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Cancer Stem Cells in the Head 
and Neck Cancers
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Core Messages

• Cancer stem cells (CSCs), the proposed origin of cancer, 
are present in many cancer types including primary and 
metastatic cutaneous squamous cell carcinoma and malig-
nant melanoma.

• CSCs are highly tumourigenic, resist conventional thera-
pies and are responsible for loco-regional recurrence and 
distant metastasis.

• CSCs are regulated by the microenvironment in which the 
renin-angiotensin system (RAS) plays a vital role.

• The RAS consists of multiple components, its bypass 
loops that provide redundancies, and convergent signal-
ling pathways that provide crosstalk.

• A novel treatment approach for cancer is by targeting 
CSCs by regulating the RAS and its related pathways.

1  Models of Cancer

There are two concepts guiding cancer research: (1) the pre-
vailing clonal evolution model, also known as the stochastic 
model of cancer, which proposes that normal cells acquire 
tumourigenicity to become cancer cells by accumulating 
genetic mutations (Fig. 1a), and (2) the emerging cancer stem 
cell (CSC) concept of cancer, also known as the hierarchical 
model of cancer. The latter proposes CSCs—a small subset of 

highly tumourigenic cancer cells with embryonic stem cell-
like (ESC) properties—as the origin of cancer (Fig. 1b) [1].

The clonal evolution model proposes that all tumour cells 
are clonally identical and have the same tumour forming 
ability and propensity for self-renewal (Fig.  1a) [2]. The 
CSC model proposes that a tumour consists of a heteroge-
nous population of cells with CSCs sitting atop the cellular 
hierarchy, sustaining tumour cell diversity, tumourigenicity, 
and metastatic potential [3]. These CSCs divide asymmetri-
cally giving rise to non-tumourigenic cancer cells that form 
the bulk of the tumour and identical CSCs that are highly 
tumourigenic, resist conventional therapies and are respon-
sible for metastasis and recurrence (Fig. 1b) [4].

Processes involved in embryonic development are often 
reactivated under pathological conditions, such as carcino-
genesis [5]. Cancer and embryogenesis share multiple com-
mon processes such as epithelial-to-mesenchymal transition 
(EMT) [5]. Another similarity between carcinogenesis and 
embryogenesis is the shared ability of ESCs and CSCs to 
undergo indefinite self-renewal and bypass the replicative 
barrier of 50–60 population doublings before senescence [6]. 
Both CSCs and ESCs can undergo differentiation giving rise 
to cells of all lineages and utilise signalling pathways such as 
the MAPK/ERK, PI3K/AKT, JAK/STAT and Notch path-
ways [7]. As somatic cells have a low rate of mutations and a 
relatively short lifespan, it raises the question of how cancer 
cells acquire so many essential genetic changes seen in 
ESCs. It is more plausible that cancer arises from CSCs that 
originate from resident adult stem cells or progenitor cells, 
which possess higher proliferative capacity and are more 
prone to mutations. ESCs undergo periods of high rates of 
clonal proliferation in a highly controlled manner, whereas 
the proliferation of cancer cells is not controlled. Furthermore, 
like ESCs, cancer cells can also establish themselves in vari-
ous tissues in the body [7]. Using embryonic development as 
a framework for investigation of carcinogenesis could pro-
vide novel insights into the understanding and treatment of 
cancer.
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Fig. 1 (a) A diagram illustrating the clonal evolution model of cancer. 
A normal somatic cell acquires oncogenic mutations in a stepwise man-
ner and becomes a cancer cell that clonally expands to form a tumour. 
(b) A diagram illustrating the cancer stem cell (CSC) model of cancer. 

A highly tumourigenic CSC sitting atop the tumour cellular hierarchy 
which divides asymmetrically to form non-tumourigenic cancer cells 
that form the bulk of the tumour, and identical CSCs that form new 
tumours that are similar to the original tumour
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2  Cancer Stem Cells

In 1937, Furth et al. [8] first showed that a single tumour cell 
from mouse leukaemia could establish a tumour following 
transplantation into another mouse. Identification of prolifer-
ating cells by radio-labelling and autography [9] in the ensu-
ing decades enabled measurements of cell lifespan and the 
assessment of cellular hierarchy in normal tissues [10]. 
These methods led to a rapid advancement in stem cell 
research. In 1960, Pierce [11] demonstrated that teratocarci-
nomas contained tumourigenic cells that could individually 
differentiate into multiple differentiated non-tumourigenic 
cell types, resembling normal development. In 1963, haema-
topoietic stem cells were discovered, and stem-like cells 
were reported in multiple haematological malignancies in 
the ensuing decade [12]. Based on investigations using many 
other techniques over the subsequent decades, Pierce [13] 
advanced an early CSC concept—“A concept of neoplasms, 
based upon development and oncological principles, states 
that carcinomas are caricatures of tissue renewal, which have 
a marked capacity for proliferation and a limited capacity for 
differentiation under normal homeostatic conditions, and of 
the differentiated, possible benign, progeny of these malig-
nant cells”. Evidence supporting the notion that cancer origi-
nates from CSCs has been accumulating rapidly over the 
past two decades. CSCs have now been identified in numer-
ous types of solid cancers affecting all major organ systems 
[4, 14].

3  Identification of Cancer Stem Cells

CSCs express stemness-associated markers that are present 
on ESCs and display ESC characteristics such as self-renewal 
and pluripotency—the ability to differentiate into cells of all 
lineages [15]. CSCs have been identified in many cancer 
types [4] including cutaneous SCC (cSCC) and malignant 
melanoma (MM) by specific markers [16–20]. Their pres-
ence is confirmed by functional studies, such as tumour-
sphere formation assays, organoid systems, and 
xenotransplantation of sorted tumour cells into immunodefi-
cient mice [21]. Xenograft and teratoma experiments in ani-
mals are the gold standard for functional investigations that 
provide evidence of CSCs, and they remain valuable and 
perhaps essential for applications such as safety testing of 
therapies. However, teratoma assay protocols are often vague 
and inconsistent and are not highly standardised and repro-
ducible [22]. To determine whether a cell population includes 
pluripotent cells, it is considered sufficient to employ 
directed or spontaneous differentiation and tumoursphere 

formation which can be sustained over multiple passages and 
an analysis of pluripotency marker expression [22]. It has 
become more acceptable to use stemness-associated markers 
such as OCT4, SOX2, NANOG, SSEA4 and TRA-1-60, to 
identify pluripotent cells [23–26].

Many markers that are expressed on ESCs have been used 
to identify CSCs [27, 28]. CD44 is a cell surface marker with 
many functions, including the transduction of microenviron-
mental signals to membrane-associated cytoskeletal proteins 
and the nucleus, which influences the expression of genes 
that alter cell functions [29]. As an important regulator of 
CSC properties including stemness, self-renewal and metas-
tasis, CD44 has been used as a CSC marker [29]. As it is not 
essential for tumour formation [30], CD44 is now considered 
a marker of progenitor cells, further down the stem cell hier-
archy, rather than an ESC marker [27].

EpCAM, a cell adhesion molecule and a CSC marker, is 
expressed by nearly all carcinomas [31] including cSCC [31].

The surface marker CD133 has been used to identify 
CSCs in several solid cancers including glioblastoma [27] 
and pancreatic cancer and is associated with high tumouri-
genicity and metastasis [32]. Capan-1, a CD133+ pancreatic 
cancer cell line derived from human pancreatic cancer, reca-
pitulates tumours in a xenograft model [32]. As CD133 is 
also expressed on more differentiated cancer cells, further 
down the stem cell hierarchy, and given tumours can also be 
grown from CD133− cells in xenograft models, it is now 
considered a progenitor cell marker rather than an ESC 
marker [27].

Phosphorylated signal transducer and activation of tran-
scription 3 (pSTAT3) proteins have a broad range of func-
tions, including cell cycle signalling, cell survival, 
pluripotency and self-renewal capability [33, 34]. STAT pro-
teins are activated by cytokines, and they regulate growth 
factor and cytokine responses [35]. Aberrant STAT3 signal-
ling has been demonstrated in multiple types of head and 
neck cancers [36]. The role of pSTAT3  in pluripotency is 
regulated by leukaemia inhibitory factor pathway, resulting 
in STAT3 translocating into the nucleus and triggering the 
expression of the ESC markers KLF4, SOX2, SALL4 and 
c-MYC [37–39]. pSTAT3 is also expressed by more differen-
tiated cells [27].

Yamanaka et al. showed that human [24] and mouse [25] 
fibroblasts can be induced into an ESC state [24] by intro-
ducing the transcription factors OCT4, NANOG, SOX2, 
KLF4 and c-MYC. Thomson et al. [26] showed that genera-
tion of such induced pluripotent stem cells (iPSCs) was also 
possible with NANOG and LIN28  in place of c-MYC and 
KLF4. These studies underscore the sufficiency of these 
stemness-associated markers in generating iPSCs. Expression 
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of these stemness-associated markers provides preliminary 
evidence of the presence of CSCs. Some or all of these mark-
ers have been used to identify and characterise CSCs in many 
cancer types [40–44] including primary head and neck cSCC 
(HNcSCC) [18], metastatic HNcSCC (mHNcSCC) [45], 
head and neck metastatic MM to the regional lymph nodes 
(HNmMM) [17] and metastatic MM to the brain (mMMB) 
[46].

The observation that stemness-associated markers SOX2, 
pSTAT3, CD44 and CD133 are expressed by ESCs and cells 
downstream of ESCs highlights the challenges of using these 
available markers for the identification and characterisation 
of CSCs [27].

4  Origin of Cancer Stem Cells

The origin of CSCs remains unclear. CSCs have been pro-
posed to originate from normal progenitor cells that have 
unlimited potential to replicate and/or from normal resident 
adult stem cells that have acquired oncogenic mutations [47]. 
Differentiated non-tumourigenic cancer cells have also been 
shown to de-differentiate into CSCs by acquiring stemness 
through cellular adaptation under the influence of the sur-
rounding microenvironmental niche [48]. This can occur via 
EMT by which the genes expressed by epithelial cells 
change, and the cells develop mesenchymal traits [1]. CSCs 
share properties of mesenchymal stem cells (MSCs), such as 
the ability to migrate, resist programmed cell death and 
degrade extracellular matrix (ECM), to facilitate cancer inva-
sion [1]. These characteristics make the tumour cell more 
CSC-like. The ability for CSCs to acquire mesenchymal 
traits endows CSCs the ability to disseminate and form 
metastases [1]. The tumourigenicity of cancer cells and 
CSCs changes in response to environmental cues and other 
influencing factors, such as cancer therapy, a change in the 
microenvironmental niche, gene mutations and epigenetic 
factors [4].

5  Cancer Metastasis

Metastasis, one of the hallmarks of cancer, causes over 90% 
of cancer-related deaths [49]. There is increasing evidence 
showing metastasis is driven and sustained by CSCs [50], via 
haematogenous and/or lymphatic spread [51]. Less than 
0.02% of disseminated tumour cells are capable of develop-
ing distant metastases [50], and it is theoretically possible 
that just one disseminated tumour cell is sufficient to initiate 
a metastatic lesion [52].

Metastasis is a complicated process involving multiple 
steps: invasion, intravasation, transport, extravasation and 
colonisation [53] (Fig.  2). First, tumour cells spread into 
adjacent tissues, invade the basement membrane and enter 
the blood and/or lymphatic system (known as intravasation) 
and then travel as circulating tumour cells (CTCs). By this 
stage, tumour cells have acquired the traits that enable eva-
sion of the immune system, shear stress and survival mecha-
nisms to escape programmed cell death such as anoikis, 
which occurs following detachment from the 
ECM. Disseminated tumour cells carry similar driver muta-
tions present in the primary tumour and undergo further 
selection pressures at the metastatic site in the new microen-
vironment, known as the metastatic niche [49, 54]. In this 
complicated process, two crucial phenotypic transitions 
occur: EMT and mesenchymal- epithelial transition (MET) 
(Fig. 2). During the initial phase of metastasis, tumour cells 
undergo EMT, whereby epithelial cells acquire a mesenchy-
mal phenotype that conveys increased invasiveness and 
migratory capacity. EMT is influenced by transcription fac-
tors such as Twist, Snail and FoxC2, as well as the cytokine 
transforming growth factor-β (TGF-β) [55], acting as core 
regulators of EMT [53]. Upon arrival at the metastatic site(s), 
CTCs undergo MET, a crucial process that enables cells to 
re-differentiate into an epithelial phenotype and form meta-
static tumours [56] (Fig. 2)—a process that occurs naturally 
during embryogenesis when the mesoderm becomes epithe-
lial tissue during organogenesis [57].
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Fig. 2 A diagram showing the role of epithelial-mesenchymal transi-
tion (EMT) and mesenchymal-epithelial transition (MET) in cancer 
metastasis. Tumour cells within a cancer undergo EMT to form mesen-
chymal-like cells, which undergo intravasation to enter the blood and/or 

lymphatic circulations as circulating tumour cells (CTCs). These CTCs 
then undergo MET and extravasate into distant tissue sites, where meta-
static tumours may be established
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6  Circulating Tumour Cells

The number of CTCs far exceeds the number of macrome-
tastases that eventually develop [58]. Even a small tumour is 
capable of shedding millions of cancer cells [50]. However, 
many patients remain in remission or develop recurrence 
after a long latent period [50]. Metastases arise from com-
plex processes involving CTCs, which bear CSC characteris-
tics that enable them to colonise sites with a favourable 
microenvironmental niche. To be successful, CTCs need to 
be able to infiltrate tissue, evade immune mechanisms, adapt 
to a favourable microenvironmental niche and survive as 
slow cycle tumour initiating cells before eventually undergo-
ing further genetic and epigenetic changes to form metastatic 
lesions [50].

As metastasis is a feature of CSCs, it is proposed that 
some CTCs are CSCs that form new metastatic lesions at 
distant sites [59]. The observation that most injected cancer 
cells do not form macrometastases, e.g., only 0.02% of 
injected melanoma cells into the portal circulation develop 
metastases at distant sites [60, 61], suggests a very small pro-
portion of CTCs are circulating CSCs [62].

7  Cancer Stem Cells and Tumour 
Microenvironment

The observation that certain cancers preferentially metasta-
sise to certain organs suggests the presence of an environ-
mental niche within these organs that favours the formation 
of metastases for that particular cancer [50]. Both the 
CSCs—the “seed” and the surrounding microenvironmental 
niche, the “soil”—are critical ingredients for the develop-
ment of metastasis [63]. The microenvironmental niche is a 
specialised set of environmental conditions that includes dif-
ferent elements such as cytokines, prostaglandins, growth 
factors, ECM components, immune cells, endothelial cells 
and cancer cells [49, 63]. Understanding CSCs and their 
environmental niche may lead to novel therapeutic targeting 
of CSCs directly, or their microenvironmental niche, in the 
treatment of cancer [47, 64].

Like adult stem cells, CSCs require input from their 
microenvironment to maintain a balance between self-
renewal and differentiation [63]. Changes to factors influ-
encing this niche affect CSC characteristics such as 
plasticity, tumour initiation ability, tumour progression and 

patient outcome [63, 65, 66]. EMT is a crucial step that 
enables cancer cells to acquire a CSC-like state, underscor-
ing tumour development and  progression, local invasion and 
distant metastasis [63]. Interaction between cancer cells and 
the microenvironmental niche can induce EMT. For exam-
ple, EMT can be induced by tumour-associated fibroblasts 
residing in the niche by releasing TGF-β, which has been 
shown to cause proliferation of CSCs in breast cancer [67] 
and oral cavity SCC [68].

CSCs use signalling pathways, such as STAT3, Wnt/β- -
catenin, Notch, Sonic hedgehog, NF-KB and epidermal 
growth factor signalling pathways [63], that regulate stem 
cell maintenance, self-renewal and pluripotency. STAT3 
mediates signalling by the cytokines interleukin-6 (IL-6) and 
IL-10 released by immune cells and growth factors in the 
surrounding microenvironmental niche. When activated, 
STAT3 influences the expression of genes involved in tumour 
initiation, invasion and metastasis and angiogenesis [69]. 
STAT3 has also been shown to maintain CSCs and promote 
EMT [69]. NF-KB is an inflammatory regulator that contrib-
utes to tumourigenesis and chemotherapy resistance [63, 
70]. Activation of NF-KB in ovarian CSCs has been corre-
lated with drug resistance [71] and may play a role in other 
cancer types.

Tumour activating macrophages (TAMs), which are abun-
dant in solid cancers [72], play an important role in the tumour 
microenvironmental niche that influences CSCs and the 
microenvironmental niche before and after tumour initiation 
[63]. Before tumour formation, TAMs cause DNA damage 
and contribute to oncogenic mutations and cancer- related 
inflammation by releasing inflammatory cytokines such as 
IL-6 and tumour necrosis factor (TNF) [63]. In advanced 
tumours, TAMs influence angiogenesis and immunosuppres-
sion and promote invasiveness, proliferation and survival of 
cancer cells [63]. Tissue macrophages have also been shown 
to regulate homeostasis in the haematopoietic stem cell niche, 
and it is interesting to speculate whether TAMs also influence 
CSCs [73]. Like CSCs, TAMs are plastic and vary in pheno-
type depending on their location and how they interact with 
the tumour microenvironment [74]. Furthermore, tumour 
cells release cytokines that attract cells which create an 
immunosuppressive microenvironment [75, 76].

MSCs residing in the microenvironmental niche promote 
tumour formation and metastasis by releasing various cyto-
kines such as IL-6 and IL-8 [49]. Cancer cells can also 
release cytokines such as IL-1 to stimulate MSCs to produce 
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prostaglandin E2 [77], and other cytokines, to activate 
β-catenin signalling and facilitate CSC formation [78].

If CSCs play a crucial role in metastatic seeding, then 
measures that target them at diagnosis of the primary 
tumour, or factors that contribute to the pre-metastatic 
niche that support seeded CSCs, may improve treatment 
outcome [79].

The endocrine RAS (Fig. 3), classically known for reg-
ulating blood pressure and body fluid homeostasis, is an 
important constituent of the microenvironmental niche 
that influences stem cell maintenance and differentiation 
[80]. Different components of the RAS drive MSC differ-
entiation into different cell types [81, 82]. For example, 
angiotensin- converting enzyme (ACE) enables expansion 
of haemangioblasts—multipotent haematopoietic precur-
sor cells. Angiotensin II (ATII) receptor 1 (AT1R) or ATII 
receptor 2 (AT2R) signalling can determine the cell lin-

eage haemangioblasts differentiate into [83], underscor-
ing the important role of the RAS in determining stem cell 
fate. The RAS also influences developmental processes 
such as vasculogenesis, erythropoiesis and haematopoie-
sis [80].

Cathepsin B and cathepsin D contribute to renin activa-
tion. Cathepsin D and chymase mediate conversion of angio-
tensinogen into angiotensin I (ATI). Cathepsin G promotes 
generation of ATII from ATI or directly from angiotensino-
gen [64] (Fig. 3).

The RAS interacts with stem cell signalling pathways 
[85]. Critically, pro-renin receptor (PRR) induces Wnt/β- -
catenin [85], by activating multiple genes for the RAS [86]. 
Wnt/β-catenin signalling is also important for normal stem 
cell development and cancer development [87]. For example, 
two of its downstream targets are the CSC markers CD44 
and c-MYC [88], which regulate CSCs [89].

Fig. 3 A schema demonstrating the classical renin-angiotensin system, 
with cathepsins B, D and G and chymase, acting as bypass loops. 
Activation of pro-renin occurs upon binding with pro-renin receptor. 
Renin then converts angiotensinogen into angiotensin I (ATI), which is 
cleaved by angiotensin-converting enzyme (ACE) to produce the active 
peptide angiotensin II (ATII). The actions of ATII are mediated through 

interactions with ATII receptor 1 (AT1R) and ATII receptor 2 (AT2R). 
Cathepsin B and cathepsin D contribute to renin activation. Cathepsin 
D and chymase mediate conversion of angiotensinogen into 
ATI.  Cathepsin G promotes generation of ATII from ATI or directly 
from angiotensinogen [84]
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8  Cancer Stem Cells and Treatment 
Resistance and Cancer Recurrence 
and Metastasis

There remain significant shortcomings in current cancer ther-
apies, especially for patients with cancer recurrence and 
metastasis [1]. CSCs sustain and drive carcinogenesis and 
cause loco-regional recurrence and distant metastasis [47, 90, 
91]. CSCs resist chemotherapy, radiotherapy [91] and immu-
notherapy [92] which target rapidly dividing cancer cells. The 
persistence of CSCs may explain why these treatments may 
decrease tumour size but do not affect survival [1].

Resistance of CSCs to chemotherapy, radiotherapy and 
immunotherapy is multifactorial, with one factor being the 
relatively slow cell cycle of CSCs compared to cancer cells 
[93]. CSCs also sustain less DNA damage during treatment, 
as they accumulate less reactive oxygen species (ROS) than 
cancer cells [94], due to increased expression of genes that 
protect CSCs against ROS [1]. Another factor is the tumour 
microenvironment, which contains various cytokines and 
growth factors, such as TGF-β, that promote survival of 
CSCs [55]. Conventional cancer treatments increase CSC 
properties in cancer cells and can even convert these cells 
into CSCs [95]. Conventional cancer treatments exert selec-
tion pressures that increase the relative proportion of CSCs 
to cancer cells [55]. The enrichment of CSCs, the increase in 
their stemness, and the conversion of cancer cells to CSCs 
cause the recurrent tumour to be more resistant to treatment 
with a poorer prognosis than the original tumour [55].

9  Cancer Stem Cells in Cutaneous 
Malignant Melanoma

Australia and New Zealand have the highest incidence of 
MM [96, 97]. MM affected >350,000 people globally in 
2015 [98] and causes 60–80% of all deaths from skin cancers 
[99]. MM has been assumed to arise from a mature melano-
cyte. However, there is increasing evidence suggesting a 
melanocyte stem cell [100] or CSC [101] origin.

The mainstay treatment for primary MM is wide local 
excision, and surgery and radiotherapy for metastatic MM 
[102]. Over the past decade, targeted therapies including 
BRAF and MEK inhibitors [103] and immune checkpoint 
blockers [104] have improved outcomes of patients with 
advanced (stages III and IV) MM, compared to dacarbazine 
chemotherapy [105]. Adjuvant immunotherapy with pem-
brolizumab has also shown efficacy for stage III MM, with a 
recurrence-free survival at 1  year of 75.4%, compared to 
61% in the placebo group [106].

Treatment with the BRAF inhibitor vemurafenib for 
stages IIIc and IV MM shows a complete or partial response 
rate of 50% and a median progression-free survival (PFS) of 

5.3 months, compared to a 7% complete or partial response 
and 1.6 months of PFS for dacarbazine chemotherapy [107]. 
However, at 8 months, the PFS is similar between the two 
groups [107]. For resected BRAF V600-mutant stage III 
MM patients, an adjuvant BRAF inhibitor regime of dab-
rafenib plus trametinib results in a recurrence-free survival 
of 54% at 4 years, versus 38% among patients receiving pla-
cebo [108]. Despite improved outcomes with immunother-
apy, the 5-year overall survival for patients with stages III 
and IV MM are 41–71% and 9–28%, respectively [109]. 
Treatment failure has been attributed to the presence of CSCs 
which underscore cancer invasion and metastasis and treat-
ment resistance [110, 111].

CSC subpopulations expressing some or all of the five 
stemness-associated markers involved in generation of 
iPSCs [17] have been identified in HNmMM [17] and 
mMMB [46]. A Melan-A+ and a Melan-A− subpopulation 
expressing one or more of the ESC markers OCT4, SALL4, 
SOX2 and NANOG, and a pSTAT3+ subpopulation localis-
ing to the endothelium of the tumour microvessels have 
been demonstrated in mMMB [46]. In HNmMM an OCT4+/
SOX2+/KLF4+/c-MYC+ CSC subpopulation has been dem-
onstrated within the tumour nests (TNs) and the peritu-
moural stroma (PTS) with some of these CSCs also 
expressing NANOG [17]. Cells derived from HNmMM 
express these stemness- associated markers and form 
tumourspheres in vitro [17]. Zimmerer et al. [112] demon-
strated in  vitro tumoursphere formation capacity, a core 
feature of CSCs, by the metastatic melanoma cell lines 
Na8, D10 and HBL. Other established cell lines from meta-
static MM also demonstrated typical features of CSCs 
[112]. Cells derived from human MM can undergo melano-
genic, adipogenic, chrondrogenic and osteogenic differen-
tiation [113]. Furthermore, the self-renewal capability of 
MM CSCs is preserved both in vitro and following xeno-
transplantation into mice [101].

10  Cancer Stem Cells in Cutaneous 
Squamous Cell Carcinoma

cSCC makes up 15–25% of all skin cancers [114], with its 
incidence rising rapidly globally [115]. It is the second most 
common skin cancer, affecting 118/100,000 people in New 
Zealand [116]. Risk factors for cSCC include European 
descent, pale complexion, immunosuppression and advanc-
ing age [114, 115]. 60% of cSCC occurs in the head and neck 
region with a 2% risk of metastasis, mostly to the parotid 
and/or neck nodes [117]. The 5-year survival for metastatic 
head and neck cSCC (mHNcSCC) is 34–48% despite inten-
sive treatment with surgery and adjuvant radiotherapy [115, 
118, 119]. This poor outcome has been attributed to the pres-
ence of CSCs [120].
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Several CSC markers have been used to identify CSCs in 
cSCC including the five aforementioned transcription factors 
involved in the generation of iPSCs [18, 45], CD133 [19], 
CD49f [121] and CD44 [122].

CD133+, but not CD133− cancer cells from primary cSCC 
recapitulate cSCC histology and the heterogeneous tissue 
hierarchy, and demonstrate self-renewal capacity, upon 
xenotransplantation into mice [18].

The transcription factor SOX2 is the most abundant 
stemness- associated marker expressed by cSCC in mice 
[123]. Tumour formation from chemical-induced tumour 
carcinogenesis significantly decreases following the deletion 
of SOX2, and ablation of SOX2+ cells leads to tumour regres-
sion [123].

CSCs have been identified in both primary HNcSCC [18] 
and mHNcSCC [16] and many other cancer types [124]. An 
OCT4+/NANOG+/SOX2+/KLF4+/c-MYC+ CSC population 
within the TNs and the PTS and an OCT4+/NANOG−/
SOX2+/KLF4+/c-MYC+ in the PTS have been demonstrated 
in primary HNcSCC [18]. An OCT4+/NANOG+/SOX2+/
KLF4+/c-MYC+ in the TNs and the PTS and an OCT4+/
NANOG−/SOX2+/KLF4+/c-MYC+ CSC subpopulation in the 
TNs have been demonstrated in mHNcSCC [16]. Primary 
cell lines derived from mHNcSCC tissues that express these 
stemness-associated markers form tumourspheres in  vitro 
[17].

CSC properties can be induced in cSCC by inhibition of 
PTEN—a protein encoded by the tumour suppressor gene 
PTEN, by the microRNA has-miR-142-5p [19]. Hsa-miR- 
142-5p can induce CSC characteristics, suggesting this 
microRNA may be a potential therapeutic target [19].

11  Cancer Stem Cells in Basal Cell 
Carcinoma

Basal cell carcinoma (BCC) is the most common skin cancer 
[125], comprising 65–75% of all skin cancers [126, 127]. 
BCC was thought to arise from the epidermal basal layer 
[125]; however, more recent studies suggest a follicular ori-
gin [125]. Stem cell markers including CD34, Bmi-1 and 
p63 have been demonstrated on BCC [125]. However, cur-
rently available stem cell markers are unable to confirm an 
adult somatic follicular stem cell or an intrafollicular CSC 
origin [125]. BCC may arise from resident follicular adult 
stem cells that acquire oncogenic mutations in a stepwise 
fashion or from a CSC residing in the follicle. However, the 
presence of CSCs within BCC remains to be proven.

Vismodegib, a targeted therapy for advanced BCC, tar-
gets the Sonic hedgehog pathway, which plays an important 
role in embryonic development, and is active in stem cells, 
follicular cells and skin cells [128]. The transmembrane 
receptor Patched (PTCH) normally inhibits Smoothened 

(Smo) resulting in suppressor of fused (Sufu) inhibition of 
the transcription ability of Glioma-1/2 (Gli-1/2) [128]. PTCH 
suppression of Smo ceases, in the presence of a mutation 
affecting PTCH or Smo, or when hedgehog ligand is present, 
causing inhibition of Sufu and release of the transcriptional 
ability of Gli-1/2 [128]. Vismodegib blocks the Sonic hedge-
hog pathway by inhibiting Smo, which causes suppression of 
Gli-1/2 transcriptional activation [128]. Inhibition of this 
pathway utilised by stem cells results in an overall response 
rate (ORR) of 50% for patients with metastatic BCC. Of the 
15 patients with locally advanced BCC treated with vismo-
degib, two had a complete response, seven had a partial 
response, four had stable disease, and two had progressive 
disease—an ORR of 60% [128]. Given the therapeutic ben-
efit of vismodegib results from inhibition the Sonic hedge-
hog pathway that regulates stem cells, it is interesting to 
speculate the presence of CSCs in BCC.  Further research 
into the presence of CSCs in BCC is warranted.

12  The Renin-Angiotensin System, Its 
Bypass Loops and Novel Cancer 
Treatment

The endocrine RAS (Fig. 3) regulates cardiovascular homeo-
stasis. Pro-renin is converted to renin upon binding to PRR. 
Physiologically, renin, released by the kidneys in response to 
reduced blood volume or blood pressure, cleaves angioten-
sinogen to form angiotensin I (ATI), which is converted to 
ATII by ACE. ATII exerts its effects by binding to AT1R and 
AT2R. Binding of ATII to AT1R causes vasoconstriction to 
increase blood pressure, whereas binding of ATII to AT2R 
causes vasodilation [80]. A local RAS that acts in an auto-
crine and paracrine fashion is also present in multiple tissue 
types [129], including the kidney [129], infantile haemangi-
oma (IH) [130], vascular malformations [131, 132], 
microvessels in fibrotic conditions [133, 134], and cancer 
[47, 135, 136].

The RAS plays a critical role in carcinogenesis, and 
numerous studies have demonstrated its involvement in 
many cancer types [80]. For example, propranolol, which 
blocks renin, inhibits the growth of breast cancer in  vivo 
[137], and ACE inhibitors (ACEIs) prevent tumour growth 
and invasion in different cancer types [80]. Similarly, angio-
tensin receptor blockers (ARBs) inhibit development of vari-
ous cancer types [80]. The effect of different RAS modulators 
on tumour growth, invasion and metastasis in many cancer 
types warrants further investigation into repurposing these 
medications for cancer treatment [47, 80].

As RAS inhibitors (RASIs) are commonly used in the 
treatment of hypertension, their effects on cancer have been 
observed [80]. An early study demonstrated the association 
between administration of ACEIs and reduced risk of devel-
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oping certain cancers, especially those affecting women 
[138]. There has been extensive epidemiological data on 
reduced cancer risk associated with RASIs depending on the 
cancer types, cohort characteristics and the type of RASI 
[80]. However, several large meta-analyses have shown 
mixed results, which may be attributed to the methodologies 
of the studies included in the analyses [80]. A recent meta- 
analysis of 55 studies demonstrates significant improve-
ments in overall survival (HR = 0.82; 95% CI: 0.77–0.88; 
P < 0.001), PFS (HR = 0.74; 95% CI: 0.66–0.84; P < 0.001) 
and also disease-free survival (HR = 0.80; 95% CI: 0.067–
0.95; P = 0.01) in patients taking ACEI and ARB compared 
to those who did not [139]. In subgroup analyses, a better 
overall survival in patients with head and neck SCC 
(HR  =  0.38; 95% CI: 0.12–1.20; P  <  0.10) and MM 
(HR = 0.41; 95% CI: 0.10–1.68; P = 0.22) is associated with 
ACEI and ARB use, compared to non-users [139].

Components of the RAS are expressed by CSCs in many 
cancer types [140–143], including primary HNcSCC [144] 
and mHNcSCC [145], mHNMM [146] and mMMB [136]. 
Cathepsins B, D and G, which constitute bypass loops of the 
RAS, are expressed by CSCs in metastatic colon adenocarci-
noma to the liver [135], oral tongue squamous cell carcinoma 
[147], glioblastoma [148] and HNcSCC [149]. It is interest-
ing to speculate that the RAS acts in a paracrine fashion 
within the microenvironmental niche to influence CSCs, as 
with tumour stem cells in IH [130, 150].

Several clinical trials targeting the RAS, its bypass loops 
and other converging pathways are underway for multiple 
cancer types. A phase II clinical trial on patients with meta-
static renal cell carcinoma treated with perindopril (an ACEI) 
or candesartan (an ARB), combined with other agents such 
as cyclooxygenase-2 (COX-2) inhibitor, demonstrates stabi-
lisation of metastatic disease and reduced cancer recurrence 
[151]. A randomised clinical trial demonstrates reduced bio-
markers of invasion and inflammation in patients with breast 
cancer treated with propranolol, combined with a COX2 
inhibitor, which is well tolerated [152].

The RAS with its multiple components, the presence of 
bypass loops providing redundancy and the convergent sig-
nalling pathways onto the RAS with crosstalk require a 
system- wide approach using a combination of medications 
to provide optimal blockade of the RAS to target CSCs [47, 
80]. This novel therapeutic approach has been shown to be 
safe and well tolerated with a trend towards improved sur-
vival in a phase I clinical trial on glioblastoma [153].
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