byte tag, where 4 (10) byte tag is used for
audio (video) packets.

3 Adversary Models and Security Goals

3.1 Adversary Models

The designers did not define adversary models in the original specification [26].
Then, we define the adversary models for our security analysis with reference to
them defined by Isobe and Minematsu [14].

Definition 1 (Malicious User). A malicious user, who is a legitimate user
but does not possess a shared group key, tries to break one of the subsequently
defined security goals of the other E2EE session by maliciously manipulating the
protocol.

3 https://duo.google.com/about/.
4 https://meet.jit.si/.
5 https://fosdem.org/2021/schedule/.

https://duo.google.com/about/
https://meet.jit.si/
https://fosdem.org/2021/schedule/

Security Analysis of SFrame 135

Definition 2 (Malicious Group Member). A malicious group member, who
is a legitimate group member and possesses a shared group key, tries to break the
subsequently defined security goals by deviating from the protocol.

In addition, E2E adversary is defined in [14], however, we do not explain this
definition because this adversary is out of scope for our security analysis.

3.2 Security Goals of E2EE

In February 2021, the Internet draft entitled “Definition of End-to-end Encryp-
tion” was released [17]. According to this draft, the fundamental features for
E2EE require authenticity, confidentiality, and integrity, which are defined as
follows:

Definition 3 (Authenticity). A system provides message authenticity if the
recipient is certain who sent the message and the sender is certain who received
it.

Definition 4 (Confidentiality). A system provides message confidentiality if
only the sender and intended recipient(s) can read the message plaintext, i.e.,
messages are encrypted by the sender such that only the intended recipient(s)
can decrypt them.

Definition 5 (Integrity). A system provides message integrity when it guar-
antees that messages has not been modified in transit, i.e. a recipient is assured
that the message they have received is exactly what the sender intented to sent.

In addition, availability, deniability, forward secrecy, and post-compromise secu-
rity are defined in this draft as the optional/desirable features to enhance the
E2EE systems, however, we do not explain these definitions because these fea-
tures are out of scope for our security analysis.

3.3 Security Goals of AEAD for E2EE

Dodis et al. [7] proposed a new primitive called encryptment for the message
franking scheme, which enables cryptographically verifiable reporting of mali-
cious content in end-to-end encrypted messaging. In addition, they defined con-
fidentiality and second-ciphertext unforgeability (SCU) as security goals to ensure
the securily level of the encryptment scheme.

Definition 6 (Second-Ciphertext Unforgeability (SCU)). An adversary
A is given K

$← K, which means a randomly chosen key K form the key space
K, and is allowed to perform AEAD encryption/decryption in the local environ-
ment. Then, we define the second-ciphertext unforgeability (SCU) advantage of
A against AEAD for E2EE as

AdvSCU
AEAD(A) = Pr

[
K

$← K : A(K) → (N,A,C,N∗, A∗, C∗, T),
Dec(K,N,A,C, T) = M,

Dec(K,N∗, A∗, C∗, T) = M∗ for some M,M∗ �= ⊥]
,

136 T. Isobe et al.

where Dec denotes the decryption algorithm of AEAD, N and N∗ denote nonces,
A and A∗ denote associated data, C and C∗ denote ciphertexts, M and M∗

denote plaintexts, T denotes a tag, and ⊥ denotes a symbol that represents a
decryption failure.

The adversary in SCU game is given with key, hence this is not captured by
the standard AEAD security notions of confidentiality and integrity [3,29]. When
there exists a malicious group member in an E2EE application, she can actually
work as a SCU adversary A by intercepting the target frame (N,A,C, T) since
she knows the shared group key K.

3.4 Security Goals of Hash Functions

A secure hash function H typically has three fundamental properties: preimage
resistance, second-preimage resistance, and collision resistance. Here, we focus
on two types of second-preimage resistance, and define them with references
to [23,30] as follows:

Definition 7 (Second-Preimage Resistance). Let A be an adversary
attempting to find any second input which has the same output as any specified
input, i.e., for any given message M

$← M, which means a randomly chosen
message M form the message space M, to find a second-preimage M∗ �= M
such that H(M) = H(M∗). Then, we define the second-preimage (Sec) resis-
tance advantage of A against H as

AdvSec
H (A) = Pr

[
M

$← M;M∗ ← A : (M �= M∗) ∧ (
H(M) = H(M∗)

)]
.

Definition 8 (Everywhere Second-Preimage Resistance). For a positive
integer n, let {0, 1}≤n be a set of bit strings not longer than n. Let M = {0, 1}∗

and Y = {0, 1}n. Suppose H : K×M → Y be a keyed hash function. Let A be an
adversary against H to find a second preimage for the target input M ∈ M that
is fixed with |M | ≤ �. Then, we define the everywhere second-preimage (eSec)
resistance advantage of A against H as

AdveSec[≤�]
H (A)

= max
M∈{0,1}≤�

{
Pr

[
K

$← K;M∗ ← A(K) : (M �= M∗) ∧ (
HK(M) = HK(M∗)

)]
}

.

The everywhere second-preimage or eSec resistance, introduced by Rogaway and
Shrimpton [30], is called (a slight extension of) a strong form of second-preimage
resistance. In this article, we assume the standard hash function (SHA2) as an
instantiation of keyed function, say by using IV as a key, since otherwise standard
security reduction is not possible (see [30]). For simplicity, we assume this key
is implicit and do not describe it in the proofs.

Security Analysis of SFrame 137

4 Security Analysis

4.1 Security of AEAD Under SFrame

We first discuss on the security of AEAD used by SFrame. Here we view Algo-
rithm1 as an encryption of AEAD for the reason that viewing Algorithm2 as a
full-fledged AEAD does not make sense (see below). Then, effectively, the keys
are contained by KeyStore[KID] and the nonce is CTR, the associated data is a
tuple (S,KID, frame metadata), and the plaintext is M .

In Algorithm 1, the variable N is a sum of saltKID and ctr (Line 8), where
the former is essentially a part of key (via HKDF), the latter is an encoded
form of CTR. This N serves as nonce for the internal AEAD algorithm at Line
12/14. The data aad serves as AD for the internal AEAD and consists of header
and frame metadata, where the former contains an encoded form of (S,KID,CTR).
Since aad contains CTR as well as N , if the internal AEAD is AES-CM-HMAC of
Algorithm 2, HMAC takes the nonce (CTR) in addition to AD (frame metadata)
and the ciphertext C. Hence the lack of N = saltKID ⊕ ctr is not a problem.
Moreover, adding a pseudorandom value to the nonce of AES-CTR does not
degrade security as long as that value is computationally independent of the key
of AES-CTR.

A slightly more formal analysis is given below. Algorithm 1 combined with
AES-CM-HMAC can be interpreted as an encryption routine the encryption-
then-MAC AEAD construction. More specifically, it takes nonce Ñ = CTR,
associated data Ã = (S,KID, frame metadata), and plaintext M to produce the
ciphertext C and the tag T :

C = ẼncK(Ñ ,M)

T = ˜MACK′(Ñ , Ã, C),

where K and K ′ are derived via a master key with a key derivation function
(HKDF), and ẼncK denotes the plain counter mode encryption with a pseudo-
random offset to nonce (i.e., saltKID, which is derived via HKDF), and ˜MACK′

denotes the HMAC with a certain bijective input encoding. This means that
Algorithm 1 is exactly reduced to the encryption-then-MAC generic composi-
tion (assuming HKDF as a PRF) whose security is proved when Ẽnc is IND-CPA
secure and ˜MAC is a PRF [18,24]. Proving the latter claim is trivial. Hence Algo-
rithm1 is secure under the standard assumptions that AES is a pseudorandom
permutation and HMAC is a PRF. We remark that Algorithm2 itself is not a
generically secure (i.e., when nonce N and AD aad are independently chosen)
AEAD as it ignores N in the computation of tag. This issue was raised at the
discussion in CFRG6 and our analysis provides an answer.

6 https://mailarchive.ietf.org/arch/browse/cfrg/?q=SFrame.

https://mailarchive.ietf.org/arch/browse/cfrg/?q=SFrame

138 T. Isobe et al.

4.2 Impersonation Against AES-CM-HMAC with Short Tags

While the AEAD security of Algorithm 1 is sound, it does not necessarily mean
the full E2EE security. In this section we point out that there is a risk of imper-
sonation by a malicious group member who owns the group key. The imper-
sonation attack implies that the scheme does not achieve the security goal of
integrity in E2EE.

Hereafter, we simplify the model and stick to the standard AEAD nota-
tion, namely the input is (N,A,M) for nonce N , associated data A, plaintext
M and the output is (C, T) for ciphertext C and tag T . Also we consider the
case that the signature is computed for each tag for simplicity. The notational
discrepancies from Algorithm 1 and Algorithm 2 do not change the essential pro-
cedure of our attacks. With this simplified model, each group member sends
an encrypted frame to all other members, and this frame consists of an AEAD
output (N,A,C, T) and a signature Sig = Sign(Ksig, T) signed by the user’s
signing key Ksig. The encryption input is (N,A,M) and the frame encryption
by AES-CM-HMAC is abstracted as follows:

C ← AES-CTR(KKID
e , N,M)

T ← truncate(HMAC-SHA256(KKID
a , (N,A,C)), τ), (8)

where τ denotes the tag length in bits. Note that N is included as a part of
HMAC’s input, for the reason described at Sect. 4.1.

Suppose there is a communication group G containing a malicious group
member UM and another member UT which we call a target user. This UM is
able to mount a forgery attack (impersonation) by manipulating a frame sent
by UT . The forgery attack by UM consists of offline and online phases.

In the offline phase, UM determines (N,A,M), and precomputes a set of
(ciphertext,tag) tuples (C, T) by using KKID

e and KKID
a , which are known to all

group members, and stores these into a table tb. Here, N and A are determined
so that it is likely to be used by UT (these information are public and N is a
counter so this is practical).

In the online phase, the malicious group member observes the frames sent
by UT . If she finds the frame (N,A,C ′, T ′,Sig) such that (C∗, T ∗) is included
in tb and T ∗ = T ′, C∗ �= C ′, then she replaces C ′ in that frame with C∗. Since
the signature Sig is computed over the tag T ′ which is not changed after the
replacement, this manipulated frame will pass the verification. Figure 2 shows
the overview of the attack. The details of attack procedures are given as follows.

Offline Phase

1. UM chooses the encryption input tuple (N,A,M).
2. UM computes a ciphertext C and a τ -bit tag T for (N,A,M) following Eq. (8),

where KID is set to point the target user.
3. UM stores a set of (M , C, T) into the table tb.
4. UM repeats Step 1–3 2t times with different messages.

Security Analysis of SFrame 139

Fig. 2. Impersonation against AES-CM-HMAC with short tags. In the offline phase, a
malicious group member UM stores a set of (M , C, T) into the table tb. In the online
phase, UM intercepts a target frame (N ′, A′, C′, T ′, Sig) sent by the target user UT ,
searches a tuple (M∗, C∗, T ∗) in tb such that T ∗ = T ′ and C∗ �= C′, replaces C′ with
C∗ in the target frame, and sends (N ′, A′, C∗, T ′, Sig) to other group members.

Online Phase

1. UM intercepts a target frame (N ′, A′, C ′, T ′,Sig) sent by the target user,
where N ′ = N and A′ = A.

2. UM searches a tuple (M∗, C∗, T ∗) in tb such that T ∗ = T ′ and C∗ �= C ′.
3. If UM finds such a tuple, replaces C ′ with C∗ in the target frame, and sends

(N ′, A′, C∗, T ′,Sig) to other group members.

The manipulated frame including (C∗, T ′) successfully pass the signature veri-
fication by other group members due to a tag collision, i.e., no one can detect
that the frame is manipulated by UM , and the group members will accept M∗

as a valid message from UT . The above is for the case where x = 1, i.e., each
tag is independently signed by the signature key. It is naturally extend to the
case where x is more than one, namely the case where a list of tags is signed
altogether for efficiency.

To mount the attack described above, the adversary needs to intercept a
legitimate message. It implies the adversary may collude with an intermediate
server, or E2EE adversary, which is the central operating server. The practicality
of this is beyond the scope of this article, however we remark that preventing
colluding attack with E2EE adversary is one of the fundamental goals of E2EE.

We note that the attack without intercept is also possible by creating a
forged tuple (N ′, A′, C ′, T ′,Sig) such that T ′ = T and (N ′, A′, C ′) �= (N,A,C)
by observing some legitimate tuple (N,A,C, T,Sig) that was previously sent
without corruption; here (N ′, A′) is chosen so that it is likely to be used by UT

in the next frame which is yet sent. This is essentially a reply of signature and
we guess whether it is detected as replay depends on the actual system, so we
keep it open. The cost of detecting a reply of randomized algorithm is generally
high since the receiver must keep the all random IVs used.

Complexity Evaluation. The computational cost to make the precomputation
table tb in the offline phase is estimated as 2t, and the success probability of
Step 2 in the online phase is estimated as 2−τ+t.

140 T. Isobe et al.

Practical effects on SFrame. In case τ = 32 (i.e. 4-byte tags) if UM prepares 232

precomutation tables in the offline, the success probability is almost one. Thus,
this forgery attack is practically feasible with a high success probability for the 4-
byte tag. Besides, in this attack, the adversary fully controls the decryption result
(M∗) of the manipulated frame except 32 bits which are used for generating 232

different tags in the offline phase.
To perform an actual attack on SFrame, since each SFrame header includes

the frame counter to avoid replay attacks, the adversary has to decide the target
frame and set the target frame counter to the SFrame header file in M when
generating tags in the offline phase.

Even in the case of 8- and 10-byte tag, if UM prepares 256 tables, which is
feasible by the nation-level adversary, the success probability is non-negligible,
2−8 and 2−24, respectively.

4.3 Security of AES-CM-HMAC with Long Tags

We first discuss the security of AES-CM-HMAC with long tags, e.g., 16-byte
tags, against impersonation attack as described in Sect. 4.2. Even if a malicious
group member prepares 256 precomputation tables, it is infeasible because the
success probability of the attack is 2−72; therefore, AES-CM-HMAC with long
tags can be secure against the impersonation attack proposed in Sect. 4.2.

We justify the above observation by showing SCU security of AES-CM-
HMAC with long tags. According to Algorithm 2, let D and D∗ be (N,A,C)
and (N∗, A∗, C∗), respectively (see Line 3 in Tag.Generation procedure). Note
that N is included in A (aad) as partial information (see Lines 7–10 in Algo-
rithm1). For simplicity, the tag generation by HMAC is abstracted as follows:

HMAC(KKID
a ,D) = H

(
(K ⊕ opad) ‖ H

(
(K ⊕ ipad) ‖ D

))
,

where H denotes a hash function, e.g., SHA256 used in SFrame, ipad and opad
denote fixed padding values, and K is generated from KKID

a according to the
padding rule in HMAC algorithm (see [34] for details). The following theorem is
simple to prove.

Theorem 1. Let A be a SCU adversary against AES-CM-HMAC with the target
encryption output being at most � bits. Then, SCU advantage of A against AES-
CM-HMAC is bounded as

AdvSCU
AES-CM-HMAC(A) < 2AdveSec[≤(�′)]

H (A′)

for some eSec adversary A′ against H, which denotes the underlying SHA256
hash function, where �′ = � + 512 (i.e., one block larger).

Proof. Let K be the key of HMAC. Thanks to the generic composition, we can
assume that the adversary is given the key for the counter mode. The resulting
game is that, given a transcript of encryption query (N,A,M,C, T) derived on

Security Analysis of SFrame 141

Fig. 3. SCU scenario against AES-CM-HMAC with long tags for E2EE. In this sce-
nario, given a transcript of encryption query (N, A, M, C, T) derived on K, the adver-
sary A is required to find a successful forgery (N∗, A∗, C∗, T ∗) on K such that T ∗ = T
and D∗ �= D, i.e., (N∗, A∗, C∗) �= (N, A, C).

K, the adversary is required to find a successful forgery (N∗, A∗, C∗, T) on K
such that D∗ �= D, i.e., (N∗, A∗, C∗) �= (N,A,C). Note that the tag T is the
output of HMAC taking K and D = (N,A,C) and thus the plaintext M is
not needed in the attack. Figure 3 illustrates this scenario, where IV denotes the
initial hash value, D = D0 ‖ . . . ‖Dl−1, D∗ = D∗

0 ‖ . . . ‖D∗
l−1, S = H

(
(K ⊕

ipad) ‖D
)
, and S∗ = H

(
(K ⊕ ipad) ‖D∗). Each Di and D∗

i denotes an input
block to HMAC. The last block may need padding but we simply ignore this (the
analysis is pretty much the same). In this scenario, we consider the following two
cases: A finds S∗ = S (Case 1) which implies T = T ∗ or S∗ �= S and T = T ∗

(Case 2).
For Case 1, observe that S = S∗ means H(K⊕ipad ‖D) = H(K⊕ipad ‖D∗),

hence a second preimage against the target input K ⊕ ipad ‖D is obtained. For
Case 2, when S �= S∗ and T = T ∗, it means the adversary finds a second
preimage against the target (2-block, thus 1024-bit) input K ⊕ opad ‖S. Both
cases are covered by the eSec security of H, hence we have

AdvSCU
AES-CM-HMAC(A) ≤ AdveSec[≤(�′)]

H (A′) + AdveSec[≤1024]
H (A′)

< 2AdveSec[≤(�′)]
H (A′),

which concludes the proof. ��
Theorem 1 tells that the SCU security of AES-CM-HMAC with long tags

depends on the security of underlying hash function. According to the Internet
draft [26], SFrame adopts SHA256 as the hash function used in AES-CM-HMAC.

142 T. Isobe et al.

Second-Preimage Security of SHA256. Ideally, a n-bit hash function provides
a n-bit security level against second-preimage attacks. That is, we can find a
second-preimage on SHA256 with a time complexity of 2256. Khovratovich et
al. [16] proposed a new concept of biclique as a technique for preimage attacks,
and applied it to the reduced-round SHA2 family. Their second-preimage attack
on the reduced-round SHA256 performs up to 45 rounds (out of 64) with a
time complexity of 2255.5 and a memory complexity of 26 words. After that,
Andreeva et al. [1] presented new generic second-preimage attacks on the basic
Merkle-Damg̊ard hash functions. Their best attack allow us to find a second-
preimage on the full SHA256 with a time complexity of 2173 and a memory
complexity of 283, but this attack is required too long message blocks, e.g., a
2118-block message.

To the best of our knowledge, no study has been reported on a second-
preimage attack that is more efficient than the above described attacks; therefore,
AES-CM-HMAC with long tags can be considered as the SCU-secure AEAD.

4.4 Impersonation Against AES-GCM with Any Long Tags

The impersonation attacks described above is a generic attack and the offline
attack complexity depends on the tag length. In contrast, if we use AES-GCM,
it is easy to mount a similar attack without the offline phase. This is because,
the adversary who owns the GCM key and observes a legitimate GCM output
of (N,A,C, T) is able to create another distinct tuple of (N ′, A′, C ′, T ′) with
T ′ = T . The remaining (N ′, A′, C ′) �= (N,A,C) can be chosen almost freely
from the linearity of GHASH and the knowledge of the key. In particular, the
attack works with negligible complexity irrespective of the tag length unlike the
case of AES-CM-HMAC.

Once the adversary intercepts a legitimate tuple (N,A,C, T) created by
GCM, it is trivial to compute (N ′, A′, C ′, T ′) such that T ′ = T and (N ′, A′, C ′) �=
(N,A,C), for almost any choice of (N ′, A′, C ′).

For example, suppose GCM with 96-bit nonce and 128-bit tag, which is one of
the most typical settings. Given any GCM encryption output tuple (N,A,C, T)
with 2-block C = (C1, C2) and 1-block A = A1, we have

T = GHASH(L,A ‖C ‖ len(A,C)) ⊕ EK(N ‖ 132)

= A · L4 ⊕ C1 · L3 ⊕ C2 · L2 ⊕ len(A,C) · L ⊕ EK(N ‖ 132),
C1 = EK(N ‖ 232) ⊕ M1,

C2 = EK(N ‖ 332) ⊕ M2,

where M = (M1,M2) is the plaintext. Here, len(A,C) is a 128-bit encoding of
lengths of A and C, and multiplications are over GF(2128). EK(∗) denotes the
encryption by AES with key K and L = EK(0128), and i32 for a non-negative
integer i denotes the 32-bit encoding of i. It is straightforward to create a valid
tuple (N ′, A′, C ′, T ′) such that T ′ = T and (N ′, A′, C ′) �= (N,A,C) as we know

Security Analysis of SFrame 143

Table 1. NIST requirements on the usage of GCM with short tags.

t 32 64

L 21 22 23 24 25 26 211 213 215 217 219 221

q 222 220 218 215 213 211 232 229 226 223 220 217

c 262 262 261 265 266 267 275 274 273 272 271 270

K. Say, we first arbitrary choose N ′ and A′, and the fake plaintext block M ′
1 to

compute C ′
1, and finally set C ′

2 so that

C ′
2 · L2 = T ′ ⊕ A′ · L4 ⊕ C ′

1 · L3 ⊕ len(A′, C ′) · L ⊕ EK(N ′ ‖ 132)

holds. This will make the last decrypted plaintext block M ′
2 random. It works

even if the tag is truncated. That is, the malicious group member can imper-
sonate other member and the forged plaintext is almost arbitrary except the
last block. We note that the plaintext is video or audio hence a tiny random
block will not be recognized. This attack severely harms the integrity of group
communication.

This difference from the case of AES-CM-HMAC is rooted in the authenti-
cation mechanism – while HMAC maintains a collision resistance once the key
is known, GHASH with a known key is a simple function without any sort of
known-key security.

4.5 Considerations on Authentication Key Recovery

The specification [26] appears to implicitly allow 4 and 8-byte tags with AES-
GCM. In addition to the attacks described above, it is known that the use of
short tags in GCM will lead to a complete recovery of the authentication key
(i.e., the key of GHASH) by a class of attacks called reforging. This leads to a
universal forgery.

Ferguson [11] first pointed out this attack, and Mattsson and Wester-
lund [21] further refined the attack and provided a concrete complexity esti-
mation. According to [21], they point out that the security levels are only 62–67
bits and 70–75 bits for 32-bit and 64-bit tags, respectively, even if we follow
NIST requirements on the usage of GCM with short tags, which is shown in
Table 1. In Table 1, L is the maximum combined length of A and C, and q is
the maximum number of invocations of the authenticated decryption function.
Table 1 also shows the required data complexity c for the authentication key
recovery under each restriction of L and q. For example, for L = 23 and q = 218,
the required data to recover the key of GHASH is 261.

If there is no restriction regarding L and q, the authenticated key is recovered
with data complexity of 2t as the complexity of the first forgery is dominated.
Thus, for 4-byte (= 32-bit) tag length, the authenticated key recovery is feasible
with 232 data complexity. It seems that the specification [26] does not explicitly
mention the restrictions of q and L.

144 T. Isobe et al.

Practical effects on SFrame. As far as we checked available implementations
of the original [33], Cisco Webex [4], and Jitsi Meet [15], there is no restriction
regarding L and q. In this case, for the 4-byte tag, the authenticated key is recov-
ered with data complexity of 232, which is practically available by a malicious
user.

4.6 Recommendations

From the vulnerabilities shown in Sects. 4.2 to 4.5, we recommend the followings.

– For AES-CM-HMAC, short tags, especially 4-byte tag, should not be used.
– For AES-GCM, a signature should be computed over a whole frame, not only

tags.
– For AES-GCM, the specification should clearly forbid short tags, or refer to

NIST requirements on the usage of GCM with short tags.
– As discussed at Sect. 3, switch to other ciphersuite that works as a secure

encryptment scheme, such as HFC [7], with a sufficiently long tag is another
option.

5 Conclusions

We have shown our security analysis on SFrame, a recently proposed end-to-end
encryption mechanism built on RTC, developed by Google and CoSMo Software
and proposed to IETF. SFrame is a young project but going to be adopted
by a number of real-world products. Our results show that there is a practical
risk of impersonation by a malicious group member. This problem is caused by
the digital signature computed only on (a list of) AEAD tags, and the attack
becomes practical when tags are short or the used AEAD algorithm allows to
create a collision on tags with the knowledge of the key. The former applies to
the case of AES-CM-HMAC, and the latter applies to the case of AES-GCM.
We also showed that AES-CM-HMAC with a long tag avoids this problem as
it fulfills a “committing” property introduced by Dodis et al. [7]. Moreover,
AES-CM-HMAC is, if it is correctly used by the upper layer, a provably secure
AEAD because it can be interpreted as a standard encryption-then-MAC generic
composition. We notify our findings to the designers, and they acknowledged
them and revised the specification including the removal of the signature feature
and a patch for the AEAD algorithm. Considering its quick deployment, we think
SFrame should be studied more actively and hope our work help its improvement.

Acknowledgments. We are grateful to the SFrame designers (Emad Omara, Justin
Uberti, Alex Gouaillard, and Sergio Garcia Murillo) for the fruitful discussion and
feedback about our findings. We would like to thank the anonymous reviewers for their
insightful comments, and Shiguredo Inc. for helpful discussion about real-world appli-
cations of the end-to-end encryption. Takanori Isobe is supported by JST, PRESTO
Grant Number JPMJPR2031, Grant-in-Aid for Scientific Research (B)(KAKENHI
19H02141) and SECOM science and technology foundation.

Security Analysis of SFrame 145

References

1. Andreeva, E., et al.: New second-preimage attacks on hash functions. J. Cryptol.
29(4), 657–696 (2016). https://doi.org/10.1007/s00145-015-9206-4

2. Barnes, R., Beurdouche, B., Millican, J., Omara, E., Cohn-Gordon, K., Robert,
R.: The Messaging Layer Security (MLS) Protocol, October 2020. https://tools.
ietf.org/html/draft-ietf-mls-protocol-10

3. Bellare, M., Namprempre, C.: Authenticated encryption: relations among notions
and analysis of the generic composition paradigm. In: Okamoto, T. (ed.) ASI-
ACRYPT 2000. LNCS, vol. 1976, pp. 531–545. Springer, Heidelberg (2000).
https://doi.org/10.1007/3-540-44448-3 41

4. Cisco Systems: SFrame (2020). https://github.com/cisco/sframe
5. Cisco Systems: Zero-Trust Security for Webex White Paper (2021). https://www.

cisco.com/c/en/us/solutions/collateral/collaboration/white-paper-c11-744553.
pdf

6. Cohn-Gordon, K., Cremers, C., Dowling, B., Garratt, L., Stebila, D.: A formal
security analysis of the signal messaging protocol. J. Cryptol. 33(4), 1914–1983
(2020)

7. Dodis, Y., Grubbs, P., Ristenpart, T., Woodage, J.: Fast message franking: from
invisible salamanders to encryptment. In: Shacham, H., Boldyreva, A. (eds.)
CRYPTO 2018. LNCS, vol. 10991, pp. 155–186. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-96884-1 6

8. Dworkin, M.: NIST SP 800–38D, Recommendation for Block Cipher Modes of
Operation: Galois/Counter Mode (GCM) and GMAC (2007). U.S. Department of
Commerce/National Institute of Standards and Technology

9. Omara, E.: Extend Tag Calculation to Cover Nonce #59 (2021). https://github.
com/eomara/sframe/pull/59

10. Omara, E.: Remove Signature #58 (2021). https://github.com/eomara/sframe/
pull/58

11. Ferguson, N.: Authentication Weaknesses in GCM. Comments submitted to
NIST Modes of Operation Process (2005). http://csrc.nist.gov/groups/ST/toolkit/
BCM/documents/comments/CWC-GCM/Ferguson2.pdf

12. Garman, C., Green, M., Kaptchuk, G., Miers, I., Rushanan, M.: Dancing on the lip
of the volcano: chosen ciphertext attacks on apple iMessage. In: Holz, T., Savage,
S. (eds.) USENIX Security 2016, pp. 655–672. USENIX Association, August 2016

13. Isobe, T., Ito, R.: Security analysis of end-to-end encryption for zoom meetings.
IEEE Access 9, 90677–90689 (2021)

14. Isobe, T., Minematsu, K.: Breaking message integrity of an end-to-end encryption
scheme of LINE. In: Lopez, J., Zhou, J., Soriano, M. (eds.) ESORICS 2018. LNCS,
vol. 11099, pp. 249–268. Springer, Cham (2018). https://doi.org/10.1007/978-3-
319-98989-1 13

15. Jitsi: Jitsi Meet API library (2020). https://github.com/jitsi/lib-jitsi-meet/
16. Khovratovich, D., Rechberger, C., Savelieva, A.: Bicliques for preimages: attacks

on Skein-512 and the SHA-2 family. In: Canteaut, A. (ed.) FSE 2012. LNCS, vol.
7549, pp. 244–263. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-34047-5 15

17. Knodel, M., Baker, F., Kolkman, O., Celi, S., Grover, G.: Definition of End-
to-end Encryption, February 2021. https://datatracker.ietf.org/doc/draft-knodel-
e2ee-definition/

https://doi.org/10.1007/s00145-015-9206-4
https://tools.ietf.org/html/draft-ietf-mls-protocol-10
https://tools.ietf.org/html/draft-ietf-mls-protocol-10
https://doi.org/10.1007/3-540-44448-3_41
https://github.com/cisco/sframe
https://www.cisco.com/c/en/us/solutions/collateral/collaboration/white-paper-c11-744553.pdf
https://www.cisco.com/c/en/us/solutions/collateral/collaboration/white-paper-c11-744553.pdf
https://www.cisco.com/c/en/us/solutions/collateral/collaboration/white-paper-c11-744553.pdf
https://doi.org/10.1007/978-3-319-96884-1_6
https://doi.org/10.1007/978-3-319-96884-1_6
https://github.com/eomara/sframe/pull/59
https://github.com/eomara/sframe/pull/59
https://github.com/eomara/sframe/pull/58
https://github.com/eomara/sframe/pull/58
http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/comments/CWC-GCM/Ferguson2.pdf
http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/comments/CWC-GCM/Ferguson2.pdf
https://doi.org/10.1007/978-3-319-98989-1_13
https://doi.org/10.1007/978-3-319-98989-1_13
https://github.com/jitsi/lib-jitsi-meet/
https://doi.org/10.1007/978-3-642-34047-5_15
https://doi.org/10.1007/978-3-642-34047-5_15
https://datatracker.ietf.org/doc/draft-knodel-e2ee-definition/
https://datatracker.ietf.org/doc/draft-knodel-e2ee-definition/

146 T. Isobe et al.

18. Krawczyk, H.: The order of encryption and authentication for protecting com-
munications (or: how secure is SSL?). In: Kilian, J. (ed.) CRYPTO 2001. LNCS,
vol. 2139, pp. 310–331. Springer, Heidelberg (2001). https://doi.org/10.1007/3-
540-44647-8 19

19. Krawczyk, H., Eronen, P.: HMAC-based Extract-and-Expand Key Derivation
Function (HKDF). Internet Engineering Task Force - IETF, Request for Com-
ments 5869, May 2010

20. Matrix.org Foundation: Olm: a Cryptographic Ratchet (2016). https://gitlab.
matrix.org/matrix-org/olm/-/blob/master/docs/olm.md

21. Mattsson, J., Westerlund, M.: Authentication key recovery on Galois/Counter
Mode (GCM). In: Pointcheval, D., Nitaj, A., Rachidi, T. (eds.) AFRICACRYPT
2016. LNCS, vol. 9646, pp. 127–143. Springer, Cham (2016). https://doi.org/10.
1007/978-3-319-31517-1 7

22. McGrew, D.A.: An Interface and Algorithms for Authenticated Encryption. Inter-
net Engineering Task Force - IETF, Request for Comments 5116, January 2008

23. Menezes, A.J., Oorschot, P.C.V., Vanstone, S.A.: Handbook of Applied Cryptog-
raphy. CRC Press, Boca Raton (1996)

24. Namprempre, C., Rogaway, P., Shrimpton, T.: Reconsidering generic composition.
In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp.
257–274. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-55220-
5 15

25. Omara, E.: Google Duo End-to-End Encryption Overview - Technical Paper
(2020). https://www.gstatic.com/duo/papers/duo e2ee.pdf

26. Omara, E., Uberti, J., Gouaillard, A., Murillo, S.G.: Secure Frame (SFrame),
November 2020. https://tools.ietf.org/html/draft-omara-sframe-01

27. Omara, E., Uberti, J., Gouaillard, A., Murillo, S.G.: Secure Frame (SFrame), March
2021. https://tools.ietf.org/html/draft-omara-sframe-02

28. Open Whisper Systems.: Signal Github Repository (2017). https://github.com/
WhisperSystems/

29. Rogaway, P.: Authenticated-encryption with associated-data. In: Atluri, V. (ed.)
ACM CCS 2002, pp. 98–107. ACM Press, November 2002. https://doi.org/10.
1145/586110.586125

30. Rogaway, P., Shrimpton, T.: Cryptographic hash-function basics: definitions, impli-
cations, and separations for preimage resistance, second-preimage resistance, and
collision resistance. In: Roy, B., Meier, W. (eds.) FSE 2004. LNCS, vol. 3017, pp.
371–388. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-25937-
4 24

31. Rösler, P., Mainka, C., Schwenk, J.: More is less: on the end-to-end security of group
chats in signal, WhatsApp, and Threema. In: 2018 IEEE European Symposium on
Security and Privacy (EuroS&P), pp. 415–429. IEEE (2018)

32. Corretgé, S.I.: The road to End-to-End Encryption in Jitsi Meet (2021). https://
fosdem.org/2021/schedule/event/e2ee/attachments/slides/4435/export/events/
attachments/e2ee/slides/4435/E2EE.pdf

33. Murillo, S.G.: SFrame.js (2020). https://github.com/medooze/sframe
34. Turner, J.M.: The keyed-hash message authentication code (HMAC). Federal Inf.

Process. Stand. Publ. 198(1) (2008)

https://doi.org/10.1007/3-540-44647-8_19
https://doi.org/10.1007/3-540-44647-8_19
https://gitlab.matrix.org/matrix-org/olm/-/blob/master/docs/olm.md
https://gitlab.matrix.org/matrix-org/olm/-/blob/master/docs/olm.md
https://doi.org/10.1007/978-3-319-31517-1_7
https://doi.org/10.1007/978-3-319-31517-1_7
https://doi.org/10.1007/978-3-642-55220-5_15
https://doi.org/10.1007/978-3-642-55220-5_15
https://www.gstatic.com/duo/papers/duo_e2ee.pdf
https://tools.ietf.org/html/draft-omara-sframe-01
https://tools.ietf.org/html/draft-omara-sframe-02
https://github.com/WhisperSystems/
https://github.com/WhisperSystems/
https://doi.org/10.1145/586110.586125
https://doi.org/10.1145/586110.586125
https://doi.org/10.1007/978-3-540-25937-4_24
https://doi.org/10.1007/978-3-540-25937-4_24
https://fosdem.org/2021/schedule/event/e2ee/attachments/slides/4435/export/events/attachments/e2ee/slides/4435/E2EE.pdf
https://fosdem.org/2021/schedule/event/e2ee/attachments/slides/4435/export/events/attachments/e2ee/slides/4435/E2EE.pdf
https://fosdem.org/2021/schedule/event/e2ee/attachments/slides/4435/export/events/attachments/e2ee/slides/4435/E2EE.pdf
https://github.com/medooze/sframe

Attribute-Based Conditional Proxy
Re-encryption in the Standard Model

Under LWE

Xiaojian Liang, Jian Weng(B), Anjia Yang, Lisha Yao, Zike Jiang,
and Zhenghao Wu

College of Cyber Security, Jinan University, Guangzhou, China

Abstract. Attribute-based conditional proxy re-encryption (AB-
CPRE) allows delegators to carry out attribute-based control on the
delegation of decryption by setting policies and attribute vectors. The
fine-grained control of AB-CPRE makes it suitable for a variety of appli-
cations, such as cloud storage and distributed file systems. However,
all existing AB-CPRE schemes are constructed under classical number-
theoretic assumptions, which are vulnerable to quantum cryptoanalysis.
Therefore, we propose the first AB-CPRE scheme based on the learning
with errors (LWE) assumption. Constructed from fully key-homomorphic
encryption (FKHE) and key-switching techniques, our scheme is unidi-
rectional, single-hop, and enables a polynomial-depth boolean circuit as
its policy. Furthermore, we split the ciphertext into two independent
parts to avoid two-level or multi-level encryption/decryption mecha-
nisms. Taking advantage of it, we then extend our single-hop AB-CPRE
into an efficient and concise multi-hop one. No matter how many transfor-
mations are performed, the re-encrypted ciphertext is in constant size,
and only one encryption/decryption algorithm is needed. Both of our
schemes are proved to be selective secure against chosen-plaintext attacks
(CPA) in the standard model.

Keywords: Conditional proxy re-encryption · Learning with errors ·
Fine-grained control

1 Introduction

Proxy re-encryption (PRE) allows a semi-trusted proxy with a re-encryption key
to transform a ciphertext intended for Alice (i.e. delegator) to another ciphertext
intended for Bob (i.e.delegatee) without revealing the underlying plaintext [5].
PRE schemes can be classified into two types: one is single-hop, whose ciphertext
can be transformed at most once, e.g., a ciphertext can be converted from Alice
to Bob and cannot be further converted; the other is multi-hop, which means a
ciphertext can be transformed multiple times, e.g., a ciphertext can be converted
from Alice to Bob and to Carol, and so on. Based on the direction of transforma-
tion, PRE can be further categorized into bidirectional and unidirectional. In a
c© Springer Nature Switzerland AG 2021
E. Bertino et al. (Eds.): ESORICS 2021, LNCS 12973, pp. 147–168, 2021.
https://doi.org/10.1007/978-3-030-88428-4_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-88428-4_8&domain=pdf
https://doi.org/10.1007/978-3-030-88428-4_8

148 X. Liang et al.

bidirectional scheme, a re-encryption key enables the transformation from Alice
to Bob and vise versa. Whereas, in the unidirectional setting, a re-encryption key
only supports the transformation from Alice to Bob. Notice that a bidirectional
scheme can be built by running a unidirectional one in both directions.

PRE has found lots of applications that require delegation, but it may not
be sufficient to facilitate flexible delegation. More specifically, once the proxy
obtains a re-encryption key, it can re-encrypt all ciphertexts for delegator into
the ciphertexts for delegate without any discrimination. Suppose that some of
Alice’s ciphertexts are highly confidential, and they should remain secret from
Bob. To implement the delegation control, a trusted proxy is needed. Such a
trusted model makes PRE unrealistic in complex applications.

To address the above problem, conditional proxy re-encryption (CPRE) was
introduced by Weng et al. [32]. A CPRE is a variant of PRE supporting control
on re-encryption. The ciphertext is associated with a condition, and the proxy
can perform a transformation correctly only if the re-encryption key is associated
with the same condition. The delegation control of CPRE makes it applicable
to complex applications, such as encrypted email systems [30], online medical
systems [13], distributed files systems [33] and cloud storage systems [18,19].

An open problem left by Weng et al. is how to construct a CPRE scheme sup-
porting expressive predicates over the condition [32]. To address this problem,
two types of CPRE are proposed: one is fuzzy conditional proxy re-encryption
(F-CPRE), which does not require the condition in the re-encryption key and
ciphertext to exactly match [12]; the other is attribute-based conditional proxy
re-encryption (AB-CPRE), which supports attribute-based control on delega-
tion [24,33,34]. Accurately, AB-CPRE is a kind of CPRE with fine-grained con-
trol, in which the ciphertext is associated with an attribute vector x and the
re-encryption key is related to a policy f . The proxy is able to perform a trans-
formation if f(x) = 0 only. However, as far as our knowledge, there only exist
CPRE [23] and F-CPRE [17] based on learning with errors (LWE). In other
words, there is no quantum-resistant AB-CPRE construction to date.

On the other hand, several multi-hop PRE schemes are available in the liter-
ature [3,9,15,16,22,29,31]. However, the majority of them do not capture condi-
tional re-encryption property. To achieve delegation control, Mo et al. proposed
a unidirectional multi-hop conditional proxy re-encryption [26]. Liang et al. sug-
gested a bidirectional multi-hop identity-based conditional proxy re-encryption
(IBCPRE) with constant-size ciphertexts [18]. But, how to construct a multi-hop
CPRE with fine-grained control remains open.

The existing lattice-based CPRE and multi-hop IBCPRE leave us two
interesting problems: AB-CPRE over lattices and multi-hop AB-CPRE with
constant-size ciphertexts. Therefore, the new scheme should be secure under
lattice-based assumptions, e.g., LWE, but it should also enjoy constant-size
ciphertexts no matter how many transformations are performed.

AB-CPRE in the Standard Model Under LWE 149

1.1 Contribution

We first formalize the definition and security notation for unidirectional multi-
hop AB-CPRE. Specially, to achieve multi-hop, we require that a ciphertext with
an attribute vector x for user α could be transformed into another ciphertext
with a different attribute vector y for user β. Regarding security notation of AB-
CPRE, we define a selective security and key privacy against chosen-plaintext
attacks.

We also present two LWE-based unidirectional AB-CPRE schemes: the first
one is single-hop; the second one is multi-hop. Our designs are obtained from fully
key-homomorphic encryption (FKHE) and key-switching techniques. Table 1
makes a comparison between existing lattice-based CPRE, multi-hop CPRE,
and ours. Our LWE-based constructions have the following features:

– The majority of PRE schemes are built with 2-level encryption/decryption
mechanisms, where the second-level ciphertext allows to be transformed into
the first-level one. To make CPRE more concise, we split ciphertext CT into
two parts: one is ct, the ciphertext for message; the other is cc, the ciphertext
for attributes. As a result, only one encryption/decryption is needed. More-
over, by reconstructing cc, our single-hop AB-CPRE can be extended into a
multi-hop one with constant-size ciphertexts.

– Combining with FKHE, the delegation policy enables any polynomial-depth
boolean circuit. As a consequence, our schemes support fine-grained delega-
tion control.

– Our schemes enjoy selective indistinguishability of re-encryption keys and
encryptions against chosen-plaintext attacks (sKP-CPA, sIND-CPA) in the
standard model.

Table 1. Comparison between ours and existing schemes

Schemes Types Policy Assumption Security Key

Privacy

Standard

model

Direction Multi-hop

[23] IBCPRE � LWE CPA � × → ×
[17] F-CPRE Threshold LWE sCPA × � → ×
[34] AB-CPRE Access

Tree

3-QDBDH sCCA × � → ×

[33] AB-CPRE Access

Tree

BDH CPA × × → ×

[24] AAB-CPRE LSSS 3-wDBDHI RCCA × � → ×
Scheme I AB-CPRE Boolean

Circuit

LWE sCPA � � → ×

[26] CPRE � DDH CCA × × → �
[18] IBCPRE � 3-wBDHI CCA × � ↔ �
Scheme II AB-CPRE Boolean

Circuit

LWE sCPA � � → �

150 X. Liang et al.

1.2 Related Work

In 2010, Zhao et al. [34] supposed the first AB-CPRE scheme to improve the
expressiveness and flexibility of the condition construction. Later, Yang et al. [33]
presented a ciphertext-policy AB-CPRE, whose re-encryption key is related to a
set of attributes whereas the ciphertext is associated with a policy. In 2018, Mao
et al. [24] constructed the first anonymous AB-CPRE (AAB-CPRE) by linear
secret sharing schemes (LSSS), which achieved replayable CCA (RCCA) security
[10] in the standard model. But all stated AB-CPRE schemes were constructed
under classical number-theoretic assumptions and none of them considers multi-
hop case. We are thus motivated to propose AB-CPRE schemes over lattices
that is secure against quantum attacks.

1.3 Organization

The rest of paper is organized as follows. The introductions of lattices, such
as LWE, lattice trapdoor, and Gaussian sampling are presented in Sect. 2. The
definition and security notation of universal AB-CPRE are formalized in Sect. 3.
In Sect. 4, we propose our single-hop AB-CPRE scheme in the standard model
and give the corresponding security proof. In Sect. 5, we give a multi-hop AB-
CPRE scheme as an extension from our single-hop one. Finally, Sect. 6 concludes
this paper.

2 Preliminaries

In this paper, we use a lower-case bold letter to denote a column vector a,
while an upper-case bold letter to denote a matrix A. The (centered) discrete
Gaussian distribution over L with parameter σ is denoted Dσ(L). For vector
u, we let ‖u‖ denote its �2 norm. For matrix R ∈ Z

k×m, we denote by ‖R‖
the maximum length of column vector of R. ‖R‖GS := ‖R̃‖ where R̃ is the
Gram-Schmidt(GS) orthogonalization of R, and ‖R‖2 := sup‖e‖=1 ‖Re‖. Then,
we have ‖R‖GS ≤ ‖R‖ ≤ ‖R‖2 ≤ √

k‖R‖ and ‖RS‖2 ≤ ‖R‖2 · ‖S‖2. Moreover,
we denote horizontal concatenation of vectors and/or matrices using a vertical
bar, e.g., [A|B], and vertical concatenation of vectors and/or matrices using a
semicolon, e.g., [A;B].

2.1 Lattice Background

We use m-dimensional full-rank integers lattices Λ, which are discrete additive
subgroups of Zm. A q-ary integer lattice and a “shift” integer lattice are defined
as follows.

Definition 1. (q-ary Lattices) Given a matrix A ∈ Z
n×m
q for some positive

integers n,m, q and a vector u ∈ Z
n
q , we define:

Λ⊥
q (A) = {x ∈ Z

m : Ax = 0 mod q}.

Λu
q (A) = {x ∈ Z

m : Ax = u mod q}.

AB-CPRE in the Standard Model Under LWE 151

Definition 2. A noise distribution χ over Z is B-bounded, if Pr
x←χ

[|x| ≥ B] ≤
2−Ω̃(n).

Definition 3. (Decisional learning with errors) Given integers n, q ≥ 1 , m ≥
O(n log q), and a B-bounded noise distribution χ over integers, the LWEn,q,χ

problem is to distinguish the following two distributions:

(A,AT s + e) and (A,u)

where A ← Z
n×m
q , s ← Z

n
q , e ← χm,u ← Z

m
q are sampled independently.

Theorem 1. ([8,27,28]) If there exists an efficient algorithm for deciding the
LWEn,q,χ problem for some B = B(n), q/B ≥ 2nε

,m = poly(n), then there is an
efficient quantum algorithm for SIV Pγ and a classical algorithm for GapSV Pγ

for γ = 2Ω(nε) in the worst case.

Corollary 1. (Hermite normal form [4]) There exists a useful transformation
that reduces LWEn,q,χ problem into one where the secret is chosen from its noise
distributions χ, which illustrates that distinguish the following two distributions
is no easier than solving LWEn,q,χ problem.

(A,AT s + e) and (A,u)

where A ← Z
n×m
q , s ← χn, e ← χm,u ← Z

m
q are sampled independently.

Corollary 2. ([21]) Applying standard hybrid argument, these distributions
below are computational indistinguishable. Otherwise, there exists an efficient
algorithm to solve LWEn,q,χ problem.

– (A,ATX + E) and (A,U), where A ← Z
n×m
q ,X ← χn×�,E ← χm×�,U ←

Z
m×�
q .

– (A,D,ATX+E,DTX+E′) and (A,D,ATX+E,DTX′+E′) where A,D ←
Z

n×m
q ,X,X′ ← χn×�,E,E′ ← χm×�.

– (A, {ATXi + Ei}i∈[t]) and (A, {Ui}i∈[t]), where A ← Z
n×m
q ,Xi ←

χn×�,Ei ← χm×�,Ui ← Z
m×�
q for all i ∈ [t], t = poly(n).

Lemma 1. ([1]) Given q > 2 and m > (n+1) log q +ω(log n), for some polyno-
mial k = k(n), choose three uniformly random matrices U ∈ {−1, 1}m×k, A ∈
Z

n×m
q , and B ∈ Z

n×k
q . For all vectors r ∈ Z

m
q , the distributions (A,AU,UT r)

and (A,B,UT r) are statistically indistinguishable.

2.2 Trapdoor and Sampling

The following lemmas show the properties of lattice trapdoor and efficient Gaus-
sian preimage sampling respectively.

Definition 4. (Gadget matrix [6,25]) For integers q ≥ 2 and n ≥ 1, there is
a special, structured matrix G = In ⊗ gT ∈ Z

n×kn
q where k = 	log(q)
,g =

(1, 2, ..., 2k−1) ∈ Z
k
q .

152 X. Liang et al.

– The lattice Λ⊥
q (G) has a public known basis TG ∈ Z

kn×kn with ‖TG‖GS ≤√
5.

– For any m ≥ kn, G ∈ Z
n×kn
q can be extended to a matrix G′ ∈ Z

n×m
q by

adding zero columns on the right of G.

Lemma 2. ([1,6,11]) Given n ≥ 1 , q ≥ 2 and m ≥ 	6n log q
, we have the
following polynomial-time algorithms:

– There is a randomized algorithm TrapGen(1n, 1m, q) that outputs a full-
rank matrix A ∈ Z

n×m
q and a short basis TA ∈ Z

m×m for Λ⊥
q (A) such that

A is statistically close to uniform and ‖TA‖GS = O(
√

n log q), with all but
negligible probability in n.

– There is a deterministic algorithm ExtendRight(A,TA,B) that given
matrices A,B ∈ Z

n×m
q and a basis TA of Λ⊥

q (A) outputs a basis TA|B of
Λ⊥

q (A|B) such that ‖TA|B‖GS = ‖TA‖GS.
– There is a deterministic algorithm ExtendLeft(A,G,TG,S) that given full-

rank matrices A,G ∈ Z
n×m
q and a basis TG of Λ⊥

q (G) outputs a basis
TA|AS+G of Λ⊥

q (A|AS+G) such that ‖TA|AS+G‖GS ≤ ‖TG‖GS ·(1+‖S‖2).
Lemma 3. ([2,11,14]) Given integers n, q > 2 and m > n. Let A ∈ Z

n×m
q and

TA be a basis for Λ⊥
q (A), for any σ ≥ ‖TA‖GS · ω(

√
log m). We have

– A random vector x sampled from Dσ(Λu
q (A)) has �2 norm less than σ

√
m all

but with negiligible probability in m.
– There is a randomized algorithm SamplePre(A,TA,D, σ), which outputs a

random matrix X ∈ ΛD
q (A) such that AX = D from a distribution that is

statistically close to Dσ(ΛD
q (A)).

– There is a randomized algorithm RandBasis(A,TA, σ), which outputs a ran-
dom basis T′

A of Λ⊥
q (A) sampled from a distribution that is statistically close

to Dσ(ΛD
q (A)).

2.3 Key Homomorphism and Vector Decomposition

Let us recall some notions, used in fully homomorphic encryption.

Definition 5. For any positive integers �, d, we define the family of functions
F�,d = {f : {0, 1}� → {0, 1}}, where f is a boolean circuit of depth ≤ d.

Lemma 4. ([6,22]) Given positive integers n, q, �, d,m where m ≥ 	n log(q)

and a B-bounded noise distribution χ, for any matrices B1, ...,B� ∈ Z

n×m
q , any

boolean circuit f ∈ F�,d and any x ∈ {0, 1}�, if

∀i ∈ [�] : ci = (xiG + Bi)T s + ei

where s ← Z
n
q , ei ← χm for i ∈ [�], then we have,

– A deterministic algorithm Evalpk(f, {Bi}i∈[�]) that given a circuit f and �
matrices {Bi}i∈[�], outputs a matrix Bf .

AB-CPRE in the Standard Model Under LWE 153

– A deterministic algorithm Evalct(f, {(xi,Bi, ci)}i∈[�]) that given a circuit f ,
a vector x ∈ {0, 1}�, � matrices {Bi}i∈[�] and � vectors {ci}i∈[�], outputs a
vector cf , satisfying

cf = (f(x)G + Bf)T s + ef

where Bf = Evalpk(f, {Bi}i∈[�]) and ‖ef‖ ≤ B
√

m(m + 1)d with all but
negligible probability.

– For all i ∈ [�], it holds that Bi = ASi − x∗
iG where x∗ = {x∗

i }i∈[�] ∈ {0, 1}�

and Si ∈ {−1, 1}m×m. A deterministic algorithm Evalsim(f, {x∗
i ,Si}i∈[�],A)

that given a circuit f , a vector x∗ ∈ {0, 1}�, � matrices {Si}i∈[�] and a matrix
A, outputs a matrix Sf satisfying

ASf − f(x∗)G = Bf

where Bf = Evalpk(f, {Bi}i∈[�]) and ‖Sf‖2 ≤ 20
√

m(m + 1)d with all but
negligible probability.

Definition 6. (Vector Decomposition [3,7]) We define the function mapping
vectors to their bit representations as below:

– A deterministic function Bitsq(v) that given a vector v ∈ Z
n
q , let vi ∈ {0, 1}n

be such that v =
∑	log q
−1

i=1 2ivi, outputs a vector ṽ ∈ {0, 1}n·	log q
, where
ṽ = (v0; . . . ;v	log q
−1).

– A deterministic function Power2q(X) that given a matrix X ∈ Z
n×m
q , out-

puts a matrix X ∈ Z
n	log q
×m
q , where X = [X; 2X; . . . ; 2	log q
−1X].

– For all positive integers q, n,m ∈ Z , a vector v ∈ Z
n
q and a matrix X ∈ Z

n×m,
it holds that vTX = Bitsq(v)T · Power2q(X) = ṽTX ∈ Z

1×m
q .

3 Model of Attribute-Based CPRE

In this section, we present the formalization of unidirectional AB-CPRE and
its corresponding security notation. We start with multi-hop AB-CPRE, which
implies single-hop AB-CPRE.

3.1 Multi-hop AB-CPRE

Definition 7. (Multi-hop AB-CPRE) A unidirectional multi-hop attribute-
based conditional proxy re-encryption scheme comprises the following six algo-
rithms:

– Setup(n): the setup algorithm is run by a semi-trusted agent. Given a security
parameter n as input, it outputs the public parameters pp.

– KeyGen(pp, α): the key generation algorithm is run by a user in the sys-
tem. Given the public parameters pp, it generates the public/private key pair
(pkα, skα) for user α.

154 X. Liang et al.

– Enc(pp, pkα,µ,x): the encryption algorithm, takes as input the public param-
eters pp, a public key pkα, a plaintext µ, and an attribute vector x. It outputs
a ciphertext CTα associated with x under public key pkα.

– Dec(pp, skα, CTα): the decryption algorithm, takes as input the public param-
eters pp, a private key skα and a ciphertext CTα under public key pkα. It
outputs a message µ.

– ReKeyGen(pp, skα, pkβ , f,y): the re-encryption key generation algorithm is
run by user α, takes as input the public parameters pp, the private key skα

for user α, the public key pkβ for another user β, a control policy/function f
and an attribute vector y. It outputs a re-encryption key rkα,f→β,y associated
with f .

– ReEnc(pp,CTα, rkα,f→β,y): the re-encryption algorithm run by the proxy,
takes as input a ciphertext CTα associated with x under a public key pkα for
user α, a public key pkβ for user β and a re-encryption key rkα,f→β,y. It
outputs a ciphertext CTβ associated with y under the public key pkβ when
f(x) = 0 holds, otherwise outputs ⊥.

Remark 1. In AB-CPRE scheme, a ciphertext can be associated with null
attribute, which means vector x in Enc algorithm or vector y in ReKeyGen
and ReEnc algorithms may be a null vector. Specially, a ciphertext with null
attribute cannot be re-encrypted. For simplification, if the attribute vector is a
null vector, we will omit it, e.g., rkα,f→β ← ReKeyGen(pp, skα, pkβ , f).

Correctness. In a unidirectional multi-hop attribute-based proxy re-encryption
scheme. We require the correctness for encryption and re-encryption as follows,

– For any key pair (pkα, skα) ← KeyGen(pp, α), any attribute vector x and
any message µ, it holds that

Pr[Dec(pp, skα,Enc(pp, pkα,µ,x)) = µ] = 1 − negl(n).

– For any attribute vectors y1, ...,yt, any key pairs (pkβ1 , skβ1)...(pkβt
, skβt

),
and any message µ, for all i ∈ {2, ..., t}, fi−1(yi−1) = 0, it holds that

rkβi−1,fi−1→βi,yi
← ReKeyGen(pp, skβi−1 , pkβi

, fi−1,yi),

CT
(i−1)
βi

= ReEnc(pp,CT
(i−2)
βi−1

, rkβi−1,fi−1→βi,yi
),

Pr[Dec(pp, skβi
, CT

(i−1)
βi

) = µ] = 1 − negl(n)

where t = poly(n), CT
(0)
β1

= Enc(pp, pkβ1 ,µ,y1).

3.2 Single-Hop AB-CPRE

Unidirectional single-hop AB-CPRE, whose ciphertext can be transformed at
most once, can be viewed as a weak concept of unidirectional multi-hop AB-
CPRE. CPRE scheme does not require the attribute vector (or conditional
vector) as an input to decrypt the transformed ciphertext. Thus, different

AB-CPRE in the Standard Model Under LWE 155

from multi-hop one, single-hop AB-CPRE does not require delegator to set an
attribute vector y in ReKeyGen and ReEnc algorithms. Particularly, in single-
hop scheme, we would call the ciphertext with attributes as original ciphertext,
and the ciphertext with null attribute as transformed ciphertext.

3.3 Security Notation

In this section, we concentrate on formulating the universal security notation
for unidirectional AB-CPRE. Before proceeding, we define the notations used in
security definitions.

– Delegation chain. Suppose in an unidirectional AB-CPRE scheme there
is a re-encryption key set RK = {rkβ1,f1→β2,y2 , ..., rkβt−1,ft−1→βt,yt

}, or
RK ′ = {rkβ1,f1→β2,y2 , ..., rkβt−2,ft−2→βt−1,yt−1 , rkβt−1,ft−1→βt

}, where t ≥ 2
and fi(yi) = 0 for all i ∈ {1, ..., t − 1}. Specially, we can learn that users
β1, β2, ..., βt are able to decrypt all ciphertexts with y1 for user β1. Thus, we
say that there exists a delegation chain under (β1,y1) from user β1 to user
βt. For convenience, we denote this delegation chain as (y1, β1, ..., βt).

– Uncorrupted/corrupted user. If the private key of a user is compromised
by an adversary, then we consider this user as a corrupted user. Otherwise,
this user is an uncorrputed user.

– Uncorrupted/corrupted delegation chain. Suppose there exists a dele-
gation chain (y1, β1, ..., βt). If all users on the chain are uncorrputed users,
then it is an uncorrputed chain. Otherwise, it is a corrupted chain, which
implies at least one corrupted user could decrypt all ciphertexts with y1 for
user β1.

Remark 2. In single-hop AB-CPRE, the delegation chain at most contains two
users, e.g., (x, α, β). Whereas, in multi-hop one, the delegation chain could con-
tain O(n) users.

sIND-CPA Game. The selective security of AB-CPRE on ciphertext is defined
through the following security game between a challenger C and an adversary A.

Init Adversary A announces an attributes vector x∗ before seeing public param-
eters pp.

Setup Challenger C runs the Setup algorithm to generate public parameters pp,
and then executes KeyGen algorithm with a random user identity θ to get a
key pair (pkθ, skθ). Finally, the challenger passes pp and pkθ to the adversary
A.

Phase 1 C initializes three empty collections Ψu, Ψc, and Ψrk. Then, C inserts
(pkθ, skθ) into Ψu. A sends queries q1, ..., qt to C. Each query is one of the
following:
1) Uncorrupted key generation query Ou(β): C first runs algorithm

KeyGen(pp, β) to get a key pair (pkβ , skβ), and then inserts it into
collection Ψu. Finally, C outputs a public key pkβ .

156 X. Liang et al.

2) Corrupted key generation query Oc(β): C first executes algorithm
KeyGen(pp, β) to get a key pair (pkβ , skβ), and then inserts it into
collection Ψc. Finally, C outputs a key pair (pkβ , skβ).

3) Re-encryption key query Ork(pkα, pkβ , f,y): If α = β or pkα /∈ Ψu ∪ Ψc

or pkβ /∈ Ψu ∪ Ψc, then C outputs ⊥. C generates a re-encryption key
rkα,f→β,y by executing ReKeyGen(pp, skα, pkβ , f,y). If there exists a
corrupted delegation chain (x∗, θ, ...) in Ψrk ∪{rkα,f→β,y}, then C outputs
⊥. Otherwise, C inserts rkα,f→β,y into Ψrk and then outputs rkα,f→β,y.

4) Re-encryption query Ore(CTα, rkα,f→,β,y): If rkα,f→,β,y ∈ Ψrk, then C
outputs ReEnc(pp,CTα, rkα,f→β,y). Otherwise, C outputs ⊥.

Challenge A submits two equal-length messages µ∗
0 and µ∗

1. C flips a random coin
b ∈ {0, 1}, executes CT ∗ ← Enc(pp, pkθ,x∗,µ∗

b), and returns the original
ciphertext CT ∗ to A.

Phase 2 The same as Phase 1.
Guess A outputs a bit b′, which is a guess on b.

sKP-CPA Game. The selective security of AB-CPRE on re-encryption key is
the same as sIND-CPA game, except the Challenge phase.

Challenge A submits an uncorrupted user’s public key pkβ and a policy f . If
there exists a re-encryption key rkβ,f→θ ∈ Ψrk or rkβ,f→θ,y ∈ Ψrk where
y is an attribute vector, then C outputs ⊥. Otherwise, C tosses a ran-
dom coin b ∈ {0, 1}, outputs a re-encryption key rkβ,f→θ by executing
ReKeyGen(pp, skβ , pkθ, f) if b = 1, or returns random re-encryption key
rk∗ in re-encryption key space if b = 0.

Definition 8. (sIND-CPA Security) An attribute-based CPRE scheme is selec-
tive secure against chosen-plaintext attacks if for any probabilistic polynomial
time (PPT) adversary A, it holds that Pr[b′ = b] = 1/2 + negl(n) in sIND-CPA
game, where negl is a negligible function.

Definition 9. (sKP-CPA security) An attribute-based CPRE scheme is selec-
tive key privacy under chosen-plaintext attacks if for any PPT adversary A,
it holds that Pr[b′ = b] = 1/2 + negl(n) in sKP-CPA game, where negl is a
negligible function.

4 Single-Hop AB-CPRE Scheme

In this section, we propose the single-hop AB-CPRE scheme. Firstly, we intro-
duce the core techniques and the main idea behind our scheme. Then, we present
our concrete scheme, its correctness as well as security proof.

4.1 Technique Review

We start with a brief overview of fully key-homomorphic public-key encryption
(FKHE) [6] and key switching [3], which are the core techniques of our scheme.

AB-CPRE in the Standard Model Under LWE 157

In [6], Boneh et al. put forward a kind of FKHE. For any boolean circuit
f : {0, 1}� → {0, 1} and its � bits input x ∈ {0, 1}�, there exist three efficient
algorithms Evalpk, Evalct and Evalsim (See Lemma 4 for more details).

Applying FKHE, a KP-ABE system can be constructed. The master public
key contains � attribute matrices {Bi}i∈[�] and two matrices A,D. The master
secret key is a short basis T for lattice Λ⊥(A).

– For a user with policy f , use T to extract a secret key Rf such that
[A|Bf]Rf = −D, where Bf = Evalpk(f, {Bi}i∈[�]).

– For a ciphertext (AT s+ ein,DT s+ eout + �q/2�µ, {(xiG+Bi)T s+ ei}i∈[�])
of a message µ with an attribute vector x, the user can execute the Evalct
to assemble a ciphertext cf = (Bf + f(x)G)T s + ef . The user can recover
the message µ correctly by secret key Rf if his policy f satisfies f(x) = 0.

First Attempt. Easily, we can construct a naive AB-CPRE scheme by FKHE.
Firstly, a random matrix D and � attribute matrices {Bi}i∈[�] are chosen and
shared among users. Then, each user chooses his public key A and the corre-
sponding private key T, the short basis of lattice Λ⊥(A). At last, if user α wants
to delegate the decryption right with policy f to user β, user α could use Tα to
extract the re-encryption key Rα,f→β such that [Aα|Bf]Rα,f→β = Aβ .

Although this naive scheme seems to work, there is no formal proof to show
the indistinguishability under chosen-plaintext attack. The FKHE system of [6]
only achieves selective IND-CPA secure. In other words, in FKHE system, A
would announce an attribute vector x∗ in the beginning, and C does not need to
answer the query on function f such that f(x∗) = 0. But the security notation
of AB-CPRE needs C to answer the query on Ork(pkθ, pkβ , f). In the case that
f(x∗) = 0 and pkβ ∈ Ψu, C cannot generate the corresponding re-encryption key
by ExtendLeft, and then abort.

To address the constrain in the naive scheme, we have to apply the key-
switching technique, which was originally used in fully homomorphic encryp-
tion [7]. Aono et al. [3] constructed an interactive PRE with key privacy using
key-switching. Intuitively, we can convert it into a non-interactive one as follows,

– For user α, the public key is a pair of LWE instance (Aα,Dα) while the
private key is Sα, where Dα = Rα − AαSα and Rα,Sα are sampled from
error distribution.

– The re-encryption key is a matrix Qα→β as below,

Qα→β =
[
E1Aβ + E2 E1Dβ + E3 + Power2q(Sα)

0 I

]

.

where E1,E2,E3 are chosen from error distribution.
– In the transformation process, the proxy converts user α’s ciphertext

(cin, cout) into (Bitsq(cin), cout) and then returns [Bits(cin)T |cT
out]Qα→β as

transformed ciphertext (Power2q and Bitsq are defined as Definition 6).

158 X. Liang et al.

Combining key-switching technique with our naive scheme, we propose a
provably-secure single-hop AB-CPRE scheme. The main idea is showed as fol-
lows,

– � attribute matrices {Bi}i∈[�] are chosen uniformly at random and shared
among users.

– Each user chooses two matrices A,D as their public key, and the short basis
T for lattice Λ⊥(A) as their private key.

– Ciphertext of message µ with attribute vector x under pkα is CTα = (ct, cc),

ct = (AT
αs + ein,DT

αs + eout + �q/2�µ) , cc = {(xiG + Bi)T s + ei}i∈[�]

where Aα,Dα is the public key of user α and s is selected uniformly at
random.

– Since user α has the short basis Tα, only ct is needed in decryption process.
Whereas cc only works for delegation of decryption.

– If user α wants to delegate the decryption right with policy f to user β, then
user α extracts a matrix Rα,f with small norm such that (Aα|Bf)Rα,f =
−Dα and returns a matrix Qα,f→β as re-encryption key.

4.2 Construction

Before giving our AB-CPRE scheme, we list the parameters that will be used.

– (n, q,m, χ) - lattice parameters, where m ≥ 	6n log q
 , q/4 ≥ B · (m + 1)O(d)

and χ is a B-bounded (B ≥ √
n · ω(log n)) distribution.

– � - number of attributes.
– d - the maximum depth of the boolean circuit.
– σ - Gaussian parameter, where σ = ω((m + 1)d+1) · ω(

√
log m).

Our scheme works for �, d, q = poly(n), k = 	log q
.
– Setup(n): Choose � random uniform matrices B1, ...,B� ← Z

n×m
q and an

error sampling algorithm χ, which is a B-bounded distribution. Output public
parameters pp := ({Bi}i∈[�], χ).

– KeyGen(pp, α): Select a matrix Dα ← Z
n×m
q uniformly at random and gen-

erate a pair (Aα,Tα) ← TrapGen(1n, 1m, q). Then run

Rα ← SamplePre(Aα,Tα,−Dα, σ) s.t. AαRα = −Dα.

Output public key pkα = (Aα,Dα) and private key skα = (Tα,Rα).
– Enc(pp, pkα,µ,x): Given pp = ({Bi}i∈[�], χ), pkα = (Aα,Dα), a plaintext

µ ∈ {0, 1}m and an attribute vector x = {xi}i∈[�]. Choose a random vector
s ← Z

n
q and error vectors ein, eout ← χm. Compute ct = (cin, cout) as

cin = AT
αs + ein, cout = DT

αs + eout + �q/2�µ.

If x is none or null, then set cc = ∅. Otherwise, choose � uniformly random
matrices Si ← {−1, 1}m×m and compute

cc = ({ci = (xiG + Bi)T s + ST
i ein}i∈[�]) ∈ Z

�m
q .

Output ciphertext CTα := (ct, cc).

AB-CPRE in the Standard Model Under LWE 159

– Dec(pp, skα, CTα): Parse skα = (Tα,Rα) and CTα = (ct, cc). Let ct =
(cin, cout), then compute

µ̂ =
[
cT

in cT
out

] ·
[

Rα

Im×m

]

.

For j ∈ [m], set µj = 1 if |µ̂j − �q/2�| < q/4, otherwise set µj = 0. Finally,
output µ ∈ {0, 1}m.

– ReKeyGen(pp, skα, pkβ , f): Given pp = ({Bi}i∈[�], χ) , skα = (Tα,Rα),
pkβ = (Aβ ,Dβ) and a policy f ∈ F�,d. Let Bf = Evalpk(f, {Bi}i∈[�])
and F = (Aα|Bf) ∈ Z

n×2m. To construct Rα,f , build the
basis Tα,f for F as Tα,f ← ExtendRight(Aα,Tα,Bf). Then run
SamplePre(F,Tα,f ,−Dα, σ) to generate Rα,f such that FRα,f = −Dα

where Rα,f ∈ Z
2m×m. Set Rα,f = Power2q(Rα,f), sample matrices E1 ←

χ2km×n,E2,E3 ← χ2km×m and build matrix

Q =
[
E1Aβ + E2 E1Dβ + E3 + Rα,f

0m×m Im×m

]

∈ Z
(2km+m)×2m
q .

Output rkα,f→β = Q as re-encryption key.
– ReEnc(pp, rkα,f→β , CTα): Parse pp = ({Bi}i∈[�], χ), rkα,f→β = Q, and

CTα = (ct, cc). If f(x) �= 0 or cc = ∅ then output ⊥, otherwise let
ct = (cin, cout), cc = {ci}i∈[�], set cf = Evalct(f, {(xi,Bi, ci)}i∈[�]) and
c̃in,f = Bitsq([cin; cf]),

(c′T
in|c′T

out) = [c̃T
in,f |cT

out] · Q.

Output CTβ = (ct′ = (c′
in, c′

out), cc
′ = ∅) as transformed ciphertext.

4.3 Correctness

According to the parameters given at the beginning, the correctness is as follows.

Original Ciphertext. (cin, cout) is the ct of ciphertext under pkα as follows,

cin = AT
αs + ein, cout = DT

αs + eout + �q/2�µ.

Since, Aα · Rα = −Dα where ‖Rα‖2 ≤ mσ with overwhelming probability.
Therefore, we have

[
cT

in cT
out

] ·
[

Rα

Im×m

]

= eT
inRα + eT

out + �q/2�µT

where ‖eT
inRα + eT

out‖ ≤ m
√

mσB +
√

mB ≤ B · (m + 1)O(d) ≤ q/4 with over-
whelming probability, which ensures correct decryption of µ.

Transformed Ciphertext. (ct = (cin, cout), cc = ({ci}i∈[�])) is the original cipher-
text associated with attribute vector x under pkα. rkα,f→β is a re-encryption
key, where f(x) = 0. By Lemma 6 and Lemma 4, we have

c̃T
in,f · Rα,f = (sT [Aα|Bf] + [eT

in|eT
f])Rα,f = −sTDα + [eT

in|eT
f]Rα,f

160 X. Liang et al.

where Rα,f ≤ √
2mσ and ‖ef‖ ≤ B

√
m(m+1)d with overwhelming probability.

Then, the transformed ciphertext is computed as follows,

[c′T
in |c′T

out]

= [c̃T
in,f |cT

out]
[
E1Aβ + E2 E1Dβ + E3 + Rα,f

0m×m Im×m

]

= [c̃T
in,f (E1Aβ + E2) | c̃T

in,f (E1Dβ + E3) + [eT
in|eT

f]Rα,f + eT
out + �q/2�µ]

where Aβ and Dβ is public key of user β, ‖E1‖ ≤ √
2kmB, ‖E2‖ ≤ √

2kmB

and ‖E3‖ ≤ √
2kmB with overwhelming probability. Therefore, we have

[c′T
in |c′T

out] ·
[

Rβ

Im×m

]

= c̃T
in,fE2Rβ + c̃T

in,fE3 + [eT
in|eT

f]Rα,f + eT
out + �q/2�µ

where ‖c̃T
in,fE2Rβ +c̃T

in,fE3+[eT
in|eT

f]Rα,f +eT
out‖ ≤ 2km2

√
mσB+2km

√
mB+

2m
√

m(m+1)dσB+
√

mB ≤ B(m+1)O(d) ≤ q/4 with overwhelming probability,
which means that decryption of µ is correct.

4.4 Security Proof

In this subsection, we show that our AB-CPRE scheme is sIND-CPA secure and
sKP-CPA secure in the standard model.

Theorem 2. Our single-hop AB-CPRE scheme is sIND-CPA secure and sKP-
CPA secure in the standard model under LWEn,q,χ assumption.

The full proof can be found in AppendixA. Here, we outline our proof sketch
only. Our security proof employs proof idea from [1,6]. We build a challenger C,
who solves LWEn,q,χ problem by invocating a PPT adversary A.

Given a random matrix [Aθ|Dθ], C will be given a uniform vector u or an
LWE instance [Aθ|Dθ]T s + e, where e is sampled from error distribution χ.
Then A announces a challenge attribute vector x∗ ∈ {0, 1}� before C selects
the public parameters and the specific public key. After receiving x∗, C gen-
erates � matrices {S∗

i }i∈[�] with small norm uniformly at random, computes
{Bi = AθS∗

i −x∗
iG}i∈[�], sets ({Bi}i∈[�], χ) as the public parameters pp and sets

(Aθ,Dθ) as the specific public key pkθ. When adversary A makes a query on
Ork(pkθ, pkβ , f) such that f(x∗) �= 0, challenger C would check whether there
exists a corrupted delegation chain (x∗, θ, ...). If not, C executes Evalsim, defined
as Lemma 4, produces a short basis Tθ,f for lattice Λ⊥(Aθ|Bf) by ExtendLeft
and then compute a re-encryption key rkθ,f→β = Q. In Challenge phase, chal-
lenger C assembles a challenge ciphertext by LWE instance [Aθ|Dθ]T s + e or a
uniform vector u. Finally, challenger C outputs adversary A’s answer as result.

However, adversary A may make a query on Ork(pkθ, pkβ , f) where f(x∗) = 0
and pkβ ∈ Ψu. In this case, Bf = AθSf , challenger C cannot generate the
corresponding short basis Tθ,f by ExtendLeft, which will make C abort.

AB-CPRE in the Standard Model Under LWE 161

To fix such a problem, we have to use key-switching technique to avoid to gen-
erate Tθ,f , where f(x∗) = 0. By LWE assumption, E1Dβ +E3+Power2q(Rα,f)
is computational indistinguishable from uniform matrix M. As a result, we will
sample a random M instead of computing E1Dβ + E3 + Power2q(Rα,f) when
asking for rkθ,f→β , f(x∗) = 0 and pkβ ∈ Ψu.

5 Extension: Multi-hop AB-CPRE Scheme

In this section, we construct a multi-hop AB-CPRE scheme from the single-hop
scheme in Sect. 4.

Let us show transformed ciphertext CTβ = (ct, cc = ∅) in single-hop AB-
CPRE, detailedly,

ctT = [c̃T
in,f |cT

out]
[
E1Aβ + E2 E1Dβ + E3 + Rα,f

0m×m Im×m

]

≈ (c̃T
in,fE1) · [

Aβ + error | Dβ + error′] + [0 | �q/2�µ] ∈ Z
1×2m
q .

Method 1. Obviously, ct is in the form of dual Regev’s ciphertext [14]. Thus,
we can apply key-switching to generate a re-encryption key rkβ→π from user
β to user π (mentioned in Subsect. 4.1). However, in such way, once the proxy
obtains a re-encryption key rkβ→π, the proxy could transform all ciphertext of
user β to user π without any discrimination.

Method 2. Compared to original ciphertext, transformed ciphertext does not
contain any cc = {(xiG+Bi)T s+ei}i∈[�], which plays an important role in del-
egation. Thus, we can make subtle change in ReKeyGen algorithm to achieve
multi-hop capacity. ReKeyGen would return a re-encryption key in single-hop
AB-CPRE together with an extra matrix,

P = [E1(y1G + B1) + EB1 |...|E1(y�G + B�) + EB�
]

where y is the attribute vector set by delegator, E1 is the same as in ReKeyGen,
and the elements of EBi

are chosen from error distribution χ. With matrix P,
the proxy could compute the new cc for the transformed ciphertext

ccT = [c1; ...; c�]T = c̃T
in,fP

= c̃T
in,f · [E1(y1G + B1) + EB1 |...|E1(y�G + B�) + EB�

].

Therefore, the transformed ciphertext (ct, cc) would be associated with a new
attribute vector y set by delegator.

5.1 Construction

The parameters are the same as in Sect. 4, and our scheme works for �, d, q =
poly(n), m ≥ 	6n log q
, q/4 ≥ B · (m + 1)O(d), σ = ω((m + 1)d+1) · ω

√
log m,

k = 	log q
.

162 X. Liang et al.

– Setup(n): the same as Setup(n) in Sect. 4.
– Enc(pp, pkα,µ,x): the same as Enc(pp, pkα,µ,x) in Sect. 4.
– Dec(pp, skα, CTα): the same as Dec(pp, skα, CTα) in Sect. 4.
– ReKeyGen(pp, skα, pkβ , f,y): Parse pp = ({Bi}i∈[�], χ) , skα = (Tα,Rα),

pkβ = (Aβ ,Dβ), a policy f ∈ F�,d and an attribute vector y = {yi}i∈[�]. Let
Bf = Evalpk(f, {Bi}i∈[�]) and F = (Aα|Bf) ∈ Z

n×2m. To construct Rα,f ,
build the basis Tα,f for F as Tα,f ← ExtendRight(Aα,Tα,Bf). Then
run Rα,f ← SamplePre(F,Tα,f ,−Dα, σ) s.t. FRα,f = −Dα where Rα,f ∈
Z
2m×m. Set Rα,f = Power2q(Rα,f), sample matrices E1 ←

χ2km×n,E2,E3 ← χ2km×m and build matrix

Q =
[
E1Aβ + E2 E1Dβ + E3 + Rα,f

0m×m Im×m

]

∈ Z
(2km+m)×2m
q .

If y is none or null, then set P as a null matrix. Otherwise, samples � matrices
EBi

from error distribution χ2km×m and compute,

P = [(E1(yiG + B1) + EB1) | ... | (E1(yiG + B�) + EB�
)] ∈ Z

2km×�m
q .

Output rkα,f→β,y = (Q,P) as re-encryption key.
– ReEnc(pp, rkα,f→β,y, CTα): Parse pp = ({Bi}i∈[�], χ), rkα,f→β = (Q,P),

and CTα = (ct, cc). If f(x) �= 0 or cc = ∅ then ⊥, otherwise let ct =
(cin, cout), cc = {ci}i∈[�], set cf = Evalct(f, {(xi,Bi, ci)}i∈[�]) and c̃in,f =
Bitsq([cin; cf]), then compute

(c′T
in|c′T

out) = [c̃T
in,f |cT

out] · Q.

If P is a null matrix, then set cc′ = ∅. Otherwise, compute

[c′
1; ...; c

′
�]

T = c̃T
in,f · P.

and then set cc′ = {c′
i}i∈[�]. Output CTβ = (ct′ = (c′

in, c′
out), cc

′) as trans-
formed ciphertext.

5.2 Correctness and Security Proof

Theorem 3. Our multi-hop scheme supports O(n) times transformations.

Suppose t = O(n) and (ct(t) = (c(t)in , c(t)out), cc(t) = {c(t)i }i∈[�]) is the ciphertext
that has been transformed t times, then we have ‖e(t)out‖ ≤ √

mB +2km
√

mBt+
2
√

2km2(m+1)dσBt and ‖e(t)in ‖ ≤ 2km
√

mB (See AppendixB for more details).

Therefore, ‖e(t)in

T
Rα + e(t)out

T ‖ ≤ 2km2
√

mσB +
√

mB + 2km
√

mB · O(n) +
2
√

2km2(m + 1)dσB · O(n) ≤ B · (m + 1)O(d) ≤ q/4 holds with overwhelming
probability, which ensures the correctness.

Theorem 4. Our multi-hop AB-CPRE scheme is sIND-CPA secure and sKP-
CPA secure in standard model under LWEn,q,χ assumption.

AB-CPRE in the Standard Model Under LWE 163

Due to the space limitations, we just outline our proof sketch here. Our proof
idea is similar to single-hop one. The difference between multi-hop scheme and
single-hop scheme is the form of re-encryption key. In single-hop scheme, the
re-encryption key rkθ,f→β contains a matrix Q ∈ Z

(2km+m)×2m
q . Whereas, in

the multi-hop scheme, the re-encryption key rkθ,f→β,y would contain an extra
P ∈ Z

2km×�m
q . Thus, in the sequence of sIND-CPA game or sKP-CPA game, C

would generate an extra matrix P honestly, when asking for a re-encryption key
(see Appendix C for more details).

6 Conclusion

In this paper, we propose two LWE-based AB-CPRE schemes against quantum-
attack. Single-hop one is unidirectional, and supports fine-grained delegation of
control as polynomial-depth circuit. Multi-hop one, an extension of single-hop
scheme, is the first multi-hop AB-CPRE scheme. No matter how many trans-
formations are performed, the ciphertext of multi-hop AB-CPRE is in constant
size. Besides, we prove that both of our schemes are sIND-CPA and sKP-CPA
without relying on random oracle.

At last, we leave two open problems. One is to construct an IND-CCA secure
AB-CPRE scheme from lattices. Another is to construct a multi-hop lattice-
based IND-CPA secure AB-CPRE scheme in adaptive model.

Acknowledgements. We all thank the anonymous reviewers for their valuable com-
ments and suggestions which improve the content and presentation of this work a lot.
Jian Weng was supported by Major Program of Guangdong Basic and Applied Research
Project under Grant No. 2019B030302008, National Key Research and Development
Plan of China under Grant Nos. 2020YFB1005600, National Natural Science Founda-
tion of China under Grant Nos. 61825203, U1736203 and 61732021, and Guangdong
Provincial Science and Technology Project under Grant No. 2017B010111005. Anjia
Yang was partially supported by Key-Area Research and Development Program of
Guangdong Province (Grant No. 2020B0101360001), National Natural Science Foun-
dation of China (Grant No. 62072215, 61702222). Xiaojian Liang, Zhenghao Wu, and
Zike Jiang were supported by Special Funds for the Cultivation of Guangdong Col-
lege Students’ Scientific and Technological Innovation. (“Climbing Program” Special
Funds.) (No. pdjh2021a0050).

A Proof for Single-hop AB-CPRE

All details of proof can be found in full version [20]. Due to space limitations,
we only present the simulator algorithms used in our proof.

– SetupSIM (n,x∗): Let x∗ = {x∗
i }i∈[�] to be the attribute vector selected by

adversary A. Sample a uniform matrix Dθ ← Z
n×m
q and generate a ran-

dom identity’s public key Aθ ← Z
n×m
q , then choose � random matrices

S∗
1, ...,S

∗
� ← {−1, 1}m×m. Set Bi = AθS∗

i − x∗
iG for all i ∈ [�]. Select an

164 X. Liang et al.

error sampling algorithm χ, which is a B−bounded distribution. Keep matri-
ces {S∗

i }i∈[�] as secret and output public parameters pp := ({Bi}i∈[�], χ) and
specific public key pkθ := (Aθ,Dθ).

– EncSIM (pp, pkθ,µb,x∗): Let pp = ({Bi}i∈[�], χ), pkθ = (Aθ,Dθ), a chal-
lenge message µb ∈ {0, 1}m, and a selected attribute vector x∗ = ({x∗

i }i∈[�]).
Choose a random vector s ← Z

n
q and two error vectors ein, eout ← χm. Com-

pute ct = (cin, cout) as

cin = (Aθ)T s + ein, cout = (Dθ)T s + eout + �q/2�µb.

Use {S∗
i }i∈[�] chosen in SetupSIM instead of uniform matrices in {−1, 1}m×m

and then assemble cc∗ = ({ci = (x∗
iG + Bi)T s + (S∗

i)
Tein}i∈[�]) ∈ Z

�m
q .

Output a challenge ciphertext CT ∗ = (ct∗, cc∗).
– ReKeyGenSIM (pp, pkβ , f): Parse pp = ({Bi}i∈[�], χ) , pkβ = (Aβ ,Dβ), and

a policy f ∈ F�,d. Let S∗
f = Evalsim(f, (x∗

i ,S
∗
i)i∈[�],Aθ).

1) In the case that f(x∗) �= 0, let Bf = AθS∗
f − f(x∗)G and set F =

[Aθ|Bf − f(x∗)G] ∈ Z
n×2m. Compute the basis Tθ,f for F as Tθ,f ←

ExtendLeft(Aθ,G,TG,Sf). Then generate a matrix Rθ,f ∈ Z
2m×m

such that FRθ,f = −Dθ by executing SamplePre(F,Tθ,f ,−Dθ, σ), set
Rα,f = Power2q(Rα,f), sample E1 ← χ2km×n,E2,E3 ← χ2km×m and
compute

Q =
[
E1Aβ + E2 E1Dβ + E3 + Rθ,f

0m×m Im×m

]

∈ Z
(2km+m)×2m
q .

2) In the case that f(x∗) = 0, sample two matrices E1 ← χ2km×n,E2 ←
χ2km×m, choose a matrices M′ ← Z

2km×m uniformly at random, and
compute

Q =
[
E1Aβ + E2 M′

0m×m Im×m

]

∈ Z
(2km+m)×2m
q .

Output rkθ,f→β = Q as re-encryption key.

B Correctness for Multi-hop AB-CPRE

The correctness of original ciphertext is the same as the correctness in Sect. 4.
Then the correctness of transformed ciphertext is presented as follows.

Transformed Ciphertext. (ct(t−1) = (c(t−1)
in , c(t−1)

out), cc(t−1) = {c(t−1)
i }i∈[�]) is

the ciphertext which has been transformed t − 1 times and associated with
attribute vector x under pkα. For convenience, rkα,f→β,y = (Q,P) is the
re-encryption key, where f(x) = 0. Set c̃(t−1)

in,f = Bitsq([c
(t−1)
in ; c(t−1)

f]) and
Rα,f = Power2q(Rα,f). Then the t times transformed ciphertext (ct(t), cc(t)) is
showed as following;

c
(t)
in = (s(t))TAβ + e

(t)
in = (c̃

(t−1)
in,f)TE1Aβ + (c̃

(t−1)
in,f)TE2,

c
(t)
out = (c̃

(t−1)
in,f)TE1Dβ + (c̃

(t−1)
in,f)TE3 + [e

(t−1)
in ; e

(t−1)
f]TRα,f + (e

(t−1)
out)T + �q/2�µ,

{c(t)i = (s(t))T (yiG + Bi) + (e
(t)
i)T = (c̃

(t−1)
in,f)TE1(yiG + Bi) + (c̃

(t−1)
in,f)TEBi}i∈[�].

AB-CPRE in the Standard Model Under LWE 165

For any t > 0, we can learn that, ‖e(t)in ‖ ≤ 2km
√

mB and ‖e(t)i ‖ ≤ 2km
√

mB.
Because ‖e(0)out‖ ≤ √

mB and ‖e(t)f ‖ ≤ √
2mkB(m + 1)d, we have,

‖e(t)out‖ ≤ √
mB + 2km

√
mBt + 2

√
2km2(m + 1)dσBt.

Therefore, for the t times transformed ciphertext (ct(t), cc(t)),

[
(c(t)in)T (c(t)out)T

]
·
[

Rα

Im×m

]

= (e(t)in)TRα + (e(t)out)
T + �q/2�µT .

where ‖(e(t)in)TRα + (e(t)out)T ‖ ≤ ‖(e(t)in)T ‖ · ‖Rα‖ + ‖(e(t)out)T ‖ ≤ 2km2
√

mσB +√
mB + 2km

√
mBt + 2

√
2km2(m + 1)dσBt ≤ B · (m + 1)O(d) ≤ q/4 with over-

whelming probability, which ensures the correctness.

C Simulator Algorithms for Multi-hop AB-CPRE

We only present ReKeyGenSIM for multi-hop scheme and the other simulator
algorithms can be found in the full version [20].

– ReKeyGenSIM (pp, pkβ , f,y): Parse pp = ({Bi}i∈[�], χ), pkβ = (Aβ ,Dβ),
a policy f ∈ F�,d and an attribute vector y = {yi}i∈[�]. Compute S∗

f

by executing Evalsim(f, (x∗
i ,S

∗
i)i∈[�],Aθ), sample matrices E1 ← χ2km×n,

E2,E3 ← χ2km×m.
1) In the case that f(x∗) �= 0, let Bf = AθS∗

f − f(x∗)G and set F =
[Aθ|Bf − f(x∗)G] ∈ Z

n×2m. Compute the basis Tθ,f for F as Tθ,f ←
ExtendLeft(Aθ,G,TG,Sf). Then generate a matrix Rθ,f ∈ Z

2m×m

such that FRθ,f = −Dθ by executing SamplePre(F,Tθ,f ,−Dθ, σ), set
Rα,f = Power2q(Rα,f), and compute

Q =
[
E1Aβ + E2 E1Dβ + E3 + Rθ,f

0m×m Im×m

]

∈ Z
(2km+m)×2m
q .

2) In the case that f(x∗) = 0, choose a matrices M ← Z
2km×m uniformly

at random, and compute

Q =
[
E1Aβ + E2 M

0m×m Im×m

]

∈ Z
(2km+m)×2m
q .

If y is none or null, then set P as a null matrix. Otherwise, samples � matrices
EBi

from error distribution χ2km×m and compute,

P = [(E1(yiG + B1) + EB1) | ... | (E1(yiG + B�) + EB�
)] ∈ Z

2km×�m
q .

Output rkθ,f→β,y = (Q,P) as re-encryption key.

166 X. Liang et al.

References

1. Agrawal, S., Boneh, D., Boyen, X.: Efficient lattice (h)ibe in the standard model.
In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 553–572. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5 28

2. Alwen, J., Peikert, C.: Generating shorter bases for hard random lattices. In: 26th
International Symposium on Theoretical Aspects of Computer Science STACS
2009, pp. 75–86. IBFI Schloss Dagstuhl (2009)

3. Aono, Y., Boyen, X., Phong, L.T., Wang, L.: Key-private proxy re-encryption under
LWE. In: Paul, G., Vaudenay, S. (eds.) INDOCRYPT 2013. LNCS, vol. 8250, pp.
1–18. Springer, Cham (2013). https://doi.org/10.1007/978-3-319-03515-4 1

4. Applebaum, B., Cash, D., Peikert, C., Sahai, A.: Fast cryptographic primitives
and circular-secure encryption based on hard learning problems. In: Halevi, S.
(ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 595–618. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-03356-8 35

5. Blaze, M., Bleumer, G., Strauss, M.: Divertible protocols and atomic proxy cryp-
tography. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 127–144.
Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0054122

6. Boneh, D., et al.: Fully key-homomorphic encryption, arithmetic circuit ABE and
compact garbled circuits. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014.
LNCS, vol. 8441, pp. 533–556. Springer, Heidelberg (2014). https://doi.org/10.
1007/978-3-642-55220-5 30

7. Brakerski, Z.: Fully homomorphic encryption without modulus switching from clas-
sical GapSVP. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol.
7417, pp. 868–886. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-32009-5 50

8. Brakerski, Z., Langlois, A., Peikert, C., Regev, O., Stehlé, D.: Classical hardness of
learning with errors. In: Proceedings of the Forty-Fifth Annual ACM Symposium
on Theory of Computing, STOC ’13, pp. 575–584. Association for Computing
Machinery, New York (2013)

9. Canetti, R., Hohenberger, S.: Chosen-ciphertext secure proxy re-encryption. In:
Proceedings of the 14th ACM Conference on Computer and Communications Secu-
rity, pp. 185–194 (2007)

10. Canetti, R., Krawczyk, H., Nielsen, J.B.: Relaxing chosen-ciphertext security. In:
Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 565–582. Springer, Heidel-
berg (2003). https://doi.org/10.1007/978-3-540-45146-4 33

11. Cash, D., Hofheinz, D., Kiltz, E., Peikert, C.: Bonsai trees, or how to delegate a
lattice basis. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 523–
552. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5 27

12. Fang, L., Wang, J., Ge, C., Ren, Y.: Fuzzy conditional proxy re-encryption. Sci.
China Inf. Sci. 56(5), 1–13 (2013). https://doi.org/10.1007/s11432-012-4623-6

13. Ge, C., Susilo, W., Wang, J., Fang, L.: Identity-based conditional proxy re-
encryption with fine grain policy. Comput. Stand. Interfaces 52, 1–9 (2017)

14. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new
cryptographic constructions. In: Proceedings of the Fortieth Annual ACM Sympo-
sium on Theory of Computing, pp. 197–206 (2008)

15. Green, M., Ateniese, G.: Identity-based proxy re-encryption. In: Katz, J., Yung,
M. (eds.) ACNS 2007. LNCS, vol. 4521, pp. 288–306. Springer, Heidelberg (2007).
https://doi.org/10.1007/978-3-540-72738-5 19

https://doi.org/10.1007/978-3-642-13190-5_28
https://doi.org/10.1007/978-3-319-03515-4_1
https://doi.org/10.1007/978-3-642-03356-8_35
https://doi.org/10.1007/BFb0054122
https://doi.org/10.1007/978-3-642-55220-5_30
https://doi.org/10.1007/978-3-642-55220-5_30
https://doi.org/10.1007/978-3-642-32009-5_50
https://doi.org/10.1007/978-3-642-32009-5_50
https://doi.org/10.1007/978-3-540-45146-4_33
https://doi.org/10.1007/978-3-642-13190-5_27
https://doi.org/10.1007/s11432-012-4623-6
https://doi.org/10.1007/978-3-540-72738-5_19

AB-CPRE in the Standard Model Under LWE 167

16. Lai, J., Huang, Z., Au, M.H., Mao, X.: Constant-size CCA-secure multi-hop unidi-
rectional proxy re-encryption from indistinguishability obfuscation. Theoret. Com-
put. Sci. 847, 1–16 (2020)

17. Li, B., Xu, J., Liu, Y.: Lattice-based fuzzy conditional proxy re-encryption. J.
Internet Technol. 20(5), 1379–1385 (2019)

18. Liang, K., Chu, C.K., Tan, X., Wong, D.S., Tang, C., Zhou, J.: Chosen-ciphertext
secure multi-hop identity-based conditional proxy re-encryption with constant-size
ciphertexts. Theoret. Comput. Sci. 539, 87–105 (2014)

19. Liang, K., Susilo, W., Liu, J.K., Wong, D.S.: Efficient and fully CCA secure con-
ditional proxy re-encryption from hierarchical identity-based encryption. Comput.
J. 58(10), 2778–2792 (2015)

20. Liang, X., Weng, J., Yang, A., Yao, L., Jiang, Z., Wu, Z.: Attribute-based condi-
tional proxy re-encryption in the standard model under LWE. Cryptology ePrint
Archive, Report 2021/613 (2021). https://ia.cr/2021/613

21. Lindner, R., Peikert, C.: Better key sizes (and attacks) for LWE-based encryp-
tion. In: Kiayias, A. (ed.) CT-RSA 2011. LNCS, vol. 6558, pp. 319–339. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-19074-2 21

22. Luo, F., Al-Kuwari, S., Wang, F., Chen, K.: Attribute-based proxy re-encryption
from standard lattices. Theoret. Comput. Sci. 865, 52–62 (2021)

23. Ma, C., Li, J., Ouyang, W.: Lattice-based identity-based homomorphic conditional
proxy re-encryption for secure big data computing in cloud environment. Int. J.
Found. Comput. Sci. 28(06), 645–660 (2017)

24. Mao, X., Li, X., Wu, X., Wang, C., Lai, J.: Anonymous attribute-based conditional
proxy re-encryption. In: Au, M.H., et al. (eds.) NSS 2018. LNCS, vol. 11058, pp.
95–110. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-02744-5 7

25. Micciancio, D., Peikert, C.: Trapdoors for lattices: simpler, tighter, faster, smaller.
In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp.
700–718. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-
4 41

26. Mo, L., Yao, G.: Multi-use conditional proxy re-encryption. In: 2013 International
Conference on Information Science and Cloud Computing Companion, pp. 246–
251. IEEE (2013)

27. Peikert, C.: Public-key cryptosystems from the worst-case shortest vector problem:
extended abstract. In: Proceedings of the Forty-First Annual ACM Symposium
on Theory of Computing, STOC 2009, pp. 333–342. Association for Computing
Machinery, New York (2009)

28. Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-
phy. J. ACM 56(6), 1–40 (2009)

29. Shao, J., Cao, Z.: Multi-use unidirectional identity-based proxy re-encryption from
hierarchical identity-based encryption. Inf. Sci. 206, 83–95 (2012)

30. Shao, J., Wei, G., Ling, Y., Xie, M.: Identity-based conditional proxy re-encryption.
In: 2011 IEEE International Conference on Communications (ICC), pp. 1–5. IEEE
(2011)

31. Wang, H., Cao, Z., Wang, L.: Multi-use and unidirectional identity-based proxy
re-encryption schemes. Inf. Sci. 180(20), 4042–4059 (2010)

32. Weng, J., Deng, R.H., Ding, X., Chu, C.K., Lai, J.: Conditional proxy re-encryption
secure against chosen-ciphertext attack. In: Proceedings of the 4th International
Symposium on Information, Computer, and Communications Security, pp. 322–332
(2009)

https://ia.cr/2021/613
https://doi.org/10.1007/978-3-642-19074-2_21
https://doi.org/10.1007/978-3-030-02744-5_7
https://doi.org/10.1007/978-3-642-29011-4_41
https://doi.org/10.1007/978-3-642-29011-4_41

168 X. Liang et al.

33. Yang, Y., Lu, H., Weng, J., Zhang, Y., Sakurai, K.: Fine-grained conditional
proxy re-encryption and application. In: Chow, S.S.M., Liu, J.K., Hui, L.C.K.,
Yiu, S.M. (eds.) ProvSec 2014. LNCS, vol. 8782, pp. 206–222. Springer, Cham
(2014). https://doi.org/10.1007/978-3-319-12475-9 15

34. Zhao, J., Feng, D., Zhang, Z.: Attribute-based conditional proxy re-encryption with
chosen-ciphertext security. In: 2010 IEEE Global Telecommunications Conference
GLOBECOM 2010, pp. 1–6. IEEE (2010)

https://doi.org/10.1007/978-3-319-12475-9_15

Lattice-Based HRA-secure
Attribute-Based Proxy Re-Encryption

in Standard Model

Willy Susilo, Priyanka Dutta(B), Dung Hoang Duong, and Partha Sarathi Roy

Institute of Cybersecurity and Cryptology, School of Computing and Information
Technology, University of Wollongong, Northfields Avenue,

Wollongong, NSW 2522, Australia
{wsusilo,pdutta,hduong,partha}@uow.edu.au

Abstract. Proxy re-encryption (PRE), introduced by Blaze, Bleumer,
and Strauss at EUROCRYPT 98, offers delegation of decryption rights,
i.e., it securely enables the re-encryption of ciphertexts from one key to
another, without relying on trusted parties. PRE allows a semi-trusted
third party termed as a “proxy” to securely divert ciphertexts of a user
(delegator) to another user (delegatee) without revealing any informa-
tion about the underlying messages to the proxy. Attribute-based proxy
re-encryption (ABPRE) generalizes PRE by allowing such transforma-
tion of ciphertext under an access-policy into another ciphertext under a
new access policy. Such a primitive facilitates fine-grained secure sharing
of encrypted data in the cloud.

In order to capture the application goals of PRE, the security
model of (Attribute-based) PRE evolves over the decades. There are
two well-established notions of security for (Attribute-based) proxy re-
encryption schemes: security under chosen-plaintext attacks (CPA) and
security under chosen-ciphertext attacks (CCA). Both definitions aim to
address the security that the delegator enjoys against both proxy and del-
egatee. Recently, at PKC 19, Cohen points out that CPA security guar-
antees much less security against delegatee than was previously under-
stood. In particular, CPA security does not prevent delegatee from learn-
ing delegator’s secret key after receiving a single honestly re-encrypted
ciphertext. To circumvent this issue, Cohen proposes security against
honest re-encryption attacks (HRA) to strengthen CPA security that
better captures the goals of PRE, and shows that two existing proxy re-
encryption schemes are HRA-secure, one of them is quantum-safe, which
is constructed from fully homomorphic encryption scheme (FHE).

In this work, we advance the studies on HRA-secure PRE for the
ABE setting. We first formalize the definition of HRA-secure Key-Policy
ABPRE (KP-ABPRE) and propose a construction, which is quantum-
safe and secure in the standard model based on the hardness of the
LWE. As an important consequence, we have the first quantum-safe HRA-
secure Identity-based PRE. Moreover, the underlying PRE of the pro-
posed KP-ABPRE is the first quantum-safe HRA-secure PRE without
FHE.

c© Springer Nature Switzerland AG 2021
E. Bertino et al. (Eds.): ESORICS 2021, LNCS 12973, pp. 169–191, 2021.
https://doi.org/10.1007/978-3-030-88428-4_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-88428-4_9&domain=pdf
https://doi.org/10.1007/978-3-030-88428-4_9

170 W. Susilo et al.

Keywords: Proxy Re-Encryption · (Key-Policy) Attribute-based
Encryption · Learning with errors · HRA security

1 Introduction

Consider a scenario when Alice wants to allow Bob to decrypt a message
encrypted under her public key without giving her secret key to Bob. A naive way
for Alice to have a proxy implementing such a mechanism is to simply store her
private key at the proxy: when a ciphertext arrives for Alice, the proxy decrypts
it using the stored secret key and re-encrypts the plaintext using Bob’s public
key and sends to Bob. The obvious problem with this strategy is that the proxy
learns the plaintext and Alice’s secret key. Blaze, Bleumer, and Strauss [5] intro-
duced the concept of PRE to achieve an elegant solution that offers delegation
of decryption rights without compromising privacy of underlying message and
Alice’s secret key. Here, Alice provides a piece of secret information to a semi-
trusted proxy called re-encryption key (but not her secret key) that allows it
to re-encrypt a ciphertext computed under Alice’s public key into one that can
be opened using Bob’s secret key. Since Alice delegates her decryption rights
to Bob, Alice is termed as a ‘delegator’ and Bob as a ‘delegatee’. Based on
the direction of the delegation, PRE schemes are classified into bidirectional and
unidirectional schemes. In unidirectional schemes, a proxy can re-encrypt cipher-
texts from Alice to Bob but not from Bob to Alice, while in the bidirectional
schemes, the proxy is allowed to re-encrypt ciphertexts in both directions. It is
worth mentioning that unidirectional constructions are much desirable because
bidirectional construction can be easily implemented using a unidirectional one.
PRE schemes are also classified into single-hop and multi-hop schemes. In a
single-hop scheme, a proxy cannot re-encrypt ciphertexts that have been re-
encrypted once. In a multi-hop scheme, the proxy can further re-encrypt the
re-encrypted ciphertexts. PRE has various interesting applications ranging from
encrypted email forwarding [4,5,23], securing distributed file systems [4], single-
writer many-reader encrypted storage [28], to digital rights management systems
[30]. We notice a real-world file system employing a PRE scheme by Toshiba Cor-
poration [26]. On the other hand, various emerging ideas and techniques have
shown connections between re-encryption with other cryptographic primitives,
such as program obfuscation [12,22], and fully-homomorphic encryption [10].
Hence, further studies along this line are both important and interesting for
theory and practice.

In a PRE scheme, the communication model is one-to-one, in the sense that a
ciphertext can be re-encrypted only towards a particular public key. In practice,
however many scenarios require the re-encryption functionality without exact
knowledge of the set of intended recipients. One such major application is data
sharing in untrusted cloud storage. In the cloud, a data owner may wish to share
her encrypted data with users satisfying a specified access policy. Attribute-based
proxy re-encryption (ABPRE) [18,24] enables such fine-grained data sharing.
ABPRE designates a semi-trusted proxy to transform ciphertexts of delegators

Lattice-Based HRA-secure Attribute-Based Proxy Re-Encryption 171

satisfying an access policy into ciphertexts of delegatees satisfying a new access
policy. ABPRE integrates the notion of PRE with attribute-based encryption
(ABE) to effectively enhance the flexibility of delegation of decryption capability.

1.1 Motivation and Related Works

Recently, Cohen [13] demonstrates the insufficiency of CPA-secure PRE for var-
ious applications, viz., encrypted email forwarding, key escrow, single-writer
many-reader encrypted storage. In particular, CPA security does not prevent
delegatee from learning delegator’s secret key after receiving a single honestly
re-encrypted ciphertext. Such an attack can be withstood by a CCA-secure PRE.
However, CCA-secure PRE is much more expensive than CPA-secure PRE. To
this end, Cohen proposes security under honest re-encryption attacks (HRA) to
strengthen CPA security that better captures the goals of proxy re-encryption.
Informally, both notions of CPA and HRA security are typically defined using
a security game between an adversary and a challenger in which the adver-
sary’s task is to distinguish between encryptions of two messages. Both notions
allow the adversary to corrupt either delegatee (learning secret key of delegatee)
or proxy (learning the re-encryption key). However, in a CPA security game,
the adversary is not allowed to have access to re-encryption oracle of honestly
generated ciphertexts. In contrast, HRA security provides the adversary with a
restricted re-encryption oracle which re-encrypt honestly generated ciphertexts.

In [13], Cohen shows that two existing proxy re-encryption schemes are HRA-
secure – one of them is quantum-safe, which is constructed from FHE using
the procedure based on double encryption of plaintext and evaluation of the
decryption circuit [19]. However, this approach relies on heavyweight tools gen-
erally used for bootstrapping for FHE, which is very inefficient. Two subsequent
recent works [14,17] forward the studies on HRA-secure proxy re-encryption.
Fuchsbauer et al. [17] study HRA-secure proxy re-encryption in an adaptive cor-
ruption model. Very recently, Döttling and Nishimaki [14] extend HRA security
to the universal setting, where ciphertexts can be converted between different
public-key encryption schemes – a problem that is coined as universal PRE.
However, to address efficiently the wider horizon of application by removing
certificate respiratory or to embed fine-grained access control, it is required to
extend HRA security for the identity-based and attribute-based PRE schemes.

1.2 Our Contributions and Future Direction

To date, HRA security has not been introduced for identity-based and attribute-
based PRE schemes, which leaves a research gap. In this work, we fill this gap in
the literature by formalizing the definition of HRA-secure Key-Policy Attribute-
based PRE (KP-ABPRE) and proposing a construction. The proposed construc-
tion is quantum-safe and secure in the standard model based on the hardness of
the learning with errors problem. We show that HRA-secure KP-ABPRE is also
CPA-secure KP-ABPRE. While HRA is a stronger security notion than CPA, we
show that if a CPA-secure KP-ABPRE scheme has an additional property, viz.,

172 W. Susilo et al.

re-encryption simulatability (see Sect. 3.1), then it must also be HRA-secure. It
is worth mentioning that KP-ABPRE was first formalized in [18] and proposed a
CCA-secure construction. Unfortunately, in [18], re-encrypted ciphertext follows
the phenomena of Ciphertext-Policy Attribute-based PRE instead of KP-ABPRE.
Hence, this work first presents the precise definition of CPA-secure KP-ABPRE
as well. In nutshell, contributions of this paper are as follows:

– Formalization of HRA-secure KP-ABPRE and CPA-secure KP-ABPRE.
– Construction of single-hop unidirectional HRA-secure KP-ABPRE scheme.

The proposed scheme enjoys the properties of proxy transparency, non-
interactivity, key optimality, non-transitivity. The proposed construction is
quantum-safe and secure in the standard model based on the hardness of the
learning with errors problem (LWE).

– Considering attribute set as an identity, we will have the first HRA-secure
Identity-based PRE in the selective identity model1.

– Underlying PRE of the proposed KP-ABPRE is the first HRA-secure
quantum-safe PRE without FHE.

This work left open interesting problems to construct variants of pro-
posed constructions in multi-hop setting and initiate the study of HRA-secure
Ciphertext-Policy Attribute-based PRE.

1.3 Technical Overview

A possible way to construct KP-ABPRE is to use Attribute-based FHE [21] fol-
lowing the procedure based on double encryption of plaintext and evaluation of
the decryption circuit [19]. However, this approach relies on heavyweight tools
generally used for bootstrapping. Instead, we convert KP-ABE by Boneh et al.
[6] to KP-ABPRE by using the idea of “key switching” technique from [7].

KP-ABPRE consists of six algorithms, namely, SetUp,KeyGen,ReKeyGen,Enc,
ReEnc,Dec. To construct KP-ABPRE, we design re-encryption key generation
algorithm (ReKeyGen) and re-encryption algorithm (ReEnc) maintaining com-
patibility with SetUp,KeyGen,Enc, Dec algorithms of [6]. Let us assume attribute
vectors for KP-ABPRE are �-tuples over Zq and the supported key-policies are
functions in F := {f : Z�

q −→ Zq}. Let f : Z�
q −→ Zq be a function represented

as a polynomial-size arithmetic circuit. It is required to use evaluation algorithms
[6], namely Evalpk,Evalct,Evalsim, for the underlying key-homomorphic features
of KP-ABE - hence to construct KP-ABPRE. Informally, Evalpk helps to compute
public parameters under some functions, such as f ; Evalct translates the cipher-
text encrypted under the attribute vectors x to a ciphertext under the function
f , and Evalsim is only useful in the simulation for the security reduction. For
SetUp, we generate (A0,TA0) using TrapGen algorithm [2,3,25], where A0 is a
random n × m matrix over Zq, and TA0 ∈ Z

m×m
q is a basis of Λ⊥

q (A0). We call
TA0 the associated trapdoor for A0. Also, choose � random n×m matrices over

1 It may possible to prove HRA security for the Identity-based constructions by Dutta
et al. [15,16] with appropriate modifications.

Lattice-Based HRA-secure Attribute-Based Proxy Re-Encryption 173

Zq, denoted by A1, · · · ,A� and U. Let G be the gadget matrix, whose associated
trapdoor TG (i.e., a short basis for the q-ary lattice Λ⊥

q (G)) is publicly known
(see [25] for details). We set {A0,A1, · · · ,Ad,U,G} as the public parameters
and TA0 as the master secret key. One of the main challenging tasks to design
the proposed KP-ABPRE is the design of re-encryption key, which we describe
briefly in next paragraph:

In KP-ABPRE, every secret key skf is associated with some function f and
an encryption of a message µ is labeled with a public attribute vector x ∈ Z

�
q.

The encryption of µ can be decrypted using skf only if f(x) = 0 ∈ Zq.
To compute a re-encryption key from the policy f to g (rkf→g), we need to
ensure that the re-encrypted ciphertext (suppose labeled with the attribute
vector y) should be decrypted only by skg while g(y) = 0. We first choose
an attribute vectors y, which satisfies the policy g i.e. g(y) = 0. Treating
Hy =

[
A0 y1G + A1 · · · y�G + A�

]
as the public key for y and the secret

key skf for the policy f , we construct the unidirectional re-encryption key

rkf→g =
[
R1Hy + R2 R1U + R3 − P2(skf)

0 I

]
,

where P2 represents power of 2 (Suppose x ∈ Z
n
q , we denote (x, 2·x, · · · , 2�log q� ·

x) ∈ Z
n·�log q�
2 by P2(x)), R1 is chosen uniformly random from Zq of order

2mk × n, and R2,R3 are chosen from χ-distribution (see Definition 1) of order
2mk × (� + 1)m and 2mk × m respectively. Note that, we embed y at Hy, which
ensure that the re-encrypted ciphertexts can not be decrypted by skg while
g(y) �= 0. Since, the order and structure of the original ciphertext and the
re-encrypted ciphertext are same in our scheme, we can use same decryption
algorithm for both original and re-encrypted ciphertext to decrypt.

We prove the security of Selective-KP-ABPRE under the hardness of deci-
sional LWE (dLWE). Here, adversary announces the target set of attributes
x∗ = (x∗

1, · · · , x∗
�) before seeing the public parameters. During security reduc-

tion, A1, · · · ,A� from the public parameter change as follows: Ai = A0S∗
i −

x∗
i G for i ∈ {1, · · · , �}, where S∗

1, · · · ,S∗
� ←− {+1,−1}m×m are random matri-

ces. We show that A0S∗
i are uniform in Z

n×m
q , so that Ai’s are distributed as

required. Also, the challenger chooses a low-norm matrix Rx∗ from the discrete
Gaussian distribution and construct U as

[
A0 x∗

1G + A1 · · · x∗
�G + A�

]·Rx∗ =
U. Rx∗ will play a vital role during the simulation of re-encryption query. Now,
to respond to secret key query for policy f , where f(x∗) �= 0, the challenger
must produce a low-norm matrix Rf satisfying

[
A0 Af

] · Rf = U, where
Af = A0S∗

f − f(x∗)G and low-norm matrix S∗
f is the output of Evalsim taking

S∗
1, · · · ,S∗

� as input. It is worth mentioning that the challenger cannot con-
struct a secret key that decrypts ciphertexts under the target set of attributes
x∗ – hence, secret key skf can not be constructed for the functions f , where
f(x∗) = 0. Otherwise, the challenger can generate secret keys for the functions
f for which f(x∗) �= 0.

To respond to re-encryption key query from the policy f to g, the challenger
will construct the secret key for f whenever f(x∗) �= 0, then following ReKeyGen

174 W. Susilo et al.

algorithm, the challenger will create the re-encryption key. For functions f where
f(x∗) = 0, the challenger does not have secret key. So, it is not possible for
the challenger to construct re-encryption key following ReKeyGen algorithm. In
such case, the challenger simulates re-encryption key in the following way: for
f(x∗) = 0 and g(x∗) = 0, the challenger simulates the re-encryption key rkf→g

as
[

X1 X2

0m×(�+1)m Im×m

]
, where X1,X2 are randomly chosen matrices over Zq of

order (2mk × n) and (2mk × m) respectively; otherwise, challenger outputs ⊥.
One of the main challenges to achieve the HRA security is to provide access

of re-encryption of honestly generated ciphertexts to the adversary. That is,
the challanger needs to re-encrypt the ciphertext under the set of attributes x
(except the challenge ciphertext) from the policy f to g when f(x) = 0 and also
f(x∗) = 0. Since, f(x∗) = 0, challenger does not have corresponding secret key
– hence, challenger does not have actual re-encryption key, which rises a non-
trivial challenge to simulate re-encryption oracle. To construct honestly gener-
ated re-encrypted ciphertext, challenger first choose y satisfies g(y) = 0 and then
construct a dummy re-encryption key rkx→y

sim . For x = x∗, challenger uses Rx∗

from SetUp; Otherwise, chooses a low-norm matrix Rx satisfying Hx · Rx = U
to create the dummy re-encryption key

[
R1Hy + R2 R1U + R3 − P2(Rx∗)or(P2(Rx))
0m×(�+1)m Im×m

]
.

Here, R1 is chosen uniformly random from Zq of order (� + 1)mk × n, and
R2,R3 are chosen from χ-distribution of order (� + 1)mk × (� + 1)m and
(� + 1)mk × m respectively. Note that, to compute Rx for x �= x∗, challenger
needs to have a trapdoor for Hx. Thanks to publicly known trapdoor TG of G to
compute trapdoor for Hx. Since, x �= x∗, there exist at least one i ∈ {1, · · · , �}
for which (xi −x∗

i) �= 0. Without loss of generality, we assume that (x� −x∗
�) �= 0.

Challenger constructs Hx =
[
A0 (x1 − x∗

1)G + A0S∗
1 · · · (x� − x∗

�)G + A0S∗
�

]
.

Since, TG is a trapdoor for G and (x� − x∗
�) �= 0, TG is also a trapdoor for

(x� − x∗
�)G. By using this trapdoor, challenger can compute a trapdoor for

Hx. Multiplying the binary decomposition of ciphertext with this dummy re-
encryption key, challenger constructs the re-encrypted ciphertext. Finally, for
the target set of attributes x∗ the challenger can produce a challenge ciphertext
and solves the given dLWE challenge using the decision of the adversary.

Efficiency. Table 1 summarizes the asymptotic bit-size of public parameter,
master secret key, secret key, re-encryption key, ciphertext and re-encrypted
ciphertext. We can see that the public parameter size is a linear function in the
size of attribute vectors �. The master secret key size and secret key size are
independent of �. The re-encryption key size is a linear function in �. Lastly,
the ciphertext size and the re-encrypted ciphertext size are same, and linear
function of �. Note that, after converting KP-ABE of [6] to KP-ABPRE, sizes of
public parameter, master secret key, secret Key and ciphertext are remain same.

Lattice-Based HRA-secure Attribute-Based Proxy Re-Encryption 175

Table 1. Data sizes of proposed KP-ABPRE

Public parameter size O((� + 3) · n2 log2 q)

Master Secret key size O(n2 log3 q)

Secret Key size O(2n2 log3 q)

Re-encryption key size O((� + 2) · (n2 log4 q))

Ciphertext size O((� + 2) · n log2 q))

Re-encrypted Ciphertext size O((� + 2) · n log2 q))
∗∗� is the size of attribute vectors; n is an integer; q = poly(n).

2 Preliminaries

We denote the real numbers and the integers by R,Z, respectively. We denote
column-vectors by lower-case bold letters (e.g. b), so row-vectors are represented
via transposition (e.g. bt). Matrices are denoted by upper-case bold letters and
treat a matrix X interchangeably with its ordered set {x1,x2, . . .} of column
vectors. We use I for the identity matrix and 0 for the zero matrix, where the
dimension will be clear from context. We use [∗|∗] to denote the concatena-
tion of vectors or matrices. For x ∈ Z

n
q , we denote (u0, · · · ,u�log q�) ∈ Z

n·�log q�
2

by BD(x), where x =
∑�log q�

j=0 2j · uj and uj ∈ Z
n
2 . For x ∈ Z

n
q , we denote

(x, 2 · x, · · · , 2�log q� · x) ∈ Z
n·�log q�
2 by P2(x). By Lemma 2 of [7], we have

BD(x)t · P2(y) = xty. A negligible function, denoted by negl(λ). We say
that a probability is overwhelming if it is 1 − negl(λ). The statistical distance
between two distributions X and Y over a countable domain Ω defined as
1
2

∑
w∈Ω |Pr[X = w] − Pr[Y = w]|. We say that a distribution over Ω is ε-far if

its statistical distance from the uniform distribution is at most ε.

Lattices: A lattice Λ is a discrete additive subgroup of Rm. Specially, a lattice Λ
in R

m with basis B =
[
b1 · · · bn

] ∈ R
m×n is defined as Λ := {∑n

i=1 bixi|xi ∈ Z

∀i = 1, . . . , n} ⊆ R
m. We call n the rank of Λ and if n = m we say that Λ is a

full rank lattice. The dual lattice Λ∗ is the set of all vectors y ∈ R
m satisfying

〈x,y〉 ∈ Z for all vectors x ∈ Λ. If B is a basis of an arbitrary lattice Λ, then
B∗ = B(BtB)−1 is a basis for Λ∗. For a full-rank lattice, B∗ = B−t. We refer
to B̃ as a Gram-Schmidt orthogonalization of B.

In this paper, we mainly consider full rank lattices containing qZm, called
q-ary lattices, defined as the following, for a given matrix A ∈ Z

n×m
q and u ∈ Z

n
q :

Λ⊥
q (A) := {z ∈ Z

m : Az = 0mod q}; Λq(A) := {z ∈ Z
m : ∃ s ∈ Z

n
q s.t. z =

A	smod q}; Λu
q (A) := {z ∈ Z

m : Az = umod q} = Λ⊥
q (A) + x for x ∈

Λu
q (A)}.

Matrix Norms: For a vector u, we let ‖u‖ denotes its �2 norm. For a matrix
R ∈ Z

k×m, let R̃ is the result of applying Gram-Schmidt (GS) orthogonalization
to the columns of R. We denote three matrix norms as follows:

‖R‖ denotes the �2 length of the longest column of R.

176 W. Susilo et al.

‖R‖GS =
∥
∥
∥R̃

∥
∥
∥, where R̃ is the GS orthogonalization of R.

‖R‖2 is the operator norm of R defined as ‖R‖2 = sup‖x‖=1 ‖Rx‖.

Gaussian on Lattices: Let Λ ⊆ Z
m be a lattice. For a vector c ∈ R

m and
a positive parameter σ ∈ R, define: ρc,σ(x) = exp

(
π ‖x−c‖2

σ2

)
and ρc,σ(Λ) =

∑
x∈Λ ρc,σ(x). The discrete Gaussian distribution over Λ with center c and

parameter σ is Dc,σ(Λ)(y) = ρc,σ(y)
ρc,σ(Λ) ,∀y ∈ Λ.

Lemma 1. (Lemma 2.5. [6]). Let n,m, k, q, σ > 0 and A ∈ Z
n×m
q ,U ∈

Z
n×k
q . For R ∈ Z

m×k sampled from Dσ(Λu
q (A)) and S sampled uniformly from

{+1,−1}m×m, the followings hold with overwhelming probability in m:
∥
∥R	∥

∥
2

≤ σ
√

mk, ‖R‖2 ≤ σ
√

mk and ‖S‖2 ≤ 20
√

m.

Learning With Errors (LWE) [29]: The Learning with Errors (LWE) problem
was introduced by Regev [29]. Here we define the decisional version of LWE. The
security of our schemes are based on this hardness assumption.

Definition 1 (Decisional LWE (dLWE)). Consider a prime integer q, posi-
tive integers n,m, and a noise distribution χ over Zq. The dLWEn,m,q,χ problem
is to distinguish the following two distributions:

(A,A	s + e) and (A,u)

Where A $←− Z
n×m
q , s $←− Z

n
q , u $←− Z

m
q and e $←− χm are sampled.

Let the noise distribution χ is B- bounded if its support is in [−B,B]. For any
constant d > 0 and sufficiently large q, Regev [29] through a quantum reduc-
tion showed that taking χ as a q/nd-bounded discretized Gaussian distribution,
the dLWEn,m,q,χ problem is as hard as approximating the worst-case GapSV P
to nO(d) factors, which is believed to be hard. In subsequent works, (partial)
dequantization of the Regev’s reduction were achieved [8,27]. More generally, let
χmax < q be the bound on the noise distribution. The difficulty of the problem
is measured by the ratio q/χmax. The problem appears to remain hard even
when q/χmax < 2nε for some fixed ε that is 0 < ε < 1/2. We refer the reader to
[6,9,27,29] for more information.

Trapdoor Generators and Related Algorithms: Here, we briefly describe
the properties of algorithms for generating short basis of lattices and algorithms
for finding a low-norm matrix X ∈ Z

m×k such that AX = U.

Lemma 2. Let n,m, q > 0 be integers with q prime. There are polynomial time
algorithms as follows:

1. (A,TA) ←− TrapGen(1n, 1m, q) [2,3,25]: A randomized algorithm that, when
m = Θ(n log q), outputs a full-rank matrix A ∈ Z

n×m
q , and a basis TA ∈

Z
m×m for Λ⊥

q (A) such that A is negl(λ)-close to uniform and ‖T‖GS =
O(

√
n log q) with all but negligible probability in n.

Lattice-Based HRA-secure Attribute-Based Proxy Re-Encryption 177

2. T(A|B) ←− ExtendRight(A,TA,B) [11]: A deterministic algorithm that given
full-rank matrices A,B ∈ Z

n×m
q , and a basis TA of Λ⊥

q (A) outputs a basis
T(A|B) of Λ⊥

q (A|B) such that ‖TA‖GS = ‖T(A|B)‖GS.
3. TM ←− ExtendLeft(A,G,TG,R), where M =

[
A G + AR

]
[1]: A deter-

ministic algorithm that given full-rank matrices A,G ∈ Z
n×m
q , and a basis

TG of Λ⊥
q (G) outputs a basis TM of Λ⊥

q (M) such that ‖TM‖GS ≤ ‖TG‖GS ·
(1 + ‖R‖2).

Lemma 3. Let A ∈ Z
n×m
q , TA ∈ Z

m×m be a basis for Λ⊥
q (A) and U ∈ Z

n×k
q .

There are polynomial time algorithms that output X ∈ Z
m×k satisfying AX = U

with the properties below:

1. X ←− SampleD(A,TA,U, σ) [20]: A randomized algorithm that, when σ =
‖TA‖GS · ω(

√
log m), outputs a random sample X from a distribution that is

statistically close to Dσ(Λu
q (A)).

2. T
′
A ←− RandBasis(A,TA, σ) [11]: A randomized algorithm that, when σ =

‖TA‖GS · ω(
√

log m), outputs a basis T
′
A of Λ⊥

q (A) sampled from a distribu-
tion that is statistically close to (Dσ(Λ⊥

q (A)))m. Here ‖T′
A‖GS < σ

√
m with

all but negligible probability.

Lemma 4. 1. X ←− SampleRight(A,TA,B,U, σ): A randomized algorithm
that given full-rank matrices A,B ∈ Z

n×m
q , and a matrix U ∈ Z

n×m
q , a

basis TA of Λ⊥
q (A) and σ = ‖TA‖GS · ω(

√
log m), outputs a random sample

X ∈ Z
2m×m from a distribution that is statistically close to Dσ(Λu

q ((A|B))).
This algorithm is the composition of two algorithms:
T(A|B) ←− ExtendRight(A,TA,B) and X ←− SampleD((A|B),T(A|B),
U, σ).

2. X ←− SampleLeft(A,S, y,U, σ): A randomized algorithm that given full-rank
matrix A ∈ Z

n×m
q , and matrices S,U ∈ Z

n×m
q , y �= 0 ∈ Zq and σ =

√
5 · (1 +

‖S‖2) · ω(
√

log m), outputs a random sample X ∈ Z
2m×m from a distribution

that is statistically close to Dσ(Λu
q ((A|yG + AS))). This algorithm is the

composition of two algorithms: T(A|yG+AS) ←− ExtendLeft(A, yG,TG,S)
and X ←− SampleD((A|yG + AS),T(A|yG+AS),U, σ).

Next, we define three types of evaluation algorithms from [6]. Let n and
q = q(n), and m = Θ(n log q) be positive integers. Let G ∈ Z

n×m
q be the fixed

matrix. For x ∈ Zq,B ∈ Z
n×m
q , s ∈ Z

n
q , and δ > 0 define the set

Es,δ(x,B) = {(xG + B)	s + e ∈ Z
m
q ,where‖e‖ < δ}.

Lemma 5 (Evaluation Algorithms (Sect. 4. [6])). The three efficient deter-
ministic evaluation algorithms Evalpk,Evalct,Evalsim satisfy the following proper-
ties with respect to the family of functions F = {f : (Zq)� −→ Zq}, in which each
function can be computed by some circuit of a family of depth d, polynomial-size
arithmetic circuits (Cλ)λ∈N and a positive integer-valued function αF : Z −→ Z:

1. Bf ←− Evalpk(f ∈ F , {Bi}�
i=1), where Bf and each Bi ∈ Z

n×m
q .

178 W. Susilo et al.

2. cf ←− Evalct(f ∈ F , {xi,Bi, ci}�
i=1), where cf ∈ Z

m
q , and each xi ∈ Zq,Bi ∈

Z
n×m
q , and ci ∈ Es,δ(xi,Bi) for some s ∈ Z

n
q and δ > 0. The output cf

must satisfy cf ∈ Es,Δ(f(x),Bf), where Bf ←− Evalpk(f ∈ F , {Bi}�
i=1),

x = (x1, · · · , x�), and Δ < δ · αF (n), where αF (n) measures the increase in
the noise magnitude in cf compared to the input ciphertext.

3. Rf ←− Evalsim(f ∈ F , {x∗
i ,Ri}�

i=1,A), where Rf and each Ri ∈ Z
m×m
q ,

and each x∗
i ∈ Zq. For x∗ = (x∗

1, · · · , x∗
�), the output Rf satisfies the relation

ARf − f(x∗)G = Bf , where Bf ←− Evalpk(f ∈ F , {ARi − x∗
i G}�

i=1). For

all f ∈ F , and for R1, · · · ,R�
$←− {+1,−1}m×m, ‖Rf‖2 < αF (n) with all but

negligible probability.

Next, we state a variant of the Left-over Hash Lemma from [1].

Lemma 6 (Left-over Hash Lemma (Lemma 13. [1])). Suppose that m >
(n + 1) log2 q + ω(log n) and that q > 2 is prime. Let R be an m × k matrix
chosen uniformly in {1,−1}m×k mod q, where k = k(n) is polynomial in n. Let
A and B be matrices chosen uniformly in Z

n×m and Z
n×k respectively. Then,

for all vectors e ∈ Z
m
q , the distribution (A,AR,R	e) is statistically close to the

distribution (A,B,R	e).

3 Key-Policy Attribute-Based Proxy Re-Encryption

In this section, we define the HRA-secure KP-ABPRE and it’s relation with CPA-
secure KP-ABPRE.

Definition 2 (KP-ABPRE). Let F = {f : X � −→ Y} be the family of func-
tions. Attribute vectors for the ABPRE are �-tuples over X and the supported
Key-Policies are functions in F . A single-hop unidirectional KP-ABPRE scheme
is a tuple of algorithms (SetUp,KeyGen,ReKeyGen,Enc,ReEnc,Dec) :

– (PP,msk) ←− SetUp(1λ, �) : On input a security parameter 1λ, and the
number of attributes �, output the public parameter PP and a master secret
key msk.

– skf ←− KeyGen(PP,msk, f) : On input the public parameter PP, the master
secret key msk, and a policy f ∈ F , output a secret key skf for the policy f .

– rkf→g ←− ReKeyGen(PP, skf , f, g) : On input the public parameter PP , two
policy f, g, and a secret key skf for the policy f , output the unidirectional re-
encryption key rkf→g. This key can be used to re-encrypt a ciphertext under
attribute vector x to a ciphertext under attribute vector y, where f(x) = 0
and g(y) = 0.

– ct ←− Enc(PP,x ∈ X �, μ) : On input the public parameter PP , an attribute
vector x, and a plaintext μ ∈ M, output a ciphertext ct along with the
attribute vector x.

– c̄t ←− ReEnc(PP, rkf→g, ct) : On input the public parameter PP , an original
ciphertext ct under the attribute vector x and a re-encryption key rkf→g,
output a re-encrypted ciphertext c̄t along with attribute vector y if f(x) = 0
or the error symbol ⊥ indicating ct is invalid.

Lattice-Based HRA-secure Attribute-Based Proxy Re-Encryption 179

– μ ←− Dec(PP, skf , ct) : On input the ciphertext ct under the attribute vector
x and a secret key skf of a policy f , output a plaintext μ if f(x) = 0, otherwise
output the error symbol ⊥.

Definition 3 (KP-ABPRE Correctness). A single-hop unidirectional Key-
Policy Attribute-Based Proxy Re-Encryption scheme (SetUp,KeyGen,ReKeyGen,
Enc,ReEnc,Dec) decrypts correctly for the message μ ∈ M if :

– For all skf output by KeyGen under policy f and for the message μ ∈ M, it
holds that
Dec(PP, skf ,Enc(PP,x, μ)) = μ if f(x) = 0.

– For any re-encryption key rkf→g output by ReKeyGen(PP, skf , f, g) and any
ct = Enc(PP,x, μ), it holds that Dec(PP, skg, c̄t) = μ if g(y) = 0, Where
c̄t ←− ReEnc(PP, rkf→g, ct) and f(x) = 0.

Security Game of Selectively Secure Single-hop Unidirectional KP-
ABPRE against Honest Re-Encryption Attacks (IND-HRA-ABPRE): Let
A be the PPT adversary and Π = (SetUp,KeyGen,ReKeyGen,Enc,ReEnc,Dec)
be an KP-ABPRE scheme with a plaintext space M and a ciphertext space C.
Let F = {f : X � −→ Y} be the family of functions. Attribute vectors for the
KP-ABPRE are �-tuples over X and the supported Key-Policies are functions in
F . Security game is defined according to the following game ExpIND-HRA-ABPRE

A (λ)
between A and the challenger:

1. Initial: A sends the target set of attributes x∗.
2. SetUp: The challenger runs SetUp(1λ, �) to get (PP,msk) and give the public

parameter PP to A. Also, the challenger introduces a counter numCt to 0,
a key-value store H to be empty, and a set Derive to be empty.

3. Query Phase 1: The adversary A may make queries polynomially many
times in any order to the following oracles:

– OKeyGen: an oracle that on input a policy f ∈ F , outputs ⊥
whenever f(x∗) = 0; Otherwise, outputs the secret key skf ←−
KeyGen(PP,msk, f) for the policy f .

– OReKeyGen: an oracle that on input two policy f, g, outputs ⊥ whenever
f(x∗) = 0 and g(x∗) �= 0; Otherwise, outputs the re-encryption key
rkf→g ←− ReKeyGen(PP, skf , f, g).

– OEnc: an oracle that on input the set of attributes x, and message μ,
outputs ciphertext ct ←− Enc(PP,x ∈ X �, μ) under x. Increment numCt
and add ct to the set H with key (x, numCt).

– OReEnc: an oracle that on input the policy f, g, and (x, k) where k ≤
numCt, outputs ⊥ if there is no value in H with key (x, k). Otherwise,
let ct be that value in H. If f(x) �= 0, output ⊥ indicating ct is invalid.
Otherwise, outputs re-encrypted ciphertext ct′ ←− ReEnc(PP, rkf→g, ct).

4. Challenge: A submits two messages μ0, μ1 ∈ M under the set of attributes
x∗ to the challenger. The challenger outputs a challenge ciphertext ct∗β ←−
Enc(PP,x∗ ∈ X �, μ) for either β = 0 or β = 1, by choosing a random bit
β ∈ {0, 1}. Increment numCt and add numCt to the set Derive. Store the
value ct∗β to the set H with key (x∗, numCt).

180 W. Susilo et al.

5. Query Phase 2: After receiving the challenge ciphertext, A continues to
have access to the OKeyGen, OReKeyGen, OEnc, and OReEnc as in Query Phase
1 except the following constraints for OReEnc oracle: Outputs ⊥ if g(x∗) �=
0 ∧ k ∈ Derive.

6. Guess: On input β′ from A, this oracle outputs 1 if β = β′ and 0 otherwise.

The advantage of an adversary in the above experiment ExpIND-HRA-ABPRE
A (λ) is

defined as |Pr[β′ = β] − 1
2 |.

Definition 4. An KP-ABPRE scheme is IND-HRA-ABPRE secure if all
PPT adversaries A have at most a negligible advantage in experiment
ExpIND-HRA-ABPRE

A (λ).

We can get the Chosen Plaintext Attacks (CPA) game from the Honest Re-
encryption Attacks (HRA) game by the following modifications:

1. In SetUp, the challenger does not need to add numCt, H and Derive.
2. There will be no OEnc in both the Query phases.
3. In OReEnc, outputs ⊥ whenever f(x∗) = 0 and g(x∗) �= 0 in the both phases.

Otherwise, outputs the re-encrypted ciphertext.

The resulting notion is selectively secure single-hop unidirectional KP-ABPRE
Scheme against chosen plaintext attack and is denoted by IND-CPA-ABPRE.

Remark 1. Ge et al. [18] introduced KP-ABPRE. Unfortunately, according to [18]
and its follow-up works, only the secret key skg can decrypt the re-encrypted
ciphertext ct′ ←− ReEnc(PP, rkf→g, ct), which is the property CP-ABE. How-
ever, for KP-ABPRE, re-encrypted ciphertext should follow the property of
KP-ABE instead of CP-ABE. In this paper, we remove this inconsistency.

Theorem 1. Let KP-ABPRE be an IND-HRA-ABPRE secure scheme, then
KP-ABPRE is IND-CPA-ABPRE secure.

Proof. Follows from the similar argument of [13, Theorem 3]. ��

3.1 Re-Encryption Simulatability

We show that IND-HRA-ABPRE follows from IND-CPA-ABPRE if the KP-ABPRE
scheme has an additional property, namely, re-encryption simulatability. Infor-
mally, re-encryption simulatability means that the resulting ciphertexts from
ReEnc(rkf→g, ctx) can be simulated without knowledge of the delegator’s secret
key skf , but with knowledge of the plaintext message μ and the delegatee’s secret
key skg. Note that, Re-encryption Simulatability is not a necessary condition to
prove HRA security.

Definition 5 (Re-encryption Simulatability). KP-ABPRE is Re-encryption
Simulatable if there exists a probabilistic polynomial-time algorithm ReEncSim
such that with high probability over aux, for all μ ∈ M: (ReEncSim(aux), aux) ≈s

Lattice-Based HRA-secure Attribute-Based Proxy Re-Encryption 181

(ReEnc(rkf→g, ctx), aux), where ≈s denotes statistical indistinguishability, and
ctx, aux are sampled according to

(PP,msk) ←− SetUp(1λ, �);
skf ←− KeyGen(PP,msk, f);
skg ←− KeyGen(PP,msk, g);

rkf→g ←− ReKeyGen(PP, skf , f, g);

ctx ←− Enc(PP,x ∈ X �, μ);

where aux = (PP, f, g, skg, ctx, μ) and f(x) = 0. Re-encrypted ciphertext gen-
erated under some attribute vector, say, y. g is some policy that satisfies by y.
Here, skg can be a secret key of any policy g that is satisfies by the corresponding
vector y.

Theorem 2. Let KP-ABPRE be an IND-CPA-ABPRE secure and Re-encryption
Simulatable scheme, then KP-ABPRE is IND-HRA-ABPRE secure.

Proof. We construct an algorithm ACPA (the CPA adversary) from any proba-
bilistic polynomial-time algorithm AHRA (the HRA adversary), such that
AdvACP A

(λ) ≥ AdvAHRA
(λ)−negl(λ). Since, KP-ABPRE is an IND-CPA-ABPRE

secure, AdvACP A
(λ) is negl(λ) – hence, AdvAHRA

(λ) is negl(λ), completing the
proof.

ACPA runs AHRA and simulates the HRA security game. If AHRA does
not follow the specification of the HRA security game, ACPA simply aborts.
To answer oracle calls by AHRA to any oracle other than OReEnc, ACPA simply
forwards the calls and answers unaltered to the corresponding CPA oracles.

To answer oracle calls to OReEnc, ACPA considers following cases to re-encrypt
from a policy f to g. For f(x∗) �= 0, adversary has the secret key for that policy
f , otherwise not. Lets consider the following cases:

case 1 : f(x∗) �= 0 and g(x∗) �= 0;
case 2 : f(x∗) = 0 and g(x∗) = 0;
case 3 : f(x∗) �= 0 and g(x∗) = 0;
case 4 : f(x∗) = 0 and g(x∗) �= 0.

For case 1, 2, and 3, ACPA simply forwards the calls and answers unaltered to
the corresponding CPA oracles. On the other hand, for case 4, ACPA simulates
the re-encryption using ReEncSim, which is possible because ACPA knows the
underlying message μ along with the other information in aux. Re-encryption
simulatability implies that the views of AHRA in the real security game using the
original OReEnc and the simulated security game using ReEncSim are statistically
close. Hence, ACPA wins the CPA security game if and only if AHRA wins in
the simulated HRA game. ��

182 W. Susilo et al.

4 Construction of HRA-secure KP-ABPRE

In this section, we present our construction of KP-ABPRE. We set the parameters
as the following:

– G ∈ Z
n×m
q is a gadget matrix for integer n, large enough prime power q =

poly(n), and m = Θ(n log q). Let k = �log q�.
– consider the message space is M = {0, 1}m.
– Let χ be a χmax-bounded distribution for which dLWEn,2m,q,χ is hard.
– For the trapdoor algorithms to work correctly and the security to work, set

the Gaussian parameters σ = ω(αF · √
log m), where αF >

√
n log m.

– Let F = {f : Z�
q −→ Zq} be the family of functions. Attribute vectors are

�-tuples over Zq and the supported Key-Policies are functions in F .

The proposed KP-ABPRE consists of the following algorithms:

SetUp(1λ, �) : On input a security parameter λ, and �, do as follows:

1. Generate (A0,TA0) ←− TrapGen(1n, 1m, q), where A0 ← Z
n×m
q , and TA0 ∈

Z
m×m
q , a basis of Λ⊥

q (A0).
2. Choose � + 1 uniformly random matrices A1, · · · ,A�,U ∈ Z

n×m
q .

3. Output the public parameter PP = {A0,A1, · · · ,A�,U,G} and the master
secret key msk = {TA0}.

KeyGen(PP ,msk, f ∈ F) : On input the public parameter PP , master secret
key msk, and a policy f ∈ F , do as follows:

1. Evaluate Af ←− Evalpk({Ai}�
i=1, f).

2. Compute TER
(A0|Af)

←− ExtendRight(A0,Af ,TA0).

3. sample Rf ←− SampleD
([

A0 Af

]
,TER

(A0|Af)
,U, σ

)
.

4. Output the secret key skf = Rf ∈ Z
2m×m
q for the policy f .

Enc(PP ,x ∈ Z
�
q,µ ∈ {0, 1}m) : On input the public parameter PP , the set of

attributes x = (x1, · · · , x�) ∈ Z
�
q, and message µ ∈ {0, 1}m, do as follows:

1. Choose a uniformly random vector s ← Z
n
q .

2. Choose � uniformly random matrices Si ←− {+1,−1}m×m for i ∈ 1, · · · , �.
3. Choose error vectors e0, eout ∈ χm.
4. Set Hx =

[
A0 x1G + A1 · · · x�G + A�

] ∈ Z
n×(�+1)m
q .

5. Set e =
[
Im S1 · · · S�

]	 · e0 = (e	
in, e	

1 , · · · , e	
�)	 ∈ Z

(�+1)m
q .

6. Compute c = H	
x s + e ∈ Z

(�+1)m
q and cout = U	s + eout + �q/2� · µ ∈ Z

m
q .

Here, c =
[
cin c1 · · · c�

] ∈ Z
(�+1)m
q , where cin = A	

0 s + ein, and ci =
(xiG + Ai)	s + ei for all i ∈ {1, · · · , �}.

7. Output the ciphertext ct = (cin, c1, · · · , c�, cout) ∈ Z
(�+2)m
q along with the

set of attributes x.

Lattice-Based HRA-secure Attribute-Based Proxy Re-Encryption 183

Dec(PP , skf , (ct,x)) : On input the public parameter PP , the secret key skf =
Rf , and a ciphertext ct under the set of attributes x, do as follows:

1. If f(x) �= 0, output ⊥.
2. Otherwise, do as follows:

– Parse ct as (cin, c1, · · · , c�, cout), and
evaluate cf ←− Evalct({xi,Ai, ci}�

i=1, f). Let c
′
f = [cin|cf] ∈ Z

2m
q .

– Compute µ = (μ1, · · · , μm) = cout −R	
f c

′
f . For each i, if |μi| < q/4, take

μi = 0, otherwise take μi = 1.
– Output µ = (μ1, · · · , μm).

ReKeyGen(PP , skf , f, g) On input the public parameter PP , two policy f, g and
the secret key skf = Rf for the policy f , do as follows:

1. Select an attribute set y = (y1, · · · , y�) such that g(y) = 0.
2. Construct Hy =

[
A0 y1G + A1 · · · y�G + A�

] ∈ Z
n×(�+1)m
q .

3. Choose a uniformly random matrix R1 ← Z
2mk×n
q .

4. Choose R2 ← χ2mk×(�+1)m and R3 ← χ2mk×m.
5. Construct the unidirectional re-encryption key

rkf→g =
[
R1Hy + R2 R1U + R3 − P2(Rf)
0m×(�+1)m Im×m

]
∈ Z

(2mk+m)×(�+2)m
q .

6. Output rkf→g along with the attribute vector y.

ReEnc(PP , rkf→g, (ct,x)) On input the public parameter, the re-encryption key
rkf→g, and ciphertext ct under the set of attributes x, do as follows:

1. If f(x) �= 0, output ⊥.
2. Otherwise, do as follows:

– parse ct as (cin, c1, · · · , c�, cout), and
evaluate cf ←− Evalct({xi,Ai, ci}�

i=1, f). Let c
′
f = [cin|cf] ∈ Z

2m
q .

– Compute the re-encrypted ciphertext c̄t = (c̄in, c̄1, · · · , c̄�, c̄out) as fol-
lows:
c̄t

	 =
[
BD((c

′
f)) c	

out

]
· rkf→g ∈ Z

1×(�+2)m
q .

– Output the re-encrypted ciphertext c̄t along with the attribute vector y.

4.1 Correctness and Security

In this section, we analyze the correctness and security of the proposed scheme.

Theorem 3 (Correctness). The KP-ABPRE scheme is correct with respect to
F if 3α2

F · χmax · m < q/4.

Proof. To show that the decryption algorithm outputs a correct message, it is
required for Evalct that for f(x) = 0, the resulting ciphertext cf ∈ Es,Δ(0,Bf)
so that cf = A	

f s + ef with ‖ef‖ < Δ < αF · χmax. Using Lemma 4.6, 4.7 and
5.3 of [6], we have the bound function αF (n) = O((p�m)D

√
m), where the upper

184 W. Susilo et al.

bound on the intermediate values in the circuit is p < q and F is computable by
depth D circuits.

We consider correct decryption of both original and re-encrypted ciphertext.
Let skf = Rf and skg = Rg be the secret key for the policy f and g respectively.
From ReKeyGen(PP, skf , f, g) algorithm, we get

rkf→g =
[
R1Hy + R2 R1U + R3 − P2(Rf)
0m×(�+1)m Im×m

]
.

Let ct = (cin, c1, · · · , c�, cout) be the original ciphertext of a message
µ ∈ {0, 1}m under the set of attributes x and c̄t = (c̄in, c̄1, · · · , c̄�, c̄out) =
(ReEnc(PP, rkf→g, ct)) be the re-encrypted ciphertext under the set of attributes
y. Thus, we need to prove that Dec(PP, skf , ct) = Dec(PP, skg, c̄t) = µ.

For correctness of the original ciphertext, when f(x) = 0, we know by the
requirement on Evalct that the resulting ciphertext cf ∈ Es,Δ(0,Bf). After eval-
uating cg ←− Evalct({yi,Ai, c̄i}�

i=1, g), we have the magnitude of the noise
in cg, i.e., ‖eg‖ < Δ. Consequently, c

′
f = [cin|cf] = (A0|Af)	s + (ein|ef),

where ‖(ein|ef)‖ < Δ + χmax < (αF + 1)χmax. Since, Rf ∈ Z
2m×m is sam-

pled from the distribution Dσ(Λu
q ((A0|Af))), we have (A0|Af) · Rf = U,

and
∥
∥
∥R	

f

∥
∥
∥
2

< 2mσ with overwhelming probability by Lemma 1. Now, µ =

cout − R	
f c

′
f =

(
U	s + eout + �q/2� · µ) −

(
U	s + R	

f (ein|ef)
)

= �q/2� · µ +
(
eout − R	

f (ein|ef)
)
. To get a correct decryption, the norm of the error term

should be less than q/4, i.e.,
∥
∥
∥eout − R	

f (ein|ef)
∥
∥
∥ < q/4.

Now,
∥
∥
∥eout − R	

f (ein|ef)
∥
∥
∥ ≤ χmax + 2mσ · (αF + 1)χmax ≤ 3α2

F · χmax · m with

overwhelming probability. By choosing the parameters such that, 3α2
F ·χmax·m <

q/4, the decryption of the original ciphertext is correct.
Now, for the re-encrypted ciphertext c̄t, we have

c̄t
	 =

[
BD((c

′
f)) c	

out

]
· rkf→g

=
[
BD((c

′
f))(R1Hy + R2) BD((c

′
f))(R1U + R3 − P2(Rf)) + c	

out

]
.

Hence, c̄t =
[
H	

y s̄ + ē U	s̄ + ēout + �q/2� · µ]
=

[
c̄ c̄out

]
=

(c̄in, c̄1, · · · , c̄�, c̄out) ∈ Z
(�+2)m
q , where s̄ = (BD((c

′
f))R1)	,

ē = (BD((c
′
f))R2)	, and ēout = (BD((c

′
f))R3)	 + eout − R	

f (ein|ef).
After evaluating cg ←− Evalct({yi,Ai, c̄i}�

i=1, g), we have the magnitude of
the noise in cg, i.e., ‖eg‖ < Δ. For correctness of the re-encrypted ciphertext,
when g(y) = 0, we know by the requirement on Evalct that the resulting cipher-
text cg ∈ Es,Δ(0,Ag). Consequently, c

′
g = [cin|cg] = (A0|Ag)	s + (ein|eg),

where ‖(ein|eg)‖ < Δ + χmax < (αF + 1)χmax. Since, Rg ∈ Z
2m×m is

sampled from the distribution Dσ(Λu
q ((A0|Ag))), we have (A0|Ag) · Rg = U,

and
∥
∥R	

g

∥
∥
2

< 2mσ with overwhelming probability by Lemma 1. Now, µ =

Lattice-Based HRA-secure Attribute-Based Proxy Re-Encryption 185

cout − R	
g c

′
g =

(
U	s + eout + �q/2� · µ) − (

U	s + R	
g (ein|eg)

)
= �q/2� · µ +(

eout − R	
g (ein|eg)

)
. To get a correct decryption, the norm of the error term

should be less than q/4, i.e.,
∥
∥eout − R	

g (ein|eg)
∥
∥ < q/4.

Now,
∥
∥eout − R	

g (ein|eg)
∥
∥ ≤ χmax + 2mσ · (αF + 1)χmax ≤ 3α2

F · χmax · m with
overwhelming probability. By choosing the parameters such that, 3α2

F ·χmax·m <
q/4, the decryption of the re-encrypted ciphertext is correct. ��
Theorem 4 (Security). The above scheme is IND-HRA-ABPRE secure assum-
ing the hardness of dLWEn,2m,q,χ.

Proof. Let x∗ = (x∗
1, x

∗
2, · · · , x∗

�) ∈ Z
�
q be the target set of attributes. The chal-

lenger introduces a counter numCt to 0, a key-value store H to be empty, and
a set Derive to be empty. First, we define the following simulation algorithms
Sim.SetUp, Sim.KeyGen, Sim.ReKeyGen and Sim.ReEn1, Sim.ReEn2.

Sim.SetUp((1λ, �)): The algorithm does the following:

1. Choose a random A0 from Z
n×m
q .

2. Choose � uniformly random matrices S∗
i ←− {+1,−1}m×m for i ∈ {1, · · · , �}

and set Ai = A0S∗
i − x∗

i G for i ∈ {1, · · · , �}.
3. choose Rx∗ from D distribution of order (� + 1)m × m and construct U as[

A0 x∗
1G + A1 · · · x∗

�G + A�

] ·Rx∗ = U; i.e.,
[
A0 A0S∗

1 · · · A0S∗
�

] ·Rx∗ =
U.

4. Output the public parameter PP = {A0,A1, · · · ,A�,U,G}.

Sim.KeyGen(PP , f ∈ F , wheref(x∗) �= 0) : The algorithm does the following:

1. Evaluate Af ←− Evalpk({Ai}�
i=1, f).

2. Run S∗
f ←− Evalsim(f, {x∗

i ,S
∗
i }�

i=1,A0) and let Af = A0S∗
f −f(x∗)G, where∥

∥
∥S∗

f

∥
∥
∥
2

≤ αF . Since, TG is a trapdoor for G and f(x∗) �= 0, it is also a

trapdoor for f(x∗)G.
3. Obtain a trapdoor TEL

(A0|Af)
←− ExtendLeft(A0, f(x∗)G,TG,S∗

f).

4. Sample Rf ←− SampleD
([

A0 Af

]
,TEL

(A0|Af)
,U, σ

)
.

5. Output the secret key skf = Rf .

Sim.ReKeyGen(PP , f, g ∈ F , wheref(x∗) = 0) : The algorithm does as follows:

1. For f(x∗) = 0, outputs ⊥ if g(x∗) �= 0.
2. For f(x∗) = 0 and g(x∗) = 0, simulate the re-encryption key rkf→g as follows:[

X1 X2

0m×(�+1)m Im×m

]
, where X1,X2 are randomly chosen matrices over Zq of

order (2mk × n) and (2mk × m) respectively.
3. Output the re-encryption key rkf→g.

Sim.ReEn1(PP , (ct,x∗), f, g ∈ F) : The algorithm does the following:

186 W. Susilo et al.

1. If f(x∗) �= 0, output ⊥.
2. Otherwise for f(x∗) = 0, do as follows:

• Select an attribute set y = (y1, · · · , y�) such that g(y) = 0.
• Construct Hy =

[
A0 y1G + A1 · · · y�G + A�

]
.

• Choose a uniformly random matrix R1 ← Z
(�+1)mk×n
q .

• Choose R2 ← χ(�+1)mk×(�+1)m and R3 ← χ(�+1)mk×m.
• Construct a dummy key for re-encryption from x∗ to y as follows:

rkx
∗→y

sim =

[
R1Hy +R2 R1U+R3 − P2(Rx∗)
0m×(�+1)m Im×m

]
∈ Z

((�+1)mk+m)×(�+2)m
q .

• Compute the re-encrypted ciphertext c̄t = (c̄in, c̄1, · · · , c̄�, c̄out) as
c̄t

	 =
[
BD((

[
cin c1 · · · c�

]
)) c	

out

] · rkx∗→y
sim ∈ Z

1×(�+2)m
q .

• Output the re-encrypted ciphertext c̄t with the attribute vector y.

Sim.ReEn2(PP , (ct,x(�= x∗)), f, g ∈ F , where f(x∗) = 0) : The algorithm does
the following:

1. If f(x) �= 0, output ⊥.
2. Otherwise for f(x) = 0, do as follows:

• Since, x �= x∗, there exist atleast one i ∈ {1, · · · , �} for which (xi−x∗
i) �= 0.

Without loss of generality, assume that (x� − x∗
�) �= 0. Construct

Hx =
[
A0 x1G + A1 · · · x�G + A�

]

=
[
A0 (x1 − x∗

1)G + A0S∗
1 · · · (x� − x∗

�)G + A0S∗
�

]
.

• Since, TG is a trapdoor for G and (x� − x∗
�) �= 0, it is also a trapdoor for

(x� − x∗
�)G. To obtain a trapdoor for Hx, first compute

TEL
(A0|(x�−x∗

�)G+A0S∗
�)

←− ExtendLeft (A0, (x� − x∗
�)G,TG,S∗

�). Then
compute a trapdoor TER

(A0|x�G+A�|x1G+A1|···|x�−1G+A�−1)
by running

ExtendRight
(
(A0|x�G+A�),T

EL
(A0|x�G+A�)

, (x1G+A1| · · · |x�−1G+A�−1)
)
.

By switching the rows of the matrix TER
(A0|x�G+A�|x1G+A1|···|x�−1G+A�−1)

,
get TER

(A0|x1G+A1|···|x�−1G+A�−1|x�G+A�)
, which is a trapdoor for Hx.

Let us assume TER
Hx

= TER
(A0|x1G+A1|···|x�−1G+A�−1|x�G+A�)

.
Here,

∥
∥TER

Hx

∥
∥
GS

≤ ‖TG‖GS · ‖S∗
�‖2 ≤ √

5αF by Lemma 2.
• Sample Rx ←− SampleD

(
Hx,TER

Hx
,U, σ

)
.

• Select an attribute set y = (y1, · · · , y�) such that g(y) = 0.
3. Construct Hy =

[
A0 y1G + A1 · · · y�G + A�

]
.

• Choose a uniformly random matrix R1 ← Z
(�+1)mk×n
q .

• Choose R2 ← χ(�+1)mk×(�+1)m and R3 ← χ(�+1)mk×m.
• Construct a dummy key for re-encryption from x to y as follows:

rkx→y
sim =

[
R1Hy +R2 R1U+R3 − P2(Rx)
0m×(�+1)m Im×m

]
∈ Z

((�+1)mk+m)×(�+2)m
q .

• Compute the re-encrypted ciphertext c̄t = (c̄in, c̄1, · · · , c̄�, c̄out) as
c̄t

	 =
[
BD((

[
cin c1 · · · c�

]
)) c	

out

] · rkx→y
sim ∈ Z

1×(�+2)m
q .

• Output the re-encrypted ciphertext c̄t with the attribute vector y.

Lattice-Based HRA-secure Attribute-Based Proxy Re-Encryption 187

The simulated re-encrypted ciphertexts generated by Sim.ReEn1 or Sim.ReEn2
need to be decrypted correctly. For the correctness of the simulated re-
encrypted ciphertext, when g(y) = 0, we know by the requirement on Evalct

that the resulting ciphertext cg ∈ Es,Δ(0,Ag). After evaluating cg ←−
Evalct({yi,Ai, c̄i}�

i=1, g), we have the magnitude of the noise in cg, i.e.,
‖eg‖ < Δ. Consequently, c

′
g = [cin|cg] = (A0|Ag)	s + (ein|eg), where

‖(ein|eg)‖ < Δ + χmax < (αF + 1)χmax. Since, Rg ∈ Z
2m×m is sam-

pled from the distribution Dσ(Λu
q ((A0|Ag))), we have (A0|Ag) · Rg = U,

and
∥
∥R	

g

∥
∥
2

< 2mσ with overwhelming probability by Lemma 1. Now,
µ = cout − R	

g c
′
g =

(
U	s + eout + �q/2� · µ) − (

U	s + R	
g (ein|eg)

)
=

�q/2� · µ +
(
eout − R	

g (ein|eg)
)
. To get a correct decryption, the norm of the

error term should be less than q/4, i.e.,
∥
∥eout − R	

g (ein|eg)
∥
∥ < q/4. Now,∥

∥eout − R	
g (ein|eg)

∥
∥ ≤ χmax + 2mσ · (αF + 1)χmax ≤ 3α2

F · χmax · m with over-
whelming probability. By choosing the parameters such that, 3α2

F · χmax · m <
q/4, the decryption of the simulated re-encrypted ciphertext is correct.

The rest of the proof proceeds in a sequence of games. The first game is
identical to the original IND-HRA-ABPRE game from the Definition 4. The last
two games are indistinguishable due to the hardness of the dLWE problem.

Game 0: This is the original IND-HRA-ABPRE game from definition between
an adversary A against scheme and an IND-HRA-ABPRE challenger.

Game 1: Here, the challenger generates the public parameter PP as in
Sim.SetUp. Due to Lemma 6, A0S∗

1, · · · ,A0S∗
� are statistically indistinguishable

with uniform distribution. So, A1, · · · ,A�, as defined in Sim.SetUp, are close to
uniform. Also, due to Lemma 6,

[
A0 A0S∗

1 · · · A0S∗
�

] ·Rx∗ is statistically indis-
tinguishable with uniform distribution. Hence, U is statistically indistinguishable
with uniform distribution. In Query Phase 1, adversary issues following queries
adaptively and the challenger does as follows:

OKeyGen: Given a policy f , challenger does as follows:

1. Output ⊥ whenever f(x∗) = 0.
2. Otherwise, runs Sim.KeyGen to get the secret key skf for the policy f .

OReKeyGen: On input two policy f, g, challenger does as follows:

– For f(x∗) = 0, runs Sim.ReKeyGen.
– For f(x∗) �= 0, first computes skf = Rf by running Sim.KeyGen, then use

ReKeyGen algorithm to compute the re-encryption key rkf→g. Outputs the
re-encryption key rkf→g.

OEnc: On input the set of attributes x, and message μ, outputs ciphertext ct ←−
Enc(PP,x ∈ X �, μ) under x. Increment numCt and add ct to the set H with
key (x, numCt).

188 W. Susilo et al.

OReEnc: On input the policy f, g and (x, k) where k ≤ numCt, challenger does
as follows:

If x = x∗, outputs ⊥ if there is no value in H with key (x∗, k). Otherwise,
let ct = (cin, c1, · · · , c�, cout) be that value in H and compute re-encrypted
ciphertext by running Sim.ReEnc1.

If x �= x∗, outputs ⊥ if there is no value in H with key (x, k). Otherwise, let
ct = (cin, c1, · · · , c�, cout) be that value in H and consider the following cases:

– If f(x∗) = 0, compute the re-encrypted ciphertext by running Sim.ReEnc2.
– If f(x∗) �= 0, compute rkf→g ←− OReKeyGen. Using this re-encryption key,

compute the re-encrypted ciphertext according to the ReEnc algorithm.

Game 1 is otherwise same as Game 0. Since the public parameters and
responses to the queries are statistically close to those in Game 0, the adver-
sary A’s advantage in Game 1 is at most negligibly different from its advantage
in Game 0.

Game 2: Game 2 is identical to Game 1 except that the challenge ciphertext
ct∗ = (cin, c1, · · · , c�, cout) chosen randomly from Z

(�+2)m
q . Therefore, the adver-

sary A’s advantage in Game 2 is zero.
We show that Game 1 and Game 2 are computationally indistinguishable for

a PPT adversary, by giving a reduction from the dLWE problem.

Reduction from dLWE: Suppose A has non-negligible advantage in distinguish-
ing Game 1 and Game 2. Using A, we construct a dLWE solver B.

• dLWE instance: B begins by obtaining an dLWE challenge consisting of two
random matrices A0,U ∈ Z

n×m
q and two cin, cout ∈ Z

m
q . Here, cin, cout are

either random in Z
m
q or cin = A0

	s + e0 and cout = U	s + eout for some
random vector s ∈ Z

n
q and e0, eout ∈ χm. The goal of B is to distinguish these

two cases with non-negligible advantage by using A.
• Initial: A announces the target set of attributes x∗ = (x∗

1, x
∗
2, · · · , x∗

�) ∈ Z
�
q

that it intends to attack.
• SetUp: B constructs the public parameter as Game 1: choose � random

matrices S∗
i from {+1,−1}m×m for i ∈ {1, · · · , �} and set A1, · · · ,A� as

Ai = A0S∗
i − x∗

i G for i ∈ {1, · · · , �}. Sends PP = {A0,A1, · · · ,A�,U,G}
to A.

• Query Phase 1: B answers A’s all key queries as in Game 1.
• Challenge: A sends two messages µ0,µ1 ∈ {0, 1}m to B. B chooses a random

bit β ∈ {0, 1} and compute c∗ =
[
Im S∗

1 · · · S∗
�

]	 · cin ∈ Z
(�+1)m
q and c∗

out =
cout + �q/2� · µβ ∈ Z

m
q . B sends ct∗ = (c∗, c∗

out) ∈ Z
(�+2)m
q to A as the

challenge ciphertext. Increment numCt and add numCt to the set Derive.
Store the value ct∗ to the set H with key (x∗, numCt).

Lattice-Based HRA-secure Attribute-Based Proxy Re-Encryption 189

– Suppose cin, cout are generated by dLWE, i.e., cin = A0
	s + e0 and

cout = U	s + eout. Then from the Enc algorithm, we have,
Hx∗ =

[
A0 x∗

1G + A1 · · · x∗
�G + A�

]
=

[
A0 A0S∗

1 · · · A0S∗
�

] ∈
Z

n×(�+1)m
q

(Substituting the value of A0 and Ai’s). Then, c∗ =
[
Im S∗

1 · · · S∗
�

]	 ·
(A0

	s+e0) = H	
x∗s+e, where e =

[
Im S∗

1 · · · S∗
�

]	 ·e0. It is easy to see
that c∗ is computed as in Game 1. Also, c∗

out = U	s + eout + �q/2� · µβ .
Then ct∗ = (c∗, c∗

out) is a valid ciphertext of µβ under x∗.
– When cin, cout are random in Z

m
q , we have c∗ is random in Z

(�+1)m
q by

standard left over hash lemma. Also, cout is uniform. So, ct∗ is uniform
in Z

(�+2)m
q , as in Game 2.

• Query Phase 2: As in Query Phase 1 with the following constrain: ReEnc
oracle output ⊥ if g(x∗) �= 0 ∧ k ∈ Derive.

• Guess: A guesses if it is interacting with a Game 1 or Game 2 challenger. B
outputs A’s guess as the answer to the corresponding dLWE challenge.

Hence, B’s advantage in solving dLWE is the same as A’s advantage in dis-
tinguishing Game 1 and Game 2, as required. This completes the description of
algorithm B. This completes the proof. ��
Remark 2. We have proved the HRA security of the proposed scheme by follow-
ing the HRA security game of Sect. 3. Theorem 2 may be easier to prove HRA
security for pairing-based scheme.

Acknowledgement. This work is partially supported by the Australian Research
Council Linkage Project LP190100984

References

1. Agrawal, S., Boneh, D., Boyen, X.: Efficient lattice (H)IBE in the standard model.
In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 553–572. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5 28

2. Ajtai, M.: Generating hard instances of the short basis problem. In: Wiedermann,
J., van Emde Boas, P., Nielsen, M. (eds.) ICALP 1999. LNCS, vol. 1644, pp. 1–9.
Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48523-6 1

3. Alwen, J., Peikert, C.: Generating shorter bases for hard random lattices. In:
STACS 2009, pp. 75–86 (2009)

4. Ateniese, G., Fu, K., Green, M., Hohenberger, S.: Improved proxy re-encryption
schemes with applications to secure distributed storage. ACM Trans. Inf. Syst.
Secur. 9(1), 1–30 (2006)

5. Blaze, M., Bleumer, G., Strauss, M.: Divertible protocols and atomic proxy cryp-
tography. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 127–144.
Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0054122

6. Boneh, D., et al.: Fully key-homomorphic encryption, arithmetic circuit ABE and
compact garbled circuits. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014.
LNCS, vol. 8441, pp. 533–556. Springer, Heidelberg (2014). https://doi.org/10.
1007/978-3-642-55220-5 30

https://doi.org/10.1007/978-3-642-13190-5_28
https://doi.org/10.1007/3-540-48523-6_1
https://doi.org/10.1007/BFb0054122
https://doi.org/10.1007/978-3-642-55220-5_30
https://doi.org/10.1007/978-3-642-55220-5_30

190 W. Susilo et al.

7. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (Leveled) fully homomorphic
encryption without bootstrapping. In: ITCS 2012, pp. 309–325. ACM (2012)

8. Brakerski, Z., Langlois, A., Peikert, C., Regev, O., Stehlé, D.: Classical hardness
of learning with errors. In: STOC 2013, pp. 575–584 (2013)

9. Brakerski, Z., Vaikuntanathan, V.: Circuit-ABE from LWE: unbounded attributes
and semi-adaptive security. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS,
vol. 9816, pp. 363–384. Springer, Heidelberg (2016). https://doi.org/10.1007/978-
3-662-53015-3 13

10. Canetti, R., Lin, H., Tessaro, S., Vaikuntanathan, V.: Obfuscation of probabilistic
circuits and applications. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS,
vol. 9015, pp. 468–497. Springer, Heidelberg (2015). https://doi.org/10.1007/978-
3-662-46497-7 19

11. Cash, D., Hofheinz, D., Kiltz, E., Peikert, C.: Bonsai trees, or how to delegate a
lattice basis. In: EUROCRYPT 2010, pp. 523–552 (2010)

12. Chandran, N., Chase, M., Vaikuntanathan, V.: Functional re-encryption and
collusion-resistant obfuscation. In: Cramer, R. (ed.) TCC 2012. LNCS, vol.
7194, pp. 404–421. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-28914-9 23

13. Cohen, A.: What about bob? The inadequacy of CPA security for proxy reen-
cryption. In: Lin, D., Sako, K. (eds.) PKC 2019. LNCS, vol. 11443, pp. 287–316.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17259-6 10

14. Döttling, N., Nishimaki, R.: Universal proxy re-encryption. In: Garay, J.A. (ed.)
PKC 2021. LNCS, vol. 12710, pp. 512–542. Springer, Cham (2021). https://doi.
org/10.1007/978-3-030-75245-3 19

15. Dutta, P., Susilo, W., Duong, D.H., Baek, J., Roy, P.S.: Identity-based unidirec-
tional proxy re-encryption in standard model: a lattice-based construction. In:
You, I. (ed.) WISA 2020. LNCS, vol. 12583, pp. 245–257. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-65299-9 19

16. Dutta, P., Susilo, W., Duong, D.H., Roy, P.S.: Collusion-resistant identity-based
proxy re-encryption: lattice-based constructions in standard model. Theor. Com-
put. Sci. 871, 16–29 (2021)

17. Fuchsbauer, G., Kamath, C., Klein, K., Pietrzak, K.: Adaptively secure proxy re-
encryption. In: Lin, D., Sako, K. (eds.) PKC 2019. LNCS, vol. 11443, pp. 317–346.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17259-6 11

18. Ge, C., Susilo, W., Fang, L., Wang, J., Shi, Y.: A CCA-secure key-policy attribute-
based proxy re-encryption in the adaptive corruption model for dropbox data shar-
ing system. Des. Codes Crypt. 86(11), 2587–2603 (2018)

19. Gentry, C.: A Fully Homomorphic Encryption Scheme, vol. 20. Stanford university
Stanford, Stanford (2009)

20. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new
cryptographic constructions. In: STOC 2008, pp. 197–206 (2008)

21. Gentry, C., Sahai, A., Waters, B.: Homomorphic encryption from learning with
errors: conceptually-simpler, asymptotically-faster, attribute-based. In: Canetti,
R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 75–92. Springer, Hei-
delberg (2013). https://doi.org/10.1007/978-3-642-40041-4 5

22. Hohenberger, S., Rothblum, G.N., Vaikuntanathan, V.: Securely obfuscating re-
encryption. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 233–252.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-70936-7 13

23. Jakobsson, M.: On quorum controlled asymmetric proxy re-encryption. In: Imai,
H., Zheng, Y. (eds.) PKC 1999. LNCS, vol. 1560, pp. 112–121. Springer, Heidelberg
(1999). https://doi.org/10.1007/3-540-49162-7 9

https://doi.org/10.1007/978-3-662-53015-3_13
https://doi.org/10.1007/978-3-662-53015-3_13
https://doi.org/10.1007/978-3-662-46497-7_19
https://doi.org/10.1007/978-3-662-46497-7_19
https://doi.org/10.1007/978-3-642-28914-9_23
https://doi.org/10.1007/978-3-642-28914-9_23
https://doi.org/10.1007/978-3-030-17259-6_10
https://doi.org/10.1007/978-3-030-75245-3_19
https://doi.org/10.1007/978-3-030-75245-3_19
https://doi.org/10.1007/978-3-030-65299-9_19
https://doi.org/10.1007/978-3-030-17259-6_11
https://doi.org/10.1007/978-3-642-40041-4_5
https://doi.org/10.1007/978-3-540-70936-7_13
https://doi.org/10.1007/3-540-49162-7_9

Lattice-Based HRA-secure Attribute-Based Proxy Re-Encryption 191

24. Liang, X., Cao, Z., Lin, H., Shao, J.: Attribute based proxy re-encryption with
delegating capabilities. In: AsiaCCS 2009, pp. 276–286 (2009)

25. Micciancio, D., Peikert, C.: Trapdoors for lattices: simpler, tighter, faster, smaller.
In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp.
700–718. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-
4 41

26. Miki, M., Hayashi, E., Shingai, H.: Highly reliable and highly secure online stor-
age platform supporting “timeon” regza cloud service. Toshiba Rev. 68(5), 25–27
(2013)

27. Peikert, C.: Public-key cryptosystems from the worst-case shortest vector problem.
In: STOC 2009, pp. 333–342 (2009)

28. Polyakov, Y., Rohloff, K., Sahu, G., Vaikuntanathan, V.: Fast proxy re-encryption
for publish/subscribe systems. ACM Trans. Priv. Secur. 20(4), 1–31 (2017)

29. Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-
phy. In: STOC 2005, pp. 84–93 (2005)

30. Smith, T.: Dvd jon: buy drm-less tracks from apple itunes (2005). https://www.
theregister.co.uk/2005/03/18/itunes pymusique/

https://doi.org/10.1007/978-3-642-29011-4_41
https://doi.org/10.1007/978-3-642-29011-4_41
https://www.theregister.co.uk/2005/03/18/itunes_pymusique/
https://www.theregister.co.uk/2005/03/18/itunes_pymusique/

Server-Aided Revocable Attribute-Based
Encryption Revised: Multi-User Setting

and Fully Secure

Leixiao Cheng1 and Fei Meng2,3(B)

1 School of Mathematics, Shandong University, Jinan 250100, China
lxcheng@sdu.edu.cn

2 Ding Lab, Beijing Institute of Mathematical Sciences and Applications,

Beijing, China
3 Yau Mathematical Center, Tsinghua University, Beijing, China

Abstract. Attribute-based encryption (ABE) is a promising crypto-
graphic primitive achieving fine-grained access control on encrypted data.
However, efficient user revocation is always essential to keep the system
dynamic and protect data privacy. Cui et al. (ESORICS 2016) proposed
the first server-aided revocable attribute-based encryption (SR-ABE)
scheme, in which an untrusted server manages all the long-term trans-
form keys and update keys generated by key generation center (KGC) in
order to achieve efficient user revocation. So, there’s no need for any user
to communicate with KGC to update his/her decryption key regularly.
In addition, the most part of computational overhead of decryption is
outsourced to the server and user keeps a small size of private key to
decrypt the final ciphertext. Then, Qin et al.’s (CANS 2017) extended
Cui et al.s’ work to be decryption key exposure resistant (DKER).

Unfortunately, current SR-ABE schemes could only be provably
secure in one-user setting, which means there’s only one “target user”
id∗ with an attribute set Sid∗ satisfying the access structure (M∗, ρ) in
the challenge ciphertext, i.e., Sid∗ � (M∗, ρ). However, a more reasonable
security model, i.e., multi-user setting, requires that any user id in the
system can be with an attribute set Sid � (M∗, ρ), and the adversary
is allowed to query on any user’s private key SKid and his/her long-
term transform key PKid,Sid as long as his/her identity id is revoked at
or before the challenge time t∗. How to construct a SR-ABE secure in
multi-user setting is still an open problem.

In this paper, we propose the first SR-ABE scheme provably secure in
multi-user setting. In addition, our SR-ABE is fully secure and decryp-
tion key exposure resistant. Our scheme is constructed based on dual sys-
tem encryption methodology and novelly combines a variant of Lewko et
al.’s work in EUROCRYPT 2010 and Lewko et al.’s work in TCC 2010.
As a result, we solve the remaining open problem.

Keywords: Attribute-based encryption · Revocation · Server-aided ·
Multi-user setting · Fully secure

c© Springer Nature Switzerland AG 2021
E. Bertino et al. (Eds.): ESORICS 2021, LNCS 12973, pp. 192–212, 2021.
https://doi.org/10.1007/978-3-030-88428-4_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-88428-4_10&domain=pdf
https://doi.org/10.1007/978-3-030-88428-4_10

SR-ABE Revised: Multi-User Setting and Fully Secure 193

1 Introduction

Attribute-based Encryption (ABE)[22], as an extension of identity-based encryp-
tion (IBE), is a powerful cryptographic primitive achieving fine-grained access
control on encrypted data. ABE schemes are usually divided into two types:
Key-Policy ABE (KP-ABE) [9] and Ciphertext-Policy ABE (CP-ABE) [3]. In
this paper, we only focus on CP-ABE. In CP-ABE scheme, the data owner is
allowed to define a specific access policy in the ciphertext which can only be
decrypted by users with attributes satisfying the policy. CP-ABE is very suit-
able for encrypted data sharing in public cloud storage scenarios.

In the IBE or ABE system, when users lose their secret keys or exit the
system, efficient user revocation is very crucial for preserving data privacy and
keeping the system dynamic. In 2001, Boneh et al. [6] proposed a simple identity
revocation mechanism, in which the Key Generation Center (KGC) has to gen-
erate O(N −r) new secret keys for all unrevoked users at time period t, where N
is the total number of users and r is the number of revoked users. To reduce the
workload of KGC, Boldyreva et al. [4] proposed a more efficient identity revoca-
tion mechanism based on the binary-tree structure of [15]. In [4], each user keeps
O(log N) long-term secret keys and the KGC broadcasts O(r log(N/r)) update
keys at time period t. Only non-revoked users can obtain their corresponding
update keys. However, there are two drawbacks in [4]: every user needs to keep
at least O(log N) long-term secret keys; all non-revoked users are required to
communicate with the KGC regularly. As a result, [4] is not suitable for users
with limited resources or who cannot communicate with KGC in real-time.

To solve this problem, Qin et al. [17] proposed a novel system model i.e.,
server-aided revocation in IBE scenario (SR-IBE). In [17], user’s original long-
term secret keys and update keys are all managed by an untrusted server, which
honestly follows the protocol but is curious about data encrypted in the cipher-
text, and each user keeps only one short private key. Since the original long-term
secret keys are stored in the server, those keys are renamed as long-term trans-
form keys. In this case, user no longer needs to communication with KGC for
key updating regularly. To extend server-aided revocation mechanism from IBE
to ABE scenario, in 2016, Cui et al. [8] proposed the first server-aided revocable
ABE (SR-ABE). [8] not only inherits the advantages of server-aided revocation
mechanism, but also achieves the decryption outsourcing, i.e., user could decrypt
the ciphertext with little computational overhead. However, the scheme fails to
satisfy (local) decryption key exposure resistance (DKER). Specifically, in [8],
user’s decryption key is his/her private key, which does not change with time,
so exposing the user’s decryption key will make the scheme completely insecure.
Seo and Emura [23] has shown that the exposure of decryption keys is a very
realistic threat to many revocable cryptosystems. Then, Qin et al. [18,19] revis-
ited the security model of [8] and enhanced it by capturing the decryption key
exposure attacks on user’s local decryption keys while allowing the adversary to
fully corrupt the server. In [18,19], the user keeps just a short private key, and
can delegate his/her decryption capacity to a decryption key with any specified
time period. Even if the local decryption key of a certain time period is leaked,

194 L. Cheng and F. Meng

the security of the decryption key of other time periods will not be affected. Sim-
ilarly, [18,19] maintain the properties of server-aided revocation and outsourced
decryption.

In general, the system framework of SR-ABE is shown in Fig. 1. The ABE
ciphertext generated by data owner is transformed by an untrusted server using
a short-term transformation key which is generated by combining the long-term
transformation key and the key update message. However, once a user is revoked,
the server cannot assist him/her to accomplish the transformation. In [8], user’s
private key is the decryption key, so once the decryption key is exposed, user’s
privacy is totally leaked. However, in [18,19], user’s decryption key is derived
from the private key, so even a decryption key of time period t is exposed, it will
not affect decryption keys in other time periods.

Fig. 1. System framework of SR-ABE

1.1 Motivation

The existing SR-ABE schemes [8,18,19] can only prove secure under “one-user
setting”, in which only one user id∗ (called “target user”) has the capacity to
access the challenge ciphertext and the adversary can corrupt his private key.
In [8,18,19], the adversary is divided into two distinct types: (1) the adversary
is allowed to corrupt id∗’s private key, but id∗ has to be revoked at or before
the challenge time period t∗; (2) the adversary is not allowed to corrupt id∗’s
private key, then id∗ is not revoked but the adversary can obtain decryption
keys for any time period except t∗. Note that [8,18,19] can only simulate the
security game for these two types of adversaries separately, which do not cross
with each other. However, this is too restrictive in a real world scenario, since
the two different adversaries may exist simultaneously even for two target users.

SR-ABE Revised: Multi-User Setting and Fully Secure 195

But unfortunately, the restriction seems necessary for the proof technique used
in [8,18,19].

Let us analyze why this is the case. In this paper, we focus on SR-ABE
scheme with DKER. Note that [8] is improved by [18,19] which achieves DKER,
so we take [18,19] as example. The analysis works similarly for [8] as well. First,
we briefly recall some algorithms in the construction of [18,19]:

Setup(1λ): This algorithm outputs master secret key msk = α, the public
parameter par = (g, w, v, u, h, u0, h0, e(g, g)α), along with a revocation list
RL and a state st, where g is the generator of a group G, w, v, u, h, u0, h0 are
randomly chosen from G, α is randomly chosen from Zp, st is set to be the
binary tree BT (BT is introduced in Sect. 2.3).

UserKG(par,msk, id, S, st): This algorithm randomly chooses βid ∈ Zp and set
skid = gβid . Then, it chooses an undefined leaf node θid from BT, stores id in
this node. For each x ∈ Path(BT, θid), it runs as follows.
1. It fetches gx from the node x. If x has not been defined, it randomly

chooses gx ∈ G, computes g′
x = gα−βid/gx and stores gx in the node x.

2. It randomly chooses rx, rx,1, . . . , rx,k ∈ Zp, computes

Px,0 = g′
x · wrx , Px,1 = grx , P

(i)
x,2 = grx,i , P

(i)
x,3 = (usih)rx,i · v−rx .

3. it outputs pkid,S = {x, Px,0, Px,1, P
(i)
x,2, P

(i)
x,3}x∈Path(BT,θid),i∈[1,k] as the

long-term transformation key and skid = gβid as the secret key.
TKeyUp(par,msk,RL, t, st): This algorithm inputs par, msk, a revocation list

RL, a time period t and a state st. For each x ∈ KUNodes(BT,RL, t), it
randomly chooses sx ∈ Zp, fetches gx from the node x, outputs a key update
message tkut = {x,Qx,1, Qx,2}x∈KUNodes(BT,RL,t), where

Qx,0 = gx · (uth)sx , Qx,1 = gsx .

Encrypt(par, (M, ρ), t,M): This algorithm inputs par, an LSSS access struc-
ture (M, ρ), a time period t and a message M , randomly chooses v =
(s, y2, . . . , yn)⊥ ∈ Z

n
p and μ1, . . . , μl ∈ Zp, computes λi = Mi · v, outputs

the ciphertext CT = {C,C0, {Ci,1, Ci,2, Ci,3}, C4}, where

C = e(g, g)αs · M, C0 = gs, Ci,1 = wvi · vμi ,

Ci,2 = (usρ(i)h)−μi , Ci,3 = gμi , C4 = (uth)s.

As we can see, Qin et al. [18,19] used the “random splitting technique” to
divide a master secret key “α” into two parts. Specifically, “α” is split into
“α−βid” and “βid” for identity id, where βid is randomly chosen and gβid serves
as the user’s private key in UserKG. In order to achieve user revocation, gα−βid

will be further divided into random gx and g′
x,id to generate key update message

in TKeyUp and long-term transformation key in UserKG respectively (gx is
stored in the node x of BT, and does not change once stored; g′

x,id changes with
different identities), such that

196 L. Cheng and F. Meng

gx · g′
x,id = gα−βid , x ∈ Path(BT, θid). (1)

The security of the SR-ABE scheme [18,19] is reduced to the Rouselakis-
Waters CP-ABE scheme [20]. It seems that [18,19] cannot prove secure in
multi-user setting. This is because if the adversary A, who attacks the SR-
ABE scheme [18,19], is allowed to simultaneously corrupt two separate users in
two different types, as we mentioned at the beginning of this section, then the
simulator B, who was built using A to attack [20], can break [20] itself, which
leads to the failure of the security reduction. The detail is as follows.

The simulator B is given the public parameters of Rouselakis-Waters, and
the master key α is hidden from B. Assume that there are two identities id∗

0

and id∗
1 with attribute sets S0 and S1 satisfying the challenge access structure

(M∗, ρ) such that:

(1) A corrupts id∗
0’s private key and id∗

0 is revoked before the time period t∗;
(2) A doesn’t corrupts id∗

1’s private key and id∗
1 is not revoked.

According to Eq. (1), we have

gx · g′
x,id0

= gα−βid0 , x ∈ Path(BT, θid0) (2)

gx · g′
x,id1

= gα−βid1 , x ∈ Path(BT, θid1) (3)

Since S0 |= (M∗, ρ), g′
x,id0

for x ∈ Path(BT, θid0), are known to B in order to
generate the long-term transformation key pkid0,S0 for A; Since A corrupts id∗

0’s
private key, βid0 is a known value to B; Since id1 is non-revoked, B has to know
gx for x ∈ Path(BT, θid1) to generate the key update message at time period t∗

for A, especially the value gx∗ for x∗ ∈ Path(BT, θid0)∩Path(BT, θid1). According
to Equation (2), B knows the value

gα = (gx∗ · g′
x∗,id0

) · gβid0 ,

which enables B to break the underlying Rouselakis-Waters CP-ABE
scheme [20], and thus the security reduction fails. For the similar reason, [8]
also cannot prove secure in multi-user setting and it is still a practical open
problem to construct an SR-ABE scheme probably secure under such setting.

1.2 Our Approach

As we analyzed above, in previous SR-ABE schemes [8,18,19], if the adversary
A is allowed to simultaneously corrupt two separate users in two different types,
then the simulator B is able to compute gα (α is the master secret key) and solve
the underlying complexity assumption itself, thus the security reduction breaks
down. This hints that we need to find a new construction and proof system
so that the exposure of gα will not lead to the failure of the security reduction.
Fortunately, Waters et al. [11,13,24] introduced dual system methodology, which
opens up a new way to prove security of IBE, ABE and other related encryption
systems.

SR-ABE Revised: Multi-User Setting and Fully Secure 197

Briefly speaking, in the dual encryption system [11,13], both ciphertext and
private key can be in one of two indistinguishable forms: normal and semi-
functional. Unless both the key and ciphertext are semi-functional, the key will
decrypt the ciphertext correctly. However, when a semi-functional key is used
to decrypt a semi-functional ciphertext, the semi-functional components of the
key and ciphertext will interact to generate an additional random term, and
decryption will fail. In the real system, the normal keys and ciphertexts are
used, while semi-functional objects are gradually presented in hybrid security
proof: firstly in Game0, the normal challenge ciphertext is switched to a semi-
functional one; then, from Game1 to Gameq, the secret keys given the adversary
are changed from normal to semi-functional one by one and Gameq is a security
game where the simulator only generates semi-functional objects; finally, we end
up in GameFinal where the challenge ciphertext is a semi-function encryption on a
random group element and all of the private key queries result in semi-functional
key, hence security can be proved straightforward.

When arguing that Gamek−1 and Gamek are indistinguishable for k ∈ [1, q],
the simulator B who attacks the underlying assumptions (Assumption 1 and
2 in Sect. 2.1) always chooses the master secret key α by himself so that he is
ready to make any key and any challenge ciphertext for adversary A who attacks
the scheme. When claiming that Gameq and GameFinal are indistinguishable, the
simulator B who attacks Assumption 3 (Sect. 2.1) takes as input parameters
g, gαX2,X3, g

sY2, Z2, T (T is either e(g, g)α or a random element in GT), then
it makes use of the Assumption 3 parameter gαX2 to generate semi-functional
objections to answer any key query from A.

Based on this observation, the dilemma encountered in proving multi-user
security in the previous SR-ABE schemes could be overcome, because we no
longer need to worry about the exposure of gα or gαX2. In other words, leverag-
ing dual system methodology into SR-ABE may lead us down the right path to
prove the security under multi-user setting. Therefore, we novelly combine the
ABE scheme [11] and the IBE scheme [13] in the dual system to construct our
SR-ABE scheme. Thanks to the powerful dual system encryption methodology,
in our security proof, even the adversary A corrupts two separate users in two
different types simultaneously, the simulator B, who knows α or gαX2, is able to
answer any key query on these two users from A, and thus the security reduc-
tion works. As a result, our SR-ABE is provably secure in multi-user setting.
The only remaining question is how to combine those two schemes in the dual
system organically to obtain a concrete SR-ABE scheme. We put this detail at
the beginning of Sect. 4.

1.3 Our Contributions

In this paper, we construct the first (fully secure) server-aided revocable
attribute-based encryption scheme with decryption key exposure resistance,
achieving the security requirement in the multi-user setting. We solve the open
problem of how to construct a SR-ABE scheme that is provably secure in the

198 L. Cheng and F. Meng

Table 1. Comparison between our scheme and other indirect revocable ABE schemes.

[4] [1] [21] [8] [18] Ours

Revocation Mode Indirect Indirect Indirect & Direct Indirect Indirect Indirect

Type of ABE KP-ABE KP-ABE KP-ABE & CP-ABE CP-ABE CP-ABE CP-ABE

Server – – – Untrusted Untrusted Untrusted

Decryption Outsource No No No Yes Yes Yes

DKER No No No No Yes Yes

Fully Secure No No No No No Yes

Secure Channel Yes Yes Yes No Yes/No Yes/No

Multi-User Setting Yes Yes Yes No No Yes

Size of Key Updates O(r log N
r

) O(r log N
r

) & – O(r log N
r

) O(r log N
r

) O(r log N
r

) O(r log N
r

)

Size of Key Stored by User O(l log N) O(l log N) O(l log N) & O(k log N) O(1) O(1) O(1)

multi-user setting. Specifically, our scheme novelly combines a variant of a fully
secure (H)IBE [13] and a fully secure ABE [11] in the dual encryption system.

In Table 1, we compare our SR-ABE scheme with several related indirect
revocable ABE schemes [1,4,8,18,21]. Let N be the number of user in the system,
r be the number of revoked users, l be the number of attributes presented in
an access structure, and k be the size of the attribute set associated with an
attribute-key. Also, let “-” denote not-applicable. As shown in Table 1, compared
with [1,4,21], our scheme has inherited the wonderful merits of SR-ABE schemes
[8] and [18], i.e., decryption outsourced and small size of key storage in the user
side. There’s no need for any user to communicate with KGC to update his/her
decryption key regularly as well. In addition, compared with [8] and [18], our
scheme is fully secure and provably secure in multi-user setting. Furthermore,
different from [8], our SR-ABE satisfies DKER.

2 Preliminaries

In this section, we briefly introduce some basic cryptographic definitions.

2.1 Composite Order Bilinear Groups

We recall the definition of composite order bilinear groups in [13]. A group
generator G is defined as an algorithm that takes a security parameter λ as
input and outputs (p1, p2, p3, G,GT , e), where p1, p2, p3 are distinct primes, G
and GT are two cyclic groups of order N = p1p2p3, and e : G × G → GT is a
bilinear map with the following properties:

Bilinear: ∀u, v ∈ G and a, b ∈ Zp, we have e(ua, vb) = e(u, v)ab.
Non-degenerate: ∃g ∈ G such that e(g, g) ∈ GT is the generator of GT .

The group operations in G and GT as well as the bilinear map e are com-
putable in polynomial time. Let Gp1 , Gp2 , Gp3 denote the subgroups of order
p1, p2, p3 in G respectively, then when hi ∈ Gpi

and hj ∈ Gpj
for i �= j, e(hi, hj)

is the identity element in GT . This orthogonality property of Gp1 , Gp2 , Gp3 will
be used to implement semi-functionality in our SR-ABE.

We now introduce the complexity assumptions [11,12]. Let Gp1p2 and Gp1p3

denote the subgroup of order p1p2 and p1p3 in G, respectively.

SR-ABE Revised: Multi-User Setting and Fully Secure 199

Assumption 1. (Subgroup decision problem for 3 primes). Given a
group generator G, we define the following distribution:

G = (N = p1p2p3, G,GT , e) R←− G, g
R←− Gp1 ,X3

R←− Gp3 ,D = (G, g,X3)

T1
R←− Gp1p2 , T2

R←− Gp1 .

The advantage of an algorithm A in breaking Assumption 1 is defined as:

Adv1G,A(λ) :=| Pr[A(D,T1)] − Pr[A(D,T2)] | .

Definition 1. We say that G satisfies Assumption 1 if Adv1G,A(λ) is a negligible
function of λ for any polynomial time algorithm A.

Note that T1 can be written uniquely as the product of an element of Gp1 and
an element of Gp2 . We refer to these elements as the Gpi

part of T1 for i = 1, 2.

Assumption 2. Given a group generator G, we define the following distribu-
tion:

G = (N = p1p2p3, G,GT , e) R←− G, g,X1
R←− Gp1 ,X2, Y2

R←− Gp2 ,

X3, Y3
R←− Gp3 ,D = (G, g,X1X2,X3, Y2Y3), T1

R←− G,T2
R←− Gp1P3 .

The advantage of an algorithm A in breaking Assumption 2 is defined as:

Adv2G,A(λ) :=| Pr[A(D,T1)] − Pr[A(D,T2)] | .

Definition 2. We say that G satisfies Assumption 2 if Adv2G,A(λ) is a negligible
function of λ for any polynomial time algorithm A.

Note that T1 can be written uniquely as the product of an element of Gp1 ,
an element of Gp2 and an element of Gp3 . We refer to these elements as the Gpi

part of T1 for i = 1, 2, 3. T2 can be written as the product of an element of Gp1

and an element of Gp3 similarly.

Assumption 3. Given a group generator G, we define the following distribu-
tion:

G = (N = p1p2p3, G,GT , e) R←− G, α, s
R←− ZN , g

R←− Gp1 ,X2, Y2, Z2
R←− Gp2 ,

X3
R←− Gp3 ,D = (G, g, gαX2,X3, g

sY2, Z2), T1 = e(g, g)αs, T2
R←− GT .

The advantage of an algorithm A in breaking Assumption 3 is defined as:

Adv3G,A(λ) :=| Pr[A(D,T1)] − Pr[A(D,T2)] | .

Definition 3. We say that G satisfies Assumption 3 if Adv3G,A(λ) is a negligible
function of λ for any polynomial time algorithm A.

200 L. Cheng and F. Meng

2.2 Access Structures and Linear Secret Sharing

Definition 4 (Access structure[3]). Let {P1, P2, . . . , Pn} be a set of parties. A
collection A ⊆ 2{P1,P2,...,Pn} is monotone if ∀B,C: if B ∈ A and B ⊆ C then C ∈
A. An access structure (respectively, monotone access structure) is a collection
(respectively, monotone collection) A of non-empty subsets of {P1, P2, . . . , Pn},
i.e., A ⊆ 2{P1,P2,...,Pn} \ {∅}. The sets in A are called the authorized sets, and
the sets not in A are called the unauthorized sets.

Definition 5 (Linear Secret Sharing Schemes (LSSS)[3]). A secret shar-
ing scheme Π over a set of parties P is a linear secret-sharing scheme over
Zp if:

– The shares for each party form a vector over Zp.
– There exists a matrix M with l rows and n columns, called the share generating

matrix, for Π. For i = 1, . . . , l, the ith row of matrix M, i.e., Mi, is labelled
by a party ρ(i), where ρ : {1, . . . , l} → P is a function that maps a row to
a party for labelling. Considering that the column vector �v = (s, r2, . . . , rn),
where s ∈ Zp is the secret to be shared and r2, . . . , rn ∈ Zp are randomly
chosen, then M�v is the vector of l shares of the secret s according to Π. The
share Mi�v belongs to party ρ(i).

The linear reconstruction property states that there exist constants {ωi ∈ Zp}i∈I

such that, for any valid shares {λi}i of a secret s according to Π, we have:
Σi∈Iωiλi = s, where I = {i | ρ(i) ∈ S} for an authorized set S [2]. We note that
for unauthorized sets, no such constants {ωi} exist.

2.3 Binary Tree

We recall the definition of binary-tree data structure, as with [5,7,10,16,23]. This
structure uses a node selection algorithm called KUNodes. In the algorithm, we
use the following notations: BT denotes a binary-tree. root denotes the root
node of BT. x denotes a node in the binary tree and θ emphasizes that the
node x is a leaf node. The set Path(BT, θ) stands for the collection of nodes
on the path from the leaf θ to the root (including θ and the root). If x is a
non-leaf node, then x�, xr denote the left and right child of x, respectively. The
KUNodes algorithm takes as input a binary tree BT, a revocation list RL and
a time t, and outputs the minimal set Y of nodes, such that the corresponding
key update information can only be used by the non-revoked users to generate
a valid short-term transformation key. Specifically, the KUNodes algorithm first
marks all ancestor of users that were revoked by t as revoked nodes, then outputs
all the non-revoked children of revoked nodes. The description of the KUNodes
algorithm is as follows:

KUNodes(BT,RL, t):
X,Y ← ∅; ∀(θi, ti) ∈ RL, and ti ≤ t, add Path(BT, θi) to X;
∀x ∈ X: if x� /∈ X then add x� to Y , if xr /∈ X then add xr to Y ;
If Y = ∅ then add root to Y ; Return Y .

SR-ABE Revised: Multi-User Setting and Fully Secure 201

3 Framework and Security Model

Our SR-ABE scheme involves four types of entities: a key generation center
(KGC), data owners, data users and an untrusted server.

Setup(1λ, U) → (PK,MSK,RL, st): Taking as input a security parameter λ
and an attribute set U containing all possible attributes, KGC runs this
algorithm to generate the public key PK, the master secret key MSK, an
initially empty revocation list RL and a state st.

UserKG(PK,MSK, id, S, st) → (PKid,S , SKid, st): KGC runs the user key
generation algorithm and outputs user’s long-term transformation key PKid,S

for the untrusted server and a private key SKid for the user, then updates
the state st.

TKeyUp(PK,MSK,RL, t, st) → (tkut, st): KGC runs the transformation key
update algorithm and outputs a key update message tkut for server and an
updated state st.

TranKG(PK, id, PKid,S , tkut) → tkid,t/ ⊥: The server runs the transformation
key generation algorithm and outputs a short-term transformation key tkid,t

for id if id is not revoked at t. Otherwise, it outputs ⊥.
DecKG(PK, id, SKid, t) → dkid,t: The user runs the decryption key generation

algorithm and outputs a decryption key dkid,t for id in time period t.
Enc(PK, (M, ρ), t,M) → CT : Taking the public key PK, an access structure

(M, ρ), a time period t and a message M as the input, the data owner runs
the encryption algorithm to generate a ciphertext CT and then submits CT
to server.

Transform(PK, id, S, tkid,t, CT) → CT ′/ ⊥: The server runs the ciphertext
transformation algorithm to generate a partially decrypted ciphertext CT ′

for id if the attribute set S associated with the transformation key tkid,t

satisfies the access structure of the ciphertext CT . Otherwise, it outputs ⊥.
Decrypt(PK, id, dkid,t, CT ′) → M/ ⊥: The user runs the decryption algorithm

and outputs the message M or a failure symbol ⊥.
Revoke(id, t,RL, st) → RL: KGC runs the revocation algorithm and outputs an

updated revocation list RL.

3.1 Security Model

Now, we introduce the security definition of indistinguishability under chosen
plaintext attacks (IND-CPA security) for SR-ABE between an adversary A and
the challenger B.

Setup: B runs the Setup algorithm, and returns the public key to A, then keeps
the master secret key MSK, an initially empty revocation list RL, a state st,
and two empty sets T, T ′ by itself.

Phase 1: A adaptively issues a sequence of following queries to B :
– Create(id,S). B runs UserKG(PK,MSK, id, S, st) to obtain the pair

(PKid,S , SKid), stores in table T the entry (id, S, PKid,S , SKid) and
returns PKid,S to A.

202 L. Cheng and F. Meng

– Corrupt(id). If there exists an entry indexed by id in table T , then B
retrieves the entry (id, S, PKid,S , SKid), sets T ′ = T ′ ∪ {(id, S)}, returns
SKid. If no such entry exists, then it returns ⊥.

– TKeyUp(t). B runs TKeyUp(PK,MSK,RL, t, st) and returns tkut.
– DecKG(id,t). If there exists an entry indexed by id in table T , then

B retrieves the entry (id, S, PKid,S , SKid), runs DecKG(PK, id, SKid, t)
and returns dkid,t. If no such entry exists, then it returns ⊥.

– Revocation(id,t). B runs Revoke(id, t,RL, st) and outputs an updated
revocation list RL.

Challenge: A submits two messages (M0,M1) of the same size, an access struc-
ture (M∗, ρ) and a time period t∗ with the following restrictions:

– If (id, S) ∈ T ′ and S � (M∗, ρ), then A must query the revocation oracle
on (id, t) at or before t∗.

– If there exists a tuple (id, S, PKid,S , SKid) ∈ T , S � (M∗, ρ) and id
is not revoked at or before t∗, then A cannot query Corrupt(id) and
DecKG(id,t∗).

B picks a random bit β ∈ {0, 1}, and returns the challenge ciphertext CT ∗ ←
Enc(PK, (M∗, ρ), t∗,Mβ) to A.

Phase 2: A continues submits queries to B as in Phase 1, with the restrictions
defined in the Challenge phase.

Guess:A outputs a guess β′ of β, and it wins the game if β′ = β. The advantage
of A in this game is defined as AdvA(l) =| Pr[β′ = β] − 1/2 |.

Definition 6. An SR-ABE scheme is adaptively IND-CPA secure if the advan-
tage AdvA(l) is negligible in l for all polynomial time adversary A.

4 Construction

In this section, we propose the construction of our SR-ABE with DKER, which
is fully secure in multi-user setting. As we have discussed in Sect. 1.2, we try
to construct an SR-ABE by the dual system encryption technique. However, we
find that if we trivially follow the construction of SR-ABE with DKER [18,19]
by just replacing their underlying ABE block [20] with dual ABE [11], then it
will cause “authority abuse”: (1) anyone can generate a valid private key, since
it is computed without the system master secret key; (2) user id with his private
key SKid can easily change the identity embedded in his long-term transform
key PKid,S from id to id′. Adding up these two points, user id can maliciously
generate a new SKid′ and PKid′,S′ , where S′ ⊆ S, for an unauthorized user id′

by the key re-randomization technique, resulting in the authority abuse.
In our scheme, we novelly combine dual ABE [11] and dual IBE [13]. Firstly,

we embed the system master key into user’s private key to ensure that only the
KGC can distribute users’ private keys. Specifically, we view the system master
key α as the master key of a variant of the 2-level HIBE [13] to generate 1-level
user private key SKid (id as identity), which is then used to delegate a 2-level
decryption key dkid,t ((id ‖ t) as identity). It should be noted that the exposure
of decryption key dkid,t on time t will not affect the decryption key dkid,t′ on

SR-ABE Revised: Multi-User Setting and Fully Secure 203

time t′ �= t, so that our SR-ABE is decryption key exposure resistant (DKER).
Secondly, we generate user’s long-term transformation key PKid,S by combining
the key generation algorithms of both [11] and the variant of [13]. The unique
random r embedded in both SKid and PKid,S guarantees that, without knowing
r, anyone cannot change the identity embedded in SKid and PKid,S , so that the
authority abuse is prevented. The detail of our scheme is shown as follows.

– Setup(1λ, U) → (PK,MSK): The setup algorithm chooses a bilinear group
G of order N = p1p2p3, where p1, p2, p3 are three distinct primes. We let Gpi

denote the subgroup of order pi in G. It then chooses random exponents α, a ∈
ZN , and random group elements g, u, h, u0, h0 ∈ Gp1 . For each attribute i ∈
U , it chooses a random value si ∈ ZN . Then, the algorithm outputs the public
parameters PK and master secret key MSK as follows:

PK = {N, g, ga, u, h, u0, h0, e(g, g)α, {Ti = gsi}i∈U} ,MSK = {α,X3} (4)

where X3 is a generator of Gp3 .
– UserKG(PK,MSK, id, S, st) → (PKid,S , SKid, st): The algorithm chooses

an undefined leaf node θ from the binary tree BT, and stores id in this node.
Then, it randomly chooses r ∈ ZN . For each node x ∈ Path(BT, θ), it runs as
follows.

• It fetches gx from the node x. If x has not been defined, it randomly picks
gx ∈ Gp1 , then stores gx in node x.

• It randomly chooses tx ∈ ZN , Rx,0, R̄x,0, Rx,i ∈ Gp1 , and computes

PKid,S,x =

{
Kx = gα+atxr((uidh)r/gx) · Rx,0, Lx = gtxr · R̄x,0

{Kx,i = T txr
i · Rx,i}i∈S

}
. (5)

Then, the algorithm picks a random element R3 ∈ Gp3 and computes

SKid = gα(uidh)r · R3. (6)

Finally, the algorithm outputs the long-term transformation key PKid,S =
{x, PKid,S,x}x∈Path(BT,θ), the private key SKid and updates the state st.

– TKeyUp(PK,MSK,RL, t, st) → (tkut, st):
For each x ∈ KUNodes(BT,RL, t), the algorithm fetches gx from x (gx should
always be predefined in the above UserKG algorithm), randomly chooses R̂x,3,
R̄x,3 ∈ Gp3 , sx ∈ ZN , and computes

Qx,0,t = gαgx · (ut
0h0)sxR̂x,3, Qx,1,t = gsxR̄x,3. (7)

Finally, the algorithm generates the transformation key update information
tkut = {x,Qx,0,t, Qx,1,t}x∈KUNodes(BT,RL,t) and updates the state st.

– TranKG(PK, id, PKid,S , tkut) → tkid,t/ ⊥: Suppose θ is the leaf node
corresponding with id. If Path(BT, θ)

⋂
KUNodes(BT,RL, t) = ∅, the algo-

rithm returns ⊥. Otherwise, there must exist one node x such that x ∈

204 L. Cheng and F. Meng

Path(BT, θ)
⋂

KUNodes(BT,RL, t). Then, it computes⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

tk0 = Kx · Qx,0,t = g2α+atxr(uidh)r(ut
0h0)sx · Rx,0R̂x,3

tk1 = Lx = gtxr · R̄x,0

tk2,i = Kx,i = T txr
i Rx,i ∀i ∈ S

tk3 = Qx,1,t = gsxR̄x,3

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

. (8)

Finally, it returns the transformation key tkid,t = {tk0, tk1, {tk2,i}i∈S , tk3}.
– DecKG(PK, id, SKid, t) → dkid,t: It randomly chooses rt ∈ ZN and outputs

a decryption key dkid,t = {SKid(ut
0h0)rt , grt} = {gα(uidh)r(ut

0h0)rtR3, g
rt}.

– Enc(PK, (M, ρ), t,M) → CT : Given an LSSS access structure (M, ρ), M is
an l × n matrix and ρ is a map from each row Mi of M to an attribute
ρ(i). The algorithm randomly chooses a random vector �v ∈ Z

n
N and denotes

�v = (s, y2, . . . , yn)⊥. Then it computes the shares λ = (λ1, . . . , λl)⊥ = M · �v,
where λi = Mi · �v. Finally, it randomly chooses r1, . . . , rl ∈ ZN and outputs
the ciphertext CT as

CT =

{
C = M · e(g, g)αs, C0 = gs, Ct = (ut

0h0)s

{Ci = gaλiT−ri

ρ(i) ,Di = gri}i∈[1,l]

}
. (9)

– Transform(PK, id, S, tkid,t, CT) → CT ′/ ⊥: If the user has been revoked
at time period t or the attribute set S � (M, ρ), the algorithm returns ⊥.
Otherwise, the algorithm computes a set of constants {ωi ∈ ZN} such that∑

ρ(i)∈S ωiMi = (1, 0, ..., 0). Next, it computes

B0 =
∏

ρ(i)∈S

(e(tk2,i,Di) · e(Ci, tk1))ωi

=
∏

ρ(i)∈S

(e(T txr
i , gri) · e(gaλiT−ri

ρ(i) , g
txrR̄x,0))ωi

= e(g, g)atxr
∑

ρ(i)∈S λiωi = e(g, g)atxrs,

(10)

and B1 = e(tk0, C0) = e(g, g)2αs · e(g, g)atxrs · e((uidh)r, gs) · e((ut
0h0)sx , gs)

and B2 = e(tk3, Ct) = e(gsxR̄x,3, (ut
0h0)s) = e(gsx , (ut

0h0)s). Finally, the
algorithm computes

D =
B1

B0 · B2
= e(g, g)2αs · e((uidh)r, gs). (11)

and returns the transformed ciphertext CT ′ = (C,C0, Ct,D)
– Decrypt(PK, id, dkid,t, CT ′) → M : Set dkid,t = (dk0, dk1), it computes

D0 = e(dk0, C0) = e(g, g)αs · e((uidh)r, gs) · e((ut
0h0)rt , gs)

D1 = e(dk1, Ct) = e(grt , (ut
0h0)s)

(12)

and then computes

M =
C · D0

D · D1
=

M · e(g, g)2αs · e((uidh)r, gs) · e((ut
0h0)rt , gs)

e(g, g)2αs · e((uidh)r, gs) · e(grt , (ut
0h0)s)

. (13)

SR-ABE Revised: Multi-User Setting and Fully Secure 205

– Revoke(id, t,RL, st) → RL: If a user’s identity id is revoked at time period t,
the algorithm adds (x, t) into the revocation list RL for all nodes x associated
with identity id.

5 Security Analysis

In this section, we provide a security analysis of our SR-ABE scheme in the multi-
user setting. Following the basic technique of dual system encryption [11,13], we
define two additional structures: semi-functional ciphertexts and semi-functional
keys. These will not be used in the real system, but will be essential in the security
proof.

Semi-functional Ciphertext: Let g2 be a generator of Gp2 . Randomly pick
c, zt∗ , z1, . . . , zl, γ1, . . . , γl ∈ ZN and �u ∈ Z

n
N . Then:

C0 = gsgc
2, Ct = (ut

0h0)sgczt∗
2 ,

Ci = gaλiT−ri

ρ(i) g
Mi	u+γizρ(i)
2 , Di = grig−γi

2 ∀i ∈ [1, l].
(14)

Semi-functional Key: There are two types of semi-functional key. A semi-
functional key of type 1 is formed as follows. Chose random elements zid, b, d, zt ∈
ZN , set

SKid = gα(uidh)r · R3 · gbzid
2 ; (15)

for each node x ∈ Path(BT, θ), set

Kx = gα+atxr((uidh)r/gx) · Rx,0 · gdtx
2 · gbzid

2 , Lx = gtxr · R̄x,0 · gbtx
2 ,

Kx,i = T txr
i Rx,i · g

btxzρ(i)
2 ∀i ∈ S;

(16)

for each node x ∈ KUNodes(BT,RL, t), pick random element γx ∈ ZN , set:

Qx,0,t = gαgx · (ut
0h0)sxR̂x,3 · gγxzt

2 , Qx,1,t = gsxR̄x,3 · gγx

2 . (17)

A semi-functional key of type 2 is formed as:

SKid = gα(uidh)r · R3 · gbzid
2 ; (18)

for ∀x ∈ Path(BT, θ),

Kx = gα+atxr((uidh)r/gx) · Rx,0 · gdtx
2 · gbzid

2 , Lx = gtxr · R̄x,0,

Kx,i = T txr
i Rx,i ∀i ∈ S;

(19)

for ∀x ∈ KUNodes(BT,RL, t),

Qx,0,t = gαgx · (ut
0h0)sxR̂x,3 · gγxzt

2 , Qx,1,t = gsxR̄x,3 · gγx

2 . (20)

It should be noted that if we use a semi-functional key to decrypt a semi-
functional ciphertext, we get the following additional term:

206 L. Cheng and F. Meng

e(g2, g2)(cd−bu1)tx+cγx(zt−zt∗), (21)

where u1 denotes the first coordinate of �u (i.e. (1, 0, . . . , 0) · �u). Note that the
values zi, which are used to hide u1 from an attacker, are common to semi-
functional ciphertexts and semi-functional keys of type 1. Similar to [11], our
security proof will depend on the restriction that each attribute can only be
used once in the row labeling of an access matrix. Based on this restriction, the
attacker gains very limited information-theoretic knowledge of zi.

We call a semi-functional key of type 1 “nominally” semi-functional if (cd −
bu1)tx + cγx(zt − zt∗) = 0. If we use such a key to decrypt a corresponding
semi-functional ciphertext, the decryption still succeeds.

We will prove the security of our system from Assumptions 1, 2, and 3 using
a hybrid argument over a sequence of games. The first game, GameReal, is
the real security game (the ciphertext and all the keys are normal). The next
game GameRestricted will be like the real security game except that the attacker
cannot ask for the transformation key update information and decryption keys
for times which are equal to the challenge time t∗ modulo p2. Also, the attacker
cannot ask for long-term transformation keys, private keys and decryption keys
for identities idi �= idj modulo N such that idi = idj modulo p2. In the next
game, Game0, all of the keys will be normal, but the challenge ciphertext will be
semi-functional. We let q denote the number of key queries made by the attacker.
For k from 1 to q, we define:

Gamek,1 In this game, the challenge ciphertext is semi-functional, the first k − 1
keys are semi-functional of type 2, the kth key is semi-functional of type 1,
and the remaining keys are normal.

Gamek,2 In this game, the challenge ciphertext is semi-functional, the first k
keys are semi-functional of type 2, and the remaining keys are normal.

In Gameq,2, all of the keys are semi-functional of type 2. In the final game,
GameFinal, all keys are semi-functional of type 2 and the ciphertext is a semi-
functional encryption of a random message, independent of the two messages
provided by the attacker. Thus, the adversary’s advantage in winning the final
game is 0. Now, we will prove that these games are indistinguishable. The proof
of Lemmas 2, 4, 5 is given in Appendix.

Lemma 1. Supposed that a PPT adversary A can distinguish the GameReal

and GameRestricted with a non-negligible advantage ε > 0, then there exists
a PPT simulator B that can break either Assumption 1 or Assumption 2 with
advantage ≥ ε

2 .

Proof. This proof is similar with Lemma 1 of [13], so we omit it here.

Lemma 2. Supposed that a PPT adversary A can distinguish GameRestricted

and Game0 with a non-negligible advantage ε > 0, then there exists a PPT
simulator B that can break Assumption 1 with advantage ε.

SR-ABE Revised: Multi-User Setting and Fully Secure 207

Lemma 3. Supposed that a PPT adversary A can distinguish the Gamek−1,2

and Gamek,1 with a non-negligible advantage ε > 0, then there exists a PPT
simulator B that can break Assumption 2 with advantage ε.

Proof. B is given (g,X1X2,X3, Y2Y3, T) and simulates Gamek−1,2 or Gamek,1

with A. It randomly picks a, α, a0, a1, b0, b1 ∈ ZN and si ∈ ZN for each attribute
i in the system, then sets u = ga1 , h = gb1 , u0 = ga0 , h0 = gb0 and returns the
public parameters PK = {N, g, ga, u, h, u0, h0, e(g, g)α, {Ti = gsi ,∀i}} to A.

To make the first k − 1 keys semi-functional of type 2, B responds to each
key request as follows. Choose an undefined leaf node θ from BT and store id in
this node. Randomly choose f, r, zid, d

′, zt ∈ ZN , R′
3 ∈ Gp3 , set

– SKid = gα(uidh)r · R′
3 · (Y2Y3)fzid ;

– For each x ∈ Path(BT, θ), fetch gx from the node x (if gx has not been defined,
randomly pick gx ∈ Gp1 and store in node x), randomly choose tx ∈ ZN ,
R′

x,0, R̄x,0, {Rx,i}i∈S ∈ Gp3 , set

Kx = gα+atxr((uidh)r/gx) · R′
x,0 · (Y2Y3)d′tx+fzid , Lx = gtxr · R̄x,0,

Kx,i = T txr
i Rx,i ∀i ∈ S;

(22)

– For each x ∈ KUNodes(BT,RL, t), fetch gx from the node x, randomly choose
sx, γ′

x ∈ ZN and R̂′
x,3, R̄

′
x,3 ∈ Gp3 , set

Qx,0,t = gαgx(ut
0h0)sx · R̂′

x,3(Y2Y3)γ′
xzt , Qx,1,t = gsx · R̄′

x,3(Y2Y3)γ′
x . (23)

The above keys are properly distributed. To make normal keys for requests > k,
B can simply run the key generation algorithm by using the MSK.

To answer the kth key request, B will implicity set gr be the Gp1 part of T .
Choose an undefined leaf node θ from BT and store id in this node. Randomly
choose R′

3 ∈ Gp3 , set

– SKid = gαT a1id+b1 · R′
3;

– For each x ∈ Path(BT, θ), fetch gx from the node x, choose random elements
tx ∈ ZN , R′

x,0, R̄
′
x,0, {R′

x,i}i∈S ∈ Gp3 , set

Kx = gαT atx(T a1id+b1/gx) · R′
x,0, Lx = T tx · R̄′

x,0,

Kx,i = T sitxR′
x,i ∀i ∈ S;

(24)

– For each x ∈ KUNodes(BT,RL, t), fetch gx from the node x, choose random
elements R̂′

x,3, R̄
′
x,3 ∈ Gp3 and s′

x ∈ ZN , set

Qx,0,t = gαgx · (T a0t+b0)s′
xR̂′

x,3, Qx,1,t = T s′
xR̄′

x,3. (25)

If T ∈ Gp1p3 , we set sx = rs′
x and this is a properly distributed normal key.

Otherwise T ∈ G, this is a semi-functional key of type 1. In this case, we
implicitly set zi = si. If we set gb

2 as the Gp2 part of T , then we have that
d = ba, zid = a1id + b1, zt = a0t + b0, γx = bs′

x, sx = rs′
x. Note that the

208 L. Cheng and F. Meng

value of s′
x, si modulo p2 are uncorrelated from these values modulo p1. Since

φ(id) = a1id + b1 (ϕ(t) = a0t + b0) is pairwise independent function modulo p2,
as long as idi �= idj(mod p2) (t �= t∗(mod p2)), zidi

and zidj
(zt and zt∗) will seem

randomly distributed to A. If idi = idj(mod p2) or t = t∗(mod p2), then A has
made invalid key requests, this is why we use additional restrictions.

A sends B two messages (M0,M1), a challenge access matrix (M∗, ρ) and a
challenge time t∗. To generate the semi-functional challenge ciphertext CT ∗, B
will implicitly set gs = X1 and gc

2 = X2. It randomly chooses u2, . . . , un ∈ ZN ,
r′
i ∈ ZN for i ∈ [1, l] and a random bit β ∈ {0, 1} and sets �u′ = (a, u2, . . . , un).

Finally, B generates the challenge ciphertext CT ∗ as:

CT ∗ =

{
C = Mβ · e(gα,X1X2), C0 = X1X2, Ct = (X1X2)a0t∗+b0

Ci = (X1X2)M
∗
i 	u′

T−r′
isρ(i) ,Di = (X1X2)r′

i ∀i

}
. (26)

We set �v = sa−1�u′ and �u = c�u′ (i.e., u1 = ca). Then, s is shared in the Gp1

while ca is shared in the Gp2 . We also implicitly set ri = sr′
i and γi = −cr′

i. The
values zρ(i) = sρ(i) match those in the kth key if it is semi-functional key of type
1, as required.

The kth key and challenge ciphertext are almost properly distributed. How-
ever, the first coordinate of �u (i.e., u1) is correlated with the value of a modulo
p2, since a also appears in the kth key if it is semi-functional. We argue that this
is information theoretically hidden from the adversary A, who cannot request
any keys that can decrypt the challenge ciphertext. This argument has been
carefully proved in Lemma 8 of [11], so we omit it here.

In addition, with the setting of zid = a1id + b1 and zt = a0t + b0, if B use
the kth key to decrypt a semi-functional ciphertext, which is embedded with the
same time period with kth key query, we would have (cd−bu1)tx +cγx(zt −zt) =
(cba − bca)tx + cγx(zt − zt) = 0 mod p2, so the kth key is either normal key or
nominally semi-functional key.

Thus, if T ∈ Gp1p3 , then B has properly simulated Gamek−1,2. Otherwise,
T ∈ G and B has properly simulated Gamek,1. Therefore, B can use the output
of A to gain advantage negligibly close to ε in breaking Assumption 2. ��
Lemma 4. Supposed that a PPT adversary A can distinguish the Gamek,1

and Gamek,2 with a non-negligible advantage ε > 0, then there exists a PPT
simulator B that can break Assumption 2 with advantage ε.

Lemma 5. Supposed that a PPT adversary A can distinguish the Gameq,2 and
GameFinal with a non-negligible advantage ε > 0, then there exists a PPT
simulator B that can break Assumption 3 with advantage ε.

6 Conclusion

In this paper, we propose the first (fully secure) SR-ABE scheme with DKER,
which is provably secure in multi-user setting. The construction of our scheme

SR-ABE Revised: Multi-User Setting and Fully Secure 209

relies on the basic technique of dual encryption system in composite order bilin-
ear groups. In our security proof, we inherited the shortcomings of the one-use
restriction in the fully secure ABE scheme [11], meaning that a single attribute
could only be used once in a policy. Later, [14] relaxed the restriction and allowed
unrestricted use of attributes while still proving full security in the standard
model. However, these frameworks only work in composite-order bilinear groups,
where the computations (especially pairing operation) are very slow. In practice,
prime-order bilinear groups are preferable because they provide more efficient
and compact instantiations. Our SR-ABE can be further improved by using the
techniques of above works. Due to the limited space, we leave it as future work.

Acknowledgments. We thank anonymous reviewers for helpful feedback.

A Proof of Lemma 2

Proof. B is given (g,X3, T) and simulates GameRestricted or Game0 with A. It
sets the public parameters as follows. It randomly picks a, α, a0, a1, b0, b1 ∈ ZN

and si ∈ ZN for each attribute i in the system, then sets u = ga1 , h = gb1 , u0 =
ga0 , h0 = gb0 , returns the public parameters to A as:

PK = {N, g, ga, u, h, u0, h0, e(g, g)α, {Ti = gsi ,∀i}} , (27)

and keeps MSK = {α,X3} as secret. In this case, B can answer any normal key
query (including Create(id,S), Corrupt(id), TKeyUp(t), DecKG(id,t)) from A
by running the corresponding key generation algorithm with MSK.

A sends B two messages (M0,M1), a challenge access matrix (M∗, ρ) and a
challenge time t∗. To generate the challenge ciphertext CT ∗, B will implicitly
set gs to be the Gp1 part of T (T is the product of gs and possible an element of
Gp2). It randomly chooses v′

2, . . . , v
′
n ∈ ZN , r′

i ∈ ZN for i ∈ [1, l], β ∈ {0, 1} and
sets �v′ = (1, v′

2, . . . , v
′
n)⊥. Finally, B generates the challenge ciphertext CT ∗ as:

CT ∗ =

{
C = Mβ · e(gα, T), C0 = T, Ct = T a0t∗+b0

Ci = T aM∗
i 	v′

T−r′
isρ(i) , Di = gr′

i ∀i

}
. (28)

We note that this implicitly sets �v = (s, sv′
2, . . . , sv

′
n) and ri = sr′

i. Modulo
p1, v is a random vector with first coordinate s and ri is a random value. Thus,
if T ∈ Gp1 , CT ∗ is a properly distributed normal ciphertext. Otherwise, T ∈
Gp1p2 , we let gc

2 as the Gp2 part of T (i.e. T = gsgc
2). We then have a semi-

functional ciphertext with zt∗ = a0t
∗ + b0, u = ca�v′, γi = −cr′

i, and zρ(i) = sρ(i).
By the Chinese Remainder Theorem, a0, b0, a, v′

2, . . . , v
′
n, r′

i, sρ(i) modulo p2 are
uncorrelated from these values modulo p1, so CT ∗ is a properly distributed semi-
functional ciphertext. Therefore, B can break Assumption 1 with advantage ε
by the output of A. ��

210 L. Cheng and F. Meng

B Proof of Lemma 4

Proof. B is given (g,X1X2,X3, Y2Y3, T) and simulates Gamek,1 or Gamek,2

with A. It randomly picks a, α, a0, a1, b0, b1 ∈ ZN and si ∈ ZN for each attribute
i in the system, then sets u = ga1 , h = gb1 , u0 = ga0 , h0 = gb0 and returns the
public parameters PK = {N, g, ga, u, h, u0, h0, e(g, g)α, {Ti = gsi ,∀i}} to A.

The first k − 1 semi-functional keys of type 2, the normal keys > k, and the
challenge ciphertext are all constructed the same as the above lemma. Hence,
the ciphertext is sharing the value ac in the Gp2 subgroup. However, this will
not be correlated with the kth key any way, so the value is random modulo p2.
To answer the kth key request, B choose a random element R′

3 ∈ Gp3 and set

– SKid = gαT a1id+b1 · R′
3;

– For each x ∈ Path(BT, θ), fetch gx from the node x, choose random elements
tx ∈ ZN , R′

x,0, R̄
′
x,0, {R′

x,i}i∈S ∈ Gp3 , and an additional hx ∈ ZN , set

Kx = gαT atx(T a1id+b1/gx) · R′
x,0 · (Y2Y3)hx , Lx = T tx · R̄′

x,0,

Kx,i = T sitxR′
x,i ∀i ∈ S;

(29)

– For each x ∈ KUNodes(BT,RL, t), fetch gx from the node x, choose random
elements R̂x,3, R̄x,3 ∈ Gp3 and s′

x ∈ ZN , set

Qx,0,t = gαgx · (T a0t+b0)s′
xR̂x,3, Qx,1,t = T s′

xR̄x,3. (30)

Note that we add the (Y2Y3)hx term. This randomizes the Gp2 part of Kx, so
the key is no longer nominally semi-functional. If we use the kth key to decrypt
the semi-functional ciphertext, the decryption would fail.

Thus, if T ∈ Gp1p3 , then B has properly simulated Gamek,2. Otherwise,
T ∈ G, then B has properly simulated Gamek,1. Therefore, B can use the
output of A to gain advantage to ε in breaking Assumption 2. ��

C Proof of Lemma 5

Proof. B is given (g, gαX2,X3, g
sY2, Z2, T) and simulates Gameq,2 or

GameFinal with A. It randomly picks a, , a0, a1, b0, b1 ∈ ZN and si ∈ ZN for
each attribute i in the system, then sets u = ga1 , h = gb1 , u0 = ga0 , h0 = gb0 and
returns PK = {N, g, ga, u, h, u0, h0, e(g, gαX2) = e(g, g)α, {Ti = gsi ,∀i}} to A.

To make semi-functional keys of type 2, randomly choose f, r, zid, d
′, zt ∈ ZN ,

R′
3 ∈ Gp3 and set

– SKid = gα(uidh)r · R′
3 · Zfzid

2 ;
– For each x ∈ Path(BT, θ), fetch gx from the node x, randomly choose tx ∈ ZN ,

R′
x,0, R̄x,0, {Rx,i}i∈S ∈ Gp3 , set

Kx = gα+atxr((uidh)r/gx) · R′
x,0 · Zd′tx+fzid

2 , Lx = gtxr · R̄′
x,0,

Kx,i = T txr
i R′

x,i ∀i ∈ S;
(31)

SR-ABE Revised: Multi-User Setting and Fully Secure 211

– For each x ∈ KUNodes(BT,RL, t), fetch gx from the node x, randomly choose
sx, γ′

x ∈ ZN and R̂′
x,3, R̄

′
x,3 ∈ Gp3 , set

Qx,0,t = gαgx · (ut
0h0)sxR̂′

x,3 · Z
γ′

xzt

2 , Qx,1,t = gsxR̄′
x,3 · Z

γ′
x

2 . (32)

A sends B two messages (M0,M1), a challenge access matrix (M∗, ρ) and a
challenge time t∗. B chooses u2, . . . , un, r′

i ∈ ZN , a random bit β ∈ {0, 1} and
sets �u′ = (a, u2, . . . , un). Finally, B generates the challenge ciphertext CT ∗ as:

CT ∗ =

{
C = Mβ · T,C0 = gsY2, Ct = (gsY2)a0t∗+b0

Ci = (gsY2)M
∗
i 	u′

(gsY2)−r′
isρ(i) ,Di = (gsY2)r′

i ∀i

}
. (33)

We set Y2 = gc
2, �v = sa−1�u′ and �u = c�u′ (i.e., u1 = ac), so s is shared in

the Gp1 and ca is shared in the Gp2 . This implicitly sets u1 = ca, ri = sr′
i and

γi = −cr′
i.

Thus, if T = e(g, g)αs, then B has properly simulated Gameq,2 and CT ∗ is
a semi-functional ciphertext with encryption of Mβ . Otherwise, T ∈ GT , then
B has properly simulated GameFinal and CT ∗ is a semi-functional ciphertext
with encryption of a random message in GT . Therefore, B can use the output of
A to gain advantage to ε in breaking Assumption 3. ��

References

1. Attrapadung, N., Imai, H.: Attribute-based encryption supporting direct/indirect
revocation modes. In: Parker, M.G. (ed.) IMACC 2009. LNCS, vol. 5921, pp. 278–
300. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-10868-6 17

2. Beimel, A.: Secure schemes for secret sharing and key distribution. PhD thesis
Israel institute of technology Technion (1996)

3. Bethencourt, J., Sahai, A., Waters, B.: Ciphertext-policy attribute-based encryp-
tion. In: IEEE Symposium on Security and Privacy 2007, pp. 321–334 (2007)

4. Boldyreva, A., Goyal, V., Kumar, V.: Identity-based encryption with efficient revo-
cation. In: CCS 2008, pp. 417–426 (2008)

5. Boldyreva, A., Goyal, V., Kumar, V.: Identity-based encryption with efficient revo-
cation. IACR Cryptology ePrint Archive 2012, 52 (2012)

6. Boneh, D., Franklin, M.: Identity-based encryption from the weil pairing. In: Kilian,
J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg (2001).
https://doi.org/10.1007/3-540-44647-8 13

7. Chen, J., Lim, H.W., Ling, S., Wang, H., Nguyen, K.: Revocable identity-based
encryption from lattices. In: Susilo, W., Mu, Y., Seberry, J. (eds.) ACISP 2012.
LNCS, vol. 7372, pp. 390–403. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-31448-3 29

8. Cui, H., Deng, R.H., Li, Y., Qin, B.: Server-aided revocable attribute-based encryp-
tion. In: Askoxylakis, I., Ioannidis, S., Katsikas, S., Meadows, C. (eds.) ESORICS
2016. LNCS, vol. 9879, pp. 570–587. Springer, Cham (2016). https://doi.org/10.
1007/978-3-319-45741-3 29

9. Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-
grained access control of encrypted data. In: CCS 2006, pp. 89–98 (2006)

https://doi.org/10.1007/978-3-642-10868-6_17
https://doi.org/10.1007/3-540-44647-8_13
https://doi.org/10.1007/978-3-642-31448-3_29
https://doi.org/10.1007/978-3-642-31448-3_29
https://doi.org/10.1007/978-3-319-45741-3_29
https://doi.org/10.1007/978-3-319-45741-3_29

212 L. Cheng and F. Meng

10. Katsumata, S., Matsuda, T., Takayasu, A.: Lattice-based revocable (hierarchical)
IBE with decryption key exposure resistance. In: PKC 2019, pp. 441–471 (2019)

11. Lewko, A., Okamoto, T., Sahai, A., Takashima, K., Waters, B.: Fully secure
functional encryption: attribute-based encryption and (hierarchical) inner prod-
uct encryption. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp.
62–91. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5 4

12. Lewko, A.B., Sahai, A., Waters, B.: Revocation systems with very small private
keys. In: IEEE Symposium on Security and Privacy, S&P 2010, pp. 273–285. IEEE
Computer Society (2010)

13. Lewko, A., Waters, B.: New techniques for dual system encryption and fully
secure HIBE with short ciphertexts. In: Micciancio, D. (ed.) TCC 2010. LNCS,
vol. 5978, pp. 455–479. Springer, Heidelberg (2010). https://doi.org/10.1007/978-
3-642-11799-2 27

14. Lewko, A., Waters, B.: New proof methods for attribute-based encryption: achiev-
ing full security through selective techniques. In: Safavi-Naini, R., Canetti, R.
(eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 180–198. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-32009-5 12

15. Naor, D., Naor, M., Lotspiech, J.: Revocation and tracing schemes for stateless
receivers. In: CRYPTO, pp. 41–62 (2001)

16. González-Nieto, J.M., Manulis, M., Sun, D.: Fully private revocable predicate
encryption. In: Susilo, W., Mu, Y., Seberry, J. (eds.) ACISP 2012. LNCS, vol.
7372, pp. 350–363. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-31448-3 26

17. Qin, B., Deng, R.H., Li, Y., Liu, S.: Server-aided revocable identity-based encryp-
tion. In: Pernul, G., Ryan, P.Y.A., Weippl, E. (eds.) ESORICS 2015. LNCS, vol.
9326, pp. 286–304. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
24174-6 15

18. Qin, B., Zhao, Q., Zheng, D., Cui, H.: Server-aided revocable attribute-based
encryption resilient to decryption key exposure. In: Capkun, S., Chow, S.S.M. (eds.)
CANS 2017. LNCS, vol. 11261, pp. 504–514. Springer, Cham (2018). https://doi.
org/10.1007/978-3-030-02641-7 25

19. Qin, B., Zhao, Q., Zheng, D., Cui, H.: (Dual) server-aided revocable attribute-
based encryption with decryption key exposure resistance. Inf. Sci. 490, 74–92
(2019)

20. Rouselakis, Y., Waters, B.: Practical constructions and new proof methods for
large universe attribute-based encryption. In: Sadeghi, A., Gligor, V.D., Yung, M.
(eds.) CCS 2013, pp. 463–474. ACM (2013)

21. Sahai, A., Seyalioglu, H., Waters, B.: Dynamic credentials and ciphertext del-
egation for attribute-based encryption. In: Safavi-Naini, R., Canetti, R. (eds.)
CRYPTO 2012. LNCS, vol. 7417, pp. 199–217. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-32009-5 13

22. Sahai, A., Waters, B.: Fuzzy identity-based encryption. In: Cramer, R. (ed.) EURO-
CRYPT 2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg (2005). https://
doi.org/10.1007/11426639 27

23. Seo, J.H., Emura, K.: Revocable identity-based encryption revisited: security model
and construction. In: Kurosawa, K., Hanaoka, G. (eds.) PKC 2013. LNCS, vol.
7778, pp. 216–234. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-
642-36362-7 14

24. Waters, B.: Dual system encryption: realizing fully secure IBE and HIBE under
simple assumptions. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 619–
636. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03356-8 36

https://doi.org/10.1007/978-3-642-13190-5_4
https://doi.org/10.1007/978-3-642-11799-2_27
https://doi.org/10.1007/978-3-642-11799-2_27
https://doi.org/10.1007/978-3-642-32009-5_12
https://doi.org/10.1007/978-3-642-31448-3_26
https://doi.org/10.1007/978-3-642-31448-3_26
https://doi.org/10.1007/978-3-319-24174-6_15
https://doi.org/10.1007/978-3-319-24174-6_15
https://doi.org/10.1007/978-3-030-02641-7_25
https://doi.org/10.1007/978-3-030-02641-7_25
https://doi.org/10.1007/978-3-642-32009-5_13
https://doi.org/10.1007/11426639_27
https://doi.org/10.1007/11426639_27
https://doi.org/10.1007/978-3-642-36362-7_14
https://doi.org/10.1007/978-3-642-36362-7_14
https://doi.org/10.1007/978-3-642-03356-8_36

Cryptography

Precomputation for Rainbow Tables has
Never Been so Fast

Gildas Avoine1 , Xavier Carpent2 , and Diane Leblanc-Albarel1(B)

1 CNRS, INSA Rennes, IRISA, Rennes, France
{gildas.avoine,diane.leblanc-albarel}@irisa.fr

2 KU Leuven, COSIC, Leuven, Belgium
xavier.carpent@kuleuven.be

Abstract. Cryptanalytic time-memory trade-offs (TMTOs) are tech-
niques commonly used in computer security e.g., to crack passwords.
However, TMTOs usually encounter in practice a bottleneck that is
the time needed to perform the precomputation phase (preceding to
the attack). We introduce in this paper a technique, called distributed
filtration-computation, that significantly reduces the precomputation
time without any negative impact the online phase. Experiments per-
formed on large problems with a 128-core computer perfectly match
the theoretical expectations. We construct a rainbow table for a space
N = 242 in approximately 8 h instead of 50 h for the usual way to gen-
erate a table. We also show that the efficiency of our technique is very
close from the theoretical time lower bound.

Keywords: Cryptography · Time-Memory Trade-Offs (TMTO) ·
Rainbow table · Distributed precomputation

1 Introduction

Inverting a hash function (or equivalent cryptographic problem) can be addressed
using an exhaustive search when the problem is reasonably sized. An illustra-
tive case is password cracking, which consists in recovering a password from its
hash stored by the targeted system. The computation cost may be prohibitive,
though, when the attack is repeated. A time-memory trade-off (TMTO) is then
an efficient alternative to an exhaustive search. It consists of a precomputation
phase – or offline phase – performed once then stored, and an online phase per-
formed each time the hash function should be inverted. The precomputation
phase is therefore exploited to accelerate the online phase.

A TMTO, introduced by Martin Hellman [1], offers a significant speedup in
practice. Given a problem of size N (i.e., N = |A| where A is the considered set
of possible solutions) and a memory M , the time complexity of the online phase
is O(N2/M2) instead of N for the exhaustive search. It is worth noting that the
time complexity of the precomputation phase remains O(N). This means that
using a TMTO makes sense in specific scenarios: the attack has to be performed
c© Springer Nature Switzerland AG 2021
E. Bertino et al. (Eds.): ESORICS 2021, LNCS 12973, pp. 215–234, 2021.
https://doi.org/10.1007/978-3-030-88428-4_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-88428-4_11&domain=pdf
http://orcid.org/0000-0001-9743-1779
http://orcid.org/0000-0003-1697-6940
http://orcid.org/0000-0001-5979-8457
https://doi.org/10.1007/978-3-030-88428-4_11

216 G. Avoine et al.

several times, the attack itself has to last for a short period of time (“lunch time”
attack), or the attacker is not powerful enough to perform an exhaustive search
but he can download the result of a precomputed phase, stored in what is called
tables.

Hellman’s work has been improved over time, particularly with the rainbow
tables [2] and the distinguished points [3]. These variants are faster [2,4,5] than
the original time-memory trade-off. A few improvements [6,7] have been sug-
gested on the distinguished points, and the rainbow tables also benefited from
various optimizations concerning the online phase, notably the way of storing
and using tables [8–11], checkpoints [12] and the use of data [13]. In 2016, Lee
and Hong [4] demonstrated that, in the absence of excessive constraints such as
a very limited memory, rainbow tables are the most efficient TMTOs for both
online and precomputation phases. We consequently focus on rainbow tables in
this paper.

The precomputation phase is very costly, though, typically of the order of
160N when considering practical scenarios, even for rainbow tables. The pre-
computation phase must consequently be distributed on many computers.

This paper introduces distributed filtration-computation, a technique that
drastically decreases the cost of the precomputation phase and that is compliant
with a distribution of that phase. The filtration process identifies computations
that will eventually be useless, avoiding so to carry out computations that would
be thrown out at the end precomputation phase. The distribution trivially con-
sists in sharing the computing load among several computing units. In common
scenarios, the technique we introduce divides by 6 the precomputation time, but
the speedup can be much higher in extreme cases, namely when considering what
are called maximum tables. As far as we know, this is the first time a technique
is introduced to improve the precomputation phase of TMTOs.

After providing background on rainbow tables in Sect. 2, we introduce the
filters and a lower bound on the precomputation in Sect. 3. We provide a dis-
tributed version of the filters in Sect. 4, with an optimization algorithm for their
positions, and we finally illustrate the theory with practical results in Sect. 5.
Note that Table 4. in AppendixD recaps the notations used through this paper.

2 Background

2.1 Rainbow Tables

Given a hash function h : A → B, and given h(x) ∈ B, the purpose of a TMTO is
to retrieve x ∈ A. To do so, the precomputation phase of the TMTO precomputes
rainbow matrices, which consist of chains of elements xi ∈ A (0 � i � t) such
that xi+1 = fi(xi), where x0 is an arbitrary value, introduced below, and fis are
hash-reduction functions defined as follows:

fi : A → A
x �→ Ri(h(x))

Precomputation for Rainbow Tables has Never Been so Fast 217

where each Ri : B → A is a reduction function, that is a function that aims to
map each value in B to a value in A. The choice of the reduction functions is out
of the scope of this article, and interested readers can refer to [2]. Note however
that using a different reduction function in every iteration is a key feature of
rainbow-based TMTOs that reduces the number of merging chains. It is also
important to note that the execution time of a reduction function is negligible
compared to that of a hash function.

Once the precomputation phase is completed, the matrix (see Fig. 1) consists
of m × (t + 1) values denoted Xj,i with 0 < j � m and 0 � i � t, and Xj,i the
element in row j and column i.

The length t, of a chain is the number of application of the Hash-Reduction
functions fi performed to construct the chain.

f1 f2
X1,0 −→ X1,1 −→ X1,2 X1,t

f1 f2
X2,0 −→ X2,1 −→ X2,2 X2,t

...
...

...
...

f1 f2
Xm,0 −→ Xm,1 −→ Xm,2 Xm,t

Fig. 1. Rainbow matrix

Once the rainbow matrix is computed, only the first column that contains
the so-called Start Points (SP) and the last column that contains the End Points
(EP) are saved in what is called a table1. All intermediary columns are discarded
to save memory.

Using a different reduction function in each column reduces the number of
merging chains. Indeed, with rainbow tables, two chains merge if they collide in
the same column.

From here on we consider a single matrix for the sake of clarity, but a rainbow-
based TMTO usually consists of a few independently-computed matrices in order
to reach a high success rate, typically 4 tables guarantee the success of the online
phase with a probability greater than 99.96%.

2.2 Clean Rainbow Tables

Using a different reduction function per column reduces the number of merging
chains, but two chains colliding in the same column can still happen. Detecting
such a merge is however trivial, as it necessarily leads to equal EPs.

1 This paper will not discuss how to use the rainbow tables during the online phase,
as the approach is developed in other papers.

218 G. Avoine et al.

Given that colliding chains make the TMTO less memory-efficient due to
the overlapping values, Philippe Oechslin introduced [2] tables without merges,
which are called clean tables2 [14].

Merging chains are deleted to obtain clean tables, so if a matrix contains m0

chains, the corresponding clean table only contains mt < m0 chains, with mt

the number of chains with distinct EPs in a matrix of length t.

2.3 Maximum Rainbow Tables

Given a set A with N = |A|, there is a limit to the number of EPs that can be
obtained without duplicates. This number, denoted mmax

t , depends on N and
the number of columns t in the table3. mmax

t is obtained from Eq. (1) [12] where
mi is the theoretical number of different elements in column i:

mi ≈ 2N

i + γ
, with γ =

2N

m0
. (1)

Given a number of columns t + 1 and a sufficiently large number of elements
N , the expected maximum number of chains mmax

t per clean rainbow table is
hence given by Theorem 1 [12].

Theorem 1. Given t and a sufficiently large N, the expected maximum number
of chains per clean rainbow table is:

mmax
t ≈ 2N

t + 2
.

Proof. The proof is presented in [12].

In practice, computing m0 = N chains is prohibitively expensive, so the
chosen m0 is generally markedly smaller than N . This produces tables of size
α mmax

t with 0 < α < 1. Usually, chains are generated until a satisfactory α
is reached and m0 is then determined retrospectively. A satisfactory α allow to
have an online success rate close to the rate of a maximal table4. When α is
close to one (e.g., α = 0.95), the table is said to be quasi-maximum.

3 Filtering Chains

3.1 Preliminary Result on Quantifying Precomputation

In order to generate clean tables containing mt = α mmax
t chains, the common

approach consists in computing chains until obtaining the desired number of
2 Initially called perfect tables by Philippe Oechslin.
3 The number of elements in a clean table is constant which implies that t is inversely

proportional to m. The larger m is, the faster the online phase will be, but the more
memory is needed for storage and inversely.

4 The probability of success for a single maximal table is 86% when t is large. For the
same t and a table of size 0.95mmax

t , the probabilitity of success for a single table is
85%.

Precomputation for Rainbow Tables has Never Been so Fast 219

unique end points. We provide in Lemma 1 and Proposition 1 formulas to predict
the value m0 required to reach on average α mmax

t unique end points. α is called
the maximality factor.

Lemma 1. Let r = m0/mmax
t . The expected number of unique EPs is given by:

mt ≈ 1
(1 + 1

r)
mmax

t .

Proof. From Eq. (1), we have m0 = 2N
γ . Given that m0 = r mmax

t , we can write
γ = 2N

r mmax
t

. Using Theorem 1, we then obtain γ ≈ t+2
r ≈ t

r . Replacing γ in
Eq. (1) for i = t, we finally have:

mt ≈ 2N

t(1 + 1
r)

=
1

(1 + 1
r)

mmax
t .

��
Proposition 1. With a target of mt = α mmax

t unique endpoints, m0 = rmmax
t

chains need to be generated, with:

r ≈ α

1 − α
.

Proof

From Lemma 1: mt ≈ 1
(1+ 1

r)
mmax

t .

Since mt = α mmax
t : α ≈ 1

(1+ 1
r)

Which conduct to: 1
r ≈ 1

α − 1 ⇔ r ≈ α
1−α

��

0 2500 5000 7500 10000
i

109

1010

1011

1012
m0 = N

m0 = 20mmax
t

Fig. 2. Number of unique elements mi remaining in column i (log scale) according to
the value of m0 for N = 242 and t = 10 000.

220 G. Avoine et al.

To illustrate Proposition 1, let us consider the case r = 20, which results in
mt ≈ 0.95mmax

t . This is a reasonable number that provides a high quality table
(mt relatively close to mmax

t), while significantly reducing the precomputation
cost (compared to the m0 = N case). With N = 242 and t = 10 000 for instance,
generating 20mmax

t chains instead of N brings the number of chains to be gen-
erated from 440 × 1010 to 1.7 × 1010 – a 258-fold reduction – while keeping the
number of endpoints very close to the maximum, and thus preserving the density
of the trade-off.

Figure 2 illustrates the difference between the scenarios m0 = rmmax
t and

m0 = N in terms of maximum number of elements in each column.

3.2 Intermediary Filtration

Classically, computing a rainbow table requires m0×(t+1) elements to compute,
although only mt × (t + 1) elements are represented in the final (clean) matrix.
Discarding merged chains at the end of the precomputation is a wasted effort,
because a single chain is kept among multiple chains with the same EP (i.e., hash
operations performed after a merge occurs are useless). An option to mitigate
this waste is to remove duplicated values progressively.

So, instead of computing the full chains in a row, from the SPs to the EPs,
chains are divided into sub-chains, and merging chains are detected and dis-
carded at the end of each sub-chain. A sub-chain is delimited by Intermediary
Points (IPs). Computation of chains is thus performed “column by column” (or
group of columns after group of columns), as opposed to the typical “chain-by-
chain” method. A filter is placed in selected columns (IPs): when all sub-chains
have been computed up to the filter, a filtration is performed: only one of the
merged chains is saved. Figure 7 in Appendix C, presents the mechanism of fil-
tration with an example zooming on 2 filters.

3.3 Filtration in Each Column

The minimum number of elements to be computed to generate a table is obtained
when duplicates are removed in each column, i.e., if each chain of length t is
divided in t sub-chains of length 1.

Proposition 2. Let mi denote the number of unique elements in column i of a
rainbow matrix. The number P of hash operations to precompute a mt × (t + 1)
clean rainbow matrix is lower bounded by:

P ≥
t−1∑

i=0

mi.

Proof. Given that the minimum hash operations to compute in order to obtained
a table is when duplicates are removed in each column and that mi denote the
number of unique elements in column i, then the expression of the lower bound
is trivial.

Precomputation for Rainbow Tables has Never Been so Fast 221

��
Theorem 2 quantifies this with results from Sect. 3.1.

Theorem 2. Given m0 = rmmax
t the number of SPs, t + 1 the number of

columns, and r
 t, we have that the näıve precomputation cost is:

Pnaive = m0t ≈ 2rN, (2)

and the minimum precomputation cost is:

Pmin =
t−1∑

i=0

mi ≈ 2N ln(1 + r). (3)

Proof. The proof of Eq. (2) follows directly from m0 = 2N
γ ≈ 2rN

t . For Eq. (3),
we have:

t−1∑

i=0

mi = 2N

t−1∑

i=0

1
i + γ

= 2N

t+γ−1∑

i=γ

1
i

= 2N

[
t+γ−1∑

i=1

1
i

−
γ−1∑

i=1

1
i

]

= 2N [Ht+γ−1 − Hγ−1] ≈ 2N [ln(t + γ − 1) − ln(γ − 1)]

= 2N ln
(

t + γ − 1
γ − 1

)

with Hn =
∑n

k=1
1
k the n-th harmonic number. Using γ ≈ t

r and given that
r
 t, the expected result is obtained. ��

For values of r such that m0
 N (i.e., “reasonable” values), we can make
the approximation that γ is large (leading itself to the asymptotic approximation
of Hn). This allows an expression of Pmin that only depends on N and r and is in
particular virtually independent of t. For m0 = N however these approximations
do not hold, and the resulting expression of Pmin does depend on t (Corollary 1).
We remark that the precomputation cost in all cases is linear in N .

Corollary 1. For the case m0 = N , precomputation costs are respectively
Pnaive = Nt and Pmin ≈ 2N(Ht+1 − 1), with Hn the n-th harmonic number.

Proof. The expression for Pmin results from instantiating 2N [Ht+γ−1 − Hγ−1]
(similarly to the proof of 2) to γ = 2 (from Eq. (1)).

From Theorem 2, we observe, for instance, that using a filter in each column
with a typical r = 20 reduces the number of performed hash operations by
about 85% (regardless of N or t). Tables 1 and 2 display the maximum speedup
Pnaive/Pmin that can be obtained when filtering in each column with respect to
no intermediary filtering. Results in Table 1 are valid for any (sensible) N and t.

222 G. Avoine et al.

Table 1. Speedup for quasi-maximum
tables for different values of r.

r 10 15 20 30 50
r

ln(1+r)
4.17 5.41 6.57 8.74 12.72

Table 2. Speedup for maximum tables of
various lengths.

t 1 000 10 000 100 000
t

2(Ht+1−1)
77.03 568.98 4508.50

3.4 Filtration in Chosen Columns

In practice, it may not always be beneficial to filter in every column, because
this may involve an excessive overhead due to the filtering cost (results provided
in Sect. 3.3 consider the number of hash operations, but they do not consider
the additional time due to filtration and communication). Before considering this
cost, an intermediary step consists in evaluating the number P of hash operations
to be performed if the filtering technique is applied to a < t + 1 columns only:

P =
a∑

i=0

mci(ci+1 − ci), (4)

where ci the column of the i-th filter, and c0 = 0 and ca = t+1. Given a number
of filters a and t very large compared to this number5, the optimal average
number of hash operations is given in Theorem 3.

Theorem 3. The optimal average number of hash operations for precomputa-
tion with a filters and a
 t is:

P = 2Na

[(
t + γ − 1

γ

) 1
a

− 1

]
.

The optimal placement of the filters is given by:

ci = γ

(
t + γ − 1

γ

) i
a

− γ + 1.

Proof. See AppendixA. ��
Figure 3 illustrates Theorem 3 for N = 242, t = 10 000, and r = 20. It shows

the number of hash operations needed for precomputation with varying number
of filters a, placed according to Theorem 3. It also displays the lower bound
(Pmin) in terms of hash operations, which is reached when a filter is applied in
each column. The case a = 1 corresponds to Pnaive (filtration only in the last
column).

It indicates diminishing returns in increasing a. For instance in that scenario,
P with a single filter is 2.88 times faster than using no filter. On the other
5 If a is too close to t, several filters could be affected to the same column. Choosing

a � t is not a problem, as presented in Fig. 3.

Precomputation for Rainbow Tables has Never Been so Fast 223

0 20 40 60 80 100
a

0.2

0.3

0.5

1.0

2.0
×1014

P with a filters
P with t filters

Fig. 3. Number of hash operations P (log scale) according to the number of filters used
a, with N = 242, t = 10 000, and r = 20. P with a filters according to Theorem 3 and
P with t filters according to Theorem 2.

hand, using a filter in each column is only about 1% faster than using 50 filters.
Note that the optimal distribution of filters is actually not uniform. Indeed,
detecting merges as soon as they occur avoids to waste time computing the
useless remaining parts of the chains. As a consequence filters are mostly located
on the left-hand parts of the chains.

This, together with the fact that the cost of non-hashing operations is not
necessarily negligible in a practical implementation, implies that a limited num-
ber of filters is preferable. The next sections discuss an implementation and
quantify this effect.

4 Distributing Precomputation

4.1 Distribution and Filtration

Even with filters, generating rainbow tables on a single computing node takes
too much time when considering practical cases. To compute m0 chains of length
t, m0t = 2rN hash operations are needed. For example, for N = 242 and r = 20,
building a clean table of about 0.95mmax

t chains with optimal filters requires
2.7×1013 hash operations, which would take about 40.5 days on a single processor
core.

To generate tables of such size, precomputation should be distributed. With-
out filters, the precomputation phase is easily parallelizable. If nh hashing nodes
are available, the total precomputation time is simply divided by nh, with each
hashing node performing 2rN

nh
hash operations (assuming only the hashing time

is taken into account and all hashing nodes have the same performances).

224 G. Avoine et al.

However, as seen in Sect. 3.2, precomputing a (quasi-maximum) clean rain-
bow table without intermediary filtering wastes significant effort due to merging
chains. Therefore considering both distributing and filtering is essential6.

4.2 Distributed Architecture

Distribution of the precomputation phase with intermediate filtering requires the
nodes to communicate. We consider in what follows that nh nodes are dedicated
to perform hash operations and nf nodes to filter chains, with nh + nf = n.
Filtration and computation of chains are carried out in parallel7, in an effort to
minimize the number of non-hashing operations. Sub-chains computed by the
nh hashing nodes are sent eagerly to the nf filtration nodes.

In the environments and problem sizes we considered, the filtration effort
was not significant enough compared to the hashing effort to warrant using
more than a single filtration node. It is possible that for other environments
(e.g., low bandwidth) or larger spaces, dedicating more nodes to filtering could
be beneficial.

4.3 Estimation of the Precomputation Time

Precomputation Process. In an environment with a single filtration node,
this node is also in charge of the different tasks sequencing. A job is defined as a
number of sub-chains to be computed between two filters. A job of size s contains
s SP-IP pairs. Precomputations are hence divided in two main parts: jobs to
be performed between filters and the filtration of these jobs. Precomputations
consists of managing, for each filter, the sending of jobs to the hashing nodes
and the filtration of the completed jobs.

The rationale behind choosing to bundle sub-chains into jobs is to mitigate
the communication overhead. Using s = 1 is, for instance, a bad idea, because
the overhead due to the communication, would significantly hinder performance.
On the other hand, using a very large s may result in additional idle time by
the computing nodes, for instance if there is no available chains left to compute
for an idling computing node but some other computing nodes are still busy8.
In what follows, we consider that the value of s is reasonable.

Once receiving a job, a hashing node starts from each IP to compute the new
IPs corresponding to the column of the next filter. Once these computations are
done, it returns the SPs and the new IPs to the filtration node, which sends a new
job back to it. The filtration node purpose is to receive jobs from hashing nodes

6 Distributed filtration-computation has negligible impact on the online phase, includ-
ing its many improvements. See Appendix B for more details.

7 Technically, filtration starts and stops slightly after computation of chains.
8 Experiments show that, for the typical problem sizes and architecture considered,

choosing s to be anywhere from 1 000 to 100 000 mitigates both of these issues. The
particular choice of s therefore has negligible impact on the performance, provided
it lies in that range.

Precomputation for Rainbow Tables has Never Been so Fast 225

and send new ones as soon as it receive it. At the meantime the filtration node
filters already received jobs. This procedure is repeated between each filter until
the end of the computation phase. As described in Sect. 3.4, it is not possible
in a distributed architecture to filter in every column since the filtration adds
an overhead. The problem of choosing the positions of the filters is discussed in
Sect. 4.4.

Impacting Functionalities. Several functionalities are required to perform
the precomputation phase: hashing (i.e., computing sub-chains), filtration, and
communication. In this section the way to evaluate the time needed for each of
these functionalities is described.

Hashing Time (H). Jobs computations are carried out by hashing nodes. Given
a filters with a < t + 1, the total number of hash operations to be performed is∑a

i=1 mci−1(ci − ci−1) (Eq. (4)) with ci the column of the i-th filter, c0 = 0 and
ca = t+1. A hashing node can perform vh applications of fi = Ri ◦h per second.
vh is determined before the beginning of precomputations and depends of the
hashing nodes performance. Computations of chains are considered to be done in
parallel, by nh hashing nodes with equal performances. The total hashing time
can therefore be estimated as:

H =
1

nhvh

a+1∑

i=1

mci−1(ci − ci−1). (5)

Filtration Time (F). For a filter in column i, the number of points that have to
be filtered is mci−1 . The total number of points that have to be filtered in the
entire precomputation is hence

∑a+1
i=1 mci−1 . We consider that a filtration node

can perform vf filtrations per second. The total time due to filtration is thus:

F =
1

vfnf

a+1∑

i=1

mci−1 . (6)

We also model for a potential overhead due to the filtration. This can for instance
result from processing the output of the filtration into jobs to be sent to hashing
nodes. This overhead depends on the number of elements generated and depends
on the implementation (filtration algorithm, memory allocation, etc.). Given do

the average overhead time per point, the total overhead O can be expressed as:

O = do

a+1∑

i=1

mci−1 . (7)

Communication Time (C). Communication time is the time needed for the com-
munication of jobs between filtration nodes and computing nodes. Let dc be the
average time for a job to be sent from a filtration node to a hashing node and

226 G. Avoine et al.

back. We assume that when a communication is in progress with one hashing
node all the other hashing nodes are computing. The impacting communication
time can then be estimated by:

C =
dc

nh

a+1∑

i=1

mci−1 (8)

Total Time. Given that computation of sub-chains and filtration are performed
in parallel, the most impacting component in the total time spend to generate
a rainbow table is the maximum time between the hashing time H and the
filtration time F i.e., Max(H,F)9. To obtain the total time, the communication
time has to be added as well as the overhead time due to filtration. The total
time T needed to generate a clean rainbow table is hence:

T = Max(H,F) + C + O. (9)

4.4 Optimal Configuration

The number of filters and their positions have a considerable impact on the
precomputation time. Let a configuration be a set C = {c1, . . . , ca}, where a is
the number of filters, and ci the position (column number) of the i-th filter. Let
C∗

a be the configuration of a filters that minimizes Eq. (9), and C∗ = min
a

C∗
a .

Due to the various operations outside of hashing, in particular the filtering
process (which, to some extent, can be done in parallel to hashing) and other
communication/data processing overheads, the configuration given by Theo-
rem 3 typically gives sub-optimal results. For this reason we rely instead of
numerical minimization of Eq. (9), which models the precomputation time given
by our implementation.

We settled on a truncated-Newton method [15], an optimization algorithm
suitable to solving bounded optimization problems with many variables (see
e.g., [16] for a thorough description). The minimization is used to find C∗

a , cou-
pled with an exhaustive search on a10. The optimality of the configuration found
by the numerical minimization is predicated on the two following conjectures:
(1) C∗

a is a convex function of a and (2) Eq. (9) is smooth enough (w.r.t. C)
to guarantee or approach the conditions of optimality of the truncated-Newton
search11 [15]. We offer no proof of these conjectures, but note that they seem to
hold true both intuitively and after extensive testing.

9 In general, for an architecture with a single filtration node, hashing time is much
bigger than the filtering time. If the parameters of the problem and the architecture
are such that it is not the case, then an other architecture with several filtration
nodes should be considered.

10 To keep things efficient, the search is from 0 up to a reasonable upper bound amax.
A more sophisticated approach could be used here (e.g., Newton descent on a), but
we found it to be unnecessary.

11 Namely strong convexity and Lipschitz-continuous Hessian.

Precomputation for Rainbow Tables has Never Been so Fast 227

Regardless of the validity of these conjectures however, the configuration
obtained through numerical minimization presents a significant improvement
over the analytical minimization that assumes no overhead or filtration cost
(Theorem 3). In addition, the estimated precomputation time comes very close
to the theoretical minimum, as detailed in Sect. 5.

5 Experiments

5.1 Computing Environments

We conducted our experiments on two different environments that are described
below. We benchmarked these two environments before starting the precompu-
tation phase in order to measure the hashing speed vh, the filtration speed vf ,
the overhead do related to the implementation of the filtration, and the com-
munication cost dc. The benchmark has been done by generating tables on a
small-sized problem (N = 232) with filters placed according to Theorem 3.

Environment 1 consists of a computer hosting two AMD EPYC 7742 3.2 GHz
processors composed of 64 cores each, for a total of 128 cores12. The bench-
mark measured vh = 7747 002 hashs per seconds, vf = 15 949 709 filtrations
per second, and v0 = 1.37 × 10−10. The communication overhead is negligible
compared to vh and vf , it can hence be considered that dc = 0 which implies
that do + dc

nh
= do = 1.37 × 10−10 s to treat one point.

Environment 2 is a cluster of 8 computers with 2 CPUs per machine and 14
cores for each CPU, i.e., a total of 224 cores. Each CPU is an Intel Xeon E5-
2680 v4 (Broadwell, 2.40 GHz, 14 cores). The computers are directly connected
through switches, meaning that they communicate using the ethernet proto-
col. The benchmark provided vh = 6403 611 hashs per seconds, vf = 7918 745
filtrations per second, and do + dc

snh
= 7.5 × 10−10 s to treat one point.

5.2 Filtration Implementation

For the filtration, we used an open addressing hash table with the following
parameters:

– A load factor λ = 2/3, which is a good compromise between size overhead
and low probability of collision.

– The number of slots of the table is k = mci/λ = 1.5mci with mci the theo-
retical number of different points after filtration (given by Eq. (1)).

– The hash function used is IP mod k.

We used linear probing for collision resolution (with interval of 1). This is appro-
priate because inputs to the hash table are uniformly distributed in A (by con-
struction). At each filtration the following steps are carried out:
12 We used 127 of them to be sure that all cores are fully exploited for the precompu-

tation, and the last core was left available for the basic operations performed by the
system.

228 G. Avoine et al.

– A hash table of size k = 1.5mci is created.
– As soon as a job is received by the filtration node this job is filtered as follow:

1. For each couple (SP ;IP) of the job, IP mod k is computed.
2. The index IP mod k of the table is checked.
3. If at the index computed no value is present then IP and its corresponding

SP are inserted at this index.
4. If at the index computed the same value equals to IP is present then a

merge has occurred between two chain and IP and its corresponding SP
are deleted.

5. If at the index computed, a different value of IP is present then a new
value of index is computed and is equals to IP + 1 mod k, the index
IP + 1 mod k is checked and the steps 3. to 5. are repeated.

– When all jobs have been filtered, the hash table is scanned and all the IPs
and their corresponding SPs are transferred by copying them to an array in
a form facilitating the sending of the jobs.

– The hash table is deleted.

5.3 Positions of the Filters

We conducted experiments where filters were optimally placed using the Trun-
cated Newton Constrained (TNC) algorithm (Sect. 4.4) applied to Eq. (9).

For environment 1, the optimal configuration was 31 filters, with positions as
provided in Fig. 4. The latter figure also displays the positions of the 31 filters
in the theoretical case where filtering and communicating are free (Theorem 3).

Figure 5 displays the number of hash operations needed to generate a clean
rainbow table in our scenario, when: (left case) there are no filters, which is the
current state of the art; (middle case) there are filters optimally placed, which
is our approach; and (right case) filtration and communication are free, with so
a filter in each column, which is the theoretical lower bound. It is worth noting
that our approach is tightly close to the theoretical lower bound (about 10% of
the theoretical lower bound).

0 10 20 30
i

0

2000

4000

6000

8000

10000
numerical minimization
theoretical hashing only

Fig. 4. Positions of the 31 filters

0 10 20 30
i

0

2000

4000

6000

8000

10000
numerical minimization
theoretical hashing only

Fig. 5. Number of hash operations

Precomputation for Rainbow Tables has Never Been so Fast 229

180000

5000 10000 15000 20000
0

10000

20000

30000

40000

t

Using filters
Theoritical lower bound
Usual method

Fig. 6. Time (sec) to generate a clean rainbow table according to t (N = 242, r = 20)

5.4 Considered Parameters

Experiments were performed with the following parameters that represents a
realistic scenario: N = 242, t = 10 000, and r = 20.

Corollary 1 provides the number of starting points in the experiment: m0 =
2rN/t ≈ 1.76×1010. According to Proposition 1, the expected number of chains
in a single such table is: 0.9524mmax

t ≈ 8.38 × 108.
The chain length (t = 10 000) has an impact on the online phase: when

t decreases, the time required for the online phase decreases as well, but the
required memory increases. The chain length also has an impact on the precom-
putation phase when filters are used, but this effect is much smaller. As shown
in Fig. 6, the smaller t is, the greater the precomputation time.

We chose t = 10 000 because this value leads to a very fast online phase in the
order of a few seconds with a reasonably-sized memory (for N = 242). Choosing
t = 20 000 for instance would provide a 20% faster precomputation but would
increase the time of the online phase four-fold.

Figure 6, also shows that our experimental results (green curve) is close to the
theoretical lower bound (red curve) and that our method is much more efficient
that the usual way to generate table (blue curve) as detailed in Sect. 5.5.

5.5 Results

Environment 1. Precomputing a single rainbow table without any filter requires
m0 t hash operations in our scenario, which is 100×242. Given that vh = 7747 002
and the environment consists of 127 cores (each core corresponding to one node)
with 1 filtration node and 126 hashing nodes, the precomputation time is esti-
mated to be 180 225 s (50 h and 3 min), which is very close from our experimental
result of 179 850 s (49 h and 57 min).

Now, using 31 filters optimally placed significantly reduces the precomputa-
tion time. Using Eq. (9), we obtain that the predicted precomputation time is as

230 G. Avoine et al.

low as 30 657 s (about 8 h). Filters thus divide by 5.9 the precomputation time
in this scenario. The experimental result is 31 029 s.

Environment 2. According to the TNC algorithm, without any filter, the pre-
computation time of a single rainbow table should be around 123 194 s (about
34 h and 13 min).

If 11 filters optimally placed are used, our experimental results show that a
table can be generated in 26 499 s (about 7 h and 20 min). According to TNC
algorithm with the parameters for this second environment, given in Sect. 5.1,
this precomputation time is estimated to 26 139 s (about 7 h and 12 min). Our
experimental results are therefore very close from the predicted one.

Utilization of filters on this environment hence allows to generate a table in
about 5 times less time than the naive method. Table 3 provides a summary of
the results obtained for environments 1 and 2.

Table 3. Summary of the results (N = 242, t = 10 000, r = 20)

Scenario #Filters #Hashes (×1012) #Cores Time

Experimental Predicted

Environment 1 (state of the art) 0 176 127 179 850 180 225

Environment 1 (our approach) 31 28 127 31 029 30 657

Environment 1 (theoretical bound) 10 000 26.8 127 – 27 452

Environment 2 (state of the art) 0 176 224 123 717 123 194

Environment 2 (our approach) 11 31 224 26 499 26 139

Environment 2 (theoretical bound) 10 000 26.8 224 – 18 765

6 Conclusion

This paper introduces the concept of distributed filters to precompute rainbow
tables. Such tables are widely used by the community of security experts, espe-
cially, but not only, to tests passwords. Given that the precomputation phase is
highly resource-consuming, the technique we introduce in this paper has a strong
practical impact. It also comes with formulas to compute the optimal positions
of the filters, and to evaluate the precomputation time.

We illustrate our technique on a typical scenario, namely a problem of size
N = 242 (t = 10 000 and r = 20). In such a scenario, the precomputation
phase requires 1.76 × 1014 hash operations, which takes about 50 h on a 128-
core computer, while our technique requires 2.8 × 1013 hash operations, which
were performed (including filtering) in about 8 h and 36 min on the same 128-
core computer. Distributed filtration-computation thus divides by about 6 the
expected precomputation time. It is also close to the theoretical lower bound of
27 452 s i.e., 7 h and 33 min (for r = 20), with the difference due to the filtering
and communication overheads.

Precomputation for Rainbow Tables has Never Been so Fast 231

We considered a typical scenario in the sense that we used quasi-maximum
tables (r = 20) instead of maximum tables. Such maximum tables (corre-
sponding to r = 5001 in our case) are usually considered in the literature,
but they are never used in practice because precomputing maximum tables
is prohibitive. However, considering maximum tables would make distributed
filtration-computation much more valuable still (e.g., increasing the speedup
from 6 to 4 500 with the same parameters).

It is worth noting that our technique to speed up the precomputation phase
has been applied to classical rainbow tables but we state in this article that it is
fully compliant with the improvements published during the last years to make
the online phase more efficient.

Appendix

A Proof of Theorem 3

We have P =
∑a

i=0 mci(ci+1 − ci). Deriving for each filter column position, we
obtain:

∂P

∂ci
=

∂

∂ci

[
mci(ci+1 − ci) + mci−1ci)

]
.

Inserting mi = 2N
i+γ−1 we have:

∂P

∂ci
= 2N

∂

∂ci

[
ci+1 − ci

ci + γ − 1
+

ci

ci−1 + γ − 1

]

= 2N

[
1

ci−1 + γ − 1
− ci+1 + γ − 1

(ci + γ − 1)2

]
.

To minimize P , we must have ∂P
∂ci

= 0, and thus:

ci =
√

(ci−1 + γ − 1)(ci+1 + γ − 1) − γ + 1.

It is easy to verify that a solution to this recurrence relation with terminal
conditions c0 = 1 and ca = t is:

ci = γ

(
t + γ − 1

γ

) i
a

− γ + 1.

Replacing in the expression for P gives the expected result.

B Online Phase Improvements and Their Impact on
Precomputation

There exists many significant algorithmic improvements on the online phase and
optimizations of the storage of tables. Their impact on the distribution and
intermediate filtering of precomputation is briefly discussed below.

232 G. Avoine et al.

– Chain storage optimizations (prefix/suffix decomposition or compressed delta
encoding [9]): lossless compression can be applied at the end of the table
generation, with no impact on the precomputation process.

– Truncated endpoints [8]: Endpoints can be truncated at the end of the table
generation, again with no impact.

– Checkpoints [8,12]: Saving checkpoints can be done during the filtered and
distributed precomputation with ease, although specific care must be taken.
Hashing nodes must be made aware of which columns are checkpoint columns,
and the filtration node needs to keep track of this. This adds no significant
burden on either.

– Heterogeneous tables [10]: Precomputation of tables of different shapes is done
independently, regardless of whether they operate on the same input set. Con-
sequently The use of heterogeneous tables has no impact on precomputation
improvements.

– Interleaving [11]: Just like with heterogeneous tables, the different tables
are independently computed, again having no impact on precomputation
improvements

C Intermediary Filtration

filter i filter i+1a b c

sub-chains merged in column a
sub-chains merged in column b

sub-chains merged in column c

sub-chains without merges

Fig. 7. Intermediary filtration with 2 filters.

Precomputation for Rainbow Tables has Never Been so Fast 233

D Notation Through this Paper

Table 4. Notation

N Cardinality of A

t Number of columns in a table

m Number of rows in a table

mi Number of different elements in column i

a Number of filters

nh Number of computing nodes

nf Number of filtration nodes

n Number of nodes n = nh + nf

α maximality factor

r α
1−α

ci Column of the ith filter

s Job size

vh hashing speed

vf Filtration speed

dc Communication cost

do Filtration overhead

References

1. Hellman, M.E.: A cryptanalytic time-memory trade-off. IEEE Trans. Inf. Theory
26(4), 401–406 (1980)

2. Oechslin, P.: Making a faster cryptanalytic time-memory trade-off. In: Boneh, D.
(ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 617–630. Springer, Heidelberg (2003).
https://doi.org/10.1007/978-3-540-45146-4 36

3. Denning, D.E.R.: Cryptography and Data Security, p. 100. Addison-Wesley Long-
man Publishing Co., Inc. (1982)

4. Lee, G.W., Hong, J.: Comparison of Perfect Table Cryptanalytic Tradeoff Algo-
rithms, vol. 80, pp. 473–523. Kluwer Academic Publishers (2016)

5. Hong, J., Moon, S.: A comparison of cryptanalytic tradeoff algorithms. J. Cryptol.
26, 559–637 (2013)

6. Hong, J., Jeong, K.C., Kwon, E.Y., Lee, I.-S., Ma, D.: Variants of the distinguished
point method for cryptanalytic time memory trade-offs. In: Chen, L., Mu, Y.,
Susilo, W. (eds.) ISPEC 2008. LNCS, vol. 4991, pp. 131–145. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-79104-1 10

7. Standaert, F.-X., Rouvroy, G., Quisquater, J.-J., Legat, J.-D.: A time-memory
tradeo. Using distinguished points: new analysis & FPGA results. In: Kaliski, B.S.,
Koç, K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 593–609. Springer,
Heidelberg (2003). https://doi.org/10.1007/3-540-36400-5 43

https://doi.org/10.1007/978-3-540-45146-4_36
https://doi.org/10.1007/978-3-540-79104-1_10
https://doi.org/10.1007/3-540-36400-5_43

234 G. Avoine et al.

8. Avoine, G., Bourgeois, A., Carpent, X.: Analysis of rainbow tables with finger-
prints. In: Foo, E., Stebila, D. (eds.) ACISP 2015. LNCS, vol. 9144, pp. 356–374.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-19962-7 21

9. Avoine, G., Carpent, X.: Optimal storage for rainbow tables. In: Lee, H.-S., Han,
D.-G. (eds.) ICISC 2013. LNCS, vol. 8565, pp. 144–157. Springer, Cham (2014).
https://doi.org/10.1007/978-3-319-12160-4 9

10. Avoine, G., Carpent, X.: Heterogeneous rainbow table widths provide faster crypt-
analyses. In: Proceedings of the 2017 ACM on Asia Conference on Computer and
Communications Security, ASIA CCS 2017, pp. 815–822. Association for Comput-
ing Machinery, New York (2017)

11. Avoine, G., Carpent, X., Lauradoux, C.: Interleaving cryptanalytic time-memory
trade-offs on non-uniform distributions. In: Pernul, G., Ryan, P.Y.A., Weippl, E.
(eds.) ESORICS 2015. LNCS, vol. 9326, pp. 165–184. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-24174-6 9

12. Avoine, G., Junod, P., Oechslin, P.: Characterization and Improvement of Time-
Memory Trade-Off Based on Perfect Tables, vol. 11. Association for Computing
Machinery, New York (2008)

13. Biryukov, A., Mukhopadhyay, S., Sarkar, P.: Improved time-memory trade-offs
with multiple data. In: Preneel, B., Tavares, S. (eds.) SAC 2005. LNCS, vol. 3897,
pp. 110–127. Springer, Heidelberg (2006). https://doi.org/10.1007/11693383 8

14. Avoine, G., Carpent, X., Kordy, B., Tardif, F.: How to handle rainbow tables
with external memory. In: Pieprzyk, J., Suriadi, S. (eds.) ACISP 2017. LNCS, vol.
10342, pp. 306–323. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
60055-0 16

15. Nash, S.G.: A survey of truncated-newton methods. Numerical Analysis 2000. Vol.
IV: Optimization and Nonlinear Equations, vol. 124, pp. 45–59 (2000)

16. Nash, S.G.: A survey of truncated-newton methods. J. Comput. Appl. Math.
124(1–2), 45–59 (2000)

https://doi.org/10.1007/978-3-319-19962-7_21
https://doi.org/10.1007/978-3-319-12160-4_9
https://doi.org/10.1007/978-3-319-24174-6_9
https://doi.org/10.1007/11693383_8
https://doi.org/10.1007/978-3-319-60055-0_16
https://doi.org/10.1007/978-3-319-60055-0_16

Cache-Side-Channel Quantification
and Mitigation for Quantum

Cryptography

Alexandra Weber1(B) , Oleg Nikiforov2 , Alexander Sauer2 ,
Johannes Schickel1, Gernot Alber2 , Heiko Mantel1 ,

and Thomas Walther2

1 Department of Computer Science, Technical University of Darmstadt,
Darmstadt, Germany

{weber,schickel,mantel}@mais.informatik.tu-darmstadt.de
2 Department of Physics, Technical University of Darmstadt,

Darmstadt, Germany
{oleg.nikiforov,alexander.sauer,gernot.alber,

thomas.walther}@physik.tu-darmstadt.de

Abstract. Quantum cryptography allows one to transmit secret infor-
mation securely, based on the laws of quantum physics. It consists of (1)
the transmission of physical particles like photons and (2) the software-
based processing of measurements during the transmission. Quantum key
distribution (QKD), e.g., transmits material for establishing a shared
crypto key in this way. The key material is encoded into the particles in
a way that leakage can be detected and mitigated via so-called privacy
amplification.

In this article, we investigate the role of the software implementation
for the security of quantum cryptography. More concretely, we quantify
the security of QKD software against cache side channels and show how
to integrate cache-side-channel mitigation with the privacy amplification
in QKD. We evaluate our approach at one variant of a QKD software
that is in practical use. During our evaluation, we detect a cache-side-
channel vulnerability, for which we develop a parametric mitigation that
combines privacy amplification and program rewriting. We propose a
cost model for the combined mitigation, which allows one to optimize
the interaction between privacy amplification and program rewriting for
the mitigation.

1 Introduction

Quantum cryptography [31,56] is a promising approach to protect secret com-
munication. It is based on the laws of quantum physics, which ensure that an
attacker will be detected if he intercepts the communication. Quantum crypto
is fundamentally different from post-quantum crypto, which is based on mathe-
matical problems that are hard to solve even with quantum computers.

c© Springer Nature Switzerland AG 2021
E. Bertino et al. (Eds.): ESORICS 2021, LNCS 12973, pp. 235–256, 2021.
https://doi.org/10.1007/978-3-030-88428-4_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-88428-4_12&domain=pdf
http://orcid.org/0000-0003-4225-487X
http://orcid.org/0000-0003-2861-1957
http://orcid.org/0000-0002-1213-9267
http://orcid.org/0000-0003-4676-0024
http://orcid.org/0000-0002-6586-5529
http://orcid.org/0000-0001-8114-1785
https://doi.org/10.1007/978-3-030-88428-4_12

236 A. Weber et al.

A prominent example of quantum crypto is Quantum Key Distribution
(QKD). QKD is a promising candidate for post-quantum key exchange [30].
The German government, e.g., is investing 165Me in a QKD network among
governmental agencies [25] and Quapital [36] aims at a QKD network across
Europe. In China, a QKD network between Beijing, Shanghai and other cities
was established in 2018 and is in a trial period for applications like banking [78].

QKD consists of a physical part and a software part. In the physical part,
the key material on Alice’s side is encoded into quantum properties of particles,
usually photons. The particles are transmitted to Bob via a so-called quantum
channel, and Bob measures their properties to recover the key material. In the
software part, the key material on both sides is converted into a shared key.

Information leakage during the physical part can be quantified based on
traces that an attacker inevitably leaves in intercepted particles. It is mitigated
by privacy amplification, which increases the number of particles and compresses
the resulting key in the software part. Information leakage during the software
part can be quantified using Quantitative Information Flow (QIF) [3,70] and
mitigated by privacy amplification or, more traditionally, by program rewriting.

When the physical and software parts are combined, new threats arise. For
instance, an attacker might combine attacks on the physical part with cache-
side-channel attacks, which exploit that a software unintentionally uses a shared
cache in a secret-dependent way [1,7,33,43,59,69,77]. In QKD setups like [67]
(for secure video conferencing at Mitsubishi) or [68], it is common to use reg-
ular PCs for postprocessing. PCs, especially those that process measurements,
are often multi-purpose. That is, when setups like [67,68] go into production,
communication, e.g., of corporate secrets, might be at risk because the postpro-
cessing software for the encryption key might share a cache with other software.
Given efforts to move QKD to the cloud [11,53] and to end-user devices like
smartphones [72], cache side channels will be even more dangerous for future
QKD.

In this article, we focus on two research questions: (1) How can cache-side-
channel mitigation by program rewriting be integrated with privacy amplifica-
tion? (2) What is a good split between program rewriting and privacy amplifi-
cation from a performance perspective? Being able to integrate both mitigation
techniques in a reliable and cost-efficient fashion is crucial for achieving end-to-
end security for QKD across quantum physics and software in practice.

Our first step is to quantify the cache side channels in QKD software. To
this end, we develop a program analysis that computes upper leakage bounds.
The main novelty of our analysis is that it supports x86 binaries with floating-
point instructions. Prior analyses that compute reliable cache-side-channel leak-
age bounds for x86 binaries (including [8,19,20,51]) did not support floating-
point instructions. As QKD software inherently deals with probabilities, e.g., to
process imperfect measurements, floating-point support is crucial in this domain.

We evaluate our analysis at the example of the BB84 protocol for QKD [6].
More concretely, we analyze the BB84 implementation from [42,57], which is
one of the few publicly available QKD implementations. It uses the low-density
parity check (LDPC) technique, which is very popular in QKD [29,34,38,52].

Cache-Side-Channel Quantification and Mitigation 237

In our evaluation, we discovered a vulnerability in a part of the implementa-
tion that optimizes the LDPC. An attacker might recover the entire secret key
from one cache trace. We show how to harden the implementation by program
rewriting and use our analysis to confirm that the hardening is, indeed, effective.

Naturally, the program rewriting induces performance overhead. To increase
flexibility in trading performance against security, we develop a mitigation tech-
nique that combines selective program rewriting with privacy amplification.
Given a set of key bits that might be leaked by the software, we cannot simply
identify the corresponding particles and drop them from the transmission. The
reasons are (1) that the postprocessing relies on relations across multiple bits,
e.g., that a certain percentages of bits survives the first postprocessing phase
(key-sifting phase) and (2) that privacy amplification relies on hash-functions,
i.e., there is no one-to-one mapping between the original bits and the final key
bits. Therefore, we use our program analysis to show how much privacy amplifi-
cation is needed to mitigate potential leakage that remains after selective rewrit-
ing. Finally, we develop a cost model for the combined mitigation technique and
evaluate it for realistic QKD-setup parameters.

In summary, our main technical contributions are (1) a static program anal-
ysis that computes reliable upper bounds on the cache-side-channel leakage of
programs that use floating-point operations,1 (2) an evaluation on real-world
QKD software, (3) the detection and mitigation of a vulnerability in the QKD
software that might leak the entire key, (4) a mitigation technique that inte-
grates program rewriting with privacy amplification, and (5) an evaluation how
to optimize performance across program rewriting and privacy amplification.

2 Basic Notions and Notation

2.1 Cache-Side-Channel Quantification

To quantify the leakage of an implementation, we model the secret as a ran-
dom variable X with prior �π, the potential attacker observations as a ran-
dom variable Obs, and the implementation as a deterministic discrete memo-
ryless channel C : X → Obs. Let p(xi) and p(obsj) be the probabilities for
xi ∈ X and obsj ∈ Obs. Let p(obsj |xi) be the conditional probability for obsj
given xi. Min-entropy H∞(X) = − log2 maxi p(xi) and conditional min-entropy
H∞(X|Obs) = − log2 Σ

|Obs|
j=1 p(obsj) · maxi

p(obsj |xi)·p(xi)
p(obsj)

[70] capture the uncer-
tainty of a one-try attacker about the secret before, resp., after his observation.
The leakage L(�π,C) = H∞(X) − H∞(X|Obs) is maximized for a uniform �π [41]
and then amounts to L(�π,C) = log2 |Obs| [70].

We capture Obs for a given implementation using an execution model of the
target platform. We call a model that captures the exact values on which the
implementation computes (e.g., values of registers) a concrete execution model.
It consists of a concrete domain D, which is the set of all possible execution states,
and a concrete semantics updD : D × I → D, which models how executing an
instruction from the set I changes the execution state. Since computing Obs on
1 Available at https://www.mais.informatik.tu-darmstadt.de/qkd-esorics21.html.

https://www.mais.informatik.tu-darmstadt.de/qkd-esorics21.html

238 A. Weber et al.

such a concrete execution model is usually not computationally feasible, we use
abstract interpretation [15] to make the computation tractable. We represent
concrete execution states by abstract execution states from an abstract domain
D and overapproximate the concrete semantics by an abstract semantics updD :
D ×I → D. We perform a reachability analysis on updD to obtain the set ObsD

of observations an attacker might make in any concrete execution modeled by
the possible abstract executions. This set overapproximates the actual set Obs,
i.e., log2 |ObsD| ≥ log2 |Obs| ≥ L(�π,C). Overall, we compute upper bounds on
the cache-side-channel leakage of an implementation as log2 |ObsD|.

This combination of abstract interpretation and information theory was pio-
neered in [40] and then broadened (e.g., [8,19,20,51]), but the particular analysis
that we present is a novel contribution of this article.

2.2 Quantum Key Distribution

Quantum Key Distribution (QKD) [56] aims at establishing a shared secret key
between two parties, Alice and Bob, in the presence of an attacker, Eve, who has
access to a quantum computer. A QKD implementation consists of a physical
part and a software part. Overall, there are five stages in a QKD implementation:
one stage in the physical part and four stages in the software part.

In the first stage, the raw-key exchange, Alice generates a random bitstring,
her so-called raw key bAr . She transmits bAr to Bob using qbits (quantum bits).
BB84 [6] implements qbits using the polarization of photons. A polarization is a
linear combination of two orthogonal base vectors. In BB84, two bases are used:
⊕ (↑ and →) and ⊗ (↗ and ↖). For each bit in bAr , Alice randomly chooses base
⊕ or ⊗ and polarizes a photon along the base vectors to encode the bit.

Alice sends the photons to Bob, who measures their polarization and obtains
his raw key, bBr . Bob picks the bases for his measurements independently. This
is introducing errors, but crucial for security. If Eve intercepts photons with-
out knowing the bases, she will use the wrong base with a 50% chance. Based
on the laws of quantum physics, a wrong measurement will disturb the actual
polarization. When resending photons to Bob, Eve can only guess the original
polarization of the photons that she measured wrongly. Overall, she will, hence,
introduce errors in 25% of the intercepted photons, which can be detected later.

Overall, bAr and bBr might differ due to (i) mismatching bases, (ii) attacks, or
(iii) measurement errors. We refer to the error rate from (ii) and (iii) by errtrue.

Starting from the second stage, the remaining QKD stages happen in soft-
ware. The second stage of QKD is the key sifting. Bob sends his polarization
bases to Alice, who checks which of these bases are wrong. Alice and Bob dis-
card all bits from bAr and bBr for which Bob used a wrong base, and they obtain
the shorter bitstrings bAsi and bBsi. Note that, Bob sends the polarization bases
via a conventional electromagnetic channel. Eve might intercept and modify
messages on this channel but cannot impersonate other parties and cannot use
information she obtains to hide an attack, because the raw-key exchange is over.

The third stage of QKD, parameter estimation, has two purposes: (1) to
detect attacks and (2) to determine an estimated error rate errest to be used in

Cache-Side-Channel Quantification and Mitigation 239

the fourth step of QKD. Alice and Bob compare randomly selected bits of bAsi
and bBsi to obtain errest. All bits used to compute errest are discarded, resulting
in the shorter bitstrings bAs and bBs , called sifted keys. Alice and Bob restart the
QKD if errest exceeds a predefined threshold, which indicates an attack.

The fourth stage, called error correction eliminates any remaining differ-
ences between bAs and bBs so that Alice and Bob obtain the bitstrings xA

ec and
xB
ec, respectively, the so-called error-corrected keys. There are multiple coding

techniques that can be used for error correction, including Cascade [9] and LDPC
[28]. We focus on LDPC, which optimizes the required amount of communica-
tion [18]. Alice and Bob first agree on a length n = k + m (for k message bits
and m parity bits) and on a public k × n parity matrix H. The error correc-
tion then consists of an encoding by Alice and a decoding by Bob. Alice splits
bAs into blocks of length k. For each block, she computes m parity bits using
H and sends them to Bob. For herself, Alice sets xA

ec = bAs . Bob computes the
most likely guess for each sifted-key block based on bBs and the parity bits. He
concatenates the resulting blocks to obtain xB

ec. If m is sufficiently large based
on errest (see [61]), then xB

ec = xA
ec.

The final step, privacy amplification, compresses xB
ec and xA

ec using hash func-
tions to compensate for leakage to Eve. One example of suitable hash functions
are Toeplitz matrices (matrices in which each descending diagonal consists of
equal values). Alice and Bob agree on a length l and on a public l × k Toeplitz
matrix T . They multiply T with each k-bit block of the error-corrected key and
concatenate the results to obtain the final key xA

pa = xB
pa. Naturally, the more

the key is compressed in the end, the more qbits need to be transmitted during
the first stage of the QKD in order to achieve the same key length.

3 Analysis for Cache-Side-Channel Quantification

In the error-correction step of QKD, Bob computes the most likely values of
the sifted-key bits based on his measurements and on additional information
received from Alice. That is, software implementations for QKD need to handle
probabilities, which are most naturally represented using floating-point values.

To enable cache-side-channel quantification for x86 binaries with floating-
point instructions, we define an execution model that captures both, the regu-
lar x86 architecture and the components specific to floating-point instructions.
Based on this model, we define an abstract reachability analysis that handles
floating-point values reliably. We provide tool support to automate the analysis.

Attacker Model. We consider an attacker who observes a victim’s interaction
with a cache. More concretely, we consider an attacker who has access to a trace
of the cache hits and misses encountered, e.g., based on CPU performance coun-
ters. Such trace-based attacks have been mounted, e.g., on OpenSSL AES [1], and
on reference implementations of the CAMELLIA and CLEFIA ciphers [62,64].

We capture such an attacker by the attacker model csc-att . An attacker under
csc-att observes a trace of the victim binary’s execution that we call cache trace.

240 A. Weber et al.

This trace contains the entry “Hit” for each cache hit, the entry “Miss” for each
cache miss, and the entry “None” for each instruction without memory access.

3.1 Execution Model

In our execution model, we model a 32-bit architecture, which is supported by
older lab machines, as well as newer machines in compatibility mode. That is,
we focus on the execution of 32-bit x86 instructions in combination with x87
floating-point instructions. While regular x86 instructions are executed by the
CPU, x87 instructions are executed by the floating-point unit (FPU).

CPU (x86). The CPU operates on 32-bit memory entries and CPU registers.
It maintains six 1-bit status flags that store information on the results of com-
parisons and arithmetic operations [37]: Carry Flag (CF), Parity Flag (PF),
Auxiliary Carry Flag (AF), Zero Flag (ZF), Sign Flag (SF), and Overflow Flag
(OF).

In our model, X32 is the set of all CPU registers and memory locations.
By FCPU = {CF,PF,AF,ZF, SF,OF} we model the set of all CPU flags and
by V32 we model the set of all 32-bit values. We capture a CPU state by two
functions of types FCPU → B and X32 → V32 that map each CPU flag to
a boolean value and each CPU register and memory entry to a 32-bit value,
respectively.

FPU (x87). The FPU operates on the same memory entries as the CPU. In
addition, it operates on a stack that consists of 8 dedicated 80-bit FPU registers
(consisting of 1 bit sign, 15 bits exponent and 64 bit mantissa) [37]. For each
stack entry, the FPU stores a tag: “valid” for a valid number, “zero” for entry
0, “special” for entries with a special value (e.g., not-a-number) or “empty” if
the entry is empty. Like the CPU, the FPU maintains status flags, the so-called
condition-code flags, to realize conditional control flow: C0, C1, C2, C3.

We model the set of all FPU registers by S64 and the set of all possible
floating-point values by V64. Let FFPU = {C0, C1, C2, C3} be the set of all
FPU condition-code flags and T = {valid, empty} be the set of FPU-stack tags,
where empty models the tag “empty” and valid models all other tags. We capture
an FPU state by two functions of types FFPU → B and S64 → T × V64, which
map FPU flags to booleans and FPU registers to tagged floating-point values.

Cache. Frequently-used memory entries are stored in caches for quick access.
Most contemporary architectures incorporate a multi-level hierarchy of caches.

We model the memory hierarchy by distinguishing between the main memory
and one level of cache. We focus on a 32KB 8-way set-associative data cache
with line size 64B (like the L1 cache of the Skylake architecture [37]) and LRU
replacement. By Cpos, we model the set of all possible positions in the cache,
including the position “uncached”. We capture a cache state by a function of
type X32 → Cpos, which maps each memory entry to its position in the cache.

Combined State and Executions. We model the possible execution states
by

Cache-Side-Channel Quantification and Mitigation 241

D = (FCPU → B) × (FFPU → B)×
(X32→ V32) × (S64→T ×V64) × (X32→ Cpos) .

That is, a state in the concrete domain D is a combination of a CPU state, FPU
state, and cache state. Let I be the set of x86 and x87 instructions. We model
their concrete semantics by a function updD : D × I → D.

Note that, overall we made two key simplifications in our model of execution:
We focus on 32-bit binaries and on a single level of cache. Both simplifications
are sensible ones and also common in existing analyses [8,19,20,51].

3.2 Abstract Reachability Analysis

We define the abstract domain for our abstract reachability analysis by

D = ((FCPU → B) × (FFPU → B)) →
((X32 → 2V32) × (S64 → 2T × 2V64) × (X32 → 2Cpos)).

The values of CPU flags and FPU flags are captured by functions of types
FCPU → B and FFPU → B like in the concrete domain. The values of CPU
registers and memory entries with concrete type X32 → V32 are abstracted from
by a function of type X32 → 2V32 , i.e., by a set abstraction. Analogously, the tags
and values of FPU registers with concrete type S64 → T × V64 are abstracted
from by a function of type S64 → 2T × 2V64 , and the cache positions with the
concrete type X32 → Cpos are abstracted from by a function of type X32 → 2Cpos .

Unlike in the concrete domain, the state of the flags and the state of memory,
registers and cache are not combined using the Cartesian product × in the
abstract domain. Instead, the abstract domain is defined as a mapping → from
the state of the flags to the state of memory, registers and cache. That is, the
domain allows to distinguish between the states of memory, registers and cache
that are possible across different states of the flags. Since the flags determine the
control flow of binaries, this means that the abstract domain allows to distinguish
between the execution states across different control-flow branches.

Abstract Semantics. We define the abstract semantics of x86 and x87 instruc-
tions by updD : D × I → D, which overapproximates the effect of instructions
on operands that are sets. In the definition, we faced two main challenges.

Firstly, the pointer for the FPU stack is stored in a register and, hence, has
an abstract value of type 2V32 . That is, instructions operate on a set of candi-
date stack pointers. To treat such situations sufficiently precisely, our abstract
semantics takes into account the tag of the stack entries pointed to by the can-
didate pointers. For instance, on a stack entry tagged {valid}, a pop instruction
will yield the tag {valid, empty} and an unmodified stack value, while a push
instruction will yield the tag {valid} and a stack value that is the union of the
previous value and the singleton set containing the loaded value.

Secondly, values in memory are Byte-aligned but not necessarily aligned to
the borders of memory blocks (chunks of memory that are cached together in one
cache line) [37]. Large values like floating-point values might cross the border

242 A. Weber et al.

between two memory blocks. Instructions that retrieve such values from the
memory might affect multiple cache lines. To reliably overapproximate the effect
of such accesses, our abstract semantics splits such values into individual Bytes
and updates all cache lines in which at least one of the Bytes is cached.

Computation of Leakage Bounds. Based on an abstract initial configuration
d, we compute all possible abstract executions using updD. These executions
overapproximate the possible concrete executions and corresponding attacker
observations. Based on the abstract executions, we determine the set ObsD of
attacker observations that an attacker under csc-att might make in any concrete
execution modeled by the possible abstract executions and compute log2 |ObsD|
as the leakage bound (see Sect. 2.1) with respect to an attacker under csc-att .

3.3 Automation Through Tool Support

To create tool support for our analysis, we implemented the model and semantics
for the FPU from scratch, because no such implementation for the FPU was
available. Our implementation covers a large set of x87 instructions, including
load, store, arithmetic and compare instructions. For the models of the CPU and
cache, as well as the semantics of CPU instructions, we aimed at maximum code
reuse from existing tools. While no previously existing tool provides support for
all required CPU features and instructions, CacheAudit [20] provides a model
of the cache and a model of the CPU for selected status flags and instructions.
We reused the code from CacheAudit and augmented it with support for 34
additional CPU instructions and the parity flag, which occurs in jumps that are
conditional on whether a floating-point value is NaN (not-a-number).

When building on CacheAudit, we noticed that CacheAudit’s abstract
semantics cannot handle memory entries that map to multiple cache lines. We
implemented a solution based on our semantics, splitting values into Bytes.

Overall, the resulting analysis tool takes an x86/x87 binary as input and
returns the upper bound log2 |ObsD| on the leakage to attackers under csc-att .

4 Practical Evaluation

For the evaluation of our program analysis, we consider an implementation of the
BB84 protocol. More concretely, we consider the implementation from [42,57],
which is both, in practical use and publicly available.

The implementation covers all stages of QKD that happen in software: key
sifting, parameter estimation, error correction and privacy amplification. For
our evaluation, we selected the two last stages: error correction and privacy
amplification, because they involve non-trivial computations on secret bitstrings.
More concretely, we selected functions for the encoding part of error correction,
for the decoding part of error correction, and for privacy amplification from [42].

Before we apply our program analysis, we perform well-defined simplifications
to the functions. We then lift the analysis results to the original functions in a
separate step. That is, our results are independent of the simplifications.

Cache-Side-Channel Quantification and Mitigation 243

For the explanation of our simplified functions, we focus on their high-level C
code. For the evaluation of our program analysis, we considered binaries obtained
with gcc 7.4.0 with the flags -m32 -fno-stack-protector.

Encoding. We created the simplified version of the function dense encode
shown in Fig. 1. The parameter sblk with size k = 4 is the sifted-key block
to be encoded. It is copied into the vector u (Line 9) and passed to function
mod2dense multiply (Line 10), which multiplies the sifted-key block with a
generator matrix G that is derived from the parity matrix H. The resulting code
block (the sifted-key block and m = 3 parity bits) is stored in cblk.

Figure 1 simplifies the original code in two aspects: (1) it stores matrices and
vectors in fixed-size arrays instead of dynamically allocated pointer structures
and (2) it stores the variables G and cols locally instead of globally. We tested
with a Hamming(7,4) code that the simplifications do not alter the functionality.

Fig. 1. Target encoding implementation

Decoding. We created simplified versions of the functions initprp and iterprp
(Fig. 2). They perform LDPC decoding with a parity matrix stored in an array
H val. They compute the correct values of the bits in the sifted-key block based
on probabilities stored in the auxiliary arrays H lr and H pr. Function initprp
initializes the probabilities using a vector lratio of likelihood ratios based on
Bob’s measurements. Function iterprp then iteratively updates the probabili-
ties. The resulting error-corrected-key block is stored in dblk.

Our simplified implementation (1) uses fixed-size arrays instead of pointer
structures, (2) performs only one iteration of iterprp, (3) uses a fixed instead
of a variable parity matrix, and (4) performs overflow handling on dummy vari-
ables if no overflow occurred instead of skipping the step. Again, we tested the
functionality of the simplified implementation on a Hamming(7,4) code.

Note that the variables H lr, H pr and lratio are of type double, i.e.,
floating-point values. Our simplification preserves these datatypes, because the
corresponding values represent probabilities and likelihood ratios. Represent-
ing them as integers would loose precision and cause a great deviation from

244 A. Weber et al.

Fig. 2. Target decoding implementation

the original code due to the additional encoding needed to represent probabili-
ties as integers. Therefore, the binary of our simplified implementation contains
floating-point instructions that need to be handled by our program analysis.

Privacy Amplification. We created the simplified version of the function
calcPA shown in Fig. 3. It takes an error-corrected key block key and the tar-
get length paLen for the privacy-amplified key block as inputs. It hashes the
error-corrected key block by multiplying it with the Toeplitz matrix in Line 8.

The simplified calcPA differs from the original calcPA by (1) using fixed-size
instead of variable-size arrays, (2) using local variables and parameters instead of
class members and (3) initializing each entry of the Toeplitz matrix to the least-
significant bit (lsb) of the value stored at the uninitialized address 0x4 (to make
explicit that the Toeplitz matrix is binary). Again, we tested the functionality
of the simplified implementation on a Hamming(7,4) code.

5 Vulnerability in the QKD Implementation

With our analysis tool, we detected a vulnerability in the QKD implementation
from [42], which might leak the entire secret key. In this section, we describe the
detection, assessment, and mitigation of this vulnerability.

Note that, the vulnerability is located in the encoding part of the error-
correction step. We also analyzed the decoding part of the error-correction step
and the privacy-amplification step, but we did not detect vulnerabilities in these
implementations. We will describe the security analysis for the hardened QKD
software, including decoding and privacy amplification, in Sect. 6.

Cache-Side-Channel Quantification and Mitigation 245

Detection and Assessment. For dense encode from Fig. 1, our analysis com-
putes the leakage bound 4 bit with respect to csc-att . Recall that the sifted-key-
block here has 4 bit, i.e., leaking 4 bit might reveal the entire sifted key.

Recall from Sect. 4 that the differences between the original and the simpli-
fied implementation of dense encode are only the datatypes and scope of the
variables that store matrices and vectors. These differences do not impact the
control flow and the locations of memory accesses in the encoding implemen-
tation. Thus, they do not impact the leakage with respect to csc-att . That is,
our leakage bound indicates a potential leakage also in the original encoding
implementation from [42]. We investigate this potential leakage in the following.

Figure 4 shows excerpts of two functions from the original encoding imple-
mentation. The function dense encode encodes the sifted-key block sblk using
the generator matrix G. To this end, the sifted-key block is passed to the function
mod2dense multiply in Line 10 via vector u. The function mod2dense multiply
multiplies the sifted-key block (m2) by the generator matrix (m1).

Fig. 3. Target privacy-amplification implementation

For each column of the generator matrix and result matrix (Line 2), the
function mod2dense multiply iterates over the sifted-key block (Line 3). If a
bit in the sifted-key block is set (Line 4), the function adds the corresponding
row of the generator matrix m1 to the intermediate result r of the multiplication
in Line 5 and Line 6. That is, the function mod2dense multiply only accesses
those rows of m1 that correspond to set bits of the sifted-key block.

Consider an attacker under csc-att . He observes the cache trace while Alice
executes the encoding. He recognizes which parts of the trace correspond to
iterations of the loop in Line 3 in which the branch in Line 4 is taken because
in these iterations cache accesses occur between the non-memory-access steps
corresponding to the loop guard. As the branch in Line 4 is taken exactly for
each set bit in the sifted-key block m2, the attacker learns which bits in the
sifted-key block are 1 and which are 0. That is, he learns the entire sifted-key
block.

The attacker can obtain all blocks of Alice’s sifted key by observing all exe-
cutions of the encoding function. By concatenating the blocks, he obtains Alice’s
entire sifted key. Recall that Alice’s sifted key is identical to the error-corrected
key (Sect. 2.2). That is, once the attacker knows Alice’s sifted key, he can emu-
late the privacy-amplification step by applying the public hash function to the

246 A. Weber et al.

error-corrected key. As a result, he obtains the privacy-amplified key and can
use it to decrypt the subsequent communication between Alice and Bob.

This vulnerability is not only a concern for the QKD software from [42].
It is caused by the optimization to skip multiplications with zero, which is a
very natural optimization in a matrix multiplication. Furthermore, the encoding
implementation in [42] reuses the original implementation of LDPC encoding by
Radford Neal [55], who rediscovered LDPC codes together with MacKay in the
1990s [46]. The vulnerability we detected is also contained in Neal’s implemen-
tation [55], which has been forked by many others [32]. Overall, a solution for
hardening implementations against the vulnerability is highly desirable.

Hardening of the QKD Software. We provide a hardened implementation
of mod2dense multiply in Fig. 5. The implementation iterates through all rows
of the generator matrix, independently of the value of the respective sifted-key
bit. That is, control flow and memory accesses are independent of the sifted key.

To preserve the functionality of the multiplication, the term to be added to
the intermediate result is masked by the value of the sifted-key bit in Line 3. This
technique is inspired by conditional assignment [54]. We tested the functionality
of the hardened implementation with a Hamming(7,4) code.

Fig. 4. Excerpt from [42]: encoding

As the modified function mod2dense multiply preserves the functionality
of the multiplication function from Fig. 1, it can be plugged into the simplified
encoding implementation from Fig. 1. To apply the hardening to [42] and [55],
the data types of m1, m2 and r in the function mod2dense multiply need to be
changed back to pointer structures before integrating the function.

6 Security of the Hardened Implementation

By applying our program analysis to the hardened QKD software, consisting
of the mitigated encoding implementation, the decoding implementation, and
the privacy-amplification implementation, we obtain security guarantees with
respect to attackers under csc-att . In the following, we describe the security
guarantees for each of the analyzed QKD steps.

Cache-Side-Channel Quantification and Mitigation 247

Hardened Encoding. For the hardened encoding implementation from Sect. 5,
our analysis computes the leakage bound 0 bit. That is, the implementation does
not leak any information to attackers under csc-att . If the hardening is deployed
in the encoding implementation from [42] as described in Sect. 5, the resulting
implementation will also be secure with respect to csc-att , because the data type
and scope of the variables do not influence the possible traces.

Decoding. For the implementation from Fig. 2, our analysis also returns the
leakage bound 0 bit, i.e., there is no leakage to attackers under csc-att .

The implementation simplifies [42] in four aspects (see Sect. 4). We lift the
leakage bound to the original implementation by discussing each simplification:

1. While [42] iterates through a pointer structure storing only the set bits of the
parity matrix, the simplified version iterates over the complete matrix. This
eliminates a dependence of the cache trace on the parity matrix. Since the
parity matrix is public, this simplification does not influence the leakage.

2. The parity matrix is fixed to a random matrix in the simplified implemen-
tation. This eliminates another dependence of the cache trace on the parity
matrix. Again, the leakage is not affected because the parity matrix is public.

3. The simplified implementation calls iterprp, which would usually be iter-
ated, only once. Since the leakage bound for decoding is 0 bit, no leakage
might accumulate, i.e., the simplification does not influence the leakage.

4. Overflows of probabilities are handled in [42] by resetting the probabilities
to 50%. The cache trace reveals the number of overflows encountered. This
is hidden by the simplified version. This simplification does not influence the
leakage since overflowing probabilities are reset to 50%. Nothing about the
final probabilities is revealed by the occurrence of an overflow.

Fig. 5. Hardening of the encoding function

Overall, the zero leakage bounds can be translated to the original decoding
implementation, which is, hence, also secure against attackers under csc-att .

Privacy Amplification. For Fig. 3, our analysis yields the leakage bound 0 bit.
That is, the implementation does not leak to attackers under csc-att .

Recall from Sect. 4 that the only differences between Fig. 3 and the original
implementation are the fixed size of variables, the scope of variables and the
explicit marking of the Toeplitz matrix as uninitialized binary matrix. None
of these has an influence on the control flow or memory accesses during the
privacy amplification. That is, the zero leakage bound also applies to the original
implementation. No need for additional hardening arises.

248 A. Weber et al.

Together with the bounds for the encoding and decoding implementations,
we now have a set of security guarantees for the hardened QKD software.

7 Combining Rewriting and Privacy Amplification

While our hardening by program rewriting in Sect. 5 is effective, it also removes
an optimization and thereby increases the running time of the encoding step (by
about 50% on average for a uniformly distributed sifted key). In this section, we
present a more flexible mitigation strategy, which allows to optimize performance
cost across the physical and software-based part of QKD.

Fig. 6. Parametric mitigation in the encoding function

Parametric Mitigation of the Vulnerability. Figure 6 shows a parametric
program rewriting of the encoding implementation. Instead of iterating through
all of the block m2 as in the hardening from Fig. 5, the function iterates through
the first SEC PARAM bits of m2 and only iterates through the remaining bits if
they are set. That is, the optimization is disabled selectively. While Fig. 6 still
leaks a consecutive key portion, additionally randomizing the indices where the
optimization is disabled would even hide where the leaked bits belong.

We use our program analysis to verify whether the security guarantees are,
indeed, improved incrementally by incrementally disabling the optimization.
We obtain the following leakage bounds: 3 bit for SEC PARAM = 1, 2 bit for
SEC PARAM = 2, and 1 bit for SEC PARAM = 3. That is, our mitigation allows
us to trade performance against security locally within the encoding function.

Integration with Privacy Amplification. Traditional security analyses of
QKD solutions [65] aim at guarantees for the secret key resulting after pri-
vacy amplification. They take into account leakage to Eve during the raw-key
exchange and through the electromagnetic channel.

Privacy amplification requires the transmission of more particles during the
raw-key exchange, which lead to more remaining key material after error correc-
tion. This key material of length lblock is then compressed with a hash function
to a key of target length ltarget. To compensate for potential leaks across the dif-
ferent stages of QKD, privacy amplification relies on upper leakage bounds braw
for the raw-key exchange and bparity for the electromagnetic channel. The length
ltarget of the privacy-amplified key should be ltarget < lblock − braw − bparity bit.
The smaller ltarget is compared to lblock − braw − bparity, the more secure is the
final key.

Cache-Side-Channel Quantification and Mitigation 249

We integrate our leakage bounds as follows. Let bcache be the leakage bound
derived with our analysis. To compensate the potential cache-side-channel leak-
age in addition to the leakage from the raw-key exchange and the electromagnetic
channel, the target length should be ltarget < lblock − braw − bparity − bcache bit.
The reason is that the information leaked during a traditional attack on QKD
and the information leaked through the side channel might be distinct.

Consider the parametric cache-side-channel mitigation from Fig. 6 for
SEC PARAM = 3. In this case, only one bit of cache-side-channel leakage remains
to be mitigated, i.e., ltarget < 4− braw − bparity −1 = 3− braw − bparity bit. That
is, only a slightly stronger privacy amplification than usual will be required.

But how should one choose how much leakage to mitigate by program rewrit-
ing and how much to mitigate by privacy amplification?

Optimizing the Combined Mitigation. The combination of program rewrit-
ing and privacy amplification allows one to split the mitigation overhead across
the physical and software parts of QKD. In the following, we present a cost
model that allows one to choose an optimal split based on a given QKD setup.

Let craw be the cost for the raw-key exchange, sifting and parameter esti-
mation for one sifted-key block. Let cec and cpa be the costs of the encod-
ing and privacy amplification, respectively, for one sifted-key block without
any software-based cache-side-channel mitigation. Given a bound bcache on
cache-side-channel leakage, the cost for obtaining a key of the length ltarget

is (craw+cec+cpa)·ltarget

lblock−braw−bparity−bcache

That is, the cost for the same level of security in the privacy-amplified key
increases linearly with bcache. If bcache is too high compared to lblock, the key
exchange becomes impossible, as the cost would become infinite.

With our mitigation that decreases bcache to b′
cache, the cost becomes

(craw + cec · lblock−0.5b′
cache

0.5·lblock + cpa) · ltarget

lblock − braw − bparity − b′
cache

The encoding becomes more expensive because instead of performing actions
for 50% of the bits in the block (on average given a uniform distribution of the
sifted key), it needs to perform actions for 50% of the b′

cache bits which are not
protected and for all of the lblock − b′

cache bits, which are protected.
If we know the cost of the individual phases, we can find the leakage bound

b′
cache which minimizes the cost. Given the desired b′

cache, we can then set the
mitigation strength SEC PARAM to lblock − b′

cache in the code.
We evaluate this technique for a set of realistic parameters for cost and

leakage bounds. Consider a QKD setup that implements LDPC following IEEE
standard 802.11n-2009 [35] like, e.g., the implementation in [73]. Let the block
length be lblock = 1458 bit with corresponding parity-bit length bparity = 486
bit.

The leakage per bit during the raw-key exchange is −errtrue · log2(errtrue) −
(1 − errtrue) · log2(1 − errtrue) [22]. Assuming an error rate errtrue = 5%, we
arrive at a leakage of about 0.2864, i.e., braw ≈ 0.2864 · lblock ≈ 418 bit.

250 A. Weber et al.

The bit-rates that can be achieved for the raw-key exchange vary across
different experimental setups between 10−3 and 13 Mbit/s [76]. Consider a setup
with a bit-rate of 10Mbit of sifted key per second, i.e., where the transmission
of one block takes craw = 145.8 · 10−6 s. Let the cost of encoding and privacy
amplification be cec = 0.001 and cpa = 0.01 s per sifted-key block. The latter
two numbers are rounded based on performance measurements we performed on
the code from Fig. 1 and 3 across random inputs on a Lenovo ThinkPad X250
M93p with an i7-5600U CPU at 2.60 GHz.

If we now aim to minimize the cost for the exchange of, e.g., ltarget = 5, 000
bit of symmetric key, we arrive at (60.729 − 0.003429355 · b′

cache)/(554 − b′
cache).

Hence, in this scenario, b′
cache = 0bit minimizes the overhead. That is, the

complete hardening from Sect. 5 would be the most beneficial here, because the
cost of privacy amplification outweighs the software overhead.

For different QKD setups or implementations, the result might differ. In par-
ticular, as research in physics is pushing the limits of photon detectors to achieve
higher bit-rates [17], the effect of software performance might become more rel-
evant. We hope that our program analysis and flexible mitigation technique will
also be beneficial for future QKD setups and implementations.

8 Related Work

We are not aware of any prior work in the intersection of cache side channels
and the security of QKD software. The closest are works on cache-side-channel
assessment in general, on cache-side-channel attacks on other software, on the
security of the quantum-channel transmission in QKD, and on the combination
of QIF with concepts from quantum theory. We discuss these areas briefly below.

Assessment of Cache-Side-Channel Security. Side channels are tradition-
ally detected manually as in [24,43]. Recently, complementary approaches have
become popular, ranging from systematic testing [75] to empirical methods [14]
like distinguishing experiments [49,50] to program analysis [16,20,48]. In the
following, we describe the most related tools for cache-side-channel analysis.

The tool CacheAudit [20] quantifies the cache-side-channel leakage of x86
binaries through upper bounds on Shannon-entropy leakage and min-entropy
leakage. To this end, CacheAudit performs an abstract reachability analysis for
x86. Different versions of CacheAudit have been used in multiple side-channel
analyses, e.g., of AES implementations [51], lattice-based cryptography [8] and
modular exponentiation [19]. While CacheAudit provides reliable upper bounds
on cache-side-channel leakage, it covers only parts of the x86 instruction set
architecture. None of the existing versions supports floating-point instructions.

CaSym [10] uses symbolic execution and SMT solving to explore the possible
program executions and deduce the existence of a leaking pair of executions.
CaSym does not provide upper bounds on cache-side-channel leakage. It only
provides security guarantees for software that is free from cache side channels.

The tools LeakiEst [12] and LeakWatch [13] quantify side-channel leakage
using statistical methods based on samples of side-channel observations. Both

Cache-Side-Channel Quantification and Mitigation 251

tools provide an estimation of leakage within a confidence interval. That is, they
do not provide sound upper bounds on the leakage.

The tools DATA [75] and CacheD [74] detect potential cache-side-channel
leakage in software based on execution traces. DATA is based on statistical meth-
ods and CacheD is based on symbolic execution and constraint solving. Both,
DATA and CacheD are intended to support developers in debugging against
cache side channels. They do not provide any security guarantees.

Cache-Side-Channel Attacks. Cache-side-channel attacks were first dis-
cussed by Page [60] in 2002. Since then, multiple variants have been devel-
oped, including access-based attacks like Prime+Probe, Evict+Time [59] or
Flush+Reload [77], trace-based attacks [1] and time-based attacks [7]. Cache-
side-channel attacks have also been mounted in the cloud [66] and on mobile
devices [43,71]. Recently, cache-side-channel attacks became an even more seri-
ous concern based on their role in the Spectre [39] and Meltdown [44] attacks.

Security of Quantum-Channel Transmissions. The key idea of QKD is to
create a setup where eavesdropping can be detected. To this end, information
is encoded into photons [6,21], e.g., using equipment like beam splitters and
photodiodes as in [23]. Atoms have been considered as an alternative to photons,
e.g., in [26]. An eavesdropper will likely destroy the correlation (measured, e.g.,
using quantum discord, classical correlation or quantum entanglement [2,58])
between the particles on the sender and receiver side. Thus, there will be a higher
error rate in the transmission, by which the eavesdropper can be detected.

Existing research about attacks on QKD focuses primarily on attacking the
quantum channel. Existing attacks include, e.g., the injection of bright light [45],
the manipulation of the data received by Bob through adversarially constructed
light pulses [47], tricking Alice’s hardware into producing an erroneous encoding
in the photons [27], or time-shifting the transmitted qbits [63].

Quantum Quantitative Information Theory. While we apply classical
information theory in the context of quantum cryptography, Américo and
Malacaria [4] apply concepts from the context of quantum systems to infor-
mation theory. The applications presented in [4] are based on classical systems.
They use a notion of quantum quantitative information flow (QQIF) to model
the choice between different attacks and to model probabilistic program behav-
ior. But the aim of QQIF is to also quantify the security of quantum systems.
In the future, a combination of QQIF and our analysis might be an interesting
direction for generalizing the integration between security guarantees in quan-
tum cryptography.

9 Conclusion

We presented a solution for quantitative security of QKD, which takes Physics
and Computer Science into consideration, at the example of cache side channels.

Our program analysis is the first for automatically computing reliable upper
bounds on the cache-side-channel leakage of x86 binaries that use floating-point

252 A. Weber et al.

instructions. We evaluated the analysis on a simplified implementation of the
QKD protocol BB84 and subsequently lifted the results to the original code.

During the evaluation, we discovered a vulnerability in the original code that
might leak the entire secret key. The vulnerability is caused by an optimization
in the application of an LDPC matrix to the secret key. Note that QKD is not
the only place where LDPC is applied to secret information. Applications of
LDPC to secrets can also be found, for instance, in post-quantum cryptography
[5] and, hence, our findings should be of interest beyond QKD.

We showed how to mitigate the vulnerability by program rewriting and pre-
sented a parametric mitigation that combines the physical and software parts of
QKD. Since currently the exchange of polarized photons is the performance bot-
tleneck, a purely rewriting-based mitigation provides the best results to date.
As improving the performance of the photon exchange is subject to intensive
research, we expect progress in the future that might affect the trade-off, and
our finding about the best trade-off should then be revisited.

Acknowledgements. Funded by the Deutsche Forschungsgemeinschaft (DFG, Ger-
man Research Foundation) - SFB 1119 - 236615297. We also gratefully acknowledge
support by the German Federal Ministry of Education and Research and the Hessian
Ministry of Higher Education, Research, Science and the Arts within their joint support
of the National Research Center for Applied Cybersecurity ATHENE. We thank the
reviewers and Boris Köpf for their helpful comments, Tim Weißmantel for his imple-
mentation contributions, and the authors of CacheAudit for making the tool publicly
available.

References

1. Acıiçmez, O., Koç, Ç.K.: Trace-driven cache attacks on AES (short paper). In:
Ning, P., Qing, S., Li, N. (eds.) ICICS 2006. LNCS, vol. 4307, pp. 112–121. Springer,
Heidelberg (2006). https://doi.org/10.1007/11935308 9

2. Ali, M., Rau, A.R.P., Alber, G.: Quantum discord for two-qubit X states. Phys.
Rev. A 81(4), 042105-1–042105-7 (2010)

3. Alvim, M.S., Chatzikokolakis, K., Palamidessi, C., Smith, G.: Measuring informa-
tion leakage using generalized gain functions. In: CSF, pp. 265–279 (2012)

4. Américo, A., Malacaria, P.: QQIF: quantum quantitative information flow (invited
paper). In: HotSpot, pp. 1–10 (2020)

5. Baldi, M., Bianchi, M., Maturo, N., Chiaraluce, F.: Improving the efficiency of the
LDPC code-based McEliece cryptosystem through irregular codes. In: ISCC, pp.
000197–000202 (2013)

6. Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and
coin tossing. In: CSSP, pp. 175–179 (1984)

7. Bernstein, D.J.: Cache-timing attacks on AES. Technical report, University of Illi-
nois (2005)

8. Bindel, N., Buchmann, J., Krämer, J., Mantel, H., Schickel, J., Weber, A.: Bound-
ing the cache-side-channel leakage of lattice-based signature schemes using program
semantics. In: Imine, A., Fernandez, J.M., Marion, J.-Y., Logrippo, L., Garcia-
Alfaro, J. (eds.) FPS 2017. LNCS, vol. 10723, pp. 225–241. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-75650-9 15

https://doi.org/10.1007/11935308_9
https://doi.org/10.1007/978-3-319-75650-9_15

Cache-Side-Channel Quantification and Mitigation 253

9. Brassard, G., Salvail, L.: Secret-key reconciliation by public discussion. In: Helle-
seth, T. (ed.) EUROCRYPT 1993. LNCS, vol. 765, pp. 410–423. Springer, Heidel-
berg (1994). https://doi.org/10.1007/3-540-48285-7 35

10. Brotzman, R.L., Liu, S.L., Zhang, D., Tan, G., Kandemir, M.T.: CaSym: cache
aware symbolic execution for side channel detection and mitigation. In: S&P, pp.
505–521 (2018)

11. Cho, J.Y., Szyrkowiec, T., Griesser, H.: Quantum key distribution as a service. In:
QCrypt, pp. 1–3 (2017)

12. Chothia, T., Kawamoto, Y., Novakovic, C.: A tool for estimating information leak-
age. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 690–695.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39799-8 47

13. Chothia, T., Kawamoto, Y., Novakovic, C.: LeakWatch: estimating information
leakage from Java programs. In: Kuty�lowski, M., Vaidya, J. (eds.) ESORICS 2014.
LNCS, vol. 8713, pp. 219–236. Springer, Cham (2014). https://doi.org/10.1007/
978-3-319-11212-1 13

14. Cock, D., Ge, Q., Murray, T., Heiser, G.: The last mile: an empirical study of
timing channels on seL4. In: CCS, pp. 570–581 (2014)

15. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: POPL, pp.
238–252 (1977)

16. Dewald, F., Mantel, H., Weber, A.: AVR processors as a platform for language-
based security. In: Foley, S.N., Gollmann, D., Snekkenes, E. (eds.) ESORICS 2017.
LNCS, vol. 10492, pp. 427–445. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-66402-6 25

17. Diamanti, E., Lo, H.K., Qi, B., Yuan, Z.: Practical challenges in quantum key
distribution. NPJ Quantum Inf. 2(1), 1–12 (2016)

18. Dixon, A.R., Sato, H.: High speed and adaptable error correction for megabit/s
rate quantum key distribution. Sci. Rep. 4(7275), 1–6 (2014)

19. Doychev, G., Köpf, B.: Rigorous analysis of software countermeasures against cache
attacks. In: PLDI, pp. 406–421 (2017)

20. Doychev, G., Köpf, B., Mauborgne, L., Reineke, J.: CacheAudit: a tool for the
static analysis of cache side channels. ACM Trans. Inf. Syst. Secur. 18(1), 4:1–4:32
(2015)

21. Ekert, A.K.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett.
67(6), 661–663 (1991)

22. Elkouss, D., Leverrier, A., Alléaume, R., Boutros, J.H.: Efficient reconciliation
protocol for discrete-variable quantum key distribution. In: ISIT, pp. 1879–1883
(2009)

23. Euler, S., Beier, M., Sinther, M., Walther, T.: Spontaneous parametric down-
conversion in waveguide chips for quantum information. In: AIP Conference Pro-
ceedings, vol. 1363, no. 1, pp. 323–326 (2011)

24. Fardan, N.J.A., Paterson, K.G.: Lucky thirteen: breaking the TLS and DTLS
record protocols. In: S&P, pp. 526–540 (2013)

25. Fraunhofer HHI: Fraunhofer HHI participates in major initiative for Quantum
Communication supported by German Federal Ministry of Education and Research
(2019). https://www.hhi.fraunhofer.de/en/press-media/news/2019/fraunhofer-
hhi-participates-in-major-initiative-for-quantum-communication-supported-by-
german-federal-ministry-of-education-and-research.html. Accessed 30 Sept 2020

26. Fry, E.S., Walther, T., Li, S.: Proposal for a loophole-free test of the Bell inequal-
ities. Phys. Rev. A 52(6), 4381–4395 (1995)

https://doi.org/10.1007/3-540-48285-7_35
https://doi.org/10.1007/978-3-642-39799-8_47
https://doi.org/10.1007/978-3-319-11212-1_13
https://doi.org/10.1007/978-3-319-11212-1_13
https://doi.org/10.1007/978-3-319-66402-6_25
https://doi.org/10.1007/978-3-319-66402-6_25
https://www.hhi.fraunhofer.de/en/press-media/news/2019/fraunhofer-hhi-participates-in-major-initiative-for-quantum-communication-supported-by-german-federal-ministry-of-education-and-research.html
https://www.hhi.fraunhofer.de/en/press-media/news/2019/fraunhofer-hhi-participates-in-major-initiative-for-quantum-communication-supported-by-german-federal-ministry-of-education-and-research.html
https://www.hhi.fraunhofer.de/en/press-media/news/2019/fraunhofer-hhi-participates-in-major-initiative-for-quantum-communication-supported-by-german-federal-ministry-of-education-and-research.html

254 A. Weber et al.

27. Fung, C.H.F., Qi, B., Tamaki, K., Lo, H.K.: Phase-remapping attack in practical
quantum-key-distribution systems. Phys. Rev. A 75(3), 032314-1–032314-12 (2007)

28. Gallager, R.: Low-density parity-check codes. IRE Trans. Inf. Theory 8(1), 21–28
(1962)

29. Gehring, T., et al.: Implementation of continuous-variable quantum key distribu-
tion with composable and one-sided-device-independent security against coherent
attacks. Nat. Commun. 6(8795), 1–7 (2015)

30. Geihs, M., et al.: The status of quantum-key-distribution-based long-term secure
Internet communication. IEEE T-SUSC 6(1), 19–29 (2021)

31. Gisin, N., Ribordy, G., Tittel, W., Zbinden, H.: Quantum cryptography. Rev. Mod.
Phys. 74(1), 145–195 (2002)

32. GitHub Inc: Forks of radfordneal/LDPC-codes (2019). https://github.com/
radfordneal/LDPC-codes/network/members. Accessed 30 Sept 2020

33. Gullasch, D., Bangerter, E., Krenn, S.: Cache games - bringing access-based cache
attacks on AES to practice. In: S&P, pp. 490–505 (2011)

34. Hui, C., Wang, Y., Lu, X.: Implementation of a high throughput LDPC codec in
FPGA for QKD system. In: ICSICT, pp. 1494–1496 (2016)

35. IEEE Computer Society: IEEE Standard for Information technology - Telecommu-
nications and information exchange between systems - Local and metropolitan area
networks - Specific requirements - Part 11: Wireless LAN Medium Access Control
(MAC) and Physical Layer (PHY) Specifications - Amendment 5: Enhancements
for Higher Throughput. Technical report. IEEE Std 802.11n-2009, IEEE (2009)

36. Institute for Quantum Optics and Quantum Information, Austrian Academy of Sci-
ences: QUAPITAL: Building the first reliable Quantum Internet on top of Europe’s
glass fiber network (2020). https://quapital.eu/. Accessed 30 Sept 2020

37. Intel Corporation: IntelR© 64 and IA-32 Software Developer’s Manual. Order Num-
ber: 325462–069US (2019)

38. Jouguet, P., Kunz-Jacques, S., Leverrier, A., Grangier, P., Diamanti, E.: Experi-
mental demonstration of long-distance continuous-variable quantum key distribu-
tion. Nat. Photonics 7(5), 378–381 (2013)

39. Kocher, P., et al.: Spectre attacks: exploiting speculative execution. In: S&P, pp.
1–19 (2019)

40. Köpf, B., Mauborgne, L., Ochoa, M.: Automatic quantification of cache side-
channels. In: Madhusudan, P., Seshia, S.A. (eds.) CAV 2012. LNCS, vol. 7358, pp.
564–580. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31424-
7 40

41. Köpf, B., Smith, G.: Vulnerability bounds and leakage resilience of blinded crypto-
graphy under timing attacks. In: CSF, pp. 44–56 (2010)

42. Laser and Quantum Optics group (LQO) at TU Darmstadt: Open source software
for control of the quantum key distribution and its postprocessing (2020). https://
git.rwth-aachen.de/oleg.nikiforov/qkd-tools. Accessed 07 Sept 2020

43. Lipp, M., Gruss, D., Spreitzer, R., Maurice, C., Mangard, S.: ARMageddon: cache
attacks on mobile devices. In: USENIX Security, pp. 549–564 (2016)

44. Lipp, M., et al.: Meltdown: reading kernel memory from user space. In: USENIX
Security, pp. 973–990 (2018)

45. Lydersen, L., Wiechers, C., Wittmann, C., Elser, D., Skaar, J., Makarov, V.: Hack-
ing commercial quantum cryptography systems by tailored bright illumination.
Nat. Photonics 4(10), 686–689 (2010)

46. MacKay, D.J.C., Neal, R.M.: Near Shannon limit performance of low density parity
check codes. Electron. Lett. 32(18), 1645–1646 (1996)

https://github.com/radfordneal/LDPC-codes/network/members
https://github.com/radfordneal/LDPC-codes/network/members
https://quapital.eu/
https://doi.org/10.1007/978-3-642-31424-7_40
https://doi.org/10.1007/978-3-642-31424-7_40
https://git.rwth-aachen.de/oleg.nikiforov/qkd-tools
https://git.rwth-aachen.de/oleg.nikiforov/qkd-tools

Cache-Side-Channel Quantification and Mitigation 255

47. Makarov, V., Hjelme, D.R.: Faked states attack on quantum cryptosystems. J.
Mod. Opt. 52(5), 691–705 (2005)

48. Malacaria, P., Khouzani, M., Pasareanu, C.S., Phan, Q., Luckow, K.S.: Symbolic
side-channel analysis for probabilistic programs. In: CSF, pp. 313–327 (2018)

49. Mantel, H., Schickel, J., Weber, A., Weber, F.: How secure is green IT? The case
of software-based energy side channels. In: Lopez, J., Zhou, J., Soriano, M. (eds.)
ESORICS 2018. LNCS, vol. 11098, pp. 218–239. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-99073-6 11

50. Mantel, H., Starostin, A.: Transforming out timing leaks, more or less. In: Pernul,
G., Ryan, P.Y.A., Weippl, E. (eds.) ESORICS 2015. LNCS, vol. 9326, pp. 447–467.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24174-6 23

51. Mantel, H., Weber, A., Köpf, B.: A systematic study of cache side channels across
AES implementations. In: Bodden, E., Payer, M., Athanasopoulos, E. (eds.) ESSoS
2017. LNCS, vol. 10379, pp. 213–230. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-62105-0 14

52. Milicevic, M., Feng, C., Zhang, L.M., Gulak, P.G.: Quasi-cyclic multi-edge LDPC
codes for long-distance quantum cryptography. NPJ Quantum Inf. 4(21), 1–9
(2018)

53. Mohammad, O.K.J., Abbas, S.: Detailed quantum cryptographic service and data
security in cloud computing. In: Alfaries, A., Mengash, H., Yasar, A., Shakshuki,
E. (eds.) ICC 2019. CCIS, vol. 1097, pp. 43–56. Springer, Cham (2019). https://
doi.org/10.1007/978-3-030-36365-9 4

54. Molnar, D., Piotrowski, M., Schultz, D., Wagner, D.: The program counter security
model: automatic detection and removal of control-flow side channel attacks. In:
Won, D.H., Kim, S. (eds.) ICISC 2005. LNCS, vol. 3935, pp. 156–168. Springer,
Heidelberg (2006). https://doi.org/10.1007/11734727 14

55. Neal, R.M.: Software for Low Density Parity Check Codes, Version 2012–02-11
(2012). http://www.cs.utoronto.ca/∼radford/ftp/LDPC-2012-02-11/. Accessed 20
Sept 2020

56. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information:
10th Anniversary Edition. Cambridge University Press, New York (2011)

57. Notz, P., Nikiforov, O., Walther, T.: Software bundle for data post-processing in a
quantum key distribution experiment. Technical report, TU Darmstadt (2020)

58. Ollivier, H., Zurek, W.H.: Quantum discord: a measure of the quantumness of
correlations. Phys. Rev. Lett. 88(1), 017901-1–017901-4 (2002)

59. Osvik, D.A., Shamir, A., Tromer, E.: Cache attacks and countermeasures: the
case of AES. In: Pointcheval, D. (ed.) CT-RSA 2006. LNCS, vol. 3860, pp. 1–20.
Springer, Heidelberg (2006). https://doi.org/10.1007/11605805 1

60. Page, D.: Theoretical use of cache memory as a cryptanalytic side-channel. IACR
Cryptology ePrint Archive 2002(169), 1–23 (2002)

61. Pearson, D.: High-speed QKD reconciliation using forward error correction. In:
AIP Conference Proceedings, vol. 734, no. 1, pp. 299–302 (2004)

62. Poddar, R., Datta, A., Rebeiro, C.: A cache trace attack on CAMELLIA. In:
Joye, M., Mukhopadhyay, D., Tunstall, M. (eds.) InfoSecHiComNet 2011. LNCS,
vol. 7011, pp. 144–156. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-24586-2 13

63. Qi, B., Fung, C.H.F., Lo, H.K., Ma, X.: Time-shift attack in practical quantum
cryptosystems. Quantum Inf. Comput. 7(1), 73–82 (2006)

64. Rebeiro, C., Mukhopadhyay, D.: Differential cache trace attack against clefia. IACR
Cryptology ePrint Archive 2010(012), 1–11 (2010)

https://doi.org/10.1007/978-3-319-99073-6_11
https://doi.org/10.1007/978-3-319-99073-6_11
https://doi.org/10.1007/978-3-319-24174-6_23
https://doi.org/10.1007/978-3-319-62105-0_14
https://doi.org/10.1007/978-3-319-62105-0_14
https://doi.org/10.1007/978-3-030-36365-9_4
https://doi.org/10.1007/978-3-030-36365-9_4
https://doi.org/10.1007/11734727_14
http://www.cs.utoronto.ca/~radford/ftp/LDPC-2012-02-11/
https://doi.org/10.1007/11605805_1
https://doi.org/10.1007/978-3-642-24586-2_13
https://doi.org/10.1007/978-3-642-24586-2_13

256 A. Weber et al.

65. Renner, R.: Security of quantum key distribution. Ph.D. thesis, Swiss Federal Insti-
tute of Technology Zurich (2005)

66. Ristenpart, T., Tromer, E., Shacham, H., Savage, S.: Hey, you, get off of my cloud:
exploring information leakage in third-party compute clouds. In: CCS, pp. 199–212
(2009)

67. Sasaki, M., et al.: Field test of quantum key distribution in the Tokyo QKD net-
work. Opt. Express 19(11), 10387–10409 (2011)

68. Schmitt-Manderbach, T., et al.: Experimental demonstration of free-space decoy-
state quantum key distribution over 144 km. Phys. Rev. Lett. 98(1), 010504-1–
010504–4 (2007)

69. Schwarz, M., et al.: KeyDrown: eliminating software-based keystroke timing side-
channel attacks. In: NDSS, pp. 1–15 (2018)

70. Smith, G.: On the foundations of quantitative information flow. In: de Alfaro, L.
(ed.) FoSSaCS 2009. LNCS, vol. 5504, pp. 288–302. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-00596-1 21

71. Spreitzer, R., Moonsamy, V., Korak, T., Mangard, S.: Systematic classification of
side-channel attacks: a case study for mobile devices. IEEE Commun. Surv. Tutor.
20(1), 465–488 (2018)

72. Vest, G., et al.: Design and evaluation of a handheld quantum key distribution
sender module. IEEE J. Sel. Top. Quantum Electron. 21(3), 131–137 (2015)

73. Walenta, N., et al.: A fast and versatile quantum key distribution system with
hardware key distillation and wavelength multiplexing. New J. Phys. 16(013047),
1–20 (2014)

74. Wang, S., Wang, P., Liu, X., Zhang, D., Wu, D.: CacheD: identifying cache-based
timing channels in production software. In: USENIX Security, pp. 235–252 (2017)

75. Weiser, S., Zankl, A., Spreitzer, R., Miller, K., Mangard, S., Sigl, G.: DATA –
differential address trace analysis: finding address-based side-channels in binaries.
In: USENIX Security, pp. 603–620 (2018)

76. Xu, F., Ma, X., Zhang, Q., Lo, H.K., Pan, J.W.: Secure quantum key distribution
with realistic devices. Rev. Mod. Phys. 92(2), 025002-1–025002-60 (2020)

77. Yarom, Y., Falkner, K.: FLUSH+RELOAD: a high resolution, low noise, L3 cache
side-channel attack. In: USENIX Security, pp. 719–732 (2014)

78. Zhang, Q., Xu, F., Li, L., Liu, N.L., Pan, J.W.: Quantum information research in
China. Quantum Sci. Technol. 4(040503), 1–7 (2019)

https://doi.org/10.1007/978-3-642-00596-1_21

Genetic Algorithm Assisted
State-Recovery Attack

on Round-Reduced Xoodyak

Zimin Zhang, Wenying Zhang(B), and Hongfang Shi

School of Information Science and Engineering, Shandong Normal University,
Jinan 250358, China

zhangwenying@sdnu.edu.cn

Abstract. Genetic algorithm (GA) has led to significant improvements
in many challenging tasks, including combinatorial optimization, signal
processing, and artificial life. It shows enormous potential for cryptanal-
ysis. This paper designed a heuristic algorithm based on GA for the
known-plaintext attack on round-reduced Xoodyak, a finalist of the NIST
lightweight cryptography project, under the nonce-respecting setting. To
accomplish this, we firstly remodel Xoodoo, the underlying permutation
of Xoodyak, portraying it as a function whose input and output are con-
tinuous variables defined in [0, 1], representing the likelihood that each
bit is equal to 1 and describing the goal of cryptanalysis as an objective
function optimized with GA secondly. Consequently, we can abstract the
potential information of the unknown state of Xoodyak from the results
given by GA. Compared with traditional methods, ours requires less
knowledge about complex cryptanalysis as GA can work well with lower
complexity, both in time complexity and data complexity, and can be
carried out under more restricted conditions.

Keywords: Xoodyak · Xoodoo · Genetic algorithm · AEAD ·
Known-plaintext attack

1 Introduction

As the foundation of information security, cryptography plays a vital role in mod-
ern society. The three prime goals of cryptography are confidentiality, integrity,
and authenticity. Therefore, designing a cryptographic primitive that can protect
the data from eavesdropping or tampering and enable the receiver to authen-
ticate the data source has become an inevitable demand for cryptography to
develop.

Authenticated encryption (AE) and its variant authenticated encryption with
associated data (AEAD) are cryptographic primitives that can encrypt data and
generate message authentication code (MAC) simultaneously, providing confi-
dentiality, integrity, and authenticity for data. The study of AE started late
last century when combining an encryption algorithm and a hash function was
c© Springer Nature Switzerland AG 2021
E. Bertino et al. (Eds.): ESORICS 2021, LNCS 12973, pp. 257–274, 2021.
https://doi.org/10.1007/978-3-030-88428-4_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-88428-4_13&domain=pdf
https://doi.org/10.1007/978-3-030-88428-4_13

258 Z. Zhang et al.

the primary way for designing an AE algorithm. The cryptographers developed
three authenticated encryption modes: Encrypt-then-MAC (EtM), Encrypt-and-
MAC (E&M), and MAC-then-Encrypt (MtE) [2]. These modes have the virtue
of versatility and the vice of unconvincing security, so they are not satisfactory
results.

Another approach is to design brand-new cryptographic algorithms that
interweave the encryption and authentication process by sharing computa-
tion and strives for better security, applicability, and robustness for algo-
rithms designed in this fashion. Under the leadership of Bernstein, an AE
algorithm competition, CAESAR, was launched in January 2013. The com-
petition received extensive attention worldwide, collected 57 algorithms till
March 2014, and attracted numerous scholars to conduct a series of cryptanal-
ysis on these algorithms, which significantly promoted the progress of AE. In
July 2015, the competition selected 29 algorithms to enter the next round of
evaluation. Several algorithms (like Ascon, ICEPOLE, Ketje, Keyak, NORX,
and PAEQ) [1,4,8,9,16,19] adopt sponge structure, and four algorithms were
designed based on Keccak [3]-like permutation among them. Besides, NIST
has initiated a process to solicit, evaluate, and standardize AEAD and hash-
ing for restricted environments. Several algorithms with such structure have
been selected for finalists, such as ASCON [8] and Xoodyak [6]. As can be seen,
the idea of coupling sponge structure and Keccak-like permutation greatly influ-
ences AE algorithms’ design. How to effectively evaluate the performance of the
algorithms as mentioned above and propose new analysis methods based on the
unique design of AE algorithms has also become a concern.

Xoodyak, one of the finalists for the NIST’s Lightweight Cryptography
project, is the official AEAD scheme based on Xoodoo (a Keccak-like permu-
tation proposed by Daemen et al. on ToSC 2018 [5]). Xoodyak accord with
the characteristics we mentioned above, and the analysis of the Xoodyak will
help us understand such structure more deeply. Most current analysis methods
against Xoodyak share a common feature: the attack needs to be carried out
under the nonce-reuse settings. That is, the sender encrypts data with the same
nonce, which brings more significant security risks by Xoodyak’s definition. The
method of analyzing Xoodyak under nonce-respecting conditions needs to be
further explored.

Various artificial intelligence (AI) technologies have caused dramatic changes
in many fields, including cryptanalysis [10,12]. Among them, Genetic Algo-
rithm (GA) [11] has led to significant improvements on many challenging tasks.
GA is commonly used to generate high-quality solutions to optimization and
search problems by relying on biologically inspired operators such as mutation,
crossover, and selection. In cryptography, practical work using GA has mainly
focused on side-channel analysis. How to solve the specific problems in crypt-
analysis using GA effectively is worth exploring.

Our Contribution. This paper presents a new cryptoanalysis method for
Xoodyak using GA, which can be carried out under more restricted conditions:
the sender uses a different nonce for each message. We can think of Xoodyak as

GA Assisted State-Recovery Attack on Round-Reduced Xoodyak 259

a black box with input for plaintext and output for ciphertext. The attacker’s
goal is to recover the black box’s internal state by abstracting the potential and
valuable information from plaintext-ciphertext pairs. However, according to the
characteristics of Xoodyak, as the nonce changes, the black box’s internal state
will be entirely different, which means that the attacker can only get one pair of
plaintext-ciphertext for internal state analysis. Under this condition, the means
of attack are extremely limited. Traditional methods like differential attack, lin-
ear attack, and algebraic attack, which need numerous plaintext-ciphertext pairs,
are unlikely to work.

Therefore, we designed a new attack method for this condition. Firstly, we set
each bit of Xoodoo’s internal state as a continuous variable defined in [0, 1], rep-
resenting the likelihood that this bit is equal to 1, in place of a discrete variable
that is either 0 or 1. Secondly, we remodeled Xoodoo so that its input and output
are continuous variables that conform to our definition. Finally, combined with
our model, we portray the target of the attack as an objective function and find
its optimal solutions with the assistant of GA, which are close to the true value
of the unknown state. Based on this, we designed an algorithm for the state-
recovery attack against round-reduced Xoodyak under the nonce-respecting set-
ting. Furthermore, our method can analyze other AE/AEAD algorithms similar
to Xoodyak with a slight modification.

Outline. The rest of the paper is organized as follows. In Sect. 2, we briefly
introduce Xoodoo, Xoodyak, and some notations used in this paper. Then, we
introduce some related works in Sect. 3. In Sect. 4, we introduce our method of
remodeling Xoodoo, followed by an introduction of a new cryptoanalysis method
for Xoodyak based on our model in Sect. 5. We conclude the paper with some
open problems in Sect. 6.

2 Preliminaries

2.1 Notations

– l, h, w are the number of columns, of rows, and of bits on a lane, respectively.
– (i, j, k) is the index of bit.
– (∗, j, k), (i, ∗, k), (i, j, ∗) are the indexes of column, row, and lane.
– One-dimensional index for (i, j, k) = (i + l ∗ j) ∗ w + k
– S[i] the i-th bit of state S in one-dimensional representation.
– S[i : j] the i-th to j-th bits of state S in one-dimensional representation.
– S[{i, j, k}] the i-th, j-th, and the k-th bit of state S in one-dimensional rep-

resentation.
– S[i][j] the lane indexed by (i, j, ∗) of state S.
– S[i][j][k] the bit indexed by (i, j, k) of state S.
– S0 represents the initial state, and Sr represents the state S0 after r rounds

of Xoodoo permutation.
– |x| represents the absolute value of x.
– ||S||1 =

∑
ai∈S |ai|

– Σ denote all kinds of summation operations (+, ⊕, ⊕̄, ⊕̂), the actual meaning
of a specific use instance should be clear from the context.

260 Z. Zhang et al.

2.2 Xoodoo

Xoodoo, proposed by Daemen et al., is a permutation operate on the 384 state
bits whose design is similar to Keccak. As depicted in Fig. 1, the state is arranged
in a three-dimensional matrix of bits S[l][h][w], where l = 4, h = 3, w = 32
(indexed by x, y, z respectively), or in a two-dimensional matrix of 32-bit words
S[l][h]. Xoodoo iteratively applies a round function to a state.

Fig. 1. (a) The Xoodoo state with w reduced to 8 bits, (b) State in 2-dimension with
0 ≤ i ≤ 3 for the index of column and 0 ≤ j ≤ 2 for the index of row.

The round function of Xoodoo has five operations: a mixing layer θ, a plane
shifting ρwest, the addition of round constants ι (see Table 1), a non-linear layer
χ, and another plane shifting ρeast. Round function R = ρeast ◦ χ ◦ ι ◦ ρwest ◦ θ,
and the details are as follows:

θ : S[x][y][z] = S[x][y][z] ⊕
∑2

j=0
(S[x − 1][j][z − 5] ⊕ S[x − 1][j][z − 14]).

ρwest : S[x][1][z] = S[x − 1][1][z], S[x][2][z] = S[x][2][z − 11].
ι : S[0][0] = S[0][0] ⊕ RCi. (1)
χ : S[x][y][z] = S[x][y][z] ⊕ ((S[x][y + 1][z] ⊕ 1) ∧ S[x][y + 2][z]).
ρeast : S[x][1][z] = S[x][1][z − 1], S[x][2][z] = S[x − 2][2][z − 8].

χ is the only non-linear operation in the Xoodoo, which can be treated as a
3-bit S-box (Table 2) acting on each column of Xoodoo’s state. Xoodoo can be
parameterized by its number of rounds r and denoted Xoodoor.

2.3 Xoodyak

As a finalist of the NIST lightweight cryptography project, Xoodyak has an
AEAD scheme combined with Xoodoo permutation and sponge structure, which
uses a new operation mode called Cyclist. As shown in Fig. 2, f is the 12-round

GA Assisted State-Recovery Attack on Round-Reduced Xoodyak 261

Table 1. The round constants RCi with 0 ≤ i ≤ 11, in hexadecimal notation (the
least significant bit is at z = 0)

i RCi i RCi i RCi i RCi

0 0x00000058 3 0x000000D0 6 0x00000060 9 0x000000F0

1 0x00000038 4 0x00000120 7 0x0000002C 10 0x000001A0

2 0x000003C0 5 0x00000014 8 0x00000380 11 0x00000012

Table 2. The S-box of Xoodoo

x 0 1 2 3 4 5 6 7

S(x) 0 5 3 2 6 1 4 7

permutation Xoodoo12. Xoodyak first absorbs the 128-bit key into the 384 bits
internal state and refreshes the state through Xoodoo12. Then, absorb a 128-bit
nonce and refresh by Xoodoo12, absorb 192-bit associated data and refresh; then
absorb the 192-bit plaintext and output the ciphertext; then enter the finalization
stage. Please refer to [6] for more details.

Fig. 2. Framework of Xoodyak-AEAD, where the finalization is omitted.

According to the settings, the attacker can obtain half the state information
before and after permutation through M0 ⊕ C0 and M1 ⊕ C1 respectively. The
attacker’s goal is to recover the other 192 unknown bits. Once the whole 384-bit
state is known, the attacker can compute the key inversely.

3 Related Works

Related Cryptographic Work: Song and Guo [17] gave the first Key-recovery
attack on 6-round Xoodoo-AE, an artificial AE algorithm using Xoodoo in Ketje
style. Li et al. [13] proposed a new conditional cube attack on Keccak, which
reduces the time complexity of the key-recovery attack against 7-round Keccak-
MAC-512. Then, Zhou et al. [21] found a new property on Li et al.’s method,
modified the new conditional cube attack, and applied it to 6-round Xoodyak.

262 Z. Zhang et al.

Liu et al. constructed a practical zero-sum distinguisher for 12-round Xoodoo
in [14]. Liu et al. [15] developed a new technology called rotational differential-
linear cryptanalysis and applied it to Xoodoo. These works directly or indirectly
examined the security of Xoodyak.

Prior Work on GA in Cryptanalysis mainly concentrated on the side chan-
nel. In 2015, Zhang et al. [20] presented a GA-based correlation power analysis
(CPA), which took full use of information in the power consumption traces gen-
erated by multiple S-boxes. Ding et al. [7] also proposed a method using GA to
conduct attack on bitwise linear leakages in 2020. Wang et al. [18] put forward
a GA-CPA framework that improves the convergence rate of GA and reduces
the number of traces required in the power analysis on cryptographic algorithms
implemented with parallel S-boxes and large noise.

4 Remodel Xoodoo

As shown in Fig. 3, the output of Xoodoo are functions of the input variables, and
these variables are discrete variables defined in {0, 1}. When the function’s input
changes slightly, the function’s output will change dramatically. This change is
almost random, and it is challenging to reveal its laws. To reveal the pattern
that output changes with input, we need to remodel the Xoodoo permutation.
Firstly, set each bit of Xoodoo’s internal state as a continuous variable defined in
[0, 1], representing the likelihood that this bit is equal to 1. The larger the value,
the higher the likelihood that the bit is equal to 1. Conversely, the smaller the
value, the greater the likelihood that the bit is equal to 0. Secondly, Remodel the
components of the round function into continuous functions, whose input and
output variables conform to our definition. Finally, we assemble the remodeled
components into a continuous version of Xoodoo. In this manner, the output of
Xoodoo convert to continuous functions of the input variables. When an input
variable changes in a continuous field of definition, the output variables will also
change in a continuous domain, revealing more information about input and
output relations.

Since Xoodoo’s ρwest and ρeast are shift operations, we just need to shift
the variables according to the setting. The critical part of modeling is the re-
characterization of the linear and the nonlinear layer of Xoodoo.

4.1 Remodel Linear Layer

The key to remodeling the linear layer is to re-portrait the operator ⊕. Set two
independent bits a and b, p(a ⊕ b = 1) = p(a �= b), and p(a �= b) = p(a = 1; b =
0) + p(a = 0; b = 1) = p(a = 1)(1 − p(b = 1))+p(b = 1)(1 − p(a = 1)). Namely,

p(a ⊕ b = 1) = p(a = 1) + p(b = 1) − 2p(a = 1)p(b = 1). (2)

Therefore, we can define the operator ⊕̄, for two continuous variables x, y
defined in [0, 1], x⊕̄y = x + y − 2xy. In particular x⊕̄1 = 1 − x and x⊕̄0 = x.

GA Assisted State-Recovery Attack on Round-Reduced Xoodyak 263

Fig. 3. Each output bit of Xoodoo is a function of all input bits. We can denote these
functions as fr

i , where 0 ≤ i ≤ 383 represent the ith output of Sr.

For Xoodoo’s component ι, since the round constants have been determined, we
can replace ⊕ in ι with ⊕̄ so that ι′ can handle continuous variables.

ι′ : S[0][0] = S[0][0]⊕̄RCi. (3)

Unfortunately, we cannot use ⊕̄ instead of ⊕ in θ directly. We can observe
from the function image shown in Fig. 4(a) that the function’s change rate is very
low in the central area, which will cause the corresponding relationship between
input and output to become insignificant in this area. Besides, according to the
optimization theory, this function will easily make the optimizer fall into the
local optimum, and it is not easy to get the desired results. Therefore, we need
to reduce the area in which the rate of function change is low.

The Sigmoid function is a monotonic increasing function that is often used as
the activation function of neural networks to map variables between 0 and 1. The
function is smooth, easy to derive, and the rate of function change increases as x
approaches 0. Sigmoid(x) = 1/1+e−x. According to these characteristics of the
Sigmoid function, we can define the operator ⊕̂, for two continuous variables x, y
defined in [0, 1], x⊕̂y = Sigmoid[w((x⊕̄y) − 0.5)] where w is the enhancement
coefficient, the larger the value, the more drastic the function changes. This
paper defaults the w to 10. If we bring in x = p(a = 1), y = p(b = 1), the value
of x⊕̂y can be treated as a measure of likelihood that a ⊕ b = 1. It can be seen
from Fig. 4(b) that the slow-changing area is reduced. Consequently, we can use
⊕̂ instead of ⊕ in θ to complete the operation θ remodeling.

θ′ : S[x][y][z] = S[x][y][z]⊕̂
∑2

j=0
(S[x − 1][j][z − 5]⊕̂S[x − 1][j][z − 14]). (4)

Finally, we can replace θ and ι in Xoodoo with θ′ and ι′. Similarly, we can
remodel the inverse functions θ−1 and ι−1 to get θ−1′, ι−1′.

264 Z. Zhang et al.

Fig. 4. (a) The function image of ⊕̄. (b) The function image of ⊕̂ with w = 10.

4.2 Remodel Non-linear Layer

χ can be treated as a 3-bit S-box (Table 2) acting on each column of Xoodoo’s
state. This S-box maps a point containing three discrete variables to another,
namely Sbox(x, y, z) = (a, b, c). In addition, since Sbox(Sbox(x, y, z)) = (x, y, z),
χ = χ−1. According to these characteristics, the re-characterize χ′ should be a
self-reciprocal function of continuous point in three-dimensional space. We first
turn our attention to S-box, according to our remodeled linear layer, the point
entering the S-box consist of three continuous variables defined in [0, 1], which
respectively represent the likelihood that x, y, and z are equal to 1.

We assume that x, y, and z are independent bits. When we know the value of
p(x = 1), p(y = 1), and p(z = 1), we can calculate the probability of each value
of the point (a, b, c) as shown in Table 3. Based on this, we can get p(a = 1) =
p1+p4+p6+p7, p(b = 1) = p2+p3+p4+p7, p(c = 1) = p1+p2+p5+p7, then define
function Sbox′((p(x = 1), p(y = 1), p(z = 1))) = (p(a = 1), p(b = 1), p(c = 1)).

We may get a deeper understanding of Sbox′ by Fig. 5. S-box determines the
relationships between coordinate systems O(x, y, z) and O′(a, b, c). The input
and output of Sbox′ are continuous points defined in a cube of length 1 whose
eight vertices are the mapping relationship between (x, y, z) and (a, b, c). If we
consider the probability of each vertex as the mass of that vertex, input point
(p(x = 1), p(y = 1), p(z = 1)) is actually the coordinate of the centroid of the
eight vertices in O(x, y, z). The closer the centroid is to a certain vertex, the
more likely this mapping will occur, so the output of point (p(a = 1), p(b =
1), p(c = 1)) is actually the coordinate of the centroid of the eight vertices in
O′(a, b, c). Sbox′ reveals the pattern that dependent variables change with the
variation of independent variables, which facilitates the optimizer to search the
optimization path. For example, if we fix p(y = 1), p(z = 1) at point O, and let
p(x = 1) gradually increases, p(a = 1), p(b = 1) will increase at the same rate,
and p(c = 1) will remain constant.

GA Assisted State-Recovery Attack on Round-Reduced Xoodyak 265

Table 3. Probability of vector (a, b, c) taking each value

i (x, y, z) (a, b, c) = Sbox(x, y, z) Probability pi

0 (0, 0, 0) (0, 0, 0) (1 − p(x = 1))(1 − p(y = 1))(1 − p(z = 1))

1 (0, 0, 1) (1, 0, 1) (1 − p(x = 1))(1 − p(y = 1))p(z = 1)

2 (0, 1, 0) (0, 1, 1) (1 − p(x = 1))p(y = 1)(1 − p(z = 1))

3 (0, 1, 1) (0, 1, 0) (1 − p(x = 1))p(y = 1)p(z = 1)

4 (1, 0, 0) (1, 1, 0) p(x = 1)(1 − p(y = 1))(1 − p(z = 1))

5 (1, 0, 1) (0, 0, 1) p(x = 1)(1 − p(y = 1))p(z = 1)

6 (1, 1, 0) (1, 0, 0) p(x = 1)p(y = 1)(1 − p(z = 1))

7 (1, 1, 1) (1, 1, 1) p(x = 1)p(y = 1)p(z = 1)

Fig. 5. Image understanding of Sbox′

We define the χ′ operation as letting Sbox′ act on each column of the state
so that Xoodoo’s nonlinear layer can handle continuous variables. It is easy to
verify, χ′−1=χ′.

4.3 Assemble into Xoodoo′

In summary, we can get Xoodoo′=ρeast ◦χ′ ◦ι′ ◦ρwest ◦θ′ and its inverse function
Xoodoo′−1=θ′−1 ◦ ρwest

−1 ◦ ι′−1 ◦ χ′−1 ◦ ρeast
−1, whose input and output are

both 384-dimensional vectors and each dimension of the vector is a continuous
variable defined in [0, 1]. It is worth noting that we assume that each bit in the
state is mutually independent when modeling. However, there are various linear
and nonlinear relationships between the bits, so this assumption does not square
with the fact. Nevertheless, from the experimental results, the impact of these
relationships is negligible. Considering these relationships will not significantly

266 Z. Zhang et al.

improve model precision but will only make the model more complex. Besides,
we omit the addition of round constants in the following sections because it does
not affect the accuracy of the model and the optimization results in GA.

We can design an example to verify the effectiveness of our model. To facil-
itate the observation, we reduce the w in Xoodoo to 8 and adjust our model
accordingly. We can treat the state as a 96-dimensional vector. The following p,
c = Xoodoo(p) are the vector before and after one round mini version of Xoodoo
permutation.

p =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 1 1 0 1 1 0 1 1 0 0 1 1 0 1 1
0 1 1 0 1 0 0 1 1 1 1 0 0 1 0 0
1 1 1 1 1 1 1 0 1 1 1 0 1 1 0 1
1 1 1 0 0 1 0 1 0 0 0 0 0 1 0 1
0 0 0 0 0 1 1 1 0 1 0 1 1 1 0 0
0 0 0 1 1 0 1 1 1 0 1 1 1 0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

c =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 1 0 1 0 0 1 0 1 1 1 0 1 1 1 1
1 1 0 1 0 0 0 0 0 1 0 0 0 1 0 1
1 1 0 1 0 0 1 0 1 0 0 1 1 1 0 1
1 1 0 0 1 1 1 0 0 0 0 0 1 1 0 0
0 1 0 1 0 0 0 1 0 1 0 1 0 0 1 1
1 0 1 1 0 0 0 0 1 0 0 0 0 1 0 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

Then we can design a test vector p′, which is close to p, and we can get
c′ = Xoodoo′(p′) though our model.

p′ =

⎡
⎢⎢⎢⎢⎢⎢⎣

0.61 0.62 0.61 0.13 0.9 0.83 0.09 0.73 0.79 0.06 0.04 0.73 0.86 0.31 0.67 0.76

0.05 0.79 0.93 0.37 0.93 0.21 0.31 0.79 0.65 0.71 0.8 0.23 0.26 0.96 0.01 0.25

0.7 0.84 0.98 0.87 0.76 0.74 0.72 0.09 0.78 0.98 0.75 0.39 0.85 0.65 0.37 0.85

0.78 0.94 0.61 0.15 0.18 0.95 0.07 0.84 0.14 0.13 0.27 0.13 0.27 0.79 0.17 0.75

0.27 0.08 0.25 0.28 0.29 0.6 0.93 0.94 0.07 0.81 0.33 0.71 0.93 0.98 0.25 0.08

0.31 0.3 0.18 0.8 0.76 0.22 0.63 0.88 0.74 0.34 0.87 0.65 0.77 0.25 0.09 0.03

⎤
⎥⎥⎥⎥⎥⎥⎦

c′ =

⎡
⎢⎢⎢⎢⎢⎢⎣

0.18 0.73 0.16 0.69 0.18 0.09 0.79 0.29 0.74 0.8 0.68 0.31 0.83 0.61 0.61 0.76

0.7 0.7 0.09 0.58 0.15 0.17 0.18 0.12 0.22 0.63 0.22 0.19 0.29 0.93 0.32 0.63

0.84 0.75 0.42 0.81 0.17 0.23 0.93 0.36 0.8 0.14 0.43 0.62 0.89 0.81 0.08 0.5

0.86 0.64 0.17 0.32 0.62 0.96 0.84 0.36 0.14 0.37 0.19 0.11 0.69 0.84 0.17 0.16

0.05 0.85 0.35 0.59 0.28 0.19 0.42 0.74 0.28 0.7 0.18 0.6 0.37 0.15 0.82 0.73

0.67 0.34 0.67 0.76 0.34 0.2 0.22 0.33 0.85 0.32 0.08 0.38 0.16 0.67 0.31 0.92

⎤
⎥⎥⎥⎥⎥⎥⎦

We define the error = ||c − c′||1. In this case, error = 23.59. Let a small
variation Δx = 0.1. Since the value of p[0] is 1, the closer the value of p′[0]
is to 1, the smaller the value of error will be. As the experiment proves, the
error decrease to 22.84 when p′[0] + Δx, and the error increase to 26.63 when
p′[0] − Δx.

5 State-Recovery Attack on Round-Reduced Xoodyak

For the convenience of illustration, we continued to use the mini version of
Xoodoo defined above whose states is reduced to 96 bits. As mentioned before,
we can obtain half the state information before and after permutation through

GA Assisted State-Recovery Attack on Round-Reduced Xoodyak 267

S0[i] = M0[i] ⊕ C0[i] and Sr[i] = M1[i] ⊕ C1[i], 0 ≤ i ≤ 47 respectively. Our
goal is to recover the remaining 48-bit unknown state S0[48 : 95] or Sr[48 : 95]
through S0[0 : 47] and Sr[0 : 47]. In this section, we introduce the method of
obtaining information about S0[48 : 95].

5.1 4/5-Round Attack Against Xoodyak

Since Xoodoo is a bijective mapping in {0, 1}96 space: S0

fr

�
f−r

Sr, and half of the

state S0[0 : 47] has been fixed by message(M0 ⊕ C0), the possible values of Sr =
fr(S0) are restricted in {0, 1}48 space. Similarly, since half of the state Sr[0 : 47]
has been fixed by message(M1 ⊕ C1), the possible values of S0 = f−r(Sr) are
also restricted in {0, 1}48 space. Therefore, the feasible states of Xoodoo are
restricted in the intersection of these two spaces. If we can find all the elements
in the intersection and get all feasible solutions of S0[48 : 95], we can count the
frequency of each bit in S0[48 : 95] that is equal to 0 or 1. Due to the limited
number of elements and inadequate permutation caused by shortened rounds, we
can assume that these frequencies are not uniform, and the bits are constrained
to each other. However, the computation complexity of finding the intersection
of these two spaces is too high (248). We can set the unknown bits of S0 as
variable x, S0[48 : 95] = x[0 : 47]. The value of x[i] can be understood as a guess
about the likelihood that the value of the corresponding bit is equal to 1. Then
let error =

∑47
i=0 |Xoodoo′r(S0)[i] − Sr[i]|, which is a function of x. The closer

the value of x is to the feasible value of S0[48 : 95], the lower the error.
We can use GA to search for several optimal feasible solutions of

S0[48 : 95] for minimum error: x1, x2, ..., xn and the corresponding
error1, error2, ..., errorn. These optimal feasible solutions are not necessarily
an approximation of the actual value of S0[48 : 95], but approximations of cer-
tain elements in the intersection of two {0, 1}48 spaces we mentioned earlier and
the smaller the errori corresponding to xi, the closer xi is to these elements.
We can choose a weight wi representing the degree of proximity to calculate the
weighted average of xi[j], where 1 ≤ i ≤ n, 0 ≤ j ≤ 47, which is equivalent
to sampling the feasible solutions for S0[48 : 95]. Eventually, we can use this
information to guess the true value of S0[48 : 95] like Algorithm 1.

Under the setting of r = 4, n = 4, the search process of GA at the first
iteration is shown in Fig. 6. Judging results, GA can reduce the error roughly
to 9.6 in total and 0.2 on average.

Here, we elaborate on one of the experimental results shown in Fig. 6 to
illustrate the effectiveness of GA. We set p and c = Xoodoo4(p) as follows, the
true value of the state we need to recover is true, and one of the results given
by GA is guess. We can classify guess’s value into two categories: let the value
greater than 0.5 equal to 1, the value less than 0.5 equal to 0. According to this
classification method, the correct rate is 62.5%. MostConfident(guess) = 6, and
true[6] == guess[6]. Based on these characteristics, the algorithm we designed
will combine the results given by GA in one iteration to determine the value of

268 Z. Zhang et al.

Algorithm 1. State-recovery Attack on Round-reduced Xoodyak.
Input: Plaintext M0, M1; Ciphertext C0, C1;
Output: Unknown states S0[48 : 95];
1: n is an artificially set parameter representing the number of optimal feasi-

ble solutions that need to be searched by GA, r is the number of attack
rounds, UnknownIndex is the set of unknown state indexes of S0. The function
MostConfident(x) returns the index of the maximum value in the array |x− 0.5|.

2: S0[0 : 47] ← M0 ⊕ C0, Sr[0 : 47] ← M1 ⊕ C1, UnknownIndex ← {48, 49, ..., 95};
3: while UnknownIndex �= ∅ do
4: Define error as

∑47
i=0 |Xoodoo′r(S0)[i] − Sr[i]|;

5: Search optimal solutions x1, ..., xn of S0[UnknownInedx] for min error by GA;

6: w1 ← (1/error1)∑n
i=1 (1/errori)

, w2 ← (1/error2)∑n
i=1 (1/errori)

, ..., wn ← (1/errorn)∑n
i=1 (1/errori)

;

7: Avg x ← ∑n
i=1 wixi;

8: i ← MostConfident(Avg x), j ← UnknownInedx[i];
9: if Avg x[i] > 0.5 then

10: S0[j] ← 1;
11: else if Avg x[i] < 0.5 then
12: S0[j] ← 0;
13: else
14: continue;
15: end if
16: UnknownIndex ← UnknownIndex − {j};
17: end while
18: return S0[48 : 95];

the state with the highest degree of confidence, which will decrease the number
of variables in the next iteration, thereby reducing the GA search space.

p =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 1 1 0 1 1 0 1 1 0 0 1 1 0 1 1
0 1 1 0 1 0 0 1 1 1 1 0 0 1 0 0
1 1 1 1 1 1 1 0 1 1 1 0 1 1 0 1
1 1 1 0 0 1 0 1 0 0 0 0 0 1 0 1
0 0 0 0 0 1 1 1 0 1 0 1 1 1 0 0
0 0 0 1 1 0 1 1 1 0 1 1 1 0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

c =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 0 1 1 1 1 0 0 0 1 1 1 0 1
1 0 0 0 0 0 0 0 0 1 1 0 0 1 0 1
1 0 0 0 0 0 1 1 0 0 1 1 0 1 0 0
1 1 1 0 0 0 0 1 1 0 0 0 0 1 0 0
1 0 0 0 0 0 0 1 1 0 0 1 0 0 0 1
1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

true =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 1 1 0 0 1 0 1
0 0 0 0 0 1 0 1
0 0 0 0 0 1 1 1,
0 1 0 1 1 1 0 0
0 0 0 1 1 0 1 1
1 0 1 1 1 0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

guess =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

0.95 0.17 0.16 0.93 0.26 0.82 0. 0.75
0.22 0.88 0.94 0.14 0.74 0.34 0.36 0.75
0.28 0.18 0.12 0.14 0.01 0.75 0.9 0.8
0.9 0.13 0.94 0.8 0.85 0.06 0.2 0.07
0.2 0.34 0.12 0.07 0.27 0.82 0.87 0.94
0.1 0.95 0.82 0.2 0.01 0.18 0.09 0.06

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

We experiment with the 5-round state-recovery attack for Xoodyak in the
same method, and the results are shown in Fig. 7. Judging from the barely sat-
isfactory results, several populations quickly fall into the local optimum, and
sometimes GA cannot find a non-trivial solution. More importantly, under the
current parameter settings, GA cannot find a non-trivial solution in most 6-round

GA Assisted State-Recovery Attack on Round-Reduced Xoodyak 269

Fig. 6. Parallel search for four optimal feasible solutions of S0[48 : 95] by GA, whose
population size = 500; iterations = 500; mutation rate = 0.0015, took about 40 min on
a personal computer equipped with i7-9700K CPU.

experiments, which means that we need to increase the w in ⊕̂ further to avoid
GA trapping in the local optimum and increase population size to obtain better
global search capabilities. However, the increase of w means that the change rate
of ⊕̂ will be more drastic, which is not conducive to the optimization search of
GA, and a larger population size means a larger amount of calculation. Another
approach is to extend one round based on the 4-round or 5-round method to
achieve the 5-round or 6-round attack without adjusting parameters.

5.2 Extended to 5/6-Round

This section introduces an attack method that expands the number of attack
rounds without adjusting parameters. Our goal is to recover the state information
of S1 through the state information of S0[0 : 47] and Sr[0 : 47]. We can set the
unknown bits of S1 as variable x, S1[0 : 95] = x[0 : 95]. Then let error =
∑47

i=0 |Xoodoo′−1(S1)[i] − S0[i]| +
∑47

i=0 |Xoodoo′(r−1)(S1)[i] − Sr[i]|, which is a
function of x. The closer the value of x is to the feasible value of S1[0 : 95],
the lower the error. Then, we can design an algorithm similar to Algorithm1 to
guess the true value of S1, which will not be described in detail here. For r = 5,
the search process of GA at the first iteration is shown in Fig. 8. Judging results,
GA can reduce the error roughly to 26.5 in total and 0.27 on average.

270 Z. Zhang et al.

Fig. 7. Experiment results where r = 5.

Fig. 8. Parallel search for four optimal feasible solutions of S1[0 : 95] by GA, whose
population size = 500; iterations = 500; mutation rate = 0.0015, took about one hour
on a personal computer equipped with i7-9700K CPU.

GA Assisted State-Recovery Attack on Round-Reduced Xoodyak 271

We experiment with the 6-round state-recovery attack for Xoodyak in the
same method, and the results are shown in Fig. 9. GA can reduce the error
roughly to 28 in total and 0.29 on average.

Fig. 9. Experiment results where r = 6.

5.3 Attack Against Xoodyak Under the Nonce-Reuse Setting

This section appropriately relaxes the attack conditions, assuming that the
attacker can intercept several plaintext-ciphertext pairs generated with the same
nonce. With the relaxation of the conditions, the attacker can obtain more infor-
mation for recovering the unknown state. Specifically, since the same nonce, the
Xoodoo state S0 before absorbing the message is identical. We denote the mes-
sages intercepted by the attacker as (M (i)

0 , C
(i)
0 ;M (i)

1 , C
(i)
1), 1 ≤ i ≤ n. After

absorbing the message, S
(i)
0 [48 : 95] remained constant while

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

S
(1)
0 [0 : 47] = M

(1)
0 ⊕ C

(1)
0

S
(2)
0 [0 : 47] = M

(2)
0 ⊕ C

(2)
0

...
S
(n)
0 [0 : 47] = M

(n)
0 ⊕ C

(n)
0

;

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

S
(1)
r [0 : 47] = M

(1)
1 ⊕ C

(1)
1

S
(2)
r [0 : 47] = M

(2)
1 ⊕ C

(2)
1

...
S
(n)
r [0 : 47] = M

(n)
1 ⊕ C

(n)
1

272 Z. Zhang et al.

and attacker’s goal is to recover S0[48 : 95] based on this information. According
to the previous introduction, each plaintext-ciphertext pairs has a feasible solu-
tion set of S

(i)
0 [48 : 95]. The intersection of these sets is the feasible solutions of

S0[48 : 95] that can satisfy all pairs. We can set the unknown bits of S0 as variable
x, S0[48 : 95] = x[0 : 47]. Define error(i) as

∑47
j=0 |Xoodoo′r(S(i)

0)[j] − S
(i)
r [j]|,

1 ≤ i ≤ n, and Sum error =
∑n

i=1 error(i), which is a function of x. With the
assistance of GA, we can find the optimal solutions x that minimizes Sum error.
Then, we can guess the true value of S0[48 : 95] based on the information of these
solutions.

6 Conclusion

In this paper, we design a heuristic algorithm based on GA for the known-
plaintext attack on round-reduced Xoodyak under the nonce-respecting setting
and give the experimental results of 4, 5, and 6 rounds. Although our results
are far from threatening the security of Xoodyak, they provide new insights
into the security analysis of Xoodyak. More importantly, the performance of
GA is encouraging, proving that GA can be an approach to analyze crypto-
graphic algorithms in general. However, GA-based cryptanalysis is still in the
early stages, needs further research, and more sophisticated attack methods are
yet to be developed. Future work amounts to evaluate our model to improve the
accuracy; characterize the cryptanalysis problem into a more suitable objective
function or a multi-objective optimization task, allowing GA to reach the glob-
ally optimized solution; find more suitable parameters to attack higher rounds.
In addition, we can apply our method to other AE/AEAD algorithms with a
similar structure to Xoodyak and examine whether it can produce better results.

Acknowledgements. The authors thank the anonymous reviewers for their helpful
comments and suggestions, the editors for shepherding this final version of the paper.
This paper is supported by the National Natural Science Foundation of China (Grants
No. 61672330, 62071280, 61802235) and the Natural Science Foundation of Shandong
Province (Grants No. ZR2020KF011, ZR2020MF056).

References

1. Aumasson, J.-P., Jovanovic, P., Neves, S.: NORX: parallel and scalable AEAD.
In: Kuty�lowski, M., Vaidya, J. (eds.) ESORICS 2014. LNCS, vol. 8713, pp. 19–36.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11212-1 2

2. Bellare, M., Namprempre, C.: Authenticated encryption: relations among notions
and analysis of the generic composition paradigm. In: Okamoto, T. (ed.) ASI-
ACRYPT 2000. LNCS, vol. 1976, pp. 531–545. Springer, Heidelberg (2000).
https://doi.org/10.1007/3-540-44448-3 41

3. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: Keccak. In: Johansson, T.,
Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 313–314. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-38348-9 19

https://doi.org/10.1007/978-3-319-11212-1_2
https://doi.org/10.1007/3-540-44448-3_41
https://doi.org/10.1007/978-3-642-38348-9_19

GA Assisted State-Recovery Attack on Round-Reduced Xoodyak 273

4. Biryukov, A., Khovratovich, D.: PAEQ: parallelizable permutation-based authen-
ticated encryption. In: Chow, S.S.M., Camenisch, J., Hui, L.C.K., Yiu, S.M. (eds.)
ISC 2014. LNCS, vol. 8783, pp. 72–89. Springer, Cham (2014). https://doi.org/10.
1007/978-3-319-13257-0 5

5. Daemen, J., Hoffert, S., Assche, G.V., Keer, R.V.: The design of Xoodoo and
Xoofff. IACR Transactions on Symmetric Cryptology 2018, 1–38 (2018). https://
doi.org/10.13154/tosc.v2018.i4.1-38

6. Daemen, J., Hoffert, S., Peeters, M., Van Assche, G., Van Keer, R.: Xoodyak, a
lightweight cryptographic scheme. IACR Transactions on Symmetric Cryptology,
pp. 60–87 (2020). https://doi.org/10.13154/tosc.v2020.iS1.60-87

7. Ding, Y., Shi, Y., Wang, A., Wang, Y., Zhang, G.: Block-oriented correlation power
analysis with bitwise linear leakage: an artificial intelligence approach based on
genetic algorithms. Futur. Gener. Comput. Syst. 106, 34–42 (2020). https://doi.
org/10.1016/j.future.2019.12.046

8. Dobraunig, C., Eichlseder, M., Mendel, F., Schläffer, M.: Ascon v1.2: lightweight
Authenticated Encryption and Hashing. J. Cryptol. 34(3), 1–42 (2021). https://
doi.org/10.1007/s00145-021-09398-9

9. Geltink, G.: Concealing Ketje: a lightweight PUF-based privacy preserving
authentication protocol. In: Bogdanov, A. (ed.) LightSec 2016. LNCS, vol. 10098,
pp. 128–148. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-55714-4 9

10. Gohr, A.: Improving attacks on round-reduced speck32/64 using deep learning.
In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11693, pp.
150–179. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26951-7 6

11. Holland, J.H., et al.: Adaptation in Natural and Artificial Systems: An Introduc-
tory Analysis with Applications to Biology, Control, and Artificial Intelligence.
MIT Press, Cambridge (1992). https://doi.org/10.7551/mitpress/1090.001.0001

12. Hou, B., Li, Y., Zhao, H., Wu, B.: Linear attack on round-reduced DES using
deep learning. In: Chen, L., Li, N., Liang, K., Schneider, S. (eds.) ESORICS 2020.
LNCS, vol. 12309, pp. 131–145. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-59013-0 7

13. Li, Z., Dong, X., Bi, W., Jia, K., Wang, X., Meier, W.: New conditional cube attack
on Keccak keyed modes. IACR Transactions on Symmetric Cryptology, pp. 94–124
(2019). https://doi.org/10.13154/tosc.v2019.i2.94-124

14. Liu, F., Isobe, T., Meier, W., Yang, Z.: Algebraic attacks on round-reduced Kec-
cak/Xoodoo. Cryptology ePrint Archive, Report 2020/346 (2020). https://eprint.
iacr.org/2020/346

15. Liu, Y., Sun, S., Li, C.: Rotational cryptanalysis from a differential-linear perspec-
tive. In: Canteaut, A., Standaert, F.-X. (eds.) EUROCRYPT 2021. LNCS, vol.
12696, pp. 741–770. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-
77870-5 26

16. Morawiecki, P., et al.: ICEPOLE: high-speed, hardware-oriented authenticated
encryption. In: Batina, L., Robshaw, M. (eds.) CHES 2014. LNCS, vol. 8731, pp.
392–413. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44709-
3 22

17. Song, L., Guo, J.: Cube-attack-like cryptanalysis of round-reduced Keccak using
MILP. IACR Transactions on Symmetric Cryptology, pp. 182–214 (2018). https://
doi.org/10.13154/tosc.v2018.i3.182-214

18. Wang, A., Li, Y., Ding, Y., Zhu, L., Wang, Y.: Efficient framework for genetic-
algorithm-based correlation power analysis. Cryptology ePrint Archive, Report
2021/179 (2021). https://eprint.iacr.org/2021/179

https://doi.org/10.1007/978-3-319-13257-0_5
https://doi.org/10.1007/978-3-319-13257-0_5
https://doi.org/10.13154/tosc.v2018.i4.1-38
https://doi.org/10.13154/tosc.v2018.i4.1-38
https://doi.org/10.13154/tosc.v2020.iS1.60-87
https://doi.org/10.1016/j.future.2019.12.046
https://doi.org/10.1016/j.future.2019.12.046
https://doi.org/10.1007/s00145-021-09398-9
https://doi.org/10.1007/s00145-021-09398-9
https://doi.org/10.1007/978-3-319-55714-4_9
https://doi.org/10.1007/978-3-030-26951-7_6
https://doi.org/10.7551/mitpress/1090.001.0001
https://doi.org/10.1007/978-3-030-59013-0_7
https://doi.org/10.1007/978-3-030-59013-0_7
https://doi.org/10.13154/tosc.v2019.i2.94-124
https://eprint.iacr.org/2020/346
https://eprint.iacr.org/2020/346
https://doi.org/10.1007/978-3-030-77870-5_26
https://doi.org/10.1007/978-3-030-77870-5_26
https://doi.org/10.1007/978-3-662-44709-3_22
https://doi.org/10.1007/978-3-662-44709-3_22
https://doi.org/10.13154/tosc.v2018.i3.182-214
https://doi.org/10.13154/tosc.v2018.i3.182-214
https://eprint.iacr.org/2021/179

274 Z. Zhang et al.

19. Wetzels, J., Bokslag, W.: Sponges and engines: an introduction to Keccak and
Keyak. Cryptology ePrint Archive, Report 2016/028 (2016). https://eprint.iacr.
org/2016/028

20. Zhang, Z., Wu, L., Wang, A., Mu, Z., Zhang, X.: A novel bit scalable leakage
model based on genetic algorithm. Secur. Commun. Netw. 8(18), 3896–3905 (2015).
https://doi.org/10.1002/sec.1308

21. Zhou, H., Li, Z., Dong, X., Jia, K., Meier, W.: Practical key-recovery attacks on
round-reduced Ketje Jr, Xoodoo-AE and Xoodyak. Comput. J. 63(8), 1231–1246
(2020). https://doi.org/10.1093/comjnl/bxz152

https://eprint.iacr.org/2016/028
https://eprint.iacr.org/2016/028
https://doi.org/10.1002/sec.1308
https://doi.org/10.1093/comjnl/bxz152

Moving the Bar on Computationally
Sound Exclusive-Or

Catherine Meadows(B)

Naval Research Laboratory, Washington DC, USA
catherine.meadows@nrl.navy.mil

Abstract. Soundness of symbolic security with respect to computa-
tional security was originally investigated from the point of cryptographic
protocol design. However, there has been an emerging interest in apply-
ing it to the automatic generation and verification of cryptographic algo-
rithms. This creates a challenge, since it requires reasoning about low-
level primitives like exclusive-or whose actual behavior may be inconsis-
tent with any possible symbolic behavior.

In this paper we consider symbolic and computational soundness of
cryptographic algorithms defined in terms of block ciphers and exclusive-
or. We present a class of algorithms in which security is defined in terms
of IND$-CPA-security, that is, security against an adaptive chosen plain-
text adversary’s distinguishing the output of the cryptosystem from a
random string. We develop conditions for symbolic security and show
that they imply computational security. As a result of this, we are able
to identify a class of cryptosystems to which results such as Unruh’s
[25] on the impossibility of computationally sound exclusive-or do not
apply, in the sense that symbolic security implies computational security
against an adaptive adversary. We also show how our results apply to a
practical class of cryptosystems: cryptographic modes of operation.

1 Introduction

Symbolic methods have been in use in cryptography for a long time, starting
with Dolev and Yao’s seminal paper [12], progressing on to powerful crypto pro-
tocol analysis tools, and most recently, to methods for the automated generation
and analysis of cryptographic algorithms. Ideally, one would like these methods
to be sound with respect to some computational model, so that symbolic secu-
rity implies computational security. Although results in this area exist, it has
been found difficult to extend them to certain low-level primitives such as group
operations. To the best of my knowledge, it was Unruh [25] who first pointed
out the difficulty, using low-level behavior of exclusive-or that can’t be captured
in a symbolic model.

Such behavior can have a direct effect on security proofs of cryptosystems.
For example, many proofs of indistinguishability depend upon proving that the
probability of a collision between random functions is negligible. But consider
the counter-example below, which is similar, but not identical, to Unruh’s.1

1 I am grateful to an anonymous reviewer for this example.

c© Springer Nature Switzerland AG 2021
E. Bertino et al. (Eds.): ESORICS 2021, LNCS 12973, pp. 275–295, 2021.
https://doi.org/10.1007/978-3-030-88428-4_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-88428-4_14&domain=pdf
https://doi.org/10.1007/978-3-030-88428-4_14

276 C. Meadows

Example 1. Let f be a random function from λ-length bitstrings to λ-length bit-
strings (blocks, for short) computed by a challenger, and let r0, . . . , rm be ran-
domly chosen bitstrings. Suppose that the challenger sends f(r0), r1, . . . , rλ+1 to
the adversary, and the adversary returns a subset S of {r1, . . . rλ+1} to the chal-
lenger, who returns f(r0 ⊕

⊕
ri∈S ri), where

⊕
ri∈S ri stands for the exclusive-or

of all ri such that ri ∈ S. The adversary can never succeed in distinguishing the
challenger’s output from random in the symbolic model, since each term sent
by the challenger is a different term standing for a different randomly generated
bitstring. However, in the computational model the set of λ-bit strings is the
vector space Z

λ
2 , and so no set of m > λ bitstrings can be linearly independent

modulo ⊕. Thus there is a subset S of r1, . . . , rm such that
⊕

ri∈S ri = 0λ,
which the adversary can find via Gaussian elimination. It can then send S to
the challenger, which computes f(r0 ⊕

⊕
ri∈S ri) = f(r0) and returns it to the

adversary. In this way the adversary can force the first and last bitstrings sent
by the challenger to be equal, and so its output is distinguishable from random.

One important feature of this counterexample is that the adversary is given
all the information it needs in order to make its choice. If it was not shown any
of the bitstrings before the final response from the encryptor, it would not know
which subset would result in a collision with f(r0). Thus, for any subset it chose,
the probability of a collision would be 2−λ. In some cases it may not be practical
to deprive the adversary of adaptive choice altogether, but it may be possible to
limit it so that its contribution to the adversary’s advantage is negligible. For
example, we can limit the adversary’s choice of functions that it can compute.
Consider the case in which the adversary is limited to choosing, instead of any
subset of r1, . . . , rm, one of a polynomial number q(λ) of subsets of r1, . . . , rm.
In this case, the probability of a collision between f(r0) and f(r0 ⊕

⊕
ri∈S ri),

for some S chosen by the adversary, would be bounded by q(λ) ·2−λ, a negligible
function of λ. In this paper we will consider cryptosystems that impose a stronger
condition on the adversary, in which not only adaptive choice, but any choice,
is limited. For the purposes of this paper, it has the advantage that, not only it
is simpler to reason about, but, as we shall see, there are non-trivial classes of
cryptosystems that have this property. To the best of my knowledge this feature
of a cryptosystem does not have a specific name; we shall call it polynomially
bounded execution choice (PBEC). We will define this more formally later on.

Consider the following example: the cryptographic mode of operation Cipher
Block Chaining.

Example 2 (Cipher Block Chaining (CBC)). Let E be a block cipher, and let
f = EK denote encryption with E using a key K. The input to the algorithms is
a sequence x1 through xn of plaintext blocks, and the output is a list of ciphertext
blocks C0, . . . , Cn returned only after all plaintext blocks are received:

1. C0 = r, where r is a randomly generated block known as an initialization
vector (IV), and;

2. Ci = f(xi ⊕ Ci−1) for i > 0.

Moving the Bar on Computationally Sound Exclusive-Or 277

Suppose that f is indistinguishable from a random function. Suppose also
that the number of different terms f(s) and ri that the adversary can request
the encryptor to compute is bounded by a polynomial in λ. Thus the maximum
number of messages and the maximum length of a message must also be poly-
nomially bounded, say by p1(λ) and p2(λ) respectively. It follows that the set
of all terms that the adversary could possibly request the encryptor to compute
is contained in the set D0 = {ri | 1 ≤ i ≤ p1(λ)} ∪ D1 = {f(Ci,j−1 ⊕ xi,j) |
(1 ≤ i ≤ p1) ∧ (1 ≤ j ≤ p2(λ) − 1)}, where Ci,j (respectively xi,j) denotes the
i’th ciphertext (respectively, plaintext) block in the j’th message. The cardinal-
ity of this set is p1(λ) · p2(λ), so the probability of a collision is bounded by
p1(λ)2 · p2(λ)2 · 2−λ, thus giving us polynomially bounded execution choice.

In the remainder of this paper we describe a class of cryptosystems using
the symbols f for EK as in Example 2, ⊕ for bitwise exclusive-or, a set R of
bound variables r standing for random bitstrings, and a set of free variables X
standing for blocks of adversarial input. A symbolic history of such a cryptosys-
tem describes a sequence in which an adversary sends plaintext blocks to an
encryptor and gets encrypted blocks in return. However, in a symbolic history
the plaintext blocks are replaced by free variables, and the ciphertext blocks are
replaced by symbolic terms that serve as recipes for computing the ciphertext
blocks, with the free variables standing as placeholders for the plaintext. We
show that such a cryptosystem satisfies IND$-CPA-security (essentially, indistin-
guishability from random against an adaptive chosen plaintext adversary) if the
following hold:

1. Nondegeneracy: There is no subset of terms sent in any symbolic history H
whose elements ⊕-sum to zero.

2. Safety: There are no two subterms f(s) and f(t) of terms sent in any symbolic
history H such that the normal form of s ⊕ t is x ⊕ u and u can be derived
by ⊕-summing terms received by the adversary before it sends x.

3. Polynomially bounded execution choice.

The rest of this paper is organized as follows. In Sect. 2 we give background
and related work. We give symbolic preliminaries necessary for understanding the
paper in Sect. 3. We describe our symbolic and computational models in Sect. 4
and give a precise statement of our main theorem sketched above. In Sect. 5 we
prove the theorem. In Section 6 we describe some applications to cryptographic
modes of operation. In Sect. 7 we conclude and discuss future work.

2 Background and Related Work

Probably the earliest work on proving computational soundness and complete-
ness of symbolic methods for cryptographic proofs of security for protocols is
that of Abadi and Rogaway in [2], against passive attackers. Shortly afterword,
Backes et al. [4] and Micciancio and Warinschi [24] separately proved soundness
and completeness of a symbolic model including a full Dolev-Yao adversary that

278 C. Meadows

interacts with principals over a network it completely controls. This work and the
work that followed tended to avoid equational theories (e.g. d(e(k,m)) = m) as
much as possible, relying instead on derivation rules (e.g. k, e(d,m) � m). These
are equally expressive, as long as you can rely on the cryptographic mechanisms
to rule out ill-formed terms such as d(k,m). Moreover, since well-designed pro-
tocols generally outlaw such ill-formed terms, this is a reasonable restriction.
Appropriate abstractions have even been found for more equationally rich algo-
rithms such as Diffie-Hellman [9]. But it is harder to distinguish ill-formed terms
for exclusive-or, since ⊕ is self-cancelling. Unruh’s and others’ examples give evi-
dence that including the ⊕ theory in such systems may be problematic.

In spite of these issues, some progress has been made on computational sound-
ness of symbolic models with equational theories. In [7] Baudet et al. develop
computational implementations of equational theories for which soundness can
be proved assuming a passive adversary, thus avoiding Unruh’s counter-example.
In [20] Kremer and Mazaré extend this to a computationally sound implemen-
tation of static equivalence (a symbolic analogue of indistinguishability) against
an adversary that can adaptively request the encryptor to send members of a set
of pre-defined message. We note, however, that Example 1 is secure according to
their computational definition of static equivalence. This is not because of any
fault in their computational realization. Rather, it is because static equivalence
itself, which is expressed in terms of conditions on possible histories of message
exchanges, does not fully capture the abilities of an adaptive adversary.

In the meantime, work has been ongoing on developing symbolic methods for
reasoning about cryptoalgorithms that use exclusive-or and other Abelian group
theories, much of it motivated by recent interest in the automatic generation
and verification of cryptoalgorithms. In this approach, multiple instances of a
particular class of algorithms (e.g. cryptographic modes of operation [17,22], gar-
bled circuit schemes [11], collision-resistant hash functions [23], padding-based
public key encryption algorithms [6]) are generated, usually automatically, and
then checked for security and other desirable properties. Because a large number
of candidate cryptosystems are generated, the verification techniques must be
efficient. Symbolic verification of cryptosystems can often be easily automated,
so symbolic verification techniques that can be proved sound and/or complete
with respect to a computational model of security have become of more inter-
est. Interestingly, many of the cryptosystems to which this automatic generation
and verification approach have been applied involve exclusive-or or other types
of group operations. However, these techniques tend to be applied to specific
classes of algorithms, so general soundness and completeness results have not
been as important. Indeed, we note that many of the cryptosystems have similar
restrictions on the adversary; for example the modes of operation in [17,22] are
PBEC, and the adversary in [11] is honest-but-curious.

We also discuss some related work on the symbolic design and analysis of
cryptographic modes of operation. Gagné et al. [14] have developed a Hoare
logic for proving semantic security of block cipher modes of encryption, and a
program implementing the logic that can be used to automatically prove their

Moving the Bar on Computationally Sound Exclusive-Or 279

security. However, their work concentrates on heuristically driven theorem prov-
ing techniques rather than on evaluating symbolic security conditions. We also
note the work of Bard [5], who considers circumstances under which security for
modes of encryption can be reduced to a collision-freeness property. Although
[5] does not address symbolic security directly, our approach to deriving crite-
ria for collision-freeness owes much to it. The work of Malezomoff et al. [22]
and Hoang et al. [17] is probably the closest to that in this paper. They prove
adaptive chosen plaintext security for cryptographic modes of operation based
on deterministic block ciphers [22] and authenticated modes of encryption using
block ciphers with tweaks [17] by defining a set of symbolic conditions checked
on automatically generated modes using a messagewise schedule, in which the
encryptor delays returning ciphertext until it has received all plaintext blocks,
and they prove these conditions sufficient for security. The results in this paper
extend the results of [22] to sufficient symbolic conditions for arbitrary schedules.

3 Symbolic Preliminaries

In this section we give definitions and results term in term algebras and unifi-
cation used in this paper. Readers interested in a more in-depth discussion may
find it in Baader and Nipkow’s book Term Rewriting and All That [3].

A signature is a finite set of function symbols Σ of different arities.
We write TΣ(X) for the set of all terms constructed using function sym-
bols from Σ and variables from a countable infinite set X . TΣ(X) is referred
to as a term algebra. If T ⊆ TΣ(X), we write Sub(T) for the set of sub-
terms of elements of T. 2 Thus, if T = {f(g(x),a),h(f(a,b))}, Sub(T) =
{f(g(x),a),g(x),a,x,h(f(a,b)), f(a,b),b}. The set X is divided into a count-
able set of names bound by a quantifier ν and a countable set of free variables.
We write Var(t) (respectively bv(t), fv(t)) for the set of variables (respectively,
bound variables, free variables) present in a term t. We say that a term is ground
if it contains only function symbols and bound variables.

A Σ-equation is a pair t = t′. where t, t′ ∈ TΣ(X). A set E of Σ-equations
induces a congruence relation =E on terms t, t′ ∈ TΣ(X), so that t =E t′ if
and only if t can be made equal to t′ via applications of equations from E.
An equational theory is a pair (Σ,E), where Σ is a signature and E a set of Σ-
equations. We will refer to a term algebra TΣ(X) together with an equational the-
ory (Σ,E) as (TΣ(X), E). For example, suppose Σ = {d/2, e/2,k/0,a/0}, and
E = {d(x, e(x,y)) = y}. Then e(k,d(k, e(k,a))) =E e(k,a), by setting x = k
and y = a in the equation d(x, e(x,y)) = y.

A substitution σ is a mapping from free variables to TΣ(X) that is the iden-
tity on all but a finite subset of the free variables known as the domain of σ.
Substitutions are homomorphically extended to TΣ(X). Application of σ to a
term t is denoted by σt. The composition of two substitutions is σθt = σ(θt). A
substitution σ is an E-unifier of a system of equations S = {. . . , si =? ti. . . .} if
2 We write symbolic terms in bold and computational terms in italic to make it easier

to distinguish between the two.

280 C. Meadows

σsi =E σti for every si =? tj ∈ S. For example, consider S = {w =? e−1(k, z)}
over the algebra (TΣ(X), {e−1(x, e(x,y)) = y}) described in the previous para-
graph. Then the substitutions σ1 : w 	→ e−1(k, z) and σ2 : z 	→ e(k,w) are both
unifiers of S modulo E. We will be interested in the algebra whose signature is
the free unary symbol f plus an exclusive-or operator ⊕ and a null operator 0. We
say that a term is f -rooted if it is of the form f(s) for some term s. The ⊕ operator
is associative and commutative and satisfies X ⊕ 0 = 0 and X ⊕ X = 0. Equal-
ity of two terms modulo this theory is equivalent to equality under the theory
(R⊕ �AC) where AC is the associative and commutative rules for ⊕, and R⊕ is
a set of rewrite rules, {X ⊕ 0 → X, X ⊕ X → 0, X ⊕ (X ⊕ Y) → Y} oriented
from left to right. A rewrite rule � → r is applied to a term t by first finding a
subterm s of t such that s = σ� modulo AC for some substitution σ, and then
replacing s in t with σ�. Thus 0 ⊕ a ⊕ b can be reduced to a ⊕ b by noting that
0 ⊕ a ⊕ b = (0 ⊕ a) ⊕ b = σ� ⊕ b modulo AC, where � is the left-hand side of
X ⊕ 0 → X, and σX = a. In addition, every term t reduces after a finite number
of steps to a normal form ↓⊕t to which no further rewrite rules can be applied,
and this normal form is unique up to AC-equivalence. We refer to (R⊕ �AC) as
the ⊕ theory for brevity, and use T(Σf ,⊕)(X) to refer to the term algebra with
signature {f/1,⊕/2,0/0} and equational theory ⊕.

4 Symbolic and Computational Models

In this section we give a brief description of how we model the relationship
between symbolic terms and computational functions. This is based on the
abstract and concrete models of cryptosystems introduced by Baudet et al. in [7],
with the main difference being that we allow free variables in the symbolic model
to be replaced in the computational model by the output of Turing machines,
instead of restricting ourselves to concrete computational representations of sym-
bolic terms.

4.1 The Computational Model

We begin by giving a definition of IND$-CPA security below. It uses the assump-
tion that a block cipher is a member of a family of pseudorandom permutations
index by a key K.

Definition 1. Let E be a cryptosystem built using a keyed pseudorandom permu-
tation from λ-length blocks to λ-length blocks. Let K be a key chosen uniformly at
random. Suppose that a challenger, by flipping a coin, chooses either an encryp-
tion oracle that computes EK on input from an adversary or a $-oracle that
returns a uniformly randomly chosen bitstring of the same length as the encryp-
tion oracle’s response. The adversary is then allowed multiple queries to the ora-
cle, and at the end of the game it outputs a bit. We say that AEK (1λ) = 1 if the
adversary outputs 1 after interacting with the encryption oracle, and A$(1λ) = 1

Moving the Bar on Computationally Sound Exclusive-Or 281

if the adversary outputs 1 after interacting with the $-oracle. We define the
adversary’s advantage to be

|Pr(K $→ Key;AEK (1λ) = 1) − Pr(A$(1λ) = 1)|
We say that E is IND$-CPA secure if there is a negligible function τ of λ such

that the advantage of any PPT adversary is bounded by τ(λ).

4.2 Relationship Between Computational and Symbolic Models

We use the construction of Baudet et al. [7] as the basis for ours. Let λ be a
security parameter. Each sequence of n ground terms T ⊂ T(Σ,⊕)(X) determines
a probability distribution Tλ over {0, 1}λ·n called the computational realization
Tλ of T. This is defined as follows: To compute the output of a bound variable
r, we choose a λ-length bitstring uniformly at random. If r occurs more than
once in T, it is replaced with the same random λ-length bitstring wherever it
occurs. We also replace 0 by a bitstring of λ zeroes, ⊕ by bitwise exclusive-or on
λ-length bitstrings, and f by a keyed pseudorandom permutation. Each time the
recipe defined above is followed, it will produce an n ·λ-length bitstring sampled
from the distribution Tλ, called an output of T and denoted by �T�λ. This is
an abuse of notation, since T may have many possible outputs, but in general
we will use �T�λ to mean “the output just produced by T”, so which output is
meant should be clear. In addition, when we can do so without confusion, we
will drop the λ.

We expand on [7] to consider the case where T contains free variables. Free
variables play a special role: they are place holders for inputs to a term. In our
case they will always stand for inputs from the adversary. In particular, the free
variables x1, . . .x� appearing in T stand for inputs supplied to the computa-
tional realization T of T by θ1, . . . , θ� where each θi is a suite of θi,λ programs
run by the adversary, whose input is the adversary’s state, that supply λ-bit
blocks used as input to Tλ. Note that we do not require that the θi themselves
be computational realizations of elements of T(Σ,⊕)(X); they can be arbitrary
probabilistic polynomial-time Turing machines. We call a map θ that maps a
finite set of variables of T(Σ,⊕)(X) to such programs and is the identity on all
other variables a computational substitution. If θ is a computational substitu-
tion, and T is a finite subset of T(Σ,⊕)(X), we define θT to be the substitution
obtained by replacing each variable x used by the computational functions in T
with θx. The composition of two computational substitutions is defined in the
natural way.

If a θ is a computational substitution to t we define �θt� to be the output
obtained from t by using �θx� wherever a free variable x appears in t.

4.3 MOO⊕ Cryptosystems and Symbolic Histories

A symbolic MOO⊕ history3 (symbolic history for short) gives a recipe for con-
structing a sequence of messages exchanged between an adversary and an encryp-
3 The term comes from”mode of operation”.

282 C. Meadows

tor. The adversary’s input to the encryptor is represented by free variables,
where each free variable sent by the adversary is unique. The encryptor’s output
to an adversary is a sequence of T(Σf ,⊕)(X) terms representing computations
on input from the adversary, whose free variables are limited to variables previ-
ously received from the adversary in the history. MOO⊕ histories are analogous
to the frames defined by Abadi and Fournet [1]; that is, they represent records
of protocol executions.4

To give an example of a symbolic history, we consider the case, using cipher
block chaining, in which an adversary interacts with an encryptor that allows it
to encrypt two messages in parallel, timing its response so that the adversary
receives the two IVs first, and the two first blocks of ciphertext right after sending
the two first blocks of plaintext:

νr1.νr2[r1, r2.x1.x2.f(r1 ⊕ x1).f(r2 ⊕ x2)]

A MOO⊕ program specifies the possible interactions between the adversary
and the encryptor. A MOO⊕ program is a program of bounded size that specifies
1) the encryptor’s schedule for receiving input and sending output and 2) what
terms the adversary can request the encryptor to evaluate and when.

Since the adversary in the IND$-CPA game is polynomially bounded, there
is a polynomial function p of the security parameter λ such that the number
of blocks it can send and receive is bounded by p(λ). This means that, for
any symbolic history H, a concrete adversary using security parameter λ can
execute H as long as length(H) ≤ p(λ). Thus, for every history H, there is an
infinite set VH of values λ of the security parameter (namely, all (λ such that
length(H) ≤ p(λ)) such that the adversary can interact with Hλ. Moreover, if
H′ extends H, then VH′ ⊆ VH. This makes it possible to allow arbitrarily long
histories in the symbolic model.

5 MOO⊕ Games and Security Proofs

In this section we define a sequence of games and use them to prove our main
result: that if a MOO⊕ -cryptosystem satisfies PBEC, then there are symbolic
conditions that imply IND$-CPA security.

There are four such games, described in Section Sect. 5.1: Gcrypt, in which f
is a pseudorandom permutation, Grperm, where f is a random permutation of
strings, Grstr, where f is a random function from λ-length strings to λ-length
strings, and Grsymb in which f is a random function from symbolic terms to
λ-length blocks. We also show that the output of Grsymb is random as long as
the cryptosystem is nondegenerate, and then show via game transformations
that Grstr and Grsymb are identical up to bad, where the bad event is a collision
between the input of any two f -rooted terms computed by the encryptor.

4 We could indeed define histories as frames, but since in this work we have no need of
the main feature of frames (that they are substitutions) we choose a simpler option.

Moving the Bar on Computationally Sound Exclusive-Or 283

In Sect. 5.2 we formally define the symbolic conditions, and show that, as
long as the cryptosystem satisfies PBEC, then the probability of bad is negligible.
We then use these results to derive security criteria for cryptographic modes of
operation.

5.1 MOO⊕ Games Grstr and Grsymb

We begin by defining the games. We note that all four games are identical except
for the method used to compute f . We will thus begin by describing a generic
game Ggen which can be instantiated to any of the four games by choosing
the appropriate method for computing f . Moreover, since the adversary’s the
advantage in distinguishing between Gcrypt, Grperm, and Grstr can be estimated
by assumption or known results from the literature, we will only describe in
detail how f is computed in Grstr and Grsymb

Ggen proceeds in a series of steps. In each step the adversary sends the
encryptor a sequence of symbolic terms I.O and a set of λ-length bitstrings B,
such that I is a (possibly empty) sequence of free variables x1.xn, O is a
sequence of terms, and B is a sequence of bitstrings b1 . . . bn such that bi =
�σxi�, where σ is the substitution computed by the adversary. The encryptor
checks whether the adversary is able to submit a request at this point, and if
so, if this is a legal request to submit. If it is not, the game is aborted. If the
request is valid, the encryptor returns the encrypted blocks specified by O.

We now describe how the encryptors in Grstr and Grsymb work. In the fol-
lowing, we say “the encryptor” when both encryptors behave the same way.
Otherwise we identify the encryptor as a Grstr or a Grsymb encryptor.

The encryptor maintains a symbolic history H describing its interaction with
the adversary so far, as well as two databases that describe the output �σH�. The
first database, DBI, stores the plaintext blocks sent by the adversary and the
second, DBO, stores results of the random functions computed by the encryptor.

DBI consists of tuples of the form [x, �σx�], where x is a free variable, and
�σx� is the output of σx, where σ is the substitution computed by the adversary.
DBO contains two types of tuples. The first are of the form [r, outstr], where r is
a bound variable and outstr is �r�. The second are of the form [instr,F, outstr],
where F is a set of f -rooted terms, and instr and outstr are λ-length bitstrings.
The entries in this form of tuple are computed differently in Grstr and Grsymb.
At the beginning, H, DBO and DBI are all empty. They are extended by the
encryptor as the protocol evolves.

We now describe the computations made by the encryptors. Suppose that
an encryptor, whether in Grstr or Grsymb, receives an input �σI� from the
adversary and is required to return �σO�. It performs the following steps for
each variable or f -rooted term t = f(s) ∈ Sub(O) that has not been computed
already, computing each bitstring �σs� such that s is a proper subterm of t
before computing �σt�.

284 C. Meadows

1. If I = x1, . . . ,xk, where the xi are free variables, it stores [xi, �σxi�] in DBI.
2. For any bound variable r ∈ Sub(O) such that there is no tuple [r, str] in

DBO, it chooses a λ-length bitstring str′ uniformly at random and stores
[r, str′] in DBO.

3. For each f(t) ∈ Sub(O) such that there is not already a tuple [a,W, b] in
DBO with f(t) ∈ W, the encryptor computes instr using the outputs stored
in DBI and DBO. That is, if

t = (
m⊕

i=0

⊕αixi) ⊕ (
n⊕

i=1

⊕βiri) ⊕ (
q⊕

i=1

⊕γif(si))

where the αi, βi, and γi are booleans, then for each αi �= 0 (respectively,
βi �= 0, γi �= 0) the encryptor finds the tuple [xi, �σxi�] ∈ DBI (respectively,
[ri, �ri�] ∈ DBO, [instr,W, outstr] ∈ DBO such that f(si) ∈ W), and com-
putes the ⊕-sum of the final bitstrings of the tuples found. The result is
bitstring instr0 that will be used as the input to f .

4. If there is already a tuple [instr,F, outstr] ∈ DBO such that f(t) ∈ F then
the encryptor takes no action. If not, Grstr and Grsymb differ as follows:
(a) If there is already a tuple [instr1,F, outstr1] ∈ DBO such that instr0 =

instr1, the Grstr encryptor replaces it with [instr1,F ∪ {f(t)}, outstr1].
Otherwise, it picks a random λ-length bitstring outstr0 and stores the
tuple [instr0, {f(t)}, outstr0] in DBO. σf(t) is defined to be outstr0.

(b) The Grsymb encryptor picks a random λ-length bitstring outstr0 and
stores [instr0, {f(t)}, outstr0] in DBO. σf(t) is defined to be outstr0.

5. The encryptor uses the output values stored in DBI and DBO to construct
�σO�, and returns it to the adversary.

A pseudocode description of the top-level algorithm is given in Algorithm1.
Descriptions of the two implementations of f are given in Algorithms 2 and 3.
Both of these make use of the subroutine given in Algorithm4.

We note that the entire tuple [instr,F, outstr] is not necessary to compute f
in either Grstr or Grsymb. Grstr does not need the second entry in the tuple, and
Grsymb does not need the first. Their only purpose is to reduce the number of
steps needed to transform the two games in a pair of identical-until-bad games.
We make the real dependencies of these functions explicit in the following lemma.

Lemma 1. Let frstr denote the function defined by frstr(instr) = outstr if
[instr,F, outstr] ∈ DBO in Grstr, and let frsymb denote the function defined by
frsymb(f(t)) = outstr if [instr, {f(t)}, outstr] ∈ DBO in Grsymb. Then frstr is
a random function from λ-bit strings to λ-bit strings, and frsymb is a random
function from f -rooted terms in H to λ-bit strings.

Proof. This follows directly from the fact that, in the case of Grstr, outstr is
chosen at uniformly at random when and only when a tuple [instr, f(t),] needs
to be added to DBO for a new string instr, and in the case of Grsymb, outstr
is chosen uniformly at random when and only when a tuple [instr, {f(t)},] is
added to DBO for a new f -rooted term f(t). ��

Moving the Bar on Computationally Sound Exclusive-Or 285

Algorithm 1. Ggen

1: . . . Begin Setup . . . K
$← {0, 1}λ . . . End Setup . . .

2: Freevar, Bdvar ⊂ Term
3: Integer: i, n, λ ; String: instr, outstr ; Term: x, t, s,u,v ; Set of Records:

DBI, DBO, a, a0; Boolean: b, b′, STOP ; Freevar: x,xi, Bdvar: , r, ri; Seq of Terms:
U1,U2,O,O′,H,W; Seq of Freevars: I

4: DBI, DBO ← ∅; H ← []; i ← 0; b ← 0 ; STOP ← 0
5: a ← ∅ {a is the information the encryptor has sent to the adversary}
6: while STOP �= 1 do
7: i ← i + 1 ; [I.O] ← A(1λ, a) {Adversary picks next tuple to execute}

{Below, encryptor checks that adversary’s request is valid}
8: if valid(H, I.O) then
9: H ← H.I.O

10: while I = x.I′ do
11: outstr ← A(1λ, a) {Adversary sends plaintext block to encryptor}
12: DBI ← DBI ∪ {[x, outstr]} {Encryptor stores plaintext block in DBI}
13: I ← I′

14: end while
15: U1 ← set of all bound variables in sub(O) not yet computed
16: U2 ← set of all f -rooted terms in sub(O) not yet computed
17: while U1 �= ∅ do

18: Choose r ∈ U1 ; outstr
$← {0, 1}λ

19: DBO ← DBO ∪ {[0, {r}, outstr]}
20: U1 ← U1 \ {r}
21: end while
22: while U2 �= ∅ do
23: Choose a minimal element f(s) of U2 in the subterm partial order {We say

u < v in the subterm partial order if u is a proper subterm of v.}
24: DBO ← Compute-f(f(s),DBO)
25: U2 ← U2 \ {f(s)}
26: end while
27: while O = t.O′ do
28: a0 ← Construct(t, DBI ∪ DBO)
29: a ← a.a0 ; O ← O′

30: end while
31: end if
32: STOP ← A(1λ, a)
33: end while
34: b ← A(1λ, a)
35: return b

Example 3. We can now use the Grstr encryptor to model an attack on CBC
when the blockwise schedule is used. In the blockwise schedule, each ciphertext
block is sent by the encryptor as soon as it is able to compute it.

1. The adversary sends the encryptor a request for the initialization vector r0.
The encryptor sets H equal to r0. The encryptor computes a random bitstring
outstr0, stores [{r0}, outstr0] in DBO, and sends outstr0 to the adversary.

286 C. Meadows

Algorithm 2. Subroutine Compute-f(f(s), DBI, DBO) (for Grstr)
1: if ∃[instr,F ∪ {f(s)}, outstr] ∈ DBO then
2: DBO ← DBO
3: else
4: instr ← construct(s, DBI, DBO)
5: if ∃F, outstr0 s.t. [instr,F, outstr0] ∈ DBO then
6: DBO ← (DBO \ {[instr,F, outstr0])} ∪ {[instr, {f(s)} ∪ F, outstr0]}
7: else
8: outstr1

$← {0, 1}λ ; DBO ← DBO ∪ {[instr, }{f(s)}, outstr1]}
9: end if

10: end if
11: return (DBO)

Algorithm 3. Subroutine Compute-f(f(s), DBI, DBO) (for Grsymb)
1: if ∃[instr, {f(s)}, outstr] ∈ DBO then
2: DBO ← DBO
3: else
4: instr ← construct(s, DBI, DBO)

5: outstr
$← {0, 1}λ

6: DBO ← DBO ∪ {[instr, {f(s)}, outstr]}
7: end if
8: return (DBO)

Algorithm 4. Subroutine Construct(s,DBI ∪ DBO)
1: if s is a free variable x then
2: Find [x, outstr] ∈ DBI] ; c ← outstr
3: else if s is a bound variable r then
4: Find [0, r, outstr] ∈ DBO ; c ← outstr
5: else if s is an f -rooted term then
6: Find [instr,F, outstr] ∈ DBO such that s ∈ F; c ← outstr
7: else if s =

⊕k
i=1 ⊕si, where each si is an f -rooted term or a free variable then

8: outstr ← construct(s1, DBO) ; c ← outstr ⊕ construct(
⊕k

i=2 ⊕si, DBO)
9: end if

10: return c

2. The adversary computes �σx1� = 0λ and sends it to the encryptor, along
with {x1}.{f(x1 ⊕ r0)}. The encryptor sets H = r0.x1.f(x1 ⊕ r0). It then
stores [x1, 0λ] in DBI. Next it chooses a random bitstring outstr1 and sets

�σ1f(x1 ⊕ r0)� = �f(0 ⊕ r0)� = f(outstr0) = outstr1

and stores [outstr0, {f(x1 ⊕ r0)}, outstr1] in DBO. It returns �f(r0)� =
outstr1 to the adversary.

3. The adversary computes �σx2� = �r0 � ⊕ � f(r0)� = outstr0 ⊕ outstr1 and
sends it to the encryptor, along with the sequence x2.f(x2 ⊕ f(x1 ⊕ r0)). H
is updated by the encryptor as before. The encryptor computes the string

Moving the Bar on Computationally Sound Exclusive-Or 287

Algorithm 5. Grstr and Grsymb Algorithm ((f(s), DBI, DBO)
1: if ∃[instr,U ∪ {f(s)}, outstr] ∈ DBO then
2: DBO ← DBO
3: else
4: W ← ∅
5: instr ← construct(s, DBI, DBO)

6: outstr
$← {0, 1}λ

7: outstr0 ← outstr
8: if ∃F, outstr1 s.t. [instr,F, outstr1] ∈ DBO then
9: bad ← 1

10: outstr0 ← outstr1
11: W ← F
12: DBO ← (DBO \ {[instr,F, outstr0]})
13: end if
14: DBO ← DBO ∪ {[instr,W ∪ {f(s)}, outstr0]}
15: end if
16: return (DBO)

�σ(x2 ⊕ f(x1 ⊕ r0))� = �r0 � ⊕ � f(r0) � ⊕ � f(r0)� = outstr0 ⊕ outstr1 ⊕
outstr1 = outstr0. It finds the tuple [outstr0, {f(x1 ⊕ r0)}, outstr1] in DBO,
which it replaces with [outstr0, {f(x1 ⊕ r0), f(x2 ⊕ f(x1 ⊕ r0))}, outstr1],
forcing a collision between the inputs to the two f -rooted terms. It then
sends outstr1 to the adversary.

We note that such an attack is not possible when the Grsymb encryp-
tor is used. In that case the strings returned by the encryptor will be inde-
pendently randomly generated, since the symbolic terms r0, f(x1 ⊕ r0) and
f(x2 ⊕ f(x1 ⊕ r0)) are all different. We now give the result that will be needed
to prove our main theorem.

Lemma 2. Algorithms 2 and 3 are equivalent to the identical-until-bad algo-
rithms given in Algorithm5.

Proof. We first prove the result for Algorithm3. Since lines 7 through 11 in
Algorithm 5 result in no change once the underlined code is removed, we remove
them. Once that is done, W is always empty, so we can remove line 4 and remove
W from line 12. This gives us Algorithm3.

For Algorithm 2, we open up a new “else” clause in Algorithm 5 and move
statement 6 inside it. This is equivalent to Algorithm5 because the statement is
not used in the first clause. We then note that we can move line 14 inside both
clauses of the “if” statement without changing the results. The rest is eliminating
unnecessary assignments and variables, giving us Algorithm2. ��

By the fundamental lemma of game-playing [8], the adversary’s advantage in
distinguishing between the use of the frstr and frsymb functions in constructing
H is bounded by the probability that bad is set to 1 in either of them. This
only happens when �σu� = �σv�, where f(u) and f(v) are subterms of terms

288 C. Meadows

returned by the encryptor, so we will concentrate on estimating the probability
of this occurring when the frsymb function is used.

5.2 Conditions Implying IND$-CPA Security

In this section we define PBEC MOO⊕ cryptosystems. We also define two sym-
bolic conditions that, together with PBEC, imply IND$-CPA and use the games
described in Sect. 5.1 to show that is the case. We first give some notation:

Definition 2. Let H be a symbolic history, t a term, and x a free variable.

1. We say that H �⊕ t if t can be derived by ⊕-summing a subset of H.
2. We define H[x] to be the sequence of terms exchanged between the adversary

and the encryptor before the adversary sends x, i.e. H = H[x].x.H′, where
x �∈ sub(H[x]).

3. We say that x >H u if H[x] �⊕ u

Next, we define the two conditions.

Definition 3. Let H be a symbolic history.

1. If f(s) and f(t) are terms in sub(H), we say that {f(s), f(t)} is an unsafe
pair if there is a free variable x such that ↓⊕(s ⊕ t) =AC x ⊕ u for some
term u such that x >H u, and that {f(s), f(t)} is a safe pair otherwise. We
say that a symbolic history is safe if it contains no unsafe pairs, and that it
is safe otherwise. Finally, we say that a MOO⊕ program is safe if it admits
only safe histories, and that it is unsafe otherwise.

2. We say that a symbolic history H is degenerate if there is a subset of H that
⊕-sums to 0. If a MOO⊕ program C admits a degenerate history, we say it
is a degenerate program. If not, we say it is non-degenerate.

Proposition 1. 1. Let {f(s), f(t)} be an unsafe pair in a symbolic history H.
Then there is an adversary that can compute a substitution σ such that
�σf(s)� = �σf(t)� with probability 1.

2. No degenerate MOO⊕ program is IND$-CPA-secure.

Proof. 1. By hypothesis, ↓⊕(s ⊕ t) = x ⊕ u, where x >H u. Since �σu� has thus
already been computed by the time �σx� is computed, the adversary can thus
choose σx such that �σx� = �σu�.

2. If there is a subset T of the terms returned by the encryptor in a symbolic
history, such that

∑
t∈T ⊕t =⊕ 0, then for any substitution σ computed by

the adversary,
∑

t∈T ⊕ � σt� = 0 as well. ��

Definition 4. Let C be a MOO⊕ program. Let HC(n) denote the set of all C
symbolic histories of length ≤ n. We say that C satisfies polynomially bounded
execution choice (PBEC) if there is a polynomial p(n) such that the number of
different f-rooted subterms of HC(n) is ≤ p(n) for all n.

Moving the Bar on Computationally Sound Exclusive-Or 289

Theorem 1. Nondegenerate, safe, PBEC, MOO⊕ programs are IND$-CPA
secure.

Proof. Let C be a MOO⊕ cryptosystem. The proof is by game transformation,
starting with Gcrypt (f is a block cipher), followed by Gperm (f is a random
permutation), Grstr, and then by Grsymb. WLOG we assume that the adversary’s
computational bounds are the same for all games.

Advantage in Distinguishing Gcrypt from Gperm and Gperm from Grstr: By
assumption, the adversary’s advantage in distinguishing the block cipher from a
random permutation is bounded by some negligible quantity ελ. In addition, it
is known [8] that the adversary’s advantage in distinguishing Gperm from Grstr

bounded by q(λ) ·(q(λ)−1) ·2−λ−1, where q(λ) is the maximum number of times
the function f may be computed when the security parameter is λ. The maximum
number of blocks exchanged between the adversary and the encryptor is bounded
by a polynomial function � of λ, and, C is PBEC, we have q(λ) is bounded by
w(�(λ)) where w is a polynomial. Thus q(λ) is polynomially bounded, and hence
so is q(λ) · (q(λ) − 1) · 2−λ−1.

Probability of a Collision Between Two f -rooted terms in Grsymb: Safety
implies that for any pair of terms f(s) and f(t), the Grsymb adversary knows
nothing about the potential value �σ(s ⊕ t)� at the time it is computing σ on
the free variables of s and t, so P (�σ(s ⊕ t)� = 0) for any given f(s) and f(t) is
2−λ.

Advantage in distinguishing between Grstr and Grsymb : Suppose that the
encryptor has already computed a set A of f -rooted terms. Let B be the set
of f -rooted terms the adversary can potentially request to be evaluated. By
hypothesis | A |≤ q(λ) and | B |≤ �(λ), where both are polynomially bounded.
The number of possible new collisions offered by B is | A | · | B | +1/2 | B | ·(|
B | −1), which is bounded by q(λ) · w(�(λ)) + 1

2 · w(�(λ)) · (w(�(λ)) − 1). Since
the adversary has at most �(λ) opportunities to request evaluated terms from
the encryptor, the probability of two input strings being equal is bounded by

(�(λ) · w(�(λ)) · (q(λ) +
1
2

· (w(�(λ)) − 1))) · 2−λ

Summing up the Results: Finally, we recall from Proposition 1 that in the non-
degenerate case the output of the Grsymb encryptor is random, so the adversary’s
advantage in distinguishing the Grsymb encryptor from random is zero. Summing
the remaining advantages in the sequences of games, we obtain an advantage of

ε(λ) + q(λ) · (q(λ) − 1) · 2−λ−1 + (�(λ) · w(�(λ)) · (q(λ) +
1
2

· (w(�(λ)) − 1))) · 2−λ

��

We now finish up with a result on cryptographic modes of operation.
Although to the best of my knowledge there is no definition that precisely sets
out the properties that modes must have, some conditions that are satisfied by
most modes in the literature are given below.

290 C. Meadows

Definition 5. A MOO⊕ program is well-behaved if it satisfies the following
properties:

1. The i’th term returned by the encryptor in any message is the i’th iteration
of a deterministic recursive function;

2. for any single message, ciphertext blocks are returned according to a fixed
schedule;

3. symbolic histories of different encrypted messages may be interleaved in an
arbitrary fashion, and;

4. the number of new f -rooted terms in any term returned by the encryptor is
bounded by a constant D.

Corollary 1. Any safe, non-degenerate well-behaved MOO⊕ program is is
IND$-CPA secure.

Proof. By Theorem 1 it is enough to show the program is PBEC, i.e. that for
any n the set of f -rooted terms in HC(n) is bounded by a polynomial function
of λ.

We call a symbolic history unary if it is a history the encryption of a sin-
gle message, or an initial subsequence of such histories. Consider any length n
interleaving of unary symbolic histories. We note that the symbolic terms sent
in any such interleaving are the same no matter how the interleaving is done. We
also note that at most n unary histories may be interleaved (the bound being
achieved when the resulting symbolic history consists of n initial terms), and
the length of any symbolic history may be at most n (the bound being achieved
when a unary history of length n is used). Thus the number of different f -rooted
terms in HC(n) is bounded by D · n2. Since the adversary is PPT , n is bounded
by a polynomial function of λ. ��

We illustrate these results with an example.

Example 4. Consider Cipher Feedback (CFB) mode, in which C0 = r, and Ci =
f(Ci−1)⊕xi for i > 0, where r is a random block. Clearly, CFB is well-behaved.
We show that CFB encryption is secure under the blockwise schedule, in which
ciphertext is sent to the adversary as soon as it is computed. We note that no set
of ciphertext terms ⊕ sums to 0, so CFB is nondegenerate. We now let f(Ci,j)
and f(C�,k) be two different f -rooted terms appearing in a symbolic history
H, where Ci,j denotes the i’th ciphertext block in the encryption of message
j. Without loss of generality we may assume that f(Ci,j) appears after f(C�,k)
in H. We note that Ci,j = f(Ci−1,j) ⊕ xi,j, and f(Ci−1,j) �∈ sub(Hxi,j

). Thus,
(f(Ci,j), f(C�,k) is a safe pair. It follows that CFB is SBN-secure, and hence by
from Corollary 1 it is IND$-CPA secure.

6 Using Our Results to Analyze Modes

In this section we show how the results of this paper can be applied to the
analysis of cryptorgraphic modes of operation. We begin by stating and proving

Moving the Bar on Computationally Sound Exclusive-Or 291

some lemmas that allow us decide security by examining properties of single f
rooted terms appearing in a symbolic history instead of properties of pairs of
such terms.

Lemma 3. Suppose that a mode C admits a history H containing a term
f(x ⊕ t) where x >H t. Then C is unsafe. Moreover, if H �⊕ f(x ⊕ t), C is not
IND$-CPA.

Proof. Suppose that the first condition of the lemma holds. Then consider
an adversary that runs H followed by H′, where H′ is identical to H except
for different (both bound and unbound) variable names. Let f(x′ ⊕ t′) be the
copy of f(x ⊕ t) computed in H′. Then x′ >H x ⊕ t ⊕ t′. If H �⊕ f(x ⊕ t),
then the adversary is able to derive f(x ⊕ t) and f(x′ ⊕ t′) from H.H′ and
is able to both compute the substitution σx = x′ ⊕ t ⊕ t′ and observe that
σf(x ⊕ t) = σf(x′ ⊕ t′), thus distinguishing the two blocks from random. ��

Lemma 4. Let C be a well-behaved MOO⊕ program, such that for any f(s)
appearing as a subterm of a term in some symbolic history H, s has at least one
f -rooted or bound variable summand that does not appear in any term sent by
the encryptor prior to computing s. Then C is safe. If it is also non-degenerate,
then it is IND$-CPA secure.

Proof. Suppose C is not safe. Let H be an unsafe history, and let f(s), f(x ⊕ t)
be the first unsafe pair in H, where x >H ↓⊕(s ⊕ t). The proofs in the case in
which f(x ⊕ t) is computed after f(s) and f(s) is computed after f(x ⊕ t) are
similar, so we prove only the first case. If f(x ⊕ t) is computed after f(s), then
t must contain a summand f(w) that does not appear in any term sent by the
encryptor prior to computing t. But f(w) is not a summand of s, it must be
a summand of s ⊕ t, contradicting our hypothesis. Thus, since x �>H f(w), we
have x �>H s ⊕ t.

The conclusion that, if C is also non-degenerate, then it is IND$-CPA secure,
follows directly from Theorem 1. ��

For modes, security often depends on the schedule in which ciphertext is
returned to the adversary. The most conservative is the messagewise sched-
ule, in which ciphertext blocks are not returned until all plaintext blocks have
been received. The most eager is the blockwise schedule, in which the ciphertext
blocks are returned as soon as they are computed. The delay-by-one schedule
lies between the two: the ciphertext block encrypting the i’th plaintext block is
returned after the i + 1’st block is received.

We now apply Lemmas 3 and 4 to some modes discussed by Bard [5]. They
are listed in Table 1. The first column give the name of the mode. The references
give where the mode was first described (if known), and where an attack was
first described, if relevant. The second column describes the mode. The third
column describes the most conservative schedule (if any) under which the mode
is insecure, and the fifth the most eager schedule under which it is secure.

292 C. Meadows

Table 1. Different modes and their security properties

Mode Description Insecure Why Secure Why

CBC [13,18] C0 = r

Ci = f(xi ⊕
Ci−1)

C0 sent

before x1

Lemma3

x1 >H r

1-delay Lemma 4

Ci−1 sent

after xi

PCBC C0 = r

Ci = f(xi ⊕
xi−1 ⊕ Ci−1)

C0 sent

before x1

Lemma3

x1 >H r

1-delay Lemma 4

Ci−1 sent

after xi

CFB C0 = r

Ci =

f(Ci−1) ⊕ xi

none bw Lemma 4

f(Ci−1) new

in Ci

OFB E0 =

f(r), Ei =

f(Ei−1)

Ci = Ei ⊕ xi

none bw Lemma 4

f(Ci−1) new

in Ci

IGE [10,15] C0 = r, P0 =

r′

Pi = xi

Ci = f(Pi ⊕
Ci−1) ⊕ Pi−1

bw

P0 secret

Lemma 3

xi >H Ci−1

1-delay Lemma 4

xi sent after

Ci−1

S-ABC [19] C0 = r, E0 =

r′

Ei = xi ⊕
f(Ei−1)

Ci = f(Ei ⊕
Ci−1) ⊕ Ei−1

none bw Lemma 4

f(Ei ⊕ Ci−1)

new in Ci

H-IACBC [16,18] C0 = E0 =

f(r), Ei =

f(xi ⊕ (Ei−1)

Ci = Ei ⊕ Si

Si ⊕ Sj =⊕
S′
i ⊕ S′

j

any 2 mess.

streams

C0 sent

before x1

Lemma3 plus

identities on

Si

1-delay Lemma 4

Ci−1 sent

after xi

7 Conclusion and Open Problems

We have identified symbolic conditions sufficient to guarantee IND$-CPA security
for a class of cryptosystems that use exclusive-or. We used these results to gen-
erate conditions applicable to cryptographic modes of operation. Our approach
relies on the use of identical-until-bad games that allow us to pinpoint a prop-
erty implying a cryptosystem’s security. Even though this property (in this case,
negligible probability of collisions) is not always preserved in the computational
model, it is possible to determine further conditions that guarantee that it will
be, avoiding known problems with the computational soundness of exclusive-or.

This work opens up several directions for future research.

Verification of Symbolic Criteria: The first is to develop algorithms for checking
the symbolic criteria developed in this paper, and for generating cryptosystems
that meet them. We have already begun work on developing verification algo-
rithms and a tool for generating and checking cryptosystems (https://symcollab.

https://symcollab.github.io/CryptoSolve/

Moving the Bar on Computationally Sound Exclusive-Or 293

github.io/CryptoSolve/). In addition, we have begun to study the complexity of
the problem. In particular, in [21]it is shown that degeneracy is undecidable by
reducing it to the Post correspondence problem.

Enriching the Set of Cryptographic Primitives and Properties: Block ciphers
and exclusive-or are not the only cryptographic primitives that can be reasoned
about symbolically. Some others include hash functions, modular exponentiation,
finite field and Abelian group operations, and bilinear pairings. Computational
interpretations of the symbolic versions of many of these have already been
covered by Baudet et al. in [7] for the case of a passive adversary, but may still
need to be adapted for the case of an adaptive one. For properties, we would be
interested not only in secrecy properties but properties such as authentication,
collision-freeness and so forth.

Weaker Properties: Several of the properties we use in this paper are stronger
than strictly necessary. In particular, polynomially bounded execution choice-
limits the adversarial choices, but although MOO⊕ programs satisfy it, all that
is really required is that the adversary’s adaptive choice be polynomially limited.
Indeed, this is the case for the cryptosystem used as an example by Kremer and
Mazaré in [20]. The adversary first non-adaptively compromises a proper subset
of the principals in a network, and then interacts with the remaining principals
in a polynomially bounded execution choice fashion. Counting opportunities for
adaptive execution choice is more complex than counting opportunities for exe-
cution choice, but identifying design choices such that make such counting easier
may make the analysis more tractable.

In addition, the safety property defined in this paper is stronger than is
strictly necessary: it is possible for a cryptosystem to have internal collisions
that are not visible to the adversary. For example, consider the symbolic history
νr.r.x1.x2.f(r ⊕ f(x1) ⊕ f(x2)).5 The pair (f(x1), f(x2)), and the adversary can
force a collision by setting x1 = x2. However, in that case the ciphertext r.f(r) is
still indistinguishable from random. But the technique used to prove IND$-CPA
for safe cryptosystems does not extend easily to cryptosystems whose only unsafe
pairs are invisible, because safeness or unsafeness of a pair may now depend on
where it is located with respect to other f -rooted terms in a symbolic history.

Design and Analysis of Protocols: Although the work we describe is applied
to cryptosystems, they are cryptosystems that are themselves simple protocols,
whose security depends on communication rules governing the schedule used
by the encryptor to return ciphertext. Thus the question of whether or not
these results can be extended to more complex protocols is more a question of
to what degree than of whether it is possible at all. Thus it may be possible
to augment previous work on computationally sound symbolic cryptographic
protocol analysis, which has employed more of a top-down approach in which
algorithms are modeled as equation-free abstractions, with a more bottom-up
approach in which one starts with equational theories that are more tightly
connected to the computational model. However, the question of scale is not a
5 I am grateful to Christopher Lynch for this example.

https://symcollab.github.io/CryptoSolve/

294 C. Meadows

trivial one, in particular, since, as Unruh has shown, providing too much adaptive
choice to an adversary can break the link between symbolic and computational
security. This question will need to be studied in more depth.

Acknowledgements. I am grateful to Jonathan Katz for helpful comments on earlier
versions of this paper, as well as for the comments of many anonymous reviewers. I
am also grateful the fruitful discussions I have had with fellow members of the Crypto-
Solve group, including Wei Du, Serdar Erbatur, Hai Lin, Christopher Lynch, Andrew
Marshall, Paliath Narendran, Danielle Radosta, Veena Ravishankar, Brandon Rozek,
and Luis Rovera. Any problems that remain with this paper are of course my own
responsibility. This work was funded by ONR Code 311.

References

1. Abadi, M., Fournet, C.: Mobile values, new names, and secure communication. In:
Proceedings of POPL 2001, pp. 104–115. ACM (2001)

2. Abadi, M., Rogaway, P.: Reconciling two views of cryptography. In: van Leeuwen,
J., Watanabe, O., Hagiya, M., Mosses, P.D., Ito, T. (eds.) TCS 2000. LNCS, vol.
1872, pp. 3–22. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-44929-
9 1

3. Baader, F., Nipkow, T.: Term Rewriting and All That. Cambridge University Press,
Cambridge (1998)

4. Backes, M., Pfitzmann, B.: A cryptographically sound security proof of the
Needham-Schroeder-Lowe public-key protocol. In: Pandya, P.K., Radhakrishnan,
J. (eds.) FSTTCS 2003. LNCS, vol. 2914, pp. 1–12. Springer, Heidelberg (2003).
https://doi.org/10.1007/978-3-540-24597-1 1

5. Bard, G.V.: Blockwise-adaptive chosen-plaintext attack and online modes of
encryption. In: Galbraith, S.D. (ed.) Cryptography and Coding 2007. LNCS, vol.
4887, pp. 129–151. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-
540-77272-9 9

6. Barthe, G., et al.: Fully automated analysis of padding-based encryption in the
computational model. In: ACM Conference on Computer and Communications
Security (2013)

7. Baudet, M., Cortier, V., Kremer, S.: Computationally sound implementations of
equational theories against passive adversaries. In: Caires, L., Italiano, G.F., Mon-
teiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp.
652–663. Springer, Heidelberg (2005). https://doi.org/10.1007/11523468 53

8. Bellare, M., Rogaway, P.: The security of triple encryption and a frame-
work for code-based game-playing proofs. In: Vaudenay, S. (ed.) EUROCRYPT
2006. LNCS, vol. 4004, pp. 409–426. Springer, Heidelberg (2006). https://doi.org/
10.1007/11761679 25

9. Bresson, E., Lakhnech, Y., Mazaré, L., Warinschi, B.: A generalization of DDH with
applications to protocol analysis and computational soundness. In: Menezes, A.
(ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 482–499. Springer, Heidelberg (2007).
https://doi.org/10.1007/978-3-540-74143-5 27

10. Campbell, C.: Design and specification of cryptographic capabilities. IEEE Com-
mun. Soc. Mag. 16(6), 15–19 (1978)

11. Carmer, B., Rosulek, M.: Linicrypt: a model for practical cryptography. In: Rob-
shaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9816, pp. 416–445. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-53015-3 15

https://doi.org/10.1007/3-540-44929-9_1
https://doi.org/10.1007/3-540-44929-9_1
https://doi.org/10.1007/978-3-540-24597-1_1
https://doi.org/10.1007/978-3-540-77272-9_9
https://doi.org/10.1007/978-3-540-77272-9_9
https://doi.org/10.1007/11523468_53
https://doi.org/10.1007/11761679_25
https://doi.org/10.1007/11761679_25
https://doi.org/10.1007/978-3-540-74143-5_27
https://doi.org/10.1007/978-3-662-53015-3_15

Moving the Bar on Computationally Sound Exclusive-Or 295

12. Dolev, D., Yao, A.C.-C.: On the security of public key protocols. IEEE Trans. Inf.
Theory 29(2), 198–207 (1983)

13. Ehrsam, W.F., Meyer, C.H., Smith, J.L., Tuchman, W.L.: Message verification and
transmission error detection by block chaining, US Patent 4,074,066, 14 February
1978

14. Gagné, M., Lafourcade, P., Lakhnech, Y., Safavi-Naini, R.: Automated proofs of
block cipher modes of operation. J. Autom. Reason. 56(1), 49–94 (2016). https://
doi.org/10.1007/s10817-015-9341-5

15. Gligor, V.D., Donescu, P., Katz, J.: On message integrity in symmetric encryption.
In: 1st NIST Workshop on AES Modes of Operation (2000)

16. Halevi, S.: An observation regarding Jutla’s modes of operation. IACR Cryptol.
ePrint Arch. 2001:15 (2001)

17. Hoang, V.T., Katz, J., Malozemoff, A.J.: Automated analysis and synthesis of
authenticated encryption schemes. In: Proceedings of 22nd ACM CCS, pp. 84–95
(2015)

18. Joux, A., Martinet, G., Valette, F.: Blockwise-adaptive attackers revisiting the
(in)security of some provably secure encryption modes: CBC, GEM, IACBC. In:
Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 17–30. Springer, Heidelberg
(2002). https://doi.org/10.1007/3-540-45708-9 2

19. Knudsen, L.R.: Block chaining modes of operation. In: Proceedings of Symmetric
Key Block Cipher Modes of Operation Workshop (2000)

20. Kremer, S., Mazaré, L.: Adaptive soundness of static equivalence. In: Biskup, J.,
López, J. (eds.) ESORICS 2007. LNCS, vol. 4734, pp. 610–625. Springer, Heidel-
berg (2007). https://doi.org/10.1007/978-3-540-74835-9 40

21. Lin, H., et al.: Algorithmic problems in the symbolic approach to the verification of
automatically synthesized cryptosystems. In: Konev, B., Reger, G. (eds.) FroCoS
2021. LNCS, vol. 12941, pp. 253–270. Springer, Heidelberg (2021). https://doi.org/
10.1007/978-3-030-86205-3 14

22. Malozemoff, A.J., Katz, J., Green, M.D.: Automated analysis and synthesis of
block-cipher modes of operation. In: 2014 IEEE 27th Computer Security Founda-
tions Symposium (CSF), pp. 140–152. IEEE (2014)

23. McQuoid, I., Swope, T., Rosulek, M.: Characterizing collision and second-preimage
resistance in Linicrypt. In: Hofheinz, D., Rosen, A. (eds.) TCC 2019. LNCS, vol.
11891, pp. 451–470. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
36030-6 18

24. Micciancio, D., Warinschi, B.: Soundness of formal encryption in the presence of
active adversaries. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 133–151.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24638-1 8

25. Unruh, D.: The impossibility of computationally sound XOR. IACR Cryptology
ePrint Archive, 2010:389 (2010)

https://doi.org/10.1007/s10817-015-9341-5
https://doi.org/10.1007/s10817-015-9341-5
https://doi.org/10.1007/3-540-45708-9_2
https://doi.org/10.1007/978-3-540-74835-9_40
https://doi.org/10.1007/978-3-030-86205-3_14
https://doi.org/10.1007/978-3-030-86205-3_14
https://doi.org/10.1007/978-3-030-36030-6_18
https://doi.org/10.1007/978-3-030-36030-6_18
https://doi.org/10.1007/978-3-540-24638-1_8

Optimal Verifiable Data Streaming
Protocol with Data Auditing

Jianghong Wei1,2,3, Guohua Tian1, Jun Shen1, Xiaofeng Chen1,2(B),
and Willy Susilo4

1 State Key Laboratory of Integrated Service Networks, Xidian University,
Xi’an, China

xfchen@xidian.edu.cn
2 State Key Laboratory of Cryptology, P. O. Box 5159, Beijing 100878, China

3 State Key Laboratory of Mathematical Engineering and Advanced Computing,
PLA Strategic Support Force Information Engineering University, Zhengzhou, China

4 School of Computing and IT, University of Wollongong,
Wollongong 2522, NSW, Australia

wsusilo@uow.edu.au

Abstract. As smart devices connected to networks like Internet of
Things and 5G become popular, the volume of data generated over time
(i.e., stream data) by them is growing rapidly. As a consequence, for
these resources-limited client-side devices, it becomes very challenging
to store the continuously generated stream data locally. Although the
cloud storage provides a perfect solution to this problem, the data owner
still needs to ensure the integrity of the outsourced stream data, since
various applications built upon stream data are sensitive of both its
context and order. To this end, the notion of verifiable data stream-
ing (VDS) was proposed to effectively append and update stream data
outsourced to an untrusted cloud server, and has received significant
attention. However, previous VDS constructions adopt Merkle hash tree
to capture the integrity of outsourced data, and thus inevitably have
logarithmic costs. In this paper, we further optimize the construction of
VDS in terms of communication and computation costs. Specifically, we
use the digital signature scheme to ensure the integrity of outsourced
stream data, and employ a recently proposed RSA accumulator (v.s.
Merkle hash tree) to invalidate the corresponding signature after each
data update operation. Benefited from this approach, the resulted VDS
construction achieves optimal, i.e., having constant costs. Furthermore,
by specifying the underly signature scheme with the BLS short signa-
ture and carefully combining it with the RSA accumulator, we finally
obtain an optimal verifiable data streaming protocol with data auditing.
We prove the security of the proposed VDS construction in the random
oracle model.

Keywords: Verifiable data streaming · Outsourced storage · Data
auditing · Cryptographic accumulator

c© Springer Nature Switzerland AG 2021
E. Bertino et al. (Eds.): ESORICS 2021, LNCS 12973, pp. 296–312, 2021.
https://doi.org/10.1007/978-3-030-88428-4_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-88428-4_15&domain=pdf
https://doi.org/10.1007/978-3-030-88428-4_15

Optimal VDS with Data Auditing 297

1 Introduction

With the extensive use of smart devices connected to networks like Internet
of Things and 5G, both individuals and enterprises have been generating huge
amounts of data. In particular, as a kind of important and common data type,
stream data appears in various application scenarios, such as network intrusion
detection, DNA sequence analysis, stock trading, and so on [2]. Although there
has been a lot of research focusing on how to effectively store and manage stream
data [1,12], the explosive and unpredicted growth of stream data scale still brings
serious storage issues, especially for those resource-restricted client-side devices.

Fortunately, the emergence of cloud computing provides an economical and
convenient storage mode for big stream data. That is, users can continuously
stream the local data to cloud storage servers (e.g., Dropbox, Google Driver and
Microsoft Azure), and then access the outsourced data via lightweight devices
connected networks at anytime and anywhere. However, after the data is out-
sourced to cloud storage servers, the data owner completely loses its control right.
This means that, to ensure the security of the outsourced data, the data owner
has to trust these cloud storage servers. On the other hand, a large number of
cloud data leakage incidents have shown that cloud storage servers are not com-
pletely trusted in fact [16]. To this end, a lot of active studies have been proposed
to conquer the security issues of outsourced data in the context of cloud com-
puting, e.g., proof of retrievability [26], secure duplication [3], verifiable update
[10] and cryptographically enforced access control [28].

Among these security issues, the integrity of the outsourced data is especially
important, since it is directly related to the data availability. In other words, a
data user should be convinced that the data returned back by the cloud stor-
age server is consistent with the data that was originally outsourced by the data
owner. Otherwise, the analysis results based on the retrieved data may be biased
or even maliciously misled. When focusing on stream data, due to its own fea-
tures of unpredictable size and location-sensitive, this problem becomes more
challenging.

As the first step towards solving the above problem, Schröder and Schröder
[24] introduced the notion of verifiable data streaming (VDS) protocol. They put
forward an efficient instantiation built upon a novel authenticated data structure
named as chameleon authentication tree (CAT), which is essentially a generalized
Merkle hash tree. Specifically, in their construction, the data owner assigns data
items to leaf nodes of the CAT in a natural order, and thus binds the data content
and the corresponding position. At the same time, the one-way nature of the
underlying hash functions ensures that the outsourced data cannot be tampered
with. In addition, by using a chameleon hash function and maintaining a dynamic
verification key1, the data owner can update previously outsourced data items in
an efficient manner, and also invalidate them. On the other hand, any data user
can independently verify the integrity of a requested data item by reconstructing
the hash value at the root node of the CAT and further comparing it with that

1 The verification key is updated after each data update operation.

298 J. Wei et al.

contained in the verification key. On the whole, this VDS construction almost
satisfies all of the above listed properties, except that it requires to fix the size
of the CAT at the beginning. In other words, the number of data items that
can be authenticated is bounded, which violates the first property. Moreover,
both the computation cost and communication overhead of this construction are
logarithmic in the bounded number of data items.

Towards optimizing the above VDS protocol, Schröder and Simkin [25] used
the CAT in a black-box way, and proposed a more efficient VDS protocol. Par-
ticularly, in this construction, the number of data items is unbounded, and both
the computation and communication costs are only logarithmic in the number of
all authenticated data items so far. However, their construction was just proved
secure in the random oracle model, at the cost of achieving these optimization
goals. Furthermore, Krupp et al. [18] formally defined the notion of chameleon
vector commitment (CVC), based on which they put forward the first unbounded
VDS protocol in the standard model. Since they also followed the idea of Merkle
hash tree used in previous constructions, the complexity of their VDS protocol
built upon CVC is the same as Schröder and Simkin’s [25] protocol. In addition,
they also proposed another VDS construction by combining the digital signature
scheme and the cryptographic accumulator. Notably, such a VDS construction is
nearly optimal, that is, to achieve constant communication overhead and compu-
tation cost. But the computation cost of the cloud server responding to a query
is linear in the number of update operations conducted so far.

Although a lot of valuable research efforts have been made, the state-of-the-
art VDS construction is still not optimal, i.e., achieving constant computation
and communication costs. In addition, the complexity of previous VDS protocols
is evaluated under a single query. That is, for concurrent queries that retrieve
multiple data items at once, the cost of these protocols is linear in the size
of concurrent queries. In view of this state of affairs, a nature and important
problem is how to design an optimal VDS protocol.

1.1 Our Contribution

In this paper, we focus on the problem of constructing more efficient VDS pro-
tocols, and improve upon the state-of-the-art. Roughly, to achieve this goal,
we employ the approach of digital signature plus cryptographic accumulator to
instantiate VDS, rather than the traditional method of Merkle hash tree. That
is, the digital signature scheme is used to bind the content of each data item
and its position, and also to ensure their integrity. Moreover, to invalidate the
old signature after each data update operation, we add it to the cryptographic
accumulator, and let the cloud server generate a non-membership witness for
the current signature of each queried data item, so as to resist replay attacks.

In more detail, we adopt BLS signature [6] as the underlying digital signature
scheme. It not only guarantees the integrity of the retrieved data, but also allows
the data owner or other third party to audit the integrity of those previously out-
sourced data items without retrieving them. With respect to the cryptographic

Optimal VDS with Data Auditing 299

accumulator, we employ Boneh et al.’s [5] RSA accumulator that can batch non-
membership witnesses. By carefully combining these two primitives, we finally
obtain a verifiable and auditable data streaming (VADS for short) protocol that
has constant costs.

Specifically, we conduct the following contributions:

• We formalize the syntax and security notion of VADS protocol, and propose
a concrete VADS construction built upon the Boneh-Lynn-Shacham (BLS)
signature [6] and the RSA accumulator due to Boneh et al. [5].

• We prove the security of our proposal in the random oracle model, and reduce
its security to the computational Diffie-Hellman assumption over bilinear
groups as well as the security of the underlying RSA accumulator, which
in turn depends on the adaptive root assumption over hidden order groups.

• We theoretically analyze the performance of the proposed VADS construction.
Specifically, when considering our VADS construction as a VDS protocol, it
outperforms the state-of-the-art, and achieves optimal. In addition, it also
features the functionality of data auditing.

1.2 Related Work

A naive solution to verify the integrity of outsourced stream data is to use a
simple Merkle hash tree [21]. Specifically, all data items are stored at the leaves
of the tree, and each internal node is associated with the hash value of the
concatenation of its children’s values. Then, the hash value of the root node is
used as the public verification key, and the integrity proof of each data item
consists of all node values that are required for reconstructing root node’s value
from the corresponding leaf node. The shortcoming of this solution is that the
verification key needs to be immediately updated after either updating an old
data item or appending a new data item, which brings an infeasible burden of
managing the verification key, especially for stream data with large scale and
high transmission rate.

Towards overcoming the above shortcoming, Schröder and Schröder [24]
introduced the notion of verifiable data streaming protocols, and proposed the
first VDS construction supporting a bounded number of authenticated data
items. In their protocol, appending a new data item no longer needs to update
the verification key, but the total number of data items is initially fixed. Sub-
sequently, Schröder and Simkin [25] removed such a limitation, and constructed
the first unbounded VDS protocol in the random oracle model. Krupp et al. [18]
further presented nearly optimal VDS constructions in terms of communication
and computation costs.

In addition, there are several other related works that extend the original
VDS protocol. For instance, Chen et al. [9] and Xu et al. [32] combined VDS
with homomorphic encryption to realize verifiable computation on stream data.
Zhang et al. [36] proposed a VDS construction with accountability. Xu et al. [31]
presented a lightweight VDS construction supporting range queries. Recently,

300 J. Wei et al.

Sun et al. [27] employed Schröder and Simkin’s [25] approach2 to propose a
VDS protocol with public data auditing. However, Li et al. [20] demonstrated
that their construction can be invalidated by any adversarial cloud server, and
thus failed to achieve the goal of data auditing.

Another cryptographic primitive similar to VDS is verifiable databases
(VDB) proposed by Benabbas et al. [4]. The main difference between the two
is that the database size needs to be fixed in the setup phase of VDB schemes,
while it is allowed to be unbounded in the setting of VDS. Therefore, VDS can
be regarded as a generalization of VDB. Since its introduction, a lot of research
around VDB has been conducted, such as new primitives for constructing VDB
[8,19], VDB with efficient updates and deletions [11,22], VDB supporting various
SQL queries [33,35] as well as public auditing [29]. In addition, Papamanthou et
al. [23] also introduced a similar notion named as streaming authenticated data
structures, which enable the data owner to efficiently compute a verification key,
and then use it to verify the computation results of the stream data from the
server. However, the verification key in their construction dynamically changes
after streaming or uploading each data item.

Juels and Kaliski [17] put forward the notion of proof of retrievability (PoR,
a.k.a data auditing), which is also closely related to VDS. This cryptographic
primitive allows the data owner to verify the integrity of those outsourced data
without retrieving them again, and has been extensively studied. Those early
PoR constructions [17,26] are static, and cannot be used in the dynamic set-
ting due to replay attacks. As discussed in [13], in order to resist replay attacks,
authenticated data structures (e.g., Merkle hash trees and authenticated dic-
tionaries) must be employed to invalidate those previously authenticated data
items in the case of dynamic. However, dynamic PoR or data auditing schemes
[14,15,30,34] following this manner usually incur logarithmic costs. Also note
that in the setting of VDS, the data user first retrieves the data, and further
checks its integrity for downstream processing. Thus, adding the functionality of
data auditing to VDS makes it more flexible, and can also ensure the integrity
of the outsourced stream data when we do not need to retrieve and use them.

1.3 Organization

The reset of this paper is organized as follows: In Sect. 2, we introduce necessary
preliminaries. Section 3 formalizes the syntax and security notion of verifiable
and auditiable data streaming protocol. We put forward a concrete VADS con-
struction in Sect. 4, and prove its security in the random oracle model. The
performance analysis of the proposed VADS construction is presented in Sect. 5.
We conclude this paper in Sect. 6.

2 In Sun et al.’s construction, they used the notion of adaptive trapdoor hash authen-
tication tree. But we note that it is essentially the fully dynamic CATs constructed
by Schröder and Simkin.

Optimal VDS with Data Auditing 301

2 Preliminaries

2.1 Notations

Throughout this paper, we use the following notations:

– Primes(λ): The set of primes belonging to [0, 2λ).
– EEA(·, ·): The extended euclidean algorithm.
– HG, HG′ : Hash functions with domains G, G′.
– Hλ, HPrime: Hash functions with domains [0, 2λ), Primes(λ).
– S: Unbounded stream data.
– s[i]: The i-th data item of the stream data S.
– S[J]: The data item set {s[j]|j ∈ J}.
– [n]: The integer set {1, 2, . . . , n}.
– x

$← R: Randomly sampling x from the set R.
– I

$← R: Randomly sampling a subset I of the set R.

2.2 Bilinear Groups and CDH Assumption

Let G and GT be two cyclic groups with the prime order p in the size λ, and g
be a random generator of the group G. A map e : G × G → GT is said to be
bilinear if the following properties hold:

• Bilinearity : For any group elements u, v ∈ G and integers α, β ∈ Zp, it holds
that e(uα, vβ) = e(u, v)αβ .

• Non-degeneracy : e(g, g) �= 1GT
, where 1GT

is the unit element of GT .
• Computability : For any group elements u, v ∈ G, there exists a probabilistic

polynomial-time (PPT) algorithm that can efficiently compute e(u, v).

To simplify subsequent descriptions, we assume that there exists a PPT algo-
rithm BilGen that takes the security parameter λ as input, and then generates
bilinear groups, i.e., (G,GT , e, p, g) ← BilGen(λ).

The security of our protocol is partially built upon the computational Diffie-
Hellman (CDH) assumption over bilinear groups, which is formalized as follows:

Definition 1 (CDH Assumption [6]). Let (G,GT , e, p, g) ← BilGen(λ) be
bilinear groups, α and β be two random integers sampled from Zp. We say the
CDH assumption holds if for any PPT adversary given (g, gα, gβ), its probability
of outputting gαβ is negligible in the security parameter λ.

2.3 Groups of Unknown Order and RSA Accumulator

Our protocol employs a cryptographic accumulator based on a group G
′ of

unknown order. Given a security parameter λ, we assume there exists a PPT
algorithm UGen(λ) → G

′ that can generate such a group with order in a range
[a, b] such that 1

a , 1
b and 1

b−a are all negligible in λ. As discussed by Boneh et

302 J. Wei et al.

al. [5], available two concrete instantiations of G′ include class groups and the
quotient group Z

∗
N/{−1, 1} of an RSA group, where N is an RSA modulus.

Specifically, we use Boneh et al.’s [5] RSA accumulator that supports batching
non-membership witnesses. Since our protocol only involves adding elements to
the accumulator and producing non-membership witnesses, here we just present
a simplified version. In more detail, it consists of the following algorithms:

• Setup(1λ): The setup algorithm takes as input a security parameter λ. It first
generates a hidden order group G

′ ← UGen(λ), and randomly chooses an
element h ∈ G

′. Furthermore, it initializes the element set as R ← ∅ and the
corresponding accumulator as Acc(∅) ← h.

• Add(Acc(R), R, z): The addition algorithm takes as input the current accu-
mulator Acc(R) and element set R as well as a prime z ∈ Primes(λ). If z ∈ R,
then it directly outputs Acc(R). Otherwise, it updates the element set as
R′ ← R ∪ {z} and the accumulator as Acc(R′) ← (Acc(R))z.

• WitCreate(Acc(R), R, z): This non-membership witness creation algorithm
takes as input the current accumulator Acc(R) and element set R as well as
an element z /∈ R. It first computes z∗ =

∏
z′∈R z′, and employs the extended

euclidean algorithm to compute coefficients x, y ∈ Z such that x·z∗+y ·z = 1.
Then, it assigns Y = hy, and outputs π = (x, Y) as the witnesses of z /∈ R.

• Verify(Acc(R), π, z): This verification algorithm takes as input the accumula-
tor Acc(R), the non-membership witness π and the corresponding element z.
It first parses the witness π as (x, Y). Then, it outputs 1 if (Acc(R))x ·Y z = h
and 0 otherwise.

2.4 Hashing to Primes

In our VADS construction, we need a hash function HPrime that maps arbitrary
strings to primes belonging to [0, 2λ) for the given security parameter λ. We
make use of such a hash function introduced in [7].

Specifically, let Hλ : {0, 1}∗ → [0, 2λ) be a collision resistant hash function
and i ← 0. Given an input x ∈ {0, 1}∗, if y ← Hλ(x, i) is a prime then directly
assign y ← HPrime(x), otherwise let i ← i + 1 and continue to evaluate Hλ(x, i),
until a prime is found. If Hλ was a random function, then the running time of
HPrime is O(λ), since the number of primes less than 2λ is O(2

λ

λ).

3 Verifiable and Auditable Data Streaming Protocol

In this section, we formalize the syntax of VADS protocol and its security require-
ment.

In the context of a VADS protocol, a client C can outsource some unbounded
data S = s[1], s[2] . . . to an untrusted server S in a streaming manner. That is,
C reads a data item s[i] ∈ {0, 1}λ at a time and sends it to S, who then stores
it in a database DB. The outsourced stream data must be publicly verifiable
and auditable in the sense that the server S can neither modify the position and

Optimal VDS with Data Auditing 303

content of any data item nor append additional data items to the database. In
addition, given some proof3 generated and returned by the server, the client C
(or a third party) can publicly verify that the requested data item s[i] was indeed
located at the position i of the outsourced stream data, and can also publicly
judge that the server S has not deleted the data without retrieving it. Moreover,
the client C is allowed to update any data item s[i] with a new one s′[i].

Formally, a verifiable and auditable data streaming protocol VADS =
(Setup,Append,Query,Audit,Verify, Judge,Update) is seven-tuple of algorithms
and protocols, and is interactively executed between a client C and a server S,
which are both modeled as PPT algorithms. The details of these algorithms are
specified as follows:

• Setup(1λ): The setup algorithm is performed by the client C, and takes a
security parameter λ as input. It outputs a verification key vk and a secret
key sk. The former is sent to the server S, and the later is held by the client
C. To simplify descriptions, we assume that vk is part of sk.

• Append(sk, s): The append protocol is initiated by the client C, and takes the
secret key sk and a data item s as input. It appends s to the database DB
maintained by the server S, and may output a new secret key sk′.

• Query(vk, i,DB): The query protocol takes as input the verification key vk
and the database DB provided by the server S as well as an index i ∈ N

∗

from the client C. At the end of this protocol, the server S outputs the i-th
entry s[i] of the database DB along with a proof πq, or an error symbol ⊥.

• Verify(vk, s[i], i, πq): The verification algorithm is run by the client C, and
takes as input the verification key vk, an index i and a data item s[i] as well
as a proof πq. It outputs the data item s[i] if s[i] is actually the i-th entry of
the database DB. Otherwise, it outputs an symbol ⊥.

• Audit(I): The audit protocol is initiated by the client C, and takes as input an
index set I ⊂ N

∗. At the end of this protocol, it outputs a proof πa returned
by the server S.

• Judge(vk, πa): The judge algorithm is performed by the client C, and takes the
verification key vk and a proof πa as input. It outputs 1 if the server passes
the judge and 0 otherwise.

• Update(sk, i, s′, vk,DB): The update protocol is conducted between the server
S that provides the verification key vk as well as the database DB and the
client C that provides the secret key sk, an index i as well as a data item s′.
At the end of this protocol, the server S will replace the original i-th data
item s[i] of the database DB with s′, and both S and C update the original
verification key to vk′.

A VADS protocol must fulfill the usual requirement of correctness. That is,
when all algorithms/protocols of a VDS protocol are honestly executed, it should
work as expected. This is formally defined as follows.

3 For different tasks (i.e. query and auditing), the corresponding proofs are also dif-
ferent.

304 J. Wei et al.

Definition 2 (Correctness). A VADS protocol VADS is said to be correct
provided that for correctly generated verification and secret key (vk, sk) ←
Setup(λ) and any stream data S = s[1], s[2], . . ., if sk′ ← Append(sk, s[i])
and (s[i], πq) ← Query(vk,DB, i) as well as πa ← Audit(I), then
Verify(vk, i, s[i], πq) → s[i] and Judge(vk, πa) → 1 must hold with an overwhelm-
ing probability. Furthermore, the correctness must hold even after performing an
arbitrary number of updates.

The intuition behind the security of the VADS protocol is that an adversary
A should not be able to modify those data items stored in the database, including
their contents and positions, and nor should it be able to append new elements to
the database. Moreover, for an updated data item s′[i], its old value s[i] should no
longer pass verification. This can be modeled in a security game played between
a challenger B that plays the role of the client and an adversary A that plays the
role of the server. The security game comprises of the following three phases:

Setup Phase. In this phase, B runs the setup algorithm Setup(λ) → (vk, sk),
and sends the verification key vk to the adversary A. In addition, B creates a
database DB and a set Q both initialized as empty.

Query Phase. The adversary A is allowed to adaptively add a new data item s to
the database DB by streaming it to the challenger B. As a response, B performs
the algorithm Append(sk, s), and returns the index i of s and corresponding proof
πq to the adversary A. Furthermore, the adversary A can also update a data
item s[i] ∈ DB with a new one s′[i] by providing a tuple (i, s′[i]) to the challenger
B, who then executes the algorithm Update(vk,DB, i, s′[i]) and returns a new
proof π̂q to A. Throughout this phase, the challenger B always immediately
updates the verification/secret keys after each query, and adds new data items
and corresponding indexes to the set Q, i.e., Q = {(1, s[1]), . . . , (q(λ), s[q(λ)])}.

Challenge Phase. Finally, when the adversary A decides to end the game, it
outputs a tuple (i∗, I∗, s[i∗], π∗

q , π
∗
a). Then, let s∗ ← Verify(vk, i∗, s[i∗], π∗

q) and
b∗ ← Judge(vk, π∗

a). We say the adversary A wins this security game if it holds
that:

(
s∗ �= ⊥ ∧ (i∗, s∗) /∈ Q

) ∨ (
b∗ = 1 ∧ ∃i′ ∈ I∗ s.t. (i′, s[i′]) /∈ Q)

)

We denote by AdvVADS
A (λ) the probability of A winning in the game.

Definition 3 (Security). A VADS protocol is secure if for any PPT adversary
A, the probability AdvVADS

A (λ) is negligible in the security parameter λ.

4 The Construction of VADS

In this section, we propose a concrete construction of verifiable and auditable
data streaming protocol. To this end, we first outline our techniques, and provide
an overview for ease of understanding. Then, we specify our VADS protocol that
supports a single query, just like previous VDS constructions.

Optimal VDS with Data Auditing 305

4.1 Overview

Our solution to the problem of verifying the integrity of the outsourced stream
data starts from a trivial idea, i.e., signing each data item and its position in
the stream data with a digital signature scheme. Obviously, the unforgeability
of signatures makes the outsourced data items can neither be tampered with
nor re-ordered. Here, the problem is how to update data items. Note that for
a position i, simply signing i and the new data item s′[i] is not sufficient, since
the old signature σi for i and the original data item s[i] would still remain valid.
In other words, upon a query about retrieving the data item at position i, the
cloud server can legitimately return s[i] and σi, rather than s′[i], although the
data owner has conducted the update operation at the position i.

Observe that the key to making the above solution effective is to invalidate
the old signature after each update operation. But here the verification key is
the public key of the underlying signature scheme, and does not relate to the
updated data item. Thus, to realize data update, the data owner has to generate
a new pair of public key and secret key, and signs all data items again, which
is clearly infeasible. This is also why previous VDS constructions [18,24,25] use
the approach of Merkle hash tree to invalidate those old data items. But at the
same time, this manner inevitably brings logarithmic costs.

Towards constructing optimal VDS protocol, we still follow the above trivial
idea, but adopt the cryptographic accumulator to revoke those old signatures.
More precisely, we use the state-of-the-art RSA accumulator proposed by Boneh
et al. [5] to invalidate the old signature after each update operation. That is, we
add the old signature into the current accumulator after the corresponding data
item was updated. Then, upon a query for position i, the cloud server needs to
create a non-membership proof π, so as to prove that the returned signature σi

and the corresponding data item s[i] are the newest ones. The data user employs
the proof π to verify the membership of σi against the current accumulator, which
is a short digest of all revoked signatures and assigned as part of the verification
key. On the whole, by dynamically freshing the accumulator with each update
operation, those old signatures can be effectively invalidated. In addition, since
the underlying accumulator features of batching non-membership witnesses, the
resulted VDS construction achieves constant computation and communication
costs, and therefore is optimal.

Furthermore, since we use the digital signature scheme to ensure the integrity
of the outsourced stream data, then it may be possible to enable the above VDS
construction to capture the functionality of public data auditing as done in PoR
schemes [26,30]. To this end, we instantiate the underlying signature scheme of
the above VDS construction with the BLS signature [6], and achieve the goal of
data auditing with the approach of Shacham and Waters [26]. Here we emphasize
that we focus on dynamic stream data, but Shacham and Waters dealt with the
case of static. Therefore, to resist replay attacks during the auditing procedure,
we additionally require the cloud server to return a non-membership proof for
those challenged data items along with a tag set that identifies them. This also

306 J. Wei et al.

makes the communication cost of data auditing in our VDS construction is linear
in the set of challenge set.

Finally, by carefully combing the BLS signature with Boneh et al.’s [5] RSA
accumulator, we obtain a optimal VDS protocol with data auditing.

4.2 The Construction

The concrete construction consists of the following algorithms.

• Setup(1λ): Given a security parameter λ, the client C first generates bilinear
groups (G,GT , e, p, g) ← BilGen(λ) and a hidden order group G

′ ← UGen(λ).
Then, C randomly picks an integer α ∈ Zp and two elements u ∈ G, h ∈ G

′.
The client C also selects four collision-resistant hash functions defined in the
following way: HG : {0, 1}∗ → G, HG′ : {0, 1}∗ → G

′, HPrime : {0, 1}∗ →
Primes(λ) and Hλ : {0, 1}∗ → [0, 2λ). In addition, the client C initializes a
counter cnt ← 1 and an accumulator Acc(∅) ← h. Finally, The client outputs
the verification key vk = {(G,GT , e, p, g),G′,HG,HG′ ,HPrime,Hλ,Acc(∅), A =
gα, u, h} and the secret key sk = {α, cnt, vk}. After that, sk is kept privately
by C, and vk is sent publicly to the server S, which further creates a database
DB and a revocation list R that are both initialized as empty.

• Append(sk, s,DB): To append a data item s ∈ Zp to the database DB,
the client C first retrieves the current counter cnt from the secret key
sk, and assigns an index i ← cnt for s. Then, C generates a signature
σi ← (

HG(i||tagi) · us
)α, and forwards the tuple (i, s, σi, tagi) to S, where

tagi
4 is a random string sampled from {0, 1}λ. Meanwhile, C updates the

counter cnt ← cnt+1. Upon receiving the tuple, the server S first verifies the
validity of the signature as follows:

e(σi, g)
?= e

(
A,HG(i||tagi) · us

)
(1)

If it passes the verification, then S stores s at the position i of the database
DB. Otherwise, S rejects C’s append request.

• Query(vk, i,DB): When the client C intends to query some data item that was
stored in the database DB, it sends the corresponding index i to the server
S. To answer such a query, S first retrieves the tuple (i, s[i], σi, tagi) from
the database DB. Then, it needs to produce a non-membership proof with
respect to the current accumulator Acc(R), so as to demonstrate that the
signature σi has not been revoked by the client C. To this end, S computes
zi ← HPrime(tagi) and directly retrieves5 z∗ ← ∏

tag∈R HPrime(tag). It then
lets (x, y) ← EEA(z∗, zi), and assigns π = (x, Y = hy). Finally, the server S
returns the requested data item s[i] and the proof πq = {σi, tagi, π} to the
client C.

4 We assume that each signature has a unique tag. So we can use it to identify the
corresponding signature as we do in the Query protocol.

5 Note that the value z∗ is computed with the revocation list R and is independent of
i, and thus can be refreshed after each update operation.

Optimal VDS with Data Auditing 307

• Verify(vk, s[i], i, πq): After getting the response from the server S, the client
C first parses the proof πq as {σi, tagi, π}, where π = (x, Y). After that, it
recomputes zi ← HPrime(tagi), and verifies if the following condition holds:

(
Acc(R)

)x · Y zi
?= h (2)

If not, it outputs ⊥ and terminates. Otherwise, it further checks if the follow-
ing condition holds:

e(σi, g)
?= e

(
A,HG(i||tagi) · us[i]

)
(3)

If yes, it outputs s[i]. Otherwise, it outputs ⊥.
• Audit(I): To check the retrievability of the outsourced stream data, the client

C (or a third party) first retrieves the current counter cnt, and selects a random
c-element subset I ⊆ [cnt]. Then, for each i ∈ I, it chooses a random integer
νi ∈ Zp, and sends the set {(i, νi)|i ∈ I} to the server S. After receiving
this set, S retrieves {(i, s[i], σi, tagi)|i ∈ I} from the database DB, and lets
ν =

∑
i∈I νis[i] mod p and σI =

∏
i∈I σνi

i . In addition, it needs to produce
an aggregated non-membership proof with respect to the current accumulator
Acc(R) for the set {σi|i ∈ I}, i.e., proving each σi has not been revoked by C.
To this end, it assigns QI = {HPrime(tagi)|i ∈ I}, and generates the aggregated
non-membership proof as πI ← WitCreate∗(Acc(R), R,QI) (see Algorithm1).
Finally, the server S returns the proof πa = {ν, σI , πI , {tagi|i ∈ I}} to C.

• Judge(vk, πa): Given the challenge set {(i, νi)|i ∈ I} and the returned proof
πa = {ν, σI , πI , {tagi|i ∈ I}}, the client C reconstructs QI = {HPrime(tagi)|i ∈
I}, and judges the validity of the received proof with the following condition:

WitVerify∗(Acc(R), R,QI , πI)
?= 1 (4)

If the proof fails to pass the above verification, then C outputs 0. Otherwise,
C further checks the following condition:

e(σI , g)
?= e

(
A,

∏
i∈I HG(i||tagi)νi · uν

)
(5)

The client C outputs 1 if it holds, and 0 otherwise.
• Update(sk, i, s′, vk,DB): To replace a previously outsourced data item s[i]

with a new one s′, the client C first retrieves the current tuple (i, s[i], σi, tagi)
from the server S, and then checks its validity via the equation (1). If it
passes the verification, C creates σ′

i ← (
HG(i||tag′

i) · us′)α, where tag′
i is a

new random string uniformly sampled from {0, 1}λ, and updates the current
accumulator Acc(R) ← (Acc(R))HPrime(tagi). Furthermore, C sends (s′, σ′

i, tag
′
i)

and Acc(R) to S. After that, S checks the validity of s′ according to the
equation (1) again, and replaces (i, s[i], σi, tagi) with (i, s′, σ′

i, tag
′
i) if it passes

the verification. Finally, the client C updates R ← R ∪ {tagi}. In addition,
both C and S use the updated accumulator Acc(R) to update the verification
key vk.

308 J. Wei et al.

Algorithm 1. Batching Non-membership Witnesses of the RSA Accumulator

Require: WitCreate∗(Acc(R), R, Q):

1: z∗ ← ∏
z′∈R z′

2: w′ ← ∏
w∈Q w

3: (x, y) ← EEA(z∗, w′)
4: V ← (Acc(R))x

5: Y ← hy

6: �1 ← HPrime(w
′, Y, h · V −1)

7: t1 ← ⌊
w′
�1

⌋
, T1 = Y t1

8: h′ ← HG′(Acc(R), V)
9: X ′ = (h′)x

10: �2 ← HPrimes(Acc(R), V, X ′),
11: γ ← Hλ(Acc(R), V, X ′, �2)
12: t2 ← ⌊

x
�2

⌋
, r ← x mod �2

13: T2 ← (
Acc(R) · (h′)γ

)t2

14: return π = {V, Y, T1, T2, X
′, r}

Require: WitVerify∗(Acc(R), R, Q, π):

1: {V, Y, T1, T2, X
′, r} ← π

2: w′ ← ∏
w∈Q w

3: �1 ← HPrime(w
′, Y, h · Y −1)

4: r′ ← w′ mod �1
5: if T �1

1 · Y r′ �= h · V −1 then
6: return 0
7: end if
8: h′ ← HG′(Acc(R), V)
9: �2 ← HPrime(Acc(R), V, X ′)

10: γ ← Hλ(Acc(R), V, X ′, �2)
11: if T �2

2 · (Acc(R) · (h′)γ)r �= V · (X ′)γ

then
12: return 0
13: end if
14: return 1

Correctness. The correctness of the above VADS protocol is guaranteed by
the Eqs. (1–5), which in turn depend on the correctness of the underlying BLS
signature and RSA accumulator. Specifically, for a correctly generated signature
σi for the i-th data item s[i], if it has not been revoked by the client, then it can
naturally pass through the verification of the Eqs. (1–4) due to the correctness of
the BLS signature and RSA accumulator. Furthermore, for correctly generated
and non-revoked signature set {σi|i ∈ I}, as shown below, the Eq. (5) also holds:

e(σI , g) = e
(∏

i∈I σνi
i , g

)
= e

(∏
i∈I HG(i||tagi)νi · us[i]·νi , gα

)

= e
(∏

i∈I HG(i||tagi)νi · u
∑

i∈I s[i]·νi , A
)

= e
(
A,

∏
i∈I HG(i||tagi)νi · uν

)
.

Security. The security of the above VADS construction is guaranteed by the
following theorem.

Theorem 1. If the hash function Hprime is collision-resistant, the adaptive root
assumption holds in the RSA group, the CDH assumption holds in the bilinear
group, then the proposed VADS protocol is secure in the random oracle model.

Due to the limit of space, we provide the proof in the full version of this
paper.

5 Performance Analysis

In this section, we theoretically discuss the performance of our proposal by com-
paring it with previous VDS constructions in terms of computation and commu-
nication costs as well as security properties.

Optimal VDS with Data Auditing 309

Table 1. Comparisons with previous works in terms of costs

VDS Protocols
Communication Cost Computation Cost

|πa| |πq| Append Query Verify Update Audit Judge

Schröder and Schröder [24] N/A O(log M) O(log M) O(log M) O(log M) O(log M) N/A N/A

Schröder and Simkin [25] N/A O(log N) O(log N) O(log N) O(log N) O(log N) N/A N/A

Krupp et al. CVC [18] N/A O(log N) O(1) O(log N) O(log N) O(log N) N/A N/A

Krupp et al. ACC [18] N/A O(1) O(1) O(1) O(1) O(U) N/A N/A

Sun et al. [27] N/A O(log N) O(log N) O(log N) O(log N) O(log N) N/A N/A

Ours O(|I|) O(1) O(1) O(1) O(1) O(1) O(|I|) O(|I|)

∗ |I| is the size of challenge index set I used in the auditing protocol. |πa| is the
proof size in the audit protocol. |πq| is the proof size in the query protocol. M is the
maximum number of data entries allowed to store into the database. N is the number
of data entries currently stored in the database. U denotes the number of previous
update operations. N/A means this item is not applicable to the corresponding scheme.
We only consider those dominant operations like pairing and exponentiation.

As demonstrated in Table 1, for a single query, the communication and com-
putation costs of our construction achieve constant, and is independent of either
the size of outsourced stream data or the number of update operations. From this
perspective, the proposed VDS protocol outperforms the state-of-the-art, and is
optimal. What is more, for concurrent queries, our proposal also has constant
costs, but that of other VDS constructions are linear in the size of concurrent
queries6. On the other hand, for each data auditing, the computation and com-
munication costs of our VADS construction grows linearly with the size of the
challenge set. This is mainly because that the cloud server has to return those
tags assigned to challenged data items, so as to enable the data owner to verify
the returned non-membership proof against the current accumulator. In fact, for
the pure data auditing scheme, only those schemes in the case of statics have
constant cost, while the cost of those schemes in the case of dynamics is usually
logarithmic in the size of authenticated data items. Therefore, the auditing cost
of our VADS construction, which deals with dynamic data, is acceptable.

Table 2. Comparisons with previous works in terms of properties

VDS Protocols Unbounded Auditability Security Model Complexity Assumption

Schröder and Schröder [24] ✗ ✗ Standard Model Discrete Logarithm

Schröder and Simkin [25] ✓ ✗ Random Oracle Discrete Logairthm

Krupp et al. CVC [18] ✓ ✗ Standard Model CDH

Krupp et al. ACC [18] ✓ ✗ Standard Model q-strong DH

Sun et al. [27] ✓ ✗ Random Oracle Discrete Logairthm

Ours ✓ ✓ Random Oracle CDH and Adaptive Root

6 Due to limited space, here we omit how to extend our VADS protocol to support con-
current queries. In fact, it is straightforward, and just needs to create an aggregated
non-membership proof for those requested data items by invoking the Algorithm1.

310 J. Wei et al.

In Table 2, we compare the security properties of the proposed VADS con-
struction with previous VDS protocols. Observe that, except for Schröder and
Schröder’s [24] VDS protocol, the other protocols are all unbounded, and meet
the unbounded feature of stream data. Although Krupp et al.’s [18] CVC con-
struction is proved secure in the standard model and also is more efficient
than other VDS constructions [18,24], its security is built upon a non-standard
assumption, i.e., q-strong Diffie-Hellman assumption. At the same time, other
listed VDS schemes are proved secure under standard assumptions. In particu-
lar, our VADS construction uniquely enjoys the functionality of data auditing,
and thus allows the data owner to check the integrity of outsourced stream data
without retrieving them.

6 Conclusion

In this paper, we revisit the problem of verifiable data streaming, and focus on
further optimizing the efficiency of previous constructions. Specifically, by care-
fully combing the BLS signature with a recently proposed RSA accumulator, we
put forward an optimal verifiable data streaming protocol with data auditing.
That is, it achieves constant communication and computation costs, and out-
performs the state-of-the-art. Additionally, compared with the original VDS, it
features of public data auditing, and thus enables the data owner to verify the
integrity of outsourced stream data in the case of not having to retrieve them.
We prove its security under standard assumptions in the random oracle model.

Acknowledgment. This work was supported by the National Nature Science Foun-
dation of China under Grants 61960206014 and 62172434, and in part by the
Project funded by China Postdoctoral Science Foundation No. 2020M673348 and No.
2021T140531.

References

1. Arasu, A., et al.: STREAM: the Stanford stream data manager. In: Proceedings
of the 2003 ACM SIGMOD International Conference on Management of Data, p.
665. ACM (2003)

2. Babcock, B., Babu, S., Datar, M., Motwani, R., Widom, J.: Models and issues in
data stream systems. In: Proceedings of the Twenty-first ACM SIGACT-SIGMOD-
SIGART Symposium on Principles of Database Systems, pp. 1–16. ACM (2002)

3. Bellare, M., Keelveedhi, S., Ristenpart, T.: Message-locked encryption and secure
deduplication. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS,
vol. 7881, pp. 296–312. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-642-38348-9_18

4. Benabbas, S., Gennaro, R., Vahlis, Y.: Verifiable delegation of computation over
large datasets. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 111–131.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22792-9_7

5. Boneh, D., Bünz, B., Fisch, B.: Batching techniques for accumulators with appli-
cations to IOPs and stateless blockchains. In: Boldyreva, A., Micciancio, D. (eds.)
CRYPTO 2019. LNCS, vol. 11692, pp. 561–586. Springer, Cham (2019). https://
doi.org/10.1007/978-3-030-26948-7_20

https://doi.org/10.1007/978-3-642-38348-9_18
https://doi.org/10.1007/978-3-642-38348-9_18
https://doi.org/10.1007/978-3-642-22792-9_7
https://doi.org/10.1007/978-3-030-26948-7_20
https://doi.org/10.1007/978-3-030-26948-7_20

Optimal VDS with Data Auditing 311

6. Boneh, D., Lynn, B., Shacham, H.: Short signatures from the weil pairing. In: Boyd,
C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 514–532. Springer, Heidelberg
(2001). https://doi.org/10.1007/3-540-45682-1_30

7. Campanelli, M., Fiore, D., Greco, N., Kolonelos, D., Nizzardo, L.: Incrementally
aggregatable vector commitments and applications to verifiable decentralized stor-
age. In: Moriai, S., Wang, H. (eds.) ASIACRYPT 2020. LNCS, vol. 12492, pp.
3–35. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64834-3_1

8. Catalano, D., Fiore, D.: Vector commitments and their applications. In: Kurosawa,
K., Hanaoka, G. (eds.) PKC 2013. LNCS, vol. 7778, pp. 55–72. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-36362-7_5

9. Chen, C., Wu, H., Wang, L., Yu, C.: Practical integrity preservation for data
streaming in cloud-assisted healthcare sensor systems. Comput. Netw. 129, 472–
480 (2017)

10. Chen, X., et al.: Publicly verifiable databases with all efficient updating oper-
ations. IEEE Trans. Knowl. Data Eng. (2020). https://doi.org/10.1109/TKDE.
2020.2975777

11. Chen, X., Li, J., Huang, X., Ma, J., Lou, W.: New publicly verifiable databases
with efficient updates. IEEE Trans. Dependable Secure Comput. 12(5), 546–556
(2015)

12. Cugola, G., Margara, A.: Processing flows of information: from data stream to
complex event processing. ACM Comput. Surv. 44(3), 15:1–15:62 (2012)

13. Erway, C.C., Küpçü, A., Papamanthou, C., Tamassia, R.: Dynamic provable data
possession. ACM Trans. Inf. Syst. Secur. 17(4), 15:1–15:29 (2015)

14. Esiner, E., Kachkeev, A., Braunfeld, S., Küpçü, A., Özkasap, Ö.: FlexDPDP:
flexlist-based optimized dynamic provable data possession. ACM Trans. Storage
12(4), 23:1–23:44 (2016)

15. Etemad, M., Küpçü, A.: Generic dynamic data outsourcing framework for integrity
verification. ACM Comput. Surv. 53(1), 8:1–8:32 (2020)

16. Grobauer, B., Walloschek, T., Stöcker, E.: Understanding cloud computing vulner-
abilities. IEEE Secur. Priv. 9(2), 50–57 (2011)

17. Juels, A., Kaliski Jr, B.S.: PORs: proofs of retrievability for large files. In: Proceed-
ings of the 2007 ACM Conference on Computer and Communications Security, pp.
584–597. ACM (2007)

18. Krupp, J., Schröder, D., Simkin, M., Fiore, D., Ateniese, G., Nuernberger, S.:
Nearly optimal verifiable data streaming. In: Cheng, C.-M., Chung, K.-M., Per-
siano, G., Yang, B.-Y. (eds.) PKC 2016. LNCS, vol. 9614, pp. 417–445. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-49384-7_16

19. Lai, R.W.F., Malavolta, G.: Subvector commitments with application to succinct
arguments. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol.
11692, pp. 530–560. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
26948-7_19

20. Li, S., Zhang, Y., Xu, C., Chen, K.: Cryptoanalysis of an authenticated data struc-
ture scheme with public privacy-preserving auditing. IEEE Trans. Inf. Forensics
Secur. 16, 2564–2565 (2021)

21. Merkle, R.C.: Protocols for public key cryptosystems. In: Proceedings of the 1980
IEEE Symposium on Security and Privacy, pp. 122–134. IEEE Computer Society
(1980)

22. Miao, M., Ma, J., Huang, X., Wang, Q.: Efficient verifiable databases with inser-
tion/deletion operations from delegating polynomial functions. IEEE Trans. Inf.
Forensics Secur. 13(2), 511–520 (2018)

https://doi.org/10.1007/3-540-45682-1_30
https://doi.org/10.1007/978-3-030-64834-3_1
https://doi.org/10.1007/978-3-642-36362-7_5
https://doi.org/10.1109/TKDE.2020.2975777
https://doi.org/10.1109/TKDE.2020.2975777
https://doi.org/10.1007/978-3-662-49384-7_16
https://doi.org/10.1007/978-3-030-26948-7_19
https://doi.org/10.1007/978-3-030-26948-7_19

312 J. Wei et al.

23. Papamanthou, C., Shi, E., Tamassia, R., Yi, K.: Streaming authenticated data
structures. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS,
vol. 7881, pp. 353–370. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-642-38348-9_22

24. Schröder, D., Schröder, H.: Verifiable data streaming. In: 19th ACM Conference
on Computer and Communications Security (CCS’12), pp. 953–964. ACM (2012)

25. Schöder, D., Simkin, M.: VeriStream – a framework for verifiable data stream-
ing. In: Böhme, R., Okamoto, T. (eds.) FC 2015. LNCS, vol. 8975, pp. 548–566.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-47854-7_34

26. Shacham, H., Waters, B.: Compact proofs of retrievability. J. Cryptol. 26(3), 442–
483 (2013). https://doi.org/10.1007/s00145-012-9129-2

27. Sun, Y., Liu, Q., Chen, X., Du, X.: An adaptive authenticated data structure with
privacy-preserving for big data stream in cloud. IEEE Trans. Inf. Forensics Secur.
15, 3295–3310 (2020)

28. Wang, F., Mickens, J., Zeldovich, N., Vaikuntanathan, V.: Sieve: cryptographically
enforced access control for user data in untrusted clouds. In: 13th USENIX Sym-
posium on Networked Systems Design and Implementation, pp. 611–626. USENIX
Association (2016)

29. Wang, J., Chen, X., Huang, X., You, I., Xiang, Y.: Verifiable auditing for out-
sourced database in cloud computing. IEEE Trans. Comput. 64(11), 3293–3303
(2015)

30. Wang, Q., Wang, C., Ren, K., Lou, W., Li, J.: Enabling public auditability and data
dynamics for storage security in cloud computing. IEEE Trans. Parallel Distrib.
Syst. 22(5), 847–859 (2011)

31. Xu, J., Meng, Q., Wu, J., Zheng, J.X., Zhang, X., Sharma, S.: Efficient and
lightweight data streaming authentication in industrial control and automation
systems. IEEE Trans. Ind. Inf. 17(6), 4279–4287 (2021)

32. Xu, J., Wei, L., Zhang, Y., Wang, A., Zhou, F., Gao, C.: Dynamic fully homomor-
phic encryption-based Merkle tree for lightweight streaming authenticated data
structures. J. Netw. Comput. Appl. 107, 113–124 (2018)

33. Xue, K., Li, S., Hong, J., Xue, Y., Yu, N., Hong, P.: Two-cloud secure database
for numeric-related SQL range queries with privacy preserving. IEEE Trans. Inf.
Forensics Secur. 12(7), 1596–1608 (2017)

34. Zhang, Y., Blanton, M.: Efficient dynamic provable possession of remote data via
update trees. ACM Trans. Storage 12(2), 9:1–9:45 (2016)

35. Zhang, Y., Genkin, D., Katz, J., Papadopoulos, D., Papamanthou, C.: VSQL:
verifying arbitrary SQL queries over dynamic outsourced databases. In: 2017 IEEE
Symposium on Security and Privacy, pp. 863–880. IEEE Computer Society (2017)

36. Zhang, Z., Chen, X., Ma, J., Tao, X.: New efficient constructions of verifiable
data streaming with accountability. Ann. Telecommun. 74(7–8), 483–499 (2019).
https://doi.org/10.1007/s12243-018-0687-7

https://doi.org/10.1007/978-3-642-38348-9_22
https://doi.org/10.1007/978-3-642-38348-9_22
https://doi.org/10.1007/978-3-662-47854-7_34
https://doi.org/10.1007/s00145-012-9129-2
https://doi.org/10.1007/s12243-018-0687-7

One-More Unforgeability of Blind
ECDSA

Xianrui Qin(B) , Cailing Cai, and Tsz Hon Yuen

The University of Hong Kong, Hong Kong, China
{xrqin,clingcai,thyuen}@cs.hku.hk

Abstract. In this paper, we give the first formal security analysis on the
one-more unforgeability of blind ECDSA. We start with giving a general
attack on blind ECDSA, which is similar to the ROS attack on the blind
Schnorr signature. We formulate the ECDSA-ROS problem to capture
this attack.

Next, we give a generic construction of blind ECDSA based on an
additive homomorphic encryption and a corresponding zero-knowledge
proof. Our concrete instantiation is about 40 times more bandwidth effi-
cient than the blind ECDSA in AsiaCCS 2019.

After that, we give the first formal proof of one-more unforgeability
for blind ECDSA, under a new model called algebraic bijective random
oracle. The security of our generic blind ECDSA relies on the hardness
of a discrete logarithm-based interactive assumption and an assumption
of the underlying elliptic curve.

Finally, we analyze the hardness of the ECDSA-ROS problem in the
algebraic bijective random oracle model.

Keywords: Blind signature · ECDSA · One-more unforgeability

1 Introduction

A blind signature scheme [8] consists of an interactive protocol between a user
and a signer. The signer holds a secret key sk and the user holds a message m
of its choice. After the interaction, the user learns a valid signature σ on the
message m. The signer can neither learn the message that it signs, nor link the
transcripts of protocol that it creates.

The blind signature can be applied to various privacy sensitive scenarios, such
as anonymous credentials, eCash, and e-voting. In particular, for blind ECDSA,
Bitcoin developers are exploring its usage to blind coin swaps, trustless tumbler
services, and more [17,22].

The security model of blind signature is called the one-more unforgeability
against chosen message attack. It means that the adversary cannot generate
� + 1 blind signatures from � interactions with the signer. Blind Schnorr signa-
ture was shown to be one-more unforgeable if the one-more discrete logarithm
(OMDL) assumption and the ROS assumption hold [20]. Unfortunately, the ROS
c© Springer Nature Switzerland AG 2021
E. Bertino et al. (Eds.): ESORICS 2021, LNCS 12973, pp. 313–331, 2021.
https://doi.org/10.1007/978-3-030-88428-4_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-88428-4_16&domain=pdf
http://orcid.org/0000-0002-4316-3286
https://doi.org/10.1007/978-3-030-88428-4_16

314 X. Qin et al.

assumption is recently broken in [5]. The clause blind Schnorr signature [12] is
secure based on the OMDL assumption and the modified ROS assumption in
the algebraic group model.

Blind ECDSA. For decades of study, many constructions of blind signatures
are proposed [1,2,6,8,10,12–15,19], including those based on ECDSA [16,22].
ECDSA is one of the most widely deployed signature schemes in practice. For a
signing key x, the signature on a message m is a pair σ = (r, s) satisfying

s = k−1(H(m) + xr) mod p, r = f(kG),

where G is a generator of an ECC group of prime order p, k is randomly chosen
from Zp, H is a hash function, and f is a conversion function which returns the
x-part of the input ECC point modulus p.

Although blind ECDSA has already been explored in 2004 [16], to the best
of our knowledge, no formal security proof of one-more unforgeability has been
provided for it yet. In [22], the authors only give a heuristic argument for the
security of scheme. On the contrary, the security of blind Schnorr signature has
been studied for decades [12,20]. It is mainly because an elegant linearity exists
in the Schnorr signature, while it disappears in the ECDSA with the usage of
division k−1 and the conversion function f during the signature generation.

Our Contributions. In this paper, we solve the open problem of constructing a
blind ECDSA signature with a formal security proof of one-more unforgeability.
We have the following contributions.

1. General Attack on One-more Unforgeability. We first demonstrate an attack on
the one-more unforgeability of any blind ECDSA signature. We propose an
ECDSA-ROS problem to capture this attack. The hardness of the ECDSA-
ROS problem will be further analyzed in Sect. 5.

2. Generic Construction with Efficient Instantiation. We propose a generic con-
struction of blind ECDSA from an additive homomorphic encryption and a
corresponding non-interactive zero-knowledge (NIZK) proof.
Our blind ECDSA can be instantiated with the additive homomorphic
Castagnos-Laguillaumie (CL) encryption [7] with the corresponding NIZK
proof in [23]. Our scheme is about 40 times more bandwidth efficient than
[22].

3. Formal Security Proof. We give the first formal security proof of one-more
unforgeability of blind ECDSA. The proof uses a new model called Algebraic
Bijective Random Oracle (ABRO), which is a non-trivial combination of the
bijective random oracle (BRO) [9] and the algebraic group model (AGM) [11].
The new ABRO model is of independent interest.
We show that the one-more unforgeability of our generic blind ECDSA relies
on some assumptions related to the discrete logarithm and the underlying
elliptic curve.

A high level summary will be given in the rest of this section.

One-More Unforgeability of Blind ECDSA 315

1.1 ECDSA-ROS Attack on Blind ECDSA

Now we consider the following attack on the one-more unforgeability of blind
ECDSA. No matter how the blind ECDSA protocol is implemented, the user
eventually obtains � signatures (rj , sj) on messages mj for j ∈ [�] such that:

Rj = s−1
j (hjG + rjX), rj = f(Rj), hj = H(mj).

The adversary can break the one-more unforgeability if he can find (m∗, R∗, s∗)
and a vector ρ = (ρ1, . . . , ρ�) that satisfies:

H(m∗)
s∗ =

�∑

j=1

ρjhj

sj
, (1)

f(R∗)
s∗ =

r∗

s∗ =
�∑

j=1

ρjrj

sj
, (2)

R∗ =
�∑

j=1

ρjRj . (3)

The one-more forgery includes the extra signature (r∗ = f(R∗), s∗) on the mes-
sage m∗. We call this attack as the ECDSA-ROS attack, because Eq. 1 is similar
to the ROS attack on the blind Schnorr signature. The ECDSA-ROS attack does
not rely on solving the discrete logarithm of the public key X.

Hardness of the ECDSA-ROS Problem. We conjecture that the ECDSA-
ROS problem is hard to solve even under the recent attack on the ROS problem
[5], since the attacker needs to solve three equations simultaneously, with two
non-linear functions f and H involved. The hardness of the ECDSA-ROS prob-
lem will be further analyzed in Sect. 5.

1.2 Generic Construction

Our generic blind ECDSA can be constructed with any additive homomorphic
encryption HE and a corresponding NIZK proof. Suppose that the signer knows
a secret key x and the user knows the message m. They jointly compute R =
kakbG, where ka (resp. kb) is chosen by the signer (resp. the user). The user
encrypts H(m) and r = f(R) with HE and sends the ciphertext to the signer,
with a NIZK proof of the well-formedness of the ciphertext. The signer returns
the ciphertext of k−1

a (H(m)+rx) using the additive homomorphic property. The
user decrypts it and then divides the plaintext with kb to obtain s. The blind
signature is (r, s).

Efficiency Analysis. The blind ECDSA in [22] used a modified Paillier encryp-
tion with a modulus N = pqt, where q and t are two random large prime numbers.
Hence, it is even more inefficient than the standard Paillier encryption. Further-
more, [22] proposed a NIZK proof for the modified Paillier ciphertext with a

316 X. Qin et al.

binary challenge. In order to achieve a soundness error of 2−�s , the NIZK proof
has to be repeated for �s times. The resulting blind ECDSA in [22] is inefficient.

Our blind ECDSA can be instantiated with the additive homomorphic CL
encryption [7] with the corresponding NIZK proof in [23]. Consider 128 bit secu-
rity level, the ciphertext size of the CL encryption is 3654 bits, about 55% of the
ciphertext size of the modified Paillier encryption (6656 bits). The NIZK proof
for CL encryption in [23] is 1488 bytes, but the NIZK proof for modified Paillier
encryption in [22] is 69120 bytes for a soundness error of 2−80. Our scheme is
about 40 times more bandwidth efficient than [22].

1.3 Algebraic Bijective Random Oracle Model

We propose a new Algebraic Bijective Random Oracle (ABRO) model for the
security analysis of blind ECDSA. The idea comes from the bijective random
oracle (BRO) [9] and the algebraic group model (AGM) [11]. The BRO was used
to prove the unforgeability of ECDSA in [9]. The AGM was used to prove the
one-more unforgeability of the clause blind Schnorr signature [12]. Hence, the
ABRO model is a reasonable security model to analyze the security of blind
ECDSA.

The BRO models the algebraically disruptive behaviour of f similar to the
random oracles, which model the disordered behavior of cryptographic hash
functions. The BRO decomposes the conversion function f into three independent
functions as:

f = ϕ ◦ Π ◦ ψ,

where ϕ is a function which maps a group element G into {0, 1}L (which is the
x-part of G for ECDSA). Π is a bijective mapping from {0, 1}L to [0..2L − 1],
and ψ is a mapping from [0..2L − 1] to Zp. The BRO requires that the adversary
must query the oracles for the computation of Π and Π−1.

The AGM lies between the standard model and the generic group model. With
every group element Z that the adversary outputs, he also gives a representation
z of Z in terms of the group elements it has received so far. The AGM can be
instantiated in an algebraic wrapper, as introduced in [3].

New ABRO Model. Our new ABRO model is not a trivial combination of BRO
and AGM. Our goal is to minimize the use of AGM in the security model. The
ABRO model only requires the adversary to output a representation for the
group element R asked in the query Π(ϕ(R)). The representations are in terms
of group elements that has received so far, including the output of the signing
oracle and the Π−1 oracle.

In contrast with the AGM, the ABRO model does not require the adversary
to output representations for group elements used in other oracle queries. Since
the mapping Π does not appear in the real scheme, our model does not need to
be instantiated with the algebraic wrapper [3].

1.4 Security Proof of Blind ECDSA

ECDSA. As a stepping stone for understanding the security proof for blind
ECDSA, we briefly describe the security proof of ECDSA in the ABRO model.

One-More Unforgeability of Blind ECDSA 317

The public key X comes from the discrete logarithm (DL) problem instance
(G,X). For a valid forgery signature (r∗, s∗) on a message m∗, we have s∗R∗ =
H(m∗)G + r∗X and r∗ = f(R∗). In the BRO, either Π or Π−1 must be queried
for R∗ or r∗. By the setting of the ABRO, either the representation of R∗ is known
when Π(ϕ(R∗)) is asked, or the representation of R∗ is set by the simulator when
Π−1(ψ−1(r∗)) is asked. In either case, the representation of R∗ can be expressed
as a pair (a, b), where R∗ = aG + bX. Hence, the answer to the DL problem
logG X can be computed from s∗(aG + bX) = H(m∗)G + r∗X.

Blind ECDSA. The main contribution of the paper is the reduction of the
one-more unforgeability of blind ECDSA to the Multi-Base Discrete Logarithm
(MBDL) assumption in the ABRO model. The (n, q)-MBDL is the generalization
of the (n, 1)-MBDL problem in [4]: Given group elements (G,X,R1, . . . , Rn) and
q DL oracle queries (which takes (i, P) as input and outputs logRi

P), output
logG X, with the restriction that i must be distinct in all DL oracle queries. This
restriction is essential because logG X can be easily computed from logRi

G and
logRi

X.
In the security proof of one-more unforgeability, the blind signing oracle is

simulated by the DL oracle of the (n, q)-MBDL problem. Roughly speaking, the
simulator sets kG = Ri first. If the adversary asks the blind signature s with
respect to kG for some r and a message m, the simulator asks the DL oracle with
input (i,H(m)G+ rX). The DL oracle returns s such that sRi = H(m)G+ rX.
Hence s can be used to build a valid answer for the blind signing oracle query.
Similar to the security proof of ECDSA, we eventually get aG + bX = 0 from
the forgery signature for some a, b ∈ Zp. The value logG X can be extracted to
answer the MBDL problem. For the case of a = 0, we prove that it happens
in negligible probability. During the security proof, we also need an assumption
on the underlying elliptic curve that for all points on the elliptic curve, there is
only one subgroup whose order is p. This assumption is needed to ensure the
correctness of the simulation of the BRO oracle. This assumption holds for most
common elliptic curves defined in various standards.

1.5 Related Work

In the security analysis of the blind ECDSA in [22], the authors claimed that ‘the
proposed blind signature scheme has unforgeability if the ECDSA is unforgeable.’
However, this claim is not formally proven. In particular, they did not discuss
one-more type assumption (like other blind signature schemes) or ROS type
assumption (like the blind Schnorr signature).

2 Preliminaries

Notations. We denote the (closed) integer interval from a to b by [a, b]. We use
[b] as shorthand for [1, b].

318 X. Qin et al.

2.1 ECDSA

We define a group generation algorithm for elliptic curve.

– GpGen. On input a security parameter λ, it picks a prime q, an elliptic curve
E defined over Fp, and a cyclic group G in E(Fp) with a generator G of prime
order p. Finally, it outputs (p,G, G).

ECDSA requires two independent functions (denoted as H and f) to map
the messages and group elements into a field Zp respectively. The function H is a
cryptographic hash function. The function f is known as the conversion function,
mapping a point A to A.x mod p, which is an encoding of the x-coordinate of A
as an integer.

If x is a signing key and X = xG is the corresponding verification key, a
signature on a message m is a pair σ = (r, s) satisfying r = f(kG) and s =
k−1(H(m) + xr) mod p. Signatures are verified by recovering R = H(m)

s G + r
sX

and checking that f(R) = r.

2.2 Blind Signature

Syntax. We follow the definition of [12]. A blind signature scheme BS consists
of the following algorithms:

– par ← BS.Setup(1λ): the setup algorithm takes the security parameter λ in
unary and returns public parameters par;

– (sk, pk) ← BS.KeyGen(par): the key generation algorithm takes the public
parameters par and returns a secret/public key pair (sk, pk);

– (b, σ) ← 〈BS.Sign(sk),BS.User(pk,m)〉: an interactive protocol is run between
the signer with private input a secret key sk and the user with private input
a public key pk and a message m; the signer outputs b = 1 if the interaction
completes successfully and b = 0 otherwise, while the user outputs a signature
σ if it terminates correctly, and ⊥ otherwise. For a 2-round protocol the
interaction can be realized by the following algorithms:

(msgU,0, stateU,0) ← BS.User0(pk,m)

(msgS,1, stateS) ← BS.Sign1(sk,msgU,0)
(msgU,1, stateU,1) ← BS.User1(stateU,0,msgS,1)

(msgS,2, b) ← BS.Sign2(stateS ,msgU,1)
σ ← BS.User2(stateU,1,msgS,2)

(Typically, BS.User0 just initiates the session, thus msgU,0 = () and stateU,0 =
(pk,m).)

– b′ ← BS.Ver(pk,m, σ): the (deterministic) verification algorithm takes a pub-
lic key pk, a message m and a signature σ as input, and returns 1 if σ is valid
on m under pk and 0 otherwise.

One-More Unforgeability of Blind ECDSA 319

Game UNFA
BS(λ)

1 : par ← BS.Setup(1λ)

2 : (sk, pk) ← BS.KeyGen(par)

3 : k1 := 0; k2 := 0;S := ∅
4 : (m∗

i , σ∗
i)i∈[n] ← ASign1,Sign2(par, pk)

5 : a1 = (k2 < n)

6 : a2 = (∀i �= j ∈ [n] : (m∗
i , σ∗

i) �= (m∗
j , σ∗

j))

7 : a3 = (∀i ∈ [n] : BS.Ver(pk, m∗
i , σ∗

i) = 1)

8 : return (a1 ∧ a2 ∧ a3)

Sign1(msg)

1 : k1 := k1 + 1

2 : (msg′, statek1) ← BS.Sign1(sk, msg)

3 : S := S ∪ {k1}
4 : return (k1, msg′)

Sign2(j, msg)

1 : if j /∈ S thenreturn ⊥
2 : (msg′, b) ← BS.Sign2(statej , msg)

3 : if b = 1

4 : S := S\{j}, k2 := k2 + 1

5 : return msg′

Fig. 1. The one-more unforgeability game for a blind signature scheme BS.

Correctness requires that for any λ and any message m, when running
par ← BS.Setup(1λ), (sk, pk) ← BS.KeyGen(par), (b, σ) ← 〈BS.Sign(sk),BS.User
(pk,m)〉, and b′ ← BS.Ver(pk,m, σ), we have b = 1 = b′ with probability 1.

One-More Unforgeability. The standard security notion of blind signatures
demands that no user, after arbitrary interactions with a signer and � of these
interactions were considered successful by the signer, can produce more than �
signatures. Moreover, the adversary can schedule and interleave its sessions with
the signer in any arbitrary way.

In Game UNFA
BS(λ) defined in Fig. 1 the adversary has access to two oracles

Sign1 and Sign2 corresponding to the two phases of the interactive protocol. The
game maintains two counters k1 and k2 (initially set to 0), where k1 is used as
session identifier, and a set S of “open” sessions. Oracle Sign1 takes the user’s
first message, increments k1, adds k1 to S and runs the first round on the signer’s
side, storing its state as state k1. Oracle Sign2 takes as input a session identifier
j and a user message; if j ∈ S, it runs the second round on the signer’s side; if
successful, it removes j from S and increments k2, representing the number of
successful interactions.

Blindness. Blindness requires that a signer cannot link a message/signature
pair to a particular execution of the signing protocol. The formal security model
of blindness is given in Appendix B.

3 Algebraic Bijective Random Oracle Model

In this paper, we propose a new model called algebraic bijective random oracle
model (ABRO) for proving the security of blind ECDSA. It is developed from the
Bijective Random Oracle (BRO) model and the Algebraic Group Model (AGM).

3.1 AGM and BRO

Algebraic Group Model. The algebraic group model (AGM) [11] lies between
the standard model and the generic group model. On the one hand, the adver-
sary has direct access to group elements; on the other hand, it is assumed to
only produce new group elements by applying the group operation to receive
group elements. In particular, with every group element Z that it outputs, the

320 X. Qin et al.

adversary also gives a representation z of Z in terms of the group elements it
has received so far. Security results in the AGM are proved via reductions to
computationally hard problems, like in the standard model.

Bijective Random Oracle Model. As introduced in Sect. 1, the BRO does
not allow the adversary to compute the conversion function f completely by
itself (which is similar to the restriction on computing the hash function in the
random oracle model). The BRO decomposes the function f as f = ϕ ◦ Π ◦ ψ
for some bijective mapping Π. The adversary has to query an oracle BRO to
compute Π, and an oracle BRO−1 to compute Π−1.

3.2 Algebraic Bijective Random Oracle Model

We define a new model by demanding the algebraic representation in the BRO.
All queries to the BRO oracle with a group element input must come with the
corresponding algebraic representation. We call this new model as Algebraic
Bijective Random Oracle (ABRO) Model.

Two changes are made from the definition of the BRO model with oracles
BRO and BRO−1.

1. The BRO−1 oracle takes as input an integer x ∈ [0..2L − 1] (L is the bit
length of x) and returns y = Π−1(x). In addition, the outputs of ϕ−1(y) are
added to the list of received group elements.1

2. The BRO oracle takes as input a group element R and its algebraic rep-
resentation r. The representation is in terms of group elements that it has
received so far, including the public key, signatures obtained from the signing
oracle, and the group elements defined above by BRO−1. The oracle outputs
x = Π(ψ(R)).

We can see that the algebraic representation requirement in the ABRO is
only needed for the query of the BRO oracle. This is the advantage of the ABRO
as compared to the trivial combination of the BRO and the AGM.

4 Blind ECDSA

We first give the blind ECDSA protocol. It uses an additive homomorphic
encryption and a corresponding non-interactive zero-knowledge (NIZK) proof.

4.1 Building Blocks

Additive Homomorphic Encryption. Denote HE = (Setup,KeyGen,Enc,
Dec) as an additive homomorphic encryption scheme, such that Encpk(m1) ·

1 Since ϕ is a semi-injective function for ECDSA, two group elements are added for
each BRO−1 query for the case of ECDSA.

One-More Unforgeability of Blind ECDSA 321

Encpk(m2) = Encpk(m1 + m2). Paillier encryption [18], modified Paillier encryp-
tion [22] and CL encryption [7] are some examples of additive homomorphic
encryption.

Denote the message space of HE as M. For HE that has a message space M
different from Zp (e.g., Paillier encryption), we further require that M is larger
than p3 + p2.

NIZK Proof. Denote NIZK = (Setup,Pf,Vf) as a non-interactive zero-know-
ledge proof for the relation R for the ciphertext of HE:

R = {(m1,m2, r1, r2) : c1 = Encpk(m1; r1) ∧ c2 = Encpk(m2; r2) ∧ m1,m2 ∈ Zp},

where r1 (resp. r2) is the randomness used to encrypt the message m1 (resp.
m2). If the HE has a message space of Zp (e.g., modified Paillier encryption [22],
or CL encryption [7]), the range proof of m1,m2 ∈ Zp is not needed.

4.2 Construction

The blind ECDSA protocol BS is as follows.

– Setup. On input a security parameter λ, it runs (p,G, G) ← GpGen(1λ)
and picks a cryptographic hash function H : {0, 1}∗ → Zp. It runs
par′ ← HE.Setup(1λ) and crs ← NIZK.Setup(1λ). It returns par = (p,G, G,
H, par′, crs).

– KeyGen. On input par, it picks sk := x ←$Zp and computes pk := X = xG.
– Sign, User. The user runs (upk, usk) ← HE.KeyGen(par) and sends upk to the

signer. Then they run the interactive blind signing protocols in Fig. 2.
– Verify. To verify a signature σ = (r, s) for a message m and a public key X, it

computes R = H(m)
s G + r

sX. It returns 1 if r = f(R), or returns 0 otherwise.

4.3 Assumptions

Before proving the security of ECDSA in the ABRO model, we first introduce
the assumptions needed for the security proof.

Firstly, we propose an assumption on the underlying elliptic curves chosen
by GpGen in the Setup phase above.

Assumption 1. Let (p,G, G) ← GpGen(λ) and E(Fq) is a group of points on
the elliptic curve E. There is only one subgroup in E(Fq) whose order is p.

Assumption 1 is not always true for all elliptic curves. In general, E(Fq)
can contain more than one subgroup whose order is a prime p>2. For exam-
ple, let E be the elliptic curve y2 = x3 + 2 over F7. Then E(F7) =
{∞, (0, 3), (0, 4), (3, 1), (3, 6), (5, 1), (5, 6), (6, 1), (6, 6)}, and there are four differ-
ent subgroups whose order is 3:

{(0, 3), (0, 4),∞}, {(3, 1), (3, 6),∞}, {(5, 1), (5, 6),∞}, {(6, 1), (6, 6),∞}.

322 X. Qin et al.

BS.Sign((par, upk, X), x) BS.User((par, upk, X), m, usk)

ka
$←− Zp

R = kaG. Abort if R = O R kb
$←− Zp, h = H(m)

(r, ·) = R̃ = kbR = kakbG

Abort if R̃ = O ∨ r = 0

c1 = HE.Encupk(r; r1)

c2 = HE.Encupk(h; r2)

if NIZK.Vf((c1, c2, upk), π) = 1,
c1, c2, π←−−−−−−−− π = NIZK.Pf((r, h, r1, r2), (c1, c2, upk))

t
$←− [0, |M|/p − p2 − p]3

k̄ := k−1
a mod p

c = cxk̄
1 · ck̄

2 · HE.Encupk(tp) c s = HE.Decusk(c)/kb mod p

Abort if s = 0 ∧ Verify((r, s), m, X) = 0

return (r, s)

Fig. 2. The signing protocol of the blind ECDSA signature scheme. If the message
space of HE is equal to Zp, then t can be fixed to 0. Here, r1, r2 are Encrandomness.
For the range of t, firstly, here t is used for rerandomizing the message(xrk̄ + hk̄)
encrypted in the ciphertext c. Secondly, the range in which t is chosen is set to prevent
|xrk̄+hk̄+tp| ≥ |M|, Otherwise it will result in decryption error of c, i.e., |xrk̄+hk̄| �=
HE.Decusk(c) mod p.

However in practice, the common elliptic curves defined in various standards have
the order of the subgroup G that is closed to the order of the curves themselves.
In other words, Assumption 1 holds in practice. For example, for NIST P-256,

q = 0xffffffff 00000001 00000000 00000000 00000000 ffffffff ffffffff ffffffff,

p = 0xffffffff 00000000 ffffffff ffffffff bce6faad a7179e84 f3b9cac2 fc632551.

For secp256k1 used in Bitcoin,

q = 0xffffffff ffffffff ffffffff ffffffff ffffffff ffffffffe fffffc2f ,
p = 0xffffffff ffffffff ffffffff fffffffe baaedce6 af48a03b bfd25e8c d0364141.

Remark 1. Assumption 1 is crucial for our proof, since the argument that we use
in the proof “pU = O implies U ∈ E(Fq) falls in the subgroup G whose order is
p” is not always correct without using Assumption 1.

(n, q)-MBDL Problem. We give the (n, q)-MBDL problem in Fig. 3, which is
the generalization of the Multi-base Discrete Logarithm (MBDL) problem in [4].
The (n, 1)-MBDL problem is introduced by Bellare and Dai [4], and they give a
tight security reduction of the Schnorr signature to the (1, 1)-MBDL problem.

One-More Unforgeability of Blind ECDSA 323

Game MBDLA
GpGen,n,q(λ)

(p,G, G) ← GpGen(1λ);S := ∅; y ←$Zp;Y := yG

for i = 1, . . . , n,

xi ←$Zp;Xi := xiG

y′ ← ADlo(p,G, G, Y, X1, . . . , Xn)

return (y′ = y ∧ |S| ≤ q)

Oracle DLo(i, W)

if i ∈ S or i /∈ [n], return ⊥
S := S ∪ {i}
return logXi

(W)

Fig. 3. The (n, q)-MBDL problem.

4.4 Security Proof

Theorem 1. Assume that Assumption 1 holds for GpGen. Let Aalg be an alge-
braic adversary against the one-more unforgeability security of the blind EDCSA
signature running in time at most τ and making at most � queries to Sign1, qr

queries to the random oracle H and qb queries to the bijective random oracles. If
NIZK has soundness, then there exists an algorithm B1 solving the (�, �)-MBDL
problem, and an algorithm B2 breaking the collision resistant of H, both running
in time at most τ + O(� + qr + qb), such that:

Advom-unf
Aalg

(λ) ≤ Adv
(�,�)−MBDL
B1

(λ) + AdvcrB2
(λ) +

q2b
(p − 1)/2 − qb

+ (
qr · qb

p
)�+1.

Proof. The one-more unforgeability of our blind ECDSA is proved by a sequence
of games.

Game0. As shown in Fig. 4, the first game is the one-more unforgeability
game for scheme BS played with Aalg in the ABRO model. Hence we have
Advom-unf

Aalg
(λ) = AdvGame0

Aalg
(λ).

Game1. By Fig. 4, Game1 is the same as Game0 except that in the Fin pro-
cedure, it rejects the collision of the challenge message m∗ with any message
queried in the signing oracle. Hence AdvGame0

Aalg
(λ) ≤ AdvGame1

Aalg
(λ) + AdvcrB2

(λ),
where AdvcrB2

(λ) is the probability of breaking the collision resistance of H by
some algorithm B2.

Init Game0 Game1

1 : (p,G, G) ← GpGen(1λ)

2 : x ←$ Zp;X := xG;

3 : Pick Π : A → B

4 : U := (G, X);

5 : return p,G, G, X

Fin({m∗
i , (r∗

i , s∗
i)}i∈[�+1])

1 : if n2 > �, return ⊥

2 :
for ∀i, j ∈ [� + 1], i �= j

if H(m∗
i) = H(m∗

j), return ⊥
3 : for i = 1, . . . , � + 1

4 : if s∗
i = 0 ∨ r∗

i = 0, return ⊥
5 : U∗

i = H(m∗
i)G + r∗

i X

6 : if U∗
i = 1, return ⊥

7 : R∗
i = (U∗

i)
1/s∗

i

8 : α∗
i := ϕ(R∗

i)

9 : β∗
i = Π(α∗

i)

10 : if r∗
i �= ψ(β∗

i), return 0

11 : return 1

BRO(R, ρ)

1 : if R �= ρ · U , return ⊥
2 : α = ϕ(R)

3 : return Π(α)

BRO−1(β)

1 : α = Π−1(β)

2 : (V, −V) = ϕ−1(α)

3 : U = U ||V
4 : return α

Sign1()

1 : n1 := n1 + 1

2 : k ←$Zp;R := kG

3 : S := S ∪ {n1, k}
4 : U = U ||R
5 : return (n1, R)

Sign2(j, upk, c1, c2, π)

1 : if (j, kj) /∈ S, return ⊥
2 : if NIZK.Vf((c1, c2, upk), π) �= 1

3 : return ⊥
4 : t ←$ |M|/p − 1

5 : c := c
x
kj

1 c
1
kj

2 · HE.Encupk(tp)

6 : S := S \ {j, kj}
7 : n2 := n2 + 1

8 : return c

Fig. 4. Game0 and Game1 used in the proof of Blind ECDSA

324 X. Qin et al.

BRO(R, ρ) Game2

1 : if R �= ρ · U , return ⊥
2 : α = ϕ(R)

3 : if (α, ·) ∈ Π, return Π(α)

4 : β ←$B \ Rng(Π)

5 : Π ← Π ∪ {(α, β)}
6 : return β

BRO−1(β)

1 : if (·, β) ∈ Π, return Π−1(β)

2 : α′ ←$A \ Dom(Π)

3 : (U, −U) := ϕ−1(α′)

4 : if pU = O
5 : v ←$Zp;V := vG

6 : else

7 : V := U

8 : α = ϕ(V)

9 : if (α, ·) ∈ Π : Abort

10 : Π ← Π ∪ {(α, β)}
11 : U = U ||V
12 : return α

Fig. 5. Game2 used in the proof of Blind ECDSA.

Game2. By Fig. 5, Game2 is the same as Game1, except that the bijection
Π is now implemented by:

– BRO: lazy sampling in B.
– BRO−1: lazy sampling α′ in A and then try to convert it to an ECC point

U . If pU = O, it means that U ∈ G by Assumption 1. We picks a random
v ∈ Zp and sets α = ϕ(vG). Otherwise, we just set α = α′.

The input-output pairs (α, β) to these two oracles are stored in Π. By assump-
tion of the BRO model, A does not output a forgery without having posed the
corresponding bijective random oracle query first. Procedure Fin is not affected
by the switch to sampling and remains unmodified.

We assess the probability that Game2 aborts in BRO−1 as follows: a uniformly
distributed value of a set of cardinality at least 2L−qb is sampled and checked for
containedness in a set of at most qb elements. That is, the probability of Game2
aborts in BRO−1 is at most qb/(2L − qb). As these lines are executed at most qb

times in total, the overall probability of abort is bounded by q2b/(2L − qb). Since
ϕ is semi-injective, we have (p−1)/2 ≤ 2L. Since Game1 and Game2 are identical,
if no abort happens, we obtain AdvGame1

Aalg
(λ) ≤ AdvGame2

Aalg
(λ)+ q2b/((p−1)/2− qb).

Final Reduction. In our last step, we construct an algorithm B1 solving
the (�, �)-MBDL problem whenever Aalg wins Game2. Algorithm B1, which
has access to the oracle DLO takes as input a group description (p,G, G)
and (Y,X1, . . . , X�). It sets the public key X := Y , and runs Aalg on input
(p,G, G,X). Each time Aalg makes a Sign1() query, B1 sets Rj = Xj . It sim-
ulates Sign2(j, c1, c2, π) in the following way: firstly it uses the extractor of
the NIZK to extract rj , hj ∈ Zp from the proof πj . Then it queries the oracle

One-More Unforgeability of Blind ECDSA 325

upon (j, hjG + rjX) and get sj = logRj
(hjG + rjX). Finally, B1 returns c as

HE.Encupk(sj + tp), where t ←$ |M|/p − 12.
Finally, Aalg returns (m∗

i , r
∗
i , s∗

i) for all i ∈ {� + 1}. Since the i-th forgery is
valid, we have r∗

i = f(R∗
i) and:

s∗
i R

∗
i = H(m∗

i)G + r∗
i X. (4)

There are two possible cases:

1. For all i ∈ [� + 1], r∗
i = f(R∗

i) is queried via BRO.
2. For some i ∈ [� + 1], ±R∗

i = f−1(r∗
i) is queried in BRO−1.

Case 1. (γ∗
i , ξ∗

i , ζ∗
i , ,μ

∗
i) is a representation of R∗

i asked in BRO, i.e.,

R∗
i = γ∗

i G + ξ∗
i X +

�∑

j=1

ζ∗
i,jRj +

qb∑

j=1

μ∗
i,jVj . (5)

Denote V̄j (resp. V ′
j := vjG) as the ECC points generated from line 6 (resp. line

4) of BRO−1 and μ̄i,j (resp. μ′
i,j) as the corresponding coefficients in Eq. (5). If∑

∀j μ̄i,j V̄j �= 0, B1 aborts since R∗
i is not in G. Otherwise, combining Eqs. (4)

and (5), we get

s∗
i ((γ

∗
i +

∑

∀j

μ′
i,jvj)G + ξ∗

i X +
�∑

j=1

ζ∗
i,jRj) = H(m∗

i)G + r∗
i X. (6)

By the Sign2 oracle query, we have sjRj = hjG + rjX. Then we have:

[s∗
i (ξ

∗
i +

�∑

j=1

ζ∗
i,jrj

sj
) − r∗

i]

︸ ︷︷ ︸
=:χi

X + [s∗
i (γ

∗
i +

∑

∀j

μ′
i,jvj +

�∑

j=1

ζ∗
i,jhj

sj
) − H(m∗

i)]

︸ ︷︷ ︸
=:θi

G = 0.

If χi = 0 for all i ∈ [� + 1], it means

s∗
i = (ξ∗

i +
�∑

j=1

ζ∗
i,jrj

sj
)−1r∗

i . (7)

for all i ∈ [� + 1]3. Plugging (7) in (4), we have

r∗
i C∗

i = H(m∗
i)G (8)

2 This range is set to ensure that the distribution of simulated message sj + tp is the
same as the distribution of the real message xrk̄ + hk̄ + tp.

3 Note that r∗
i �= 0 and s∗

i �= 0 for a valid ECDSA signature. If χi = 0, it means that

ξ∗
i +

∑�
j=1

ζ∗
i,jrj

sj
would not be 0.

326 X. Qin et al.

where C∗
i = (ξ∗

i +
∑�

j=1

ζ∗
i,jrj

sj
)−1R∗

i −X. Observe that C∗
i is fixed when f(R∗

i) is
queried via BRO4. Since r∗

i is randomly chosen after fixing C∗
i , and h∗

i = H(m∗
i)

is also randomly chosen from Zp in the random oracle H(·), the probability that
Eq. (8) holds is qr·qb

p at maximum for each i.
Case 2. By the simulation of BRO−1, if it is computed by line 6 of BRO−1,

B1 aborts since R∗
i /∈ G

5. Otherwise, R∗
i = ±viG. Combining it with Eq. (4), we

have ±vis
∗
i G = H(m∗

i)G+ r∗
i X. Then B1 can return (±vis

∗
i −H(m∗

i))/r∗
i as the

solution to the MBDL problem since r∗
i �= 0.

Hence, we have AdvGame3
Aalg

(λ) ≤ Adv
(�,�)−MBDL
B1

(λ) + (qr·qb
p)�+1
�

Theorem 2. The blind ECDSA has blindness if HE is IND-CPA secure and
NIZK has zero-knowledge property.

The security proof of blindness is given in Appendix B.

4.5 EUF-CMA Security of ECDSA in the ABRO Model

Similar to the proof of one-more unforgeability for blind ECDSA, we can prove
the EUF-CMA security of ECDSA directly in the ABRO model. As compared to
the ECDSA security proof in [9], the advantage of our proof is that our reduction
does not involve rewinding, and hence the reduction is tight.

The high level idea of the EUF-CMA security of ECDSA is described in
Sect. 1.4. We omit the details due to the space limit for the paper submission.

5 Hardness of the ECDSA-ROS Problem

In the previous section, we prove the security of our blind ECDSA without
directly using any assumption related to the ECDSA-ROS attack mentioned in
Sect. 1. In this section, we want to show that the ECDSA-ROS problem is hard
to solve if the DL assumption holds in the ABRO and the random oracle model.
Hence, we do not need to have an extra ECDSA-ROS assumption in the security
proof.

Recall that the ECDSA-ROS problem is that, given (rj , sj) on messages mj

for j ∈ [�], output (m∗, R∗, s∗) and a vector ρ such that:

H(m∗)
s∗ =

�∑

j=1

ρjhj

sj
,

f(R∗)
s∗ =

r∗

s∗ =
�∑

j=1

ρjrj

sj
,

R∗ =
�∑

j=1

ρjRj .

4 Also, f(−R∗
i) refers to the same C∗

i .
5 If R∗

i satisfies s∗
i R∗

i = H(m∗
i)G + r∗

i X, there must be R∗
i ∈ G.

One-More Unforgeability of Blind ECDSA 327

Theorem 3. Assume that Aalg is the adversary solving the ECDSA-ROS prob-
lem, with qr queries to the random oracle H and qb queries to the bijective
random oracle. Then there exists an algorithm B solving the DL problem such
that:

AdvAalg
(λ) ≤ AdvDL

B (λ) +
qr · qb

p
.

Proof. The algorithm B is given a DL problem (G,Y) and wants to solve logG Y .
Assume that there is an adversary Aalg that can break the ECDSA-ROS problem.
Then B picks x ←$Zp and computes X = xG, which is forwarded to Aalg.
B samples random messages mj for j ∈ [�] and computes ECDSA signatures
(rj , sj). These are given to the adversary Aalg.

When Aalg queries the BRO with a new input (R,ρ), B returns a random
β ←$B \ Rng(Π) as reply. When Aalg queries the BRO−1 with input β, B picks
a random δ ←$Zp and returns ϕ(δY) as reply. The function H is simulated as a
normal random oracle.

Finally, Aalg outputs (m∗, R∗, s∗) and a vector ρ. There are two cases:

1. r∗ = f(R∗) is queried via BRO.
2. ±R∗ = f−1(r∗) is queried in BRO−1.

Case 1: Observe that

s∗ = H(m∗)/
�∑

j=1

ρjhj

sj
= r∗/

�∑

j=1

ρjrj

sj
.

Let z∗ =
∑�

j=1
ρjrj

sj
/
∑�

j=1
ρjhj

sj
, the above means the adversary can find m∗,ρ

such that
H(m∗) = z∗r∗. (9)

But r∗ is calculated from the output of BRO is randomly distributed in Zp and
independent from z∗ (which is fixed by ρ when f(R∗) is queried), and H(m∗)
output is also randomly chosen from Zp, which means (9) happens with the
probability of qr·qb

p in maximum.
Case 2: By the simulation of BRO−1, if it is computed by line 6 of BRO−1, B1

aborts since R∗ /∈ G. Otherwise, B returns ϕ(δ∗Y) as a reply for some δ∗ �= 0. If
the adversary can find a valid pair of (m∗, r∗, s∗) and a vector ρ = (ρ1, . . . , ρ�),
we have that satisfies:

R∗ = f−1(r∗) = δ∗Y =
�∑

j=1

ρjhj

sj
G +

�∑

j=1

ρjrj

sj
X. (10)

then B forwards (
∑�

j=1
ρjhj

sj
+

∑�
j=1

ρjrj

sj
x)/δ∗ to the challenger as the solution

to the DL problem.
�

328 X. Qin et al.

The Best Attack Against the ECDSA-ROS Problem. We only reduce
the ECDSA-ROS problem to the DL problem in the ABRO model and random
oracle model above. Their relation in the standard model is not clear.

We conjecture that the best attack against the ECDSA-ROS problem is to
use Wagner’s generalized birthday algorithm [21]. We left the analysis on the
complexity of attack against the ECDSA-ROS problem as an interesting open
problem.

6 Conclusion

ECDSA is a significant signature scheme in applications, especially in cryptocur-
rency like Bitcoin and Ethereum. Blind signature is also popular in constructing
privacy-preserving applications. In this paper, we give the first formal security
proof for blind ECDSA. One of the assumptions that we use is the MBDL
assumption, which is relatively new. An interesting question is whether we can
prove the security of blind ECDSA under some well-studied assumptions, like
one-more discrete logarithm assumption. We leave this as future work.

Game BLINDB
BS(λ)

1 : b ←$ {0, 1}
2 : b0 := b; b1 := 1 − b

3 : par ← BS.Setup(1λ)

4 : b′ ← BINIT,U1,U2(par)

5 : return (b′ = b)

INIT(pk, m0, m1)

1 : sess0 := init

2 : sess1 := init

Oracle U1(i, Ri)

1 : if i /∈ {0, 1} ∨ sessi �= init thenreturn ⊥
2 : sessi := open

3 : (statei, ci) ← BS.User1(pk, Ri, mbi)

4 : return ci

Oracle U2(i, si)

1 : if sessi �= open thenreturn ⊥
2 : sessi := closed

3 : σbi ← BS.User2(statei, si)

4 : if sess0 = sess1 = closed then

5 : if σ0 = ⊥ ∨ σ1 = ⊥ then(σ0, σ1) := (⊥, ⊥)

6 : return (σ0, σ1)

7 : else return ε

Fig. 6. The blindness game for a blind ECDSA scheme BS.

A Comparison with Existing Blind ECDSA Protocols

We compare our blind ECDSA with the blind ECDSA proposed in [22].

Efficiency Analysis. We first analyze the blind ECDSA protocol in [22]. For
the security level of 3072-bit RSA, the modified Paillier ciphertext uses N , which
is a product of two large primes times p (3328 bits). The modified Paillier cipher-
text is an integer modulus N2, which is 6656 bits. The NIZK proof for each
modified Paillier ciphertext is two integers modulus N2 and an integer modulus
p, which is 864 bytes for each NIZK proof. To achieve a soundness error of 2−80,
the NIZK proof is run 80 times. The total bandwidth is 69120 bytes.

We can instantiate our blind ECDSA with the CL encryption using class
groups of imaginary quadratic order. Consider 128-bit security level, the size
of a class group element is 1827 bits [7]. A CL ciphertext has two class group
elements, which is 3654 bits. The NIZK proof for CL encryption is 1488 bytes
([23], Table 2) for a soundness error of 2−80.

One-More Unforgeability of Blind ECDSA 329

B Blindness

B.1 Security Model of Blindness

A formal definition of blindness can be found in Fig. 6. The adversary chooses
two messages m0 and m1, and the experiment runs the signing protocol acting
as the user with the adversary, first obtaining a signature (σb) on mb, and then
(σ1−b) on m1−b for a random bit b. If both signatures are valid, the adversary
is given (σ0, σ1) and must determine the value of b.

B.2 Security Proof of Blindness

Proof. Let A be an adversary playing in Game BLINDB
BS(λ). After its execu-

tion, A holds (m0, σ0), (m1, σ1) where σ0 is a signature on m0 and σ1 is a
signature on m1. The adversary A furthermore learns two transcripts T1 =
(R1, c

′
1,1, c

′
1,2, π1, c1) and T2 = (R2, c

′
2,1, c

′
2,2, π2, c2) from its interaction with the

first and the second signer session, respectively. The goal of A is to match the
message/signature pairs with the two transcripts.

We show that no adversary is able to distinguish whether the message m0 was
used by the experiment to create the transcript T1 or T2. We define Game1 that
is the same as Game BLIND, except that the proof π returned from the Oracle U1

is replaced by the simulator of the NIZK proof. If NIZK has the zero-knowledge
property, then no PPT adversary can distinguish these two games.

We define Game2 that is the same as Game1, except that the ciphertext
(c1, c2) returned from the Oracle U1 is changed from the encryption of mbi to
m1−bi . If HE is IND-CPA secure, then no PPT adversary can distinguish these
two games.

We define Game3 that is the same as Game2, except that the proof π returned
from the Oracle U1 is changed back to the real NIZK proof on message m1−bi .

Finally, we can see that in Game3 is the same as the original Game BLIND,
except that the bit b is flipped in these two games.
�

References

1. Abe, M.: A secure three-move blind signature scheme for polynomially many signa-
tures. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 136–151.
Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44987-6 9

2. Abe, M., Okamoto, T.: Provably secure partially blind signatures. In: Bellare, M.
(ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 271–286. Springer, Heidelberg (2000).
https://doi.org/10.1007/3-540-44598-6 17

3. Agrikola, T., Hofheinz, D., Kastner, J.: On instantiating the algebraic group model
from falsifiable assumptions. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020.
LNCS, vol. 12106, pp. 96–126. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-45724-2 4

4. Bellare, M., Dai, W.: The multi-base discrete logarithm problem: tight reductions
and non-rewinding proofs for Schnorr identification and signatures. In: Bhargavan,
K., Oswald, E., Prabhakaran, M. (eds.) INDOCRYPT 2020. LNCS, vol. 12578, pp.
529–552. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-65277-7 24

https://doi.org/10.1007/3-540-44987-6_9
https://doi.org/10.1007/3-540-44598-6_17
https://doi.org/10.1007/978-3-030-45724-2_4
https://doi.org/10.1007/978-3-030-45724-2_4
https://doi.org/10.1007/978-3-030-65277-7_24

330 X. Qin et al.

5. Benhamouda, F., Lepoint, T., Loss, J., Orrù, M., Raykova, M.: On the (in)security
of ROS. In: Canteaut, A., Standaert, F.-X. (eds.) EUROCRYPT 2021. LNCS,
vol. 12696, pp. 33–53. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-
77870-5 2

6. Camenisch, J.L., Piveteau, J.-M., Stadler, M.A.: Blind signatures based on
the discrete logarithm problem. In: De Santis, A. (ed.) EUROCRYPT 1994.
LNCS, vol. 950, pp. 428–432. Springer, Heidelberg (1995). https://doi.org/10.1007/
BFb0053458

7. Castagnos, G., Laguillaumie, F.: Linearly homomorphic encryption from DDH. In:
Nyberg, K. (ed.) CT-RSA 2015. LNCS, vol. 9048, pp. 487–505. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-16715-2 26

8. Chaum, D.: Blind signatures for untraceable payments. In: Chaum, D., Rivest,
R.L., Sherman, A.T. (eds.) Advances in Cryptology, pp. 199–203. Springer, Boston,
MA (1983). https://doi.org/10.1007/978-1-4757-0602-4 18

9. Fersch, M., Kiltz, E., Poettering, B.: On the provable security of (EC)DSA sig-
natures. In: Weippl, E.R., Katzenbeisser, S., Kruegel, C., Myers, A.C., Halevi, S.
(eds.) CCS 2016, pp. 1651–1662. ACM (2016)

10. Fischlin, M.: Round-optimal composable blind signatures in the common reference
string model. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 60–77.
Springer, Heidelberg (2006). https://doi.org/10.1007/11818175 4

11. Fuchsbauer, G., Kiltz, E., Loss, J.: The algebraic group model and its applications.
In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10992, pp. 33–62.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96881-0 2

12. Fuchsbauer, G., Plouviez, A., Seurin, Y.: Blind Schnorr signatures and signed
ElGamal encryption in the algebraic group model. In: Canteaut, A., Ishai, Y.
(eds.) EUROCRYPT 2020. LNCS, vol. 12106, pp. 63–95. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-45724-2 3

13. Garg, S., Rao, V., Sahai, A., Schröder, D., Unruh, D.: Round optimal blind sig-
natures. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 630–648.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22792-9 36

14. Hauck, E., Kiltz, E., Loss, J.: A modular treatment of blind signatures from iden-
tification schemes. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019. LNCS, vol.
11478, pp. 345–375. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
17659-4 12

15. Kiayias, A., Zhou, H.-S.: Equivocal blind signatures and adaptive UC-security. In:
Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 340–355. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78524-8 19

16. Metet, A.: Blind signatures with DSA/ECDSA? https://www.metzdowd.com/
pipermail/cryptography/2004-April/006790.html

17. Nick, J.: Blind signatures in scriptless scripts. https://building-on-bitcoin.com/
docs/slides/Jonas Nick BoB 2018.pdf

18. Paillier, P.: Public-key cryptosystems based on composite degree residuosity
classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238.
Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48910-X 16

19. Rückert, M.: Lattice-based blind signatures. In: Abe, M. (ed.) ASIACRYPT 2010.
LNCS, vol. 6477, pp. 413–430. Springer, Heidelberg (2010). https://doi.org/10.
1007/978-3-642-17373-8 24

20. Schnorr, C.P.: Security of blind discrete log signatures against interactive attacks.
In: Qing, S., Okamoto, T., Zhou, J. (eds.) ICICS 2001. LNCS, vol. 2229, pp. 1–12.
Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45600-7 1

https://doi.org/10.1007/978-3-030-77870-5_2
https://doi.org/10.1007/978-3-030-77870-5_2
https://doi.org/10.1007/BFb0053458
https://doi.org/10.1007/BFb0053458
https://doi.org/10.1007/978-3-319-16715-2_26
https://doi.org/10.1007/978-1-4757-0602-4_18
https://doi.org/10.1007/11818175_4
https://doi.org/10.1007/978-3-319-96881-0_2
https://doi.org/10.1007/978-3-030-45724-2_3
https://doi.org/10.1007/978-3-642-22792-9_36
https://doi.org/10.1007/978-3-030-17659-4_12
https://doi.org/10.1007/978-3-030-17659-4_12
https://doi.org/10.1007/978-3-540-78524-8_19
https://www.metzdowd.com/pipermail/cryptography/2004-April/006790.html
https://www.metzdowd.com/pipermail/cryptography/2004-April/006790.html
https://building-on-bitcoin.com/docs/slides/Jonas_Nick_BoB_2018.pdf
https://building-on-bitcoin.com/docs/slides/Jonas_Nick_BoB_2018.pdf
https://doi.org/10.1007/3-540-48910-X_16
https://doi.org/10.1007/978-3-642-17373-8_24
https://doi.org/10.1007/978-3-642-17373-8_24
https://doi.org/10.1007/3-540-45600-7_1

One-More Unforgeability of Blind ECDSA 331

21. Wagner, D.: A generalized birthday problem. In: Yung, M. (ed.) CRYPTO 2002.
LNCS, vol. 2442, pp. 288–304. Springer, Heidelberg (2002). https://doi.org/10.
1007/3-540-45708-9 19

22. Yi, X., Lam, K.Y.: A new blind ECDSA scheme for bitcoin transaction anonymity.
In: Galbraith, S.D., Russello, G., Susilo, W., Gollmann, D., Kirda, E., Liang, Z.
(eds.) AsiaCCS 2019, pp. 613–620. ACM (2019)

23. Yuen, T.H., Cui, H., Xie, X.: Compact zero-knowledge proofs for threshold ECDSA
with trustless setup. In: Garay, J.A. (ed.) PKC 2021. LNCS, vol. 12710, pp. 481–
511. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-75245-3 18

https://doi.org/10.1007/3-540-45708-9_19
https://doi.org/10.1007/3-540-45708-9_19
https://doi.org/10.1007/978-3-030-75245-3_18

MPC-in-Multi-Heads: A Multi-Prover
Zero-Knowledge Proof System

(or: How to Jointly Prove Any NP Statements in ZK)

Hongrui Cui1 , Kaiyi Zhang1 , Yu Chen2,3,4 , Zhen Liu1 ,
and Yu Yu1,5(B)

1 Department of Computer Science, Shanghai Jiao Tong University,
Shanghai 200240, China

{rickfreeman,kzoacn,liuzhen,yyuu}@sjtu.edu.cn
2 School of Cyber Science and Technology, Shandong University,

Qingdao 266237, China
3 State Key Laboratory of Cryptology, P.O. Box 5159, Beijing 100878, China

4 Key Laboratory of Cryptologic Technology and Information Security,
Ministry of Education, Shandong University, Qingdao 266237, China

yuchen@sdu.edu.cn
5 Shanghai Qizhi Institute, Shanghai 200232, China

Abstract. With the rapid development of distributed computing, the
traditional zero-knowledge proofs (ZKP) are becoming less adequate for
privacy-preserving applications in the distributed setting. Take “dou-
ble financing” as an example: multiple financial providers jointly prove
that the sum of their committed values is no more than a given thresh-
old, which generalizes the “range proof” to the multiple-prover setting.
Therefore, traditional zero-knowledge proof does not seemingly lend itself
to this problem on its own.

We identify and fill this gap by formalizing the ZKP system in the
multi-prover setting (MPZK) that proves arbitrary NP statements with
distributed witnesses. Our MPZK system offers zero-knowledge as long
as one prover is honest (while others can collude arbitrarily), and thus
is applicable to “double financing”, “credit checking”, and various other
multi-prover applications. We then propose a generic black-box construc-
tion from multiparty computation, referred to as “MPC-in-Multi-Heads”,
and prove its security under the simulation-based paradigm. We also offer
a proof-of-concept implementation and present its experimental results.

1 Introduction

Zero-knowledge proof (ZKP) is a powerful cryptographic primitive that enables
a prover to convince a verifier of the membership of a problem instance in
an NP language without revealing anything substantial beyond its validity.
Since the proposal of ZKP by Goldwasser, Micali, and Rackoff in [GMR85] and
non-interactive zero-knowledge (NIZK) by Blum, Feldman, and Micali [BFM88],
numerous efforts have been devoted to improving the efficiency of those primi-
tives, namely the computational complexity of proving and verification and the
c© Springer Nature Switzerland AG 2021
E. Bertino et al. (Eds.): ESORICS 2021, LNCS 12973, pp. 332–351, 2021.
https://doi.org/10.1007/978-3-030-88428-4_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-88428-4_17&domain=pdf
http://orcid.org/0000-0002-6203-413X
http://orcid.org/0000-0002-2294-3523
http://orcid.org/0000-0003-2553-1281
http://orcid.org/0000-0001-9268-702X
http://orcid.org/0000-0002-9278-4521
https://doi.org/10.1007/978-3-030-88428-4_17

MPC-in-Multi-Heads: A Multi-Prover Zero-Knowledge Proof System 333

proof size (or communication complexity in general). Specifically, by settling
with computational soundness (commonly referred to as argument systems),
a rich body of research [Kil92,Mic94,Gro10,GGPR13,GKR08,BCC16,XZZ19,
ZXZS20] (and many others) has focused on building succinct argument systems
with proof size and verification complexity sub-linear in the size of the statement.

Generalizing to Multiple Provers. Before exhibiting our main contributions, it
is helpful to consider the following motivating problem of Double Financing.

A corporate seeks financial support from several banks by a single document
(e.g., a $10 million invoice). Due to the need for risk control, each bank needs
to verify that the sum of their loans does not exceed a certain percentage
of the invoice (e.g., $9 million), since otherwise the corporate may abuse
its power by applying for more than it legally deserves. The verification
process should be 1) preserving the privacy of each bank’s loan amount;
and 2) verifiable by any third party (e.g., the regulator of jurisdiction).

If we consider the whole bank loan amounts as the witness then the above process
is essentially the verification of the NP relation (banks as provers and regulator
as the verifier) that sums up the amounts against a threshold value.

Solutions Implied by Completeness Results. Intuitively, the completeness the-
orems of multiparty computation (MPC) [GMW86,BGW88,CCD88] and the
existence of efficient NIZK suggest that the above problem can be solved by
computing the zero-knowledge functionality using existing MPC protocols. Such
an adaptation, nevertheless, could be tremendously inefficient in practice due
to the difference of computational models commonly considered in both worlds.
Within general MPC frameworks, computation are mostly represented as arith-
metic or Boolean circuits. However, expressing aforementioned prover’s algo-
rithm of NIZK in such circuits may incur a significant overhead that renders the
result impractical. This indicates that the combination of two efficient construc-
tions may be inefficient in practice.

Therefore, the result implied by combining NIZK and MPC should be more
viewed as a feasibility result. We are thus motivated to seeking a more practical
solution. We take the MPC-in-the-Head framework as our starting point. The
reason for this choice is due to its distributed nature and good efficiency. To best
illustrate our idea, we first briefly recall this paradigm as below.

Revisiting the Classics. Recall that ZKP in the MPC-in-the-Head paradigm
of Ishai et al. [IKOS07] works as follows. Prover first simulates the multiparty
verification process some NP relation locally and then commits to the generated
views, a random subset of which will be challenged for consistency checking.

As the main observation of this work, we discover that such a paradigm
generalizes naturally in the multi-prover setting where the proof must be gener-
ated in a distributed manner. Particularly, the proving program itself defines a
multiparty computation process. Multiple provers can simply follow the original
proving program by each simulating some virtual parties (similar ideas appeared
in designing maliciously-secure MPC, e.g., [IPS08]).

334 H. Cui et al.

There are nevertheless a number of technical hurdles: 1) since virtual parties
are simulated by multiple real provers, inter-prover communication corresponds
to the actual communication among the multiple provers—a fact absent in the
original single-prover MPC-in-the-Head construction, which is however crucial
for the performance in our multi-prover setting; 2) towards proving security of
the new scheme, we need to handle the possible inconsistency between inter-
prover interaction and that implicit in the proof string.

Our Contributions. We conclude this section by listing out our contributions.

Extending ZK in the Distributed Setting. We motivate the study of effi-
cient ZK in the multi-prover setting by formalizing the syntax and security
requirements of such proof systems. Moreover, we present the multi-prover coun-
terpart of the classical Fiat-Shamir transform [FS87] that compiles a constant-
round public-coin protocol into a non-interactive one in the random oracle model.

“MPC-in-Multi-Heads”. As the second contribution of this paper, we dis-
cover that the “MPC-in-the-Head” approach is well suited for the multi-prover
setting. Our adaptation of the MPC-in-the-Head paradigm to the multi-prover
setting, which we call “MPC-in-Multi-Heads”, is shown to be an MPZK as pre-
viously defined via careful analysis.

Implementation and Experiments. We implement our protocol and report
its performance in Sect. 5. Our implementation is the first practical realization
of the MPZK functionality to our best knowledge. While further optimizations
are desirable, our work constitutes a basis against which subsequent works can
be compared.

1.1 Related Works

Here we survey works in the field of multiparty computation and zero-knowledge
that are related to our goal. We mainly focus on those similar or relevant to
the our MPZK functionality. Nevertheless, none of them is comparable to our
functionality despite the superficial similarities.

Multiparty Computation with Public Verifiability. This concept was introduced
and studied in the work of Asharov and Orlandi [AO12] whose result was
later improved in a line of subsequent works [SV15,KM15,HKK19,BOSS20].
The notion “MPC with public verifiability” (PV-MPC) is an extension of the
“identifiable abort” concept of multiparty computation (ID-MPC), which allows
honest parties to identify any cheating ones once a deviation is detected. In
PV-MPC, the error-detection property of ID-MPC is enhanced such that hon-
est participants can locally generate a certificate, by which any third party can
detect whether anyone cheated during protocol execution. A weaker notion of
“auditability” is introduced by Baum, Damg̊ard, and Orlandi in [BDO14] where
the certificate only shows cheating occurs but does not pinpoint the cheater.

Although similar in functionality, we note that there are some technical dif-
ferences between our work and theirs. The construction of Schoenmakers and

MPC-in-Multi-Heads: A Multi-Prover Zero-Knowledge Proof System 335

Veeningen [SV15] only guarantees privacy with an honest majority, while our
construction could preserve zero-knowledge even if all-but-one prover is cor-
rupted. Moreover, the works of Baum et al. [BDO14,BOSS20] inherently relies
on an ideal “bulletin board” functionality, which is usually instantiated using
a blockchain protocol. Our construction, on the other hand, can be based on a
variety of assumptions depending on the requirement of the underlying MPC.

Zero-Knowledge Proof on Secret Shared Data. Boneh et al. introduced ZKP on
distributed data in [BBC19] where the proof instance is shared among multiple
verifiers by a linear secret sharing scheme. With this new primitive, this and some
subsequent works [BGIN19,BGIN20] improved the communication complexity
of some honest-majority MPC protocols.

The syntax of our proof system differs fundamentally from theirs. The con-
structions of Boneh et al. relies on a single prover that holds all of the proof
instance and witness, whereas in our setting this party does not exist. The wit-
ness in our case is shared across multiple provers, and the proof system offers
protection of the privacy of witness shares.

We note that Boneh et al. demonstrated a means to circumvent the aforemen-
tioned limitation by letting multiple parties jointly emulate the proof generation
process [BBC19, Sect. 7.4], which is conceptually similar to the construction in
this paper. Nevertheless, we stress a couple of crucial differences. First of all, in
our setting the witness can be shared arbitrarily conditioned on the existence
of efficient reconstruction, whereas in their construction the statement must be
linearly shared. Secondly, the construction in their paper inherently relies on
threshold CNF sharing, which renders it inefficient when the number of parties
becomes large, whereas our construction offers efficient communication with a
large number of provers. Finally, the technique in this paper is orthogonal to
that in Boneh et al.’s construction, where a key component is a fully-linear PCP
generalizing the linear PCP of Gennaro et al. [GGPR13] (causing the reliance
on central prover). Therefore, our work is mostly incomparable to theirs.

Multi-prover ZKPoK. Baum et al. introduced multi-prover ZKPoK in the con-
text of improving the efficiency of actively-secure MPC protocols in [BCS19].
While the syntax and functionality of their construction is similar to ours, the two
notions differs in several ways. First of all, a knowledge extractor in [BCS19] can
only extract witnesses for a larger language, in contrast to the standard knowl-
edge extraction property in this work. What’s more, the provers in [BCS19] do
not communicate with each other while ours does not pose such a restriction.
Last but not least, the authors of [BCS19] only offer a construction for proving
the plaintext knowledge of BGV encryption scheme but our constructions can
be applied to any NP languages.

Multi-prover Interactive Proofs. MIP was first introduced by Ben-Or et al.
[BGKW88] as a generalization of interactive proofs. Perhaps the most widely-
known result related to this notion is the groundbreaking work of Babai and

336 H. Cui et al.

Fortnow [BF90] showing MIP = NEXP. Nevertheless, MIP qualitatively dif-
fers from our notion in several aspects. MIP is more of a theoretical notion, in
which the provers do not communicate with each other during the protocol and
the relation is not necessarily an NP relation. In sharp contrast, our notion aims
to extend the usage of zero-knowledge proof with the efficient prover. Thereby,
our notion focuses on NP relations, and multiple provers do communicate with
each other since individual prover is presumed unable to convince the verifier.

2 Preliminaries

In this section, we define the symbols and notions of this work. Additionally,
we also introduce the fundamental concepts and definitions upon which we will
build our proof system in Sect. 4. Readers familiar with the basic notions of
multiparty computation and zero-knowledge proof may safely skip this section.

2.1 Basic Notations

A negligible function, denoted as negl(n), represents a function f : N → R that
for any constant c, there exists an integer N such that for all n > N , f(n) ≤ n−c.
We also use poly(n) to denote some polynomial. For integer m,n ∈ N and m < n,
we use [m,n] to denote the set {m,m + 1, . . . , n} and [n] to denote [1, n]. We
use the common definitions of computational and statistical indistinguishable
distribution ensembles. Throughout this work, we use κ (resp. λ) to denote
computational (resp. statistical) security parameters. We use PPT to indicate
probabilistic polynomial-time and sometimes use the term “efficient” and PPT
interchangeably.

2.2 Secure Computation

For an interactive process among m Turing machines M1, . . ., Mm with a public
input x and private inputs w1, . . ., wm respectively, we denote the interaction
generating the concatenated output z as z ← 〈M1(w1), . . . , Mm(wm)〉(x). We
use a subscript to denote the output of a particular party.

When considering multiparty computation between n parties, we assume
secure point-to-point channels between all pairs of parties. Moreover, we consider
MPC with synchronized communication, i.e., the participating parties commu-
nicate in synchronized rounds. And therefore the program Mi of a party Pi can
be divided into several “next-message functions”, i.e., the function that maps
local input, local state, and incoming messages into updated local states and
outgoing messages. We use A to denote a PPT adversary that may corrupt a
subset I ⊆ [n] of parties and use Ī to denote the honest ones.

We use the definition of secure computation in the work of Lindell [Lin16].
An interactive protocol is said to securely compute a multi-input functionality,
as shown in Definition 1, if the interaction process is essentially indistinguishable
from that in an idealized model where a trusted party receives inputs from all
participants, computes the functionality, and delivers the output faithfully.

MPC-in-Multi-Heads: A Multi-Prover Zero-Knowledge Proof System 337

Definition 1 (Secure Computation). An n-party protocol defined by n
interactive Turing machines M1, . . ., Mn is said to securely compute an n-
party functionality F if there exists a PPT simulator S, such that for all PPT
adversaries A that may corrupt a subset I of parties, the joint outputs of the
adversary and honest parties in the real world are indistinguishable from that of
the simulated outputs of A and honest parties in the ideal world.

If the only limitation of the corrupted set I is its size smaller than t, we use
the shorthand notation t-secure computation.

Additionally, we define notions related to the “MPC-in-the-Head” paradigm.
In particular, we need to specify the notion of consistent views. Intuitively, views
of two parties are consistent if messages reported in the transcript agree with
those defined by input and protocol definition. This is captured by Definition 2.

Definition 2 (Consistent Views). For an m-party protocol defined by m
interactive Turing machines M1, . . ., Mm and any two indices i, j ∈ [m], the
two views Vi, Vj are called consistent if all the messages that Mi sends to Mj

induced from Vi are consistent with the respective incoming messages in Vj and
the same condition holds vice versa.

For a set S ⊆ [n] of players, the set of views {Vi : i ∈ S} is consistent if for
all i, j ∈ S, Vi, Vj are consistent.

2.3 Helper Functionalities

We define three helper functionalities necessary for our construction in Sect. 4.

Commitment. The ideal commitment as defined in Fig. 1 allows each party to
register a message which can be later revealed to all parties.

Fig. 1. The ideal n-party commitment functionality F com between M1, M2, . . ., Mn.

Broadcast. The ideal detectable broadcast functionality Fbcast allows a party to
deliver a message to a group of parties who either receive the message or jointly
abort [FGMv02]. In this paper, we assume broadcast messages are always sent
to all parties. This functionality is shown in Fig. 2.

338 H. Cui et al.

Fig. 2. The ideal n-party broadcast functionality Fbcast between M1, . . ., Mn. Here m is
the broadcast message, whose syntax remains to be specified by upper-level protocols.
The adversary A may corrupt a subset I of players.

Random Oracle. We use F ro to denote an ideal functionality that implements
a truly random function. In practice, such functionality is usually implemented
by a cryptographically-secure hash function.

3 Multi-Prover Zero-Knowledge

In this section, we introduce the formal definition of multi-prover zero-knowledge
proof system (MPZK hereafter). We start by extending the common definition
of NP relation and language for the multi-prover setting, and then define the
syntax of this proof system, and finally formalize its simulation-based definition.

3.1 Relation and Language

We extend the common definition of an NP relation R(x, y) by allowing multiple
witnesses to fit the multi-prover setting. In particular, for an integer m ∈ N we
consider such a relation Rm defined by a polynomial-sized uniform circuit family
{Cn} where Cn has m+1 inputs, and (x, y1, . . ., ym) ∈ Rm iff. C(x, y1, . . . , ym) =
1. We then define the corresponding language L(R) induced by this relation as
L(R) = {x : ∃y1, . . . , ym s.t. C(x, y1, . . . , ym) = 1}.

3.2 Proof System Syntax

A multi-prover zero-knowledge proof system Π with m provers for an extended
NP relation Rm is defined by m+1 interactive Turing machines: m provers P1,
. . ., Pm and a verifier V . Each prover Pi holds a public input x and a private
witness wi while the verifier V only holds the public input. The provers try to
convince the verifier that x ∈ L(R).

3.3 Formal Definition

We define our multi-prover generalization of the zero-knowledge proof system
in the simulation-based paradigm. In particular, an ideal zero-knowledge func-
tionality with regard to m provers for an extended NP relation Rm, denoted as

MPC-in-Multi-Heads: A Multi-Prover Zero-Knowledge Proof System 339

F zk
Rm , receives the instance x from all parties, and witness wi from prover Pi for

i ∈ [m], checks whether R(x,w1, . . . , wm) = 1, and finally sends the result to all
parties. This process is shown in Fig. 3.

Fig. 3. The m-prover zero-knowledge functionality F zk
Rm for extended NP relation Rm.

We call an (m + 1)-party protocol following the syntax of Sect. 3.2 as an
m-prover zero-knowledge proof system if it securely computes the ideal zero-
knowledge functionality F zk

Rm in Fig. 3 against efficient adversaries with abilities
that correspond to classical definitions of soundness and zero-knowledge. In cases
that mutual trust does not necessarily exist amongst provers, we require that
inputs of honest provers remain secret even if a fraction of provers actively or
passively collude to disrupt the protocol execution. Formally, we have Defini-
tion 3.

Definition 3 (MPZK). With regard to an extended NP relation Rm, an
(m + 1)-party protocol Π following the syntax of Sect. 3.2 is an m-prover zero-
knowledge proof system if it securely compute the ideal zero-knowledge function-
ality F zk

Rm defined in Fig. 3 against a PPT adversary A that may corrupt a subset
I of parties with different controlling capabilities.

Let SP = {P1, . . . , Pm} denote the set of all provers. The corrupted parties I
can be the following cases:

– Soundness. I contains all provers that are actively controlled;
– Standard ZK. I contains the verifier that is actively controlled.
– Honest-Verifier ZK. I contains the verifier that is passively controlled.

Additionally, this proof system has passive/active S-partial witness pri-
vacy (S contains subsets of SP) if the adversary has the power to pas-
sively/actively control a subset Q ∈ S of provers with the possible additional
ability to passively control the verifier (i.e. V ∈ I ∧ I \ {V } ∈ S).

If the definition of S is based on a threshold t ∈ N (namely, S = {S ⊆ SP :
|S| ≤ t}), then we call it t-partial witness privacy.

340 H. Cui et al.

Remark 1 (Comparison with the Classics). We argue the above definition has
subsumed the classical definitions (e.g., [GMW91,FLS90]) of zero-knowledge and
further extended the security guarantees to the more general case. Consider the
following facts.

– When m = 1 the syntax “collapses” to that of the classical proof system.
– When we eliminate the verifier, the syntax “collapses” to the multiparty com-

putation process of the NP relation.
– Completeness is guaranteed by the correctness of multiparty computation.
– Soundness and Standard/Honest-Verifier ZK correspond to the three corrup-

tion cases, respectively.
– Additionally in the multi-prover setting, partial witness privacy protects the

security of the protocol even when some provers collude with the verifier.

Remark 2 (One Bit of Leakage). Recall that the ideal functionality in Fig. 3
allows all parties to get the one-bit value y = C(x,w1, . . . , wm) regardless of
whether x ∈ L(R) or not. This means that when the adversary controls some
of the provers, then even if it does not hold the valid partial witnesses, it will
get the output bit correlated to the inputs of other honest provers. In such a
situation, the adversary will effective acquire an oracle O(C(x,wĪ , ·)) from the
proving process. Notice that such a problem is unique to the multi-prover setting,
since if a single prover holds the witness then such information is efficiently
implied. Nevertheless, we note that this problem seems inherent in the multi-
prover setting since a näıve construction based on computing the NIZK program
by MPC among all provers also has this leakage from the generated proof.

3.4 Public-Coin and Non-interactive Proof

We call such proof system public coin if the verifier’s messages are public ran-
domness as captured in Definition 4.

Definition 4. We call an MPZK proof system public-coin if it satisfies Defini-
tion 3 and additionally the verifier messages satisfy the following constraints.

1. They are randomly sampled according to some distribution, independent of
any other randomness (i.e. fresh random coins);

2. All such coins are broadcasted to all provers (i.e. public).

Such extension is meaningful to our work because we can mimic the template
of constructing (single-prover) non-interactive argument system: first designing
an honest-verifier zero-knowledge protocol and then compiling it into a non-
interactive one in the random oracle model using general constructions (namely
Fiat-Shamir [FS84] or BCS [BCS16]).

In more detail, our characterization of the multi-prover proof system (Defi-
nition 3) requires the interaction between parties being indistinguishable to an
ideal process, and if a protocol satisfies the public coin property above, one can
replace the verifier messages with random oracle responses. The two interaction

MPC-in-Multi-Heads: A Multi-Prover Zero-Knowledge Proof System 341

processes are indistinguishable except when additional RO queries collide with
those defining random challenges, which happens with negligible probability for
proper parameter choices.

And thus interaction between provers and verifier can be compressed into
one single message. To rigorously capture this intuition, we first define the multi-
party equivalence of non-interactive proof. Since in the multi-prover setting no
prover has the ability to convince the verifier of the validity of the statement,
we argue that limiting prover-verifier communication is the best one can hope
for. Formally we have the following definition.

Definition 5. We call a multi-prover honest-verifier zero-knowledge proof sys-
tem non-interactive if it satisfies Definition 3 and additionally throughout the
proof process the provers only send one message to the verifier.

The public coin property allows us to transform the proving process into a
non-interactive one in the random oracle model, in the same spirit as existing
general transformations. Formally, we have the following lemma.

Lemma 1 (Multi-Prover Fiat-Shamir). Suppose Π is a multi-prover
honest-verifier zero-knowledge proof system as in Definition 3 with the additional
public coin property as in Definition 4, the verifier’s message count is a constant
n, and challenge space in each n steps are super-polynomial in the statistical
parameter λ, then by replacing for i ∈ [n] the verifier’s message ci with random
oracle response c̃i := F ro(τi) where τi is the verifier’s partial transcript before
sending ci in Π, one can acquire a protocol Π̃ that is a non-interactive proof as
in Definition 5 in the F ro-hybrid model.

Proof. Dividing the random oracle queries in the execution of Π̃ into two classes:
the ones that define verifier’s challenges, denoted as qc and all others, denoted
as qc̄. When these two classes return distinct outputs, the protocols Π̃ and
Π are equivalent in the sense that adversarial strategy in Π̃ can be efficiently
translated to one in Π by simulating additional random oracle responses. And
thus it suffices to prove this event Collide happens with overwhelming probability.

Since the size of qc is a constant and the challenge space is super-polynomial,
the probability of the ith query in qc̄ collides with response of qc is Pr[Collidei] =
λ−ω(1). This probability is still negligible after applying a union bound on all
queries in qc̄. Namely,

Pr[Collide] ≤
∑

i

Pr[Collidei] = poly(λ) · λ−ω(1) = λ−ω(1) .

As we shall see, our construction in Sect. 4 is public coin and can be made
non-interactive using this transformation.

4 MPC-in-Multi-Heads: A Black-Box Construction from
MPC

In this section, we present a protocol that realizes a multi-prover zero-knowledge
proof system defined in Definition 3. Our protocol can be viewed as a natural

342 H. Cui et al.

extension to the original “MPC-in-the-Head” paradigm of Ishai et al. [IKOS07].
We first introduce the intuition behind our method, then elaborate our protocol
in detail, and finally prove its security.

4.1 Intuitions

Recall that in the original “MPC-in-the-Head” paradigm, the prover first shares
the witness w among n virtual parties, and then simulates the secure execution
of the verification circuit locally. The prover then broadcasts the commitment of
these n views, and on request of the verifier, opens some views to show that 1)
the output is unanimously accepting and 2) the execution process is consistent
with the protocol specification.

In our setting, the witness is distributed among m provers, and therefore
no single prover can complete the view generation process. Instead, we let each
party split their witness into n/m pieces and simulate respective parties (hence
“MPC-in-Multi-Heads”). All provers would therefore jointly simulate n parties
and commit to generated views, a subset of which will be checked by the verifier.

In more detail, the next-message function of any secure computation proto-
col of that verification circuit relies on the input, random tape, and incoming
messages. It is thus sufficient to let each party deliver outgoing messages to the
respective parties, in order to jointly simulate the protocol execution. Once this
step is completed, the rest of the protocol follows the original scheme.

Remark 3 (Choosing Inner Protocol). In our setting, multiple provers hold
inputs to be protected against the verifier (traditional zero-knowledge) and in
some cases against each other (partial witness privacy). And thus the inner pro-
tocol, in this case, should satisfy the following two constraints: 1) when instan-
tiated in the original framework, soundness, and zero-knowledge should hold;
2) when considering the adversary’s ability to control a subset of provers and
the verifier, simulation of the inner protocol should not break the security of
the overall protocol. This corresponds to the partial-prover corruption cases in
Definition 3.

4.2 Protocol Description

We describe our protocol in the F com,Fbcast-hybrid model, as illustrated in Fig. 5.
We denote the m-prover protocol for relation Rm that makes an oracle use of
another (inner) protocol π as Ππ

Rm .
Let Rm be a generalized NP relation and C its verification circuit. Let t, � be

constant integers and n = (t + 1) · m. Let D be a distribution over all subsets of
[n] and π an n-party (denoted as M1, . . ., Mn) protocol that computes C. Each
prover, denoted as P1, . . ., Pm holds partial witness w1, . . ., wm respectively.

The provers first additively split their witness into t + 1 random shares and
then they collectively simulate the n parties in π via the point-to-point channel
and corresponding two-party protocols for any two-party functionalities in π
(e.g. OT channels).

MPC-in-Multi-Heads: A Multi-Prover Zero-Knowledge Proof System 343

Fig. 4. The extended m·(t+1) party verification functionality for extended NP relation
Rm. t is a parameter to be specified by upper-level protocols.

Fig. 5. The m-prover zero knowledge proof system Ππ
Rm for an extended NP relation

Rm. The verification circuit for Rm is C(x, w1, . . . , wm). Here t, � are constant integers
that defines the simulated parties of each prover and repetition count. D is a distribu-
tion defined over all subsets of [n]. π is an (t + 1) ·m party protocol that computes the
extended verification functionality F ext

Rm,t as in Fig. 4.

344 H. Cui et al.

After the simulation of π, each prover collectively holds n views. Then the
protocol could proceed as the original MPC-in-the-Head scheme. This process is
repeated � times in sequential order.

4.3 Instantiation with Different Inner Protocols

In this section, we introduce two instantiations of the protocol in Fig. 5. These
two implementations differ in whether the adversary can actively or passively
control a subset of provers and correspond to the two constructions in [IKOS07,
Sect. 3, 4]. Formally, we have the following theorems.

Theorem 1 (Active Partial Control). Let t be a constant multiple of sta-
tistical security parameter λ, � = 1, π be a (m − 1) · (t + 1)-secure protocol,
and D be the uniform distribution over all size-t subsets of [n], protocol Ππ

Rm as
defined in Fig. 5 is an m-prover honest-verifier zero-knowledge proof system for
the extended relation Rm with additional active (m − 1)-partial witness privacy
as defined in Definition 3.

Theorem 2 (Passive Partial Control). Let t = 2, � = �λ/ log (3/2)�, π be a
(n−1)-secure protocol, and D be the uniform distribution over the set S1×. . .×Sm

where Si is the set of all size-2 subsets of [(t+1)·(i−1)+1, (t+1)·i], protocol Ππ
Rm

as defined in Fig. 5 is an m-prover honest-verifier zero-knowledge proof system
for the extended relation Rm with additional passive (m − 1)-partial witness
privacy as defined in Definition 3.

We defer the complete proofs to the appendix, and only state the high-level
ideas here. The two theorems share the same structure and proof strategy.

Proof (Sketch). In both theorems, the parameter settings of π and D leaves the
adversary negligible probability to bypass the consistency check, and therefore
for x
∈ L the probability of verifier outputting y = 1 is negligible in the real
execution. Except for this unlikely event, a simulator in the ideal world could sim-
ulate the preparation phase from the security guarantees of π and then observe
all inputs to F com. With all this information, it can simulate challenges of the
verifier and thus effectively simulate the real protocol execution. A malicious
adversary may not commit to views faithfully, but a careful analysis shows that
the effect of such malicious behavior can be efficiently simulated in the ideal
world and thus does not affect security.

5 Implementation and Experimental Results

We have implemented the protocol in Sect. 4 by instantiating the inner MPC
with the passive secure protocol of Goldreich, Micali, and Wigderson [GMW86]
(hence secure against adversary with passive partial control) and the

MPC-in-Multi-Heads: A Multi-Prover Zero-Knowledge Proof System 345

Table 1. Parameter setting of our experiments. The two numbers in “Circuit Size”
denote the number of linear and non-linear gates, respectively. In “Simulated Party”,
“m × n” denotes that each of the m provers simulates n virtual parties, resulting in
a total of mn virtual parties. “Repetition Count” is the number of linear repetition
needed to achieve required soundness error.

Relation Rhash Rcomp Rsum

Circuit Size 94,302/22,528 189,450/45,312 1,821/288

Simulated Party 2 × 3 2 × 3 8 × 3

Soundness Error 2−40 2−40 2−40

Repetition Count 70 70 70

Proving Time 109min 223min 26min31 s

Verification Time 23.7 s 50.0 s 1.44 s

Proof Size 4.0 MB 8.0 MB 1.3 MB

Multi-Prover Fiat-Shamir transform with the SHA256 hash function. Based on
this implementation, we conducted experiments on the following relations:

– Rhash(y; (x1, x2)) : y = SHA256(x1 ⊕ x2), where x1, x2 ∈ {0, 1}512, and y ∈
{0, 1}256;

– Rcomp((y, h1, h2) : ((x1, r1), (x2, r2))) : y < (x1 + x2) ∧ h1 = SHA256(x1||r1) ∧
h2 = SHA256(x2||r2), where x1, x2, y ∈ {0, 1}32, r1, r2 ∈ {0, 1}480, h1, h2 ∈
{0, 1}256, “||” denotes concatenation of bit strings, and x1, x2, y are inter-
preted as unsigned 32-bit integers for addition and comparison operations.

– Rsum(y; (x1, ..., x8)) : y =
∑8

i=1 xi for x1, ..., x8, y ∈ {0, 1}32 interpreted as
32-bit unsigned integers for addition and comparison operations.

Throughout the experiment, we use the SHA256 circuit in the works of Cam-
panelli et al. [CGGN17] which has optimized the AND gate count. We run the
experiments on a Ubuntu 20.04 LTS machine with AMD R©Ryzen 5 3600 CPU
and 16 GB of RAM in LAN setting. The simulated communication channel has
10 Gbps bandwidth and 1 ms delay. Parameters and results for the experiments
are reported in Table 1.

When compared with the state-of-the-art in ZKP, results from our exper-
iments seem very rudimentary. We provide justifications for this phenomenon.
First of all, our construction implements a generalized functionality 1) that “col-
lapses” to regular ZKP in the single prover case; 2) that, in absence of the verifier,
“collapses” to a multiparty computation of the NP relation verification circuit,
where the communication size of the challenge and response phases relates to the
proof size, and running time corresponds to proving time. Moreover, the func-
tionality we realized has never been implemented before and our result should be
interpreted as a proof-of-concept result. Finally, the protocol in Sect. 4 is built
upon the vanilla approach of “MPC-in-the-Head” which has proof size linear in
the verification circuit size. Despite the initial performance is far from desirable,
subsequent works has substantially improved the asymptotic/concrete efficiency

346 H. Cui et al.

to the extent of being competitive in the ZKP literature. Thus, we expect sub-
sequent improvement over our work following these optimizations.

6 Conclusion and Future Directions

In this paper, we formalize the syntax and security requirements for multi-
prover zero-knowledge, the multi-prover extension of ZKP for proving arbitrary
NP statements with distributed witnesses. Inspired by the MPC-in-the-Head
paradigm, we then design a protocol named “MPC-in-Multi-Heads” that effi-
ciently realizes the multi-prover zero-knowledge functionality. Finally, we instan-
tiate and implement the proof system with the classical GMW protocol and
report experimental results.

We expect further optimizations considering the numerous improvements
(e.g., [GMO16,CDG17,KKW18,AHIV17,BFH20]) following the proposal of the
MPC-in-the-Head paradigm. As a byproduct of this work, we advocate a new
metric of ZK, referred to as “MPC-friendliness”1, to capture the property of
being efficiently computable in the multiparty setting and thus more suitable for
multi-prover applications.

Acknowledgements. We would like to thank the reviewers for their helpful sugges-
tions. Yu Chen is supported by National Natural Science Foundation of China (Grant
No. 61772522, No. 61932019). Zhen Liu is supported by the National Natural Science
Foundation of China (Grant No. 62072305) and the National Cryptography Devel-
opment Fund (Grant No. MMJJ20170111). Yu Yu was supported by the National
Key Research and Development Program of China (Grant Nos. 2020YFA0309705 and
2018YFA0704701) and the National Natural Science Foundation of China (Grant Nos.
62125204, 61872236, and 61971192).

A Missing Proofs

In this section, we present the missing proofs in the body.

Proof (of Thm. 1). The (m − 1) · (t + 1)-threshold security of π implies the
existence of a simulator Sπ

A′ such that for any PPT adversary A′ corrupting at
most (m − 1) · (t + 1) parties, the concatenated outputs of all parties in the real
world is indistinguishable with that in the ideal world where the simulator Sπ

A′

interacts with the ideal functionality F ext
Rm,t and A.

We then explain in the following two corruption cases how adversarial actions
translate to efficient simulation in the ideal world.

1 This notion is already present in other context. For example, it refers to functions
with low (multiplicative) circuit size and depth, which can be efficiently computed
using MPC protocols.

MPC-in-Multi-Heads: A Multi-Prover Zero-Knowledge Proof System 347

Case 1a. In this case, the adversary may actively control any strict subset I of
the provers and passively control the verifier. The simulator Szk in this case runs
as follows:

1. It first simulates the preparation phase of Ππ
Rm . In particular, let w1

I , . . . , wt+1
I

be the extracted witness of virtual parties simulated by A returned by Sπ, the
outer simulator Szk computes and sends wI =

∑
j wj

I to ideal functionality
F zk

Rm and sends the result y ∈ {0, 1} to A via Sπ. In addition, the simulator
Szk relays any aborting command of A to F zk

Rm .
2. Then through the simulation of the ideal commitment oracle F com, simulator

Szk can observe the committed views VI from A. By these views and the
previous simulation of π, Szk can define a consistency graph G: one node for
each virtual party and two nodes are connected iff. they are inconsistent.

3. Then Szk simulates an honest verifier and sends (sid, abort) to F zk
Rm if incon-

sistency is detected.
4. Otherwise, Szk sends (sid, contine) and concludes the simulation process.

Next, we argue the effectiveness of the above simulation. Consider the fol-
lowing three cases.

First of all, if |G.E| = 0 (i.e. no inconsistency) then correctness of π ensures
the above simulation is correct.

The second case is 0 < |G.E| ≤ t. First, we claim verifier will abort with the
same probability in both worlds. This holds because the simulation of the verifier
is perfect (since it does not require any trapdoor or correlation). Conditioned on
verifier does not abort, we then claim the verifier in both worlds always output
the same y except with negligible probability.

The effectiveness of Sπ implies that in the real world honest provers (who at
least controls t + 1 virtual parties) output y as in the ideal world except with
negligible probability. Thus the probability of a real verifier being convinced on
false output ȳ is smaller than that of a random challenge is “concentrated on”
A controlled views (denoted as Miss), which is negligible. In particular we have

Pr[ȳ ← V] ≤ Pr[Miss] ≤
(
(m−1)(t+1)

t

)
(
m(t+1

t

) ≤
(

1 − 1
m − 1

)t

= negl(λ) .

Finally, if |G.E| > t, then G must have a minimal matching bigger than
t/2. And thus the verifier (whether real or simulated) will abort except with
(t/n)t = 2−Ω(λ) probability, which means the two worlds have the same behavior
except with negligible probability.

Case 1b. In this case, the adversary A only passively controls the verifier. Notice
that

– the verifier only observes t views in its transcript;
– the active-(t + 1) · (m − 1) security of π implies a passive simulator that

generates any t views given output y.

Together this implies the passive simulation of A’s view, in this case, is efficient.

348 H. Cui et al.

Case 2. In this case the adversary actively controls all provers. The simulator
Szk runs the following steps (since all provers are corrupted, the preparation
phase does not need to be simulated):

1. From the input to F com, Szk can efficiently compute its consistency graph G.
2. Let VC be a minimal vertex cover of G. If |VC| ≥ t it sends (sid, abort) to

F zk
Rm .

3. Otherwise, it uses Sπ to extract inputs wVC from virtual parties in VC. It then
sends wVC and wVC (inputs of parties outside VC) to F zk

Rm , and gets output
y ∈ {0, 1}.

4. It then simulates an honest verifier and sends (sid, abort) if inconsistency is
detected and (sid, continue) otherwise.

Next, we argue the effectiveness of simulation. From the arguments in Case
1a, it holds when the consistency graph has a minimal vertex cover of size > t
then the verifier will abort in the real world. Together with the fact that the
simulation of the verifier is perfect, we conclude that the verifier will abort with
the same probability (except with negligible difference) in both worlds.

Conditioned on abort does not occur, we claim that honest parties will out-
put the same in both worlds, which suffices for proving the effectiveness of
the above simulation. This holds because the effectiveness of Sπ implies that
y = C(wVC, wVC) as returned by F zk

Rm is indistinguishable from outputs in the
real execution of π (as reported in F com). And thus views corresponding to VC
output y and the probability that honest parties output ȳ is at most 1/

(
n
t

)
which

is negligible.

Proof (of Theorem 2). The optimal threshold security of π implies simulation
against passive corruption is efficient. And thus we only have to focus on the
case of active corruption on all provers. In this case the simulator Szk perform
the following steps:

1. From inputs to F com in every � rounds, Szk simulates the honest verifier’s
check and sends (sid, abort) if inconsistency is detected.

2. If the previous step does not abort, then the verifier checks every � inputs
to F com and (sid, abort) if no such w : y = C(w, x) is found where y is the
verifier’s output.

3. Szk sends w to F zk
Rm and concludes the simulation.

As argued in the previous proof, simulation of the honest verifier is perfect,
and thus the verifier will abort with the same probability in both worlds. Con-
ditioned on abort does not occur, we claim that honest verifier always returns
the output y returned by F zk

Rm except with negligible probability.
The only difference is the case that during simulation, the simulated verifier

does not abort and outputs y for which Szk cannot extract a corresponding w.
This implies that inputs w for every � rounds would results ȳ, in other words,
inconsistency exists in every round. But by the parameter setting, this occurs
except with probability (t/t + 1)� < 2−λ.

MPC-in-Multi-Heads: A Multi-Prover Zero-Knowledge Proof System 349

References

[AHIV17] Ames, S., Hazay, C., Ishai, Y., Venkitasubramaniam, M.: Ligero:
lightweight sublinear arguments without a trusted setup. In: Thuraising-
ham et al. [TEMX17], pp. 2087–2104

[AO12] Asharov, G., Orlandi, C.: Calling out cheaters: covert security with public
verifiability. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol.
7658, pp. 681–698. Springer, Heidelberg (2012). https://doi.org/10.1007/
978-3-642-34961-4 41

[BBC19] Boneh, D., Boyle, E., Corrigan-Gibbs, H., Gilboa, N., Ishai, Y.: Zero-
knowledge proofs on secret-shared data via fully linear PCPs. In: Boldyreva
and Micciancio [BM19], pp. 67–97

[BCC16] Bootle, J., Cerulli, A., Chaidos, P., Groth, J., Petit, C.: Efficient zero-
knowledge arguments for arithmetic circuits in the discrete log setting. In:
Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666, pp.
327–357. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-
49896-5 12

[BCS16] Ben-Sasson, E., Chiesa, A., Spooner, N.: Interactive Oracle proofs. In: Hirt,
M., Smith, A. (eds.) TCC 2016. LNCS, vol. 9986, pp. 31–60. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-53644-5 2

[BCS19] Baum, C., Cozzo, D., Smart, N.P.: Using TopGear in overdrive: a more
efficient ZKPoK for SPDZ. In: Paterson, K.G., Stebila, D. (eds.) SAC
2019. LNCS, vol. 11959, pp. 274–302. Springer, Cham (2020). https://doi.
org/10.1007/978-3-030-38471-5 12

[BDO14] Baum, C., Damg̊ard, I., Orlandi, C.: Publicly auditable secure multi-party
computation. In: Abdalla, M., De Prisco, R. (eds.) SCN 2014. LNCS, vol.
8642, pp. 175–196. Springer, Cham (2014). https://doi.org/10.1007/978-
3-319-10879-7 11

[BF90] Babai, L., Fortnow, L.: A characterization of �P arithmetic straight line
programs. In: FOCS 1990 [FOC90], pp. 26–34

[BFH20] Bhadauria, R., Fang, Z., Hazay, C., Venkitasubramaniam, M., Xie, T.,
Zhang, Y.: Ligero++: a new optimized sublinear IOP. In: Ligatti, J., Ou,
X., Katz, J., Vigna, G. (eds.) ACM CCS 20, pp. 2025–2038. ACM Press,
November 2020

[BFM88] Blum, M., Feldman, P., Micali, S.: Non-interactive zero-knowledge and its
applications (extended abstract). In: STOC 1988 [STO88], pp. 103–112

[BGIN19] Boyle, E., Gilboa, N., Ishai, Y., Nof, A.: Practical fully secure three-party
computation via sublinear distributed zero-knowledge proofs. In: Caval-
laro, L., Kinder, J., Wang, X., Katz, J. (eds.) ACM CCS 2019, pp. 869–886.
ACM Press, November 2019

[BGIN20] Boyle, E., Gilboa, N., Ishai, Y., Nof, A.: Efficient fully secure computation
via distributed zero-knowledge proofs. In: Moriai, S., Wang, H. (eds.) ASI-
ACRYPT 2020. LNCS, vol. 12493, pp. 244–276. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-64840-4 9

[BGKW88] Ben-Or, M., Goldwasser, S., Kilian, J., Wigderson, A.: Multi-prover inter-
active proofs: how to remove intractability assumptions. In: STOC 1988
[STO88], pp. 113–131

[BGW88] Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems
for non-cryptographic fault-tolerant distributed computation (extended
abstract). In: STOC 1988 [STO88], pp. 1–10

https://doi.org/10.1007/978-3-642-34961-4_41
https://doi.org/10.1007/978-3-642-34961-4_41
https://doi.org/10.1007/978-3-662-49896-5_12
https://doi.org/10.1007/978-3-662-49896-5_12
https://doi.org/10.1007/978-3-662-53644-5_2
https://doi.org/10.1007/978-3-030-38471-5_12
https://doi.org/10.1007/978-3-030-38471-5_12
https://doi.org/10.1007/978-3-319-10879-7_11
https://doi.org/10.1007/978-3-319-10879-7_11
https://doi.org/10.1007/978-3-030-64840-4_9

350 H. Cui et al.

[BM19] Boldyreva, A., Micciancio, D. (eds.): CRYPTO 2019. LNCS, vol.
11694. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26954-
8References [BM19, FOC90, STO88, TEMX17] are given in the list but
not cited in the text. Please cite these in text or delete these from the list.

[BOSS20] Baum, C., Orsini, E., Scholl, P., Soria-Vazquez, E.: Efficient constant-
round MPC with identifiable abort and public verifiability. In: Micciancio,
D., Ristenpart, T. (eds.) CRYPTO 2020. LNCS, vol. 12171, pp. 562–592.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-56880-1 20

[CCD88] Chaum, D., Crépeau, C., Damg̊ard, I.: Multiparty unconditionally secure
protocols (extended abstract). In: STOC 1988 [STO88], pp. 11–19

[CDG17] Chase, M., et al.: Post-quantum zero-knowledge and signatures from
symmetric-key primitives. In: Thuraisingham et al. [TEMX17], pp. 1825–
1842

[CGGN17] Campanelli, M., Gennaro, R., Goldfeder, S., Nizzardo, L.: Zero-knowledge
contingent payments revisited: attacks and payments for services. In: Thu-
raisingham et al. [TEMX17], pp. 229–243

[FGMv02] Fitzi, M., Gisin, N., Maurer, U., von Rotz, O.: Unconditional byzantine
agreement and multi-party computation secure against dishonest minori-
ties from scratch. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol.
2332, pp. 482–501. Springer, Heidelberg (2002). https://doi.org/10.1007/
3-540-46035-7 32

[FLS90] Feige, U., Lapidot, D., Shamir, A.: Multiple non-interactive zero knowledge
proofs based on a single random string (extended abstract). In: FOCS 1990
[FOC90], pp. 308–317

[FOC90] 31st FOCS. IEEE Computer Society Press, October 1990
[FS84] Fiat, A., Shamir, A.: Polymorphic arrays: a novel VLSI layout for sys-

tolic computers. In: 25th FOCS, pp. 37–45. IEEE Computer Society Press,
October 1984

[FS87] Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identi-
fication and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986.
LNCS, vol. 263, pp. 186–194. Springer, Heidelberg (1987). https://doi.org/
10.1007/3-540-47721-7 12

[GGPR13] Gennaro, R., Gentry, C., Parno, B., Raykova, M.: Quadratic span programs
and succinct NIZKs without PCPs. In: Johansson, T., Nguyen, P.Q. (eds.)
EUROCRYPT 2013. LNCS, vol. 7881, pp. 626–645. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-38348-9 37

[GKR08] Goldwasser, S., Kalai, Y.T., Rothblum, G.N.: Delegating computation:
interactive proofs for muggles. In: Ladner, R.E., Dwork, C. (eds.) 40th
ACM STOC, pp. 113–122. ACM Press, May 2008

[GMO16] Giacomelli, I., Madsen, J., Orlandi, C.: ZKBoo: faster zero-knowledge for
Boolean circuits. In: Holz, T., Savage, S. (eds.) USENIX Security 2016,
pp. 1069–1083. USENIX Association, August 2016

[GMR85] Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of inter-
active proof-systems (extended abstract). In: 17th ACM STOC, pp. 291–
304. ACM Press, May 1985

[GMW86] Goldreich, O., Micali, S., Wigderson, A.: Proofs that yield nothing
but their validity and a methodology of cryptographic protocol design
(extended abstract). In: 27th FOCS, pp. 174–187. IEEE Computer Soci-
ety Press, October 1986

https://doi.org/10.1007/978-3-030-26954-8
https://doi.org/10.1007/978-3-030-26954-8
https://doi.org/10.1007/978-3-030-56880-1_20
https://doi.org/10.1007/3-540-46035-7_32
https://doi.org/10.1007/3-540-46035-7_32
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/978-3-642-38348-9_37

MPC-in-Multi-Heads: A Multi-Prover Zero-Knowledge Proof System 351

[GMW91] Goldreich, O., Micali, S., Wigderson, A.: Proofs that yield nothing but
their validity or all languages in NP have zero-knowledge proof systems.
J. ACM 38(3), 691–729 (1991)

[Gro10] Groth, J.: Short pairing-based non-interactive zero-knowledge arguments.
In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 321–340.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17373-
8 19

[HKK19] Hong, C., Katz, J., Kolesnikov, V., Lu, W., Wang, X.: Covert security
with public verifiability: faster, leaner, and simpler. In: Ishai, Y., Rijmen,
V. (eds.) EUROCRYPT 2019. LNCS, vol. 11478, pp. 97–121. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-17659-4 4

[IKOS07] Ishai, Y., Kushilevitz, E., Ostrovsky, R., Sahai, A.: Zero-knowledge from
secure multiparty computation. In: Johnson, D.S., Feige, U. (eds.) 39th
ACM STOC, pp. 21–30. ACM Press, June 2007

[IPS08] Ishai, Y., Prabhakaran, M., Sahai, A.: Founding cryptography on oblivious
transfer – efficiently. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157,
pp. 572–591. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-
540-85174-5 32

[Kil92] Kilian, J.: A note on efficient zero-knowledge proofs and arguments
(extended abstract). In: 24th ACM STOC, pp. 723–732. ACM Press, May
1992

[KKW18] Katz, J., Kolesnikov, V., Wang, X.: Improved non-interactive zero knowl-
edge with applications to post-quantum signatures. In: Lie, D., Mannan,
M., Backes, M., Wang, X. (eds.) ACM CCS 2018, pp. 525–537. ACM Press,
October 2018

[KM15] Kolesnikov, V., Malozemoff, A.J.: Public verifiability in the covert model
(almost) for free. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015.
LNCS, vol. 9453, pp. 210–235. Springer, Heidelberg (2015). https://doi.
org/10.1007/978-3-662-48800-3 9

[Lin16] Lindell, Y.: How to simulate it - a tutorial on the simulation proof tech-
nique. Cryptology ePrint Archive, Report 2016/046 (2016). http://eprint.
iacr.org/2016/046

[Mic94] Micali, S.: CS proofs (extended abstracts). In: 35th FOCS, pp. 436–453.
IEEE Computer Society Press, November 1994

[STO88] 20th ACM STOC. ACM Press, May 1988
[SV15] Schoenmakers, B., Veeningen, M.: Universally verifiable multiparty com-

putation from threshold homomorphic cryptosystems. In: Malkin, T.,
Kolesnikov, V., Lewko, A.B., Polychronakis, M. (eds.) ACNS 2015. LNCS,
vol. 9092, pp. 3–22. Springer, Cham (2015). https://doi.org/10.1007/978-
3-319-28166-7 1

[TEMX17] Thuraisingham, B.M., David, E., Tal, M., Xu, D. (eds.): ACM CCS 2017.
ACM Press, October/November (2017)

[XZZ19] Xie, T., Zhang, J., Zhang, Y., Papamanthou, C., Song, D.: Libra: succinct
zero-knowledge proofs with optimal prover computation. In: Boldyreva and
Micciancio [BM19], pp. 733–764

[ZXZS20] Zhang, J., Xie, T., Zhang, Y., Song, D.: Transparent polynomial delegation
and its applications to zero knowledge proof. In: 2020 IEEE Symposium
on Security and Privacy, pp. 859–876. IEEE Computer Society Press, May
2020

https://doi.org/10.1007/978-3-642-17373-8_19
https://doi.org/10.1007/978-3-642-17373-8_19
https://doi.org/10.1007/978-3-030-17659-4_4
https://doi.org/10.1007/978-3-540-85174-5_32
https://doi.org/10.1007/978-3-540-85174-5_32
https://doi.org/10.1007/978-3-662-48800-3_9
https://doi.org/10.1007/978-3-662-48800-3_9
http://eprint.iacr.org/2016/046
http://eprint.iacr.org/2016/046
https://doi.org/10.1007/978-3-319-28166-7_1
https://doi.org/10.1007/978-3-319-28166-7_1

Complexity and Performance of Secure
Floating-Point Polynomial Evaluation

Protocols

Octavian Catrina(B)

Politehnica University of Bucharest, Bucharest, Romania
ocatrina@elcom.pub.ro

Abstract. Secure computation provides cryptographic protocols for col-
laborative applications with private inputs and outputs. In this paper,
we examine a collection of protocols for secure evaluation of polynomi-
als using secure floating-point arithmetic. The main goal is to provide a
comparative analysis of their construction, complexity, performance, and
tradeoffs in different application settings. The analysis demonstrates the
performance gains that can be obtained by evaluating the polynomials
using optimized secure multi-operand arithmetic instead of relying on
generic constructions based on two-operand arithmetic. It also examines
the relations between performance and complexity metrics for different
execution environments (LAN, Internet), floating-point precision, and
problem sizes. These protocols are part of a framework for secure mul-
tiparty computation with fixed-point and floating-point numbers based
on Shamir secret sharing and related techniques.

Keywords: Secure multiparty computation · Secret sharing · Secure
floating-point arithmetic · Polynomial evaluation

1 Introduction

Secure computation is a branch of cryptography that helps collaborative appli-
cations to protect the privacy of their inputs and outputs (e.g., to satisfy legal or
business privacy requirements). Applications like statistical analysis, data min-
ing, and various optimizations compute with real numbers and need the accuracy
and dynamic range offered by floating-point numbers [2,4–6,15]. Improving the
performance of secure floating-point computation is a difficult challenge.

In this paper, we examine a collection of protocols that evaluate polynomials
with private inputs and output, based on the secure floating-point arithmetic
protocols presented in [8,9,11]. An immediate application is the secure evaluation
of various mathematical functions by polynomial approximation.

Optimizing secure computation involves a combination of factors: amount of
exchanged data, interaction rounds, parallel execution, local processing, and pre-
processing. Improving some factors can degrade the others, so there are various
optimization tradeoffs (e.g., rounds versus amount of data and local processing).
c© Springer Nature Switzerland AG 2021
E. Bertino et al. (Eds.): ESORICS 2021, LNCS 12973, pp. 352–369, 2021.
https://doi.org/10.1007/978-3-030-88428-4_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-88428-4_18&domain=pdf
http://orcid.org/0000-0002-7498-9881
https://doi.org/10.1007/978-3-030-88428-4_18

Secure Floating-Point Polynomial Evaluation 353

The effects of these factors on the protocols’ performance depend to a large
extent on the execution environment, the application, and the implementation.

The protocols discussed in this paper are part of a framework for secure
multiparty computation using Shamir secret sharing and related techniques, in
the semi-honest model. The framework supports secure fixed-point and floating-
point arithmetic with arbitrary precision and offers alternative solutions for the
building blocks, with different complexity tradeoffs. The floating-point arith-
metic protocols share the basic framework with the protocols in [1], but use
simpler algorithms enabled by building blocks with lower (and constant) num-
ber of rounds, introduced in [7,9]. These building blocks offer a combination of
complexity metrics aimed at improving the performance for a broader range of
execution environments (network delay and bandwidth) and application require-
ments (precision and problem size). The floating-point protocols used in [5,15]
rely on a different framework, based on additive sharing. Their building blocks
have low communication, but higher (logarithmic) number of rounds.

The benefits offered by optimized secure multi-operand arithmetic for poly-
nomial evaluation were initially explored in [8,10]. The protocols presented in
this paper achieve better performance by using improved secure arithmetic [9,11]
and adapting to different contexts by controlling certain tradeoffs. However, the
main goal is to provide a comparative analysis of their construction, complexity,
tradeoffs, and performance in different application settings.

The analysis demonstrates the improvements that can be obtained by eval-
uating the polynomials using optimized multi-operand floating-point arithmetic
protocols [8,11] instead of relying on two-operand protocols [9] and generic con-
structions. It also clarifies the performance effects of certain design tradeoffs and
shows that different protocol variants should be considered for different execu-
tion environments, floating-point precision, and problem sizes.

The paper is structured as follows. Section 2 provides an overview of the
secure computation model, data encoding, and building blocks. Section 3 presents
the protocols for polynomial evaluation with private floating-point inputs and
outputs and their complexity. The results of the performance analysis are pre-
sented in Sect. 4, followed by conclusions in Sect. 5.

2 Secure Floating-Point Arithmetic

Secure Computation Model. The protocols rely on standard primitives for secure
computation using Shamir secret sharing [13] and related techniques [12] and
offer perfect or statistical privacy, assuming perfectly secure communication.

Secure arithmetic in a finite field F is provided by primitives based on Shamir
secret sharing over F, with perfect privacy against a passive threshold adversary
that corrupts t out of n parties (the parties follow strictly the protocol and
any t + 1 parties can reconstruct a secret, while t or less parties cannot distin-
guish it from random values in F). Addition/subtraction of shared elements of
F is locally computed by adding/subtracting the shares. Input sharing, output
reconstruction, and multiplication require interaction between parties.

354 O. Catrina

To overcome the limitations of secure arithmetic with shared data, the pro-
tocols combine secret sharing with additive or multiplicative hiding, with perfect
privacy or statistical privacy with security parameter κ: for a shared variable �x�,
the parties jointly generate a shared random value �r�, compute �y� = �x� + �r�
or �y� = �x� · �r�, x �= 0, and reveal y (like one-time pad encryption with key r).

Complexity Metrics. The complexity analysis is based on two metrics that focus
on interaction. Communication complexity counts the invocations of three prim-
itives during which every party sends a share to the others: input sharing, multi-
plication, and secret reconstruction. Round complexity is the number of sequen-
tial invocations. The first metric accounts for the amount of data and local
processing involved in the execution of the interactive primitives. The second
metric takes into account the effects of other communication delays. The pseu-
docode of the protocols is annotated with the number of rounds followed by the
number of interactive primitives.

The running time is reduced by executing in parallel, in one round, interactive
primitives that are causally independent. All shared random values used in a task
are precomputed in parallel. Part of them are generated without interaction,
using Pseudo-random Replicated Secret Sharing (PRSS) [12] and its integer
variant (RISS) [14] (random field elements, integers, and sharings of 0). With
PRSS, the precomputation needs only one round. A variant that needs two
rounds but is usually faster generates the shared random bits in a small field
and then converts them to the larger field required by the protocol.

Data Encoding. The secure computation framework supports arbitrary-precision
secure arithmetic with integer, fixed-point, and floating-point data types. A vari-
able can be seen as a tuple that consists of its value, secret or public, encoded in
a field F, and public parameters that determine the type’s range and accuracy.
The protocols discussed in this paper use the field Zq, with prime q large enough
for all data types. To distinguish different representations of a value, we denote
x̃ a fixed-point number, x̄ the integer value that encodes x̃, x the field element
that encodes x̄, and �x� a sharing of secret x; a floating-point number is denoted
x̂. The notation x = (condition)? a : b means that x is assigned the value a
when condition = true and b otherwise. The data types are defined as follows.

Binary values x ∈ {0, 1} are encoded as the field’s values 0 and 1. This allows
efficient secure evaluation of Boolean functions using secure arithmetic in F. We
denote �a�∧ �b� = �a��b� = �a∧ b� (AND), �a�∨ �b� = �a�+ �b�− �a��b� = �a∨ b�
(OR) and �a� ⊕ �b� = �a� + �b� − 2�a��b� = �a ⊕ b� (XOR).

The sets of integers are Z〈k〉 = {x̄ ∈ Z | x̄ ∈ [−2k−1, 2k−1 − 1]}. Integer
values are encoded in Zq by the function fld : Z〈k〉 �→ Zq, fld(x̄) = x̄ mod q,
for q > 2k+κ, where κ is the security parameter (fld maps x̄ ∈ [−2k−1,−1] to
x ∈ [q − 2k−1, q − 1]). This encoding enables efficient secure integer arithmetic
based on secure arithmetic in Zq: for any x̄1, x̄2 ∈ Z〈k〉 and 	 ∈ {+,−, ·},
the protocols compute x̄1 	 x̄2 = fld−1(fld(x̄1) 	 fld(x̄2)); also, if x̄2 | x̄1 then
x̄1/x̄2 = fld−1(fld(x̄1) · fld(x̄2)−1).

Secure Floating-Point Polynomial Evaluation 355

Table 1. Complexity of the main building blocks used in this paper [7,9].

Protocol Rounds online Primitives
online

Primitives in
precomputation
round

Div2m(�a�, k, m) 3 m + 2 3m

Div2mP(�a�, k, m) 1 1 m

PreDiv2m(�a�, k, m) 3 2m + 1 4m

PreDiv2mP(�a�, k, m) 1 1 m

Int2Mask(�x�, k) 1 k − 1 2k − 3

Pow2Inv(�x�, m) 4 3m 6m − 2

LTZ(�a�, k) 3 k + 1 3k

The sets of fixed-point numbers are Q
FX
〈k,f〉 = {x̃ ∈ Q | x̃ = x̄ · 2−f , x̄ ∈

Z〈k〉, f < k}. Fixed-point values are mapped to Z〈k〉 by the function int :
Q

FX
〈k,f〉 �→ Z〈k〉, x̄ = intf (x̃) = x̃ · 2f and then encoded in Zq as described above.

The sets of floating-point numbers are QFL
〈l,g〉 = {x̂ ∈ Q | x̂ = (1−2s)·v̄·2p̄, v̄ ∈

[2�−1, 2� − 1]∪{0}, p̄ ∈ Z〈g〉, s, z ∈ {0, 1}}, where v̄ is the normalized significand,
p̄ is the signed exponent, s = (x̂ < 0)? 1 : 0, and z = (x̂ = 0)? 1 : 0, all encoded
in Zq as described above. If x̂ = 0 then v̄ = 0, z = 1, and p̄ = −2g−1.

Secure multiplication and division require a modulus q > 22k+κ for x̃ ∈
Q

FX
〈k,f〉 and q > 22�+κ for x̂ ∈ Q

FL
〈�,g〉. The protocols support arbitrary precision

arithmetic. The applications usually need k ∈ [32, 128], f ∈ [0, k], � ∈ [16, 64]
and g ∈ [8, 15], depending on range and accuracy requirements.

Building Blocks. Fixed-point and floating-point arithmetic protocols are con-
structed using a small set of building blocks that compute b̄ = 2mā and c̄ ≈ ā/2m,
for secret ā, b̄, c̄ ∈ Z〈k〉 and public or secret integer m ∈ [0, k − 1]. Table 1 lists
the main building blocks and their complexity (see [7,9] and their references).

If m is public then 2mā is a local operation and ā/2m is computed by Div2m
or Div2mP. Div2m rounds to −∞, while Div2mP rounds probabilistically to the
nearest integer1. We denote their outputs
ā/2m� and
ā/2m�, respectively.
Div2mP is much more efficient. The rounding error is |δ| < 1 and δ = 0 if
2m divides ā. LTZ computes s = (ā < 0)? 1 : 0 = −
ā/2k−1� using Div2m.

If m is secret then 2mā and ā/2m can be computed using two methods:

– The first method computes {xi}k−1
i=0 , xi = (m = i)? 1 : 0, using Int2Mask

[10] and d̄i = {
ā/2i�}k−1
i=0 using PreDiv2mP (or {
ā/2i�}k−1

i=0 with PreDiv2m).
Then, it computes 2mā = ā

∑k−1
i=0 xi2i and ā/2m =

∑k−1
i=0 xid̄i. PreDiv2mP

and PreDiv2m are efficient generalizations of Div2mP and Div2m [7].

1 Div2mP returns c̄ = �ā/2m� + u, where u ∈ {0, 1} and u = 1 with probability
p = ā mod 2m

2m . For example, if ā = 46 and m = 3 then ā/2m = 5.75; the output is
c̄ = 6 with probability p = 0.75 or c̄ = 5 with probability 1 − p = 0.25.

356 O. Catrina

Table 2. Protocol complexity for inputs and outputs in Q
FL
〈�,g〉, λ = �log ��, μ = �log m�,

where m is the number of terms/factors in sums/products or the polynomial degree.

Protocol Rounds

online

Primitives: online computation and

precomputation round

Modulus

AddFL [9] 18 5� + 3λ + 3g + 25 > 22�+1+κ

10� + 6λ + 3g

MulFL [9] 5 � + 7 > 22�+κ

4� + 3

SumGFL [11] 18μ (m − 1)(5� + 3λ + 3g + 25) > 22�+1+κ

(m − 1)(10� + 6λ + 3g)

SumFL [11] 4μ + 17 m(3λ + 2g + 7) + 5(� + μ) > 22�+μ+κ+1

m(� + 6λ + 6g + 5) + 10(� + μ)

ProdGFL [8] 5μ (m − 1)(� + 6) > 22�+κ

(m − 1)(4� + 3)

ProdFL1 [8] μ + 6 2� + 7(m − 1) > 22�+m+κ−2

(m − 1)(� + 6) + 4�

PolySGFL 23μ + 5 m(7� + 3λ + 3g + 39)− � − 7 > 22�+κ

m(18� + 6λ + 3g + 6)− 4� − 3

PolySBFL 9μ + 18 m(� + 3λ + 2g + 11) + 4� + 5μ > 22�+κ+2

m(5� + 6λ + 6g + 6) + 6� + 10μ + 3

PolySOFL 4μ + 19 m(3 log(� + m) + 2g + 17) + 5� > 22�+2m+κ

m(3�+m+6 log(�+m)+ 6g +13)+9�+10μ

PolyPGFL 5μ + 18 m(6� + 3λ + 3g + 31)− � − 6 > 22�+κ

m(14� + 6λ + 3g + 3)− 4� − 3

PolyPOFL μ + 24 m(5� + 3λ + 3g + 32) + 2� − 7 > 22�+m+κ−2

m(11� + 6λ + 3g + 6λ + 6) + 3� − 6

– The second method computes ȳ = 2m and fld(ȳ)−1 (multiplicative inverse
of ȳ’s encoding in Zq) with Pow2Inv [9] and then 2mā = āȳ and
ā/2m� =

fld−1(fld(2kā)fld(ȳ)−1)/2k�.
With standard primitives, a multiplication followed by additive hiding,

d ← Reveal(�a��b� + �r�), needs 2 interactions and 2 rounds. We avoid the
first interaction by randomizing the share products: for all i ∈ [1, n], party i
computes �c�2t,i ← �a�i�b�i + �0�2t,i, where �0�2t,i are pseudo-random shares of
0 generated with PRZS(2t) [12]. We denote �a� ∗ �b� this local operation. Now
the computation needs a single interaction: d ← RevealD(�a� ∗ �b� + �r�), where
RevealD is the secret reconstruction protocol for polynomials of degree 2t. Most
of the protocols listed in Table 1 start with additive hiding of the input. We add
variants of these protocols for input shared with a random polynomial of degree
2t, and distinguish them by the suffix ’D’ (they use RevealD instead of Reveal).

Floating-Point Arithmetic. The protocols for two-operand and multi-operand
addition and multiplication are listed in Table 2. Their specifications and per-
formance are presented in [8,9,11]. We summarize relevant aspects of the two-
operand protocols. The other protocols will be discussed in the next section.

Secure Floating-Point Polynomial Evaluation 357

The protocol AddFL computes â = â1 + â2 with secret inputs and output [9].
Let v̄′

1 = (1−2s1)v̄1 and v̄′
2 = (1−2s2)v̄2. Assume p̄1 ≥ p̄2 and let Δ = p̄1− p̄2 (if

p̄1 < p̄2 the inputs are swapped). The protocol computes v̄′ and p̄′ so that v̄′2p̄′ ≈
v̄′
12

p̄1 + v̄′
22

p̄2 . It consists of two main tasks. The first task aligns the significands’
radix points and adds them: v̄′

i = 2v̄′
i, v̄′ = v̄′

1+
v̄′
2/2Δ� ∈ [−4(2� −1), 4(2� −1)],

p̄′ = p̄1 − 1. Setting v̄′
i = 2v̄′

i reduces the effects of rounding errors for Δ = 1.
The second task normalizes v̄′ so that â ∈ Q

FL
〈�,g〉. Both tasks are expensive, so

addition is (by far) the slowest secure floating-point operation.
AddFL can align the radix point using Int2Mask or Pow2Inv. We use the

second method, which is faster, although it needs 2 more rounds [9].
The protocol MulFL computes â = â1â2 with secret inputs and output [9].

It firsts computes v̄3 = v̄1v̄2, p̄3 = p̄1 + p̄2, s = s1 ⊕ s2, and z = z1 ∨ z2,
then normalizes v̄3 so that â ∈ Q

FL
〈�,g〉. Since v̄3 ∈ [22�−2, 22� − 2�+1 + 1] ∪ {0},

the normalization consists of 3 cases: if v̄3 < 22�−1 then v̄ =
v̄3/2�−1� and p̄ =
p̄3+�−1, otherwise v̄ =
v̄3/2�� and p̄ = p̄3+�; if v̄ = 0 then p̄ = p̄(1−z)−z2g−1.

A partial normalization computes only v̄ =
v̄3/2�−1� ∈ [2�−1, 2�+1 −3]∪{0}
and p̄ = p̄3 + � − 1 (first case). This avoids an expensive secure comparison, but
if v̄3 ≥ 22�−1 the bitlength grows by 1 bit (it cuts off � − 1 bits instead of �).

The optimized protocols for products and powers discussed in the next section
use Protocol 1, MulPFL. This variant of MulFL computes the significand v̄ and
the exponent p̄ of â1â2 with full or partial normalization for input significands
with up to � + �′ bits. For full normalization (ρ = 1), SelDiv2mPD computes
both v̄′ =
v̄1v̄2/2�−1� and v̄′′ =
v̄1v̄2/2�� with a single interactive operation
[8]. Step 3 computes b = (v̄′ < 2�)? 1 : 0 and step 4 selects v̄ = (b = 1)? v̄′ : v̄′′.
Partial normalization (ρ �= 1) computes only v̄ =
v̄1v̄2/2�−1� using Div2mPD.
This reduces the online complexity to just 1 round and 1 interactive oper-
ation, at the cost of increasing the significand’s bitlength by at most 1 bit.

Protocol 1: MulPFL({�vi�, �pi�}2i=1, �, g, �′, ρ)

if ρ = 1 then1

(�v′�, �v′′�) ← SelDiv2mPD(�v1� ∗ �v2�, 2(� + �′), {� − 1, �}); // 1; 12

�b� ← LTZ(�v′� − 2�, � + 1); // 3; � + 23

�v� ← �b�(�v′� − �v′′�) + �v′′� ; // 1; 14

�p� ← �p1� + �p2� + � − �b�;5

else6

�v� ← Div2mPD(�v1� ∗ �v2�, 2(� + �′), � − 1); // 1; 17

�p� ← �p1� + �p2� + � − 1;8

return (�v�, �p�);9

3 Secure Polynomial Evaluation

We consider two cases of secure polynomial evaluation. In the first case, the
polynomial is defined by its coefficients and we evaluate ŷ = P (x̂) =

∑m
i=0 âix̂

i.
In the second case, it is defined by its real-valued roots and we evaluate
ŷ = P (x̂) =

∏m
i=1(x̂− âi). The coefficients, roots, variable, and output are secret

358 O. Catrina

Fig. 1. Generic algorithms for secure evaluation of
∑m

i=1 x̂i and
∏m

i=1 x̂i.

floating-point numbers encoded in Zq as described in Sect. 2: {âi}m
i=0 ∈ Q

FL
〈�,g〉,

âi = (1−2si)v̄i2p̄i , x̂ ∈ Q
FL
〈�,g〉, x̂ = (1−2s)v̄2p̄, and ŷ ∈ Q

FL
〈�,g〉, ŷ = (1−2s′)v̄′2p̄′

.
The design of polynomial evaluation protocols must take into account the

specific features of secure floating-point arithmetic [9]: addition is much slower
than multiplication; floating-point normalization is expensive; performance is
substantially improved by parallel execution of interactive primitives.

Traditional polynomial evaluation algorithms are optimized based on other
assumptions [17]. For a polynomial of degree m, the widely used Horner algo-
rithm computes m multiply-add operations (optimal) in m iterations. Estrin’s
parallel algorithm needs only
log m�+1 iterations and the number of operations
is almost optimal: m multiply-add operations and
log m� squares. Estrin’s algo-
rithm is more suitable for secure computation, but still computes m expensive
secure floating-point additions, so the only improvement is the reduced num-
ber of rounds. Both algorithms can take advantage of fused multiply-add opera-
tions offered by modern processors, but the improvement obtained by optimizing
secure multiply-add floating-point operations is rather small.

A more promising approach uses protocols optimized for multi-operand
floating-point arithmetic, discussed in the next sections. Table 2 lists the main
protocols and their complexity.

3.1 Generic Protocols for Secure Polynomial Evaluation

The protocols PolySGFL and PolyPGFL evaluate
∑m

i=0 âix̂
i and

∏m
i=1(x̂ − âi),

respectively, using AddFL, MulFL, and generic algorithms for sums, products, and
powers, called SumGFL, ProdGFL, and PowAllGFL, respectively. These algorithms
minimize the number of operations and execute many of them in parallel to
reduce the running time.

SumGFL evaluates
∑m

i=1 âi using AddFL and the algorithm with binary tree
structure in Fig. 1a. The algorithm computes m − 1 operations (optimal) in
�log m� iterations. Each iteration takes as input a vector, splits it into pairs of
elements, adds them in parallel and returns the results in a vector of half length.
ProdGFL evaluates

∏m
i=1 âi using MulFL and the same algorithm as SumGFL.

PowAllGFL evaluates {x̂i}m
i=1 using MulFL and the algorithm in Fig. 2. This

algorithm computes m − 1 multiplications (optimal) in μ = �log m� iterations.
Therefore, the protocol PolySGFL computes {x̂i}m

i=1 using PowAllGFL, the
terms {âix̂

i}m
i=1 using MulFL, in parallel, and then â0+

∑m
i=1 âix̂

i using SumGFL.

Secure Floating-Point Polynomial Evaluation 359

Fig. 2. Generic algorithm for secure evaluation of {x̂i}m
i=1.

The protocol PolyPGFL computes the factors {x̂ − âi}m
i=1 using AddFL, in

parallel, and then
∏m

i=1(x̂ − âi) using ProdGFL.
Both protocols compute m secure floating-point additions, but PolyPGFL

runs them in parallel, instead of �log m� iterations, so it needs fewer rounds.
Also, PolyPGFL computes m− 1 secure floating-point multiplications, instead of
2m − 1, so the number of interactive primitives is also reduced. However, the
communication complexity is strongly dominated by the m additions.

A generic protocol based on Estrin’s algorithm, PolyEGFL, is obtained using
the tree structure in Fig. 1a, a multiply-add operation with MulFL and AddFL,
and a square in parallel with each iteration [8]. PolyEGFL is slightly more efficient
than PolySGFL: it removes 5 rounds and m − �log m� multiplications. We can
simplify the multiply-add operation, but the performance gain is modest.

3.2 Optimized Protocols for Polynomials Defined by Coefficients

The protocol PolySFL, discussed in the following, improves PolySGFL by com-
puting {x̂i}m

i=1 and {âix̂
i}m

i=1 using multiplications with partial normalization
instead of full normalization (as explained in Sect. 2) and then

∑m
i=0 âix̂

i using
the protocol SumFL, specially optimized for multi-operand addition, instead of
SumGFL (Table 2).

Computing {x̂i}m
i=1 with partial normalization increases the bitlength of the

significands to �i ∈ [�, � + i − 1] bits and requires a larger modulus q, able to
encode integers of 2� + m − 2 bits (for the last multiplication, before division
by 2�−1). The larger modulus complicates the integration in applications: either
run the entire application with the large modulus, or add share conversions to
the product protocol. Both approaches have important disadvantages. We are
interested in more flexible solutions, that limit the growth of the modulus.

Protocol 2, PowAllFL, computes the significands and exponents {v̄i, p̄i}m
i=1 of

{x̂i}m
i=1 using MulPFL and the algorithm in Fig. 2. Let μ = �log m�. Iteration

i ∈ [1, μ−1] computes in parallel γ = 2i−1 multiplications: x̂γ+j = x̂γ x̂j = x̂γ+j ,
for j ∈ [1, γ]. Iteration μ computes the remaining β = m − 2μ−1 multiplications.

The parameter θ ∈ [0, μ] controls the tradeoff between the protocol’s com-
plexity and the significands’ bitlength: full normalization for i ≤ θ (ρ = 1,
bitlength grows �′ = 0 bits) and partial normalization for i > θ (ρ = 0, bitlength
grows by 0 or 1 bits per multiplication, up to �′ = 2i−θ − 1 bits).

360 O. Catrina

Protocol 2: PowAllFL(�v�, �p�, �, g,m, θ)

(�v1�, �p1�) ← (�v�, �p�); μ ← �log m�;1

foreach i ∈ [1, μ] do2

γ ← 2i−1; β ← (i < μ)? γ : m − γ;3

ρ ← (i ≤ θ)? 1 : 0; �′ ← (i ≤ θ)? 0 : 2i−θ − 1;4

foreach j ∈ [1, β] do5

(�vγ+j�, �pγ+j�) ← MulPFL(�vγ�, �pγ�, �vj�, �pj�, �, �
′, ρ);6

return {�vi�, �pi�}m
i=1;7

The protocol SumFL, described in [10,11], is an efficient generalization of AddFL
for m > 2 inputs. The goal is to compute v̄′ and p̄′ so that v̄′2p̄′ ≈ ∑m

i=1(1 −
2si)v̄i2p̄i . SumFL aligns the radix points of the m significands to the largest
exponent and then adds them, by computing: p̄′ = max({pi}m

i=1), Δi = p̄′ − p̄i,
ci = (Δi < � + 1)? 1 : 0, v̄′

i = (1 − 2si)v̄i, and v̄′ =
∑m

i=1
2v̄′
ici/2Δi�. Then,

it normalizes v̄′ using the same protocol as AddFL. Before normalization, the
maximum bitlength of the sum of m significands is only � + �log m� + 1, so
the growth of the significands is not a concern. The complexity is substantially
reduced by simplifying the radix-point alignment and normalizing only the final
result. SumFL can align the radix point using either Int2Mask, or Pow2Inv. We
use the second method, which is faster, although it needs 3 more rounds [11].

Protocol 3, PolySFL, evaluates
∑m

i=0 âix̂
i for {âi}m

i=0 = {v̄i, p̄i, s̄i, z̄i}m
i=0 and

x̂ = 〈v̄, p̄, s̄, z̄〉. Step 1 computes the significands and the exponents {v̄′
i, p̄

′
i}m

i=1 of
{x̂i}m

i=1 using PowAllFL and the tradeoff parameter θ ∈ [0, μ]. Steps 2–7 compute
{âix̂

i}m
i=1 = {v̄′′

i , p̄′′
i , s̄′′

i , z̄′′
i }m

i=1, multiplying the powers and the coefficients with
partial normalization: steps 2 and 6 compute the flags z′′

i = (âix̂
i = 0)? 1 : 0 =

z ∨ zi and the sign bits s′′
i = (âix̂

i < 0)? 1 : 0 = (i mod 2 = 1)? si : s ⊕ si; step
4 computes v̄′′

i =
v̄iv̄
′
i/2�−1�; and step 5 computes p̄′′

i = (âix̂
i �= 0)? p̄′

i + p̄i :
−2g−1. Due to partial normalizations, the significands of {âix̂

i}m
i=1 have the

bitlength �i ∈ [�, �+�i/2θ�]. Step 8 computes
∑m

i=0 âix̂
i using a slightly modified

version of SumFL that takes on input significands with maximum bitlength �′ ≥ �
and normalizes the output to � bits (here, �′ = � + �m/2θ�).
Protocol 3: PolySFL(�v�, �p�, �s�, �z�, {�vi�, �pi�, �si�, �zi�}m

i=0, �, g, θ)

{�v′
i�, �p

′
i�}m

i=1 ← PowAllFL(�v�, �p�, �, g,m, θ) ; // μ + 4θ; (� + 3)(2θ − 1) + m1

foreach i ∈ [1,m] do �z′′
i � ← �z� ∨ �zi�; // 0; m2

foreach i ∈ [1,m] do3

�v′′
i � ← Div2mPD(�vi� ∗ �v′

i�, 2� + �m/2θ� − 1, � − 1) ; // 1; 1(m)4

�p′′
i � ← (�p′

i� + �pi�)(1 − �z′′
i �) − �z′′

i �2g−1 ; // 0; 1(m)5

�s′′
i � ← (i mod 2 = 1)? �si� : �s� ⊕ �si� ; // 0; 0.5(m)6

(�v′′
0 �, �p′′

0�, �s′′
0�) ← (�v0�, �p0�, �s0�);7

(�v′�, �p′�, �s′�, �z′�) ← SumFL({�v′′
i �, �p′′

i �, �s′′
i �}m

i=0, � + �m/2θ�, �, g);8

return (�v′�, �p′�, �s′�, �z′�);9

The larger significands of the partially normalized terms {âix̂
i}m

i=1 increase the
complexity of SumFL. The radix-point alignment takes on input significands with

Secure Floating-Point Polynomial Evaluation 361

up to �+ �m/2θ� bits (instead of � bits) and needs a field able to encode integers
of 2(� + �m/2θ�) bits. Also, the input of the final normalization is a significand
with up to � + �m/2θ� + θ + 1 bits2 (instead of � + �log m� + 1 bits).

Table 2 lists the complexity of two PolySFL configurations: PolySBFL, where
θ = �log m�, so all powers are fully normalized, and PolySOFL, where θ = 0,
so all powers are partially normalized. PolySOFL eliminates 4 log m rounds by
partial normalization of the powers and log m rounds by computing in parallel
the powers and the largest exponent in SumFL. For θ = 0, the larger significands
increase the complexity of SumFL and require a larger modulus. However, for
small θ > 0, PolySFL can efficiently compute most of the multiplications and
also limit the growth of the significands and the modulus3.

3.3 Optimized Protocols for Polynomials Defined by Roots

For the second case of polynomial evaluation,
∏m

i=1(x̂ + âi), we can improve
PolyPGFL by replacing ProdGFL with Protocol 4, ProdFL1. This variant uses
the same generic algorithm as ProdGFL, depicted in Fig. 1a, but multiplies with
partial normalization and fully normalizes only the final result.

The algorithm executes θ = �log m� iterations, with inputs and outputs
stored in the vector {âj}m−1

j=0 = {vj , pj , sj , zj}m−1
j=0 . Iteration i starts with α

inputs and computes in parallel β =
α/2� multiplications with partial normal-
ization (steps 4–7): v̄j =
v̄2j v̄2j+1/2�−1�; zj = (âj = 0)? 1 : 0 = z2j ∨ z2j+1;
sj = (âj < 0)? 1 : 0 = s2j ⊕ s2j+1; p̄j = p̄2j + p̄2j+1 + (� − 1). If the input
vector of an iteration has an odd number of elements, the last element is moved
to the output vector and processed in the next iteration (steps 8–9). Step 10
normalizes the final result using the protocol NormProdFL, described in [8].

Protocol 4: ProdFL1({�vi�, �pi�, �si�, �zi�}m−1
i=0 , �, g)

θ ← �log m�; α ← m; u ← 0;1

foreach i ∈ [1, θ] do2

β ←
α/2�; u ← α mod 2;3

foreach j ∈ [0, β − 1] do4

�vj� ← Div2mPD(�v2j� ∗ �v2j+1�, 2(� + i), � − 1) ; // 1; 15

�sj� ← �s2j� ⊕ �s2j+1�; �zj� ← �z2j� ∨ �z2j+1� ; // 0; 26

�pj� ← �p2j� + �p2j+1� + (� − 1);7

if u = 1 then (�vβ�, �pβ�, �sβ�, �zβ�) ← (�vα−1�, �pα−1�, �sα−1�, �zα−1�);8

α ← β + u;9

(�v�, �p�) ← NormProdFL(�v0�, �p0�, �z0�, �,m − 1) ; // 6; 2� + 4(m − 1)10

return (�v�, �p�, �s0�, �z0�);11

2 This bound is determined as follows: Let {v̄i}m
i=0 the significands of {âix̂

i}m
i=0 after

radix-point alignment, with up to �+�i/2θ� bits, and σ = �m/2θ�. SumFL computes
∑m

i=0 v̄i = v̄0 +
∑σ−2

k=0

∑2θ

t=1 v̄k2θ+t +
∑m mod 2θ

t=1 v̄(σ−1)2θ+t < 2� + 2θ+�+1 ∑σ−2
k=0 2k +

2�+σ(m mod 2θ) < 2�+σ+θ+1. So the maximum bitlength is � + �m/2θ� + θ + 1 bits.
3 For example, if m = 64 and θ = 0 the modulus grows by 128 bits. If θ = 3, it grows

by 16 bits, at the cost of fully normalizing 7 out of 127 multiplications.

362 O. Catrina

NormProdFL normalizes a significand of �m ∈ [�, � + m − 1] bits and is relatively
complex. Also, ProdFL1 needs a larger modulus q, able to encode integers of
2(� + m/2 − 1) bits (for the last multiplication, before division by 2�−1). We
can limit the growth of the significands by computing the product as shown in
Fig. 1b, where a node of the tree multiplies t > 2 inputs using ProdFL1.

Protocol 5, ProdFL2, is based on this idea. Let θ = �logt m�. For i ∈ [1, θ−1],
the iterations compute in parallel products of t factors (steps 2–8) and iteration
θ computes the product of all the remaining factors (step 9). Two iterations are
usually sufficient: compute β =
m/t� products of t factors and then a product
of t′ = β + (m − βt) factors. Thus, NormProdFL normalizes signficands of up to
�′ ∈ [�, � + max(t, t′) − 1] bits and the maximum bitlength is 2� + max(t, t′) − 2.

Protocol 5: ProdFL2({�vi�, �pi�, �si�}m−1
i=0 , t, �, g)

θ ← �logt m�; α ← m;1

foreach i ∈ [1, θ − 1] do2

β ←
α/t�; u ← 1 + α mod t;3

foreach j ∈ [0, β − 1] do4

(�vj�, �pj�, �sj�, �zj�) ← ProdFL1({�vk�, �pk�, �sk�, �zk�}tj+t−1
k=tj , �, g);5

foreach j ∈ [0, u − 1] do6

(�vβ+j�, �pβ+j�, �sβ+j�, �zβ+j�) ← (�vtβ+j�, �ptβ+j�, �stβ+j�, �ztβ+j�);7

α ← β + u;8

(�v�, �p�, �s�, �z�) ← ProdFL1({�vk�, �pk�, �sk�, �zk�}α−1
k=0 , �, g);9

return (�v�, �p�, �s�, �z�);10

Given a target value for the maximum integer bitlength �′, the tradeoff parameter
t should be chosen to minimize β, hence the number of expensive normalizations
with NormProdFL. Table 2 lists the complexity of PolyPFL for t = m, called
PolyPOFL. In this case, ProdFL2 is identical to ProdFL1. PolyPOFL needs fewer
rounds than PolyPGFL, but the modulus is m − 2 bits longer. If t < m then
the modulus is only max(t, t′) − 2 bits longer, at the cost of more rounds and
interactive primitives, due to β =
m/t� additional executions of NormProdFL4.

4 Performance Measurements

The protocols’ running time was measured for secure computation with 3 parties
and different floating-point precision, polynomial degrees, and communication
settings. The protocols support arbitrary precision arithmetic, so the applica-
tions can select a tradeoff between precision and performance according to their
requirements. We examined these tradeoffs by running tests for standard single
precision, � = 24 and g = 8 bits, and double precision, � = 53 and g = 11 bits.

4 For example, if m = 64 and t = 64 the modulus grows by 62 bits. If t = 16 it grows
by 14 bits and β = t′ = 4. However, if t = 16 then ProdFL2 needs 6 more rounds
and β(2� + 4(t − 1)) more interactive primitives.

Secure Floating-Point Polynomial Evaluation 363

Table 3. Modulus bitlength for tests with PolyFL variants.

Significand length (�) 24 53

Polynomial degree (m) 8 16 32 64 8 16 32 64

PolySGFL (SG) 96 96 96 96 152 152 152 152

PolySBFL (SB) 96 96 96 96 152 152 152 152

PolySOFL1 (S1) 136 136 168 240 192 192 224 288

PolySOFL2 (S2) 120 120 120 120 176 176 176 176

PolyPOFL1 (P1) 112 112 128 160 168 168 192 224

PolyPOFL2 (P2) 112 112 112 112 168 168 168 168

The secure computation was carried out by 3 computers with 3.6 GHz CPU,
running Linux 18.04, connected to an Ethernet switch (each party on its own
computer). We analyzed the relations between running time, complexity met-
rics, and network bandwidth and delay, by testing the protocols in two network
settings: LAN, with high bandwidth and low delay, and Internet, with moderate
end-to-end bandwidth and delay. For LAN tests, the computers were connected
to an Ethernet switch with 1 Gbps data rate (950 Mbps TCP data rate, 0.35 ms
round-trip time). For Internet tests, they were connected to an Ethernet switch
with 100 Mbps data rate and the Linux tool NetEm emulated a network path
with 10 ms one-way delay (95 Mbps TCP data rate, 20.7 ms round-trip time).

The running time was measured for polynomials of degree m ∈ {8, 16, 32, 64}.
Figure 3 and Fig. 4 show the online running time and the total time (including
the precomputation) for PolySGFL (SG) and the following optimized protocols:

– PolySFL variants: PolySBFL (SB), θ = 0, fully normalized powers; PolySOFL1
(S1), θ = �log m�, partially normalized powers; PolySOFL2 (S2), combination
of fully and partially normalized powers, θ = (m ≤ 16)?
 log m

2 � − 1 :
 log m
2 �.

– PolyPFL variants: PolyPOFL1 (P1), t = m, product of m factors; PolyPOFL2
(P2), two iterations, products of up to t factors, t = (m ≥ 16)? 16 : 8.

Table 3 lists the bitlength of the modulus for each setting, adjusted according
to the maximum integer bitlength. Table 4 lists the complexity of the protocols’
implementations for single and double precision and m ∈ {16, 32, 64}: the num-
ber of online rounds, with theoretical minimum between brackets; the number
of bytes sent by party i to party j �= i, online and during the precomputation5.

The total running time includes online computation and precomputation
time. The online complexity and running time offer more useful information
about the performance of an application that uses these protocols. The pre-
computation needed by the entire application can be implemented as a single

5 Differences between the measured values in Table 4 and those computed based on
Table 2 are due to simplified complexity formulas, implementation tradeoffs between
round optimization and modularity, and precomputation optimizations. Table 4 lists
between brackets the minimum number of rounds computed using the exact formulas.

364 O. Catrina

Table 4. Complexity of the PolyFL implementations used in the experiments.

� = 24 g = 8 � = 53 g = 11

Protocol Online

rounds

Online

bytes

Precomp.

bytes

Online

rounds

Online

bytes

Precomp.

bytes

m = 16 θ = 1 t = 16

PolySGFL (SG) 125 (115) 47602 107792 125 (115) 140161 287336

PolySBFL (SB) 61 (58) 15446 46628 61 (58) 38321 108803

PolySOFL1 (S1) 45 (39) 16550 44368 45 (38) 30438 82674

PolySOFL2 (S2) 49 (43) 14420 40404 49 (47) 27164 77564

PolyPOFL1 (P1) 30 (28) 44268 85662 30 (10) 120370 213248

PolyPOFL2 (P2) 30 (28) 44268 85662 30 (10) 120370 213248

m = 32 θ = 2 t = 16

PolySGFL (SG) 150 (138) 95580 216762 150 (138) 281454 577960

PolySBFL (SB) 70 (67) 29040 89920 70 (67) 71398 209600

PolySOFL1 (S1) 50 (43) 37406 98476 50 (43) 62176 170640

PolySOFL2 (S2) 58 (51) 26250 76736 58 (51) 47898 145990

PolyPOFL1 (P1) 31 (29) 100476 185144 31 (29) 272672 464736

PolyPOFL2 (P2) 36 (34) 88982 172630 36 (34) 242004 430030

m = 64 θ = 3 t = 16

PolySGFL (SG) 175 (161) 191516 434734 175 (161) 564122 1159292

PolySBFL (SB) 79 (76) 56121 176367 79 (76) 137372 411024

PolySOFL1 (S1) 55 (47) 107754 261560 55 (47) 148480 394200

PolySOFL2 (S2) 67 (59) 49842 149687 67 (59) 93560 290332

PolyPOFL1 (P1) 32 (30) 250230 427893 32 (30) 633408 1035421

PolyPOFL2 (P2) 38 (36) 178062 345034 38 (36) 484204 858728

parallel computation that generates shared random values. Moreover, it can be
independently optimized by improving its algorithms and implementation.

The secure computation framework offers alternative solutions for the build-
ing blocks, with different tradeoffs between complexity metrics. The protocols
discussed here use solutions with smaller, constant, number of rounds and more
precomputation, to offer better balanced performance over a broader range of
communication environments and applications. The relative contribution of the
precomputation to the total running time is smaller in the Internet than in
LANs, since the number of rounds has stronger effects than local processing.
However, parallel computation of (very) large batches may be faster with build-
ing blocks optimized for less local processing and exchanged data, at the cost
of larger, logarithmic, number of rounds [16]. Assessing the combined effects of
tradeoffs between complexity metrics (focused on interaction), field size, and
local processing requires experiments matching potential deployment scenarios.

The results show that PolySFL is much faster than PolySGFL for all tested
configurations (PolySBFL, PolySOFL1, and PolySOFL2) and all test settings. The
performance gain grows with m and �, so it also scales up better. PolySBFL
achieves a large improvement relative to PolySGFL, by computing more efficiently
the dot product between powers and coefficients, using SumFL instead of SumGFL
and partially normalized multiplications. This agrees with the predictions of the

Secure Floating-Point Polynomial Evaluation 365

Fig. 3. Single precision, online and total running-time in LAN and Internet.

complexity analysis. The complexity of PolySGFL is strongly dominated by two-
operand additions, so replacing them with optimized multi-operand addition
substantially reduces the number of rounds and interactive primitives and the
amount of exchanged data and local processing (Tables 2, 4).

PolySOFL1 tries to improve PolySBFL by computing the powers with partial
normalization. However, this increases the complexity of SumFL and requires a
larger modulus. In LANs, local processing has an important contribution to the
running time, so PolySOFL1 becomes slower than PolySBFL when the difference

366 O. Catrina

Fig. 4. Double precision, online and total running-time in LAN and Internet.

between modulus sizes grows (large m and small �). For Internet communica-
tions, the running time is dominated by the network delay, so PolySOFL1 is faster
than PolySBFL in all settings, due to the smaller number of rounds.

PolySOFL2 limits the growth of the integers and the modulus (Table 3) at
the cost of additional rounds (Table 4). PolySOFL2 is faster than PolySBFL for
all settings. In LANs, it is also faster than PolySOFL1, because the low delay
attenuates the effects of the additional rounds. It is somewhat slower in the

Secure Floating-Point Polynomial Evaluation 367

Internet, due to the longer transfer delay, but this performance difference could
be compensated by the cost of integrating PolySOFL1 in applications.

The running time of PolySFL protocols is dominated by the evaluation of
the sum. The techniques that optimize the evaluation of powers and products,
although effective for their own tasks, provide a relatively modest improvement.
On the other hand, PowAllFL and ProdFL are useful for other applications.

The protocol families PolySFL and PolyPFL can be considered solutions to
different problems: evaluating

∑m
i=0 âix̂

i and
∏m

i=1(x̂−âi), respectively. However,
when the application can choose between the two polynomial representations,
they become alternative (and hence competing) solutions to the same problem.

PolyPFL protocols have lower round complexity due to parallel computation
of the m secure floating-point additions. However, they cannot take advantage
of optimized multi-operand addition, like the PolySFL protocols, so they need a
larger amount of exchanged data and local processing (Table 4). In LANs, their
running time is strongly dominated by additions and the low delay attenuates
the benefits of the smaller number of rounds. Thus, they are slightly faster than
PolySGFL and much slower than the PolySFL protocols. The opposite occurs for
Internet communications, where the transfer delay is much longer: the PolyPFL
protocols offer the best performance, due to the smaller number of rounds. How-
ever, their advantage diminishes for larger � and m.

The tradeoff parameter of PolyPOFL2 was set to t = 16. For m ∈ {8, 16} the
two variants of PolyPFL are actually identical. For m ∈ {32, 64}, PolyPOFL2
avoids further growth of the modulus (Table 3) and reduces the amount of
exchanged data (Table 4). Its running time is similar to PolyPOFL1, despite the
larger number of rounds. Therefore, PolyPOFL2 achieves its main goal, limiting
the size of the module for large m, without performance degradation.

The precision of the floating-point numbers affects the performance in two
ways: higher precision requires a larger modulus as well as more interactive
primitives (Table 2). This increases both local processing and the amount of
exchanged data (Table 4). The performance difference between single and double
precision is more important for LAN communications, mainly due to the effects of
local processing. The difference is reduced for Internet communications, because
the number of rounds has stronger effects on the running time and, for these
protocols, the number of rounds does not depend on precision.

5 Conclusions

The paper presents two families of secure computation protocols that evaluate
polynomials with secret floating-point inputs and output: the PolySFL proto-
cols evaluate

∑m
i=0 âix̂

i, while the PolyPFL protocols evaluate
∏m

i=1(x̂ − âi). A
first goal was to show how these protocols are constructed, by integrating and
adapting protocols for two-operand and multi-operand floating-point addition
and multiplication introduced in previous work [8,9,11]. However, the main goal
was to provide a comprehensive joint analysis of their complexity and perfor-
mance, that includes the relations between running time, complexity metrics,
network bandwidth and delay, floating-point precision, and polynomial degree.

368 O. Catrina

Traditional polynomial evaluation algorithms are not suitable for secure
computation because they are optimized according to different, incompatible
assumptions. A more promising approach takes advantage of efficient multi-
operand floating-point addition and multiplication protocols [8,11]. The polyno-
mial evaluation protocols discussed in this paper improve the initial proposals
[8,10] by using faster secure arithmetic and enabling tradeoffs that can improve
the performance for different execution environments and application require-
ments.

The comparative complexity and performance analysis shows that these pro-
tocols are substantially faster than variants that rely on two-operand arithmetic
and generic constructions for sums, powers, and products. The running time is
strongly dominated by secure floating-point addition, so the main performance
gain is obtained by optimizing the evaluation of sums and dot products. The
techniques for optimizing powers and products, although effective for their own
tasks, offer relatively modest improvements for polynomial evaluation. Overall,
PolySFL protocols offer better performance for the majority of the test settings,
while PolyPFL protocols are faster for Internet communications.

The performance measurements agree, essentially, with the predictions of the
complexity analysis based on abstract metrics focused on interaction. However,
the running time is strongly affected by the execution environment (network
performance and parallel processing), so we need experiments to better under-
stand the effects of local computation and tradeoffs between complexity metrics.
Complexity and performance agree better for Internet communications, but the
effects of interactions are attenuated in LANs, so local processing and implemen-
tation optimizations have a more important contribution to the running time.

Arbitrary precision secure arithmetic allows the applications to select the
tradeoff between accuracy and performance that best matches their require-
ments. Moreover, it enables optimizations that require flexibility for the signifi-
cands’ length. The optimized polynomial evaluation protocols rely on the ability
to compute sums, powers, and products with significands of different bitlengths.

Future work will consider applications of these protocols (e.g., secure evalu-
ation of mathematical functions by polynomial approximation) and alternative
building blocks, with lower communication, local processing, and precomputa-
tion. Another interesting issue is to examine to what extent the building blocks
used by these protocols can be efficiently adapted to other secure computation
frameworks, e.g., to take advantage of stronger security models supported by [3].

Acknowledgements. Part of this work was supported by POC72/1/2, nr.127454,
“SECREDAS Support Project”, contract 7/1.1.3H/6.01.2020, associated to the EUs
Horizon 2020 ECSEL Joint Undertaking research project SECREDAS.

References

1. Aliasgari, M., Blanton, M., Zhang, Y., Steele, A.: Secure computation on floating
point numbers. In: 20th Annual Network and Distributed System Security Sym-
posium (NDSS 2013) (2013)

Secure Floating-Point Polynomial Evaluation 369

2. Aliasgari, M., Blanton, M., Bayatbabolghani, F.: Secure computation of hidden
Markov models and secure floating-point arithmetic in the malicious model. Int.
J. Inf. Secur. 16(6), 577–601 (2017). https://doi.org/10.1007/s10207-016-0350-0

3. Aly, A., et al.: SCALE and MAMBA documentation. https://homes.esat.kuleuven.
be/∼nsmart/SCALE/. Accessed Apr 2020

4. Aly, A., Smart, N.P.: Benchmarking privacy preserving scientific operations. In:
Deng, R.H., Gauthier-Umaña, V., Ochoa, M., Yung, M. (eds.) ACNS 2019. LNCS,
vol. 11464, pp. 509–529. Springer, Cham (2019). https://doi.org/10.1007/978-3-
030-21568-2 25

5. Bogdanov, D., Kamm, L., Laur, S., Sokk, V.: Rmind: a tool for cryptographically
secure statistical analysis. IEEE Trans. Dependable Secure Comput. 15(03), 481–
495 (2018)

6. Bogdanov, D., Niitsoo, M., Toft, T., Willemson, J.: High-performance secure multi-
party computation for data mining applications. Int. J. Inf. Secur. 11(6), 403–418
(2012). https://doi.org/10.1007/s10207-012-0177-2

7. Catrina, O.: Round-efficient protocols for secure multiparty fixed-point arithmetic.
In: 12th International Conference on Communications (COMM 2018), pp. 431–436.
IEEE (2018)

8. Catrina, O.: Optimization and tradeoffs in secure floating-point computation: prod-
ucts, powers, and polynomials. In: 6th Conference on the Engineering of Computer
Based Systems (ECBS 2019), pp. 7:1–7:10. ACM (2019)

9. Catrina, O.: Evaluation of floating-point arithmetic protocols based on Shamir
secret sharing. In: Obaidat, M.S. (ed.) ICETE 2019. CCIS, vol. 1247, pp. 108–131.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-52686-3 5

10. Catrina, O.: Optimizing secure floating-point arithmetic: sums, dot products, and
polynomials. Proc. Rom. Acad. (Ser. A) 21(1), 21–28 (2020)

11. Catrina, O.: Performance analysis of secure floating-point sums and dot products.
In: 13th International Conference on Communications (COMM 2020), pp. 465–470.
IEEE (2020)

12. Cramer, R., Damg̊ard, I., Ishai, Y.: Share conversion, pseudorandom secret-sharing
and applications to secure computation. In: Kilian, J. (ed.) TCC 2005. LNCS,
vol. 3378, pp. 342–362. Springer, Heidelberg (2005). https://doi.org/10.1007/978-
3-540-30576-7 19

13. Cramer, R., Damg̊ard, I., Nielsen, J.B.: Secure Multiparty Computation and Secret
Sharing. Cambridge University Press, Cambridge (2015)

14. Damg̊ard, I., Thorbek, R.: Non-interactive proofs for integer multiplication. In:
Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 412–429. Springer, Hei-
delberg (2007). https://doi.org/10.1007/978-3-540-72540-4 24

15. Kamm, L., Willemson, J.: Secure floating point arithmetic and private satellite
collision analysis. Int. J. Inf. Secur. 14(6), 531–548 (2015). https://doi.org/10.
1007/s10207-014-0271-8

16. Kerik, L., Laud, P., Randmets, J.: Optimizing MPC for robust and scalable integer
and floating-point arithmetic. In: Clark, J., Meiklejohn, S., Ryan, P.Y.A., Wal-
lach, D., Brenner, M., Rohloff, K. (eds.) FC 2016. LNCS, vol. 9604, pp. 271–287.
Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53357-4 18

17. Knuth, D.E.: The Art of Computer Programming, volume 2: Seminumerical Algo-
rithms, 3rd edn. Addison-Wesley, Boston (1997)

https://doi.org/10.1007/s10207-016-0350-0
https://homes.esat.kuleuven.be/~nsmart/SCALE/
https://homes.esat.kuleuven.be/~nsmart/SCALE/
https://doi.org/10.1007/978-3-030-21568-2_25
https://doi.org/10.1007/978-3-030-21568-2_25
https://doi.org/10.1007/s10207-012-0177-2
https://doi.org/10.1007/978-3-030-52686-3_5
https://doi.org/10.1007/978-3-540-30576-7_19
https://doi.org/10.1007/978-3-540-30576-7_19
https://doi.org/10.1007/978-3-540-72540-4_24
https://doi.org/10.1007/s10207-014-0271-8
https://doi.org/10.1007/s10207-014-0271-8
https://doi.org/10.1007/978-3-662-53357-4_18

SERVAS! Secure Enclaves via RISC-V
Authenticryption Shield

Stefan Steinegger1(B), David Schrammel1, Samuel Weiser1, Pascal Nasahl1,
and Stefan Mangard1,2

1 Graz University of Technology, Graz, Austria
{stefan.steinegger,david.schrammel,samuel.weiser,

pascal.nasahl,stefan.mangard}@iaik.tugraz.at
2 Lamarr Security Research, Graz, Austria

Abstract. Isolation is a long-standing security challenge. Privilege rings
and virtual memory are increasingly augmented with capabilities, protec-
tion keys, and powerful enclaves. Moreover, we are facing an increased
need for physical protection, e.g., via transparent memory encryption,
resulting in a complex interplay of various security mechanisms. In this
work, we tackle the isolation challenge with a new extensible isolation
primitive called authenticryption shield that unifies various isolation poli-
cies. By using authenticated memory encryption, we streamline the secu-
rity reasoning towards cryptographic guarantees. We showcase the ver-
satility of our approach by designing and prototyping SERVAS – a novel
enclave architecture for RISC-V. SERVAS facilitates a new efficient and
secure enclave memory sharing mechanism. While the memory encryp-
tion constitutes the main overhead, invoking SERVAS enclave requires
only 3.5x of a simple syscall instead of 71x for Intel SGX.

1 Introduction

Today, software vulnerabilities are omnipresent and penetrate the whole software
stack, e.g., application software [52] and operating systems [12,27]. To reduce
their impact, different isolation mechanisms can separate privileges [19], isolate
individual processes [35], protect virtual machines [5,6], and segregate applica-
tions into smaller parts, also denoted as in-process isolation. Typical in-process
isolation mechanisms are segmentation [31] and capabilities [61], memory color-
ing (e.g., protection keys) [30,49,55], or enclaves. Enclaves give strong security
guarantees even in the event of a system compromise and found ample resonance
both in academia [11,15,18,39,53,57] and industry [9,24,43]. In addition, cloud
computing increasingly demands physical protection, for which modern CPUs
provide transparent memory encryption [6,43]. Having proper integrity protec-
tion can cause worst-case throughput penalties of over 400% for Intel SGX [28].

Unfortunately, due to the zoo of isolation mechanisms, reasoning about
their security becomes increasingly complex. For example, an application might
depend on protection keys in combination with the Memory Management Unit

c© Springer Nature Switzerland AG 2021
E. Bertino et al. (Eds.): ESORICS 2021, LNCS 12973, pp. 370–391, 2021.
https://doi.org/10.1007/978-3-030-88428-4_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-88428-4_19&domain=pdf
https://doi.org/10.1007/978-3-030-88428-4_19

SERVAS! Secure Enclaves via RISC-V Authenticryption Shield 371

(MMU) and the memory mappings configured by the operating system [35].
Unifying these isolation mechanisms is desirable from a security standpoint, but
most cover only a subset of scenarios. For example, Intel SGX isolates unprivi-
leged user code, but its memory encryption is not utilizable for other purposes.

In this work, we first simplify the overall security reasoning by introduc-
ing a strong and generic isolation primitive. Second, we explore our primitive’s
synergies and features. Third, we use it to design a novel enclave architecture.

New Isolation Primitive. We unify various isolation policies with our novel
RISC-V Authenticryption Shield (RVAS). By using memory encryption, we map
isolation properties to the well-studied field of cryptography. More specifically,
encryption ensures that the CPU and the memory are in a particular state. Thus,
RVAS achieves memory isolation with cryptographic guarantees.

We design RVAS atop the RISC-V architecture. RVAS builds upon authenti-
cated memory encryption whose associated data input, which we call encryption
tweak, is exposed to software. This encryption tweak represents a security con-
text composed of software-defined and CPU-internal components. It serves to
achieve domain separation and can enforce a variety of different isolation mecha-
nisms simultaneously, e.g., privilege separation, virtual memory protection, seg-
mentation, and page coloring, etc. Traditionally, each of these mechanisms needs
to securely store trusted metadata (e.g., the address mapping or the page colors).
RVAS implicitly secures this metadata by feeding it into the encryption tweak. A
proper generalization of encryption tweaks is non-trivial.

SERVAS Enclaves are our novel enclave system atop RVAS. SERVAS protects
enclaves against software and physical attacks by means of RVAS encryption.
In contrast, Intel SGX uses memory encryption only against physical attacks,
while software attacks are prevented through a trusted metadata storage – the
so-called EPCM [31]. Our design makes the EPCM obsolete, which yields two
advantages: First, we remove trust from the address translation, i.e., the MMU
and the Translation Lookaside Buffer (TLB) configuration, and our security
argument boils down to encryption tweaks. Second, SGX enclaves can typically
only use 128 MB of encrypted physical memory [26]. RVAS encryption can be
applied to the whole DRAM and also to non-enclave code.

SERVAS introduces the novel concept of secure sharing of enclave mem-
ory, a key requirement for many application scenarios but impractical with cur-
rent enclave systems (e.g., requiring costly software-based encryption). SERVAS
enables secure zero-cost memory sharing by sharing encryption tweaks.

We prototype RVAS on an FPGA using an open-source encryption core. A
small stateless Security Monitor (SM) running in RISC-V machine mode ensures
a proper tweak configuration. Invoking SERVAS enclaves only takes 3.5x the time
of a syscall. Our evaluation indicates an overhead of 16.7% to 24.5% over the
used encryption core. An extended version of this paper is available [51], and we
plan to open-source our prototype1. In summary, our contributions are:
1 https://github.com/IAIK/servas.

https://github.com/IAIK/servas

372 S. Steinegger et al.

– A generic isolation primitive using authenticated memory encryption.
– A novel enclave architecture called SERVAS.
– A novel and fast and secure memory sharing mechanism between enclaves.
– An evaluation of the prototype implementation of SERVAS.

2 Challenges of Memory Isolation

Here, we give an overview of the most widely used isolation schemes and present
their challenges concerning security and functional limitations we want to over-
come. This paves the way for understanding the RVAS and SERVAS design.

Process Isolation requires privilege separation between the operating sys-
tem (OS) and processes and isolating processes from each other. Privilege sepa-
ration is achieved via privilege rings protecting CPU resources from unprivileged
access. The OS also needs to configure the virtual memory subsystem:
Challenge C1: “The privileged software must ensure that the virtual memory
mappings of all unprivileged processes (i) cannot access privileged memory, and
(ii) are not unintentionally aliasing with each other.”

Segmentation is a fine-grained in-process isolation mechanism using address
ranges. Segmentation forms the basis of hardware capabilities [61]. However,
these systems are not suitable for enforcing cross-application policies, e.g., pro-
tecting cryptographic keys from other applications or the OS.
Challenge C2: “Segmentation should allow flexible cross-application policies.”

Memory Coloring is another in-process isolation mechanism labeling each
memory block with a “color”. If the color is loaded, the memory becomes acces-
sible. Unfortunately, the number of colors is often quite limited [47] and not
suitable to enforce cross-application policies, e.g., for shared memory.
Challenge C3: “Memory coloring should provide significantly more colors and
also allow cross-application policies.”

Memory Mapping Protection is needed to protect enclaves from the OS:
Challenge C4: “The memory mapping of enclaves must be protected against priv-
ileged software.” This is challenging because privileged software is in charge of
managing enclaves. E.g., manipulating the page tables could cause data pages
to become executable. Three security invariants need to hold here:

– Attribute Invariant IA: “Enclave pages must only be mapped with their
intended page table attributes.”

– Spatial Invariant IS: “A physical enclave page must only be mapped to its
corresponding virtual page.”

– Temporal Invariant IT : “At any time for every virtual enclave page, there
must be at most one valid physical page mapping.”

IT specifically addresses double mapping attacks, where the attacker could
silently replace the page to replay old data.

SERVAS! Secure Enclaves via RISC-V Authenticryption Shield 373

Protected Sharing is typically achieved via shared memory. However, the
hard isolation boundary of enclaves prohibits secure, shared memory by design:
Challenge C5: “Shared memory must allow for efficient and confidential inter-
action between different enclaves.”

Memory Encryption. The DRAM can be attacked via passive [8,29] and
active [36] physical attacks. Encrypted and authenticated DRAM is necessary to
protect data from physical attacks. Memory encryption should not be restricted
to specific code (e.g., enclaves) or specific parts of the DRAM.
Challenge C6: “The DRAM shall be hardened against active and passive physical
attacks.”

3 RISC-V Authenticryption Shield (RVAS)

RVAS presents a generic mechanism to cryptographically enforce the challenges
expressed in Sect. 2. At its core, it uses an authenticated Memory Encryption
Engine (MEE) for encrypting the DRAM and incorporates a security context
into its associated data. If encrypted data is accessed with the wrong security
context, the MEE triggers an authentication error. Since the MEE gives cryp-
tographic security guarantees for detecting authentication issues, the security
argumentation boils down to one question: Who controls the security context?

The composition of the security context arguably lies at the heart of RVAS.
For readability, we also call it “tweak” in the rest of the paper. The tweak con-
sists of both software- and CPU-defined components, allowing for fine-grained,
unforgeable isolation. In this section, we discuss the tweak composition, how
RVAS solves the challenges from Sect. 2, and the requirements for the MEE.

3.1 RVAS Tweak Design

Our tweak design comprises five components explained in the following, each of
which can be selectively enabled, depending on the specific use case.

Integrity Counter. The MEE maintains integrity counters for each memory
block, which it increments at each write operation. Integrating the counter into
the tweak ensures that the correct memory block is used at any time and thus,
prevents reverting the memory to a previous state (i.e., replay attacks).

Segmentation and Address Information holds metadata about the accessed
address and whether it matches software-defined segments that can be configured
at each privilege level. This allows to protect the page mapping, in particular
the address translation, and page ordering and prevents double mappings. The
address information can hold an absolute address or an offset relative to one
of the segments. Each segment has a base address and a size and belongs to
a privilege level. Depending on which segment(s) the address belongs to, the
segment bitmap, which is also included in the tweak, is set. This further acts as
a domain separation and influences which memory color is used.

374 S. Steinegger et al.

Privilege Level. Including the CPU privilege level (e.g., M-mode, S-mode,
U-mode) in the tweak ensures that memory is only accessible at a specific level.

Page Table Attributes such as read, write and execute permissions are
included in the tweak to prevent undetected altering of the page mapping.

Memory Color. This field is extremely versatile and can be configured by soft-
ware on each privilege level. By choosing appropriate colors, one can segregate
memory pages at runtime and facilitate sharing across security domains.

3.2 Solving the Challenges

Process Isolation with RVAS could significantly enhance the security of pro-
cesses, e.g., inside encrypted virtual machines [6]. Two components solve Chal-
lenge C1: First, we use the CPU privilege level in the tweak to achieve privilege
separation, i.e., without the need for inspecting page tables. Second, we use an
OS-chosen process identifier in the tweak’s memory color field to separate pro-
cesses. By using RISC-V’s Supervisor User Memory (SUM) bit to temporarily
force the privilege level to U-mode in the tweak, the OS can be granted tempo-
rary access to user memory (e.g., for syscall handling). Of course for an enclave
system one would disable this feature.

In-process Isolation. To solve the segmentation challenge C2 for cross-
privilege policies, we can supply information from all privilege levels to the
tweak’s Segment and Address Information field. A segment-relative address off-
set in the tweak makes these policies compatible between different applications
(i.e., different address spaces), as we will show for cross-enclave shared memory.

To solve the memory coloring challenge C3, we support a vast number of 280

colors (cf. 16 for Intel MPK [55]). Thus, RVAS makes trusted metadata storages
for memory colors (i.e., tagged memory) obsolete [64]. We will show how RVAS
achieves brute-force resistance when using colors as a shared secret.

Enclaves are the most complex isolation technique discussed in this paper and
involve the challenges C2 – C6. Current enclave systems like Intel SGX [43] use
trusted metadata stores, i.e., the Enclave Page Cache Map (EPCM), to ensure
the attribute- IA, the spatial- IS, and the temporal invariant IT . However,
the EPCM has a few drawbacks: (1) It increases the Trusted Computing Base
(TCB). (2) It takes up memory. (3) The enclave’s TLB entries must be flushed
during context switches [17,31]. (4) It permits only a single owner enclave for
each page, precluding flexible enclave memory sharing.

We leverage RVAS to solve challenge C4 and make the EPCM obsolete: First,
we guarantee IA by feeding the page table attributes into the tweak. Second, we
enforce IS and IT by using the segmentation and address information and the
memory color field in the tweak. Thus, that pages can only be mapped correctly
to their legitimate enclave. More details are given in Sect. 4.3.

To solve the protected sharing challenge C5, we combine the memory color
field (C3) with an enclave-defined segment (C2) for specifying the shared memory.

SERVAS! Secure Enclaves via RISC-V Authenticryption Shield 375

The memory color essentially comprises a shared secret established between two
or more enclaves that want to communicate. The relative addressing of segments
allows the enclave to choose the exact location of the shared memory. Only if
the memory color and the segment is set up correctly, the enclaves will have the
same encryption tweak and, thus, can access the shared memory.

Memory Encryption protects against active and passive physical attacks,
thus solving challenge C6. For RVAS, an MEE needs to fulfill three properties:
(1) confidentiality, authenticity, and integrity of the data, (2) replay protection,
(3) the used cryptographic primitive must be tweakable. Integrity is typically
ensured by storing authentication codes in a tree structure. The replay protection
from (2) is usually done via authenticated counters that are typically fed into the
encryption scheme as a tweak or nonce [17,23,54,59,60]. To fulfill (3), we require
a tweakable block cipher or authenticated encryption scheme with a sufficiently
large tweak size (i.e., associated data), such as [21,62]. E.g., SGX’s underlying
MEE would require changes to fulfill the third property.

4 SERVAS

SERVAS is an innovative enclave architecture and, thus, the most complex RVAS
use case we present. As shown in Fig. 1, SERVAS consists of the RISC-V Authen-
ticryption Shield (RVAS) and a software Security Monitor (SM). The SM is the
trusted intermediary that handles the enclave’s lifecycle, acting as a universal
entry and exit point and manages the RVAS encryption tweak via an Instruction
Set Architecture (ISA) extension.

SERVAS follows SGX’s design choices to keep a minimal TCB while simul-
taneously avoiding the drawbacks of large trusted metadata storages (i.e., the
EPCM). Instead, we feed the relevant security metadata into the RVAS tweak.
By carefully controlling the tweak, SERVAS maintains cryptographic segregation
of various security domains. SERVAS also enables dynamic enclave memory and
secure sharing of enclave memory, avoiding costly software-based encryption [7].

Fig. 1. SERVAS protects enclaves (E) from applications (App), the OS, and physical
attacks. Thunderbolts mark the attack surface. RVAS encrypts and authenticates pages
in the untrusted DRAM.

376 S. Steinegger et al.

4.1 Threat Model

SERVAS protects code and data inside enclaves against a powerful, privileged
software and physical attacker (cf. Intel SGX [17,43]). Non-enclave software
(i.e., the OS or user applications) is viewed as untrusted and can be attacker
controlled. The OS can launch rogue enclaves. Our Trusted Computing Base
(TCB) comprises software and hardware components: On the software side, we
trust the enclaves and a small Security Monitor (SM). The enclave developer is
responsible for avoiding vulnerabilities in the enclave code [13,40]. The SM is
an integral part of our CPU hardware, similar to Intel SGX’s microcode imple-
mentation [17]. It can be protected via a trusted on-chip ROM or a secure boot
mechanism [38].

On the hardware side, anything outside the System on Chip (SoC) (e.g., the
CPU and RVAS) is untrusted. In particular, the attacker can tamper with the
DRAM, mount bus probing, cold-boot [29], or fault attacks on the encrypted
DRAM [33], which are detected by RVAS’ authenticated encryption.

Denial-of-service attacks are outside of our threat model. It is up to the OS
and the applications to invoke an enclave. Whether performed in software or
hardware, side-channel attacks are an orthogonal challenge, for which plenty of
literature is available that could also be applied to SERVAS [15,16,20,54,58].

4.2 Enclave Life Cycle

SERVAS enclaves are built on top of RVAS and our Security Monitor (SM). The
SMprovides an API for managing all phases of an enclave’s life cycle, namely,
initialization, entering, interruption, exiting, attestation and sealing.

Enclaves are identified via their so-called Enclave Identifier (EncID), which
is computed via a cryptographic authentication code over the enclave binary (cf.
SGX’s MRENCLAVE [17]). Enclave binaries are encrypted with Ascon and
a per CPU key. Similarly to SecureBlue++ [14] this implicitly attestates the
enclave and allows for embedding secrets without the need for remote attestation
and provisioning. During loading, the SMcompares the cryptographic authenti-
cation code. If the enclave binary was corrupted, the SMwill yield a different
EncID and the SMwill refuse to execute the enclave.

User-mode applications can load and run enclaves within their own virtual
address space, for which the SMassigns a unique Runtime Identifier (RTID) to
each running enclave. For entering an enclave, the SMconfigures its tweak and
transfers control to its single developer-specified entry point. An interrupt causes
the SMto save the enclave’s register state on private enclave memory and wipe
the registers. Resuming from interruption and exiting an enclave is analogous.
To store enclave secrets, the SMprovides a sealing functionality based on a key-
derivation function involving the EncID and a per-CPU key. For more details
about the enclave life cycle, we refer to our extended paper version [51].

SERVAS! Secure Enclaves via RISC-V Authenticryption Shield 377

4.3 Enclave Memory Management

Security of the enclave memory hinges on the spatial (IS), temporal (IT), and
attribute invariant (IA), as specified in Sect. 2, which need to hold over the
whole enclave’s lifecycle. To achieve these invariants, our trusted SMexclusively
controls parts of the RVAS tweak. In particular, the initialization of enclave
memory can only be done by the SM, for which it can override most parts of the
RVAS tweak as if the enclave itself initialized the memory. Similarly, the SMcan
invalidate an enclave page by writing it under a different tweak.

In the following, we show how to secure static and dynamic enclave page
mappings and achieve shared memory and swapping.

Static Page Mapping and Code Sharing. Our three invariants protect
static enclave pages, i.e., code and data sections, from OS compromise. IA is
ensured by adding page attributes to the tweak. To keep IS, we link between
virtual and physical enclave pages, as follows: An SM-controlled address segment
distinguishes enclave memory from the rest. Any enclave memory access includes
the segment-relative virtual address offset in the tweak. This field guarantees a
correct address translation and also accounts for position-independent enclaves.

To ensure IT for private enclave memory, we put the enclave’s unique Run-
time Identifier (RTID) into the tweak’s memory color field. This field binds each
enclave page to exactly one enclave instance. Developers can optionally dedu-
plicate enclave code to help reduce memory load and TLB pressure. In this
case, we use the Enclave Identifier (EncID) instead of the Runtime Identifier
(RTID) inside the tweak. To enforce IT , these code pages need to be read-only
and shared between enclave instances of the same binary only (i.e., the same
EncID).

Dynamic Page Mapping. SERVAS enclaves may use dynamic memory, which
has been allocated by the host user-mode application. In principle, our security
invariants are upheld in the same way as for static page mappings. However,
the invariant IT requires special care to prevent double mapping attacks since
dynamic mappings change during runtime: The enclave (runtime) keeps track
of all of its valid page mappings inside the enclave’s address range, e.g., in a
private bitmap similar to SGX [42]. Thus, when the enclave receives new mem-
ory from the host, it can verify the mapping. Therefore, the enclave effectively
acknowledges each dynamic memory page before it is initialized by the SMto
be used. If an enclave releases dynamic memory, it explicitly invokes the SM,
which invalidates the page content, e.g., by destroying its integrity. This prevents
use-after-free scenarios and upholds IT .

Data Sharing. SERVAS introduces a novel concept of data sharing between
enclaves. Shared data memory is writable and can be used for data exchange
at native speed (i.e., without copying or re-encryption [7]). This memory is
realized via a shared secret, supplied as memory color, that enclaves can directly

378 S. Steinegger et al.

manage. However, the SMcan assist in establishing the secret between enclaves,
e.g., as a trusted entity attesting the enclaves. Upholding our security invariants
for data sharing is critical and highlights the versatility of our RVAS design.
Enclaves can enforce the invariants by simply configuring the shared memory
and keeping the shared secret confidential. Data sharing also seamlessly scales
to multiple enclaves. A user-mode segment register points to the desired shared
virtual memory range to prevent double mapping attacks (e.g., aliasing shared-
with private pages) and upholding IT .

Swapping. In contrast to Intel SGX, SERVAS allows using the full DRAM for
enclaves, nevertheless, out-of-memory situations can occur. To ensure the SM’s
correct operation and maintain our security invariants, we exclude enclave shared
memory and SM-related pages from being swapped. In order to swap an enclave
page, the OS provides a temporary page to the SM. The SMre-encrypts the page-
to-swap to the temporary page. Next, the SMinvalidates the original physical
enclave page in order to uphold IT . The involved metadata (authentication
tag, nonce, virtual address, range information, page permissions) are saved on
a page only accessible to the SM. This metadata pins the page’s version and
prevents any roll-back attacks. Swap-in of enclave pages is analogous.

5 SERVAS Implementation Details

In this section, we detail our SERVAS implementation, shown in Fig. 2a. We
discuss our instruction set changes with the tweak construction and page types
and caching considerations and an encryption bypass option.

Fig. 2. Overview of RVAS and the tweak construction for the MEE.

SERVAS! Secure Enclaves via RISC-V Authenticryption Shield 379

5.1 Instruction Set Extension

RVAS adds minimal changes to the RISC-V Instruction Set Architecture (ISA):
We add Control and Status Registers (CSRs) to set RVAS’ tweak in software.
Moreover, we add an authentication exception that is raised whenever decryption
fails with an integrity check error during a read, write, or fetch operation.

We add the segmentation registers MRange, SRange, and URange for the
machine-, supervisor-, and user-mode, respectively, as seen in Fig. 2b. Each seg-
ment is defined by a base and a size in the virtual address space. The SMuses
MRange to declare an enclave’s memory. SRange and URange can be used for dif-
ferent purposes (e.g., shared memory). To include software-controllable Session
Identifiers (SIDs) for page coloring, we add xSID0 and xSID1 CSRs.

Tweak Override. We provide additional tweak override registers that allow
the SMto cryptographically initialize a page without trusting the OS-supplied
page mapping. These registers can override any tweak parameters used by RVAS,
except for the RVAS-managed integrity counters. Thus, any memory accesses by
lesser-privileged modes must adhere to the same tweak used for initialization.

5.2 Tweak

RVAS incorporates CPU state information into the MEE via the tweak, including
integrity counters, page mapping, and privilege information, range checks, and
SIDs (cf. Fig. 2b). SERVAS uses a tweak size of 192 bits, as follows:

Counter. Similar to SGX’s 56-bit counters, we reserve 58 tweak bits for integrity
counters to protect against replay attacks, which are not exposed to software.

xRange. We use a bitmap with three bits to encode whether the accessed
address is within URange, SRange, or MRange, respectively. If an address matches
xRange segments, their tweak bits are set. The bits act as a domain separation
and influence the SID and voffset selection. The most unprivileged matching
xRange (e.g., URange) then determines the voffset calculation and the choice
of the xSID registers.

voffset is the virtual address offset computed from the trusted base address
of the effective matching xRange register at cache line granularity. Intel SGX
protects the page mapping by linking the virtual- and physical address in the
EPCM. For SERVAS enclaves, the page mapping is protected with the voffset,
which is relative to the base of a segment. Additionally, the segment is uniquely
identified with a SID. Combined, this ensures that the virtual mapping is correct,
i.e., as initialized by the SM. For 48-bit virtual addresses [56] and 64 B cache
lines [17], this results in 42 bit.

380 S. Steinegger et al.

PRV encodes the current privilege level of the CPU in two bits and ensures the
memory can only be accessed at a specific level.

Page Table Entry (PTE). We include seven page table attribute bits from
the page table entry (PTE) in the tweak to ensure they represent their initialized
configuration. These attributes cover the user mode (U), global mapping (G),
read, write and execute privileges (RWX), and software-defined reserved tweak
select (TS) for selecting the effective SID register.

Session Identifier (SID). We allocate 80 bit for SIDs useable for defining
memory colors and ensure a certain execution context. The active xRange deter-
mines whether MSID, SSID, or USID is used. TS determines whether one or both
xSID0 and xSID1 registers are used. When using, both the effective SID is trun-
cated to 80 bit.

5.3 Page Types

SERVAS defines five page types via a specific tweak combination (cf. Table 1):

PT NORMAL marks untrusted memory outside of all xRange segments. It
adheres to the PTE and can optionally be encrypted (cf. our encryption bypass).

PT ENCLAVE denotes private enclave pages within the MRange, having any
suitable combination of PTE page permissions. The TS bits specify the use of
the MSID0 register, holding the unique SM-defined RTID identifier.

PT SHCODE shares non-writable pages between different instances of the
same enclave to reduce memory and TLB pressure. This type adheres to the
MRange and uses the MSID1 CSR, which holds the unique EncID of the enclave.

PT SHDATA shares non-executable data between enclaves and resides in the
enclave-configured URange. The virtual address offset is calculated relative to
URange and ensures cross-enclave accessibility. The TS bits select the USID0 and
USID1 CSRs, into which enclaves load an 80-bit shared secret before accessing
the shared memory. The SMhelps in establishing the shared secret.

PT MONITOR stores dynamic metadata for each enclave and thread (cf.
SECS and TCS [17]) and is only accessible by the SMin M-mode. Note, that
enclave code is not protected via PT MONITOR but instead via Physical Mem-
ory Protection (PMP).

SERVAS! Secure Enclaves via RISC-V Authenticryption Shield 381

5.4 Security Monitor (SM)

The SMruns in machine mode (which is loosely comparable to CPU microcode
used for Intel SGX logic) and protects itself using the RISC-V PMP. Our proto-
type has a tiny code size of 1253 Lines of Code (LoC), of which 381 LoC are used
by the Ascon implementation (which is used for computing, e.g., the EncID and
the sealing key). Therefore, it is small enough to be stored in on-chip SRAM,
without the need for encryption.

In principle, the SMcan run completely stateless and only requires a small
(approx. 1KiB) stack. Enclave management data is stored in dynamically allo-
cated PT MONITOR pages. The SMmaintains a 64 bit monotonic counter to
allocate a unique RTID per enclave. One could also sample the RTID from the
RISC-V hardware performance counters, e.g., the elapsed CPU cycles mcycle.

5.5 Caching

In our so-called inline variant, we cache the RVAS tweaks in the data and instruc-
tion caches. This caching allows the match of the currently active tweak with the
cache line and ensures that the entire tweak can be reconstructed for any write-
back operations. We store bSERV AS = 134 tweak bits in each of the Ncache

cache lines, covering the xRange-, PTE-, PRV-, SID-, and voffset bits. Since
the MEE manages the integrity counters, they need no caching. This totals
SData, SInstr = bSERV AS ·Ncache additional cache bits.

Cache Optimization. For real-world scenarios, tweaks can be deduplicated
into a separate Tweak Cache (TC) [34] to shrink the caching overhead in the
main caches. The TC is linked with the main caches via a tweak index of btweakidx

bits. We propose a set-associative TC whose set index is derived from the tweak
via a pseudorandom non-linear function, e.g., a lightweight cryptographic prim-
itive [50,58]. This allows for efficient identification of already inserted tweaks,
and only one additional cycle for the tweak comparison may be required. If a
TC entry is removed, all associated cache lines need to be flushed.

Table 1. Tweak decision table: • denotes arbitrary values.

MRange SRange URange PRV PTE TS SID Label

0 0 0 • • • • PT NORMAL

1 0 0 U • 01 MSID0 PT ENCLAVE

1 0 0 U !W 10 MSID1 PT SHCODE

0 0 1 U !X 11 USID0+1 PT SHDATA

• • • M rw • 0 PT MONITOR

382 S. Steinegger et al.

Fig. 3. Tweak cache compared to the inline variant (512bit cache lines) for different
TC configurations (Ntweak, bvoffsetL). Lower is better.

The exact TC parameterization depends on the expected workload (i.e., the
number of tweaks required in parallel). As another optimization, the bvoffset can
be split between main caches (bvoffsetL) and the TC (bvoffsetH), resulting in a
number of tweak zones per enclave. Moreover, we must consider two constraints:
(1) more ways in the TC require additional parallel comparator logic, and (2)
the overall cached tweak bits must be less than for the inline variant. To handle
(1) there should be no more ways in the TC as in the main cache. Addressing
(2) depends on the size of tweak zones, the size of the main caches, and the TC’s
size. The number of entries Ntweak in the TC determines the width of the index
btweakidx. We also include a valid bit bvalid:

SDataOpt, SInstrOpt = (bvoffsetL + btweakidx) ·Ncache (1)
Stweakcache = (bvalid + bSERV AS − bvoffsetL) ·Ntweak (2)

We evaluate the storage overhead as a function of Ncache with 512 bit cache
lines for different Ntweak and bvoffsetL in Fig. 3. We observe that each Ntweak has
the same break-even point for all bvoffsetL. After that, smaller bvoffsetL reduce
the overhead more. With larger caches bvoffsetL, becomes the dominating factor
and clusters them into groups. This effect is less pronounced for btweakidx due to
its smaller size. However, as an example, a TC with Ntweak = 128 entries could
reduce the storage overhead from 137 216 bit to 42 368 bit by about 69% for the
CVA6 CPU with its 64 kB main cache and 1 GB tweak zones (bvoffsetL = 20).

5.6 Encryption Bypass Optimization

Our prototype encrypts the whole system’s physical memory. To improve per-
formance, one could also apply RVAS encryption only to pages (e.g., enclaves)
that require this protection. This can be achieved by using the xRange registers
to decide if a request has to go through the MEE or access the memory directly.

A limitation of the encryption bypass is that the inherent overhead of the
integrity protection trees introduced by the MEE persists. Making the trees
sparse could address this problem, but no such open-source memory encryption
schemes have been proposed to the best of our knowledge.

SERVAS! Secure Enclaves via RISC-V Authenticryption Shield 383

6 Security Analysis

This section analyzes how RVAS’s tweak (cf. Sect. 2) cryptographically enforces
the challenges of memory isolation C1-C6. Attacks aim at breaking the attribute-
(IA), spatial- (IS), or temporal invariant (IT).

6.1 Attacks on Physical Memory

An OS or physical attacker can access the physical memory via software or
by mounting bus probing or cold-boot attacks [29]. However, RVAS’s encryp-
tion prevents data access. Performing roll-back attacks or move encrypted data
around to violate the invariant IT is mitigated by RVAS’ integrity counters.

6.2 Attacks on Virtual Memory

Memory Isolation. Enclaves run in the virtual memory of a host application.
Hence a rogue enclave, host, or OS could try to access enclave data. SERVAS
supplies unforgeable (e.g., MRange, MSID) or enclave-private data to the memory
color field of RVAS. Without a correct tweak, RVAS fails and traps to the SM.

Page Mapping Attacks. The OS has full control over the page table entries
(PTEs) (challenge C4, cf. Sect. 2), allowing for a range of attacks:

Downgrade or Remapping Attacks. The OS can map an unprotected page
or another enclave’s page to an address in the enclave’s MRange to leak data or
divert the control flow and violate IA, IT or IS. However, the combination
of SM-controlled MRange registers, PTE bits, and the session identifier (e.g., the
Runtime Identifier (RTID) or the Enclave Identifier (EncID)) ensure that any
rogue pages in the MRange fail RVAS’ integrity check.

Swapping Attacks. The OS can create a copy of an enclave page via the
swapping mechanism to attempt to violate the temporal invariant IT . SERVAS
mitigates this attack by invalidating the original page before the swapped-out
copy is given to the OS. A similar attack attempts a roll-back by swapping-out
a page twice and providing the older copy during swap-in. This is prevented by
the latest authentication tag of the swapped out copy on a PT MONITOR page.

Shared Data Page Attacks. Enclave shared memory faces two attacks from
the OS: (1) Replace an enclave page with a shared memory page to trick the
enclave into leaking its secrets. (2) The OS and malicious enclave cooperate to
brute-force the 80 bit key. To prevent (1), the enclave must explicitly set the
URange CSR and the key before shared memory is active. Scenario (2) is an
online attack on shared memory only. It can be made practically infeasible by
(A) terminating the attacker enclave, as loading the enclave acts as dynamic rate-
limiting, or (B) performing explicit rate-limiting in the SMexception handler.

384 S. Steinegger et al.

Shared Code Page Attack. To deduplicate non-writable pages between dif-
ferent instances of the same enclave, the Enclave Identifier (EncID) is used as
the memory color. An attacker can run an offline attack to create an enclave
with a colliding EncID, which refers to finding a second pre-image to a crypto-
graphic authentication code. Using a 128 bit EncID could completely eliminate
this attack. However, SERVAS only supports an 80 bit SID. To achieve practi-
cal security, the EncID could be truncated using a key derivation function that
involves a secret CPU key.

7 Evaluation

Our prototype is based on the CVA6 [63] platform, a 64-bit RISC-V CPU. For
SERVAS, we extended this platform with the RVAS ISA extensions, the storage
of tweaks in its write-through cache tag, and an MEE for RVAS. We increased
the default cache line size from 16 B to 64 B, a common choice for many CPUs.
We use MEMSEC [59], an open-source framework supporting various encryption
schemes for the MEE. To fulfill our requirements (cf. Sect. 3), we configured
MEMSEC to use ASCON-128 and extend it to process the tweak as Ascon’s
associated data. We use ASCON-128 for RVAS as it is the only cipher that is
supported by the MEMSEC framework in TEC-Tree mode. MEMSEC is placed
between the cache and the memory controller to encrypt all data transparently.

7.1 Performance Overhead

We ran a set of macrobenchmarks on a Linux 5.10 kernel on the CVA6 CPU to
evaluate the performance. We use BEEBS [46] and CoreMark [22] as benchmarks.
We excluded the crc32, ludcmp, st, matmult-float, and rijndael benchmarks
from BEEBS, since they caused lockups on the unmodified CPU. We use the
geometric mean to aggregate all BEEBS benchmarks into a single metric in
Fig. 4. Detailed results are given in Appendix A. For the fast-running CoreMark,
we plot the mean over 1 000 runs (with 10 internal iterations), while for the
slower BEEBS, we average over 25 runs (with 4 internal iterations). We cannot
run more heavyweight benchmarks due to the prototype’s resource constraints
(256 MB accessible DRAM and 50 MHz CPU frequency).

Fig. 4. Left: Benchmarking the CVA6 core using no memory encryption, MEMSEC,
or RVAS. Right: Memory read-write latency.

SERVAS! Secure Enclaves via RISC-V Authenticryption Shield 385

Table 2. Micro-benchmarking results for SERVAS.

Cycles median Relative to getpid

Syscall getpid 10 403 1.0x

SERVAS SM Call “null” 9 030 0.9x

SERVAS Enter 18 865 1.8x

SERVAS Exit 17 391 1.7x

SERVAS Create 280 052 26.9x

Context Switch Sem. 238 781 23.0x

Figure 4 depicts our performance results normalized to an unprotected base-
line, i.e., CVA6 without any memory encryption. The overhead stems primarily
from MEMSEC in TEC-tree mode. RVAS adds two calls to Ascon’s permuta-
tion function to process the tweak in the MEE. RVAS’ overhead is 16.7% for
CoreMark, 20.0% for LMbench [44] and 24.5% for BEEBS compared to MEM-
SEC. Figure 4 shows the results of the read-write latency test of LMbench. This
benchmark measures the latency for differently sized data chunks and visual-
izes the impact of CVA6’s 32 kB L1 data cache and the latency of the external
DDR3 memory. MEMSEC increases the average latency for a memory access
from 850 ns to 3300 ns. The two additional rounds in RVAS only increase the
latency by another 290 ns on average. These results are encouraging, given that
we instantiated our RVAS prototype with the general-purpose MEMSEC encryp-
tion framework. We discuss possible optimizations in Sect. 7.3.

We evaluate SERVAS using the microbenchmarks shown in Table 2. We
repeat each test 10 000 times to reduce scheduling- and cache-related differences.
We compare the number of cycles for eenter/eexit with a simple “getpid” sys-
tem call to get the switching overhead. The “null SM call” is the equivalent of
a getpid system call that forms the baseline overhead for SM calls, but instead
of calling into the OS, we invoke the SM. Calling an enclave function only takes
3.5x the time of a simple system call. This call includes the time for enter-
ing (18 865 cycles), executing a function with a fixed return value, and exiting
(17 391 cycles) the enclave. Process-based context switching, using a semaphore
and shared memory for synchronization, takes 23.0x of a simple system call. For
comparison, entering and exiting an Intel SGX enclave takes 71x the time of a
system call [37], thus being significantly slower than invoking a SERVAS enclave.

7.2 Hardware Overhead

We synthesize our modified CVA6 for a Xilinx Kintex-7 series FPGA. The hard-
ware overhead of RVAS consists of the MEE, the ISA extension, and the aug-
mented cache. The design’s lookup tables (LUTs) increase by 20.27% and the
flip-flops by 19.13%. 61.84 s% of the additional LUTs result from the MEE,
37.26% from the extended cache, and the rest from the ISA extension. Each

386 S. Steinegger et al.

cache line is tagged with 125 bit for the memory encryption tweak. The over-
head in the cache is 25% for 512-bit cache lines. However, this overhead could
be reduced by using the optimizations in Sect. 5.5.

7.3 Prototype Limitations

Our RVAS prototype is not optimized for performance. Due to a lack of openly
available high-performance MEEs with authentication, we used the MEM-
SEC [59] framework. Its storage overhead is analyzed in [59]. The MEE sig-
nificantly impacts the overall performance (cf. Fig. 4). According to ARM, full
memory encryption has a runtime overhead of 7.5% to 25% and a storage over-
head of 7.8% to 26.7% [48]. Intel SGX memory encryption is good for medium
workloads but might cause worst-case throughput penalties of 400% [28]. Given
recent advances in RISC-V, we expect open-source, high-performance MEEs in
the future. The bypass optimization Sect. 5.6 could also improve the system
performance.

8 Related Work

Intel SGX [17,43] is a set of x86 instructions to interact with enclaves. Unlike
SGX, SERVAS dynamically reuses the whole physical memory instead of being
limited to the statically allocated 128 MB Processor Reserved Memory. Further-
more, SERVAS does not require a trusted metadata storage (i.e., SGX’s Enclave
Page Cache Map) but instead feeds this metadata directly into the encryption.

CrypTag [45] feeds the upper pointer bits into an authenticated encryption
engine to achieve memory safety. In contrast, RVAS supports various policies
and incorporates information on the CPU state as specified by an SM(cf. Sect. 3)
and adds the necessary logic to enforce these policies. The cache area overhead
of CrypTag is up to 20%, which is comparable with RVAS.

VAULT [53] makes Intel SGX’s EPC available to the full system memory to
reduce paging overhead. Unlike SERVAS, VAULT does not overcome SGX’s
limitation regarding efficient shared memory.

SMARTS [60] implements a Memory Protection Unit as a framework that par-
tially encrypts the memory and partitions the physical DRAM into three regions.
In contrast, SERVAS is not bound to a static boot-time memory configuration.

AMD Secure Encrypted Virtualization (SEV) [5,6] describe CPU exten-
sions to run virtual machines in untrusted environments. Unlike RVAS, SEV’s
memory encryption does neither provide integrity protection nor authentication.

Intel MKTME [32] transparently encrypts memory pages based on one of 64
different encryption keys indicated by the PTE. It does not provide crypto-
graphic authentication and relies on a trusted hypervisor.

SERVAS! Secure Enclaves via RISC-V Authenticryption Shield 387

Other Systems. Sanctum [18], Keystone [39], and CURE [11] are other recent
enclave and TEE designs tackling unique challenges. However, in contrast to
SERVAS, these designs do not explicitly protect the external memory from phys-
ical attacks using memory encryption.

9 Future Work

We see usage scenarios of RVAS beyond traditional enclaves to provide, for
example, fine-grained intra-enclave isolation and system-level enclaves. SERVAS
could be used to supersede other protection mechanisms such as memory pro-
tection keys [31], pointer authentication [41], pointer tagging [10], and memory
coloring [45]. SERVAS specifies configuration registers on each privilege level.
These registers can allow for additional protection in the kernel by creating
kernel-level enclaves. Our current prototype implementation uses ASCON as it
is a lightweight cryptographic primitive already available in MEMSEC. How-
ever, realizing RVAS with other encryption primitives, such as AES, would be
possible but requires additional analysis, which we leave open for future work.

Remote Attestation is a method to ensure the authenticity of the enclave [25]
before provisioning secrets to it. Similar to SecureBlue++ [14], SERVAS loads
already encrypted enclaves. Thus, they can embed their secrets directly in the
code without the need for a remote attestation service. Based on these secrets,
one can easily establish a remote attestation protocol.

10 Conclusion

This paper presented an innovative isolation primitive called authenticryption
shield that unifies traditional and advanced isolation policies and offers potential
for future security applications. This primitive is built on top of an authenticated
memory encryption scheme, thus giving cryptographic isolation guarantees. We
demonstrated our design and prototype for RISC-V called SERVAS, which allows
for native and secure sharing between enclaves. We show how a small Security
Monitor with only 1253 LoC can manage all enclaves throughout their life-cycle
with our ISA extension. We prototyped and thoroughly assessed SERVAS’s per-
formance on the CVA6 RISC-V hardware and showed that entering or exiting
takes only about 3.5x of a getpid syscall.

Acknowledgments. This project has received funding from the European Research
Council (ERC) under the European Union’s Horizon 2020 research and innovation
programme (grant agreement No 681402) and by the Austrian Research Promotion
Agency (FFG) via the competence center Know-Center (grant number 844595), which
is funded in the context of COMET - Competence Centers for Excellent Technologies
by BMVIT, BMWFW, and Styria. Furthermore, this work has been supported by the
Austrian Research Promotion Agency (FFG) via the project ESPRESSO, which is
funded by the province of Styria and the Business Promotion Agencies of Styria and
Carinthia.

388 S. Steinegger et al.

A Detailed Evaluation Results

See Fig. 5.

Fig. 5. RVAS performance on the BEEBS benchmark suite compared to MEMSEC,
both normalized to an unprotected implementation.

References

1. USENIX Annual Technical Conference, USENIX ATC 2019, Renton, WA, USA,
10–12 July 2019 (2019)

2. 28th USENIX Security Symposium, USENIX Security 2019, Santa Clara, CA,
USA, 14–16 August 2019 (2019)

3. 29th USENIX Security Symposium, USENIX Security 2020, 12–14 August 2020
(2020)

4. ACM/IEEE 41st International Symposium on Computer Architecture, ISCA 2014,
Minneapolis, MN, USA, 14–18 June 2014 (2014)

5. Advanced Micro Devices Inc.: AMD secure encrypted virtualization (SEV) (2020).
https://developer.amd.com/sev/

6. Advanced Micro Devices Inc.: AMD SEV-SNP: strengthening VM isolation
with integrity protection and more (2020). https://www.amd.com/system/files/
TechDocs/SEV-SNP-strengthening-vm-isolation-with-integrity-protection-and-
more.pdf

7. Anati, I., Gueron, S., Johnson, S., Scarlata, V.: Innovative technology for CPU
based attestation and sealing. In: HASP 2013, vol. 13, p. 7 (2013)

8. Andzakovic, D.: Extracting BitLocker keys from a TPM (2019). https://
pulsesecurity.co.nz/articles/TPM-sniffing

9. Arm Limited: ARM security technology, building a secure system using TrustZone
technology (2009). http://infocenter.arm.com/help/topic/com.arm.doc.prd29-
genc-009492c/PRD29-GENC-009492C trustzone security whitepaper.pdf. Ref.
no. PRD29-GENC-009492C

https://developer.amd.com/sev/
https://www.amd.com/system/files/TechDocs/SEV-SNP-strengthening-vm-isolation-with-integrity-protection-and-more.pdf
https://www.amd.com/system/files/TechDocs/SEV-SNP-strengthening-vm-isolation-with-integrity-protection-and-more.pdf
https://www.amd.com/system/files/TechDocs/SEV-SNP-strengthening-vm-isolation-with-integrity-protection-and-more.pdf
https://pulsesecurity.co.nz/articles/TPM-sniffing
https://pulsesecurity.co.nz/articles/TPM-sniffing
http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-009492c/PRD29-GENC-009492C_trustzone_security_whitepaper.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-009492c/PRD29-GENC-009492C_trustzone_security_whitepaper.pdf

SERVAS! Secure Enclaves via RISC-V Authenticryption Shield 389

10. Arm Limited: Armv8.5-a memory tagging extension (2020). https://developer.arm.
com/-/media/Arm%20Developer%20Community/PDF/Arm Memory Tagging
Extension Whitepaper.pdf

11. Bahmani, R.: CURE: a security architecture with customizable and resilient
enclaves. CoRR abs/2010.15866 (2020)

12. Beer, I.: An iOS zero-click radio proximity exploit odyssey (2020). https://
googleprojectzero.blogspot.com/2020/12/an-ios-zero-click-radio-proximity.html

13. Biondo, A., Conti, M., Davi, L., Frassetto, T., Sadeghi, A.: The guard’s dilemma:
efficient code-reuse attacks against Intel SGX. In: USENIX Security 2018, pp.
1213–1227 (2018)

14. Boivie, R.: SecureBlue++: CPU support for secure execution (2020). https://
dominoweb.draco.res.ibm.com/reports/rc25287.pdf

15. Bourgeat, T., Lebedev, I.A., Wright, A., Zhang, S., Arvind, Devadas, S.: MI6:
secure enclaves in a speculative out-of-order processor. In: MICRO 2019, pp. 42–
56 (2019). https://doi.org/10.1145/3352460.3358310

16. Busi, M., et al.: Provably secure isolation for interruptible enclaved execution on
small microprocessors. In: CSF 2020, pp. 262–276 (2020). https://doi.org/10.1109/
CSF49147.2020.00026

17. Costan, V., Devadas, S.: Intel SGX explained. IACR Cryptol. ePrint Arch. 2016,
86 (2016)

18. Costan, V., Lebedev, I.A., Devadas, S.: Sanctum: minimal hardware extensions for
strong software isolation. In: USENIX Security 2016, pp. 857–874 (2016)

19. Dautenhahn, N., Kasampalis, T., Dietz, W., Criswell, J., Adve, V.S.: Nested kernel:
an operating system architecture for intra-kernel privilege separation. In: ASPLOS
2015, pp. 191–206 (2015). https://doi.org/10.1145/2694344.2694386

20. Dessouky, G., Frassetto, T., Sadeghi, A.: HybCache: hybrid side-channel-resilient
caches for trusted execution environments. In: USENIX Security 2020 [3], pp. 451–
468 (2020)

21. Dobraunig, C., Eichlseder, M., Mendel, F., Schläffer, M.: Ascon v1.2. Submission
to the CAESAR Competition (2016). https://ascon.iaik.tugraz.at/files/asconv12.
pdf

22. EEMBC: Coremark (2020). https://www.eembc.org/coremark/
23. Elbaz, R., Champagne, D., Lee, R.B., Torres, L., Sassatelli, G., Guillemin, P.:

TEC-Tree: a low-cost, parallelizable tree for efficient defense against memory replay
attacks. In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp.
289–302. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74735-
2 20

24. Five, H.: MultiZone security for RISC-V (2020). https://hex-five.com/multizone-
security-sdk/

25. Francillon, A., Nguyen, Q., Rasmussen, K.B., Tsudik, G.: A minimalist approach
to remote attestation. In: DATE 2014, pp. 1–6 (2014). https://doi.org/10.7873/
DATE.2014.257

26. Gjerdrum, A.T., Pettersen, R., Johansen, H.D., Johansen, D.: Performance of
trusted computing in cloud infrastructures with Intel SGX. In: CLOSER 2017,
pp. 668–675 (2017). https://doi.org/10.5220/0006373706680675

27. Goodin, D.: Attackers exploit 0-day vulnerability that gives full control
of Android phones (2019). https://arstechnica.com/information-technology/
2019/10/attackers-exploit-0day-vulnerability-that-gives-full-control-of-android-
phones/

https://developer.arm.com/-/media/Arm%20Developer%20Community/PDF/Arm_Memory_Tagging_Extension_Whitepaper.pdf
https://developer.arm.com/-/media/Arm%20Developer%20Community/PDF/Arm_Memory_Tagging_Extension_Whitepaper.pdf
https://developer.arm.com/-/media/Arm%20Developer%20Community/PDF/Arm_Memory_Tagging_Extension_Whitepaper.pdf
https://googleprojectzero.blogspot.com/2020/12/an-ios-zero-click-radio-proximity.html
https://googleprojectzero.blogspot.com/2020/12/an-ios-zero-click-radio-proximity.html
https://dominoweb.draco.res.ibm.com/reports/rc25287.pdf
https://dominoweb.draco.res.ibm.com/reports/rc25287.pdf
https://doi.org/10.1145/3352460.3358310
https://doi.org/10.1109/CSF49147.2020.00026
https://doi.org/10.1109/CSF49147.2020.00026
https://doi.org/10.1145/2694344.2694386
https://ascon.iaik.tugraz.at/files/asconv12.pdf
https://ascon.iaik.tugraz.at/files/asconv12.pdf
https://www.eembc.org/coremark/
https://doi.org/10.1007/978-3-540-74735-2_20
https://doi.org/10.1007/978-3-540-74735-2_20
https://hex-five.com/multizone-security-sdk/
https://hex-five.com/multizone-security-sdk/
https://doi.org/10.7873/DATE.2014.257
https://doi.org/10.7873/DATE.2014.257
https://doi.org/10.5220/0006373706680675
https://arstechnica.com/information-technology/2019/10/attackers-exploit-0day-vulnerability-that-gives-full-control-of-android-phones/
https://arstechnica.com/information-technology/2019/10/attackers-exploit-0day-vulnerability-that-gives-full-control-of-android-phones/
https://arstechnica.com/information-technology/2019/10/attackers-exploit-0day-vulnerability-that-gives-full-control-of-android-phones/

390 S. Steinegger et al.

28. Göttel, C.: Security, performance and energy trade-offs of hardware-assisted mem-
ory protection mechanisms. In: SRDS 2018, pp. 133–142 (2018). https://doi.org/
10.1109/SRDS.2018.00024

29. Halderman, J.A., et al.: Lest we remember: cold boot attacks on encryption keys.
In: USENIX Security 2008, pp. 45–60 (2008)

30. Hedayati, M., et al.: Hodor: intra-process isolation for high-throughput data plane
libraries. In: USENIX ATC 2019 [1], pp. 489–504 (2019)

31. Intel Corporation: Intel 64 and IA-32 Architectures Software Developer’s Manual,
vol. 3 (3A, 3B & 3C): System Programming Guide (325384) (2016)

32. Intel Corporation: Intel Architecture Memory Encryption Technologies Specifica-
tion. Ref: # 336907-002US. Rev: 1.2 (2019)

33. Jang, Y., Lee, J., Lee, S., Kim, T.: SGX-bomb: locking down the processor via
rowhammer attack. In: SysTEX 2017, pp. 5:1–5:6 (2017). https://doi.org/10.1145/
3152701.3152709

34. Joannou, A., et al.: Efficient tagged memory. In: ICCD 2017, pp. 641–648 (2017).
https://doi.org/10.1109/ICCD.2017.112

35. Jomaa, N., Nowak, D., Grimaud, G., Hym, S.: Formal proof of dynamic memory
isolation based on MMU. In: TASE 2016, pp. 73–80 (2016). https://doi.org/10.
1109/TASE.2016.28

36. Kim, Y., et al.: Flipping bits in memory without accessing them: an experimental
study of DRAM disturbance errors. In: ISCA 2014 [2], pp. 361–372. https://doi.
org/10.1109/ISCA.2014.6853210

37. Koning, K., Chen, X., Bos, H., Giuffrida, C., Athanasopoulos, E.: No need to hide:
protecting safe regions on commodity hardware. In: EUROSYS 2017, pp. 437–452
(2017). https://doi.org/10.1145/3064176.3064217

38. Kossifidis, N.: Secure boot notes (2020). https://lists.riscv.org/g/tech-tee/
message/288. E-mail #288 from the tech-teelists.riscv.org group from 2 June 2020

39. Lee, D., Kohlbrenner, D., Shinde, S., Asanovic, K., Song, D.: Keystone: an open
framework for architecting trusted execution environments. In: EUROSYS 2020,
pp. 38:1–38:16 (2020). https://doi.org/10.1145/3342195.3387532

40. Lee, J., et al.: Hacking in darkness: return-oriented programming against secure
enclaves. In: USENIX Security 2017, pp. 523–539 (2017)

41. Liljestrand, H., Nyman, T., Wang, K., Perez, C.C., Ekberg, J., Asokan, N.: PAC
it up: towards pointer integrity using ARM pointer authentication. In: USENIX
Security 2019 [2], pp. 177–194 (2019)

42. McKeen, F., et al.: Intel Software Guard Extensions (Intel SGX) support for
dynamic memory management inside an enclave. In: HASP 2016, pp. 1–9 (2016)

43. McKeen, F., et al.: Innovative instructions and software model for isolated execu-
tion. In: HASP 2013, p. 10 (2013). https://doi.org/10.1145/2487726.2488368

44. McVoy, L.W., Staelin, C.: lmbench: portable tools for performance analysis. In:
USENIX ATC 1996, pp. 279–294 (1996)

45. Nasahl, P., Schilling, R., Werner, M., Hoogerbrugge, J., Medwed, M., Mangard, S.:
CrypTag: thwarting physical and logical memory vulnerabilities using cryptograph-
ically colored memory. In: ASIA CCS 2021: ACM Asia Conference on Computer
and Communications Security, Virtual Event, Hong Kong, 7–11 June 2021, pp.
200–212 (2021). https://doi.org/10.1145/3433210.3453684

46. Pallister, J., Hollis, S.J., Bennett, J.: BEEBS: open benchmarks for energy mea-
surements on embedded platforms. CoRR abs/1308.5174 (2013)

47. Park, S., Lee, S., Xu, W., Moon, H., Kim, T.: libmpk: Software abstraction for
intel memory protection keys (Intel MPK). In: USENIX ATC 2019 [1], pp. 241–
254 (2019)

https://doi.org/10.1109/SRDS.2018.00024
https://doi.org/10.1109/SRDS.2018.00024
https://doi.org/10.1145/3152701.3152709
https://doi.org/10.1145/3152701.3152709
https://doi.org/10.1109/ICCD.2017.112
https://doi.org/10.1109/TASE.2016.28
https://doi.org/10.1109/TASE.2016.28
https://doi.org/10.1109/ISCA.2014.6853210
https://doi.org/10.1109/ISCA.2014.6853210
https://doi.org/10.1145/3064176.3064217
https://lists.riscv.org/g/tech-tee/message/288
https://lists.riscv.org/g/tech-tee/message/288
https://doi.org/10.1145/3342195.3387532
https://doi.org/10.1145/2487726.2488368
https://doi.org/10.1145/3433210.3453684

SERVAS! Secure Enclaves via RISC-V Authenticryption Shield 391

48. Roberto-Maria, A.: Memory protection for the ARM architecture (2020). https://
rwc.iacr.org/2020/slides/Avanzi.pdf. Presented at Real World Crypto 2020

49. Schrammel, D., et al.: Donky: domain keys - efficient in-process isolation for RISC-
V and x86. In: USENIX Security 2020 [3], pp. 1677–1694 (2020)

50. Seznec, A., Bodin, F.: Skewed-associative caches. In: Bode, A., Reeve, M., Wolf,
G. (eds.) PARLE 1993. LNCS, vol. 694, pp. 305–316. Springer, Heidelberg (1993).
https://doi.org/10.1007/3-540-56891-3 24

51. Steinegger, S., Schrammel, D., Weiser, S., Nasahl, P., Mangard, S.: SERVAS! secure
enclaves via RISC-V authenticryption shield. CoRR abs/1802.09085 (2021)

52. Szekeres, L., Payer, M., Wei, T., Song, D.: SoK: eternal war in memory. In: S&P
2013, pp. 48–62 (2013). https://doi.org/10.1109/SP.2013.13

53. Taassori, M., Shafiee, A., Balasubramonian, R.: VAULT: reducing paging overheads
in SGX with efficient integrity verification structures. In: ASPLOS 2018, pp. 665–
678 (2018). https://doi.org/10.1145/3173162.3177155

54. Unterluggauer, T., Werner, M., Mangard, S.: MEAS: memory encryption and
authentication secure against side-channel attacks. J. Cryptogr. Eng. 9(2), 137–158
(2018). https://doi.org/10.1007/s13389-018-0180-2

55. Vahldiek-Oberwagner, A., Elnikety, E., Duarte, N.O., Sammler, M., Druschel, P.,
Garg, D.: ERIM: secure, efficient in-process isolation with protection keys (MPK).
In: USENIX Security 2019 [2], pp. 1221–1238 (2019)

56. Waterman, A., Asanović, K.: The RISC-V instruction set manual, volume II: priv-
ileged architecture, document version 20190608-priv-msu-ratified (2019). https://
riscv.org/specifications/privileged-isa/

57. Weiser, S., Werner, M., Brasser, F., Malenko, M., Mangard, S., Sadeghi, A.:
TIMBER-V: tag-isolated memory bringing fine-grained enclaves to RISC-V. In:
NDSS 2019 (2019)

58. Werner, M., Unterluggauer, T., Giner, L., Schwarz, M., Gruss, D., Mangard, S.:
ScatterCache: thwarting cache attacks via cache set randomization. In: USENIX
Security 2019 [2], pp. 675–692 (2019)

59. Werner, M., Unterluggauer, T., Schilling, R., Schaffenrath, D., Mangard, S.: Trans-
parent memory encryption and authentication. In: FPL 2017, pp. 1–6 (2017).
https://doi.org/10.23919/FPL.2017.8056797

60. Wong, M.M., Haj-Yahya, J., Chattopadhyay, A.: SMARTS: secure memory assur-
ance of RISC-V trusted SoC. In: HASP 2018, pp. 6:1–6:8 (2018). https://doi.org/
10.1145/3214292.3214298

61. Woodruff, J., et al.: The CHERI capability model: revisiting RISC in an age of
risk. In: ISCA 2014 [4], pp. 457–468 (2014). https://doi.org/10.1109/ISCA.2014.
6853201

62. Wu, H., Preneel, B.: AEGIS: a fast authenticated encryption algorithm v1.1.
Submission to the CAESAR Competition (2016). https://competitions.cr.yp.to/
round3/aegisv11.pdf

63. Zaruba, F., Benini, L.: The cost of application-class processing: energy and per-
formance analysis of a Linux-ready 1.7-GHz 64-Bit RISC-V core in 22-nm FDSOI
technology. IEEE Trans. Very Large Scale Integr. Syst. 27, 2629–2640 (2019).
https://doi.org/10.1109/TVLSI.2019.2926114

64. Zeldovich, N., Kannan, H., Dalton, M., Kozyrakis, C.: Hardware enforcement of
application security policies using tagged memory. In: OSDI 2008, pp. 225–240
(2008)

https://rwc.iacr.org/2020/slides/Avanzi.pdf
https://rwc.iacr.org/2020/slides/Avanzi.pdf
https://doi.org/10.1007/3-540-56891-3_24
https://doi.org/10.1109/SP.2013.13
https://doi.org/10.1145/3173162.3177155
https://doi.org/10.1007/s13389-018-0180-2
https://riscv.org/specifications/privileged-isa/
https://riscv.org/specifications/privileged-isa/
https://doi.org/10.23919/FPL.2017.8056797
https://doi.org/10.1145/3214292.3214298
https://doi.org/10.1145/3214292.3214298
https://doi.org/10.1109/ISCA.2014.6853201
https://doi.org/10.1109/ISCA.2014.6853201
https://competitions.cr.yp.to/round3/aegisv11.pdf
https://competitions.cr.yp.to/round3/aegisv11.pdf
https://doi.org/10.1109/TVLSI.2019.2926114

Privacy

Privacy-Preserving Gradient Descent
for Distributed Genome-Wide Analysis

Yanjun Zhang, Guangdong Bai(B), Xue Li, Caitlin Curtis, Chen Chen,
and Ryan K. L. Ko

The University of Queensland, St Lucia, QLD, Australia
g.bai@uq.edu.au

Abstract. Genome-wide analysis, which provides perceptive insights
into complex diseases, plays an important role in biomedical data analyt-
ics. It usually involves large-scale human genomic data, and thus may dis-
close sensitive information about individuals. While existing studies have
been conducted against data exfiltration by external malicious actors,
this work focuses on the emerging identity tracing attack that occurs
when a dishonest insider attempts to re-identify obtained DNA samples.
We propose a framework named υFrag to facilitate privacy-preserving
data sharing and computation in genome-wide analysis. υFrag miti-
gates privacy risks by using vertical fragmentations to disrupt the genetic
architecture on which the adversary relies for re-identification. The frag-
mentation significantly reduces the overall amount of information the
adversary can obtain. Notably, it introduces no sacrifice to the capabil-
ity of genome-wide analysis—we prove that it preserves the correctness
of gradient descent, the most popular optimization approach for train-
ing machine learning models. We also explore the efficiency performance
of υFrag through experiments on a large-scale, real-world dataset. Our
experiments demonstrate that υFrag outperforms not only secure mul-
tiparty computation (MPC) and homomorphic encryption (HE) proto-
cols with a speedup of more than 221x for training neural networks,
but also noise-based differential privacy (DP) solutions and traditional
non-private algorithms in most settings.

1 Introduction

Advances in biomedical data analytics over the last few decades have enabled
inexpensive large-scale and whole genome studies. Genome-wide analysis, such
as genome-wide association studies (GWAS) and genome-wide complex trait
analysis (GCTA), plays an important role in assisting with predicting health
risks, enabling preventative and personalized medicine, and investigating natu-
ral selection and population differences [27]. As a data-driven study, genome-wide
analysis typically requires a large sample size to confirm differences with statis-
tical confidence. Sharing genomic data on a large scale thus becomes essential.
This however raises privacy concerns, as much sensitive information, including
health status and family relationships, can be derived from the human genome.
c© Springer Nature Switzerland AG 2021
E. Bertino et al. (Eds.): ESORICS 2021, LNCS 12973, pp. 395–416, 2021.
https://doi.org/10.1007/978-3-030-88428-4_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-88428-4_20&domain=pdf
https://doi.org/10.1007/978-3-030-88428-4_20

396 Y. Zhang et al.

Fig. 1. Genetic privacy breaches overview.

Indeed, various genetic privacy breaches and attacks [8,9] have highlighted the
urgent need to enhance privacy in the analysis.

In the research area of genetic privacy, our community has been focusing on
detecting and defending against the membership inference [12,18,25]. It aims
to reveal the presence of an individual’s genome in a dataset (e.g., a dataset of
HIV patients’ DNA sequences) that the adversary has partial or blackbox access
through Beacon systems [12] or trained machine learning models [25] (Fig. 1a).
In this work, we target an emerging but overlooked privacy threat known as the
identity tracing [9]. It occurs in a data sharing scheme when the adversary is
an insider such as dishonest participants or cloud service providers, shown in
Fig. 1b. Through the data sharing scheme, the adversary could gain access to
the datasets which in most instances have been conducted de-identification, and
attempts to re-identify individuals in them.

The adversary’s re-identification tactic is to exploit the correlations among
genomic data. Due to the existence of the correlations, even though the personal
identifiers (such as name and address) have been removed from the datasets,
the inherent correlations among genomic data could still put an individual’s pri-
vacy at risk. Figure 1b illustrates a representative attack scenario which exploits
the genetic inheritance laws, the most fundamental correlation. The adversary
applies a sophisticated tactic called long-range familial search (LFS) which
detects the target’s genetic relatives from identity-retaining datasets by matching
the identical-by-descent (IBD) segments of DNA [9]. Having known the genetic
relatives, the adversary is able to narrow down the target’s identity.

LFS is a de facto investigative tool by law enforcement to trace suspects due
to its re-identification capacity. In a notable case, LFS was used to successfully
trace the Golden State Killer in 2018 [9]. With the explosion1 of public consumer
genomics services (such as GEDmatch and MyHeritage2) which allow users to
upload raw genotype files for genetic analysis including searching for their genetic
relatives, privacy threats of utilizing LFS against normal individuals are greatly
exacerbated - as the growth of available datasets (refer to the public dataset in
Fig. 1b) significantly increases the probability that an LFS identifies individuals.

1 There have been around 26 million tests sold in 2019 [24].
2 https://www.gedmatch.com/; https://www.myheritage.com/.

https://www.gedmatch.com/
https://www.myheritage.com/

Privacy-Preserving Gradient Descent for Distributed Genome-Wide Analysis 397

This presents an urgent demand for privacy-preserving solutions that take the
correlations into account.

The existing techniques of preserving privacy for general-purpose data ana-
lytics, including differentially private (DP) deep learning frameworks [3,16,39],
and cryptographic technologies such as homomorphic encryption (HE) [5,30] or
secure multiparty computation (MPC) [17,36], may not be applicable to genome-
wide analysis due to their inherent limitations. The former ones are usually based
on additive noise mechanisms which perturb the original data/models and con-
sequently affect model accuracy to a certain extent. This is often prohibitive
given the high accuracy required by genome-wide analysis. The HE and MPC
prevent plaintext data disclosure, and are able to compute identical results from
the cyphertext as from the plaintext, but they are known to be limited by non-
trivial computational or communicational overhead.

Our Solution. We propose υFrag, which is a distributed framework for pre-
serving privacy in collaborative genome-wide analysis. υFrag achieves high effi-
ciency via distributing computation throughout multiple unnecessarily trustwor-
thy nodes, and privacy preservation via an innovative DNA sequence fragmen-
tation. The proposed fragmentation is a vertical partitioning and reassembling
of DNA segments, designated against the privacy risk of identity tracing.

The insight of the proposed fragmentation is to disrupt the genetic architec-
ture3 where the correlations stem from. This seemingly straightforward strategy
inherently suits DNA sequence data, given that a DNA sequence is essentially a
(A|T |G|C)∗ string and its “semantics” are reflected by the occurrence of variants
at particular locations (i.e., loci). In the human genome, the effect size of single
variation associated with the heritability is small. In other words, a person’s
phenotypic heritability, e.g., his/her susceptibility to disease, depends more on
the combined effect of all the associated genes than on one particular genetic
variation [27]. Therefore, the proposed fragmentation can significantly reduce
the chance of an adversary fully obtaining the information about the heritability
in genome.

υFrag also addresses the fundamental challenge of privacy-utility trade-
off. Given the vertically partitioned datasets, most primitive functionalities and
algorithms used in genome-wide analysis, such as genetic relationship matrix
estimation [34] and genotype clustering [4], can be parallelized. This can be for-
malized as the parallel correctness that an analysis in our framework reaches the
same results as in a centralized way. We demonstrate that our parallelization of
gradient descent (Sect. 3) and other primitive functionalities (AppendixB) pre-
serves this property. In such a way, our fragmentation results in no sacrifice to
those analyses relying on them, e.g., any machine learning algorithm based on
gradient descent for optimization.

Contributions. We summarize the main contributions of this work as follows.

3 Genetic architecture refers to the underlying genetic basis and its variational prop-
erties that are responsible for broad-sense heritability [26].

398 Y. Zhang et al.

1. A Privacy-Preserving Framework. We propose a novel framework υFrag
for privacy-preserving sharing of DNA data in large-scale genome-wide analysis.
υFrag is characterized by its capabilities of privacy preservation and verifiably
correct computation for genome-wide analysis.

2. A Novel Privacy-preserving Technique and its Quantitative Anal-
ysis. To the best of our knowledge, our work is the first to use DNA sequence
fragmentation for mitigating the genetic privacy threat. The evaluation of the
privacy preservation in υFrag is twofold. In a high level, we construct a formal
model to quantitatively evaluate the overall amount of information leaked to the
adversary. In the individual level, we propose ε-indistinguishability - a variant
model of ε-local differential privacy, and prove that the vertical fragmentation
provide a bound for the adversary’s capacity in distinguishing individuals.

3. Experimental Evaluation. We conduct experiments on a real-world
dataset, showing the significant improvement of efficiency by our framework
compared with the MPC/HE algorithms and a state-of-the-art noise-based DP
solution.

2 System Design

2.1 υFRAG Overview

Figure 2a demonstrates the architecture and workflow of υFrag. It provides a
distributed sharing network for the participants (local owners) to assemble their
local DNA sequence datasets for large-scale analysis. The network is comprised
of an aggregation node A (the blue node in Fig. 2a) and a worker node layer
that includes s worker nodes S1,, Ss (the green and grey nodes). The original
datasets are split into fragments locally before they leave their owners. These
fragments are then transferred to the worker nodes. Each of them separately
processes a few fragments and reports its single-point result to the aggregation
node, which synthesizes the analysis results and sends them to the recipients.

The rationale to fragment the dataset in a vertical manner is to hin-
der malicious or compromised worker nodes from gaining the complete DNA
sequence (xt) and IBD segments. Below we define the mask operation for the
fragmentation. Let X be a dataset of Sm×n, and xij ∈ X represents the geno-
type on the jth SNP of ith individual. Let Mask = {M1, ...,Ms} be a set of s
vectors of [0|1]n (denoting a n-dimensional vector comprising of 0 and 1) s.t.,
M1 ∨ ... ∨ Ms = [1]n.

Definition 1 (Mask Operation � for Vertical Fragmentation). Given a
mask M l = [mask l

1 , ...,mask l
n] (l ∈ {1, ..., s}), X � M l produces a dataset X l,

whose element xl
ij in X l is generated by

xl
ij =

{
xij , if mask l

j = 1
drop, if mask l

j = 0
(1)

Privacy-Preserving Gradient Descent for Distributed Genome-Wide Analysis 399

Fig. 2. System design.

The Mask is initialized by υFrag and distributed to each participant for
them to generate fragments. By applying the mask operation with each vec-
tors in Mask , participants produce s new datasets, X1, ...,Xs, and each is then
dispatched to a worker node. Note that participants do not have to assemble
their original datasets for fragmentation; instead, each X l is constructed in node
Si from individual fragments, as shown by the colored rectangles in Fig. 2a.
The genome-wide analysis functionalities are then achieved by the collaboration
between the worker nodes and the aggregation node. Initialization of the mask
is the key to disrupt the genetic architecture. In υFrag, this is determined by
the fragmentation strategy (detailed in Sect. 5).

2.2 Attacker Model and Assumptions

We assume an honest-but-curious adversary A who may control t out of s worker
nodes, where t ≤ s. For the sake of simplicity, our privacy analysis in Sect. 5 con-
siders an aggregation node out of the adversary’s control. Such an aggregator can
be accommodated with a private server or a private cloud instance in reality, as
it is designed to be free from any computation-intensive task. In Sect. 7, we show
that even though it is compromised, the identity tracing attack is unlikely (with a
negligible probability) to derive the original DNA sequence for re-identification.

Let δ denote the proportion of trusted worker nodes, i.e., δ = (s− t)/s. Each
worker nodes holds a fragment X l = X �M l, and X has been anonymized such
that the identifiers of its samples are removed. We assume the adversary also has
access to a publicly available datasets D which comprise genotyped individuals.
Given an arbitrary DNA sequence from {X l}|Sl is under A’s control denoted by xt,
the adversary attempts to re-identify xt’s subject (referred to as the target) by
searching for the target and/or its genetic relatives from D. We parameterize
this re-identification with the gth degree of genetic relatives, where g ≥ 1 (g = 1
for target him/herself or siblings, g = 2 for first cousins, and so on) 4.
4 For readability, a table of notations is included as Appendix A.

400 Y. Zhang et al.

Below we brief the attack techniques the adversary can use, and leave their
models in Sect. 4.

– LFS Attack. LFS makes use of the IBD segments, which are DNA seg-
ments inherited by persons having a common ancestor, for re-identification.
Figure 2b shows an IBD segment co-inherited from a common ancestor two
generations back. IBD segments indicate the genetic distance of two indi-
viduals, and are measured in centiMorgans (cM). The higher the number
of centiMorgans of IBD segments, the more significant the match is, i.e., the
higher probability that target and the matched individual have inherited from
a recent ancestor [9]. As a result, the capacity of LFS can be regarded as the
probability of the two individuals sharing sufficient detectable IBD segments.

– Genotype Imputation. We also take into account the genotype imputation
technique that could infer the missing genotypes of a DNA sequence based on
the remaining genotypes [7]. It could be abused by the sophisticated adversary
to learn more fragments based on those it obtained.

3 Privacy-Preserving Gradient Descent

To retain the capability of genome-wide analysis, υFrag must reach exactly
the same result as a traditional non-distributed framework does when operating
any computation. We formalize this as the parallel correctness of parallelized
computation with respect to the vertical fragmentation.

Definition 2 (Parallel Correctness). Given a function F which takes as
input a genomic dataset X ∈ S

m×n, assume a fragmentation strategy partitions
X into a set of fragments X l (l = {1, ..., s}), and each of them is associated
with a worker node Sl ∈ S, where S is the set of worker nodes interacting
with an aggregation node A. The parallelized F in υFrag, denoted by F ′, is
parallely correct if F ′({(Sl,X l), A}Sl∈S) = F(X).

In the following, we present υFrag’s computation of gradient descent, the
optimization that most analyses rely on, and prove its parallel correctness. We
note that our computation also works on SGD, in which X l denotes a randomly
selected training sample or a subset of training samples.

We let FGD(J,X) denote the gradient descent optimization applied on the
dataset X with a cost function J . J is defined as J(σ(XW), y,W), where W
denotes coefficient matrix and σ is the hypothesis function which is determined
by the learning model. In logistic regression, σ is usually a sigmoid function,
while in neural networks, it is a composite function known as the forward propa-
gation. The optimal solution of W , denoted as W∗, is derived by the optimization
arg minW J(σ(XW), y,W), and W is updated as W := W − α ∂J

∂W .
In υFrag, the parallelized gradient descent optimization, denoted by F ′

GD,
is designed as the following steps.

– Initialization . At the beginning of the task, the fragments X l ∈ R
m×dl (l ∈

{1, ..., s}) are assigned to the corresponding Sl, and Sl randomly initializes
its W l ∈ R

dl×H which is associated with X l.

Privacy-Preserving Gradient Descent for Distributed Genome-Wide Analysis 401

– Step 1 . Each Sl computes X lW l, and sends X lW l to the aggregation node.

– Step 2 . The aggregation node computes XW =
s∑

l=1

X lW l, and the gradient

Δ, which is the gradient of the cost function J with respect to XW , i.e.,
Δ = ∂J

∂XW . Then it sends Δ back to each worker node.
– Step 3 . Each Sl updates the respective coefficient W l := W l − αX lT Δ.

Step 1–3 repeat for the next iterations until convergence.
The following theorem demonstrates that if FGD(J,X) = (W∗, η), i.e., if the

non-distributed optimization outputs W∗ that makes J converge to a local/global
minimum η, then executing F ′

GD({(J, Sl,X l), Agg}Sl∈S) on X1, ...,Xs in υFrag
with the same hyper settings (such as step size, model structure, initialization)
will also output W∗ that makes J converge to η.

Theorem 1. F ′
GD is parallelly correct.

Proof. Let Wi denote the model parameters of FGD at the ith training iteration.
Let W ′

i = |{W l
i }|l∈{1,..,s} denote the vertical concatenation on {W l

i }l∈{1,..,s}, i.e.,
the model parameters of F ′

GD at the ith training iteration. The theorem can be
proved by induction as follows.

– Base case: W0 = W ′
0 by assumption of hyper setting.

– Inductive step: In FGD, the ith (i ≥ 1) training iteration update Wi as

Wi = Wi−1 − α
∂J

∂Wi−1
= Wi−1 − α

∂J

∂(XWi−1)
∂XWi−1

∂Wi−1

= Wi−1 − αXT ∂J

∂(XWi−1)
.

(2)

In F ′
GD, each node Sl updates its local W l

i as

W l
i = W l

i−1 − αX lT Δ = W l
i−1 − αX lT ∂J

∂(XW ′
i−1)

.

Since W ′
i = |{W l

i }|l∈{1,..,s} and X = |{X l}|l∈{1,..,s}, we have in F ′
GD that

W ′
i = |{(W l

i−1 − αX lT ∂J

∂(XW ′
i−1)

)}|l∈{1,..,s} = W ′
i−1 − αXT ∂J

∂(XW ′
i−1)

.

(3)
Comparing Eq. 2 and 3, Wi and W ′

i are updated with the same equation.
Hence, Wi = W ′

i . Thus, FGD = F ′
GD = (W∗, η). ��

4 Modeling Attacks for Privacy Analysis

In this section and Sect. 5, we assess the privacy-preservation of υFrag’s dis-
tributed gradient descent. We starts with modeling the proposed attacks (cf.
Sect. 2.2), and leave the privacy analysis in Sect. 5.

402 Y. Zhang et al.

4.1 Modeling the LFS Attack

We adopt a Shannon entropy based measurement to investigate the amount of
information the adversary can obtain. Shannon entropy has been extensively
employed as a metric to evaluate privacy-preserving mechanisms [8,28,31,32],
due to its capability of quantifying the expected contribution of a piece of data
in reducing the uncertainty of the target’s identity among the base population.

We assume the target’s record in a genome-wide analysis study is randomly
sampled from a defined population with the size denoted by N . This therefore
translates to log2N bits of entropy. Take the US population as an example.
With the population of 329 million in 2019, the uncertainty of a random sample’s
identity can be measured as 28.2 bits of entropy. Denote γ as the mean number of
children per mating pair. Conditioned that a successful match between the target
and a genetic relative at gth degree, the amount of bits of information obtained
by the adversary can be derived as h(g) = log2N−log2

∑g
k=1 γ k = log2

N∑g
k=1 γ k .

For example, if the LFS successfully matches the target or his/her siblings (g =
1) from the US population (where γ = 2.5), the adversary gains 26.88 bits of
information. In other words, the uncertainty of target’s identity is reduced to
1.32 bit. Then, we can formulate the expected entropy bits gained by the LFS
attack as the function of generation degree g as H(g) = h(g)Pr(identify), where
the Pr(identify) is the probability of a successful match between the target and
a random individual at gth degree. The H(g) is taken as the indicator of the
capacity of the LFS attack, and thus the core of our privacy analysis becomes
to determine the Pr(identify).

A successful match between the target and a random individual depends on
the conditions that these two individuals are genetic relatives, and they share
detectable IBD segments [9]. Therefore, Pr(identify) can be derived from calcu-
lating the following two probabilities: 1) Pr(shared), the probability of the target
and a random individual sharing a pair of ancestors at gth degree given N(g)
which is the population size of the generation at gth degree, and 2) Pr(match|g),
the probability that these two individuals share sufficient IBD segments to be
detected given the public dataset D of size R. Here the sufficiency is defined as
the IBD matching parameters - to declare a match between the target and an
individual in D, there should be at least c IBD segments, each of which is of
length ≥ v(cM).

To identify the target, the adversary needs to find at least t matches
from D. Thus, Pr(identify) can be formulated as Pr(identify) = 1 −∑t−1

k=0 B(k;R,Pr(shared) ·Pr(match|g)), where B is the probability mass func-
tion of the binomial distribution. Below, we give Pr(shared) and Pr(match|g):

Pr(shared) =
22g−2

N(g)

g−1∏
g′=1

(1 − 22g′−2

N(g′)
),

P r(match|g) = 1 −
c−1∑
k=0

B(k; 2Lg + 22,
P r(IBD)

22g−2
),

(4)

Privacy-Preserving Gradient Descent for Distributed Genome-Wide Analysis 403

Fig. 3. Attack performance for varying dataset sizes. (Color figure online)

where Pr(IBD) denotes the probability of the shared IBD segment length to
exceed v, and L is the total genome length, which is roughly 3, 500 cM [23]. The
derivation of Pr(shared) and Pr(match|g) is detailed in our technical report [1].

Quantifying Privacy Threat of LFS. We now are able to quantify privacy
threat of the LFS attack when υFrag is not applied. We first derive Pr(IBD)
in the scenario where the adversary has the access to the full genome of the
target. As the length of the IBD segment is exponentially distributed with a
mean of 1/(2g) cM [23], the probability density function (PDF) of the length
of IBD segments is: Pr(x) = 2ge−2gx. Therefore, the probability of the shared
IBD segment length exceeding v is Pr(IBD) =

∫ ∞
v

2ge−2gxdx = e−2vg.
With this, we explore the performance of LFS for various public dataset

sizes, taking the aforementioned US population (329 million and γ = 2.5) as
a case study. In general, as the dataset size increases, the LFS attack acquires
higher entropy, as is shown in Fig. 3. When the dataset includes around 30% of
the population, the attacker is able to achieve 25.9 bits (the magenta line). We
also notice that in the cases where the dataset size is small, a greater g is more
favorable to the attacker. When the public dataset covers less than 1% of the
population, the best performance (21.3 bits) is achieved by the re-identification
of the third cousins (the blue line). This may be because the number of distant
relatives in the population is greater than close ones. For example, in Fig. 2b, the
circle in level 0 has seven relatives with g = 2 whereas two with g = 1. As a result,
when the size is small, the probability of successfully searching a distant relative
is higher. Nevertheless, as the coverage of the dataset goes higher, identifying
closer relatives gives the attacker more significant bits.

It is worth noting that the privacy threat is becoming worse in the real
world, with the increasing number of consumer genomics services for searching
identified genetic relatives. For example, with GEDmatch, which is a public
available database that contains around one million DNA profiles (0.3% of the
target population), LFS is able to achieve up to 19 bits of entropy (the blue line
in the zoomed view of Fig. 3). The expected entropy further rises to 22.5 bits if
the genetic dataset reaches the scale that covers 2% of the US population (the
green line in the zoomed view of Fig. 3).

404 Y. Zhang et al.

4.2 Modeling the Genotype Imputation

Next, we modeling the genotype imputation that infers (part of) missing geno-
types of the target by matching the observed ones with a reference panel of
haplotypes. A haplotype refers to a set of SNPs found on the same chromo-
some. Haplotype reference panels are widely used for genotype imputation [7].
The model typically used for the inference is a Hidden Markov Model (HMM)
in which the hidden states are a sequence of pairs of haplotypes in a reference
panel [7]. That is,

Pr(G|H) =
∑

Z(1),Z(2)

Pr(G|Z(1), Z(2),H) · Pr(Z(1), Z(2)|H), (5)

where H = {H1, ...,HK} is a set of K known haplotypes (the reference panel),
Hi = {Hi1, ...,Hin} is a single haplotype and Hij ∈ {0, 1} (0/1 stand for ref-
erence and alternative genotype respectively). G = {G1, ..., Gn} denotes the
genotype data on the target individual, and Gi ∈ {0, 1,missing}. Z(1) =
{Z

(1)
1 , ..., Z

(1)
n } and Z(2) = {Z

(2)
1 , ..., Z

(2)
n } are the two sequences of hidden states

at the n sites (i.e., loci) and Z
(j)
l ∈ {1, ...,K}. Intuitively, these hidden states

can be regarded as pairs of haplotypes in the set H that are copied to form the
genotype G.

The first term Pr(G|Z(1), Z(2),H) in Eq. 5 defines the emission probabil-
ities λ in HMM, which allows for mutation at each SNP. The second term
Pr(Z(1), Z(2)|H) models the transition probability ρ. It reflects the linkage dis-
equilibrium between two alleles and determines how Z(1) and Z(2) transits from
Hi to Hj along the sequence. When calculating the state probability for loci
with missing genotypes, λ is cancelled out and only the transition probability ρ
plays a role. The transition probability ρ is dominated by the genetic distance,
i.e., the longer the genetic distance between the observed genotypes, the larger
the probability (1−ρ) for Z(1) and Z(2) transiting from one reference haplotype
to others [7]. Therefore, with a growing number of missing genotypes in the IBD
segments which is proportional to the genetic distance, the probability (1 − ρ)
increases. This results in more possible candidates for the imputation, and thus
reduces the expected number of accurately imputed genotypes.

Here, we provide the upper bound of the expected number of accurately
imputed genotypes (denoted as T) with respect to the number of missing geno-
types (denoted as τ) as

T <
K

1 − ρ
K− 1−ρ

K τ
τ∏

i=1

MAFi

τ∑
k=0

(
τ

k

)
(τ − k), (6)

where MAFi is the minor allele frequency of the ith missing genotype (theoreti-
cally MAFi ≤ 0.5). The derivation of Inequality 6 can be found in our technical
report [1]. The evaluation the privacy preservation assumes that the adversary
applies the genotype imputation by default, implying that the adversary knows

Privacy-Preserving Gradient Descent for Distributed Genome-Wide Analysis 405

T extra genotypes. We further set MAFi = 0.5 (such setting gives the adversary
advantage as it leads to a large T), such that Inequality 6 is simplified as

T <
τK

2(1 − ρ)
K− 1−ρ

K τ . (7)

5 Analysis of Privacy Preservation

With the models of attacks, we then analyze the privacy preservation of υFrag
against the adversary who has compromised a proportion of nodes. We outline
our evaluation from the following two levels.

– Collection Level: Reduction of Overall Information Leak-
age (Sect. 5.1). We quantify information leakage reduction of two typical
fragmentation strategies. Through the comparison with the baseline, we show
that the information leakage to the adversary exponentially decreases with
the growth in the proportion of trusted nodes.

– Individual Level: Indistinguishability among Individuals (Sect. 5.2).
Information entropy is suitable for measuring the information leakage of a
system as a whole, but less capable on individuals. As a complementary, we
define ε-indistinguishability - a variant model of local differential privacy. We
prove such indistinguishability provides the bound of an adversary’s capacity
of distinguishing an individual target based on the information obtained from
the fragments (including those inferred by the genotype imputation).

5.1 The Collection-Level Analysis

Analysis on Random Fragmentation Strategy. First, we consider a sce-
nario of random sampling that the individuals in the public dataset are ran-
domly selected from a defined population. In this scenario, υFrag applies a
random fragmentation on the dataset. Assuming the adversary has applied
the genotype imputation, the expected length of IBD segments held by the
adversary is increased from 1/2g to (1 + T

n)/2g, in which T
n is the imputa-

tion rate. Then, the PDF of the length of IBD segments after the imputation is
Pr(x)adversary = 2g

1+T/n
e
− 2g

1+T /n
x. The probability of this IBD segment’s length

to exceed v is Pr(IBD)impute =
∫ ∞

v
2g

1+T/n
e
− 2g

1+T /n
x
dx = e

− 2vg

1+T /n . In the ran-
dom fragmentation setting, the probability for the adversary to hold this segment
is 1 − δ. Therefore, the probability of the adversary holding a detectable IBD
segment in this scenario, denoted by Pr(IBD)1, can be calculated as:

Pr(IBD)1 = (1 − δ)e− 2vg

1+T /n . (8)

Combining Pr(IBD)1 with Eq. 4, we can derive the probability for the adversary
to match the target and his/her relative sharing at least c detectable (at least
length v) IBD segments, denoted as Pr(match|g)1, as

406 Y. Zhang et al.

Pr(match|g)1 = 1 −
c−1∑
k=0

B(k; 2Lg + 22,
P r(IBD)1

22g−2
)

= 1 −
c−1∑
k=0

B(k; 2Lg + 22, (1 − δ)
e
− 2vg

1+T /n

22g−2
).

(9)

Thus, the expected value of entropy bits gained by the adversary who controls
(1 − δ) proportion of nodes, denoted as H ′(g)1, can be formulated as

H ′(g)1 = h(g)
(
1 −

t−1∑
k=0

B (k;R,Pr(shared) · Pr(match|g)1)
)
. (10)

Analysis on IBD-targeting Fragmentation Strategy. We then consider a
more realistic scenario wherein the individuals in the dataset are selected from
particular families or particular areas/suburbs (such as the patient data of a
hospital whose patients are usually from nearby suburbs). In this scenario, data
owners can provide prior knowledge of their data (such as pedigree information
and family distributions), such that υFrag is able to identify the locations of
the IBD segments and deliberately split them during the fragmentation.

With this strategy, the chance that adversary holds the full IBD segments
is significantly reduced compared to the random fragmentation. Since each IBD
segment is fragmented, the expected length of IBD segments held by the adver-
sary is reduced from (1+ T

n)/(2g) to (1− δ)(1+ T
n)/(2g). The PDF of the length

of IBD segments then becomes Pr(x)adversary = 2g

(1−δ)(1+T/n)
e
− 2g

(1−δ)(1+T /n)
x.

Therefore, in this scenario, the probability of the adversary holding a detectable
IBD segment Pr(IBD)2 is

Pr(IBD)2 = e
− 2vg

(1−δ)(1+T /n) . (11)

With this, the probability that two individuals share enough IBD segments to
be detected, denoted as Pr(match|g)2, can be calculated as

Pr(match|g)2 = 1 −
c−1∑
k=0

B(k; 2Lg + 22,
P r(IBD)2

22g−2
)

= 1 −
c−1∑
k=0

B(k; 2Lg + 22,
e
− 2vg

(1−δ)(1+T /n)

22g−2
).

(12)

All in all, the expected entropy bits gained by the adversary in IBD-targeting
fragmentation, denoted as H ′(g)2, can be calculated as

H ′(g)2 = h(g)
(
1 −

t−1∑
k=0

B (k;R,Pr(shared) · Pr(match|g)2)
)
. (13)

Privacy-Preserving Gradient Descent for Distributed Genome-Wide Analysis 407

Fig. 4. Information leakage reduction.

Quantifying Information Leakage Reduction. We first explore the capac-
ity of genotype imputation in both random and IBD-targeting fragmentation
strategies according to Inequality 7. Our quantification is based on the 1000
Genomes Project dataset (Phase 3) [2] - a widely used reference dataset for
genotype imputation; we set K = 2, 504 which is the sample size of the dataset,
and set ρ to 0.85 in the random strategy and 0.5 in the IBD-targeting strategy
according to Das et al. [7]. As shown in Fig. 4a, the capacity of genotype impu-
tation in the random strategy is lower than that in the IBD-targeting strategy.
This is because the latter, which deliberately splits the IBD segments, further
increases the genetic distance such that the upper bound of T (Inequality 7) is
decreased. It also can be found that the imputation rate rises faster in the ran-
dom strategy when the adversary controls ≥90% nodes (0 ≤ δ ≤ 10%), with
less missing genotypes in the IBD regions. However, with the further growth of
trusted nodes, the imputation rate exponentially decreases in both strategies.

Next, we evaluate the privacy preservation in υFrag. We keep the same set-
ting of population size (329 million) and γ = 2.5. In addition, we fix the dataset
size as 30% of the target population, as this gives the adversary an advantage
according to Fig. 3. The genotype imputation is considered in our evaluation by
incorporating the imputation rate into Eq. 10 and Eq. 13 respectively. As shown
in Fig. 4b and 4c, with the growth of trusted nodes, the expected entropy bits
achieved by the attack rapidly decreases. When the network reaches 20% hon-
est nodes, the expected entropy bits gained by the attack reduce to 17.96 and
11.26 in random fragmentation strategy and IBD-targeting fragmentation strat-
egy respectively. When the network reaches an honest majority (δ ≥ 0.5), the
attack can achieve only 8.95 bits of entropy in random fragmentation, and 1.14
bits of entropy in IBD-targeting fragmentation. In other words, the uncertainty
for the attack to identify an individual remains 19.25 bits (28.2–8.95) and 27.06
bits (28.2–1.14), which equals to a random guess among 623,487 people and
139.9 million people respectively.

5.2 The Individual-Level Analysis

We define ε-indistinguishability to evaluate the privacy preservation from the
level of indistinguishability of individual data items.

408 Y. Zhang et al.

Fig. 5. ε-indistinguishability in both strategies

Definition 3 (ε-Indistinguishability). Let ε be a positive real number and G
be a randomized algorithm that processes dataset X and D. The algorithm G
is said to provide ε-indistinguishability if for data items d1, d2 ∈ D and x ⊆
Range(G(X))

Pr(G(d1) = x) ≤ eεPr(G(d2) = x). (14)

As is shown, the definition of ε-indistinguishability is essentially a variant of
ε-local differential privacy (LDP), which is yet a variant model of differential
privacy with added restriction to the indistinguishability of individual data
items [6,10]. The difference is that, the indistinguishability in our model is mea-
sured from the adversarial view, i.e., the outputs space of G on individual data
items from the two datasets accessible by the adversary (referring to fragments
produced by G(X) and the public dataset D), whereas the indistinguishability
in the original LDP is measured directly on the output space of G on individual
data items.

Let AFi be the allele frequency of the ith SNP, d denote the number of SNPs
from the target that the adversary is able to access, and D denote the dataset
comprised of R genotyped individuals. The following theorem states that our
mask operation � makes υFrag satisfy ε-indistinguishability.

Theorem 2. The vertical fragmentation makes υFrag satisfy ε-indistinguish-

ability where ε = ln((1 −
1∑

k=0

B(k,R,
d∏

i=1

AFi))−1).

Proof. Assume the adversary is able to access x ∈ {A, T,C,G}d, which is a
randomized output generated by the mask operation � for vertical fragmentation
in υFrag. The probability of observing at least t times of x in the dataset D of

size R is (1 −
t∑

k=0

B(k,R, Pr(x|D))), where Pr(x|D) =
d∏

i=1

Pr(xi |D) =
d∏

i=1

AFi.

Then, Pr[(d1�Mask)=x]
Pr[(d2�Mask)=x] =

1−
1∑

k=0
B(k,R,Pr(x|d1))

1−
1∑

k=0
B(k,R,Pr(x|d2))

≤ 1

1−
1∑

k=0
B(k,R,

d∏

i=1
AFi)

. Thus, we

have ε = ln((1 −
1∑

k=0

B(k,R,
d∏

i=1

AFi))−1).

Privacy-Preserving Gradient Descent for Distributed Genome-Wide Analysis 409

We explore the privacy level ε each strategy can achieve. We keep the same
setting of the dataset size, i.e., 30% of the target population, and set the num-
ber of SNPs in the genome-wide analysis as 5,000. As reported in 1000 Genomes
Project, the majority of variants in the human genome have a minor allele fre-
quency < 0.5% [2], we take the upper bound of the minor allele frequency 0.5%
and set the ĀF = 99.5% in the evaluation. This gives the adversary more advan-
tage as ĀF in the real world can be even larger than in this setting. The param-
eter d, which is the number of SNPs obtained by the adversary, is set after the
adversary has applied genotype imputation.

Figure 5 shows the privacy parameter ε against the proportion of the trusted
nodes in both strategies. υFrag can achieves ε = 3.72 and ε = 2.02 in the
random and IBD-targeting strategies respectively, when the adversary controls
80% of the nodes (δ = 0.2). When the network reaches an honest majority, ε is
reduced to 0.406 and 0.405 respectively. As the definition of ε-indistinguishability
is adopted from LDP, we demonstrate a comparable privacy gain with that of
the state-of-the-art systems achieving LDP, such as Apple’s DP framework with
ε = {2, 4, 8} [6] and Google’s RAPPOR with ε = ln(3) [10].

6 Performance Evaluation

We implement υFrag in C++. It uses the Eigen library [11] to handle matrix
operations, and ZeroMQ library [15] for distributed messaging. Our experiments
use the 1000 Genomes Project dataset [2], which is a public dataset providing
a comprehensive description of human genetic variation. The experiments are
conducted on 62,042 SNPs on Y-chromosome from 1,233 male samples.

Fig. 6. Efficiency comparison with the baseline and MPC/HE solutions.

To be representative, υFrag is executed on both LAN and WAN network
settings. The LAN setting captures the scenario where two or more institutions
collaboratively execute computations on their own private inputs. In such sce-
nario, the involved parties usually communicate over fast dedicated links. In our
experiments, the average network bandwidth is set as 1 GB/s. The WAN setting,
on the other hand, simulates a scenario where individual participants share their

410 Y. Zhang et al.

Table 1. Comparison with DP solution (m = 32661, n = 124).

FDML υFrag-LAN

Linear regression 99 s 0.76 s

Neural network 110 s 139.53 s

Table 2. Overhead breakdown of linear regression and neural network (n = 784).

Linear regression Neural network

Computation Communication Computation Communication

LAN WAN LAN WAN

m = 1,000 0.4 s 0.0085 s 44.9 s 37.6 s 3.8 s 395.2 s

m = 10,000 1.2 s 0.5 s 264.4 s 225.9 s 1.6 s 1395.2 s

m = 60,000 5.7 s 0.8 s 402.9 s 1312.7 s 15.1 s 8143.9 s

m = 100,000 9.5 s 1.5 s 681.3 s 2167.9 s 23.2 s 10140.6 s

genomic data over public network infrastructure. The average network latency
(one-way) is set as 183.19 ms, and the average throughput is 8.75 MB/s.

We take the performance of traditional non-privacy-preserving frameworks
as the baseline, given that it is the most common practice in existing genome-
wide analysis. We also show the performance of other existing privacy-preserving
mechanisms, including cryptographic based methods (MZ17 [22]) and differential
privacy mechanisms (FDML [16]). MZ17 considers MPC/HE solutions for pri-
vacy preserving machine learning algorithms based on oblivious transfer (OT)
and linearly homomorphic encryption (LHE), and FDML is a state-of-the-art
additive noise based DP framework which also employs in the scenario of dis-
tributed features, the same as υFrag.

Figure 6 and Table 1 summarize our efficiency comparison with the baseline,
MZ17, and FDML respectively. Table 2 lists the overhead breakdown to com-
putation and communication. Generally, υFrag significantly outperforms the
MPC/HE solutions, and also outperforms the baseline and the state-of-the-art
DP solution in most settings.

LR. We follow the same experimental settings as [22] (including machine specifi-
cations, network settings, and batch/epoch sizes). As shown in Fig. 6, υFrag sig-
nificantly outperforms MZ17, and even faster than the baseline in the LAN set-
ting. For example, υFrag takes 10.93 s with sample size m = 100, 000 (Fig. 6a),
while it takes 594.95 s in MZ17-OT and 17.21s in the baseline. In the WAN set-
ting (Fig. 6c), υFrag achieves 690.74 s with m = 100, 000. It is 19x faster than
the MPC solutions in MZ17-LHE, which takes 12,841.2 s with the same sample
size. υFrag also outperforms FDML (Table 1), due to the significant savings on
the computational cost compared with the additive noise mechanism.

Privacy-Preserving Gradient Descent for Distributed Genome-Wide Analysis 411

NN. We implement a fully connected NN with a sigmoid function as the acti-
vation function. It has the same structure as that in MZ17. In the LAN setting
(Fig. 6b), υFrag achieves 1,327.72 s (22.1 min) with sample size m = 60, 000,
while MZ17-OT takes 294,239.7 s (more than 81 h)5. In the WAN setting
(Fig. 6d), our framework still remains practical. It achieves 9,456.53 s with sam-
ple size m = 60, 000. In contrast, it is not yet practical for MZ17 to train NN
in the WAN setting due to the massiveness of interaction and communication.
We also plot the MZ17-OT-LAN result (294,239.7 s) in Fig. 6d. It can be found
that even when running our framework in the WAN setting, υFrag is still much
more efficient than the MPC solutions in MZ17 running on the LAN setting.

In comparison with the DP solution, υFrag NN achieves similar performance
with FDML (Table 1). We note that FDML NN only considers a fully connected
NN within each worker node while merging the local predictions in a composite
model, whereas υFrag uses a fully connected NN over all the features, thus
leading to a more complex model.

Overhead Analysis. Computation overhead of υFrag is in line with its com-
plexity of O(dlm) (where dl and m are the number of SNPs and samples in
X l respectively), and communication cost is in linear with O(dlms) (where s
is the number of local nodes). More nodes lead to a smaller dl but a larger s.
The memory consumption of υFrag, same as its centralized counterpart, is only
related to the size of X and weight W .

7 Discussion

Our privacy analysis (Sect. 5) is conducted under a trustworthy aggregator. In
this section, we explore the impact of a compromised aggregator.

The aggregator in υFrag has access to only the intermediate results but none
of any local data. According to the derivation in our previous work [37] (refer
to its Theorem 1), the overall knowledge of the aggregator can obtain is
{X lW l,X l(X l)T }, where X lW l is the aggregator’s own input, and X l(X l)T is
the additional information that can be inferred from the training iterations. We
then quantify the impact of colluding parties including the compromised aggre-
gator. Given the knowledge of {X lW l,X l(X l)T }, the probability of computing
the original input X l or W l, is not greater than 1/(r!), where r is the rank of
X l (refer to Theorem 2 of [37]). Since X l is a matrix of m samples with dl SNPs,
the rank r of X l is the number of unique DNA sequence in X l. We can formulate
the probability of the number of duplicated sequence being no more than K, i.e.,
the rank r > (dl − K), as Pr(r > (dl − K)) =

∑K
k=0 B(k; dl, (1 − ĀF)dl), where

ĀF denotes the expected allele frequency, and (1 − ĀF)dl is the probability of
a DNA sequence being identical to the reference genome.

With it, we can estimate the probability of the attacker deriving X l or W l,
given dl. We let ĀF = 0.00397 as reported in the 1000 Genomes Project dataset

5 Only the performance with m = 60, 000 in the LAN setting is reported in [22].

412 Y. Zhang et al.

[2]. When dl exceeds 120, which is common in real-world genome-wide analy-
sis datasets, the probability of r > 32 (i.e., the probability of deriving X l or
W l being less than 1/(32!)) is 0.9965. This implies that it is unlikely for the
compromised aggregator to derive the original data of honest parties.

8 Related Work

In this section, we summarize existing privacy-preserving techniques which can
be divided into the following categories.

Cryptographic Solutions. Cryptographic solutions, such as HE and MPC [5,
17,22,38], enable computation without disclosing data in plaintext. Several stud-
ies have been conducted to enable multiple entities to train machine learning
models with privacy preservation over the input data. For example, Wan et
al. [13] proposes a MPC-based solution for privacy-preserving gradient descent.
In [36], a secure protocol is presented to calculate the delta function in the
back-propagation training.

Differential Privacy. DP is another methodology that constitutes a strong
standard for privacy guarantees for algorithms on aggregate databases [3,16,39].
Several studies have explored the differentially private release of common sum-
mary statistics of GWAS data (such as the allele frequencies of cases and controls,
χ2-statistic and P values [35,40]) or shifting the original locations of variants [19].
Recently, a study proposes a novel differential privacy mechanism named SV T 2

for mitigating membership inference attacks against DNA methylation data [12].
Recently, Hartmann et al. [14] proposes a noise-based DP framework which pro-
vides differential privacy with very small noise addition by adding and canceling
noise among clients.

Distributed Deep Learning Framework. Our work is related to but different
from distributed deep learning frameworks [33]. Existing work focuses either on
the reduction of the training time of deep neural network models [29], or on the
theoretical convergence speed in the distributed computing environment [20].

9 Conclusion

In this paper, we presented υFrag, a privacy preserving framework for dis-
tributed genome-wide analysis. υFrag mitigates privacy risks by using a verti-
cal DNA sequence fragmentation to disrupt the genetic architecture on which
the adversary relies for re-identification. We demonstrated the privacy preser-
vation of υFrag from both collection level (overall information leakage reduc-
tion) and individual level (indistinguishability among individuals). Our experi-
ments on large-scale datasets showed that υFrag outperforms state-of-the-art
cryptography-based with a speedup of more than 221x for training neural net-
works. Our work sheds a light on the privacy preservation in genome-wide analy-
sis. For sequential data (like DNA sequences), disrupting the order and location
dependency could be a promising solution.

Privacy-Preserving Gradient Descent for Distributed Genome-Wide Analysis 413

Acknowledgment. We thank our shepherd Erman Ayday and the anonymous
reviewers for their insightful comments to improve this manuscript. This work is partly
supported by the University of Queensland under the UQ Cyber Initiative Strategic
Research Seed Funding 4018264-01-299-21-618071.

Appendix A Notation Table

Table 3 summarizes the notations defined in this paper.

Table 3. Notation table

Notation Domain Explanation Notation Domain Explanation

SNP / Single-nucleotide
polymorphism

γ R Mean value of
children per couple

X S
m×n Centralized training

dataset
ρ R Transition

probability in HMM

W R
n×H Centralized

coefficient matrix
N Z Size of a general

population

xij S Genotype of jth

SNP of ith sample
T R Expected value of

imputation accuracy

Xl
S
m×dl Vertical partition of

X
τ Z The number of

missing genotypes

W l
R

dl×H Coefficient matrix
associated with Xl

R Z Size of the public
dataset

Sl, A Z Worker node and
aggregation node

K Z Size of the reference
haplotypes panel

δ R Proportion of
trusted worker
nodes

(M)AF R (Minor) allele
frequency

g Z Degree of genetic
relatives

ε R Privacy parameter

J , σ / Cost function and
hypothesis function

� / Mask operation

Δ R
m×H Gradient of J w.r.t

XW
B() / PMF of binomial

distribution

Appendix B Functionalities in Genome-Wide Analysis

In this section, we briefly introduce the functionalities commonly used in the
analysis.

Summary Statistics. Summary statistics are used to summarize the observa-
tions on the genome-wide data. Commonly used summary statistics include the

414 Y. Zhang et al.

missingness statistics (Ui,miss/n, where Ui,miss is the number of missing SNPs
of ith sample), allele frequency (c/2m, where c is the total number of allele for
each SNP), and Hardy-Weinberg equilibrium ({(p2 + 2pq + q2 == 1)}, where p2

is the frequency of homozygous dominant genotype, pq is the frequency of het-
erozygous genotype, and q2 is the frequency of homozygous recessive genotype)
[21].

Basic Association Analysis. The basic association analysis for GWAS checks
on any particular SNP. If one type of the variant (i.e., one allele) is more frequent
in individuals with a disease, the variant is said to be associated with the disease.
Commonly used statistics include standard χ2 test and the Cochran-Armitage
test, which performs the tests with respect to each SNP.

Genetic Relationship Matrix (GRM). GRM is developed for addressing
the missing heritability problem by estimating the variance explained by all
the SNPs on a chromosome or on the whole genome for a complex trait [34].
The genetic relationship between individuals β and ζ can be estimated by
1
n

∑n
i=1

(xβi−2pi)(xζi−2pi)
2pi(1−pi)

, where xβi is the genotype of ith SNP of βth individual,
and pi is the frequency of the reference allele.

Classification Models Such as Neural Networks. Machine/deep learning
algorithms, such as various NNs, are commonly used in genome-wide analysis.
For example, they can be used to fit the effects of all the SNPs as random effects
to estimate the total amount of phenotypic variance [34], or applied in genotype
clustering and ethnicity prediction [4].

The former three functionalities are relatively simple to parallelize than
machine learning algorithms, as the statistics with respect to each SNP can
directly apply on the vertically partitioned dataset. Therefore, in this work, we
focused on the latter.

References

1. vFrag. https://sites.google.com/view/vfrag
2. 1000 Genomes Project Consortium: A global reference for human genetic variation.

Nature 526(7571), 68 (2015)
3. Abadi, M., et al.: Deep learning with differential privacy. In: Proceedings of the

2016 ACM SIGSAC Conference on Computer and Communications Security, pp.
308–318. ACM (2016)

4. Angermueller, C., Pärnamaa, T., Parts, L., Stegle, O.: Deep learning for compu-
tational biology. Mol. Syst. Biol. 12(7), 878 (2016)

5. Bogdanov, D., Kamm, L., Laur, S., Sokk, V.: RMIND: a tool for cryptographically
secure statistical analysis. IEEE Trans. Dependable Secure Comput. 15, 481–495
(2016)

6. Cormode, G., Jha, S., Kulkarni, T., Li, N., Srivastava, D., Wang, T.: Privacy at
scale: local differential privacy in practice. In: Proceedings of the 2018 International
Conference on Management of Data, pp. 1655–1658 (2018)

7. Das, S., et al.: Next-generation genotype imputation service and methods. Nat.
Genet. 48(10), 1284–1287 (2016)

https://sites.google.com/view/vfrag

Privacy-Preserving Gradient Descent for Distributed Genome-Wide Analysis 415

8. Erlich, Y., Narayanan, A.: Routes for breaching and protecting genetic privacy.
Nat. Rev. Genet. 15(6), 409 (2014)

9. Erlich, Y., Shor, T., Pe’er, I., Carmi, S.: Identity inference of genomic data using
long-range familial searches. Science 362(6415), 690–694 (2018)

10. Erlingsson, Ú., Pihur, V., Korolova, A.: Rappor: randomized aggregatable privacy-
preserving ordinal response. In: Proceedings of the 2014 ACM SIGSAC Conference
on Computer and Communications Security, pp. 1054–1067. ACM (2014)

11. Guennebaud, G., Jacob, B., et al.: Eigen v3 (2010). http://eigen.tuxfamily.org
12. Hagestedt, I., et al.: MBeacon: privacy-preserving beacons for DNA methylation

data. In: NDSS (2019)
13. Han, S., Ng, W.K., Wan, L., Lee, V.C.: Privacy-preserving gradient-descent meth-

ods. IEEE Trans. Knowl. Data Eng. 22(6), 884–899 (2009)
14. Hartmann, V., West, R.: Privacy-preserving distributed learning with secret gra-

dient descent. arXiv preprint arXiv:1906.11993 (2019)
15. Hintjens, P.: ZeroMQ: Messaging for Many Applications. O’Reilly Media Inc.,

Sebastopol (2013)
16. Hu, Y., Niu, D., Yang, J., Zhou, S.: FDML: a collaborative machine learning frame-

work for distributed features. In: Proceedings of the 25th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery & Data Mining, pp. 2232–2240 (2019)

17. Jagadeesh, K.A., Wu, D.J., Birgmeier, J.A., Boneh, D., Bejerano, G.: Deriving
genomic diagnoses without revealing patient genomes. Science 357(6352), 692–695
(2017)

18. Jia, J., Salem, A., Backes, M., Zhang, Y., Gong, N.Z.: MemGuard: defending
against black-box membership inference attacks via adversarial examples. In: Pro-
ceedings of the 2019 ACM SIGSAC Conference on Computer and Communications
Security, pp. 259–274 (2019)

19. Johnson, A., Shmatikov, V.: Privacy-preserving data exploration in genome-wide
association studies. In: Proceedings of the 19th ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining, pp. 1079–1087. ACM (2013)

20. Lian, X., Huang, Y., Li, Y., Liu, J.: Asynchronous parallel stochastic gradient for
nonconvex optimization. In: Advances in Neural Information Processing Systems,
pp. 2737–2745 (2015)

21. Marees, A.T., et al.: A tutorial on conducting genome-wide association studies:
quality control and statistical analysis. Int. J. Methods Psychiatric Res. 27(2),
e1608 (2018)

22. Mohassel, P., Zhang, Y.: SecureML: a system for scalable privacy-preserving
machine learning. In: 2017 IEEE Symposium on Security and Privacy (SP), pp.
19–38. IEEE (2017)

23. Ralph, P., Coop, G.: The geography of recent genetic ancestry across Europe. PLoS
Biol. 11(5), e1001555 (2013)

24. Regalado, A.: MIT technology review. https://www.technologyreview.com/2019/
02/11/103446/more-than-26-million-people-have-taken-an-at-home-ancestry-
test/

25. Salem, A., Zhang, Y., Humbert, M., Berrang, P., Fritz, M., Backes, M.: ML-
Leaks: model and data independent membership inference attacks and defenses
on machine learning models. arXiv preprint arXiv:1806.01246 (2018)

26. Timpson, N.J., Greenwood, C.M., Soranzo, N., Lawson, D.J., Richards, J.B.:
Genetic architecture: the shape of the genetic contribution to human traits and
disease. Nat. Rev. Genet. 19(2), 110 (2018)

27. Visscher, P.M., et al.: 10 years of GWAS discovery: biology, function, and transla-
tion. Am. J. Human Genet. 101(1), 5–22 (2017)

http://eigen.tuxfamily.org
http://arxiv.org/abs/1906.11993
https://www.technologyreview.com/2019/02/11/103446/more-than-26-million-people-have-taken-an-at-home-ancestry-test/
https://www.technologyreview.com/2019/02/11/103446/more-than-26-million-people-have-taken-an-at-home-ancestry-test/
https://www.technologyreview.com/2019/02/11/103446/more-than-26-million-people-have-taken-an-at-home-ancestry-test/
http://arxiv.org/abs/1806.01246

416 Y. Zhang et al.

28. Wang, K., Zhang, J., Bai, G., Ko, R., Dong, J.S.: It’s not just the site, it’s the
contents: intra-domain fingerprinting social media websites through CDN bursts.
In: Proceedings of the Web Conference 2021, pp. 2142–2153 (2021)

29. Wang, S., Pi, A., Zhou, X.: Scalable distributed DL training: batching communi-
cation and computation. In: Proceedings of AAAI (2019)

30. Wang, S., et al.: HEALER: homomorphic computation of exact logistic regression
for secure rare disease variants analysis in GWAS. Bioinformatics 32(2), 211–218
(2015)

31. Wang, Y., Huang, Z., Mitra, S., Dullerud, G.E.: Differential privacy in linear dis-
tributed control systems: entropy minimizing mechanisms and performance trade-
offs. IEEE Trans. Control Netw. Syst. 4(1), 118–130 (2017)

32. Wang, Y.-X., Lei, J., Fienberg, S.E.: On-average KL-privacy and its equivalence to
generalization for max-entropy mechanisms. In: Domingo-Ferrer, J., Pejić-Bach, M.
(eds.) PSD 2016. LNCS, vol. 9867, pp. 121–134. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-45381-1 10

33. Xing, E.P., Ho, Q., Xie, P., Wei, D.: Strategies and principles of distributed machine
learning on big data. Engineering 2(2), 179–195 (2016)

34. Yang, J., Lee, S.H., Goddard, M.E., Visscher, P.M.: GCTA: a tool for genome-wide
complex trait analysis. Am. J. Human Genet. 88(1), 76–82 (2011)

35. Yu, F., Fienberg, S.E., Slavković, A.B., Uhler, C.: Scalable privacy-preserving data
sharing methodology for genome-wide association studies. J. Biomed. Inform. 50,
133–141 (2014)

36. Yuan, J., Yu, S.: Privacy preserving back-propagation neural network learning
made practical with cloud computing. IEEE Trans. Parallel Distrib. Syst. 25(1),
212–221 (2014)

37. Zhang, Y., Bai, G., Li, X., Curtis, C., Chen, C., Ko, R.K.L.: PrivColl: practical
privacy-preserving collaborative machine learning. In: Chen, L., Li, N., Liang, K.,
Schneider, S. (eds.) ESORICS 2020. LNCS, vol. 12308, pp. 399–418. Springer,
Cham (2020). https://doi.org/10.1007/978-3-030-58951-6 20

38. Zhang, Y., Bai, G., Li, X., Nepal, S., Ko, R.K.: Confined gradient descent: Privacy-
preserving optimization for federated learning. arXiv preprint arXiv:2104.13050
(2021)

39. Zhang, Y., Bai, G., Zhong, M., Li, X., Ko, R.: Differentially private collaborative
coupling learning for recommender systems. IEEE Intell. Syst. 36, 16–24 (2020)

40. Zhang, Y., Zhao, X., Li, X., Zhong, M., Curtis, C., Chen, C.: Enabling privacy-
preserving sharing of genomic data for GWASs in decentralized networks. In: Pro-
ceedings of the Twelfth ACM International Conference on Web Search and Data
Mining, pp. 204–212. ACM (2019)

https://doi.org/10.1007/978-3-319-45381-1_10
https://doi.org/10.1007/978-3-319-45381-1_10
https://doi.org/10.1007/978-3-030-58951-6_20
http://arxiv.org/abs/2104.13050

Privug: Using Probabilistic Programming
for Quantifying Leakage in Privacy Risk

Analysis

Raúl Pardo1(B), Willard Rafnsson1, Christian W. Probst2,
and Andrzej Wąsowski1

1 IT University of Copenhagen, Copenhagen, Denmark
{raup,wilr,wasowski}@itu.dk

2 Unitec Institute of Technology, Auckland, New Zealand
cprobst@unitec.ac.nz

Abstract. Disclosure of data analytics results has important scientific
and commercial justifications. However, no data shall be disclosed with-
out a diligent investigation of risks for privacy of subjects. Privug is
a tool-supported method to explore information leakage properties of
data analytics and anonymization programs. In Privug, we reinterpret a
program probabilistically, using off-the-shelf tools for Bayesian inference
to perform information-theoretic analysis of the information flow. For
privacy researchers, Privug provides a fast, lightweight way to experi-
ment with privacy protection measures and mechanisms. We show that
Privug is accurate, scalable, and applicable to a range of leakage anal-
ysis scenarios.

1 Introduction

However high the value of data becomes, we cannot ignore the risks that data
disclosure presents to personal privacy. Consequently, general privacy protec-
tion methods like differential privacy [18], comprehensibility and communication
of privacy issues [32], industrial processes for data management [22], and debug-
ging and analyzing privacy risk problems in program code [9,11,12] have become
intensive areas of research. This paper falls into this last group; we present tools
for data scientists who create data analysis programs and would like to disclose
the results of the computation. Our primary goal is to create a method that sup-
ports a privacy debugging process, i.e. assessing effectiveness of such algorithms,
and indeed of any calculations on the data, for concrete programs and datasets,
in the style of debuggers. We want to help identifying and explaining the leakage
risks, as the first step towards eliminating them.

As an example, consider the following Scala program that, given a list of
names and ages, computes the mean age of the persons in a map-reduce style:

Work partially supported by the Danish Villum Foundation through Villum Exper-
iment project No. 00023028 and New Zealand Ministry of Business, Innovation and
Employment – Hı̄kina Whakatutuki through Smart Ideas project No. UNIT1902.
c© Springer Nature Switzerland AG 2021
E. Bertino et al. (Eds.): ESORICS 2021, LNCS 12973, pp. 417–438, 2021.
https://doi.org/10.1007/978-3-030-88428-4_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-88428-4_21&domain=pdf
https://doi.org/10.1007/978-3-030-88428-4_21

418 R. Pardo et al.

1 def agg (records: List[(String,Double)]): Double =
2 records.map { (n, a) => (a, 1) }
3 .reduce { (x, y) => (x._1 + y._1, x._2 + y._2) }
4 .map { (sum, count) => sum / count }

Let the age of each individual be the sensitive secret in this example. One attack
could be that underage individuals can be identified. An analyst would like to
ask: How much of sensitive information leaks when the mean is disclosed? In
what situations is this leak not ignorable? What kind of attackers may discover
the secret by observing the mean?

Privug is an analysis method for privacy risks in data processing. A data
analyst using Privug models an attacker’s knowledge about the secret as a
probability distribution. Privug re-interprets the program as an information
transformer that operates on distributions instead of concrete inputs. The ana-
lyst analyzes the attacker’s confidence about the secret, using a combination of
probability queries, standard information-theoretic measures, and visualizations.
She explores and assesses the information leakage to the result of the program
by varying attacker knowledge, the queries and the leakage measures. For our
example, the analyst may learn that the leakage is ignorable if the subjects are
drawn from general population, but if the attacker knows that they come from a
homogeneous group, she could, for example, conclude that a specific individual
is under age.

Since Privug is based on probabilistic reasoning, it can be facilitated by
probabilistic programming, a lively field in data science, with many tools avail-
able. Privug is not tied to any particular probabilistic programming framework.
In this paper, we implement queries, measures, and visualization in Figaro [35]
and PyMC3 [40]. For programs seen as functions, a probabilistic programming
framework can automatically build a Bayesian model which represents the infor-
mation transform. This transform supplemented by a model of attacker can be
used to explore re-identification risks [14].

Privug offers three distinct advantages over state of the art tools for privacy
risk analysis: (i) It focuses on the analysis of programs not data, which means
that a what-if analysis can be performed before data is available, or without
authorizing access to a sensitive database. (ii) It is largely automatable using off-
the-shelf systematic Monte-Carlo inference tools already used by data analysts,
but which have not been used for this purpose before. (iii) Privug is easy to
extend with new estimators of leakage thus serves as a good test-bed for privacy
mechanism research. To the best of our knowledge, Privug as a method and
probabilistic programming as a platform are the only basis that can offer such
versatility at this point. Our contributions include:

1. A widely applicable and extensible method, Privug, to analyze privacy risks.
The first such method based on probabilistic programming frameworks.

2. An implementation of Privug in Figaro and PyMC3, the first versatile tool
supporting such a wide range of measures over continuous and discrete inputs
and outputs.

Privug: Using Probabilistic Programming for Privacy Risk Analysis 419

Fig. 1. Privacy violation: the data is anonymized (ano), then the diagnosis of Alice is
recovered by an attacker who links the result with another data set (⊕).

Fig. 2. Privacy violation: the program computes a mean of ages, the mean is released,
but an attacker with prior knowledge can reduce the uncertainty regarding Alice’s age.

3. An empirical evaluation of the accuracy, scalability, and applicability of
Privug for analyzing systems of different size and complexity, showing that
probabilistic programming is an excellent base for implementing leakage anal-
ysis tools.

We evaluate applicability, accuracy, and scalability of Privug, using well known
privacy mechanisms (differential privacy, k-anonymity, naive anonymization) and
synthetic cases that can be scaled up for higher dimensionality and using. Our
experiments demonstrate Privug’s versatility to realize many analysis scenar-
ios, and its interoperability with existing tools (by integrating external estima-
tors). The source code and experiment data is available at https://bitbucket.org/
itu-square/privug-experiments. The repository contains additional experiments
showing the use of Privug in a realistic case study: an experiment using the
differential privacy library OpenDP (https://opendp.org/).

2 Overview

We consider data disclosure programs seen as functions that transform an input
dataset to an output. The output is then disclosed to a third party, called

https://bitbucket.org/itu-square/privug-experiments
https://bitbucket.org/itu-square/privug-experiments
https://opendp.org/

420 R. Pardo et al.

an attacker. The aggregation example agg from the introduction translates a
database with two columns: name (String) and age (Double) to a number rep-
resenting mean age which is then published. The second running example, ano,
anonymizes medical records in a dataset. The input data has five columns: name,
zip code, birthday, sex, and diagnosis. The program simply drops the name col-
umn, before the data is released to an attacker:

1 def ano (records: List[(Name,Zip,Day,Sex,Diag)]): List[(Zip,Day,Sex,Diag)] =
2 records.map { (n, z, b, s, d) => (z, b, s, d) }

Suppose that in the anonymization example, subjects have not consented to
disclosure of their diagnosis. Despite anonymization, the diagnosis of individuals
may be revealed by a linking attack (see Fig. 1). If an attacker has access to
a dataset with zip codes, birthdays, sex, and, crucially, names, a simple join
could reveal the names of the individuals from the disclosed medical records.
Zip code, birthday, and sex form a quasi-identifier in both datasets. (Sweeney
famously joined medical records disclosed by the Group Insurance Commission
with a voter registration list to reveal the health record data of the then-governor
of Massachusetts [42].) Similarly, suppose that in the aggregation example (agg)
users have not consented that their age is disclosed. Despite the disclosed data
being an aggregate, it carries some information about individual ages. If you
knew that Alice is around 40, as modeled by a Normal distribution in Fig. 2,
then after learning the average, your uncertainty decreases: the final mean age
raises, and the standard deviation decreases, making extreme values of Alice’s
age less likely.

Privug aims to help data scientists investigate the information revealed to an
attacker from the output of a program. We frame this scenario as an adversarial
problem. We assume a threat model in which an information theoretical attacker
has some prior knowledge about the input, has access to the program code, and
observes the output. There are no bounds on the computational resources avail-
able to the attacker when analyzing the posterior knowledge to learn information
about the secret input, e.g., probability of an outcome or event.

We model this scenario using probabilistic programming. First, we build a
probabilistic model of the prior knowledge of the attacker. Intuitively, the prior
of the attacker captures what she knows, with (un)certainty, about the input of
the program before observing the output. We then express the attacker’s view
of the program, by transforming the program to operate on probabilistic mod-
els of datasets instead of actual data. We do this by lifting the algorithm into
the probability monad [36]. Next, we introduce observations modeling the con-
crete output of the program that the attacker sees. Observations constrain the
prior of the attacker and produce the posterior knowledge of the attacker, i.e.,
what the attacker knows about the input. We use Bayesian inference to esti-
mate the posterior, Figaro for Scala [35] and PyMC3 [40] for Python, but many
other probabilistic frameworks can be used (Pyro [3], Tensorflow Probability [17],
Anglican [43], etc.). Finally, we analyze the posterior to quantify how much the
attacker learns by observing the output. This lets us determine whether specific

Privug: Using Probabilistic Programming for Privacy Risk Analysis 421

attackers are capable of learning specific things, to assess the risk of disclosing
the output of the program.

3 Privug

We present each step of the Privug method in detail. We model disclosure prob-
lems probabilistically and express models directly in a probabilistic programming
language to enable automatic analysis. Let D(X) denote a distribution over a set
X. We write x ∼ D(X) to denote that random variable x is distributed accord-
ing to D(X); thus x ∼ U(0, 10) means that x is uniformly distributed from 0 to
10. In a programming language, this corresponds to x = Uniform(0,10). We also
use composition operators of the language to define y in terms of x, define a
distribution over datasets, and so on.

Step 1: Attacker Knowledge (Prior). We model the prior knowledge of an
attacker as a probability distribution over the possible input values of the pro-
gram. In the agg program the input ranges over an array of pairs (name,age).
Therefore, attacker prior knowledge is defined as a distribution over lists of pairs,
D(List[(String,Double)]). Consider the following two examples of attackers:

kal The knows-a-lot attacker knows that the input dataset contains exactly four
rows and that the age of all individuals, except Alice, is 55.2. This is modeled
by distributions C(4) for the size and C(55.2) for the age column.

kab The knows-just-a-bit attacker knows that the input has approximately hun-
dred entries (|records| ∼ B(300, 1/3), a binomial distribution), and that the
average age of an individual in the list is 55 (distributed with N (55.2, 3.5)).

Both attackers know that Alice’s record is in the dataset, and that no other
record in the dataset has that name. They do not know anything about
Alice’s age upfront: all ages from 0 to 100 are equally likely, a uniform dis-
tribution U(0, 100). Implementations of kal and kab are shown below, the dif-
ferences highlighted in bold. Here, Element[T] denotes a distribution over T,
and FixedSizeArrayElement[T] denotes a distribution over fixed-but-unknown-size
arrays of Ts. When sampled, kab yields an array of random size, containing
(String,Double) pairs. The first pair represents Alice.

1 def prior_kal: FixedSizeArrayElement[(String,Double)] =
2 VariableSizeArray (Constant (4), i => for
3 n <- if i==0 then Constant ("Alice") else Uniform (names: _*)
4 a <- if i==0 then Uniform (0,100) else Constant (55.2)
5 yield (n, a))

7 def prior_kab: FixedSizeArrayElement[(String,Double)] =
8 VariableSizeArray (Binomial (300, 0.3), i => for
9 n <- if i==0 then Constant ("Alice") else Uniform (names: _*)

10 a <- if i==0 then Uniform (0,100) else Normal (55.2,3.5)
11 yield (n, a))

422 R. Pardo et al.

Step 2: Attacker Prediction (Program). We obtain the attacker’s prediction of
the output of running a program by transforming—i.e. lifting—the program
to operate on distributions instead of concrete datasets, and applying it to the
attacker model. Let D(X) denote the set of distributions on set X. Since distribu-
tions form a monad [36], several useful functions are well defined on distributions,
including lift that, here, has type

lift :
(
A → B

) → (D(A) → D(B)
)
.

A function from A to B becomes a function from distributions over A to dis-
tributions over B. Recall that the type of agg is List[(String, Double)]→ Double.
The lifting of agg has type: D(List[(String, Double)])→ D(Double). In Figaro:

1 def agg_p (records: FixedSizeArrayElement[(String,Double)]): Element[Double] =
2 records.map { (n, a) => (a, 1) }
3 .reduce { (x, y) => (x._1 + y._1, x._2 + y._2) }
4 .map { (sum, count) => sum / count }

Note that only types change; D is Element in Figaro, and FixedSizeArrayElement[T]
is an efficient implementation of D(List[T]). For a distribution over input
datasets, agg_p yields a distribution over average ages (Double). Running agg_p
on a prior modeling the attacker’s knowledge yields the attacker’s prediction of
the average age. Formally, the distribution of the output (the attacker predic-
tion) is defined as P(o) =

∫
x
P(o|x)P(x)dx. See the extended version of this

paper [33] for the semantic details of computing P(o).

Step 3: Attacker Observation. We use observations to condition the attacker’s
prediction of the output. Since the prediction depends on the prior, conditioning
it conditions the prior, and updates the attacker’s knowledge about the input. We
write P(x |E) to denote the conditional distribution of x given evidence E. Let
x ∼ D(X), the evidence E is a predicate over X. For instance, we write P(x | 4 <
x < 8) to denote the conditional distribution where only the outcomes x in the
interval (4; 8) are possible. We use conditions to model attacker observations of
the output. For our aggregation example, to assert that the attacker observes
55.3, we define the predicate E as (x : Double) => (55.295<=x && x<55.305) as evi-
dence on the prediction. The observation is typically known as likelihood func-
tion [26], and it is modeled as a distribution (denoted as P(E|x)) assigning high
probability to the values satisfying E. For instance, for the observation above we
define P(E|x) equals 1/0.005 for 55.295 ≤ x ≤ 55.305 and 0 otherwise. In Scala,
the predicate E is written as an anonymous function stating that the output is
within 0.005 from 55.3. We cannot assert that the output is exactly 55.3, since
the output space is continuous; each individual outcome occurs with probability
zero. In Figaro, we set E on prediction o with o.setCondition(E).

Step 4: Attacker Posterior. We use Bayesian inference to compute the updated
attacker’s knowledge upon the observation. We put together the elements of our
model using the Bayes rule as follows:

Privug: Using Probabilistic Programming for Privacy Risk Analysis 423

Table 1. Posterior analysis summary. Results of each measure for the two attackers.

kal kab kal kab

Expectation E[a|o ≈ 55.3] 55.60 64.000 Standard deviation σ[a|o ≈ 55.3] 0.01 14.00

Probability query P(a|o ≈ 55.3) 0.00 0.004 Shannon entropy H(a|o ≈ 55.3) −3.08 5.83

KL-divergence DKL(a|o ≈ 55.3 || a) 5.64 0.770 Mutual information I(a; o) 9.37 0.60

P(x, o |E)
︸ ︷︷ ︸
posterior

= P(E |x, o)
︸ ︷︷ ︸
observation

·
prediction︷ ︸︸ ︷

P (o|x) · P(x)
︸ ︷︷ ︸
prior

·P(E)−1 (1)

Our goal is to use the attacker prior P(x) (step 1), attacker prediction P(x, o) =
P(o|x)P(x) (step 2), and observation P(E|x, o) (step 3) to compute the posterior
knowledge P(x, o|E). Note that the equation above is expressed in terms of the
joint distribution of the random variables for input x and output o. The marginal
distributions can be obtained by integrating out the corresponding variables.

We use Markov Chain Monte Carlo (MCMC) methods [38] to estimate
the posterior distribution by generating samples from a probabilistic program.
MCMC algorithms are simulation methods that efficiently generate samples
from the high density intervals of the target distribution, in our case P (x, o|E).
We refer the interested readers to Robert and Casella [38] for details. We con-
sider only terminating programs; as no samples can be generated from non-
terminating programs using these methods. We remark that MCMC methods
do not require computing or specifying the normalization factor P(E)−1. Their
convergence conditions are well-known [21], but the number of samples deter-
mines their accuracy. In Sect. 4, we evaluate the accuracy and efficiency of several
MCMC methods for this application. In Figaro, we use the MCMC algorithm
importance sampling [35]. Let a and o denote Alice’s age and the outcome in
the aggregation example. If we define the evidence E = “o ≈ 55.3” on the pre-
diction as above, Importance(10000, a) produces 10000 samples that estimate the
distribution P(a | o ≈ 55.3).

Step 5: Leakage (Posterior Analysis). We analyze the posterior distribution to
investigate what the attacker learns. Table 1 shows an overview of analyses for
the agg example. Using multiple measures gives a multi-perspective analysis for
complex problems.

To query the probability P(x |ϕ) of a random variable x satisfying a predicate
ϕ, in Figaro we write alg.probability(x,ϕ) where alg is the inference algorithm.
Other available queries estimate the histogram of the attacker’s posterior, its
expectation, and variance. The probability query allows to estimate whether an
attacker learns a fact, effectively encoding a knowledge-based security policy
check (Sect. 5). The strengths of an attack checking if Alice is underage in the
agg example is captured by the query: P (a<18 | o≈55.3). The prior probability
of a < 18 is 0.17. It reduces to 0.004 for kab and to 0 for kal in the posterior.
Both attackers can conclude that Alice is an adult. To visualize information gain,
we plot the kernel density estimates [41]. Figure 4m plots the age of Alice in the

424 R. Pardo et al.

prior P (a) and the posterior P(a | o≈55.3) for kal. Figure 4n shows the same for
o = agg_p(prior_kab). The plots confirm that kal can make stronger conclusions
than kab; the posterior of the former is taller and narrower than the one of the
latter; note the y-axis scale. The uniform prior has expected value E[a] ≈ 50
and standard deviation σa ≈ 29. As listed in Table 1, the posterior expectation
increases to 55.60 for kal with standard deviation 0.01: kal effectively learns a
from the output. For kab the posterior has larger standard deviation (14), so
kab’s uncertainty about the age of Alice is greatly reduced, yet remains high.

Moving beyond measuring and visualizing probability, we quantify attacker’s
learning using quantitative information flow measures: entropy, KL-divergence,
mutual information, and Bayes risk. These and other measures are added to
Privug as libraries, which estimate the corresponding measure using the sam-
ples of the MCMC algorithm of Step 4.

Shannon’s entropy quantifies the uncertainty about the value of a ran-
dom variable (e.g., [24,30]). A decrease in entropy from prior to posterior
signifies an increase in knowledge. Entropy (in bits) is defined as H(x) =∑

x∈X P(x) log2 P(x) for discrete random variables. Since Privug works with
an inferred distribution, we estimate the entropy using the classic algorithm [1],
which is known to be accurate and easy to implement. In the agg example, the
entropy of a in the prior is H(a) = 6.67bits. At the same time, the conditional
entropy of a in the posterior for kab is H(a | o ≈ 55.3) = 5.84bits. The attacker
gained 0.83bits of information about the age of Alice. For kal, the posterior
entropy is H(a | o ≈ 55.3) = −3.08. Here the difference is 9.75bits, twelve times
more than what kal learned. (The entropy of a continuous variable (replace

∑

with
∫

above), differential entropy, can be negative [1].) Clearly, kal is an example
of an attacker able to amplify the disclosed information thanks to its additional
pre-existing knowledge—a situation often referred to as a linking attack. The
ability of kab in this respect is much weaker. Privug allows experimenting with
the attacker space in this way, to let the data controller understand what attacks
are successful, and then assess whether they are of concern.

Relative entropy [28] or KL-divergence measures how much two distributions
differ. In Bayesian inference, the KL-divergence of a posterior P (x) and a prior
Q(x), defined as DKL(P || Q) =

∑
P (x) log2(P (x)/Q(x)), expresses the amount

of “information lost when Q is used to approximate P ” [6, page 51]. Thus, KL-
divergence is a measure of information gained by revising one’s knowledge of the
prior to the posterior. As with entropy, since we are working with an inferred
distribution, we can estimate KL-divergence from samples. We use the algorithm
by Wang et al. [44]. For the aggregation example, the KL-divergence between
the posterior and prior of a is a measure of the amount of information that the
attacker gained about Alice’s age by observing the output of the program. For
kab, DKL(a | o ≈ 55.3 || a) = 0.77. For kal, on the other hand, DKL(a | o ≈ 55.3 ||
a) = 5.64. These results indicate that the observation yields an information gain
of 0.77 bits for kab and 5.64 bits for kal. More important is the difference; kal gains
over 7 times more information than kab. In Sect. 4 we show how KL-divergence
can be used to measure utility when programs add noise to their output.

Privug: Using Probabilistic Programming for Privacy Risk Analysis 425

Mutual information between two random variables x, y, defined as I(x; y) =∑
y∈Y

∑
x∈X P(x, y) log2(P(x, y)/P(x)P(y)), measures the reduction of the

uncertainty of x by the knowledge of y [15]. We estimate I(i; o) where i is a
secret input and o a public output (the attacker’s prediction) to quantify how
much information o shares with i. Mutual information is well studied as a quan-
titative information flow measure (cf. Sect. 5). A privacy protection mechanism
typically aims at minimizing I(i; o). In Privug, we use the mutual informa-
tion estimator [25] provided by SKlearn [34] for continuous variables and Leaki-
Est [11] for discrete variables. In our example, we have I(a; o) = 9.37 bits for kal
and I(a; o) = 0.60 bits for kab. This is consistent with our intuition: when the
attacker knows everything about the input except for Alice’s age, observing the
output greatly reduces their uncertainty.

Privug can incorporate estimators of other measures. In Sect. 4 we show that
other tools can be incorporated on the example of F-BLEAU [9], to estimate
Bayes risk—the expected probability of an attacker guessing a secret (s) by
observing the output of the program (o); formally: 1−∑

o∈O maxs∈S P(o|s)P(s)
for random variables s and o [2].

This way we determine if specific attackers are capable of learning secrets, and
assess whether disclosing the output of the program poses a privacy risk. Figure 3
gives an overview of the steps in the Privug method. Privug’s intended users
are data analysts with knowledge in statistics and probabilistic modeling. These
users are typically trained in probabilistic programming, an essential part of
their toolbox (e.g., [21]). This makes it easy to perform steps 1, 3, and 4. Step 2
typically requires simply updating the datatypes of the input (as in agg and ano).
The analyst may, however, need to change the program to ensure differentiabil-
ity, or replace some operators with their probability counterparts. These are the
same techniques that data analysts use to create advanced probabilistic models
and analyses. Step 5’s probability queries, visualizations, and distribution statis-
tics such as expected value or variance, are likewise familiar to data analysts.
The interpretation of leakage does, however, require privacy-specific expertise
(information theory, quantitative information flow).

The results and conclusions drawn do depend on the to choice of prior. The
prior models what an attacker knows about the input of the program, the sec-
ondary knowledge that linked with the observed output can lead to privacy
violations. The analysis may report no leakage if priors do not reflect the real
information that an attacker has access to. Ideally, priors should be informed
from real world data. For instance, if the program takes as input a set of records
of US citizens, then it is advisable to inform priors from publicly available sources,
e.g., the US census. Alternatively, probabilistic programming frameworks can be
used to automatically learn underlying distributions from data with better accu-
racy than simply using the empirical distributions [21]. For mutual information
and multiplicative Bayes capacity (a derived measure from Bayes risk, it has
been shown that running the analysis with uniform priors uncovers leakage if it
exists, see [13, Theorem 4] and [2, Theorem 7.2]. This result can be used with

426 R. Pardo et al.

+,

///

Fig. 3. Overview of the steps in Privug method.

good effect to detect leakage, but not to estimate its magnitude, which can be
estimated using Privug.

4 Evaluation

RQ1: Can PrivugAnalyze Common Privacy Mechanisms? We analyze
three (modern and traditional) privacy mechanisms in Privug. The purpose is
twofold: i) Demonstrate the applicability of Privug, and ii) Serve as templates
for data analysts.

Differential Privacy. Consider a company computing the mean income of employ-
ees with agg and releasing the output publicly. To protect the anonymity of
employees, they add Laplacian noise to the output; a popular mechanism to
enforce differential privacy [18,19]. We use Privug to explore trade-offs between
privacy protection and data utility by varying the values of parameters. We
assume a dataset of 200 incomes. The company have previously released some
data on 195 of the 200 incomes, so it is publicly known that they are between
$80k and $90k (U(80, 90)). There are 5 new employees of which no income infor-
mation is known (U(10, 200)). The program to analyze is an extension of agg that
adds Laplacian noise to the output: o ∼ agg + L(0,Δagg/ε) where Δagg denotes
the sensitivity. This is known to preserve ε-differential privacy [19, Thm. 3.6].
Sensitivity captures the magnitude by which a single entry can change the out-
put. The program with the mechanism incorporated takes as input the epsilon
(ε) and a set of records, returning the average income. The implementation in
Figaro after lifting is:

1 def dp_agg (epsilon: Double, records: FixedSizeArrayElement[(String,Double)]) =
2 val delta = Constant(200.0)/records.length
3 val lambda = Constant(epsilon)/delta
4 val X = continuous.Exponential(lambda)
5 val Y = Flip(0.5) // <– Bernoulli
6 val laplaceNoise = If(Y, X*Constant(-1.0), X)
7 agg(records) ++ laplaceNoise

Since the maximum income is 200k, the sensitivity (delta) is 200/|records|. We con-
struct the Laplace distribution from an exponential and a Bernoulli distributions
in lines 2–6 using a standard construction. Line 7 adds the noise to the result of
agg.

Privug: Using Probabilistic Programming for Privacy Risk Analysis 427

Fig. 4. Analysis results. Naive Anonymization: Quasi-identifier analysis (a) zip,
(b) day, (c) sex, (d) zip+sex, (e) day+sex, (f) zip+day, (g) zip+day+sex. Large datasets:
(h) zip+day, (i) zip+day+sex. Sensitive attribute analysis: (j) Chance of learning that
governor is ill if 5 share his zip. k-anonymity: Number of rows matching governor’s
attributes (k = 2): (k) sex, (l) any other attribute combination. Aggregate example:
Prior and posterior knowledge of age of Alice (distributions): (m) kal, (n) kab. Dif-
ferential privacy : (o) Utility, (p) Mutual Information, (q) Probability Queries. Con-
vergence of Privug. (r) Probability query (Continuous), (s) Mutual Information
(Continuous), (t) Probability query (Discrete). Comparison w/ LeakWatch: Probability
queries (u) Discrete P10000(o = 10000), (v) Continuous P(8,1)(o < 55). Mutual Infor-
mation (w) Discrete P500 in LeakiEst, (x) Discrete P1000 in LeakiEst, (y) Continuous
P(8,1) in SKlearn. Bayes Risk: (z) Discrete P500 in F-BLEAU, (aa) Discrete P1000 in
F-BLEAU. Scalability of Privug. Inference time: (ab) Continuous random vari-
ables, (ac) Discrete random variables. Time complexity on f(arr,c): (ad) Increasing
n ∈ (102, 105) for O(n), (ae) Increasing c ∈ (1, 4) for O(20c). Comparison w/Leak-
Watch: (af) P(8,1). (Color figure online)

428 R. Pardo et al.

The Laplacian mechanism includes a notion of accuracy to quantify util-
ity (e.g., [19, Thm 3.8]). Unconventionally, we opt for measuring utility as KL-
divergence between the output with noise (o) and without (ro). The reason is that
KL-divergence can be applied to any method based on perturbing the output of
the program (demonstrating broad applicability of our currently-supported mea-
sures). High KL-divergence indicates low utility as it represents loss of informa-
tion wrt. the noiseless output. Maximum utility is achieved when KL-divergence
equals 0. We observe in Fig. 4o an exponential decay of KL-divergence as ε
increases, consistent with the intuition that small values of ε result in high noise
and reduced utility. The graph suggests that decrements in ε for ε < 0.5 may
impact utility strongly.

Now we evaluate how ε influences the flow of information from the income of
new employees (si) to the output (o). Mutual information is 0 if one is indepen-
dent of the other (i.e. no information flow). Figure 4p plots mutual information
for different values of ε. The dashed line shows the baseline, i.e. mutual infor-
mation when the output has no added noise. This shows mutual information
increases linearly with ε.

Finally, we use a probability query to evaluate the effect of ε on statistical
information that an attacker can learn about the new members in the dataset.
Differential privacy does not focus on protecting this type of information—it
focuses on protecting the presence of a record in the dataset. Yet it is useful to
quantify the effect of the noise on attacker knowledge. Suppose running dp_agg
with ε=0.5 yields 85k as a result. Suppose privacy regulations disallow revealing
income data without employee consent. The company would like to determine,
whether revealing this result could breach the regulation. In Privug, we ana-
lyze the distribution P (si | o ≈ 85) to determine this. Figure 4q shows the
distributions for different values of ε. The dashed line marks the baseline, i.e.,
the probability distribution before the observation. The blue line corresponds
to the run with ε = 0.5. Since this line is not parallel with the baseline, there
is evidence of an increase in knowledge. The other lines show that any ε > 0.1
increases the knowledge about the salary of the new employees. Consequently,
releasing the average 85k computed using ε = 0.5 will result in a violation of the
regulation.

In summary, we have discovered that releasing the average income 85k with
ε > 0.1 reveals information about the salary of new employees. Thus, for ε = 0.5,
the company must seek consent from employees. Mutual information increases
linearly with ε, and for ε < 0.5 is notably low. Utility exhibits an exponential
decay as ε decreases. This decay is especially pronounced with ε < 1, showing
the impact of the added noise on utility.

Naive Anonymization We quantify how strongly an attacker can determine the
diagnosis of an individual (the governor) by observing the output of ano from
Sect. 2. Though this mechanism has well-known privacy flaws, it is still commonly
used. Thus, we illustrate how Privug is used to effectively find these flaws. First,
we define the prior. In Figaro:

Privug: Using Probabilistic Programming for Privacy Risk Analysis 429

1 def p : FixedSizeArrayElement[(Name,Zip,Day,Sex,Diag)] =
2 VariableSizeArray (Constant (1000), i => for
3 n <- if i==0 then Constant (GNAME) else Uniform (names:_*)
4 z <- if i==0 then Constant (GZIP) else Uniform (zips:_*)
5 b <- if i==0 then Constant (GDAY) else Uniform (days:_*)
6 s <- if i==0 then Constant (GSEX) else Uniform (Male,Female)
7 d <- if i==0 then Constant (GILL) else If (Flip (.2), Ill, Healthy)
8 yield (n,z,b,s,d))

Name is an identifier for an individual. For the sake of clarity, we assume that Zip,
Day and Sex are non-sensitive attributes, and Diag is sensitive. Name, Zip, Day and
Sex are uniformly distributed, and Diag is Ill with probability 0.2. The first row
in the dataset is fixed, containing the governor’s record. The prior fixes a dataset
size of 1000 records.

The lifted version of ano follows. Note that, compared to ano, only the type
changed.

1 def ano_p (records : FixedSizeArrayElement[(Name,Zip,Day,Sex,Diag)]) =
2 records.map { (n, z, b, s, d) => (z, b, s, d) }

First, we assess re-identification risk. We check whether an attacker can
uniquely identify an individual’s row using quasi-identifiers, which enables link-
ing attacks. We inspect subsets of attributes to determine how uniquely they
identify subjects. We query for the probability of a certain number x of rows in
the output satisfying a predicate ϕ, where ϕ models which attributes we want to
match with the governor. For example: probability(x,(v:Int) => v == 5), where
x = output.count(ϕ), yields the probability that there are 5 such rows (x = 5).
Figures 4a to 4g show the results. The governor is most likely to share zip code
with �5 rows, and sex with �500 rows. With more attributes (e.g. zip+day,
zip+day+sex) it becomes likely that only the governor’s record has those values.
Disclosing those together thus poses significant re-identification risk.

Next, we assess positive disclosure risk [29]: Can the attacker determine the
diagnosis of an individual (w/o necessarily identifying its row)? Consider the
following property of datasets, ∀r ∈ D · ψ(r) =⇒ r.d = Ill, which stipulates
that all records satisfying ψ are ill. We instantiate ψ in various ways; with
ψ(r) = (r.z = GZIP), the property stipulates that all records with the governor’s
zip code are ill. We compute the probability that this property holds for the
anonymized dataset by issuing a forall query on the posterior. Column 2 in
Table 2 displays the result. Like in the original case study [42], we conclude that
with access to the governor’s zip code, birthday, and sex (last row), an attacker
can determine the diagnosis of the governor with high probability (98%). Unlike
in the original study, we concluded this for all datasets satisfying our prior model.

We assess whether the dataset size affects our risk analyses. We re-run quasi-
identifier and positive disclosure analyses for a dataset size of 14000—closer to
Sweeney’s [42]. This probabilistic model contains 70000 random variables (5 vari-
ables per row, 14000 rows). Our results (cf. Fig. 4i) are close to those originally
reported [42]: There is a 71% probability that no other record shares the gov-

430 R. Pardo et al.

Table 2. Probability of learning governor’s diagnosis.

Query Prob. naive Prob. 14k Prob. k-ano
P(∀r∈D · r.z= GZIP =⇒ r.d= Ill) .02000 .00 .0

P(∀r∈D · r.b= GDAY =⇒ r.d= Ill) .00006 .00 .0

P(∀r∈D · r.s= GSEX =⇒ r.d= Ill) .00000 .00 .0

P(∀r∈D · r.z= GZIP∧r.b= GDAY =⇒ r.d= Ill) .96000 .51 .0

P(∀r∈D · r.z= GZIP∧r.s= GSEX =⇒ r.d= Ill) .16000 .00 .0

P(∀r∈D · r.b= GDAY∧r.s= GSEX =⇒ r.d= Ill) .01800 .00 .0

P(∀r∈D · r.z= GZIP∧r.b= GDAY∧r.s= GSEX =⇒ r.d= Ill) .98000 .71 .0

ernor’s zip code, birthday, and sex. For zip code and birthday (cf. Fig. 4h) the
probability is 51%. Positive disclosure analysis shows a decrease in the probabil-
ity of learning the diagnosis (column 3 in Table 2). These results indicate that,
for this program and prior, increasing the size of the dataset does not uncover
new privacy risks (in fact, smaller datasets are more vulnerable).

Finally, we assess how certain the attacker is about the governor’s diagnosis.
Say the dataset contains 5 records with the governor’s zip code (cf. Fig. 4a).
Suppose that out of those 5 people, k are ill. Then the probability of the governor
being ill is k/5. Notably, if all 5 are ill, then the attacker is certain that the
the governor is ill. This corresponds to the query P(output.count(ϕ ∧ ψ) = k |
output.count(ϕ) = 5), where ϕ and ψ are predicates; ψ is true iff the record is
ill, and ϕ iff it has the governor’s zip code. We use setCondition to observe that
output.count(ϕ) = 5. Figure 4j shows the result. The first bar (0.2) reflects the
prior probability, so there is 50% chance that the attacker learns nothing from an
actual data set. However, there is a 50% chance that the belief of an attacker in
a positive diagnosis grows: 0.4 with 35% probability, etc. This demonstrates that
Privug can not only reason about the risk of an attacker learning something
with certainty, but about decrease of uncertainty as well.

k-Anonymity. We analyze an algorithm that produces a k-anonymous dataset of
health records. That is, for any combination of attributes, at least k rows in the
dataset share those attribute values [42]. This case study illustrates the use of
Privug for a non-trivial program with quadratic complexity. In terms of privacy
analysis, we compare the results of running the program with k = 2 to those of
naive anonymization above.

We start by presenting the prior and program. We use the same prior as
ano_p above, but with a dataset size of 500 records (due to sampling performance,
see RQ3). As for the program, we implemented k_ano, which takes as parameter
k and a dataset, and outputs a k-anonymous dataset. The lifted version of k_ano
has type (lift k_ano) : D(Int, List[(Name,Zip,Day,...)]) → D(List[(Zip,Day,...)]).
Due to space contraints, we refer interested readers to our code repository for
implementation details.

We analyze re-identification and positive disclosure risks. Figure 4k shows
that the number of records in the output dataset matching the governor’s sex in

Privug: Using Probabilistic Programming for Privacy Risk Analysis 431

the input, is like we saw before (cf. Fig. 4c), save for the rare (�3.5%) occasion
where sex was part of some quasi-identifier. In those instances, k_ano masked
Sex, replacing everyone’s Sex with * to enforce 2-anonymity. Figure 4l shows that
for any other attribute combination, none of the records in the output share
those attribute values with the governor’s values from the input. Thus, k_ano
always mask Zip and Day. Regarding positive disclosure, the risk of learning the
governor’s diagnosis is 0 for any attribute combination (column 4 in Table 2),
since k_ano always mask Zip and Day.

In summary, k_ano eliminates disclosure risk compared to ano. However, k_ano
destroys most (or all) utility; when Sex also gets anonymized, then only the
distribution on Diag remains (which is public). With Privug, an analyst can
thus investigate the privacy-utility tradeoff of changes made to a program, and
compare programs for disclosure risk.

RQ2: Does Privug Produce Accurate Results? How Fast Does It
Converge? We study the convergence and accuracy of Privug for continuous
and discrete variables, as the type of variables affects convergence—different
methods are used for the continuous and discrete case [21]. The goal is to con-
firm that Privug’s results are accurate, and check how effective the sampling
methods are for the leakage estimation problem. In total, we have successfully
driven five different estimators with Privug samples derived from program code
and priors: probability queries (continuous and discrete), mutual information
(SKlearn, LeakiEst), Bayes Risk (F-BLEAU). All the estimators behaved as
expected, Privug converges to correct results (dashed black lines in the plots
of Fig. 4 represent ground truth obtained in a pen-and-paper analysis). Further-
more, Privug meets and exceeds performance of the main competing sampler
for programs, LeakWatch [12], without inheriting some of its disadvantages: It
is not bound to a single execution environment (JVM), it is naturally extensi-
ble with probabilistic programming ecosystem, and it is much more lightweight
(very little code is required).

In all these experiments, 5000 samples give accurate results (except for Leaki-
Est that requires >500k samples for large domain spaces). This is reassuring
regarding the validity of experiments executed for RQ1. We generated 10k sam-
ples for dp_agg and ano; sufficient to obtain accurate results. For 14k dataset size
with ano and k_ano, we only generated 1000 samples, due to the long running
time. Still, since we only used discrete probability queries there, 1000 samples
shall approximate the correct result well (Fig. 4t). Below we provide key details
on the experiments leading to the above conclusions.

We start with continuous problems and the most popular sampler for such
(NUTS [23], Hamiltonian). We use a program that computes the average o of
random variables s, p1, ..., p200 distributed as s ∼ N (42, σs) and pi ∼ N (55, σp).
We vary σs and σp to control sample dispersion. We check how many samples
are needed to accurately answer probability and mutual information queries.
Figure 4r shows the accuracy for the probability query P (o<55) for σs=8, σp=1
and σs=σp=20, labeled as P(8,1) and P(20,20) in the graph. The error is below

432 R. Pardo et al.

0.01 after 5000 samples in both cases. Increasing the dispersion does not impact
convergence. We also estimate mutual information for P(8,1). After 5000 sam-
ples the estimation error drops below 0.02 (Fig. 4s). The mutual information
estimator of SKlearn uses k-nearest neighbour distance, but we observe no sig-
nificant impact when varying k. For discrete variables, we use a program that
adds two input variables x, y ∼ U(0, n) giving the output o ∼ x+y, and sample
with Metropolis algorithm, the method of choice for discrete problems (Impor-
tance sampling performs comparably). Figure 4t shows accuracy of the probabil-
ity query P (o=n) with n=100, 1000. After 5000 samples the estimation error
drops below 0.01 for both values of n, indicating that the support of x and y does
not significantly impact convergence. We evaluate convergence of mutual infor-
mation for this case using LeakiEst. Less than 5000 samples suffice for LeakiEst
to converge. Finally, we also check the convergence of Bayes risk estimation
using the state-of-the-art F-BLEAU estimator [9] driven by Metropolis sampling
in Privug. As few as 1000 samples suffice for F-BLEAU to converge.

We make LeakWatch, the most similar work to Privug, drive the same esti-
mators as above and compare with Privug. LeakWatch does not directly support
continuous inputs or Bayes risk. We have extracted the sample sets generated
by LeakWatch and manually implemented the queries. We test the same estima-
tors with LeakWatch as above. Figures 4u and 4v show convergence of probability
queries for the discrete system with an input domain of size 10000, P10000, and
for the continuous system, P(8,1). Figures 4z and 4aa show convergence using F-
BLEAU to estimate Bayes risk. Figures 4w and 4x show the convergence of using
LeakiEst to estimate mutual information. For continuous random variables, we
use the SKlearn estimator (Fig. 4y). In all these cases except for mutual informa-
tion queries (Figs. 4w and 4x), the two samplers perform comparably. Strikingly,
in Fig. 4x, Privug needs 300k fewer samples to start converging; much less than
LeakWatch which has been specifically designed to work with LeakiEst!

RQ3: Does Privug Scale? Does Program Complexity Impact Run-
ning Time? We evaluate how long it takes for NUTS (continuous) and Metropo-
lis (discrete) samplers to produce two chains of 10000 samples for synthetic
programs of increasing size. As the efficiency of MCMC sampling depends on
the dimensionality of the domain, we use the example from RQ2, but scaled
up to 20000 variables (continuous: (s + p1 + p2 + . . . + p20000)/20001, and dis-
crete: x+ y1 + y2 + . . .+ y20000). This number permits modeling large and com-
plex systems. We include several realistic programs in the scalability experiment:
naive anonymization, k-anonymity and differential privacy, see RQ1 details. Fig-
ures 4ab and 4ac show the data points measured. The blue line overlays the main
tendency of the measurements, black points correspond to the above synthetic
programs, and the remaining symbols refer to the realistic programs. We run the
experiments on a machine with 8x1.70 GHz cores, 16 GB RAM, except for the
two experiments with naive anonymization, which have been run on 8x3.60 GHz
machine with 32 GB RAM.

Privug: Using Probabilistic Programming for Privacy Risk Analysis 433

Execution time of synthetic programs in Fig. 4ac follows a linear trend. The
red point corresponds to the naive anonymization case with 5000 variables. This
data point follows the linear trend of synthetic programs, with run-time exceed-
ing 2 h. Interestingly, inference for continuous variables is more efficient, as
Hamiltonian samplers can leverage continuity to generalize faster [23]. We can
generate samplers for a model with 20000 random variables in around 40min
(Fig. 4ab). Notably, the differential privacy case exhibits particularly low execu-
tion time (red in Fig. 4ab), consistent with the trend of the synthetic examples.
The purple and orange triangles correspond to the naive anonymization with a
dataset of size 14k, and to the k-anonymity case, respectively. To account for
low sampling performance, we generated only 1000 samples for each and scaled
the time linearly to place it in the graph. Both cases took over 5 h (80 h after
scaling).

The k-anonymity program is an interesting outlier: even with a small
database of 500 entries. The exponential k-anonymity algorithm used to pro-
duce each sample dominates the cost of inference. This leads us to ask how the
subject program impacts the execution time of Privug. We use the Metropolis
sampler in this experiment, since it performed slower above. To this end, we use
a program f(arr , c) �

∑
0..c

∑
i∈arr i with running time O(nc) for n = |arr | (see

our code repository for the implementation). Increasing n and c induces linear
and exponential growth respectively. We compare the running time of gener-
ating 10000 samples with f in Privug against 10000 executions of f without
Privug. Figure 4ad and 4ae show similar execution times for both. Thus the
execution time of Privug is dominated by the number of samples requested
and the cost of running the subject program, but the Metropolis sampler itself
incurs no significant overhead.

Finally, we compare the scalability of Privug and LeakWatch, by measuring
the execution time to generate 20000 samples for P(8,1) with increasing number
of variables. Figure 4af shows that up to 9000 variables, both perform compara-
bly well—with Privug slightly faster. However, LeakWatch crashes from out-of-
memory errors on cases with more than 10000 variables. In contrast, Privug
exhibits much better scalability; it runs out of memory after 30000 variables.

In summary, Privug can handle complex programs without introducing
major overhead over the subject program’s running time. Privug scales bet-
ter than LeakWatch, making it better fit for larger systems and more complex
priors. This is largely due to probabilistic programming frameworks being heav-
ily optimized by the data science community. We thus advocate use of these
framework in information leakage research.

434 R. Pardo et al.

Table 3. Overview of leakage quantification tools. Legend: KSP = knowledge-based
security policy; custom = custom input language; aCherubin [8] lays the founda-
tion to handle continuous input but this has not been implemented; bwe show how
to handle continuous and discrete KSP and mutual information with LeakWatch in
Sect. 4—this was not demonstrated originally [12]; cvia integrated 3rd party tools (F-
BLEAU/LeakiEst/SKlearn) and pmf estimation for discrete input/output. ? = not
studied.

Random variable type Input type Tool capabilities Supported quantitative information flow measures
Input Output exact sampling estimation KSP entropy min-entropy mutual-inf Bayes-risk KL-diverg
disc. cont. disc. cont.

LeakiEst [11] ✓ ✓ ✓ set of samples ✓ ✓ ✓

F-BLEAU [9] ✓ (✓)a ✓ ✓ set of samples ✓ ✓ ✓

SPIRE [27] ✓ ✓ custom:PSI ✓ ✓

DKBP [31] ✓ ✓ custom:Polyhedra ✓ ✓

QUAIL [5] ✓ ✓ custom:QUAIL ✓ ✓

HyLeak [4] ✓ ✓ custom:QUAIL 2.0 ✓ ✓ ✓ ✓

LeakWatch [12] ✓ (✓)b ✓ ✓ Java ✓ ✓ (✓)b (✓)c (✓)b,c

Privug (this work) ✓ ✓ ✓ ✓ Java/Scala/Python ? ✓ ✓ ✓ ✓ (✓)c (✓)c (✓)c ✓

5 Related Work and Concluding Remarks

We have shown that probabilistic programming with Monte-Carlo Bayesian infer-
ence is a promising basis for implementing privacy risk and data leakage anal-
yses. Privug analyses follow a well-defined architecture: modeling attackers,
extracting models by lifting programs, and using a state-of-the-art sampler to
drive an estimator. We know of no similarly broad competing framework to
compare against. Several tools exist to quantify leakage using probabilistic rea-
soning. Table 3 provides a detailed comparison. The first 4 columns specify the
type of input/output variables; Privug fully supports discrete and continuous
distributions (unlike existing tools that mostly focus on discrete variables). The
fifth column indicates whether the tool works on a (externally generated) set
of samples, a custom specification language or a general purpose programming
language; Privug works directly on general purpose programming languages.
Columns 6–8 indicate whether the tool can perform exact analytical inference,
sample from distributions (e.g., via naive sampling or MCMC), or can estimate
leakage measures; in Privug we can perform all of these, but we have not studied
exact inference in this paper. The last 6 columns show whether the tools support
the corresponding measures; all of them are supported by Privug (unlike any
other existing tool). In the following, we discuss the existing tools in two groups,
white- and black-box. These tools are highly-specific; they feature a design and
architecture of samplers and estimators highly optimized for a single purpose.
In contrast, the idea of Privug is to build on a broad platform of probabilistic
programming, which has not been used for this purpose before, and to reuse
as many components as possible to provide a comprehensive assessment of a
program.

Black-box methods estimate leakage by analyzing a set of input/output pairs
of the system. LeakiEst [11] estimates min-entropy [37] and mutual informa-
tion [15] using frequentist statistics, i.e., counting the relative frequency of the
outputs given inputs. F-BLEAU [9] and its generalization [39] use nearest neigh-

Privug: Using Probabilistic Programming for Privacy Risk Analysis 435

bor classifiers to estimate Bayes risk [7] and g-leakage [2]. Classifiers can exploit
patterns in the data and scale better than LeakiEst for large output spaces.
Black-box tools require a set of independent and identically distributed samples
over inputs. Obtaining such a sample is not easy as discussed by Chothia et al.
[12]. Privug automates this process, obtaining synergy with black-box methods
in two ways: (i) black-box methods can be used easily within Privug (Sect. 4);
(ii) black-box methods can leverage the well-studied sampling mechanisms [38]
used in Privug to produce the set of samples they work on. Section 4 shows
that LeakiEst converges faster using Privug than with LeakWatch for mutual
information queries.

White-box methods exploit the source code of the program to compute leak-
age analytically or via sampling. We distinguish white-box methods working
on custom specification languages from those working on general purpose pro-
gramming languages. Custom specification languages are languages designed for
program analysis and are typically not directly executable. Mardziel et al. intro-
duce abstract probabilistic polyhedra to capture attacker beliefs, and define
transformations over the polyhedra to analytically obtain the revised belief of
the attacker after observing an output of the program [31]. They are able to
check whether queries to a database violate a knowledge-based security policy.
SPIRE [27] uses the symbolic inference engine PSI [20] to analytically compute
the updated beliefs of an attacker given an observation. Then, it uses Z3 [16]
to verify whether a knowledge-based security policy holds. QUAIL performs for-
ward state exploration of a program to construct a Markov chain capturing its
semantics, which is then used to compute mutual information [5]. HyLeak is an
evolution of QUAIL to use hybrid statistical estimation [4]. The method works on
the control flow graph of the program. It first uses several symbolic reductions to
simplify the program, then applies standard statistical reasoning via sampling.
These works support programs with discrete inputs and outputs. In contrast,
Privug handles discrete and continuous inputs and outputs. In principle, it
also allows obtaining analytical solutions, e.g., using variable elimination (in
Figaro) [35] but we have not explored this. Unlike HyLeak, we do not reduce the
program graph, but Hamiltonian samplers compute gradients of the model (prob-
abilistic program) to improve sampling effectiveness. QUAIL computes mutual
information; HyLeak computes mutual information and Shannon entropy. Others
support only analysis of knowledge-based security policies [27,31].

Privug is, perhaps, the first work whose goal is supporting estimation of
many measures for programs written not in custom specification languages, but
in general purpose programming languages (Python, Scala, and Java via the
Scala interface). LeakWatch samples a Java program and uses LeakiEst to esti-
mate mutual information and min-entropy leakage [12]. There are several differ-
ences between Privug and LeakWatch. First, Privug uses efficient and scalable
Bayesian inference methods as opposed to LeakWatch that relies on direct sam-
pling from target distributions. We found that the Bayesian methods used in
Privug scale better (Sect. 4). We also found that LeakiEst, the estimator Leak-
Watch was designed for, converges faster when using Privug’s samples (Sect. 4).

436 R. Pardo et al.

Bayesian inference is proven to be very effective in the presence of conditions [38],
which are not directly available in LeakWatch. Second, LeakWatch relies on its
users to select appropriate Pseudo-Random Number Generators (PRNGs). The
authors recommend java.security.SecureRandom [10], which only support sampling
from uniform and normal distributions. In contrast, probabilistic programming
frameworks (used in Privug) support a wide range of probability distributions
with high quality PRNGs. This emphasizes another key contribution of this
work for leakage research: It is beneficial to build on top of strong statistical
and probabilistic platforms over custom solutions, with Bayesian probabilistic
programming being one such platform.

References

1. Ahmad, I.A., Lin, P.-E.: A nonparametric estimation of the entropy for absolutely
continuous distributions (corresp.). IEEE Trans. Inf. Theory 22(3), 372–375 (1976)

2. Alvim, M., Chatzikokolakis, K., McIver, A., Morgan, C., Palamidessi, C., Smith,
G.: The Science of Quantitative Information Flow. Springer, Cham (2020). https://
doi.org/10.1007/978-3-319-96131-6

3. Bingham, E.: Pyro: deep universal probabilistic programming. J. Mach. Learn. Res.
20, 28:1-28:6 (2019)

4. Biondi, F., Kawamoto, Y., Legay, A., Traonouez, L.-M.: Hybrid statistical estima-
tion of mutual information and its application to information flow. Formal Aspects
Comput. 31(2), 165–206 (2018). https://doi.org/10.1007/s00165-018-0469-z

5. Biondi, F., Legay, A., Traonouez, L.-M., Wasowski, A.: QUAIL: a quantitative
security analyzer for imperative code. In: Sharygina, N., Veith, H. (eds.) CAV
2013. LNCS, vol. 8044, pp. 702–707. Springer, Heidelberg (2013). https://doi.org/
10.1007/978-3-642-39799-8_49

6. Burnham, K.P., Anderson, D.R.: Model Selection and Multimodel Inference: A
Practical Information-Theoretic Approach. Springer, New York (2002). https://
doi.org/10.1007/b97636

7. Chatzikokolakis, K., Palamidessi, C., Panangaden, P.: On the Bayes risk in
information-hiding protocols. J. Comput. Secur. 16(5), 531–571 (2008)

8. Cherubin, G.: Black-box security: measuring black-box information leakage via
machine learning. Ph.D. thesis, Royal Holloway, University of London (2018)

9. Cherubin, G., Chatzikokolakis, K., Palamidessi, C.: F-BLEAU: fast black-box leak-
age estimation. In: SP 2019, pp. 835–852. IEEE (2019)

10. Chothia, T., Kawamoto, Y., Novakovic, C.: LeakWatch: pseudorandom num-
ber generators example. https://www.cs.bham.ac.uk/research/projects/infotools/
leakwatch/examples/prng.php

11. Chothia, T., Kawamoto, Y., Novakovic, C.: A tool for estimating information leak-
age. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 690–695.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39799-8_47

12. Chothia, T., Kawamoto, Y., Novakovic, C.: LeakWatch: estimating information
leakage from Java programs. In: Kutyłowski, M., Vaidya, J. (eds.) ESORICS 2014.
LNCS, vol. 8713, pp. 219–236. Springer, Cham (2014). https://doi.org/10.1007/
978-3-319-11212-1_13

13. Chothia, T., Kawamoto, Y., Novakovic, C., Parker, D.: Probabilistic point-to-point
information leakage. In: CSF 2013, pp. 193–205. IEEE (2013)

https://doi.org/10.1007/978-3-319-96131-6
https://doi.org/10.1007/978-3-319-96131-6
https://doi.org/10.1007/s00165-018-0469-z
https://doi.org/10.1007/978-3-642-39799-8_49
https://doi.org/10.1007/978-3-642-39799-8_49
https://doi.org/10.1007/b97636
https://doi.org/10.1007/b97636
https://www.cs.bham.ac.uk/research/ projects/infotools/leakwatch/examples/prng.php
https://www.cs.bham.ac.uk/research/ projects/infotools/leakwatch/examples/prng.php
https://doi.org/10.1007/978-3-642-39799-8_47
https://doi.org/10.1007/978-3-319-11212-1_13
https://doi.org/10.1007/978-3-319-11212-1_13

Privug: Using Probabilistic Programming for Privacy Risk Analysis 437

14. Clarkson, M.R., Myers, A.C., Schneider, F.B.: Belief in information flow. In: CSFW
2005, pp. 31–45. IEEE (2005)

15. Cover, T.M., Thomas, J.A.: Elements of Information Theory, 2nd edn. Wiley, New
York (2006)

16. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3_24

17. Dillon, J.V.: Tensorflow distributions. CoRR, abs/1711.10604 (2017)
18. Dwork, C., McSherry, F., Nissim, K., Smith, A.: Calibrating noise to sensitivity in

private data analysis. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876,
pp. 265–284. Springer, Heidelberg (2006). https://doi.org/10.1007/11681878_14

19. Dwork, C., Roth, A.: The algorithmic foundations of differential privacy. Found.
Trends Theor. Comput. Sci. 9(3–4), 211–407 (2014)

20. Gehr, T., Misailovic, S., Vechev, M.: PSI: exact symbolic inference for probabilistic
programs. In: Chaudhuri, S., Farzan, A. (eds.) CAV 2016. LNCS, vol. 9779, pp. 62–
83. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-41528-4_4

21. Gelman, A., Carlin, J.B., Stern, H.S., Dunson, D.B., Vehtari, A., Rubin, D.B.:
Bayesian Data Analysis. CRC Press, Boca Raton (2013)

22. Hargitai, V., Shklovski, I., Wasowski, A.: Going beyond obscurity: organizational
approaches to data anonymization. PACMHCI 2(CSCW), 66:1–66:22 (2018)

23. Hoffman, M.D., Gelman, A.: The No-U-Turn sampler: adaptively setting path
lengths in Hamiltonian Monte Carlo. J. Mach. Learn. Res. 15(1), 1593–1623 (2014)

24. Köpf, B., Basin, D.A.: An information-theoretic model for adaptive side-channel
attacks. In: CCS 2007, pp. 286–296 (2007)

25. Kraskov, A., Stögbauer, H., Grassberger, P.: Estimating mutual information. Phys.
Rev. E 69, 066138 (2004)

26. Kruschke, J.: Doing Bayesian Data Analysis: A Tutorial with R, JAGS, and Stan.
Academic Press, Cambridge (2014)

27. Kucera, M., Tsankov, P., Gehr, T., Guarnieri, M., Vechev, M.T.: Synthesis of
probabilistic privacy enforcement. In: CCS 2017, pp. 391–408. ACM (2017)

28. Kullback, S., Leibler, R.A.: On information and sufficiency. Ann. Math. Stat. 22(1),
79–86 (1951)

29. Machanavajjhala, A., Kifer, D., Gehrke, J., Venkitasubramaniam, M.: L-diversity:
privacy beyond k-anonymity. ACM Trans. Knowl. Discov. Data 1(1), 1–52 (2007)

30. Malacaria, P.: Assessing security threats of looping constructs. In: POPL 2007, pp.
225–235. ACM (2007)

31. Mardziel, P., Magill, S., Hicks, M., Srivatsa, M.: Dynamic enforcement of
knowledge-based security policies using probabilistic abstract interpretation. J.
Comput. Secur. 21(4), 463–532 (2013)

32. Nadon, G., Feilberg, M., Johansen, M., Shklovski, I.: In the user we trust: unreal-
istic expectations of Facebook’s privacy mechanisms. In: SMSociety 2018 (2018)

33. Pardo, R., Rafnsson, W., Probst, C., Wąsowski, A.: Privug: using probabilis-
tic programming for quantifying leakage in privacy risk analysis. arXiv preprint
arXiv:2011.08742 (2021)

34. Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res.
12, 2825–2830 (2011)

35. Pfeffer, A.: Practical Probabilistic Programming. Manning Publications Co., New
York (2016)

36. Ramsey, N., Pfeffer, A.: Stochastic lambda calculus and monads of probability
distributions. In: POPL 2002 (2002)

https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/11681878_14
https://doi.org/10.1007/978-3-319-41528-4_4
http://arxiv.org/abs/2011.08742

438 R. Pardo et al.

37. Rényi, A., et al.: On measures of entropy and information. In: 4th Berkeley Sym-
posium on Mathematical Statistics and Probability (1961)

38. Robert, C.P., Casella, G.: Monte Carlo Statistical Methods. Springer, New York
(2004). https://doi.org/10.1007/978-1-4757-4145-2

39. Romanelli, M., Chatzikokolakis, K., Palamidessi, C., Piantanida, P.: Estimating
g-leakage via machine learning. In: CCS 2020. ACM (2020)

40. Salvatier, J., Wiecki, T.V., Fonnesbeck, C.: Probabilistic programming in Python
using PyMC3. PeerJ Comput. Sci. 2, e55 (2016)

41. Silverman, B.W.: Density Estimation for Statistics and Data Analysis, vol. 26.
CRC Press, Boca Raton (1986)

42. Sweeney, L.: k-anonymity: a model for protecting privacy. Int. J. Uncertainty Fuzzi-
ness Knowl. Based Syst. 10(5), 557–570 (2002)

43. Tolpin, D., van de Meent, J.-W., Yang, H., Wood, F.D.: Design and implementation
of probabilistic programming language Anglican. In: IFL 2016 (2016)

44. Wang, Q., Kulkarni, S.R., Verdú, S.: Divergence estimation of continuous distribu-
tions based on data-dependent partitions. IEEE Trans. Inf. Theory 51(9), 3064–
3074 (2005)

https://doi.org/10.1007/978-1-4757-4145-2

Transparent Electricity Pricing
with Privacy

Daniël Reijsbergen(B), Zheng Yang(B) , Aung Maw, Tien Tuan Anh Dinh,
and Jianying Zhou

Singapore University of Technology and Design, Singapore, Singapore
daniel reijsbergen@sutd.edu.sg, zheng.yang@rub.de

Abstract. Smart grids leverage data from smart meters to improve
operations management and to achieve cost reductions. The fine-grained
meter data also enable pricing schemes that simultaneously benefit elec-
tricity retailers and users. Our goal is to design a practical dynamic
pricing protocol for smart grids in which the rate charged by a retailer
depends on the total demand among its users. Realizing this goal is
challenging because neither the retailer nor the users are trusted. The
first challenge is to design a pricing scheme that incentivizes consumption
behavior that leads to lower costs for both the users and the retailer. The
second challenge is to prevent the retailer from tampering with the data,
for example, by claiming that the total consumption is much higher than
its real value. The third challenge is data privacy, that is, how to hide the
meter data from adversarial users. To address these challenges, we pro-
pose a scheme in which peak rates are charged if either the total or the
individual consumptions exceed some thresholds. We formally define a
privacy-preserving transparent pricing scheme (PPTP) that allows hon-
est users to detect tampering at the retailer while ensuring data privacy.
We present two instantiations of PPTP, and prove their security. Both
protocols use secure commitments and zero-knowledge proofs. We imple-
ment and evaluate the protocols on server and edge hardware, demon-
strating that PPTP has practical performance at scale.

1 Introduction

Smart meters, the building blocks of smart grids, allow electricity retailers to
measure their customers’ power use at a frequency that is far beyond the capabil-
ities of traditional meters, which rely on sporadic manual readouts. One impor-
tant use case for a higher data frequency is that it enables more accurate and
informative bills. The high measurement frequency also enables advanced elec-
tricity pricing. Since the retailer’s costs are highest during periods of high net-
work demand, it is often profitable to incentivize users to spread their demand
across the day by charging them different rates during peak and off-peak periods.
This is ultimately also beneficial for the customers themselves because a retailer
with lower costs can offer more competitive prices.

c© Springer Nature Switzerland AG 2021
E. Bertino et al. (Eds.): ESORICS 2021, LNCS 12973, pp. 439–460, 2021.
https://doi.org/10.1007/978-3-030-88428-4_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-88428-4_22&domain=pdf
http://orcid.org/0000-0001-8610-9936
https://doi.org/10.1007/978-3-030-88428-4_22

440 D. Reijsbergen et al.

Pricing schemes that are based on fixed peak and off-peak rates do not make
full use of the smart meter’s potential, which includes the ability to receive
up-to-date pricing information that reflects network conditions observed by the
retailer. To improve on this, dynamic pricing schemes [14] allow the retailer to
anticipate periods of high electricity demand, e.g., heatwaves or major sporting
events, and incentivize users to shift their loads away from these periods. In
this set-up, the retailer shares pricing information with the meters at the start
of each operational cycle (e.g., at midnight), which can then be forwarded to
a smart home hub that coordinates high-demand activities (e.g., charging an
electric vehicle) across the household. In return, the meter periodically sends
measurements back to the retailer, and after a number of operational cycles –
an operational cycle typically lasts a single day – the user is presented with an
electricity bill that reflects the power usage and prices throughout the cycles.
However, prior research [2,14] has found that users are uncomfortable with pric-
ing schemes that they perceive to be overly complex or risky.

Our goal is to design a practical dynamic pricing protocol. This is challenging
because neither the retailers nor the users are trusted. In particular, the first
challenge is to design a pricing scheme that can simultaneously reduce the costs
of the retailer and the users – i.e., that the retailer is able to charge higher prices
during periods when the actual demand is high across the network. The second
challenge is to prevent the retailer from giving wrong information about network-
level demand – i.e., that it cannot tamper with the aggregate measurements from
the meters. The third challenge is to share network-level information without
revealing the users’ privacy-sensitive measurements to other users – i.e., that an
honest-but-curious user cannot learn other users’ measurements.

The latter two challenges have been studied in the related literature, e.g.,
by Shi et al. [13] and others [1,6]. However, these works use a different threat
model than the one that is most relevant in our setting. For example, in the work
by Shi et al. [13] the retailer is not trusted with knowledge of individual users’
measurements. Since the retailer in our model needs the measurements anyway
to compute the bills, we can afford a more relaxed trust assumption, namely
that the privacy requirement only applies to honest-but-curious users. Another
difference is that Shi et al. [13] do not consider strict integrity of the aggregate
data – therefore, in their setting random noise can be added to measurements,
but allowing this in our setting would mean that the retailer can increase its
profits by inflating the aggregate value. In summary, our threat model gives us
opportunities to design a more efficient privacy-preserving protocol, while at the
same time necessitating the protection of measurement integrity.

To address the above challenges, we present a privacy-preserving and trans-
parent pricing (PPTP) scheme. The scheme addresses the first challenge by
charging a peak or off-peak rate depending on the actual network demand. This
protects the retailer from the risk of financial losses during a demand surge
while being fully transparent to the user. It is predictable for the user as net-
work demand under normal circumstances can be predicted with reasonable
accuracy given historical data [9]. To address the second challenge, we require
the retailer to share verifiable proofs about users’ measurements. To address the

Transparent Electricity Pricing with Privacy 441

third challenge, we use zero-knowledge range proofs that do not reveal the under-
lying measurements, e.g., Bulletproofs [4]. We formalize the security definition of
PPTP and present two instantiations: a baseline protocol that shares the full set
of range proofs with each user, and a more efficient one that uses Merkle trees
and which uses concepts from related work on Certificate Transparency [5,7].
We prove the security of both instantiations, and evaluate their performance on
a server and on edge devices. The results show that PPTP achieves practical
performance at scale.

In summary, we make the following contributions.

1. We present a dynamic pricing protocol for smart grids that reduces the cost
for both the retailer and users.

2. We define a privacy-preserving and transparent pricing (PPTP) scheme that
ensures integrity of the retailer when computing dynamic prices. PPTP pro-
tects confidentiality of the meter data against malicious users.

3. We instantiate two PPTP protocols and prove their security properties.
4. We implement the two protocols and demonstrate their performance at scale

using a server and Raspberry Pi hardware.

Throughout this paper, we use the notation [k] to denote {1, . . . , k} for k ∈ N.
A summary of the other notation used in the paper can be found in Table 1.
The structure of the paper is as follows. In Sect. 2, we present our model of
the system’s cost and price structure. The network model, threat model, and

Table 1. Summary of the notation used in this paper.

Symbol Values Meaning

n N Number of users

k N Number of time periods per operational cycle

pi t N Rate charged to user i ∈ [n] in period t ∈ [k]

Bi N Bill of user i ∈ [n]

αt N Peak rate in period t ∈ [k]

βt {0, . . . , αt} Off-peak rate in period t ∈ [k]

γt {0, nδt − 1} System peak rate threshold in period t ∈ [k]

δt N Individual peak rate threshold in period t ∈ [k]

yi t N Raw measurement of user i ∈ [n] in period t ∈ [k]

xi t {0, δt} Truncated measurement of user i ∈ [n] in period t ∈ [k]

ri t Rc Random secret of user i ∈ [n] in period t ∈ [k]

ci t Cc Commitment of xi t

πi t Zero-knowledge proof that xi t ∈ [0, δt]

x∗
t {0, nδt} Sum of min(xi t, δt) for all i ∈ [n] in period t ∈ [k]

c∗
t Cc Sum of ci t for all i ∈ [n] in period t ∈ [k]

π∗
t Zero-knowledge proof that x∗

t ∈ [0, γt]

442 D. Reijsbergen et al.

requirements are presented in Sect. 3. The two PPTP instantiations are presented
in Sects. 4 and 5. We present the experimental results in Sect. 6 and discuss
related work in Sect. 7. Section 8 concludes the paper.

2 Electricity Pricing

Power Usage and Cost Model. For the meter readings, we consider a single
operational cycle (typically a day) that is divided into k time periods – e.g.,
if each operational cycle lasts for one day and k = 24, then each time period
corresponds to an hour. Let yi t ∈ N be the reading by the smart meter of
customer i ∈ [n] in period t ∈ [k] – note that measurements can be represented
as integers through rounding, e.g., a power use of 2.72 kWh in a period can
be represented as ‘272’ if measurements are rounded to two decimals. Let �yt =
(y1 t, . . . , yn t) denote the readings in t. The readings reflect the customer’s energy
consumption, which for every period equals the sum of all the loads run in that
period. A load is an electricity-consuming job, typically related to a specific
appliance, that can be represented by its required duration (in terms of periods)
per operational cycle, and its energy use per period. We consider two types of
loads: controllable and must-run loads [11,12]. The customer is free to choose
when to run the controllable loads, but the must-run loads must be executed in
their assigned time periods. If the electricity prices pt depend on the time period
t ∈ [k], then the goal of each customer i ∈ [n] is to divide her controllable runs
over the operational cycle such that her total electricity bill Bi =

∑k
t=1 ptyi t is

minimal.
The retailer’s goal is to maximize its profit, which is the difference between

its revenues U and its costs C. The retailer’s total revenues in a cycle equal the
sum of the bills of its customers, i.e., U(�yt, . . . , �yk) =

∑k
t=1

∑n
i=1 pt yi t. Its costs

depend on the network demand, because a higher network demand means that
more energy needs to be purchased on the electricity market. In this work, we
do not consider other fixed costs such as fees paid to the grid operators. As a
result, the total costs in a cycle are given by C(�yt, . . . , �yk) =

∑k
t=1 Ct(�yt), where

Ct(�yt) denotes the total costs in period t as a function of the demand in t.
We make the following two assumptions about the retailer’s cost function.

First, the costs may depend on the time period, which captures fluctuations
in energy supply throughout the day, e.g., due to solar panels which require
daylight to operate. Second, the marginal costs are an increasing function of the
total demand st =

∑n
i=1 yi t – i.e., if the amount of energy purchased during a

period goes up, then so does the cost per unit of energy. This captures the fact
that when demand exceeds the maximum capacity of the power generators, they
must resort to limited reserves [15] or operate beyond capacity which increases
the generators’ long-term maintenance costs [12].

Pricing Model. It follows from the two assumptions above that the retailer has
minimal costs if demand is high during periods with low prices, and the demand
within a single period does not become too high. The retailer cannot directly
control the demand of its customers in each period, but it can incentivize them

Transparent Electricity Pricing with Privacy 443

to perform load balancing through a pricing mechanism that rewards customers
for keeping the retailer’s costs low.

The problem of pricing mechanism design has been studied extensively in
the literature [8,14]. The most common design is peak load pricing : for each
period t ∈ [k] there is a different rate that depends on energy market prices
and historical demand in t. Although such a scheme incentivizes customers to
shift controllable loads away from the peak periods, they still have no incentive
to spread demand across the different non-peak periods. A more refined pricing
mechanism is real-time pricing with inclining block rates (RTPIBR) [9], in which
the price paid by customer i ∈ [n] during period t ∈ [k] is given by

pi t(�yt) =
{

αt if yi > γt,
βt otherwise. (1)

Here, αt is period t’s penalty rate, βt is period t’s normal rate, and γt is the
customer’s usage threshold in period t. In words, in addition to the different
prices per period, the customer is also charged a penalty if her demand in a single
period is too high. Although this is an improvement over peak load pricing, it
does not take into account the total network demand. Although the customers
are motivated to shift loads over several non-peak periods to avoid the penalty
rate in a single period, they could all shift it to the same non-peak periods, which
would lead to unnecessarily high demand in those periods.

We propose a pricing scheme that takes the total demand into account. Our
scheme allows users to learn the expected demand from previous operational
cycles and allocate their controllable loads accordingly. At the start of each cycle,
the cycle’s penalty prices αt, normal prices βt, network demand thresholds γt,
and individual demand thresholds δt are fixed for all t ∈ [k] and made available
to all the entities, e.g., by posting them on a public bulletin board. δt represents
the maximum contribution of a single user to the network demand. Without
this bound, a handful of heavy-use customers could report an energy use that
exceeds γt, and the peak rate would apply regardless of the consumption of the
other customers. The price pi t paid by user i during period t is then given by

pi t(�yt) =
{

αt if
∑n

j=1 min(yj t, δt) > γt or yi t > δt,

βt otherwise.
(2)

This is similar to (1), except that the penalty rate is charged depending on the
total demand among the retailer’s users and whether the individual demand
exceeds a threshold. In the following, we write xi t = min(yi t, δt) and x∗

t =∑n
i=1, xi t, and we write p(yi t, x

∗) instead of pi t(�yt) because each user’s rate
only depends on her own measurement and the sum.

Example. We consider n users who have the same must-run demand profile
every day (taken from [11]). Each user has a single controllable load—namely
the charging of an electric vehicle—which consumes 1 kW for six consecutive
hours. We consider three different usage patterns: (a) all consumers schedule the
load at 6PM, (b) all consumers schedule the load at midnight, and (c) half of

444 D. Reijsbergen et al.

the consumers schedule the load at midnight and the other half at noon. These
patterns are shown in Figs. 1a, 1b, and 1c, respectively. The retailer’s increasing
marginal costs imply that its costs are highest in pattern (a), lower in (b), and
lowest in (c). Using a na¨1ve pricing scheme – i.e., a constant price – all three
patterns have the same costs for users since they are charged the same rate in
all cases. Using peak load pricing [11], in which a peak rate is charged between
2PM and 8PM and an off-peak rate between 10PM and 7PM, it is no longer
optimal for all consumers to run the load at 6PM. Instead, they may all shift
their loads to midnight in order to get the lowest bills, as shown in Fig. 1b. Using
RTPIBR, we can impose that consumers also pay the peak rate whenever their
demand in a period exceeds γ = 1kW. However, although this increases the bill
of every user, they are not motivated to spread loads over the day as the user
still pays a similar rate regardless of whether she schedules her load at midnight
or at noon. Using our pricing scheme in Eq. 2, which charges the peak rate in
periods where the network-level demand exceeds nkW, the users are motivated
to spread their load to different periods. It can be seen in Fig. 1c that both the
users and retailer incur low cost, because the users pay the normal rate, and the
retailer has low marginal cost due to a balanced network demand.

0 6 12 18 24
0

1

2

3

Time of day

E
ne

rg
y

us
e

(k
W

h)

(a) Naïve pricing

0 6 12 18 24
0

1

2

3
peakoff-peak

Time of day

E
ne

rg
y

us
e

(k
W

h)

(b) Peak load pricing

0 6 12 18 24
0

1

2

3

network
threshold (γ)

Time of day

E
ne

rg
y

us
e

(k
W

h)

(c) Our pricing scheme

Fig. 1. Demand over time of an average user. Blue and red bars represent demand due
to must-run and controllable loads, respectively. (Color figure online)

3 System and Security Model

Fig. 2. Entities in our system.

System Model. Figure 2 depicts the different entities in our system. There is
one power retailer and n customers (or users). The retailer purchases electricity

Transparent Electricity Pricing with Privacy 445

from power generators on the wholesale electricity market, and pays a fee to
one or more grid operators for the use of their transmission and distribution
networks. We assume that the regulator and grid operators know n, but that
they are unable to observe the individual or total consumption of the retailer’s
users.1 The retailer runs a server, and each user owns a smart meter, which runs
a software application called a client that communicates with the server.

At the end of each period t ∈ [k], each smart meter i ∈ [n] sends the raw
reading yi t to the retailer via a secure and highly available channel. At the end
of the operational cycle, the retailer uses the same channel to send to each user
a statement containing the total bill Bi ∈ N, and for each period t ∈ [k] both yi t

and the sum x∗
t . The customer can then verify that Bi =

∑k
t=1 pi t(yi t, x

∗
t)xi t.

However, the customer cannot verify x∗
t , which may allow the retailer to charge

the peak rate incorrectly.

Threat Model. The retailer is adversarial and interested in convincing users
of accepting an incorrect bill B̃i such that B̃i > Bi. We assume that the meters
are secure, i.e., they produce readings that match the user’s true power con-
sumption – otherwise, honest users would be able to report this to the regulator.
The retailer can collude with a number of adversarial users who may generate
arbitrary readings. Users can be adversarial because they have been bribed by
the retailer, or they can be Sybil users created by the retailer. We assume that
the regulator would notice if the retailer would create too many Sybils, so this
number is limited in our model. Non-adversarial users are honest-but-curious,
i.e., they will faithfully follow the protocol as described, but will attempt to use
the information shared with them to learn the readings of other users. Finally,
there is a public bulletin board which provides immutable and tamper-evident
storage, e.g., a public blockchain.

Given this threat model, our first goal is allow users to detect incorrect bills.
In particular, let B∗

i be the bill for user i if each adversarial user j reports
xj t = δt in each period t ∈ [k]. An incorrect bill B̃i then satisfies B̃i > B∗

i .
In other words, the adversarial users should not be able to influence individual
bills beyond reporting the maximum. Another goal is to hide private readings
xi t from other honest-but-curious users. The final goal is efficiency, that is, the
protocol can support a large number of users with practical performance.

3.1 Security Model

We let κ be the security parameter by κ, and ∅ be the empty string. When X

is a set, x
$← X denotes the action of sampling an element uniformly at random

from X. Let ‖ denote an operation that concatenates two strings.
We define a privacy-preserving, transparent pricing (PPTP) scheme as one

that consists of the four algorithms below.

1 Although the grid operators will typically perform their own high-level measurements
for system monitoring, e.g., using phasor measurement units, they will not be able
to distinguish between the customers of different retailers in a small area.

446 D. Reijsbergen et al.

(Ptp, kr) ← Initialize(1κ): run by the retailer. It takes as input the security
parameter κ, and outputs the system parameters Ptp and a secret key kr ∈
SKtp where SKtp is the secret key space.
(ri t)i∈[n] ← SlotSecretGen(Ptp, kr, t): run by the retailer. It takes as input the
system parameters Ptp, the secret key kr, and the time slot t, and outputs
slot secrets (ri t)i∈[n] ∈ SStp for n users, where SStp is the slot secret space.
Et ← EvidenceGen(Ptp, kr, (xi t)i∈[n], t): run by the retailer. It takes as input
the system parameters Ptp, secret key kr, and the measurements (xi t)i∈[n] ∈
Vtp of each user i for time t, and outputs an evidence Et ∈ Etp. Here, Etp is
the evidence space and Vtp is the measurement space.
{0, 1} ← EvidenceVrf(Ptp, ri t, xi t,Et, t): run by each user. It takes as input
the system parameters Ptp, slot secret ri t, measurement xi t of user i for time
t, and the evidence Et, and outputs True or False.

Given (Ptp, kr) := Initialize(1κ), (ri t)i∈[n] := SlotSecretGen(Ptp, kr), a set of
valid measurements (xi t)i∈[n] ∈ Vtp for time slot t, the scheme is correct if
EvidenceVrf((Ptp, rj t, xj t,EvidenceGen(Ptp, kr, (xi t)i∈[n], t), t) = 1, for any slot
secret rj t ∈ (ri t)i∈[n] and the corresponding measurement xj t ∈ (xi t)i∈[n].

3.2 Security Properties

We define two properties of PPTP: transparency and privacy. For simplicity, we
focus on a single operational cycle.

Transparency. This property means that each honest user i ∈ [n] is able to
verify that a bill B̃i is incorrect if B̃i > B∗

i , where B∗
i is the worst-case bill

defined earlier in the section. Furthermore, the user can check if B̃i contains an
incorrect measurement x̄i t, i.e., x̄i t > xi t or x̄i t > δt. Finally, a dishonest user
cannot blame the retailer for misbehavior if it has behaved honestly.

We formulate transparency through a two-stage game GameTransPPTP,A running
between a challenger and an adversary A. In the first stage, the adversary can
run the PPTP scheme herself with the secret key kr and measurements of her
own choice, and outputs a time slot t∗ as challenge request. The challenger
then randomly samples a set of honest measurements �xt∗ = (xi t∗)i∈[n]

$← Vtp

which are sent to A. The goal of A is to generate a valid evidence Ēt∗ for a
set of measurements �̄xt∗ = (x̄i t∗)i∈[n], such that �̄xt∗ �= �xt∗ , which can pass
the verification for an honest user j∗’s measurement xj∗,t∗ ∈ �xt∗ , meaning that
EvidenceVrf(Ptp, rj t∗ , xj t∗ , Ēt∗ , t∗) = 1.

Privacy. This property means that a user i cannot learn privacy-sensitive meter
readings xj t of another user j ∈ [n]\{i} for any t ∈ [k].

We define a game GamePrivPPTP,A to formulate the privacy via indistinguisha-
bility. The adversary A chooses measurements (xi t)i∈[n],t∈[k] for all users,
and an honest user j∗ and time slot t∗ as the challenge in the game. The
challenger selects two values x0

j∗ t∗ , x0
j∗ t∗ that lead to the same bills for

all users i �= j∗. Specifically, it sets x0
j∗ t∗ := xj∗ t∗ , and x1

j∗,t∗
$← Vtp,

such that x0
j∗,t∗ �= x1

j∗,t∗ and (
∧n

i=1,i �=j∗ B0
i = B1

i) = 1, where Bb
i =

Transparent Electricity Pricing with Privacy 447

pi t∗(xi t∗ , xb,∗
t∗)xi t∗ +

∑k
t=1,t�=t∗ pi t(xi t, x

∗
t)xi t and xb,∗

t∗ = min(xb
j∗,t∗ , dt∗) +

∑n
i=1,i �=j∗ min(xi t∗ , dt∗). Next, the challenger generates the evidence for time

t∗ based on (xi t∗)i∈[n],i �=j∗ ||xb
j∗ t∗ and b

$← {0, 1}. The goal of A in this game is
to distinguish whether her measurement xj∗ t∗ is used to generate the challenge
evidence Et∗ . Note that the constraint that the values chosen by the challenger
leads to the same bill for users i �= j∗ is important. Otherwise, the distinct bills
would allow the adversary to trivially distinguish the bit b. During the game,
the adversary can ask oracle OEG to get the evidences for any measurements,
and oracle OC to reveal the slot secrets. But it cannot ask either OEG(·, t∗) or
OC(j∗, t∗).

GameTransPPTP,A(κ) GamePrivPPTP,A(κ)

QL := ∅ QL := ∅; CL := ∅; b
$← {0, 1}

(Ptp, kr) ← Initialize(1κ) (Ptp, kr) ← Initialize(1κ)
(state, t∗) ← A(Ptp, kr) (state, j∗, t∗, (xi t)i∈[n],t∈[k]) ← AOEG(·,·),OC(·,·)(Ptp)
�xt∗ = (xi t∗)i∈[n]

$← Vtp, s.t., xi t∗ ≤ δt for i ∈ [n] x0
j∗ t∗ := xj∗ t∗

(Ēt∗ , (x̄i t∗)i∈[n], j
∗) ← A(Ptp, kr, state, (xi t∗)i∈[n]) x1

j∗ t∗
$← Vtp, s.t., (x0

j∗ t∗ �= x1
j∗ t∗) and (

∧n
i=1,i �=j∗ B0

i = B1
i) = 1

�̄xt∗ = (x̄i t∗)i∈[n] where Bb
i = pi t∗(xi t∗ , xb,∗

t∗)xi t∗ +
∑k

t=1,t�=t∗ pi t(xi t, x
∗
t)xi t

Return (�xt∗ �= �̄xt∗) ∧ (
∨n

i=1 x̄i t∗ > δt) and xb,∗
t∗ = min(xb

j∗,t∗ , δt∗) +
∑n

i=1,i �=j∗ min(xi t∗ , δt∗)
∧(Ēt∗ = EvidenceGen(Ptp, kr, (x̄i t∗)i∈[n], t

∗) Et∗ := EvidenceGen(Ptp, kr, ((xi t∗)i∈[n]\j∗ ||xb
j∗,t∗), t∗)

∧(EvidenceVrf(Ptp, rj∗ t∗ , xj∗ t∗ , Ēt∗ , t∗) = 1) b′ ← AOEG(·,·),OC(·,·)(Ptp,Et∗ , state)
Return (b = b′) ∧ (t∗ /∈ QL) ∧ (rj∗,t∗ /∈ CL)

OEG((xi t)i∈[n], t) OC(i, t)
Et := EvidenceGen(Ptp, kr, (xi t)i∈[n], t) (ri t)i∈[n] := SlotSecretGen(Ptp, kr, t)
(Et, t, (xi t)i∈[n]) → QL ri t → CL
Return Et Return ri t

Definition 1. A privacy-preserving transparent pricing scheme PPTP is secure
if the advantages AdvTransPPTP,A(κ) = Pr[GameTransPPTP,A = 1] and AdvPrivPPTP,A(κ) =∣
∣
∣Pr[GamePrivPPTP,A(κ) = 1] − 1/2

∣
∣
∣ of any PPT adversaries A in the corresponding

games are negligible.

4 Baseline Protocol

In this section, we present a simple instantiation of PPTP. This baseline protocol
meets the security definition above. In particular, the retailer creates a commit-
ment and zero-knowledge range proof for each user’s measurement, and shares
the full set of commitments and proofs with all users. Each honest user verifies
all the steps of the protocol to detect misbehavior. This protocol incurs a large
performance overhead, which we address in next section with a more efficient
protocol. In the following, we focus on the algorithms for a single time period
t ∈ [k], and discuss how to generalize it to a full operation cycle.

4.1 Preliminaries

We briefly review the syntax and security properties of the cryptographic prim-
itives used in our protocol.

Commitment Scheme. A commitment scheme COM consists of two algo-
rithms. COM.Setup(1κ) takes as input the security parameter 1κ, and outputs

448 D. Reijsbergen et al.

commitment parameters Pc. The algorithm COM.Commit(Pc, v, r) takes as input
parameters Pc, a value v, and randomness r, and outputs a commitment c. The
scheme is hiding when c reveals nothing of the committed value, and binding
when the commitment cannot be opened with two different random values. The
scheme is collision-resistant if for any (v0, v1) ∈ Vc and (r0, r1) ∈ Rc such that
v0 �= v1, the probability that COM.Commit(Pc, v0, r0) = COM.Commit(Pc, v1, r1)
is negligible. Finally, the scheme is (additively) homomorphic if, for any (v0, v1) ∈
Vc and (r0, r1) ∈ Rc, we have

COM.Commit(Pc, v0, r0) + COM.Commit(Pc, v1, r1) = COM.Commit(Pc, v0 + v1, r0 + r1).

Non-interactive Zero-Knowledge. Let Rzk be an efficiently computable rela-
tion of the form (st, w) ∈ Rzk, where st is the statement and w is the witness
of st. A non-interactive proof system NIZK for Rzk consists of three algorithms.
NIZK.Setup(1κ) which takes as input the security parameter 1κ and outputs the
system parameters Pzk. NIZK.Prv(Pzk, st, w) takes as input system parameters
Pzk and a pair (st, w) and outputs a proof π. NIZK.Vrf(Pzk, st, π) takes as input
Pzk, a statement st, and a proof π, and outputs True (1) or False (0).

The proof system NIZK satisfies zero-knowledge if the generated proofs reveal
nothing regarding the corresponding witnesses, and simulation-extractability if
for any proof generated by the adversary, there exists an efficient algorithm to
extract the corresponding witnesses with a trap door. In this work, we use NIZK
over the family of relations Rzk = (RLvmax)vmax∈N, where vmax can be either γt

or δt, and

RLvmax = {(c, vmax), (v, r)
∣
∣c = COM.Commit(Pc, v, r) ∧ v ∈ [0, vmax]}.

Pseudo-random Functions. A pseudo-random function (PRF) family consists
of two algorithms. PRF.KGen(1κ) is takes as input the security parameter 1κ and
outputs a random key k. PRF.Eval(k, x) is takes as input the random key k and
a message x, and outputs a pseudo-random value r.

4.2 Instantiation

The four main algorithms of Sect. 3 are instantiated as follows.

(Ptp, kr) ← Initialize(1κ): this algorithm generates the secret key kr :=
PRF.KGen(1κ), and initializes the commitment and non-interactive zero-
knowledge schemes as Pc := COM.Setup(1κ) and Pzk := NIZK.Setup(1κ),
respectively. The retailer publishes the system parameters Ptp =
(Pc,Pzk, αt, βt, γt, δt) and keeps the secret key kr private.
(ri t)i∈[n] ← SlotSecretGen(Ptp, kr, t): this algorithm uses the retailer’s secret
key to generate the slot secrets as ri t := PRF.Eval(kr, i||t) for i ∈ [n]. Each
slot secret ri t is sent to the corresponding user i via a secure channel and is
stored privately by the retailer and user i.

Transparent Electricity Pricing with Privacy 449

Et ← EvidenceGen(Ptp, (xi t, ri t)i∈[n], t): this algorithm computes for each
user ci t := COM.Commit(Pc, xi t, ri t) and generates the proof πi t :=
NIZK.Prv(Pzk, st, w) for the statement st = (ci t, δt) and witness w =
(xi t, ri t). The retailer computes the sum of the values x∗

t =
∑n

i=1 xi t, the
sum of the random seeds r∗

t =
∑n

i=1 ri t, c∗
t := COM.Commit(Pc, x

∗
t , r

∗
t), and

a proof π∗
t := NIZK.Prv(Pzk, st, w) for st = (c∗

t , γt) and witness w = (x∗
t , r

∗
t).

Finally, the retailer shares Et = (c∗
t , π

∗
t , (ci t, πi t)i∈[n]) with each user, and

puts a hash ht = H(Et) on the bulletin board.
{0, 1} ← EvidenceVrf(Ptp, ri t, xi t,Et, t): this algorithm executes four subrou-
tines, each taking parts of Et = (c∗

t , π
∗
t , (ci t, πi t)i∈[n]) as input, and returns

True if all four subroutines return 1.
{0, 1} ← VerifyConsistency(Et, h): computes h̄ = H(Et), and outputs
True if h̄ = h, and False otherwise.
{0, 1} ← VerifyCommitment(Pc, xi t, ci t, t): computes c̄i t := COM.Commit
(Pc, xi t, ri t) and outputs True if c̄i t = ci t, and False otherwise.
{0, 1} ← VerifySum(Pzk, c

∗
t , π

∗
t , (ci t)i∈[n]): computes c̄∗

t =
∑n

i=1 ci t. It
checks if c̄∗ = c∗. It then checks that c∗ and π∗

t match, and executes
NIZK.Vrf(Pzk, st, π

∗
t) for the statement st = (c∗, γt). The functions out-

puts True if all three checks are successful, and False otherwise.
{0, 1} ← VerifyRangeProofs(Pzk, (ci t, πi t)i∈[n]): checks that for each
i, the commitment ci t and the proof πt match, then executes
NIZK.Vrf(Pzk, st, πi t) for the statement st = (ci t, δt). It outputs True
if all proofs are valid and match the commitment, and False otherwise.

Operational Cycles. For a full operational cycle, the protocol above is executed
for every time period t ∈ [k]. The retailer computes Bi and sends it to each user
i ∈ [n], who then verifies the bill since she knows xi t and x∗

t for each time period.

4.3 Security Analysis

The baseline protocol described in this section is secure according to Definition 1.
The proofs for the following two theorems are included in the Appendix B.

Theorem 1. If the commitment scheme COM is additively homomorphic and
satisfies binding property, and non-interactive zero-knowledge proof system NIZK
is simulation-extractable, then the baseline protocol provides transparency.

Theorem 2. If the commitment scheme COM is additively homomorphic and
satisfies hiding property, the non-interactive zero-knowledge proof system NIZK
provides zero-knowledge, and pseudo-random function family PRF is secure, then
the baseline protocol satisfies privacy.

450 D. Reijsbergen et al.

4.4 Performance Analysis

We analyze the computation cost of the protocol in terms of the number of
invocations to the cryptographic functions, and the bandwidth cost in terms of
the sizes of the messages sent over the network. We ignore the initiation cost and
the cost of users sending measurements to the retailer, as these are independent
of the implementation. In the following, Mc, Mπ, Mh respectively denote the
message size of the commitments, proofs, and hashes.2

The total costs per time slot for each entity are summarized in Table 2.
The server has to execute the COM.Commit and NIZK.Prv n + 1 times in the
EvidenceGen algorithm: n times for each client’s measurement xi t and once for
the sum x∗

t . The n+1 commitments and proofs are sent to each of the n clients,
meaning that a message of size (n + 1)(Mc + Mπ) is sent n times. The server
also computes H(Et), and sends this hash to the bulletin board. Each client
receives a single message of size n(Mc + Mπ), and downloads the hash from
the bulletin board for verification. The client then 1) verifies the commitment
of its own measurement by executing COM.Commit and checking whether its
output matches the value sent by the retailer, 2) executes NIZK.Vrf on each of
the proofs, and 3) check whether the hash of the result matches the one on the
bulletin board. The load on the bulletin board consists of receiving a single hash
from the retailer, and sending it to the n users.

Table 2. Performance cost of the baseline solution.

Entity Computation Bandwidth

COM.Commit NIZK.Prv NIZK.Vrf

Server n + 1 n + 1 0 n(n + 1)(Mc + Mπ) + Mh

Client 1 0 n + 1 (n + 1)(Mc + Mπ) + Mh

Bulletin board 0 0 0 (n + 1)Mh

4.5 Discussion

We consider the computation cost at the server, which increases linearly in n,
to be acceptable because the server is often equipped with powerful CPUs, and
the operations are parallelizable. The bandwidth cost increases quadratically,
but the server can offload the messages to a cloud storage or content delivery
network that can distribute the messages in a scalable and cost-effective fashion.
We discuss a blockchain-based extension to the baseline protocol that reduces
the costs at the client, which is important since the clients are likely running on
edge devices close to the meters, or even running directly on the meter firmware.

2 Some range proof techniques, e.g., Bulletproofs [4], allow for the aggregation of
multiple proofs over the same range, leading to reduced bandwidth costs.

Transparent Electricity Pricing with Privacy 451

Table 3. Performance cost of the blockchain solution. BC represents the processing
of read requests at the blockchain smart contract. Mbc is the message containing the
blockchain proof that a commitment is stored in the chain.

Entity Computation Bandwidth

COM.Commit NIZK.Prv NIZK.Vrf BC

Server n+ 1 n+ 1 0 0 (n+ 1)(Mc +Mπ)

Client 1 0 0 1 Mc +Mbc

Bulletin board 0 0 n+ 1 n+ 1 (2n+ 1)Mc + nMbc + (n+ 1)Mπ

We note that for verification, only the VerifyCommitment algorithm requires
the private input. In other words, most of the verification can be done publicly
by another party without compromising client privacy. The VerifyRangeProof
algorithm, which is the most expensive, can therefore be performed by a trusted
third party with more resources than the client. As a first improvement over the
baseline solution, we propose to leverage a blockchain as the trusted party, and
implement the range proof verification in a smart contract.

The server sends the proofs and commitments to a blockchain smart con-
tract, which executes VerifyConsistency, VerifySum, and VerifyRangeProofs. If the
verifications pass, the blockchain stores the messages. The client i only com-
putes the commitment ci t using its own measurement xi t, and verifies that it
was included in the blockchain by reading blockchain storage directly without
incurring consensus overhead. The client does not need to run NIZK.Vrf on any
of the other users’ range proofs, but the trade-off here is that the blockchain
incurs significant overhead: generating n proofs for read requests from the user,
and executing the smart contract for verification. We summarize the cost for
each entity in Table 3 in the Appendix.

5 Merkle Tree Protocol

As discussed in Sect. 4.5, the baseline solution of Sect. 4 can be improved by
offloading all range proof verification to a trusted third party such as the bul-
letin board. However, this puts a large computational burden on the bulletin
board – far beyond the capacity of, for example, the Ethereum blockchain. In
this section, we take inspiration from Certificate Transparency [5] and describe
another PPTP instantiation based on a modified Merkle tree. The protocol
reduces the communication and computation costs at the user, and therefore
is more practical. In each period the retailer sends to each user a proof of the
inclusion and a range proof for the sum x∗

t , which due to the homomorphism of
our commitment scheme corresponds to the value in the root of the tree.

5.1 Overview

Merkle trees are an extension of binary trees. For any node v, let left(v) be
its first child and right(v) its second child. If node v has no second child, then

452 D. Reijsbergen et al.

right(v) = 0, and if it also has no first child then left(v) = 0. In the original
Merkle tree, each node v contains a hash value hv of its children. We modify
it by storing at each node v a commitment cv. For each user i ∈ [n] we set
the commitment in the ith leaf equal to ci = COM.Commit(Pc, xi t, ri t). The
commitments in the other nodes are computed as:

cv = cleft(v) + cright(v), (3)

such that and c0 = COM.Commit(Pc, 0, 0). The inclusion proof for node i includes
the root, i’s leaf, the intermediate nodes that lie on the path between them,
and the children of these nodes. Figure 3 shows an example, where the green
nodes represent the path between the leaf and the root and the yellow nodes the
children of those nodes.

Assumptions. In this section, we describe a protocol that is secure under the
following assumptions. There are a number of powerful entities, called auditors,
that perform verification on behalf of the users. In the following, we assume that
auditors do not share measurements themselves (although in practice a single
entity may act as a user and an auditor). At least one auditor is honest, and at
most f are dishonest. Furthermore, the maximum time for an auditor to finish
its verification and have its messages stored on the bulletin board, T , is known.
We discuss other protocols that do not rely on auditors in the Appendix A.

c1 = c2 + c3

c2 c3 = c6 + c7

? ? c6 = c12 + c13 c7

? ? ? ? c12 c13 ?

level 0:

level 1:

level 2:

level 3:

Fig. 3. Example of a modified Merkle tree with 7 leaves.

5.2 Instantiation

The four algorithms of Sect. 3 are instantiated as follows.

Initialize, SlotSecretGen: they are the same as in Sect. 4.
Et ← EvidenceGen(Ptp, (xi t, ri t)i∈[n], t): this algorithm constructs a Merkle
tree described above, using the measurements and slot randomness as input.
For each user, the evidence Et contains the inclusion proof G and a zero-
knowledge proof π∗

t that the sum x∗
t (whose commitment c∗

t is the root of
G) is within the range [0, γt]. For auditors, the evidence also includes the
commitments and range proofs (ci t, πi t) for all leaf nodes i ∈ [n]. The retailer
also uploads the commitment in the root node to the public bulletin board
as ch.

Transparent Electricity Pricing with Privacy 453

{0, 1} ← EvidenceVrf(Ptp, ri t, xi t,Et, t): this algorithm consists of two phases.
In the first phase, it execute the following subroutines.

{0, 1} ← VerifyConsistency(G, ch): verifies that the value of ch on the
bulletin board matches with the root of the inclusion proof G.
{0, 1} ← VerifyCommitment(Pc, ri t, xi t, G): if the user is an auditor,
returns True. Else, it computes c̄i t := COM.Commit(Pc, xi t, ri t), and
verifies that c̄i t = cv, where v is the leaf node in the user’s inclusion
proof G.
{0, 1} ← VerifyInclusionProof(G): if the user is an auditor, returns True.
Else, it verifies that the inclusion proof is valid, i.e., that the commitment
c in each intermediate core node v ∈ G indeed follows from applying (3)
to the commitments in v’s children.
{0, 1} ← VerifySum(Pzk, G, π∗

t): if the user is an auditor, returns True.
Else, it verifies that the proof π∗

t matches the commitment c∗
t in the root

of G, and executes NIZK.Vrf(Pzk, st, π
∗
t) for the statement st = (c∗

t , γt).
{0, 1} ← VerifyTree(Pzk, (ci t, πi t)i∈[n]): if the user is not an audi-
tor, returns True. Else, it executes VerifyRangeProofs(Pzk, (ci t, πi t)i∈[n])
from Sect. 4 for each user i ∈ [n]. Then, it checks whether the non-leaf
nodes of the tree are correct, i.e., whether they follow from applying (3).
It returns True if all checks are successful, and False otherwise.

In the second phase, if the user is an auditor, it signs and publishes a message
to the bulletin board: a failed range proof for a leaf node if it exists, the
value 1 if all four subroutines in the fist phase succeed, or an empty message
otherwise. The algorithm then returns true or false depending on the result
of the first phase. The non-auditor user checks if there is a proof of incorrect
range in the bulletin board, if yes, it verifies the proof and returns false.
Otherwise, it waits until there are f +1 signed empty messages on the bulletin
and returns True, or returns False after time T .

5.3 Security Analysis

We show that this protocol is a secure PPTP, by proving the following theorems.
The proofs are included in the Appendix.

Theorem 3. If the commitment scheme COM is additively homomorphic and
satisfies binding property, and non-interactive zero-knowledge proof system NIZK
is simulation-extractable, and the assumptions about f and T hold, then the
Merkle tree protocol provides transparency.

Theorem 4. With the same assumptions in Theorem 2, the Merkle tree protocol
satisfies privacy.

5.4 Performance Analysis

We analyze the performance of the Merkle tree protocol using the same metrics
as in the analysis of the baseline protocol. For simplicity, we assume n = 2m for

454 D. Reijsbergen et al.

Table 4. Performance cost of the Merkle tree solution, assuming m = log2(n) and f +1
auditors who each report to the bulletin board. Note that a user can simultaneously
act as a normal client and as an auditor.

Entity Computation Bandwidth

COM.Commit NIZK.Prv NIZK.Vrf

Server 2n− 1 n+ 1 0 (n+ 1)(f + 1)(Mc +Mπ) + n(2m+ 1)Mc

Normal Client 1 0 1 (2m+ 1)Mc + (f + 1)Mbc

Auditor 0 0 n (n+ 1)(Mc +Mπ) +Mbc

Bulletin board 0 0 0 (n+ 1)(f + 1)Mbc

some m ∈ N, so that the total number of nodes in the tree equals 2m+1 − 1 =
2n − 1. The retailer generates commitments for all 2n − 1 nodes and generates
range proofs for the root and the n leaf nodes. It only sends the commitments
for the nodes in the inclusion proof – this consists of m = log2 n nodes on the
path and m + 1 children, so 2m + 1 in total. Table 4 summarizes the cost.

We can also extend the protocol to use a blockchain as described in Sect. 4.5.
In particular, we can offload the range proofs to the smart contracts, hence
making the blockchain an auditor.

6 Implementation

We implement both the baseline and Merkle tree protocol in Go. To do so, we
extend the zero-knowledge range proof library by Morais et al. [10].3 In particu-
lar, we use their implementation of Bulletproofs [4] which uses Pedersen commit-
ment with the secp256k1 elliptic curve [3] as a commitment scheme. We paral-
lelize proof generations and verification by exploiting Go’s multi-threading. We
release the source code for our experiments at https://github.com/aungmawjj/
zkrp.

We evaluate the performance of our protocols in terms of the computation
and bandwidth cost. We also examine how the performance scales with more
hardware resources. There are no baselines from the related literature in our
evaluation, because we are unaware of other protocols that address the same
problem and have the same security guarantee as ours. We run the retailer’s
server on AWS EC2 with varying numbers of cores. We run the client on a
Raspberry Pi (RPI) 3 with 4 CPUs and 1 GB RAM.

Results. Figures 4a, 4b, and 4c compare the costs of the two protocols, with
varying numbers of users, using a VM with 8 cores for the server. Proof gener-
ation takes just as long for both protocols, so the lines overlap – in particular,
for n = 16 384, it takes 289 s for the two protocols to generate the proofs. In
Fig. 4b, the auditor runs on the same VM as the server. The verification time
and communication cost at the client increase linearly for the baseline, but only

3 https://github.com/ing-bank/zkrp.

https://github.com/aungmawjj/zkrp
https://github.com/aungmawjj/zkrp
https://github.com/ing-bank/zkrp

Transparent Electricity Pricing with Privacy 455

27 29 211 213 215
100

101

102

103

104

n

pr
oc

es
si

ng
ti

m
e

(s
)

(a)

27 29 211 213 215
10−1

100
101
102
103
104
105

n
pr

oc
es

si
ng

ti
m

e
(s

) Baseline User
Merkle User

Merkle Auditor

(b)

27 29 211 213 215
10−1

100
101
102
103
104
105

n

pa
yl

oa
d

(M
B

)

Baseline User
Merkle User

(c)

22 23 24 25
100

101

102

103

104

num. cores

pr
oc

es
si

ng
ti

m
e

(s
)

(d)

Fig. 4. (a) Proof generation times, (b) proof verification times, (c) network cost. Exper-
iments taking longer than 20 min are not included. (d) Proof generation times for
n = 214.

logarithmically for the Merkle tree protocol. Even with n = 1024, verification
takes 460 s for the baseline, which is significant considering that it must be done
k times per operational cycle. In contrast, the Merkle tree protocol takes 2.1 s.

Figure 4d shows that both protocols scale well, in terms of the proof gener-
ation cost, with more CPU cores. With n = 16 384, the time for Merkle tree
solution reduces from 492 s with 8 cores, to only 167 s with 32 cores.

We remark that the client cost is practical, for example with n = 65 536 it
takes 2.2 s to verify a single proof of roughly 110 kB and check 33 commitments.
However, this cost increases linearly with k. As a large value of k implies fine-
grained pricing, there is a trade-off between performance and how fine-grained
the pricing scheme can be.

7 Related Work

Shi et al. [13] propose a privacy-preserving protocol that can be applied to smart
meters. As mentioned in the introduction, their threat model is different from
ours, as we allow the retailer to know individual users’ measurements, but not
to distort them. Another difference is that their method is unable to decrypt if
a single meter is offline. In our setting, the retailer can set the measurements of
offline users to any value that does not exceed δt, but offline users otherwise have
no impact. Ács and Castelluccia [1] propose a related scheme for smart meters
that is able to decrypt when some meters fail, although the protocol requires
additional steps to do so. Erkin and Tsudik [6] consider a setting for sharing
meter data that is entirely peer-to-peer, i.e., without a retailer/aggregator.

Zhang et al. [16] propose IntegriDB, which allows data owners to outsource
SQL queries on their databases in a secure way. Their approach – which uses
sorted Merkle trees – can be used to store sums and perform range proofs on
measurement data, but they use a different system and threat model than the
one in Sect. 3. In particular, range proofs in their setting require that the values
in the leaves of the tree are sorted, but whereas their setting has an entity that
checks the structure of the tree (the ‘data owner’), there is no such entity in our
model as the auditors do not know the leaves’ underlying measurements.

456 D. Reijsbergen et al.

Chase and Meiklejohn [5] define the first formal security model for provable
transparency. Our formalization of transparency is adapted from their model
but with additional constraints on electricity measurements and bills. Unlike
Chase and Meiklejohn’s model, we particularly formulate the privacy definition
in conjunction with transparency. Nevertheless, we leverage auditors as in [5] to
facilitate the proof verification in the Merkle tree scheme.

8 Conclusions

We have introduced Privacy-Preserving Transparency Pricing (PPTP) schemes,
which incentivize consumers to schedule their electricity in a way that reduces
the costs for both the retailer and the users. We showed that our scheme is
secure against retailer misbehavior while preserving user privacy. Our scheme
can support tens of thousands of users while remaining computationally feasible
on low-capacity devices. In our scheme, the retailer is only able to increase its
profits to the extent allowed by the number of adversarial users, which is limited.
That is, the retailer can inflate demand to a degree determined by the fraction of
adversarial users and δt, the maximum value for readings. This allows the retailer
to occasionally charge higher prices, but only if the system-level threshold γt

would not be exceeded if the adversarial users were to report their true usage,
but exceeded if the adversarial users report the maximum usage δt.

Our future work includes improving the protocol further to support even
larger numbers of users. We note that our approach can be extended to other
situations in which it is beneficial for users to pay fees based on network-level
demand – e.g., water or gas distribution networks. We also believe that our
method generalizes to systems with multiple retailers, but we leave this as future
work. Another interesting direction for future work is to investigate how quickly
user behavior settles into a stable and efficient pattern given the dynamic pricing
scheme presented in Sect. 2. We believe that this will mainly depend on 1) the
degree to which user behavior fluctuates between cycles, and 2) the exact strat-
egy that users use to move controllable loads from high-demand to low-demand
periods. Regarding the former, we know from [9] that the demand in a day can
be predicted with high accuracy using the demand in the previous week. The
latter is a game theory question, but we expect (partially) random strategies to
perform well: e.g., if the demand in some period exceeds the threshold due to a
change in usage patterns, then each user shifts each of her controllable loads in
the high-demand periods to a low-demand period with some probability p̃.

Acknowledgment. This research/project is supported by the National Research
Foundation (NRF), Prime Minister’s Office, Singapore, under its National Cyberse-
curity R&D Programme and administered by the National Satellite of Excellence in
Design Science and Technology for Secure Critical Infrastructure, Award No. NSoE
DeST-SCI2019-0009. This research is also supported by A*STAR under its RIE2020
Advanced Manufacturing and Engineering (AME) Industry Alignment Fund - Pre Posi-
tioning (IAF-PP) Award A19D6a0053. Any opinions, findings and conclusions or rec-
ommendations expressed in this material are those of the author(s) and do not reflect

Transparent Electricity Pricing with Privacy 457

the views of A*STAR. Finally, we thank the anonymous reviewers whose comments
helped improve the paper.

Appendix A: A Protocol Without Auditors

We describe a protocol that relies on users randomly checking each other’s
proofs. The only difference to the protocol presented in Sect. 5 is the EvidenceVrf
algorithm. In particular, the EvidenceVrf(Ptp, ri t, xi t,Et, t) algorithm consists
of two phases. In the first phase, it executes the subroutines of EvidenceVrf
from Sect. 5 where the user is not an auditor. In the second phase, the user
randomly picks z other users, and then requests the inclusion proof Gj and
runs VerifyRangeProofs(Pzk, cj t, πj t) and VerifyInclusionProof(Gj) for every user
j that it picks. If the range proof verification fails for j, the user publishes the
invalid inclusion proof of j to the bulletin board. If the verification succeeds for
all z users, then the user waits for a certain time T and checks if the bulletin
board contains any incorrect range proof. The algorithm returns true if there is
no such proof, and false otherwise.

Theorem 5. Let h be the number of honest users who each check z proofs of
other users, and let f be the number of malicious users whose committed value
exceeds δt, such that h + f ≤ n. Let T be a bound on the amount of time before
any evidence of misbehavior appears on the bulletin board. If the commitment
scheme COM is additively homomorphic and satisfies the binding property, and if
the non-interactive zero-knowledge proof system NIZK is simulation-extractable,
then the above protocol achieves transparency for sufficiently large h or z.

Proof of Theorem 5. In the following, we assume that in each period t, each
user i draws the same number of other users z from [n]\{i} without replacement
(as there is no need to check the same proof twice). The number Ui of incorrect
leaves that are drawn by i is then a random variable with the hypergeometric
distribution, i.e.,

P(Ui = u) =
(

f
u

)(
n − f − 1

z − u

)

/

(
n − 1

z

)

.

By substituting u = 0, the probability that user i draws 0 incorrect leaves can
therefore be shown to be equal to (n−f−1)!

(n−f−z−1)!/
(n−1)!

(n−z−1)! =
∏z−1

i=0
n−f−i−1

n−i−1 which

is bounded by
(

n−f−1
n−1

)z

because the highest element in the product occurs at
i = 0. If h honest nodes perform this experiment, then the probability that none

of them detect an error is therefore at most
(

n−f−1
n−1

)hz

because the honest nodes
perform their experiment independently. This is therefore an upper bound on
the probability of failure, i.e., not detecting misbehavior, and the bound vanishes
if h → ∞ or z → ∞.

458 D. Reijsbergen et al.

Appendix B: Security Proofs

In the following, we present the proofs of the corresponding theorems.

Proof of Theorem 1. We give a sketch of proof here due to shortness of space.
Recall that in the transparency game the adversary has to generate at least a
dishonest measurement such that x̄i t∗ > dt. First, we claim that the commit-
ment C∗

i t∗ = COM.Commit(Pc, x̄i t∗ , ri t∗) of x̄ has a negligible probability to
collide with the commitment Ci t∗ = COM.Commit(Pc, xi t∗ , ri t∗) of the honest
(challenge) measurement xi t∗ , i.e., C∗

i t∗ = Ci t∗ . Since if such a collision occurs
with non-negligible probability, we could build an efficient algorithm B which
runs the transparency-adversary A as a subroutine to break the binding secu-
rity property of COM. Therefore, there is no ambiguity about the committed
measurements after each user’s confirmation of the corresponding commitment.
Next, we show that no adversary A can produce a proof π∗

i t∗ for a false state-
ment x̄i t∗ > dt which may lead to a false bill B∗

j∗ > Bj where Bj is the bill
determined by the challenge measurements. Note that the condition x̄i t∗ > dt

implies that it belongs to a relation which does not belong to the honest relation
RL for xi t∗ . Obviously, if A can generate a false zero-knowledge proof π∗

i t∗ for
x̄i t∗ , so we can make use of A to break the simulation-extractability of NIZK.

Proof of Theorem 2. We first reduce the security to that of the pseudo-random
function PRF by replacing the slot secret rj∗ t∗ (which is supposed to compute
the challenge evidence Et∗) with a uniform random value. If there is an adversary
A which can distinguish this modification, then we could make use of A to build
an efficient algorithm B to break the security of PRF. Since the slot secret rj∗ t∗

is uniform random now, this can enable us to reduce the security to the hiding
property of commitment scheme. Namely, if there exists an adversary A which
can distinguish the bit b in the privacy game, we can build an efficient algorithm
B running A to break the hiding property of the commitment scheme. B can
return the bit b′ obtained from A to the commitment-challenger to win the
game. Now, we use a simulator of NIZK to generate the zero-knowledge proof for
challenge measurements (x0

j∗ t∗ , x1
j∗ t∗) without using the corresponding witness.

Similarly, any adversary which distinguishes this change, can be used to break the
zero-knowledge property of NIZK. Since the NIZK does not leak any information
of the committed measurement, so we can always use x1

j∗ t∗ (which is random) to
generate the challenge evidence. Note that from the compromised slot secrets at
the time t∗, the adversary can learn at most n−1 measurements. But our scheme
does not reveal the sum the measurements, so the adversary cannot directly get
the measurement used for computing cj∗ t∗ and πj∗ t∗ . Namely, we change the
challenge evidence to be one which is independent of the bit b, so the advantage
of the adversary is zero after all the above changes. In a nutshell, due to the
security of the building blocks, the adversary can only have negligible advantage
in breaking our baseline scheme.

Proof of Theorem 3. The commitments of leaf nodes are generated identically
to those of baseline scheme. By our assumption there are at most f dishonest

Transparent Electricity Pricing with Privacy 459

auditors, so there must have at least one auditor’s verification result (on the
entire Merkle tree) among those f +1 signed results published on bulletin board
within required time T is faithful. If the Merkle tree if correctly built, then
those leaf nodes’ commitments are bind to the measurements from users except
for a negligible property due to the binding property of the commitment scheme.
Besides, the additively homomorphic property does not affect the binding prop-
erty of the aggregated non-leaf nodes in the Merkle tree, which implies each
commitment of the corresponding correctly commit the sum of the committed
values of its children. With a similar argument in the proof of Theorem 1, the
zero-knowledge proofs for the non-leaf nodes would not deviate from the range
of the corresponding committed value except for a negligible property because
of the simulation-extractable property. Hence, we can conclude that the Merkle
tree scheme achieves transparency.

Proof of Theorem 4. Since the adversary can reveal at most n − 1 slot secrets
of users at the challenge time t∗, she can learn n − 1 measurements of the
compromised users. In this case, only the challenge measurement xb

j∗ t∗ and the
sum of its parent node in the Merkle tree is unknown to the adversary. Note
that the sub-tree involving the challenge user j∗ and its sibling forms is identical
to the baseline scheme with just two users. So if there exists an adversary A
who can breaks the privacy of the baseline scheme with users n′ = 2, then we
can make use of it to build an efficient algorithm B to break the privacy of
the Merkle tree scheme. It is not hard to see that B can forward the challenge
measurements from A to its privacy-challenger to receive back the challenge
evidence for simulating the challenge response to A. All other queries from A
can be simulated based on the secrets chosen by B. In a nutshell, the privacy of
the Merkle tree scheme is implied by that of the baseline scheme.

References

1. Ács, G., Castelluccia, C.: I have a DREAM! (DiffeRentially privatE smArt Meter-
ing). In: Filler, T., Pevný, T., Craver, S., Ker, A. (eds.) IH 2011. LNCS, vol.
6958, pp. 118–132. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-
642-24178-9 9

2. Allcott, H.: Real time pricing and electricity markets. Working paper, Harvard
University (2009)

3. Brown, D.: Standards for efficient cryptography 2 (SEC 2). Technical report, Cer-
ticom (2010)

4. Bünz, B., Bootle, J., Boneh, D., Poelstra, A., Wuille, P., Maxwell, G.: Bulletproofs:
short proofs for confidential transactions and more. In: 2018 IEEE Symposium on
Security and Privacy (SP), pp. 315–334. IEEE (2018)

5. Chase, M., Meiklejohn, S.: Transparency overlays and applications. In: CCS, pp.
168–179. ACM (2016)

6. Erkin, Z., Tsudik, G.: Private computation of spatial and temporal power con-
sumption with smart meters. In: Bao, F., Samarati, P., Zhou, J. (eds.) ACNS
2012. LNCS, vol. 7341, pp. 561–577. Springer, Heidelberg (2012). https://doi.org/
10.1007/978-3-642-31284-7 33

https://doi.org/10.1007/978-3-642-24178-9_9
https://doi.org/10.1007/978-3-642-24178-9_9
https://doi.org/10.1007/978-3-642-31284-7_33
https://doi.org/10.1007/978-3-642-31284-7_33

460 D. Reijsbergen et al.

7. Laurie, B.: Certificate transparency. Commun. ACM 57(10), 40–46 (2014)
8. Luh, P., Ho, Y., Muralidharan, R.: Load adaptive pricing: an emerging tool for

electric utilities. IEEE Trans. Autom. Control 27(2), 320–329 (1982)
9. Mohsenian-Rad, H., Leon-Garcia, A.: Optimal residential load control with price

prediction in real-time electricity pricing environments. IEEE Trans. Smart Grid
1(2), 120–133 (2010)

10. Morais, E., Koens, T., Van Wijk, C., Koren, A.: A survey on zero knowledge range
proofs and applications. SN Appl. Sci. 1(8), 946 (2019)

11. Pedrasa, M.A.A., Spooner, T.D., MacGill, I.F.: Coordinated scheduling of residen-
tial distributed energy resources to optimize smart home energy services. IEEE
Trans. Smart Grid 1(2), 134–143 (2010)

12. Samadi, P., Mohsenian-Rad, H., Schober, R., Wong, V.W.: Advanced demand side
management for the future smart grid using mechanism design. IEEE Trans. Smart
Grid 3(3), 1170–1180 (2012)

13. Shi, E., Chan, T.H., Rieffel, E., Chow, R., Song, D.: Privacy-preserving aggregation
of time-series data. In: NDSS (2011)

14. Vardakas, J.S., Zorba, N., Verikoukis, C.V.: A survey on demand response programs
in smart grids: pricing methods and optimization algorithms. IEEE Commun. Surv.
Tutor. 17(1), 152–178 (2014)

15. Wood, A.J., Wollenberg, B.F., Sheblé, G.B.: Power Generation, Operation, and
Control. Wiley, New York (2013)

16. Zhang, Y., Katz, J., Papamanthou, C.: IntegriDB: verifiable SQL for outsourced
databases. In: ACM CCS (2015)

CoinJoin in the Wild
An Empirical Analysis in Dash

Dominic Deuber(B) and Dominique Schröder

Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
{dominic.deuber,dominique.schroeder}@fau.de

Abstract. CoinJoin is the predominant means to enhance privacy in
non-private cryptocurrencies, such as Bitcoin. The basic idea of Coin-
Join is to create transactions that combine equal-valued coins of multiple
users. This mixing of coins aims to prevent linkage of the users’ trans-
actional in- and outputs. The cryptocurrency Dash employs a built-in
CoinJoin service and, therefore, is ideal for empirically studying Coin-
Join. This paper presents the first empirical analysis of Dash, which
reveals that over 40% of all private transactions can be de-anonymized
depending on underlying assumptions. The main issue of these attacks
is the coin-aggregation problem, i.e. the need to combine outputs of sev-
eral CoinJoin transactions. The coin aggregation problem is not specific
to Dash and affects other cryptocurrencies as empirical evidence in Bit-
coin suggests. We show that the logical solution to the problem, namely
CoinJoin transactions with non-fixed arbitrary values, suffers from other
privacy weaknesses. We propose a novel mixing algorithm to mitigate the
need for coin aggregation without introducing additional privacy vulner-
abilities. In contrast to prior mixing algorithms, our approach removes
the need for fixed values by dynamically creating equal-valued CoinJoin
transactions. The mixing algorithm is not specific to Dash, and integra-
tion into other cryptocurrencies, especially into Bitcoin, is possible.

Keywords: Anonymous transactions · Linking heuristics ·
De-anonymization · Mixing

1 Introduction

More and more it seems as if cryptocurrencies have come to stay and are not
mere hype. The most widely used cryptocurrency Bitcoin [1] is often perceived
to provide anonymity. However, Bitcoin is not anonymous as it is possible to link
addresses that belong to the same user [18,34,38]. The goal of mixing protocols
is the prevention of these linkage attacks. CoinJoin [32] is the most widely used
protocol. It combines inputs and outputs from multiple users and creates a ran-
dom permutation that hides the correlation between input and output addresses
and, thus, between users. Even though Monero [13] and Zcash [16] are two cryp-
tocurrencies that achieve privacy by design, it is crucial to study and improve
CoinJoin for two reasons. First, Bitcoin is still the most commonly used cryp-
tocurrency, especially in the dark web [24], and supports CoinJoin to improve
c© Springer Nature Switzerland AG 2021
E. Bertino et al. (Eds.): ESORICS 2021, LNCS 12973, pp. 461–480, 2021.
https://doi.org/10.1007/978-3-030-88428-4_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-88428-4_23&domain=pdf
https://doi.org/10.1007/978-3-030-88428-4_23

462 D. Deuber and D. Schröder

privacy without requiring to swap coins to a more privacy-preserving currency.
Second, Monero and Zcash are already banned in South Korea [26], and there
is a risk that other jurisdictions will follow. If privacy-preserving currencies are
banned, CoinJoin on top of Bitcoin is among the only possibilities for people in
the corresponding jurisdictions to add privacy to their cryptocurrency activities.

The cryptocurrency Dash [4] employs a built-in CoinJoin mechanism. Dash
has not been researched before, although Dash has a market capitalization of
over four billion USD, is the second-largest cryptocurrency with built-in pri-
vacy features, and the third most established privacy coin for transactions in
the dark web [24]. By the beginning of 2021 Dash’s blockchain accounted for
approximately 1.4 million blocks including over 31 million transactions.

1.1 Empirical Analysis of Anonymity

We present the first empirical analysis of anonymity in Dash that combines new
and existing attacks to evaluate Dash’s anonymity level and gain insights on
CoinJoin and its privacy. We introduce a novel attack that we call Backlink
attack. In essence, Backlink attack carefully combines multi-input heuristic [18,
34,38] and a newly developed heuristic to find address clusters.

We put forward the DC attack, which is a modification of the cluster-inter-
section attack according to Goldfeder et al. [25]. The DC attack revealed a funda-
mental problem with CoinJoin, namely the coin aggregation problem. As Dash
uses fixed values in their CoinJoin transactions, users generally need to aggre-
gate coins of several CoinJoin transactions that fuel the attack. To ascertain
whether the coin aggregation problem is also present in other cryptocurrencies,
we analyze the impact of our attacks for Bitcoin.

Results: It was found that 15.1% of non-mixing transactions that spend private
coins are linkable by the Backlink attack. In terms of address clusters, applying
the newly developed heuristic reduces the number of clusters by almost two-third
compared to only applying the multi-input heuristic. By applying the DC attack,
we were able to link over 40% of Dash’s private transactions depending on the
underlying assumptions of the attack.

In Bitcoin, around 23% of all transactions which spend outputs from a Coin-
Join transactions contain backlinks. In addition, more than one-tenth of all trans-
actions do so from CoinJoin transactions spend from at least two different Coin-
Join transactions, which indicates that coin aggregation is also a problem in
Bitcoin.

1.2 Cookie Monster Mixing

Our analysis suggests that the privacy issues in Dash result from the fact that
Dash only supports equal-valued mixing with fixed values and allows users
to combine their coins in a way that might de-anonymize them. We analyze
arbitrary-value CoinJoin as proposed by Maurer et al. [31] and show that it has
other privacy weaknesses, which is why it is not a suitable way to solve the coin

CoinJoin Anonymity 463

aggregation problem. To remove the issue of only fixed values being mixed with-
out introducing additional privacy vulnerabilities, we propose a novel mixing
algorithm that we call Cookie Monster Mixing. The algorithm is inspired by the
cookie monster problem [22] and removes the need to split and combine coins
before and after mixing. Thus, the information that multiple coins of different
mixing transactions belong together is no longer present on-chain. As a con-
sequence, cluster-intersection attacks without additional off-chain information
are no longer possible. We have formalized the problem as an integer quadratic
problem and propose an efficient greedy algorithm to solve it. A prototype imple-
mentation reinforces the practical efficiency. Through experimentation, we have
validated that the greedy algorithm is nearly optimal.

1.3 Responsible Disclosure

We reported our findings to the Dash Core Group, one of the organizations work-
ing for the Dash network, and declared our willingness to support the implemen-
tation of the suggested countermeasures. With Dash Core Release 0.16.0.1 [6],
Dash has implemented some of our suggested countermeasures to improve pri-
vacy.

1.4 Related Work

A major concern of CoinJoin is that the users need to trust an external mixing
service that creates the transaction. Alternative approaches to mitigating this
weakness have been proposed, such as CoinShuffle [39] or its more efficient suc-
cessor CoinShuffle++ [40]. For Ethereum, a trustless tumbler Möbius has been
presented that achieves mixing through a smart contract based on ring signatures
and stealth addresses [33].

While CoinJoin is a mixing service that can be used as an extension of
traditional cryptocurrencies, new privacy-preserving cryptocurrencies have also
evolved, spearheaded by Monero [13] and Zcash [16]. Monero is based on the
CryptoNote protocol [42] and mainly uses ring-confidential transactions [36] to
achieve privacy. Conversely, Zcash is based on the Zerocash protocol [20] and
mainly uses zero-knowledge, succinct, non-interactive arguments of knowledge
to achieve privacy. The anonymity of both cryptocurrencies has since then been
subject to analyses [29,30,35,37].

Goldfeder et al. [25] showed that CoinJoin transactions in Bitcoin are vul-
nerable to the so-called cluster-intersection attack . Kalodner et al. [27] exper-
imentally validated the applicability of the cluster-intersection attack to Dash
on simulated transactions. In contrast, we apply the attack to the entire Dash
blockchain data. To do so, however, we needed to refine it, as there are several
underlying assumptions to take into account.

The major services for CoinJoin in Bitcoin are Wasabi Wallet [15], Samourai
Wallet [14] and JoinMarket [12]. All distinguish between pre- and post-mixing.
However, Wasabi and Samourai require fixed output values and thus might bene-
fit from the flexibility Cookie Monster Mixing provides in building their CoinJoin

464 D. Deuber and D. Schröder

transactions. JoinMarket allows for flexible output values, albeit in a different
setting. Its protocol distinguishes between takers and makers where the taker
pays the makers to participate in the mixing.

2 Preliminaries

In this section, we briefly explain concepts necessary to understand our attacks
and countermeasures. We introduce transactions, the multi-input heuristic and
CoinJoin followed by a high-level description of the cluster-intersection attack .

2.1 Transaction

Fig. 1. Transaction

A transaction consists of a list of inputs and outputs. In simple terms, an output
comprises an amount of a given cryptocurrency CC and the hash hpk of a public
key pk, which is also called an address. Inputs are references to outputs of pre-
vious transactions. A transaction with two inputs and three outputs is depicted
in Fig. 1a. The two inputs refer to the outputs at indices outid1 and outid2 of
transactions with hashes txhash1 and txhash2 respectively. Each output oi for
i ∈ [a, b, c] of the transaction specifies an address hpki

and an amount #CCi of
the cryptocurrency. To spend an output oi of this transaction in a succeeding
transaction, a public key pk must be provided whose hash equals hpki

and a
signature that verifies for pk. It is common for a transaction to have multiple in-
and outputs, as the input value needs to be spent completely. For example, if the
inputs amount to 5 CC but the user only wants to spend 4 CC to hpka

and hpkb
,

they will create an output oc to send back the remaining 1 CC to an address
they control (hpkc

), which is also called change (address). Outputs that can be
referenced by a transaction, but have not yet been, are called unspent-transaction
outputs.

2.2 Multi-Input Heuristic

If a transaction has multiple inputs, the following address-linking heuristic can
be applied.

CoinJoin Anonymity 465

Heuristic 21 (multi-input heuristic [18,34,38]). All addresses referred to in
the inputs of a transaction are controlled by the same entity.

The reason is that the computation of the signature of each input requires
the knowledge of the secret key. Other heuristics take advantage of the fact
that coins can only be spent in their entirety with the spending user usually
sending back the remaining amount of the cryptocurrency to a change address
they control [18,34,38]. Linking addresses results in sets of addresses, so-called
address clusters, which are likely controlled by the same entity.

2.3 CoinJoin

The basic idea of CoinJoin [32] is special CoinJoin transactions, which com-
bine the in- and outputs of multiple users. An example of such a transaction is
shown in Fig. 1b. The transaction has three inputs and three outputs from three
different users A, B and C. Here, we assume that all in- and outputs have the
same value. By merely examining the transaction it is not possible to determine
which input ix for x ∈ [A,B,C] belongs to which output oy for y ∈ [1, 2, 3].
As the inputs are controlled by three different users, the multi-input heuristic
(Heuristic 21) cannot be applied.

2.4 Cluster-Intersection Attack

Goldfeder et al. [25] showed that CoinJoin transactions in Bitcoin are vulnerable
to the so-called cluster-intersection attack , which works as follows. For each
output of a CoinJoin transaction, its anonymity set is determined by inspecting
the inputs of the transaction as, ideally, each input could be the origin of each
output. The anonymity set contains all possible address clusters that might
be the output’s origin. Additional information may likely reveal that the same
entity controls certain outputs of different CoinJoin transactions. In that case,
the corresponding anonymity sets can be intersected, i.e. address clusters that
are present in all sets can be identified. If there is only one address cluster in
the intersection, this cluster might be the origin of those outputs. Additional
information revealing that the same entity controls certain outputs of different
CoinJoin transactions can, for instance, be a single transaction spending such
outputs. Then, the information follows from the multi-input heuristic (Heuristic
21) and thus is on-chain information. Furthermore, it is also possible that the
payment recipient can derive the information off-chain, as seen in the following
example. Imagine a merchant receives two payments from the same customer,
and each of the payments is the output of a different CoinJoin transaction. If the
anonymity sets of both outputs only have a single address cluster in common,
the merchant can assume that this cluster belongs to the customer.

3 Dash

In this section, we introduce Dash and explain how it addresses privacy in its
PrivateSend feature as a necessary prerequisite for our attacks in Sect. 4.

466 D. Deuber and D. Schröder

3.1 Overview

The cryptocurrency Dash, having forked from Bitcoin in 2014 [5], follows the
same basic structure: the decentralized transaction ledger is maintained in a peer-
to-peer network that uses a consensus mechanism to agree on new transactions.
The transactions are organized in blocks and the ledger is often called blockchain;
the nodes in the consensus mechanism are called miners. They are rewarded for
their participation through block rewards, i.e., newly generated units of the cryp-
tocurrency and transaction fees. Dash differs from Bitcoin mainly by implement-
ing a native CoinJoin feature, PrivateSend, and a feature that reduces the time
it takes until a transaction can be considered final, InstantSend. Both features
are achieved by so-called masternodes, which are special nodes participating in
the Dash network. In contrast to miners, masternodes do not directly participate
in the consensus mechanism but mainly provide PrivateSend and InstantSend
as a service. They are rewarded for their services with fees. Additionally, they
also receive parts of the block rewards in so-called CoinbaseTXs. InstantSend
solves the problem of confirmation time that is present in Bitcoin. To do so, a
quorum of masternodes locks the inputs of a proposed transaction, which leads
to competing transactions being rejected [8]. We do not consider InstantSend in
the rest of the paper, as we are concentrating on privacy.

3.2 PrivateSend

PrivateSend is a service provided by masternodes to prevent the linkage of
addresses from different transaction outputs potentially belonging to the same
entity. Put in simple terms, PrivateSend implements CoinJoin (see Sect. 2.3).
There are several services that support the process of finding other users to
group with in order to build a CoinJoin transaction. In an ideal scenario, only
these services learn the input-output mapping, i.e., the mapping of inputs to
corresponding outputs.

Fig. 2. PrivateSend mixing procedure

CoinJoin Anonymity 467

The mixing process of Dash is depicted in Fig. 2 and works as follows: a user’s
wallet splits the value of some unspent-transaction outputs in a CreateDenom-
TX , and sends it to the network 1 . This step is a necessary prerequisite, as
mixing in Dash requires equal and fixed values. Next, the wallet reports a mixing
request to a randomly selected masternode 2 . This request includes certain
unspent-transaction outputs of the CreateDenomTX as inputs and equally as
many outputs with addresses that the wallet controls. If enough other users
(dashed lines) also reported their request to the masternode, it builds a Mixing-
TX 3 , consisting of all of the users’ input-output pairs. At this point, the master-
node reports the MixingTX back to each user’s wallet 4 , such that it can sign
the inputs. Before doing so, the wallet ensures that the outputs initially reported
in its request are contained in the list of outputs of the MixingTX . This check is
crucial in guaranteeing that the masternode cannot steal any coins by replacing
outputs with its own. If each wallet only signs so long as the check is successful,
the masternode cannot redirect money to their addresses since the sum of the
input values must exactly match the sum of the output values in MixingTXs.
The reason is that the fees required for mixing are decoupled from the Mixing-
TXs and therefore omitted for the sake of simplicity. After each wallet has signed
their inputs and sent the signatures to the masternode 5 , the masternode can
send the MixingTX to the network 6 . Each wallet then has private unspent-
transaction outputs, which can be used as inputs for further mixing rounds or
spent in PrivateSendTXs, the final transaction type used in PrivateSend. A
PrivateSendTX is a transaction, whereby the wallet implementation ensures
that it only spends private unspent-transaction outputs from MixingTXs.

4 Empirical Anonymity Analysis

In this section, we analyze the anonymity provided by CoinJoin in the context
of Dash and Bitcoin. For the analysis of Dash, we ran a Dash full node, ver-
sion 0.16.1.1 [6] and build an analysis pipeline using BlockSci [28] with version
0.5.0. First, we retrieved the raw blockchain data up to December 31, 2020,
which corresponds to a chain of 1 397 530 blocks. Then we detected the type
of transactions that are relevant for our attacks. In the backlink attack, we
linked address clusters based on the multi-input heuristic (see Heuristic 21) and
a new clustering heuristic. Finally, we refined the cluster-intersection attack by
adding false-positive rejection mechanisms and addressing uncertainty about its
underlying assumptions to make the attack applicable to Dash (DC attack). The
differences of our analysis of Bitcoin are stated in Appendix A.

4.1 Transaction Type Detection

We ran a transaction type detection algorithm for the identification of relevant
transactions for PrivateSend. This algorithm processes the data retrieved from
our full node, and it takes advantage of the fact that the mixing denomina-
tions in Dash are of the form 1.00001 × 10k for k ∈ [−3, . . . , 1]. Due to this
structure, it seems unlikely that it would not be a mixing denomination if we

468 D. Deuber and D. Schröder

were to encounter such a value. As a consequence, our detection mechanism
should produce few to no false positives. By design of our detection mechanism,
a transaction can only have one type, i.e., there is no ambiguity. We consider
each transaction that does not match any of the following types to be an Oth-
erTX. MixingTX is a transaction with equally many inputs and outputs, all
with the same denomination. This is due to the fact that the fee is decoupled
from mixing. Thus, there is exactly one output for each input. We addition-
ally require that there are at least three inputs as at least three participants
are required for mixing (see Dash’s whitepaper [23]). CreateDenomTX is a
transaction that is not a MixingTX if there are at least two outputs, while one
output needs to have one of the mixing denominations. Furthermore, we allow
at most two non-mixing-denominated outputs since one of them might be the
change output and thus of arbitrary value. The other might be a special output
required to pay mixing fees. PrivateSendTX is a transaction that is not a
MixingTX if it has more than one input and all the inputs are mixing denom-
inations. However, we only consider it a PrivateSendTX if it has exactly one
output since a PrivateSendTX does not allow change [10].

Fig. 3. Dash transaction types

In Fig. 3 the transactions are listed by their
type, where the total number of transactions
was 31 563 841. Only 0.4% (110 846) of all
transactions are PrivateSendTXs.
Bitcoin. In Bitcoin, we found that out
of 493 118 000 transactions, 1 767 452 (0.4%)
were CoinJoinTXs (the counterpart of Dash’s
MixingTXs). For the transactions entering
into and spending from CoinJoinTXs, we
detected 5 865 534 (1.2%) PreCoinJoinTXs
and 7 228 843 (1.5%) PostCoinJoinTXs.

Fig. 4. Backlink analysis

4.2 Backlink Attack

We introduce the Backlink attack, which directly links addresses occurring in the
output of a MixingTX , i.e., linking them to output addresses of a CreateDenom-
TX . There are transactions in Dash that spend outputs of MixingTXs and at

CoinJoin Anonymity 469

the same time outputs of CreateDenomTXs. We call such a transaction a Back-
linkTX and the output of the CreateDenomTX a backlink. Such a transaction is
shown in Fig. 4. The transaction’s first input is a reference to the fourth output
of the CreateDenomTX , which is the backlink.1 Thus, as a direct result of the
multi-input heuristic (see Heuristic 21), the addresses of the MixingTX , hpkc

and
hpkd

, are linkable, as under the assumptions of the multi-input heuristic there is
a link to hpk4 , which is an output address of the CreateDenomTX .

However, the linkable addresses can be further linked as all input and all
output addresses of a CreateDenomTX are most likely controlled by the same
entity. The reason for this is that CreateDenomTXs are generated by a user’s
wallet. This leads to the following address clustering heuristic:

Heuristic 41. All in- and output addresses of a CreateDenomTX are controlled
by the same entity.

As a result, hpkc
and hpkd

of the BacklinkTX in Fig. 4 can not only be linked
to hpk4 (multi-input heuristic, dashed line) but also to hpk1 to hpk3 and to the
address corresponding to the output of txhash at index outid (Heuristic 41, dotted
line). Note that reasonable clustering results are only achieved by combining
both heuristics. Applying the multi-input heuristic would allow linking to the
backlink. However, without Heuristic 41, the backlink address would, in general,
be in a single cluster and not reveal any additional information about the user’s
transaction history before mixing.

To detect backlinks, we do the following. We first iterate over all transac-
tions. Then, we check each transaction as to whether it has inputs referencing
MixingTXs as well as inputs referencing CreateDenomTXs. To identify the cor-
responding clusters, we add our heuristic to the clustering module of BlockSci,
which already implements the multi-input heuristic.

We found that out of the 174 834 transactions that are not MixingTXs but
spend mixing outputs, 26 402 (15.1%) have backlinks. In terms of addresses from
the outputs of MixingTXs, we found that out of 6 833 911 addresses, 836 230
(12.2%) are linkable. Applying only the multi-input heuristic resulted in 23 580
clusters. We reduced that number by almost two thirds by additionally applying
our Heuristic 41, which resulted in only 7 920 clusters.

Bitcoin. The attack slightly differs in Bitcoin as there are no explicit Create-
DenomTXs. Instead of CreateDenomTXs, we consider the PreCoinJoinTXs.
Thus, a BacklinkTX in Bitcoin is a PostCoinJoinTX with at least one input from
a PreCoinJoinTX . We found that out of 7 228 843 PostCoinJoinTXs, 1 674 070
(23.2%) have backlinks. This shows that backlinks are also present and even more
problematic in Bitcoin.

4.3 DC Attack

We introduce the DC attack as a modification of the cluster-intersection attack
(Sect. 2.4). First, we give a high-level description of the cluster-intersection attack
1 Note that the reference says [denomhash, 3] to refer to the fourth output as indexing

starts with 0.

470 D. Deuber and D. Schröder

in the context of Dash, followed by a discussion of which modifications are neces-
sary to apply the attack. Finally, we present the Dash cluster-intersection attack
(DC attack).

Fig. 5. Cluster intersection in Dash

An overview of the cluster-intersection attack in Dash is depicted in Fig. 5.
The PrivateSendTX has inputs from both MixingTX 1 and MixingTX 2. If we
trace back the inputs, the set of CreateDenomTXs that can be reached from
the MixingTX 1 input contains CreateDenomTX A and CreateDenomTX B.
Likewise, the set reachable from the MixingTX 2 input contains CreateDenom-
TX B and CreateDenomTX C. If we intersect the sets, CreateDenomTX B is
the only CreateDenomTX remaining.

Modifications. For actual transaction data, we do not know how many rounds
users have been mixing for and whether the mixing originated from a single link-
able address cluster [19,25]. Thus, we need to modify the attack. To compensate
for not knowing how many rounds of mixing the inputs of a PrivateSendTX
took, we consider a range of mixing rounds. To address the assumption that all
inputs originated from a single cluster, we developed a two-fold approach.

First, we add a mechanism to reject a cluster if there is a subset of inputs
that would result in another cluster. This cluster can be seen as an alternative
explanation for the subset of inputs. The minimum size of the subset is adjustable
via a parameter (alt). If, for example, ground-truth data indicated that clusters
containing 90% of the inputs are common, then an alt value of 80% could be
suitable for blockchain analysts to safeguard the evidential value of their findings.
In that case, the analysts would reject a cluster, if 80% or more of the inputs
could be explained by another cluster.

Second, we add a mechanism to detect some obvious false positives that are
based on the following observation. A cluster cannot have more Dash spent in its
PrivateSendTXs than have been created in its CreateDenomTXs. This is why we
compute a mix balance for each cluster as follows. Firstly, we sum the value of all
outputs of CreateDenomTXs that are spent in MixingTXs. Then, we subtract
the value of all inputs of a transaction that is not a MixingTX but is spending
from MixingTXs. In simple terms, we determine the value that has been input
into mixing and subtract the value that has been spent after mixing. Suppose
the attack now suggests linking two clusters, such that the sum of their mix

CoinJoin Anonymity 471

balances is negative. In that case, we know that we either encountered a false
positive or that our clustering of pre-mix addresses was incomplete. In either
case, we must reject the result because the two cases cannot be distinguished
without ground-truth data.

Algorithm 1. DC attack
procedure DC_ATTACK(ptx, alt)

candidate = None
r = 2
maxr = DETERMINE_MAX_ROUNDS(ptx)
while r ≤ maxr do

clusts = ∅
for inp ∈ ptx.inps do

clusts[inp] = EXTRACT_CLUSTS(r, inp)
intersec =

⋂

inp∈ptx.inps
clusts[inp]

if LEN(intersec) == 1 then
if CORR_REJ(intersec, alt, clusts) then

candidate = GET(intersec)
break

if BALANCE_CONF(candidate) then
return candidate

return None

This results in the Dash
cluster-intersection attack (DC
attack), which is a modified
version of the algorithm pro-
posed by Goldfeder et al. [25].
The algorithm is stated in
Algorithm1. The LEN method
always returns the number of
elements of the passed argu-
ment. The algorithm’s input
is a PrivateSendTX ptx and
the parameter alt as described
above. We set the start-
ing value for the number of
rounds r to 2, since 2 is the
minimum number of mixing
rounds required in Dash. The
maximal possible number of
rounds changed at the begin-
ning of 2019 from 8 to 16 with protocol version 0.13.0.0 [7]. Thus, to
prevent the algorithm from detecting obvious false positives, we determine
for every PrivateSendTX , the maximal possible number of rounds maxr in
DETERMINE_MAX_ROUNDS as follows. We retrieve the block in which the trans-
action occurred. If the year extracted from the block’s timestamp is greater
than 2018, we set maxr to 16 and 8 otherwise. Next, the algorithm iterates
over all rounds. In every round, for each input, all clusters that are attainable
within r rounds of mixing are determined (EXTRACT_CLUSTS). Then, the inter-
section intersec of all found cluster sets is computed. If there is exactly one clus-
ter in the intersection, we perform an additional check, CORR_REJ. This checks
whether there is a subset of the inputs whose size is greater than or equal to alt
of LEN(ptx.inps), which would lead to a different cluster than intersec. If this is
not the case, candidate is set to the cluster in intersec (GET). The loop is left
regardless of CORR_REJ. Finally, we check that candidate is not a false positive
according to the mix balance, which is performed by BALANCE_CONF and works
as explained above.

The results of the DC attack are shown in Fig. 6. Setting parameter alt
to 100% corresponds to complete certainty in the assumption that all inputs
resulted from one linkable cluster. In that case, no alternative explanation is
taken into account and over 40% of the PrivateSendTXs are linkable. In the
case of alt being equal to 0%, all results would be rejected by definition.

Bitcoin. Goldfeder et al. already demonstrated the applicability of the clus-
ter-intersection attack in Bitcoin [25]. Thus, the crucial question in this work

472 D. Deuber and D. Schröder

Fig. 6. DC attack linkable PrivateSendTXs for parameter alt ranging from 10% to
100%

is whether there is on-chain information fueling the attack. The special vulner-
ability to cluster intersection in Dash results from the fact that users need to
aggregate value in PrivateSendTXs. Thus, a PrivateSendTXs has several inputs
from different MixingTXs in general that can be seen as such on-chain informa-
tion.

To determine whether such on-chain information is also present in Bitcoin,
we did the following. We checked for every PostCoinJoinTXs whether there
are inputs from at least two different CoinJoinTXs. If this was the case, there
was on-chain information as it is possible to intersect the anonymity sets of
the different CoinJoinTXs. We found that out of the 7 228 843 PostCoinJoin-
TXs, 919 532 (12.7%) have inputs from at least two different CoinJoinTXs. This
indicates that the coin aggregation problem is also present in Bitcoin.

5 Enhancing Privacy of Mixing

We show how to enhance the privacy of mixing and discuss direct countermea-
sures to mitigate the vulnerability to the Backlink attack. After discussing why
fundamental changes to Dash seem unavoidable to prevent the DC attack, we
propose a new mixing algorithm that removes the vulnerability to the cluster-
intersection attack . This algorithm is of independent interest as it is not specific
to Dash.

5.1 Preventing backlinks

The anonymity problems that come with backlinks are approachable within the
design of Dash and Bitcoin. First, not all outputs of a CreateDenomTX must
be input to MixingTXs. There may be change, such as discussed above in the
example of Fig. 4. Additionally, Dash allows for CoinControl, i.e. letting users
in their wallet manually select inputs of a transaction [9]. While this is a useful
feature, in the case of a user creating a BacklinkTX, we recommend explicitly
warning them as backlinks remove the anonymity gained by mixing. A user’s
wallet should strictly separate any coins from CreateDenomTXs and those orig-
inating from a MixingTX . This idea is incorporated in the Bitcoin fungibility
framework ZeroLink [17] that distinguishes a pre-mix and a post-mix wallet.
With version 0.16.0.1 [6] Dash improved its user interface following our recom-
mendations after we disclosed our findings to them.

5.2 Cookie Monster Mixing

The vulnerability to the cluster-intersection attack results from the coin aggre-
gation problem, that is the need to combine coins of different mixes. In Dash, this

CoinJoin Anonymity 473

is a consequence of restricting the mixing to specific values. The logical solution
would be to allow arbitrary values. However, arbitrary-value mixing suffers from
privacy weaknesses caused by value analysis as discussed in Appendix B. Thus,
we propose a new mixing algorithm, Cookie Monster Mixing. The basic principle
behind Cookie Monster Mixing is to create a MixingTX where there are at least k
outputs with the same value and k is the anonymity level the transaction should
provide. This is related to the cookie monster problem [22]. Given a set of jars
filled with various numbers of cookies, the cookie monster wants to eat all the
cookies. However, the cookie monster has to proceed in rounds, select a subset of
jars, and eat the same number of cookies from each jar in this subset. The goal
is to eat the cookies in as few rounds as possible. In contrast, the objective in
Cookie Monster Mixing is to maximize the number of cookies for a fixed number
of rounds under constraints instead of minimizing rounds.

In Cookie Monster Mixing, a mixing service provider takes the role of the cookie
monster, while the jars are inputs with a specific value of the cryptocurrency to
be mixed. In Dash, the masternodes act as mixing service providers. Deviating
from the cookie monster problem, let the number of rounds r be fixed. In each
round j ∈ {1, . . . , r}, the mixing service provider may choose a target value tj and
a subset of the input values from which tj is subtracted. The subtracted value
is added to the output set, while the objective is to maximize the total output
value. Intuitively that relates to maximizing the total value of anonymous coins.
Additionally, there are two constraints. First, the size of the subset of inputs
selected per round needs to be at least k. Second, each selected input needs to
have a value at least as large as tj . Together the constraints ensure that the
outputs determined via tj have at least an anonymity set size of k as they have
the same value and thus might have originated from any of the inputs selected
in that round.

Integer Quadratic Problem. The problem can be formulated as the following
integer quadratic problem (IQP).

Constants

– v1, . . . , vn: non-negative integers (values of n inputs)
– k: positive integer (minimum number of values to select per round)

Variables

– x1, . . . , xn: 0 − 1 vectors of length r (where xi denotes the rounds in which
value vi has been selected)

– t: non-negative integer vector of length r (target values to be subtracted)

maximise

n∑

i=1

〈xi, t〉 (1)

s. t. 〈xi, t〉 ≤ vi, for each i ∈ {1, . . . , n} (2)
n∑

i=1

xi,j ≥ k, for each j ∈ {1, . . . , r} (3)

474 D. Deuber and D. Schröder

The Objective (1) is to maximize the total anonymized value, while Con-
straints (2) and (3) ensure that it is actually possible to subtract tj from the
selected inputs and that at least k inputs are selected per round j respectively.

Algorithm 2. Greedy solver
procedure SOLVER(in_vals, k, r)

if LEN(in_vals) < k || r == 0 then
return ∅

target_vals = ∅
tmp_vals = ∅
rval = EXTRACT_K_LARGEST(k, in_vals)
target_vals.add(rval)
for val ∈ in_vals do

if val > r_val then
tmp_vals.add(val − rval)

else if val < r_val then
tmp_vals.add(val)

return target_vals.concat(SOLVER(
tmp_vals, k, r − 1))

Greedy Algorithm. We
propose a greedy algorithm
that approximates the inte-
ger quadratic problem. It is
stated in Algorithm2. The
input to the algorithm is a
list of input values in_vals,
as well as k and r as
defined above. in_vals can
be obtained from the mul-
tiset of inputs I by replac-
ing each input with its value.
LEN returns the number of ele-
ments in a list and EXTRACT
_K_LARGEST extracts the kth

largest element of a list. The
algorithm returns target_vals, which is a list of values referring to the target
values tj of the integer quadratic problem.

As long as the abort criterion (i.e., LEN(in_vals) < k || r == 0) is not fulfilled,
the algorithm extracts the kth largest element of in_vals, which is assigned to
rval. Since this element can be seen as the target value of the greedy algorithm
in that round, it is added to target_vals. Then, the input values are updated as
follows. In case a value is greater than rval, their difference is added to tmp_vals.
Otherwise, if the value is smaller than rval, the value itself is added to tmp_val.
If they are equal, the value is omitted. This behavior corresponds to inherently
selecting all possible inputs per round in terms of the integer quadratic problem.
The algorithm runs in polynomial time. There are at most r recursive calls and
the runtime of each call is mainly determined by the time it takes to extract
the kth largest element of a list. If this is implemented by sorting, the algorithm
runs in O(r · n log n).

Our greedy algorithm is not optimal, which can be seen by the following
example. Let in_vals = [2, 2, 1], k = 2 and r = 2. In the first round, the algorithm
extracts 2 as the second largest element and adds it to target_vals, while 1 is
added to tmp_vals. In the recursive call, ∅ is returned, as the length in_vals is
1 and thus smaller than k which satisfies the abort criteria. Consequently, the
output value achieved in terms of Objective (1) is only 4, as target_vals = [2] and
the greedy algorithm inherently selects all possible inputs per round, which are
the first two of in_vals in the first round. The optimum 5, however, is achieved
by setting a1 = a2 = x1,1 = x2,1 = x3,1 = x1,2 = x2,2 to 1 and x3,2 to 0.

CoinJoin Anonymity 475

Evaluation of Algorithm2. To measure the quality of our greedy algorithm
in terms of maximizing Objective (1), we evaluated it against the optimal solu-
tion. Therefore we modelled the integer quadratic problem as given by Objective
(1) and Constraints (2) and (3) in IBM’s Optimization Programming Language
(OPL) and used the mixed integer optimizer from IBM LOG CPLEX Optimiza-
tion Studio V12.10.0 [11].

For the values of the inputs (in_vals), we first considered all clusters of
CreateDenomTXs retrieved by applying the multi-input heuristic and Heuristic
41 as discussed in Sect. 4.2. For each cluster, we summed up the values of all
outputs that were referenced by MixingTXs. This results in a distribution of
Dash that users were mixing in the past. It is therefore better suited for evalu-
ation than purely random values. We varied both, r and the number of inputs
that we chose randomly from the distribution. We set k to 3 following the Dash
whitepaper, which suggests at least three participants per mixing round [23].
The results are shown in Fig. 7a averaged over 100 runs indicating that Fig. 2
is nearly as good as the optimal solution. The average wall-clock time of the
solver is reported in Fig. 7b. In contrast, Algorithm2 took less than a second
for each choice of parameters. Therefore, particularly for multiple inputs and
rounds, using a solver is infeasible, which is why Algorithm 2 should be used
instead.

Fig. 7. Evaluation of Algorithm 2 against optimizer

Using Cookie Monster Mixing removes the need for splitting and aggregating
coins before and after mixing. Thus, the on-chain information that multiple coins
of different mixes belong together is no longer present, preventing the DC attack.
To prevent cluster-intersection attacks from off-chain information as well, Cookie
Monster Mixing needs to be combined with privacy-aware wallets and browsers.

Acknowledgments. We would like to thank Christoph Egger, Paul Gahman, Vikto-
ria Ronge and Kyle Soska for their helpful comments as well as all the reviewers of this
work for their constructive feedback. Work was supported by Deutsche Forschungsge-
meinschaft (DFG, German Research Foundation) under reference number 442893093
and as part of the Research and Training Group 2475 “Cybercrime and Forensic Com-
puting” (grant number 393541319/ GRK2475/1-2019).

476 D. Deuber and D. Schröder

A Differences in the Analysis in Bitcoin

This section highlights the general differences in the analysis of Bitcoin and Dash.
For Bitcoin, we ran a full node, version 0.20.0 [2] and used BlockSci [28] with
version 0.7.0. We retrieved the raw blockchain data corresponding to a chain of
612 793 blocks with 493 118 000 transactions.

The main difference occurs in the transaction type detection as Bitcoin nei-
ther knows CreateDenomTXs nor PrivateSendTXs. Thus, besides the CoinJoin-
TXs, we also consider PreCoinJoinTXs and PostCoinJoinTXs. A PreCoinJoin-
TX is any transaction that has at least one output being referenced by a Coin-
JoinTX . Likewise, a PostCoinJoinTX is any transaction referencing at least one
output of a CoinJoinTX . We further exclude all CoinJoinTXs from PreCoin-
JoinTXs and PostCoinJoinTXs. In comparison with Dash, the CoinJoinTXs
would correspond to MixingTXs, the PreCoinJoinTXs to the CreateDenomTXs,
and the PostCoinJoinTXs to the PrivateSendTXs. Detecting PostCoinJoinTXs
and PreCoinJoinTXs is straightforward once CoinJoinTXs are detected. How-
ever, the detection of CoinJoinTXs is difficult as there are multiple different
CoinJoin services in Bitcoin (e.g. [12,14,15]) that neither require the number of
inputs and outputs to be the same nor restrict their inputs to specific denomi-
nations as is the case in Dash. BlockSci already implements a CoinJoin detec-
tion mechanism which, however, is tailored to JoinMarket [12] transactions and
therefore does not recognize the transactions of other CoinJoin services such as
Wasabi Wallet [15] or Samurai Wallet [14]. For this reason, we adapted the Coin-
Join detection mechanism of the open-source Blockstream Bitcoin explorer [21]
as it is capable of detecting CoinJoinTXs of several services. However, we also
adopted the elements of BlockSci’s algorithm [3] that were not specific to Join-
Market.

Algorithm 3. CoinJoin detection
procedure COJO_DETECTION(tx)

if LEN(tx.inps) < 2 || LEN(tx.outs) < 3 then
return False

target = MIN(MAX(LEN(tx.outs)/2, 2), 5)
found = False
for out ∈ tx.outs do

if out.val == 546 || out.val == 2730 then
return False

if OCC(val , tx.outs) >= target) then
found = True

if OCC_MOST(tx.outs) < OCC_UNIQ(tx.outs) then
return False

return found

Our algorithm is stated
in Algorithm3. The algo-
rithm returns True if the
provided transaction tx
is (most likely) a Coin-
Join transaction. The
LEN method returns the
number of elements of
the passed argument, MIN
and MAX work as expected.
OCC computes the num-
ber of occurrences of the
value val in the pro-
vided outputs. OCC_MOST
returns the number of
occurrences of the value that occurs the most while OCC_UNIQ returns the num-
ber of unique output values. The first thing the algorithm does is check whether
the transaction has at least two inputs and three outputs. The reason for this is
that mixing requires at least two participants. At least one participant generally

CoinJoin Anonymity 477

receives some change, which is why there is always at least one additional output
aside from the two mixed ones. Next, a target between two and five is computed.
This is used to check whether there are at least target many outputs with the
same value, where target corresponds to half the number of outputs but is kept
between two and five as done by Blockstream [21]. As suggested by BlockSci, a
transaction with so-called dust outputs is unlikely a CoinJoin transaction, which
is why output values should not be equal to 546 or 2 730 [3]. These values are
the smallest possible output values allowed by Bitcoin Core depending on the
version. The last check is to prevent false positives as there needs to be at least
as many equal-valued outputs as there are unique ones. The reason is that in a
CoinJoinTX unique outputs should only be change outputs.

B Limitations to Arbitrary-Value Mixing

Fig. 8. CoinJoin transaction

We proposed Cookie Monster Mixing (see Sect. 5.2) as arbitrary-value mixing is
not a suitable solution for the coin aggregation problem due to privacy weak-
nesses based on value analysis. When mixing coins with an arbitrary value,
outputs can usually be linked to the corresponding inputs by inspecting the val-
ues, as discussed by Maurer et al. [31]. Considering the CoinJoin transaction
in Fig. 8a taken from Maurer et al. [31], the transaction can only consist of the
two sub-transactions (dotted line and dashed line), such that it is possible to
link inputs i1 and i2 to outputs o1 and o2, as well as i3 and i4 to o3 and o4,
respectively. To prevent this linkage, Maurer et al. [31] propose output-splitting
algorithms. Given two transactions, their basic splitting algorithm works by cal-
culating the difference between the sums of the corresponding output lists. Next,
one of the outputs of the list with the larger sum is split to produce this dif-
ference [31]. Thus, multiple input-output relations are possible. Applied to the
two sub-transactions in Fig. 8a, the algorithm results in the transaction depicted
in Fig. 8b. Output o3 in Fig. 8a has been split in o3.1 and o3.2 such that i1 and
i2 belong to either o1 and o2 or o3.2 and o4. The reason is that the sum of the
values of i1 and i2 equals 33, as do the sums of o1 and o2 as well as o3.2 and o4.

478 D. Deuber and D. Schröder

However, even if output-splitting results in multiple potential input-output
relations, it is still possible to determine the actual input-output relation by
inspecting the values. In Fig. 8b, i1 and i2 are far more likely to result in o1 and
o2 than in o3.1 and o4. The reason is that under the assumption that one of the
outputs is change, input i2 would not have been required as i1 is larger than 19
(o3.1) and 14 (o4).

As their basic output-splitting algorithm does not affect the input linkability,
that is i1 and i2 as well as i3 and i4 are linkable, Maurer et al. [31] propose a
version of the algorithm that implements input shuffling. Instead of using the
difference between the sums of the corresponding output lists, the sum of a
random subset of inputs is used to split the outputs. Thereby, the number of
inputs is a parameter of the algorithm. In terms of Fig. 8a, the input shuffling
algorithm might employ the sum of i1, i2 and i4. While this seems to be an
improvement over the basic algorithm, it is especially dangerous if the inputs
are linkable by heuristics. Intuitively, the gained privacy relies on an ambiguity
on the input side, which is introduced by using the sum of a random subset in
output splitting. However, if it is known which inputs belong together, there is
no gain in privacy at all.

References

1. Bitcoin. https://bitcoin.org/
2. Bitcoin release v0.20.0. https://bitcoin.org/en/release/v0.20.0
3. Blocksci source code. https://github.com/citp/BlockSci
4. Dash. https://www.dash.org/
5. Dash core repository. https://github.com/dashpay/dash
6. Dash core repository release history. https://github.com/dashpay/dash/releases
7. Dash core version 0.13.0.0. https://github.com/dashpay/dash/blob/master/doc/

release-notes/dash/release-notes-0.13.0.md
8. Dash developer documentation. https://dashcore.readme.io/docs
9. Dash wallet documentation - coin control. https://docs.dash.org/en/stable/

wallets/dashcore/advanced.html
10. Dash wallet documentation - privatesend and instantsend. https://docs.dash.org/

en/stable/wallets/dashcore/privatesend-instantsend.html
11. Ibm log cplex optimization studio vol 12.10.0. https://www.ibm.com/products/

ilog-cplex-optimization-studio
12. Joinmarket. https://github.com/JoinMarket-Org/joinmarket-clientserver
13. Monero. https://www.getmonero.org/
14. Samourai wallet. https://samouraiwallet.com
15. Wasabi wallet. https://wasabiwallet.io
16. Zcash. https://z.cash/
17. Zerolink - the bitcoin fungibility framework. https://github.com/nopara73/

ZeroLink
18. Androulaki, E., Karame, G., Roeschlin, M., Scherer, T., Capkun, S.: Evaluating

user privacy in Bitcoin. In: Sadeghi [41], pp. 34–51
19. Kaikkonen, A.: Evaluating the privacy of privatesend (2018). https://www.dash.

org/forum/threads/evaluating-the-privacy-of-privatesend.32472/

https://bitcoin.org/
https://bitcoin.org/en/release/v0.20.0
https://github.com/citp/BlockSci
https://www.dash.org/
https://github.com/dashpay/dash
https://github.com/dashpay/dash/releases
https://github.com/dashpay/dash/blob/master/doc/release-notes/dash/release-notes-0.13.0.md
https://github.com/dashpay/dash/blob/master/doc/release-notes/dash/release-notes-0.13.0.md
https://dashcore.readme.io/docs
https://docs.dash.org/en/stable/wallets/dashcore/advanced.html
https://docs.dash.org/en/stable/wallets/dashcore/advanced.html
https://docs.dash.org/en/stable/wallets/dashcore/privatesend-instantsend.html
https://docs.dash.org/en/stable/wallets/dashcore/privatesend-instantsend.html
https://www.ibm.com/products/ilog-cplex-optimization-studio
https://www.ibm.com/products/ilog-cplex-optimization-studio
https://github.com/JoinMarket-Org/joinmarket-clientserver
https://www.getmonero.org/
https://samouraiwallet.com
https://wasabiwallet.io
https://z.cash/
https://github.com/nopara73/ZeroLink
https://github.com/nopara73/ZeroLink
https://www.dash.org/forum/threads/evaluating-the-privacy-of-privatesend.32472/
https://www.dash.org/forum/threads/evaluating-the-privacy-of-privatesend.32472/

CoinJoin Anonymity 479

20. Ben-Sasson, E., et al.: Zerocash: decentralized anonymous payments from bitcoin.
In: 2014 IEEE Symposium on Security and Privacy, pp. 459–474. IEEE Computer
Society Press (2014)

21. Blockstream: Bitcoin explorer source code. https://github.com/Blockstream/
esplora

22. Braswell, L.M., Khovanova, T.: The cookie monster problem. In: The Mathematics
of Various Entertaining Subjects: Research in Recreational Math, p. 231 (2015)

23. Duffield, E., Diaz, D.: Dash: a payments-focused cryptocurrency. https://github.
com/dashpay/dash/wiki/Whitepaper

24. European Cybercrime Center (EC3): Internet organised crime threat assessment
(2020). https://www.europol.europa.eu/activities-services/main-reports/internet-
organised-crime-threat-assessment-iocta-2020

25. Goldfeder, S., Kalodner, H., Reisman, D., Narayanan, A.: When the cookie meets
the blockchain: privacy risks of web payments via cryptocurrencies. In: Proceed-
ings on Privacy Enhancing Technologies 2018, no. 4, pp. 179–199 (2018). https://
content.sciendo.com/view/journals/popets/2018/4/article-p179.xml

26. Ikeda, S.: South Korea’s new crypto AML law bans trading of “privacy coins”
(monero, zcash). https://www.cpomagazine.com/data-privacy/south-koreas-new-
crypto-aml-law-bans-trading-of-privacy-coins-monero-zcash/

27. Kalodner, H., Goldfeder, S., Chator, A., Möser, M., Narayanan, A.: BlockSci:
design and applications of a blockchain analysis platform. arXiv preprint
arXiv:1709.02489 (2017)

28. Kalodner, H.A., et al.: BlockSci: design and applications of a blockchain analysis
platform. In: Capkun, S., Roesner, F. (eds.) USENIX Security 2020, pp. 2721–2738.
USENIX Association (2020)

29. Kappos, G., Yousaf, H., Maller, M., Meiklejohn, S.: An empirical analysis of
anonymity in zcash. In: Enck, W., Felt, A.P. (eds.) USENIX Security 2018, pp.
463–477. USENIX Association (2018)

30. Kumar, A., Fischer, C., Tople, S., Saxena, P.: A traceability analysis of Monero’s
blockchain. In: Foley, S.N., Gollmann, D., Snekkenes, E. (eds.) ESORICS 2017.
LNCS, vol. 10493, pp. 153–173. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-66399-9_9

31. Maurer, F.K., Neudecker, T., Florian, M.: Anonymous CoinJoin transactions with
arbitrary values. In: 2017 IEEE Trustcom/BigDataSE/ICESS, pp. 522–529 (2017)

32. Maxwell, G.: CoinJoin: bitcoin privacy for the real world (2013). https://
bitcointalk.org/index.php?topic=279249

33. Meiklejohn, S., Mercer, R.: Möbius: trustless tumbling for transaction privacy.
PoPETs 2018(2), 105–121 (2018)

34. Meiklejohn, S., et al.: A fistful of bitcoins: characterizing payments among men
with no names. In: Proceedings of the 2013 Conference on Internet Measurement
Conference, pp. 127–140. ACM (2013)

35. Möser, M., et al.: An empirical analysis of traceability in the Monero blockchain.
PoPETs 2018(3), 143–163 (2018)

36. Noether, S., Mackenzie, A., Lab, T.: Ring confidential transactions. Ledger 1, 1–18
(2016)

37. Quesnelle, J.: On the linkability of Zcash transactions. arXiv e-prints
arXiv:1712.01210 (2017)

38. Ron, D., Shamir, A.: Quantitative analysis of the full Bitcoin transaction graph.
In: Sadeghi [41], pp. 6–24

https://github.com/Blockstream/esplora
https://github.com/Blockstream/esplora
https://github.com/dashpay/dash/wiki/Whitepaper
https://github.com/dashpay/dash/wiki/Whitepaper
https://www.europol.europa.eu/activities-services/main-reports/internet-organised-crime-threat-assessment-iocta-2020
https://www.europol.europa.eu/activities-services/main-reports/internet-organised-crime-threat-assessment-iocta-2020
https://content.sciendo.com/view/journals/popets/2018/4/article-p179.xml
https://content.sciendo.com/view/journals/popets/2018/4/article-p179.xml
https://www.cpomagazine.com/data-privacy/south-koreas-new-crypto-aml-law-bans-trading-of-privacy-coins-monero-zcash/
https://www.cpomagazine.com/data-privacy/south-koreas-new-crypto-aml-law-bans-trading-of-privacy-coins-monero-zcash/
http://arxiv.org/abs/1709.02489
https://doi.org/10.1007/978-3-319-66399-9_9
https://doi.org/10.1007/978-3-319-66399-9_9
https://bitcointalk.org/index.php?topic=279249
https://bitcointalk.org/index.php?topic=279249
http://arxiv.org/abs/1712.01210

480 D. Deuber and D. Schröder

39. Ruffing, T., Moreno-Sanchez, P., Kate, A.: CoinShuffle: practical decentralized coin
mixing for bitcoin. In: Kutyłowski, M., Vaidya, J. (eds.) ESORICS 2014. LNCS,
vol. 8713, pp. 345–364. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
11212-1_20

40. Ruffing, T., Moreno-Sanchez, P., Kate, A.: P2P mixing and unlinkable bitcoin
transactions. In: NDSS 2017. The Internet Society (2017)

41. Sadeghi, A.R. (ed.): FC 2013, LNCS, vol. 7859. Springer, Heidelberg (2013)
42. Van Saberhagen, N.: Cryptonote v 2.0 (2013)

https://doi.org/10.1007/978-3-319-11212-1_20
https://doi.org/10.1007/978-3-319-11212-1_20

One-Time Traceable Ring Signatures

Alessandra Scafuro(B) and Bihan Zhang

North Carolina State University, Raleigh, USA
ascafur@ncsu.edu

Abstract. A ring signature allows a party to sign messages anony-
mously on behalf of a group, which is called ring. Traceable ring sig-
natures are a variant of ring signatures that limits the anonymity guar-
antees, enforcing that a member can sign anonymously at most one mes-
sage per tag. Namely, if a party signs two different messages for the same
tag, it will be de-anomymized. This property is very useful in decentral-
ized platforms to allow members to anonymously endorse statements in
a controlled manner.

In this work we introduce one-time traceable ring signatures, where
a member can sign anonymously only one message. This natural vari-
ant suffices in many applications for which traceable ring signatures are
useful, and enables us to design a scheme that only requires a few hash
evaluations and outperforms existing (non one-time) schemes.

Our one-time traceable ring signature scheme presents many advan-
tages: it is fast, with a signing time of less than 1 s for a ring of 210

signers (and much less for smaller rings); it is post-quantum resistant,
as it only requires hash evaluations; it is extremely simple, as it requires
only a black-box access to a generic hash function (modeled as a random
oracle) and no other cryptographic operation is involved. From a theoret-
ical standpoint our scheme is also the first anonymous signature scheme
based on a black-box access to a symmetric-key primitive. All existing
anonymous signatures are either based on specific hardness assumptions
(e.g., LWE, SIS, etc.) or use the underlying symmetric-key primitive in
a non-black-box way, i.e., they leverage the circuit representation of the
primitive.

1 Introduction

Ring signatures, introduced by Kalai, Rivest and Shamir in [33], allow a party
to anonymously sign a message on behalf of a group chosen in a spontaneous
manner among a set of public keys. The crucial property of ring signatures
that set them apart from group signatures [13] is that there is no manager who
creates the keys, managing the group and de-anonymizing if necessary. In ring
signatures, a party can generate its own pair of keys and the ring is simply the set
of published public keys. Furthermore, at signing time, a signer can choose any
subset of the published keys as a ring for its own signature, and no other party

A. Scafuro—Research supported by NSF grants #1718074 and NSF #1764025.

c© Springer Nature Switzerland AG 2021
E. Bertino et al. (Eds.): ESORICS 2021, LNCS 12973, pp. 481–500, 2021.
https://doi.org/10.1007/978-3-030-88428-4_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-88428-4_24&domain=pdf
https://doi.org/10.1007/978-3-030-88428-4_24

482 A. Scafuro and B. Zhang

is able to de-anonymize it. Ring signatures are therefore particularly suitable
for decentralized systems and have received renewed attention lately with the
development of blockchains [29,30]. For instance, ring signatures could be used
as a building block for a decentralized governance of a blockchain. In [36] for
example, the goal is to provide a mechanism to vote on projects that should
be funded with the blockchain treasury. In such an application, ring signatures
could be used as a preliminary step to anonymously endorse projects that should
be later considered for voting.

However, the lack of a manager in ring signatures enable members to abuse of
their anonymity. In the example above, a member who wants to push a certain
project, could anonymously compute multiple signatures endorsing the same
project. Due to the anonymity guarantees, the other members cannot distinguish
whether this project is endorsed by a single member or by multiple members1.

Traceable Ring Signatures. To overcome the unrestricted anonymity provided
by ring signatures, Fujisaki and Suzuki in [19] introduced traceable ring signa-
tures, where each message is associated to a ‘tag’ (a tag can be thought as a
topic of discussion) and a party can anonymously sign only one message per
tag. Specifically, traceable ring signatures provide an algorithm, called Trace,
such that if Alice prepares two signatures σ, σ′ for messages m and m′ w.r.t
the same tag,Trace will output the public key of Alice. Note, however, that if
Alice computes two signatures σ, σ′ for the same message m (signatures can be
randomized) w.r.t. the same tag, the two signatures will be linked but Alice’s
identity will not be revealed. This property is called tag-linkability.

A downside of tag-linkability so defined is that a malicious party who just
wants to disrupt the system, can mount a simple denial-of-service attack by
continuously sending multiple signatures of the same message. While these sig-
natures will be linked and then discarded, the identity of the attacker will not be
revealed. Hence, the bad actor can keep the parties busy verifying and discarding
signatures.

Traceable ring signatures have been constructed from the DDH assumption
by Fujisaki and Suzuki [18,19] and from bilinear maps by Ho Au et al. in [2].
Such hardness assumptions however are not post-quantum resistant [34]. Only
very recently, Branco and Mateus [10] provided the first2 post-quantum resistant
traceable ring signatures. Their construction is based on the syndrome decoding
problem, a classical problem in coding theory that is conjectured to be post-
quantum resistant. This scheme relies on the Fiat-Shamir heuristic and is proved
secure in the classic random oracle model [5]. However, their construction is quite
inefficient, with signature size of 240 KB·N , where N is the size of the ring, which

1 A similar problem motivated the concept of threshold ring signatures [11], where a
signature can be computed only if a least t members agree. This is very specific to
applications where a quorum is required, and is not suitable in more general applica-
tions where we just want to enable members to express their opinion anonymously.

2 Post-quantum linkable ring signatures existed in the literature before – and we dis-
cuss them in Sect. 2. However, they do not provide traceability.

One-Time Traceable Ring Signatures 483

would translate in 24 MB with a ring of just 100 people. Signing time estimations
are not provided in [10], but they are expected to be high.

Hence, the state-of-the-art of traceable ring signature offers only one scheme
that is post-quantum resistant, but such scheme is currently impractical.

In this work we mitigate this situation by constructing a practical post-
quantum resistant traceable ring signature scheme that only requires hash-
function evaluations. Our key insight is to enforce a one-time flavor that gives
us traceability almost for free, at the expenses of reusability. As we discuss
below, this might not be a limitation and is an acceptable compromise in some
applications where traceable ring signatures can be used. We elaborate on our
contribution next.

1.1 Our Contribution

We introduce one-time traceable ring signatures and we construct them from a
random oracle only. One-time means that the security properties – unforgeability,
anonymity, non-frameability – are guaranteed only as long as a signer uses the
secret key at most once. This allows us to provide a stronger public traceability
guarantee that prevents denial-of-service attacks. Concretely, differently from
the previous tag-linkability property achieved in [10,19], our public traceability
property guarantees that if Alice signs twice, her identity will be revealed even
if she signed the same message.

The one-time flavor can be a feature rather than a limitation in settings where
signatures are used to endorse statements. Furthermore, our one-time traceable
signature can be extended to many-time assuming a common public immutable
state (e.g., the blockchain), using standard techniques that we discuss later in
this section.

Our one-time traceable ring signature scheme advances the state of the art
both from a practical and a theoretical perspective. From a practical standpoint
the signing algorithm is extremely fast, requiring less than a second even for a
ring of 1024 signers (see Table 1), and could be practical for applications such
as the blockchain treasury decision discussed above (we stress however that we
don’t expect it to be suitable for applications such as anonymous payments).

Table 1. Signature size and running times of our one-time traceable ring signature
scheme ΣOTS (described in Fig. 1) when H and G are instantiated with SHA3, and
security parameter λ = 128.

Ring Size Signature Size Signing Time (sec)

26 131 KB 0.034

27 262 KB 0.068

28 524 KB 0.135

29 1 MB 0.273

210 2 MB 0.760

484 A. Scafuro and B. Zhang

The signature size of our scheme is N ·λ2 bits (where N is the ring size and λ
is the security parameter) and outperforms the size of the post-quantum secure
traceable signature of [10] (which size is N ·240 KB). For instance, for a ring
of size 100, our scheme produces a signature of 204 KB versus the 24,000 KB
required by the scheme of [10]. In Table 3 we compare the running time and size
with various existing anonymous signatures that are linkable but not traceable
(see Sect. 1.3 for details).

Finally, our signature scheme is extremely simple, and can be easily under-
stood by anyone who understands the security properties of an hash-function
modeled as a random oracle. We see this as an important advantage of our
scheme since it makes it less prone to implementation errors and more agile
(since we use the hash function as an oracle, it is easy to swap between imple-
mentations).

From a theoretical standpoint, our signature scheme is the first (one-time)
ring signature that uses a hash function in a black-box way. Existing ring sig-
natures rely on hardness assumptions that have a trapdoor flavor and hence
require structure, e.g., trapdoor one-way permutation [33] or Cameleon Hash
Plus 3 [27] functions. Others rely on specific hardness assumptions such as
RSA [15], DDH [19,25] or Ring-LWE, NTRU, SIS/ISIS [4,27,35], syndrome,
LWE [8,10]. The only ring signatures based on generic symmetric-key type of
assumption, such as pseudo-random functions (PRF), rely on zero-knowledge
proofs (e.g., [21]) and use the underlying primitive in a non-black-box manner.
See Remark 1 for further discussions on non-black-box usage of cryptographic
primitives.

Finally, our signature scheme reduces the gap between what we can achieve
from black-box access to symmetric-key primitives in the non-anonymous setting
and the anonymous setting. Indeed, it is well known that in the regular, non-
anonymous, setting we can construct one-time signature schemes given only
black-box access to a hash function [22,28] 4. In contrast, in the anonymous
setting, even for one-time security, no construction was known. (But we stress
again that it is known from non-black-box use of symmetric-key primitives).

Remark 1. Black-box vs Non-black-box Usage of a Cryptographic Primitive. Ring
signatures can be constructed generically using zero-knowledge proofs as fol-
low. To sign a message on for a ring of N public keys, simply compute a non-
interactive zero-knowledge proof of knowledge of the secret key associated to
one of the N public keys. While this approach allows one to use any one-way
function, note that the size of the resulting zero-knowledge proof depends on the
specific one-way function that one chooses. Hence, different one-way functions
lead to different performances in both size and running time. As a consequence,
to improve performances, existing works (e.g., [21]) use less standard one-way
3 Chameleon Hash Plus were introduced in [27], it is a special hash function equipped

with a trapdoor such that given any value y, a party P can produce x′ s.t.
H(pkP , x′) = y.

4 Precisely, one-way functions are sufficient for one-time signatures, hash functions are
used for succinctness and reusability.

One-Time Traceable Ring Signatures 485

functions, such as lowMC [1], that yield shorter zero-knowledge proofs. In con-
trast, when a primitive is used only as an oracle, that is, in a black-box manner,
the signature size is independent of the complexity of the particular choice of the
primitive, but it depends only on the security parameter and how it relates with
the output size of the function. The concrete running times will vary of course
with the actual implementation of the oracle, but not the size. Even more, if
the oracle is implemented via hardware (e.g., GPU), the running time is dra-
matically reduced. Finally, note that hardware implementation of the primitive
cannot be leveraged when the primitive is used in a non-black-box manner.

On the One-time Flavor. We observe that, when an immutable shared state is
available – as it is the case in a blockchain system – the one-time flavor is not a
strong limitation since the common state can be leveraged to bootstrap the one-
time use to many-time use, following standard techniques. For instance, consider
the scenario where members associated with the governance of a blockchain are
identified with a permanent public key. Whenever there is a topic of discussion on
which the members are asked to give opinions, members can create a one-time,
per-topic key and sign this key using their permanent key. Once all interested
members have published their per-topic key (or a certain time has elapsed), the
ring has formed. Each party can now sign their message anonymously on behalf
of the ring for the specific topic, and no party can express more than one opin-
ion/vote on the topic without being caught. This process can be bootstrapped
so that when anonymously signing a message for topic 1, the party also signs
the next one-time public key for topic 2, that will be added to the next ring.

1.2 Our Technique

The idea behind our traceable one-time ring signature scheme is simple. It lever-
ages the equivocability of Naor’s bit commitment scheme [31].

To start, let us recall Naor’s commitment scheme. This scheme consists of
two rounds. The first round is a random string R of 3λ bits, chosen by the
receiver of the commitment, where λ is the security parameter. The second
round is the commitment c computed as follows: c := G(s) ⊕ (b · R), where G is
a Pseudorandom Generator (PRG) with expansion from λ to 3λ bits, and (b ·R)
means the multiplication of each bit of R with the bit b, where b is the bit the
sender wants to commit to. To open a commitment c (computed over the string
R), the sender simply sends the PRG seed s (that was used to computed c).
From the seed s, the receiver can then infer if the bit committed in c was 0 or
1 by simply trying to recompute c as either G(s) (b = 0) or G(s) ⊕ R (b = 1).
Naor’s bit commitment scheme is statistically binding. However, if the string
R instead of being chosen at random, were computed in an “equivocal mode”,
that is, as R = G(s0)⊕G(s1), for two random seeds s0, s1, the commitment can
be computed in such a way that can be equivocated, that is, opened as 0 or 1.
This is done as follows: to commit, one always sends c = G(s0). Then in the
decommitment phase, one sends s0 if it wishes to open to bit 0 and s1 otherwise.
The seeds s0, s1 are therefore trapdoors that can allow the sender to open the

486 A. Scafuro and B. Zhang

same commitment c adaptively to either 0 or 1. Naor’s bit commitment can
be straightforwardly extended to string commitment. To commit a λ-bit string
equivocally, one simply needs λ strings (R1, . . . , Rλ) computed in “equivocal
mode”. As we will see shortly, these strings will be the public key in our traceable
ring signature.

Given this equivocation property of Naor’s commitment, we can immediately
create a one-time traceable ring signature as follows.

Public Key of a Member. When a member Ui wants to join the system, it
will compute strings (R1, . . . , Rλ) in equivocal mode and set them to be their
public key. More precisely, to generate its own pair of public and private signing
key, a ring member Ui proceeds as follows. It chooses λ pairs of random seeds
s0i,j and s1i,j , for j ∈ [λ] (each seed is λ bits) and computes the j-th component of
its public key as pki,j := G(s0i,j)⊕G(s1i,j). The final public key that Ui publishes
is pki = (pki,1, . . ., pki,λ), and it has size λ(3λ). The values s0i,j and s1i,j are the
secret trapdoors that Ui will use as a secret key to sign a message.

Ring. A ring R of N public keys therefore corresponds to the vector of keys
(pk1, . . . ,pkN), where each pki = (pki,1 , . . ., pki,λ), is the vector of λ first
rounds of Naor’s commitment chosen by member Ui and computed in equivocal
mode.

Signature. To sign a message m, on behalf of the ring R of size |R| = N , a
user Ui will proceed as follows. It will choose N random strings x1, . . . , xN , one
on behalf of each member of the chosen ring R, while it sets xi = 0. Then, it
will commit to each string xq using the public key of member Uq. Indeed, recall
that the public key of pkq is nothing but the first round of Naor’s scheme that
can be used by anyone to compute a commitment to a string. Hence, the signer
Ui will compute N commitments c1, . . . , cN , using the N public keys in R, and
the i-th commitment is computed in equivocal mode. Once the commitments
are fixed, the signer evaluates the random oracle H on input the message m to
be signed, the ring R, and the commitments c1, . . . , cN just computed. It then
obtains the value z = H(m, R, c1, . . . , cN) which is called the target. Note, the
target z is a completely random string (due to the properties of the random
oracle H), that is sampled independently of the strings x1, . . . , xN committed in
c1, . . . , cN . After the target z is learnt, in order for the signature to be accepted,
the signer must somehow show that the xor of the openings of all commitments
x1 ⊕ · · · ⊕ xN is equal to z. Since x1 ⊕ · · · ⊕ xN were committed before the
random oracle evaluation, this relation does not hold (with all but negligible
probability). Hence, in order for the signer to satisfy the xor relation, it needs
to equivocate at least one commitment. Since the signer Ui knows the trapdoors
associated to the public key pki, it can indeed equivocate the i-th commitment
ci so that it opens to a new string x∗

i that satisfies the xoring relation above.
The actual signature will consist only of openings, i.e., the PRG seeds, of the

N string commitments. Note that among these PRG seeds, which are computed
on-the-fly at random, there are the secret PRG seeds (i.e., s0i,j or s1i,j) that Ui

had chosen when computing its public key, and that are used specifically to

One-Time Traceable Ring Signatures 487

equivocate the commitment. Looking ahead this means that upon a signature
Ui is exposing a share of the secret key. If the same Ui tries to sign twice, it will
end up using the other share and hence it will be traced. Our scheme is formally
described in Fig. 1.

Note that the idea of using some form of “trapdoor primitive”, in combination
with a target value z computed via the random oracle, is not new at all. In fact it
is the pillar of most ring signatures. Trapdoors, however, are typically connected
to cryptographic objects that have some structure and all previous works that
follow this design did require specific structured assumptions (e.g., Discrete Log,
Syndrome Decoding, Lattices, etc.). The new insight of our paper is simply that,
in the settings where traceability is required, one-time trapdoors can suffice, and
we show that they can be derived very cheaply from an unstructured object such
as the random oracle.

Security of Our Scheme. Next, we provide the intuition behind the security
guarantees that our scheme provides. First, we discuss the security definition we
adopt. We use the standard definition of traceable ring signature of [19], and
adapt it to the one-time setting. Informally, a traceable one-time ring signature
must satisfy the following properties: (1) anonymity, as long a party signs up to
one message no-one can distinguish her identity, (2) traceability: there exists
an algorithm Trace that given two signatures σ1, σ2 over a ring R, it outputs
an identity pk ∈ R if both σ1, σ2 were computed with the secret associated
to pk; (3) exculpability (also knows as non-frameability): no malicious party
should be able to “frame” an honest party pk who signed only once; (4) one-
time unforgeability: no malicious party can sign on behalf of a party who signed
only once (this property is implied by exculpability and traceability).

We briefly argue why our scheme satisfy the above security properties.
Anonymity is guaranteed by the random oracle properties. Indeed, the only

difference between a signature computed by member Ui and one computed by
member Uj is in the position where the equivocation seeds are placed. If a sig-
nature is coming from Ui, in position i we observe the equivocation seeds (either
s0i,j or s1i,j) used to computed the public key pki, while for any other position
q �= i we observe random PRG seeds that have no connection with how the
public keys pkq was computed. If the signature was computed by Uj we will
observe the same but in position j. Now, first observe that the equivocation
seeds (s0i,j and s1i,j) were chosen uniformly at random when the public key was
computed. Then observe that in the one-time setting, the adversary see at most
one signature from each party. Hence it will only observe at most one equivoca-
tion seed (and never both). Computationally, an equivocation seed picked when
computing the public key pki is distributed as a random PRG seed computed
on the fly for the commitment on behalf pkq. Hence, given any signature, it is
computationally infeasible to tell where the secret keys are placed (the formal
argument is provided in Lemma 1).

Traceability follows directly from the fact that to successfully sign, a member
Ui must use, and hence reveal, one of its equivocation seeds. If Ui computes two
distinct signatures (even on the same message) σ, σ′, it must hold that they

488 A. Scafuro and B. Zhang

had two different targets z, z′. Due to the random oracle properties, these target
must be different in many positions. Now, recall that, in order to sign, a member
Ui must equivocate the bit commitments ci to hit a bit string x∗

i that satisfy
the xor relation with the target. Now, if there are two targets z, z′ that differ in
many positions, this means that there is at least on bit, say j, of x∗

i such that
the j-th bit of x∗

i should be equal to 0 to accommodate for target z for σ while it
should be 1 to accommodate for target z′ for σ′. This will require to use seed s0i,j
in signature σ and seed s1i,j signature σ′. Using σ, σ′ it is therefore possible to
recompute the j-th component of Ui’s public key and hence de-anonymize these
signatures.

Exculpability holds because in order to successfully frame a signer with public
key pkl, the adversary needs to find two seeds s, s′ such that pkl,j = G(s′)⊕G(s)
for some index j. This is computationally infeasible (due to the one-way property
of the random oracle), even if the adversary has observed one signature from
pkl – and therefore she has seen one of the seeds – and even if the adversary
can create public keys maliciously and adaptively on honest public keys and
signatures.

On Post-quantum Security. Our proof of security is carried in the classic ran-
dom oracle model (ROM). Namely it assumes that a post-quantum adversary
only has classical access to the Random Oracle (i.e., cannot make queries in
superposition). This is consistent with all previous (traceable) ring signatures
(e.g., [8,10,27]) that aimed at post-quantum security. The Quantum ROM [9],
introduced by Boneh et al., considers an adversary that has quantum access
to the Random Oracle and can make queries in superposition. In this setting,
the practice of programming the Random Oracle, which is standard in the clas-
sic ROM, cannot be always applied and must be performed and analyzed very
carefully. Exciting recent work [16,26] show techniques that facilitate the use
programming in the QROM, paving the way to closing the gap between proofs
in the classic ROM and QROM. We leave it as a future work to provide a security
analysis of our scheme in the QROM model.

1.3 Performance Comparison

We compare our scheme with most recent traceable and linkable ring signatures
that are post-quantum resistant (in the classic random oracle model). Specifi-
cally, we compare with the traceable ring signatures of Branco and Mateus [10]
based on syndrome decoding, the linkable ring signatures Calamari and Falafl
of Beullens et al. [8] that are based on isogeny and LWE, and the linkable ring
signature Raptor [27] by Lum Ho Au and Zhang, based on NTRU and SIS. We
compare w.r.t. hardness assumptions (Table 2) and performances. The latter are
measured in terms of signature size and signing time (Table 3). We stress that
this is not an apple to apple comparison, firstly, because our scheme provides
only one-time security while the others provide many-time unforgeability and
non-frameability, and secondly, because [8] and [27] are not traceable. In terms
of assumptions, thanks to the one-time setting, our scheme uses the minimum

One-Time Traceable Ring Signatures 489

assumption – only a random oracle —, while all other schemes require specific
hardness assumption in addition to a random oracle. We also stress that, like
ours, all such works only consider the classic random oracle, and leave it as a
future work to analyze the scheme in the quantum random oracle model. For the
running times, since our scheme only requires hash function evaluations, it is the
fastest 5. For the signature size, our scheme outperforms the traceable signature
of [10] and it is asymptotically better than the linkable ring signatures of [27].
Calamari and Felafl [8] however have much better signature size than ours (but
they are not traceable). For our implementation we used an Intel(R) Core(TM)
i7-5600U CPU @ 2.60 GHz, using only a single core and 1 GB of RAM. We
instantiated the random oracle with SHA3 implemented in GO6.

Public Key and Signature Size. We recall that the public key is 3λ2 bits
(as explained in Sect. 1.1). Hence, for λ = 128, the public key of each party is
fixed to be 6 KB. Computing a public key only consists in choosing 2λ seeds,
computing 2λ PRG evaluations and xoring. The signature size depends on the
size N of the ring, and is computed as N · λ2.

Table 2. Hardness Assumptions used in most recent post-quantum secure link-
able/traceable ring signatures. Our work provides one-time security.

Hardness assumptions Random Oracle

Branco et al. [10] Syndrome Decoding YES

Calamari [8] Isogeny CSIDH-512 YES

Falafl [8] Lattices MSIS MLWE YES

Raptor [27] Lattices NTRU YES

This work none YES

Table 3. This table shows how the signature size and running time varies with the
size of the ring N , when the security parameter is 128 bits. (Note that for Raptor [27],
the reported values are for only 100 bits of security), with 64 bits of quantum security.

(Ring Size) N

23 26 210

Branco et al. [3] 1920KB – 1536KB – 245 MB –

Calamari [8] 5.4 KB 79 s 8.3 KB 16 min 10 KB 2.7 hrs

Falafl [8] 30 KB <1 s 32 KB 1 s 33 KB 9 s

Raptor [27] 11 KB 0.017 s 82KB >0.06 s 1.3 MB –

This work 16KB 0.004 s 131KB 0.03 s 1MB 0.7 s

5 Note that this is true even if we add to the signature time, the time to computed
the public key.

6 https://godoc.org/golang.org/x/crypto/sha3#ShakeSum128.

https://godoc.org/golang.org/x/crypto/sha3#ShakeSum128

490 A. Scafuro and B. Zhang

2 Related Work

In this section we review the literature on ring signatures. Most of the existing
work are not traceable, hence they are not directly relevant to our result.

Ring Signatures. Ring signatures were introduced by Rivest, Shamir and Tauman
in [33]. Their construction is based on any trapdoor permutation (or trapdoor
function) and is proved in the ROM [5]. Bender, Katz and Morselli in [6] for-
malized ring signatures more carefully and showed a scheme based on general
assumptions and ZAPs (i.e., two-round witness indistinguishable proofs) treat-
ing the underlying cryptographic primitives in a non-black-box manner. Libert
et al. in [23] construct the first ring signature with size logarithmic in the ring
from a lattice-based accumulator. Groth and Kohlweiss [20] show how to con-
struct logarithmic ring signatures from 1-out-N commit-and-prove scheme from
DDH assumption, this scheme was improved by Libert, Peters and Qian in [24].
Chandran, Groth, and Sahai [12] show a ring signature scheme with signature
size O(

√
N) based on the on composite order groups with a bilinear maps. Dodis

et al. [15] provides a constant-size ring signature scheme based on RSA accu-
mulators and the strong RSA assumption, and Nguyen [32] extends it with a
pairing-based accumulator. Derler, Ramacher and Slamanig [14] show the first
ring sub-linear ring signature scheme based only on symmetric primitives. Their
construction is in the random oracle model, it is non-black-box and non-linkable.
Katz, Kolesnikov and Wang [21] later provided optimized zero-knowlege proofs
that can be used to build shorter and faster ring signature for a pseudo-random
function only, used in a non-black-box manner. Lattice-based ring signatures
have been shown in [27] by Lu, Ho Au and Zhang from the SIS and NTRU
assumption. Beullens in [7] shows more efficient Sigma protocols for the MQ,
PKP and SIS problems, that yield to the construction of more efficient ring sig-
natures based on the same problem. Beullens, Katsumata and Pintore in [8] and
Esgin et al. [17] construct efficient ring signatures from the isogenies and lattices
problem. The scheme shown in [8] scale very well with the number of signers,
by using the Merkle Tree in a very elegant way and avoiding using the circuit
of the hash function. Unfortunately, signing (and verification) time is very high,
with 79s for a ring as small as 8 people for the isogeny-based signature. This
is due to the fact that the construction requires the parties to perform expen-
sive group “actions”. For the lattice-based implementation the bottleneck is not
the lattice arithmetic, but rather the use of symmetric primitives (i.e. hashing,
commitments and expanding seeds).

Linkable Ring Signatures. Linkable Ring Signatures were introduced by Liu, Wei
and Wong in [25]. They differ from traceable ring signatures in that they only
allow to detect that two signatures are linked – i.e., computed by the same signer
– but the identity of the signer is never revealed. Post-quantum resistant linkable
ring signatures have been provided in [4,27,35], which have large signatures and
withstand a somewhat weaker adversary who cannot maliciously craft its keys.

One-Time Traceable Ring Signatures 491

Very recently, the Calamari and Falafl shown by Beullens et al. [8] yield much
shorter linkable ring signatures, though the running times are not practical in
some cases (see Sect. 1.3). These schemes are not traceable.

Traceable Ring Signatures. Traceable ring signatures were introduced by Fujisaki
and Suzuki in [19], who constructed them based on the DDH assumption and the
Fiat-Shamir heuristic, in the ROM. Fujisaki [18] presents a sub-linear scheme
(where the size of the signature is O(

√
N) if N is the size of the ring), which

trades the RO assumption with the assumption that there exists a trusted com-
mon reference string (CRS). Ho Au et al. in [2] propose a construction based on
bilinear maps. All such constructions are based on variants of the hardness of
the discrete logarithm problem, and are not post-quantum resistant.

3 Definitions

Notation. We use notation [n] to denote the set {1, . . . , n}. We use y ← F(x) to
indicate y is the output of a randomized algorithm F on input x and y := F(x) if
F is a deterministic algorithm. PPT stands for “probabilistic polynomial time”.
A function negl is negligible if for every positive polynomial p there is an integer
n0 such that for all integers n > n0 it holds that negl(n) ≤ 1

p(n) .

3.1 One-Time Traceable Ring Signatures

One-time Traceable Ring Signatures. A ring signature is a signature computed
on behalf of a group of N public keys pk1, . . . , pkN , called the ring. To com-
pute a ring signature, a signer must know one of the corresponding secret keys,
e.g., ski. Ring signatures provide two properties: unforgeability and anonymity.
Unforgeability means that only members of the ring can produce valid signa-
tures. Anonymity means that given a ring signature σ on behalf of the ring
R ⊂ {pk1, pk2, . . .} it is infeasible to distinguish which secret key was actually
used to compute the signature. For simplicity of exposition we will always assume
that the ring is the set of all N public keys. A traceable ring signature [19] poses
restrictions on the number of times a signer can anonymously sign a certain
message. Namely, if a signer signs a message two times, then the two messages
will be linked. We introduce one-time traceable ring signatures where all secu-
rity properties hold assuming that a secret key is used at most once. We adapt
the definition of traceable ring signatures of [19] to the one-time setting, and we
provide a stronger traceability guarantee.

Definition 1. A one-time traceable ring signature scheme is a tuple of PPT
algorithms (GenKey, RSign, RVer, Trace) where:

– Key Generation: (pki, ski) ← GenKey(1λ) A randomized algorithm run by
a user Ui. It takes in input the security parameter λ and outputs a verification
key pki and a secret key ski.

492 A. Scafuro and B. Zhang

– Signing Algorithm: (R, σ,m) ← RSign(R,m, skl) On input a ring R ⊆ {
pk1, . . ., pkN}, a message m and a secret key skl, it outputs a signature σ.
We assume that |R| ≥ 2 and each public key in the ring is distinct.

– Verification Algorithm: b ← RVer(R,m, σ) it verifies a signature σ for
message m and w.r.t ring R. It outputs 1 if the signature verifies, 0 otherwise.

– Trace: Trace(R,m1, σ1,m2, σ2) on input two distinct signatures σ1 and σ2

on messages m1,m2 it outputs either “indep” or pk ∈ R.

Completeness. A one-time traceable ring signature scheme is complete if: for all
(pki, ski) ← GenKey(1λ), for all R ⊆ {pk1, . . . , pkN}, for all σ ← RSign(R, m,
skl) s.t. l ∈ [N]: Pr [RVer(R,m, σ) → 1] = 1

One-time Anonymity. This property guarantees that if an honest signer com-
putes a single signature w.r.t an arbitrary ring R, the secret key used by the
signer is anonymous w.r.t the honest public keys present in the ring R. To cap-
ture this, and following the definition of anonymity provided in [19], in the
one-time anonymity game ExpOneTimeAnon

A,Π all keys are maliciously computed by
the adversary A, except for two keys (pk0, pk1) which are honestly generated by
the challenger. In the challenge phase, the adversary chooses a ring R, contain-
ing the keys pk0 and pk1, and a message m to sign. The challenger returns a
signature σ∗ which is computed with one of the secret keys skb where b is chosen
at random. The adversary wins if it guesses the bit correctly. To capture the
one-time setting, our adversary cannot observe any previous signature from pk0

or pk1. Concerning the other public keys besides pk0, pk1, note that the adver-
sary “chooses” the ring R, hence it is assumed that the adversary controls those
public keys and can obtain any signature computed by these other public keys
(again, this follows the definition of [19])7. Also notes that the adversary gets at
most one signature. This capture the fact that anonymity is guaranteed if the
honest party only signs at most once in an absolute sense. If the party uses the
same secret keys with different rings, no anonymity is guaranteed.

Experiment ExpOneTimeAnon
A,Π (1λ)

– Generate keys. Run (pk0, sk0) ← GenKey(1λ) and (pk1, sk1) ← GenKey(1λ) and
send (pk0, pk1) to A.

– Challenge phase. Upon receiving a message m and a ring R of public keys from
the adversary proceed as follows. If pk0, pk1 are in R, pick bit b ← {0, 1} and
output σ∗ ← Sign(R, m, skb).

– (Decision). When A outputs b′, output 1 iff b = b′.

Definition 2 (One-time Anonymity). A one-time traceable ring signature
scheme Π is anonymous if for all PPT adversaries A, there exists a negligible
function negl such that: Pr

[
ExpOneTimeAnon

A,Π (1λ) = 1
]

≤ 1
2 + negl(λ).

7 A stronger anonymity definition introduced in [6] demands that an adversary cannot
break anonymity of a honest ring signature even if it knows the secret keys all
honest parties. As remarked in [19] (Remark 2.3), this property cannot be achieved
in combination with public traceability.

One-Time Traceable Ring Signatures 493

Public Traceability. Traceability is a security property that protects the sys-
tem against malicious users. To capture this, in the security game we assume that
all keys are computed by the adversary, and we want that, given N adversarially-
crafted keys, it should be infeasible for the adversary to produce N +1 signatures
on N + 1 distinct messages without being traced. We note that our definition is
stronger than the traceability definition of [19]. Indeed, in the latter, traceability
is considered a correctness property and not a security concern. Thus, [19] only
guarantees that two messages signed with the same secret key are linkable, but
the identity of the malicious signer is not necessarily revealed. Instead, in our
definition, we guarantee that if the same secret key is used twice, to compute
two distinct signatures, the corresponding public key is detected and revealed
by the Trace algorithm. The security game ExpTrace is formally defined below.

Experiment ExpTraceA,Π(1λ)

1. A on input the security parameter 1λ outputs a ring R of N public keys, and a
list of N + 1 distinct signatures for the same ring R:
{(m1, σ1), . . . , (mN+1, σN+1)}.

2. Return 1 if:
(a) RVer(R, mi, σi) = 1 for all i ∈ [N + 1] and
(b) Trace(R, mi, σi, mj , σj) /∈ R for all i, j ∈ [N + 1], where i �= j

Definition 3 (Traceability). A one-time ring signature scheme Π is traceable
if for all PPT adversaries A, there exists a negligible function negl such that:

Pr
[
ExpTraceA,Π (1λ) = 1

]
≤ negl(λ)

One-time Exculpability (Non-frameability). This property guarantees that
if an honest ring member signed at most once, it cannot be framed. To capture
this, we consider a target public key pk that is honestly generated, while all
other keys are maliciously generated by the adversary. The goal of the adversary
is to generate rings R,R′ and two signatures σ, σ′ such that algorithm Trace will
output the target key pk. The adversary can ask for one signature computed by
pk on an arbitrary ring and message. More formally, the experiment is described
below:

Experiment ExpFrame
A,Π (1λ)

1. Generate target key. Run (pk, sk) ← GenKey(1λ) and send pk to A.
2. Signature request. Upon receiving m, S, pk from the adversary, where S is a set

of arbitrary public keys and m is the message the adversary wants to see signed.
If pk ∈ S then output σ ← Sign(S, m, sk).

3. Output. Upon receiving (R, m, σ) and (R, m′, σ′) from the adversary. Output 1 if
Trace(R, m, σ, m′, σ′) = pk.

494 A. Scafuro and B. Zhang

Definition 4 (One-time Exculpability (Non-frameability)). A one-time
traceable ring signature scheme Π is exculpable (non-frameable) if for all PPT
adversaries A, there exists a negligible function negl such that:

Pr[ExpFrame
A,Π (1λ) = 1] ≤ negl(λ)

Remark. One can also consider a more general experiment where there are several
target honest keys. In this case the adversary could ask for signatures for each
target party and then attempt to frame one of them. As remarked in [19] a
construction satisfying the simpler experiment with one target key would satisfy
also the more general one.

One-time Unforgeability. As noted in [19] (see Theorem 2.6, Pag. 8) if a
signature scheme is traceable and exculpable, then it is also unforgeable. The
intuition on why this is true is that, if it was not the case, namely, if the scheme
is exculpable but not forgeable, then the adversary producing the forgery can
be used to break exculpability and frame an honest user. On the other hand, if
the forgery could not be used to frame the honest user, then this means that
the scheme is not traceable. Thus, in this paper we will not explicitly prove
unforgeability.

4 One-Time Traceable Ring Signature Scheme

The high-level idea of our one-time traceable ring signature scheme has been
provided in Sect. 1.1. In this section we describe the scheme formally and provide
the formal security proof.

Notation. For a bit string x we use notation x[j] to denote the j-th bit of x.
We use the subscript notation pki,j to denote the j-th element of vector pki.
Namely, pki = (pki,1, . . . , pki,λ). Let H : {0, 1}∗ → {0, 1}λ and G : {0, 1}λ →
{0, 1}3λ be two random oracles. The one-time traceable signature scheme ΣOTS =
(GenKey,RSign,RVer,Trace) is described in Fig. 1.

Theorem 1. If H : {0, 1}∗ → {0, 1}λ and G : {0, 1}λ → {0, 1}3λ are random
oracles, then scheme ΣOTS = (GenKey,RSign,RVer,Trace) in Fig. 1 is a one-time
traceable ring signature.

One-time Anonymity. If a signature is computed by signer pkl, this means that
the l-th set of commitments is equivocal, while the others are not. Recall that
being equivocal means that each seed rl,j provided as part of the signatures has
the property that pkl,j = G(rl,j) ⊕ G(r̃l,j) for some r̃l,j . For any other l′ �= l
instead no such r̃l′,j is known. Hence, in order to break anonymity, an adversary
should be able to distinguish whether the seeds present/do not present such
property. We prove that it is infeasible for any PPT adversary to distinguish
if this is the case through a sequence of hybrid games. We do so by consider-
ing a mental experiment where the signature is computed by programming the
random oracle rather than using the equivocation property of Naor’s commit-
ment. In such experiment, no secret key is used, all commitments are opened

One-Time Traceable Ring Signatures 495

One-Time Traceable Ring Signature Scheme: ΣOTS

Key Generation GenKey(1λ): A member Ui joins the system as follows:
1. Pick 2λ seeds: s0i,j ← {0, 1}λ, s1i,j ← {0, 1}λ for j ∈ [λ].
2. Set pki,j := G(s0i,j) ⊕ G(s1i,j), and ski,j = (s0i,j , s1i,j).
3. Output public key pki = (pki,1|| . . . ||pki,λ) and secret key ski =

(ski,1, . . . , ski,λ).
Signature RSign(R, skl, m). A member Ul signs a message as follows.

1. Parse R = (pk1, . . . ,pkN). Parse the secret key skl =
(s0l,1, s

1
l,1, . . . , s

0
l,λ, s1l,λ).

2. For all i = l
(a) Commit to a random string xi ∈ {0, 1}λ using the i-th public key pki.

i. For j ∈ [λ], commit to the j-th bit of xi: (1) pick a seed ri,j ←
{0, 1}λ; (2) compute ci,j := G(ri,j) ⊕ (xi[j] · pki,j).

ii. Set ci := [ci,1, . . . , ci,λ].
3. For i = l, set cl := [G(s0l,1), . . . , G(s0l,λ)].
4. Compute target z := H(R, m,c1, . . . , cN).
5. Compute adjustment string x∗

l := i xi ⊕z. (Recall, xi were defined in Step
2a)

6. Equivocate the l-th commitments cl so that they open to x∗
l . Namely: set

seed rl,j as rl,j := s
xl[j]
l,j for each j ∈ [λ].

7. Signatures σ:= (xi[j], ri,j)i∈[N],j∈[λ]. Output (R, σ, m).
Verification RVer(R, σ, m).

1. Parse R = (pk1, . . . ,pkN), where the i-th key is: pki = (pki,1, . . . , pki,λ). If
keys are not all distinct (or are not of the correct size) abort.

2. Parse σ = (ri,j , xi[j])i∈[N],j∈[λ].
3. Compute commitments: if xi[j] = 0 set ci,j := G(ri,j), else set ci,j :=

G(ri,j) ⊕ pki,j . Set ci = (ci,1, . . . , ci,λ).
4. Compute z := H(R, m, c1, . . . , cN). If z = i∈N xi accept the signature,

else reject.
Trace Trace(R,m1, σ1, m2, σ2).

1. Parse σ1 = (ai,j , αi,j)i∈[N],j∈[λ].
2. Parse σ2 = (bi,j , βi,j)i∈[N],j∈[λ].
3. If there exist a public key pki ∈ R and a j such that G(αi,j)⊕G(βi,j) = pki,j

then output (1,pki). Else output 0.

Fig. 1. One-time traceable ring signature scheme ΣOTS.

without a trapdoor, hence, a signature carries no information about the signer.
The formal proof consists of a sequence of hybrid games, from the real exper-
iments ExpOneTimeAnon

A,ΣOTS
(1λ) where signatures are computed using the secret keys

and equivocating the commitment, to the final experiment, where all signatures
are computed by programming the random oracle and no commitment is equiv-
ocated.

Lemma 1 (One-time Anonymity). If H : {0, 1}∗ → {0, 1}λ is a random
oracle and G : {0, 1}λ → {0, 1}3λ is a PRG, then scheme ΣOTS achieves one-
time anonymity according to Definition 2.

496 A. Scafuro and B. Zhang

Proof. Towards a contradiction, assume that there exists a PPT adversary A
that wins game ExpOneTimeAnon

A,ΣOTS
(1λ) with non-negligible probability p(λ). We show

an adversary that distinguishes the output of G with the same probability. The
proof goes by hybrid arguments, and leverage the programmability of the random
oracle H.

Hybrid 0. Real World Experiment. Hybrid H0 corresponds to experi-
ment ExpOneTimeAnon

A,ΣOTS
(1λ) instantiated with ΣOTS. By contradicting hypothesis

we assume that there is a PPT adversary A that wins game ExpOneTimeAnon
A,ΣOTS

(1λ)
with probability 1/2 + p(λ).

Hybrid 1. Programming H and Avoiding Equivocation. In this experi-
ment we slightly modify the computation of the signature in the following way.
The value z is not computed as z := H(S,m, c1, . . . , cN). Instead, in this exper-
iment the challenger fixes values (x1, . . . , xN) and computes z =

⊕
xl. Later,

the challenger programs the output of the RO so that when queried with input
q = (R,m, c1, . . . , cN) it outputs z. The commitments cl associated to public key
pkl however are still computed as equivocal and the secret key is used to open
them, however, the value xl that must be opened to is defined in advance. Note
that in this experiment the challenger can abort if two events happen: Event
1: the adversary queried a value q = (R,m, c1, . . . , cN) before seeing the signa-
ture. Event 2: the value z chosen by the challenger was already used to answer
previous random oracle queries.

Analysis. The difference between experiment H0 and H1 is only in the way the
output of H is computed. H0 and H1 are distinguishable only if Event 1 or Event
2 happens, which happen with negligible probability as we show in Lemma 2 and
Lemma 3.

Lemma 2. If H is modeled as a programmable random oracle, Pr[Event 1] ≤
t

2Nλ2 , where t is the number of queries to H.

Proof. Event 1 happens when adversary A queries the RO with input q =
(R,m, c1, . . . , cN) and later exactly the same commitments (c1, . . . , cN) are gen-
erated by the challenger. Since each ci is a Naor’s commitment and is the output
of the RO on a randomly chosen seed, the probability that A queried values
c1, . . . , cN prior to see the signature corresponds to guessing such values, which
happens with probability less than 1

2Nλ2 .

Lemma 3. If H is modeled as a programmable random oracle, Pr[Event 2] ≤
t
2λ , where t is the number of queries to H.

Proof. Event 2 happens when the output z chosen by the oracle challenger was
already provided as the output of H from previous queries. Since each output of
H is simulated by sampling a string uniformly at random in {0, 1}λ, this events
happen with probability t

2λ where t is the (polynomial) number of queries.

Hybrid 2. Replacing Honest Public Keys with Truly Random Strings.
In Hybrid H2 the honest keys are truly random strings instead of the xor of

One-Time Traceable Ring Signatures 497

two pseudorandom values. Note that since the random oracle is programmed,
there is no need for trapdoors in this experiment. An adversary distinguishing
H2 from H1 can be reduced to a PRG distinguisher. Since no secret key exist
in the system, no identity can be leaked in this experiment. This concludes the
proof of one-time anonymity. �

Traceability. This property guarantees that if two signatures were computed by
the same signer, they will be linked and the identity of the signer detected. To
win the traceability game ExpTrace, an adversary must provide a ring R of N keys
and N + 1 distinct signatures σ1, . . . , σN+1 on N + 1 messages m1, . . . ,mN+1,
such that for any pair (ma, σa), (mb, σb), Trace(R,ma, σa,mb, σb) outputs 0, i.e.,
no pairs of signatures is linkable. Intuitively, this is not possible since, in order
to compute N + 1 distinct signatures the adversary needs to compute at least
N + 1 equivocal commitments and thus use the trapdoor twice, hence revealing
which key was used.

We now argue this claim more formally. First, recall that according to the
Trace procedure two distinct signatures σa, σb for messages ma,mb are linked
when the following condition is satisfied: There exists a tuple a, b, i, j, such that:
G(ra

i,j) ⊕ G(rb
i,j) = Ki,j .

Now, assume that an adversary is able to provide N + 1 distinct signatures
w.r.t the same ring R = (K1, . . . ,KN) of adversarially chosen keys. Namely, the
adversary provides:

σ1 = m1, z1 (x1
i,j , r

1
i,j)i∈[N],j∈[λ]

.
σN = mN+1, zN+1 (xN+1

i,j , rN+1
i,j)i∈[N],j∈[λ]

Recall that to verify a signature σδ the verifier computes for each i, j, cδ
i,j =

G(rδ
i,j) ⊕ xδ

i [j] · Ki,j and then checks that: zδ = H(mδ, cδ
i,j)i∈[N],j∈[λ]. Now,

since the signatures are distinct, each must have a different target z. Since H is
modelled as a RO, the following observations hold:

1. For each pair a, b, values za, zb differ in at least v ≥ λ/2 positions w.h.p.
because they are the output of H.

2. For any δ, adversary learns zδ only after being committed to the values xδ
i [j].

3. Due to (1) and (2) the adversary needs to equivocate at least one bit com-
mitment to guarantee that

⊕
i,j xδ

i [j] = zδ.
4. To equivocate one commitment cδ

i,j which is either G(rδ
i,j) or G(rδ

i,j) ⊕ Ki,j ,
one needs to provide another seed r∗

i,j such that Ki,j = G(rk
i,j) ⊕ G(r∗

i,j).

The above observations simply tell us that in each signature there is at least
one equivocal opening, that is, a real seed rδ

i,j such that Ki,j = G(rδ
i,j) ⊕ G(r′).

If the adversary provided only N signatures, this means that for each signature
one seed (trapdoor) has been provided. Now if the adversary provided N + 1
signatures then, for at least one of the keys the other seed must have been
provided. In which case, that public key is linked. To complete the proof, we need
to discard the possibility that an adversary is able to find multiple pairs of seeds
that yield to the same public key Ki,j . Namely, the adversary could find two pairs
r1i,j , r

2
i,j , r

3
i,j , r

4
i,j such that Ki,j = G(r1i,j) ⊕ G(r2i,j) and Ki,j = G(r3i,j) ⊕ Gr4

i,j
.

498 A. Scafuro and B. Zhang

Since G is modeled as a Random Oracle, then the probability of finding such
tuple is negligible.

Exculpability (Non-frameability). In the exculpability game the adversary par-
ticipates at the same experiment as the anonymity experiment ExpOneTimeAnon

but without the challenge phase. The goal of the adversary here is to output
two signatures (R,m, σ) and (R,m′, σ′) with m �= m′ such that there exists a
honest public key pki ∈ H such that: (1) pki ∈ R ∩ R′; (2) SigVfy(R,m, σ) =
SigVfy(R′,m′, σ′) = 1; (3) Trace(R,m, σ,m′, σ′) = pki, 1.

Recall the algorithm Trace shown in Fig. 1. The condition for linking a key
pki,j is that for two seeds αi,j and βi,j it holds that: G(αi,j) ⊕ G(βi,j) = pki,j .
Note that in ExpOneTimeAnon the adversary is able to observe at most one signature
computed under secret key pki, and thus he is able to learn at most one seed
sb

i,j for each j ∈ [λ]. From this view the adversary can win the exculpability in
two ways: (1) Finding the preimage of pki,j ⊕ G(sb

i,j), (2) Finding two seeds α
and β such that G(α) ⊕ G(β) = pki,j . In both cases the adversary is breaking
the security of the PRG. The formal proof follows the same hybrid arguments
shown for one-time anonymity (Lemma 1). The idea is to replace each honest
public key pki,j with a truly random string, and equivocating by programming
the output H. In this hybrid world, the adversary wins exculpability only by
finding two seeds that satisfying the linkability equation, which corresponds to
break the statically binding property of Naor’s commitment.

One-Time Unforgeability. This property is implied by one-time exculpability and
one-time traceability (see [19], Theorem 2.6 of).

References

1. Albrecht, M.R., Rechberger, C., Schneider, T., Tiessen, T., Zohner, M.: Ciphers
for MPC and FHE. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS,
vol. 9056, pp. 430–454. Springer, Heidelberg (2015). https://doi.org/10.1007/978-
3-662-46800-5 17

2. Au, M.H., Liu, J.K., Susilo, W., Yuen, T.H.: Secure id-based linkable and revocable-
iff-linked ring signature with constant-size construction. Theor. Comput. Sci. 469,
1–14 (2013)

3. El Bansarkhani, R., Misoczki, R.: G-Merkle: a hash-based group signature scheme
from standard assumptions. In: Lange, T., Steinwandt, R. (eds.) PQCrypto 2018.
LNCS, vol. 10786, pp. 441–463. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-79063-3 21

4. Baum, C., Lin, H., Oechsner, S.: Towards practical lattice-based one-time linkable
ring signatures. IACR Cryptology ePrint Archive 2018:107 (2018)

5. Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for design-
ing efficient protocols. In: Ashby, V. (ed.) ACM CCS 93, pp. 62–73. ACM Press
(November 1993)

6. Bender, A., Katz, J., Morselli, R.: Ring signatures: stronger definitions, and con-
structions without random oracles. In: Halevi, S., Rabin, T. (eds.) TCC 2006.
LNCS, vol. 3876, pp. 60–79. Springer, Heidelberg (2006). https://doi.org/10.1007/
11681878 4

https://doi.org/10.1007/978-3-662-46800-5_17
https://doi.org/10.1007/978-3-662-46800-5_17
https://doi.org/10.1007/978-3-319-79063-3_21
https://doi.org/10.1007/978-3-319-79063-3_21
https://doi.org/10.1007/11681878_4
https://doi.org/10.1007/11681878_4

One-Time Traceable Ring Signatures 499

7. Beullens, W.: Sigma protocols for MQ, PKP and SIS, and fishy signature schemes.
In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020. LNCS, vol. 12107, pp. 183–
211. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45727-3 7

8. Beullens, W., Katsumata, S., Pintore, F.: Calamari and falafl: logarithmic (link-
able) ring signatures from isogenies and lattices. In: Moriai, S., Wang, H. (eds.)
ASIACRYPT 2020. LNCS, vol. 12492, pp. 464–492. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-64834-3 16

9. Boneh, D., Dagdelen, Ö., Fischlin, M., Lehmann, A., Schaffner, C., Zhandry, M.:
Random oracles in a quantum world. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT
2011. LNCS, vol. 7073, pp. 41–69. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-25385-0 3

10. Branco, P., Mateus, P.: A traceable ring signature scheme based on coding theory.
In: Ding, J., Steinwandt, R. (eds.) PQCrypto 2019. LNCS, vol. 11505, pp. 387–403.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-25510-7 21

11. Bresson, E., Stern, J., Szydlo, M.: Threshold ring signatures and applications to
Ad-hoc groups. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 465–480.
Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45708-9 30

12. Chandran, N., Groth, J., Sahai, A.: Ring signatures of sub-linear size without
random oracles. In: Arge, L., Cachin, C., Jurdziński, T., Tarlecki, A. (eds.) ICALP
2007. LNCS, vol. 4596, pp. 423–434. Springer, Heidelberg (2007). https://doi.org/
10.1007/978-3-540-73420-8 38

13. Chaum, D., van Heyst, E.: Group signatures. In: Davies, D.W. (ed.) EUROCRYPT
1991. LNCS, vol. 547, pp. 257–265. Springer, Heidelberg (1991). https://doi.org/
10.1007/3-540-46416-6 22

14. Derler, D., Ramacher, S., Slamanig, D.: Post-quantum zero-knowledge proofs for
accumulators with applications to ring signatures from symmetric-key primitives.
In: Lange, T., Steinwandt, R. (eds.) PQCrypto 2018. LNCS, vol. 10786, pp. 419–
440. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-79063-3 20

15. Dodis, Y., Kiayias, A., Nicolosi, A., Shoup, V.: Anonymous identification in Ad
Hoc groups. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS,
vol. 3027, pp. 609–626. Springer, Heidelberg (2004). https://doi.org/10.1007/978-
3-540-24676-3 36

16. Don, J., Fehr, S., Majenz, C., Schaffner, C.: Security of the fiat-shamir transforma-
tion in the quantum random-oracle model. In: Boldyreva, A., Micciancio, D. (eds.)
CRYPTO 2019. LNCS, vol. 11693, pp. 356–383. Springer, Cham (2019). https://
doi.org/10.1007/978-3-030-26951-7 13

17. Esgin, M.F., Steinfeld, R., Liu, J.K., Liu, D.: Lattice-based zero-knowledge proofs:
new techniques for shorter and faster constructions and applications. In: Boldyreva,
A., Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11692, pp. 115–146. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-26948-7 5

18. Fujisaki, E.: Sub-linear size traceable ring signatures without random oracles. In:
Kiayias, A. (ed.) CT-RSA 2011. LNCS, vol. 6558, pp. 393–415. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-19074-2 25

19. Fujisaki, E., Suzuki, K.: Traceable ring signature. In: Okamoto, T., Wang, X. (eds.)
PKC 2007. LNCS, vol. 4450, pp. 181–200. Springer, Heidelberg (2007). https://
doi.org/10.1007/978-3-540-71677-8 13

20. Groth, J., Kohlweiss, M.: One-Out-of-Many Proofs: or how to leak a secret and
spend a coin. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol.
9057, pp. 253–280. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-
662-46803-6 9

https://doi.org/10.1007/978-3-030-45727-3_7
https://doi.org/10.1007/978-3-030-64834-3_16
https://doi.org/10.1007/978-3-642-25385-0_3
https://doi.org/10.1007/978-3-642-25385-0_3
https://doi.org/10.1007/978-3-030-25510-7_21
https://doi.org/10.1007/3-540-45708-9_30
https://doi.org/10.1007/978-3-540-73420-8_38
https://doi.org/10.1007/978-3-540-73420-8_38
https://doi.org/10.1007/3-540-46416-6_22
https://doi.org/10.1007/3-540-46416-6_22
https://doi.org/10.1007/978-3-319-79063-3_20
https://doi.org/10.1007/978-3-540-24676-3_36
https://doi.org/10.1007/978-3-540-24676-3_36
https://doi.org/10.1007/978-3-030-26951-7_13
https://doi.org/10.1007/978-3-030-26951-7_13
https://doi.org/10.1007/978-3-030-26948-7_5
https://doi.org/10.1007/978-3-642-19074-2_25
https://doi.org/10.1007/978-3-540-71677-8_13
https://doi.org/10.1007/978-3-540-71677-8_13
https://doi.org/10.1007/978-3-662-46803-6_9
https://doi.org/10.1007/978-3-662-46803-6_9

500 A. Scafuro and B. Zhang

21. Katz, J., Kolesnikov, V., Wang, X.: Improved non-interactive zero knowledge with
applications to post-quantum signatures. In: ACM SIGSAC CCS 2018, pp. 525–537
(2018)

22. Lamport, L.: Constructing digital signatures from a one-way function. Technical
report. CSL-98, SRI International Palo Alto (1979)

23. Libert, B., Ling, S., Nguyen, K., Wang, H.: Zero-knowledge arguments for lattice-
based accumulators: logarithmic-size ring signatures and group signatures without
trapdoors. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol.
9666, pp. 1–31. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-
49896-5 1

24. Libert, B., Peters, T., Qian, C.: Logarithmic-size ring signatures with tight security
from the DDH assumption. In: Lopez, J., Zhou, J., Soriano, M. (eds.) ESORICS
2018. LNCS, vol. 11099, pp. 288–308. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-98989-1 15

25. Liu, J.K., Wei, V.K., Wong, D.S.: Linkable spontaneous anonymous group signa-
ture for Ad Hoc groups. In: Wang, H., Pieprzyk, J., Varadharajan, V. (eds.) ACISP
2004. LNCS, vol. 3108, pp. 325–335. Springer, Heidelberg (2004). https://doi.org/
10.1007/978-3-540-27800-9 28

26. Liu, Q., Zhandry, M.: Revisiting post-quantum fiat-shamir. In: Boldyreva, A., Mic-
ciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11693, pp. 326–355. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-26951-7 12

27. Lu, X., Au, M.H., Zhang, Z.: Raptor: a practical lattice-based (linkable) ring sig-
nature. In: Deng, R.H., Gauthier-Umaña, V., Ochoa, M., Yung, M. (eds.) ACNS
2019. LNCS, vol. 11464, pp. 110–130. Springer, Cham (2019). https://doi.org/10.
1007/978-3-030-21568-2 6

28. Merkle, R.C.: A certified digital signature. In: Brassard, G. (ed.) CRYPTO 1989.
LNCS, vol. 435, pp. 218–238. Springer, New York (1990). https://doi.org/10.1007/
0-387-34805-0 21

29. Monero: Monero, a secure, private and untraceable digital currency (2016)
30. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system. (2012):28, 2008
31. Naor, M.: Bit commitment using pseudo-randomness. In: Brassard, G. (ed.)

CRYPTO 1989. LNCS, vol. 435, pp. 128–136. Springer, New York (1990). https://
doi.org/10.1007/0-387-34805-0 13

32. Nguyen, L.: Accumulators from bilinear pairings and applications. In: Menezes, A.
(ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 275–292. Springer, Heidelberg (2005).
https://doi.org/10.1007/978-3-540-30574-3 19

33. Rivest, R.L., Shamir, A., Tauman, Y.: How to leak a secret. In: Boyd, C. (ed.)
ASIACRYPT 2001. LNCS, vol. 2248, pp. 552–565. Springer, Heidelberg (2001).
https://doi.org/10.1007/3-540-45682-1 32

34. Shor, P.W.: Algorithms for quantum computation: discrete logarithms and factor-
ing. In: Foundations of Computer Science, 1994 Proceedings., 35th Annual Sym-
posium on, pp. 124–134. IEEE (1994)

35. Alberto Torres, W.A., et al.: Post-quantum one-time linkable ring signature and
application to ring confidential transactions in blockchain (Lattice RingCT v1.0).
In: Susilo, W., Yang, G. (eds.) ACISP 2018. LNCS, vol. 10946, pp. 558–576.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-93638-3 32

36. Zhang, B., Oliynykov, R., Balogun, H.: A treasury system for cryptocurrencies:
enabling better collaborative intelligence. In: Network and Distributed System
Security Symposium, NDSS (2019)

https://doi.org/10.1007/978-3-662-49896-5_1
https://doi.org/10.1007/978-3-662-49896-5_1
https://doi.org/10.1007/978-3-319-98989-1_15
https://doi.org/10.1007/978-3-319-98989-1_15
https://doi.org/10.1007/978-3-540-27800-9_28
https://doi.org/10.1007/978-3-540-27800-9_28
https://doi.org/10.1007/978-3-030-26951-7_12
https://doi.org/10.1007/978-3-030-21568-2_6
https://doi.org/10.1007/978-3-030-21568-2_6
https://doi.org/10.1007/0-387-34805-0_21
https://doi.org/10.1007/0-387-34805-0_21
https://doi.org/10.1007/0-387-34805-0_13
https://doi.org/10.1007/0-387-34805-0_13
https://doi.org/10.1007/978-3-540-30574-3_19
https://doi.org/10.1007/3-540-45682-1_32
https://doi.org/10.1007/978-3-319-93638-3_32

PACE with Mutual Authentication –
Towards an Upgraded eID in Europe

Patryk Kozie�l, Przemys�law Kubiak, and Miros�law Kuty�lowski(B)

Wroc�law University of Science and Technology, Wroc�law, Poland
{patryk.koziel,przemyslaw.kubiak,miroslaw.kutylowski}@pwr.edu.pl

Abstract. In this paper we present modifications to the protocols PACE
(Password Authenticated Connection Establishment) and PACE CAM
(PACE with Chip Authentication Mapping) from International Civil
Aviation Organization (ICAO) specification. We show that with slight
changes it is possible to convert PACE (which is limited to password
authentication) and PACE CAM (where only the chip is strongly authen-
ticated) to a full-fledged authentication where apart from password
authentication both the terminal and the chip are authenticated in a
strong cryptographic way.

The new protocols provide better privacy protection and resilience
against key leakage than the previous protocols and are implementa-
tion friendly. The idea is not to reveal an exponent (as in case of PACE
CAM) – instead, we reuse the Diffie-Hellman key exchange for static
Diffie-Hellman authentication in the PACE protected channel.

The proposed fine tuning of the schemes adopted by ICAO for bio-
metric passports may contribute to the future European eID practice,
since the ICAO standards have been chosen by the EU as an obliga-
tory basic platform for official personal identity documents issued since
August 2021 in all EU countries.

Keywords: eID · Electronic identity document · ICAO · PAKE ·
PACE · Mutual Authentication · Privacy

1 Introduction

1.1 Role of eIDs

Nowadays using electronic identity documents for accessing various electronic
services becomes more and more popular. A primary example are different types
of e-Government services like accessing medical information of a patient, inter-
acting with tax authorities or with financial institutions. As electronic identity
documents with a strong cryptographic layer became widely deployed, they can
be used in a large number of new scenarios. Every connection to remote service
that requires sending sensitive data like name, date of birth or ID number can be
realized by the means of standardized and secure usage of electronic credentials
issued by government agencies and available via personal identity documents.
c© Springer Nature Switzerland AG 2021
E. Bertino et al. (Eds.): ESORICS 2021, LNCS 12973, pp. 501–519, 2021.
https://doi.org/10.1007/978-3-030-88428-4_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-88428-4_25&domain=pdf
https://doi.org/10.1007/978-3-030-88428-4_25

502 P. Kozie�l et al.

Enabling to present such tokens by a physical person may also help with and
facilitate many day-to-day activities. A good example would be using vending
machines where age verification is needed in case of buying age-restricted goods.

1.2 New Regulations for eIDs

There are many European countries that have started providing electronic per-
sonal identity documents (eIDs) for their citizens already many years ago, with
prominent examples of Germany and Estonia. However, in many cases eIDs
issued in one country are not suitable for using as an electronic token in another
country due to lack of international technical coordination in designing the eIDs.
To solve this problem, European Union decided to enforce a common basic
platform to be implemented on European eIDs and issued Regulation 2019/1157
[13], which applies directly in all member states regardless of the national law.
This regulation requires all eIDS issued after August 2, 2021 to implement
PACE protocol from International Civil Aviation Organization (ICAO) spec-
ification [8] intended for Machine Readable Travel Documents (MRTDs). PACE
was intended for travel documents such as e-passports, aiming to facilitate auto-
matic border control (e-Booths) while securing against potential privacy attacks.
PACE is Password Authenticated Connection Establishment protocol based on
a password authenticated key exchange protocol (PAKE), and designed by the
German Federal Office for Information Security (BSI) [4]. The goal of PACE is
to establish a shared secret key between two parties sharing a password, and use
it subsequently for communication between these parties. PACE can be divided
into four phases:

1. A random nonce encrypted with a key derived from a password known to
the document holder is sent to the reader. The document holder inputs the
password to the reader (terminal) so the reader can also derive the key and
retrieve the nonce. (In practice, the password is optically scanned from the
machine-readable zone of the document).

2. There is a procedure of establishing a generator to be used in the next phase
for deriving the secret key. There a few options how to do it. We focus on one of
two options from the ICAO specification – so called GM (General Mapping),
which is basically a Diffie-Hellman key establishment with additional usage
of the nonce from Phase 1.

3. Based on the generator from Phase 2, the actual main session key is derived
again using the Diffie-Helmann protocol. From this shared main key, the keys
for encryption and message authentication codes are derived.

4. Protocol parties exchange tags ensuring that the parties derived the same keys
and that the execution has not been manipulated by a man-in-the-middle.

Details of PACE will be recalled on Fig. 1 where we introduce an extension of
PACE.

Besides enforcing the usage of PACE on eIDs, Regulation [13] also allows
for extensions of PACE to be deployed on eIDs alongside the obligatory basic

PACE with Mutual Authentication - Towards an Upgraded eID in Europe 503

version. This possibility provides means for greatly expanding functionalities of
eIDs and is one of the rationales for the solution we propose in this paper.

Regulation [13] creates a situation where extending PACE while preserving
backwards compatibility is one of the most pragmatic ways to realize additional
functionalities on a personal identity card. It is also likely that this strategy will
not result in deep incompatibilities between the eIDs issued by different parties.
Also this strategy is less endangered by patent threats and future regulations.

Later on we will use terms chip and terminal for the parties participating in
the protocol as they are more general than eID and reader. The classic setup -
border control - is eID with a chip and a reader that simultaneously plays the
role of a terminal. However, it is possible to execute PACE remotely, so that a
reader is merely a man-in-the middle enabling forwarding messages sent by the
terminal and the chip.

1.3 Rationale for Including Mutual Authentication

Currently ICAO includes in its specification PACE-CAM - a version of PACE
that provides chip authentication. We extend this protocol in two versions to
provide a way to use PACE with additional mutual authentication. It means
that not only the chip is authenticated in front of the terminal, but also the
terminal is authenticated in front of the chip. We propose two versions of the
protocol that are suitable for different scenarios (with more in-depth explanation
in Sect. 2).

There are many scenarios where the need for mutual authentication is a basic
application requirement. This concerns any remote service that requires sending
potentially sensitive data, when both the server and the user need a way to
authenticate the other. This could be in particular health care systems or next
generation systems for financial services. Among others, in this case it is crucial
to strongly authenticate the terminals in order to prevent phishing attacks.

Mutual authentication in PACE adds another layer of security to the pro-
tocol. We propose how to achieve this goal without major modifications of the
protocol and without big computational overhead in comparison with regular
PACE, reusing currently used operations. The important feature is that one can
update PACE to PACE-MA(-light) even without the consent of ICAO as it is
backwards compatible and the regulation [13] allows that.

1.4 Other extensions and Modifications of PACE

An interesting modification of the PACE protocol has been presented in [11] –
it uses one-time pad as encryption method during the first phase of PACE. It
seems to be be quite controversial, but it turns out for instance that it doubles
the expected number of trials in the brute force attack on the password.

Quite early, the authors of PACE have started the work on extending the
protocol towards strong authentication. Bender et al. [1] introduced a proto-
col called PACE|AA. It is the first extension of PACE protocol enabling active

504 P. Kozie�l et al.

authentication of the chip. For this purpose PACE was interleaved with Schnorr
or DSA signatures. Hanzlik et al. [6] proposed a simplified version of PACE|AA
protocol – which achieves an implicit authentication binding the random num-
bers from PACE to the public key instead of using signatures. Moreover, a
leakage-resilient version derived by slightly modifying the PACE protocol was
introduced, in which the secret key is secure even when all ephemeral values are
leaked. Slightly later Bender et al. published paper [3] describing two slightly dif-
ferent protocols (addition version and multiplication version), where one version
is in fact identical with [6]. The protocols from [3,6] achieve active authentica-
tion of the eID with just one additional message. The multiplication version was
included in the standard Supplemental Access Control (SAC) and then renamed
as PACE-CAM protocol, where CAM is short for Chip Authentication Mapping
[8]. The algorithm was patented by the German government [5].

PACE-CAM protocol can only work with the Generic Mapping and cannot
use the more efficient Integrated Mapping. To this end, Hanzlik and Kuty�lowski
[7] proposed PACE-CAM v2 protocol based on bilinear maps, which can work
with both Generic Mapping and Integrated Mapping while having the same
efficiency as PACE-CAM on the side of the chip. Those works however do not
support mutual authentication, they focus rather on one-sided chip authentica-
tion.

PACE can be converted to a proof of presence or a signing protocol. For eID
it has been implicitly done already in [1]. For the terminal, it has been recently
proposed in [10], where it has been proposed to build a pool of cryptographic
schemes for eIDs based on a common core of the ICAO standard and reusing
intensively the same code.

On the other hand, there are discussions and activities (LDS2) aiming to
provide the next generation of ePassports, enabling for instance issuing electronic
visas and storing them on the passport. For those future functionalities new
cryptographic engines will be necessary, in particular authentication of involved
parties should be achieved on much higher level of security than today.

2 PACE with Mutual Authentication

The following strategy may ease upgrading cryptographic protocols that are
already widely deployed. Assume that we have a protocol A that should be
upgraded to a protocol A+. The implementation and deployment of A+ would
be much easier when the following conditions are fulfilled:

– the steps of A are executed by A+ in exactly the same way, or they are
modified so that if a party A executes A while the other party B executes
A+, then from the point of view of A there is a correct execution of A, while
B recognizes that the partner A runs the old version A and may smoothly
adjust to the situation.

– if an additional mechanism introduced by A+ requires executing computa-
tionally hard operations, one should reuse – whenever possible – the steps of
A without violating the original protocol.

PACE with Mutual Authentication - Towards an Upgraded eID in Europe 505

This approach has the following consequences:

– adopting the software to the new protocol version might be much easier,
– security analysis of A+ may reuse security analysis of A; hopefully, restarting

security analysis from scratch can be avoided.

The presented strategy is a standard industrial practice. Proposing new
mechanisms made from scratch, when there are many tools already deployed
and accepted in regulations, is bound to be a practical failure due to high costs,
necessary effort and long time-to-market.

PACE CAM is an example of this pragmatic approach. Additional operations
come at the end and they do not require exponentiation (which is the most
time consuming operation). Moreover, if for PACE we can determine when the
protocol parties reach an accepting state at the protocol termination, then the
same applies to PACE CAM at the moment when the PACE phase terminates.

In this paper we follow the same strategy. However, now the reuse-mechanism
is different. The proposed mutual authentication protocols reuse the strings XA

and XB from the first Diffie-Hellman key exchange. Now, apart from that, we use
XA and XB for static Diffie-Hellman authentication that is executed at the very
end of the protocol. Note that for PACE CAM the chip presents an exponent and
not a group member to the terminal. Moreover, the exponent must be presented
in full to the terminal, as the terminal cannot compute it itself.

We are going to present two protocols. The first one, presented in Sect. 2.1
follows the same approach as PACE CAM: until the last phase of the protocol,
the execution is indistinguishable or identical to the plain PACE. The second
protocol, presented in Sect. 2.2, reduces the number of messages – their number
is the same as in case of the original PACE. However, now the tags TA, TB are
created in a modified way. Nevertheless, we are still talking about a MAC based
construction, so the previous security arguments still apply.

A good point is that if the terminal is executing the plain PACE, but the chip
is executing the modified protocol, then at this moment the chip can immediately
fall back to the plain PACE. If the terminal is executing the modified protocol
but the chip is executing the plain PACE, then the current connection fails and
another try is necessary to enable the terminal to fall back to the plain PACE.

Finally, let us observe that one can provide hybrid versions of the protocol
from Sect. 2.2. By skipping some parameters one can get only authentication
of the terminal or only authentication of the chip. This might be useful for
instance in the situations where the chip should check authenticity of a terminal,
however revealing identity of the chip is unnecessary. In this case, a fallback to a
weaker authentication is a security requirement according to the data minimality
principle of GDPR [12].

2.1 PACE with Mutual Authentication

In Fig. 1 we describe the first extension of PACE with mutual authentication,
called PACE-MA.

506 P. Kozie�l et al.

In this protocol the chip and the terminal will authenticate each other after
the completion of the PACE protocol. The authentication strategy is as follows:

– the chip uses the strings XB sent by the terminal during Phase 2 for execution
of the static Diffie-Hellman authentication protocol,

– first the token KA = Xx
B is computed, subsequently it is hashed (mainly for

saving the space, but also for repelling potential algebraic attacks),
– the hash H3(KA) together with the certificate cert(X) of the chip are sent

encrypted to the terminal.
– only the terminal can decrypt this message (as a secure session key was used

for encryption), so nobody but the terminal will learn the identity of the chip
by inspecting the certificate cert(X). The terminal can recompute KA on its
side just like in case of the standard static Diffie-Hellman protocol.

The PKI framework may be chosen by the document issuer and standard solu-
tions are applicable in this case. In particular, we can follow the approach of
PACE-CAM.

The procedure to authenticate the terminal is exactly the same, only the
arguments are mirrored: XA, y, cert(Y) are used instead of XB , x, cert(X).

The order of the messages CA and CB has been chosen according to the order
once preferred by the German information security authorities: first the terminal
should present its identity. This gives the chip an opportunity to decide, whether
to disclose own identity. Such an approach is conformant with the principles of
the GDPR regulation [12]: chip identity usually fall to the category of personal
data of the chip owner, while the identity of the terminal is usually the identity of
an element of an infrastructure. So we get a good example of a framework where
a data subject is controlling to whom the personal data are presented. Of course,
the protocol enables changing the order of these messages which corresponds to
the order: chip authentication first, then terminal authentication (this approach
has also been used in the past in the context of electronic identity documents).

2.2 A Lightweight Version

In this section we consider a lightweight version of PACE MA, named PACE-
MA-light, and the details are given in Fig. 2. The main difference between this
scheme and PACE-MA is that:

– the last phase (exchanging the ciphertexts CA and CB) and the phase of
exchanging the tags TA, TB are merged together,

– the MACs corresponding to the tags TA and TB are computed now with one
additional parameter: namely KA and KB , correspondingly,

– additionally, the public key certificate is sent together with the MAC; in order
to protect the information about identity of the chip and the terminal, these
data are encrypted with a session key that is known exclusively to the chip
and the terminal.

PACE with Mutual Authentication - Towards an Upgraded eID in Europe 507

Fig. 1. PACE-MA – an extension of PACE with mutual authentication, H1, H2, H3

denote here hash functions, their range is given by the context. Gray boxes indicate
the changes specific to PACE-MA, the rest of the protocol is the original PACE.

508 P. Kozie�l et al.

Fig. 2. PACE MA-light– an extension of PACE with mutual authentication with the
same number of messages as for the plain PACE. PACE-MA-light changes to PACE-
CAM are in gray boxes and additionally last phases for PACE-MA-light and PACE
CAM are separated.

PACE with Mutual Authentication - Towards an Upgraded eID in Europe 509

As before, the identity information is not sent until the main key K is estab-
lished. Unlike PACE-MA, the identity information is sent by the terminal, before
it learns that the chip shares the same key K. It could be a potential issue,
because potentially it may ease tracing the terminal (note that the role of the
terminal can be played by a mobile unit assigned to a physical person, so the
personal data protection rules do apply!). However, the certificate is encrypted
with the key that can be derived by the chip, only if the chip and the terminal
have used the same password. More sensitive information about the chip iden-
tity is sent after the chip authenticates and accepts the terminal according to its
current policy. This is much better than in case of PACE CAM, where the chip
reveals and proves its identity based only on the fact that the terminal shares
the same password.

2.3 Backwards Compatibility

Let us consider the situation where either the terminal or the chip runs the plain
PACE scheme while the other party runs PACE-MA or PACE-MA-light.

Terminal Executing PACE. Assume first that the terminal is executing the
plain PACE while the chip expects it to execute either PACE-MA or PACE-MA-
light. Note that in both cases the chip may recognize that the terminal is running
the plain PACE before the chip sends the first message specific to PACE-MA(-
light) – namely CB . Moreover, until this moment the chip has been executing
exactly the same steps as in case of the plain PACE, so it can immediately switch
to the plain PACE, if the current policy of chip allows for that. (Note that the
chip may disable any connection with an unverified terminal).

Chip Executing PACE, Terminal Executing PACE-MA. Note that until
the end of Phase 3 both the terminal and the chip execute the plain PACE, so in
particular a secure connection based on a shared password will be successfully
established. Then, the terminal will send the message CB , which is not expected
by the chip. It will be treated as a payload message and decrypted with KEnc. The
result will be garbage, as the encryption and decryption keys used do not match.
According to the current policy on the application level, the chip may either
interrupt the connection, or respond that the message has not been understood.
In either case, the terminal will learn that the chip is not running PACE-MA –
if a message is returned, then the terminal first decrypts it with K ′

SC hoping
that this is a correct CA. Since the result will not have the correct form (starting
with a garbage and not a certificate), the terminal may continue with decryption
with the key KEnc and then see the response of the chip. At this moment the
terminal may interrupt the connection or proceed, depending on its policy – e.g.
transferring sensitive data to the chip may require more than a password based
authentication.

510 P. Kozie�l et al.

Chip Executing PACE, Terminal Executing PACE-MA-light. In this
case the situation is slightly more complicated. The chip receives CB consisting
of a ciphertext and a MAC. Even if the ciphertext is ignored, the examination
of the MAC yields a negative result. Indeed, the chip recomputes the MAC on
input (YA,G), while the terminal has used (KB , YA,G). Thereby chip will fail to
establish a connection. Consequently, the terminal will eventually learn that the
connection failed. In this case the terminal still has the option to downgrade to
the plain PACE and attempt to connect once more, if its current policy allows
for that.

The situation discussed above is on one hand inevitable, if extra data are to
be sent. On the other hand, we need to be careful not to install extra exceptions
and interpretations while running the plain PACE, as in this case we could not
leverage on security properties of PACE.

3 Security and Privacy Issues

In this section we provide a sketch of crucial security properties of the proposed
schemes. Here, we take the properties of PACE (declared in [2,9]) and derive
the properties of the extensions without starting the analysis from scratch. As
PACE-MA-light modifies the last phase of PACE, some modifications in the
original proofs are necessary. As for this preliminary version, we can only sketch
why the same arguments should apply, and postpone the details until a detailed
(and long) version of [9] becomes available.

3.1 Fragility

Protocol fragility is a very useful feature that in many scenarios may simplify
greatly the security analysis. It implies that any active man-in-the-middle attack
results in a protocol failure except for a negligible probability. Thereby we may
disregard immediately all man-in-the-middle active attacks and concentrate on
passive ones. Fragility is inherently connected with the construction of the pro-
tocol itself, specifically with the expected format of the received messages and
the event of breaking the session in case of abnormality detection by one of the
parties.

Definition 1. We say that protocol P is fragile when any modification of the
communication done by an active man-in-the-middle adversary leads to a session
failure, except for a negligible probability.

As stated in [9], the plain PACE has a property very close to fragility. The
only modification that does not lead to a protocol failure is raising XA and
XB to the same power by the adversary. In this case the chip and the terminal
share the same session key K and accept the session, even if their points of view
are slightly different. Any other modification, in particular during the first two
phases, leads to a failure. In contrast to PACE:

PACE with Mutual Authentication - Towards an Upgraded eID in Europe 511

Proposition 1. PACE-MA and PACE-MA-light are fragile.

Before we start a detailed argument let us observe that after phase 3 all
messages depend deterministically on what has been sent and received so far.
Hence the manipulations need to be done in phases 1–3, and later the messages
need only to be adjusted to the values from phases 1–3.

First let us show Proposition 1 for PACE-MA. Now, messages exchanged by
the parties in PACE-MA are essentially the same as in PACE up to the beginning
of the last phase which does not occur for PACE. Up to this moment the same
conditions for aborting the connection apply as in case of PACE, so the only case
that may escape protocol failure is raising XA and XB to the same power α �= 1.
Now consider the last phase and the message CB . Let us give the adversary
A an extra power at this point - assume that A can decrypt CB and retrieve
hB. At this point to produce CB that would be valid for the chip, A has to
replace hB = H3(KB) = H3(gxA·α·y) by H3(gxA·y). According to Diffie-Hellman
assumption, A cannot derive KB and even distinguish it from a random value.
So if H3 is correlated input secure hash function, it is infeasible for A to derive
H3(gxA·y) from hB . So the connection fails if α �= 1 and Proposition 1 holds for
PACE-MA.

Now let us turn out attention to PACE-MA-light. Here we also can say that
the adversary cannot do more than to raise XA and XB to the same power α
without breaking the session. Indeed, CB and CA contain MAC values for all
values occurring in the definition of the tags TB and TA. So the same argument
as in [9] show that any other manipulation up to this point leads to a protocol
failure. However note that now MAC contains KB . If the adversary raised XA

and XB to the same power α, he would need to transform MAC of (gxA·α·y, YA,G)
to MAC of (gxA·y, YA,G). Just as in case of PACE-MA, this is infeasible.

Corollary 1. Any man-in-the-middle attack against PACE-MA(-light) can be
reduced to a passive attack.

3.2 Protection of Secrets

An authentication process must not leak the secrets that are used to authenti-
cate a protocol party. First note that no such threats exist for the keys x and
y. These values are used to compute KA and KB which in turn are arguments
for a hash function or a MAC. The values KA and KB are computed themselves
by the verifying parties, so there is no added information, if the verifying party
follows the protocol (and knows the discrete logarithm of, respectively, XB and
XA). If the verifying party P does not follow the protocol and does not know
the discrete logarithm mentioned, then in particular P cannot derive the ses-
sion key K of PACE. Consequently, in case of PACE-MA P cannot decrypt,
respectively, CB or CA and learn hB or hA. For PACE-MA-light, P can learn
the MAC on respectively KB or KA, but obtained with a key K ′

MAC which is
not distinguishable from a random one.

The really hard case is protection of the password π. It has a small entropy
and therefore a brute force attack applies: a terminal may initiate connections

512 P. Kozie�l et al.

with the chip trying one by one all possible passwords. Similarly, the chip may
interact with a terminal after the password of another chip I has been input to
the terminal. In this case we need to check whether a protocol run may indicate
what is the password for I.

PACE-MA(-light) inherits the following property from PACE:

Property 1. If the chip and the terminal hold different passwords π, π′ and it is
not true that

Enc(Kπ,Dec(Kπ′ , z)) = z, (1)

then they derive different values of the session key K and consequently the
connection fails.

The above property is non-trivial and holds also if a party (a chip or a terminal)
does not follow the protocol. Consequently, the information from a protocol trial
run is that either the passwords used satisfy (1) (if the connection is established),
or they fail to satisfy (1) (if the connection fails). (An interesting observation is
that typically the chip may try more than 1 password in this way [9]).

An attack may also have an offline form: first, an adversary A can analyze
the messages exchanged in a protocol run by the chip and an honest terminal.
Second, if A was active himself, he can analyze the message exchanged and
parameters he used in order to find a matching password.

These attacks fail for PACE. The key reason for this property is the method
of deriving the generator ĝ: it is a product of h (a Diffie-Hellman key exchange
result from Phase 2, where neither part knows the discrete logarithm) and the
element gs, where s depends on the password. An active adversary will know
the exponent yA or yB it has used in the failed protocol execution. In order to
match a different password and check the resulting key K, adversary A would
need to derive the discrete logarithm of either YA or YB with respect to the new
candidate for ĝ based on the corresponding discrete logarithm for ĝ used during
protocol execution. It has been shown that this is infeasible. Moreover, A can
be given the session key K and nevertheless it will be still infeasible to derive
the right password.

In case of PACE-MA(-light) the situation is slightly more complicated since
the protocol delivers some extra data during the authentication phase. However,
we could emulate all these messages if we provide A the secret keys x′, y′, the
public keys gx′

, gy′
and the session key K and thereby get a reduction argument:

if there is an algorithm A finding the password based on K and ephemeral data
of one side of the failed protocol execution of PACE-MA(-light), then we could
create an algorithm A′ finding the password for the plain PACE.

3.3 Impersonation

It may seem that resistance to impersonation is obvious due to execution of
double static Diffie-Hellman protocol (derivation of KA and KB and a proof of
their knowledge). However, this is not that simple. Potentially it could happen
that an adversary man-in-the-middle A could compute the same session key K

PACE with Mutual Authentication - Towards an Upgraded eID in Europe 513

as the terminal and the chip. Then A could simply forward the authentication
information created by the honest parties in the last phase and finally hijack
the connection to either the terminal or the chip (this may require jamming the
signal of the other party). In this way A may either pretend to be the verified
chip against the terminal, or A may pretend to be the verified terminal against
the chip.

The key property inherited by PACE-MA(-light) from the plain PACE is that
except for a negligible probability it may not occur that the chip, the terminal
and A derive the same key K. As the first phases are the same for the extended
protocols, this property holds PACE-MA(-light) just like for PACE.

So the only option left for A is to run separately the protocol with the
chip and with the terminal. Note that in these executions XA used by the chip
cannot be reused by A as its XA while talking to the terminal (knowledge of
the discrete logarithm of XA is necessary to derive the session key). The same
applies to XB . However finally A has to present a MAC (or hash) derived from
KB . The terminal sends to A the value that A can compute itself (as he knows
the discrete logarithm of XA that it has sent to the terminal). However, the
value expected by the chip is Xy

A for XA chosen by the chip. As A neither knows
the discrete logarithm of this XA nor the private key y, A must fail to provide
the right value with a very high probability.

3.4 Security of the Session Key

We have to guarantee that it is safe to encrypt data with the key KEnc derived
by the chip and by the terminal during a successful protocol execution. For this
purpose it is enough to show that an adversary observing the protocol execution
up to the end of the last phase and given either the real KEnc or a random key
KEnc, cannot distinguish which option has been chosen.

At this point let us recall that both PACE-MA and PACE-MA-light are
fragile in the sense of Definition 1, so we only consider a passive adversary A.
Moreover, we have already pointed that it is impossible that the adversary A
learns this key by an active interaction.

Note that for PACE-MA(-light) there are additional messages or data
exchanged with respect to PACE. So potentially, they might be used for testing
KEnc. We can only increase the chances of the adversary if we provide him the
secret keys x, y as well as the genuine keys K ′

SC and K ′
MAC. In this case all

authentication messages are redundant, as A can compute them himself.
Note that the key KEnc and the keys K ′

SC and K ′
MAC are correlated accord-

ing to the protocol specification: they are obtained as hash values H2(K‖1),
H2(K‖2), H2(K‖4). However, if H2 is a correlated input secure hash function,
it is infeasible to determine whether K ′

SC is the next correlated value H2(K‖1)
given H2(K‖2) and H2(K‖4), unless one can extract K. In our case, one cannot
extract K from K ′

SC and K ′
MAC due to preimage resistance of H2, while on the

other hand A cannot derive K from the transcript of the first 3 phases of PACE
due to hardness of the CDH problem.

514 P. Kozie�l et al.

3.5 Resistance to Tracing

One of the major goals of the designers of PACE was privacy protection. As a
wireless communication can be easily tapped by an arbitrary observer, there is a
serious threat that an observer would analyze the messages exchanged and find
out who is communicating with whom. Note that in some situations the identity
of the terminal might be easy to guess. Potentially, it could ease finding out the
identity of the chip, who typically is the main target of the attack.

In case of the plain PACE the only identity based information is the password
used. In case of mutual authentication we have additionally the secret keys of the
terminal and the chip and the keys KA, KB derived with them. The property we
are aiming for is tracing resistance – unless it is explicitly designed for a correct
protocol run, it should impossible to derive which identity specific data has been
used.

Note 1. Let us note that there are limitations for active tracing resistance in
case of plain PACE. An adversarial terminal A can initiate connections with
the chip (in case that chip does not need to be activated somehow by its user,
e.g. by pulling out of the cover acting as a Faraday cage). A does not know the
right password (as the goal of the attack is to find the password), but A can run
a brute force attack or probe with passwords already seen in various locations.
In particular, if the adversary is controlling a terminal where Alice opens a
legitimate session using her chip, then the adversary learns her password π and
can use it in different locations in order to trace Alice. Note that this attack does
not work so easily in case of PACE-MA(-light). Indeed, if the chip implements a
policy restricting communication to a fixed set of terminals, then after receiving
CB and authenticating the terminal, the chip has an opportunity to break the
connection. Until this moment the message sent by the chip are random elements
distributed independently of the identity of the chip, so the adversarial terminal
learns nothing but that it has been rejected according to the chip’s policy or due
to a wrong password.

In general, defining tracing resistance is hard, due to multiple attack scenar-
ios, including in particular the cases when one of the protocol participants (e.g.
a terminal) does not follow literally the protocol or there are executions where
the passwords used by the chip and the terminal do not match and consequently
the session fails. Nevertheless, a failed session could potentially provide valuable
information about the identity of the protocol participants.

Apparently, PACE has been designed having in mind all these problems
and the identity information was carefully postponed to the later phases of the
execution:

Property 2. Until the tags TA, TB are sent during an execution of PACE, the
probability distribution for the messages sent are independent of the password
or passwords used by the terminal and the tag.

This property holds for PACE-MA(-light) as well, since the first two phases
are identical with PACE.

PACE with Mutual Authentication - Towards an Upgraded eID in Europe 515

Passive Observer. For PACE-MA(-light) a potential source of identity infor-
mation might be the elements KA,KB . They are not sent in clear, but for a
moment assume that they are. An adversary observing a protocol execution and
the public key X of a potential chip, would have to decide whether (XB ,X,KA)
is a Diffie-Hellman triple. This is infeasible as long as the observer does not
know xB or x. A similar argument applies for KB . Unfortunately, a terminal
may deliberately weaken the execution and enable an observer to detect that
the owner of X is participating in the protocol run. It would suffice to choose
xB so that the observer can guess it. As only the xB component would be weak,
the final session key would remain safe against the observer.

Fortunately, the identity specific information is protected by the session key.
In case of PACE-MA we may observe that the tags TA, TB cannot serve a source
of information for tracing, as this part is identical with PACE and PACE is
claimed to be secure against passive tracing. The only source of trouble might
be the ciphertexts CA and CB . However, these are ciphertexts obtained with the
key K ′

SC . Now untraceability depends on semantic security of the encryption
scheme. The key itself should be secure if the terminal and the chip honestly
execute Phase 3. In this case the observer cannot distinguish between an honest
execution of the protocol and a virtual executions where the terminal and the
chip jointly choose K at random. If H2 is a cryptographic hash function, then
we may assume that it is impossible to check whether K ′

SC = H2(K‖2) or it has
been chosen at random. So the observer cannot see the difference between the
virtual executions just described and the executions where also K ′

SC is chosen
at random. It follows that CA and CB are useless for tracing, provided that
semantically secure encryption scheme is used.

In case of PACE-MA-light the situation is slightly different as we do not
execute the whole PACE – its last phase has been modified. Now instead of the
tags TA and TB some ciphertexts obtained with the key K ′

SC are sent. Following
the same argument as before we may conclude that the observer cannot extract
more information than as in the case when K ′

SC is chosen at random.

Active Tracing. Another scenario for tracing is that an attacker interacts with
a chip or a terminal, say D, aiming to find its identity. The target is to find a
password and/or the public key of this device.

If the password is known, then of course nothing can prevent the attacker to
establish a connection and thereby confirm the identity of D. If the attacked side
is the terminal, then CB is sent before CA and regardless of the policy applied
by the terminal the identity of the terminal is revealed. If the attacked side is
the chip (which is the typical case), then the terminal must disclose and prove
its identity first. Now the chip has an opportunity to refuse to send CA, if the
connection does not comply with the policy of the chip.

We see that we are left with attempts to trace without knowing the password.
However, then we fall into already discussed category of attacks that aim to
retrieve some information about the password.

516 P. Kozie�l et al.

3.6 Simultability

One of important questions concerning privacy protection is whether the authen-
tication is limited to the parties that are intended to be recipients of the authen-
tication proof. We have to guarantee that

(a) an observer cannot convince a third party – possibly holding some private
information not available to the observer – that a given party participated
in an interaction,

(b) no participant (i.e. a terminal or a chip) can convince a third party that
an interaction with the other protocol party has occurred. In this case the
party presenting a proof may reveal not only the messages exchanged, but
also some own data – e.g. the secret ephemerals used, such as s, xA, xB ,
yA, yB , as well as the data derived from the private keys x, y. The protocol
participant may also be obliged by the third party to use some particular
values determined by the third party.

Note 2. What we cannot exclude is that given an interaction T observed by
a possibly malicious observer Eve (so that Eve can be sure that the messages
have been really exchanged between some chip and terminal). Later, one of the
participants of execution T may prove that it took part in execution T and
played a given role. This occurs by simply revealing either xA or xB . If it must
be shown to Eve that the connection has not failed, then it suffices to reveal
own ephemerals as well as a proof that KB (in case of the terminal) or KA (in
case of chip) is correct. Any ZKP protocol for equality of discrete logarithms for
(g, Y,XA,KB) or, respectively, (g,X,XB ,KA) can be used for this purpose. In
particular, one can convince Eve that a particular password π has been used.

The properties from point (a) and (b) can be derived from the following obser-
vation. Anybody can create a valid full transcript of a protocol run, including all
private values created by the protocol participants. Namely, given a password
π one has to choose the ephemerals s, xA, xB , yA, yB and compute the values
occurring in the protocol. In case of KB and KA we do not need to proceed
as the terminal and, respectively, the chip, but we compute them as it is done
during verification of the tags. All we need is to know the certificates for X and
Y .

Obviously this solves the case (a). For case (b), let us observe that Eve may
oblige the terminal or the chip to behave in a certain way. However, the protocol
participant has to know the ephemerals on own side, as otherwise the protocol
would fail. In this case the prover may simulate the second protocol participant
and cheat Eve.

4 PACE-MA Versus PACE-CAM

In this section we discuss shortly some practical problems regarding implemen-
tation issues, deployment strategies and relation to the existing standards such
as PACE CAM.

PACE with Mutual Authentication - Towards an Upgraded eID in Europe 517

Time Complexity. First let us note that the protocol PACE-MA provides
authentication for the cost of additional operations. On each side these are the
following main activities that may be attributed to authentication:

– CDH (or ECDH) executed for computing KA and KB , (2 executions)
– hashing of KA and of KB (2 hashings),
– encryption and decryption for CA and CB , (1 encryption, 1 decryption)
– certificate verification (ECDSA signature verification).

A trial implementation on an old MULTOS smartcard resulted in the runtime
of about 900 ms for these operations, so perfectly acceptable for practical appli-
cations.

Note that in case of PACE CAM for authentication in one direction we need
one modular division, one ECDH for verification, one encryption, one decryption
and one certificate verification. If we implement PACE CAM in a way resistant
to leakage, then we get one more ECDH instead of the modular division. So the
extra operations are almost the same as for PACE-MA.

The computation time is acceptable – and there is no need for further opti-
mization, as the connection should not be established faster than in, say 2 s1.

Operations. Very important issue, also from the point of view of real time
complexity, is what operations are executed. The standard computational com-
plexity characteristics may not apply for the sheer reason that certain crypto-
graphic operations might be hardware supported and executed very fast. There-
fore modular exponentiation might be much faster than modular multiplication,
if the later is not supported by cryptographic co-processor. Definitely, exponenti-
ation/scalar multiplication of a EC point belong to the set of operations that are
to be implemented on the co-processor on any reasonable cryptographic smart
card. Modular multiplication and division do not belong to a standard suite of
algorithms supported by smart cards.

Another issue related to the choice of operations used by a scheme is the
space complexity. To this end we understand the space not only as space in
the volatile memory nedded to execute the algorithm, but mainly as the place
necessary to store the code for executing these operations in the non-volatile
memory. This memory is scarce and frequently a substantial implementation
bottleneck. PACE-MA(-light) does not use any operation that should not already
been implemented on a smart card running PACE.

Leakage. Implementing modular division is not only problematic from the point
of view of a memory usage. Note that it must be implemented so that any side
channel leakage (e.g. power consumption) is not betraying the arguments used.
In case of PACE CAM this is particularly critical, as one of the arguments is
directly the secret key. Therefore, any ad hoc implementation of this operation

1 Such a delay is necessary to make brute force attacks harder and to convince the
user that some computation is really taking place.

518 P. Kozie�l et al.

might be risky. In case of PACE-MA(-light) we are not using any operation
involving the secret keys apart from what should be available on a cryptographic
co-processor. PACE CAM can be implemented in this way too (see [6]), but then
the code for PACE should be modified as well (implying necessity for renewing
software certification).

Another point of concern is leakage of ephemeral values. For PACE CAM
leakage of ephemeral values stored during the protocol execution reveals the
secret key of the chip. In case of PACE-MA(-light) this is not the case. Note
that the leakage to be concerned is not only side channel information, but also a
backdoor in the pseudorandom number generator used by the terminal or by the
chip. Therefore one can somewhat reduce the requirements of tamper resistance
and quality of PRNG.

PACE-MA(-light) and PACE-CAM with Terminal Authentication.
Important property making PACE-MA(-light) more desirable solution than
PACE-CAM with Terminal Authentication is the fact that the latter case pro-
vides means for tracing attacks when the terminal simply disconnects after
authenticating the chip. Additionally, comparing PACE-MA(-light) to PACE-
CAM rather than to PACE CAM followed by Terminal Authentication makes
sense for the scenario of replacing already widely deployed PACE CAM with
PACE-MA(-light).

Extended Privacy Guarantees. One particular property of PACE-MA is
that after executing the first 4 phases a protocol participant can create itself the
message that has to authenticate the other protocol participant (this message is
either CA or CB , depending on the protocol side). In case of PACE CAM this
is infeasible.

This property may be useful due to some subtle privacy protection concerns.
Assume for instance that an adversary has installed a unit that has both access
to the wireless channel and the ephemeral values created by the terminal (the
later can be easily achieved, e.g. via a backdoor in the PRNG of the terminal).
Such a scenario is not unrealistic, especially in case of authoritarian regimes
aiming to spy on and control the citizens.

In case of PACE-MA(-light) one can easily trick the adversary. Namely, it
can create the message CA itself and transmit it over the wireless channel.

For the reason described, the adversary discussed above may receive a com-
munication transcript indicating that Bob has been talking to Alice, while in
reality Bob has been executing PACE-MA with Eve. The only drawback of this
approach is that Eve is not authenticated, apart from password authentication
– but always this authentication may be provided by an application level. The
most important point is that PACE-MA enables to escape the powerful surveil-
lance attacks of the art described by cheating the spying party at any moment.

PACE with Mutual Authentication - Towards an Upgraded eID in Europe 519

References

1. Bender, J., Dagdelen, Ö., Fischlin, M., Kügler, D.: The PACE|AA protocol for
machine readable travel documents, and its security. In: Keromytis, A.D. (ed.) FC
2012. LNCS, vol. 7397, pp. 344–358. Springer, Heidelberg (2012). https://doi.org/
10.1007/978-3-642-32946-3 25

2. Bender, J., Fischlin, M., Kügler, D.: Security analysis of the PACE key-agreement
protocol. In: Samarati, P., Yung, M., Martinelli, F., Ardagna, C.A. (eds.) ISC 2009.
LNCS, vol. 5735, pp. 33–48. Springer, Heidelberg (2009). https://doi.org/10.1007/
978-3-642-04474-8 3

3. Bender, J., Fischlin, M., Kügler, D.: The PACE|CA protocol for machine readable
travel documents. In: Bloem, R., Lipp, P. (eds.) INTRUST 2013. LNCS, vol. 8292,
pp. 17–35. Springer, Cham (2013). https://doi.org/10.1007/978-3-319-03491-1 2

4. BSI: Technical guideline TR-03110 v2.21 - advanced security mechanisms for
machine readable travel documents and eidas token (2016). https://www.bsi.bund.
de/EN/Publications/TechnicalGuidelines/TR03110/BSITR03110.html

5. Dennis Kügler, J.B.: Method for authentication, RF chip document, RF chip reader
and computer program products. Patent US20140157385A1 (2014)

6. Hanzlik, L., Krzywiecki, �L, Kuty�lowski, M.: Simplified PACE|AA protocol. In:
Deng, R.H., Feng, T. (eds.) ISPEC 2013. LNCS, vol. 7863, pp. 218–232. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-38033-4 16

7. Hanzlik, L., Kuty�lowski, M.: Chip authentication for E-passports: PACE with chip
authentication mapping v2. In: Bishop, M., Nascimento, A.C.A. (eds.) ISC 2016.
LNCS, vol. 9866, pp. 115–129. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-45871-7 8

8. ICAO: Machine Readable Travel Documents - Part 11: Security Mechanism for
MRTDs. Doc 9303 (2015)

9. Kuty�lowski, M., Kubiak, P.: Privacy and security analysis of PACE GM protocol.
In: 18th IEEE International Conference On Trust, Security And Privacy In Com-
puting And Communications/13th IEEE International Conference On Big Data
Science And Engineering, TrustCom/BigDataSE 2019, Rotorua, New Zealand, 5–
8 August 2019, pp. 763–768. IEEE (2019). https://doi.org/10.1109/TrustCom/
BigDataSE.2019.00110

10. Kuty�lowski, M., Kubiak, P., Kozie�l, P., Cao, Y.: Poster: eID in Europe - password
authentication revisited. In: Yan, Z., Tyson, G., Koutsonikolas, D. (eds.) IFIP
Networking Conference, IFIP Networking 2021, Espoo and Helsinki, Finland, 21–24
June 2021, pp. 1–3. IEEE (2021). https://doi.org/10.23919/IFIPNetworking52078.
2021.9472856

11. Shenets, N.N., Trukhina, E.E.: X-PACE: modified password authenticated connec-
tion establishment protocol. Autom. Control Comput. Sci. 51(8), 972–977 (2017)

12. The European Parliament and the Council of the European Union: Regulation
(EU) 2016/679 of the European Parliament and of the Council of 27 April 2016 on
the protection of natural persons with regard to the processing of personal data
and on the free movement of such data, and repealing Directive 95/46/EC (General
Data Protection Regulation). Off. J. Eur. Union 119(1) (2016)

13. The European Parliament and the Council of the European Union: Regulation
(EU) 2019/1157—strengthening the security of identity cards and of residence
documents issued to eu citizens and their family members exercising their right of
free movement. Off. J. Eur. Union 188(67) (2019)

https://doi.org/10.1007/978-3-642-32946-3_25
https://doi.org/10.1007/978-3-642-32946-3_25
https://doi.org/10.1007/978-3-642-04474-8_3
https://doi.org/10.1007/978-3-642-04474-8_3
https://doi.org/10.1007/978-3-319-03491-1_2
https://www.bsi.bund.de/EN/Publications/TechnicalGuidelines/TR03110/BSITR03110.html
https://www.bsi.bund.de/EN/Publications/TechnicalGuidelines/TR03110/BSITR03110.html
https://doi.org/10.1007/978-3-642-38033-4_16
https://doi.org/10.1007/978-3-319-45871-7_8
https://doi.org/10.1007/978-3-319-45871-7_8
https://doi.org/10.1109/TrustCom/BigDataSE.2019.00110
https://doi.org/10.1109/TrustCom/BigDataSE.2019.00110
https://doi.org/10.23919/IFIPNetworking52078.2021.9472856
https://doi.org/10.23919/IFIPNetworking52078.2021.9472856

Differential Privacy

Secure Random Sampling in Differential
Privacy

Naoise Holohan and Stefano Braghin(B)

IBM Research Europe, Dublin, Ireland
naoise@ibm.com, stefanob@ie.ibm.com

Abstract. Differential privacy is among the most prominent tech-
niques for preserving privacy of sensitive data, oweing to its robust
mathematical guarantees and general applicability to a vast array of
computations on data, including statistical analysis and machine learn-
ing. Previous work demonstrated that concrete implementations of dif-
ferential privacy mechanisms are vulnerable to statistical attacks. This
vulnerability is caused by the approximation of real values to floating
point numbers. This paper presents a practical solution to the finite-
precision floating point vulnerability, where the inverse transform sam-
pling of the Laplace distribution can itself be inverted, thus enabling
an attack where the original value can be retrieved with non-negligible
advantage.

The proposed solution has the advantages of being (i) mathemati-
cally sound, (ii) generalisable to any infinitely divisible probability dis-
tribution, and (iii) of simple implementation in modern architectures.
Finally, the solution has been designed to make side channel attack
infeasible, because of inherently exponential, in the size of the domain,
brute force attacks.

Keywords: Differential privacy · Random numbers · Computational
complexity

1 Introduction

The generation of random samples from probability distributions is a well-
studied field, and is an ever-present feature in programming languages and
random number generators alike. Random sampling is especially important
in the field of differential privacy, where specially-calibrated random noise
is used to protect published data from unwanted inference. However, while
the definition and analysis of differential privacy is typically viewed in the
theoretical, real-valued world of mathematics, translating its rigorous guar-
antees to the floating-point world of computers requires special attention.

Work by Mironov in 2012 [22] was the first to point to significant vulnera-
bilities in floating point implementations of differential privacy, which allow
c© Springer Nature Switzerland AG 2021
E. Bertino et al. (Eds.): ESORICS 2021, LNCS 12973, pp. 523–542, 2021.
https://doi.org/10.1007/978-3-030-88428-4_26

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-88428-4_26&domain=pdf
https://doi.org/10.1007/978-3-030-88428-4_26

524 N. Holohan and S. Braghin

for catastrophic destruction of the much-vaunted privacy guarantees. Using
naïve sampling of the Laplace distribution, Mironov was able to exploit holes
in the output space to reconstruct the original input from a finite list of can-
didate inputs. Being able to reconstruct a single value with certainty is a
blatant breach of differential privacy, which should guarantee uncertainty
on any query. In this paper, we further extend Mironov’s approach to present
a novel attack on the Gaussian mechanism (Sect. 2.4).

It is well-known that the cardinality of the real line R is the same as that
of the unit interval on the real line, [0, 1], which allows for precise sampling
using the inverse transform method. For floating-point numbers however,
there are many more numbers on the real line than there are in the unit
interval, which results in the holes that Mironov used in the attack. Typi-
cal defences against this vulnerability eliminate these holes by limiting the
output space, using such techniques as the “snapping mechanism” [22], and
sampling from the discrete analogue of the distribution [6,14], but these
require much more complex code to implement.

In this paper, we seek an alternative defence – that of computational com-
plexity. The attack presented by Mironov relies on an attacker inverting the
sampling procedure to test the feasibility of candidate inputs. Although ran-
dom samples generated from a single random number (e.g., the Laplace
distribution) are vulnerable to this attack, samples generated by two or
more random numbers (e.g., the Gaussian distribution) are less vulnerable.
By generating samples from multiple random numbers, we can render the
attack sufficiently costly so as to be impractical on today’s computers.

We demonstrate how this approach can be implemented with ease for
the Laplace and Gaussian distributions (both popular in differential privacy),
and a large family of probability distributions. The approach can be extended
to systems of reduced precision (e.g., single- and half- precision floating
point), and allows for any desired level of complexity to be achieved.

Given that data is commonly stored as floating point numbers, we believe
there is value in developing tools that reflect this reality. Equally, we are
cognisant of the need to develop simple solutions to these complex tasks, to
allow for easy implementation, adoption, generalisation and understanding
of the techniques. As described in [8]:

Fast programs are seldom short, and short programs are likely to
be slow. But it is also true that long programs are often not elegant
and more error-prone. Short smooth programs survive longer and are
understood by a larger audience.

The rest of the paper is organised as follows. Section2 describe the
required background information. The guiding principles to this paper are
then given in Sect. 3, with the specifics presented in Sect. 4. Example imple-
mentations are given in Sect. 5 and the protection provided is explored in

Secure Random Sampling in Differential Privacy 525

Sect. 6 After reviewing the state of the art in Sect. 7, the contribution is
summarised in Sect. 8.

2 Background

This section will give a brief outline of the vulnerability presented in [22],
alongside an example attack implementation and its extension to attacking
Gaussian sampling, and the current state-of-the-art in mitigating against the
attack.

2.1 Floating Point Numbers

To begin, we give a very brief outline of floating point numbers. Floating
point numbers take their inspiration from scientific notation to store a wide
range of numbers in binary format. Double-precision floating points (also
known as doubles) occupy 64 bits of storage, comprising 1 bit for the sign, 11
bits for the exponent and the remaining 52 bits for the fraction or mantissa.
The corresponding real number for a given double is given by

(−1)sign(1.b51b50 . . . b0)2 × 2e−1023,

where b0, . . . , b51 ∈ {0, 1} are the bits of the mantissa, and e ∈ N is the
non-negative integer exponent. This format allows for the representation of
numbers between 10−308 and 10308, with varying degrees of granularity.

The IEEE standard1 gives an algorithm for addition, subtraction, multipli-
cation, division, and square root and requires that implementations produce
the same result as that algorithm.

The standard specifies that floating-point numbers are represented as
base 2 fractions. For example, the value 0.0012 represents the decimal value
0
2+

0
4+

1
8 . Nonetheless, not all decimal fractions can be represented exactly as

binary fractions. Thus, the decimal floating-point numbers are approximated
to the binary floating point. For example, in base-2, 1

10 is represented as the
infinitely-repeating value 0.0001100110011 . . .

The standard provides information about the error introduced by both
the representation and operations that can be performed. For example, the
addition (and subtraction) operation can be performed by converting the
operands to the same exponent, and then summing (or subtracting) the man-
tissa. On the other hand, multiplications can be computed by multiplying the
mantissa of both operands and adding the exponents.

These operation introduce a rounding error, as the values need to be con-
verted and as multiplications are performed. Moreover, the standard speci-
fies various rounding modes, including round to nearest (where ties round

1 ANSI/IEEE Std 754–2019 http://754r.ucbtest.org.

http://754r.ucbtest.org

526 N. Holohan and S. Braghin

to the nearest even digit in the required position, the most commonly used),
round away from zero, round up (toward +∞), round down (toward −∞),
and round toward zero (i.e., truncation).

The amount of error can be quantified [13] to a machine epsilon (gen-
erally denoted as Emach), that depends on the actual precision used in the
representation. For example, single precision floating point (32 bits) have a
machine epsilon equal to 2−23 ≈ 1.19 × 10−7, while double precision floating
point numbers (64 bits) have a machine epsilon equal to 2−52 ≈ 2.22× 10−16.

2.2 Random Number Sampling

When sampling random numbers from a probability distribution, the com-
mon starting point is to take a (many) random number(s) from the unit inter-
val and transform them to sample from the given distribution. Although the
unit interval can be sampled with increasing granularity closer to zero, the
typical practice is to sample from a multiple of a small number. For example,
the Python programming language returns a multiple of 2−53 when sampling
from the unit interval.

Inverse transform sampling is a popular method to sample from cer-
tain probability distributions, by taking the inverse of the Cumulative Dis-
tribution Function (CDF) or Cumulative Mass Function (CMF). For example,
given a CDF F (x) : R → [0, 1] from which we want to sample, and whose
inverse F−1(x) : [0, 1] → R is known, then given U ∼ U(0, 1), we have

P(F−1(U) ≤ x) = P(U ≤ F (x)) = F (x),

for x ∈ R, noting that P(U ≤ u) = u for a uniform variate U ∼ U(0, 1) and
u ∈ [0, 1].

2.3 Mironov Attack

Noting that there are only 253 possible uniform variates to be generated and
264 floating point numbers, there is an immediate difficulty in covering the
output space with the image of a transformation. Without additional ran-
domness, it is impossible for the inverse transform sampling method to fully
cover the real line. This was demonstrated in [22], where the author con-
firmed that gaps appear in the output space between the outputs of consec-
utive uniform variates. Mironov formulated an attack that could successfully
reconstruct an entire database, with certainty, under specific conditions.

The CDF of the standard Laplace distribution is given by

FLap(x) =

{
1
2ex if x ≤ 0,
1 − 1

2e−x if x > 0,
(1)

Secure Random Sampling in Differential Privacy 527

with which we can calculate its inverse:

F−1
Lap(u) = (−1)�u�1 log(1 − 2 |u − 0.5|), (2)

where �·	k denotes rounding to the nearest multiple of k ∈ R. A Laplace
variate can then be generated using F−1

Lap(U) ∼ Lap(0, 1), by first sampling a
uniform variate U ∼ U(0, 1). We present an example algorithm for attacking
a single value in a dataset in Algorithm 1.

Input: Attack target v, DP query Q using the Laplace mechanism with
implementation (2), finite candidate set C

Output: Attack result c ∈ C
1 while |C| > 1 do
2 q = Q(v)
3 for c ∈ C do
4 u = �FLap(q − c)�2−p

5 if F−1
Lap(u) + c �= q then

6 remove c from C
7 end

8 end

9 end
10 return remaining element c ∈ C

Algorithm 1: Example algorithm implementing the Mironov attack

Critical to this attack is the ability to compute the inverse of the sampling
procedure (i.e., the CDF, given in (2), in the case of inverse transform sam-
pling). The success of this attack is therefore independent of the precision
of the uniform variate, and can be executed whenever the sampling function
can be inverted.

2.4 Gaussian Attack

We now show an extension of the Mironov attack to the Gaussian distri-
bution, one which we believe to be novel. This attack can be performed
on Gaussian variates sampled using the popular Box-Muller transform [4].
Given two uniform variates U1, U2 ∼ U(0, 1), the Box-Muller transform
returns two independent Gaussian samples N1, N2 ∼ N(0, 1) as follows:

N1 =
√

−2 log(1 − U1) cos(2πU2), (3a)

N2 =
√

−2 log(1 − U1) sin(2πU2). (3b)

528 N. Holohan and S. Braghin

Knowing both N1 and N2, we can recover U1 and U2 as follows:

U1 = 1 − e− N2
1+N2

2
2 , (4a)

U2 =
1
2π

(
arctan

(
N2

N1

)
+ π1{N1<0}

)
. (4b)

The same inversion technique as described in Algorithm 1 can be used to
eliminate candidates and determine the true input, noting that q and u in
Lines 2, 4 and 5 will be vectors of two values each.

Getting two values from a mechanism utilising the Box-Muller transform
can be done by executing the same query twice in succession. Ensuring both
values are from the same Box-Muller operation, and determining which is
associated with the cos and which is associated with the sin can be done
by examining the source code and executing a simple timing attack. It is a
common implementation to return the first variate to the user, while caching
the second variate to be returned the next time the function is called [24].
The calculation overhead in the first step can be measured to determine the
phasing to implement the attack.

This attack can be mitigated against by discarding one of the variates, or
by using both variates in an output of 1√

2
(N1 + N2).

2.5 Existing Defences

To mitigate against the attack, Mironov proposed the snapping mechanism
to sample a noisy output with Laplace-like additive noise. The snapping
mechanism involves snapping the noisy output to the nearest factor of the
scale of the noise, resulting in a significant reduction in granularity of the
output. For example, given a privacy budget ε = 2−5, the only outputs will
be multiples of 25 = 32. Alongside the reduction in granularity, the snapping
mechanism is also cumbersome to implement, requiring a custom approach
to sampling from the unit interval, as well as clipping and rounding opera-
tions.

Another approach is to sample from the discrete analogue of the desired
distribution, thereby giving more control to the user on the discretisation
of the output [6,14]. [14] in particular offers solutions for the Laplace and
Gaussian distributions, but requires complex sampling procedures. It is not
clear if it is simple, or possible, to adapt their solution to other probability
distributions.

While there are many algorithms to sample from the discrete Gaussian
distribution [6,18], all common random number generator packages pro-
duce floating-point Gaussian variates, making the implementation of such
solutions more complex.

Secure Random Sampling in Differential Privacy 529

3 General Principles

In this section we present the general principles of the proposed solution. We
first make the following assumptions in analysing the protections provided
by our approach:

Assumption 1. Mechanism source code is public.

Assumption 2. Uniform variates are generated using a cryptographically-
secure pseudorandom number generator (CSPRNG).

Assumption 3. Uniform variates are generated as multiples of 2−p for some
fixed p ∈ N>0.

Hence, for U ∼ U(0, 1), we have

U ∈ [0, 1) ∩ (
2−p

N
)
. (5)

Assumption 1 ensures that we cannot achieve security of random num-
ber generation through obscurity, and that the protections are an inherent
characteristic of the system. Assumption 2 ensures that an attacker cannot
predict forthcoming uniform variates, as can be done with some standard
Pseudo-Random Number Generators (PRNGs) (e.g., the Mersenne-Twister
PRNG). Assumption 3 simplifies some of the analysis of this paper, and aligns
with random number generation in many programming languages.

For clarity, we define the set of uniform variates as follows for a given
precision p.

Definition 1 (Uniform variates) . Given p ∈ N, we define

U = [0, 1) ∩ (2−p
N),

the set of all multiples of 2−p in the half-open unit interval [0, 1).
This denotes the set of uniform variates in many programming languages.

For example, in the Python programming language, p = 53.

Although the holes in the output space of the random number generation
provide the key to the attack as shown in Sect. 2.3, it relies on the invert-
ibility of the sampling procedure to execute efficiently. If the sampling pro-
cedure can be made non-injective (and consequently, non-invertible), then
any sampled variate could be the result of more than one combination of
uniform variate(s). Therefore, satisfying the non-equality condition of Line 5
in Algorithm 1 would require searching through all possible uniform variate
combinations that approximately give equality in Line 5 (up to floating point
rounding errors).

We can flesh out the details of this using the Gaussian distribution as an
example.

530 N. Holohan and S. Braghin

Fig.1. Level curves of (6) for given values of N1.

Example 1 (Gaussian distribution) . Consider samples from the Gaussian
distribution, as given in Sect. 2.4. Although it is possible to reconstruct U1

and U2 knowing both outputs from the Box-Muller transform, we can show
that knowing a single Box-Muller output is not sufficient to execute the
Mironov attack in a single step. Suppose N1 is known to have originated
from (3a), and we wish to determine U1 and U2 from which it came. We can
write

U1(U2) = 1 − e
− N2

1
2 cos2(2πU2) , (6)

allowing us to solve for U1 given U2. We can similarly write U2 as a function
of U1.

As shown in Algorithm 1, we need only find a single pair U1, U2 ∈ U
2 that

gives equality in Line 5 in order to retain that candidate as feasible. On the
real line, any pair U1, U2 ∈ [0, 1) satisfying (6) will give equality for Line 5.
However, due to floating point rounding errors and the limited precision of
values U ∈ U, we need to search through U

2 to find values that satisfy the
equality down to the bit of least precision. Figure1 shows the level curves
of (6), illustrating the paths through the grid of (U1, U2) ∈ U

2 that would be
traversed in a typical execution of the attack.

This example prompts two questions:

1. Can we extend the protection offered to Gaussian variates, beyond that
of searching through 2p uniform variates?

2. Can this approach be adopted for other probability distributions? Partic-
ularly, ones with injective sampling procedures (e.g., the Laplace distri-
bution)?

If we can use our choice of n ∈ N uniform variates to generate a sin-
gle sample from a given distribution, then a brute-force attack (similar to

Secure Random Sampling in Differential Privacy 531

Example 1) would require on the order of 2p(n−1) ‘checks’. In essence, it
would require fixing (n − 1) of the variates, and running an inversion attack
(e.g., using (6) in the case of the Gaussian distribution) on the nth variate.
Importantly, for a linear increase in the time to sample a variate, the cost of
executing the attack will increase exponentially.

Additionally, this approach can be extended to systems of reduced preci-
sion. Single- and half- precision systems use only 32 and 16 bits respectively
to represent a floating point number, compared to the 64 bits allocated for
double-precision floating point numbers. For example, Graphical Processing
Units (GPUs) typically use lower-precision floating point numbers in their
calculations, making attacks such as Example 1 more feasible.

In implementing such an approach, we can take some inspiration from
the subset sum problem in computer science. The subset sum problem asks,
given a multiset A of positive integers (a ∈ N for each a ∈ A), and a target
T ∈ Z, is there a subset A′ ⊆ A such that

∑
a∈A′ a = T? It is known that

the subset sum problem is NP-complete [10], making it intractable to solve
when the set A is large.

Luckily, there is a branch of probability theory that we can exploit in this
context – infinite divisibility.

4 Divisibility of Probability Distributions

Our approach relies on simple and effective ways to generate random num-
bers from a given distribution using many uniform variates. As explained in
Sect. 3, simply increasing the number of random bits used to generate a ran-
dom sample from a distribution is not sufficient to protect against inversion
attacks. Instead, we seek to increase the number of uniform variates used
to generate a single random sample.

A probability distribution P is divisible, if there exists a distribution Q

such that, given independent X1,X2 ∼ Q, we have X1 + X2 ∼ P . P is
infinitely divisible if, for any n ∈ N, there exists a distribution Rn such that
independent Xi ∼ Rn for each i ∈ [n] satisfy

∑n
i=1 Xi ∼ P .

Probability distributions that are infinitely divisible therefore allow the
greatest flexibility in increasing the complexity of this defence. Fortunately,
the two most popular distributions used in differential privacy are infinitely
divisible.

4.1 Preliminaries

For every i ∈ N, we adopt the following notation for these common distribu-
tions:

– Ni ∼ N (0, 1) is a collection of independent (standard) Gaussian random
variables, and,

532 N. Holohan and S. Braghin

– Ui ∼ U(0, 1) is a collection of independent uniform random variables on
the unit interval.

Formulations of the probability distributions used in this section are given
in Appendix A,

For any n ∈ N, we let [n] = [1, n] ∩ N denote the positive integers up to
and including n.

We note that when sampling uniformly from the unit interval, random
number generators typically sample from [0, 1) (i.e., excluding 1). This range
is undesirable when computing log(U1), and instead we use log(1−U1), since
1 − U1 ∈ (0, 1] lies within the domain of logarithms.

Finally, we limit our analysis to standard distributions, those with zero
location and unit scale parameters. These standard distributions can be
scaled and translated as appropriate to get a distribution of a specific mean
and variance (see Appendix A).

4.2 Gaussian Distribution

It is well-known that the Gaussian distribution is infinitely divisible. Given
that the sum of two Gaussians is Gaussian (N1 ± N2 ∼ N (0, 2)), we can
generate a standard Gaussian from n > 0 standard Gaussians:

1√
n

n∑
i=1

Ni ∼ N (0, 1). (7)

This property of divisibility allows for the sampling of Gaussians with
ease for any n ∈ N. Additionally, decomposing any other probability distribu-
tion as a function of Gaussians will allow for the subsequent decomposition
into any finite number of Gaussians.

4.3 Laplace Distribution

The Laplace distribution is infinite divisible using the gamma distribution.

Proposition 1 (Laplace divisibility [20]). Given an integer n ≥ 1, and
Xi, Yi ∼ Γ

(
1
n , 1

)
for each i ∈ [n], then

n∑
i=1

(Xi − Yi) ∼ Lap(0, 1).

The case of n = 1 gives the decomposition of the Laplace distribution as
the difference of two exponential distributions.

Corollary 1. Given E1, E2 ∼ Exp(1),

E1 − E2 ∼ Lap(0, 1). (8)

Secure Random Sampling in Differential Privacy 533

Proof. Noting that Γ (1, 1) ∼ Exp(1) completes the proof.

The special case of n = 2 also deserves special attention.

Corollary 2. Given independent samples of the standard Gaussian distribu-
tion, N1, N2, N3, N4 ∼ N (0, 1),

1
2

(
N2

1 − N2
2 + N2

3 − N2
4

) ∼ Lap(0, 1). (9)

Proof. The chi-squared distribution with 1 degree of freedom is related to
the gamma distribution (given X ∼ χ2(1), then 1

2X ∼ Γ
(
1
2 , 1

)
). Further-

more, it is known that a squared sample from the Gaussian distribution is
chi-squared (N2

1 ∼ χ2(1)). Combining these two observations completes the
proof.

The Laplace distribution can be decomposed in many other ways, as
given in [20, Table2.3], one of which is of particular interest in our context:

Proposition 2. Given independent samples of the standard Gaussian distri-
bution, N1, N2, N3, N4 ∼ N (0, 1),

N1N2 − N3N4 ∼ Lap(0, 1). (10)

Proof. We note that Z = N1N2 has a characteristic function φZ(t) = (1 +
t2)−

1
2 . This gives the characteristic function for (10) of

φN1N2−N3N4(t) = φZ(t)φZ(−t) = (1 + t2)−1,

which corresponds to the standard Laplace distribution.

We therefore have two methods to sample from the Laplace distribution
as a composition of four standard Gaussians. Each Gaussian can be further
decomposed using (7).

5 Sampling Implementations

There are many ways to sample from the Gaussian distribution [24]. We
restrict our analysis to the Box-Muller transform [4], owing to its simplicity,
compactness, exactness and ubiquity among programming languages.

The polar method [3] of the Box-Muller transform was developed to avoid
the costly sin and cos calculations. Other methods have been proposed to
eliminate the similarly costly log and

√· calculations [2,5]. These modi-
fications are typically reserved for low-level languages or machine code,
because the added complexity can slow computation time in higher-level lan-
guages [1]. Given our focus on high-level languages, such as Python, analysis
of these variants is beyond the scope of this paper.

In this section, we offer simple implementation examples in Python, using
standard libraries. We hope these examples will be sufficient to enable the
reader to port the code to their desired language.

534 N. Holohan and S. Braghin

5.1 Gaussian Sampling

As noted in Sect. 2.4, a naïve implementation of the Box-Muller transform
in sampling from the Gaussian distribution presents vulnerabilities. The
question therefore arises of how best to protect Gaussian samples from the
Mironov attack, and there are two immediate considerations:

1. Discard one of the pair of Box-Muller samples, or
2. Make use of both samples, noting that 1√

2
(N1 + N2) ∼ N (0, 1).

Both of these choices are mathematically identical (albeit with the out-
puts π

4 out of phase2), but it may be a more elegant implementation using
standard libraries to opt for the second option. Extending this choice to gen-
erating Gaussian samples from multiple Box-Muller draws, using the infinite
divisibility described in Sect. 4.2, we use 2n samples3 from the Box-Muller
transform, and divide the result by

√
2n. This can be implemented in Python

as follows, after importing the math and random libraries:

1 sum(gauss(0, 1) for i in range(2 * n)) / sqrt(2 * n)

Readers are encouraged to discard the first result from Box-Muller before
sampling in this way, to ensure no carry-over of uniform variates from a
previous draw, which may have already been successfully attacked.

Importantly, the time taken in the generation of a standard Gaussian vari-
ate from n uniform variates increases linearly with n, whereas the attack
complexity as described in Sect. 3 increases exponentially in n, given as
2p(n−1). A small increase in computation overhead to sample the variates
gives an exponential increase in attack complexity.

5.2 Laplace Sampling

We ignore the decomposition of the Laplace distribution into the difference
of two exponential variates, and skip straight to the decomposition into
Gaussians.

As such, we are interested in the forms given in Corollary 2 and Proposi-
tion 2. In both these cases, we can safely use two samples from Box-Muller
to generate the Laplace sample, since squaring-and-summing or multiply-
ing Box-Muller samples breaks the invertibility given in Sect. 2.4. Empirical
analysis has shown (10) to be the faster option, as (9) requires two addi-
tional multiplication operations. In Python, this can be implemented as fol-
lows after importing the random library:

2 Since cos(θ) + sin(θ) =
√
2 cos

(
θ − π

4

)
.

3 We need only use n samples for sampling procedures that do not share uniform
variates between executions, for example the normalvariate method in Python’s
random library, which uses the Kinderman-Monahan sampling procedure [19].

Secure Random Sampling in Differential Privacy 535

1 gauss(0, 1) * gauss(0, 1) - gauss(0, 1) * gauss(0, 1)

However, doing so will introduce some redundancy in the uniform vari-
ates, which presents an opportunity for those willing to write their own sub-
routines.

Theorem 1. Given independent uniform variates U1, U2, U3, U4 ∼ U(0, 1),

log(1 − U1) cos(πU2) + log(1 − U3) cos(πU4) ∼ Lap(0, 1). (11)

Proof. Firstly with (9), we can write the difference of squared outputs from
the Box-Muller transform as follows,

N2
1 − N2

2 = −2 log(1 − U1)
(
cos2(2πU2) − sin2(2πU2)

)
(12)

= −2 log(1 − U1) cos(4πU2), (13)

using the double-angle formula cos(2θ) = cos2(θ) − sin2(θ).
Also, since − cos(4πU2) ∼ cos(πU2) when U2 ∼ U(0, 1), owing to the peri-

odicity of cos, we get the desired result. Analysis of (10) gives a similar rep-
resentation.

In Python, this can be implemented as follows after importing the math
and random libraries:

1 log(1 - random()) * cos(pi * random()) + log(1 - random()) * cos(pi

* random())

Remark 1: We observe that U2 ∈ [0, 1) in a floating-point environment,
which results in an asymmetric output for cos(πU2) ∈ (−1, 1]. We can elimi-
nate this asymmetry by using the first bit of randomness of U2 to sample the
sign, and then using the remaining bits to sample the magnitude, giving

cos(πU2) ∼ (−1)�U2�1 cos
(

π

(
U2 mod

1
2

))

in real number arithmetic, with an output space of [−1, 1] \ {0} when U2 ∈
[0, 1). This can be implemented in Python as follows:

1 u2 = random()
2 copysign(cos(pi * (u2 % 0.5)), u2 - 0.5)

Remark 2: The representation in Theorem 1 brings two benefits over
sampling naïvely with Box-Muller: (i) reduced redundancy in the cos argu-
ment (using Box-Muller, the first two random bits of U2 and U4 are redun-
dant), and, (ii) greater computational efficiency (empirical evidence sug-
gests a halving in the time taken to sample).

536 N. Holohan and S. Braghin

5.3 Choosing n

In choosing the number, n, of uniform variates to use in sampling a single
Laplace or Gaussian variate, we take inspiration from current standards in
cryptography. The Advanced Encryption Standard (AES) supports key sizes
of 128, 192 and 256 bits, corresponding with search spaces of sizes 2128, 2192

and 2256 respectively. Thus, it will take O(key size) steps for a polynomial
adversary to enumerate, and test, all possible keys.

In order to achieve a similar search space size for our application, assum-
ing a precision of p = 53 (as in Python), we require n = 4, 5 and 6 respectively.
We consider it sufficient to use n = 4 in most applications, corresponding to
the implementation of Theorem 1. This standard has been adopted in the
implementation of the Laplace, Gaussian and other mechanisms4 in the diff-
privlib open source library [16].

The effect of n on the time it takes to sample from the Laplace distri-
bution is shown in Fig. 2. Despite using four times as many uniform vari-
ates, the implementation of Theorem 1 only takes twice as long as the naïve
sampling with a single uniform variate. Using the native math and random
libraries is costly for larger n, owing to Python’s slow for loops. Numpy’s C
codebase [25] allows for fast computation even for large n, and can be fur-
ther leveraged to produce multiple samples in parallel, with superior per-
sample computation time than naïve sampling. The code for these simula-
tions is given in Appendix B.

6 Gaussian Attack Complexity

We briefly revisit the brute force attack on the Gaussian distribution in
Example 1 to highlight the robustness of the proposed approach. Given a
single Gaussian variate, we know from Example 1 that we can write U1 as a
function of U2. This allows us to estimate a lower bound on the number of
checks required on a given variate N1, since we know that U1, U2 ∈ U ⊂ [0, 1).
We stress that this is only a lower bound, as rounding errors in floating point
arithmetic would typically require the checking of adjacent uniform variates.

For example, using (6), given U2 ∈ [0, 1), we have

U1 ∈
[
1 − e− N2

1
2 , 1

)
,

allowing us to reduce the search space to U1 ∈ U ∩ [
1 − e− N2

1
2 , 1

)
We can

therefore approximate the number of checks as e− N2
1
2 2p.

4 https://github.com/IBM/differential-privacy-library/tree/main/diffprivlib/
mechanisms.

https://github.com/IBM/differential-privacy-library/tree/main/diffprivlib/mechanisms
https://github.com/IBM/differential-privacy-library/tree/main/diffprivlib/mechanisms

Secure Random Sampling in Differential Privacy 537

Fig.2. Mean execution time for sampling a single standard Laplace variate, in
microseconds (µs), over 5 000 000 runs in Python.

Knowing that N1 ∼ N (0, 1), we can get the expected number of checks
as follows:

E[checks] = 2p

∫
e− x2

2 f(x)dx = 2pC

∫
e− (

√
2x)2

2 dx = 2p C√
2

∫
e− x2

2 dx (14)

=
2p

√
2
= 2p− 1

2 , (15)

where f(x) denotes the probability density function of the standard Gaussian
distribution N (0, 1) and C is the normalisation constant (see Appendix A.2).

This demonstrates the robustness of the approach, with (15) confirming
that the complexity of the attack only decreases by a small constant from the
theoretical limit. While outlying values lead to smaller search spaces, their
vanishingly small probabilities of being sampled result in a small aggregate
impact.

7 Related Work

The original attack on the Laplace mechanism, which also inspired this work,
was first presented in [22]. Subsequent work on the subject in [12], where
the authors analyse the situation of infinite-precision semantic at the imple-
mentation level. The authors present results arguing that in general there
are violations of the differential privacy property, proposing a variation of
the differential privacy definition leading to a degradation of the privacy
level.

538 N. Holohan and S. Braghin

Thorough examination of randomness required for differential privacy is
presented in [11], where the authors analyse various techniques for random
number generation, presenting a picture of strengths and limitations of the
commonly used sources of randomness.

Other work in [9] and [23] analyse theoretical and practical limitations
of the source of randomness used in differential privacy. In particular [9]
presents an cryptographic requirements for real randomness, and describe
the analogies existing in differential privacy.

In [12] the authors show the violation of differential privacy property
caused by the approximation introduced by the finite-precision represen-
tation of continuous data. The authors also present the conditions under
which limited by acceptable privacy guarantees can be provided, under only
a minor degradation of the privacy level.

[15] describes several different kinds of covert-channel attacks for differ-
ential privacy frameworks. The authors present possible countermeasures
with particular focus on one specific solution based on a new primitive called
predictable transactions.

[7] presents a systematic study of a fundamental limitation of locally dif-
ferentially private protocols with respect to their vulnerability to adversarial
manipulation. The authors also present a solution to provide increased secu-
rity via a protocol that deploys local differential privacy and reinforces it
with cryptographic techniques.

Finally, [17] presents a study similar to the one first introduced in [22],
but concentrate on the exponential mechanism of McSherry and Talwar [21].

8 Conclusion

In this paper we have presented an alternative defence to a particular float-
ing point vulnerability in differential privacy. The solution we presented,
using the infinite divisibility of probability distributions, is simple to under-
stand, quick and easy to implement, difficult to attack, and generalisable to
different probability distributions and system precisions. Of particular inter-
est is the ability to generate samples from the Laplace distribution in a sin-
gle statement of code (Sect. 5.2), with strong attack guarantees. We believe
this is an important contribution to the literature on differential privacy in
mitigating some of the risks associated with operating in a floating point
environment.

Acknowledgments. The authors wish to thank David Malone (Hamilton Institute,
Maynooth University) for useful discussions at the beginning of this project.

Secure Random Sampling in Differential Privacy 539

Appendix

A Probability Density Functions

The following probability distributions are referenced in Sect. 4.

A.1 Uniform Distribution

The uniform distribution on the interval [a, b] ⊂ R, −∞ < a < b < ∞, is given
by the Probability Density Function (PDF)

fU(a,b)(x) =

{
1

b−a if x ∈ [a, b],
0 otherwise.

We make use of the uniform distribution U(0, 1) on the unit interval [0, 1].

A.2 Gaussian Distribution

The Gaussian distribution with mean μ and variance σ2 is given by the PDF

fN (μ,σ)(x) =
1

σ
√
2π

e− 1
2 (x−μ

σ)2 .

We refer to the case when μ = 0 and σ = 1 as the standard Gaussian
distribution. If N ∼ N (0, 1), then σN + μ ∼ N (μ, σ).

A.3 Laplace Distribution

The Laplace distribution with mean μ and variance 2b2 is given by the PDF

fLap(μ,b)(x) =
1
2b

e− |x−μ|
b .

We refer to the case when μ = 0 and b = 1 as the standard Laplace
distribution. If L ∼ Lap(0, 1), then bL + μ ∼ Lap(μ, b).

A.4 Exponential Distribution

The exponential distribution with mean 1
λ and variance 1

λ2 is given by the
PDF

fExp(λ)(x) = λe−λx.

We refer to the case when λ = 1 as the standard exponential distribution.
If E ∼ Exp(1), then E

λ ∼ Exp(λ).

540 N. Holohan and S. Braghin

A.5 Gamma Distribution

The gamma distribution with mean kθ and variance kθ2 is given by the PDF

fΓ (k,θ)(x) =
1

Γ (k)θk
xk−1e− x

θ .

If G ∼ Γ (k, θ), then cG ∼ Γ (k, cθ) for any c > 0.

A.6 Chi-Squared Distribution

The chi-squared distribution with k ∈ N degrees of freedom is given by the
PDF

fχ2(k)(x) =
1

2
k
2 Γ

(
k
2

)x
k
2 −1e− x

2 .

B Code Samples

The following code samples were used in estimating execution time for dif-
ferent implementations. This code was run using Python 3.8.6.

B.1 Naïve Sampling

The naïve standard Laplace sampling given by (2) was implemented using:

1 def laplace_naive():
2 u = random()
3 return copysign(log(1 - 2 * abs(u - 0.5)), u - 0.5)

B.2 Theorem 1 Sampling

The implementation of Theorem 1 was given by:

1 def laplace_theorem1():
2 return log(1 - random()) * cos(pi * random()) + log(1 - random()

) * cos(pi * random())

B.3 Sampling with math and random

We combine the Gaussian and Laplace sampling procedures from (7) and (2)
to generate standard Laplace samples from 8n uniform variates using the
math and random libraries as follows:

1 def gaussian_sum(n=1):
2 return sum(normalvariate(0, 1) for i in range(n))
3
4 def laplace_math_and_random(n=1):
5 return (gaussian_sum(n) * gaussian_sum(n) - gaussian_sum(n) *

gaussian_sum(n)) / n

Secure Random Sampling in Differential Privacy 541

B.4 Sampling with Numpy

Finally, we present an implementation of the same procedure using the pop-
ular Numpy package, leveraging its C-based code for faster computations
with larger n:

1 import numpy as np
2
3 def laplace_numpy(n=1):
4 g1, g2, g3, g4 = np.random.standard_normal(size=(4, 2 * n)).sum(

axis=1)
5 return (g1 * g2 - g3 * g4) / 2 / n

References

1. Ahrens, J.H., Dieter, U.: Computer methods for sampling from the exponential
and normal distributions. Commun. ACM 15(10), 873–882 (1972)

2. Ahrens, J.H., Dieter, U.: Efficient table-free sampling methods for the exponen-
tial, Cauchy, and normal distributions. Commun. ACM 31(11), 1330–1337 (1988)

3. Bell, J.R.: Algorithm 334: normal random deviates. Commun. ACM 11(7), 498
(1968)

4. Box, G.E.P., Muller, M.E.: A note on the generation of random normal deviates.
Ann. Math. Stat. 29(2), 610–611 (1958)

5. Brent, R.P.: Fast normal random number generators on vector processors. Tech-
nical report TR-CS-93-04, Department of Computer Science, The Australian
National University, Canberra, 0200 ACT, Australia (1993)

6. Canonne, C.L., Kamath, G., Steinke, T.: The discrete Gaussian for differential
privacy. In: Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M.F., Lin, H. (eds.)
Advances in Neural Information Processing Systems, vol. 33, pp. 15676–15688.
Curran Associates, Inc. (2020). https://proceedings.neurips.cc/paper/2020/file/
b53b3a3d6ab90ce0268229151c9bde11-Paper.pdf

7. Cheu, A., Smith, A., Ullman, J.: Manipulation attacks in local differential privacy.
arXiv preprint arXiv:1909.09630 (2019)

8. Devroye, L.: Non-uniform Random Variate Generation. Springer, New York
(1986). https://doi.org/10.1007/978-1-4613-8643-8

9. Dodis, Y., López-Alt, A., Mironov, I., Vadhan, S.: Differential privacy with imper-
fect randomness. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol.
7417, pp. 497–516. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-32009-5_29

10. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman and Company, New York (1979)

11. Garfinkel, S.L., Leclerc, P.: Randomness concerns when deploying differential
privacy. In: Proceedings of the 19th Workshop on Privacy in the Electronic Soci-
ety. WPES 2020, pp. 73–86. Association for Computing Machinery, New York
(2020)

https://proceedings.neurips.cc/paper/2020/file/b53b3a3d6ab90ce0268229151c9bde11-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/b53b3a3d6ab90ce0268229151c9bde11-Paper.pdf
http://arxiv.org/abs/1909.09630
https://doi.org/10.1007/978-1-4613-8643-8
https://doi.org/10.1007/978-3-642-32009-5_29
https://doi.org/10.1007/978-3-642-32009-5_29

542 N. Holohan and S. Braghin

12. Gazeau, I., Miller, D., Palamidessi, C.: Preserving differential privacy under
finite-precision semantics. Theoret. Comput. Sci. 655, 92–108 (2016). Quanti-
tative Aspects of Programming Languages and Systems (2013–14)

13. Goldberg, D.: What every computer scientist should know about floating-point
arithmetic. ACM Comput. Surv. (CSUR) 23(1), 5–48 (1991)

14. Google Differential Privacy Team: Secure noise generation. github.com/google
1(1), 1–14 (2020)

15. Haeberlen, A., Pierce, B.C., Narayan, A.: Differential privacy under fire. In:
USENIX Security Symposium, vol. 33 (2011)

16. Holohan, N., Braghin, S., Mac Aonghusa, P., Levacher, K.: Diffprivlib: the IBM
differential privacy library. arXiv e-prints 1907.02444 [cs.CR], July 2019

17. Ilvento, C.: Implementing the exponential mechanism with base-2 differential
privacy. In: Proceedings of the 2020 ACM SIGSAC Conference on Computer and
Communications Security, pp. 717–742 (2020)

18. Karney, C.F.F.: Sampling exactly from the normal distribution. ACM Trans. Math.
Softw. 42(1), 1–14 (2016)

19. Kinderman, A.J., Monahan, J.F.: Computer generation of random variables using
the ratio of uniform deviates. ACM Trans. Math. Softw. 3(3), 257–260 (1977)

20. Kotz, S., Kozubowski, T., Podgorski, K.: The Laplace Distribution and Generaliza-
tions: A Revisit with Applications to Communications, Economics, Engineering,
and Finance. Springer, Heidelberg (2012)

21. McSherry, F., Talwar, K.: Mechanism design via differential privacy. In: 2007 48th
Annual IEEE Symposium on Foundations of Computer Science. FOCS 2007, pp.
94–103. IEEE (2007)

22. Mironov, I.: On significance of the least significant bits for differential privacy.
In: Proceedings of the 2012 ACM Conference on Computer and Communications
Security. CCS 2012, pp. 650–661. Association for Computing Machinery, New
York (2012)

23. Mironov, I., Pandey, O., Reingold, O., Vadhan, S.: Computational differential pri-
vacy. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 126–142. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-03356-8_8

24. Thomas, D.B., Luk, W., Leong, P.H., Villasenor, J.D.: Gaussian random number
generators. ACM Comput. Surv. 39(4), 11-es (2007)

25. van der Walt, S., Colbert, S.C., Varoquaux, G.: The NumPy array: a structure for
efficient numerical computation. Comput. Sci. Eng. 13(2), 22–30 (2011)

http://arxiv.org/abs/1907.02444
https://doi.org/10.1007/978-3-642-03356-8_8

Training Differentially Private Neural
Networks with Lottery Tickets

Lovedeep Gondara(B), Ricardo Silva Carvalho, and Ke Wang

Department of Computing Science, Simon Fraser University,
British Columbia, Canada

lgondara@sfu.ca

Abstract. We propose the differentially private lottery ticket hypoth-
esis (DPLTH). An end-to-end differentially private training paradigm
based on the lottery ticket hypothesis, designed specifically to improve
the privacy-utility trade-off in differentially private neural networks.
DPLTH, using high-quality winners privately selected via our custom
score function outperforms current methods by a margin greater than
20%. We further show that DPLTH converges faster, allowing for early
stopping with reduced privacy budget consumption and that a single
publicly available dataset for ticket generation is enough for enhancing
the utility on multiple datasets of varying properties and from varying
domains. Our extensive evaluation on six public datasets provides evi-
dence to our claims.

Keywords: Differential privacy · Lottery ticket hypothesis ·
Differential privacy in neural networks

1 Introduction

Learning while preserving the privacy of the contributing users is a priority for
neural networks trained on sensitive data. Especially, when it is known that neu-
ral networks tend to “remember” training data instances [3,9,23,25]. Differen-
tial privacy [6] has become the de facto standard for protecting an individual’s
privacy in machine learning. Differentially private training of neural networks
ensures that the model does not unduly disclose any sensitive information. The
most often used approach to achieve this goal is the method of gradient per-
turbation, where we add controlled noise to the gradients during the training
phase. Differentially Private Stochastic Gradient Descent (DPSGD) [1] is the
current state-of-the-art, used extensively for training privacy-preserving neural
networks. DPSGD, however, falls short on the utility front [10], the main reason
for which we discuss below.

DPSGD, for a given minibatch, first computes the per-observation gradient,
g(xi), and then clips g(xi) in l2 norm, g(xi)/max(1,||g(xi)||2/C) (Line 6 in [1], Algo-
rithm 1). We can see that the norm will be large (proportional to the number
of model parameters), especially for a multi-layer neural network, leading to a
c© Springer Nature Switzerland AG 2021
E. Bertino et al. (Eds.): ESORICS 2021, LNCS 12973, pp. 543–562, 2021.
https://doi.org/10.1007/978-3-030-88428-4_27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-88428-4_27&domain=pdf
https://doi.org/10.1007/978-3-030-88428-4_27

544 L. Gondara et al.

Fig. 1. The differentially private lottery ticket hypothesis (DPLTH). We divide the
mechanism into two distinct blocks, green block is where we generate lottery tickets
([t1, · · · , tT]) using the lottery ticket mechanism with a public dataset P . This block
does not utilize any sensitive information, hence we do not concern ourselves with
privacy in this block. The orange block is where the sensitive dataset X is used. We use
its validation split Xv to measure performance of each lottery ticket ti, [i ∈ 1, · · · , T],
and use our custom score function with Exponential Mechanism (EM) to select a
winning ticket (Tw). The winning ticket is then trained with differential privacy and
released as the final model. (Color figure online)

large clipping impact on the gradient, resulting in smaller clipped-gradient mag-
nitude, easily overwhelmed by noise, which is required for preserving differential
privacy. This leads to diminished utility, especially, for the scenarios where we
require tight privacy [10].

An obvious solution is to minimize the number of model parameters while
maximizing the model’s utility. This, however, is non-trivial for differentially
private neural networks, especially when we need to balance privacy and utility.
Recently, it has been shown that there exist smaller sub-networks within large
neural networks, which when trained in isolation provide similar utility as the
large networks [7,8]. The phenomenon, known as the lottery ticket hypothesis
represents a neural network pruning paradigm, where pruned network architec-
tures via iterative magnitude pruning with their weights set back to their original
values are known as the lottery tickets. This offers an encouraging step towards
finding small, high-utility architectures. But, directly using the lottery ticket
hypothesis with differential privacy is non-trivial as we need to ensure the com-
plete process (from ticket generation, ticket selection, to training the winning
ticket) is end-to-end differentially private.

As a potential solution to improve the privacy-utility bottleneck in differ-
entially private neural networks, we propose the Differentially Private Lottery
Ticket Hypothesis (DPLTH) (Fig. 1). To ensure differential privacy in DPLTH,
we use a three-tiered approach. In phase 1 (green block in Fig. 1), we create
the lottery tickets using a publicly available dataset (P), this ensures that the
tickets (ticket architecture) do not contain any sensitive information. In phase 2
(orange block in Fig. 1), we calculate the performance of each ticket (accuracy)
using the validation partition of the sensitive dataset (Xv). Then we proceed to

Training Differentially Private Neural NetworksWith Lottery Tickets 545

select the winning ticket with differential privacy, defined as a function of the
ticket’s performance and the number of model parameters. This step is care-
fully designed to ensure that we pick the winner with a small number of model
parameters and high utility (via our custom score function, details in Sect. 3.3).
After differentially private selection of the winning ticket, our phase 3 (orange
block in Fig. 1) trains the winning architecture with differential privacy using
the training partition of X. Our main contributions are as follows:

1. We propose DPLTH, the differentially private lottery ticket hypothesis, an
end-to-end differentially private method based on the lottery ticket hypothesis
(Sect. 3).

2. With the aid of the winning ticket, selected via our custom score function
(Sect. 3.3), we show that DPLTH significantly improves the privacy-utility
trade-off over the state-off-the-art.

3. Due to the reduced noise in DPLTH, we show that DPLTH converges at a
significantly faster rate compared to full DPSGD, leading to a smaller privacy
budget consumption and better utility if early stopping is desired (Sect. 4.5).

4. Success of DPLTH hinges on an assumption that a ticket generated using P
will “work” with X. Using six real-life datasets, we show that the constraint of
the public dataset (P) availability for ticket generation is easy to work with.
We show that the ticket generated from a single dataset (P) is enough for sig-
nificantly improved utility for multiple datasets with varying properties (such
as from out of domain/different data type datasets) (Sect. 4.4, Sect. 4.7)1.

2 Preliminaries

We use this section to provide preliminary introduction to differential privacy
and the lottery ticket hypothesis.

2.1 Differential Privacy

Differential privacy [6] provides us with formal and provable privacy guarantees,
with the intuition that a randomized algorithm behaves similarly on “similar”
input datasets, formally

Definition 1 (Differential privacy [6]). A randomized mechanism M : Dn →
R

d preserves (ε, δ)-differentially privacy if for any pair of neighbouring
databases (X,X ′ ∈ Dn) such that d(X,X ′) = 1, and for all sets S of possi-
ble outputs:

Pr[M(X) ∈ S] ≤ eεPr[M(X ′) ∈ S] + δ

1 Code for DPLTH will be made publicly available at https://github.com/lgondara/
DPLTH.

https://github.com/lgondara/DPLTH
https://github.com/lgondara/DPLTH

546 L. Gondara et al.

Intuitively, Definition 1 states that for any pair of two neighboring datasets,
X,X ′, differing on any one row, a randomized mechanism M’s outcome does
not change by more than a multiplicative factor of eε. Moreover, the guarantee
fails with probability no larger than δ. If δ = 0, we have pure-ε differential
privacy.

The Exponential Mechanism (EM) [15] is a well-known tool for providing
differential privacy. Defined by a range R, privacy parameter ε, and a score
function u : X N × R → R that maps a dataset to the utility scores, given a
dataset D ∈ X N , the EM defines a probability distribution over R according to
the utility score. In other words, the EM is more likely to output some r ∈ R
with higher utility scores, formally

Definition 2 (Exponential Mechanism [15]). The exponential mechanism
M(D,u,R) selects and outputs an element r ∈ R with probability proportional
to

exp
(

εu(D, r)
2Δu

)

where ε is the privacy budget and Δu is the sensitivity of the score function.

Δu = max
r∈R

max
X,X′:||X−X′||1≤1

|u(X, r) − u(X ′, r)|

In terms of privacy guarantees, the exponential Mechanism provides pure-ε dif-
ferential privacy [15].

2.2 Lottery Ticket Hypothesis

The Lottery Ticket Hypothesis was proposed by Frankle & Carbin [7], where
interestingly, it was shown that randomly initialized neural networks contain
small subnetworks (models), which when trained in isolation, can provide similar
utility as the full network. Formally,

Definition 3 (The Lottery Ticket Hypothesis [7]). A randomly-initialized,
dense neural network contains a subnetwork that is initialized such that when
trained in isolation it can match the test accuracy of the original network after
training for at most the same number of iterations.

To get the subnetworks, we train a network for I iterations, prune ρ% of its
weights (of smallest magnitude), and reset the weights of the pruned network to
the original initialization, to be trained again. This process ensures that for n
rounds, each round prunes ρ1/n% of the weights. Such pruned, small subnetworks
(denoted by tis), are known as the lottery tickets, and the lottery tickets with
high utility are the winners from the lottery ticket mechanism.

Training Differentially Private Neural NetworksWith Lottery Tickets 547

3 Differentially Private Lottery Ticket Hypothesis

3.1 Overview

We start by providing an overview of DPLTH. Using a publicly available dataset
P and the non-private lottery ticket hypothesis, we generate and store multiple
lottery tickets ([t1, t2, · · · , tT]), each with a varying number of model parameters.
Before we move further, we would like to emphasize the importance of using a
publicly available dataset P . We use P instead of X (the sensitive dataset) for
ticket generation as if we were to use X (as in the general,non-private setting of
lottery ticket mechanism [7,8]), even if the tickets only contain the architecture
(pruning information) with weights reverted to their initial random values [7],
the architecture of the winning ticket can potentially leak sensitive information.
We clarify this point with an example: Suppose that the sensitive dataset X is
such that during the ticket generating phase, all of the first ζ parameters of the
model are zero and hence are pruned under the current setup, but a neighboring
dataset X ′ is such that one of those first ζ parameters isn’t zero so it is not
pruned. Releasing the chosen ticket created using X can thus break our privacy
guarantees.

After ticket generation using P , we use the validation part of X (Xv) to
estimate each ticket’s performance (example: accuracy score). Using the perfor-
mance as one of the parameters, we use our custom score function (details follow)
to privately select a winning ticket (Tw), where our score function ensures the
desired balance between the number of model parameters and the model utility.
After selecting the winner, we train the winning architecture using the training
partition of X with differential privacy. Our total privacy cost, hence, is com-
posed of two separate parts, selecting the winning ticket and training the winning
ticket. We present the complete process succinctly as Algorithm 1 followed by a
walk-through.

3.2 DPLTH Walkthrough

Phase 1 (Generating Lottery Tickets): We start with generating lottery
tickets required for DLPTH using a publicly available dataset P . At this stage,
as we are not yet concerned about privacy, we use the standard, non-private lot-
tery ticket mechanism with P and generate T lottery tickets (ti; i ∈ [1, · · · , T]).
Specifically, we use the iterative pruning version of the lottery ticket mechanism,
where using the pruning parameter, ρ, at each ticket iteration, we remove ρ% of
model parameters with the smallest magnitude. This results in T tickets with a
successively smaller number of model parameters.

Phase 2 (Selecting a Winning Ticket with Differential Privacy): After
ticket generation, we record the performance of each ticket on the validation split
of the sensitive dataset (Xv) and store the resulting accuracy (ai, i ∈ [1, T]) along
with the fraction of model parameters (ci, i ∈ [1, T]) in the ticket. For further

548 L. Gondara et al.

Algorithm 1 Differentially Private Lottery Ticket Hypothesis (DPLTH)
Require: Public dataset: P , Sensitive dataset: X, Total privacy budget: (ε, δ), Pruning

percent: ρ, Number of tickets: T , Ticket training iterations: I, final DP model
training iterations: I, Neural Network: f , Initial model parameters: θ0, Initial mask:
m, Privacy budget for ticket selection: ε1, Privacy budget for ticket training: (ε2, δ),
Constant for score function: ν, Minibatch size: L, Clipping factor: C, Learning rate:
η

Phase 1 – Generating Lottery Tickets

1: procedure LTG(f ,m, θ0)
2: Randomly initialize f(P, m � θ0); m = 1|θ0|

3: for i ∈ T do
4: Train f(P, m � θ0) for I iterations, to get f(P, m � θI)
5: Prune ρ% of parameters from θI , creating a new mask m′

6: Reset the remaining parameters to their values in θ0
7: f(P, m′ � θ0) is the lottery ticket
8: Store the mask m′

i, initial parameters θ0, and proportion of remaining model
parameters ci

9: Let m = m′

10: end for
11: return C, M, θ0 � The collection of parameter proportions, masks, and initial

parameters; ci ∈ C, m′
i ∈ M ; i ∈ [1, T]

12: end procedure

Phase 2 – Selecting a Winning Ticket

13: procedure DPWT(C, ε1)
14: Calculate the performance of lottery tickets on the validation partition of X

(Xv) and store the accuracies [ai ∈ A, i ∈ 1, · · · , T]
15: Calculate score S(C, A) = A(1 − νC)

16: Select a winning ticket, Tw, with probability, P =
exp(ε1S

2Δ
)

∑
T exp(ε1S

2Δ
)

17: return Tw

18: end procedure

Phase 3 – Training the Winning Ticket

19: procedure DPTWT(Tw)
20: Initialize the network,f , with mask and initial values from the winning ticket

Tw

21: for k ∈ I do
22: Take a minibatch with sampling probability L/N

23: For each xi ∈ L, compute gradient gk(xi) = ∇θkL(θk, xi)
24: ĝk = 1

L
(
∑

i
gk(xi)/max(1,

||gk(xi)||2
C

) + N (0, σ2C2I))

25: θk+1 → θk − ηkĝk

26: end for
27: end procedure

Training Differentially Private Neural NetworksWith Lottery Tickets 549

use, we also store the mask m′
i from each ticket and the randomly initialized

model parameters θ0.
Now we need to select the winning ticket, which we will train from scratch

with differential privacy on the training partition of X. However, picking a win-
ner is non-trivial for two reasons, first as the tickets are evaluated using sensitive
data, we cannot directly pick a winner, that is, we need differential privacy for
selecting the winning ticket, and second, we need to pick a winner such that
the winner has an adequate balance between the number of model parameters
(smaller the better) and the model performance (higher the better). As a solu-
tion, we use the Exponential Mechanism (EM) [15] to pick our winner with
differential privacy. And to balance the number of model parameters and the
utility, we define our custom score function using the combination of the accu-
racy achieved by the ticket on Xv and the proportion of parameters left in the
network.

S(C,A) = A × (1 − (νC)) (1)

Where A is the classification accuracy on Xv for the given network configuration
(ticket), C is the proportion of remaining weights in the network, and ν is a
constant (further details in Sects. 3.3 and 3.4).

Phase 3 (Training the Winning Ticket with Differential Privacy): After
we select our winning ticket with differential privacy in phase 2, now we need to
train our winner architecture so the final model is differentially private. We do
so by using the differentially private stochastic gradient descent (DPSGD) [1] for
the training of our winning ticket. This, in contrast to the full DPSGD (with the
full network), now only trains a sub-network with a significantly small number
of model parameters. And hence provides significantly better utility, reasons
for which we discussed at length in the Introduction. Our extensive empirical
evaluation in Sect. 4 provides evidence for this claim.

Next, we provide formal privacy guarantees for DPLTH. We start with intro-
ducing the EM for DPLTH with our custom score function.

3.3 Differential Privacy Guarantees of DPLTH

As seen in Algorithm 1, our first phase of generating candidate tickets is non-
private. Differential privacy comes into play in phase 2, where we evaluate the
tickets on Xv and pick a winning ticket. Hence, we start with privacy guarantees
of phase 2.

Selecting a Winning Ticket: For the Exponential Mechanism (EM), as dis-
cussed in preliminaries, we need to define a score/utility function that assigns a
higher score to good outputs. For DPLTM, using the score function as described
in Sect. 3.2, we sample our winning ticket with probability

P =
exp(ε1S

2Δ)∑
T exp(ε1S

2Δ)
(2)

550 L. Gondara et al.

where P is the probability of picking a ticket, ε1 is the privacy budget for EM,
and Δ is the sensitivity of the score/utility function. Tickets with higher score
function have a higher probability of getting selected compared to the tickets
with a lower score.

Lemma 1. Sensitivity (Δ) of the score function, S, is |1 − ν|, for ν �= 1.

Proof. We can write the score function as

S(C,A) = A × (1 − (νC))
= A − AνC (3)

Using the definition of neighbouring datasets, we have the sensitivity as

|max((A − AνC)) − (A′ − A′νC′))| (4)

where A′, C′ are “neighbouring” to A, C.

≤ |max(A − AνC − A′ + A′νC′)|
≤ |max(A − A′ − ν(AC − A′C′))| (5)

using ν �= 1, for the worse case scenarios (A, C = 1,A′, C′ = 0, and A, C =
0,A′, C′ = 1), we get S(C,A) = |1 − ν| ��
Theorem 1. Phase 2 (Selecting a winning ticket) is (ε1) - differentially private.

Proof. Proof is an instantiation of EM with our custom score function and is
provided in the Appendix for completeness. ��

Training the Winning Ticket. After we select our winning ticket with differ-
ential privacy in phase 2. Our next step is to train the winning architecture in
a differentially private fashion. For this step, we use the training process same
as DPSGD [1]. Specifically, after calculating the per-observation gradients for a
minibatch, we clip the gradients (line 25 in Algorithm1) by their l2 norm, scaled
by a constant C to enforce sensitivity, and then add appropriate Gaussian noise
to ensure differential privacy, formally

Theorem 2. Phase 3 (Training the winning ticket) is (ε2, δ) - differentially

private, if we chose σ ≥ C
L/N

√
I log(1/δ)

ε2

Proof. Proof is an instatiation of Theorem 1 from Abadi et al. [1] using ε2 and
I and is omitted here for space constraints. ��

Putting It All Together. After generating the lottery tickets, selecting the
winner with differential privacy, and the differentially private training of the
winning ticket, we are now ready to put it all together and state the overall
privacy guarantees of our proposed DPLTH.

Training Differentially Private Neural NetworksWith Lottery Tickets 551

Theorem 3. Algorithm1 is (ε, δ) - differentially private, with ε > 0, δ > 0 where
ε = (ε1 + ε2)

Proof. We have already shown that phase 2 is (ε1)-differentially private and
phase 3 is (ε2, δ)-differentially private. Using the naive composition [6]2, it is
easy to see that the Algorithm 1 is (ε, δ)-differentially private, with ε = ε1 + ε2
and δ = δ. ��

3.4 Discussion

We use this section to discuss some interesting properties of DPLTH. The first
observation is the seamless integration of differential privacy with the lottery
ticket hypothesis, making it accessible for implementation. In the non-private set-
ting, we know that the lottery tickets either perform at-par or slightly worse than
the full model [7,8], however, in the differentially private regime, DPLTH pro-
vides significantly better utility compared to DPSGD on the full model (Exper-
iments in Sect. 4 support this claim).

The success of our method hinges on the two crucial aspects. First, that the
lottery tickets generated using a public dataset P will work with the sensitive
dataset X, and more so that the lottery tickets with a significantly small number
of model parameters will have high utility on X. [16] has shown that in the
non-private setting, tickets often generalize across similar datasets. However, no
such result is known in the differential privacy setting. In addition to providing
similar empirical evidence in the case of differential privacy, we further show
that we can extend this property of lottery tickets to out of domain and to
completely different dataset types (such as from image to tabular data) via the
use of carefully designed initial lottery ticket setup (details in Sect. 4.3).

Second, it is vital for our method that out of all available tickets, the proba-
bility of selecting the winner with a small number of model parameters and high
accuracy is high. Our custom utility function (S) strives to achieve this goal
by ensuring that the selection process does not degenerate to uniform random
sampling. In particular, the utility function assigns more weight to the models
with high accuracy and a small number of model parameters, where the impor-
tance of either is modulated using the constant ν, large ν assigns more weight
to C (proportion of model parameters in the ticket). For good utility with tight
privacy, we advocate using large values for ν as most tickets have comparative
performance, hence it is in our best interest to select the ticket with a small
number of model parameters. We further show in Sect. 4.6 that our score func-
tion works as intended and the sampled tickets using the score function have
better performance than random sampling from the available tickets.

Also, as we observe from Theorem 3, the total privacy budget for our method
is composed of two parts. The privacy budget from the EM phase used to select
the winning ticket and the privacy budget to train the winning ticket. Hence,
we need to decide on the overall privacy budget split. That is, the portion of the

2 As we are only composing two mechanisms, advanced composition is not necessary.

552 L. Gondara et al.

budget to allocate to the drawing of the winning ticket and the portion of the
privacy budget for the training of the winning ticket. We advocate dedicating
a large proportion of the privacy budget to the training of the winning ticket
and a small portion for selecting the winning ticket. With our custom utility
function, a small privacy budget suffices for selecting a good ticket (empirical
evidence provided in Sect. 4). A question the readers might ask: Why can’t we
train the full network with differential privacy when generating lottery tickets
using dataset X? That is, why do we need non-private tickets using P? The
answer is simple, as differential privacy composes by iteration for minibatch
stochastic gradient descent, training multiple networks using the methodology
described in Algorithm 1 would result in a large privacy budget leading to noisier
models, providing worse utility compared to our proposed method.

4 Experiments

Now we provide empirical evidence on five real-world datasets that are in
domain, out of domain, and out of type compared to the public dataset P to
support our claim that our proposed method (DPLTH) significantly outperforms
full DPSGD. We begin by describing the datasets.

4.1 Datasets

For our empirical evaluation, we use six real-world datasets (one as a publicly
available dataset P and five as the sensitive datasets X).

Public Dataset (P). We use MNIST [11] as our initial publicly available
dataset P , used to generate the lottery tickets. For ticket generation, we use the
training partition of MNIST. We further show in Sect. 4.7 that other datasets
work just as well when used as P .

Sensitive Datasets (X). We use five datasets as our sensitive datasets (X),
for which we are concerned about privacy preservation. Datasets are carefully
chosen to evaluate our proposed method with varying relations between P and
X. Dataset Kannada-MNIST [20] contains data on handwritten digit recog-
nition, where digits are written in Kannada (an Indian language). The digits
have a varying degree of similarity and overlap with MNIST, hence this dataset
is classified as in domain. We use three out of domain datasets compared to P
(MNIST) where dataset Fashion-MNIST [26] is a dataset of Zalando’s article
images, associated with a label from ten classes (clothing items, fashion acces-
sories, etc.); dataset Kuzushiji-MNIST [5] has images spanning ten classes
with one from each column of hiragana characters; dataset COOS [12] consists
of the 64 × 64 microscopic images of mouse cells, with the target being to clas-
sify between two biological entities (Endoplasmic Reticulum, Golgi, Peroxisomes,
Early Endosome vs Inner Mitochondrial Membrane, Cytosol, Nuclear Envelope).

Training Differentially Private Neural NetworksWith Lottery Tickets 553

Dataset ISOLET has data on spoken letters with the outcome being correctly
classifying each observation into one of twenty-six letters. This dataset contains
spectral coefficients, contour features, sonorant features, pre-sonorant features,
and post-sonorant features related to audio, hence is completely different from
previous datasets (all were image) and P (MNIST), we call this dataset out of
domain/out of type. Further dataset details are provided in Table 1.

Table 1. Dataset details, Attributes is the dataset dimensionality, Observations are
the number of rows, Class is the number of classes in the classification target, and the
Property is the relation of the dataset with P .

Dataset Attributes Observations Class Property

Fashion-MNIST 784 60000 10 Out of domain

Kuzushiji-MNIST 784 60000 10 Out of domain

ISOLET 617 7797 26 Out of domain/type

Kannada-MNIST 784 60000 10 In domain

COOS 4096 50000 2 Out of domain

4.2 Competitor

Our competitor is the full DPSGD, that is the implementation of DPSGD on
the complete, unpruned network. This also represents the current best practice
and state-of-the-art in differentially private neural networks. We use the terms
DPSGD and full DPSGD interchangeably in the following sections to refer to
our competitor. We also use a non-private baseline with the same architecture
to provide us with an upper bound on the best achievable performance with the
architecture used.

4.3 Setup

For generating lottery tickets (phase 1) using MNIST (our P), our implementa-
tion is based on the publicly available source code3. Our underlying base model
is a fully connected neural network with three layers with the same architecture
as in the publicly available code from [7]. Hidden layers use ReLU [17] as the
activation function. The learning rate is kept fixed at 0.1 and the minibatch size
is kept fixed at 400. We set the pruning percent, ρ, at 30% for the first two
layers and 20% for the last layer. This means that for each subsequent ticket,
the model will prune 30% of the weights compared to the previous ticket for the
first two layers and 20% of the weights for the final layer. To generate lottery
tickets, the mechanism is run for 5000 iterations (I) for each ticket.

3 https://github.com/google-research/lottery-ticket-hypothesis.

https://github.com/google-research/lottery-ticket-hypothesis

554 L. Gondara et al.

For datasets COOS and ISOLET, as they both have different input dimen-
sionality and the number of output classes, we add two additional layers (one
after the input and one before the output) when generating lottery tickets using
P , these layers act as projection layers for our desired dimensionality. This allows
us to generalize the lottery ticket generation for any given dataset with arbitrary
input/output dimensionality using a fixed public dataset P .

If the input dataset does not have a predefined train/test/validation parti-
tion, we use a 70/10/20 split, with 10% of the dataset used as the validation
split, 20% of the dataset used as the test split, and 70% of the dataset used
as the training set. For robust comparison, all models are run for 10 iterations
and we report the average results on the test partition along with their standard
errors.

For differentially private training of the lottery tickets and to train our com-
petitor, the DPSGD’s implementation is based on the publicly available source
code4. The clipping norm for DPSGD and DPLTH is set at a constant value of
1 for all experiments. Minibatch size for DP training is kept fixed at 100. All the
rest of the hyperparameters, including the underlying model architecture are the
same for DPSGD and DPLTH to ensure a fair comparison. Differentially private
training is run for 50 epochs. For privacy, δ is kept fixed at 10−5 with ε varied
as required and reported. For our proposed method, the privacy budget split
is set at 90/10. That is, we reserve 90% of the privacy budget for the differen-
tially private training of the winning ticket and 10% for the differentially private
selection of the winning ticket. ν is kept fixed at 50 for all experiments.

4.4 Main Comparison

Figure 2 shows the results of our main comparison with DPSGD. First and the
obvious observation is that our proposed model (DPLTH, blue line) significantly
outperforms our competitor (DPSGD, red line) with an average 23% margin of
improvement over all settings and datasets, and performs close to the non-private
version (horizontal dashed line). The improvement over DPSGD is noteworthy as
DPSGD has a 10% extra privacy budget compared to DPLTH as DPSGD does
not involve DP ticket selection. This provides evidence for our earlier claim that
our proposed method provides significantly better utility compared to DPSGD.
The second observation is as the privacy budget gets tighter (ε decreases), our
proposed method (DPLTH) retains good utility, with the performance of DPLTH
still significantly higher than DPSGD, even when comparing DPLTH at ε = 0.4
while keeping DPSGD fixed at ε = 1. The performance gap is specifically larger
for ISOLET, as full DPSGD suffers from worse utility degradation when dataset
size is small, due to the interplay between the clipping and sampling probability
(See Algorithm 1 and Theorem 1 of [1]).

The utility boost with DPLTH is observed due to the reasons discussed in
the introduction. That is, in DPLTH, we consistently select the winning archi-
tecture with a small number of model parameters and high performance on Xv

4 https://github.com/tensorflow/privacy.

https://github.com/tensorflow/privacy

Training Differentially Private Neural NetworksWith Lottery Tickets 555

Fig. 2. Comparing our proposed method (DPLTH, blue line) with DPSGD (red line).
Horizontal dashed line is the performance of the non-private model. We observe that
our proposed model significantly outperforms DPSGD by a wide margin for all privacy
budgets. Y-axis limits are adjusted per-figure to aid visualization. (Color figure online)

compared to the full model used in DPSGD5. Hence the norm clipping has a
relatively diminished impact on DPLTH’s performance compared to DPSGD,
leading to overall better utility and robust models. This also aids in faster con-
vergence for our method, which has its own added advantages. We study the
convergence/privacy trade-off in detail in the next section.

5 DPLTH consistently selects winning tickets with total parameters ≤10% of the full
model.

556 L. Gondara et al.

Fig. 3. Comparing convergence of our proposed DPLTH and DPSGD. We observe
that our proposed method converges significantly faster compared to DPSGD. Vertical
dashed line signifies the point where half of the privacy budget is spent. We observe
that our proposed method can be used with early stopping while providing good utility
with reduced privacy consumption.

4.5 Convergence and Early Stopping

As we briefly mentioned above, DPLTH provides faster convergence compared
to full DPSGD, and hence allows for early stopping with reduced consump-
tion of the total privacy budget. This is a very desirable property for practical
applications, where one might want to begin with an estimate of the number of
iterations required for convergence/utility from a non-private analysis, but if the

Training Differentially Private Neural NetworksWith Lottery Tickets 557

desired utility is reached early on during training, one can stop the training and
output the resulting model which now has stronger privacy guarantees compared
to the model that is allowed to run for full training duration. Early stopping with
reduced privacy budget consumption is made possible by keeping track of the
privacy loss at each iteration and stopping when the desired accuracy/privacy
budget is reached. Here we investigate our claim of faster convergence in DPLTH
in detail. We keep the experimental setup the same as in the previous section,
with the privacy budget to start training being fixed at ε = 1, δ = 10−5. This
provides us with the maximum number of iterations for the training process.

Figure 3 shows the results. The plots show the accuracy as the function of
the number of epochs. We observe that irrespective of the dataset, DPLTH
(blue line) converges significantly faster than DPSGD (red line). The vertical
dashed line in the figures shows the scenario if we were to use early stopping
when the total privacy consumption for DPLTH is half of the total privacy
budget. For such a scenario where early stopping is desired, it is noteworthy that
DPLTH provides a performance improvement of >30% compared to DPSGD
with the utility loss less than 7% compared to running the training for the
full privacy budget. A brief insight into this performance gain is as follows: As
the updates in DPLTH are inherently less noisy due to the reduced number of
model parameters, DPLTH converges much faster using less number of iterations
compared to the full DPSGD, which utilizes noisier updates.

4.6 Investigating the Score Function

We have discussed at length the properties of our proposed score function and
have argued that it selects good tickets. We use this section to provide empirical
evidence for the claim, to answer the question, “What is the impact of using
our score function for selecting a winning ticket?”. That is, is our score function
performing better than a randomly selected ticket? If not, then we do not need to
waste privacy budget on the ticket selection. For evaluation, we use the tightest
privacy budget with ε = 0.4 as we would expect our score function to perform
worse at this setting compared to a larger privacy budget, and we compare the
average accuracy achieved by our proposed method using the “winning tickets”
compared to a randomly selected ticket.

Table 2 shows the results. We observe that the winning ticket selected via our
custom score function has a significant advantage over the use of a randomly sam-
pled ticket, with our winning ticket significantly and consistently outperforming
the randomly selected ticket on all datasets. Our selection method outperforms
random sampling even though with a randomly sampled ticket, we save 10% of
the privacy budget, meaning the differentially private training of the ticket in
case of a randomly sampled ticket has 10% extra privacy budget compared to
the winning ticket selected by our method. This finding enforces our claim that
using a “winning” ticket with fewer model parameters and high performance,
we can achieve a good privacy-utility trade-off for differentially private neural
networks, and that our custom score function does a good job in selecting such
a ticket.

558 L. Gondara et al.

Table 2. Comparing accuracy of our winning ticket and a randomly sampled ticket.
We observe that using the winning ticket selected via our custom score function has
significant advantage over the use of a randomly sampled ticket.

Dataset Winning Random

Fashion-MNIST 0.76 0.70

Kuzushiji-MNIST 0.58 0.51

COOS 0.86 0.81

Kannada-MNIST 0.79 0.73

ISOLET 0.43 0.32

4.7 Robustness to P

So far, we have seen that our proposed method significantly outperforms DPSGD
on all datasets and for all privacy budgets while providing faster convergence.
However, all of the evidence we have presented so far has relied on MNIST for
being the publicly available dataset P , used to generate the lottery tickets. A
natural question arises around the robustness of our proposed method when the
underlying P changes.

We use this section to explore this phenomenon in detail, where we change
P from MNIST to Fashion-MNIST, a significantly harder dataset [26] that has
image samples for clothing and fashion accessories. We keep all other settings
the same as our main comparison and we move MNIST to be one of our sensitive
datasets. Hence, similar to our other comparisons, we have five sensitive datasets
and one publicly available dataset.

Figure 4 shows the results. We observe that by changing P from MNIST to
fashion-MNIST, the overall results look similar to Sect. 4.4, further providing
evidence to our earlier claim that our proposed method is robust with respect
to the P used, that is, the requirement of having a publicly available dataset P
for our method is easily met.

5 Related Work

Our related work mainly falls into two categories. First is the prior work related
to the lottery ticket mechanism, and the second is related to the differential
privacy in neural networks.

The lottery ticket hypothesis as introduced in [7] provides evidence that there
exist subnetworks within a large network, which when trained in isolation, can
perform at-par with the large network. The hypothesis has been formally proven
in [13] and has been further extended in [8], where the initial idea is improved
to work on larger, deeper networks. Lottery ticket mechanism since has been
further explored, it has been shown that the winning tickets can be used across
datasets [16], and that the tickets occur in other domains as well, such as in NLP
[4,29].

Training Differentially Private Neural NetworksWith Lottery Tickets 559

Fig. 4. Impact of changing P from MNIST to fashion-MNIST. We observe similar
performance as shown in our main comparison providing evidence to our claim that
the requirement of P in our proposed method can be easily met.

Perturbing the learning process to provide differential privacy has been
studied in various contexts [1,21,22,24], where gradients are perturbed dur-
ing the gradient descent, so the resulting weight updates, and hence the model
itself is differentially private. Differentially private stochastic gradient descent
(DPSGD), proposed by Abadi et al. [1], is the most popular and most often
used method for differentially private training for a wide variety of neural net-
works [2,14,27]. DPSGD, however, falls short on the utility front, as the noise
required for preserving privacy in DPSGD scales up proportional to the model

560 L. Gondara et al.

size, discussed at length in the Introduction. There have been various improve-
ments proposed to enhance the utility of DPSGD [18,19], we would like to note
that these are tangential to our proposed method and our method can be built
on the top of such enhancements, further boosting model utility.

6 Conclusion

We have proposed DPLTH, an end-to-end differentially private version of the
lottery ticket hypothesis. Using our custom score function to select differentially
private winning tickets, we have shown that DPLTH significantly outperforms
DPSGD on a variety of datasets, tasks, and privacy budgets. We have shown
that DPLTH converges faster compared to DPSGD, leading to reduced privacy
budget consumption with improved utility if early stopping is desired. We have
further shown that DPLTH is robust to the choice of P . For our future work,
we would like to incorporate recent advances in lottery ticket literature, such
as using early bird tickets [28] to reduce computation time, using the tickets
reverted to trained weights after k iterations instead of reverting to the original,
random values, to generalize to larger networks and datasets [8], etc. We would
further like to focus on the detailed study of the mechanism when used for
differentially private transfer and generative learning and to further improve the
utility guarantees.

Acknowledgements. This research is in part supported by a CGS-D award and a
discovery grant from Natural Sciences and Engineering Research Council of Canada.

Appendix

Theorem 1. Phase 2 (Selecting a winning ticket) is (ε1) - differentially private.

Proof. We consider the scenario where the EM outputs some element r ∈ R on
two neighbouring datasets, X,X ′.

Pr[M(X,u, R) = r]
Pr[M(X ′, u,R) = r]

=

(exp(
ε1u(X, r)

2Δu
)

∑
r′∈R exp(

ε1u(X, r′)
2Δu

)

)

(exp(
ε1u(X ′, r)

2Δu
)

∑
r′∈R exp(

ε1u(X ′, r′)
2Δu

)

) (6)

=
(exp(

ε1u(X, r)
2Δu

)

exp(
ε1u(X ′, r)

2Δu
)

)
.

(∑
r′∈R exp(

ε1u(X, r′)
2Δu

)

∑
r′∈R exp(

ε1u(X ′, r′)
2Δu

)

)
(7)

Training Differentially Private Neural NetworksWith Lottery Tickets 561

= exp
(

ε1(u(X, r′) − u(X ′, r′))
2Δu

)
.

(∑
r′∈R exp(

ε1u(X, r′)
2Δu

)

∑
r′∈R exp(

ε1u(X ′, r′)
2Δu

)

)
(8)

≤ exp(
ε1
2

). exp(
ε1
2

).
(∑

r′∈R exp(
ε1u(X, r′)

2Δu
)

∑
r′∈R exp(

ε1u(X ′, r′)
2Δu

)

)
(9)

≤ exp(ε1) (10)

��

References

1. Abadi, M., et al.: Deep learning with differential privacy. In: Proceedings of the
2016 ACM SIGSAC Conference on Computer and Communications Security, pp.
308–318. ACM (2016)

2. Beaulieu-Jones, B.K., Wu, Z.S., Williams, C., Greene, C.S.: Privacy-preserving
generative deep neural networks support clinical data sharing. BioRxiv, p. 159756
(2017)

3. Carlini, N., Liu, C., Kos, J., Erlingsson, Ú., Song, D.: The secret sharer: measur-
ing unintended neural network memorization & extracting secrets. arXiv preprint
arXiv:1802.08232 (2018)

4. Chen, T., et al.: The lottery ticket hypothesis for pre-trained BERT networks.
arXiv preprint arXiv:2007.12223 (2020)

5. Clanuwat, T., Bober-Irizar, M., Kitamoto, A., Lamb, A., Yamamoto, K., Ha, D.:
Deep learning for classical Japanese literature (2018)

6. Dwork, C., McSherry, F., Nissim, K., Smith, A.: Calibrating noise to sensitivity in
private data analysis. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876,
pp. 265–284. Springer, Heidelberg (2006). https://doi.org/10.1007/11681878 14

7. Frankle, J., Carbin, M.: The lottery ticket hypothesis: finding sparse, trainable
neural networks. arXiv preprint arXiv:1803.03635 (2018)

8. Frankle, J., Dziugaite, G.K., Roy, D.M., Carbin, M.: The lottery ticket hypothesis
at scale. arXiv preprint arXiv:1903.01611 (2019)

9. Fredrikson, M., Jha, S., Ristenpart, T.: Model inversion attacks that exploit con-
fidence information and basic countermeasures. In: Proceedings of the 22nd ACM
SIGSAC Conference on Computer and Communications Security, pp. 1322–1333.
ACM (2015)

10. Jayaraman, B., Evans, D.: Evaluating differentially private machine learning in
practice. In: 28th USENIX Security Symposium (USENIX Security 2019), pp.
1895–1912 (2019)

11. LeCun, Y., Cortes, C.: MNIST handwritten digit database (2010). http://yann.
lecun.com/exdb/mnist/

12. Lu, A.X., Lu, A.X., Schormann, W., Ghassemi, M., Andrews, D.W., Moses, A.M.:
The cells out of sample (COOS) dataset and benchmarks for measuring out-of-
sample generalization of image classifiers. arXiv preprint arXiv:1906.07282 (2019)

13. Malach, E., Yehudai, G., Shalev-Schwartz, S., Shamir, O.: Proving the lottery
ticket hypothesis: pruning is all you need. In: International Conference on Machine
Learning, pp. 6682–6691. PMLR (2020)

http://arxiv.org/abs/1802.08232
http://arxiv.org/abs/2007.12223
https://doi.org/10.1007/11681878_14
http://arxiv.org/abs/1803.03635
http://arxiv.org/abs/1903.01611
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
http://arxiv.org/abs/1906.07282

562 L. Gondara et al.

14. McMahan, H.B., Ramage, D., Talwar, K., Zhang, L.: Learning differentially private
recurrent language models. arXiv preprint arXiv:1710.06963 (2017)

15. McSherry, F., Talwar, K.: Mechanism design via differential privacy. In: 48th
Annual IEEE Symposium on Foundations of Computer Science (FOCS 2007), pp.
94–103. IEEE (2007)

16. Morcos, A.S., Yu, H., Paganini, M., Tian, Y.: One ticket to win them all: gener-
alizing lottery ticket initializations across datasets and optimizers. arXiv preprint
arXiv:1906.02773 (2019)

17. Nair, V., Hinton, G.E.: Rectified linear units improve restricted Boltzmann
machines. In: Proceedings of the 27th International Conference on Machine Learn-
ing (ICML 2010), pp. 807–814 (2010)

18. Nasr, M., Shokri, R., et al.: Improving deep learning with differential privacy using
gradient encoding and denoising. arXiv preprint arXiv:2007.11524 (2020)

19. Papernot, N., Thakurta, A., Song, S., Chien, S., Erlingsson, Ú.: Tempered
sigmoid activations for deep learning with differential privacy. arXiv preprint
arXiv:2007.14191 (2020)

20. Prabhu, V.U.: Kannada-MNIST: a new handwritten digits dataset for the Kannada
language. arXiv preprint arXiv:1908.01242 (2019)

21. Rajkumar, A., Agarwal, S.: A differentially private stochastic gradient descent
algorithm for multiparty classification. In: Artificial Intelligence and Statistics, pp.
933–941 (2012)

22. Shokri, R., Shmatikov, V.: Privacy-preserving deep learning. In: Proceedings of the
22nd ACM SIGSAC Conference on Computer and Communications Security, pp.
1310–1321. ACM (2015)

23. Song, C., Ristenpart, T., Shmatikov, V.: Machine learning models that remember
too much. In: Proceedings of the 2017 ACM SIGSAC Conference on Computer
and Communications Security, pp. 587–601. ACM (2017)

24. Song, S., Chaudhuri, K., Sarwate, A.D.: Stochastic gradient descent with differen-
tially private updates. In: 2013 IEEE Global Conference on Signal and Information
Processing, pp. 245–248. IEEE (2013)

25. Wu, X., Fredrikson, M., Jha, S., Naughton, J.F.: A methodology for formalizing
model-inversion attacks. In: 2016 IEEE 29th Computer Security Foundations Sym-
posium (CSF), pp. 355–370. IEEE (2016)

26. Xiao, H., Rasul, K., Vollgraf, R.: Fashion-MNIST: a novel image dataset for bench-
marking machine learning algorithms (2017)

27. Xie, L., Lin, K., Wang, S., Wang, F., Zhou, J.: Differentially private generative
adversarial network. arXiv preprint arXiv:1802.06739 (2018)

28. You, H., et al.: Drawing early-bird tickets: towards more efficient training of deep
networks. arXiv preprint arXiv:1909.11957 (2019)

29. Yu, H., Edunov, S., Tian, Y., Morcos, A.S.: Playing the lottery with rewards and
multiple languages: lottery tickets in RL and NLP. arXiv preprint arXiv:1906.02768
(2019)

http://arxiv.org/abs/1710.06963
http://arxiv.org/abs/1906.02773
http://arxiv.org/abs/2007.11524
http://arxiv.org/abs/2007.14191
http://arxiv.org/abs/1908.01242
http://arxiv.org/abs/1802.06739
http://arxiv.org/abs/1909.11957
http://arxiv.org/abs/1906.02768

Locality Sensitive Hashing with Extended
Differential Privacy

Natasha Fernandes1,2 , Yusuke Kawamoto3(B) , and Takao Murakami3

1 Macquarie University, Sydney, Australia
2 Inria, École Polytechnique, IPP, Palaiseau, France

3 National Institute of Advanced Industrial Science and Technology (AIST),
Tokyo, Japan

Abstract. Extended differential privacy, a generalization of standard
differential privacy (DP) using a general metric, has been widely studied
to provide rigorous privacy guarantees while keeping high utility. How-
ever, existing works on extended DP are limited to few metrics, such as
the Euclidean metric. Consequently, they have only a small number of
applications, such as location-based services and document processing.

In this paper, we propose a couple of mechanisms providing extended
DP with a different metric: angular distance (or cosine distance). Our
mechanisms are based on locality sensitive hashing (LSH), which can
be applied to the angular distance and work well for personal data in a
high-dimensional space. We theoretically analyze the privacy properties
of our mechanisms, and prove extended DP for input data by taking
into account that LSH preserves the original metric only approximately.
We apply our mechanisms to friend matching based on high-dimensional
personal data with angular distance in the local model, and evaluate our
mechanisms using two real datasets. We show that LDP requires a very
large privacy budget and that RAPPOR does not work in this applica-
tion. Then we show that our mechanisms enable friend matching with
high utility and rigorous privacy guarantees based on extended DP.

Keywords: Local differential privacy · Locality sensitive hashing ·
Angular distance · Extended differential privacy

1 Introduction

Extended differential privacy (extended DP), a.k.a. dX -privacy [13], is a privacy
notion that provides rigorous privacy guarantees while enabling high utility.
Extended DP is a generalization of standard DP [20,21] in that the adjacency

The authors are ordered alphabetically. This work was supported by the French-
Japanese project LOGIS within the Inria Equipes Associées program, by an Australian
Government RTP Scholarship (2017278), by ERATO HASUO Metamathematics for
Systems Design Project (No. JPMJER1603), JST, and by JSPS KAKENHI Grant
Number JP19H04113.

c© Springer Nature Switzerland AG 2021
E. Bertino et al. (Eds.): ESORICS 2021, LNCS 12973, pp. 563–583, 2021.
https://doi.org/10.1007/978-3-030-88428-4_28

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-88428-4_28&domain=pdf
http://orcid.org/0000-0002-9212-7839
http://orcid.org/0000-0002-2151-9560
http://orcid.org/0000-0002-5110-1261
https://doi.org/10.1007/978-3-030-88428-4_28

564 N. Fernandes et al.

relation (regarded as the Hamming distance) is generalized to a metric. A well-
known application is geo-indistinguishability [4,7,9], an instance of extended DP
for two-dimensional Euclidean space. Geo-indistinguishability guarantees that a
user’s location is indistinguishable from any location within a certain radius (e.g.,
within 5km) in the local model, in which each user obfuscates her own data and
sends it to a data collector. It can also be regarded as a relaxation of DP in
the local model (local DP or LDP [19]) to make two locations within a certain
radius indistinguishable (whereas LDP makes arbitrary locations indistinguish-
able). Consequently, extended DP results in much higher utility than LDP, e.g.,
for a task of estimating geographic population distributions [4].

Since extended DP is defined using a general metric, it can potentially have
a wide range of applications. However, the range of actual applications is lim-
ited by the particular metrics for which extended DP mechanisms have been
designed. For example, the existing works on locations [4,7,9], documents [25],
range queries [53], and linear queries [32] are designed for the Euclidean metric,
the Earth Mover’s metric, the l1 metric, and the summation of privacy budgets
for attributes, respectively. However, there have been no known extended DP
mechanisms designed for the angular distance (or cosine distance).

For example, consider friend matching (or friend recommendation) based on
personal data (e.g., locations, rating history) [10,14,16,35,36,38,44,47]. In the
case of locations, we can create a vector of visit-counts where each value is
the visit-count on the corresponding Point of Interest (POI). Users with similar
vectors have a high probability of establishing new friendships [54]. Therefore, we
can use the POI vector to recommend a new friend. Similarly, we can recommend
a new friend based on the similarity of their item rating vectors, since this
identifies users with similar interests [2]. Because the distance between vectors
in such applications is usually given by the angular distance (or equivalently,
the cosine distance) [2], the angular distance is a natural choice for the utility
measure and the metric for extended DP.

In this paper, we focus on friend matching in the local model, and propose two
mechanisms providing extended DP with the angular distance. Our mechanisms
are based on locality sensitive hashing (LSH) [28,49], which can be applied to
a wide range of metrics including the angular distance. Our first mechanism,
LapLSH, uses the multivariate Laplace mechanism [25] to generate noisy vectors,
and then hashes them into buckets using LSH as post-processing. Our second
mechanism, LSHRR, embeds personal data into a binary vector using LSH, and
then applies Warner’s randomized response [52] for each bit of the binary vector.

The privacy analysis of extended DP is challenging especially for LSHRR.
This is because LSH does not precisely preserve the original metric; it approx-
imates the original metric via hashing. We theoretically analyze the privacy
properties of our mechanisms, showing that they provide extended DP for the
input. We also note that much existing work on privacy-preserving LSH [3,15,46]
fails to provide rigorous guarantees about user privacy. We point out, using a
toy example, how the lack of rigorous guarantees can lead to privacy breaches.

LSH with Extended Differential Privacy 565

We evaluate our mechanisms using two real datasets. We show that LDP
requires a very large privacy budget ε. This comes from the fact that LDP
expresses an upper bound on the privacy guarantee for all inputs. In contrast,
extended DP is a finer-grained notion than LDP in that it describes the privacy
guarantee for inputs at various distances. In fact, we show that extended DP
enables friend matching with a much smaller privacy budget than LDP for close
inputs.

We also explain why RAPPOR [23] and the generalized RAPPOR [51], which
are state-of-the-art LDP mechanisms, cannot be applied (either completely lose
utility or are computationally infeasible) to friend matching. In short, the Bloom
filter used in RAPPOR is not a metric-preserving hashing, and therefore cannot
guarantee utility w.r.t. the metric distance between user vectors. This is further
elaborated in Sect. 7.4.

Contributions. Our main contributions are as follows:

– We propose two mechanisms providing extended DP with the angular dis-
tance: LapLSH and LSHRR. We show that LSH itself does not provide privacy
guarantees and could result in complete privacy collapse in some situations.
We then prove that our mechanisms provide rigorous guarantees of extended
DP. In particular, we show that the distribution of the LSHRR’s privacy loss
can be characterized as extended notions of concentrated DP [22] and prob-
abilistic DP [39] with input distance. To our knowledge, this work is the first
to provide extended DP with the angular distance.

– We apply our mechanisms to friend matching based on rating history and
locations. Then we compare LSHRR with LapLSH using two real datasets.
We show that LSHRR provides higher (resp. lower) utility than LapLSH for
a high-dimensional (resp. low-dimensional) vector. We also show that LDP
requires a very large privacy budget ε, and RAPPOR does not work for
friend matching. Finally, we show that LSHRR provides high utility for a
high-dimensional vector (e.g., 1000-dimensional rating/location vector) in the
medium privacy regime [1,55] of extended DP, and therefore enables friend
matching with rigorous privacy guarantees and high utility.

All proofs on the technical results can be found in the preprint [26].

2 Related Work

2.1 Extended DP

As explained in Sect. 1, there are a number of existing extended DP mechanisms
[4,7,9,25,32,53] designed for other metrics (e.g., the Euclidean metric, the l1
metric), which cannot be applied to the angular distance. To our knowledge, our
mechanisms are the first to provide extended DP with the angular distance.

In addition, most of the studies on extended DP have studied low-dimensional
data such as two-dimensional [4,7,9,32] and six-dimensional [53] data. One

566 N. Fernandes et al.

exception is the work in [25], which proposed the multivariate Laplace mech-
anism for 300-dimensional vectors. In this paper, we apply our mechanisms to
vectors in 1000-dimensions (much larger than any existing work), and show that
our LSHRR provides high utility for such high-dimensional data.

2.2 Privacy-Preserving Friend Matching

A number of studies [10,14,16,35,36,38,44,47] have been made on algorithms
for privacy-preserving friend matching (or friend recommendation). Many of
them (e.g., [16,38,44,47]) use cryptographic techniques such as homomorphic
encryption and secure multiparty computation. However, such techniques require
high computational costs or focus on specific algorithms, and are not suitable for
a more complicated calculation of distance such as the angular distance between
two rating/location vectors.

The techniques in [10,14,35,36] are based on perturbation. The mechanisms
in [10,35,36] do not provide DP or its variant, whereas that in [14] provides DP.
The technique in [14], however, is based on social graphs and cannot be applied
to our setting, where a user’s personal data is represented as a rating vector
or visit-count vector. Moreover, DP-based friend matching in social graphs can
require prohibitive trade-offs between utility and privacy [10,40].

Similarly, DP mechanisms based on each user’s high-dimensional rat-
ing/location vector require a very large privacy budget (e.g., ε ≥ 250 [37],
ε ≥ 2 × 104 [42]) to provide high utility. In contrast, our extended DP mech-
anisms provide meaningful privacy guarantees in high-dimensional spaces with
high utility, since extended DP is a finer-grained notion than DP, as explained
in Sect. 1.

We also note that a privacy-preserving clustering algorithm in [45] and an
item recommendation algorithm in [48] cannot be applied to friend matching.

2.3 Privacy-Preserving LSH

Finally, we note that some studies have proposed privacy-preserving LSH [3,8,15,
29,45,46,56]. However, some of them [3,15,46] only apply LSH and claim that it
protects user privacy because LSH is a kind of non-invertible transformation. In
Sect. 4, we show that the lack of rigorous guarantees can lead to privacy breaches.
Nissim and Stemmer [45] proposed clustering algorithms based on LSH and the
heavy-hitters algorithm. However, their algorithms focus on clustering such as
k-means clustering and cannot be applied to friend matching.

Aumüller et al. [8] proposed a privacy-preserving LSH algorithm that can
be applied to friend matching. Specifically, they focused on a similarity search
problem under the Jaccard similarity using up to 2000-dimensional vectors, and
proposed an LDP algorithm based on MinHash. After the submission of our
paper to a preprint [26], two related papers [29,56] have been published. Zhang
et al. [56] proposed an LDP algorithm for rating prediction based on MinHash
and knowledge distillation. Hu et al. [29] proposed an LDP algorithm based on
LSH for federated recommender system.

LSH with Extended Differential Privacy 567

Our work differs from [8,29,56] in the following points. First, [8,29,56] only
analyzed LDP for hashes, and did not conduct a more challenging analysis of
extended DP for inputs. In contrast, our work provides a careful analysis of
extended DP, given that LSH preserves the original metric only approximately.
We also show that extended DP requires a much smaller privacy budget than
LDP. Second, we compared LSHRR with LapLSH in detail, and show that
LSHRR (resp. LapLSH) is more suitable for high (resp. low) dimensional data.

3 Preliminaries

In this section, we introduce notations and recall background on locality sensitive
hashing (LSH), privacy measures, and privacy protection mechanisms.

Let deuc be the Euclidean distance between real vectors, i.e., deuc(x,x′) =
‖x−x′‖2. We write V for the set of all binary data of length κ, i.e., V = {0, 1}κ.
The Hamming distance between v,v′ ∈ V is: dV(v,v′) =

∑κ
i=1 | vi − v′

i | .
We denote the set of all probability distributions over a set S by DS. Let

N(μ, σ2) be the normal distribution with mean μ and variance σ2. Let A : X →
DY be a randomized algorithm from a finite set X to another Y, and A(x)[y]
(resp. by A(x)[S]) be the probability that A maps x to y (resp. an element of S).

3.1 Locality Sensitive Hashing (LSH)

We denote by X the set of all possible input data. We introduce the notion of
a (normalized) dissimilarity function dX : X × X → [0, 1] over X such that two
inputs x and x′ have less dissimilarity dX (x,x′) when they are closer, and that
dX (x,x′) = 0 when x = x′. If dX is symmetric and subadditive, it is a metric.

A locality sensitive hashing (LSH) [28] is a family of functions in which the
probability of two inputs x,x′ having different 1-bit outputs is proportional to
dX (x,x′).

Definition 1 (Locality sensitive hashing). A locality sensitive hashing
(LSH) scheme w.r.t. a dissimilarity function dX is a family H of functions from X
to {0, 1} coupled with a probability distribution DH such that for any x,x′ ∈ X ,

Pr
h∼DH

[h(x) �= h(x′)] = dX (x,x′), (1)

where h is chosen from H according to the distribution DH. By using indepen-
dently chosen functions h1, h2, . . . , hκ, the κ-bit LSH function H : X → V is:

H(x) = (h1(x), h2(x), . . . , hκ(x)). (2)

We denote by H∗ : X → DV the randomized algorithm that draws a κ-bit LSH
H from the distribution Dκ

H and outputs the hash value H(x) of a given input x.

568 N. Fernandes et al.

3.2 Examples of LSHs

There are a variety of LSH families corresponding to useful metrics, such as the
angular distance [5,12], Jaccard metric [11], and lp metric with p ∈ (0, 2] [18].
In this work, we focus on LSH families for the angular distance.

A random-projection-based hashing is a one-bit hashing with the domain
X def=R

n and a random vector r ∈ R
n that defines a hyperplane through the ori-

gin. Formally, we define a random-projection-based hashing hproj : Rn→{0, 1} by:

hproj(x) =

{
0 (if r�x < 0)
1 (otherwise)

where each element of r is independently chosen from the standard normal dis-
tribution N(0, 1). By (2), a κ-bit LSH function Hproj is built from one-bit hashes
hproj1, . . . , hprojκ that are generated from independent hyperplanes r1, . . . , rκ.

The random-projection-based hashing hproj is an LSH w.r.t. the angular dis-
tance dθ : Rn × R

n → [0, 1] defined by:

dθ(x,x′) = 1
π cos−1

(
x�x′

‖x‖‖x′‖
)

(3)

For example, dθ(x,x′) = 0 iff x = x′, while dθ(x,x′) = 1 iff x = −x′. dθ(x,x′) =
0.5 exactly when the two vectors x and x′ are orthogonal, namely, x�x′ = 0.

3.3 Approximate Nearest Neighbor Search

We recall the nearest neighbor search (NNS) problem and its utility measures.
Given a dataset S ⊆ X , the nearest neighbor search (NNS) for an x0 ∈ S

is the problem of finding the closest x ∈ S to x0 w.r.t. a metric dX over X . A
k-nearest neighbor search (k-NNS) is the problem of finding the k closest points.

A naive and exact approach to k-NNS is to perform pairwise comparisons
of data points, requiring O(|S|) operations. Approaches to improve this com-
putational inefficiency shift the problem to space inefficiency [6]. An alternative
approach [30] is to employ LSH to perform approximate NNS efficiently. To eval-
uate the utility, we use the average distance of returned nearest neighbors from
the data point x0 compared with the average distance of true nearest neighbors.

Definition 2 (Utility loss). Let A be an approximate algorithm that produces
approximate k nearest neighbors N ⊆ S for a data point x0 ∈ S in terms of a
metric dX . The average utility loss for N w.r.t. the true nearest neighbors T is
given by: UA(S) = 1/k

∑

x∈N

dX (x0, x) − 1/k
∑

x∈T

dX (x0, x).

3.4 Privacy Measures and Privacy Mechanisms

Extended Differential Privacy. [13,34] guarantees that when two inputs x and
x′ are closer, their corresponding output distributions are less distinguishable.

LSH with Extended Differential Privacy 569

In this paper, we propose a more generalized definition using a function δ over
X and an arbitrary function ξ over X instead of a metric. The main reason for
this generalization is that LSH preserves the metric over the input only proba-
bilistically and approximately, hence cannot fit to [13]’s standard definition.

Definition 3 (Extended differential privacy). Given two functions ξ : X ×
X → R≥0 and δ : X ×X → [0, 1], a randomized algorithm A : X → DY provides
(ξ, δ)-extended differential privacy (XDP) if for all x, x′ ∈ X and for any S ⊆ Y,

A(x)[S] ≤ eξ(x,x′) A(x′)[S] + δ(x, x′),

where the probability is taken over the random choices in A.

We abuse notation and write δ when δ(x, x′) is a constant. When ξ(x, x′) is also
a constant ε, the definition gives the (standard) differential privacy (DP). When
ξ(x, x′) = dX (x, x′) and δ(x, x′) = 0, the definition gives dX -privacy in [13]. In
later sections, we instantiate the metric dX with the angular distance dθ.

Finally, we recall some popular privacy protection mechanisms.

Definition 4 (Laplace mechanism [21]). For an ε ∈ R>0 and a metric dX
over X ∪ Y, the (ε, dX)-Laplace mechanism is the randomized algorithm QLap :
X → DY that maps an input x to an output y with probability 1

c exp(−εdX (x, y))
where c =

∫
Y exp(−εdX (x, y)) dy.

Examples of the (ε, dX)-Laplace mechanism include the one-dimensional [21]
and the multivariate Laplace mechanism [25], both equipped with the Euclidean
metric. The (ε, dX)-Laplace mechanism provides (εdX , 0)-XDP.

Definition 5 (Randomized response [52]). The ε-randomized response (ε-
RR) is the randomized algorithm Qrr : {0, 1} → D{0, 1} that maps a bit b to
another b′ with probability eε

eε+1 if b′ = b, and with probability 1
eε+1 otherwise.

The ε-RR provides ε-DP. Erlingsson et al. [23] introduce the RAPPOR, which
first uses a Bloom filter to produce a hash value and then applies the RR to each
bit of the hash value. The RAPPOR provides ε-DP in the local model.

4 Privacy Properties of LSH

Several works in the literature make reference to the privacy-preserving prop-
erties of LSH [3,17,46]. The privacy guarantee attributed to LSH mechanisms
hinges on its hash function, which ‘protects’ an individual’s private attributes
by revealing only their hash bucket. We now apply a formal analysis to LSH and
explain why LSH implementations do not provide strong privacy guarantees, and
could, in some situations, result in complete privacy collapse for the individual.

Modeling LSH. We present a simple example to show how privacy breaks
down. Consider the set of secret inputs X={(0, 1), (1, 0), (1, 1)} whose element
represents whether an individual rated two movies A and B. Then an LSH is

570 N. Fernandes et al.

modeled as a probabilistic channel h∗ : X→D{0, 1} that maps a secret input to
a binary observation.

For brevity, we deal with a single random-projection-based hashing h in
Sect. 3.2. That is, we randomly choose a vector r representing the normal to
a hyperplane, and given an input x ∈ X , the hash function h outputs 0 if
r�x < 0 and 1 otherwise. For example, if r = (1,− 1

2) is chosen, h is defined as:

h : X → {0, 1}
(0, 1) �→ 0

(1, 0) �→ 1

(1, 1) �→ 1

In fact, there are 6 possible (deterministic) hash functions for any choice of the
vector r, corresponding to hyperplanes that separate different pairs of points:

h1 h2 h3

(0, 1) �→ 1 (0, 1) �→ 0 (0, 1) �→ 1
(1, 0) �→ 0 (1, 0) �→ 1 (1, 0) �→ 0
(1, 1) �→ 0 (1, 1) �→ 1 (1, 1) �→ 1

h4 h5 h6

(0, 1) �→ 0 (0, 1) �→ 1 (0, 1) �→ 0
(1, 0) �→ 1 (1, 0) �→ 1 (1, 0) �→ 0
(1, 1) �→ 0 (1, 1) �→ 1 (1, 1) �→ 0

Each of h1, h2, h3, and h4 occurs with probability 1/8, while h5 and h6 each occur
with probability 1/4. The resulting channel h∗, computed as the probabilistic sum
of these deterministic hash functions, turns out to leak no information on the
secret input (i.e., all outputs have equal probability conditioned on each input).

This indicates that the channel h∗ is perfectly private. However, in practice,
LSH may require the release of the choice of the vector r (e.g. [17])1, that is, the
choice of hash function is leaked. Notice that in our example, h1 to h4 correspond
to deterministic mechanisms which leak exactly 1 bit of the secret, while h5 and
h6 leak nothing. In other words, with 50% probability, 1 bit of the 2-bit secret
is leaked. Furthermore, h1 and h2 leak the secret (0, 1) exactly, and h3 and h4

leak (1, 0) exactly. Thus, the release of r destroys the privacy guarantee.

The Guarantee of LSH. In general, for any number of hash functions and
any length of input, an LSH which releases its choice of hyperplanes also leaks
its choice of deterministic mechanism. This means that it leaks the equivalence
classes of the secrets. Such mechanisms belong to the ‘k-anonymity’-style of pri-
vacy mechanisms which promise privacy by hiding secrets in equivalence classes
of size at least k. These have been shown to be unsafe due to their failure to com-
pose well [24,27,33]. This failure leads to the potential for linkage or intersection
attacks by an adversary armed with auxiliary information. For this reason, we
consider compositionality an essential property for a privacy-preserving system.
LSH with hyperplane release does not provide such privacy guarantees.

1 In fact, since the channel on its own leaks nothing, there must be further information
released in order to learn anything useful from this channel.

LSH with Extended Differential Privacy 571

5 LSH-Based Privacy Mechanisms

In this section, we propose two privacy protection mechanisms called LSHRR
and LapLSH. The former is an extension of RAPPOR [23] w.r.t. LSH, and the
latter is constructed using the Laplace mechanism and LSH.

Construction of LSHRR. We introduce the LSH-then-RR privacy mechanism
(LSHRR) as the randomized algorithm that (i) randomly chooses a κ-bit LSH
function H, (ii) computes the κ-bit hash value H(x) of a given input x, and (iii)
applies the randomized response to each bit of H(x).

To formalize this, we define the (ε, κ)-bitwise RR Qbrr, which applies the
randomized response Qrr to each bit of the input independently. Formally, Qbrr :
V → DV maps a bitstring v = (v1, v2, . . . , vκ) to another y = (y1, y2, . . . , yκ) with
probability Qbrr(v)[y]=

∏κ
i=1 Qrr(vi)[yi]. Then LSHRR is defined as follows.

Definition 6 (LSHRR). The ε-LSH-then-RR privacy mechanism (LSHRR)
instantiated with a κ-bit LSH function H : X → V is the randomized algorithm
QH : X → DV defined by QH = Qbrr ◦ H. Given a distribution Dκ

H of the κ-bit
LSH functions, the ε-LSHRR w.r.t. Dκ

H is defined by QLSHRR = Qbrr ◦ H∗.

LSHRR deals with two kinds of randomness: (a) the randomness in choosing
a (deterministic) LSH function H from Dκ

H (e.g., the random seed r in the
random-projection-based hashing hproj), and (b) the random noise added by the
bitwise RR Qbrr. We can assume that each user of this privacy mechanism selects
an input x independently of both kinds of randomness, since they wish to protect
their own privacy when publishing x.

In practical settings, the same LSH function H is often used to produce hash
values of different inputs; namely, multiple hash values are dependent on an
identical hash seed (e.g., a service provider would generate a hash seed so that
multiple users can share the same H to compare their hash values). Furthermore,
the adversary might obtain the LSH function H (or the seed r used to produce
H), and might learn a set of possible inputs that produce the same hash value
H(x) without knowing the actual input x. Therefore, the hash value H(x) might
reveal partial information on the input x (see Sect. 4), and the bitwise RR Qbrr

is crucial in guaranteeing privacy (see Sect. 6 for our privacy analyses).
On the other hand, Qbrr causes errors in the Hamming distance as follows:

Proposition 1 (Error bound). For any x, x′ ∈ X , the expected error in the
Hamming distance satisfies E[|dV(QH(x), QH(x′)) − dV(H(x),H(x′))|] ≤ 2κ

1+eε

where the expectation is taken over the randomness in the bitwise RR.

Construction of LapLSH. We also propose the Laplace-then-LSH privacy
mechanism (LapLSH) as the randomized algorithm that (i) randomly chooses a
κ-bit LSH function H, (ii) applies the multivariate Laplace mechanism QLap to
x, and (iii) computes the κ-bit hash value H(QLap(x)).

572 N. Fernandes et al.

Definition 7 (LapLSH). The (ε, dX)-Laplace-then-LSH privacy mechanism
(LapLSH) with a κ-bit LSH function H : X → V is the randomized algorithm
QLapH : X → DV defined by QLapH = H ◦ QLap. The (ε, dX)-LapLSH w.r.t. a
distribution Dκ

H of the κ-bit LSH functions is defined by QLapLSH = H∗ ◦ QLap.

LapLSH also deals with the two kinds of randomness discussed above, and
the Laplace mechanism QLap is crucial in guaranteeing privacy. One of the main
differences from LSHRR is that LapLSH adds noise directly to the input before
applying LSH whereas LSHRR adds noise after applying LSH to the input.

In Sect. 7 we implement the multivariate Laplace mechanism with the input
domain X = R

n and Euclidean distance deuc described in [25]; namely, we gen-
erate additive noise by constructing a unit vector uniformly at random over
the n-dimensional unit sphere S

n, scaled by a random value generated from the
gamma distribution with shape n and scale 1/ε.

6 Privacy Analyses of the Mechanisms

We provide an analysis of the privacy guarantees provided by our mechanisms in
two operational scenarios: (i) w.r.t. an already-chosen LSH function (e.g., where
it has been generated by a service provider), and (ii) w.r.t. all possible choices of
the LSH function (e.g., prior to its instantiation by a particular service provider).
Note that our analysis is general in that it does not rely on specific metrics or
hashing algorithms for LSH.

6.1 LSHRR’s Privacy W.r.t. the Particular LSH Function

We first show the privacy guarantee for LSHRR w.r.t. the particular LSH func-
tion used by the service provider. This type of privacy is defined using the
Hamming distance dV between the hash values of given inputs, and the degree
of privacy depends on the actual selection of the LSH function H (or the hash
seeds r), which we assume is available to the adversary. Since LSH preserves
the original metric dX only approximately, we obtain XDP guarantee w.r.t. a
pseudo-metric dεH that approximates dX as follows.

Proposition 2 (XDP of QH). Let H : X → V be a κ-bit LSH function, and
dεH be the pseudometric over X defined by dεH(x,x′) = εdV(H(x),H(x′)) for
x,x′ ∈ X . Then the ε-LSHRR QH instantiated with H provides (dεH , 0)-XDP.

However, we cannot compute dεH or the degree of XDP in Proposition 2 until H
has been computed. To overcome this unclear guarantee of privacy, in Sect. 6.2
we show a useful privacy guarantee that can be evaluated without requiring H
(or hash seeds) generated by the service provider.

Note that the κε-DP of LSHRR is obtained as the worst case of Proposi-
tion 2, i.e., when the hamming distance between vectors is maximum due to
an “unlucky” choice of hash seeds or very large distance dX (x,x′) between the
inputs x,x′. The following proposition guarantees the privacy independently of
the actual choice of H.

LSH with Extended Differential Privacy 573

Proposition 3 (Worst-case privacy of QH). For a κ-bit LSH function H,
the ε-LSHRR QH instantiated with H provides κε-DP.

6.2 LSHRR’s Privacy W.r.t. the Distribution of LSH Functions

Next, we show LSHRR’s privacy guarantee w.r.t. any possible LSH function
that may be generated. This type of privacy guarantee is useful in a variety of
scenarios. For example, a privacy analyst could evaluate the expected degree
of privacy before the service provider fixes the LSH function or hash seeds. For
another example, the seeds may be stored in tamper-resistant hardware privately.

The privacy guarantee without relying on specific LSH functions or hash seeds
is modeled as a probability distribution of degrees of XDP over the random choice
of seeds. Then this can be characterized as an extension of concentrated DP [22]
and probabilistic DP [39] with input distance, yielding the XDP guarantee.

In the privacy analysis, we deal with the situation where multiple users pro-
duce hash values by employing the same hash seeds, as seen in typical applica-
tions such as approximate NNS. Then we define privacy notions for the mecha-
nisms that share randomness among them.

Formally, we denote by Ar : X → DY a randomized algorithm A with a
shared input r ∈ R. Given a distribution λ over a finite set R of shared input,
we denote by Aλ : X → DY the randomized algorithm that draws a shared
input r from λ and behaves as Ar; i.e., Aλ(x)[y] =

∑
r∈R λ[r]Ar(x)[y]. Then we

extend the notion of privacy loss [22] with shared randomness as follows.

Definition 8 (Privacy loss). For a randomized algorithm Ar : X → DY with
a shared input r, the privacy loss on y ∈ Y w.r.t. x, x′ ∈ X , r ∈ R is defined by:

Lx,x′,y,r = ln
(Ar(x)[y]
Ar(x′)[y]

)
,

where the probability is taken over the random choices in Ar. Given a distri-
bution λ over R, the privacy loss random variable Lx,x′ of x over x′ w.r.t. λ is
the real-valued random variable representing the privacy loss Lx,x′,y,r where a
shared randomness r is sampled from λ and y is sampled from Ar(x).

To characterize the privacy loss random variable Lx,x′ for LSHRR, we intro-
duce an extension of CDP [22] wth input distance d(x, x′) as follows.

Definition 9 (CXDP). Let μ ∈ R≥0, τ ∈ R>0, λ ∈ DR, and d : X × X →
R≥0 be a metric. A random variable Z over R is τ -subgaussian if for all s ∈
R, E[exp(sZ)] ≤ exp(s2τ2

2). A randomized algorithm Aλ : X → DY provides
(μ, τ, d)-mean-concentrated extended differential privacy (CXDP) if for all x, x′ ∈
X , the privacy loss random variable Lx,x′ of x over x′ w.r.t. λ satisfies that
E[Lx,x′] ≤ μd(x, x′), and that Lx,x′ − E[Lx,x′] is τ -subgaussian.

Then we obtain the following CXDP guarantee for LSHRR.

Proposition 4 (CXDP of QLSHRR). The ε-LSHRR provides (εκ, εκ
2 , dX)-

CXDP.

574 N. Fernandes et al.

To clarify the implication of CXDP, we introduce an extension of probabilis-
tic DP [39] with input distance, which we call PXDP. Intuitively, (ξ, δ)-PXDP
guarantees (ξ, 0)-XDP with probability 1 − δ.

Definition 10 (PXDP). Let λ ∈ DR, ξ : X ×X → R≥0, and δ : X ×X → [0, 1].
A randomized algorithm Aλ : X → DY provides (ξ, δ)-probabilistic extended
differential privacy (PXDP) if for all x, x′ ∈ X , Pr[Lx,x′ > ξ(x, x′)] ≤ δ(x, x′).
We abuse notation to write δ when δ(x, x′) is constant.

In AppendixB, we show that CXDP implies PXDP and that PXDP implies
XDP. Based on these, we show that LSHRR provides PXDP and XDP as follows.

Theorem 1 (PXDP/XDP of QLSHRR). Let δ ∈ R>0, ε′ = ε
√

− ln δ
2 , and

ξ(x,x′) = εκdX (x,x′)+ε′√κ. The ε-LSHRR provides (ξ, δ)-PXDP, hence (ξ, δ)-
XDP.

For our experimental evaluation, we show a privacy guarantee that gives
tighter bounds but requires the parameters dependent on the inputs x and x′.

Proposition 5 (Tighter bound for PXDP/XDP). For a, b ∈ R>0, let
DKL(a‖b) = a ln a

b + (1 − a) ln 1−a
1−b . For an α ∈ R>0, we define:

ξα(x,x′) = εκ(dX (x,x′) + α)

δα(x,x′) = exp
(−κDKL(dX (x,x′) + α‖dX (x,x′))

)
.

Then the ε-LSHRR provides (ξα, δα)-PXDP, hence (ξα, δα)-XDP.

6.3 Privacy Guarantee for LapLSH

Finally, we also show that LapLSH provides XDP. This is immediate from the
fact that XDP is preserved under the post-processing by an LSH function.

Proposition 6 (XDP of QLapH and QLapLSH). The (ε, dX)-LapLSH QLapH

with a κ-bit LSH function H provides (εdX , 0)-XDP. The (ε, dX)-LapLSH
QLapLSH w.r.t. a distribution Dκ

H of the κ-bit LSH functions also provides
(εdX , 0)-XDP.

7 Experimental Evaluation

We show an experimental evaluation of LSHRR and LapLSH on two real
datasets: MovieLens [41] and FourSquare [54]. Our goal is to determine the
utility of these mechanisms when compared with a (slow but accurate) true
nearest neighbor search. As a baseline, we also show the performance of vanilla
(non-private) LSH.

LSH with Extended Differential Privacy 575

(a) MovieLens Dataset (b) Foursquare Dataset

Fig. 1. Distributions of angular distances dθ to nearest neighbor for k = 1 for each
user, plotted for vectors with dimensions 100, 500 and 1000. The distance 0.5 represents
orthogonal vectors; i.e., having no items in common. The privacy guarantee for users
is a function of the distance dθ to their nearest neighbors.

7.1 Datasets and Experimental Setup

Our problem of interest is privacy-preserving friend matching (or friend recom-
mendation). In this scenario, we are given a dataset of users in which each user
is represented as a (real-valued) vector of attributes. The data curator’s goal is
to recommend k friends for each user based on their k-nearest neighbors.

For our experiments, we used the following two datasets:

MovieLens. The MovieLens 25m dataset [41] contains 162000 users with ratings
across 62000 movies, with ratings ranging from 1 to 5. We normalized the scores,
i.e., to mean 0, and gave unseen movies a score of 0. For each user, we constructed
a rating vector that consists of the user’s rating for each movie.

Foursquare. The Foursquare dataset (Global-scale Check-in Dataset with User
Social Networks) [54] contains 90048627 check-ins by 2733324 users on POIs all
over the world. We extracted 107091 POIs in New York and 10000 users who
have visited at least one POI in New York. For each user, we constructed a
visit-count vector, which consists of a visit-count value for each POI.

For both datasets, we generated input (rating/visit-count) vectors of length
n = 100, 500, 1000 to evaluate the effectiveness of LSH. Reduced vector lengths
were used because LSH has poor utility for larger vector lengths and the utility
of our mechanisms requires a good baseline utility for LSH.

We computed the k nearest neighbors w.r.t. the angular distance dθ for 1000
users for k = 1, 5, 10 using standard NNS (i.e., pairwise comparisons over all
inputs). The distributions of True Nearest Neighbor distances are shown in Fig. 1.

κ-bit LSH (for κ = 10, 20, 50) was implemented using the random-projection-
based hashing. For each user, we then computed their k nearest neighbors for
k = 1, 5, 10 using the Hamming distance on bitstrings. To compute the overall
(ξ, δ)-XDP guarantee as per Proposition 5, we fixed δ = 0.01 and dθ = 0.1 and
varied ε to generate ξ values in the range 0.1 to 20.

576 N. Fernandes et al.

Figure 1 shows that about 43% (resp. 16%) of input vectors with 100
(resp. 1000) dimensions are within the distance of 0.1 in the Foursquare dataset.
Thus, extended DP with dθ = 0.1 is useful to hide such input vectors.

7.2 Comparing Privacy and Utility

We use the angular distance dθ as our utility measure, i.e., to determine similar
users for the purposes of recommendations. For utility loss, we use Definition 2
instantiated with the angular distance dθ. We compare the utility loss of each
mechanism w.r.t. a comparable privacy guarantee, namely the overall privacy
budget εdeuc(x,x′) for LapLSH and ξα(x,x′) for LSHRR (Proposition 5). How-
ever, as LSHRR’s privacy guarantee depends on the angular distance dθ and
LapLSH’s depends on deuc, they cannot be compared directly. For comparison
using the same metric, we use the relationship between the Euclidean and angu-
lar distances for normalized vectors x,x′:

deuc(x,x′) =
√

2 − 2 cos(π·dθ(x,x′)) . (4)

We normalized input vectors to length 1 (noting that the normalization does
not affect the angular distance, hence utility), and transformed εdeuc(x,x′) into
ξα(x,x′) using (4) (Since ξα(x,x′) depends on α and dθ(x,x′), we perform
comparisons against various reasonable ranges of these variables).

We note that the trade-off between privacy and utility means that users with
similar profiles will be indistinguishable from each other, whereas users with very
different profiles can be distinguished. This is an inherent trade-off determined
by the correlation between the sensitive and useful information to be released.

7.3 Experimental Results

We compared the performance of LapLSH and LSHRR with that of vanilla LSH
in Fig. 2. We observe that LSHRR outperforms LapLSH when the dimension
of the input vector is n = 100, 500, or 1000. This is because LapLSH needs
to add noise for each element of the input vector (even if the vector is sparse
and includes many zero elements) and the total amount of noise is very large in
high-dimensional data. In contrast, when the vector length is n = 50, LapLSH
(κ = 50 bits) outperforms LSHRR (κ = 50 bits). We conjecture that this is
because the total amount of noise used in LapLSH is small for low-dimensional
data whereas LSHRR needs to add a large amount of noise for each element of
the hash when the hash length κ is large. We expect LapLSH performance to
improve further over LSHRR for smaller values of n.

Interestingly, we observe that although the performance of LSH degrades
as the hash length κ decreases, the performance of LSHRR and LapLSH both
remain relatively stable. This is mainly because when κ is 5 times larger, the
amount of information expressed by the hash can be roughly 5 times larger
whereas the amount of noise added to each bit is also 5 times larger. When
the privacy budget is ξ = 20, the performance of LSHRR on larger bit-lengths

LSH with Extended Differential Privacy 577

(a) MovieLens Dataset

(b) Foursquare Dataset

Fig. 2. Utility loss (y-axis) versus privacy budget ξ (x-axis) for LSHRR, LapLSH and
LSH on n-dimensional vectors. ξ is computed for various κ, and dθ = 0.1.

(κ = 20 or 50) overtakes the performance of 10-bit LSHRR. This is because the
utility loss of LSHRR is bounded below by the utility loss of the corresponding
LSH; i.e., LSHRR converges to LSH with the same hash length κ as ξ increases.

Figure 2 also shows that when the total privacy budget ξ is around 2, LSHRR
achieves lower utility loss than a uniformly random hash, i.e., LSHRR when the
total privacy budget is 0. LSHRR achieves much lower utility loss when the
total privacy budget is around 5. We can interpret the value of the total privacy
budget in terms of the flip probability in the RR. For example, when we use the
20-bit hash, the total privacy budget of 5 for dθ = 0.05 corresponds to the case
in which the RR flips each bit of the hash with the probability approx. 0.27.
Therefore, we flip around 5-bits on average out of 20-bits in this case.

We also note that the total privacy budget used in our experiments is much
smaller than the privacy budget ε previously used in the low privacy regime
[31]. Specifically, Kairouz et al. [31], and subsequent works (e.g., [1,43,50,55])
refer to ε = ln |X | as a privacy budget in the low privacy regime. Since our
experiments deal with high-dimensional data, a privacy budget of ln |X | would
be extremely large. For example, when we use the 1000-dimensional rating vector
in the MovieLens dataset, the privacy budget in the low privacy regime is: ε =

578 N. Fernandes et al.

ln |X | = ln 51000 = 1609. The total privacy budget in our experiments (ξ ≤ 20)
is much smaller than this value, and falls into the medium privacy regime [1,55].

Note that LDP requires a much larger privacy budget than extended DP. For
example, by Proposition 5, when κ = 50 and dθ = 0.05 (resp. 0.1), the total
privacy budget ξ = 20 in extended DP corresponds to the total privacy budget
120 (resp. 80) in LDP. More details are shown in AppendixA.

Finally, we compare LSHRR with LapLSH in terms of time complexity and
general applicability. For time complexity, LapLSH requires O(nκ) operations
(construction of n-dimensional noise, then κ-bit hashing). In contrast, LSHRR
requires O(mκ) operations, where m is the number of non-zero elements in the
input vector (κ-bit hashing on m non-zero elements followed by κ-randomized
response). Since m � n in practice, LSHRR is significantly more efficient.

For general applicability, LSHRR can be used with other metrics such as the
Jaccard metric [11], Earth Mover’s metric [12], and lp metric [18] by choosing
a suitable LSH function, whereas LapLSH is designed for the Euclidean metric
only. Thus, LSHRR has more potential applications than LapLSH.

In summary, we find that LSHRR is better than LapLSH in terms of both
time complexity and general applicability, and provides high utility with a rea-
sonable privacy level for a high-dimensional data (100 dimensions or more).

7.4 Inapplicability of the RAPPOR

We finally explain that neither the RAPPOR [23] nor the generalized RAPPOR
[51] can be used for friend matching based on high-dimensional personal data.
These mechanisms apply a Bloom filter to an input vector before applying the
randomized response. Typically, this Bloom filter is a hash function that neither
allows for efficiently finding an input from its hash value, nor preserves the metric
dX over the inputs. For instance, [23] uses MD5 to implement the Bloom filter.

Let us consider two approaches to perform the nearest neighbor search using
RAPPOR: comparing two hash values and comparing two input vectors.

In the first approach, the data collector calculates the Hamming distance
between obfuscated hash values. Then the utility is completely lost, because the
Bloom filter does not preserve the metric dX over the inputs. Hence we cannot
recommend friends based on the proximity of input vector in this approach.

In the second approach, the data collector tries to invert obfuscated hash
values to the original input vector, and calculates the angular distance between
the input vectors to find nearest neighbors. Since the Bloom filter may not allow
for efficiently finding an input from its hash value, the data collectors need to
perform exhaustive searches, i.e., to compute the hash values of all possible input
data X . However, this is computationally intractable when the input domain X
is very large. In particular, our setting deals with high-dimensional input data
(e.g., |X | = 51000 in the 1000-dimensional MovieLens rating vector), and thus it
is computationally infeasible to invert hash values into input vectors.

In summary, the first approach (comparing two hashes) results in a com-
plete loss of utility, and the second approach (comparing two input vectors) is
computationally infeasible when the input data are in a high-dimensional space.

LSH with Extended Differential Privacy 579

Therefore, the RAPPOR cannot be applied to our problem of friend matching.
The same issue applies to a generalized version of the RAPPOR [51].

In contrast, our mechanisms can be applied to friend matching even when
|X | is very large, because LSH allows us to approximately compare the distance
between the input vectors without computing them from their hash values.

8 Conclusion

In this paper, we proposed two extended DP mechanisms LSHRR and LapLSH.
We showed that LSH itself does not provide privacy guarantees and could result
in complete privacy collapse in some situations. We then proved that LSHRR
and LapLSH provide rigorous guarantees of extended DP. To our knowledge,
this work is the first to provide extended DP with the angular distance.

By experiments with real datasets, we show that LSHRR outperforms
LapLSH on high-dimensional data. We also show that LSHRR provides high
utility for a high-dimensional vector, thus enabling friend matching with rigor-
ous privacy guarantees and high utility.

A Total Privacy Budgets in Extended DP and LDP

Table 1 shows total privacy budgets in extended DP and LDP calculated from
Proposition 5 and the fact that the angular distance is 0.5 or smaller.

For example, when dθ = 0.05 and κ = 10, 20, and 50, the total privacy
budget ξ = 20 in extended DP corresponds to the total privacy budget of 55, 79,
and 120, respectively, in LDP.

Table 1. Total privacy budgets in extended DP (XDP) and LDP when dθ = 0.05 or
0.1, κ = 10, 20, or 50, and δ = 0.01.

(a) dθ = 0.05

Total privacy budget ξ in XDP 1 5 10 20

Total privacy budget in LDP (κ = 10/20/50) 3/4/6 14/20/30 28/40/60 55/79/120

(b) dθ = 0.1

Total privacy budget ξ in XDP 1 5 10 20

Total privacy budget in LDP (κ = 10/20/50) 2/3/4 10/14/20 21/28/40 42/57/80

B More Details on the Privacy Analyses

We show the relationships among CXDP, PXDP, and XDP as follows. See the
preprint version [26] of this paper for the proofs.

580 N. Fernandes et al.

Lemma 1 (CXDP ⇒ PXDP). Let μ ∈ R≥0, τ ∈ R>0, λ ∈ DR, Aλ : X → DY,
and d be a metric over X . Let δ ∈ (0, 1], ε = τ

√−2 ln δ, and ξ(x, x′) = μd(x, x′)+
ε. If Aλ provides (μ, τ, d)-CXDP, then it provides (ξ, δ)-PXDP.

Lemma 2 (PXDP ⇒ XDP). Let λ ∈ DR, Aλ : X → DY, ξ : X × X → R≥0,
and δ : X × X → [0, 1]. If Aλ provides (ξ, δ)-PXDP, it provides (ξ, δ)-XDP.

Next, we present the proofs for some of the main results as follows. See the
preprint [26] of this paper for the proofs of the other technical results.

Proof (of Proposition 4). For a κ-bit LSH function H ∈ Hκ,

QH(x)[y] = Qbrr(H(x))[y]

≤ eεdV (H(x),H(x′))Qbrr(H(x′))[y] (by XDP of BRR)

= eεdV (H(x),H(x′))QH(x′)[y].

Let Z be the random variable defined by Z
def= dV(H(x),H(x′)) where H =

(h1, h2, . . . , hκ) is distributed over Hκ, namely, the seeds of these LSH functions
are chosen randomly. Then 0 ≤ Z ≤ κ, and Z follows the binomial distribution
with mean E[Z] = κdX (x,x′). Then the random variable εZ −E[εZ] is centered,
i.e., E[εZ −E[εZ]] = 0, and ranges over [−εκdX (x,x′), εκ(1−dX (x,x′))]. Hence
it follows from Hoeffding’s lemma that:

E[exp(t(εZ − E[εZ]))] ≤ exp
(

t2

8

(
εκ

)2) = exp
(

t2

2

(
εκ
2

)2)
.

Hence by definition, εZ − E[εZ] is εκ
2 -subgaussian. Therefore, the LSH-based

mechanism QLSHRR provides (εκ, εκ
2 , dX)-CXDP. ��

Proof (of Theorem 1). Let α =
√

− ln δ
2κ . Let Z be the random variable defined

by Z
def= dV(H(x),H(x′)) where H = (h1, h2, . . . , hκ) is distributed over Hκ.

Then Z follows the binomial distribution with mean E[Z] = κdX (x,x′). Hence
it follows from Chernoff-Hoeffding theorem that Pr[Z ≥ κ(dX (x,x′) + α)] ≤
exp

(−2κα2
)

= δ. Hence Pr[εZ ≥ εκdX (x,x′) + ε′√κ] ≤ δ. Therefore QLSHRR

provides (ξ, δ)-PXDP. By Lemma 2, QLSHRR provides (ξ, δ)-XDP. ��
Proof (of Proposition 5). Let Z be the random variable defined by Z

def=
dV(H(x),H(x′)) where H = (h1, h2, . . . , hκ) is distributed over Hκ. By
Chernoff-Hoeffding theorem, Pr[Z ≥ κ(dX (x,x′) + α)] ≤ δα(x,x′). Then
Pr[εZ ≥ ξα(x,x′)] ≤ δα(x,x′). Therefore QLSHRR provides (ξα, δα)-PXDP. By
Lemma 2, QLSHRR provides (ξα, δα)-XDP. ��

References

1. Acharya, J., Sun, Z., Zhang, H.: Hadamard response: Estimating distributions
privately, efficiently, and with little communication. In: AISTATS, pp. 1120–1129
(2019)

LSH with Extended Differential Privacy 581

2. Aggarwal, C.C.: Recommender Systems. Springer, Heidelberg (2016). https://doi.
org/10.1007/978-3-319-29659-3

3. Aghasaryan, A., Bouzid, M., Kostadinov, D., Kothari, M., Nandi, A.: On the use
of LSH for privacy preserving personalization. In: TrustCom, pp. 362–371 (2013)

4. Alvim, M.S., Chatzikokolakis, K., Palamidessi, C., Pazii, A.: Invited paper: local
differential privacy on metric spaces: optimizing the trade-off with utility. In: CSF,
pp. 262–267 (2018). https://doi.org/10.1109/CSF.2018.00026

5. Andoni, A., Indyk, P., Laarhoven, T., Razenshteyn, I., Schmidt, L.: Practical and
optimal LSH for angular distance. In: NIPS, pp. 1–9 (2015)

6. Andoni, A., Indyk, P., Razenshteyn, I.: Approximate nearest neighbor search in
high dimensions. In: ICM, pp. 3287–3318. World Scientific (2018)

7. Andrés, M.E., Bordenabe, N.E., Chatzikokolakis, K., Palamidessi, C.: Geo-
indistinguishability: differential privacy for location-based systems. In: CCS, pp.
901–914. ACM (2013). https://doi.org/10.1145/2508859.2516735

8. Aumüller, M., Bourgeat, A., Schmurr, J.: Differentially private sketches for Jaccard
similarity estimation. CoRR abs/2008.08134 (2020)

9. Bordenabe, N.E., Chatzikokolakis, K., Palamidessi, C.: Optimal geo-
indistinguishable mechanisms for location privacy. In: CCS, pp. 251–262
(2014)

10. Brendel, W., Han, F., Marujo, L., Jie, L., Korolova, A.: Practical privacy-preserving
friend recommendations on social networks. In: WWW, pp. 111–112 (2018)

11. Broder, A.Z., Charikar, M., Frieze, A.M., Mitzenmacher, M.: Min-wise independent
permutations. J. Comput. Syst. Sci. 60, 630–659 (2000)

12. Charikar, M.S.: Similarity estimation techniques from rounding algorithms. In:
STOC, pp. 380–388 (2002)

13. Chatzikokolakis, K., Andrés, M.E., Bordenabe, N.E., Palamidessi, C.: Broaden-
ing the scope of differential privacy using metrics. In: De Cristofaro, E., Wright,
M. (eds.) PETS 2013. LNCS, vol. 7981, pp. 82–102. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-39077-7 5

14. Chen, L., Zhu, P.: Preserving the privacy of social recommendation with a differ-
entially private approach. In: SmartCity, pp. 780–785. IEEE (2015)

15. Chen, X., Liu, H., Yang, D.: Improved LSH for privacy-aware and robust recom-
mender system with sparse data in edge environment. EURASIP J. Wirel. Com-
mun. Netw. 2019(1), 1–11 (2019). https://doi.org/10.1186/s13638-019-1478-1

16. Cheng, H., Qian, M., Li, Q., Zhou, Y., Chen, T.: An efficient privacy-preserving
friend recommendation scheme for social network. IEEE Access 6, 56018–56028
(2018)

17. Chow, R., Pathak, M.A., Wang, C.: A practical system for privacy-preserving col-
laborative filtering. In: ICDM Workshops, pp. 547–554 (2012)

18. Datar, M., Immorlica, N., Indyk, P., Mirrokni, V.S.: Locality-sensitive hashing
scheme based on p-stable distributions. In: SCG, pp. 253–262 (2004)

19. Duchi, J.C., Jordan, M.I., Wainwright, M.J.: Local privacy and statistical minimax
rates. In: FOCS, pp. 429–438 (2013)

20. Dwork, C.: Differential privacy. In: ICALP, pp. 1–12 (2006)
21. Dwork, C., McSherry, F., Nissim, K., Smith, A.: Calibrating noise to sensitivity in

private data analysis. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876,
pp. 265–284. Springer, Heidelberg (2006). https://doi.org/10.1007/11681878 14

22. Dwork, C., Rothblum, G.N.: Concentrated differential privacy. CoRR
abs/1603.01887 (2016)

23. Úlfar Erlingsson, Pihur, V., Korolova, A.: RAPPOR: randomized aggregatable
privacy-preserving ordinal response. In: CCS, pp. 1054–1067 (2014)

https://doi.org/10.1007/978-3-319-29659-3
https://doi.org/10.1007/978-3-319-29659-3
https://doi.org/10.1109/CSF.2018.00026
https://doi.org/10.1145/2508859.2516735
https://doi.org/10.1007/978-3-642-39077-7_5
https://doi.org/10.1186/s13638-019-1478-1
https://doi.org/10.1007/11681878_14

582 N. Fernandes et al.

24. Fernandes, N., Dras, M., McIver, A.: Processing text for privacy: an information
flow perspective. In: Havelund, K., Peleska, J., Roscoe, B., de Vink, E. (eds.) FM
2018. LNCS, vol. 10951, pp. 3–21. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-95582-7 1

25. Fernandes, N., Dras, M., McIver, A.: Generalised differential privacy for text doc-
ument processing. In: POST, pp. 123–148 (2019)

26. Fernandes, N., Kawamoto, Y., Murakami, T.: Locality sensitive hashing with
extended differential privacy. CoRR abs/2010.09393 (2020). https://arxiv.org/abs/
2010.09393

27. Ganta, S.R., Kasiviswanathan, S.P., Smith, A.: Composition attacks and auxiliary
information in data privacy. In: KDD, pp. 265–273. ACM (2008)

28. Gionis, A., Indyk, P., Motwani, R.: Similarity search in high dimensions via hash-
ing. In: VLDB, pp. 518–529 (1999)

29. Hu, H., Dobbie, G., Salcic, Z., Liu, M., Zhang, J., Lyu, L., Zhang, X.: Differentially
private locality sensitive hashing based federated recommender system. Concurr.
Comput. Pract. Exp. 1–16 (2020)

30. Indyk, P., Motwani, R.: Approximate nearest neighbors: towards removing the
curse of dimensionality. In: STOC, pp. 604–613 (1998)

31. Kairouz, P., Bonawitz, K., Ramage, D.: Discrete distribution estimation under
local privacy. In: ICML, pp. 2436–2444 (2016)

32. Kamalaruban, P., Perrier, V., Asghar, H.J., Kaafar, M.A.: Not all attributes are
created equal: dx-private mechanisms for linear queries. In: Proceedings on Privacy
Enhancing Technologies (PoPETs), vol. 2020, no. 1, pp. 103–125 (2020)

33. Kawamoto, Y., Murakami, T.: On the anonymization of differentially private loca-
tion obfuscation. In: ISITA, pp. 159–163. IEEE (2018)

34. Kawamoto, Y., Murakami, T.: Local obfuscation mechanisms for hiding probability
distributions. In: Sako, K., Schneider, S., Ryan, P.Y.A. (eds.) ESORICS 2019.
LNCS, vol. 11735, pp. 128–148. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-29959-0 7

35. Li, M., Ruan, N., Qian, Q., Zhu, H., Liang, X., Yu, L.: SPFM: scalable and privacy-
preserving friend matching in mobile clouds. IEEE Internet Things J. 4(2), 583–591
(2017)

36. Liu, C., Mittal, P.: LinkMirage: enabling privacy-preserving analytics on social
relationships. In: NDSS (2016)

37. Liu, Z., Wang, Y.X., Smola, A.J.: Fast differentially private matrix factorization.
In: RecSys, pp. 171–178 (2015)

38. Ma, X., Ma, J., Li, H., Jiang, Q., Gao, S.: ARMOR: a trust-based privacy-
preserving framework for decentralized friend recommendation in online social net-
works. Futur. Gener. Comput. Syst. 79, 82–94 (2018)

39. Machanavajjhala, A., Kifer, D., Abowd, J.M., Gehrke, J., Vilhuber, L.: Privacy:
theory meets practice on the map. In: ICDE, pp. 277–286. IEEE (2008)

40. Machanavajjhala, A., Korolova, A., Sarma, A.D.: Personalized social recommen-
dations - accurate or private? VLDB 4(7), 440–450 (2020)

41. MovieLens 25m Dataset. https://grouplens.org/datasets/movielens/25m/.
Accessed 2020

42. Murakami, T., Hamada, K., Kawamoto, Y., Hatano, T.: Privacy-preserving mul-
tiple tensor factorization for synthesizing large-scale location traces with cluster-
specific features. Proc. Priv. Enhancing Technol. 2021(2), 5–26 (2021)

43. Murakami, T., Kawamoto, Y.: Utility-optimized local differential privacy mecha-
nisms for distribution estimation. In: USENIX Security, pp. 1877–1894 (2019)

https://doi.org/10.1007/978-3-319-95582-7_1
https://doi.org/10.1007/978-3-319-95582-7_1
https://arxiv.org/abs/2010.09393
https://arxiv.org/abs/2010.09393
https://doi.org/10.1007/978-3-030-29959-0_7
https://doi.org/10.1007/978-3-030-29959-0_7
https://grouplens.org/datasets/movielens/25m/

LSH with Extended Differential Privacy 583

44. Narayanan, A., Thiagarajan, N., Lakhani, M., Hamburg, M., Boneh, D., et al.:
Location privacy via private proximity testing. In: NDSS, vol. 11 (2011)

45. Nissim, K., Stemmer, U.: Clustering algorithms for the centralized and local mod-
els. In: Algorithmic Learning Theory, pp. 619–653 (2019)

46. Qi, L., Zhang, X., Dou, W., Ni, Q.: A distributed locality-sensitive hashing-based
approach for cloud service recommendation from multi-source data. IEEE J. Sel.
Areas Commun. 35(11), 2616–2624 (2017)

47. Samanthula, B.K., Cen, L., Jiang, W., Si, L.: Privacy-preserving and efficient friend
recommendation in online social networks. Trans. Data Priv. 8(2), 141–171 (2015)

48. Shin, H., Kim, S., Shin, J., Xiao, X.: Privacy enhanced matrix factorization for
recommendation with local differential privacy. IEEE Trans. Knowl. Data Eng.
30(9), 1770–1782 (2018)

49. Wang, J., Liu, W., Kumar, S., Chang, S.F.: Learning to hash for indexing big data
- a survey. Proc. IEEE 104(1), 34–57 (2016)

50. Wang, S., et al.: Mutual information optimally local private discrete distribution
estimation. CoRR abs/1607.08025 (2016). https://arxiv.org/abs/1607.08025

51. Wang, T., Blocki, J., Li, N., Jha, S.: Locally differentially private protocols for
frequency estimation. In: USENIX Security, pp. 729–745 (2017)

52. Warner, S.L.: Randomized response: a survey technique for eliminating evasive
answer bias. J. Am. Stat. Assoc. 60(309), 63–69 (1965)

53. Xiang, Z., Ding, B., He, X., Zhou, J.: Linear and range counting under metric-based
local differential privacy. In: ISIT, pp. 908–913 (2020)

54. Yang, D., Qu, B., Yang, J., Cudre-Mauroux, P.: Revisiting user mobility and social
relationships in LBSNs: a hypergraph embedding approach. In: WWW, pp. 2147–
2157 (2019)

55. Ye, M., Barga, A.: Optimal schemes for discrete distribution estimation under local
differential privacy. In: ISIT, pp. 759–763 (2017)

56. Zhang, Y., Gao, N., Chen, J., Tu, C., Wang, J.: PrivRec: user-centric differentially
private collaborative filtering using LSH and KD. In: Yang, H., Pasupa, K., Leung,
A.C.-S., Kwok, J.T., Chan, J.H., King, I. (eds.) ICONIP 2020. CCIS, vol. 1332, pp.
113–121. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-63820-7 13

https://arxiv.org/abs/1607.08025
https://doi.org/10.1007/978-3-030-63820-7_13

Zero Knowledge

MLS Group Messaging: How
Zero-Knowledge Can Secure Updates

Julien Devigne1,2, Céline Duguey1,2(B), and Pierre-Alain Fouque2,3

1 DGA Mâıtrise de l’information, Bruz, France
julien.devigne@intradef.gouv.fr

2 Irisa, Rennes, France
{celine.duguey,pierre-alain.fouque}@irisa.fr

3 Univ Rennes1, CNRS, Rennes, France

Abstract. The Messaging Layer Security (MLS) protocol currently
developed by the Internet Engineering Task Force (IETF) aims at provid-
ing a secure group messaging solution. MLS aims for end-to-end security,
including Forward Secrecy and Post Compromise Secrecy, properties well
studied for one-to-one protocols. It proposes a tree-based regular asyn-
chronous update of the group secrets, where a single user can alone per-
form a complete update. A main drawback is that a malicious user can
create a denial of service attack by sending invalid update information.

In this work, we propose a solution to prevent this kind of attacks,
giving a checkpoint role to the server that transmits the messages. In
our solution, the user sends to the server a proof that the update has
been computed correctly, without revealing any information about this
update. We use a Zero-Knowledge (ZK) protocol together with verifiable
encryption as building blocks. As a main contribution, we provide two
different ZK protocols to prove knowledge of the input of a pseudo ran-
dom function implemented as a circuit, given an algebraic commitment
of the output and the input.

Keywords: Cryptographic protocols · Messaging Layer Security -
MLS · Secure messaging · Zero-knowledge

1 Introduction

Secure messaging protocols have been widely adopted over the last few years.
The privacy offered by encrypted communication seduces billions of users world-
wide. A significant number of application providers have settled their security
on the Double Ratchet Algorithm [37], often identified as Signal. This proto-
col provides End-to-End confidentiality, as well as Forward Secrecy (FS) and
Post Compromise Secrecy (PCS). The Double Ratchet however is dedicated to
one-to-one communications. MLS targets secure group messaging and is devel-
oped by the IETF. The goal is to obtain similar security properties as those in
one-to-one protocols. The group keys are computed and regularly updated in a

c© Springer Nature Switzerland AG 2021
E. Bertino et al. (Eds.): ESORICS 2021, LNCS 12973, pp. 587–607, 2021.
https://doi.org/10.1007/978-3-030-88428-4_29

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-88428-4_29&domain=pdf
https://doi.org/10.1007/978-3-030-88428-4_29

588 J. Devigne et al.

protocol called TreeKEM, based on a tree structure: each member of the group
is represented by a tree leaf and the group secret is given by the tree root. To
perform an update, a user sends to the other leaves secret information which
depend on their position in the tree. In this paper, we are concerned with an
open problem identified in the MLS draft: how to be sure that each user receives
a valid update information? In other words: how to be sure that the updating
user is not cheating? The current protocol provides verification elements for each
user to check whether the update he received is valid, but it does not prevent
a malicious updater to send misformed update information to all or part of the
group. Such attacks would prevent the updating process, seriously damaging FS
and PCS properties, that seduce the users. Consequently, we propose a solution
in which the users only receive valid updates: the server which transmits the
update messages can check their validity before forwarding them. The server is
given a check-point role and has no more power to create an update, malicious or
not, than in the original protocol. Hence we only add a layer of security, through
the server, without modifying the core of MLS. A main building block of our
solution is a ZK protocol, inspired from the recent multi party computation
(MPC) in the head solutions [27,30,34].

Our Contribution. As a first contribution, we show how to combine a ZK
protocol with a verifiable encryption solution to solve the open problem identi-
fied in the IETF draft for MLS, in a light version of the protocol. The idea is
to enable an intermediate server to perform a blind verification (on encrypted
and committed data) that each update information sent by the updater is cor-
rectly computed. The ZK proof is provided on a statement that mixes a circuit
evaluation (an HKDF derivation, defined in [36]) and an algebraic commitment
(typically a Pedersen commitment, described in [38]). The verifiable encryption
scheme proves to the server (i.e. the verifier) that the encrypted data is the one
that is committed to and verified in the proof.

As a second contribution, we propose two ZK protocols for statements that
compose an algebraic commitment and the circuit computation of a pseudo-
random function family (PRF) f . More precisely, we prove the knowledge of a
secret witness x such that public commitments Cx, Cy are algebraic commit-
ments of x and f(x), with f(x) remaining secret. Our approach is based on the
MPC in the head paradigm, introduced in [30]. We consider the recent ZK proof
system ZKBoo [27] and its improvements ZKBoo++ [18] as well as KKW [34].
Our first approach is directly inspired by a recent work of Backes et al. [6]. The
first step is to provide commitments to the bits of the secret input and output.
Then, we call the algebraic properties of the commitment scheme to link those
bits with values used in the circuit proof. Our second approach consists in con-
sidering a Boolean circuit that computes a tag t = f(x) + ax. The proof on this
circuit binds the secret input and output to the tag value. In a second step, we
use the homomorphic properties of the commitment to show that the committed
values are also bound by t. Finally, we invoke properties of the function f to
show that their exists only one solution to the tag equation.

MLS Group Messaging: How Zero-Knowledge Can Secure Updates 589

Previous works, in particular [19] and [1], have proposed solutions for such
algebraic and circuit composition statements. However, the former is inherently
interactive and the latter uses SNARKs, where the burden of the proof is mainly
on the prover side, which does not fit our use case as smartphones have resources
to be saved.

Related Work. Secure Messaging, and more particularly Ratcheted Key
Exchange (RKE), have been widely studied (e.g. [3,9,31,33,39]) since the first
analysis of the Signal protocol [22]. Literature for the group version is more lim-
ited. In [21] Cohn Gordon et al. introduced the notion of Asynchronous Ratch-
eted Trees (ART). These ART are Diffie Hellman based binary trees in which the
update process of a node involves entropy coming from both its children. In MLS,
the underlying TreeKEM protocol is inspired by ART. A main difference is that a
single leaf can generate the update data for each of its ancestor nodes. TreeKEM
has been initially formalized in the technical paper [11] and has then evolved
to reach the actual description available on the prevailing draft 11 [7]. Alwen et
al. formalize in [4] a Continuous Group Key Agreement (CGKA) derived from
the two-party Continuous Key Agreement defined in [3]. They provide a secu-
rity model for CGKA and show that TreeKem does not achieve optimal FS and
PCS security, but prove that using updatable public key encryption can lead
to a better security. Our solution is compatible with this improvement. In [2],
Alwen et al. focus on the addition and revocation process. Finally, Brzuska et
al. provide in [12] an analyse of the current draft 11, considering both TreeKem
and the Key Schedule on top of it.

Zero-Knowledge (ZK) proofs, have proved to be a powerful tool in cryptog-
raphy, since their conception in the mid 1980s. It has been shown that ZK
proofs exist for any NP language. However, efficient ZK protocols are designed
for a small class of language and do not extend to any NP languages. Sigma
protocols (Σ-protocols), clearly described in [23], are very efficient for proving
algebraic relations, whereas other protocols have been designed for proving state-
ments that can be expressed as a circuit. Among them, Garbled Circuits based
schemes, as introduced in [32], which are inherently interactive, and SNARKs,
as designed in [26,28,35]. SNARKs are non-interactive arguments (with com-
putational soundness) of knowledge with small proofs and light verification: the
burden of the proof is on the prover side. They are proven secure in the common
reference string (CRS) model: a common trusted public input has to be shared
by the prover and the verifier. Practical implementations based on pairings are
in use in real life protocols such as cryptocurrencies. STARK proofs [10] remove
the CRS requirement but the prover’s algebraic computations are still linear
in the circuit size. The MPC in the head paradigm, introduced in [30], leads
to very efficient proof system without CRS. The seminal paper [27] introducing
ZKBoo proposes the first efficient ZK proof of a hash function computation. Fur-
ther works significantly optimize the efficiency, such as Ligero [5], ZKBoo++ [18]
and KKW [34] (developed for the post quantum signature scheme Picnic) or [29].

In real life however, many applications need to provide proofs on statements
that mix algebraic and non algebraic parts. Expressing the algebraic part as

590 J. Devigne et al.

a circuit would considerably increase the circuit size and reduce the efficiency.
One could express each gate of a circuit as an algebraic relation that can be
proven with a Σ-protocol, but this solution is clearly non desirable as circuits
for hashing may have thousands of gates. Considering this, combining efficiently
algebraic and non algebraic proofs has revealed to be an important challenge.

In [19], Chase et al. propose two constructions, based on Garbled Circuits, to
provide a circuit proof on a committed input. Our solutions are close to theirs in
the sense that their first proposal uses bit wise commitment on an secret input,
and their second proposal includes a one-time mac computation in the circuit to
be garbled. However, their proposal heavily relies on the garbling protocol and
can not be transposed to the non interactive setting.

More recently, Agrawal et al. in [1] propose a solution for modular compo-
sition of algebraic and non algebraic proofs. Their solution is non interactive,
based on Sigma protocols and QAP-based SNARKs. As explained in their work,
the “key ingredient [they] need from a SNARK construction is that the proof
contains a multi-exponentiation of the input/output”. They compose it with a
proof that the exponents in a multi-exponentiation correspond to values com-
mitted to in a collection of commitments. From this result, they show how to
obtain proofs for AND, OR and composition of two statements, either algebraic
or circuit. The small proofs and the light verification step of SNARKS are desir-
able for privacy-preserving credentials or crypto-currencies proofs of solvency.
But the prover’s high computational effort is not adapted to our application
where the verifier turns out to have a larger computation power than the prover.

Finally, Backes et al. propose in [6] an extended version of ZKBoo++ that
allows algebraic commitments on the secret input of the circuit. Their protocol
is non interactive and the computational cost is balanced between the prover
and the verifier. Their solution requires to commit to each bit of the secret input
and to commit to internal values of the ZKBoo++ circuit proof. We extend their
result to the case of a committed output in our first zero-knowledge solution.
We focus on the MPC in the head paradigm in order to provide proofs in which
the amount of work is balanced between both parties.

Organization of the Paper. In Sect. 2, we recall the definitions concern-
ing ZK proofs, commitment schemes, and verifiable encryption. In Sect. 3, we
present the protocol MLS, focusing on the process to update the group secret,
and we describe our solution to improve the security of the update mechanism.
The Sect. 4 is dedicated to our two protocols, CopraZK and (bitwise) ComInOutZK,
for proving knowledge of the preimage of a PRF function when only commit-
ments of the input and the output are publicly available.

2 Backgrounds

Zero-Knowledge. Consider an NP relation R, i.e. given a witness w and an
input x, R(x,w) = 1 can be decided in polynomial time. Let L be the language
associated to R, L = {x|∃w such that R(x,w) = 1}. A ZK proof of knowledge

MLS Group Messaging: How Zero-Knowledge Can Secure Updates 591

for L allows a prover to convince a verifier, that he knows a witness w for x,
without revealing w. It shall be correct (if the prover and the verifier are honest,
the verifier always accepts), sound (an efficient extractor that interacts with a
corrupted prover can exhibit a valid witness except with negligible probability),
and zero-knowledge (no information on w leaks from the proof). Following the
notation of [14], we write PK{w1, . . . ws : R(w1, . . . , ws, x1 . . . xt) = 1} to denote
the proof of knowledge of the secret witnesses w1, . . . ws that satisfy the relation
R with the public values x1, . . . , xt.

Σ-Protocols. These are specific three moves proofs of knowledge. The prover
first sends a commitment value q, receives a challenge e and answers with a value
t. Given (x, a, e, t), the verifier accepts or not. Those protocol provide correct-
ness, s-special soundness (given s transcripts with common commitments and
distinct challenges, one can extract a witness) and honest-verifier ZK (the ver-
ifier is suppose to generate the challenge honestly). They can be turned into a
non-interactive proof using Fiat-Shamir transformation [25]. In this case the
special-honest verifier clause disappears and the verification step consists in
reconstructing the challenge from the received data.

Commitment Schemes. A commitment scheme involves a Committer and
a Receiver who share public parameters. On entrance a message x and an
additional opening information r, the commitment protocol produces a value
c = Com(x, r) such that c shall not reveal any information about x; this is the
hiding property. The Committer can open its commitment c by revealing r and
x with the property that only the secret x shall produce a valid opening for c;
this is the binding property. For our first ZK protocol, we will require an extra
property, called equivocality. A commitment is equivocable if there exists a trap-
door T such that, given a commitment C, its opening information, and T , it is
possible to open C to any value. Equivocality comes with a specific extractor
that, given two different openings (x1, r1), (x2, r2) to a single commitment C, can
extract the trapdoor T . The Pedersen commitment scheme [38] is an equivoca-
ble scheme with unconditional hiding and computational binding. It is routinely
used because it interacts nicely with linear relations. This scheme is defined as
follows: let G be a cyclic group of prime order q, P a generator and Q ∈ G

such that the discrete log of Q in base P is unknown. Then, Com(x) = xP + rQ
where r is sampled at random in Zq. Let C1, C2 be commitments to values
x1, x2. If a, b ∈ Zq are public values, then one can efficiently prove the following:
PK{x1, x2, r1, r2 : C1 = x1P + r1Q ∧ C2 = x2P + r2Q ∧ ax1 + x2 = b mod q}.
The trapdoor for equivocality is given by the discrete log of Q in base P .

MPC in the Head. Ishai et al. introduced in [30] a new paradigm for ZK
proofs, called MPC in the head. This solution reveals to be very competi-
tive in terms of efficiency for ZK proofs performed on circuits. The idea is
that the prover performs a virtual MPC and obtains several views. He com-
mits to these views and opens only a sub-part of them required by the verifier.
ZKBoo [27] generalizes IKOS to any relation Rφ defined by a function φ : X → Y
(Rφ(y, x) ↔ y = φ(x)), as long as the function φ can be computed in a specific

592 J. Devigne et al.

manner identified as a (2,3)-decomposition. The prover first shares its secret
input x into (x1, x2, x3) = Share(x) such that x = x1⊕x2⊕x3. Then he runs the
MPC and obtains three distinct views w1, w2, w3 and from each of this view he
gets an output share yi = Output(wi), i ∈ {1, 2, 3} such that y1 ⊕y2 ⊕y3 = φ(x).

Verifiable Encryption. Verifiable encryption aims at convincing a verifier that
an encrypted data satisfies some properties without leaking any information
about the data itself. In such 2-party protocol, a prover and a verifier share in
a common input string a public key encryption scheme Enc, a public key pk for
Enc, and a public value y. At the end, the verifier either accepts and obtains the
encryption of a secret value x under pk such that x and y verify some relation
R or rejects. It is worth noticing that the prover does not need the secret key
sk, that usually belongs to a third party. Verifiable encryption often appears
in the domain of anonymous credentials, fair exchange signatures, or verifiable
secret sharing [40]. In [13], Camenish and Damg̊ard describe how to provide a
proof that an encrypted value is a valid signature, using any semantically secure
encryption scheme. The idea is to take advantage of the Σ-protocol for a relation
R(x, y), to prove that an encrypted value is the witness x for this relation. In
our application, we need to prove that the data that is encrypted, x, is the one
that is linked by a Pedersen commitment Cx = y. As a Pedersen commitment
comes with an associated Σ-protocol, the Camenish-Damg̊ard scheme applies
naturally. There are interesting ways towards more efficient schemes, e.g. [20]
or [16]. However, the main benefit of the Camenish-Damg̊ard solution is that we
can still use the encryption scheme required in MLS specification. We denote by
VerifEncEnc,pk(m : r) the encryption of a message m (using randomness r) under
the public key pk with the encryption scheme Enc and the associated proof. We
omit the randomness r when it is not necessary to explicitly mention it.

3 MLS Updates

We explain how the MLS update mechanism works and our more secure solution.

3.1 Message Layer Security

MLS is a protocol currently under development by the IETF to provide an End-
to-End secure group messaging application. The idea is to enable a group of
users to share a common secret that can be updated regularly by any member.
One of the open issues in the IETF draft is that the validity of an update
message can only be checked after it has been received. This open issue is clearly
identified in the current draft 11 ([7], Sect. 15.5). However, to our knowledge,
there is still no solution to this problem. Currently in MLS, the authors require
an hybrid public key encryption (HPKE) scheme, as designed in [8], composed
of a key encapsulation mechanism (KEM) to transmit a symmetric key k and
an AEAD encryption scheme that encrypts the data under k, as well as a key
derivation function. In the rest of this work, we denote by Encpk(m : r) the
HPKE encryption of a message m under the public key pk using randomness r.

MLS Group Messaging: How Zero-Knowledge Can Secure Updates 593

The asymmetric part of Enc is based on an elliptic curve E defined on a finite
field Z/pZ with base point P of order a prime q. MLS also supposes the existence
of a broadcast channel for each group, which distributes the messages to each
group member, conserving the order.

TreeKem. MLS key exchange TreeKem is based on a binary tree structure
(Fig. 1) where users correspond to leaves and each node is associated to a secret
value. Each user U has a long term identity signing key and an initial key package
for the encryption scheme Enc (both certified by a PKI). We will simply represent
the key package as a public/private key pair (pkU , skU).

Fig. 1. A view of the MLS tree. Nodes are implicitly numbered from left to right,
independently from their height. Leaves are associated to a user represented as a letter.
Each node i has a secret psi. A leaf secret is indexed with its user name.

The group key is derived from the root secret. Each child node knows the
secret of each of its ancestors and only of its ancestors. To each node i corre-
sponds a path secret psi and a secret and public key ski, pki = deriveKeyPair(psi)
(in the original protocol the keys are derived from an intermediate node secret
nsi itself derived from psi. We present a lighter version for the simplicity of the
exposure but the complete version is compatible with our solution.)

The derivation depends on the elliptic curve (see Appendix A). We define,
w.l.o.g, (ski, pki) = deriveKeyPair(psi) = (deriveSK(psi), deriveSK(psi)P) where
deriveSK is a PRF. A user knows the secrets psi and ski in his direct path,
composed of himself and his direct ancestors. Moreover, each user keeps an up-
to-date global view of the tree, as a hash value of each node’s public information.

Updates. To update the tree, a user B generates a new secret ps′
B. The

path secrets in the direct path will be successively derived from ps′
B . We

note Hp(psi) for the function HKDF − expand(psi, “path”, “”,Hash.length). The
update mechanism is given in Fig. 2. When B updates its secret psB → ps′

B, he
first computes the new node data for each node on his path:

– ps′
2 = Hp(ps′

B), pk2 = deriveSK(ps′
2) · P

– ps′
4 = Hp(ps′

2), pk4 = deriveSK(ps′4) · P
– ps′

root = Hp(ps′
4), pkroot = deriveSK(ps′

root) · P

594 J. Devigne et al.

Fig. 2. Update process. User B updates its secrets. Path secrets are updated along its
direct path (in red). The update secrets are sent to its copath nodes (in green). (Color
figure online)

Then he sends for each node on its copath the necessary secret material for
the users under this node to perform the same update. Following our example
in Fig. 2, B has to send ps′

2 to A, ps′
4 to nodes C and 6 and ps′

root to nodes
E, 10, F, 12, G, 14,H. As a child knows the secret key ski for each of its ancestors,
B will only have to encrypt ps′

2 under pkA, ps′
4 under pk6 and ps′

root under pk12.
From ps′

2 (respectively ps′
4), A (resp. C) shall be able to compute the root

secret. From this root secret is derived an epoch secret SE+1. Before sending
his Commit, B computes SE+1 and uses it to produce a confirmation key. This
value shall enable A and C to check that they have derived the correct root
secret and so, that they received a correct update. Other mechanisms such as
the transmission of the updated view of the tree, or of intermediate hash values
are provided for a user to check that he received a correct update. All those
mechanisms enable a verification after receiving the update information.

Hence, either the update is adopted only once some members have confirmed
that they received a valid update - at least one member in the subtree of each
node in the update copath, as recommended in draft 11. This can imply a huge
latency, if some users are seldom online, and non valid updates can lead to a
denial of service. Or the update is validated without feedback and the users that
received non valid secret values are ejected from the group de facto. In both case,
this seriously hampers with the security of the service provided by the protocol.

3.2 Securing MLS Updates

We now explain how to combine a ZK protocol and a verifiable encryption to
secure the update process in MLS. We first focus on a single step of the update
process (a user updates his direct parent) and then explain how this solution
can be extended to the global tree.

Server-Checking in MLS. As described in Fig. 2, let assume that B generates
a new secret ps′

B and computes:

MLS Group Messaging: How Zero-Knowledge Can Secure Updates 595

– deriveKeyPair(ps′
B) to obtain a new key package and CB = Com(psB′ , rB′);

– ps′
2 = Hp(ps′

B) the new secret for node 2 and C2 = Com(Hp(ps′
B), r2);

– (sk′
2, pk′

2) = deriveKeyPair(ps′
2) the new keys for node 2 and the corresponding

Csk′
2

= Com(deriveSK(Hp(ps′
B)), rsk′

2
).

Suppose there exists a ZK protocol which, given public values Cx and Cy, pro-
vides the following proof: PK{x, rx, ry : Cx = Com(x, rx) ∧ Cy = Com(f(x), ry)}
for any PRF f . Then B can send to the server the public values CB ,
C2, Csk′

2
, pk′

2 together with a proof Π2 = PK{ps′
B , rB′ , r2, rsk′

2
: CB =

Com(ps′
B , rB′)∧C2 = Com(Hp(ps′

B), r2)∧Csk′
2

= Com(deriveSK(Hp(ps′
B)), rsk′

2
)∧

pk′
2 = deriveSK(ps′

2)P} (the last part of the proof being a classic discrete log
proof).

On another side, verifiable encryption (detailed in Sect. 2) allows to link the
message encrypted with VerifEnc with the data committed in C2. To sum up, B
will send for a node update, the public values CB , C2, Csk′

2
, and pk′

2, the proof
Π2 together with VerifEncEnc,pkA

(ps′
2). If the server accepts the proof, then he

transmits the public key pk′
2 as well as VerifEncEnc,pkA

(ps′
2) to A.

To extend the proof to the complete tree, one has to repeat the above steps
for each level. To certify the update value ps′

4 corresponding to the parent node 4,
B will send the server values C4, Csk′

4
, pk′

4, the proof Π4 = PK{ps′
2, r2, r4, rsk′

4
:

C2 = Com((ps′
2), r2) ∧ C4 = Com(Hp(ps′

2), r4) ∧ Csk4 = Com(deriveSK(Hp(ps′
2)),

rsk′
4
) ∧ pk′

4 = deriveSK(Hp(ps′
2))P} together with VerifEncEnc,pk6(ps′

4). The cru-
cial point is that, as the commitment C2 is linked with ps′

B in Π2, it can be
used as a base value for Π4 and so on. Some special care must be taken as we
commit, in a group of order q prime, to an element sk ∈ {0, 1}256 that does not
lie naturally in Z/qZ. We explain how to handle with this in Appendix A.

About the Server. Several reasons appear for calling on a third party. Firstly,
this central node with the largest computational power is the one that can discard
invalid updates with the most efficiency. If one relies on users to check for the
validity of the data they received, this means that one must wait for each user
to process the update and to send back an acknowledgement. As a user can be
off-line for a long time, this can be very inefficient. Another solution would be
to allow users to adopt the update as soon as they are individually convinced
it is correct, while providing a “backup solution”. This would probably imply
keeping old keys and drastically impoverish FS.

Secondly, in MLS architecture, all the update encrypted messages are gath-
ered and sent as one big message to all the users. It may be of interest to think
of a solution where only the needed encryption is sent to a specific user. In this
case, only the server will see all the messages together. He is then the only one
able to perform a verification on a global proof to see whether all the updates
are correctly generated from a single secret seed.

4 ZK for a PRF on Committed Input and Output

In this section, we provide two protocols to prove the knowledge of an input
x and randoms rx, ry, such that, for a public values Cx, Cy, and a function f

596 J. Devigne et al.

evaluated as a circuit, Cx = Com(x, rx) and Cy = Com(f(x), ry). Recall that
efficient ZK proofs for a function evaluation are operated on a circuit, whereas
efficient commitments are algebraic. Consequently, we want to achieve the best
of both worlds by combining a proof on a circuit and algebraic commitments.

Our first solution, ComInOutZK (Committed Input and Output ZK) is directly
inspired from [6], which provides a proof of a circuit evaluation on a committed
input and public output. We extend their work to a committed output.

Our second solution, CopraZK (Commitment and PRF alternative ZK),
requires some specific properties on the function f . We consider the circuit that
computes f(x,m)+αx where x is the key of the PRF and α is determined by the
commitment values. Calling some PRF-related properties, and the homomorphic
properties of the commitment, we show that the values committed in Cx and Cy

must be those that appear in the circuit evaluation.
We compare in Table 1 our two solutions with the SNARK based solution

of [1]. CopraZK adds a negligible number of algebraic operations. The prover
performs 4 multiplications on the curve (public key operations) and 8 compu-
tations in Z/qZ (symmetric operations). For the verifier, 6 computations on the
curve and 2 in Z/qZ are needed. Considering ZKBoo, the prover effort is O(σ|F |)
symmetric operations, where |F | is the number of AND gates of the circuit and
σ the number of rounds. Our solution requires O(σ(|F |+ |mod|))+ 8 symmetric
operations and 4 public key operations, where |mod| is the size of the circuit
for a modular addition which is negligible compared to |F |. The computational
cost is dominated by the symmetric part and finally, our solution requires on the
prover side (O(σ|F |) symmetric operations. The size of the proof and the work
on the verifier’s side are also dominated by the circuit part. One inconvenient is
that the security proof requires non usual hypothesis on the function f .

On the opposite side, ComInOutZK is valid for any circuit, only requires equiv-
ocality of the commitment scheme, which is a common hypothesis, and leaves
the circuit evaluation untouched. But it requires a non negligible number of alge-
braic commitments. Considering |x| (respectively |y|) the bit size of the input
(of the output), we obtain on the prover side O(|x| + |y| + 2σ) public key opera-
tions and O(σ|F |) symmetric operations. The verifier’s work is equivalent. The
proof size of ZKBoo is augmented with O(|x| + |y| + 6σ) curve points which is
asymptotically O((|x| + |y| + λ)λ) as σ augments with λ.

On the Challenge Size. When we expose our solutions, in both case we mention
a unique challenge, that is used for the algebraic Σ-protocol and for the ZKBoo
proof. This means that the challenge space size for the Σ-protocol is 3 and that
we shall perform λ/3 rounds to obtain a soundness error in 2−λ. The Σ-protocol
can benefit from a larger challenge space, that allows for a single round. As
explained in [6], it is possible to define distinct challenges eρ ∈ {1, 2, 3} for each
ZKBoo round and a global challenge e =

∑σ
i=1 3iei for the algebraic Σ-protocols,

hence the algebraic part of the proof can be performed a single time.

MLS Group Messaging: How Zero-Knowledge Can Secure Updates 597

Table 1. Efficiency of the different solutions for circuit proof on committed input and
output. pub stands for the cost of a public key operation (multiplication on the curve),
while sym stands for the cost of a symmetric operation. |F | is the circuit size, |x| the
input size and |y| the output size. In most applications, |F | � (|x|, |y|, λ).

Non
inter-
active

No CRS Prover’s
work

Verifier’s work Proof size

SNARK based [1] Yes No O((|F | +
λ) · pub)

O((|x| + |y| +
λ) · pub)

λ

CopraZK Yes Yes O(|F |λ ·
sym)

O(|F |λ · sym) O(|F |λ)

ComInOutZK Yes Yes O(|F |λ ·
sym+(|x|+
|y|+λ)·pub)

O(|F |λ ·
sym + (|x| +
|y| + λ) · pub)

O((|F | + |x| +
|y| + λ)λ)

4.1 ComInOutZK: A Bit-Wise Solution

In [6], the authors propose a non interactive proof PK{x : Cx = Com(x, rx)∧y =
f(x)} based on bit commitments and ZKBoo++. Their optimized solution
increases the ZKBoo++ prover’s and verifier’s work with O(|x|+σ) exponentia-
tions and multiplications on the group G of order q chosen for the commitment,
where |x| is the number of bits of the input x and σ is the number of rounds in
ZKBoo++. The proof size grows by O(|x| + σ) group elements and O(|x| + σ)
elements in Z/qZ. We adapt this strategy in the case of a committed output.
As the output of the circuit, y, shall remain secret, we will not be able to call
ZKBoo++ as a full black box. This is of prime importance when we prove the
zero-knowledge property.

The work of Backes et al. and our extension rely on a result given by the
homomorphic property of a commitment scheme such as Pedersen scheme. For
any scalar k, and any two commitments Com(x, rx), Com(y, ry), k ·Com(x, rx)+
Com(y, ry) = Com(kx + y, krx + ry). For any commitment Cb = Com(b, rb) to
a secret bit b and any public bit β, one can easily compute the commitment of
b⊕β as follows: if β = 0, Cb⊕β = Cb and if β = 1 then Cb⊕β = Com(1, 0)−Cb =
Com(1 − b,−rb). For any x =

∑|x|−1
i=0 2ix[i], denote Cx[i] = Com(x[i], rx[i]) a

commitment to the i-th bit of x. Then
∑|x|−1

i=0 2iCx[i] is a valid commitment
to x with opening randomness

∑|x|−1
i=0 2irx[i]. And one can easily compute a

commitment to x ⊕ β for an element β as Cx⊕β =
∑|x|−1

i=0 2iCx[i]⊕β[i], with
opening randomness

∑|x|−1
i=0 2i(−1)β[i]rx[i].

We describe in Fig. 3 the protocol on committed output only (ComOutZK), for
readability reasons. Combining Backes et al. protocol for committed input and
ours for committed output leads to ComInOutZK.

Let f be a function: Z
�
2 → Z

�
2, G be a group of prime order q, such that

2� ≤ p. There is a natural embedding Z
�
2 ↪→ G. Let P be a generator for this

598 J. Devigne et al.

Fig. 3. The ComOutZK protocol. Combining this protocol with the same mechanism on
the input given in [6] leads to ComInOutZK. The reconstruct step of the verification
consists in computing the commitment a from the response data and check its validity
with the challenge. Only the values in a that can not be reconstructed need being sent.

MLS Group Messaging: How Zero-Knowledge Can Secure Updates 599

group and Q an element of G such that logP (Q) is unknown. We consider a hash
function h : Z∗

2 → Z
�∗
2 and Com be the Pedersen commitment scheme.

The Theorem 1 states the security of our bitwise solution.

Theorem 1. Given that ZKBoo and the Πj are Σ protocols with 3-special
soundness and honest verifier Zero Knowledge property, and Com is a homo-
morphic and equivocal commitment scheme, then the protocol described in Fig. 3
is a Σ-protocol with 3-special soundness and honest verifier property.

Proof of the Security of ComInOutZK. We study separately the three properties
a Σ-protocol should verify.

Correctness. Assuming the Prover and the Verifier execute the protocol as
described, the Verifier never meets a rejection cause and then always accepts.

Soundness. Consider an algorithm Ext that has access to three distinct accepting
executions of the protocol on the same commit phase: (a, e1, p1), (a, e2, p2), and
(a, e3, p3), e1 	= e2 	= e3, for a public statement Cy. We show that Ext can exhibit
a witness (x∗, r∗) such that Cy = Com(f(x∗), r∗). We can not directly call the
Extractor from ZKBoo++ as we do not exactly execute ZKBoo. In our protocol,
the Verifier does not have access to the output of the circuit. However, we show
that this difference does not prevent Ext from succeeding. We describe in the
following how Ext works.

Firstly, from the distinct transcripts Ext can obtain three pairs of shares
xe1 , xe1+1, xe2 , xe2+1, xe3 , xe3+1. He also gets three pairs of output values ye1 ,
ye1+1, ye2 , ye2+1, ye3 , ye3+1 and the corresponding randomness rye1

, rye1+1 , rye2
,

rye2+1, rye3
, rye3+1. From the common commitment a, Ext gets Cy1 , Cy2 , Cy3 .

As the three transcripts are accepting, Ext knows that (considering, w.l.o.g.,
e1 = 1, e2 = 2, e3 = 3):

Cy1 = Com(ye1 , rye1
) = Com(ye3+1, rye3+1).

Cy2 = Com(ye2 , rye2
) = Com(ye1+1, rye1+1).

Cy3 = Com(ye3 , rye3
) = Com(ye2+1, rye2+1).

Then, if one of this equality verifies with different openings, then, due to the
equivocability of the commitment scheme, Ext can extract the trapdoor. Then
he can consider any value x̃, compute ỹ = f(x̃) and compute the appropriate
randomness to open Cy to ỹ.

Now we consider the case when the equalities on the commitments traduce
equalities of the openings. Ext thus obtains three values y1 = ye1 = ye3+1,
y2 = ye2 = ye1+1, y3 = ye3 = ye2+1 and a single y∗ = y1 ⊕ y2 ⊕ y3. From then, as
in the original ZKBoo proof he can execute back the MPC protocol and obtain
three shares x1 = xe1 = xe3+1, x2 = xe2 = xe1+1, x3 = xe3 = xe2+1 and a single
x∗ = x1 ⊕ x2 ⊕ x3 such that y∗ = f(x∗).

Now Ext needs to extract a randomness r∗ that opens Cy to y∗. Using as
a subroutine the extractors for the proofs Πj , Ext obtains couples (y′[j], ry′[j])
for j ∈ [0, |y| − 1]. From the protocol, as the transcripts are accepting ones,

600 J. Devigne et al.

Ext knows that Cy =
∑|y′|−1

i=0 2iCom(y′[i], ry′[i]). Ext selects one transcript, for

instance e1. He computes β = ye1 ⊕ ye1+1 and Cz =
∑|y′|−1

i=0 2iCy′[i]⊕β[i] =
∑|y′|−1

i=0 2iCom(y′[i] ⊕ β[i], (−1)β[i]ry′[i]). By the protocol, Cz = Cye1+2 −
Com(0, rz). If

∑|y′|−1
i=0 2i(y′[i] ⊕ β[i]) 	= ye1+2 and/or

∑|y′|−1
i=0 2i(−1)β[i]ry′[i] 	=

rye1+2−rz, then again, Ext obtains the trapdoor of the commitment scheme and

can open Cy to the value he wishes. Otherwise
∑|y′|−1

i=0 2i(y′[i]⊕β[i]) = ye1+2 and
∑|y′|−1

i=0 2i(y′[i]) = ye1+2⊕β = ye1+2⊕ye1⊕ye1+1 = f(x∗). Finally,
∑|y′|−1

i=0 2iry′[i]
opens Cy to f(x∗) and the extractor is done. The running time of the extractor
is bounded by the time of running back the MPC protocol (as for the ZKBoo
extractor) + the running time of the extractors ExtΠj

+ computing one XOR
and one commitment. Considering that an extractor for ZKBoo and the extrac-
tor for the proofs Πj run in polynomial time, Ext also runs in polynomial time.

Zero-Knowledge. We consider a simulator Sim that, on input a public state-
ment Cy, shall produce a transcript (a, e, p). As for the soundness, we cannot
call directly the ZKBoo simulator, SimZKB , as the output of the circuit is not
part of the statement. Sim runs as follows: he sets e and he samples random
tapes ke, ke+1 and random input shares xe, xe+1. Then he runs the protocol as
normal except that, when he meets a binary multiplication gate in the circuit, he
cannot compute the real value of the view we+1 (because it would depend on the
third view that he cannot compute because he does not know x) so he samples it
at random. This is indistinguishable form the real execution as binary multipli-
cation gates are, in a correct execution, randomized with an element from ke+2

that the Verifier cannot compute. Sim obtains output values ye, ye+1. He sam-
ples random re, re+1, computes Cye

= Com(ye, re) and Cye+1 = Com(ye+1, re+1).
In a second step, he samples random |y|−1 bit values y[j], j ∈ [1, |y|−1] and

associated randomness ry[j] and computes Cy[j] = Com(y[j], r[j]). He executes
the proofs Πj with challenge e. Then he evaluates Cy[0] = Cy − ∑|y|−1

j=1 Cy[j].
Using the simulator for the proof Π0, Sim obtains a transcript for Π0 for a
challenge e′. If e′ 	= e he runs SimΠ0 again. Given that Π0 is honest verifier, there
is a non negligible probability that e′ = e within a polynomial time. Defining β =
ye ⊕ ye+1, Sim can compute Cy[i]⊕β[i] only from the knowledge of Cy[i] and β[i].

Now Sim samples rz ∈ Zp and computes Cye+2 =
∑|y|−1

j=0 Cy[i]⊕β[i] +Com(0, rz).
He now has all the elements to produce an accepting transcript.

The transcript of the ZKBoo part of the proof is indistinguishable form a
real execution. The elements that Sim produces itself are commitments that will
not be opened, hence, by the hiding property of the commitment, the complete
simulated transcript is indistinguishable form a real execution of the protocol.

4.2 A Second Solution: CopraZK

Let us denote by Func(D,R) the set of all functions from D to R and by
FF(K,D,R) the set of all function families with parameter (key) in K, domain D
and range R. We write f : K×D → R for a function family in FF(K,D,R) (and

MLS Group Messaging: How Zero-Knowledge Can Secure Updates 601

Fig. 4. Our protocol CopraZK.

call it a function, by ease of language). Let f be a function: Z�
2 × Z

∗
2 → Z

�
2 and

m a public input, m ∈ Z
∗
2. Let G be a group of prime order q, such that 2� ≤ q.

Let P be a generator for this group and Q an element of G such that logP (Q)
is unknown. Let h be a hash function Z

∗
2 → Z

�∗
2 and Com be the Pedersen

commitment scheme. They are the public parameters of the protocol.

602 J. Devigne et al.

Let Cx, Cy be public commitments, known to the verifier. The main idea is
to consider the circuit that computes the tag t = f(x,m) + αx where α is a
public coefficient derived from the commitment values Cx and Cy. A MPC in
the head proof on this circuit ensures that t is correctly computed from a secret
value x known to the prover. Considering Pedersen commitments, we complete
the circuit proof with an algebraic proof that the committed values in Cx and Cy

verify the relation t. This linear relation plus the properties of f defined below,
bind the values of Cx and Cy such that the verifier can be convinced that the
value committed in Cy is equal to the evaluation of f on the value committed
in Cx. A complete description is given in Fig. 4. We depict our protocol using
ZKBoo for the circuit part, but the proof adapts to any circuit based ZK proof.

Theorem 2 states the security of CopraZK, that is settled on two properties
of the family f . The correlation intractability [15] of its dual function f̃ (when
the role of the input and the key are switched) and a glider-PRF (general linear
input deviation resistant PRF) security that states that an adversary gains no
knowledge on x when given f(x,m)+αx. We provide more information on those
properties and a sketch of proof in Appendix B.

Theorem 2. Given that ZKBoo and the Πj are Σ protocols with 3 (respec-
tively 2) special soundness and honest verifier Zero Knowledge property (in their
interactive form), that Com is a homomorphic commitment scheme, and that f
is a glider-PRF function family such that f̃ is correlation intractable relatively to
relations {Ra,b : {x, y : y = ax + b}}, then the protocol described in Fig. 4 is a
Σ-protocol with 3-special soundness and full Zero-Knowledge.

5 Conclusion

In this work we provide a concrete solution to a practical problem that appears
in the MLS specification. We describe how existing cryptographic tools such
as ZK proofs and verifiable encryption can be combined to secure the update
process. As the regular update of the group secret is the key to obtain the FS
and PCS properties, we think our solution may be of interest.

Additionally, we propose two protocols to obtain ZK proofs on circuit with
committed input and output, such that our improvement proposal for MLS is
settled on protocols as efficient as possible. Hence, an interesting way for future
work is in the optimization of the verifiable encryption. The CL framework, intro-
duced by Castagnos and Laguillaumie in [17] and enriched with Zero-Knowledge
properties in [16], that considers a cyclic group G where the DDH assumption
holds together with a subgroup F of G where the discrete logarithm problem is
easy, may provide novel and efficient solutions.

A Key Size and Group Orders in MLS Updates

In [7], several suitable cipher suites are described. We focus on one of them
for a practical example, for a 128-bit security level. This suite uses X25519

MLS Group Messaging: How Zero-Knowledge Can Secure Updates 603

for ECDH computation and SHA256 as a hash function (and base function for
HKDF implementation). Following [24], the private key sk is obtained from
a 256-bit string of secure random data (sk[0], sk[1], . . . , sk[255]) by applying
the following transform: sk[0]& = 248, sk[31]& = 127 and sk[31]| = 64. One
obtains, when interpreted as an integer value in little endian, a scalar of the
form 2254 + 8 ·
,
 ∈ �0; 2251 − 1�. We design by deriveSK the application of
SHA256 followed by the above transformation such that for any 32-byte sequence
of random data X, deriveSK(X) is a valid secret key for X25519. This encoding
can be integrated in the circuit computing the last derivation. The public key is
obtained by multiplying the secret key by the base point of the curve: given a
32-byte secret X, DeriveKeyPair(X) = (deriveSK(X), deriveSK(X)P). We adopt
this notation independently from the curve targeted.

Group Order and Commitments. In our proofs, we consider commitments
and discrete logarithm proofs in cyclic groups of order q, and circuits input
and output that naturally lie in Fq. This may not be the case. Considering
X25519 key derivation derived above, a new user’s secret ps′

B is a random element
in {0, 1}256, which, when interpreted as an integer, can be larger than q. As
explained in [6], it is possible to consider ps′

B mod q for the commitment and
to include to a modular computation in the circuit. If q is close enough to 2256

then it is a simple comparison and subtraction. This requires around 2 000 gates,
which is negligible compared to our circuit size. Another solution is to directly
sample ps′

B in Fq. This can be done by rejection sampling or as follow: sample
X sufficiently big compared to log2(q) (log2(X) > log2(q) + 64 as advised by
the NIST for instance), then simply considering X mod q can be done with a
negligible bias. For all the intermediate values in the tree, the first method can
be applied. The last step is the commitment of the secret key sk = Encode(X).
For this element, we directly consider the encoding provided with the curve.
The commitment Csk of sk in a group of order q will result in the same implicit
reduction modulo q than the computation of the public key. Then we can produce
an AND ZK proof that the value committed to in Csk is the discrete log of the
pk: PK{sk : Csk = skP + rQ ∧ pk = skP}.

B Security of Our Zero-Knowledge Protocols

We present a sketch of proof for the security of CopraZK given in Theorem 2. It
is settled on two properties for the function family f . Firstly, we need its dual
function f̃ to be correlation intractable with respect to the family of relations
Ra,b : {x, y : y = ax + b} for a, b random values. Correlation intractability was
introduced in [15] and says that, for any relation in the family Ra,b, for any
random key x, an adversary has a negligible probability to find an input m such
that (m, f(x,m)) satisfies the relation. Secondly, we need to be sure that the tag
does not leak information on the key. We define a general linear input deviation
resistant PRF (glider-PRF) as follows:

604 J. Devigne et al.

Definition 1 (glider-PRF security). A function family f ∈ FF(K,D,R) (with
appropriate domain and range) is said to be a glider-PRF if for all PPT adversary
A, and a random α ←$ R, there exists a negligible function negl such that:

Pr
[
x ← A(α)Og : g ←$F(D,R)

] − Pr
[
x ← A(α)Of(k,·)+α· : k ←$ K] ≤ negl(λ)

As we use Fiat-Shamir to get an non interactive protocol, our proof is settled
in the Random Oracle Model (ROM), which would satisfy our hypothesis. How-
ever, it seems contradictory to idealize as a random oracle the PRF f that is
concretely described as a circuit in the ZKBoo part of the protocol. Hence, the
ROM hypothesis only applies to the hash function h that generates the chal-
lenge and the correlation intractability and glider-PRF properties provide a way
to formalize a security proof when only some properties of the random oracle
are needed. The correctness of the protocol follows by inspection.
3-Special Soundness. From the 2-special soundness of the Sigma protocol Π, one
extract x̃, ỹ, r̃x, r̃y such that Cx = x̃P +r̃xQ,Cy = ỹP +r̃yQ and t = αx̃+ỹ. From
the 3-special soundness of ZKBoo, one extracts x′ such that t = f(x′,m) + αx′,
where t is a fixed value, the same as the one for the proof Π. Correlation
intractability of f̃ ensures that x′ 	= x̃ happens with negligible probability. We
note that the correlation intractability of f̃ requires the input of f to be ran-
domized. In MLS, this supposes considering a random value (for instance the
hash of the tree view) instead of the constant 0.
Zero Knowledge. We build a simulator Sim as follows: Sim sample a random
value t ←$Z/qZ. Then he calls the Simulator of ZKBoo, SimZKBoo, as a sub-
routine and obtains a transcript (aZKBoo,e,zZKBoo

). Then he calls the simulator
for the Sigma protocol Π, SimΠ , as a second subroutine, on the challenge e and
obtains a second transcript (aΠ , e, zΠ) (as SimΠ shall work for any challenge).
If f is glider-PRF-secure, then sampling a random t is indistinguishable from
the real distribution of t and finally, the output distribution of Sim is indistin-
guishable from the real execution output. In the context of MLS, the tag t must
be accessible to the server only. A user who would receive its valid update and
access the tag could compute the secret of its child, which he should not.

References

1. Agrawal, S., Ganesh, C., Mohassel, P.: Non-interactive zero-knowledge proofs for
composite statements. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018.
LNCS, vol. 10993, pp. 643–673. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-96878-0 22

2. Alwen, J., et al.: Keep the dirt: tainted TreeKEM, adaptively and actively secure
continuous group key agreement. Cryptology ePrint Archive, Report 2019/1489
(2019). https://eprint.iacr.org/2019/1489

3. Alwen, J., Coretti, S., Dodis, Y.: The double ratchet: security notions, proofs, and
modularization for the signal protocol. In: Ishai, Y., Rijmen, V. (eds.) EURO-
CRYPT 2019. LNCS, vol. 11476, pp. 129–158. Springer, Cham (2019). https://
doi.org/10.1007/978-3-030-17653-2 5

https://doi.org/10.1007/978-3-319-96878-0_22
https://doi.org/10.1007/978-3-319-96878-0_22
https://eprint.iacr.org/2019/1489
https://doi.org/10.1007/978-3-030-17653-2_5
https://doi.org/10.1007/978-3-030-17653-2_5

MLS Group Messaging: How Zero-Knowledge Can Secure Updates 605

4. Alwen, J., Coretti, S., Dodis, Y., Tselekounis, Y.: Security analysis and improve-
ments for the IETF MLS standard for group messaging. In: Micciancio, D., Ris-
tenpart, T. (eds.) CRYPTO 2020. LNCS, vol. 12170, pp. 248–277. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-56784-2 9

5. Ames, S., Hazay, C., Ishai, Y., Venkitasubramaniam, M.: Ligero: lightweight sub-
linear arguments without a trusted setup. In: Thuraisingham, B.M., Evans, D.,
Malkin, T., Xu, D. (eds.) ACM CCS 2017, pp. 2087–2104. ACM Press, Oct/Nov
2017. https://doi.org/10.1145/3133956.3134104

6. Backes, M., Hanzlik, L., Herzberg, A., Kate, A., Pryvalov, I.: Efficient non-
interactive zero-knowledge proofs in cross-domains without trusted setup. In: Lin,
D., Sako, K. (eds.) PKC 2019. LNCS, vol. 11442, pp. 286–313. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-17253-4 10

7. Barnes, R., Beurdouche, B., Millican, J., Omara, E., Cohn-Gordon, K., Robert,
R.: The messaging layer security (MLS) protocol. https://datatracker.ietf.org/doc/
draft-ietf-mls-protocol/

8. Barnes, R., Bhargavan, K., Lipp, B., Wood, C.: Hybrid public key encryption
(2021). https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-hpke-12

9. Bellare, M., Singh, A.C., Jaeger, J., Nyayapati, M., Stepanovs, I.: Ratcheted
encryption and key exchange: the security of messaging. In: Katz, J., Shacham,
H. (eds.) CRYPTO 2017. LNCS, vol. 10403, pp. 619–650. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-63697-9 21

10. Ben-Sasson, E., Bentov, I., Horesh, Y., Riabzev, M.: Scalable, transparent, and
post-quantum secure computational integrity. Cryptology ePrint Archive, Report
2018/046 (2018). https://eprint.iacr.org/2018/046

11. Bhargavan, K., Barnes, R., Rescorla, E.: TreeKEM: asynchronous decentralized
key management for large dynamic groups (2018)

12. Brzuska, C., Cornelissen, E., Kohbrok, K.: Cryptographic security of the MLS
RFC, Draft 11. Cryptology ePrint Archive, Report 2021/137 (2021). https://ia.
cr/2021/137

13. Camenisch, J., Damg̊ard, I.: Verifiable encryption, group encryption, and their
applications to separable group signatures and signature sharing schemes. In:
Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 331–345. Springer,
Heidelberg (2000). https://doi.org/10.1007/3-540-44448-3 25

14. Camenish, J., Stadler, M.: Proof systems for general statements about discrete
logarithms (1997)

15. Canetti, R., Goldreich, O., Halevi, S.: The random oracle methodology, revisited.
Cryptology ePrint Archive, Report 1998/011 (1998). http://eprint.iacr.org/1998/
011

16. Castagnos, G., Catalano, D., Laguillaumie, F., Savasta, F., Tucker, I.: Two-party
ECDSA from hash proof systems and efficient instantiations. In: Boldyreva, A.,
Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11694, pp. 191–221. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-26954-8 7

17. Castagnos, G., Laguillaumie, F.: Linearly homomorphic encryption from DDH. In:
Nyberg, K. (ed.) CT-RSA 2015. LNCS, vol. 9048, pp. 487–505. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-16715-2 26

18. Chase, M., et al.: Post-quantum zero-knowledge and signatures from symmetric-
key primitives. In: Thuraisingham, B.M., Evans, D., Malkin, T., Xu, D. (eds.)
ACM CCS 2017, pp. 1825–1842. ACM Press, Oct/Nov 2017. https://doi.org/10.
1145/3133956.3133997

https://doi.org/10.1007/978-3-030-56784-2_9
https://doi.org/10.1145/3133956.3134104
https://doi.org/10.1007/978-3-030-17253-4_10
https://datatracker.ietf.org/doc/draft-ietf-mls-protocol/
https://datatracker.ietf.org/doc/draft-ietf-mls-protocol/
https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-hpke-12
https://doi.org/10.1007/978-3-319-63697-9_21
https://eprint.iacr.org/2018/046
https://ia.cr/2021/137
https://ia.cr/2021/137
https://doi.org/10.1007/3-540-44448-3_25
http://eprint.iacr.org/1998/011
http://eprint.iacr.org/1998/011
https://doi.org/10.1007/978-3-030-26954-8_7
https://doi.org/10.1007/978-3-319-16715-2_26
https://doi.org/10.1145/3133956.3133997
https://doi.org/10.1145/3133956.3133997

606 J. Devigne et al.

19. Chase, M., Ganesh, C., Mohassel, P.: Efficient zero-knowledge proof of algebraic
and non-algebraic statements with applications to privacy preserving credentials.
In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9816, pp. 499–530.
Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53015-3 18

20. Chase, M., Perrin, T., Zaverucha, G.: The signal private group system and
anonymous credentials supporting efficient verifiable encryption. Cryptology ePrint
Archive, Report 2019/1416 (2019). https://eprint.iacr.org/2019/1416

21. Cohn-Gordon, K., Cremers, C., Garratt, L., Millican, J., Milner, K.: On ends-to-
ends encryption: asynchronous group messaging with strong security guarantees.
Cryptology ePrint Archive, Report 2017/666 (2017). http://eprint.iacr.org/2017/
666

22. Cohn-Gordon, K., Cremers, C.J.F., Dowling, B., Garratt, L., Stebila, D.: A formal
security analysis of the signal messaging protocol. In: 2017 IEEE European Sym-
posium on Security and Privacy, EuroS&P 2017, Paris, France, 26–28 April 2017,
pp. 451–466 (2017). https://doi.org/10.1007/s00145-020-09360-1

23. Damg̊ard, I.: On sigma protocols (2010)
24. Bernstein, D.J.: A state-of-the-art Diffie Hellman function. https://cr.yp.to/ecdh.

html
25. Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification and

signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp.
186–194. Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-47721-7 12

26. Gennaro, R., Gentry, C., Parno, B., Raykova, M.: Quadratic span programs and
succinct NIZKs without PCPs. In: Johansson, T., Nguyen, P.Q. (eds.) EURO-
CRYPT 2013. LNCS, vol. 7881, pp. 626–645. Springer, Heidelberg (2013). https://
doi.org/10.1007/978-3-642-38348-9 37

27. Giacomelli, I., Madsen, J., Orlandi, C.: ZKBoo: faster zero-knowledge for Boolean
circuits. In: Holz, T., Savage, S. (eds.) USENIX Security 2016, pp. 1069–1083.
USENIX Association, August 2016

28. Groth, J.: Short pairing-based non-interactive zero-knowledge arguments. In: Abe,
M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 321–340. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-17373-8 19

29. Gvili, Y., Ha, J., Scheffler, S., Varia, M., Yang, Z., Zhang, X.: TurboIKOS:
improved non-interactive zero knowledge and post-quantum signatures. Cryptol-
ogy ePrint Archive, Report 2021/478 (2021). https://eprint.iacr.org/2021/478

30. Ishai, Y., Kushilevitz, E., Ostrovsky, R., Sahai, A.: Zero-knowledge from secure
multiparty computation. In: Johnson, D.S., Feige, U. (eds.) 39th ACM STOC, pp.
21–30. ACM Press, June 2007. https://doi.org/10.1145/1250790.1250794

31. Jaeger, J., Stepanovs, I.: Optimal channel security against fine-grained state com-
promise: the safety of messaging. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO
2018. LNCS, vol. 10991, pp. 33–62. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-96884-1 2

32. Jawurek, M., Kerschbaum, F., Orlandi, C.: Zero-knowledge using garbled cir-
cuits: how to prove non-algebraic statements efficiently. In: Sadeghi, A.R., Gligor,
V.D., Yung, M. (eds.) ACM CCS 2013, pp. 955–966. ACM Press, November 2013.
https://doi.org/10.1145/2508859.2516662

33. Jost, D., Maurer, U., Mularczyk, M.: Efficient ratcheting: almost-optimal guar-
antees for secure messaging. Cryptology ePrint Archive, Report 2018/954 (2018).
https://eprint.iacr.org/2018/954

https://doi.org/10.1007/978-3-662-53015-3_18
https://eprint.iacr.org/2019/1416
http://eprint.iacr.org/2017/666
http://eprint.iacr.org/2017/666
https://doi.org/10.1007/s00145-020-09360-1
https://cr.yp.to/ecdh.html
https://cr.yp.to/ecdh.html
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/978-3-642-38348-9_37
https://doi.org/10.1007/978-3-642-38348-9_37
https://doi.org/10.1007/978-3-642-17373-8_19
https://eprint.iacr.org/2021/478
https://doi.org/10.1145/1250790.1250794
https://doi.org/10.1007/978-3-319-96884-1_2
https://doi.org/10.1007/978-3-319-96884-1_2
https://doi.org/10.1145/2508859.2516662
https://eprint.iacr.org/2018/954

MLS Group Messaging: How Zero-Knowledge Can Secure Updates 607

34. Katz, J., Kolesnikov, V., Wang, X.: Improved non-interactive zero knowledge with
applications to post-quantum signatures. In: Lie, D., Mannan, M., Backes, M.,
Wang, X. (eds.) ACM CCS 2018, pp. 525–537. ACM Press, October 2018. https://
doi.org/10.1145/3243734.3243805

35. Kilian, J.: A note on efficient zero-knowledge proofs and arguments (extended
abstract). In: 24th ACM STOC, pp. 723–732. ACM Press, May 1992. https://doi.
org/10.1145/129712.129782

36. Krawczyk, H.: Cryptographic extraction and key derivation: the HKDF scheme. In:
Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 631–648. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-14623-7 34

37. Marlinspike, M., Perrin, T.: The double ratchet algorithm. Signal’s web site (2016)
38. Pedersen, T.P.: Non-interactive and information-theoretic secure verifiable secret

sharing. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 129–140.
Springer, Heidelberg (1992). https://doi.org/10.1007/3-540-46766-1 9

39. Poettering, B., Rösler, P.: Towards bidirectional ratcheted key exchange. In:
Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10991, pp. 3–32.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96884-1 1

40. Stadler, M.: Publicly verifiable secret sharing. In: Maurer, U. (ed.) EUROCRYPT
1996. LNCS, vol. 1070, pp. 190–199. Springer, Heidelberg (1996). https://doi.org/
10.1007/3-540-68339-9 17

https://doi.org/10.1145/3243734.3243805
https://doi.org/10.1145/3243734.3243805
https://doi.org/10.1145/129712.129782
https://doi.org/10.1145/129712.129782
https://doi.org/10.1007/978-3-642-14623-7_34
https://doi.org/10.1007/3-540-46766-1_9
https://doi.org/10.1007/978-3-319-96884-1_1
https://doi.org/10.1007/3-540-68339-9_17
https://doi.org/10.1007/3-540-68339-9_17

More Efficient Amortization of Exact
Zero-Knowledge Proofs for LWE

Jonathan Bootle1, Vadim Lyubashevsky1, Ngoc Khanh Nguyen1,2(B),
and Gregor Seiler1,2

1 IBM Research, Zurich, Switzerland
nkn@zurich.ibm.com

2 ETH Zurich, Zurich, Switzerland

Abstract. We propose a practical zero-knowledge proof system for
proving knowledge of short solutions s, e to linear relations As + e =
u (mod q) which gives the most efficient solution for two naturally-
occurring classes of problems. The first is when A is very “tall”, which
corresponds to a large number of LWE instances that use the same secret
s. In this case, we show that the proof size is independent of the height of
the matrix (and thus the length of the error vector e) and rather only lin-
early depends on the length of s. The second case is when A is of the form
I⊗A′, which corresponds to proving many LWE instances (with different
secrets) that use the same samples A′. The length of this second proof
is square root in the length of s, which corresponds to a square root of
the length of all the secrets. Our constructions combine recent advances
in “purely” lattice-based zero-knowledge proofs with the Reed-Solomon
proximity testing ideas present in some generic zero-knowledge proof sys-
tems – with the main difference that the latter are applied directly to
lattice instances without going through intermediate problems.

Keywords: Lattices · Zero-knowledge proofs · LWE · Amortization

1 Introduction

Zero-knowledge proofs, in which a prover convinces a verifier of knowledge of a
witness to the fact that an instance belongs to a language, are an integral crypto-
graphic building block. For relations among values (e.g. public keys, ciphertexts,
commitments, etc.) stemming from classical cryptography based on the hard-
ness of discrete logarithm and factoring, there exist many very efficient (even
succinct) zero-knowledge proofs. When it comes to proving relations between
public and secret information for lattice primitives, however, the landscape of
efficient zero-knowledge proofs is significantly less advanced. The fundamental
lattice problem upon which most of lattice cryptography rests is the LWE prob-
lem, which states that it is hard to distinguish a uniformly random tuple (A,u)

The full version of this paper is available at https://eprint.iacr.org/2020/1449.

c© Springer Nature Switzerland AG 2021
E. Bertino et al. (Eds.): ESORICS 2021, LNCS 12973, pp. 608–627, 2021.
https://doi.org/10.1007/978-3-030-88428-4_30

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-88428-4_30&domain=pdf
https://eprint.iacr.org/2020/1449
https://doi.org/10.1007/978-3-030-88428-4_30

More Efficient Amortization of Exact Zero-Knowledge Proofs for LWE 609

and (A,u = As + e), where the coefficients of s and e are small. The main
techniques of this paper will prove knowledge of s and e with small coefficients1

that satisfy

As + e = u. (1)

As is typical with zero-knowledge proofs, there is no one technique that is
best for all scenarios. Similarly, our proofs in this paper will not be the shortest
for all the parametrizations of the above equation, but they will be the most
compact for some important parameter settings which intuitively correspond to
simultaneously proving many LWE instances at the same time.

1.1 Prior Work

Relaxed Proofs. The most efficient proofs of equations of the form as in (1)
work over some polynomial ring Rq = Zq[X]/(Xd + 1) rather than over Zq,
and are able to prove knowledge of vectors of polynomials s̄, ē with small coef-
ficients (but larger than the ones in s and e) and a polynomial c̄ with −1/0/1
coefficients satisfying As̄ + ē = c̄t. While not exactly proving (1), this zero-
knowledge proof is enough to obtain very efficient lattice-based digital signatures
(e.g. [DKL+18]) and rather efficient commitment schemes with zero-knowledge
openings [BDL+18]. Another variation of the proof is just like above except
there is no multiplicative factor c̄. Such proofs are particularly efficient in the
amortized setting [BBC+18] and are useful as a preprocessing step in certain
multi-party protocols [BCS19] or in voting protocols where the authorities per-
form many simultaneous proofs [dPLNS17].

While the above relaxations of the relation in (1) have found some use-
ful applications, especially when they are used in standalone protocols (e.g.
[EZS+19,EKS+20]), they are not very useful for proving relations in schemes
for which the parameters have been optimally set according to some external
constraints. Because such relaxed proofs only prove knowledge of larger s̄ and
ē than the ones used by an honest prover, we must increase the sizes of other
parameters (like q and n,m) in order to obtain the same security level, solely for
the purpose of being compatible with the (possibly seldom-used) zero-knowledge
proofs. In order to avoid this inefficiency, it is necessary to have a proof which
proves that the secrets are in exactly the same range as is used by the honest
prover.

Exact Proofs. One technique for getting short and exact proofs of (1) was given
in [dPLS19] where the idea is to first convert (1) to an equivalent (statistically-
hiding) discrete-logarithm relation, and then prove knowledge of exponents cor-
responding to the coefficients of s, e using Bulletproofs [BCC+16,BBB+18]. The
1 If the coefficients of s are unrestricted, as in some applications of LWE, then the

proof will be slightly more efficient because we do not have to prove the shortness of
s. If s has a size-restricted distribution, but different from e, then we can apply the
transformation of [ACPS09] to convert the instance to one where the distribution of
the secret is the same as of the error.

610 J. Bootle et al.

resulting proof is just a few kilobytes, but has the shortcomings of being (very)
slow and not fully quantum-safe. In particular, both the prover and the verifier
are required to perform on the order of hundreds of thousands of exponentia-
tions, even for fairly modest sizes of the parameters in (1), which requires a few
dozen seconds and does not scale well for larger instances. In terms of quantum-
security, while the proof is statistical zero-knowledge, soundness is only based
on the hardness of the discrete logarithm problem.

Another strategy uses information-theoretic proof systems such as PCPs,
interactive PCPs [KR08,BCS16], or interactive oracle proofs (IOPs) [BCS16,
RRR16]. In these proof systems, the verifier does not read the prover’s messages
in their entirety, but rather makes a sublinear number of queries to individual
message positions for verification. Given a suitable PCP or IOP, one can convert
it into a sublinear-sized cryptographic argument by following the approach of
Kilian [Kil92] and Micali [Mic00]. In the resulting argument, the prover commits
to each of their proof messages using a Merkle tree, and opens individual message
positions using Merkle paths. Thus, security is based solely on collision resistant
hash functions, which are quantum-safe.

Various prior works (e.g. [BCR+19,AHIV17,BCG+17]) produce such argu-
ments by designing IOPs for the R1CS or circuit satisfiability problems, which
are NP complete. To prove other relations, one must first convert them into
suitable problem instances. Unfortunately, directly applying these arguments
to lattice relations (e.g. via conversion to R1CS) can be extremely resource-
intensive. For example, [BCOS20] reported that constructing a group signature
using the arguments from [BCR+19] resulted in rather short outputs (of about
100 KB), but they were not able to sign due to the (cloud) PC running out of
memory. Thus, to better use this strategy, one should design PCPs and IOPs
which target (1) directly. The work of [BCG+17] gives one way of doing this,
by giving IOPs which simulate the behaviour of zero-knowledge arguments that
use homomorphic commitments. More precisely, [BCG+17] shows how to com-
pile ‘ideal linear commitment’ (ILC) protocols, a type of information-theoretic
protocol, into IOP protocols, by encoding each of the prover’s messages using an
error-correcting code. Taking the ILC-to-IOP and IOP-to-argument transforma-
tions together, gives an ‘encode-then-hash’ method for committing to messages
which acts essentially like a homomorphic commitment scheme.

Our approach uses some of the algebraic techniques from previous lattice-
based works, which design zero-knowledge arguments for (1) directly based
on homomorphic, lattice-based commitments. The main difference is that we
replace the the lattice-based commitments with the ‘encode-then-hash’ commit-
ment scheme implicit in [BCG+17]. This scheme is asymptotically more efficient
than when using lattice-based commitments (which are linear in the size of the
message), but has a large additive overhead. This overhead grows logarithmically
in the number of instances, and linearly in the size of the domain of the errors in
(1). We show that when the errors come from a small domain, then the overhead
is amortized away as the number of instances grows.

More Efficient Amortization of Exact Zero-Knowledge Proofs for LWE 611

The main difference between our work and IOP constructions such as
[BCR+19,AHIV17,BCG+17] is that we do not require a (possibly costly) reduc-
tion to the intermediate R1CS problem, instead taking inspiration from lattice-
based protocols (e.g. [BLS19]) which handle (1) with only a small number of
commitments.

Until recently, the shortest fully quantum-safe proofs for proving the exact
version of (1) have been direct adaptations [KTX08,LNSW13] of Stern’s original
protocol [Ste93] for proving knowledge of low-weight code-words over Z2. The
work of [Beu20] used a cut-and-choose approach to leverage the larger field size
in (1) to obtain a more efficient generalization of Stern’s protocol. Using very
different techniques, the works of [BLS19,YAZ+19] achieved a slightly shorter
proof for (1) when the secret coefficients are chosen from the set {−1, 0, 1}. For
n = m = 1024, and q ≈ 232, the proofs (with 2−128 soundness error) are around
400 KB long. Further building on these results, the proof of [ENS20] is a little
under 50 KB, and a recent improvement in [LNS21] reduces it by another 30%.

For direct comparisons with the results in this paper, we also computed the
parameter sizes using the techniques in [ENS20,LNS21] for n = m = 2048, q ≈
260, and 2−57 soundness. The proof size for these parameters is around 45 KB.2

1.2 Our Results

In this work we give exact proofs for several scenarios in which one needs to prove
many LWE instances. The first case is proving (1) for the case where A is a tall
matrix. In our running example, A ∈ Z

n×m
q where m = 2048 and n = 64 · 2048.

This can be seen as 64 LWE instances where the dimensions of A are a square
2048 × 2048. A simple example where this comes up in practice is when one
encrypts a long message using a symmetric LWE encryption scheme (e.g. for
FHE applications) or if encrypting a message to different public keys using the
same randomness (as in e.g. [PVW08,KKPP20])3.

In Fig. 1, we give the proof size and running time for our problem instance,
where the dependence is on the size of the set from which the coefficients of s
and e are chosen. In the example from [ENS20] mentioned at the end of the last
section, these were chosen from the set {−1, 0, 1} of size 3. Thus from the first

2 We point out that the parameters n and m from this paper do not correspond to
those with the same name from [ENS20, Appendix B.1]. The length of the secret s
in [ENS20] already includes the error vector. So even though the length of the secret
is 2048 there, it is actually broken down into a vector of dimension 1024 which gets
multiplied by A, and another 1024 dimensional vector, which is the error. Thus the
secret length we are comparing to in this paper is twice as large as in the original
[ENS20]. The comparisons to [ENS20] for other dimensions/modulus would be fairly
similar.

3 Incorporating a message vector m in (1) simply involves rewriting e = e′ + [q/2] ·m
where e′ is the LWE error.

612 J. Bootle et al.

Fig. 1. Proof sizes and single-core running times (implemented in C++ using NTL
[Sho], running on a Skylake processor) for the proof system in Fig. 2 when A ∈ R64×1

q

(i.e. 64 Ring-LWE instances) where Rq = Zq[X]/(Xd + 1) for q ≈ 260 and d = 2048.
The values of τ and l (see Sect. 3 for their definitions) are 512 and 219, respectively).
The secret vectors (over Rq) s, e each have coefficients coming from a set of a size
specified in the first column rather than coming from the set {−1, 0, 1} as specified in
Fig. 2, so the protocol has to be adjusted as described in the caption of that Figure.
The soundness error is around 2−57, so one may need to repeat the proof twice to
achieve cryptographic soundness. This will roughly double the proof size and running
time. The size of the commitment/ciphertext u is 960 KB. The proof sizes would be the
same if A were an unstructured matrix in Z

n×m
q where n = 64 · 2048 and m = 2048.

The running times, however, would be higher because one can no longer use NTT
for performing fast multiplications As. For the same parameters, the proof size per
2048 × 2048 dimensional instance (of which there are 64 in our example proof) from
[ENS20] is 45 KB, and about 30% smaller using improvements from [LNS21], when the
size of the secret set is 3.

line of Fig. 1,4 we see that the amortized proof is about 3 KB per instance, which
is about an order of magnitude improvement in size.

The second scenario for which we provide improved proofs is for the case
when we have many equations as in (1) with the same public randomness A but
different s and e. In a way, it complements our first result in which the LWE
instances had the same secret, but different public randomness. In this scenario,
we give a proof that is square root in the size of the secret, and it produces
proofs that are several times smaller than the non-amortized version. We did
not implement this scheme, but as it uses essentially the same operations as the
one in our first scenario, the running times should be comparable in practice.

1.3 Technical Overview

As mentioned previously, the strategy employed in our basic protocol uses ideas
from the lattice-based schemes of [BLS19,YAZ+19] in combination with the
‘encode-then-hash’ commitment scheme implicit in [BCG+17]. This latter build-
ing block of the proof is an additively-homomorphic commitment scheme Com

4 The secret size in the first line is chosen from 4 elements, rather than 3 as in [ENS20].
Reducing the set to 3 will not give us any noticeable reduction.

More Efficient Amortization of Exact Zero-Knowledge Proofs for LWE 613

committing to vectors in Z
m
q and possessing an efficient ZKPoK of the com-

mitted value. That is, if S = Com(s) and T = Com(t), then for any c ∈ Zq,
s + tc = Open(S + Tc). For now, let us treat Com as a black box. Let 1 be a
vector all of whose coefficients are 1, and for two vectors v,w ∈ Z

m
q , let v ◦ w

denote the component-wise product of v and w. We will now give a simplified
version of the protocol in Fig. 2 where the prover is trying to convince the verifier
that s, e ∈ {0, 1}m.

The prover starts out by choosing a uniformly-random masking vector t ∈ Z
m
q

and creating a commitment T = Com(t) and S = Com(s). At the end of the
protocol, the prover will eventually send the polynomial tX + s evaluated at the
challenge X = x ∈ Zq. If we write f = tX + s, then

f ◦ (f − 1) = (t ◦ t)X2 + t ◦ (2s − 1)X + s ◦ (s − 1) (2)

If all the coefficients in s are 0/1, then the constant term will be 0; and so the
equation 1

X · f ◦ (f − 1) will be the linear equation v1X + v0 where v1 = t ◦ t
and v0 = t ◦ (2s − 1). The prover creates commitments V1 = Com(v1) and
V0 = Com(v0).

The prover also defines

d = u − Af = u − As − AtX = e − AtX, (3)

which satisfies

d ◦ (d − 1) = (At) ◦ (At)X2 + (At) ◦ (1 − 2e)X + e ◦ (e − 1). (4)

Therefore 1
X · d ◦ (d − 1) will also be a linear equation if and only if all

the coefficients of e are 0/1. The prover similarly creates commitments W1 =
Com((At) ◦ (At)) and W0 = Com((At) ◦ (1 − 2)).

We now begin the description of the interactive protocol. The prover sends
the commitments S, T, V0, V1,W0,W1, and the verifier picks a uniformly-random
challenge x ∈ Zq \ {0}. The prover responds with f = tx+ s and zero-knowledge
proofs of knowledge of the committed values in S, T, V0, V1,W0,W1, and zero-
knowledge proofs that

f = Open(Tx + S) (5)
1
x

· (f) ◦ (f − 1) = Open(V1x + V0) (6)

1
x

· (u − Af) ◦ (u − Af − 1) = Open(W1x + W0) (7)

The first proof implies knowledge of some s, t satisfying f = tx + s. Via a
Schwartz-Zippel argument, the second proof, together with (2), implies that s
has 0/1 coefficients. Similarly, the third proof and (3) imply that u − As has
0/1 coefficients. Since the verifier has f and u, he can verify all three proofs (as
well as the proofs of knowledge of the committed values) and conclude that the
prover knows s, e with 0/1 coefficients such that As + e = u. The soundness
error of this proof is approximately 1/q, and so if q is not very large, the proof
needs to be repeated several times for soundness amplification.

614 J. Bootle et al.

The Commitment Scheme. We will use the ‘encode-then-hash’ commitment
scheme resulting from combining the two transformations from ILC-to-IOP and
from IOP-to-arguments given in [BCG+17]. This can be viewed as an interactive
commitment scheme (which can be made non-interactive using the Fiat-Shamir
transform) in which the vectors to which we would like to commit, appended
with some randomness, are first encoded using a linear error-correcting code (a
Reed-Solomon code). If the length of the codeword is l, then the prover cre-
ates l hash-based commitments where the input to the ith commitment are all
the elements in the ith position of all codewords. These commitments are then
hashed into a Merkle tree and the root is transmitted as the final commitment.
Proving knowledge of committed values is done via a “cut-and-choose” approach
where the verifier sends a random set of size τ and asks the prover to open the
codeword in those τ positions. If τ is smaller than the number of randomness
positions, then revealing τ positions of the codeword information-theoretically
hides the message and so the commitment scheme is hiding.

The verifier can then check whether (5) is satisfied restricted to the τ positions
opened by the prover, and due to the fact that f is given in the clear, one can
conclude using a cut-and-choose argument and some properties of Reed-Solomon
codes that the values committed in T and S are indeed close to valid codewords
(and thus can be decoded to some s and t), and f is really the linear combination
tx + s. The same arguments are used to show that (6) and (7) are satisfied.

Amortizing When the Public Randomness is Fixed. An expensive part of our pro-
tocol is proving that the correct positions in the Merkle tree have been opened.
Each of the τ positions that are opened require the prover to give a path to
the root of the tree, which consists of log l hash function outputs – if one uses
SHA-256, then one needs to 32τ log l bytes for this part of the proof. In general,
τ is a small multiple of the security parameter (in practice, ≈512) while l is a
small multiple of the length of the vectors that are being committed to. In the
scheme implemented in Fig. 1, l ≈ 219, and therefore just the tree opening would
require close to 300 kB. One can optimize this by having multiple roots, (which
lowers the number of levels), but this is still the most expensive part of the proof
when the size of the secret set is not too large.

A significant saving can be achieved when the matrix A is the same for
all the equations Asj + ej = uj for j = 1, . . . , r. Then all the secret vectors
sj can be packed into only one masked opening f = x0t +

∑
j xjsj where the

secret vectors are separated by different challenges xj . The verifier can then still
compute d =

∑
j xjuj − Af = −x0At +

∑
j xjej , which is a masked opening

of all the error vectors ej in the same form as f . The masked opening f is the
second biggest part of our basic protocol after the Merkle tree paths and so
amortizing its size over many equations gives a further saving of about a factor
of 2 in the per-equation cost. Now, if one computes a quadratic expression of
the form f ◦ (f − ∑

j xj1) then the terms x2
j vanish if and only if the sj have

binary coefficients. We take the challenges xj to be evaluations xj = �j(x) of
Lagrange interpolation polynomials at the same evaluation point x. This has the
advantage that the number of non-vanishing garbage terms that appear in the

More Efficient Amortization of Exact Zero-Knowledge Proofs for LWE 615

quadratic expression (i.e. the terms to which we need to commit and transmit
the commitments) for proving 0/1 scales only linearly in r, as will be explained
in Sect. 4. If one has m2 secret coefficients distributed over m vectors, each of
length m, then our final amortized protocol has communication cost of order
m, i.e. of order square root in the number of secret coefficients. This is because
there is only one masked opening f of length m for all m2 secret coefficients.

2 Preliminaries

Notation. Let q be a prime. We write Zq for the ring of integers modulo q. Bold
letters as in v ∈ Z

l
q will denote vectors over Zq and matrices will be written as

regular capital letters M .

Reed-Solomon Codes. Let l, k′ be positive integers. Let ζ1, . . . , ζl be distinct
elements of Z×

q . The subspace C ⊂ Z
l
q of Zl

q of degree k′ consisting of all l-tuples
Enc (f) = (f(ζ1), . . . , f(ζl)) where f is a polynomial of degree less than k′ with
coefficients in Zq is a so-called Reed-Solomon code. We write d(V,W) for the
Hamming distance between two elements of Z

l
q. Since a polynomial of degree

less than k′ can have at most k′ − 1 roots, it is clear that the minimum distance
between codewords in C is d = l − k′ + 1. This means that if V is a vector in
Z

l
q that we know has distance at most (d − 1)/2 from C, then the vector can be

uniquely decoded to the closest codeword in C.
The usefulness of Reed-Solomon codes in zero-knowledge proofs stems from

the following facts.
Firstly, the encoding function is homomorphic. More precisely, polynomial

addition and multiplication translate to coefficient-wise addition and multipli-
cation on the codewords.

Secondly, assume that the prover has committed to several codewords. Then,
suppose that the verifier is allowed to see a small number, say τ , of openings
of random positions of his choice from all of the committed codewords. If he
now checks that a random linear combination of these positions coincide with
the positions of a fixed known codeword, then he will be convinced that the
prover has honestly committed to codewords with sufficiently few errors that
they decode to polynomials whose linear combination is the same as the decoding
of the known codeword.

Moreover, if the k′ coefficients of the input polynomials consist of m message
coefficients and τ randomness coefficients, then the τ openings do not reveal any
information about the message coefficients. We explain this in more detail in
AppendixA.

We will write Enc (m, r) to denote the Reed-Solomon codeword correspond-
ing to the input polynomial f =

∑m−1
i=0 miX

i + Xm
∑τ−1

i=0 riX
i with message

coefficients m and randomness coefficients r. We will also extend this notation in
the straight-forward way to split the input polynomial into even more coefficient
vectors.

616 J. Bootle et al.

So, in summary, Reed-Solomon codes offer a way to commit to message vec-
tors with the ability to prove linear relations between these vectors in zero-
knowledge. We perform hash-based commitments to codewords with the tech-
nique from [BCG+17] that we recall in the next paragraphs.

Commitments. Let Commit be a commitment scheme with message space Zr
q and

randomness space R. Let M =
(
m1 m2 . . . ml

)
be a matrix made up of column

vectors mi ∈ Z
r
q. Let ρ =

(
ρ1 ρ2 . . . ρl

)
be a list of random strings ρi ∈ R.

Define CommitCols to be the function which takes M and ρ as input and
returns the list of commitments Commit(mi; ρi).

In our protocols, we will instantiate Commit with the folklore hash-based
commitment scheme where Commit(mi; ρi) = h(ρi||mi), for a hash-function
h : {0, 1}∗ → {0, 1}256, and randomness ρi uniformly sampled from {0, 1}128.
When h is modelled as a random-oracle, Commit is a computationally-hiding
and computationally-binding commitment scheme (see e.g. [MF21, Proposition
8.12]).

Merkle Trees. We will commit to many Reed-Solomon codewords Hi ∈ C, i =
1, . . . , r, in the following way. Firstly, take the codewords to be the rows of the
matrix M = (Hi) ∈ Z

r×l
q . Secondly, apply CommitCols to commit to the columns

of M . Finally, produce a Merkle tree with all these column commitments as
leaves. This means that the commitments CommitCols(M ; ρ) are taken to be the
leaves of a binary tree of height log l where each inner node is the hash of its two
children. This results in a single hash M = Merkle(CommitCols(M ; ρ)) at the root
of the tree. This gives a commitment to all codewords Hi and allows simultaneous
opening of all codewords at arbitrary positions j ∈ [l] by revealing the position j
of every codeword and the nodes in the Merkle tree that are needed to compute
the path to the root node M. For I ⊂ [l]τ we will later write MerklePaths|I for the
set of all nodes in the Merkle tree needed to compute the paths for all codeword
position in I. This construction is binding because if it were possible to produce
two different openings at the same position then there would be a hash collision
somewhere on the path to the root of the Merkle tree. The construction is hiding
because the unopened leaves are all hiding commitments, and so the nodes in the
Merkle paths which are derived from them do not leak any information about
the unopened codeword entries.

3 Basic Protocol

In this section, we present our basic protocol tailored towards single LWE
instances, where the solution has entries lying in {−1, 0, 1}. The protocol can
incorporate larger sets in the obvious way, as explained in the caption of Fig. 2.
At a high level, it implements the strategy used in [BLS19] and explained in the
introduction. But it uses Reed-Solomon codes to instantiate the commitment
scheme and their associated zero-knowledge proofs, rather than lattice-based
commitments.

More Efficient Amortization of Exact Zero-Knowledge Proofs for LWE 617

Proof systems using code-based commitment schemes often require a prox-
imity test, to prove that the (possibly malicious) values hashed by the prover
are close to codewords, and therefore represent valid encodings of messages. Fol-
lowing [RVW13], this is often done by checking that an auxiliary random linear
combination of the committed and possibly noisy codewords is itself close to
the code. Previously, [BKS18] investigated the use of the structured linear com-
bination (1, x) for some random x, in proximity testing. We will use the same
strategy for proximity testing with powers of x as part of our scheme.5

We cannot use a structured linear combination in the amortised case since
with this strategy, the probability that the verifier can catch a cheating prover
decreases as the number of committed secrets increases. Our amortised result
thus uses a random linear combination of all of the hashed vectors to prove that
each hashed vector is close to a codeword.

The complete protocol is given in Fig. 2.

Theorem 3.1 (Completeness). The protocol in Fig. 2 is perfectly complete.

Proof. This follows from a careful inspection of the protocol. ��
Theorem 3.2 (Special Honest Verifier Zero Knowledge). There exists
an efficient simulator S which, given values for the random challenges x and
I from the protocol in Fig. 2, outputs a protocol transcript whose distribution is
indistinguishable from that of a real transcript from the interaction between an
honest prover and an honest verifier.

The proof of Theorem 3.2 is included in the full version of this paper [BLNS20].

Theorem 3.3 (Knowledge Soundness). Let C ⊂ Z
l
q be a Reed-Solomon code

of dimension k′ = 2m + n + τ and length l with encoding function Enc (). Let
k′ ≤ k ≤ l. Suppose that there is an efficient deterministic prover P∗ that
convinces the honest verifier V on input A,u to accept with probability

ε > 2max
{

2
(

k

l − τ

)τ

,
2

q − 1
+

(

1 − k − k′

9l

)τ

, 2
(

1 − 2(k − k′)
3l

)τ

,
12

q − 1

}

.

Then, there exists a probabilistic extraction algorithm E which, given rewindable
black-box access to P∗, produces a witness s ∈ {−1, 0, 1}m such that u − As ∈
{−1, 0, 1}n or finds a hash collision in expected time at most 64T where T :=
3
ε + k−τ

ε/2−(k/(l−τ))τ and running P∗ once is assumed to take unit time.

The proof of Theorem 3.3 is included in the full version of this paper [BLNS20].

5 From a technical perspective, [BKS18, Theorem 4.1] proves that except with small
probability, these structured linear combinations have the same distance from the
code as the maximum distance of all the codewords in the linear combination. Here,
we can tolerate some decrease in the distance in our soundness proof, and prove a
weaker result via a simpler method. See the full version of this paper for details.

618 J. Bootle et al.

Fig. 2. Simple hash-based proof of knowledge of a ternary solution to a linear equation
over Zq. To use a secret set S of size b different from {−1, 0, 1}, one would change
1
X
f(X)◦ [f(X) − 1m]◦ [f(X) + 1m] to 1

X
©i∈S [f(X)−im] =

∑
vjX

j . The analogous of
this is done for the line 1

X
d(X)◦ [d(X) − 1n]◦ [d(X) + 1n]. One would also accordingly

increase the number of terms rj and the number of rows Hj = Enc (0m,vj ,wj , rj).

Remark 3.4 (on the parameter k). The parameter k in Theorem 3.3 is not used
by the prover and verifier algorithms, but only by the extraction algorithm E . In
more detail, the extraction algorithm E attempts to collect openings for k out
of the l entries of each committed codeword. The extraction algorithm attempts
to decode the partial codewords obtained in order to find a witness.

Analysing the probability that E can decode these codewords leads to the
dependence of ε on k. This indirectly affects the proof size, as choosing k to
reduce the knowledge soundness error ε means that the proof requires fewer par-
allel repetitions to achieve negligible soundness. This also applies to our amor-
tised protocol.

More Efficient Amortization of Exact Zero-Knowledge Proofs for LWE 619

Asymptotically, when l = ck′ for some constant c > 1, one could set k = c′k′

for constant c′ ∈ (1, c). For concrete parameters, we choose the value of k in our
basic and amortised protocols using computer experiments.

3.1 Proof Size and Concrete Parameter Choices

For one iteration of the proof in Fig. 2 the prover has to send the linear masked
secrets f̄ ∈ Z

m
q and r̄ ∈ Z

τ
q , and open the 3 codewords Hj at τ positions, with

the randomness that was used to commit to them. Together these are m + 4τ
elements of Zq, and τ bitstrings of commitment randomness, each of size 128
bits. Moreover, the prover has to send the initial commitment M and τ Merkle
paths. As specified in the protocol this needs 1 + τ
log l� 32-byte hashes per
iteration. It is obvious that the latter can be optimized by splitting the tree
with l leaves into h trees with l/h leaves each. This results in shorter Merkle
paths at the costs of h root hashes in the commitment M. Concretely, with
this optimization in one iteration of the protocol h + τ
log(l/h)� hashes need
to be sent. In total we see that one iteration of the protocol has a bandwidth
requirement of

(

(m + 4τ)
log(q)� + 128τ + 256
(

h + τ

⌈

log
(

l

h

)⌉))/

8192

kilobytes.

4 Amortized Protocol for a Fixed Public Randomness

A closer look at the communication cost of the protocol from the previous section
shows that the initial commitment and the Merkle paths are actually responsible
for the majority of the proof size.

Now, the size of the Merkle trees does not depend on the number of Reed-
Solomon codewords that the prover commits to, since each leaf can be the hash
of codeword positions from arbitrarily many codewords. It is therefore clear that
when one has to prove many (different) equations uj = Ajsj +ej for j = 1, . . . , r
at once, then one can commit to all of the codewords in the corresponding proofs
using only one set of Merkle trees. Moreover, when the individual proofs are
executed in a parallel fashion where the same challenges are used in all parallel
proofs, then one also only needs one set of τ Merkle paths for all the proofs. So
we see that the protocol in Fig. 2 can be operated in a simple amortized mode
which has a total size of

(

r (m + 4τ)
log(q)� + 128τ + 256
(

h + τ

⌈

log
(

l

h

)⌉))/

8192

kilobytes for r equations.
In this section we improve on this result by giving a sublinear amortized

proof protocol that allows to prove r = O(m) equations uj = Asj + ej with

620 J. Bootle et al.

the same matrix A and a total number of O(m2) secret coefficients in size that
scales only with the square root m of the number of secret coefficients. As an
independent generalization, the protocol of this section allows to directly prove
that the coefficients of the secret lie in an arbitrary interval {0, . . . , b − 1}. We
chose not do this in the basic protocol from Sect. 3 to keep that protocol as
simple as possible.

The key technique for the sublinearity is to replace the r masked secrets
f̄j = xtj + sj of total length rm by a single length-m packed vector that masks
all secrets sj at once. After the Merkle tree roots for the commitment and the
Merkle tree paths, the masked secret f̄ is the next largest element of the basic
proof protocol. So by being able to amortize its size over many equations we
can also significantly improve the concrete per-equation cost. One way of doing
this is to separate the secret vectors with independent challenges xj ∈ Zq and
use f̄ =

∑r
j=0 xjsj , where s0 now is the single masking vector. So then f̄ is the

evaluation of a multivariate polynomial in r indeterminates. This is compatible
with the lattice equations because we assume that they use the same matrix A.
The verifier can compute

r∑

j=1

xjuj − Af̄ = −x0As0 −
r∑

j=1

xjej

which is a masking of the error vectors with masking vector e0 = −As0. The
problem with this approach is that when we work with equations of degree b in
these polynomials to prove that all sj and ej have coefficients in {0, . . . , b − 1},
we arrive at multivariate polynomials of total degree b that contain on the order
of rb monomials. So this means we need to commit to that many garbage terms
and prove openings of these commitments which has communication cost on the
order of rb. On the other hand, the multivariate Schwartz-Zippel lemma still
only gives that a multivariate polynomial of total degree b vanishes at a random
point with probability b/q so we do not profit from the large challenge space of
size qr in the soundness error.

Therefore a better approach is to not use independent challenges xj but
instead choose them to be evaluations of Lagrange interpolation polynomials at
the same evaluation point as in [GGPR13].

So let a1, . . . , ar be distinct interpolation points in Zq. Then, for j ∈
{1, . . . , r}, let

�j(X) =
∏

i�=j

X − ai

aj − ai

be the jth Lagrange interpolation polynomial and let �0(X) =
∏r

j=1(X − aj).
By polynomial interpolation every polynomial f ∈ Zq[X]/(�0(X)) can be

written uniquely as a linear combination of �j(X)’s, i.e.

f(X) =
r∑

j=1

λj�j(X)

More Efficient Amortization of Exact Zero-Knowledge Proofs for LWE 621

with λj ∈ Zq. Since �j(X)2 ≡ �j(X) (mod �0(X)) and �i(X)�j(X) ≡ 0
(mod �0(X)) for all i, j ∈ {1, . . . , r}, i
= j, multiplication is coefficient-wise
in this representation. That is,

f(X)2 =
r∑

j=1

λ2
j�j(X).

Now, higher-degree polynomials f ∈ Zq[X]/(�0(X)b) can be written uniquely
as a linear combination of the polynomials {�j(X)�0(X)i}b−1,r

i=0,j=1. For our appli-
cation, this means that when we separate the secret vectors using Lagrange
polynomials, i.e.

f̄ =
r∑

j=0

�j(x)sj ,

then equations of degree b in f̄ will only contain br terms vi,j�j(x)�0(x)i for
j ∈ {1, . . . , r}, i ∈ {0, . . . , b − 1}. So this is again linear in r and suffices for our
sublinearity result.

After we have replaced the individual masked secrets f̄j by just one, note
that we need r + 1 commitments to the secret vectors in order to prove that f̄
is correctly formed whereas the range proofs for the secret coefficients need br
commitments to the garbage terms in the equations of degree b in f̄ or d̄. So we
don’t want to put the secret vectors and the garbage terms in the same Reed-
Solomon codewords as we have done in the basic protocol in Sect. 3. This would
only prove that f̄ is the evaluation of a polynomial of degree br − 1 instead of a
polynomial of degree r, which is bad for large b as it results in a higher soundness
error. Splitting the codewords into several smaller ones has the downside that
more openings need to be sent. Therefore for small b it would actually be better
not to do this.

The last difference to the basic protocol is that for technical reasons already
explained in Sect. 3, the prover sends an auxiliary masking of a random linear
combination with independent coefficients of all of the messages in the code-
words. This is necessary since the prover commits to many more codewords and
he must prove that they are really close to codewords. Using a variant of the tech-
nique of the basic protocol and leverage the linear combination of the codewords
with �j(x) as coefficients would result in a much larger soundness error.

The complete sublinear protocol is given in Fig. 3. We only use one Reed-
Solomon code of dimension k′ = m + τ and length l and also use it for the
shorter message vectors of length n ≤ m by padding these vectors with zeroes.
We analyze the protocol in the following theorems.

Theorem 4.1 (Completeness). The protocol in Fig. 3 is perfectly complete.

Proof. This follows by inspection of the protocol. ��
Theorem 4.2 (Special Honest Verifier Zero Knowledge). There exists
an efficient simulator S which given values for the random challenges x, β, γ, δ,

622 J. Bootle et al.

Fig. 3. Sublinear hash-based proof of knowledge of short solutions to many linear
equations over Zq.

and I from the protocol in Fig. 3, outputs a protocol transcript whose distribution
is indistinguishable from that of a real transcript from the interaction between
an honest prover and an honest verifier.

The proof of Theorem 4.2 is included in the full version of this paper [BLNS20].

More Efficient Amortization of Exact Zero-Knowledge Proofs for LWE 623

Theorem 4.3 (Knowledge Soundness). Let C ⊂ Z
l
q be a Reed-Solomon code

of dimension k′ = max(n,m)+ τ and length l with encoding function Enc (). Let
k′ ≤ k ≤ l. Suppose that there is an efficient deterministic prover P∗ that
convinces the honest verifier V on input A,uj to accept with probability

ε > 2max

{

2

(
k

l − τ

)τ

,
1

q − r
+

(

1 − k − k′

6l

)τ

, 2

(

1 − 2(k − k′)
3l

)τ

,
2(b + 1)r

q − r

}

.

Then, there exists an efficient probabilistic extraction algorithm E which, given
rewindable black-box access to P∗, either produces vectors sj ∈ {0, . . . , b − 1}m

such that uj −Asj ∈ {0, . . . , b − 1}n for all j = 1, . . . , r or finds a hash collision
in expected time at most 64T where T := 3

ε + k−τ
ε/2−(k/(l−τ))τ and running P∗ once

is assumed to take unit time.

The proof of Theorem 4.3 is included in the full version of this paper [BLNS20].
The parameter k is used as part of the strategy for the knowledge extractor

E , but not in the protocol itself, as discussed in Remark 3.4.

4.1 Proof Size

In one execution of the protocol in Fig. 3 the prover sends 6 masked secret vectors
f̄ ∈ Z

m
q , z̄, and r̄ι ∈ Z

τ
q for ι = f, v, w, z for all r equations with a total of 2m+4τ

Zq-coefficients. Then he also sends τ codeword positions from all of the (2b +
1)r + 1 codewords in the protocol, and τ bitstrings of commitment randomness,
each of size 128 bits. Note that from the soundness error in Theorem 4.3 it is
clear that τ does not need to increase with the number of equations. So this
part only scales linearly in r. Finally, the number of hashes sent is exactly the
same as in the single-equation protocol from Sect. 3. That is, the prover sends
h + τ
log(l/h)� 32-byte hashes. In summary, we see that the protocol has a
bandwidth requirement of

(

(2m + ((2b + 1)r + 5)τ)
log q� + 128τ + 256
(

h + τ

⌈

log
(

l

h

)⌉))/

8192

kilobytes. Asymptotically, when we have r = O(m) equations with m secret coef-
ficients each, so O(m2) secret coefficients in total, we see that the communication
cost is of order O(m), which is the square root of the number of secret coefficients.
To be a little more precise, the parameter m is multiplied by 2 log q, while the
parameter r is multiplied by (2b + 1)τ log q. Thus the optimal setting of param-
eters occurs roughly when m ≈ bτr. If the scenario in which we need to apply
our proof system does not have this optimal relation between m and r because
r is too large, we can transform our instance into one that does. For example,
we can transform several relations of the form u1 = As1 +e1, . . . ,uj = Asj +ej

into one relation
⎡

⎢
⎢
⎢
⎢
⎣

A 0 · · · 0 0
· · ·
· · ·
· · ·

0 0 · · · 0 A

⎤

⎥
⎥
⎥
⎥
⎦

·

⎡

⎢
⎢
⎢
⎢
⎣

s1
· · ·
· · ·
· · ·
sj

⎤

⎥
⎥
⎥
⎥
⎦

+

⎡

⎢
⎢
⎢
⎢
⎣

e1
· · ·
· · ·
· · ·
ej

⎤

⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎣

u1

· · ·
· · ·
· · ·
uj

⎤

⎥
⎥
⎥
⎥
⎦

(8)

624 J. Bootle et al.

If we combine j relations into one in such manner, then the magnitude of m
and n increase by a factor of j, while the number of equations r gets reduced by
this same factor. By picking the j strategically, one can therefore end up with
m ≈ bτr for the new values of m and r.

Example. Since the proof system in this section is multiple instances of the
example from [BLS19,ENS20] (using the same public randomness matrix A), we
compare the amortized output size to those papers. As an example, we consider
the case where (q,R,N,M) = (≈232, 1026, 1024, 1024) and one wants to prove

uj = Asj + ej and sj , ej ∈ {−1, 0, 1}M for j ∈ [r] and A ∈ Z
N×M
q .

We take the value R larger than optimal to illustrate how one can use the idea
from above (i.e. (8)) to optimally rearrange the equations. Firstly, note that for
every divisor d of R,6 we can define vectors

s∗
i =

⎛

⎜
⎝

s(i−1)d+1

...
sid

⎞

⎟
⎠ , e∗

i =

⎛

⎜
⎝

e(i−1)d+1

...
eid

⎞

⎟
⎠ ,u∗

i =

⎛

⎜
⎝

u(i−1)d+1

...
uid

⎞

⎟
⎠

for i ∈ [r/d] and a matrix A∗ = Id ⊗ A, where Id is the d × d identity matrix.
Clearly, our problem is reduced to proving that each si, ei ∈ {−1, 0, 1}Md and

u∗
i = A∗s∗

i + e∗
i for i ∈ [R/d].

Now, we can apply our protocol from Fig. 3 for (b, n,m, r) = (3, N,Md,R/d)
and find an appropriate divisor d to minimize the proof size per equation.

In this example, we pick d = 18, hence r = 57. The last term in the expression
for the soundness error in Theorem 4.3 limits it to at least 2−24. So we search for
parameters k, l and τ under the constraint that the soundness error stays below
2−24. Then 5 iterations of the protocol give a negligible soundness error of less
than 2−120. Our search for such parameters minimizing the proof size resulted in

k = 50304, l = 55809, and τ = 176.

With these parameters and h = 2τ , the total proof size for all 5 iterations is 2384
kilobytes. So this translates to an amortized cost of 2.32 kilobytes per equation,
which is a noticeable improvement over the 47 KB proof size in [ENS20].

Acknowledgements. We would like to thank anonymous reviewers for their useful
feedback. This work was supported by the SNSF ERC Transfer Grant CRETP2-166734
FELICITY.

A The Hiding Property of Reed-Solomon Codes

We show that when r is sampled uniformly at random from Z
τ
q , then any τ entries

of the Reed-Solomon encoding Enc (m, r) corresponding to the input polynomial
f =

∑m−1
i=0 miX

i + Xm
∑τ−1

i=0 riX
i follow the uniform distribution over Z

τ
q .

6 If d is not a divisor of R, we can pad the last equation with zeroes.

More Efficient Amortization of Exact Zero-Knowledge Proofs for LWE 625

Let ζ1, . . . , ζl be distinct elements of Z×
q used as the evaluation points for the

Reed-Solomon code. We can write the encoding Enc (m, r) as a matrix multipli-
cation:

Enc (m, r) =

⎡

⎢
⎢
⎢
⎣

1 ζ1 ζ21 · · · ζm−1
1

1 ζ2 ζ22 · · · ζm−1
2

...
...

...
. . .

...
1 ζl ζ2l · · · ζm−1

l

⎤

⎥
⎥
⎥
⎦
m +

⎡

⎢
⎢
⎢
⎣

ζm
1 · · · ζm+τ−1

1

ζm
2 · · · ζm+τ−1

2
...

. . .
...

ζm
l · · · ζm+τ−1

l

⎤

⎥
⎥
⎥
⎦
r = Am + Br

Let I be a subset of [l] with |I| = τ , and let B(I) be the submatrix of B formed
by restricting to the rows in I. Observe B(I) forms a Vandermonde matrix where
the i-th row has been multiplied by ζm

i . Since the ζi are distinct and non-zero,
B(I) is invertible. Hence, if r is sampled uniformly at random from Z

τ
q , then

B(I)r is uniformly distributed over Zτ
q . This argument shows that any τ entries

of Enc (m, r) are uniformly distributed.

References

[ACPS09] Applebaum, B., Cash, D., Peikert, C., Sahai, A.: Fast cryptographic prim-
itives and circular-secure encryption based on hard learning problems. In:
Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 595–618. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-03356-8 35

[AHIV17] Ames, S., Hazay, C., Ishai, Y., Venkitasubramaniam, M.: Ligero:
lightweight sublinear arguments without a trusted setup. In: ACM Confer-
ence on Computer and Communications Security - CCS 2017, pp. 2087–
2104 (2017)

[BBB+18] Bünz, B., Bootle, J., Boneh, D., Poelstra, A., Wuille, P., Maxwell, G.:
Bulletproofs: short proofs for confidential transactions and more. In: IEEE
Symposium on Security and Privacy - IEEE S&P 2018, pp. 315–334 (2018)

[BBC+18] Baum, C., Bootle, J., Cerulli, A., del Pino, R., Groth, J., Lyubashevsky, V.:
Sub-linear lattice-based zero-knowledge arguments for arithmetic circuits.
In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10992,
pp. 669–699. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
96881-0 23

[BCC+16] Bootle, J., Cerulli, A., Chaidos, P., Groth, J., Petit, C.: Efficient zero-
knowledge arguments for arithmetic circuits in the discrete log setting. In:
Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666, pp.
327–357. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-
49896-5 12

[BCG+17] Bootle, J., Cerulli, A., Ghadafi, E., Groth, J., Hajiabadi, M., Jakobsen,
S.K.: Linear-time zero-knowledge proofs for arithmetic circuit satisfiability.
In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017. LNCS, vol. 10626,
pp. 336–365. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
70700-6 12

[BCOS20] Boschini, C., Camenisch, J., Ovsiankin, M., Spooner, N.: Efficient post-
quantum snarks for RSIS and RLWE and their applications to privacy.
In: International Conference on Post-Quantum Cryptography - PQCrypto
2020, pp. 247–267 (2020)

https://doi.org/10.1007/978-3-642-03356-8_35
https://doi.org/10.1007/978-3-319-96881-0_23
https://doi.org/10.1007/978-3-319-96881-0_23
https://doi.org/10.1007/978-3-662-49896-5_12
https://doi.org/10.1007/978-3-662-49896-5_12
https://doi.org/10.1007/978-3-319-70700-6_12
https://doi.org/10.1007/978-3-319-70700-6_12

626 J. Bootle et al.

[BCR+19] Ben-Sasson, E., Chiesa, A., Riabzev, M., Spooner, N., Virza, M., Ward,
N.P.: Aurora: transparent succinct arguments for R1CS. In: Ishai, Y.,
Rijmen, V. (eds.) EUROCRYPT 2019. LNCS, vol. 11476, pp. 103–128.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17653-2 4

[BCS16] Ben-Sasson, E., Chiesa, A., Spooner, N.: Interactive Oracle proofs. In: Hirt,
M., Smith, A. (eds.) TCC 2016. LNCS, vol. 9986, pp. 31–60. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-53644-5 2

[BCS19] Baum, C., Cozzo, D., Smart, N.P.: Using TopGear in overdrive: a more
efficient ZKPoK for SPDZ. In: Paterson, K.G., Stebila, D. (eds.) SAC 2019.
LNCS, vol. 11959, pp. 274–302. Springer, Cham (2020). https://doi.org/
10.1007/978-3-030-38471-5 12

[BDL+18] Baum, C., Damg̊ard, I., Lyubashevsky, V., Oechsner, S., Peikert, C.:
More efficient commitments from structured lattice assumptions. In: Cata-
lano, D., De Prisco, R. (eds.) SCN 2018. LNCS, vol. 11035, pp. 368–385.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-98113-0 20

[Beu20] Beullens, W.: Sigma protocols for MQ, PKP and SIS, and fishy signature
schemes. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020. LNCS, vol.
12107, pp. 183–211. Springer, Cham (2020). https://doi.org/10.1007/978-
3-030-45727-3 7

[BKS18] Ben-Sasson, E., Kopparty, S., Saraf, S.: Worst-case to average case reduc-
tions for the distance to a code. In: Computational Complexity Conference
- CCC 2018, pp. 1–23 (2018)

[BLNS20] Bootle, J., Lyubashevsky, V., Nguyen, N.K., Seiler, G.: More efficient amor-
tization of exact zero-knowledge proofs for LWE. IACR Cryptology ePrint
Archive, Report 2020/1449 (2020)

[BLS19] Bootle, J., Lyubashevsky, V., Seiler, G.: Algebraic techniques for short(er)
exact lattice-based zero-knowledge proofs. In: Boldyreva, A., Micciancio,
D. (eds.) CRYPTO 2019. LNCS, vol. 11692, pp. 176–202. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-26948-7 7

[DKL+18] Ducas, L., et al.: Crystals-Dilithium: a lattice-based digital signature
scheme, pp. 238–268 (2018)

[dPLNS17] del Pino, R., Lyubashevsky, V., Neven, G., Seiler, G.: Practical quantum-
safe voting from lattices. In: ACM Conference on Computer and Commu-
nications Security - CCS 2017, pp. 1565–1581 (2017)

[dPLS19] del Pino, R., Lyubashevsky, V., Seiler, G.: Short discrete log proofs for
FHE and Ring-LWE ciphertexts. In: Lin, D., Sako, K. (eds.) PKC 2019.
LNCS, vol. 11442, pp. 344–373. Springer, Cham (2019). https://doi.org/
10.1007/978-3-030-17253-4 12

[EKS+20] Esgin, M.F., et al.: Practical post-quantum few-time verifiable random
function with applications to algorand. IACR Cryptology ePrint Archive,
Report 2020/1222 (2020)

[ENS20] Esgin, M.F., Nguyen, N.K., Seiler, G.: Practical exact proofs from lattices:
new techniques to exploit fully-splitting rings. In: Moriai, S., Wang, H.
(eds.) ASIACRYPT 2020. LNCS, vol. 12492, pp. 259–288. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-64834-3 9

[EZS+19] Esgin, M.F., Zhao, R.K., Steinfeld, R., Liu, J.K., Liu, D.: Matrict: efficient,
scalable and post-quantum blockchain confidential transactions protocol.
In: ACM Conference on Computer and Communications Security - CCS
2019, pp. 567–584 (2019)

https://doi.org/10.1007/978-3-030-17653-2_4
https://doi.org/10.1007/978-3-662-53644-5_2
https://doi.org/10.1007/978-3-030-38471-5_12
https://doi.org/10.1007/978-3-030-38471-5_12
https://doi.org/10.1007/978-3-319-98113-0_20
https://doi.org/10.1007/978-3-030-45727-3_7
https://doi.org/10.1007/978-3-030-45727-3_7
https://doi.org/10.1007/978-3-030-26948-7_7
https://doi.org/10.1007/978-3-030-17253-4_12
https://doi.org/10.1007/978-3-030-17253-4_12
https://doi.org/10.1007/978-3-030-64834-3_9

More Efficient Amortization of Exact Zero-Knowledge Proofs for LWE 627

[GGPR13] Gennaro, R., Gentry, C., Parno, B., Raykova, M.: Quadratic span programs
and succinct NIZKs without PCPs. In: Johansson, T., Nguyen, P.Q. (eds.)
EUROCRYPT 2013. LNCS, vol. 7881, pp. 626–645. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-38348-9 37

[Kil92] Kilian, J.: A note on efficient zero-knowledge proofs and arguments. In:
ACM Symposium on the Theory of Computing - STOC 1992, pp. 723–732
(1992)

[KKPP20] Katsumata, S., Kwiatkowski, K., Pintore, F., Prest, T.: Scalable cipher-
text compression techniques for post-quantum KEMs and their applica-
tions. In: Moriai, S., Wang, H. (eds.) ASIACRYPT 2020. LNCS, vol. 12491,
pp. 289–320. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
64837-4 10

[KR08] Kalai, Y.T., Raz, R.: Interactive PCP. In: Aceto, L., Damg̊ard, I., Gold-
berg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.)
ICALP 2008. LNCS, vol. 5126, pp. 536–547. Springer, Heidelberg (2008).
https://doi.org/10.1007/978-3-540-70583-3 44

[KTX08] Kawachi, A., Tanaka, K., Xagawa, K.: Concurrently secure identification
schemes based on the worst-case hardness of lattice problems. In: Pieprzyk,
J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp. 372–389. Springer, Hei-
delberg (2008). https://doi.org/10.1007/978-3-540-89255-7 23

[LNS21] Lyubashevsky, V., Nguyen, N.K., Seiler, G.: Shorter lattice-based zero-
knowledge proofs via one-time commitments. In: Garay, J.A. (ed.) PKC
2021. LNCS, vol. 12710, pp. 215–241. Springer, Cham (2021). https://doi.
org/10.1007/978-3-030-75245-3 9

[LNSW13] Ling, S., Nguyen, K., Stehlé, D., Wang, H.: Improved zero-knowledge proofs
of knowledge for the ISIS problem, and applications. In: Kurosawa, K.,
Hanaoka, G. (eds.) PKC 2013. LNCS, vol. 7778, pp. 107–124. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-36362-7 8

[MF21] Mittelbach, A., Fischlin, M.: The Theory of Hash Functions and Random
Oracles - An Approach to Modern Cryptography. Springer, Cham (2021)

[Mic00] Micali, S.: Computationally sound proofs. SIAM J. Comput. 30(4), 1253–
1298 (2000)

[PVW08] Peikert, C., Vaikuntanathan, V., Waters, B.: A framework for efficient and
composable oblivious transfer. In: Wagner, D. (ed.) CRYPTO 2008. LNCS,
vol. 5157, pp. 554–571. Springer, Heidelberg (2008). https://doi.org/10.
1007/978-3-540-85174-5 31

[RRR16] Reingold, O., Rothblum, G.N., Rothblum, R.D.: Constant-round interac-
tive proofs for delegating computation. In: ACM Symposium on the Theory
of Computing - STOC 2016, pp. 49–62 (2016)

[RVW13] Rothblum, G.N., Vadhan, S.P., Wigderson, A.: Interactive proofs of prox-
imity: delegating computation in sublinear time. In: ACM Symposium on
the Theory of Computing - STOC 2013, pp. 793–802 (2013)

[Sho] Victor Shoup. https://www.shoup.net/ntl/
[Ste93] Stern, J.: A new identification scheme based on syndrome decoding. In:

Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 13–21. Springer,
Heidelberg (1994). https://doi.org/10.1007/3-540-48329-2 2

[YAZ+19] Yang, R., Au, M.H., Zhang, Z., Xu, Q., Yu, Z., Whyte, W.: Efficient lattice-
based zero-knowledge arguments with standard soundness: construction
and applications. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019.
LNCS, vol. 11692, pp. 147–175. Springer, Cham (2019). https://doi.org/
10.1007/978-3-030-26948-7 6

https://doi.org/10.1007/978-3-642-38348-9_37
https://doi.org/10.1007/978-3-030-64837-4_10
https://doi.org/10.1007/978-3-030-64837-4_10
https://doi.org/10.1007/978-3-540-70583-3_44
https://doi.org/10.1007/978-3-540-89255-7_23
https://doi.org/10.1007/978-3-030-75245-3_9
https://doi.org/10.1007/978-3-030-75245-3_9
https://doi.org/10.1007/978-3-642-36362-7_8
https://doi.org/10.1007/978-3-540-85174-5_31
https://doi.org/10.1007/978-3-540-85174-5_31
https://www.shoup.net/ntl/
https://doi.org/10.1007/3-540-48329-2_2
https://doi.org/10.1007/978-3-030-26948-7_6
https://doi.org/10.1007/978-3-030-26948-7_6

Zero Knowledge Contingent Payments
for Trained Neural Networks

Zhelei Zhou1, Xinle Cao1, Jian Liu1,2(B), Bingsheng Zhang1,2(B),
and Kui Ren1,3

1 Zhejiang University, Hangzhou, China
{zl zhou,xinle,liujian2411,bingsheng,kuiren}@zju.edu.cn

2 ZJU-GTTX Joint Research Laboratory for Cyber Security, Hangzhou, China
3 Key Laboratory of Blockchain and Cyberspace Governance of Zhejiang Province,

Hangzhou, China

Abstract. Nowadays, neural networks have been widely used in many
machine learning tasks. In practice, one might not have enough expertise
to fine-tune a neural network model; therefore, it becomes increasingly
popular to outsource the model training process to a machine learning
expert. This activity brings out the needs of fair model exchange: if the
seller sends the model first, the buyer might refuse to pay; if the buyer
pays first, the seller might refuse to send the model or send an inferior
model. In this work, we aim to address this problem so that neither the
buyer nor the seller can deceive the other. We start from Zero Knowledge
Contingent Payment (ZKCP), which is used for fair exchange of digital
goods and payment over blockchain, and extend it to Zero Knowledge
Contingent Model Payment (ZKCMP). We then instantiate our ZKCMP
with two state-of-the-art NIZK proofs: zk-SNARKs and Libra. We also
propose a random sampling technique to improve the efficiency of zk-
SNARKs. We extensively conduct experiments to demonstrate the prac-
ticality of our proposal.

1 Introduction

Deep neural networks have recently gained much popularity due to their record-
breaking performance on a wide range of machine learning tasks such as pattern
recognition [5], medical diagnosis [9] and credit-risk assessment [3]. It is well-
known that the final performance of a neural network model highly depends on
its training data. However, the data owners usually do not have enough expertise
to fine-tune the model, thereby they would like to outsource the training process
to some machine learning (ML) experts. This gives ML experts an opportunity
to monetize their skills, but brings the challenge of fairly exchanging the model:
if the seller (i.e., ML expert) returns the model first, the buyer might refuse to
pay the honorarium; if the buyer pays first, the seller might refuse to provide
the model or provide an inferior model. In this paper, we aim to address this
problem so that neither the buyer nor the seller can cheat the other.

c© Springer Nature Switzerland AG 2021
E. Bertino et al. (Eds.): ESORICS 2021, LNCS 12973, pp. 628–648, 2021.
https://doi.org/10.1007/978-3-030-88428-4_31

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-88428-4_31&domain=pdf
https://doi.org/10.1007/978-3-030-88428-4_31

Zero Knowledge Contingent Payments for Trained Neural Networks 629

Our starting point is zero knowledge contingent payment (ZKCP), which
allows fair exchange of digital goods and payments over Bitcoin. Most cryptocur-
rencies like Bitcoin and Ethereum allow a payer to make a payment by specifying
a condition that needs to be met in order for the money to be redeemed by the
payee. One example of such conditions is a hash-locked transaction [2], where a
payment can be redeemed by presenting a SHA256 preimage of a hash value. In
ZKCP, the seller first encrypts the digital goods s as a ciphertext c and sends
it to the buyer together with the hash of the encryption key y := SHA256(k).
Then, the buyer makes a hash-locked transaction requiring the seller to post k
to the blockchain to redeem the payment. Meanwhile, the buyer can decrypt c
and obtain the purchased information. Moreover, the seller is required to prove
that c really encrypts the “desired information” and the preimage of y is the
encryption key, via a zero-knowledge (ZK) proof [13], which guarantees that the
proof does not leak anything about s and k.

In our case, the digital goods s is a trained neural network, and the “desired
information” means that s reaches a certain level of accuracy. We introduce
a new notion named zero knowledge contingent model payment (ZKCMP), the
whole procedure of which is as follows: (i) the buyer sends the training dataset
to the seller; (ii) the seller trains a model s and commits it to the buyer, denoted
as c = Enc(k, s) and y = hash(k); (iii) the buyer sends the testing dataset
together with desired accuracy acc to the seller; (iv) the seller evaluates the
model on the testing dataset; (v) the seller sends a ZK proof, proving that “the
preimage of y can decrypt c and gets the previously committed model s, which
achieves an accuracy of acc when being evaluated on the testing dataset”; (vi)
the buyer verifies the proof and posts a hash-locked transaction for y; (vii) the
seller redeems the payment by posting k to the blockchain.

For the ZK proof, we investigate both zk-SNARKs [6] and Libra [17]. The
challenge for zk-SNARKs is that the proof generation phase is time-consuming
and memory-consuming since it involves billions of gates for running a neural
network over the testing dataset. To this end, we propose a random sampling
technique to reduce the computational overhead for generating a proof, while still
keeping the exchange secure and fair. The challenge for Libra is that the lay-
ered arithmetic circuit being used can only have a single output, thereby cannot
support the proof for both accuracy and encryption. To conquer this, we con-
struct separate arithmetic circuits for different output, and use zero-knowledge
polynomial commitment to connect them (i.e., commit the I/O of each circuit
so that circuits can be connected in a zero-knowledge way). A common chal-
lenge for both zk-SNARKs and Libra is that proving the final accuracy of the
neural network is non-trivial. We design a customized circuit by composing a
series of matrix operations so that the final accuracy can be proved efficiently.
We summarize our contribution as follows:

– We propose a new notion named zero knowledge contingent model payment
(ZKCMP), which allows fair exchange of a trained machine learning model
and a cryptocurrency payment (e.g., Bitcoin) (cf. Sect. 3).

– We instantiate ZKCMP with zk-SNARKs and Libra respectively, which
involves a series of sophistic circuit designs (cf. Sect. 4).

630 Z. Zhou et al.

– We propose a random sampling technique to improve the efficiency of zk-
SNARKs (cf. Sect. 4.1).

– We provide a full-fledged implementation and conduct experiments exten-
sively (cf. Sect. 6).

2 Preliminaries

Notations. Let λ be the security parameter. Let negl(·) denote a negligible func-
tion. Let PRF be a pseudorandom function. Let F be a finite field of prime order.
We denote [x] as the set {1, 2, . . . , x}. We denote �1n as the vector (1, . . . , 1) ∈ F

n.
Let M be a trained model, we denote w as the model parameter. We denote
D := {〈xi, Li〉}i∈n (where xi is the data sample entry, and Li is its corresponding
label) of size n.

Commitment Scheme. A commitment scheme consists of:

– Setup(1λ). It is the public parameter generation algorithm that takes input
as the security parameter λ, and it outputs public parameter pp (to be used
by the other algorithms implicitly).

– Commit(m; r). It is the commitment generation algorithm that takes input
as: the message m, the random coin r. It outputs commitment-opening pair
(E, d). When r is not important, we use Commit(m) for simplicity.

– Verify(c, d,m). It is the verification algorithm that takes input as: the commit-
ment c, the opening d, the message m. It outputs a bit b ∈ {0, 1}, indicating
acceptance or rejection.

A commitment scheme should be simultaneously binding and hiding, and let
AdvA,Hide

COM (λ) and AdvA,Bind
COM (λ) denote the corresponding adversarial advantage.

In this work, we instantiate COM with salted SHA256. In particular, we pick a
random r ← {0, 1}λ, and commit to m by E ← SHA256(m||r), the opening is
set as d := (m, r).

Non-interactive Zero-Knowledge (NIZK) Proofs. Let R be an efficiently
decidable binary relation, which defines the NP language L := {st| ∃wit :
(st,wit) ∈ R}. A NIZK proof system NIZKR for R consists of:

– Setup(1λ). It is the common reference string (CRS) generation algorithm that
takes input as the security parameter λ, and it outputs a CRS crs.

– Prove(crs, st,wit). It is the proof generation algorithm that takes input as:
the CRS crs, statement st, witness wit. It outputs a proof π.

– Verify(crs, st, π). It is the verification algorithm that takes input as: the CRS
crs, statement s, proof π. It outputs a bit b ∈ {0, 1}.

Definition 1 (NIZK). A triple of algorithms NIZKR := (Setup,Prove,Verify)
is a NIZK proof for the relation R if the following properties holds:

Zero Knowledge Contingent Payments for Trained Neural Networks 631

– Perfect Completeness. We say that a NIZK system for R is perfectly com-
plete if for any adversary A, we have:

Pr

[
crs ← Setup(1λ); (st,wit) ← A(crs);
π ← Prove(crs, st,wit)

: (st,wit) /∈ R ∨ Verify(crs, st, π) = 1

]
= 1

– Computational Soundness. We say that a NIZK system for R is com-
putationally sound if for any PPT adversary A, the adversarial advantage
AdvA,Sound

NIZK (λ) is:

Pr

[
crs ← Setup(1λ);
(st, π) ← A(crs) : Verify(crs, st, π) = 1 ∧ st /∈ L

]
= negl(λ)

– Computational Zero-Knowledge. We say that a NIZK system for R
is computationally zero-knowledge if there exists a pair of PPT simulators
(Sim1,Sim2) such that for any PPT adversary A, the adversarial advantage
AdvA,ZK

NIZK (λ) is:
∣∣∣∣Pr

[
crs ← Setup(1λ) :
AProve(crs,·,·)(crs) = 1

]
− Pr

[
(crs∗, td) ← Sim1(1λ) :
ASim∗(crs∗,td,·,·)(crs∗) = 1

] ∣∣∣∣ = negl(λ)

Where the oracle Sim∗(crs∗, td, st,wit) := Sim2(crs∗, st, td) for (st,wit) ∈ R
and the oracle outputs ⊥ if (st,wit) /∈ R.

In practice, the relation decision algorithm is instantiated by a circuit
CR(st,wit), which outputs 1 if (st,wit) ∈ R; otherwise, it outputs 0.

zk-SNARKs. Zero-knowledge succinct non-interactive arguments of knowledge
(zk-SNARKs) [6] is a type of widely used NIZK proof systems. It achieves suc-
cinct proof size and verification time, whereas the proving cost is heavy. zk-
SNARKs can be used to prove the satisfaction problem of a system of rank-1
quadratic equations over a finite field F. See more details in [4].

Definition 2. Denote Ng the number of rank-1 quadratic equations, Nv the
number of variables, and � the statement size. A system of rank-1 quadratic equa-
tions over F is a tuple S = ((aj , bj , cj)

Ng

j=1, �,Nv) where aj , bj , cj ∈ F
1+Nv and

� ≤ Nv. Such a system S is satisfiable with an input x ∈ F
� if there is a witness

w ∈ F
Nv−� such that: ∀j ∈ [Ng] , 〈aj , (1, x, w)〉 · 〈bj , (1, x, w)〉 = 〈cj , (1, x, w)〉. In

such a case, we write S(x,w) = 1.

In brief, zk-SNARKs aims to prove the relation RS = {(x,w) ∈ F
� ×F

Nv−� :
S(x,w) = 1} holds. In this article, we call the system of rank-1 quadrtic equa-
tions as constraint system, the rank-1 quadratic equation as constraint equation
to make our expression clear.

Libra. Libra [17] is a zero-knowledge proof system that is designed for layered
arithmetic circuits. The performance of Libra is competitive, it has very fast
prover time and succinct proof size/verification time. Libra uses zero-knowledge

632 Z. Zhou et al.

GKR protocol [12] and zero-knowledge verifiable polynomial delegation scheme
(zkVPD) [18] as two main building blocks. The construction for non-interactive
version of Libra is presented in Fig. 1. In Appendix A, we provide brief descrip-
tion of its main building blocks.

Fig. 1. Non-interactive Libra for C(st,wit) = 1

3 Design Overview

A Brief Introduction to ZKCP. ZKCP [1,7] is a blockchain based fair
exchange protocol. For the most common scenarios, the seller S has some dig-
ital goods s which the buyer B wants to purchase on condition that f(s) = 1
for a verification function f : {0, 1}λ �→ {0, 1}. In the off-chain phase, S uses
a symmetric encryption Enc to encrypt s with a random key k and publishes
the ciphertext c ← Enc(s, k) and the committed key E ← SHA256(k) together
with a ZK proof showing SHA256(k) = E ∧ f(Enc−1(c, k)) = 1. If the proof
is correct, B and S then enter the on-chain phase using a hash-locked transac-
tion [2]. Even through ZKCP has been extensively explored by both researchers
and practitioners, to the best of our knowledge, there is still no formalization so
far. For the first time, we formalize the syntax of ZKCP as follows:

– pp ← Setup(1λ): It is the public parameter generation algorithm that takes
input as: the security parameter 1λ, and it outputs the public parameter pp.

Zero Knowledge Contingent Payments for Trained Neural Networks 633

• Invoke crs ← NIZK.Setup(1λ);
• Output pp := crs.

– (c, E, d, π) ← Prove(pp, s): It is the prove algorithm that takes input as: the
public parameter pp, the digital file s. It then outputs the ciphertext c, a
commitment-opening pair (E, d) and a proof π.

• Sample a random key k ← {0, 1}λ;
• Generate c ← Enc(s, k), where Enc is a symmetry encryption;
• Commit to the key (E, d) ← COM.Commit(k);
• Generate π ← NIZK.Prove(pp, (c, E), (k, s));
• Output (c, E, d, π).

– b ← Verify(pp, c, E, π). It is the verification algorithm that takes input as: the
public parameter pp, the ciphertext c, the commitment E, and the proof π.
It then outputs a bit b ∈ {0, 1}, indicating acceptance or rejection.

• Output b ← NIZK.Verify(pp, (c, E), π).
– Fex[COM]. It is the the trusted exchange functionality to guarantee the fair-

ness and security of the payment. As depicted in Fig. 2, when B sends instruc-
tion (Commit, v, E) to Fex[COM], where v is the payment amount, and E is
the committed key, Fex[COM] checks B’s account balance AccB ≥ v and
then stores E. When S sends instruction (Redeem, k, d) to Fex[COM], where
k is the key and d is the opening, Fex calls COM to check the validity. If
COM.Verify(E, d, k) = 1, Fex[COM] transfers v from B’s account balance AccB
to S’s account balance AccS . Fex[COM] can be instantiated by hash-locked
transaction.

Fig. 2. The exchange functionality Fex[COM]

From ZKCP to ZKCMP. We extend the idea of ZKCP to a specific class of
problems: paying for qualified trained models. Consider such a scenario, S has
a trained model M which B wants to purchase. Since the model structure is a

634 Z. Zhou et al.

common knowledge, they only need to exchange the model parameters, denoted
as w. However, the original ZKCP protocol is not sufficient for our purpose. This
is because in practice B may want to test the accuracy of M w.r.t his own testing
dataset D before paying for it; however, according to the ZKCP protocol, S can
provide the encrypted model after seeing the testing dataset, which nullifies the
testing soundness.

To address this issue, we propose a new notion named zero knowledge con-
tingent model payments (ZKCMP). Intuitively, let us focus on the Prove. Prove
serves two purposes: (i) send the encryption of the digital goods, so S cannot
change it latter; (ii) prove the digital goods satisfies the requirement. We intro-
duce a new algorithm Seal to seal the the model parameter w to separate these
two purposes. The separation is important, since S must perform Seal(w) before
B sending his testing dataset D. After receiving D, S generates a proof to prove
the accuracy of M.

The workflow of ZKCMP is presented in Fig. 3. Before the protocol starts,
Setup(1λ) is invoked by a trusted entity to generate pp. It is then sent to both B
and S. To prevent S from cheating, S is required to seal the model parameters w
by invoking (c, E, d) ← Seal(w) and send the sealed model c and the committed
key E to B. In this way, S cannot modify the model later. B randomly picks a
testing dataset D := {〈xi, Li〉}i∈n by invoking D ← Sample(n) and sends D to S
together with a threshold τ . After receiving D, S evaluates the model on D by
F (w, xi) = yi ∧ argmax(yi) = Li, where F is the model prediction function cor-
responding to M, and yi is the final model output. argmax is used for the trans-
formation from final model output to its corresponding label. Then S is required
to prove that the accuracy of the trained model M on D exceeds the threshold τ
as well as E is the commitment of k and c is the encryption of w with k. S obtains
the proof π by invoking π ← Prove(pp, c, E,w, k,D, τ) and sends π back to B.
After that, B checks the validity of π by invoking b ← Verify(pp, c, E,D, τ, π). If
b = 1, B sends (Commit, v, E) to the trusted exchange functionality Fex[COM].
S can receive the payment by submitting (k, d) to Fex[COM]; Fex[COM] will then
send (k, d) to B. Then B can obtain the model parameters w ← Ext(c, k). To
prevent redundancy, we present the syntax of ZKCMP that differs from ZKCP.

– (c, E, d) ← Seal(w). It is the model sealing algorithm that takes input as: the
model parameters w, and it outputs the sealed model c, the commitment-
opening pair (E, d).

• Sample a random key k ← {0, 1}λ;
• Compute (w1, . . . , w�) ← Convert(w), where Convert is a function map-

ping model parameter w into strings (c.f. Sect. 4.2);
• For i ∈ [�]:

* Generate ksi ← PRF(k, i);
* Set ci := wi ⊕ ksi;

• Commit to the key by (E, d) ← COM.Commit(k);
• Output (c := (c1, . . . , c�), E, d);

– π ← Prove(pp, c, E,w, k,D, τ). It is the prove algorithm that takes input as:
the public parameter pp, the sealed model c, the committed key E, the model

Zero Knowledge Contingent Payments for Trained Neural Networks 635

Fig. 3. Our designed protocol

parameter w, the key k, the testing dataset D, and the threshold τ . It then
outputs a proof π.

• Compute I = {i | F (w, xi) = yi ∧ argmax(yi) = Li};
• Output π ← NIZK.Prove(pp, (c, E,D, τ), (w, k));

– b ← Verify(pp, c, E,D, τ, π). It is the verification algorithm that takes input
as: the public parameter pp, the sealed model c, the committed key E, the
testing dataset D, the threshold τ and the proof π. It then outputs a bit
b ∈ {0, 1}, indicating acceptance or rejection.

• Output b ← NIZK.Verify(pp, (c, E,D, τ), π);

A ZKCMP protocol Π is a three-party protocol: the buyer B, the seller S, and
a trusted functionality Fex. We denote with [a, b] ← 〈B(F, τ),S(w,F, τ),Fex〉
the event that at the end of Π, B gets a and S gets b, where a, b can be ⊥
meaning that the parties reject the execution, and neither party will learn any
information. We denote with Ev the event that AccS increases v. We define the
view of B as his money v and all the messages exchanged during the protocol:
V iewB := [v||Message〈B(F, τ),S(w,F, τ),Fex〉||Out〈B(F, τ),S(w,F, τ),Fex〉].
Definition 3. A ZKCMP protocol Π satisfies the following properties.

– Completeness. We say a ZKCMP protocol Π is complete if for any (w,D)
such that |I| ≥ n · τ , where I := {i | i ∈ [n] ∧ F (w, xi) = yi ∧ argmax(yi) =
Li}, the following holds:

Pr

⎡
⎣ pp ← Setup(1λ);

(c, E) ← Seal(w);
π ← Prove(pp, c, E,w, k,D, τ)

:
Verify(pp, c, E,D, τ, π) = 1 ∧

[k, Ev] ← 〈B(F, τ),S(w,F, τ),Fex〉

⎤
⎦ = 1

– ε-soundness. We say a ZKCMP protocol Π is ε-sound , ε ≥ 0, if for any pos-
sibly malicious PPT Ŝ, if at the end of the protocol Ŝ’s account balance AccŜ

636 Z. Zhou et al.

increases with non-negligible probability, then there exists an PPT extractor
ExtŜ which outputs ŵ s.t.

τ − 1
n

|{i|F (ŵ, xi) = y′
i ∧ argmax(y′

i) = Li}| ≤ ε

– Zero-knowledge. We say a ZKCMP protocol Π is zero-knowledge, if for any
possibly malicious PPT B̂, there exists a PPT simulator SimB̂ s.t.

SimB̂(1λ)
c≈ V iewB̂(1λ)

4 Instantiation

In this section, we give two efficient solutions to instantiate ZKCMP for trained
neural networks respectively: (i) zk-SNARKs and (ii) Libra. We use the neural
network in CryptoNets [8] as an example and it can be expressed as:

w(3)(w(2)(w(1)x + b(1))2 + b(2))2 + b(3) = y ∧ argmax(y) = L (1)

where w(i), b(i) ∀i ∈ [3] are the model parameters. Note that both zk-SNARKs
and Libra works in F, while neural networks require floating-point arithmetic.
A simple solution is to scale the floating-point numbers up to integers by multi-
plying the same constant to all values and drop the fractional parts [14].

In Prove, S aims to give a NIZK proof for the statement:

∃w, k, s.t. ∀i ∈ [�], ci = wi ⊕ PRF(k, i) ∧ COM.Verify(E, d, k) = 1 ∧
1
n

|{i | w(3)(w(2)(w(1)xi + b(1))2 + b(2))2 + b(3) = yi ∧ argmax(yi) = Li}| ≥ τ

To generate a NIZK proof, S constructs a circuit for the statement. The
circuit consists of two components, which we describe in their specific context:

1. Proof of accuracy: Prove I = {i | F (w, xi) = yi ∧ argmax(yi) = Li} and
|I| > n · τ ;

2. Proof of encryption: Prove ∀i ∈ [�]: ksi ← PRF(k, i) ∧ ci := wi ⊕ ksi and
(E, d) ← COM.Commit(k);

Remark. COM is used only once while PRF is frequently invoked, so we instan-
tiate PRF with a lightweight hash function MiMC7 and instantiate COM with
SHA256 (with the random nonce) due to Bitcoin restrictions.

Zero Knowledge Contingent Payments for Trained Neural Networks 637

4.1 zk-SNARKs-Based Solution

Our first approach is based on zk-SNARKs and we give a high level description
of our approach here. S transforms the statement into the format of constraint
system described in Sect. 2. S then constructs a circuit to show the correctness of
every constraint equation in the constraint system. The proof size of zk-SNARKs
is a small constant, which means low communication between S and B. However,
naively using zk-SNARKs to generate NIZK proofs for neural networks can be
quite time-consuming and memory-consuming. The performance bottleneck lies
in the huge computation of w(3)(w(2)(w(1)xi + b(1))2 + b(2))2 + b(3) = yi which
means enormous constraint equations need to be added into the constraint sys-
tem. In addition, the computation of I is not trivial.

We conclude the main challenge for this approach in the following:

– How to reduce the computation of w(3)(w(2)(w(1)xi +b(1))2+b(2))2+b(3) = yi

while maintain the soundness;
– How to show the correct computation of I = |{i | w(3)(w(2)(w(1)xi + b(1))2 +

b(2))2 + b(3) = yi ∧ argmax(yi) = Li}| and prove |I| ≥ n · τ .

Reducing Computational Complexity. Generally speaking, in zk-SNARKs,
all the constraint equations need to be added to a constraint system to maintain
the soundness. Intuitively, we would like to check a subset of the constraint equa-
tions whereas the soundness error are still tolerated. We introduce a Sampling
algorithm to reduce the computation.

As described in Sect. 2, the constraint system over F is denoted as Q =
((aj , bj , cj)

Ng

j=1, N). Sampling takes input as the original constraint system Q, a
selecting parameter u, and it outputs a reduced constraint system Q′ (cf. Fig. 4).

Fig. 4. Sampling algorithm: Q′ ← Sampling(Q, u)

Now, we construct a constraint system for our example neural network and
apply Sampling to reduce the computation. According to Eq. 1, we divide the

638 Z. Zhou et al.

model into four layers: (i) x(1) = (w(1)x+ b(1))2;(ii) x(2) = (w(2)x(1) + b(2))2;(iii)
y = w(3)x(2)+b(3);(iv) L = argmax(y). We take the third layer y = w(3)x(2)+b(3),
where w(3) ∈ F

10×100, x(2) ∈ F
100, b(3) ∈ F

10 and y ∈ F
10 (we use specific num-

bers here for better explaination), as the example to show how these constraints
are produced.

We first define the following variables: (1, S, w(3), x(2), b(3), y), where S =
(S(1), ..., S(1000)), w(3) = (w(3)

(1,1), w
(3)
(1,2), ..., w

(3)
(10,99), w

(3)
(10,100)), x

(2) = (x(2)
(1), ...,

x
(2)
(100)),b

(3) = (b(3)(1), ..., b
(3)
(10)), y = (y(1), ..., y(100)). Then we rewrite y = w(3)x(2) +

b(3) in the terms of two operations as follows:

– Inner Product (i.e. w(3)x(2) = S): It produces the constraint equations:
• For i ∈ [10]:

* S((i−1)×100+1) = w
(3)
(i,1) · x

(2)
(1);

* S((i−1)×100+j) = w
(3)
(i,j) · x

(2)
(i) + S((i−1)×100+j−1), 1 < j ≤ 100

– Addition (i.e. S + b(3) = y): It produces the constraint equations:
• For i ∈ [10]: y(i) = S(100×i) + b

(3)
(i) ;

Note that, the constraints equations we described above are produced by a
single test case. Our goal is to evaluate the model on a large testing dataset, so
we need Sampling to reduce the computation. We denote the set of constraints
equations produced by test case xi as si, and apply Sampling to each si to get
the reduced constraint system Q′.

Remark. In our construction, u is generally set to a small value, such as 3%.
With Sampling, the computation can be largely reduced, and we show the sound-
ness error is acceptable in Sect. 5.

Computing |I|. After computing the model output ∀i ∈ [n] : yi ∈ F
m, we use it

to compute |I|. Here we present algorithms VCompute to compute |I| and show
whether |I| ≥ n · τ without revealing I:

– VComputing(y, L, τ):
• For i ∈ [n]:

* Find the maximum value of yi: yi,max ← max(yi);
* Construct di ∈ Z

m
2 as follows:

· For k ∈ [m]: set di,k = 1 iff yi,k ≥ yi,max; otherwise, set di,k = 0;
* Add the constraint equation

∑m
k=1 di,k = 1 to Q′;

• Compute |I| =
∑n

i=1 di,Li
, and add it to Q′;

• Output 1 iff |I| ≥ n · τ ; otherwise, output 0.

Remark. With overwhelming probability, there is a unique index j such that
yi,j = yi,max. If there are more than one entry reaching the maximum value, it
means the model cannot determine which entry is the correct output. In case of
such a rare occurrence, we may choose a rule in advance (e.g. random selection)
to ensure that there is only one index j such that di,j = 1. A similar situation
may occur in the Libra-based solution, and we take the same approach.

Zero Knowledge Contingent Payments for Trained Neural Networks 639

4.2 Libra-Based Solution

We first give a high level description. S commits to the witness w, k at the
beginning. Then S constructs multiple circuits which consist of two main com-
ponents: (i) evaluate accuracy of the model; (ii) encrypt the model parameter
w := (w(1), w(2), w(3), b(1), b(2), b(3)). Note that, in the latter part, the model
parameter w(i) ∈ F

ni×mi , b(i) ∈ F
ni+3×mi+3 ,∀i ∈ [3], needs to be converted into

(w1, . . . , w�) ∈ F
� for efficient encryption. This leads to a subtle issue: how to

show the consistency between model parameter w(i), b(i),∀i ∈ [3], and the con-
verted model parameter (w1, . . . , w�) ∈ F

�.
For this approach, our main effort is to show:

– How to show the correct computation of |I| and prove |I| ≥ n · τ ;
– How to combine multiple circuits with the purpose of maintaining zero-

knowledge property.

Computing |I|. S constructs three circuits as follows.

– C1 : F (w, x) = y, where y ∈ F
n×m.

– C2 : argmax(y) = L′, where L′ ∈ F
n×m.

– C3 : Judge(L′, L, τ) = r, where r ∈ F.

Unlike Sect. 4.1, we present the ground-truth label L in the form of one-hot
vectors. After computing y ← w3(w2(w1x+b1)2+b2)2+b3 using C1, S computes
the predicted label L′ in the following way:

– argmax(y) :
• For i ∈ [n] :

* Find the maximum value of yi: yi,max ← max(yi);
* Compute yi,mid ← yi,max − 1;
* Compute L′

i ← relu(yi − yi,mid ·�1m), where relu(x) = max(0, x);
• Output the predicted label L′ := (L′

1, . . . , L
′
n), where L′ ∈ F

n×m.

With overwhelming probability, there is only one entry is non-zero (i.e.
1) in L′

i. If not, approach described in Sect. 4.1 will be taken. S can prove
L′ ← argmax(y) by π2 ← Libra.Prove(L′, y, C2), and B can validate it by
b ← Libra.Verify(π2). The algorithm mentioned later can be proved and veri-
fied using Libra (cf. Fig. 1) in the similar way. Then S can judge whether the
model accuracy exceeds the threshold τ :

– Judge(L′, L, τ) :
• Compute δ ← relu(L′ − L);
• Compute |δ| ← �1T

n · δ ·�1m;
• Compute |I| ← n − |δ|;
• Output r ← relu(n · τ − |I|).

If r = 0, it means that |I| ≥ n · τ , that is, this model meets B’s requirement.

Converting w. For efficient encryption, the model parameter w(i) ∈
F

ni×mi , b(i) ∈ F
ni+3×mi+3 ,∀i ∈ [3], needs to be converted into (w1, . . . , w�) ∈ F

�.
Without loss of generality, we resize w(i) and b(i) into matrix with the same
number of columns denoted as m′. Then S can convert w as follows:

640 Z. Zhou et al.

– Convert(w) :
• Resize the model parameter into the same column m′: ∀i ∈ [3], w(i) ∈

F
�i×m′

, b(i) ∈ F
�i+3×m′

, and set � :=
∑6

i=1 �i, �0 := 0;
• Set B := (β, β2, . . . , βm′

)T , where β is a public variable to control the
precision of w;

• Compute ∀i ∈ [3], w(i) · B = (wli−1+1, · · · , wli)
T , b(i) · B =

(wli+2+1, · · · , wli+3)
T ;

• Output ws := (w1, . . . , w�) ∈ F
�.

Remark. In the above algorithm, we assume there exists m′ such that
m′|nimi,∀i ∈ [6]. If the original model parameter does not have enough entries
to fill �im

′ entries of the resized version, we just pad 0.

Putting the Pieces Together. In order to prove the whole process, S con-
structs multiple circuits as follows:

– Component 1: proof of accuracy
• C1 : F (w, x) = y.
• C2 : argmax(y) = L′.
• C3 : Judge(L′, L, τ) = r.

– Component 2: proof of encryption
• C4 : Convert(w) = ws.
• C5 : ∀i ∈ [�],PRF(k, i) = ksi.
• C6 : COM.Commit(k) = (E, d).
• C7 : ∀i ∈ [�], wi ⊕ ksi = ci.

These circuits are connected in the way shown in Fig. 5. However, the output
of a circuit may be the input of another which should be kept private. Our
solution is to use zkVPD scheme (cf. Appendix A) to connect the circuits.

Take the component 2 as an example. The prover P first computes w, k,ws
and ks defined as Eq. 2 and commits to them using zkVPD.Commit. After the
verifier V receiving a claim about the output of C7, that is c, she computes c and
evaluates it on u where u is randomly selected. Then P and V will reduce c(u)
layer by layer recursively until it reaches the input layer. At the end, V queries
the evaluations of ws(p), ks(q) using zkVPD.Open where p and q are randomly
selected by V, and validates them by zkVPD.Verify. If zkVPD.Verify outputs 1,
P and V continue to deal with C4 and C5. For C4, V uses ws(p) as the start point
instead of evaluating on a random point. Then they will reduce ws(p) layer by
layer to complete the protocol. For C5, the similar approaches will be applied for
ks(q). The construction above can be made non-interactive by applying Fiat-
Shamir heuristic[10]. The non-interactive version of Libra based on a 254-bit
prime field can provide a security level of 100+ bits [17].

5 Security Analysis

Security analysis of Sampling. We now examine the soundness of our reduced
constraint system Q′. As defined in Sect. 3, if the system is ε-sound with accuracy
τ , then the real model accuracy is bounded by (τ −ε, 1]. Recall the proof has two
components: (i) show the prover knows a set of model parameters w such that

Zero Knowledge Contingent Payments for Trained Neural Networks 641

Fig. 5. The circuits designed for Libra

(c, E, d) ← Seal(w) and (ii) show the prover knows a set of model parameters w′

such that
|{i |F (w′, xi) = yi ∧ argmax(yi) = Li}| ≥ n · τ .

In general, an adversary may perform the following two types of attacks:

– Inconsistent model parameters attack. In this attack, the adversary try
to use inconsistent w �= w′ between the encrypted model and the testing
model to produce a valid proof, whereas F (w′, xi) is correctly computed.

– Model execution tampering attack. In this attack, the adversary try to
tamper the model execution F (w′, xi) = yi by modifying the intermediate
variable values during the computation.

Lemma 1. Let u be the selecting parameter, n be the testing dataset size. Denote
AdvA,Sound

NIZK (λ) as the soundness advantage of the underlying NIZK proof system.
The probability that any PPT adversary can success with the inconsistent model
parameters attack is

AdvA,Sound
NIZK (λ) + (1 − AdvA,Sound

NIZK (λ)) · (1 − u)n.

Proof. We assume that the adversary cannot break the soundness of the under-
lying NIZK system. Every parameter in w will be checked at least once in con-
straint equations set si. Since we select N ′

g · u constraint equations from si to
check, the probability for adversary to escape from capturing in a single test
case is (1 − u). With n test cases, the probability is (1 − u)n. ��
Lemma 2. Let u be the selecting parameter, n be the testing dataset size. Denote
AdvA,Sound

NIZK (λ) as the soundness advantage of the underlying NIZK proof system.
The probability that any PPT adversary can success with the model execution
tampering attack is

AdvA,Sound
NIZK (λ) + (1 − AdvA,Sound

NIZK (λ)) · (1 − u)n·ε.

642 Z. Zhou et al.

Proof. Here we adapt the weakest assumption: adversary only needs to change
one intermediate variable value to influence accuracy. Denote there are n test
cases in D and adversary changes M test cases to influence accuracy, and we have
ε = M

n . Denote the probability that the adversary escapes from capturing is p.
In our assumption, there is one constraint can not be satisfied in each constraints
set produced by M test cases. Similar to the proof of Lemma 1, the probability
p is (1 − u)M . Replace M with n · ε, the equation p = (1 − u)n·ε holds. ��
Remark. As shown in Fig. 6, when n = 10000, if the prover deviates the model
accuracy from τ for 1%, she will be caught with at least 95% probability.

Security Analysis of Main Construction. We examine the security of our
construction. Intuitively, the security of our ZKCMP protocol largely depends
on the soundness and zero-knowledge properties of underlying NIZK proofs.
We also assume COM and PRF are a secure commitment scheme and secure
pseudorandom function, respectively. More formally, we prove the security of our
construction by the following theorem, and its proof is provided in Appendix B.

Theorem 1. Let PRF : {0, 1}λ ×{0, 1}λ �→ {0, 1}μ(λ) be a secure pseudorandom
function, and COM : {0, 1}∗ �→ {0, 1}λ be a commitment scheme. The protocol
described in Sect. 3 with Fex[COM] as depicted in Fig. 2 is perfect complete,
0-sound, and computational zero-knowledge if the underlying NIZK protocol is
perfect complete, computational sound, and computational zero-knowledge.

Fig. 6. Fix p = 0.95 and n = 10000, the relation between ε and u.

6 Implementation and Experiments

We fully implement the proposed instantiations and evaluate the neural network
described in CryptoNets [8] on MNIST dataset. All experiments are conducted
on the same machine that has 80 Intel Xeon E5-2680 v4 vCPUs@2.5 GHz with
700GB RAM and is running on Ubuntu.

Zero Knowledge Contingent Payments for Trained Neural Networks 643

Efficiency of Sampling. We conduct experiments to demonstrate the efficiency
of our proposed Sampling technique. Fixing selecting parameter u = 3%, the
results are shown in Table 1 and Fig. 7. The results show that it is able to reduce
the cost of proof generation significantly.

Performance of Our Solutions. Since Prove and Verify account for main cost,
we focus on describing them. We compare our instantiations in terms of prover
time, verifier time and proof size. Fixing selecting parameter n = 10000, u = 3%,
the experiment results are shown in Table 2 and Fig. 8. For zk-SNARKs based
solution, its proof size is a small constant (1019 bits) while its prover time
(5781.95 s) and verifier time (18.5781 s) is acceptable. For Libra based solution,
although proof size is larger (104.4257 KB), it costs much less in both prover
time (1034.1239 s) and verifier time (0.4413 s).

Table 1. Performance of Sampling

Image number 5 10 15 20 25 30

Prover time(s) Original 42.4675 80.6847 135.829 161.769 220.973 272.984

Sampling 2.72504 4.43177 5.82092 7.50026 8.54351 10.4192

Verifier time(s) Original 0.01525 0.021936 0.028138 0.035503 0.041257 0.054159

Sampling 0.0152 0.021861 0.027569 0.034297 0.040474 0.049441

Table 2. Performance of solutions

Image number 0 2000 4000 6000 8000 10000

Prover time(s) zk-SNARKs 464.36 1466.78 2593.56 3773.49 4503.66 5781.95

Libra 11.8639 202.9769 392.7659 609.2089 799.3409 1034.1239

Verifier time(s) zk-SNARKs 0.0126 3.8566 8.0160 11.9275 16.0533 18.5781

Libra 0.1546 0.4067 0.4268 0.4440 0.4449 0.4413

Proof size(KB) zk-SNARKs 0.9951 0.9951 0.9951 0.9951 0.9951 0.9951

Libra 50.1967 97.4724 99.7902 102.1080 102.2080 104.4257

7 Related Work

SafetyNets [11] is a framework that enables a computationally weak client to
outsource neural network inferences to an untrusted server (cloud), and allows
the server to prove the correctness of the inference results using interactive proof.
In this scenario, clients knows both the model and the input data, whereas
in our case both the model and the input data has to be committed to the
verifiers. Slalom [16] is a framework that allows neural network evaluations inside

644 Z. Zhou et al.

5 10 15 20 25 30

0

100

200

300

Size of D

P
ro
ve
r
T
im

e(
s)

Prover Time

5 10 15 20 25 30

2

3

4

·10−2

Size of D

V
er
ifi
er

T
im

e(
s)

Original
Sampling

Verifier Time

Fig. 7. Performance of Sampling

103.4 103.6 103.8 104

102.5

103

103.5

Size of D

P
ro
ve
r
T
im

e(
s)

Prover Time

103.4 103.6 103.8 104

100

101

Size of D

V
er
ifi
er

T
im

e(
s)

Verifier Time

103.4 103.6 103.8 104

0

20

40

60

80

100

Size of D

P
ro
of

Si
ze
(k
b)

zk-SNARKs
Libra

Proof Size

Fig. 8. Performance of our instantiations

trusted execution environments (TEEs), and the matrix multiplication layers
are outsourced to an untrusted GPU without compromising integrity or privacy.
They use a lightweight way for verification but it is limited to linear layers and
requires TEEs. In [19], Zhao et al. proposed to use zk-SNARKs naively to valid
neural network prediction. The prover commits to the value of all intermediate
layers, and the verifier validates one random layer with a zk-SNARKs proof.
This scheme neither provide negligible soundness nor support validation for large
testing dataset.

8 Conclusion

In this paper, we address the problem of fair model exchange by proposing a
new concept called Zero Knowledge Contingent Model Payment (ZKCMP). We
investigate two state-of-the-art NIZK proofs: zk-SNARKs and Libra, and use
them as the main building block to instantiate our ZKCMP protocol respec-
tively. In particular, we propose a random sampling technique to improve the
efficiency of zk-SNARKs. Therefore, our proposal is able to support validation
for large testing dataset. To demonstrate the practicality of our proposal, we
have conducted extensive experiments.

Acknowledgment. This work is supported by the Key (Keygrant) Project of Chinese
Ministry of Education. (No. 2020KJ010201) and the National Natural Science Founda-

Zero Knowledge Contingent Payments for Trained Neural Networks 645

tion of China (Grant No. 62072401, 62002319, U20A20222). It is also supported by the
“Open Project Program of Key Laboratory of Blockchain and Cyberspace Governance
of Zhejiang Province” and GTTX Network Technology Co., Limited. The work is also
supported in part by Zhejiang Key R&D Plans (Grant No. 2021C01116).

A The Main Building Blocks of Libra

zkVPD Scheme. A zkVPD scheme [18] allows a verifier to delegate the com-
putation of polynomial evaluations to a powerful prover without leaking any
sensitive information, and validates the result in time that is constant or loga-
rithmic to the size of the polynomial. Let F be a family of l-variate polynomial
over F. A zkVPD for f ∈ F and t ∈ F

l consists of the following algorithms:

– (pp, vp) ← KeyGen(1λ)
– com ← Commit(f, rf , pp)
– {0, 1} ← Check(com, vp)
– (y, π) ← Open(f, t, rf , pp)
– {0, 1} ← Verify(com, t, y, π, vp)

GKR Protocol. Using sumcheck protocol [15] as a main building block, Gold-
wasser et al. [12] constructed an interactive protocol for layered arithmetic cir-
cuits with size C and depth d. We denote the number of gates in the i-th layer as
Ci and let ci = �log2 Si�. We then define a function Vi : {0, 1}ci → F that takes
a binary string b ∈ {0, 1}ci as input and returns the output of gate b in layer
i. Therefore, V0 corresponds to the output of the circuit and VD corresponds to
the input. Then we extend Vi to its multilinear extension.

Definition 4 (Multi-linear Extension). Let V : {0, 1}l → F be a function.
The multilinear extension of V is the unique polynomial Ṽ : Fl → F such that
Ṽ (x1, x2, . . . , xl) = V (x1, x2, . . . , xl) for all (x1, x2, . . . , xl) ∈ {0, 1}l. Ṽ can be
expressed as:

Ṽ (x1, x2, . . . , xl) =
l∑

b∈{0,1}

l∏
i=1

((1 − xi)(1 − bi) + xibi) · V (b),

where bi is i-th bit of b.

To ensure zero knowledge, P masks the polynomial Ṽi and the sumcheck
protocol by adding random polynomials. In particular, for layer i, P selects a
random bivariate polynomial Ri(x1, z) and defines

V i(x1, . . . , xci) = Ṽi(x1, . . . , xci) + Zi(x1, . . . , xci) ·
∑

z∈{0,1}
Ri(x1, z), (2)

where Zi(x) =
∏ci

i=1 xi(1 − xi), so Zi(x) = 0,∀x ∈ {0, 1}ci . Since Ri is ran-
domly selected, revealing evaluations of V i does not leak information about Ṽi.
A random polynomial δi(x, y, z) is also selected to mask the sumcheck protocol.
In this way, the sumcheck protocol will not leak information and thus be zero
knowledge. See more details in [17].

646 Z. Zhou et al.

B Proof of Theorem 1

Proof. For perfect completeness, since the underlying NIZK is perfect complete,
it is straightforward that the verification Verify would return 1, and Fex guar-
antees that the buyer B will receive k when the event Em occurs.

For 0-soundness, the event Ev occurs when the potentially malicious seller
Ŝ produces an accepting proof π and submits (Redeem, k, d) to Fex[COM];
By the soundness of the underlying NIZK protocol, with overwhelming prob-
ability, the model parameter w := (w1, . . . , w�) can satisfy |{i | F (w, xi) =
yi ∧ argmax(yi) = Li}| ≥ n · τ , where ∀i ∈ [�] : wi = ci ⊕ PRF(k, i) ∧
COM.Verify(E, d, k) = 1. Moreover, due to the binding property of the commit-
ment scheme COM, k cannot be changed afterwards. Therefore, we can construct
an extractor ExtŜ that takes input as {ci}i∈[�] and k from the out-going messages
of Ŝ, and outputs the model as wi = ci ⊕ PRF(k, i).

For computational zero-knowledge, we first construct a simulator Sim works as
follows.

– During Setup:
• Invoke (crs∗, td) ← NIZK.Sim1(1λ);
• Output pp := crs∗;

– During Seal:
• Pick a random key k∗ ← {0, 1}λ;
• Compute (E∗, d∗) ← COM.Commit(k∗);
• For i ∈ [�], compute c∗

i ← {0, 1}μ(λ), where μ(λ) := |ci|;
• Output (c∗ := (c∗

1, . . . , c
∗
�), E

∗);
– During Prove:

• Invoke π∗ ← NIZK.Sim2(pp, (c∗, E∗,D, τ), td);
• Output π∗;

Lemma 3. The adversary’s view output by the simulator Sim as described above
is indistinguishable from the real view with advantage

AdvA,ZK
NIZK (1λ) + AdvA,Hide

COM (1λ) + � · AdvA
PRF(1

λ).

Proof. We prove Lemma 3 by the sequence of hybrids H0, . . . ,H3 as follows.
Hybrid H0: it is the real view.
Hybrid H1: it is the same as Hybrid H0, except during Setup, NIZK.Sim1(1λ)

is used to generate the simulated CRS crs∗; during Prove, π∗ is generated by
NIZK.Sim2(pp, (c, E,D, τ), td) instead of the real proof.

Claim 1. If the underlying NIZK proof system is computationally zero-
knowledge with advantage AdvA,ZK

NIZK (1λ), then the view of Hybrid H1 is
indistinguishable from the view of Hybrid H0 with distinguishing advantage
AdvA,ZK

NIZK (1λ).

Proof. By Definition 1, it is straightforward that if an adversary A can distin-
guish H1 from H0 with advantage AdvA,ZK

NIZK (1λ), then A can break the zero-
knowledge property of the underlying NIZK proof system with the same advan-
tage. ��

Zero Knowledge Contingent Payments for Trained Neural Networks 647

Hybrid H2: it is the same as Hybrid H1, except during Seal, replace (E∗, d∗)
as COM.Commit(k∗) instead of COM.Commit(k).

Claim 2. If the distinguishing advantage of the COM hiding property is
AdvA,Hide

COM (1λ), then the view of Hybrid H2 is indistinguishable from the view
of Hybrid H1 with distinguishing advantage AdvA,Hide

COM (1λ).

Proof. It is straightforward by direct reduction. ��
Hybrid H3: it is the same as Hybrid H2, except during Seal, for i ∈ [�], replace

c∗
i as {0, 1}μ(λ) instead of wi ⊕ PRF(k, i).

Claim 3. If the distinguishing advantage of PRF is AdvA
PRF(1

λ), then the view
of Hybrid H3 is indistinguishable from the view of Hybrid H2 with distinguishing
advantage � · AdvA

PRF(1
λ).

Proof. First of all, the distribution of Di := c∗
i ⊕ wi is the uniformly random.

Since the distinguishing advantage of Di and PRF(k, i) is bounded by the advan-
tage of PRF AdvA

PRF(1
λ), by hybrid argument, the overall distinguishing advan-

tage of H3 and H2 is bounded by � · AdvA
PRF(1

λ). ��
Hybrid H3 is the simulated view; therefore, the overall distinguishing advan-

tage is AdvA,ZK
NIZK (1λ) + AdvA,Hide

COM (1λ) + � · AdvA
PRF(1

λ). ��
This concludes the proof. ��

References

1. The first successful zero-knowledge contingent payment (2016). https://
bitcoincore.org/en/2016/02/26/zero-knowledge-contingent-payments-
announcement/

2. Hashlock (2016). https://en.bitcoin.it/wiki/Hashlock
3. Angelini, E., di Tollo, G., Roli, A.: A neural network approach for credit risk

evaluation. Q. Rev. Econ. Finan. 48(4), 733–755 (2008). https://doi.org/10.1016/
j.qref.2007.04.001

4. Ben-Sasson, E., Chiesa, A., Genkin, D., Tromer, E., Virza, M.: SNARKs for C:
verifying program executions succinctly and in zero knowledge. In: Canetti, R.,
Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8043, pp. 90–108. Springer, Heidel-
berg (2013). https://doi.org/10.1007/978-3-642-40084-1 6

5. Bishop, C.M.: Pattern Recognition and Machine Learning (Information Science
and Statistics). Springer, Heidelberg (2006)

6. Bitansky, N., Canetti, R., Chiesa, A., Tromer, E.: From extractable collision resis-
tance to succinct non-interactive arguments of knowledge, and back again. In: ITCS
2012, pp. 326–349. Association for Computing Machinery, New York (2012)

7. Campanelli, M., Gennaro, R., Goldfeder, S., Nizzardo, L.: Zero-knowledge con-
tingent payments revisited: attacks and payments for services. In: CCS 2017, pp.
229–243 (2017)

8. Dowlin, N., Gilad-Bachrach, R., Laine, K., Lauter, K., Naehrig, M., Wernsing, J.:
Cryptonets: applying neural networks to encrypted data with high throughput and
accuracy. Technical report, February 2016

https://bitcoincore.org/en/2016/02/26/zero-knowledge-contingent-payments-announcement/
https://bitcoincore.org/en/2016/02/26/zero-knowledge-contingent-payments-announcement/
https://bitcoincore.org/en/2016/02/26/zero-knowledge-contingent-payments-announcement/
https://en.bitcoin.it/wiki/Hashlock
https://doi.org/10.1016/j.qref.2007.04.001
https://doi.org/10.1016/j.qref.2007.04.001
https://doi.org/10.1007/978-3-642-40084-1_6

648 Z. Zhou et al.

9. Fakoor, R., Ladhak, F., Nazi, A., Huber, M.: Using deep learning to enhance cancer
diagnosis and classification. In: Proceedings of the International Conference on
Machine Learning, vol. 28. ACM, New York (2013)

10. Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification and
signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp.
186–194. Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-47721-7 12

11. Ghodsi, Z., Gu, T., Garg, S.: SafetyNets: verifiable execution of deep neural net-
works on an untrusted cloud. In: Advances in Neural Information Processing Sys-
tems, vol. 30, pp. 4672–4681. Curran Associates, Inc. (2017)

12. Goldwasser, S., Kalai, Y.T., Rothblum, G.N.: Delegating computation: interactive
proofs for muggles. J. ACM 62(4), 1–64 (2015)

13. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive
proof systems. SIAM J. Comput. 18(1), 186–208 (1989)

14. Liu, J., Juuti, M., Lu, Y., Asokan, N.: Oblivious neural network predictions via
MiniONN transformations. In: CCS 2017, pp. 619–631. Association for Computing
Machinery, New York (2017)

15. Lund, C., Fortnow, L., Karloff, H.: Algebraic methods for interactive proof systems.
J. ACM 39(4) (1999)

16. Tramer, F., Boneh, D.: Slalom: fast, verifiable and private execution of neural
networks in trusted hardware. arXiv preprint arXiv:1806.03287 (2018)

17. Xie, T., Zhang, J., Zhang, Y., Papamanthou, C., Song, D.: Libra: succinct zero-
knowledge proofs with optimal prover computation. In: Boldyreva, A., Micciancio,
D. (eds.) CRYPTO 2019. LNCS, vol. 11694, pp. 733–764. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-26954-8 24

18. Zhang, Y., Genkin, D., Katz, J., Papadopoulos, D., Papamanthou, C.: VSQL:
verifying arbitrary SQL queries over dynamic outsourced databases. In: 2017 IEEE
Symposium on Security and Privacy (SP), pp. 863–880. IEEE (2017)

19. Zhao, L., et al.: VeriML: enabling integrity assurances and fair payments for
machine learning as a service. arXiv preprint arXiv:1909.06961 (2019)

https://doi.org/10.1007/3-540-47721-7_12
http://arxiv.org/abs/1806.03287
https://doi.org/10.1007/978-3-030-26954-8_24
http://arxiv.org/abs/1909.06961

Key Exchange

Identity-Based Identity-Concealed
Authenticated Key Exchange

Huanhuan Lian1, Tianyu Pan1, Huige Wang1,2(B), and Yunlei Zhao1,3(B)

1 School of Computer Science, Fudan University, Shanghai, China
{wanghuige,ylzhao}@fudan.edu.cn

2 Anhui Science and Technology University, Bengbu, China
3 State Key Laboratory of Integrated Services Networks, Xidian University,

Xi’an, China

Abstract. Identity-based authenticated key exchange (ID-AKE) allows
two parties (whose identities are just their public keys) to agree on a
shared session key over open channels. At ESORICS 2019, Tomida et al.
proposed a highly efficient ID-AKE protocol, referred to as the TFNS19-
protocol, under the motivation of providing authentication and secure
communication for huge number of low-power IoT devices. The TFNS19-
protocol currently stands for the most efficient ID-AKE based on bilinear
pairings, where each user remarkably performs only a single pairing oper-
ation. But it does not consider users’ identity privacy, and the security
is based on relatively non-standard assumptions.

In this work, we formulate and design identity-based identity-
concealed AKE (IB-CAKE) protocols. Here, identity concealment means
that the session transcript does not leak users’ identity information.
We present a simple and highly practical IB-CAKE protocol, which is
computationally more efficient than the remarkable TFNS19-protocol
in total. We present a new security model for IB-CAKE, and show it
is stronger than the ID-eCK model used for the TFNS19-protocol. The
security of our IB-CAKE protocol is proved under relatively standard
assumptions in the random oracle model, assuming the security of the
underlying authenticated encryption and the gap bilinear Diffie-Hellman
(Gap-BDH) problem. Finally, we provide the implementation results for
the proposed IB-CAKE scheme, and present performance benchmark.

Keywords: Identity-based cryptography · Identity privacy · IoT
authentication

1 Introduction

Authentication key exchange (AKE) provides confidentiality, authentication and
integrity protection for communication. It plays a fundamental role in modern
cryptography and serves as a bridge between public key cryptography and sym-
metric cryptography, as well as becomes the core mechanism for the network
security protocol. Traditional authenticated key agreement based on public key
c© Springer Nature Switzerland AG 2021
E. Bertino et al. (Eds.): ESORICS 2021, LNCS 12973, pp. 651–675, 2021.
https://doi.org/10.1007/978-3-030-88428-4_32

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-88428-4_32&domain=pdf
https://doi.org/10.1007/978-3-030-88428-4_32

652 H. Lian et al.

infrastructure (PKI) needs relatively complex key management. Identity-based
authenticated key exchange (ID-AKE) protocols allow two parties to establish
a session key based on their identities over an open network. Compared to PKI-
based AKE, the ID-AKE scheme directly uses the users’ identities as the public
keys so that the key management and distribution can be significantly simplified.

Since Shamir’s seminal work [22] of the concept of identity-based cryptogra-
phy, identity-based AKE has been extensively studied. The first identity-based
key agreement protocol was suggested in [15,16], and it was constructed by using
the same key pair format as Shamir’s original identity-based signature. In 2001,
Boneh and Franklin [4] proposed a secure and practical identity-based encryp-
tion scheme based on weil pairing. In 2002, from the IBE scheme proposed in
[4], Smart [24] proposed the first ID-based authenticated key agreement under
the assumption of bilinear pairings. Following these works, a variety of prov-
ably secure ID-AKE protocols were proposed [3,5,8–10,14,23,25–28]. Though
there exist efficient ID-AKE protocols like the one proposed in [10] that does
not use pairings, but requires pre-key-issue, i.e., secret key needs to be issued by
KGC before parties start a session [25]. In this work, we focus on constructing
highly efficient ID-AKE protocols based on bilinear pairings. In this line, the
ID-AKE protocol proposed by Tomida et al. at ESORICS 2019 [25], referred
to as the TFNS19-protocol, may stand for the current state of the art in effi-
ciency. The structure of TFNS19-protocol is briefly described in AppendixB.
For the TFNS19-protocol, each user remarkably performs only a single pairing
operation. Indeed, the TNFS19-protocol was introduced under the motivation
of providing authentication and secure communication for huge number of low-
power IoT devices. However, the security of TFNS-19 is proved in the ID-eCK
model under the relatively less standard assumptions of XDHT and q-Gap-BCA
in the quantum random oracle model.

In many applications of mobile Internet, the user’s identity is considered
to be sensitive information that should be protected during communications.
Indeed, many cryptographic standards like TLS 1.3 [18], QUIC [20] and EMV
[7] mandate identity concealment now. However, most of the existing ID-AKE
protocols do not concern this privacy problem. This raises the following open
question: can we come up with an efficient ID-AKE protocol that simultaneously
enjoys: (1) single pairing operation by each user, (2) identity concealment, and
(3) provable security based on relatively standard assumptions? What’s more,
to the best of our knowledge, there exists no appropriate security definition
framework for ID-AKE with identity concealment.

Our Contributions. In this work, we solve the above question. Specifically, we
present the first identity-based identity-concealed AKE protocol (IB-CAKE, for
short), which enjoys the following advantageous features:

– It is highly efficient: each user needs to perform a single pairing operation.
Moreover, the scheme does not need master public key. Compared with the
TFNS19-protocol, our scheme can be computationally more efficient in total.
For example, the TFNS19-protocol generates traditional master public key

Identity-Based Identity-Concealed Authenticated Key Exchange 653

that performs one exponentiation operation, the secret key generation for
each user requires an extra modular inverse operation that is also relatively
expensive, and also the computation of session key in TFNS19-protocol is
also relatively more complex than ours.

– It provides forward identity privacy for all the users. Specifically, users’ iden-
tity privacy is kept even if all of their static secret keys are exposed.

– Our scheme works in the post-specified ID setting, where peer’s identity infor-
mation is unknown to the initiator user when the protocol run starts. In com-
parison, the TFNS19 protocol works in the pre-specified ID setting, where
peer’s identity information must be known before the protocol run.

– In addition, the proposed scheme also has the following advantages: perfect
forward security, strong resilience to ephemeral state exposure, i.e., x-security;
and reasonable deniability.

We present a new security model for IB-CAKE, and show it is stronger than
the ID-eCK model used in [25] for the TFNS19-protocol. The security of our IB-
CAKE protocol is proved under relatively standard assumptions in the random
oracle model, assuming the security of the underlying authenticated encryption
and the gap bilinear Diffie-Hellman (Gap-BDH) problem. Finally, we also pro-
vide the implementation results for the IB-CAKE scheme and demonstrate its
practical feasibility.

2 Preliminaries

2.1 Notation

We denote the integer number by Z. For prime p, Zp denotes field Z/pZ. A string
or value α means a binary number, and |α| is its binary length. Let a := b denote
a simple assignment statement, which means assigning b to a, and x ‖ y be the
concatenation of two elements x, y ∈ {0, 1}∗. For a finite set S, s ← S is the
operation of picking an element uniformly at random from S. For a probability
distribution D, s ← D is the operation of picking an element according to D.
We overload the notion for probabilistic or stateful algorithms, writing V ← Alg
to mean that algorithm Alg runs and outputs value V .

2.2 Bilinear Pairings and Assumptions

Definition 1 (Bilinear Pairing [21]). Let G1, G2 and GT be three multiplica-
tive groups of the same prime order q, and g1, g2 be generators of G1 and G2,
respectively, and an admissible bilinear pairing e : G1 ×G2 → GT , which has the
following properties:

– Bilinear: ∀a, b ← Z
∗
q , and ∀ĝ1 ← G1, ĝ2 ← G2, e(ĝ1a, ĝ2

b) = e(ĝ1, ĝ2)ab holds.
– Non-degenerate: ∃ĝ1 ∈ G1, ĝ2 ∈ G2, such that e(ĝ1, ĝ2) �= 1GT

.
– Computable: ∀ĝ1 ∈ G1, ĝ2 ∈ G2, e(ĝ1, ĝ2) is efficiently computable.

Generally, there are three types of bilinear pairing:

654 H. Lian et al.

Type I: G1 = G2, it is also called symmetric bilinear pairing.
Type II: There is an efficiently computable isomorphism either from G1 to G2

or from G2 to G1.
Type III: There exists no efficiently computable isomorphism between G1 and

G2.

Definition 2 (Bilinear Diffie-Hellman (BDH) [13]). The bilinear Diffie-
Hellman (BDH) problem in 〈G1,GT , e〉 is to compute e(g, g)abc ∈ GT , given
(g, ga, gb, gc) ∈ G

4
1, where a, b, c ← Z

∗
q . The BDH assumption says that no PPT

algorithm can solve the BDH problem with non-negligible probability.

Definition 3 (Gap Bilinear Diffie-Hellman (Gap-BDH) [1,13]). The gap
bilinear Diffie-Hellman (Gap-BDH) problem is to compute e(g, g)abc ∈ GT , given
(g, ga, gb, gc) ∈ G

4
1, where a, b, c ← Z

∗
q , but with the help of a decisional bilinear

Diffie-Hellman (DBDH) oracle for G1 = 〈g〉 and GT . Here on arbitrary input
(A = ga, B = gb, C = gc, T) ∈ G

3
1 × GT , the DBDH oracle outputs 1 if and only

if T = e(g, g)abc. The Gap-BDH assumption says that no PPT algorithm can
solve the Gap-BDH problem with non-negligible probability.

2.3 Authenticated Encryption

We follow [2,11,17] to review the authenticated encryption (AE) security notion.
Briefly speaking, an authenticated encryption scheme transforms a message m
and a public header information h (e.g., a packet header, an IP address, some
predetermined nonce or initial vector) into a ciphertext c in such a way that c
provides both privacy (of m) and authenticity (of c and h) [19].

Let SE = (Kse,Enc,Dec) be a symmetric encryption scheme and let A be
an adversary. The probabilistic polynomial-time (PPT) algorithm Kse takes as
input a security parameter κ and samples a key K from a finite and no-empty
set K. The polynomial-time (randomized or stateful) encryption algorithm Enc :
K × {0, 1}∗ × {0, 1}∗ → {0, 1}∗ ∪ {⊥}, and the (deterministic) polynomial-time
decryption algorithm Dec : K × {0, 1}∗ → {0, 1}∗ ∪ {⊥} satisfy: for any K ← K,
any associated data H∈ {0, 1}∗ and any message m ∈ {0, 1}∗, if EncK(h,m)
outputs c �=⊥, DecK(c) always outputs m.

Table 1 details a security length-hiding authenticated-encryption game. We
define the AEAD-advantage (of A) to be Advlh-ae

SE (A) = |2·Pr[LHAEA
SE ⇒ true]−

1|. Let LHAE1 (resp. LHAE0) be the LHAE game except with b set to one (resp.
zero). Then a standard argument gives that Advlh-ae

SE (A) = Pr[LHAE1A
SE ⇒

true] − Pr[LHAE0A
SE ⇒ flase]. We say that AEAD is LHAE-secure when the

advantage of all adversaries consuming “reasonable” resources is “small” (where
“reasonable” and “small” can be quantified in a concrete security setting).

Identity-Based Identity-Concealed Authenticated Key Exchange 655

Table 1. Length-hiding AEAD security game

main LHAESE: Enc(�, h, m0, m1): Dec(h, c):

K ← Kse c0 ← EncK(�, h, m0) If b = 1 ∧ c /∈ C then

b ← 0, 1 c1 ← EncK(�, h, m1) return DecK(h, c)

b′ ← AEnc,Dec If c0 =⊥ or c1 =⊥ return ⊥
return (b′ = b) return ⊥

set C = cb; return C

3 Security Model

In traditional security models for identity-based cryptosystem, to a large extent
the security definitions rely on users’ identity to define session matching, which
are not suitable for our identity-concealed protocol. In this section, we present
a strong security model for our identity-based identity-concealed authenticated
key exchange (IB-CAKE), which integrates the identity privacy and identity-
based AKE together and is applicable to identity-based CAKE scenarios. The
model allows a more powerful concurrent man-in-the-middle (CMIM) adversary
with adaptive party registration and strong capability of secrecy exposure.

3.1 System and Adversary Setting

Let n denotes the largest numbers of users. Suppose {ID1, ..., IDn} =
HONEST ∪ DISHONEST are all users in the system. There is also a set
CORRUPTED ⊆ HONEST for indicating honest yet corrupted users. All the sets
HONEST, DISHONEST and CORRUPTED may be initialized to be non-empty,
and adaptively evolve during the attack. Each user has a long-term ID-based
public/private key pair, in which the public key just is her identity information
and the private key is computed (associated with her identity information) and
preserved secretly by a key generator center(KGC). For presentation simplicity,
we assume that all users in the system have public identity information of equal
length. But our security model and protocol constructions can be extended to
the general case of different lengths of identities, by incorporating length-hiding
authenticated encryption in the underlying security model and protocol con-
structions.

Session. Each session has a session-identifier SID that is simply assigned by
an incremental counter. Setting session identifier via a counter is only for distin-
guishing messages being delivered to different sessions, which is just an artifact
in the security model. Each session, with session-identifier SID, keeps in pri-
vate a local state peerSID (for indicating the interacting peer player), a local
state STSID (for storing the intermediate randomness) and a local state SKSID

(for storing session-key), all of which are originally initialized to be the empty
string (meaning “undefined”) and are assigned during the session run according
to protocol specifications.

656 H. Lian et al.

We say that a session is completed if its owner computes a session key, where
the last session message has been sent or received. We say that a session is
incomplete (or on-going), if the session owner is still waiting for the next protocol
message. We say that a session is aborted if it stops in the middle of session run
because of some abnormal event (e.g., failure in authentication, etc.) according
to the protocol specifications. Whenever a session is aborted, all its local states
are removed from memory. Whenever a session SID is completed, STSID is
removed from memory but SKSID is still kept in private. A session can also be
expired, and for expired sessions the session-keys are also canceled.

Adversary. The adversary denoted by A in the security model is modeled as a
PPT algorithm which has access to all the participants’ oracles. Participant ora-
cles only respond to queries by the adversary and do not communicate directly
among themselves, i.e., there exist at least a benign adversary who simply passes
messages between participants faithfully. A party’s private information is not
accessible to the adversary; however, the leakage of private information is cap-
tured via the following adversary queries.

Here we keep a counter CTRI that is initiated to be 0 in the following queries,
and embed the same challenge bit b used by the initiator (also embed the same
challenge b used by the responder). We give the operations of initiator about
the queries, the processing for the role of responder is similar to that of initiator
case.

– Start(IDi) Upon receiving an instruction “(Start, IDi)”, 1 ≤ i ≤ n, for
an honest yet uncorrupted user with identity IDi (i.e., IDi ∈ HONEST \
CORRUPTED), the challenger sets the counter CTRI as CTRI := CTRI +1,
creates a session for the user with identity IDi ∈ {0, 1}∗ with session identifier
SIDI := CTRI , and returns back (SIDI ,M

(1)
SIDI

), where M
(1)
SIDI

denotes the
first protocol message for the session SIDI kept at initiator for the user
with identity IDi indicated by adversary. It also creates and keeps some
local states in private, which are the peer peerSIDI

(for indicating the peer
it is interacting), an intermediate randomness state STSIDI

and session-key
SKSIDI

for session SIDI .
– Send(SIDI ,MI) Upon receiving a tuple “(SIDI ,MI)”, the challenger first

checks whether the session SIDI exists or not, if not, it ignores; else it treats
MI as the incoming message for session SIDI , and responds with the next
protocol message if MI is not the last protocol message for that session;
otherwise, it works according to the protocol specification.

– STReveal(SIDI) Upon receiving a pair “(SIDI ,STReveal)”, the chal-
lenger checks whether the session SIDI exists or not, if not, it ignores; else
it responds with the session state STSIDI

for the session SIDI if the session
is not completed, otherwise it returns back “⊥”.

– Test(IDt0 , IDt1) Upon receiving “(Test, IDt0 , IDt1)” for IDt0 , IDt1 ∈
HONEST, where 1 < t0 �= t1 < n, the challenger randomly chooses b ← {0, 1}
and sets IDt = IDtb , and runs just as receiving the “(Start,IDt) instruc-
tion, where the session-identifier is denoted as SIDT for convenience. We
stress that the Test-type query can be made by the adversary for only once

Identity-Based Identity-Concealed Authenticated Key Exchange 657

during its attack, exclusively against initiator or responder (but not both of
them).

– SKReveal(SIDI) Upon receiving a pair “(SIDI ,SKReveal)”, the chal-
lenger checks whether the session SIDI exists or not, if not, it ignores; else if
SIDI �= SIDT , and SIDI has been completed yet not expired, it returns the
session key SKSIDI

; if SIDI = SIDT , it returns SKSIDI
if b = 1, otherwise

it returns a value taken uniformly at random from {0, 1}SKlen where SKlen
is the length of session key.

– Peer(SIDI) Upon receiving “SIDI”, it returns back the value stored in
peerSIDI

if SIDI is an existing session, otherwise the query is ignored.
– StaKeyReveal(IDi) Upon receiving “IDi”, 1 ≤ i ≤ n, it returns back the

static-key of IDi if IDi ∈ HONEST; otherwise, the query is ignored.
– Corrupt(IDi) Upon receiving an identity “IDi” for 1 ≤ i ≤ n, if IDi ∈

HONEST (otherwise, the query is ignored), it returns back static secret-key,
intermediate randomness, and session-key in the storage part for IDi, and
sets CORRUPTED = CORRUPTED ∪ {IDi}. That is, we allow the adversary
to adaptively corrupt honest users.

– Create(IDi) Upon receiving a pair “(IDi,Create)” for 1 ≤ i ≤ n, where
IDi is a new user not in HONEST ∪ DISHONEST. When this oracle gets the
identity IDi, it returns back the private key for IDi, and sets HONEST =
HONEST∪IDi. That is, we allow the adversary to adaptively create the users
in the system.

– MSKReveal() The challenger responds with the master key msk of KGC,
from which the adversary learns the static key of any given identity ID.

During the attack, the adversary A schedules all the oracle queries adaptively
as it wishes. We note that in our security model the adversary has the ability
to make other queries such as Corrupt and Peer but the security model of
protocol [25] does not. At the end of the attack, A outputs a bit b′.

Note that we require that Test query can be performed only once, against
an oracle that is in the accepted state (see below), and the test-session has not
been previously asked a SKReveal query or a Corrupt query.

An oracle may be in one of the following states (it cannot be in more than
one state).
– Accepted. If the oracle decides to accept a session key, after receipt of properly

formatted messages.
– Rejected. If the oracle decides not to accept and aborts the run of the protocol.
– Opened. If the SKReveal query has been performed against this oracle for

its last run of the protocol (its current session key is revealed).
– Corrupted. If a Corrupt query has ever been performed against the Corrupt

oracle.

3.2 Definition of Security

In our model, the label of a session is defined to be a substring of the session
transcript.

Definition 4 (Matching Session). Two sessions are matching, if they have
the same session label.

658 H. Lian et al.

Let SIDT be the completed test-session held at the user with identity IDt =
IDtb and peerSIDT

= IDk ∈ HONEST for 1 ≤ k ≤ n. Denote by SID′
T its

matching session if the matching session exists, which may be still on-going. We
say that the test-session is exposed during the attack, if any of the following
events occurs.

– IDt0 or IDt1 is corrupted via the Corrupt query.
– The query SKReveal(SIDT) is made, or if the matching session SID′

T exists
the query SKReveal(SID′

T) is made.
– The query StaKeyReveal(IDt0) or StaKeyReveal(IDt1) is made, and

STSIDT
is exposed via the query STReveal(SIDT).

– If the matching session SID′
T exists, the query StaKeyReveal(IDk) and

STReveal(SID′
T) are both made;1 else, the query StaKeyReveal(IDk) is

made.
– The query Peer(SID′

T) is made if the matching session SID′
T exists.

Note that, for unexposed test-session, it may be the case: the static-secret key
of IDt0 and IDt1 are exposed, and STSID′

T
is exposed (in the case the matching

session exists). If A made the query MSKReveal(), we consider A as having
queried both StaKeyReveal(IDt) (where IDt = IDt0 or IDt = IDt1) and
StaKeyReveal(IDk), but it does not imply that the users are corrupted.

Remark 1. Similar to the eCK model, in our security model the session state
and the static-secret key are viewed as ephemeral secret and long-term secret,
respectively. Indeed, for the same session, if both the static-secret key and the
ephemeral session state are exposed, then the session-key of this session will be
exposed. But as our security model is eCK-like, we allow the adversary to expose
the static-secret key of one session and the ephemeral session state of another
different session. Consider the following scenario. For the unexposed test-session
SIDT , if the matching session SID′

T exists, our security model allows that both
the static-secret key of the test-session (via the StaKeyReveal(IDt) query) and
the ephemeral session state of the matching session (via the STReveal(SID′

T)
query) may be exposed. In addition, when a session is completed, the ephemeral
session state will be erased from memory, but the session key usually further
exists much longer in the memory (e.g., for the subsequent authentication and
channel communications) until the session expires. Therefore, we need to sepa-
rate the oracles for session-state reveal and session-key reveal queries.

Definition 5 (Strong IB-CAKE-security). A two-party key exchange pro-
tocol is strongly IB-CAKE secure, if for any PPT adversary A defined as above,
and for any sufficiently large security parameter, the following holds:

– Label-security. Any of the following events occurs with negligibility proba-
bility:

1 If SID′
T exists, whether exposing either the static keys of IDt0 , IDt1 and IDk via

the StaKeyReveal(IDi) oracle, or exposing the states of session SIDT and SID′
T

via the STReveal(SID) oracle, does not necessarily expose the test-session.

Identity-Based Identity-Concealed Authenticated Key Exchange 659

• There exist more than two sessions of the same session label.
• There exist two matching sessions: session SID held at a user with iden-

tity IDi and session SID′ held at a user with identity IDj such that any
of the following events occurs:

(1) IDi and IDj plays the same session role (i.e., both of them are
initiator or responders).
(2) SKSID �= SKSID′ .
(3) peerSID �=⊥ ∧peerSID �= IDj, or peerSID′ �=⊥ ∧peerSID′ �=
IDi.

We remark that label-security is w.r.t any PPT adversary who can, in partic-
ular, expose the long-term private key of all honest users and expose the local
states of all existing sessions.

– ID-concealed session-key (IC-SK) security. The adversary makes an
arbitrary sequence of the queries described above. On condition that the test-
session SIDT (held at the uncorrupted user IDt) is completed and unexposed,
the following quantities are all hold:

• Impersonation security. The probability that the test-session has no
matching session is negligible. Specifically, if the unexposed test-session
has no matching session, the static secret key of the honest peer player
IDk must be unexposed via StaKeyReveal(IDk) according to the defini-
tion of unexposed session. In this case, if the test-session is successfully
completed without a matching session, the honest peer player IDk must
be impersonated by the adversary in the test-session.

• ID-SK indistinguishability. |Pr[b′ = b] − 1
2 | is negligible. (|Pr[b′ =

b] − 1
2 | ≤ negl(1κ))

We note that label-security implies the security against unknown key share
(UKS) attack. Conditioned on the test-session is completed and unexposed2,
the impersonation security (which means the test-session has matching session)
and the ID-SK indistinguishability security (which means the real session-key
and random session-key are indistinguishable) together imply perfect forward
security (PFS). The ID-SK indistinguishability also implies forward ID-privacy.

Comparison with ID-eCK security model used in [25]. Compared with the ID-eCK
security model used in [25] for the TFNS19-protocol, our security model has the
following merits besides capturing forward ID-privacy, which makes our security
definition stronger than that of ID-eCK.

– In our model, the adversary is allowed to have access to the Corrupt oracle
and the Peer oracle, which are not allowed in the ID-eCK model.

– Our security model integrates label security, impersonation security and ID-
SK indistinguishability, where the later two altogether imply perfect forward
security. On the one hand, we note that the TFNS19-protocol does not sat-
isfy our label security. Specifically, label security requires that the match-
ing session must exist, but in the security model of TFNS19-protocol, the

2 The unexposed case implies that the static secret-keys of both IDt and IDk could
be exposed.

660 H. Lian et al.

matching session does not necessarily exist. On the other hand, as TFNS19
is HMQV[12]-like AKE protocol, it does not provide perfect forward security.

– At the onset of its attack, in the ID-eCK model the adversary can select the
identities only for honest parties, while in our model the adversary is allowed
to select additional identities such as dishonest ones and corrupted ones.

4 Construction of IB-CAKE Protocol

In this section, we present the protocol construction for identity-based identity-
concealed authenticated key exchange (IB-CAKE) with mutual authentication,
which is described as follows.

Let κ be a secure parameter, G1 and GT be two multiplicative bilinear map
groups of the same prime order q such that the discrete algorithm problems in
G1 and GT are intractable, g be a generator of G1, ê : G1 ×G1 → GT be a bilin-
ear pairing over G1 and GT . Denote 1G1 and 1GT

the identity element of G1 and
GT , by G1/1GT

the set of elements of G1 except 1GT
. Let SE = (Kse, Enc,Dec)

be an authenticated encryption with associated data (AEAD) scheme, where
K = {0, 1}κ is the key space of Kse. Let H : {0, 1}∗ → Z

∗
q and H1 : {0, 1}∗ → G1

be one-way collision-resistant cryptographic hash functions modeled as random
oracles, and KDF : {0, 1}∗ → {0, 1}p(κ) be a key derivation function, where
p(κ) is a polynomial in κ. The key generator center produces the system’s public
parameters and the master secret key msk. And it generates the private key
SKi = H1(IDi)

msk for the user with identity IDi. For presentation simplicity,
we denote by Alice the anonymous session initiator, whose public identity and
private key are IDA and SKA = (H1(IDA))msk, and by Bob the session respon-
der, whose public identity and private key are IDB and SKB = (H1(IDB))msk,
where msk is the master secret key of KGC. The protocol structure of IB-CAKE
using type-I pairing is depicted in Fig. 1.

In the following, let A be a session initiator and B be a session responder.

– The initiator A selects rA ← Z
∗
q , computes x = H(SKA, rA) and X =

(H1(IDA))x. It sends X to B.
– Upon receiving X, B checks whether X ∈ G1/1G1 and aborts if not. B

selects rB ← Z
∗
q , computes y = H(SKB , rB) and Y = (H1(IDB))y. Then

B sets the primary secret PSB = e(X,SKB)y, derives keys (K1,K2) ←
KDF (PSB ,X ‖ Y) and computes CB = EncK1(IDB , y). Finally, B sends
(Y,CB) to A.

– Upon receiving (Y,CB), A sets primary secret PSA = e(SKA, Y)x, derives
keys (K1,K2) ← KDF (PSA,X ‖ Y) and decrypts the ciphertext CB by
using K1 to get the identity IDB and y. Then A verifies if y ∈ Zq

∗ and
Y = (H1(IDB))y, if successful, it computes CA = EncK1(IDA, x) and the
session key is set to be K2. Finally, A sends CA to B.

– Upon receiving CA, B runs DecK1(CA) → (IDA, x). Then it verifies if x ∈ Z∗
q

and X = (H1(IDA))x, if successful, session key is set to be K2.

Identity-Based Identity-Concealed Authenticated Key Exchange 661

Fig. 1. Construction of IB-CAKE with Type-I bilinear mapping

In the execution of IB-CAKE protocol, the second-round message sent by
sever contains the ciphertext which can be decrypted by client, then the client
can check whether y and Y are valid or not, from which it achieves the authen-
tication of sever. Similarly, the server authenticates the identity of user after
receiving the third-round message. Therefore, this proposed scheme realizes the
property of mutual authentication.

Correctness. It suffices to indicate that honest parties can obtain the same
session key. We have PSA = e(SKA, Y)x = e(H1(IDA)msk,H1(IDB)y)x

= e(H1(IDA),H1(IDB))x·y·msk and PSB = e(SKB ,X)y = e(H1(IDB)msk,
H1(IDA)x)y = e(H1(IDB),H1(IDA))x·y·msk. Thus they derive the same ses-
sion keys using the function KDF. This completes the correctness argument.

662 H. Lian et al.

We note that the above IB-CAKE scheme is constructed in the symmetric
pairing (Type-I) setting, where the bilinear map e is defined over G1 and GT ,
i.e., e : G1 × G1 → GT . In practice, using asymmetric bilinear groups (Type-II
and Type-III) is most practical for pairing implementations, where e is defined
as e : G1 × G2 → GT . The straightforward extensions to Type-II and Type-III
pairings are presented in AppendixA.

5 Security Analysis of IB-CAKE

In this section, we present the security analysis for identity-based identity-
concealed authenticated key exchange (IB-CAKE) with mutual authentications.
Due to the space limitation, we focus on the security proof of our IB-CAKE
construction with symmetric bilinear groups. The extension to the asymmetric
bilinear groups is straightforward. In the following security analysis, both the
KDF and the hash functions H, H1 are performed as random oracle (RO).

Theorem 1. Assume the AEAD = (Enc,Dec) scheme is AE-secure and the
Gap − BDH assumption holds, then the proposed scheme IB-CAKE in Sect. 4
is strong IB-CAKE secure in the random oracle model.

Proof. For each session run of the IB-CAKE protocol (at either Initiator or
Responder), define the session label to be “X ‖ Y ”. Two sessions (whether they
are complete or not) are matching if they have the same session label. Note
that, for honestly generated X and Y , with overwhelming probability X �= Y .
Observe that the two messages “X ‖ Y ” uniquely determine the parties nonce
and identities as well as the key PS which in turn determines the authentication
key K1 and application key K2. In addition, the two messages determine the two
parties authentication messages CA and CB if the peer reached the acceptance
state.

5.1 Proof of Label Security

The label-security is proved as follows. Firstly, it is trivial to check that the
probability that more than two sessions share the same session label is negligible.
We consider any pair of matching sessions: session SID held at user IDi and
session SID′ held at user IDj . Label matching (with X �= Y) implies that, with
overwhelming probability, IDi and IDj cannot play the same session role (since
two different identities playing the same role will initially violate the definition of
matching session). Since the intermediate values PSi = ê(SKi, Y)x and PSj =
ê(SKj ,X)y, the AEAD-key/session-key pairs (K1,K2) = KDF (PSi,X ‖ Y)
and (K1,K2) = KDF (PSj ,X ‖ Y) can be derived from the same label X ‖ Y ,
and it is easy to see that PSi = PSj . Thus we conclude that the two matching
sessions must have the same session-key.

Identity-Based Identity-Concealed Authenticated Key Exchange 663

Without loss of generality, assume that IDi (holding session SID) is initiator
and IDj (holding the matching session SID′) is responder. Next, we prove that
the probability of peerSID �=⊥ ∧peerSID �= IDj , or peerSID′ �=⊥ ∧peerSID′ �=
IDi, is negligible. Note that, for IB-CAKE protocol, it may be the case that
peerSID = IDj but peerSID′ =⊥. Specifically, consider that the third-round
message sent by the initiator IDi in session SID is dropped by adversary, which
causes peerSID = IDj but peerSID′ =⊥. We note that such a cutting-last-
message attack is unavoidable. Let X = (H1(IDi))

x (sent by the user IDi in
session SID) and Y = (H1(IDj))

y (sent by the user IDj in session SID′),
and suppose that peerSID �=⊥ ∧peerSID �= IDj , or peerSID′ �=⊥ ∧peerSID′ �=
IDi. This implies that there exists a PPT adversary who can successfully open
Y = (H1(IDj))

y into (IDk, y′) for IDk �= IDj in session SID such that Y =
(H1(IDj))

y = (H1(IDk))y′
, or can open X = (H1(IDi))

x into (IDb, x
′) for

IDb �= IDi in session SID′ such that X = (H1(IDi))
x = (H1(IDb))

x′
. However,

according to Lemma 1, either case can occur with at most negligible probability.
This completes the proof of the label security. Note that, our label security still
holds, even if the adversary is allowed to obtain the master secret key by querying
the MSKReveal oracle.

Lemma 1. Assuming that the functions H1 : {0, 1}∗ → G1 and H : {0, 1}∗ →
Z

∗
q are both random oracles, there does not exist a PPT algorithm which can

output {IDj , y ∈ Z
∗
q} and {IDk, y′ ∈ Z

∗
q}, where {IDj , y} �= {IDk, y′}, with

non-negligible probability such that (H1(IDj))
y = (H1(IDk))y′

.

Proof. Assuming that the functions H1 : {0, 1}∗ → G1 and H : {0, 1}∗ → Z
∗
q are

random oracles, for any pair of different {IDj , y} and {IDk, y′}, the probability
that (H1(IDj))

y = (H1(IDk))y′
is described as follows.

Pr[H1(IDj) = H1(IDk), y = y′] = 1
q−1

Pr[H1(IDj) �= H1(IDk), y �= y′] = 1
(q−1)(q−2) · 1

(q−2)

Pr[(H1(IDj))
y = (H1(IDk))y′

] = 1
q−1 + 1

(q−1)(q−2)2

Then, for any PPT algorithm who makes at most t times oracle queries to
H1 and H, where t is polynomial in |q|, the probability it outputs a pair of
different (IDj , y) and (IDk, y′) such that (H1(IDj))y = (H1(IDk))y′

is at most
t2

2(q−1) + t2

2(q−1)(q−2)2 , which is obviously negligible.

5.2 Proof of ID-Concealed Session-Key Security

In the following, we continue to present the proof of the ID-concealed session-key
security.

Let SIDT be the completed unexposed test-session held at the user IDt =
IDtb with session-label X ‖ Y and peerSIDT

= IDk ∈ HONEST, 1 ≤ k ≤ n.
Denote by SID′

T its matching session (in case it exists), which may be still on-
going. As the test-session SIDT is completed and unexposed, it means that: (1)
IDt0 and IDt1 are not corrupted; (2) The static secret key of IDt0 and IDt1 are

664 H. Lian et al.

unexposed, or STSIDT
is unexposed; (3) If the matching session SID′

T exists,
the static secret key of IDk is unexposed or STSID′

T
is unexposed; (4) Neither

the session-key of SIDT nor that of SID′
T (in case the matching session exists)

is exposed; (5) peerSID′
T

is unexposed (in case the matching session exists).
The ID-concealed session-key security is reduced to the AEAD security and

the Gap-BDH assumption. Before proceeding the security analysis, we first clar-
ify the use of the DBDH-oracle in ensuring the consistency of the KDF random
oracle. Specifically, we consider a simulator S who wants to simulate, with the
aid of a DBDH-oracle, the peer user peerSIDT

(suppose it is IDk) of the test-
session, as well as the user IDt in the test-session SIDT . The input of S includes
a given value gc, where c ← Z∗

q is defined to be the master secret key but is
unknown to S.

– Simulation of the test-session SIDT . If the test-session SIDT is run at Initia-
tor, denote by IDt = IDA the test-session holder for presentation simplicity.
When the adversary queries the static secret key SKIDA

of IDA, the simu-
lator S generates SKIDA

and answers as follows. S first checks whether the
adversary has queried the hash oracle H1 for IDA, if so, the simulator retrieves
the value a1 used for responding to the query H1(IDA), i.e., ga1 = H1(IDA);
otherwise, S selects a fresh a1 randomly and sets ga1 = H1(IDA). Next, the
simulator uses a1 and gc to compute SKIDA

= (gc)a1 . Then the simulator S
chooses X ← G1/1G1 , and gets access to the DBDH-oracle ODBDH(·, ·, ·, ·). In
the first round of SIDT , S sends X to the responder. After receiving (Y,CB)
in the second round of the test-session, S checks whether (X ‖ Y, (K1,K2))
has been recorded in the list LDBDH : if “yes”, S just uses K1 to decrypt
CB ; if “not”, S randomly generates (K1,K2) ← (0, 1)κ × (0, 1)κ by itself
and records (X ‖ Y, (K1,K2)) into the list LDBDH . From this point on, for
each RO-query of the form KDF (PS,X ‖ Y) made by the adversary A,
where PS is supposed to be BDH(X,Y, gc) (where the master secret-key
is set as msk = c). S queries DBDH-oracle with (SKIDA

, Y, gx, PS), where
SKIDA

= (H1(IDA))c. If ODBDH outputs “yes”, S returns the already stored
(K1,K2) to the adversary A; otherwise, random answer is returned.

– If the test-session SIDT is run at Responder, denote by IDt = IDB the holder
of the test-session for simplicity. When the adversary queries the static secret
key SKIDB

of IDB , the simulator S generates SKIDB
and answers as follows.

S first checks whether the adversary has queried the hash oracle H1 for IDB ,
if so, the simulator retrieves the value a2 used for responding to the query
H1(IDB), i.e., ga2 = H1(IDB); otherwise, S selects a fresh a2 randomly
and sets ga2 = H1(IDB). Next, the simulator uses a2 and gc to compute
SKIDB

= (gc)a2 . Then the simulator takes Y ← G1/1G1 as input, and has
access to the DBDH-oracle ODBDH(·, ·, ·, ·). After receiving X in the first
round of SIDT , S checks X ∈ G1/1G1 , and checks whether (X ‖ Y, (K1,K2))
has been recorded in the list LDBDH : if “yes”, S will abort, which occurs with
at most negligible probability in the RO model; if “not”, S randomly generates
(K1,K2) by itself and records (X ‖ Y, (K1,K2)) into the list LDBDH . From
this point on, for each RO-query of the form KDF (PS,X ‖ Y) made by the

Identity-Based Identity-Concealed Authenticated Key Exchange 665

adversary A, where PS is supposed to be PS = BDH(X,Y, gc), and queries
its DBDH-oracle with (X,SKIDB

, gy, PS), where SKIDB
= (H1(IDB))c. If

ODBDH outputs “yes”, S returns the already stored (K1,K2) to the adver-
sary; otherwise, random answer is returned.
It is easy to check that, in the random oracle model where KDF is assumed

to be an RO. With overwhelming probability the simulation of peerSIDT
and

the test-session by S is perfect.

Impersonation Security. Next, we prove the impersonation security which
means the probability that the test session SIDT has no matching session is
negligible. Suppose an efficient adversary A could successful impersonate the
honest user IDk in the completed and unexposed test-session SIDT , while no
matching session exists. We distinguish two cases according to whether SIDT is
run at Initiator or Responder, and present the outline of proof.

The first case, denote Case-1, is that SIDT is run at Initiator. In this case,
for presentation simplicity, we denote IDt = IDA as the test-session holder and
IDk = IDB as the peer user peerSIDT

. Firstly, by Lemma 1, we have that with
overwhelming probability Y was never generated and sent by IDB in any existing
session. Otherwise, by the fact that the test-session is successfully completed, it
implies the adversary can solve the discrete logarithm problem. Then, the imper-
sonation security is reduced to the AEAD security and the Gap-BDH assumption
in the RO model. Specifically, the Gap-BDH solver S takes (IDB ,X, gc) as input,
where X ← G1/1G1 , S defines the master secret key msk = c (note that c is
unknown to S), and its goal is to BDH(X,H1(IDB), gc) with a DBDH-oracle.
Towards this goal, it randomly guesses the peer user peerSIDT

= IDk = IDB

with probability 1
n by taking k ← {1, ..., n}, generates the secret-keys for all the

honest users in the system except IDB .
Upon receiving “(Test, IDt0 , IDt1)” for uncorrupted IDt0 , IDt1 ∈ HONEST,

where 1 ≤ t0 �= t1 ≤ n, it sets IDt = IDtb , S just sends X, the ele-
ment given in its input, to A as the first-round message of the test-session.
As S knows the secret-keys of all the other users except IDk, and Case-1
assumes that secret-key of IDk is unexposed and no matching session exists
for SIDT , S can perfectly answer all the other queries made by A regard-
ing StaKeyReveal,Corrupt,Create and Peer. When the MSKReveal is
queried, S aborts the experiment. It is easy to check that the view of A under
the run of S is identical to that in its real attack, where KDF is assumed to
be an RO. Moreover, as clarified above regarding the simulation of peerSIDT

and test-session SIDT , S can well simulate the actions of IDB . In the test-
session SIDT , S sends X in the first round. Denote by (X,Y) the session label
of the completed test-session SIDT , and by (Y,CB) the AEAD ciphertext sent
by A in the second round of SIDT . Case-1 means that Y was not generated
by user IDB , but the decryption of CB gives (IDB , y) such that y ∈ Z

∗
q and

Y = (H1(IDB))y, where y may be generated by A itself and A made the RO-
query H1(IDB). Denote by (K1,K2) = KDF (PS,X ‖ Y). As we assume SIDT

has no matching session and Y was not sent by IDB , with overwhelming prob-

666 H. Lian et al.

ability the AEAD ciphertext EncK1(IDB , y) was not sent in any existing ses-
sion other than the test-session. By the AEAD security, the adversary A must
have made the oracle query KDF (PS,X ‖ Y), where PS = e(X,SKIDB

)y =
BDH(X,Y, gc) that can be checked with the DBDH oracle. Consequently, S
gets PS = BDH(X,Y, gc) = e(H1(IDA)x,H1(IDB)y)c and S decrypts CB

with the key K1 to get y, from which it computes BDH(X,H1(IDB), gc) =
e(H1(IDA)x,H1(IDB))c = e(H1(IDA)x,H1(IDB)y)c· 1

y = PS
1
y , which violates

the Gap-BDH assumption.
The second case, denoted Case-2, is that SIDT is run at Responder. In this

case, for presentation simplicity, we denote IDt = IDB the test-session holder,
and by IDk = IDA the peer user peerSIDT

. Let X ‖ Y be the session label of
SIDT , where X is sent by the adversary A who is impersonating the honest user
IDA and Y is sent by the uncorrupted user IDB . The impersonation security in
this case is still reduced to the AEAD security and the Gap-BDH assumption in
the RO model.

Assuming there exists a PPT adversary A such that Case-2 occurs with non-
negligible probability. In this case, the Gap-BDH solver S takes (Y, IDA, gc) as
input, where Y ← G1/1G1 , and its goal is to compute BDH(Y,H1(IDA), gc)
with the aid of DBDH oracle. Towards this goal, it randomly guesses the peer
user IDA with successful probability 1

n , generates the secret-key for all the hon-
est users in the system except IDA. As clarified above regarding the simula-
tion for peerSIDT

and the test-session, S can well simulate IDA. In the test-
session SIDT , after receiving X in the first round, and getting Y which is the
value given in S’s input, S then generates the accompanying AEAD ciphertext
CB , where the underlying keys (K1,K2) are set by S itself with the aid of the
DBDH oracle to ensure the consistency of KDF as clarified above regarding
the peerSIDT

simulation. Finally, S sends {Y,CB} in the second round of the
test-session SIDT . Denote by CA the AEAD ciphertext sent by the adversary
A in the third-round of SIDT , which is decrypted to be (IDA, x) using the
key K1 such that x ∈ Z

∗
q and X = (H1(IDA))x as we assume SIDT is com-

plete. Note that, in the RO model, with overwhelming probability the RO-query
H1(IDA) has been made before A sends X in the first round of SIDT ; other-
wise, SIDT will fail in the third round with overwhelming probability (while
SIDT is assumed to be complete). Also note that the RO-query H1(IDA) may
not be made by A itself. For example, consider that: the RO-query H1(IDA)
is generated by IDA in a non-matching session, where x is, however, exposed
to A. Note that, as we assume the test-session has no matching session, the
underlying AEAD-key K1 used in SIDT is independent of the AEAD-keys in
all the other sessions. By the AEAD security in the RO model, conditioned on
S successfully breaks the impersonation security with non-negligible probabil-
ity in Case-2, S will get PS = BDH(X,Y, gc) = e(H1(IDA)x,H1(IDB)y)c,
from which it computes BDH(Y,H1(IDA), gc) = e(H1(IDB)y,H1(IDA))c =
e(H1(IDA)x,H1(IDB)y)c· 1

x = PS
1
x , which violates the Gap-BDH assumption.

This finishes the proof of impersonation security.

Identity-Based Identity-Concealed Authenticated Key Exchange 667

ID-SK Indistinguishability. Finally, we prove the ID-SK indistinguishabil-
ity. The proof of impersonation security has already established that the test-
session SIDT has matching session SID′

T , where they share the same session
label X ‖ Y . By the AEAD security, in order to break the ID-SK indistin-
guishability the CMIM adversary A has to make the RO-query KDF (PS =
BDH(X,Y, gc),X ‖ Y) with non-negligible probability. It is then reduced to
the Gap-BDH assumption in the RO model, where the proof is similar to, but
actually simper than, the proof for impersonation security.

Here, for presentation simplicity, one of {peerSIDT
, IDt} denotes IDA and

the other denotes IDB for presentation simplicity. The Gap-BDH solver S takes
as input (U, V), where U, V ← G1/1G, and its goal is to compute BDH(U, V, gc)
with DBDH oracle. The public key and secret key of IDt are generated by
S itself, while the hash of public-key of peerSIDT

and the DH-component to
be sent by IDt in SIDT are set to be (U, V), i.e., the input given to S.
From PS = BDH(X,Y, gc) = e(SKB ,X)y because S knows (SKA, y) or
(SKB , x), S can compute BDH(U, V, gc) that is either BDH(X,H1(IDB), gc)
or BDH(Y,H1(IDA), gc), which violates the Gap-BDH assumption.

Finally, we would like highlight the role of generating x and y from the ran-
dom oracle H on inputs of both the static-secret key and the ephemeral nonce,
i.e., x = H(SKA, rA) and y = H(SKB , rB). This is a common trick for prov-
able security in the eCK-like model. But we stress that the role of this trick is
different for the TFNS19-protocol [25] and for our protocol. Specifically, in the
eCK-like model, exposing the ephemeral session states of both the test-session
and the matching-session is allowed. Note that, according to the protocol struc-
ture of the TFNS19-protocol [25] (reviewed in Appendix B), its primary secrecy
(PS) can be computed merely from (x, y) and some public values, specifically
PS = g

(x+dA)(y+dB)
T , from which the session-key can be derived. So, in the secu-

rity model of [25], the values x and y are not allowed to be both exposed, and
only the values rA and rB are specified to be the session states to be exposed. But
for our IB-CAKE protocol, the primary secrecy PS cannot be computed from
(x, y) and public values. Indeed, we note that our IB-CAKE protocol remains
provable security in the model proposed in [25] without the above trick, i.e.,
by directly setting x = rA and y = rB . This means that our protocol can be
more efficient with respect to the TFNS19 security model [25]. However, this
trick is indeed necessary for the stronger security model proposed in this work.
Specifically, it is critical for the security of ID-SK indistinguishability and par-
ticularly for ID-privacy. In more details, as X = H1(IDA)x and Y = H1(IDB)y,
if the value x or y in the test-session is exposed via the STReveal query, the
adversary can easily compute H1(IDA) = Xx−1

or H1(IDB) = Y y−1
, which will

leak the identity information of the holder of the test-session. Specifically, the
adversary can distinguish IDt0 and IDt1 of the test-session with the value x or
y obtained by querying the STReveal oracle. However, if x = H(SKA, rA) and
y = H(SKB , rB) and the session states to be exposed are specified to be rA and
rB , the above attack fails as the adversary is not allowed to expose both the

668 H. Lian et al.

ephemeral session state and the static secret key of the test-session, and hence
cannot derive x or y of the test-session.

6 Comparison and Implementation

Now we give a comparison between an identity-based authenticated key exchange
scheme [25] (TFNS19-protocol, for short) and our proposed scheme based on
asymmetric bilinear pairings of Type-III (for more references see [6]), in terms
of efficiency and functionalities. The comparison is briefly summarized in Table 2.

Table 2. Comparisons between IB-CAKE and TFNS19-protocol

IB-CAKE TFNS19-protocol [25]

no master public-key � ×
x-security � �
forward ID-privacy � ×
perfect forward security � ×
post-specified ID � ×
mutual authentication � ×
assumption Gap-BDH, AEAD XDHT, q-Gap-BCA

In comparison with the TFNS19-protocol [25], IB-CAKE scheme has stronger
security. IB-CAKE protocol provides x-security, that is, the primary secret PS is
still hidden without the knowledge of the static secret key although the secret x is
exposed. Furthermore, in IB-CAKE protocol, the initiator doesn’t need to know
the peer’s identity before starting a protocol. While in the TFNS19-protocol, the
peer’s identity information must be known before the protocol run. Compared
with TFNS19-protocol, our proposed scheme also enjoys many nice properties
such as forward ID-privacy, perfect forward security and mutual authentica-
tion. In addition, we argue that our IB-CAKE protocol is more efficient than
the TFNS19-protocol. For example, the TFNS19-protocol generates traditional
master public key that performs one exponentiation operation, the secret key
generation for each user requires an extra modular inverse operation that is also
relatively expensive.

We now provide proof-of-concept implementations for our IB-CAKE scheme
and TFNS19-protocol [25], and show efficiency through implementation. The
implementation is done on the platform of AMD Ryzen 7 4800H with Radeon
Graphics 2.90 GHz CPU at 8 GB RAM running on the Ubuntu 20.04.2 LTS
operation system. To better compare the two schemes, we implemented the two
schemes based on the same pairing specified in the PBC library. Our program
uses C++ language, and uses the PBC library and OPENSSL library. H is imple-
mented by using “HMAC” method from OPENSSL library, H1 is implemented

Identity-Based Identity-Concealed Authenticated Key Exchange 669

Table 3. Space size

msk sk pk m c K2

Size(byte) 40 128 128 32 216 128

Table 4. Implementation benchmarks

IB-CAKE TFNS19-protocol [25]

KGC (ms) 3.787154 7.005497

CPU1 (million) 1.106735 1.9894491

Both Parties (ms) 12.838818 14.019664

CPU2 (million) 3.596742 3.977965

by using “SHA256” method from OPENSSL library, and H2 is implemented by
using “blake2s256” method from OPENSSL library.

The message and key size are listed in Table 3. It shows the sizes of mas-
ter secret-key msk, static secret-key sk, public-key pk, plaintext m, ciphertext c
and session-key K2. The computational performance of our scheme and TFNS19-
protocol [25] is presented in Table 4. It shows the average performance by execut-
ing the protocol 10000 iterations, where the running time of the key generation
phase includes the generations of master public key mpk, and the secret keys of
both users SKA and SKB. Table 4 also includes the number of CPU clock cycle
by KGC (CPU1) and by the two parties (CPU2), respectively. The implemen-
tation results show that our IB-CAKE scheme takes less time than TFNS19-
protocol whether in KGC or in the key exchange phase between the two parties.
Moreover, our proposed scheme is implemented for mutual explicit authentica-
tions (while the TFNS19-protocol only achieves implicit authentications). The
experiment results show that our scheme has practical applicability.

Acknowledgement. We are grateful to Prof. Satoshi Obana for shepherding on our
submission, and for all the anonymous referees of ESORICS 2021 for their construc-
tive and insightful review comments. We thank Shiyu Shen, Pengfei Shi and Hongbing
Wang for many helpful discussions. This work was supported by National Key Research
and Development Program of China (Grant No. 2017YFB0802000), National Natural
Science Foundation of China (Grant Nos. U1536205, 61472084 and NSFC61702007),
Shanghai Innovation Action Project under Grant No. 16DZ1100200, Shanghai Science
and Technology Development Funds under Grant No. 16JC1400801, Shandong Provin-
cial Key Research and Development Program of China (Grant Nos. 2017CXG0701
and 2018CXGC0701), and Foundations (Grant Nos. 2019M661360 (KLH2301024), gxb-
jZD27, KJ2018A0533, XWWD201801, ahnis20178002).

670 H. Lian et al.

A Structures of IB-CAKE Protocol with Asymmetric
Bilinear Pairing

A.1 Protocol Structure with Bilinear Pairing of Type-II

For the construction of our IB-CAKE protocol with Type-II bilinear pairing, an
additional efficient publicly computable isomorphism ψ is required. Let κ be a
secure parameter, G1, G2 and GT be three multiplicative bilinear map groups
of the same prime order q such that the discrete algorithm problems in G1, G2

and GT are intractable, g1 be a generator of G1, g2 = ψ(g1) be a generator
of G2, the isomorphism ψ is for the purpose of mapping an element from G1

to G2, ê : G1 × G2 → GT be a bilinear pairing. Let SE = (Kse, Enc,Dec)
be an authenticated encryption with associated data (AEAD) scheme, where
K = {0, 1}κ is the key space of Kse. Let H : {0, 1}∗ → Z

∗
q and H1 : {0, 1}∗ → G1

be one-way collision-resistant cryptographic hash functions modeled as random
oracles and KDF : {0, 1}∗ → {0, 1}p(κ) be a key derivation function which is
also modeled as a random oracle, where p(κ) is a polynomial of κ. The KGC first
produces the system’s public parameters and the master secret key msk. Then
it generates the private key SKi = H1(IDi)

msk for the user with identity IDi.
For presentation simplicity, we denote by Alice the anonymous session initiator,
whose public identity and private key are IDA and SKA = (H1(IDA))msk, and
by Bob the session responder, whose public identity and private key are IDB

and SKB = (H1(IDB))msk. The structure is described in Fig. 2.

– The initiator A selects rA ← Z
∗
q , computes x = H(SKA, rA) and X =

(H1(IDA))x. It sends X to B.
– Upon receiving X, B checks whether X ∈ G1/1G1 and aborts if not. B

selects rB ← Z
∗
q , computes y = H(SKB , rB) and Y = (H1(IDB))y. Then

B sets the primary secret PSB = e(X,ψ(SKB))y, derives keys (K1,K2) ←
KDF (PSB ,X ‖ Y) and computes CB = EncK1(IDB , y). Finally, B sends
(Y,CB) to A.

– Upon receiving (Y,CB), A sets primary secret PSA = e(SKA, ψ(Y))x, derives
keys (K1,K2) ← KDF (PSA,X ‖ Y) and decrypts the ciphertext CB by
using K1 to get the identity IDB and y. Then A verifies if y ∈ Zq

∗ and
Y = (H1(IDB))y, if so, it computes CA = EncK1(IDA, x) and the session
key is set to be K2. Finally, A sends CA to B.

– Upon receiving CA, B runs DecK1(CA) → (IDA, x). Then it verifies if x ∈ Z∗
q

and X = (H1(IDA))x, if so, the session key is set to be K2.

Identity-Based Identity-Concealed Authenticated Key Exchange 671

Fig. 2. Construction of IB-CAKE with Type-II bilinear mapping

A.2 Protocol Structure with Bilinear Pairing of Type-III

For the construction of our IB-CAKE protocol with Type-III bilinear pairing,
the private key SK of any user ID is replaced by a pair of key (SKI , SKR),
where SKI is used when the user is an initiator in a session and SKR is used
when the user is a responder in a session. Let κ be a secure parameter, G1, G2

and GT be three multiplicative bilinear map groups of the same prime order q
such that the discrete algorithm problems in G1, G2 and GT are intractable, g1
be a generator of G1, g2 be a generator of G2, ê : G1 × G2 → GT be a bilinear
pairing. Let H : {0, 1}∗ → Z

∗
q , H1 : {0, 1}∗ → G1 and H2 : {0, 1}∗ → G2 be one-

way collision-resistant cryptographic hash functions modeled as random oracles.
Our IB-CAKE protocol structure using Type-III bilinear pairing is described in
Fig. 3.

672 H. Lian et al.

Fig. 3. Construction of IB-CAKE with Type-III bilinear mapping

In the following, let A be a session initiator and B be a session responder.

– The initiator A selects rA ← Z
∗
q , computes x = H(SKI

A, rA) and X =
(H1(IDA))x. It sends X to B.

– Upon receiving X, B checks whether X ∈ G1/1G1 and aborts if not. B
selects rB ← Z

∗
q , computes y = H(SKR

B , rB) and Y = (H2(IDB))y. Then
B sets the primary secret PSB = e(X,SKR

B))y, derives keys (K1,K2) ←
KDF (PSB ,X ‖ Y) and computes CB = EncK1(IDB , y). Finally, B sends
(Y,CB) to A.

Identity-Based Identity-Concealed Authenticated Key Exchange 673

– Upon receiving (Y,CB), A computes primary secret PSA = e(SKI
A, Y)x,

derives keys (K1,K2) ← KDF (PSA,X ‖ Y) and decrypts the ciphertext CB

under the secret value K1 to get the identity IDB and y. Then A verifies if
y ∈ Zq

∗ and Y = (H2(IDB))y, if so, it computes CA = EncK1(IDA, x) and
the session key is set to be K2. Finally, A sends CA to B.

– Upon receiving CA, B runs DecK1(CA) → (IDA, x). Then it verifies if x ∈ Z∗
q

and X = (H1(IDA))x, if so, the session key is set to be K2.

B Review of the TFNS19-Protocol

The structure of the TFNS19-protocol [25] is described in Fig. 4. In this protocol,
the three hash functions are defined as: H,H1,H2 : {0, 1}∗ → Zp, H3 : {0, 1}∗ →
{0, 1}κ.

Fig. 4. Construction of TFNS19-protocol [25]

References

1. Baek, J., Safavi-Naini, R., Susilo, W.: Efficient multi-receiver identity-based
encryption and its application to broadcast encryption. In: Vaudenay, S. (ed.)
PKC 2005. LNCS, vol. 3386, pp. 380–397. Springer, Heidelberg (2005). https://
doi.org/10.1007/978-3-540-30580-4 26

https://doi.org/10.1007/978-3-540-30580-4_26
https://doi.org/10.1007/978-3-540-30580-4_26

674 H. Lian et al.

2. Bellare, M., Namprempre, C.: Authenticated encryption: relations among notions
and analysis of the generic composition paradigm. J. Cryptol. 21, 469–491 (2008).
https://doi.org/10.1007/s00145-008-9026-x

3. Blazy, O., Chevalier, C.: Non-interactive key exchange from identity-based encryp-
tion. In: ARES 2018, pp. 13:1–13:10. ACM, Hamburg (2018)

4. Boneh, D., Franklin, M.: Identity-based encryption from the weil pairing. In: Kilian,
J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg (2001).
https://doi.org/10.1007/3-540-44647-8 13

5. Boyd, C., Cliff, Y., Gonzalez Nieto, J., Paterson, K.G.: Efficient one-round key
exchange in the standard model. In: Mu, Y., Susilo, W., Seberry, J. (eds.) ACISP
2008. LNCS, vol. 5107, pp. 69–83. Springer, Heidelberg (2008). https://doi.org/10.
1007/978-3-540-70500-0 6

6. Boyd, C., Mathuria, A., Stebila, D.: Protocols for Authentication and Key Estab-
lishment, 2nd edn. Springer, Heidelberg (2020). https://doi.org/10.1007/978-3-
662-09527-0

7. Brzuska, C., Smart, N.P., Warinschi, B., Watson, G.J.: An analysis of the EMV
channel establishment protocol. In: ACM CCS 2013, pp. 373–386. ACM Press,
Berlin (2013)

8. Chen, L., Cheng, Z., Smart, N.P.: Identity-based key agreement protocols from
pairings. Int. J. Inf. Secur. 6(4), 213–241 (2007). https://doi.org/10.1007/s10207-
006-0011-9

9. Daniel, R.M., Rajsingh, E.B., Silas, S.: An efficient eCK secure identity based two
party authenticated key agreement scheme with security against active adversaries.
Inf. Comput. 275, 104630 (2020)

10. Fiore, D., Gennaro, R.: Making the Diffie-Hellman protocol identity-based. In:
Pieprzyk, J. (ed.) CT-RSA 2010. LNCS, vol. 5985, pp. 165–178. Springer, Heidel-
berg (2010). https://doi.org/10.1007/978-3-642-11925-5 12

11. Krawczyk, H., Paterson, K.G., Wee, H.: On the security of the TLS protocol: a
systematic analysis. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS,
vol. 8042, pp. 429–448. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-642-40041-4 24

12. Krawczyk, H.: HMQV: a high-performance secure Diffie-Hellman protocol. In:
Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 546–566. Springer, Hei-
delberg (2005). https://doi.org/10.1007/11535218 33

13. Libert, B., Quisquater, J.-J.: Identity based undeniable signatures. In: Okamoto,
T. (ed.) CT-RSA 2004. LNCS, vol. 2964, pp. 112–125. Springer, Heidelberg (2004).
https://doi.org/10.1007/978-3-540-24660-2 9

14. Ni, L., Chen, G., Li, J., Hao, Y.: Strongly secure identity-based authenticated key
agreement protocols without bilinear pairings. Inf. Sci. 367–368, 176–193 (2016)

15. Okamoto, E., Tanaka, K.: Key distribution system based on identification infor-
mation. IEEE J. Sel. Areas Commun. 7(4), 481–485 (1989)

16. Okamoto, E.: Key distribution systems based on identification information. In:
Pomerance, C. (ed.) CRYPTO 1987. LNCS, vol. 293, pp. 194–202. Springer, Hei-
delberg (1988). https://doi.org/10.1007/3-540-48184-2 15

17. Paterson, K.G., Ristenpart, T., Shrimpton, T.: Tag size does matter: attacks and
proofs for the TLS record protocol. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT
2011. LNCS, vol. 7073, pp. 372–389. Springer, Heidelberg (2011). https://doi.org/
10.1007/978-3-642-25385-0 20

18. Rescorla, E.: The transport layer security (TLS) protocol version 1.3, RFC 8446
(2018)

https://doi.org/10.1007/s00145-008-9026-x
https://doi.org/10.1007/3-540-44647-8_13
https://doi.org/10.1007/978-3-540-70500-0_6
https://doi.org/10.1007/978-3-540-70500-0_6
https://doi.org/10.1007/978-3-662-09527-0
https://doi.org/10.1007/978-3-662-09527-0
https://doi.org/10.1007/s10207-006-0011-9
https://doi.org/10.1007/s10207-006-0011-9
https://doi.org/10.1007/978-3-642-11925-5_12
https://doi.org/10.1007/978-3-642-40041-4_24
https://doi.org/10.1007/978-3-642-40041-4_24
https://doi.org/10.1007/11535218_33
https://doi.org/10.1007/978-3-540-24660-2_9
https://doi.org/10.1007/3-540-48184-2_15
https://doi.org/10.1007/978-3-642-25385-0_20
https://doi.org/10.1007/978-3-642-25385-0_20

Identity-Based Identity-Concealed Authenticated Key Exchange 675

19. Rogaway, P.: Authenticated-encryption with associated-data. In: CCS 2002, pp.
98–107. ACM, Washington (2002)

20. Roskind, J.: Quick UDP internet connections: Multiplexed stream transport over
UDP, 1(2), 77–94 (2012). https://www.chromium.org/quic

21. Sakai, R., Ohgishi, K., Kasahara, M.: Cryptosystem based on pairings. In: Sym-
posium on Cryptography and Information Security (SCIS), pp. 26–28 (2000)

22. Shamir, A.: Identity-based cryptosystems and signature schemes. In: Blakley, G.R.,
Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer, Heidelberg
(1985). https://doi.org/10.1007/3-540-39568-7 5

23. Shim, K.: Efficient ID-based authenticated key agreement protocol based on the
Weil pairing. Electron. Lett. 39(8), 653–654 (2003)

24. Smart, N.P.: Identity-based authenticated key agreement protocol based on Weil
pairing. Electron. Lett. 38(13), 630–632 (2002)

25. Tomida, J., Fujioka, A., Nagai, A., Suzuki, K.: Strongly secure identity-based key
exchange with single pairing operation. In: Sako, K., Schneider, S., Ryan, P.Y.A.
(eds.) ESORICS 2019. LNCS, vol. 11736, pp. 484–503. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-29962-0 23

26. Wu, J.-D., Tseng, Y.-M., Huang, S.-S.: An identity-based authenticated key
exchange protocol resilient to continuous key leakage. IEEE Syst. J. 13(4), 3968–
3979 (2019)

27. Xie, M., Wang, L.: One-round identity-based key exchange with perfect forward
security. Inf. Process. Lett. 112(14–15), 587–591 (2012)

28. Zhang, J., Huang, X., Wang, W., Yue, Y.: Unbalancing pairing-free identity-based
authenticated key exchange protocols for disaster scenarios. IEEE Internet Things
J. 6(1), 878–890 (2019)

https://www.chromium.org/quic
https://doi.org/10.1007/3-540-39568-7_5
https://doi.org/10.1007/978-3-030-29962-0_23

Privacy-Preserving Authenticated Key
Exchange: Stronger Privacy and Generic

Constructions

Sebastian Ramacher , Daniel Slamanig(B) , and Andreas Weninger

AIT Austrian Institute of Technology, Vienna, Austria
{sebastian.ramacher,daniel.slamanig,andreas.weninger}@ait.ac.at

Abstract. Authenticated key-exchange (AKE) protocols are an impor-
tant class of protocols that allow two parties to establish a common
session key over an insecure channel such as the Internet to then protect
their communication. They are widely deployed in security protocols such
as TLS, IPsec and SSH. Besides the confidentiality of the communicated
data, an orthogonal but increasingly important goal is the protection of
the confidentiality of the identities of the involved parties (aka privacy).
For instance, the Encrypted Client Hello (ECH) mechanism for TLS 1.3
has been designed for exactly this reason. Recently, a series of works
(Zhao CCS’16, Arfaoui et al. PoPETS’19, Schäge et al. PKC’20) studied
privacy guarantees of (existing) AKE protocols by integrating privacy
into AKE models. We observe that these so called privacy-preserving
AKE (PPAKE) models are typically strongly tailored to the specific
setting, i.e., concrete protocols they investigate. Moreover, the privacy
guarantees in these models might be too weak (or even are non-existent)
when facing active adversaries.

In this work we set the goal to provide a single PPAKE model that
captures privacy guarantees against different types of attacks, thereby
covering previously proposed notions as well as so far not achieved pri-
vacy guarantees. In doing so, we obtain different “degrees” of privacy
within a single model, which, in its strongest forms also capture pri-
vacy guarantees against powerful active adversaries. We then proceed to
investigate (generic) constructions of AKE protocols that provide strong
privacy guarantees in our PPAKE model. This includes classical Diffie-
Hellman type protocols as well as protocols based on generic building
blocks, thus covering post-quantum instantiations.

1 Introduction

Authenticated key exchange (AKE) protocols are among the most important
cryptographic building blocks to enable secure communication over insecure net-
works. Essentially, an AKE allows two parties A and B, in possession of long
term key pairs (pkA, skA) and (pkB , skB) respectively, to authenticate each other
and securely establish a common session key. Security should thereby even hold
in the presence of active attackers, which may intercept, read, alter, replay, or
c© Springer Nature Switzerland AG 2021
E. Bertino et al. (Eds.): ESORICS 2021, LNCS 12973, pp. 676–696, 2021.
https://doi.org/10.1007/978-3-030-88428-4_33

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-88428-4_33&domain=pdf
http://orcid.org/0000-0003-1957-3725
http://orcid.org/0000-0002-4181-2561
https://doi.org/10.1007/978-3-030-88428-4_33

Privacy-Preserving Authenticated Key Exchange 677

drop any message transmitted between these parties. Moreover, in state-of-the-
art protocols one requires security of the session key (i.e., confidentiality) of
past interactions of A and B, even if attackers are able to compromise the long
term secrets skA and skB . This is typically denoted as perfect forward secrecy
(PFS). In current real world applications, such AKE protocols typically rely on
the Diffie-Hellman (DH) protocol and digital signatures and are widely deployed
in security protocols such as TLS, IPsec and SSH. The emerging threat of the
feasibility of powerful quantum computers additionally revived the interest in
AKE protocols that do not rely on DH key exchange, but instead are based
generically on public key encryption (PKE) or key encapsulation mechanisms
(KEMs) [16,18,31].

Privacy in AKE. While confidentiality of communicated data is the prime tar-
get for a security protocol, another important property is the confidentiality of
the identities of the parties involved in the AKE. We will call this goal of hiding
the identities from external parties privacy.1 Schäge et al. [30] recently coined
the term privacy-preserving authenticated key exchange (PPAKE) for AKE pro-
tocols with such privacy guarantees. While the study of PPAKE is an interesting
subject on its own right, we currently can observe an increasing interest in such
features in real world protocols. For instance, TLS 1.3 [27] aims to protect the
identities of the server and client by encrypting messages as soon as possible
during the authentication and in particular hiding the certificate sent by the
server. Besides, many other protocols such as QUIC, IPsec IKE, SSH and cer-
tain patterns of the Noise protocol framework [26] aim to protect identity-related
information such as identities, public keys or digital signatures. This is usually
done by running an anonymous DH handshake where the derived keying mate-
rial is then used to encrypt all subsequent messages (essentially the SIGMA-R
template [21]). Moreover, the recent proposal of Encrypted Client Hello (ECH)
mechanism for TLS encrypts the initial client message (the ClientHello) [28] with
the aim of hiding the target domain for a given connection from attackers listen-
ing on the network. We also want to note that over the years various protocols
have been designed to provide some intuitive identity protection measures, such
as SKEME [20] or the SIGMA-I and SIGMA-R variants of the SIGMA protocol
family [21]. The work of Schäge et al. [30], for instance, formally analyzes the
privacy guarantees of SIGMA-R as used in IKEv2 within IPSec.

Relevance of PPAKE in Practice. From the above mentioned protocols
that try to conceal identifying information, in particular encrypted Server Name
Indication (ESNI) and its successor ECH have demonstrated its usefulness in
practice. Especially when considering network censorship, ESNI/ECH can help
to thwart censorship [7]. Consequently, all ESNI protected TLS connections have
been blocked in China.2 In general, one can observe a push towards an Internet

1 We note that key-exchange protocols that hide the identity of one party even from
the peer in the key exchange (e.g., as in [13,24]) are outside the scope of this work.

2 https://www.zdnet.com/article/china-is-now-blocking-all-encrypted-https-traffic-
using-tls-1-3-and-esni/.

https://www.zdnet.com/article/china-is-now-blocking-all-encrypted-https-traffic-using-tls-1-3-and-esni/
https://www.zdnet.com/article/china-is-now-blocking-all-encrypted-https-traffic-using-tls-1-3-and-esni/

678 S. Ramacher et al.

infrastructure that reduces the amount of identifiable information. DNS over
HTTPS/TLS [15,17] for instance helps in hiding identifying information associ-
ated to a connection from an adversary listening to public network traffic.

While in the above cases typically only one party, i.e., the server, is authen-
ticated, with the Internet-of-Things (IoT) [14,29] or FIDO2 [3,12] we see an
adoption of mutually authenticated AKE protocols and interest towards identity
privacy. For instance, Wu et al. [33] study protocols for private service discovery
and private mutual authentication in both the IoT and the mobile landscape
(with a case study on Apple AirDrop). Similarly, many VPN implementations
also offer the ability to configure certificate-based client authentications during
the initial handshake which is also the only option in WireGuard [10,11] to
establish connections.

Previous Work on PPAKE. To the best of our knowledge, the first work
that specifically addresses privacy in key agreement is by Aiello et al. [1]. Infor-
mally, their privacy property wants to achieve that protocols must not reveal the
identity of a participant to any unauthorized party, including an active attacker
that attempts to act as the peer. They concretely propose two protocols, where
one protects the identity of the initiator from an active attacker and the sec-
ond one that of the responder. However, we note that this privacy property is
neither modeled nor rigorously analyzed. Another informal discussion of how to
achieve “identity concealment” by encrypting the identities was even earlier men-
tioned by Canetti and Krawczyk in [6]. Later Zhao in [34] introduced the notion
of identity-concealed authenticated key exchange (CAKE), which enforces the
notion of forward identity-privacy (which we simply call forward privacy) and
some form of man-in-the-middle (MITM) privacy for completed sessions.

Recently, Schäge et al. [30] provided a PPAKE model, which similarly to
Zhao [34] incorporates forward privacy and some form of MITM privacy for
completed sessions, but considers a different setting. In their model, the identity
of any two communicating parties are known (so it is visible who communicates
with whom), but each party has two additional identities associated to it and it
should be hard to figure out which identities the parties are using. Consequently,
this model is tailored to a specific setting, e.g., where one server hosts multiple
virtual machines or services and these identities need to be protected. Schäge
et al. then use their model to analyze the privacy of the IKEv2 protocol [19].
Also recently Arfaoui et al. [2] investigate privacy in TLS 1.3 including session
resumption. They capture a weaker notion of privacy than what is required by
forward privacy, as they do not allow any corruptions. Their model also only
considers uni-lateral authentication and models privacy as a separate property
using the concept of a virtual identifier known from privacy analysis of RFID
protocols (cf. [30] for a discussion why this is not desirable). Interestingly, none
of the previously proposed formal models (including [34]) considers strong active
adversaries against the privacy of the AKE protocols. To be more precise, while
they actually allow active attacks, they only allow the adversaries to attack
accepted sessions. And for any reasonable AKE, this essentially boils down to
passive attacks (we will discuss this in more detail in Sect. 2).

Privacy-Preserving Authenticated Key Exchange 679

Our Contribution. Subsequently, we briefly summarize our contributions:

– We revisit privacy in context of AKE and introduce a comprehensive PPAKE
model building upon and extending the recent AKE model in [8]. It is more
general than the recent PPAKE by Schäge et al. [30] and among variants of
privacy notions known from previous works [30,34] supports stronger notions
against active adversaries.

– The main contribution of this work is that we deal with incomplete session
attacks, i.e., active MITM adversaries that learn the identity of one party but
are unable to then complete the protocol run. This is typically due to the
inability to authenticate themselves, which is caused by a lack of secret key
material. The models and protocols of Schäge et al. [30] and Zhao [34], as
noted by the authors, do not prevent such attacks. In each case the adver-
sary can create the first message(s) of either the initiator or the responder
without having access to the user’s long-term secret key. This is due to the
fact that the first messages only serve the purpose of exchanging ephemeral
randomness, e.g., via an anonymous DH key exchange. Then the other side
will authenticate itself, allowing the adversary to trivially learn the identity.
We stress that this attack can be done by any MITM adversary without
corrupting any user.

– We present generic constructions of PPAKE protocols with strong privacy
guarantees. Our constructions rely on standard primitives such as public-key
encryption or key-encapsulation mechanisms, signature schemes and unau-
thenticated two-move key exchange protocols. Thus, our constructions can
be instantiated with post-quantum secure building blocks. In contrast, previ-
ous works exclusively focused on DH based protocols.

2 On Modeling Privacy in AKE

There are different privacy properties that are considered to be relevant, some
of which that can and others that cannot be covered within PPAKE. In this
section we discuss these issues, highlight aspects that have not been considered
so far in PPAKE models and present a comprehensive overview of the different
privacy properties and their relations.

2.1 What Can(not) Be Handled by PPAKE

Identity-related information such as client specific identifiers, public keys (cer-
tificates in particular) and digital signatures can be used by an adversary to
break privacy. All these information are available on the layer of the AKE pro-
tocol, but there are clearly other network dependent information outside the
AKE layer and our model, e.g., network addresses such as IP or MAC addresses,
that allow adversaries to break privacy. Consequently, as discussed in [30] for
PPAKE, the assumptions on the network are stronger than those required by
network anonymization protocols like Tor [9]. Latter implement an overlay net-
work and provide privacy against an adversary who controls large parts of the

680 S. Ramacher et al.

underlying network (i.e., the Internet) but not the complete network, as well as
parts of the overlay network (e.g., Tor) itself.

PPAKE considers an adversary that is weaker and in particular assumes
an active MITM attacker that controls a large, but well-defined part of the
network. Consequently, one omits the consideration of network identifiers like IP
or MAC addresses in PPAKE. This firstly allows to make the model simpler and
independent of any network technology and topology. Secondly, as argued in [30],
by using trustworthy proxies at the entry points of the adversary controlled
network the usefulness of these information to an adversary can be significantly
reduced. Nevertheless, we argue that even in case of absence of such proxies
PPAKE still provides a meaningful countermeasure to large scale privacy attacks.
In particular, it is easily possible to record identity-related information such as
certificates (which can simply be parsed locally) on the AKE layer. Consequently,
compared to basing the analysis on network address information, which might be
additionally complicated by Network Address Translation (NAT), this is much
more efficient and easily leads to a unique identification of the entities.

While it is clear that fully hiding all identity information is not possible in
practice, privacy can only be lost. Consequently, guaranteeing an adequate level
of privacy via PPAKE is a first step to reduce privacy risks.

2.2 Privacy Goals in PPAKE

Now we are going to discuss privacy goals relevant to PPAKE and distill a set
of privacy properties from that. Unlike previous works [2,30,34], which basically
design PPAKE models in a way that they allow to analyze a specific AKE
protocol (family) such as used in TLS 1.3 or IKEv2, in this work we ask what
are desirable properties and how to design PPAKE protocols providing strong
privacy guarantees. In doing so we do not consider a single privacy notion (as
done in previous work), but propose a set of privacy notions that allow to cover
properties relevant to diverse use-cases.

Roughly, we can classify privacy attacks in either passive or active attacks
and whether we either consider only completed sessions or we allow even incom-
plete sessions to be the target of an attack. Thereby, a passive adversary only
behaves passive during the session establishment but can corrupt parties after
the session-establishment. Note that for incomplete sessions, a purely passive
adversary is not reasonable and is thus not considered. Active adversaries and
incomplete sessions are however reasonable, i.e., actively trying to identify peers
that are establishing a session which might already provide a sufficient amount of
compromising information. Nevertheless, such notions have not been considered
in previous models. See Table 1 for an overview.

Passive Adversaries. We start with a property that is implicitly covered by
the privacy notion in previous PPAKE [30,34]. We call it forward privacy and
it can be seen as the privacy analogue of forward secrecy. Namely, it requires
that for any completed session even if an adversary can later on corrupt the long
term secrets of all parties, the identities of the actual parties that were involved
in the session are not revealed.

Privacy-Preserving Authenticated Key Exchange 681

Table 1. Type of adversary A and state of the attacked session. (×) denotes no
corruption; (�) denotes corruption of all but the users in the target session (i.e., the
session to be attacked); (��) denotes corruption of all users. Corruption always refers
to the long-term secrets.

Completed session Incomplete session

Passive A Forward privacy (��) —

Active A Completed-session privacy (�) (Weak) 2-way MITM privacy (×)
Strong 2-way MITM privacy (�)

For instance, the signed DH protocol does not provide any privacy, but one
could imagine to add public-key encryption (PKE), i.e., party A sends gx in
plain but the value SigskA

(gx‖idB) is encrypted under the public key of B and
vice versa (this pattern is similar to what is done to achieve identity protection
in SKEME [20]). This will conceal the identities from any eavesdropper as long
as no corruptions happen. If, however, the long-term secret keys of A and B
corresponding to their PKE public keys are leaked, their identities are clearly
revealed from a recorded transcript. The same holds for other protocols such as
KEA or KEA+ [22] when in addition all messages are encrypted with a PKE.

Note that with such a fix (that unfortunately does not give forward privacy),
the initiator, besides needing to know the responders identity, would also needs
to know its public key. However, we want to stress that this is a quite reasonable
assumption as in many scenarios the public keys can already be deployed on
the devices or can be fetched from key repositories. Clearly, in the latter case it
is not advisable to do this immediately before running the AKE as this yields
another channel that leaks privacy relevant information. But in many real world
settings, e.g., Encrypted Client Hello (ECH) in TLS 1.3, responder’s public keys
are assumed to be fetched out-of-band.

Active Adversaries. First, we note that several works [1,2,21] state that active
adversaries against privacy are hard to handle:

“...it is not possible for a protocol to protect both the initiator and the responder
against an active attacker; one of the participants must always go first.” [1]

However, this statement seems to implicitly assume that the parties do not know
public keys of the other parties beforehand or have no means to detect whether
the public keys are revoked. Recent PPAKE models [30,34] indeed achieve pri-
vacy against active adversaries, though in only a limited setting. In particular,
they consider active man-in-the-middle (MITM) adversaries but restrict them
to completed sessions and thus requiring the involved entities have not been cor-
rupted, i.e., the respective long term secret keys are not compromised/revoked.

To illustrate this, we consider a template analyzed in [30] representing a
variant of the SIGMA protocol family [21] covering protocols such as TLS 1.3,
QUIC, IPsec IKE or SSH. In particular, the SIGMA-R protocol that is designed
to provide receiver identity protection is investigated. This template uses an

682 S. Ramacher et al.

Fig. 1. Overview of implications and separations between privacy notions. � denotes
two incomparable properties and EEA denotes explicit entity authentication.

anonymous DH key exchange, i.e., party A sends gx for ephemeral x and party
B responds with gy for ephemeral y. Subsequently, parties authenticate using
digital signatures, where these authentication messages are encrypted using a
symmetric key derived from the shared secret gxy. This protocol can provide
privacy against active MITM attackers, but only if the session completes (requir-
ing that the involved entities are not corrupted). So this only can happen “after
the fact”. Nevertheless, it is easy to see that for incomplete sessions there is no
privacy guarantee as the initiator “goes first” and thus anyone can identify the
initiator. Schäge et al. in [30] explicitly discuss this limitation of their model
which allows to always reveal the server identity in TLS or QUIC or the client
identity in IPsec IKE and mention that “It is therefore conceivable to formalize
a stronger property for the secrecy of identities selected by the responder which
does not rely on session acceptance.” Indeed, this is a setting we want to cover
with our privacy notion. Consequently, we will formalize adequate properties for
privacy against active adversaries even if sessions are not completed.

Summarizing, such a stronger notion cannot work in the PPAKE model by
Schäge et al. in [30]. Also the model and the protocols by Zhao [34] do not
consider adversaries that do not need to know the long-term secret key to per-
form the attack (and thus only consider completed sessions). Note there are
simple attack strategies against these protocols that do not require the attacker
to obtain any long-term keys or otherwise compromise any party and can be
performed by anyone. But we stress that such attacks are outside the model
of [34].

Previous PPAKE models only achieve the notion of active MITM attacks
against completed sessions (which implicitly covers forward privacy), but not
against incomplete sessions. In order to also capture such attacks, we introduce
the notion of MITM privacy in two flavors. The first and easier to achieve vari-
ant allows adversaries to also attack incomplete sessions but require that no
user corruption happens. The second and stronger notion removes this require-
ment and also allows corruption of users (clearly with exception of the attacked
ones). Looking ahead, to achieve MITM privacy requires that even in case of
failure protocol messages that look like real protocol messages needs to be send.

Privacy-Preserving Authenticated Key Exchange 683

Whether this notion is meaningful consequently depends on the context of the
use of the protocol and might not be meaningful if used within some higher level
protocols where the required behavior cannot be realized.

In Fig. 1 we provide an overview of the privacy notions captured in this paper
and how they relate to each other (cf. Sect. 3.2 for a formal treatment). We note
that completed-session privacy essentially reflects the privacy notions proposed
by Zhao [34] as well as Schäge et al. [30].

Initiator and Responder Privacy. Another aspect, which typically depends
on the structure of the protocol as well as the application, is whether privacy only
holds for either the initiator or the responder or both of them. For instance, in
the most common TLS application scenario clients do not authenticate and thus,
unless client authentication is used, only responder privacy is important. Schäge
et al. in [30] model privacy in a way that the adversary can explicitly trigger
(via a bit) whether to attack the initiator or the responder. In our model, we
also consider both aspects simultaneously (which we denote as 2-way privacy),
but the adversary controls whom to attack by means of how it engages with
the respective oracles. We discuss how to restrict the adversary in our model to
model either initiator or responder privacy in the next section.

3 Our PPAKE Model

3.1 Security Model

Our formal security model builds upon the model in [8] which we extend to
cover privacy features. Like [8], our model accounts for key impersonation (KCI)
security and weak forward secrecy and we use their notion of origin-oracle part-
nering. We note that [8] avoid no-match attacks [23] as their concrete protocol’s
messages only contain group elements and deterministic functions of them. We
consider the generic countermeasure from [23] by including all exchanged mes-
sages (the context) in the final key derivation.

Execution Environment. We consider μ parties 1, . . . , μ. Each party Pi is
represented by a set of oracles, {π1

i , . . . , π�
i}, where each oracle corresponds to

a session, i.e., a single execution of a protocol role, and where � ∈ N is the
maximum number of protocol sessions per party. Each oracle πs

i is equipped with
a randomness tape rs

i containing random bits, but is otherwise deterministic.
Each oracle πs

i has access to the long-term key pair (ski, pki) of party Pi
3 and to

the public keys of all other parties, and maintains a list of internal state variables
that are described in the following:

– Pidsi (“peer id”) stores the identity of the intended communication partner.
We assume the initiator of a protocol to know who she contacts, hence for
the initiator this value is set immediately. Due to the nature of PPAKE the
responder might not immediately know the identity of the initiator, hence for
the responder this value is initialized to ⊥ and only set once he receives a
message containing the initiator’s identity.

3 This might contain various private and public keys for signatures and encryption.

684 S. Ramacher et al.

– Ψs
i ∈ {∅,Accept,Reject} indicates whether πs

i has successfully completed the
protocol execution and “accepted” the resulting key.

– ks
i stores the session key computed by πs

i

– roles
i ∈ {∅, Initiator,Responder} indicates πs

i ’s role during the protocol execu-
tion.

For each oracle πs
i these variables are initialized to the empty string ∅. The

computed session key is assigned to the variable ks
i if and only if πs

i reaches
the Accept state, that is we have ks

i �= ∅ ⇔ Ψs
i = Accept. Furthermore the

environment maintains three initially empty lists Lcorr, LSend and LSessKey of all
corrupted parties, sent messages and session keys respectively.

Partnering. We use the following partnering definitions (cf. [8]).

Definition 1 (Origin-oracle). An oracle πt
j is an origin-oracle for an oracle

πs
i if Ψ t

j �= ∅, Ψs
i = Accept and the messages sent by πt

j equal the messages
received by πs

i , i.e., if senttj = recvsi .

Definition 2 (Partner oracles). We say that two oracles πs
i and πt

j are part-
ners if (1) each is an origin-oracle for the other; (2) each one’s identity is the
other one’s peer identity, i.e., Pidsi = j and Pidtj = i; and (3) they do not have
the same role, i.e., roles

i �= rolet
j.

Oracles and Attacker Model. The adversary A interacts with the oracles
through queries. It is assumed to have full control over the communication net-
work, modeled by a Send(i, s,m) query which allows it to send arbitrary messages
to any oracle. The adversary is also granted a number of additional queries that
model the fact that various secrets might get lost or leaked. The queries are
described in detail below.

– Send(i, s,m): This query allows A to send an arbitrary message m to oracle
πs

i . The oracle will respond according to the protocol specification and its
current internal state. To start a new oracle, the message m takes the form:
(START : role, j) : If πs

i was already initialized before, return ⊥. Otherwise
this initializes πs

i in the role role, having party Pj as its intended peer.
Thus, it sets Pidsi := j and roles

i := role. If πs
i is started in the initiator

role (role = Initiator), then it outputs the first message of the protocol.
All Send(i, s,m) calls are recorded in the list LSend.

– RevLTK(i): For i ≤ μ, this query returns the long-term private key ski of
party Pi. After this query, Pi and all its protocol instances πs

i (for any s) are
said to be corrupted and Pi is added to Lcorr.

– RegisterLTK(i, pki): For i > μ, this query allows the adversary to register a
new party Pi with the public key pki. The adversary is not required to know
the corresponding private key. After the query, the pair (i, pki) is distributed
to all other parties. Parties registered by RegisterLTK(i, pki) (and their pro-
tocol instances) are corrupted by definition and are added to Lcorr.

Privacy-Preserving Authenticated Key Exchange 685

– RevSessKey(i, s): This query allows the adversary to learn the session key
derived by an oracle. If Ψs

i = Accept, return ks
i . Otherwise return a random

key k∗ and add (πs
i , k

∗) to LSessKey. After this query, πs
i is said to be revealed.

If this query is called for an oracle πs
i , while there is an entry (πt

j , k
∗) in

LSessKey, so that πs
i and πt

j have matching conversations, then k∗ is returned.4

Security. Formally, we have a security game, played between an adversary A and
a challenger C, where A can issue the queries defined above. Additionally, it is
given access to a special query Test(m), which, depending on a secret bit b chosen
by the challenger, either returns real or random keys (for key indistinguishability)
or an oracle to communicate with one of two specified parties in the sense of a
left-or-right oracle for the privacy notions. The goal of the adversary is to guess
the bit b. The adversary is only allowed to call Test(m) once and we distinguish
the following two cases:

– Case m = (TestKeyIndist, i, s): If Ψs
i �= Accept, return ⊥. Else, return kb where

k0 = ks
i and k1

$← K is a random key. After this query, oracle πs
i is said to be

tested.
– Case m = (Y, i, j), Y ∈ {Test-w-MITMPriv,Test-s-MITMPriv,TestForwardPriv,

TestCompletedSessionPriv}, i, j ≤ μ: Create a new Party Pi|j with identifier
i|j. This party has all properties of Pi (if b = 0) or Pj (if b = 1), but no active
sessions. The public key of Pi|j is not announced to the adversary and the
query RevLTK(i|j) always returns ⊥. Furthermore create exactly one session
π1

i|j . Return the new handle i|j.
One-Way Privacy. The second case in Test(m) above models two-way privacy,
i.e., we are considering that privacy needs to hold for the initiator and the
responder. In case of one-way privacy, i.e., the privacy only holds either for the
initiator or the responder (depending on the protocol), we need to restrict the
adversary in a way such that the first message sent to π1

i|j via Send(i|j, 1,m)
must be a START command. Analogously, we can model scenarios where we only
consider privacy of the responder involved in a session.

Security Experiment. The experiment ExpXPPAKE,A is defined as follows.

1. Let μ be the number of parties in the game and � the number of sessions per
user. C begins by drawing a random bit b

$← {0, 1} and generating key pairs
{(ski, pki) | 1 ≤ i ≤ μ} as well as oracles {πs

i | 1 ≤ i ≤ μ, 1 ≤ s ≤ �}.
2. C now runs A, providing all the public keys as input. During its execu-

tion, A may adaptively issue Send(i, s,m), RevLTK(i), RevSessKey(i, s) and
RegisterLTK(i, pki) queries any number of times and the Test(m) query once.

3. Depending on what argument Y the Test(m) oracle was called with, we require
the corresponding property below to hold through the entire game.
(a) TestKeyIndist: The tested oracle remains fresh (cf. Definition 3).
(b) Test-w-MITMPriv: No oracle is ever corrupted.

4 Note that the bookkeeping and consistent answers for matched sessions are required
to avoid trivial distinguishers in case of cross tunnel attacks (cf. Sect. 3.3).

686 S. Ramacher et al.

(c) Test-s-MITMPriv: Pi and Pj are never corrupted. Furthermore we require
that Pid1i|j = ⊥ or Pid1i|j = k for some k, while Pk is never corrupted.

(d) TestForwardPriv: The returned oracle π1
i|j has a partner oracle πr

k at the
end of the game. Furthermore no oracle besides πr

k may be instructed to
start a protocol run with intended partner Pi|j .

(e) TestCompletedSessionPriv: The returned oracle π1
i|j ’s state is Accept at the

end of the game. Let k = Pid1i|j. Pk are not corrupted, RevSessKey(i|j, 1)
was never queried and RevSessKey(k, r) (for any πr

k that has matching
conversations) was never queried.
Furthermore no oracle besides πr

k may be instructed to start a protocol
run with intended partner Pi|j .

4. The game ends when A terminates with output b′, representing the guess of
the secret bit b. If b′ = b, output 1. Otherwise output 0.

Definition 3 (Freshness). An oracle πs
i is fresh if

1. RevSessKey(i, s) has not been issued
2. no query RevSessKey(j, t) has been issued, where πt

j is a partner of πs
i .

3. Pidsi was:
(a) not corrupted before πs

i accepted if πs
i has an origin-oracle, and

(b) not corrupted at all if πs
i has no origin-oracle.

PPAKE Security. The above model can be parameterized by allowing or
prohibiting the different types of Test(m) queries. This leads to the following:

Definition 4. A key-exchange protocol Γ is called X for if for any PPT adver-
sary A with access to the oracle Test(m) with queries of the form defined below,
the advantage function

AdvXΓ (λ) :=
∣
∣
∣
∣
Pr

[

ExpXPPAKE,A(λ) = 1
]

− 1
2

∣
∣
∣
∣

is negligible in λ, where

– A queries TestKeyIndist: X = secure.
– A queries Test-w-MITMPriv: X = 2-way MITM private.
– A queries Test-s-MITMPriv: X = strongly 2-way MITM private.
– A queries TestForwardPriv: X = forward private.
– A queries TestCompletedSessionPriv: X = completed-session private.

In the above definition, secure corresponds to having indistinguishable session
keys, weak forward secrecy and security against key compromise impersonation
(KCI). We now show how to integrate explicit entity authentication in our model,
which allows to simplify the proofs of the protocols in Sect. 4. Therefore, we
require the following:

Definition 5 (Matching Conversation). Let Π be an N -message two-party
protocol in which all messages are sent sequentially.

Privacy-Preserving Authenticated Key Exchange 687

– If a session oracle πs
i sent the last message of the protocol, then πt

j is said
to have matching conversations to πs

i if the first N − 1 messages of πs
i ’s

transcript agrees with the first N − 1 messages of πt
j’s transcript.

– If a session oracle πs
i received the last message of the protocol, then πt

j is said
to have matching conversations to πs

i if all N messages of πs
i ’s transcript

agrees with πt
j’s transcript.

We define implicit authentication through the fact that even a MITM adver-
sary would not be able to derive the session key. This can be done in two moves.
Explicit authentication is characterized by the fact that, additionally to provid-
ing implicit authentication, the protocol fails if a party does not possess a valid
secret key, i.e., an active MITM adversary.

Definition 6 (Explicit entity authentication). On game PPAKE2-way-priv
A

define breakEA to be the event that there exists an oracle πs
i for which all the

following conditions are satisfied.

1. πs
i has accepted, that is, Ψs

i = Accept.
2. Pidsi = j and party j is not corrupted.
3. There is no oracle πt

j having:
(a) matching conversations to πs

i and
(b) Pidtj = i and
(c) rolet

j �= roles
i

Definition 7. A key-exchange protocol Γ has explicit authentication, if, for any
PPT adversary A, the event breakEA (see Definition 6) occurs with at most
negl(λ) probability.

3.2 Relation Between Privacy Notions

Subsequently, we investigate the relations between the different privacy notions
(as informally shown in Fig. 1).

Lemma 1. Strong 2-way MITM privacy is strictly stronger than (weak) 2-way
MITM privacy.

Proof. This immediately follows from the tighter restrictions put on the attacker
in the (weak) 2-way MITM privacy test. Furthermore, there are protocols that
are (weak) 2-way MITM anonymous but not strongly 2-way MITM anonymous
(see, e.g., Πss in Protocol 1).
�
Lemma 2. The 2-way MITM privacy notions are independent of forward pri-
vacy.

Proof. Note that the privacy notions do not allow corruptions of the test oracle
and forward privacy does not allow the attacker modify any sent messages (i.e.
does not allow the attack to act as an active MITM). Π2

PKE (see Protocol 3)
for instance is strongly 2-way MITM private (see Theorem 4) and hence also

688 S. Ramacher et al.

(weakly) 2-way MITM private, but it is not forward private as the identities are
only encrypted using long term keys. On the other hand a protocol that runs the
classic Diffie-Helman key exchange followed by transmitting their identities sym-
metrically encrypted would reach forward privacy, but no 2-way MITM privacy,
as any MITM adversary could simply run the protocol.
�
Completed-session privacy is implied by the other privacy notions: if a protocol
is strong MITM private or has explicit authentication and is forward private,
then it also provides completed session-privacy. The following lemma shows the
implication starting from strong MITM privacy.

Lemma 3. Let Γ be a PPAKE protocol. If Γ is strong MITM private, then it
is completed-session private.

Proof. Strong 2-way MITM privacy test puts less restrictions on the attacker.
�
Finally, the following Theorem covers completed-session privacy from explicit
authentication and forward privacy.

Theorem 1. Let Γ be a PPAKE protocol. If Γ has explicit authentication and
is forward private, then it is completed-session private.

Proof. Assume for contradiction that some Γ has explicit authentication and
is forward private, but is not completed-session private. This means a PPT-
adversary A is able to call TestCompletedSessionPriv and not violate the imposed
restrictions, while also correctly guessing the challenge bit b with non-negligible
probability. Since Γ is forward private, the adversary violates a necessary restric-
tion for calling TestForwardPriv while correctly guessing the challenge bit b. (Note
that otherwise the exact same adversary A breaks forward privacy by simply
using the argument TestForwardPriv instead).

It follows that after A is done, π1
i|j does not have a partner oracle with non-

negligible probability. As per requirement of winning TestCompletedSessionPriv,
there is the oracle π1

i|j which has accepted and party Pk, where k = Pid1i|j, is
not corrupted. Due to Γ providing explicit authentication, there is an oracle πr

k

s.t. πr
k has matching conversations to π1

i|j , Pidrk = i|j and roler
k �= role1i|j (see

Definition 6 detailing explicit entity authentication). Then A could simply not
drop the last message (if it did before) thereby making π1

i|j and πr
k have matching

conversations to each other. This also makes π1
i|j and πr

k be partnered to each
other, without making it less likely for A to correctly guess the challenge bit b.
Hence A is able to break forward privacy, which is a contradiction.
�

3.3 Discussion and Limitations of Our PPAKE Model

Completed Session Privacy. TestCompletedSessionPriv is intended to repre-
sent the privacy notions of the literature, specifically Schäge et al. [30] and
Zhao [34]. The only addition we made is the requirement that “no oracle besides
πr

k may be instructed to start a protocol run with intended partner Pi|j”. This

Privacy-Preserving Authenticated Key Exchange 689

is a necessary addition since due to the nature of our model there are other-
wise trivial attacks against a large class of protocols: First of all the adversary
makes the test oracle complete its session without interfering and hence fulfills
the experiment’s requirements. It then corrupts both of the test oracle’s possi-
ble identities. Finally it instructs a new oracle to initiate the protocol with the
test oracle being the intended recipient, but answers all messages itself using the
information obtained with the corruptions. If the imitator at any point uses the
intended recipient’s public key, e.g. for PKE, then the adversary learns the test
oracle’s identity.

This problem does not exist in the model of [30], since they let each initiator
determine the identity of the test oracle (if configured correspondingly), instead
of having the identity of the test oracle fixed throughout the entire experiment.
We note that while [30] always model two identities per party, in our model
every party only has a single identity.5

Revocation. In our model, corruptions are immediately publicly known. While
this is an idealization, defending against secret corruptions is infeasible, since an
adversary could perfectly impersonate the corrupted user.

As typically done in AKE, we do not formally cover revocation of long term
keys in our model. There is previous work that explicitly models revocation for
AKE protocols [5], but we want to avoid this added complexity since at this point
we are not interested in the specifics of the respective revocation mechanism.
Nevertheless, we note that for any revocation mechanism, the revocation status
of a communication partner can only be checked after they revealed their identity.
For this reason, we model strong MITM privacy so that the adversary can corrupt
users as long as it does not openly identify itself as that user.

MITM Cross Tunnel Attack. We now discuss a generic MITM attack on
privacy that does not require the corruption of any party, dubbed MITM cross
tunnel attack. The goal of the attack is to de-anonymize a party that acts as a
responder in the protocol. Specifically, the attack targets MITM privacy (both
weak and strong). Let the responder be called Pi|j and π1

i|j its corresponding
session. Assume πr

k is trying to communicate with π1
i|j , but the adversary is a

MITM in that communication channel. Assume at the same time, the adversary
is MITM on another channel, where it knows that some πz

y is trying to com-
municate with πs

i . The adversary now relays all messages of πz
y (of the second

channel) to π1
i|j (of the first channel) and vice versa. Clearly, if either party pro-

duces an error or otherwise noticeably changes its behavior (e.g. by initiating
the protocol again), then the adversary knows that π1

i|j cannot be the intended
partner of πz

y . Therefore Pi|j must be Pj .
Defining protocols such that the parties – from an eavesdropper’s view – do

not behave noticeably different on errors (e.g. a party cannot decrypt a received
ciphertext) prevents this attack as well as trivial distinguishers in case a party is
revoked. Specifically, protocols need to continue similar to a normal execution,

5 Clearly, one could however group parties to generate virtual parties with more iden-
tities in our model though.

690 S. Ramacher et al.

but with randomly sampled messages and the sessions are internally marked as
invalid. Our protocols in Sect. 4 are designed to counter these attacks. As noted
before, fully preventing this attack in practice is only possible if higher level
protocols do not reveal the session status, e.g. by restarting the AKE protocol.

4 Constructing PPAKE with Strong Privacy

In this section we discuss generic construction methodologies to achieve weak
and strong MITM privacy, respectively. While not made explicit, all protocols are
assumed to behave indistinguishable to real executions (from an eavesdropper’s
view) even if some verification (indicated using boxes) fails, i.e., either a
random bitstring or encryption of a random message is returned. Also, we assume
that communication partners check the revocation status of the respective peers
prior to engaging in a session initiation. All used encryption schemes are required
to be length-hiding (cf. [32]), which we make explicit in the theorems.

User Certification and PKIs. In our protocols CertA indicates a certificate
that binds the identity of A to the long term public key(s). We assume all users
have their keys certified by some certification authority (CA) and that there is
a mechanism in place for checking the revocation status of certificates. All these
features are typically realized via a public-key infrastructure (PKI), i.e., PKIX.
As already mentioned, we do not make such a mechanism explicit in our model.

4.1 Achieving Weak MITM Private PPAKE Using Shared Secrets

For the first protocol, we assume all honest parties belong to the same group
and have a shared secret s only known to the members of the group. In terms
of our model, the shared secret s is part of the secret keys and can hence be
compromised by corrupting any party. With this shared secret, we can preserve
anonymity against an active MITM adversary, that does not have access to s.
But compromise of s does not endanger the usual key indistinguishability. The
idea is to derive all session keys by additionally including this shared secret. So,
even an active MITM attacker will be unable to use its knowledge of its share
of the ephemeral keys due to the lack of knowledge of s. The scheme extending
anonymous Diffie-Hellman with a shared secret and encrypted transfer of the
peer’s certificates is presented in Protocol 1. Similar to the protocols we discuss
later, this protocol can also be rewritten in terms of any unauthenticated KE
replacing the ephemeral DH shares and a signature scheme replacing the long
term keys. We can show the following:

Theorem 2. If the Oracle Diffie-Hellman (ODH) assumption holds and sym-
metric encryption scheme Ω is SE-LH-IND-CCA-secure, then Πss in Protocol
1 provides explicit entity authentication, is secure, weakly 2-way MITM private
and forward private.

Privacy-Preserving Authenticated Key Exchange 691

Alice: CertA = (A = g
a
, . . .) Bob: CertB = (B = g

b
, . . .)

skA = (a, s) skB = (b, s)

x
$← Zp

m1 = gx
y

$← Zp

k
′ ← H(g

xy
, g

x
, g

y
, s)

c2 ← Ek′ (CertB)

k
′ ← H(g

xy
, g

x
, g

y
, s) m2 = (gy, c2, U) U ← H(g

xb
, g

xy
, g

x
, g

y
, c2, s)

verify B,CertB , U

c3 ← Ek′ (CertA)

V ← H(g
ya

, g
xy

, g
x
, g

y
, m2, s) m3 = (c3, V) verify CertA, V

k ← H(g
xy

, g
xb

, g
ya

, s, (mi)
3
i=1) k ← H(g

xy
, g

xb
, g

ya
, s, (mi)

3
i=1)

Protocol 1: Protocol Πss with shared secret s, using symmetric encryption
Ω = (E,D).

For the proof we refer to the full version. Similar to the protocols from Wu
et al. [33], the protocol in Protocol 1 is useful for managed groups. While their
approach based on prefix encryption (PE) built from identity-based encryption
(IBE) is more expressive, only their second protocol is able to provide weak
MITM privacy. Our protocol highlights that weak MITM privacy can be obtained
using less heavy tools than IBE. Note that Wu et al. [33] also require a trusted
party (e.g., the CA) to generate and hand out secret keys to users. So this can
be regarded as being similar to having a shared secret as in our approach.

4.2 Generic Construction of Strongly MITM Private PPAKE

Next, we introduce a protocol that achieves MITM privacy, in this case even
strong MITM privacy, without relying on a shared secret. For this protocol and
the protocol in Sect. 4.3, we consider a setting where the public keys (certificates)
of responders are known a priori. Therefore, the initiator has all the information
including all public keys of the responder available. Note however, that the first
message cannot contain the initiator’s certificate. Otherwise, if the long-term key
of the responder is compromised, privacy of the initiator cannot be guaranteed
(a trade-off that we make in Sect. 4.3). So, authentication of the initiator can
only be performed after establishing an initial session key.

Similar to Πss we run a two-move KE and let the initiator sample a nonce
which takes over the role of the shared secret of Πss, i.e., the (temporary) session
keys are derived from the nonces and the result of the two-move KE. However,
we now encrypt the nonce under the receivers public key. Moreover, after the
initial shared key has been computed, the initiator is able to send its certificate
to the responder and authenticate itself using a signature (which is encrypted
together with the senders certificate). The protocol is depicted in Protocol 2.

692 S. Ramacher et al.

Alice Bob

m1 = Γ (0)

x
$← {0, 1}λ m2 = Γ (1, m1)

k
′ ← H(Γ.key, x, ctxt)

c0 ← EΓ.key(PEncB(x))

σA ← SignA(A||B||c0||ctxt)

c1 ← Ek′ (CertA, σA) m3 = (c0, c1), decrypt c0, c1

m4 = H(x, ctxt2) verify CertA, σA

k ← H(Γ.key, x, ctxt3) k ← H(Γ.key, x, ctxt3)

Protocol 2: Protocol Π4
PKE, using an unauthenticated KE Γ , PKE PKE =

(PEnc,PDec), symmetric encryption Ω = (E,D), signature scheme Σ =
(Sign,Verify), ctxt = m1‖m2, ctxt2 = A‖B‖ctxt‖m3, and ctxt3 = ctxt2‖m4.

We note that due to active attacks the PKE is required to provide key-privacy,
i.e., be PKE-IK-CCA-secure. Otherwise, an active attacker may determine the
senders identity purely by means of the PKE ciphertext. This additional require-
ment on the PKE is fulfilled by many natural schemes (cf. [4,25]). Moreover, to
obtain forward privacy the PKE ciphertext needs to be encrypted using the key
from the anonymous two-move KE.6

Theorem 3. If KE Γ is unauthenticated and secure, the PKE PKE is PKE-
IND-CCA- and PKE-IK-CCA-secure, symmetric encryption scheme Ω is SE-
LH-IND-CCA-secure, and the signature scheme Σ is EUF-CMA-secure, then
Π4

PKE provides explicit entity authentication, is secure, strongly MITM private
and forward private.

For the proof we refer to the full version.

4.3 Two-Move PPAKE Protocol Without Forward Privacy

Finally, let us now present a two move variant of Π4
PKE. Here, the initiator

already includes the certificate in the first message and thus allows the responder
to respond with a message encrypted with respect to the initiators public key
and thus the protocol is authenticated after two moves. The resulting protocol,
Π2

PKE, is depicted in Protocol 3 and achieves strong MITM privacy, but obviously
forward privacy can not be satisfied by this construction. In comparison to Π4

PKE,
the construction also requires the PKE to be length-hiding. Note though, when
using anonymous DH as in Πss one can avoid the signatures.
6 Otherwise an adversary obtaining all long-term PKE keys could simply try to test-

decrypt. Omitting this countermeasure would require non-standard properties from
the PKE, i.e.,. decryptions of ciphertexts under a key can also be decrypted with
other keys and yield meaningful messages.

Privacy-Preserving Authenticated Key Exchange 693

Alice Bob
x ← Γ (0)

σA ← SignA(x,CertB) m1 = PEncB(x,CertA, σA) decrypt m1 and verify σA

y ← Γ (1, x)

decrypt m2 and verify σB
m2 = PEncA(y, σB) σB ← SignB(x, y)

k ← H(Γ.key, m1, m2) k ← H(Γ.key, m1, m2)

Protocol 3: Protocol Π2
PKE using a PKE PKE, an unauthenticated KE Γ , and

a signature scheme Σ. where Certs contain Σ and PKE public keys.

Theorem 4. If KE Γ is secure, the PKE PKE is length-hiding, PKE-IND-CCA-
and PKE-IK-CCA-secure, and the signature scheme Σ is EUF-CMA-secure,
then Π2

PKE provides explicit entity authentication, is secure, strongly MITM pri-
vate and completed-session private.

For the proof we refer to the full version.

5 Discussion and Future Work

In Table 2, we present an overview of the protocols presented in Sect. 4. All
protocols provide completed-session privacy as well as weak MITM privacy, but
for forward privacy and strong MITM privacy the picture looks different. Due
the use of shared secret in Πss, strong MITM privacy does not hold. Yet this
approach can be viewed as mitigation strategy for existing protocols to at least
guarantee weak MITM privacy guarantees (e.g., for the IoT setting as targeted
in [33]). For the PKE-based approach Π4

PKE we require more than two moves to
achieve forward privacy, but all other notions can already be achieved with the
two move protocol Π2

PKE.
Our motivation in this work was primarily to investigate the space of mean-

ingful privacy notions and whether there are protocols that satisfy strong notions
of privacy. An interesting question is the efficiency and privacy trade-off of con-
cretely instantiated protocols as well as a strengthening of the model to support
session state reveal queries. Currently only trivial ones would be supported and
thus we decided to omit this feature. Another interesting direction, as done for

Table 2. Comparison of our protocols. “ss” denotes the requirement of a shared secret
and “pk” the requirement to know the public key of the intended responder upfront.

ss pk forward priv. comp.-ses. priv. w.-MITM s.-MITM # moves

Πss � × � � � × 3

Π2
PKE × � × � � � 2

Π4
PKE × � � � � � 4

694 S. Ramacher et al.

IKE v2 in [30], is to study which privacy properties deployed AKE protocols
satisfy or how they can be modified in a way that they provide strong privacy
guarantees.

Acknowledgements. This work was supported by the European Union’s Hori-
zon 2020 research and innovation programme under grant agreement n◦826610
(Comp4Drones) and n◦861696 (Labyrinth) and by the Austrian Science Fund (FWF)
and netidee SCIENCE under grant agreement P31621-N38 (Profet).

References

1. Aiello, W., et al.: Just fast keying: key agreement in a hostile internet. ACM Trans.
Inf. Syst. Secur. 7(2), 242–273 (2004)

2. Arfaoui, G., Bultel, X., Fouque, P.A., Nedelcu, A., Onete, C.: The privacy of
the TLS 1.3 protocol. PoPETs 2019(4), 190–210 (2019). https://doi.org/10.2478/
popets-2019-0065

3. Barbosa, M., Boldyreva, A., Chen, S., Warinschi, B.: Provable security analysis of
FIDO2. Cryptology ePrint Archive, Report 2020/756 (2020). https://eprint.iacr.
org/2020/756

4. Bellare, M., Boldyreva, A., Desai, A., Pointcheval, D.: Key-privacy in public-key
encryption. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 566–582.
Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45682-1 33

5. Boyd, C., Cremers, C., Feltz, M., Paterson, K.G., Poettering, B., Stebila, D.:
ASICS: authenticated key exchange security incorporating certification systems. In:
Crampton, J., Jajodia, S., Mayes, K. (eds.) ESORICS 2013. LNCS, vol. 8134, pp.
381–399. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40203-
6 22

6. Canetti, R., Krawczyk, H.: Security analysis of IKE’s signature-based key-
exchange protocol. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp.
143–161. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45708-9 10
https://eprint.iacr.org/2002/120/

7. Chai, Z., Ghafari, A., Houmansadr, A.: On the importance of encrypted-SNI
(ESNI) to censorship circumvention. In: FOCI @ USENIX. USENIX Association
(2019)

8. Cohn-Gordon, K., Cremers, C., Gjøsteen, K., Jacobsen, H., Jager, T.: Highly effi-
cient key exchange protocols with optimal tightness. In: Boldyreva, A., Micciancio,
D. (eds.) CRYPTO 2019. LNCS, vol. 11694, pp. 767–797. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-26954-8 25

9. Dingledine, R., Mathewson, N., Syverson, P.F.: Tor: the second-generation onion
router. In: Blaze, M. (ed.) USENIX Security 2004, pp. 303–320. USENIX Associ-
ation, August 2004

10. Donenfeld, J.A.: WireGuard: next generation kernel network tunnel. In: NDSS
2017. The Internet Society, Feb/Mar 2017

11. Dowling, B., Paterson, K.G.: A cryptographic analysis of the WireGuard protocol.
In: Preneel, B., Vercauteren, F. (eds.) ACNS 2018. LNCS, vol. 10892, pp. 3–21.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-93387-0 1

12. Fan, K., Li, H., Jiang, W., Xiao, C., Yang, Y.: U2F based secure mutual authenti-
cation protocol for mobile payment. In: ACM TUR-C, pp. 27:1–27:6. ACM (2017)

https://doi.org/10.2478/popets-2019-0065
https://doi.org/10.2478/popets-2019-0065
https://eprint.iacr.org/2020/756
https://eprint.iacr.org/2020/756
https://doi.org/10.1007/3-540-45682-1_33
https://doi.org/10.1007/978-3-642-40203-6_22
https://doi.org/10.1007/978-3-642-40203-6_22
https://doi.org/10.1007/3-540-45708-9_10
https://eprint.iacr.org/2002/120/
https://doi.org/10.1007/978-3-030-26954-8_25
https://doi.org/10.1007/978-3-319-93387-0_1

Privacy-Preserving Authenticated Key Exchange 695

13. Goldberg, I., Stebila, D., Ustaoglu, B.: Anonymity and one-way authentication in
key exchange protocols. Des. Codes Cryptogr. 67(2), 245–269 (2013)

14. Gross, H., Hölbl, M., Slamanig, D., Spreitzer, R.: Privacy-aware authentication in
the Internet of Things. In: Reiter, M., Naccache, D. (eds.) CANS 2015. LNCS,
vol. 9476, pp. 32–39. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
26823-1 3

15. Hoffman, P.E., McManus, P.: DNS queries over HTTPS (DoH). RFC 8484, 1–21
(2018)

16. Hövelmanns, K., Kiltz, E., Schäge, S., Unruh, D.: Generic authenticated key
exchange in the quantum random oracle model. In: Kiayias, A., Kohlweiss, M.,
Wallden, P., Zikas, V. (eds.) PKC 2020. LNCS, vol. 12111, pp. 389–422. Springer,
Cham (2020). https://doi.org/10.1007/978-3-030-45388-6 14

17. Hu, Z., Zhu, L., Heidemann, J.S., Mankin, A., Wessels, D., Hoffman, P.E.: Speci-
fication for DNS over transport layer security (TLS). RFC 7858, 1–19 (2016)

18. Hülsing, A., Ning, K.C., Schwabe, P., Weber, F., Zimmermann, P.R.: Post-quantum
WireGuard. Cryptology ePrint Archive, Report 2020/379 (2020). https://eprint.
iacr.org/2020/379

19. Kaufman, C., Hoffman, P.E., Nir, Y., Eronen, P., Kivinen, T.: Internet key
exchange protocol version 2 (IKEv2). RFC 7296, 1–142 (2014)

20. Krawczyk, H.: SKEME: a versatile secure key exchange mechanism for internet.
In: NDSS, pp. 114–127. IEEE (1996)

21. Krawczyk, H.: SIGMA: the ‘SIGn-and-MAc’ approach to authenticated Diffie-
Hellman and its use in the IKE protocols. In: Boneh, D. (ed.) CRYPTO 2003.
LNCS, vol. 2729, pp. 400–425. Springer, Heidelberg (2003). https://doi.org/10.
1007/978-3-540-45146-4 24

22. Lauter, K., Mityagin, A.: Security analysis of KEA authenticated key exchange
protocol. In: Yung, M., Dodis, Y., Kiayias, A., Malkin, T. (eds.) PKC 2006.
LNCS, vol. 3958, pp. 378–394. Springer, Heidelberg (2006). https://doi.org/10.
1007/11745853 25

23. Li, Y., Schäge, S.: No-match attacks and robust partnering definitions: defining
trivial attacks for security protocols is not trivial. In: Thuraisingham, B.M., Evans,
D., Malkin, T., Xu, D. (eds.) ACM CCS 2017, pp. 1343–1360. ACM Press, Oct/Nov
2017. https://doi.org/10.1145/3133956.3134006

24. Øverlier, L., Syverson, P.: Improving efficiency and simplicity of Tor circuit estab-
lishment and hidden services. In: Borisov, N., Golle, P. (eds.) PET 2007. LNCS,
vol. 4776, pp. 134–152. Springer, Heidelberg (2007). https://doi.org/10.1007/978-
3-540-75551-7 9

25. Paterson, K.G., Srinivasan, S.: Building key-private public-key encryption schemes.
In: Boyd, C., González Nieto, J. (eds.) ACISP 2009. LNCS, vol. 5594, pp. 276–292.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02620-1 20

26. Perrin, T.: The noise protocol framework (2017). https://noiseprotocol.org
27. Rescorla, E.: The transport layer security (TLS) protocol version 1.3. RFC 8446,

1–160 (2018)
28. Rescorla, E., Oku, K., Sullivan, N., Wood, C.A.: TLS encrypted client hello.

Internet-Draft draft-ietf-tls-esni-07, Internet Engineering Task Force, June 2020.
https://datatracker.ietf.org/doc/html/draft-ietf-tls-esni-07. Work in Progress

29. dos Santos, G.L., Guimaraes, V.T., da Cunha Rodrigues, G., Granville, L.Z.,
Tarouco, L.M.R.: A DTLS-based security architecture for the internet of things.
In: ISCC, pp. 809–815. IEEE (2015)

https://doi.org/10.1007/978-3-319-26823-1_3
https://doi.org/10.1007/978-3-319-26823-1_3
https://doi.org/10.1007/978-3-030-45388-6_14
https://eprint.iacr.org/2020/379
https://eprint.iacr.org/2020/379
https://doi.org/10.1007/978-3-540-45146-4_24
https://doi.org/10.1007/978-3-540-45146-4_24
https://doi.org/10.1007/11745853_25
https://doi.org/10.1007/11745853_25
https://doi.org/10.1145/3133956.3134006
https://doi.org/10.1007/978-3-540-75551-7_9
https://doi.org/10.1007/978-3-540-75551-7_9
https://doi.org/10.1007/978-3-642-02620-1_20
https://noiseprotocol.org
https://datatracker.ietf.org/doc/html/draft-ietf-tls-esni-07

696 S. Ramacher et al.

30. Schäge, S., Schwenk, J., Lauer, S.: Privacy-preserving authenticated key exchange
and the case of IKEv2. In: Kiayias, A., Kohlweiss, M., Wallden, P., Zikas, V. (eds.)
PKC 2020. LNCS, vol. 12111, pp. 567–596. Springer, Cham (2020). https://doi.
org/10.1007/978-3-030-45388-6 20

31. Schwabe, P., Stebila, D., Wiggers, T.: Post-quantum TLS without handshake sig-
natures. In: Ligatti, J., Ou, X., Katz, J., Vigna, G. (eds.) ACM CCS 2020, pp.
1461–1480. ACM Press, November 2020. https://doi.org/10.1145/3372297.3423350

32. Tezcan, C., Vaudenay, S.: On hiding a plaintext length by preencryption. In: Lopez,
J., Tsudik, G. (eds.) ACNS 2011. LNCS, vol. 6715, pp. 345–358. Springer, Heidel-
berg (2011). https://doi.org/10.1007/978-3-642-21554-4 20

33. Wu, D.J., Taly, A., Shankar, A., Boneh, D.: Privacy, discovery, and authentication
for the Internet of Things. In: Askoxylakis, I., Ioannidis, S., Katsikas, S., Meadows,
C. (eds.) ESORICS 2016. LNCS, vol. 9879, pp. 301–319. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-45741-3 16

34. Zhao, Y.: Identity-concealed authenticated encryption and key exchange. In:
Weippl, E.R., Katzenbeisser, S., Kruegel, C., Myers, A.C., Halevi, S. (eds.) ACM
CCS 2016, pp. 1464–1479. ACM Press, October 2016. https://doi.org/10.1145/
2976749.2978350

https://doi.org/10.1007/978-3-030-45388-6_20
https://doi.org/10.1007/978-3-030-45388-6_20
https://doi.org/10.1145/3372297.3423350
https://doi.org/10.1007/978-3-642-21554-4_20
https://doi.org/10.1007/978-3-319-45741-3_16
https://doi.org/10.1145/2976749.2978350
https://doi.org/10.1145/2976749.2978350

Multi-party Computation

Correlated Randomness Teleportation via
Semi-trusted Hardware—Enabling Silent

Multi-party Computation

Yibiao Lu1, Bingsheng Zhang1(B), Hong-Sheng Zhou2, Weiran Liu3,
Lei Zhang3, and Kui Ren1,4

1 Zhejiang University, Hangzhou, China
{luyibiao,bingsheng,kuiren}@zju.edu.cn

2 Virginia Commonwealth University, Richmond, USA
hszhou@vcu.edu

3 Alibaba Group, Hangzhou, China
weiran.lwr@alibaba-inc.com, zongchao.zl@taobao.com

4 Key Laboratory of Blockchain and Cyberspace Governance of Zhejiang Province,
Hangzhou, China

Abstract. With the advancement of the trusted execution environment
(TEE) technologies, hardware-supported secure computing becomes
increasingly popular due to its efficiency. During the protocol execution,
typically, the players need to contact a third-party server for remote
attestation, ensuring the validity of the involved trusted hardware com-
ponent, such as Intel SGX, as well as the integrity of the computation
result. When the hardware manufacturer is not fully trusted, sensitive
information may be leaked to the third-party server through backdoors,
steganography, and kleptography, etc. In this work, we introduce a new
security notion called semi-trusted hardware model, where the adversary
is allowed to passively or maliciously corrupt the hardware. Therefore,
she can learn the input of the hardware component and might also tam-
per its output. We then show how to utilize such semi-trusted hardwares
for correlated randomness teleportation. When the semi-trusted hardware
is instantiated by Intel SGX, to generate 10k random OT’s, our protocol
is 24X and 450X faster than the EMP-IKNP-ROT in the LAN and WAN
setting, respectively. When SGX is used to teleport Garbled circuits, the
resulting two-party computation protocol is 5.3-5.7X and 43-47X faster
than the EMP-SH2PC in the LAN and WAN setting, respectively, for
the AES-128, SHA-256, and SHA-512 evaluation. We also show how to
achieve malicious security with little overhead.

Keywords: MPC · Semi-trusted hardware model · Garbled circuit

1 Introduction

In secure multi-party computation (MPC), two or more players want to collec-
tively compute a function and receive its output without revealing their inputs
c© Springer Nature Switzerland AG 2021
E. Bertino et al. (Eds.): ESORICS 2021, LNCS 12973, pp. 699–720, 2021.
https://doi.org/10.1007/978-3-030-88428-4_34

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-88428-4_34&domain=pdf
https://doi.org/10.1007/978-3-030-88428-4_34

700 Y. Lu et al.

to the other players. In the past decades, MPC has gradually transitioned from
theory to practice, and it has been widely used in many security critical real-
world applications, such as private set intersection and secure auction. In spite
of its success, MPC is still not efficient for complicated real-time tasks due to
its computational overhead and high communication cost. Meanwhile, recent
development of trusted execution environment (TEE) technologies, such as Intel
SGX and ARM TrustZone, enables a new approach for privacy-preserving com-
putation. Hardware-supported secure computing can greatly accelerate an MPC
process by avoiding expensive cryptographic operations. However, this kind of
construction introduces additional hardware setup assumptions that require new
trust roots, e.g., Intel. Recent exposure of Intel source code [5] raises a secu-
rity concern on possible backdoors contained in its design. When the hardware
manufacturer is not fully trusted, sensitive information may be leaked through
backdoors, steganography and kleptography, etc. For instance, Intel SGX uses
the remote attestation mechanism to ensure the validity of the enclave exe-
cution environment and the integrity of the computation result. More specifi-
cally, Intel’s (anonymous) attestation is based on an anonymous group signature
scheme called Intel Enhanced Privacy ID (EPID) [11]. To verify that an outcome
is computed by a pre-agreed program in a genuine SGX, Quoting Enclave (QE)
will produce a quote by signing the report with the group signature. The users
then need to contact the remote Intel Attestation Service (IAS) (or some other
alternative servers) for verification. If Intel is malicious, sensitive information
may be leaked from the SGX component to the IAS through the signatures,
using for example kleptography techniques. (Currently, Intel SGX uses 4096-
bit RSA signatures.) That means the input of SGX might be revealed to the
adversary.

When the hardware provider is not allied with the MPC participants, is it
possible to still use potentially malicious leaky hardware components to accel-
erate MPC executions with privacy assurance? In this work, we answer this
question affirmatively.

New Model. We introduce a new semi-trusted hardware model, where the
adversary A is allowed to passively or maliciously corrupt the hardware ideal
functionality FHW. FHW is parameterized with a probabilistic polynomial time
(PPT) interactive Turing machine (ITM) M, which specifies its functionality.
When the hardware functionality FHW is passively corrupted, the adversary A
can learn all the incoming messages received by FHW; when FHW is maliciously
corrupted, in addition to leaning the incoming messages, the adversary A can
replace the original M with an arbitrary ITM M∗; namely, A can fully control
the execution of FHW.

We note that the existing remote attestation model [18], tamper-proof hard-
ware token models [9,12], and server-aided model [15] are different from our
model. When hardware is fully trusted, unlike the remote attestation model, our
FHW does not sign its output. Moreover, the existing model does not address
hardware leakage as well as malicious corruptions.

Correlated Randomness Teleportation via Semi-trusted Hardware 701

Our Constructions. We show semi-trusted hardware can still be used to sig-
nificantly improve the efficiency of an MPC protocol by reducing the commu-
nication. The main idea is to use semi-trusted hardware for those MPC com-
putation that does not depend on the actual protocol inputs; thus no sensitive
information is leaked to the hardware components. We propose a new notion
called correlated randomness teleportation, where the sender can teleport a large
amount of correlated randomness to the receiver with little communication. Take
random OT (ROT) generation as an example, assume the Receiver uses an SGX-
enabled machine, while there is no special hardware requirement to the Sender.
During the ROT protocol, the Sender only needs to send a random seed k1 to
the Receiver’s SGX enclave via a secure channel, and the Receiver also sends a
random seed k2 to the enclave locally. Both parties can then generate polynomi-
ally many ROT copies without any further communication. Namely, for a ROT
copy, the Sender locally computes R0

ctr ← PRFk1(ctr, 0) and R1
ctr ← PRFk1(ctr, 1)

from the seed k1 using some pseudo-random function PRF, where ctr is the
counter; meanwhile, the SGX generates the ROT choice bit bctr from the seed
k2 using some pseudo-random number generator PRG, and then it computes
Rbctr

ctr ← PRFk1(ctr, bctr). The SGX locally outputs {Rbctr
ctr }ctr to the Receiver.

Garbled circuit (GC) can also be viewed as a type of correlated randomness.
With our technique, the communication between the 2PC players can also be dra-
matically reduced. We assume the GC Evaluator uses an SGX-enabled machine,
while there is no special hardware requirement to the GC Garbler. Note that, the
main cost of a GC-based 2PC protocol is the transmission of the garbled tables
of the entire circuit. Analogously, during the GC protocol, the Garbler sends a
random seed k1 to the Evaluator’s SGX enclave via a secure channel. The SGX
can then internally generate the garbled tables and locally outputs them to the
Evaluator without network communication. The only communication needed is
for transmitting the input labels from the Garbler to the Evaluator. The overall
communication is linear to the input size and independent of the circuit size.

Remark. We would like to emphasize that naively using the secure hardware
components, such as SGX, and a simulatable private garbling scheme in a black-
box fashion to prepare GC in an offline phase won’t result in a simulatable 2PC
protocol. This is because the simulator cannot extract the malicious Evaluator’s
input in the offline phase, yet it needs to learn the MPC output (from the ideal
functionality) to invoke the GC simulator (cf. Definition 2) to produce the (fake)
GC tables in the real/hybrid world. The protocol should invoke the secure hard-
ware component at the right moment along with the 2PC protocol execution.

Efficiency. We mainly compare the performance of our protocols with the well-
known EMP-toolkit maintained by Wang et al. [20]. Table 1 shows the perfor-
mance comparison between the passively secure IKNP OT extension protocol [8]
implemented in EMP-toolkit [20] and our silent ROT protocol (semi-honest
security). We perform the experiments on an SGX-enabled Dell OptiPlex 7080
equipped with an Intel Core 8700 CPU @ 3.20 GHz with 32 GB RAM. In the
LAN setting (Bandwidth: 1Gbps, Delay: 1ms), our silent ROT protocol is 22-
39X faster w.r.t. the sender’s running time and 9-14X faster w.r.t. the receiver’s

702 Y. Lu et al.

Table 1. Performance comparison of the ROT protocols. Result obtained from Dell
OptiPlex 7080 (Intel Core 8700 CPU @ 3.20 GHz, 32 GB RAM, OS: Ubuntu 18.04
LTS). LAN: 1 Gbps bandwidth, 0.1 ms delay. WAN: 100 Mbps bandwidth, 25ms delay.

ROT Network Sender’s running time (in ms) Receiver’s running time (in ms)

EMP-IKNP-ROT [20] Our ROT EMP-IKNP-ROT [20] Our ROT

1 × 104 LAN 2.889 0.074 3.908 0.162

WAN 26.331 0.079 76.358 0.169

1 × 105 LAN 17.790 0.780 19.355 1.575

WAN 150.502 0.795 200.030 1.477

1 × 106 LAN 154.373 6.182 150.621 15.910

WAN 1451.043 6.402 1495.294 16.032

1 × 107 LAN 1507.961 51.616 1451.562 103.937

WAN 13859.934 51.280 13963.502 103.435

1 × 108 LAN 15030.832 505.289 14470.057 995.987

WAN 138028.607 501.757 137034.187 980.795

Table 2. Performance comparison of the generation, transmission and evaluation pro-
cess of the garbled circuit in the semi-honest setting 2PC protocol. Result obtained
from the same experiment environment as in Table 1. It shows the running time (in
ms) for evaluating AES-128, SHA-256, and SHA-512 circuits 1000 times, respectively.

Circuit Network EMP-SH2PC [20] time (in ms) Our 2PC protocol time (in ms)

Garbler Comm. Evaluator Garbler Comm. Evaluator (SGX+PC)

AES-128 LAN 246.557 1742.094 229.339 10.171 ≈0 243.730 + 174.916

WAN 265.919 18335.009 234.264 9.875 ≈0 255.275 + 177.637

SHA-256 LAN 829.398 6135.087 776.880 26.310 ≈0 805.893 + 583.828

WAN 839.626 64433.208 777.284 28.981 ≈0 804.904 + 581.166

SHA-512 LAN 2434.915 15745.170 2388.890 52.110 ≈0 2061.712 + 1549.076

WAN 2303.479 163362.579 2418.025 52.373 ≈0 2072.215 + 1551.586

Table 3. Performance comparison of the computation process of the malicious setting
2PC protocol. Result obtained from the same experiment environment as in Table 1.
It shows the running time (in ms) for evaluating AES-128, SHA-256, and SHA-512
circuits once, respectively.

Circuit Network EMP-AG2PC [20] running time (in ms) Ours (in ms)

Garb. offline Garb. online Eval. offline Eval. online Garbler Evaluator

AES-128 LAN 94.744 5.185 92.055 5.193 3.100 6.311

WAN 1345.708 53.440 1240.956 53.385 30.124 61.457

SHA-256 LAN 210.676 6.303 201.701 6.272 10.373 15.633

WAN 2299.404 52.474 2196.297 52.440 47.756 86.059

SHA-512 LAN 435.581 9.634 423.302 9.593 25.756 34.944

WAN 4095.115 56.471 4044.428 56.426 70.139 112.336

running time than the EMP-IKNP-ROT [20]. In the WAN setting (Bandwidth:
100 Mbps, Delay: 25 ms), our silent ROT protocol is 189-333X faster w.r.t. the
sender’s running time and 93-451X faster w.r.t. the receiver’s running time than
the EMP-IKNP-ROT.

Correlated Randomness Teleportation via Semi-trusted Hardware 703

Table 2 shows the performance comparison between EMP-SH2PC [20] and
our semi-honest setting silent 2PC protocol. (EMP-SH2PC provides an efficient
semi-honest 2PC implementation based on Yao’s GC protocol with half-gates [22]
optimization.) We perform the experiments on this same machine as above. We
test the garbling time, the garbled tables transmission time, and the evaluation
time separately, as for the Garbler in our protocol, the garbling time is the time
to generate input wire labels. We omit the time of transmitting seeds and wire
labels in both protocols. Since in our protocol, the garbling process is performed
in the SGX enclave at the evaluator side, we split the evaluator running time
of our protocol into two parts: (i) the SGX running time and (ii) normal mode
CPU running time. The garbler running time is the time to generate the input
wire labels. We take the AES-128, SHA-256, and SHA-512 circuit evaluation as
benchmarks. In the LAN setting, our silent 2PC protocol is 5.3-5.7X faster than
the EMP-SH2PC [20]. In the WAN setting, our silent 2PC protocol is 43-47X
faster than the EMP-SH2PC.

Table 3 shows the performance comparison between EMP-AG2PC [20] and
our malicious setting silent 2PC protocol. (EMP-AG2PC implements an efficient
maliciously secure two-party computation protocol, authenticated garbling [21].)
We perform the experiments on this same machine as above. We take the AES-
128, SHA-256, and SHA-512 circuit evaluations as benchmarks, and the results
are the average of 100 tests. All the one-time expenses are omitted, e.g., creat-
ing enclave in our protocol and initialize Fpre in EMP-AG2PC. EMP-AG2PC
consists of three computing phases: (i) function independent offline phase, (ii)
function dependent offline phase and (iii) online phase. (i) and (ii) are collec-
tively called offline phase. In the LAN setting, our silent 2PC protocol is 17-32X
faster w.r.t. the garbler’s running time and 12-15X faster w.r.t. the evaluator’s
running time than the EMP-AG2PC [20]. In the WAN setting, our silent PC
protocol is 46-59X faster w.r.t. the garbler’s running time and 21-36X faster
w.r.t. the evaluator’s running time than the EMP-AG2PC.

2 Preliminaries

Notation. Throughout this paper, we use the following notations and terminolo-
gies. Let λ ∈ N be the security parameter. We abbreviate probabilistic polynomial
time as PPT, and interactive Turing machine as ITM. Let poly(·) and negl(·)
be a polynomially-bounded function and negligible function, respectively. We
assume each party has a unique PID. For readability, we refer Pi as the PID for
the party Pi. Suppose f(x1, x2) = y is a function (circuit). Denote f.n1 and f.n2

as the input size of x1 and x2, respectively. Let f.n = f.n1 + f.n2. Denote f.m
as the size of the output y and f.N as the overall wire number in f . For notation
simplicity, we also use n1, n2, n,m,N to represent f.n1, f.n2, f.n, f.m, f.N when
there will be no ambiguity.

Garbling Scheme. As defined in [3], a garbling scheme GC consists of the
following PPT algorithms (Gb,En,Ev,De).

704 Y. Lu et al.

– Gb(1λ, f) is the garbling algorithm that takes input as the security parameter
λ ∈ N and a circuit f , and it returns a garbled circuit F , encoding information
e, and decoding information d.

– En(e, x) is the encoding algorithm that takes input as the encoding informa-
tion e and an input x, and it returns a garbled input X.

– Ev(F,X) is the evaluation algorithm that takes input as the garbled circuit
F and the garbled input X, and it returns a garbled output Y .

– De(d, Y) is the decoding algorithm that takes input as the decoding informa-
tion d and the garbled output Y , and it returns the output y.

A garbling scheme GC := (Gb,En,Ev,De) is called projective if e consists of
2f.n wire labels. For the i-th input bit, we denote the corresponding wire labels
as (X0

i ,X1
i). Let e := {(X0

i ,X1
i)}i∈[n]; the encoding algorithm En(e, x) simply

outputs X
x[i]
i , i ∈ [n], where x[i] is the i-th bit of x.

Analogously, a garbling scheme is called output-projective if d consists of
2 labels for each output bits, which can be denoted as (Z0

i , Z1
i). Let d :=

{(Z0
i , Z1

i)}i∈[m]; the decoding algorithm De(d, Y) outputs y[i], i ∈ [m], where
y[i] is the i-th bit of y s.t. Z

y[i]
i = Yi.

In this work, we assume the garbling scheme GC is both projective and
output-projective.

Definition 1 (Correctness [3]). We say a garbling scheme (Gb,En,Ev,De) is
correct if for all functions f and input x:

Pr[(F, e, d) ← Gb(1λ, f) : De(d,Ev(F,En(e, x))) = f(x)] = 1 .

Definition 2 (Simulatable Privacy [3]). We say a garbling scheme
(Gb,En,Ev,De) is simulatable private if for all functions f and input x, there
exists a PPT simulator Sim such that for all PPT adversary A the following
holds:

Pr

⎡
⎣

(F0, e0, d0) ← Gb(1λ, f);X0 ← En(e, x);
(F1,X1, d1) ← Sim(1λ, f(x), Φ(f));
b ← {0, 1}; b∗ ← A(Fb,Xb, db) : b = b∗

⎤
⎦ = negl(λ) .

where Φ is the side-information function.

Yao’s GC Optimizations and Our Choice. Throughout the past decades,
several optimization techniques have been proposed to improve the efficiency of
Yao’s garbled circuit (GC). In this section, we examine a few Yao’s GC optimiza-
tions and analyze their suitability for our work to achieve the best performance,
the concrete performance analysis is taken from the work of Zahur et al. [22].

In the classical garbling scheme, the GC generator needs to invoke the hash
function H 4 times for each gate to create a garbled table consists of 4 cipher-
texts. The GC evaluator also needs to invoke H up to 4 times for each gate to
decrypt all these ciphertexts and obtains an output wire label.

Beaver et al. [2] introduced a technique called point-and-permute. By append-
ing a select bit to each wire label, one can easily determine the places of the

Correlated Randomness Teleportation via Semi-trusted Hardware 705

Fig. 1. Functionality Ff
2pc

corresponding ciphertexts. Therefore, for a garbled table, the GC evaluator can
decide which ciphertext to decrypt according to the select bit and only invoke H
once. Nevertheless, each garbled table still contains 4 ciphertexts, and it takes 4
H invocations to generate. We adopt this technique in our design, as it greatly
reduces the GC evaluator’s computational cost, and it is compatible with other
optimizations.

Naor et al. [17] introduced a garbled row-reduction technique known as GRR3
to reduce the garbled table size. The main idea is to fix 1 of the 4 ciphertexts,
e.g., the top one, in each garbled table to be 0, and thus can be eliminated. In
our construction, the memory of the enclave is limited, and this technique can
reduce memory usage of GC generation.

Kolesnikov et al. [14] introduced the free-XOR technique. This technique
allows us to garble and evaluate XOR gates for free. To do this, the offset between
each wire’s 0-label and 1-label in the entire circuit is fixed to Δ. Therefore,
one can generate or evaluate an XOR gate via a simple XOR operation. This
technique can greatly improve the performance of our scheme.

We note that, in a conventional 2PC setting, the other optimization tech-
niques, such as GRR2 [19] and half-gates [22], may be helpful to further
improve scheme performance. However, GRR2 is not compatible with free-XOR.
Although half-gates is compatible with the aforementioned three optimizations,
it is not ideal for our construction. The reason is that the main benefit of half-
gates is to reduce the non-XOR gate garbled table size to 2, but it needs 2 H
invocations to evaluate. Whereas, in our design, the GC size is not the bottle-
neck of our overall performance, because the GC table is transmitted between
the SGX enclave and the host locally. While, without half-gates, each non-XOR
gate garbled table only needs 1 H invocation to evaluate.

706 Y. Lu et al.

Fig. 2. The semi-trusted hardware functionality FHW[M]

3 Security Model

Simulation-Based Security. Our security model follows the simulation
paradigm, which lays down a solid foundation for designing and analyzing proto-
cols secure against attacks in an arbitrary network execution environment (there-
fore it is also known as network aware security model). Roughly speaking, in a
simulation-based security model, protocols are carried out over multiple inter-
connected machines; to capture attacks, a network adversary A is introduced,
which is allowed to corrupt some machines (i.e., have the full control of all phys-
ical parts of some machines); in addition, A is allowed to partially control the
communication tapes of all uncorrupted machines, that is, it sees all the messages
sent from and to the uncorrupted machines and controls the sequence in which
they are delivered. Then, a protocol ρ is a secure implementation of a function-
ality F , if it satisfies that for every network adversary A attacking an execution
of ρ, there is another adversary S—known as the simulator—attacking the ideal
process that uses F (by corrupting the same set of machines), such that, the
executions of ρ with A and that of F with S makes no difference to any network
execution environment.

The Ideal World Execution. In the ideal world, P1 and P2 only communicate
with an ideal functionality Ff

2pc during the execution. As depicted in Fig. 1,
party Pi ∈ P sends (Compute, sid, xi) to the functionality Ff

2pc, and Ff
2pc sends

a notification (ComputeNotify, sid, xi, Pi) to the adversary S if Pi is corrupted;
Otherwise, Ff

2pc leaks the input size (ComputeNotify, sid, |xi|, Pi) to S. When
both parties’ inputs are received, Ff

2pc computes y ← f(x1, x2). It then sends
(Compute, sid, y) to P2 if the adversary S allows. For corruption handling, if
the adversary S corrupts party Pi ∈ P, Ff

2pc adds Pi to the set of corrupted
parties, Pc, and leaks Pi’s input xi to S if it is already defined.

Correlated Randomness Teleportation via Semi-trusted Hardware 707

Fig. 3. Description of MROT

The Real World Execution. The real/hybrid world protocol Π uses a semi-
trusted hardware components, which are modeled as the ideal functionality FHW.
Later, we will discuss how FHW is instantiated by Intel SGX in practice. For
notation simplicity, we define FHW as a template, and specify the required func-
tionalities in the description of a PPT Turing machine M. We use FHW[MGC] in
our semi-honest/malicious setting protocol ΠGC

2pc.

3.1 Semi-trusted Hardware Model

We introduce a new notion, called semi-trusted hardware model. Unlike the
conventional trusted hardware model, the semi-trusted hardware functionality
FHW[M] shown in Fig. 2 can be corrupted by the adversary A. The functionality
FHW[M] is parameterized with a PPT ITM M and a Boolean flag corrupted to
indicate whether the hardware is corrupted. The parties P1 and P2 can invoke
FHW[M] to compute (y1, y2) ← M(x1, x2) by sending the input x1 and x2 respec-
tively to FHW.

However, the adversary A is allowed to corrupt FHW via the (Corrupt,
sid,M∗) command. When A is a semi-honest adversary, it sets M∗ = ∅. In exe-
cution, if FHW is corrupted, it will leak each party’s input to A. When A is a
malicious adversary, M∗ can be arbitrarily defined by A (not necessarily PPT),
and FHW computes (y1, y2) ← M∗(x1, x2) instead. After the computation, FHW

sends the output y1 to the party P1 and y2 to the party P2.

4 Correlated Randomness Teleportation

Correlated randomness is widely used in the MPC offline protocols to achieve
better online efficiency. In practice, correlated randomness can be generated and
distributed by a trusted server. However, this approach still needs huge commu-
nication between the trusted server and the players to deliver those correlated
random copies. In this section, we show it is possible to utilize a semi-trusted

708 Y. Lu et al.

Fig. 4. The semi-honest/malicious setting ΠROT in the FHW[MROT]-hybrid model

hardware to teleport correlated randomness with little (O(λ)) communication.
Take two-party computation as an example. Without loss of generality, suppose
FHW is located at P2’s side with fast local connections, e.g., FHW is instantiated
with P2’s SGX. In the following, we provide Random OT teleportation and GC
teleportation protocols to illustrate our idea.

4.1 Random OT Teleportation

Description of MROT. We now define the Turing machine MROT for FHW

in Fig. 3. We use [S] (or [M]) labels to indicate instructions only included in
the machine used in the semi-honest (or malicious) setting protocol. Unlabeled
instructions are performed in both settings.

When P1 sends 〈�1, k1〉 and P2 sends 〈�2, k2〉, MROT parses their inputs to
obtain the ROT seeds k1, k2 and the number of ROT to be generated �1, �2,
and it asserts P1 and P2 send the same number �1 = �2. Subsequently, MROT

use k2 to generate the ROT select bits by (b1, . . . , b�1) ← PRG(k2). Then, MROT

computes Rbi
i ← PRFk1(i, bi), for i ∈ [�1]. In the semi-honest setting, MROT can

simply returns the ROT copies {Rbi
i }i∈[�1] to P2.

In the malicious setting, in addition to generate the ROT copies, MROT

needs to produce some verification messages. More specifically, after generat-
ing a ROT copy Rbi

i , MROT also generates Rbi⊕1
i ← PRFk1(i, bi ⊕ 1), and it sets

Correlated Randomness Teleportation via Semi-trusted Hardware 709

σbi⊕1
i := H(Rbi⊕1

i) as the verification message. In the end, MROT returns the
ROT messages {Rbi

i }i∈[�1] and the verification messages {σbi⊕1
i }i∈[�1] to P2.

Description of ΠROT. We depict our semi-honest/malicious setting protocol in
Fig. 4, where � is the number of ROT copies P1 and P2 want to generate. We use
[S] (or [M]) labels to indicate instructions only included in the semi-honest (or
malicious) setting protocol. Other instructions not labeled should be included in
both settings.
The Semi-honest Setting. In the semi-honest setting protocol, the party
P2 first picks a random k2 ← {0, 1}λ as its ROT seed, and it uses this seed
to generate (b1, . . . , b�) ← PRG(k2) as the ROT select bits. Then, P2 sends
(Run, sid, 〈�, k2〉) to FHW[MROT]. The party P1 also picks a random k1 ← {0, 1}λ

as its ROT seed, and it uses this seed to generate R0
i ← PRFk1(i, 0) and

R1
i ← PRFk1(i, 1), for i ∈ [�]. Subsequently, P1 sends (Run, sid, 〈�, k1〉) to

FHW[MROT], and it returns (Compute, sid, {R0
i , R

1
i }i∈[�]) to the environment

Z. After that, P2 receives the ROT copies {Rbi
i }i∈[�] from FHW[MROT].

The Malicious Setting. In the malicious setting protocol, the party P2 first
picks a random k2 ← {0, 1}λ as its ROT seed, and it uses this seed to generate
(b1, . . . , b�) ← PRG(k2) as the ROT select bits. Then, P2 sends (Run, sid, 〈�, k2〉)
to FHW[MROT]. The party P1 also picks a random k1 ← {0, 1}λ as its ROT
seed. For i ∈ [�], P1 generates R0

i ← PRFk1(i, 0) and R1
i ← PRFk1(i, 1), and

it sets σ0
i := H(R0

i) and σ1
i := H(R1

i). Subsequently, it sets a hash value of
all these hash values τ := H({σ0

i , σ1
i }i∈[�]). P1 then sends (Run, sid, 〈�, k1〉) to

FHW[MROT] and sends τ to P2, and it returns (Compute, sid, {R0
i , R

1
i }i∈[�]) to

the environment Z. After that, P2 receives the ROT copies {Rbi
i }i∈[�] and hash

values {σ̂bi⊕1
i }i∈[�] from FHW[MROT] and τ from P2. For i ∈ [�], P2 sets σ̂bi

i :=
H(Rbi

i). At last, P2 sets τ̂ := H({σ̂0
i , σ̂1

i }i∈[�]) and asserts τ̂ = τ to check these
hash values.

Security. When SGX is malicious, it may produce incorrect Rbi
i . To check the

correctness of Rbi
i at a low communication cost while preventing P1 from learn-

ing bi, we let P1 and SGX collaboratively generate verification messages. More
specifically, SGX will send hash values of R0

i and R1
i to P2 (since P2 can generate

H(Rbi
i) by itself, only H(Rbi⊕1

i) is needed). Meanwhile, P1 computes and sends
τ = H({H(Rbi

i),H(Rbi⊕1
i)}i∈[�]) to P2. This hash value τ can be used to verify

the validity of SGX’s outputs later. Due to space limitation, the full proof can
be found in the full version.

4.2 GC Teleportation with Applications to Silent 2PC

Description of MGC. We now define the Turing machine MGC for FHW that will
be used for our 2PC protocol in the semi-honest/malicious adversarial setting
(cf. Fig. 5). We use [S] (or [M]) labels to indicate instructions only included in
the machine used in the semi-honest (or malicious) setting protocol. Unlabeled
instructions are performed in both settings.

710 Y. Lu et al.

Fig. 5. Description of MGC

When P1 sends 〈k, f1〉 and P2 sends 〈f2, {x0
2,i}i∈[f2.n2]〉, MGC parses their

inputs to obtain the GC seed k, the circuit to be computed and P2’s secret-
shared input x0

2. M
GC asserts P1 and P2 send the same circuit f1 = f2, and use

f1 to generate a function f∗(x1, (x0
2, x

1
2)) = f1(x1, x

0
2 ⊕ x1

2). M
GC then generates

the garbled circuit by (F, e, d) ← Gb(1λ, f∗; k), and it parses the encoding infor-
mation e = {(X0

i ,X1
i)}i∈[f∗.n] to get the input wire labels. In the semi-honest

setting, MGC can simply returns (F, d) and the wire label of x0
2 to P2.

In the malicious setting, in addition to generate the GC copy, MGC needs to
produce some verification messages. More specifically, after parsing the encoding
information, MGC sets σ0

i := H(X0
i+f∗.n1

) and σ1
i := H(X1

i+f∗.n1
), for i ∈ [f∗.n2].

These hash values {σ0
i , σ1

i }i∈[f∗.n2] can help P2 to verify that it receives the
correct input wire labels from P1 in the subsequent execution. In the end, MGC

returns (F, d, {X
x0
2,i

i+f∗.n1
}i∈[f2.n2], {σ0

i , σ1
i }i∈[f∗.n2]) to P2.

Instantiation of MGC. In practice, MGC can be instantiated by just running an
SGX enclave on the P2 side. P1 will remotely interact with P2’s SGX enclave
via a secure channel established by remote attestation. As introduced in Sect. 2,
we adopt three GC optimizations, respectively are point-and-permute, GRR3
and free-XOR. For the point-and-permute, we set the least significant bits of the
wire labels as the select bits, and arrange the garbled table according to these
bits. For the GRR3 optimization, we set the 0-label of the output wire as the
first row of the garbled table, and XOR each row with this 0-label, then the
first row becomes an all 0 string and thus can be eliminated. And the free-XOR
optimization is implemented as described.
Description of ΠGC

2pc. We depict our semi-honest/malicious setting protocol
in Fig. 6, where f is the function that P1 and P2 want to jointly compute, as
described in Sect. 2, n1, n2 and n are the input size of P1, the input size of
P2 and the overall input size, respectively. In addition, we define a modified
function f∗(x1, (x0

2, x
1
2)) = f(x1, x

0
2 ⊕ x1

2), in which x0
2 and x1

2 are the additive
secret shares of P2’s original input x2. This idea of splitting P2’s inputs is from
the work of Mohassel et al. [16], in their setting, there are two garblers and

Correlated Randomness Teleportation via Semi-trusted Hardware 711

Fig. 6. The semi-honest/malicious setting protocol ΠGC
2pc in the FHW[MGC]-hybrid model

one evaluator, and the evaluator secret-shares its inputs and sends shares to the
garblers. We use [S] (or [M]) labels to indicate instructions only included in the
semi-honest (or malicious) setting protocol. Other instruction not labeled should
be included in both the semi-honest setting protocol and the malicious setting
protocol.

The Semi-honest Setting. In the semi-honest setting protocol, the party
P2 first secret shares its input x2,i as x2,i = x0

2,i ⊕ x1
2,i, and it sends

(Run, sid, 〈f, {x0
2,i}i∈[n2]〉) to FHW[MGC] and {x1

2,i}i∈[n2] to P1. After receiving
the secret shares of P2’s inputs {x1

2,i}i∈[n2], P1 picks a random k ← {0, 1}λ as
the seed of GC, it generates a GC with this seed by (F, e, d) ← Gb(1λ, f∗; k)
and it parses the input wire labels by e = {(X0

i ,X1
i)}i∈[n∗]. Then, P1 sends

(Run, sid, 〈k, f〉) to FHW[MGC], and it sends the input wire labels of its own

inputs {Zi = X
x1,i
i }i∈[n1] and P2’s input shares {Zi+n1+n2 = X

x1
2,i

i+n1+n2
}i∈[n2]

to P2. Subsequently, P2 receives the garbled tables F , the decoding information
d and the input wire labels of {x0

2,i}i∈[n2] from FHW[MGC], and it receives P1’s
input wire labels and the input wire labels of {x1

2,i}i∈[n2], it evaluates the garbled
circuit by Y ← GC.Ev(F, (Z1, . . . , Zn1+2n2)), and decodes the output value by
y ← GC.De(d, Y).

712 Y. Lu et al.

The Malicious Setting. In the malicious setting protocol, the party
P2 first secret shares its input x2,i as x2,i = x0

2,i ⊕ x1
2,i, and it sends

(Run, sid, 〈f, {x0
2,i}i∈[n2]〉) to FHW[MGC] and {x1

2,i}i∈[n2] to P1. After receiving the
secret shares of P2’s inputs {x1

2,i}i∈[n2], P1 picks a random k ← {0, 1}λ as the seed
of GC, it generates a GC with this seed by (F, e, d) ← Gb(1λ, f∗; k) and it parses
the input wire labels by e = {(X0

i ,X1
i)}i∈[n∗]. Then, P1 computes the hash values

of all P2’s input wire labels, σ0
i := H(X0

i+n1
) and σ1

i := H(X1
i+n1

), for i ∈ [n∗
2],

in addition, it computes another hash value of these all hash values and the gar-
bled circuit by τ = H(F, d, {σ0

i , σ1
i }i∈[n∗

2]
). After that, P1 sends (Run, sid, 〈k, f〉)

to FHW[MGC], and it sends the hash value τ , the input wire labels of its own

inputs {Zi = X
x1,i
i }i∈[n1] and P2’s input shares {Zi+n1+n2 = X

x1
2,i

i+n1+n2
}i∈[n2]

to P2. Subsequently, P2 receives the garbled tables F , the decoding information
d, the input wire labels of {x0

2,i}i∈[n2] and the hash values of all its input wire
labels {σ̂0

i , σ̂1
i }i∈[n∗

2]
from FHW[MGC], and it receives τ , P1’s input wire labels

and the input wire labels of {x1
2,i}i∈[n2]. Then, P2 checks the message sent by

FHW[MGC] with the hash value τ , and it verifies that FHW[MGC] and P1 sends
the correct input wire labels using the hash values from FHW[MGC]. At last, P2

evaluates the garbled circuit by Y ← GC.Ev(F, (Z1, . . . , Zn1+2n2)), and decodes
the output value by y ← GC.De(d, Y).

5 Security

In this section, we first examine why our schemes are secure at the high level, and
then formally state the security of our semi-honest/malicious setting protocol
ΠGC

2pc in Theorem 1/Theorem 2, respectively, where we restrict the adversary
A to only corrupt one of the following entities (i) the semi-trusted hardware
functionality, (ii) player P1 and (iii) player P2.

In our protocols, P2’s input x2 is secretly shared as x2 = x0
2 ⊕ x1

2, and P2

sends x0
2 to FHW[MGC] and x1

2 to P1. FHW[MGC] and P1 will not be corrupted
simultaneously, so the adversary can not learn P2’s input value.

In the semi-honest setting, the view of FHW[MGC] is the MPC function f , a
random input share of x2 and the seed of the garbled circuit, f is already known
to the environment Z and the adversary A; therefore, no additional information
would be leaked to the adversary A. Since FHW[MGC] could only be passively
corrupted, the correctness of the garbled circuit and the wire labels of P2’s secret
shared input are preserved. The input privacy of protocol ΠGC

2pc is guaranteed by
the simulatable privacy property of the underlying garbling scheme GC. In the
malicious setting, FHW[MGC], P1, and P2 may be maliciously corrupted. The
main design principle is as follows. In P2’s point of view, either FHW[MGC] or
P1 could be corrupted. Note that our protocol does not provide accountability,
i.e., when the protocol abort, we are not required to identify which party is
guilty. Thus, P2 can use messages generated by FHW[MGC] and messages sent
by P1 to carry out a mutual verification, and it aborts if any inconsistency is
detected. More specifically, the wire labels of P2’s secret shared input x0

2 and x1
2

Correlated Randomness Teleportation via Semi-trusted Hardware 713

are checked using hash values σ0
i := H(X0

i+n1
) and σ1

i := H(X1
i+n1

) generated
by FHW[MGC]. The correctness of the garbled circuit and the hash values are
ensured by another hash value τ = H(F, d, {σ0

i , σ1
i }i∈[n∗

2]
).

Theorem 1. If GC := (Gb,En,Ev,De) is a secure simulatable private garbling
scheme, protocol ΠGC

2pc (semi-honest setting) described in Fig. 6 securely realizes
Ff

2pc as described in Fig. 1 in the FHW[MGC]-hybrid model against any PPT semi-
honest adversaries who can corrupt one of the following entities: (i) FHW[MGC],
(ii) P1, or (iii) P2 with static corruption.

Theorem 2. If H : {0, 1}∗ �→ {0, 1}λ is a collision resistant hash function, and
GC := (Gb,En,Ev,De) is a secure simulatable private garbling scheme, protocol
ΠGC

2pc (malicious setting) described in Fig. 6 securely realizes Ff
2pc as described

in Fig. 1 in the FHW[MGC]-hybrid model against any PPT malicious adversaries
who can corrupt one of the following entities: (i) FHW[MGC], (ii) P1, or (iii) P2

with static corruption.

The proofs are provided in Appendix A.1.

6 Implementation and Benchmarks

Our protocol is implemented in C++ using Intel SGX SDK on Linux. We use
AES-NI for the PRF algorithm. We perform the experiments on an SGX-enabled
Dell OptiPlex 7080 equipped with an Intel Core 8700 CPU @ 3.20 GHz with 32.0
GB RAM, running Ubuntu 18.04 LTS. We evaluate all protocols in two simulated
network settings: (i) a LAN setting with 1 Gbps bandwidth and 0.1 ms delay
and (ii) a WAN setting with 100 Mbps bandwidth and 25 ms delay.

To test the performance of our semi-honest ROT generation protocol, we
compared our protocol with the implementation of the IKNP OT extension
protocol [8] in EMP-OT [20]. Table 1 shows the performance comparison for
generating 104 to 108 copies of ROT, where the result is the average of 10 tests.

Table 4. Details of the benchmark Bristol Fashion circuit

Circuit # wire # gate # AND gate # P1’s input # P2’s input # output

AES-128 36919 36663 6400 128 128 128

SHA-256 135841 135073 22573 256 256 256

SHA-512 351153 349617 57947 512 512 512

To test the performance of the 2PC protocols, our benchmarks use three
Bristol Fashion format circuits [1], and the details are provided in Table 4.

714 Y. Lu et al.

For the semi-honest setting protocol, we compared our protocol with EMP-
SH2PC [20] (EMP-SH2PC provides an efficient semi-honest 2PC implementa-
tion based on Yao’s GC protocol with half-gates [22] optimization); for the mali-
cious setting protocol, we compared our protocol with EMP-AG2PC [20] (EMP-
AG2PC implements an efficient maliciously secure two-party computation pro-
tocol, authenticated garbling [21]). Table 2 shows the performance comparison
for evaluating the aforementioned benchmark circuits for 1000 times using the
semi-honest setting protocols, and the results are the average of 10 tests. Table 3
shows the performance comparison for evaluating the benchmark circuits once
using the malicious version, and the results are the average of 100 tests.

7 Related Work

As mentioned above, there are several hardware models proposed in the litera-
ture, such as the remote attestation model [18] and the tamper-proof hardware
token models [9,12]. However, the existing model does not address hardware
leakage as well as malicious corruptions. Mohassel et al. [15] proposed a scheme
that enables efficient secure computation on mobile phones. Their protocol is
constructed in a Server-Aided setting, where a semi-honest (covert) server who
does not collude with protocol players is used to accelerate computation. How-
ever, their objective is to save computation, while our goal is to reduce commu-
nication. Moreover, in our model, the hardware can be maliciously corrupted.
Järvinen et al. [10] used hardware token to reduce the cost of the OT process
in standard GC protocols. In their protocol, a sender generates a garbled circuit
and it uses hardware tokens, e.g. One-Time Memory (OTM) tokens, to store
the GC encoding information, the garbled circuit and the hardware tokens are
collectively called One-Time Program (OTP), which is a non-interactive version
of GC protocol. In our work, we also remove the OT process, but to keep sen-
sitive information away from the enclave, we secret-share P2’s input and sends
the shares to P1 and SGX. A similar idea can be found in Mohassel et al. [16].
Kolesnikov [13] used hardware tokens to construct an efficient OT protocol.
This work considers the client-server setting where the server is the sender and
the client is the receiver. The server can deploy a hardware token in the client
side, and the client can obtain messages by querying the token. Our work pro-
vides a more efficient malicious setting protocol, instead of the cut-and-choose
technique.

There have been some Intel SGX-based MPC solutions. Gupta et al. [7]
proposed protocols using Intel SGX for SFE problem which is secure in the
semi-honest model, and show how to improve their protocol’s security.. The naive
solution is to let the players enter their inputs to the enclave, and they reduce
the data leakage problem by using SGX to convert plaintexts to ciphertexts (e.g.
wire labels) and vice versa, but the enclave still knows the input values. They
notice the problem that the players need to trust hardware supplier when using
Intel SGX, but don’t give a feasible solution. Felsen et al. [6] proposed an Intel
SGX-based secure function evaluation (SFE) approach in which private inputs

Correlated Randomness Teleportation via Semi-trusted Hardware 715

are sent to enclave. In their protocol, only the inputs and the outputs need to
be transferred, the communication complexity of their protocol is optimal up to
an additive constant. They evaluate the Boolean circuit representation of the
function in enclave to provide security with regards to software side-channel
attacks. Choi et al. [4] consider the possibility of SGX being compromised and
want to protect the most sensitive data in any case. They propose a hybrid
SFE-SGX protocol which consists of calculation in SGX enclave and standard
cryptographic techniques. The function to be evaluated is partitioned into several
round functions, in the odd rounds, the computation is executed in the enclave
and the player Bob (the remote party) only provide less sensitive inputs, in
the even rounds, a scheme based on garbled circuit is used and Bob provides
more sensitive data. These works focus on the efficiency of the Intel SGX-based
solutions, and the main security concern is the side-channel attack problem.
Providing private information to enclave is an inevitable step of their protocols;
therefore, private information may be leaked in our setting.

8 Conclusion

In this work, we investigate the problem where the trusted hardware manu-
facturer is not fully trusted, and the hardware components may leak sensitive
information to the remote servers. In our model, the adversary is allowed to
passively or maliciously corrupt the hardware component. We present several
correlated randomness teleportation protocols, such as ROT and GC generation
with applications to silent MPC, where the communication only depends on the
input size regardless the circuit size. The resulting protocols are significantly
faster than the EMP-IKNP-ROT, EMP-SH2PC and EMP-AG2PC.

Acknowledgments. Bingsheng Zhang is supported by the “Open Project Program of
Key Laboratory of Blockchain and Cyberspace Governance of Zhejiang Province” and
the National Natural Science Foundation of China (Grant No. 62072401). Hong-Sheng
Zhou acknowledges support by NSF grant CNS-1801470, a Google Faculty Research
Award and a research gift from Ergo Platform. This work is also supported by Alibaba
Group through Alibaba Innovative Research Program.

A Appendix

A.1 Security Proof of Our Main Theorems

Due to space limitation, we only provide the security proof for malicious setting.

Proof. To prove Theorem 2, we construct a simulator S such that no non-uniform
PPT environment Z can distinguish between (i) the real execution exec

FHW[MGC]

ΠGC
2pc,A,Z

where the parties P := {P1, P2} run protocol ΠGC
2pc in the FHW[MGC]-hybrid

model and the corrupted parties are controlled by a dummy adversary A who
simply forwards messages from/to Z, and (ii) the ideal execution execFf

2pc,S,Z

716 Y. Lu et al.

where the parties P1 and P2 interact with functionality Ff
2pc in the ideal world,

and corrupted parties are controlled by the simulator S. We consider following
cases.

Case 1: FHW[MGC] is corrupted; P1 and P2 are honest.

Simulator. The simulator S internally runs A, forwarding messages to/from the
environment Z. S simulates the interface of FHW[MGC] as well as honest parties
P1 and P2. In addition, the simulator S simulates the following interactions with
A.

– Upon receiving (ComputeNotify, sid, |x2|, P2) for an honest party P2 from
the external Ff

2pc, the simulator S picks random x0
2,i ← {0, 1}, for i ∈ [n2],

and it sends (Run, sid, 〈f, {x0
2,i}i∈[n2]〉) to FHW[MGC] on behave of P2.

– Upon receiving (ComputeNotify, sid, |x1|, P1) for an honest party P1 from
the external Ff

2pc, the simulator S picks random k ← {0, 1}λ, and it sends
(Run, sid, 〈k, f〉) to FHW[MGC] on behave of P1. S then generate (F, e, d) ←
Gb(1λ, f∗; k) and parse e = {(X0

i ,X1
i)}i∈[n∗]. Subsequently, for i ∈ [n∗

2], S sets
σ0

i := H(X0
i+n1

) and σ1
i := H(X1

i+n1
), and it sets τ = H(F, d, {σ0

i , σ1
i }i∈[n∗

2]
).

S then sends τ to the simulated party P2 on behave of P1.
– Upon receiving (Run, sid, Qi) from the party Pi ∈ P via the interface of

FHW[MGC], S acts as FHW[MGC] to send (RunNotify, sid, Qi, Pi) to A. S
then simulates the FHW[MGC] functionality as defined.

– When the simulated party P2 receives (F̂ , d̂, {X
x0
2,i

i+n1
}i∈[n2], {σ̂0

i , σ̂1
i }i∈[n∗

2]
)

from FHW[MGC] and receives τ from the simulated P1, P2 computes τ̂ =
H(F̂ , d̂, {σ̂0

0,i, σ̂
1
0,i}i∈[n∗

2]
) and asserts τ̂ = τ . Thereafter, S fetches the internal

GC label information (F, e, d) from the simulated P1. For i ∈ [n2], S acts as

P2 to assert Zi+n1 = X
x0
2,i

i+n1
.

– Upon receiving (Output, sid, P2) from the external Ff
2pc, the simulator S

returns (Deliver, sid, P2) if and only if all the checks are valid.

Indistinguishability. Assume the communication between P1 and P2 is via
the secure channel functionality FSC, the views of A and Z in exec

FHW[MGC]

ΠGC
2pc,A,Z

and execFf
2pc,S,Z are identical except the scenario where the real-world output

y is different from the ideal-world output y′. This happens when the malicious
FHW[MGC] provides inconsistent information, yet she manages to pass all the
hash validations. It means that the adversary provides at least one different
hash preimage that would hashes to the same value as the original preimage.
Therefore, the simulator and the adversary can jointly outputs two messages
m1
= m2 such that H(m1) = H(m2). Assume H is a collision resistant crypto-
graphic hash function, the views of A and Z in exec

FHW[MGC]

ΠGC
2pc,A,Z and execFf

2pc,S,Z
are indistinguishable.

Case 2: P1 is corrupted; P2 and FHW[MGC] are honest.

Correlated Randomness Teleportation via Semi-trusted Hardware 717

Simulator. The simulator S internally runs A, forwarding messages to/from
the environment Z. S simulates the interface of FHW[MGC] as well as honest P2.
In addition, the simulator S simulates the following interactions with A.

– Upon receiving (ComputeNotify, sid, |x2|, P2) from the external Ff
2pc, the

simulator S picks random x0
2,i ← {0, 1}, for i ∈ [n2], and it sends

(Run, sid, 〈f, {x0
2,i}i∈[n2]〉) to FHW[MGC] on behave of P2. For i ∈ [n2] S sends

random x̂1
2,i ← {0, 1} to P1 on behave of P2.

– Upon receiving (Run, sid, 〈k, f〉) from P1 and (Run, sid, 〈f, {x0
2,i}i∈[n2]〉) from

P2, S acts as FHW[MGC] to set f∗(x1, (x0
2, x

1
2)) = f1(x1, x

0
2 ⊕ x1

2) and gen-
erate the garbled circuit by (F, e, d) ← Gb(1λ, f∗; k). S then parse e =

{(X0
i ,X1

i)}i∈[n1+2n2] and sends (F, d, {X
x0
2,i

i+n1
}i∈[n2], {σ0

i , σ1
i }i∈[n∗

2]
) to the sim-

ulated party P2 on behave of FHW[MGC].
– When the simulated party P2 receives {Zi}i∈[n1], {Zi+n1+n2}i∈[n2] and τ from

P1, S acts as P2 to compute τ̂ = H(F, d, {σ0
i , σ1

i }i∈[n∗
2]

) and assert τ̂ = τ .
Thereafter, S fetches the internal GC label information (F, e, d) from the sim-

ulated FHW[MGC]. For i ∈ [n2], S acts as P2 to assert Zi+n1+n2 = X
x1
2,i

i+n1+n2
.

In addition, S uses the internal GC label information (F, e, d) and {Zi}i∈[n1]

to extract P1’s input x∗
1, and it sends (Compute, sid, x∗

1) to the external Ff
2pc

on behave of P1.
– Upon receiving (Output, sid, P2) from the external Ff

2pc, the simulator S
returns (Deliver, sid, P2) if and only if all the checks are valid and A allows
P2 to finish the protocol execution and obtains y.

Indistinguishability. The indistinguishability is proven through a series of
hybrid worlds H0, . . . ,H2.
Hybrid H0: It is the real protocol execution exec

FHW[MGC]

ΠGC
2pc,A,Z .

Hybrid H1: H1 is the same as H0 except that in H1, P2 sends random
{x̂1

2,i}i∈[n2] to P1, instead of {x1
2,i := x0

2,i ⊕ x2,i}i∈[n2].

Claim. H1 and H0 are perfectly indistinguishable.

Proof. Since {x0
2,i}i∈[n2] are random bits picked by P2, the distribution of

{x̂1
2,i}i∈[n2] and {x1

2,i}i∈[n2] are identical. Therefore, H1 and H0 are perfectly
indistinguishable.

Hybrid H2: H2 is the same as H1 except that in H2, P2 fetches the internal
GC label information (F, e, d) from the simulated FHW[MGC], and it checks if

Zi+n1+n2 = X
x1
2,i

i+n1+n2
; otherwise, S aborts.

Claim. If H is a collision resistant cryptographic hash function, H2 and H1 are
indistinguishable.

718 Y. Lu et al.

Proof. The difference between H1 and H2 is that in H1, P2 only checks

H(Zi+n1+n2); whereas, in H2, P2 directly checks if Zi+n1+n2 = X
x1
2,i

i+n1+n2
. It

is easy to see when H is a collision resistant cryptographic hash function, H2

and H1 are indistinguishable.

The adversary’s view of H2 is identical to the simulated view execFf
2pc,S,Z .

Therefore, it is perfectly indistinguishable.

Case 3: P2 is corrupted; P1 and FHW[MGC] are honest.

Simulator. The simulator S internally runs A, forwarding messages to/from
the environment Z. S simulates the interface of FHW[MGC] as well as honest P1.
In addition, the simulator S simulates the following interactions with A.

– Upon receiving (ComputeNotify, sid, |x1|, P1) from the external Ff
2pc and

receiving {x1
2,i}i∈[n2] from P2, the simulator S picks random k ← {0, 1}λ, and

it sends (Run, sid, 〈k, f〉) to FHW[MGC] on behave of P1.
– Upon receiving (Run, sid, 〈k, f〉) from P1 and (Run, sid, 〈f, {x0

2,i}i∈[n2]〉) from
P2, S computes P2’s input x∗

2,i := x0
2,i ⊕ x1

2,i, for i ∈ [n2]. After that, it sends
(Compute, sid, x∗

2) to the external Ff
2pc on behave of P2.

– Upon receiving (Compute, sid, y) from the external Ff
2pc for P2, the simulator

S sets f∗(x1, (x0
2, x

1
2)) = f1(x1, x

0
2⊕x1

2) and uses the GC simulator to generate
(F ′,X ′, d′) ← Sim(1λ, y, Φ(f∗)). S then uses X ′ as the wire labels to generate
{Zi}i∈[n1+2n2] as Zi := X ′

i. S picks 2n2 random numbers Ẑi ← {0, 1}λ. For

i ∈ [n2], S sets σ
x0
2,i

i := H(Zi+n1), σ
x0
2,i⊕1

i := H(Ẑi), σ
x1
2,i

i+n2
:= H(Zi+n1+n2

and σ
x1
2,i⊕1

i+n2
:= H(Ẑi+n2). Subsequently, S sets τ = H(F ′, d′, {σ0

i , σ1
i }i∈[n∗

2]
).

At last, S sends {Zi+n1}i∈[n2] as the wire label of x0
2, (F ′, d′) as the GC tables

and decode information and {σ0
i , σ1

i }i∈[n∗
2]

as the hash values of P2’s wire
labels to P2 on behave of FHW[MGC], and it sends {Zi}i∈[n1], {Zi+n1+n2}i∈[n2]

and τ to P2 on behave of P1.

Indistinguishability. The indistinguishability is proven through a series of
hybrid worlds H0, . . . ,H2.
Hybrid H0: It is the real protocol execution exec

FHW[MGC]

ΠGC
2pc,A,Z .

Hybrid H1: H1 is the same as H0 except that H1 generates different hash values

by σ
x0
2,i⊕1

i := H(Ẑi) and σ
x1
2,i⊕1

i+n2
:= H(Ẑi+n2), for i ∈ [n2], where {Ẑi}i∈[2n2] are

random values.

Claim. If H is a collision resistant cryptographic hash function, H1 and H0 are
indistinguishable.

Proof. The difference between H0 and H1 is that in H0, σ
x0
2,i⊕1

i := H(X
x0
2,i⊕1

i+n1
)

and σ
x1
2,i⊕1

i+n2
:= H(X

x1
2,i⊕1

i+n1+n2
); whereas, in H1, σ

x0
2,i⊕1

i := H(Ẑi) and σ
x1
2,i⊕1

i+n2
:=

H(Ẑi+n2). It is easy to see when H is a collision resistant cryptographic hash
function, H1 and H0 are indistinguishable.

Correlated Randomness Teleportation via Semi-trusted Hardware 719

Hybrid H2: H2 is the same as H1 except that H2 generates (F ′,X ′, d′) ←
Sim(1λ, y, Φ(f∗)), and then it uses X ′ as the wire labels to generate
{Zi}i∈[n1+2n2]. FHW[MGC] also sends (F ′, d′) as the GC tables and decoding
information to P2.

Claim. If GC is simulatable private with adversarial distinguishing advantage
Advprv.sim,Φ,Sim

GC (A, λ), then H1 and H0 are indistinguishable with distinguishing
advantage Advprv.sim,Φ,Sim

GC (A, λ).

Proof. By the requirement of simulatable privacy in Definition 2, (F ′,X ′, d′) ←
Sim(1λ, y, Φ(f∗)) should be indistinguishable from the real one except for the
adversarial distinguishing advantage Advprv.sim,Φ,Sim

GC (A, λ).

The adversary’s view of H2 is identical to the simulated view execFf
2pc,S,Z .

Therefore, if GC is simulatable private, the views of A and Z in exec
FHW[MGC]

ΠGC
2pc,A,Z

and execFf
2pc,S,Z are indistinguishable with distinguishing advantage

Advprv.sim,Φ,Sim
GC (A, λ) = negl(λ) .

References

1. Archer, D., et al.: ‘Bristol Fashion’ MPC Circuits (2020). https://homes.esat.
kuleuven.be/∼nsmart/MPC/. Accessed 5 Jan 2021

2. Beaver, D., Micali, S., Rogaway, P.: The round complexity of secure protocols.
In: Proceedings of the Twenty-Second Annual ACM Symposium on Theory of
Computing, pp. 503–513 (1990)

3. Bellare, M., Hoang, V.T., Rogaway, P.: Foundations of garbled circuits. In: Pro-
ceedings of the 2012 ACM Conference on Computer and Communications Security,
pp. 784–796 (2012)

4. Choi, J.I., et al.: A hybrid approach to secure function evaluation using SGX. In:
Proceedings of the 2019 ACM Asia Conference on Computer and Communications
Security, pp. 100–113 (2019)

5. Dan, G., Jim, S.: More than 20 GB of Intel source code and proprietary data
dumped online. [EB/OL]. https://arstechnica.com/information-technology/2020/
08/intel-is-investigating-the-leak-of-20gb-of-its-source-code-and-private-data/.
Accessed 30 Aug 2020

6. Felsen, S., Kiss, Á., Schneider, T., Weinert, C.: Secure and private function eval-
uation with Intel SGX. In: Proceedings of the 2019 ACM SIGSAC Conference on
Cloud Computing Security Workshop, pp. 165–181 (2019)

7. Gupta, D., Mood, B., Feigenbaum, J., Butler, K., Traynor, P.: Using Intel software
guard extensions for efficient two-party secure function evaluation. In: Clark, J.,
Meiklejohn, S., Ryan, P.Y.A., Wallach, D., Brenner, M., Rohloff, K. (eds.) FC
2016. LNCS, vol. 9604, pp. 302–318. Springer, Heidelberg (2016). https://doi.org/
10.1007/978-3-662-53357-4 20

8. Ishai, Y., Kilian, J., Nissim, K., Petrank, E.: Extending oblivious transfers effi-
ciently. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 145–161. Springer,
Heidelberg (2003). https://doi.org/10.1007/978-3-540-45146-4 9

https://homes.esat.kuleuven.be/~nsmart/MPC/
https://homes.esat.kuleuven.be/~nsmart/MPC/
https://arstechnica.com/information-technology/2020/08/intel-is-investigating-the-leak-of-20gb-of-its-source-code-and-private-data/
https://arstechnica.com/information-technology/2020/08/intel-is-investigating-the-leak-of-20gb-of-its-source-code-and-private-data/
https://doi.org/10.1007/978-3-662-53357-4_20
https://doi.org/10.1007/978-3-662-53357-4_20
https://doi.org/10.1007/978-3-540-45146-4_9

720 Y. Lu et al.

9. Järvinen, K., Kolesnikov, V., Sadeghi, A.-R., Schneider, T.: Embedded SFE:
offloading server and network using hardware tokens. In: Sion, R. (ed.) FC 2010.
LNCS, vol. 6052, pp. 207–221. Springer, Heidelberg (2010). https://doi.org/10.
1007/978-3-642-14577-3 17

10. Järvinen, K., Kolesnikov, V., Sadeghi, A.-R., Schneider, T.: Garbled circuits for
leakage-resilience: hardware implementation and evaluation of one-time programs.
In: Mangard, S., Standaert, F.-X. (eds.) CHES 2010. LNCS, vol. 6225, pp. 383–397.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15031-9 26

11. Johnson, S., Scarlata, V., Rozas, C., Brickell, E., Mckeen, F.: Intel R© software guard
extensions: EPID provisioning and attestation services. White Paper 1(1–10), 119
(2016)

12. Katz, J.: Universally composable multi-party computation using tamper-proof
hardware. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 115–128.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-72540-4 7

13. Kolesnikov, V.: Truly efficient string oblivious transfer using resettable tamper-
proof tokens. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978, pp. 327–342.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-11799-2 20

14. Kolesnikov, V., Schneider, T.: Improved garbled circuit: free XOR gates and
applications. In: Aceto, L., Damg̊ard, I., Goldberg, L.A., Halldórsson, M.M.,
Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008. LNCS, vol. 5126, pp. 486–498.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-70583-3 40

15. Mohassel, P., Orobets, O., Riva, B.: Efficient server-aided 2PC for mobile phones.
Proc. Privacy Enhanc. Technol. 2016(2), 82–99 (2016)

16. Mohassel, P., Rosulek, M., Zhang, Y.: Fast and secure three-party computation: the
garbled circuit approach. In: Proceedings of the 22nd ACM SIGSAC Conference
on Computer and Communications Security, pp. 591–602 (2015)

17. Naor, M., Pinkas, B., Sumner, R.: Privacy preserving auctions and mechanism
design. In: Proceedings of the 1st ACM Conference on Electronic Commerce, pp.
129–139 (1999)

18. Pass, R., Shi, E., Tramèr, F.: Formal abstractions for attested execution secure
processors. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS, vol.
10210, pp. 260–289. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
56620-7 10

19. Pinkas, B., Schneider, T., Smart, N.P., Williams, S.C.: Secure two-party compu-
tation is practical. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp.
250–267. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-10366-
7 15

20. Wang, X., Malozemoff, A.J., Katz, J.: EMP-toolkit: efficient MultiParty computa-
tion toolkit (2016). https://github.com/emp-toolkit/. Accessed 5 Jan 2021

21. Wang, X., Ranellucci, S., Katz, J.: Authenticated garbling and efficient maliciously
secure two-party computation. In: Proceedings of the 2017 ACM SIGSAC Confer-
ence on Computer and Communications Security, pp. 21–37 (2017)

22. Zahur, S., Rosulek, M., Evans, D.: Two halves make a whole. In: Oswald, E.,
Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 220–250. Springer,
Heidelberg (2015). https://doi.org/10.1007/978-3-662-46803-6 8

https://doi.org/10.1007/978-3-642-14577-3_17
https://doi.org/10.1007/978-3-642-14577-3_17
https://doi.org/10.1007/978-3-642-15031-9_26
https://doi.org/10.1007/978-3-540-72540-4_7
https://doi.org/10.1007/978-3-642-11799-2_20
https://doi.org/10.1007/978-3-540-70583-3_40
https://doi.org/10.1007/978-3-319-56620-7_10
https://doi.org/10.1007/978-3-319-56620-7_10
https://doi.org/10.1007/978-3-642-10366-7_15
https://doi.org/10.1007/978-3-642-10366-7_15
https://github.com/emp-toolkit/
https://doi.org/10.1007/978-3-662-46803-6_8

Polynomial Representation Is Tricky:
Maliciously Secure Private Set

Intersection Revisited

Aydin Abadi1(B), Steven J. Murdoch1, and Thomas Zacharias2

1 University College London, London, England
aydin.abadi@ucl.ac.uk, s.murdoch@ucl.ac.uk
2 University of Edinburgh, Edinburgh, Scotland

thomas.zacharias@ed.ac.uk

Abstract. Private Set Intersection protocols (PSIs) allow parties to
compute the intersection of their private sets, such that nothing about
the sets’ elements beyond the intersection is revealed. PSIs have a vari-
ety of applications, primarily in efficiently supporting data sharing in a
privacy-preserving manner. At Eurocrypt 2019, Ghosh and Nilges pro-
posed three efficient PSIs based on the polynomial representation of sets
and proved their security against active adversaries. In this work, we
show that these three PSIs are susceptible to several serious attacks. The
attacks let an adversary (1) learn the correct intersection while making
its victim believe that the intersection is empty, (2) learn a certain ele-
ment of its victim’s set beyond the intersection, and (3) delete multiple
elements of its victim’s input set. We explain why the proofs did not
identify these attacks and propose a set of mitigations.

1 Introduction

A Private Set Intersection protocol (PSI) lets mutually distrustful parties com-
pute the intersection of their private sets such that nothing, about the sets’
elements, beyond the result is revealed. PSIs have been studied extensively due
to their numerous real-world applications to reduce online harm by preserving
the Internet users’ privacy, to some extent. For instance, they have been used in
(a) contact tracing schemes that prevent the further spread of COVID-19 [16],
(b) certain Google technologies that find target audiences for marketing cam-
paigns [24] or check compromised credentials [35], (c) online gaming [10], and
(d) remote diagnostics [9].

At Eurocrypt 2019, Ghosh and Nilges [20] proposed three PSIs (i.e., two-
party, multi-party, and threshold multi-party) that are designed to remain secure
against active adversaries. These protocols are efficient as they are primarily
based on symmetric-key primitives and polynomial representation of sets, and
avoid using zero-knowledge proofs usually utilised in the protocols that consider
active adversaries. The three PSIs have been defined and proven secure in the

c© Springer Nature Switzerland AG 2021
E. Bertino et al. (Eds.): ESORICS 2021, LNCS 12973, pp. 721–742, 2021.
https://doi.org/10.1007/978-3-030-88428-4_35

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-88428-4_35&domain=pdf
https://doi.org/10.1007/978-3-030-88428-4_35

722 A. Abadi et al.

well-known Universal Composability (UC) paradigm [12]. To date, their multi-
party protocol is the most efficient multi-party PSI designed to remain secure in
the presence of active adversaries.

Our Contributions. We identify three attacks that can be mounted on all the
three “maliciously secure” PSIs in [20]. In particular, we show an adversary can
successfully carry out the following attacks:

1. Attack 1: learning the result, i.e., sets’ intersection, while making its honest
counter-party believe that there is no element in the intersection.

2. Attack 2: learning a certain element (not necessarily in its set) of the honest
party’s set beyond the sets’ intersection.

3. Attack 3: deleting multiple elements of its counter-party’s input set.

Our attacks’ analysis indicates that Attack 1 always succeeds (except with
a negligible probability), also Attacks 2 and 3 succeed with a non-negligible
probability (when the sets’ universe size is polynomial or constant in the security
parameter). We show that these attacks are feasible in terms of cost to the
attacker. We identify several flaws in the protocols’ design and proofs that led
to the attacks remaining undetected. Accordingly, we propose a set of candidate
mitigations. At a high level, most of the issues we identify are the result of a
single case: inappropriate use of polynomial representation. This representation
has been widely used in various cryptographic schemes beyond PSIs, such as
in secret sharing [34], error-correcting codes [33], e-voting [27], or secure multi-
party computation [25]. Nevertheless, our findings provide evidence that special
care should be taken when polynomial representation is utilised in protocols
that should remain secure against active adversaries. We hope our work will
be used as a reference point by future researchers who need to integrate this
representation into their protocols, to avoid (at least) the issues we highlight.

2 Related Work

PSIs were first introduced by Freedman et al. [17] that were mainly based on
Paillier homomorphic encryption and polynomial representation of sets. Since
then, numerous PSIs have been proposed. They can be broadly divided into
traditional and delegated categories.

In traditional PSIs, e.g., protocols in [7,13,14,17,20–23,29,30,37], data own-
ers interactively compute the result using their local data. Currently, the protocol
of Kolesnikov et al. in [29] is the fastest two-party PSI, which is secure against a
semi-honest (or passive) adversary. It relies on an oblivious pseudorandom func-
tion and Cuckoo hashing. Recently, Pinkas et al. in [31] proposed an efficient PSI
that is secure against a stronger (i.e., malicious/active) adversary. It is based on
Cuckoo hashing, oblivious transfer, and a new data structure called probe-and-
XOR of strings. Moreover, there have been efforts to improve the communication
cost in PSIs, through fully homomorphic encryption and batching techniques [14]
and additive homomorphic encryption, oblivious linear function evaluation, and

Polynomial Representation Is Tricky 723

polynomial representation [21]. Very recently, a new PSI has been proposed that
achieves a better balance between communication and computation costs [13].
It relies on oblivious transfer, hashing, and symmetric-key primitives. Since the
above schemes support only two parties, researchers proposed multi-party PSIs
to let more than two parties efficiently compute the intersection. The multi-party
PSIs in [22,23,30] have been designed to be secure against passive adversaries.
To date, the protocol in [30] is the most efficient multi-party PSI secure against
passive adversaries. Also, the multi-party PSIs in [7,20,37] have been designed
to remain secure against active adversaries. There are two PSIs proposed in
[37]. As their authors admit, one of them leaks (non-trivial) information and
another one requires the involvement of two non-colluding servers, which is a
strong assumption. Also, the PSI of Efraim et al. in [7] offers a weaker security
guarantee and has a higher communication cost than the multi-party PSI in [20]
does (as the authors admit). To date, the multi-party protocol in [20] is the most
efficient multi-party PSI designed to be secure against active adversaries.

In delegated PSIs, e.g., in [1,3–5,26,36,38], an additional third party is
involved to perform a part of the intersection computation and/or to store par-
ties’ encrypted sets. They can be divided into schemes that support (a) one-off
delegation, e.g., in [26,38], that requires parties to re-encode their data locally
for each computation and (b) repeated delegation, e.g., in [1,3–5,36], that lets
parties reuse their outsourced data without locally re-encoding it for each com-
putation.

3 Background

In this section, we present the definitions and techniques used in the PSIs pro-
posed by Ghosh and Nilges [20]. This work proposes three PSIs: (a) two-party,
(b) multi-party, and (c) threshold multi-party. These PSIs use (a) polynomials to
represent set elements, which lets parties compute the intersection in a privacy-
preserving way, and (b) Oblivious Polynomial Addition (OPA) to let parties
randomise each other’s input polynomials. The OPA itself uses two primitives;
namely, Oblivious Linear Function Evaluation (OLE) and enhanced OLE.

For the sake of simplicity, we will focus on and analyse the two-party PSI.
In the following sections, we describe three attacks that can be mounted on it.
The other two PSIs are susceptible to similar attacks. We use κ as the security
parameter. As in the original work, we consider finite fields F that are exponential
in the size of the security parameter, κ. A function is negligible (in κ) if it is
asymptotically smaller than any inverse polynomial function. By [n] we denote
the set {1, . . . , n}. The size of a set S is denoted by |S| and set elements’ universe
is denoted by U . We say the universe size, |U|, is: (a) large, if |U| is exponential
in κ, (b) medium, if |U| is polynomial in κ, and (c) small, if |U| is constant in κ.

3.1 Representing Sets by Polynomials

The idea of using a polynomial to represent a set’s elements was proposed by
Freedman et al. in [17]. Since then, the idea has been widely used, e.g., in [1,3–

724 A. Abadi et al.

5,21,28]. In this representation, set elements S = {s1, ..., sd} are defined over

F and set S is represented as a polynomial of form: p(x) =
d∏

i=1

(x − si), where

p(x) ∈ F[X] and F[X] is a polynomial ring. Often a polynomial, p(x), of degree
d is represented in the “coefficient form” as follows: p(x) = a0+a1 ·x+...+ad ·xd.

The form
d∏

i=1

(x−si) is a special case of the coefficient form. As shown in [8,28], for

two sets S(A) and S(B) represented by polynomials pA and pB respectively, their
product, which is polynomial pA·pB, represents the set union, while their greatest
common divisor, gcd(pA,pB), represents the set intersection. For two degree-d
polynomials pA and pB, and two degree-d random polynomials γA and γB whose
coefficients are picked uniformly at random from the field, it is proven in [8,28]
that: θ = γA · pA + γB · pB = μ · gcd(pA,pB), where μ is a uniformly random
polynomial, and polynomial θ contains only information about the elements in
S(A) ∩ S(B), and contains no information about other elements in S(A) or S(B).

Polynomials can also be represented in the “point-value form”. In particular,
a polynomial p(x) of degree d can be represented as a set of m (m > d) point-
value pairs {(x1, y1), ..., (xm, ym)} such that all xi are distinct non-zero points
and yi = p(xi) for all i, 1 ≤ i ≤ m. If xi are fixed, then we can represent
polynomials as a vector #»y = [y1, ..., ym]. Polynomials in point-value form have
been used previously in PSIs [1,3–5,21,30]. A polynomial in this form can be
converted into coefficient form via polynomial interpolation, e.g., using Lagrange
interpolation [6]. Moreover, one can add or multiply two polynomials, in point-
value form, by adding or multiplying their corresponding y-coordinates. In this
case, the polynomial interpolated from the result would be the two polynomials’
addition or product. Often PSIs that use this representation assume that all xi

are picked from F \ U .

3.2 Oblivious Linear Function Evaluation

Oblivious Linear function Evaluation (OLE) is a two-party protocol that involves
a sender and receiver. In OLE, the sender has two inputs a, b ∈ F and the receiver
has input c ∈ F, and the protocol allows the receiver to learn only s = a·c+b ∈ F,
while the sender learns nothing. The PSIs in [20] that we analyse in this paper,
sometimes invoke the OPA primitive, explained in the following section, which
itself makes a black-box call to the OLE in [18]. Since the OLE has been proven
secure in the UC framework, other caller protocols can make calls to OLE’s ideal
functionality, denoted by FOLE. The OPA also uses an enhanced version of the
above OLE. The enhanced OLE and its ideal functionality are denoted by OLE+

and FOLE+ , respectively. OLE+ ensures that the receiver cannot learn anything
about the sender’s inputs, even if it sets its input to 0. We refers readers to the
paper’s full version [2], for FOLE, FOLE+ , and OLE+.

3.3 Oblivious Polynomial Addition

Ghosh and Nilges [20] propose Oblivious Polynomial Addition (OPA) which can
be seen as a variant of OLE, where parties’ inputs are polynomials (instead

Polynomial Representation Is Tricky 725

of the field’s elements). In particular, in this scheme two parties are involved,
sender and receiver. The sender has two polynomials r and u and the receiver
has a single polynomial, p. The scheme allows the two parties to compute a
linear combination of their inputs, i.e., s = p · r + u, and lets the receiver
learn the result, s. The security of OPA requires that (a) nothing about the
sender’s input polynomials is leaked to the receiver (even if the receiver inserts
a 0 polynomial), (b) nothing about the receiver’s input polynomial and result is
leaked to the sender, and (c) a malicious party who acts arbitrarily is detected
by its counter-party, with a high probability. The OPA is presented in Fig. 1.

Fig. 1. Oblivious Polynomial Addition (OPA) protocol [20]

3.4 Two-Party PSI

In this section, we describe the two-party PSI of Ghosh and Nilges [20] that
has been designed to be secure against an active adversary. The protocol mainly
utilises polynomial representation of sets and OPA. At a high level, in this pro-
tocol, each party generates a polynomial that represents its set. After that, each
party randomises its counter-party’s polynomial. To do so, a party (as a sender)
picks two random polynomials and inserts them into the OPA. The other party
(as a receiver) inserts into the OPA its polynomial that represents its set; in
return, it receives its polynomial in a randomised form. The parties switch their
role and run the OPA again. Next, they exchange messages that allow them to

726 A. Abadi et al.

find the result (intersection) polynomial whose roots contain the sets’ intersec-
tion. Each party evaluates the result polynomial at every element of its set and
considers the element in the intersection, if the evaluation’s result is zero.

To check the result’s correctness, the parties participate in an efficient “out-
put verification” phase. In this phase, parties A and B pick random values z and q
respectively. Then, a party evaluates its polynomials at its random element (say
z) which yields a small set of values. It sends the result to its counter-party,
which (a) combines the messages that the other party sent, (b) evaluates the
result polynomial at z, (c) checks if the values generated in the previous two
steps are equal, and (d) accepts the result if they are equal. The two-party PSI
is presented in Fig. 2. There is a minor difference between the two-party PSI
presented in [20] and Fig. 2. Namely, in Fig. 2 we replaced the OPA’s ideal func-
tionality FOPA with the actual protocol, OPA. This change (that does not affect
the protocol at all) helps clarify the explanation of our attacks.

Fig. 2. Two-party PSI in [20]

4 Attack 1: Making Honest Party Learn Incorrect Result

In this section, we describe an attack scenario in which an adversary crafts
certain messages in the PSI, that ultimately would allow that party to learn

Polynomial Representation Is Tricky 727

the actual result, i.e., the intersection, while (a) making its honest counter-
party believe that there is no element in the intersection, and (b) not having
misbehaviour detected. Thus, this attack allows the adversary to affect the PSI’s
correctness. The issue stems from a flaw in the protocol that lets a party include
in the result a polynomial which is not re-randomized by its counter-party.

4.1 Attack Description

Without loss of generality, we let party B be malicious. Our focus will be on the
two-party PSI, presented in Fig. 2. Both parties honestly perform steps 1a–1d.
However, B in step 1e, as part of computing polynomial p∩, instead of summing
s′
A with the product pB · r′

B, it sums s′
A with another random polynomial r′′

B of
degree 2m and then honestly adds the rest of the polynomials. So, now p∩ is:

p̃∩ = s′
A + sB + r′′

B − uB

= pA · r′
A + pA · rB + pB · rA + r′′

B

(1)

Party B sends p̃∩ to A, in step 1e. In the “output verification” phase, both parties
honestly take step 2a, to generate z and q. In step 2b, B honestly computes
αB = pB(z), βB = rB(z), but it sets δB = r′′

B(z) · (αB)−1, instead of setting
δB = r′

B(z). It sends αB, βB, and δB to A which in step 2c:

1. evaluates the result polynomial, p̃∩, at z that yields:

p̃∩(z) = pA(z) · r′
A(z) + pA(z) · rB(z) + pB(z) · rA(z) + r′′

B(z)

2. generates value ζ as below (given messages αB, βB, and δB, sent by party B):

ζ = pA(z) · (βB + r′
A(z)) + αB · (rA(z) + δB)

= pA(z) · (rB(z) + r′
A(z)) + pB(z) · (rA(z) + r′′

B(z) · (αB)−1)
= pA(z) · rB(z) + pA(z) · r′

A(z) + pB(z) · rA(z) + r′′
B(z)

3. checks if p̃∩(z) equals ζ, i.e., p̃∩(z) ?= ζ. If passed, then it accepts the result.

4.2 Attack Analysis

By using the above approach, malicious party B can pass the verification in
the PSI and convince A to accept the manipulated result. Malicious party B
can generate the correct result (i.e., sets’ intersection) for itself, by honestly
computing p∩ in step 1e and following the protocol in step 1f. However, given
manipulated result p̃∩, presented in Eq. (1), honest party A cannot learn the
actual sets’ intersection, for the following reason. Let us rewrite the manipulated
result as p̃∩ = γ+r′′

B, where γ = pA ·r′
A+pA ·rB+pB ·rA. Note that polynomial γ

encodes the actual result, as its roots contain the intersection of the sets. But, r′′
B

is a random polynomial of degree 2m, so the probability that its roots contain all
elements in the intersection is negligible in κ. In particular, the said probability is

728 A. Abadi et al.

1
|F|h , where h is the intersection cardinality (for a formal analysis, we refer readers
to our paper’s full version [2]). This means that the set of roots of polynomial
p̃∩ = γ + r′′

B does not contain all common roots of both polynomials γ and r′
B,

except with a negligible probability. Thus, the manipulated polynomial, p̃∩, does
not represent the intersection of the sets. Accordingly, party A, which does not
know r′

B, cannot learn the correct result and the malicious party can succeed
with a high probability, Pr1 = 1 − 1

|F|h . Attack 1 is efficient, as it requires the
adversary to perform only 2m + 1 extra modular additions and multiplications
in total. We also examined the protocol’s security proof. The inspection shows
that the lack of analysis of the case where δB �= r′

B(z) in the proof, led to Attack
1. We refer readers to Appendix A.1 for a detailed analysis of the proof’s flaw.

Extension to Multi-party Protocol. The security issue, identified in this
section, is inherited by the multi-party PSI, presented in Fig. 10 in [20], because
it uses the same verification mechanism. Specifically, in the multi-party PSI, a
malicious party (except the central party, P0) in step 3 of phase 3, replaces pi ·r′

i

with r′
i. To pass the verification, in step 2 of phase 5, it sets δi = r′

i(x
∗) · (αi)−1,

instead of setting δi = r′
i(x

∗), where x∗ is a random value generated in step
1 of phase 5. For central party P0 to mount a similar attack, it follows the
instructions provided above for malicious party B. Since the threshold multi-
party PSI makes a black-box call to the multi-party PSI, a similar attack we
described in this section (and later sections) can be mounted to the threshold
scheme too.

4.3 Candidate Mitigation

A closer look at the above attack reveals that the main source of the issue is the
use of the polynomials’ product pI · r′

I , in steps 1d and 1e, where the product
is not re-randomized by the other party, and is a part of the result polynomial.
Fortunately, the above issue can be efficiently addressed, for the two-party PSI, if
the protocol is slightly adjusted. Nonetheless, addressing the issue for the multi-
party PSI would require each party to interact with all other parties and so would
add significant costs. The remedy for the two-party PSI relies on the idea that
(1) each party randomizes its input polynomial, (2) each party re-randomizes its
counter-party’s input polynomial, and (3) the result polynomial consists of the
sum of only the re-randomized input polynomials.

Next, we present the modified two-party PSI. We first describe the “PSI
computation” phase. In step (a) party I ∈ {A,B}: represents its set elements

s(I)
j ∈ S(I) as a degree-m polynomial: pI = ωI(x) ·

ö∏

j=1

(x − s(I)
j), where ωI(x) is a

random polynomial and ö = |S(I)|. Each party I picks three random polynomials:
rI ,uI and r′

I , where the degree of uI is 3m and the degree of rI and r′
I is m. It also

computes p̄I = pI · r′
I . In step (b) the parties invoke OPA where party A inserts

rA,uA and party B inserts p̄B to OPA, which outputs sB = p̄B · rA + uA to B.
In step (c) the parties invoke OPA again, this time A inserts p̄A while B inserts

Polynomial Representation Is Tricky 729

rB,uB to OPA that outputs sA = p̄A·rB+uB to A. In step (d) party A sends s′
A =

sA−uA to B. In step (e) party B computes: p∩ = s′
A+sB −uB = p̄A ·rB +p̄B ·rA.

It sends p∩ to A. In step (f) to find the intersection, party I evaluates polynomial
p∩ at every element of its set, s(I)

j , and considers the element in the intersection
if p∩(s(I)

j) = 0. Now we move to the “output verification” phase. In step (a)
parties A and B pick random values z, q

$← F respectively and send them to
their counter-party. In step (b) party B sends αB = p̄B(z) and βB = rB(z), to
A. In step (c) party A checks if: p∩(z) ?= p̄A(z) · βB + αB · rA(z). In step (d)
party A sends αA = p̄A(q) and βA = rA(q) to B. In step (e) party B checks if:
p∩(q) ?= p̄B(q) ·βA +αA ·rB(q). In short, the scheme is now secure because (1) p∩
leaks nothing beyond the intersection, (2) neither party knows its counter-party’s
random polynomials rI , r′

I and ωI , (3) the evaluation of random polynomial ωI

at a random point yields a random value, and (4) the result polynomial is the
sum of only re-randomized input polynomials. In our paper’s full version [2], we
outline how the solution can be used for the multi-party PSI.

5 Attack 2: Learning Honest Party’s Element Beyond the
Intersection

In this section, we describe an attack scenario in which a malicious party in
the PSI exploits the OPA as a subroutine to check if a certain element (not
necessarily an element of its set) exists or not in its honest counter-party’s set.

The attack violates the protocol’s privacy by allowing the adversary to (a)
learn an element of the honest party’s set beyond the sets’ intersection or (b)
efficiently establish the presence or absence of an element in the honest party’s
set without completing the PSI and without allowing the honest party to learn
anything about the other party’s set. The source of the issue is that, in the
OPA, a sender is given the ability to independently pick a random value. This
lets a malicious sender pick a value of its choice, x′∗, and check if that element
is in its honest counter-party’s set, i.e., if it is a root of the honest party’s input
polynomial. In the attack, if x′∗ is in the other party’s set, then the adversary
would always pass verifications; but, if x′∗ is not in that set, then it would be
detected. In the latter case, the adversary still learns the additional information
that x′∗ is not in its counter-party’s set. For the sake of simplicity, in the attack’s
description below, we focus on a worst-case scenario where the adversary has no
background knowledge of its counter-party’s set, so it picks x′∗ uniformly at
random from U . As we will show later, the adversary can conclude that x′∗

is in the other party’s set and escape from being detected with non-negligible
probability, even if the element x′∗ is picked randomly from U , when the universe
size is medium or small.

5.1 Attack Description

Consider the case where malicious party A guesses an element, x′∗ $← U , of
honest party B’s set, S(B). To evaluate its guess, A participates in the PSI

730 A. Abadi et al.

with B. A follows steps 1a and 1b of Fig. 2, and accordingly invokes the OPA.
However, it deviates from some of the instructions in the OPA. In particular,
both parties honestly take steps 1a and 1b of Fig. 1, where B’s input, p, is a
polynomial that represents its set elements. But, in step 2a of Fig. 1, A instead
of picking a uniformly random value, x∗ $← F, uses x′∗, and sends that value to
B which (given x′∗) follows the protocol in step 2b of Fig. 1. In step 2c of Fig. 1,
A instead of inserting r(x′∗) to F2

OLE, it inserts an arbitrary value, w′, to F2
OLE,

where w′ �= r(x′∗). In this case, F2
OLE outputs f̄ = w′ · p(x′∗) − s(x′∗) + f to A

which adds the output with u(x′∗), resulting in:

f ′ = w′ · p(x′∗) − s(x′∗) + f + u(x′∗)
= w′ · p(x′∗) − p(x′∗) · r(x′∗) + f

(2)

Both parties A and B honestly follow the rest of the OPA. If A correctly
guesses the set element, then it holds that p(x′∗) = 0, because the element
would be a root of polynomial p which represents the set. If p(x′∗) = 0, then by
Eq. (2) it holds that f ′ = f . Therefore, the adversary can pass the check in step
2d of Fig. 1 and at this point can conclude that x′∗ is in B’s set.

5.2 Attack Analysis

In the PSI, when the adversary concludes that x′∗ is in B’s set, it can (a) honestly
take the rest of the steps or (b) avoid doing so. In the former case, the adversary
learns the intersection and finds out the guessed element is in the receiver’s set,
while the honest party learns only the intersection. In the latter case, it learns a
single element of the honest party’s set without completing the PSI that saves
it costs too, while the honest party learns nothing, not even the intersection. So,
in either case, the successful adversary learns more than its counter-party does.
Note that a malicious B can also carry out the same attack as it is allowed to
pick a (random) value of its choice in phase 3 of Fig. 1.

Recall, x′∗ is picked uniformly at random from U and if x′∗ is in the receiver’s
set, then the adversary can always pass the OPA’s verification. So, the proba-
bility that it can confirm x′∗ is in the other party’s set and escape from being
detected depends on the size of U and the set’s cardinality. Specifically, the prob-
ability is Pr2 = |S(B)|

|U| . The adversary can also find out x′∗ is not in the other

party’s set with probability Pr′
2 = 1− |S(B)|

|U| . In the majority of PSIs, there is no
assumption made on the size of U , e.g., in [1,3–5,13,14,20,26,29]. The universe
size can be large, medium, or even small; for instance, the universe size of tem-
perature, salary, age, and medical treatment is small [11,15]. Hence, the above
adversary can confirm x′∗ is in the other party’s set without being caught with
non-negligible probability, when the universe size is medium or small, whereas
that probability would be only negligible if the universe size is large. Also, when
the adversary possesses background knowledge of its counter-party’s set, it can
increase the above probability. The background knowledge could be a small set
of elements likely to be in the other party’s set. In this case, the adversary picks

Polynomial Representation Is Tricky 731

x′∗ from this set to mount the attack; this is in principle akin to the well-known
online dictionary attack. Interestingly, Attack 2 does not impose any additional
cost to the adversary. This attack was not identified in the protocol’s security
proof because the proof does not analyse the case where an adversary in the
“consistency check” deviates from the protocol and still passes the verification.
We refer readers to Appendix A.2 for further discussion on the proof’s flaw.

Extension to Multi-party Protocol. In the multi-party PSI, each party P ∈
{P1, ..., Pn−1} separately participates in the OPA along with the central party,
P0. This means a malicious party P can use the above attack to check whether
P0 has a certain element. Similarly, P0 can carry out the attack. The central
party’s attack will have more severe repercussions than P ’s attack, because in
each run of the PSI, the central party can interact with and attack more parties
(i.e., n − 1 parties) and accordingly can learn more information.

5.3 Candidate Mitigations

One may adjust the protocol such that once an honest receiver finds out p(x′∗) =
0 it aborts, in step 2b of Fig. 1. However, this behavior itself would reveal to the
malicious sender that it has correctly guessed the element. The above issue can
be tackled by letting the parties run a coin-tossing protocol (secure against active
adversaries) to compute x∗, which would add a small cost.

6 Attack 3: Deleting Honest Party’s Set Elements

In this section, we show how an adversary can delete certain elements of its
counter-party’s input set during the PSI computation, which affects the pro-
tocol’s correctness and privacy. Briefly, the attack lets a successful adversary
conclude that a certain set of elements exist in its victim’s set without let-
ting the victim find those elements in the intersection. The probability that the
adversary succeeds without being detected is non-negligible when set elements’
universe size is medium or small. The main source of the issue is the use of point-
value (polynomial) representation of sets. Before we elaborate on the attack, we
present the following theorem that is in the core of the adversary’s strategy in
order to successfully mount its attack. We refer readers to Appendix B for the
theorem’s formal statement and proof.

Theorem 1 (informal). A set of y-coordinates of a polynomial can be multi-
plied by a set of non-zero values, such that the polynomial interpolated from the
product misses a specific root of the original polynomial.

6.1 Attack Description

We first focus on deleting a single element. Later, we will show that the malicious
party can delete multiple elements. We split the attack into three phases (a) set
manipulation, (b) passing OPA’s verification, and (c) passing PSI’s verification.

732 A. Abadi et al.

Phase (a): Set Manipulation. This phase involves both the PSI and OPA.
Assume that malicious party A guesses at least one of party B’s set elements, say
s(B)
1 , and wants to delete it from B’s input. Similar to Attack 2, we assume s(B)

1 is
picked uniformly at random from U . Loosely speaking, the idea behind the attack
is that while the adversary takes steps of the OPA, as the PSI’s subroutine, it also
generates a multiplicative inverse of (y-coordinates of a polynomial representing)
s(B)
1 and delicately uses the inverse as part of its input. This ultimately cancels

out the same element encoded in its counter-party’s polynomial that is inserted
into the same OPA. In particular, malicious party A honestly follows the PSI
in step 1a to generate polynomials pA,uA, and r′

A, with an exception; namely,
now it picks a random polynomial, r̄A, of degree m − 1 (instead of picking rA

of degree m). Then, in step 1b, party A sends r̄A and uA to the OPA. Next, A
performs as follows in step 1a of Fig. 1.

(i) evaluates r̄A at every element xj ∈ #»x = [x1, ..., x2d+1]. This results in a vector
of y-coordinates: #»q 1 = [r̄A(x1), ..., r̄A(x2d+1)].

(ii) constructs another polynomial of the following form: x − s(B)
1 . Recall, s(B)

1 is
the element it guessed. It evaluates the polynomial at every element xj. This
results in a vector of y-coordinates: [(x1 − s(B)

1), ..., (x2d+1 − s(B)
1)].

(iii) generates the multiplicative inverse of each y-coordinate, that was computed
in step (ii). This yields #»q 2 = [(x1 − s(B)

1)−1, ..., (x2d+1 − s(B)
1)−1].

(iv) multiplies the elements of vectors #»q 1 and #»q 2, component-wise. This yields
#»q 3 = [r̄A(x1) · (x1 − s(B)

1)−1, ..., r̄A(x2d+1) · (x2d+1 − s(B)
1)−1].

(v) evaluates random polynomial uA, generated honestly in step 1a, at every
element xj. This results in #»q 4 = [uA(x1), ...,uA(x2d+1)].

(vi) sends every pair (q3,j, q4,j) to F (j)

OLE+ , where q3,j ∈ #»q 3 and q4,j ∈ #»q 4.

This means that instead of sending rA(xj), malicious party A now sends
q3,j = r̄A(xj) · (xj − s(B)

1)−1 to F (j)

OLE+ . In this case, in step 1b of Fig. 1, honest
party B (who inserted values pB(xj) into F (j)

OLE+) receives the following values
from F (j)

OLE+ . For every j, 1 ≤ j ≤ 2d + 1 :

yj = pB(xj) · q3,j + q4,j

=
(
ωB(xj) · (xj − s(B)

1) ·
ö∏

i=2

(xj − s(B)
i)

)

︸ ︷︷ ︸
p

B
(x

j
)

·
(
r̄A(xj) · (xj − s(B)

1)−1
)

︸ ︷︷ ︸
q3,j

+uA(xj)
︸ ︷︷ ︸

q4,j

=
(
ωB(xj) ·

ö∏

i=2

(xj − s(B)
i)

)
·
(
r̄A(xj)

)
+ uA(xj)

(3)

In the same step, party B uses pairs (xj, yj), j ∈ [2d + 1], to interpolate a
polynomial, s′

B, that has the following form.

s′
B =

(
ωB(x) ·

ö∏

i=2

(x − s(B)
i)

)
·
(
r̄A(x)

)
+ uA(x) (4)

Polynomial Representation Is Tricky 733

Note that in the PSI, in step 1b of Fig. 2, honest party B will receive
polynomial s′

B as the output of the OPA (if malicious party A manages to
pass the OPA’s verification; we will show it does). Furthermore, each value

(xj − s(B)
1) ·

ö∏

i=2

(xj − s(B)
i) in Eq. (3) has the same structure as each μj has in

Theorem 1 (in Appendix B). Hence, according to Eqs. (3) and (4) and Theorem
1, malicious party A has managed to remove s(B)

1 from roots of pB used in the
above step. This ultimately leads to the elimination of that element from the
final result, i.e., the sets’ intersection. To make that happen, A follows the PSI
in steps 1c and 1d of Fig. 2 by honestly computing s′

A = sA − uA + pA · r′
A, and

sending s′
A to B. Given polynomials s′

B and s′
A, party B, in step 1e of Fig. 2,

follows the protocol and computes the result polynomial (presented below) that
is supposed to encode the sets’ intersection.

p∩ = s′
A + s′

B + pB · r′
B − uB

= pA · r′
A + pA · rB +

(
ωB ·

ö∏

i=2

(x − s(B)
i)

)
· r̄A + pB · r′

B

(5)

Nevertheless, as it is evident in Eq. (5), the result polynomial’s roots do not
include element s(B)

1 with a high probability, even if both parties’ sets contain

it. Because the roots of polynomial
(
ωB ·

ö∏

i=2

(x − s(B)
i)

)
lack that element, due

to malicious party A’s manipulation described above.
For malicious party A to fully succeed, it also needs to pass two verifications,

one in the OPA and the other in the PSI. Below, we explain how it can do so.

Phase (b): Passing OPA’s Verification. This phase involves only the OPA.
Since we have already covered steps 1a and 1b in the OPA (in the previous
phase description) we will focus only on the “consistency check” in this protocol.
Parties A and B honestly follow the OPA in steps 2a and 2b. So, malicious party
A (as the sender) in step 2a honestly picks a random value x∗ and sends it to
honest party B (as the receiver). Then, B, in step 2b, picks random values f, v
and inserts them into F1

OLE. Party B inserts (pB(x∗),−s′
B(x∗) + f) into F2

OLE.
Recall, s′

B is the polynomial which was defined in Eq. (4). Party A in step 2c
honestly picks a random value, t, and inserts it to F1

OLE that sends c = f · t + v
back to the same party. But, A in the same step, sends r̄A(x∗) · (x∗ − s(B)

1)−1,
instead of rA(x∗), to F2

OLE that returns the following value to A.

734 A. Abadi et al.

f̄ = r̄A(x∗) · (x∗ − s(B)
1)−1 · pB(x∗) − s′

B(x∗) + f

= r̄A(x∗) · (x∗ − s(B)
1)−1 ·

(
ωB(x∗) · (x∗ − s(B)

1) ·
ö∏

i=2

(x∗ − s(B)
i)

)

︸ ︷︷ ︸
p

B
(x∗)

−s′
B(x∗) + f

= r̄A(x∗) ·
(
ωB(x∗) ·

ö∏

i=2

(x∗ − s(B)
i)

)
− s′

B(x∗) + f

= −uA(x∗) + f

(6)

Recall, polynomial pB, that was inserted by B, encodes all set elements of
B, including s(B)

1 , whereas polynomial s′
B misses that specific element due to the

party A’s manipulation in Eq. (3). However, as it is indicated in Eq. (6), party A
has managed to remove x∗ − s(B)

1 from pB(x∗) too. This will let A escape from
being detected, because the result (i.e., f̄ = −uA(x∗) + f) is what an honest
party A would have computed. Malicious party A completes step 2c honestly,
by adding uA(x∗) to f̄ (i.e., it computes f ′ = f̄ + uA(x∗)) and sending f ′ to B,
which checks f ′ equals the random value, f , it initially picked in step 2b. By
Eq. (6), f ′ = f̄ + uA(x∗) = f holds; therefore, malicious party A has managed
to pass this verification.

Phase (c): Passing PSI’s Verification. Next, we show how malicious party
A can also pass the verification in the PSI, i.e., in step 2d in Fig. 2. Our focus
will be on the “output verification” in the PSI. At a high level, to pass this
verification, A uses a similar trick that is used to pass the verification in the
OPA. Specifically, in step 2a, both parties honestly agree on two values z and
q. Then, in step 2b, party B honestly computes αB, βB, and δB and sends them
to A which ignores the values and skips step 2c. Malicious party A, in step
2d, honestly generates αA = pA(q) and δA = r′

A(q); however, instead of setting
βA = rA(q), it sets βA = r̄A(q) · (q − s(B)

1)−1. It sends αA, δA, and βA to B which
acts honestly in step 2e. In particular, it:

1. evaluates the result polynomial, p∩, at q which yields:

p∩(q) = pA(q)·r′
A(q)+pA(q)·rB(q)+

(
ωB(q) ·

ö∏

i=2

(q − s(B)
i)

)
·r̄A(q)+pB(q)·r′

B(q)

2. generates value τ as below (given the three messages, sent by party A):

Polynomial Representation Is Tricky 735

τ = pB(q) · (βA + r′
B(q)) + αA · (rB(q) + δA)

=
(
ωB(q) ·

ö∏

i=2

(q − s(B)
i)

)
· r̄A(q) + pB(q) · r′

B(q) + αA · rB(q) + αA · δA

=
(
ωB(q) ·

ö∏

i=2

(q − s(B)
i)

)
· r̄A(q) + pB(q) · r′

B(q) + pA(q) · rB(q) + pA(q) · r′
A(q)

3. checks if p∩(q) equals τ (i.e., p∩(q) ?= τ) and accepts the result, if the check
passes.

As indicated above, it holds p∩(q) = τ . Hence, malicious party A can pass
the verification in the PSI and convince B to accept the manipulated result.

Deleting Multiple Elements. Now we outline how malicious party A can
delete multiple elements from its counter-party’s set during the PSI. Let S′ =
{s(B)

1 , ..., s(B)
k } be a set of elements that malicious party A wants to delete from

B’s set, where k ≤ m, every element s(B)
i ∈ S′ is picked uniformly at random from

U . In the “set manipulation” phase, in the PSI step 1a, party A picks a random
polynomial r̄A that now has a degree m − k. It performs as before in the rest
of the same step. In step (ii), it constructs a polynomial that now has the form:
k∏

i=1

(x − s(B)
i). In the same step, it evaluates the polynomial at every element

xj, which yields [
k∏

i=1

(x1 − s(B)
i), ...,

k∏

i=1

(x2d+1 − s(B)
i)]. It takes the rest of steps

(iii)-(vi) as previously described in the set manipulation phase. The “passing
OPA’s verification” phase remains unchanged with the exception that, in (the

OPA) step 2c, party A now sends r̄A(x∗) ·
k∏

i=1

(x∗ − s(B)
i)−1 to F2

OLE. Similarly, the

“passing PSI’s verification” phase remains the same as before, with a difference

that, in (the PSI) step 2d, party A now sets βA = r̄A(q) ·
k∏

i=1

(q − s(B)
i)−1.

6.2 Attack Analysis

A trivial way for an adversary to delete certain elements from the intersection
is to delete those elements from its own contributed set. However, there is a
major difference between this trivial approach and Attack 3, in terms of the
amount of information it learns. Specifically, if the adversary succeeds in Attack
3, it would conclude that its victim has all the deleted elements in its local set.
On the contrary, it cannot learn such information by taking the above trivial
approach. Moreover, there is a big difference between attacks 2 and 3, in terms of
the amount of information the adversary learns. Namely, in the former it learns
a single element while in the latter it learns multiple elements of its victim’s set.

736 A. Abadi et al.

Recall, in Attack 3, the adversary always manages to pass the verifications
in phases (b) and (c) if it correctly guesses s(B)

1 . So, its probability of success
throughout Attack 3 boils down to correctly guessing that s(B)

1 is in its counter-
party’s set. To compute that probability we can use the same analysis used for
Attack 2 (in Sect. 5.2). As a result, the probability that the adversary successfully
deletes a single element is Pr3 = |S(B)|

|U| ; in general, the probability that it can

delete k elements is Pr′
3 =

k−1∏

i=0
|S(B)|−i

|U|k . The adversary can succeed to delete
a constant number of elements, k, with a non-negligible probability when the
universe is of medium or small size, while that probability is negligible when
the universe is of large size. Background knowledge, about the other party’s set,
would benefit the adversary in this attack too. Attack 3 is efficient, as it only
imposes 4m + 6 extra modular additions and multiplications to the adversary
when it deletes a single element. The main two flaws in the protocols’ proofs that
led to Attack 3 is that, in the OPA’s proof, the definition of a malformed input
has been limited to only two cases (i.e., polynomial of incorrect degree or zero-
polynomial); also, in the PSI’s proof, it is assumed the only way the adversary
can change an original value is via the addition operation, so the multiplication
is never analysed. We refer readers to Appendix A.3 for a detailed discussion on
the above flaws.

Extension to Multi-party Protocol. The above attack can also be applied to
the multi-party PSI, because it uses the same OPA and verification mechanisms
as the two-party PSI uses. Therefore, each malicious party P ∈ {P1, ..., Pn−1}
can delete an honest central party’s set element(s) or a malicious centralised
party can delete set element(s) of every honest P , without being detected.

6.3 Candidate Mitigation

The primary cause of the vulnerability discussed is the use of point-value polyno-
mial representation in the OPA. Specifically, during polynomial multiplication in
the OPA where polynomials are presented in point-value form, an adversary can
craft its input polynomial such that when it is multiplied by an honest party’s
polynomial, the product polynomial (after interpolation) misses a certain root.
Therefore, it is natural to ask: can the issue be avoided if polynomials in the
coefficient form are used in the OPA? This is indeed the case. Specifically, if the
OPA requires the input polynomials to be in coefficient form, then regardless
of how the adversary constructs its input polynomial, the product of the two
parties’ polynomials, generated in the OPA, preserves both polynomials’ roots.
We refer readers to the paper’s full version [2] for a formal statement and proof.
The above adjustment imposes to the OPA additional computation cost O(m2)
that stems from multiplying two polynomials in coefficient form.1 Thus, the
1 To lower the polynomial multiplication cost to O(m log2 m), one may use Fast Fourier

Transform (FFT). However, as FFT uses point-value polynomial representation,
further security analysis is required to ensure the attack would not be enabled again.

Polynomial Representation Is Tricky 737

computation complexity of the two-party and multi-party PSIs would be higher.
Specifically, it would be O(m2) for two-party and O(n ·m2) for multi-party PSIs,
instead of O(m · log m) and O(n · m · log m) as in the original protocol [20].

7 Conclusion and Future Work

Private set intersection (PSI) is a vital protocol with various real-world appli-
cations. At Eurocrypt 2019, Gosh and Nilges [20] proposed three PSIs: (a) two-
party, (b) multi-party, and (c) threshold multi-party. To date, their multi-party
protocol is the most efficient multi-party PSI designed to remain secure against
active adversaries. In this work, we identified three attacks that can be mounted
on all of these PSIs. The attacks let an adversary (1) learn the intersection while
making its counter-party believe the intersection is empty, (2) learn a certain
element of the honest party’s set beyond the intersection, and (3) delete multi-
ple elements of its counter-party’s input set. We also identified various flaws in
the protocols’ design and security proofs and proposed a set of mitigations.

Our observation is that in all three attacks an adversary exploits two features
of the protocols’ design; namely, (a) the polynomial representation of sets and
(b) polynomial-based consistency check. Our analysis indicated that the attacks
could have been detected if, in the protocols’ security proofs, there was a com-
prehensive study of (i) all checks, (ii) simulators’ design, and (iii) malformed
inputs’ definition. We conclude that special care should be taken in the design
and proof of PSIs that use the combination of the two aforementioned features.

Future research could investigate how the security of other protocols (e.g.,
noisy polynomial addition in [21]) that already used the schemes proposed in [20]
could be affected by our findings. While our proposed mitigations add relatively
low cost to the two-party PSI, they scale quadratically with the number of
participants in the multi-party case. Designing efficient multi-party PSIs, secure
against active adversaries, with linear costs is another interesting research line.

Acknowledgments. Aydin Abadi is supported by REPHRAIN: The National
Research Centre on Privacy, Harm Reduction and Adversarial Influence Online, under
UKRI grant: EP/V011189/1. Steven J. Murdoch is supported by The Royal Society
under grant UF160505. Thomas Zacharias is supported by the Horizon 2020 project #
780477 (PRIViLEDGE).

A Identified Flaws In The Security Proofs

Below, we briefly explain a set of flaws we identified in the security proofs of the
paper’s conference [20] and full [19] versions. These flaws made the three attacks
undetected. We categorise the flaws in three classes based on their relevance to
each attack. For the sake of simplicity, we exclude the hat symbol, “ ˆ ”, used in
the original proofs. See our paper’s full version [2] for a more detailed analysis.

738 A. Abadi et al.

A.1 Class 1: Not All Checks Have Been Included

In this section, we describe a flaw in the proof of two-party PSI (page 20 in [19])
that lets the environment use Attack 1 to distinguish the two worlds. Briefly,
the flaw is that the proof does not consider the case where δ∗

B �= r′
B(z). Before

we elaborate on it, we highlight two typos in “Hybrid” 1; namely, α∗
A �= pA(z)

and β∗
A �= rA(z) should have been α∗

B �= pB(z) and β∗
B �= rB(z) respectively, as

the proof is for corrupt party B. In Hybrid 2, it is stated that “an environment
distinguishing Hybrid 1 and 2 must manage to send p∗

∩ such that p∗
∩ �= pA ·(rB +

r′
A)+pB ·(r′

B+rA) while passing the check in Step 5 [of Fig. 9] with non-negligible
probability.” The proof shows that the check fails only in the cases where α∗

B �=
pB(z) and β∗

B �= rB(z); therefore, δ∗
B �= r′

B(z) has been left out of the proof. The
lack of such analysis leads to the following issue. As we have shown, the check
does not fail for certain p∩ and δB such that p∩ �= pA ·(rB+r′

A)+pB ·(r′
B+rA) and

δB �= r′
B(z). So, the adversary can pass the check with a high probability in the

real world (or Hybrid 0). The simulator, in Hybrid 2, detects this inconsistency
(i.e., δ∗

B �= r′
B(z)) according to Fig. 11 in [19]. But, the simulator in Hybrid 1

cannot detect it, as it only aborts if α∗
B �= pB(z) or β∗

B �= rB(z). Thus, Hybrids
1 and 2 (likewise Hybrids 0 and 2) are distinguishable by the environment.

A.2 Class 2: Incomplete Simulator

In the proof of Lemma 4.1, i.e., OPA’s security, in the paper’s conference ver-
sion [20], it is stated that “the only possibility for an environment to distinguish
between the simulation and the real protocol is by succeeding in answering the
check while using a malformed input, i.e. a polynomial of incorrect degree or 0-
polynomials.” We argue that this is not the only possible case. As we indicated
in Attack 2, it is possible the adversary (in the real world) in the “consistency
check” phase, deviates from the protocol and still passes the verification. This
will ultimately let the environment distinguish the two worlds. Note, the proof
should have included the simulation of the “consistency check” phase. Accord-
ingly, the proof does not capture the case where w′ of the form w′ �= r(x′∗) is
used by the adversary. In the simulation of the consistency check, the simulator
can detect when it is given w′ �= r(x′∗), as it has already extracted polynomial
r from the adversary. But, in the real world, as we have shown, the adversary
can pass the check when w′ �= r(x′∗) and a certain value, x′∗, is used in this
phase. Hence, the environment can distinguish the two worlds. This issue arises
because the proof does not analyse the case where the check, in the consistency
check phase, is passed but w′ �= r(x′∗) is used in this phase.

A.3 Class 3: Incomplete Definition Of Malformed Input

Recall, the proof of Lemma 4.1 considers a malformed input if an input polyno-
mial is (i) of incorrect degree or (ii) zero. The issue is that the proof shows only
in these two cases the environment cannot distinguish the two worlds. We argue
that an input can be malformed without satisfying conditions (i) or (ii). Similar

Polynomial Representation Is Tricky 739

to the description of Attack 3, let a corrupt sender (for all j ∈ [2d + 1]) send
q3,j = r̄A(xj) · (xj − s(B)

1)−1 to F (j)

OLE+ in the ideal world. This lets the simulator
obtain all q3,j and interpolate a polynomial, q. There would be two cases: (1)
deg(q) > d, or (2) deg(q) ≤ d. In case (1), the simulator aborts. But in the real
protocol (in step 1b of Fig. 1) the honest party never aborts. Because, in general,
polynomial s interpolated from 2d+1 pairs (xj, sj) always has degree at most 2d
by Theorem 2. This issue lets the environment distinguish the two worlds. Now
we move on to case (2). In the ideal world, in the consistency check phase, the
simulator of the OPA is given random value x∗ and w′′ = r̄A(x∗)·(x∗−s(B)

1)−1 and
wants to check w′′ ?= q(x∗). Note, the equation may not always hold; because
factors (xj − s(B)

1)−1 of y-coordinates q3,j from which q was interpolated, are
not directly generated by evaluating a polynomial at xj’s. The probability that
w′′ = q(x∗) depends on the choice of x∗. If the equation holds, then the simulator
does not abort; also, the honest party does not abort as we showed in Attack 3.
This is problematic, as the attack has been successfully mounted without being
detected in both worlds. If w′′ �= q(x∗), the simulator aborts, but the honest
party does not abort, as the adversary can pass the consistency check. So, the
environment can distinguish the two worlds. This issue arises because, in the
proof, the definition of a malformed input has been limited to only the above
conditions (i) and (ii), and the proof never analyses the case where the check is
passed while w′′ (s.t., w′′ �= r(x′∗)) is sent to F2

OLE.
The adversary in Attack 3, can pass the PSI’s verification too. The issue is

that in the PSI’s proof (i.e., proof of Theorem 5.1 in [20]) when A is corrupt,
the case where βA is not the result of evaluating truly random polynomial rA

at z (i.e., βA �= rA(z)) is never analysed in detail and also it is assumed that
the only way the adversary changes the original value is via a modular addition
(i.e., αA + e); so, a modular multiplication is never considered as a part of the
attack. But, as we showed, the adversary can multiply its input y-coordinates
by certain values to affect the result’s correctness and pass the verification.

B Attack 3 Theorems

We first restate Theorem 2 that will be used by the main one, i.e., Theorem 1.

Theorem 2 (Uniqueness of interpolating polynomial [32]). Let #»x = [x1, . . . , xv]
be a vector of non-zero distinct elements. For v arbitrary values: y1, . . . , yv there
is a unique polynomial: τ , of degree at most v − 1 such that: ∀j, 1 ≤ j ≤ v :
τ (xj) = yj, where xj, yj ∈ F.

Informally, Theorem 1 states that a set of y-coordinates of a polynomial can
be multiplied by a set of non-zero values, such that the polynomial interpolated
from the product misses a specific root of the original polynomial.

Theorem 1. Let #»x = [x1, . . . , xv] be a vector of non-zero distinct elements.

Let μ =
ö∏

i=1

(x − ei) ∈ F[X] be a degree ö < v polynomial with ö distinct roots

740 A. Abadi et al.

e1, . . . , eö, and let μj = μ(xj), where 1 ≤ j ≤ v. For some c ∈ [ö] such that
ec /∈ {x1, . . . , xv}, let μ′ be a degree ö − 1 polynomial interpolated from pairs
(x1, μ1 · (x1 − ec)−1), ..., (xv, μv · (xv − ec)−1). Then, μ′ will not have ec as root,
i.e. μ′(ec) �= 0.

Proof. For the sake of simplicity and without loss of generality, let c = 1. We can

rewrite polynomial μ as μ(x) = (x − e1) ·
ö∏

i=2

(x − ei). Then, every μj (1 ≤ j ≤ v)

can be written as: μj = (xj − e1) ·
ö∏

i=2

(xj − ei). Accordingly, for every j, the

product αj := μj · (xj − e1)−1 has the form: αj = μj · (xj − e1)−1 =
ö∏

i=2

(xj − ei).

Let μ′′ be a degree ö−1 polynomial with ö−1 distinct roots identical to the roots
of μ excluding e1, i.e., μ′′(e1) �= 0. By the Polynomial Remainder Theorem, μ′′

can be written as μ′′(x) = K ·
ö∏

i=2

(x − ei), where K ∈ F \ {0}. So, it holds that

∀j ∈ [v] : μ′′(xj) = K ·
ö∏

i=2

(xj −ei) = K ·αj. This implies that μ′′ is a degree ö−1

polynomial interpolated from (x1,K · α1), . . . , (xv,K · αv). By its definition, the
polynomial μ′ is interpolated from the pairs (x1, α1), . . . , (xv, αv). Thus, K ·μ′ is
another degree ö − 1 polynomial interpolated from (x1,K · α1), . . . , (xv,K · αv).
Due to Theorem 2, we have that μ′′ = K ·μ′, so μ′′(e1) = K ·μ′(e1) ⇒ μ′(e1) =
K−1 · μ′′(e1). We also know that K−1 �= 0 and μ′′(e1) �= 0. Since F is an integral
domain, it follows that μ′(e1) = K−1 · μ′′(e1) �= 0.

	

References

1. Abadi, A., Terzis, S., Metere, R., Dong, C.: Efficient delegated private set inter-
section on outsourced private datasets. IEEE TDSC (2018)

2. Abadi, A., Murdoch, S.J., Zacharias, T.: Polynomial representation is tricky: Mali-
ciously secure private set intersection revisited (Full version) (2021). https://eprint.
iacr.org/2021/1009.pdf

3. Abadi, A., Terzis, S., Dong, C.: O-PSI: delegated private set intersection on out-
sourced datasets. In: IFIP SEC (2015)

4. Abadi, A., Terzis, S., Dong, C.: VD-PSI: verifiable delegated private set intersection
on outsourced private datasets. In: FC (2016)

5. Abadi, A., Terzis, S., Dong, C.: Feather: Lightweight multi-party updatable dele-
gated private set intersection. IACR Cryptology ePrint Archive (2020)

6. Aho, A.V., Hopcroft, J.E.: The Design and Analysis of Computer Algorithms.
Addison-Wesley Longman Publishing Co., Inc., Boston (1974)

7. Ben-Efraim, A., Nissenbaum, O., Omri, E., Paskin-Cherniavsky, A.: Psimple: Prac-
tical multiparty maliciously-secure private set intersection, ePrint Archive (2021)

8. Boneh, D., Gentry, C., Halevi, S., Wang, F., Wu, D.J.: Private database queries
using somewhat homomorphic encryption. In: ACNS (2013)

9. Brickell, J., Porter, D.E., Shmatikov, V., Witchel, E.: Privacy-preserving remote
diagnostics. In: CCS (2007)

https://eprint.iacr.org/2021/1009.pdf
https://eprint.iacr.org/2021/1009.pdf

Polynomial Representation Is Tricky 741

10. Bursztein, E., Hamburg, M., Lagarenne, J., Boneh, D.: Openconflict: preventing
real time map hacks in online games. In: IEEE S&P (2011)

11. Camenisch, J., Zaverucha, G.M.: Private intersection of certified sets. In: FC (2009)
12. Canetti, R.: Universally composable security: a new paradigm for cryptographic

protocols. In: FOCS (2001)
13. Chase, M., Miao, P.: Private set intersection in the internet setting from lightweight

oblivious PRF. In: CRYPTO (2020)
14. Chen, H., Laine, K., Rindal, P.: Fast private set intersection from homomorphic

encryption. In: CCS (2017)
15. Cristofaro, E.D., Lu, Y., Tsudik, G.: Efficient techniques for privacy-preserving

sharing of sensitive information. In: TRUST (2011)
16. Duong, T., Phan, D.H., Trieu, N.: Catalic: delegated PSI cardinality with applica-

tions to contact tracing. In: ASIACRYPT (2020)
17. Freedman, M.J., Nissim, K., Pinkas, B.: Efficient private matching and set inter-

section. In: EUROCRYPT (2004)
18. Ghosh, S., Nielsen, J.B., Nilges, T.: Maliciously secure oblivious linear function

evaluation with constant overhead. In: ASIACRYPT (2007)
19. Ghosh, S., Nilges, T.: An algebraic approach to maliciously secure private set

intersection (full version). ePrint Archive (2017). https://eprint.iacr.org/2017/1064
20. Ghosh, S., Nilges, T.: An algebraic approach to maliciously secure private set

intersection. In: EUROCRYPT (2019)
21. Ghosh, S., Simkin, M.: The communication complexity of threshold private set

intersection. In: CRYPTO (2019)
22. Hazay, C., Venkitasubramaniam, M.: Scalable multi-party private set-intersection.

In: PKC (2017)
23. Inbar, R., Omri, E., Pinkas, B.: Efficient scalable multiparty private set-intersection

via garbled bloom filters. In: SCN (2018)
24. Ion, M., et al.: On deploying secure computing: private intersection-sum-with-

cardinality. In: IEEE EuroS&P (2020)
25. Ishai, Y., Kushilevitz, E.: Randomizing polynomials: a new representation with

applications to round-efficient secure computation. In: FOCS (2000)
26. Kamara, S., Mohassel, P., Raykova, M., Sadeghian, S.: Scaling private set inter-

section to billion-element sets. In: FC (2014)
27. Katz, J., Myers, S.A., Ostrovsky, R.: Cryptographic counters and applications to

electronic voting. In: EUROCRYPT (2001)
28. Kissner, L., Song, D.X.: Privacy-preserving set operations. In: CRYPTO (2005)
29. Kolesnikov, V., Kumaresan, R., Rosulek, M., Trieu, N.: Efficient batched oblivious

PRF with applications to private set intersection. In: CCS (2016)
30. Kolesnikov, V., Matania, N., Pinkas, B., Rosulek, M., Trieu, N.: Practical multi-

party private set intersection from symmetric-key techniques. In: CCS (2017)
31. Pinkas, B., Rosulek, M., Trieu, N., Yanai, A.: PSI from PaXoS: fast, malicious

private set intersection. In: EUROCRYPT (2020)
32. Quarteroni, A., Sacco, R., Saleri, F.: Numerical Mathematics, vol. 37. Springer

Science & Business Media, Heidelberg (2010)
33. Reed, I.S., Solomon, G.: Polynomial codes over certain finite fields. J. Soc. Ind.

Appl. Math. 8(2), 300–304 (1960)
34. Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)
35. Thomas, K., et al.: Protecting accounts from credential stuffing with password

breach alerting. In: USENIX Security (2019)

https://eprint.iacr.org/2017/1064

742 A. Abadi et al.

36. Yang, X., Luo, X., Wang, X.A., Zhang, S.: Improved outsourced private set inter-
section protocol based on polynomial interpolation. Concurr. Comput. Pract. Exp.
(2018)

37. Zhang, E., Liu, F., Lai, Q., Jin, G., Li, Y.: Efficient multi-party private set inter-
section against malicious adversaries. In: CCSW (2019)

38. Zhao, Y., Chow, S.S.M.: Can you find the one for me? Privacy-preserving match-
making via threshold PSI. ePrint Archive (2018)

Posters

RIoTPot: A Modular Hybrid-Interaction
IoT/OT Honeypot

Shreyas Srinivasa(B), Jens Myrup Pedersen, and Emmanouil Vasilomanolakis

Aalborg University, Aalborg, Denmark
{shsr,jens,emv}@es.aau.dk

Abstract. Honeypots are often used as a proactive attack detection
mechanism and as a source of threat intelligence data. However, many
honeypots are poorly maintained and cumbersome to extend. Moreover,
low-interaction honeypots are prone to fingerprinting attacks due to
their limited emulation capabilities. Nonetheless, low-interaction hon-
eypots are essential for environments with limited resources. In this
paper, we introduce RIoTPot, a modular and hybrid-interaction hon-
eypot for Internet-of-Things (IoT) and Operational Technology (OT)
protocols mainly used in Industrial Control System environments. RIoT-
Pot’s modularity comes as a result of plug-n-play container services while
its hybrid-interaction capability enables users to switch between low- and
high-interaction modes. We deploy RIoTPot on the Internet, receive a
large amount of attacks and discuss the results received on both low-
and high-interaction modes.

1 Introduction

Honeypots are deceptive systems that simulate a seemingly vulnerable system
to gather attacks. Over the years, many honeypot solutions have been proposed
that are commonly classified to low-, medium- and high-interaction based on
the level of interaction they offer to the adversary [2, 19]. Low- and medium-
interaction honeypots, due to their limited emulation capabilities, are prone to
honeypot fingerprinting that may limit their scope [18]. Honeypot fingerprinting
refers to adversarial methods that allow for the identification of the honeypot
nature of a system. Nevertheless, these two classes of honeypots are the most
commonly deployed ones. Other common issues with honeypots include the lack
of flexibility in extending/adapting them, the absence of support, and limited
documentation.

Despite the aforementioned limitations, honeypots are an excellent defensive
toolkit, especially with regard to the increasing number of IoT and OT attacks.
With such protocols being consistently attacked, in both consumer [7] and com-
mercial environments [5], deception mechanisms like honeypots offer an early
warning system and a method to analyse adversaries’ techniques [9, 12, 16].

Traditional honeypot simulations may run on virtualized environments like
VMs, virtual containers (LXC), or even language-based virtual environments.
c© Springer Nature Switzerland AG 2021
E. Bertino et al. (Eds.): ESORICS 2021, LNCS 12973, pp. 745–751, 2021.
https://doi.org/10.1007/978-3-030-88428-4

https://doi.org/10.1007/978-3-030-88428-4

746 S. Srinivasa et al.

Kedrowitsch et al. made a first effort to propose the use of containers for hon-
eypots [6]. The authors propose the usage of Linux containers as a platform
to develop honeypots and compliment their proposal by comparing the detec-
tion methods of popular virtualization platforms against containers. Kedrowitsch
et al. conclude that limitations exist in the use of either containers or virtual
machines as a honeypot platform. A much recent proposal by Reti et al. intro-
duces the use of container-based deception for honeypots [11]. The authors inves-
tigate the possibilities of container-based honeypots and introduce the concept
of simulating container-escapes (fake network pivoting outside a container) as
a deception technique. Both approaches suggest the use of container systems
to achieve ease of deployment. Moreover, many open-source honeypots offer the
possibility of a containerized deployment for ease of installation. Nevertheless,
besides the aforesaid academic work there are not many actual honeypot imple-
mentations that make use of containers. Furthermore, all existing honeypots have
a binary interaction level: they are either low-, medium-, or high-interaction [19].

In this paper, we present RIoTPot1, a honeypot that: i.) breaks the tra-
ditional binary interaction paradigm, ii.) focuses on IoT and OT protocols,
and iii.) is designed with a modular-by-design architecture. First, the hybrid-
interaction level of RIoTPot aims at providing defenders flexibility by giving
them the ability to utilize the appropriate interaction level based on their needs
and capabilities. For instance, low constrained environments scale better with
low interaction components while high interaction comes handy when deeper
analysis of attack is required. Second, RIoTPot supports many IoT and OT
protocols (i.e., Telnet, SSH, CoAP, Modbus, MQTT), with more to be imple-
mented in the immediate future. At the moment, there are only a few real world
honeypot implementations that focus on IoT [9, 15] and even fewer for OT [12,
17]. Lastly, the modularity of the honeypot comes from its architecture; each
functionality of the honeypot is a plug-n-play component that can be edited,
activated or deactivated based on the user’s preferences.

2 RIoTPot Design

RIoTPot features a modular architecture that facilitates quick integration of
new protocol simulation modules. A modular software architecture is a structural
approach of building software components as modules by separating the the func-
tionality of a program into independent, interchangeable modules, such that each
contains everything necessary to execute only one aspect of the desired function-
ality [8]. Figure 1 shows the high level architecture of RIoTPot. The prominent
modules in the architecture are the RIoTPot core module, the packet capture and
noise filter module, the low-interaction modules, the high-interaction modules,
and the attack database.

The RIoTPot core consists of the required components for the configuration,
administration, and orchestration of the honeypot. In particular, the core module
provides RIoTPot with all the required parameters at startup. This includes user
1 https://github.com/aau-network-security/riotpot.

https://github.com/aau-network-security/riotpot

RIoTPot: A Modular Hybrid-Interaction IoT/OT Honeypot 747

Fig. 1. High level architecture of RIoTPot

preferences for specific protocols, profile simulation, and the desired interaction
level. In addition, the core is responsible for the network management for the
high-interaction protocol services simulated on containers. The received attack
traffic is forwarded to the respective container that hosts the protocol on which
the attack was targeted. Furthermore, the core also facilitates the communication
between itself and the containers, if hosted on a cloud environment.

For the Packet capture and noise filter module the attack capture component
is responsible for storing the attack packets as pcap files, using tcpdump, which
can be used for detailed analysis (e.g., deep packet inspection). The noise filter
component filters out the traffic received from Internet-wide scanners like Shodan
[14] and Censys [3]. This helps the honeypot administrator to concentrate on
attacks that matter by removing the noise traffic generated by such services.

The low-interaction mode is achieved through independent packages, with
each package simulating a specific protocol. RIoTPot is implemented in Go lan-
guage [4] and facilitates the development of a modular architecture through
packages. The packages act as plug-ins that can be added to the honeypot to
extend the protocols simulated. For example, the fakeshell package emulates a
system shell that can be leveraged by the SSH and the Telnet packages. The
fakeshell package can be extended to include emulation of specific commands.

748 S. Srinivasa et al.

Furthermore, RIoTPot provides a template that can be used for integration of
additional protocols. The high-interaction mode is achieved by emulating the
protocols as services in container images. Hence, since a container implements
the full protocol the honeypot provides the attacker with high interaction capa-
bilities. The containers act as high-interaction modules that offer a full imple-
mentation of a protocol. Additional protocol services can be added by integrating
containers with the desired protocol services. The hybrid-interaction mode fur-
ther allows the user to emulate selective protocols on low or high-interaction
levels. For example, the user can choose to have SSH in low-interaction mode
and MQTT in high-interaction mode.

The attack database stores all the attack traffic received on the honeypot. The
database is setup as an independent module to ensure data availability even if a
honeypot module is down (e.g., due to a crash or DDoS attack). The database
is accessible from the low-interaction and high-interaction modules for attack
storage.

To sum up, the design of RIoTPot facilitates modularity through packages
and containers as plugins. Furthermore, the modular architecture assists the
hybrid-interaction model of RIoTPot.

3 Preliminary Results

The honeypot was deployed in both low and high interaction modes on two
hosts in our lab. The hosts were assigned a public IP each, under an unfiltered
network. We define an attack as any interaction with the honeypot as there is
no production value whatsoever. However, we differentiate incoming traffic from
well-known crawlers (e.g. Shodan). The attacks on the honeypots were recorded
for a period of one week. In the low-interaction variant, the protocols SSH,
Telnet, HTTP, MQTT, CoAP and Modbus were simulated through the plug-in
packages, while the high-interaction variant simulated the MQTT protocol in a
container. In addition to recording the attacks in the database, the hosts also
had the tcpdump service running in the background to capture the attack packets
for comprehensive analysis. A total of 7, 587 attacks were observed across all the
protocols simulated by RIoTPot.

Figure 2 shows the number of unique attacks received per protocol for a
period of one week. MQTT-HI indicates the high-interaction mode of the MQTT
protocol. We observe a trend in the number of attacks for all protocols. Fur-
thermore, the number of attacks on the MQTT protocol in the high-interaction
mode is higher in comparison to the low-interaction mode. Moreover, we observe
recurring sessions from same suspicious actors on the high-interaction mode, that
included topic creation, subscription and deletion, and modification of existing
messages in topics which have not been observed on the low-interaction mode.

Figure 3 depicts the percentage of attacks from Internet-scanning engines
(e.g., Shodan, Censys, Project Sonar [10], and ShadowServer [13]) in comparison
to the attacks from suspicious sources. We observe an average of 25% of the total

RIoTPot: A Modular Hybrid-Interaction IoT/OT Honeypot 749

Fig. 2. Number of attacks on protocols per day

traffic originating from 19 common scanning engines2. Filtering out such traffic
reduces noise and alert data fatigue for the administrators.

Fig. 3. Attack noise classification in percentage

4 Conclusion

In this paper, we introduce RIoTPot, a honeypot that features a hybrid-
interaction model with a modular design for IoT and OT protocols. RIoTPot
addresses the issue of limited interaction and flexibility, in addition to ease of
deployment. Our preliminary results suggest that the honeypot is attractive to
adversaries and is able to distinguish between suspicious traffic (traffic originat-
ing from attackers) and common scanning engines (traffic likely coming from
Shodan-like systems). As future work, we aim to extend RIoTPot to support
more IoT and OT protocols like UPnP, AMQP, XMPP, S7, DNP3, Fieldbus
and Profibus. Furthermore, we intend to integrate threat intelligence reporting

2 For a complete list of the supported scanning engines see: https://github.com/aau-
network-security/riotpot#12-Noise-Filter.

https://github.com/aau-network-security/riotpot#12-Noise-Filter
https://github.com/aau-network-security/riotpot#12-Noise-Filter

750 S. Srinivasa et al.

through STIX to facilitate structured sharing of threat data [1]. Finally, we plan
to perform a more extensive evaluation of RIoTPot with an emphasis on ICS
environments.

References

1. Barnum, S.: Standardizing cyber threat intelligence information with the struc-
tured threat information expression (STIX). Mitre Corp. 11, 1–22 (2012)

2. Bringer, M.L., Chelmecki, C.A., Fujinoki, H.: A survey: recent advances and future
trends in honeypot research. Int. J. Comput. Netw. Inf. Secur. 4(10), 63 (2012)

3. Censys: Censys search (2021). https://censys.io/
4. Golang: Go language (2021). https://golang.org/
5. Jiang, X., Lora, M., Chattopadhyay, S.: An experimental analysis of security vul-

nerabilities in industrial IoT devices. ACM Trans. Internet Technol. 20(2) (2020).
https://doi.org/10.1145/3379542

6. Kedrowitsch, A., Yao, D.D., Wang, G., Cameron, K.: A first look: using linux con-
tainers for deceptive honeypots. In: Proceedings of the 2017 Workshop on Auto-
mated Decision Making for Active Cyber Defense, SafeConfig 2017, pp. 15–22.
Association for Computing Machinery, New York (2017). https://doi.org/10.1145/
3140368.3140371

7. Mangino, A., Pour, M.S., Bou-Harb, E.: Internet-scale insecurity of consumer inter-
net of things: an empirical measurements perspective. ACM Trans. Manage. Inf.
Syst. 11(4) (2020). https://doi.org/10.1145/3394504

8. Mohammed, M., Elish, M., Qusef, A.: Empirical insight into the context of design
patterns: modularity analysis. In: 2016 7th International Conference on Computer
Science and Information Technology (CSIT), pp. 1–6 (2016). https://doi.org/10.
1109/CSIT.2016.7549474

9. Oosterhof, M.: Cowrie ssh/telnet honeypot (2016). https://github.com/
micheloosterhof/cowrie

10. Research, R.: Project sonar (2021). https://www.rapid7.com/research/project-
sonar/

11. Reti, D., Becker, N.: Escape the fake: Introducing simulated container-escapes for
honeypots (2021)

12. Rist, L., Vestergaard, J., Haslinger, D., Pasquale, A., Smith, J.: Conpot ics/scada
honeypot. Honeynet Project (conpot. org) (2013)

13. ShadowServer.org: Shadowserver.org (2021). https://www.shadowserver.org/
14. SHODAN: Shodan (2021). https://www.shodan.io/
15. Vasilomanolakis, E., et al.: This network is infected: hostage-a low-interaction hon-

eypot for mobile devices. In: Proceedings of the Third ACM Workshop on Security
and Privacy in Smartphones and Mobile Devices, pp. 43–48 (2013)

16. Vasilomanolakis, E., Karuppayah, S., Mühlhäuser, M., Fischer, M.: Hostage: a
mobile honeypot for collaborative defense. In: Proceedings of the 7th Interna-
tional Conference on Security of Information and Networks, SIN 2014, pp. 330–333.
Association for Computing Machinery, New York (2014). https://doi.org/10.1145/
2659651.2659663

17. Vasilomanolakis, E., Srinivasa, S., Mühlhäuser, M.: Did you really hack a nuclear
power plant? An industrial control mobile honeypot. In: 2015 IEEE Conference on
Communications and Network Security (CNS), pp. 729–730. IEEE (2015)

https://censys.io/
https://golang.org/
https://doi.org/10.1145/3379542
https://doi.org/10.1145/3140368.3140371
https://doi.org/10.1145/3140368.3140371
https://doi.org/10.1145/3394504
https://doi.org/10.1109/CSIT.2016.7549474
https://doi.org/10.1109/CSIT.2016.7549474
https://github.com/micheloosterhof/cowrie
https://github.com/micheloosterhof/cowrie
https://www.rapid7.com/research/project-sonar/
https://www.rapid7.com/research/project-sonar/
https://www.shadowserver.org/
https://www.shodan.io/
https://doi.org/10.1145/2659651.2659663
https://doi.org/10.1145/2659651.2659663

RIoTPot: A Modular Hybrid-Interaction IoT/OT Honeypot 751

18. Vetterl, A., Clayton, R.: Bitter harvest: systematically fingerprinting low- and
medium-interaction honeypots at internet scale. In: 12th USENIX Workshop on
Offensive Technologies (WOOT 2018). USENIX Association, Baltimore, August
2018. https://www.usenix.org/conference/woot18/presentation/vetterl

19. Zhang, L., Thing, V.: Three decades of deception techniques in active cyber defense
- retrospect and outlook. Comput. Secur. 106, 102288 (2021). https://doi.org/10.
1016/j.cose.2021.102288. https://www.sciencedirect.com/science/article/pii/S01
67404821001127

https://www.usenix.org/conference/woot18/presentation/vetterl
https://doi.org/10.1016/j.cose.2021.102288
https://doi.org/10.1016/j.cose.2021.102288
https://www.sciencedirect.com/science/article/pii/S0167404821001127
https://www.sciencedirect.com/science/article/pii/S0167404821001127

Towards Automatically Generating Security
Analyses from Machine-Learned Library Models

Maria Kober(B) and Steven Arzt

Fraunhofer Institute for Secure Information Technology, Darmstadt, Germany
{maria.kober,steven.arzt}@sit.fraunhofer.de

Abstract. Automatic code vulnerability scanners identify security
antipatterns in application code, such as insecure uses of library methods.
However, current scanners must regularly be updated manually with new
library models, patterns, and corresponding security analyses. We pro-
pose a novel, two-phase approach called Mod4Sec for automatically gen-
erating static and dynamic code analyses targeting vulnerabilities based
on library (mis)usage. In the first phase, we automatically infer semantic
properties of libraries on a method and parameter level with supervised
machine learning. In the second phase, we combine these models with
high-level security policies. We present preliminary results from the first
phase of Mod4Sec, where we identify security-relevant methods, with
categorical f1-scores between 0.81 and 0.93.

Keywords: Vulnerability scanner · Vulnerability detection · Security
analysis · Specialized domain language · Automated analysis · Mod4Sec

1 Introduction and Motivation

Implementation flaws are prevalent in software. While modern platforms and
operating systems offer powerful APIs for sensitive security operations such as
encryption or authentication, developers often misuse these APIs, leading to
numerous vulnerabilities [1, 2]. Manual approaches like penetration tests or code
reviews can detect such vulnerabilities but require substantial effort. They are
therefore unsuitable for agile development processes with fast release cycles [9].
Automated code scanning [3, 4, 11, 13, 15, 16] can identify known antipatterns
in code, but requires the respective patterns. If a scanner has no support for the
respective API, i.e., no antipatterns to look for, the security vulnerability remains
undetected. Such scanners need to be updated regularly with new antipatterns,
which is largely a manual effort. For example, on popular platforms like Android
more than 13,700 third-party libraries are used in apps additional to the Java
Standard Library and Android SDK, according to our pre-study on 9,373 apps
from the 2020 and 2021 Google Play Store. If only considering libraries that
are used in at least 10% of Android apps, a code scanner must be kept up-to-
date with 65 libraries, yet vulnerabilities regarding other libraries would remain

c© Springer Nature Switzerland AG 2021
E. Bertino et al. (Eds.): ESORICS 2021, LNCS 12973, pp. 752–758, 2021.
https://doi.org/10.1007/978-3-030-88428-4

https://orcid.org/0000-0001-9560-1527
https://orcid.org/0000-0002-5807-9431
https://doi.org/10.1007/978-3-030-88428-4

Towards Automatically Generating Security Analyses 753

undetected. New library versions may become available in frequencies of several
days to months [5, 17], leading to constant requirements for manual maintenance.

In this paper, we present our idea and vision for Mod4Sec, a novel approach
for automatically inferring semantic models of individual libraries and platforms,
i.e., API specifications, and linking them to security policies for program anal-
yses. Library-agnostic security properties such as “cryptographic keys must not
be hard-coded” change rarely. APIs, on the other hand, evolve. We therefore
propose to automatically infer specific library models (e.g., “second parameter
of method encrypt() in class A in library B is a cryptographic key”) and match
them to library-independent security properties (e.g., “RSA keys must be of 2048
bits or more”). This mapping is then used to automatically generate antipatterns
for static and dynamic code analyses. These antipatterns are further processed
to generate analysis code, so that scanners can detect violations of the security
properties in apps that use libraries for which a model has been inferred.

This paper is organized as follows. Section 2 describes details of our vision.
Section 3 presents details on and results of first experiments. Section 4 presents
related work. Section 5 concludes this paper and points out future work.

2 Vision

Our vision is to automatically generate semantic models for libraries and plat-
forms using machine learning, and to use these models to link generic security
assets (keys, passwords, certificates, etc.) to concrete APIs. Thus, we are able
to automatically generate static and dynamic code analyses, thereby reducing
manual effort for tool developers and security analysts.

The core idea behind Mod4Sec is that security properties are derived from
only a handful of core assets and concepts that usually remain unchanged for
years. For example, the concept of a password is the same, regardless of how this
password is used (e.g., for authentication or deriving an encryption key using a
KDF). Likewise, authentication methods that consume passwords are equivalent
from the point of a security scanner, regardless of the target of authentication,
even though the APIs may look differently. We therefore propose to identify
these generic concepts in implementations and documentations of APIs using
machine learning and natural language processing.

In our proposed workflow, a security analyst only needs to reason about
problems within the domain of security, fully abstracting from the concrete
implementation of applications and programming libraries. The analyst spec-
ifies properties in terms of abstract domain knowledge such as “MD-4 must not
be used as cryptographic hash function”. The link back to code, i.e., identifying
what should be checked within an application, is done using the auto-generated
library models. As these models are auto-generated, they can easily be updated
by the tool developer when new or updated libraries are available.

Figure 1 shows an overview of our approach, which consists of two phases.
In the first phase, we generate the library models as explained in Sect. 2.1. In
the second phase, we match them with security policies to generate static and

754 M. Kober and S. Arzt

dynamic analyses as explained in Sect. 2.2. Additionally, developers can give
feedback on the analysis results, increasing the accuracy of the model over time.

Fig. 1. The two phases of our vision. Input data to generate security analyses is denoted
in gray. Data required solely for training is marked by dashed lines (Color figure online).

2.1 Phase 1: Generate Library Models

In the first phase, Mod4Sec uses supervised machine learning to automatically
associate library methods and method parameters with pre-defined categories,
e.g., “encryption” or “authentication” for methods, and “username”, “crypto
key” or “filename” for parameters. The learning algorithm learns on a set of
implementation JAR files and the corresponding JavaDoc JARs. The resulting
Generic Domain Model, an integral part of the Library Model Builder in Fig. 1,
generalizes over all input libraries and is therefore library-agnostic. It can be re-
used for classification whenever new or updated libraries become available. Thus,
obtaining high-quality training data and training the model is a rare task, if not
a one-time effort. Note that we train two different classifiers for method and
parameter classification, thereby reducing complexity, as the set of parameter
labels is category-specific, e.g., “crypto key” is not within “file access methods”.

When classifying a concrete library, Mod4Sec uses the Generic Domain
Model and takes the respective library as input. We call the resulting library-
specific model, which describes the semantics of the individual methods and
parameters inside the library, a Library Model. Thus, utilizing Mod4Sec’s
generic domain model results in one model per provided library and library
version, which can seamlessly be integrated into code scanners and used with
analyses.

2.2 Phase 2: Generate Security Analyses

In the second phase, Mod4Sec uses the library models to automatically generate
static and dynamic code analyses for previously defined security policies. The
key idea is to encode security properties in a language that can be mapped to
specific functionalities in a particular analysis framework such as Soot [8], and
to properties of the library models generated in phase 1 of Mod4Sec.

Towards Automatically Generating Security Analyses 755

Table 1. Categorization results on three security categories.

Category Precision Recall F1-score # Samples

Cryptography 0.92 0.93 0.93 320

Authentication 0.83 0.78 0.81 161

Network/TLS 0.81 0.81 0.81 303

Other 0.99 0.99 0.99 10,412

Our proposed description language SecPLang is declarative, i.e., it defines
which properties should be checked. How properties are evaluated is up to the
specific analysis framework. SecPLang contains basic logic operations, and a
small set of predefined functions and predicates, e.g., has(x) to check whether
a collection x contains items, and values(y) resp. valued(y) to statically resp.
dynamically retrieve all values of parameter y of a program statement. We further
define one auto-generated placeholder for each method parameter label of the
library models, e.g., p-key references parameters labeled as cryptographic keys.

For example, the policy “crypto keys must not be hard-coded” can be encoded
as encryption[not has (values(p-key))] for static analyses. During the anal-
ysis, all API calls that are of type encryption according to the library models of
phase 1 are collected. The placeholders in the Boolean formula are replaced with
the respective statement parameters. If the declaration of the API method is,
e.g., encrypt(input, key, algorithm), and it is called as encrypt(a, b, c)
in the code under analysis, the placeholder p-key in the Boolean formula of the
security property is replaced with b because the second argument is the cryp-
tographic key according to the library model. Evaluating the Boolean formula
only requires invoking the correct building blocks of the analysis framework. In
the example, a value analysis is invoked on variable b, modeled as predefined
values-function in the formula. The predefined has-function checks whether
values returned at least one value, i.e., there is a hard-coded key.

3 Experiments and Preliminary Results

To evaluate the feasibility of our approach, we implemented a prototype for
the first phase of Mod4Sec as described in Sect. 2.1. From the Maven central
repository, we obtained cryptography, network, and authentication libraries. We
hand-annotated 784 security-relevant methods in the Java Standard Library and
in 11 relevant third-party libraries (altogether 3× cryptography, 5× network, 6×
authentication), omitting method parameter annotation. We extracted JavaDoc
and signatures for 11,196 methods with JavaParser. For supervised machine
learning, we transformed input data to bags-of-words and used scikit-learn [12]
with one fully connected neural network having one hidden layer with 16 nodes.

Table 1 presents the results of a stratified ten-fold cross-validation on our data
set. The precision of Mod4Sec is between 0.81 and 0.99 for different categories.
The recall is between 0.78 and 0.99, with an f1-score between 0.81 and 0.99. In

756 M. Kober and S. Arzt

Table 2. Results for five subcategories of cryptography APIs.

Category Precision Recall F1-score # Samples

Cipher-configuration 0.74 0.90 0.81 61

Crypt. Randomness 1.00 0.88 0.93 8

En- & Decryption 0.75 0.71 0.73 21

Key creation 0.89 0.86 0.88 125

Signatures 0.84 0.72 0.78 29

total, more than three-quarters of all methods are categorized correctly and we
are able to correctly identify a high number of security-relevant methods, even
when those are a minority in the analyzed code.

To assess whether finer-grained categories are beneficial, we divided the
cryptography category into several subcategories as shown in Table 21. All sub-
categories have a precision between 0.74 and 1.0, and a recall between 0.71 and
0.9. These numbers indicate that it is possible to correctly distinguish individual
cryptographic functionalities in libraries, making an essential part of the first
phase of Mod4Sec applicable for software analysis.

Note that a simple keyword-search is not sufficient for our purpose. For exam-
ple, the keyword “key” is present, amongst others, in the context of cryptographic
keys, but also in key-value pairs in maps and object builders. When searching
through our dataset for “key”, we found 903 methods, which is almost thrice
as much as there are cryptographic methods of interest and about six times the
number of methods related to cryptographic keys, encryption, or decryption.

4 Related Work

Checking applications for specific misuses of security-sensitive APIs is common
practice [3, 13, 15, 16]. CogniCrypt [6, 7] further assists developers with auto-
matic code generation for using such APIs. FixDroid [11] evaluates code snip-
pets against a database of known insecure code. PQL [10] allows for declarative
queries on code the analyst is familiar with. All of these approaches rely on man-
ually assembled patterns for APIs. In contrast, we propose a general approach
for automatically generating analysis rules, based on a library-agnostic semantic
domain model. SWANASSIST [14] could be integrated in step 1 of Mod4Sec. It
utilizes developer feedback to actively learn security-relevant methods.

5 Conclusion and Future Work

In this paper, we have presented our vision of Mod4Sec for automatically gener-
ating static and dynamic code analyses from generic security properties described
1 Due to space limitations, we only include the most relevant subcategories. Hash and
MAC APIs, for example, have fewer methods in our sample set.

Towards Automatically Generating Security Analyses 757

in our newly introduced API-agnostic language SecPLang. Mod4Sec uses
machine learning for automatically generating library models, which then allow
it to map generic security properties to concrete APIs. We presented first exper-
imental results to demonstrate the feasibility of the first phase of our vision.

As future work, we will provide a full implementation and evaluation of our
vision, including automatic classification for method parameters using machine
learning. We plan to re-evaluate our preliminary results on a larger dataset and
aim to increase Mod4Sec’s precision and recall. Furthermore, we will extend
Mod4Sec with additional categories of methods. We plan to formally describe
SecPLang and extend its scope to more complex security properties. We plan
to build an implementation of the analysis generator for static and dynamic
analyses on top of the Soot program analysis framework [8].

References

1. Chatzikonstantinou, A., Ntantogian, C., Karopoulos, G., Xenakis, C.: Evaluation
of cryptography usage in android applications. In: Proceedings of the 9th EAI
International Conference on Bio-inspired Information and Communications Tech-
nologies (formerly BIONETICS), pp. 83–90 (2016). https://doi.org/10.4108/eai.3-
12-2015.2262471

2. Egele, M., Brumley, D., Fratantonio, Y., Kruegel, C.: An empirical study of crypto-
graphic misuse in android applications. In: Proceedings of the 2013 ACM SIGSAC
conference on Computer and communications security, pp. 73–84 (2013). https://
doi.org/10.1145/2508859.2516693

3. Fahl, S., Harbach, M., Muders, T., Baumgärtner, L., Freisleben, B., Smith, M.:
Why Eve and Mallory love android: an analysis of android SSL (in) security. In:
Proceedings of the 2012 ACM Conference on Computer and Communications Secu-
rity, pp. 50–61 (2012). https://doi.org/10.1145/2382196.2382205

4. Felderer, M., Büchler, M., Johns, M., Brucker, A.D., Breu, R., Pretschner, A.:
Security testing: a survey. In: Advances in Computers, vol. 101, pp. 1–51. Elsevier
(2016). https://doi.org/10.1016/bs.adcom.2015.11.003

5. Ihara, A., Fujibayashi, D., Suwa, H., Kula, R.G., Matsumoto, K.: Understand-
ing when to adopt a library: a case study on ASF projects. In: Balaguer, F., Di
Cosmo, R., Garrido, A., Kon, F., Robles, G., Zacchiroli, S. (eds.) OSS 2017. IAICT,
vol. 496, pp. 128–138. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
57735-7 13

6. Krüger, S., et al.: Cognicrypt: supporting developers in using cryptography. In:
2017 32nd IEEE/ACM International Conference on Automated Software Engi-
neering (ASE), pp. 931–936. IEEE (2017)

7. Krüger, S., Späth, J., Ali, K., Bodden, E., Mezini, M.: CrySL: validating correct
usage of cryptographic APIs. arXiv preprint arXiv:1710.00564 (2017)

8. Lam, P., Bodden, E., Lhotak, O., Hendren, L.: The soot framework for java pro-
gram analysis: a retrospective. In: Cetus Users and Compiler Infastructure Work-
shop (CETUS 2011), October 2011

9. Maqsood, H.M., Bondavalli, A.: Agility of security practices and agile process mod-
els: an evaluation of cost for incorporating security in agile process models. In:
ENASE 2020, pp. 331–338 (2020). https://doi.org/10.5220/0009356403310338

https://doi.org/10.4108/eai.3-12-2015.2262471
https://doi.org/10.4108/eai.3-12-2015.2262471
https://doi.org/10.1145/2508859.2516693
https://doi.org/10.1145/2508859.2516693
https://doi.org/10.1145/2382196.2382205
https://doi.org/10.1016/bs.adcom.2015.11.003
https://doi.org/10.1007/978-3-319-57735-7_13
https://doi.org/10.1007/978-3-319-57735-7_13
http://arxiv.org/abs/1710.00564
https://doi.org/10.5220/0009356403310338

758 M. Kober and S. Arzt

10. Martin, M., Livshits, B., Lam, M.S.: Finding application errors and security flaws
using PQL: a program query language. ACM Sigplan Not. 40(10), 365–383 (2005)

11. Nguyen, D.C., Wermke, D., Acar, Y., Backes, M., Weir, C., Fahl, S.: A stitch in
time: supporting android developers in writing secure code. In: Proceedings of the
2017 ACM SIGSAC Conference on Computer and Communications Security, pp.
1065–1077 (2017). https://doi.org/10.1145/3133956.3133977

12. Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn.
Res. 12, 2825–2830 (2011)

13. Piccolboni, L., Di Guglielmo, G., Carloni, L.P., Sethumadhavan, S.: Crylogger:
Detecting crypto misuses dynamically. arXiv preprint arXiv:2007.01061 (2020)

14. Piskachev, G., Do, L.N.Q., Johnson, O., Bodden, E.: SwanSwan assist: semi-
automated detection of code-specific, security-relevant methods. In: 2019 34th
IEEE/ACM International Conference on Automated Software Engineering (ASE),
pp. 1094–1097. IEEE (2019). https://doi.org/10.1109/ASE.2019.00110

15. Saccente, N., Dehlinger, J., Deng, L., Chakraborty, S., Xiong, Y.: Project achilles:
a prototype tool for static method-level vulnerability detection of java source code
using a recurrent neural network. In: 2019 34th IEEE/ACM International Confer-
ence on Automated Software Engineering Workshop (ASEW).,pp. 114–121. IEEE
(2019). https://doi.org/10.1109/ASEW.2019.00040

16. Shuai, S., Guowei, D., Tao, G., Tianchang, Y., Chenjie, S.: Modelling analysis and
auto-detection of cryptographic misuse in android applications. In: 2014 IEEE 12th
International Conference on Dependable, Autonomic and Secure Computing, pp.
75–80. IEEE (2014). https://doi.org/10.1109/DASC.2014.22

17. Suwa, H., Ihara, A., Kula, R.G., Fujibayashi, D., Matsumoto, K.: An analysis of
library rollbacks: a case study of java libraries. In: 2017 24th Asia-Pacific Software
Engineering Conference Workshops (APSECW), pp. 63–70. IEEE (2017). https://
doi.org/10.1109/APSECW.2017.25

https://doi.org/10.1145/3133956.3133977
http://arxiv.org/abs/2007.01061
https://doi.org/10.1109/ASE.2019.00110
https://doi.org/10.1109/ASEW.2019.00040
https://doi.org/10.1109/DASC.2014.22
https://doi.org/10.1109/APSECW.2017.25
https://doi.org/10.1109/APSECW.2017.25

Jamming of NB-IoT Synchronisation Signals

Gabriela Morillo(B) and Utz Roedig

School of Computer Science and Information Technology, University College Cork,
Cork, Ireland

{g.morillo,u.roedig}@cs.ucc.ie

Abstract. Narrowband-Internet of Things (NB-IoT) is a relatively
novel Low Power Wide Area Network (LPWAN) radio technology used to
deploy Internet of Things (IoT) infrastructures at scale. It is important
that such deployments are resilient to attacks. In this work we describe
how interference on the NB-IoT synchronisation signals - the initial com-
munication steps - can be used to implement an effective Denial of Service
(DoS) attack. Interference with the synchronisation prevents communi-
cation and may also allow an attacker to force a device to connect with
a specific base station.

1 Introduction

Narrowband-Internet of Things (NB-IoT) is a Low Power Wide Area Network
(LPWAN) radio technology defined by the 3rd Generation Partnership Project
(3GPP) standard, Release-13 [1]. NB-IoT aims to support a large number of
low-cost, low energy consumption, and low data rate devices operated in a large
enhanced coverage area. NB-IoT is increasingly seen as the preferred future IoT
technology as it is deployed as part of the existing Long-Term Evolution (LTE)
infrastructure and uses a licensed band that enables reliable and future-proof
deployments. NB-IoT provides several security mechanisms based on established
mechanisms defined for LTE [2]. However, privacy and security in NB-IoT have
yet received little research attention.

In this work we consider an adversary using a jamming device to disrupt
NB-IoT communication. We consider an intelligent jammer that targets the ini-
tial communication steps of NB-IoT communication to have a maximum impact.
Specifically we describe and investigate how a jammer can interfere with the Nar-
rowband Primary Synchronisation Signal (NPSS) and Narrowband Secondary
Synchronisation Signal (NSSS) which are used to initiate the NB-IoT contention-
based random-access procedure. NPSS and NSSS perform time and frequency
synchronisation, cell identity detection and acquisition of frame infrastructure
information. NPSS is used to obtain symbol timing and Carrier Frequency Off-
set (CFO), while NSSS is used to obtain the Narrowband Physical Cell ID (NB-
PCID). Interference with NPSS and NSSS can prevent an NB-IoT device to initi-
ate communication with a base station (eNodeB). Furthermore, our experiments
indicate that careful design of the interference signal could allow an attacker to
force the User Equipment (UE) to recognise a specific NB-PCID.
c© Springer Nature Switzerland AG 2021
E. Bertino et al. (Eds.): ESORICS 2021, LNCS 12973, pp. 759–763, 2021.
https://doi.org/10.1007/978-3-030-88428-4

https://doi.org/10.1007/978-3-030-88428-4

760 G. Morillo and U. Roedig

Existing work has focused on LTE specific attacks. For example, Eygi et al. [3]
describe a countermeasure against smart jamming attacks on LTE synchronisa-
tion signals. The authors point out the vulnerability of LTE to jamming attacks
due to the broadcast nature of the channel. Their work is focused specifically on
the LTE downlink synchronisation signals. As countermeasure a jamming detec-
tion is proposed based on the Neyman-Pearson theorem. Simulation results show
lower jamming success and better cell id detection. Labib et al. [4] describe a
mechanism to enhance the immunity of LTE Systems against spoofing. The work
analyses spoofing of the LTE synchronisation signal where standard-compliant
primary and secondary synchronisation sequences are transmitted by a fake cell.
Several mitigation techniques are proposed. The simulation results show that
LTE control channel spoofing is an effective DoS attack during the cell selection
process.

To the best of our knowledge, there has not yet been an investigation of
smart jamming attacks on the synchronisation signals in NB-IoT.

2 The UE and eNodeB Synchronisation Process

The full specification of the NB-IoT protocol was completed in June 2016 and
is described in [5]. Here we describe only the synchronisation procedure.

When an NB-IoT device (the UE) becomes active, it synchronises with a
base station (eNodeB) to establish a communication link. First, the UE needs
to identify a suitable cell to attach to, and for this purpose, parameters such as
symbol, subframe, and frame timing and carrier frequency synchronisation must
be obtained.

The NB-IoT random access procedure is illustrated in Fig. 1. The process
starts with the transmission of the NPSS and NSSS which are used by the
UE to perform time and frequency synchronisation, cell identity detection and
acquisition frame infrastructure information. The NPSS is used to obtain symbol
timing and CFO, while the NSSS is used to obtain the NB-PCID.

After this step, the UE acquires the Master Information Block (MIB) carried
by the Narrowband Broadcast Channel (NPBCH) which is transmitted in sub-
frame 0 in every transmitted frame. The MIB provides scheduling information
for the uplink and downlink data channels.

Then, the random-access procedure initiates when the UE sends a ran-
dom access preamble through Narrowband Physical Random Access Channel
(NPRACH). Several messages are exchanged between UE and eNodeB through
the Narrowband Physical Downlink Shared Channel (NPDSCH) and Narrow-
band Physical Uplink Shared Channel (NPUSCH) to obtain scheduling infor-
mation and identity parameters that allow the connection establishment [6].

3 Jamming the NB-IoT Synchronization Process

The NB-IoT standard defines that NPSS and NSSS are transmitted in specific
subframes on an 80 ms repetition interval. Both signals are designed to allow

Jamming of NB-IoT Synchronisation Signals 761

Fig. 1. NB-IoT random access procedure. Initial steps of a UE to establish communi-
cation with an eNodeB.

a device to use a unified synchronisation algorithm during initial acquisition
without knowing the specific NB-IoT operation mode [6]. Therefore, to avoid
collisions with LTE subframes, subframe 5 is used for the NPSS and subframe 9
is used for the NSSS. Also, in order to avoid a potential collision with the LTE
Physical Downlink Control Channel (PDCCH), the subframes that carry NPSS
or NSSS do not use the first three Orthogonal Frequency Division Multiplexing
(OFDM) symbols. Thus, it leaves only 11 OFDM symbols per subframe available
for NPSS and NSSS. The NPSS detection by the UE requires that the signal
is detectable even with a very large frequency offset. Hence, all cells in an NB-
IoT network use the same NPSS sequence. Consequently, a device only needs to
search for one specific known NPSS sequence. Each of the 11 OFDM symbols
in an NPSS subframe carries a copy of the base sequence. NB-IoT supports
504 unique NB-PCID indicated by the NSSS. Four different NSSS sequences are
transmitted in an 80 ms repetition interval.

The NB-PCIDs is determined by a correlation algorithm using NPSS and
NSSS which defines the peak correlation magnitude PEAK as the sum of the
peak correlation magnitudes from time-domain NPSS detection and frequency-
domain NSSS detection. PEAK is a scalar indicating the peak magnitude of the
correlation used to detect a cell.

Adding a jamming signal to the NPSS and NSSS signal may have the effect
that the correlation algorithm is still able to produce a result but the determined
NB-PCID is incorrect. Jamming can be applied only to the NPSS and NSSS
signal without the need to continuously jam the entire transmission channel.

4 Jamming Evaluation

To test the aforementioned jamming attack on the synchronisation signal, we
use Matlab [7] with the LTE-Toolbox. The simulation fully synchronises, demod-
ulates and decodes an NB-IoT downlink signal. A time-domain waveform of a

762 G. Morillo and U. Roedig

Fig. 2. Jamming attack on NB-IoT: (a) Standard transmission (b) Transmission with
Jamming signal.

Reference Measurement Channel (RMC) is generated for an NPDSCH; the Mat-
lab class used for this purpose is NBIoTDownlinkWaveformGenerator. Then, we
introduce a jamming signal generated using a downlink 4G RMC waveform where
we can adjust the signal power. The resulting signal received by the UE is the
sum of the generated signal obtained from the base station plus the jamming
signal.

Following the example, the frequency offset estimation and correction are per-
formed through the lteFrequencyOffset and lteFrequencyCorrect methods. After-
wards, OFDM demodulation and channel estimation are executed. Finally, to
decode the MIB, the RE corresponding to the NPBCH from the first subframe
across all receive antennas and channel estimates are extracted.

In our simulation, if the power of the interference signal is above 13dB a suc-
cessful modification of the NB-PCID is observed. From the experiment results,
it is observed that if the power on the jammer is insufficient, the communication
with the specific eNodeB is inhibited because the UE is not able to decode the
MIB and get the scheduling information.

Figure 2(a) shows the transmission signal without a jamming signal. Here,
the cell ID is accurately detected [NNCellID: 120], and the MIB is decoded
correctly. At this point, the MIB parameters are extracted (NNCellID, NB Ref-
erence Signal, Number of Sufbrame, HyperSuframe, Operation Mode, Additional
Transmission SIB1).

In contrast, scenario Fig. 2(b) shows the signal with jammer, where it is
observed that it is not possible to decode the MIB, and a wrong cell ID is
displayed [NNCellID: 371].

5 Conclusions

We have shown that it is possible to interfere with the synchronisation signal
used by NB-IoT devices (the UE) to establish communication with the base
station. Thus, a simple selective jamming device can prevent communication of
NB-IoT devices. Furthermore, our experiments indicate that careful design of the

Jamming of NB-IoT Synchronisation Signals 763

interference signal might enable an attacker to force the UE to recognise a specific
NB-PCID. In our next steps, we will analyse how the jamming signal should be
designed for this purpose. We also plan to investigate methods to detect the
jamming of synchronisation signals and methods to make the detection of the
NB-PCID more robust.

Acknowledgement. This publication has emanated from research conducted with
the financial support of Science Foundation Ireland under Grant number 18/CRT/6222.
For the purpose of Open Access, the author has applied a CC BY public copyright
license to any Author Accepted Manuscript version arising from this submission.

References

1. Third Generation Partnership Project, 3GPP., : Cellular system support for ultra-
low complexity and low throughput Internet of Things (CIoT) (Release 13). In: Tech-
nical Specification Group GSM/EDGE Radio Access Network, 3GPP TR 45.820
V13.1.0. (2015)

2. Cao, J., Yu, P., Ma, M., Gao, W.: Fast authentication and data transfer scheme for
massive NB-IoT devices in 3GPP 5G network. IEEE IoT J. 6, 1561–1575 (2019).
https://doi.org/10.1109/JIOT.2018.2846803

3. Eygi, M., Karabulut-Kurt, G.: A countermeasure against smart jamming attacks on
LTE synchronization signals. J. Commun. 15, 626–632 (2020)

4. Labib, M., Marojevic, V., Reed, J., Zaghloul, A.: How to enhance the immunity of
LTE systems against RF spoofing. In: 2016 International Conference on Comput-
ing, Networking and Communications (ICNC), pp. 1–65. (2016). https://doi.org/
10.1109/ICCNC.2016.7440650

5. Third Generation Partnership Project Standardization of NB-IoT Completed.
https://www.3gpp.org/news-events/3gpp-news/. Accessed 8 Jul 2021

6. Liberg, O., Sundberg, M., Wang, YO., Bergman, J., Sachs, J., Wikstrom, G.: Cellu-
lar Internet of Things from Massive Deployments to Critical 5G Applications, 2nd
edn. (2020)

7. MATLAB: 9.7.0.1190202 (R2020b). The MathWorks Inc., Natick, Massachusetts
(2020)

https://doi.org/10.1109/JIOT.2018.2846803
https://doi.org/10.1109/ICCNC.2016.7440650
https://doi.org/10.1109/ICCNC.2016.7440650
https://www.3gpp.org/news-events/3gpp-news/

TPRou: A Privacy-Preserving Routing for
Payment Channel Networks

Zijian Bao1 , Qinghao Wang1,2 , Yongxin Zhang2,4 , Hong Lei1,3(B) ,
and Wenbo Shi2

1 Hainan Nanhai Cloud Holding Co., Ltd., Chengmai 571924, China
{zijian,qinghao,leihong}@oxhainan.org

2 School of Computer Science and Engineering, Northeastern University,
Shenyang 110001, China

shiwb@neuq.edu.cn
3 School of Cyberspace Security, Hainan University, Hainan 570228, China
4 Oxford-Hainan Blockchain Research Institute, Chengmai 571924, China

Abstract. Although cryptocurrencies have achieved great success in
recent years, building large-scale fast payments is still a challenge. Pay-
ment channel networks (PCNs), as a practical solution to resolve this
problem, can realize numerous off-chain settlements of transactions with-
out heavy on-chain operations. The core of PCN is a routing scheme that
discovers transaction paths with sufficient funds between the sender and
receiver. However, the leakage of private information (e.g., the identity of
senders and receivers, transaction value) becomes one tricky issue. In this
work, we proposed TPRou, a privacy-preserving PCN routing scheme
leveraging trusted execution environments (TEEs), which can provide
broader privacy guarantees than the state-of-the-art routing schemes.
TPRou constructs redundant paths with different receivers to hide the
identity of the receiver. Moreover, TPRou introduces a novel identity
information transfer scheme, called an encrypted identity chain, to hide
the identity of the sender and the receiver from the intermediate nodes
in the payment path. Based on security analysis and performance eval-
uation, our result demonstrates that TPRou is able to achieve privacy-
preserving payment with minimal overhead.

Keywords: Payment channel networks · Routing · Trusted execution
environment (TEE) · Intel software guard extensions (SGX) ·
Blockchain

1 Introduction

Although cryptocurrencies have been widely concerned, their application is
limited by pool scalability. For example, limited by the consensus mechanism

This study is supported by Finance Science and Technology Project in Hainan Province
(No. ZDKJ2020009), the National Natural Science Foundation of China (Nos. 62072093
and U1708262), the Fundamental Research Funds for the Central Universities (No.
N172304023).

c© Springer Nature Switzerland AG 2021
E. Bertino et al. (Eds.): ESORICS 2021, LNCS 12973, pp. 764–769, 2021.
https://doi.org/10.1007/978-3-030-88428-4

https://orcid.org/0000-0002-2145-9713
https://orcid.org/0000-0002-2123-440X
https://orcid.org/0000-0003-1415-5831
https://orcid.org/0000-0002-6564-1568
https://orcid.org/0000-0003-2275-480X
https://doi.org/10.1007/978-3-030-88428-4

TPRou: A Privacy-Preserving Routing for Payment Channel Networks 765

ensuring the data consistency in an untrusted environment, Bitcoin can only
process 7 transactions per second(tps), demonstrating a huge gap with the real
scenarios of a payment system (e.g., Visa handles 1500 tps).

The payment channel is a promising proposal to improve cryptocurrency
scalability. It is a layer-two solution, combining on-chain and off-chain operation,
to reduce blockchain burden while keeping the normal payment function. First,
two users build a payment channel with a transaction to lock money on the
chain. Then, they can reallocate this locked money off-chain fastly. Finally, one
can send a transaction to close the channel with the latest money allocation
plan.

Payment channels can be linked together to form a payment channel net-
work (PCN), such as Lightning Network in Bitcoin. The core of PCN is a
routing scheme that discovers payment paths between the sender and receiver.
The existing PCN routing schemes can be classified into non-landmark and
landmark-based schemes, according to the participation of noted nodes named
landmarks. In the non-landmark schemes, the user itself is responsible for rout-
ing, introducing a heavy overhead of computation, storage and communication.
The landmark-based schemes are more popular because it frees the users from
these burdens. However, the landmark will acquire sensitive information such as
the transaction value and the identity of the senders and receivers.

To tackle this problem, Moreno-Sanchez et al. [2] employ secret sharing and
multi-party secure computation technologies to hinder transaction value. More-
over, SpeedyMurmurs [3] makes a further effort by providing higher overall per-
formance while protecting the identity of the receiver. However, SpeedyMurmurs
just split the value of the transaction without further protecting it, which raises
the risk of privacy leakage. Resorting to landmarks to implement PCN rout-
ing while considering identity and transaction value privacy is a problem worth
studying.

In this work, we present TPRou, a landmark-based routing scheme, finding
the feasible paths and enable multi-hop payment with a manner of privacy-
aware. It can provide broader privacy guarantees than the state-of-the-art rout-
ing schemes. Specifically, TPRou enforces the confidential data of routing in the
trusted execution environment (TEE) controlled by the landmark node to pre-
vent privacy leakage. To hide the receiver, TPRou constructs redundant paths
with different receivers in the TEE. Moreover, TPRou introduces a novel iden-
tity information transfer scheme, called an encrypted identity chain, which is
compatible with the multi-hop payment. It is capable of hiding the identity of
the sender and the receiver from the intermediate nodes in the payment path.
Finally, the security analysis and performance evaluation show that TPRou is
able to achieve privacy-preserving payment with minimal overhead.

2 Our Design

We describe the key ideas of TPRou, including the preparation, path building
and executing payment stages. The work flow is shown in Fig. 1. TPRou con-
tains following entities: users (e.g., senders, receivers and intermediate users) and

766 Z. Bao et al.

TEE-based landmarks (TLs). Since our scheme uses Intel SGX as the instance
of TEE, we will default that TEE supports the features provided by SGX [1].

Fig. 1. An illustrative example of the path building stage of TPRou: Black lines
show communications between the senders and TLs. Blue lines show communications
between intermediate users and TLs. We consider a payment from a sender to a receiver.
1 A sender sends a request to TL for a path to pay. 2 The TL searches the interme-
diate users and asks them if they can meet the request of the sender. 3 The TL gives
the sender a response including the feasible path.

Preparation Stage: In this stage, preparations are mainly carried out, such
as TL nodes’ joining the payment channel network, broadcasting their identities
and related public keys to the entire network, and declaring that they will provide
routing services for users. Any node can use remote attestation to authenticate
the TL’s identity and the code in the TEE to ensure trustworthiness. Moreover,
a secure communication channel can be constructed between nodes and TLs. TL
maintains a global topology of payment channel routing.

Path Building Stage: The sender sends a multi-hop routing request to the TL
(1 in Fig. 1). Then, TL constructs multiple payment paths (one is the real path
and others are the redundant paths with pseudo receivers) according to the exist-
ing topology and verifies whether the path nodes meet the routing conditions,
such as routable value and transaction fees (2 in Fig. 1). Note that TL executes
the breadth first search (BFS) algorithm in the TEE to construct the shortest
path from the sender to the receiver. TL needs to record the round number of
the enquiry to prove that the TEE owner does not deliberately abandon the
path. If an available path is found, TL will enter the next stage. Otherwise, TL
will inform the sender that there is no proper path (3 in Fig. 1).

Executing Payment Stage: In this stage, TL mainly informs the sender of
path node information (3 in Fig. 1), including node identity and transaction fees.
The sender builds a multi-hop payment request based on the above information.

TPRou: A Privacy-Preserving Routing for Payment Channel Networks 767

In particular, to ensure the identity privacy of the sender and receiver among the
intermediate users, the encrypted identity chain is designed. The sender built it
with the nodes’ public keys in an order from the receiver to the sender. The form
of encrypted identity chain as follows:

CreIDi =

{
{IDi+2, CreIDi+1}PKi+1, i ∈ [0, n − 3]
{IDn}PKi+1, i = n − 2

For example, in the path {nodesed, node1, node2, ..., noden−2, noderec}, the
node4 will receive the {ID5, CreID4PK4

} from node3. The node4 decrypts it
with its secret key, obtains ID5 (i.e., its next hop) and CreID4 (i.e., the content
for its next hop).

3 Security Analysis

In this section, we give a brief analysis to show how our scheme can achieve
privacy protection. The Table 1 shows the comparison of PCN routing schemes.

Table 1. The comparison of PCN routing schemes

SilentWhisper[2] SpeedyMurmurs[3] Spider[4] TPRou

Types Landmark Landmark Non-Landmark Landmark
Sender’s privacy -

Receiver’s privacy -
Transaction value privacy

means that the schemes has the function, while means not. means the schemes
provides limited functionality.

Sender Privacy and Receiver Privacy. We improve the privacy-preserving of
PCN routing in two ways. On the one hand, the confusion technique is used to
hinder the identity of the receiver from the landmark. When sending a multi-hop
payment request to the landmark, the sender sets multiple receivers in the Path
building stage, so that landmark is impossible to directly determine which
node is the real receiver. In previous work [2], the landmark only communicates
with nodes in one path, it can easily determine the identity of the receiver. On
the other hand, the encrypted identity chain is adopted to hinder the identity of
the sender and the receiver from intermediate nodes. The next hop is encrypted
by the node’s public key, and only itself can decrypt it. Intermediate nodes only
learn their neighbours (i.e., last hop and next hop) rather than the whole path.

Value Privacy. TPRou achieves value privacy whether the path exists or not. If
the path exists, the transaction amount is added to the encrypted identity chain,
and the remaining nodes cannot decrypt it. Otherwise, the transaction amount
is encrypted by the key from TEE, and the TEE platform holder cannot decrypt
it. In work [3], the transaction amount is divided into pieces rather than the
protection of cryptography technology.

768 Z. Bao et al.

4 Performance Evaluation

(a) Time cost comparisons between SGX
and non-SGX environments

(b) Time cost of the encrypted identity
chain algorithm with different hops

Fig. 2. The results of performance evaluation

To analyze the efficiency of TPRou, we implement our scheme using Intel
SGX as the instance of TEE, and evaluate the performance of it. First, we
implemented the BFS-based routing algorithm with different numbers of nodes
(where 25,000 is similar to the number in Bitcoin’s Lightning Network) in the
SGX and non-SGX environment. Figure 2(a) shows that the execution time in
SGX requires higher overhead, but such overhead is acceptable as several SGX-
enabled landmarks that are profit-driven can cover the whole PCN.

Then, we implemented the encrypted identity chain algorithm based on the
ECC algorithm (note that our scheme is compatible with any signature algorithm
supported on any blockchain) and tested the overhead of multiple payments
with different hop counts (2 to 7 hops which are the common range of the
Lightning Network). Figure 2(b) shows the operation overhead of the sender
(encryption) and the intermediate node (decryption). The encryption overhead
increases linearly as the number of hops increases. And the decryption overhead
is constant because each node only needs to decrypt once. In summary, our
scheme is able to achieve privacy-preserving payment with minimal overhead.

5 Conclusion

In this work, we propose TPRou, a privacy-preserving payment channel network
routing scheme. Thanks to TEE, the transaction value privacy is protected from
the landmarks. To hide payment receivers, TPRou constructs redundant paths
with different receivers in the TEE. We design an encrypted identity chain to
hide transaction information in the payment process. The experiment shows
that TPRou achieves privacy protection while maintaining low computation
overhead.

TPRou: A Privacy-Preserving Routing for Payment Channel Networks 769

References

1. Costan, V., Devadas, S.: Intel SGX explained. IACR Cryptol. ePrint Arch.
2016(86), 1–118 (2016)

2. Malavolta, G., Moreno-Sanchez, P., Kate, A., Maffei, M.: SilentWhispers: enforcing
security and privacy in decentralized credit networks. In: 24th Annual Network and
Distributed System Security Symposium, NDSS (2017)

3. Roos, S., Moreno-Sanchez, P., Kate, A., Goldberg, I.: Settling payments fast and
private: efficient decentralized routing for path-based transactions. In: 25th Annual
Network and Distributed System Security Symposium, NDSS (2018)

4. Sivaraman, V., et al.: High throughput cryptocurrency routing in payment channel
networks. In: 17th USENIX Symposium on Networked Systems Design and Imple-
mentation, NSDI (2020)

Determining Asset Criticality in Cyber-
Physical Smart Grid

Yazeed Alrowaili(&), Neetesh Saxena, and Pete Burnap

School of Computer Science and Informatics, Cardiff University, Cardiff, UK
{alrowailiyf,saxenan4,burnapp}@Cardiff.ac.uk

Abstract. Cybersecurity threats in smart grids have incredibly increased in the
past years, and there is a strong need to protect these critical systems. Moreover,
cyber-risk assessment and determining asset criticality are needed to apply the
best remediation plan if the system is compromised. Still, due to the hetero-
geneity between operation technology (OT) and information technology, it is
not easy to protect such a system altogether. Hence, the criticality of OT
resources should be identified by their characteristics, helping operators
understand that different assets can cause additional damage and require further
protection or need more vital remediation plans. In this work, we proposed a
methodology that can identify and indicates the frequency and impact of an asset
in the system to determine its criticality. Moreover, the effectiveness and fea-
sibility of the proposed method are evaluated by a 12-bus power system using
the PowerWorld simulator by performing attacks on critical assets such as cir-
cuit breakers and evaluated their impact on the physical system. Finally, the test
results demonstrate that targeting the most critical assets identified can severely
impact the system while targeting the least critical assets is manageable.

Keywords: Smart grid � Cyber risks � Critical assets � Attack impact � OT

1 Introduction: Context and Motivation

Smart grids (SGs) can be classified as one of the many types of critical infrastructure.
Moreover, it can monitor the flow of measurement units such as power from generation
to consumption and match generation flow in real-time or near real-time by limiting
and/or controlling any electrical load [1]. It provides control automation and transmit
power from generation plants to transmission lines, distribution substations, and later to
the consumers. Furthermore, cybersecurity threats targeting these systems have
incredibly increased, and the failure to protect these OT assets will cause a significant
impact [2]. According to the research analysis of the cyber-attack on the Ukrainian
Power Grid done by E-ISAC and SANS ICS, on Dec. 23, 2015, there was a service
outage on three energy companies that affected 225,000 customers for 3–7 h in 103
cities [3]. Moreover, the current focus on protecting such a system is either specified on
listing the possible attacks or attack paths that can occur on the system or classifying
the criticality of ICS assets from an IT or business perspective [4]. Yet, there is little
focus on criticality evaluation based on the damage that can occur after a successful
attack on OT assets under physical processes.

© Springer Nature Switzerland AG 2021
E. Bertino et al. (Eds.): ESORICS 2021, LNCS 12973, pp. 770–776, 2021.
https://doi.org/10.1007/978-3-030-88428-4

https://doi.org/10.1007/978-3-030-88428-4

Contribution. Firstly, we proposed a new method that identifies and determines the
criticality of OT assets within the physical system. Secondly, we evaluated the pro-
posed method using the PowerWorld with a 12-bus case by performing attacks on
critical assets, such as circuit breakers, and measured their impact on the physical
system. Finally, we analysed the damage when the most critical and the least critical
assets are zero-day at-tacked, gaining unauthorised access to the system by exploiting
software vulnerability [5].

2 Related Work

Attacks targeting assets at physical level are challenging to deal with, as evaluating
assets criticality in a SG system should be specific to its characteristics. In this
direction, Hasan et al. [6] proposed a method to detect and evaluate paths to critical
energy delivery system nodes with network heterogeneity. However, the work uses
logs and host logs, which mostly exist in IT systems. Corallo et al. [9] proposed a
metric to evaluate assets criticality in the context of industry 4.0, aiming to recognise
and assess the critical assets in ICS to protect them against cyber threats. However, this
work was mainly focused on what impact can occur from a business perspective and
quite limited in terms of offering a comprehensive evaluation for assets criticality in
OT. Crespo et al. [10] proposed criticality evaluation in power line systems to offer a
reliable, fast-maintained process in these systems by performing asset criticality
evaluation and use the collected information to update the appropriate maintenance
plan. Nevertheless, this work concentrates on assets maintenance strategy and deter-
mining its criticality they deal with, and the evaluation was also conducted on limited
nodes. Recently, Vallant et al. [7] offer risk assessment methodology by identifying all
possible vulnerabilities to cyber secure SG systems. However, the work focuses
potential threats and the likelihood of successful attacks only. In order to fill the gaps in
identifying asset criticality in OT systems and evaluating cyber risks impact on the
physical systems, we not only proposed a method for discovering OT assets with most
and least criticality, but also evaluating their impact on smart grid system using
PowerWorld simulator.

Fig. 1 (a) Smart grid substation system model. (b) 12-bus power system case normal scenario

Determining Asset Criticality in Cyber-Physical Smart Grid 771

3 Approach

Our aim is to propose a method that can identify the most critical assets in the physical
system and evaluates adverse impact that may occur when the system is compromised.

3.1 System Model and Simulation Scenario

Figure 1(a) presents a power substation system model where an adversary can target
critical assets such as circuit breakers or transformers to create physical and/or oper-
ational damage to the system. Further, Fig. 1(b) shows a test case of a 12-bus system
regularly operated with normal scenario on the Powerworld simulator. Moreover, this
case was used to show this study on critical components, and it contains 12 buses, 3
generators, 10 breakers and one load. Furthermore, the focus is identifying the most
critical asset (circuit breakers), seen as red squares. When an adversary attacks critical
circuit breakers, it will cause all generators to increase their reactive power (Mvar),
consequently reducing system reliability and efficiency, making the system to no longer
supply load, which can cause a blackout [8].

3.2 Proposed Method

We present the proposed method to determine criticality of each asset in the smart grid
system and evaluate their cyber impact using PowerWorld tool. This method can be
generalized to other cyber-physical systems considering relevant devices and OT
operational impact. Further, identify most and least critical assets (scanning devices and
apply our method) and then apply risk assessment methodologies to analyse cyber
risks, and evaluate their impact (e.g., simulation) on physical systems. In our scenario,
we determine each circuit breaker based on its frequent occurrence in use while sup-
plying power from a generator to the load using a specified path. Moreover, this can be
applied by identifying all possible P paths that a generator (i) uses to transmit the power
as per the load requirement, then assess how many times (how frequently) a circuit
breaker (i) Cbi is used in all paths. The criticality can be calculated as:

Criticality ¼ Cbi=P ð1Þ

Algorithm1 Calculate Criticality of an Asset in Smart Grid
Input: All paths P for generator (i) & Number of frequent uses of Cbi in all paths.
Output: Criticality score for Cbi linked to a specified generator.
1: Let P denote total number of paths generator (i) uses to transmit the power to the load.
2: Let Cbi indicate how many times circuit breaker (i) has been used in all paths P.
3: Applying Equation (1) listed above. (where 0 ≤ score ≤ 1)
4: if (Cbi score is > 0.5 (meaning that Cbi has appeared in more than half of paths)) then
5: Declare most critical asset.
6: else
7: Declare least critical asset.

772 Y. Alrowaili et al.

Table 1 shows the frequent use of circuit breakers in all paths for generators 1, 2,
and 3. Moreover, applying Algorithm 1 in all generators with the giving data will
indicate that circuit breakers (D, F, G, K) are considered the critical asset for generator
1, and for generator 2 are (C, G, K).Moreover, circuit breaker (L) is considered critical
as the other breakers since it is the only breaker used in a specific path with generator
3. Therefore, the most critical circuit breakers in this 12-bus system test case are (D, F,
G, C, K, L).

4 Experimental Results and Evaluation

This section shows an evaluation of our methodology when targeting the system’s
critical assets with zero-day attack and monitor generators reactive power (Mvar) for
any changes.

4.1 System Operations Under No Attack Scenario

Table 2 shows generators information under a normal scenario, indicating that the
measurements of (Gen MW) and (Gen Mvar) are normal and the system is under
control, as shown in Fig. 1. We have kept Gen MW constant for our experiments and
observing Gen Mvar values when targeting most vs. least critical assets in the system.

Table 1. Shows all possible paths and circuit breakers that existed in each path generator (1,2,3)
uses to transmit power to load.

ID A B C D E F G H L K

Gen1 Path 1 ✓ ✓ ✓ ✓ ✓ ✓

Path 2 ✓ ✓ ✓

Path 3 ✓ ✓ ✓ ✓ ✓

Gen2 Path 1 ✓ ✓ ✓ ✓ ✓

Path 2 ✓ ✓ ✓ ✓

Path 3 ✓ ✓ ✓ ✓

Gen3 Path 1 ✓

Path 2 ✓ ✓ ✓ ✓ ✓

Table 2. Generators measurements on normal scenario

ID Number of bus Name of bus Gen MW Gen Mvar

1 10 10 36.00 1.23
2 20 20 72.00 1.88
3 30 30 72.00 2.97

Determining Asset Criticality in Cyber-Physical Smart Grid 773

4.2 System Operations Under Attack Scenario

Table 3 shows generators measurements when targeting the most critical circuit
breakers [(F, L), C, D]. It can be seen that compromising the most critical breakers
made the reactive power (Gen Mvar) for related generators increasing highly, which
can cause overloaded transmission lines and/or overheating, as demonstrated in Fig. 2.
For example, opening F and L circuit breakers (for generator 3) increases Gen Mvar
(44.13 and 12.81) for generator 1 and 2, respectively, while it is further decreased for
generator 3 (2.74) as compared to original Gen Mvar values from Table 2. As a result,
line 10–20 and 10–33 are overloaded with 144% and 183%, respectively. This is true
for other two cases as reflected in Fig. 2, when a circuit breaker C and D are opened in
each case, which resulted into overloading lines 10–33 and 20–34 with 108%.

Further, Table 4 shows generators’ measurements when targeting some of the least
critical circuit breakers. Moreover, it can be seen that compromising the least critical
breakers made the reactive power (Gen Mvar) for relevant generators increase slightly.
Yet, it can be seen in Fig. 3 that the system is under control, and there are no threats or
overload in transmission lines. As we can observe, line 10–20 is disconnected after
opening A and B circuit breakers, whereas the lines 20–34 and 10–33 are with 72% and
36% capacity, respectively, once H circuit breaker is further opened.

Table 3. Generator’s measurements when targeting most critical circuit breaker (D), (C) or
(F, L)

Gen
ID

Gen MW
for (F, L)

Gen Mvar
for (F, L)

Gen MW
for (C)

Gen Mvar
for (C)

Gen MW
for (D)

Gen Mvar
for (D)

1 36.00 44.13 36.00 8.47 36.00 0.65
2 72.00 12.81 72.00 1.60 72.00 6.51
3 72.00 2.74 72.00 5.83 72.00 5.88

Fig. 2 Attacker compromises most circuit breakers in respective order (F, L), (C), and (D)

774 Y. Alrowaili et al.

5 Conclusion and Future Work

In conclusion, this work has summarised the importance of protecting critical infras-
tructure with smart grid as a case study. Moreover, it emphasises an approach for
determining and evaluating the criticality of assets located in OT at physical level.
Furthermore, a simulation approach to evaluate the criticality of the physical smart grid
system under attack scenarios is also presented, which reflects the potential impact on
the physical system. After determining critical assets, our results show that targeting the
most critical assets identified in this work can severely compromise the system, making
transmission lines to be overloaded beyond their capacities. while targeting the least
critical assets is manageable and transmission lines are within the specified range along
with stability of the overall system. In the future, we aim to extend this work to
determine critical assets at higher levels with a scalable system (e.g., 37-bus case).
Moreover, we aim to build a comprehensive methodology to compute and quantify
criticality for assets starting from enterprise until the process level assets associated
with processes and operations.

Table 4. Generator’s measurements when targeting the least critical circuit breakers (A, B, H)

Gen ID Gen MW for (A, B, H) Gen Mvar for (A, B, H)

1 36.00 0.66
2 72.00 2.61
3 72.00 3.25

Fig. 3 Attacker compromises the least critical circuit breakers (A, B, H)

Determining Asset Criticality in Cyber-Physical Smart Grid 775

References

1. European Commission: European Technology Platform, Energy, vol. 19, no. 3, p. 44 (2006).
http://europa.eu.int/comm/research/energy. Accessed 22 Feb 2021

2. Ten, C., Manimaran, G., Liu, C.: Cybersecurity for critical infrastructures: attack and defense
modeling. IEEE Trans. Syst. Man Cybern. Part A Syst. Hum. 40(4), 853–865 (2010)

3. Lee, R.M., Assante, M.J., Conway, T.: Analysis of the cyber attack on the Ukrainian power
grid defense use case. In: Electricity Information Sharing and Analysis Center, p. 36 (2016).
https://ics.sans.org/media/E-ISAC_SANS_Ukraine_DUC_5.pdf.

4. Corallo, A., Lazoi, M., Lezzi, M., Pontrandolfo, P.: Cybersecurity challenges for
manufacturing systems 4.0: assessment of the business impact level. IEEE Trans. Eng.
Manage. (2021)

5. Frankenfield, J.: Zero-Day Attack Definition, 8 May 2020. https://www.investopedia.com/
terms/z/zero-day-attack.asp . Accessed 10 Jul 2021

6. Hasan, K., Shetty, S., Ullah, S., Hassanzadeh, A., Hadar, E.: Towards optimal cyber defense
remediation in energy delivery systems. In: IEEE GLOBECOM (2019)

7. Vallant, H., Stojanović, B., Božić, J., Hofer-Schmitz, K.: Threat modelling and beyond-
novel approaches to cyber secure the smart energy system. Appl. Sci. 11(11) (2021)

8. HYTEPS: Reduce your reactive power improves efficiency and saves costs, HYTEPS (2019).
https://hyteps.com/power-quality/reactive-power/. Accessed 11 Jul 2021

9. Corallo, A., Lazoi, M., Lezzi, M.: Cybersecurity in the context of industry 4.0: a structured
classification of critical assets and business impacts. Comput. Ind. 114, 103165 (2020)

10. Crespo, A., et al.: Criticality analysis for improving maintenance, felling and pruning cycles
in power lines. IFAC-PapersOnLine 51(11), 211–216 (2018)

776 Y. Alrowaili et al.

http://europa.eu.int/comm/research/energy
https://ics.sans.org/media/E-ISAC_SANS_Ukraine_DUC_5.pdf
https://www.investopedia.com/terms/z/zero-day-attack.asp
https://www.investopedia.com/terms/z/zero-day-attack.asp
https://hyteps.com/power-quality/reactive-power/

Signature-in-Signature: The Last Line
of Defence in Case of Signing Key Compromise

Przemys�law B�laskiewicz, Miros�law Kuty�lowski, and Marcin S�lowik(B)

Wroc�law University of Science and Technology, Wroc�law, Poland
Miroslaw.Kutylowski@pwr.edu.pl

Abstract. The standard approach for electronic signatures and seals is
that Secure Signature Creation Devices are responsible for confidentiality
of secret keys and remain under sole control of their owner. The eIDAS
Regulation of EU follows this approach. However, once the private key
gets compromised (e.g. by a faulty design of the signing device or pow-
erful cryptanalysis of the public key), then the signature model becomes
a deadly trap.

We address this problem by creating a second line of defence – when
the signing key gets compromized we can still fish out the signatures
created by a signature device. The proposed approach of signature-in-
signature can be implemented in the standard Schnorr signature and can
remain hidden until the examination of signatures after the signing key
compromise.

Keywords: eIDAS · Advanced electronic signature · Electronic seal ·
SSCD · Schnorr signature · Key compromise · Forgery

To be used in business and administration, an electronic signature must have a
legal status equivalent to that of handwritten signatures. For this purpose the
lawmakers specify requirements for electronic signatures. The eIDAS regulation
[6] provides such a framework for the whole EU. In particular, as all other legal
frameworks, it focuses on secure signature creation devices (SSCD). An SSCD
has to guarantee that the signatures corresponding to the public key of its owner
can be created only by this SSCD and that the owner’s consent is given prior to
signature creation.

This approach leads to severe problems that are neglected in the legal frame-
work and that are not sufficiently addressed by technical designs. One of the
problems is that somebody may learn the private signing key allegedly stored
only in the SSCD. There are multiple ways for this unfortunate event to hap-
pen. E.g., a powerful adversary may break the underlying scheme and reveal
the key anonymously just to create a legal mess for his political or economical
advantage. The keys might be compromised also by a faulty design of key gen-
eration procedure (e.g. Estonian eID case [5]), side-channel leakage (see e.g. [1])
etc.While there is an option for securing against leakage by appropriate design
of cryptographic schemes (see e.g. [7]), nothing helps if the key is exposed by
c© Springer Nature Switzerland AG 2021
E. Bertino et al. (Eds.): ESORICS 2021, LNCS 12973, pp. 777–782, 2021.
https://doi.org/10.1007/978-3-030-88428-4

https://doi.org/10.1007/978-3-030-88428-4

778 P. B�laskiewicz et al.

successful cryptanalysis. If there is no secure record, e.g. in a distributed ledger,
witnessing which signatures have been created by the attacked SSCD, or the
list of signatures cannot be checked for completeness (cf. [3]), then we get into
severe troubles regarding validity of signed documents.

Signature in Signature. Our approach of signature-in-signature aims to safe-
guard the legitimate signatures in case of revealing the signing key. The idea is
that inside a regular signature (called outer signature) there is a hidden inner
signature. For the inner signature neither the public key is presented nor its exis-
tence should be detectable. The public key for the inner signature is revealed at
the moment when the standard signing key is compromised.

The key procedures of such a scheme are signature creation (subdivided into
creation of the inner and outer signatures) and signature re-validation executed
after revealing the signing key.

Once a signing key is revealed, we expect that we can challenge the validity
of all signatures generated with that SSCD. However, the legal ruling is that a
qualified signature remains valid if it has been created before the qualified cer-
tificates related to the signature was revoked. In practice however, a malicious
forger rarely has interest in informing the victim about his success and the vic-
tim learns about the attack when it is already too late to revoke any certificates.
On the other hand, invalidating en bloc all signatures created with a compro-
mised key is also a very bad idea – it would enable the signer to cancel his past
obligations.

What we propose is a scheme where a layman user holding a SSCD can come
to a court of law, where via re-validation procedure the signatures created by
the SSCD will be confirmed and the other signatures will be rejected.

While some approaches in the literature aim to reach this goal with dedicated
schemes (e.g. fail-stop signatures), we aim to design a solution that can be incor-
porated into standard schemes, so that even up to the moment of re-validation
it would be unknown whether this defense has been implemented by the SSCD.

In the following we show an example design based on inner and outer Schnorr
signatures. Other designs (e.g. with inner BLS signature and outer DSA signa-
ture) are also possible.

1 Example Sig-in-Sig Scheme

Pseudorandomness of the First Component of the Schnorr Signature.
Let Z(M,x) denote the set of elements s such that there is a signature (s, e) of
M and the private key x. Then s ∈ Z(M,x) if there is k such that

s = k − x · Hash(M, gk) mod q (1)

where q is the order of the group used. We ask whether it is possible to recognize
if s ∈ Z(M,x), for a known x.

In the random oracle model we may treat Hash as a random function. Then
the probability that (1) holds for given s and k is 1

q , as the hash needs to have

Signature-in-Signature 779

one particular value. So the probability that (1) does not hold for any k equals
(1 − 1

q)q ≈ 1
e . The probability that there are exactly i solutions k for (1) is(

q
i

)
1
qi (1 − 1

q)q−i < 1
i! . So we may assume that the number of solutions k for (1)

is negligible with respect to q.
An algorithm A trying to answer whether s ∈ Z(M,x) can make a limited

number of queries T to the Hash oracle. The probability that every hash query
for Hash(M, gk) yields a value different from (k−s)/x mod q is at least (1− t

q)T ,
where t, T � q. So the probability does not differ from 1 in a non-negligible way.

We may conclude that except for a negligible number of cases, A will ask
the oracle for k’s such that (1) does not hold. Nevertheless, A has to make the
decision whether s ∈ Z(M,x). In this situation A is forced to make a random
guess.

This motivates the following assumption:

Proposition 1. Let M be a message and let x be a private signing key for
Schnorr signatures. Assume that given an element s < q the problem is to decide
whether there is k such that s = k −x ·Hash(M, gk) mod q, or s has been chosen
at random. Then any feasible algorithm A has at most negligible advantage to
provide a correct answer to this problem.

Schnorr Signature with Unknown Public Key. When a Schnorr signa-
ture (s, e) is created, then first the element r = gk is computed. One could
design the scheme so that (s, r) is the signature instead of (s, e). With stan-
dard verification procedure in mind these seem to be equivalent. However, (s, r)
enables immediately derivation of the public key X corresponding to the signa-
ture: e := Hash(M, r), X := (r/gs)1/e. In case of the standard signature (s, e)
in order to find X it is necessary to solve the equation

e = Hash(M, gs · Xe) (2)

for unknown X. Note that for each Hash oracle call Hash(M, r) one can derive
a candidate for X which is (r/gs)1/Hash(M,r). We see that finding a matching
public key to the signature (s, e) of M is equivalent to finding an element r such
that Hash(M, r) = e.

Proposition 2. In the random oracle model for Hash, given (s, e), it is infeasi-
ble to derive the public key such that (s, e) is a Schnorr signature of a message M
or to decide that there is no such public key. It is also infeasible to decide whether
two alleged signatures (s0, e0) and (s1, e1) for messages M0 and M1 correspond
to the same public key.

Scheme Description. In this section we show how to insert a full signature into
the random component of a Schnorr signature. Due to the signature size, this
implies that either this inner signature must be constructed in a different way,
or that it is generated over a smaller group. In this paper we follow the second
approach as it is much simpler conceptually. A smaller group usually means a

780 P. B�laskiewicz et al.

lower degree of security, however inner signatures are used only to separate the
forged signatures from the signatures created by a legitimate SSCD. Moreover,
the public key for inner signatures remains hidden until the re-validation phase
so that attempts at breaking it are minimized.

Setup. Two groups for Schnorr signatures are used: the outer group G of prime
order q and an inner group P of prime order ρ. The bit-length of q should be at
least double of the bit-length of ρ in order to provide enough room for the inner
signature. Generators g and γ are chosen for, respectively, G and P. (Let us
remark that the outer Schnorr signature can be replaced by any scheme, where
the verifier can retrieve gk for a number k chosen at random by the signatory).

Outer Key Generation: it is the same as in case of the regular Schnorr scheme.
Let x be the private key and X = gx the public key for a device D.

Inner Key Generation: The owner of D creates a pair of keys (y, Y), where
Y = γy and y < ρ is chosen at random.

Device Initialization: The owner uploads y to D.

Signature Creation: To sign a message M the following steps are executed:

1. Compute the inner Schnorr signature:
(a) choose κ < ρ at random,
(b) compute ε := Hashρ(M,γκ),
(c) compute σ := κ − y · ε mod ρ, the first component of the inner Schnorr

signature,
2. Compute the outer Schnorr signature:

(a) k := L(σ, ε), where L(α, β) means encoding of numbers α, β < ρ by a
single number smaller than q,

(b) e := Hashq(M, gk),
(c) s := k − e · x mod q,

3. Output the signature (s, e) of M .

The hash functions Hashρ, Hashq map into, respectively, Zρ and Zq.

Note 1. Any encoding function L can be used, however it should be invertible:
given L(α, β) it should be possible to derive back α and β or a few candidates
for them. For example, if L(α, β) can be defined as a number z < q chosen at
random from the numbers satisfying z = α · ρ + β mod q.

Note 2. The elements k used for the outer Schnorr signature are chosen in a
particular way – they are not arbitrary random elements anymore. However,
according to Proposition 2, it is infeasible to distinguish such k’s from random
strings if we apply the random oracle model for Hashρ.

Outer signature verification: the standard verification procedure is applied
on input public key X and message M .

Re-validation of signatures: If the secret key x is leaked, then it is necessary
to re-validate all signatures that pass the standard verification procedure. Once
a list of such signatures is created, then the owner of D may reveal the public
key Y and the following steps are executed for each signature (s, e) from the list:

Signature-in-Signature 781

– the original ephemeral k is recomputed as k := s + e · x mod q,
– the alleged inner signature is retrieved as (σ, ε) := L−1(k),
– (s, e) is validated iff (σ, ε) verifies positively with Y and M .

Note 3. Before the breach becomes public, an adversary A holding the key x may
attempt to forge signatures of D. A may create easily outer signatures verifiable
with X. However, in order to create a signature that will not be rejected during
the re-validation phase, A has to create valid inner signatures as well.

If A can break X by cryptanalysis, then it is likely that he will be able to
break Y as well, as the key length here is substantially shorter. However, Y is
kept secret and the only input A may have are some inner signatures retrieved
from the signatures created by D (note that A can compute them as he holds the
secret key x). Fortunately, according to Proposition 2 it is infeasible to derive Y
from inner signatures alone.

Note that a brute force attack to create a signature and test if it contains an
inner signature verifiable with the same (unknown) key Y as signatures created
by D is also infeasible. According to Proposition 2, there is no effective test of
this kind.

Note 4. Of course, at the time of re-validation all signatures produced allegedly
by D have to be presented. This follows from the fact that at this moment the
adversary learns Y and thereby may attempt to forge inner signatures as well,
after its successful cryptanalysis.

Of course, there is no need to publish the plaintexts of all signatures at this
moment. It is enough to publish their hashes (or a root of the Merkle tree built
on these hashes), before the re-validation procedure starts. Later, each signature
can be inspected on demand. The hashes may be simply stored in a distributed
ledger with no additional information attached.

Note 5. The Sig-in-Sign schemes based on Schnorr signatures can be extended
so that we get an additional security feature which we call chaining : during
re-validation procedure the SSCD owner must provide the full history of his
signatures – otherwise it will become evident that he is hiding some of them.
The idea is based on fluctuations of the inner signing key. A former scheme [3]
of this kind has been based on a symmetric secret shared by the SSCD and the
judge. Now we do not need such a shared key.

Note 6. For an interested reader, in the Appendix we provide an overview of
some implementation options with the currently available (and recommended)
algebraic structures such that the resulting scheme fulfils the requirements for
both the outer and inner signature.

Final Remarks. Due to size constraints, this paper presents only a draft solu-
tion to the problem of securing signatures after their corresponding signing key
has been compromised. An ongoing work is under way to present a full working
solution with additional features.

782 P. B�laskiewicz et al.

At the same time, the authors wish to draw attention to the fact that it is not
only the technical means that are required for such solutions to be implementable
– both procedural as well as legal steps must be taken in unison, which will yield
a functional solution to digital signature application in real life.

A Appendix

In the table below we present some choice of standard groups that may be used
to implement the example scheme described in Sect. 1 (Table 1).

Table 1. Example groups for signature-in-signature Schnorr based schemes.

Outer signature Inner signature

Sec level Curve bits Example curve Sec level Curve bits Example curve ρ2/q C.f

160 320 brainpoolP320t1 80 160 brainpoolP160t1 1.006 [4]

192 384 brainpoolP384t1 96 192 brainpoolP192t1 1.056 [4]

224 448 Curve448-Goldilocks 112 224 brainpoolP224t1 2.841 [2, 4]

256 512 brainpoolP512t1 128 256 brainpoolP256t1 0.660 [4]

References

1. Duc, A., Dziembowski, S., Faust, S.: Unifying leakage models: from probing attacks
to noisy leakage. J. Cryptol. 32(1), 151–177 (2019). https://doi.org/10.1007/s00145-
018-9284-1

2. Hamburg, M.: Ed448-goldilocks, a new elliptic curve. IACR Cryptol. ePrint Arch.
2015, 625 (2015). http://eprint.iacr.org/2015/625

3. Kubiak, P., Kuty�lowski, M.: Supervised usage of signature creation devices. In: Lin,
D., Xu, S., Yung, M. (eds.) Inscrypt 2013. LNCS, vol. 8567, pp. 132–149. Springer,
Cham (2014). https://doi.org/10.1007/978-3-319-12087-4 9

4. Lochter, M., Merkle, J.: Elliptic curve cryptography (ECC) brainpool standard
curves and curve generation. RFC 5639, pp. 1–27 (2010)

5. Nemec, M., Sýs, M., Svenda, P., Klinec, D., Matyas, V.: The return of coppersmith’s
attack: practical factorization of widely used RSA moduli. In: Thuraisingham, B.M.,
Evans, D., Malkin, T., Xu, D. (eds.) Proceedings of the 2017 ACM SIGSAC CCS
2017, pp. 1631–1648. ACM (2017)

6. The European Parliament and the Council of the European Union: Regulation (EU)
No 910/2014 of the European Parliament and of the Council of 23 July 2014 on
electronic identification and trust services for electronic transactions in the internal
market and repealing Directive 1999/93/EC (2014). http://eur-lex.europa.eu/legal-
content/EN/TXT/?uri=uriserv:OJ.L .2014.257.01.0073.01.ENG

7. Wu, J., Tseng, Y., Huang, S., Tsai, T.: Leakage-resilient certificate-based signature
resistant to side-channel attacks. IEEE Access 7, 19041–19053 (2019). https://doi.
org/10.1109/ACCESS.2019.2896773

https://doi.org/10.1007/s00145-018-9284-1
https://doi.org/10.1007/s00145-018-9284-1
http://eprint.iacr.org/2015/625
https://doi.org/10.1007/978-3-319-12087-4_9
http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=uriserv:OJ.L_.2014.257.01.0073.01.ENG
http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=uriserv:OJ.L_.2014.257.01.0073.01.ENG
https://doi.org/10.1109/ACCESS.2019.2896773
https://doi.org/10.1109/ACCESS.2019.2896773

Author Index

Abadi, Aydin II-721
Ahmed, Muhammad Ejaz I-240
Alameddine, Hyame Assem I-715
Alber, Gernot II-235
Alrowaili, Yazeed II-770
Arfaoui, Ghada I-23
Arzt, Steven II-752
Assi, Chadi I-715
Athanasopoulos, Elias I-152
Avoine, Gildas II-215
Awan, Sana I-455

Bai, Guangdong II-395
Baldimtsi, Foteini I-407
Bao, Zijian II-764
Basler, Julius I-218
Blasco, Jorge I-305
Błaskiewicz, Przemysław II-777
Blazy, Olivier I-23
Blazytko, Tim I-218
Bootle, Jonathan II-608
Böttinger, Konstantin I-563
Boukhtouta, Amine I-715
Braghin, Stefano II-523
Brighente, Alessandro I-651
Bultel, Xavier I-23
Burnap, Pete II-770

Cai, Cailing II-313
Camtepe, Seyit I-240
Cao, Xinle II-628
Carminati, Barbara I-605
Carpent, Xavier II-215
Carvalho, Ricardo Silva II-543
Catrina, Octavian II-352
Chang, Ee-Chien I-584
Charalambous, Marcos Antonios I-152
Chatzigiannis, Panagiotis I-407
Chen, Chen II-395
Chen, Tianyang II-3
Chen, Xiaofeng II-44, II-296
Chen, Xiaojun I-497
Chen, Yu II-332
Chen, Yuan I-430

Cheng, Leixiao II-192
Chow, Yang-Wai II-106
Chvojka, Peter II-64
Classen, Jiska I-133
Conti, Mauro I-651
Cui, Hongrui II-332
Curtis, Caitlin II-395

D’Elia, Daniele Cono I-197
Daihes, Yael I-736
Davi, Lucas I-173
David, Liron I-285
Demetriou, Soteris I-691
Deng, Robert H. I-327
Deuber, Dominic II-461
Devigne, Julien II-587
Dietrich, Jens I-67
Dinh, Tien Tuan Anh II-439
Dong, Ye I-497
Dowsley, Rafael II-24
Du, Kun I-263
Duan, Haixin I-263
Duguey, Céline II-587
Duong, Dung Hoang II-169
Dutta, Priyanka II-169

Fallahi, Amin I-626
Fernandes, Natasha II-563
Ferrari, Elena I-605
Fischlin, Marc II-86
Fouque, Pierre-Alain I-23, II-587

Gellert, Kai I-44
Giaretta, Lodovico I-605
Girdzijauskas, Šarūnas I-605
Gomez, Daniel Aceituno I-86
Gondara, Lovedeep II-543
Groza, Bogdan I-668

Handirk, Tobias I-44
Hao, Shuai I-263
Hau, Zhongyuan I-691
He, Songlin I-348

Hemmer, Fabian I-218
Höld, Georg I-757
Hollick, Matthias I-133
Holohan, Naoise II-523
Holz, Thorsten I-218

Invidia, Lorenzo I-197
Isobe, Takanori II-127
Ito, Ryoma II-127

Jacques, Thibaut I-23
Jager, Tibor II-64
Jiang, Zike II-147
Jichici, Camil I-668
Jin, Hai II-3

Kaizer, Demetris I-152
Karakostas, Dimitris I-370
Kargl, Frank I-133
Karkallis, Panicos I-305
Kawamoto, Yusuke II-563
Kermanshahi, Shabnam Kasra II-24
Kiayias, Aggelos I-370
Kim, Hyoungshick I-240
Kim, Jongkil II-106
Kleber, Stephan I-133
Ko, Ryan K. L. II-395
Kober, Maria II-752
Kozieł, Patryk II-501
Kröll, Tobias I-133
Kubiak, Przemysław II-501
Kutyłowski, Mirosław II-501, II-777

Landauer, Max I-757
Lanzi, Andrea I-86
Larangeira, Mario I-370
Leblanc-Albarel, Diane II-215
Lee, Hwee Kuan I-584
Lei, Hong II-764
Lekssays, Ahmed I-605
Li, Fengjun I-455
Li, Jiaqi I-430
Li, Kaiyun I-497
Li, Xue II-395
Lian, Huanhuan II-651
Liang, Xiaojian II-147
Liu, Dongxi II-106
Liu, Jian II-628
Liu, Joseph K. II-24

Liu, Weiran II-699
Liu, Xiaoning I-519
Liu, Zhen II-332
Lu, Yibiao II-699
Lu, Yifan I-542
Lu, Yuan I-348
Luo, Bo I-455
Lupu, Emil C. I-691
Lv, Chunyang II-44
Lyubashevsky, Vadim II-608

Ma, Jinhua I-327
Madi, Taous I-715
Mangard, Stefan II-370
Mantel, Heiko II-235
Mao, Yunlong I-476
Maw, Aung II-439
Meadows, Catherine II-275
Meng, Fei II-192
Minematsu, Kazuhiko II-127
Morillo, Gabriela II-759
Müller, Sven-André II-86
Münch, Jean-Pierre II-86
Muñoz-González, Luis I-691
Murakami, Takao II-563
Murdoch, Steven J. II-721
Murvay, Pal-Stefan I-668

Nadler, Asaf I-736
Nappa, Antonio I-86
Nasahl, Pascal II-370
Nedelcu, Adina I-23
Nepal, Surya I-240, II-24
Nguyen, Ngoc Khanh II-608
Nikiforov, Oleg II-235
Ning, Jianting I-327

Onete, Cristina I-23
Otsuka, Akira I-390

Paaßen, David I-173
Pan, Tianyu II-651
Pan, Xudong I-542
Papadopoulos, Panagiotis I-86
Papaevripides, Michalis I-152
Pardo, Raúl II-417
Pastrana, Sergio I-305
Pedersen, Jens Myrup II-745
Phoha, Vir V. I-626

784 Author Index

Popa, Lucian I-668
Porth, Lars II-86
Pourzandi, Makan I-715
Probst, Christian W. II-417

Qi, Saiyu II-44
Qin, Xianrui II-313
Querzoni, Leonardo I-197

Rafnsson, Willard II-417
Ramacher, Sebastian II-676
Rasheed, Shawn I-67
Rauber, Andreas I-757
Reijsbergen, Daniël II-439
Ren, Kui I-430, II-628, II-699
Rodler, Michael I-173
Roedig, Utz II-759
Roy, Partha Sarathi II-169

Sadaf, Izza I-651
Sakzad, Amin II-24
Sauer, Alexander II-235
Saxena, Neetesh II-770
Scafuro, Alessandra II-481
Schickel, Johannes II-235
Schloegel, Moritz I-218
Schrammel, David II-370
Schröder, Dominique II-461
Schulze, Jan-Philipp I-563
Schwabe, Peter I-3
Seiler, Gregor II-608
Shabtai, Asaf I-736
Shen, Jun II-296
Shi, Hongfang II-257
Shi, Wenbo II-764
Shoukry, Moataz I-715
Skopik, Florian I-757
Slamanig, Daniel II-64, II-676
Słowik, Marcin II-777
Sperl, Philip I-563
Srinivasa, Shreyas II-745
Stebila, Douglas I-3
Steinegger, Stefan II-370
Steinfeld, Ron II-24
Striecks, Christoph II-64
Suarez-Tangil, Guillermo I-305
Sun, Shi-Feng II-44
Surminski, Sebastian I-173
Susilo, Willy II-3, II-106, II-169, II-296

Tahir, Amjed I-67
Takahashi, Taisei I-390
Tang, Qiang I-348
Tann, Wesley Joon-Wie I-584
Tapiador, Juan I-86
Thai, Phuc I-430
Tian, Guohua II-296
Tzaban, Hen I-736

van Rooij, Orpheas I-152
Varvello, Matteo I-86
Vasilomanolakis, Emmanouil II-745
Viet Xuan Phuong, Tran II-106

Walther, Thomas II-235
Wang, Dakui I-497
Wang, Guiling I-348
Wang, Haining I-263
Wang, Huige II-651
Wang, Jianfeng II-44
Wang, Ke II-543
Wang, Qinghao II-764
Wang, Wei II-3
Wang, Yunling II-44
Wąsowski, Andrzej II-417
Weber, Alexandra II-235
Wei, Jianghong II-296
Weiser, Samuel II-370
Weng, Jian II-147
Weninger, Andreas II-676
Wiggers, Thom I-3
Wool, Avishai I-110, I-285
Wu, Chase Qishi I-348
Wu, Zhenghao II-147
Wurzenberger, Markus I-757

Xu, Guowen I-327
Xu, Peng II-3
Xu, Shengmin I-327

Yang, Anjia II-147
Yang, Guomin II-106
Yang, Hao I-263
Yang, Min I-542
Yang, Zheng II-439
Yao, Lisha II-147
Yi, Xun I-519, II-24
Yu, Yu II-332
Yuan, Jiaming I-327

Author Index 785

Yuan, Xingliang I-519
Yuan, Xinyu I-476
Yuen, Tsz Hon II-313

Zacharias, Thomas II-721
Zeng, Shuai I-497
Zhang, Bihan II-481
Zhang, Bingsheng I-430, II-628, II-699
Zhang, Jia I-263
Zhang, Jiyi I-584
Zhang, Kaiyi II-332
Zhang, Lei II-699
Zhang, Mi I-542
Zhang, Wenying II-257

Zhang, Yanjun II-395
Zhang, Yongxin II-764
Zhang, Yubao I-263
Zhang, Zimin II-257
Zhao, Xinyang I-476
Zhao, Yunlei II-651
Zheng, Yifeng I-519
Zheng, Yubo II-3
Zhong, Sheng I-476
Zhou, Hong-Sheng I-430, II-699
Zhou, Jianying II-439
Zhou, Yajin I-430
Zhou, Zhelei II-628
Zuberi, Eldad I-110

786 Author Index

	Preface
	Organization
	Contents – Part II
	Contents – Part I
	Encryption
	Bestie: Very Practical Searchable Encryption with Forward and Backward Security
	1 Introduction
	2 Background
	3 Construction of Bestie
	3.1 Our Construction
	3.2 An Example of Bestie

	4 Evaluation
	4.1 Implementation
	4.2 Data Description
	4.3 Experimental Results

	5 Other Related Works
	6 Conclusion
	A Proof of Theorem 1
	References

	Geo-DRS: Geometric Dynamic Range Search on Spatial Data with Backward and Content Privacy
	1 Introduction
	1.1 Our Contributions
	1.2 Motivation and Related Works

	2 Building Blocks
	2.1 Notation
	2.2 R-Tree and R+tree
	2.3 Secure Bitwise Comparison

	3 Definitions, Security Notions and Model
	3.1 Syntax of Our Geometric Dynamic Range Search (Geo-DRS+)
	3.2 Generic Dynamic SSE Leakage Functions
	3.3 Range Search Leakage Functions
	3.4 Security Notions and Definitions
	3.5 Security Model

	4 Dynamic Secure Range Search on Encrypted Spatial Data
	4.1 Geo-DRS Scheme
	4.2 Geo-DRS+: Optimised Geometric Dynamic Range Search

	5 Evaluation
	6 Conclusion
	A Security analysis
	References

	Efficient Multi-client Order-Revealing Encryption and Its Applications
	1 Introduction
	1.1 Related Work

	2 Preliminaries
	2.1 Notation
	2.2 Bilinear Maps
	2.3 Complexity Assumption

	3 Property-Preserving Hash
	3.1 PPH from Bilinear Maps
	3.2 Security Analysis

	4 Multi-client Order-Revealing Encryption (m-ORE)
	4.1 Definition of m-ORE
	4.2 m-ORE Scheme from PPH
	4.3 Security Analysis

	5 Multi-client Range Query from m-ORE
	5.1 The Proposed Construction

	6 Experimental Evaluation
	6.1 Setup
	6.2 Evaluation

	7 Conclusion
	A Security Analysis of Range Query Scheme
	References

	Versatile and Sustainable Timed-Release Encryption and Sequential Time-Lock Puzzles (Extended Abstract)
	1 Introduction
	2 Technical Overview and Contributions
	3 Definitions and Constructions of Time Lock-Puzzles
	4 Sequential Time-Lock Puzzles
	5 (Sequential) Timed-Release Encryption
	5.1 Basic TRE Construction
	5.2 Sequential TRE
	5.3 Integrating Timed-Release Features into Functional Encryption

	A Concurrent and Independent Work
	B Applications: Simpler and More Efficient Instantiations
	C On the Necessity of the Gap Sequential Squaring Assumption
	References

	Multipath TLS 1.3
	1 Introduction
	1.1 Multipath Key Exchange
	1.2 Our Contribution

	2 Preliminaries
	2.1 Multipath TCP
	2.2 Transport Layer Security

	3 Security Model
	3.1 Overview
	3.2 Security of Multi-path Key Exchange

	4 Multipath Extension for TLS 1.3
	4.1 Protocol
	4.2 Security Assumptions
	4.3 Security
	4.4 Sub Flow Resumption
	4.5 Practical Considerations

	5 Conclusions
	A Transport Layer Security
	References

	SyLPEnIoT: Symmetric Lightweight Predicate Encryption for Data Privacy Applications in IoT Environments
	1 Introduction
	1.1 Overview of SyLPEnIoT
	1.2 Our Contributions

	2 Related Work
	3 Background and Assumptions
	3.1 SyLPEnIoT's Model and Threat Model
	3.2 Definitions

	4 Main Constructions in SyLPEnIoT
	4.1 Pseudo-Random Function
	4.2 Symmetric-Key Encryption
	4.3 Construction

	5 Evaluation
	5.1 Microbenchmarks
	5.2 SyLPEnIoT Construction
	5.3 SyLPEnIoT on Ultra Low-Power Devices

	A Security Proof
	References

	Security Analysis of SFrame
	1 Introduction
	1.1 Our Contributions

	2 SFrame
	2.1 Specification
	2.2 Available Implementations

	3 Adversary Models and Security Goals
	3.1 Adversary Models
	3.2 Security Goals of E2EE
	3.3 Security Goals of AEAD for E2EE
	3.4 Security Goals of Hash Functions

	4 Security Analysis
	4.1 Security of AEAD Under SFrame
	4.2 Impersonation Against AES-CM-HMAC with Short Tags
	4.3 Security of AES-CM-HMAC with Long Tags
	4.4 Impersonation Against AES-GCM with Any Long Tags
	4.5 Considerations on Authentication Key Recovery
	4.6 Recommendations

	5 Conclusions
	References

	Attribute-Based Conditional Proxy Re-encryption in the Standard Model Under LWE
	1 Introduction
	1.1 Contribution
	1.2 Related Work
	1.3 Organization

	2 Preliminaries
	2.1 Lattice Background
	2.2 Trapdoor and Sampling
	2.3 Key Homomorphism and Vector Decomposition

	3 Model of Attribute-Based CPRE
	3.1 Multi-hop AB-CPRE
	3.2 Single-Hop AB-CPRE
	3.3 Security Notation

	4 Single-Hop AB-CPRE Scheme
	4.1 Technique Review
	4.2 Construction
	4.3 Correctness
	4.4 Security Proof

	5 Extension: Multi-hop AB-CPRE Scheme
	5.1 Construction
	5.2 Correctness and Security Proof

	6 Conclusion
	A Proof for Single-hop AB-CPRE
	B Correctness for Multi-hop AB-CPRE
	C Simulator Algorithms for Multi-hop AB-CPRE
	References

	Lattice-Based HRA-secure Attribute-Based Proxy Re-Encryption in Standard Model
	1 Introduction
	1.1 Motivation and Related Works
	1.2 Our Contributions and Future Direction
	1.3 Technical Overview

	2 Preliminaries
	3 Key-Policy Attribute-Based Proxy Re-Encryption
	3.1 Re-Encryption Simulatability

	4 Construction of HRA-secure KP-ABPRE
	4.1 Correctness and Security

	References

	Server-Aided Revocable Attribute-Based Encryption Revised: Multi-User Setting and Fully Secure
	1 Introduction
	1.1 Motivation
	1.2 Our Approach
	1.3 Our Contributions

	2 Preliminaries
	2.1 Composite Order Bilinear Groups
	2.2 Access Structures and Linear Secret Sharing
	2.3 Binary Tree

	3 Framework and Security Model
	3.1 Security Model

	4 Construction
	5 Security Analysis
	6 Conclusion
	A Proof of Lemma 2
	B Proof of Lemma 4
	C Proof of Lemma 5
	References

	Cryptography
	Precomputation for Rainbow Tables has Never Been so Fast
	1 Introduction
	2 Background
	2.1 Rainbow Tables
	2.2 Clean Rainbow Tables
	2.3 Maximum Rainbow Tables

	3 Filtering Chains
	3.1 Preliminary Result on Quantifying Precomputation
	3.2 Intermediary Filtration
	3.3 Filtration in Each Column
	3.4 Filtration in Chosen Columns

	4 Distributing Precomputation
	4.1 Distribution and Filtration
	4.2 Distributed Architecture
	4.3 Estimation of the Precomputation Time
	4.4 Optimal Configuration

	5 Experiments
	5.1 Computing Environments
	5.2 Filtration Implementation
	5.3 Positions of the Filters
	5.4 Considered Parameters
	5.5 Results

	6 Conclusion
	A Proof of Theorem 3
	B Online Phase Improvements and Their Impact on Precomputation
	C Intermediary Filtration
	D Notation Through this Paper
	References

	Cache-Side-Channel Quantification and Mitigation for Quantum Cryptography
	1 Introduction
	2 Basic Notions and Notation
	2.1 Cache-Side-Channel Quantification
	2.2 Quantum Key Distribution

	3 Analysis for Cache-Side-Channel Quantification
	3.1 Execution Model
	3.2 Abstract Reachability Analysis
	3.3 Automation Through Tool Support

	4 Practical Evaluation
	5 Vulnerability in the QKD Implementation
	6 Security of the Hardened Implementation
	7 Combining Rewriting and Privacy Amplification
	8 Related Work
	9 Conclusion
	References

	Genetic Algorithm Assisted State-Recovery Attack on Round-Reduced Xoodyak
	1 Introduction
	2 Preliminaries
	2.1 Notations
	2.2 Xoodoo
	2.3 Xoodyak

	3 Related Works
	4 Remodel Xoodoo
	4.1 Remodel Linear Layer
	4.2 Remodel Non-linear Layer
	4.3 Assemble into Xoodoo'

	5 State-Recovery Attack on Round-Reduced Xoodyak
	5.1 4/5-Round Attack Against Xoodyak
	5.2 Extended to 5/6-Round
	5.3 Attack Against Xoodyak Under the Nonce-Reuse Setting

	6 Conclusion
	References

	Moving the Bar on Computationally Sound Exclusive-Or
	1 Introduction
	2 Background and Related Work
	3 Symbolic Preliminaries
	4 Symbolic and Computational Models
	4.1 The Computational Model
	4.2 Relationship Between Computational and Symbolic Models
	4.3 MOO Cryptosystems and Symbolic Histories

	5 MOO Games and Security Proofs
	5.1 MOO Games Grstr and Grsymb
	5.2 Conditions Implying IND$-CPA Security

	6 Using Our Results to Analyze Modes
	7 Conclusion and Open Problems
	References

	Optimal Verifiable Data Streaming Protocol with Data Auditing
	1 Introduction
	1.1 Our Contribution
	1.2 Related Work
	1.3 Organization

	2 Preliminaries
	2.1 Notations
	2.2 Bilinear Groups and CDH Assumption
	2.3 Groups of Unknown Order and RSA Accumulator
	2.4 Hashing to Primes

	3 Verifiable and Auditable Data Streaming Protocol
	4 The Construction of VADS
	4.1 Overview
	4.2 The Construction

	5 Performance Analysis
	6 Conclusion
	References

	One-More Unforgeability of Blind ECDSA
	1 Introduction
	1.1 ECDSA-ROS Attack on Blind ECDSA
	1.2 Generic Construction
	1.3 Algebraic Bijective Random Oracle Model
	1.4 Security Proof of Blind ECDSA
	1.5 Related Work

	2 Preliminaries
	2.1 ECDSA
	2.2 Blind Signature

	3 Algebraic Bijective Random Oracle Model
	3.1 AGM and BRO
	3.2 Algebraic Bijective Random Oracle Model

	4 Blind ECDSA
	4.1 Building Blocks
	4.2 Construction
	4.3 Assumptions
	4.4 Security Proof
	4.5 EUF-CMA Security of ECDSA in the ABRO Model

	5 Hardness of the ECDSA-ROS Problem
	6 Conclusion
	A Comparison with Existing Blind ECDSA Protocols
	B Blindness
	B.1 Security Model of Blindness
	B.2 Security Proof of Blindness

	References

	MPC-in-Multi-Heads: A Multi-Prover Zero-Knowledge Proof System
	1 Introduction
	1.1 Related Works

	2 Preliminaries
	2.1 Basic Notations
	2.2 Secure Computation
	2.3 Helper Functionalities

	3 Multi-Prover Zero-Knowledge
	3.1 Relation and Language
	3.2 Proof System Syntax
	3.3 Formal Definition
	3.4 Public-Coin and Non-interactive Proof

	4 MPC-in-Multi-Heads: A Black-Box Construction from MPC
	4.1 Intuitions
	4.2 Protocol Description
	4.3 Instantiation with Different Inner Protocols

	5 Implementation and Experimental Results
	6 Conclusion and Future Directions
	A Missing Proofs
	References

	Complexity and Performance of Secure Floating-Point Polynomial Evaluation Protocols
	1 Introduction
	2 Secure Floating-Point Arithmetic
	3 Secure Polynomial Evaluation
	3.1 Generic Protocols for Secure Polynomial Evaluation
	3.2 Optimized Protocols for Polynomials Defined by Coefficients
	3.3 Optimized Protocols for Polynomials Defined by Roots

	4 Performance Measurements
	5 Conclusions
	References

	SERVAS! Secure Enclaves via RISC-V Authenticryption Shield
	1 Introduction
	2 Challenges of Memory Isolation
	3 RISC-V Authenticryption Shield (RVAS)
	3.1 RVAS Tweak Design
	3.2 Solving the Challenges

	4 SERVAS
	4.1 Threat Model
	4.2 Enclave Life Cycle
	4.3 Enclave Memory Management

	5 SERVAS Implementation Details
	5.1 Instruction Set Extension
	5.2 Tweak
	5.3 Page Types
	5.4 Security Monitor (SM)
	5.5 Caching
	5.6 Encryption Bypass Optimization

	6 Security Analysis
	6.1 Attacks on Physical Memory
	6.2 Attacks on Virtual Memory

	7 Evaluation
	7.1 Performance Overhead
	7.2 Hardware Overhead
	7.3 Prototype Limitations

	8 Related Work
	9 Future Work
	10 Conclusion
	A Detailed Evaluation Results
	References

	Privacy
	Privacy-Preserving Gradient Descent for Distributed Genome-Wide Analysis
	1 Introduction
	2 System Design
	2.1 Frag Overview
	2.2 Attacker Model and Assumptions

	3 Privacy-Preserving Gradient Descent
	4 Modeling Attacks for Privacy Analysis
	4.1 Modeling the LFS Attack
	4.2 Modeling the Genotype Imputation

	5 Analysis of Privacy Preservation
	5.1 The Collection-Level Analysis
	5.2 The Individual-Level Analysis

	6 Performance Evaluation
	7 Discussion
	8 Related Work
	9 Conclusion
	A Notation Table
	B Functionalities in Genome-Wide Analysis
	References

	Privug: Using Probabilistic Programming for Quantifying Leakage in Privacy Risk Analysis
	1 Introduction
	2 Overview
	3 Privug
	4 Evaluation
	5 Related Work and Concluding Remarks
	References

	Transparent Electricity Pricing with Privacy
	1 Introduction
	2 Electricity Pricing
	3 System and Security Model
	3.1 Security Model
	3.2 Security Properties

	4 Baseline Protocol
	4.1 Preliminaries
	4.2 Instantiation
	4.3 Security Analysis
	4.4 Performance Analysis
	4.5 Discussion

	5 Merkle Tree Protocol
	5.1 Overview
	5.2 Instantiation
	5.3 Security Analysis
	5.4 Performance Analysis

	6 Implementation
	7 Related Work
	8 Conclusions
	References

	CoinJoin in the Wild
	1 Introduction
	1.1 Empirical Analysis of Anonymity
	1.2 Cookie Monster Mixing
	1.3 Responsible Disclosure
	1.4 Related Work

	2 Preliminaries
	2.1 Transaction
	2.2 Multi-Input Heuristic
	2.3 CoinJoin
	2.4 Cluster-Intersection Attack

	3 Dash
	3.1 Overview
	3.2 PrivateSend

	4 Empirical Anonymity Analysis
	4.1 Transaction Type Detection
	4.2 Backlink Attack
	4.3 DC Attack

	5 Enhancing Privacy of Mixing
	5.1 Preventing backlinks
	5.2 Cookie Monster Mixing

	A Differences in the Analysis in Bitcoin
	B Limitations to Arbitrary-Value Mixing
	References

	One-Time Traceable Ring Signatures
	1 Introduction
	1.1 Our Contribution
	1.2 Our Technique
	1.3 Performance Comparison

	2 Related Work
	3 Definitions
	3.1 One-Time Traceable Ring Signatures

	4 One-Time Traceable Ring Signature Scheme
	References

	PACE with Mutual Authentication – Towards an Upgraded eID in Europe
	1 Introduction
	1.1 Role of eIDs
	1.2 New Regulations for eIDs
	1.3 Rationale for Including Mutual Authentication
	1.4 Other extensions and Modifications of PACE

	2 PACE with Mutual Authentication
	2.1 PACE with Mutual Authentication
	2.2 A Lightweight Version
	2.3 Backwards Compatibility

	3 Security and Privacy Issues
	3.1 Fragility
	3.2 Protection of Secrets
	3.3 Impersonation
	3.4 Security of the Session Key
	3.5 Resistance to Tracing
	3.6 Simultability

	4 PACE-MA Versus PACE-CAM
	References

	Differential Privacy
	Secure Random Sampling in Differential Privacy
	1 Introduction
	2 Background
	2.1 Floating Point Numbers
	2.2 Random Number Sampling
	2.3 Mironov Attack
	2.4 Gaussian Attack
	2.5 Existing Defences

	3 General Principles
	4 Divisibility of Probability Distributions
	4.1 Preliminaries
	4.2 Gaussian Distribution
	4.3 Laplace Distribution

	5 Sampling Implementations
	5.1 Gaussian Sampling
	5.2 Laplace Sampling
	5.3 Choosing n

	6 Gaussian Attack Complexity
	7 Related Work
	8 Conclusion
	A Probability Density Functions
	A.1 Uniform Distribution
	A.2 Gaussian Distribution
	A.3 Laplace Distribution
	A.4 Exponential Distribution
	A.5 Gamma Distribution
	A.6 Chi-Squared Distribution

	B Code Samples
	B.1 Naïve Sampling
	B.2 Theorem 1 Sampling
	B.3 Sampling with math and random
	B.4 Sampling with Numpy

	References

	Training Differentially Private Neural Networks with Lottery Tickets
	1 Introduction
	2 Preliminaries
	2.1 Differential Privacy
	2.2 Lottery Ticket Hypothesis

	3 Differentially Private Lottery Ticket Hypothesis
	3.1 Overview
	3.2 DPLTH Walkthrough
	3.3 Differential Privacy Guarantees of DPLTH
	3.4 Discussion

	4 Experiments
	4.1 Datasets
	4.2 Competitor
	4.3 Setup
	4.4 Main Comparison
	4.5 Convergence and Early Stopping
	4.6 Investigating the Score Function
	4.7 Robustness to P

	5 Related Work
	6 Conclusion
	References

	Locality Sensitive Hashing with Extended Differential Privacy
	1 Introduction
	2 Related Work
	2.1 Extended DP
	2.2 Privacy-Preserving Friend Matching
	2.3 Privacy-Preserving LSH

	3 Preliminaries
	3.1 Locality Sensitive Hashing (LSH)
	3.2 Examples of LSHs
	3.3 Approximate Nearest Neighbor Search
	3.4 Privacy Measures and Privacy Mechanisms

	4 Privacy Properties of LSH
	5 LSH-Based Privacy Mechanisms
	6 Privacy Analyses of the Mechanisms
	6.1 LSHRR's Privacy W.r.t. the Particular LSH Function
	6.2 LSHRR's Privacy W.r.t. the Distribution of LSH Functions
	6.3 Privacy Guarantee for LapLSH

	7 Experimental Evaluation
	7.1 Datasets and Experimental Setup
	7.2 Comparing Privacy and Utility
	7.3 Experimental Results
	7.4 Inapplicability of the RAPPOR

	8 Conclusion
	A Total Privacy Budgets in Extended DP and LDP
	B More Details on the Privacy Analyses
	References

	Zero Knowledge
	MLS Group Messaging: How Zero-Knowledge Can Secure Updates
	1 Introduction
	2 Backgrounds
	3 MLS Updates
	3.1 Message Layer Security
	3.2 Securing MLS Updates

	4 ZK for a PRF on Committed Input and Output
	4.1 ComInOutZK: A Bit-Wise Solution
	4.2 A Second Solution: CopraZK

	5 Conclusion
	A Key Size and Group Orders in MLS Updates
	B Security of Our Zero-Knowledge Protocols
	References

	More Efficient Amortization of Exact Zero-Knowledge Proofs for LWE
	1 Introduction
	1.1 Prior Work
	1.2 Our Results
	1.3 Technical Overview

	2 Preliminaries
	3 Basic Protocol
	3.1 Proof Size and Concrete Parameter Choices

	4 Amortized Protocol for a Fixed Public Randomness
	4.1 Proof Size

	A The Hiding Property of Reed-Solomon Codes
	References

	Zero Knowledge Contingent Payments for Trained Neural Networks
	1 Introduction
	2 Preliminaries
	3 Design Overview
	4 Instantiation
	4.1 zk-SNARKs-Based Solution
	4.2 Libra-Based Solution

	5 Security Analysis
	6 Implementation and Experiments
	7 Related Work
	8 Conclusion
	A The Main Building Blocks of Libra
	B Proof of Theorem 1
	References

	Key Exchange
	Identity-Based Identity-Concealed Authenticated Key Exchange
	1 Introduction
	2 Preliminaries
	2.1 Notation
	2.2 Bilinear Pairings and Assumptions
	2.3 Authenticated Encryption

	3 Security Model
	3.1 System and Adversary Setting
	3.2 Definition of Security

	4 Construction of IB-CAKE Protocol
	5 Security Analysis of IB-CAKE
	5.1 Proof of Label Security
	5.2 Proof of ID-Concealed Session-Key Security

	6 Comparison and Implementation
	A Structures of IB-CAKE Protocol with Asymmetric Bilinear Pairing
	A.1 Protocol Structure with Bilinear Pairing of Type-II
	A.2 Protocol Structure with Bilinear Pairing of Type-III

	B Review of the TFNS19-Protocol
	References

	Privacy-Preserving Authenticated Key Exchange: Stronger Privacy and Generic Constructions
	1 Introduction
	2 On Modeling Privacy in AKE
	2.1 What Can(not) Be Handled by PPAKE
	2.2 Privacy Goals in PPAKE

	3 Our PPAKE Model
	3.1 Security Model
	3.2 Relation Between Privacy Notions
	3.3 Discussion and Limitations of Our PPAKE Model

	4 Constructing PPAKE with Strong Privacy
	4.1 Achieving Weak MITM Private PPAKE Using Shared Secrets
	4.2 Generic Construction of Strongly MITM Private PPAKE
	4.3 Two-Move PPAKE Protocol Without Forward Privacy

	5 Discussion and Future Work
	References

	Multi-party Computation
	Correlated Randomness Teleportation via Semi-trusted Hardware—Enabling Silent Multi-party Computation
	1 Introduction
	2 Preliminaries
	3 Security Model
	3.1 Semi-trusted Hardware Model

	4 Correlated Randomness Teleportation
	4.1 Random OT Teleportation
	4.2 GC Teleportation with Applications to Silent 2PC

	5 Security
	6 Implementation and Benchmarks
	7 Related Work
	8 Conclusion
	A Appendix
	A.1 Security Proof of Our Main Theorems

	References

	Polynomial Representation Is Tricky: Maliciously Secure Private Set Intersection Revisited
	1 Introduction
	2 Related Work
	3 Background
	3.1 Representing Sets by Polynomials
	3.2 Oblivious Linear Function Evaluation
	3.3 Oblivious Polynomial Addition
	3.4 Two-Party PSI

	4 Attack 1: Making Honest Party Learn Incorrect Result
	4.1 Attack Description
	4.2 Attack Analysis
	4.3 Candidate Mitigation

	5 Attack 2: Learning Honest Party's Element Beyond the Intersection
	5.1 Attack Description
	5.2 Attack Analysis
	5.3 Candidate Mitigations

	6 Attack 3: Deleting Honest Party's Set Elements
	6.1 Attack Description
	6.2 Attack Analysis
	6.3 Candidate Mitigation

	7 Conclusion and Future Work
	A Identified Flaws In The Security Proofs
	A.1 Class 1: Not All Checks Have Been Included
	A.2 Class 2: Incomplete Simulator
	A.3 Class 3: Incomplete Definition Of Malformed Input

	B Attack 3 Theorems
	References

	Posters
	RIoTPot: A Modular Hybrid-Interaction IoT/OT Honeypot
	1 Introduction
	2 RIoTPot Design
	3 Preliminary Results
	4 Conclusion
	References

	Towards Automatically Generating Security Analyses from Machine-Learned Library Models
	1 Introduction and Motivation
	2 Vision
	2.1 Phase 1: Generate Library Models
	2.2 Phase 2: Generate Security Analyses

	3 Experiments and Preliminary Results
	4 Related Work
	5 Conclusion and Future Work
	References

	Jamming of NB-IoT Synchronisation Signals
	1 Introduction
	2 The UE and eNodeB Synchronisation Process
	3 Jamming the NB-IoT Synchronization Process
	4 Jamming Evaluation
	5 Conclusions
	References

	TPRou: A Privacy-Preserving Routing for Payment Channel Networks
	1 Introduction
	2 Our Design
	3 Security Analysis
	4 Performance Evaluation
	5 Conclusion
	References

	Determining Asset Criticality in Cyber-Physical Smart Grid
	Abstract
	1 Introduction: Context and Motivation
	2 Related Work
	3 Approach
	3.1 System Model and Simulation Scenario
	3.2 Proposed Method

	4 Experimental Results and Evaluation
	4.1 System Operations Under No Attack Scenario
	4.2 System Operations Under Attack Scenario

	5 Conclusion and Future Work
	References

	Signature-in-Signature: The Last Line of Defence in Case of Signing Key Compromise
	1 Example Sig-in-Sig Scheme
	A Appendix
	References

	Author Index

