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Learning Objectives

 [Illustrate the intuition behind text representations

* Explain the most important embedding algorithms

» Appreciate the implementation of word embeddings in the field of tourism
» Demonstrate how to vectorize textual data

1 Introduction and Theoretical Foundations

In the previous chapter, text data was preprocessed and manipulated to such an
extent that further analyses could be applied. While the stringing together of letters
and signs in the form of words and sentences is achievable for us humans, provided
one can correctly decipher symbols/signs based on the knowledge of a certain
language, text data must be prepared accordingly for computers. To make text usable
for quantitative analysis methods via computers, it must first be transformed into
numerical values. Furthermore, many machine learning algorithms require a fixed-
length feature vector as input (Le & Mikolov, 2014). For this reason, this chapter
discusses the various methods of word representation and word embedding,
portraying basic concepts of Natural Language Processing (NLP).

The overall aim of this chapter is to present different approaches to vectorizing
text, which can be viewed as a form of feature engineering textual data. The order of
the methods is purposely presented in such a way so as to reflect the increasing
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complexity of the algorithms, starting with one hot encoding and ending with deep
neural networks such as BERT.

In this regard, however, please keep in mind that the selection of the appropriate
method should be based on the task and not necessarily on the assumption that state-
of-the-art approaches guarantee high-quality results.

1.1 One Hot Encoding

The simplest word representation can be achieved via “One Hot Encoding,” a
process in which categorical variables are represented as binary vectors. In the first
step, the categorical values are mapped to integer values, and, subsequently, each
value can be represented as a binary vector in the form of aO ora 1.

In Fig. 1, for each token, the column containing this word is filled with the value
1, and the remaining values are filled with a value of zero. This results in a vector
with the dimension 1 x (N + 1), where the size of the dictionary is represented by
“N’ and the additional 1 is added to N for the “out-of-vocabulary” token." In reality,
the words of a sentence would be stored in a dictionary, and the example from Fig. 1
would have a random word order.

This method is favorable as it is uncomplicated to implement, the interpretation is
simple, and it does not suffer from undesirable bias. It does, however, have one
major drawback. As only words can be identified when using this method, the
context of the terms gets lost. In this sense, since the terms stand alone and have
no further reference to neighboring words, sentences, or paragraphs, it is impossible
for the computer to learn the meaning of the terms. Additionally, this method results
in highly sparse vectors, requiring a large memory capacity for computation. Thus,
more complex methods are needed in order to perceive the context in which the
terms occur.

Feature for: Information is the lifeblood of tourism

information 1 0 0 0 0 0
lifeblood 0 0 0 1 0 0
tourism 0 0 0 0 0 1

etc

Fig. 1 One hot encoding

"https://towardsdatascience.com/word-representation-in-natural-language-processing-part-i-
e4cdS4fed3d4


https://towardsdatascience.com/word-representation-in-natural-language-processing-part-i-e4cd54fed3d4
https://towardsdatascience.com/word-representation-in-natural-language-processing-part-i-e4cd54fed3d4

Text Representations and Word Embeddings 337
1.2 Bag-of-Words (CountVectorizer)

By far, the most common approach to vectorizing text data is based on the “Bag-of-
Words” (BOW) (Harris, 1954) representation, which summarizes a word sequence
representation for a document by computing a histogram of words for the docu-
ment’s word sequence and resulting in a fixed vector (Duboue, 2020). The idea of
BOW is to find features (words) within a document that help unlock its meaning or
allow comparison between documents in terms of similarity. Before vectorizing a
text with Bag-of-Words, it is preprocessed in most cases, as shown in the previous
chapter. All unnecessary special characters must be removed, the data needs to be
normalized, and lemmatization or stemming should be performed. Through
tokenization, one then receives the words in the document that one wishes to
count. It should be mentioned, that BOW ignores the word order as they appear in
a document.

For example, after lowercasing, stopword removal, and stemming (Porter Stem-
mer) have been applied, the sentence “This hotel is a city hotel, and it is located in
the city centre of Salzburg” is represented as: thisH), hotel (2), 542), ab), citi (2),
ard-hH), #D), locat (1), i), the- (), centre (1) ef (b, salzburg (1).

The vocabulary count of our document now contains all unique features,
including:

hotel — 2

citi — 2

locat — 1
centre — 1
salzburg — 1.

The final vector for our sentence “This hotel is a city hotel and it is located in the
city centre of Salzburg” is [02002000100101], representing the final vocabulary and
its count compared to the words from our document.

Using the BOW method creates flat vectors, meaning that the original text
structure becomes lost and the BOW no longer contains sequences and word
order. Each word represents one dimension of the vector, where the order of the
words within the vector is irrelevant, provided it is consistent across all documents in
the corpus (Zheng & Casari, 2018). When the Bag-of-Words erases some semantic
meaning of a sentence, the breaking down of individual words can subsequently lead
to undesirable effects. For example, in the case of a pair of terms such as “not
expensive,” they are split into two individual and independent words, “not” and
“expensive.” Bag-of-n-Grams can solve this problem to a certain extent (Mikolov
et al., 2017) but should not be considered a definitive solution. Generally speaking,
the BOW approach is sufficient for simple tasks such as document classification or
information retrieval as it judges documents as being similar if they show a similar
distribution of specific words (Dong & Liu, 2017). Nevertheless, it is far from
optimal when it comes to providing correct semantic understanding of the text
(Zheng & Casari, 2018).
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1.3 TF-IDF

The weaknesses of BOW Boolean can be partially overcome by weighting words. A
widely used approach is the “Term Frequency - Inverse Dense Frequency (TF-IDF)”
(BOW-TF-IDF) technique, which determines the importance or relevance of a word
or n-gram, yet not the word meaning, in a document or corpus (Wang et al., 2020).
The disadvantage of BOW is that the frequency of a term in a document does nothing
to help in distinguishing its relevance. This means that words that occur less
frequently but make the context easier to understand are neglected. In the TF-IDF
transformation, however, a weighting of terms is carried out, and a score is calcu-
lated for the relevance of each word given in the document. Let's take the following
two sentences, representing document A and B, as an example.

Total number of words in a
Documents | Text document
A Information is the lifeblood of tourism 6
B The internet has altered the tourism 7
industry

In Fig. 2, the TF-IDF value of each word is calculated for these two sentences. In
the first column, all individual/unique words, i.e., the vocabulary of both sentences,
are listed. The TF indicates how often a term (w) occurs in a document (d) in relation
to the total number of words in the document (d), while the IDF score refers to the
logarithmically scaled quotient of the total number of documents (N) in a corpus
(D) and the number of documents containing the word (w). The TF-IDF score is the
factor of TF and IDF. To simplify the example given in Fig. 2, it should be noted that
the preprocessing of the text has been omitted.

occurences of w in document d To
— — 1DF(w, D) = In(

TR d) = e Trumber of words in document d TFIDF (w,d, D) = TF(w,d) « IDF(w,D)
Words TF (for A) TF [for B) IDF TFIDF[A) TFIDF(B)
Information 1/6 0 In(2/1)=0.69 0.115 0
is 1/6 0 In(2/1)=0.69 0.115 0
the 1/6 2/7 In{2/2)=0 (1] 0
lifeblood 1/6 0 In(2/1)=0.69 0.115 0
of 1/6 (v] In(2/1)=0.69 0.115 0
tourism 1/6 1/7 In(2/2)=0 0 0
internet 0 1/7 In(2/1)=0.69 0 0.098
has 0 1/7 In(2/1)=0.69 0 0.098
altered 0 1/7 In(2/1)=0.69 0 0.098
industry 0 1/7 In(2/1)=0.69 0 0.098

Fig. 2 TF-IDF
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If a document contains numerous sentences, it is advisable to split this document
up into individual sentences; the reason being that each sentence has several words
indicating the context of the sentence, and each sentence, in turn, points to the
context of the whole document. Ultimately, this provides us with a better way of
comparing documents and identifying similarities and differences between docu-
ments. However, since longer documents have a higher probability of receiving a
high score compared to shorter documents (Ramos, 2003), the TF-IDF transforma-
tion, despite term weights, also contains a bias. This problem exists because the
similarity function between documents only occurs by matching individual terms
and their weights (Dong & Liu, 2017).

1.4 Word Embeddings

Jurafsky and Martin (2000) define word embedding as the representation of words
for text analysis, typically in the form of a real-valued vector that encodes the
meaning of the word. As such, words appearing closer in a vector space are expected
to have similar meanings. According to Aggarwal (2018), this can be helpful due to
data-centric reasons; for example, when texts consist of very short sections, such as
tweets, and the BOW representation simply contains too little information to make
meaningful inferences. On the other hand, there could be application-centric reasons
as well, such as information extraction, text summarization, or opinion mining,
which rely on gaining semantic information from sequences.

When it comes to word embedding, an n-dimensional vector space representation
of words that depict both similar words (“hotel” vs. “hostel”) or semantically related
words (“restaurant” vs. “food”) are created based on a training corpus that the model
learns from. Similar and semantically related words are then positioned close to each
other in the vector space.

Figure 3 depicts some countries and their capitals within a vector space and also
displays the fact that the vectors relate to each other in a similar way - China relates
to Beijing in the same way as Russia relates to Moscow. As such, Mikolov, Chen,
et al. (2013) showed that algebraic operations can be performed with vectors and, in
this sense, calculations such as France + Berlin — Germany = Paris can be
computed.

The approaches presented precedently have attempted to quantify the meaning of
individual terms in one or more documents, with word order being seen as an
irrelevant aspect. Yet, there are also situations in which the sequential aspect of
the text is rendered important. In this respect, word embeddings are text interpreta-
tion techniques that attempt to represent the context of words in the form of fixed-
length vectors (Horn et al., 2020). Unfortunately, the two count-based methods that
we have discussed so far are unable to capture semantic meaning. Further on in this
chapter, however, non-context-based models like Word2vec, FastText, and Glove,
which take the semantic meaning of words into account, and ELMo and BERT,
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China o- * Beijing
Russide---.________
Japane e T Moskow
--------- *Tokyo
___________ +Ankara /
Turkeye-=="""
Polande--meee_______
Germanye- E— .Wa*r%awl.
Franceo- Tgariser i
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__________________ Rome
Greeceo-----"

Fig. 3 Country and capital vectors (PCA Projection). Source: author’s own depiction

Count based vector
space model
(Non-Semantic)

Count Vectorization
Tf-IDF
Hashing Vectorization

Fig. 4 Types of vector space models

which additionally consider word order and are context-based, will be presented
(Fig. 4).

The following example illustrates the meaning of word order and its semantic
relevance:

Salzburg has increasing booking figures compared to Vienna
Vienna has increasing booking figures compared to Salzburg

Clearly, when looking exclusively at word order, the two sentences have different
meanings; yet, since the exact same words are used in both sentences, the represen-
tation of count-based and non-context-based models is equivalent (Le & Mikolov,
2014). Nonetheless, non-context-based vector space models can, at least, preserve
the local word order.
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Table 1 Word vectors based on different corpora

British-National-Corpus Google-News English-Wikipedia English-Gigaword
hotel 0.73 eatery 0.87 restaurant 0.61 eaterie 0.82

cafe 0.72 restaurant 0.79 eatery 0.56 eatery 0.81

bistro 0.70 restaurants 0.77 hotel 0.55 cafe 0.75
take-away 0.67 diner 0.73 grocery 0.48 diner 0.72

cafés 0.66 steakhouse 0.73 bbq 0.47 bistro 0.71
brasserie 0.66 pizzeria 0.72 hotel 0.46 bakery 0.69

Source: calculated with vectors.nlpl.eu (This site offers several tools to experiment with word
embeddings: http://vectors.nlpl.eu/explore/embeddings/en/) based on a Word2vec Skip-gram
Model

Besides word embeddings, sentence embedding (ELMo, InferSent, SBERT),
where every existing sentence is encoded and/or, lastly, document embedding
(Doc2Vec), where whole documents are encoded, also exist. In practice, however,
there is no difference between sentence and document embedding.

Enormous developments in the field of NLP have mainly emerged due to the
concept of transfer learning using pre-trained models. Yet, training language models
is time-consuming and extremely computationally expensive because a model must
be trained on a huge corpus, such as the Wikipedia corpus (in English = 6.2 million
articles). It is therefore understandable that models trained on different corpora use a
different vocabulary, create different word embeddings, and, thus, position words
differently within the vector space. As an example, Table 1 shows the six most
semantically similar terms to “restaurant,” each based on its corresponding training
corpus.

If a text is domain-specific (e.g., financial, medical, legal, or industrial) and differs
from the standard corpora that were used to develop pre-trained language models,
this can be quite problematic. In other words, using a standard pre-trained model for
a domain-specific task might result in insufficient word representations. The solution
for such cases involves domain-specific language models that are trained from
scratch based on a domain-specific corpus.

While the existence of language models dates back to the 1950s, models and
algorithms have continued to develop rapidly, especially over the past 10—15 years.
Many language models evolve on the basis of neural networks (Bengio, 2008), and,
as of right now, word embeddings seem to be the current status quo. Luckily, the
complexity of language, which indeed poses several major challenges, can be solved
(more or less) with the help of existing models. A good model should manage and
establish the following levels: the lexical approach, which refers to the words or
vocabulary of a language; the syntactic approach, which deals with the arrangement
of terms and phrases so as to construct well-formed sentences; the semantic
approach, which is concerned with the meaning of words; and, finally, the pragmatic
approach, which deals with the proximity between words and documents (Bender &
Lascarides, 2019; Sieg, 2019a). Figure 5 shows the historical development of word
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Distributional Semantics Word Embeddings
Count-based &
Predictive Distributional
Semantic Models
(Baront 2014
-
Semantic Models
(Barond, 2010}

Distributed Representations
L L [ 1 | 1 1 |
1950 1960 1970 1980 1990 2000 2005 2010 2015 2020

W Theoretical Contribution B Empirical Evidence Literature Review W Model/Algorithm
Y mentioned in this chapter

Fig. 5 The history of word Embeddings. Source: adapted from Landthaler (2020)

embeddings, starting from the once independent research fields of distributional
semantics and distributed representations.

Nowadays, there are two different approaches available for creating word embed-
dings, either a counting-based approach, such as the GloVe algorithm, among others,
or the prediction-based approach, performed by the Word2vec algorithm. The
following paragraphs attempt to present the currently relevant algorithms and
models (marked with a star in Fig. 5) in a brief and concise manner.

1.4.1 Word2vec

“Word2vec” are one of the most widely used word embedding algorithms that
delivered state-of-the-art results in numerous NLP applications (Goldberg & Levy,
2014) until a new generation dawned with the development of Transformers. These
prediction-based algorithms were developed by Mikolov, Chen, et al. (2013) at
Google and are based on the distributional hypothesis (Sahlgren, 2008), which states
that words occurring within the same contexts have similar meanings. These algo-
rithms are based on a three-layer neural network that is able to classify individual
components of a text. According to Mikolov, Chen, et al. (2013), the words and their
context are embedded in a low-dimensional space (typically 300 dimensions), with a
vector being assigned to each word (Kishore, 2018). The created word vectors are
then mapped in a vector space in such a way that semantic similarities can be
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CBOW Skip-gram
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Fig. 6 Word2vec Architectures. Source: adapted from Mikolov, Chen, et al. (2013)

CBOW Skip-gram
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target word target word
The internet altered the tourism industry

Fig. 7 CBOW versus Skip-gram. Source: author’s own depiction

calculated in a low-dimensional matrix via the cosine distance. The values can range
between —1 and 1, although the closer the value is to 1, the higher the similarity
(Jatnika et al., 2019; Li, Li, et al., 2018).

Word2vec offers two neural architectures to learn dense and distributed repre-
sentations of words, the Continuous Bag-of-Words (CBOW) and the Skip-gram
Model (Fig. 6).

The basic difference between the two architectures is that a CBOW model
combines the distributed representations of the context (the words around the target
word) to predict the word in the middle. The exact opposite holds true for the Skip-
gram Model in which the context is predicted using the distributed representation of
the input word (Fig. 7).

If only a few training data points are available, the Skip-gram model is more
suitable because it can also represent rare words and phrases adequately. CBOW, on
the other hand, can be trained much faster and is somewhat better for frequently
occurring words (Jang et al., 2019). Numerous studies have additionally investigated
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Table 2 Most significant Word2vec hyperparameters

Suggested
Hyperparameter value Suggested by
Window_size/Window: Since Word2vec pre- 5 Goldberg and Levy (2014),
dicts whether a word W; is part of the context of Horn et al. (2020)
word W, a window-size must be specified,
which indicates the size of the context around the
word W,.
Larger windows represent more topical similar-
ities, while smaller windows more syntactic
similarities (Goldberg & Levy, 2014).
Vector_size/size: The vector size (embedding 300 Zhang et al. (2016), Yuan et al.
size) is the number of dimensions for each word (2018)

vector.

The model quality decreases for vector sizes
larger than 300 (Pennington et al., 2014).
Learning rate (LR): Defines the size of indi- 0.01-0.1 Horn et al. (2020)
vidual steps for optimizing loss function.

ETA/alpha: Refers to the initial learning rate. 0.025 Chang et al. (2017), Landthaler
The larger the alpha value, the faster the network | (SG) (2020), Putra and Khodra
“learns”. At the same time, however, it also 0.05 (2016)

becomes more susceptible to exceeding the (CBOW)

minimum.

SG (skip-gram) set value 1 to use SG, set value |1 Horn et al. (2020)

to 0 to use CBOW.

Vocab_Min_Count/Min_Count: This value 100
restricts the word embeddings to words that
occur at least as often as this value in the training

corpus.
HS (hierarchical Softmax) set value 1 to use, 0 Landthaler (2020), Mikolov,
set value to O to use negative sampling (NS). Sutskever, et al. (2013)

When using words with a low frequency for the
training corpus, use HS = 1

the importance of hyperparameter tuning in Word2vec. As such, the
hyperparameters in Table 2 reveal selected values that have been proven to have a
direct effect on training success.”

1.4.2 Doc2Vec

As discussed, Word2vec allows words to be mapped in a vector space based on their
similarity to each other. This not only eliminates the problem of ignoring local word
order and context, but it also takes semantics into account. The next approach,
“Doc2Vec,” introduced by Le and Mikolov (2014), is a similar unsupervised

2For a detailed description of Word2Vec hyperparameters see: https://radimrehurek.com/gensim/
models/word2vec.html#introduction
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algorithm that generates paragraph vectors instead of word vectors. This makes it
possible to create a fixed-length vector representation of text pieces, for instance,
sentences, paragraphs, or documents. Thus, Doc2Vec allows text entities such as
documents to be compared in terms of their semantic similarity. Yet, Li et al. (2019)
note that there is a lack of available tourism domain-specific corpora to train domain-
specific models. For this reason, Arefieva and Egger (2021) trained a Doc2Vec
Model® for the travel and tourism industry, based on 3.6 million documents from
travel reviews, global sightseeing descriptions, and travel experiences, which can be
downloaded and used as a domain-specific model for tourism-related tasks together
with the provided Jupyter Notebook.

1.4.3 fastText

What can be viewed as a further development of Word2vec is the open-source
software “fastText,”® which was developed in 2016 by Facebook AI Research.
While Word2vec considers each word in a document or corpus to be the smallest
unit, fastText dives one level deeper and considers each word as a composition of
character n-grams. Thus, the generated vectors are based on the sum of character
n-grams (Mikolov et al., 2017). This approach is advantageous when compared to
Word2vec since the morphological structure of a word contains important informa-
tion about its meaning, which is particularly relevant for morphologically rich
languages such as German or Turkish (Diindar et al., 2018). Unlike Word2vec,
fastText also solves the “out-of-vocabulary” (OOV) problem. When Word2vec is
trained, it can only process words that are present in the training data, resulting in
unknown terms being completely ignored and, thus, no embedding being created for
them. Contrarily, fastText’s sub-word embedding attempts to successfully embed
words from the OOV (Anibar, 2021; Kenyon-Dean et al., 2020).

Similarly to Word2vec, the two models CBOW and Skip-gram can be used to
compute word representations, and the most significant hyperparameter is the
dimension that specifies the size of the vectors. The default value is 100 dimensions,
but in practice, this can be successfully extended to 300 dimensions. Since fastText
splits words into n-grams, there is a value “minn” that specifies all the minimum
substrings contained in a word, and a value “maxn” defining the maximum
substrings. Subwords between 3 and 6 characters are recommended for English,
but a different value may be more appropriate when it comes to other languages
(fastText.cc, 2020). By default, the model is iterated 5 times (epoch). Moreover, as
with Word2vec, the learning rate (—Ir) defaults to 0.05, and values between 0.01 and
1 are recommended.

fastText provides pre-trained vectors for 157 languages, trained on the Common
Crawl and Wikipedia corpora, with CBOW in 300 dimensions. Except for the

3Doc2Vec Model for tourism: http://datascience-in-tourism.com/models/Tourism_Doc2vec.zip
“https:/fastText.cc/
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hierarchical softmax option, the algorithm comes with the same hyperparameters as
the Word2vec toolkit. It additionally includes the values for MinN (3) and MaxN
(6), describing the sizes of n-gram characters that a word is split into, as well as a
decay factor modifying the learning rate LrUpdateRate (100) (Landthaler, 2020).

1.4.4 GloVe

One particular criticism regarding both Word2vec architectures is that they ignore
the different frequencies of some context words while also only capturing the local
context rather than the global context (Simov et al., 2017). “GloVe™” is a log-bilinear
regression model that attempts to overcome these limitations by combining the
advantages of count-based and prediction-based methods (Almeida & Xexéo,
2019). From the count-based approach, GloVe takes advantage of the efficiency
with which global statistics are captured and combines it with the benefits of
meaningful linear substructures from prediction-based models, such as Word2vec.
As a result, these word representations outperform the others (Pennington et al.,
2014). GloVe can be trained from scratch, or pre-trained GloVe vectors can be
loaded from Gensim.®

The GloVe algorithm uses Vector Size, Min-Count, Window Size, and Itera-
tions, like Word2vec, but also provides some additional hyperparameters as
described by Landthaler (2020).

* Max-Vocab (—): This is an alternative hyperparameter to the Min-count, used to
set a boundary for vocabulary size.

¢ Symmetric (Left and Right context): This defines the context window on the
left or right side of the pivot token. A symmetric context window is, however,
recommended.

* Distance Weighting (1): The GloVe algorithm weighs the distance between two
tokens linearly (1) or non-linearly (0).

« Eta (0.05), Alpha (0.75), and X-Max (100.0): These hyperparameters control
the learning rate.

145 ELMo

What all the approaches presented above have in common are that they assign a
fixed-vector to words or substrings in the dictionary. However, it can also be that a
word has several meanings, rendering the assignment of a fixed vector problematic.
“ELMo,” developed by Allen NLP (Peters et al., 2018), is also able to embed these
polisemic words correctly since, depending on the context, one and the same word

5For an implementation thereof, see: https:/github.com/stanfordnlp/GloVe
Shttps://radimrehurek.com/gensim/
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may have different word vectors assigned to them. Thus, a word does not receive a
unique word-vector but, rather, a vector that is a function of the entire sentence
containing that word (Shahbazi et al., 2019). In this way, ELMo takes the entire input
sentence into account in order to calculate the word-vector (Ethayarajh, 2019). In
addition, the algorithm is also character-based and can, therefore, successfully
embed words outside of the normal vocabulary range (Ethayarajh, 2019). ELMo
has been shown to outperform alternative approaches in tasks such as named entity
recognition or sentiment analysis (Krishna et al., 2018; Liu et al., 2020) and,
moreover, is not based on a shallow neural network like Word2vec, fastText, or
GloVe, but on a deep neural network architecture (bidirectional LSTM). Due to the
complexity of the architecture, further technical background information falls out-
side the scope of this chapter and is therefore not provided here. Pre-trained models
(trained on 1 billion words) are available on Tensorflow Hub’ or can be downloaded
at Allen NLP.*

1.4.6 BERT

With the development of “BERT,” Google was able to revolutionize the NLP
landscape. It can be considered a much deeper neural network than ELMo and
contains many more parameters, resulting in a greater representational power
(Alsentzer et al., 2019). BERT achieves state-of-the-art results with little fine-tuning
and can be used for numerous different NLP tasks, rather than just providing word
embeddings as features. As shown in Fig. 5, BERT has laid the foundation for
further rapid and diverse developments, including RoBERTa, Distillbert, Albert,
XLNet, and Google TransformerXL, among others. The new Transformer architec-
ture attempts to handle sequence-to-sequence tasks, taking not only the meaning of
words but also the extensive dependencies between words into account. Vaswani
et al. (2017) describe the importance of the attention mechanism in their influential
paper as follows: “Self-attention, sometimes called intra-attention, is an attention
mechanism relating different positions of a single sequence in order to compute a
representation of the sequence” (Vaswani et al., 2017) (Fig. 8).

The EBUFISE didn "t cross the because it was too wide.

The tourist didn "t cross the street becausefigwas too wide.

Fig. 8 BERT’s attention mechanism

"https://tthub.dev/google/elmo/2
8https://allennlp.org/elmo


https://tfhub.dev/google/elmo/2
https://allennlp.org/elmo

348 R. Egger

In this example, the attention mechanism tries to find the correct dependency
between the word “it” and “tourist” or “street” and to evaluate it as an attention score.
It also looks at the other words in the sequence in order to better understand a
particular word. Filler words or unimportant text elements are recognized and
disregarded by the algorithm. The disadvantage of this is that attention can only
work with a fixed length of text strings. Therefore, existing texts must be chunked
into segments of the same size before they can be processed further, which subse-
quently leads to a fragmentation of the context.

BERT exists as BERT Base (12 transformer layers with 110 million parameters)
or as BERT Large (24 transformer layers with 340 million parameters). Further
technical details are not presented here. The pre-trained models are based on large
datasets, such as the Wikipedia and Books Corpora, and contain over 3 billion
English words. As previously mentioned, the training corpus is of enormous impor-
tance for transfer learning, and BERT may be too inaccurate for domain-specific
NLP tasks. For this reason, different versions of BERT have evolved in which
additional domain-specific corpora have been used to train BERT. For example,
BioBERT (Lee et al., 2020) exists for biomedical text mining, FinBERT (Chang
et al., 2017) for financial communications, or SCiBERT (Beltagy et al., 2019) for
scientific texts. For tourism-specific NLP tasks, the TourBERT model trained by
Arefieva and Egger (2021) is available at Hugging Face (https://huggingface.co/
veroman/TourBERT).

1.5 Visualization of Multidimensional Data

Although word embeddings with, for example, 300 dimensions are referred to as
low-dimensional representations, they can no longer be visualized and spatially
represented in a human-compatible and understandable form. As described in detail
in Chapter “Dimensionality Reduction,” there are numerous methods for dimension-
ality reduction, which can be implemented to reduce the dataset so as to make
visualization possible. The visualization of multidimensional data is usually
performed with Python modules like matplotlib or seaborn. At this point, however,
one tool, in particular, should also be highlighted. “TensorFlow” offers the Embed-
ding Projector,” an online solution (or installed in Python) that allows you to upload
vectors and their metadata to visualize them. One can simply decide between the
algorithms PCA, t-SNE, and UMAP for dimension reduction (all procedures are
described in Chapter “Dimensionality Reduction™), and, thus, in order to examine
and understand the data more closely, the Embedding Projector allows multi- and
high-dimensional embeddings to be displayed graphically (Fig. 9).

°https://projector.tensorflow.org/


https://huggingface.co/veroman/TourBERT
https://huggingface.co/veroman/TourBERT
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Text Representations and Word Embeddings 349

DATA b D B | ponts 4598 | Denension 768

[rYr

Dimensicn 0 i =

Heighbors @ —#-

Fig. 9 Visualizing multidimensional word vectors

1.6 The Future of Embeddings

It is nearly impossible to keep track of all the recent innovations as new deep-
learning models are constantly being introduced, with so-called transformers being
viewed as game-changers and as a particular future prospect. The paper “Attention Is
All You Need” by Vaswani et al. (2017) presents the sequence-to-sequence
(Seq2Seq) architecture of these neural networks, which transform entire sequences,
such as sequences of words, into another sequence. Long-Short-Term-Memory
(LSTM) models should additionally be emphasized at this point. The attention
mechanism evaluates individual sequences, determines their meaning, and either
remembers or forgets these parts depending on whether or not the elements are
unimportant.

1.7 Embeddings in Tourism-Related Research

The availability of large amounts of user-generated content has led to text analysis
becoming more critical in tourism (Lee et al., 2020) and machine learning
approaches being increasingly applied (Anandarajan et al., 2019). Since many of
these methods require a fixed-length vector as an input value, the creation of word
representations and embeddings is necessary in order to be able to process text data
even further. According to Conneau and Kiela (2018), word embeddings are not
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particularly useful in cases where limited training data is available, potentially
leading to sparsity and poor vocabulary coverage. Therefore, pre-trained models
are often used to perform a wide variety of downstream tasks (Santos et al., 2020).
For instance, Chantrapornchai and Tunsakul (2020) used SpaCy and BERT to apply
named entity recognition and text classification to perform information extraction
tasks on corpora from the tourism industry. Moreover, Li, Li, et al. (2018) proposed
a tourism-specific sentiment lexicon for sentiment polarity classification tasks. A
survey of text summarization and sentiment analysis tasks performed in the tourism
domain was also presented by Premakumara et al. (2019), and, in addition, Li, Zhu,
et al. (2018) combined sentiment analysis with topic modeling and an attention
mechanism to perform a sentiment classification task on hotel reviews. Lastly, to
better investigate tourism spatio-temporal behavior, Han et al. (2019) adapted
Word2vec and proposed Tourism2Vec as a destination-tourist embedding model,
while, in another study, annotated Instagram images of tourists from Austria were
used in a study by (Arefieva et al., 2021) to cluster the destination image. To sum up,
Table 3 shows a selection of contributions to the field of tourism, highlighting
algorithms and models discussed in this chapter.

Table 3 Word representations/embeddings in tourism

Algorithm/
Model Research objective Authors
TF-IDF A comparison between text extraction methods in the Kuntarto et al. (2015)
tourism domain
TF-IDF Hotel review summarization Nathania et al. (2021)
TF-IDF Improving object-based opinion mining on tourism Afrizal et al. (2019)
product reviews
TF-IDF; Investigating hotel selection differences among different | Wang et al. (2020)
Word2vec types of travelers based on online hotel reviews
Word2vec Proposing a systematic approach for integrating tradi- Abreu
tional research methods into machine learning in text
analytics in tourism and hospitality
Word2vec Domain-specific new word detection and word propa- Li, Guo, et al. (2018)
gation system for sentiment analysis in the tourism
domain
Word2vec Examining Taiwan’s rural image Sun et al. (2020)
Word2vec Exploring China’s S5A global geoparks through online Luo et al. (2021)
tourism reviews
Word2vec Development of a tour recommendation system using Hayashi and Yoshida
online customer reviews (2019))
Tourism2Vec | Investigating tourism spatio-temporal behavior through | Han et al. (2019)
the adaption of Word2Vec
Doc2vec Clustering annotated Instagram images Arefieva et al. (2021)
Doc2vec Automatic tracking of tourism spots for tourists Mishra et al. (2019)
GloVe Exploring hotel reviews and responses Chang et al. (2020)
GloVe Analysis of racism-related tourism reviews in terms of | Li et al. (2020)
tendency, semantics, and characteristics

(continued)
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Table 3 (continued)

Algorithm/
Model Research objective Authors
fastText Ranking online user reviews for tourism based on Karanikolas et al.
usefulness (2020)
fastText Classifying hashtags of geotagged photos on Instagram | Memarzadeh and
Kamandi (2020)
ELMo, Classifying tourism reviews Gurjar and Gupta
GloVe, (2020)
BERT
BERT Information extraction of tourism-related content Chantrapornchai and
Tunsakul (2020)
BERT Knowledge extraction on a tourism knowledge graph Liang
BERT Sentiment analysis and aspect categorization of hotel Ray et al. (2021)
reviews

2 Practical Demonstration

In this practical demonstration, we will look at four different approaches to represent
text as feature vectors. To begin with, word vectors are created with the help of Bag-
of-Words and TF-IDF, representative of distributional approaches. Although BOW
and TF-IDF are relatively simple and represent fundamental approaches, they can
still solve tasks such as text classification quite well. With Word2vec, one of the
most widely used methods based on a neural network will be presented, and BERT, a
state-of-the-art model, will conclude this section. Large text corpora have been
omitted for demonstration purposes; instead, simple input sentences will be used.
The entire code, including explanatory markdowns, is available as a Jupyter note-
book, which can be found in the book’s GitHub profile (https://github.com/
DataScience-in-Tourism/).

2.1 BOW

As we already learned, BOW is a fast approach and is easy to implement; yet, at the
same time, all words are considered independent of each other, and the meaning of
the words gets lost. Furthermore, the BOW approach is only suitable for small
datasets.

As a first step, we will load the modules and the stopwords from nltk. Then, we
will tokenize the set and filter the stopwords.

sentencel=["Thishotel isacityhotelandit islocated inthe city center
of Salzburg."]


https://github.com/DataScience-in-Tourism/
https://github.com/DataScience-in-Tourism/
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fromnltk.corpus import stopwords
#nltk.download ('stopwords')
fromnltk.tokenize import word tokenize

text = "this hotel is a city hotel and it is located in the city center of
Salzburg."
text tokens = word_tokenize(text)

tokens without sw = [word for word in text_tokens if not word in stopwords . words()]

print(tokens_without_sw)
print(text_tokens)

['city', '"located', 'city', 'center', 'Salzburg', '.']
['this', 'hotel', 'is', 'a', 'city', 'hotel', 'and',6 'it', 'is',
'located', 'in', 'the', 'city', 'center', 'of', 'Salzburg', '.']

from sklearn.feature extraction.text import CountVectorizer
vectorizer = CountVectorizer()
X = vectorizer . fit_transform(tokens_without_sw)

print(vectorizer. get_feature_names())
['center', 'city', 'located', 'salzburg']
print(X.toarray())

[[0100]
[0010]
[0100]
[1000]
[0001]
[0000]]

2.2 TF-IDF

TF-IDF is also easy to implement and provides basic metrics for describing the most
descriptive terms, which allows us to calculate the similarity between two texts. As
input, we will now use two sentences to calculate the vector for each word. These
could then be used further to compute the similarity score between the two sentences
using the cosine distance.

partl = """Salzburg has increasing booking figures compared to Vienna"""
part2 = """Vienna has increasing booking figures compared to Salzburg"""

# Import module
from sklearn.feature_ extraction.text import CountVectorizer
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# Create an instance of CountfVectorizer
vectoriser = CountVectorizer(analyzer=preprocess_text)

# Fit to the data and transform to feature matrix
X train = vectoriser. fit_transform(X_train['speech'])

# Convert sparse matrix to dataframe

X train =pd.DataFrame.sparse.from spmatrix (X train)

# Save mapping on which index refers to which terms

col map = {v:k fork, v in vectoriser.vocabulary .items()}

# Rename each column using the mapping

for col inX train.columns:

X_train.rename (columns={col: col mapl[coll}, inplace=True)
X train

book compare figure increase salzburg vienna
0 1 1 1 1 1 1
1 1 1 1 1 1 1

# Import module

from sklearn.feature extraction.text import TfidfTransformer

# Create an instance of Tfidf Transformer

transformer = Tfidf Transformer ()

# Fit to the data and transform to tf-idf

X train = pd.DataFrame (transformer.fit transform(X train).toarray(),
columns=X_ train.columns)

X_train
book compare figure increase salzburg vienna
0.408248 0.408248 0.408248 0.408248 0.408248 0.408248
1 0.408248 0.408248 0.408248 0.408248 0.408248 0.408248

2.3 Word2vec

In this example, we will take three sentences as input and use the pre-trained
Word2vec model to calculate the vectors for three words, followed by determining
the similarity between the three terms.

import nltk

# import the training model

from gensim.models import Word2vec

# import the scoring metric

from sklearn.metrics.pairwise import cosine similarity
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# processed data as a 1ist

list_of strings = ['the internet altered the tourism industry',
'information is the lifeblood of tourism', 'people like to travel in
summer ']

# tokenizing
all words = [nltk.word tokenize (sent) for sent in list of strings]

# training the model

# since we have a very small corpus, we take a small window and min_ count
# size is the embedding size

word2vec = Word2vec (sentences=all words, min count=1, size=30,
window=2)

# store the vocabulary
vocabulary = word2vec.wv.vocab

# get the embeddings of the words
vl = word2vec.wv['tourism']

v2 = word2vec.wv['travel']

v3 = word2vec.wv['internet']

print (v1)

# check similarity of 2 embeddings
cosine_similarity ([v1l], [v2])

[ 0.01585706 -0.01524498 -0.01337044 -0.01015534 0.00407253
-0.00519751

0.01376185 -0.012780490.01048789 -0.00819942 0.00103017 -0.00641114
0.0117786 -0.01100589 -0.00404116 -0.00848718 -0.00666839 0.00896648
-0.00434796 -0.00222698 0.00373276 0.00703301 0.01109744 0.00019816
0.01653573 -0.00737171 -0.00573208 0.00224552 0.01176719
-0.01596778]

array([[0.12688896]], dtype=float32)

2.4 BERT

Finally, it will be shown how to generate word vectors using BERT. BERT has its
own tokenizer, and embeddings are trained with two training tasks. The Classifica-
tion Task [CLS] determines into which category the input sentence falls, and the
Next Sentence Prediction Task [SEP] examines whether the second sentence logi-
cally follows the first sentence. The code below is slightly adapted from
Dhami (2020).
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frompytorch transformers import BertTokenizer
from pytorch transformers import BertModel

## Load pretrained model/tokenizer

tokenizer = BertTokenizer.from pretrained('bert-base-uncased')
model = BertModel.from pretrained('bert-base-uncased',
output_hidden states=True)

# Define a new example sentence "
text = "Information is the lifeblood of tourism. The internet has altered
the tourism industry"

# Add the special tokens.
marked text =" [CLS] " + text + " [SEP]"

# Split the sentence into tokens.
tokenized text = tokenizer.tokenize (marked text)

# Map the token strings to their vocabulary indeces.
indexed tokens = tokenizer.convert tokens to ids(tokenized text)

# Display the words with their indeces.
for tup in zip (tokenized text, indexed tokens) :
print ('{:<12} {:>6,}"'.format (tup[0], tup[1]))

[CLS] 101
information 2,592
is 2,003

the 1,996

life 2,166
##blood 26,682
of 1,997
tourism 6,813
. 1,012

the 1,996
internet 4,274
has 2,038
altered 8,776
the 1,996
tourism 6,813
industry 3,068
[SEP] 102

import torch

# Convert inputs to PyTorch tensors
tokens tensor = torch.tensor ([indexed tokens])

# Put the model in "evaluation" mode, meaning feed-forward operation.
model.eval ()
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# Run the text through BERT, get the output and collect all of the hidden
states produced

# fromall 12 layers.

with torch.no grad() :

outputs = model (tokens tensor)

# can use last hidden state as word embeddings
last_hidden_ state = outputs[0]
word _embed 1 = last _hidden state

# Evaluating themodel will return a different number of objects based on
# how it 's configured in the “from pretrained” call earlier. In this
case,

# becase we set “output_hidden states =True”, the thirditemwill be the
# hidden states fromall layers. See the documentation for more details:
# https://huggingface.co/transformers/model doc/bert.
html#bertmodel

hidden states = outputs[2]

# initial embeddings can be taken from 0th layer of hidden states
word _embed 2 = hidden states[0]

# sum of all hidden states
word_embed 3 = torch.stack (hidden states) .sum(0)

# sum of second to last layer
word_embed 4 = torch.stack (hidden states[2:]) .sum(0)

# sum of last four layer
word_embed_ 5 = torch.stack (hidden states[-4:]) .sum(0)

#concat last four layers
word_embed_ 6 = torch.cat ([hidden states[i] for i in [-1,-2,-3,-41],
dim=-1)

word_embed 5

tensor ([[[ 0.7243, -1.2354, -0.0534, ..., -2.1715, 2.0711, 1.8883],
[-1.4286, 1.9369, 2.2106, ..., -0.3266, 0.6072, -0.6579],

[0.4992, 1.5606, 2.6297, ..., -1.0799, 1.9338, 1.183¢6],

[2.8947, 1.6819, 4.9113, ..., -0.4594, 2.3798, -0.0314],

[-0.7187, 1.2479, 0.6565, ..., -2.9043, 3.4472, -1.7060],

[0.4703, -0.0677, 0.4450, ..., -0.1805, -0.0650, -0.6184]11)
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Service Section

Word representations and embeddings are central components of NLP. The
main idea behind these various algorithms is to transform a text into a number
format by creating vectors. This allows calculations to be made using text, and
for many ML algorithms, vectors are mandatory as input format. As described
in this chapter, there are numerous different approaches that have originated in
the past and developed over time, differing greatly in both complexity and
performance.

Main Application Fields: Word vectors are needed for tasks such as text
classification, sentiment analysis, text summarization, knowledge extraction,
similarity matching, text clustering, named entity recognition, etc.

Limitations and Pitfalls: The choice of an algorithm should always be based
on and adapted to the task at hand, and it is important to keep in mind that
newer, more powerful approaches do not necessarily lead to better results. It is
therefore essential to understand what the strengths and weaknesses of each
algorithm are.

Code: The Python code is available at: https://github.com/DataScience-in-
Tourism/Chapter-16-Text-Representation-and-Word-Embeddings

Further Readings and Other Sources

Manning, Chris (2019) NLP with Deep Learning. Introduction and Word Vectors:
https://www.youtube.com/watch?v=8rXD5-xhemo

Manning, Chris (2017) Word Vector Representations: Word2vec: https://www.
youtube.com/watch?v=ERibwqs9p38

https://towardsdatascience.com/from-pre-trained-word-embeddings-to-pre-trained-
language-models-focus-on-bert-343815627598

Bornstein, Aron (2018) Beyond Word Embeddings

https://towardsdatascience.com/beyond-word-embeddings-part-2-word-vectors-nlp-
modeling-from-bow-to-bert-4ebd4711d0ec

Sieg, Adrien (2019) From Pre-trained Word Embeddings To Pre-trained Language
Models — Focus on BERT: https://towardsdatascience.com/from-pre-trained-
word-embeddings-to-pre-trained-language-models-focus-on-bert-343815627598
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