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Abstract. Fuzzing has become one of the most popular techniques to
identify bugs in software. To improve the fuzzing process, a plethora of
techniques have recently appeared in academic literature. However, eval-
uating and comparing these techniques is challenging as fuzzers depend
on randomness when generating test inputs. Commonly, existing evalua-
tions only partially follow best practices for fuzzing evaluations. We argue
that the reason for this are twofold. First, it is unclear if the proposed
guidelines are necessary due to the lack of comprehensive empirical data
in the case of fuzz testing. Second, there does not yet exist a framework
that integrates statistical evaluation techniques to enable fair compari-
son of fuzzers.

To address these limitations, we introduce a novel fuzzing evaluation
framework called SENF (Statistical EvaluatioN of Fuzzers). We demon-
strate the practical applicability of our framework by utilizing the most
wide-spread fuzzer AFL as our baseline fuzzer and exploring the impact
of different evaluation parameters (e.g., the number of repetitions or
run-time), compilers, seeds, and fuzzing strategies. Using our evaluation
framework, we show that supposedly small changes of the parameters
can have a major influence on the measured performance of a fuzzer.

1 Introduction

Fuzzing approaches aim at automatically generating program input to assess
the robustness of a program to arbitrary input. The goal of a fuzzer is to trigger
some form of unwanted behavior, e.g., a crash or exception. Once a program fault
occurs during the fuzzing process, a developer or analyst investigates the fault to
identify its root cause. Subsequently, this allows the software vendor to improve
the quality and security of the software. One of the most prominent fuzzers,
called American Fuzzy Lop (AFL) [41], has discovered hundreds of security-
critical bugs in a wide variety of libraries and programs.

Following the success of AFL, various other fuzzers have been proposed which
aim to outperform AFL by implementing new and improved fuzzing techniques
(e.g., [8,19,27,29]). However, it remains largely unclear whether the claim of
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improving the overall fuzzing performance is indeed true. This is because accu-
rately evaluating a fuzzer is challenging as the fuzzing process itself is non-
deterministic. Hence, comparing single runs or multiple runs using simple sta-
tistical measurements such as average values can lead to false conclusions about
the performance of the evaluated fuzzer. Similarly, deriving the number of poten-
tially discovered bugs based solely on coverage measurements and the number
of program crashes does not necessarily map to the effectiveness of a fuzzer. For
instance, Inozemtseva et al. [25] show that there is no strong correlation between
the coverage of a test suite and its ability to detect bugs. Additionally, there are
fuzzing approaches that prioritize certain program paths instead of maximizing
the overall coverage [7,10,39]. Such approaches cannot be evaluated using overall
code coverage as a measurement.

A study by Klees et al. [26] shows that existing evaluation strategies do
not consider state-of-the-art best practices for testing randomized algorithms
such as significance tests or standardized effect sizes. They also provide a list
of recommendations. However, these recommendations are mainly derived from
known best practices from the field of software testing or from a small set of
experiments on a small test set. Nevertheless, as we will show in Sect. 4, recent
fuzzing proposals still do not consistently follow recommendations regarding
the employed statistical methods and evaluation parameters (e.g., run-time or
number of trials). Since the goal of the recommendations is to ensure that the
reported findings are not the results of randomness, it remains unclear whether
we can trust existing fuzzing experiments and conclusions drawn from those
experiments.

Another important aspect of any fuzzer evaluation concerns the employed
test set. Several research works introduced test sets such as LAVA-M [14],
Magma [22], or the Google Fuzzer Suite [20]. Ideally, a test set should con-
tain a wide variety of different programs as well as a set of known bugs covering
various bug types including a proof-of-vulnerability (PoV). This is crucial to
enable accurate assessment on the effectiveness and efficiency of a fuzzer as a
missing ground truth may lead to overestimating or underestimating the real
performance of a fuzzer. We analyze these test sets in detail in Sect. 5.2 as the
test set selection is crucial for evaluating and comparing fuzzers.

Lastly, existing evaluation strategies lack uniformity for evaluation param-
eters such as the number of trials, run-time, and size of the employed test set
and the included bugs. As it is still unknown how these parameters affect the
fuzzer evaluation in practice, fuzzing experiments are commonly executed using
a wide variety of different parameters and evaluation methods. This may not
only affect the soundness (e.g., due to biases caused by the choice of parameter)
of the results but also makes it even harder to compare results across multiple
studies.

Our Contributions. In this study, we address the existing shortcomings of
fuzzing evaluations. To do so, we review current fuzzing evaluation strategies and
introduce the design and implementation of a novel fuzzing evaluation frame-
work, called SENF (Statistical EvaluatioN of Fuzzers), which unifies state-of-the-
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art statistical methods and combines them to calculate a ranking to compare an
arbitrary number of fuzzers on a large test set. The goal of our framework is
twofold. First, we aim to provide a platform that allows us to easily compare
a large number of fuzzers (and configurations) on a test set utilizing statistical
significance tests and standardized effect sizes. Contrary to existing frameworks,
such as UNIFUZZ [28], SENF provides a single ranking which allows for an easy
comparison of the overall performance of fuzzers. Second, due to the lack of com-
prehensive empirical data we test if following the recommended best practices
is necessary or if we can loosen the strict guidelines to reduce the computa-
tional effort needed to compare different fuzzing algorithms without impairing
the quality of the evaluation which was not possible with the data provided by
Klees et al. [26].

To show the applicability of SENF, we build our evaluation based on the most
prominent fuzzer, namely AFL [41] and its optimizations, as well as the popular
forks AFLFast [8], Fairfuzz [27], and AFL++ [15]. This allows us to argue about
the usefulness and impact of the proposed methods and techniques as AFL is
commonly used as the baseline fuzzer in existing fuzzing evaluations. We ensure
that all tested fuzzers share the same code base which allows us to precisely
attribute performance differences to the changes made by the respective fuzzer
or optimization technique.

We provide an extensive empirical evaluation of the impact of fuzzing param-
eters. In total, we ran over 600 experiments which took over 280k CPU hours
to complete. To the best of our knowledge, this is currently the largest study of
fuzzers published in academic research.

In summary, we provide the following contributions:

– We implement a fuzzing evaluation framework, called SENF, which utilizes
state-of-the-art statistical evaluation methods including p-values and stan-
dardized effect sizes to compare fuzzers on large test sets.

– We conduct a large-scale fuzzer evaluation based on a test set of 42 different
targets with bugs from various bug classes and a known ground truth to
quantify the influence of various evaluation parameters to further improve
future fuzzer evaluations.

– We open-source SENF [32], containing the statistical evaluation scripts, the
result data of our experiments, and seed files to aid researchers to conduct
fuzzer evaluations and allowing reproducibility of our study.

2 Background

In this section, we provide background information on the most relevant fuzzing
concepts and discuss how these are implemented in case of the popular fuzzer
AFL [41].

Fuzzers are programs that need to decide on a strategy to generate inputs
for test programs. The inputs should be chosen in such a way that they achieve
as much coverage of the program’s state space as possible to be able to detect
abnormal behavior that indicates an error. Fuzzers are commonly categorized
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into black-box, white-box, and grey-box fuzzers. Where black-bock fuzzers (e.g.,
zzuf [23]) try to maximizes the number of executions while white-box fuzzers
(e.g., KLEE [9]) make heavy use of instrumentation and code analysis to generate
more significant input. Grey-box fuzzers (e.g., AFL [41]) try to find a balance
between the executions per second and time spend on analysis.

One of the most well-known fuzzers is called American fuzzy lop (AFL) and is
a mutation-based coverage-guided grey-box fuzzer. It retrieves coverage feedback
about the executed program path for a corresponding test input. Since its cre-
ation, AFL discovered bugs in more than 100 different programs and libraries [41]
confirming its high practical relevance to improve software quality and security.

Given the influence of AFL in the fuzzing area, we take a closer look at its
architecture. AFL includes a set of tools that act as drop-in replacements for
known compilers, e.g., as a replacement for gcc AFL features afl-gcc which is
used to add code instrumentation. The instrumentation provides crucial infor-
mation such as the branch coverage and coarse-grained information about how
often a specific branch has been taken.

The fuzzing process can be divided into four different core components which
can also be found in many existing mutations-based grey-box fuzzers, including
forks of AFL: ① Search strategy : The search strategy selects an input (e.g., one
of the initial seeds) that is used in the mutation stage to generate more test
inputs. ② Power schedule: The power schedule assigns an energy value which
limits the number of new inputs generated in the mutation stage. The idea is
to spend more time mutating input that is more likely to increase the code
coverage. ③ Mutations: The mutation stage changes (part of) the selected input
to produce new inputs which are then executed by the program under test. AFL
has two different mutation stages. The deterministic stage does simple bit flips
or inserts specific values such as INT MAX. In the havoc stage, AFL executes a
loop that applies different mutations on the selected input, e.g., inserting random
data or trimming the input. ④ Select interesting input : After executing a new
input, the fuzzer collects the feedback data and decides if the newly generated
input is interesting, i.e., whether or not the input should be mutated to generate
new inputs.

Successors of AFL commonly implement their improvements as part of one
or more of the discussed core components. In Sect. 6.1 we describe the changes
implemented by the different fuzzers we test in our evaluation in more detail.

To address the problem of inputs being rejected due to rigorous input checks,
fuzzer leverage seed files which provide initial coverage and useful inputs for the
mutation stage. Thus, a fuzzer does not need to learn the input format from
scratch. To generate a set of seed files, one can either collect sample files from
the public sources or manually construct them. AFL prefers seeds with high
code coverage, a small file size, and low execution time. To minimize the seed
set, AFL provides a tool called afl-cmin which one can use to remove useless
seed files. However, if it is not possible to collect a sophisticated seed set one can
always employ an empty file as the only initial seed file.
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3 Statistical Evaluations

As the main purpose of fuzzers is to find bugs, the naive approach to compare
two or more fuzzers, is to fuzz a target program for a fixed amount of time and
then either compare the time it took to find bugs or compare the number of bugs
a fuzzer discovered. However, the fuzzing process itself is non-deterministic. For
instance, in AFL, the non-deterministic component is the havoc stage which
is part of the mutation module. Thus, executing multiple trials with the same
fuzzer may yield different results. As a consequence, using only a single execution
might lead to a false conclusion. Other utilized evaluation metrics such as the
average and median can be affected by similar issues. The common problem of
these simple techniques is that they ignore randomness, i.e., they do not consider
the non-deterministic nature of fuzzing. The most common method to address
this problem is to calculate the statistical significance, i.e., the p-value which
was popularized by Fisher [17]. If the p-value is below a predefined threshold we
assume that the observed difference between to fuzzers is genuine and consider
the results statistically significant.

When comparing two fuzzers, it is not only relevant to know whether the
performance differences are statistically significant but also to properly quantify
the difference, namely, we have to calculate the effect size. However, when com-
paring fuzzers on multiple targets non-standardized effect sizes are affected by
the unit of measurement which may result in unwanted biases. To address this
issue a standardized effect size should be used [2].

In general, we can differentiate between statistical tests for dichotomous and
interval-scale results which require a different set of statistical evaluation meth-
ods. In the following, we describe both result types and the recommended app-
roach to calculate statistical significance and the corresponding effect size as
discussed by Arcuri et al. [2]. For more details about the employed statistical
methods, we refer the interested reader to the relevant literature [16,30,38].

An interval-scale result in the context of fuzzing is the time a fuzzer needs to
detect a specific bug. In such a case it is recommended to use the Mann-Whitney-
U test to calculate the p-value to test for statistical significance. Contrary to the
popular t-test the Mann-Whitney-U test does not assume that the underlying
data follows the normal distribution. To quantify the effect size for interval-scale
results, one can utilize the Vargha and Delaneys Â12 statistic.

A dichotomous result can only have two outcomes, usually success or failure.
In the context of a fuzzer evaluation, a dichotomous result simply states whether
a specific bug has been discovered in the given time limit. To calculate the
statistical significance, Arcuri et al. [2] recommend using the Fisher exact test.
As the name suggests, this statistical test is exact which means that it is precise
and not just an estimation for the actual p-value. To calculate the effect size for
dichotomous results, it is recommended to calculate the odds ratio.
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4 Problem Description and Related Work

The evaluation of fuzzers was first analyzed by Klees et al. [26] who demonstrate
that simply comparing the number of crashes found using a single trial on a small
set of targets is misleading as it gives no insight into whether the fuzzer finding
more crashes discovers more bugs in practice. Thus, it is preferred to use a test set
with a ground truth, i.e., a set of inputs that trigger a known bug or vulnerability
inside the test program. To improve fuzzer evaluations, Klees et al. [26] provided
a set of recommendations for evaluating fuzzers based on best practices from the
field of software engineering. They recommend 30 trials, a run-time of 24 h and
use of the Mann-Whitney-U test for statistical significance, and the Â12 statistic
as an effect size. However, as we show in Table 1, these recommendations are only
partially followed by current fuzzing evaluations. As it is unknown how much
influence each evaluation parameter has on the results, it is unclear whether or
not these results are reproducible in practice. Contrary to Klees et al. [26], we
conduct comprehensive experiments to be able to argue about the influence of
different evaluation parameters based on empirical data.

To discuss the state of current fuzzer evaluations we analyze the evaluations
from previous work published in reputable security conferences. The experiments
gathered from the evaluation sections of different studies based on the following
criteria: ① the experiment is used to compare the overall performance of the
respective approach to at least one different fuzzers ② we exclude experiments
that are used to either motivate the work or certain design choices as well as
case studies. The results are summarized in Table 1. Note that we use the term
Crashes as an evaluation metric for all evaluations that do not utilize a ground
truth and rely on a de-duplication method which tries to correlate crashes to
a root cause. However, de-duplication methods are prone to errors and cannot
sufficiently estimate the correct number of bugs [26]. We use the term Bugs
when the authors evaluate fuzzers with a set of targets that contain known
vulnerabilities, i.e., it is possible to determine which inputs trigger which bug
without utilizing a de-duplication technique.

We observe that none of the fuzzing proposals strictly follows all best prac-
tices in their evaluations. For instance, none of the listed studies uses 30 trials per
experiment and only a single study employs a standardized effect size. Another
problem is the lack of uniformity. This is especially prevalent when real-world
programs are used to evaluate fuzzers which regularly use different sets of pro-
grams or program versions which may introduce unwanted biases and also makes
it hard to compare these results. Furthermore, most studies either do not provide
any statistical significance results or only for some of the conducted experiments.

A work that partially addresses similar issues has been introduced by Metz-
man et al. [31] from Google who published FuzzBench, an evaluation framework
for fuzzers. FuzzBench generates a report based on coverage as an evaluation
metric including a statistical evaluation. However, as the main purpose of a
fuzzer is to find bugs, the coverage is only a proxy metric and therefore less
meaningful than comparing the number of bugs found on a ground truth test
set and thus not recommended [26,34,37].
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Table 1. Analysis of current fuzzer evaluations. Entries with a question mark mean
that we were unable to find the respective information in the related study. Test set:
RW = real-world programs, Google = Google fuzzing suite. The number following the
test sets corresponds to the number of targets used. Effect Size: Avg. = average, Max.
= maximum value of all trials. Statistical significance: CI = confidence intervals, MWU
= Mann-Whitney-U test.

Fuzzer No Test set Run-time Trials Eval. metric Effect size Stat. significance

Hawkeye [10] 1 RW (19) 8 h 20 Bugs Average –

2 RW (1) 4 h 8 Bugs Average, Â12 –

3 RW (1) 4 h 8 Bugs Average, Â12 –

4 Google (3) 4 h 8 Coverage Average, Â12 –

Intriguer [13] 1 LAVA-M (3) 5 h 20 Bugs Median, Max

2 LAVA-M (1) 24 h 20 Bugs Median CI, MWU

3 RW (7) 24 h 20 Coverage Median CIb, MWU

DigFuzz [42] 1 CGC (126) 12 h 3 Coverage Norm. Bitmapa -

2 CGC (126) 12 h 3 Bugs – –

3 LAVA-M (4) 5 h 3 Bugs ? –

4 LAVA-M (4) 5 h 3 Coverage Norm. Bitmapa –

REDQUEEN [3] 1 LAVA-M (4) 5 h 5 Bugs Median CIc

2 CGC (54) 6 h ? Bugs – –

3 RW (8) 10 h 5 Coverage Median CI, MWU

4 RW (8) 10 h 5 Bugs – –

GRIMOIRE [5] 1 RW (8) 48 h 12 Coverage Median CI, MWUd

2 RW (4) 48 h 12 Coverage Median CI, MWU

3 RW (3) 48 h 12 Coverage Median CI, MWU

4 RW (5) ? ? Bugs – –

EcoFuzz [40] 1 RW (14) 24 h 5 Coverage Average p-valuee

2 RW (2) 24 h 5 Coverage Average –

3 RW (2) 24 h ? Crashes – –

4 LAVA-M (4) 5 h 5 Bugs – –

GREYONE [18] 1 RW (19) 60 h 5 Crashesf – –

2 RW (19) 60 h 5 Coverage – –

3 LAVA-M (4) 24 h 5 Bugs Average -

4 LAVA-M (4) 24 h 5 Crashes Average –

5 RW (10) 60 h 5 Coverage Average -

Pangolin [24] 1 LAVA-M (4) 24 h 10 Bug Average MWU

2 RW (9) 24 h 10 Crashes – –

2 RW (9) 24 h 10 Coverage Average MWU
aNormalized Bitmap size describes the relative size of the bitmap compared to the bitmap found by all

tested fuzzers.
bConfidence intervals only given for five of the seven targets.
cConfidence intervals are only provided for Redqueen.
dThe Appendix further provides: mean, standard deviation, skeweness, and kurtosis.
eWe were unable to determine the exact statistical test which has been used to obtain the p-value.
fThe evaluation compares de-duplicated crashes as well as unique crashes as reported by

AFL-style fuzzers.

UNIFUZZ is a platform to compare different fuzzers based on 20 real-
world programs [28]. The evaluation metrics are based on crashes which are
de-duplicated using the last three stack frames which is known to be unreliable
because stack frames might be identical even though they trigger different bugs
or stack frame may be different while triggering the same bug [26]. UNIFUZZ
provides an overview of the fuzzer performance on each test program which



180 D. Paaßen et al.

makes it hard to assess the overall performance. SENF goes one step further
and summarizes the results in a single ranking which allows us to easily com-
pare all tested fuzzers. Therefore, it is not required to manually analyze the
results on each target separately. However, if needed one can still get the target
specific data from the results database of SENF.

5 Our Methodology

In this section, we provide an overview of the most important aspects of a fuzzer
evaluation. We describe our choice of fuzzers, seeds, test set, and test machine
setup which we use to test our framework to quantify the influence of various
evaluation parameters.

5.1 Comparing Fuzzers

Comparing fuzzers with each other is not straightforward due to the various
fuzzer designs and the wide variety of available testing methods. A fuzzer design
is usually highly complex and given that a fuzzer executes millions of test runs,
even small differences can have a huge impact on the performance. Some fuzzers
are based on completely novel designs which makes it hard to attribute perfor-
mance improvements to a specific change. For example, Chen and Chen proposed
Angora [11] a mutation-based fuzzer that is written in Rust instead of C/C++
like AFL. Angora implements various methods to improve the fuzzing process:
byte-level taint tracking, a numeric approximation based gradient descent, input
length exploration, and integration of call stacks to improve coverage mapping.
Due to the considerable differences to other fuzzers, it is impossible to accurately
quantify the respective contribution of each technique when comparing it with
AFL or other fuzzer which do not share the same code base. As a consequence,
it is important to evaluate fuzzers based on common ground. Given the high
popularity of AFL, we opted to focus on fuzzers that are based on the AFL code
base. Note however that our evaluation framework is not specifically tailored
to AFL in any way. Thus, it can be used to evaluate an arbitrary selection of
fuzzers.

5.2 Test Set Selection

A crucial aspect of any fuzzer evaluation is the underlying test set, i.e., the target
programs for which the fuzzer aims to discover bugs. In what follows, we study
four different test sets available at the time of testing and argue why we decided
to use the CGC test set for our evaluation. Note that we focus on test sets that
provide a form of ground truth as there is currently no way to reliably match
crashes to the same root cause as proper crash de-duplication is still an open
problem (see Sect. 4).

LAVA-M. In 2016, Brendan et al. presented LAVA [14], a method to inject
artificial bugs into arbitrary programs. The corresponding LAVA-M test set was
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the first ground truth test set to evaluate fuzzers that has been published in
academia. It consists of four different programs with hundreds of injected bugs.
Each bug has a specific bug-id that is printed before deliberately crashing the
program. Due to its rather small size, the LAVA-M test set lacks the diversity
found in real-world programs. Further, recent fuzzers such as Redqueen [3] and
Angora [11] solve the test set by finding all injected bugs. This is possible because
LAVA-M only features a single bug type which requires that the fuzzer solves
magic byte comparisons, missing the bug diversity found in real-world software.

Google Fuzzing Suite. The Google Fuzzer Suite [20] consists of 22 different
real-world programs with 25 different challenges that fuzzers are expected to
solve. All challenges are documented and may include seed files. However, the
test suite is not suitable for our use case as the majority of the bugs can be
discovered by existing fuzzers in a very short time span (seconds or minutes).
Furthermore, some of the challenges do not contain any bugs. Instead, the goal
of these challenges is for the fuzzer to reach a certain path or line of code (i.e., a
coverage benchmark) which is not compatible with our evaluation metric as we
are interested in the number of bugs found. Additionally, the included bugs are
partially collected from other fuzzing campaigns which might introduce biases.

Magma. The Magma fuzzing benchmark is a ground truth test set [22] that
is based on a set of real-world programs. At the time of testing, the test set
contains six different targets each containing a set of known bugs. Similar to
LAVA-M, Magma uses additional instrumentation in the form of bug oracles to
signal whether a bug condition has been triggered by a specific input. However,
we do not use the Magma test set because at the time of testing it did not provide
a sufficiently large test set. Further, not all bugs include a proof-of-vulnerability
(PoV) which makes it impossible to know if a fault can be triggered by any
means.

CGC. The DARPA Cyber Grand Challenge1 (CGC) was a capture-the-flag style
event where different teams competed by writing tools that are able to detect
and subsequently fix bugs in a test corpus of close to 300 different programs
with a prize pool of nearly 4 million USD. Each challenge has been designed
carefully and consists of one or more binary which mirror functionality known
from real-world software. CGC challenges contain at least one bug of one of two
types: Type 1 bugs allow an attacker to control the instruction pointer and at
least one register. Type 2 bugs allow reading sensitive data such as passwords.
The challenges are written by different teams of programmers and do not rely
on automatically injected bugs. As a result, the CGC test set offers great bug
diversity which are similar to bugs found in real-world software and is therefore
not susceptible to the same limitations as the LAVA-M test set.

Instead of the original binaries which were written for DECREE, we use the
multi OS variant published by Trail of Bits [21] which allows us to execute the
challenge binaries on Linux. All challenges and bugs are very-well documented
and contain a PoV and a patched version of the respective challenge program(s).
1 https://github.com/CyberGrandChallenge/.

https://github.com/CyberGrandChallenge/
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Each bug is categorized into their respective CWE classes2. Further, challenges
include test suits that we can use to ensure that the compiled program works as
intended which can be especially helpful when using code instrumentation.

Given the greater bug and program diversity of CGC in combination with
its great documentation and comprehensive test suites, we select a subset of the
ported version of the CGC test set based on the following criteria: ① All tests
(including the PoV) are successfully executed on our test servers. ② The target
only contains one vulnerability. ③ The vulnerability is of type 1 as type 2 bugs
do not lead to a crash. ④ The challenge consists of only one binary as fuzzers
usually do not support to fuzz multiple binaries.

We are using targets with only one vulnerability as this allows us to verify
the discovered crashing inputs using differential testing (see Sect. 5.6). This pro-
cess does not require any additional instrumentation (e.g., bug oracles) which
may significantly change the program behavior and lead to non-reproducible
bugs [28]. Furthermore, we do not need to correlate crashes to their root cause
using de-duplication methods. Our complete test set is composed of 42 targets
including bugs of 21 different CWE types. We provide a complete list of all
targets including their bug types in our public repository [32]. Note that it is
not required to use CGC to be able to use SENF because the framework is
not specifically tailored to the test set but can used with any test set. Further-
more, SENF can also be used to evaluate fuzzers based on the code coverage,
e.g., when testing how long it takes a fuzzer to reach a certain basic block. We
provide further details in the public repository [32].

5.3 Seed Sets

To evaluate fuzzers, we opted to use two sets of seed files. The first set of seed files
contains sample input which we extract from the test inputs that are shipped
with each CGC challenge. We minimize each seed set using afl-cmin. As it
might not always be possible for users to create a comprehensive seed set for
their target, we use an empty file as a second seed set.

5.4 Statistical Evaluation

To evaluate the results of our experiments, we employ the statistical methods
described in Sect. 3. SENF supports both, dichotomous and interval-scale statis-
tics as their usage depends on the use case. Dichotomous results provide an
answer to the question which fuzzer finds the most bugs in a certain time frame,
but ignores the time it took to find a bug. These types of evaluations are relevant
for use cases such as OSS-Fuzz [1] where fuzzing campaigns are continuously run
for months without a fixed time frame. Statistical tests on interval-scale results
are useful in practical deployments when the amount of time to fuzz a target is

2 Common Weakness Enumeration (CWE) is a list of software and hardware problem
types (https://cwe.mitre.org/).

https://cwe.mitre.org/
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limited, e.g., when running tests before releasing a new software version. We use
R [35] to calculate statistical significance tests as well as effect sizes.

When comparing multiple fuzzers or fuzzer configurations on a large set of
targets, we encounter two problems. First, due to the large number of com-
parisons, it is not practical to publish all p-values and effect sizes as part of a
study. Secondly, even if one publishes all values, it is not trivial to assess if a
fuzzer actually outperforms another. Therefore, we implement a scoring system,
which is inspired by Arcuri et al. [2], to summarize the results in a single score.
The scoring system follows the intuition that the fuzzer which finds the most
bugs the fastest, on the most of the targets is overall the best fuzzer. To deter-
mine the best fuzzer, the algorithm compares all fuzzers using the statistical
significance tests and standardized effect sizes. For each target, it generates a
ranking based on the time it took each fuzzer to find a specific bug. The final
score is the average ranking of each fuzzer over the whole test set. For a more
detailed description of the scoring algorithm we refer the interested reader to
the respective publication [2].

5.5 Fuzzing Evaluation Setup

In Fig. 1 we provide an overview of our fuzzing evaluation setup. At its core,
our design features a management server that runs a controller which provides
the target program and seed set to one of the available experiment servers. On
each experiment server, a dedicated executor starts the fuzzer and monitors
the fuzzing process. The monitoring includes logging the CPU utilization and
number of executions of the fuzzer. Thus, we can detect hangs and crashes of
the fuzzer itself and restart a run if necessary.

After the pre-defined run-time, the executor stops the fuzzer and sends a
success message to the controller program. Using the data from all successful
fuzzing runs, SENF evaluates the reported results using evaluation methods
which compare all executed runs of an arbitrary number of fuzzers and calcu-
lates statistical significance, effect size, the ranking based on dichotomous and
interval-scale statistical tests.

Fig. 1. Conceptual overview of the fuzzing evaluation setup.
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5.6 Test Runs

Note that we conduct each experiment (i.e., a combination of fuzzers, targets,
and seeds) for a maximum of 24 h. As each target only contains a single bug,
we stop fuzzing when an input has been found by a fuzzer that triggers the bug
of the respective target. To avoid false positives [3], we verify each crash using
differential analysis, i.e., we execute a potential crashing input on the vulnerable
and patched version of the respective binary and check whether the input crashes
the binary.

SENF itself only requires a database which contains the result data, i.e., the
time it took until a specific bus has been triggered, and a list of targets/seeds
that should be used in the evaluation. Therefore, our framework can be used to
evaluate other fuzzers or test sets. With minimal modifications one can also use
other evaluation metrics (e.g., block coverage) to compare fuzzers with SENF.

6 Experiments

We run extensive fuzzing campaigns to systematically quantify the influence
of various parameters used in fuzzing evaluations while following state-of-the-
art statistical evaluation methodology. We test the influence of the following
parameters: the seed set, number of trials, run-time, and number of targets as
well as bugs. In total we run 616 fuzzing experiments with an accumulated run-
time of over 284k CPU hours.

If not stated otherwise we use the following parameters as a default config-
uration for the statistical evaluation: a p threshold of 0.05, a non-empty seed
set, interval-scale statistical tests, with 30 trials per experiment and a run-time
of 24 h. Further, experiments for a specific target are always run on the same
hardware configuration to ensure uniform test conditions. Note that when test-
ing with an empty seed we have to exclude seven targets of our test set of 42
programs as these targets do not properly process an empty file thus fail initial
tests done in AFLs initialization routine.

We execute all experiments on a cluster of 13 servers. To ensure equal con-
ditions for all fuzzers, we use Docker containers and assign them one CPU core
each and a ramdisk to minimize the overhead caused by I/O operations. We
utilize Ubuntu 18.04 LTS as an operating system. If not stated otherwise we
use fuzzers AFL/Fairfuzz in version 2.52b and AFLFast in version 2.51b as well
as AFL++ in version 2.65c. The CGC test set was built using the code from
commit e50a030 from the respective repository from Trail of Bits.

Due to the extensive amount of data in our evaluation and the inherent
space limitations, we cannot publish all results (e.g., comparing different p-value
thresholds) as part of this publications. We provide an extended version of our
work in our public repository [32].

6.1 Fuzzers

We test a total of four fuzzers (❶ AFL [41], ❷ AFLFast [8], ❸ Fairfuzz [27],
❹ AFL++ [15]), two AFL-based compiler optimizations (❺ AFL-CF, ❻ AFL-
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LAF), and two modes of AFL (❼ -d and ❽ -q) which provide a wide range
of different performances. In the following, we explain the different fuzzers and
modes of AFL we tested including the different compiler optimizations.
❶ AFL. The general purpose fuzzer AFL supports various different optimiza-
tions and parameters which change one or more its core components: ❼ AFL
(-d). If the -d flag is enabled, AFL skips the deterministic part of the muta-
tion stage and directly proceeds with the havoc stage. ❽ AFL (-q) The -q
flag enables the qemu mode. Using this mode, AFL can fuzz a target without
access to its source code. The necessary coverage information is collected using
QEMU. According to the AFL documentation3, the performance may decrease
substantially due to the overhead introduced by the binary instrumentation.
❺ AFL-CF. As described in Sect. 2, AFL ships with various compilers that add
the coverage feedback instrumentation when compiling a target program from
source code. Using the alternative compiler afl-clang-fast, the instrumenta-
tion is added on the compiler level, instead of the assembly level, using a LLVM
pass which improves the performance.
❻ AFL-LF. Based on afl-clang-fast, one can try to improve the code cover-
age by using the LAF LLVM passes4. For instance, these passes split multi-byte
comparisons into smaller ones which AFL can solve consecutively.
❷ AFLFast. AFLFast [8] is a fork of AFL that investigates fuzzing low-frequency
paths. These are paths that are reached by only a few inputs following the intu-
ition that these inputs solve a path constraint that may lead to a bug. The
implementation is part of the power schedule with an optimized search strategy.
Note that AFL incorporated improvements from AFLFast starting with version
2.31b.
❸ Fairfuzz. Fairfuzz [27] is also based on AFL. Similar to AFLFast, it aims
at triggering branches that are rarely reached by other testing inputs. However,
it does not utilize a Markov chain model but rather relies on a dynamic cutoff
value (i.e., a threshold for the number of hits) to decide which branches are
considered rare. Further, Fairfuzz uses a heuristic that checks if certain bytes
can be modified while still executing the same respective rare branch. Fairfuzz
implements these changes as part of the search strategy and the mutation stage
of AFL.
❹ AFL++. The AFL++ fuzzer [15] is a novel variation of AFL that improves
usability and enables easy customization. It implements various improvements
from academia as well as the fuzzing community (e.g., the AFLFast power sched-
ules and the LAF LLVM passes). The goal is to introduce a new baseline fuzzer
that is used for future fuzzing evaluations.

6.2 Seed Set

First, we evaluate the influence of the seed set by comparing an empty with
a non-empty seed set (see Sect. 5.3). The results are depicted in Table 2 which

3 https://github.com/mirrorer/afl/blob/master/qemu mode/README.qemu.
4 https://gitlab.com/laf-intel/laf-llvm-pass/tree/master.

https://github.com/mirrorer/afl/blob/master/qemu_mode/README.qemu
https://gitlab.com/laf-intel/laf-llvm-pass/tree/master
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lists the number of times that a fuzzer performed statistically better with the
empty and non-empty seed set. We find that with the majority of targets the
non-empty seed set either outperforms the empty seed or performs equally well
on both statistical tests. We find that AFL is able to detect five bugs using the
empty seed set that AFL is unable to detect when using the non-empty seed set.
We believe that the main reason for this is that AFL spends less time in the
deterministic stage when using an empty seed as the file is only a single byte.
Note that even though the performance with a proper seed set is significantly
better, testing an empty seed is still useful in cases where it is favorable to
minimize the number of variables which may influence the fuzzing process [26]
as well as scenarios where one cannot compile a comprehensive sets of inputs for
the tested programs.

Table 2. Comparison of the non-empty and empty seed sets using interval-scale and
dichotomous tests. Listed are the number of times the performance of the non-empty
seed set was statistically better than the empty seed set and vice versa.

Interval-scaled Dichotomous

Fuzzer Non-empty Empty Non-empty Empty

afl 12 6 6 2

afl (-Q) 8 4 7 1

afl (-d) 18 2 8 1

fairfuzz 13 4 7 1

afl-li 13 6 5 3

afl-cf 12 6 5 2

aflfast 12 5 6 0

afl++ 12 5 5 2

6.3 Run-Time

To show the impact of differences in run-time, we calculate the ranking for
maximum run-times between 1 h and 24 h. For each ranking, we only consider
crashes that have been found in the respective time frame. We present the results
in Fig. 2a. We observe that the run-time has a significant influence on the results.
Interestingly, we find that even though all fuzzers are based on the same code
base there is no uniform trend when increasing the run-time. For example, AFL
without its deterministic stage consistently improves, in total by 0.45 in the
average ranking from 1 h to 24 h. In the same time the performance of Fairfuzz,
AFLFast, and AFL may increase or decrease slightly which also changes the rel-
ative ranking of these fuzzers depending on the maximum run-time. We observe
that on our test set, the run-time should be at least 8 h as lower run-times may
lead to false conclusions of the fuzzer performance.
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(b) Trials varying between 5 and 30.

Fig. 2. Average ranking when using different run-times and number of trials.

6.4 Number of Trials

To calculate a p-value, one has to repeat every experiment multiple times. The
number of trials also influences the minimum p-value that can be achieved.
We compare the average ranking of each fuzzer and configuration considering
between the first 5 and all 30 trials. In Fig. 2b, we can see that the performance
may vary significantly depending on the number of trials used. For example,
using 10 trials AFL++ has a slightly better performance than AFL and Fairfuzz,
both of which clearly outperform AFLFast. Analyzing the results after 30 trials
we find that AFL++ now outperforms AFL and Fairfuzz which both perform as
well as AFLFast. We conclude that the number of trials has significant impact
on the results and if under serious resource constraints one should prioritize a
higher number of trials over longer run-times.

6.5 Number of Bugs/Targets

Another parameter that one can adjust is the number of targets a fuzzer is
evaluated on. As we use targets with a single bug, the number of targets is equal
to the number of bugs in our test set. We evaluate all fuzzers on test sets between
five and 35 different targets. For each test set size, we randomly sample 1000
different target combinations and calculate the ranking including maximum and
minimum. Note that given larger test sets, the spread will naturally decrease as
we sample from a maximum of 42 different targets. In Fig. 3, we can see that the
performance may vary substantially depending on the used test set. We further
analyze the results and find randomly sampled test sets with 15 targets where
AFL-CF outperforms AFL without the deterministic stage or test sets where
the performance of Fairfuzz is second to last. Even when we use 35 targets, we
find randomly sampled test sets that result in a substantially different rankings
compared to the 42 target test set. For example, we observe test sets where
AFL++ outperforms AFL-CF or test sets where Fairfuzz performs better than
AFL++. Our results show that target and bug selection should not be taken lightly
as it can introduce significant biases when testing fuzzers.
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Fig. 3. Average ranking when using varying numbers of targets/bugs. Whiskers corre-
late to the minimum and maximum rank.

6.6 Further Insights

Next, we compare the SENF-ranking with a ranking that utilizes the average
as commonly found in fuzzer evaluations (see Sect. 4). The results are shown in
Table 3. Notably, when we only consider the average, the overall ranking changes
drastically with the exception of the best and worst performing fuzzers. This
shows the influence of statistically insignificant results on the overall performance
results which further confirms the choice of using righteous statistical methods
as employed in SENF.

Table 3. Comparison of the SENF-ranking and avg. number of bugs found over all
targets.

SENF ranking Ranking based on Avg.

Fuzzer Avg. ranking Fuzzer Avg. #bugs found

afl (-d) 2.67 afl (-d) 16.86

afl-cf 3.82 fairfuzz 14.17

afl++ 4.11 afl-cf 13.55

fairfuzz 4.54 aflfast 13.26

aflfast 4.60 afl 12.60

afl 4.60 afl-li 12.60

afl-li 5.31 afl++ 12.48

afl (-Q) 6.37 afl (-Q) 9.21

To test the consistency of each fuzzer, we take a closer look at the time it
takes a fuzzer to detect a bug in Fig. 4. To improve the readability of the figure
we plot the difference between the shortest and longest time a fuzzer needs to
find a bug over all trials for each target. If a fuzzer is not able to find a bug, we
set the execution time to 24h. When a fuzzer was not able to find a bug in a
target over all trials, we omitted the result to increase readability. For all fuzzers
and configurations, randomness plays a significant role when searching for bugs
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with differences between minimum and maximum time close to our run-time of
24 h. No fuzzer in our evaluation is able to consistently find bugs over all trials.

afl
(-d

)
afl
-c
f

afl
+
+ afl

fa
irf
uz
z

afl
fa
st

afl
-li

afl
(-Q

)

100

101

102

103

104

105

Δ
ti
m

e
(s

)

Fig. 4. Difference between min. and max. exec. time for each fuzzer and target over
all trials.

7 Discussion

Test Set Selection. Our framework SENF in combination with a ground truth
test set significantly increases the probability that the reported results are repro-
ducible. Even though our test set of 42 different programs and 21 different bug
types ensures a certain level of diversity in our evaluation, the resulting ranking
could potentially differ if a larger, representative test set of real-world programs
with a ground truth is used because programs from the CGC test set do not pro-
vide the same level complexity. Note that other test sets can easily be evaluated
with SENF as we only require a database containing the experiment results as
input.

Resource Limitations. Due to unavoidable limitations of resources, we cannot
analyze the full range of parameters used in existing fuzzing evaluations, e.g.,
run-times of 60 h (see Sect. 4). Therefore, we limit our experiments to values
recommended in fuzzing literature [26]. For the same reason, we do not conduct
experiments with multiple concurrent fuzzer instances testing the same target.
The experiments of Chen et al. [12] as well as Böhme and Falk [6] suggest that the
performance of fuzzers varies significantly when fuzzing with multiple instances
simultaneously.

Fuzzer Selection. Due to the aforementioned resource constraints, we have
to limit the selection of fuzzers as the experiments in Sect. 6 already required
over 280k CPU hours. We opted to focus on AFL, AFL-based fuzzers, and
various optimizations as this allows us to easily attribute performance dif-
ferences. Furthermore, AFL is the most popular baseline fuzzer, e.g., it is
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recommended by Klees et al. [26] and used in all evaluations we studied in
Sect. 4. Additionally, AFL is commonly used as a code base to implement new
fuzzers [8,19,27,29,33,36]. For these reasons, we argue that focusing on AFL-
style fuzzers is more significant for common fuzzer evaluations compared to other
fuzzers. However, since our implementation is open-source one can easily use
SENF to evaluate any set of fuzzers. We provide detailed guidelines in our pub-
lic repository [32].

Scoring Algorithm. The scoring algorithm we use in our evaluation adopts the
commonly used intuition that the fuzzer which outperforms the other fuzzers
(i.e., finds more bugs) on the most targets has the best overall performance.
However, other evaluation metrics may be useful for other use cases, e.g., when
testing a target with a section of different fuzzers one may not only be interested
in the fuzzer that finds the most bugs but also fuzzers that find a unique set
bugs which all other fuzzers are unable to detect. However, calculating the unique
set of bugs for each fuzzer does not require complex statistical evaluations as
provided by SENF.

Furthermore, our evaluation does not take into account by how much a
fuzzer A improves over a different fuzzer B. SENF addresses this problem by
supporting a variable effect size thresholds. Thus, interested parties can set a
custom minimum effect size which SENF takes into account when calculating
the score of a fuzzer. We provide more detailed information on the effect size
and its influence in the extended version of this paper.

Threshold of the p-value. In our evaluation, we opted to use the widely
established p threshold of 0.05 which is commonly used in software engineer-
ing evaluations [26]. However, this threshold is generally considered a trade-off
between the probability of false positive and false negative results. Other scien-
tific communities opted to use lower thresholds or other methods of statistical
evaluation [4]. SENF addresses this and lets the user set an arbitrary threshold
to calculate the average ranking of each fuzzer.

8 Conclusion

Our analysis of recent fuzzing studies shows that fuzzers are largely evaluated
with various different evaluation parameters which are not in line with the recom-
mendations found in academic literature. To address these issues, we presented
SENF, which implements dichotomous and interval-scale statistical methods to
calculate the p-value and effect sizes to compute a ranking to asses the overall
performance of all tested fuzzers.

Based on extensive empirical data, we quantified the influence of different
evaluation parameters on fuzzing evaluations for the first time. We demonstrate
that even when we utilize the recommended statistical tests, using insufficient
evaluation parameters—such as a low number of trials or a small test set—may
still lead to misleading results that in turn may lead to false conclusions about the
performance of a fuzzer. Thus, the choice of parameters for fuzzing evaluations
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should not be taken lightly and existing recommendations should be followed to
lower the chance of non-reproducible results. We described and open-sourced a
practical evaluation setup that can be used to test the performance of fuzzers.
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