
Entity Matching: Matching Entities
Between Multiple Data Sources

Ivan Bilan

Learning Objectives
• Illustrate the steps required to build an entity matching pipeline
• Explain how entity matching can be applied in the tourism industry
• Demonstrate how to engineer an end-to-end entity matching pipeline using

Python

1 Introduction and Theoretical Foundations

1.1 Entity Matching Problem Statement

Entity matching describes the approach of finding records that refer to the same real-
world entity across different databases or any other data storage types. These entities
are identified by cross-checking their identifiers, such as name, address, phone
number, and the like. Entity matching, also known as record linkage, has applica-
tions in various scientific fields and industrial solutions, ranging from matching
people in census data (Christen, 2012), bibliographic databases (Christen, 2012),
forensic data and DNA matching (Tai, 2018), physical objects like businesses, and
many more. It is mainly used to consolidate records of the same type and especially
used with textual data. For example, when matching company entities from two
databases, they can be matched by name and address. Additionally, entity matching
is often used in the process of finding duplicates within the same database.

The challenge of entity matching arises mainly from there being no cross-industry
standard on how to store such entities and their identifiable markers in a consistent

I. Bilan (*)
TrustYou GmbH, Munich, Germany

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
R. Egger (ed.), Applied Data Science in Tourism, Tourism on the Verge,
https://doi.org/10.1007/978-3-030-88389-8_19

405

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-88389-8_19&domain=pdf
https://doi.org/10.1007/978-3-030-88389-8_19#DOI

way. The simple example of matching the same company entity from two databases
becomes challenging if these entities are stored in different formats. For example, in
one case, the company may be stored in the database using just two columns, one for
the full name and legal entity type and another one for the full address, whereas, in
the second database, the company entity might have separate columns for the name,
legal entity, city, street, building number, and so on. Working on an entity matching
solution requires a significant amount of time to invest in generating quality training
data that, for a subset of records, includes the match status of whether the items in a
record pair belong to a single real-world entity or not (Christen, 2012).

1.2 Entity Matching Examples in the Travel Industry

Entity matching is also widely used in the tourism industry, and there are various
scenarios in which a company needs to rely on entity matching approaches. One of
the most used applications involves the deduplication of hotel reviews that are
crawled from various sources. Another widespread example is matching hotels or
accommodations between various sources or deduplicating them within one source
(Bayrak et al., 2019; Kozhevnikov & Gorovoy, 2016). One scenario relating to this
might be to extend a database when onboarding a new hotel chain. Even if the
company already has hotels in their database, they might not have all of the hotels the
clients want to use for their solution. As such, the company would need to align its
database to the database of their clients in order to find the correct data of a specific
hotel and deliver their analytic insights to the correct hotel.

Another typical scenario is the need of consolidating all reviews for specific
hotels from various websites that post traveler reviews. Often, differences can be
observed in how the hotels are displayed on such websites. The names of the hotel
can differ, especially if the websites are based in different countries, and addresses
can also vary or display varying levels of detail. Some sources may display the
phone number and the official website of the hotel, or, if the hotel belongs to a
specific chain of hotels, these may sometimes simply point to the chain’s headquar-
ters instead.

Table 1 shows a general example of how two hotel records involving the same
entity can be stored in various data sources. This particular example illustrates why
entity matching goes beyond merely matching two databases via a direct comparison
of database columns. One of the specific issues with this example is that the

Table 1 Example of different records from the same hotel entity

Hotel name Address City Street Zip Country

Data
Source 1

Hotel Kaltbräu
City

Tal 11, Lehel,
München

– – – Deutschland

Data
Source 2

Hotel Kaltbraeu
City

– Munich Tal
11

80331 Germany

406 I. Bilan

addresses are saved in very different formats. In the first example, the address is
stored in a single address column, while in the second example, each address
identifier, such as city, street, or zip code, is given separately. There is also a small
difference in how the name is normalized in each data source, with the second data
source normalizing German umlauts by using the English alphabet. Such a record
cannot be matched directly by its name, and the address information is scattered
between various database columns.

Table 2 shows an extreme case of the above in which two records from the same
hotel entity are stored between two data sources with very different identifiers. The
first data source shows the hotel’s name and address in Japanese, while the other data
source is written using the transliterated English form. Moreover, the phone numbers
do not fully match since, in one of the sources, the number has the country-specific
identifier attached at the beginning. Additionally, the websites also do not fully
match.

More difficulties arise when dealing with a large number of records; for example,
there might be numerous hotels at the same address or the names of the hotels might
be very similar. Moreover, some data records may have incomplete data points when
compared to others.

1.3 Overview of the Stages of an Entity Matching Approach

Entity matching approaches usually follow similar steps. The process usually starts
with the (1) data pre-processing step followed by (2) pre-filtering potential candidate
pairs, (3) record pair comparison, and, finally, (4) classification of each record pair as
a true or negative match. This process is illustrated in Fig. 1.

Pre-processing data is necessary because the structure of the data and its general
representation usually varies among data sources. Many steps can be taken to
pre-process data. In the particular hotel examples provided above, the address data
points can be stored uniformly between data sources by either splitting them into the
smallest available identifiers or by joining them together into one address identifier.
The data can also be normalized to a single language or a language-agnostic
representation. For example, instead of using the name of the hotel in various
languages, it can be transliterated into the English alphabet. For most languages,

Table 2 Example of different records from the same hotel entity in different languages

Hotel
name Address

Phone
number Website

Data
Source 1

サン
シャイ
ン

東京都豊島区東池袋2-3-4 0356411167 www.japanhotels.co.jp/
hotelsunshine

Data
Source 2

Sunshine 2-3-4 Higashi-Ikebukuro,
Toshima-ku, Tokyo

+081
035-641-
1167

japanhotels.co.jp

Entity Matching: Matching Entities Between Multiple Data Sources 407

http://www.japanhotels.co.jp/hotelsunshine
http://www.japanhotels.co.jp/hotelsunshine
http://japanhotels.co.jp

textual identifiers can be normalized to English with the help of various Unicode
normalization techniques.1 Other specialized tools dedicated to such transliterations,
for instance, jaconv2 for Japanese, also exist. Additionally, the transliterated form
can be transformed into a phonetic representation that would only reflect how the
text is pronounced and not necessarily how it is written. This is possible with such
phonetic algorithms as Soundex3 (a detailed overview of it and many other similar
algorithms is given by Christen (2012)). Moreover, as the type of hotel or another
part of the address often end up in the hotel name field of various record represen-
tations, names can be cleaned up by removing general words in the name field that
do not necessarily belong to the actual name.

Before comparing records, the next step is to pre-filter potential matching record
pairs. This step can technically be omitted if the amount of records in need of
comparison is very small. However, when comparing large databases, computational
limitations may be reached fairly quickly. If the record pairs were not pre-filtered, the
entity matching pipeline will have to compare every single record from the first
source to each record in the second source and then repeat the process for each
individual record in source one. This approach has quadratic computational com-
plexity (Christen, 2012); hence, the pre-filtering step is recommended for
production-ready solutions. The pre-filtering of potential matching record pairs is
also known in the research literature as indexing, blocking (Kirsten et al., 2010), or
candidate generation (Kong et al., 2016). In the end, the ultimate goal of this step is
to find a way to limit the number of comparisons needed for each record. Continuing
with the hotel example from above, a fast way to do blocking is to only compare
records from the first source to records in the second source that are within the same
city or on the same street. This will largely alleviate the computational complexity of
the task.

After the blocking step, each record pair needs to be compared. Even after
extensive pre-processing, many differences between record identifiers may still

Fig. 1 General steps of an entity-matching pipeline

1Unicode Normalization Forms https://unicode.org/reports/tr15/
2Japanese character interconverter https://github.com/ikegami-yukino/jaconv
3The Soundex Indexing System https://www.archives.gov/research/census/soundex

408 I. Bilan

https://unicode.org/reports/tr15/
https://github.com/ikegami-yukino/jaconv
https://www.archives.gov/research/census/soundex

remain; in other words, relying on one of the identifiers between the sources to be an
exact match or not is often not enough. As a result, a measure of how similar the
identifiers are to each other is required. There are various approaches to conduct such
a comparison, and it usually depends on the type of identifier. When comparing
names or addresses, various string similarity algorithms can be used on the text itself,
or such a comparison can be done using word embedding vector representations of
the compared identifiers. Both approaches can be combined as well.

There are many approaches available to compute string similarity between two
textual data points, such as Levenshtein Edit Distance (Hyyrö, 2003), Jaro Winkler
(Keil, 2019), Hamming, Monge-Elkan string comparison algorithms (Cohen et al.,
2003), and many more. Christen (2012) gives a detailed overview of various string
comparison algorithms and how they can be applied to record pair comparison. The
ultimate use-case of these algorithms for the entity matching task is to provide a
numeric similarity score between two texts. For example, when comparing different
written variants of hotel names in two data sources, such as “Batu Faly Shamrock
Beach 22” and “Batu Faly Shamrock Villa,” such hotel names would not be matched
to the same entity when using a one-to-one comparison. Instead, for the latter
example, one of the string comparison algorithms could be applied, for instance,
Hamming Similarity, which would output a similarity score of 0.70 (on a scale of
0 to 1).

After the pipeline compares each record to its potential match candidate and also
each of the record’s identifiers (name, address, phone, etc.) to its mirror identifiers
from the compared record in the second source, a classification decision needs to be
made on whether a record pair is indeed a match or not. In this regard, mainly two
approaches to record pair classification can be exemplified: a threshold-based
approach and an approach using an end-to-end neural network classifier.

The threshold-based approach is a simple way of applying entity matching and, if
necessary, can be used without a training set. It entails computing a similarity score
for each record identifier, summing it up, and deciding whether a record pair is a
match if the sum exceeds a set threshold value (Christen, 2012). For example, given
two record identifiers in both databases, name and address, each of them can be
compared, providing a maximum similarity score of 1 for each identifier, which adds
up to 2 if both identifiers are exactly the same. If the threshold of the sum of all
similarity scores is set to 1.5, only the record pairs that have a joint similarity score at
least that high will be matched. Another example: if the address is the same and
yields a similarity score of 1, but the name only yields a similarity score of 0.5, the
record pairs will be matched as referring to the same entity because of the threshold.
This grows in complexity with more identifier fields, and setting a correct threshold
is a matter of experimenting with the quality evaluation of the output of such
classifiers. This method can also be applied without having a pre-annotated gold
standard. Furthermore, it can be used to help build a new training set much faster
than having to annotate data from scratch, without any additional indications of the
probability of a record pair being a match.

There are various alternatives to threshold-based classification, one of which is
the neural network-based approach. Such approaches can work end-to-end without

Entity Matching: Matching Entities Between Multiple Data Sources 409

defining any specific similarity scores or thresholds. However, they often require a
considerable amount of annotated training data. A neural network-based entity
matching system typically uses the contextual representation of record identifiers
with learned vector embeddings, such as word2vec (Mikolov et al., 2013), fastText
(Joulin et al., 2016), or BERT (Devlin et al., 2019) (see Chapter “Text Representa-
tions and Word Embeddings” for more details). In addition to the word embeddings,
a neural classifier based on recurrent neural networks, a Transformer encoder
(Vaswani et al., 2017), or similar neural approaches are used for classification.
Zhao and He (2019) provide a more detailed overview of the variants and complex
structures of such entity matching systems. In the next section, DeepMatcher, one of
the most popular, open-source end-to-end neural entity matching frameworks will be
presented (Mudgal et al., 2018).

2 Practical Demonstration

2.1 Data Formatting and Pre-processing

Let us take a look at a hands-on example of matching hotel entities between data
sources. For this demo, we will use Python and various data analysis libraries like
“pandas”.4 The sample dataset contains two different sources with 84 hotel records
each. Around two-thirds of the dataset consists of record pairs each referring to a
single hotel entity. One-third of the record pairs have very similar record identifiers,
like name and address, however, they are not referring to the same hotel entity. All of
the hotels provided in this chapter and the dataset are automatically generated and do
not refer to real-world hotels.

Let us load the data from each source into a data frame:

import pandas as pd
df_source1 = pd.read_csv("./data/source_one.csv")
df_source2 = pd.read_csv("./data/source_two.csv")

Table 3 shows a sample of records from our first source, and Table 4 shows a data
sample from our second source.

In this particular example, the first source has columns referring to name, address,
and phone number, while the second source has name, city, country, zip, street, and
phone number. To compare each record identifier separately, we need to make sure
that the two datasets have the same columns. In this case, we have two options:

1. In the second source, combine each single address identifier into one address
column for each record.

4https://pandas.pydata.org

410 I. Bilan

https://pandas.pydata.org

2. In the first source, programmatically extract city, country, zip, and street name
from the single address column.

The second option will allow us to be more precise in our comparisons and help
us create better record candidate pairs. Fortunately, there are tools in the Python
ecosystem that will allow us to do such data pre-processing. Using a Python package
called “postal,”5 we start by extracting specific address information from the first
source. This particular Python library allows us to automatically parse a single string
of address data into separate address units like city, street, country, zip code, etc. It
has a simple interface, and with just one function, we can get the expected results.
Let us look at a quick demonstration below.

from postal.parser import parse_address
print(parse_address(“433 East Route 77, Johnscity, AZ 87030, United
States of America”))

Output: [(433, 'house_number'), (east route 77, 'road'), (Johnscity,
'city'), ('az', 'state'),
(87030, 'postcode'), ('united states of america', 'country')]

With this function, we can take the data from the first source and transform it to
have the same columns as the data in the second source. Table 5 shows one record
from the first source after having applied the address transformation step.

We still have multiple inconsistencies between data sources in terms of how each
column is represented. When we investigate each column in more detail, we can see
that the country names are inconsistent. For example, in one source, we can see
“United States,” while in the other “United States of America.” Furthermore, the

Table 4 Data sample of hotel records from source 2

Hotel name Street City
Zip
code Country

Hotel phone
number

Valley Country Inn Bed
& Breakfast

East Route
77433

Johnscity 87030 United
States

+1 922-456-1178

Comfort Inn Westcity Harrison
Drive 1821

Westcity 81340 United
States

+1 342-562-8865

Table 3 Data sample of hotel records from source 1

Hotel name Address
Phone
number

Valley Country
Inn

433 East Route 77, Johnscity, AZ 87030, United States of
America

922-456-1178

Comfort Inn
Westcity

1821 Harrison Drive, Westcity, WY 81340, United States of
America

5https://github.com/openvenues/pypostal

Entity Matching: Matching Entities Between Multiple Data Sources 411

https://github.com/openvenues/pypostal

phone numbers in the first source have no country code, while the records in the
second source have the country code attached to the phone number. The first issue
can be easily resolved by using the “pycountry” Python library,6 which allows one to
look up a country name in almost any format and to normalize it to a predefined one.
For example, we can look up the country names we have in our data and transform
all of them into a uniform two-character country code using the following code
snippet:

import pycountry
pycountry.countries.search_fuzzy(“United States”)[0].alpha_2
pycountry.countries.search_fuzzy(“United States of America”)[0].
alpha_2

Output: “US” for both

The issue with the phone number formatting can also be clarified by using another
specialized Python library. With “python-phonenumbers,”7 we can get a direct local
national number:

import phonenumbers
phonenumbers.parse(“+1 922-456-1178”, None).national_number

Output: “9224561178”

Various other pre-processing steps can be applied to the data to make it more
uniform throughout, and the approaches that need to be taken usually depend on the
type of record identifier. After the pre-processing step is finalized, we need to
pre-filter the potential candidate record pairs.

2.2 Candidate Generation

As discussed in the theoretical part, we do not want to compare each record from the
first source to each record in the second source. To avoid this, we can use various
approaches to candidate generation of potential match pairs. In this demo, we will

Table 5 Data sample of hotel records from source 1 after address transformation

Hotel name Street City
Zip
code Country

Hotel phone
number

Valley Country
Inn

433 east route
77 az

johnscity 87030 united states of
america

922-456-1178

6https://pypi.org/project/pycountry/
7https://github.com/daviddrysdale/python-phonenumbers

412 I. Bilan

https://pypi.org/project/pycountry/
https://github.com/daviddrysdale/python-phonenumbers

make sure to only compare hotels within the same country. This should decrease the
number of comparisons we need to compute considerably. In real-world applica-
tions, candidate generation is one of the most important steps for the entity matching
algorithm. For the purpose of this demo, we are only generating candidates based on
the country. However, there are many ways this step can be refined. Explore the
various options and approaches to candidate generation by following the tutorials
provided on the documentation page of the “py_entitymatching” Python library.8

We will first generate the candidate pairs based on the country code:

import py_entitymatching as em
Instantiate the overlap blocker object
ob = em.OverlapBlocker()

apply the candidate generation step based on a predefined column
match_candidate_pairs_df = ob.block_tables(df_source1, df_source2,
'country', 'country', word_level=True, overlap_size=1,
l_output_attrs=['name', 'phone', 'city', 'zip', 'street'],
r_output_attrs=['name', 'phone', 'city', 'zip', 'street'])

Based on a small dataset of 84 records in each source, by simply overlapping the
two sources using the country code, we will need to do computations on more than
746 record pairs. This number grows quadratically with the dataset’s size if no
blocking is performed, making the selection of the right approach during candidate
selection very important. We can filter out a few more record pairs by, for example,
only allowing record pairs in which at least one word in the hotel name exists in both
record pairs. This is controlled by defining a column on which blocking can occur
and the size of the word overlap. In our example, this is set to 1:

strict_match_candidate_pairs_df = ob.block_candset
(match_candidate_pairs_df, 'name', 'name', word_level=True,
overlap_size=1, show_progress=False)

Now we have reduced the number of record pairs we need to compare to only
around 262. There are many ways this number can be reduced even more; however,
it all depends on which record identifiers are available. For example, if you have the
longitude and latitude coordinates of the hotels, you can base your candidate
generation on a radial distance around a specific hotel from one of the sources and
only match it with other hotels within that given distance.

At this stage, both data sources are combined into one data frame including each
potential candidate match pair (record identifiers from the first source and record
identifiers from the second source) produced by the candidate generation step
available for direct comparison. Table 6 illustrates what the dataset should look

8http://anhaidgroup.github.io/py_entitymatching/v0.3.x/user_manual/guides.html#stepwise-guides

Entity Matching: Matching Entities Between Multiple Data Sources 413

http://anhaidgroup.github.io/py_entitymatching/v0.3.x/user_manual/guides.html#stepwise-guides

T
ab

le
6

D
at
a
sa
m
pl
e
of

ho
te
l
re
co
rd
s
fo
llo

w
in
g
th
e
ca
nd

id
at
e
ge
ne
ra
tio

n
st
ep

re
co
rd
_p

ai
r_
id

lta
bl
e_
na
m
e

lta
bl
e_
ph

on
e

lta
bl
e_
co
un

tr
y

rt
ab
le
_n

am
e

rt
ab
le
_c
ity

rt
ab
le
_c
ou

nt
ry

1
V
al
le
y
C
ou

nt
ry

In
n

92
24

56
11

78
U
S

V
al
le
y
C
ou

nt
ry

In
n
B
ed

&
B
re
ak
fa
st

92
24

56
11

78
U
S

2
V
al
le
y
C
ou

nt
ry

In
n

92
24

56
11

78
U
S

B
ea
ch

C
ou

nt
ry

In
n

92
23

45
34

68
U
S

414 I. Bilan

like at this stage (the columns that start with “ltable_” come from the first source,
while the “rtable_” identifiers are from the second source). Only a subset of record
identifiers is shown in this example.

A data frame with the candidate pair from both sources provided in one row
allows for within-row record identifier comparison.

2.3 Record Pair Comparison (Threshold-based)

Our next step is to compare each identifier in each potential record pair from the
previous step and compute a similarity score for each column comparison between
the first and second sources. We can use a binary comparison for simple columns,
such as phone number and zip code, to see if they are a full match or not. For more
complex columns, such as name, street, and city, we can use one of the available
string comparison algorithms implemented in the “textdistance” Python library9 or
the “jellyfish” Python library.10 In this particular demo, we will use the Hamming
distance. However, you should experiment with various string similarity measures
and see which one yields the best result for your particular data type. The following
is an example of how to calculate the Hamming Distance for two strings:

import textdistance
textdistance.hamming.normalized_similarity('Batu Faly Shamrock
Beach 22', 'Batu Faly Shamrock Villa')

Output: 0.7037037037037037

The similarity score generates a value between 0 and 1 and indicates how similar
the two strings are, with 1 denoting complete similarity. We have previously
mentioned that we can compare zip codes and phone numbers in a binary fashion:
assign 1 if they match entirely and 0 otherwise. However, matching the phone
number or the zip code is less significant than matching a name or full street address.
For this reason, we should boost the scores of each of these columns accordingly.
For the demo, we will boost the name of the hotel by multiplying the final score by
3 and the address by 2. If the phone matches, we will assign a score of 1 to that record
identifier comparison, and if the name matches only partially, we will multiply the
score by 3, which in our example from above, will boost the similarity score to

9https://pypi.org/project/textdistance/
10https://pypi.org/project/jellyfish/

Entity Matching: Matching Entities Between Multiple Data Sources 415

https://pypi.org/project/textdistance/
https://pypi.org/project/jellyfish/

approximately 2.1. For the purpose of a production-ready system, the boosting
weights should be computed using a more elaborate approach, for example, a
machine learning approach that defines the best boosting values based on the
accuracy of the final prediction on the whole gold standard.

Next, we need to sum up all the similarity scores and set a threshold at which we
could regard a record pair as an actual match. If we compare name (maximum
boosted similarity score of 3), street (maximum boosted similarity score of 2), city
(maximum binary similarity score of 1), phone (maximum binary similarity score of
1), and zip code (maximum binary similarity score of 1), all of them add up to a
maximum score of 8. For the demo, we will set the threshold for a record pair match
at 5.5. The threshold has to be low enough to account for some records missing data
in various columns but also high enough to reach a reasonable level of prediction
accuracy. For the production-level solutions, make sure to compute a suitable
threshold for your use case by doing additional experimentation on your data.
Table 7 depicts a simplified illustration of what the data should look like at this
stage of the entity matching process, namely, with columns storing the computed and
boosted similarity scores for each record identifier in a separate column and the
summed up score of all similarity scores for all identifiers.

After filtering out all the record pairs with a total similarity score lower than our
set threshold, we get 84 record pairs predicted as matches. Now we also need to
make sure that we only allow for a one-to-one comparison; in other words, each
record from the first source can only be matched to one record from the second
source. Such a limitation is not always applicable, however, as there might be
multiple records of the same entity within the same source. As such, the final
application depends on the type of data being matched.

Let us extract one-to-one predicted pairs and evaluate the quality based on an
annotated gold standard. Our threshold-based classifier reaches 82% precision and
78% recall on our dataset. Using a simple threshold-based approach, we have
already achieved significant precision and recall levels without having to rely on
an extensive training corpus of thousands of annotated record pairs. This is one of
the main advantages of such simple approaches. Next, we will explore a neural-
based entity matching system called DeepMatcher.

416 I. Bilan

T
ab

le
7

D
at
a
sa
m
pl
e
of

ho
te
l
re
co
rd
s
w
ith

si
m
ila
ri
ty

sc
or
es

re
co
rd
_p

ai
r_
id

lta
bl
e_
na
m
e

lta
bl
e_
ph

on
e

rt
ab
le
_n

am
e

rt
ab
le
_p

ho
ne

na
m
e_
si
m
ila
ri
ty
_s
co
re

ph
on

e_
si
m
ila
ri
ty
_s
co
re

sc
or
e_
su
m

1
V
al
le
y
C
ou

n-
tr
y
In
n

92
24

56
11

78
V
al
le
y
C
ou

nt
ry

In
n
B
ed

&
B
re
ak
fa
st

92
24

56
11

78
2.
52

1
3.
52

2
V
al
le
y
C
ou

n-
tr
y
In
n

92
24

56
11

78
B
ea
ch

C
ou

nt
ry

In
n

92
23

45
34

68
2.
24

0
2.
24

Entity Matching: Matching Entities Between Multiple Data Sources 417

2.4 Record Pair Comparison (Neural-based)

A neural-based approach to entity matching has its pros and cons. It still requires the
pre-processing and candidate generation steps. However, the computation of simi-
larity scores between each record identifier is now a part of a fully automated process
within the neural-based approach. The drawback of this approach is its dependency
on annotated data with manually matched record pairs. This annotated data is
required in order to train a model that will produce acceptable match classification
results.

Compared to the threshold-based approach, the amount of code required is
significantly lower as the system takes over most of the tasks related to similarity
computation and classification. The focus shifts to selecting the right
hyperparameters and classifier types for the data type at hand, which is achieved
through extensive experimentation. Considering that pre-processing and candidate
generation has already been done, it only takes a few lines of code to train and apply
a DeepMatcher model:

import deepmatcher as dm

load train, validation and test sets
train, validation, test = dm.data.process(

path='./data/deep_matcher',
train='train.csv',
validation='validation.csv',
test='test.csv')

build an Entity Matching model
model = dm.MatchingModel(

attr_summarizer=dm.attr_summarizers.Hybrid(
word_contextualizer=dm.word_contextualizers.
SelfAttention(heads=2)))

run training with appropriate hyperparameters
model.run_train(train, validation, epochs=5, batch_size=8,
best_save_path='hybrid_model.pth',
pos_neg_ratio=2
)

predict matches on the test set
model.run_eval(test)

You can experiment with different types of models, explanations of which are
given in the tutorial page of DeepMatcher11 as well as in a paper by Mudgal et al.
(2018). For our demo, we are using the Self-Attention Transformer encoder with two
attention heads, and we will train the model for five epochs. Additionally,

11https://github.com/anhaidgroup/deepmatcher/tree/master/examples

418 I. Bilan

https://github.com/anhaidgroup/deepmatcher/tree/master/examples

DeepMatcher allows for the fine-tuning of other various internal components, for
example, how to tokenize the text input, what types of word embeddings to use,
and more.

After evaluating the trained model, we reach 60% precision on a small test set of
25 samples. This is a good achievement considering that setting up the whole
classification process for DeepMatcher is based on a few lines of code; however,
higher precision can only be achieved through a larger training set.

3 Summary

The ease of use is what truly differentiates the neural-based entity matching
approaches from a more rule-based and manual approach shown above. However,
this approach needs a considerable amount of training data to perform well on a
larger scale dataset. The threshold-based approach also gives one the opportunity to
fine-tune the smallest details of how the similarity between record identifiers is
computed, which is not easily available with DeepMatcher. The choice of which
approach to use depends on the end goal, and the model’s inference time, type of
data, and availability of training data need to be taken into consideration. Do not
discard any approach for its apparent simplicity or complexity and always rely on
experimentation to define which one works best for your particular application.

Service Section
Main Application Fields: Entity matching is often used to consolidate
records from various databases or data sources into one by joining records
from various sources that refer to the same real-world entity. This approach is
often applied when joining databases of people, for example, when matching
census data from various sources. It is also used when joining data sources
containing company entities of various types, for instance, hotels, amongst
others. A subset of entity matching approaches is also used for data
deduplication, for example, deduplication of hotel reviews within one database
or deduplication of guest data between subsidiaries of a single hotel chain.

Limitations and Pitfalls: One of the major limitations of entity matching
approaches is that there are almost no open-source datasets to work with. Since
entity matching can be applied to various entity types and many of these
include private information, finding any openly available datasets is extremely
hard. The best approach is to usually annotate data internally, which requires a
significant amount of time. Another issue is the computational complexity of
many entity matching approaches. Comparing two databases, each containing
millions of rows, and doing it record-by-record is usually computationally
intangible. Much effort is needed to select the most suitable approach for

(continued)

Entity Matching: Matching Entities Between Multiple Data Sources 419

pre-filtering in order to limit the number of record pairs that need to be
compared.

Similar Methods and Methods to Combine with: Entity matching relies
heavily on advances from other research fields such as string similarity
matching, document classification, word embeddings, and many more.

Code: The Python code is available at: https://github.com/DataScience-in-
Tourism/Chapter-19-Entity-Matching

Further Readings and Other Sources

Book: Data matching: Concepts and techniques for record linkage, entity resolution,
and duplicate detection by Christen (2012).

Video: Deep learning for entity matching: A design space exploration https://www.
youtube.com/watch?v=plaONS-Lr8U

References

Bayrak, A.T., Özbek, E.E., Kestepe, S., & Yildiz, O.T. (2019). Intelligent mapping for hotel records
representing the same entity (pp. 560–563). In 2019 4th International conference on computer
science and engineering (UBMK).

Christen, P. (2012). Data matching: Concepts and techniques for record linkage, entity resolution,
and duplicate detection. Springer Publishing Company. Incorporated.

Cohen, W. W., Ravikumar, P., & Fienberg, S. E. (2003, August). A comparison of string distance
metrics for name-matching tasks. IIWeb, 3, 73–78.

Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2019). BERT: Pre-training of deep bidirec-
tional transformers for language understanding. arXiv preprint arXiv:1810.04805.

Hyyrö, H. (2003). A bit-vector algorithm for computing Levenshtein and Damerau edit distances.
Nordic Journal of Botany, 10(1), 29–39.

Joulin, A., Grave, E., Bojanowski, P., Douze, M., Jégou, H., & Mikolov, T. (2016). FastText.zip:
Compressing text classification models. arXiv preprint arXiv:1612.03651.

Keil, J. M. (2019). Efficient bounded Jaro-Winkler similarity based search. In T. Grust,
F. Naumann, A. Böhm, W. Lehner, T. Härder, E. Rahm, A. Heuer, M. Klettke, & H. Meyer
(Eds.), BTW 2019. Gesellschaft für Informatik.

Kirsten, T., Kolb, L., Hartung, M., Groß, A., Köpcke, H., & Rahm, E. (2010). Data partitioning for
parallel entity matching. arXiv preprint arXiv:1006.5309.

Kong, C., Gao, M., Xu, C., Qian, W., & Zhou, A. (2016, April). Entity matching across multiple
heterogeneous data sources. In International conference on database systems for advanced
applications (pp. 133–146). Springer.

Kozhevnikov, I., & Gorovoy, V. (2016). Comparison of different approaches for hotels
deduplication. In A.-C. N. Ngomo & P. Křemen (Eds.), Knowledge engineering and semantic
web. Springer Nature.

Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013). Efficient estimation of word representations
in vector space. arXiv preprint arXiv:1301.3781.

420 I. Bilan

https://github.com/DataScience-in-Tourism/Chapter-19-Entity-Matching
https://github.com/DataScience-in-Tourism/Chapter-19-Entity-Matching
https://www.youtube.com/watch?v=plaONS-Lr8U
https://www.youtube.com/watch?v=plaONS-Lr8U

Mudgal, S., Li, H., Rekatsinas, T., Doan, A., Park, Y., Krishnan, G., . . . Raghavendra, V. (2018).
Deep learning for entity matching: A design space exploration. SIGMOD’18 (pp. 19–34).
Association for Computing Machinery. https://doi.org/10.1145/3183713.3196926

Tai, X. (2018). Record linkage and matching problems in forensics (pp. 510–517). In 2018 IEEE
International conference on data mining workshops (ICDMW). IEEE. https://doi.org/10.1109/
ICDMW.2018.00081.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A., . . . Polosukhin, I. (2017).
Attention is all you need. In Advances in neural information processing systems (Vol. 30).
Curran Associates.

Zhao, C., & He, Y. (2019). Auto-EM: End-to-end fuzzy entity-matching using pre-trained deep
models and transfer learning (pp. 2413–2424). Association for Computing Machinery. https://
doi.org/10.1145/3308558.3313578

Entity Matching: Matching Entities Between Multiple Data Sources 421

https://doi.org/10.1145/3183713.3196926
https://doi.org/10.1109/ICDMW.2018.00081
https://doi.org/10.1109/ICDMW.2018.00081
https://doi.org/10.1145/3308558.3313578
https://doi.org/10.1145/3308558.3313578

	Entity Matching: Matching Entities Between Multiple Data Sources
	1 Introduction and Theoretical Foundations
	1.1 Entity Matching Problem Statement
	1.2 Entity Matching Examples in the Travel Industry
	1.3 Overview of the Stages of an Entity Matching Approach

	2 Practical Demonstration
	2.1 Data Formatting and Pre-processing
	2.2 Candidate Generation
	2.3 Record Pair Comparison (Threshold-based)
	2.4 Record Pair Comparison (Neural-based)

	3 Summary
	Further Readings and Other Sources
	References

