
Graph-Boosted Active Learning for
Multi-source Entity Resolution

Anna Primpeli(B) and Christian Bizer

Data and Web Science Group, University of Mannheim, Mannheim, Germany
{anna,chris}@informatik.uni-mannheim.de

Abstract. Supervised entity resolution methods rely on labeled record
pairs for learning matching patterns between two or more data sources.
Active learning minimizes the labeling effort by selecting informative
pairs for labeling. The existing active learning methods for entity reso-
lution all target two-source matching scenarios and ignore signals that
only exist in multi-source settings, such as the Web of Data. In this
paper, we propose ALMSER, a graph-boosted active learning method for
multi-source entity resolution. To the best of our knowledge, ALMSER
is the first active learning-based entity resolution method that is espe-
cially tailored to the multi-source setting. ALMSER exploits the rich
correspondence graph that exists in multi-source settings for selecting
informative record pairs. In addition, the correspondence graph is used
to derive complementary training data. We evaluate our method using
five multi-source matching tasks having different profiling characteristics.
The experimental evaluation shows that leveraging graph signals leads to
improved results over active learning methods using margin-based and
committee-based query strategies in terms of F1 score on all tasks.

Keywords: Entity resolution · Link discovery · Multi-source entity
matching · Active learning

1 Introduction

Entity resolution, also referred as entity matching or link discovery, aims to
identify records in one or multiple data sources which describe the same real-
world entity [4,5]. Supervised entity resolution methods treat entity matching as
a classification problem and rely on a labeled set of matching and non-matching
record pairs for training [5,7]. Active learning aims to minimize the labeling
effort by involving the annotator in the learning loop and selecting only the
most informative pairs for labeling [27].

There has been quite some research on active learning for entity resolution [3,
9,12,17,26]. However, to the best of our knowledge, all of these works focus on
active learning methods for matching records between two data sources, while
signals that only exist in multi-source settings are not exploited to further reduce
the number of record pairs that need to be labeled by the annotator. Exploiting
c© Springer Nature Switzerland AG 2021
A. Hotho et al. (Eds.): ISWC 2021, LNCS 12922, pp. 182–199, 2021.
https://doi.org/10.1007/978-3-030-88361-4_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-88361-4_11&domain=pdf
http://orcid.org/0000-0002-1783-2482
http://orcid.org/0000-0003-2367-0237
https://doi.org/10.1007/978-3-030-88361-4_11


Graph-Boosted Active Learning for Multi-source Entity Resolution 183

such signals is for example beneficial for link discovery [16] in the context of the
Web of Data [8], as link discovery efforts often target multiple data sources.

We fill in this gap and propose an active learning method for entity resolu-
tion that exploits additional signals that only exist in multi-source settings. We
consider the multi-source entity resolution task as a combination of multiple two-
source matching tasks between pairs of data sources having the same schema but
different underlying matching patterns. Figure 1 shows an example of a multi-
source entity resolution task consisting of four data sources describing mobile
phones (Fig. 1a). The pairwise combinations of the four data sources constitute a
multi-source matching task comprising of six two-source tasks (Fig. 1b). For each
of these tasks different attributes can be relevant for matching, e.g. name and
brand for task A-C and name and price for task A-D. The goal of multi-source
entity resolution is to learn a matcher that correctly identifies correspondences
between the records of all sources. These correspondences can be viewed as a
correspondence graph with all distinct records being the nodes of the graph
connected by edges indicating matching record pairs (Fig. 1c). The discovered
correspondences are used afterwards to fuse data from multiple sources or are
published as RDF links on the Web of Data [8].

Fig. 1. Example of a multi-source entity resolution task.

This paper proposes ALMSER, a graph-boosted Active Learning method for
Multi-Source Entity Resolution which exploits the rich correspondence graph
that the multi-source setting offers in two ways: First, to pick informative query
candidates and second to boost the training of the learner with additional train-



184 A. Primpeli and C. Bizer

ing data. Most active learning methods apply either a query-by-committee strat-
egy [3,26] or a margin-based strategy [13,14] for picking informative candidates
and use only the labeled set at each iteration for training the learner. Query-
by-committee strategies measure the informativeness of the query candidates as
the degree of disagreement among the predictions of a classifier ensemble, while
margin-based strategies pick the instances that are closer to the decision bound-
ary of a classifier. In contrast, our query strategy exploits graph signals such
as graph transitivity and minimum cuts to discover potentially false negative
and false positive record pairs among the predictions of the learner. We assume
that focusing on the errors of the learner to derive informative pairs for labeling
can lead to the faster discovery of relevant matching patterns in comparison to
uncertainty-based query strategies. For boosting the training of the learner, we
derive likely matching and non-matching record pairs from the clean components
of the graph which we use as additional training data.

We evaluate ALMSER using five multi-source entity resolution tasks having
different profiling characteristics. Our evaluation shows that graph signals lead
to an overall improved performance over baseline methods which use a state-of-
the-art committee-based query strategy and a margin-based query strategy.

The contributions of our work are summarized as follows:

– We are the first to tackle the problem of multi-source entity resolution with
active learning.

– We propose an active learning method for multi-source entity resolution which
uses the correspondence graph for query selection and training data augmen-
tation.

– We evaluate our method on five multi-source entity resolution tasks and show
that it consistently outperforms baseline methods that do not use graph sig-
nals in terms of F1 score. In terms of area under the F1 score curve, our
method also performs better than methods that use graph signals for train-
ing data augmentation but not for query selection.

The remainder of the paper is organized as follows: Sect. 2 discusses related
work on multi-source entity resolution and active learning. Section 3 explains our
method. Section 4 presents the experimental setup and discusses the experimen-
tal results. Finally, Sect. 5 concludes the paper and summarizes our findings.

2 Related Work

Entity resolution is a central prerequisite for integrating data from multiple
sources [4,5,19] as well as for setting RDF links in the context of the Web of
Linked Data [8,16]. Entity resolution has been extensively studied over decades
[6,16,19]. Although there exist works on supervised and unsupervised multi-
source entity resolution [1,24,28] as well as on active learning methods for the
two-source matching task [3,9,13], there has been no work on multi-source entity
resolution with active learning.



Graph-Boosted Active Learning for Multi-source Entity Resolution 185

Multi-source Entity Resolution: There are two lines of research on multi-
source entity resolution which either focus on solving the scalability issues of
integrating data from multiple sources [28] or use graph signals in supervised [1]
or unsupervised matching settings [25]. The supervised SOCCER method pro-
posed by Shen et al. [28] defines an efficient order of pair-wise matching tasks
in large multi-source settings. In the work of Bellare et al. on knowledge base
synthesis [1], a supervised classifier is applied during the matching step and the
matching results are refined using the connected components of the correspon-
dence graph, similar to our work. Saeedi et al. compare different clustering meth-
ods for multi-source entity resolution [24] and propose CLIP [25] a clustering
approach which requires hand-written domain specific rules for calculating the
weighted edges of the graph. The CLIP method assumes duplicate-free sources,
an assumption which is not necessary for our proposed method. JointBERT [20]
applies deep learning techniques for multi-source entity resolution and treats the
matching problem in parallel as a binary and multi-class classification task.

Active Learning for Entity Resolution: Active learning aims to minimize
the human labeling effort involved in supervised tasks [27]. Active learning
approaches with a specific focus on RDF link discovery [16] include EAGLE [17]
and ActiveGenLink [9]. Meduri et al. compare various active learning methods
for entity resolution on multiple benchmark data sets for two-source match-
ing and show that random forest classifiers with learner-aware committee-based
query strategies achieve fast convergence and close to perfect entity matching
quality [13]. However, it is reported that for some tasks margin-based query
strategies can perform equally well. Therefore, we compare ALMSER to both
committee-based and margin-based active learning baselines. There have been
many active learning methods for entity resolution which use committee-based
query strategies for selecting informative candidates [3,9,26]. In the work of
Chen et al. [3] it is shown that using a committee of heterogeneous classifiers is
more effective in comparison to committees consisting of the same model with
different parametrisations. Recent works on active learning for entity resolution
have turned the focus to deep learning based methods tailored for low-resource
settings [10,15]. Such methods rely on transfer learning [10] or large randomly
sampled sets [15] for initializing the deep learning models and require a pre-
labeled development set for hyperparameter optimization [10,15]. In comparison
to the existing deep active learning works for entity matching, our suggested
approach involves less annotation effort as it leverages unsupervised matching
for initialization and does not require an additional development set for model
learning.

Active Learning with Graph Signals: Using graph signals for boosting the
query strategy of active learning methods, has been explored in related work
for different applications [2,18] and has inspired our work on graph-boosted
active learning for multi-source entity resolution. Nguyen et al. develop an active
learning method for image classification which uses the k-medoid algorithm for
clustering the data [18]. Different signals of the graph structure, such as the
cluster representativeness and density are used for refining an uncertainty sam-



186 A. Primpeli and C. Bizer

Fig. 2. Overview of the ALMSER algorithm.

pling query strategy. Similarly, Bilgic et al. propose an active learning method for
multi-class classification which exploits graph signals for boosting an uncertainty
sampling query selection strategy [2].

3 Methodology

In this section, we present our proposed active learning algorithm for multi-
source entity resolution, which we abbreviate with ALMSER. This subsection
summarizes the overall process that is executed by ALMSER. The following
subsections detail each step in the process.

We consider a pool-based active learning setting in which a pool of unlabeled
record pairs is available to the learner. This pool is typically the result of a pre-
ceding blocking step [5]. Figure 2 gives an overview of the ALMSER algorithm.
We initialize ALMSER by bootstrapping the labeled set of record pairs (Artefact
7 in Fig. 2). After initialization, the following steps are executed: First, we train
a base learner using the current labeled set (1) and get base predictions for all
unlabeled record pairs of the pool (2) which together with the labeled set are
used to construct a correspondence graph (3). Next, we derive the clean compo-
nents of the graph (4) and assign graph-inferred labels to the record pairs of the
pool which are part of the clean components (5). The query strategy picks the
most informative record pair for labeling considering the disagreement between
the predicted labels of the base learner and the graph-inferred labels (6). The
selected record pair is annotated as match or non-match and is added to the
labeled set (7). We exploit the graph-inferred labels to derive additional training
data which together with the labeled set are used for training the boosted learner
(8). In order to evaluate how the performance of the boosted learner develops
during the active learning process, we apply the boosted learner to the test set
after each iteration (9).



Graph-Boosted Active Learning for Multi-source Entity Resolution 187

3.1 Initialization of ALMSER

The initialization of active learning is a non-trivial step which has been shown
to suffer from the cold start problem [12,22]. This problem refers to the lack
of labeled data from all classes in the early iterations which further hinders the
training of the learner as well as of the classifiers used for query selection in
the case of classification-based query strategies. To circumvent the cold start
problem, we apply an unsupervised bootstrapping method which summarizes
the feature vector of each record pair into an aggregated similarity score and
selects as seeding pairs the ones with the lowest and highest scores. The details
about this method are presented in [22]. We apply the approach for each two-
source task of the multi-source setting and select two record pairs per task:
one with the highest and one with the lowest aggregated score. Considering
that in the very early active learning iterations the base model, which we use
to construct the correspondence graph, is highly unstable, we perform the first
20 active learning iterations using the state-of-the-art committee based query-
strategy HeALER [3]. Afterwards, we switch to the graph-based query strategy
that we explain in Sect. 3.5.

3.2 Correspondence Graph Construction

After initializing the labeled set, the graph-boosted active learning cycle starts.
In each active learning iteration we construct the correspondence graph of the
multi-source task (steps 1–3 in Fig. 2) with the aim to obtain graph signals
which we exploit in later steps of our methodology for query selection and model
training. The correspondence graph contains all distinct records of the record
pairs in the pool and the labeled set as nodes. We add an edge to the graph for
every confirmed matching record pair in the labeled set, while we add no edge
for every labeled non-matching pair.

Additionally, we use the pool predictions of a random forest classifier, which
we refer to as base learner, for inferring potential matching pairs. More con-
cretely, in each iteration the base learner is trained on all record pairs of the
labeled set and applied to the record pairs of the pool. Each pool pair is assigned
the predicted base label, match or non-match together with a confidence score,
which is the predicted class probability of the base learner. We add an edge to
the correspondence graph between the nodes of every pool record pair with a
matching base label, while we add no edge if the base label is non-match.

Finally, we assign weights to the edges of the correspondence graph. Every
edge that derives from the labeled set and is therefore confirmed to be true,
receives the weight 100. The edges deriving from the base learner matching
predictions are weighted according to their confidence score.

3.3 Correspondence Graph Cleansing

Exploiting the transitivity of the correspondence graph can lead to the discovery
of false negative base learner predictions: e.g. given three record pairs (A-B), (B-
C) and (A-C) which have been predicted by the base learner as match, match



188 A. Primpeli and C. Bizer

(a) Example la-
beled set of cur-
rent iteration

(b) Cor. graph given labeled
set and base-model predic-
tions

(c) Cor. graph after removal
of minimum cuts (D-C
& G-H) and bridges (F-I)

Fig. 3. Exploiting the graph to detect false positives - an example.

and non-match respectively, we can infer using graph transitivity that (A-C) is
also a matching pair and that it is likely a false negative prediction of the base
learner.

However, given that the edges of the correspondence graph deriving from the
matching base learner predictions are subject to some noise, a wrongly assigned
edge can lead to a series of false positive record pairs. Therefore, we need to dis-
cover likely wrong edges and remove them from the correspondence graph. The
example in Fig. 3 demonstrates this problem. Figure 3b shows an example graph
with 11 nodes and weighted edges. The solid edges connect nodes of matching
record pairs found in the labeled set of Fig. 3a and are therefore assigned a weight
of 100 while the dotted edges represent the base labels and are assigned their
corresponding confidence weights. The resulting graph is connected and forms
one connected component, i.e. there is a path from any node to any other node
in the graph, indicating that all nodes refer to the same real-world entity. How-
ever, this cannot be the case as there is a confirmed non-matching pair (D−H)
in the labeled set of Fig. 3a. Therefore, the path between the nodes D and H
needs to be cut. Given the edge weights, we calculate the minimum cut of the
graph. The edges which should be removed in order to cut the path between
D and H are the following: (D − C) and (G −H) as their total edge weight is
less than any other cut alternative. We can additionally observe that the edge
(F − I), forms a bridge between the two components (E,D,F,G) and (I, J,K)
and is a possible false positive. Figure 3c shows the graph after minimum cuts
and bridges removal which reveals three connected components.

We rely on these observations and remove edges between nodes of potentially
false positive record pairs using a two step procedure. First, we iterate over all
non-matching pairs in the labeled set and for each pair we check if there is a
path between the two nodes-records in the graph. In case we find a path, we
calculate the minimum cut of the graph considering the weights of the edges.
For the calculation of the minimum cuts, we use the networkx implementation.1

As second step, we identify and remove bridge edges from the graph. In order to
1 https://networkx.org/documentation/stable/reference/algorithms/generated/

networkx.algorithms.flow.minimum cut.html.

https://networkx.org/documentation/stable/reference/algorithms/generated/networkx.algorithms.flow.minimum_cut.html
https://networkx.org/documentation/stable/reference/algorithms/generated/networkx.algorithms.flow.minimum_cut.html


Graph-Boosted Active Learning for Multi-source Entity Resolution 189

ensure that there is no unnecessary increase of many small-sized components, we
only remove the bridge edges connecting nodes having more than two neighbours
each.

3.4 Clean Components Filtering

After cleansing the correspondence graph, we filter its clean components and
assign graph-inferred labels to a subset of the pool record pairs (steps 4–5 in
Fig. 2) with the aim to get more accurate graph signals that can both identify
wrong base learner predictions and lead to clean augmented training data.

In order to derive the clean components of the correspondence graph, we
first compute all connected components. Considering that smaller components
are cleaner than larger ones, we assume a component to be clean if its size is
equal or smaller than the amount of data sources to be matched. Although this
heuristic comes natural for deduplicated sources, we show during evaluation that
it is also a good approximation for discovering the clean components of the graph
in multi-source matching tasks with non-deduplicated data sources.

We use the correspondence graph and the clean connected components to
assign graph-inferred labels to a subset of the pool record pairs. For record pairs
belonging to the same clean component, we assign a matching graph-inferred
label. If there is no path in the correspondence graph between the two records
of the pair, then we assign a non-match graph-inferred label. Finally, for record
pairs belonging to non-clean components, no graph-inferred label is assigned.

3.5 Query Selection

The query selection strategy of ALMSER evaluates as the most informative
candidates the record pairs whose graph-inferred label is different from the base
label and assigns binary informativeness scores to all record pairs in the pool:
1 if there is a conflict between the base and the graph-inferred labels otherwise
0 (Step 6 in Fig. 2). While margin-based and committee-based query strategies
aim to select instances for which the learner or a committee of models produces
non-confident predictions, our query strategy uses the clean components of the
correspondence graph to pick instances that are most likely predicted wrong by
the base learner. These disagreements between the graph and the base learner
hint towards matching patterns that are not covered yet by the base learner and
can occur under two conditions: First, if the record pair has been predicted by
the base learner to be a non-match and due to graph transitivity the graph-
inferred label is match. Second, if the record pair has been predicted as match
by the base learner but the corresponding edge was found to be a bridge edge or
was part of a minimum cut between confirmed non-matching pairs and therefore
was removed during the cleansing step, as described in Sect. 3.3.

We illustrate the discovery of new matching patterns by graph transitivity
with the simple example of Fig. 4 which presents three records from different
data sources describing the same author (4a) and a subset of labeled pairs and
base learner predictions (Fig. 4b) which are used to construct the correspondence



190 A. Primpeli and C. Bizer

graph (Fig. 4c). Given the matching pair (1a-2a) of the labeled set, the base
learner might be trained to capture matching patterns based on the similarity
of the Lastname and the Works attributes. However, it might wrongly predict
the pair (1a-3a) as non-matching as it has not learned yet the pattern that high
similarity of Birthdate and Firstname together also indicate a match. Based on
the graph transitivity, the pair (1a-3a) is assigned a matching graph-inferred
label and therefore receives an informativeness score of 1. Selecting this pair as
a query candidate supports the model in learning the relevance of the Birthdate
and Firstname attribute combination for matching.

Fig. 4. Graph-boosted query selection strategy - an example.

In order to ensure that the query strategy selects equally likely false posi-
tives, i.e. pairs with a non-match graph inferred label, and likely false negative
pairs, i.e. pairs with a match graph-inferred label, we assign selection probabil-
ity weights to all record pairs with an informativeness score of 1. For example,
given 10 likely false negatives and 1 likely false positive, we assign the selec-
tion probability weights 0.1 for each false negative and 1.0 for the false positive
pair. Finally, given the selection probability scores, we perform weighted random
selection over the candidate record pairs with an informativeness score of 1 and
select one pair which is annotated and added to the labeled set (Step 7 in Fig. 2).

3.6 Boosted Learner Training

In a real-world active learning setting, we would learn one boosted model at the
very last active learning iteration, as the boosted learner does not affect the query
selection, i.e. the query strategy of ALMSER is agnostic towards the boosted
learner. However, in order to be able to evaluate the boosted model along each
active learning iteration, we train it and apply it to the test set as final step of
each iteration (Steps 8 and 9 in Fig. 2). We perform training data augmentation
with the aim to improve the training of the boosted learner. Similarly to the
base learner, we use a random forest classifier as the boosted learner, assuming
that a random forest model with a large number of estimators can expand to fit
the matching patterns of all matching tasks in a multi-source entity resolution
setting. For training the boosted learner we use both the record pairs of the
labeled set, which contains the records pairs selected during initialization as
explained in Sect. 3.1 and the manually validated record pairs, and the subset of



Graph-Boosted Active Learning for Multi-source Entity Resolution 191

Table 1. Profiling information of evaluation matching tasks.

Multi-source task # Data

sources

# Pairs (in K) Schema

Complex.

Range of

sparsity

Corner cases

Matches Non-matches

MusicBrainz 5 16.1 369.7 [3–5] [0.05–0.12] [0.08–0.42]

MusicBrainz mut 5 16.1 369.7 [3–6] [0.05–0.23] [0.06–0.62]

Computers 4 4.8 69.6 [3–4] [0–0.05] [0.02–0.30]

computers mut 4 4.8 69.6 [3–6] [0–0.18] [0.24–0.50]

Restaurants 4 11.2 56.5 [4–7] [0–0.08] [0.05–0.19]

the pool record pairs which have been assigned a graph-inferred label, i.e. record
pairs deriving from clean components of the correspondence graph of the current
iteration.

4 Experimental Evaluation

We evaluate ALMSER using five multi-source matching tasks having different
profiling characteristics. In this section, we first present the evaluation tasks.
Afterwards, Sect. 4.3 compares ALMSER to two baseline active learning methods
that do not use graph signals. Section 4.4 evaluates the distinct components of
ALMSER that exploit graph signals and compares them to baseline methods
using the graph signal only for training data augmentation. All data sets and
code used for experimental evaluation are available for public download.2

4.1 Multi-source Matching Tasks

We use five multi-source matching tasks for our experimental evaluation. The
tasks cover the domains music, products, and restaurants. Table 1 contains pro-
filing information about the five tasks, including the amount of sources to be
matched as well as the amount of matching and non-matching pairs per task. In
our previous work on profiling entity matching tasks [21], we have defined a set
of profiling dimensions for assessing the difficulty of entity matching tasks. The
last three columns in Table 1 show the value ranges of the profiling dimensions
schema complexity, sparsity, and corner cases for the two-source matching tasks
that make up each multi-source task. Schema complexity refers to the amount
of attributes that contribute to solving the matching task. Sparsity indicates the
ratio of missing attribute values. The dimension corner cases approximates the
fraction of difficult to match pairs within each task [21].

The MusicBrainz multi-source task has been used for the evaluation in [24,
25]. The task is based on song records from the MusicBrainz dataset. Each data
source is a modified version of the original dataset and therefore the two-source
matching tasks that make up the multi-source task have different underlying

2 https://github.com/wbsg-uni-mannheim/ALMSER-GB.

https://github.com/wbsg-uni-mannheim/ALMSER-GB


192 A. Primpeli and C. Bizer

patterns: while in five of the ten two-source tasks the attributes album, length and
title are most relevant for matching, for the rest of the tasks different attributes
reveal the underlying matching patterns such as title and song number or title
and artist. Additionally to the original MusicBrainz multi-source task, we curate
a modified version of it, abbreviated with MusicBrainz mut, by increasing the
attribute sparsity up to 30% per data source and adding noise in 50% of the
attribute values which further results in an increase of corner cases in comparison
to the original MusicBrainz task.

We exploit the WDC Training Corpus for Large-scale Product Matching3 [23]
and derive a subset of computer product records published in four e-commerce
websites, for curating the product-related multi-source matching task, which
we abbreviate with computers. Similarly to the MusicBrainz task, we curate a
modified version of the computers task which we abbreviate with computers mut
and contains an increased schema complexity, sparsity and amount of corner
cases. While the underlying matching patterns of the original task focus mostly
on the combination of the title and part number attributes, the mutated version
of the tasks requires additional attributes to be solved such as category, capacity
and generation.

The restaurant related multi-source task derives from the Magellan reposi-
tory4 which provides a large number of two-source matching tasks. We retrieve
four of the restaurant data sources that have been crawled from large restaurant
aggregators and use the phone number as weak supervision in order to establish
the complete mappings between all data source pairs. While three of the six
two-source matching tasks have a low containment of corner cases (<10%) and
can be solved only with address related attributes, the rest of the two-source
tasks require additional attributes such as name, cuisine and website.

We turn the records of all tasks into features vectors by calculating datatype
specific similarity scores, similar to the Magellan entity matching system [11].
For string attributes, the following similarity scores are calculated: Levenshtein,
Jaccard, Jaccard with inner Levenshtein, token overlap, and token containment.
For numeric attributes the absolute difference is calculated and re-scaled to
the range [0, 1]. In the case that a similarity score cannot be computed for an
attribute combination because of missing values, we assign the out of range score
−1. This allows any classifier to consider all record pairs without dropping or
replacing the missing values.

The selected multi-source tasks cover two distinct scenarios: the first scenario
includes matching tasks of duplicate free data sources and therefore their corre-
spondence graph forms connected components of maximum size equal to the total
amount of sources, which is the case of the MusicBrainz and MusicBrainz mut
tasks. The second scenario covers tasks of non-deduplicated data sources result-
ing in components that are larger than the total amount of sources, which hap-
pens for the computers, computers mut, and restaurants tasks.

3 http://webdatacommons.org/largescaleproductcorpus/v2/.
4 https://sites.google.com/site/anhaidgroup/useful-stuff/data.

http://webdatacommons.org/largescaleproductcorpus/v2/
https://sites.google.com/site/anhaidgroup/useful-stuff/data


Graph-Boosted Active Learning for Multi-source Entity Resolution 193

4.2 Experimental Setup

We split the multi-source tasks into two subsets: one for initializing the pool
that is available for querying and one for testing. In order to ensure that there
is no leakage by graph transitivity from the pool set to the test set, we split the
record pairs to pool pairs and test pairs based on the connected components of
the complete correspondence graph with a ratio 70%–30%.

We execute three runs for each active learning experiment and allow 200 iter-
ations for each run. In each iteration, one record pair is selected for annotation,
i.e. 200 record pairs have been labeled in total by the end of each experimental
run. We report the mean F1micro score per iteration as well as the standard
deviation which measures the model stability among the different experimental
runs. Additionally, we report the upper learning bound of passive learning for
which all record pairs of the pool together with their respective labels are used
for model learning. All experiments were run on a Linux server with Intel Xeon
2.4 GHz processors. Considering that ALMSER constructs in each iteration a
correspondence graph, its runtime is larger in comparison to baseline methods
which do not use graph signals, e.g. one baseline iteration for the computers
task without graph signals takes 2.9–3.15 s while one ALMSER iteration takes
14.58–15.10 s.

4.3 Comparison to Baselines Without Graph Signals

We compare ALMSER to two baseline active learning methods using the two dis-
tinct types of classification-based query strategies: committee-based and margin-
based [19] and no graph signals. The first baseline method, abbreviated with
QHC, uses the state-of-the-art committee-based query strategy of the HeALER
algorithm [3] which measures the informativeness of each candidate record pair
as the disagreement of the predictions of a committee of heterogeneous clas-
sification models. Similar to their method, ALMSER also uses random forest
classifiers as learners. The second baseline method which is a common margin-
based baseline [13,14,27], abbreviated with MB is a learner agnostic method, i.e.
the classification model used as part of the query strategy is different from the
learner, and selects the query candidates with minimum distance to the decision
hyperplane defined by a SVM classifier. The learners of the baseline methods do
not use graph signals and therefore are trained only on the labeled set. In order
to ensure a comparable start of the learning process for all methods, we apply
the initialization step that we describe in Sect. 3.1 for all baseline methods.

Figure 5 shows the average F1 score curves of ALMSER and the two baseline
methods for each multi-source matching task per iteration. Additionally, we show
the standard deviation of the F1 scores per iteration with the light coloured area
around the plotted curves and the upper learning bound of passive learning. We
can observe that as the active learning process unfolds, ALMSER outperforms
both baselines for all tasks. The sudden drops in F1 in the early iterations, e.g.
iterations 25 to 50 for the setting computers mut as shown in Fig. 5d, can be



194 A. Primpeli and C. Bizer

(a) MusicBrainz (b) MusicBrainz mut

(c) computers (d) computers mut (e) restaurants

Fig. 5. Comparison of ALMSER to active learning baselines and passive learning.

attributed to the overfitting of the model on a small amount of clean data and
is a common observation for active learning methods [3].

When 200 record pairs have been annotated, the ALMSER F1 scores for all
tasks are by 0 to 0.032% points lower than the passive learning results that would
be achieved by training a random forest classifier with all pairs from the pool as
training data. The MB baseline underperforms the QHC baseline for all tasks
while it fails to converge after 200 iterations for both the MusicBrainz and the
MusicBrainz mut tasks. Table 2 compares the F1 scores of the baseline methods
MB and QHC to ALMSER at three points of the active learning process. We
can observe that ALMSER achieves a quicker gain in F1 in the earlier iterations
of the active learning process and outperforms the QHC and MB baselines by
up to 5.5 and 13.4% points respectively at the 75th iteration. Although ALMSER
outperforms the two baseline methods that use no graph signals even in the 200th
active learning iteration, the gain in F1 is reduced to 1.9 and 4.8% points for
the QHC and MB baselines respectively.

In order to evaluate in which kind of tasks ALMSER achieves the highest
boost in comparison to the QHC baseline, which was shown to outperform the
MB baseline, we measure the area between ALMSER’s and QHC’s F1 curves.
The area between the F1 curves is the largest for the MusicBrainz mut task
which is the task having the largest containment in corner cases (up to 62%) as
well as the highest sparsity (up to 23%) among all multi-source tasks used for
the experiments. In contrast, the smallest area between ALMSER’s and QHC’s
F1 curves is the one of the restaurants task, which contains the lowest amount of



Graph-Boosted Active Learning for Multi-source Entity Resolution 195

corner cases (up to 19%) of all tasks. This indicates that ALMSER is especially
fitted for more difficult multi-source matching tasks which require the matcher
to deal with different matching patterns.

Table 2. Evaluation of baselines with no or partial graph signals - F1 and AUC.

Iteration AL method MusicBrainzMusicBrainz mut Computers Computers mut Restaurants

F1 @ 75th MB 0.805 0.836 0.881 0.833 0.915

MB boost learner 0.877 0.833 0.889 0.827 0.914

QHC 0.921 0.851 0.891 0.841 0.917

QHC boost learner 0.891 0.891 0.894 0.843 0.924

ALMSER qs 0.912 0.841 0.919 0.842 0.916

ALMSER 0.939 0.906 0.921 0.862 0.926

F1 @ 125th MB 0.890 0.817 0.912 0.840 0.919

MB boost learner 0.866 0.856 0.910 0.846 0.917

QHC 0.932 0.893 0.909 0.854 0.925

QHC boost learner 0.914 0.914 0.901 0.865 0.930

ALMSER qs 0.924 0.884 0.927 0.868 0.923

ALMSER 0.946 0.920 0.918 0.873 0.929

F1 @ 200th MB 0.914 0.879 0.925 0.854 0.920

MB boost learner 0.903 0.872 0.922 0.859 0.924

QHC 0.945 0.908 0.918 0.866 0.927

QHC boost learner 0.926 0.926 0.916 0.871 0.932

ALMSER qs 0.934 0.896 0.938 0.884 0.926

ALMSER 0.951 0.927 0.930 0.878 0.931

F1-AUC 50th-200thMB 128.81 123.84 135.68 124.82 138.02

MB boost learner 138.28 131.74 136.56 127.21 138.52

QHC 140.07 132.43 135.62 127.66 138.51

QHC boost learner 136.39 136.39 134.93 128.82 138.35

ALMSER qs 138.37 131.38 138.96 128.95 138.21

ALMSER 141.57 137.51 139.19 130.13 139.18

4.4 Evaluation of the Graph-Boosted Components

In this part of our experimental analysis, we evaluate the two graph-boosted
components of ALMSER, i.e. the query strategy and the model learning. We
evaluate the following three setups that use partial graph signals and compare
them to ALMSER: 1. ALMSER qs, a variation of ALMSER which utilizes the
graph signal only as part of the query strategy but not for boosting the learner
with additional training data, 2. QHC boost learner which applies the QHC
query strategy for selecting candidates and uses the graph signal for augment-
ing the training data and boosting the learner as described in Sect. 3.6, and 3.
MB boost learner uses the MB query strategy together with augmenting the
training data.



196 A. Primpeli and C. Bizer

We present the F1 scores at three snapshots of the active learning process
for all methods that use graph signals for data augmentation in Table 2. Addi-
tionally, we report the area under the F1 curve (F1-AUC) from iteration 50
to iteration 200 for all methods. We observe that the best performing meth-
ods for all tasks and snapshots use partial, e.g. ALMSER qs at iteration 125
for the computers, or full graph signals, e.g. ALMSER at iteration 200 for the
MusicBrainz mut task. Although ALMSER underperforms its individual graph-
boosted components for five snapshot-task combinations as shown in Table 2,
the area under the F1 curve of ALMSER is the largest for all tasks, indicat-
ing that ALMSER achieves overall better results between iterations 50 and 200.
Comparing the AUC scores of the approaches that partially utilize graph signals,
we see that none of them consistently outperforms the other. For some tasks,
e.g. MusicBrainz mut, using graph signals for boosting the learner in combina-
tion with a QHC query strategy performs better than exploiting the graph only
for selecting query candidates. This observation is reversed for other tasks, e.g.
computers mut.

Finally, we report the size and correctness of the augmented training set
which results from the clean components of the correspondence graph, as
explained in Sect. 3.4. Figure 6 presents the accuracy of the augmented train-
ing set in comparison to the accuracy of the complete correspondence graph for
the MusicBrainz mut and the restaurants tasks, in each active learning iteration.
We observe that our heuristic for filtering clean components extracts a cleaner
part of the correspondence graph, as the accuracy of the augmented training set
exceeds the one of the complete graph in each iteration for multi-source tasks
with both duplicate free (MusicBrainz mut) and non-duplicate free (restaurants)
data sources.

(a) MusicBrainz mut (b) restaurants

Fig. 6. Correctness of augmented training data vs graph labels.

Exploiting the record pairs from the clean components for training the
boosted learner, results in large amounts of additional training pairs. However,
only the subset of record pairs in the augmented training set with a graph-
inferred label different from the base label can give additional matching informa-
tion to the boosted learner. Table 3 shows the size of the augmented training set,



Graph-Boosted Active Learning for Multi-source Entity Resolution 197

the amount of record pairs in the training set with a disagreement between the
graph-inferred and the base labels, as well as the ratio of correct graph-inferred
labels to all record pairs with a disagreement in three active learning snapshots.
Although the size of the augmented training set is much larger in comparison to
the clean labeled data, there is only a relatively small amount of disagreements
between the predictions of the base learner trained on the labeled set and the
graph-inferred labels. Considering that for the majority of those disagreements
the graph-inferred label is correct (78.8–96.7% as shown in Table 3), we can con-
clude that the additional matching information that the boosted learner derives
from the clean components of the graph, is subject only to a small amount of
noise and can successfully support the discovery of additional matching patterns
which are not covered yet by the record pairs in the labeled set.

Table 3. Augmented training data in three AL snapshots.

Iteration Musicbrainz mut Restaurants

#Train
pairs (K)

#Disagr. % Correct
graph

#Train
pairs (K)

#Disagr. % Correct
graph

75th 256.5 1,476 0.966 42.8 73 0.821

125th 256.4 1,506 0.967 42.5 52 0.788

200th 254.7 1,009 0.874 42.6 27 0.814

5 Conclusion

This paper presented ALMSER, the first active learning method for multi-source
entity resolution. ALMSER exploits the correspondence graph that is available in
multi-source entity resolution settings to improve two components of the active
learning workflow: the query strategy and the training of the learner. Our evalu-
ation on five multi-source tasks showed that ALMSER outperforms two baseline
active learning methods including the state-of-the art committee-based query
strategy which use no graph signals in terms of F1 score on all tasks. We eval-
uated the distinct graph-boosted components of the ALMSER algorithm and
showed that utilizing graph signals as part of both the query selection and the
model training achieve an increased overall performance.

References

1. Bellare, K., Curino, C., Machanavajihala, A., Mika, P., Rahurkar, M., Sane, A.:
WOO: a scalable and multi-tenant platform for continuous knowledge base syn-
thesis. PVLDB 6(11), 1114–1125 (2013)

2. Bilgic, M., Mihalkova, L., Getoor, L.: Active learning for networked data. In: Pro-
ceedings of ICML (2010)



198 A. Primpeli and C. Bizer

3. Chen, X., Xu, Y., Broneske, D., Durand, G.C., Zoun, R., Saake, G.: Heteroge-
neous committee-based active learning for entity resolution (HeALER). In: Welzer,
T., Eder, J., Podgorelec, V., Kamǐsalić Latifić, A. (eds.) ADBIS 2019. LNCS,
vol. 11695, pp. 69–85. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
28730-6 5

4. Christen, P.: Data Matching: Concepts and Techniques for Record Linkage, Entity
Resolution, and Duplicate Detection. Data-Centric Systems and Applications.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31164-2

5. Christophides, V., Efthymiou, V., Palpanas, T., Papadakis, G., Stefanidis, K.: An
overview of end-to-end entity resolution for big data. ACM Comput. Surv. (CSUR)
53(6), 1–42 (2020)

6. Fellegi, I.P., Sunter, A.B.: A theory for record linkage. J. Am. Stat. Assoc. 64(328),
1183–1210 (1969)

7. Halevy, A., Rajaraman, A., Ordille, J.: Data integration: the teenage years. In:
Proc. VLDB, 9–16 (2006)

8. Heath, T., Bizer, C.: Linked Data: Evolving the Web into a Global Data Space.
Synthesis Lectures on the Semantic Web. Morgan & Claypool Publishers (2011)

9. Isele, R., Bizer, C.: Active learning of expressive linkage rules using genetic pro-
gramming. Web Semant. 23, 2–15 (2013)

10. Kasai, J., Qian, K., Gurajada, S., Li, Y., Popa, L.: Low-resource deep entity reso-
lution with transfer and active learning. In: Proceedings of ACL (2019)

11. Konda, P., et al.: Magellan: toward building entity matching management systems
over data science stacks. PVLDB 9(13), 1581–1584 (2016)

12. Konyushkova, K., Sznitman, R., Fua, P.: Learning active learning from data. In:
Proceedings of Advances in Neural Information Processing Systems (2017)

13. Meduri, V., Popa, L., Sen, P., Sarwat, M.: A comprehensive benchmark framework
for active learning methods in entity matching. In: Proceedings of SIGMOD (2020)

14. Mozafari, B., Sarkar, P., Franklin, M., Jordan, M., Madden, S.: Scaling up crowd-
sourcing to very large datasets: a case for active learning. PVLDB 8(2), 125–136
(2014)

15. Nafa, Y., et al.: Active deep learning on entity resolution by risk sampling. arXiv
preprint arXiv:2012.12960 (2020)

16. Nentwig, M., Hartung, M., Ngonga Ngomo, A.C., Rahm, E.: A survey of current
link discovery frameworks. Semant. Web 8(3), 419–436 (2017)

17. Ngonga Ngomo, A.-C., Lyko, K.: EAGLE: efficient active learning of link specifica-
tions using genetic programming. In: Simperl, E., Cimiano, P., Polleres, A., Corcho,
O., Presutti, V. (eds.) ESWC 2012. LNCS, vol. 7295, pp. 149–163. Springer, Hei-
delberg (2012). https://doi.org/10.1007/978-3-642-30284-8 17

18. Nguyen, H.T., Smeulders, A.: Active learning using pre-clustering. In: Proceedings
of ICML (2004)

19. Papadakis, G., Ioannou, E., Thanos, E., Palpanas, T.: The Four Generations of
Entity Resolution. Synth. Lect. Data Manag. 16(2), 1–170 (2021)

20. Peeters, R., Bizer, C.: Dual-objective fine-tuning of BERT for entity matching.
PVLDB 14(10) (2021)

21. Primpeli, A., Bizer, C.: Profiling entity matching benchmark tasks. In: Proceedings
of CIKM (2020)

22. Primpeli, A., Bizer, C., Keuper, M.: Unsupervised bootstrapping of active learning
for entity resolution. In: Harth, A., et al. (eds.) ESWC 2020. LNCS, vol. 12123, pp.
215–231. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-49461-2 13

23. Primpeli, A., Peeters, R., Bizer, C.: The WDC training dataset and gold standard
for large-scale product matching. In: Companion Proceedings of WWW (2019)

https://doi.org/10.1007/978-3-030-28730-6_5
https://doi.org/10.1007/978-3-030-28730-6_5
https://doi.org/10.1007/978-3-642-31164-2
http://arxiv.org/abs/2012.12960
https://doi.org/10.1007/978-3-642-30284-8_17
https://doi.org/10.1007/978-3-030-49461-2_13


Graph-Boosted Active Learning for Multi-source Entity Resolution 199

24. Saeedi, A., Peukert, E., Rahm, E.: Comparative evaluation of distributed clus-
tering schemes for multi-source entity resolution. In: Kirikova, M., Nørv̊ag, K.,
Papadopoulos, G.A. (eds.) ADBIS 2017. LNCS, vol. 10509, pp. 278–293. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-66917-5 19

25. Saeedi, A., Peukert, E., Rahm, E.: Using link features for entity clustering in
knowledge graphs. In: Gangemi, A., et al. (eds.) ESWC 2018. LNCS, vol. 10843, pp.
576–592. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-93417-4 37

26. Sarawagi, S., Bhamidipaty, A.: Interactive deduplication using active learning. In:
Proceedings of SIGKDD (2002)

27. Settles, B.: Active Learning: Synthesis Lectures on Artificial Intelligence and
Machine Learning. Morgan & Claypool Publishers (2012)

28. Shen, W., DeRose, P., Vu, L., Doan, A., Ramakrishnan, R.: Source-aware entity
matching: a compositional approach. In: Proceedings of ICDE (2007)

https://doi.org/10.1007/978-3-319-66917-5_19
https://doi.org/10.1007/978-3-319-93417-4_37

	Graph-Boosted Active Learning for Multi-source Entity Resolution
	1 Introduction
	2 Related Work
	3 Methodology
	3.1 Initialization of ALMSER
	3.2 Correspondence Graph Construction
	3.3 Correspondence Graph Cleansing
	3.4 Clean Components Filtering
	3.5 Query Selection
	3.6 Boosted Learner Training

	4 Experimental Evaluation
	4.1 Multi-source Matching Tasks
	4.2 Experimental Setup
	4.3 Comparison to Baselines Without Graph Signals
	4.4 Evaluation of the Graph-Boosted Components

	5 Conclusion
	References




