
Rope: Covert Multi-process Malware
Execution with Return-Oriented

Programming

Daniele Cono D’Elia(B), Lorenzo Invidia, and Leonardo Querzoni

Department of Computer, Control, and Management Engineering,
Sapienza University of Rome, Rome, Italy

delia@diag.uniroma1.it

Abstract. Distributed execution designs challenge behavioral analyses
of anti-malware solutions by spreading seemingly benign chunks of a
malicious payload to multiple processes. Researchers have explored meth-
ods to chop payloads, spread chunks to victim applications through pro-
cess injection techniques, and orchestrate the execution. However, these
methods can hardly be practical as they exhibit conspicuous features and
make use of primitives that anti-malware solutions and operating sys-
tem mitigations readily detect. In this paper we reason on fundamental
requirements and properties for a stealth implementation of distributed
malware. We propose a new covert design, Rope, that minimizes its foot-
print by making use of commodity techniques like transacted files and
return-oriented programming for covert communication and payload dis-
tribution. We report on how synthetic Rope samples eluded a number of
state-of-the-art anti-virus and endpoint security solutions, and bypassed
the opt-in mitigations of Windows 10 for hardening applications. We then
discuss directions and practical remediations to mitigate such threats.

Keywords: Malware · Distributed execution · Anti-virus · EDR ·
Injection · Code reuse · Application hardening · ROP · TxF · WDEG

1 Introduction

Malicious software is a plague on users and organizations as it can compro-
mise the availability and integrity of computer systems. To shield machines from
the overwhelming amount of new threats appearing every year, anti-malware
solutions devise dynamic analyses to flag untrusted software as potentially mali-
cious by monitoring its execution traits. In particular, Anti-Virus (AV) and,
more recently, Endpoint Detection and Response (EDR) solutions protect home
and business computers by combining traditional signature-based mechanisms
for binaries with behavioral detection techniques to forestall new threats.

In principle, threat actors may bypass behavioral analysis by diluting the
temporal and spatial features of a malicious computation in multiple execution

c© Springer Nature Switzerland AG 2021
E. Bertino et al. (Eds.): ESORICS 2021, LNCS 12972, pp. 197–217, 2021.
https://doi.org/10.1007/978-3-030-88418-5_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-88418-5_10&domain=pdf
https://doi.org/10.1007/978-3-030-88418-5_10


198 D. C. D’Elia et al.

units. This approach requires partitioning a payload into coordinated compo-
nents so that no one of them causes an AV/EDR system to raise an alert [40].

Some academic literature [8,21,26,40] explores distributed malware execu-
tion designs that, using manual or automated methods, craft components that
execute as independent processes and coordinate between themselves, possibly
through covert channels. Using dedicated processes as units, however, is a con-
spicuous trait that exposes every process to immediate analysis and, depending
on the ignition method, to correlation attempts from security solutions. Even
recent designs where each process imitates benign applications in a mimicry
fashion [8] need to create no less than 18–20 processes to avoid detection.

Two recent proposals [20,37] make a leap forward by distributing a payload
across pre-existing, benign processes through the use of process injection tech-
niques. Such designs bring a strictly harder problem for defenders [20], as they
need to correlate actions (e.g., API calls) that are spread out in the event streams
for both the victim processes and the entire system. Unfortunately, as we elabo-
rate in more detail later, both designs exhibit conspicuous features and build on
primitives that make them an easy prey of state-of-the-art AV/EDR solutions.
Also, they both conflict with modern operating system (OS) mitigations that
users can enable to harden applications against subversion attempts.

Our approach. In this work we introduce Rope, a new covert design for multi-
process malware execution. Rope meets real-world requirements for deploying
distributed malware on victims where both behavioral analyses and applica-
tion hardening mitigations are in place. To this end, Rope builds on commodity
OS features (Transactional NTFS) and attack techniques (Return-oriented Pro-
gramming) for covert communication and for payload encoding and distribution,
minimizing the footprint and in turn the conspicuous features of the execution
runtime. Rope further raises the bar for defenders as threat actors can replace
individual components of the implementation with alternative primitives.

In our tests, Rope eludes the latest version of state-of-the-art AV/EDR prod-
ucts and complies with common opt-in hardening mitigations available on Win-
dows 10. As part of a responsible disclosure process, we reported to Microsoft
three flaws (and bypasses) for Windows Defender Exploit Guard and cooperated
with one vendor to extend their EDR product so as to detect the implementa-
tion solutions that we use. Finally, the paper points out several directions and
practical remediations to anticipate and mitigate threats like Rope.

Contributions. In summary, this paper proposes the following contributions:

– an analysis of the challenges that lie along the way to practical multi-process
execution of malware;

– a new design, Rope, to meet such challenges using commodity means;
– an evaluation of Rope in the presence of state-of-the-art security solutions

and application hardening mitigations, where Rope successfully eludes both.



Rope: Covert Multi-process Malware Execution with ROP 199

2 Background

This section details fundamental traits of anti-malware defenses for systems and
applications, and depicts the state of the art in distributed malware execution.

2.1 Defenses for Systems and Applications

To detect an incoming untrusted program as malicious, anti-malware solutions
use two primary techniques [39]: signature scanning and behavioral analysis.

Signature scanning looks for distinctive patterns in the binary representa-
tion of a program, and is challenged both by new threats and by obfuscation
and polymorphism applied to known malware strains [35]. Behavioral analysis
attempts a controlled execution in emulators [3] and even in the real system by
shepherding the use of specific APIs. Unlike signature scanning, it can periodi-
cally kick in for long-running programs, e.g., as soon as those exercise operations
red-flagged and monitored by the anti-malware solution. In a broader connota-
tion of behavioral analysis, we include also in-memory scanning techniques that
dynamically look for patterns in the code and data of processes.

While the inner workings of AV/EDR solutions are undisclosed, prior
research [15] reports on behavioral analysis concepts involving feature extrac-
tion for sequences of performed API calls, graph representations that cap-
ture relations also between their parameters or return values, and variants of
these ideas. Correlation is usually limited to single execution units or to their
descendants.

Typically, on Windows systems the monitoring of AV/EDR solutions oper-
ates through hooks for user-space APIs and minifilters for I/O events, while
kernel-level hooks that vendors used to apply on, e.g., the System Service
Descriptor Table are no longer allowed since the introduction of PatchGuard [27].

We also note that EDR solutions are nowadays popular among enterprise
users as they embody a multifaceted approach, extending the protection of AV
engines with improved monitoring capabilities (e.g., remote telemetry) and com-
plementary solutions (e.g., whitelisting, threat detection and response).

Recently available OS mitigations for hardening applications can then serve
as a further line of defense. Introduced with Windows 10 version 1709, Windows
Defender Exploit Guard (WDEG) blocks several behaviors commonly used in
malware attacks [29], offering orthogonal protection alongside AV/EDR solu-
tions. WDEG supersedes and widens the exploit-oriented protection of Microsoft
EMET with a number of opt-in hardening mitigations [28], including:

– ACG (Arbitrary Code Guard), to block the allocation of executable memory
as well as permission changes to host dynamically generated code;

– CIG (Code Integrity Guard), to block the loading of non-signed code;
– EAF (Export Address Filtering) and IAF (Import Address Filtering), to

block code not from a disk-backed module when accessing the export and
import address table of any loaded module (e.g., to locate API addresses);



200 D. C. D’Elia et al.

– ROP mitigations (CallerCheck, SimExec, StackPivot), to validate upon an
invocation of a sensitive API its call and return sites and the stack pointer
value against typical traits of return-oriented programming attacks.

2.2 Distributed Malware

The idea of using multiple processes to deliver a malicious computation dates
back at least to 2007 with the formal model of k-ary malicious codes by Filiol [13],
and has seen multiple uses in the wild over the years [15]. As we mentioned in
Sect. 1, a rather rich academic literature explores variants of this idea: initially to
thwart signature scanning [39], but soon enough behavioral detection became the
main target (e.g., [15,21,26]). Multi-process execution can be effective against
behavioral analyses as their “dynamic” signatures often involve sequences of
events that are not short (or the risk of false positives could be very high [26]):
henceforth attackers may spread smaller parts to separate execution units.

Most distributed designs require the creation of new processes, which brings
a few practical problems. As several AV/EDR products can look for correlations
among processes and their descendants as a form of spatial locality [40], a dis-
tributed runtime should try to spawn each execution unit as a sibling process of
the others, which is non-trivial to achieve. Also, untrusted executables may run
with low integrity levels or be subject to restrictions for, e.g., network access.
Recent studies in ransomware design [8] suggest that a high number of processes
is required to avoid special-purpose detectors—we picture those as part of an
EDR ecosystem—even when attempting mimicry strategies.

Researchers have also explored how to leverage existing processes instead,
an approach that brings several benefits at once if successful. For instance, the
malicious actions get further spread among the own activities of each victim
application, and an execution unit can inherit the access rights of the victim to
get around, e.g., application whitelisting or Egress filtering policies [31].

Process injection techniques may offer an avenue to this end. malWASH [20]
chops an existing binary into chunks of variable length (e.g., one per basic block)
and, from a loader component, injects them into pre-existing processes along
with an emulator that orchestrates their execution from a dedicated thread. D-
TIME [37] ameliorates malWASH in two respects: it replaces the (conspicuous)
remote thread created for emulator dispatching with a mechanism that injects
Windows APC calls, and simplifies the communication channel creation.

Unfortunately, both systems would struggle with deployment requirements
as we consider the sophistication of ever-improving defenses. malWASH and D-
TIME place their emulators and chunks in executable memory regions: a design
trait that is fundamentally incompatible, depending on the injection method,
with either ACG or CIG-like policies. Their very same complex emulator (5, 500
hand-written assembly lines in malWASH, which need orthogonal diversification
techniques to avoid fingerprinting) is conspicuous, as it uses multiple shared
regions to host data segments, heap, and stack for the payload, and others for
metadata required to coordinate chunk execution. As we will see later in the



Rope: Covert Multi-process Malware Execution with ROP 201

paper, these and other practical traits make even such recent designs an easy
prey of sophisticated AV/EDR solutions.

3 Challenges for Covert Distributed Malware

This section identifies as challenges a number of requirements and properties,
missed in prior works, behind covert designs and implementations of distributed
malware abstractions. We believe that, in the lack of a principled approach to
cope with real-world deployment requirements, such abstractions would end up
being thwarted by narrow-scope remediations from anti-malware solutions, as
already happened even for promising concepts like malWASH and D-TIME.

While the list presented in the following may not be exhaustive, we hope
it can advance the knowledge in malware design and favor the development of
comprehensive mitigations for upcoming threats. We assume a generic design
skeleton where an initial component, the loader, initiates the distribution of the
payload among the leveraged execution units. Each unit executes pieces (chunks)
of the whole computation with the assistance of a local bootstrap component. Due
to the inherent limitations of process creation-based designs (Sect. 2), our main
focus for the discussion will be injection-based designs, but the considerations
we are about to present are mostly general and apply to both.
[C1] Use a flexible delivery technique. This point is important especially for
injection-based designs, as threat actors and researchers regularly come up with
new injection techniques [23] to slip through the cracks of evolving AV/EDR
solutions and OS mitigations. The covertness of the method used to deliver the
chunks to execution units can be almost as important as its ease of replacement,
which in turn can also favor the diversification of malware instances.
[C2] Minimize the footprint of the runtime. There are at least two factors
that contribute to making a distributed runtime conspicuous: the size of the
bootstrap component and the dispatching of the chunks for execution.

The first aspect is a proxy of the complexity of the coordination tasks that
the component implements. A small size for it brings a less conspicuous foot-
print against in-memory detections and fingerprints. Depending on the delivery
technique, it may even be accommodated in caves of benign modules. The engi-
neering effort in malWASH to support the execution of already existing payloads
is commendable, yet we would argue for a less complex runtime eased by pay-
load writing choices. Compatibility is an important requirement, for instance, for
obfuscations meant to protect legitimate software, but in the context of malware
we find it fair to assume that a threat actor would be willing to comply with the
runtime to ease the payload chopping and coordination processes.

The second aspect involves spreading the actions from the chunks among
those of a whole process1. Having the loader—or the bootstrap—component
attempt the creation of remote threads (malWASH) or entries in the APC queue

1 This is relevant also for mimicry attacks from process creation-based approaches.



202 D. C. D’Elia et al.

of a process (D-TIME) are actions that trigger the real-time behavioral moni-
toring components of AV/EDR solutions. A covert design may instead attempt
to make the process itself dispatch the execution of the chunks, ideally choosing
among multiple primitives or even diversifying them among the execution units.
[C3] Ensure compliance with hardening mitigations. This point affects
the loader and the bootstrap components, the placement of chunks, but also
specific actions from distributed payloads. Avoiding the use of RWX regions (or
‘W⊕X’ permission changes) is essential in the presence of hardening mitigations.
It also has benefits against behavioral detection, as dynamic code changes are a
prerogative of specific classes of applications, such as browsers, that a security
solution can whitelist. Similarly, covert strategies used in either component or in
the payload to locate APIs covertly need retrofitting work so as not to conflict
with mitigations like EAF and IAF meant to block such attempts.
[C4] Keep code and data hidden as much as possible. Along with [C1,2],
this point is instrumental to minimize both the indicators of compromise on a
machine and to which extent the distributed execution is exposed to in-memory
inspection. Ideally, the runtime may expose the code and data for a payload
portion only for the fraction of time needed for its execution. As noted in [20],
leaving the bootstrap component visible in memory may possibly make defenders
move towards detecting the distributed mechanism instead of the target payload,
but has the advantage of hiding the true functionality of the latter. Special care
is advised also for covert communication channels, so as to hinder the inspection
of their contents through, e.g., dynamic signatures from behavioral analysis.
[C5] Limit the footprint of any unavoidable suspicious action. While
suspicious behaviors from a payload may be effectively spread out to multiple
execution units, there are actions carried in the loader or the bootstrap compo-
nent that may alert a behavioral detection. Their design may thus seek to reduce
the extent of information that an AV/EDR solution receives for their actions by,
for instance, circumventing API hooks in place. While such anti-analysis tricks
may not suffice to deceive a behavioral analysis of a standalone full payload, as
AV/EDR solutions also access other sources (Sect. 2.1), they can bring instead
marginal gains to the overall stealthiness of a distributed concept.

Discussion. The five challenges depicted above are meant to capture the opera-
tion of present defenses, and also possible straightforward combinations or exten-
sions of current detection capabilities and fingerprints. Hence, they may be seen
as forward-looking targets. Nonetheless, as we detail in Sect. 6, present AV/EDR
solutions already block recently proposed distributed concepts.

Alongside covertness aspects, other issues exist for supporting a distributed
execution paradigm. Thankfully, prior literature tackles such aspects well. These
include, for instance, feature distribution based on process characteristics and
restrictions [31], split communication channels so as to expose only pairwise
links between units [26], object marshaling and descriptor duplication [20,26],
resilience to termination of single units [20], and drop-in replacements for APIs
that provide or work on process-specific information [20,37]. Our Rope concept
is orthogonal to such research and can fully benefit from it in an implementation.



Rope: Covert Multi-process Malware Execution with ROP 203

4 Rope

In this paper we propose a novel design, Rope, to advance the state of the art
in distributed malware execution and overcome the challenges of Sect. 3. To this
end, we pursue a radically different approach compared to prior works.

Fig. 1: Architecture of Rope: chunks, runtime components, defenses in place.

Rope uses a standard attack technique, return-oriented programming [41]
(ROP), and a commodity Windows feature, Transactional NTFS [1,42] (TxF), to
encode the required computations and distribute them through a covert channel
that also hosts program data. Rope sidesteps the issue of having to allocate or
modify executable memory, and uses ROP as an effective and versatile tool to
bypass other hardening mitigations of Windows and to raise the bar against in-
memory inspections. Rope comes with a small runtime footprint and is amenable
to different implementation choices and delivery techniques, as well as to known
obfuscation and diversification techniques for both its ROP and non-ROP parts.

Before presenting the general traits of the design, we define which are the
defenses that we assume to be in place on a machine where Rope is deployed.
Attack Target. We target a machine equipped with an AV/EDR solution with
behavioral detection. No previous threat compromised the machine, as the detec-
tion capabilities of the AV/EDR could otherwise be affected. The targets for
injection by Rope are already running processes that may have opted in for
hardening mitigations conceptually akin to2 the WDEG ones listed in Sect. 2.1.

The exploitation of a human or system vulnerability necessary to ignite the
loader component, and the evasion of possible fine-grained analyses (e.g., mal-
ware sandboxes) along the way to a victim, are orthogonal problems. Rope is
compatible with existing means for achieving both ends; the goal of Rope and
prior works in the area [20] is that the execution stays undetected on the victim.

2 Necessary to overcome present implementation gaps in WDEG, e.g., with concomi-
tant use of ACG and ROP mitigations [28], or with ACG and remote allocations [19].



204 D. C. D’Elia et al.

4.1 Architecture

Fig. 1 presents the architecture of Rope. As in the generic skeleton for distributed
malware depicted in Sect. 3, we use a loader component to infect a set of (pre-
existing) victim execution units. We then deliver the bootstrap component to
each victim using an injection primitive. Rope encodes this component as a ROP
chain. However, if the injection primitive is capable of eluding CIG (we discuss
one in Sect. 5), also a short shellcode is a possibility. The malicious payload
comes as a sequence of chunks expressed as ROP chains. Along with runtime
metadata, we lay them out in a transacted NTFS file: the ROP-TxF.

Transactional NTFS is a Windows feature to atomically manipulate files
and directories, where a series of operations (including content changes) can
form a transaction to commit or abort as a whole in the surrounding system.
Kulkarni and Jagdale observe in [24] how this provides a form of read-committed
isolation. Until a transaction is committed, transient changes are visible only to
the processes that created or obtained a handle to the transaction (and to the
Windows Kernel Transaction Manager that backs the TxF functionality [1]).
AV/EDR products can make a minifilter driver enlist for TxF commit events
(e.g., to detect a TxF-based strategy to infect files on disk [24]); however, any
content transiently stored in a TxF file will stay hidden to them, and Rope does
not need commit operations to support its distributed execution.

The loader component of Rope creates the ROP-TxF on a random file, alters
its contents, and duplicates a handle for it for every victim process. Each instance
of the bootstrap component uses its own duplicate handle to access and modify
the ROP-TxF contents, dispatching the execution of the chunks in it in a coordi-
nated manner. The Rope paradigm is general enough to allow for (at least) the
following execution modes, which may also be mixed in the same payload:

– one follows a feature-agnostic scenario where the Rope runtime, similarly as
in malWASH and D-TIME, aids in explicit coordination of the chunks without
making distinctions about the characteristics of their actions;

– the other follows a feature-aware scenario: the Rope runtime offloads
sequences of chunks to victims based on their capabilities and/or with a sep-
aration in functionally distinct units, similarly to malware seen in the wild.

In the following we detail the different components and how Rope meets the
[C1–5] challenges on the way to covert multi-process malware execution.

4.2 Loader Component

The loader component initiates the distributed execution by first looking for pre-
existing processes to target as victims. Compared to standard injection practices
from malware, Rope does not add any special requirement for process selection.
In the feature-aware scenario, the malware writer can specify preferred targets
(for instance, browsers are suitable for chunks that need to establish network
connections). The loader component has then to accomplish three main tasks:



Rope: Covert Multi-process Malware Execution with ROP 205

1. creates the ROP-TxF and duplicates the TxF handles for the victims;
2. injects the bootstrap component in each victim;
3. tampers with each victim to dispatch the bootstrap component.

The first task is straightforward. For the second task, we must avoid the
use of any executable memory. As we will detail when presenting a possible
implementation in Sect. 5, we inject a short ROP chain to have the victim process
itself load the bootstrap component. This chain also accomplishes the third task,
choosing among different dispatching strategies. In more detail, we may make the
victim create an own thread or schedule an APC (neither of which is suspicious,
unlike the remote variants used in malWASH and D-TIME), or we may tamper
with its IAT to realize an API call target hijacking.

The implementation can use off-the-shelf techniques to place the chain in
the address space of a victim. A reader may wonder if such an action should be
blocked by a behavioral detection, or if it may undermine the stealthiness of the
approach. Denying the use of WriteProcessMemory, NtWriteVirtualMemory, or
other commodity OS features (e.g., Atom tables) that malware abuses as write-
what-where primitives may break the functioning of legitimate applications. Such
an action should definitely be part of behavioral signatures but, most likely,
together with other conspicuous criteria to be met. Also, techniques like Ghost
Writing can write to a process without even having to open it [23]. Nonetheless,
Rope may also resort to evasion techniques for API hooks to reduce the footprint
of specific actions: we defer their discussion to Sect. 5.

Similarly, no Rope-specific provisions are necessary to make the victim exe-
cute the initial short ROP chain: for instance, we may hijack a thread, overwrite
a return address in a stack frame, or use other standard techniques.

4.3 Chunk Crafting and ROP-TxF Layout

Rope is the first design to use a covert communication channel for hosting both
instructions and program state: as even chunks take the form of data, the execu-
tion runtime can host both using a single RW region. We use NTFS transactions
to keep the contents of ROP-TxF hidden as much as possible, but as we will
discuss in Sect. 4.5 also other standard means can provide hosting in its place.

As the top part of Fig. 1 shows, a payload that Rope spreads out takes the
form of a series of ROP chains of user-defined length, with each chain embodying
a chunk. In the implementation, we use chunks that encompass a single API call,
as in the eyes of behavioral detection API calls are the unit of interaction with
the OS. Trade-offs with larger chunks should also be possible [20,37].

Careful choices in payload designing help in keeping the execution runtime
small and with fewer conspicuous features. For starters, we want to avoid the
creation of multiple memory regions (e.g., stack, heap, data, rodata), each with
different permissions and relocations as for the typical segments of an executable.
The design point that we follow is radically simple: we model global, heap, and
stack memory as part of a flat space in the ROP-TxF. We promote each stack



206 D. C. D’Elia et al.

variable3 to global storage, and we encapsulate all global variables and objects
(e.g., strings) as fields of a single data structure. Every access to a program
variable undergoes a level of indirection in a base+offset computation, and upon
loading the ROP-TxF we control the value that the runtime exposes for base.

To encode ROP chains, we can pick gadgets from a code module that the
victim processes share already before or as a consequence of the actions of the
loader or the bootstrap component. Another important issue in chunk crafting is
the sharing of OS resources among execution units. Well-studied in [20], this issue
involves Windows HANDLE, registry, and socket objects as they are unique per
process (i.e., other units cannot access them). Since we already wrap program
variables, we can identify the involved handles and then duplicate them via
standard OS features, exposing to each unit its own copies.

We can now detail the layout of the ROP-TxF, which hosts three adjacent
areas: header, chunks, and program memory. The header aids the runtime in
bookkeeping tasks. It holds the index of the last executing unit and of the current
chunk, the addresses of the Windows APIs that the payload may use, and a
per-unit structure hosting duplicated handles (for TxF and program resources),
scratch locations for ROP gadgets, and other runtime metadata (e.g., for the
feature-aware scenario). Chunks are indexed and laid out consecutively, then
program memory follows as it can expand by appending to the ROP-TxF file.

4.4 Bootstrap Component

The bootstrap component serves two main purposes: scheduling the chunks in
coordination with the other units and loading the ROP-TxF to memory.

For execution coordination, Rope can benefit from well-studied techniques
to implement locks in increasingly covert ways [6,20,37]. Once a victim execu-
tion unit acquires the lock, it updates the ROP-TxF header and advances chunk
execution. Upon execution termination, the bootstrap component may actively
wait for new chunks to process or go dormant for some time. In the latter sce-
nario, the bootstrap component arranges for its rescheduling if the loader used
a method with a limited lifetime (e.g., an APC call—Section 4.2) to dispatch it.

As for the ROP-TxF loading, we identify two alternative strategies:

a) Use the ROP-TxF as a memory-mapped file and access its contents directly.
Any change will be readily visible to the other units. The mapping may be
active persistently or recreated whenever about to execute a chunk.

b) Read the strictly needed portions from the ROP-TxF file and copy them to
process-local memory (e.g., heap), then write them back to propagate any
updates (e.g., program state values) to the other units.

The two strategies come with a different trade-off between stealthiness (i.e.,
visibility of the full ROP-TxF contents to in-memory scanning techniques) and
bookkeeping work (i.e., explicit synchronization of contents). Present AV/EDR

3 Only recursive functions would require semantic changes to their code: e.g., the
attacker may use a stack data structure to host and reference each stack frame.



Rope: Covert Multi-process Malware Execution with ROP 207

solutions do not appear to be equipped with ROP-aware analyses that may
benefit from any available memory contents. Hence, we believe that for now, a
malware writer would choose one of the two based on factors beyond the goals
of Rope, such as trying to hinder forensic analysis during incident response.

Irrespective of such choice, the functionality that the component will enact is
the same: it changes the stack pointer to point to the beginning of the first chunk
to execute, dispatches one or more chunks, and eventually reacquires control.

Finally, we give the bootstrap component a further and more practical task:
solving in a covert way the APIs used in the payload, filling currently unas-
signed address fields in the ROP-TxF header. While handling API resolution in
the loader would be simpler (e.g., by importing such APIs statically or by solv-
ing them dynamically), it would give away hints on the actions (e.g., crypto,
network) that the payload may perform. Also, it may get in the way with more
complex payloads where, e.g., a sample receives from the network a functional
update that exercises APIs not initially considered. Instead, the processes that
Rope abuses typically use the enclosing DLLs already for their activities. There-
fore, the bootstrap component can scan their memory covertly to look up APIs.

4.5 Discussion

Rope brings new advances to the malware design literature by meeting the five
open challenges we identified along the way to covertness (Sect. 3) with original
solutions. These include, among others, the flattening of code and program data
as relocatable elements of a single region, the covert dispatching of the boot-
strap component as part of the own activities of the process, and forfeiting the
introduction of executable regions and other forms of dynamic code generation.

Along with careful design choices for the components of the architecture,
code reuse techniques turn out to be decisive to achieve all these ends and prop-
erties. The means to deliver chunks to execution units sees no Rope-specific
constraints [C1], and we do not even inject code but data (Sect. 4.2). The boot-
strap component, thanks to payload crafting choices such as indirection for data
accesses and clear fields for handles (Sect. 4.3), is conceptually simple and in
turn compact [C2]. As Sect. 5 will detail for [C3], ROP offers a means to bypass
hardening mitigations like EAF and IAF and to make Rope comply with oth-
ers by design. The loading strategies for the ROP-TxF contents and the use of
TxF can go a long way for [C4]. Finally, as we observed in our experiments,
only the actions of the loader may need special countermeasures to limit their
footprint [C5]. Indeed, unlike for the bootstrap component and the chunks, we
cannot disguise its actions as if they were from pre-existing processes.

Another design advantage of Rope is that the technical means that we use
are virtually interchangeable. For instance, we may replace or combine ROP
with other code reuse techniques, and use different methods in each victim to
dispatch the bootstrap component. We may possibly replace even the ROP-TxF
using a standard file or a shared memory, albeit with a loss of covertness for its
contents against minifilters from AV/EDR solutions or in-memory scans. As we
will argue in Sect. 7, defenders should equip with comprehensive detections for



208 D. C. D’Elia et al.

distributed malicious executions, as mitigating only individual components may
turn out insufficient.

On a different note, a few research works have explored uses of ROP in
malware design, e.g., for split-personality [44] and polymorphism [34] schemes.
Those works make a surgical use of ROP to target weaknesses in static code
analysis schemes: both the adversary (e.g., AV signatures in [34]) and the extent
of the ROP encoding (i.e., limited to few parts) are different than in our work.

To the best of our knowledge, Rope is the first work successfully targeting
Windows systems hardened with AV/EDR solutions and the opt-in mitigations
of WDEG. The design behind Rope is general: we believe that with implementa-
tion adaptations one may explore it also on other platforms, such as Linux [16]
and Android [22], for which injection techniques recently started to emerge.

As anticipated at the end of Sect. 3, when presenting the design of Rope we
did not touch on aspects such as split communication channels or resilience to
termination, as for those problems Rope can adopt existing solutions.

5 Implementation

This section illustrates the choices that we followed in a prototype implementa-
tion of Rope, and reports on the bypass techniques for the WDEG mitigations
that we created and responsibly disclosed to Microsoft in February 2021. A com-
panion technical report [10] covers details of the implementations of both Rope
and the bypass techniques that we omitted in the following for brevity.
Injection and Gadget Source. As described in Sect. 4.2, the loader component
needs to inject in each victim process a short ROP chain to make it load the
bootstrap component of Rope. To this end, we resort to a standard technique
in malware for hijacking one of the threads of the victim. We retrieve the CPU
context, alter the stack pointer to make room for the chain, write the chain to
the victim’s stack along with the saved CPU context, and update the instruction
pointer so as to execute the first gadget. Upon thread resumption, the chain loads
the bootstrap component, dispatches it for execution, and eventually restores the
saved CPU context to resume the victim’s activities.

In Sect. 4.3 we also discussed the possibility of using as a gadget source a
DLL module that all victims load as a consequence of the actions of either the
loader or of the bootstrap component. In the implementation, we foresaw an
opportunity for a shortcut to ease the loading of both the bootstrap component
and such DLL module: when TxF-ed files are involved, the CIG mitigation of
Windows struggles with operations that are not self-contained. In particular,
while WDEG causes a checksum error for NtCreateSection if a CIG-enabled
process tries to map a section object from a TxF-ed file, it currently does not
stop it from mapping a view of a section object created in another process.

Hence, we make the Rope loader create another transacted file on a signed
Microsoft DLL, add to it any required gadgets using code caves, and embed also



Rope: Covert Multi-process Malware Execution with ROP 209

the bootstrap component (as a ROP chain or even as a shellcode placed in RX
caves) in it4. Then we create a section object and duplicate the handle to it.

The initial ROP chain that we inject uses 6 one-instruction gadgets from
ntdll.dll. To make the victim load the transacted DLL it uses the system call
NtMapViewOfSection, as the ROP mitigations of WDEG do not shepherd it.
Then it executes a helper sequence of the bootstrap component that creates a
thread for it to run, and readily returns to the chain.

The bootstrap component uses the ROP-TxF as a memory-mapped file and
a simple mutex to coordinate the execution. As the transacted DLL can see
different base addresses due to the non-standard loading that we use, before
executing a chunk the component applies relocations to gadget addresses and
saves the current base address for the DLL in the ROP-TxF header. In this way,
the next execution unit can perform its own relocations with the same technique.
API Calls. The interaction with APIs from the OS brings three problems:
locating them covertly in the presence of EAF/IAF mitigations, eluding the
ROP mitigations of WDEG for sensitive APIs, and evading AV/EDR hooks.

The EAF and IAF mitigations (Sect. 2.1) monitor accesses to the export
and import address tables of loaded code modules: those are recurring traits
in covert API resolution methods. To avoid suspicious imports in the loader or
uses of noisy OS means (i.e., GetProcAddress) for API resolution, we designed
and responsibly disclosed to Microsoft two bypass techniques for EAF and IAF,
respectively, that the bootstrap component can alternatively use. In both tech-
niques, we disguise accesses to the export/import address table of the victim pro-
gram by using a ROP gadget that can read from an arbitrary address, searching
it within any loaded DLL (e.g., kernel32.dll). The current implementations of
EAF and IAF whitelist such an access, erroneously assuming it originated in a
legitimate module. Further details can be found in [10].

Our implementation complies with the WDEG ROP mitigations for sen-
sitive APIs (Sect. 2.1) that a chunk or the bootstrap component may invoke.
In particular, WDEG shepherds invocations of several APIs that are typically
used for manipulating memory, processes, and code modules [28]. To get around
these mitigations, for StackPivot we switch the stack pointer so as to have any
API calls (i.e., also non-sensitive ones) take place on the native program stack,
while for CallerCheck and SimExec we use suitable gadgets described in prior
works [5,33].

Finally, eluding API hooks may be useful for setup activities that may arouse
suspicion in a behavioral engine [C5]. In our tests, only the loader seemed to ben-
efit from hook evasion: indeed, due to its standalone and intrusive nature, the
loader can be the weak link in distributed malware concepts. Our implemen-
tation may call standard high-level APIs, use their low-level Nt counterparts
from ntdll.dll, or attempt hook evasion. On 64-bit victims, “direct” system

4 A more conservative and covert implementation may target an already-loaded mod-
ule (e.g., kernel32.dll) and encode the bootstrap component and the chunks with,
e.g., microgadgets [17] that are abundant [32]. However, this was not necessary for
validating the stealthiness of our approach on the currently available tested defenses.



210 D. C. D’Elia et al.

calls [11] can elude user-space hooks for Nt functions by solving the ordinal for
each system call and invoking it with an own ASM stub. However, for 32-bit
victims evasion is harder in Windows 10, as system calls (like the whole kernel)
are 64-bit code and take place in the WOW64 compatibility layer. As evasion
strategy we opted to use the wow64ext helper library5 to make a transition
(colloquially known as “Heaven’s gate”) into 64-bit code and call the 64-bit Nt
functions directly, as AV/EDR products may neglect them. As future work, we
would like to stress such security solutions further by issuing direct system calls
after Heaven’s gate.
Payload Encoding. Manually encoding a ROP payload can be a lengthy
task [2]. The current implementation assumes that the attacker encodes the
payload as one or more C functions, delimits the chunks manually (e.g., with
an inlined ASM nop), and compiles it to object code using a standard com-
piler (we used Visual Studio 2019). With careful compilation settings [12], such
as omitting the generation of stack canaries, the output resembles a position-
independent code for which we can partially automate the ROP translation.

In more detail, we look up or introduce suitable gadgets in the target DLL for
one instruction at a time, and wrap constructs like conditional transfers and API
calls with templates. Promoting stack variables to global storage in the design
sidesteps difficulties that would emerge here and that are known in the ROP
practice, as in general translating stack manipulations may require non-trivial
program analyses or the use of a parallel stack [4]. While implementing a fully
automated translation goes beyond the scope of proving the effectiveness of Rope
in avoiding detection, we believe it is a realistic goal also in light of the recent
advances in ROP-based program obfuscation [4,32]. Also, capable attackers have
already written and released fully-ROP malware in the past [9,14].

6 Evaluation

This section details the findings of our experimental validation. First, we present
the methodology for testing AV/EDR products and the WDEG mitigations, and
illustrate the PoC Rope samples that we exercised. We then report on our findings
and on interactions that we had with a vendor of a popular EDR solution.
Design of Experiments. As the inner workings of commercial AV/EDR solu-
tions are undisclosed and fingerprinting them through manual reverse engineer-
ing is difficult [3], we follow a black-box approach to test the success of the covert
distribution. We craft several standalone payloads involving different tasks typ-
ical of malware (e.g., download and execute) and verify that each security solu-
tion would detect them as malicious via behavioral analysis. We then encode
equivalent sequences in Rope and test if they avoid detection as expected. For
presenting the results, we chose one minimal representative sample for either
Rope execution mode (i.e., feature-agnostic and feature-aware, Sect. 4.1).

5 https://github.com/rwfpl/rewolf-wow64ext.

https://github.com/rwfpl/rewolf-wow64ext


Rope: Covert Multi-process Malware Execution with ROP 211

As for WDEG mitigations, we test different combinations to rule out possible
interferences among them: we found one between ACG and IAF and reported
it. Also, for each employed bypass technique we verified that a violation was
indeed detected for an alternate payload that did not make use of it. To rule out
false positives from implementation gaps, we test the mitigations in audit mode
and review the Windows Event Logs for any report originating from the own
activities of the application. These may happen, e.g., when an application loads
a legitimate module that was not signed by Microsoft or the Windows Store, or
when a browser uses dynamic code generation without liaising with ACG/CIG.
Subjects. For testing, we use three versions of Windows 10 (2004, 20H2, and
an Insider build from January 2021) running in a VMware Fusion appliance. All
versions come with the following system-wide mitigations enabled: DEP, ASLR,
Mandatory ASLR, Bottom-up ASLR, High-entropy ASLR, SEHOP, Validate
Heap Integrity, and CFG [28]. We pick our victims from 9 popular applications
of varying complexity (Table 1) in their 32-bit releases to allow for a direct com-
parison with prior solutions, and we make them opt-in for (combinations of) the
mitigations that Rope targets (ACG, CIG, EAF, IAF, and ROP—Section 2.1).

As state-of-the-art security solutions, we evaluate Rope on 6 AV and 4 EDR
products (Table 1) for which we could obtain a trial version. We run each appli-
cation and the Rope loader with medium integrity level. We use distinct VM
instances for each product, and restore their state after each test.

For the feature-agnostic mode, we use a payload that tampers with the Win-
dows registry by introducing a key entry to achieve persistence for the loader
or, alternatively, to invoke a privileged system utility like bcdedit. The victim
processes (two already sufficed) can race in any order to execute every chunk.
For the feature-aware mode, we create a download-and-execute scenario where
one network-active process executes chunks that download a PowerShell script
from a remote C2 server and drop it to the %TEMP% folder, while a normal process
executes chunks that read the file path from the ROP-TxF and run the script.
Results. None of the security solutions detected Rope, and no alerts were raised
for WDEG as expected. In more detail, we found that the injection primitive
that we use in the loader went unnoticed by 7 of the 10 products even when using
high-level APIs. One product instead aggressively flags any attempt to open a
process and write to its memory: calling the 64-bit Nt functions with Heaven’s
gate suffices to elude it. Finally, two products cause errors (5: Access Denied)
when trying to open a process. By further investigation, we observed that both
OpenProcess and DuplicateHandle see flawed outputs and errors. This behavior
is coherent with prior research on inconsistencies in AV emulators [3]; also, it
seems to suggest that these security solutions initially run an untrusted binary as
with low integrity and/or in a sandbox-like fashion, shepherding its interactions
with the OS in the early execution stages. Unfortunately, direct system calls and
other evasions may be effective in defeating even this approach.

On a different note, during our experiments we had several fruitful inter-
actions with one of the EDR vendors, who graciously granted us a trial for
testing their product with new concepts and eventually extended it to cope with



212 D. C. D’Elia et al.

Table 1: Tested AV/EDR solutions and victim applications.
Security solution Version

AV

Avast 2.1.27.0

Bitdefender Total Security 25.0.10.52

Kaspersky Total Security 21.2.16.590

Intezer Endpoint Scanner 1.0.1.8

Malwarebytes 4.1.1.167

Windows Defender January 2021

EDR

Comodo Client Security 12.5.0.8351

Microsoft Defender ATP January 2021

Sophos Intercept X 2.0.18

Webroot SecureAnywhere 9.0.29.62

Application Version

Adobe Reader DC 19.010.20098

Chrome 86.0.4240.198

Discord 0.0.309

Dropbox 112.4.321

Firefox 83.0

Opera 73.0.3856.257

Steam 2.10.91.91

Skype 8.66.0.77

Telegram 2.4.7

our implementation tactics. The information that they shared with us on their
remote telemetry and detections confirmed the truthfulness of our black-box
findings.

Finally, to compare with prior research in the field, we distributed the stan-
dalone version of the two test payloads using D-TIME: only 3 of the 10 AV/EDR
products did not block it. The result is not surprising, as the novelty of remote
APC injection wore off shortly after the paper was published. Also, we note that
Windows 10 already in its 1809 version added sensors for more complex forms
of APC injection (e.g., Defender ATP uses them to detect DoublePulsar-like
APC attacks [30]). We do not test malWASH for covertness: while it provides a
robust distributed execution runtime, it uses a very conspicuous delivery prim-
itive that D-TIME already improves. In general, revamping either system with
more cutting-edge injections would only bring short-lived benefits: vendors will
add detections for new injections, while their emulators and chunks will remain
an issue in the eyes of AV/EDR analyses and hardening mitigations.

7 Countermeasures and Wrap-Up

Our experiments suggest that Rope hits a blind spot in the characteristics of
AV/EDR solutions, even in the presence of application hardening mitigations
meant to reduce the attack surface for malware. A fundamental question is how
to counter this and similar threats in anti-malware defenses running on machines.

Caveat: As the details of AV/EDR solutions are undisclosed, nuances of the
ideas that we outline next may be already present in them in ineffective or incom-
plete forms, whereas none aided the systems that we tested with Rope. Also, we
do not claim to cover in the following all possible methods to detect Rope.

From a methodological perspective, we foresee three complementary avenues.
The first involves enriching process correlation heuristics in behavioral detection
by monitoring primitives that are instrumental to distributed computations. As



Rope: Covert Multi-process Malware Execution with ROP 213

making a real-time detection scale to multiple units for correlation is compu-
tationally expensive [26], heuristics may “draw its fire” to candidate groups of
seemingly unrelated processes for close monitoring as a whole. These heuristics
should conjecture links by tracking not only process injection primitives (which
are continuously evolving and thus hard to cover exhaustively) but also—and
possibly with a major emphasis—those OS features that distributed execution
designs would need for sharing objects (e.g., handle duplication) and hosting
data contents (e.g., TxF, shared memories, memory-mapped files).

The second involves extending the dynamic signatures and in-memory anal-
yses of security solutions with techniques for detecting [38] and analyzing [9,14]
payloads encoded with ROP or other weird machines. For instance, a solution
may look for repeated gadget sequences used to invoke API calls or for the
arrangement of typical constants as API call arguments. On the other hand,
attackers may experiment with gadgets more complex than the ones we use in
Rope, for instance by playing with gadget diversification and dynamically dead
code [4]. We observe that in this setting ROP-aware analyses may serve a more
general purpose, as the recent availability of systems for encoding whole pro-
grams in ROP for obfuscation [4,32] may also encourage threat actors to exper-
iment more with ROP in standalone malware too (e.g., for polymorphism [34]).

The third involves stronger means to intercept the execution footprint of any
kind of malware. The evasion of user-mode API hooks can be a customary prac-
tice for the stealthiest malware strains. In addition to minifilters, the Windows
kernel provides notifications for events like process creation and termination6,
which AV/EDRs and other systems (e.g., anti-cheat engines) use also to intercept
subversion attempts. However, Ciholas et al. show in [7] that a user-mode pro-
cess can outrun them. A more resilient approach to monitoring application-level
events may be using hardware-assisted virtualization features, such as multiple
EPT views [18,25] to insert hooks in the physical pages for OS and processes [11].

Albeit the design of Rope leaves much leeway to implementation diversifica-
tion, stopgap measures may in the meantime help for immediate remediation. As
mentioned early on, we reported several flaws in WDEG to Microsoft, suggesting
practical countermeasures for each. Adding detection logic to AV/EDR engines
based on the implementation solutions detailed in this paper may help as well.

Security solutions may also explore fine-grained detections of ROP execution
via hardware assistance. For instance, the HitmanPro. Alert proactive detection
system can use the Last Branch Record feature of Intel processors to heuristically
detect ROP (as much academic literature explored in the past [36]), albeit false
positives may be frequent on, e.g., browsers. Windows 10 with its 2004 version
landed instead the first complete implementation of hardware-enforced stack
protection by using the Intel Control-Flow Enforcement Technology (CET). We
note, however, that the first processor supporting CET became available at the
end of 2020, and that CET still leaves room for attacks [43].

On a different note, Rope poses interesting challenges also for reverse engi-
neering and fine-grained analyses. For instance, the combination of ROP with

6 Also the ETW (Event Tracing for Windows) system offers useful tracing capabilities.



214 D. C. D’Elia et al.

NTFS transactions may be interesting for fileless malware concepts, and foren-
sic analyses may need tools to carve out TxF contents that are not directly
mapped in memory. Offline systems like Panorama [45] that perform expensive
system-wide information flow analyses may instead be useful to track computa-
tions spread among execution units, so as to shed light in a black-box fashion
on the internal working of Rope samples or other distributed malware instances.

We hope that the ideas presented in this paper may contribute to raise aware-
ness on the effectiveness and practicality of covert distributed malware attacks,
to foster research on defensive countermeasures, and to improve the implemen-
tation of current AV/EDR solutions. The technical details omitted from the
paper for brevity can be found in our companion technical report [10]. The Rope
samples from our tests will be made available to AV/EDR vendors upon request.

References

1. Allred, C.: Understanding Windows file system transactions. In: Stor-
age Developer Conference 2009. SNIA (2009). https://www.snia.org/
sites/default/orig/sdc archives/2009 presentations/tuesday/ChristianAllred
UnderstandingWindowsFileSystemTransactions.pdf

2. Angelini, M., et al.: ROPMate: visually assisting the creation of ROP-based
exploits. In: Proceedings of the 15th IEEE Symposium on Visualization for Cyber
Security. VizSec 2018 (2018). https://doi.org/10.1109/VIZSEC.2018.8709204

3. Blackthorne, J., Bulazel, A., Fasano, A., Biernat, P., Yener, B.: AVLeak: finger-
printing antivirus emulators through black-box testing. In: 10th USENIX Work-
shop on Offensive Technologies. WOOT 2016, USENIX Association (2016)

4. Borrello, P., Coppa, E., D’Elia, D.C.: Hiding in the particles: when return-oriented
programming meets program obfuscation. In: Proceedings of the 51st Annual
IEEE/IFIP International Conference on Dependable Systems and Networks, pp.
555–568. DSN 2021. IEEE (2021). https://doi.org/10.1109/DSN48987.2021.00064

5. Borrello, P., Coppa, E., D’Elia, D.C., Demetrescu, C.: The ROP needle: hid-
ing trigger-based injection vectors via code reuse. In: Proceedings of the 34th
ACM/SIGAPP Symposium on Applied Computing, pp. 1962–1970. SAC 2019.
ACM (2019). https://doi.org/10.1145/3297280.3297472

6. Botacin, M., de Geus, P.L., Grégio, A.: “VANILLA” malware: vanishing antiviruses
by interleaving layers and layers of attacks. J. Comput. Virol. Hack. Techn. 15(4),
233–247 (2019). https://doi.org/10.1007/s11416-019-00333-y

7. Ciholas, P., Such, J.M., Marnerides, A.K., Green, B., Zhang, J., Roedig, U.: Fast
and furious: outrunning Windows kernel notification routines from user-mode.
In: Maurice, C., Bilge, L., Stringhini, G., Neves, N. (eds.) DIMVA 2020. LNCS,
vol. 12223, pp. 67–88. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
52683-2 4

8. De Gaspari, F., Hitaj, D., Pagnotta, G., De Carli, L., Mancini, L.V.: The Naked
Sun: malicious cooperation between benign-looking processes. In: Conti, M., Zhou,
J., Casalicchio, E., Spognardi, A. (eds.) ACNS 2020. LNCS, vol. 12147, pp. 254–
274. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-57878-7 13

9. D’Elia, D.C., Coppa, E., Salvati, A., Demetrescu, C.: Static analysis of ROP code.
In: Proceedings of the 12th European Workshop on Systems Security. EuroSec
2019, ACM (2019). https://doi.org/10.1145/3301417.3312494

https://www.snia.org/sites/default/orig/sdc_archives/2009_presentations/tuesday/ChristianAllred_UnderstandingWindowsFileSystemTransactions.pdf
https://www.snia.org/sites/default/orig/sdc_archives/2009_presentations/tuesday/ChristianAllred_UnderstandingWindowsFileSystemTransactions.pdf
https://www.snia.org/sites/default/orig/sdc_archives/2009_presentations/tuesday/ChristianAllred_UnderstandingWindowsFileSystemTransactions.pdf
https://doi.org/10.1109/VIZSEC.2018.8709204
https://doi.org/10.1109/DSN48987.2021.00064
https://doi.org/10.1145/3297280.3297472
https://doi.org/10.1007/s11416-019-00333-y
https://doi.org/10.1007/978-3-030-52683-2_4
https://doi.org/10.1007/978-3-030-52683-2_4
https://doi.org/10.1007/978-3-030-57878-7_13
https://doi.org/10.1145/3301417.3312494


Rope: Covert Multi-process Malware Execution with ROP 215

10. D’Elia, D.C., Invidia, L.: Rope: Bypassing behavioral detection of malware with
distributed ROP-driven execution. Black Hat USA (2021). https://i.blackhat.
com/USA21/Wednesday-Handouts/us-21-Rope-Bypassing-Behavioral-Detection-
Of-Malware-With-Distributed-ROP-Driven-Execution-wp.pdf

11. D’Elia, D.C., Nicchi, S., Mariani, M., Marini, M., Palmaro, F.: Designing robust
API monitoring solutions. arXiv abs/2005.00323 (2020)

12. Doniec, A.: From a C project, through assembly, to shellcode (by hasherezade).
VX Underground (2020). https://github.com/vxunderground/VXUG-Papers

13. Filiol, E.: Formalisation and implementation aspects of K-ary (malicious) codes.
J. Comput. Virol. 3, 75–86 (2007). https://doi.org/10.1007/s11416-007-0044-2

14. Graziano, M., Balzarotti, D., Zidouemba, A.: ROPMEMU: a framework for the
analysis of complex code-reuse attacks. In: Proceedings of 11th Asia Conference
on Computer and Communications Security, pp. 47–58. ASIACCS 2016. ACM
(2016). https://doi.org/10.1145/2897845.2897894

15. Hăjmăşan, G., Mondoc, A., Portase, R., Creţ, O.: Evasive malware detection using
groups of processes. In: De Capitani di Vimercati, S., Martinelli, F. (eds.) SEC
2017. IAICT, vol. 502, pp. 32–45. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-58469-0 3

16. Hendrick, A.: Fileless malware and process injection in Linux. Hack.lu (2019).
http://archive.hack.lu/2019/Fileless-Malware-Infection-and-Linux-Process-
Injection-in-Linux-OS.pdf

17. Homescu, A., Stewart, M., Larsen, P., Brunthaler, S., Franz, M.: Microgadgets: Size
does matter in Turing-complete return-oriented programming. In: 6th USENIX
Workshop on Offensive Technologies. WOOT 2012, USENIX Association (2012)

18. Hong, J., Ding, X.: A novel dynamic analysis infrastructure to instrument
untrusted execution flow across user-kernel spaces. In: Proceedings of the 2021
IEEE Symposium on Security and Privacy, pp. 402–418. SP 2021. IEEE Computer
Society (2021). https://doi.org/10.1109/SP40001.2021.00024

19. ired.team: ProcessDynamicCodePolicy: Arbitrary Code Guard (ACG). Red
Teaming Experiments GitBook (2020). https://www.ired.team/offensive-security/
defense-evasion/acg-arbitrary-code-guard-processdynamiccodepolicy

20. Ispoglou, K.K., Payer, M.: malWASH: washing malware to evade dynamic analysis.
In: 10th USENIX Workshop on Offensive Technologies. WOOT 2016, USENIX
Association (2016)

21. Ji, Y., He, Y., Zhu, D., Li, Q., Guo, D.: A mulitiprocess mechanism of evading
behavior-based bot detection approaches. In: Huang, X., Zhou, J. (eds.) ISPEC
2014. LNCS, vol. 8434, pp. 75–89. Springer, Cham (2014). https://doi.org/10.1007/
978-3-319-06320-1 7

22. Kaspersky: Dvmap: the first Android malware with code injection. SecureList
(2017). https://securelist.com/dvmap-the-first-android-malware-with-code-
injection/78648/)

23. Klein, A., Kotler, I.: Process injection techniques - gotta catch them all (Windows
process injection in 2019). Black Hat USA (2019). https://i.blackhat.com/USA-
19/Thursday/us-19-Kotler-Process-Injection-Techniques-Gotta-Catch-Them-All-
wp.pdf

24. Kulkarni, A.P., Jagdale, P.D.: Adapting to TxF. VirusBulletin, January 2010.
https://www.virusbulletin.com/virusbulletin/2010/05/adapting-txf

25. Lengyel, T.K., Maresca, S., Payne, B.D., Webster, G.D., Vogl, S., Kiayias, A.: Scal-
ability, fidelity and stealth in the DRAKVUF dynamic malware analysis system.
In: Proceedings of the 30th Annual Computer Security Applications Conf. (ACSAC
2014), pp. 386–395. ACM (2014). https://doi.org/10.1145/2664243.2664252

https://i.blackhat.com/USA21/Wednesday-Handouts/us-21-Rope-Bypassing-Behavioral-Detection-Of-Malware-With-Distributed-ROP-Driven-Execution-wp.pdf
https://i.blackhat.com/USA21/Wednesday-Handouts/us-21-Rope-Bypassing-Behavioral-Detection-Of-Malware-With-Distributed-ROP-Driven-Execution-wp.pdf
https://i.blackhat.com/USA21/Wednesday-Handouts/us-21-Rope-Bypassing-Behavioral-Detection-Of-Malware-With-Distributed-ROP-Driven-Execution-wp.pdf
https://github.com/vxunderground/VXUG-Papers
https://doi.org/10.1007/s11416-007-0044-2
https://doi.org/10.1145/2897845.2897894
https://doi.org/10.1007/978-3-319-58469-0_3
https://doi.org/10.1007/978-3-319-58469-0_3
http://archive.hack.lu/2019/Fileless-Malware-Infection-and-Linux-Process-Injection-in-Linux-OS.pdf
http://archive.hack.lu/2019/Fileless-Malware-Infection-and-Linux-Process-Injection-in-Linux-OS.pdf
https://doi.org/10.1109/SP40001.2021.00024
https://www.ired.team/offensive-security/defense-evasion/acg-arbitrary-code-guard-processdynamiccodepolicy
https://www.ired.team/offensive-security/defense-evasion/acg-arbitrary-code-guard-processdynamiccodepolicy
https://doi.org/10.1007/978-3-319-06320-1_7
https://doi.org/10.1007/978-3-319-06320-1_7
https://i.blackhat.com/USA-19/Thursday/us-19-Kotler-Process-Injection-Techniques-Gotta-Catch-Them-All-wp.pdf
https://i.blackhat.com/USA-19/Thursday/us-19-Kotler-Process-Injection-Techniques-Gotta-Catch-Them-All-wp.pdf
https://i.blackhat.com/USA-19/Thursday/us-19-Kotler-Process-Injection-Techniques-Gotta-Catch-Them-All-wp.pdf
https://www.virusbulletin.com/virusbulletin/2010/05/adapting-txf
https://doi.org/10.1145/2664243.2664252


216 D. C. D’Elia et al.

26. Ma, W., Duan, P., Liu, S., Gu, G., Liu, J.C.: Shadow attacks: automatically evading
system-call-behavior based malware detection. J. Comput. Virol. 8(1), 1–13 (2012).
https://doi.org/10.1007/s11416-011-0157-5

27. MDSec: Bypassing user-mode hooks and direct invocation of system calls
for red teams (2020). https://www.mdsec.co.uk/2020/12/bypassing-user-mode-
hooks-and-direct-invocation-of-system-calls-for-red-teams/

28. Microsoft: Exploit protection reference. https://docs.microsoft.com/en-
us/microsoft-365/security/defender-endpoint/exploit-protection-reference?
view=o365-worldwide

29. Microsoft: Windows Defender Exploit Guard: Reduce the attack surface against
next-generation malware (2017). https://www.microsoft.com/security/blog/2017/
10/23/windows-defender-exploit-guard-reduce-the-attack-surface-against-next-
generation-malware/

30. Microsoft Defender Security Research Team: From alert to driver vulnerabil-
ity: Microsoft Defender ATP investigation unearths privilege escalation flaw.
https://www.microsoft.com/security/blog/2019/03/25/from-alert-to-driver-
vulnerability-microsoft-defender-atp-investigation-unearths-privilege-escalation-
flaw/

31. Min, B., Varadharajan, V.: Design and analysis of a new feature-distributed mal-
ware. In: 2014 IEEE 13th International Conference on Trust, Security and Privacy
in Computing and Communications, pp. 457–464 (2014). https://doi.org/10.1109/
TrustCom.2014.58

32. Nakanishi, F., De Pasquale, G., Ferla, D., Cavallaro, L.: Intertwining ROP gadgets
and opaque predicates for robust obfuscation. arXiv abs/2012.09163 (2020)

33. Nemeth, Z.L.: Modern binary attacks and defences in the Windows environment
- fighting against Microsoft EMET in seven rounds. In: 2015 IEEE 13th Inter-
national Symposium on Intelligent Systems and Informatics, pp. 275–280. SYSY
2015 (2015). https://doi.org/10.1109/SISY.2015.7325394

34. Ntantogian, C., Poulios, G., Karopoulos, G., Xenakis, C.: Transforming malicious
code to ROP gadgets for antivirus evasion. IET Inf. Security 13(6), 570–578 (2019).
https://doi.org/10.1049/iet-ifs.2018.5386

35. Or-Meir, O., Nissim, N., Elovici, Y., Rokach, L.: Dynamic malware analysis in the
modern era - a state of the art survey. ACM Comput. Surv. 52(5) (2019). https://
doi.org/10.1145/3329786

36. Pappas, V., Polychronakis, M., Keromytis, A.D.: Transparent ROP exploit miti-
gation using indirect branch tracing. In: 22nd USENIX Security Symposium, pp.
447–462. USENIX Security 2013, USENIX Association (2013)

37. Pavithran, J., Patnaik, M., Rebeiro, C.: D-TIME: Distributed threadless indepen-
dent malware execution for runtime obfuscation. In: 13th USENIX Workshop on
Offensive Technologies. WOOT 2019, USENIX Association (2019)

38. Polychronakis, M., Keromytis, A.D.: ROP payload detection using speculative
code execution. In: 2011 6th International Conference on Malicious and Unwanted
Software, pp. 58–65. IEEE Computer Society (2011). https://doi.org/10.1109/
MALWARE.2011.6112327

39. Ramilli, M., Bishop, M.: Multi-stage delivery of malware. In: 2010 5th Int. Con-
ference on Malicious and Unwanted Software, pp. 91–97 (2010). https://doi.org/
10.1109/MALWARE.2010.5665788

40. Ramilli, M., Bishop, M., Sun, S.: Multiprocess malware. In: 2011 6th International
Conference on Malicious and Unwanted Software, pp. 8–13 (2011). https://doi.
org/10.1109/MALWARE.2011.6112320

https://doi.org/10.1007/s11416-011-0157-5
https://www.mdsec.co.uk/2020/12/bypassing-user-mode-hooks-and-direct-invocation-of-system-calls-for-red-teams/
https://www.mdsec.co.uk/2020/12/bypassing-user-mode-hooks-and-direct-invocation-of-system-calls-for-red-teams/
https://docs.microsoft.com/en-us/microsoft-365/security/defender-endpoint/exploit-protection-reference?view=o365-worldwide
https://docs.microsoft.com/en-us/microsoft-365/security/defender-endpoint/exploit-protection-reference?view=o365-worldwide
https://docs.microsoft.com/en-us/microsoft-365/security/defender-endpoint/exploit-protection-reference?view=o365-worldwide
https://www.microsoft.com/security/blog/2017/10/23/windows-defender-exploit-guard-reduce-the-attack-surface-against-next-generation-malware/
https://www.microsoft.com/security/blog/2017/10/23/windows-defender-exploit-guard-reduce-the-attack-surface-against-next-generation-malware/
https://www.microsoft.com/security/blog/2017/10/23/windows-defender-exploit-guard-reduce-the-attack-surface-against-next-generation-malware/
https://www.microsoft.com/security/blog/2019/03/25/from-alert-to-driver-vulnerability-microsoft-defender-atp-investigation-unearths-privilege-escalation-flaw/
https://www.microsoft.com/security/blog/2019/03/25/from-alert-to-driver-vulnerability-microsoft-defender-atp-investigation-unearths-privilege-escalation-flaw/
https://www.microsoft.com/security/blog/2019/03/25/from-alert-to-driver-vulnerability-microsoft-defender-atp-investigation-unearths-privilege-escalation-flaw/
https://doi.org/10.1109/TrustCom.2014.58
https://doi.org/10.1109/TrustCom.2014.58
https://doi.org/10.1109/SISY.2015.7325394
https://doi.org/10.1049/iet-ifs.2018.5386
https://doi.org/10.1145/3329786
https://doi.org/10.1145/3329786
https://doi.org/10.1109/MALWARE.2011.6112327
https://doi.org/10.1109/MALWARE.2011.6112327
https://doi.org/10.1109/MALWARE.2010.5665788
https://doi.org/10.1109/MALWARE.2010.5665788
https://doi.org/10.1109/MALWARE.2011.6112320
https://doi.org/10.1109/MALWARE.2011.6112320


Rope: Covert Multi-process Malware Execution with ROP 217

41. Roemer, R., Buchanan, E., Shacham, H., Savage, S.: Return-oriented programming:
Systems, languages, and applications. ACM Trans. Inf. Syst. Secur. 15(1) (2012).
https://doi.org/10.1145/2133375.2133377

42. Russinovich, M., Solomon, D.A.: Windows internals: including Windows server, :
and Windows vista. Fifth Edition. Microsoft Press 2009, 965–974 (2008)

43. Sun, B., Liu, J., Xu, C.: How to survive the hardware-assisted control-flow
integrity enforcement. Black Hat Asia (2019). https://i.blackhat.com/asia-19/
Thu-March-28/bh-asia-Sun-How-to-Survive-the-Hardware-Assisted-Control-
Flow-Integrity-Enforcement.pdf

44. Wang, T., Lu, K., Lu, L., Chung, S., Lee, W.: Jekyll on iOS: when benign apps
become evil. In: 22nd USENIX Security Symposium, pp. 559–572. USENIX Secu-
rity 2013, USENIX Association (2013)

45. gs Yin, H., Song, D., Egele, M., Kruegel, C., Kirda, E.: Panorama: capturing
system-wide information flow for malware detection and analysis. In: Proceedin of
the 14th ACM Conference on Computer and Communications Security, pp. 116–
127. CCS 2007. ACM (2007). https://doi.org/10.1145/1315245.1315261

https://doi.org/10.1145/2133375.2133377
https://i.blackhat.com/asia-19/Thu-March-28/bh-asia-Sun-How-to-Survive-the-Hardware-Assisted-Control-Flow-Integrity-Enforcement.pdf
https://i.blackhat.com/asia-19/Thu-March-28/bh-asia-Sun-How-to-Survive-the-Hardware-Assisted-Control-Flow-Integrity-Enforcement.pdf
https://i.blackhat.com/asia-19/Thu-March-28/bh-asia-Sun-How-to-Survive-the-Hardware-Assisted-Control-Flow-Integrity-Enforcement.pdf
https://doi.org/10.1145/1315245.1315261

	Rope: Covert Multi-process Malware Execution with Return-Oriented Programming
	1 Introduction
	2 Background
	2.1 Defenses for Systems and Applications
	2.2 Distributed Malware

	3 Challenges for Covert Distributed Malware
	4 Rope
	4.1 Architecture
	4.2 Loader Component
	4.3 Chunk Crafting and ROP-TxF Layout
	4.4 Bootstrap Component
	4.5 Discussion

	5 Implementation
	6 Evaluation
	7 Countermeasures and Wrap-Up
	References




