
Yu Yu
Moti Yung (Eds.)

LN
CS

 1
30

07

Information Security
and Cryptology
17th International Conference, Inscrypt 2021
Virtual Event, August 12–14, 2021
Revised Selected Papers

Lecture Notes in Computer Science 13007

Founding Editors

Gerhard Goos
Karlsruhe Institute of Technology, Karlsruhe, Germany

Juris Hartmanis
Cornell University, Ithaca, NY, USA

Editorial Board Members

Elisa Bertino
Purdue University, West Lafayette, IN, USA

Wen Gao
Peking University, Beijing, China

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Gerhard Woeginger
RWTH Aachen, Aachen, Germany

Moti Yung
Columbia University, New York, NY, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0001-8816-2693

More information about this subseries at http://www.springer.com/series/7410

http://www.springer.com/series/7410

Yu Yu ·Moti Yung (Eds.)

Information Security
and Cryptology
17th International Conference, Inscrypt 2021
Virtual Event, August 12–14, 2021
Revised Selected Papers

Editors
Yu Yu
Shanghai Jiao Tong University
Shanghai, China

Moti Yung
Columbia University
New York, NY, USA

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-88322-5 ISBN 978-3-030-88323-2 (eBook)
https://doi.org/10.1007/978-3-030-88323-2

LNCS Sublibrary: SL4 – Security and Cryptology

© Springer Nature Switzerland AG 2021, corrected publication 2022
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0002-9278-4521
https://orcid.org/0000-0003-0848-0873
https://doi.org/10.1007/978-3-030-88323-2

Preface

The 17th International Conference on Information Security and Cryptology (Inscrypt
2021) was originally planned as a hybrid event to take place in Qingdao, China, during
August 12–14, 2021. Due to the COVID-19 pandemic, it was eventually held online
(virtually). The conference was organized by the State Key Laboratory of Information
Security (SKLOIS) of the Institute of Information Engineering of the Chinese Academy
of Sciences and the School of Cyber Science and Technology, Shandong University, in
cooperation with the IACR.

Inscrypt is an annual international conference held in China, targeting research
advances in all areas of information security, cryptology, and their applications. Inscrypt
2021 received 81 submissions fromCanada, China, Japan,Morocco, Romania, Slovenia,
Switzerland, and the UK. The program committee (PC) was composed of 58 members,
who are leading experts on cryptology and security from six countries or regions. The
PC team selected 28 papers as full papers. Each submission underwent a double-blind
peer-review process and was scrutinized by at least three PC members or sub-reviewers.
All the accepted papers are included in this conference proceedings.

We note that the program of Inscrypt 2021 included four excellent invited academic
keynote talks by Shengli Liu (China), Ran Canetti (USA), Sanjam Garg (USA),
and François-Xavier Standaert (Belgium); we thank the invited speakers for their
important contributions to the program. In addition to these keynotes, the program
included nine regular presentation sessions on Signatures, System Security, Symmetric
Cryptanalysis, Asymmetric Cryptanalysis, Cryptographic Protocols, Mathematical
Foundations, Symmetric Cryptography, Public Key Cryptography, and Real World
Cryptography.

It would not have been possible to have a successful Inscrypt 2021 without the
significant contributions of many people. First, we would like to thank all the authors
for submitting their research results to the conference. We are also very grateful to
the PC members and external reviewers for contributing their knowledge, expertise,
and hard work to assuring the quality of the conference. Secondly, we are greatly
indebted to the honorary chairs, Dongdai Lin and Xiaoyun Wang, and to the general
co-chairs, Yu Chen and Chun Guo, for their organizational efforts. Thirdly, we thank
Puwen Wei for organizing the online conference program. Last but not least, we thank
Anna Kramer, Ronan Nugent, and their Springer colleagues for handling the publication
of the conference proceedings.

August 2021 Yu Yu
Moti Yung

Organization

Honorary Chairs

Dongdai Lin Chinese Academy of Sciences, China
Xiaoyun Wang Tsinghua University, China

General Chairs

Yu Chen Shandong University, China
Chun Guo Shandong University, China

Technical Program Chairs

Yu Yu Shanghai Jiao Tong University, China
Moti Yung Google LLC and Columbia University, USA

Organizing Chair

Puwen Wei Shandong University, China

Steering Committee

Feng Bao Huawei International, Singapore
Kefei Chen Hangzhou Normal University, China
Dawu Gu Shanghai Jiao Tong University, China
Xinyi Huang Fujian Normal University, China
Hui Li Xidian University, China
Dongdai Lin Chinese Academy of Sciences, China
Peng Liu Pennsylvania State University, USA
Zhe Liu Nanjing University of Aeronautics and Astronautics, China
Wen-Feng Qi National Digital Switching System Engineering

and Technological Research Center, China
Meiqin Wang Shandong University, China
Xiaofeng Wang Indiana University at Bloomington, USA
Xiaoyun Wang Tsinghua University, China
Jian Weng Jinan University, China
Moti Yung Google LLC and Columbia University, USA
Fangguo Zhang Sun Yat-sen University, China
Huanguo Zhang Wuhan University, China

viii Organization

Program Committee

Man Ho Au The University of Hong Kong, China
Shi Bai Florida Atlantic University, USA
Davide Bellizia Université catholique de Louvain, Belgium
Zhenzhen Bao Nanyang Technological University, Singapore
Qi Chen Guangzhou University, China
Long Chen New Jersey Institute of Technology, USA
Rongmao Chen National University of Defense Technology, China
Xiaofeng Chen Xidian University, China
Yi Deng Chinese Academy of Sciences, China
Haixin Duan Tsinghua University, China
Thanassis Giannetsos Ubiquitous Technologies Limited, USA
Jian Guo Nanyang Technological University, Singapore
Qian Guo Lund University, Sweden
Shuai Han Shanghai Jiao Tong University, China
Itamar Levi Bar Ilan University, Israel
Jian Liu Zhe Jiang University, China
Kaitai Liang TU Delft, Netherlands
Jingqiang Lin University of Science and Technology of China, China
Joseph Liu Monash University, Australia
Juanru Li Shanghai Jiao Tong University, China
Zhen Ling Southeast University, China
Meicheng Liu Chinese Academy of Sciences, China
Qipeng Liu Princeton University, USA
Junzuo Lai Jinan University, China
Abe Masayuki NTT and Kyoto University, Japan
Weizhi Meng Technical University of Denmark, Denmark
Khoa Nguyen Nanyang Technological University, Singapore
Jianting Ning National University of Singapore, Singapore
Emmanouil Panaousis University of Greenwich, UK
Christophe Petit Université libre de Bruxelles, Belgium
Thomas Peters UCLouvain, Belgium
Longjiang Qu National University of Defense Technology, China
Chao Shen Xi’an Jiaotong University, China
Ron Steinfeld Monash University, Australia
Ling Song Jinan University, China
Ling Sun Shandong University, China
Siwei Sun Chinese Academy of Sciences, China
Qiang Tang The University of Sydney, Australia
Anyu Wang Tsinghua University, China
Qian Wang Wuhan University, China
Qingju Wang University of Luxembourg, Luxembourg
Weijia Wang Shandong University, China
Xiao Wang Northwestern University, USA

Organization ix

Xiang Xie ShanghaiKeyLaboratory of Privacy-PreservingComputation,
China

Peng Xu Huazhong University of Science and Technology, China
Liang Xiao Xiamen University, China
Moti Yung Google LLC and Columbia University, USA
Yu Yu Shanghai Jiao Tong University, China
Yang Yu Tsinghua University, China
Bingsheng Zhang Zhejiang University, China
Jiaheng Zhang UC Berkeley, USA
Jiang Zhang State Key Laboratory of Cryptology, China
Lei Zhang Fudan University, China
Yupeng Zhang Texas A&M University, USA
Yang Zhang CISPA Helmholtz Center for Information Security, Germany
Xiaohan Zhang Fudan University, China
Zhenfeng Zhang Chinese Academy of Sciences, China
Hong-Sheng Zhou Virginia Commonwealth University, USA

Sub-reviewers

Weihao Bai
Alessandro Budroni
Hongrui Cui
Nan Cui
Xiaoyang Dong
Xuejun Fan
Boris Fouotsa
Junqing Gong
Haihua Gu
Kaiwen Guo
Xiaojie Guo
Debiao He
Haodong Jiang
Mingming Jiang
Peter Kutas
Chunlei Li

Ming Li
Shun Li
Xiangxue Li
Yiming Li
Guozhen Liu
Hanlin Liu
Xiangyu Liu
Zhen Liu
Yonglin Hao
Guifang Huang
Erik Mårtensson
Phuong Pham
Joost Renes
Yao Sun
Phuc Thai
Song Tian

Yi Wang
Haiyang Xue
Jing Yang
Kang Yang
Qianqian Yang
Rupeng Yang
Li Yao
Bin Zhang
Lulu Zhang
Shuoyao Zhao
Zhongxiang Zheng
Tanping Zhou
Yu Zhou
Yuqing Zhu

Sponsor

Contents

Signatures

Concurrent Signatures from a Variety of Keys . 3
George Teşeleanu

A Generic Construction of Fuzzy Signature . 23
Jie Song and Yunhua Wen

Identity Based Linkable Ring Signature with Logarithmic Size 42
Mohamed Nassurdine, Huang Zhang, and Fangguo Zhang

Security Analysis of DGM and GMGroup Signature Schemes Instantiated
with XMSS-T . 61
Mahmoud Yehia, Riham AlTawy, and T. Aaron Gulliver

System Security

UC-Secure Cryptographic Reverse Firewall–Guarding Corrupted Systems
with the Minimum Trusted Module . 85
Geng Li, Jianwei Liu, Zongyang Zhang, and Yanting Zhang

A Message Franking Channel . 111
Loïs Huguenin-Dumittan and Iraklis Leontiadis

SparrowHawk: Memory Safety Flaw Detection via Data-Driven Source
Code Annotation . 129
Yunlong Lyu, Wang Gao, Siqi Ma, Qibin Sun, and Juanru Li

Symmetric Cryptanalysis

A New Approach for Finding Low-Weight Polynomial Multiples 151
Laila El Aimani

Differential-Linear Cryptanalysis of the Lightweight Cryptographic
Algorithm KNOT . 171
Shichang Wang, Shiqi Hou, Meicheng Liu, and Dongdai Lin

Revisit Two Memoryless State-Recovery Cryptanalysis Methods on A5/1 191
Mingxing Wang and Yonglin Hao

xii Contents

More Accurate Division Property Propagations Based on Optimized
Implementations of Linear Layers . 212
Chunlei Hong, Shasha Zhang, Siwei Chen, Da Lin, and Zejun Xiang

Asymmetric Cryptanalysis

Security Analysis on an ElGamal-Like Multivariate Encryption Scheme
Based on Isomorphism of Polynomials . 235
Yasuhiko Ikematsu, Shuhei Nakamura, Bagus Santoso,
and Takanori Yasuda

Attacking ECDSA Leaking Discrete Bits with a More Efficient Lattice 251
Shuaigang Li, Shuqin Fan, and Xianhui Lu

Cryptographic Protocols

A Simple Post-Quantum Non-interactive Zero-Knowledge Proof
from Garbled Circuits . 269
Hongrui Cui and Kaiyi Zhang

Improved Zero-Knowledge Argument of Encrypted Extended Permutation 281
Yi Liu, Qi Wang, and Siu-Ming Yiu

Mathematical Foundations

Isomorphism and Equivalence of Galois Nonlinear Feedback Shift
Registers . 301
Wenhui Kong, Jianghua Zhong, and Dongdai Lin

Elliptic Curve and Integer Factorization . 316
Zhizhong Pan and Xiao Li

On the Linear Complexity of Feedforward Clock-Controlled Sequence 331
Yangpan Zhang and Maozhi Xu

Symmetric Cryptography

On Characterization of Transparency Order for (n, m)-functions 351
Yu Zhou, Yongzhuang Wei, Hailong Zhang, Luyang Li, Enes Pasalic,
and Wenling Wu

Binary Sequences Derived from Monomial Permutation Polynomials
over GF(2p) . 371

Qun-Xiong Zheng, Yupeng Jiang, Dongdai Lin, and Wen-Feng Qi

Contents xiii

On the Provable Security Against Truncated Impossible Differential
Cryptanalysis for AES in the Master-Key Setting . 384
Xueping Yan, Lin Tan, Hong Xu, and Wenfeng Qi

Adaptive Side-Channel Analysis Model and Its Applications to White-Box
Block Cipher Implementations . 399
Yufeng Tang, Zheng Gong, Tao Sun, Jinhai Chen, and Fan Zhang

Public Key Cryptography

Fully Secure Lattice-Based ABE from Noisy Linear Functional Encryption 421
Geng Wang, Ming Wan, Zhen Liu, and Dawu Gu

Revocable Identity-Based Encryption with Server-Aided Ciphertext
Evolution from Lattices . 442
Yanhua Zhang, Ximeng Liu, Yupu Hu, and Huiwen Jia

Homomorphic Modular Reduction and Improved Bootstrapping for BGV
Scheme . 466
Ruiqi Li and Chunfu Jia

Real World Cryptography

Privacy Preserving OpenPGP Public Key Distribution with Spamming
Resistance . 487
Wenyuan Li,Wei Wang, Jingqiang Lin,Qiongxiao Wang, andWenjie Wang

Collaborative Verifiable Delay Functions . 507
Liam Medley and Elizabeth A. Quaglia

SMCOS: Fast and Parallel Modular Multiplication on ARM NEON
Architecture for ECC . 531
Wenjie Wang, Wei Wang, Jingqiang Lin, Yu Fu, Lingjia Meng,
and Qiongxiao Wang

Correction to: Differential-Linear Cryptanalysis of the Lightweight
Cryptographic Algorithm KNOT . C1
Shichang Wang, Shiqi Hou, Meicheng Liu, and Dongdai Lin

Author Index . 551

Signatures

Concurrent Signatures from a Variety
of Keys

George Teşeleanu1,2(B)

1 Advanced Technologies Institute, 10 Dinu Vintilă, Bucharest, Romania
tgeorge@dcti.ro

2 Simion Stoilow Institute of Mathematics of the Romanian Academy,
21 Calea Grivitei, Bucharest, Romania

Abstract. Concurrent signatures allow two entities to produce two
ambiguous signatures that become binding once an extra piece of infor-
mation (called the keystone) is released. Such a signature is developed by
Chen et al., but it restricts signers to using the same public parameters.
We describe and analyse a new concurrent signature that allows users
to sign documents even if they use different underlying hard problems
when generating their public parameters.

1 Introduction

The fair exchange of signatures between two mutually distrustful parties is a
fundamental and well-studied problem in cryptography. Ideally, we would like
the exchange of signatures to be done in fair way, i.e. each participant receives
the other’s signature, or neither does. We would also like to have some sort of
guarantee that is impossible for one party to terminate the protocol and to leave
the other participant committed when they are not.

To achieve a form of the properties mentioned above, several authors have
put forth three main categories:

– Gradual release schemes: Using the idea of time release, the output is gradu-
ally revealed (e.g. bit per bit). Usually, this solution is highly interactive and
may not work if the adversary is more computationally powerful [8,10,16].

– Optimistic schemes: Using a trusted third party, this approach can restore
fairness if a dispute rises. In some cases, the infrastructure requirements and
trusting a third party are not appropriate [2,5,14].

– Concurrent or legally fair schemes: The exchanged signatures become binding
only when an extra piece of information (the keystone) is revealed. To enforce
a signed contract, a participant has to present it in a court of law. Note that
the keystone offers enough information to restore fairness. This approach does
not require a trusted arbitrator or a high degree of interaction between parties
[6,7,12].

Chen et al. [6] constructed their concurrent signature protocol based on a 1-
out-of-n signature scheme proposed by Abe et al. [1]. An 1-out-of-n signature is
c© Springer Nature Switzerland AG 2021
Y. Yu and M. Yung (Eds.): Inscrypt 2021, LNCS 13007, pp. 3–22, 2021.
https://doi.org/10.1007/978-3-030-88323-2_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-88323-2_1&domain=pdf
http://orcid.org/0000-0003-3953-2744
https://doi.org/10.1007/978-3-030-88323-2_1

4 G. Teşeleanu

constructed so that once a signature is computed, then any verifier is convinced
that the signature was generated by one of n signers. Hence, using a slight
modification of Abe et al. signature, Chen et al. are able to guarantee ambiguity
before revealing the keystone.

In their paper, Abe et al. presented both a non-separable scheme where all n
key pairs correspond to the same scheme, and a separable scheme where each key
pair can be generated by a different scheme, under a different hardness assump-
tion. For the discrete logarithm assumption, the authors of [1] also propose an
non-separable schemes that is more efficient than the generic one. The concur-
rent signature proposed by Chen et al. was based on the efficient non-separable
variant. Hence, it is based on the discrete logarithm assumption. Furthermore,
the security of this protocol can be proven in the random oracle model, assuming
the hardness of computing discrete logarithms in a cyclic group of prime order.
Using a variation of Abe et al.’s 1-out-of-n signature with key separation, we
introduce a concurrent signature in the separable model.

The efficient 1-out-of-n signature without key separation proposed in [1] is an
adaptation of the Schnorr signature [17]. Maurer [13] introduced a construction
that unifies the Schnorr zero-knowledge protocol [17] and the Guillou-Quisquater
protocol [11]. A consequence of Maurer’s construction is the introduction of other
novel protocols whose security is based on other hardness assumptions.1 Based
on Maurer’s approach, we describe a generic 1-out-of-n signature that can be
seen as an adaptation of the signature described in [12]. Based on this signature
we also generalize Chen et al.’s signature.

Note that in [1] the authors also describe a 1-out-of-n signature with key sep-
aration based on the full domain RSA signature scheme [4]. We chose to use only
the zero-knowledge version, since working in a general framework2 may reduce
implementation errors, and save application development and maintenance time.

Remark that concurrent signatures are not abuse-free in the sense of [3,9],
since the party Bob who holds the keystone can always determine whether to
complete the protocol or not. But, there are situations where it is not in Bob’s
interest to try and cheat Alice. One interesting scenario is that of fair tendering
of contracts. Suppose Alice has a building contract that she wishes to put out to
tender. Also, suppose that Bob and Charlie are two competing companies that
put forward signed proposals to win the contract. If Alice whats to accept Bob’s
offer, she returns a signed payment instruction to Bob and he in turn releases
the keystone. A common form of abuse is to show Charlie Bob’s proposal and
thus enabling Charlie to make a better offer. But, in the case of concurrent
signatures, Charlie sees an ambiguous signature that might have been crafted
by Alice. Hence, Alice gains no advantage in revealing Bob’s proposal.

Our Contributions. In their paper, Chen et al. [6] claim that their scheme can
be extended to other ring signatures as long as the scheme is compatible to the
keystone idea. Hence, different hard problems could be used to construct such

1 Different from the discrete logarithm and eth-root assumptions.
2 Guillou-Quisquater’s signature is also included in this framework.

Concurrent Signatures from a Variety of Keys 5

schemes. Also, they claim that concurrent signatures that work in the separable
model can be build using the techniques developed in [1]. Unfortunately, they
do not provide such examples. Our aim is to fill this gap. Hence, the main
contributions of our paper are the following:

– Adjusting the construction of Chen et al. to support signatures with separable
keys. To achieve this, we first introduce a modification to Abe et al.’s separable
1-out-of-n signature.

– Generalizing the non-separable 1-out-of-n signature of Abe et al. to other
hardness assumptions. We also implicitly prove the security of Abe et al.’s
signature3.

– Generalizing Chen et al.’s original concurrent signature to support additional
hardness assumptions.

Structure of the Paper. We introduce notations, definitions, schemes and proto-
cols used throughout the paper in Sect. 2. We present a variation of Abe et al.’s
signature scheme in Sect. 3. In Sect. 4 we present our main result, namely a con-
current signature in the separable model. We conclude in Sect. 5. In Appendices
A and B we generalize the non-separable signature from [1] and the concurrent
signature from [6].

2 Preliminaries

Notations. Throughout the paper, the notation |S| denotes the cardinality of
a set S. The action of selecting a random element x from a sample space X is
denoted by x

$←− X, while x ← y represents the assignment of value y to variable
x. The probability of the event E to happen is denoted by Pr[E]. The subset
{0, . . . , s − 1} ∈ N is denoted by [0, s). Note we further consider that all of N ’s
subsets are of the form [0, s) and have more than one element. A vector v of
length n is denoted either v = (v0, . . . , vn−1) or v = {vi}i∈[0,n). Also, we use the
notations Cn

k to denote binomial coefficients and exp to denote Euler’s constant.

2.1 Groups

Let (G, �) and (H,⊗) be two groups. We assume that the group operations �
and ⊗ are efficiently computable.

Let f : G → H be a function (not necessarily one-to-one). We say that f is
a homomorphism if f(x � y) = f(x) ⊗ f(y). Throughout the paper we consider
f to be a one-way function, i.e. it is infeasible to compute x from f(x). To be
consistent with [13], we denote by [x] the value f(x). Note that given [x] and
[y] we can efficiently compute [x � y] = [x] ⊗ [y], due to the fact that f is a
homomorphism.

3 The original authors give an idea of how to prove that their signature is secure, but
do not provide a concrete proof.

6 G. Teşeleanu

2.2 1-out-of-n Signatures

Definition 1 (1-out-of-n Signature). An 1-out-of-n signature scheme is a
digital signature comprised of the following algorithms

Setup(λ): On input a security parameter λ, this algorithm outputs the private
and public keys (ski, pki) of all the participants and the public parameters
pp = (M,S), where M is the message space and S is the signature space.

Sign(m, skk, L): A PPT algorithm that on input a message m ∈ M, the private
key skk and a list of public keys L such that pkk ∈ L, outputs a signature σ.

Verify(m,σ,L) An algorithm that on input a message m, a signature σ and a
list of public keys L outputs either true or false.

We further present the security models presented in [1] for 1-out-of-n signa-
ture schemes.

Definition 2 (Signer Ambiguity). Let L = {pki}i∈[0,n), where pki are gener-
ated by the Setup algorithm. An 1-out-of-n signature is perfectly signer ambigu-
ous if for any message m, any L ⊆ L, any skk ∈ L and any signature σ gener-
ated by the Sign(m, skk, L), any unbound adversary A outputs an sk such that
sk = skk with probability exactly 1/|L|.
Definition 3 (Existential Unforgeability against Adaptive Chosen
Message and Chosen Public Key Attacks - euf-cmcpa). The notion of
unforgeability for signatures is defined in terms of the following security game
between the adversary A and a challenger:

1. The Setup algorithm is run and all the public parameters are provided to A.
2. For any message and any subset of L = {pki}i∈[0,n), A can perform signature

queries to the challenger.
3. Finally, A outputs a signature (m,σ,L), where L ⊆ L.
A wins the game if Verify(m,σ,L) = true, L ⊆ L and A did not query the
challenger on (m,L). We say that a signature scheme is unforgeable when the
success probability of A in this game is negligible.

Note that when n = 1 Definitions 1 and 3 are equivalent with the classi-
cal signature definition and, respectively, the existential unforgeability against
adaptive chosen message attack.

We further introduce the notions of a Boolean matrix and of a heavy row
in such a matrix [15]. These definitions are then used in stating the heavy row
lemma [15].

Definition 4 (Boolean Matrix of Random Tapes). Let us consider a
matrix M whose rows consist of all possible random choices of an adversary and
the columns consist of all possible random choices of a challenger. Its entries are
0 if the adversary fails the game and 1 otherwise.

Definition 5 (Heavy Row). A row of M is heavy if the fraction of 1’s along
the row is at least ε/2, where ε is the adversary’s success probability.

Lemma 1 (Heavy Row Lemma). The 1’s in M are located in heavy rows
with a probability of at least 1/2.

Concurrent Signatures from a Variety of Keys 7

2.3 Concurrent Signatures

Definition 6 (Concurrent Signature). A concurrent signature scheme is a
digital signature comprised of the following algorithms

Setup(λ): On input a security parameter λ, this algorithm outputs the pri-
vate and public keys (xi, yi) of all participants and the public parameters
pp = (M,S,K,F ,KeyGen), where M is the message space, S is the signature
space, K is the keystone space, F the keystone fix space and KeyGen : K → F
is a function.

aSign(yi, yj , xi, f,m): On input the public keys yi �= yj, the private key xi cor-
responding to yi, an element f ∈ F and a message m ∈ M, this algorithm
outputs an ambiguous signature σ = 〈s, e, f〉, where s ∈ S and e ∈ F .

aVerify(σ, yi, yj ,m): On input an ambiguous signature σ = 〈s, e, f〉, public keys
yi, yj and a message m this algorithm outputs a boolean value.

Verify(k, σ, yi, yj ,m): On input k ∈ K , σ = 〈s, e, f〉, public keys yi, yj and
message m, this algorithm checks whether KeyGen(k) = f and outputs false
if not; otherwise it outputs the result of aVerify(σ, yi, yj ,m).

Concurrent signatures are used by two parties Alice and Bob as depicted
in Fig. 1. At the end of the protocol, both 〈k, σA〉 and 〈k, σB〉 are binding, and
accepted by the Verify algorithm.

Alice Bob

T
T false then

T
false then

Fig. 1. The concurrent signature of messages mA and mB .

According to the security notions presented in [6], a PPT adversary A for a
concurrent signature can perform the following queries

– KeyGen queries: A can request the value f ← KeyGen(k), where k is selected
by the challenger T . If A whants to choose his own k, he can compute
KeyGen(k) by himself.

8 G. Teşeleanu

– KeyReveal queries: A can requests T to reveal the keystone k associated to f .
If f was not previously computed by the challenger, then T outputs invalid,
otherwise he returns k.

– aSign queries: A can request a valid aSign signature σ for two public keys
yi �= yj , an element f ∈ F and a message m of his choosing. Note that using
aSign queries in conjunction with KeyGen queries, the adversary can obtain
concurrent signatures for messages and pairs of users of his choice.

– SKExtract queries: A can request the private key corresponding to a public
key.

– Directory queries: A can request the public key of any user.

The following definition captures the notion of unforgeability in the concur-
rent context.

Definition 7 (Concurrent Signature Unforgeability - euf-cs). The
notion of unforgeability for concurrent signatures is defined in terms of the fol-
lowing security game between the adversary A and a challenger T :

1. The Setup algorithm is run and all the public parameters are provided to A.
2. A can perform any number of queries to the challenger, as described above.
3. Finally, A outputs a tuple (m, yC , yD, s, e, f).

A wins the game if aVerify(s, e, f, yC , yD,m) = true and either of the following
holds

– A did not query SKExtract on yC nor on yD, and did not query aSign on
either (yC , yD, f,m) or (yD, yC , f,m).

– A did not query SKExtract on yD, and did not query aSign on (yD, yi, f,m)
for any yi �= yD and A produces a keystone k such that KeyGen(k) = f .

– A did not query SKExtract on yC , and did not query aSign on (yC , yi, f,m)
for any yi �= yC and f was a previous output from a KeyGen query.

We say that a concurrent signature scheme is existentially unforgeable when the
success probability of A in this game is negligible.

Note that in Definition 7 the first output condition corresponds to an outside
attacker that tries to create a forgery without knowing the secret keys of the
participants. Hence, in this case Alice is convinced that the signature originates
from Bob. The second and third conditions correspond to the case where the
attacker and one of the participants are one and the same.

The next definition captures the notion of ambiguity for concurrent signa-
tures. Note that the security notion is slightly weaker than Definition 2 due to
the fact f is generated by KeyGen that in practice approximates as best as
possible a random oracle.

Definition 8 (Concurrent Signature Ambiguity). The notion of ambigu-
ity for concurrent signatures is defined in terms of the following security game
between the adversary A and a challenger T :

Concurrent Signatures from a Variety of Keys 9

1. The Setup algorithm is run and all the public parameters are provided to A.
2. A can perform any number of queries to the challenger, as described above.
3. A selects a message m and two public keys yC and yD.
4. In response, the challenger randomly computes σ ← aSign(yC , yD, xC , f,m)

or σ ← aSign(yD, yC , xD, f,m), where k
$←− K and f ← KeyGen(k), and

sends σ to A.
5. Finally, A guesses T ’s choice.

A concurrent signature is signer ambiguous if A cannot guess T ’s choice with a
probability non-negligible greater than 1/2.

The following definition captures the intuitive notion of fairness. More pre-
cisely, that the person that generated the keystone is the only one that can use it
to create a binding signature and that any ambiguous signature produced using
the same keystone fix f will all become binding. Note that the definition does
not guarantee that Alice will receive the necessary keystone k.

Definition 9 (Fairness). The notion of fairness for concurrent signatures is
defined in terms of the following security game between the adversary A and a
challenger T :

1. The Setup algorithm is run and all the public parameters are provided to A.
2. A can perform any number of queries to the challenger, as described above.
3. A chooses two public keys yC and yD and outputs a tuple (m, yC , yD, σ, k),

where σ = 〈s, e, f〉 and f = KeyGen(k).

The adversary wins the game if aVerify(s, e, f, yC , yD,m) = true and either of
the following holds

– f was a previous output from a KeyGen query, A did not query KeyReveal
on f and (k, σ) is accepted by the Verify algorithm.

– A also outputs a tuple (m, yD, yC , σ′), where σ′ = 〈s′, e′, f〉, such that aVerify
accepts σ′ and Verify accepts (k, σ), but (k, σ′) is not accepted by Verify.

We say that a concurrent signature scheme is fair when the success probability
of A in this game is negligible.

3 1-out-of-n Signatures with Key Separation

3.1 Description

We present a variation of the 1-out-of-n signature scheme presented in [1]. This
variation will be used later to develop a concurrent signature protocol that allows
users with different flavors of public keys (i.e. discrete logarithm based, eth root
problem based) to produce two binding and ambiguous signatures. In practice,
each user can generate their own public parameters and key pair. To simplify
description we present the Setup algorithm as a centralized algorithm. We will
denote the following signature with 1n-KSS.

10 G. Teşeleanu

Setup(λ): Let i ∈ [0, n). Choose for each user two groups Gi, Hi, a homomor-
phism [·]i : Gi → Hi and a hash function Hi : {0, 1}∗ → C ⊆ N. Note that we

require that |Gi| ≥ 2λ. Choose xi
$←− Gi and compute yi ← [xi]i. Output the

public key pki = yi. The secret key is ski = xi.
Listing(): Collect the public keys and randomly shuffle them. Store the result

into a list L = {yj}j∈[0,n) and output L.
Sign(m, skk,L): To sign a message m ∈ {0, 1}∗, first generate two random

elements α
$←− Gk, β

$←− C and compute ck+1 ← Hk+1(L,m, [α]k) and
c′
k+1 ← ck+1 − β mod c, where |C| = c. For j ∈ [k + 1, n) ∪ [0, k), select

sj
$←− Gj and then compute cj+1 ← Hj+1(L,m, [sj]j ⊗j y

c′
j

j) and c′
j+1 ←

cj+1 − β mod c. Compute sk ← α �k x
−c′

k

k . Output the signature (c0, β,S),
where S = {sj}j∈[0,n).

Verify(m, c0, β,S,L): For j ∈ [0, n), compute ej ← [sj]j ⊗j y
cj−β
j and then

cj+1 ← Hj+1(L,m, ej) if j �= n − 1. Output true if and only if c0 =
H0(L,m, en−1). Otherwise, output false.

Correctness. If the pair (c0, β,S) is generated according to the scheme, it is easy
to see that the cj values from the Sign and Verification coincide when when
j �= k. When j = k we observe that

ek = [sk]k ⊗k yck−β
k = [α �k x−ck+β

k]k ⊗k yck−β
k

= [α]k ⊗k [xk]−ck+β
k ⊗k yck−β

k = [α]k

and thus we obtain the same ck as in the signing phase.

Remark 1. In practice hash functions have C = {0, 1}κ, where κ is for exam-
ple 256, 384 or 512. So, if the users from L have hash functions with different
output sizes the simplest method for obtaining a common challenge space C is
to lengthen the function’s output by running it several times4 until we obtain
c bits. If efficiency is desired, another method for obtaining a common C is to
truncate all the outputs to the smallest size. Note this method decreases security
for some users.

3.2 Security Analysis

Theorem 1. The 1n-KSS scheme is perfectly signer ambiguous.

Proof. Note that all sj are taken randomly from Gj , except for sk. Since α is a
random element from Gk, then sk is also randomly distributed in Gk. Also, β
is a random element from C. Hence, for a fixed (m,L) the probability of (β,S)
is always 1/(|C| ·

∏
|Gi|), regardless of the closing point sk. The remaining c0 is

uniquely determined from (m,L) and (β,S). �

4 e.g. for each run we can add a different prefix to the message.

Concurrent Signatures from a Variety of Keys 11

Theorem 2. If the following statements are true

– an euf-cmcpa attack on the 1n-KSS has non-negligible probability of success
in the ROM,

– an 	 ∈ Z is known such that gcd(c0 − c1,) = 1 for all c0, c1 ∈ C with c0 �= c1,
– for all i values, ui ∈ Gi are known such that [ui]i = y�

i ,

then at least a homomorphism [·]i can be inverted in polynomial time.

Proof. Let A be an efficient euf-cmcpa attacker for 1n-KSS that requests at
most qs and qh signing and, respectively, random oracle queries. Also, let ε be
its success probability and τ its running time.

In order to make A work properly we simulate the random oracles that
correspond to each hash function (see Algorithm 1) and the signing oracle (see
Algorithm 2). For simplicity we treat all the random oracles as one big random
oracle OH that takes as input the j-th query (i, Lj ,mj , rj) and returns a random
value corresponding to Hi(Lj ,mj , rj). Also, to avoid complicated suffixes y0, for
example, refers to the first public key from the current Lj .

Algorithm 1: Hashing oracle OH simulation for all Hi.
Input: A hashing query (i, Lj , mj , rj) from A

1 if ∃hj such that {Lj , mj , rj , hj} ∈ Ti then
2 e ← hj

3 else

4 e
$←− C

5 Append {Lj , mj , rj , e} to Ti

6 end if
7 return e

The signing oracle OS fails and returns ⊥ only if we cannot assign c0 to
(Lj ,mj , e|Lj |−1) without causing an inconsistency in T0. This event happens with
probability at most qh/q, where q = 2λ. Thus, OS is successful with probability
at least (1 − qh/q)qs ≥ 1 − qhqs/q.

Let Θ and Ω be the random tapes given to OS and A. The adversary’s success
probability is taken over the space defined by Θ, Ω and OH . Let Σ be the set of
(Θ,Ω,OH) with which A successfully creates a forgery, while having access to a
real signing oracle. Let (m, c0, β, {si}i∈[0,n′), L) be A’s forgery, where |L| = n′.
Then Ti+1 contains a query for (L,m, ei) for all i ∈ [0, n′) with probability
at least 1 − 1/c, due to the ideal randomness of OH . Let Σ′ ⊆ Σ be the set
of (Θ,Ω,OH) with which A successfully creates a forgery, while having access
only to the simulated oracle OS . Then, Pr[(Θ,Ω,OH) ∈ Σ′] ≥ ε′, where ε′ =
(1 − qhqs/q)(1 − 1/c)ε.

Since the queries form a ring, there exists at least an index k ∈ [0, n′) such
that the u query Qu = (k + 1, L,m, ek) and the v query Qv = (k, L,m, ek−1)

12 G. Teşeleanu

Algorithm 2: Signing oracle OS simulation.
Input: A signature query (mj , Lj) from A

1 c0, β
$←− C

2 for i ∈ [0, |Lj |) do

3 si
$←− Gi

4 ei ← [si]i ⊗i yci−β
i

5 if i �= |Lj | − 1 then
6 ci+1 ← Hi+1(Lj , mj , ei)
7 end if

8 end for
9 if �h such that {Lj , mj , e|Lj |−1, h} ∈ T0 then

10 Append {Lj , mj , e|Lj |−1, c0} to T0

11 return (c0, β, {si}i∈[0,|Lj |))
12 else
13 return ⊥
14 end if

satisfy u ≤ v. Such a pair (u, v) is called a gap index. Remark that u = v only
when n′ = 1. If there are two or more gap indices with regard to a signature, we
only consider the smallest one.

We denote by Σ′
u,v the set of (Θ,Ω,OH) that yield the gap index (u, v).

There are at most Cqh
2 + Cqh

1 = qh(qh + 1)/2 such sets. If we invoke A with
randomly chosen (Θ,Ω,OH) at most 1/ε′ times, then we will find at least one
(Θ,Ω,OH) ∈ Σ′

u,v for some gap index (u, v) with probability 1 − (1 − ε′)1/ε′
>

1 − exp(−1) > 3/5.
We define the sets GI = {(u, v) | |Σ′

u,v|/|Σ′| ≥ 1/(qh(qh + 1))} and B =
{(Θ,Ω,OH) ∈ Σ′

u,v | (u, v) ∈ GI}. Then, we have Pr[B|Σ′] ≥ 1/2. Using the
heavy row lemma we obtain that a triplet (Θ,Ω,OH) that yields a successful
run of A is in B with probability at least 1/2.

Let OH′ be the identical to OH except for the Qv query to which OH′

responds with a random element c′
k �= ck. Then according to the heavy row

lemma, with probability 1/2, (Θ,Ω,OH′) satisfies Pr[(Θ,Ω,OH′) ∈ Σ′
u,v] =

ε′′/2, where ε′′ = ε′/(2qh(qh + 1)). Hence, if we run A at most 2/ε′′ times, then
with probability 1/2 · [1 − (1 − ε′′/2)2/ε′′

] > 1/2 · (1 − exp(−1)) > 3/10 we will
find at least one c′

k such that (Θ,Ω,OH′) ∈ Σ′
u,v. Since Qu is queried before Qv,

ek remains unchanged. Therefore we can compute

x̃k = ua
k �k (s′

k
−1

�k sk)b,

where a and b are computed using Euclid’s algorithm such that 	a+(c′
k−ck)b = 1.

Note that

[s′
k

−1
�k sk]k = [s′

k
−1]k ⊗k [sk]k

= y
c′
k−β

k ⊗k ([α]k)−1 ⊗k [α]k ⊗k y−ck+β
k

= y
c′
k−ck

k

Concurrent Signatures from a Variety of Keys 13

and thus

[x̃k]k = [ua
k �k (s′

k
−1

�k sk)b]k

= ([uk]k)a ⊗k ([s′
k

−1
�k sk]k)b

= (y�
k)a ⊗k (yc′

k−ck
k)b

= yk.

The overall success probability is 9/100 = 3/5 · 1/2 · 3/10 and A is invoked
at most 1/ε′ + 2/ε′′ times. �

3.3 Concrete Examples

All Discrete Logarithm Case. Let p = 2q + 1 be a prime number such that q is
also prime. Select an element h ∈ Hp of order q in some multiplicative group of
order p − 1. The discrete logarithm of an element z ∈ Hp is an exponent x such
that z = hx. We further describe the parameters of the all discrete logarithm
signature.

Define (Gi, �i) = (Zqi ,+) and Hi = 〈hi〉. The one-way group homomorphism
is defined by [xi]i = hxi

i and the challenge space C can be any arbitrary subset
of [0, q), where q is the smallest qi from L. Let 1i be the neutral element of Hi.
Then the conditions of Theorem 2 are satisfied for

– 	 =
∏n−1

i=0 qi, since for all c ∈ C we have c < q ≤ qi and qi are primes,
– for u = 0 we have [u]i = [0]i = 1i = y�

i = (y�/qi
i)qi since every element of Hi

raised to the group order qi is the neutral element 1i.

All eth-root Case. Let p and q be two safe prime numbers such that (p − 1)/2
and (q − 1)/2 are also prime. Compute N = pq and choose a prime e such that
gcd(e, ϕ(N)) = 1. An eth-root of an element z ∈ Z

∗
N is a base x such that z = xe.

Note that the eth-root is not unique. We further describe the parameters of the
all eth-root signature.

Define (Gi, �i) = (Hi,⊗i) = (Z∗
Ni

, ·), where Ni = piqi and gcd(Ni, Nj) = 1
for i �= j. The one-way group homomorphism is defined by [xi]i = xei

i and the
challenge space C can be any arbitrary subset of [0, e), where e is the smallest ei

in L. The conditions of Theorem 2 are satisfied for

– 	 =
∏n−1

i=0 ei, since for all c ∈ C we have c < e ≤ ei and ei are primes,
– for ui = y

�/ei

i we have [ui]i = [y�/ei

i]i = y�
i .

Mixture of Discrete Logarithm and eth-root. For simplicity, we consider the case
n = 2. Let (G0, �0) = (Zq,+), H0 = 〈h〉 and (G1, �1) = (H1,⊗1) = (Z∗

N , ·). The
one-way group homomorphisms are defined by [x0]0 = hx0 and [x1]1 = xe

1. The
challenge space C can be any arbitrary subset of [0, s), where s is the smallest
of q and e. The conditions of Theorem 2 are satisfied for

– 	 = eq, since for all c ∈ C we have c < s ≤ e, c < s ≤ q and e, q are primes,
– for u0 = 0 we have [0]0 = 1 = (ye

0)
q,

– for u1 = yq
1 we have [yq

1]1 = y�
1.

14 G. Teşeleanu

All Discrete Logarithm Representation Case. Consider again a group of prime
order Hp and select t elements h1, . . . , ht ∈ Hp of order q. A discrete logarithm
representation of an element z ∈ 〈h1, . . . , ht〉 is a list of exponents (x1, . . . , xt)
such that z = hx1

1 . . . hxt
t . Note that discrete logarithm representations are not

unique. We further describe the parameters of the all discrete logarithm repre-
sentation signature.

We define Gi = Z
ti
qi with � defined as addition applied component-wise and

Hi = 〈hi1, . . . , hit〉. Let xi = (xi1, . . . , xit). The one-way group homomorphism
is defined by [xi]i = hxi1

i1 . . . hxit
it and the challenge space C can be any arbitrary

subset of [0, q], where q is the smallest qi from L. Let 1i be the neutral element
of Hi. Then the conditions of Theorem 2 are satisfied for 	 =

∏n−1
i=0 qi and for

u = (0, . . . , 0).
Remark that if some tis are one, we obtain a signature based on mixture of

discrete logarithm and discrete logarithm representation problems.

All eth-root Representation Case. Let again N = pq and choose primes e1, . . . , et

such that gcd(ei, ϕ(N)) = 1, for 1 ≤ i ≤ t. An eth-root representation of an
element z ∈ Z

∗
N is a list of bases (x1, . . . , xt) such that z = xe1

1 . . . xet
t . Note that

eth-root representations are not unique. We further describe the parameters of
the all eth-root representation signature.

Let Ni = piqi and gcd(Ni, Nj) = 1 for i �= j. We define Gi = (Z∗
Ni

)ti with �i

defined as multiplication applied component-wise and (Hi,⊗i) = (Z∗
Ni

, ·). The
one-way group homomorphism is defined by [(xi1, . . . , xit)] = xei1

i1 . . . xeit
it and the

challenge space C can be any arbitrary subset of [0, e), where e is a prime such
that gcd(e, φ(Ni)) = 1. Since all exponents are coprime then we can compute
integers such that αi1ei1 + . . . + αiteit = 1. The conditions of Theorem 2 are
satisfied for

– 	 = 1,
– for ui = (yαi1

i , . . . , yαim
i) we have [ui]i = yαi1ei1+...+αiteit

i = yi.

4 Concurrent Signatures with Key Separation

4.1 Description

Concurrent signatures allow Alice and Bob to produce two signatures such that
both signatures are ambiguous from the eyes of a third party, but once Alice
releases a secret keystone, both signatures become binding to their true signer.
Such signatures are useful for contract signing and fair exchange protocols. Based
on 1n-KSS we introduce such a concurrent signature scheme denoted with 1n-
KSCS. Note that when both users use the same group for defining their under-
lying homomorphisms a more efficient construction is presented in Appendix B.

As before, C denotes the challenge space and c its cardinality. The 1n-KSCS
scheme uses three cryptographic hash functions Hk,HA,HB : {0, 1}∗ → C. The
detailed protocol is presented in Fig. 2

Concurrent Signatures from a Variety of Keys 15

Alice Bob

t
fA
eA mod
fB
eB mod
sB
σB sA, sB , eA, f

mod

mod then

u
gB
hB mod
gA
hA mod
vA
σA

mod

if mod then

Fig. 2. Key separation concurrent signature.

Correctness. If the signature 〈sA, eA, f〉 is generated according to the scheme, it
is easy to see that

[vA]A ⊗A yhA

B = [u]A ⊗A [xA]−gA+f
A ⊗ ygA−f

A = [u]A.

Similarly, we can show correctness for Bob’s side.

4.2 Security Analysis

The following theorem is a direct consequence of Theorem 1.

16 G. Teşeleanu

Theorem 3. The 1n-KSCS scheme satisfies the concurrent signature ambiguity
property in the ROM.

Theorem 4. If the following statements are true

– an euf-cs attack on the 1n-KSCS has non-negligible probability of success in
the ROM,

– an 	 ∈ Z is known such that gcd(c0 − c1,) = 1 for all c0, c1 ∈ C with c0 �= c1,
– for i ∈ {A,B}, ui ∈ Gi are known such that [ui]i = y�

i ,

then either [·]A or [·]B can be inverted in polynomial time.

Proof. Let A be an efficient euf-cs attacker for 1n-KSCS and let ε be its success
probability. We split the proof into three cases: A does not have access to the
participants’ secret keys, A = Bob and A = Alice.

First Case. The challenger generates a set of participants U , where |U | = ρ
and ρ is the result of a polynomial function in λ. Then the challenger chooses
γA �= γB

$←− [0, ρ). For each participant Pi, i �= γa, γB , T selects the associated
public parameters (in accordance to the security parameter λ) and generates
their secret and public keys (xi, yi). For C = PγA

the challenger sets the public
parameters to (GA, [·]A,HA) and the public key yγA

= yA. Similarly for we set
D = PγB

’s parameters.
To make A work properly we must simulate all the oracles which A can

query. Hence, the random oracles HA and HB can be simulated using Algorithm
1, where we set L = ∅, i = 0 for A and i = 1 for B. We change the list notations
from T0 and T1 to TA and TB . In the case of Hk, the simulation is similar to
Algorithm 1. Thus, instead of querying (i, Lj ,mj , rj), the adversary can query
any message M and the algorithm will store its answers in list denoted Tk. When
A makes a KeyGen query, T randomly generates a k and return f ← Hk(k).
Note that the KeyGen oracle is actually a sublist of Tk, but the challenger is
required to answer KeyReveal queries. Hence, when A requests the keystone
associated to an f ∈ C, we search Tk for a pair {k, f} and if it exists we return
k, otherwise we return invalid. The simulation of aSign queries can be achieved
using Algorithm 2 where β is not chosen randomly, but is set to f . Finally, when
an SKExtract query for a public key is made, T respond with the associated
secret key, except in the case yC , yD, when he aborts.

There are two possible situations where our simulation fails. When OS causes
inconsistencies in OH or A asks the secret keys for user C or user D. The
first event does not happen with probability 1 − qhqs/q, where q = 2λ, and
qs and qh are the number of signing queries and random oracle queries to HA

and HB . The probability for the second event not happening is 1 − 2/ρ. Let
ε′ = 2/ρ(1 − qhqs/q)(1 − 2/ρ)(1 − 1/c)ε. Then, if we run A at most 1/ε′ with
probability 3/5 A will output a forgery σ = 〈sC , sD, e, f〉, for a message m.

Note that in this case A did not make SKExtract queries for C and D, and
the signature is not produced by an aSign query. In other words A breaks the
unforgeability of the 1n-KSS scheme. Hence, according to Theorem 1 A inverted
either [·]A or [·]B .

Concurrent Signatures from a Variety of Keys 17

Second Case. Now, let us see what happens when A plays the role of Alice. In
contrast with the first case, the challenger only chooses γB

$←− [0, ρ) and then
sets D’s public parameters to (GB , [·]B ,HB) and the public key yγB

= yB .
The probability of A not asking the secret key for user D is 1 − 1/ρ. Let

ε′′ = 1/ρ(1 − qhqs/q)(1 − 1/ρ)(1 − 1/c)ε. Then, if we run A at most 1/ε′′ with
probability 3/5 A will output a forgery σ = 〈sA, sD, eA, f〉, for a message m.
According to the heavy row lemma with probability 1/2 we are on situated on
a heavy row H.

Let TA ← HA(m, [sA]A ⊗A yeA

A). Define OH′ as a random oracle identical
to OH except for the (0,m, [sA]A ⊗A yeA

A) query to which OH′ responds with a
random element T ′

A �= TA. We restart A at most 2/ε′ and with a probability of
1/2 · (1 − (1 − ε′/2)2/ε′

) > 3/10 we will be situated on H. Hence, we obtain a
new forgery σ′ = 〈s′

A, s′
D, e′

A, f ′〉.
Note that TA = eA+f �= e′

A+f ′ = T ′
A. If eA = e′

A then f �= f ′, so these values
must have been computed before the relevant H queries and satisfy f = TA −eA

and f ′ = T ′
A − e′

A. However, f is also an output of HK and the probability that
an output from some HK query and some H query matches is at most qhqk/q,
where qk is the number of random oracle queries to HK . Hence, with probability
1 − qhqk/q we have f = f ′ and eA �= e′

A. In this case, using techniques similar
to Theorem 2’s proof we manage to find a preimage of [·]B .

Third Case. The proof is similar to the second case and thus is omitted. �

Theorem 5. The 1n-KSCS scheme is fair in the ROM.

Proof. The challenger generates a set of participants U , where |U | = ρ and ρ is
a polynomial function in λ. For each participant T selects the associated public
parameters (in accordance to the security parameter λ) and generates their secret
and public keys (xi, yi). We simulate the adversary’s random oracles, and the
KeyGen and KeyReveal algorithms as in Theorem 4’s proof. Also, the challenger
responds to aSign and SKExtract queries using its knowledge of the private keys.
In the final stage of the fairness game, A outputs a signature σ = 〈s, e, f〉.

In the first case f was obtained by a KeyGen query, but no KeyReveal query
was made for f . Since HK is a random oracle, this event happens with probability
qk/q. Thus, is negligible.

In the second case (k, σ) is accepted by the Verify algorithm and A manages
to produce a second signature σ′ = 〈s′, e′, f〉 that is accepted by the aVerify
algorithm, but (k, σ′) is rejected by the Verify algorithm. Since, (k, σ) is accepted
by Verify, we have f = KeyGen(k). Since σ and σ′ share the value f , we must
have that (k, σ′) is also accepted by the Verify algorithm. This is a contradiction.

�

5 Conclusion

Our concurrent signature protocol is the abstraction of a large class of protocols
that allow users with independently selected underlying problems to commonly

18 G. Teşeleanu

produce an ambiguous signature. We have managed to relate the presented pro-
tocol’s security to the hardness of inverting one-way homomorphisms. Note that
the presented list of homomorphisms examples is by no means exhaustive.

A 1-out-of-n Signatures Without Key Separation

A.1 Description

In this section we present a more efficient 1-out-of-n signature. This signature
only works when all the participants use the same underlying commutative
group. We will denote the following signature with 1n-NKSS.

Setup(λ): Choose two commutative groups G, H, a homomorphism [·] : G → H

and a hash function H : {0, 1}∗ → C ⊆ N. Note that we require that |G| ≥ 2λ.

For each user, choose xi
$←− G and compute yi ← [xi]. Output the public key

pki = yi. The secret key is ski = xi.
Listing(): Collect the public keys and randomly shuffle them. Store the result

into a list L = {yj}j∈[0,n) and output L.
Sign(m, skk,L): To sign a message m ∈ {0, 1}∗, first generate the random ele-

ments α
$←− G and cj

$←− C, where j ∈ [0, n) \ {k}. Then compute

z ← [α] ⊗ yc0
0 ⊗ . . . ⊗ y

ck−1
k−1 ⊗ y

ck+1
k+1 ⊗ . . . ⊗ y

cn−1
n−1

c ← H(L,m, z)
ck ← c − c0 − . . . − ck−1 − ck+1 − . . . − cn−1 mod c

s ← α � x−ck
k .

Output the signature (s,W), where W = {cj}j∈[0,n).
Verify(m, s,W,L): Compute the values u ←

∑n−1
j=0 cj mod c and v ← [s] ⊗

(⊗n−1
j=0 y

cj
j). Output true if and only if u ≡ H(L,m, v) mod c. Otherwise,

output false.

Correctness. If the pair (s,W) is generated according to the scheme, it is easy
to see that

v = [s] ⊗ (⊗n−1
j=0 y

cj
j) = [α] ⊗ [xk]−ck ⊗ (⊗n−1

j=0 y
cj
j) = z

and

u ≡
n−1∑

j=0

cj ≡ c ≡ H(L,m, z) ≡ H(L,m, v) mod c.

Concurrent Signatures from a Variety of Keys 19

A.2 Security Analysis

Theorem 6’s proof is similar to Theorem 1’s proof and thus is omitted.

Theorem 6. The 1n-NKSS scheme is perfectly signer ambiguous.

Theorem 7. If the following statements are true

– an euf-cmcpa attack on the 1n-NKSS has non-negligible probability of suc-
cess in the ROM,

– an 	 ∈ Z is known such that gcd(c0 − c1,) = 1 for all c0, c1 ∈ C with c0 �= c1,
– for all i values, ui ∈ G are known such that [ui] = y�

i ,

then the homomorphism [·] can be inverted in polynomial time.

Proof (sketch). In order to make A work properly we simulate the random oracle
that correspond to the hash function (see Algorithm 1 with i always set to 0)
and the signing oracle (see Algorithm 3). Note that A requests at most qs and
qh signing and, respectively, random oracle queries.

The signing oracle OS fails and returns ⊥ only if we cannot assign c to
(Lj ,mj , e) without causing an inconsistency in T0. Thus, OS is successful with
probability at least (1 − qh/q)qs ≥ 1 − qhqs/q. The success probability of A in
the simulated environment is (1 − qhqs/q)ε, where ε is A’s success probability.

Let (m, s, {ci}i∈[0,n′), L) be A’s forgery, where |L| = n′. Define z ← [s] ⊗
(⊗n′−1

i=0 yci
i). Due to the ideal randomness of OH , A queries OH on (L,m, z) with

probability 1 − 1/c. Let k ∈ [0, n′) be the index of the user associated with the
forgery. Then, according to Theorem 6, A will guess k with a probability of
1/n′. If we invoke A at most 1/ε′ times, where ε′ = n′(1 − qhqs/q)(1 − 1/c)ε,
then we will find at least one (Θ,Ω,OH) for which A knows k with probability
3/5. According to the heavy row lemma we are situated on a heavy row H with
probability 1/2.

Define OH′ as a random oracle identical to OH except for the (L,m, z) query
to which OH′ responds with a random element c′ �= c. We rewind the simulation
and run A at most 2/ε′ times, but with access to OH′ instead of OH . We will
be situated on H with a probability of 3/10. Now we can compute

x̃k = ua � (s′−1
� s)b,

where a and b are computed using Euclid’s algorithm such that 	a+(c′−c)b = 1.
As in Theorem 2’s proof, we obtain [x̃k] = yk.

The overall success probability is 9/200 = 3/5 · 3/10 and A is invoked at
most 3/ε′ times. �

20 G. Teşeleanu

Algorithm 3: Signing oracle OS simulation.
Input: A signature query (mj , Lj) from A

1 for i ∈ [0, |Lj |) do

2 si
$←− G

3 ci
$←− C

4 ei ← [si] ⊗ yci
i

5 end for
6 s ← s0 � . . . � s|Lj |−1

7 c ← c0 + . . . + c|Lj |−1

8 e ← e0 ⊗ . . . ⊗ e|Lj |−1

9 if �h such that {Lj , mj , e, h} ∈ T0 then
10 Append {Lj , mj , e, c} to T0

11 return (s, {ci}i∈[0,|Lj |))
12 else
13 return ⊥
14 end if

B Same Group 1-out-of-n Concurent Signature

B.1 Description

Based on the 1n-NKSS signature we introduce a more efficient concurrent signa-
ture (1n-NKSCS) in the non-separable model. In this case, the scheme only uses
two cryptographic hash functions H1,H2 : {0, 1}∗ → C. The detailed protocol is
presented in Fig. 3.

Correctness. If the signature 〈sA, eA, f〉 is generated according to the scheme, it
is easy to see that

[sA] ⊗ yeA

A ⊗ yf
B = [tA] ⊗ [xA]−eA ⊗ yeA

A ⊗ yf
B = [tA] ⊗ yf

B .

Similarly, we can show correctness for Bob’s side.

B.2 Security Analysis

Theorem 8 is a direct consequence of Theorem 6 and Theorems 9 and 10’s proofs
are omitted due to their similarity to Theorems 4 and 5’s proofs.

Theorem 8. The 1n-NKSCS scheme satisfies the concurrent signature ambi-
guity property in the ROM.

Theorem 9. Let i ∈ {A,B}. If the following statements are true

– an euf-cs attack on the 1n-NKSCS has non-negligible probability of success
in the ROM,

– an 	 ∈ Z is known such that gcd(c0 − c1,) = 1 for all c0, c1 ∈ C with c0 �= c1,
– for all i values, ui ∈ G are known such that [ui] = y�

i ,

then the homomorphism [·] can be inverted in polynomial time.

Theorem 10. The 1n-NKSCS scheme is fair in the ROM.

Concurrent Signatures from a Variety of Keys 21

Alice Bob

k
f

tB
fB
eB mod
sB
σB

T

mod then

tA
fA
eA
sA
σA

mod then

Fig. 3. Same group concurrent signature.

References

1. Abe, M., Ohkubo, M., Suzuki, K.: 1-out-of-n Signatures from a Variety of Keys.
In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp. 415–432. Springer,
Heidelberg (2002). https://doi.org/10.1007/3-540-36178-2 26

2. Asokan, N., Schunter, M., Waidner, M.: Optimistic protocols for fair exchange. In:
CCS 1997, pp. 7–17. ACM (1997)

3. Baum-Waidner, B., Waidner, M.: Round-optimal and abuse-free optimistic multi-
party contract signing. In: Montanari, U., Rolim, J.D.P., Welzl, E. (eds.) ICALP
2000. LNCS, vol. 1853, pp. 524–535. Springer, Heidelberg (2000). https://doi.org/
10.1007/3-540-45022-X 44

4. Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for designing
efficient protocols. In: CCS 1993, pp. 62–73. ACM (1993)

5. Cachin, C., Camenisch, J.: Optimistic fair secure computation. In: Bellare, M. (ed.)
CRYPTO 2000. LNCS, vol. 1880, pp. 93–111. Springer, Heidelberg (2000). https://
doi.org/10.1007/3-540-44598-6 6

6. Chen, L., Kudla, C., Paterson, K.G.: Concurrent signatures. In: Cachin, C.,
Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 287–305.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24676-3 18

https://doi.org/10.1007/3-540-36178-2_26
https://doi.org/10.1007/3-540-45022-X_44
https://doi.org/10.1007/3-540-45022-X_44
https://doi.org/10.1007/3-540-44598-6_6
https://doi.org/10.1007/3-540-44598-6_6
https://doi.org/10.1007/978-3-540-24676-3_18

22 G. Teşeleanu

7. Ferradi, H., Géraud, R., Maimuţ, D., Naccache, D., Pointcheval, D.: Legally fair
contract signing without keystones. In: Manulis, M., Sadeghi, A.-R., Schneider, S.
(eds.) ACNS 2016. LNCS, vol. 9696, pp. 175–190. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-39555-5 10

8. Garay, J., MacKenzie, P., Prabhakaran, M., Yang, K.: Resource fairness and com-
posability of cryptographic protocols. In: Halevi, S., Rabin, T. (eds.) TCC 2006.
LNCS, vol. 3876, pp. 404–428. Springer, Heidelberg (2006). https://doi.org/10.
1007/11681878 21

9. Garay, J.A., Jakobsson, M., MacKenzie, P.: Abuse-free optimistic contract signing.
In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 449–466. Springer,
Heidelberg (1999). https://doi.org/10.1007/3-540-48405-1 29

10. Goldwasser, S., Levin, L.: Fair computation of general functions in presence of
immoral majority. In: Menezes, A.J., Vanstone, S.A. (eds.) CRYPTO 1990. LNCS,
vol. 537, pp. 77–93. Springer, Heidelberg (1991). https://doi.org/10.1007/3-540-
38424-3 6

11. Guillou, L.C., Quisquater, J.-J.: A practical zero-knowledge protocol fitted to secu-
rity microprocessor minimizing both transmission and memory. In: Barstow, D.,
et al. (eds.) EUROCRYPT 1988. LNCS, vol. 330, pp. 123–128. Springer, Heidelberg
(1988). https://doi.org/10.1007/3-540-45961-8 11

12. Maimuţ, D., Teşeleanu, G.: A unified security perspective on legally fair contract
signing protocols. In: Lanet, J.-L., Toma, C. (eds.) SECITC 2018. LNCS, vol.
11359, pp. 477–491. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
12942-2 35

13. Maurer, U.: Unifying zero-knowledge proofs of knowledge. In: Preneel, B. (ed.)
AFRICACRYPT 2009. LNCS, vol. 5580, pp. 272–286. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-02384-2 17

14. Micali, S.: Simple and fast optimistic protocols for fair electronic exchange. In:
PODC 2003, pp. 12–19. ACM (2003)

15. Ohta, K., Okamoto, T.: On concrete security treatment of signatures derived from
identification. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 354–
369. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0055741

16. Pinkas, B.: Fair secure two-party computation. In: Biham, E. (ed.) EUROCRYPT
2003. LNCS, vol. 2656, pp. 87–105. Springer, Heidelberg (2003). https://doi.org/
10.1007/3-540-39200-9 6

17. Schnorr, C.P.: Efficient identification and signatures for smart cards. In: Brassard,
G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 239–252. Springer, New York (1990).
https://doi.org/10.1007/0-387-34805-0 22

https://doi.org/10.1007/978-3-319-39555-5_10
https://doi.org/10.1007/978-3-319-39555-5_10
https://doi.org/10.1007/11681878_21
https://doi.org/10.1007/11681878_21
https://doi.org/10.1007/3-540-48405-1_29
https://doi.org/10.1007/3-540-38424-3_6
https://doi.org/10.1007/3-540-38424-3_6
https://doi.org/10.1007/3-540-45961-8_11
https://doi.org/10.1007/978-3-030-12942-2_35
https://doi.org/10.1007/978-3-030-12942-2_35
https://doi.org/10.1007/978-3-642-02384-2_17
https://doi.org/10.1007/BFb0055741
https://doi.org/10.1007/3-540-39200-9_6
https://doi.org/10.1007/3-540-39200-9_6
https://doi.org/10.1007/0-387-34805-0_22

A Generic Construction of Fuzzy
Signature

Jie Song1 and Yunhua Wen1,2(B)

1 School of Computer Science and Technology, Donghua University,
Shanghai 200240, China

2202559@mail.dhu.edu.cn, yhwen@dhu.edu.cn
2 State Key Laboratory of Information Security, Institute of Information

Engineering, Chinese Academy of Sciences, Beijing 100093, China

Abstract. Fuzzy signature is a signature scheme in which the signing key
is no longer uniformly generated nor precisely reproducible but a fuzzy
string with enough entropy such as biometric information. In this paper,
we give a variant definition of fuzzy signature and propose a generic con-
struction of fuzzy signature which uses a fuzzy extractor and a signature
scheme with simple key generation process as building blocks. Meanwhile,
we give two instantiations of our generic construction. The first instanti-
ation results in a fuzzy signature scheme which is secure under the com-
putational Diffie-Hellman (CDH) assumption over bilinear groups in the
standard model. The second instantiation results in a fuzzy signature that
is secure in the random oracle model under the worst-case hardness of the
˜O(n1.5)-SIVP problem in general lattices. Moreover, compared with pre-
vious work, our fuzzy signatures have weaker requirements for the fuzzy
signing key, which makes our fuzzy signatures more practical.

Keywords: Digital signature · Fuzzy extractor · Fuzzy signature

1 Introduction

The security of cryptographic primitives depends on the security of private key.
The private key generally needs to be uniformly distributed and carefully kept.
Once the private key is leaked, there is no security at all. Private key is hard to
remember, and securely keeping it puts a burden on the user. Since biometric
information is inherent and unique, one of the promising approaches to funda-
mentally solve this problem is to use biometric information (e.g., fingerprint [11],
face and iris [4]) as a cryptographic private key. However, since biometric data is
not uniformly distributed and fluctuates each time when it is captured, it cannot
be used directly as a cryptographic key.

A lot of works has been devoted to researching the application of biometric
information in cryptography. For example, fuzzy extractor [6], fuzzy signature
[14] and biometric-based remote user authentication [1,2,7].

In this paper, we will focus on the study of fuzzy signature [13]. Fuzzy sig-
nature is a digital signature in which the signing key need not to be uniformly
c© Springer Nature Switzerland AG 2021
Y. Yu and M. Yung (Eds.): Inscrypt 2021, LNCS 13007, pp. 23–41, 2021.
https://doi.org/10.1007/978-3-030-88323-2_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-88323-2_2&domain=pdf
https://doi.org/10.1007/978-3-030-88323-2_2

24 J. Song and Y. Wen

distributed or accurate reproducible. We call such signing key as fuzzy signing
key. With fuzzy signature people can use his/her biometric characteristics (such
as retina, iris, face and fingerprint) as the fuzzy signing key to sign messages. In
fuzzy signature, the key generation algorithm KeyGenF takes the fuzzy signing
key sk (a sample of a user’s biometric characteristic) as input and outputs a
verification key vk. The signing algorithm SignF takes the fuzzy signing key sk′

(another sample of the same biometric characteristic) and a message m as input,
and outputs a signature σ. The verification algorithm VerifyF on input vk,m, σ
outputs 0/1 meaning σ is invalid or valid. If the two fuzzy signing keys sk′ and
sk are close enough, the signature σ will be verified as valid by the verification
key vk, where vk is generated by sk.

Takahashi et al. [13] gave the formal definition of fuzzy signature. They gave a
generic construction of fuzzy signature based on a signature scheme with certain
homomorphic properties regarding keys and signatures, and a tool called linear
sketch. They showed a concrete instantiation of their generic construction based
on the Waters signature scheme [15]. However, the resulting fuzzy signature has
a weakness that the fuzzy signing key sk needs to be uniformly distributed. In
another word, if a user wants to use his/her biometric characteristic such as finger-
print as the fuzzy signing key, then the sample of his/her fingerprint is assumed to
be uniformly distributed. It seems impossible that samples from biometric charac-
teristics follow the uniform distribution. In order to solve this problem, in paper [9],
Matsuda et al. gave a new construction of fuzzy signature by relaxing the require-
ments of the building blocks in [13]. By instantiation, they got a fuzzy signature
which does not need the fuzzy signing key uniform anymore, but the resulting fuzzy
signature is secure only in the random oracle model.

Takahashi et al. also defined the security model of fuzzy signature [13]. Recall
that the key generation algorithm of fuzzy signature KeyGenF on input a fuzzy
signing key sk outputs a verification key vk and the signing algorithm SignF on
input the fuzzy signing key sk′ and a message m outputs a signature σ, where
sk and sk′ are two different samples of the same biometric characteristic. In
their security model, it is required that the error distribution e between the two
different samples sk and sk′ is independent of the biometric characteristic. This
requirement makes the fuzzy signature far from practical application because
it seems impossible that the error distribution between two different samples is
independent of the biometric characteristic. A natural question arises:

Is it possible to design a fuzzy signature which has a more practical require-
ment for the fuzzy signing key?

1.1 Our Contributions

We answer the above question in the affirmative. Our contributions can be listed
as follows:

– We give a formal definition of fuzzy signature which is a little different from
that by Takahashi et al. [14]. The difference between our fuzzy signature and
Takahashi et al. is that when generating a signature of a message m, our

A Generic Construction of Fuzzy Signature 25

signature algorithm needs both the fuzzy signing key sk and the verification
key vk as input while Takahashi et al.’s does not need vk.

– We define a new security model of fuzzy signature which is called m-
existentially unforgeable under chosen message attack (m-EUF-CMA) secu-
rity. In this security model, we only require that the fuzzy signing key sk has
entropy larger than m and the error distribution between different samples
sk and sk′ can be arbitrary depend on the biometric characteristic.

– We provide a generic construction of fuzzy signature based on a fuzzy extrac-
tor (FE) and a signature scheme (SIG) with a simple key generation process.
The simple key generation process says that the key generation algorithm
first picks a secret key uniformly at random from the secret key space, then
computes the corresponding verification key deterministically from the secret
key.

– We give two instantiations of our generic construction.
• When instantiating SIG with the Waters signature scheme [15] and FE

constructed in [6], we obtain a fuzzy signature scheme which is secure
in the standard model under the computational Diffie-Hellman (CDH)
assumption in bilinear groups and only assumes that the fuzzy signing
key has enough entropy.

• When instantiating SIG with the lattice-based signature constructed in
[8] and FE constructed in [6], we obtain a fuzzy signature scheme which
is secure in the random oracle model based on the worst-case hardness of
the ˜O(n1.5)-SIVP problem in general lattices and only assumes that the
fuzzy signing key has enough entropy.

Our fuzzy signatures have a weaker requirement for the fuzzy signing key, which
makes the fuzzy signature more practical. In Table 1, we compare our work with
previous fuzzy signature schemes.

Table 1. Comparison with some known fuzzy signature schemes. Let SK be the dis-
tribution of the fuzzy signing key and |SK| be the size of key space SK. “Entropy
Requirement” asks what is the entropy requirement for the fuzzy signing key. “Cor-
relation” asks the relationship of error distribution e and the biometric characteristic
W , where e is the error distribution between the fuzzy signing key sk and sk′ (two
samples of the same biometric characteristic W). “Assumption” asks which assumption
the fuzzy signature is based on. “Standard Model” asks whether the fuzzy signature is
secure in the standard model.

Fuzzy Signature Schemes Entropy Requirement Correlation Assumption
Stantard

Model

TMMHN[13] H∞(SK) = log|SK| Independent CDH Yes

MTMH [9] H∞(SK) ≥ m Independent DL No

Our first instantiation H∞(SK) ≥ m Arbitrary CDH Yes

Our second instantiation H∞(SK) ≥ m Arbitrary ˜O(n1.5)-SIVP No

26 J. Song and Y. Wen

Fig. 1. The construction of fuzzy signature

1.2 Our Approach

Our construction makes use of a fuzzy extractor and a signature scheme with a
simple key generation process. Recall that a fuzzy extractor consists of two effi-
cient algorithms (Gen,Rep). The generation algorithm Gen on input a sample w
of a biometric characteristic W (such as retina, iris, face and fingerprint) outputs
a public helper string P together with an extracted string R. The reproduction
algorithm Rep on input w′ and the public helper string P will reproduce R if
w′ is close enough to w. The security of fuzzy extractor guarantees that R is
(pseudo-)random if W has enough entropy. A signature scheme with a simple
key generation process says that there exists a deterministic PPT algorithm KG
such that the key generation algorithm KeyGen can be written as follows:

KeyGen : [sk ←$ SK; vk ← KG(sk); Return(vk, sk).],

where SK is the secret key space of the signature.
Our generic construction of fuzzy signature is shown in Fig. 1 in which we

omit the public parameters. More precisely,

– The key generation algorithm KeyGenF on input the fuzzy signing key sk
which is a sample of a biometric characteristic (e.g., fingerprint), outputs the
verification key vk. It proceeds as follow, the fuzzy signing key sk is fed to
the generation algorithm Gen of fuzzy extractor. The generation algorithm
Gen outputs a public helper string P and a uniformly random string which
will be served as the signing key ˜sk of the underlying signature scheme (not
fuzzy). The deterministic PPT algorithm KG on input ˜sk outputs ˜vk. The
verification key is vk = (˜vk, P).

– The signature algorithm SignF on input a fuzzy signing key sk′ and the veri-
fication key vk will invoke the reproduction algorithm Rep to reproduce the
signing key ˜sk of the underlying signature scheme(not fuzzy) with the help
of P , then use ˜sk to sign the message m.

A Generic Construction of Fuzzy Signature 27

– The verification algorithm VerifyF on input (vk,m, σ), parses vk = (˜vk, P)
and invokes the verification algorithm of the underlying signature scheme
b ← Verify(˜vk,m, σ).

Correctness. The key generation algorithm on input sk outputs a verification
key vk. We need to show that for any sk′ close enough to sk, the signature
generated by sk′ will be verified as valid. Observe that the signature algorithm
SignF on input a fuzzy signing key sk′ and the verification key vk will invoke
the reproduction algorithm Rep to reproduce the signing key ˜sk and use ˜sk as
the signing key to sign the message m. By the correctness of fuzzy extractor,
if sk and sk′ are close enough, then ˜sk can be accurately reproduced, then by
the correctness of the underlying signature scheme, the signature by sk′ can be
verified valid.

Security. The security of our generic construction of fuzzy signature scheme can
be reduced to the security of the underlying signature scheme and the underlying
fuzzy extractor. The security of underlying fuzzy extractor guarantees that if
the input sk has enough entropy, then the extracted signing key ˜sk is uniformly
distributed. By the correctness of fuzzy extractor, if sk′ is close enough to sk,
then ˜sk will always be accurately reproduced. Then the security of the fuzzy
signature can be reduced to the security of the underlying signature scheme.

2 Preliminaries

Let N, Z and R denote the sets of natural numbers, integers and real numbers,
respectively. For a natural number n ∈ N, we define [n] := {1, · · · , n}. The notion
“x ← y” denotes that y is (deterministically) assigned to x. For a finite set S, the
notion “|S|” refers to the size of S, and the notion “x ←$ S” refers to that x is
uniformly chosen from S. For two bit-strings x and y, the notion |x| refers to the
bit length of x, and the notion x ‖ y refers to the concatenation of x and y. “PPT”
is short for probabilistic polynomial-time. If A is a probabilistic algorithm, the
notion y ← A(x; r) refers to that A runs with input x and randomness r and
outputs y. For a primitive XX and a security notion YY, by ExptYY

XX,A(k) ⇒ 1, we
mean that the security experiment outputs 1 after interacting with an adversary
A. By AdvYY

XX,A(k), we denote the advantage of a PPT adversary A and define
AdvYY

XX(λ) := maxPPTA AdvYY
XX,k(k).

Definition 1 (Negligible function). A function f is negligible if for every
polynomial p(·) there exists an N such that for all integers n > N it holds that
f(n) < 1

p(n) .

Definition 2 (Metric spaces). A metric space is a set W with a distance
function dis : W × W → R

+ = [0,∞). For all x, y, z ∈ W, the distance function
should satisfy the following conditions:

1. Reflexivity : dis(x, y) = 0 if and only if x = y;

28 J. Song and Y. Wen

2. Symmetry : dis(x, y) = dis(y, x);
3. Triangle inequality : dis(x, z) ≤ dis(x, y) + dis(y, z).

We usually consider multi-dimensional metric spaces of form W = Fn for some
alphabet F (usually a finite filed Fp) equipped with the Hamming distance. For
any two element x, y ∈ W, the Hamming distance dis(x, y) is the number of
coordinates in which they differ. For an element x ∈ W, let dis(x) := dis(x, 0).

Definition 3 (Min-entropy). [12] For a random variable X, the min-entropy
of X, denoted by H∞(X), is defined by

H∞(X) := −log2(maxx Pr[X = x]).

Definition 4 (Average min-entropy). [12] For two random variables X and
Y, the average min-entropy of X given Y, denoted by ˜H∞(X|Y), is defined by

˜H∞(X|Y) := −log2(E
y←Y

[max
x∈X

Pr[X = x|Y = y]]).

Definition 5 (Statistical distance). The statistical distance between two
probability distributions A and B is

SD(A,B) =
1
2

∑

v

|Pr(A = v) − Pr(B = v)|.

Definition 6 (Universal hash functions). [3] A family of hash functions
HI= {Hi : X → Y} is universal, if for all distinct x, x′ ∈ X ,

Pr[Hi : Hi(x) = Hi(x′)] ≤ 1
|Y| ,

where i is uniformly chosen from I.

Definition 7 (Strong extractor). [10] A function Ext : X × I → T is an
average-case (X ,m, T , ε)-strong extractor with seed I ∈ I, if for any variable X
over X and any variable Y such that H̃∞(X|Y) ≥ m, we have

SD((Ext(X, I), Y, I), (U, Y, I)) ≤ ε,

where I and U are uniformly distributed over I and T , respectively.

In particular, universal hash functions are average-case (X ,m, T , ε)-strong
extractors.

Definition 8 (Secure sketch). [6] A (W,m, m̃, t)-secure sketch consists of a
pair of PPT algorithms (SS,Rec) with the following specifications:

– SS(w) on input w ∈ W outputs a sketch s.
– Rec(w′, s) on input w′ ∈ W and a sketch s outputs w̃.

A Generic Construction of Fuzzy Signature 29

It also satisfies the following properties:
Correctness. If dis(w,w′) ≤ t, then w = Rec(w′,SS(w)).
Privacy. For any distribution W over W, if H∞(W) ≥ m, then
˜H∞(W |SS(W)) ≥ m̃.

An instantiation of secure sketch is the syndrome-based secure sketch [5]. Recall
that an efficiently decodable [n, k, 2t + 1]F -linear error correcting code C can
correct up to t errors and it is a linear subspace of Fn of dimension k. The parity-
check matrix of C is an (n−k)×n matirx H whose rows generate the orthogonal
space C⊥. For any v ∈ Fn, the syndrome of v is defined by syn(v) := Hv. Note
that v ∈ C ⇔ syn(v) = 0. For any c ∈ C, syn(c + e) = syn(c) + syn(e) = syn(e).
A linear error-correcting code implies a syndrome-based secure sketch as shown
below.

– SS(w) := syn(w) = s.
– Rec(w′, s) := w′ − Decode(syn(w′) − s).

2.1 Bilinear Groups

We say that BG = (p,G,GT , g, e) constitutes (symmetric) bilinear groups if p is
a prime, G and GT are cyclic groups with order p, g is a generator of G, and
e : G × G → GT is an efficiently (in |p|) computable mapping satisfying the
following two properties:

– Bilinearity: For all g ∈ G and a, b ∈ Zp, it holds that e(ga, gb) = e(g, g)ab.
– Non-degeneracy: For all generators g of G, e(g, g) ∈ GT is not the identity

element of GT .

For convenience, we denote by BGGen an algorithm (referred to as a “bilinear
group generator”) that, on input 1k, outputs a description of bilinear groups
BG = (p,G,GT , g, e) such that |p| = Θ(k).

2.2 Signature Scheme

Definition 9 (Signature scheme). A signature scheme SIG is a tuple of PPT
algorithms (Setup,KeyGen,Sign,Verify) satisfying the following:

– Setup(k) → pp. The setup algorithm Setup takes a security parameter k as
input, and outputs the public parameter pp.

– KeyGen(pp) → (vk, sk). The key generation algorithm KeyGen takes the public
parameter pp as input, and outputs a verification/signing key pair (vk, sk).

– Sign(pp, sk,m) → σ. The signing algorithm Sign takes the public parameter
pp, the signing key sk and a message m from message space M as input, and
outputs a signature σ.

– Verify(pp, vk,m, σ) → 1/0. The (deterministic) verification algorithm Verify
takes the public parameter pp, a verification key vk, a message m and a
signature σ as input, and outputs a bit b, with b = 1 meaning valid and b = 0
meaning invalid.

30 J. Song and Y. Wen

Correctness. We require that for all pp ← Setup(k), (vk, sk) ← KeyGen(pp),
and messages m ∈ M, we have

Verify(pp, vk,m,Sign(pp, sk,m)) = 1.

Definition 10 (EUF-CMA security). A signature scheme SIG is said to be
existentially unforgeable under non-adaptive chosen message attack (EUF-CMA),
if for all PPT adversaries A,

AdvEUF-CMA
SIG,A (k) := Pr[ExptEUF-CMA

SIG,A (k) ⇒ 1] � negl(k).

Here ExptEUF-CMA
SIG,A (k) is an experiment played between an adversary A and a

challenger C as follows.

ExptEUF-CMA
SIG,A (k):

1. The challenger C invokes pp ← Setup(k), generates (vk, sk) ← KeyGen(pp)
and initializes the set of chosen-message queries Q = ∅ issued by the adver-
sary. Subsequently, it returns pp and vk to A.

2. The adversary A may adaptively make signing oracle queries of the following
form
– A sends a message mi ∈ M to the challenger C.
– C invokes σi ← Sign(pp, sk,mi), adds mi to the set Q and returns σi to

A.
3. Finally, A submits a message-signature pair (m∗, σ∗). The experiment outputs

1 if m∗ /∈ Q ∧ Verify(pp, vk,m∗, σ∗) = 1 and 0 otherwise.

Simple Key Generation Process. We will use signature schemes with a struc-
tural property which is called the simple key generation process property. Simple
key generation process property says that the key generation algorithm KeyGen
first picks a secret key sk uniformly at random from the secret key space, then
computes the corresponding verification key vk deterministically from sk.

Definition 11 (Simple key generation process, [14]). Let SIG=
(Setup,Ke-yGen,Sign,Verify) be a signature scheme. We say SIG has a simple
key generation process if each pp output by Setup specifies the secret key space
SKpp, and there exists a deterministic PPT algorithm KG such that the key
generation algorithm KeyGen(pp) can be written as follows:

KeyGen(pp) : [sk ←$ SKpp; vk ← KG(pp, sk);Return (vk, sk).].

2.3 Fuzzy Extractor

Definition 12 (Fuzzy extractor). [6] An (W,m,R, t, ε)-fuzzy extractor FE =
(Init,Gen,Rep) consists of three PPT algorithms:

– Init(k) → pp. The initialization algorithm Init takes a security parameter k as
input, and outputs the public parameter pp.

A Generic Construction of Fuzzy Signature 31

– Gen(pp,w) → (P,R). The generation algorithm Gen takes the public param-
eter pp and w ∈ W as input, and outputs a public helper string P and an
extracted string R ∈ R.

– Rep(pp, P,w′) → R/⊥. The reproduction algorithm Rep takes pp, P and w′ ∈
W as input, and outputs an extracted string R or ⊥.

Correctness. If dis(w,w′) ≤ t, then for all (R,P) ← Gen(pp,w), it holds that
R ← Rep(pp, P,w′).

Security. Let W be a distribution on W, if H∞(W) ≥ m, then for all PPT
adversaries A,

AdvindFE,A(k) = |Pr[A(P,R) ⇒ 1] − Pr[A(P,U) ⇒ 1]| ≤ ε,

where (P,R) ← Gen(pp,w), w ← W and U ←$ R.

3 Fuzzy Signature

A fuzzy signature scheme is a special signature scheme whose signing key is
no longer required to be uniformly random, but can be a noise random string
such as biometric data. We call such signing key as fuzzy signing key. Here, we
give the formal definition of fuzzy signature, which is a little different from the
definition by Takahashi et al. [14]. The difference between our fuzzy signature
and Takahashi et al.’s is that when generating a signature of a message m, our
signature algorithm not only needs the fuzzy signing key but also needs vk as
input while Takahashi et al.’s does not need vk.

Definition 13 (Fuzzy signature). Let SK be the fuzzy signing key space and
M be the message space. An (SK,M, t)-fuzzy signature scheme SIGF consists of
the following four PPT algorithms (SetupF,KeyGenF,SignF,VerifyF):

– SetupF(k) → pp. The setup algorithm SetupF takes a security parameter k as
input, and outputs a public parameter pp.

– KeyGenF(pp, sk) → vk. The key generation algorithm KeyGenF takes the pub-
lic parameter pp and a fuzzy signing key sk ∈ SK as input, and outputs a
verification key vk.

– SignF(pp, vk, sk′,m) → σ. The signing algorithm SignF takes the public param-
eter pp, the verification key vk, a new fuzzy signing key sk′ ∈ SK and a
message m ∈ M as input, and outputs a signature σ.

– VerifyF(pp, vk,m, σ) → 0/1. The verification algorithm VerifyF takes the public
parameter pp, the verification key vk, the message m and the signature σ as
input, and outputs a bit 1 (accept) or 0 (reject).

Correctness. We require that for all pp ← SetupF(k), vk ← KeyGenF(pp, sk),
and messages m ∈ M, if dis(sk, sk′) ≤ t, it holds that

VerifyF(pp, vk,m,SignF(pp, vk, sk′,m)) = 1.

32 J. Song and Y. Wen

In [14], Takahashi et al. assumed that the error distribution between sk and
sk′ (two samples of the same biometric characteristic) are independent of the
biometric characteristic. More precisely, they assume that for all objects W that
produce the fuzzy data (which will be used as the fuzzy signing key), if W
produces a data sk at the first measurement, and if the same object is measured
next time, then the measured data sk′ follows the distribution {e ← Φ; sk′ ←
sk + e : sk′}, and error distribution Φ is independent of W . This requirement
is too strong since it seems impossible that error distribution between different
samples is independent of the biometric characteristic. So we try to relax the
requirement in [14] and define the following security model of fuzzy signature.

Definition 14 (m-EUF-CMA security). An (SK,M, t)- fuzzy signature sch-
eme is said to be m-existentially unforgeable under non-adaptive chosen message
attack (m-EUF-CMA) secure, if for any distribution SK over metric space SK
with H∞(SK) ≥ m, for any PPT adversaries A, it holds that

Advm-EUF-CMA
SIGF,A (k) := Pr[Exptm-EUF-CMA

SIGF,A (k) ⇒ 1] � negl(k).

Here Exptm-EUF-CMA
SIG,A (k) is an experiment played between an adversary A and a

challenger C as follows.

Exptm-EUF-CMA
SIG,A (k):

1. The challenger C invokes pp ← SetupF(k), samples sk ← SK, generates
vk ← KenGenF(pp, sk) and initializes the set of chosen-message queries Q = ∅
issued by the adversary. Subsequently, it returns pp and vk to A.

2. The adversary A may adaptively make signing oracle queries of the following
form
– A sends a message mi ∈ M and a function fi ∈ Φ to challenger C, where

Φ := {∀sk ∈ SK, f(sk) < t|f : SK → SK}.
– C invokes σi ← SignF(pp, vk, sk + fi(sk),mi), adds mi to the set Q and

returns σi to A.
3. Finally, A submits a message-signature pair (m∗, σ∗). The experiment outputs

1 if m∗ /∈ Q ∧ VerifyF(pp, vk,m∗, σ∗) = 1 and 0 otherwise.

Remark 1. In our security model, when adversary A making a signing oracle
query of message mi, A will send a function fi ∈ Φ to challenger C as well. Note
that Φ := {∀sk ∈ SK, f(sk) < t|f : SK → SK}. In this way, we model that the
error distribution between different samples of the same biometric characteristic
can be arbitrary depend on the biometric characteristic except the error is bound
by t. It is reasonable to bound the error, because different samples of the same
biometric characteristic are similar. Meanwhile, it is necessary to bound the
error, otherwise there is no security at all.

A Generic Construction of Fuzzy Signature 33

4 Construction of Fuzzy Signature

Figure 2 illustrates our construction of fuzzy signature SIGF = (SetupF,KeyGenF,
SignF,VerifyF) which makes use of the following building blocks:

– A signature scheme SIG=(Setup,KeyGen,Sign,Verify) with a simple key gen-
eration process (i.e., there exists a deterministic PPT algorithm KG). Let its
secret key space be ˜SK and message space be M.

– An (SK,m, ˜SK, t, ε)-fuzzy extractor FE=(Init,Gen,Rep).

SetupF(k):

pp1 Init(k)
pp2 Setup(k)
pp (pp1, pp2)
Return pp

KeyGenF(pp, sk):

(pp1, pp2) pp

(P, ˜sk) Gen(pp1, sk)
˜vk KG(pp2, ˜sk)
vk (vk, P)
Return vk

SignF(pp, vk, sk′, m):

(pp1, pp2) pp

(˜vk, P) vk
˜sk′ Rep(pp1, P, sk′)
σ Sign(pp2, sk

′, m)
Return σ

VerifyF(pp, vk, m, σ):

(pp1, pp2) pp

(˜vk, P) vk

b Verify(pp2, ˜vk, m, σ)
Return b

Fig. 2. Our generic construction of fuzzy signature scheme SIGF.

4.1 Correctness

The correctness of our fuzzy signature scheme SIGF is guaranteed as follows.

Theorem 1. The correctness of SIGF follows from the correctness of the under-
lying signature scheme SIG and the underlying (SK,m, ˜SK, t, ε)-fuzzy extractor
FE.

Proof. By the correctness of FE, if dis(sk, sk′) ≤ t, then ˜sk′ = ˜sk, where
(P, ˜sk) ← Gen(pp1, sk), ˜sk′ ← Rep(pp1, P, sk′). Note that ˜vk ← KG(pp2, ˜sk),
by the correctness of SIG, for any message m ∈ M, it follows that

Verify(pp2, ˜vk,m,Sign(pp2, ˜sk,m)) = 1.

More precisely,

VerifyF(pp, vk,m,SignF(pp, vk, sk′,m))

= Verify(pp2, ˜vk,m,SignF(pp, vk, sk′,m)) (by the construction)

= Verify(pp2, ˜vk,m,Sign(pp2, ˜sk
′,m)) (by the construction)

= Verify(pp2, ˜vk,m,Sign(pp2, ˜sk,m)) (by the correctness of FE)
= 1 (by the correctness of SIG)

�

34 J. Song and Y. Wen

4.2 Security

The security of our fuzzy signature scheme SIGF is guaranteed as follows.

Theorem 2. If the underlying signature scheme SIG with secret key space ˜SK
and message space M satisfies EUF-CMA security and the underlying FE is an
(SK,m, ˜SK, t, ε)-fuzzy extractor, our construction SIGF is an (SK,M, t)-fuzzy
signature that satisfies m-EUF-CMA security.

Proof. Let A be an arbitrary PPT algorithm adversary that attacks the m-EUF-
CMA security of SIGF. We will consider three indistinguishable games, where the
first game Game 0 is the original game Exptm-EUF-CMA

SIGF,A (k). For i ∈ {0, 1, 2}, denote
by Si the event that A wins (i.e., the experiment returns 1) in Game i. Our goal
is to show that Advm-EUF-CMA

SIGF,A (k) := Pr[Exptm-EUF-CMA
SIGF,A (k) ⇒ 1] is negligible.

Game 0. Game 0 is just the experiment Exptm-EUF-CMA
SIGF,A (k). More precisely,

1. The challenger C invokes pp1 ← Init(k) and pp2 ← Setup(k), samples sk ← SK,
invokes (P, ˜sk) ← Gen(pp1, sk) and ˜vk ← KG(pp2, ˜sk), sets pp ← (pp1, pp2) and
vk ← (˜vk, P) and initializes the set of chosen-message queries Q = ∅ issued by
the adversary. Subsequently, it returns pp and vk to A.

2. The adversary A may adaptively make signing oracle queries of the following
form

– A sends a message mi ∈ M and a function fi ∈ Φ to challenger C, where
Φ := {∀sk ∈ SK, f(sk) < t|f : SK → SK}.

– C parses pp as pp1 and pp2, parses vk as ˜vk and P , invokes ˜sk′
i ←

Rep(pp1, P, sk + fi(sk)), σi ← Sign(pp2, ˜sk
′
i,mi), adds mi to the set Q

and returns σi to A.
3. Finally, A submits a message-signature pair (m∗, σ∗). Then, challenger C parses

pp as pp1 and pp2, parses vk as ˜vk and P , invokes b ← Verify(pp2, ˜vk,m∗, σ∗).
The experiment outputs 1 if m∗ /∈ Q ∧ b = 1 and 0 otherwise.

Obviously,

Advm-EUF-CMA
SIGF,A (k) = Pr[Exptm-EUF-CMA

SIGF,A (k) ⇒ 1] = Pr[S0].

Game 1. This game is identical to Game 0, except that in step 2, when the
challenger answers the signing oracle queries, it uses ˜sk as the signing key of the
underlying signature scheme other than ˜sk′

i ← Rep(pp1, P, sk′
i). More precisely,

1. The challenger C invokes pp1 ← Init(k) and pp2 ← Setup(k), samples sk ← SK,
invokes (P, ˜sk) ← Gen(pp1, sk) and ˜vk ← KG(pp2, ˜sk), sets pp ← (pp1, pp2) and
vk ← (˜vk, P) and initializes the set of chosen-message queries Q = ∅ issued
by the adversary. Subsequently, it returns pp and vk to A.

2. The adversary A may adaptively make signing oracle queries of the following
form

– A sends a message mi ∈ M and a function fi ∈ Φ to challenger C, where
Φ := {∀sk ∈ SK, f(sk) < t|f : SK → SK}.

A Generic Construction of Fuzzy Signature 35

– C parses pp as pp1 and pp2, invokes σi ← Sign(pp2, ˜sk,mi), adds mi to
the set Q and returns σi to A.

3. Finally, A submits a message-signature pair (m∗, σ∗). Then, challenger C
parses pp as pp1 and pp2, parses vk as ˜vk and P and invokes b ←
Verify(pp2, ˜vk,m∗, σ∗). The experiment outputs 1 if m∗ /∈ Q ∧ b = 1 and
0 otherwise.

Lemma 1. Pr[S1] = Pr[S0].

Proof. The only difference between Game 0 and Game 1 is the signing key used
in the signing oracle. In Game 1 the challenger uses ˜sk as the signing key, while
in Game 0 the challenger uses ˜sk′

i where ˜sk′
i ← Rep(pp1, P, sk + fi(sk)).

Since the function fi is chosen by the adversary A from the set Φ, where
Φ := {∀sk ∈ SK, f(sk) < t|f : SK → SK}, we have dis(sk, sk + fi(sk)) ≤ t. By
the correctness of the underlying (SK,m, ˜SK, t, ε)-fuzzy extractor FE, we have
˜sk′

i = ˜sk. Therefore, the change between Game 0 and Game 1 is just conceptual.
It follows that

Pr[S1] = Pr[S0]. ��

Game 2. This game is identical to Game 1, except that the signing key ˜sk is
uniformly chosen from ˜SK other than (P, ˜sk) ← Gen(pp1, sk). More precisely,

1. The challenger C invokes pp1 ← Init(k) and pp2 ← Setup(k), samples sk ←
SK, invokes (P, ˜sk) ← Gen(pp1, sk), samples U ←$

˜SK, set ˜sk ← U , invokes
˜vk ← KG(pp2, ˜sk), sets pp ← (pp1, pp2) and vk ← (˜vk, P) and initializes the
set of chosen-message queries Q = ∅ issued by the adversary. Subsequently,
it returns pp and vk to A.

2. The adversary A may adaptively make signing oracle queries of the following
form

– A sends a message mi ∈ M and a function fi ∈ Φ to challenger C, where
Φ := {∀sk ∈ SK, f(sk) < t|f : SK → SK}.

– C parses pp as pp1 and pp2, invokes σi ← Sign(pp2, ˜sk,mi), adds mi to
the set Q and returns σi to A.

3. Finally, A submits a message-signature pair (m∗, σ∗). Then, challenger C
parses vk as ˜vk and P and invokes b ← Verify(pp2, ˜vk,m∗, σ∗). The experi-
ment outputs 1 if m∗ /∈ Q ∧ b = 1 and 0 otherwise.

Lemma 2. |Pr[S1] − Pr[S2]| ≤ ε.

Proof. The only difference between Game 1 and Game 2 is the way of generat-
ing the signing key ˜sk (not fuzzy). In Game 1, ˜sk is generated by (P, ˜sk) ←
Gen(pp1, sk), while in Game 2, ˜sk is uniformly chosen from ˜SK.

By the security of the underlying (SK,m, ˜SK, t, ε)-fuzzy extractor FE, if SK
is a distribution over SK with H∞(SK) ≥ m, then

|Pr[A(P, ˜sk) ⇒ 1] − Pr[A(P,U) ⇒ 1]| ≤ ε,

36 J. Song and Y. Wen

where (P, ˜sk) ← Gen(pp1, sk), sk ← SK and U ←$
˜SK. Therefore, we have

|Pr[S1] − Pr[S2]| ≤ ε.

��

Lemma 3. Pr[S2] ≤ AdvEUF-CMA
SIG (k).

Proof. We will reduce the EUF-CMA security of the underlying signature scheme
SIG to the altered game as described in Game 2. To this end, we assume a PPT
adversary A winning Game 2 and show how to construct a PPT adversary B
attacking the underlying EUF-CMA secure signature SIG.

On receiving pp2 and ˜vk from its own challenger, adversary B invokes pp1 ←
Init(k), samples sk ← SK, invokes (P, ˜sk) ← Gen(pp1, sk), sets pp ← (pp1, pp2)
and vk ← (˜vk, P). Finally, B returns pp and vk to A.

Upon receiving the signing oracle queries mi ∈ M and a function fi ∈ Φ
from A, adversary B answers A’s query as follows:

1. B sends mi to its own challenger.
2. Upon receiving σi from its own challenger, B returns σi to A.

Finally, A submits a message-signature pair (m∗, σ∗) to B. B submits (m∗, σ∗)
to its own challenger and returns what its challenger returns.

Note that B simulates Game 2 perfectly. If A wins in Game 2, then B wins in
the EUF-CMA game. By the security of the underlying EUF-CMA secure signature
scheme SIG, we have

Pr[S2] = AdvEUF-CMA
SIG,B (k) ≤ AdvEUF-CMA

SIG (k).

��

From Lemmas 1, 2 and 3, we have

Advm-EUF-CMA
SIGF

(k) ≤ AdvEUF-CMA
SIG (k) + ε,

and Theorem 2 follows. �

5 Instantiation

Let us recall the fuzzy extractor in [6] which uses a (W,m, m̃, t)-secure sketch
(SS,Rec) and an average-case (W, m̃,R, ε)-strong extractor Ext with seed set I
as building blocks. The construction is as follows.

– Init(k): i ←$ I, pp = i.
– Gen(pp,w): Compute s = SS(w), set P = s, R = Ext(w, i). Output (P,R).
– Rep(pp,w′, P): Recover w = Rec(w′, s) and output R = Ext(w, i).

It was shown by Dodis et.al. [6] the above construction is an (W,m,R, t, ε)-fuzzy
extractor.

A Generic Construction of Fuzzy Signature 37

5.1 First Instantiation

Our first concrete instantiation of a fuzzy signature scheme is based on the
Waters signature scheme [15], and thus we review it here. We consider the version
where the setup and the key generation for each user are separated so that the
scheme fits our syntax. Let l = l(k) be a positive polynomial, and let BGGen
be a bilinear group generator. The Waters signature scheme SIGWat is shown in
Fig. 3, which is EUF-CMA secure if the CDH assumption holds with respect to
BGGen.

SetupWat(k):

BG := (p,G,GT , g, e) BGGen(1k)
h, u′, u1, · · · , ul $ G

pp (BG, h, u′, (ui)i∈[l])
Return pp

KeyGenWat(pp):

sk $ Zp

vk gsk

Return (vk, sk)

SignWat(pp, sk, m):

Parse m as (m1‖ · · · ‖ml) ∈ {0, 1}l

r $ Zp

σ1 hsk · (u′ · ∏

i∈[l] u
mi
i)r , σ2 gr

Return σ (σ1, σ2)

VerifyWat(pp, vk, m, σ):

(σ1, σ2) σ

Parse m as (m1‖ · · · ‖ml) ∈ {0, 1}l

If e(σ2, u
′ · ∏

i∈[l] u
mi
i) · e(vk, h) = e(σ1, g)

Then return 1 else return 0

Fig. 3. The waters signature scheme SIGWat

Theorem 3. [15] The signature scheme is (t, q, ε) existentially unforgeable
assuming the decisional (t, ε

16(n+1)q) BDH assumption holds, where λ = 1
8(n+1)q .

Obviously, the signature scheme SIGWat in Fig. 3 has the simple key generation
process property in which vk = gsk.

Note that the secret key space of Waters signature scheme is Zp. We want to
construct a fuzzy extractor with extracted string space Zp. Let Ext be a universal
hash function, i.e., Ext(·, i) := Hi(·) : Zl

p → Zp, 1 where i = (i1, · · · , il) ∈ Z
l
p,

x = (x0, x1, · · · , xl) ∈ Z
l+1
p , and

Ext(x, i) = Hi(x) = x0 + i1x1 + · · · + ilxl, (1)

and H is a family of universal hash functions according to [12]. If we instantiate
the secure sketch by the syndrome-based secure sketch introduced in Sect. 2.3
and extractor by Ext(x, i) (Eq. 1), then we get a fuzzy extractor FE1. And the
extracted string by FE1 is uniformly distributed over Zp. Note that the secret
key space of Waters signature SIGWat is Zp.

By instantiating the signature scheme SIG in Fig. 2 with Waters signature
SIGWat, the fuzzy extractor FE in Fig. 2 with the above fuzzy extractor FE1,
1 One can always translate a binary string to an element in Z

l
p for a proper l.

38 J. Song and Y. Wen

we get a fuzzy signature scheme which is m-EUF-CMA secure under the com-
putational Diffie-Hellman (CDH) assumption in bilinear groups in the standard
model (See Fig. 4).

SetupF1(k):

i $ Z
l
p, pp1 i

BG := (p,G,GT , g, e) BGGen(1k)
h, u′, u1, · · · , ul $ G

pp2 (BG, h, u′, (ui)i∈[l])
pp (pp1, pp2)
Return pp

KeyGenF1(pp, sk):

(pp1, pp2) pp

s SS(sk), P s
˜sk Ext(sk, i)
˜vk g

˜sk

vk (˜vk, P)
Return vk.

SignF1(pp, vk, sk′, m):

(pp1, pp2) pp, (˜vk, P) vk
˜sk′ Ext(Rec(sk′, P), i)
Parse m as (m1‖ · · · ‖ml) ∈ {0, 1}l

r $ Zp

σ1 h
˜sk′ · (u′ · ∏

i∈[l] u
mi
i)r , σ2 ← gr

Return σ (σ1, σ2)

VerifyF1(pp, vk, m, σ):

(pp1, pp2) pp

(˜vk, P) vk

(σ1, σ2) σ

Parse m as (m1‖ · · · ‖ml) ∈ {0, 1}l

If e(σ2, u
′ · ∏

i∈[l] u
mi
i) · e(vk, h) = e(σ1, g)

Then return 1 else return 0

Fig. 4. Our first instantiation SIGF1

Corollary 1. The construction in Fig. 4 is an m-EUF-CMA secure fuzzy sig-
nature under the computational Diffie-Hellman (CDH) assumption in bilinear
groups in the standard model.

5.2 Second Instantiation

Our second concrete instantiation of a fuzzy signature scheme is based on the
Lattice-based Signatures [8], and thus we review it here. Let Dm

θ be the m-
dimensional discrete Gaussian distribution for some standard deviation θ. The
lattice-based signature scheme SIGLat based on SIS is shown in Fig. 5, which
is secure in the random oracle model based on the worst-case hardness of the
˜O(n1.5)-SIVP problem in general lattices.

Theorem 4. [8] If there is a polynomial-time forger, who makes at most s
queries to the signing oracle and h queries to the random oracle H, who breaks the
signature (with proper parameters) with probability δ, then there is a polynomial-
time algorithm who can solve the l2-SISq,u,v,β problem for β = (4θ + 2dk)

√
v =

˜O(du) with probability ≈ δ2

2(h+s) .

A Generic Construction of Fuzzy Signature 39

SetupLat(k):

Random Oracle: H : {0, 1}∗ {−1, 0, 1}k

A $ Z
u×v
q

Return pp (H,A)

KeyGenLat(pp):

sk $ {−d, 0, d}v×k

vk A · sk
Return (vk, sk)

SignLat(pp, sk, m):

y Dv
θ

c H(Ay, m)
z sk · c+ y
Return σ (c, z)

VerifyLat(pp,vk, m, σ):

(c, z) σ

If ‖z‖ ≤ ηθ
√

v

∧ z = H(Az − vk · c, m)
Return 1, Else, Return 0

Fig. 5. Lattice-based signatures SIGLat

Obviously, the signature scheme SIGLat in Fig. 5 has the simple key generation
process property in which vk = A · sk.

Note that the secret key space of the signature scheme SIGLat is {−d, 0, d}v×k.
We want to construct a fuzzy extractor with extracted string space {−d, 0, d}v×k.
Lyubashevsky [8] gave parameters choices for the lattice-based signature scheme
in which d can be equal to 1 or 31. Here we consider the case d = 1.

For x ∈ Z
l
3, i ∈ Z

n×l
3 , define

Hi(x) := ix,

then H = {Hi : Zl
3 → Z

n
3 |i ∈ Z

n×l
3 } is a family of universal hash functions. Let

n = v × k, we can readily interpret a vector in Z
n
3 as a matrix in Z

v×k
3 . Given

y ∈ Z
v×k
3 , we can get a matrix y′ ∈ {−1, 0, 1}v×k by subtracting 2 from each

component of the matrix y. Define the above two operation as f1 : Zn
3 → Z

v×k
3

and f2 : Zv×k
3 → {−1, 0, 1}v×k separately. We can easily get a family of universal

hash functions

H′ = {f2 ◦ f1 ◦ Hi : Zl
3 → {−1, 0, 1}v×k|i ∈ Z

n×l
3 }. (2)

If we instantiate the secure sketch by the syndrome-based secure sketch intro-
duced in Sect. 2.3 and extractor by the universal hash function H′ (Eq. 2), then
we get a fuzzy extractor FE2. The extracted string by FE2 is uniformly distributed
over {−1, 0, 1}v×k.

By instantiating the signature scheme SIG in Fig. 2 with SIGLat (with proper
parameters), the fuzzy extractor FE in Fig. 2 with above fuzzy extractor FE2, we
get a fuzzy signature scheme which is m-EUF-CMA secure in the random oracle
model based on the worst-case hardness of the ˜O(n1.5)-SIVP problem in general
lattices (See Fig. 6).

40 J. Song and Y. Wen

SetupF2(k):

i $ Z
n×l
3 , pp1 i

Random Oracle: H : {0, 1}∗ {−1, 0, 1}k

A $ Z
u×v
q , pp2 (H,A)

Return pp (pp1, pp2)

KeyGenF2(pp, sk):

(pp1, pp2) pp

s SS(sk), P s

sk Ext(sk, i), vk A · sk
Return vk (vk, P)

SignF2(pp, sk′, m):

(pp1, pp2) pp

(˜vk, P) vk
˜sk′ Ext(Rec(sk′, P), i)
y Dv

θ , c H(Ay, m)
c ˜sk′ · c+ y
Return σ (c, z)

VerifyF2(pp, vk, m, σ):

(c, z) σ

(˜vk, P) vk

If ‖z‖ ≤ ηθ
√

v

∧ z = H(Az − ˜vk · c, m)
Return 1, Else, Return 0

Fig. 6. Our second instantiation SIGF2

Corollary 2. The construction in Fig. 6 is an m-EUF-CMA secure fuzzy signa-
ture based on the worst-case hardness of the ˜O(n1.5)-SIVP problem in general
lattices in the random oracle model.

Acknowledgement. We would like to thank the reviewers for their valuable com-
ments. The authors are supported by the Shanghai Sailing Program (Grant No.
21YF1401200), Fundamental Research Funds for the Central Universities (Grant No.
2232020D-34) and Open Fund Program for State Key Laboratory of Information Secu-
rity of China (Grant No. 2021-MS-05).

References

1. Boyen, X.: Reusable cryptographic fuzzy extractors. In: Atluri, V., Pfitzmann,
B., McDaniel, P.D. (eds.) Proceedings of the 11th ACM Conference on Computer
and Communications Security, CCS 2004, Washington, DC, USA, October 25–29,
2004. pp. 82–91. ACM (2004). https://doi.org/10.1145/1030083.1030096, https://
doi.org/10.1145/1030083.1030096

2. Boyen, X., Dodis, Y., Katz, J., Ostrovsky, R., Smith, A.: Secure remote authen-
tication using biometric data. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS,
vol. 3494, pp. 147–163. Springer, Heidelberg (2005). https://doi.org/10.1007/
11426639 9

3. Carter, L., Wegman, M.N.: Universal classes of hash functions. J. Comput. Syst.
Sci. 18(2), 143–154 (1979)

4. Connaughton, R., Bowyer, K.W., Flynn, P.J.: Fusion of face and iris biometrics.
In: Burge, M.J., Bowyer, K.W. (eds.) Handbook of Iris Recognition. Advances in
Computer Vision and Pattern Recognition, , pp. 219–237. Springer, London (2013).
https://doi.org/10.1007/978-1-4471-4402-1 12

5. Cramer, R., Dodis, Y., Fehr, S., Padró, C., Wichs, D.: Detection of algebraic manip-
ulation with applications to robust secret sharing and fuzzy extractors. In: Smart,
N. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 471–488. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78967-3 27

6. Dodis, Y., Reyzin, L., Smith, A.: Fuzzy extractors: how to generate strong keys
from biometrics and other noisy data. In: Cachin, C., Camenisch, J.L. (eds.)
EUROCRYPT 2004. LNCS, vol. 3027, pp. 523–540. Springer, Heidelberg (2004).
https://doi.org/10.1007/978-3-540-24676-3 31

https://doi.org/10.1145/1030083.1030096
https://doi.org/10.1145/1030083.1030096
https://doi.org/10.1145/1030083.1030096
https://doi.org/10.1007/11426639_9
https://doi.org/10.1007/11426639_9
https://doi.org/10.1007/978-1-4471-4402-1_12
https://doi.org/10.1007/978-3-540-78967-3_27
https://doi.org/10.1007/978-3-540-24676-3_31

A Generic Construction of Fuzzy Signature 41

7. Li, N., Guo, F., Mu, Y., Susilo, W., Nepal, S.: Fuzzy extractors for biometric iden-
tification. In: Lee, K., Liu, L. (eds.) 37th IEEE International Conference on Dis-
tributed Computing Systems, ICDCS 2017, Atlanta, GA, USA, June 5–8, 2017, pp.
667–677. IEEE Computer Society (2017). https://doi.org/10.1109/ICDCS.2017.
107

8. Lyubashevsky, V.: Lattice signatures without trapdoors. In: Pointcheval, D.,
Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 738–755. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4 43

9. Matsuda, T., Takahashi, K., Murakami, T., Hanaoka, G.: Fuzzy signatures: relaxing
requirements and a new construction. In: Manulis, M., Sadeghi, A.-R., Schneider,
S. (eds.) ACNS 2016. LNCS, vol. 9696, pp. 97–116. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-39555-5 6

10. Nisan, N., Zuckerman, D.: Randomness is linear in space. J. Comput. Syst. Sci.
52(1), 43–52 (1996)

11. Raghavendra, R., Raja, K.B., Surbiryala, J., Busch, C.: A low-cost multimodal
biometric sensor to capture finger vein and fingerprint. In: IEEE International
Joint Conference on Biometrics, Clearwater, IJCB 2014, FL, USA, Sept 29–Oct 2,
2014, pp. 1–7. IEEE (2014). https://doi.org/10.1109/BTAS.2014.6996225

12. Shoup, V.: A Computational Introduction to Number Theory and Algebra. Cam-
bridge University Press, Cambridge (2006)

13. Takahashi, K., Matsuda, T., Murakami, T., Hanaoka, G., Nishigaki, M.: A signa-
ture scheme with a fuzzy private key. In: Malkin, T., Kolesnikov, V., Lewko, A.B.,
Polychronakis, M. (eds.) ACNS 2015. LNCS, vol. 9092, pp. 105–126. Springer,
Cham (2015). https://doi.org/10.1007/978-3-319-28166-7 6

14. Takahashi, K., Matsuda, T., Murakami, T., Hanaoka, G., Nishigaki, M.: Signature
schemes with a fuzzy private key. Int. J. Inf. Sec. 18(5), 581–617 (2019)

15. Waters, B.: Efficient identity-based encryption without random oracles. In: Cramer,
R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 114–127. Springer, Heidelberg
(2005). https://doi.org/10.1007/11426639 7

https://doi.org/10.1109/ICDCS.2017.107
https://doi.org/10.1109/ICDCS.2017.107
https://doi.org/10.1007/978-3-642-29011-4_43
https://doi.org/10.1007/978-3-319-39555-5_6
https://doi.org/10.1007/978-3-319-39555-5_6
https://doi.org/10.1109/BTAS.2014.6996225
https://doi.org/10.1007/978-3-319-28166-7_6
https://doi.org/10.1007/11426639_7

Identity Based Linkable Ring Signature
with Logarithmic Size

Mohamed Nassurdine1,2, Huang Zhang3, and Fangguo Zhang1,2(B)

1 School of Computer Science and Engineering, Sun Yat-sen University,
Guangzhou 510006, China

2 Guangdong Province Key Laboratory of Information Security Technology,
Guangzhou 510006, China
isszhfg@mail.sysu.edu.cn

3 School of Computer and Communication Engineering,
Changsha University of Science and Technology, Changsha 410114, China

Abstract. Anonymity is an inevitable and sensitive matter of concern,
especially in the age where people are willing to use digital devices and
Internet to deal with almost all things in their work and daily life. To
support anonymity, modern cryptography is one of the most suitable
choices in the algorithm level. Particularly, in the scenarios, such as e-
voting, crypto-currency, and smart grid etc., a cryptographic primitive,
called linkable ring signature, has shown its ability to handle anonymity
problems. However, signature schemes will introduce additional costs to
those e-commerce systems, so that they should be as efficient as possi-
ble. On the other side, a signature scheme that requires the public key
infrastructure (PKI) brings much unnecessary inconvenience to its users,
since typically, users of the aforementioned systems are not familiar with
cryptographic skills and the system establishers are trusted by them in
some sense. As a result, an identity-based (ID-based) signature scheme
with small size fulfills the visible requirements of e-commerce systems.
In this paper, we proposed an ID-based linkable ring signature scheme
with logarithmic size from pairing and elliptic curve discrete logarithm
problem (ECDLP), and gave all the security proofs in detail. Besides
that, the scheme needs no trusted setup, except that the key generation
center knows the secret key of each user and it is a property of ID-based
cryptography in nature.

Keywords: Anonymity · ID-based linkable ring signature ·
Logarithmic size · Pairing

1 Introduction

Linkable ring signature, as a variant of ring signature [24], has been studied for
many years [20]. It is significantly useful in several e-commerce systems, such as
e-voting, smart grid, etc.. In recent years, linkable ring signatures receives a lot
of attentions, due to the fast development of blockchain-based crypto-currencies.
c© Springer Nature Switzerland AG 2021
Y. Yu and M. Yung (Eds.): Inscrypt 2021, LNCS 13007, pp. 42–60, 2021.
https://doi.org/10.1007/978-3-030-88323-2_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-88323-2_3&domain=pdf
https://doi.org/10.1007/978-3-030-88323-2_3

Identity Based Linkable Ring Signature 43

Researchers suggest to use such a signature to handle anonymity problems and
keep the block-chain system lightweight [25]. Informally speaking, (linkable) ring
signatures grants a system the ability to anonymously authenticate their users,
while keep the costs at a low level. Comparing to a system that employs general
purpose zero-knowledge proof protocols to support anonymity [26], a (linkable)
ring signature based one is typically more efficient. Consequently, efficiency is
an important index to measure the performance of a (linkable) ring signature,
and a small signature size would be a desirable property for such a scheme.
On the other side, as linkable ring signatures are very suitable for e-commerce
systems, and such a system is efficiency sensitive, it is nature to consider that
the association between a standard signature scheme and the PKI would bring
much unnecessary inconvenience. For instance, sometime the group of an e-
voting event is organized temporary so that to get a certificate from the PKI
is a boring work for group members to do. As for smart grid, such a system
is typically established by an authority party, and thus users delivers enough
trusts to the system holder in some sense. Since ID-based cryptography is one
of the directions to avoid the PKI [8], it is nature for us to equip our linkable
ring signature with an ID-based property. That will make an e-commerce system
more flexible to deploy a cryptographic scheme for security consideration.

Now, we have a common sense on that a (linkable) ring signature scheme
in e-commerce system should be efficient and convenient. However, generally
speaking, a traditional (linkable) ring signature usually features a signature size
of O(n), where n is the cardinality of the ring. A more satisfactory result would
be O(log n) or O(1), which means the signature size is slightly influenced by or
independent of the number of participants. The first ID-based ring signature is
in [28], and several works appears since then [4,13]. They were all proved in the
random oracle model, and the signature size is linear in the cardinality of the
ring. Only a few works were constructed in the standard model [3,6,12], but
at least their signature size is not desirable enough, except those in [5,10,16,
18]. Fortunately, by using accumulator, constant size (ID-based linkable) ring
signatures could be designed [1,2,11,14,22,27]. When considering no trusted
setup, there are two original O(log n) ring signatures based on number-theoretic
assumptions [9,15], and the logarithmic-size ring signatures with Tight Security
[17]. Currently, some elegant short ring signature schemes were proposed relying
on various assumptions [7,21]. However, neither of them is ID-based or contains
the property of linking. To fill a vacancy in this area, in this paper, we design
an ID-based linkable ring signature with logarithmic size, by using the strategies
from [15] and parings. Amounts of proof skills are inspired by their work, so that
if readers are familiar with the framework of [15], they can better understand
the construction and proofs in the current paper.

In the literature [15], Groth et al.. designed a ring signature with logarithmic
size, but in fact, this signature scheme is a Fiat-Shamir transformation of a
Sigma-protocol for one-out-many-proofs. An underlying cryptographic primitive
is a homomorphic commitment scheme, such as the Pedersen commitment in
DLP (Discrete Logarithm Problem) settings. To finish their one-out-of-many

44 M. Nassurdine et al.

proofs, they also introduced a Sigma-protocol for proving in zero knowledge
that such a commitment is opened to 1 or 0. Our major work is to improve the
ECDLP-based version of that in [29] to an ID-based one, and because of the
new problems brought by the modifications, we redesigned the corresponding
security proofs, so that the scheme could convince users that it is unforgeable
under the adaptively chosen message and ID attack in the random oracle model
and so on.

The remaining of this paper is organized as follows: in Sect. 2 we introduce
notations and concepts used in this work. The details of the construction and
the security proofs are described in Sect. 3. Finally, we give a short conclusion
and further consideration in Sect. 4.

2 Preliminaries

This section gives a brief introduction to the notations, definitions adopted in
this paper.

2.1 Notations

We use Z, N to denote the set of all integers, and the set natural numbers. If
a, b ∈ Z and a < b, then [a, b] is the set {x ∈ Z : a ≤ x ≤ b} and [a, b) is the
set {x ∈ Z : a ≤ x < b}. For an integer i, ij symbolizes the j-th bit of i. δi�

is Kronecker’s delta, i.e., δ�� = 1 and δi� = 0 for i �= �. A set {x1, . . . , xn} will
be denoted by {xi}n

i=1 for short. We use |S| to indicate the cardinality of a set
finite S, and a ← S means a is chosen from S uniformly at random. We use the
standard big O notation and write negl(n) as a negligible function (probability)
and 1 − negl(n) is called overwhelming probability.

2.2 Bilinear Map

Definition 1. Let G = 〈G〉, GT be two (additive) cyclic groups of prime order
p. A map e : G×G → GT is a bilinear map (pairing) if it satisfies the following
properties.

– Bilinearity: For any x, y ∈ Zp, we have e(xG, yG) = xy · e(G,G).
– Non-degeneracy: If P,Q ∈ G are two generators of G, then e(P,Q) gen-

erates GT .
– Computability: There is an efficient algorithm to compute e(P,Q), for all

P,Q ∈ G.

The security of most paring-based schemes relying on the hardness of the
following problems.

Definition 2. Let G, G, p be as in Definition 1. the computational Diffie-
Hellman problem (CDH) is to computes abG, for any given triple (G, aG, bG).

Identity Based Linkable Ring Signature 45

Definition 3. Let G, G, p, e be as in Definition 1. For given two distributions
(G, aG, bG, cG,w · e(G,G)), (G, aG, bG, cG, abc · e(G,G)), where a, b, c, w ← Zp

are independently chosen from uniform distribution, the problem which distin-
guishes the two distributions is called the decisional bilinear Diffie-Hellman prob-
lem (DBDH).

The DBDH problem is not harder than the CDH problem. The CDH assumption
and the DBDH assumption states that all PPT algorithms can only solve the
corresponding problems with negligible probabilities.

2.3 Pedersen Commitment

The Pedersen commitment [23] allows a user to construct a commitment to a
value and any party could check whether the value opened, later is the one
which was committed at the beginning. The scheme involves a pair of efficient
algorithms (Gen,Com)

– Gen(1λ): On input a security parameter λ, the algorithm generates a cyclic
group G of prime order p. It then selects two generators, G,H ∈ G at random.
{G, p,G,H} will be published as the public parameters.

– Com(x, y): On input a value x ∈ Zp, and a randomly chosen y ← Zp, this
algorithm computes and outputs a commitment c = xH + yG. The commit-
ment c can later be opened by giving x, y.

Pedersen commitment is perfectly hiding and computationally binding under the
discrete logarithm assumption.

2.4 ID-Based Linkable Ring Signature

According to the definition in [1], an ID-based linkable ring signature scheme
consists of a quintuple of PPT algorithms (Setup, Ext, Sign, Vfy, Link).

– (v, pp) ← Setup(1λ): On input a security parameter λ, the algorithm outputs
a master secret key v and a list of system parameters pp that includes λ and
the descriptions of a user secret key space D, a message space M, an event-id
space EID as well as a signature space Ψ . The system parameters pp will be
a default input for the remaining algorithms.

– V ← Ext(ID, v): On input an identity ID ∈ {0, 1}∗ for a user and the master
secret key v, this algorithm outputs the user’s secret key V ∈ D. This algo-
rithm is usually executed by a trusted party called Private Key Generator
(PKG).

– σ ← Sign(n, V,M, event, L): On input group size n ∈ N, a set L of n identi-
ties, a message M ∈ M, and an event-id event ∈ EID, a secret key V ∈ D
whose corresponding identity is in L, the algorithm returns a signature σ ∈ Ψ .

– b ← Vfy(n,M, event, L, σ): The algorithm verifies a purported signature σ ∈
Ψ on message M ∈ M, group L of n identities and event-id event ∈ EID.
The algorithm outputs b = 1 if accepting and outputs b = 0 if rejecting the
signature.

46 M. Nassurdine et al.

– b ← Link(σ1, σ2): On input two accepting signatures σ1, σ2 ∈ Ψ on the same
event-id, output b = 1 if the signatures are linked, and output b = 0 otherwise.

As a variant of ring signature, the quintuple (Setup, Ext, Sign, Vfy, Link)
should satisfy several requirements as introduced in [1] and [19]. Those require-
ments include on correctness, unforgeability, anonymity, linkability, and nons-
landerability.

Definition 4 (Perfect verification correctness). An ID-based linkable ring
signature scheme (Setup, Ext, Sign, Vfy, Link) is of perfect verification cor-
rectness, if for all adversaries A

⎡
⎢⎢⎣

(v, pp) ← Setup(1λ);
ID ← A(pp);V ← Ext(ID, v);

(n, M, event, L) ← A(pp, ID, V);
σ ← Sign(n, V, M, event, L)

:
Vfy(n, M, event, L, σ) = 1

∨
ID /∈ L

⎤
⎥⎥⎦ = 1 .

Definition 5 (Perfect linking correctness). An ID-based linkable ring sig-
nature scheme (Setup, Ext, Sign, Vfy, Link) has perfect linking correctness,
if for all adversaries A

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

(v, pp) ← Setup(1λ);
ID ← A(pp);V ← Ext(ID, v);⎛
⎝

n1, M1, L1

event
n2, M2, L2

⎞
⎠ ← A(pp, ID, V);

σ1 ← Sign(n1, V, M1, event, L1);
σ2 ← Sign(n2, V, M2, event, L2);

:

Link(σ1, σ2) = 1
∨

Vfy(n1, M1, event, L1, σ1) = 0
∨

Vfy(n2, M2, event, L2, σ2) = 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

= 1 .

The remaining requirements are for security concerns. Most of them employ the
following oracles to specify the abilities of an attacking adversary A.

– V ← EO(ID): The stateful Extraction Oracle, on input ID ∈ {0, 1}∗, returns
the corresponding secret key V ∈ D.

– σ ← SO(n, IDπ,M, event, L): The Signing Oracle, on input a group size n,
an event-id event ∈ EID, a set L of n identities, the identity of the signer
IDπ ∈ L, and a message M ∈ M, returns a valid signature σ. The extraction
oracle could be queried during the process.

If hash functions are modeled as random oracles, then A can ask for the values
of the hash functions for any input.

Definition 6 (Unforgeability). An ID-based linkable ring signature scheme
(Setup, Ext, Sign, Vfy, Link) is unforgeable if for all PPT adversaries A

Pr
[

(v, pp) ← Setup(1λ);
(n,M,L, event, σ) ← AEO,SO(pp) : Vfy(n,M, event, L, σ) = 1

]
≤ negl(λ) ,

where (n, ∗,M, event, L) has not been queried to SO, and all identities in L have
not been queried to EO

Identity Based Linkable Ring Signature 47

Definition 7 (Computational anonymity). An ID-based linkable ring sig-
nature scheme (Setup, Ext, Sign, Vfy, Link) has computational anonymity,
if for any PPT adversary A

Pr

⎡
⎢⎢⎣

(v, pp) ← Setup(1λ);
(n,M,L, event) ← AEO,SO(pp);

i ← [0, n);
σ ← Sign(n, Vi,M, event, L);

: A(σ) = i

⎤
⎥⎥⎦ ≤ 1

n
+ negl(λ) ,

where all identities in L has not been queried to EO.

Definition 8 (Linkability). An ID-based linkable ring signature scheme
(Setup, Ext, Sign, Vfy, Link) is of linkability if for all PPT adversaries A

Pr

⎡
⎢⎢⎢⎢⎣

(v, pp) ← Setup(1λ);⎛
⎝

n1, M1, L1, σ1

event
n2, M2, L2, σ2

⎞
⎠ ← AEO,SO(pp)

:

Link(σ1, σ2) = 0
∧

Vfy(n1, M1, event, L1, σ1) = 1
∧

Vfy(n2, M2, event, L2, σ2) = 1

⎤
⎥⎥⎥⎥⎦

≤ negl(λ) ,

where σ1, σ2 are not returned by SO, and no more than 1 identity in L1 ∩ L2

has been submitted to CO.

Definition 9 (Nonslanderability). An ID-based linkable ring signature
scheme (Setup, Ext, Sign, Vfy, Link) has nonslanderability if for any PPT
adversary A

Pr

⎡
⎢⎢⎣

(v, pp) ← Setup(1λ);
(n1, ID, M1, event, L1) ← AEO,SO(pp);

σ1 ← Sign(n1, Vi, M1, event, L1);
(n2, M2, L2, σ2) ← AEO,SO(pp, σ1)

:
Link(σ1, σ2) = 1

∧
Vfy(n2, M2, event, L2, σ2) = 1

⎤
⎥⎥⎦ ≤ negl(λ) ,

where σ2 is not an output of SO, and ID ∈ L1 has not been queried to EO.

3 ID-based Linkable Ring Signature Scheme

As we mentioned before, our ID-based linkable ring signature scheme was
inspired by the spirits of [15], so that it is essentially a non-interactive argu-
ment protocol for one-out-of-many relations, and the Fiat-Shamir heuristic is
adopted also (see App B).

In our scheme, a signer proves to verifiers that she knows the secret key of
one of the public keys (identities) in L = (ID0, . . . , IDn−1), but the strategy is
somewhat different Since the signer could duplicate some ring members, without
loss of generality let us assume n = 2m, for m ∈ Z

+. Let the signer’s public key
be ID�, and write � = �1,�m in binary. To make the signature size logarithmic
in n, the knowledge of the index of the signer’s public key in L is used. In brief,
a signer will first demonstrate that she is the identity indexed by � and also
show her knowledge on the secret key of ID�, both in zero-knowledge ways.
Consequently, in the signing step, the signer will make commitments Aj to the
bits �j , and reveals wj of the form wj = �jx+aj , for j ∈ [1,m]. Subsequently, to

48 M. Nassurdine et al.

say that the signer knows the secret key of ID� is equivalent to say
∑n−1

i=0 δi�Qi

is the hash digest of her identity, where Qi = H1(IDi), and δi� is the Kronecker’s
delta, i.e., δ�� = 1 and δi� = 0 for i �= �. If writing i and � in binary, we further
have δi� =

∏m
j=1 δij�j

.
However, the foregoing approach shows the knowledge of � directly, so that

we seek for the help of wj which contains the information of �j secretly. Define
wj,1 = wj = �jx+aj = δ1�j

x+aj , and wj,0 = x−wj = (1−�j)x−aj = δ0�j
x−aj .

For every i ∈ [0, n) the product
∏m

j=1 wj,ij
is a polynomial in the indeterminate

x of the form

pi(x) =
m∏

j=1

wj,ij
=

m∏
j=1

(δij�j
x) +

m−1∑
k=0

pi,kxk = δi�x
m +

m−1∑
k=0

pi,kxk . (1)

Here, pi,k is the coefficient of the kth degree term of the polynomial pi(x), and
can be efficiently computed when (aj)m

j=1, i and � are given. On the other side,
only if i = �, the mth degree term of pi(x) in (1) is not 0, so that if we use wj,ij

to substitute the function of δij�j
, we have

n−1∑
i=0

⎛
⎝ m∏

j=1

wj,ij

⎞
⎠ Qi = xmQ� +

n−1∑
i=0

(
m−1∑
k=1

pi,kxk

)
Qi ,

where the mth degree term merely contains the hash digest of the signer’s public
key, and that is the key point in proving the signer knows the secret key of ID�

secretly.

3.1 Construction

The details of our ID-based linkable ring signature (Setup, Ext, Sign, Vfy,
Link) is as follows.

Setup(1λ): The input of this procedure is a security parameter λ. Let E
be an elliptic curve defined over a finite field Fq. Let G ∈ E be a point of
prime order p, here log p = O(λ) and let G be the prime order subgroup of E
generated by G. Let H : {0, 1}∗ → Zp, H1 : {0, 1}∗ → G, H2 : {0, 1}∗ → G,
be three cryptographic hash functions, and e : G × G → GT a pairing. Select
a master secret key v ← Zp and compute the master public key P = vG.
Independently pick a group element H ← G. The list of system parameters
pp = (λ,G, G,H, P, p, q,H,H1,H2, e) is published as an implicit input for the
other algorithms and the master secret key v is kept by the PKG secretly.

Ext(ID, v): Given an identity ID ∈ {0, 1}∗, the algorithm generates the asso-
ciated secret key V = vQ by using the hash digest Q = H1(ID).

Sign(n, V�,M, event, L): Parse L = (ID0, . . . , IDn−1) and write � = �1 . . . �m

in binary. Without loss of generality assume n = 2m.

Identity Based Linkable Ring Signature 49

– compute (Q0, . . . , Qn−1) = (H1(ID0), . . . ,H1(IDn−1)).
– compute K = H2(event), I = e(V�,K).
– For j from 1 to m,

• choose rj , aj , sj , tj ← Zp uniformly at random,
• compute Aj = �jH + rjG,
• compute Bj = ajH + sjG,
• compute Cj = aj�jH + tjG.

– For k from 0 to m − 1,
• choose ρk ← Zp uniformly at random,
• compute Dk = (

∑n−1
i=0 pi,kQi) + ρkG, where pi,k is introduced later (1),

• compute Ek = e(P, ρkK).
– Let cmt = (Aj , Bj , Cj ,Dj−1Ej−1)m

j=1 and compute x = H(M,L, cmt,
I, event).

– For j from 1 to m, compute
• wj = x�j + aj mod p,
• yj = xrj + sj mod p,
• zj = (x − wj)rj + tj mod p.

– Z = xmV� − ∑m−1
k=0 ρkxkP mod p.

– Let rsp = (wj , yj , zj)m
j=1. Return σ = (cmt, x, rsp, Z, I) as a signature on M ,

L and event.

Vfy(n,M, event, L, σ):
Parse L = (ID0, . . . , IDn−1), and σ = (cmt, x, rsp, Z, I). Let K = H2(event),
and (Q0, . . . , Qn−1) = (H1(ID0), . . . ,H1(IDn−1)). The algorithm returns 1 only
if all the following conditions hold.

– x = H(M,L, cmt, I, event).
– For j from 1 to m

• xAj + Bj = wjH + yjG,
• (x − wj)Aj + Cj = zjG.

– xmI − ∑m−1
k=0 xkEk = e(Z,K).

– e (Z,G) = e
(∑n−1

i=0 (
∏m

j=1 wj,ij
)Qi +

∑m−1
k=0 (−xk)Dk, P

)
.

Link(σ1, σ2): For s ∈ {0, 1}, parse σs = (cmts, xs, rsps, Zs, Is). The algorithm
returns 1 only if I1 = I2, and returns 0 otherwise.

Theorem 1. The scheme (Setup,Ext,Sign,Vfy,Link) is of perfect verifica-
tion and linking correctness.

The conclusion is obvious so that we left the brief explanation in Appendix A.

50 M. Nassurdine et al.

3.2 Security Proofs

Theorem 2. The scheme (Setup,Ext,Sign,Vfy,Link) is computationally
anonymous in the random oracle model, if the DBDH assumption holds and
the Pedersen is perfectly hiding.

Proof. Suppose A is a PPT adversary breaking computational anonymity with
probability ε.

Let G = 〈G〉 be a cyclic group of prime order p, e be a corresponding bilinear
map, and T1 = (G, aG, bG, cG,w · e(G,G)), T2 = (G, aG, bG, cG, abc · e(G,G))
be an instance of the DBDH problem. According to the DBDH assumption we
have for all PPT challenger C

|Pr[C(T1) = 1] − Pr[C(T2) = 1]| ≤ negl(λ) .

When C is given Ts, for s ∈ {0, 1}, it does as follows to simulate an anonymity
game for A. For simplicity, we use Tsi to denote the ith component of Ts.

C first provides the public system parameter to A. To this end, C
selects H ← G, and set the master public key P = Ts2. C sends pp =
(G, G, P, p, q,H,H1,H2, e) to A, where the hash functions are modeled as ran-
dom oracles. Additionally, we assume that A will check whether an obtained
signature is valid which simplifies the proof, since it guarantees A does at some
point access the random oracle to have the necessary hash digests.

After receiving pp, A contacts with all oracles (simulated by C) adaptively.
Assume that A queries H1, H2 for at most Q1, Q2 times, respectively.
Oracle simulation: C will randomly picks integers η1 ← [1,Q1], η2 ← [1,Q2].

– Random oracle H(M,L, cmt, I, event): if H(s) was queried before, return the
recorded element. Else, C randomly picks and returns x ← Zp. It models the
random oracle to have H(M,L, cmt, I, event) = x.

– Random oracle H1(ID): if H1(ID) was queried before, return the recorded
element. Else if it is the η1th query, return Q = Ts3. Otherwise, C randomly
picks α ← Zp and computes Q = αG. Thus, V = αP is the corresponding
secret key. The random oracle return Q and is modeled to have H1(ID) = Q.

– Random oracle H2(event): if H2(event) was queried before, return the
recorded element. Else if it is the η2th query, return K = Ts4. Otherwise,
randomly select and return K ← G. It models the random oracle to have
H2(event) = K.

– Extracting oracle EO(ID): if H1(ID) = Ts3, the oracle aborts. Else if H1(ID)
was not queried before, C queries it. The oracle returns V = αP .

– Signing oracle SO(n, ID,M, event, L): if ID /∈ L, C refuses to answer. If
H1(ID) or H2(event) were not queried before, C queries them and use V = αP
as the corresponding secret key. Then C runs Sign(n, V,M, event, L) to gen-
erate and return an accepting signature σ.

After interacting with the oracles, A specifies a target (n,M,L, event). If Ts3 ∈ L
and event = Ts4, C uses the SHVZK simulator (see Appendix B) to generate a

Identity Based Linkable Ring Signature 51

valid signature (proof transcript) σs = (cmt, x, rsp, Z, I = Ts5) for ID = Ts3. Let
the index of ID = Ts3 ∈ L is π ∈ [0, n). Please note that the probabilities that
EO aborts, Ts3 /∈ L and event �= Ts is 1/Q1, 1 − n/Q1, and 1/Q2, respectively.

Finally, A returns an index j ∈ [0, n), after receiving σ. If j = π, C outputs
1, otherwise C outputs 0. If C is fed with T1, then A is in a real anonymity game.
According to the hypothesis to A, we have

Pr[C(T1) = 1] = Pr[A(σ1) = π] ≥ ε − 1 + Q1 − n

Q1
− 1

Q2
= ε − 1

poly(λ)
.

On the other side, if C is fed with T2, then the advantage for A to find the
correct π is no better than random guessing, since the underlying Sigma-protocol
is SHVZK (see Appendix B) and the linking tag I is independent of every pubic
key in L. Thus,

Pr[C(T2) = 1] = Pr[A(σ2) = π] = 1/n − 1
poly(λ)

.

Consequently, depending on the DBDH assumption

negl(λ) ≥ |Pr[C(T1) = 1] − Pr[C(T2) = 1]| = |Pr[A(σ1) = π] − Pr[A(σ2) = π]|
≥ |Pr[A(σ1) = π]| − |Pr[A(σ2) = π]| ≥ ε − 1/n .

Thus we have ε ≤ 1/n + negl(λ), which means the advantage for A to break the
computational anonymity of our scheme is negligible. �
Theorem 3. The scheme (Setup,Ext,Sign,Vfy,Link) is unforgeable in the
random oracle model, if the Computational Diffie-Hellman (CDH) assumption
hold, and the Pedersen commitment is perfectly hiding and computationally
binding.

Proof. Suppose A is a PPT adversary breaking unforgeability with probability
ε. Let G = 〈G〉 be a cyclic group of prime order p, e be a corresponding bilinear
map, and T = (G, aG, bG) be an instance of the the CDH problem. According
to the CDH assumption we have for all PPT challenger C

Pr[C(T) = abG] ≤ negl(λ) .

When C is given T , it does as follows to simulate an unforgeability game for A.
For simplicity, we use Ti to denote the ith component of T .

C first provides the public system parameter to A. To this end, C
selects H ← G, and set the master public key P = T2. C sends pp =
(G, G, P, p, q,H,H1,H2, e) to A, where the hash functions are modeled as ran-
dom oracles. Additionally, we assume that A will check whether an obtained
signature is valid which simplifies the proof, since it guarantees A does at some
point access the random oracle to have the necessary hash digests.

After receiving pp, A contacts with all oracles (simulated by C) adaptively.
Assume that A queries H1 for at most Q1 times, respectively.
Oracle simulation: C will randomly picks integers η1 ← [1,Q1].

52 M. Nassurdine et al.

– Random oracle H(M,L, cmt, I, event): the random oracle is simulated the
same as in the proof of Theorem 2.

– Random oracle H1(ID): If H1(ID) was queried before, return the recorded
element. Else if it is the η1th query, return Q = T3 Otherwise, C randomly
picks α ← Zp and computes Q = αG. The random oracle is modeled to have
H1(ID) = Q. Notice that V = αP is the corresponding secret key.

– Random oracle H2(event): if H2(event) was queried before, return the
recorded element. Otherwise, randomly select β ← Zp and compute K = βG.
The random oracle is modeled to have H2(event) = K and return K.

– Extracting oracle EO(ID): If H1(ID) = T2, abort. Else if H1(ID) was not
queried before, C queries it. The oracle returns V = αP .

– Signing oracle SO(n, ID,M, event, L): if ID /∈ L, C refuses to answer.
If H1(ID) or H2(event) were not queried before, C queries them and
use V = αP as the corresponding secret key. If H1(ID) �= T2, C runs
Sign(n, V,M, event, L) to return an accepting signature σ. Else if H1(ID) =
T2, C randomly picks challenge x ← Zp, and uses I = e(T2, βP) as
the linking tag. It invokes the SHVZK simulator to return an accepting
signature σ = (cmt, x, rsp, Z, I) and models the random oracle to have
H1(M,L, cmt, I, event) = x. If H1(M,L, cmt, I, event) was queried and the
recorded element is not x, abort.

After interacting with the oracles, A outputs a forgery (n,M,L, event, σ) such
that σ is not an output of SO and all identities in L have not been queried to
EO.

According to the analysis in Theorem 4 of [15], C is able to obtain n + 1
distinct challenge-response pairs to the same initial message with probability
near ε/2, so that the (n+1)-special soundness extractor (see Appendix B) could
extract a secret key V , and since the Pedersen commitment is perfectly hiding,
with probability 1/Q1, V is the secret key of ID, for H1(ID) = T2. In this case,
we have

logT2
V = logG P

⇓
logbG V = logG aG

⇓
V = abG

Hence, V is a correct answer for the instance of the CDH problem, and the
proof is a PPT algorithm to find it with probability close to or higher than ε/
2Q1. Based on the CDH assumption, we have ε ≤ negl(λ), so that the ID-based
linkable ring signature scheme is unforgeable. �
Theorem 4. The scheme (Setup,Ext,Sign,Vfy,Link) has linkability in the
random oracle model if the CDH assumption holds, and the Pedersen commit-
ment is perfectly hiding and computationally binding.

Identity Based Linkable Ring Signature 53

Proof. Suppose A is a PPT adversary breaking linkability with probability ε.
Let G = 〈G〉 be a cyclic group of prime order p, e be a corresponding bilinear
map, and T = (G, aG, bG) be an instance of the the CDH problem. C simulates
a linkability game for A when given T .

To this end, C generates the system parameters, and simulates the oracles
the same as in the proof of Theorem 3, where P = T2, Q = T3.

Assume that A queries H1, H2 for at most Q1, Q2 times, respectively. After
receiving public system parameters and interacting with the oracles, A returns
two tuples (n1,M1, L1, σ1), (n2,M2, L2, σ2) on the same event, such that the
signatures are accepting and not the outputs of SO, Link(σ1, σ2) = 0 and no
more than 1 identity in L1 ∪ L2 was queried to EO.

As all the simulation are the same as in Theorem 3, we state that C could
rewind A to obtain n + 1 distinct challenge-response pairs for at least one of
the initial messages of σ1 and σ2 with probability near ε/2. Without loss of
generality, let σ1 be the one, so that C can extract a secret key V for one of the
identities in L1 with probability close to or higher than ε/2. With this in mind,
let us consider the following two cases.
Case 1, no identity in L1 ∪ L2 has been submitted to EO. This case will yield
a contradiction to the unforgeability of the scheme, as the extracted V is the
secret key of Q with probability near ε/2Q1, and acts as a correct answer for
the instance of the CDH problem.
Case 2, only one identity in L2 was queried to EO, and L1 ∩ L2 = ∅. This case
is similar to Case 1, and yields a contraction to unforgeability.
Case 3, only one identity in L1∩L2 was submitted to EO. Writing σ1 = (. . . , I1),
σ2(. . . , I2), since Link(σ1, σ2) = 0, we have I1 �= I2. Let L1 = (IDi)n1−1

i=1 , and
L′
1 = (Qi)n1−1

i=0 = (H1(IDi))n−1
i=0 . Similar to the introduction in Theorem 3, by

rewinding A, C is able to extract a secret key V for Q ∈ L′ such that

logQ V = logG P = loge(Q,H2(event∗)) I1 .

Moreover, with probability near ε/2Q1, we have Q = Q, so that V = Q·logG P =
abG. Since I1 �= I2, for all ID ∈ L2

logH1(ID) V = loge(H1(ID),H2(event)) e(V ,H2(event))
�= loge(Q,H2(event)) I = logQ V . (2)

Hence, V �= V , which means V is a valid solution for the instance of the CDH
problem and A did not hold it in advance. With the CDH assumption, A does
not exist, so that the scheme is of linkability. �
Theorem 5. The ID-based linkable ring signature scheme is nonslanderable in
the random oracle model if it is unforgeable on adaptively chosen message and
ID attacks and is of linkability.

Proof. Theorem 3 showed that if an PPT adversary A does not hold one of secret
key of the corresponding ring, it barely can generate an accepting signature.
Thus, conditioned on A outputs an accepting signature σ = (cmt, x, rsp, I) on

54 M. Nassurdine et al.

behalf of L and event description event, it is with overwhelming probability that
A made use the knowledge of its key pair (V,Q), such that V ∈ L. Then, by
the proof of Theorem 4, the linking tag I = e(V,H2(event)) with overwhelming
probability. To summarize, an PPT adversary A has negligible probability to
output an accepting signature such that the linking tag is equivalent to the one
belongs to another signer. �

4 Conclusions and Future Works

In this paper, we proposed an ID-based linkable ring signature with logarithmic
size and gave a complete security proof to it. Without public key infrastructure,
e-commerce parties are more flexible to deploy our signature in there system, and
due to the logarithmic size, anonymity problems could be handled at the rela-
tively low cost. In the future works, we are going to widely utilize the advantages
of the current signature scheme.

Acknowledgements. This work is supported by Guangdong Major Project of Basic
and Applied Basic Research (2019B030302008) and the National Natural Science Foun-
dation of China (No. 61972429).

Appendix

A Proof of Theorem 1

Proof. It is easy to see that an honestly generated signature can always pass
the verification algorithm. We only explicitly deduce the two equations whose
correctness are not shown directly. The first equation is responsible for checking
that the linking tag is generated honestly.

xmI −
m−1∑
k=0

xkEk = xn · e(V�,K) − e(P,

n−1∑
k=0

xkρkK)

= e(xnV�,K) − e(
n−1∑
k=0

xkρkP,K)

= e(xnV� −
n−1∑
k=0

xkρkP,K)

= e(Z,K) .

Identity Based Linkable Ring Signature 55

The second equation is to show that the signer hold the corresponding signing
key.

e

⎛
⎝n−1∑

i=0

(
m∏

j=1

wj,ij
)Qi +

m−1∑
k=0

(−xk)Dk, P

⎞
⎠

= e

(
n−1∑
i=0

(δi�x
m +

m−1∑
k=1

pi,kxk)Qi −
m−1∑
k=0

((
n−1∑
i=0

pi,kQi) + ρkG)xk, P

)

= e

(
n−1∑
i=0

δi�x
mQi −

m−1∑
k=0

ρkxkG,P

)

= e

(
xmQ� −

m−1∑
k=0

ρkxkG, vG

)

= e

(
xmV� −

m−1∑
k=0

ρkxkP,G

)

= e (Z,G)

The correctness of the other equations could be verified easily. �

B The Underlying Sigma-Protocol

We have noticed before that the current ID-based linkable ring signature scheme
is the non-interactive version of a one-out-of many Sigma-protocol which we call
it Σ2. The only difference between them is that in the Sigma-protocol, the hash
digest x ∈ Zp is chosen uniformly at random by the verifier rather than com-
puted from some predetermined values. Such a framework is inspired by [15], and
actually, to build the aforementioned one-out-of-many Sigma-Protocol, another
Sigma-Protocol (which we call it Σ1 for short) for proving that a commitment is
opened to 1 or 0 is needed. As Σ1 is the same to the one in Sect. 2.3 in [15], we
omit its description here. The only thing we need to know is that σ1 is perfect
2-special sound and perfect special honest verifier zero-knowledge.

Given the public parameters pp, public keys Q0, . . . , Qn−1, linking tag I =
e(V�,K), and the event description event which fixes K = H2(event), the NP
relation to be proved by the prover (signer) who hold V� = vQ� is

R =

⎧⎨
⎩ (pp, (Q0, . . . , Qn−1,K, I), (�, V�)) :

Q1, . . . , Qn,∈ G ∧ � ∈ [0, n)∧
I ∈ GT ∧ logQ�

V� = logG P∧
loge(Q�,K) I = logG P

⎫⎬
⎭ .

In simple terms, the prover should convince the verifier that 1) his/her knowl-
edge to the NP witness involves an integer � ∈ [0, n) and a group element V� ∈ G;
2) the discrete logarithm between V� and the �th public key Q� is equal to that
between the master public key P and the group generator G; 3) The linking tag
is uniquely determined by V� under the same pp and event.

56 M. Nassurdine et al.

Theorem 6. Σ2 is of (m + 1)-special soundness.

Proof. Suppose the adversary creates m + 1 accepting responses

{w
(α)
1 , . . . , w(α)

m , y
(α)
1 , . . . , y(α)

m , z
(α)
1 , . . . , , z(α)

m , Z(α)}α∈[0,m]

to m + 1 distinct challenges x(0), . . . , x(m). Using any two of the challenge-
response pairs, the 2-special soundness of Σ1 ensures that we are able to extract
an opening (�j , rj) ∈ {0, 1}×Zp to Aj such that for j ∈ [1,m], Aj = �jH + rjG.
Additionally, from the first equation in the verification, we have

x(α)Aj + Bj = w
(α)
j H + y

(α)
j G

⇓
Bj = w

(α)
j H + y

(α)
j G − x(α)Aj

⇓
Bj = w

(α)
j H + y

(α)
j G − x(α)(�jH + rjG)

⇓
Bj = (w(α)

j − x(α)�j)H + (y(α)
j − x(α)rj)G.

Define a
(α)
j = w

(α)
j − x(α)�j , and it is with overwhelming probability that

a
(α)
j = a

(α′)
j

def= aj for all α, α′ ∈ [0,m] (otherwise, we obtain at least one pair of

distinct openings to Bj). Consequently, we have that w
(α)
j = �jx

(α) + aj for all

α ∈ [0,m] and j ∈ [1,m]. For i �= �, we can see that
∏m

j=1 w
(α)
j,ij

is a degree m− 1
polynomial in determinate x and for i = �, it is a polynomial of degree m. So,
from the last equation in the verification procedure, we have

e

⎛
⎝n−1∑

i=0

(
m∏

j=1

w
(α)
j,ij

)Qi +
m−1∑
k=0

(−(x(α))k)Dk, P

⎞
⎠

= e

(
(x(α))mQ� +

n−1∑
i=0

m−1∑
k=0

pi,k(x(α))kQi −
m−1∑
k=0

(x(α))kDk, P

)

= e

(
(x(α))mQ� +

m−1∑
k=0

(x(α))kD′
k, P

)

= e
(
Z(α), G

)
,

where the third line of the above equation could be viewed as a polynomial of
degree m with indeterminate x(α), and D′

k is the coefficient of the k-th degree
term. Since x(0), . . . , x(m) are all different, we can find β0, β1, . . . , βm so that the
following equation holds.

⎛
⎜⎜⎜⎝

(x(0))0 (x(1))0 . . . (x(m))0

(x(0))1 (x(1))1 . . . (x(m))1
...

...
. . .

...
(x(0))m (x(1))m . . . (x(m))m

⎞
⎟⎟⎟⎠ ·

⎛
⎜⎜⎜⎝

β0

β1

...
βm

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎝

0
0
...
0
1

⎞
⎟⎟⎟⎟⎟⎠

.

Identity Based Linkable Ring Signature 57

Define V ′
� =

∑m
α=0 βαZ(α). Notice that

e(V ′
� , G) = e

(
m∑

α=0

βα · Z(α), G

)

= e

(
m∑

α=0

βα

(
(x(α))mQ� +

m−1∑
k=0

(x(α))kD′
k

)
, P

)

= e

(
m∑

α=0

(
βα(x(α))m

)
Q� +

m−1∑
k=0

(
m∑

α=0

βα(x(α))k

)
D′

k, P

)

= e (Q�, P)
= e (vQ�, G) .

So we conclude that V ′
� = vQ�. On the other side, from the equation which is

responsible for checking the validity of linking tag, we have

(
x(α)

)n

I − e

(
P,

n−1∑
k=0

(
x(α)

)k

Ek

)
= e(Z(α),K) ,

so that with the m + 1 accepting transcripts, we obtain
⎛
⎜⎜⎜⎝

1 (x(0))1 · · · (x(0))m

1 (x(1))1 · · · (x(1))m

...
...

. . .
...

1 (x(m))1 · · · (x(m))m

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

E0

E1

...
I

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

e(Z(0),K)
e(Z(1),K)

...
e(Z(m),K)

⎞
⎟⎟⎟⎠ . (3)

By left multiplying (3) with (β0, β1, . . . , βm), we observe that

I =
m∑

α=0

βα · e
(
Z(α),K

)
= e

(
m∑

α=0

βα · Z(α),K

)
= e(V ′

� ,K) = v · e(Q�,K) .

The above facts show that (�, V ′
�) is a valid witness for the statement in R. �

Theorem 7. Σ2 is of special honest verifier zero-knowledge (SHVZK) if the
commitment scheme is perfectly hiding.

Proof. On input a challenge x ∈ Zp, the simulator first chooses wj , yj , zj ← Zp,
for j ∈ [1,m]. It is obvious that the distributions of these simulated responses
are statistically close to that in a real proof. The simulator then picks � ← [0, n),
rj ← Zp and computes Aj = �jH+rjG. Due to the properties of the commitment
scheme (Aj)τ

j=1 are statistically indistinguishable from that of a real proof.
Subsequently, for j ∈ [1, τ], let aj = fj−�jx, and compute (pi,j)i∈[0,n),k∈[1,m).

For k ∈ [1, τ), it picks ρk ← Zp and computes Dk =
∑n−1

i=0 pi,kQi + ρkG,
Ek = e(P, ρkK). The distributions of Dk and Ek are statistically close to uni-
form distribution in G and they are pairwise dependent since they use the same
randomness as in a real proof.

58 M. Nassurdine et al.

Since (Bj)m
j=1, (Cj)m

j=1, D0, E0 are uniquely determined by the correspond-
ing verification equations and the above generated parameters, the simulator
computes

Bj = wjH + yjG − xAj , for j ∈ [1,m]
Cj = zjG − (x − wj)Aj , for j ∈ [1,m]

D0 =
n−1∑
i=0

(
m∏

j=1

wj,ij
)Qi +

m−1∑
k=1

(−xk)Dk − rG

E0 = xmI −
m−1∑
k=1

xkEk − e(Z,K) .

By the foregoing discussion, the distribution of the outputting transcript
(
(Aj , Bj , Cj),Dj−1, E

m
j=1, x, (wj)m

j=1, (yj)m
j=1, (zj)m

j=1, Z
)

is totally indistinguishable from that of a real proof. As a result, Σ2 is SHVZK.
�

References

1. Au, M.H., Liu, J.K., Susilo, W., Yuen, T.H.: Constant-size ID-based linkable and
revocable-iff-linked ring signature. In: Barua, R., Lange, T. (eds.) INDOCRYPT
2006. LNCS, vol. 4329, pp. 364–378. Springer, Heidelberg (2006). https://doi.org/
10.1007/11941378 26

2. Au, M.H., Liu, J.K., Susilo, W., Yuen, T.H.: Secure ID-based linkable and
revocable-iff-linked ring signature with constant-size construction. Theor. Com-
put. Sci. 469, 1–14 (2013)

3. Au, M.H., Liu, J.K., Yuen, T.H., Wong, D.S.: ID-based ring signature scheme
secure in the standard model. In: Yoshiura, H., Sakurai, K., Rannenberg, K.,
Murayama, Y., Kawamura, S. (eds.) IWSEC 2006. LNCS, vol. 4266, pp. 1–16.
Springer, Heidelberg (2006). https://doi.org/10.1007/11908739 1

4. Awasthi, A.K., Lal, S.: ID-based ring signature and proxy ring signature schemes
from bilinear pairings. Int. J. Netw. Secur. 4(2), 187–192 (2007)

5. Backes, M., Döttling, N., Hanzlik, L., Kluczniak, K., Schneider, J.: Ring signatures:
logarithmic-size, no setup—from standard assumptions. In: Ishai, Y., Rijmen, V.
(eds.) EUROCRYPT 2019. LNCS, vol. 11478, pp. 281–311. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-17659-4 10

6. Bender, A., Katz, J., Morselli, R.: Ring signatures: stronger definitions, and con-
structions without random oracles. In: Halevi, S., Rabin, T. (eds.) TCC 2006.
LNCS, vol. 3876, pp. 60–79. Springer, Heidelberg (2006). https://doi.org/10.1007/
11681878 4

7. Beullens, W., Katsumata, S., Pintore, F.: Calamari and Falafl: logarithmic (link-
able) ring signatures from isogenies and lattices. In: Moriai, S., Wang, H. (eds.)
ASIACRYPT 2020. LNCS, vol. 12492, pp. 464–492. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-64834-3 16

https://doi.org/10.1007/11941378_26
https://doi.org/10.1007/11941378_26
https://doi.org/10.1007/11908739_1
https://doi.org/10.1007/978-3-030-17659-4_10
https://doi.org/10.1007/11681878_4
https://doi.org/10.1007/11681878_4
https://doi.org/10.1007/978-3-030-64834-3_16

Identity Based Linkable Ring Signature 59

8. Boneh, D., Franklin, M.: Identity-based encryption from the weil pairing. In: Kilian,
J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg (2001).
https://doi.org/10.1007/3-540-44647-8 13

9. Bootle, J., Cerulli, A., Chaidos, P., Ghadafi, E., Groth, J., Petit, C.: Short account-
able ring signatures based on DDH. In: Pernul, G., Ryan, P.Y.A., Weippl, E. (eds.)
ESORICS 2015. LNCS, vol. 9326, pp. 243–265. Springer, Cham (2015). https://
doi.org/10.1007/978-3-319-24174-6 13

10. Chatterjee, R., et al.: Compact ring signatures from learning with errors. Cryptol-
ogy ePrint Archive, Report 2021/942 (2021). https://ia.cr/2021/942

11. Hu, C., Liu, P.: An enhanced constant-size identity-based ring signature scheme. In:
2nd IEEE International Conference on Computer Science and Information Tech-
nology, pp. 587–590. IEEE (2009)

12. Chow, S.S.M., Wei, V.K., Liu, J.K., Yuen, T.H.: Ring signatures without random
oracles. In: Symposium on Information, Computer and Communications Security,
ASIACCS 2006, ACM, New York, NY, USA, pp. 297–302 (2006)

13. Chow, S.S.M., Yiu, S.-M., Hui, L.C.K.: Efficient identity based ring signature. In:
Ioannidis, J., Keromytis, A., Yung, M. (eds.) ACNS 2005. LNCS, vol. 3531, pp.
499–512. Springer, Heidelberg (2005). https://doi.org/10.1007/11496137 34

14. Dodis, Y., Kiayias, A., Nicolosi, A., Shoup, V.: Anonymous identification in Ad
Hoc groups. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS,
vol. 3027, pp. 609–626. Springer, Heidelberg (2004). https://doi.org/10.1007/978-
3-540-24676-3 36

15. Groth, J., Kohlweiss, M.: One-out-of-many proofs: or how to leak a secret and
spend a coin. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol.
9057, pp. 253–280. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-
662-46803-6 9

16. Haque, A., Krenn, S., Slamanig, D., Striecks, C.: Logarithmic-size (linkable) thresh-
old ring signatures in the plain model. Cryptology ePrint Archive, Report 2020/683
(2020), https://ia.cr/2020/683

17. Libert, B., Peters, T., Qian, C.: Logarithmic-size ring signatures with tight security
from the DDH assumption. In: Lopez, J., Zhou, J., Soriano, M. (eds.) ESORICS
2018. LNCS, vol. 11099, pp. 288–308. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-98989-1 15

18. Libert, B., Nguyen, K., Peters, T., Yung, M.: One-shot fiat-shamir-based nizk argu-
ments of composite residuosity in the standard model. Cryptology ePrint Archive,
Report 2020/1334 (2020), https://ia.cr/2020/1334

19. Liu, J.K., Au, M.H., Susilo, W., Zhou, J.: Linkable ring signature with uncondi-
tional anonymity. IEEE Trans. Knowl. Data Eng. 26(1), 157–165 (2014)

20. Liu, J.K., Wong, D.S.: Linkable ring signatures: security models and new schemes.
In: Gervasi, O., et al. (eds.) ICCSA 2005. LNCS, vol. 3481, pp. 614–623. Springer,
Heidelberg (2005). https://doi.org/10.1007/11424826 65

21. Lyubashevsky, V., Nguyen, N.K., Seiler, G.: Smile: set membership from ideal lat-
tices with applications to ring signatures and confidential transactions. Cryptology
ePrint Archive, Report 2021/564 (2021). https://ia.cr/2021/564

22. Nguyen, L.: Accumulators from bilinear pairings and applications. In: Menezes, A.
(ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 275–292. Springer, Heidelberg (2005).
https://doi.org/10.1007/978-3-540-30574-3 19

23. Pedersen, T.P.: Non-interactive and information-theoretic secure verifiable secret
sharing. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 129–140.
Springer, Heidelberg (1992). https://doi.org/10.1007/3-540-46766-1 9

https://doi.org/10.1007/3-540-44647-8_13
https://doi.org/10.1007/978-3-319-24174-6_13
https://doi.org/10.1007/978-3-319-24174-6_13
https://ia.cr/2021/942
https://doi.org/10.1007/11496137_34
https://doi.org/10.1007/978-3-540-24676-3_36
https://doi.org/10.1007/978-3-540-24676-3_36
https://doi.org/10.1007/978-3-662-46803-6_9
https://doi.org/10.1007/978-3-662-46803-6_9
https://ia.cr/2020/683
https://doi.org/10.1007/978-3-319-98989-1_15
https://doi.org/10.1007/978-3-319-98989-1_15
https://ia.cr/2020/1334
https://doi.org/10.1007/11424826_65
https://ia.cr/2021/564
https://doi.org/10.1007/978-3-540-30574-3_19
https://doi.org/10.1007/3-540-46766-1_9

60 M. Nassurdine et al.

24. Rivest, R.L., Shamir, A., Tauman, Y.: How to leak a secret. In: Boyd, C. (ed.)
ASIACRYPT 2001. LNCS, vol. 2248, pp. 552–565. Springer, Heidelberg (2001).
https://doi.org/10.1007/3-540-45682-1 32

25. Saberhagen, N.V.: CryptoNote v2.0 (2013). https://cryptonote.org/whitepaper.
pdf

26. Sasson, E.B., et al.: Zerocash: decentralized anonymous payments from Bitcoin.
In: Symposium on Security and Privacy–SP 2014, pp. 459–474. IEEE (2014)

27. Zhang, F., Chen, X.: Cryptanalysis and improvement of an ID-based ad-hoc anony-
mous identification scheme at CT-RSA 05. Inf. Process. Lett. 109(15), 846–849
(2009). https://doi.org/10.1016/j.ipl.2009.04.002

28. Zhang, F., Kim, K.: ID-based blind signature and ring signature from pairings.
In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp. 533–547. Springer,
Heidelberg (2002). https://doi.org/10.1007/3-540-36178-2 33

29. Zhang, H., Zhang, F., Tian, H., Au, M.H.: Anonymous post-quantum crypto-
cash. In: Meiklejohn, S., Sako, K. (eds.) FC 2018. LNCS, vol. 10957, pp. 461–479.
Springer, Heidelberg (2018). https://doi.org/10.1007/978-3-662-58387-6 25

https://doi.org/10.1007/3-540-45682-1_32
https://cryptonote.org/whitepaper.pdf
https://cryptonote.org/whitepaper.pdf
https://doi.org/10.1016/j.ipl.2009.04.002
https://doi.org/10.1007/3-540-36178-2_33
https://doi.org/10.1007/978-3-662-58387-6_25

Security Analysis of DGM and GM
Group Signature Schemes Instantiated

with XMSS-T

Mahmoud Yehia(B), Riham AlTawy(B), and T. Aaron Gulliver

Department of Electrical and Computer Engineering, University of Victoria,
Victoria, BC, Canada

{mahmoudyehia,raltawy}@uvic.ca

Abstract. Group Merkle (GM) (PQCrypto 2018) and Dynamic Group
Merkle (DGM) (ESORICS 2019) are recent proposals for post-quantum
hash-based group signature schemes. They are designed as generic con-
structions that employ any stateful Merkle hash-based signature scheme.
XMSS-T (PKC 2016, RFC8391) is the latest stateful Markle hash-based
signature scheme where (almost) optimal parameters are provided. In
this paper, we show that the setup phase of both GM and DGM does
not enable drop-in instantiation by XMSS-T which limits both designs
in employing earlier XMSS versions with sub-optimal parameters which
negatively affects the performance of both schemes. Thus, we provide
a tweak to the setup phase of GM and DGM to overcome this limita-
tion and enable the adoption of XMSS-T. Moreover, we analyze the bit
security of DGM when instantiated with XMSS-T and show that it is
susceptible to multi-target attacks because of the parallel Signing Merkle
Trees (SMT) approach. More precisely, when DGM is used to sign 264

messages, its bit security is 44 bits less than that of XMSS-T. Finally,
we provide a DGM variant that mitigates multi-target attacks and show
that it attains the same bit security as XMSS-T.

Keywords: Digital signatures · Hash-based signature schemes · Group
signature schemes · Post-quantum cryptography · Merkle trees

1 Introduction

A group signature scheme (GSS) incorporates N members in a signing scheme
with a single public key. GSS allows any group member to sign anonymously on
behalf of the whole group [16]. A group manager is assigned to perform system
setup, reveal the identity of a given signer when needed, add new members, and
revoke memberships when required. Remote attestation protocols, e-commerce,
e-voting, traffic management, and privacy preserving techniques in blockchain
applications [3,8,35] are applications that utilize group signature schemes. There
have been several proposals for group signature schemes [6,8,14,15,28,29]. How-
ever, the majority rely on number theoretic assumptions that are not secure
against post-quantum attacks.
c© Springer Nature Switzerland AG 2021
Y. Yu and M. Yung (Eds.): Inscrypt 2021, LNCS 13007, pp. 61–81, 2021.
https://doi.org/10.1007/978-3-030-88323-2_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-88323-2_4&domain=pdf
https://doi.org/10.1007/978-3-030-88323-2_4

62 M. Yehia et al.

There is now an imperative need to replace the current public key infrastruc-
ture with quantum-secure algorithms. This is evidenced by the current NIST
post-quantum cryptography standardization competition (PQC) [33]. GSS is a
public key infrastructure primitive which has attracted research attention to
provide quantum security. The first post-quantum lattice-based group signa-
ture scheme was proposed in [20], and other schemes were proposed in [17,25–
27,30,32]. However, unlike the lattice-based signature scheme PQC finalists,
their group signature structures are not as efficient [36]. Code-based group
signature schemes were developed to provide another alternative for quantum
secure GSSs [1,2,19], but they have very large signature sizes on the order of
Megabytes [4].

In 2018, El Bansarkhani and Misoczki introduced Group Merkle (GM), the
first post-quantum stateful hash-based group signature scheme [18]. A year
Later, Dynamic Group Merkle (DGM), the latest hash-based group signature
scheme, was introduced to solve some of the limitations of GM [12]. GM
and DGM provide quantum security with reasonable signature sizes on the
order of KBytes and both are general constructions that can be instantiated
with any stateful Merkle hash-based signature scheme. The security analysis
of both schemes included standard security notions of group signature schemes
(anonymity and full-traceability) [5,13], but no bit security analysis was pro-
vided. XMSS+ [21], XMSSMT [23], and XMSS-T [24] are stateful hash-based
signature schemes that overcome the performance drawbacks of Merkle Signa-
ture Scheme (MSS) [31]. The last version of XMSS-T given in Internet Engi-
neering Task Force (IETF) RFC8391 [22] provides (almost) optimal parameters
and mitigates multi-target attacks [9].

Our Contributions. The contributions of this work are as follows.

– We show that the setup phase of both GM and DGM restricts them from being
directly instantiated by XMSS-T which negatively affects the performance of
both schemes because they may use earlier XMSS versions with sub-optimal
parameters.

– We introduce simple tweaks to the GM and DGM setup phases that enable
their instantiation with XMSS-T.

– We analyze the bit security of DGM when instantiated with XMSS-T and
show that it is vulnerable to multi-target attacks due to allowing multiple
signing trees to branch out from the same intermediate initial Merkle tree
node. Concretely, when the scheme is used to sign 264 messages under the
same public key (similar to the NIST PQC requirement [34]), DGM has bit
security that is 44 bits less than that of the utilized Merkle signing scheme, i.e.
212 bit security when instantiated with XMSS-T-SHA2 at 256 bit security.

– We propose a DGM variant that mitigates the described multi-target attacks
and show that such a variant maintains the same bit security as the utilized
Merkle signing scheme.

Security Analysis of DGM and GM Group Signature Schemes 63

2 Preliminaries

In this section, we provide the security definitions of hash functions that will be
used throughout the paper and introduce the notion of unforgeability in GSSs. In
addition to the standard one wayness, and strong and weak collision resistance
security notions, we consider the security notions of hash function families intro-
duced in [9,24]. In what follows, let n ∈ N be the security parameter, k = poly(n),
m = poly(n), Hn = {HK(M) : {0, 1}k ×{0, 1}m → {0, 1}n be a keyed hash func-
tion family where K ∈ {0, 1}k is the hash key and M ∈ {0, 1}m is the message.
Hash-based signature schemes usually adopt parameterized hash functions with
m, k ≥ n. Note that the success probability of quantum adversaries assumes a
Quantum Accessible Random Oracle Model [7].

Definition 1 (Post-Quantum) Distinct-function, Multi-target Second
Preimage Resistance (PQ-DM-SPR). Given a (quantum) adversary A who
is provided with p message-key pairs (Mi,Ki), 1 ≤ i ≤ p, the success probability
that A finds a second preimage of a pair (j), 1 ≤ j ≤ p using the corresponding
hash function key (Kj) is given by,

SuccPQ-DM-SPR
Hn,p

(A) = Pr[Ki ← {0, 1}k;Mi ← {0, 1}m, 1 ≤ i ≤ p;

(j,M ′) ← A((K1,M1), . . . , (Kp,Mp)) :
M ′ �= Mj ∧ H(Kj ,Mj) = H(Kj ,M

′)]

A generic attack by a classical (resp. quantum) DM-SPR adversary who makes
qh queries to an n bit hash function has success probability of qh+1

2n (resp.

Θ((qh+1)2

2n)). Note that if the keys of the hash function family are chosen ran-
domly, then the security notion in Definition 1 is referred to as Multi-Function,
Multi-target Second-Preimage Resistance (MM-SPR).

Definition 2 (Post-Quantum) Multi-target Extended Target Collision
Resistance (PQ-M-eTCR). Given a (quantum) adversary A who is given a
target set of p key-message pairs (Ki,Mi), 1 ≤ i ≤ p and is required to find
a different message-key pair (with possibly the same key), whose image collides
with any of the pairs in the target set, the success probability of A is given by,

SuccPQ-M-eTCR
Hn,p

(A) = Pr[Ki ← {0, 1}k;Mi ← {0, 1}m, 1 ≤ i ≤ p;

(j,K ′,M ′) ← A((K1,M1), . . . , (Kp,Mp)) :
M ′ �= Mj ∧ H(Kj ,Mj) = H(K ′,M ′)]

A generic attack by a classical (quantum) M-eTCR adversary who is given p
targets and makes qh queries to an n bit hash function has a success probability
of p(qh+1)

2n + pqh
2k

(resp. Θ(p(qh+1)2

2n + pq2h
2k

)) when k ≥ n.

Definition 3 ((Post-Quantum) M-eTCR with Nonce (PQ-NM-eTCR)).
Given a (quantum) adversary A who is given a target set of p key-message-nonce

64 M. Yehia et al.

tuples (Ki,Mi, i), 1 ≤ i ≤ p, and are required to find a different key-message-
nonce tuple (K ′,M ′, j) whose image collides with the j-th tuple in the target set
(with possibly the same key), the success probability of A is given by,

SuccPQ-NM-eTCR
Hn,p

(A) = Pr[Ki ← {0, 1}k;Mi ← {0, 1}m, 1 ≤ i ≤ p;

(K ′,M ′, j) ← A((K1,M1, 1), . . . , (Kp,Mp, p)) :
M ′ �= Mj ∧ H(Kj ||j,Mj) = H(K ′||j,M ′)]

A generic attack by a classical (quantum) NM-eTCR adversary who is given p
targets and makes qh queries to an n bit hash function has a success probability
of (qh+p)

2n + pqh
2k

(resp. Θ((qh+p)2

2n + pq2h
2k

)) when k ≥ n.

Definition 4 ((Post Quantum) Pseudorandom Function (PQ-PRF)).
Hn is called a PRF function family if it is efficiently computable and for any
(quantum) adversary A who can query a black-box oracle O that is initialized
with either Hn function or a random function G, where G : {0, 1}m → {0, 1}n,
the success probability of A distinguishing the output of O by determining which
function it is initialized with, is negligible. Such a success probability is given by,

Succ PQ-PRF
Hn

(A) =| Pr[O ← Hn : AO(·) = 1] − Pr[O ← G : AO(·) = 1] |

A generic attack by a classical (resp. quantum) PQ-PRF adversary who makes
qh queries to an Hn has a success probability of qh+1

2n (resp. Θ((qh+1)2

2n)).

Unforgeability in Group Signature Schemes. A basic security notion of
a (group) digital signature scheme is that signatures cannot be forged. More
precisely, it is computationally infeasible for an adversary A who does not know
the secret key and is allowed unrestricted queries to the signing oracle to gen-
erate a message signature pair (M ′,Σ′) that passes as valid by the verification
algorithm.

In what follows, we give the definition of the unforgeability game
EXPforge

GS,A (n,N) for a group signature scheme, GS, with N members and security
parameter n. Such a game was described by Bellare et al. in [5] as an adaptation
from the traceability game where A is not allowed to corrupt members. Intu-
itively, A is successful in winning EXPforge

GS,A if the forged message is either traced
to a group member or cannot be traced to a member.

Definition 5 (Unforgeability). A group signature scheme GS is unforgeable
if for any ppt adversary A that is given unrestricted access to the signing and
opening oracles, A cannot generate a valid signature for a message that was not
previously queried. A has a negligible advantage in the experiment ExpforgeGS,A as
given in Fig. 1

Advforge
GS,A (n,N) =| Pr[ExpforgeGS,A (n,N) = 1] |≤ negl(n)

Security Analysis of DGM and GM Group Signature Schemes 65

Expforge
GS,A (n, N)

- (GPK, sk∗) G.KGen(1n, N)
- Unrestricted queries:
* Sign(M, ·)
* G.Open(M, Σ)

- Generate (M , Σ)
- If G.V erify(Σ , M , gpk) == 1 Return 1
Else Return 0

Fig. 1. Unforgeability experiment

3 Specification of Related Schemes

In this section, we provide a brief description of XMSS-T, GM and DGM, the
related signing schemes used throughout this paper. Details are given only for
the procedures that are relevant to our analysis. For more information, the reader
is referred to [12,18,22,24].

3.1 Extended Merkle Signature Scheme-Tightened (XMSS-T)

XMSS-T is a multi Merkle tree construction where the tree leaf nodes are the
public keys of the Winternitz One-Time Signature Scheme with Tightened secu-
rity (WOTS-T) [10]. In what follows, we consider the specification of one tree
instance of XMSS-T because this is used in GM and DGM. XMSS-T has a
public addressing mapping scheme, ADRS, that maps a public seed, pk.seed,
a leaf/internal node index, i, and a level, j, to generate a (distinct) new hash
randomizer, r, and bit-mask, q, for each hash call in the scheme (the hash-
ing in the WOTS-T scheme and the Merkel tree hashing). Such a distinct
randomizer enables the scheme to mitigate multi-target attacks. Precisely, a
Merkle tree of height h has 2h leaf nodes (WOTS-T.pk) and the i-th node
at level j is denoted by Xi,j , where 0 ≤ i < 2h−j , 0 ≤ j ≤ h. The internal
nodes are generated by Xi,j = H(ri,j , (X2i,j−1||X2i+1,j−1) ⊕ qi,j), where ri,j
and qi,j are the hash randomizer and bit-mask generated by the addressing
scheme (ri,j , qi,j) ← ADRS(pk.seed, i, j). The XMSS-T addressing scheme (see
Appendix A for details), takes the leaf index, i, and calculates j according to
the hashing sub-structure i.e., OTS hash chains, L-tree hashing or Merkle tree
hashing. Then, it generates the required hash randomizer and bit mask. For
simplicity, ADRS takes the node level j as input.

The nodes at level 0, Xi,0, are the leaf nodes, and they are the public keys
of the WOTS-T which also utilizes the addressing scheme, ADRS, to evaluate
the required hash randomizers and bit masks for its hashing. For details of the
WOTS-T signing scheme and addressing schemes, the reader is referred to [24]
and Appendix A, respectively. Figure 2 depicts a simplified example of XMSS-T
with one tree of 8 signing leaves L0, · · · , L7. A signature by leaf L2 (colored in
black) has all the gray nodes in its authentication path.

66 M. Yehia et al.

Leaf Node
OTS.pk

Internal Node

Level0

Level2

Level3

Level1

PK.Root

L0 L3 L4 L5 L6 L7L1 L2

PK.Root

Fig. 2. A one layer XMSS-T, where the leaf nodes are the WOTS-T public keys. The
nodes colored in gray are the authentication path for signing with leaf node L2. (Color
figure online)

3.2 Group Merkle (GM)

Group Merkle (GM) is the first post-quantum hash-based group signature
scheme. It is a one Merkle tree construction that can be instantiated by any
stateful one-tree Merkle hash-based signature scheme that employs a One-Time
Signing (OTS) scheme as the underlying signing algorithm. The group manager
in GM is responsible for the setup procedure of N group members. In this phase,
a member j, 1 ≤ j ≤ N , generates their own B OTS keys and sends the corre-
sponding public keys (OTS.pk(j−1)B+1, OTS.pk(j−1)B+2, . . . , OTS.pkjB) to the
group manager who labels all the received NB keys from the N members by
(1, 2, · · · , NB), where each consecutive (j − 1)B + 1, (j − 1)B + 2, . . . , jB set of
keys belongs to the j-th member.

To ensure signer anonymity, the OTS public keys are shuffled by encrypting the
corresponding labels by a symmetric encryption algorithm, posi = Enc(i, skgm),
where skgm is the group manager’s secret key, and 1 ≤ i ≤ NB. Thus, the
group manager has the pairs (OTS.pk1, pos1), · · · , (OTS.pkN ·B , posN ·B). These
pairs are reordered in ascending order of the encrypted positions to perform the
pair permutation. Then, the GM tree is constructed where a leaf node, denoted
by Li = Xi,0 contains the pair (OTS.pkj , posj) and i is the new permuted posi-
tion of OTS.pkj . Accordingly, the p-th node at level 1 is calculated by Xp,1 =
H(X2p,0||X2p+1,0) = H(OTS.pkx, posx||OTS.pkz, posz) for 0 ≤ p ≤ NB

2 − 1,
i.e. L2p = X2p,0 = (OTS.pkx, posx) and L2p+1 = X2p+1,0 = (OTS.pkz, posz),
because after the permutation, position x is mapped to 2p and position z is mapped
to 2p + 1. Hashing neighboring nodes continues up the levels until the tree root is
evaluated which is the group public key GM.gpk. Note that the encrypted position
is included in the signature, and is used by to group manager to reveal the identity
of the signer. Figure 3 shows a simplified example of a GM tree of two members
colored in red and blue where each has 2 OTS key pairs.

3.3 Dynamic Group Merkle (DGM)

DGM [12] combines two types of Merkle trees, one Initial Merkle Tree (IMT)
and multiple Signing Merkle Trees (SMTs). The IMT has height 20 and random

Security Analysis of DGM and GM Group Signature Schemes 67

Internal Node

Level0

Level2

Level1

GM.gpk

pk0 pos0 pk1 pos1

GM.gpk

posi

X0,1 X1,1

Leaf node Xi,0

X0,0 X1,0 X2,0 X3,0

pk2 pos2 pk3 pos3

OTS.pki

Fig. 3. GM with two members colored in red and blue, each of which has two signing
leaves, the leaf Permutation is done by sorting the encrypted positions. (Color figure
online)

values for its leaves in order to build the tree whose root is the group public
key DGM.gpk. The SMTs have variable height and their leaves are OTSs which
are used by group members to sign messages. Initially, a group member asks the
group manager for B OTS signing keys the group manager randomly chooses
B internal nodes from the IMT, i.e. nodes at levels 1, 2, . . . , 19, and assigns an
OTS from each SMT that is linked to these internal nodes. If all the OTSs of
an existing SMT are assigned or an IMT internal node does not have an SMT
yet, then a new SMT is generated. The height of an SMT is equal to the level
of the internal node that it is linked to.
SMT Generation. The SMT is constructed in the same manner as the GM
tree. However, in DGM, the OTS secret and public key pairs are generated by
the group manager and the whole SMT is built without input from the group
members. Let OTS.pki denote the i-th OTS public key, 0 ≤ i ≤ z, where z
denotes the total number of signatures supported by the scheme. Let i = (v, u)
where u denotes the OTS number within the v-th SMT.

All the OTS public keys are generated and indexed by DGM.i = (v, u).
Such indexes are then encrypted with a symmetric encryption algorithm to gen-
erate DGM.posi = Enc(DGM.i, skgm), where skgm is the group manger secret
key. The OTS public keys are then shuffled by sorting the encrypted positions
DGM.pos. Afterwards, the SMT leaves are generated, precisely, the j-th SMT
leaf node is the hashing of the concatenation of the i-th OTS public key and their
encrypted position, Lj = H(OTS.pki||DGM.posi), where j is the new position
of the i-th OTS after the permutation. These leaves are used to build the SMT
and evaluate its root rSMT which is then linked to an IMT internal node called
the fallback node, Fn, using a symmetric encryption algorithm. More precisely,
rSMT , is linked to Fn by evaluating the fallback key as Fk = Dec(Fn, rSMT)
which is included in the signature. Note that the verifier has to communicate
with the group manager to check the validity of the received Fk and then

68 M. Yehia et al.

calculate Fn = Enc(Fk, rSMT) to complete the verification process. After all
the leaves of an SMT are used, a new SMT is generated and linked to the same
Fn. Note that different SMTs linked to the same fallback node Fn have different
fallback keys.

Figure 4 depicts a simplified DGM example where the IMT, colored in blue,
has height 4. The figure has one SMT colored in red which is linked to the IMT
first internal node at level 3, Fn = X0,3. When L2 is used to sign a message
M , the resulting signature is given by Σ = (indx,OTS.σindx,DGM.posi, Auth),
where indx = 2 is the signing leaf index with respect to the IMT to enable
calculating which node is concatenated on its right and left in both the SMT and
IMT from the authentication path in the verification process. OTS.σindx denotes
the OTS signature by the leaf index indx, Auth = AuthSMT , Fk,AuthIMT ,
where AuthSMT = L3, SMT.X0,1, SMT.X1,2 is the SMT authentication path
(colored in pink), and AuthIMT = IMT.X1,3, colored in light blue, is the IMT
authentication path for the fallback node Fn.

IMT root

IMT leaf

Internal Node

SMT root

SMT leaf

Fallback key
FK

DGM.gpk

Fk = Dec(Fn, rSMT)

rSMT

Fn = X0,3

L3L2

Level0

Level2

Level3

Level4

Level1

Fig. 4. DGM example.

4 Instantiating GM and DGM with XMSS-T

In both GM and DGM, the signing leaves which contain the public keys of the
OTS used by the group members are first generated and then permuted. After-
wards, the Merkle tree (SMT in DGM) is built using the permuted leaves. In
GM, the group members generate their own OTS keys and send the correspond-
ing OTS public keys to the group manager who permutes them and then builds
the GM tree. Finally, the group manager distributes all GM tree signing leaves to
all the members. On the other hand, in DGM, the group manager generates the
OTSs on behalf of the group members, evaluates the signing leaves and permutes

Security Analysis of DGM and GM Group Signature Schemes 69

them, then constructs the SMTs, and assigns OTSs at random from randomly
chosen SMTs.

XMSS-T is the latest stateful MSS variant and has (almost) optimal parameters
when compared to other MSS variants which translates to smaller signatures.
For instance, with the same parameters (SHA-256 hash function, Winternetiz
parameter w=16, tree height 20), the bit security of XMSS-T (resp. XMSS [11]) is
256 (resp. 196). With a bit security of 196, XMSS-T (resp. XMSS) has a signature
size of 14,328 (resp. 22,296) bits. XMSS-T uses WOTS-T as the underlying OTS
signing scheme which requires the signing leaf index, i, within the Merkle tree
to generate the OTS public keys. More precisely, XMSS-T uses an addressing
scheme that utilizes the signing leaf index within the Merkle tree as input to
generate a distinct hash randomizer and bit mask for each hash call in the
hash chains of WOTS-T [24] (see Appendix A). These hash randomizers and
bit masks are used in evaluating the WOTS-T public keys which represent the
signing leaves (see Sect. 3.1).

Instantiating GM and DGM by XMSS-T is not directly achievable because
in the specifications of these schemes, a signing leaf index, i, is known only after
its corresponding OTS public key has been generated and the associated leaf
permuted, while in XMSS-T, WOTS-T requires the leaf index i to evaluate the
OTS public key and generate its corresponding leaf. One solution is to employ an
earlier XMSS version with an OTS variant that does not require the position of
the leaf within the Merkle tree to evaluate the OTS public keys. Such a solution
results in using OTS with larger parameters than WOTS-T which negatively
affects the performance of the group signature scheme.

GM and DGM with XMSS-T. We provide a tweak in the setup phase of both
GM and DGM which enables their instantiation with XMSS-T. In GM, the setup
phase is interactive so we add an extra communication step between the group
manager and the group members where the permuted indexes are first sent to the
members who can then generate their WOTS-T public keys. More precisely, the
permutation in GM is done by encrypting a given position that is associated with
an OTS public key, but the encryption itself is independent from the value of the
public key, i.e. posi = Enc(i, skgm). Accordingly, the group manger can initially
permute the indexes of the leaves for all group members before the OTS keys are
generated. Afterwards, the permuted indexes are assigned to group members in
a manner similar to the original setup phase (see Sect. 3.2). Each group member
uses the assigned indexes within the whole tree as an input to the WOTS-T
addressing scheme, ADRS, to generate the required hash randomizers and bit
masks which are required to generate their WOTS-T public keys. Finally, the
WOTS-T public keys are sent back to the group manager who constructs the
GM tree using XMSS-T.

In DGM, no extra communication is needed because the group manger gener-
ates the OTS signing keys for the group members and their corresponding public
keys. Accordingly, the manager may first permute the indexes using symmet-
ric encryption then generate the OTS public keys using the permuted indexes.

70 M. Yehia et al.

In other words, the specification of the setup phase stays the same with only the
permutation and OTS key generation order swapped.

5 DGM with XMSS-T Security Analysis

In [12], DGM was analyzed with respect to security notions of group digital
signature schemes, i.e. anonymity and traceability. However, since DGM was
not instantiated with a specific Merkle signing scheme, no bit security analysis
for its unforgeability was provided. In this section, we analyze the bit security
of the unforgeability of DGM when it is instantiated with XMSS-T. Note that
the same analysis is valid if DGM is instantiated with earlier XMSS versions.
Henceforth, we refer to DGM when instantiated with XMSS-T as simply DGM.

5.1 Multi-target Attacks and XMSS-T

If an n bit hash function is used once in a cryptographic primitive with a security
parameter λ whose security is dependent on the second preimage resistance of the
hash function, then finding a second preimage of the generated digest requires
2n computations, thus it suffices that n = λ. However, if the same hash function
is used t times in the cryptographic primitive, i.e. an adversary has access to
t digests generated with the same hash function, then a second preimage may
be obtained on any of these t targets with 2n/t computations. Assuming that
n = λ, the security of the scheme is reduced from n to n− log t. A naive remedy
to reach n bit security is to use message digests of length n+log t. Alternatively,
one may enforce that each hash application is different such that each digest
for the t targets is evaluated using a different hash function so that finding
a second preimage for any function, i.e. using the same hash key, requires 2n

computations.
In XMSS-T, the addressing scheme, ADRS, generates a hash randomizer and

bit mask for each hash function call depending on the hash node index in the tree
or WOTS-T chain iteration. For a tree with height h, the i-th node at level j is
denoted by Xi,j where 0 ≤ i < 2h−j , 0 ≤ j ≤ h. ADRS is given by (ri,j , qi,j) ←
ADRS(pk.seed, i, j) where ri,j and qi,j are the hash randomizer and bit mask
used. The internal nodes are generated as Xi,j = H(ri,j , (X2i,j−1||X2i+1,j−1) ⊕
qi,j), i.e., Hri,j is unique for Xi,j . Accordingly, if an adversary collects all the
signatures supported by the scheme, each element in the WOTS-T signatures and
each node in any authentication path is generated by a different hash function.
Consequently, finding a forgery requires finding a second preimage of a given
node using the corresponding hash function where other nodes are no longer
applicable targets.

5.2 Multi-target Attacks on DGM

DGM allows multiple SMT trees to branch out of any IMT internal node, fallback
node. Accordingly, one may regard DGM as several overlapping parallel trees

Security Analysis of DGM and GM Group Signature Schemes 71

IMT root

IMT leaf

Internal Node

SMT root

SMT leaf

DGM.gpk

Fn

Level0

Level2

Level3

Level4

Level1

Fig. 5. Simplified DGM example of height 4 with 42 SMTs, 112 signing leaves, and
fallback nodes uniformly distributed across the internal IMT nodes (Color figure online)

with heights ranging from 1 to 20. The IMT tree is the only tree with height 20
and the SMTs have heights ranging from 1 to 19. To visualize such a structure,
Fig. 5 depicts a reduced DGM instance with an IMT, colored in blue, of height 4
and 42 SMTs, colored red, yellow and green. We assume a uniform distribution
in the selection of the IMT internal nodes from which keys are assigned from the
linked SMTs. Hence, each IMT internal node has the same number of assigned
OTS keys (i.e. leaf nodes), and the number of SMTs per node in level j is
double the number of SMTs per node in level (j + 1). There are 4, 2, and 1
SMTs branching out from internal IMT nodes at levels 1, 2, and 3, respectively,
and their respective colors are green, yellow, and red. This simplified example
has 112 signing leaves which can be used to sign 112 messages under the same
public key (IMT root). Note that there is no maximum number of SMTs so if
more signing leaves are needed, new SMTs can be constructed and linked to a
random internal node.

Following the NIST PQC recommendation, a signature scheme should be secure
to sign up to 264 messages under the same public key [33]. In what follows,
we assume that DGM is used to sign 264 messages. According to the design
specifications, when a group member needs B signing keys (leaves), the group
manager randomly selects B internal nodes of the IMT and assigns to that
member the next unassigned OTS of each SMT linked to that internal node.
The total number of internal nodes excluding the root in an IMT of height 20
is 219 + 218 + · · · + 4 + 2 = 220 − 2. Recall that if the SMT OTS leaves linked

72 M. Yehia et al.

to any randomly chosen internal node are used up, then a new SMT tree is
generated, linked to that fallback node and one of its leaves is assigned. Accord-
ingly, assuming a uniform distribution in the random fallback node selection,
to assign 264 OTSs to all group members, each IMT internal node is chosen
264/(220 − 2) > 244 times. This means that each IMT internal node at level j,
1 ≤ j ≤ 19, has 244−(j−1)−1 = 244−j SMT trees each of height j, i.e. 243 SMTs
of height 1 for each IMT internal node at level 1, 242 SMTs of height 2 for each
IMT internal node at level 2, up to 225 SMTs of height 19 for each IMT internal
node at level 19.

When DGM is instantiated with XMSS-T, to enable verification of a given
signature, a DGM instance is seen as one tree of height 20 which means that
wherever the signing SMT is located with respect to the IMT, the leaf indexing
is in the set {0, 1, . . . , 220 − 1}, i.e. leaf indexing is considered relevant to the
IMT where the signing SMT is considered a part of the IMT. Such an indexing
restriction is required to enable the verifier to evaluate the position of the nodes
in the authentication path of the IMT up to its root (the pale blue nodes in
Fig. 4), which is essential in determining which nodes are concatenated on its
right and left. Consequently, different SMTs that are linked to the same IMT
internal node have the same indexing, and accordingly their parallel nodes at
the same position are evaluated with the same hash function, i.e. the same
hash randomizer and bit mask. For instance, in Fig. 5, any 4 green SMT roots
branching from the same level 1 IMT blue node are evaluated with the same
hash function as they share the same index within the IMT. Moreover, there
are SMT nodes that share the same indexes and nodes of the SMTs that are
connected to upper IMT internal nodes, for example, in Fig. 5, any 4 green SMT
roots at an IMT level one intermediate node share the same indexes with 2
intermediate yellow SMT nodes and one intermediate red SMT node. Therefore,
even though XMSS-T is secure against multi-target attacks, employing several
parallel instances of it with the same indexing in the form of SMTs makes DGM
vulnerable to multi-target attacks. Intuitively, a forgery adversary who collects
a set of message-signature pairs, can group them in t-target sets that share
common indexes, and then they can find another message whose digest collides
with any of the message digests in the set. Note that such sets have t messages
with authentication paths that share nodes with the same IMT indexes, so with
complexity 2n/t a forgery is obtained.

5.3 DGM Bit Security

Consider that DGM is used to sign 2y messages where y > 20. Accordingly,
each internal IMT node is chosen 2y/(220 − 2) times by the group manager to
assign the next available OTS from the linked SMT. Assume an adversary A is
able to collect all 2y signatures generated by the scheme. The signature given by
Σ = (R, indx,OTS.σindx,DGM.posi, Auth) is signed with the i-th OTS key pair
and has index indx relative to its IMT position, i.e. indx ∈ {0, 1, . . . , 220 − 1}
(see Sect. 3.3). A can then group the signatures along with their corresponding
messages in sets that share the same signing index, indx, where each set is

Security Analysis of DGM and GM Group Signature Schemes 73

expected to have t target message-signatures pairs, i.e. a given target set is
denoted by ts = {(M0,Σ0), (M1,Σ1),. . . , (Mt−1,Σt−1)}. Assuming a uniform
distribution in selecting IMT Fn positions, the number of targets t per set is
given by,

t =
j=19∑

j=1

2y/(220 − 2)
2j

< 2y−20 (1)

We assume a fully filled tree similar to the example in Fig. 5 where all IMT
internal nodes have an equal number of assigned leaves, e.g. 2y/(24 − 2) =
112/14 = 8. Otherwise, the index that has the maximum number of signatures
is considered. The maximum number of overlapping SMT nodes is given by
8
2 + 8

22 + 8
23 = 7, so t = 7.

In XMSS-T, to sign a message M , its message digest md is initially calculated
as md = Hmsg(R||DGM.root||indx,M) where Hmsg : {H(K,M) : {0, 1}m ×
{0, 1}∗ → {0, 1}n, R is the hash randomizer chosen by the signer and index is
the leaf index relative to the IMT. Since ts has t (M,Σ) pairs all with the same
indx, A can search for (M ′, R′) pair such that M ′ /∈ ts, and the corresponding
md′ collides with a message digest of any of the messages in ts. Specifically, A
finds (M ′, R′) such that

Hmsg(R′||DGM.root||indx,M ′) ∈ {(Hmsg(R0||DGM.root||indx,M0)), . . . ,
(Hmsg(Rt−1||DGM.root||indx,Mt−1))}.

Thus, A can successfully find a forgery for (M ′, R′) with probability 2−n+log2 t.
Similar multi-taget attacks can be applied on the OTS public keys or authenti-
cation paths in ts. In what follows, we give the security reduction of DGM when
it is used to sign 2y messages with y > 20. For completeness and consistency
with XMSS-T notation [24], the hash functions used in different contexts within
the signature scheme are defined as follows.

– F : {F (K,M) : {0, 1}n × {0, 1}n → {0, 1}n used in OTS hash chains
– H : {H(K,M) : {0, 1}n × {0, 1}2n → {0, 1}n used to calculate the Merkle

tree hash nodes
– Hmsg : {H(K,M) : {0, 1}m ×{0, 1}∗ → {0, 1}n used to calculate the message

digests
– Fn (resp. Fm) is a pseudorandom function family that takes a secret seed

as input and outputs the OTS secret keys (resp. the message digest hash
randomizer R) each of n bits (resp. m bits (m = n + y)).

Theorem 1. For security parameter n ∈ N and parameters y, t as defined above,
DGM is unforgeable against an adaptive chosen message attacks if

– F and H are PQ-DM-SPR hash function families,
– Fn and Fm are post-quantum pseudorandom function families, and
– Hmsg is a PQ-NM-eTCR hash function family.

74 M. Yehia et al.

The insecurity function, InSecPQ-forge(DGM, ξ, 2y), that describes the maximum
success probability over all adversaries running in time ≤ ξ against the PQ-forge
security of DGM and making a maximum of qs = 2y queries is bounded by

InSecPQ-forge(DGM, ξ, 2y) ≤ InSecPQ-PRF(Fn, ξ) + InSecPQ-PRF(Fm, ξ)+

max[t × (InSecPQ-DM-SPR(H, ξ) + InSecPQ-DM-SPR(F, ξ) + InSecPQ-NM-eTCR(Hmsg , ξ))]

Proof. The proof is based on the approach of the proof given in [24]. Note that
we do not include the proof of Fn and Fm with respect to PQ-PRF because they
are not affected by instantiating DGM with XMSS-T, hence, the proof is similar
to that of XMSS-T in [24]. Assume the adversary A is allowed to make 2y queries
to a signing oracle running DGM with XMSS-T. A wins the EXPforge

GS,A , as shown
in Fig. 1, if they find a valid forgery (M ′,Σ′) where the message M ′ is not in the
queried set of 2y messages. A initially groups the signatures that share a given
indx in a set ts. Forgery occurs in the following three mutually exclusive cases.

– The message digest of M ′ under indx results in M ′ being a second preimage
of one of the message digests of the messages in ts. More precisely

md = Hmsg(R′||DGM.root||indx,M ′) = Hmsg(Rj ||DGM.root||indx,Mj)

where Mj ∈ ts. This occurs with success probability

t × InSecPQ-NM-eTCR(Hmsg) (see Definition 3), i.e. A is able to break the
security of NM-eTCR of the message hash function used, Hmsg.

– The OTS public key of the forged signature, OTS.pk′, exists in the set of OTS
public keys of the signatures in ts, i.e. OTS.pk′ ∈ {OTS.pk0, · · · , OTS.pkt−1}.
This occurs with success probability t × InSecPQ-DM-SPR(F) (see Definition 1),
i.e. A is able to break the security of DM-SPR of hash function F .

– The forged signature contains a node in the authentication path (X ′
i,j , the

i-th node in level j), that collides with a node at the same position in
the set of authentication paths in ts (Xi,j , the i-th node in level j), e.g.
H(ri,j , (X ′

2i,j−1||X ′
2i+1,j−1)⊕qi,j) = H(ri,j , (X2i,j−1||X2i+1,j−1)⊕qi,j), where

the nodes (X ′
2i,j−1,X

′
2i+1,j−1) are from the forged signature authentication

path, the nodes (X2i,j−1,X2i+1,j−1) are from an authentication path of a
signature in ts, and ri,j , qi,j are the hash randomizer and bit mask used
for hashing. This occurs with success probability t × InSecPQ-DM-SPR(H) (see
Definition 1). Thus, A is able to break the security of the second preimage
resistance of hash function H.

The above proof shows that if DGM is instantiated with the parameters of
XMSS-T (RFC 8391), i.e. the message digest length equals the security param-
eter n, then DGM does not achieve the same bit security level as XMSS-T. In
particular, the bit security of DGM decreases by log2 t bits compared to that
of XMSS-T, so for XMSS-T with security parameter n = 256 and DGM used
to sign 264 messages, the DGM bit security decreases by log2(

∑j=18
j=0 243−j) =

44 bits, i.e. DGM achieves 212 bits of security. Therefore, if DGM is required
to achieve n bits of security, then XMSS-T should use a hash function with

Security Analysis of DGM and GM Group Signature Schemes 75

output size n + log2 t which decreases the signing performance and increases
the signature size. In the following section, we propose a solution that allows
DGM to attain optimal parameters whereas XMSS-T attains (almost) optimal
parameters [9].

6 DGM+ with Optimal Parameters

In this section we propose DGM+, a DGM-XMSS-T variant that mitigates multi-
target attacks (per index) as discussed in Sect. 5. We modify the addressing
scheme such that it outputs different hash randomizers and bit masks for the
same hash call location in different SMTs branching from the same IMT internal
node, and for overlapped SMTs that share the same indexing for some leaves.

The DGM public parameters contain two values DGM.root and DGM.seed,
where DGM.root is the IMT root (group public key), and DGM.seed is the
public key seed that is used in the XMSS-T addressing scheme to generate the
hash randomizers ri and bit masks qi for each hash call at address adi in the
IMT, i.e. (ri, qi) ← ADRS(DGM.seed, adi). To enable opening, each SMT leaf
has index (v, u) which is encrypted to generate DGM.pos, where v is the SMT
number and u is the leaf index within the SMT. Note that both u and v are
secrets but DGM.pos is not because it is sent in the signature. If we assume
that the bit size of v is equal to the block length, b, of the encryption algorithm
used, then we can get ev as the first b bits from DGM.pos, where ev denotes
the encryption of v. Accordingly, we propose the following.

– IMT uses DGM.seed directly as the seed to generate the hash randomizers
and bit masks for each hash call within the IMT.

– Each SMT utilizes (publicly calculated) a different seed, SMT.seedv for its
hash randomizer and bit mask generation. SMT.seedv is unique for the v-th
SMT and is calculated by SMT.seedv = PRF (DGM.seed, ev).

For all SMTs that share indexing, we utilize different seed values with each SMT
and keep the XMSS-T addressing scheme unchanged [22] (see Sect. A). Thus,
different hash randomizers and bit masks are used at the same IMT location
but for different SMTs. Note that for signing, the IMT utilizes DGM.seed in its
construction, while the v-th SMT utilizes SMT.seedv = PRF (DGM.seed, ev)
in its construction. Let SMT.root.level denote the level of the fallback node
for a given signing SMT. The signature authentication path, Auth, contains the
whole SMT authentication path, Auth.SMTv and the top 20 − SMT.root.level
nodes from the IMT. The latter authentication path starts from the neighboring
node of the fallback node linked to the SMT root and up to DGM.root.

For verification, the verifier uses two seeds. DGM.seed is used for hash eval-
uations of the authentication path from the fallback node and up. Moreover,
the verifier calculates STM.seedv = PRF (DGM.seed, ev) which is used in the
WOTS-T hash iterations and the SMT authentication path, Auth.SMTv, hash
evaluations.

76 M. Yehia et al.

6.1 Message Hashing with DM-SPR

It was shown in Sect. 5 that the security of DGM depends on the NM-eTCR of
the hash function used where the number of targets, t, is considered per index.
We tweak the message hashing such that the security of DGM depends on the
DM-SPR of the hash function used (see Definition 1), to prevent multi-targets
attacks. This is achieved by using the message hash randomizer R = Fw−1(sk1)
as follows

md = Hmsg(R||DGM.root||idx,M) = Hmsg(Fw−1(sk1)||DGM.root||indx,M)

where Fw−1(sk1) is the last iteration, w − 1, of the first secret key of WOTS-T
(see [24] for the details of WOTS-T).

Message Hashing Tweak Rationale. The elements (R||DGM.root||idx)
serve as the hash key where R is chosen at random for each new message hashing
and DGM.root is fixed. If an adversary A who has access to the signing oracle
is able to get the hash randomizer R before querying the signing oracle, then
A can search to find two messages that have the same image using the same
R, i.e. A looks for a collision. Therefore, A queries the signing oracle with one
message and the other message has the same signature. Nevertheless, as R is
chosen randomly and is known to the adversary only after querying the signing
oracle, A works to find a second primage of any of the queried messages when
any hash randomizer R′ is used, i.e. for a valid forgery the adversary needs to
break the NM-eTCR security of the hash function used.

If we replace the hash randomizer R with the last iteration of the first secret
key of the OTS used, pk1 = Fw−1(sk1) (see [24] for details), then R is not chosen
at random and is known publicly only after signing. Accordingly, for a valid
forgery, the adversary is restricted to using the same message hash randomizer,
R = Fw−1(sk1) (that is sent in the signature), to find a message digest collision
with the queried set. Hence, the adversary is required to break the security of
MM-SPR of the hash function used which has a lower probability of success than
breaking the NM-eTCR security of the hash function. Note that the last chain
iteration of the first OTS secret key, Fw−1(sk1), is not a public parameter and
is known only after signing with the corresponding leaf node, i.e. it is different
than the OTS public key which is the root of the L-Tree (see [24] for the details
of the L-Tree).

In the verification procedure, the verifier checks if pk1 = Fw−a1−1(σ1)]
?= R,

where σ1 is the first signature element in the OTS signature, otherwise, it returns
invalid signature. Accordingly, for a valid forgery the adversary is required to
find a second primage using the hash key Fw−1(sk1)||DGM.root||idx, i.e. break
the MM-SPR of the hash function (see Definition 1).

Note that using the above message hashing to generate R from the OTS
public keys may be used to enable XMSS-T [9] to attain optimal parameters.
Specifically, when R is bound to a specific signing leaf, it suffices that R is n bits
to provide n bit security.

Security Analysis of DGM and GM Group Signature Schemes 77

6.2 DGM and DGM+ Comparison

This section provides a comparison between DGM and DGM+ when both are
instantiated with XMSS-T to provide n bit security and support 2y messages
where y ≥ 20, and the IMT height is 20.

Secret and Public Keys Sizes. For DGM to achieve n bit security requires a
hash output size of n + log2 t bits where t is given by Eq. 1. Thus, its tree nodes
and secret keys will also be n + log2 t bits. The DGM public key is the pair
(pk.seed, IMT.root) each of n + log2 t bits, and the secret key contains sk.prf
to generate the message hash randomizer and sk.seed to generate the WOTS-T
secret keys. Accordingly, the secret key size is 2(n + log2 t) bits.

For DGM+, the size of the tree nodes and secret keys is n bits. The DGM+

public key size is 2n bits, i.e. (pk.seed, IMT.root) each of n bits. The secret key
contains only sk.seed of n bits because it does not require sk.prf as the message
hash randomizer is the last hash iteration of the first WOTS-T secret key.

Signature Size. A DGM signature contains the message hash randomizer, R,
the leaf index, the encrypted position, the WOTS-T signature, the authentication
path, and the fallback key. The signature element sizes in DGM+ is n bits while
in DGM it is n+log2 t bits. This has another impact as the message digest size is
increased, the number of WOTS-T elements, l, is increased. This increases both
the signature size and the computational cost.

Table 1 provides the size of the keys and signature for both DGM+and DGM
at 128, 192, and 256 bit security when they are used to support up to 264

signatures where the signature size is (22 + l)n + 4 Bytes and l is the number
of elements in the OTS signature. The index is 4 Bytes and we consider the
encrypted position and message hash randomizer, R, equal to the node size in
the scheme.

Table 1. DGM and DGM+ keys and signature sizes in Bytes at 128, 192, and 256 bit
security and 264 signatures.

Algorithm Bit security Node size pk sk l Signature size

DGM 128 22 44 44 47 1522

192 30 60 60 63 2554

256 38 76 76 79 3842

DGM+ 128 16 32 16 35 916

192 24 48 24 51 1756

256 32 64 32 67 2852

7 Conclusion

In this paper, we discussed the challenges of instantiating GM and DGM with
XMSS-T and provided a tweak in the setup phases of GM and DGM to overcome

78 M. Yehia et al.

the discussed challenges. Moreover, we analyzed the bit security of DGM when
instantiated with XMSS-T and showed that because of the parallel multiple
XMSS-T instances construction, DGM is vulnerable to multi-target attacks that
may enable forgery with 44 bits less effort than that of XMSS-T when the scheme
is used to sign 264 messages. Finally, we proposed a solution that mitigates
these multi-target attacks and presented a new message hashing mechanism
that reduces the associated signature and secret key sizes.

Acknowledgment. The authors would like to thank the reviewers for their valuable
comments that helped improve the quality of the paper.

A XMSS-T Addressing Scheme

XMSS-T utilizes a hash function addressing scheme that enumerates each hash
call in the scheme and outputs a distinct hash randomizer r and bit mask q
for each hash call to mitigate multi-target attacks [22]. XMSS-T has three main
substructures, WOTS-T, L-tree, and Merkle tree hash. The first substructure
requires for each hash call a hash randomizer and bit mask, each of n bits. The
other two substructures require a hash randomizer of n bits and 2n bits for the
bit mask. The hash function address consists of 256 bits. There are three address
types for the three substructure mentioned above which are described below.

1. WOTS-T hash address: The first field (32 bits) is the tree layer address which
indexes a given layer in which the WOTS-T exists (this value is set to zero for
DGM). The tree address (64 bits) indexes a tree within the layer (this value is
set to zero for DGM), and the addressing type (32 bits) which is equal to zero.
The key pair address (32 bits) denotes the index of the WOTS-T within the
hash tree. The chain address (32 bits) denotes the number of the WOTS-T
secret key on which the chain is applied. The hash address (32 bits) denotes
the number of the hash function iterations within a chain. The last field is
KeyAndMask (32 bits) which is used to generate two different addresses for
one hash function call (it is set to zero to get the hash randomizer R and it
is set to one to get the bit mask, each of n bits).

2. L-tree hash address: The first field (32 bits) is the layer address which indexes
the layer in which the WOTS-T exists (this value is set to zero for DGM).
The tree address (64 bits) indexes a tree within the layer (this value is set
to zero for DGM), and the addressing type (32 bits) which is equal to one.
The L-tree address (32 bits) denotes the leaf index that is used to sign the
message. The tree height (32 bits) encodes the node height in the L-tree, and
the tree index (32 bits) refers to the node index within that height. The last
field is KeyAndMask (32 bits) which in this substructure is used to generate
three different addresses for one hash function call (it is set to zero to get the
hash randomizer R, one to get the first bit mask and two to get the second
bit mask, each of n bits).

3. Merkle tree hash: The first field (32 bits) is the layer address which indexes
the layer in which the WOTS-T exists (this value is set to zero for DGM).

Security Analysis of DGM and GM Group Signature Schemes 79

The tree address (64 bits) indexes a tree within the layer (this value is set to
zero for DGM), and the addressing type (32 bits) which is equal to two. Then
a padding of zeros (32 bits). The tree height (32 bits) encodes the node height
in the main Merkle tree and the tree index (32 bits) refers to the node index
within that height. As the L-tree addressing, the last field is KeyAndMask (32
bits) which is used to generate three different addresses for one hash function
call (it is set to zero to get the hash randomizer R, one to get the first bit
mask and two to get the second bit mask, each of n bits).

References

1. Alamélou, Q., Blazy, O., Cauchie, S., Gaborit, P.: A practical group signature
scheme based on rank metric. In: Duquesne, S., Petkova-Nikova, S. (eds.) WAIFI
2016. LNCS, vol. 10064, pp. 258–275. Springer, Cham (2016). https://doi.org/10.
1007/978-3-319-55227-9 18

2. Alamélou, Q., Blazy, O., Cauchie, S., Gaborit, P.: A code-based group signature
scheme. Des. Codes Crypt. 82(1–2), 469–493 (2017)

3. AlTawy, R., Gong, G.: Mesh: a supply chain solution with locally private blockchain
transactions. Proc. Priv. Enhancing Technol. 2019(3), 149–169 (2019)

4. Ayebie, B.E., Assidi, H., Souidi, E.M.: A new dynamic code-based group signature
scheme. In: El Hajji, S., Nitaj, A., Souidi, E.M. (eds.) C2SI 2017. LNCS, vol. 10194,
pp. 346–364. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-55589-8
23

5. Bellare, M., Micciancio, D., Warinschi, B.: Foundations of group signatures: formal
definitions, simplified requirements, and a construction based on general assump-
tions. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 614–629.
Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-39200-9 38

6. Boneh, D., Boyen, X., Shacham, H.: Short group signatures. In: Franklin, M. (ed.)
CRYPTO 2004. LNCS, vol. 3152, pp. 41–55. Springer, Heidelberg (2004). https://
doi.org/10.1007/978-3-540-28628-8 3

7. Boneh, D., Dagdelen, Ö., Fischlin, M., Lehmann, A., Schaffner, C., Zhandry, M.:
Random oracles in a quantum world. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT
2011. LNCS, vol. 7073, pp. 41–69. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-25385-0 3

8. Boneh, D., Shacham, H.: Group signatures with verifier-local revocation. In: Pro-
ceedings of the ACM Conference on Computer and Communications Security, pp.
168–177 (2004)

9. Bos, J.W., Hülsing, A., Renes, J., van Vredendaal, C.: Rapidly verifiable XMSS
signatures. IACR Trans. Cryptogr. Hardware Embed. Syst. 2021, 137–168 (2021)

10. Buchmann, J., Dahmen, E., Ereth, S., Hülsing, A., Rückert, M.: On the security
of the Winternitz one-time signature scheme. In: Nitaj, A., Pointcheval, D. (eds.)
AFRICACRYPT 2011. LNCS, vol. 6737, pp. 363–378. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-21969-6 23

11. Buchmann, J., Dahmen, E., Hülsing, A.: XMSS - a practical forward secure sig-
nature scheme based on minimal security assumptions. In: Yang, B.-Y. (ed.)
PQCrypto 2011. LNCS, vol. 7071, pp. 117–129. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-25405-5 8

https://doi.org/10.1007/978-3-319-55227-9_18
https://doi.org/10.1007/978-3-319-55227-9_18
https://doi.org/10.1007/978-3-319-55589-8_23
https://doi.org/10.1007/978-3-319-55589-8_23
https://doi.org/10.1007/3-540-39200-9_38
https://doi.org/10.1007/978-3-540-28628-8_3
https://doi.org/10.1007/978-3-540-28628-8_3
https://doi.org/10.1007/978-3-642-25385-0_3
https://doi.org/10.1007/978-3-642-25385-0_3
https://doi.org/10.1007/978-3-642-21969-6_23
https://doi.org/10.1007/978-3-642-25405-5_8

80 M. Yehia et al.

12. Buser, M., Liu, J.K., Steinfeld, R., Sakzad, A., Sun, S.-F.: DGM: a dynamic and
revocable group Merkle signature. In: Sako, K., Schneider, S., Ryan, P.Y.A. (eds.)
ESORICS 2019. LNCS, vol. 11735, pp. 194–214. Springer, Cham (2019). https://
doi.org/10.1007/978-3-030-29959-0 10

13. Camenisch, J., Groth, J.: Group signatures: better efficiency and new theoretical
aspects. In: Blundo, C., Cimato, S. (eds.) SCN 2004. LNCS, vol. 3352, pp. 120–133.
Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-30598-9 9

14. Camenisch, J., Lysyanskaya, A.: Dynamic accumulators and application to efficient
revocation of anonymous credentials. In: Yung, M. (ed.) CRYPTO 2002. LNCS,
vol. 2442, pp. 61–76. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-
45708-9 5

15. Camenisch, J., Lysyanskaya, A.: Signature schemes and anonymous credentials
from bilinear maps. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp.
56–72. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28628-8 4

16. Chaum, D., van Heyst, E.: Group signatures. In: Davies, D.W. (ed.) EUROCRYPT
1991. LNCS, vol. 547, pp. 257–265. Springer, Heidelberg (1991). https://doi.org/
10.1007/3-540-46416-6 22

17. Del Pino, R., Lyubashevsky, V., Seiler, G.: Lattice-based group signatures and zero-
knowledge proofs of automorphism stability. In: Proceedings of the ACM SIGSAC
Conference on Computer and Communications Security, pp. 574–591 (2018)

18. El Bansarkhani, R., Misoczki, R.: G-Merkle: a hash-based group signature scheme
from standard assumptions. In: Lange, T., Steinwandt, R. (eds.) PQCrypto 2018.
LNCS, vol. 10786, pp. 441–463. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-79063-3 21

19. Ezerman, M.F., Lee, H.T., Ling, S., Nguyen, K., Wang, H.: Provably secure group
signature schemes from code-based assumptions. IEEE Trans. Inf. Theor. 66(9),
5754–5773 (2020)

20. Gordon, S.D., Katz, J., Vaikuntanathan, V.: A group signature scheme from lattice
assumptions. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 395–412.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17373-8 23

21. Hülsing, A., Busold, C., Buchmann, J.: Forward secure signatures on smart cards.
In: Knudsen, L.R., Wu, H. (eds.) SAC 2012. LNCS, vol. 7707, pp. 66–80. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-35999-6 5

22. Hülsing, A., Butin, D., Gazdag, S.-L., Rijneveld, J., Mohaisen, A.: XMSS: extended
Merkle signature scheme. In: RFC 8391. IRTF (2018)

23. Hülsing, A., Rausch, L., Buchmann, J.: Optimal parameters for XMSSMT . In:
Cuzzocrea, A., Kittl, C., Simos, D.E., Weippl, E., Xu, L. (eds.) CD-ARES 2013.
LNCS, vol. 8128, pp. 194–208. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-40588-4 14

24. Hülsing, A., Rijneveld, J., Song, F.: Mitigating multi-target attacks in hash-based
signatures. In: Cheng, C.-M., Chung, K.-M., Persiano, G., Yang, B.-Y. (eds.) PKC
2016. LNCS, vol. 9614, pp. 387–416. Springer, Heidelberg (2016). https://doi.org/
10.1007/978-3-662-49384-7 15

25. Laguillaumie, F., Langlois, A., Libert, B., Stehlé, D.: Lattice-based group signa-
tures with logarithmic signature size. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT
2013. LNCS, vol. 8270, pp. 41–61. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-42045-0 3

26. Langlois, A., Ling, S., Nguyen, K., Wang, H.: Lattice-based group signature
scheme with verifier-local revocation. In: Krawczyk, H. (ed.) PKC 2014. LNCS,
vol. 8383, pp. 345–361. Springer, Heidelberg (2014). https://doi.org/10.1007/978-
3-642-54631-0 20

https://doi.org/10.1007/978-3-030-29959-0_10
https://doi.org/10.1007/978-3-030-29959-0_10
https://doi.org/10.1007/978-3-540-30598-9_9
https://doi.org/10.1007/3-540-45708-9_5
https://doi.org/10.1007/3-540-45708-9_5
https://doi.org/10.1007/978-3-540-28628-8_4
https://doi.org/10.1007/3-540-46416-6_22
https://doi.org/10.1007/3-540-46416-6_22
https://doi.org/10.1007/978-3-319-79063-3_21
https://doi.org/10.1007/978-3-319-79063-3_21
https://doi.org/10.1007/978-3-642-17373-8_23
https://doi.org/10.1007/978-3-642-35999-6_5
https://doi.org/10.1007/978-3-642-40588-4_14
https://doi.org/10.1007/978-3-642-40588-4_14
https://doi.org/10.1007/978-3-662-49384-7_15
https://doi.org/10.1007/978-3-662-49384-7_15
https://doi.org/10.1007/978-3-642-42045-0_3
https://doi.org/10.1007/978-3-642-42045-0_3
https://doi.org/10.1007/978-3-642-54631-0_20
https://doi.org/10.1007/978-3-642-54631-0_20

Security Analysis of DGM and GM Group Signature Schemes 81

27. Libert, B., Ling, S., Mouhartem, F., Nguyen, K., Wang, H.: Signature schemes
with efficient protocols and dynamic group signatures from lattice assumptions.
In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016. LNCS, vol. 10032, pp. 373–
403. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53890-6 13

28. Libert, B., Peters, T., Yung, M.: Group signatures with almost-for-free revocation.
In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 571–
589. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32009-5 34

29. Libert, B., Peters, T., Yung, M.: Scalable group signatures with revocation. In:
Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp.
609–627. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4
36

30. Ling, S., Nguyen, K., Wang, H.: Group signatures from lattices: simpler, tighter,
shorter, ring-based. In: Katz, J. (ed.) PKC 2015. LNCS, vol. 9020, pp. 427–449.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46447-2 19

31. Merkle, R.C.: A certified digital signature. In: Brassard, G. (ed.) CRYPTO 1989.
LNCS, vol. 435, pp. 218–238. Springer, New York (1990). https://doi.org/10.1007/
0-387-34805-0 21

32. Nguyen, P.Q., Zhang, J., Zhang, Z.: Simpler efficient group signatures from lattices.
In: Katz, J. (ed.) PKC 2015. LNCS, vol. 9020, pp. 401–426. Springer, Heidelberg
(2015). https://doi.org/10.1007/978-3-662-46447-2 18

33. NIST. Post-quantum cryptography project. http://csrc.nist.gov/groups/ST/post-
quantum-crypto

34. NIST. Submission requirements and evaluation criteria for the post-quantum cryp-
tography standardization process. https://csrc.nist.gov/Projects/post-quantum-
cryptography/post-quantum-cryptography-standardization/Call-for-Proposals

35. Traoré, J.: Group signatures and their relevance to privacy-protecting offline elec-
tronic cash systems. In: Pieprzyk, J., Safavi-Naini, R., Seberry, J. (eds.) ACISP
1999. LNCS, vol. 1587, pp. 228–243. Springer, Heidelberg (1999). https://doi.org/
10.1007/3-540-48970-3 19

36. Yang, R., Au, M.H., Zhang, Z., Xu, Q., Yu, Z., Whyte, W.: Efficient lattice-based
zero-knowledge arguments with standard soundness: construction and applications.
In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11692, pp. 147–
175. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26948-7 6

https://doi.org/10.1007/978-3-662-53890-6_13
https://doi.org/10.1007/978-3-642-32009-5_34
https://doi.org/10.1007/978-3-642-29011-4_36
https://doi.org/10.1007/978-3-642-29011-4_36
https://doi.org/10.1007/978-3-662-46447-2_19
https://doi.org/10.1007/0-387-34805-0_21
https://doi.org/10.1007/0-387-34805-0_21
https://doi.org/10.1007/978-3-662-46447-2_18
http://csrc.nist.gov/groups/ST/post-quantum-crypto
http://csrc.nist.gov/groups/ST/post-quantum-crypto
https://csrc.nist.gov/Projects/post-quantum-cryptography/post-quantum-cryptography-standardization/Call-for-Proposals
https://csrc.nist.gov/Projects/post-quantum-cryptography/post-quantum-cryptography-standardization/Call-for-Proposals
https://doi.org/10.1007/3-540-48970-3_19
https://doi.org/10.1007/3-540-48970-3_19
https://doi.org/10.1007/978-3-030-26948-7_6

System Security

UC-Secure Cryptographic Reverse
Firewall–Guarding Corrupted Systems
with the Minimum Trusted Module

Geng Li1, Jianwei Liu2, Zongyang Zhang2(B), and Yanting Zhang2

1 National Computer Network Emergency Response Technical Team/Coordination
Center of China, Beijing, China

ligeng@buaa.edu.cn
2 School of Cyber Science and Technology, Beihang University, Beijing, China

{liujianwei,zongyangzhang,yantingzhang}@buaa.edu.cn

Abstract. Nowadays, mass-surveillance is becoming an increasingly
severe threat to the public’s privacy. The PRISM and a series of other
events showed that inner attacks such as subversion attacks may exist
in the current network extensively. As an important strategy to defend
users’ privacy against these attacks, cryptographic reverse firewall (CRF)
is designed to be a middle-box, modifying all the messages coming in
and out of a computer. However, the current formal definition of CRFs
merely considers a single protocol session. If such a CRF applies to mul-
tiple entities, the security of every entity could not be deduced directly,
which leads to an application limitation. In this work, we re-define the
notion of CRF from a new perspective based on UC-emulation. Our new
definition expresses all expected properties of a CRF in a more brief way,
under the universal composition environment. We present a composition
theorem which enables deploying one CRF for a local area of network
rather than a single computer, and this can significantly reduce the num-
ber of CRFs used in practical applications.

As another part of this work, under the new definition, we present the
first deterministic CRF construction. Compared with existing CRFs, our
construction only requires secure randomness in its initial phase rather
than every protocol session, and such randomness can be acquired from
a public resource. Noting that the probabilistic algorithms are the main
targets of subversion attacks, our work makes it much easier to realize a
trusted CRF, and thus, pushes CRFs from a concept to application with
one more step.

Keywords: Post-Snowden cryptography · Subversion attack ·
Cryptographic reverse firewall · Universal composition · Security
implementation

G. Li—The research in this paper is mainly done when the first author was a Ph. D
candidate in Beihang University.

c© Springer Nature Switzerland AG 2021
Y. Yu and M. Yung (Eds.): Inscrypt 2021, LNCS 13007, pp. 85–110, 2021.
https://doi.org/10.1007/978-3-030-88323-2_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-88323-2_5&domain=pdf
https://doi.org/10.1007/978-3-030-88323-2_5

86 G. Li et al.

1 Introduction

The PRISM has attracted great attention to the risk of mass-surveillance. A
series of events implied that some powerful institutions may monitor people’s
private conversation and other online activities, via some special methods which
are out of the consideration of conventional cryptography. Subversion attack is
a typical attack method in the mass-surveillance, which deviates the implemen-
tations of cryptographic algorithms from the corresponding specifications in an
undetectable way, and only the backdoor holder is able to recognize the sub-
verted implementations and acquire user’s private information based on their
outputs. Due to the effectiveness and concealment, the subversion attack has
been explored by a lot of works, and it serves as an essential foundation for
Post-Snowden cryptography.

To deal with subversion attacks, researchers have proposed several defending
strategies, such as the split-program [17], multi-source components [13], pub-
lic random resources [1], and cryptographic reverse firewalls (CRFs) [8,10,15].
CRF is a machine sitting between a user’s computer and the outside world,
modifying all the incoming and outgoing messages to guard the protocol against
information leakage. On the one hand, a CRF is assumed to be a trusted
module, i.e., the implementation should completely obey its specification. On
the other hand, however, a CRF is still a public entity, saying, it can only
access public information such as public-keys and ciphertexts. Mironov and
Stephens-Davidowitz [15] formally defined a CRF with three important proper-
ties: functionality-maintaining, security-preserving, and exfiltration-resistance.

Assumed to be trusted, a CRF seems to exclude the risk of subversion attacks
in an ideal way. However, the current theory is a little imperfect from the view of
practical applications. Following the definition in work [15], we need to deploy
a CRF for every entity in the reality (as shown in Fig. 1). This may imply a
logical contradiction: we worry about the credibility of user’s computer, but at
the same time, we directly assume the existence of the same amount of trusted
modules (CRF). Therefore, the idea of CRF just bypasses the difficulty in the
mass-surveillance, and the tricky problem remains unsolved.

We claim that in a reasonable design, the number of CRFs should be much
less than the number of users’ computers, thus, we can concentrate to achieving
these small amount of trusted modules to protect the whole system. Concretely,
as shown in Fig. 2, a CRF serves for a local area of network containing multiple
computers. It is straightforward that this framework is much more practical than
the previous “one-one” pattern. However, this “one-many” framework is actually
out of the consideration of the current definition. Here, several entities share a
CRF, and a CRF may serve for multiple kinds of protocol. It is inevitable that
different protocol sessions may have shared information or joint state. We cannot
ensure that a CRF under the current definition is able to protect every entity
in such a compositional setting. Thus, we call for a new definition of CRFs to
adapt to this setting.

UC-Secure Cryptographic Reverse Firewall-Guarding 87

Fig. 1. The “one-one” pattern Fig. 2. The “one-many” pattern

Besides, another factor that inspires us to revisit the formalization of CRF
is the redundancy of the current definition [15], where the relationship between
security-preserving and exfiltration-resistance is much complex. These two prop-
erties sometimes are equivalent, but sometimes have subtle differences. Including
both of them as basic requirements of a CRF seems redundant, while omitting
either one will render the definition incomplete. Therefore, it is meaningful if we
could find a method to conclude all the expected properties of a CRF with only
one expression.

Under the current definition [15], researchers now have proposed a series
of constructions of CRF. To the best of our knowledge, all these CRFs need
to generate the same amount of randomness to the underlying protocol. We
should note that achieving the credibility of probabilistic implementations is
far more difficult than deterministic implementations, thus, generating such a
large amount of randomness increases the difficulty of realizing a trusted CRF.
If we could construct a CRF with only deterministic algorithms, the meaning of
CRFs will be significantly increased. This work may also initialize another line
of research, i.e., removing the assumption that CRFs are trusted modules, and
including CRFs also under the consideration of subversion attacks.

1.1 Our Contribution

The main purpose of this paper about CRF is “guarding corrupted systems with
the minimum trusted module”, and this keynote can be interpreted from two
levels. In the first level, we propose the scenario that using one CRF to guard
multiple computers. We re-define the notion of CRF based on the UC framework,
which is more compatible with such compositional settings. In the second level,
we try to further shrink the trusted element of CRF, by designing a CRF only
using deterministic algorithms.

Re-definition of a CRF Based on UC-emulation. Based on the UC-
emulation [5,6], we re-define the notion of CRF. All analyses in this paper are
under the precondition that the specification of a protocol can emulate the ideal
functionality perfectly. We say a CRF guards the protocol, if either it could
detect the subverted implementations, or it could correct the corrupted protocol

88 G. Li et al.

to emulate the ideal functionality, with no environment being able to distinguish
between these two cases. We build the new definition by three steps: Firstly,
we specify the formalization of a protocol using the language of UC framework;
Then, we formulate the deployment and operation of a CRF; Finally, we present
the security definition of a CRF.

Compared with the current one, our new definition has at least two advan-
tages. Firstly, this definition is designed from the view of composition. We present
a composition theorem, which demonstrates that the CRF’s security property
for every single session does not decline in any compositional setting. That is to
say, when a CRF deals with multiple sessions or multiple protocols at the same
time, even though different sessions have shared information or joint state, every
protocol session can still UC-emulate the ideal functionality. Thus, such defini-
tion provides a basis for the “one-many” deployment in applications as shown
in Fig. 2. Secondly, the new definition incorporates the three basic requirements
(functionality-maintaining, security-preserving and exfiltration-resistance) into
one property, which makes the expression far more clear. We make a rigorous
comparison between the two definitions of a CRF, proving that the new defini-
tion implies the current one in a general sense.

Construction of a Deterministic CRF. Our construction is based on the
classical framework of CRF in work [10], but transfers the probabilistic algo-
rithms to deterministic algorithms. Noting that probabilistic algorithms are
main targets of subversion attacks, this modification will significantly weaken
the assumption that a CRF is a trusted module.

Unlike the existing CRFs which need to generate randomness during every
run of protocol, our CRF only requires a small amount of randomness as its keys
in the initial phase. The keys should remain confidential to the protocol parties,
however, may be a little surprising, they are unnecessary to stay secure against
external adversaries. Such property provides us with a possible operation pattern
of CRF, i.e., injecting a public randomness into a CRF, after the implementations
of protocol parties are deployed.

We achieve such a deterministic CRF by replacing the coins in the former
CRFs, via hashing input messages along with the CRF key. Observing that even
if being subverted, an implementation of protocol party should still ensure its
output to have high min-entropy, otherwise it can be detected from its specifica-
tion easily. Taking use of this point, we prove that for both subverted implemen-
tations and external adversaries, the input of the hash function is inaccessible,
thus, the acquired coins can serve as uniform randomness.

1.2 Related Work

Post-Snowden Cryptography. The notion of kleptography was introduced by
Young and Yung in a series of researches [18–21]. They considered the scenario
where implementations of cryptographic algorithms are maliciously designed by
adversaries. They also designed several detailed attacks aimed at some commonly
used schemes such as RSA, Elgamal, Diffie-Hellman key-exchange protocol, et al.

UC-Secure Cryptographic Reverse Firewall-Guarding 89

Bellare, Paterson and Rogaway [4] formally established the security model
for encryption schemes under subversion attacks. This model consists of a pair of
games, the surveillance game and the detection game, to characterize the advan-
tage of a surveillant and the probability of detecting a subverted implementa-
tion. Work [9] and work [3] made partial progresses on the model in work [4],
to adopt to several special cases such as input-trigger attacks. Using a similar
framework, Ateniese, Magri and Venturi [2] formulated the security model for
signature schemes. Russell et al. [16] proposed the notion of cliptography. They
introduced an entity named “watchdog” which checks all implementations pro-
vided by an adversary. If all implementations agreed by the watchdog could run
without any difference to the specification even from the view of the adversary
itself, then we say the scheme is stego-freeness.

A series of defending strategies have been proposed against the subversion
attack. Russell et al. [17] gave the idea of split-program methodology, dividing
one algorithm into several components. All implementations with respect to the
components are probably subverted and modeled as blackboxes, but users could
ensure the security of the whole system with the help of the watchdog’s checking
and a trusted amalgamation. Fischlin and Mazaheri [11] presented a defending
strategy named “self-guarding protocol”. They assumed that users can set up
a secure initial phase for the protocol, in which a number of randomness are
generated, and all algorithms executed after the initial phase are designed to be
deterministic. Ateniese et al. [1] showed how to correct subverted implementa-
tions using a public (secure) randomness generator which is accessible to both
users and adversaries. Li, Liu and Zhang [13,14] proposed a defending strat-
egy where users could construct a system using implementations from multiple
sources. When multiple adversaries are isolated [13] or only able to communicate
in a limited way [14], users can take certain designs to achieve a secure system
against all adversaries, only using untrusted implementations.

Cryptographic Reverse Firewall. The notion of cryptographic reverse fire-
wall (CRF) was first proposed by Mironov and Stephens-Davidowitz [15]. They
characterized a robust CRF by three properties: functionality-maintaining,
security-preserving and exfiltration-resistance. To demonstrate the achievabil-
ity of this definition, they also showed how to convert an arbitrary protocol into
a protocol with exfiltration-resistant reverse firewalls for all parties.

Dodis, Mironov and Stephens-Davidowitz [10] researched the security of
message-transmission protocols under subversion attacks. They designed a CRF
for a type of interactive and concurrent CCA-secure message-transmission. Chen
et al. [8] extended the notion of smooth projective hash function (SPHF) to mal-
leable smooth projective hash function, based on which they proposed a general
construction of CRF for some widely used cryptographic protocols. Especially,
considering conventional oblivious transfer (OT) protocol is not compatible with
the above modular way of CRF construction, they developed a new OT frame-
work from graded rings and showed how to construct OT-CRFs by modifying
the malleable SPHF framework.

90 G. Li et al.

Universal Composition. First proposed by Canetti [5], universal composition
is a general framework to describe cryptographic protocols and analyze their
security in complex environments. Canetti defined the security of a protocol by
the indifference between an execution of the real protocol with an adversary,
and an execution of the ideal functionality with a PPT simulator. Within this
framework, protocols are guaranteed to maintain their security in any context,
even in the presence of an unbounded number of arbitrary protocol sessions that
run concurrently in an adversarially controlled manner.

The composition theorem in work [5] assumed the composed protocol
instances have disjoint internal states and are independent completely. To relax
this restriction, Canetti and Rabin [7] extended the framework and proposed
the universal composition with joint state (JUC). This work considered the case
where different protocol instances may have joint state and randomness. Fol-
lowing the line of work [7], Canetti et al. [6] further explored the composition
theorem in the scenario where we cannot ensure that the set-up phase of a proto-
col provides the expected security guarantee. Hofheinz and Shoup [12] proposed
a new framework named GNUC, which deviate from UC in several important
aspects such as the formalization of protocols and the notion of corruptions.

Organization. Section 2 introduces the main notations and preliminaries.
Section 3 presents a formal description of protocols, and gives a definition of
CRFs from a new prospective. Section 4 presents the composition theorem of
protocol instances equipped with a CRF. Section 5 demonstrates that the new
definition implies the current one. Section 6 presents a construction of determin-
istic CRF under the new definition.

2 Preliminary

2.1 Notations

We use s
$← S to denote that s is a uniformly random element in set S. U� denotes

a �-bit uniformly random string. [1, r] is short for set {1, 2, · · · , r}. s1||s2 means
the concatenation of two bit strings s1 and s2. poly(x) represents a polynomial
function of x. Let λ be a security parameter. negl(λ) is a negligible function in λ if
it vanishes faster than the inverse of any polynomial in λ. A(x) is a probabilistic
polynomial-time (PPT) algorithm if for any input x, A(x) terminates at most
poly(|x|) steps. If the algorithm A outputs y upon the input x, we write y ← A(x).
We use G � A(·) to represent that A generates the implementation G.

For two distributions X = {Xλ} and Y = {Yλ}, let DistD(X ,Y)
def
=

∣
∣Pr[D(Xλ) = 1] − Pr[D(Yλ) = 1]

∣
∣. If DistD(X ,Y) ≤ negl(λ) for all PPT algo-

rithm D, we call X and Y are computational indistinguishable and denote it by
X ≈ Y for simplicity.

2.2 Proud-but-Malicious Adversary

“Proud-but-malicious” adversaries are the main issue considered in Post-Snowden
cryptography. This kind of adversary tries to compromise security by providing

UC-Secure Cryptographic Reverse Firewall-Guarding 91

subverted implementations of cryptographic algorithms. The important thing is
that, a “proud-but-malicious” adversary prefers subversions to be “under the
radar” of any possible detection [17]. Russell et al. established the notion of watch-
dog W which is a PPT detector aiming at distinguishing subversion from the spec-
ification. Concretely, for Gimpl � A(Gspec), and any PPT watchdog W, we call A
is a proud-but-malicious adversary against offline watchdog if

∣
∣ Pr[WGimpl(1λ) = 1]−Pr[WGspec(1λ) = 1]

∣
∣≤negl(λ).

Similarly, we call A is a proud-but-malicious adversary against online watchdog
if

∣
∣ Pr[WGimpl(τ) = 1] − Pr[WGspec(τ) = 1]

∣
∣ ≤ negl(λ),

where τ denotes all the transcripts accessible to A in the same time. When W
is clear, we simply say A is a proud-but-malicious adversary. And for simplicity,
in this paper we call it a PM-adversary.

2.3 The Current Definition of a CRF

The notion of cryptographic reverse firewall (CRF) was first proposed by
Mironov and Stephens-Davidowitz [15]. A CRF is a trusted module sitting
between a user’s computer and the outside world, intercepting all the messages
coming in and out. A formal description of CRF is presented in Definition 1

Definition 1. A cryptographic reverse firewall (CRF) is a stateful algorithm crf
that takes as input its state and a message, and outputs an updated state and a
modified message. For simplicity, we do not write the state of crf explicitly.

For a cryptographic reverse firewall crf and a party A = {receive, next, output},
where receive is the function to receive messages from outside, next is the function to
generate outputting message, and output is the function to generate the final result
of the protocol. The composed party A ◦ crf is defined as:

A ◦ crf
def
=

(

receiveA◦crf(σ,m) = receiveA(σ, crf(m)),

nextA◦crf(σ) = crf(nextA(σ)),

outputA◦crf(σ) = outputA(σ)
)

,

where σ denotes the state of the party A, and m denotes the transcript received.

According to work [15], a CRF is characterized by three properties:
functionality-maintaining, security-preserving, and exfiltration-resistance. Read-
ers are referred to Appendix A for the formal definitions.

3 Security Model

Based on the notion of UC-emulation, this section presents a new defini-
tion of CRFs, which is totally different from the current definition consisting

92 G. Li et al.

of functionality-maintaining, security-preserving and exfiltration-resistance. We
first make a formal characterization of protocols in the view of the subversion
attacks in Sect. 3.1. Next, we state the deployment and operation of a CRF in
Sect. 3.2. Based on the above works, we present the security definition of a CRF
in Sect. 3.3.

3.1 Protocol Framework

Our characterization of protocols mainly follows the idea in work [5], but with
a deep simplification. We simplify the model mainly because the intention of
this paper concentrates on CRFs, rather than protocols themselves. Thus, it is
unnecessary to analyze a protocol in such a complicated way. The subversion
attack could be regarded as “inner attack”, i.e., an adversary compromises the
security by corrupting the implementations inside a user’s system. Considering
such a property, we divide a protocol into several inner parts (main machines)
and an external part (channel machine).

We consider an n-party protocol P, an adversary A and an environment E ,
all of which are modeled as interactive Turing machines (ITMs). Each instance
of ITM is labeled by a protocol identity fid, a party identity pid and a session
identity sid, which remain unchanged throughout. The messages transmitted
between instances of ITM are interpreted as a tuple:

(fid, sid, pids, pidr,m||ad, type).

pids and pidr are identities of the sender and the receiver, respectively. m||ad is the
message and its associated data. type ∈ {“input”, “internal-output”, “output”,
“backdoor”} is the label of the message; “input” represents the initial input of the
protocol from environment E ; “internal-output” represents the information trans-
mitted among machines of protocol P; “output” represents the final output of pro-
tocol P from party πi to E ; “backdoor” is used to represent backdoor information
come from the adversary, or disclosed to it.

We simplify the structure of a protocol in work [5] and define P only as a
channel machine and several main machines: P = {π1, · · · , πn, ch}. Formally,

– πi (i ∈ [1, n]) represents the program executed by each party in the protocol.
πi receives information from E in type of “input”, and returns information
in type of “output”. πi also has interface with ch to transmit messages in
type of “internal-output”, and has interface with A to transmit messages in
type of “backdoor”. Especially, there is no direct interface between πi and πj

(i, j ∈ [1, n]). All their communication is via channel machine or adversaries.
– ch represents the message transmission during the execution of the pro-

tocol. Besides interacting with πi, it is also accessible to the adver-
sary A. For example, for an authenticated channel, when ch receives
(fid, sid, pidπi

, pidch, m||“pidπi
to pidπj

”, “internal-output”), it sends
(fid, sid, pidch, pidA,m||“pidπi

to pidπj
”, “backdoor”) to A. After receiv-

ing (fid, sid, pidA, pidch, “ok”, “backdoor”) from A, it sends (fid, sid,
pidch, pidπj

, m||“pidπi
to pidπj

”, “internal-output”) to party πj .

UC-Secure Cryptographic Reverse Firewall-Guarding 93

3.2 Protocol Equipped with a CRF

Now we present the formalization of a cryptographic reverse firewall. A CRF is an
interactive Turing machine which intercepts and modifies all the messages sent
between main machines πi and channel machine ch. Especially, if the protocol is
executed normally, the CRF seems “transparent”. A CRF is regarded as a trusted
model, saying, different with the protocol P, it should be executed honestly
according to its specification in any case. Another important difference between
the CRF and machines of P is that a CRF instance is designed to operate across
multiple sessions or even multiple protocols, while every ITM instance of protocol
is corresponding to only one session.

Credibility and Session-Units. The adversary is not allowed to corrupt crf.
All the messages transmitted between πi and crf are inaccessible to the adversary.
As a CRF operates across multiple sessions, we interpret crf as a basic-program
and several session-units. Every session-unit is marked by a triple (fid, sid, pid),
where fid and sid are protocol identity and session identity, and pid denotes the
protocol party this unit serves. The session-units store the relative information
with respect to the corresponding session and party.

The Authority to Alarm. We allow CRFs to “alarm”. If a CRF perceives
any abnormality of inputting messages implying that the implementation of the
protocol is likely to be subverted, the CRF is able to alarm directly, and the whole
protocol breaks off at the same time. To ensure the reasonability, the current
definition (see Appendix A) imposes an adversary with some special limitations,
e.g., it must provide functionality-maintaining implementations. Our design of
“alarm” provides a possibility to remove these limitations and solve the problem
by CRF itself.

The Notion of Shell Machine. To capture the feature of transparency of crf,
we introduce the notion of shell machine to characterize a protocol deployed
with a CRF. A shell machine operates like a “shell”, modifying the string fields
of the identities of sender and receiver, when transmitting messages coming in
or out of the inner machine. We denote the shell of πi, ch and crf by SHπi

, SHch

and SHcrf , respectively, and denote the shelled machine of X by XSH. The shell
machines operate as in Fig. 3. Formally:

– SHπi
filters all the messages coming in/out of πi. It changes outgoing mes-

sages (·, ·, pidπi
, pidch, ·, ·) to (·, ·, pidπi

, pidcrf , ·, ·), and forwards other mes-
sages without modification.

– SHch filters all the messages coming in/out of ch. It changes outgoing mes-
sages (·, ·, pidch, pidπi

,m||ad, ·) to (·, ·, pidch, pidcrf ,m||ad||“to pidπi
”, ·), and

forwards other messages without modification.
– SHcrf filters all the messages coming in/out of crf. It changes outgoing

messages (·, ·, pidcrf , pidπi
, ·, ·) to (·, ·, pidch, pidπi

, ·, ·), and changes outgoing
messages (·, ·, pidcrf , pidch, ·, ·) corresponding to the session-unit marked by
(fid, sid, pidπi

) to (·, ·, pidπi
, pidch, ·, ·). It forwards other messages without

modification.

94 G. Li et al.

Fig. 3. Operation of the protocol deployed with a CRF. The round arrows represent
the transfer operations of shells.

Now we are ready to formalize the operation of cryptographic reverse firewall
crf when it composed with protocol P. Following the work [15], we use P ◦ crf
to denote a the protocol P equipped with a CRF crf. The cryptographic reverse
firewall crf runs as follows:

– At the very beginning, the basic unit of crf is invoked.
– When perceiving any abnormality of the inputting messages, crf outputs (⊥

,⊥, pidcrf , E , “alarm”, “output”), and the protocol aborts.
– On receiving (fid, sid, pidπi

, pidcrf ,m||ad, “internal-output”) from a main
machine, crf checks if there exists a session-unit marked as (fid, sid, pidπi

).
If not, such a new session-unit is generated. Based on the information in
the session-unit, crf generates the modified m′||ad′ and outputs (fid, sid,
pidcrf , pidch,m

′||ad′, “internal-output”).
– Similarly, on receiving (fid, sid, pidch, pidcrf ,m||ad, “internal-output”) from

a channel machine, crf interprets ad as ad∗||“to pidπj
”, and checks

if there exists a session-unit marked as (fid, sid, pidπj
). If not, such

a new session-unit is generated. Based on the information in the
session-unit, crf generates the modified m′||ad′ and outputs (fid, sid,
pidcrf , pidch,m

′||ad′, “internal-output”).
– On receiving messages in type of “backdoor”, crf handles it as above, and

returns messages in type of “backdoor”.

UC-Secure Cryptographic Reverse Firewall-Guarding 95

3.3 Define a CRF by UC-emulation

Based on the above works, we present the new definition of the security of a CRF.
Post-Snowden cryptography mainly focuses on the security of the implementa-
tions of cryptographic algorithms when they deviate from the corresponding
specifications. Such analysis is meaningless if the specifications themselves do
not satisfy the required security. Thus, all works in this paper are based on the
premise that the protocol specification is secure, saying, it UC-emulates an ideal
functionality F .

The basic idea of the security definition of CRF is that, a CRF can either
detect subverted implementations, or it could correct a subverted protocol to
UC-emulate the ideal functionality F . We use X̂ to denote the subverted imple-
mentation of X. We first present the game of protocol execution in conventional
settings. Readers are referred to Fig. 4 for the game of protocol execution. The
machines in dashed boxes may be subverted by adversary A, and the solid lines
represent direct communications between ITMs. Concretely,

1. E is the first Turing machine to be invoked.
2. E invokes the adversary A.
3. E generates the inputs of the protocol, and invokes the target protocol P.
4. The target protocol ends when the main machines return their outputs to E .
5. E outputs its one bit decision EXECP,A,E .

Fig. 4. Execution of protocol in con-
ventional settings.

Fig. 5. Execution of protocol equipped
with a CRF.

As a special case, when the target protocol is an ideal functionality F , and the
adversary is replaced by a simulator S, we denote the output of E by EXECF,S,E .
The security of protocol P in the conventional setting is defined based on the
notion of “UC-emulation” [5]. Formally,

Definition 2. Let P be a PPT protocol and F be an ideal functionality. We
say that P UC-emulates F , if for any PPT adversary A, there exists a PPT
simulator S such that for any PPT environment E, we have

EXECF,S,E ≈ EXECP,A,E .

That is, for any input, the probability that E outputs 1 after interacting with A
and P differs by at most a negligible amount from the probability that E outputs
1 after interacting with S and F .

96 G. Li et al.

Next, we formulate the game of a protocol in the subversion setting. The main
difference here is that the implementations of the target protocol are provided
by an adversary, and the protocol is executed with the protection of a CRF.
Readers are referred to Fig. 5 for detail. Concretely,

1. E is the first Turing machine to be invoked.
2. E invokes the adversary A.
3. A generates the subverted implementations P̂ = {π̂1, · · · , π̂n, ch}, and sub-

mits them to E .
4. E generates the inputs of the protocol, and invokes the target protocol P̂ ◦crf.
5. The target protocol ends when crf alarms or the main machines return their

outputs to E .
6. E outputs its one bit decision EXEC

̂P◦crf,A,E .

Before presenting the security definition of a CRF, we define the notion of
robust CRFs, which refers to that the CRF hardly alarms if all the implementa-
tions of protocol obey the specification honestly. Formally,

Definition 3. A cryptographic reverse firewall crf is robust1, if for any PPT
adversary A and PPT environment E, crf alarms only in a negligible probability
when combines with the specification {π1, · · · , πn} of protocol P.

Now we are prepared for the definition of the security of a CRF.

Definition 4. Let P be a PPT protocol which UC-emulates an ideal functional-
ity F in conventional setting. We say a cryptographic reverse firewall crf guards
P for F , if (1) crf is robust; (2) for all the PPT adversary A, the combined
protocol P̂ ◦ crf aborts with crf alarming in a non-negligible probability, or there
exists a PPT simulator S such that for any PPT environment E, we have:

EXECF,S,E ≈ EXEC
̂P◦crf,A,E .

4 Universal Composition of Protocols Deployed
with a CRF

As we expect a CRF to serve multiple protocols and multiple sessions, it is
necessary to analyze the compositional conditions of protocols with a CRF.
Without an explicit formal theorem about composition, even if we prove a CRF
is able to guard every protocol session independently, its security in practical
application is still unguaranted. Fortunately, Canetti et al. [6] have proposed
the notion of universally composable security with a global setup, which could
provide a reference to our work, although their work focused on another topic.

Before presenting our composition theorem, we first introduce the notions
of CRF-subroutine respecting and honesty CRF. These two properties actually
1 Note that the definition of “robust” in this paper is totally different from the notion

of “robust” in work [15].

UC-Secure Cryptographic Reverse Firewall-Guarding 97

achieve that any two sessions have no communication except using a same CRF,
which is a little similar to the G-subroutine respecting proposed by Canetti
et al. [6].

Definition 5. A protocol P is CRF-subroutine respecting, if for the instance
of P labeled as fidP and sids, the shell machines SHπi

reject all the incoming
messages (fid, sid, ·, ·, ·, ·) that {fid, sid} �= {fidP , sids}.
Definition 6. A CRF is called honest if it does not change the protocol identity
fid and session identity sid in the transmitted messages.

Assume the ideal functionality F is a subroutine of protocol ρ. ρF→ ̂P◦crf

denotes the protocol which is acquired by replacing the F in ρ by P̂ ◦ crf. Now
we are prepared to present the composition theorem.

Theorem 1. Let ρ and P be PPT protocols, and F be an ideal functionality. If
an honest reverse firewall crf guards P for F , and P is crf-subroutine respecting,
then for any PPT adversary A, ρF→ ̂P◦crf aborts with crf alarming in a non-
negligible probability, or there exists a PPT adversary S such that for any PPT
environment E,

EXECρ,S,E ≈ EXECρF→ ̂P◦crf ,A,E .

Proof. We need only consider the case when crf does not alarm.
Following the idea in work [5], we take the language of “dummy adversary”

to express the CRF’s property in a substitutive way. A dummy adversary D
just acts as a “transparent channel” between E and the machines in protocol.
It forwards the backdoor type messages from E to main machines of protocol
P, and forwards the returned message from protocol machines to E . Work [5]
provides a rigorous proof that such adjustment from adversary A to “dummy
adversary” D makes no change to the essence of the protocol security. That is
to say, if there exists a PPT environment E being able to distinguish between
an execution of protocol P̂ ◦ crf with A, and an execution of ideal functionality
F with any PPT simulator S, we can construct another PPT environment E ′

being able to distinguish between an execution of protocol P̂ ◦ crf with dummy
adversary D, and an execution of ideal functionality F with any PPT simulator
SD. Of course, if there is no such E , such E ′ does not exist either .

Following the assumption in Theorem 1, we have that if crf does not alarm,
for dummy adversary D and any PPT environment EP , there exists a PPT SD
such that

EXECF,SD,EP ≈ EXEC
̂P◦crf,D,EP

. (1)

Next, we construct a simulator S out of SD, such that for any PPT environ-
ment E and adversary A,

EXECρ,S,E ≈ EXECρF→ ̂P◦crf ,A,E .

98 G. Li et al.

Readers are referred to Fig. 6 for the operation of S. Concretely, we divide
ρF→ ̂P◦crf into P̂ ◦crf and the rest part of ρ (we use ρ′ to denote it). The adversary
A is geared to interact with ρF→ ̂P◦crf . S channels the communication between
A and the environment E , and the communication between A and ρ′ without
any change. The important operation of S is that the communication between A
and every instance of F is “pipelined” with an instance of SD, saying, messages
generated by A aimed for P̂ ◦crf is sent to SD as messages from the environment.
Incoming messages from F to SD are forwarded without any change. Outputs
of SD to environment are forwarded to A as messages from P̂ ◦ crf.

Fig. 6. Construction of simulator S in the proof of Theorem 1. Full lines denote direct
communication between ITMs.

Now we demonstrate that the above construction of S is available. Based
on the “dummy adversary” setting, the adversary A run by S behaves exactly
like the environment that SD expects. We assume that there exists an environ-
ment E which is able to distinguish an execution of {S, ρ} and an execution of
{A, ρF→ ̂P◦crf}, then we can deduce another environment EP which is competent
to violate Formula (1). Assume that ρ involves n instances of F , we design n+1
hybrids of the game. Concretely,

– Game 0: E aims at distinguishing between a execution of {S, ρ} and an
execution of {A, ρF→ ̂P◦crf}, where S is exactly like the case in Fig. 6.

– Game i+1: is same with Game i except that an instance of F in ρ is replaced
by P̂ ◦ crf, the corresponding SD connected with such F in S is replaced by
D.

It is straightforward that E ’ advantage in Game n equals to 0, as the two objects
for judging are completely consistent. If there exists an environment E being
able to distinguish an execution of {S, ρ} and an execution of {A, ρF→ ̂P◦crf}
with a non-negligible probability, there must exists a pair of game Game i and
Game i + 1, in which E ’s outputs are different in a non-negligible probability.

As shown in Fig. 7, we design EP which invokes environment E , adversary
A, the caller part of protocol ρ′, i executions of D associated with P̂ ◦ crf, and
(n − i − 1) executions of SD associated with F . The adversary A and ρ′ just
operate as normal, except that one pair of their subroutine, i.e., an execution

UC-Secure Cryptographic Reverse Firewall-Guarding 99

of {D, P̂ ◦ crf}, or an execution of {SD,F}, is chosen randomly. If E succeed in
the game to distinguish {A, ρF→ ̂P◦crf} and {S, ρ} (or its hybrid), EP outputs 1;
Otherwise EP outputs 0. In this case, if EP deals with {SD,F}, E is operates in
Game i; Else if EP deals with {D, P̂ ◦ crf}, E actually operates in Game i +
1. Thus, if E ’s outputs are different with a non-negligible probability when in
Game i and Game i + 1, EP is able to distinguish {SD,F} and {D, P̂ ◦ crf}.
This is contradiction to Formula (1).

Fig. 7. Construction of EP in the proof of Theorem 1. The lines denote direct commu-
nication between ITMs. If there exists a PPT E in the Fig. 6 which is able to distinguish

the pair {S, ρ} and {A, ρF→ ̂P◦crf}, we can construct a EP in this figure to violate the
security property of crf, i.e., make different output in non-negligible probability when
operating in case (a) and case (b).

5 From the New Definition to the Current Definition

In this section we demonstrate that the new definition actually implies the cur-
rent one. This means that the new definition does not change the basic intuition
of CRF, while characterizing the expected properties of a CRF under the idea
that “guarding a corrupted system with the minimum trusted module”.

For simplicity, here we only consider the PM-adversaries (readers are referred
to Sect. 2.2 for details). The reason for this simplification is that we have allowed
a CRF to alarm, in some sense, a CRF can serve as an online watchdog, and
implementations provided by adversaries other than PM-adversaries can be eas-
ily detected. In this section, we will prove that our definition implies the current
definition, that is to say, considering typical subversion attacks, the new defini-
tion is at least as strong as the current one. Formally,

Theorem 2. If a CRF guards protocol P as defined in Definition 4, then
it also satisfies functionality-maintaining, security-preserving, and exfiltration-
resistance for PM-adversaries.

100 G. Li et al.

Proof. It is straightforward that for a PM-adversary, the probability that the
CRF alarms is negligible. Otherwise we can simply recognize a subverted imple-
mentation when the CRF alarms, as it only alarms with a negligible probability
when combined with unsubverted implementations as defined.

The functionality and security of a protocol are defined by the indifference
between an execution of protocol P̂ ◦ crf with A, and an execution of ideal
functionality F with S. Now that if a CRF is able to ensure such indifference
despite the implementations are corrupted by the adversary, it is straightforward
that this CRF satisfies functionality-maintaining and security-preserving.

Assume that there exists a PM-adversary A being able to break the
exfiltration-resistance of a CRF. Then we can build a PPT adversary B and envi-
ronment E , for which no PPT simulator S achieves EXECF,S,E ≈ EXEC

̂P◦crf,B,E ,
which means the CRF does not guards P. Concretely, when E operates with B
and P ◦ crf:

1. E invokes A to get the subverted implementation P̂ = {π̂1, · · · , π̂n, ch}.

2. E generates b
$← {0, 1}. If b = 1, P∗ ← P̂; else P∗ ← P.

3. E invokes B and forwards P∗ to B. B submits them back to E . E invokes
P∗ ◦ crf.

4. B acquires all transcripts of π̂i, and forwards them back to E .
5. E forwards the transcripts to A, and acquires A’s final output b′.
6. E returns its final output (b′ = b).

Thus, if E interacts with {P∗ ◦ crf,B}, according to the definition of
exfiltration-resistance (Appendix A) Pr[b′ = b] = AdvexfA,crf(λ) + 1/2.

Now we consider the case where E interacts with {F ,S}. Since A is proud-
but-malicious, P̂ and P are indistinguishable to any PPT simulator S. Thus b
has no influence on the returned information from F and S, i.e., Pr[b′ = b] = 1/2.
Thus, we have that for any PPT simulator S,

Pr[EXECF,S,E �= EXECP∗◦crf,B,E] ≥ AdvexfA,crf(λ),

which completes the proof that the CRF is exfiltration-resistant for PM-
adversaries.

6 Construction of a Deterministic CRF

This section presents a detailed construction of CRF. To the best of our knowl-
edge, all of the existing CRFs need to generate a new randomness, to deal with
every randomness generated by the underlying protocol. This implies a assump-
tion that a CRF is competent to produce the same amount of randomness to
the protocol being protected. Those designs could be regarded as transferring a
tough task from users’ computers to CRFs.

Our basic framework of CRF construction is more reasonable than existing
ones. It takes the idea that although the CRF is still assumed to be unsubverted,
it is not expected to generate such a large amount of randomness. Instead, a CRF

UC-Secure Cryptographic Reverse Firewall-Guarding 101

just needs to get a small amount of fresh and trusted randomness as its keys
during the initial phase, and all the following operations are designed to be deter-
ministic. Further more, our construction can even achieve that the CRF’s key
is allowed to opened to external adversaries, as long as it stays confidential to
the implementations of inner protocol parties. In such a situation, the credibility
of a CRF is much easier to be realized, as the main source of the risk, proba-
bilistic modules, are shrunken as much as possible. We observe that although
an implementation of a probabilistic algorithm is subverted, its output should
still have high min-entropy. Otherwise, this subverted implementation will easily
be detected in black-box testing. In this case, a CRF can simply alarm when
observes a collision, causing the protocol to break off. We take use of this point
to achieve our design, which guards a protocol merely using deterministic algo-
rithms, including a module serving as an online watchdog [16].

In this section we only consider the CRF for a class of two-round message-
transmission protocol, but under the UC-based definition, the CRF is designed
in an extendible setting. Our construction is based on the framework pro-
posed by work [10], which presents a general CRF construction method for
message-transmission protocols based on public encryption schemes with spe-
cial properties.

Preliminary. In order to present a comprehensible introduction of our con-
struction, it is necessary to present several basic notions as a foundation. Con-
sidering the page limitation, we put them to appendix. Appendix B.1 intro-
duces a two-round message-transmission protocol based on public-key encryp-
tion. Appendix B.2 reviews the notion of rerandomizable encryption and key
malleability. Appendix B.3 presents a brief introduction of the CRF construc-
tion in work [10].

Our CRF serves for the message-transmission protocol presented in
Appendix B.1. We also require that the involved public-key encryption scheme
should satisfy (1) rerandomizable, with rerandomize function Rerand : PK ×
C × {0, 1}� → C; (2) key malleable, with rerandomize function KeyMaul :
PK × {0, 1}κ → PK, and CKeyMaul : C × {0, 1}κ → C.

The Ideal Functionality. In order to analyze the CRF in the new defini-
tion, we need to specify the ideal functionality F corresponding to the message-
transmission protocol with an authenticated encryption channel. On receiving
the message “ready” from Bob, F informs simulator S, and transfers “ready”
to Alice after getting S’s agreement. On receiving a message m from Alice, F
informs S, and after receiving a returned agreement, F forwards m to Bob.
Readers are referred to Fig. 8 for details.

Construction. The significant progress of our construction comparing to the
design in Appendix B.3 is the acquirement of the coins for rerandomization. We
extract r1 and r2 from the fixed key of CRF along with the inputs via RO. This
transfers the CRF from a probabilistic algorithm to a deterministic one. We
present the formal CRF’s operation for P in Fig. 10, and readers are referred to
Fig. 9 for a sketch map.

102 G. Li et al.

1. Upon receiving “ready” from Bob, sends “ready” to the simulator S .
2. After receiving “ready-agree” from S , sends “ready” to Alice.
3. Upon receiving m from Alice, sends “transmit” to the simulator S .
4. After receiving “transmit-agree” from S , sends m to Bob.

Fig. 8. Operation of F for message-transmission protocol P

Fig. 9. A sketch map for CRF construction

Remark. In logical sense, we characterize the CRF as a single part as in Sect. 3.2,
but actually in the reality, the CRF is realized by several modules which com-
posed with different protocol parties. It is unpractical and unnecessary to require
all the modules to acquire a same key. Thus, in the construction of Fig. 10, the
CRF is injected with two keys sk1 and sk2, to enable the two parts composed
with Bob and Alice, respectively.

We claim that in our construction, the CRF’s key sk1 and sk2 can be opened
to the adversary, as long as it is uniformly random to the subverted parties
̂Alice and B̂ob. This property provides us with a possible operation pattern of
CRF, i.e., injecting public randomness into the CRF after the deployment of
implementations of protocol parties.

Theorem 3. The CRF in Fig. 10 guards P for F , if H1 and H2 are modeled as
random oracles.

Proof. We first demonstrate that crf is robust. Given that PE is a probabilistic
encryption scheme, for (pk0, sk0), (pk1, sk1) ← KeyGen(λ) and m0,m1

$← M,
where M is the plaintext space, we have Pr[pk0 = pk1] ≤ negl(λ), and
Pr[Encpka

(mb) = Encpkc
(md)] ≤ negl(λ) (a, b, c, d ∈ {0, 1} and (a, b) �= (c, d)).

As crf only alarms when the inputting messages is not consistent to the stan-
dard form, or there is collision among the input public-keys or ciphertexts, when
combining with the specification, it alarms in a negligible probability.

UC-Secure Cryptographic Reverse Firewall-Guarding 103

Cryptographic reverse firewall for protocol P

Initial phase(sk1, sk2) \\sk1
$ 0, 1}s, sk2

${ {0, 1}s

Establish two empty list L1 and L2

Unavaliable message(·)
When receiving messages not consistent to the forms of outputs from the
specification, alarm

Key malleation (fidP , sidn, pidBob, pidcrf , pk||“public-key to Alice”, “internal-output”)
Generate a session-unit marked as (fidP , sidn, pidBob)
If pk ∈ L1, alarm
Else

L1 L1 ∪ {pk}, r1 H1(sk1||pk), store r1 in the session-unit.
pk KeyMaul(pk, r1)

Output (fidP , sidn, pidcrf , pidch, pk ||“public-key to Alice”, “internal-output”)

Receive key (fidP , sidn, pidch, pidcrf , pk ||“public-key to Alice”, “internal-output”)
Generate a session-unit marked as (fidP , sidn, pidAlice)
Record pk in the session-unit
Output (fidP , sidn, pidcrf , pidAlice, pk ||“public-key to Alice”, “internal-output”)

Ciphertext rerandomization (fidP , sidn, pidAlice, pidcrf , c||“cipertext to Bob”,
“internal-output”)

If there is no session-unit marked as {fidP , sidn, pidAlice}, return ⊥
Else
Invoke the public-key pk from the session-unit marked as (fidP , sidn, pidAlice)
If c ∈ L2, alarm
Else

L2 L2 ∪ {c} , r2 H2(sk2||c)
c Rerandpk (c, r2)

Output (fidP , sidn, pidcrf , pidch, c ||“cipertext to Bob”, “internal-output”)

Inverse key malleation (fidP , sidn, pidch, pidcrf , c ||“ciphertext to Bob”,
“internal-output”)

If there is no session-unit marked as (fidP , sidn, pidBob), returns ⊥
Else

Invoke r1 from the session-unit marked as (fidP , sidn, pidBob)
c CKeyMaul(c , r1)
Output (fidP , sidn, pidcrf , pidBob, c ||“cipertext to Bob”, “internal-output”)

Fig. 10. Operation of crf for protocol P

Thus, we only need to consider the case where CRF does not alarm. Following
the proof of Theorem 1, here we still take the method of “dummy adversary”,
saying, we will design a PPT simulator S such that any PPT environment E is
unable to distinguish an execution of protocol P̂ ◦ crf with dummy adversary
D, and an execution of ideal functionality F with S. Work [5] has presented

104 G. Li et al.

a complete proof that such adjustment from adversary to dummy adversary
actually makes no influence to the security property of protocols.

We construct a PPT simulator S which takes the following strategy in a
session.

1. On receiving “ready” from F , S generates (pk∗, sk∗) ← KeyGen(1λ), passes
pk∗ to E , and sends “ready-agree” to F .

2. On receiving “transmit” from F , S generates Rerandpk∗(Enc(0), U�), passes
it to E , and sends “transmit-agree” to F .

We present the following hybrids of the CRF:

– Hybrid 0: It is identical to Fig. 10.
– Hybrid 1: It runs in the same way as Hybrid 0, except that r1 in

Key malleation and Inverse key malleation are substituted by r′
1

$← {0, 1}κ.
– Hybrid 2: It runs in the same way as Hybrid 1, except that r2 in
Ciphertext rerandomization is substituted by r′

2
$← {0, 1}�.

– Hybrid 3: It runs in the same way as Hybrid 2, except that in
Key malleation, pk′ is replaced by pk∗, and (pk∗, sk∗) ← KeyGen(1λ).

– Hybrid 4: It runs in the same way as Hybrid 3, except that in
Ciphertext rerandomization, c′ is replaced by c∗ ← Rerandpk′(Encpk′(0), U�).

We denote the environment E ’s output after interacting with D and protocol
equipped Hybrid i as EXECP◦Hybi,D,E , and the corresponding advantage as

Advi
E(λ) =

1
2

∣
∣ Pr[EXECF,SP ,E = 1] − Pr[EXECP◦Hybi,D,E = 1]

∣
∣.

Lemma 1. For any PPT environment E, we have
∣
∣
∣Adv1E(λ) − Adv0E(λ)

∣
∣
∣ ≤ n1

2s
+

n2

2δ
,

where n1 and n2 are numbers of queries from the subverted implementation and
the environment/dummy adversary. δ is the min-entropy of public-key pk pro-
duced by the potentially subverted party B̂ob.

Proof. (of Lemma 1). Based on the definition of RO, Hybrid 1 only differs from
Hybrid 0 when

– Event 1: subverted implementation submits sk1||pk to RO;
– Event 2: environment E or dummy adversary D submits sk1||pk to RO.

As sk1 is generated at the initial phase of CRF, thus, it stays uniformly random
to the implementations of protocol parties. So we have

Pr[Event 1] ≤ n1

2s
.

Now we explore the probability of Event 2. We claim that although the protocol
party Bob is subverted, its output pk should still reach a high min-entropy,

UC-Secure Cryptographic Reverse Firewall-Guarding 105

otherwise, crf will alarm in a non-negligible probability. Concretely, if we assume
that

max
pk∗

Pr[pk = pk∗, (pk, sk1) ← ̂Keygen(λ)] = 2−δ =
1

ploy(λ)
,

then, within q rounds of the protocol, the probability of crf alarms:

Pr[crf alarms] ≥ 1
2
q(q − 1) · 2−2δ =

q(q − 1)
2 · ploy2(λ)

Thus, if crf only alarms in a negligible probability, we have δ ≤ negl(λ). In this
case,

Pr[Event 2] ≤ n22−δ < negl(λ).

So we have
∣
∣
∣Adv1E(λ) − Adv0E(λ)

∣
∣
∣ ≤ Pr[Event 1] + Pr[Event 2] <

n1

2s
+

n2

2δ
. (2)

Based on the same idea, we present Lemma 2 without detailed proof.

Lemma 2. For any PPT environment E, we have
∣
∣
∣Adv2E(λ) − Adv1E(λ)

∣
∣
∣ ≤ n3

2s
+

n4

2σ
,

where n3 and n4 are numbers of queries from the subverted implementation and
the environment/dummy adversary, respectively; σ is the min-entropy of cipher-
text c produced by the potentially subverted party Âlice.

Based on the property of key malleable encryption in Definition 11, when the
coin used in KeyMaul is a uniformly randomness, the output key from KeyMaul is
uniformly random distributed over the public-key space. Thus, we could present
Lemma 3 directly,

Lemma 3. For any PPT environment E, we have Adv3E(λ) = Adv2E(λ).

Based on the property of rerandomizable encryption in Definition 10, when
the coin used in Rerand is a uniformly randomness, (c;Rerandpk(c, Uκ)) is com-
putationally indistinguishable from (c;Rerandpk(Encpk(0), Uκ)), Thus. we could
present Lemma 4 directly,

Lemma 4. For any PPT environment E,
∣
∣Adv4E(λ) − Adv3E(λ)

∣
∣ ≤ negl(λ).

It is obviously that Adv4E(λ) = 0. Summing up Lemma 1–4, we reach the
conclusion

EXECF,SP ,E ≈ EXECP◦crf,D,E ,

which means that (S,F) makes an ideal emulation to (D, P̂ ◦ crf).

106 G. Li et al.

Acknowledgment. This work is partly supported by the National Natural Science
Foundation of China (61972017) and the Fundamental Research Funds for the Central
Universities (YWF-21-BJ-J-1040).

A The Current Definition of a CRF

Mironov and Stephens-Davidowitz [15] characterized the expect properties
of a CRF by functionality-maintaining, security-preserving and exfiltration-
resistance.

Definition 7. (Functionality-maintaining) For any CRF crf and any party A,
let A ◦ crf1 = A ◦ crf, and for k ≥ 2, A ◦ crfk = (A ◦ crfk−1) ◦ crf. For a protocol P
that satisfies functionality requirement FR, for any polynomial bounded k > 1,
if A ◦ crfk maintains FR for A in P, we say that crf maintains FR for A in P.

PA→A◦crf denotes the protocol in which party A is replaced by the combination
of crf and a subverted party A. Besides, we denote a functionality-maintaining
party by Â and an arbitrary subverted party by A.

Definition 8. (Security-preserving) For a protocol P that satisfies security
requirements SR, and a CRF crf, we say that

– crf strongly preserves SR for A in P if the protocol PA→A◦crf satisfies SR;
– crf weakly preserves SR for A in P if the protocol PA→̂A◦crf satisfies SR.

The exfiltration-resistance is defined based on the leakage game which is
presented in Fig. 11. We assume the protocol has two parties A and B. The
advantage of an adversary A in Game LEAK is defined as

AdvLEAKA,crf (λ)
def
=

∣
∣
∣Pr [LEAK(P,A,B, crf, λ) = 1] − 1

2

∣
∣
∣.

Definition 9. (Exfiltration-resistance) For a protocol that satisfies functionality
requirements FR and a reverse firewall crf, we say that

– crf is strongly exfiltration-resistant for party A against party B in the pro-
tocol P if for any PPT adversary A, AdvLEAKA,crf (λ) is negligible in the security
parameter λ; and

– crf is weakly exfiltration-resistant for party A against party B in the proto-
col P if for any PPT adversary A, AdvLEAKA,crf (λ) is negligible in the security
parameter λ provided that A maintains FR for party A.

In the special case where B is empty, we say that crf is exfiltration-resistant
against eavesdroppers.

UC-Secure Cryptographic Reverse Firewall-Guarding 107

Game LEAK (P ,A,B, crf, λ)
(stA,A,B, I) A(1λ)

b
$ {0, 1}

IF b = 1, A∗ A ◦ crf
ELSE, A∗ A ◦ crf
Γ ∗ PA A∗,B B(I)
b∗ A(Γ ∗, stB)
RETURN (b = b∗)

Fig. 11. The leakage game LEAK. stA and stB are the state of A and B. I is a valid
input for P, and Γ ∗ is the transcript produced by protocol PA→A∗,B→B(I).

B CRF Construction in Work [10]

B.1 Two-round Message-Transmission Protocol

Let PE = (Keygen,Enc,Dec) be a public-key encryption scheme. Keygen : 1λ →
(PK,SK) is key generation algorithm, where PK and SK are public-key space
and secret-key space, respectively. Enc : PK × M → C is encryption algorithm,
where M and C are plaintext space and ciphertext space, respectively. Dec : SK×
C → M is decryption algorithm. We define the correctness of PE as: for any m ∈
M and (pk, sk)←Keygen(1λ), we have Decsk(Encpk(m)) = m. And we define the
CPA-security of PE as for any adversarially chosen pair of plaintexts (m0,m1),
(pk,Encpk(m0)) and (pk, Encpk(m1)) are computational indistinguishable.

The basic form of a two-round public-key based message-transmission pro-
tocol is like this: Bob generates (pk, sk) ← KeyGen(1λ), and sends pk to Alice.
Alice encrypts massage m by c ← Encpk(m). After getting c, Bob decrypts it via
m ← Decsk(c).

B.2 Rerandomizable Encryption and Key Malleability Encryption

Rerandomizable encryption refers to the public-key encryption whose ciphertexts
can be rerandomized to a new one, without bringing influence to the normal
decryption. Formally,

Definition 10. [10] A public-key encryption scheme is rerandomizable if
there is a PPT algorithm Rerand : PK × C × {0, 1}κ → C, for any
ciphertext c such that Decsk(c) �=⊥, we have: (1) Decsk(Rerandpk(c, Uκ)) =
Decsk(c), (2) (c;Rerandpk(c, Uκ)) is computationally indistinguishable from
(c;Rerandpk(Encpk(0), Uκ)).

Key malleable encryption refers to encryption whose public-key can be trans-
fered to a new one, and there exists an efficient algorithm mapping ciphertexts
under the new key-pair to ciphertexts under initial key-pair. Formally,

108 G. Li et al.

Definition 11. [10] A public-key encryption scheme is key malleable if: (1) the
output of KeyGen is distributed uniformly over the space of valid keys; (2) for
each public-key pk there is a unique associated private key sk; and (3) there
is a pair of efficient algorithms KeyMaul and CKeyMaul that behave as follows.
KeyMaul takes as inputs a public-key pk and a randomness r

$← {0, 1}� and
returns a new public-key pk′ whose distribution is uniformly random over the
public-key space. Let (sk, pk) be a private-key/public-key pair, and let (sk′, pk′)
be the unique pair associated with randomness r such that pk′ = KeyMaul(pk, r).
Then, CKeyMaul takes as inputs a ciphertext c and randomness r and returns c′

such that Decsk′(c) = Decsk(c′).

For example, Elgamal encryption is both rerandomizable and key malleable.
Such encryption can also be achieved via universal hash proof function [10].

B.3 CRF Construction for Two-round Message-Transmission
Protocols

The work [10] presents a CRF construction, which takes the idea that reran-
domizing the public-key and the ciphertext by KeyMaul and Rerand, respectively.
After receiving a processed ciphertext, the CRF adjusts it to match the original
secret key. Readers are referred to Fig. 12 for detailed formalization. Concretely,

1. When receiving pk from Bob, if pk is not in the standard form, CRF alarms;
else, it generates r1

$← {0, 1}� and pk′ $← KeyMaul(pk, r1), and outputs pk′ to
channel.

2. When receiving c from Alice, if c is not in the standard form, CRF alarms;
else, it generates r2

$← {0, 1}κ and c′ $← Rerandpk′(c, r2), and outputs c′ to
channel.

3. When receiving c′ from channel, if c′ is not in the standard form, CRF alarms;
else, it invokes r1, generates c′′ ← CKeyMaul(c′, r1), and outputs c′′ to Bob.

Fig. 12. CRF based on rerandomizable encryption

UC-Secure Cryptographic Reverse Firewall-Guarding 109

References

1. Ateniese, G., Francati, D., Magri, B., Venturi, D.: Public immunization against
complete subversion without random oracles. In: Deng, R.H., Gauthier-Umaña, V.,
Ochoa, M., Yung, M. (eds.) ACNS 2019. LNCS, vol. 11464, pp. 465–485. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-21568-2 23

2. Ateniese, G., Magri, B., Venturi, D.: Subversion-resilient signature schemes. In:
ACM CCS, pp. 364–375 (2015)

3. Bellare, M., Jaeger, J., Kane, D.: Mass-surveillance without the state: strongly
undetectable algorithm-substitution attacks. In: ACM CCS, pp. 1431–1440 (2015)

4. Bellare, M., Paterson, K.G., Rogaway, P.: Security of symmetric encryption against
mass surveillance. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol.
8616, pp. 1–19. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-
44371-2 1

5. Canetti, R.: Universally composable security: a new paradigm for cryptographic
protocols. In: FOCS, pp. 136–145 (2001)

6. Canetti, R., Dodis, Y., Pass, R., Walfish, S.: Universally composable security
with global setup. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 61–
85. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-70936-7 4

7. Canetti, R., Rabin, T.: Universal composition with joint state. In: Boneh, D.
(ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 265–281. Springer, Heidelberg (2003).
https://doi.org/10.1007/978-3-540-45146-4 16

8. Chen, R., Mu, Y., Yang, G., Susilo, W., Guo, F., Zhang, M.: Cryptographic reverse
firewall via malleable smooth projective hash functions. In: Cheon, J.H., Takagi,
T. (eds.) ASIACRYPT 2016. LNCS, vol. 10031, pp. 844–876. Springer, Heidelberg
(2016). https://doi.org/10.1007/978-3-662-53887-6 31

9. Degabriele, J.P., Farshim, P., Poettering, B.: A more cautious approach to security
against mass surveillance. In: Leander, G. (ed.) FSE 2015. LNCS, vol. 9054, pp.
579–598. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48116-
5 28

10. Dodis, Y., Mironov, I., Stephens-Davidowitz, N.: Message transmission with reverse
firewalls - secure communication on corrupted machines. In: CRYPTO, vol. 9814,
pp. 341–372 (2016)

11. Fischlin, M., Mazaheri, S.: Self-guarding cryptographic protocols against algorithm
substitution attacks. In: CSF, pp. 76–90 (2018)

12. Hofheinz, D., Shoup, V.: GNUC: a new universal composability framework. J.
Cryptol. 28(3), 423–508 (2015)

13. Li, G., Liu, J., Zhang, Z.: Security against subversion in a multi-surveillant setting.
In: Jang-Jaccard, J., Guo, F. (eds.) ACISP 2019. LNCS, vol. 11547, pp. 419–437.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-21548-4 23

14. Li, G., Liu, J., Zhang, Z.: A more realistic analysis of mass surveillance - security
in multi-surveillant settings. IET Inf. Secur. 2020, 643–651 (2020)

15. Mironov, I., Stephens-Davidowitz, N.: Cryptographic reverse firewalls. In: Oswald,
E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 657–686. Springer,
Heidelberg (2015). https://doi.org/10.1007/978-3-662-46803-6 22

16. Russell, A., Tang, Q., Yung, M., Zhou, H.-S.: Cliptography: clipping the power of
kleptographic attacks. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016. LNCS,
vol. 10032, pp. 34–64. Springer, Heidelberg (2016). https://doi.org/10.1007/978-
3-662-53890-6 2

https://doi.org/10.1007/978-3-030-21568-2_23
https://doi.org/10.1007/978-3-662-44371-2_1
https://doi.org/10.1007/978-3-662-44371-2_1
https://doi.org/10.1007/978-3-540-70936-7_4
https://doi.org/10.1007/978-3-540-45146-4_16
https://doi.org/10.1007/978-3-662-53887-6_31
https://doi.org/10.1007/978-3-662-48116-5_28
https://doi.org/10.1007/978-3-662-48116-5_28
https://doi.org/10.1007/978-3-030-21548-4_23
https://doi.org/10.1007/978-3-662-46803-6_22
https://doi.org/10.1007/978-3-662-53890-6_2
https://doi.org/10.1007/978-3-662-53890-6_2

110 G. Li et al.

17. Russell, A., Tang, Q., Yung, M., Zhou, H.: Generic semantic security against a
kleptographic adversary. In: ACM CCS, pp. 907–922 (2017)

18. Young, A.L., Yung, M.: The dark side of ”black-box” cryptography or: should we
trust capstone? In: CRYPTO, vol. 1109, pp. 89–103 (1996)

19. Young, A., Yung, M.: Kleptography: using cryptography against cryptography.
In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 62–74. Springer,
Heidelberg (1997). https://doi.org/10.1007/3-540-69053-0 6

20. Young, A., Yung, M.: The prevalence of kleptographic attacks on discrete-log based
cryptosystems. In: Kaliski, B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 264–
276. Springer, Heidelberg (1997). https://doi.org/10.1007/BFb0052241

21. Young, A., Yung, M.: Malicious cryptography: kleptographic aspects. In: Menezes,
A. (ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 7–18. Springer, Heidelberg (2005).
https://doi.org/10.1007/978-3-540-30574-3 2

https://doi.org/10.1007/3-540-69053-0_6
https://doi.org/10.1007/BFb0052241
https://doi.org/10.1007/978-3-540-30574-3_2

A Message Franking Channel

Löıs Huguenin-Dumittan1,2(B) and Iraklis Leontiadis1,2

1 LASEC, EPFL, Lausanne, Switzerland
lois.huguenin-dumittan@epfl.ch

2 Inpher, New York, USA
iraklis@inpher.io

Abstract. We pursue to formalize and instantiate a secure bidirectional
channel with message franking properties. Under this model a sender may
send an abusive message to the receiver and the latter wish to open it in
a verifiable way to a third party. Potential malicious behavior of a sender
requires message franking protocols resistant to sending messages that
cannot be opened later by the receiver. An adversary impersonated by
the receiver may also try to open messages that have not been sent by
the sender. Wrapping a message franking protocol in a secure channel
requires a more delicate treatment in order to avoid drops or replay of
messages and out-of-order delivery. To the best of our knowledge we are
the first to model the security of a message franking channel, which apart
from integrity, confidentiality, resistance to drops, relays and out-of-order
delivery is sender and receiver binding : a sender cannot send a message
which cannot be opened in a verifiable way later by the receiver, and
the receiver cannot claim a message that had not been truly sent by the
receiver. Finally, we instantiate a bidirectional message franking channel
from symmetric primitives and analyze its security.

Keywords: Message franking channel · Secure communication ·
Channel security · Abusive verifiable reports

1 Introduction

The most popular messaging services such as Facebook Messenger, Whatsapp,
Telegram or Signal offer end-to-end encryption, preventing anyone apart from
the recipients from reading the messages. While preserving privacy, such schemes
increase the difficulty of filtering spam or reporting abusive messages. Indeed,
without the capacity to read the plaintexts, the router (e.g. Facebook) cannot
check for abusive content, malware, malicious links, etc. The problem of abuse
reporting was recently tackled by Facebook, which introduced the concept of
message franking [Fac16]. With this proposed protocol, a user can report abusive
messages to Facebook and can prove that an abusive message was sent by another
user. More recently, Grubbs et al. initiated the formal analysis of such schemes
[GLR17]. In particular, they introduced a new cryptographic primitive called
committing authenticated encryption with associated data (committing AEAD)
along with new security definitions. In the same paper, they analyze the security
c© Springer Nature Switzerland AG 2021
Y. Yu and M. Yung (Eds.): Inscrypt 2021, LNCS 13007, pp. 111–128, 2021.
https://doi.org/10.1007/978-3-030-88323-2_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-88323-2_6&domain=pdf
https://doi.org/10.1007/978-3-030-88323-2_6

112 L. Huguenin-Dumittan and I. Leontiadis

of Facebook’s scheme and present a more efficient construction. In a follow up
work Dodis, Grubbs, Ristenpart and Woodage [DGRW18] revealed a flaw in
Facebook message franking protocol for attachment delivery. The authors showed
compromisation of sender binding, letting a malicious sender to send messages
that cannot be reported. To circumvent that flaw they suggest a new design
for message franking based on hashing encryption which provides the requiring
commitment properties on the ciphertext with only one pass.

The security of communication protocols though depends not only on the
underlying cryptographic primitives but also on the behavior of the protocol
itself. For instance, a protocol based on secure primitives accepting out-of-order
messages or an adversary being able to drop or replay messages renders commu-
nication between two end points vulnerable to such malicious behaviors. More
generally, traditional cryptographic primitives cannot model real-world attacks
beyond basic confidentiality and integrity. In particular, the integrity of the com-
munication channel (e.g. security against out-of-order messages, message drops
or replay attacks) is not captured by traditional security definitions. These rea-
sons led to the study of communication protocols as stateful encryption schemes,
so called: cryptographic channels [BKN02,KPB03,Mar17,PR18].

Cryptographic Channel. Consider a messaging protocol where several par-
ticipants share a key with each other and want to send and receive end-to-end
encrypted messages. Once all the keys are fixed, a channel with confidentality,
integrity–which includes resistance to replay attacks, out-of-order delivery and
drops–must be established between each pair of participants. The cryptographic
primitive that models the channels and the interaction between the participants
is called a cryptographic channel. A channel where the only actions available
to the clients are send and receive (i.e. as in a traditionnal message exchange
protocol) will be referred to as a standard cryptographic channel.

A standard cryptographic channel Ch = (init, snd, rcv) is a tuple of three
efficient algorithms that allows the participants to send and receive encrypted
messages. If there are two participants and only one can send and only one can
receive, the channel is unidirectional while if both can send and receive, the
channel is bidirectional.

One could imagine that a bidirectional channel made up of two secure unidi-
rectional channels should be secure. However, as shown in [MP17] this does not
hold. In the same paper, the authors show several security results on bidirec-
tional channels constructed from unidirectional channels in a special construction
called the canonic composition. The more interesting ones concerning confiden-
tality, are the following:

IND-1CPA + IND-1CPA ⇐⇒ IND-2CPA (1)
IND-1CCA + IND-1CCA ⇐= IND-2CCA (2)

IND-1CCA + IND-1CCA �=⇒ IND-2CCA (3)

where IND-1CPA, IND-2CPA are the IND-CPA security for unidirectional
and bidirectional channels, respectively, and IND-1CCA, IND-2CCA are the

A Message Franking Channel 113

IND-CCA security for unidirectional and bidirectional channels, respectively
[MP17]. One can see that if a unidirectional channel is CPA secure, a CPA secure
bidirectional channel can be constructed. On the other hand, two CCA secure
unidirectional channels are not sufficient to create a CCA secure bidirectional
channel. Intuitively, one can understand this result by considering the following
example. We consider a bidirectional channel made up of two independent confi-
dential unidirectional channels that do not guarantee integrity. Let the protocol
be such that if an adversary sends a special ciphertext c′ to Alice, she sends her
password to Bob without a handshake. Note that this contradicts integrity but
not condidentiality. Then, since Bob does not expect this message, he outputs
the message (i.e. the password) in clear for everyone. Obviously, this does not
contradict the confidentiality of the B → A channel. Now, we assume that Alice
sends her password to Bob without a handshake if and only if she receives c′.
Then, the A → B channel can still be confidential since unidirectional confiden-
tiality (IND-1CCA) does not model the fact that Alice can receive messages in
the A → B channel, in particular c′. Thus, these results show the importance of
considering protocols in bidirectional cryptographic channels.

Recent results analyze security of secure communication channel over TLS
[BHMS15,BH17,GM17], but without sender and receiver binding guarantees. In
this work we aim to close the gap in the existing literature with the definitions,
design and analysis of a secure communication channel with message franking
properties: sender and receiver binding.

Our Contributions. The contributions of this work are summarized as follows:

1. We first define a message franking channel (MFC) that models a messaging
protocol where users can report abusive messages.

2. Then, we present unidirectional and bidirectional security definitions for our
construction. The most challenging are the uni/bi-directional sender and
receiver binding notions, which were introduced by Grubbs et al. [GLR17].
Specifically, binding definitions guarantee that a delivered message can be
reported and a forged message cannot be reported.

3. We prove that a special construction called hereafter the canonical composi-
tion, made from two binding unidirectional MFC, is sufficient to build a secure
binding bidirectional MFC.

4. Finally we present an instantiation of a message franking channel made from
a secure committing AEAD scheme and a message authentication code.

Outline. In Sect. 2 we introduce some notation for the manuscript. In Sect. 3
we recap the reader the message franking protocol definitions and Facebook
message franking protocol. We continue in Sect. 4 with the syntactical definition
of a message franking channel and in Sect. 5 with the security properties thereof.
A concrete instantiation is presented in Sect. 6. Finally, we conclude our work in
Sect. 7.

114 L. Huguenin-Dumittan and I. Leontiadis

2 Notation

A participant is referred to interchangeably as a client, a user or a party. We
write A ‖ B to denote the concatenation of A with B and |A| to denote the
length of A. We write Pr[G ⇒ x] to denote the probability a game G outputs
x. If X is a set, then X ←$ X means that X is uniformly sampled from X . If G
is a randomized algorithm, we write x ←$G to denote the fact that x takes the
value output by G. If G is deterministic, we write x ← G.

In the different games, we denote the initialization of an array A by A ← [].
At each position i, an array can be assigned a single value x or a tuple of values
(x1, . . . , xn). We denote these events by A[i] ← x and A[i] ← (x1, . . . , xn),
respectively. We write abort for “Stop the game and return 0 as a failure”. If G
is a game that returns a value n, we denote by Pr[G ⇒ n] the probability that
G returns n.

Finally, when this is clear from the context, we denote by ∗ any value that
could fit. For example, if T ∈ X × Y is a tuple of two values and X ∈ X , we
write T == (X, ∗) to denote the event that there exists some Y ∈ Y such that
T is equal to (X,Y).

3 Commiting AEAD

Grubbs et al. [GLR17] formalized the concept of message franking into the def-
inition of committing AEAD. Roughly, the idea is to define a cryptographic
primitive that creates a ciphertext and a commitment on the plaintext. Then,
one can decrypt to retrieve the plaintext and an opening key, which is used to
verify the commitement on the plaintext. We present here the definition of com-
mitting AEAD where all randomness is defined by a public nonce. Formally, a
nonce-based committing AEAD is defined as follows:

Definition 1 (Nonce-based Committing AEAD). A nonce-based commit-
ting AEAD scheme nCE = (init, enc, dec, vrf) is a set of four algorithms. Asso-
ciated to this scheme is a key space K, a header space H, a message space M,
a ciphertext space C, an opening space Kf , a franking tag space T and a nonce
space N . An error symbol ⊥ is also required. The four algorithms are as follows:

– K ←$ init: The initialization algorithm init outputs a random key K ∈ K.
– (C1, C2) ← encK(N,H,M): The encryption algorithm enc takes a key K ∈ K,

a nonce N ∈ N , a header H ∈ H and a message M ∈ M, and it outputs a
ciphertext C1 ∈ C and a franking tag C2 ∈ T .

– (M,Kf) ← decK(N,H,C1, C2): The decryption algorithm dec takes a key
K ∈ K, a nonce N ∈ N , a header H ∈ H, a ciphertext C1 ∈ C and a franking
tag C2 ∈ T , and it outputs a message M ∈ M and an opening Kf ∈ Kf or
an error symbol ⊥.

– b ← vrf(H,M,Kf , C2): The verification algorithm vrf takes a header H ∈ H,
a message M ∈ M, an opening value Kf ∈ Kf and a franking tag C2 ∈ T ,
and it outputs a verification bit b, regarding the correctness of the reporting
procedure.

A Message Franking Channel 115

The first procedure init is randomized while the others are deterministic, since
the randomness is defined by the nonce value N .

Correctness. For the correctness of the scheme, we require that for any K ∈ K,
N ∈ N , H ∈ H and M ∈ M and (C1, C2) = encK(N,H,M)

Pr[decK(N,H,C1) = (M,Kf)] = 1

for some Kf ∈ Kf .
Also, if we let (C1, C2) = encK(N,H,M) and (M,Kf) = decK(N,H,C1, C2)

then we require that

Pr[vrf(H,M,Kf , C2) = 1] = 1

for any K ∈ K, N ∈ N , H ∈ H and M ∈ M.
Finally, we require the length of the ciphertexts (C1, C2) to be deterministic

given H and M . In other words, there is a deterministic function len(H,M) s.t.
(|C1|, |C2|) = len(H,M).

Due to space constraints security definitions for AEAD are deferred in
Appendix A.

4 Cryptographic Channel for Message Franking (MFC)

A cryptographic channel is a set of algorithms that allows several participants to
exchange messages (i.e. send and receive) with confidentiality, message integrity,
resistance to replay attacks, out-of-order delivery and message drops. For the
reasons exposed above and the fact that a bidirectional channel is more generic
than a unidirectional one, we are going to focus on a bidirectional channel where
two participants (Alice and Bob) exchange messages. However, in the message
franking case, the participants do not only exchange messages but they also
report them as abusive to a third entity, which we refer to as router. Therefore, we
need to define a new model for a cryptographic channel, which we call a message
franking channel (MFC). Informally, we raise the nonce-based committing AEAD
concept to the channel level, in the context of message franking.

We define a message franking channel (MFC), using the syntax used by Mar-
son et al. [MP17]:

Definition 2 (Message Franking Channel). A message franking channel
Ch = (init, snd, tag, rcv, rprt) is a five-tuple of algorithms. Associated to this chan-
nel is a key space K, a nonce space N , a header space H, a message space M,
a ciphertext space C, an opening space Kf , a franking tag space T , a router tag
space TR and a state space S. The participants space is P = {A,B} (for Alice
and Bob). We also require a special rejection symbol ⊥/∈ (Kf ×M)∪S. The five
procedures are defined as follows:

– (stA, stB , stR) ←$ init: The initialization algorithm init samples a key K ∈ K
and a key KR ∈ K, and it outputs initial states stA, stB , stR ∈ S. K is the
shared key resulting from a secure and authenticated key exchange protocol
between both clients and KR is the secret key of the router.

116 L. Huguenin-Dumittan and I. Leontiadis

– (st′u,H,C1, C2) ← snd(stu, N,M): The sending algorithm snd takes the
sender’s state stu ∈ S, a nonce N ∈ N and a message M ∈ M, and it
outputs an updated state st′u ∈ S, a header H ∈ H and a pair of ciphertext
and franking tag (C1, C2) ∈ C × T .

– (st′R, TR) ← tag(stR, ids,H,C2): The router tagging algorithm tag takes the
router’s state stR ∈ S, the sender’s identity ids ∈ P, a header H ∈ H and a
franking tag C2 ∈ T , and it outputs an updated state st′R ∈ S and a router
tag TR ∈ TR.

– (st′u,M,Kf) ← rcv(stu, N,H,C1, C2): The receiving algorithm rcv takes the
receiver’s state stu ∈ S, a nonce N ∈ N , a header H ∈ H , a ciphertext C1 ∈
C and a franking tag C2 ∈ T , and it outputs an updated state st′u ∈ S ∪ {⊥},
and an opening value pair (M,Kf) ∈ M × Kf or ⊥. We require st′u =⊥ if
(M,Kf) =⊥.

– (st′R, b) ← rprt(stR, idr,H,M,Kf , C2, TR) : The router’s verification algo-
rithm rprt takes the router’s state stR ∈ S, the reporter’s identity idr ∈ P,
a header H ∈ H, a message M ∈ M, an opening Kf ∈ Kf , a franking tag
C2 ∈ T and a router tag TR ∈ TR, and it outputs an updated router’s state
st′R ∈ S ∪ {⊥} and a verification bit b ∈ {0, 1}. We require st′R =⊥ if b = 0.

We assume the channel is stateful, i.e. the participants save their state between
send/tag/receive/report calls. The rcv procedure can verify the commitment
C2 and outputs ⊥ if the verification fails. Also, note that the rprt procedure
does not depend on the nonce N nor on the ciphertext C1. In particular, this
means that the router must be able to verify the validity of the router tag TR

given only its state stR, the header H and the franking tag C2. The channel
uses ⊥ to indicate an error. Once a state is marked as bogus (i.e. st =⊥), it
cannot be used anymore in the invokation of the functions snd, rcv and rprt, since
⊥/∈ S. This corresponds to the reasonable behaviour of an application refusing
to process any more data once an error has been detected. Error management in
channels is a full topic in itself (e.g. [BDPS13]) and can lead to vulnerabilities
(e.g. padding oracle attack [Vau02]). Here, we assume that an adversary does
not learn anything from an error apart from the failure of the corresponding
procedure. The randomness is uniquely determined by public nonces N . Nonces
can be used to perform randomized encryption but also to generate a random
opening key Kf , as in Facebook’s scheme. The role of the nonce is determined
by the underlying schemes used by the different algorithms.

Remarks. The key KR is the router’s secret key that can be used to generate
the router tags TR. In a real-life message franking protocol, all messages go
through the router, where they get tagged. Otherwise, clients could bypass the
tagging procedure and messages would not be reportable. Therefore, one could
imagine that a unique procedure for sending and tagging would be sufficient.
While making the MFC definition simpler, this would render the instantiation of
a real MFC difficult. Indeed, snd is meant to be executed by a client while tag
is run by the router. Thus, such a simplification would be impractical. However,
in the oracles of adversarial models used in the following sections, snd and tag

A Message Franking Channel 117

procedures will sometimes be considered as one operation, to model the fact that
a message sent is always seen by the router.

It is important for the security of the scheme, in particular for the receiver-
binding property, that the router knows the identity of the sender and the iden-
tity of the receiver. This is why these identities ids and idr are passed as argu-
ments in the tag and rprt procedures, respectively. Obviously, the router should
be able to verify these identities in order for the whole protocol to be secure,
otherwise one could tag messages on behalf of another user. However, through-
out this paper we assume that the parties and the router have established secure
keys and that the router can authenticate the sender and the reporter in the
corresponding procedures. It is a fair assumption since messaging protocols usu-
ally encrypt and authenticate the communications between a client and the
server. For example, TextSecure (Signal’s ancestor) used to encrypt client-to-
router communications with TLS and it used to authenticate the client with
the phone number concatenated with some secret key [FMB+14]. Whatsapp
encrypts communications to its servers with the Noise Protocol Framework and
it stores the client’s Curve25519 public key, allowing the router to authenticate
the user during the Diffie-Hellman key exchange protocol [Per18,Wha17].

4.1 Correctness of the Channel

As in a standard bidirectional channel [MP17], we require a MFC to have cer-
tain properties. In short, we want messages sent by a client to be decryptable
by the other participant without errors, assuming that the ciphertexts are not
modified in the channel and that the order of the messages is preserved. Also, a
message sent by a honest participant in the channel and correctly deciphered at
the receiving end should be reportable, assuming that all messages sent on the
channel are not modified (i.e. no active adversary).

Such requirements can be represented as a game, where only passive external
adversaries (i.e. adversaries that can only see and relay messages) are allowed
and where the participants are honest. The adversary can schedule snd/tag,
rcv and rprt procedures and it wins if a message sent can not be decrypted or
reported (i.e. rprt fails). This game is represented in Fig. 1. We assume u ∈
{A,B}, N ∈ N , H ∈ H, M ∈ M, C1 ∈ C, C2 ∈ T , Kf ∈ Kf and TR ∈ TR. The
variables sA, sB , rA, rB keep track of the number of messages sent and received
by each participant. The variables hA and hB keep track of the state of each
participant (whether it has received modified/out-of-order messages). Note that
an adversary can be external and try to modify the messages on the channel
or it can be a participant who communicates with the other benign participant
and/or the router. If a participant u receives out-of-order/modified data, (i.e. if
the adversary actively attacks u), its variable hu is set to false. If hu = true we
say that u is clean. Observe that the adversary can win only if the participant u
used in the oracle query is clean. MA,B [], MB,A[], CA,B [] and CB,A[] record the
messages and ciphertexts exchanged. The adversary has access to three oracles:

– Osnd(u,N,M): The Osnd oracle takes the client identity u, a message and a
nonce, and it calls the snd and tag procedures on behalf of the participant

118 L. Huguenin-Dumittan and I. Leontiadis

u. Then, it records the resulting ciphertext and franking/router tags, if the
client is still clean. This prevents the adversary from winning if the client u
had previously received out-of-order/modified messages.

– Orcv(u,N,H,C1, C2): With the oracle Orcv, an adversary can make a user u
receive (i.e. decrypt). Now, if this participant is still clean and the ciphertext
is delivered without modification (and in the right order) compared to the one
sent (condition in line 4), then the message recovered should be the one sent.
If this is not the case (condition in line 6), then the adversary wins. Otherwise,
if the condition at line 4 is not respected, then the ciphertext/tags have been
modified and the participant is flagged as not clean.

– Orprt(u, n,H,M,Kf , C2, TR): The adversary can use also the Orprt oracle to
report a given message on behalf of a user u, by providing the message along
with the tags. It also must specify the index n of the message (we assume
the adversary records the number of messages sent). As before, if the user
is clean and the header, the franking tag, the router tag and the message
were not modified compared to the one sent (conditions at lines 2–3), then
the participant/adversary should be able to report the message. If this is
not the case, the adversary wins. Otherwise, if the condition in line 3 is not
respected (i.e. the message, ciphertext or tags have been tampered with), the
participant is flagged as not clean.

Now, for any adversary A playing CORR and any channel Ch, we denote the
advantage of A as

AdvcorrCh (A) = Pr[CORRCh(A) ⇒ true]

Definition 3 (Bidirectional Message Franking Channel Correctness).
We say that a message franking bidirectional channel Ch is correct if for any
adversary A playing the CORR game

AdvcorrCh (A) = 0

In Appendix B, we give the unidirectional correctness definition.

5 Security for Message Franking Channel

5.1 Confidentiality

We elevate the MO-nRAND confidentiality game for nonce-based committing
AEAD schemes to the bidirectional MFC case. Confidentiality means that no
adversary is able to retrieve information about the messages exchanged by the
participants. This notion concerns the exchange of messages and not the report-
ing phase. In addition, we note that once an abusive message is reported, it
becomes public, in the sense that we do not specify how the message is sent to
the router for reporting (e.g. it could be sent in clear).

A Message Franking Channel 119

CORRCh(A)

1 : win false

2 : (stA, stB , stR) $ init

3 : sA 0; sB 0

4 : rA 0; rB 0

5 : hA true;hB true

6 : MA,B [];MB,A []

7 : CA,B [];CB,A []

8 : AOsnd,Orcv,Orprt

9 : return win

Oracle Orprt(u, n,H,M,Kf , C2, TR)

1 : (stR, b) rprt(stR, u,H,M,Kf , C2, TR)

2 : if hu :

3 : if Cv,u[n] = (∗, H, ∗, C2, TR) and Mv,u[n] = M :

4 : if b = 0 :

5 : win true

6 : else :

7 : hu false

8 : return b

Oracle Osnd(u,N,M)

1 : (stu, H,C1, C2) snd(stu, N,M)

2 : (stR, TR) tag(stR, u,H,C2)

3 : v {A,B} \ {u}
4 : if hu :

5 : Mu,v [su] M

6 : Cu,v [su] (N,H,C1, C2, TR)

7 : su su + 1

8 : return (C1, C2, TR)

Oracle Orcv(u,N,H,C1, C2)

1 : (stu,M,Kf) rcv(stu, N,H,C1, C2)

2 : v {A,B} \ {u}
3 : if hu :

4 : if ru < su and Cv,u[ru] = (N,H,

5 : C1, C2, ∗) :

6 : if (M,Kf) =⊥ or Mv,u[ru] �= M :

7 : win true

8 : ru ru + 1

9 : else :

10 : hu false

11 : return (M,Kf)

Fig. 1. Correctness game for a bidirectional message franking channel.

While in a standard channel the adversary is external to the participants, in
the message franking case the adversary can also be the router. Therefore, in
the following games we give the adversary access to the router’s state stR. This
means the adversary does not need a tag and report oracle, as it is able to run
these procedures on its own.

The MO-2nREAL and MO-2nRAND games of Fig. 2 are adapted from the
MO-nREAL and MO-nRAND games. In both games, we assume the adversary
is nonce-respecting (i.e. it cannot query Osnd or Ochal twice with the same
nonce N .

The adversary wins if it can differentiate with non-negligible probability
between the encryption of a message M and the encryption of a random bit-
string. The hu variables, as in the correctness games, let the adversary decrypt
ciphertexts as long as it remains passive: the adversary only relays messages. In
particular, this prevents the adversary from winning by decrypting the cipher-
texts obtained from the Ochal oracle.

120 L. Huguenin-Dumittan and I. Leontiadis

MO-2nREALCh(A)

(stA, stB , stR) $ init

sA 0; sB 0; rA 0; rB 0

hA true;hB true

CA,B [];CB,A []

b
′ Osnd,Orcv,Ochal,stR

return b
′

Oracle Osnd(u,N,M)

(stu, H,C1, C2) snd(stu, N,M)

v

A

{A,B} \ {u}
if hu :

Cu,v [su] (N,H,C1, C2)

su su + 1

return (H,C1, C2)

Oracle Orcv(u,N,H,C1, C2)

(stu,M,Kf) rcv(stu, N,H,C1, C2)

v A,B} \ {u}
if ru < sv and Cv,u[ru] = (N,H,C1, C2) :

ru ru + 1

else :

hu false

if hu: return (M,Kf)

else : return ⊥

Oracle Ochal(u,N,M)

(stu, H,C1, C2) snd(stu, N,M)

return (C1, C2)

MO-2nRANDCh(A)

(stA, stB , stR) $ init

sA 0; sB 0; rA 0; rB 0

hA true;hB true

CA,B [];CB,A []

b
′ AOsnd,Orcv,Ochal,stR

return b
′

Oracle Osnd(u,N,M)

(stu, H,C1, C2) snd(stu, N,M)

v {A,B} \ {u}
if hu :

Cu,v [su] (N,H,C1, C2)

su su + 1

return (H,C1, C2)

Oracle Orcv(u,N,H,C1, C2)

(stu,M,Kf) rcv(stu, N,H,C1, C2)

v{ {A,B} \ {u}
if ru < sv and Cv,u[ru] = (N,H,C1, C2) :

ru ru + 1

else :

hu false

if hu: return (M,Kf)

else : return ⊥

Oracle Ochal(u,N,M)

Mr $ {0, 1}|M|

(stu, H,C1, C2) snd(stu, N,Mr)

return (C1, C2)

Fig. 2. Confidentality games for nonce-based bidirectional message franking channels.

For a bidirectional MFC channel Ch, we define the nonce-based multiple open-
ing real-or-random (MO-2nRoR) advantage of any algorithm A as

Advmo-2nror
Ch (A) = |Pr[MO-2nREALCh(A) ⇒ 1] − Pr[MO-2nRANDCh(A) ⇒ 1]|

5.2 Integrity

We adapt the MO-nCTXT integrity notions of committing AEAD to the bidi-
rectional MFC. Ciphertext integrity means that a receiver can only receive and
decrypt in-order and legitimate ciphertexts, which have been sent by another
participant. As in the MO-2nROR confidentiality notion, the adversary can be
the router and thus we give access to the state stR.

A Message Franking Channel 121

MO-2nCTXTCh(A)

(stA, stB , stR) $ init

sA 0; sB 0; rA 0; rB 0

CA,B [];CB,A []

win false

AOsnd,Orcv,stR

return win

Oracle Osnd(u,N,M)

v A,B} \ {u}
(stu, H,C1, C2) snd(stu, N,M)

Cu,v [sA] (N,H,C1, C2)

su su + 1

return (H,C1, C2)

Oracle Orcv(u,N,H,C1, C2)

(stu,M,Kf) rcv(stu, N,H,C1, C2)

v

{

{A,B} \ {u}
if (M,Kf) =⊥: return ⊥
if ru < sv and (N,H,C1, C2) = Cv,u[ru] :

ru ru + 1

return (M,Kf)

else : win true

Fig. 3. Integrity game for nonce-based committing AEAD

Let MO-2nCTXT be the game in Fig. 3. By observing the Orcv oracle, one can
see that the adversary wins if the rcv procedure is successful but the ciphertexts
are not legitimate or they are received out-of-order. For a bidirectional MFC Ch,
we define the nonce-based multiple opening integrity advantage of any algorithm
A playing the MO-2nCTXT game as

Advmo-2nctxt
Ch (A) = Pr[MO-2nCTXTCh(A) ⇒ true]

5.3 Binding Security Notions

In order to guarantee verifiable reporting of abusive messages, a MFC should
adhere to sender and receiver binding notions as with message franking pro-
tocols [Fac16,GLR17]. One difference between the committing AEAD binding
definitions and the ones defined here, is that in a channel the participants are
stateful and their behavior may evolve over time, whereas such concepts do
not exist in the security definitions of cryptographic primitives like committing
AEAD. The threat in such security definitions is a malicious participant and
not an external adversary. Therefore, in all the binding games of this section, we
assume that the adversary can modify the states of the participants (Alice and
Bob). In particular, this allows the adversary to control sthe encryption key K.

Sender Binding. Sender binding for MFC guarantees that any message received
without error by a client can be successfully reported to the router. This notion
is defined with the game s-2BIND presented in Fig. 4.

The adversary has access to three oracles in addition to the states of Alice
and Bob. Here is a description of the s-2BIND game:

122 L. Huguenin-Dumittan and I. Leontiadis

s-2BINDCh(A)

1 : win false

2 : (stA, stB , stR) $ init

3 : sA 0; sB 0

4 : rA 0; rB 0

5 : SA,B [];SB,A []

6 : RA,B [];RB,A []

7 : AOtag,Orcv,Orprt,stA,stB

8 : return win

Oracle Orprt(u,H,M,Kf , C2, TR)

1 : idr u

2 : v {A,B} \ {u}
3 : (stR, b) rprt(stR, idr, H,M,Kf , C2, TR)

4 : if (H,M,Kf , C2, TR) in Rv,u and b = 0 :

5 : win true

6 : return b

Oracle Orcv(u,N,H,C1, C2)

1 : v = {A,B} \ {u}
2 : if (H,C2, TR) in Sv,u for some TR :

3 : (stu,M,Kf) rcv(stu, N,H,C1, C2)

4 : if (M,Kf) �=⊥
5 : Rv,u[ru] (H,M,Kf , C2, TR)

6 : ru ru + 1

Oracle Otag(u,H,C2)

1 : ids u

2 : (stR, TR) tag(stR, ids, H,C2)

3 : v = {A,B} \ {u}
4 : Su,v [su] = (H,C2, TR)

5 : su su + 1

6 : return TR

Fig. 4. Game for message franking channel sender-binding security definition.

– s-2BINDCh(A): The rA, rB , sA, sB variables keep track of the number of mes-
sages received and sent by each party. The arrays SA,B [], SB,A[] store the
franking tags C2, the headers H and the associated router tags TR sent from
A to B and from B to A, respectively. The arrays RA,B [] and RB,A[] store
the tags and messages corresponding to ciphertexts when the rcv procedure
outputs a valid pair (M,Kf), after decryption.

– Otag(u,H,C2): This oracle is used to modify the router state stR and to
obtain a router tag for a tuple (H,C2), with u as the sender. The header
H, the franking tag C2 and the router tag obtained TR are stored in the
corresponding array Su,v[] (line 4). This array is needed to ensure that a router
tag TR really corresponds to a header,franking tag pair (H,C2). Then, the
number of messages sent by the participant is incremented (line 5). Finally,
the router tag is returned to the adversary (line 6).

– Orcv(u,N,H,C1, C2): The Orcv oracle first checks that H and C2 corresponds
to a router tag TR (line 2) computed for a message sent by client v. If this is
the case, the rcv procedure is called and it outputs a plaintext, opening key
pair (M , Kf). If this pair is valid (i.e. not equal to ⊥), it is stored in the
appropriate array Rv,u alongside with the header and the tags (C2, TR) (line
5). This means that these values correspond to a ciphertext that decrypts
to a valid message. Finally, the number of valid messages received by u is
incremented (line 6).

– Orprt(u,H,M,Kf , C2, TR): The oracle Orprt calls the rprt procedure on the
the header, the message, the opening key and the tags, with u as the reporter.

A Message Franking Channel 123

r-2BINDCh(A)

1 : win false

2 : (stA, stB , stR) $ init

3 : sA 0; sB 0

4 : MA,B [];MB,A []

5 : AOsnd,Orprt,stA,stB

6 : return win

Oracle Osnd(u,N,H,M)

1 : ids u

2 : (stu, , C1, C2) snd(stu, N,M)

3 : (stR, TR) tag(stR, ids, H,C2)

4 : v = {A,B} \ {u}
5 : Mu,v [su] M

6 : su su + 1

7 : return (C1, C2, TR)

Oracle Orprt(u,H,M,Kf , C2, TR)

1 : idr u; v = {A,B} \ {u}
2 : (stR, b) rprt(stR, idr, H,M,Kf , C2, TR)

3 : if M not in Mv,u and b = 1 :

4 : win true

5 : return b

Fig. 5. Game for franking channel receiver-binding security definition.

This allows an adversary to update the router state stR. Then, if the input
values correspond to some ciphertext that outputs a valid message but the
report procedure fails (line 4), the adversary wins.

The adversary can use the Orprt oracle to report a message on behalf of a user u.
If the message was actually sent and correctly decrypted by u then it is in Rv,u

with the corresponding header and tags. Therefore, if the message is in Rv,u but
the rprt procedure fails, the adversary wins. Indeed, we ask an adversary to win
if the decryption is successful but the report procedure fails. We need to use
a second pair of arrays (SA,B , SB,A) to store the router tag TR corresponding
to a pair (H,C2). Otherwise, one could not store TR in the array Rv,u at line
5 of Orcv. Indeed, if TR was not stored in Rv,u, the adversary could specify a
random TR when reporting with legit values, making the verification fail. Finally,
we note that despite the fact the adversary has access to both user states, in a
real-life threat model the adversary would be only one of the participants (e.g.
Alice). However, since both participants share everything, it does not matter
if the adversary has access to one or both states. For any adversary A playing
s-2BIND and any channel Ch, the advantage of A is:

Advs−2bind
Ch (A) = Pr[s-2BINDCh(A) ⇒ true]

Receiver Binding. We recall that receiver binding assures that a malicious par-
ticipant cannot report an abusive message that was never sent. Receiver binding
for message franking channels is defined with the game r-2BINDCh presented
in Fig. 5. In this game, the adversary represents two colluding participants that
can schedule snd/tag/rprt operations for message exchanges and then one of the
participants tries to report a message never sent to her/him. Since the adver-
sary controls the users states, it would need only access to tag/rprt oracles since

124 L. Huguenin-Dumittan and I. Leontiadis

it can run the other algorithms by itself. However, the game should store the
sent messages (i.e. the ones the adversary requested a router tag for) in order
to compare them with the reported message in the Orprt oracle. Therefore, we
let the Osnd oracle run the snd procedure as well as the tag procedure. Here is
a description of the game:

– r-2BINDCh(A): The sA, sB variables keep track of the number of messages
sent by each party. They are used as indexes for the arrays MA,B [],MB,A[]
that store all messages sent by A to B and B to A, respectively.

– Osnd(u,N,H,M): In the Osnd oracle, the message sent M is recorded in the
corresponding array (line 5) and the number of messages sent by the partici-
pant is incremented (line 6). The ciphertext, franking tag and router tag are
returned to the adversary (line 7). In short, this oracle allows an adversary
to obtain the router tag for any header/message tuple, while recording the
message. We let the adversary pass the header H as an argument since we
want the adversary to be able to get a router tag for any header.

– Orprt(u,H,M,Kf , C2, TR): The Orprt takes a header H, the message to be
reported M , an opening key Kf , a franking tag C2, a router tag TR and the
identity of the reporter u. At line 3, the condition checks that the submitted
message was not sent to the reporting participant and that the message passes
the rprt procedure. If this is the case, the adversary wins.

In order to respect this receiver binding notion, the router must be able to
check the sender and receiver of a message. Indeed, if this is not the case, one can
construct an adversary Ar-2BIND that always wins, as shown in Fig. 6. Let Alice
be the malicious participant. She picks a random message and a random nonce
and sends the corresponding ciphertext to Bob using the sending oracle. Thus,
the message is in the array MA,B . Note that Alice can compute the opening key
Kf since she controls stA, N,H and M . Finally, she reports Bob as the sender
of the message by calling the Orprt oracle. Since the message is in MA,B but not
in MB,A, the first part of the condition in line 3 of Orprt is fulfilled. Thus, since
all values used to report are legitimate, the report procedure will succeed unless
the router knows the message was actually sent by Alice to Bob.

One solution to this problem is to incorporate the receiver/sender identities
in the router tag TR. This is done in the Facebook protocol by putting the
sender and receiver identities in some context data. The router tag TR becomes
TR = HMACKR

(C2 ‖ sender ‖ receiver) and the router can check whether the
participant A reporting an abusive message from participant A is telling the
truth or not and accept or reject accordingly. This shows the importance to
correctly manage the identity of the participants.

For any adversary A playing r-2BIND and any channel Ch, we write the
advantage of A as

Advr−2bind
Ch (A) = Pr[r-2BINDCh(A) ⇒ true]

In other words, in addition to the control of participants’ states, the adversary
must be able to modify the state of the router, as in a real exchange of messages.

In Appendix B, we give the unidirectional binding definitions.

A Message Franking Channel 125

Ar-2BIND

1 : M $ M;N $ N
2 : compute next Kf from (N,H,M, stA)

3 : (H,C1, C2, TR) Osnd(A,N,M)

4 : Orprt(A,H,M,Kf , C2, TR)

Fig. 6. Attack on r-BIND game.

6 MFC Instantiation

Now that the security properties of a MFC have been defined, we wish to instan-
tiate a practical MFC that fulfills these properties. Our construction is based
on two cryptographic primitives, namely a committing AEAD and a message
authentication code (MAC) scheme. We show how to combine these primitives
with some message counters to obtain a practical bidirectional MFC.

6.1 Construction

Let nCE = (initnCE, enc, dec, vrfynCE) be a secure nonce-based committing AEAD
and MAC = (initmac, tagmac, vrfymac) be a secure MAC scheme. Our MFC con-
struction is given in Fig. 7. We refer to it as MF. The channel operates as follows:

– (stA, stB , stR) ←$ init: The initialization procedure samples the keys and cre-
ates the states. Alice and Bob states are made of their identity, the secret key
and the send and receive counters. The router’s state is made of the router
key.

– (st,H,C1, C2) ← snd(st,N,M): The sending procedure computes the header
H as the identity concatenated with the number of sent messages. Then, the
ciphertexts are computed, the sent counter is incremented and the values are
returned.

– (stR, TR) ← tag(stR, ids,H,C2): The router tag is computed as a MAC on the
sender/receiver identities, the header and the franking tag, with the router
key KR.

– (st,M,Kf) ← rcv(st,N,H,C1, C2): The sender identity and the message
sequence number are extracted from the header and the ciphertext is
decrypted. If this fails or if the number of received messages is not equal
to the message sequence number, an error is returned. Otherwise, the num-
ber of received messages is incremented and the new state, the plaintext and
the opening key are returned.

– (stR, b) ← rprt(stR, idr,H,M,Kf , C2, TR): The reporter’s identity u and the
alleged sender’s identity v are extracted. Then, the router’s tag TR is verified
with the identities v and u along with the header H and the franking tag
C2. Finally, the message is verified to be legit using the franking tag and
the opening key Kf . If everything is successful, the procedure returns 1, as a
success.

126 L. Huguenin-Dumittan and I. Leontiadis

init

K $ K;KR $ K
sA 0; sB 0

rA 0; rB 0

stA A||K||sA||rA
stB B||K||sB ||rB
stR KR

return (stA, stB , stR)

snd(st,N,M)

u||K||su||ru st;H u||su
(C1, C2) encK(N,H,M);

su su + 1; st u||K||su||ru
return (st,H,C1, C2)

tag(stR, ids, H,C2)

KR stR;u ids

if u /∈ {A,B} :

return (⊥,⊥)

v {A,B} \ {u}
TR tagmac(KR, u||v||H||C2)

return (stR, TR)

rcv(st,N,H,C1, C2)

u||K||su||ru st; v||sv H

(M,Kf) decK(N,H,C1, C2)

if ru �= sv or (M,Kf) =⊥:

return (⊥,⊥)

ru ru + 1

st u||K||su||ru
return (st,M,Kf)

rprt(stR, idr, H,M,Kf , C2, TR)

KR stR;u idr

if u /∈ {A,B} :

return (⊥, 0)

v {A,B} \ {u}
if vrfymac(KR, v||u||H||C2, TR) = 0 :

return (⊥, 0)

if vrfynCE(H,M,Kf , C2) = 0 :

return (⊥, 0)

return (stR, 1)

Fig. 7. Instantiation of a real MFC.

6.2 Security Analysis

Confidentiality. The ciphertexts sent by MF are output by the nonce-base com-
mitting AEAD nCE. Then, if an adversary can differentiate between real and
random ciphertexts output by MF, then it can differentiate between real and
random ciphertexts output by nCE. Therefore, if nCE is MO-nRoR secure, then
MF is MO-2nRoR secure. We state this formally in Theorem 1, skipping the
proof that simply follows from the observation given above.

Theorem 1. (MF confidentiality). Let MF be the MFC given in Fig. 7, based
on a secure committing AEAD scheme nCE. Then, for any adversary A playing
the MO-2nRoR game there exists an adversary B such that

Advmo-2nror
MF (A) ≤ Advmo-nror

nCE (B)

Integrity. The integrity property of MF follows from the use of send and receive
counters and from the integrity of nCE. Formally, the following theorem holds:

Theorem 2. Let MF be the MFC given in Fig. 7, based on a committing AEAD
scheme nCE. Then, for any adversary A playing the MO-2nCTXT game there
exists an adversary B such that

Advmo-2nctxt
MF (A) ≤ Advmo-nctxt

nCE (B)

A Message Franking Channel 127

Sender Binding. The sender binding property follows directly from the sender
binding property of nCE. Formally, we state the following theorem:

Theorem 3. Let MF be the MFC given in Fig. 7, based on a committing AEAD
scheme nCE. Then, for any adversary A playing the S-2BIND game there exists
an adversary B such that

Advs-2bindMF (A) ≤ Advs-bindnCE (B)

Receiver Binding. The receiver binding property of our construction is a conse-
quence of the receiver binding property of the committing AEAD scheme and
of the security against forgery of the MAC scheme used. We state the following
theorem:

Theorem 4. Let MF be the MFC given in Fig. 7, based on a committing AEAD
scheme nCE and a MAC scheme MAC. Then, for any adversary A playing the
S-2BIND game there exists an adversary B and an adversary C such that

Advr-2bindMF (A) ≤ Advr-bindnCE (B) + Advuf-cma
MAC (C)

Due to space limits the proofs for Theorems 2, 3, 4 are given in the full version.

7 Conclusion

In this paper, we introduced a message franking channel (MFC) which apart
from message confidentiality/integrity, resistance to message drops, out of order
delivery and replay attacks guarantees sender and receiver binding: Namely,
the sender cannot send an abusive message, which cannot be reported to a
third party and the receiver cannot report a fake message. Even if all of the
definitions were presented in the unidirectional and bidirectional case, we focused
mainly on bidirectional security definitions. We presented two results on binding
properties in the canonic composition of two unidirectional MFC. In particular,
we proved that two unidirectional receiver binding MFC are sufficient to create
a bidirectional receiver binding MFC. In addition, we stressed that these results
do not necessarily hold in general but only in the canonic composition. Finally,
we gave an instantiation of a bidirectional MFC given a secure nonce based
committing AEAD [GLR17] and a message authentication code.

References

[BDPS13] Alexandra, B., Jean, P.D., Kenneth, G.P., Martijn, S.: On symmet-
ric encryption with distinguishable decryption failures. In: International
Workshop on Fast Software Encryption, pp. 367–390. Springer (2013).
https://doi.org/10.1007/978-3-662-43933-3 19

[BH17] Colin, B., Britta, H.: Secure channels and termination: The last word on
tls. Cryptology ePrint Archive, Report 2017/784 (2017). https://eprint.
iacr.org/2017/784

https://doi.org/10.1007/978-3-662-43933-3_19
https://eprint.iacr.org/2017/784
https://eprint.iacr.org/2017/784

128 L. Huguenin-Dumittan and I. Leontiadis

[BHMS15] Colin, B., Britta, H., Stig, F.M., Douglas, S.: From stateless to stateful:
Generic authentication and authenticated encryption constructions with
application to TLS. Cryptology ePrint Archive, Report 2015/1150 (2015).
https://eprint.iacr.org/2015/1150

[BKN02] Mihir, B., Tadayoshi, K., Chanathip, N.: Authenticated encryption in SSH:
provably fixing the ssh binary packet protocol. In: Proceedings of the 9th
ACM Conference on Computer and Communications Security, pp. 1–11.
ACM (2002)

[DGRW18] Dodis, Y., Grubbs, P., Ristenpart, T., Woodage, J.: Fast message franking:
from invisible salamanders to encryptment. In: Shacham, H., Boldyreva,
A. (eds.) CRYPTO 2018. LNCS, vol. 10991, pp. 155–186. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-96884-1 6

[Fac16] Facebook. Messenger secret conversations (2016). https://fbnewsroomus.
files.wordpress.com/2016/07/secret conversations whitepaper-1.pdf

[FMB+14] Tilman, F., Christian, M., Christoph, B., Florian, B., Joerg, S., Thorsten,
H.: How secure is textsecure? Cryptology ePrint Archive, Report 2014/904
(2014). https://eprint.iacr.org/2014/904

[GLR17] Paul, G., Jiahui, L., Thomas, R.: Message franking via committing authen-
ticated encryption. Cryptology ePrint Archive, Report 2017/664 (2017).
https://eprint.iacr.org/2017/664

[GM17] Felix, G., Sogol, M.: A formal treatment of multi-key channels. Cryptology
ePrint Archive, Report 2017/501 (2017). https://eprint.iacr.org/2017/501

[KPB03] Tadayoshi, K., Adriana, P., John, B.: Building secure cryptographic trans-
forms, or how to encrypt and mac. Cryptology ePrint Archive, Report
2003/177 (2003). https://eprint.iacr.org/2003/177

[Mar17] Giorgia, A.M.: Real-World Aspects of Secure Channels: Fragmentation,
Causality, and Forward Security. PhD thesis, Technische Universität Darm-
stadt (2017)

[MP17] Giorgia, A.M., Bertram, P.: Security notions for bidirectional channels.
Cryptology ePrint Archive, Report 2017/161 (2017). https://eprint.iacr.
org/2017/161

[Per18] Trevor, P.: The noise protocol framework (2018). http://noiseprotocol.org/
noise.html. Accessed on 03 Sept 2018

[PR18] Bertram, P., Paul, R.: Ratcheted key exchange, revisited. Cryptology
ePrint Archive, Report 2018/296 (2018). https://eprint.iacr.org/2018/296

[Vau02] Serge, V.: Security flaws induced by cbc padding – applications to SSL,
IPSEC, WTLS... In; Lars, R.K. (ed.) Advances in Cryptology – EURO-
CRYPT 2002, pp. 534–545. Springer, Berlin, Heidelberg (2002). https://
doi.org/10.1007/3-540-46035-7 35

[Wha17] Whatsapp. Whatsapp encryption overview (2017). https://www.
whatsapp.com/security/WhatsApp-Security-Whitepaper.pdf

https://eprint.iacr.org/2015/1150
https://doi.org/10.1007/978-3-319-96884-1_6
https://fbnewsroomus.files.wordpress.com/2016/07/secret_conversations_whitepaper-1.pdf
https://fbnewsroomus.files.wordpress.com/2016/07/secret_conversations_whitepaper-1.pdf
https://eprint.iacr.org/2014/904
https://eprint.iacr.org/2017/664
https://eprint.iacr.org/2017/501
https://eprint.iacr.org/2003/177
https://eprint.iacr.org/2017/161
https://eprint.iacr.org/2017/161
http://noiseprotocol.org/noise.html
http://noiseprotocol.org/noise.html
https://eprint.iacr.org/2018/296
https://doi.org/10.1007/3-540-46035-7_35
https://doi.org/10.1007/3-540-46035-7_35
https://www.whatsapp.com/security/WhatsApp-Security-Whitepaper.pdf
https://www.whatsapp.com/security/WhatsApp-Security-Whitepaper.pdf

SPARROWHAWK: Memory Safety Flaw
Detection via Data-Driven Source Code

Annotation

Yunlong Lyu1(B), Wang Gao2, Siqi Ma3, Qibin Sun1, and Juanru Li2(B)

1 University of Science and Technology of China, Hefei, China
lyl2019@mail.ustc.edu.cn

2 Shanghai Jiao Tong University, Shanghai, China
{gaowang,jarod}@sjtu.edu.cn

3 The University of Queensland, Brisbane, Australia
slivia.ma@uq.edu.au

Abstract. Detecting code flaws in programs is a vital aspect of soft-
ware maintenance and security. Classic code flaw detection techniques
rely on program analysis to check whether the code logic violates certain
pre-define rules. In many cases, however, program analysis falls short of
understanding the semantics of a function (e.g., the functionality of an
API), and thus is difficult to judge whether the function and its related
behaviors would lead to a security bug. In response, we propose an auto-
mated data-driven annotation strategy to enhance the understanding of
the semantics of functions during flaw detection. Our designed Spar-
rowHawk source code analysis system utilizes a programming language
aware text similarity comparison to efficiently annotate the attributes of
functions. With the annotation results, SparrowHawk makes use of the
Clang static analyzer to guide security analyses.

To evaluate the performance of SparrowHawk, we tested Spar-
rowHawk for memory corruption detection, which relies on the anno-
tation of customized memory allocation/release functions. The experi-
ment results show that by introducing function annotation to the orig-
inal source code analysis, SparrowHawk achieves more effective and
efficient flaw detection, and successfully discovers 51 new memory cor-
ruption vulnerabilities in popular open source projects such as FFmpeg
and kernel of OpenHarmony IoT operating system.

Keywords: Objective function recognition · Programming language
understanding · Neural network · Vulnerability discovery

1 Introduction

Due to a variety of cyber attacks targeting on software flaws, pursuing secure
programming becomes one of the most essential requirements for all program-
mers. However, a software is commonly comprised by thousands of lines of code,
which is not easy for programmers to be aware of all flaws timely. In the real
c© Springer Nature Switzerland AG 2021
Y. Yu and M. Yung (Eds.): Inscrypt 2021, LNCS 13007, pp. 129–148, 2021.
https://doi.org/10.1007/978-3-030-88323-2_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-88323-2_7&domain=pdf
https://doi.org/10.1007/978-3-030-88323-2_7

130 Y. Lyu et al.

world, hackers attack softwares every 39 s, averagely 2,244 times per day1. The
software with security breaches may be exploited by the hackers and finally
data breaches will expose sensitive information and vulnerable users to hackers.
Hence, it is crucial to identify and fix software flaws in time.

To reduce human efforts on analyzing project source code, automated
approaches are propose to explore software flaws. Two types of techniques
for source code analysis, program analysis [28,39,48,50] and machine learn-
ing [23,24,36], are mainly introduced. For program analysis based approaches,
they commonly analyze the entire source code and learn the control/data depen-
dencies by conducting abstract interpretation, pattern matching, symbolic exe-
cution to identify. Although such a technique can ensure a significant code cov-
erage, it is inefficient to construct control/data dependencies among functions
when a large amount of code with complex dependencies are involved. To solve
this issue, some researchers proposed machine learning algorithms to learn pat-
terns of the vulnerable code and then rely on the trained models to discover
software flaws. Different from the program analysis techniques that have to be
executed every time of flaw detection, model training is a one-time effort; thus
it only needs to be trained once and then used for the following detection.

However, the existed machine learning based approaches have a common
drawback—a vast dataset of millions of open source functions that are labeled
appropriately. Since the programming languages are unlike natural languages, it
is impractical to understand how a function behaves by simply regarding each
function as a bag of words. Generally two steps are proceeded: 1) extracting
inter- and intra-dependencies at a fine-grained level. 2) taking the dependency
graph as input for model training. Even though the model training is a one-time
effort, it is time consuming to label millions of open source functions manually
and study the inter- and intra-dependencies of every function.

To address the limitations of the previous machine learning based approaches,
we observe that operations implemented in the function bodies can be inferred
via the function prototypes. Hence, we propose an automated function anno-
tating inspired approach for flaw detection. Since function prototypes consist of
multiple informal terms (e.g., abbreviation, programming-specified words), we
first construct a programming corpus with the posts from StackOverflow [41].
Within the programming corpus, it not only contains the informal terms used in
programming languages, but also includes natural languages that are commonly
used in project programming. In order to extract meaningful word units (sub-
words) from programming corpus, we further utilize Byte Pair Encode (BPE) [38]
and BPE-dropout [33] algorithms to collect a subword collection with occur-
rence frequencies. According to the subword collection, function prototypes are
segmented with meaningful subwords through a Probabilistic Language Model
(PLM). Then we train a Siamese network [3] to embed function prototypes into
vectors, and the annotations of unknown function prototypes will be obtained
by comparing the vectors with a certain type of function prototypes.

1 https://www.varonis.com/blog/cybersecurity-statistics/.

https://www.varonis.com/blog/cybersecurity-statistics/

SparrowHawk 131

Based on the function annotating inspired approach, we build a flaw detec-
tion tool, SparrowHawk. To validate the effectiveness of SparrowHawk, we
conducted experiments targeting on memory-specified flaws, namely, null pointer
dereference and double free. We labeled functions that are collected from real-
world open source projects including OpenHarmony [32] IoT operating system
and FFmpeg [11] and evaluated the performance of SparrowHawk. With the
enhancement of function annotation, SparrowHawk successfully reported 51
previously unknown memory corruption flaws. We also evaluated whether the
performance of SparrowHawk was influenced when various input data were
provided. We found SparrowHawk still annotated functions effectively and
efficiently even if only a small amount of training material (3,579 functions)
were provided.

Contributions of this Paper:

– We proposed an automated annotation-based analysis system that recognizes
the targeted functions accurately without the need of analyzing the corre-
sponding function implementations. While training the annotation model,
only a few labeled dataset are required, which is helpful to reduce the involved
human efforts.

– We implemented an efficient flaw detection tool, SparrowHawk, to explore
certain types of flaws based on function annotation. Instead of analyzing
the entire source code of a project, SparrowHawk pinpoints specific target
functions by checking their function names and further identifies whether the
target functions are properly invoked. This function annotation based flaw
detection is data driven and flexible.

– We evaluated the performance of function annotation by providing various
amount of input data and observed that SparrowHawk could still identify
memory operation functions effectively. Moreover, SparrowHawk reported
51 previously unknown flaws from eight open source projects, which indicates
that function annotation enhances classical flaw detection.

Availability. We provided the SparrowHawk executable, instructions of our
experiments, and the tested projects at https://sparrowhawk.code-analysis.org.

2 Motivation

The existing program analysis based approaches are heavyweight while analyzing
the program source code. We aim to design a system that can annotate each
function accurately without checking the corresponding implementations of the
function body. Lack of the semantic information of function prototypes, the
following challenges are required to be addressed to implement an efficient and
effective annotation based flaw detection.

2.1 Challenges

In order to annotate the targeted functions from source code, the following three
aspects are generally processed:

https://sparrowhawk.code-analysis.org

132 Y. Lyu et al.

– Function Name. By analyzing the semantic meaning of the function name,
it is easily to determine what operations might be performed in its body.

– Function Arguments. According to the input arguments including argu-
ment types and argument names, the attributes of operation objects and
operation types can be retrieved.

– Function Body. Reference to each function body including the implemen-
tation and annotations, the implemented functionalities can be determine.

Although the three aspects are precisely defined for function recognition,
several challenges need to be resolved to determine whether a function is relevant
to memory operation automatically. Details are demonstrated as below.

Challenge I: Natural Language Gap. Instead of using the completed and
formal semantic words, function names are normally comprised by abbrevia-
tions, informal terms, programming-specific terms and project-specific terms.
As these characters are barely appeared in the natural languages, it is difficult
to determine the semantic meaning of a function name automatically.

Challenge II: Function Prototype Correlations. Since there exist strong
correlations between each part of function prototype, it makes the entire seman-
tics extraction form function prototype even more challenging. Even though some
association patterns exist in function prototype, the workload for modeling the
relationships for each type of function by human effort can be unacceptable.
Therefore, for extracting the entire semantics from function prototype auto-
matically, we need a method which can capture different relationships exist in
different function prototypes.

Challenge III: Complex Logical Structures in Function Implementa-
tion. Sometimes, determining the functionality of a function only by its function
prototype is not enough, and the complex logical structures in function imple-
mentation hinder automated tools to identify its main functionality.

2.2 Insights

Programming Language Aware Word Segmentation. The variety of nam-
ing styles and the usage of informal terms make it difficult to segment each func-
tion name into meaning units. To address Challenge I, we construct a program-
ming corpus which contains not only the context in natural languages, but also
programming-specified terms. Such a programming corpus provides a channel to
connect the programming-specified terms with the natural language context.

Additionally, function names commonly consist of multiple terms. We further
learn how function names are constructed by utilizing a pair encoding algorithm,
which learns the frequent word units appeared in the programming corpus. Based
on the frequent word units, we adopt PLM to conduct function segmentation.

Self-Attention Based Function Prototype Embedding. For each word
unit of the function prototype, it is inaccurate and inefficient to extract its
semantic meaning by designing a rule to match the word unit with natural

SparrowHawk 133

language context. To address this issue (Challenge II), we propose a self-attention
based neural network encoder to generate function prototype embedding.

Semantic-Aware Call Graph. Generally, analyzing the function body and
determining its main functionality is a hard work. But fortunately, by analyzing
the function implementation manually, we observe that the functionality infor-
mation about a function can be conveyed by its callee functions. As the semantics
of function prototype can be extracted by the self-attention neural network and
the nodes in call graph structure are function prototypes, thus we can give the
call graph with some semantic information.

Therefore, to solve Challenge III, we propose a method to annotate targeted
function in call graph, and utilize these annotations to understand the imple-
mentation of function.

3 SPARROWHAWK

Programming
Corpus

Function
Prototypes

Function
Implementations

PLM Based
Segmentation

Similarity
Comparison AnnotationBPE

Source
code

Source
code

Labeled
Dataset
Labeled
Dataset Reference Vector

Program
Analyzers Report

Prototype Vectors

Flaw DetectionTargeted Function AnnotationProgramming Language Aware
Word Segmentation

Siamese
Network

with
Improved
Encoders

Siamese
Network
Training

1

1

2

2

Fig. 1. Workflow of SparrowHawk

For most original flaw detection tools, they generally identify the specific flaws
by analyzing the entire source code, which is inefficient. To resolve this issue, we
propose an annotating inspired detection system, SparrowHawk, which auto-
matically learns the functionality of each function through the function prototype
and further identifies flaws by analyzing the source code of the target function.

3.1 Overview

The workflow of SparrowHawk is shown in Fig. 1, which include three com-
ponents, Programming Language Aware Word Segmentation, Targeted Function
Annotation, Flaw Detection. We introduce each component in detail as below:

Programming Language Aware Word Segmentation. Functions are
named variously and each function name might consist of multiple informal

134 Y. Lyu et al.

terms and programming-specific words, thus it is difficult to learn the function-
ality of a function via its name precisely (Challenge I). Instead of analyzing the
function name as a whole, SparrowHawk takes as input a programming corpus
to build a segmentation model. It further splits each function name into several
units of words (subwords).

Targeted Function Annotation. Taken the subwords as input, Spar-
rowHawk trains a function annotation model and generates a reference vector
from the target functions in labeled dataset. To annotate unknown function pro-
totypes, SparrowHawk executes the annotation model to generate function
prototype vectors. It then computes cosine similarities between the reference
vector and the function prototype vectors. If the cosine similarities are higher
than a threshold, or their function implementations are matched by annotation
rules, SparrowHawk labeled them as targeted functions.

Flaw Detection. After recognizing the targeted functions, SparrowHawk
conducts a source code based program analysis to examine whether the input
source code files contain potential code flaws.

3.2 Programming Language Aware Word Segmentation

SparrowHawk first takes as input the function prototypes and splits them
into subwords for the following semantic analysis. To segment function proto-
types accurately, it is essential to build a corpus that includes the informal terms
and programming languages used for naming functions. Therefore, we collect the
posts of StackOverflow forum containing the context of programming languages
from StackExchange Archive Site [40] which contains rich lexical information of
programming languages. Figure 2 depicts the detailed process of word segmen-
tation.

Corpus Subword
Collection

Frequency
Collection

PLM
Inference

Count
frequency

BPE mem
del
dev

mem
del
dev

1098
949
796

subwords

subwordsw
wP)(maximize

Fig. 2. Programming language aware word segmentation

Programming Corpus Construction. The significant difference between
programming language and natural language determines that SparrowHawk
could not rely on the materials with natural languages to guide the following
segmentation. However, directly using source code as corpus is neither suitable
since it only contains limited semantic information. Therefore, we created a pro-
gramming corpus for SparrowHawk using the posts of StackOverflow forum,
which contains both meaningful natural language materials and programming
language texts.

SparrowHawk 135

Subwords Collection. With the created corpus, SparrowHawk collects
meaningful units from it as subwords. Note that a subword may not be a vocab-
ulary, thus SparrowHawk utilizes the BPE algorithm to collect subwords from
the corpus by merging the most frequent items at character level. BPE initializes
the input with a sequence of characters and iteratively replace each occurrence of
the most frequent pair with a new item. Figure 3 gives an example of BPE merge
operation. In this example, input text contains three words: memory, mempool,
and memmap. The BPE processing first splits each word to separate characters,
then merges the most frequent item mem and adds the item and its occurrence
frequency to the subword collection.

For efficiency consideration, SparrowHawk only returns a subword that
contains less than 15 characters. To provide a robust subword collecting, Spar-
rowHawk additionally adopt BPE-dropout [33] algorithm to add stochastic
noise during BPE merge operation.

1
2
3
4
5

Preprocess: m e m o r y, m e m p o o l, m e m m a p

m e me : me m o r y, me m p o o l, me m m a p

me m mem: mem o r y, mem p o o l, mem m a p
...

Input text: memory,mempool,memmap

Fig. 3. An example of BPE merging operations

PLM Based Word Segmentation. The collection of subwords (and their
occurrence frequencies) is used by SparrowHawk to employ a PLM based
word segmentation. SparrowHawk first splits a function prototype using the
item appeared in the subword collection. If there exists only one segmentation
result, then this result is accepted. Otherwise, SparrowHawk uses Eq. (1) to
determine which segmentation result should be chosen. For instance, for a seg-
mentation result with subwords A, B, and C, the occurrence frequency proba-
bility of each subword is multiplied to obtain the probability of the segmentation
result. Then SparrowHawk chooses the one with the highest probability.

P (segmentation) =
subwords∏

w∈subwords

P (w) (1)

3.3 Targeted Function Annotation

SparrowHawk identifies certain types of a function (e.g., crypto function,
encoding function) with an automated function annotation. To annotate a
function , SparrowHawk compares its prototype to a labeled dataset, which
contains manually labeled target functions and non-target functions. Spar-
rowHawk first trains a Siamese network combined with two identical Trans-
former encoders [44], who share the same parameters. The training starts from

136 Y. Lyu et al.

randomly generating either a target pair (two prototypes of target functions)
or a non-target pair (one prototype of target function and the other non-target
function) from the labeled dataset. Pairs of prototypes are sent to two encoders
to calculate the similarity between two functions.

After the training, SparrowHawk uses one of the improved encoder to gen-
erate embedding vectors for all target functions in labeled dataset, and derives a
reference vector by computing the mean vector of these embedding vectors. This
reference vector helps SparrowHawk efficiently identify a new target function:
if the prototype vector of an analyzed function is similar to the reference vector
(using cosine similarity, 0.5 as the similarity threshold), it belongs to the type
of labeled dataset and is annotated as a target function by SparrowHawk.

In the following, we illustrate the annotation process in detail.

Siamese Architecture. Given a set of function prototype pairs (fi, f ′
i) with

ground truth pairing information yi ∈ {+1,−1}, where yi = +1 indicates that
fi and f ′

i are similar, or yi = −1 otherwise. We define the embedding of function
prototype fi as −→e i, and the output of Siamese architecture for each pair as

cosine(f, f ′) =
−→e �−→e ′

||−→e || × ||−→e ′ || (2)

Then the parameters of function prototype encoder will be trained by mini-
mize the Mean Squared Error Loss Function [31].

Function Prototype Embedding. A function prototype generally consists of
four parts: return type, function name, argument types and argument names.
And all these four parts changing the semantic of function prototype to different
degrees. In order to encode a function prototype to a meaningful embedding vec-
tor, SparrowHawk adopts the Transformer encoder as the function prototype
encoder.

Transformer is a powerful attention model whose attention mechanism can
learn the association of words forwardly and backwardly in a sequence. However,
the output of the Transformer Encoder is a context matrix, different to Recurrent
Neural Network, and it does not provide a sentence embedding directly. To
address this issue, we add a pooling layer after the output layer of Transformer
Encoder, introduced by the CLS-token pooling strategy in Sentence-BERT [35],
to take a function prototype as the input, and output a function prototype
embedding.

Similarity Inference. After the Siamese network training is completed, we
generate the embedding vectors e1, ..., en for all target function prototypes in
the label dataset, and compute their arithmetic mean −→e m as reference vector.
For a given new function prototype ft and its embedding vector −→e t, we obtain
its similarity score by calculating cosine similarity with reference vector.

Score(ft) = cos(−→e t,
−→e m) =

−→e �
t

−→e m

||−→e t|| × ||−→e m|| ∈ [−1, 1] (3)

SparrowHawk 137

Targeted Function Annotation. Based on the similarity scores, Spar-
rowHawk provides two ways to annotate targeted functions. The straightfor-
ward way only needs function prototype to make inference, whereas another
way needs function body and customize the heuristic rules but provides more
accurate annotation.

With Only Function Prototype. SparrowHawk simply makes inference by
comparing the similarity scores of the given functions with the threshold infer-
threshold. If the similarity scores are greater than the threshold, then Spar-
rowHawk annotates the these functions as targeted functions.

With Function Implementation and Heuristic Rules. As our observa-
tion that the functionality information of a function can be conveyed through
its callee function, and SparrowHawk has the ability to attribute a function
only by its function prototype, thus SparrowHawk is able to achieve a more
accurate annotation with well-designed heuristic rules on call graph.

1
2
3
4
5
6
7
8
9
10

int hl_ctx_create(struct h1_device *hdv,struct h1_fpriv
*hpriv) {

...
ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
...
return 0;

}
static inline void *kzalloc(size_t size, gfp_t flags){

return kmalloc(size, flags | __GFP_ZERO);
}

Fig. 4. An example of user-defined memory allocation function

Figure 4 is an intuitive example for the memory allocation function anno-
tation task. As we observe the body of function hl ctx create, it is easy to
find that its main functionality of memory allocation is implemented by its
callee function kzalloc. As seeing the body of function kzalloc, kzalloc also
calls a memory allocation function kmalloc to allocate memory. This common
phenomenon exists in many projects, that because developers usually hope to
wrapper lower level functions to achieve performance improvements and bring
convenience by using custom memory allocators and de-allocators,

Therefore, we can take advantage of this property to design some heuris-
tic rules and provide more accurate annotation about memory operation func-
tions. More specifically, we set two different similarity thresholds, recall-threshold
and precision-threshold. The functions whose similarity score lower than recall-
threshold are filtered out, and the remaining functions are annotated as targeted
functions only if they have a callee function whose similarity score is greater
than precision-threshold.

138 Y. Lyu et al.

3.4 Flaw Detection

SparrowHawk creates a flaw report for source code projects by comparing
the usages of targeted functions with the predefined function misuse rules of
program analyzers. First, SparrowHawk extracts function prototypes from
source code files and generates call graphs. Then, according to the function
prototypes and call graphs, SparrowHawk annotates the targeted functions
and passes them to program analyzers to guide the function misuses detection.
Here, SparrowHawk implements a program analyzer to detect null pointer
dereference and double free vulnerabilities in source code.

Having the targeted functions, SparrowHawk performs a flow-sensitive and
inter-procedural static analysis based on symbolic execution. SparrowHawk
maintains two symbolic variables sets, allocation set and deallocation set, to
record the status of memory chunks during the symbolic execution. Once sym-
bolic execution reaches a memory operation function, the symbolic variables of
allocated or deallocated memory chunks will be added to allocation set or deal-
location set, respectively. When the same symbolic variable is added to dealloca-
tion set more than once, SparrowHawk will report a double free vulnerability.
Or the dereference operation related symbolic variable exists in allocation set
and its value of constraint solving equals to zero, then SparrowHawk will
report a null pointer dereference vulnerability.

3.5 Implementation

We relied on several existing tools and modules to fulfil the certain functionali-
ties in SparrowHawk. Clang [6] is embedded as part of the function prototype
extractor to distinguish function prototypes during compiling. The used pro-
gramming corpus is an 80 GB raw XML dataset and the size of meaningful
text is 18 GB after our normalization. To retrieve subwords, SparrowHawk
uses the CharBPETokenizer module in Tokenizers [43] which relies on the BPE
and BPE-Dropout algorithms to segment and regularize words into sequences of
subword units. The Siamese network is trained relying on Gensim[13] with the
implemented Word2vec [30] for subword embedding training. We further built
the Siamese network in TensorFlow [2]. Once the interested function is retrieved,
we adopted Clang Static Analyzer [1] to analyze the source code of each software
and identify potential vulnerabilities.

4 Real-World Evaluation

We evaluated SparrowHawk from three perspective, function segmentation,
function annotation, and flaw detection. In specific, the following three research
questions (RQs) are answered:

RQ1: Function Prototype Segmentation. The first step of SparrowHawk
is to segment function prototypes, thus we are curious about how accurate
SparrowHawk is during function prototype segmentation.

SparrowHawk 139

RQ2: Function Annotation. As SparrowHawk relies on the customized
memory operation functions, how effective and efficient is SparrowHawk in
recognizing customized memory operation functions, i.e., memory allocation
functions and memory deallocation functions.

RQ3: Flaw Detection. As SparrowHawk is introduced to detect the specific
flaws (i.e., null pointer dereference and double free), how effective is Spar-
rowHawk in detecting these flaws?

Since the goal for each research question is different, we collected different
sets of dataset to conduct our experiment.

4.1 RQ 1: Function Prototype Segmentation

To evaluate the segmentation accuracy of SparrowHawk, we compared its
segmentation result with a state-of-the-art tool, NLP-EYE [46], which is proposed
with function prototype segmentation.

Fig. 5. Function name segmentation results comparison between NLP-EYE and Spar-
rowHawk

Setup. We randomly collected 350 function names from seven programs, i.e.,
Vim [45], ImageMagick [20], GraphicsMagic [17], CPython [7], LibTIFF [27],
GnuTLS[15], and Git [14], 50 function names from each program. Given the 350
function names, we built our ground truth by manually segmenting each func-
tion name. Then we evaluated the segmentation accuracy of SparrowHawk
and NLP-EYE relying on Levenshtein-inspired distance [22,37] in which a lower
distance represents a higher accuracy.

Results. The segmentation results of SparrowHawk and NLP-EYE are demon-
strated in Fig. 5. We observed that SparrowHawk achieves a lower Leven-
stein distance, i.e., performs better than NLP-EYE. By manually inspecting the

140 Y. Lyu et al.

segmentation results, we realized that NLP-EYE fails to distinguish the func-
tion names with abbreviation, information terms and programming-specification
words. Although a large corpus (i.e., GWTWC [16]) and an adaptive corpus with
a number of program annotations is being used for segmentation, the semantic
meanings of certain informal terms are unable to be learned precisely. For Spar-
rowHawk, we firstly constructed the programming corpus and then applied
BPE and BPE-Dropout to collect subwords, which enable SparrowHawk to
segment function name precisely with the knowledge of programming language.

4.2 RQ 2: Function Annotation

SparrowHawk aims to identify the customized memory operation function, i.e.,
memory allocation functions and memory deallocation functions. We first evalu-
ated the effectiveness of function annotation and then assessed the improvement
with designed heuristic rules.

Setup. We collected 35,794 functions from the source code of ten Linux kernel
drivers including bluetooth, devfreq, mm, memory, media, memstick, message,
mfd, misc, and mmc. Obviously, it is time-consuming and infeasible to manually
verify all functions to build ground truth, Hence, we conducted a semi-automatic
annotating approach which takes the following three steps:

1. We first manually labeled 591 memory allocation functions and 778 memory
deallocation functions in 5,342 functions (15% of the entire functions) as the
initial labeled dataset, and utilized them to train the Siamese network of
SparrowHawk.

2. Next, we randomly chose 19% (5,800/30,492) unlabeled functions and exe-
cuted SparrowHawk to generate similarity scores for these functions. For
functions with similarity scores smaller than −0.9 (around 90% in our exper-
iment), SparrowHawk labeled them as non-target functions but need to
inspect their function prototypes to select the possible target functions and
exam their implementations manually. And the left functions were verified by
both examining their prototypes and implementations manually.

3. With the labeled 5342 + 5,800 functions, we then repeated step 2 again. This
time we sent the rest unlabeled 24,652 functions as inputs of SparrowHawk.

Finally, all 35,795 functions were labeled which include 2,008 memory allo-
cation functions and 3,001 memory deallocation functions, and the other func-
tions as non-target functions. Although our semi-automatic annotation may not
strictly reflect the ground truth (85% of the functions were annotated relying
on a computer-aided labeling), it significantly increases the scale of the labeled
dataset by introducing a small portion of inaccuracy. Given the labeled dataset,
all the labelled 35,794 functions were used to train the Siamese network again
and the evaluation of function annotation of SparrowHawk was performed on
the trained Siamese network.

Effectiveness. As different developers might have various styles to name func-
tions in their projects, we investigated whether the previous trained Siamese

SparrowHawk 141

Table 1. Comparison of memory operation function annotation with and without
heuristic rules of SparrowHawk

Allocation function Deallocation function Memory operation
annotation annotation function annotation

Function type Allocation Others Deallocation Others Target Others

of functions 117 2,883 135 2,865 252 5,748

of correct annotation 73/86 2,853/2,875 123/127 2,786/2,815 196/213 5,639/5,690

of error annotation 44/31 30/8 12/8 79/50 56/39 109/58

Precision 70.8%/91.4% 60.8%/71.7% 64.2%/78.9%

Recall 62.9%/73.5% 91.1%/94.0% 77.7%/84.5%

F1-score 66.3%/81.5% 72.9%/81.4% 70.3%/81.4%
∗ The left side of slash represent the results with only function prototype.
∗ The right side of slash represent the results with function implementations and heuristic
rules.

network can annotate memory operation functions in a different project. There-
fore, we set up a testing dataset by randomly selecting 3,000 functions from the
OpenHarmony [32] IoT operating system and labeled them manually. As a result,
117 memory allocation functions and 135 memory deallocation functions were
identified.

The experiment result is listed in Table 1. SparrowHawk successfully anno-
tated 196 memory operation functions out of the 252 memory operation func-
tions, with precision of 62.4%, recall of 77.7% and F1-score of 70.3%. Specifically,
SparrowHawk separately achieved F1-score of 66.3% and 72.9% when it iden-
tified memory allocation functions and memory deallocation functions, respec-
tively. The accuracy to annotate memory allocation functions is lower because
the implementations of memory allocation functions are more complicated.

By analyzing the function prototypes collected from Linux kernel and Open-
Harmony OS, we found that the performance drop is mainly caused by the incon-
sistent naming style. Consider the word “get” as an example, it indicates to fetch
an object from a structure in Linux kernel, whereas developers of OpenHarmony
use it to allocate a memory chunk sometimes. Alternatively, the word “release”
in Linux kernel functions usually represents deallocating a memory space. How-
ever in OpenHarmony OS, it is usually used to release a lock, clean up an object,
or set a flag bit to zero.

Improvement with Heuristic Rules. Due to the inconsistent naming style
among projects, SparrowHawk cannot annotate functions accurately based
on function prototypes only. To resolve this issue, we improved SparrowHawk
by embedding customized heuristic rules which analyzes function prototypes as
well as each function bodies. In order to balance the candidate retrieving and
precision improvement, we set the recall-threshold and precision-thresholds as
–0.9 and 0.95, respectively.

The results in Table 1 show that the effectiveness of SparrowHawk is
improved significantly with the help of the customized heuristic rules. In terms of
the precision, recall, and F1-score of memory operation, SparrowHawk with

142 Y. Lyu et al.

the customized heuristic rules improves over SparrowHawk by 22.9%, 8.7%
and 15.7%. Relying on the recall threshold, SparrowHawk can label more
functions as the potential memory operation functions; thus it achieves a higher
recall value. Besides, the precision threshold filtered out the function that did
not invoke any memory operation functions in its function body.

Time Cost. We conducted our experiment on a server running 64-bit Ubuntu
18.04 with an AMD 3970X CPU (32 cores) running at 2.2GHz, 256 GB RAM
and a GeForce GTX 2080Ti GPU card. We computed the efficiency of Spar-
rowHawk by considering the worst case. Hence, we trained the Siamese network
by using 90% of labeled functions. Finally, SparrowHawk averagely cost 5 h
7 min to train the model for memory allocation function and 7 h 21 min to train
the model for memory deallocation functions. The time cost for model training
is reasonable because it can be completed within one day and it is a one-time
effort.

4.3 RQ 3: Flaw Detection

According to the annotated memory operation functions, SparrowHawk ana-
lyzes the corresponding functions to check whether there is any memory-related
flaws, i.e., null pointer dereference and double free.

Table 2. Details about collected projects

Number of Number of Number of
functions allocators de-allocator

OpenHarmony 17,893 539 930

Cpython 11,347 436 228

FFmpeg 19,905 227 469

Gnutls 4,478 27 137

Vim 6,090 113 237

BusyBox 4,134 82 134

Curl 2,877 120 327

Gravity 916 60 62
∗All collected in the master branch in May 2021.

Setup. We executed SparrowHawk on eight open source projects, i.e., Open-
Harmony [32], Cpython [7], FFmpeg [11], Gnutls [15], Vim [45], BusyBox [5], Curl [8],
Gravity [18]. SparrowHawk first pinpointed the customized memory operation
functions. Table 2 lists the result of the annotated memory operation functions
in each project. Reference to the customized memory operation functions, Spar-
rowHawk conducted code analysis to detect flaws.

SparrowHawk 143

Table 3. Detection results

Null pointer dereference Double free

Reported Identified Confirmed Reported Identified Confirmed

OpenHarmony 41 16 12 128 0 0

Cpython 16 5 5 0 0 0

FFmpeg 37 9 5 43 0 0

Gnutls 4 2 2 10 3 1

Vim 41 0 0 46 4 1

BusyBox 114 1 1 15 1 1

Curl 0 0 0 6 1 0

Gravity 87 9 – 8 0 0

Total 340 42 25 256 9 3

Results. The detection result is presented in Table 3. In total, SparrowHawk
reported 596 vulnerabilities from the eight projects including 340 null pointer
dereference and 256 double free. By manually inspected the results, we identified
42 null pointer dereference vulnerabilities and 9 double free vulnerabilities.

To further verify the identification correctness, we contacted the project
developers and reported the manual-confirmed vulnerabilities. Finally, 28 vul-
nerabilities (i.e., 25 null pointer dereference and 3 double free) are confirmed by
SparrowHawk.

Case Study. We demonstrated a representative example to discuss how Spar-
rowHawk detects flaws. The source code snippet of Vim is shown in Fig. 6
which contains a double free flaw.

Given the File1, SparrowHawk first extracted all function prototypes and
corresponding function implementations and conducted function annotation to
identify memory operation functions. As a result, it identified a memory alloca-
tion functions (i.e., mem realloc (line 1)) and two memory deallocation functions
(i.e., mem realloc (line 1) and vim free (line 8)).

Having the identified memory operation functions, SparrowHawk executed
Clang Static Analyzer to analyze File2 and identified whether the identified mem-
ory operation functions were being properly invoked. Since there exists a feasible
execution path from vim realloc (line 20) to vim free (line 24) and the two
deallocation function freed the same memory chunk, where the macro function
vim realloc is expanded to function mem realloc in File3, SparrowHawk
reports a double free vulnerability.

As we observed that if the argument bufno is can be controlled, function
vim realloc will free the variable buf list and return NULL, thus the same
memory address will be freed twice by function vim free. According to the
feedback of Vim developers, the argument bufno can be controlled by a netbeans
command, and the vulnerability is patched with a patch number 8.2.1843.

144 Y. Lyu et al.

File1:Vim/src/misc2.c

1
2
3
4
5
6
7
8
9
10
11
12

void *mem_realloc(void *ptr, size_t size){
void *p;
mem_pre_free(&ptr);
p = realloc(ptr, size);
mem_post_alloc(&p, size);
return p;

}
void vim_free(void *x){

...
free(x);
...

}

File1:Vim/src/misc2.c

1
2
3
4
5
6
7
8
9
10
11
12

void *mem_realloc(void *ptr, size_t size){
void *p;
mem_pre_free(&ptr);
p = realloc(ptr, size);
mem_post_alloc(&p, size);
return p;

}
void vim_free(void *x){

...
free(x);
...

}

File3:Vim/src/vim.h

30
31

define vim_realloc(ptr, size)
mem_realloc((ptr), (size))

File3:Vim/src/vim.h

30
31

define vim_realloc(ptr, size)
mem_realloc((ptr), (size))

File2:Vim/src/netbeans.c

13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

static nbbuf_T *nb_get_buf(int bufno){
buf_list_size = 100;
...
if (bufno >= buf_list_size){

nbbuf_T *t_buf_list = buf_list;
incr = bufno - buf_list_size + 90;
buf_list_size += incr;
buf_list = vim_realloc(buf_list,

buf_list_size * sizeof(nbbuf_T));
if (buf_list == NULL)
{
vim_free(t_buf_list);
buf_list_size = 0;
return NULL;

}
}

}

File2:Vim/src/netbeans.c

13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

static nbbuf_T *nb_get_buf(int bufno){
buf_list_size = 100;
...
if (bufno >= buf_list_size){

nbbuf_T *t_buf_list = buf_list;
incr = bufno - buf_list_size + 90;
buf_list_size += incr;
buf_list = vim_realloc(buf_list,

buf_list_size * sizeof(nbbuf_T));
if (buf_list == NULL)
{
vim_free(t_buf_list);
buf_list_size = 0;
return NULL;

}
}

}

Fig. 6. A double free vulnerability in Vim

SparrowHawk 145

5 Related Work

We classify the related prior work into two categories: deep learning based flaw
detection and program analysis based flaw detection.

5.1 Deep Learning Based Flaw Detection

Recently, deep learning based approaches are being widely used to detect code
flaw automatically. These approaches aim to learn syntactic and semantic rep-
resentations [9,25,26,36] or learn graph structure representations [10,51] from
source code, and then utilize these representations to detect code flaws.

To learn syntactic and semantic representations, Khanh Dam et al. [9] parses
methods of Java source files into sequences of code tokens and uses Long Short-
Term Memory networks [19] to generate syntactic and semantics features of a
file. Russell et al. [36] creates a custom C/C++ lexer to tokenize source code and
adopts Convolutional Neural Network (CNN) to learn function-level represen-
tations. In order to provide more fine-grained detection, VulDeePecker [26] and
SySeVR [25] extract code slices based on data dependency and convert them to
vector of symbolic representation, and then apply deep learn models to predict
vulnerabilities.

As the aforementioned approaches have limitations on capturing logic and
structure from source code, some works have attempted to learn representations
from graph structures. Based on Code Property Graph (CPG) [47], VulSniper [10]
utilize attention mechanism to encode CPG to a feature tensor and Devign [51]
uses Graph Neural Network [21] to learn node representations.

However, these deep learning based approaches need the heavy efforts of
gathering and labeling a large number flaw dataset, and can not give the precise
reasons about how flaws are caused.

5.2 Program Analysis Based Flaw Detection

Program analysis based methods find flaws in source code by detecting unex-
pected behaviors. K-Miner [12] utilizes data-flow analysis to uncover memory
corruption vulnerabilities in Linux kernel. It requires human effort to mark mem-
ory operation functions and performs a source-sink analysis on marked memory
operation functions. Dr.checker [29] focus on control flow and has found diverse
bugs in Linux kernel drivers by using a soundy pointer and taint analysis based
on abstract representation. Moreover, SVF [42] is a static analysis framework
which applies sparse value-flow analysis to detect flaws. Developers can use SVF
to write their own checkers and detect flaws in source code.

To reduce the false positive of static analysis, symbolic execution based
approaches utilize constraint solving to reason feasible paths. As the number
of feasible paths in programs grows exponentially with an increase in program
size, whole-program symbolic execution could encounter the problem of path
explosion. Thus, under-constrained methods like UCKLEE [34], sys [4] and UBI-
TECT [49] are proposed to overcome this problem by executing individual func-
tions instead of whole programs.

146 Y. Lyu et al.

6 Conclusion

In this paper, we present SparrowHawk, an automated annotation-based
source code flaw detection system. SparrowHawk includes a function proto-
type segmentation tool with the state-of-the-art accuracy, a targeted function
annotation model requires only a few labeled dataset and an efficient source
code flaw detection tool for detecting null pointer dereference and double free
vulnerabilities. We demonstrated that SparrowHawk successfully identified 51
unknown flaws with the help of annotated memory operation functions. Further-
more, SparrowHawk is not limited to detect memory corruptions. Developers
can easily customize SparrowHawk to annotate other types of function, and
thus detect new types of flaws efficiently.

Acknowledgment. We would like to thank the anonymous reviewers for their helpful
comments. This work was partially supported by the National Natural Science Foun-
dation of China (U19B2023), the National Key Research and Development Program
of China (Grant No.2020AAA0107800), and the National Natural Science Foundation
of China (Grant No.62002222).

References

1. Clang Static Analyzer. http://clang-analyzer.llvm.org
2. Abadi, M., et al.: Tensorflow: A system for large-scale machine learning. In: Pro-

ceedings of the 12th USENIX Conference on Operating Systems Design and Imple-
mentation, pp. 265–283. USENIX Association (2016)

3. Bromley, J., Guyon, I., LeCun, Y., Säckinger, E., Shah, R.: Signature verification
using a “siamese” time delay neural network. In: Proceedings of the 6th Interna-
tional Conference on Neural Information Processing Systems, pp. 737–744. Morgan
Kaufmann Publishers Inc (1993)

4. brown, F., Deian, S., Dawson, E.: Sys: A static/symbolic tool for finding good bugs
in good (browser) code. In: 29th USENIX Security Symposium (USENIX Security
20), pp. 199–216. USENIX Association (2020)

5. Busybox. https://github.com/mirror/busybox
6. Clang. https://clang.llvm.org/
7. Cpython. https://github.com/python/cpython
8. Curl. https://github.com/curl/curl
9. Dam, H.K., Tran, T., Pham, T., Ng, S.W., Grundy, J., Ghose, A.: Automatic

feature learning for vulnerability prediction. arXiv:1708.02368 (2017)
10. Duan, X., et al.: Vulsniper: Focus your attention to shoot fine-grained vulnera-

bilities. In: Proceedings of the Twenty-Eighth International Joint Conference on
Artificial Intelligence, IJCAI-19, pp. 4665–4671. International Joint Conferences
on Artificial Intelligence Organization (2019)

11. Ffmpeg. https://github.com/FFmpeg/FFmpeg
12. Gens, D., Schmitt, S., Davi, L., Sadeghi, A.R.: K-miner: Uncovering memory cor-

ruption in linux. (2018)
13. Gensim. https://radimrehurek.com/gensim/
14. Git. https://github.com/git/git
15. Gnutls. https://gitlab.com/gnutls/gnutls/

http://clang-analyzer.llvm.org
https://github.com/mirror/busybox
https://clang.llvm.org/
https://github.com/python/cpython
https://github.com/curl/curl
http://arxiv.org/abs/1708.02368
https://github.com/FFmpeg/FFmpeg
https://radimrehurek.com/gensim/
https://github.com/git/git
https://gitlab.com/gnutls/gnutls/

SparrowHawk 147

16. Google web trillion word corpus. http://googleresearch.blogspot.com/2006/08/all-
our-n-gram-are-belong-to-you.html

17. Graphicsmagick. http://www.graphicsmagick.org/
18. Gravity. https://github.com/marcobambini/gravity
19. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9,

1735–1780 (1997)
20. Imagemagick. https://github.com/ImageMagick/ImageMagick
21. Li, Y., Tarlow, D., Brockschmidt, M., Zemel, R.: Gated graph sequence neural

networks. arXiv:1511.05493 (2017)
22. Li, Y., Liu, B.: A normalized levenshtein distance metric. IEEE Trans. Pattern

Anal. Mach. Intell. 29, 1091–1095 (2007)
23. Li, Z., Zou, D., Tang, J., Zhang, Z., Sun, M., Jin, H.: A comparative study of

deep learning-based vulnerability detection system. IEEE Access 7, 103184–103197
(2019)

24. Li, Z., Zou, D., Xu, S., Jin, H., Qi, H., Hu, J.: Vulpecker: an automated vulnerability
detection system based on code similarity analysis. In: Proceedings of the 32nd
Annual Conference on Computer Security Applications, pp. 201–213 (2016)

25. Li, Z., Zou, D., Xu, S., Jin, H., Zhu, Y., Chen, Z.: Sysevr: A framework for using
deep learning to detect software vulnerabilities. arXiv:1807.06756 (2018)

26. Li, Z., et al.: Vuldeepecker: A deep learning-based system for vulnerability detec-
tion (2018)

27. Libtiff. http://www.libtiff.org/
28. Ma, S., Thung, F., Lo, D., Sun, C., Deng, R.H.: Vurle: automatic vulnerability

detection and repair by learning from examples. In: European Symposium on
Research in Computer Security. pp. 229–246. Springer (2017). https://doi.org/
10.1007/978-3-319-66399-9 13

29. Machiry, A., Spensky, C., Corina, J., Stephens, N., Kruegel, C., Vigna, G.: DR.
CHECKER: A soundy analysis for linux kernel drivers. In: 26th USENIX Security
Symposium (USENIX Security 17), pp. 1007–1024. USENIX Association (2017)

30. Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed represen-
tations of words and phrases and their compositionality. Adv. Neural Inf. Process.
Syst. 26, 3111–3119 (2013)

31. Mean squared error. https://en.wikipedia.org/wiki/Mean squared error
32. Openharmony. https://openharmony.gitee.com/openharmony
33. Provilkov, I., Emelianenko, D., Voita, E.: BPE-dropout: Simple and effective sub-

word regularization. In: Proceedings of the 58th Annual Meeting of the Association
for Computational Linguistics, pp. 1882–1892. Association for Computational Lin-
guistics (2020)

34. Ramos, D.A., Engler, D.: Under-constrained symbolic execution: Correctness
checking for real code. In: 24th USENIX Security Symposium (USENIX Security
15), pp. 49–64. USENIX Association (2015)

35. Reimers, N., Gurevych, I.: Sentence-bert: sentence embeddings using siamese bert-
networks. In: Proceedings of the 2019 Conference on Empirical Methods in Nat-
ural Language Processing and the 9th International Joint Conference on Natural
Language Processing (EMNLP-IJCNLP), pp. 3982–3992. Association for Compu-
tational Linguistics (2019)

36. Russell, R., et al.: Automated vulnerability detection in source code using deep
representation learning. In: 2018 17th IEEE International Conference on Machine
Learning and Applications (ICMLA), pp. 757–762. IEEE (2018)

http://googleresearch.blogspot.com/2006/08/all-our-n-gram-are-belong-to-you.html
http://googleresearch.blogspot.com/2006/08/all-our-n-gram-are-belong-to-you.html
http://www.graphicsmagick.org/
https://github.com/marcobambini/gravity
https://github.com/ImageMagick/ImageMagick
http://arxiv.org/abs/1511.05493
http://arxiv.org/abs/1807.06756
http://www.libtiff.org/
https://doi.org/10.1007/978-3-319-66399-9_13
https://doi.org/10.1007/978-3-319-66399-9_13
https://en.wikipedia.org/wiki/Mean_squared_error
https://openharmony.gitee.com/openharmony

148 Y. Lyu et al.

37. Schwartz, E.J., Cohen, C.F., Duggan, M., Gennari, J., Havrilla, J.S., Hines, C.:
Using logic programming to recover C++ classes and methods from compiled exe-
cutables. In: Proceedings of the 2018 ACM SIGSAC Conference on Computer and
Communications Security (CCS) (2018)

38. Sennrich, R., Haddow, B., Birch, A.: Neural machine translation of rare words with
subword units. In: Proceedings of the 54th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), pp. 1715–1725. Association
for Computational Linguistics (2016)

39. Shen, Z., Chen, S.: A survey of automatic software vulnerability detection, program
repair, and defect prediction techniques. Security and Communication Networks
2020 (2020)

40. Stackexchange archive site. https://archive.org/download/stackexchange/
stackoverflow.com-Posts.7z

41. Stackoverflow forum. https://stackoverflow.com/
42. Sui, Y., Xue, J.: Svf: Interprocedural static value-flow analysis in LLVM. In: Pro-

ceedings of the 25th International Conference on Compiler Construction, pp. 265–
266. Association for Computing Machinery (2016)

43. Tokenizers. https://github.com/huggingface/tokenizers
44. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information

Processing Systems 30, pp. 5998–6008 (2017)
45. Vim. https://github.com/vim/vim
46. Wang, J., et al.: Nlp-eye: Detecting memory corruptions via semantic-aware

memory operation function identification. In: 22nd International Symposium on
Research in Attacks, Intrusions and Defenses (RAID 2019), pp. 309–321. USENIX
Association (2019)

47. Yamaguchi, F., Golde, N., Arp, D., Rieck, K.: Modeling and discovering vulner-
abilities with code property graphs. In: 2014 IEEE Symposium on Security and
Privacy, pp. 590–604. IEEE (2014)

48. Yan, H., Sui, Y., Chen, S., Xue, J.: Spatio-temporal context reduction: a pointer-
analysis-based static approach for detecting use-after-free vulnerabilities. In: 2018
IEEE/ACM 40th International Conference on Software Engineering (ICSE), pp.
327–337. IEEE (2018)

49. Zhai, Y., yzhai: Ubitect: a precise and scalable method to detect use-before-
initialization bugs in linux kernel. In: 28th ACM Joint European Software Engi-
neering Conference and Symposium on the Foundations of Software Engineering
(ESEC/FSE 2020). ACM (2020)

50. Zhang, Y., Ma, S., Li, J., Li, K., Nepal, S., Gu, D.: Smartshield: automatic smart
contract protection made easy. In: 2020 IEEE 27th International Conference on
Software Analysis, Evolution and Reengineering (SANER), pp. 23–34. IEEE (2020)

51. Zhou, Y., Liu, S., Siow, J., Du, X., Liu, Y.: Devign: effective vulnerability identi-
fication by learning comprehensive program semantics via graph neural networks.
Adv. Neural Inf. Process. Syst. 32, 10197–10207 (2019)

https://archive.org/download/stackexchange/stackoverflow.com-Posts.7z
https://archive.org/download/stackexchange/stackoverflow.com-Posts.7z
https://stackoverflow.com/
https://github.com/huggingface/tokenizers
https://github.com/vim/vim

Symmetric Cryptanalysis

A New Approach for Finding Low-Weight
Polynomial Multiples

Laila El Aimani(B)

University of Cadi Ayyad - ENSA Safi, Route Sidi Bouzid BP 63, 46000 Safi, Morocco

Abstract. We consider the problem of finding low-weight multiples of
polynomials over binary fields, which arises in stream cipher cryptanal-
ysis or in finite field arithmetic. We first devise memory-efficient algo-
rithms based on the recent advances in techniques for solving the knap-
sack problem. Then, we tune our algorithms using the celebrated Parallel
Collision Search (PCS) method to decrease the time cost at the expense
of a slight increase in space. Both our memory-efficient and time-memory
trade-off algorithms improve substantially the state-of-the-art. The gain
is for instance remarkable for large weights; a situation which occurs
when the available keystream is small, e.g. the Bluetooth keystream.

Keywords: Low-weight polynomial multiple · Stream cipher
cryptanalysis · Knapsack · Collision-finding algorithm · Time-memory
trade-off

1 Introduction

We consider the following problem:

Definition 1 (The Low-Weight Polynomial Multiple (LWPM) prob-
lem). Given a binary polynomial P ∈ F2[X] of degree d and a bound n, find a
multiple of P with degree less than n and with the least possible weight ω, where
the weight of a multiple is the number of its nonzero coefficients.

The LWPM arises in stream cipher cryptanalysis, and in efficient finite field
arithmetic.

Fast correlation attacks [19,23] against LFSR-based (Linear Feedback Shift
Register) stream ciphers first precompute a low-weight multiple of the con-
stituent LFSR connection polynomial. In fact, low-weight polynomial multiples
are required to keep the bias, of the linear approximation in a correlation attack,
as high as possible so as to reduce the cost of key-recovery or distinguishing
attacks.

Low-weight polynomial multiples find also application in finite field arith-
metic. Actually, von zur Gathen and Nöker [13] found that F2d = F2[x]/(g),
where g is a low-weight irreducible polynomial of degree d, is the most efficient
representation of finite fields. However, such polynomials do not always exist.
c© Springer Nature Switzerland AG 2021
Y. Yu and M. Yung (Eds.): Inscrypt 2021, LNCS 13007, pp. 151–170, 2021.
https://doi.org/10.1007/978-3-030-88323-2_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-88323-2_8&domain=pdf
https://doi.org/10.1007/978-3-030-88323-2_8

152 L. El Aimani

Brent and Zimmerman [3] proposed an interesting solution: take an irreducible
polynomial f ∈ F2[X] of degree d but possibly large weight, a multiple g of f
with small weight, and work in the ring F2[X]/(g) most of the time, going back
to the field F2d only when necessary.

1.1 Related Work

There have been several approaches for computing low-weight multiples of poly-
nomials. Most methods first estimate the minimal possible weight ω of multiples,
of the given polynomial P , with degree at most n and with nonzero constant
term, then look for multiples of weight at most ω. To estimate the minimal
weight, one solves for ωe the following inequality(

n

ωe − 1

)
≥ 2d (1)

where d is the degree of P ; the minimal weight ω is the smallest solution. In
fact, if multiples are uniformly distributed, then one expects the inequality to
hold. It is worth noting that the number of such multiples can be approximated
by NM = 2−d

(
n

ω−1

)
.

Given a polynomial P ∈ F2[X] of degree d and a bound n, we summarize
below the strategies used to find a multiple of P of degree at most n and with
the least possible weight ω. We describe theitemi time or space complexity using
the Big-O notation, which denotes the worst case complexity of the algorithms.
Also, we use the approximation

(
n
ω

)
≈ O(nω).

Standard Techniques. The standard Time/Memory Trade-Off (TMTO)
method runs in O(n� ω−1

2 �) and uses O(n� ω−1
2 �) of memory. Chose et al. [7] cut

down the memory utilization to O(n� ω−1
4 �) using a match-and-sort approach.

Canteaut and Trabbia [6] introduced a memory-efficient method for solving
the LWPM problem that runs in O(nω−1) and requires only linear memory.
When the degree of the multiple gets very large and there are many low-weight
multiples, but it is sufficient to find only one, Wagner’s generalized birthday
paradox [25] becomes more efficient. For instance, if n ≥ 2d/(1+log2(ω−1)), then
this method finds a weight-ω multiple of P of degree at most n in O((ω−1)n)
and uses O(n) memory.

Discrete-Log-Based Techniques. They were introduced in [21], then
improved and generalized in [8,22]. They work with discrete logarithms in
the multiplicative group of F2d instead of the direct representation of the
polynomials. [8] use a time/memory trade-off to solve the problem in time
O(n� ω−2

2 �) and memory O(n� ω−2
2 �). [22] provide a memory-efficient algorithm

that runs in approximately O(2
d

n). The methods assume however a constant
cost of the discrete logarithm computations, using precomputed tables that
do not require excessive storage. This is not the case if 2d − 1 is not smooth.
Also, the methods assume some conditions on the input polynomial: primitive
in case of [8] or product of powers of irreducible polynomials with coprime
orders in case of [22].

A New Approach for Finding Low-Weight Polynomial Multiples 153

Syndrome Decoding. This technique reduces LWPM to finding a low-weight
codeword in a linear code; a popular problem for which there exist known
algorithms to solve it, e.g. the so-called information-set decoding algorithms
[2,5,15,17,18,24]. These algorithms introduce many parameters to optimize
the running time and the memory consumption according to the problem
instance, however, we can approximate the running time by O(Poly(n)·(n

d)ω),
and the memory complexity by O(dω).

Lattice-Based Techniques. This technique, introduced in [10], reduces the
LWPM problem to finding short vectors in an n-dimensional lattice. The
method uses the LLL reduction [14] to solve the problem in time O(n6) and
space O(n ·d). Unfortunately, this technique gives inaccurate results, i.e. fails
to find a multiple with the least possible weight, as soon as the bound n
exceeds few hundreds.

1.2 Our Approach

We view the LWPM problem as a special instance of the following subset sum
problem:

Definition 2 (Group Subset Sum Problem). Let (G,+) be an abelian
group. Given a0, a1, . . . , an ∈ G together with ω, 0 < ω ≤ n

2 such that there
exists some solution z = (z1, . . . , zn) ∈ {0, 1}n satisfying

n∑
i=1

ziai = a0 with weight(z) = ω

The goal is to recover z (or some other weight-ω solution z).

This definition generalizes that in [11] as it does not impose the group order to be
of bitsize n. It captures then the LWPM problem as follows. Let P be a degree-d
polynomial in F2[X]. Consider further the group (Fd

2,+) of d-dimensional vectors
over F2, where the group law is the bitwise addition over F2. A weight-ω multiple
1 +

∑n
i=1 ziX

i of P , with nonzero constant term and degree at most n satisfies:

n∑
i=1

ziai = a0 with ai = Xi mod P, 0 ≤ i ≤ n

Note that the condition on the weight (ω ≤ n
2) is not restrictive. Actually, the

searched weight ω is obviously smaller than the weight of P , which is often
smaller than d

2 , and thus smaller than n
2 . Also, for convenience purposes, we

consider throughout the document the relative weight ωn = ω/n.
The (group) subset sum problem is one of the most popular and ubiquitous

problems in cryptography. It has undergone an extensive analysis with a focus
on polynomial-memory algorithms to solve it. In fact, it is known that random-
access memory is usually more expensive than time. Most algorithms for solving
the subset sum problem [1,11] try to find as many representations as possible of

154 L. El Aimani

the solution; in fact, the more representations there exist the faster the solution
can be found. For example, the folklore algorithm, described in [12], represents
the solution z = x || y as a concatenation of two n

2 -dimensional vectors x and
y with weight(x) = weight(y) = ω

2 . In the same spirit, [1] split the solution z
into two n-dimensional vectors x and y , with weight(x) = weight(y) = ω

2 , that
add up to z. Recently, [11] further increase the number of representations by
splitting z into a sum over Z, of two integers of smaller weight, and exploiting
the carry propagation.

Contributions. We view the solution z to LWPM as a collision (x, y) of some
random function f mapping from a set T to itself (in order to use known cycle-
finding algorithms to compute collisions). The set T is determined by how z
splits into (x, y). Also, T ought to allow for many ”representations” (x, y) of the
solution z, so as to reduce the number of function calls needed before finding a
collision. More precisely, we make the following contributions.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

T
=

2n

ωn

Fig. 1. Comparison between the
memory-efficient techniques and
our algorithms

First, we present two memory-efficient
algorithms for LWPM that improve the state-
of-the-art in polynomial-memory algorithms
for LWPM. The idea behind the algorithms
consists in splitting the solution z into two n-
dimensional vectors x and y that add up to z
over F2. The weight of both x and y is some
function of ω to be determined.

More precisely, Algorithm 1 assumes and
puts in place a Bernoulli distribution on the
representation of z, then determines the opti-
mal weight φ(ω) to be used for x and y. As
a result, we significantly improve the running
time offered by the state-of-the-art methods,
i.e. the standard and the discrete-log methods
(see Fig. 1; the x-axis represents the relative weight ωn = ω/n, and the y-axis
represents the relative exponent log(T)/n of the time cost T).

Since Algorithm 1 uses a pseudo-random number generator to establish the
desired Bernoulli distribution, it incurs a slight overhead in the computations.
Therefore, we reinforce our contribution with Algorithm 2 which gets rid of the
Bernoulli distribution; the result still substantively outperforms the state-of-the-
art (see Fig. 1).

We show the practicality of our technique with an implementation of the
algorithms that confirm our theoretical estimates.

Second, we tune our algorithms via the Parallel Collision Search (PCS) tech-
nique [20] to decrease the running time at the expense of memory. Again, we
achieve a nice time/memory trade-off compared to the state-of-the-art (see Fig. 2;
the x-axis represents the relative weight ωn = ω/n, whereas the y-axis represents
the relative exponent log(T)/n (resp. log(M)/n) of the time (resp. memory) cost
T (resp. M)).

The rest of the paper is organized as follows. Section 2 recalls the neces-
sary background and establishes the notation that will be used throughout the

A New Approach for Finding Low-Weight Polynomial Multiples 155

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

T
=

2n

ωn

(a) Time complexity

0

0.5

1

1.5

2

2.5

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

M
=

2n

ωn

(b) Memory complexity

Fig. 2. Time/Memory costs of the state-of-the-art and our trade-off algorithms

document. Sections 3 and 4 respectively describe, analyze, and experimentally
validate our algorithms. Section 5 compares the performance of our algorithms
with the state-of-the-art. Finally, the time/memory trade-off tuning of the pro-
posed algorithms is given in Sect. 6.

2 Theoretical Background

2.1 Notations and Conventions

Let a, b ∈ N with a < b. We conveniently write [a, b] := {a, a + 1 . . . , b}. For a
vector z = (z1, . . . , zn) ∈ {0, 1}n, we denote by weight(z) := |{i ∈ [1, n] : zi = 1}|.
ZN denotes the ring of integers modulo N . F2 denotes the field of two elements
where the additive identity and the multiplicative identity are denoted 0 and
1, as usual. F2[X] refers to the ring of polynomials with coefficients in F2. R+

denotes the set of positive real numbers.
Let P ∈ F2[X]. deg(P) and weight(P) refer to the degree and weight of P

respectively; the weight of a polynomial in F2[X] corresponds to the number of
its non-zero coefficients. In the text, we identify polynomials in F2[X] with their
coefficient vectors. For instance, the sum of two polynomials in F2[X] is the sum
over F2 of their coefficient vectors termwise.

Suppose deg(P) = d. F2[X]/P denotes the ring of polynomials modulo P ;
addition and multiplication are performed modulo P . Finally, (Fd

2,+) refers to
the group of d-dimensional vectors over F2, where the group law + is the bitwise
addition and the identity is referred to as 0Fd

2
.

The Big-O, Θ, and Θ̃ Notations. The Big-O notation represents the upper
bound of the running time of an algorithm; it gives then the worst case com-
plexity of an algorithm.

O(g) =
{
f : ∃ c, x0 ∈ R

+ : 0 ≤ f(x) ≤ cg(x) ∀x ≥ x0

}

156 L. El Aimani

The Θ notation represents the upper and the lower bound of the running time
of an algorithm. It is useful when studying the average case complexity of algo-
rithms.

Θ(g) =
{
f : ∃ c1, c2, x0 ∈ R

+ : 0 ≤ c1g(x) ≤ f(x) ≤ c2g(x) ∀x ≥ x0

}

The Θ̃ notation suppresses the polynomial factors in the input. For example
Θ̃(2n) suppresses the polynomial factors in n.

Binomial Coefficient. The binomial coefficient
(
n
k

)
refers to the number of

distinct choices of k elements within a set of n elements. We have:
(
n
k

)
= n!

k!·(n−k)! .
Often, we need to obtain asymptotic approximations for binomials of the form(

n
α n

)
or

(
n

�α n�
)

for values α ∈]0, 1[. This is easily achieved using Stirling’s for-

mula: n! = (1+ o(1))
√

2πn
(

n
e

)n. Thus
(

n
αn

)
≈ 1√

2π nα(1−α)
· 2nH(α), where H is

the binary entropy function defined as H(x) := −x log2(x) − (1 − x) log2(1 − x);
log2 is the logarithm in base 2. We can then write

(
n

αn

)
= Θ

(
n−1/22nH(α)

)
or

(
n

αn

)
= Θ̃

(
2nH(α)

)

Probability Laws. For a finite set E, e ∈R E refers to drawing uniformly
at random an element e from E. The PMF of a random variable denotes its
probability mass function.

Let X be a random variable, p ∈ [0, 1], and n ∈ N. X ∼ Bernoulli(p) signifies
that X takes the value 1 with probability p and the value 0 with probability
1 − p.

X := (X1, . . . , Xn) ∼ Bernoulli(p, n) means that the Xi are independent and
identically distributed with Xi ∼ Bernoulli(p), for i ∈ [1, n]. X ∼ Binomial(p, n)
means that X follows the Binomial distribution with PMF: Pr[X = k] =(
n
k

)
pk(1 − p)n−k, k ∈ [0, n]. Finally, if X ∼ Bernoulli(p, n), then the random

variable Y corresponding to the number of successes of X follows the binomial
distribution, i.e. Y := weight(X) ∼ Binomial(p, n).

2.2 Random Functions

Birthday Paradox. Let E be a finite set of n elements. If elements are sampled
uniformly at random from E, then the expected number of samples to be taken
before some element is sampled twice is less than

√
πn/2 = Θ(

√
n). The element

that is sampled twice is called a collision. See [12] for the details.

Expected Number of Collisions. Let f : E → F be a random function.
We are interested in the expected number of collisions of f , i.e. the number of
distinct pairs {x, y} with f(x) = f(y). For instance, if k elements have the same
value, this counts as

(
k
2

)
collisions.

A New Approach for Finding Low-Weight Polynomial Multiples 157

Fact 1. Let f : E → F be a random function, with |E| = n and |F | = m. The
expected number of f collisions is Θ

(
n2

2m

)
.

Proof. For each pair {x, y} (x �= y), we define the following indicator random
variable:

I{x,y} =
{

1 if f(x) = f(y)
0 otherwise

Let C denote the number of collisions of f . The expectation E(C) is given by:

E(C) =
∑

{x,y}∈E×E,x�=y

E(I{x,y}) =
1
m

∑
{x,y}∈E×E,x�=y

1 =
1
m

(
n

2

)
= Θ

(
n2

2m

)

�

Collision-Finding Algorithms. Let f : E → F , with F ⊆ E, be a random
function. According to the birthday paradox, a collision of f can be found in
roughly Θ(

√
|F |) evaluations. Common search algorithms, e.g. Brent’s cycle-

finding algorithm [4], achieve this by computing a chain of invocations of f from
a random starting point s until a collision occurs. In the text, the notation
(x, y) ←− Rho(f, s) refers to the collision (x, y) returned by f from starting
point s, using a cycle-finding algorithm.

In [20], van Oorschot and Wiener extend this idea to search collisions between
two functions f1 and f2 (both have the same domain E and range F , with F ⊆
E). The construction defines a new function f that alternates between f1 and f2
depending on the input. The new function f is a random function, thus any cycle-
finding algorithm applies and finds a collision for the new function in Θ(

√
|F |)

and polynomial memory. The found collision is a collision between f1 and f2 with
probability 1

2 . Therefore the running time will roughly double if collisions are
random. This is achieved by randomizing the output of the algorithm. In fact,
Brent’s cycle-finding algorithm is likely to produce always the same collision. To
remediate this problem, [1,11] consider a family of permutations (Pk)k∈N in E
addressed by k: they apply the collision-finding algorithm to g : E → E with
g(x) = Pk(f(x)), where Pk is a random permutation from the considered family.
I.e., a new permutation is used with each invocation of the collision-finding
algorithm, which ensures that the produced collisions are uniformly distributed.

3 First Algorithm

Let P be a degree-d polynomial over F2 with nonzero constant term, and n > d
be an integer. Our goal is to compute a multiple of P with the least possible
weight, and with nonzero constant term and degree at most n. We proceed as
follows.

158 L. El Aimani

We first determine the minimal weight using Inequality Eq. (1). Let ω be the
found weight, and 1 + z = 1 +

∑n
i=1 ziX

i be a weight-ω solution to the LWPM
problem. We decompose z to z = x + y, with x, y ∈ (Fn

2 ,+) and weight(x) =
weight(y) = φ = n ∗ φn, where φ is a weight to be determined as a function of
ω. Then, we compute x and y as a collision to a random function f , using any
collision-finding algorithm, e.g. [4].

To compute φ, we assume and put in place a Bernoulli distribution on x and
y. That is, we ensure the coordinates (of x and y) are independent and equal to
1 with the constant probability φn = φ/n.

This section is organized as follows. Subsection 3.1 defines the building blocks
that will be used in the algorithm, namely the weight φ, the random function
f and a further function that puts in place the Bernoulli distribution. Subsec-
tion 3.2 describes our first algorithm for solving LWPM. Finally, Subsect. 3.3 is
dedicated to the experimental validation of the presented algorithm.

3.1 Building Blocks

Computation of φ. Assume a Bernoulli distribution on x and y. I.e. the coor-
dinates of both x and y are considered independent trials with the constant
probability of success Pr(xi = 1) = Pr(yi = 1) = φn = φ

n for i ∈ [1, n].
Therefore z = x + y follows also a Bernoulli law with PMF Pr(zi = 1) =

2φn(1 − φn), for i ∈ [1, n]. Moreover, weight(z) ∼ Binomial(2φn(1 − φn), n).
Since weight(z) = ω − 1, thus ω − 1 = 2nφn(1 − φn), which is equivalent to
φn = 1

2 (1 ±
√

1 − 2ωn), where ωn := ω−1
n . Note that we assumed ω ≤ n

2 , thus
ωn ≤ 1

2 .

Random Function f . Let φ and φn be the quantities computed in the previous
paragraph. Define the set T :

T = {x ∈ {0, 1}n : weight(x) = φ = n ∗ φn} (2)

Let further ai = Xi mod P for i ∈ [0, n]. Consider the functions f0, f1:

f0, f1 : T −→ F
d
2

f0(x) =
n∑

i=1

xiai and f1(x) = a0 +
n∑

i=1

xiai

(3)

Define further the function f :

f : T −→ F
d
2

x �−→
{

f0(x) if h(x) = 0
f1(x) if h(x) = 1

(4)

where h : {0, 1}n → {0, 1} is a random bit function. In other terms, f alternates
between applications of f0 and f1 depending on the input. It is clear that a
collision (x, y) of the function f will lead to a multiple of P with expected weight

A New Approach for Finding Low-Weight Polynomial Multiples 159

less than ω. In fact, a collision of type fi(x) = fi(y), i = 0, 1 gives a multiple
with expected weight ω − 1, and a collision of type fi(x) = f1−i(y), i = 0, 1
gives a multiple with expected weight ω.

Finally, since we will use a cycle-finding algorithm to search collisions of f , we
need the function range and domain to be the same. To achieve this, we consider
an injective map τ : Fd

2 −→ T (provided 2d ≤ |T |). Therefore, all collisions (x, y)
of f satisfy

f(x) = f(y) ⇐⇒ τ ◦ f(x) = τ ◦ f(y)

In this way, any cycle-finding technique can be applied to τ ◦ f to search for
collisions of f .

In the rest of the text, we conveniently identify τ ◦f with f ; that is we assume
that f outputs elements in T , provided that 2d ≤ |T |, but we keep in mind that
|f(T)| = 2d.

Bernoulli Distribution on the Input of f . Recall that function f inputs
vectors of T that follow a Bernoulli distribution with parameters φn and n. That
is, coordinates of the input vectors are independent and identically distributed
with the constant probability φn of being equal to one. With this assumption, a
collision of f leads to a multiple of P with expected weight less than ω.
We achieve such a distribution by using a random function σ

σ : {0, 1}n −→ {0, 1}n

x �−→ σ(x) : σ(x) ∼ Bernoulli(φn, n)

More precisely, σ uses the input elements as a seed to produce n-bit vectors that
satisfy the Bernoulli distribution. Therefore, the input elements are only used
to “remember” the state of the function, so that when it is called with the same
value, it produces the same output.

Note that σ outputs elements with weight φ with non-negligible probability:

Pr[σ(x) ∈ T , x ∈R {0, 1}n] =
(

n

φ

)
φφ

n(1 − φn)n−φ =
(

n

nφn

)
2−nH(φn)

≈ 1√
2πnφn(1 − φn)

On other note, σ induces a uniform distribution on T . In fact, let y ∈ T be a
given element in T , and x a random input element to σ

Pr[σ(x) = y | σ(x) ∈ T] =
Pr[σ(x) = y, σ(x) ∈ T]

Pr[σ(x) ∈ T]
=

φφ
n(1 − φn)n−φ(

n
φ

)
φφ

n(1 − φn)n−φ
=

1
|T |

Therefore, we conveniently assume in the rest of this section that σ has range
T on which it induces a uniform probability distribution.

160 L. El Aimani

3.2 The Algorithm

Consider the following map:

g : {0, 1}n −→ T (⊂ {0, 1}n)
x �−→ f ◦ σ(x)

g is well defined as we assumed that σ has range T . Moreover, g is a random func-
tion from {0, 1}n to {0, 1}n, and thus we can apply any cycle-finding algorithm
to search collisions for g. Note that σ will introduce some unnecessary collisions
as we are only interested in collisions of f . We explain later how we compute
this fraction of “useful” collisions among the total number of g collisions.

Now therefore, in consideration of the foregoing, a cycle-finding algorithm
for g picks a random starting point s ∈R {0, 1}n, then computes a chain of
invocations of g, i.e. g(s), g2(s) := g ◦ g(s), . . . until finding a repetition. If such
a repetition leads to a valid collision (x, y), i.e. g(x) = g(y) and x �= y, return it
otherwise start again with a new starting point. Termination of the algorithm is
guaranteed if the execution paths from different starting points are independent.
In other words, a random collision should be returned for each new starting point.

To randomize collisions, we introduce our last ingredient, a family of permu-
tations Pk addressed by integer k:

Pk : {0, 1}n −→ {0, 1}n

The new function subject to collision search is

g[k] = g ◦ Pk : T −→ T

Note that the restriction of Pk to T is still a permutation from T to Pk(T)(⊂
{0, 1}n).

g[k] is a random function, with domain and range T , which satisfies the ran-
domness requirement on the computed collisions. In fact, for each new starting
point s, a freshly random element Pk(s) is obtained thanks to Pk (the permuta-
tion Pk is picked new with each new starting point), which is then used as a seed
to σ to produce a random n-bit vector in T (with non-negligible probability) that
satisfies the Bernoulli distribution. Therefore, execution paths, in cycle-searching
algorithms for g[k], from different starting points are independent.

Also, (x, y) is a collision for g[k] if and only if (Pk(x), Pk(y)) is a collision
for g. We can then apply any cycle-finding algorithm to g[k] to search collisions
for g.

We can now describe Algorithm 1 for solving the LWPM problem.

Remark 1. Algorithm 1 finds weight-ω multiples provided they exist. When
Inequality Eq. (1) predicts a weight that does not exist, the algorithm runs
indefinitely. As a safety valve, one can allow a margin in the breaking condition,
and accept multiples with weights within that margin.

A New Approach for Finding Low-Weight Polynomial Multiples 161

Algorithm 1. for LWPM
Input A polynomial P with degree d, and a bound n
Output A multiple M of P such that deg(M) ≤ n and with the least possible

weight.

Compute the expected minimal weight ω by solving Inequality 1
ωn ←− (ω − 1)/n ; μ ←− ω − 1
repeat

μn ←− μ/n; μ ←− μ + 1
φn ←− 1

2
(1 ±

√
1 − 2 ∗ μn) ; φ ←− n ∗ φn

until
(

n
φ

)
≥ 2d � to ensure that f has range f(T) ⊆ T

repeat
choose a random permutation Pk

choose a random starting point s ∈R T
(x, y) ←− Rho(g[k], s)
(p, q) ←− (σ ◦ Pk(x), σ ◦ Pk(y))

M ←−
{

X ∗ (p + q) if fi(p) = fi(q), i = 0, 1
1 + X ∗ (p + q) if fi(p) = f1−i(q), i = 0, 1

until M ≡ 0 mod P and weight(M) ∈ [1, ω]
return M

Remark 2. The μn’s considered in the first loop are all less than 1
2 . In fact, they

satisfy μn = 2φn(1 − φn), and the function x �−→ 2x(1 − x) is upper bounded
by 1

2 for x ∈ [0, 1].

Remark 3. Both the values 1
2 (1 +

√
1 − 2μn) and 1

2 (1 −
√

1 − 2μn) for φn give
the same expected time in terms of function calls, however, the latter value finds
the solution faster as it is easier to manipulate sparse vectors.

Theorem 1. Algorithm 1 runs in time Θ(2Ct) with

Ct =
d

2
+ n(−H(wn) + H1(ωn)) +

3
2

log2(2πnωn(1 − ωn))

where H1(ωn) = −ωn log2(2ωn(1 − ωn)) − (1 − ωn) log2(1 − 2ωn(1 − ωn)).
�

The proof is given in the full version [9].

3.3 Experimental Results

We run Algorithm 1 on the following polynomial P for n ∈ [30, 1100]. The results
are depicted in Fig. 3.

P = X19 + X11 + X10 + X8 + X7 + X5 + X4 + X3 + X2 + X1 + 1

Further experiments are given in [9].
We used the the Θ̃ notation for the estimated time, which explains the

differences between the estimates and the experiments; the polynomial factor
(2πnωn(1 − ωn))

3
2 is ignored in the estimated time.

162 L. El Aimani

4 Second Algorithm

0

0.1

0.2

0.3

0.4

0.5

0.6

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

T
=

2n

ωn = ω/n

Fig. 3. Averaged function calls T for
Algorithm 1 run on Polynomial P

Algorithm 1 in Sect. 3 incurs an over-
head in the computations due to function
σ. Actually, with each invocation of the
function f , we make a call to σ which
uses a pseudo-random number generator
to establish the Bernoulli distribution on
the input.

We remediate this problem in this
section. Therefore, we decompose the
solution z of LWPM into a pair (x, y),
where x, y are n-bit vectors that do not enjoy any specific properties except
having the same weight φ to be determined. We then look for such pairs by
searching collisions of f .

Consider the set T defined in Statement 2, and let x, y ∈R T . We proceed as
follows. We first determine the PMF of the random variable Y = weight(x + y)
and compute φ as a function of ω. Then, we describe, analyze and experimentally
validate our second algorithm in the subsequent subsections.

4.1 Computation of φ

Probability Law of Y = weight(x + y). We first note the following facts.

Fact 2 Pr[Y = 2k + 1] = 0, ∀k ∈ N. �

Fact 3 Pr[Y = k] = 0, for k /∈ [0,min(2φ, n)]. �

The proofs are given in [9].
Let now, k ≤ min(φ, n/2) be an integer. Pr[Y = 2k] is given by the number

of strings x and y that disagree on 2k positions, divided by the size of the
probability space. The number of such strings is given by the product of:

–
(

n
2k

)
: the number of ways to choose the positions where x and y disagree.

–
(
2k
k

)
: the number of ways to distribute k ones in those 2k positions. In fact,

let x̄ and ȳ be the (2k)-bit strings extracted from x and y respectively, and
composed of the bits where x and y disagree. Then, x̄ and ȳ have the same
weight, namely k, as x and y have the same weight φ, and agree on the
remaining n − 2k positions. Thus, the 2k ones must be equally distributed
among x̄ and ȳ.

–
(
n−2k
φ−k

)
: the number of ways to choose (n−2k)-bit strings with weight (φ−k).

I.e. the number of sub-strings where x and y agree.

The size of the probability space is given by |T |2 =
(
n
φ

)2. Thus

Pr[Y = 2k, k ≤ min(φ, n/2)] =
(n

2k

)(2k
k

)(n − 2k

φ − k

)
/

(n

φ

)2
=

(φ

k

)(n − φ

k

)
/

(n

φ

)

A New Approach for Finding Low-Weight Polynomial Multiples 163

We conclude that:

Pr[weight(x + y) = 2k] =
{(

φ
k

)(
n−φ

k

)/(
n
φ

)
if 0 ≤ k ≤ min(φ, n/2)

0 otherwise

Computation of φ Note that the PMF of Y = weight(x + y) is reminiscent of
the hypergeometric distribution G given by PMF:

Pr[G = k] =
{(

t
k

)(
n−t
φ−k

)/(
n
φ

)
if 0 ≤ t, φ ≤ n and 0 ≤ k ≤ min(φ, t)

0 otherwise

and expectation E(G) = t·φ
n . Actually, for t = φ, we get

Pr[G = k] =
{(

φ
k

)(
n−φ
φ−k

)/(
n
φ

)
if 0 ≤ φ ≤ n and 0 ≤ k ≤ φ

0 otherwise

Therefore Pr[weight(x+y) = 2k] = Pr[G = φ−k]. We derive the expectation
of Y = weight(x + y) as follows.

E(Y) =
2φ∑

k=0,k=2p

k Pr[Y = k] =
φ∑

k=0

2k Pr[Y = 2k]

=
φ∑

k=0

2k Pr[G = φ − k] = 2
φ∑

k=0

(φ − k) Pr[G = k]

= 2φ − 2E(G) = 2φ(1 − φ/n)

Therefore, if we conserve our previous notations: φ = n ∗ φn, and ω − 1 =
ωn ∗ n, and solve for φn the equation ωn ∗ n = 2φ(1 − φ/n). We get φn =
1
2 (1 ±

√
1 − 2ωn) (ωn ≤ 1

2). Note that we get the same value we found for φ in
Sect. 3, when we assumed a Bernoulli distribution on x and y, and consequently
a binomial distribution on weight(x + y) (x + y ∼ Bernoulli(φn(1 − φn), n) and
thus weight(x+ y) ∼ Binomial(2φn(1−φn), n)). This is not surprising; we know
that for increasing n, the hypergeometric law converges to the binomial law.

4.2 The Algorithm

Let (P, d, n) be a LWPM instance. We compute the minimal weight ω as usual
by solving Inequality (1), then we compute φn as 1

2 (1 ±
√

1 − 2(ω − 1)/n) and
φ as nφn.

To compute a weight-ω multiple of P with degree less than n, we similarly
search for collisions (p, q) of the function f defined earlier, where p and q are n-bit
vectors with weight φ. There is a small particularity of this algorithm depending
on the parity of ω. In fact, collisions of f are of two types:

Type 1 collisions that correspond to fi(p) = f1−i(q), i = 0, 1. These
collisions produce multiples of type 1 + X(p + q), with weight 1 + 2k,
1 ≤ k ≤ min(φ, n/2).

164 L. El Aimani

Type 2 collisions that correspond to fi(x) = fi(y), i = 0, 1. These collisions
produce multiples of type X(p + q), with weight 2k, 1 ≤ k ≤ min(φ, n/2)

Therefore, if ω = 1 + 2k, we set μ =: ω − 1 and φ = nφn, with φn = 1
2 (1 ±√

1 − 2μ/n). As in Algorithm 1, we ensure that f outputs values in T (using
the injective map τ : Fd

2 −→ T) by satisfying the condition |T | ≥ 2d, where
|T | =

(
n
φ

)
: we keep increasing μ until the inequality holds. Similarly, if ω = 2k,

then we initially set μ := ω and keep increasing it until
(
n
φ

)
≥ 2d, where φ = nφn

and φn = 1
2 (1 ±

√
1 − 2μ/n). We note again that both 1

2 (1 +
√

1 − 2μ/n) and
1
2 (1 −

√
1 − 2μ/n) lead to the same expected function calls, however, the latter

value finds the solution faster as it is easier to manipulate sparse vectors.
Finally, to randomize collisions, it is enough to use any family of permutations

Pk : T −→ T . The collision-finding algorithm is then applied to f [k] := Pk ◦ f .
We are now ready to give the pseudo-code description of our second algorithm

for LWPM in Algorithm 2.

Algorithm 2. for LWPM
Input A polynomial P with degree d, and a bound n
Output A multiple M of P such that deg(M) ≤ n and with the least possible

weight.

Compute the expected minimal weight ω by solving Inequality 1
if ω%2 = 1 then

ωn ←− (ω − 1)/n ; μ ←− ω − 1
else

ωn ←− ω/n ; μ ←− ω
end if
repeat

μn ←− μ/n ; μ ←− μ + 1
φn ←− 1

2
(1 ±

√
1 − 2 ∗ μn) ; φ ←− n ∗ φn

until
(

n
φ

)
≥ 2d � to ensure that f has range f(T) ⊆ T

repeat
choose a random permutation Pk : T −→ T
choose a random starting point s ∈R T
(p, q) ←− Rho(f [k], s)

M ←−
{

X ∗ (p + q) if fi(p) = fi(q), i = 0, 1
1 + X ∗ (p + q) if fi(p) = f1−i(q), i = 0, 1

until M ≡ 0 mod P and weight(M) ∈ [1, ω]
return M

First, we note that Remarks 1 and 2 and 3 for Algorithm 1 apply also here.
Moreover, for even ω, Algorithm 2 finds multiples of the form X ∗ (p+ q), where
p + q is a polynomial with degree at most n − 1. That is, the algorithm finds a
weight-ω multiple with nonzero constant term and degree at most n − 1 (since
P has nonzero constant term) provided it exists. One could change, in this case,
the definition of T and f and manipulate (n + 1)-bit vectors instead of n-bit

A New Approach for Finding Low-Weight Polynomial Multiples 165

vectors in order to find multiples of degree at most n, but we opted for the above
description to keep the algorithm simple.

Theorem 2. Algorithm 2 runs in time Θ̃(2Ct) where Ct = d
2 + n

(
− H2(ωn)+

H(ωn)
)
, with H2(ωn) = ωn + (1 − ωn)H

(
ωn

2(1−ωn)

)
. �

The proof is given in [9].

4.3 Experimental Results

0

0.1

0.2

0.3

0.4

0.5

0.6

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
T

=
2n

ωn = ω/n

Fig. 4. Averaged function calls T for
Algorithm 2

We consider the same test polynomial in
Subsect. 3.3 for the same range of values
n ∈ [30, 1100]; the results are depicted in
Fig. 4. Note that we used the Θ̃ notation
for the estimated time, which explains the
slight differences between the estimates
and the experiments. Further experiments
are given in [9].

5 Comparison with the
State-of-the-art

In this section, we compare the performance of our algorithms with existing
memory-efficient methods for LWPM (discrete-log [22] and Canteaut-Trabbia
[6]). These lasts run in Θ̃(2d) and Θ̃(2nH(ωn)) respectively. Actually, we discard
the lattice method as it becomes inaccurate with increasing n (few hundreds)
(Table 1).

Table 1. Comparison between the memory-efficient techniques and our algorithms

Method DL [22] [6] Algorithm 1 Algorithm 2

log2(Θ̃(T)) d nH(ωn) d
2

+ n(−H(wn) + H1(ωn)) d
2

+ n (−H2(ωn) + H(ωn))

Figure 5 depicts the performance of our algorithms in comparison with the
state-of-the-art methods. Note that our algorithms apply to any polynomial, and
do not use any precomputed tables of discrete logarithms, unlike some existing
memory-efficient methods (discrete-log-based ones).

166 L. El Aimani

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

T
=

2n

ωn

Fig. 5. Comparison between the
memory-efficient techniques and
our algorithms

Cryptanalytic Application I: The Blue-
tooth Summation Generator Polyno-
mial. The Bluetooth polynomial is the prod-
uct of the four constituent LFSRs feedback
polynomials; PBT = P1 · P2 · P3 · P4 where:

P1(x) = x25 + x20 + x12 + x8 + 1;

P2(x) = x31 + x24 + x16 + x12 + 1;

P3(x) = x33 + x28 + x24 + x4 + 1;

P4(x) = x39 + x36 + x28 + x4 + 1;

PBT has degree 128 and weight 49; at
degree n = 668, the authors in [16] found a
multiple of weight ω = 31. Note that the max-
imum keystream length for the Bluetooth combiner is 2745. That is, the maxi-
mum value for n is 2745. We note in Table 2 the performances of the different
polynomial memory algorithms on this instance.

Table 2. Time costs of the memory-efficient techniques and our algorithms on the
Bluetooth polynomial

Method DL [22] Canteaut-Trabbia [6] Algorithm 1 Algorithm 2

log2(Θ̃(T)) 128 177 76 108

Cryptanalytic Application II. [8] We consider the test polynomial used in
[8]

P53 = X53 + X47 + X45 + X44 + X42 + X40 + X39 + X38 + X36 + X33 + X32

+ X31 + X30 + X28 + X27 + X26 + X25 + X21 + X20 + X17 + X16 + X15

+ X13 + X11 + X10 + X7 + X6 + X3 + X2 + X1 + 1.

The authors in [8] found multiples of weight ω = 5 at degree n = 213. We
note in Table 3 the performances of the different polynomial memory algorithms
on this instance.

At degree n ≥ 220, the authors found multiples with weight ω = 4. However,
at this degree, the condition n ≥ 2d/(1+log2(ω−1)) is satisfied; thus, the generalized
birthday method [25] outperforms with a time and a memory cost linear in n.

Table 3. Time costs of the memory-efficient techniques and our algorithms on the [8]
instance

Method Discrete Log [22] Canteaut-Trabbia [6] Algorithm 1 Algorithm 2

log2(Θ̃(T)) 53 50 28 45

A New Approach for Finding Low-Weight Polynomial Multiples 167

6 Time-Memory Trade-Off Variants

Our previously described algorithms allow fortunately for a time/memory trade-
off, thanks to van Oorschot-Wiener’s Parallel Collision Search (PCS) technique
[20]. This technique has been extensively used in cryptanalysis since its intro-
duction; it allows to efficiently find multiple collisions, of a random function, at
a low amortized cost per collision. More precisely, let C be the time complexity
to find a collision with polynomial memory, then PCS finds Θ̃(2m) collisions in
time Θ̃(2

m
2 C) using Θ̃(2m) memory.

In the following, we apply PCS to Algorithms 1 and 2 in order to decrease
their time complexity at the expense of memory.

Algorithm 1 Trade-off. According to the analysis in Sect. 3, Algorithm 1
requires to find Θ̃(2n(−H(wn)+H1(ωn))) collisions. In fact, this value corresponds
to the number of examined collisions before coming across a so-called useful colli-
sion, i.e. a collision that leads to a solution to the LWPM problem. Each collision
comes at the cost of Θ̃(2

d
2). Therefore, using Mtmto-1 = Θ̃(2n(−H(wn)+H1(ωn)))

memory, the time complexity of the trade-off variant of Algorithm 1 reduces to
Ttmto-1 = Θ̃(2

n(−H(ωn)+H1(ωn))
2 · 2

d
2).

Algorithm 2 Trade-off. Algorithm 2 requires to find Θ̃(2n(H(ωn)−H2(ωn)))
collisions, each at the cost of Θ̃(2

d
2). Therefore, using Mtmto-2 =

Θ̃(2n(H(ωn)−H2(ωn))) memory, the time complexity of the trade-off variant of
Algorithm 2 reduces to Ttmto-2 = Θ̃(2

n(H(ωn)−H2(ωn))
2 · 2

d
2).

We depict in Table 4 and Fig. 6 the time/memory costs of the trade-off vari-
ants of Algorithms 1 and 2 and of the state-of-the-art. We omit the generalized
birthday method [25] which is linear in time and memory (O(n)) if the condition
n ≥ d/(1 + log2(ω − 1)) is satisfied.

Our trade-off variants outperform obviously the state-of-the-art in memory,
however, they loose the lead in the running time as the weights get smaller. Note
however that when the weights get very small, then the generalized birthday
method [25] imposes itself as we will see below in Cryptanalytic application II.

Table 4. Comparison between the time/memory trade-off techniques and our algo-
rithms

DL [8] SD [15,18] TMTO [7] Algo1 Algo2
log2(T)

n
H(ω−2

2n
) ωn(log2 n − log2 d) H(ω−1

2n
) 1

2
(d

n
− H(ωn) + H1(ωn)) 1

2
(d

n
+ H(ωn) − H2(ωn))

log2(M)

n
H(ω−2

2n
) ωn log2 d H(ω−1

4n
) −H(ωn) + H1(ωn) H(ωn) − H2(ωn)

168 L. El Aimani

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

T
=

2n

ωn

(a) Time complexity

0

0.5

1

1.5

2

2.5

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

M
=

2n

ωn

(b) Memory complexity

Fig. 6. Time/Memory costs of the state-of-the-art and our trade-off algorithms

Cryptanalytic Application I: The Bluetooth Polynomial. We note in
Table 5 the performances of the time/memory trade-off methods on the Blue-
tooth instance considered in Sect. 5. We discard the generalized birthday method
as the condition n ≥ d/(1 + log2(ω − 1)) is not satisfied.

Table 5. Time/memory costs of the trade-off techniques on the Bluetooth polynomial

DL [8] SD [15,18] TMTO [7] Algo1 Algo2

log2(T) 101 73 103 70 86

log2(M) 101 217 59 12 44

Cryptanalytic Application II. [8] We consider the instance polynomial
P53 defined earlier in Sect. 5. We provide in Table 6 the performances of the
time/memory trade-off methods on this polynomial at degree n = 213 and weight
ω = 5.

It is clear that, despite requiring a big precomputation step and applying
only to primitive polynomials with smooth orders, the DL [8] method provides
the best time/memory trade-off on this instance. However, we remark that if go
up to degree n = 220, we can get a 4-weight multiple using Wagner’s generalized
birthday, in time and memory linear in 220. This is of course only possible when
the available keystream allows it (since n is upper bounded by the available
keystream length).

Table 6. Time/memory costs of the trade-off techniques on the [8] instance

DL [8] SD [15,18] TMTO [7] Algo1 Algo2

log2(T) 21 36 27 27 36

log2(M) 21 29 14 13 19

A New Approach for Finding Low-Weight Polynomial Multiples 169

Acknowledgments. I thank the anonymous reviewers of Inscrypt 2021, for their
useful remarks and suggestions that substantially improved the quality of the present
paper.

References

1. Becker, A., Coron, J.S., Joux, A.: Improved generic algorithms for hard knapsacks.
In: Advances in Cryptology - EUROCRYPT 2011, pp. 364–385 (2011)

2. Becker, A., Joux, A., May, A., Meurer, A.: Decoding random binary linear codes
in 2n/20: How 1+1=0 improves information set decoding. In: EUROCRYPT 2012,
pp. 520–536 (2012)

3. Brent, R.P., Zimmermann, P.: Algorithms for finding almost irreducible and almost
primitive trinomials (2003), lectures in Honour of the Sixtieth Birthday of Hugh
Cowie Williams (2003)

4. Brent, R.P.: an improved monte carlo factorization algorithm. BIT Numerical
Mathematics, pp. 176–184 (1980)

5. Canteaut, A., Chabaud, F.: A new algorithm for finding minimum-weight words
in a linear code: application to mceliece’s cryptosystem and to narrow-sense BCH
codes of length 511. IEEE Trans. Inf. Theory 44, 367–378 (1998)

6. Canteaut, A., Trabbia, M.: Improved fast correlation attacks using parity-check
equations of weight 4 and 5. In: Preneel, B. (ed.) Advances in Cryptology - Euro-
crypt 2000. LNCS, vol. 1807, pp. 573, 588. Springer (2000). https://doi.org/10.
1007/3-540-45539-6 40

7. Chose, P. Joux, A., Mitton, M.: Fast correlation attacks: an algorithmic point of
view. In: Knudsen, L.R. (ed.) Advances in Cryptology - Eurocrypt 2002. LNCS,
vol. 2332, pp. 209, 221. Springer (2002). https://doi.org/10.1007/3-540-46035-7 14

8. Didier, J., Laigle-Chapuy, Y.: finding low-weight polynomial multiples using
discrete logarithm. In: IEEE International Symposium on Information Theory
ISIT’07. p. to appear. Nice, France (2007)

9. El Aimani, L.: A new approach for finding low-weight polynomial multiples. IACR
Cryptol. ePrint Arch. 2021, 586 (2021)

10. El Aimani, L., von zur Gathen, J.: Finding low weight polynomial multiples using
lattices. Poster session of the LLL + 25 conference (2007), full version available at
the Cryptology ePrint Archive, Report 2007/423

11. Esser, A., May, A.: Low weight discrete logarithm and subset sum in 20.65n with
polynomial memory. In: Advances in Cryptology - EUROCRYPT 2020, pp. 94–122
(2020)

12. Galbraith, S.D.: Mathematics of Public Key Cryptography. Cambridge University
Press (2012)

13. von zur Gathen, J., Nöcker, M.: Polynomial and normal bases for finite fields. J.
Cryptol. 18(4), 337–355 (2005), http://gatnoe03b.pdf

14. Lenstra, A., Lenstra, H., Lovasz, L.: Factoring polynomials with rational coeffi-
cients. Mathematische Annalen 261(4), 515–534 (1982)

15. Löndahl, C., Johansson, T.: Improved algorithms for finding low-weight polynomial
multiples in F2[x] and some cryptographic applications. Des. Codes Cryptogr. 73,
625–640 (2014)

16. Lu, Y., Vaudenay, S.: Faster correlation attack on Bluetooth keystream generator
E0. In: Franklin, M.K. (ed.) Advances in Cryptology - Crypto 2004. LNCS, vol.
3152, pp. 407, 425. Springer (2004). https://doi.org/10.1007/978-3-540-28628-8 25

https://doi.org/10.1007/3-540-45539-6_40
https://doi.org/10.1007/3-540-45539-6_40
https://doi.org/10.1007/3-540-46035-7_14
http://gatnoe03b.pdf
https://doi.org/10.1007/978-3-540-28628-8_25

170 L. El Aimani

17. May, A., Meurer, A., Thomae, E.: Decoding random linear codes in
$tilde{mathcal{O}}(2∧0.054n)$. In: Advances in Cryptology - ASIACRYPT 2011
(2011)

18. May, A., Ozerov, I.: On computing nearest neighbors with applications to decoding
of binary linear codes. In: Advances in Cryptology - EUROCRYPT 2015, pp. 203–
228 (2015)

19. Meier, W., Staffelbach, O.: Fast correlation attacks on certain stream ciphers. J.
Cryptol. 1, 159–176 (1989)

20. van Oorschot, P.C., Wiener, M.J.: Parallel collision search with cryptanalytic appli-
cations. J. Cryptol. 12, 1–28 (1999)

21. Penzhorn, W.T., Kühn, G.J.: Computation of low-weight parity checks for corre-
lation attacks on stream ciphers. In: Cryptography and Coding, pp. 74–83 (1995)

22. Peterlongo, P., Sala, M., Tinnirello, C.: A discrete logarithm-based approach to
compute low-weight multiples of binary polynomials. Finite Fields Their Appl. 38,
57–71 (2016)

23. Siegenthaler, T.: Decrypting a class of stream ciphers using ciphertext only. IEEE
Trans. Comput. C-34(1), 81–84 (1985)

24. Stern, J.: A method for finding codewords of small weight. In: Coding Theory and
Application, pp. 106–113 (1988)

25. Wagner, D.: A generalized birthday problem. In: Yung, M. (ed.) Advances in Cryp-
tology - Crypto 2002. LNCS, vol. 2442, pp. 288–304. Springer (2002). https://doi.
org/10.1007/3-540-45708-9 19

https://doi.org/10.1007/3-540-45708-9_19
https://doi.org/10.1007/3-540-45708-9_19

Differential-Linear Cryptanalysis
of the Lightweight Cryptographic

Algorithm KNOT

Shichang Wang1,2, Shiqi Hou1,2, Meicheng Liu1,2(B), and Dongdai Lin1,2(B)

1 State Key Laboratory of Information Security,
Institute of Information Engineering, Chinese Academy of Sciences,

Beijing 100093, China
{wangshichang,houshiqi,liumeicheng,ddlin}@iie.ac.cn

2 School of Cyber Security, University of Chinese Academy of Sciences,
Beijing 100049, China

Abstract. KNOT is one of the 32 candidates in the second round of
NIST’s lightweight cryptography standardization process. The KNOT
family consists of bit-slice lightweight Authenticated Encryption with
Associated Data (AEAD) and hashing algorithms. In this paper, we
evaluate the security for the initialization phase of two members of the
KNOT-AEAD family by differential-linear cryptanalysis.

More exactly, we analyze KNOT-AEAD(128,256,64) and KNOT-
AEAD(128,384,192) which have 128-bit secret keys. As a result, for 15-
round KNOT-AEAD(128,256,64), our attack takes 248.8 time complex-
ity and 247.5 blocks to recover the full 128-bit key. To the best of our
knowledge, this is the first full key-recovery attack on 15-round KNOT-
AEAD(128,256,64), and it achieves three more rounds compared with
the existing work. Regarding 17-round KNOT-AEAD(128,384,192), time
complexity of 259.2 and data complexity of 258.2 are required to launch a
key-recovery attack, which is five rounds better than the known result.
We stress here that our attacks do not threaten the security of KNOT-
AEAD.

Keywords: Differential-linear cryptanalysis · Lightweight
cryptography · KNOT

1 Introduction

The National Institute of Standards and Technology (NIST) is selecting and
standardizing lightweight authenticated encryption and hashing algorithms that
are suitable for use in constrained environments (e.g. sensor networks, healthcare,

This work was supported by the National Natural Science Foundation of China (Grant
No. 61872359 and 62122085), the National Key R&D Program of China (Grant
No. 2020YFB1805402), and the Youth Innovation Promotion Association of Chinese
Academy of Sciences.

The original version of this chapter was revised: an orthographical error in the title
was corrected. The correction to this chapter is available at
https://doi.org/10.1007/978-3-030-88323-2 29

c© Springer Nature Switzerland AG 2021, corrected publication 2022
Y. Yu and M. Yung (Eds.): Inscrypt 2021, LNCS 13007, pp. 171–190, 2021.
https://doi.org/10.1007/978-3-030-88323-2 9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-88323-2_9&domain=pdf
https://doi.org/10.1007/978-3-030-88323-2_29
https://doi.org/10.1007/978-3-030-88323-2_9

172 S. Wang et al.

the Internet of Things). Of the 56 Round 1 candidates, 32 algorithms are selected
by NIST to Round 2, such as [1,4,5,13,29]. The designers of cryptographic prim-
itives always use the minimum of active S-boxes as the indicator for resistance
against differential or linear (hull) attacks. However, this ignores some powerful
variants of differential and linear cryptanalyses, for example, differential-linear
attacks. It is necessary to carefully evaluate the security against differential-linear
attacks for the lightweight cryptographic algorithms.

Differential [11] and linear [24] attacks are two of the most fundamental
techniques of cryptanalysis. It is usually very difficult to find some long enough
differentials and linear approximations for these ciphers which are well designed
against differential and linear attacks. However, in some cases, with a short dif-
ferential and linear approximation, an effective attack might be launched. In
1994, Langford and Hellman [20] firstly showed that a differential of E0 and
a highly biased linear approximation of E1 could be combined into a distin-
guisher for the entire cipher E where E was divided into two subciphers E0

and E1 such that E = E1 ◦ E0 by a technique called differential-linear crypt-
analysis. Biham et al. [9] extended and improved this technique to obtain wider
scope of applications. In 2017, Blondeau et al. [12] applied the link between
differential and linear attacks and developed a concise theory of the differential-
linear cryptanalysis. Then they gave an exact expression of the bias under the
assumption that the two parts of the cipher were independent. Bar-on et al.
[3], in EUROCRYPT 2019, presented the Differential-Linear Connectivity Table
(DLCT) to take into account the dependency between two parts of the cipher,
and showed that in many cases, the adversary could exploit it to launch more
effective attacks. Besides, they derived that the DLCT could be constructed
effectively using the Fast Fourier Transform. In CRYPTO 2020, Beierle et al. [6]
presented several improvements in the context of the differential-linear attacks of
ARX ciphers and successfully applied them to Chaskey and ChaCha. Recently,
Liu et al. [22] studied differential-linear cryptanalysis from an algebraic perspec-
tive by introducing a technique called Differential Algebraic Transitional Form
(DATF). Based on DATF, they developed a new theory of estimation of bias
and techniques for key-recovery in the differential-linear cryptanalysis, which
were applied to Ascon, Serpent and Grain v1. So far, the differential-linear tech-
nique has been used to attack many cryptographic primitives, such as the block
cipher Serpent [10,17,22,23], the stream cipher ChaCha [2,6,14,15], the MAC
algorithm Chaskey [6,21], and the lightweight authenticated encryption Ascon
[16,22].

KNOT [29] is designed by Zhang et al., which is a family of bit-slice
lightweight Authenticated Encryption with Associated Data (AEAD) and hash-
ing algorithms. This family is based on the KNOT permutations which iteratively
apply an SPN round transformation. There are both four members in KNOT-
AEAD and KNOT-Hash and both of their primary members have a state of
256 bits. In 2019, KNOT was selected by NIST as one of the 32 candidates
in the second round of lightweight cryptography (LWC) standardization pro-
cess. In the specification of KNOT [29], the designers evaluated the security of

Differential-Linear Cryptanalysis 173

KNOT permutation against various attacks, such as (impossible) differential,
linear, division cryptanalysis etc. Later, they [30] further updated the results of
security analysis of KNOT-AEAD and KNOT-Hash. As far as we know, there
is no third-party security analysis yet.

1.1 Our Contributions

In this paper, we evaluate the security for the initialization phase of two members
of the KNOT-AEAD family by some techniques of differential-linear cryptanal-
ysis. Our attacks significantly improve the previous analysis results on them.

To relieve in certain extent the influence of the dependency between differen-
tial and linear parts in the differential-linear cryptanalysis, the targeted cipher
E is usually divided as E = E′

l ◦ Em ◦ Ed. Since the diffusion layers of KNOT
permutations are very simple, for Em of up to 8 rounds, the determined output
difference at a single bit can be observed when the input difference has only one
non-zero bit. To obtain a differential-linear distinguisher which covers as many
rounds as possible and has higher correlation, our strategy is to restrict the input
difference and output linear mask of Em to be single-bit. The detailed proce-
dure of searching such differential-linear distinguisher is presented in Sect. 4.1.
In addition, to amplify the correlation, some condition equations are imposed to
make the differential of Ed determined which might be key-dependent. Then the
correlation of conditional differential-linear distinguisher on the targeted cipher
E can be treated as the one on a degraded cipher E′

l ◦ Em. Further, the key-
recovery attacks are launched based on the conditional differential-linear distin-
guishers. We apply these cryptanalytic techniques to KNOT-AEAD(128,256,64)
and KNOT-AEAD(128,384,192), of which the former is the primary member rec-
ommended by the designers. As a result, for 15-round KNOT-AEAD(128,256,64)
(out of 52 full rounds) our attack takes 248.8 time complexity and 247.5 blocks to
recover the full 128-bit key. With regard to 17-round KNOT-AEAD(128,384,192)
(out of 76 full rounds), we require time complexity of 259.2 and data complexity
of 258.2 to launch a key-recovery attack.

Comparison of Results. Next, we compare our attacks with the known anal-
ysis against KNOT-AEAD(128,256,64) and KNOT-AEAD(128,384,192), which
are summarized in Table 1.

In [30], the designers of KNOT give the security analysis of KNOT-AEAD
and KNOT-Hash. Especially, for KNOT-AEAD(128,256,64), they presented a
14-round distinguishing attack of complexity O(262.2) by considering a trun-
cated difference propagation and a 12-round key-recovery attack of complex-
ity O(260) through a linear approximation involving one key bit. Similarly, for
KNOT-AEAD(128,384,192), they showed a 13-round distinguishing attack of
complexity O(260.8) by considering a truncated difference propagation and a 12-
round key-recovery attack of complexity O(260) through a linear approximation
involving one key bit. In a distinguishing attack, the algorithm (or distinguisher)
allows to distinguish the ciphertext produced by the target cipher from a ran-
dom permutation with high probability, but no information of the secret key

174 S. Wang et al.

Table 1. Summary of attacks on KNOT-AEAD

Cipher Rounds Type of attack Time Data Ref.

† KNOT-AEAD v1 14 Distinguisher O(262.2) O(262.2) [30]

12 Key-recovery attack O(260) O(260) [30]

15 Key-recovery attack 248.8 247.5 Sect. 4.2
† KNOT-AEAD v2 13 Distinguisher O(260.8) O(260.8) [30]

12 Key-recovery attack O(260) O(260) [30]

17 Key-recovery attack 259.2 258.2 Sect. 4.3
† Here we adopt the notations used by designers in [30], i.e., KNOT-
AEAD(128,256,64) and KNOT-AEAD(128,384,192) denoted by KNOT-AEAD v1
and KNOT-AEAD v2 respectively.
$ In our attacks, we can recover the full 128-bit secret key for 15-round KNOT-
AEAD v1, and one bit of the secret key for 17-round KNOT-AEAD v2. In the
previous analysis, only one bit of the secret key can be recovered for 12-round
KNOT-AEAD v1 and v2.

can be obtained. Using the conditional differential-linear attacks, we obtain the
key-recovery attack of 15-round KNOT-AEAD(128,256,64) which is three more
rounds compared with their result. A key-recovery attack for 17-round KNOT-
AEAD(128,384,192) is derived by our cryptanalytic techniques, and it is five
rounds better than their analysis. For the detail of time and data complexities,
please refer to Table 1.

1.2 Paper Organization

This paper is organized as follows. In Sect. 2, we describe the KONT-AEAD
algorithms and review some basic notations and MILP-based automatic search
method for differential and linear trails. In Sect. 3, an overview of the classic
differential-linear attack is showed, followed by some recent developments on
it. We present the details of the conditional differential-linear attacks against
KNOT-AEAD in Sect. 4. First, we show the procedure of our strategy for
searching good differential-linear distinguishers in Sect. 4.1. Then we carry out
our key-recovery attacks against 15-round KNOT-AEAD(128,256,64) and 17-
round KNOT-AEAD(128,384,192) in Sect. 4.2 and Sect. 4.3 respectively. Finally
in Sect. 5, we give a brief summary of this paper.

2 Preliminaries

In this section we firstly describe the KNOT-AEAD algorithms and their under-
lying permutations. Then we provide an overview of some basic notations and
MILP-based automatic search method for differential and linear trails.

Differential-Linear Cryptanalysis 175

2.1 Description of KNOT-AEAD

The KNOT family is designed by Zhang et al., which includes bit-slice lightweight
AEAD and hashing algorithms [29]. In this subsection, we give firstly a brief spec-
ification of KNOT-AEAD on which our differential-linear attacks are applied.

The underlying permutation of each KNOT member iteratively applies an
SPN-based round transformation. There are three round transformations which
are different only in the size b of block, b = 256, 384, 512. Each of the round
transformations consists of three steps: AddRoundConstantb, SubColumnb and
ShiftRowb. Let pb denote a round transformation and pb = ShiftRowb ◦
SubColumnb ◦ AddRoundConstantb(S), where S is the b-bit state. As done
in [29], a b-bit state is pictured as a 4 × b

4 rectangular array of bits. The first
b
4 bits are arranged in 0-th row, denoted by a0, the next b

4 bits are arranged in
1-st row, denoted by a1, and so on. The j-th bit of i-th row is denoted by ai,j

or ai[j]. In the following, a cipher state is described in a two-dimensional way,
as illustrated in Fig. 1.

a0, b4−1 · · · a0,1 a0,0

a1, b4−1 · · · a1,1 a1,0

a2, b4−1 · · · a2,1 a2,0

a3, b4 1 a3,1 a3,0

Fig. 1. A cipher state

The AddRoundConstantb Transformation. It consists of a simple bitwise
XOR of a d-bit round constant generated by the corresponding d-bit LFSR to
the first d bits of the intermediate state, with d = 6, 7, 8. Since we can ignore
this transformation in our attacks, we omit the detailed description of round
constants here.

The SubColumnb Transformation. It is composed of b
4 parallel applications

of S-boxes to the 4 bits in the same column. The S-box used in KNOT is a 4-bit to
4-bit S-box S: {0, 1}4 → {0, 1}4. The action of this S-box in hexadecimal notation
is given in Table 2. Let x0, x1, x2, x3 and y0, y1, y2, y3 respectively denote the
input and output of the KNOT S-box, where x0 and y0 are the least significant
bits respectively. The algebraic normal form (ANF) of the S-box is the following:

Table 2. The S-box of KNOT

x 0 1 2 3 4 5 6 7 8 9 A B C D E F

S(x) 4 0 A 7 B E 1 D 9 F 6 8 5 2 C 3

176 S. Wang et al.

y0 = x0x1 ⊕ x2 ⊕ x0x2 ⊕ x3 ⊕ x1x3 ⊕ x0x1x3 ⊕ x2x3

y1 = x1 ⊕ x2 ⊕ x0x3 ⊕ x2x3 ⊕ x1x2x3

y2 = 1 ⊕ x0 ⊕ x1 ⊕ x2 ⊕ x1x2 ⊕ x3

y3 = x1 ⊕ x0x1 ⊕ x2 ⊕ x3.

The ShiftRowb Transformation. It makes up of a left rotation to each row
over different offsets. The 0-th row is not rotated, i-th row is left rotated over ci

bit for 1 ≤ i ≤ 3. The parameters (c1, c2, c3) are (1, 8, 25), (1, 8, 55), (1, 16, 25)
for b = 256, 384, 512 respectively.

There are 4 members in KNOT-AEAD family whose modes are based
on Duplex mode MonkeyDuplex [8]. Let KNOT-AEAD(k, b, r) denote a
KNOT-AEAD member with k-bit key, b-bit state and r-bit rate. Note that
the key length, the nonce length and the tag length are all equal to k
bits for each member. In the following, we only concentrate on two mem-
bers KNOT-AEAD(128,256,64) which is the primary member and KNOT-
AEAD(128,384,192). Each member of KNOT-AEAD has 4 phases: initialization,
processing associated data, encryption and finalization, which is illustrated in
Fig. 2.

The authenticated encryption process is initialized by loading the key K and
the nonce N , S = K||N for KNOT-AEAD(128,256,64) and S = (0128||K||N) ⊕
(1||0383) for KNOT-AEAD(128,384,192). Then the initial state is processed by
p[nr0], i.e., nr0 rounds of the round transformation, where nr0 = 52 for KNOT-
AEAD(128,256,64) and nr0 = 76 for KNOT-AEAD(128,384,192). The associ-
ated data block Ai is XORed and then p[nr] is applied to the intermediate state
in sequence for i = 0, · · · , u − 1. The constant 1||0c−1 is XORed to the capacity
part of state after the last p[nr] in the process of associated data. Each plaintext
block Pi is processed similarly to Ai for i = 0, · · · , v − 1, while the correspond-
ing ciphertext block Ci is the output. In the finalization, p[nrf] is applied and
the tag T is the output. The data, i.e., the blocks of processed plaintext and
associated data, is limited to 264 for both member by the designers of KNOT.

K and N
load

p[nr0]
c

⊕r

A0

p[nr]
⊕

Au−1

c

p[nr]
⊕

1‖0c−1

c

⊕r

P0 C0

p[nr]
c

⊕

Pv−2 Cv−2

p[nr]
⊕

Pv−1Cv−1

r

c

p[nrf]
T

k

Initialization Processing Associated Data Encryption Finalization

Fig. 2. The encryption of KNOT-AEAD

2.2 Notations

In this subsection, some basic notations are presented, followed by a fundamental
lemma—Piling-up Lemma.

Differential-Linear Cryptanalysis 177

Let F2 = {0, 1} be the finite field with two elements. The correlation of a
binary random variable x is defined as Cor(x) = Pr[x = 0] − Pr[x = 1] =
2Pr[x = 0]−1. Similarly, the correlation of a Boolean function on an input with
some distribution can be defined as following.

Definition 1. The correlation of a Boolean function f : Fn
2 → F2 is defined as

Cor(f) = Pr[f(X) = 0] − Pr[f(X) = 1], where X = (x0, · · · , xn−1) is a vector
of binary random variables.

Lemma 1 (Piling-up Lemma [24]). Let x0, · · · , xn−1 be n independent binary
random variables with probability Pr[xi = 0] = pi. Then the following holds

Pr[x0 ⊕ · · · ⊕ xn−1 = 0] =
1
2

+ 2n−1
n−1∏

i=0

(pi − 1
2
),

or alternatively, Cor(x0 ⊕ · · · ⊕ xn−1) =
∏n−1

i=0 Cor(xi).

2.3 MILP-Based Automatic Search for Differential and Linear
Trails

In this subsection, we give a brief description about the Mixed Integer Linear
Programming (MILP)-based automatic search method for differential and linear
trails and how we apply it to the KNOT permutations. For more details of this
method, please refer to [27,28].

In [25], Mouha et al. introduced the MILP model to count the number of
active S-boxes for those word-oriented block ciphers. In ASIACRYPT 2014, Sun
et al. [28] extended the framework to bit-oriented ciphers. Let xi denote the
difference variable for the i-th bit. That is, xi = 1 if the difference at the i-th
bit is active; otherwise, xi = 0.

Suppose the two vectors (x0, x1, · · · , xω−1) and (y0, y1, · · · , yν−1) are the
input and output bit differences of an ω × ν S-box St. Let the bit variable At

denote the activity of this S-box. That is to say, At = 1 if St is active, and
At = 0 otherwise. The following constraints can be used to ensure that non-zero
input difference of the S-box must active it:

{
At − xk ≥ 0, k = 0, . . . , ω − 1,

−At +
∑ω−1

j=0 xj ≥ 0.
(1)

Let a discrete point (x0, · · · , xω−1, y0, · · · , yν−1) ∈ R
ω+ν denote the input-

output differential pattern of an S-box, and then we can get a finite set of discrete
points Q, which includes all possible differential patterns of the S-box. By com-
puting the H-Representation of the convex hull of Q, many linear inequalities
are obtained, each of which can be used to remove some impossible differential
patterns of the S-box. In [27], they presented the greedy algorithm to select a
subset of the H-Representation of the convex hull with less inequalities, which
can be used to exactly describe the differential patterns of the S-box.

178 S. Wang et al.

The objective function can be to minimize the sum of all variables
∑

t At,
which indicates the number of the active S-boxes appearing in the schematic
description of the encryption. Using any MILP optimizer such as Gurobi, the
model can be solved and good differential characteristics are returned.

For the S-box of the KNOT permutations, since there are 3 possible proba-
bilities, i.e., 1, 2−2, 2−3, we append two extra bits (p, q) to encode the proba-
bility of the propagation. Therefore, a vector (x0, · · · , x3, y0, · · · , y3, p, q) ∈ R

10

can describe a differential pattern with probability for the S-box. Then with
the help of SageMath, 543 inequalities are derived through computing the H-
Representation of the convex hull and the number of inequalities is reduced to
23 by the greedy algorithm in [27]. Since the linear layer of KNOT makes up of
the left rotation, there is no need to introduce new inequalities. Besides, we can
ignore the bitwise XOR of constants in the differential trail.

The objective function is minimization of the formula
∑

t(pt + 2qt), which
means the total probability of the differential trail through the encryption algo-
rithm.

With regard to searching for linear trails, the modeling process is similar
with the aforementioned.

3 The Framework of Differential-Linear Attacks

We begin with an overview of the classical differential-linear attack, and then
we recall some recent developments on it.

3.1 The Classic Differential-Linear Attack

Let E be an entire cipher that can be decomposed into two subciphers Ed and
El such that E = El ◦ Ed where the differential and linear cryptanalyses are
applied into Ed and El respectively. More precisely, assume that a differential
Δin

p→ Δm for Ed holds with probability Pr[Ed(X) ⊕ Ed(X ⊕ Δin) = Δm] = p,
and a linear approximation Γm

q→ Γout for El holds with probability Pr[Γm ·X =
Γout · El(X)] = 1

2 (1 + q) (or with correlation q), where · denotes the inner
product between two vectors. The differential-linear attack combines the above
two distinguishers and the procedure of new distinguisher is presented in the
following.

Procedure of the Differential-Linear Distinguisher. To distinguish E from
a random permutation R, the adversary samples N plaintext pairs (P, P ′) such
that P ⊕P ′ = Δin and checks whether the corresponding ciphertext pairs (C,C ′)
agree on the parity of output subset of bits in Γout one by one. The detailed
procedure is presented as Algorithm 1.

In the case that the differential in Ed fails, the equality Γout · E(X) =
Γout · E(X ⊕ Δin) is usually assumed to hold in approximately half. Under the
assumption that Ed and El are independent, the probability of differential-linear
distinguisher can be natively estimated using Piling-up Lemma, Pr[Γout ·E(X) =

Differential-Linear Cryptanalysis 179

Γout · E(X ⊕ Δin)] = p(12 (1 + q2)) + (1 − p) 12 = 1
2 (1 + pq2) (assuming that

Γm · Δm = 0). Therefore, by preparing N = O(p−2q−4) chosen plaintext pairs
(P, P ⊕ Δin), one can distinguish the cipher E from a random permutation
using Algorithm 1 (refer to [12,26] for the details about the data complexity and
success probability).

Algorithm 1. Procedure of the differential-linear distinguisher
Ensure: The cipher E or random permutation R.
1: Set a counter T to 0.
2: for N plaintext pairs (P, P ⊕ Δin) do
3: Increment T if Γout · (O(P) ⊕ O(P ⊕ Δin)) = 0, where O is a encryption oracle

E or R.
4: end for
5: if 2T

N
− 1 deviates enough from 0 then

6: The data is draw from the cipher E.
7: else
8: A random permutation R.
9: end if

In Theorem 2 of [26], Selçuk showed the analytical results of the success
probability of a key-recovery attack in linear cryptanalysis. The main difference
between the linear context and the differential-linear context is that the sign
of the bias in the latter case is unaffected by any key bit (as all the affected
key bits are used twice and thus canceled). In [12], Blondeau et al. adapted the
framework of [26] and gave the success probability of a key-recovery attack in
the differential-linear context as

PS = Φ(2
√

N |pdl − 1
2
| − Φ−1(1 − 2−a)), (2)

where Φ is the cumulative distribution function of the standard normal distribu-
tion, pdl is the probability of differential-linear distinguisher, N is the number
of chosen plaintext pairs and a is the advantage of the attack as defined in [26].

Exact Analysis for the Correlation of Differential-Linear Distin-
guisher. In [12], Blondeau et al. showed an exact expression of the correlation
by differential-linear hull. With the following notations, the result is presented
as Theorem 1.

EΔin,Γout
= 2Pr[Γout · (E(X) ⊕ E(X ⊕ Δin)) = 0] − 1

εΔin,Γm
= 2Pr[Γm · (Ed(X) ⊕ Ed(X ⊕ Δin)) = 0] − 1

cΓm,Γout
= 2Pr[Γm · X = Γout · El(X)] − 1

Theorem 1 (Differential-Linear Hull [12]). Assume that the part Ed and
El of the block cipher E = El ◦ Ed are independent. Using the notation defined
in the above, for all Δin ∈ {0, 1}n \ 0n and Γout ∈ {0, 1}n \ 0n, we have

EΔin,Γout
=

∑
Γm∈{0,1}n

εΔin,Γm
c2Γm,Γout

. (3)

180 S. Wang et al.

In Eq. (3) all the linear approximation trails are taken into account when esti-
mating the correlation of the differential-linear approximation. Of course, it is
usually hard to evaluate the correlation by the above expression. In practice, one
mostly has to make the assumption of one strong linear approximation in El or
supporting subset in the intermediate layer, and verify the results experimentally.

3.2 Recent Improvements

In practice, the assumption of independence between Ed and El might arise a
problem that results in wrong estimation for the correlation. Currently, the only
way to get some evidence of this independence assumption is to experimentally
compute the correlation of differential-linear approximation over a reduced num-
ber of rounds of the cipher. As done in recent works [3,6,18,21], the subcipher
El is further divided to two parts E′

l and Em to obtain a more accurate esti-
mation for the correlation of differential-linear distinguisher. That is the cipher
is divided as E = E′

l ◦ Em ◦ Ed and the overall attack framework is depicted
in Fig. 3. Bar-On et al. [3] introduced a theoretical method called DLCT to
cover the middle part Em. Moreover, they showed that the DLCT could be effi-
ciently constructed using the Fast Fourier Transform. With the DLCT, they fur-
ther improved the differential-linear attacks on ICEPOLE and 8-round DES. In
CRYPTO 2021, Liu et al. [22] studied the differential-linear cryptanalysis from
an algebraic perspective by introducing a technique called DATF. Then they
developed a new theory of estimation of bias and techniques for key-recovery
in the differential-linear cryptanalysis. The techniques were applied to Ascon,
Serpent and Grain v1.

P Δin P ′

Ed Edp

X Δm X ′

Em Emr

Y Y ′Γ′
m Γ′

m

E′
l E′

l
q q

C C ′Γout Γout

Fig. 3. The structure of differential-linear distinguisher

Subsequently, Beierle et al. [6] presented several improvements of the
differential-linear attacks against ARX ciphers and successfully applied them

Differential-Linear Cryptanalysis 181

to Chaskey and ChaCha. In their work, the correlation of middle part Em is
experimentally evaluated. Let r denote the correlation of the middle part Em

of the cipher, i.e., r = Cor[Γ ′
m · (Em(X) ⊕ Em(X ⊕ Δm))]. Similarly, under

the assumption of independence between the subciphers, the probability of
differential-linear distinguisher can be simply estimated using Piling-up Lemma,
Pr[Γout · E(X) = Γout · E(X ⊕ Δin)] = 1

2 (1 + prq2), and one can distinguish the
cipher E from random permutation using N = O(p−2r−2q−4) chosen plaintext
pairs (P, P⊕Δin) using Algorithm 1. We pay attention to the part Ed where a dif-
ferential Δin

p→ Δm holds with probability Pr[Ed(X)⊕Ed(X⊕Δin) = Δm] = p.
Let Xd denote the set of all input values that define the right pairs for the dif-
ferential, i.e., Xd = {X ∈ {0, 1}n|Ed(X) ⊕ Ed(X ⊕ Δin) = Δm}. To amplify the
correlation of differential-linear distinguisher, Beierle et al. [6] exploited the spe-
cial structure of Ed called fully or probabilistic independent parts which could be
rather likely observed in many ARX ciphers, such as ChaCha and Chaskey. With
the help of fully or probabilistic independent parts, given one element X ∈ Xd,
one can generate many other elements in Xd for free or with some probability
(almost 1), independently of the secret key. However, we can not use this method
for a general permutation Ed due to that an arbitrary permutation might not
have this special structure.

4 Differential-Linear Cryptanalysis of KNOT-AEAD

In this section, we present the details of the conditional differential-linear attacks
against KNOT-AEAD. The KNOT’s design document [29] shows, if the length
of the associated data is zero, then no padding is applied and no associated data
is processed. In our attacks, we omit the processing associated data phase, and
our attack target is the initialization of KNOT-AEAD where nr′

0 rounds of the
round transformation are applied to the initial state. In the following, we denote
the targeted procedure by nr′

0-round KNOT-AEAD(k, b, r) which is shown in
Fig. 4. Our attacks are performed in known plaintext attack scenario, i.e., P0

and C0 can be accessed. Only single-key model is taken into account in which
the input difference is restricted on the nonce N which can be controlled by the
adversary, and the output linear mask is restricted on the first 64 or 192 bits of
a state, i.e., the rate part of a state.

K and N
load

p[nr′
0]

r ⊕

P0 C0

Initialization Encryption

Fig. 4. The targeted procedure of KNOT-AEAD

182 S. Wang et al.

4.1 Searching Differential-Linear Distinguishers

The diffusion layers of KNOT permutations are very simple and only make up
of a left rotation to each row. For example, for 8-round Em (from 3-rd to 10-th
round), when the single-bit input difference is at 0-th bit of 2-nd row, the output
difference at 55-th bit of 2-nd row is determined to be 1. To make the analysis
cover as many rounds as possible and observe higher correlation, we only consider
single-bit input difference and output linear mask of Em. For obtaining a good
differential-linear distinguisher, the procedure of our strategy is presented in the
following:

STEP 1. Search the best difference trail given an arbitrary single-bit output dif-
ference on Ed by using the MILP-aided (differential trail) searching method.
The best difference is denoted by Δin → Δm with the weight restriction
wt(Δm) = 1.

STEP 2. For all the single-bit input difference Δm, exhaustively search the best
output linear mask whose weight is restricted to 1 on Em by experiment-based
correlation estimation method. The best differential-linear characteristic is
denoted by Δm → Γ ′

m with the weight restriction wt(Δm) = wt(Γ ′
m) = 1.

STEP 3. Final, for all the single-bit input linear mask, exhaustively search the
best linear trail on E′

l by using MILP-aided (linear trail) searching method.
The best linear approximation is denoted by Γ ′

m → Γout with the weight
restriction wt(Γ ′

m) = 1.

Then many differential-linear distinguishers are generated by combining
results in the above three steps and the best one is chosen to launch our attacks.

4.2 Attack on 15-Round KNOT-AEAD(128,256,64)

In this subsection, we firstly show how to find the differential-linear distinguisher
of 15-round KNOT-AEAD(128,256,64). Then a key-recovery attack is presented
based on this distinguisher.

Differential-Linear Distinguisher. Since the (differential-linear) character-
istics of KNOT are rotation-invariant within a 64-bit word, all the single-bit
differences (or linear masks) can be classified into four cases. For each case, we
search the best result separately.

We searched all the differential trails of Ed up to 8 round in which the weight
of output difference is restricted 1. But, there are three possible effective differ-
ential trails which can be used in our attacks, two 1-round trails with probability
2−3 and output difference at words of 0/2-th row, one 2-round trail with proba-
bility 2−6 and output difference at word of 2-nd row. To increase the number of
rounds attacked as much as possible, we choose the 2-round trail in the following
analysis, which is shown in Table 3. In the presentation of trails, the row ordering
is from right to left, then from top-down, i.e., 0, 1, 2 and 3-th row respectively.

Differential-Linear Cryptanalysis 183

Table 3. A 2-round differential trail with probability 2−6

Round Difference

Input 0x0100000000000000 0x0100000000000000

0x0000000000000000 0x0000000000000000

1st round 0x0000000000000000 0x0100000000000000

0x0000000000000000 0x0000000000000000

2nd round 0x0000000000000000 0x0000000000000000

0x0000000000000000 0x0000000000000001

To amplify the correlation, some condition equations are imposed to make
the differential of Ed determined. Similar techniques are appeared in con-
ditional differential cryptanalysis [7,19]. Then the correlation of conditional
differential-linear distinguisher on the targeted cipher E = E′

l ◦ Em ◦ Ed can
be treated as the one on a degraded cipher E′

l ◦ Em. With the symbolic
computation in SageMath, the following 6 condition equations are imposed
to make the differential trail in Table 3 determined, i.e., 3 bits of 1-st round
Δa

(1)
0 [56] = n0[56]k1[56] ⊕ n0[56] ⊕ n1[56]k1[56] ⊕ n1[56] ⊕ k0[56] ⊕ 1 = 1,

Δa
(1)
1 [57] = k0[56]k1[56] ⊕ k1[56] ⊕ 1 = 0, Δa

(1)
3 [17] = n0[56] ⊕ n1[56] = 0,

and 3 bits of 2-nd round Δa
(2)
0 [56] = a

(1)
1 [56]a(1)

3 [56] ⊕ a
(1)
1 [56] ⊕ a

(1)
2 [56] = 0,

Δa
(2)
1 [57] = a

(1)
3 [56] = 0, Δa

(2)
3 [17] = a

(1)
1 [56] = 0, where a

(r)
i [j] (Δa

(r)
i [j])

denotes the (difference) expression of the j-th bit of i-th 64-bit word of r-
th round, ki[j] and ni[j] are the j-th bit of i-th 64-bit word of the secret
K and nonce N respectively. Generally, we impose the 6 condition equations
to make the corresponding differential trails determined, i.e., Δa

(1)
0 [i] = 1,

Δa
(1)
1 [(i + 1) mod 64] = 0, Δa

(1)
3 [(i + 25) mod 64] = 0, and Δa

(2)
0 [i] = 0,

Δa
(2)
1 [(i+ 1) mod 64] = 0, Δa

(2)
3 [(i+ 25) mod 64] = 0, for 0 ≤ i ≤ 63, which are

simplified as the below:

k0[i] = 0,
k1[i] = 1,

n0[i] ⊕ n1[i] = 0,
n0[i − 1]k1[i − 1] ⊕ (n1[i − 1] ⊕ 1)k0[i − 1]k1[i − 1] ⊕ n1[i − 1] ⊕ k0[i − 1] = 0,

n0[i − 8] = (n1[i − 8] ⊕ 1)k0[i − 8] ⊕ n1[i − 8] ⊕ k1[i − 8] ⊕ 1,
(n0[i − 25] ⊕ 1)n1[i − 25] = k0[i − 25] ⊕ k1[i − 25]

(4)
where indices should be modulo 64 which denote the order of bits in a word.
In the following, we will set the above condition equations to be satisfied and
perform sampling experiments of correlation estimation of Em.

For the subcipher E′
l , we searched all the linear trails up to 5 round in

which the weight of input linear mask is restricted 1. But there is only one
possible effective linear trail which can be used in our attacks, a 1-round trail

184 S. Wang et al.

with correlation 2−2 and input linear mask at word of 2-nd row, which is shown
in Table 4.

Table 4. A 1-round linear trail with correlation 2−2

Round Linear mask

Input 0x0000000000000000 0x0000000000000000

0x0000000000000000 0x0000000000000001

1st round 0x0000000000000000 0x0000000000000001

0x0000000000000000 0x0000000000000000

Targeting the result of 15-round KNOT-AEAD(128,256,64), we exhaustively
searched all the 64 single-bit output linear masks at word of 2-nd row for Em

of 12 rounds under the condition that the above difference equations in Eq. (4)
are satisfied. We use at most 235 random nonces for each of the 24 random
keys, so we can only measure a correlation of about |Cor| > c · 2−17.5 = 2−14

(where c ≈ √
128 for a reasonable estimation error). For the input difference

showed in Table 3 (i.e., i = 56), the best output linear mask is at 27-th bit of
2-nd row with correlation −2−11.9. Furthermore, once one or more condition
equations of Eq. (4) are not satisfied, we can not detect any correlation. As a
result, we obtain a differential-linear distinguisher of correlation −2−15.9 for 15-
round KNOT-AEAD(128,256,64) by splicing the above 1-round linear trail.

Key-Recovery Attack. As defined in [19], conditions that control the differ-
ence propagations can be classified into three types in a chosen plaintext/initial
value (IV) attack scenario, Type 0 conditions only involving bits of IV, Type 1
conditions only involving bits of IV and the secret key, Type 2 conditions only
involving bits of the secret key. Note that the adversary can impose the condi-
tion equations of Type 0 for free in a chosen plaintext/IV attack scenario. Since
condition equations might be key-dependent (only considering Type 1), we need
guess the values of expressions that consist of bits of the secret key and choose
the value of corresponding IV bits according to the condition equations. For the
case of Type 2, the differential-linear cryptanalysis might degrade into a weak
key-recovery attack. Assume that there are l = l1 + l2 independent expressions
of key bits, l1 conditions of Type 1 and l2 conditions of Type 2. The general
procedure of the conditional differential-linear attack is summarized as follows.

Procedure of the Conditional Differential-Linear Attack. For each guess
of expressions of key bits in Type 1, like in Algorithm 1, the adversary samples N
pairs of initial state (X,X ′) such that X⊕X ′ = Δin and counts how many times
the corresponding ciphertext pairs agree on the parity of output subset of bits
in Γout. To make the differential propagation in Ed determined, some bits of IV
called conditional IV bits are set according to the guessed values of expressions of
key bits and the condition equations (containing Type 0). Besides, the sampled

Differential-Linear Cryptanalysis 185

pairs of initial state should be generated by flipping non-conditional IV bits. In
order to obtain an effective distinguisher, there must be enough non-conditional
IV bits to generate initial states to observe the correlation of differential-linear
distinguisher. In Algorithm2, the details of this procedure are presented and the
complexity of Algorithm 2 is 2l1+1N . Note that we ignore the conditions of Type
2 in Algorithm 2, additional 2l2 executions of Algorithm 2 are needed if there are
enough other differential-linear distinguishers.

Algorithm 2. Procedure of the conditional differential-linear attack
Ensure: Set of candidates for some expressions of key bits of the cipher E.
1: for All 2l1 possible values of expressions of key bits imposed in Ed do
2: Set the conditional IV bits according to the condition equations.
3: Prepare N pairs of initial states (X, X ⊕ Δin) by varying non-conditional IV

bits.
4: Set a counter T to 0.
5: for N initial states (X, X ⊕ Δin) do
6: Increment T if Γout · (E(X) ⊕ E(X ⊕ Δin)) = 0.
7: end for
8: if 2T

N
− 1 deviates enough from 0 then

9: Keep the current value of expressions of key bits in CK as a candidate.
10: end if
11: end for
12: Reduce the system of expressions of key bits in CK and return the solutions.

For 15-round KNOT-AEAD(128,256,64), we launch the key-recovery attack
by Algorithm 2. Among Eq. (4), 1 of 6 belongs to Type 0 conditions, 3 of 6
belong to Type 1 conditions and 2 of 6 belong to Type 2 conditions. First, we
impose the Type 0 condition n0[i]⊕n1[i] = 0 for free. And the value of n0[i−25]
is set to zero (or n1[i−25] = 1) to prevent the corresponding condition equation
to degrade into a Type 2 condition. In Algorithm2, the conditional IV bits are
chosen as CIV = {n0[i], n0[i − 25]} ∪ {n1[i − 1], n0[i − 8], n1[i − 25]} and l1 = 3.
Once the values of the flipped bits FIV = {n0[i − 1] = 0, n1[i − 8]} are given,
we can distinguish k0[i] = 0, k1[i] = 1 from the other cases using Algorithm 2
with the time and data complexities 2l1+1N = 23+1+37.3 = 241.3 and the success
probability is almost 1 according to the formula in [12], Eq. (2). On average,
we will succeed by repeatedly executing Algorithm 2 for 2l2 = 4 times with
the index i varying which identifies the differential-linear distinguisher. In the
case k0[i] = 0, k1[i] = 1, three or four extra expressions of key bits can be
recovered, i.e., k0[i−1] = k1[i−1] = 1 or k0[i−1] = c1 (when k0[i−1]k1[i−1] =
0), (v ⊕ 1)k0[i − 8] ⊕ v ⊕ k1[i − 8] ⊕ 1 = c2, k0[i − 25] ⊕ k1[i − 25] = c3, where
n0[i−1] = 0 and v is the value of n1[i−8]. Note that when k0[i−1] = k1[i−1] = 1,
the corresponding condition equation holds no matter what the value of n1[i−1]
is. With the additional complexity of 21+1+37.3 = 239.3, one or two equations of
key bits can be derived by flipping the value of FIV bit by bit, i.e., k1[i − 1] ⊕
k0[i−1] = c′

1 (when k0[i−1]k1[i−1] = 0), (v ⊕1)k0[i−8]⊕v ⊕k1[i−8]⊕1 = c′
2.

186 S. Wang et al.

Therefore, we can totally obtain 7 independently linear equations of key bits in
the case k0[i] = 0, k1[i] = 1.

For i (0 ≤ i ≤ 63), we can perform the above process 64 times and obtain
some equations of key bits. On average, there are 16 indices i’s such that k0[i] =
0, k1[i] = 1, and 16 × 7 = 112 equations of key bits can be derived in total.
We have checked that the above linear system has on average 80 independently
linear equations by thousands of experiments. In conclusion, we can recover the
128-bit secret key for 15-round KNOT-AEAD(128,256,64) with the expected
time complexity of (64×241.3 +16×2×239.3)+248 = 248.8 and data complexity
of 64 × 241.3 + 16 × 2 × 239.3 = 247.5.

4.3 Attack on 17-Round KNOT-AEAD(128,384,192)

Similar to the attack of the primary AEAD member, we present the key-recovery
attack against KNOT-AEAD(128,384,192) in the following.

Differential-Linear Distinguisher. We searched all the differential trails with
single-bit output difference for Ed up to 9 round. But there are only two possible
effective differential trails, two 1-round trails with probability 2−3 and output
difference at words of 0/2-th row respectively. Note that the constants of ini-
tial state are treated as variables in our MILP-aided differential trail searching
method. In the following attack, we choose the 1-round differential trail which
is shown in Table 5.

Table 5. A 1-round differential trail with probability 2−3

Round Difference

Input 0x000000000000000000000000 0x010000000000000000000000

0x000000000000000000000000 0x000000000000000000000000

1st round 0x000000000000000000000000 0x000000000000000000000000

0x000000000000000000000000 0x000000000000000000000001

Taking the constants of initial state into account, we recompute the prop-
agation of the above 1-round differential trail by SageMath. When the input
difference is at i-th bit of 0-row (0 ≤ i ≤ 94), a single-bit output difference at
((i+8) mod 96)-th bit of 2-nd row can be observed with probability 2−1 or 2−2.
The difference propagation will be certain when the below condition equations
of difference are satisfied.

ni+96 = 0, ki+64 = 0, 0 ≤ i ≤ 31,
ki−32 = 0, ki+96 = 0, 32 ≤ i ≤ 63,
ki−32 = 0, 64 ≤ i ≤ 94.

(5)

Differential-Linear Cryptanalysis 187

For the subcipher Em of 13 rounds, all the single-bit output linear masks are
exhaustively searched when the input difference is at 0-th bit of 2-nd row. As a
result, we detected high correlation at 14-th bit of 0-th row with 2−12.6.

For the subcipher E′
l , we searched all the linear trails up to 7 round in which

the weight of input linear mask is restricted 1. Consequently, some rounds can
be expanded forward when the single-bit input linear mask is at 0-th row or 2-nd
row. From them, we choose three effective linear trails which can be used in our
attacks, trails for 1/2/3 round(s) with correlation 2−2/2−5/2−7 respectively and
input linear masks at words of 0-th row for them. By splicing the 3-round linear
trail which is shown in Table 6, we obtain a differential-linear trail of correlation
2−26.6 for 17-round KNOT-AEAD(128,384,192).

Table 6. A 3-round linear trail with correlation 2−7

Round Linear mask

Input 0x000000000000000000000000 0x000000000000000000000001

0x000000000000000000000000 0x000000000000000000000000

1st round 0x000000000000000000000000 0x000000000000000000000001

0x000000000000000000000000 0x000000000000000000000100

2nd round 0x000000000000000000000000 0x000000000000000000000101

0x000000000000000000000000 0x000000000000000000000100

3rd round 0x000000000000000000000202 0x000000000000000000000100

0x000000000000000000000000 0x000000000000000000000000

Key-Recovery Attack. In the case ki−32 = 0 (64 ≤ i ≤ 94), the high corre-
lation can be observed with time and data complexities of 21+57.2 = 258.2 with
success probability of almost 1 by Algorithm 2 where no key expression needs
to be guessed. We will succeed on average by repeatedly running Algorithm2
for 2 times with different indices. In conclusion, with the time complexity of
21+58.2 = 259.2 and data complexity of 258.2, we can on average distinguish 17-
round KNOT-AEAD(128,384,192) from random permutation and recover one
bit of the secret key. Similar analysis can be obtained for any i ∈ [0, · · · , 63].

5 Conclusion

In this paper, by some techniques of differential-linear cryptanalysis, we focus
on the security for the initialization phase of two members of the KNOT-AEAD
family. Based on an observation that the diffusion layers of KNOT permuta-
tions are very simple, our strategy is to restrict the input difference and out-
put linear mask of Em to be single-bit such that we can obtain a differential-
linear distinguisher which covers as many rounds as possible and has higher
correlation. In addition, to amplify the correlation, some condition equations

188 S. Wang et al.

are imposed to make the differential of Ed determined which might be key-
dependent. Then we can carry the key-recovery attacks based on the condi-
tional differential-linear distinguishers. We apply these cryptanalytic techniques
to KNOT-AEAD(128,256,64) and KNOT-AEAD(128,384,192). As a result, our
attacks significantly improve the previous analysis results on them.

Acknowledgements. We are very grateful to Wentao Zhang for her helpful sugges-
tions on this paper. We also thank the anonymous reviewers for their valuable com-
ments.

References

1. Aagaard, M., Al Tawy, R., Gong, G., Mandal, K., Rohit, R., Zidaric, N.:
Wage: an authenticated cipher submission to the NIST LWC competition.
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/
documents/round-2/spec-doc-rnd2/wage-spec-round2.pdf

2. Aumasson, J.-P., Fischer, S., Khazaei, S., Meier, W., Rechberger, C.: New features
of Latin dances: analysis of salsa, chacha, and rumba. In: Nyberg, K. (ed.) FSE
2008, LNCS, vol. 5086, pp. 470–488. Springer, Heidelberg (2008). https://doi.org/
10.1007/978-3-540-7-71039-4 30

3. Bar-On, A., Dunkelman, O., Keller, N., Weizman, A.: DLCT: a new tool for
differential-linear cryptanalysis. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT
2019. LNCS, vol. 11476, pp. 313–342. Springer, Cham (2019). https://doi.org/
10.1007/978-3-030-17653-2 11

4. Beierle, C., et al.: Schwaemm and Esch: lightweight authenticated encryption
and hashing using the sparkle permutation family. https://csrc.nist.gov/CSRC/
media/Projects/lightweight-cryptography/documents/round-2/spec-doc-rnd2/
sparkle-spec-round2.pdf

5. Beierle, C., et al.: Skinny-Aead and skinny-hash v1.1. https://csrc.nist.gov/
CSRC/media/Projects/lightweight-cryptography/documents/round-2/spec-doc-
rnd2/SKINNY-spec-round2.pdf

6. Beierle, C., Leander, G., Todo, Y.: Improved differential-linear attacks with appli-
cations to ARX ciphers. In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO 2020.
LNCS, vol. 12172, pp. 329–358. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-56877-1 12

7. Ben-Aroya, I., Biham, E.: Differential cryptanalysis of lucifer. In: Stinson, D.R.
(ed.) CRYPTO 1993. LNCS, vol. 773, pp. 187–199. Springer, Heidelberg (1993).
https://doi.org/10.1007/3-540-48329-2 17

8. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: Permutation-based encryp-
tion, authentication and authenticated encryption. Directions in Authenticated
Ciphers, pp. 159–170 (2012)

9. Biham, E., Dunkelman, O., Keller, N.: Enhancing differential-linear cryptanalysis.
In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp. 254–266. Springer,
Heidelberg (2002). https://doi.org/10.1007/3-540-36178-2 16

10. Biham, E., Dunkelman, O., Keller, N.: Differential-linear cryptanalysis of serpent.
In: Johansson, T. (ed.) FSE 2003. LNCS, vol. 2887, pp. 9–21. Springer, Heidelberg
(2003). https://doi.org/10.1007/978-3-540-39887-5 2

https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/round-2/spec-doc-rnd2/wage-spec-round2.pdf
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/round-2/spec-doc-rnd2/wage-spec-round2.pdf
https://doi.org/10.1007/978-3-540-7-71039-4_30
https://doi.org/10.1007/978-3-540-7-71039-4_30
https://doi.org/10.1007/978-3-030-17653-2_11
https://doi.org/10.1007/978-3-030-17653-2_11
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/round-2/spec-doc-rnd2/sparkle-spec-round2.pdf
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/round-2/spec-doc-rnd2/sparkle-spec-round2.pdf
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/round-2/spec-doc-rnd2/sparkle-spec-round2.pdf
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/round-2/spec-doc-rnd2/SKINNY-spec-round2.pdf
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/round-2/spec-doc-rnd2/SKINNY-spec-round2.pdf
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/round-2/spec-doc-rnd2/SKINNY-spec-round2.pdf
https://doi.org/10.1007/978-3-030-56877-1_12
https://doi.org/10.1007/978-3-030-56877-1_12
https://doi.org/10.1007/3-540-48329-2_17
https://doi.org/10.1007/3-540-36178-2_16
https://doi.org/10.1007/978-3-540-39887-5_2

Differential-Linear Cryptanalysis 189

11. Biham, E., Shamir, A.: Differential cryptanalysis of des-like cryptosystems. In:
Menezes, A., Vanstone, S.A. (eds.) CRYPTO 1990. LNCS, vol. 537, pp. 2–21.
Springer, Heidelberg (1990). https://doi.org/10.1007/3-540-38424-3 1

12. Blondeau, C., Leander, G., Nyberg, K.: Differential-linear cryptanalysis revisited.
J. Cryptol. 30(3), 859–888 (2017)

13. Canteaut, A., et al.: Saturnin: a suite of lightweight symmetric algorithms for
post-quantum security. https://csrc.nist.gov/CSRC/media/Projects/lightweight-
cryptography/documents/round-2/spec-doc-rnd2/saturnin-spec-round2.pdf

14. Choudhuri, A.R., Maitra, S.: Significantly improved multi-bit differentials for
reduced round salsa and chacha. IACR Trans. Symmetric Cryptol. 2016(2), 261–
287 (2016)

15. Coutinho, M., Souza Neto, T.C.: New multi-bit differentials to improve attacks
against chacha. IACR Cryptol. ePrint Arch. 2020, 350 (2020)

16. Dobraunig, C., Eichlseder, M., Mendel, F., Schläffer, M.: Cryptanalysis of ASCON.
In: Nyberg, K. (ed.) CT-RSA 2015. LNCS, vol. 9048, pp. 371–387. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-16715-2 20

17. Dunkelman, O., Indesteege, S., Keller, N.: A differential-linear attack on 12-round
serpent. In: Chowdhury, D.R., Rijmen, V., Das, A. (eds.) INDOCRYPT 2008.
LNCS, vol. 5365, pp. 308–321. Springer, Heidelberg (2008). https://doi.org/10.
1007/978-3-540-89754-5 24

18. Gutiérrez, A.F., Leurent, G., Naya-Plasencia, M., Perrin, L., Schrottenloher, A.,
Sibleyras, F.: New results on Gimli: full-permutation distinguishers and improved
collisions. In: Moriai, S., Wang, H. (eds.) ASIACRYPT 2020. LNCS, vol. 12491,
pp. 33–63. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64837-4 2

19. Knellwolf, S., Meier, W., Naya-Plasencia, M.: Conditional differential cryptanalysis
of NLFSR-based cryptosystems. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol.
6477, pp. 130–145. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-
642-17373-8 8

20. Langford, S.K., Hellman, M.E.: Differential-linear cryptanalysis. In: Desmedt, Y.
(ed.) CRYPTO 1994. LNCS, vol. 839, pp. 17–25. Springer, Heidelberg (1994).
https://doi.org/10.1007/3-540-48658-5 3

21. Leurent, G.: Improved differential-linear cryptanalysis of 7-round Chaskey with
partitioning. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol.
9665, pp. 344–371. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-
662-49890-3 14

22. Liu, M., Lu, X., Lin, D.: Differential-linear cryptanalysis from an algebraic perspec-
tive. In: Malkin, T., Peikert, C. (eds.) CRYPTO 2021, Part III. LNCS, vol. 12827,
pp. 247–277. Springer Cham (2021). https://doi.org/10.1007/978-3-030-84252-9 9

23. Lu, J.: A methodology for differential-linear cryptanalysis and its applications.
Des. Codes Cryptogr. 77(1), 11–48 (2015)

24. Matsui, M.: Linear cryptanalysis method for DES cipher. In: Helleseth, T. (ed.)
EUROCRYPT 1993. LNCS, vol. 765, pp. 386–397. Springer, Heidelberg (1993).
https://doi.org/10.1007/3-540-48285-7 33

25. Mouha, N., Wang, Q., Gu, D., Preneel, B.: Differential and linear cryptanalysis
using mixed-integer linear programming. In: Wu, C., Yung, M., Lin, D. (eds.)
Inscrypt 2011. LNCS, vol. 7537, pp. 57–76. Springer, Heidelberg (2011). https://
doi.org/10.1007/978-3-642-34704-7 5

26. Selçuk, A.A.: On probability of success in linear and differential cryptanalysis. J.
Cryptol. 21(1), 131–147 (2008)

https://doi.org/10.1007/3-540-38424-3_1
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/round-2/spec-doc-rnd2/saturnin-spec-round2.pdf
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/round-2/spec-doc-rnd2/saturnin-spec-round2.pdf
https://doi.org/10.1007/978-3-319-16715-2_20
https://doi.org/10.1007/978-3-540-89754-5_24
https://doi.org/10.1007/978-3-540-89754-5_24
https://doi.org/10.1007/978-3-030-64837-4_2
https://doi.org/10.1007/978-3-642-17373-8_8
https://doi.org/10.1007/978-3-642-17373-8_8
https://doi.org/10.1007/3-540-48658-5_3
https://doi.org/10.1007/978-3-662-49890-3_14
https://doi.org/10.1007/978-3-662-49890-3_14
https://doi.org/10.1007/978-3-030-84252-9_9
https://doi.org/10.1007/3-540-48285-7_33
https://doi.org/10.1007/978-3-642-34704-7_5
https://doi.org/10.1007/978-3-642-34704-7_5

190 S. Wang et al.

27. Sun, S., et al.: Towards finding the best characteristics of some bit-oriented block
ciphers and automatic enumeration of (related-key) differential and linear charac-
teristics with predefined properties. Cryptology ePrint Archive, Report 2014/747
(2014). https://ia.cr/2014/747

28. Sun, S., Hu, L., Wang, P., Qiao, K., Ma, X., Song, L.: Automatic security evaluation
and (related-key) differential characteristic search: application to Simon, present,
lblock, DES(L) and other bit-oriented block ciphers. In: Sarkar, P., Iwata, T. (eds.)
ASIACRYPT 2014, Part I. LNCS, vol. 8873, pp. 158–178. Springer, Heidelberg
(2014). https://doi.org/10.1007/978-3-662-45611-8 9

29. Zhang, W., et al.: KNOT: algorithm specifications and supporting docu-
ment. https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/
documents/round-2/spec-doc-rnd2/knot-spec-round.pdf

30. Zhang, W., Ding, T., Zhou, C., Ji, F.: Security analysis of KNOT-AEAD
and KNOT-HASH. https://csrc.nist.gov/CSRC/media/Events/lightweight-
cryptography-workshop-2020/documents/papers/security-analysis-of-KNOT-
lwc2020.pdf

https://ia.cr/2014/747
https://doi.org/10.1007/978-3-662-45611-8_9
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/round-2/spec-doc-rnd2/knot-spec-round.pdf
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/round-2/spec-doc-rnd2/knot-spec-round.pdf
https://csrc.nist.gov/CSRC/media/Events/lightweight-cryptography-workshop-2020/documents/papers/security-analysis-of-KNOT-lwc2020.pdf
https://csrc.nist.gov/CSRC/media/Events/lightweight-cryptography-workshop-2020/documents/papers/security-analysis-of-KNOT-lwc2020.pdf
https://csrc.nist.gov/CSRC/media/Events/lightweight-cryptography-workshop-2020/documents/papers/security-analysis-of-KNOT-lwc2020.pdf

Revisit Two Memoryless State-Recovery
Cryptanalysis Methods on A5/1

Mingxing Wang1,2 and Yonglin Hao1(B)

1 State Key Laboratory of Cryptology, P.O. Box 5159, Beijing 100878, China
haoyonglin@yeah.net

2 The 6th Research Institute of China Electronics Corporation,

Beijing 100083, China

Abstract. At ASIACRYPT 2019, Zhang proposes a near collision attack
on A5/1. He claims that such an attack method can recover the 64-bit
A5/1 state with a time complexity around 232 cipher ticks and requires
negligible memory complexities. Soon after its proposal, Zhang’s near
collision attack is severely challenged by Derbez et al. who claim that
Zhang’s attack cannot have a time complexity lower than Golic’s memo-
ryless guess-and-determine attack dating back to EUROCRYPT 1997. In
this paper, we study both the guess-and-determine and the near collision
attacks for recovering A5/1 states with negligible memory complexities. In
order to make a fair comparison, we recover the state s0 using both meth-
ods. We propose a new guessing technique that can construct linear equa-
tion filters in a more efficient manner. When evaluating time complexities,
we take the filtering strength of the linear equation systems into account
making the complexities more convincing. According to our detailed anal-
ysis, the new guess-and-determine attack can recover the state s0 with a
time complexity of 243.91 simple operations. The time complexity for the
near collision attack is 250.57 simple operations.

Keywords: Stream ciphers · A5/1 · Guess-and-determine · Near
collision attack

1 Introduction

A5/1 is a typical LFSR-based stream cipher with an irregular clocking mecha-
nism designed in 1980’s for the GSM standard. Ever since its proposal, A5/1 has
been attacked with various cryptanalytic methods such as time/memory/data
tradeoff attacks, guess-and-determine attacks, near collision attack (NCA) etc.
[1–8] Most of the practical attacks on A5/1 requires large precomputed rainbow
table which significantly increases the memory complexities [9–11]. Since the
implementation of high-memory-requirement attacks are usually quite expen-
sive, the attacks with negligible memory complexities, which we refer in this
paper as the “memoryless” attacks, are usually preferable.

The 1st memoryless state-recovery attack on A5/1 is proposed by Golic [1] at
EUROCRYPT 1997. The basic guess-and-determine attack in [1] requires 243.15

c© Springer Nature Switzerland AG 2021
Y. Yu and M. Yung (Eds.): Inscrypt 2021, LNCS 13007, pp. 191–211, 2021.
https://doi.org/10.1007/978-3-030-88323-2_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-88323-2_10&domain=pdf
https://doi.org/10.1007/978-3-030-88323-2_10

192 M. Wang and Y. Hao

steps, where each step in this attack is much more complicated, since it is based
on the solution of a linear system as pointed out in [9]. The latest memoryless
result on A5/1 is proposed at Asiacrypt 2019 where Zhang [8] claims that, by
utilizing some near collision properties, the complexity of A5/1 state recovery can
be lowered to only around 232 cipher ticks with a negligible memory requirement.
Soon after its proposal, Zhang’s result is challenged severely: Derbez et al. point
out in [12] that since the attack in [8] is not fully implemented, according to their
practical verification, the non-randomness claimed by Zhang in [8] do not even
exist. Therefore, Derbez et al. draw the conclusion that Zhang’s near collision
attack in [8] cannot have a complexity lower than that of Golic’s basic guess-
and-determine attack in [1]. However, Derbez et al. has not fully implemented
the Zhang’s near collision attack either making it unknown whether the near
collision method can still be regarded as an effective cryptanalysis tool for A5/1
state recovery.

It is also noticeable that both Golic’s attack and Zhang’s attack use a system
of linear equations as a filter for wrong guesses. But neither Golic nor Zhang has
ever evaluated the strength of such a filter in practice. Therefore, the complexities
of both the guess-and-determine and near collision attacks should be reevaluated
in a more detailed manner.

Our Contributions. In this paper, we revisit the memoryless attacks on A5/1
using both the guess-and-determine and the near collision methods. We first
propose a new guessing technique: instead of guessing the clock bits directly, we
guess the encoded move patterns so the linear systems can be constructed more
efficiently. With this method, we are able to acquire a new guess-and-determine
attack that can recover the initial state with a time complexity of 243.91 simple
operations. Then, we analyze the near collision attack given by Zhang in [8] only
to find that the complexities in [8] are somewhat optimistic. We point out the
mistakes made in [8] and give corrections. According to our detailed analysis, the
near collision attack has a time complexity 250.57 simple operations. The C++
source codes for computing the statistics in this paper are available online1.

This paper is organized as follows. Section 2 provides brief introduction to the
A5/1 stream cipher and general process of the two memoryless state-recovery
attacks. Section 3 introduces a new guessing technique: the move pattern guess-
ing technique. Section 4 introduces our move-guessing based guess-and-determine
attack on A5/1. Section 5 revisits Zhang’s near collision attack: we point out the
mistakes made in [8] and provide new collision attacks with correct complexities.
Section 6 conclude the paper and point out some future works.

2 Preliminary

In Sect. 2.1, we give a brief introduction to the keystream generation phase of the
A5/1 stream cipher. In Sect. 2.2, we briefly review the main idea of Golic’s guess-
and-determine attack [1]. In Sect. 2.3, we give the general process of Zhang’s near
collision attack [8].
1 https://github.com/peterhao89/A51Attacks.

https://github.com/peterhao89/A51Attacks

Revisit Two Memoryless State-Recovery Cryptanalysis Methods on A5/1 193

2.1 The Keystream Generation Procedure of A5/1

A5/1 has a 64-bit internal state consisting of 3 registers of sizes 19, 22, 23
respectively. We denote the 64-bit state at time t (t = 0, 1, 2, . . .) as

st = (R1t,R2t,R3t)

= (st[0, . . . , 18], st[19, . . . , 40], st[41, . . . , 63])

= (R1t[0, . . . , 18],R2t[0, . . . , 21],R3t[0, . . . , 22])

(1)

Before generating the output bit zt, A5/1 round function will update the internal
state st → st+1 in a stop-and-go manner as follows:

1. Compute majt as

majt = (R1t[8] · R2t[10]) ⊕ (R1t[8] · R3t[10]) ⊕ (R2t[10] · R3t[10])

= (st[8] · st[29]) ⊕ (st[8] · st[51]) ⊕ (st[29] · st[51])
(2)

2. If R1t[8] = st[8] �= majt, R1t+1 ← R1t, otherwise, call updateR1 as follows:

R1t+1[i] ←
{
R1t[i − 1] i ∈ [1, 18]

R1t[18] ⊕ R1t[17] ⊕ R1t[16] ⊕ R1t[13]
(3)

3. If R2t[10] = st[29] �= majt, R2t+1 ← R2t, otherwise, call updateR2 as
follows:

R2t+1[i] ←
{
R2t[i − 1] i ∈ [1, 21]

R2t[21] ⊕ R2t[20]
(4)

4. If R3t[10] = st[51] �= majt, R3t+1 ← R3t, otherwise, call updateR3 as
follows:

R3t+1[i] ←
{
R3t[i − 1] i ∈ [1, 22]

R3t[22] ⊕ R3t[21] ⊕ R3t[20] ⊕ R3t[7]
(5)

Then, the output keystream bit zt is generated as

zt =R1t+1[18] ⊕ R2t+1[21] ⊕ R3t+1[22]

= st+1[18] ⊕ st+1[40] ⊕ st+1[63]
(6)

In the remainder of this paper, we uniformly use st[i] to represent the i-th bit
of the whole state and avoid using R1[j],R2[k],R3[�]’s.

2.2 A Brief Review of Golic’s Guess-and-Determine Attack

In Golic’s guess-and-determine model [1], the adversary aims at recovering the
initial state s1: the state right before the generation of z0. For each step i =
1, 2 . . ., whether the registers R1,R2,R3 are updated or not depends on the
three clock bits si[8, 29, 51]. With the knowledge of si[8, 29, 51], each bit of si+1

194 M. Wang and Y. Hao

can be represented as a linear combination of si bits. For each guess si[8, 29, 51] =
(ρ, �, σ) ∈ F

3
2, the adversary can deduce 3 linear equations:⎧⎪⎨

⎪⎩
si[8] = ρ

si[29] = �

si[51] = σ

According to the output zi, the adversary can further deduce 1 linear equation:

zi = si+1[18] ⊕ si+1[40] ⊕ si+1[63]

In other words, by guessing 3 clock bits si[8, 29, 51], the adversary can deduce
4 linear equations of state bits. Therefore, in [1], Golic propose a basic attack
that guess 3t clock bits s1[8, 29, 51] . . . st[8, 29, 51]. Based on the output bits
z0, . . . , zt+1, the adversary can deduce a system of averaging 1 + 3t + 4

3 t linear
equations. According to [1], for t ≥ 14.38, the system consisting of 1 + 3t + 4

3 t ≥
63.32 equations can identify the correct guess uniquely with high probability.
Although such a “high probability” is never actually evaluated, the complexity
of Golic’s attack is usually believed as 23t ≥ 243.15 steps where each step needs
the solution of a linear system.

2.3 The General Process of Zhang’s Near Collision Attack

Unlike Golic’s recovering s1, Zhang’s near collision attack in [8] aims at recov-
ering the init state s0. They divide the 64 s0 bits into constraint part (CP) and
the rest part (RP). The CP part consists of 33 bits related to the 5 output bits
z0, . . . , z4. The other 31 bits are all categorized as RP.

The most crucial step in Zhang’s attack in [8] is the recovery of the 33-bit
CP based on the first 5 keystream bits z0, . . . , z4. Such a CP-recovery step can
be summarized as the list-merging process in Fig. 1. In Fig. 1, the list Lzi...zj

(i < j) contains the state si’s whose state bits are only partially known: for
each si ∈ Lzi...zj , the known bits are at positions λ ⊆ [0, 63] s.t. the knowledge
of si[λ] can produce the consecutive output bits zi, . . . , zj following the A5/1
keystream generation process. Specifically, for a list Lzizi+1 at Level 1, 2 consec-
utive keystream bits zizi+1 can be related to at most 15 state bits at positions
λ0 in (7).

λ0 = {7, 8, 16, 17, 18, 28, 29, 38, 39, 40, 50, 51, 61, 62, 63} (7)

The number of known state bits for 3, 4 and 5 consecutive keystream bits will
grow to at most 21, 27 and 33 respectively. Therefore, finally at Level 4, it is
claimed by Zhang in [8] each element s0 ∈ Lz0z1z2z3 should contain 33 bits. When
merging two lists at the same level, the known bits at the overlapped positions
are to be used as filters: only the elements share the same value at the overlapped
positions can be merged as an element in the list in the next level. Since each
element in the lists contains at most 33 known bits, it is estimated in [8] that

Revisit Two Memoryless State-Recovery Cryptanalysis Methods on A5/1 195

Level 1

Level 3

Level 2

Level 4

Fig. 1. The general process of Zhang’s attack in [8]

the elements in all lists can be stored with 5 bytes of memory. However, the
merging process in Fig. 1 is not fully implemented, only the process from Level
1 to 2 is implemented as can be seen from the source codes2. Without detailed
analysis, Zhang theoretically estimated that the whole list merging process could
be finished with a time complexity 228.3 cipher ticks and the final list Lz0z1z2z3z4

only contains 216.6 elements.
Another feature of Zhang’s attack is the construction of the 4 initial lists:

they employ the idea of near collision to construct the lists Lz0z1 , . . . , Lz3z4 .
They consider the low-hamming-weight internal state difference (ISD) Δs as
follows:

D2 := {Δs|hw(Δs) ≤ 2 and Δs[i] = 0 for all i /∈ λ1} (8)

Apparently, there are
(
15
0

)
+

(
15
1

)
+

(
15
2

)
= 121 elements in the ISD set D2 in (8).

But only 99 ISDs in D2 can result in the 2-bit output difference 0x3. Therefore,
the adversary only needs to store such 99 low-hamming-weight ISD’s in a table
T defined in (9).

T :=
{
Δs ∈ D2|∃s0 ⇒ z0z1(s0) ⊕ z0z1(s0 ⊕ Δs) = 0x3

}
(9)

For a static 2-bit output z0z1, Algorithm 1 is proposed to generate list of states
Lz0z1 , making sure that all elements in the list can result in z0z1 directly. In
Zhang’s attack, the adversary sets the number limit T = 4 ·215/99 = 1323 which
results in the output list size 7963 and the correct state can be covered by Lz0z1

with probability p1 = 0.9835. In order to improve the probability that the list
2 https://github.com/martinzhangbin/gsmencryption.

https://github.com/martinzhangbin/gsmencryption

196 M. Wang and Y. Hao

contains the correct state, a distilling process is further proposed. For positive
integers η and ζ, the distilling process first generate η × ζ lists with Algorithm 1;
then, intersection and union operations are carried out as (10).

Lz0z1 ← U(η, ζ) =
η⋃

i=1

⎛
⎝ ζ⋂

j=1

Li,j
z0z1

⎞
⎠ where Li,j

z0z1 ← getList(z0z1, T) (10)

According to [8], when η = 2, ζ = 6, the correct state can be covered by Lz0z1

with probability 0.9903.

Algorithm 1. Generate the internal states resulting in the given 2-bit output
1: procedure getList(output bits z0z1 ∈ F

2
2, the number limit T)

2: Initialize an empty list Lz0z1 ← φ
3: Declare ẑ0ẑ1 ← z0z1 ⊕ 0x3

4: Generate T states ŝ0 that only have non-zero elements at positions λ1 and can
result in the output ẑ0ẑ1

5: for Δs ∈ T do
6: Construct state s0

7: if s0 can result in the output z0z1 then
8: Update Lz0z1 ← Lz0z1 ∪ {s0}
9: end if

10: end for
11: Return Lz0z1

12: end procedure

After the CP-recovery phase, the adversary has already acquire 216.6 s0’s
in Lz0z1z2z3 . For each such s0, the corresponding s5 can be directly computed
with the knowledge of 33 bits in CP. For RP-recovery, Zhang guess the 3y clock
bits in (11) and construct linear equations of unknown RP bits according both
guesses and output bits z5, . . . , z5+y−1.

s5[8, 29, 51], . . . , s5+y−1[8, 29, 51] (11)

They claim that the RP bits can be recovered with complexity approximately 232

cipher tickes which is also the overall time complexity of the whole attack. But
there is no further details on how the different y’s can affect the complexities.
It is unknown how effective the linear equation system can be in filtering wrong
states. It is also unknown which y should be used to identify the uniquely correct
internal state s0.

We are to show that Zhang’s claims above are not accurate enough in
Sect. 5.1. The analysis of y-effects are to be analyzed in detail in Sect. 5.2 only to
find that Zhang’s complexity analysis is underestimated due to the inaccurate
parameters.

Revisit Two Memoryless State-Recovery Cryptanalysis Methods on A5/1 197

2.4 Unit of the Time Complexity

It is noticeable that the main operation of Golic’s attack in [1] is solving the
linear equation systems. Therefore, they use the time of solving the linear equa-
tion system solving by once as the unit of the time complexity. On the contrary,
Zhang’s near collision attack in [8] regard the cipher tick as the unit of time com-
plexity. However, the linear equation system solving process in Zhang’s attack
is not strictly transformed to cipher ticks. In fact, the number of cipher ticks
for solving a linear equation system depends on the numbers of both the vari-
ables and the equations in the system. The numbers of variables and equations
are dynamic values depending on the bit guesses so an accurate transformation
between the two units is quite difficult. Therefore, in this paper, we use Golic’s
time complexity unit in Golic’s attack, which is the time of solving the linear
equation system by once, and cipher ticks as time complexity units when talking
about the attack in [8].

3 The Move Pattern Guessing Technique

In the Sect. 3.1, we introduce the concept of the move pattern and our move
guessing technique. Section 3.2 compares the move guessing with the conven-
tional clock guessing technique.

3.1 The Basic Concepts of the Move Pattern

For all 23 st[8, 29, 51] values, there are 4 possible move patterns denoted as Move
0, 1, 2 and 3. Each movement corresponds to 2 st[8, 29, 51] values and can also
be represented as linear equations of state bits. Move 0–3 and their equations
are defined as follows:

Move 0. updateR1 in (3), updateR2 in (4) and updateR3 in (5) are all called.
The st[8, 29, 51] values are (0, 0, 0) and (1, 1, 1). The linear equations are:{

st[8] ⊕ st[29] = 0

st[8] ⊕ st[51] = 0
⇔

{
R1t[8] = R2t[10]

R1t[8] = R3t[10]
(12)

Move 1. Only updateR2 and updateR3 are called. The st[8, 29, 51] values are
(0, 1, 1) and (1, 0, 0). The equations are:{

st[8] ⊕ st[29] = 1

st[8] ⊕ st[51] = 1
⇔

{
R1t[8] = R2t[10] ⊕ 1

R1t[8] = R3t[10] ⊕ 1
(13)

Move 2. Only updateR1 and updateR3 are called. The st[8, 29, 51] values are
(1, 0, 1) and (0, 1, 0). The equations are:{

st[8] ⊕ st[29] = 1

st[8] ⊕ st[51] = 0
⇔

{
R1t[8] = R2t[10] ⊕ 1

R1t[8] = R3t[10]
(14)

198 M. Wang and Y. Hao

Move 3. Only updateR1 and updateR2 are called. The st[8, 29, 51] values are
(1, 1, 0) and (0, 0, 1). The equations are:{

st[8] ⊕ st[29] = 0

st[8] ⊕ st[51] = 1
⇔

{
R1t[8] = R2t[10]

R1t[8] = R3t[10] ⊕ 1
(15)

We denote the movement st → st+1 as mt ∈ F
2
2 = {0, 1, 2, 3}. So the movements

before generating the output keystream bits z0, . . . , zt are m0, . . . ,mt. In our
guess and determine attack, we first guess the movement mt corresponding to
st → st+1 and maintains a linear equation set BC by adding new equations
corresponding to the new movement mt and the output zt. For each step t,
there are 3 linear equations: 2 are from one of (12), (13), (14), (15) according to
the move guess and the rest is from the output zt as

st+1[18] ⊕ st+1[40] ⊕ st+1[63] = zt (16)

So each move guess can deduce 3 equations. In Sect. 4, we guess the moves
m0, . . . ,mt−1 and maintain a linear equations system to distinguish the correct
state s0 from the wrong ones.

3.2 Move Guessing vs. Clock Guessing

Our move guessing method differs from the previous guessing strategies. In
previous A5/1 cryptanalysis, the adversary guesses directly the 3 clock bits
st[8, 29, 51] rather than the 2-bit move mt. Apparently, our 2 move bits can
be deduced from the 3 clock bits. Let mt[0, 1] = (μ, ν) ∈ F

2
2 and the correspond-

ing clock bits are st[8, 29, 51] = (ρ, �, σ) ∈ F
3
2, the two bits (μ, ν) can be deduced

from (ρ, �, σ) as (17)
μ = ρ̄�̄σ ⊕ ρ̄�σ ⊕ ρ�̄σ̄ ⊕ ρ�σ̄

ν = ρ̄�̄σ ⊕ ρ̄�σ̄ ⊕ ρ�̄σ ⊕ ρ�σ̄
(17)

where x̄ is the NOT operation equivalent to x ⊕ 1. From the linear equation
point of view, a 3-bit guess st[8, 29, 51] = (ρ, �, σ) is naturally 3 equations.
The 3 equations are also equivalent to 2 move-oriented equations and 1 bit
value equation st[8] = ρ. For example, if the clock bit values are of the form
st[8, 29, 51] = (ρ, ρ, ρ), which corresponds to the Move 0, the 3 equations can
also be regarded as adding st[8] = ρ to the Move 0 constraints in (12) as shown
in (18). ⎧⎪⎨

⎪⎩
st[8] = ρ

st[29] = ρ

st[51] = ρ

⇔

⎧⎪⎨
⎪⎩

st[8] = ρ{
st[8] ⊕ st[29] = 0

st[8] ⊕ st[51] = 0

(18)

Such an equivalence is also true for other clock bit values and move patterns.
Adding the linear equations of the output in (16), we know that each 3-bit guess
of the clock bits st[8, 29, 51] can deduce 4 equations while each of our 2-bit guess
of mt can deduce 3 equations. On average, our move guessing method seems

Revisit Two Memoryless State-Recovery Cryptanalysis Methods on A5/1 199

more efficient because each move bit guess can result in 1.5 equations while the
number of linear equations for each clock bit guess is no more than 1.34. But it
remains to be checked whether the clock-oriented equations can also be better
filters for eliminating wrong internal states. To make fair comparison between
the two strategies, we apply both move and clock guessing strategy in the RP-
recovery phase of Zhang’s near collision attack in [8]. The results show that move
guessing can result in slightly lowered complexities than its clock counterpart.
Details can be seen later in Sect. 5.2 and Sect. 5.3.

4 Guess-and-Determine Attack Based on the Move
Guessing Technique

Instead of Golic’s recovering s1, we propose a state recovery attack on A5/1
targeting at s0 so as to make a fair comparison with the near collision attack
in [8]. As can be seen, the move equations (12), (13), (14), (15) and the output
equation (16) correspond to the internal state at different time instances. But
our attack is targeted to recovering the initial state s0. Therefore, we need to
represent the internal states at different time instance t with s0 so that the
equations are represented by s0 bits as well. With the knowledge of m0, . . . ,mt−1,
st can be iteratively deduced from s0 and each st bit can be expressed as a
linear combination of s0 bits. Since a linear combination of s0 bits can also be
regarded as a inner-product of s0 and a 64-bit word w ∈ F

64
2 , we can track each

s0, . . . , st bits with 64-bit words denoted as W 0, . . . ,W t ∈ (F64
2)64. The initial

W 0 corresponds to s0 is defined naturally as (19)

W 0 = (e0, . . . ,e63), where ei[j] =

{
1 i = j

0 j ∈ [0, 63]\{i}
for i = 0, . . . , 63 (19)

so as to make sure W 0[i] · s0 = ei · s0 = s0[i] for i = 0, . . . , 63. With
W 0, . . . ,W t−1, the word vector W t can be deduced from W t−1 according to the
movement mt=1 by calling W t ← UpdW(mt−1,W t−1) described in Algorithm 2.
With the knowledge of W t, each state bit of st can be uniformly expressed as a
linear combination of s0 bits as

st[i] = W t[i] · s0, i = 0, . . . , 63 (20)

For t consecutive movements m0, . . . ,mt−1 and the corresponding output
z0, . . . , zt−1, we can deduce the corresponding linear equations set BC as

BC ← getBC((m0, . . . ,mt−1), (z0, . . . , zt−1))

where getBC is defined as Algorithm 3. The linear equations set BC can be
regarded as a linear equation system in (21)

AxT = bT , where A ∈ F
3t×64
2 ,x ∈ F

64
2 , b ∈ F

3t
2 (21)

200 M. Wang and Y. Hao

and the solutions to the linear system in (21) is exactly the possible values of
the internal state s0’s resulting in the output keystream bits z0, . . . , zt−1. The
number of solutions to (21) depends on the rank of the matrix A and its extended
matrix

E = [A, bT] (22)

If rank(A) = rank(E), there will be 264−rank(A) solutions; otherwise, there
will be no solutions at all. Apparently, the matrix A and the vector b are
both deduced according to the move guesses m0, . . . ,mt−1 and the output bits
z0, . . . , zt−1. For the correct guess of m0, . . . ,mt−1, the relation rank(A) =
rank(E) holds constantly; for the wrong guesses, however, there should be a
probability 1 − αt (0 ≤ αt ≤ 1) that rank(A) �= rank(E). Based on such a find-
ing, the general process of our state-recovery attack can be divided naturally
into 3 main steps:

S1. Guess moves m0, . . . ,mt−1 and maintain a linear system in (21)
S2. Do the matrix rank test and discard the wrong guesses satisfying rank(A) �=

rank(E)
S3. Deduce the remaining s0 candidates and identify the correct s0 with addi-

tional output bits zt, . . . , z�−1 generated by the encryption oracle

Therefore, the detailed description of our move-guessing-based state-recovery
attack is as follows:

1. Query the A5/1 encryption oracle for � keystream bits z0, . . . , z�−1

2. Initialize an empty set S of s0 candidates
3. For some t < �, we guess the 22t movement values of (m0, . . . ,mt−1),

acquire the equations BC ← getBC((m0, . . . ,mt−1), (z0, . . . , zt−1)) by calling
Algorithm 3 (S1) and do the following substeps:
(a) Deduce the A and b in (21) according to BC and compute the extended

matrix E in (22)
(b) Compute rank(A) and rank(E), if rank(A) �= rank(E), such a movement

guess is wrong, go back to Step 3 for the next movement guess (S2)
(c) For all 264−rank(A) solutions to AxT = bT , set ŝ0 ← x and generate the

keystream bits ẑ0, . . . , ẑt−1, ẑt, . . . , ẑ�−1

(d) If (ẑt, . . . , ẑ�−1) = (zt, . . . , z�−1), add such ŝ0 into S (S3)
4. Return S

When � is large enough, there should be only 1 element in S which is exactly
the correct internal state s0.

Complexity Analysis. In Step 3, there are 22t candidate moves (m0, . . . ,mt−1)
and not all of them can pass the rank(A) = rank(E) test Step 3.(b). We suppose
that there is a positive number 0 ≤ αt ≤ 1 that averaging αt ·22t candidate moves
can pass the test. We further denote the averaging rank(A) as βt. With αt, βt,
the averaging time complexity can be computed as follow:

Comp = 22t + αt · 22t+64−βt = 22t + 22t+64−βt+log αt (23)

Revisit Two Memoryless State-Recovery Cryptanalysis Methods on A5/1 201

We randomly select 230 ((m0, . . . ,mt−1), (z0, . . . , zt−1)) pairs and do the 3.(b)
test to compute the averaging αt and βt for t’s. We find that when t < 14,
αt are larger than 0.5 (log αt ≥ −1) and βt ≤ 3t so the overall complexity is
constantly larger than 250. For 14 ≤ t ≤ 29, the αt, βt and Comp are listed
in Table 1. As can be seen, the lowest time complexity appears at t = 21 with
Comp = 243.91. As can be seen in Table 1, the order βt has already climbed to
almost 64 for t = 27. So we can safely set � = 32 to filter the wrong move guesses.
According to our experiment, � = 32 is well enough to identify the correct s0

so the data complexity of our attack is only 32 bits. The memory complexity
is only BC and the corresponding matrix A as well as its extended matrix E in
(21) and (22). The memory complexity is only O(t) and, to be more specific,
2·(64+1)·3t ≤ 12480 bits which is bounded by 2 KB. So the memory complexity
is practical and negligible in comparison with previous attacks.

The Effect of the Branching Technique. In both Golic’s and Zhang’s
attacks, they claim to have used a “branching” technique when deducing equa-
tions [1,8]. The branching technique based on the fact that, with the current BC,
some of the state bits are known and the following clock bits can be deduced
from such known bits. Such a technique can be applied at the beginning of Step
3 so that some of the 22t do not need to be guessed so Step 3.(a) may only
need to process γ22t moves where γ ≤ 1. Although different γ values may be
deduces from different bit guesses, the number of candidate moves passing Step
3.(a) is still averaging αt22t so the size of γ is lower bounded by αt. Therefore,
taking the effect of branching technique into account, the complexity in (23) can
reformulated as

Comp = 22t+log γ + 22t+64−βt+log αt ≥ 22t+log αt + 22t+64−βt+log αt (24)

Without doubt, the branching technique has some effects for lowering the com-
plexity but, as can be seen in Table 1 it cannot change dominating factor of the
overall complexities. In [1], based on the assumption that BC acts like a randomly
constructed system, the αt in Golic’s attack is extremely small resulting in an

Table 1. The averaging αt and βt in (23) with 230 random tests

t βt log αt log Comp t βt log αt log Comp

14 41.959 −0.028 50.013 22 61.604 −3.971 44.417

15 44.868 −0.095 49.037 23 62.781 −5.915 46.055

16 47.683 −0.231 48.085 24 63.433 −8.420 48.006

17 50.381 −0.468 47.151 25 63.755 −11.173 50.001

18 52.955 −0.813 46.233 26 63.904 −14.060 52.000

19 55.409 −1.270 45.330 27 63.967 −17.027 54.000

20 57.734 −1.852 44.481 28 63.990 −20.021 56.000

21 59.860 −2.671 43.914 29 63.997 −23.117 58.000

202 M. Wang and Y. Hao

overestimation to the effect of the branching technique. Such wrong evaluations
are applied directly by Zhang in [8].

5 Revisit Zhang’s Near Collision Attack

As has been briefly mentioned in Sect. 2.3, the CP-recovery phase of the near
collision attack has not been fully implemented: only the 1st step from Level
1 to 2 is implemented [8]. The details of the following CP-recovery steps and
the whole RP-recovery phase are absent, leaving it unknown whether the whole
attack can work as claimed.

To verify their attack, we fully implement it only to find several mis-
takes and the complexity evaluation of the whole attack is underestimated.
Section 5.1 points out the inaccurate evaluations of several crucial parameters
in [8]. Section 5.2 supplements Zhang’s attack with all the missing details in the
CP- and RP-recovery phases and gives a correct complexity evaluation to the
original attack in [8]. Section 5.3 replaces Zhang’s clock-guess-based RP-recovery
with our move-guess-based one to show the advantage of our technique.

5.1 Inaccurate Evaluations of Some Attack Parameters

There are 2 kinds of attack parameters being inaccurately evaluated in [8]: the
p1 used in the distilling phase along with the success probability deduced from
p1; the 4 parameters related to the complexities of the CP-Recovery process.

p1 and the Success Probability. In [8], it is stated that, for T = 4 · 215/99, a
randomly constructed list Lz0z1 ← getList(z0z1, T) acquired by calling Algo-
rithm 1 is of size 7963 and the correct internal state lies in Lz0z1 with probability
p1 = 0.9835. However, we repeat the experiment 106 times and the correct state
lies in Lz0z1 for only 972436 times. So it is safe for us to claim that the actual p1
is 0.9725: Zhang’s evaluation in [8] is inaccurate. The reason why Zhang made
such a mistake is unknown. Maybe their using RC4 as the source of random-
ness is not so qualified. Our experiments have tried various random generators
including Snow-V [13], AES [14] etc. All these experiments reveal that the actual
p1 is 0.9725 rather than 0.9835.

With the corrected p1, the probability for a distilled list U in (10) to cover the
correct state should be reevaluated. Our corrected evaluation and Zhang’s are
both shown in Table 2. We read the source codes3 corresponding to [8] carefully
only to find that the |U | parameter is wrong because of wrong implementation:
when they try to get (η, ζ), they actually do ζ intersect operations so they actu-
ally acquire the U(η, ζ + 1) instead. As a consequence, the size |U |’s are smaller
than expected. Since the attack can only succeed when the correct internal state
lies in U , so the parameter Prob. in Table 2 is actually the success probability
to the whole attack. Therefore, the success probability of Zhang’s attack should
be revised as well.

3 https://github.com/martinzhangbin/gsmencryption.

https://github.com/martinzhangbin/gsmencryption

Revisit Two Memoryless State-Recovery Cryptanalysis Methods on A5/1 203

Table 2. Our evaluation (left) v.s. Zhang et al.’s (right, quoted from [8])

η ζ |U | Prob.

2 3 8109 0.9935

2 4 8050 0.9887

2 5 8009 0.9830

2 6 7948 0.9761

η ζ |U | Prob.

2 3 8065 0.9940

2 4 7989 0.9927

2 5 7934 0.9912

2 6 7835 0.9903

4 Parameters Related to the CP-Recovery Process. Since the attack in
[8] has not been fully implemented, the estimation of 4 related parameters are
inaccurate. Both our and Zhang’s evaluations of the 4 parameters are listed in
Table 3. We provide detailed explanations as follows.

Table 3. 4 parameters related to the CP-recovery process: Zhang evaluation v.s. Ours

Parameter Zhang’s eval. [8] Our eval

Cipher ticks for the merging process in Fig. 1 228.3 240.92†
The number of Lz0z1z2z3z4 candidates 216.6 224.21

Bytes for storing a Lz0z1z2z3z4 element 5 9

The number of known bits for each Lz0z1z2z3z4

element
33 30.14

†: quadratic time implementations

Since the merging of two lists L1, L2 requires |L1| · |L2| (the time complexity
of the merging algorithm in [8] is |L1| + |L2|) operations, it is impossible to get
an exact evaluation to the complexities without actually knowing the sizes of all
the lists. According to our implementation, the sizes of the lists are as follows:

|Lzizi+1 | ≈ 212.95, for i = 0, 1, 2, 3

|Lzizi+1zi+2 | ≈ 216.70, for i = 0, 1, 2

|Lzizi+1zi+2zi+3 | ≈ 220.46, for i = 0, 1

|Lz0z1z2z3z4 | ≈ 224.21

(25)

Therefore, the complexity of the merging process is dominated by Level 3 to
4 which is approximately 220.46×2 = 240.92 using the C++ implementation: far
beyond 228.3. The size of Lz0z1z2z3z4 is 224.21 > 216.6. The reason is that the
middle lists are used more than once in the merging phase, while in the original
near collision attack, each list directly generated can only be used once.

The merging process in Fig. 1 takes two lists denoted as Lt and Lt+1. Lt

contains the partial states of st while Lt+1 consists of partial states of st+1.
According to Sect. 3, a st should take a move mt ∈ {0, 1, 2, 3} before reaching
st+1 and that move mt is decided by the three clock bits st[8, 29, 51]. So the
merging step L̃t ← merge(Lt, Lt+1) is as follows:

204 M. Wang and Y. Hao

1. Initialize the merged list as empty L̃t ← φ.
2. For each (st, st+1) ∈ Lt × Lt+1, do the following steps:

(a) Identify the positions of the known bits in st denoted as λ0 ⊆ [0, 63].
(b) Determine the move mt according to 3 known clock bits st[8, 29, 51].

(c) Determine the state ŝt s.t. ŝt mt

−−→ st+1

(d) Identify the positions of the known bits in ŝt denoted as λ1 ⊆ [0, 63]
(e) If ŝt[λ0 ∩ λ1] = st[λ0 ∩ λ1], store the vector s̃t ← ŝt ∨ st in L̃t where ∨ is

bitwise OR. The known bits of the newly generated s̃t is λ̃ ← λ0 ∪ λ1.
3. Return L̃t

According to the description above, any element s ∈ L should not only contain
the value but the positions, denoted as λ, of the known bits as well. At Level
1, since all list are generated through Algorithm 1, all elements share the same
known-bit positions in (7). But the following Example 1 shows that different
moves will result in different known bit positions. Example 1 indicates that the
known bits of the merged partial state s̃t may not be exactly the 21 bits given
in [8]: they are also likely to be subsets of the 21 bits.

Example 1. Let (s0, s1) ∈ Lz0z1 × Lz1z2 . We have λ0 = λ in (7). If the move
m0 = 0 (s0[8, 29, 51] ∈ {(0, 0, 0), (1, 1, 1)} according to (17) in Sect. 3.2), the
known bit positions for s1 should be

λ1 := {7−1, 8−1, 16−1, 17−1, 18−1, 28−1, 29−1, 38−1, 39−1, 40−1, 50−1, 51−1, 61−1, 62−1, 63−1}.

and λ̃ = λ0 ∪ λ1 is of size |λ̃| = 21. If the move is m0 = 1 (s0[8, 29, 51] ∈
{(1, 0, 0), (0, 1, 1)}), we have

λ1 := {7, 8, 16, 17, 18, 28− 1, 29− 1, 38− 1, 39− 1, 40− 1, 50− 1, 51− 1, 61− 1, 62− 1, 63− 1}.

and |λ̃| = 19.

In order to keep merging the lists in Level 2–4, λ̃ containing the known bit
positions should also be stored which takes the same size of the partial states.
Since the lists in Level 4 contain partial states of 33 bits, the λ̃’s are of the same
size of 33 bits. So the elements in the lists requires at most �2 · 33/8� = 9 bytes.
Same with Example 1, the λ̃ for s̃0 ∈ Lz0z1z2z3z4 are more likely to be subsets of
the 33 bits. In fact, according to our experiments, the number of known bits of
Lz0z1z2z3z4 elements are usually |λ̃| ≈ 30.14, which is below 33. |λ̃| can only be
33 when m0 = . . . = m4 = 0. Such an event can happen with probability 2−10.

5.2 Near Collision Attack with Original Clock-Guess-Based
RP-Recovery

We have supplemented all the details of the list merging operations in Sect. 5.1.
The whole CP-recovery phase in Fig. 1 can now be carried out. At the end of
CP-recovery, the adversary have got the list Lz0z1z2z3z4 . Each s̃0 ∈ Lz0z1z2z3z4

corresponds to a set λ̃ ⊆ [0, 63] containing the positions of known state bits and it

Revisit Two Memoryless State-Recovery Cryptanalysis Methods on A5/1 205

guarantees that the first 5 keystream bits are exactly z0, . . . , z4. The known bits
s̃0[λ̃] can deduce directly the first 5 moves m0, . . . ,m4. Therefore, the equations
for each s̃0 is simply BC ← getBC((m0, . . . ,m4), (z0, . . . , z4)) adding the bit
value constraints of s̃0[λ̃]. The number of equations is 15 + |λ̃|.

Then, according to Zhang in [8], the RP part is to be recovered by guess-
ing the unknown bits of s̃0 corresponding to the clock bits si[8, 29, 51] for
i = 5, 6, . . . , t − 1 (equivalent to setting y in (11) as y = t − 5) and construct
the corresponding linear equation system according to the clock bits and the
output bits z0, . . . , zt−1 as in (21). According to the analysis in Sect. 3.2, the
clock guessing strategy is equivalent to adding bit value constraint to the cor-
responding move-oriented equations. Therefore, for the guesses of the 3(t − 5)
bits s5[8, 29, 51], . . . , st−1[8, 29, 51], the number of deduced equations is 4(t− 5).
So the whole process of Zhang’s near collision attack can now be summarized as
follows:

1. Query the A5/1 encryption oracle for � keystream bits z0, . . . , z�

2. Run the merging process in Fig. 1 and acquire the list of candidates Lz0z1z2z3z4

for the CP part of A5/1.
3. Initialize an empty set S of s0 candidates
4. For each s̃0 ∈ Lz0z1z2z3z4 (RP-Recovery)

(a) Deduce the 5 moves (m0, . . . ,m4) and the known bit position set λ̃
(b) For some t ∈ [6, � − 1], we guess the 3(t − 5) clock bits corresponding to

s5[8, 29, 51], . . . , st−1[8, 29, 51] and do the following substeps:
i Deduce the move guesses m5, . . . ,mt−1 and deduce the equations

BC ← getBC((m5, . . . ,mt−1), (z5, . . . , zt−1))

ii For all i ∈ λ̃, add the linear equations xi = s̃0[i] to BC
iii For si[8] (i = 5, . . . , t−1), add the bit value constraint W i[8]·x = si[8]

to BC
iv Deduce the A and b in (21) according to BC and compute the extended

matrix E in (22)
v Compute rank(A) and rank(E), if rank(A) �= rank(E), such a

clock guess is wrong, go back to Step (b) for the next guess of
s5[8, 29, 51], . . . , st−1[8, 29, 51]

vi For all 264−rank(A) solutions to AxT = bT , set ŝ0 ← x and generate
the keystream bits ẑ0, . . . , ẑt−1, ẑt, . . . , ẑ�−1

vii If (ẑt, . . . , ẑ�−1) = (zt, . . . , z�−1), add such ŝ0 into S
5. Return S

Complexity Analysis. According to (25), there are 224.21 candidate s̃0 in
Lz0z1z2z3z4 . In Step 4.(b), there are 23t−15 possible guesses and we assume that
only αt · 23t−15 of them can pass the rank(A) = rank(E) test at Step 4.(b).v
where 0 ≤ αt ≤ 1. We denote the averaging rank(A) as βt. The analysis in
Sect. 5.1, the merging process in Step 2 has complexity 240.92 using the quadratic
time implementation, anyway this part is not dominated even with the linear

206 M. Wang and Y. Hao

time method in [8]. With αt, βt, the averaging time complexity can be computed
as (27).

Comp = 240.92 + 224.21+3t−15 + αt · 224.21+3t−15+64−βt

= 240.92 + 29.21+3t + 273.21+3t+log αt−βt
(26)

Same with Sect. 3, we randomly select 230
(
s̃0, s5[8, 29, 51], . . . ,

st−1[8, 29, 51], (z5, . . . , zm)
)

triplets and do the 4.(b).v test to compute the aver-
aging αt and βt for different t’s. For 5 ≤ t ≤ 21, the αt, βt and Comp are listed
in Table 5. As can be seen, the complexities are constantly larger than 252, indi-
cating that Zhang’s complexity evaluation in [8] is inaccurate and is no better
than the new guess-and-determine attack in Sect. 4. The lowest time complexity
is 252.159 and it appears at t = 12. The memory complexity is dominated by the
size of Lz0z1z2z3z4 which is 224.21 according to (25). Zhang has already claimed
that the attack can only succeed when the exact si lies in the corresponding
list Lzizi+1 for i = 0, 1, 2, 3 in Fig. 1. According to the Sect. 5.1, the success
probability can be evaluated as p41 ≈ 0.8942.

The Effect of the Branching Technique. Same with the analysis in Sect. 4,
the branching technique can also be applied to Step 4 and the complexity in (26)
can be reformulated as

Comp = 240.92 + 29.21+3t+log γ + 273.21+3t+log αt−βt

≥ 240.92 + 29.21+3t+log αt + 273.21+3t+log αt−βt

It does not affect the dominating factor of the whole attack so the overall com-
plexity remains unchanged.

Table 4. The averaging αt and βt in (26) with 230 random tests

t βt log αt log Comp t βt log αt log Comp

6 33.443 −0.256 57.511 14 59.715 −0.989 54.646

7 37.424 −0.285 56.501 15 60.510 −1.455 56.560

8 41.423 −0.300 55.487 16 61.388 −2.586 58.223

9 45.421 −0.307 54.482 17 62.273 −4.668 60.387

10 49.415 −0.357 53.438 18 62.975 −7.000 63.233

11 53.470 −0.430 52.311 19 63.501 −9.483 66.213

12 56.494 −0.570 52.159 20 63.834 −12.293 69.210

13 58.436 −0.752 53.073 21 63.980 −15.476 72.210

5.3 Improved Near Collision Attack with Move-Based RP-Recovery

According to the relationship between our move guess and the conventional clock
guess strategies revealed in Sect. 3.2, Zhang’s clock-guess-based RP-recovery in
Sect. 5.2 can be replaced with our move-guess-based strategy. We simply rewrite
the RP-recovery phase of this modified attack as follows:

Revisit Two Memoryless State-Recovery Cryptanalysis Methods on A5/1 207

4. For each s̃0 ∈ Lz0z1z2z3z4 (RP-Recovery)
(a) Deduce the 5 moves (m0, . . . ,m4) and the known bit position set λ̃
(b) For some t ∈ [5, �−1], we guess the 22(t−5) movements (m5, . . . ,mt−1), we

acquire the equations BC ← getBC((m0, . . . ,mt−1), (z0, . . . , zt−1)) and do
the following substeps:

i For all i ∈ λ̃, add the linear equations xi = s̃0[i] to BC
ii Deduce the A and b in (21) according to BC and compute the extended

matrix E in (22)
iii Compute rank(A) and rank(E), if rank(A) �= rank(E), such a move-

ment guess is wrong, go back to Step (b) for the next guess of moves
m5, . . . ,mt−1

iv For all 264−rank(A) solutions to AxT = bT , set ŝ0 ← x and generate
the keystream bits ẑ0, . . . , ẑt−1, ẑt, . . . , ẑ�−1

v If (ẑt, . . . , ẑ�−1) = (zt, . . . , z�−1), add such ŝ0 into S

Complexity Analysis. In Step 4.(b), there are 22t−10 candidate moves
(m0, . . . ,mt) and we assume that only αt ·22t−10 moves can pass the rank(A) =
rank(E) test at Step 4.(b).iii where 0 ≤ αt ≤ 1. We denote the averaging
rank(A) as βt. According to (25), the size of Lz0z1z2z3z4 is approximately 224.21.
The analysis in Sect. 5.1, the merging process in Step 2 has complexity 240.92.
With αt, βt, the averaging time complexity can be computed as (27).

Comp = 240.92 + 224.21+2t−10 + αt · 224.21+2t−10+64−βt

= 240.92 + 214.21+2t + 278.21+2t+log αt−βt
(27)

For 6 ≤ t ≤ 21, the αt, βt and Comp are listed in Table 5. As can be seen, the
complexities are constantly larger than 250 which is no better than our guess-and-
determine attack in Sect. 4 but is lower than Zhang ’s original one in Sect. 5.2.
The lowest possible complexity is 250.567 and it appears at t = 16. The memory
complexity and the success probability are identical to those of Zhang ’s original
attack which are 224.21 and 0.8942 respectively. It is noticeable that the βt in

Table 5. The averaging α and β in (27) with 230 random tests

t βt log αt log Comp t βt log αt log Comp

6 31.957 −0.160 58.094 14 54.675 −0.524 51.016

7 34.683 −0.203 57.325 15 56.735 −0.848 50.643

8 37.584 −0.217 56.409 16 58.302 −1.415 50.567

9 40.548 −0.223 55.438 17 59.485 −2.202 50.789

10 43.515 −0.234 54.461 18 60.401 −3.194 51.427

11 46.457 −0.259 53.494 19 61.146 −4.403 52.635

12 49.371 −0.300 52.540 20 61.788 −5.736 54.330

13 52.159 −0.370 51.682 21 62.365 −7.287 56.238

208 M. Wang and Y. Hao

Algorithm 2. Deduce the equation word set according to a movement
1: procedure UpdW(movement mt ∈ {0, 3}, words W t ∈ (F64

2)64)
2: if mt = 0 then
3: At ← UpdWR(W t, 1)
4: Bt ← UpdWR(At, 2)
5: W t+1 ← UpdWR(Bt, 3)
6: end if
7: if mt = 1 then
8: Bt ← UpdWR(W t, 2)
9: W t+1 ← UpdWR(Bt, 3)

10: end if
11: if mt = 2 then
12: At ← UpdWR(W t, 1)
13: W t+1 ← UpdWR(At, 3)
14: end if
15: if mt = 3 then
16: At ← UpdWR(W t, 1)
17: W t+1 ← UpdWR(At, 2)
18: end if
19: Return W t+1

20: end procedure

1: procedure UpdWR(words W ∈ (F64
2)64, register number n ∈ {1, 2, 3})

2: Initialize X ∈ (F64
2)64 as X ← W

3: if n = 1 then
4: for i = 1, . . . , 18 do
5: Update the i-th entry of X as X[i] ← W [i − 1]
6: end for
7: Compute the 0-th entry of X as X[0] ← W [18] ⊕ W [17] ⊕ W [16] ⊕ W [13]

according to (3)
8: end if
9: if n = 2 then

10: for i = 20, . . . , 40 do
11: Update the i-th entry of X as X[i] ← W [i − 1]
12: end for
13: Compute the 19-th entry of X as X[19] ← W [40] ⊕ W [39] according to (4)
14: end if
15: if n = 3 then
16: for i = 42, . . . , 63 do
17: Update the i-th entry of X as X[i] ← W [i − 1]
18: end for
19: Compute the 41-th entry of X as X[19] ← W [63] ⊕ W [62] ⊕ W [61] ⊕ W [48]

according to (5)
20: end if
21: Return X
22: end procedure

Revisit Two Memoryless State-Recovery Cryptanalysis Methods on A5/1 209

Algorithm 3. Deduce the set of equations according to the given moves and
output bits
1: procedure getBC(movements (m0, . . . , mt−1) ∈ {0, 3}t, output bits

(z0, . . . , zt−1) ∈ F
t
2)

2: Initialize the words W 0 ← (e0, . . . , e63) according to (19)
3: Initialize the linear equations set as empty: BC ← φ
4: Initialize x = (x0, . . . , x63) as vector of 63 unknown boolean variables corre-

sponding to the 64 state bits of s0

5: for i = 0, 1, . . . , t − 1 do
6: if mi = 0, 1, 2, 3 then
7: Update BC by adding the following equations corresponding to

(12),(13),(14),(15): {
(W i[8] ⊕ W i[29]) · x = δ(mi)

(W i[8] ⊕ W i[51]) · x =
(mi)

where (δ(mi),
(mi)) = (0, 0), (1, 1), (1, 0), (0, 1) for mi = 0, 1, 2, 3 respectively
8: end if
9: Deduce W i+1 according to W i by calling W i+1 ← UpdW(mi, W i) defined in

Algorithm 2
10: Update BC by adding the following linear equations corresponding to (16)

(W i+1[18] ⊕ W i+1[40] ⊕ W i+1[63]) · x = zi

11: end for
12: Return BC
13: end procedure

Table 4 grows faster than that in Table 5, indicating that clock guess can result
in a faster growth in the order of matrix in (21). But such a growth cannot
guarantee a better filter when applied to state-recovery attacks: this is a fact
that can only be discovered by solid experiments and accurate implementations.

The Effect of the Branching Technique. Same with the analysis in Sect. 4,
the branching technique can also be applied to Step 4 and the complexity in (27)
can be reformulated as

Comp = 240.92 + 214.21+2t+log γ + 278.21+2t+log αt−βt

≥ 240.92 + 214.21+2t+log αt + 278.21+2t+log αt−βt

It does not affect the dominating factor of the whole attack so the overall com-
plexity remains unchanged.

6 Conclusion and Future Works

In this paper, we revisit 2 memoryless state-recovery methods on A5/1 stream
cipher namely the guess-and-determine attack and the near collision attack.
For the guess-and-determine attack, we propose a new guessing technique and

210 M. Wang and Y. Hao

provides a new attack with practically verified complexities. For the near collision
attack, we revisit Zhang’s attack in [8]. We point out the mistake in [8] and
provide correct complexity evaluations. According to our analysis, the Zhang’s
near collision attack can work for A5/1 but does not have an advantage over the
new guess-and-determine attack method.

About future works, it is noticeable that we propose a new guess-and-
determine attack to recover the state s0 while Golic’s original one targets at
s1 [1]. According to the analysis in Sect. 4, the filtering strength of the deduced
linear equation system BC may not be as good as that of a random system.
Since Golic constantly regards the BC’s of wrong guesses as random systems, it
is highly likely that the time complexity of Golic’s original guess-and-determine
attack be wrongly evaluated, as pointed out by some previous literature. In order
to acquire the correct time complexity evaluation, one has to practically compute
the αt and βt’s following Golic’s guessing strategy, which is an obvious direction
for future works.

Acknowledgement. The authors thank the anonymous reviewers and the shepherd
Bin Zhang for careful reading and many helpful comments. Mingxing Wang is sponsored
by the open project of State Key Laboratory of Cryptology. Yonglin Hao is supported
by National Natural Science Foundation of China (Grant No. 62002024), National Key
Research and Development Program of China (No. 2018YFA0306404).

References

1. Golic, J.D.: Cryptanalysis of alleged A5 stream cipher. In: Fumy, W. (ed.) EURO-
CRYPT 1997. LNCS, vol. 1233, pp. 239–255. Springer, Heidelberg (1997). https://
doi.org/10.1007/3-540-69053-0 17

2. Biham, E., Dunkelman, O.: Cryptanalysis of the A5/1 GSM stream cipher. In:
Roy, B.K., Okamoto, E. (eds.) INDOCRYPT 2000. LNCS. vol. 1977, pp. 43–51.
Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-44495-5 5

3. Shah, J., Mahalanobis, A.: A new guess-and-determine attack on the A5/1 stream
cipher. Cryptology ePrint Archive, Report 2012/208 (2012). http://eprint.iacr.org/
2012/208

4. Maximov, A., Johansson, T., Babbage, S.: An improved correlation attack on A5/1.
In: Handschuh, H., Hasan, A. (eds.) SAC 2004. LNCS, vol. 3357, pp. 1–18. Springer,
Heidelberg (2004). https://doi.org/10.1007/978-3-540-30564-4 1

5. Li, Z.: Optimization of rainbow tables for practically cracking GSM A5/1 based
on validated success rate modeling. In: Sako, K. (ed.) CT-RSA 2016. LNCS, vol.
9610, pp. 359–377. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-
319-29485-8 21

6. Gendrullis, T., Novotný, M., Rupp, A.: A real-world attack breaking A5/1 within
hours. In: Oswald, E., Rohatgi, P. (eds.) CHES 2008. LNCS, vol. 5154, pp. 266–282.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85053-3 17

7. Barkan, E., Biham, E.: Conditional estimators: an effective attack on A5/1. In:
Preneel, B., Tavares, S. (eds.) SAC 2005. LNCS, vol. 3897, pp. 1–19. Springer,
Heidelberg (2006). https://doi.org/10.1007/11693383 1

https://doi.org/10.1007/3-540-69053-0_17
https://doi.org/10.1007/3-540-69053-0_17
https://doi.org/10.1007/3-540-44495-5_5
http://eprint.iacr.org/2012/208
http://eprint.iacr.org/2012/208
https://doi.org/10.1007/978-3-540-30564-4_1
https://doi.org/10.1007/978-3-319-29485-8_21
https://doi.org/10.1007/978-3-319-29485-8_21
https://doi.org/10.1007/978-3-540-85053-3_17
https://doi.org/10.1007/11693383_1

Revisit Two Memoryless State-Recovery Cryptanalysis Methods on A5/1 211

8. Zhang, B.: Cryptanalysis of GSM encryption in 2G/3G networks without rainbow
tables. In: Galbraith, S.D., Moriai, S. (eds.) ASIACRYPT 2019, Part III. LNCS,
vol. 11923, pp. 428–456. Springer, Heidelberg (2019). https://doi.org/10.1007/978-
3-030-34618-8 15

9. Biryukov, A., Shamir, A., Wagner, D.: Real time cryptanalysis of A5/1 on a PC.
In: Schneier, B. (ed.) FSE 2000. LNCS, vol. 1978, pp. 1–18. Springer, Heidelberg
(2001). https://doi.org/10.1007/3-540-44706-7 1

10. Pornin, T., Stern, J.: Software-hardware trade-offs: application to A5/1 cryptanal-
ysis. In: Koç, Ç.K., Paar, C. (eds.) CHES 2000. LNCS, vol. 1965, pp. 318–327.
Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-44499-8 25

11. Lu, J., Li, Z., Henricksen, M.: Time-memory trade-off attack on the GSM A5/1
stream cipher using commodity GPGPU - (extended abstract). In: Malkin, T.,
Kolesnikov, V., Lewko, A.B., Polychronakis, M. (eds.) ACNS 2015. LNCS, vol.
9092, pp. 350–369. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-
319-28166-7 17

12. Derbez, P., Fouque, P., Mollimard, V.: Fake near collisions attacks. IACR Trans.
Symmetric Cryptol. 2020(4), 88–103 (2020)

13. Ekdahl, P., Johansson, T., Maximov, A., Yang, J.: A new SNOW stream cipher
called SNOW-V. IACR Trans. Symmetric Cryptol. 2019(3), 1–42 (2019)

14. Standards, N.: Specification for the advanced encryption standard (AES). FIPS-
197 (2001)

https://doi.org/10.1007/978-3-030-34618-8_15
https://doi.org/10.1007/978-3-030-34618-8_15
https://doi.org/10.1007/3-540-44706-7_1
https://doi.org/10.1007/3-540-44499-8_25
https://doi.org/10.1007/978-3-319-28166-7_17
https://doi.org/10.1007/978-3-319-28166-7_17

More Accurate Division Property
Propagations Based on Optimized
Implementations of Linear Layers

Chunlei Hong, Shasha Zhang(B), Siwei Chen, Da Lin, and Zejun Xiang

Faculty of Mathematics and Statistics, Hubei Key Laboratory of Applied
Mathematics, Hubei University, Wuhan, China

{hongchunlei,linda}@stu.hubu.edu.cn, xiangzejun@hubu.edu.cn

Abstract. As a generalized integral property, the division property can
be used to search integral distinguishers of symmetric ciphers by taking
the advantage of automatic tools, such as Mixed Integer Linear Program-
ming (MILP) and Boolean Satisfiability Problem (SAT) solvers. In this
case, the accuracy of corresponding models will influence the resulting
distinguishers. In this paper, we present a new technique to characterize
the division property propagation of linear layers. Firstly, we study the
impact of a linear layer implementation on its division property propaga-
tions. We found that division trails derived from an optimized implemen-
tation of a linear layer can be more accurate than the S method, and
different implementations can eliminate some different invalid division
trails. Thus, we can eliminate a large number of invalid division trails
by combining different implementations. As an application of our tech-
nique, we have searched distinguishers for Midori64, Skinny64 and LED.
As a result, we can obtain the same longest distinguishers as the ZR
method and the HW method, which are the exact modeling of linear
layers. Moreover, our method can be used with both MILP and SAT,
while the HW method can only work with SAT. In addition, the number
of constraints with the HW method increases quadratically, however it
increases linearly with our method.

Keywords: Division property · Linear layer · Optimized
implementation · Integral attack · Automatic tool

1 Introduction

Differential cryptanalysis [1], linear cryptanalysis [2] and integral cryptanaly-
sis [3] are the most effective methods for attacking iterative block ciphers so
far. In 1997, Daemen et al. proposed Square [4] block cipher and introduced
a new method named Square attack to analyze the security of Square cipher.
This attack method is the earliest form of integral attack. Afterwards, integral
attack [3] was formally proposed by Knudsen and Wagner at FSE 2002. The core
idea of integral attack is to find an integral distinguisher so that the adversary
c© Springer Nature Switzerland AG 2021
Y. Yu and M. Yung (Eds.): Inscrypt 2021, LNCS 13007, pp. 212–232, 2021.
https://doi.org/10.1007/978-3-030-88323-2_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-88323-2_11&domain=pdf
https://doi.org/10.1007/978-3-030-88323-2_11

More Accurate Division Property Propagations 213

can use this distinguisher to achieve a distinguishing attack or a key-recovery
attack on the objective cipher. Thus, the most essential step in integral attacks
is to construct effective integral distinguishers.

Currently, the most effective way to find a distinguisher is to study the evo-
lution of integral properties in the encryption process and then judge whether
there exists balanced bits in the corresponding output state. The division prop-
erty (DP) [5], which was proposed as a generalized integral property by Todo at
EUROCRYPT 2015, can be applied to search for longer integral distinguishers.
With this technique, Todo constructed a new integral distinguisher and pre-
sented the full-round attack on MISTY1 in [6]. Afterwards, a more accurate DP
called bit-based division property (BDP) [7] was introduced by Todo and Morii
at FSE 2016. However, the BDP is only adapted to ciphers whose block sizes are
upper bounded by 32 due to the huge time and memory complexities. In order
to overstride this barrier, Xiang et al. [8] applied MILP method to search for
integral distinguishers based on BDP at ASIACRYPT 2016, which allowed us
to analyze primitives whose block sizes are larger than 32 using BDP. Thanks
to this automatic method, what we need to do when searching for distinguish-
ers is to construct an MILP model to characterize the propagation of BDP and
use off-the-shelf solvers like Gurobi1 to solve the model. Naturally, it is worth
studying how to achieve the accurate description of the propagation of BDP in
the MILP model, since the more accurate the corresponding MILP model is, the
more balanced bits or longer distinguishers might be obtained.

The description of BDP propagations of non-linear layers (e.g., Sboxes [8],
AND [8,9] and modular addition [10] operations) has been discussed extensively.
For linear layers, there are three main ways to constrain the BDP propagation.

S method [9]. It was proposed by Sun et al. for a matrix M ∈ F
n×n
2 , and the core

of this method is to decompose a complex matrix into a series of COPY and
XOR operations and then model these basic operations with some auxiliary
variables. The modeling rules of COPY and XOR have been already handled
in [8]. The advantage of this method is that the number of constraints is only
2n and it is universal to all the types of linear layers, but its shortcoming
is that it might introduce some invalid division trails, which will cause the
balance property of output bits to lose more quickly.

ZR method [11]. For an invertible matrix M ∈ F
s×s
2m , Zhang and Rijmen con-

structed a one-to-one relation between a division trail of M and the invertibil-
ity of a sub-matrix of M , which is uniquely determined by this division trail.
Specifically, a division trail is valid if and only if the corresponding sub-matrix
is invertible. The number of constraints will be m · (2s − 1) when construct-
ing an MILP model. This method is completely accurate, but it cannot be
applied to non-binary and non-invertible matrices because of the huge scale
of constraints.

HW method [12]. Inspired by the ZR method, Hu et al. noticed that a matrix
M ∈ F

n×n
2 is invertible if and only if there is a matrix M ′ ∈ F

n×n
2 such that

1 https://www.gurobi.com/.

https://www.gurobi.com/

214 C. Hong et al.

M × M ′ equals to an identity matrix. Thus, they introduced an auxiliary
matrix and constrained the multiplication of this auxiliary matrix and the
original matrix to be an identity matrix. If it is a solution, then the corre-
sponding division trail is valid. This method is as accurate as the ZR method
and is not limited by the invertibility of M . Note that the number of con-
straints is n2, and it contains 4-degree constraints, thus it is only solvable for
SMT/SAT solvers. In addition, when the scale of M is large, the model will
be quite heavy, which may cause the infeasibility to solvers.

Recently, Elsheikh and Youssef [13] (ACISP 2021) proposed a method to
optimize the precision of the BDP propagation of linear layers, which is based on
the ZR method. In short, for a given input DP of linear layers, this method aims
to search for the corresponding output DP such that the derived sub-matrix has
full rank. Therefore, the first step is to determine the input DP and this process
will take a lot of precomputations. The precomputations are time-consuming
and hardly practical with the round increasing because of the huge amount of
the input DP. Thus, the authors in [13] only succeed in applying this method
to the first round. However, the above three methods and our method are all
general descriptions of linear layers, without considering the specific input DP
of linear layers.

1.1 Our Contributions

As mentioned above, the off-the-shelf methods to characterize the BDP propa-
gation of complex linear layers have their advantages and limitations. In brief,
the S method is applicable to various linear layers but not accurate enough.
The ZR and the HW methods are completely accurate, but both of them are
limited by the size of the linear matrix and the former is also limited by the
invertibility of the matrix. Therefore, it is significant to consider how to reach a
balance between the feasibility and the accuracy. In order to find this trade-off,
in this paper, we introduce a new method to achieve a more accurate as well
as applicable MILP-aided description of the BDP propagation of complex linear
layers. This method is inspired by optimizing implementations of matrices, and
combines several optimizing tools with the existing COPY and XOR modeling
rules. Concretely, given a matrix M ∈ F

n×n
2 , we first respectively use three algo-

rithms Paar [14], BP [15] and XZ [16] to optimize the implementation of M .
Next, we apply both COPY and XOR modeling rules to constrain each opti-
mized implementation. Finally, we simultaneously add all the constraints to an
MILP model to characterize the BDP propagation of M . In order to intuitively
evaluate the number of constraints, we convert the optimized implementations
to the simplest form like c = a ⊕ b, i.e., one equation contains only one XOR
operation (see Eq. (2) in Sect. 3). Then, the upper bound on the number of con-
straints is 3N, where N denotes the total number of the linear equations or the
XOR operations in the optimized implementations. Based on this new method,
we propose a framework as depicted in Algorithm1 to automatically generate a
system of inequalities. Compared with the S method, it is more accurate since the

More Accurate Division Property Propagations 215

S method corresponds to the D-xor [23] metric of a linear matrix and this metric
is far from optimal to represent the real cost of implementing a matrix. Thus,
modeling these optimized implementations can effectively decrease the number
of invalid division trails. We present a detailed discussion in Sect. 3 and prove
that our technique is never worse than the S method. Moreover, it is more appli-
cable than the ZR method thanks to its non-limitation on the type of matrices
and more lightweight constraints even if it is not completely accurate. It is worth
noting that this new method can also be implemented based on SMT/SAT, since
all constraints are linear. Moreover, the number of the generated constraints is
small compared with that of the HW method. As an illustration, we apply this
method to search for integral distinguishers for three block ciphers Midori64 [17],
Skinny64 [18] and LED [19], and compare our results with the previous works
as summarized in Table 1. The related results2 and source codes are available at
https://github.com/hcl21/More-Accurate-BDP-for-LinearLayer.

1.2 Organization of the Paper

The rest of this paper is organized as follows. In Sect. 2, we briefly review the
definition and propagation rules of division property and several heuristics for
implementing linear layers. In Sect. 3, we introduce the new method proposed
in this paper and give a discussion on the comparison between this method and
the S method. In Sect. 4, we present applications of our new method to some
block ciphers. We conclude this paper in Sect. 5.

2 Preliminaries

We first introduce some notations that appear frequently in this paper. Denote
F2 the finite field that contains only two elements (0 and 1) and a ∈ F

n
2 an n-bit

vector where ai ∈ F2 denotes the i-th bit of a. The Hamming weight of a ∈ F
n
2 ,

denoted by wt(a), is defined as wt(a) = #{i : ai = 1, 0 ≤ i ≤ n − 1}. Let k and
k′ be two vectors in F

n
2 , we define k � k′ if ki ≥ k′

i for all i, otherwise k � k′.

Bit Product Functions. Let πu : F
n
2 → F2 be a function for any u ∈ F

n
2 . Let

x ∈ F
n
2 be an input of πu , then πu(x) is defined as

πu(x) :=
n−1∏

i=0

xui
i .

2 Note that these ciphers’ MixColumns are composed of 16-bit matrix. In order to
exhibit the universality of our method, we also experimented on AES, and we respec-
tively took about 5 and 10 min to find 4- and 5-round integral distinguishers in
the key-dependent scenario. Our distinguishers are consistent with that of the HW
method, but we took less time. Unfortunately, we can not obtain these results when
using the S method.

https://github.com/hcl21/More-Accurate-BDP-for-LinearLayer

216 C. Hong et al.

Table 1. Comparison of our results with the previous works.

Ciphers #Rounds log2(Data) #Balanced Bits Time Ref.

Midori64 5 12 4 - [9]

5 12 7 12 s Sect. 4.2

6 45 16 – [9]

6 45 19 140 s Sect. 4.2

7 63 64 – [11]

7† 63 64 427 s Sect. 4.2

Skinny64 8 56 40 – [9]

8 56 64 < 2 s Sect. 4.2

10 60 64 – [11]

10 60 64 5.5 s Sect. 4.2

LED 6 52 – ‡ – [9]

6 52 64 15 min [12]

6 52 64 <4 h Sect. 4.3

7 63 64 14 min [12]

7 63 64 <5 h Sect. 4.3
† In [9], Sun et al. presented the 7-round distinguisher with 61 active
input bits and 16 balanced output bits. We also found this distinguisher
and failed to explore more balanced bits using 61 active bits. For the
case of setting 63 active input bits, [9] does not give the relevant result.
‡ For the data of 252, their model did not return any results.

Algebraic Normal Form. Any Boolean function f : F
n
2 → F2 can be repre-

sented in its Algebraic Normal Form (ANF) as:

f(x) =
⊕

u∈Fn
2

af
u(

n−1∏

i=0

xui
i) =

⊕

u∈Fn
2

af
uπu(x),

where af
u ∈ F2 is a constant depending on f and u .

2.1 (Bit-Based) Division Property and Its MILP-aided Applications

At EUROCRYPT 2015, division property [5] was proposed by Todo as a gen-
eralization of the integral property, which was originally defined at word level.
Later, the bit-based division property [7] was introduced by Todo and Morii to
investigate the DP at bit level. Note that the BDP is composed of two mem-
bers, two-subset BDP and three-subset BDP. In this paper, we only focus on the
two-subset BDP, thus we straightforwardly use BDP to represent the two-subset
BDP for short. The definition of BDP is presented as follows.

Definition 1 (Bit-Based Division Property [7]). Let X be a multiset whose
elements belong to F

n
2 and K be a set of n-bit vectors whose elements take the

More Accurate Division Property Propagations 217

value 0 or 1. Then we call the multiset X has the division property D1n

K
if it

fulfills the following conditions for any u ∈ F
n
2 :

⊕

x∈X

πu (x) =

{
unknown if there exists k ∈ K s.t. u � k,

0 otherwise.

As a more accurate DP, the BDP can be applied to search for better integral
distinguishers. However, the application of BDP is greatly limited by its high
time and memory complexities, which caused the fact that the BDP was only
applicable to the ciphers with block sizes no more than 32. In order to overcome
this drawback, Xiang et al. [8] first adopted MILP-aided method, which has
shown its great power in cryptanalysis such as [20,21], to automatically search
for integral distinguishers based on BDP. Moreover, the concept of division trail
was introduced to describe the BDP propagation and the MILP-aided modeling
rules were proposed. In this paper, we devote our attention to modeling linear
layers, thus we only revisit the modeling rules of XOR and COPY operations as
well as the definition of division trail as follows. One can refer to [8,9] for more
details about the modeling rules of AND operation and Sboxes.

Definition 2 (Division Trail [8]). Let fr denote the round function of an
iterated block cipher with size of n. Assume the input multiset to the block cipher
has initial division property D1n

K0
, and denote the division property after i-round

propagation through fr by D1n

Ki
. Thus, we have the following chain of division

property propagations:

{k} �
= K0

fr−→ K1
fr−→ Ki

fr−→ · · · Kr.

Moreover, for any vector k∗
i in K

∗
i , there must exist a vector k∗

i−1 in K
∗
i−1 such

that k∗
i−1 can propagate to k∗

i by division property propagation rules. Further-
more, for (k0, k1, · · · , kr) ∈ K0 × K1 × · · · × Kr, if ki−1 can propagate to ki for
all i ∈ {1, 2, · · · , r} we call (k0, k1, · · · , kr) an r-round division trail.

Proposition 1 (MILP Modeling Rule for COPY [9]). Denote a
COPY−→

(b0, b1, · · · , bm−1) a division trail of COPY function, the following inequalities
are sufficient to describe the division propagation of COPY:

{
a − b0 − b1 − · · · − bm−1 = 0,

a, b0, b1, · · · , bm−1 are binaries.

Proposition 2 (MILP Modeling Rule for XOR [9]). Denote (a0, a1, · · · ,

am−1)
XOR−→ b a division trail of XOR function, the following inequalities can

describe the division propagation of XOR:

{
a0 + a1 + · · · + am−1 − b = 0,

a0, a1, · · · , am−1, b are binaries.

218 C. Hong et al.

For the sake of convenience, we name the combined utilization of COPY and
XOR rules as CX rules in this paper. Note that the S method is based on the
CX rules to model the BDP propagation of linear layers.

2.2 Heuristics for Optimizing the Implementations of Linear Layers

The linear layer of a symmetric cipher can be represented as a matrix over F2,
whose implementation is a sequence of XOR operations. Thus, the implementa-
tion cost of a linear layer can be estimated by the number of XOR gates required
to implement the corresponding matrix. In order to find an optimized imple-
mentation of a given matrix with fewer XOR gates, several heuristics have been
proposed, the widely used three of which are introduced in [14–16] respectively.

The Paar Algorithm [14]. Taking the matrix over F2 as the input, in each
step, the Paar algorithm chooses a pair of columns from the matrix exhaustively
and calculates the bitwise AND of these two columns, the pair of columns whose
AND reaches the largest Hamming weight will be kept and their bitwise AND
will be added to the matrix as a new column. Before choosing the next two
columns from the new matrix, we should update the matrix by XORing the
selected two columns with the newly added column. The above steps will be
repeated until each row of the matrix has exactly one “1” .

Note that the Paar heuristic is cancellation-free, it means that the operands
of any operation given by this method share no common variables. Each time
the matrix is updated, both the AND of the last column and the updated two
columns will lead to zero vectors. Therefore, these columns will never be selected
as the operands of any operation in the subsequent implementation, i.e., if a =
b ⊕ c is one of the operations, the operations such as a ⊕ b, a ⊕ c and b ⊕ c will
never appear afterwards.

The BP Algorithm [15]. Given a matrix Mm×n over F2, let wt(Mi) be the
Hamming weight of the i-th row of M , where i ∈ [0,m − 1]. Firstly, the BP
algorithm defines a base S and a vector dist[]. The base S is initialized as the
set of all input bits of M , i.e., S = {x0, x1, · · · , xn−1}. The distance vector is
initialized as dist = {wt(M0)−1, wt(M1)−1, · · · , wt(Mm−1)−1}. Then, pick two
elements S[i] and S[j](i �= j) from S in each step and treat the XOR of S[i] and
S[j] as a possible element which might be added to S, update the distance vector
as the minimum number of XOR gates required for calculating the output bits
according to the elements from S. Keep the XOR of two elements selected from
base that minimizes the sum of the distance vector and add it to the base S as a
new element. If there are multiple candidates, choose the one that maximizes the
Euclidean Norm of the updated distance vector. Repeat the above steps until all
the elements in dist[] are zero.

The XZ Algorithm [16]. Inspired by Gauss-Jordan elimination, Xiang et al .
proposed several strategies to decompose an invertible matrix over F2 into a
product of a sequence of type-1 and type-3 elementary matrices. A type-1 ele-
mentary matrix costs no XOR gate since it is produced by exchanging two

More Accurate Division Property Propagations 219

rows/columns of an identity matrix, while a type-3 elementary matrix is pro-
duced by adding a row/column of an identity matrix to another row/column and
thus costs one XOR gate. Thus, the matrix decomposition theory builds a rela-
tionship between the cost for implementing an invertible matrix and the number
of type-3 elementary matrices in its decomposition. In order to further reduce the
number of type-3 elementary matrices, they summarized seven reduction rules
and combined with the rules of exchanging the order of two adjacent elementary
matrices, they designed a heuristic to search implementations of a given matrix,
which can obtain fewer XOR gates by running the algorithm multiple times.

In this paper, we utilize the source codes to implement those algorithms given
in [16] and [22].

3 BDP Propagations Based on Linear Layer Optimization

In this section, we propose a new method to characterize BDP propagations of
linear layers which is based on the CX rules and the optimized implementations
of matrices. Firstly, we start by introducing an example to intuitively show
the details and effects of the new method. Then we discuss and analyze the
results obtained by using different optimized implementations to model linear
transformation. Finally, we give a theoretical argument to prove that our new
method will never be worse than the S method. This paper mainly considers
three heuristics for optimizing the implementations of matrices, i.e., the Paar,
the BP and the XZ algorithms. For convenience, we use the Paar + CX to
represent the combination of the Paar algorithm with the CX rules. Other
heuristics combined with the CX rules are also denoted similarly.

3.1 Construct BDP Propagation Models of Linear Layers

We will begin with a small example listed in the following to illustrate our idea.

Example 1. Let L : (x0, x1, x2, x3)	→(x1⊕x2⊕x3, x0⊕x2⊕x3, x0⊕x1⊕x3, x0⊕
x1 ⊕ x2) be a linear transformation on F

4
2, the corresponding matrix M is as

follows:

M =

⎛
⎜⎜⎝

0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

⎞
⎟⎟⎠ .

Assuming that (u0, u1, u2, u3) → (v0, v1, v2, v3) is a division trail through L. We
compute and list all possible division trails of M according to the S method,
ZR method and our technique.

(1) The S method: Based on the theory of the S method to characterize linear
layers, we introduce sk’s as auxiliary binary variables, and the inequalities within
the model are as follows:

220 C. Hong et al.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u0 − s0 − s1 − s2 = 0
u1 − s3 − s4 − s5 = 0
u2 − s6 − s7 − s8 = 0
u3 − s9 − s10 − s11 = 0
v0 − s3 − s6 − s9 = 0
v1 − s0 − s7 − s10 = 0
v2 − s1 − s4 − s11 = 0
v3 − s2 − s5 − s8 = 0

. (1)

Among them, ui, vj , sk(0 ≤ i, j ≤ 3, 0 ≤ k ≤ 11) are binary variables. By
solving the above inequalities, the division trails of M can be obtained. The
results are listed in Table 2.

Table 2. Division trails of different method. The trails highlighted in bold are invalid.

Input S method Our method ZR method

0x0 0x0 0x0 0x0

0x1 0x2, 0x4, 0x8 0x2, 0x4, 0x8 0x2, 0x4, 0x8

0x2 0x1, 0x4, 0x8 0x1, 0x4, 0x8 0x1, 0x4, 0x8

0x3 0x3, 0x5, 0x6, 0x9, 0xA, 0xC 0x3, 0x5, 0x6, 0x9, 0xA 0x3, 0x5, 0x6, 0x9, 0xA

0x4 0x1, 0x2, 0x8 0x1, 0x2, 0x8 0x1, 0x2, 0x8

0x5 0x3, 0x5, 0x6, 0x9, 0xA, 0xC 0x3, 0x5, 0x6, 0x9, 0xC 0x3, 0x5, 0x6, 0x9, 0xC

0x6 0x3, 0x5, 0x6, 0x9, 0xA, 0xC 0x3, 0x5, 0x6, 0xA, 0xC 0x3, 0x5, 0x6, 0xA, 0xC

0x7 0x7, 0xB, 0xD, 0xE 0xB, 0xD, 0xE 0xB, 0xD, 0xE

0x8 0x1, 0x2, 0x4 0x1, 0x2, 0x4 0x1, 0x2, 0x4

0x9 0x3, 0x5, 0x6, 0x9, 0xA, 0xC 0x3, 0x5, 0x9, 0xA, 0xC 0x3, 0x5, 0x9, 0xA, 0xC

0xA 0x3, 0x5, 0x6, 0x9, 0xA, 0xC 0x3, 0x6, 0x9, 0xA, 0xC 0x3, 0x6, 0x9, 0xA, 0xC

0xB 0x7, 0xB, 0xD, 0xE 0x7, 0xD, 0xE 0x7, 0xD, 0xE

0xC 0x3, 0x5, 0x6, 0x9, 0xA, 0xC 0x5, 0x6, 0x9, 0xA, 0xC 0x5, 0x6, 0x9, 0xA, 0xC

0xD 0x7, 0xB, 0xD, 0xE 0x7, 0xB, 0xE 0x7, 0xB, 0xE

0xE 0x7, 0xB, 0xD, 0xE 0x7, 0xB, 0xD 0x7, 0xB, 0xD

0xF 0xF 0xF 0xF

(2) Our method: Our new method to model the BDP propagation of M needs
to combine optimized implementations of M with the CX rules. Thus, we first
need to obtain optimized implementations of M , then use the CX rules to model
its BDP propagations. We detail this process in the following two phases.

Implementating Phase: In this phase, we use the algorithms of the Paar,
the BP and the XZ to get the optimized implementations of M . The implemen-
tations of M are listed in Eq. (2), where the first set of inequalities denotes the

More Accurate Division Property Propagations 221

direct implementation and others are implemented by the Paar, the BP and
the XZ, respectively.

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

y0 = x1 ⊕ x2 ⊕ x3

y1 = x0 ⊕ x2 ⊕ x3

y2 = x0 ⊕ x1 ⊕ x3

y3 = x0 ⊕ x1 ⊕ x2

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

t0 = x0 ⊕ x1

t1 = x2 ⊕ x3

y0 = x1 ⊕ t1

y1 = x0 ⊕ t1

y2 = x3 ⊕ t0

y3 = x2 ⊕ t0

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

t0 = x0 ⊕ x2

y3 = x1 ⊕ t0

y1 = x3 ⊕ t0

t1 = y3 ⊕ y1

y2 = x0 ⊕ t1

y0 = t0 ⊕ y2

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

t0 = x1 ⊕ x2

t1 = x0 ⊕ x3

y1 = x2 ⊕ t1

y0 = x3 ⊕ t0

y2 = t0 ⊕ y1

y3 = t1 ⊕ y0

.

(2)

Modeling Phase: We combine the CX rules with the three optimized imple-
mentations of M listed in Eq. (2) to model BDP propagations of M . This process
needs to introduce binary auxiliary variables sk’s. These three set of inequali-
ties contained in Eq. (3) are the constraints, which are constructed according to
the Paar, the BP and the XZ implementations respectively. In order to illus-
trate the modeling details, we take the Paar’s implementation as an example.
From the implementation, we know that x0 and x1 both appear twice, thus we
need to copy u0 and u1 to two pieces: s0, s1 and s2, s3, where the variable ui

denotes the DP of xi. This corresponds to the inequalities u0 − s0 − s1 = 0 and
u1 − s2 − s3 = 0. The variable s4 denotes the DP of the intermediate variable
t0 and s4 is generated by the XOR operation of the copied DP from u0 and
u1, i.e., s0 and s2, thus s2 + s0 − s4 = 0. Note that t0 is reused in the 5-th
and 6-th equations. Thus, we need to copy s4 to two pieces: s12 and s13, which
corresponds to the inequality s4−s12−s13 = 0. Other equations can be modeled
in a similar way.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u0 − s0 − s1 = 0
u1 − s2 − s3 = 0
s2 + s0 − s4 = 0
u2 − s5 − s6 = 0
u3 − s7 − s8 = 0
s7 + s5 − s9 = 0
s9 − s10 − s11 = 0
s10 + s3 − v0 = 0
s11 + s1 − v1 = 0
s4 − s12 − s13 = 0
s12 + s8 − v2 = 0
s13 + s6 − v3 = 0

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u0 − s14 − s15 = 0
u2 + s14 − s16 = 0
s16 − s17 − s18 = 0
s19 − v3 − s20 = 0
s17 + u1 − s19 = 0
s18 − s21 − s22 = 0
s23 − v1 − s24 = 0
s21 + u3 − s23 = 0
s24 + s20 − s25 = 0
s26 − v2 − s27 = 0
s25 + s15 − s26 = 0
s27 + s22 − v0 = 0

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u2 − s28 − s29 = 0
s28 + u1 − s30 = 0
u3 − s31 − s32 = 0
s31 + u0 − s33 = 0
s33 − s34 − s35 = 0
s36 − v1 − s37 = 0
s34 + s29 − s36 = 0
s30 − s38 − s39 = 0
s40 − v0 − s41 = 0
s38 + s32 − s40 = 0
s37 + s39 − v2 = 0
s41 + s35 − v3 = 0

.

(3)

222 C. Hong et al.

Among them, ui, vj , sk(0 ≤ i, j ≤ 3, 0 ≤ k ≤ 41) are binary variables. The
procedure for constructing the model by our method is shown in Algorithm1.

Algorithm 1 traverses each row of a given matrix implementation and mod-
els it one by one. We explain Algorithm1 in the following three steps. Step 1:
Traverse the right side of an XOR operation within the matrix implementation
from Line 11 to 31. If there is a variable reused in the subsequent matrix imple-
mentation, its DP needs to be copied and we should model this using the COPY
rule (Proposition 1 in Subsect. 2.1). During this process, two new variables are
generated, and the first new variable replaces the first occurrence of the con-
sidered variable’s DP which is copied. Note that if a variable is reused in the
subsequent matrix implementation, its DP may be reused for multiple times. We
do not count the exact occurrences of this variable. We instead add a new term
temp[L[i][j]] = t1 into the dictionary. With this new term, we can make sure
that L[i][j] will be reused in the subsequent matrix implementation and its DP
has been copied earlier. Thus, each time we have to check if L[i][j] is an index
of the dictionary, if this is the case, we should use the copied piece stored in the
dictionary instead. Step 2: Traverse the left side variable of an XOR operation
within the implementation from Line 32 to 41. If this variable is equal to an out-
put bit of the matrix and reused in the subsequent implementation of a matrix,
the variable’s DP is copied. During the COPY operation, this will generate two
new variables, the first new variable replaces the first occurrence’s DP and the
second new variable will be used to model the following occurrence’s DP as in
Step 1. Step 3: Line 42 performs an XOR operation on the updated variables
in each line and adds them into the model. Finally, this algorithm will return an
entire model M from Line 44.

Note that Line 33 and 36 are quite different, this is because if an output bit is
reused, we should use one piece of the COPY operation to represent the output
DP, as the other piece will be used to compute the following output bits.

3.2 Division Trails of Different Models

With the help of automatic solvers, such as Gurobi, Eq. (1) and (3) can be solved
and the obtained solutions are division trails. Table 2 and 3 list the division
trails of various methods, in which the binary representation of division trails
is equivalent to the hexadecimal representation, denoted as: (u0, u1, u2, u3) =

(1, 0, 0, 0)
�
= 0x8.

Comparing the division trails obtained by various methods in Table 2 and 3,
it can be found that the division trails obtained using the Paar + CX are less
than those obtained by the S method. For the BP + CX and the XZ + CX,
both methods can eliminate some (invalid) division trails. However, they will
also introduce some new (invalid) division trails at the same time.

Note that Zhang and Rijmen [11] presented a theoretical technique to deter-
mine if a division trail is valid, which computes the determinant of the sub-matrix
defined by the input and the output DP, or equivalently checks if the ANF of the
output (defined by the output DP) contains the input monomial (defined by the

More Accurate Division Property Propagations 223

Algorithm 1. Construct the MILP model of linear layer BDP propagation
Input: A matrix implementation
Output: The MILP model of BDP propagation M
1: count = 0;
2: L ← Read the matrix implementation by row, add the variables of each row to the

corresponding row of the two-dimensional list L from left to right;
3: temp ← dict(); //Initialized as an empty dictionary

4: function Get new var()
5: new var = scount;
6: count = count + 1;
7: return new var;
8: end function
9: M.var ← ui, vi, new var; //ui and vi represent the input and output division

property, new var denotes a newly generated binary variable

10: for i = 0; i < len(L) do
11: for j = 1; j < len(L[i]) do
12: if L[i][j] appears in the k-th(k > i) row of L then
13: if L[i][j] is not an index of temp then
14: t0 = Get new var();
15: t1 = Get new var();
16: M.con ← L[i][j]′ = t0 + t1; //L[i][j]′ represent the DP of L[i][j]
17: temp[L[i][j]] = t1;
18: L[i][j]′ = t0 ;
19: else
20: t′0 = Get new var();
21: t′1 = Get new var();
22: M.con ← temp[L[i][j]] = t′0 + t′1;
23: temp[L[i][j]] = t′1;
24: L[i][j]′ = t′0 ;
25: end if
26: else
27: if L[i][j] in an index of temp then
28: L[i][j] = temp[L[i][j]];
29: end if
30: end if
31: end for
32: if L[i][0] = Output then
33: if L[i][0] appears in the k-th(k > i) row of L then
34: t0 = Get new var();
35: t1 = Get new var();
36: M.con ← t0 = L[i][0]′ + t1; //L[i][0]′ represent the DP of L[i][0]
37: temp[L[i][j]] = t1;
38: temp ← Store [L[i][0], t1] in temp;
39: L[i][0]′ = t0;
40: end if
41: end if
42: M.con ← L[i][0]′ = L[i][1]′ + L[i][2]′;
43: end for
44: return M;

224 C. Hong et al.

T
a
b
le

3
.
D

iv
is

io
n

tr
a
il
s

o
f
d
iff

er
en

t
im

p
le

m
en

ta
ti

o
n
s.

T
h
e

tr
a
il
s

h
ig

h
li
g
h
te

d
in

b
o
ld

a
re

in
va

li
d
.

In
p
u
t

P
a
a
r
+

C
X

B
P

+
C
X

X
Z

+
C
X

0
x
0

0
x
0

0
x
0

0
x
0

0
x
1

0
x
2
,
0
x
4
,
0
x
8

0
x
2
,
0
x
4
,
0
x
8

0
x
1
,
0
x
2
,
0
x
4
,
0
x
8

0
x
2

0
x
1
,
0
x
4
,
0
x
8

0
x
1
,
0
x
2
,
0
x
4
,
0
x
8

0
x
1
,
0
x
2
,
0
x
4
,
0
x
8

0
x
3

0
x
3
,
0
x
5
,
0
x
6
,
0
x
9
,
0
x
A

0
x
3
,
0
x
5
,
0
x
6
,
0
x
9
,
0
x
A
,
0
x
C

0
x
3
,
0
x
5
,
0
x
6
,
0
x
9
,
0
x
A
,
0
x
C

0
x
4

0
x
1
,
0
x
2
,
0
x
8

0
x
1
,
0
x
2
,
0
x
8

0
x
1
,
0
x
2
,
0
x
8

0
x
5

0
x
3
,
0
x
5
,
0
x
6
,
0
x
9
,
0
x
A
,
0
x
C

0
x
3
,
0
x
5
,
0
x
6
,
0
x
9
,
0
x
C

0
x
3
,
0
x
5
,
0
x
6
,
0
x
9
,

0
x
A

,
0
x
C

0
x
6

0
x
3
,
0
x
5
,
0
x
6
,

0
x
9

,
0
x
A
,
0
x
C

0
x
3
,
0
x
5
,
0
x
6
,
0
x
9
,
0
x
A
,
0
x
C

0
x
3
,
0
x
5
,
0
x
6
,
0
x
A
,
0
x
C

0
x
7

0
x
7
,
0
x
B
,
0
x
D
,
0
x
E

0
x
B
,
0
x
D
,
0
x
E

0
x
7
,
0
x
B
,
0
x
D
,
0
x
E

0
x
8

0
x
1
,
0
x
2
,
0
x
4

0
x
1
,
0
x
2
,
0
x
4
,
0
x
8

0
x
1
,
0
x
2
,
0
x
4

0
x
9

0
x
3
,
0
x
5
,
0
x
6
,
0
x
9
,
0
x
A
,
0
x
C

0
x
3
,
0
x
5
,

0
x
6

,
0
x
9
,
0
x
A
,
0
x
C

0
x
3
,
0
x
5
,
0
x
9
,
0
x
A
,
0
x
C

0
x
A

0
x
3
,
0
x
5
,
0
x
6
,
0
x
9
,
0
x
A
,
0
x
C

0
x
3
,
0
x
6
,
0
x
9
,
0
x
A
,
0
x
C

0
x
3
,
0
x
5

,
0
x
6
,
0
x
9
,
0
x
A
,
0
x
C

0
x
B

0
x
7
,
0
x
B
,
0
x
D
,
0
x
E

0
x
7
,
0
x
D
,
0
x
E

0
x
7
,
0
x
B
,
0
x
D
,
0
x
E

0
x
C

0
x
5
,
0
x
6
,
0
x
9
,
0
x
A
,
0
x
C

0
x
3
,
0
x
5
,
0
x
6
,
0
x
9
,
0
x
A
,
0
x
C

0
x
3
,
0
x
5
,
0
x
6
,
0
x
9
,
0
x
A
,
0
x
C

0
x
D

0
x
7
,
0
x
B
,
0
x
D
,
0
x
E

0
x
7
,
0
x
B
,
0
x
D
,
0
x
E

0
x
7
,
0
x
B
,
0
x
E

0
x
E

0
x
7
,
0
x
B
,
0
x
D
,
0
x
E

0
x
7
,
0
x
B
,
0
x
D

0
x
7
,
0
x
B
,
0
x
D

0
x
F

0
x
F

0
x
F

0
x
F

More Accurate Division Property Propagations 225

input DP). Since the S method corresponds to direct implementation of a matrix,
and our technique uses an optimized implementation, division trails obtained by
these methods are reasonable characterizations of BDP propagations (in the
sense that this may introduce invalid division trails). Thus, we can conclude
that all increased division trails using our method are invalid trails compared
with the S method. Let’s consider the division trail 0x2 M−→ 0x2 obtained by the
BP + CX. This is a newly increased trail compared with the S method. The
output bit defined by the output DP is y2, which equals to x0⊕x1⊕x3 according
to the matrix. Obviously, the ANF of this output bit does not contain x2, which
indicates that 0x2 M−→ 0x2 is an invalid trail. However, we can get a deeper look
of this trail. According to the implementation returned by the BP algorithm, y2
is computed as t0 = x0 ⊕x2, y3 = x1 ⊕ t0, y1 = x3 ⊕ t0, t1 = y3 ⊕ y1, y2 = x0 ⊕ t1.
The input DP of the matrix is 0x2, thus the DP of x2 is 1 which can propagate
to t0, and this can further propagate to y3 and y1, which finally propagate to
y2. This leads to the increased invalid division trail.

On the other hand, since each set of inequalities as listed in Eq. (1) and (3)
can describe the BDP propagation of M in a non-accurate way, all decreased
division trails of our method are all invalid trails. Let’s take the division trail
0xC

M−→ 0x3
�
= (1, 1, 0, 0) M−→ (0, 0, 1, 1) as an example. According to the matrix

implementation of Eq. (2), we can compute the ANF of y2y3, i.e., y2y3 = (x0 ⊕
x1⊕x3)(x0⊕x1⊕x2) = x0⊕x0x1⊕x0x2⊕x0x1⊕x1⊕x1x2⊕x0x3⊕x1x3⊕x2x3.
It is easy to find that x0x1 appears twice, and the monomial will be cancelled
after the XOR operation, then y2y3 does not include x0x1, so the input DP
(1, 1, 0, 0) can not propagate to the output DP (0, 0, 1, 1). Therefore, this trail
is not a valid propagation according to Zhang and Rijmen’s theory. Similarly, it
can be concluded that all decreased trails are invalid.

Since the Paar + CX method reduces two invalid trails, and both the BP+
CX and XZ + CX methods introduce new invalid trails at the same time when
reducing invalid trails. It seems that one should prefer the Paar + CX to the
BP + CX and the XZ + CX. However, the Paar + CX method only reduces
two trails which is not satisfactory. In the following, we combine all of the three
methods. Note that each method (Paar,BP,XZ + CX) can describe the BDP
propagation of M (in a non-accurate way), which means all valid trails of M
should be contained in the trail set obtained by each of the three methods. Thus,
the intersection of the three trail sets can characterize the BDP propagation. This
has the advantage that each invalid trail eliminated by one of the methods will
not be included in the intersection, thus eliminated. In practice, the trail set
of each method is obtained by solving the corresponding system of inequalities.
Therefore, we can gather the latter three sets of the inequalities listed in Eq. (2)
as a whole, and the solutions of this model are the common solutions of the
three methods, that is, the intersection of the solutions as desired. The column
marked with “our method” in Table 2 lists the results of this combination. The
results show that it can reduce a large number of invalid trails, which are fully
identical to results by the ZR method as shown in the 4-th column of Table 2.
In Table 3, we can clearly see that the optimized implementations of different

226 C. Hong et al.

algorithms can eliminate some different invalid trails. Due to the randomness
of these algorithms and the linearly growth of modeling implementations using
the CX rules, it is possible to use these algorithms multiple times to obtain
multiple matrix implementations, and add the corresponding inequalities into
the model to get a more accurate propagation, which enables us to search for
more available integral properties.

3.3 On the Effectiveness of Our Method

The example discussed in Subsect. 3.2 shows that the BP + CX or the XZ+
CX method would possibly introduce some new invalid trails, even though they
could eliminate several invalid trails at the same time. Thus, we can not conclude
that the BP + CX or the XZ + CX method is better than the S method. As
we discussed in Subsect. 3.2, the division trail 0x2 M−→ 0x2 is a newly introduced
invalid trail, and this happens because two x2’s are involved in the computa-
tion of y2 and they will be cancelled by XOR. According to the computation
process of the Paar algorithm described in Subsect. 2.2, this algorithm outputs
cancellation-free implementations. That is, x2 will never appear in the com-
putation of y2. Moreover, we can find in the example listed in Subsect. 3.2 that
the Paar + CX method only eliminates invalid trails and no new invalid trails
are introduced compared with the S method. We will discuss in this subsection
and conclude that the Paar + CX method is always superior to the S method,
i.e., the trail set computed by the Paar + CX method is a subset of the trail
set obtained by the S method.

Let’s first revisit Zhang and Rijmen’s theory and the S method.

Theorem 1 ([11]). Let M = (ai,j) be the n × n matrix of an invertible linear
transform. Let (u, v) = (u1, · · · , un, v1, · · · , vn) ∈ F

n
2 × F

n
2 , Iu = {i, ui = 1} =

{i1, · · · , iwt(u)}, Iv = {j, vj = 1} = {j1, · · · , jwt(v)}. Then (u, v) is a valid divi-
sion trail if and only if the order wt(u) sub-matrix whose rows indices are taken
from Iu and columns indices are taken from Iv is invertible.

Let P = (pi,j)n×n and Q = (qi,j)n×n be two n × n matrices, we denote P&Q =
(pi,j × qi,j)n×n an n × n matrix which is the element-wise AND of P and Q. In
the following, we say that P contains Q or Q is contained in P if P&Q = Q.
Given the modeling process of the S method, we can easily deduce the following
proposition.

Proposition 3. Let M = (ai,j) be the n × n matrix of an invertible linear
transform. Let (u, v) = (u1, · · · , un, v1, · · · , vn) ∈ F

n
2 × F

n
2 , Iu = {i, ui = 1} =

{i1, · · · , iwt(u)}, Iv = {j, vj = 1} = {j1, · · · , jwt(v)}. Then (u, v) is a division trail
of the S method if and only if the order wt(u) sub-matrix whose rows indices
are taken from Iu and columns indices are taken from Iv contains a permutation
matrix.

From Theorem 1 and Proposition 3, we can conclude that each valid division
trail (indicated by Theorem 1) is a division trail of the S method, since each

More Accurate Division Property Propagations 227

invertible matrix must contain a permutation matrix. Conversely, each division
trail of the S method is not necessarily a valid division trail. Consider a matrix
whose all elements being 1. This matrix is not an invertible matrix, however this
matrix contains the identity matrix as a permutation matrix.

Since the Paar algorithm is cancellation-free, if we compute an output bit
yi from the reverse order of a given implementation, input variables that are not
contained in the ANF of yi will never appear. For example, if we compute y2
from the Paar implementation in Eq. (2), y2 = x3 ⊕ t0 = x0 ⊕ x1 ⊕ x3. Thus,
x2 is not involved. However, if we consider y2 from the BP implementation,
y2 = x0 ⊕ t1 = x0 ⊕ x1 ⊕ x3 ⊕ x0 ⊕ x2 ⊕ x0 ⊕ x2, and x2 is involved. Given the
cancellation-free property of the Paar algorithm, it can be easily concluded.

Property 1. If an output bit has the division property of 1, one of the inputs
involved in its ANF has the division property of 1.

Moreover, assuming that two output bits yi and yj share several common input
bits, and both yi and yj have input DP of 1. According to Property 1, the DP
of yi and yj being 1 will indicate two input bits taking the DP of 1. Moreover,
these two input bits cannot be the same. This is due to the fact that if any input
bit xk is involved in the ANFs of yi and yj , we should use the COPY operation
to split the DP of xk , and both yi and yj will take a piece of xk. Thus, if yi
indicates that xk has the DP of 1, which means the piece of xk fed to yi has DP
of 1. Thus, the other piece fed to yj will never take the DP of 1.

Property 2. Different output bits taking the division property of 1 will indicate
different input bits taking the division property of 1.

Given a division trail u → v deduced from the Paar + CX method, let w
denote the Hamming weight of u (and v), and i1, · · · , iw(i1 < i2 < · · · <
iw), j1, · · · , jw(j1 < j2 < · · · < jw) denote the indices of u and v whose corre-
sponding coordinates take the DP of 1. According to Property 2, we can pair
xi1 , · · · , xiw and yj1 , · · · , yjw , where xiw and yiw denote the input and out vari-
ables. For the sake of simplicity, assume that xis and yjs form a pair, which
means xis is involved in the ANF of yjs . Thus, M [js][is] = 1 where M [js][is]
denotes the element in the js-th row and is-th column of M . Let Mv ,u denote the
w × w sub-matrix of M as explained in Proposition 3, then this matrix contains
the identity matrix as a permutation matrix, which means each division trail
deduced from the Paar + CX method is a division trail of the S method.

Furthermore, we consider the case where the Paar algorithm will generate a
new column with Hamming weight greater than 1, which denotes that there is
at least one xi ⊕xj for i < j appears at least twice in the ANFs of y0, · · · , yn−1.
Without loss of generality, assume that x0 ⊕ x1 appears both in y0 and y1,
then the sub-matrix of M with the 1st, 2nd row and 1st, 2nd column must be
a 2 × 2 matrix with all elements being 1. It is not invertible because it con-
tains the 2 × 2 identity matrix as a permutation matrix. Then the division trail
(1, 1, · · · , 0, 0)−→(1, 1, · · · , 0, 0) can be deduced from the S method by Propo-
sition 3. But it must not be deduced from the Paar + CX method, since the

228 C. Hong et al.

DP 1 of the intermediate variable t = x0 ⊕ x1 can not be copied to two pieces
both with DP 1, i.e., the DP of y0 and y1 cannot both be 1. This means that
the Paar + CX method must eliminate some invalid division trails which can
be deduced from the S method.

Proposition 4. For any given matrix M , division trails deduced from the Paar
+ CX method are all division trails of the S method. Moreover, when the Paar
algorithm generates some new columns with Hamming weight greater than 1,
division trails deduced from the Paar + CX method must be less than division
trails deduced from the S method.

The above proposition guarantees that the Paar + CX method is never worse
than the S method. In other words, the Paar + CX method will never introduce
newly invalid trails compared with the S method. Moreover, it can be inferred
from Proposition 4 and the above discussion that a more optimized implemen-
tation by the Paar algorithm may result in more accurate propagations. Even
though we have used a highly optimized implementation for both the BP +
CX and the XZ + CX methods, the propagation of these two methods can
eliminate some invalid trails, and however introduce some new invalid trails in
the meanwhile, compared with the S method. Thus, we can never say that the
BP + CX or the XZ + CX method alone is more accurate than the S method.
In fact, we have experimented on two different implementations returned by the
BP algorithm on LED cipher. Interestingly, the number of trails (both valid and
invalid) of the better implementation (i.e., with a smaller XOR count) is larger
than the worse implementation. Thus, if one wants to use an implementation of
the BP or the XZ in the division propagation, there is no need to get a highly
optimized implementation as this does not always indicate a more accurate prop-
agation. However, we can simply consider the combination of these algorithms,
which is absolutely more accurate than using only one of these algorithms.

4 Applications of Our New Technique

In this section, we show the applications of our technique to Midori64, Skinny64
and LED. Meanwhile, we also have reproduced the results of 4- and 5-round
dependent-key integral distinguishers AES as reported in [12]. Our new technique
mainly focuses on efficiently modeling BDP propagations of the linear layer.
Table 4 partially lists division trails of linear layers of these block ciphers by the
S method, the ZR method, the HW method and our method. The main results
for integral characteristics of these block ciphers can be found in Table 1.

Some special notations will be used in this section. A, B and U indicate
that a certain nibble is active, balanced and unknown, respectively. The little
letters a, b and u indicate the active bit, the balanced bit and the unknown bit
respectively. And we use nR to generally denote an n-round encryption where
R denotes a one-round encryption.

More Accurate Division Property Propagations 229

Table 4. Comparison of the number of division trails by different methods.

Ciphers Hamming weight † S method ZR/ HW method Our method

Midori64 3 12160 11280 11458

Skinny64 all ‡ 1500624 1185921 1185921

3 144053 101938 123195
† The Hamming weight of the input DP. In our experiment, it can hardly
to calculate the number of division trails when we traverse all the cases of
the Hamming weight of the input DP for Midori64 and LED. Therefore, we
only list the division trails that the Hamming weight of the input DP is 3 for
Midori64 and LED.
‡ Traverse all the cases of the Hamming weight of the input DP.

4.1 Application to Midori64

In [9], Sun et al . obtained the longest 7-round integral distinguisher of Midori64.
Although our method deduces distinguishers as long as the current longest one,
but more balanced output bits can be obtained by our method. The 5-, 6- and
7-round distinguishers obtained by using the S method are shown as follows.

⎡

⎢⎢⎣

A C C C
C A C C
C C A C
C C C C

⎤

⎥⎥⎦
5R=⇒

⎡

⎢⎢⎣

uubu U U U
uubu U U U
uubu U U U
uubu U U U

⎤

⎥⎥⎦

⎡

⎢⎢⎣

A A C accc
A A A C
C A A A
A C A A

⎤

⎥⎥⎦
6R=⇒

⎡

⎢⎢⎣

uubu uubu uubu uubu
uubu uubu uubu uubu
uubu uubu uubu uubu
uubu uubu uubu uubu

⎤

⎥⎥⎦

⎡

⎢⎢⎣

A A A A
A A A A
A A A A
A A A ccac

⎤

⎥⎥⎦
7R=⇒

⎡

⎢⎢⎣

uubu uubu uubu uubu
uubu uubu uubu uubu
uubu uubu uubu uubu
uubu uubu uubu uubu

⎤

⎥⎥⎦

Our 5-, 6- and 7-round distinguishers of Midori64 are shown as follows.

⎡

⎢⎢⎣

A C C C
C A C C
C C A C
C C C C

⎤

⎥⎥⎦
5R=⇒

⎡

⎢⎢⎣

uubu U U U
uubu U U U
uubu U U U

B U U U

⎤

⎥⎥⎦

⎡

⎢⎢⎣

A A C accc
A A A C
C A A A
A C A A

⎤

⎥⎥⎦
6R=⇒

⎡

⎢⎢⎣

uubu uubu uubu uubu
uubu uubu uubu uubu
uubu uubu uubu uubu

B uubu uubu uubu

⎤

⎥⎥⎦

⎡

⎢⎢⎣

aaca A A A
A A A A
A A A A
A A A A

⎤

⎥⎥⎦
7R=⇒

⎡

⎢⎢⎣

B B B B
B B B B
B B B B
B B B B

⎤

⎥⎥⎦

The experimental results show that for 5-round integral distinguisher of
Midori64, we can get 3 more balanced bits than the S method by setting 12

230 C. Hong et al.

active bits. For 6-round integral distinguisher, we can also get 3 more balanced
bits than the S method by setting 45 active bits. In addition, our 7-round dis-
tinguisher is consistent with that of the ZR method as in [11].

4.2 Application to Skinny64

By applying our new technique to Skinny64, we get a 10-round integral distin-
guisher by setting 60 active bits. However, as shown in [11], when using the S
method, only 9-round integral distinguisher can be obtained by setting 63 active
bits. Our 9- and 10-round integral distinguishers are shown as follows.

⎡

⎢⎢⎣

C A A A
A A A A
A A A A
A A A A

⎤

⎥⎥⎦
9R=⇒

⎡

⎢⎢⎣

B B B B
B B B B
B B B B
B B B B

⎤

⎥⎥⎦

⎡

⎢⎢⎣

C A A A
A A A A
A A A A
A A A A

⎤

⎥⎥⎦
10R==⇒

⎡

⎢⎢⎣

B B B B
B B B B
B B B B
B B B B

⎤

⎥⎥⎦

The experimental results show that our method inputs 56 active bits and
obtains 64 balanced bits for the 9-round integral distinguisher, where fewer active
bits are needed compared with the distinguishers obtained by S method. For
10-round integral distinguisher, there are 60 active input bits and 64 balanced
output bits, which is consistent with the result by ZR method in [11].

4.3 Application to LED

In [9], Sun et al . can only search for 6-round integral distinguisher of LED. But
using our method, 7-round integral distinguisher can be got which are consistent
with the result by HW method in [12] and are expressed as follows.

⎡

⎢⎢⎣

A aaac A A
A A A A
A A A A
A A A A

⎤

⎥⎥⎦
7R=⇒

⎡

⎢⎢⎣

B B B B
B B B B
B B B B
B B B B

⎤

⎥⎥⎦

The experimental results show that our method can find one more round
integral distinguisher than the S method, and when setting 63 active input bits,
the distinguisher is same as the result obtained by the HW method.

5 Conclusion

In this paper, we propose a new technique to improve the accuracy of modeling
BDP propagations of complex linear layers, whose core idea is to combine the
optimized implementations of matrices and the modeling rules for COPY and
XOR (CX rules). In particular, we use three heuristics (Paar, BP and XZ) to
obtain optimized implementations of a matrix and then model these implementa-
tions based on the CX rules simultaneously to generate a system of inequalities.

More Accurate Division Property Propagations 231

Moreover, we theoretically prove that this new method is always superior to the
S method, which straightforwardly ultilizes the CX rules to model the direct
implementation of a matrix. In order to exhibit the effect of this new method, we
apply it to several block ciphers. As a result, we can obtain longer distinguish-
ers or more balanced bits for Midori64, Skinny64 and LED than that of the S
method. Additionally, what we need emphasize is that our method is not com-
pletely accurate compared with the ZR and HW methods. However, our results
are consistent with that of the ZR and HW methods. Furthermore, our method
can be implemented based on MILP as well as SMT/SAT, and the constraints
are fully linear, thus simple. In consequence, for modeling the BDP propagation
of linear layers based on very large and complex matrices, our method may be
more practical among these existing methods.

Acknowledgements. We would like to thank the anonymous reviewers for their help-
ful comments. This work was supported by the Application Foundation Frontier Project
of Wuhan Science and Technology Bureau (NO. 2020010601012189), the National Nat-
ural Science Foundation of China (NO. 61802119) and the Research Foundation of
Department of Education of Hubei Province, China (No. D2020104).

References

1. Biham, E., Shamir, A.: Differential cryptanalysis of DES-like cryptosystems. In:
Menezes, A.J., Vanstone, S.A. (eds.) CRYPTO 1990. LNCS, vol. 537, pp. 2–21.
Springer, Heidelberg (1991). https://doi.org/10.1007/3-540-38424-3 1

2. Matsui, M.: Linear cryptanalysis method for DES cipher. In: Helleseth, T. (ed.)
EUROCRYPT 1993. LNCS, vol. 765, pp. 386–397. Springer, Heidelberg (1994).
https://doi.org/10.1007/3-540-48285-7 33

3. Knudsen, L., Wagner, D.: Integral cryptanalysis. In: Daemen, J., Rijmen, V. (eds.)
FSE 2002. LNCS, vol. 2365, pp. 112–127. Springer, Heidelberg (2002). https://doi.
org/10.1007/3-540-45661-9 9

4. Daemen, J., Knudsen, L., Rijmen, V.: The block cipher Square. In: Biham, E. (ed.)
FSE 1997. LNCS, vol. 1267, pp. 149–165. Springer, Heidelberg (1997). https://doi.
org/10.1007/BFb0052343

5. Todo, Y.: Structural evaluation by generalized integral property. In: Oswald, E.,
Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp. 287–314. Springer,
Heidelberg (2015). https://doi.org/10.1007/978-3-662-46800-5 12

6. Todo, Y.: Integral cryptanalysis on full MISTY1. In: Gennaro, R., Robshaw, M.
(eds.) CRYPTO 2015. LNCS, vol. 9215, pp. 413–432. Springer, Heidelberg (2015).
https://doi.org/10.1007/978-3-662-47989-6 20

7. Todo, Y., Morii, M.: Bit-based division property and application to Simon family.
In: Peyrin, T. (ed.) FSE 2016. LNCS, vol. 9783, pp. 357–377. Springer, Heidelberg
(2016). https://doi.org/10.1007/978-3-662-52993-5 18

8. Xiang, Z., Zhang, W., Bao, Z., Lin, D.: Applying MILP method to searching inte-
gral distinguishers based on division property for 6 lightweight block ciphers. In:
Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016. LNCS, vol. 10031, pp. 648–678.
Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53887-6 24

9. Sun, L., Wang, W., Wang, M.Q.: MILP-aided bit-based division property for prim-
itives with non-bit-permutation linear layers. IET Inf. Secur. 14, 12–20 (2020).
https://doi.org/10.1049/iet-ifs.2018.5283

https://doi.org/10.1007/3-540-38424-3_1
https://doi.org/10.1007/3-540-48285-7_33
https://doi.org/10.1007/3-540-45661-9_9
https://doi.org/10.1007/3-540-45661-9_9
https://doi.org/10.1007/BFb0052343
https://doi.org/10.1007/BFb0052343
https://doi.org/10.1007/978-3-662-46800-5_12
https://doi.org/10.1007/978-3-662-47989-6_20
https://doi.org/10.1007/978-3-662-52993-5_18
https://doi.org/10.1007/978-3-662-53887-6_24
https://doi.org/10.1049/iet-ifs.2018.5283

232 C. Hong et al.

10. Sun, L., Wang, W., Liu, R., Wang, M.Q.: Milp-aided bit-based division property
for ARX ciphers. Sci. China Inf. Sci. 61, 118102:1-118102:3 (2018). https://doi.
org/10.1007/s11432-017-9321-7

11. Zhang, W.Y., Rijmen, V.: Division cryptanalysis of block ciphers with a binary
diffusion layer. IET Inf. Secur. 13, 87–95 (2019). https://doi.org/10.1049/iet-ifs.
2018.5151

12. Hu, K., Wang, Q.J., Wang, M.Q.: Finding bit-based division property for ciphers
with complex linear layers. IACR Trans. Symmetric Cryptol. 2020, 396–424
(2020). https://doi.org/10.13154/tosc.v2020.i1.396-424

13. Elsheikh M., Youssef A.: On MILP-based automatic search for bit-based division
property for ciphers with (large) linear layers (Submitted to ACISP 2021) (2021).
https://eprint.iacr.org/2021/643

14. Paar, C.: Optimized arithmetic for reed-solomon encoders. In: Proceedings of IEEE
International Symposium on Information Theory 1997, p. 250 (1997). https://doi.
org/10.1109/ISIT.1997.613165

15. Boyar, J., Matthews, P., Peralta, R.: Logic minimization techniques with appli-
cations to cryptology. J. Cryptol. 26, 280–312 (2013). https://doi.org/10.1007/
s00145-012-9124-7

16. Xiang, Z.J., Zeng, X.Y., Lin, D., Bao, Z.Z., Zhang, S.S.: Optimizing implemen-
tations of linear layers. IACR Trans. Symmetric Cryptol. 2020, 120–145 (2020).
https://doi.org/10.13154/tosc.v2020.i2.120-145

17. Banik, S., et al.: Midori: a block cipher for low energy. In: Iwata, T., Cheon, J.H.
(eds.) ASIACRYPT 2015. LNCS, vol. 9453, pp. 411–436. Springer, Heidelberg
(2015). https://doi.org/10.1007/978-3-662-48800-3 17

18. Beierle, C.: The SKINNY family of block ciphers and its low-latency variant MANTIS.
In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9815, pp. 123–153.
Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53008-5 5

19. Guo, J., Peyrin, T., Poschmann, A., Robshaw, M.: The LED block cipher. In:
Preneel, B., Takagi, T. (eds.) CHES 2011. LNCS, vol. 6917, pp. 326–341. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-23951-9 22

20. Mouha, N., Wang, Q., Gu, D., Preneel, B.: Differential and linear cryptanalysis
using mixed-integer linear programming. In: Wu, C.-K., Yung, M., Lin, D. (eds.)
Inscrypt 2011. LNCS, vol. 7537, pp. 57–76. Springer, Heidelberg (2012). https://
doi.org/10.1007/978-3-642-34704-7 5

21. Sun, S., Hu, L., Wang, P., Qiao, K., Ma, X., Song, L.: Automatic security eval-
uation and (related-key) differential characteristic search: application to SIMON,
PRESENT, LBlock, DES(L) and other bit-oriented block ciphers. In: Sarkar, P.,
Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8873, pp. 158–178. Springer, Hei-
delberg (2014). https://doi.org/10.1007/978-3-662-45611-8 9

22. Kranz, T., Leander, G., Stoffelen, K., Wiemer, F.: Shorter linear straight-line pro-
grams for MDS matrices. IACR Trans. Symmetric Cryptol. 2017, 188–211 (2017).
https://doi.org/10.13154/tosc.v2017.i4.188-211

23. Khoo, K., Peyrin, T., Poschmann, A.Y., Yap, H.: FOAM: searching for hardware-
optimal SPN structures and components with a fair comparison. In: Batina, L.,
Robshaw, M. (eds.) CHES 2014. LNCS, vol. 8731, pp. 433–450. Springer, Heidel-
berg (2014). https://doi.org/10.1007/978-3-662-44709-3 24

https://doi.org/10.1007/s11432-017-9321-7
https://doi.org/10.1007/s11432-017-9321-7
https://doi.org/10.1049/iet-ifs.2018.5151
https://doi.org/10.1049/iet-ifs.2018.5151
https://doi.org/10.13154/tosc.v2020.i1.396-424
https://eprint.iacr.org/2021/643
https://doi.org/10.1109/ISIT.1997.613165
https://doi.org/10.1109/ISIT.1997.613165
https://doi.org/10.1007/s00145-012-9124-7
https://doi.org/10.1007/s00145-012-9124-7
https://doi.org/10.13154/tosc.v2020.i2.120-145
https://doi.org/10.1007/978-3-662-48800-3_17
https://doi.org/10.1007/978-3-662-53008-5_5
https://doi.org/10.1007/978-3-642-23951-9_22
https://doi.org/10.1007/978-3-642-34704-7_5
https://doi.org/10.1007/978-3-642-34704-7_5
https://doi.org/10.1007/978-3-662-45611-8_9
https://doi.org/10.13154/tosc.v2017.i4.188-211
https://doi.org/10.1007/978-3-662-44709-3_24

Asymmetric Cryptanalysis

Security Analysis on an ElGamal-Like
Multivariate Encryption Scheme Based

on Isomorphism of Polynomials

Yasuhiko Ikematsu1(B), Shuhei Nakamura2, Bagus Santoso3,
and Takanori Yasuda4

1 Institute of Mathematics for Industry, Kyushu University, 744, Motooka, Nishi-ku,
Fukuoka 819–0395, Japan

ikematsu@imi.kyushu-u.ac.jp
2 Department of Liberal Arts and Basic Sciences, Nihon University, 1-2-1 Izumi-cho,

Narashino, Chiba 275-8575, Japan
nakamura.shuhei@nihon-u.ac.jp

3 Department of Computer and Network Engineering, The University
of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo 182-8585, Japan

santoso.bagus@uec.ac.jp
4 Institute for the Advancement of Higher Education,

Okayama University of Science, 1-1 Ridaicho, Kitaku, Okayama 700-0005, Japan
tyasuda@bme.ous.ac.jp

Abstract. Isomorphism of polynomials with two secrets (IP2S) prob-
lem was proposed by Patarin et al. at Eurocrypt 1996 and the problem
is to find two secret linear maps filling in the gap between two polyno-
mial maps over a finite field. At PQC 2020, Santoso proposed a problem
originated from IP2S, which is called block isomorphism of polynomials
with circulant matrices (BIPC) problem. The BIPC problem is obtained
by linearizing IP2S and restricting secret linear maps to linear maps
represented by circulant matrices. Using the commutativity of products
of circulant matrices, Santoso also proposed an ElGamal-like encryption
scheme based on the BIPC problem. In this paper, we give a new security
analysis on the ElGamal-like encryption scheme. In particular, we intro-
duce a new attack (called linear stack attack) which finds an equivalent
key of the ElGamal-like encryption scheme by using the linearity of the
BIPC problem. We see that the attack is a polynomial-time algorithm
and can break some 128-bit proposed parameters of the ElGamal-like
encryption scheme within 10 h on a standard PC.

Keywords: Public key cryptography · Post quantum cryptography
(PQC) · Multivariate public key cryptography (MPKC) · Isomorphism
of Polynomials

1 Introduction

RSA and ECC are widely-used public key cryptosystems and are based on
hard computational problems such as integer factorization problem and discrete
c© Springer Nature Switzerland AG 2021
Y. Yu and M. Yung (Eds.): Inscrypt 2021, LNCS 13007, pp. 235–250, 2021.
https://doi.org/10.1007/978-3-030-88323-2_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-88323-2_12&domain=pdf
https://doi.org/10.1007/978-3-030-88323-2_12

236 Y. Ikematsu et al.

logarithm problem, respectively. In 1997, P. Shor [19] showed polynomial-time
quantum algorithms to solve these problems using a large scale quantum com-
puter. Therefore, before a large scale quantum computer gets realized, we need
to develop cryptosystems having a resistance to quantum computer attacks. The
research area to study such cryptosystems is called post quantum cryptography
(PQC) [2].

Multivariate public key cryptography (MPKC) [7] is considered as one of the
main candidates of PQC and is constructed based on hard computational prob-
lems on multivariate polynomials over finite fields. A main hard computational
problem is the MQ problem, which finds a solution to a system of multivariate
quadratic equations over a finite field. So far, there have been proposed various
schemes based on the MQ problem. In particular, regarding signature schemes,
Rainbow [8], GeMSS [4] and MQDSS [18] were selected as second round can-
didates of NIST PQC standardization project [12]. (Rainbow recently became
a finalist of the project [6].) However, it is considered that there is no notable
multivariate encryption scheme since most of the proposed schemes were not
secure or had a large public key size.

Isomorphism of polynomials with two secrets (IP2S) problem is another prob-
lem in MPKC and was proposed by Patarin et al. at Eurocrypt 1996 [13]. The
IP2S problem is to find two secret invertible linear maps representing the iso-
morphism between two multivariate polynomial maps over a finite field. Similar
to the zero-knowledge interactive proof of graph isomorphism, Patarin proposed
an interactive proof based on the IP2S problem. An authentication scheme based
on the interactive proof scheme with its proof against impersonation attack is
proposed in [15] and the security of the signature scheme based on the authen-
tication scheme against quantum adversary in quantum random oracle model is
proven in [17]. When the secret solutions of the IP2S problem are not restricted
to invertible maps, we get another computational problem called Morphism of
Polynomials (MP) problem which is proven to be an NP-hard problem [14]. Wang
et al. [21] proposed a paradigm of constructing a public key encryption (PKE)
scheme by using the Diffie-Hellman like algebraic structure derived from restrict-
ing the secrets/solutions of the MP problem into circulant matrices to obtain the
commutativity. However, as the circulant matrices can be represented with few
variables, it suffers from degradation of complexity as one can obtain a sufficient
system of equations to solve the problem efficiently. Using this fact, Chen et al.
[5] proposed an algebraic attack algorithm.

At PQC 2020, Santoso [16] proposed a new computational problem origi-
nated from the IP2S problem, which is called block isomorphism of polynomials
with circulant matrices (BIPC) problem. The BIPC problem is obtained by lin-
earizing IP2S and restricting secret linear maps to linear maps represented by
circulant matrices. Moreover, similar to Wang et al.’s idea, using the commuta-
tivity of products of circulant matrices, Santoso proposed an ElGamal-like BIPC
encryption scheme [16] and provided a security proof of the scheme based on the
hardness of a Computational Diffie-Hellman (CDH)-like problem derived from
the BIPC problem. In the BIPC problem, the secret solution is in the form of
pairs of circulant matrices, instead of only one pair of matrices as in the IP2S

Security Analysis on an ElGamal-Like Multivariate Encryption Scheme 237

problem. Therefore, although the secret solutions are circulant matrices, the
number of variables can be adjusted to be sufficiently large to avoid Chen et
al.’s algebraic attack. In [16], Santoso gave two attacks against the BIPC prob-
lem and selected four types of parameters which are called (a) conservative, (b)
alternative, (c) extremely aggressive, and (d) moderately aggressive.

In this paper, we analyze the security of the ElGamal-like BIPC encryption
scheme. We discuss a new attack, which is to find an equivalent key of the
ElGamal-like encryption scheme by using the linearity of the BIPC problem
(called linear stack attack). Our core idea is to show that there exists in fact
an equivalent secret solution of the CDH-BIPC problem which consists of a set
of pairs of circulant matrices. Note that the target of the linear stack attack is
not for the BIPC problem but for the CDH-BIPC problem. Based on this idea,
we can construct an equivalent key by randomly choosing enough set of pairs
of circulant matrices and taking appropriately their scalar multiplications. We
show that the linear stack attack is a polynomial-time algorithm and confirm
that the attack is efficient for the proposed parameters (a),(b),(c) and (d). In
fact, our experimental results showed that the 128-bit security parameters [16]
in (b),(c) and (d) were broken within 10 h with a standard PC. Regarding (a),
the 128-bit security parameter [16] did not finish within a week. Instead, we
performed experiments for the 80-bit security parameter in (a) and confirmed
that it was broken within 5 days.

As far as our knowledge, our attack1 is the first algorithm which success-
fully breaks the ElGamal-like BIPC encryption scheme proposed in PQC 2020
[16]. Later, in an independent work [10], Hashimoto proposed a different attack
algorithm that solves the BIPC problem directly. It should be noted that the
attack algorithm in [10] is specifically developed for BIPC since it relies heavily
on algebraic techniques which use the circulant properties of BIPC as the core.
On the other hand, our attack algorithm is more simple and general, as we do
not use the circulant properties of BIPC as the core of our algorithm. Therefore,
at least in principle, our attack algorithm is more generalizable compared to the
one in [10] and it may contribute to the future cryptanalysis of other IP2S based
encryption schemes.

Our paper is organized as follows. In Sect. 2, we briefly recall the IP2S prob-
lem, the BIPC problem and the ElGamal-like encryption scheme. Moreover,
we review the previous security analysis against the BIPC problem. In Sect. 3,
we describe the linear stack attack and perform experiments for the proposed
parameters in [16]. Finally, we conclude our paper in Sect. 4.

2 IP2S and BIPC Problems

In this section, we mainly recall the IP2S and BIPC problems. In Subsection 2.1,
we review the IP2S problem proposed by Patarin et al. in [13]. In Subsection 2.2,
we describe the BIPC problem proposed by Santoso [16] as a problem originated
1 The earlier draft of our attack is published as a preprint in IACR Cryptology ePrint
Archive [11].

238 Y. Ikematsu et al.

from IP2S. Moreover, we recall the encryption scheme associated to the BIPC
problem, which is our main concern in this paper. In Subsection 2.3, we revisit
the previous security analysis against the BIPC problem following the original
paper [16].

2.1 IP2S Problem

Let F be a finite field with q elements and let n and m be positive integers. We
denote by F[x1, . . . , xn] the polynomial ring in n variables over the finite field
F. We also denote by GLn(F) the general linear group over F with size n. Any
element of GLn(F) can be considered as a linear map from F

n to F
n. In order

to describe the IP2S problem, we need the following set:

MQ(n,m) :=
{
f = (f1, . . . , fm)

∣∣∣∣fi ∈ F[x1, . . . , xn] (1 ≤ i ≤ m)
quadratic polynomial

}
.

Namely, MQ(n,m) is the set of multivariate quadratic polynomial maps from
F

n to F
m. Any f = (f1, . . . , fm) ∈ MQ(n,m) is said to be homogeneous if all

f1, . . . , fm are homogeneous. We define the operation of GLn(F) and GLm(F) to
MQ(n,m):

(S, T) · f := T ◦ f ◦ S, (S, T) ∈ GLn(F) × GLm(F).

It is clear that for any S ∈ GLn(F) and T ∈ GLm(F),

f ∈ MQ(n,m) =⇒ (S, T) · f ∈ MQ(n,m).

Namely, the operation of GLn(F) and GLm(F) holds the set MQ(n,m). Then,
the IP2S problem is defined as follows:

Isomorphism of polynomials with two secrets (IP2S) [13]

Given two quadratic polynomial maps f ,g ∈ MQ(n,m), find two linear maps
S ∈ GLn(F) and T ∈ GLm(F) such that

g = (S, T) · f . (1)

In [13], Patarin proposed the basic idea of an authentication scheme and a signa-
ture scheme based on the IP2S problem. The concrete authentication scheme is
refined in [15] and the security against quantum adversary in quantum random
oracle model is proven in [17].

2.2 BIPC Problem and ElGamal-Like BIPC Encryption Scheme

In this subsection, we recall a problem originated from IP2S (called BIPC) and
an ElGamal-like public key encryption scheme, which were proposed by Santoso
at PQC 2020 [16].

Security Analysis on an ElGamal-Like Multivariate Encryption Scheme 239

Let Mn(F) be the matrix ring with size n × n over F. We also denote by
Cn(F) the subalgebra of circulant matrices in Mn(F). Thus, any element A in
Cn(F) is written by

A =

⎛
⎜⎜⎜⎝

a11 a12 . . . a1n

a1n a11 . . . a1n−1

...
...

. . .
...

a12 a13 . . . a11

⎞
⎟⎟⎟⎠ .

Note that Cn(F) is a commutative ring, that is,

A,B ∈ Cn(F) =⇒ AB = BA.

To describe the BIPC problem, we need the following definition:

Definition 1. Let k be a positive integer and let f = (f[1], . . . , f[k]) ∈
MQ(n,m)k be a k-tuple of elements of MQ(n,m). For any two k-tuples
A = (A1, . . . , Ak) ∈ Cn(F)k and B = (B1, . . . , Bk) ∈ Cm(F)k, we define the
operation

(A,B) ∗ f :=

⎛
⎜⎜⎜⎜⎝

∑k
j=1 Bj ◦ f[j mod k] ◦ Aj∑k

j=1 Bj ◦ f[j+1 mod k] ◦ Aj

...∑k
j=1 Bj ◦ f[j+k−1 mod k] ◦ Aj

⎞
⎟⎟⎟⎟⎠

T

=

⎛
⎜⎜⎜⎝

B1 ◦ f[1] ◦ A1 + B2 ◦ f[2] ◦ A2 + · · · + Bk ◦ f[k] ◦ Ak

B1 ◦ f[2] ◦ A1 + B2 ◦ f[3] ◦ A2 + · · · + Bk ◦ f[1] ◦ Ak

...
B1 ◦ f[k] ◦ A1 + B2 ◦ f[1] ◦ A2 + · · · + Bk ◦ f[k−1] ◦ Ak

⎞
⎟⎟⎟⎠

T

It is clear that (A,B) ∗ f is also an element of MQ(n,m)k.

Remark 1. The operation ∗ does not hold the associativity. That is, in general

(A,B) ∗ ((A′,B′) ∗ f) �= (AA′,BB′) ∗ f ,

where AA′ = (A1A
′
1, . . . , AkA′

k), BB′ = (B1B
′
1, . . . , BkB′

k). Thus, the operation
∗ is not an action of Cn(F)k × Cm(F)k to MQ(n,m)k.

In the same way as IP2S, the BIPC problem is defined as follows:

Block isomorphism of polynomials with circulant matrices (BIPC) [16]
Let k be a positive integer. Given two k-tuples of quadratic polynomial maps
f ,g ∈ MQ(n,m)k, find two k-tuples of circulant matrices A ∈ Cn(F)k and
B ∈ Cm(F)k such that

g = (A,B) ∗ f . (2)

240 Y. Ikematsu et al.

We can consider that the BIPC problem is obtained by linearizing the IP2S prob-
lem and restricting secret linear maps to linear maps represented by circulant
matrices.

To construct an ElGamal-like encryption scheme based on BIPC, we need to
see that the operation ∗ is commutative:

Lemma 1 [16, Lemma1]. For any f ∈ MQ(n,m)k and A,A′ ∈ Cn(F)k and
B,B′ ∈ Cm(F)k, we have

(A,B) ∗ ((A′,B′) ∗ f) = (A′,B′) ∗ ((A,B) ∗ f).

This lemma follows from the definition of ∗ and the commutativity of products
of circulant matrices.

Before we recall the construction of the ElGamal-like encryption scheme,
we define a subset of MQ(n,m), which is useful to reduce the key size of the
encryption scheme. Let � be a divisor of k. We define the set

MQ(n,m)k
� :=

{
(f[1], . . . , f[k]) ∈ MQ(n,m)k

∣∣∣∣ f[i] = f[i mod �]

∀i = 1, . . . , k

}
.

In particular, if � = 1, then we have f[1] = f[2] = · · · = f[k]. It is clear that the
size of an element of MQ(n,m)k

� is 1/� of that of an element of MQ(n,m)k.
Moreover, we have

f ∈ MQ(n,m)k
� =⇒ (A,B) ∗ f ∈ MQ(n,m)k

�

for A ∈ Cn(F)k and B ∈ Cm(F)k. Thus, we can define the variant of the BIPC
problem by replacing MQ(n,m)k with MQ(n,m)k

� , which reduces the size of
the instance (f ,g) to 1/�.

In the following, we describe the construction of the ElGamal-like BIPC
encryption scheme [16] based on the hardness of the BIPC computational prob-
lem.

ElGamal-like BIPC encryption scheme [16]

– Public parameters : n,m, k, � ∈ N.
– Secret Key: (A,B) ∈ Cn(F)k × Cm(F)k.
– Public Key: f ,g ∈ MQ(n,m)k

� such that g = (A,B) ∗ f .
– Encryption: to encrypt a plaintext h ∈ MQ(n,m)k

� , one chooses a random
(A′,B′) ∈ Cn(F)k × Cm(F)k and computes:

c0 ← (A′,B′) ∗ f , c1 ← h + (A′,B′) ∗ g.

The ciphertext is given by c = (c0, c1).
– Decryption: to decrypt a ciphertext c = (c0, c1), using the secret key (A,B) ∈

Cn(F)k × Cm(F)k, one computes:

ν ← c1 − (A,B) ∗ c0.

The decryption result is ν.

Security Analysis on an ElGamal-Like Multivariate Encryption Scheme 241

It is clear from Lemma 1 that the decryption process produces the correct plain-
text, that is, ν = h.

In [16], it is proven that the ElGamal-like encryption scheme is proven secure
against OW-CPA attacks under the assumption that the CDH-BIPC problem is
hard.

Computational Diffie-Hellman (CDH) BIPC problem

Let k be a positive integer. Given three k-tuples of quadratic polynomial maps
f ,g,h ∈ MQ(n,m)k

� such that g = (A,B) ∗ f , h = (A′,B′) ∗ f , then compute

(A,B) ∗ ((A′,B′) ∗ f).

One can actually easily see that as similar to the case of ElGamal encryption
scheme and the CDH problem, the converse is also true, i.e., if the CDH-BIPC
problem is easy then breaking the ElGamal-like BIPC encryption scheme is also
easy.

2.3 Previous Analysis

In this subsection, we recall the security analysis against the BIPC problem in
the original paper [16]. In [16], two attacks were proposed under the assumption
the finite field F = F2. The first one (i) is by using the result of Bouillaguet
et al. [3], and the second one (ii) is an algebraic attack using a Gröbner basis
algorithm.

(i) First attack: The first attack is based on the work by Bouillaguet et al. [3] on
breaking a homogeneous IP2S instance, which we summarize as follows. Given a
homogeneous IP2S instance (f ,g) described in (1), Bouillaguet et al. [3] attempt
to find a pair of vectors α, β ∈ F

n such that S−1α = β. Under the assumption
F = F2, Bouillaguet et al. [3] showed how to obtain such α, β in high probability
using a graph theory based algorithm with the complexity O(n52n/2). Once
such a pair α, β is discovered, we can define (f ′,g′), i.e., f ′(x) = f(x + α) and
g′(x) = g(x + β), which have the same isomorphism as (f ,g) but are no longer
homogeneous. Thus, we can easily find the isomorphism between f ′ and g′ using
the algorithm of Faugére and Perret [9] on solving inhomogeneous instances of
IP2S.

Now, we explain the first attack in [16] against a BIPC instance (f ,g)
described in (2). Assume that g is written as

g = (g[1], . . . ,g[k]) = (A,B) ∗ f ,

g[i] =
k∑

j=1

Bj ◦ f[j+i−1 mod k] ◦ Aj ,

and each Aj is invertible. Then, the first attack finds vectors αj , βj ∈ F
n (1 ≤ j ≤

k) such that A−1
j αj = βj , i.e., αj = Ajβj . In [16], it is estimated that such vectors

242 Y. Ikematsu et al.

can be found with the complexity O(k2n52nk/(k+1)) combining Bouillaguet et al.
[3] and Suzuki et al. [20]. (See [16] for the detail.)

In [16], it is described that the next step is to apply the algorithm of Faugére
and Perret [9] on solving inhomogeneous instances of IP2S. However, we point
out in this paper that actually such step is not necessary, since Aj is a circu-
lant matrix. Namely, by solving the linear equation αj = Ajβj with respect to
components of Aj , we can easily recover the circulant matrix Aj . Therefore, we
conclude that the complexity of the first attack against the BIPC problem is
given by

O(k2n52nk/(k+1)).

(ii) Second attack: Here, we review the algebraic attack using a Gröbner
basis algorithm in [16]. In [16], it is assumed that there exist circulant matrices
B̃1, . . . , B̃k such that the BIPC instance (f ,g) satisfies the following:

k∑
j=1

B̃j ◦ g[i] =
k∑

j=1

f[j+i−1 mod k] ◦ Aj , (i = 1, . . . , k). (3)

Note that B1, . . . , Bk can be computed easily once we obtain Aj , B̃j for all
j = 1, . . . , k. If we identify each component of Aj , B̃j as variables, then we
obtain the system of at most n(n + 1)mk/2 quadratic equations in (n + m)k
variables. In [16], it is estimated based on [1] that the complexity to solve the
system with a Gröbner basis algorithm is given by

O(2k log(nm)/(4m)).

However, it should be noted that we do not know exactly whether we can
construct the system of quadratic equations shown in (3) since so far there is no
proof for the existence of such circulant matrices B̃1, . . . , B̃k.

Remark 2. In the IP2S problem (1), we have

g = (S, T) · f =⇒ (1n, T−1) · g = (S, 1m) · f

since the operation · holds the associativity. Similarly, if the operation ∗ satisfies
the associativity, then we have

g = (A,B) ∗ f =⇒ (1k
n,B−1) ∗ g = (A, 1k

m) ∗ f ,

where we have set B−1 = (B−1
1 , . . . , B−1

k), 1k
n = (1n, . . . , 1n) and 1k

m =
(1m, . . . , 1m). Then (3) holds as B̃i = B−1

i . However, as we stated in Remark 1,
the operation ∗ does not hold the associativity.

Selected Parameters: Based on two attacks (i) and (ii) against the BIPC
problem, the paper [16] sets four types of parameters:

Security Analysis on an ElGamal-Like Multivariate Encryption Scheme 243

(a) Conservative Type: In this type, f[1], . . . , f[k] are chosen randomly (namely
� = k) and the parameters are set such that the estimated complexity of
performing first attack (i) and that of second attack (ii) are both larger than
the targeted complexity for security. More precisely, here n,m, k = � are set
such that the following holds:

k2n52nk/(k+1) � 2λ, 2k log(nm)/(4m) � 2λ,

where λ is the targeted bit security.
(b) Alternative Type: In this type, f[1], . . . , f[k] are chosen randomly and the

parameters are set such that the complexity of performing only second attack
(ii) is larger than the targeted complexity for security. More precisely, here
n,m, k = � are set such that the followings holds:

2k log(nm)/(4m) � 2λ,

where λ is the targeted bit security.
(c) Extremely Aggressive Type: In this type, the multivariate quadratic

polynomials f[1], . . . , f[k] are set such that f[1] = f[2] = · · · = f[k], i.e., � = 1.
The other parameters n,m, k are set based on the conservative type.

(d) Moderately Aggressive Type: In this type, we assume that k is an even
number and set � = 2. The multivariate quadratic polynomials f[1], . . . , f[k]
are set such that f[1] = f[3] = · · · = f[2i−1] and f[2] = f[4] = · · · = f[2i] hold for
i ∈ [1, k/2]. The other parameters are set based on the conservative type.

Below, we summarize the recommended parameters in [16] according to each
type mentioned above for 128- and 256-bit security. Here, the finite field F was
taken as F2.

Table 1. 128-bit security parameters proposed in [16]

Type n m k � Public key Secret key
size (KByte) size (KByte)

(a) Conservative 84 2 140 140 241 1.4

(b) Alternative 16 2 205 205 12.8 0.45

(c) Extremely aggressive 84 2 140 1 1.7 1.4

(d) Moderately aggressive 84 2 140 2 3.4 1.4

3 Linear Stack Attack

In this section, we propose a new attack (called linear stack attack) for the
ElGamal-like BIPC encryption scheme in Subsect. 2.2. In Subsect. 3.1, we show
a key lemma to propose the linear stack attack. In Subsect. 3.2, we describe the
algorithm of the linear stack attack based on the key lemma. In Subsect. 3.3, we
estimate the complexity of the linear stack attack and show some experimental
results.

244 Y. Ikematsu et al.

Table 2. 256-bit security parameters proposed in [16]

Type n m k � Public key size
(KByte)

Secret key size
(KByte)

(a) Conservative 206 2 236 236 2445 5.9

(b) Alternative 16 2 410 410 25.6 0.9

(c) Extremely aggressive 206 2 236 1 10.3 5.9

(d) Moderately aggressive 206 2 236 2 20.7 5.9

3.1 Key Lemma

In this subsection, we give a key lemma to propose the linear stack attack. Let
(f ,g) be a public key of the ElGamal-like encryption scheme in Subsect. 2.2. To
break the encryption scheme, an attacker only has to compute a pair (A′,B′) ∈
Cn(F)k ×Cm(F)k such that g = (A′,B′)∗ f , namely, an equivalent key. However,
by the following lemma, we show that there are other kinds of equivalent keys.

Lemma 2. Let (f ,g) be an public key of the ElGamal-like encryption scheme.
If there are an integer t ∈ N and a t-tuple (Ai,Bi)i=1,...,t ∈ (

Cn(F)k × Cm(F)k
)t

such that

g =
t∑

i=1

(Ai,Bi) ∗ f ,

then the t-tuple (Ai,Bi)i=1,...,t works as an equivalent key for the public key
(f ,g).

Proof. Let c0 = (A′,B′) ∗ f and c1 = h + (A′,B′) ∗ g be an ciphertext of the
ElGamal-like encryption scheme as in Subsect. 2.2. To recover the plaintext h,
an attacker computes secret information (A′,B′) ∗ g from known information
(Ai,Bi)i=1,...,t and c0 as follows:

t∑
i=1

(Ai,Bi) ∗ c0 =
t∑

i=1

(Ai,Bi) ∗ ((A′,B′) ∗ f)

=
t∑

i=1

(A′,B′) ∗ ((Ai,Bi) ∗ f)

=(A′,B′) ∗
(

t∑
i=1

(Ai,Bi) ∗ f

)

=(A′,B′) ∗ g

Thus, the attacker can compute the plaintext h by

c1 −
t∑

i=1

(Ai,Bi) ∗ c0.

Therefore, the t-tuple (Ai,Bi)i=1,...,t is an equivalent key. �

Security Analysis on an ElGamal-Like Multivariate Encryption Scheme 245

In the next subsection, we show a concrete procedure to construct such an equiv-
alent key (Ai,Bi)i=1,...,t.

3.2 The Algorithm of the Linear Stack Attack

We propose an attack to find an equivalent key, which is called linear stack
attack, based on Lemma 2. The attack takes a public key (f ,g) and a positive
integer t as input, and a t-tuple (Ai,Bi)i=1,...,t ∈ (

Cn(F)k × Cm(F)k
)t as output.

The strategy of the algorithm is the following:

Linear stack attack

Step 1. Randomly choose tk elements (A1, B1), · · · , (Atk, Btk) from Cn(F) ×
Cm(F).

Step 2. Let α1, . . . , αtk be variables over F. Set t-tuples as follows:

A1 ← (A1, . . . , Ak) B1 ← (α1B1, . . . , αkBk)
A2 ← (Ak+1, . . . , A2k) B2 ← (αk+1Bk+1, . . . , α2kB2k)

...
...

At ← (Atk−k+1, . . . , Atk) Bt ← (αtk−k+1Btk−k+1, . . . , αtkBtk)

Step 3. Find a solution to the following linear equations in variables α1, . . . , αtk:

g =
t∑

i=1

(Ai,Bi) ∗ f (4)

Step 4. If there is a solution (α1, . . . , αtk), then output the t-tuple

(Ai,Bi)i=1,...,t. �

The linear stack attack is able to find an equivalent key by linearly stacking
(Ai,Bi) ∗ f . In the following theorem, we discuss the probability that one trial
of the linear stack attack succeeds for the input number t.

Theorem 1. Set t =
 1
2n(n + 1)m�/k� in the linear stack attack. Then one

trial of the linear stack attack can find an equivalent key with the probability of
at least 1/4.

Proof. We prove that when t =
 1
2n(n+1)m�/k�, the linear Eq. (4) has a solution

with the probability ≥ 1/4.
The vector space MQ(n,m) is of dimension 1

2n(n + 1)m over F, and
MQ(n,m)k

� is the vector space with dimension 1
2n(n + 1)m�. Thus, the sub-

space

V := SpanF

{
(A,B) ∗ f ∈ MQ(n,m)k

�

∣∣ A ∈ Cn(F)k,B ∈ Cm(F)k
}

246 Y. Ikematsu et al.

in MQ(n,m)k
� is at most of dimension 1

2n(n + 1)m�. The linear Eq. (4)

g =
t∑

i=1

(Ai,Bi) ∗ f

in Step 3 has tk variables and dimk V equations. We can consider that the
probability that the linear Eq. (4) has a solution is equal to the probability
that a uniformly chosen random matrix over F with size tk × dimk V has rank
≥ dimk V . We conservatively assume that dimk V = 1

2n(n+1)m�. Since we have
tk � 1

2n(n+1)m�, such a probability is given by the probability that a uniformly
chosen random square matrix with size tk is nonsingular, which is

∏tk
i=1(1− 1

qi).
Here,

tk∏
i=1

(1 − 1
qi) = (1 − 1

q)2(1 + 1
q)

tk∏
i=3

(1 − 1
qi) ≥ (1 − 1

q)2(1 + 1
qtk−2).

The latter inequality follows from (1 + 1
qj)(1 − 1

qi) ≥ (1 + 1
qj+1) for j < i. Since

q ≥ 2, we have
∏tk

i=1(1 − 1
qi) ≥ (1 − 1

q)2 ≥ 1/4. �

If a trial of the linear stack attack fails for a parameter, then we retry
the linear stack attack for the parameter. The above theorem implies that
the linear stack attack succeed in around four trials. Note that according to
our experiments below, the linear stack attack alway succeeded in one trail as
t =
 1

2n(n + 1)m�/k�.
Remark 3. If we take t >
 1

2n(n + 1)m�/k�, the probability that a uniformly
chosen random matrix over F with size tk × dimk V has rank ≥ dimk V can be
raised. As a result, the success probability of one trial of the linear stack attack
can be raised. On the other hand, since dimk V is less than 1

2n(n + 1)m� in
general, the probability should be larger than 1/4 even if we set t =
 1

2n(n +
1)m�/k�. In fact, according to our experiments below, the linear stack attack
alway succeeded in one trial as t =
 1

2n(n + 1)m�/k� on each experiment.

Remark 4. It should be noted that the linear stack attack does not break the
BIPC problem. However, as we explained in Subsect. 2.2, in order to break the
ElGamal-like encryption scheme, it is sufficient for an attacker to break the
CDH-BIPC problem, that the linear stack attack actually does efficiently.

3.3 Complexity and Experimental Results

In this subsection, we estimate the complexity of our attack proposed in Sub-
sect. 3.1 and show some experimental results.

Proposition 1. The complexity of the linear stack attack is given by at most

O(n6m3�3).

Security Analysis on an ElGamal-Like Multivariate Encryption Scheme 247

Proof. It is clear that the dominant part is Step 3. In Step 3, we need to com-
pute tk composites Bi ◦ f[j] ◦ Ai (i = 1, . . . , tk, j = 1, . . . , �). The number of
multiplications of F in each composite is at most

2n3 + 1
2n(n + 1)m2.

Since tk � 1
2n(n + 1)m�, the complexity is

O (
(2n3 + 1

2n(n + 1)m2) · (12n(n + 1)m�)
) ≤ O(n5m3�).

In Step 3, we also solve the linear system with size tk � 1
2n(n + 1)m�. Then the

complexity is
O(

(
1
2n(n + 1)m�

)ω) ≤ O(n6m3�3),

where 2 < ω ≤ 3 is a linear algebra constant.
As a result, we conclude that the total complexity of the linear stack attack

is at most
O(n6m3�3). �

This proposition indicates that our attack is a polynomial-time algorithm. In
Tables 3 and 4, we show the complexity of the proposed parameters in Tables 1
and 2 against our linear stack attack. Each complexity is given by the product
of n6m3�3 and the inverse of success probability (1/4)−1.

Table 3. The complexity of the linear stack attack in Sect. 3 for the 128-bit security
parameters proposed in [16]

Type n m k � Linear stack attack (bits)

(a) Conservative 84 2 140 140 64.7

(b) Alternative 16 2 205 205 54.0

(c) Extremely aggressive 84 2 140 1 43.3

(d) Moderately aggressive 84 2 140 2 46.3

Table 4. The complexity of the linear stack attack in Sect. 3 for the 256-bit security
parameters proposed in [16]

Type n m k � Linear stack attack (bits)

(a) Conservative 206 2 236 236 74.7

(b) Alternative 16 2 410 410 55.0

(c) Extremely aggressive 206 2 236 1 51.1

(d) Moderately aggressive 206 2 236 2 54.1

248 Y. Ikematsu et al.

Experimental Results
We confirm experimentally that our attack is valid and efficient enough to
break the ElGamal-like encryption scheme. All experiments were performed on
a 3.5 GHz 8 Core Intel Xeon W with Magma V2.25-7. Table 5 is the experimen-
tal results. We basically performed our attack on the 128-bit security parame-
ters in Table 1. However, the attack against the conservative type (a) did not
finish within a week, since its complexity against the linear stack attack is
around 64.7 bits. Instead, we chose the 80-bit security parameter (q, n,m, k, l) =
(2, 42, 2, 102, 102) following the security analysis in [16], and confirmed that our
attack is valid for such a conservative type (a). We note that the complexity of
the linear stack attack against the parameter (q, n,m, k, l) = (2, 42, 2, 102, 102)
is 57.4 bits.

Table 5 shows the average time of 5 experiments on the linear stack attack
for each type as t =
 1

2n(n+1)m�/k�. According to our experiments, the success
probability of one trial of the linear stack attack is 100% for each parameter.

Table 5. The average time (seconds) of 5 experiments on the linear stack attack for
the 80-bit security parameter in (a) and the 128-bit security parameters [16] (b),(c),(d)
in Table 1.

Type n m k � Average time (sec)

(a) Conservative 42 2 102 102 419408.490

(b) Alternative 16 2 205 205 35963.190

(c) Extremely aggressive 84 2 140 1 1732.240

(d) Moderately aggressive 84 2 140 2 6801.210

4 Conclusion

At PQC 2020, Santoso proposed an ElGamal-like public key encryption scheme
based on the BIPC problem, which is a problem originated from the IP2S prob-
lem. The BIPC problem is obtained by linearizing IP2S and restricting secret
linear maps to linear maps represented by circulant matrices. Moreover, the
ElGamal-like encryption scheme was constructed by utilizing the commutativity
of products of circulant matrices. Santoso gave four types of practical parame-
ters which are called (a) conservative, (b) alternative, (c) extremely aggressive,
and (d) moderately aggressive. In this paper, we proposed a new attack against
the ElGamal-like encryption scheme, which is called linear stack attack. The lin-
ear stack attack finds equivalent keys of the ElGamal-like encryption scheme by
using the linearity of the BIPC problem. We showed that the linear stack attack
is polynomial time and confirmed that the attack is valid and efficient for the
proposed parameters (a),(b),(c) and (d). Our experimental results showed that
the 128-bit security parameter in (b),(c) and (d) were broken within 10 h. While
the 128-bit security parameter in (a) did not finish within a week, instead, the
80-bit security parameter in (a) was broken within 5 days.

Security Analysis on an ElGamal-Like Multivariate Encryption Scheme 249

We stress that our attack algorithm consists of only basic simple linear alge-
braic techniques. Therefore, there is a possibility that we can further general-
ize our algorithm to solve more general computational problems beyond BIPC
related ones. As future work, we aim to extend our attack algorithm to solve
more general computational problems such as the general IP2S problem which
is the foundation of many multivariate cryptographic schemes.

Acknowledgements. This work was supported by JST CREST Grant Number JPMJ
CR14D6, JSPS KAKENHI Grant Number JP19K20266, JP20K19802, JP20K03741,
JP18H01438, and JP18K11292

References

1. Bardet, M., Faugére, J.C., Salvy, B.: Complexity of gröbner basis computation
for semi-regular overdetermined sequences over F2 with solutions in F2. techreport
5049. Institut National de Recherche en Informatique et en Automatique (INRIA)
(2003)

2. Fauzi, P., Hovd, M.N., Raddum, H.: A practical adaptive key recovery attack on
the LGM (GSW-like) cryptosystem. In: Cheon, J.H., Tillich, J.-P. (eds.) PQCrypto
2021 2021. LNCS, vol. 12841, pp. 483–498. Springer, Cham (2021). https://doi.org/
10.1007/978-3-030-81293-5 25

3. Bouillaguet, C., Faugère, J.C., Fouque, P.A., Perret, L.: Isomorphism of polyno-
mials: New results (2011)

4. Casanova, A., Faugere, J.-C., Macario-Rat, G., Patarin, J., Perret, L., Ryckeghem,
J.: Gemss, technical report, national institute of standards and technology (2019).
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions

5. Chen, J., Tan, C.H., Li, X.: Practical cryptanalysis of a public key cryptosystem
based on the morphism of polynomials problem. Tsinghua Sci. Technol 23(6), 671–
679 (2018)

6. Ding, J., Chen, M.S., Petzoldt, A., Schmidt, D., Yang, B.Y.: Rainbow, technical
report, national institute of standards and technology (2020). https://csrc.nist.
gov/projects/post-quantum-cryptography/round-3-submissions

7. Ding, J., Petzoldt, A., Schmidt, D.S.: Multivariate Public Key Cryptosystems. AIS,
vol. 80. Springer, New York (2020). https://doi.org/10.1007/978-1-0716-0987-3

8. Ding, J., Chen, M.S., Petzoldt, A., Schmidt, D., Yang, B.Y.: Rainbow, technical
report, national institute of standards and technology (2019). https://csrc.nist.
gov/projects/post-quantum-cryptography/round-2-submissions

9. Faugère, J.-C., Perret, L.: Polynomial equivalence problems: algorithmic and the-
oretical aspects. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp.
30–47. Springer, Heidelberg (2006). https://doi.org/10.1007/11761679 3

10. Hashimoto, Y.: Solving the problem of blockwise isomorphism of polynomials with
circulant matrices. IACR Cryptol. ePrint Arch. 2021, 385 (2021)

11. Ikematsu, Y., Nakamura, S., Santoso, B., Yasuda, T.: Security analysis on an el-
gamal-like multivariate encryption scheme based on isomorphism of polynomials.
IACR Cryptol. ePrint Arch. 2021, 169 (2021)

12. National Institute of Standards and Technology. Report on post quantum cryp-
tography. nistir draft 8105 (2019). https://csrc.nist.gov/csrc/media/publications/
nistir/8105/final/documents/nistir 8105 draft.pdf

https://doi.org/10.1007/978-3-030-81293-5_25
https://doi.org/10.1007/978-3-030-81293-5_25
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://doi.org/10.1007/978-1-0716-0987-3
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://doi.org/10.1007/11761679_3
https://csrc.nist.gov/csrc/media/publications/nistir/8105/final/documents/nistir_8105_draft.pdf
https://csrc.nist.gov/csrc/media/publications/nistir/8105/final/documents/nistir_8105_draft.pdf

250 Y. Ikematsu et al.

13. Patarin, J.: Hidden fields equations (HFE) and isomorphisms of polynomials (IP):
two new families of asymmetric algorithms. In: Maurer, U. (ed.) EUROCRYPT
1996. LNCS, vol. 1070, pp. 33–48. Springer, Heidelberg (1996). https://doi.org/10.
1007/3-540-68339-9 4

14. Patarin, J., Goubin, L., Courtois, N.: Improved algorithms for isomorphisms of
polynomials. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 184–
200. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0054126

15. Santoso, B.: Reviving identification scheme based on isomorphism of polynomials
with two secrets: a refined theoretical and practical analysis. IEICE Trans. 101–
A(5), 787–798 (2018)

16. Santoso, B.: Generalization of isomorphism of polynomials with two secrets and its
application to public key encryption. In: Ding, J., Tillich, J.-P. (eds.) PQCrypto
2020. LNCS, vol. 12100, pp. 340–359. Springer, Cham (2020). https://doi.org/10.
1007/978-3-030-44223-1 19

17. Santoso, B., Su, C.: Provable secure post-quantum signature scheme based on
isomorphism of polynomials in quantum random oracle model. In: Okamoto, T.,
Yu, Y., Au, M.H., Li, Y. (eds.) ProvSec 2017. LNCS, vol. 10592, pp. 271–284.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68637-0 17

18. Samardjiska, S., Chen, M.S., Hulsing, A., Rijneveld, J., Schwabe, P.: Mqdss, tech-
nical report, national institute of standards and technology (2019). https://csrc.
nist.gov/projects/post-quantum-cryptography/round-2-submissions

19. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete loga-
rithms on a quantum computer. SIAM J. Comput. 26(5), 1484–1509 (1997)

20. Suzuki, K., Tonien, D., Kurosawa, K., Toyota, K.: Birthday paradox for multi-
collisions. In: Rhee, M.S., Lee, B. (eds.) ICISC 2006. LNCS, vol. 4296, pp. 29–40.
Springer, Heidelberg (2006). https://doi.org/10.1007/11927587 5

21. Wang, H., Zhang, H., Mao, S., Wu, W., Zhang, L.: New public-key cryptosystem
based on the morphism of polynomials problem. Tsinghua Sci. Technol 21(3), 302–
311 (2016)

https://doi.org/10.1007/3-540-68339-9_4
https://doi.org/10.1007/3-540-68339-9_4
https://doi.org/10.1007/BFb0054126
https://doi.org/10.1007/978-3-030-44223-1_19
https://doi.org/10.1007/978-3-030-44223-1_19
https://doi.org/10.1007/978-3-319-68637-0_17
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://doi.org/10.1007/11927587_5

Attacking ECDSA Leaking Discrete Bits
with a More Efficient Lattice

Shuaigang Li1,2,3, Shuqin Fan2(B), and Xianhui Lu1,2,3

1 SKLOIS, Institute of Information Engineering, CAS, Beijing, China
lishuaigang@iie.ac.cn

2 State Key Laboratory of Cryptology, P.O. Box 5159, Beijing 100878, China
fansq@sklc.org

3 School of Cyber Security, University of Chinese Academy of Sciences,

Beijing, China

Abstract. A lattice attack on the Elliptic Curve Digital Signature Algo-
rithm (ECDSA) implementation constructs a lattice related to the secret
key by utilizing the information leaked and then recovers the secret key
by finding a certain short lattice vector. When the information leaked
is discrete bits, Fan et al. (CCS 2016) constructed an efficient lattice by
translating the problem of recovering the secret key to the Extended Hid-
den Number Problem (EHNP). Following their works, we propose two
new techniques to construct a more efficient lattice which has a lower
dimension and a shorter target vector. Moreover, we further improve the
success probability of the secret key recovery by adjusting the lattice.
Therefore, it is much easier to recover the secret key. Specifically, inject-
ing our techniques into the existing lattice attacks, we recover the secret
key with fewer signatures or a higher success probability.

Keywords: ECDSA · Discrete leaked bits · Lattice attack · EHNP ·
Efficient lattice

1 Introduction

Elliptic Curve Digital Signature Algorithm (ECDSA) [11] is an elliptic curve vari-
ant of Digital Signature Algorithm [18]. Due to the high security and small key
size, it is implemented in many applications, such as TLS, smart card, OpenSSL,
TPM 2.0, etc.

The computational intractability of the elliptic curve discrete logarithm prob-
lem (ECDLP) is the mathematical foundation for the security of ECDSA. How-
ever, in actual implementations, information in the ephemeral key can be leaked
due to the secret-dependent physical behaviors of certain computing devices.
These information can be extracted by side-channel attacks, for example, cache
attacks [7,17,20] and time attacks [5,12,15].

In most situations, side-channel attacks can only obtain partial information
of the ephemeral key, which implies partial information of the secret key is
c© Springer Nature Switzerland AG 2021
Y. Yu and M. Yung (Eds.): Inscrypt 2021, LNCS 13007, pp. 251–266, 2021.
https://doi.org/10.1007/978-3-030-88323-2_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-88323-2_13&domain=pdf
https://doi.org/10.1007/978-3-030-88323-2_13

252 S. Li et al.

also known. Therefore, with sufficiently many signatures under the same secret
key, knowing a few bits of each ephemeral key allows an attacker to recover
the full secret key. To recover the full secret key, a lattice attack on ECDSA
implementation constructs a lattice related to the secret key and then recovers
the secret key by lattice reduction algorithms [1,6,13].

According to the types of the information leaked, the lattice attack recovering
the ECDSA secret key can be divided into two categories. One [9,10,15,16,
19] translates the problem of recovering the secret key to the Hidden Number
Problem (HNP) proposed by Boneh and Venkatesan [4]. This attack is efficient
when the leaked bits are consecutive, for example, several least significant bits
are leaked. However, it can’t make full use of the discrete leaked bits, e.g., the
positions of the digits in a representation of the ephemeral key. To efficiently deal
with the discrete leaked bits, the other attack, using signatures to construct an
instance of the Extended Hidden Number Problem (EHNP) [8], was proposed
by Fan et al. [7]. Then the HNP/EHNP is used to construct a lattice, where the
information of the ephemeral keys and the secret key is embedded into a short
lattice vector, i.e., the target vector. Once the target vector is found by lattice
reduction algorithms (e.g., BKZ), the secret key can be recovered.

For the second lattice attack, efficient methods, including elimination, merg-
ing, most significant digit (MSD) recovering and enumeration, were proposed
to decrease the dimension of the lattice in [7]. Furthermore, Micheli et al. [14]
selected signatures with a certain feature to improve the success probability
of the secret key recovery. In addition, they experimentally demonstrated that
the secret key can be recovered even though a small number of errors exist in
the information leaked. Therefore, we only consider the situation that the side-
channel attacks extract the information without any error in this paper.

Attackers hope to recover the secret key with fewer signatures, a higher
success probability and less time. These depend on the following two aspects:

1. The amount of the information leaked;
2. The structure of the lattice related to the secret key.

In this paper, we focus on the second aspect. In the lattice constructed to attack
ECDSA, finding the target vector w can be considered as the approximate Short-
est Vector Problem (SVP). According to the works in [2,3], to construct a more
efficient n-dimensional lattice Λ, the following skills can be used:

1. Reducing the dimension of the lattice;
2. Reducing the value of the root-Hermit factor δ0 = (‖w‖

det
1
n (Λ)

)
1
n ;

3. Reducing the number of lattice vectors shorter than the target vector.

According to the skills above, the efficiency of the lattices constructed in
[7,14] is limited because of the following problems:

1. The dimension of the lattice is not small enough. The reason is that the target
vector contains zero elements which can’t be used to recover the secret key;

Attacking ECDSA Leaking Discrete Bits with a More Efficient Lattice 253

2. The target vector is not short enough. The reason is that the information
leaked is not fully utilized, for example, as [7] claimed, “In fact, there are h
bits among the (h + 1)w + h unknown bits being known, but we just do not
know how to utilize it”.

To efficiently recover the ECDSA secret key, it is an interesting direction to
solve the above problems and construct a more efficient lattice.

1.1 Contributions

In this paper, we solve the above problems by proposing two new techniques
used to construct a more efficient lattice. Moreover, we provide another new
technique to improve the success probability of the secret key recovery. Based
on these new techniques, it is much easier to recover the ECDSA secret key.

We solve the above problems by the following two skills:

1. Eliminate the zero elements in the target vector by rewriting the signature
equations, solving the first problem. Therefore, the dimension of the lattice
is reduced;

2. Reconstruct the target vector by making full use of the information leaked,
solving the second problem. Consequently, the target vector is shorter.

In the new lattice with a lower dimension and a shorter target vector, it’s much
easier to recover the secret key by finding the target vector related to the secret
key. Moreover, we improve the success probability of the secret key recovery by
adjusting the lattice.

To demonstrate the efficiency of our techniques, we consider the same infor-
mation leaked as the lattice attacks in [7] and [14]. Injecting our techniques into
these two attacks, we recover the secret key with fewer signatures or a higher
success probability (see Table 1). Compared with the lattice attack in [7], we

Table 1. The efficiency of the new techniques. In this table, “N” represents the number
of signatures, “Technique-1” represents the techniques (MSD recovering and enumer-
ation) introduced in [7] and “Technique-2” represents the technique of selecting the
signatures with a certain feature introduced in [14]. In addition, for a fixed lattice,
“block”, a parameter of BKZ, determines the time complexity of BKZ.

Attack N Technique-1 Technique-2 block probability

[7] 4 Yes No 25 8%

[7] + our techniques 3 Yes No 35 0.2%

[14] 4 No No 35 4%

[14] + our techniques 4 No No 35 14.6%

[14] 3 No Yes 35 0.2%

[14] + our techniques 3 No Yes 35 4.1%

254 S. Li et al.

recover the secret key with only 3 signatures which reaches the theoretical opti-
mal bound. Compared with the lattice attack in [14], we significantly improve
the success probability of the secret key recovery. Specifically, we increase the
success probability by at least 20 (resp., 3) times when the number of signatures
is 3 (resp., 4).

1.2 Roadmap

In Sect. 2, we introduce some background knowledge of recovering the ECDSA
secret key. Then we show how a lattice attack translates the problem of recover-
ing the secret key to the approximate SVP in Sect. 3. In Sect. 4, we provide some
new techniques to construct a more efficient lattice and then improve the suc-
cess probability of the secret key recovery. To demonstrate the efficiency of our
techniques, we compare the experimental results obtained by our lattice attack
with that obtained by other lattice attacks in Sect. 5.

2 Preliminaries

In this section, we briefly introduce the lattice attack of recovering the ECDSA
secret key and provide some corresponding background knowledge.

2.1 The Lattice Attack of Recovering the ECDSA Secret Key

According to the types of the information obtained by side-channel attacks, the
lattice attack of recovering the secret key can be divided into two categories
(see Fig. 1). The first (resp., second) attack utilizing the signatures to construct
an instance of the HNP (resp., EHNP) is effective when the leaked bits are
consecutive (resp., discrete). Then the HNP or EHNP is reduced to approximate
SVP by constructing a corresponding lattice, where the target vector related to
the secret key is a short lattice vector. Once the target vector is found by lattice
reduction algorithms (e.g., BKZ), the secret key can be recovered. In this paper,
our works focus on the structure of the lattice in the second attack.

consecutive bits HNP

discrete bits EHNP

lattice BKZ

Fig. 1. The lattice attack of recovering the ECDSA secret key.

Attacking ECDSA Leaking Discrete Bits with a More Efficient Lattice 255

2.2 Elliptic Curve Digital Signature Algorithm (ECDSA)

ECDSA is an elliptic curve variant of Digital Signature Algorithm (DSA) [18] by
replacing the prime subgroup in DSA with a group of points on an elliptic curve.
ECDSA first chooses an elliptic curve E and a fixed point G ∈ E of a big prime
order q. Based on the public parameters G and q, the secret key α is randomly
selected from Z

∗
q and the public key is the elliptic curve point Q = αG. To sign

a message m, the signature pair (r, s) can be obtained by the following steps:

1. Randomly choose an ephemeral key k ∈ (0, q) and compute kG;
2. Define r as the x-coordinate of kG. If r = 0, then go back to the first step;
3. Compute s = k−1(H(m) + αr) mod q, where H is a given hash function. If

s = 0, then go back to the first step.

To verify the signature, one needs to compute

(x, y) = kG = H(m)s−1G + rs−1Q.

The signature is valid if r = x mod q. For attackers, the signature pair (s, r)
and the message m are known, if attackers can get the ephemeral key k, the
secret key α can be obtained by computing

α = (sk − H(m))r−1 mod q. (1)

2.3 The Information Leaked

Since the scalar multiplication kG is often the most time-consuming in ECDSA
implementation, the windowed non-adjacent form (wNAF) representation is pro-
posed to speed up the operation. Given a scalar k, the wNAF algorithm (see
Algorithm 1) chooses a window size w and then obtains the wNAF representation

of k: e1, e2, · · · , el, where ei ∈ {0,±1,±3, · · · ,±(2w − 1)} and k =
l∑

i=1

ei · 2i. In

the wNAF representation, any two non-zero digits ei and ej satisfy i−j ≥ w+1.
For example, the wNAF presentation of k = 59 with a window size 3 is

(−5, 0, 0, 0, 0, 0, 1) because 59 = (−5) · 20 + 26.

According to [7], attackers can judge whether ei is zero with a high suc-
cess probability. In this paper, we assume that the information can be obtained
without any error.

2.4 The Extended Hidden Number Problem (EHNP)

According to Sect. 2.1, given the information leaked, the problem of recovering
the ECDSA secret key can be translated to the EHNP.

256 S. Li et al.

Algorithm 1. The wNAF Algorithm
Input: Scalar k and widow size w
Output: wNAF representation of k: e1, e2, · · · , el
1: i = 1
2: while k > 0 do
3: if k mod 2 = 1 then
4: ei = k mod 2w+1

5: if ei ≥ 2w then
6: ei = ei − 2w+1

7: end if
8: k = k − ei
9: else

10: ei = 0

11: end if
12: k = k/2
13: i = i + 1

14: end while

The EHNP introduced in [8] was originally used to recover the DSA secret
key and then was used to recover the ECDSA secret key [7]. Let q be a prime
number, given u congruences

αri −
li∑

j=1

ai,jki,j ≡q ci, 1 ≤ i ≤ u,

where α ∈ Z
∗
q and ki,j ∈ [0, 2εi,j] are unknown integers, ri, li, ai,j , ci and εi,j are

all known. The EHNP is to find the unknown number α (the hidden number).

2.5 The Approximate Shortest Vector Problem (SVP)

According to Sect. 2.1, attackers need to convert the EHNP to the approximate
SVP by constructing a suitable lattice. Once the target vector in the lattice is
found by lattice reduction algorithms, the secret key can be recovered.

In a lattice, the SVP is to find the shortest lattice vector (i.e., the target
vector). According to [2,3], to find the target vector w in the n-dimensional
lattice Λ, the following skills can be used:

1. Reducing the dimension of the lattice;
2. Reducing the value of the root-Hermite factor δ0 = (‖w‖

det
1
n (Λ)

)
1
n .

In the lattice constructed to attack ECDSA, the target vector may not be the
shortest lattice vector, therefore, finding the target vector is an approximate
SVP. In this case, attackers can also consider the third skill, i.e.,

3. Reducing the number of lattice vectors shorter than the target vector.

Attacking ECDSA Leaking Discrete Bits with a More Efficient Lattice 257

3 Basis Attack

In this section, assuming that side-channel attacks exactly obtain the positions
of all non-zero digits in the wNAF representation with a window size w = 3, we
show how the lattice attack in [7] utilizes the information leaked to recover the
ECDSA secret key.

3.1 Extracting Information

Assuming that the number of the non-zero digits is l and the position of the i-th
non-zero digit k′

i is λi (1 ≤ i ≤ l), the ephemeral key k can be written as

k =
l∑

i=1

k′
i · 2λi ,

where k′
i ∈ {−7,−5,−3,−1, 1, 3, 5, 7}, l and λi’s are known and ki’s are

unknown.
Defining k′

i = 2k∗
i − 7, where k∗

i ∈ {0, 1, 2, 3, 4, 5, 6, 7}, the ephemeral key k
can be rewritten as

k =
l∑

i=1

(2k∗
i − 7) · 2λi = k̄ +

l∑

i=1

k∗
i · 2λi+1, (2)

where k̄ = −7 ·
l∑

i=1

2λi .

In a wNAF representation with w = 3, there are approximately

(�logq� + 1)/(ω + 2) − 1 = 50.4

non-zero digits of a 257-bit ephemeral key k. Because each non-zero digit k∗
i

has 3 bits unknown, the number of all the unknown bits is 50.4 ∗ 3 = 151.2,
i.e., 257 − 151.2 = 105.8 bits are known on average. Theoretically, to uniquely
determine the secrete key, the number of needed signatures is at least 3, since 3
is the least integer t such that 105.8 · t > 257.

3.2 Reducing the Problem of Recovering the Secret Key to the
EHNP

Given u signature pairs (ri, si)’s of messages mi’s under the same secret key α,
how to get an instance of EHNP is shown in this section.

According to Equation (1), the signature equations are

αri − siki + H(mi) = 0 mod q, 1 ≤ i ≤ u.

Combining with Equation (2), the above equations can be written as

258 S. Li et al.

αri −
l∗i∑

j=1

(2λ∗
i,j+1sik

∗
i,j) + (H(mi) − sik̄i) + h∗

i q = 0, 1 ≤ i ≤ u, (3)

where k∗
i,j is the j-th non-zero element in the wNAF representation of the i-th

ephemeral key ki, the position of k∗
i,j is λ∗

i,j and k̄i = −7 ·
l∗i∑

j=1

2λ∗
i,j mod q. In the

equations, the parameters (α, k∗
i,j ’s and h∗

i ’s) are unknown and the others are
known. Finding the secret key α in Eqs. (3) is an EHNP. Therefore, the problem
of recovering the ECDSA secret key is reduced to the EHNP.

Moreover, to reduce the number of the unknown parameters, Fan et al. [7]
proposed the methods: elimination and merging.

Using the method of elimination, the secret key α in Eqs. (3) is eliminated
and thus Eqs. (3) are rewritten as

l∗1∑

j=1

(γ∗
i−1,jk

∗
1,j) +

l∗i∑

m=1

(c∗
i−1,mk∗

i,m) + βi−1 + hi−1q = 0, 2 ≤ i ≤ u, (4)

where γ∗
i−1,j = 2λ∗

1,j+1s1ri mod q, c∗
i−1,m = −2λ∗

i,m+1sir1 mod q and βi−1 =
r1(H(mi) − sik̄i) − ri(H(m1) − s1k̄1) mod q are known, and k∗

i,j ’s, hi−1’s are
unknown. Compared with Eqs. (3), the number of the unknown parameters is
reduced by 1.

Compared with the method of elimination, the method of merging reduces
more unknown parameters. Specifically, for any k∗

i,p satisfying λ∗
i,p − λi,p−1 > 4,

the method of merging will merge hi,j + 1 consecutive digits k∗
i,p, · · · , k∗

i,p+hi,j

into a new digit

ki,j = k∗
i,p + 24 · k∗

i,p+1 + · · · + 24·hi,j · k∗
i,p+hi,j

,

where hi,j is the biggest integer t such that λ∗
i,p+t − λ∗

i,p = 4 · t. In this case, the
new digit ki,j reduces hi,j unknown parameters. Based on the new digit ki,j , its
position λi,j = λ∗

i,p and the number li of the new digits in the new representation
of ki, Eqs. (4) are rewritten as

l1∑

j=1

(γi−1,jk1,j) +
li∑

m=1

(ci−1,mki,m) + βi−1 + hi−1q = 0, 2 ≤ i ≤ u, (5)

where γi−1,j = 2λ1,j+1s1ri mod q and ci−1,m = −2λi,m+1sir1 mod q. In the
equations, the parameters ki,j ’s and hi−1’s are unknown, and other parameters
are known.

3.3 Reducing the EHNP to the Approximate SVP

Let di,j = 24·hi,j+3, max
i,j

di,j = d and bi,j = d/di,j . Based on Eqs. (5), the basis

of the lattice constructed in [7] is

Attacking ECDSA Leaking Discrete Bits with a More Efficient Lattice 259

B =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

q

. . .
q

γ1,1 ··· γu−1,1 b1,1

...
...

. . .
γ1,l1 ··· γu−1,l1 b1,l1
c1,1 b2,1

...
. . .

c1,l2 b2,l2

.
cu−1,1 bu,1

...
. . .

cu−1,lu bu,lu

β1 ··· βu−1 − d
2 ··· − d

2 − d
2 ··· − d

2 ··· − d
2 ··· − d

2
d
2

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (6)

The ephemeral keys are contained in the target vector (a short lattice vector)

w = (h1, · · · , hu−1, k1,1, · · · , ki,j , · · · , ku,lu , 1)B
= (0, · · · , 0, b1,1 · k1,1 − d

2 , · · · , bi,j · ki,j − d
2 , · · · , bu,lu · ku,lu − d

2 , d
2).

Finding the target vector w is an approximate SVP, thus the EHNP is
reduced to the approximate SVP. Once the short target vector w is found by
lattice reduction algorithms, the ephemeral keys ki’s and the secret key α can
be recovered, for

ki = k̄ +
li∑

i=1

(ki,j · 2λi,j+1) and α = (siki − H(mi)) · r−1
i mod q.

The methods of elimination and merging, reducing the dimension of the lat-
tice by reducing the number of the unknown parameters, are efficient according
to the first skill in Sect. 2.5. Moreover, the choices of bi,j and d

2 , reducing the value
of δ0 = (‖w‖

det
1
n (B)

)
1
n , are also efficient according to the second skill in Sect. 2.5.

Therefore, attackers using the lattice constructed in [7] can recover the ECDSA
secret key easier. Moreover, for ephemeral keys with a fixed bit length, Fan et
al. [7] proposed the other two methods of MSD recovering and enumeration to
reduce the dimension of the lattice.

4 Constructing a More Efficient Lattice

To recover the secret key, attackers need to solve the approximate SVP. Accord-
ing to the skills in Sect. 2.5, we observe that the efficiency of the lattices con-
structed in [7,14] is limited because of the following problems:

1. The dimension of the lattice is not small enough. The reason is that the target
vector contains zero elements which can’t be used to recover the secret key;

260 S. Li et al.

2. The target vector is not short enough. The reason is that the information
leaked is not fully utilized, for example,

– When ki,j belongs to {0, 1, 2, 3, 4, 5, 6, 7}, the corresponding element in w
belonging to {−4,−3,−2,−1, 0, 1, 2, 3} is asymmetric;

– When h + 1 digits are merged, as [7] claimed, “In fact, there are h bits
among the (h + 1)w + h unknown bits being known, but we just do not
know how to utilize it”.

We propose two new techniques to solve the problems above and obtain a
more efficient lattice. Specifically, we solve the first problem in Sect. 4.1 and
the second problem in Sect. 4.2. The new lattice has a lower dimension and a
shorter target vector, which makes it much easier to find the target vector. In
addition, we propose another new technique to improve the success probability
of the secret key recovery in Sect. 4.3.

4.1 Reducing the Dimension of the Lattice

In this section, we solve the first problem by eliminating the zero elements in
the target vector, which reduces the dimension of the lattice. According to the
first skill in Sect. 2.5, we thus construct a more efficient lattice.

To eliminate the zero elements in the target vector w, we rewrite Eq. (5) as

ki,1 =
l1∑

j=1

(γ′
i−1,jk1,j) +

li∑

m=2

(c′
i−1,mki,m) + β′

i−1 + h′
i−1q, 2 ≤ i ≤ u, (7)

where γ′
i−1,j = −γi−1,j ·c−1

i−1,1, c′
i−1,m = −ci−1,m ·c−1

i−1,1 and β′
i−1 = −βi−1 ·c−1

i−1,1.
In the equations, the parameters (ki,j ’s and h′

i−1’s) are unknown and the others
are known. According to Eq. (7), we obtain the new lattice of which the basis is

B′ =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

q·b2,1
. . .

q·bu,1

γ′
1,1·b2,1 ··· γ′

u−1,1·bu,1 b1,1

...
...

. . .
γ′
1,l1

·b2,1 ··· γ′
u−1,l1

·bu,1 b1,l1
c′
1,2·b2,1 b2,2

...
. . .

c′
1,l2

·b2,1 b2,l2

.
c′
u−1,2·bu,1 bu,2

...
. . .

c′
u−1,lu ·bu,1 bu,lu

β′
1·b2,1− d

2 ··· β′
u−1·bu,1− d

2 − d
2 ··· − d

2 − d
2 ··· − d

2 ··· − d
2 ··· − d

2
d
2

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (8)

Attacking ECDSA Leaking Discrete Bits with a More Efficient Lattice 261

The new target vector

w = (h′
1, · · · , h′

u−1, k1,1, · · · , k1,l1 , k2,2, · · · , k2,l2 , · · · , ku,2, · · · , ku,lu , 1)B′

= (b2,1 · k2,1 − d
2
, · · · , bu,1 · ku,1 − d

2
, b1,1 · k1,1 − d

2
, · · · , b1,l1 · k1,l1 − d

2
,

b2,2 · k2,2 − d
2
, · · · , b2,l2 · k2,l2 − d

2
, · · · , bu,2 · ku,2 − d

2
, · · · , bu,lu · ku,lu − d

2
, d
2
)

eliminates the first u− 1 zero elements in the old target vector. Compared with
the lattice in Eq. (6),

1. The dimension of the new lattice is reduced by u − 1;
2. The determinant and the length of the target vector remain unchanged, which

means that the new lattice has a smaller value of δ0 = (‖w‖
det

1
n (B′)

)
1
n .

According to the first and second skills in Sect. 2.5, we obtain a more efficient
lattice by solving the first problem.

4.2 Reducing the Length of the Target Vector

To solve the second problem, we reconstruct the lattice by making full use of
the information leaked. In the new lattice, the target vector w is shorter while
the determinant det(B′) remains unchanged, which reduces the value of δ0 =
(‖w‖
det

1
n (B′)

)
1
n . According to the second skill in Sect. 2.5, we thus obtain a more

efficient lattice.
To reduce the value of δ0, there are two commonly used methods:

1. Reducing the value of ‖w‖ while maintaining the value of det(B′);
2. Changing the values of ‖w‖ and det(B′) simultaneously.

The square of the length of the target vector is

‖w‖2 =
n∑

p=1

w2
p,

where wp = bi,j ·ki,j − d
2 . The determinant of the lattice is det(Λ) = qu−1

∏

i,j

bi,j ·
d/2. To change the value of ‖w‖, one needs to change the expectation of w2

p,
i.e., E(w2

p). To change the determinant of the lattice, one needs to change the
values of the diagonal elements in the lattice basis B′. We propose a technique
to reduce the value of δ0 and apply it to the lattice B

′
.

In the target vector w, the choice of the parameters bi,j and d
2 in [7] reduces

the value of δ0 by the second method, i.e., increasing the values of ‖w‖ and
det(B′). To clearly show how our technique reduces the value of ‖w‖, we consider
the parameters bi,j and d

2 after introducing the technique. In this case, assuming
that wp merges hi,j + 1 digits, we have

wp = ki,j − 24·hi,j+2 =
hi,j∑

m=0

(24·m · k′
i,m+m1

+ 7
2

) − 24·hi,j+2, (9)

262 S. Li et al.

where m1 is a definite integer and k′
i,m+m1

∈ {−7,−5,−3,−1, 1, 3, 5, 7}. To
decrease E(w2

p), we recenter the target vector and obtain the new one w, where

wp =
hi,j∑

m=0

(24·m · k′
i,m+m1

+ 7
2

) − 7
2

·
hi,j∑

m=0

24·m =
hi,j∑

m=0

(24·m · k′
i,m+m1

2
). (10)

In the process of constructing the new target vector, every bit of the information
leaked is used to recenter wp. Therefore, the new wp is more balanced and E(w2

p)
is smaller.

Based on the works in [7] and the above technique, the process of reducing
the value of E(w2

p) can be summarized as the following two steps:

1. Rewrite the signature equations by defining a new integer variable k∗
i,j =

k′
i,j−a

b , where k′
i,j is the original unknown digit (see Sect. 3.1), and a and b

are integers because they appear in the signature equations;
2. Obtain the target vector w of which the element is wp = k∗

i,j − c, where c is
a real number.

Based on the above process, we provide a general method to minimize E(w2
p) in

Theorem 1, where we consider k′
i,j as the variable x.

Theorem 1. Assume that x is a uniformly distributed random variable on the
set of integers {x1, x2, · · · , xn} in ascending order. For integers a, b satisfying
x−a

b is an integer and a real number c, we can minimize

E((
x − a

b
− c)2)

when b = gcd(x2 − x1, · · · , xn − xn−1) and c = E(x)−a
b . To guarantee x−a

b is an
integer, we can let a = x0.

Proof. Let bmax = gcd(x2 − x1, · · · , xn − xn−1). Because xi−a
b and xj−a

b are
integers (i, j ∈ [1, n]), we have xi−a

b − xj−a
b = xi−xj

b is also an integer. Therefore,
the integer b must be a factor of bmax. Moreover, to minimize

E((
x − a

b
− c)2) =

D(x)
b2

+ E2(
x − a

b
− c),

where D(x) is the variance of the variable x, the optimal b and c are bmax and
E(x)−a

b respectively. Finally, to guarantee x−a
b is a integer, a can be x0. �

As shown in Eq. (9), wp =
hi,j∑

m=0
(24·m · k′

i,m+m1
+7

2)−24·hi,j+2, where k′
i,m+m1

∈
{−7,−5,−3,−1, 1, 3, 5, 7}. According to the Theorem 1, the new wp in Eq. (10)
is the optimal. Based on the optimal wp, we obtain a new lattice, whose lattice

Attacking ECDSA Leaking Discrete Bits with a More Efficient Lattice 263

basis is
⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

q·b2,1
. . .

q·bu,1

γ′
1,1·b2,1 ··· γ′

u−1,1·bu,1 b1,1

...
...

. . .
γ′
1,l1

·b2,1 ··· γ′
u−1,l1

·bu,1 b1,l1
c′
1,2·b2,1 b2,2

...
. . .

c′
1,l2

·b2,1 b2,l2

.
cu−1,2·bu,1 bu,2

...
. . .

c′
u−1,lu ·bu,1 bu,lu

β′
1·b1,1+e2,1 ··· β′

u−1·bu,1+eu,1 e1,1 ··· e1,l1 e2,2 ··· e2,l2 ··· eu,2 ··· eu,lu
d
2

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (11)

where ei,j = −bi,j · E(ki,j) = − 7
2 · bi,j ·

hi,j∑

m=0
24·m. Compared with the lattice in

Equation (8), the new lattice contains a shorter target vector by making full use
of the information leaked. Therefore, we solve the second problem and obtain a
more efficient lattice.

4.3 Improving the Success Probability

The method of merging in [7] merges hi,j +1 consecutive digits k∗
i,p, · · · , k∗

i,p+hi,j

into a new digit ki,j , where k∗
i,p satisfies λ∗

i,p − λ∗
i,p−1 > 4 and hi,j is the biggest

integer t such that λ∗
i,p+t − λ∗

i,p = 4 · t.
To obtain a new method of merging, we modify the method in [7] when

hi,j > mu, where mu is an adjustable integer. In this case, we decompose the
digit

ki,j = k∗
i,p + 24 · k∗

i,p+1 + · · · + 24·hi,jki,p+hi,j

into n =
hi,j+1
mu+1 � new digits

k∗
i,p+· · ·+24·muk∗

i,p+mu
, · · · , k∗

i,n1−mu
+· · ·+24·muk∗

i,n1
, k∗

i,n1+1+· · ·+24·(hi,j−n1−1)k∗
i,hi,j

,

where n1 = p + (n − 1) · (mu + 1) − 1. The new method of merging increases
the dimension of the lattice, however, it reduces the length of the target vector.
Therefore, the lattice constructed based on the new method of merging may also
be effective.

We observe that the lattices with different mu’s are probable to recover dif-
ferent secret keys, which can be used to improve the success probability of the
ECDSA secret key recovery.

264 S. Li et al.

5 Experiments

We take 4 signatures as an example to demonstrate the efficiency of each new
technique (see Table 2). In this table, the signatures are chosen based on the
technique in [14], satisfying that, for any i and j, λi,j+4 − λi,j > 16. The exper-
imental results show that each new technique improves the success probability,
which demonstrates the effectiveness of each new technique. Combining with all
new techniques, we increase the success probability in [14] by 12 times.

Table 2. The efficiency of our techniques. In this table, “A”, “B” and “C” represent
the technique in Sect. 4.1, the technique in Sect. 4.2 and the technique in Sect. 4.3,
respectively. “N” represents the number of signatures, “mu” represents the maximum
number of digits merged (see Sect. 4.3). In addition, for a fixed lattice, “block”, a
parameter of BKZ, determines the time complexity of BKZ. The results are from 1000
experiments with 1000 random secret keys.

Attack N block mu probability

[14] 4 25 3 0.5%

[14] + A 4 25 3 2.3%

[14] + A + B 4 25 3 3.5%

[14] + A + B + C 4 25 0,1,2,3 6%

Moreover, we compare our results with the best results in the lattice attacks
[7,14] (see Table 1). The difference between the two attacks is whether to use the
methods (MSD recovering and enumeration) introduced in [7] and the method of
selecting the signatures with a certain feature introduced in [14]. By injecting all
the new techniques into the lattice attack in [7], we recover the secret key with
fewer signatures. By injecting all the new techniques into the lattice attack in
[14], we significantly improve the success probability. Specifically, we increase the
success probability by at least 20 (resp., 3) times when the number of signatures
are 3 (resp., 4).

6 Conclusion

In this paper, to recover the secret key of ECDSA leaking discrete bits, we
construct a more efficient lattice which has a lower dimension and a shorter
target vector by proposing two new techniques. Moreover, we improve the success
probability by using the lattices merging different numbers of digits. Therefore,
our attack is much easier to recover the secret key. Compared with the existing
lattice attacks, we recover the secret key with fewer signatures or a higher success
probability.

Acknowledgements. We thank the anonymous reviewers for their helpful comments
and suggestions. Xianhui Lu and Shuaigang Li are supported by the National Natural
Science Foundation of China (Grant No. 61972391).

Attacking ECDSA Leaking Discrete Bits with a More Efficient Lattice 265

References

1. Albrecht, M.R., Ducas, L., Herold, G., Kirshanova, E., Postlethwaite, E.W.,
Stevens, M.: The general sieve kernel and new records in lattice reduction. In:
Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019. LNCS, vol. 11477, pp. 717–746.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17656-3 25

2. Albrecht, M.R., Göpfert, F., Virdia, F., Wunderer, T.: Revisiting the expected cost
of solving uSVP and applications to LWE. In: Takagi, T., Peyrin, T. (eds.) ASI-
ACRYPT 2017. LNCS, vol. 10624, pp. 297–322. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-70694-8 11

3. Alkim, E., Ducas, L., Pöppelmann, T., Schwabe, P.: Post-quantum key exchange -
a new hope. In: USENIX Security Symposium, pp. 327–343. USENIX Association
(2016)

4. Boneh, D., Venkatesan, R.: Hardness of computing the most significant bits of
secret keys in Diffie-Hellman and related schemes. In: Koblitz, N. (ed.) CRYPTO
1996. LNCS, vol. 1109, pp. 129–142. Springer, Heidelberg (1996). https://doi.org/
10.1007/3-540-68697-5 11

5. Brumley, B.B., Tuveri, N.: Remote timing attacks are still practical. In: Atluri, V.,
Diaz, C. (eds.) ESORICS 2011. LNCS, vol. 6879, pp. 355–371. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-23822-2 20

6. Chen, Y., Nguyen, P.Q.: BKZ 2.0: better lattice security estimates. In: Lee, D.H.,
Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 1–20. Springer, Heidel-
berg (2011). https://doi.org/10.1007/978-3-642-25385-0 1

7. Fan, S., Wang, W., Cheng, Q.: Attacking openssl implementation of ECDSA with
a few signatures. In: CCS, pp. 1505–1515. ACM (2016)

8. Hlaváč, M., Rosa, T.: Extended hidden number problem and its cryptanalytic
applications. In: Biham, E., Youssef, A.M. (eds.) SAC 2006. LNCS, vol. 4356, pp.
114–133. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74462-
7 9

9. Howgrave-Graham, N., Smart, N.P.: Lattice attacks on digital signature schemes.
Des. Codes Cryptogr. 23(3), 283–290 (2001)

10. Jancar, J., Sedlacek, V., Svenda, P., Sýs, M.: Minerva: The curse of ECDSA nonces
systematic analysis of lattice attacks on noisy leakage of bit-length of ECDSA
nonces. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2020(4), 281–308 (2020)

11. Johnson, D., Menezes, A., Vanstone, S.A.: The elliptic curve digital signature algo-
rithm (ECDSA). Int. J. Inf. Sec. 1(1), 36–63 (2001)

12. Kocher, P.C.: Timing attacks on implementations of Diffie-Hellman, RSA, DSS,
and Other Systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp.
104–113. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-68697-5 9

13. Lenstra, A.K., Lenstra, H.W., Lovász, L.: Factoring polynomials with rational
coefficients. Mathematische Annalen 261(4) (1982)

14. De Micheli, G., Piau, R., Pierrot, C.: A tale of three signatures: practical attack
of ECDSA with wNAF. In: Nitaj, A., Youssef, A. (eds.) AFRICACRYPT 2020.
LNCS, vol. 12174, pp. 361–381. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-51938-4 18

15. Moghimi, D., Sunar, B., Eisenbarth, T., Heninger, N.: TPM-FAIL: TPM meets tim-
ing and lattice attacks. In: USENIX Security Symposium, pp. 2057–2073. USENIX
Association (2020)

16. Nguyen, P.Q., Shparlinski, I.E.: The insecurity of the digital signature algorithm
with partially known nonces. J. Cryptol. 15(3), 151–176 (2002)

https://doi.org/10.1007/978-3-030-17656-3_25
https://doi.org/10.1007/978-3-319-70694-8_11
https://doi.org/10.1007/978-3-319-70694-8_11
https://doi.org/10.1007/3-540-68697-5_11
https://doi.org/10.1007/3-540-68697-5_11
https://doi.org/10.1007/978-3-642-23822-2_20
https://doi.org/10.1007/978-3-642-25385-0_1
https://doi.org/10.1007/978-3-540-74462-7_9
https://doi.org/10.1007/978-3-540-74462-7_9
https://doi.org/10.1007/3-540-68697-5_9
https://doi.org/10.1007/978-3-030-51938-4_18
https://doi.org/10.1007/978-3-030-51938-4_18

266 S. Li et al.

17. Page, D.: Theoretical use of cache memory as a cryptanalytic side-channel. IACR
Cryptol. ePrint Arch. 2002, 169 (2002)

18. Schnorr, C., Euchner, M.: Digital signature standard (dss) FIPS, 186–3 (2013)
19. Wang, W., Fan, S.: Attacking openssl ECDSA with a small amount of side-channel

information. Sci. China Inf. Sci. 61(3), 032105:1–032105:14 (2018)
20. Weiser, S., Schrammel, D., Bodner, L., Spreitzer, R.: Big numbers - big troubles:

systematically analyzing nonce leakage in (EC)DSA implementations. In: USENIX
Security Symposium, pp. 1767–1784. USENIX Association (2020)

Cryptographic Protocols

A Simple Post-Quantum Non-interactive
Zero-Knowledge Proof from Garbled

Circuits

Hongrui Cui and Kaiyi Zhang(B)

Department of Computer Science, Shanghai Jiao Tong University,
Shanghai 200240, China

{rickfreeman,kzoacn}@sjtu.edu.cn

Abstract. We construct a simple public-coin zero-knowledge proof sys-
tem solely based on symmetric primitives, from which we can apply the
Fiat-Shamir heuristic to make it non-interactive. Our construction can
be regarded as a simplified cut-and-choose-based malicious secure two-
party computation for the zero-knowledge functionality. Our protocol is
suitable for pedagogical purpose for its simplicity (code is only 728 lines).

Keywords: Zero-knowledge · Garbled circuit · Post-quantum

1 Introduction

Zero-knowledge proof (ZK) is a fundamental cryptographic primitive which
allows a prover to convince a verifier of the membership of an instance x in
any NP language without revealing any information about its witness w [14].
Due to its theoretical significance and practical applications (e.g., the use of ZK
in nuclear disarmament [13]), ZK is also a central topic in cryptographic research.
In particular, a rich body of research [7,11,15,16,21,25,27,30] (and many oth-
ers) has successfully constructed succinct argument systems with proof size and
verification complexity sub-linear in the size of the statement.

Despite the achievements, many current efficient ZK protocols have high
prover complexity in order to facilitate the succinct property. While this cap-
tures the performance requirement in most cases, we argue that a lightweight
prover is crucial for some applications as well. Imagine the following scenario:
An computationally weak IoT device captures possibly sensitive data (e.g., bio-
metric) from its sensors and need to prove some properties on the captured data
to a powerful server. Due to the privacy requirement, it cannot simply send the
data to the server. In this case, a zero-knowledge protocol that has low prover’s
complexity would be ideal.

1.1 Our Construction

Here we briefly introduce the intuitions of our construction in Fig. 1. We consider
ZK as a special case of malicious secure two-party computation. Therefore we
c© Springer Nature Switzerland AG 2021
Y. Yu and M. Yung (Eds.): Inscrypt 2021, LNCS 13007, pp. 269–280, 2021.
https://doi.org/10.1007/978-3-030-88323-2_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-88323-2_14&domain=pdf
https://doi.org/10.1007/978-3-030-88323-2_14

270 H. Cui and K. Zhang

Prove(1κ, Cx, w)

for i := 1 to 2κ do

(GCi, ei, di) Gb(1κ, Cx)

endfor

b := H({GCi, di})
z := {}
for i := 1 to 2κ do

if bi = 0 then

z z ∪ ei

elseif bi = 1 then

Wi := En(ei, w)

z z ∪ Wi

fi

endfor

return π = ({GCi, di}, z)

Verify(1κ, Cx, π)

b := H({GCi, di})
for i := 1 to 2κ do

if bi = 0 then

if Ve(GCi, ei, di, Cx) = 0 then

return false

fi

fi

if bi = 1 then

if De(di,Ev(GCi, Wi)) = 0 then

return false

fi

fi

endfor

return true

Fig. 1. Our post quantum NIZK in a nutshell, where H is a random oracle, G =
(Gb,En,De,Ev, ev,Ve) is a garbling scheme. κ is the security parameter.

try to optimize cut-and-choose-based 2PC by utilizing features specific to the
zero-knowledge setting.

Informally, a cut-and-choose-based 2PC consists of those steps: Firstly, the
garbler generates garbled circuits and sends them to the evaluator. The evaluator
randomly chooses a subset of garbled circuits and asks the garbler to open them.
On receiving the seeds, the evaluator checks those garbled circuits are generated
correctly. Then the two parties execute some oblivious transfers (OT) in order
to let the evaluator obtain the garbled label corresponding to his private input.
The evaluator also needs additional operations to make sure the garbler’s inputs
are consistent. Finally, the evaluator accepts the majority outcome of garbled
circuits.

Let us try to apply this protocol to zero-knowledge proof directly. Unlike
previous constructions [20], we let the prover and verifier be the garbler and
evaluator respectively. This change gives rise to several advantages:

1. We no longer need OT because the verifier has no private input. This elim-
inates public key encryption and leaves only symmetric primitives. We can
also get rid of the selective failure attack.

2. We do not have to check the input consistency since the ZK property does
not require multiple witnesses to be the same as long as they are valid.

3. We can accept if and only if all outputs are the same instead of accepting the
majority. In a 2PC setting, choosing the majority is to avoid one-bit leakage

A Simple Post-Quantum Non-interactive Zero-Knowledge 271

from abortion, however, the verifier is not required to prevent this attack
because he has no private inputs.

4. Finally we can see that the protocol is public-coin, i.e., the verifier has no
private randomness in this protocol. Therefore we can apply Fiat-Shamir
heuristic to this ZK protocol to make it non-interactive.

1.2 Related Works

Here we only briefly review those works related to universal post-quantum non-
interactive zero-knowledge proof systems.

zk-STARK. This protocol was proposed and first realized by Ben-Sasson et al.
in [5]. zk-STARK offers universal, transparent, scalable and post-quantum secure
zero-knowledge proof system in the interactive oracle proofs (IOP) model.

MPC-in-the-Head. Ishai et al. [19] first introduce the “MPC-in-the-head”
paradigm from which one can construct a ZK from the black-box use of a secure
multiparty computation protocol. Later, this approach was first implemented by
ZKBoo [12]. Some subsequent works [1,9] also follow this paradigm.

Garbled Circuit. Garbled Circuit (GC) is a cryptographic tool which is widely
used in secure multiparty computation. It was invented by Yao [28] in 1986.
Recent years, garbled circuits are improved quickly, like point-and-permute [3],
row-reduction [24], free-XOR [22], half gate [29] and stacked garbling [18].

ZK from GC. Jawurek et al. proposed the first ZK protocol based on garbled
circuits [20]. Their construction focuses on the advantage of garbled circuits,
namely its efficiency at evaluating non-algebraic functions (e.g., a circuit for
block cipher), and thus achieves good performance. Nevertheless, their protocol
is not public-coin and cannot be made non-interactive using the standard Fiat-
Shamir transformation.

2 Preliminaries

A negligible function, denoted by negl(n), represents a function f : N → R

that for any constant c, there exists an integer N such that for all n > N ,
f(n) ≤ n−c. We also use poly(n) to denote some polynomial. For integer n ∈ N

let [n] to denote the set {1, 2, ..., n}. We use the common definitions of com-
putational and statistical indistinguishable distribution ensembles. Throughout
this work, we use κ to denote security parameters. We use PPT to indicate
probabilistic polynomial-time and sometimes use the term “efficient” and PPT
interchangeably.

An NP relation R is defined by a circuit family {Ci}i∈N whose size is
bounded by some polynomial. An instance-witness pair (x,w) is included in
the relation iff. C|x|(x,w) = 1. We use L(R) to denote the language induced by
the relation, i.e., L(R) = {x|∃w, (x,w) ∈ R}.

272 H. Cui and K. Zhang

2.1 Zero Knowledge Proof

We follow the standard definition of zero knowledge [17], which we recall as
follows.

Definition 1. A protocol π is a sigma protocol for relation R if it’s a three-round
public-coin protocol satisfying the following three properties:

Completeness. If P and V follow the protocol on public input x and private
input w where (x,w) ∈ R then V always accepts.

Special soundness. There exists an efficient PPT algorithm A such that given
any x and any pair of accepting transcript (a, e, z) and (a, e′, z′) for x where
e �= e′ extracts w such that (x,w) ∈ R.

Honest-verifier zero-knowledge. There exists a PPT simulator S which on
input x, e generates a transcript (a, e, z) such that for any (x,w) ∈ R the
transcript is identically distributed as in the real execution.

2.2 Garbled Circuit

We follow the definition of garbled circuit in [20], which is derived from the
standard definitions [4]. We first explain the syntax of a garbling scheme and
then list the properties of a garbling scheme that is required in this paper.

Definition 2. A garbling scheme is defined by a tuple G = (Gb,En,De,
Ev, ev,Ve):

– The garbled circuit generation function Gb is a randomized algorithm that
on input a security parameter 1κ and the description of a Boolean function
C : {0, 1}n → {0, 1}, outputs a triple of strings (GC, e, d).

– The plaintext evaluation algorithm ev evaluates the function described by C
i.e., ev(C,w) = C(w).

– The encoding function En is a deterministic function that uses e to map an
input w to a garbled input W .

– The garbled evaluation function Ev is a deterministic function that evaluates
a garbled circuit GC on an encoded input W to get an encoded output Z.

– The decoding function De, using the string d, decodes the encoded output Z
into a plaintext output z.

– In addition to the standard algorithms, a verifiable garbled scheme has an
extra procedure Ve that, on input garbled circuit GC, a description of a
Boolean function C, and the encoding information e, outputs 1 (accept) or 0
(reject).

We require the following standard properties of a garbling scheme.

Definition 3 (Correctness). Let G be a garbling scheme described as above.
We say that G enjoys correctness if for all C : {0, 1}n → {0, 1}, w ∈ {0, 1}n such
that C(w) = 1, the following probablity is negligible in paramter κ:

Pr[(GC, e, d) ← Gb(1κ, C),W ← En(e, w) : De(d,Ev(GC,W)) �= 1] (1)

A Simple Post-Quantum Non-interactive Zero-Knowledge 273

Definition 4 (Privacy). Let G be a garbling scheme described as above. We
say that G enjoys privacy if for all C : {0, 1}n → {0, 1} there exists a PPT
algorithm Gb.Sim such that given plaintext output y, generates the garbled cir-
cuit, decoding information, and garbled input that is indistinguishable from a
real execution. In particular, the following two distributions are computationally
indistinguishable for any input w.

– {(GC, e, d) ← Gb(1κ, C),W ← En(e, w) : (GC, d,W)}
– {y ← ev(C,w), (GC, d,W) ← Gb.Sim(C, y) : (GC, d,W)}
Remark 1. In order to facilitate the security proof of our construction, we require
the following two additional requirements on the encoding function En(e, w).

Projective. Fixing s, suppose the function En maps an n-bit string to an n�-bit
one, then the map f : w �→ En(e, w) can be “decomposed” into n functions
f1, ..., fn such that f(x) = f1(w1), ..., fn(wn) where wi is the ith bit of w.

Injective. Let e be generated from (GC, e, d) ← Gb(C), the map f : w �→
En(e, w) is injective with high probability over the randomness of Gb.

The first property is standard [4] and is closely related to the application of
garbled circuits in secure two-party computation. The second one is naturally
satisfied by some natural constructions. For example, let W = PRF(s, w) where
PRF is a pseudorandom function with a large enough range, then the probability
of a collision is negligible.

The two properties listed above facilitates an efficient extraction procedure
Gb.Ext that outputs w given e and encoded input W—the projective property
allows us to extract bit-by-bit while the injective property guarantees the unique-
ness of the extraction. In particular, for every input position i, the extractor test
whether the output block corresponds to 0 or 1 and sets the results accordingly,
as shown in Fig. 2.

Finally, we require the following verifiability property of a garbling scheme,
which ensures the correctness of the garbling process by the verification algo-
rithm. Jumping ahead, this guarantees the effectiveness of witness extraction
given two accepting transcripts.

Definition 5 (Verifiability). Let G be a garbling scheme described as above.
We say that G enjoys verifiability if for all C : {0, 1}n → {0, 1}, for all PPT A,
the following probability is negligible in parameter κ.

Pr
[

(GC, e, d,W) ← A(1κ, C)
Ve(C,GC, e) = 1 ∧ De(d,Ev(GC,W)) = 1 : ev(C,Gb.Ext(e,W)) �= 1

]
(2)

We note that the above definition differs from the verifiability definition
in [20]. Nevertheless, we show that under the assumption that the encod-
ing function is injective and projective (i.e., efficient extraction is possible),
Definition 5 is implied by the original one, which we recall below.

274 H. Cui and K. Zhang

Gb.Ext(e,W)

for i := 1 to n do

if Wi = Eni(e, 0) then

wi := 0

elseif Wi = Eni(e, 1) then

wi := 1

else

return ⊥
endif

endfor

return w1, ..., wn

Fig. 2. The input extraction procedure of an injective and projective garbling scheme
G. n is the input length and Eni is the ith output block of En.

Definition 6 (Verifiability from [20]). A garbling scheme G enjoys verifi-
ability if for all C : {0, 1}n → {0, 1} and x, y ∈ {0, 1}n, for all PPT A, the
following probability is negligible in parameter κ.

Pr
[

(GC, e) ← A(1κ, C)
X = En(e, x), Y = En(e, y) :

Ve(C,GC, e) = 1 ∧
Ev(GC,X) �= Ev(GC, Y)

]
(3)

Lemma 1. Let G be a garbling scheme and the encoding function En is injective
and projective, then Definition 6 implies Definition 5.

Proof. Suppose a garbling scheme G satisfies Definition 6 but does not sat-
isfy Definition 5. Consider the adversary A that returns (GC, e, d,W) on input
C. The encoded input W satisfies that De(d,Ev(GC,W)) = 1 while the value
returned from the extraction procedure Gb.Ext—denoted as w—evalautes to 0
on C.1

Let W ′ = En(e, w). From the correctness and the deterministic property of
the decoding procedure we conclude that Ev(GC,W) �= Ev(GC,W ′). Since all
other requirements in Definition 6 are met, this forms a contradiction.

3 Construction

In this section, we present our construction of a public-coin zero-knowledge proof
system based on garbled circuits.

1 We ignore the case of Gb.Ext returning “⊥” since the authenticity property of the
garbling scheme (which is standard and not presented in this paper) guarantees
that an adversary cannot generate such malformed encoded input that evaluates to
well-formed encoded output.

A Simple Post-Quantum Non-interactive Zero-Knowledge 275

3.1 ZK in the Standard Model

In contrast to the well-known JKO protocol [20], we let the prover perform
garbling in order to acquire a public-coin protocol. The protocol, which is shown
in Fig. 3, is a cut-and-choose style sigma protocol where the prover first sends
two garblings of a circuit Cx using independent random coins. When considering
an NP relation R such that (x,w) ∈ R iff. C(x,w) = 1, we let the circuit Cx

“hard-wire” the public information x, i.e., Cx(w) = C(x,w).
Then the verifier samples a challenge b ← {0, 1} and sends it to the prover.

The prover reveals the coins specified by this index and sends input encodings
W corresponding to the unopened circuit. Finally, the verifier accepts the proof
if the random coin rb successfully generates GCb and the outputs induced by
GC1−b and X is 1.

Prover Verifier

(GC0, e0, d0) Gb(1κ, Cx)

(GC1, e1, d1) Gb(1κ, Cx)

GC0, d0, GC1, d1

b {0, 1}
b

W En(e1−b, w)

eb, W

The verifier accepts if

Ve(GCb, eb, Cx) = 1 ∧
De(d1−b,Ev(GC1−b, W)) = 1

Fig. 3. A public coin zero-knowledge in the standard model.

We prove the special soundness and honest-verifier zero-knowledge properties
of this scheme in the following theorem.

Theorem 1. Let R be a NP relation defined by circuit family {C ′} s.t. for
every instance (a, b) ∈ R, C ′(a, b) = 1. For any instance a ∈ L(R), define circuit
family C(w) = C ′(a,w). Let G = (Gb,En,De,Ev, ev,Ve) be a garbling scheme.
The sigma protocol in Fig. 3 is a computational honest-verifier zero-knowledge
protocol with special soundness for the relation R.

Proof. The completeness of the protocol follows from the correctness of the gar-
bling scheme. We then prove the honest-verifier zero-knowledge property by
explaining the procedure for generating an accepting verifier’s transcript.

276 H. Cui and K. Zhang

The procedure for generating an accepting transcript from input (x, b) is as
follows:

– First generate (GCb, eb, db) ← Gb(1κ, Cx) as an honest prover.
– Then generate the other garbled circuit and input by invoking the simulation

algorithm for the garbling scheme: (GC1−b,W, d1−b) ← Gb.Sim(Cx, 1).
– Outputs the transcript (GC0, d0, GC1, d1, b, eb,W).

The effectiveness of the simulator Gb.Sim for the garbling scheme, which is
implied by the privacy of the garbling scheme (Definition 4), guarantees the
computational indistinguishability between a real accepting transcript and one
generated from the above procedure (without the knowledge of input w), which
implies computational zero-knowledge.

Next we argue the special soundness of the above scheme. Recall that this
property requires that a valid input can be extracted from two transcripts (a, e, z)
and (a, e′, z′) such that e �= e′. Consider the two transcripts

– (GC0, d0, GC1, d1, b, eb,W)
– (GC0, d0, GC1, d1, b

′, eb′ ,W ′)

where without loss of generality we many assume b = 0 and b′ = 1. Notice
that for both indices, the condition Ve(GC, e, d, Cx) = 1 ∧ De(d,Ev(GC,W))
holds. From the verifiability property (Definition 5) of the garbling scheme, we
conclude that with non-negligible probability we can extract input w such that
ev(Cx, w) = 1 for either transcript.

We note that the above proof does not require rewinding and thus in the
quantum random oracle model (QROM) the security properties hold against
quantum adversaries [10,23].
�

Next, we apply the standard techniques, namely parallel repetition and Fiat-
Shamir transform, to the basic sigma protocol in Fig. 3, in order to acquire
a non-interactive zero-knowledge proof with negligible soundness error in the
random oracle model.

Corollary 1. Let H be a random oracle and λ ∈ N be an integer. Then by
running the protocol in Fig. 3 for λ times in parallel and generating each chal-
lenge by hashing all κ first messages using the random oracle H, one can acquire
a non-interactive zero-knowledge proof with honest-verifier zero-knowledge and
soundness error 2−λ against PPT adversary.

Optimizations. Notice that in our protocol a large overhead originates from the
application of the cut-and-choose technique. Indeed, to achieve soundness error
2−κ, the prover needs to send 2κ garbled circuits where only one is actually
evaluated. And therefore it is natural to apply the optimizations targeted at the
cut-and-choose technique, commonly found in the malicious two-party compu-
tation setting.

A Simple Post-Quantum Non-interactive Zero-Knowledge 277

– Instead of sending the garbled circuit, the prover can only send commitments
in the first round. Then in the third round, the prover sends the coins for gar-
bling and commitment for the selected index and decommitment information
for the other index. This can reduce the communication complexity roughly
by half.

Recall that a large overhead of the protocol in this subsection is caused by the
need to verify that the prover faithfully garbles the correct circuit. Notwithstand-
ing, a trusted party (e.g., a judiciary department) may exist in some scenarios,
and can distribute some input-independent “raw-material” to both parties before
the actual proof process begins. This is captured by the “Common Reference
String” model in the next subsection.

3.2 ZK in the CRS Model

In this setting, a third party garbles the verification circuit and distributes the
input encoding information to the prover and garbled circuit to the verifier
faithfully. Notice that since the garbled circuit is guaranteed to be correct by
the model, we can remove the expensive cut-and-choose step, and the proof
message consists of only the garbled input (which is trivially non-interactive).
This is captured in the algorithms in Fig. 4.

CRS.Gen(1n)

(GC, e, d) Gb(C, 1n)

return ((GC, d), e)

Prove(e, x)

X En(e, x)

return X

Verify(GC, d, X)

y De(d,En(GC, X))

return y

Fig. 4. Zero-knowledge protocol in the common reference string model.

3.3 Discussion

Recall that in the construction we proposed, the prover’s computation is essen-
tially garbling and encoding. From a theoretical perspective, this paradigm can
be viewed as an application of the randomized encoding technique [2], where
the prover essentially performs the encoder’s job. When instantiated with the
garbled circuit, the prover’s computation is in NC1—the class of functions that
can be completed by a O(log n)-depth circuit family. This characterization could
inspire further applications, such as utilizing parallelism or delegation of com-
putation.

278 H. Cui and K. Zhang

4 Implementation and Experiments

We implement the protocol in Sect. 3 for the SHA256 relation defined as follows:

Rhash(y;x) : y = SHA256(x), where x ∈ {0, 1}512, and y ∈ {0, 1}256.
Throughout the experiment, we use the specific SHA256 circuit in the works of

Campanelli et al. [8] which has optimized the AND gate count. The total number
of gates is 117,016 and the number of AND gates is 22,272.

To counter the Grover quantum attack, we extend the size of a garbled label
to 256 bit. To achieve 2−128 soundness error, the repetition count is 128.

The proving time is 3.0 s. The verification time is 2.2 s. The proof is 379 MB.
We run the experiments on a Ubuntu 20.04 LTS machine with AMD Ryzen

5 3600 CPU and 16 GB of RAM. Our implementation is only 728 lines in C++
with dependency on OpenSSL.

5 Conclusion

We admit the proof size of our construction is large. However, in comparison
with other post-quantum NIZK, our construction requires minimum knowledge.
This scheme can be taught to undergraduate students right after they under-
stand garbled circuits. Unlike zk-STARK, which requires plenty of efforts on
complexity theory, or MPC-in-the-head paradigm, which requires secure multi-
party computation in advance. Our implementation is only 728 lines, which is
suitable as a course work for beginners.

Second, our construction is highly parallel. Not only cut-and-choose can be
parallel, but also garbling itself. That means the execution time can be reduced
by multiprocessor significantly.

On the other hand, our construction benefits from the improvements on gar-
bled circuits. For example, Heath et al. recently purpose stacked garbling [18],
indicating that our approach works potentially better than others on some spe-
cific tasks like evaluating a decision tree.

References

1. Ames, S., Hazay, C., Ishai, Y., Venkitasubramaniam, M.: Ligero: lightweight sub-
linear arguments without a trusted setup. In: Thuraisingham et al. [26], pp. 2087–
2104. https://doi.org/10.1145/3133956.3134104

2. Applebaum, B.: Garbled circuits as randomized encodings of functions: a primer.
Cryptology ePrint Archive, Report 2017/385 (2017). http://eprint.iacr.org/2017/
385

3. Beaver, D., Micali, S., Rogaway, P.: The round complexity of secure protocols.
In: Proceedings of the Twenty-Second Annual ACM Symposium on Theory of
Computing, pp. 503–513 (1990)

4. Bellare, M., Hoang, V.T., Rogaway, P.: Foundations of garbled circuits. In: Yu, T.,
Danezis, G., Gligor, V.D. (eds.) ACM CCS 2012, pp. 784–796. ACM Press (Oct
2012). https://doi.org/10.1145/2382196.2382279

https://doi.org/10.1145/3133956.3134104
http://eprint.iacr.org/2017/385
http://eprint.iacr.org/2017/385
https://doi.org/10.1145/2382196.2382279

A Simple Post-Quantum Non-interactive Zero-Knowledge 279

5. Ben-Sasson, E., Bentov, I., Horesh, Y., Riabzev, M.: Scalable, transparent, and
post-quantum secure computational integrity. Cryptology ePrint Archive, Report
2018/046 (2018). https://eprint.iacr.org/2018/046

6. Boldyreva, A., Micciancio, D. (eds.): CRYPTO 2019, Part II, LNCS, vol. 11693.
Springer, Heidelberg (2019)

7. Bootle, J., Cerulli, A., Chaidos, P., Groth, J., Petit, C.: Efficient zero-knowledge
arguments for arithmetic circuits in the discrete log setting. In: Fischlin, M., Coron,
J.S. (eds.) EUROCRYPT 2016, Part II. LNCS, vol. 9666, pp. 327–357. Springer,
Heidelberg (May 2016). https://doi.org/10.1007/978-3-662-49896-5 12

8. Campanelli, M., Gennaro, R., Goldfeder, S., Nizzardo, L.: Zero-knowledge contin-
gent payments revisited: Attacks and payments for services. In: Thuraisingham
et al. [26], pp. 229–243. https://doi.org/10.1145/3133956.3134060

9. Chase, M., et al.: Post-quantum zero-knowledge and signatures from symmetric-
key primitives. In: Thuraisingham et al. [26], pp. 1825–1842. https://doi.org/10.
1145/3133956.3133997

10. Don, J., Fehr, S., Majenz, C., Schaffner, C.: Security of the Fiat-Shamir transfor-
mation in the quantum random-oracle model. In: Boldyreva and Micciancio [6],
pp. 356–383. https://doi.org/10.1007/978-3-030-26951-7 13

11. Gennaro, R., Gentry, C., Parno, B., Raykova, M.: Quadratic span programs and
succinct NIZKs without PCPs. In: Johansson, T., Nguyen, P.Q. (eds.) EURO-
CRYPT 2013. LNCS, vol. 7881, pp. 626–645. Springer, Heidelberg (2013). https://
doi.org/10.1007/978-3-642-38348-9 37

12. Giacomelli, I., Madsen, J., Orlandi, C.: ZKBoo: faster zero-knowledge for Boolean
circuits. In: Holz, T., Savage, S. (eds.) USENIX Security 2016, pp. 1069–1083.
USENIX Association, August 2016

13. Glaser, A., Barak, B., Goldston, R.J.: A zero-knowledge protocol for nuclear war-
head verification. Nature 510(7506), 497–502 (2014)

14. Goldreich, O.: Foundations of Cryptography: Basic Applications, vol. 2. Cambridge
University Press, Cambridge (2004)

15. Goldwasser, S., Kalai, Y.T., Rothblum, G.N.: Delegating computation: interactive
proofs for muggles. In: Ladner, R.E., Dwork, C. (eds.) 40th ACM STOC, pp. 113–
122. ACM Press, May 2008. https://doi.org/10.1145/1374376.1374396

16. Groth, J.: Short pairing-based non-interactive zero-knowledge arguments. In: Abe,
M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 321–340. Springer, Heidelberg
(Dec 2010). https://doi.org/10.1007/978-3-642-17373-8 19

17. Hazay, C., Lindell, Y.: Efficient Secure Two-Party Protocols - Techniques and
Constructions. ISC, Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-
642-14303-8

18. Heath, D., Kolesnikov, V.: Stacked garbling - garbled circuit proportional to longest
execution path. In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO 2020, Part II.
LNCS, vol. 12171, pp. 763–792. Springer, Heidelberg (Aug 2020). https://doi.org/
10.1007/978-3-030-56880-1 27

19. Ishai, Y., Kushilevitz, E., Ostrovsky, R., Sahai, A.: Zero-knowledge from secure
multiparty computation. In: Johnson, D.S., Feige, U. (eds.) 39th ACM STOC. pp.
21–30. ACM Press (Jun 2007). https://doi.org/10.1145/1250790.1250794

20. Jawurek, M., Kerschbaum, F., Orlandi, C.: Zero-knowledge using garbled circuits:
how to prove non-algebraic statements efficiently. In: Sadeghi, A.R., Gligor, V.D.,
Yung, M. (eds.) ACM CCS 2013. pp. 955–966. ACM Press (Nov 2013). https://
doi.org/10.1145/2508859.2516662

https://eprint.iacr.org/2018/046
https://doi.org/10.1007/978-3-662-49896-5_12
https://doi.org/10.1145/3133956.3134060
https://doi.org/10.1145/3133956.3133997
https://doi.org/10.1145/3133956.3133997
https://doi.org/10.1007/978-3-030-26951-7_13
https://doi.org/10.1007/978-3-642-38348-9_37
https://doi.org/10.1007/978-3-642-38348-9_37
https://doi.org/10.1145/1374376.1374396
https://doi.org/10.1007/978-3-642-17373-8_19
https://doi.org/10.1007/978-3-642-14303-8
https://doi.org/10.1007/978-3-642-14303-8
https://doi.org/10.1007/978-3-030-56880-1_27
https://doi.org/10.1007/978-3-030-56880-1_27
https://doi.org/10.1145/1250790.1250794
https://doi.org/10.1145/2508859.2516662
https://doi.org/10.1145/2508859.2516662

280 H. Cui and K. Zhang

21. Kilian, J.: A note on efficient zero-knowledge proofs and arguments (extended
abstract). In: 24th ACM STOC. pp. 723–732. ACM Press (May 1992). https://
doi.org/10.1145/129712.129782

22. Kolesnikov, V., Schneider, T.: Improved garbled circuit: Free XOR gates and
applications. In: Aceto, L., Damg̊ard, I., Goldberg, L.A., Halldórsson, M.M.,
Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part II. LNCS, vol. 5126,
pp. 486–498. Springer, Heidelberg (Jul 2008). https://doi.org/10.1007/978-3-540-
70583-3 40

23. Liu, Q., Zhandry, M.: Revisiting post-quantum Fiat-Shamir. In: Boldyreva and
Micciancio [6], pp. 326–355. https://doi.org/10.1007/978-3-030-26951-7 12

24. Malkhi, D., Nisan, N., Pinkas, B., Sella, Y.: Fairplay - secure two-party compu-
tation system. In: Blaze, M. (ed.) USENIX Security 2004, pp. 287–302. USENIX
Association, August 2004

25. Micali, S.: CS proofs (extended abstracts). In: 35th FOCS, pp. 436–453. IEEE Com-
puter Society Press, November 1994. https://doi.org/10.1109/SFCS.1994.365746

26. Thuraisingham, B.M., Evans, D., Malkin, T., Xu, D. (eds.): ACM CCS 2017. ACM
Press, October/November 2017

27. Xie, T., Zhang, J., Zhang, Y., Papamanthou, C., Song, D.: Libra: Succinct zero-
knowledge proofs with optimal prover computation. In: Boldyreva, A., Micciancio,
D. (eds.) CRYPTO 2019, Part III. LNCS, vol. 11694, pp. 733–764. Springer, Hei-
delberg (2019). https://doi.org/10.1007/978-3-030-26954-8 24

28. Yao, A.C.C.: How to generate and exchange secrets (extended abstract). In: 27th
FOCS, pp. 162–167. IEEE Computer Society Press, October 1986. https://doi.
org/10.1109/SFCS.1986.25

29. Zahur, S., Rosulek, M., Evans, D.: Two halves make a whole - reducing data
transfer in garbled circuits using half gates. In: Oswald, E., Fischlin, M. (eds.)
EUROCRYPT 2015, Part II. LNCS, vol. 9057, pp. 220–250. Springer, Heidelberg
(2015). https://doi.org/10.1007/978-3-662-46803-6 8

30. Zhang, J., Xie, T., Zhang, Y., Song, D.: Transparent polynomial delegation and its
applications to zero knowledge proof. In: 2020 IEEE Symposium on Security and
Privacy, pp. 859–876. IEEE Computer Society Press, May 2020. https://doi.org/
10.1109/SP40000.2020.00052

https://doi.org/10.1145/129712.129782
https://doi.org/10.1145/129712.129782
https://doi.org/10.1007/978-3-540-70583-3_40
https://doi.org/10.1007/978-3-540-70583-3_40
https://doi.org/10.1007/978-3-030-26951-7_12
https://doi.org/10.1109/SFCS.1994.365746
https://doi.org/10.1007/978-3-030-26954-8_24
https://doi.org/10.1109/SFCS.1986.25
https://doi.org/10.1109/SFCS.1986.25
https://doi.org/10.1007/978-3-662-46803-6_8
https://doi.org/10.1109/SP40000.2020.00052
https://doi.org/10.1109/SP40000.2020.00052

Improved Zero-Knowledge Argument
of Encrypted Extended Permutation

Yi Liu1,3 , Qi Wang1,2(B) , and Siu-Ming Yiu3

1 Guangdong Provincial Key Laboratory of Brain-inspired Intelligent Computation,
Department of Computer Science and Engineering, Southern University of Science

and Technology, Shenzhen 518055, China
liuy7@mail.sustech.edu.cn, wangqi@sustech.edu.cn
2 National Center for Applied Mathematics (Shenzhen),

Southern University of Science and Technology, Shenzhen 518055, China
3 Department of Computer Science, The University of Hong Kong,

Pokfulam, Hong Kong SAR, China
smyiu@cs.hku.hk

Abstract. Extended permutation (EP) is a generalized notion of the
standard permutation. Unlike the one-to-one correspondence mapping
of the standard permutation, EP allows to replicate or omit elements
as many times as needed during the mapping. EP is useful in the area
of secure multi-party computation (MPC), especially for the problem of
private function evaluation (PFE). As a special class of MPC problems,
PFE focuses on the scenario where a party holds a private circuit C
while all other parties hold their private inputs x1, . . . , xn, respectively.
The goal of PFE protocols is to securely compute the evaluation result
C(x1, . . . , xn), while any other information beyond C(x1, . . . , xn) is hid-
den. EP here is introduced to describe the topological structure of the
circuit C, and it is further used to support the evaluation of C privately.

For an actively secure PFE protocol, it is crucial to guarantee that
the private circuit provider cannot deviate from the protocol to learn
more information. Hence, we need to ensure that the private circuit
provider correctly performs an EP. This seeks the help of the so-called
zero-knowledge argument of encrypted extended permutation protocol. In
this paper, we provide an improvement of this protocol. Our new proto-
col can be instantiated to be non-interactive while the previous protocol
should be interactive. Meanwhile, compared with the previous protocol,
our protocol is significantly (e.g., more than 3.4×) faster, and the com-
munication cost is only around 24% of that of the previous one.

Keywords: Elgamal encryption · Extended permutation · Private
function evaluation · Zero-knowledge

1 Introduction

The notion of extended permutation (EP) is a generalized notion of the stan-
dard permutation. Different from the one-to-one correspondence mapping of the
c© Springer Nature Switzerland AG 2021
Y. Yu and M. Yung (Eds.): Inscrypt 2021, LNCS 13007, pp. 281–298, 2021.
https://doi.org/10.1007/978-3-030-88323-2_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-88323-2_15&domain=pdf
http://orcid.org/0000-0003-1722-6746
http://orcid.org/0000-0001-9780-5443
https://doi.org/10.1007/978-3-030-88323-2_15

282 Y. Liu et al.

standard permutation, EP allows replication and omission of elements during the
mapping. An EP π maps elements in a set {1, . . . , M} to a set {1, . . . , N} for
positive integers M and N . Here, for every y ∈ {1, . . . , N}, there exists exactly
one x ∈ {1, . . . , M}, such that π(x) = y. We note that π may not be a function,
while π−1 is indeed a function.

EP is a very useful notion in many areas. In particular, EP is implicitly or
explicitly used in the area of secure multi-party computation (MPC) [27]. In the
setting of MPC, EP could be introduced to illustrate the topological structure
of circuits. More concretely, EP can be used to describe the connections between
wires of a circuit, and thus the topology of the circuit. To describe a circuit using
EP, we divide the wires of the circuit into two types: incoming wires (IW) and
outgoing wires (OW). All input wires of gates in the circuit are incoming wires,
while the input wires of the circuit and the output wires of gates are outgoing
wires. An example for a circuit C using such a naming rule is given in Fig. 1. It
is easy to see that every incoming wire connects to exactly one outgoing wire.
Meanwhile, an outgoing wire may connect to one or multiple incoming wires, or
has no connection to any incoming wires. It is clear that for a circuit, its outgoing
wires correspond to the domain of an EP, and its incoming wires correspond to
the range of an EP. Therefore, after indexing the incoming wires and outgoing
wires of a circuit, we can extract an EP that describes the topology of the circuit.
In Fig. 2, we provide the corresponding EP for the circuit C in Fig. 1. 1 Moreover,
given an EP (together with the numbers of gates, inputs, and outputs), we can
easily reconstruct the topological structure of the corresponding circuit.

OW1

OW2

OW3

OW4

OW7

OW5

OW6
OW8

OW9

IW5

IW6

IW1

IW2

IW3

IW4

IW7

IW8

IW9

IW10

G2

G3

G1

G4

G5

Fig. 1. An illustration of a circuit C, where wires are denoted by incoming wires (IW)
and outgoing wires (OW).

EP is especially useful for the problem of (general-purpose) private function
evaluation (PFE) [1]. PFE is a special class of MPC problems. It focuses on
designing a protocol for the scenario where a party holds a private circuit C,
while other parties possess their own private inputs x1, . . . , xn. The goal of PFE
is to privately evaluate C on x1, . . . , xn, i.e., to compute the evaluation result
1 Since OW8 and OW9, as output wires of the circuit C, have no connections to other

wires, we can simply omit them in the EP.

Improved Zero-Knowledge Argument of Encrypted Extended Permutation 283

IW1 IW2 IW3 IW4 IW5 IW6 IW7 IW8 IW9 IW10

OW2OW1 OW3 OW4 OW5 OW6 OW7

Fig. 2. The extended permutation corresponding to the circuit C in Fig. 1.

C(x1, . . . , xn). After the execution of PFE, parties receive the evaluation result
C(x1, . . . , xn) while information beyond C(x1, . . . , xn) is hidden. Note that this
is different from traditional secure function evaluation problem, in which the
circuit C is publicly known. In fact, PFE problem can be reduced to securely
evaluating a universal circuit [2,13,18,19,22,23,26,28], such that the description
of the circuit C is used as inputs to the universal circuit. However, using universal
circuits leads to a logarithmic blow-up. In other words, the universal circuit for
evaluating a circuit C with size n has size at least Θ(n log n), where the constant
factor (e.g., 12) and the low-order terms are significant. Starting from the original
work of Katz and Malka [17], another line of research focuses on designing PFE
protocols while avoiding the usage of universal circuits, such as [4,5,15,20,24,25].
This line of work has linear complexity in the size of the circuit n. It was
shown [15,17] that they outperformed the state-of-the-art PFE protocol based
on universal circuits theoretically and experimentally. The basic idea for this
line of work is to use EP. More concretely, the party holding the private circuit
C derives an EP from C, and obliviously performs an EP on a set of outgoing
wires to establish the connections between outgoing wires and incoming wires.
Then parties are able to follow the results from the EP to evaluate C on private
inputs while keeping C hidden.

Although this line of work usually has good performance, only the work
in [25] is secure against malicious adversaries, and all other results only work
in the semi-honest model. One of the main challenges for designing an actively
secure PFE protocol is to guarantee that the private function owner performs
a valid EP on elements representing outgoing wires. In the setting of [25], the
private circuit owner performs an EP on a set of encrypted elements locally
and re-randomizes all encrypted elements in the resulting list. Then the private
circuit owner is required to publish the resulting encrypted list and prove that
the resulting encrypted list is derived from a valid EP on the encrypted elements
in a zero-knowledge manner. The protocol for proving the validity of this result
is called zero-knowledge argument of encrypted extended permutation, and it is
also the efficiency bottleneck of the protocol [25].

1.1 Contribution

In this paper, we provide an improved version of the zero-knowledge argument
of encrypted extended permutation protocol. Both our protocol and the original

284 Y. Liu et al.

protocol in [25] are designed based on the ElGamal encryption scheme [11]. It
is possible to extend our ideas to other encryption schemes. We note that our
protocol can be instantiated to be non-interactive while the previous protocol
should be interactive. Compared with the original work [25], the communication
cost of our protocol is only around 24% of that of [25]. For computation cost, our
protocol is significantly (e.g., more than 3.4×) faster than the previous protocol.
Moreover, protocols based on our protocol, such as the linear actively secure
PFE protocol in [25], can also gain better performance.

1.2 Overview of Our Idea

Before the full description of our protocol, we here briefly provide an overview
of our idea. We denote the EP π by a mapping π : {1, . . . ,M} → {1, . . . , N}.
Informally, given two lists of ciphertexts α = [α1, . . . , αM] and c = [c1, . . . , cN],
the goal of the prover in our protocol is to prove that there exists an EP π, such
that the encrypted element of ci is the same as the encrypted element of απ−1(i).
A formal definition for the relation corresponding to our protocol will be given
in Sect. 2. The idea of our protocol is to decompose a valid EP into four steps:
extension, placement, replication, and finalization, and then the prover shows
their validity respectively. The four steps are described in the following.

Extension. If M < N , we know that the length of the resulting ciphertext list
c is longer than that of the original ciphertext list α. Therefore, all parties
append N − M ciphertexts at the end of α as dummy ciphertexts. To ensure
that the dummy ciphertexts are meaningless while the resulting new list is
derived from a valid EP performed on the original list, all parties could append
N − M ciphertext α1 at the end of α. If M ≥ N , we can safely skip this
extension step.

Placement. If the encrypted element of a ciphertext in α does not appear in the
resulting list c (in an encrypted form), i.e., this element is omitted according
to the mapping of the EP π, the prover can label this ciphertext also as
a dummy ciphertext. The prover now permutes the list, such that for each
ciphertext encrypting the (non-omitted) element in the original list, if it is
mapped to k different outputs according to π, k − 1 dummy ciphertexts are
placed after this ciphertext. If M > N , extra dummy ciphertexts are moved
to the end of the list. Then all ciphertexts are re-randomized.

Replication. The prover replaces all dummy ciphertexts except extra dummy
ciphertexts with their first non-dummy ciphertext. In other words, if a non-
omitted element is mapped to k different outputs according to π, its corre-
sponding ciphertext is replicated k − 1 times thereafter. Then all ciphertexts
are re-randomized.

Finalization. If M > N , parties can remove the last M − N extra dummy
ciphertexts from the list. Now the prover can permute the list to their final
place according to π. Finally, all ciphertexts are re-randomized to derive c.

Then the prover is required to prove that each step is executed correctly in the
protocol. We give an illustration of these four steps for the EP corresponding

Improved Zero-Knowledge Argument of Encrypted Extended Permutation 285

to the circuit C (Fig. 1) in Fig. 3, where we use βi’s to denote the encrypted
elements of ciphertexts in the list α.

β1 β3 β5 β7β2 β4 β6

β1 β1 β1β1 β3 β5 β7β2 β4 β6

β1 β1 β1β1 β3 β5 β7β2 β4 β6

β2 β3 β7β1 β3 β5 β7β2 β4 β6

β2 β3 β7β1β3 β5β7β2β4 β6

Extension

Placement

Replication

Finalization

Fig. 3. The four steps for the proof corresponding to the circuit C in Fig. 1.

The organization for the rest of this paper is as follows. In Sect. 2, we present
preliminaries for our further presentation. Then we provide a formal description
for our main protocol in Sect. 3. Subsequently, sub-protocols inside our main
protocol are given in Sect. 4. Finally, performance of our protocol and compar-
isons between our protocol and the original work [25] are presented in Sect. 5,
from both communication and computation aspects.

2 Preliminaries

In this paper, the security of protocols is proved under standard security def-
initions (see [14,21] for more information). This paper mainly focuses on con-
structing a public-coin honest-verifier zero-knowledge protocol (see [12]). Note
that this kind of protocols can be compiled by the Fiat-Shamir heuristic [9] to
be non-interactive and secure against malicious verifiers with low overhead.

We use the notation ‖S‖ to denote the number of bits required to represent
elements in the set S. We write x ←$ S to indicate that an element x is uniformly
sampled from the set S. Define [n] = {1, . . . , n}. The function max(·, ·) takes as
input two values and returns the maximum of these two values. We say that
a function f in a variable κ mapping natural numbers to [0, 1] is negligible if
f(κ) = O(κ−c) for every constant c > 0.

We give the formal definition of EP in the following.

Definition 1 (Extended Permutation [24]). For positive integers M and N ,
a mapping π : [M] → [N] is an extended permutation (EP) if for every y ∈ [N],
there exists exactly one x ∈ [M], such that π(x) = y. We often denote x by
π−1(y).

286 Y. Liu et al.

Here, we give a brief description of the ElGamal encryption scheme [11].
This encryption scheme is over a cyclic group G = 〈g〉 of prime order q. It
is semantically secure under the decisional Diffie-Hellman (DDH) assumption
(see [16]) for G. The description of the scheme is in the following.

Key Generation. The algorithm KGen takes as input the security parameter
1κ, picks s ←$Zq, and sets h ← gs. Then the algorithm outputs the public
key pk ← (G, q, g, h) and the private key sk ← s.

Encryption. The algorithm Enc takes as input a message m ∈ G and a public
key pk, and returns the ciphertext c ← (c(0) = gr, c(1) = mhr) for a random
coin r ←$Zq.

Decryption. The algorithm Dec takes as input a ciphertext c = (c(0), c(1)) and
a key pair (pk, sk), and returns the plaintext m ← c(1)/(c(0))s.

Remark 1. For the ElGamal encryption scheme with pk = (G, q, g, h), it is
easy for a prover to prove in zero-knowledge that two ElGamal ciphertexts
encrypt the same value. Without loss of generality, we denote two ciphertexts
by c1 = (c(0)1 , c

(1)
1) = (gr1 ,mhr1) and c2 = (c(0)2 , c

(1)
2) = (gr2 ,mhr2), such that

they encrypt the same value m.
When we compute c3 ← (c(0)1 (c(0)2)−1, c

(1)
1 (c(1)2)−1) = (gr1−r2 , hr1−r2), the

resulting ciphertext c3 indeed encrypts 1. Therefore, c1 and c2 encrypt the same
value if and only if c3 encrypts 1. Let r = r1 −r2. If a prover knows r, she is able
to prove that c1 and c2 encrypt the same value via proving that (g, h, c

(0)
3 , c

(1)
3)

is a Diffie-Hellman (DH) tuple. More concretely, it is equivalent for the prover
to prove in zero-knowledge that there exists a value r ∈ Zq, such that c

(0)
3 = gr

and c
(1)
3 = hr.

In this paper, we aim to provide a zero-knowledge protocol for the relation
REncEP based on the ElGamal encryption scheme:

REncEP = {(G, q, g, h, {(α(0)
i , α

(1)
i)}i∈[M], {(c(0)i , c

(1)
i)}i∈[N]) | ∃{ri}i∈[N], π, s.t.

c
(0)
i = α

(0)
π−1(i)g

ri ∧ c
(1)
i = α

(1)
π−1(i)h

ri ∧ π is an extended permutation}

Our construction utilizes a zero-knowledge protocol ΠShuffle
zk for the relation

RShuffle based on the ElGamal encryption scheme:

RShuffle = {(G, q, g, h, {(c(0)i , c
(1)
i)}i∈[�], {(c′

i
(0)

, c′
i
(1))}i∈[�]) | ∃{ri}i∈[�], π, s.t.

c′
i
(0) = c

(0)
π(i)g

ri ∧ c′
i
(1) = c

(1)
π(i)h

ri ∧ π is a permutation}

We note that there exist efficient (non-interactive) protocols with sub-linear
communication cost that can be used to instantiate ΠShuffle

zk , such as the protocol
in [3].

Improved Zero-Knowledge Argument of Encrypted Extended Permutation 287

3 Our Main Protocol

Based on the idea introduced in Sect. 1.2, we provide a full description of our
main protocol in this section. The sub-protocols inside our protocol are given in
Sect. 4.

The zero-knowledge protocol ΠEncEP
zk for REncEP between a prover P and a

verifier V is given as follows.

Public Inputs: A group G of order q with generator g, where DDH assumption
holds. The public key of the ElGamal encryption scheme pk = (G, q, g, h). Two
lists of ElGamal ciphertexts α = [α1, . . . , αM] and c = [c1, . . . , cN] corresponding
to pk. Each ciphertext αi (resp. ci) is of the form αi = (α(0)

i , α
(1)
i) ∈ G

2 (resp.
ci = (c(0)i , c

(1)
i) ∈ G

2).

Witness: An EP π : [M] → [N] and a list R = [r1, . . . , rN], where ri ∈ Zq.

Statement: There exists an EP π and a list R = [r1, . . . , rN], such that c
(0)
i =

α
(0)
π−1(i)g

ri and c
(1)
i = α

(1)
π−1(i)h

ri .

Protocol Description

1. Extension. Both parties append max(N − M, 0) ciphertexts α1 to the list
α as dummy ciphertexts. The new list is denoted by e = [e1, . . . , eN]. Let
N ′ = max(M,N).

2. Placement. If the index i of a ciphertext in e satisfies i ≤ M and {j | i =
π−1(j)} = ∅, i.e., this encrypted element is omitted after the EP, P also labels
this ciphertext as a dummy ciphertext. P now permutes the list e, such that
for each non-dummy ciphertext in e with index j, if |π(j)| = k, k − 1 dummy
ciphertexts are placed after this ciphertext. The condition |π(j)| = k means
that this encrypted element is mapped to k different outputs according to π.
If M > N , extra dummy ciphertexts are moved to the end of the list. This
permutation is denoted by π′ and the resulting list of ciphertexts is denoted
by p̂ = [p̂1, . . . , p̂N ′], where p̂i = eπ′(i).
Then P picks r′

i ←$Zq for i ∈ [N ′] and computes the ElGamal ciphertext pi ←
(p̂(0)i gr′

i , p̂
(1)
i hr′

i) for i ∈ [N ′]. We denote the resulting list by p = [p1, . . . , pN ′].
P sends p to V.

3. Replication. P replaces all dummy ciphertexts except extra dummy cipher-
texts by the nearest non-dummy ciphertexts before each of them. In other
words, if a non-omitted element is mapped to k different outputs according
to π, its corresponding ciphertext is replicated k − 1 times thereafter. We
define a function ω : [N] → [N] that maps an input index i to the index of a
non-dummy ciphertext j, such that j is the maximum index of non-dummy
ciphertext in p that satisfies j ≤ i. We note that for a dummy ciphertext
with index i, ω(i) is the index of the ciphertext that replaces it during this
replication procedure.
Let the resulting list be ρ̂ = [ρ̂1, . . . , ρ̂N ′]. We have ρ̂i = pω(i) for i ∈ [N]. P
picks r′′

i ←$Zq, and computes the ElGamal ciphertext ρi ← (ρ̂(0)i gr′′
i , ρ̂

(1)
i hr′′

i)

288 Y. Liu et al.

for each i ∈ [N]. This resulting list is denoted by ρ = [ρ1, . . . , ρN ′]. Note that
if N −M < 0, the last N −M ciphertext are still the extra dummy ciphertexts
in p. P sends (the first N elements of) ρ to V.

4. Finalization. V obtains ρ. If N − M < 0, both parties remove the last
M − N extra ciphertexts from ρ. No matter whether we need to remove
extra ciphertexts or not, we denote the current list of ciphertexts by ρ′. P
permutes all ciphertexts to their final location as prescribed by π. We denote
this permutation by π′′ and the resulting list by f̂ = [f̂1, . . . , f̂N], where
f̂i = ρπ′′(i). Then P computes r̂i ← ri − r′′

π′′(i) − r′
ω(π′′(i)) mod q for i ∈ [N].

It is easy to verify that (f̂ (0)
i gr̂i , f̂

(1)
i hr̂i) = ci.

The remaining work is to show that these four steps are executed correctly. Since
the extension step is done by both parties, P only needs to show that what she has
done is correct in the last three steps. Namely, P needs to prove in zero-knowledge
that p and c are derived from valid shuffles applied to e and ρ′, respectively, and
ρ is derived from a valid dummy ciphertext replacement (replication) applied
to p. Hence, P and V together follow the detailed procedure below to prove the
correctness of P’s operations in these last three steps.

5. P uses the protocol ΠShuffle
zk to prove that p is derived from a valid shuffle

applied to e with witness ({r′
i}i∈[N ′], π

′).
6. P uses the protocol ΠShuffle

zk to prove that c is derived from a valid shuffle
applied to ρ′ with witness ({r̂i}i∈[N], π

′′).
7. To prove that ρ is derived from a valid dummy ciphertext replacement from

p, P needs to prove that the plaintext of ρ1 is equal to p1, and that the
plaintext of each ρi is equal to that of ρi−1 or that of pi for i = 2, . . . , N .
According to Remark 1, the goal can be translated to prove the correctness
of the corresponding DH tuple. Both parties compute two ciphertexts

γi,0 ← (ρ(0)i (ρ(0)i−1)
−1, ρ

(1)
i (ρ(1)i−1)

−1)

and
γi,1 ← (ρ(0)i (p(0)i)−1, ρ

(1)
i (p(1)i)−1)

for i = 2, . . . , N , together with

γ1,0 = γ1,1 ← (ρ(0)1 (p(0)1)−1, ρ
(1)
1 (p(1)1)−1) .

For i = 2, . . . , N , if the plaintext of ρi is equal to that of ρi−1, the random
coin of γi,0 is νi,0 = r′′

i − r′′
i−1 mod q, and we let bi = 0. If the plaintext of ρi

is equal to that of pi, the random coin of γi,1 is νi,1 = r′′
i , and we let bi = 1.

In addition, the random coin for both γ1,0 and γ1,1 is ν1,0 = ν1,1 = r′′
1 .

P computes {νi,bi
}i∈[N] and uses the protocol ΠDH

zk to prove the following
statement:

There exists a set of elements {νi,bi
}i∈[N], where bi ∈ {0, 1} and νi,bi

∈
Zq, such that γ

(0)
i,bi

= gνi,bi and γ
(1)
i,bi

= hνi,bi for all i ∈ [N].

Improved Zero-Knowledge Argument of Encrypted Extended Permutation 289

8. If all the executions of ΠShuffle
zk and ΠDH

zk output accept, V outputs accept.
Otherwise, V outputs reject.

In what follows, we present a theorem for the security of the protocol ΠEncEP
zk .

Theorem 1. The protocol ΠEncEP
zk is a zero-knowledge argument of knowledge

for the relation REncEP.

Proof. It is easy to verify the completeness of the protocol. We first show that
(f̂ (0)

i gr̂i , f̂
(1)
i hr̂i) = ci. More concretely, we can verify that

f̂
(0)
i gr̂i = ρ

(0)
π′′(i)g

ri−r′′
π′′(i)−r′

ω(π′′(i))

= ρ
(0)
π′′(i)g

−r′′
π′′(i)g−r′

ω(π′′(i))gri

= ρ̂
(0)
π′′(i)g

r′′
π′′(i)g−r′′

π′′(i)g−r′
ω(π′′(i))gri

= ρ̂
(0)
π′′(i)g

−r′
ω(π′′(i))gri

= p
(0)
ω(π′′(i))g

−r′
ω(π′′(i))gri

= p̂
(0)
ω(π′′(i))g

r′
ω(π′′(i))g−r′

ω(π′′(i))gri

= p̂
(0)
ω(π′′(i))g

ri

= e
(0)
π′(ω(π′′(i))g

ri

= α
(0)
π−1(i)g

ri

Similarly, we have f̂
(1)
i gr̂i = α

(1)
π−1(i)h

ri . Then, if the prover P honestly proves
that all the operations conducted in the four steps are correct using related
parameters derived in the operations, the completeness of the protocol directly
follows from the completeness of the protocols ΠShuffle

zk and ΠDH
zk .

Then we show that the protocol achieves the zero-knowledge property. For
an adversary A controlling the verifier V, we construct a simulator S that inter-
nally runs V and simulates V’s view. S firstly sets N ′ ← max(M,N) as in the
protocol. For the step of placement, S randomly picks pi ←$G

2 for i ∈ [N ′] and
sends the list p = [p1, . . . , pN ′] to A. For the step of replication, S randomly
generates ρi ←$G

2 for i ∈ [N ′] and sends ρ = [ρ1, . . . , ρN ′] to A. Then S invokes
the simulator SShuffle for the protocol ΠShuffle

zk twice, for both Steps 5 and 6,
to simulate the view of A in the execution of ΠShuffle

zk . S computes elements of
{γi,b}i∈[N],b∈{0,1} as in the protocol and uses the simulator SDH for the protocol
ΠDH

zk to simulate the view of A in the execution of ΠDH
zk . Finally, S outputs what

A outputs to complete the simulation.
In the simulation, we note that elements in the lists p and ρ are all randomly

generated ciphertexts, while those elements in a real execution are based on the
extended permutation π. However, since the ElGamal encryption scheme in the

290 Y. Liu et al.

protocol is semantically secure under the DDH assumption, all computationally
bounded adversaries cannot distinguish these simulated ciphertexts from cipher-
texts generated in a real execution except for a negligible probability. The other
difference between the simulation and the real execution of the protocol is for
the sub-protocols ΠShuffle

zk and ΠDH
zk . Because both the sub-protocols ΠShuffle

zk and
ΠDH

zk are also zero-knowledge, A’s view simulated by the corresponding simula-
tors SShuffle and SDH is computationally indistinguishable from a real execution.
Therefore, the protocol is zero-knowledge.

We analyze the soundness of the protocol as follows. The prover P follows the
four steps to perform the extended permutation on the original list of ciphertexts
α and derive the list of resulting ciphertexts c. Intuitively, the protocols ΠShuffle

zk

and ΠDH
zk guarantee that no new ciphertexts except encrypted values inside α

are added to the resulting list of ciphertexts c, and thus a valid extended per-
mutation is performed on the encrypted values in α. Our goal now is to extract
the extended permutation π and random coins {ri}i∈[N]. In the following, we
construct an extractor E that internally runs the prover P∗ and extracts the
corresponding witness.

The extractor E runs the prover P∗ as a subroutine. Then E uses the extrac-
tor EShuffle for the sub-protocol ΠShuffle

zk in Steps 5 and 6 to extract the wit-
ness in these two execution of ΠShuffle

zk . Namely, E uses EShuffle to extract witness
({r′

i}i∈[N ′], π
′) and ({r̂i}i∈[N], π

′′) in Steps 5 and 6, respectively. Meanwhile, E
invokes the extractor EDH for the sub-protocol ΠDH

zk in Step 7 to extract the
random coins {νi,bi

}i∈[N] of the ciphertexts {γi,bi
}i∈[N] (encrypting 1) and cor-

responding {bi}i∈[N].
E can reconstruct the corresponding mapping ω. Then E iteratively assigns

the value of ω(i) as follows. Let ω(1) = 1. Then for i = 2, . . . , N , let

ω(i) =

{
ω(i − 1) if bi = 0 ,

i if bi = 1 .

Meanwhile, E can effectively compute the random coins {r′′
i }i∈[N]. Firstly, E sets

r′′
1 ← ν1,b1 . Then E iteratively assigns the value of r′′

i as follows. For i = 2, . . . , N ,

r′′
i =

{
r′′
i−1 + νi,bi

mod q if bi = 0 ,

νi,bi
if bi = 1 .

Now, E can derive all the random coins for the extended permutation via
computing

ri = r̂i + r′′
π′′(i) + r′

ω(π′′(i)) mod q

for i ∈ [N]. Since E has obtained π′, π′′, and ω, E can reconstruct the extended
permutation π as

π(i) = π′′−1 ◦ ω−1 ◦ π′−1(i) .

Therefore, the extractor successfully derives the extended permutation π and
the list R = [r1, . . . , rN], and the soundness of the protocol is then proved. ��

Improved Zero-Knowledge Argument of Encrypted Extended Permutation 291

4 Sub-Protocols

As we have mentioned in Sect. 2, there exist efficient (non-interactive) protocols
with sub-linear communication cost that can be used to instantiate the zero-
knowledge protocol for shuffle (ΠShuffle

zk). In this paper, we use the protocol in [3]
as ΠShuffle

zk .
Now we provide the sub-protocol ΠDH

zk inside our main protocol. We note
that this zero-knowledge protocol ΠDH

zk is for the relation RDH:

RDH = {(G, q, g, h, {(γ(0)
i , γ

(1)
i)}i∈[�] | ∃{νi,bi

}i∈[�],where bi ∈ {0, 1} s.t.

∀i (γ(0)
i,bi

= gνi,bi ∧ γ
(1)
i,bi

= hνi,bi)} .

In the following, we describe the protocol ΠDH
zk for the relation RDH between a

prover P and a verifier V utilizing the idea introduced in [7] and [8]. This pro-
tocol is honest-verifier zero-knowledge and can be compiled by the Fiat-Shamir
heuristic [9] to be non-interactive and secure against malicious verifiers as we
have mentioned in Sect. 2.

Public Inputs: A group G = 〈g〉 of order q. Another generator h for G. A set
of elements {(γ(0)

i,b , γ
(1)
i,b)}i∈[�],b∈{0,1}, where (γ(0)

i,b , γ
(1)
i,b) ∈ G

2.

Witness: A list [ν1,b1 , . . . , ν�,b�
], where νi,bi

∈ Zq and bi ∈ {0, 1}.

Statement: Given ciphertexts {(γ(0)
i,b , γ

(1)
i,b)}i∈[�],b∈{0,1}, there exist {νi,bi

}i∈[�],

where νi,bi
∈ Zq and bi ∈ {0, 1}, such that γ

(0)
i,bi

= gνi,bi and γ
(1)
i,bi

= hνi,bi for all
i ∈ [�].

Protocol Description

1. For i ∈ [�]:
(a) P picks ei,1−bi

←$Zq and zi,1−bi
←$Zq.

(b) P computes
a
(0)
i,1−bi

← gzi,1−bi (γ(0)
i,1−bi

)−ei,1−bi

and
a
(1)
i,1−bi

← hzi,1−bi (γ(1)
i,1−bi

)−ei,1−bi

to simulate a valid transcript.
(c) P picks xi,bi

←$Zq. Then P computes a
(0)
i,bi

= gxi,bi and a
(1)
i,bi

= hxi,bi .

P sends {(a(0)
i,b , a

(1)
i,b)}i∈[�],b∈{0,1} to V.

2. V chooses e, θ ←$Zq and sends them to P.
3. For i ∈ [�]:

(a) P computes ei,bi
← e − ei,1−bi

mod q.
(b) P computes zi,bi

← xi,bi
+ νi,bi

ei,bi
mod q.

(c) P computes z0 ← ∑�
i=1 zi,0θ

i mod q and z1 ← ∑�
i=1 zi,1θ

i mod q.
P sends {ei,b}i∈[�],b∈{0,1}, z0, and z1 to V.

292 Y. Liu et al.

4. V verifies the following equations:

ei,0 + ei,1 ≡ e mod q

for i ∈ [�], and

gzb =
�∏

i=1

(a(0)
i,b (γ(0)

i,b)ei,b)θi

and

hzb =
�∏

i=1

(a(1)
i,b (γ(1)

i,b)ei,b)θi

for b ∈ {0, 1}. If all equations hold, V outputs accept. Otherwise, V outputs
reject.

Theorem 2. The protocol ΠDH
zk is an honest-verifier zero-knowledge proof of

knowledge for the relation RDH.

Proof. For the completeness of the protocol, we can verify that:

gzi,bi = gxi,bi
+νi,bi

ei,bi

= gxi,bi gνi,bi
ei,bi

= a
(0)
i,bi

(γ(0)
i,bi

)ei,bi

and

hzi,bi = hxi,bi
+νi,bi

ei,bi

= hxi,bi hνi,bi
ei,bi

= a
(1)
i,bi

(γ(1)
i,bi

)ei,bi .

Meanwhile, for the verification related to 1 − bi in Step 4, values zi,1−bi
, ei,1−bi

,
a
(0)
i,1−bi

, and a
(1)
i,1−bi

generated in Step 1 are specified to satisfy the equation for
the verification. Therefore, we have

gzb = g
∑�

i=1 zi,bθi

=
�∏

i=1

(gzi,b)θi

=
�∏

i=1

(a(0)
i,b (γ(0)

i,b)ei,b)θi

Improved Zero-Knowledge Argument of Encrypted Extended Permutation 293

and

hzb = h
∑�

i=1 zi,bθi

=
�∏

i=1

(hzi,b)θi

=
�∏

i=1

(a(1)
i,b (γ(1)

i,b)ei,b)θi

for b ∈ {0, 1}. Now, it is easy to see that the protocol is complete.
To show that the protocol achieves the honest-verifier zero-knowledge prop-

erty, we construct a simulator S to simulate the view of the verifier V. The
simulator S first picks the challenges e, θ ←$Zq. Then S selects ei,0 ←$Z and
computes ei,1 ← e − ei,0 mod q. S generates zi,b ←$Z and computes

a
(0)
i,b ← gzi,b(γ(0)

i,b)−ei,b

and
a
(1)
i,b ← gzi,b(γ(1)

i,b)−ei,b

for i ∈ [�] and b ∈ {0, 1}. S also computes z0 ← ∑�
i=1 zi,0θ

i and z1 ← ∑�
i=1 zi,1θ

i.
We note that the distribution of

({(a(0)
i,b , a

(1)
i,b)}i∈[�],b∈{0,1}, e, θ, {ei,b}i∈[�],b∈{0,1}, z0, z1)

in this simulation is perfectly indistinguishable from that of a real execution. This
is due to the fact that given random e, θ ∈ Zq, elements in {zi,b}i∈[�],b∈{0,1} are
uniformly random both in a real execution and in the simulation. Meanwhile,
the distributions of each pair (ei,0, ei,1) satisfying ei,0 + ei,1 ≡ e mod q in a
real execution and in the simulation are identical. Conditioned on these values,
z0, z1, and elements in {(a(0)

i,b , a
(1)
i,b)}i∈[�],b∈{0,1} are uniquely determined by the

verification equations. Thus, the distribution of simulated proofs is identical to
that of real proofs.

For soundness, we construct an extractor E that internally runs P∗ and exe-
cutes the protocol with P∗. If the transcript is accepting, E has to extract a
witness. Therefore, E rewinds P∗ to the challenge phase (Step 2) and runs it
again with different challenges to obtain � pair of accepting transcripts with the
same {(a(0)

i,b , a
(1)
i,b)}i∈[�],b∈{0,1}, such that each pair is with different {θ[j]}j∈[�], and

both transcripts in each pair are with challenges e and ē(�= e), respectively. Note
that the rewinding scheme follows the strategy used in [6]. Let these pairs be of
the form

({(a(0)
i,b , a

(1)
i,b)}i∈[�],b∈{0,1}, e, θ[j], {e

[j]
i,b}i∈[�],b∈{0,1}, {z

[j]
b }b∈{0,1})

and
({(a(0)

i,b , a
(1)
i,b)}i∈[�],b∈{0,1}, ē, θ[j], {ē

[j]
i,b}i∈[�],b∈{0,1}, {z̄

[j]
b }b∈{0,1})

294 Y. Liu et al.

for j ∈ [�]. Note that the extractor E will obtain 2� transcripts, and it runs in
expected polynomial time. Since e �= ē, for each j ∈ [�], we must have e

[j]
i,0 �= ē

[j]
i,0

or e
[j]
i,1 �= ē

[j]
i,1. Let bi be the value that e

[j]
i,bi

�= ē
[j]
i,bi

for i ∈ [�]. If we have both

e
[j]
i,0 �= ē

[j]
i,0 and e

[j]
i,1 �= ē

[j]
i,1, bi could be equal to either 0 or 1. According to the

accepting transcripts, we have

gz
[j]
b =

�∏
i=1

(a(0)
i,b (γ(0)

i,b)e
[j]
i,b)θi

[j] , hz
[j]
b =

�∏
i=1

(a(1)
i,b (γ(1)

i,b)e
[j]
i,b)θi

[j] ,

for j ∈ [�] and b ∈ {0, 1}. Therefore, there should be some {z
[j]
i,b}i∈[�], such that

a
(0)
i,b (γ(0)

i,b)e
[j]
i,b = gz

[j]
i,b for i ∈ [�] , and z

[j]
b =

�∑
i=1

z
[j]
i,bθ

i
[j] .

For the system of equations z
[j]
b =

∑�
i=1 z

[j]
i,bθ

i
[j] for j ∈ [�], we can efficiently solve

the unique solution {z
[j]
i,b}i∈[�]. This is due to the fact that the corresponding

Vandermonde matrix of θ is of full rank. It is straightforward to see that this
unique solution {z

[j]
i,b}i∈[�] should also satisfy a

(1)
i,b (γ(1)

i,b)e
[j]
i,b = hz

[j]
i,b . Hence, we

obtain {z
[j]
i,b}i∈[�] for b ∈ {0, 1}. Similarly, we know that

gz̄
[j]
b =

�∏
i=1

(a(0)
i,b (γ(0)

i,b)ē
[j]
i,b)θi

[j] , hz̄
[j]
b =

�∏
i=1

(a(1)
i,b (γ(1)

i,b)ē
[j]
i,b)θi

[j]

for j ∈ [�]. We can use the same approach to computing {z̄
[j]
i,b}i∈[�] for b ∈ {0, 1},

such that

a
(0)
i,b (γ(0)

i,b)ē
[j]
i,b = gz̄

[j]
i,b , a

(1)
i,b (γ(1)

i,b)ē
[j]
i,b = hz̄

[j]
i,b , and z̄

[j]
b =

�∑
i=1

z̄
[j]
i,bθ

i
[j] .

Given a pair of equations a
(0)
i,bi

(γ(0)
i,bi

)e
[j]
i,bi = g

z
[j]
i,bi and a

(0)
i,bi

(γ(0)
i,bi

)ē
[j]
i,bi = g

z̄
[j]
i,bi , there

should be some xi,bi
and νi,bi

, such that

a
(0)
i,bi

= gxi,bi , γ
(0)
i,bi

= gνi,bi ,

and
xi,bi

+ νi,bi
ei,bi

= zi,bi
, xi,bi

+ νi,bi
ēi,bi

= z̄i,bi
.

According to the assignment of bi, we know ei,bi
�= ēi,bi

. Thus, the extractor E
can easily compute xi,bi

and νi,bi
from the last two equations, and finally obtain

{xi,bi
}i∈[�] and {νi,bi

}i∈[�] from pairs of equations for all i ∈ [�]. It is easy to
verify that these extracted elements also satisfy

a
(1)
i,bi

= hxi,bi , γ
(1)
i,bi

= hνi,bi .

Hence, the extractor E successfully extracts {νi,bi
}i∈[�], where bi ∈ {0, 1} and

νi,bi
∈ Zq, such that γ

(0)
i,bi

= gνi,bi and γ
(1)
i,bi

= hνi,bi for all i ∈ [�]. The soundness
of the protocol follows. ��

Improved Zero-Knowledge Argument of Encrypted Extended Permutation 295

5 Analysis

In this section, we analyze the performance of our protocol. In Table 1, we present
the communication cost for one execution of ΠEncEP

zk with parameters M , N and
N ′ = max(M,N). We give the communication cost of the two executions of the
sub-protocol ΠShuffle

zk inside ΠEncEP
zk , respectively. The row of “remaining” is for

the communication cost of ΠEncEP
zk excluding the cost of sub-protocols ΠShuffle

zk

and ΠDH
zk . We note that ‖G‖ > ‖Zq‖.

Table 1. Communication cost of each part in our protocol ΠEncEP
zk with parameter M ,

N and N ′ = max(M, N).

Protocol From P to V From V to P

1st ΠShuffle
zk [3] (11

√
N ′ + 5)‖G‖ + (5

√
N ′ + 9)‖Zq‖ 8‖Zq‖

2nd ΠShuffle
zk [3] (11

√
N + 5)‖G‖ + (5

√
N + 9)‖Zq‖ 8‖Zq‖

ΠDH
zk 4N‖G‖ + (2N + 2)‖Zq‖ 2‖Zq‖

Remaining (2N ′ + 2N)‖G‖ 0

In Table 2, we then present the comparison of communication cost between
our protocol and the previous protocol [25] (in the honest-verifier zero-knowledge
setting). Here our comparison follows the fact that the parameters satisfy N > M
in most applications of ΠEncEP

zk . Therefore, we simply let N ′ = max(M,N) = N
in the comparison. We remark that the protocol in [25] is not public-coin, and
interaction is needed for the protocol execution. Alternatively, in our protocol,
all messages sent from the verifier are uniformly random, i.e., the protocol is
public-coin. Therefore, we can simply leverage the Fiat-Shamir heuristic to make
our protocol non-interactive. Now the communication cost of our protocol only
involves the bits sent from the prover P to the verifier V. From Table 2, we can see
that the (non-interactive) communication cost of our protocol is around 8N‖G‖,
while the total communication cost of the (interactive) protocol in [25] is around
34N‖G‖ bits. Therefore, the communication cost of our protocol is only around
24% of that of the protocol in [25].

Table 2. Communication cost comparison between the original protocol [25] and the
protocol ΠEncEP

zk is this paper with parameters M and N .

Protocol From P to V From V to P

[25] ∼ (32N‖G‖ + 12N‖Zq‖) ∼ (2N‖G‖ + 10N‖Zq‖)

This paper ∼ ((8N + 22
√

N)‖G‖ + (2N + 10
√

N)‖Zq‖) 18‖Zq‖

Note that in our protocol, we use the protocol in [3] as the zero-knowledge
protocol for shuffle twice, while the protocol in [25] adopts the zero-knowledge

296 Y. Liu et al.

Table 3. Comparison of computation cost between the original protocol [25] and the
protocol ΠEncEP

zk in this paper with parameters M and N except zero-knowledge proto-
cols for shuffle.

Protocols Time P Expos Time V Expos

[25] ∼ 37N ∼ 32N

This paper ∼ 10N ∼ 4N

protocol for shuffle introduced in [10] twice (for ElGamal ciphertext list of the
same length N). We denote the protocols in [3] and [10] by BG and FS, respec-
tively. It is shown [3] that BG significantly outperforms FS from both communi-
cation and computation aspects. According to the analysis in [3], BG’s argument
size is only 1/94 that of FS’s, and BG has 3.4× faster running time. We count
the total number of exponentiations in G performed by P and V for the original
protocol [25] and our protocol, except those performed by the zero-knowledge
protocols for shuffle, in Table 3. We can see that without considering the zero-
knowledge protocols for shuffle, the computation cost of our protocol is about
27% of that of the protocol in [25] for provers and 12.5% of that for verifiers.
Therefore, our protocol should be much faster than the original protocol in [25].
In addition, we would like to note that the communication cost from FS in [10]
is around (10N‖G‖ + 4N‖Zq‖) bits. This means that the communication cost
of our whole protocol outperforms that of the protocol in [10] even when the
communication cost of FS in [10] is not considered.

Acknowledgments. We thank the reviewers for their detailed and helpful comments.
Y. Liu and Q. Wang partially supported by the Shenzhen fundamental research pro-
grams under Grant no. 20200925154814002 and Guangdong Provincial Key Laboratory
(Grant No. 2020B121201001). Y. Liu and S.-M. Yiu were also partially supported by
ITF, Hong Kong (ITS/173/18FP).

References

1. Abadi, M., Feigenbaum, J.: Secure circuit evaluation. J. Cryptol. 2(1), 1–12 (1990)
2. Alhassan, M.Y., Günther, D., Kiss, Á., Schneider, T.: Efficient and scalable uni-

versal circuits. J. Cryptol. 33(3), 1216–1271 (2020)
3. Bayer, S., Groth, J.: Efficient zero-knowledge argument for correctness of a shuffle.

In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp.
263–280. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-
4 17

4. Bicer, O., Bingol, M.A., Kiraz, M.S., Levi, A.: Highly efficient and re-executable
private function evaluation with linear complexity. IEEE Trans. Depend. Secure
Comput., 1 (2020)

5. Bingöl, M.A., Biçer, O., Kiraz, M.S., Levi, A.: An efficient 2-party private function
evaluation protocol based on half gates. Comput. J. 62(4), 598–613 (2019)

https://doi.org/10.1007/978-3-642-29011-4_17
https://doi.org/10.1007/978-3-642-29011-4_17

Improved Zero-Knowledge Argument of Encrypted Extended Permutation 297

6. Bootle, J., Cerulli, A., Chaidos, P., Groth, J., Petit, C.: Efficient zero-knowledge
arguments for arithmetic circuits in the discrete log setting. In: Fischlin, M., Coron,
J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666, pp. 327–357. Springer, Heidel-
berg (2016). https://doi.org/10.1007/978-3-662-49896-5 12

7. Chaum, D., Pedersen, T.P.: Wallet databases with observers. In: Brickell, E.F.
(ed.) CRYPTO 1992. LNCS, vol. 740, pp. 89–105. Springer, Heidelberg (1993).
https://doi.org/10.1007/3-540-48071-4 7

8. Cramer, R., Damg̊ard, I., Schoenmakers, B.: Proofs of partial knowledge and sim-
plified design of witness hiding protocols. In: Desmedt, Y.G. (ed.) CRYPTO 1994.
LNCS, vol. 839, pp. 174–187. Springer, Heidelberg (1994). https://doi.org/10.1007/
3-540-48658-5 19

9. Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification and
signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp.
186–194. Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-47721-7 12

10. Furukawa, J., Sako, K.: An efficient scheme for proving a shuffle. In: Kilian, J.
(ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 368–387. Springer, Heidelberg (2001).
https://doi.org/10.1007/3-540-44647-8 22

11. ElGamal, T.: A public key cryptosystem and a signature scheme based on discrete
logarithms. In: Blakley, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196,
pp. 10–18. Springer, Heidelberg (1985). https://doi.org/10.1007/3-540-39568-7 2

12. Goldreich, O.: The Foundations of Cryptography - Volume 1: Basic Techniques.
Cambridge University Press, Cambridge (2001)

13. Günther, D., Kiss, Á., Schneider, T.: More efficient universal circuit constructions.
In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017. LNCS, vol. 10625, pp. 443–470.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70697-9 16

14. Hazay, C., Lindell, Y.: Efficient Secure Two-Party Protocols - Techniques and Con-
structions. Information Security and Cryptography, Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-14303-8

15. Holz, M., Kiss, Á., Rathee, D., Schneider, T.: Linear-complexity private func-
tion evaluation is practical. In: Chen, L., Li, N., Liang, K., Schneider, S. (eds.)
ESORICS 2020. LNCS, vol. 12309, pp. 401–420. Springer, Cham (2020). https://
doi.org/10.1007/978-3-030-59013-0 20

16. Katz, J., Lindell, Y.: Introduction to Modern Cryptography, 2nd edn. CRC Press,
Boca Raton (2014)

17. Katz, J., Malka, L.: Constant-round private function evaluation with linear com-
plexity. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp.
556–571. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25385-
0 30

18. Kiss, Á., Schneider, T.: Valiant’s universal circuit is practical. In: Fischlin, M.,
Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9665, pp. 699–728. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-49890-3 27

19. Kolesnikov, V., Schneider, T.: A practical universal circuit construction and secure
evaluation of private functions. In: Tsudik, G. (ed.) FC 2008. LNCS, vol. 5143, pp.
83–97. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85230-8 7

20. Laud, P., Willemson, J.: Composable oblivious extended permutations. In: Cup-
pens, F., Garcia-Alfaro, J., Zincir Heywood, N., Fong, P.W.L. (eds.) FPS 2014.
LNCS, vol. 8930, pp. 294–310. Springer, Cham (2015). https://doi.org/10.1007/
978-3-319-17040-4 19

21. Lindell, Y.: Parallel coin-tossing and constant-round secure two-party computation.
J. Cryptol. 16(3), 143–184 (2003)

https://doi.org/10.1007/978-3-662-49896-5_12
https://doi.org/10.1007/3-540-48071-4_7
https://doi.org/10.1007/3-540-48658-5_19
https://doi.org/10.1007/3-540-48658-5_19
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/3-540-44647-8_22
https://doi.org/10.1007/3-540-39568-7_2
https://doi.org/10.1007/978-3-319-70697-9_16
https://doi.org/10.1007/978-3-642-14303-8
https://doi.org/10.1007/978-3-030-59013-0_20
https://doi.org/10.1007/978-3-030-59013-0_20
https://doi.org/10.1007/978-3-642-25385-0_30
https://doi.org/10.1007/978-3-642-25385-0_30
https://doi.org/10.1007/978-3-662-49890-3_27
https://doi.org/10.1007/978-3-540-85230-8_7
https://doi.org/10.1007/978-3-319-17040-4_19
https://doi.org/10.1007/978-3-319-17040-4_19

298 Y. Liu et al.

22. Lipmaa, H., Mohassel, P., Sadeghian, S.S.: Valiant’s universal circuit: improve-
ments, implementation, and applications. IACR Cryptol. ePrint Arch. 2016, 17
(2016). http://eprint.iacr.org/2016/017

23. Liu, H., Yu, Y., Zhao, S., Zhang, J., Liu, W.: Pushing the limits of valiant’s uni-
versal circuits: Simpler, tighter and more compact. IACR Cryptol. ePrint Arch.
2020, 161 (2020). https://eprint.iacr.org/2020/161

24. Mohassel, P., Sadeghian, S.: How to hide circuits in MPC an efficient framework for
private function evaluation. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT
2013. LNCS, vol. 7881, pp. 557–574. Springer, Heidelberg (2013). https://doi.org/
10.1007/978-3-642-38348-9 33

25. Mohassel, P., Sadeghian, S., Smart, N.P.: Actively secure private function evalu-
ation. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8874, pp.
486–505. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45608-
8 26

26. Valiant, L.G.: Universal circuits (preliminary report). In: Chandra, A.K.,
Wotschke, D., Friedman, E.P., Harrison, M.A. (eds.) Proceedings of the 8th Annual
ACM Symposium on Theory of Computing, Hershey, Pennsylvania, USA, 3–5 May
1976, pp. 196–203. ACM (1976)

27. Yao, A.C.: Protocols for secure computations (extended abstract). In: 23rd Annual
Symposium on Foundations of Computer Science, Chicago, Illinois, USA, 3–5
November 1982, pp. 160–164. IEEE Computer Society (1982)

28. Zhao, S., Yu, Yu., Zhang, J., Liu, H.: Valiant’s universal circuits revisited: an
overall improvement and a lower bound. In: Galbraith, S.D., Moriai, S. (eds.) ASI-
ACRYPT 2019. LNCS, vol. 11921, pp. 401–425. Springer, Cham (2019). https://
doi.org/10.1007/978-3-030-34578-5 15

http://eprint.iacr.org/2016/017
https://eprint.iacr.org/2020/161
https://doi.org/10.1007/978-3-642-38348-9_33
https://doi.org/10.1007/978-3-642-38348-9_33
https://doi.org/10.1007/978-3-662-45608-8_26
https://doi.org/10.1007/978-3-662-45608-8_26
https://doi.org/10.1007/978-3-030-34578-5_15
https://doi.org/10.1007/978-3-030-34578-5_15

Mathematical Foundations

Isomorphism and Equivalence of Galois
Nonlinear Feedback Shift Registers

Wenhui Kong1,2, Jianghua Zhong1(B), and Dongdai Lin1

1 State Key Laboratory of Information Security, Institute of Information
Engineering, Chinese Academy of Sciences, Beijing 100093, China

zhongjianghua@iie.ac.cn
2 School of Cyber Security, University of Chinese Academy of Science,

Beijing 100049, China

Abstract. Nonlinear feedback shift registers (NFSRs) have been used in
many recent stream ciphers. They are generally classified as Fibonacci
NFSRs and Galois NFSRs in terms of their implementation configu-
rations. Two NFSRs are said to be isomorphic if their state diagrams
are isomorphic, and two NFSRs are equivalent if their sets of output
sequences are equal. Equivalent NFSRs must be isomorphic NFSRs, but
not the vice versa. Previous work has been done on the isomorphism and
equivalence of Fibonacci NFSRs. This paper continues this research for
Galois NFSRs. It first gives some characterizations for several kinds of
isomorphic Galois NFSRs, which improves and generalizes the previous
corresponding results for Fibonacci NFSRs. It then presents some char-
acterizations for two kinds of equivalent Galois NFSRs, helpful to the
design of NFSR-based stream ciphers.

Keywords: Nonlinear feedback shift register · Boolean function ·
Stream cipher · Isomorphism · Equivalence.

1 Introduction

Nonlinear feedback shift registers (NFSRs) have been used as the main building
blocks in many stream ciphers, such as the finalists Grain [1] and Trivium [2] in
the eSTREAM project. An NFSR can be generally implemented in Fibonacci
or Galois configuration. In Fibonacci configuration, the feedback is only applied
to the last bit, while in the Galois configuration, the feedback can be applied to
every bit. NFSRs in Fibonacci configuration are called Fibonacci NFSRs, and
those in Galois configuration are called Galois NFSRs. Compared to Fibonacci
NFSRs, Galois NFSRs may shorten propagation time and improve throughput
[3]. Notably, the foregoing stream ciphers Grain and Trivium use the Galois
NFSRs. Precisely, both are Galois NFSRs with terminal bits, which have the
first several bits involved only shifts.

An NFSR has the same mathematical model as a Boolean network, which is
a finite automaton evolving through Boolean functions. Boolean networks have
c© Springer Nature Switzerland AG 2021
Y. Yu and M. Yung (Eds.): Inscrypt 2021, LNCS 13007, pp. 301–315, 2021.
https://doi.org/10.1007/978-3-030-88323-2_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-88323-2_16&domain=pdf
https://doi.org/10.1007/978-3-030-88323-2_16

302 W. Kong et al.

been well developed in the community of systems and control [4] via a powerful
mathematical tool called semi-tensor product of matrices [5]. As mentioned in
literature [6–10], NFSRs can be regarded as Boolean networks, and their cryp-
tographic properties can be facilitated to some extent to analyze by using the
semi-tensor product based Boolean network theory.

Two NFSRs are said to be isomorphic if their state diagrams are isomorphic,
and two NFSRs are said to be equivalent if their sets of output sequences are
equal. Equivalent NFSRs must be isomorphic, but not the vice versa. Some kinds
of isomorphic Fibonacci NFSRs were studied and the relation between their
feedback functions were revealed [9]. Some isomorphic Galois NFSRs equivalent
to Fibonacci ones were found [11].

Some work has been done on the equivalence of NFSRs. A Fibonacci NFSR
can be equivalent to “uniform” Galois NFSRs [3], and their initial states were
matched in [12]. “Lower triangular” Galois NFSRs [13] and cascade connections
of two Fibonacci NFSRs [14] were found equivalent to Fibonacci NFSRs. In
addition, some characterizations of the feedback of Galois NFSRs equivalent to
Fibonacci ones were revealed [15]. The Galois NFSRs with terminal bits that
are equivalent to Fibonacci ones were enumerated [16].
Contribution. This paper considers the isomorphism and equivalence of Galois
NFSRs. It first presents several kinds of isomorphic Galois NFSRs and reveals
the relation of their feedbacks, which improves and generalizes the corresponding
results for Fibonacci NFSRs. It then gives some characterizations of two kinds
of Galois NFSRs equivalent to Fibonacci ones from the perspective of feedbacks
and numbers, benefiting the design of NFSR-based stream ciphers.
Organization. The paper is organized as follows. Section 2 gives some prelim-
inaries, including some basic concepts and related results on Boolean networks
and NFSRs. Our main results on isomorphism and equivalence of Galois NFSRs
are presented in Sects. 3 and 4, respectively. The paper concludes in Sect. 5.

2 Preliminaries

In this section, we review some basic concepts and related results on the semi-
tensor product of matrices and NFSRs. Before that, we first introduce some
notations used throughout the paper.
Notations: F2 denotes the binary Galois field, and F

n
2 is an n-dimensional vector

space over F2. N is the set of nonnegative integers. δi
n stands for the i-th column

of the n × n identity matrix In. The set of all columns of In is denoted by
Δn. Let Ln×m be the set of all n × m matrices whose columns belong to the
set Δn. For a matrix A = [δi1

n δi2
n · · · δim

n] ∈ Ln×m, we simply denote it as
A = δn[i1 i2 · · · im]. The operators +,− and ×, respectively, denote the ordinary
addition, subtraction and multiplication in the real field. The operations ⊕ and
�, respectively, represent the addition and multiplication over F2.

Isomorphism and Equivalence of Galois Nonlinear Feedback Shift Registers 303

2.1 Boolean Network

Definition 1 ([17]). For an n×m matrix A = (aij) and a p×q matrix B, their
Kronecker product is defined as

A ⊗ B =

⎡
⎢⎢⎢⎣

a11B a12B · · · a1mB
a21B a22B · · · a2mB

...
...

...
an1B an2B · · · anmB

⎤
⎥⎥⎥⎦ .

Definition 2 ([5]). For an n × m A and a p × q matrix B, let α be the least
common multiple of m and p. The semi-tensor product of A and B is defined as

A � B = (A ⊗ I α
m

)(B ⊗ Iα
p
). (1)

We can easily observe that if m = p in Definition 2 , then the semi-tensor product
is degenerated into the conventional matrix product.

An n-variable Boolean function f is a function from F
n
2 to F2. The decimal

number of a binary (i1, i2, . . . , in) is i = i12n−1 + i22n−2 + · · · + in. We simply
write f(i1, i2, . . . , in) as f(i). [f(2n − 1), f(2n − 2), · · · , f(0)] is called the truth
table of f , arranged in the reverse alphabet order. The matrix

F =
[

f(2n − 1) f(2n − 2) · · · f(0)
1 − f(2n − 1) 1 − f(2n − 2) · · · 1 − f(0)

]
(2)

is named the structure matrix of f [4,18]. The function f = [f1 f2 . . . fn]T is
called a vectorial function if all fis are Boolean functions.

The Hamming weight of a binary string α of finite length is the number
of ones in α, denoted by wt(α). The Hamming weight of a Boolean function
f , denoted by wt(f), is the Hamming weight of its truth table. The Hamming
weight is one of the most basic properties of a Boolean function, and is a cru-
cial criterion in cryptography [19]. If an n-variable Boolean function f satis-
fies wt(f) = 2n−1, then the Boolean function f is said to be balanced. An
n-variable Boolean function f is said to be linear with respect to the variable
Xi if f(X1,X2, · · · ,Xn) = Xi ⊕ f̃(X1,X2, · · · ,Xi−1,Xi+1, · · · ,Xn) for some i
satisfying 1 ≤ i ≤ n. If a Boolean function f is linear with respect to some
variable, then it is balanced.

A Boolean network with n nodes and m outputs can be described in general
as the nonlinear system:

{
X(t + 1) = g(X(t)),
Y(t) = h(X(t)), t ∈ N,

(3)

where X = [X1 X2 . . . Xn]T ∈ F
n
2 is the state, and the vectorial function

g = [g1 g2 · · · gn]T : F
n
2 → F

n
2 is the state transition function, and h =

[h1 h2 . . . hn]T : F
n
2 → F

m
2 is the output function.

304 W. Kong et al.

Lemma 1 ([4]). For any state X = [X1 X2 · · · Xn]T ∈ F
n
2 , let x = [X1 X1 ⊕

1]T � [X2 X2 ⊕ 1]T � · · · � [Xn Xn ⊕ 1]T . Then x = δj
2n ∈ Δ2n with j =

2n − (2n−1X1 + 2n−2X2 + · · · + Xn).

From Lemma 1, we can easily see that the state X = [X1 X2 · · · Xn]T ∈ F
n
2

and the state x = δj
2n ∈ Δ2n with j = 2n − (2n−1X1 + 2n−2X2 + · · · + Xn) are

one-to-one correspondence.
Boolean network (3) can be equivalently expressed as the linear system (4):

{
x(t + 1) = Lx(t),
y(t) = Hx(t), t ∈ N,

(4)

with the state x ∈ Δ2n , the output y ∈ Δ2m , the state transition matrix L ∈
L2n×2n , and the output matrix H ∈ L2m×2n . The j-th column of L satisfies

Colj(L) = Colj(G1) ⊗ Colj(G2) ⊗ · · · ⊗ Colj(Gn), j = 1, 2, . . . , 2n, (5)

with Gi being the the structure matrix of the i-th component gi of the vectorial
function g in (3) for any i ∈ {1, 2, . . . , n}. The j-th column of H can be computed
in a similar way.

2.2 Nonlinear Feedback Shift Register

Figure 1 shows the diagram of an n-stage Galois NFSR, in which each small
square represents a binary storage device, also called bit. The content of bit i is
labelled as Xi. All Xis together form the Galois NFSR’s state [X1 X2 . . . Xn]T .
Every bit i has its own feedback function fi. They all form the Galois NFSR’s
feedback f = [f1 f2 . . . fn]T . At each periodic interval determined by a master
clock, the content Xi is updated by the value of fi taking at the previous contents
of all Xis. The n-stage Galois NFSR can be described by the nonlinear system:

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

X1(t + 1) = f1(X1(t),X2(t), . . . , Xn(t)),
X2(t + 1) = f2(X1(t),X2(t), . . . , Xn(t)),

...
Xn(t + 1) = fn(X1(t),X2(t), . . . , Xn(t)),

(6)

where t ∈ N represents time instant.
If a Galois NFSR’s feedback f = [f1 f2 . . . fn]T satisfies

fi(X1,X2, · · · ,Xn) = Xi+1 for all i = 1, 2, · · · , n − 1, then the n-stage Galois
NFSR becomes an n-stage Fibonacci NFSR. Figure 2 describes an n-stage
Fibonacci NFSR, which is nonsingular if and only if its feedback function f
is nonsingular, that is, f = X1 ⊕ f̃(X2,X3, · · · ,Xn) [20].

The state diagram of an n-stage NFSR is a directed graph consisting of 2n

vertices and 2n edges, in which each vertex represents a state of the NFSR, and
each edge represents a transition between two states. Precisely, if state X is
updated to state Y, then there is an edge from state X to state Y. In this case,

Isomorphism and Equivalence of Galois Nonlinear Feedback Shift Registers 305

Fig. 1. An n-stage Galois NFSR.

1X 2X nX

Fig. 2. An n-stage Fibonacci NFSR.

X is a predecessor of Y, and Y is the successor of X. Consecutive distinct states
X1,X2, . . . ,Xp and their edges between them form a cycle of length p if X1 is
the successor of Xp.

For any X ∈ F2, denote X̄ = X ⊕ 1. Let Gi = (Vi, Ai) with i ∈ {1, 2},
be the state diagram of an n-stage NFSRi, where Vi is the set of states, while
Ai is the set of edges. G1 and G2 are said to be isomorphic if there exists a
bijective mapping ϕ : V1 → V2 such that for any edge E1 ∈ A1 from state X to
state Y, there exists an edge E2 ∈ A2 from ϕ(X) to ϕ(Y). In this case, NFSR1
and NFSR2 are said to be isomorphic NFSRs. Furthermore, if the bijective
mapping ϕ satisfies ϕ = D : [X1 X2 . . . Xn]T �→ [X̄1 X̄2 . . . X̄n]T , then G1

and G2 are said to be dual isomorphic, denoted by G2 = DG1; if ϕ satisfies
ϕ = R : [X1 X2 . . . Xn]T �→ [Xn Xn−1 . . . X1]T , then G1 and G2 are
said to be anti-isomorphic, denoted by G2 = RG1; if ϕ satisfies ϕ = DR :
[X1 X2 . . . Xn]T �→ [X̄n X̄n−1 . . . X̄1]T , then G1 and G2 are said to be dual
anti-isomorphic, denoted by G2 = DRG1.

Lemma 2 ([9]). For an n-stage Fibonacci NFSR1 with feedback function f ,

1. if the state diagram of an n-stage Fibonacci NFSR2 is dual isomorphic to that
of the Fibonacci NFSR1, then the feedback function of the Fibonacci NFSR2
is Df satisfying Df (X1,X2, . . . , Xn) = f(X̄1, X̄2, . . . , X̄n);

2. if the state diagram of an n-stage Fibonacci NFSR2 is anti-isomorphic to that
of the Fibonacci NFSR1, then the feedback function of the Fibonacci NFSR2
is Rf satisfying Rf (X1,X2, . . . , Xn) = f(Xn,Xn−1, . . . , X1);

306 W. Kong et al.

3. if the state diagram of an n-stage Fibonacci NFSR2 is dual anti-isomorphic
to that of the Fibonacci NFSR1, then the feedback function of the Fibonacci
NFSR2 is DRf satisfying DRf (X1,X2, . . . , Xn) = f(X̄n, X̄n−1, . . . , X̄1).

Lemma 3 ([21]). If an n-stage Fibonacci NFSR and an n-stage Galois NFSR
are equivalent, then their state diagrams are isomorphic.

Definition 3 ([16]). For a positive integer τ satisfying 1 ≤ τ ≤ n−1, an n-stage
Galois NFSR with feedback f = [f1 f2 . . . fn]T is said to have the terminal bit τ
if fi(X) = Xi+1 for all i = 1, 2, . . . , τ and for all X = [X1 X2 . . . Xn]T ∈ F

n
2 .

Such an NFSR with terminal bit τ is called an n-stage τ -terminal-bit Galois
NFSR.

Lemma 4 ([16]). Suppose τ to be a positive integer satisfying 1 ≤ τ ≤ n − 1.
An n-stage τ -terminal-bit Galois NFSR represented by a nonlinear system X(t+
1) = f(X(t)) with state X ∈ F

n
2 is equivalent to an n-stage Fibonacci NFSR

represented by a nonlinear system Y(t+1) = h(Y(t)) with state Y ∈ F
n
2 , if and

only if there exists a bijective mapping ϕ : X �→ Y such that ϕ(f(X)) = h(ϕ(X))
and

diag(1 1 · · · 1︸ ︷︷ ︸
τ+1

0 · · · 0)ϕ(X) = diag(1 1 · · · 1︸ ︷︷ ︸
τ+1

0 · · · 0)X (7)

for all X ∈ F
n
2 , where diag(·) denotes a diagonal matrix with diagonal elements

of 1 and 0.

Lemma 5 ([15]). An n-stage Galois NFSR with feedback f = [f1 f2 · · · fn]T can
be equivalently expressed as a linear system:

x(t + 1) = Lgx(t), t ∈ N,

where x ∈ Δ2n is the state, and Lg = δ2n [ξ1 ξ2 · · · ξ2n] ∈ L2n×2n is the state
transition matrix, satisfying

ξi = 2n − 2n−1f1(2n − i) − 2n−2f2(2n − i) − · · · − 2fn−1(2n − i) − fn(2n − i),
j = 1, 2, · · · , 2n.

Lemma 6 ([10]). An n-stage Fibonacci NFSR with a feedback function f , can
be expressed as the following linear system:

x(t + 1) = Lx(t), t ∈ N,

where x ∈ Δ2n is the state, L ∈ L2n×2n is the state transition matrix, satisfying

L = δ2n [η1 · · · η2n−1 η2n−1+1 · · · η2n]

with {
ηi = 2i − si, i = 1, 2, · · · , 2n−1,

η2n−1+i = 2i − s2n−1+i,

and [s1, s2, · · · , s2n] being the truth table of f , arranged in the reverse alphabet
order.

Isomorphism and Equivalence of Galois Nonlinear Feedback Shift Registers 307

3 Isomorphism of Galois NFSRs

In this section, we will reveal some characterizations of several kinds of isomor-
phic Galois NFSRs.

Theorem 1. For an n-stage Galois NFSR1 with feedback f = [f1 f2 . . . fn]T ,

1. the state diagram of an n-stage Galois NFSR2 is dual isomorphic to that of
Galois NFSR1, if and only if the feedback Df of the Galois NFSR2 satisfies

Df = [f1(X̄1, X̄2, · · · , X̄n) f2(X̄1, X̄2, · · · , X̄n) · · · fn(X̄1, X̄2, · · · , X̄n)]T ;
(8)

2. the state diagram of an n-stage Galois NFSR3 is anti-isomorphic to that of
Galois NFSR1, if and only if the feedback Rf of the Galois NFSR3 satisfies

Rf = [fn(Xn,Xn−1, . . . , X1) fn−1(Xn,Xn−1, . . . , X1)
. . . f1(Xn,Xn−1, . . . , X1)]T .

(9)

3. the state diagram of an n-stage Galois NFSR4 is dual anti-isomorphic to
that of Galois NFSR1, if and only if the feedback DRf of the Galois NFSR4
satisfies

DRf = [fn(X̄n, X̄n−1, . . . , X̄1) fn−1(X̄n, X̄n−1, . . . , X̄1)
. . . f1(X̄n, X̄n−1, . . . , X̄1)]T .

(10)

Proof. Let [a0 a1 . . . an]T be a vertex in the state diagram of
Galois NFSR1. Then, there is an edge from [a0 a1 . . . an]T to
[f1(a1, a2, . . . , an) f2(a1, a2, . . . , an) . . . fn(a1, a2, . . . , an)]T in the state dia-
gram of Galois NFSR1.

Case 1: If the state diagram of the Galois NFSR2 is dual isomorphic to
that of the Galois NFSR1, then there is an edge from [ā1 ā2 . . . ān]T

to [f1(a1, a2, . . . , an) f2(a1, a2, . . . , an) . . . fn(a1, a2, . . . , an)]T in the state
diagram of Galois NFSR2. Let bi = āi for all i = 1, 2, · · · , n. Then, there
is an edge from [b1 b2 . . . bn]T to [f1(b̄1, b̄2, · · · , b̄n) f2(b̄1, b̄2, · · · , b̄n)
. . . fn(b̄1, b̄2, · · · , b̄n)]T in the state diagram of Galois NFSR2. Thus, the feedback
Df of Galois NFSR2 satisfies Eq. (8).

Conversely, if the feedback Df of Galois NFSR2 satisfies Eq. (8), then
there is an edge from [b1 b2 . . . bn]T to [f1(b̄1, b̄2, · · · , b̄n) f2(b̄1, b̄2, · · · , b̄n)
. . . fn(b̄1, b̄2, · · · , b̄n)]T in the state diagram of Galois NFSR2. Let ai = b̄i for all
i = 1, 2, · · · , n. Then there is an edge from [ā1 ā2 . . . ān]T to [f1(a1, a2, . . . , an)
f2(a1, a2, . . . , an) . . . fn(a1, a2, . . . , an)]T in the state diagram of Galois NFSR2.
Therefore, the state diagram of Galois NFSR2 is dual isomorphic to that of
Galois NFSR1.

Case 2: If the state diagram of Galois NFSR3 is anti-isomorphic to
that of Galois NFSR1, then there is an edge from [an an−1 . . . a1]T

to [fn(a1, a2, . . . , an) fn−1(a1, a2, . . . , an) · · · f1(a1, a2, . . . , an)]T in
the state diagram of the Galois NFSR3. Let bi = an−i+1 for all

308 W. Kong et al.

i = 1, 2, . . . , n. Then, there is an edge from [b1 b2 . . . bn]T to
[fn(bn, bn−1, . . . , b1) fn−1(bn, bn−1, . . . , b1) . . . f1(bn, bn−1, . . . , b1)]T in the state
diagram of the Galois NFSR3. Thereby, the feedback Rf of Galois NFSR3 sat-
isfies Eq. (9).

Conversely, if the feedback Rf of Galois NFSR3 satisfies Eq. (9), then there
is edge from [b1 b2 . . . bn]T to [fn(bn, bn−1, . . . , b1) fn−1(bn, bn−1, . . . , b1)
. . . f1(bn, bn−1, . . . , b1)]T in the state diagram of the Galois NFSR3. Let ai =
bn−i+1 for all i = 1, 2, . . . , n. Thus, there is an edge from [an an−1 . . . a1]T

to [fn(a1, a2, . . . , an) fn−1(a1, a2, . . . , an) · · · f1(a1, a2, . . . , an)]T in the state
diagram of Galois NFSR3. Therefore, the state diagram of Galois NFSR3 is
anti-isomorphic to that of Galois NFSR1.

Case 3: From Cases 1 and 2, we can easily follow Case 3. 	

Theorem 1 generalizes the results of Lemma 2 for Fibonacci NFSRs to Galois

ones, and improves the necessary condition to the necessary and sufficient con-
dition, using the proof method similar to that in [9].

Theorem 2. For an n-stage nonsingular Galois NFSR1 with feedback f , the
state diagram of an n-stage nonsingular Galois NFSR2 has a direction opposite
to that of the Galois NFSR1, if and only if Galois NFSR2 has the feedback f−1.

Proof. Since the Galois NFSR1 is nonsingular, its feedback f is invertible, and
each state has unique predecessor and unique successor.

If the state diagram of an n-stage nonsingular Galois NFSR2 has a direction
opposite to that of NFSR1, then for any state X, its successor Y (i.e., Y = f(X))
in the state diagram of NFSR1 becomes its predecessor (i.e., X = f−1(Y)) in
the sate diagram of NFSR2. Due to the arbitrariness of state X, we can infer
that the Galois NFSR2 has the feedback f−1.

Conversely, if Galois NFSR2 has the feedback f−1, then the for any state Y,
its successor X (i.e., X = f−1(Y)) in the state diagram of NFSR2 becomes its
predecessor (i.e., Y = f(X))) in the sate diagram of NFSR1. Due the arbitrari-
ness of state Y, we can conclude that the state diagram of Galois NFSR2 has a
direction opposite to that of NFSR1. �

Corollary 1. For an n-stage nonsingular Fibonacci NFSR1 with feedback func-
tion f = X1+f̃(X2,X3, · · · ,Xn), the state diagram of an n-stage Galois NFSR2
has a direction opposite to that of NFSR1 if and only if the Galois NFSR2 has
the feedback g = [g1 g2 . . . gn]T satisfying

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

g1 = Xn + f̃(X1,X2, · · · ,Xn−1),
g2 = X1,

g3 = X2,
...

gn = Xn−1.

(11)

Isomorphism and Equivalence of Galois Nonlinear Feedback Shift Registers 309

Proof. As a particular nonsingular Galois NFSR, the nonsingular Fibonacci
NFSR1 with feedback function f = X1 + f̃(X2,X3, · · · ,Xn) has the feedback
f = [f1 f2 . . . fn]T satisfying

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

f1 = X2,

f2 = X3,
...

fn−1 = Xn,

fn = X1 ⊕ f(X2,X3, . . . , Xn).

By direct computation, we can deduce that f−1 = g satisfying Eq. (11). Then
the result follows from Theorem 2. 	

Remark 1. The n-stage Galois NFSR2 with feedback g = [g1 g2 . . . gn]T

satisfying (11) is actually an n-stage Fibonacci NFSR with feedback function
Rf (X1,X2, . . . , Xn) = f(Xn,Xn−1, . . . , X1), where f is the feedback function of
the Fibonacci NFSR in Corollary 1. It implies that two n-stage anti-isomorphic
Fibonacci NFSRs, actually, have their state diagrams with directions opposite
to each other.

4 Equivalence of Galois NFSRs

In this section, we give some characterizations for two kinds of equivalent Galois
NFSRs.

Theorem 3. If an n-stage τ -terminal-bit Galois NFSR with feedback f = [f1 f2
. . . fn]T is equivalent to an n-stage Fibonacci NFSR, then its feedback function
fτ+1 satisfies

wt
(
[fτ+1(2n − 1), fτ+1(2n − 2), · · · , fτ+1(2n − 2n−τ−1)]

)
= wt

(
[fτ+1(2n − 2n−τ−1 − 1), fτ+1(2n − 2n−τ−1 − 2), · · · , fτ+1(2n − 2n−τ)]

)
= · · ·
= wt

(
[fτ+1(2n−τ−1 − 1), fτ+1(2n−τ−1 − 2), · · · , fi(0)]

)
= 2n−τ−2.

Proof. We use the semi-tensor product based Boolean network theory. Then, the
Galois NFSR represented by nonlinear system X(t + 1) = f(X(t)) with X ∈ F

n
2

has a linear system representation x(t + 1) = Lgx(t) with x ∈ Δ2n , and the
Fibonacci NFSR represented by nonlinear system Y(t+1) = h(Y(t)) with state
Y ∈ F

n
2 has a linear system representation y(t + 1) = Lfy(t) with y ∈ Δ2n .

If the n-stage τ -terminal-bit Galois NFSR is equivalent to an n-stage
Fibonacci NFSR, then according to Lemma 4, there exists a bijection ϕ : X �→ Y
such that ϕ(f(X)) = h(ϕ(X)) and Eq. (7) holds. It means there is a transfor-
mation y = Px such that Lg = PT LfP , and P = δ2n [j1 j2 · · · j2n] satisfies
1 ≤ ji ≤ 2n−τ−1, 1 + 2n−τ−1 ≤ j2n−τ−1+i ≤ 2n−τ , · · · , 1 + 2n − 2n−τ−1 ≤
j2n−2n−τ−1+i ≤ 2n for all i = 1, 2, · · · , 2n−τ−1.

310 W. Kong et al.

Let Lf = δ[η1 η2 · · · η2n] and Lg = δ2n [ξ1 ξ2 · · · ξ2n]. Then,

Lg = PT LfP = PT δ2n [η1 η2 · · · η2n]δ2n [j1 j2 · · · j2n]

= (δ2n [j1 j2 · · · j2n])T
δ[ηj1 ηj2 · · · ηj2n],

which yields,

δξi

2n = (δ[j1 j2 · · · j2n])T
δ

ηji
2n , i = 1, 2, · · · , 2n,

that is,

[0 · · · 0 1 0 · · · 0]T
ξi−th

= (δ2n [j1 j2 · · · j2n])T [0 · · · 0 1 0 · · · 0]T
ηji

−th

.

From the above equation, we can see that the column vector [0 · · · 0 1 0 · · · 0]T
ξi−th

is just a row permutation of [0 · · · 0 1 0 · · · 0]T
ηji

−th

via the permutation

(j1 j2 · · · j2n). Clearly, if 1 ≤ ji ≤ 2n−τ−1, then 1 ≤ ηji
≤ 2n−τ−1 and

thereby 1 ≤ ξi ≤ 2n−τ−1. Similarly, if 1 + k2n−τ−1 ≤ ji ≤ (k + 1)2n−τ−1, then
1+k2n−τ−1 ≤ ηji

≤ (k+1)2n−τ−1 and thereby 1+k2n−τ−1 ≤ ξi ≤ (k+1)2n−τ−1

for all k = 0, 1, 2, · · · , 2τ+1 − 1.
According to Lemma 6, we deduce that there are 2n−τ−2 ηis satisfying 1 ≤

ηi ≤ 2n−τ−1, and 2n−τ−2 ηis satisfying 1 + 2n−τ−1 ≤ ηi ≤ 2n−τ with 1 ≤
i ≤ 2n−τ−1. Similarly, there are 2n−τ−2 ηis satisfying 1 + k2n−τ−1 ≤ ηi ≤
(k + 1)2n−τ−1, 2n−τ−2 ηis satisfying 1 + (k + 1)2n−τ−1 ≤ ηi ≤ (k + 2)2n−τ−1

with 1+k2n−τ−1 ≤ i ≤ (k+1)2n−τ−1 and k = 0, 1, 2, · · · , 2τ+1−1. Hence, there
are 2n−τ−2 ξis satisfying 1+k2n−τ−1 ≤ ξi ≤ (k+1)2n−τ−1, 2n−τ−2 ξis satisfying
1 + (k + 1)2n−τ−1 ≤ ξi ≤ (k + 2)2n−τ−1, with 1 + k2n−τ−1 ≤ i ≤ (k + 1)2n−τ−1

and k = 0, 1, 2, · · · , 2τ+1 − 1.
From Lemma 5, we know

ξi = 2n − 2n−1f1(2n − i) − 2n−2f2(2n − i) − · · · − 2fn−1(2n − i) − fn(2n − i)

for all j = 1, 2, · · · , 2n. Clearly, 1 ≤ ξi ≤ 2n−τ−1 yields

2n − 2n−τ−1 ≤ 2n−1f1(2n − i) + 2n−2f2(2n − i) + · · · + fn(2n − i) ≤ 2n − 1.

It means fτ+1(2n − i) = 1. Similarly, if 1 + 2n−τ−1 ≤ ξi ≤ 2n−τ , then fτ+1(2n −
i) = 0; and if 1+2n−τ ≤ ξi ≤ 3×2n−τ−1, then fτ+1(2n−i) = 1. Keeping the same
reasoning, we can infer that, if 1 + (2τ+1 − 2)2n−τ−1 ≤ ξi ≤ (2τ+1 − 1)2n−τ−1,
then fτ+1(2n − i) = 0, and if 1 + (2τ+1 − 1)2n−τ−1 ≤ ξi ≤ 2n, then fτ+1(2n −
i) = 1. Therefore, there are 2n−τ−2 ones in [fτ+1(2n−τ−1 − 1), fτ+1(2n−τ−1 −
2), · · · , fτ+1(0)], and in [fτ+1(2n−τ − 1), fτ+1(2n−τ − 2), · · · , fτ+1(2n−τ−1)], till
in [fτ+1(2n − 1), fτ+1(2n − 2), · · · , fτ+1(2n − 2n−τ−1)]. 	

Isomorphism and Equivalence of Galois Nonlinear Feedback Shift Registers 311

Table 1. The truth table of f3 tables.

X 1111 1110 1101 1100 1011 1010 1001 1000

f3(X) 0 1 1 0 1 0 1 0

X 0111 0110 0101 0100 0011 0010 0001 0000

f3(X) 1 0 1 0 1 0 1 0

Example 1. Consider a 4-stage 2-terminal-bit Galois NFSR with feedback f =
[f1 f2 f3 f4]T satisfying

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

f1 = X2,

f2 = X3,

f3 = X4 ⊕ X1X2X3,

f4 = 1 ⊕ X1 ⊕ X2 ⊕ X2X3 ⊕ X2X4 ⊕ X1X2X3.

This Galois NFSR is equivalent to a 4-stage Fibonacci NFSR with feed back
function f = 1 ⊕ X1 ⊕ X2 ⊕ X2X3 ⊕ X2X4 ⊕ X2X3X4. We can get the truth
table of f3, listed in Table 1.

It satisfies wt([f3(15), f3(14)]) = wt([f3(13), f3(12)]) = · · · = wt([f3(1),
f3(0)]) = 1, consistent with the result in Theorem 3.

The following result gives some Boolean functions satisfying the necessary
condition of Theorem 3.

Proposition 1. The Boolean function

f(X1,X2, · · · ,Xn) = Xi+1 ⊕ g(Xi+2,Xi+3, · · · ,Xn) or

f(X1,X2, · · · ,Xn) = Xi+1 ⊕ u(X1,X2, · · · ,Xi,Xi+2, · · · ,Xn)

satisfies

wt([f(2n − 1), · · · , f(2n − 2n−i)]) = · · · = wt([f(2n−i − 1), · · · , f(0)]) = 2n−i−1.

Proof. For the first case of f(X1,X2, · · · ,Xn) = Xi+1 ⊕ g(Xi+2,Xi+3, · · · ,Xn),
we note that f is actually not relative to X1,X2, . . . , Xi. For this case, we set
Yj = Xi+j for all j = 1, 2, · · · , n − i, and set h = f . Then, h(Y1, Y2, · · · , Yn−i) =
Y1 ⊕ g(Y2, Y3, · · · , Yn−i). The function h is, clearly, an (n − i)-variable function
and is linear with respect to the variable Y1. Hence, h is balanced, and thereby
wt(h) = 2n−i−1.

On the other hand, note that f(2n − 1), f(2n − 2), · · · , f(2n − 2n−i)
are the possible values of f(1, 1, · · · , 1, 1,Xi+1, · · · ,Xn). Similarly, we can
get f(2n − 2n−i − 1), f(2n − 2n−i − 2), · · · , f(2n − 2 × 2n−i) are the possi-
ble values of f(1, 1, · · · , 1, 0,Xi+1, · · · ,Xn). By the same reasoning, we have
f(2n−2 − 1), f(2n−2 −2), · · · , f(0) are the possible values of f(0, 0, · · · , 0, 0,
Xi+1, · · · ,Xn). Together considering f(1, 1, · · · , 1, 1,Xi+1, · · · ,Xn) = f(1,

312 W. Kong et al.

1, · · · , 1, 0,Xi+1, · · · ,Xn) = · · · = f(0, 0, · · · , 0, 0,Xi+1, · · · ,Xn), we can infer
that the result holds for the first case.

For the second case of f(X1,X2, . . . , Xn) = Xi+1 ⊕ u(X1,X2, . . . , Xi,Xi+2,
. . . , Xn), any one of {u(1, 1, · · · , 1, 1,Xi+2, · · · ,Xn), u(1, 1, · · · , 1, 0,Xi+2, · · · ,
Xn), · · · , u(0, 0, · · · , 0, 0,Xi+2, · · · ,Xn)} has a function g(Xi+2,Xi+3, · · · ,Xn)
equal to it. Keeping the reasoning similar to the first case, we can prove the
result holds for the second case. 	

Let a sequence set S = {(si)i≥1|si ∈ F2}, and S̄ = {(s̄i)i≥1|(si)i≥1 ∈ S}. S̄
is called the complementary set of S.

Proposition 2. The output sequence set S of an n-stage Fibonacci NFSR is
equal to its complementary set S, if and only if the feedback function f of the
Fibonacci NFSR satisfies f = Df .

Proof. Clearly, an output sequence (si)i≥1 ∈ S if and only if (s̄i)i≥1 ∈ S. In
an n-stage Fibonacci NFSR, Si = [si si+1 . . . si+n−1]T with i ≥ 1 is a
state of the Fibonacci NFSR. Therefore, S = S̄ means that, there is a path
S1, S2, · · · , Sk(k ≤ 2n) in a Fibonacci state diagram if and only if there is also
a path S̄1, S̄2, · · · , S̄k. The mapping D : Sr �→ S̄r with 1 ≤ r ≤ k is a dual
mapping. Therefore, we can get the Fibonacci NFSR’s state diagram G satisfies
G = DG, where DG is a dual graph of G. According to Theorem 1, the result
follows. 	

Remark 2. From the security perspective, a Fibonacci NFSR with output
sequence set equal to its complementary set should be avoided in the design of
NFSR-based stream ciphers, due to the “bad” randomness of output sequences.

Example 2. For a 3-bit Fibonacci NFSR with feedback function f(X1,X2,X3) =
X1X2 ⊕ X2X3 ⊕ X1X3, we get its state diagram as:

110 → 101 → 011 → 111 �;
001 → 010 → 100 → 000 � .

Obviously, the feedback function f of the Fibonacci NFSR satisfies f = Df , and
its output sequence set is equal to its complementary set, consistent with the
result in Proposition 2.

Corollary 2. For two n-stage Fibonacci NFSRs with feedback functions f and
f

′
satisfying f

′
= f ⊕ 1. If one Fibonacci NFSR satisfies its output sequence set

equal to its complementary set, then the other also satisfies this property.

Proof. Without loss of generality, we assume the Fibonacci NFSR with feedback
function f satisfies its output sequence set equal to its complementary set. Then,
according to Proposition 2, we know Df = f . Together taking into consideration
f

′
= f ⊕ 1, we have

Df ′ (X1,X2, · · · ,Xn) = f ′(X̄1, X̄2, · · · , X̄n) = f(X̄1, X̄2, · · · , X̄n)

= Df (X1,X2, · · · ,Xn) ⊕ 1 = f(X1,X2, · · · ,Xn) ⊕ 1 = f
′
(X1,X2, · · · ,Xn).

According to Proposition 2 again, we know Corollary 2 holds. �

Isomorphism and Equivalence of Galois Nonlinear Feedback Shift Registers 313

Proposition 3. Suppose an n-stage Fibonacci NFSR represented by a nonlinear
system Y(t+1) = h(Y(t)) with Y ∈ F

n
2 satisfies its output sequences set equal to

its the complementary set. An n-stage Galois NFSR represented by a nonlinear
system X(t + 1) = f(X(t)) with Y ∈ F

n
2 is equivalent to the n-stage Fibonacci

NFSR if and only if there exists a bijective mapping ϕ : X �→ Y such that
ϕ(f(X)) = h(ϕ(X)) and [1 0 . . . 0]ϕ(X) = X or [1 0 . . . 0]ϕ(X) = X⊕ 1 for
all X ∈ F

n
2 .

Proof. Let S be the set of output sequences of the n-stage Fibonacci NFSR.
Then S = S̄ means for any sequence (si)i≥1 ∈ S, we have (si ⊕ 1)i≥1 ∈ S as
well, denoted by Property 1.
Necessity: Clearly, for each X ∈ F

n
2 , there exists an edge from state X to state

f(X) in the state diagram of the Galois NFSR. Similarly, for each Y ∈ F
n
2 , there

exists an edge from state Y to state h(Y) in the state diagram of the Fibonacci
NFSR. If a Galois NFSR is equivalent to a Fibonacci NFSR, then according to
Lemma 3, their state diagrams are isomorphic, which is equivalent to that there
exists a bijective mapping ϕ : X �→ Y such that ϕ(f(X)) = h(Y) = h(ϕ(X))
for all X ∈ F

n
2 . Note that an NFSR usually uses the content of the lowest bit as

its output. Together taking into consideration Property 1, we can infer that the
mapping ϕ must make the first component Y equal or complementary to the
first component of X, that is, [1 0 . . . 0]ϕ(X) = X or [1 0 . . . 0]ϕ(X) = X⊕ 1
for all X ∈ F

n
2 .

Sufficiency: If there exists a bijective mapping ϕ : X �→ Y such that ϕ(f(X))
= h(ϕ(X)), then according to the necessity proof, the state diagrams of the
Galois NFSR and the Fibonacci NFSR are isomorphic. Moreover, if the bijection
ϕ satisfies [1 0 . . . 0]ϕ(X) = X or [1 0 . . . 0]ϕ(X) = X⊕1 for all X ∈ F

n
2 , then

their sets of output sequences of both NFSRs are equal provided that Property
1 holds. Therefore, the Galois NFSR and the Fibonacci NFSR are equivalent. �

Theorem 4. If an n-stage Fibonacci NFSR satisfies its output sequences set
equal to its the complementary set, then there are 2 × (2n−1!)2 Galois NFSRs
are equivalent to the Fibonacci NFSR.

Proof. Different diagrams correspond to different Galois NFSRs. According to
Proposition 3, we can only count the number of bijective mappings ϕ. Suppose
the bijective mapping ϕ : X �→ Y making the first component Y equal to the
first component of X. Thereby, if the first component of X is given, then the
first component of Y is given as well. Clearly, the first component of X has two
possible forms: 0 or 1, say, X = [0 X2 . . . Xn]T . Then Y = [0 Y2 . . . Yn]T . The
mapping ϕ : X = [0 X2 . . . Xn]T �→ Y = [0 Y2 . . . Yn]T has (2n−1!) possible
forms. Thus, the bijective mapping ϕ : X �→ Y making the first component
of Y equal to the first component of X has (2n−1!)2 possible forms. Similarly,
we can easily observe that the bijective mapping ϕ : X �→ Y making the first
component Y complementary to the first component of X has (2n−1!)2 possible
forms as well. Therefore, the result follows. �

314 W. Kong et al.

5 Conclusion

This paper considered the isomorphism and equivalence of Galois NFSRs. It
characterized the feedback of several kinds of isomorphic Galois NFSRs. In addi-
tion, the characterizations of two kinds of equivalent Galois NFSRs were revealed
from the perspectives of their feedback functions and numbers. In the future, it
will be interesting to find more characterizations of isomorphic and/or equivalent
Galois NFSRs to benefit the design of NFSR-based stream ciphers.

Acknowledgments. This work was supported by the National Natural Science Foun-
dation of China under Grant Nos. 61772029 and 61872359.

References

1. Hell, M., Johansson, T., Maximov, A., Meier, W.: The grain family of stream
ciphers. In: Robshaw, M., Billet, O. (eds.) New Stream Cipher Designs. LNCS,
vol. 4986, pp. 179–190. Springer, Heidelberg (2008). https://doi.org/10.1007/978-
3-540-68351-3 14

2. De Cannière, C., Preneel, B.: Trivium. In: Robshaw, M., Billet, O. (eds.) New
Stream Cipher Designs. LNCS, vol. 4986, pp. 244–266. Springer, Heidelberg (2008).
https://doi.org/10.1007/978-3-540-68351-3 18

3. Dubrova, E.: A transformation from the Fibonacci to the Galois NLFSRs. IEEE
Trans. Inf. Theory 55(11), 5263–5271 (2009)

4. Cheng D., Qi H., Li Z.: Analysis and Control of Boolean Networks. Springer,
London (2011) https://doi.org/10.1007/978-0-85729-097-7

5. Cheng D., Qi H., Zhao Y.: An Introduction To Semi-Tensor Product of Matrices
And Its Applications. World Scientific Publishing Company, Singapore (2012)

6. Zhao, D., Peng, H., Li, L., Hui, S., Yang, Y.: Novel way to research nonlinear
feedback shift register. Sci. China Inf. Sci. 57(9), 1–14 (2014)

7. Zhong, J., Lin, D.: Driven stability of nonlinear feedback shift registers. IEEE
Trans. Commun. 64(6), 2274–2284 (2016)

8. Zhong, J., Lin, D.: On minimum period of nonlinear feedback shift registers in
Grainlike structure. IEEE Trans. Inf. Theory 64(9), 6429–6442 (2018)

9. Wan Z., Dai Z., Liu M. et al.: Nonlinear Shift Register (in Chinese), Science Press,
Beijing, China (1978)

10. Zhong, J., Lin, D.: A new linearization method of nonlinear feedback shift registers.
J. Comput. Syst. Sci. 81(4), 783–796 (2015)

11. Zhao, X.-X., Zheng, Q.-X., Wang, Z.-X., Qi, W.-F.: On a class of isomorphic
NFSRs. Des. Codes Cryptogr. 88(6), 1205–1226 (2020)

12. Dubrova, E.: Finding matching initial states for equivalent NLFSRs in the
Fibonacci and the Galois configurations. IEEE Trans. Inf. Theory 56(6), 2961–
2966 (2010)

13. Lin Z.: The transformation from the Galois NLFSR to the Fibonacci Configuration.
In: EI-DWT 2013, USA, NJ, Piscataway: IEEE Press, pp. 335–339 (2013)

14. Mykkeltveit, J., Siu, M.-K., Ton, P.: On the cylcle structure of some nonlinear shift
register sequences. Inf. Control 43(2), 202–215 (1979)

15. Zhong, J., Pan, Y., Lin, D.: On Galois NFSRs equivalent to Fibonacci ones. In:
Wu, Y., Yung, M. (eds.) Inscrypt 2020. LNCS, vol. 12612, pp. 433–449. Springer,
Cham (2021). https://doi.org/10.1007/978-3-030-71852-7 29

https://doi.org/10.1007/978-3-540-68351-3_14
https://doi.org/10.1007/978-3-540-68351-3_14
https://doi.org/10.1007/978-3-540-68351-3_18
https://doi.org/10.1007/978-0-85729-097-7
https://doi.org/10.1007/978-3-030-71852-7_29

Isomorphism and Equivalence of Galois Nonlinear Feedback Shift Registers 315

16. Pan Y., Zhong J. and Lin D.: On Galois NFSRs with terminal bits. In: 2021 IEEE
International Symposium on Information Theory (ISIT 2021), to appear

17. Roger A.H., Johnson C.R.: Topics in Matrix Analysis. Cambridge University Press,
UK (1991)

18. Qi, H., Cheng, D.: Logic and logic-based control. J. Contr. Theory Appl. 6(1),
123–133 (2008)

19. Barbier, M., Cheballah, H., Le Bars, J.-M.: On the computation of the Mobius
transform. Theor. Comput. Sci. 809, 171–188 (2020)

20. Golomb S. W.: Shift Register Sequences. Holden-Day, Laguna Hills, CA, USA
(1967)

21. Zhong J. and Lin D.: Decomposition of nonlinear feedback shift registers based on
Boolean networks. Sci. China Inf. Sci. 62(3), 39110:1–39110:3 (2019)

Elliptic Curve and Integer Factorization

Zhizhong Pan1,2(B) and Xiao Li1,2

1 State Key Laboratory of Information Security, Institute of Information Engineering,
Chinese Academy of Sciences, Beijing 100093, People’s Republic of China

panzhizhong@iie.ac.cn
2 School of Cyber Security, University of Chinese Academy of Science,

Beijing 100093, People’s Republic of China

Abstract. Suppose that we want to factor an integer D where D = pq,
and p, q are two distinct odd primes. Assuming the parity conjecture
and BSD conjecture hold, we reduce the problem of integer factorization
to computing the generators of the Mordell-Weil group of EDr : y2 =
x3 −Drx, where r is a suitable integer with (r,D) = 1. Then for the sake
of deciding whether the point of EDr can factor D, it is shown that we
need to compute the 2-Selmer group of EDr. Finally, we give a method
to compute the 2-Selmer group of EDr and conduct some experiments
to illustrate our method.

Keywords: Elliptic curve · Integer factorization · 2-Selmer group

1 Introduction

In 2003, Burhanuddin and Huang [2,3], related a subproblem of integer factoring
to the problem of computing the Mordell-Weil group of an elliptic curve from
a special family. Specially, they considered the family of elliptic curves E =
ED : y2 = x3 − Dx, where D = pq with p and q distinct prime integers, p ≡
q ≡ 3 mod 16, and (p

q) = 1. Furthermore they speculated that the problem
of integer factorization and the problem of computing the rational points of
the elliptic curve can be polynomial-time equivalent. This method is completely
different from the Lenstra’s method of factoring integers by computing the order
of elliptic curve over finite field, and provides a new idea for integer factorization.

Later, in 2014 Li and Zeng [6] studied a family of elliptic curve E = E2Dr :
y2 = x3 − 2Drx, where D = pq is a product of two distinct odd primes and
2Dr is square-free. They proved that there are infinitely many r ≥ 1 such that
E2Dr has conjectural rank one and vp(x(kP)) �= vq(x(kP)) for any odd integer k,
where P is the generator of E2Dr(Q)/E2Dr(Q)tors. Furthermore, assuming the
Generalized Riemann hypothesis holds, the minimal value of r is in O(log4(D)).

In this paper, we focus on a larger family of elliptic curve E = EDr : y2 = x3−
Drx, where D = pq is the integer we want to factor and r is an arbitrary integer.
Employing the method of two-descent, we reduce the problem of factoring integer
to computing the Mordell-Weil group of EDr : y2 = x3 − Drx. This method is
c© Springer Nature Switzerland AG 2021
Y. Yu and M. Yung (Eds.): Inscrypt 2021, LNCS 13007, pp. 316–330, 2021.
https://doi.org/10.1007/978-3-030-88323-2_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-88323-2_17&domain=pdf
https://doi.org/10.1007/978-3-030-88323-2_17

Elliptic Curve and Integer Factorization 317

different from Burhanuddin and Li, and is simpler and more intuitive. Moreover,
it can be found that not only the points on the elliptic curve with rank 1 can be
used to factor D, but also the points on the elliptic curve with higher ranks can.
But for simplicity, we only discuss the situation of rank one. The conclusions are
as follows.

Theorem 1. Assuming D = pq is a product of two distinct odd primes, suppose
the parity conjecture is true, then

(1) There exists infinity many integer r, such that the rank of EDr is greater or
equal to one.

(2) When the rank of EDr is greater or equal to one, and S′(φ) =
{1, A, −Dr

A ,−Dr}, S(φ) = {1,Dr}, where −Dr means −Dr with the square
factors removed, A is divisible by only one of p or q, S′(φ) and S(φ) are
defined in Definition 2, then EDr has conjectural rank one. At that time,
vp(x(kP)) �= vq(x(kP)) for any odd integer k, in which P is the generator
of EDr(Q)/EDr(Q)tors. Then we can factor D.

Remark 1. In the case S′(φ) = {1,−Dr}, S(φ) = {1, A, Dr
A ,Dr}, both of

EDr(Q) and its dual curve E−4Dr(Q) have rank one. And for any odd
integer k, we have vp(x(k ̂P)) �= vq(x(k ̂P)), where ̂P is the generator of
E−4Dr(Q)/E−4Dr(Q)tors. So we can factor D by using the points on E−4Dr(Q).

So the next question is how to compute S(φ) and S′(φ). Burhanuddin and
Huang computed the 2-Selmer group of a family of elliptic curves E = ED : y2 =
x3 − Dx, where D = pq with p and q distinct prime integers, p ≡ q ≡ 3 mod 16,
and (p

q) = 1. Accurately, S(φ) = {1, pq}, S′(φ) = {1, p,−q,−pq}. At that time,
the rank of ED is one, and we can factor D.

Then Li and Zeng developed the method of computing the 2-Selmer group
of a family of elliptic curve E = E2Dr : y2 = x3 − 2Drx, where D = pq is a
product of two distinct odd primes and 2Dr is square-free. They concluded that
when r meets certain conditions, S(φ) = {1, 2Dr}, S′(φ) = {1, A, −2Dr

A ,−2Dr},
in which A is divisible by only one of p or q. At that time, the rank of E2Dr is
one, and we can factor D.

The second work of this article is to improve their method of calculating
2-Selmer group. We give a way to compute the 2-Selmer group of a family of
elliptic curve E = EDr : y2 = x3 − Drx, where D = pq is a product of two
distinct odd primes and r is an arbitrary integer. The theorem is as follows.

Theorem 2. Let Cd : w2 = d + D
d z4, whereD = (−1)m2n

∏

pi

∏

q2j
∏

r3k, pi,
qj, rk are distinct primes, d is square-free and d | D, we have

(1) When m = 0, Cd(Q∞) �= Φ ⇔ d > 0.
When m = 1, Cd(Q∞) �= Φ holds for any d.

(2) 1) When 2 � d
i) If n = 0, Cd(Q2) �= Φ ⇔ d ≡ 1 mod 8 or d+ D

d ≡ 0 mod 16 or d+ D
d ≡

4 mod 32 or D
d ≡ 1 mod 8.

318 Z. Pan and X. Li

ii) If n = 1, Cd(Q2) �= Φ ⇔ d ≡ 1 mod 8 or d + D
d ≡ 1 mod 8.

iii) If n = 2, Cd(Q2) �= Φ ⇔ d ≡ 1 mod 8 or d + D
d ≡ 1 mod 8 or D

4d ≡
1 mod 4.

iv) If n = 3, Cd(Q2) �= Φ ⇔ d ≡ 1 mod 8.
2) When 2 | d

i) If n = 1, Cd(Q2) �= Φ ⇔ d + D
d ≡ 1 mod 8 or D

d ≡ 1 mod 8.
ii) If n = 2, Cd(Q2) �= Φ ⇔ d

2 + D
2d ≡ 0 mod 32 or d

2 + D
2d ≡

2 mod 16 or d
2 + D

2d ≡ 8 mod 32.
iii) If n = 3, Cd(Q2) �= Φ ⇔ D

4d ≡ 1 mod 4.
(3) ∀t | d, t is prime

1) When t = pi, Cd(Qt) �= Φ ⇔ (D/d
t) = 1.

2) When t = qj, Cd(Qt) �= Φ ⇔ (−d2/D
t)4 = 1.

3) When t = rk, Cd(Qt) �= Φ ⇔ (D/dt2

t) = 1.
(4) ∀t � d, t is prime

1) When t = pi, Cd(Qt) �= Φ ⇔ (d
t) = 1.

2) When t = qj, Cd(Qt) �= Φ ⇔ (d
t) = 1 or (D/dt2

t) = 1.
3) When t = rk, Cd(Qt) �= Φ ⇔ (d

t) = 1.

Remark 2. In [6], Li has proved theorem when D is an even square-free integer.
On the basis of her theory, we have proved theorem can be applied to the larger
family curves where D is an arbitrary integer.

Thus according to Theorem 2, we can compute S(φ) and S′(φ). The specific
calculation process is in Sect. 4.

This paper is organized as follows. In Sect. 2 we do some preprocess to our
elliptic curve and introduce the theorem to compute the torsion subgroup. By
applying the parity conjecture, we also prove Theorem 1(1). In Sect. 3 we briefly
introduced the process and principle of the two-descent method. In Sect. 4 we
explain how to reduce the problem of factoring integer to computing the Mordell-
Weil subgroup of EDr : y2 = x3 − Drx, and prove Theorem 1(2). In Sect. 5 we
prove Theorem 2. Finally, in Sect. 6, we give a few examples to illustrate our
results.

2 Torsion Subgroups and Parity Conjecture

2.1 Notations

At the beginning, we fix some notations. For elliptic curve ED : y2 = x3 − Dx,
if D = A4D′, that is y2 = x3 − A4D′x. Divide both sides by A6 to obtain y2

A6 =
x3

A6 −D′ x
A2 . Let x′ = x

A2 , y′ = y
A3 , and we get a new curve ED′ : y′2 = x′3−D′x′.

So the relation gives a one-to-one correspondence (x, y) ↔ (x
A2 , y

A3) of the points
between ED and ED′ .

According to that, we begin to preprocess the elliptic curve. By removing r’s
quartic factors, we obtain the new elliptic curve EDr : y2 = x3 − Drx, where

Elliptic Curve and Integer Factorization 319

r = (−1)m2n
∏

pi

∏

q2j
∏

r3k, and pi, qj , rk are distinct primes, and (r, p) =
(r, q) = 1, n = 0, 1, 2, 3, m = 0, 1. We denote this curve by E. At the same time
we consider its dual curve E−4Dr : y2 = x3 + 4Drx, using the same method,
removing its quartic factors, and denote the new curve by ̂E.

Remark 3. In fact, when r ∈ Q, we can also simplify the curve to the above
situation.

2.2 Torsion Subsubgroups

The question about the structure of the torsion subgroup of an elliptic curve is
relatively simple, especially when the elliptic curve is defined over Q, we have
the following theorem:

Theorem 3 (see [7]). Let D ∈ Z is quartic-free, ED : y2 = x3 − Dx is defined
over Q, then

ED,tors(Q) ∼=

⎧

⎪

⎨

⎪

⎩

Z/4Z ifD = −4,

Z2 ⊕ Z2 if D is the square integer,

Z2 otherwise,

(1)

where ED,tors is the torsion subgroup of ED.
By Theorem 3, we know that the torsion subgroup of EDr is Z2, two elements

of which are ∞ and (0, 0). We will denote (0, 0) by T from now on.

2.3 Parity Conjecture

Let E be an elliptic curve defined over Q with conductor NE . By the Modularity
Theorem, the L-function can be analytically extended to the entire complex plane
and satisfies the functional equation

ΛE(2 − s) = wEλE(s), where λE(s) = (2π)−sN
s/2
E Γ(s)LE(s) (2)

and wE = ±1 is called the global root number.
Let ran

E and rE be the analytic rank and arithmetic rank of E respectively,
where ran

E is the order of vanishing of LE(s) at s = 1 and rE is the rank of the
abelian group E(Q). The famous BSD conjecture says that ran

E = rE . On the
other hand for the parity of rE , there is another conjecture:

Conjecture 1 (Parity conjecture, see [1,5]). We have (−1)rE = wE .

From this, we obtain the following:

Corollary 1. Let elliptic curve ED : y2 = x3 −Dx be defined over Q with 4 � D
and D quartic-free. We denote the rank of ED by rE. Then (−1)rE = wE =
w∞ · w2 · ∏

p2||D wp, in which

320 Z. Pan and X. Li

w∞ = sgn(−D),

w2 =

{

−1 D ≡ 1, 3, 11, 13 mod 16,

1 otherwise,

wp = (
−1
p

) =

{

−1 p ≡ 3 mod 4,

1 p ≡ 1 mod 4.

So when wE = −1, we can infer that rE is an odd number. At this point we
can claim that the rank of the elliptic curve is greater than 1.

Consider our elliptic curve EDr : y2 = x3 − Drx, where D = pq and r =
(−1)m2n

∏

pi

∏

q2j
∏

r3k. When m = 0 and n = 1, w∞ = −1, w2 = 1, only the
product of the square factors in r congruents to 1 modulo 4 is needed. When
m = 1 and n = 1, w∞ = 1, w2 = 1, the product of the square factors in r
congruents to 3 modulo 4 will guarantee wE = −1. Other conditions are similar
to before.

According to Dirichlet’s density theorem, there are infinitly many integers r
such that the rank of EDr is greater than or equal to 1. So we finish the prove
of Theorem 1(1).

3 A Brief Introduction to Two-Descent Method

In this section we analyze the specific curve by the two-descent method. Con-
sidering the elliptic curve EDr : y2 = x3 − Drx, where D = pq and r =
(−1)m2n

∏

pi

∏

q2j
∏

r3k. Denote it by E, and denote its dual curve E−4Dr :
y2 = x3 + 4Drx by ̂E.

Theorem 4 (see [4]). (1) There exists a map φ from E to ̂E, such that φ(P) =
(y2

x2 , y(x2+Dr)
x2), φ(∞) = φ(T) = ∞̂ ∈ Ê(Q). In fact, φ is a group homomorphism

whose kernel is {∞, T}.
(2) There exists a map ̂φ from ̂E to E, such that φ̂(P̂) =

(ŷ2

4x̂2 , ŷ(x̂2−4Dr)
8x̂2), φ̂(∞̂) = φ̂(T̂) = ∞ ∈ E(Q). In fact, ̂φ is a group homo-

morphism whose kernel is {∞̂, T̂}.
(3) φ ◦ φ̂(P̂) = 2P̂ , φ̂ ◦ φ(P) = 2P . So φ is an isogeny from E to ̂E, and ̂φ

is its dual isogeny. They are two-isogenies.

Definition 1 (see [4]). Define the two-descent map

α : E(Q) −→ Q×/Q×2

(x, y) �−→ x̄

∞ �−→ 1

T �−→ −Dr

Elliptic Curve and Integer Factorization 321

α̂ : Ê(Q) −→ Q×/Q×2

(x̂, ŷ) �−→ ¯̂x
∞̂ �−→ 1

T̂ �−→ Dr

where x means x with the square factors removed.

Proposition 1 (see [4]). For α and α̂, we have the following properties:

(1) α and α̂ are group homomorphisms.
(2) Imα ⊆< −1, bi >, where bi|Dr.

Imα̂ ⊆< −1, b′
i >, where b′

i|4Dr′.
(3) If b ∈ Imα, then −Dr

b ∈ Imα.
If b ∈ Imα̂, then Dr

b ∈ Imα̂.
(4) {1,−Dr} ⊆ Imα and {1,Dr} ⊆ Imα̂.
(5) |Imα| · |Imα̂| = 2rE+2.

Remark 4. We define r′ = (−1)m2(n+2) mod 4−2 in 4Dr′, in order to remove the
quartic factor of 2 in 4Dr.

From Proposition 1, we know that as long as Imα and Imα̂ are determined,
we can compute the rank of EDr. At the same time, through the inverse maps of
α and α̂, we can also calculate the points on E(Q) and Ê(Q). So the next step
is how to calculate Imα and Imα̂.

Let S = {∞}⋃{bi | bi is the prime factor of Dr}, Q(S, 2) be the sub-
group generated by −1 and S in Q×/Q×2

. Simultaneously, let Ŝ = {∞}⋃{bi |
bi is the prime factor of 4Dr′}, Q̂(Ŝ, 2) be the subgroup generated by −1 and
Ŝ in Q×/Q×2

, where r′ is defined in Remark 4.

Theorem 5 (see [4]). (1) ∀b ∈ Q(S, 2), b ∈ Imα ⇔ C ′
b : w2 = b − Dr

b z4 has
solutions in Q.

(2) ∀b ∈ ̂Q(̂S, 2), b ∈ Imα̂ ⇔ Cb : w2 = b + 4Dr′
b z4 has solutions in Q.

Theorem 5 gives the conditions to be satisfied by the elements in Imα and
Imα̂. Because there are finitely many elements in Q(S, 2) and Q̂(Ŝ, 2), we only
need to check both elements in Q(S, 2) and Q̂(Ŝ, 2) one by one. In fact, accord-
ing to Proposition 1(3), we only need to check half of the elements in Q(S, 2)
and Q̂(Ŝ, 2). But deciding whether Cb and C ′

b have solutions in Q is a diffi-
cult problem, so instead we consider whether they have solutions on local field
Qp (p ≤ ∞). Furthermore, according to [7], we only need to consider whether
Cb and C ′

b have solutions in Qp (p | 2Dr or p = ∞). Now we give the definition
of 2-Selmer group.

Definition 2 (see [8]). (1) Define S′(φ) � {b ∈ Q(S, 2) | C ′
b(Qp) �= Φ,∀p ∈

S
⋃{∞}}, which is an abelian group, called 2-Selmer group of E(Q).
(2) Define S(φ) � {b ∈ ̂Q(̂S, 2) | Cb(Qp) �= Φ,∀p ∈ ̂S

⋃{∞}}, which is an
abelian group, called 2-Selmer group of Ê(Q).

322 Z. Pan and X. Li

From Definition 2, we know that Imα ⊆ S′(φ) and Imα̂ ⊆ S(φ), the opposite
sides are not necessarily true. In order to measure the gaps between them, we
give the following definition.

Definition 3 (see [8]). (1) Define X′(φ) � S′(φ)/Imα, called the 2-Shafarevich
group of E(Q),

(2) Define X(φ) � S(φ)/Imα̂, called the 2-Shafarevich group of Ê(Q).

To end this section, we briefly give the 2-descent method to calculate the
rank and generator of EDr : y2 = x3 − Drx:

step1 : Give EDr : y2 = x3 − Drx and its 2-isogeny dual curve E−4Dr : y2 =
x3 + 4Drx, generate Q(S, 2) and ̂Q(̂S, 2).

step2 : For d ∈ Q(S, 2), determine whether C ′
d : w2 = d − Dr

d z4 has a solution
on Q2. If there is a solution (z0, w0), then d ∈ Imα, and (d

z2
0
, dw0

z3
0

) is a
point on E(Q), and there is −Dr

d ∈ Imα at the same time.
For d ∈ ̂Q(̂S, 2), determine whether Cd : w2 = d + 4Dr′

d z4 has a solution
on Q2. If there is a solution (z0, w0), then d ∈ Imα̂, and (d

z2
0
, dw0

z3
0

) is a

point on Ê(Q), and there is 4Dr′
d ∈ ˆImα at the same time, where r′ is

defined in Remark 4.
step3 : According to |Imα| · |Imα̂| = 2rE+2, we can compute the rank of EDr,

meanwhile determine the generator from the point calculated in step 2.

4 Integer Factorization and the Mordell-Weil Group

With the above preparations, let’s consider a special case, the case in
Theorem 1 (2).

Theorem 6. Suppose rE ≥ 1, |S′(φ)| = 4, |S(φ)| = 2 or |S′(φ)| = 2, |S(φ)| =
4 ⇔ X′(φ) = X(φ) = 1 and rE = 1.

Proof. (⇒) Because rE ≥ 1, then |Imα| · |Imα̂| = 2rE+2 ≥ 8, and in view of
Imα ⊆ S′(φ), Imα̂ ⊆ S(φ), we have |Imα| · |Imα̂| ≤ |S′(φ)| · |S(φ)| = 8.

It follows that |Imα| · |Imα̂| = 8. So rE = 1, and Im(α) = S′(φ), Im(α̂) =
S(φ), X′(φ) = X(φ) = 1.

(⇐) Obviously. ��
Let’s assume that |S′(φ)| = 4, |S(φ)| = 2, and the case where |S′(φ)| = 2,

|S(φ)| = 4 is similar.
As {1,−Dr} ⊆ S′(φ), {1,Dr} ⊆ S(φ), we can assume that S′(φ) =

{1, A, −Dr
A ,−Dr}, S(φ) = {1,Dr}.

Elliptic Curve and Integer Factorization 323

Proposition 2. When rE ≥ 1, if S′(φ) = {1, A, −Dr
A ,−Dr}, S(φ) = {1,Dr},

then rE = 1. At that time, the map α and α̂ can be written as:

α : E(Q) −→ Q×/Q×2

∞ �−→ 1

T �−→ −Dr

(2k + 1)P �−→ A or
−Dr

A

(2k + 1)P + T �−→ −Dr

A
or A

2kP �−→ 1

2kP + T �−→ −Dr

α̂ : Ê(Q) −→ Q×/Q×2

∞̂ �−→ 1

T̂ �−→ Dr

kP̂ �−→ 1

kP̂ + T̂ �−→ Dr

where P and P̂ are the generators of E(Q) and Ê(Q) respectively.

Proof. This result can be obtained immediately by the property that the X-
coordinate of the even multiple point of the elliptic curve is a square number
and Proposition 1. ��

From the map α, we see that if A can only be divided by p (resp q), then
vp(x((2k + 1)P)) is an odd number (resp even number) and the corresponding
vq(x((2k+1)P)) is an even number (resp odd number). It follows that vp(x((2k+
1)P)) �= vq(x((2k + 1)P)), and then we can use x((2k + 1)P) to factor D. So we
finished the prove of Theorem 1(2).

Remark 5. The case of |S′(φ)| = 2, |S(φ)| = 4 is similar to the above. But at
this time, the points on Ê(Q) can used to factor D. Since there is a two-isogeny
map between E and Ê, it can actually be summarized to the points on E to do
the factorization.

In the end we only have one question left, and that is how to find Imα and
Imα̂. According to Theorem 6, we know that when |S′(φ)| = 4, |S(φ)| = 2 or
|S′(φ)| = 2, |S(φ)| = 4, we have Im(α) = S′(φ), Im(α̂) = S(φ). So in this case,
it suffices to give a method to compute S′(φ) and S(φ).

324 Z. Pan and X. Li

5 Compute S′(φ) and S(φ)

To prove Theorem 2, we first recall the Hensel’s Lemma.

Lemma 1 (Hensel’s Lemma, see [8]). Let R be a ring that is complete with
respect to a discrete valuation v, f(x1, · · · , xn) ∈ R[x1, · · · , xn]. Suppose there
exists a point (a1, · · · , an) ∈ Rn satisfying

v(f(a1, · · · , an)) > 2v
∂f

∂xk
(a1, · · · , an), (∃k, 1 ≤ k ≤ n). (3)

Then f(x1, · · · , xn) has a solution in Rn.

With Hensel’s lemma, let’s start the proof of Theorem 2.

Proof. For convenience, we denote f(z, w) = w2 − D
d z4 − d.

(1) Obviously.
(2) 1) When 2 � d

i) If n = 0
(⇒) Cd(Q2) �= Φ, we have 2v2(w) ≥ min{v2(d), v2(D

d) + 4v2(z)} =
min{0, 4v2(z)}.
When v2(z) > 0, v2(w) = 0, so 1 ≡ w2 ≡ d + D

d z4 ≡ d mod 8.
When v2(z) = 0, v2(w) > 0, so z4 ≡ 1 or 17 mod 32, w2 ≡
0 or 4 or 16 mod 32, so we have d + D

d ≡ 0 mod 32, or d + 17D
d ≡

0 mod 32, or d + D
d ≡ 4 mod 32, or d + 17D

d ≡ 4 mod 32, or
d+ D

d ≡ 16 mod 32, or d+17D
d ≡ 16 mod 32. Combine them together

we have d + D
d ≡ 0 mod 16 or d + D

d ≡ 4 mod 32.
When v2(z) < 0, v2(w) = 2v2(z), assume z = 2−iz′, w = 2−2iw′,
where i > 0, v2(z′) = v2(w′) = 0, then we have 2−4iw′2 =
d + D

d 2−4iz′4, Simplify to get w′2 = 24id + D
d z′4, so 1 ≡ w′2 ≡

24id + D
d z′4 ≡ D

d mod 8.
(⇐) If d ≡ 1 mod 8, consider v2(f(0, 1)) = v2(1 − d) ≥
3, v2(∂f

∂w (0, 1)) = v2(2) = 1, so v2(f(0, 1)) > 2v2(∂f
∂w (0, 1)). accord-

ing to Hensel lemma, f(z, w) has root in Q2
2, which is said that

Cd(Q2) �= Φ.
If d + D

d ≡ 0 mod 16, first we have d + D
d ≡ 0 mod 32, con-

sider v2(f(1, 0)) = v2(−d − D
d) ≥ 5, v2(∂f

∂z (1, 0)) = v2(4D
d) = 2, so

v2(f(1, 0)) > 2v2(∂f
∂z (1, 0)). Or we have d + D

d ≡ 16 mod 32, con-
sider v2(f(1, 4)) = v2(16 − d − D

d) ≥ 5, v2(∂f
∂z (1, 4)) = v2(4D

d) = 2, so
v2(f(1, 4)) > 2v2(∂f

∂z (1, 4)).
If d + D

d ≡ 4 mod 32, consider v2(f(1, 2)) = v2(4 − d − D
d) ≥

5, v2(∂f
∂z (1, 2)) = v2(4D

d) = 2, so v2(f(1, 2)) > 2v2(∂f
∂z (1, 2)).

If D
d ≡ 1 mod 8, consider v2(f(12 , 1

4)) = v2(1
16 − d − D

16d) ≥
min{v2(d), v2(1

16 (1 − D
d))} ≥ −1, v2(∂f

∂w (12 , 1
4)) = v2(12) = −1, so

v2(f(12 , 1
4)) > 2v2(∂f

∂w (12 , 1
4)).

Elliptic Curve and Integer Factorization 325

ii) If n = 1
(⇒) Cd(Q2) �= Φ, we have 2v2(w) ≥ min{v2(d), v2(D

d) + 4v2(z)} =
min{0, 1 + 4v2(z)}.
When v2(z) > 0, v2(w) = 0, so 1 ≡ w2 ≡ d + D

d z4 ≡ d mod 8.
When v2(z) = 0, v2(w) = 0, so 1 ≡ w2 ≡ d + D

d z4 ≡ d + D
d mod 8.

(⇐) If d ≡ 1 mod 8, consider v2(f(0, 1)) > 2v2(∂f
∂w (0, 1)).

If d + D
d ≡ 1 mod 8, consider v2(f(1, 1)) > 2v2(∂f

∂w (1, 1)).
iii) If n = 2

(⇒) Cd(Q2) �= Φ, we have 2v2(w) ≥ min{v2(d), v2(D
d) + 4v2(z)} =

min{0, 2 + 4v2(z)}.
When v2(z) ≥ 0, v2(w) = 0, then 1 ≡ w2 ≡ d + D

d z4 mod 8, so
d ≡ 1 mod 8 or d + D

d ≡ 1 mod 8.
When v2(z) < 0, v2(w) = 1+2v2(z), assume z = 2−iz′, w = 2−2i+1w′,
where i > 0, v2(z′) = v2(w′) = 0, then we have 2−4i+2w′2 =
d + D

d 2−4iz′4, simplify to get w′2 = 24i−2d + D
4dz′4, so 1 ≡ w′2 ≡

24i−2d + D
4dz′4 ≡ D

4d mod 4.
(⇐) If d ≡ 1 mod 8, consider v2(f(2, 1)) = v2(1 − d − 16D

d) ≥
min{v2(1 − d), v2(16D

d)} ≥ 3, v2(∂f
∂w (2, 1)) = 1.

If d + D
d ≡ 1 mod 8, consider v2(f(1, 1)) = v2(1 − d − D

d) ≥
min{v2(1 − d), v2(D

d)} ≥ 3, v2(∂f
∂w (1, 1)) = 1.

If D
4d ≡ 1 mod 4, consider v2(f(12 , 1

2)) = v2(14 − d − D
16d) ≥

min{v2(d), v2(1 − D
4d) − 2} ≥ 0, v2(∂f

∂z (12 , 1
2)) = v2(D

2d) = −1.
iv) If n = 3

(⇒) Cd(Q2) �= Φ, we have 2v2(w) ≥ min{v2(d), v2(D
d) + 4v2(z)} =

min{0, 3 + 4v2(z)}. At this time v2(z) ≥ 0, v2(w) = 0, so 1 ≡ w2 ≡
d + D

d z4 ≡ d mod 8.
(⇐) If d ≡ 1 mod 8, consider v2(f(0, 1)) = v2(1 − d) ≥
3, v2(∂f

∂w (0, 1)) = 1.
2) When 2 | d

i) If n = 1
(⇒) Cd(Q2) �= Φ, we have 2v2(w) ≥ min{v2(d), v2(D

d) + 4v2(z)} =
min{1, 4v2(z)}.
When v2(z) = 0, v2(w) = 0, so 1 ≡ w2 ≡ d + D

d z4 ≡ d + D
d mod 8.

When v2(z) < 0, v2(w) = 2v2(z), assume z = 2−iz′, w = 2−2iw′,
where i > 0, v2(z′) = v2(w′) = 0, then we have 2−4iw′2 =
d + D

d 2−4iz′4, simplify to get w′2 = 24id + D
d z′4, so 1 ≡ w′2 ≡

24id + D
d z′4 ≡ D

d mod 8.
(⇐) If d + D

d ≡ 1 mod 8, consider v2(f(1, 1)) > 2v2(∂f
∂w (1, 1)).

If D
d ≡ 1 mod 8, consider v2(f(12 , 1

4)) = v2(1
16 − d − D

16d) ≥
min{v2(d), v2(1

16 (1 − D
d))} ≥ −1, v2(∂f

∂w (12 , 1
4)) = v2(12) = −1.

ii) If n = 2
(⇒) Cd(Q2) �= Φ, we have 2v2(w) ≥ min{v2(d), v2(D

d) + 4v2(z)} =
min{1, 1 + 4v2(z)}. At this time v2(z) = 0, v2(w) > 0, so z4 ≡
1 or 17 mod 32, w2

2 ≡ 0 or 2 or 8 or 18 mod 32. Then we have

326 Z. Pan and X. Li

d
2 + D

2d ≡ 0 mod 32, or d
2 +17 D

2d ≡ 0 mod 32, or d
2 + D

2d ≡ 2 mod 32, or
d
2 +17 D

2d ≡ 2 mod 32, or d
2 + D

2d ≡ 8 mod 32, or d
2 +17 D

2d ≡ 8 mod 32,
d
2 + D

2d ≡ 18 mod 32, or d
2 +17 D

2d ≡ 18 mod 32. Combine them together
we have d

2 + D
2d ≡ 0 mod 32 or d

2 + D
2d ≡ 2 mod 16 or d

2 + D
2d ≡ 8 mod 32.

(⇐) Let f ′(z, w) = w2

2 − d
2 − D

2dz4, then f(z, w) has root in Q2
2 ⇔

f ′(z, w) has root in Q2
2.

If d
2 + D

2d ≡ 0 mod 32, consider v2(f ′(1, 0)) = v2(−d
2 − D

2d) ≥
5, v2(∂f ′

∂z (1, 0)) = v2(2D
d) = 2.

If d
2 + D

2d ≡ 2 mod 32, consider v2(f ′(1, 2)) = v2(2 − d
2 − D

2d) ≥
5, v2(∂f ′

∂z (1, 2)) = v2(2D
d) = 2.

If d
2 + D

2d ≡ 8 mod 32, consider v2(f ′(1, 4)) = v2(8 − d
2 − D

2d) ≥
5, v2(∂f ′

∂z (1, 4)) = v2(2D
d) = 2.

If d
2 + D

2d ≡ 18 mod 32, consider v2(f ′(1, 6)) = v2(18 − d
2 − D

2d) ≥
5, v2(∂f ′

∂z (1, 6)) = v2(2D
d) = 2.

iii) If n = 3
(⇒) Cd(Q2) �= Φ, we have 2v2(w) ≥ min{v2(d), v2(D

d) + 4v2(z)} =
min{1, 2 + 4v2(z)}. Then v2(z) < 0, v2(w) = 1 + 2v2(z), assume
z = 2−iz′, w = 2−2i+1w′, where i > 0, v2(z′) = v2(w′) = 0, so we get
2−4i+2w′2 = d + D

d 2−4iz′4, simplify to get w′2 = 24i−2d + D
4dz′4, that

is 1 ≡ w′2 ≡ 24i−2d + D
4dz′4 ≡ D

4d mod 8.
(⇐) If D

4d ≡ 1 mod 8, consider v2(f(12 , 1
2)) = v2(14 − d − D

16d) ≥
min{v2(d), v2(1 − D

4d) − 2} ≥ 1, v2(∂f
∂w (12 , 1

2)) = v2(1) = 0.
(3) ∀t|d, t is prime

1) When t = pi

(⇒) Cd(Qt) �= Φ, we have 2vt(w) ≥ min{vt(d), vt(D
d) + 4vt(z)} =

min{1, 4vt(z)}. Then vt(z) ≤ 0, vt(w) = 2vt(z), assume z = t−iz′,
w = t−2iw′, where i ≥ 0, vt(z′) = vt(w′) = 0, then we get t−4iw′2 =
d+ D

d t−4iz′4, simplify to get w′2 = t4id+ D
d z′4, so w′2 ≡ t4id+ D

d z′4 mod t,
that is (D/d

t) = 1.
(⇐) If (D/d

t) = 1, then ∃a, S.t.a2 ≡ D
d mod t, consider vt(f(1, a)) ≥

min{vt(a2 − D
d), vt(d)} ≥ 1, vt(∂f

∂w (1, a)) = vt(2a) = 0, so vt(f(1, a)) >

2vt(∂f
∂w (1, a)).

2) When t = qj

(⇒) Cd(Qt) �= Φ, we have 2vt(w) ≥ min{vt(d), vt(D
d) + 4vt(z)} =

min{1, 1+4vt(z)}. Then vt(z) = 0, vt(w) ≥ 1, meanwhile w2

t = d
t + D

dtz
4,

so 0 ≡ w2

t ≡ d
t + D

dtz
4 mod t ⇒ −d2

D ≡ z4 mod t, that is said (−d2/D
t)4 = 1.

(⇐) If (−d2/D
t)4 = 1, then ∃a such that a4 ≡ −d2

D mod t, consider
f ′(z, w) = w2

t − d
t − D

dtz
4, then f ′(a, t) ≡ 0− D

dt · −d2

D − d
t ≡ 0 mod t, then we

get vt(f ′(a, t)) ≥ 1, and vt(∂f ′

∂w (a, t)) = 0. So vt(f ′(a, t)) > 2vt(∂f ′

∂w (a, t)),
according to Hensel Lemma, f ′(z, w) has root in Q2

t , that is equivalence
to f(z, w) has root in Q2

t , Cd(Qt) �= Φ.

Elliptic Curve and Integer Factorization 327

3) When t = rk

(⇒) Cd(Qt) �= Φ, we have 2vt(w) ≥ min{vt(d), vt(D
d) + 4vt(z)} =

min{1, 2 + 4vt(z)}. Then vt(z) < 0, vt(w) = 1 + 2vt(z), assume z =
t−iz′, w = t−2i+1w′, where i < 0, vt(z′) = vt(w′) = 0, so we get
t−4i+2w′2 = d + D

d t−4iz′4, simplify to get w′2 = t4i−2d + D
dt2 z′4, so

w′2 ≡ t4i−2d + D
dt2 z′4 mod t, that is (D/dt2

t) = 1.
(⇐) If (D/dt2

t) = 1, then ∃a, S.t.a2 ≡ D
dt2 mod t, consider vt(f(a

t , 1
t)) ≥

min{−2 + vt(a2 − D
dt2), vt(d)} ≥ −1, vt(∂f

∂w (a
t , 1

t)) = vt(a
t) = −1, so

vt(f(a
t , 1

t)) > 2vt(∂f
∂w (a

t , 1
t)).

(4) ∀t � d, t is prime
1) When t = pi

(⇒) Cd(Qt) �= Φ, we have 2vt(w) ≥ min{vt(d), vt(D
d) + 4vt(z)} =

min{0, 1 + 4vt(z)}. Then vt(z) ≤ 0, vt(w) = 0, so we get w2 ≡
d + D

d z4 mod t ⇒ w2 ≡ d mod t ⇒ (d
t) = 1.

(⇐) If (d
t) = 1, then ∃a, S.t.a2 ≡ d mod t, consider vt(f(0, a)) =

vt(a2 − d) ≥ 1, vt(∂f
∂w (0, a)) = vt(2a) = 0.

2) When t = qj

(⇒) Cd(Qt) �= Φ, we have 2vt(w) ≥ min{vt(d), vt(D
d) + 4vt(z)} =

min{0, 2 + 4vt(z)}.
When vt(z) ≥ 0, vt(w) = 0, so w2 ≡ d + D

d z4 mod t ⇒ w2 ≡ d mod t ⇒
(d

t) = 1.
When vt(z) < 0, vt(w) = 1 + 2vt(z), assume z = t−iz′, w = t−2i+1w′,
where i < 0, vt(z′) = vt(w′) = 0, then we get t−4i+2w′2 = d + D

d t−4iz′4,
simplify to get w′2 = t4i−2d+ D

dt2 z′4, so w′2 ≡ t4i−2d+ D
dt2 z′4 mod t, that

is (D/dt2

t) = 1.
(⇐) If (d

t) = 1, then ∃a, S.t.a2 ≡ d mod t, consider vt(f(0, a)) =
vt(a2 − d) ≥ 1, vt(∂f

∂w (0, a)) = vt(2a) = 0.
If (D/dt2

t) = 1, then ∃a, S.t.a2 ≡ D
dt2 mod t, consider vt(f(a

t , 1
t)) ≥

min{−2 + vt(a2 − D
dt2), vt(d)} ≥ −1, vt(∂f

∂w (a
t , 1

t)) = vt(a
t) = −1.

3) When t = rk

(⇒) Cd(Qt) �= Φ, we have 2vt(w) ≥ min{vt(d), vt(D
d) + 4vt(z)} =

min{0, 3+4vt(z)}. Then vt(z) ≥ 0, vt(w) = 0, so w2 ≡ d+ D
d z4 mod t ⇒

w2 ≡ d mod t ⇒ (d
t) = 1.

(⇐) If (d
t) = 1, then ∃a, S.t.a2 ≡ d mod t, consider vt(f(0, a)) =

vt(a2 − d) ≥ 1, vt(∂f
∂w (0, a)) = vt(2a) = 0.

��

6 Examples

Example 1. When r = 1, p ≡ q ≡ 3 mod 16, and (p
q) = 1, the dual curve of

ED : y2 = x3 − Dx is E−4D : y2 = x3 + 4Dx, then we have rE = 1, and
vp(x((2k + 1)P)) �= vq(x((2k + 1)P)).

328 Z. Pan and X. Li

Proof. According to Corollary 1, we can get (−1)rE = w∞·w2·wp = −1·1·1 = −1,
so rE ≥ 1.

(1) For ED : y2 = x3 − Dx, S = {∞}⋃{p, q}, Q(S, 2) =< −1, p, q >
⋃{∞}.

∀d ∈ Q(S, 2), apply Theorem (2) to investigate the local solution of C ′
d :

w2 = d − D
d z4.

Because of (q
p) = (−1)

p−1
2 (−1)

q−1
2 (p

q) = −1 ⇒ Cpq(Qp) = Φ, so −1, pq /∈
S′(φ).
Because of (q

p) = (−1)
p−1
2 (−1)

q−1
2 (p

q) = −1 ⇒ C−p(Qp) = Φ, so −p, q /∈
S′(φ).
Because of p − D

p ≡ 0 mod 16 ⇒ Cp(Q2) �= Φ; (−q
p) = (−1)

p−1
2 (p

q) = 1 ⇒
Cp(Qp) �= Φ; (p

q) = 1 ⇒ Cp(Qq) �= Φ, so p,−q ∈ S′(φ).
Thus S′(φ) = {1, p,−q,−pq}.

(2) For E−4D : y2 = x3 + 4Dx, ̂S = {∞}⋃{2, p, q}, ̂Q(̂S, 2) =< −1, 2, p, q >
⋃{∞}. ∀d ∈ ̂Q(̂S, 2), apply Theorem (2) to investigate the local solution of
Cd : w2 = d + 4D

d z4.
Because of 4D > 0, so −1,−2,−p,−q,−2p,−2q,−2pq /∈ S(φ).
Because of (2p) = (−1)

p−1
2 = −1 ⇒ C2(Qp) = Φ, so 2, 2pq /∈ S(φ).

Because of p ≡ 3 mod 4, 4D
4p ≡ q ≡ 3 mod 4 ⇒ Cp(Q2) = Φ, so p, q /∈ S(φ).

Because of 2p+ D
2p ≡ 2p+2q ≡ 12 mod 16 ⇒ C2p(Q2) = Φ, so 2p, 2q /∈ S(φ).

Thus S(φ) = {1, pq}.

So from Theorem 6 we can get rE = 1. Then from Property 2 we obtain that
vp(x((2k + 1)P)) �= vq(x((2k + 1)P)). At this point, we can use the points on
ED to factor D. ��
Remark 6. This is the result of Burhanuddin and Huang [2,3].

Example 2. When the elliptic curve is E2Dr : y2 = x3 −2Drx, where r is an odd
prime integer. Its dual curve is E−8Dr : y2 = x3 + 8Drx. In this case, the points
on E2Dr can be used to decompose D as shown in the following table 1.

When p, q, r meet the conditions in the Table 1, we have rE = 1, and
vp(x((2k + 1)P)) �= vq(x((2k + 1)P)). At this point, we can use the points on
E2Dr to factor D.

Proof. The proof is similar to Example 1. We can prove it by applying
Theorem 2, Theorem 6 and Proposition 2. ��
Remark 7. This is the result of Li and Zeng [6]. At the same time, the above
method can be used to analyze any elliptic curve EDr : y2 = x3 − Drx, where r
is an arbitrary integer.

Next, we will give a specific curve to illustrate our theory.

Example 3. Suppose we want to factor D = 295927, select r = 3, then E2Dr :
y2 = x3 − 1775562x, use Magma to compute its generator as (1623, 37329). And
GCD(1623, 295927) = 541. It can just factor D at this time.

We can also get the above conclusions by checking Table 1.

Elliptic Curve and Integer Factorization 329

Table 1. r is odd prime integer

D r p,q,r

D ≡ 1 mod 8 r ≡ 1 mod 8 p ≡ 5, 7 mod 8 and (D
r
) = −1

r ≡ 3 mod 8 p ≡ 3, 7 mod 8 and (D
r
) = −1

r ≡ 7 mod 8 p ≡ 3, 5 mod 8 and (D
r
) = −1

D ≡ 3 mod 8 r ≡ 1 mod 8 p ≡ 5, 7 mod 8 and (D
r
) = −1

r ≡ 3 mod 8 p ≡ 5, 7 mod 8

r ≡ 5 mod 8 p ≡ 1 mod 8 and (r
p
) = −1

p ≡ 3 mod 8 and (r
q
) = −1

p ≡ 5 mod 8 and (r
q
) = 1

p ≡ 7 mod 8 and (r
p
) = 1

r ≡ 7 mod 8 p ≡ 1, 5 mod 8 and (r
p
) = −1

p ≡ 3, 7 mod 8 and (r
q
) = −1

D ≡ 5 mod 8 r ≡ 1 mod 8 p ≡ 3, 7 mod 8 and (D
r
) = −1

r ≡ 3 mod 8 p ≡ 1, 7 mod 8 and (r
p
) = −1

p ≡ 3, 5 mod 8 and (r
q
) = −1

r ≡ 5 mod 8 p ≡ 3, 7 mod 8

r ≡ 7 mod 8 p ≡ 1 mod 8 and (r
p
) = −1

p ≡ 3 mod 8 and (r
p
) = 1

p ≡ 5 mod 8 and (r
q
) = −1

p ≡ 7 mod 8 and (r
q
) = 1

D ≡ 7 mod 8 r ≡ 1 mod 8 p ≡ 3, 5 mod 8 and (D
r
) = −1

r ≡ 3 mod 8 p ≡ 1 mod 8 and (r
p
) = −1

p ≡ 3 mod 8 and (r
q
) = 1

p ≡ 5 mod 8 and (r
p
) = 1

p ≡ 7 mod 8 and (r
q
) = −1

r ≡ 5 mod 8 p ≡ 1 mod 8 and (r
p
) = −1

p ≡ 3 mod 8 and (r
p
) = 1

p ≡ 5 mod 8 and (r
q
) = 1

p ≡ 7 mod 8 and (r
q
) = −1

References

1. Birch, B.J., Stephens, N.M.: The parity of the rank of the mordell-weil group. Topol-
ogy 5(4), 295–299 (1966)

2. Burhanuddin, I.A., Huang, M.: Factoring integers and computing elliptic curve ratio-
nal points. Usc Computer Science (2012)

3. Burhanuddin, I.A., Huang, M.: On the equation y2 = x3−pqx. J. Numb. 2014(193),
1–5 (2014). Accessed 16 July 2014

4. Cohen, H.: Number Theory: Volume I: Tools and Diophantine Equations. Springer,
New York (2008). https://doi.org/10.1007/978-0-387-49923-9

https://doi.org/10.1007/978-0-387-49923-9

330 Z. Pan and X. Li

5. Dokchitser, T.: Notes on the Parity Conjecture. Springer, Basel (2010). https://doi.
org/10.1007/978-3-0348-0618-3_5

6. Li, X.M., Zeng, J.X.: On the elliptic curve y2 = x3 − 2rdx and factoring integers.
Sci. China 2014(04), 719–728 (2014)

7. Silverman, J.H.: The Arithmetic of Elliptic Curves. Springer, New York (2009).
https://doi.org/10.1007/978-0-387-09494-6

8. Washington, L.C.: Elliptic curves: Number Theory and Cryptography, 2nd edn.
CRC Press, Inc., Boca Raton (2008)

https://doi.org/10.1007/978-3-0348-0618-3_5
https://doi.org/10.1007/978-3-0348-0618-3_5
https://doi.org/10.1007/978-0-387-09494-6

On the Linear Complexity of Feedforward
Clock-Controlled Sequence

Yangpan Zhang(B) and Maozhi Xu

School of Mathematical Sciences, Peking University, Beijing 100871, China
zyp94@pku.edu.cn

Abstract. As a research field of stream ciphers, the pursuit of a bal-
ance of security and practicality is the focus. The conditions for security
usually have to satisfy at least high period and high linear complexity.
Because the feedforward clock-controlled structure can provide quite a
high period and utility, many sequence ciphers are constructed based
on this structure. However, the past study of its linear complexity only
works when the controlled sequence is an m-sequence. Using the theory
of matrix over the ring and block matrix in this paper, we construct a
more helpful method. It can estimate the lower bound of the linear com-
plexity of the feedforward clock-controlled sequence. Even the controlled
sequence has great linear complexity.

Keywords: Stream cipher · Clock-controlled · Linear complexity ·
Block matrix

1 Introduction

A clock-controlled structure is a structure that uses one sequence generator as
a clock to control another sequence generator (or control itself) to generate a
new sequence. The sequences generated by this structure have a large linear
complexity and are widely used in stream cipher design.

The first proposal of the clock-controlled structure dates back to 1980 when
Jennings [12] and Kjeldsen [14] proposed a similar structure, respectively. In
1984, T. Beth and F. C. Piper [1] first introduced the concept of “clock-
controlled.”

The subsequent studies [11] divided the clock-controlled structure into two
categories, i.e., feedforward and feedback clock-controlled. The basic feedforward
clock-controlled structure refers to using a regular sequence generator to con-
trol the clock of another sequence generator. For the feedback clock-controlled
structure, it uses the output of the pseudo-random sequence generator to clock-
control itself. In practice, the feedback structure makes it challenging to analyze
the security from the theory, so most of the clock-controlled sequences are of
feedforward structure.

The feedforward clock-controlled structure has a mathematically more appar-
ent structure and better theoretical analysis results for its periodic and statistical
properties [13]. However, the study of linear complexity is not as clear.
c© Springer Nature Switzerland AG 2021
Y. Yu and M. Yung (Eds.): Inscrypt 2021, LNCS 13007, pp. 331–348, 2021.
https://doi.org/10.1007/978-3-030-88323-2_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-88323-2_18&domain=pdf
https://doi.org/10.1007/978-3-030-88323-2_18

332 Y. Zhang and M. Xu

The upper bound on the linear complexity is nq [20], where the order n is the
linear complexity of the controlled sequence, and q is the period of the control
sequence. However, the conditions for the linear complexity to reach the upper
bound are pretty demanding.

By analyzing irreducible polynomials over a finite field, assuming that the
controlled sequence is an m-sequence, Li finds a sufficient condition for the linear
complexity to reach an upper bound [20]. In contrast, Golic J.D analyzes it from
a probabilistic point of view in 1988 [10]. The probability of the linear complexity
reaching the upper bound tends to 1 as n grows. When the controlled sequence
is an m-sequence of order n, the step sum M is less than 2n.

The above studies were published around 1990. However, in the last years of
the 20th century, stream cryptanalysis tools such as linear analysis [5,16], corre-
lation analysis [9,17], and algebraic attacks [6] were widely researched and devel-
oped. The discovery of these analysis tools has made the traditional sequence
cryptosystem based on LFSR design less secure. People gradually abandoned the
design approach using LFSRs as linear drivers and shifted to nonlinear design
schemes. In this way, the above-mentioned linear complexity study of clock-
controlled sequences based on m-sequences was rendered useless.

Furthermore, when the controlled sequence is nonlinear, its minimal polyno-
mials are often reducible and irregular. Even the linear complexity is unknown.
Therefore, in practical analysis, people tend to use less rigorous experimental
analysis methods. That is, analyze the actual linear complexity in the degen-
erate case with shortened register. Then the nondegenerate case is reasonably
guessed by the relationship between register length and linear complexity. Such
as the LILI-128 algorithm [7].

In this paper, we make a new method to estimate the lower bound of linear
complexity of a feedforward clock-controlled sequence. This new method can
estimate better when the clock-controlled sequence is under a nonlinear driver.
Unlike the current result, this paper does not analyze the polynomial reducibil-
ity. However, it estimates the lower bound of the matrix rank of the sequence-
generating circulant matrix after a proper transformation. Our approach method
gives a better bound on the linear complexity of the feedforward clock-controlled
sequence. Unlike the current results in the papers [10,19,20], this method does
not require the controlled sequence to be an m-sequence. It is, therefore, suitable
for feedforward clock-controlled sequences in a general sense.

The article is structured as follows. Section 2 will give the basic concepts in
the study and some mathematical tools for the study of block matrices. With the
help of these tools, we give in Sect. 3 an estimation method for the lower bound
of the linear complexity of the feedforward clock-controlled sequence. Section 4
proposes its improved algorithm LIFI-128 based on the LILI-128 algorithm and
estimates its linear complexity very well. A summary of the whole paper is given
in Sect. 5.

On the Linear Complexity of Feedforward Clock-Controlled Sequence 333

2 Pre-requisite Knowledge

2.1 Feedforward Clock-Controlled Sequence

The paper [11] is a good review of clock-controlled shift registers, after which
the definition of a basic feedforward clock-controlled sequence generator can be
given as follows.

Definition 1 (Basic clock-controlled sequence generator).

Input: a Control Sequence Generator A with period T1; a Controlled
Sequence Generator B with period T2; a step map fL : outputA →
ZT2 . where outputA represents the set of possible states of the output
of generator A at any moment.

Key: the initial states of the two sequence generators A and B.
Process: Denote the initial state moment as t = 0. For t = 1, 2, · · · , complete

the following actions step by step.
– 1 Run sequence generator A for one time, after which the current

output state of sequence generator A is recorded as at, and fL (at)
is calculated.

– 2 Run the sequence generator B for a total of fL (at) times, after
which the state bσt

of the output of B is set to the output state
ct = bσt

of the clock-controlled sequence generator at moment t.
where bi is the output state of generator B after continuous running
i times since the initial state, σt =

∑t
i=1 (fL (ai)) .

Output: clock-controlled sequence {ct}∞
t=1.

In the above definition, we call the sequence generated by A under the action
of fL a Control Sequence and the sequence generated by B under the control of
a regular clock a Controlled Sequence.

This definition can also be reduced to a binary pseudo-random sampling
sequence as follows.

Definition 2 (Binary pseudo-random sampling sequence).

Input: given a binary periodic sequence {bt} = (b0, b1, · · · ,), where bi ∈ F2;
givenapseudo-randomsamplingsubscriptsequence{σt} = (σ1, σ2, · · ·),
where σi ∈ N .

Output: a new set of binary sequences {ct} = (bσ1 , bσ2 , · · ·). Call it a pseudo-
random sampling sequence.

For the period of the clock-controlled sequence, the following result is
obtained.

Theorem 1 [2]. Denote S =
∑T1

i=1 (fL (ai)), i.e., S = σT1 . When gcd (S, T2) =
1, i.e., when the integer S is coprime with the period T2. The minimum positive
period of the clock-controlled sequence {ct}∞

t=1 is T3 = T1T2, which reaches a
maximum period.

For clock-controlled sequence algorithms, the maximum period is always pre-
ferred in practical applications. Therefore, all the sequence models for clock con-
trol that appear below in this paper are chosen to reach the maximum period.

334 Y. Zhang and M. Xu

2.2 Linear Complexity and Circulant Matrix

In recent years, the LFSR structure is no longer directly used to construct stream
cipher regimes. However, the linear complexity also measures the resistance of
a sequence to many linear-based attacks. Therefore, linear complexity is still a
very important metric in measuring stream cipher security.

An equivalent definition of linear complexity is given below after the defini-
tion of circulant matrix.

Definition 3. On a field K, a matrix of the following shape is called a n × n
r-circulant matrix. where r ∈ K.

⎛

⎜
⎜
⎜
⎜
⎜
⎝

a1 a2 a3 · · · an−1 an

ran a1 a2 · · · an−2 an−1

ran−1 ran a1 · · · an−3 an−2

...
...

...
...

...
...

ra2 ra3 ra4 · · · ran a1

⎞

⎟
⎟
⎟
⎟
⎟
⎠

n×n

(1)

For convenience, it can be generally shortened to Cirr
n (a1, a2, · · · , an). Spe-

cially, if r = 1, we call it circulant matrix.

For a purely periodic sequence A = (a1, a2, · · ·) of period n over a field K.
Denote Cir1n (a1, a2, · · · , an) by Mcir(A).

Theorem 2 [18]. A is a purely periodic sequence on a field K with period n.
Then, for Mcir (A), there is such a property. That is, the rank of Mcir (A) is
equal to the linear complexity L (A) of the sequence A over the field K.

When the sequence B = (b1, b2, · · ·), is regular sampled from the sequence
A = (a1, a2, · · ·), with a period of l. That is, for any i ≥ 1, we have bi = as+l·(i−1),
where b1 = as is called the starting sampling point. It can be denoted briefly as
B = A (s, l). If A is a sequence of period n and satisfies gcd (l, n) = 1, then the
following corollary can be obtained using Theorem 2.

Corollary 1. Assume A is a purely periodic sequence over a field K with period
n. And the sequence B = A (s, l) is a sequence of regular samples of the sequence
A. If gcd (l, n) = 1, then: (1) the period of sequence B is n; (2) L(A) = L(B).

The proof of the corollary is simple; it only requires a proper primary rows
and columns swap for Mcir (A) to become Mcir (B). Therefore, the two sequences
have the same linear complexity.

For any r-circulant matrix over a number field K, there is a very important
theorem.

Theorem 3 [4]. Let M = Cirr
n (w1, w2, · · · , wn) be an r-circulant matrix over

field K. Denote the function w (x) =
∑n−1

i=0 wi+1x
i. If the set of all roots of the

equation xn−r = 0 over field K can be written as {θξi | i = 0, 1, · · · , n−1}, where
θn = r. Then the set of all characteristic roots of the matrix M is {w(θξi) | i =
0, 1, · · · , n − 1}.

On the Linear Complexity of Feedforward Clock-Controlled Sequence 335

2.3 Block Matrix and Matrix over Ring

Let K be a field, denote the ring of all mn × mn matrices over field K by
Mmn×mn(K). Mark matrix ring R as subring of Mn×n(K). Suppose a matrix A
belongs to Mm×m(R), then A also belongs to Mmn×mn(K). Let [A]Ri,j denote the
i, jth block of A, ai,j denote the i, jth entry of A when over Mmn×mn(K). It’s
easy to see that

A =

⎛

⎜
⎜
⎜
⎝

a1,1 a1,2 · · · a1,mn

a2,1 a2,2 · · · a2,mn

...
...

. . .
...

amn,1 amn,2 · · · amn,mn

⎞

⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎝

A1,1 A1,2 · · · A1,m

A2,1 A2,2 · · · A2,m

...
...

. . .
...

Am,1 Am,2 · · · Am,m

⎞

⎟
⎟
⎟
⎠

= AR

The above sliced matrix A is called the block matrix, In particular, when we
discuss A as a element of Mm×m(R), we use AR to denote A, and the corner
marks are used only for distinction.

For a general commutative ring R, Brown W C [3] studied relevant proper-
ties about matrices over the ring R. Including the determinant detR(AR), rank
rankR(AR), modulus, diagonalization. Based on the definitions and results given
in the book, we got the following remarkable theorems.

Theorem 4. Let A ∈ Mm×m (R), where R = {∑∞
i=0 kiS

i|ki ∈ K} is a sub-
algebra of Mn×n (K). In particular, the minimal polynomial f (x) = pr (x) of
S ∈ Mn×n (K) is an power of an irreducible polynomial p(x) over the field K.
Thus,

rankR

(
AR

)
= k ⇒ rankK (A) ≥ kn, 0 ≤ k ≤ m

Clearly, when the commutative ring R satisfies the conditions in the above
theorem, R is isomorphic to the residue class ring H = K[x]/(pr(x)). This means
that the equation rankR(AR) = rankH(AH) will hold automatically under iso-
morphism.

Denote another ring of residue classes H = K[x]/(p(x)), it’s easy to see H is a
field. At the same time, there exists a subjective homomorphism mapping π from
H to H. The image of AH under the action of π is written as A ∈ Mm×m(H).
We have the following theorem.

Theorem 5.
rankH

(
AH

)
= rankH

(
A

)

These two theorems provide theoretical support for our estimate of the lower
bound on linear complexity. The proof procedure is complex and unproductive
for this paper. For logical reasons, the exact process of their proof is omitted.

336 Y. Zhang and M. Xu

3 Linear Complexity Estimation Model for Feedforward
Clock-Controlled Sequences

This section we will show you how to use the basic model of pseudo-random
sampling. And transform sequences’ circulant matrix. Finally estimate the rank
of block matrix.

Denote two period sequence {ai}∞ and {bi}∞, where ai ∈ N and bi ∈ F2.
Denote

∑k
i=1 ai by sk. By sampling {bi}∞ with index sequence {si}∞, we get

a new sequence C = {ci}∞, where ci = bsi
. We call {ci}∞ a clock-controlled

sequence generated by {ai}∞ controlling {bi}∞.
In general case, people prefer to use maximal period sequences as them have

good statistical properties. So we always assume sm is coprime with the period
n in follow discussion.

3.1 Primary Transformation of the Circulant Matrix Mcir(C)

It’s hard to direct calculate rank of Mcir(C), so we do some row operations and
column operations on Mcir(C) and denote the matrix after operations by C:

⎛
⎜⎜⎜⎜⎜⎜⎝

1 2 3 · · · mn

1 c1 c2 c3 · · · cmn

2 cmn c1 c2 cmn−1

3 cmn−1 cmn c1 cmn−2

.

.

.
.
.
.

. . .
.
.
.

mn c2 c3 c4 · · · c1

⎞
⎟⎟⎟⎟⎟⎟⎠

⇒

⎛
⎜⎜⎜⎜⎜⎜⎝

I1 I2 I3 · · · Im

I1 C1,1 C1,2 C1,3 C1,m

I2 C2,1 C2,2 C2,3 · · · C2,m

I3 C3,1 C3,2 C3,3 C3,m

.

..
.
..

. . .
.
..

Im Cm,1 Cm,2 Cm,3 · · · Cm,m

⎞
⎟⎟⎟⎟⎟⎟⎠

where the index set Ii = {i,m + i, 2m + i, · · · , (n − 1)m + i}, and the submatrix
Ci,j was construct by entries from Ii’s rows and Ij ’s columns of Mcir(C). Assume
t = (j − i + 1) mod mn, then:

Ci,j =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

j m + j 2m + j · · · (n − 1)m + j

i ct ct+m ct+2m ct+(n−1)m

m + i ct+(n−1)m ct ct+m · · · ct+(n−2)m

2m + i ct+(n−2)m ct+(n−1)m ct ct+(n−3)m

...
...

. . .
...

(n − 1)m + i ct+m ct+2m ct+3m · · · ct

⎞

⎟
⎟
⎟
⎟
⎟
⎠

It’s easy to show that Ci,j was a circulant matrix, and for two submatrices
Ci,j and Ci′,j′ , Ci,j = Ci′,j′ if and only if j − i = j′ − i′.

Consider subsequence Ct = {ct+m·i}∞, this sequence has a period of n. In
fact, Ct equals to {bst+sm·i}∞, it’s a sampling sequence of {bi}∞ with sm step
length. Further, assume v = (sm)−1 mod n and lt = v(st −s1), Ct equals to C1

start from ltth position.
Using the fact that Ci,j is a circulant matrix, Ci,j equals to Mcir(Ct). Thus,

there is a formula:
Ci,j = Mcir(Ct) = Mcir(C1) · Dlt (2)

On the Linear Complexity of Feedforward Clock-Controlled Sequence 337

D is a primitive circulant matrix with dimension n, as shown in follow:

D =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

0 1 0 0 0
0 0 1 0 · · · 0
0 0 0 1 0

...
. . .

1 0 0 0 · · · 0

⎞

⎟
⎟
⎟
⎟
⎟
⎠

.

Turn back to Ci,j , if j ≥ i, then t = j − i+1, if j < i, then t = j − i+1+mn.
So

Ci,j = Mcir(C1) · Dlt = Mcir(C1) · Dv(st−s1).

Denote Dv by T , denote Mcir(C1) · T−s1 by Ĉ. Notice that Tn = I, we
denote s−i = sm−i − sm. When j ≥ i, Ci,j = Ĉ · T sj−i+1 ; when j < i, Ci,j =
Ĉ ·T sj−i+1+smn = Ĉ ·T sj−i+1 = Ĉ ·T sm+j−i+1−sm = Ĉ ·T sm+j−i+1 ·D−1. Different
premise get same result.

Thus,

C =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

ĈT s1 ĈT s2 ĈT s3 ĈT sm

ĈT smD−1 ĈT s1 ĈT s2 · · · ĈT sm−1

ĈT sm−1D−1 ĈT smD−1 ĈT s1 ĈT sm−2

...
. . .

...
ĈT s2D−1 ĈT s3D−1 ĈT s4D−1 · · · ĈT s1

⎞

⎟
⎟
⎟
⎟
⎟
⎠

.

3.2 Decomposition of the Matrix over the Ring

In this part, some Lemmas are needed to decompose the matrix over the ring
R =< S >=

{∑∞
i=0 kiS

i
∣
∣ki ∈ K, i = 0, 1, · · · }.

Let R =< S >= {∑∞
i=0 kiS

i|ki ∈ K, i = 0, 1, · · · }, where S is an element
of Mn×n(K). It’s obvious that R is a commutative(multiplication) subalgebra of
Mn×n(K)

Denote S’s minimal polynomial over K by f(x) =
∑l

i=0 fix
i, where l ≤ n

and fi ∈ K(fl = 1). Thus,

< S >= {
l−1∑

i=0

kiS
i|ki ∈ K, i = 0, 1, · · · , l − 1}.

Given U, V ∈< S >, where U =
∑l−1

i=0 uiS
i, V =

∑l−1
i=0 viS

i. It’s obvious that
U = V if and only if ui = vi,∀i = 0, 1, · · · , l − 1.

Lemma 1. Suppose that S ∈ Mn×n(K) is a matrix over the field K, where the
minimal polynomial of S is f(x). And the unique factorization of f(x) over field
K is f (x) =

∏d
i=1 pri

i (x), pi(x) is irreducible and pi(x) �= pj(x) when i �= j.

338 Y. Zhang and M. Xu

Thus, there exists a non-singular matrix P ∈ Mn×n (K), and matrices Si for
1 ≤ i ≤ d. Where the minimal polynomial of Si is pri

i (x). Such that:

S = P−1 ·

⎛

⎜
⎜
⎜
⎝

S1

S2

. . .
Sd

⎞

⎟
⎟
⎟
⎠

· P

In the classical theory of linear algebra, this lemma can be easily proved by
analyzing the invariant subspace of the linear transformation.

Corollary 2. For any U =
∑l−1

i=0 uiS
i ∈ R =< S >, exist mapping g(U) =

P · U · P−1, from R =< S > to R =< PSP−1 >. And,

g (U) =

⎛

⎜
⎝

∑l−1
i=0 uiS

i
1

. . .
∑l−1

i=0 uiS
i
d

⎞

⎟
⎠

Extend the mapping g from Mn×n (K) to Mm×m (Mn×n (K)). Define a map-
ping G on Mm×m (Mn×n (K)). for any element T ∈ Mm×m (Mn×n (K)), T can
be written as block matrix TMn×n(K) = (Tij)m×m, where Tij ∈ Mn×n (K). The
mapping G is defined as:

G((Tij)m×m) = (g(Tij))m×m.

Obviously, G is a self-isomorphism on Mm×m (Mn×n (K)). And Mm×m (R)
is isomorphic to Mm×m

(
R

)
under the action of G, and for ∀A ∈ Mm×m (R),

rankK (A) = rankK (G (A)).
Return to Mm×m(R). According to corollary 2, suppose A ∈ Mm×m(R),

G(A) ∈ Mm×m(R). Thus, every entry of G(A) must have a diagonal shape like:

[G(A)]Ri,j =

⎛

⎜
⎜
⎜
⎝

Si,j
1

Si,j
2

. . .
Sij

d

⎞

⎟
⎟
⎟
⎠

.

Further, if

[A]Ri,j = fi,j(S) =
l−1∑

t=0

atS
t,

then

[G(A)]Ri,j = g([A]Ri,j) = P · fi,j(S) · P−1 =
l−1∑

t=0

at(PSP−1)t.

It’s trivial that Si,j
k = fi,j(Sk) for all i, j = 1, 2, · · · ,m; k = 1, 2, · · · , d.

On the Linear Complexity of Feedforward Clock-Controlled Sequence 339

Thus, by some row operations and column operations, we can transform G(A)
into a quasi-diagonal matrix over Mmn×mn(K):

Γ0 · G(A) · Γ1 =

⎛

⎜
⎜
⎜
⎝

A1

A2

. . .
Ad

⎞

⎟
⎟
⎟
⎠

.

Γ0 and Γ1 are products of some elementary matrix over Mmn×mn(K). At ∈
Mmnt×mnt

(K) was constructed by Si,j
t as follow:

At =

⎛

⎜
⎜
⎜
⎜
⎝

S1,1
t S1,2

t · · · S1,m
t

S2,1
t S2,2

t

...
...

. . .
Sm,1

t · · · Smm
t

⎞

⎟
⎟
⎟
⎟
⎠

.

So At ∈ Mm×m(< St >), and we arrive at the conclusion that:

rankK(A) = rankK(G(A)) =
d∑

t=1

rankK(At).

3.3 Linear Complexity Estimation Model

Let R =< D >∈ Mn×n, D is a primitive circulant matrix with dimension n.
Obviously, the minimal polynomials of D is f(x) = xn +1. Assume f(x) have

unique factorization f(x) =
∏d

i=1 p2
σ

i (x), where n/2σ is exactly an odd integer.
From the conclusion of Subsect. 3.1, the linear complexity of the clock-

controlled sequence L(C) = rankK(C). At the same time, C ∈ Mm×m(R).
Combining the matrix decomposition conclusions of Subsect. 3.2, we know that

rankK(C) = rankK(G(C)) =
d∑

t=1

rankK(Ct)

At the same time, Ct is very similar to C and has the following form:

Ct =

⎛

⎜
⎜
⎜
⎝

Ĉt O · · · O

O Ĉt O
...

. . .
O O · · · Ĉt

⎞

⎟
⎟
⎟
⎠

·

⎛

⎜
⎜
⎜
⎜
⎜
⎝

T s1
t T s2

t T s3
t T sm

t

T sm
t D−1

t T s1
t T s2

t · · · T
sm−1
t

T
sm−1
t D−1

t T sm
t D−1

t T s1
t T

sm−2
t

...
. . .

...
T s2

t D−1
t T s3

t D−1
t T s4

t D−1
t · · · T s1

t

⎞

⎟
⎟
⎟
⎟
⎟
⎠

where

P · D · P−1 =

⎛

⎜
⎜
⎜
⎝

D1

D2

. . .
Dd

⎞

⎟
⎟
⎟
⎠

.

340 Y. Zhang and M. Xu

and Tt = Dv
t , where v × sm ≡ 1 mod n.

Dt’s minimal polynomial is p2
σ

t (x), Dt generate a commutative subalge-
bra, denote it by Rt =< Dt >. Recall the theory of block-matrix, we know
Rt

∼= F2[x]/(p2
σ

t (x)) � Ht. Set up φt to be the isomorphism function from Rt

to Ft[x]/(p2
σ

t (x)), denote φt(Dt) by αt, denote φt(Tt) by βt. Thus, βt = αv

mod p2
σ

t (x). Furthermore, consider the projection δt from F2[x]/(p2
σ

t (x)) to field
F2[x]/(pt(x)) � Ht:

δt(h(x)) = (h(x) mod pt(x))

Let δt(αt) = αt, δt(βt) = βt.
Denoted matrix Mt ∈ Mm×m(Rt) and Mt ∈ Mm×m(Ht):

MRt
t =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

T s1
t T s2

t T s3
t T sm

t

T sm
t D−1

t T s1
t T s2

t · · · T
sm−1
t

T
sm−1
t D−1

t T sm
t D−1

t T s1
t T

sm−2
t

...
. . .

...
T s2

t D−1
t T s3

t D−1
t T s4

t D−1
t · · · T s1

t

⎞

⎟
⎟
⎟
⎟
⎟
⎠

Mt =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

βt
s1

βt
s2

βt
s3

βt
sm

βt
sm

αt
−1 βt

s1
βt

s2 · · · βt
sm−1

βt
sm−1

αt
−1 βt

sm
αt

−1 βt
s1

βt
sm−2

...
. . .

...
βt

s2
αt

−1 βt
s3

αt
−1 βt

s4
αt

−1 · · · βt
s1

⎞

⎟
⎟
⎟
⎟
⎟
⎠

Since Theorem 4,

rankK(Ct) ≥ rankK(Ĉt) × rankRt
(MRt

t).

Since Theorem 5,

rankK(Ct) ≥ rankK(Ĉt) × rankRt
(MRt

t) = rankK(Ĉt) × rankHt
(Mt).

Finally, we get a Linear complexity lower bound estimation inequality.

Theorem 6.

L(C) =
d∑

t=1

rankK(Ct) ≥
d∑

t=1

rankK(Ĉt) × rankHt
(Mt)

The last problem turns into how to estimate rankK(Ĉt) and rankHt
(Mt).

Estimate rank(Ĉt) over F2: Since C1 = {c1+m·i}∞
i=0, so Ĉ = Mcir

(
C1

) ·
T−s1 =

(∑n−1
i=0 c1+m·iDi

)
· D−s1v. Thus:

Ĉt =

(
n−1∑

i=0

c1+m·iDi
t

)

· D−s1v
t

On the Linear Complexity of Feedforward Clock-Controlled Sequence 341

That means, rankF2(Ĉt) equals to rank of matrix
∑n−1

i=0 c1+m·iDi
t.

Let the formal power series F 1 (x) =
∑∞

i=0 c1+m·ixi, be the generating func-
tion of the sequence C1, and let H (x) ∈ F2 [x], be the minimum generator
Polynomial of C1. The order of H (x) is equal to the linear complexity of C1.
There exists polynomial P (x) ∈ F2 [x] with number less than l such that the
following constant equation holds, H (x) and P (x) are coprime [8].

F 1 (x) =
P (x)
H (x)

Let F 1 (x) =
∑n−1

i=0 c1+m·ixi, then the power series of the form

F 1 (x) =
F 1 (x)
1 + xn

and H(x)|1 + xn. This is a conclusion that comes from the minimal property of
H (x).

Thus,
F 1 (x) · H (x) = P (x) · (1 + xn)

The equation no longer needs to be discussed under the formal power series sense
and goes back to the polynomial ring F2 [x].

As we know, xn + 1 =
∏d

i=1 p2
δ

i (x) and H(x)|(1 + xn). Assume H (x) =
∏d

i=1 phi
i (x), where 0 ≤ hi ≤ 2σ. Then:

F 1 (x) = P (x) ·
d∏

i=1

p2
δ−hi

i (x)

– When ht = 0, Since the characteristic(minimal) polynomial of the matrix Dt

is p2
δ

t (x), p2
δ

t (Dt) is a zero square matrix. Led to

F 1 (Dt) = P (Dt) ·
∏

i�=t

p2
δ−hi

i (Di) · p2
δ

t (Dt) = O

rank
(
Ĉt

)
= rank(F 1 (Dt)) = 0

– When ht > 0, Since H (x) is coprime to P (x), pt (x) is coprime to P (x).
Therefore, P (Dt) is still a full-rank square (because the root sets of P (x) = 0
does not include any characteristic root of Dt). Thus,

rank
(
Ĉt

)
= rank

(
F 1 (Dt)

)
= rank

(
p2

δ−ht
t (Dt)

)
≥ ht × deg (pt (x))

Combining these two cases, the following inequalities can be derived.

rank
(
Ĉ

)
=

d∑

t=1

rank
(
Ĉt

)
≥

d∑

t=1

(ht × deg (pt (x))) = deg (H (x))

342 Y. Zhang and M. Xu

Notice that both left and right of the inequality are equal to the L
(
C1

)
, so

the inequality equal sign holds constant. That is, for ∀1 ≤ t ≤ d, we have

rank
(
Ĉt

)
= ht × deg (pt (x)) .

Estimate RankHt
(Mt): It’s easy to see that Mt is an αt

−1-circulant matrix
over field Ht. Let Et(x) =

∑m−1
i=0 βt

si+1
xi ∈ Ht[x], Jt(x) = xm + αt

−1 ∈ Ht [x].
Use Theorem 3, denote The degree of the greatest common factor of Et(x) and
Jt(x) by gt, then

rankHt
(Mt) = m − gt.

In summary, we get a final inequality of rank:

rank (Mt) ≥ rank
(
Ĉt

)
· rankRt

(
Mt

Rt
)

= ht × deg (pt (x)) × (m − gt)

After accumulation:

Theorem 7.

L(C) ≥
d∑

t=1

ht × deg (pt (x)) × (m − gt)

3.4 Section Summary

This section analyzed the lower bound on the linear complexity of the basic
feedforward clock-controlled sequence.

The first step is to correspond the linear complexity to the rank of the cyclic
matrix. After that, the matrix is organized according to a particular sampling
law. In this way, the matrix becomes a matrix on a circulant matrix ring.

However, the matrix on a normal commutative ring is not easy to count
the rank. So further quasi-diagonalization is performed for each matric block at
the same time. Then the goal becomes to compute the sum of the ranks of all
matrices Mt on the diagonal.

Using Theorem 4 and Theorem 5, we can successfully estimate the rank of
the matrix Mt.

Through such a series of transformations, we decompose the problem to each
subfield. In this way, the enormous problem of overall linear complexity becomes
a collection of several minor problems. Finally, we obtained a valuable conclusion.

The following section gives a new stream cipher LIFI-128 using a nonlinear
drive module reference to the LILI-128 algorithm. This kind of stream cipher’s
complexity is impossible to be estimated by traditional results. However, our
new method can solve its linear complexity problem.

On the Linear Complexity of Feedforward Clock-Controlled Sequence 343

4 LIFI-128, and It’s Linear Complexity

4.1 Description of LIFI-128

We give an example that was set up to follow the LILI-128 algorithm. The clock-
control subsystem uses a pseudorandom binary sequence produced by a regularly
clocked LFSR, LFSRa, of length 39, and a function, fa, operating on some
contents of LFSRa to produce a pseudorandom integer sequence, A = {ai}∞,
and ai ∈ {1, 2, 3, 4}. The feedback polynomial of LFSRa is chosen to be a
primitive polynomial. Moreover, the initial state of LFSRa must not be all zero.
It follows that LFSRa produces a maximum-length sequence of period m =
239−1. Set fa to be boolean balance function every bit, so sm = 239−1(22+1)−1.

The data-generation subsystem uses the integer sequence A to control the
clocking of a binary FCSR[15], FCSRb, of length 89. The lowest content bit of
FCSRb will generate a binary sequence B = {bi}∞. The feedback integer of
FCSRb is chosen to be a safe prime integer q = 2p + 1, where p is a prime,
�log2(q)� = 89. And the initial state of FCSRb is not zero, 2 is a primitive
elements of F

∗
q . It follows that FCSRb produces a nonlinear binary sequence

with period n = 2p, linear complexity L(B) = p + 1. Specially, in this example,
we assume 2 also is a primitive elements of F∗

p, and gcd(p − 1, 39) = 1.
Notice that n = 2p is coprime with sm = 239−1(22 + 1) − 1. Define the

clock-controlled sequence C = {ci = bsi
}∞ as the keystream, thus C get a

maximum-length of period mn = (239 − 1) × (2p) ≈ 2128 (Fig. 1).

Fig. 1. The structure of LIFI-128

4.2 Linear Complexity

We are going to prove that the linear complexity of C has a lower bound (L(B)−
2)m + 2 = (p − 1)(239 − 1) + 2.

Consider the n × n circulant matrices ring R which was generated by D. It’s
easy to show that R is a commutative algebra over F2, thus, for any period n

344 Y. Zhang and M. Xu

sequence S, Mcir(S) ∈ R. As this result, the clock-matrix is a m × m matrix
over R.

It is obvious that the minimal polynomial of D equals to f(x) = xn +1. f(x)
has a decomposition over F2:

f(x) = x2p + 1 = (xp + 1)2 = (x + 1)2(
p−1∑

i=0

xi)2.

As 2 is a primitive elements of F∗
p,

∑p−1
i=0 xi is reduced in F2[x]. Assume f(x) =

p21(x)p22(x), where p1(x) = x + 1, p2(x) =
∑p−1

i=0 xi. Thus, we can find a n × n
nonsingular matrix P over F2 such that P · S · P−1 is a quasi-diagonalization on
S ∈ R.

P · S · P−1 =
(

Q1 O
O Q2

)

In above formula Q1 is the factor relates to p21(x), Q2 is factor relates to p22(x). As
degree(p1) = 1, degree(p2) = p − 1, Q1 ∈ M2×2(F2), Q2 ∈ M2(p−1)×2(p−1)(F2).

Notice that Ĉ, T,D ∈ R, we denote:

PĈP−1 =
(

Ĉ1 O

O Ĉ2

)

, PTP−1 =
(

T1 O
O T2

)

, PDP−1 =
(

D1 O
O D2

)

By theory of FCSR[15], the minimial generator Polynomial of sequence B′ =
{bsmi+1}∞

i=0 is H(x) = (x + 1)(xp + 1) = p21(x)p2(x). Thus rank(Ĉ1) = 2,
rank(Ĉ2) = p − 1.

In field F2[x]/(x + 1) = F2, α1 = β1 = 1. Then:

M1 =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

β1
s1

β1
s2

β1
s3

β1
sm

β1
sm

α1
−1 β1

s1
β1

s2 · · · β1
sm−1

β1
sm−1

α1
−1 β1

sm
α1

−1 β1
s1

β1
sm−2

...
. . .

...
β1

s2
α1

−1 β1
s3

α1
−1 β1

s4
α1

−1 · · · β1
s1

⎞

⎟
⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎝

1 1 · · · 1
1 1 · · · 1
...

...
. . .

...
1 1 · · · 1

⎞

⎟
⎟
⎟
⎠

.

It’s easy to see rank(M1) = 1.
Next, we are going to count follow matrix M2.

M2 =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

β2
s1

β2
s2

β2
s3

β2
sm

β2
sm

α2
−1 β2

s1
β2

s2 · · · β2
sm−1

β2
sm−1

α2
−1 β2

sm
α2

−1 β2
s1

β2
sm−2

...
. . .

...
β2

s2
α2

−1 β2
s3

α2
−1 β2

s4
α2

−1 · · · β2
s1

⎞

⎟
⎟
⎟
⎟
⎟
⎠

β2 = α2
v, where v × sm ≡ 1 mod n.

Notice that M2 is a m × m matrix over field F2[x]/(p2(x)), in particular, M2

is a α2
−1-circulant matrix.

On the Linear Complexity of Feedforward Clock-Controlled Sequence 345

With the help of Theorem 3, we know M2 is non-singular if and only if
w(x) =

∑m
i=1 β2

si
xi−1 doesn’t have common root with xm − α2

−1 = 0, or M2

has a zero eigenvalue.
As m is coprime with the order p of α2

−1, there is a integer k such that
(α2

k)m = α2
−1. Assume {ξi|i = 0, 1, · · · ,m−1} is all roots of equation xm −1 =

0, then roots set of xm − α2
−1 = 0 is {ξiα2

k|i = 0, 1, · · · ,m − 1}. If ξjα2
k is a

root of w(x), which means:

w(ξjα2
k) =

m∑

i=1

β2
si(ξjα2

k)i−1

=
m∑

i=1

α2
siv+(i−1)k(ξj)i−1

Define another function g(x) =
∑m

i=1 α2
siv+(i−1)kxi−1, it’s easy to see that

gcd(w(x), xm − α2
−1) �= 1 equals to gcd(g(x), xm − 1) �= 1.

The proof is by contradiction, suppose that there is 0 ≤ i′ ≤ m−1, ξ′ = ξi′
is

a common root of g(x) and xm − 1. Notice that ξ′m+1 = ξ′239 = ξ′, we calculate
the 239th power of g(ξ′). It shows:

0 =(g(ξ′))2
39

=
m∑

i=1

α2
(siv+(i−1)k)×239(ξ′239)i−1

=
m∑

i=1

(α2
239)siv+(i−1)kξ′i−1

Define function

h(α2) =
m∑

i=1

ξ′i−1(α2)(siv+(i−1)k mod p)

=
p−1∑

i=0

[
∑

sjv+(j−1)k≡i

ξ′j]α2
i

Above formula shows that if α2 is a root of h(α2) = 0, then α2
239 will also be

a root of h(α2) = 0. Now we get a set Ω = {α2
239i |i = 0, 1, · · · }, any elements

of this set would be a root of h(α2) = 0. Recall that α2’s order is p, and 2 is a
primitive element of F∗

p, so α2
239a

= α2
239b

if and only if 39a ≡ 39b mod (p−1).
Thus #|Ω| = p − 1. As degree of h(α2) less than or equal to p − 1, Ω must be
all roots set of h(α2) = 0. Thus, h(α2) = ξ∗ ∏p−1

i=0 (α2 − α2
239i

), ξ∗ is a constant.
Denote

∑
sjv+(j−1)k≡i ξ′j by εi, h(α2) =

∑p−1
i=0 εiα2

i and ξ∗ = εp−1 �= 0.
Notice Ω ⊆ F2[x]/p2(x), suppose that εi0 �= 0, then εi0/ξ∗ must be an element
in field F2[x]/p2(x), as it is represented as an element generated by Ω over field
F2[x]/p2(x). Denote this field by F2p−1 .

346 Y. Zhang and M. Xu

In the same way,

εi0/ξ∗ = [
∑

sjv+(j−1)k≡i0

ξ′j]/[
∑

sjv+(j−1)k≡p−1

ξ′j].

In fact, we can show that #{1 ≤ j ≤ m|sjv + (j − 1)k ≡ i0 mod p} ≤ 1
for any i0. Suppose there are 1 ≤ j < j′ ≤ m such that sjv + (j − 1)k ≡
sj′v+(j′ −1)k mod p. Thus, smm(sj′ −sj)v+smm(j′ −j)k ≡ 0 mod p, equals
to (sj′ − sj)m − sm(j′ − j) ≡ 0 mod p. Notice that

|(sj′ − sj)m − sm(j′ − j)| ≤|(sj′ − sj)m| + |sm(j′ − j)|
≤4(j′ − j)m + sm(j′ − j)

=(5 × 238 + 3)(j′ − j)

≤241 × 239

=280 < p.

Thus (sj′ −sj)m = sm(j′−j). Because gcd(m, sm) = gcd(239−1, 5×238−1) = 1,
we get m|(j′ − j), conflicts with 1 ≤ j′ − j ≤ m − 1 and implies #{1 ≤ j ≤
m|sjv + (j − 1)k ≡ i0 mod p} ≤ 1.

This fact shows that εi0/ξ∗ = 0, or εi0/ξ∗ = ξ′s for an integer s. As εi0/ξ∗ ∈
F2p−1 , ξ′m = 1 and gcd(m, 2p−1 − 1) = 1, those facts led to ξ′s = 1. But it’s easy
to confirm that g(ξ′) = g(1) �= 0. This result conflicts with g(ξ′) = 0. Based on
these facts, g(x) doesn’t have common root with xm − 1, M2 is non-singular,
rank(M2) = m

Thus, recall Theorem 7,

L(C) ≥
2∑

t=1

ht × deg(pt(x)) × (m − gt)

= 2 × 1 × 1 + 1 × (p − 1) × m

= m(p − 1) + 2.

C’s rank greater then (p − 1)m + 2 = (p − 1)(239 − 1) + 2, we get a linear
complexity lower bound of clock-controlled sequence {ci}∞.

4.3 Section Summary

This section modifies the LILI-128 algorithm so that its controlled sequence
becomes nonlinearly driven with extremely high linear complexity. We call the
new algorithm LIFI-128.

None of the published linear complexity analysis methods give a good result
for LIFI-128. However, our new model can solve this type of problem very well.
The practical value of the linear complexity lower bound estimation method
proposed in this paper is fully illustrated.

On the Linear Complexity of Feedforward Clock-Controlled Sequence 347

5 Conclusion

The feedforward clock control structure is a hardware-friendly and widely used
structure for designing sequence encryption algorithms. Its basic structure is that
two sequence generators connect in series. The first generator is regular output
and the second generator clock-controlled by the output of the first generator.

In this paper, we research the feedforward clock-controlled sequence structure
by new methods such as circulant matrix and matrix over the ring. Finally, the
resulting complexity estimation inequalities can widely apply to the analysis
of cryptographic properties of the clock-controlled structure. The traditional
result base on cyclotomic polynomials over finite fields is not practical when
the controlled sequence is nonlinear. The results presented in this paper can
be exactly effective for the analysis of clock-controlled cryptographic systems
whether the drive module is linear or nonlinear.

Acknowledgements. We thank the anonymous reviewers for their helpful com-
ments. This work was supported by the National Natural Science Foundation of
China(Grant No.6207211, No.61672059) and the National Key R&D Program of China
2017YFB0802000.

References

1. Beth, T., Piper, F.C.: The stop-and-go-generator. In: Beth, T., Cot, N., Ingemars-
son, I. (eds.) EUROCRYPT 1984. LNCS, vol. 209, pp. 88–92. Springer, Heidelberg
(1985). https://doi.org/10.1007/3-540-39757-4 9

2. Blakley, G., Purdy, G.B.: A necessary and sufficient condition for fundamental
periods of cascade machines to be products of the fundamental periods of their
constituent finite state machines. Inf. Sci. 24(1), 71–91 (1981)

3. Brown, W.C.: Matrices Over Commutative Rings. Marcel Dekker, Inc., New York
(1993)

4. Cline, R., Plemmons, R., Worm, G.: Generalized inverses of certain toeplitz matri-
ces. Linear Algebra Appl. 8(1), 25–33 (1974)

5. Coppersmith, D., Halevi, S., Jutla, C.: Cryptanalysis of stream ciphers with lin-
ear masking. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 515–532.
Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45708-9 33

6. Courtois, N.T., Meier, W.: Algebraic attacks on stream ciphers with linear feed-
back. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 345–359.
Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-39200-9 21

7. Dawson, E., Clark, A., Golic, J., Millan, W., Penna, L., Simpson, L.: The lili-128
keystream generator. In: Proceedings of first NESSIE Workshop. Citeseer (2000)

8. Denguo, F., Dingyi, P.: Cryptography Guide. Science Press, Beijing (1999)
9. Golić, J.D.: Correlation properties of a general binary combiner with memory. J.

Cryptol. 9(2), 111–126 (1996). https://doi.org/10.1007/BF00190805
10. Golic, J.D., Zivkovic, M.V.: On the linear complexity of nonuniformity decimated

pn-sequences. IEEE Trans. Inf. Theory 34(5), 1077–1079 (1988)
11. Gollmann, D., Chambers, W.G.: Clock-controlled shift registers: a review. IEEE

J. Sel. Areas Commun. 7(4), 525–533 (1989)

https://doi.org/10.1007/3-540-39757-4_9
https://doi.org/10.1007/3-540-45708-9_33
https://doi.org/10.1007/3-540-39200-9_21
https://doi.org/10.1007/BF00190805

348 Y. Zhang and M. Xu

12. Jennings, S.M.: A special case of binary sequences. Ph.D. thesis, University of
London (1980)

13. Kholosha, A.: Investigations in the design and analysis of key-stream generators
(2004)

14. Kjeldsen, K., Andresen, E.: Some randomness properties of cascaded sequences
(corresp.). IEEE Trans. Inf. Theory 26, 227–232 (1980)

15. Klapper, A., Goresky, M.: 2-adic shift registers. In: Anderson, R. (ed.) FSE 1993.
LNCS, vol. 809, pp. 174–178. Springer, Heidelberg (1994). https://doi.org/10.1007/
3-540-58108-1 21

16. Matsui, M.: Linear cryptanalysis method for DES cipher. In: Helleseth, T. (ed.)
EUROCRYPT 1993. LNCS, vol. 765, pp. 386–397. Springer, Heidelberg (1994).
https://doi.org/10.1007/3-540-48285-7 33

17. Meier, W., Staffelbach, O.: Correlation properties of combiners with memory in
stream ciphers (extended abstract). In: Damg̊ard, I.B. (ed.) EUROCRYPT 1990.
LNCS, vol. 473, pp. 204–213. Springer, Heidelberg (1991). https://doi.org/10.1007/
3-540-46877-3 18

18. Schaub, T.: A linear complexity approach to cyclic codes (1990)
19. Xiangang, L.: Analysis of clock-controlled sequences. In: Information Security and

Communications Privacy, vol. 2 (1991)
20. Xiangang, L., Zengfa, W., Guozhen, X.: The complexity of some pseudo-random

decimated sequences. J. China Inst. Commun. 11(2), 1–6 (1990)

https://doi.org/10.1007/3-540-58108-1_21
https://doi.org/10.1007/3-540-58108-1_21
https://doi.org/10.1007/3-540-48285-7_33
https://doi.org/10.1007/3-540-46877-3_18
https://doi.org/10.1007/3-540-46877-3_18

Symmetric Cryptography

On Characterization of Transparency
Order for (n,m)-functions

Yu Zhou1(B), Yongzhuang Wei2, Hailong Zhang3, Luyang Li4, Enes Pasalic5,
and Wenling Wu6

1 Science and Technology on Communication Security Laboratory,
Chengdu 610041, China
zhouyu.zhy@tom.com

2 Guilin University of Electronic Technology, Guilin 541004, China
3 State Key Laboratory of Information Security, Institute of Information

Engineering, Chinese Academy of Sciences, Beijing 100093, China
zhanghailong@iie.ac.cn

4 National Engineering Laboratory for Wireless Security, Xi’an University of Post
and Telecommunications, Xi’an 710061, China

5 University of Primorska, FAMNIT & IAM, Koper, Slovenia
6 TCA Laboratory, SKLCS, Institute of Software, Chinese Academy of Sciences,

Beijing 100190, China
wwl@tca.iscas.ac.cn

Abstract. The transparency order (denoted by T O) is a useful mea-
sure of the robustness of (n, m)-functions (cryptographic S-boxes as map-
pings from GF (2)n to GF (2)m) to multi-bits Differential Power Analysis
(DPA). An improved version of transparency order (denoted by RT O),
based on the use of cross-correlation coefficients, was also introduced
recently. For the first time, we resolve this open problem which (n, m)-
functions reach the upper bound on T O for odd n (m is a power of 2).
We also investigate the tightness of upper and lower bounds related to
RT O and derive its relationship to main cryptographic characterizations
of (n, m)-functions (such as nonlinearity, the sum-of-square indicator and
algebraic immunity). Finally, concerning S-boxes of size 4×4, the distri-
butions of RT O for all 302 balanced S-boxes (up to affine equivalence)
and 16 equivalence classes of optimal S-boxes are given.

Keywords: (n, m)-functions · Transparency order · Nonlinearity ·
Auto-correlation · Cross-correlation

1 Introduction

S-box is an important non-linear component of cryptographic algorithms. A
careful selection of an S-box is required for ensuring cryptographic robustness of
block (or stream) ciphers, at the same time aiming at efficient implementation.
In fact, most attacks on symmetric algorithms choose S-box as the target. For
example, in side channel attacks, the secret key (used in the implementation of
c© Springer Nature Switzerland AG 2021
Y. Yu and M. Yung (Eds.): Inscrypt 2021, LNCS 13007, pp. 351–370, 2021.
https://doi.org/10.1007/978-3-030-88323-2_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-88323-2_19&domain=pdf
https://doi.org/10.1007/978-3-030-88323-2_19

352 Y. Zhou et al.

symmetric algorithms) can be recovered by analyzing the relationship between
its leakages and the output of an S-box. For the first time, at CRYPTO 1999,
Kocher et al. proposed differential power analysis (DPA) [5]. Then, the security
of S-boxes against DPA was analyzed [1,10]. At FSE 2005, the transparency
order (T O) based on the auto-correlation coefficients of (n,m)-functions was
proposed by Prouff [10]. According to the definition of T O, (n,m)-functions
with smaller T O are more secure against DPA attacks. At INDOCRYPT 2005,
Carlet obtained a lower bound of T O for highly non-linear (n,m)-functions.
Besides, he also deduced a relationship between T O and the non-linearity for
any (n,m)-function [1]. Later, Fan et al. proposed a fast computation technique
for T O [4]. Then, Picek et al. proposed a genetic algorithm to find some Boolean
functions with better T O values [9]. Mazumdar et al. also focused on the search
of S-boxes with better T O values [7].

Recently, Chakraborty et al. proposed a revised definition of the transparency
order (denoted by RT O) based on the cross-correlation coefficients of (n,m)-
functions (thus not only auto-correlation) in [3]. Consequently, cryptographically
strong S-boxes, apart from satisfying standard cryptographic criteria such as
high algebraic degree, high nonlinearity and good differential properties, also
need to possess relatively large RT O to withstand DPA-like attacks. However,
the analysis in [3] does not provide a thorough treatment regarding the properties
of RT O, thus no tight lower and upper bounds are given and its relation to
other cryptographic criteria was not elaborated. A tight upper bound on RT O
for Boolean functions was established in [13] and it was additionally shown that
the lower bound directly depends on the nonlinearity. The latter result can be
interpreted as a negative trade-off between nonlinearity and RT O, stating that
Boolean functions (as coordinate functions of an (n,m)-function or S-box) with
high nonlinearity also have larger transparency order which is not a desirable
feature in the context of DPA attacks. This also implies that the design of S-
boxes satisfying all the cryptographic criteria including a low RT O becomes
even a more demanding task.

So far, little has been done about addressing the problems related to iden-
tification of (n,m)-functions reaching the bounds on the (revised) transparency
order and even less efforts have been made towards theoretical design of (n,m)-
functions having relatively good transparency order and at the same time satis-
fying other cryptographic criteria. In this article, we address some open problems
related to both definitions of transparency order. Firstly, whereas some instances
of (n,m)-functions reaching the upper bound for even n were given in [10], we
consider the problem of specifying (n,m)-functions achieving the upper bound
on T O (thus the worst possible case concerning DPA) which was left open in
[10] for odd n. We explicitly specify those classes of (n,m)-functions having the
maximum possible T O when m is a power of 2. Secondly, to further elaborate on
the design of robust (n,m)-functions with respect to the RT O indicator [3], we
establish some important connections between RT O and other cryptographic
properties such as the sum-of-square indicator, algebraic immunity (AI), and
nonlinearity of the coordinate functions of (n,m)-functions. In particular, it is

On Characterization of Transparency Order for (n, m)-functions 353

shown that not only the nonlinearity impacts RT O but also the sum-of-square
indicator (as expected) has a direct influence on the resistance to DPA attacks.

Furthermore, the established connection between the algebraic immunity and
transparency order essentially indicates (along with other trade-offs) that the
design of cryptographically secure (n,m)-functions is hard to achieve if the pro-
tection against DPA attacks is taken into account. In this direction, it would
be interesting to establish a similar connection between differential properties of
(n,m)-functions and RT O.

Finally, concerning the upper and lower bounds on RT O, for the first time
their tightness has been confirmed through explicit examples. Moreover, we have
also computed the transparency order for all S-boxes of size 4 × 4 (up to affine
equivalence) which gives a complete insight in their properties related to RT O.

This paper is organized as follows. In Sect. 2, some notations and definitions
related to Boolean functions are given. Besides, we recall two different notions
of transparency order. In Sect. 3, in connection to the transparency order intro-
duced by Prouff [10], we provide certain classes of (n,m)-functions reaching the
upper bound of T O. We also specify several connections between the recently
introduced RT O indicator and some main cryptographic parameters, and addi-
tionally derive a tight lower and upper bound on RT O. In Sect. 4, we provide
distributions of the transparency order for all S-boxes of size 4 × 4 (up to affine
equivalence). Finally, some concluding remarks are given in Sect. 5.

2 Preliminaries

In this section, we give some definitions of Boolean functions and the trans-
parency order, and introduce some indicators for Boolean functions.

2.1 Definition of Boolean Functions

The set of n-variable Boolean functions is denoted by Bn, where any f ∈ Bn

is simply a mapping f : Fn
2 → F2. We denote by ⊕ the addition modulo two

performed in F2 and the vector space F
n
2 . Every Boolean function f ∈ Bn admits

a unique representation called the algebraic normal form (ANF) which is a
multivariate polynomial over F2:

f(x1, . . . , xn) = a0 ⊕
⊕

1≤i≤n

aixi ⊕
⊕

1≤i<j≤n

ai,jxixj ⊕ · · · ⊕ a1,...,nx1x2 · · · xn,

where the coefficients a0, ai, ai,j , · · · , a1,...,n ∈ F2. The algebraic degree, deg(f),
is the largest length of the monomial(s) with non-zero coefficients.

Let supp(f) = {(x1, . . . , xn) ∈ F
n
2 | f(x1, . . . , xn) = 1} and wt(f) be the

Hamming weight of f , then wt(f) = |supp(f)|. Furthermore, if wt(f) = 2n−1

for any f ∈ Bn, then f is said to be balanced. We denote by An the set of affine
functions, that is, deg(f) ≤ 1 in this set.

In this paper, let 0n = {0, . . . , 0︸ ︷︷ ︸
n

} and 1n = {1, . . . , 1︸ ︷︷ ︸
n

} denote the all-zero and

all-one vectors, respectively.

354 Y. Zhou et al.

2.2 Some Indicators for Boolean Functions

Nonlinearity is an important indicator to measure the linearity of Boolean func-
tions. Boolean functions with higher nonlinearity are more resistant to linear
attacks.

Definition 1. Let f ∈ Bn. The nonlinearity of f can be computed using

Nf = 2n−1 − 1
2

max
α∈Fn

2

| F(f ⊕ ϕα) |,

where F(f ⊕ ϕα) is the Walsh spectral value of f at point α ∈ F
n
2 computed as:

F(f ⊕ ϕα) =
∑

x∈Fn
2

(−1)f(x)⊕ϕα(x),

where ϕα(x) = α · x = α1x1 ⊕ · · · ⊕ αnxn.

Based on the nonlinearity of f ∈ Bn and the well-known Parseval’s equation, we
know that f is a bent function [11] if Nf = 2n−1 − 2n/2−1 for even n.

The cross-correlation and the auto-correlation functions play an important
role in this paper. For any f, g ∈ Bn, the cross-correlation function is defined as

�f,g(α) =
∑

x∈Fn
2

(−1)f(x)⊕g(x⊕α), α ∈ F
n
2 .

If f = g in the above formula, then the auto-correlation function of f is given
by �f (α) =

∑
x∈Fn

2
(−1)f(x)⊕f(x⊕α), α ∈ F

n
2 .

In order to measure the correlation between two Boolean functions, we recall
the definition of perfectly uncorrelated functions. Two Boolean functions f, g ∈
Bn are said to be perfectly uncorrelated if �f,g(α) = 0, for any α ∈ F

n
2 . Sarkar

et al. [12] proved that F(f ⊕ ϕα)F(g ⊕ ϕα) = 0 for any α ∈ F
n
2 if and only

if f and g are perfectly uncorrelated. Later, Pasalic et al. [8] proved that f
and g are disjoint spectra functions (meaning that F(f ⊕ ϕα) = 0 implies that
F(g ⊕ ϕα) �= 0 or vice versa) if and only if f and g are perfectly uncorrelated.
In order to better prove some conclusions in this paper, we give the definition of
almost perfectly uncorrelated functions.

Definition 2. Let f, g ∈ Bn. f and g are almost perfectly uncorrelated, if
�f,g(α) = 0 for any α ∈ F

n∗
2 , where F

n
2

∗ = F
n
2 \ 0n.

Definition 2 implies that f and g are almost perfectly uncorrelated if f and
g are perfectly uncorrelated.

In order to characterize the so-called global avalanche property, Zhang et al.
[14] introduced an indicator based on the auto-correlation function of a Boolean
function.

Definition 3. Let f ∈ Bn. The global avalanche characteristics (GAC) of f is
given by:

σf =
∑

α∈Fn
2

[�f (α)]2, �f = max
α∈Fn

2 ,α�=0n
| �f (α) | .

On Characterization of Transparency Order for (n, m)-functions 355

In 2010, Zhou et al. [16] generalized Definition 3, and presented the notions of the
absolute indicator and the sum-of-squares indicator (defined below respectively)
based on the cross-correlation function for two Boolean functions f, g ∈ Bn:

�f,g = max
α∈Fn

2 ,wt(α) �=0
| �f,g(α) |, σf,g =

∑

α∈Fn
2

[�f,g(α)]2.

2.3 Definition of (n,m)-functions and the Transparency Order

In this paper, we study some properties of the transparent order properties for
(n,m)-functions, therefore we first give the definition of (n,m)-functions.

Let fi ∈ Bn(i = 1, 2, . . . ,m). If F = (f1, . . . , fm) : F
n
2 → F

m
2 , then F is

called an (n,m)-function. An (n,m)-function F is balanced if and only if its
component functions are balanced, meaning that for every nonzero v ∈ F

m
2 the

Boolean function v · F is balanced. Thus, the balanced (n, n)-functions are the
permutations on F

n
2 .

Based on the auto-correlation and cross-correlation functions and the def-
inition of (n,m)-functions, Prouff [10] introduced the concept of transparency
order.

Definition 4 [10]. Let F = (f1, . . . , fm) be an (n,m)-function. The trans-
parency order is defined by:

T O(F) = max
β∈Fm

2

{| m − 2wt(β) | − 1
22n − 2n

∑

a∈Fn∗
2

∣∣
m∑

i=1

(−1)βi�fi
(a)

∣∣}. (1)

Later, Chakraborty et al. [3] revised this definition by using cross-correlation
properties, which then reflects DPA attacks in the Hamming weight model in a
more transparent manner. In order to be consistent with (n,m)-functions in Def-
inition 4 and to address the properties of (n,m)-functions in general, we extend
the original definition of balanced (n,m)-functions to any (n,m)-functions.

Definition 5 [3]. Let F = (f1, . . . , fm) be an (n,m)-function. The transparency
order of F is defined by:

RT O(F) = max
β∈Fm

2

{m − 1
22n − 2n

∑

a∈Fn∗
2

m∑

j=1

∣∣
m∑

i=1

(−1)βi⊕βj �fi,fj
(a)

∣∣}. (2)

The above expression can be further manipulated to give

RT O(F) = max
β∈Fm

2

{m − 1
22n − 2n

∑

a∈Fn∗
2

m∑

j=1

∣∣
m∑

i=1

�fi⊕βi,fj⊕βj
(a)

∣∣}.

The following quantities, for a given β ∈ F
m
2 , will be proved useful in the sequel:

Γ β
F = m − νF,β . (3)

νF,β =
1

22n − 2n

∑

a∈Fn∗
2

m∑

j=1

|
m∑

i=1

�fi⊕βi,fj⊕βj
(a) | . (4)

356 Y. Zhou et al.

3 Cryptographic Properties of RT O

In this section, we give the existence of (n,m)-functions reaching the upper
bound m on T O, then we provide tight upper and lower bounds on RT O and
deduce some cryptographic properties of RT O.

3.1 The Existence of (n,m)-functions Reaching the Upper Bound
m on T O

For the standard definition of transparency order given by Definition 4, Prouff
[10] showed that the maximum value of T O of an (n,m)-function F equals to
m when n is even, and it can be easily achieved if every coordinate function is
a bent function. On the other hand, it was left as an open problem to specify
a class of vectorial (n,m)-functions satisfying T O(F) = m when n is odd. The
solution to this problem is given below, so that the existence of (n,m)-functions
or S-boxes (for m being a power of two), regardless the parity of n, having the
largest possible transparency order (the worst case regarding the resistance to
DPA) is now asserted.

Theorem 1. Let F = (f1, . . . , fm) be an (n,m)-function.

1) If n is even, then defining fi to be a bent function for all 1 ≤ i ≤ m implies
that T O(F) = m.

2) For n ≥ 4 and m = 2k, where n ≥ m and k ≥ 2, let g ∈ Bn−k be a bent
function (thus n − k is even). Define F = (f1, . . . , fm) through its coordinate
functions given by,

fi(x, y) = g(x) ⊕ ωi · y, x ∈ F
n−k
2 , y ∈ F

k
2 ,

where ωi ∈ F
k
2 for 1 ≤ i ≤ m = 2k and ωi �= ωj when i �= j. Then, T O(F) = m.

Proof. 1) This result is proved in [10].
2) For any ωi, γ ∈ F

k
2 and α ∈ F

n−k
2 , we compute the auto-correlation of fi as:

�fi
(α, γ) =

∑

x∈F
n−k
2 ,y∈Fk

2

(−1)fi(x,y)⊕fi(x⊕α,y⊕γ)

=
∑

x∈F
n−k
2 ,y∈Fk

2

(−1)g(x)⊕ωi·y⊕g(x⊕α)⊕ωi·(y⊕γ)

=
∑

y∈Fk
2

(−1)ωi·y⊕ωi·(y⊕γ)
∑

x∈F
n−k
2

(−1)g(x)⊕g(x⊕α)

= 2k(−1)ωi·γ
∑

x∈F
n−k
2

(−1)g(x)⊕g(x⊕α)

=
{

2n(−1)ωi·γ , α = 0n−k;
0, α �= 0n−k.

On Characterization of Transparency Order for (n, m)-functions 357

For β = (β1, . . . , βm) ∈ F
m
2 , we can express T O(F) as:

T O(F) = max
β∈Fm

2

{| m − 2wt(β) | − 1
22n − 2n

∑

a=(α,γ)∈Fn∗
2

∣∣
m∑

i=1

�fi⊕βi
(a)

∣∣}

= max
β∈Fm

2

{
∣∣m − 2wt(β) | − 2n

22n − 2n

∑

γ∈Fk∗
2

| (−1)ω1·γ⊕β1 + · · · +

(−1)ωm·γ⊕βm
∣∣}

= max
β∈Fm

2

{
∣∣m − 2wt(β) | − 2n

22n − 2n

∑

γ∈Fk∗
2

|
m∑

i=1

(−1)ωi·γ⊕βi
∣∣}. (5)

When wt(β) = m or wt(β) = 0, then

T O(F) = max
β∈Fm

2

{m − 2n

22n − 2n

∑

γ∈Fk∗
2

|
m∑

i=1

(−1)ωi·γ |}.

Noting that
∑m

i=1(−1)ωi·γ = 0, for γ ∈ F
k∗
2 , we obtain

T O(F) = max
β∈Fm

2

{m − 0} = m. �

Example 1. Let F = (f1, . . . , f4) be an (n, 4) function whose coordinate func-
tions are defined as:

f1(x, y1, y2) = g(x) ⊕ y1 ⊕ y2, f2(x, y1, y2) = g(x) ⊕ y1,

f3(x, y1, y2) = g(x) ⊕ y2, f4(x, y1, y2) = g(x),

where g is a bent (n − 2)-variable function and n is even. Then T O(F) = 4,
which can be confirmed with help of the auto-correlation coefficients of fi given
in Table 1, where γ ∈ F

n−2
2 and γ1, γ2 ∈ F2.

Then using (5) and the auto-correlation values in Table 1, it can be easily
verified that for β = (1, 1, 1, 1) or β = (0, 0, 0, 0), we have T O(F) = max

β∈F4
2

{|

4 − 2wt(β) | −0} = 4.

Table 1. Auto-correlation values of the coordinate functions of F in Example 1

α = (γ, γ1, γ2) (0n−2, 0, 0) (0n−2, 0, 1) (0n−2, 1, 0) (0n−2, 1, 1) else

�f1(α) 2n −2n −2n 2n 0

�f2(α) 2n 2n −2n −2n 0

�f3(α) 2n −2n 2n −2n 0

�f4(α) 2n 2n 2n 2n 0

358 Y. Zhou et al.

A similar analysis can be performed for odd n, defining for simplicity two
coordinate functions for (x, y) ∈ F

n−1
2 × F2:

f1(x, y) = g(x) ⊕ y, f2(x, y) = g(x),

where g(x) is a bent function so that n − 1 is even. Again, F = (f1, f2) reaches
the upper bound on T O, thus T O(F) = 2.

Example 1 of Theorem 1 illustrates the specification of (n,m)-functions achieving
the upper bound on T O.

Remark 1. There are several observations worth of noticing in connection to
Theorem 1. In the first place, none of these fi(x, y) = g(x) + ωiy is a bent
function and therefore this method differs substantially from the result in [10]. It
can be easily verified that fi and fj are disjoint spectra functions. Furthermore,
when n is odd (which necessarily implies that k is odd) the result of Theorem 1
essentially solves the open problem in [10] of finding (n,m) functions reaching
the upper bound on T O if m is a power of 2. The nonlinearity of the coordinate
functions given by 2n−1 − 1

2 × 2
n−k

2 2k = 2n−1 − 2
n+k

2 −1 is rather high which
confirms its negative impact on T O.

In the following, we perform a detailed theoretical analysis of the revised
transparency order RT O [3]. We first provide sharp and general lower and upper
bound of RT O for a class of almost perfectly uncorrelated functions and specify
the instances of S-boxes achieving these bounds. In addition, we derive some
useful connections that relate RT O to other cryptographic notions such as non-
linearity, algebraic immunity and cross-correlation coefficients. A general conclu-
sion is that attaining a low RT O indicator (thus offering a higher resistance to
side-channel cryptanalysis) induces a certain worsening of other cryptographic
criteria. Therefore, providing an optimal design of cryptographic S-boxes that
possess sufficient robustness to both standard cryptanalytic attacks as well as
to side-channel cryptanalysis appears to be a quite demanding task.

3.2 The Upper and Lower Bounds on RT O(F)

In this section, we give the upper and lower bounds on RT O by using almost
perfectly uncorrelated functions. Based on Definition 5 of the transparency order,
a lower bound on RT O was derived in [3] in terms of the Walsh spectrum of
the coordinate functions of (n,m)-functions. Before we provide a tight lower and
upper bound on RT O, employing the concept of almost perfectly uncorrelated
functions, we give some simple preparatory results.

Lemma 1. Let F = (f1, . . . , fm) be a balanced (n,m)-function, where x ∈ F
n
2 .

Then, F ⊕β = (f1 ⊕β1, . . . , fm ⊕βm) is also a balanced (n,m)-function for any
β = (β1, . . . , βm) ∈ F

m
2 .

Proof. The fact that F = (f1, . . . , fm) is a balanced vectorial Boolean function,
implies that v · F is a balanced Boolean function for any v ∈ F

n∗
2 and the result

follows. �

On Characterization of Transparency Order for (n, m)-functions 359

Lemma 2. Let F = (f1, . . . , fm) be a balanced (n,m)-function. Then, fi and fj

are almost perfectly (or perfectly) uncorrelated for any 1 ≤ i < j ≤ m if and only
if fi ⊕ βi and fj ⊕ βj are (almost) perfectly uncorrelated for any 1 ≤ i < j ≤ m,
where β = (β1, . . . , βm) ∈ F

m
2 .

Proof. For any β = (β1, . . . , βm) ∈ F
m
2 and α ∈ F

n
2 we have

�fi⊕βi,fj⊕βj
(α) =

∑

x∈Fn
2

(−1)fi(x)⊕βi⊕fj(x⊕α)⊕βj

= (−1)βi⊕βj

∑

x∈Fn
2

(−1)fi(x)⊕fj(x⊕α)

= (−1)βi⊕βj �fi,fj
(α).

Thus, fi(x) ⊕ βi and fj(x) ⊕ βj are (almost) perfectly uncorrelated if and only
if fi(x) and fj(x) are (almost) perfectly uncorrelated for any 1 ≤ i < j ≤ m,
α ∈ F

n
2 and β ∈ F

n
2 . �

Theorem 2. Let F = (f1, . . . , fm) be an (n,m)-function, F : Fn
2 → F

m
2 . If fi

and fj are almost perfectly uncorrelated functions for 1 ≤ i �= j ≤ m, then

0 ≤ RT O(F) ≤ m.

Especially, RT O(F) = m if and only if �fi
(α) = 0 for any α ∈ F

n
2

∗ and
1 ≤ i ≤ m. Also, RT O(F) = 0 if and only if | �fi

(α) |= 2n for any α ∈ F
n
2

∗

and 1 ≤ i ≤ m.

Proof. Since fi and fj are almost perfectly uncorrelated for any 1 ≤ i �= j ≤ m,
we have �fi,fj

(a) = 0 for any a ∈ F
n∗
2 . Then,

Γ β
F = m − 1

22n − 2n

∑

a∈Fn∗
2

m∑

j=1

∣∣
m∑

i=1

�fi⊕βi,fj⊕βj
(a)

∣∣

= m − 1
22n − 2n

∑

a∈Fn∗
2

m∑

j=1

∣∣�f1⊕β1,fj⊕βj
(a) + · · ·

+�fj⊕βj ,fj⊕βj
(a) + · · · + �fm⊕βm,fj⊕βj

(a)
∣∣

= m − 1
22n − 2n

∑

a∈Fn∗
2

m∑

j=1

∣∣�fj⊕βj ,fj⊕βj
(a)

∣∣

= m − 1
22n − 2n

∑

a∈Fn∗
2

m∑

j=1

∣∣�fj⊕βj
(a)

∣∣

For any fj(x) ⊕ βj , with 1 ≤ j ≤ m, we know that 0 ≤| �fj⊕βj
(a) |≤ 2n. Thus,

0 ≤ Γ β
F ≤ m, that is, 0 ≤ RT O(F) ≤ m.

In particular, we have RT O(F) = m if and only if | �fj⊕βj
(a) | = 0, for any

α ∈ F
n
2

∗ and 1 ≤ i ≤ m. Similarly, RT O(F) = 0 if and only if | �fi
(α) |= 2n,

for any α ∈ F
n
2 \ 0n and 1 ≤ i ≤ m. �

360 Y. Zhou et al.

Example 2. Let F = (f1, f2) be a (4, 2)-function whose coordinate functions
are bent and given by:

f1(x) = x1x2 ⊕ x3x4, f2(x) = x1x2 ⊕ x3x4 ⊕ 1.

We deduce that �fi
(a) = 0 and �fi,fj

(a) = 0 for any a ∈ F
n∗
2 . We have

Γ β
F = m − 1

22n − 2n

∑

a∈Fn∗
2

m∑

j=1

|
m∑

i=1

�fi⊕βi,fj⊕βj
(a) |= m − 0 = m,

so that RT O(F) = m = 2.

Example 3. Let F = (f1, . . . , f4) be an (8, 4)-function, thus F : F8
2 → F

4
2, with

its coordinate (linear) functions specified as:

f1(x) = x1 ⊕ x2, f2(x) = x3 ⊕ x4, f3(x) = x5 ⊕ x6, f4(x) = x7 ⊕ x8.

It is easily verified that | �fi
(a) |= 2n and �fi,fj

(a) = 0 for any a ∈ F
n∗
2 ,

where n = 8. Then,

Γ β
F = m − 1

22n − 2n

∑

a∈Fn∗
2

m∑

j=1

|
m∑

i=1

�fi⊕βi,fj⊕βj
(a) |= m − m2n(2n − 1)

22n − 2n
= 0,

implying that RT O(F) = 0.

Example 2 and Example 3 illustrate the specification of (n,m)-functions
achieving the upper bound on RT O in Theorem 2, respectively.

Remark 2. If we take f to be bent and let F = (f, 1 ⊕ f), we deduce that
RT O(F) = 2, thus reaching the upper bound on RT O of (n, 2)-functions when
n is even. This confirms that using bent functions corresponds to the worst case
with respect to DPA, whereas linear S-boxes offer the highest resistance to DPA.

3.3 Relating RT O to the Absolute Cross-Correlation Indicator

An upper bound on RT O can be also stated in terms of the absolute indicator
(computed at zero for particular shifts of input functions) which is then useful
for two purposes. In the first place, employing the fact that for certain classes of
Boolean functions the values of this indicator are known, one can easily specify
certain S-boxes reaching the upper bound. Moreover, a similar reasoning allows
us to also specify S-boxes (of certain size) whose transparency order is provably
smaller than the upper bound.

Lemma 3 [16]. For two Boolean functions f, g ∈ Bn, the following holds:
∑

α∈Fn
2

�f,g(α) = (2n − 2wt(f))(2n − 2wt(g)).

On Characterization of Transparency Order for (n, m)-functions 361

Using Lemma 3, for (n,m)-functions, one can deduce an upper bound on
RT O(F) that depends on �fi⊕βi,fj⊕βj

(0n).

Theorem 3. Let F = (f1, . . . , fm) be an (n,m)-function and wt(fi) = 2n−1(1 ≤
i ≤ m). Then

RT O(F) ≤ m − 1
22n − 2n

∣∣
m∑

j=1

m∑

i=1

[�fi⊕βi,fj⊕βj
(0n)]

∣∣,

where β = (β1, . . . , βm) ∈ F
m
2 .

Proof. Using the inequality
m∑

i=1

| ai |≥|
m∑

i=1

ai | for any ai ∈ R, we have

νF,β =
1

22n − 2n

∑

a∈Fn∗
2

m∑

j=1

∣∣
m∑

i=1

�fi⊕βi,fj⊕βj
(a)

∣∣

≥ 1
22n − 2n

∑

a∈Fn∗
2

∣∣
m∑

j=1

m∑

i=1

�fi⊕βi,fj⊕βj
(a)

∣∣

≥ 1
22n − 2n

∣∣
∑

a∈Fn∗
2

m∑

j=1

m∑

i=1

�fi⊕βi,fj⊕βj
(a)

∣∣

=
1

22n − 2n

∣∣
m∑

j=1

m∑

i=1

∑

a∈Fn∗
2

[�fi⊕βi,fj⊕βj
(a)]

∣∣

=
1

22n − 2n

∣∣
m∑

j=1

m∑

i=1

[
∑

a∈Fn
2

[�fi⊕βi,fj⊕βj
(a)] − �fi⊕βi,fj⊕βj

(0n)]
∣∣.

Since fi is a balanced function for 1 ≤ i ≤ m, by Lemma 3, we have

νF,β ≥ 1
22n − 2n

∣∣
m∑

j=1

m∑

i=1

[[2n − 2wt(fi ⊕ βi)][2n − 2wt(fj ⊕ βj)] −

�fi⊕βi,fj⊕βj
(0n)]

∣∣

=
1

22n − 2n

∣∣
m∑

j=1

m∑

i=1

[−�fi⊕βi,fj⊕βj
(0n)]

∣∣

=
1

22n − 2n

∣∣
m∑

j=1

m∑

i=1

[�fi⊕βi,fj⊕βj
(0n)]

∣∣,

which proves the result. �
If fi and fj are perfectly uncorrelated functions for 1 ≤ i �= j ≤ m, then

�fi⊕βi,fj⊕βj
(a) = 0 for any 1 ≤ i �= j ≤ m. From the proof of Theorem 3, we

have

νF,β ≥ 1
22n − 2n

∣∣
m∑

j=1

m∑

i=1

[�fi⊕βi,fj⊕βj
(0n)]

∣∣

362 Y. Zhou et al.

=
1

22n − 2n

∣∣
m∑

i=1

[�fi⊕βi,fi⊕βi
(0n)] |

=
m × 2n

22n − 2n

=
m

2n − 1
.

Corollary 1. Let F = (f1, . . . , fm) be an (n,m)-function and wt(fi) =
2n−1(1 ≤ i ≤ m). If the coordinate functions fi and fj are perfectly uncorrelated
for 1 ≤ i �= j ≤ m, then

RT O(F) ≤ m − m

2n − 1
.

The following example illustrate the possibility of specifying (n,m)-functions
whose transparency order RT O is smaller than the upper bound.

Example 4. Let F = (f1, f2) be an (n, 2)-function, and define fi as:

f1(x, y1, y2) = g(x) ⊕ y1 ⊕ y2, f2(x, y1, y2) = g(x) ⊕ y1,

where n is even, x ∈ F
n−2
2 , y1, y2 ∈ F2, g ∈ Bn−2 is a bent function. Then,

T O(F) = 2 − 6
2n−1 . The distribution of auto-correlation coefficients of fi are

given in Table 2.

Table 2. Distribution of auto-correlation and cross-correlation functions of F (x, y1, y2)

α = (γ, γ1, γ2) (0n−2, 0, 0) (0n−2, 0, 1) (0n−2, 1, 0) (0n−2, 1, 1) else

�f1(α) 2n −2n −2n 2n 0

�f2(α) 2n 2n −2n −2n 0

�f1,f2(α) 0 0 0 0 0

Using Table 2, we obtain

Γ β
F = 2 − 1

22n − 2n

∑

a∈Fn∗
2

2∑

j=1

∣∣
2∑

i=1

�fi⊕βi,fj⊕βj
(a)

∣∣

= 2 − 1
22n − 2n

∑

a∈Fn∗
2

2∑

j=1

∣∣�f1⊕β1,fj⊕βj
(a) + �f2⊕β2,fj⊕βj

(a)
∣∣

= 2 − 1
22n − 2n

∑

a∈Fn∗
2

[
∣∣�f1⊕β1,f1⊕β1(a) + �f2⊕β2,f1⊕β1(a)

∣∣

+
∣∣�f1⊕β1,f2⊕β2(a) + �f2⊕β2,f2⊕β2(a)

∣∣]

= 2 − 1
22n − 2n

∑

a∈Fn∗
2

[∣∣�f1⊕β1,f1⊕β1(a)
∣∣ +

∣∣�f2⊕β2,f2⊕β2(a)
∣∣]

On Characterization of Transparency Order for (n, m)-functions 363

= 2 − 1
22n − 2n

∑

a∈Fn∗
2

[
∣∣(−1)β1⊕β1�f1,f1(a) | +

∣∣(−1)β2⊕β2�f2,f2(a)
∣∣]

= 2 − 6 × 2n

22n − 2n

= 2 − 6
2n − 1

.

Thus, RT O(F) = 2 − 6
2n−1 < 2 − 2

2n−1 , where the right-hand side value is the
bound in Theorem 3.

On the other hand, again using bent functions in the background, the derived
disjoint spectra Boolean functions easily give rise to S-boxes reaching the upper
bound of Corollary 1 (see Example 5).

Example 5. Let n be an odd and F = (f1, f2) be an (n, 2)-function with fi

given by x ∈ F
n−1
2 , y ∈ F2. If F (x, y) is expressed as:

f1(x, y) = g(x) ⊕ y, f2(x, y) = g(x), (x, y) ∈ F
n−1
2 × F2,

where g ∈ Bn−1 is a bent function. Then, based on the fact that f1 and f2 are
disjoint spectra functions (see e.g. [8]), it can be easily verified that RT O(F) =
2 − 2

2n−1 .

3.4 The Relationships Between RT O and Other Cryptographic
Properties

To design robust S-boxes for cryptographic applications (referring mainly to their
use in block ciphers), not only the transparency order should be moderately low
but also the considered S-box should satisfy other cryptographic criteria such as
good differential properties, low sum-of-square indicator, high nonlinearity, and
high algebraic immunity and degree. Thus, the relationships between RT O and
other cryptographic criteria is quite important. In the first place, the bounds on
RT O that depend on these quantities might give us a useful insight whether
it is possible at all to design cryptographically robust S-boxes unifying all the
relevant criteria.

The following result describes the relationship between RT O and the sum-
of-square indicator.

Theorem 4. Let F = (f1, . . . , fm) be a balanced (n,m)-function. If fi and fj

are not almost perfectly uncorrelated for 1 ≤ i �= j ≤ m, then

RT O(F) ≥ m − 1
2n

√
m

2n − 1

m∑

j=1

[
m∑

i=1

√
σfi

σfj

]1/2

.

Proof. By using the Cauchy’s inequality, for β = (β1, · · · , βm) ∈ F
m
2 we have

∑

a∈Fn∗
2

∣∣
m∑

i=1

�fi⊕βi,fj⊕βj
(a)

∣∣ ≤ [(2n − 1)
∑

a∈Fn∗
2

(
m∑

i=1

�fi⊕βi,fj⊕βj
(a))2]1/2

364 Y. Zhou et al.

= [(2n − 1)
∑

a∈Fn
2

[(
m∑

i=1

�fi⊕βi,fj⊕βj
(a))2

− (
m∑

i=1

�fi⊕βi,fj⊕βj
(0n))2]]1/2

= [(2n − 1)
∑

a∈Fn
2

(
m∑

i=1

�fi⊕βi,fj⊕βj
(a))2]1/2.

Furthermore, we know

∑

a∈Fn
2

(
m∑

i=1

�fi⊕βi,fj⊕βj
(a))2 ≤ m

∑

a∈Fn
2

m∑

i=1

[�fi⊕βi,fj⊕βj
(a)]2.

Thus,

∑

a∈Fn∗
2

m∑

j=1

∣∣
m∑

i=1

�fi⊕βi,fj⊕βj
(a)

∣∣ ≤
m∑

j=1

[m(2n − 1)
∑

a∈Fn
2

m∑

i=1

[�fi⊕βi,fj⊕βj
(a)]2]1/2

=
m∑

j=1

[m(2n − 1)
m∑

i=1

∑

a∈Fn
2

[�fi⊕βi,fj⊕βj
(a)]2]1/2

=
m∑

j=1

[m(2n − 1)
m∑

i=1

σfi⊕βi,fj⊕βj
]1/2

≤
m∑

j=1

[m(2n − 1)
m∑

i=1

√
σfi⊕βi

σfj⊕βj
]1/2

=
m∑

j=1

[m(2n − 1)
m∑

i=1

√
σfi

σfj
]1/2,

which gives a lower bound on RT O(F). �

Theorem 4 gives the relationship between RT O(F) and σfi
(1 ≤ i ≤ m),

implying that the smaller the σfi
the larger is RT O(F). Using the fact that for

any f ∈ Bn, we have σf ≤ 2n[Lf]2 [15], where Lfi
= max

α∈Fn
2

| F(fi ⊕ ϕα) |, one

can easily deduce the following result.

Corollary 2. Let F = (f1, . . . , fm) be a balanced (n,m)-function. If fi and fj

are not almost perfectly uncorrelated for 1 ≤ i �= j ≤ m, then

RT O(F) ≥ m −
√

m

2n(2n − 1)

m∑

j=1

[
m∑

i=1

Lfi
Lfj

]1/2

.

On Characterization of Transparency Order for (n, m)-functions 365

Remark 3. Using Theorem 4 and Corollary 2, one may also derive the rela-
tionship between RT O(F) and the nonlinearity of the coordinate functions
Nfi

; alternatively between RT O(F) and the algebraic immunity AI(fi), where
1 ≤ i ≤ m.

1) The relationship between RT O(F) and Nfi
(1 ≤ i ≤ m).

RT O(F) ≥ m −
√

m

2n(2n − 1)

m∑

j=1

[
m∑

i=1

(2n − 2Nfi
)(2n − 2Nfj

)

]1/2

.

2) The relationship between RT O(F) and AI(fi)(1 ≤ i ≤ m).

RT O(F) ≥ m −
√

m

2n(2n − 1)

m∑
j=1

⎧⎪⎨
⎪⎩

m∑
i=1

⎡
⎣2

n − 4

AI(fi)−2∑
k=0

(
n − 1

k

)⎤
⎦

⎡
⎢⎣2

n − 4

AI(fj)−2∑
l=0

(
n − 1

l

)⎤
⎥⎦

⎫⎪⎬
⎪⎭

1/2

,

which easily follows from the bound Nf ≥ 2
AI(f)−2∑

i=0

(
n−1

i

)
for f ∈ Bn, see [2, pp.

331].
In other words, the negative impact on RT O is again confirmed, thus the

larger the Nfi
(or AI(fi)), the larger is the RT O(F).

Finally, one can also deduce a lower bound on RT O which uses other cross-
correlation properties of the coordinate functions.

Theorem 5. Let F = (f1, . . . , fm) be a balanced (n,m)-function. If fi and fj

are not almost perfectly uncorrelated for 1 ≤ i �= j ≤ m, then

RT O(F) ≥ m − 1
2n

m∑

j=1

m∑

i=1

(2n − Num�fi,fj
)(2n − NumFfi,fj

),

where Num�fi,fj
=| {u ∈ F

n
2 : �fi,fj

(u) = 0} |, NumFfi,fj
=

∣∣{u ∈ F
n
2 :

F(fi ⊕ ϕu)F(fj ⊕ ϕu) = 0}
∣∣.

Proof. From [12], we know

max
a∈Fn

2

�f,g(a) ≤ (2n − Num�f,g
)(2n − NumFf,g

).

Thus,

∑

a∈Fn∗
2

|
m∑

i=1

�fi⊕βi,fj⊕βj
(a) | ≤

∑

a∈Fn∗
2

m∑

i=1

| �fi⊕βi,fj⊕βj
(a) |

≤ (2n − 1)
m∑

i=1

max
a∈Fn

2

| �fi⊕βi,fj⊕βj
(a) |

≤ (2n − 1)
m∑

i=1

(2n − Num�fi,fj
)(2n − NumFfi,fj

)

366 Y. Zhou et al.

= (2n − 1)
m∑

i=1

(2n − Num�fi,fj
)(2n − NumFfi,fj

).

�

Remark 4. In terms of the above results it is uncertain whether a design of
cryptographic S-boxes satisfying all the relevant criteria (including the resistance
to DPA attacks) is actually possible after all. The problem of giving a theoretical
evidence regarding the existence of S-boxes with overall good properties remains
open however. More specifically, the question is whether the induced trade-offs
are acceptable from the security margins viewpoint or not.

4 RT O of S-Boxes of Size 4 × 4

For efficient hardware implementation, small sized bijective S-boxes (as confusion
primitives in block ciphers that use substitution permutation framework) are
commonly preferable in practical applications. The number of bijective mappings
F : F4

2 → F
4
2, up to affine equivalence (when a cryptographic property remains

invariant under affine transformations; affine equivalent S-boxes share the same
cryptographic properties), was determined. In [3], it was pointed out that RT O
is affine invariant for F ◦A, where A ∈ An is an affine permutation, and RT O is
not affine invariant for B ◦ F under some affine permutation B ∈ An. The exact
number of equivalence classes of 4 × 4 S-boxes is 302 among which only 10 S-
boxes have nonlinearity 4, degree 3 and absolute auto-correlation value 8, which
are the optimal values of these parameters for this particular size of the ambient
space. For this reason the authors in [3] only provided the RT O values for these
10 equivalence classes of S-boxes. On the other hand, in [6], all optimal 4-bit
S-boxes were classified and up to affine equivalence there are only 16 different
classes (here “optimal” means that 16 classes S-boxes satisfy: 1) the linearity is 8;
2) the difference is 8; 3) the algebraic degree is 3), where the term optimal refers
to those S-boxes that achieve the best differential property and nonlinearity.

4.1 RT O of 302 Affine Equivalent Representative (4, 4) S-Box

We here compute the transparency order of all 302 (representative) S-boxes
of size 4 × 4 and give a somewhat better insight in the behaviour of this
parameter, especially with respect to randomly selected S-boxes. Our simula-
tions show (see also [17]) that the transparency order is confined within the
range 0 ≤ RT O(F) ≤ 2.767, having a single (affine) S-box, say F , for which
RT O(F) = 0. We summarize the distribution of transparency order values for
(4, 4) S-boxes in Table 3, omitting the case of affine S-boxes.

On Characterization of Transparency Order for (n, m)-functions 367

Table 3. Distribution of RT O for 302 (4, 4) S-boxes [17]

RT O Number Per(%) RT O Number Per(%)

0.467 1 0.331 2.133 6 1.656

0.800 1 0.331 2.167 2 0.662

1.067 1 0.331 2.200 2 0.662

1.133 1 0.331 2.233 1 0.331

1.267 1 0.331 2.267 6 1.656

1.333 3 0.993 2.300 5 1.656

1.400 1 0.331 2.333 22 7.285

1.533 1 0.331 2.367 15 4.967

1.600 1 0.331 2.400 22 7.285

1.733 2 0.662 2.433 21 6.954

1.800 4 1.325 2.467 30 9.934

1.833 1 0.331 2.500 31 10.265

1.867 5 1.656 2.533 30 9.934

1.900 1 0.331 2.567 26 8.609

1.933 8 2.649 2.600 20 6.623

1.967 3 0.993 2.633 9 2.980

2.000 2 0.662 2.667 7 2.318

2.033 1 0.331 2.700 1 0.331

2.067 3 0.993 2.733 1 0.331

2.100 2 0.662 2.767 1 0.331

Remark 5. The number of affine equivalence classes whose transparency order
lies in the range RT O(4,4) = [2.333, 2.600] equals to 217 = 22 + 15 + 22 + 21 +
30+31+30+26+20, which corresponds to about 71.85% of their total number.
This simply means that for a randomly selected (4, 4) S-box, the probability that
its transparency order is in the range RT O(4,4) is approximately 71.85%, which
is quite high.

4.2 RT O of A ◦ Gi for 16 Optimal S-Box Gi

From [6], we know that there are 16 different class (denoted by G0, G1, · · · , G15)
in all optimal 4-bit S-boxes up to affine equivalence. Since RT O(S ◦ A) =
RT O(S) for any (n, n) S-box S and any affine permutation A ∈ An [3],
thus, we only analyse the distribution of RT O(A ◦ Gi)(i = 0, 1, · · · , 15).
The number of affine permutation A ∈ A4 is 20160, thus we calculate 20160
RT O(A ◦ Gi) for every Gi(i = 0, 1, · · · , 15). Because the calculation method
for the distribution of RT O(A ◦ Gi) is similar for any Gi(i = 0, 1, · · · , 15),
due to page limits, here we give the distribution of RT O(A ◦ G15), where
G15 = {0, 1, 2, 13, 4, 7, 15, 6, 8, 14, 12, 11, 9, 3, 10, 5} [6], see Table 4.

368 Y. Zhou et al.

Table 4. Distribution of RT O for A ◦ G15 S-boxes

Case RT O Number Per(%)

1 2.133 24 0.119

2 2.167 72 0.357

3 2.200 144 0.714

4 2.233 312 1.55

5 2.267 144 0.714

6 2.300 432 2.143

7 2.333 600 2.976

8 2.367 1248 6.19

9 2.400 1848 9.167

10 2.433 2040 10.119

11 2.467 3000 14.881

12 2.500 2616 12.976

13 2.533 2904 14.404

14 2.567 1872 9.286

15 2.600 1296 6.429

16 2.633 672 3.333

17 2.667 360 1.786

18 2.700 288 1.429

19 2.733 144 0.714

20 2.767 48 0.238

21 2.800 24 0.119

22 2.867 48 0.238

23 2.900 24 0.119

– – 20160 100

Remark 6. From Table 4, we can find that there are 23 different value for
RT O(A ◦ G15). The range of RT O(A ◦ G15) is [2.133, 2.900], but RT O(G15) =
2.500. This shows that some affine permutation A makes RT O(A ◦ Gi) >
RT O(Gi), certain A make RT O(A ◦ Gi) < RT O(Gi), and it can happen that
RT O(A ◦ Gi) = RT O(Gi) for i = 0, 1, · · · , 15. This further implies that RT O
is not an invariant with respect to an affine permutation. This fact is consistent
with the results in [6].

On Characterization of Transparency Order for (n, m)-functions 369

5 Conclusions

This article further addresses some relevant results related to T O and RT O.
We answer the open problem regarding the existence of (n,m)-functions that
reach the upper bound on T O for odd n, and give tight upper and lower bounds
RT O. Then, we derive its relationship to main cryptographic characterizations
of (n,m)-functions (such as nonlinearity, the sum-of-square indicator and alge-
braic immunity). Finally, the distributions of RT O for 302 4-bit S-boxes and
RT O of A ◦ Gi for 16 optimal S-box Gi are given as theoretical verification.
These results improve the theoretical results for RT O of S-boxes, and lay a the-
oretical foundation for how to construct S-boxes with smaller RT O in the next
step.

Acknowledgments. Yu Zhou is supported in part by the Sichuan Science and Tech-
nology Program (2020JDJQ0076). Yongzhuang Wei is supported by the National Natu-
ral Science Foundation of China (61872103), the Guangxi Science and Technology Foun-
dation (Guike AB18281019) and the Guangxi Natural Science Foundation (2019GXNS-
FGA245004). Hailong Zhang is supported by the National Natural Science Foundation
of China (61872040). Enes Pasalic is supported in part by the Slovenian Research
Agency (research program P1-0404 and research projects J1-9108, J1-1694, N1-0159,
J1-2451). Luyang Li is supported by the Natural Science Foundation of Shaanxi Provin-
cial Department of Education (20JK0911).

References

1. Carlet, C.: On highly nonlinear S-boxes and their inability to thwart DPA attacks.
In: Maitra, S., Veni Madhavan, C.E., Venkatesan, R. (eds.) INDOCRYPT 2005.
LNCS, vol. 3797, pp. 49–62. Springer, Heidelberg (2005). https://doi.org/10.1007/
11596219 5

2. Carlet, C.: Boolean Functions for Cryptography and Coding Theory. Cambridge
University Press, New York (2020)

3. Chakraborty, K., Sarkar, S., Maitra, S., Mazumdar, B., Mukhopadhyay, D., Prouff,
E.: Redefining the transparency order. Designs Codes Cryptogr. 82(1–2), 95–115
(2017)

4. Fan, L., Zhou, Y., Feng, D.: A fast implementation of computing the transparency
order of S-Boxes. In: The 9th International Conference of Young Computer Scien-
tists, 2008, ICYCS 2008, pp. 206–211. IEEE (2008)

5. Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999).
https://doi.org/10.1007/3-540-48405-1 25

6. Leander, G., Poschmann, A.: On the classification of 4 bit S-boxes. In: International
Workshop on Arithmetic of Finite Fields (WAIFI 2007), pp. 159–176 (2007)

7. Mazumdar, B., Nyjgioadgtat, D., Sengupta, I.: Constrained search for a class of
good bijective S-boxes with improved DPA resistivity. IEEE Trans. Inf. Forensics
Secur. 8(12), 2154–2163 (2013)

8. Pasalic, E., Maitra, S., Johansson, T., Sarkar, P.: New constructions of resilient
and correlation immune boolean functions achieving upper bound on nonlinearity.
Electron. Notes Disc. Math. 6, 158–167 (2001)

https://doi.org/10.1007/11596219_5
https://doi.org/10.1007/11596219_5
https://doi.org/10.1007/3-540-48405-1_25

370 Y. Zhou et al.

9. Picek, S., Batina, L., Jakobovic, D.: Evolving DPA-resistant boolean functions. In:
Bartz-Beielstein, T., Branke, J., Filipič, B., Smith, J. (eds.) PPSN 2014. LNCS,
vol. 8672, pp. 812–821. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
10762-2 80

10. Prouff, E.: DPA attacks and S-boxes. In: Fast Software Encryption: 12th Interna-
tional Workshop, FSE 2005, Paris, France, 21–23 February 2005, Revised Selected
Papers, pp. 424–441 (2005)

11. Rothaus, O.S.: On bent functions. J. Comb. Theory A 20, 300–305 (1976)
12. Sarkar, P., Maitra, S.: Cross-correlation analysis of cryptographically useful

boolean functions and S-boxes. Theory Comput. Syst. 35(1), 39–57 (2002)
13. Wang, Q., Stǎnicǎ, P.: Transparency order for Boolean functions: analysis and

construction. Designs Codes Cryptogr. 87, 2043–2059 (2019)
14. Zhang, X., Zheng, Y.: GAC - the criterion for global avalance characteristics of

cryptographic functions. J. Univ. Comput. Sci. 1(5), 320–337 (1995)
15. Zheng, Y., Zhang, X.: On plateaued functions. IEEE Trans. Inf. Theory 47(3),

1215–1223 (2001)
16. Zhou, Y., Xie, M., Xiao, G.: On the global avalanche characteristics between two

Boolean functions and the higher order nonlinearity. Inf. Sci. 180(2), 256–265
(2010)

17. Zhou, Y., Wei, Y., Zhang, H., Zhang, W.: On the modified transparency order of
(n, m)-functions. Secur. Commun. Netw., Article ID 6640099, p. 14 (2021). https://
doi.org/10.1155/2021/6640099

https://doi.org/10.1007/978-3-319-10762-2_80
https://doi.org/10.1007/978-3-319-10762-2_80
https://doi.org/10.1155/2021/6640099
https://doi.org/10.1155/2021/6640099

Binary Sequences Derived from Monomial
Permutation Polynomials over GF(2p)

Qun-Xiong Zheng1,2, Yupeng Jiang3(B), Dongdai Lin2, and Wen-Feng Qi1

1 PLA Strategic Support Force Information Engineering University,
Zhengzhou 450001, China

wenfeng.qi@263.net
2 State Key Laboratory of Information Security, Institute of Information

Engineering, Chinese Academy of Sciences, Beijing 100093, China
ddlin@iie.ac.cn

3 School of Cyber Science and Technology, Beihang University, Beijing 100191, China
jiangyupeng@amss.ac.cn

Abstract. In this paper, we propose a class of binary sequences induced
by monomial permutation polynomials over GF(2p) and study the period
property and the shift-equivalence of these binary sequences. In particu-
larly, we give a necessary and sufficient condition for such a sequence to
have maximal period. Moreover, we also give a necessary and sufficient
condition for two such sequences to be shift equivalent.

Keywords: Mersenne prime · Permutation polynomial ·
Pseudorandom sequence · Periodicity · Shift equivalence

1 Introduction

Pseudo-random number generators (PRNGs) are widely used in cryptogra-
phy, communication, statistical sampling, Monte Carlo simulation, etc. Differ-
ent applications have different requirements for PRNGs. For the application of
stream ciphers, it is usually required that a PRNG should have a sufficiently large
period, as well as a “good” nonlinear structure in order to effectively resist corre-
lation attacks and algebraic attacks. Nonlinear feedback shift registers (NFSRs)
are a most popular PRNGs for stream cipher design. However, some critical prop-
erties of NFSRs, such as the period properties, are still hard to be analyzed. In
this paper, we propose a new PRNG based on permutation polynomials of finite
fields. Our main idea is first to generate sequences with controllable periods by
a suitable permutation polynomial over finite fields, and then to prove that the

This work was supported by NSF of China (Nos. 61872383). The work of Qun-
Xiong Zheng was also supported by Young Elite Scientists Sponsorship Program by
CAST (2016QNRC001) and by National Postdoctoral Program for Innovative Tal-
ents (BX201600188) and by China Postdoctoral Science Foundation funded project
(2017M611035).

c© Springer Nature Switzerland AG 2021
Y. Yu and M. Yung (Eds.): Inscrypt 2021, LNCS 13007, pp. 371–383, 2021.
https://doi.org/10.1007/978-3-030-88323-2_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-88323-2_20&domain=pdf
https://doi.org/10.1007/978-3-030-88323-2_20

372 Q.-X. Zheng et al.

induced coordinate sequences also have sufficiently large periods. The nonlinear
iterative approach naturally imply that the induced coordinate sequences are
nonlinear. More importantly, since there are many choices of bases for a finite
field, a variety of coordinate sequences can be derived.

Let GF(2n) be a finite field with 2n elements. A polynomial f ∈ GF(2n)[x] is
called a permutation polynomial of GF(2n) if the associated mapping x �→ f(x)
from GF(2n) into GF(2n) is a permutation of GF(2n). It is well-known that the
monomial polynomial xe is a permutation polynomial of GF(2n) if and only if
gcd(e, 2n − 1) = 1. Permutation polynomials have wide applications in many
areas of mathematics and engineering such as coding theory, cryptography and
combinatorial designs. We refer the reader to [1, Ch.7], [2, Ch.8], [3] and the
references therein for a detailed exposition of permutation polynomials. We also
refer the reader to [4–6] for some constructions of permutation polynomials.
For some recent advances such as complete permutation polynomials over finite
fields, [7–9] are recommended.

Let f be a permutation polynomial of GF(2n). Given an initial value a ∈
GF(2n), one can obtain a sequence a = (a, f(a), f2(a), . . .) over GF(2n), where
f t(a) = f(f t−1(a)) for any integer t ≥ 1 and f0(a) = a. For convenience, we
say that a is a sequence induced by f with a being the initial value. If there
exists a positive integer T such that fT (a) = a, then a is called a periodic
sequence. The minimum of such T is called the period of a and is denoted by
per(a). Because of the fact that the associated mapping x �→ f(x) from GF(2n)
into GF(2n) is a bijection of GF(2n), any sequence induced by f is periodic.

Let {α0, α1, . . . , αn−1} be a basis of GF(2n) over GF(2). Each element a ∈
GF(2n) can be uniquely represented as

a = [a]0 · α0 + [a]1 · α1 + · · · + [a]n−1 · αn−1 with [a]i ∈ GF(2) for 0 ≤ i ≤ n − 1,

where [a]i is called the i-th coordinate of a w.r.t. {α0, α1, . . . , αn−1}. Let

a = (a, f(a), f2(a), . . .)

be a sequence over GF(2n). If each f t(a), t ≥ 0, is uniquely represented as

f t(a) = [f t(a)]0 · α0 + [f t(a)]1 · α1 + · · · + [f t(a)]n−1 · αn−1,

where [f t(a)]i ∈ GF(2) for 0 ≤ i ≤ n − 1, then one can simultaneously obtain n
binary sequences [a]0, [a]1, . . . , [a]n−1, where

[a]i = ([a]i, [f(a)]i, [f2(a)]i, . . .) for 0 ≤ i ≤ n − 1.

For convenience, [a]i is called the i-th coordinate sequence of a w.r.t.
{α0, α1, . . . , αn−1}. The idea of using permutation polynomials to derive coor-
dinate sequences can be traced back to Niederreiter [10], where pseudorandom
vectors are generated by the inversive method. The method of using coordinate
vectors to describe pseudorandom numbers is driven by paralleized simulation
methods. For details of applications in paralleized simulation methods, Anderson

Binary Sequences Derived from Monomial Permutation Polynomials 373

[11], Bhavsar and Isaac [12], and Eddy [13] are recommended. It is worth notic-
ing that the period of each coordinate sequence strictly divides the period of the
original sequence. Then a natural problem has arisen—that is, if a is a sequence
induced by a nonlinear permutation polynomial f with period large enough,
do all of its coordinate sequences have period large enough? In particular, all
have the same period as a. If so, these coordinate sequences may be of poten-
tial interest to many applications, such as the design of stream ciphers, since it
is a challenging work to design nonlinear sequences with controllable periods.
However, the above problem is of independent interest in theory, regardless of
its potential applications.

In this paper, we focus ourself on the monomial permutation polynomials
over GF(2n). Let f = xe be a monomial permutation polynomial over GF(2n)
and let a = (a, f(a), f2(a), . . .) be a sequence over GF(2n) induced by f . It is easy
to see that the maximum possible period for a is 2n −2. If per (a) = 2n −2, then
a is called an MLM-sequence (maximal length monomial sequence). Firstly, it is
shown that a is an MLM-sequence if and only if 2n−1 is a Mersenne prime and e
is a primitive root modulo 2n−1. Secondly, the periods of coordinate sequences of
an MLM-sequence a are studied. Let [a]0, [a]1, . . . , [a]n−1 be n binary coordinate
sequences of a w.r.t. a given basis {α0, α1, . . . , αn−1} of GF(2n) over GF(2). It is
shown that per ([a]i) = 2n − 2 if and only if βi �= 1; and per ([a]i) = (2n − 2) /n
if and only if βi = 1, where 1 ≤ i ≤ n and {β0, β1, . . . , βn−1} is the dual basis of
{α0, α1, . . . , αn−1}. In particular, per ([a]0) = per ([a]1) = · · · = per ([a]n−1) =
2n−2 if {α0, α1, . . . , αn−1} is chosen to be a normal basis of GF(2n) over GF(2).
Finally, the shift-equivalence of [a]0, [a]1, . . . , [a]n−1 is further studied. For 0 ≤
i < j ≤ n−1, it is shown that [a]i = Ls[a]j for some positive integer s if and only
if βj = β2k

i and es ≡ 2k mod 2n − 1 for some 0 ≤ k ≤ n − 1, where Ls[a]j is the
s-shift of [a]j . Particularly, if {α0, α1, . . . , αn−1} is chosen to be a normal basis of
GF(2n) over GF(2), then there always exists a positive integer sj = uj(2n−2)/n
with 1 ≤ uj ≤ n − 1 such that [a]0 = Lsj [a]j . Moreover, s1, ss, . . . , sn−1 run
exactly through the set {(2n − 2)/n, 2(2n − 2)/n, . . . , (n − 1)(2n − 2)/n}.

The rest of this paper is organized as follows. In Sect. 2, we first recall the
definition of dual bases and their basic properties, and then we give a necessary
and sufficient condition for MLM-sequences. In Sect. 3, we study the periodicity
and the shift-equivalence of coordinate sequences derived from MLM-sequences.
Finally, we conclude this paper in Sect. 4.

2 Preliminaries

2.1 Dual Bases

Let n > 1 and let {α0, α1, . . . , αn−1} and {β0, β1, . . . , βn−1} be two bases of
GF(2n) over GF(2). Then {α0, α1, . . . , αn−1} and {β0, β1, . . . , βn−1} are said to
be dual bases if for 0 ≤ i, j ≤ n − 1 we have

Tr(αiβj) =
{

0 if i �= j,
1 if i = j,

374 Q.-X. Zheng et al.

where Tr(y) = y + y2 + · · · + y2n−1
is the trace function from GF(2n) to

GF(2). It is known that given a basis {α0, α1, . . . , αn−1} of GF(2n) over GF(2),
its dual basis {β0, β1, . . . , βn−1} always exists and is uniquely determined by
{α0, α1, . . . , αn−1}. Moreover, for 0 ≤ i ≤ n − 1, it is easy to check that

[y]i = Tr(βiy) for all y ∈ GF(2n), (1)

where [y]i is the i-th coordinate of y w.r.t. {α0, α1, . . . , αn−1}. For more details
of dual bases, we refer to [1].

2.2 Maximal Length Monomial Sequences

Let n be an integer greater than 1 and e a positive integer coprime with 2n −
1. Let f = xe be a monomial permutation polynomial over GF(2n) and a =
(a, f(a), f2(a), . . .) a sequence over GF(2n) induced by f . It is clear that a is
an all-zero sequence with per (a) = 1 if a = 0; and a is an all-one sequence
with per (a) = 1 if a = 1; and a is a periodic sequence with per (a) ≤ 2n − 2 if
a ∈ GF(2n)\{0, 1}.

Definition 1 (MLM-sequences). Let f = xe be a monomial permutation poly-
nomial over GF(2n), where e is a positive integer coprime with 2n − 1. Let a =
(a, f(a), f2(a), . . .) be a sequence over GF(2n) induced by f . If per (a) = 2n − 2,
then a is called a maximal length monomial sequence (called MLM-sequence in
short).

Remark 1. If a /∈ {0, 1}, then f t(a) = aet /∈ {0, 1} for any integer t ≥ 0. There-
fore, a, f(a), f2(a), . . . f2n−3(a) run exactly through the set GF(2n)\{0, 1} if a
is an MLM-sequence over GF(2n).

We recall that a prime number of the form 2n−1 is called a Mersenne prime.
It is necessary that n is prime if 2n − 1 is a Mersenne prime. We also recall
that a positive integer e coprime to 2n − 1 is called a primitive root modulo
2n − 1, if the multiplicative order of e modulo 2n − 1 (the smallest positive
integer k with ek ≡ 1 mod 2n −1) is equal to ϕ(2n −1), where ϕ(·) is the Euler’s
totient function. There are totally ϕ(ϕ(2n − 1)) primitive roots modulo 2n − 1
for 1 < e < 2n − 1.

Next we will give a necessary and sufficient condition for MLM-sequences.

Theorem 1. Let f = xe be a monomial permutation polynomial over GF(2n),
where e is a positive integer coprime with 2n − 1. Let a ∈ GF(2n)\{0, 1}. Then
a = (a, f(a), f2(a), . . .) is an MLM-sequence over GF(2n) if and only if 2n − 1
is a Mersenne prime and e is a primitive root modulo 2n − 1.

Proof. (⇐) We note that f t(a) = aet for any integer t ≥ 0. If there exists an
integer 1 ≤ t ≤ 2n − 3 such that f t(a) = a, then aet = a, and so

aet−1 = 1. (2)

Binary Sequences Derived from Monomial Permutation Polynomials 375

Since 2n − 1 is a Mersenne prime, every element belongs to GF(2n)\{0, 1} is a
primitive element of GF(2n). It naturally follows that a is a primitive element of
GF(2n). Now (2) implies that et ≡ 1 mod 2n − 1, which is a contradiction since
by assumption e is a primitive root modulo 2n − 1. Therefore,

f t(a) �= a for 1 ≤ t ≤ 2n − 3,

and so per (a) ≥ 2n − 2. On the other hand, it is obvious that per (a) ≤ 2n − 2.
Altogether, we have shown that per (a) = 2n − 2, or equivalently, that a is an
MLM-sequence over GF(2n).

(⇒) We recall that the nonzero elements of GF(2n) form a cyclic group of
order 2n−1 under multiplication. Let ord(a) denote the order of a. Then ord(a) |
2n − 1. On the other hand, it follows from Remark 1 that a, ae, ae2 , . . . , ae2

n−3

run exactly through the set GF(2n)\{0, 1}. This implies that ord(a) > 2n − 2.
Now, together with ord(a) | 2n − 1, we get ord(a) = 2n − 1. Since

ae2
n−2

= f2n−2(a) = a but aet = f t(a) �= a for 1 ≤ t ≤ 2n − 3, (3)

by applying ord(a) = 2n − 1 to (3) we obtain

e2
n−2 ≡ 1 mod 2n − 1 but et �= 1 mod 2n − 1 for 1 ≤ t ≤ 2n − 3,

and hence the multiplicative order of e modulo 2n − 1 is equal to 2n − 2. This
happens only if 2n − 1 is a Mersenne prime and e is a primitive root modulo
2n − 1.

3 Properties of Coordinate Sequences Derived from
MLM-sequences

Throughout this section, we always assume that 2p − 1 is a Mersenne prime (p
is, of course, a prime number) and e is a primitive root modulo 2p − 1.

We will study two properties of coordinate sequences derived from MLM-
sequences. Before proceeding, we first give two concrete examples.

Example 1. It can be verified that 25−1 is a Mersenne prime and 11 is a primitive
root modulo 25 − 1. Let GF(25) = GF(2)[x]/(x5 + x3 + 1), where x5 + x3 + 1
is an irreducible polynomial of degree 5 over GF(2). Let α ∈ GF(25) be a root
of x5 + x3 + 1. Then {1, α, α2, α3, α4} is a polynomial basis of GF(25) over
GF(2). Set f = x11 and a = α. By Theorem 1, a = (a, f(a), f2(a), . . .) is an
MLM-sequence over GF(25) with per (a) = 30. In fact, it can be checked that

a = (α, α3 + α2 + α + 1, α2 + 1, α3 + α, α4 + α3 + α2 + 1, α4 + α, α4,

α4 + α2 + 1, α4 + α3 + α + 1, α3 + α2 + α, α3 + 1, α4 + α3 + α2,

α3 + α2, α4 + α2 + α + 1, α + 1, α4 + α2, α4 + α3 + α2 + α + 1, α3, (4)
α2, α2 + α + 1, α4 + 1, α4 + α2 + α, α4 + α3 + 1, α4 + α3 + α2 + α,

α4 + α3 + α, α3 + α + 1, α3 + α2 + 1, α2 + α, α4 + α + 1, α4 + α3, . . .),

376 Q.-X. Zheng et al.

and so the 5 coordinate sequences of a w.r.t. {1, α, α2, α3, α4} are as follows:

[a]0 = (0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, . . .),

[a]1 = (1, 1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0, . . .),

[a]2 = (0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, . . .),

[a]3 = (0, 1, 0, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1, . . .),

[a]4 = (0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, . . .).

It can be seen that

per ([a]0) = 6,per ([a]1) = per ([a]2) = per ([a]3) = per ([a]4) = 30.

Consequently, among the 5 coordinate sequences, only 4 of them attain the
maximum period. It also can be seen that

[a]1 = L18[a]2 and [a]3 = L12[a]4,

where Lkz denotes the k-shift of z (i.e., Lkz = (z(t + k))t≥0 if z = (z(t))t≥0).
This implies that [a]1 and [a]2 (or [a]3 and [a]4) are shift equivalent. However, it
can be checked that [a]1 (or [a]2) and [a]3 (or [a]4) are shift distinct.

Example 2. Let GF(25) and α be as in Example 1. Let β = α3 + 1. Then

β2 = α4+α+1, β4 = α4+α3+α2+α+1, β8 = α4+α3+α2+1, β16 = α4+α3+1,

and so {β, β2, β4, β8, β16} is a normal basis of GF(25) over GF(2). Let a be as
in (4). Then the 5 coordinate sequences of a w.r.t. {β, β2, β4, β8, β16} are as
follows:

[a]0 = (0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 1, . . .),

[a]1 = (0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, . . .),

[a]2 = (1, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 1, . . .),

[a]3 = (1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, . . .),

[a]4 = (0, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, . . .).

It can be seen that

per ([a]0) = per ([a]1) = per ([a]2) = per ([a]3) = per ([a]4) = 30.

Moreover, any two of [a]0, [a]1, [a]2, [a]3, [a]4 are shift equivalent. In fact, we have

[a]0 = L18[a]1 = L6[a]2 = L24[a]3 = L12[a]4.

Examples 1 and 2 above have shown that the properties of coordinate
sequences are closely related to the choice of a basis. In the rest of this section,
we will discuss more details. In Subsect. 3.1, we will completely determine the
periods of coordinate sequences of MLM-sequences. In particular, a necessary
and sufficient condition is given for coordinate sequences whose periods attain
the maximum. In Subsect. 3.2, we will give a necessary and sufficient condition
for coordinate sequences of MLM-sequences who are shift equivalent.

Binary Sequences Derived from Monomial Permutation Polynomials 377

3.1 Period Properties of the Coordinate Sequences

Lemma 1. Let f = xe ∈ GF(2p)[x], where e is a primitive root modulo 2p − 1.
Let a = (a, f(a), f2(a), . . .) be an MLM-sequence over GF(2p), and let [a]i, 0 ≤
i ≤ p − 1, be the i-th coordinate sequence of [a] w.r.t. {α0, α1, . . . , αp−1}, where
{α0, α1, . . . , αp−1} is a basis of GF(2p) over GF(2). Suppose {β0, β1, . . . , βp−1}
is the dual basis of {α0, α1, . . . , αp−1}. Then per ([a]i) | T if and only if

Tr
(
βi

(
yeT + y

))
= 0 for all y ∈ GF(2p), (5)

where T is a positive integer.

Proof. It is clear that per ([a]i) | T if and only if
[
f t+T (a)

]
i
=

[
f t(a)

]
i

for any integer t ≥ 0,

that is, if and only if
[(

aet
)eT

]
i

=
[
aet

]
i

for any integer t ≥ 0. (6)

Since a, ae, ae2 , . . . , ae2
p−3

run exactly through the set GF(2p)\{0, 1} by Remark
1, the equality (6) is equivalent to

[
yeT

]
i
= [y]i for all y ∈ GF(2p)\{0, 1}.

Observe that
[
yeT

]
i

= [y]i naturally holds for y ∈ {0, 1}, and so (6) is also
equivalent to [

yeT
]
i
= [y]i for all y ∈ GF(2p),

or equivalently, [
yeT + y

]
i
= 0 for all y ∈ GF(2p). (7)

Combining (6) and (7), we get that per ([a]i) | T if and only if
[
yeT + y

]
i
= 0 for all y ∈ GF(2p).

Now (1) already gives the desired result.

Remark 2. Lemma 1 implies that if per ([a]i) = T , then T is the least positive
integer for which the equality (5) holds.

Lemma 2. Let 0 �= β ∈ GF(2p) and 1 ≤ d ≤ 2p − 1. Then Tr
(
β

(
yd + y

))
= 0

for all y ∈ GF(2p) if and only if either d = 1 or β = 1 and d = 2k for some
1 ≤ k ≤ p − 1.

378 Q.-X. Zheng et al.

Proof. (⇐) The result is obvious since Tr (β (y + y)) = 0 and Tr
(
y2k + y

)
=

Tr
(
y2k

)
+ Tr (y) = 0.

(⇒) Let us view y as a variable over GF(2p). Let g(y) be the (unique) remain-
der of Tr

(
β

(
yd + y

))
modulo y2p + y. It is clear that g(y) is a zero polynomial

by assumption. We claim that

d = 2k for some 0 ≤ k ≤ p − 1. (8)

Otherwise, d = 2k1 + · · · + 2kw for some 2 ≤ w ≤ p − 1. For convenience, we say
that yd has weight w. Note that the remainder of Tr

(
βyd

)
modulo y2p + y is a

polynomial consisting of p terms, each of which has weight w, while the remainder
of Tr (βy) modulo y2p +y is a polynomial consisting of p terms, each of which has
weight 1. Thus the remainder of Tr

(
β

(
yd + y

))
= Tr

(
βyd

)
+ Tr (βy) modulo

y2p + y is a nonzero polynomial, a contradiction. Therefore, we have proven the
claim. If d �= 1, then d = 2k for some 1 ≤ k ≤ p − 1. Now

0 = Tr
(
β

(
yd + y

))
= Tr

(
β

(
y2k + y

))
= Tr

((
β2p−k

+ β
)

y
)

implies that β2p−k

+ β = 0 since Tr (·) maps GF(2p) onto GF(2), and so β ∈
GF(2p−k). Since by assumption 0 �= β ∈ GF(2p), we have

0 �= β ∈ GF(2p) ∩ GF(2p−k) = GF(2),

and hence β = 1. This completes the proof.

With the above two lemmas, we can now completely determine the periods
of coordinate sequences of MLM-sequences. In particular, we can give a neces-
sary and sufficient condition for coordinate sequences whose periods attain the
maximum.

Theorem 2. Let f = xe ∈ GF(2p)[x], where e is a primitive root modulo 2p−1.
Let a = (a, f(a), f2(a), . . .) be an MLM-sequence over GF(2p), and let [a]i, 0 ≤
i ≤ p − 1, be the i-th coordinate sequence of [a] w.r.t. {α0, α1, . . . , αp−1}, where
{α0, α1, . . . , αp−1} is a basis of GF(2p) over GF(2). Suppose {β0, β1, . . . , βp−1}
is the dual basis of {α0, α1, . . . , αp−1}. Then:
(i) per ([a]i) = 2p − 2 if and only if βi �= 1; and
(ii) per ([a]i) = (2p − 2) /p if and only if βi = 1.

Proof. We note that y2p = y for all y ∈ GF(2p), and so for a given integer T we
have yeT = yd for all y ∈ GF(2p), where eT ≡ d mod 2p − 1 with 1 ≤ d ≤ 2p − 2.
Then by applying Lemmas 1 and 2, we get per ([a]i) | T if and only if

eT ≡ 1 mod 2p − 1 or βi = 1 and eT ≡ 2k mod 2p − 1 (9)

for some 1 ≤ k ≤ p − 1. We also note that

e(2
p−2)/p ≡ 2k mod 2p − 1 for some 1 ≤ k ≤ p − 1. (10)

Binary Sequences Derived from Monomial Permutation Polynomials 379

This is because e2
p−2 ≡ 1 mod 2p − 1 and {2, 22, . . . , 2p−1} is exactly the set of

primitive p-th roots of unity (i.e. the roots of xp = 1 except for 1) over GF(2p−1),
the prime field with 2p − 1 elements.

(i) To prove the necessity of (i), suppose, on the contrary, that βi = 1. If we
set T = (2p − 2) /p, then (10) implies that the latter condition of (9) is
satisfied, and so per ([a]i) | (2p − 2) /p, a contradiction. Therefore, we have
βi �= 1. Conversely, set T = per ([a]i). It is clear that T | 2p − 2. Since by
assumption βi �= 1, the latter condition of (9) is not satisfied, and so we get
eT ≡ 1 mod 2p − 1. Then the desired result follows from the fact that e is
a primitive root modulo 2p − 1.

(ii) The necessity of (ii) is an immediate consequence of (i). If βi = 1, we set
T = (2p − 2) /p. Then it has been shown in proving the necessity part of
(i) that per ([a]i) | (2p − 2) /p. The equality per ([a]i) = (2p − 2) /p holds
simplely because es �= 2k mod 2p − 1 for any 1 ≤ k ≤ p − 1 if 1 ≤ s <
(2p − 2) /p.

Remark 3. Theorem 2 has shown that the coordinate sequences of MLM-
sequences have desirable period properties. In detail, since {β0, β1, . . . , βp−1}
is a basis of GF(2p) over GF(2), there are at least p − 1 elements among
β0, β1, . . . , βp−1 who are not equal to 1. It follows immediately that, among
[a]0, [a]1, . . . , [a]p−1, there are at least p − 1 coordinate sequences whose periods
attain the maximum 2p − 2. Although the period of the remaining one may not
attain the maximum, it still not less than (2p − 2) /p.

In the rest of this subsection, we will give two further results for two special
types of bases. The first one is for polynomial bases, and the second one is for
normal bases.

Corollary 1. Let f and a be as in Theorem 2. Let [a]i, 0 ≤ i ≤ p−1, be the i-th
coordinate sequence of [a] w.r.t. {1, α, α2, . . . , αp−1}, where {1, α, α2, . . . , αp−1}
is a polynomial basis of GF(2p) over GF(2). Then per ([a]i) = 2p −2 for 1 ≤ i ≤
p − 1; and

per ([a]0) =
{

(2p − 2) /p if Tr(αj) = 0 for 1 ≤ j ≤ p − 1,
2p − 2 otherwise.

Proof. Let {β0, β1, . . . , βp−1} be the dual basis of {1, α, α2, . . . , αp−1}. It is clear
that βi �= 1 for 1 ≤ i ≤ p−1, since otherwise there is an integer j ∈ {1, 2, . . . , p−
1} such that βj = 1, and then Tr (βj · 1) = Tr (1) = 1 �= 0, a contradiction to the
fact that {β0, β1, . . . , βp−1} is the dual basis of {1, α, α2, . . . , αp−1}. Therefore,
the first result immediately follows from Theorem 2. To prove the second result,
it suffices to show that

β0 = 1 if and only if Tr(αj) = 0 for 1 ≤ j ≤ p − 1. (11)

The necessity of (11) is obvious from the definition of the dual basis.

380 Q.-X. Zheng et al.

Next we will prove the sufficiency part of (11). Since by the definition of the
dual basis, we have

Tr(αjβ0) =
{

1 for j = 0,
0 for 1 ≤ j ≤ p − 1.

Combining it with the condition that Tr(αj) = 0 for 1 ≤ j ≤ p − 1, we get

Tr(αj (β0 − 1)) = 0 for 0 ≤ j ≤ p − 1.

Note that {1, α, α2, . . . , αp−1} is a basis of GF(2p) over GF(2), and so we obtain
the desired result that β0 = 1. This completes the proof.

Corollary 2. Let f and a be as in Theorem 2. Let [a]i, 0 ≤ i ≤ p − 1, be the
i-th coordinate sequence of [a] w.r.t. {α, α2, . . . , α2p−1}, where {α, α2, . . . , α2p−1}
is a normal basis of GF(2p) over GF(2). Then

per ([a]i) = 2p − 2 for 0 ≤ i ≤ p − 1.

Proof. Let {β0, β1, . . . , βp−1} be the dual basis of {α, α2, . . . , α2p−1}. By Theo-
rem 2, it suffices to show that βi �= 1 for 0 ≤ i ≤ p − 1. This result follows from
the fact that {β0, β1, . . . , βp−1} is also a normal basis of GF(2p) over GF(2) (see,
for example, [14]) and that any element of a normal basis is not equal to 1.

3.2 Shift-Equivalence of the Coordinate Sequences

We recall that two periodic sequences a and b are called shift equivalent if a = Lsb
for some nonnegative integer s, where Lsb is the s-shift of b. Otherwise, a and b
are called shift distinct.

Lemma 3. With the notation of Theorem 2, let 0 ≤ i < j ≤ p − 1. Then
[a]i = Ls[a]j for some positive integer s if and only if Tr

(
βiy + βjy

es
)

= 0 for
all y ∈ GF(2p).

Proof. Firstly, we show that [a]i = Ls[a]j if and only if

Tr (βiy) = Tr
(
βjy

es
)

for all y ∈ GF(2p)\{0, 1}. (12)

We note that a = (a, f(a), f2(a), . . .), where f t(a) = aet for any integer t ≥ 0,
and so by (1) we have

[f t(a)]i = Tr
(
βia

et
)

and [f t+s(a)]j = Tr
(

βj

(
aet

)es
)

for any integer t ≥ 0.

Therefore, [a]i = Ls[a]j if and only if

Tr
(
βia

et
)

= Tr
(

βj

(
aet

)es
)

for any integer t ≥ 0,

Binary Sequences Derived from Monomial Permutation Polynomials 381

if and only if

Tr (βiy) = Tr
(
βjy

es
)

for all y ∈ GF(2p)\{0, 1}.

The last equality follows from the fact that a, ae, ae2 , . . . , ae2
p−3

run exactly
through the set GF(2p)\{0, 1} and ae2

p−2
= a.

For y = 0, the equality holds obviously. Since the trace functions are bal-
anced, the equality must hold for y = 1 too. This completes the proof.

The main result of this subsection can be described explicitly in the following
Theorem.

Theorem 3. With the notation of Theorem 2, let 0 ≤ i < j ≤ p−1. Then [a]i =
Ls[a]j for some positive integer s if and only if βj = β2k

i and es ≡ 2k mod 2p −1
for some 0 ≤ k ≤ p − 1.

Proof. By Lemma 3, it suffices to show that Tr
(
βiy + βjy

es
)

= 0 for all y ∈
GF(2p) if and only if

βj = β2k

i and es ≡ 2k mod 2p − 1 for some 0 ≤ k ≤ p − 1.

If βj = β2k

i and es ≡ 2k mod 2p − 1 for some 0 ≤ k ≤ p − 1, then it is clear
that

Tr
(
βiy + βjy

es
)

= Tr
(
βiy + β2k

i y2k
)

= Tr
(
βiy + (βiy)2

k
)

= 0

holds for all y ∈ GF(2p).
Conversely, suppose Tr

(
βiy + βjy

es
)

= 0 for all y ∈ GF(2p). An argument
similar to that leading to (8) shows that

es ≡ 2k mod 2p − 1 for some 0 ≤ k ≤ p − 1.

Consequently,

0 = Tr
(
βiy + βjy

es
)

= Tr
(
βiy + βjy

2k
)

= Tr
(

βiy +
(
βjy

2k
)2p−k)

= Tr
((

βi + β2p−k

j

)
y
)

holds for all y ∈ GF(2p), which immediately implies that βi = β2p−k

j , or, equiv-
alently, that βj = β2k

i .

For normal bases, we have a more concrete result, which is stated in the
following Corollary.

382 Q.-X. Zheng et al.

Corollary 3. Let f and a be as in Theorem 2. Let [a]j, 0 ≤ j ≤ p − 1, be the
i-th coordinate sequence of [a] w.r.t. {α, α2, . . . , α2p−1}, where {α, α2, . . . , α2p−1}
is a normal basis of GF(2p) over GF(2). Then for 1 ≤ j ≤ p − 1, there exists an
integer sj = uj(2p −2)/p with 1 ≤ uj ≤ p−1 such that [a]0 = Lsj [a]j. Moreover,
s1, s2, . . . , sp−1 run exactly through the set

{ (2p − 2) /p, 2 (2p − 2) /p, . . . , (p − 1) (2p − 2) /p}.

Proof. Let {β0, β1, . . . , βp−1} be the dual basis of {α, α2, . . . , α2p−1}. Since the
dual basis of a normal base is also a normal base, it immediately follows that
βj = β2j

0 for 0 ≤ j ≤ p − 1. Furthermore,

e(2
p−2)/p ≡ 2k mod 2p − 1 for some 1 ≤ k ≤ p − 1 (13)

by (10). Let uj be the least nonnegative residue of k−1j modulo p for 1 ≤ j ≤
p − 1, that is uj = k−1j mod p, where k−1 is the inverse of k modulo p. Then
(13) yields

euj(2
p−2)/p ≡ 2ujk ≡ 2j mod 2p − 1. (14)

By setting i = 0 and applying (13) and (14) to Theorem 3, the first desired
result immediately follows. The second desired result follows from the fact that
uj = k−1j (mod p) runs through the set {1, 2, . . . , p − 1} if j runs through
{1, 2, . . . , p − 1}.

4 Conclusions

Binary sequences with desirable properties have important applications in cryp-
tography, communication, Monte Carlo simulation and so on. In this paper, a
class of binary sequences induced by monomial permutation polynomials over
GF(2n) is proposed, and the period property and the shift-equivalence of these
binary sequences are studied. In particularly, a necessary and sufficient condi-
tion is given such that they have the maximum possible period. Moreover, a
necessary and sufficient condition is also given for two sequences who are shift
equivalent. The results of this paper imply that these binary sequences should
be potential interested for several applications such as stream ciphers.

How to generate a pseudo-random sequence with desirable properties is a
classical problem. Although our new proposed PRNG can be viewed as a Galois
NFSR, it should be pointed out that its actual performance cannot be compared
with NFSR since the power operations over finite fields are usually resource-
consuming. How to improve the performance of the proposed PRNG or how to
design other type of PRNGs with desirable properties and performance deserves
further study.

Acknowledgement. The authors would like to thank the anonymous referees for
their helpful comments and suggestions.

Binary Sequences Derived from Monomial Permutation Polynomials 383

References

1. Lidl, R., Niederreiter, H.: Finite Fields. Encyclopedia of Mathematics and Its
Applications, vol. 20. Cambridge University Press, Cambridge (1997)

2. Mullen, G.L., Panario, D.: Handbook of Finite Fields. CRC Press, Boca Raton
(2013)

3. Hou, X.D.: Permutation polynomials over finite fields - a survey of recent advances.
Finite Fields Appl. 32, 82–119 (2015)

4. Tu, Z., Zeng, X.: A class of permutation trinomials over finite fields of odd char-
acteristic. Cryptogr. Commun 11(4), 563–583 (2018). https://doi.org/10.1007/
s12095-018-0307-4

5. Tu, Z.R., Zeng, X.Y., Jiang, Y.P.: Two classes of permutation polynomials having
the form (x2m + x + δ)s + x. Finite Fields Appl. 53, 99–112 (2018)

6. Wang, L.B., Wu, B.F.: General constructions of permutation polynomials of the
form (x2m +x+ δ)i(2

m−1)+1 +x over F22m . Finite Fields Appl. 52, 137–155 (2018)
7. Feng, X.T., Lin, D.D., Wang, L.P., Wang, Q.: Further results on complete permu-

tation monomials over finite fields. Finite Fields Appl. 57, 47–59 (2019)
8. Xu, X.F., Feng, X.T., Zeng, X.Y.: Complete permutation polynomials with the

form (xpm − x + δ)s + axpm + bx over Fpn . Finite Fields Appl. 57, 309–343 (2019)
9. Wu, B.F., Lin, D.D.: On constructing complete permutation polynomials over finite

fields of even characteristic. Disc. Appl. Math. 184, 213–222 (2015)
10. Niederreiter, H.: Pseudorandom vector generation by the inversive method. ACM

Trans. Model. Comput. Simul. 4(2), 191–212 (1994)
11. Anderson, S.L.: Random number generators on vector supercomputers and other

advanced architectures. SIAM Rev. 32, 221–251 (1990)
12. Bhavsar, V.C., Isaac, J.R.: Design and analysis of parallel Monte Carlo algorithms.

SIAM J. Sci. Stat. Comput. 8, s73–s95 (1987)
13. Eddy, W.F.: Random number generators for parallel processors. J. Comput. Appl.

Math. 31, 63–71 (1986)
14. Menezes, A.J., Blake, I.F., et al.: Applications of Finite Fields. Kluwer Academic

Publishers, New York (1993)

https://doi.org/10.1007/s12095-018-0307-4
https://doi.org/10.1007/s12095-018-0307-4

On the Provable Security Against
Truncated Impossible Differential

Cryptanalysis for AES in the Master-Key
Setting

Xueping Yan, Lin Tan(B), Hong Xu, and Wenfeng Qi

PLA Strategic Support Force Information Engineering University, Zhengzhou, China

Abstract. Impossible differential cryptanalysis is a powerful cryptanal-
ysis technique of block ciphers. Length of impossible differentials is
important for the security evaluation of a block cipher against impos-
sible differential cryptanalysis. Many previous studies on finding impos-
sible differentials of AES assumed that round keys are independent and
uniformly random. There are few results on security evaluation of AES in
the master-key setting. In ASIACRYPT 2020, Hu et al. redefined impos-
sible differential with the key schedule considered, and showed that there
exists no one-byte active input and one-byte active output impossible dif-
ferential for 5-round AES-128 even considering the relations of 3-round
keys. In this paper, we prove theoretically that even though the relations
of all round keys are considered, there do not exist three kinds of trun-
cated impossible differentials for 5-round AES: (1) the input truncated
differences are nonzero only in any diagonal and the output truncated
differences are nonzero only in any inverse diagonal; (2) the input trun-
cated differences are nonzero only in any two diagonals and the output
truncated differences are nonzero only in any inverse diagonal; (3) the
input truncated differences are nonzero only in any diagonal and the out-
put truncated differences are nonzero only in any two inverse diagonals.
Furthermore, for any given truncated differentials of these three kinds,
the lower bounds of the number of master keys such that the truncated
differentials are possible for 5-round AES-128 are presented.

Keywords: AES · Truncated impossible differential · Provable
security · Master-key setting

1 Introduction

Impossible differential cryptanalysis [4,20] is a powerful cryptanalysis technique
of block ciphers. The differentials with probability 0 are used to distinguish
round-reduced block ciphers and discard the wrong keys in the key recovery
attack. Truncated impossible differentials are usually used in the impossible dif-
ferential cryptanalysis of block ciphers, such as AES [1,5,6,9,13,21,28], Crypton
c© Springer Nature Switzerland AG 2021
Y. Yu and M. Yung (Eds.): Inscrypt 2021, LNCS 13007, pp. 384–398, 2021.
https://doi.org/10.1007/978-3-030-88323-2_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-88323-2_21&domain=pdf
https://doi.org/10.1007/978-3-030-88323-2_21

On the Provable Security Against Truncated Impossible Differential 385

[6,9], Camellia [6,7], SIMON [7], CLEFIA [7,25] and XTEA [8]. AES is the most
widely used block cipher and its security has been studied worldwide in the last
twenty years. Many cryptanalysis techniques have been applied to distinguish or
attack the round-reduced variants of AES, such as integral [12], impossible differ-
ential [6], zero-correlation linear [17,23], subspace trail [15], mixture differential
[2,14], multiple-of-8 [16], meet-in-the-middle [10], yoyo [22], exchange [3] and
boomerang [11]. The first impossible differential distinguisher on 4-round AES
was proposed to attack 5-round AES in [5]. Then based on 4-round impossible
differential distinguishers, many impossible differential attacks on 6 rounds and
7 rounds of AES were proposed [1,6,9,21,28]. As we know, the best key recovery
attacks on AES-128 in the secret-key model cover 7 rounds. In EUROCRYPT
2021, Gaëtan et al. [13] gave new representations of the AES key schedule and
improved the impossible differential attack on 7-round AES-128. The length
of truncated impossible differentials used in these known attacks is 4 rounds.
To some extent, the longer truncated impossible differentials can be found, the
more rounds can be attacked. Whether there exist 5-round truncated impossible
differentials is one of important problems for the security evaluation of AES.

In [24], Sun et al. proved that there exists no 5-round impossible differential
for the AES structure, where the details of S-boxes are not considered. Under
the assumption that round keys are independent and uniformly random, Wang
et al. showed that there exists no 5-round truncated impossible differential even
considering the details of the AES S-box [26], and further proved that any con-
crete differential is possible for 5-round AES [27]. These results are not true for
the real AES, because the round keys are dependent under the key schedule.
In ASIACRYPT 2020, Hu et al.[18] redefined impossible differential with the
key schedule considered, and proposed a SAT-based automatic search tool for
impossible differentials. With the help of the automatic search tool, it was shown
that there exists no one-byte active input and one-byte active output impossi-
ble differential for 5-round AES even taking the relations of the middle 3-round
keys into account. It is the first result on the provable security evaluation of AES
against impossible differential cryptanalysis with the key schedule considered.

In this paper, we study three kinds of truncated differentials for 5-round AES
in the master-key setting.

– Set 1: the input truncated differences are nonzero only in any diagonal and
the output truncated differences are nonzero only in any inverse diagonal.

– Set 2: the input truncated differences are nonzero only in any two diagonals
and the output truncated differences are nonzero only in any inverse diagonal.

– Set 3: the input truncated differences are nonzero only in any diagonal and
the output truncated differences are nonzero only in any two inverse diagonals.

By investigating the properties of the key schedule, we prove theoretically that
there do not exist the three kinds of truncated impossible differentials for 5-round
AES even considering the relations of all round keys. Furthermore, for any given
truncated differentials in the three sets, the lower bounds of the number of master
keys such that the truncated differentials are possible for 5-round AES-128 are
presented.

386 X. Yan et al.

This paper is organized as follows. In Sect. 2, the description of AES and the
definitions related to truncated differential are recalled. In Sect. 3, three kinds
of truncated differentials for 5-round AES in the master-key setting are studied.
Section 4 concludes the paper.

2 Preliminaries

2.1 Brief Description of AES

AES is a Substitution-Permutation Network cipher with 128-bit block. The 128-
bit state can be described as a 4 × 4 matrix over the finite field F28 , and the
order of bytes in the state matrix is showed in Fig. 1. The number of rounds Nr

depends on the length of master key, that is, Nr = 10 for 128-bit key, Nr = 12
for 192-bit key and Nr = 14 for 256-bit key. The round transformation of AES
consists of the following four operations.

1. SubBytes(SB): applies the same 8-bit S-box to 16 bytes of the state parallelly.
The S-box is composed of the multiplicative inverse transformation over F28

and an affine function over F2, i.e., S(x) = L(x−1) + b, x ∈ F28 .
2. ShiftRows(SR): shifts the i-th row by i bytes to the left circularly for i =

0, 1, 2, 3.
3. MixColumns(MC): multiplies each column by the following MDS matrix over

F28 . ⎡
⎢⎢⎣

02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02

⎤
⎥⎥⎦

4. AddRoundKey(AK): XORs the state with a 128-bit round key, which is gen-
erated from a master key by the key schedule.

An additional AK is applied before the first round and the MC is omitted
in the last round. Let Kr denote the r-th round key, and AKr denote the
AddRoundKey operation with Kr. The r-th round transformation can be writ-
ten as AKr ◦MC ◦SR ◦SB. When interchanging the order of MC and AK, we
can get the equivalent round transformation MC ◦ AK ′

r ◦ SR ◦ SB, where AK ′
r

denotes XORing the equivalent round key K ′
r = MC−1(Kr). Denote by Kr,j

the j-th byte of Kr. When considering several bytes j1, j2, ..., jn of Kr simulta-
neously, we denote by Kr,{j1,j2,...,jn}. In this paper, we focus on AES-128. The
key schedule of AES-128 can be described as follows.

Kr,0 = Kr−1,0 + S(Kr−1,13) + Cr,

Kr,1 = Kr−1,1 + S(Kr−1,14),
Kr,2 = Kr−1,2 + S(Kr−1,15),
Kr,3 = Kr−1,3 + S(Kr−1,12),
Kr,j = Kr−1,j + Kr,j−4, 4 ≤ j ≤ 15,

where K0 is the master key, and Cr is the round constant, 1 ≤ r ≤ 10.

On the Provable Security Against Truncated Impossible Differential 387

Fig. 1. The order of bytes in the state matrix

2.2 Definitions

Definition 1. Given a vectorial Boolean function f : Fn
2 → F

n
2 , for an input dif-

ference ΔX ∈ F
n
2 and an output difference ΔY ∈ F

n
2 , the differential probability

is defined as

DP (ΔX
f→ ΔY) =

1
2n

{X ∈ F
n
2 | f(X) + f(X + ΔX) = ΔY } .

Definition 2. Given a keyed function fK : Fn
2 ×K → F

n
2 , for an input difference

ΔX ∈ F
n
2 and an output difference ΔY ∈ F

n
2 , the expected differential probability

over all keys is defined as

EDP (ΔX
fK→ ΔY) =

1
#K

∑
k∈K

DP (ΔX
fk→ ΔY).

If EDP (ΔX
fK→ ΔY) is too small to distinguish fK from random permuta-

tions for any differential ΔX → ΔY , then fK is provably secure against differ-
ential cryptanalysis. If EDP (ΔX

fK→ ΔY) = 0, then ΔX → ΔY is called an
impossible differential of fK . In the following we recall the definitions related to
truncated differential introduced in [19].

Definition 3. For x ∈ F2m , define the function χ as

χ(x) =

{
0, if x = 0;
1, if x �= 0.

For X = (x1, x2, . . . , xn) ∈ F
n
2m , define χ(X) = (χ(x1), χ(x2), . . . , χ(xn)).

Definition 4. Given a function f : F
n
2m → F

n
2m , for an input truncated dif-

ference ΔX ∈ F
n
2 and an output truncated difference ΔY ∈ F

n
2 , the truncated

differential probability is defined as

DP (ΔX
f→ ΔY) =

∑
ΔX,ΔY ∈F

n
2m ,

χ(ΔX)=ΔX,χ(ΔY)=ΔY

DP (ΔX
f→ ΔY)

#
{
ΔX ∈ Fn

2m | χ(ΔX) = ΔX
} .

388 X. Yan et al.

Definition 5. Given a keyed function fK : F
n
2m × K → F

n
2m , for an input

truncated difference ΔX ∈ F
n
2 and an output truncated difference ΔY ∈ F

n
2 , the

expected truncated differential probability over all keys is defined as

EDP (ΔX
fK→ ΔY) =

1
#K

∑
k∈K

DP (ΔX
fk→ ΔY).

If EDP (ΔX
fK→ ΔY) = 0, then ΔX → ΔY is called a truncated impossible

differential of fK . To prove that truncated differential ΔX → ΔY is possible for
fK , we need to find at least a key k ∈ K and a differential ΔX → ΔY such that
χ(ΔX) = ΔX, χ(ΔY) = ΔY , and DP (ΔX

fk→ ΔY) > 0.

3 Main Results

Let ΔX,ΔW ∈ F
4×4
2 be the input and output truncated differences respectively.

In this section, we reveal some properties of the key schedule of AES-128, and
prove theoretically that in the master-key setting there do not exist the following
three kinds of truncated impossible differentials for 5-round AES.

– Set 1: ΔX is nonzero only in any diagonal and ΔW is nonzero only in any
inverse diagonal;

– Set 2: ΔX is nonzero only in any two diagonals and ΔW is nonzero only in
any inverse diagonal;

– Set 3: ΔX is nonzero only in any diagonal and ΔW is nonzero only in any
two inverse diagonals.

We note that the input (output) truncated differences being nonzero in some
diagonals (inverse diagonals) means that there exists at least a nonzero bit in
each corresponding diagonal (inverse diagonal).

Five rounds of AES can be written as

AK5 ◦ SR ◦ SB ◦ AK4 ◦ G ◦ AK ′
1 ◦ SR ◦ SB ◦ AK0,

where G = MC ◦SR ◦SB ◦AK3 ◦MC ◦SR ◦SB ◦MC ◦AK ′
2 ◦SR ◦SB ◦MC.

To prove the results, it is sufficient to prove that the following three kinds of
truncated differentials ΔX ′ → ΔW ′ are all possible for G even considering the
relation of K ′

2 and K3.

1. ΔX ′ is nonzero only in any column and ΔW ′ is nonzero only in any column;
2. ΔX ′ is nonzero only in any two columns and ΔW ′ is nonzero only in any

column;
3. ΔX ′ is nonzero only in any column and ΔW ′ is nonzero only in any two

columns.

Since SB and SR are applied on each byte independently, we can interchange
their order in the last SR ◦ SB of G. Then decompose G as

G = f ◦ (SR ◦ AK3) ◦ g ◦ (AK ′
2 ◦ SR) ◦ h,

where h = SB ◦ MC, g = MC ◦ SR ◦ SB ◦ MC, and f = MC ◦ SB are
key-independent.

On the Provable Security Against Truncated Impossible Differential 389

Lemma 1. For any nonzero truncated difference Δy ∈ F
4
2, there exists differ-

ence Δx ∈ (F∗
28)

4 such that χ(MC(Δx)) = Δy, where F
∗
28 denotes the multi-

plicative group of nonzero elements of F28 .

Proof. Let c be the Hamming weight of Δy. If c = 1, then for any Δy with
χ(Δy) = Δy, we have MC−1(Δy) ∈ (F∗

28)
4 since the MC matrix is MDS. If

2 ≤ c ≤ 4, then the number of Δy such that χ(Δy) = Δy is 255c. But the number
of Δy such that χ(Δy) = Δy and MC−1(Δy) /∈ (F∗

28)
4 is at most 4 · (255)c−1.

Therefore, there exists difference Δx ∈ (F∗
28)

4 such that χ(MC(Δx)) = Δy. ��
Lemma 2. (See [27].) If SB ◦ MC is regarded as a function on F

4
28 , then

for any nonzero input truncated difference Δx ∈ F
4
2 and any output difference

Δy ∈ (F∗
28)

4, there exists input difference Δx such that χ(Δx) = Δx and

SB ◦ MC(x) + SB ◦ MC(x + Δx) = Δy

for some x ∈ F
4
28 .

Lemma 3. Suppose the master keys of AES-128 are independent and uniformly
random. Then any inverse diagonal of K ′

r and any diagonal of Kr+1 are inde-
pendent, and for any given values of the eight bytes there are 264 master keys
under the key schedule of AES-128, 0 ≤ r ≤ 9.

Proof. By the assumption, the 16 bytes of Kr are independent and uniformly
random. Let (p, q, s, t) ∈ {(0, 7, 10, 13), (1, 4, 11, 14), (2, 5, 8, 15), (3, 6, 9, 12)} be
any inverse diagonal. Since K ′

r = MC−1(Kr), four bytes in the p-th inverse
diagonal of K ′

r can be represented by the bytes of Kr as follows.

K ′
r,p = a0Kr,0 + a1Kr,1 + a2Kr,2 + a3Kr,3,

K ′
r,q = a4Kr,4 + a5Kr,5 + a6Kr,6 + a7Kr,7,

K ′
r,s = a8Kr,8 + a9Kr,9 + a10Kr,10 + a11Kr,11,

K ′
r,t = a12Kr,12 + a13Kr,13 + a14Kr,14 + a15Kr,15,

(1)

where aj ∈ {0B, 0D, 0E, 09} is a constant dependent on (p, q, s, t), 0 ≤ j ≤ 15.
From the key schedule, the four diagonals of Kr+1 can be represented by the
bytes of Kr as the following four systems of equations respectively.

Kr+1,0 = Kr,0 + S(Kr,13) + Cr+1,

Kr+1,5 = Kr,5 + Kr,1 + S(Kr,14),
Kr+1,10 = Kr,10 + Kr,6 + Kr,2 + S(Kr,15),
Kr+1,15 = Kr,15 + Kr,11 + Kr,7 + Kr,3 + S(Kr,12).

(2)

Kr+1,3 = Kr,3 + S(Kr,12),
Kr+1,4 = Kr,4 + Kr,0 + S(Kr,13) + Cr+1,

Kr+1,9 = Kr,9 + Kr,5 + Kr,1 + S(Kr,14),
Kr+1,14 = Kr,14 + Kr,10 + Kr,6 + Kr,2 + S(Kr,15).

(3)

390 X. Yan et al.

Kr+1,2 = Kr,2 + S(Kr,15),
Kr+1,7 = Kr,7 + Kr,3 + S(Kr,12),
Kr+1,8 = Kr,8 + Kr,4 + Kr,0 + S(Kr,13) + Cr+1,

Kr+1,13 = Kr,13 + Kr,9 + Kr,5 + Kr,1 + S(Kr,14).

(4)

Kr+1,1 = Kr,1 + S(Kr,14),
Kr+1,6 = Kr,6 + Kr,2 + S(Kr,15),

Kr+1,11 = Kr,11 + Kr,7 + Kr,3 + S(Kr,12),
Kr+1,12 = Kr,12 + Kr,8 + Kr,4 + Kr,0 + S(Kr,13) + Cr+1.

(5)

We claim that for any given values of K ′
r,{p,q,s,t} and any diagonal of Kr+1,

the number of solutions of Kr is 264. For Kr+1,{0,5,10,15}, we can take the eight
bytes Kr,{0,1,4,6,9,11,14,15} as free variables in the system of (1) and (2). When the
free variables are determined the other eight bytes of Kr have unique solution.
Similarly, for Kr+1,{3,4,9,14}, we also take Kr,{0,1,4,6,9,11,14,15} as free variables
in the system of (1) and (3). For Kr+1,{2,7,8,13}, we take Kr,{0,2,4,5,9,11,12,13}
as free variables in the system of (1) and (4). For Kr+1,{1,6,11,12}, we take
Kr,{0,2,4,5,9,11,14,15} as free variables in the system of (1) and (5). Since K ′

r,{p,q,s,t}
and any diagonal of Kr+1 can take arbitrary values, they are independent. Fur-
thermore, for their any given values there are 264 master keys under the key
schedule of AES-128. ��
Theorem 1. For any input truncated difference ΔX with one diagonal nonzero
and any output truncated difference ΔW with one inverse diagonal nonzero,
there are at least 266 master keys such that ΔX → ΔW is possible for 5-round
AES-128.

Proof. It is sufficient to prove that for any input truncated difference ΔX ′ with
one column nonzero and any output truncated difference ΔW ′ with one column
nonzero, there are at least 266 master keys such that

DP (ΔX ′ G−→ ΔW ′) > 0.

Let the i-th column of ΔX ′ and the j-th column of ΔW ′ be nonzero, 0 ≤ i, j ≤ 3.
From the definition of truncated differential probability, we just need to find a
differential ΔX ′ → ΔW ′ such that χ(ΔX ′) = ΔX ′, χ(ΔW ′) = ΔW ′, and

DP (ΔX ′ G−→ ΔW ′) > 0.

The propagation of the differential is shown in Fig. 2. We recall

G = f ◦ (SR ◦ AK3) ◦ g ◦ (AK ′
2 ◦ SR) ◦ h,

where h = SB ◦ MC, g = MC ◦ SR ◦ SB ◦ MC, and f = MC ◦ SB.
From Lemma 1, there exist ΔZ with only four bytes in the j-th column

nonzero and ΔW ′ with χ(ΔW ′) = ΔW ′ such that f(Z) + f(Z + ΔZ) = ΔW ′,
where Z ∈ F

4×4
28 and the bytes except the j-th column of Z can take arbitrary

On the Provable Security Against Truncated Impossible Differential 391

Fig. 2. The propagation of the differential in Set 1

values. Let ΔZ∗ = SR−1(ΔZ), then SR−1 ◦ MC−1(ΔZ∗) ∈ (F∗
28)

4×4. From
Lemma 2, there exists input difference ΔY ∗ with only four bytes in the i-th
inverse diagonal nonzero such that g(Y ∗) + g(Y ∗ + ΔY ∗) = ΔZ∗ for some Y ∗ ∈
F
4×4
28 . Let ΔY = SR−1(ΔY ∗). From Lemma 2 again, there exists input difference

ΔX ′ such that χ(ΔX ′) = ΔX ′ and h(X ′)+h(X ′+ΔX ′) = ΔY, where X ′ ∈ F
4×4
28

and the bytes except the i-th column of X ′ can take arbitrary values. Denote
Y = h(X ′), then the bytes except the i-th column of Y can take arbitrary values.

Taking K ′
2 = SR(Y) +Y ∗ or K ′

2 = SR(Y) +Y ∗ +ΔY ∗, the output states of
SR◦h and the input states of g are connected. Because the bytes except the i-th
column of Y can take arbitrary values, the bytes except the i-th inverse diagonal
of K ′

2 can take arbitrary values. Denote Z∗ = g(Y ∗). Taking K3 = Z∗+SR−1(Z)
or K3 = Z∗ + SR−1(Z) + ΔZ∗, the output states of g and the input states of
f ◦ SR are connected. Since the bytes except the j-th column of Z can take
arbitrary values, the bytes except the j-th diagonal of K3 can take arbitrary
values.

The i-th inverse diagonal of K ′
2 and the j-th diagonal of K3 have at least

two possible values respectively. From Lemma 3, for any given values of these
eight bytes, there are 264 master keys under the key schedule of AES-128. Thus
there are at least 266 master keys such that ΔX ′ → ΔW ′ is possible for G. This
completes the proof. ��

Lemma 4. Suppose the master keys of AES-128 are independent and uniformly
random. Then any two inverse diagonals of K ′

r and any diagonal of Kr+1 are
independent, and for any given values of the twelve bytes there are 232 master
keys under the key schedule of AES-128, 0 ≤ r ≤ 9.

392 X. Yan et al.

Proof. The bytes of Kr are independent and uniformly random. Let (p, q, s, t),
(p′, q′, s′, t′)∈ {(0, 7, 10, 13), (1, 4, 11, 14), (2, 5, 8, 15), (3, 6, 9, 12)} are any two
inverse diagonals. Since K ′

r = MC−1(Kr), K ′
r,{p,p′,q,q′,s,s′,t,t′} can be represented

by the bytes of Kr as follows.

K ′
r,p = a0Kr,0 + a1Kr,1 + a2Kr,2 + a3Kr,3,

K ′
r,p′ = a′

0Kr,0 + a′
1Kr,1 + a′

2Kr,2 + a′
3Kr,3,

K ′
r,q = a4Kr,4 + a5Kr,5 + a6Kr,6 + a7Kr,7,

K ′
r,q′ = a′

4Kr,4 + a′
5Kr,5 + a′

6Kr,6 + a′
7Kr,7,

K ′
r,s = a8Kr,8 + a9Kr,9 + a10Kr,10 + a11Kr,11,

K ′
r,s′ = a′

8Kr,8 + a′
9Kr,9 + a′

10Kr,10 + a′
11Kr,11,

K ′
r,t = a12Kr,12 + a13Kr,13 + a14Kr,14 + a15Kr,15,

K ′
r,t′ = a′

12Kr,12 + a′
13Kr,13 + a′

14Kr,14 + a′
15Kr,15.

(6)

where aj , a
′
j ∈ {0B, 0D, 0E, 09} are constants dependent respectively on

(p, q, s, t) and (p′, q′, s′, t′), 0 ≤ j ≤ 15. Note that four diagonals of Kr+1 are
represented by the bytes of Kr in (2), (3), (4) and (5). We combine (6) with
(2),(3), (4) and (5) respectively, and Kr,{4,5,12,13} can be taken as free variables
in the four combined systems of equations. When the free variables are deter-
mined the other twelve bytes of Kr have unique solution. Thus, for any given
values of K ′

r,{p,p′,q,q′,s,s′,t,t′} and any diagonal of Kr+1, the number of solutions
of Kr is 232. Since the twelve bytes can take arbitrary values, they are indepen-
dent. Furthermore, for any given values of the twelve bytes there are 232 master
keys under the key schedule of AES-128. ��
Theorem 2. For any input truncated difference ΔX with two diagonals nonzero
and any output truncated difference ΔW with one inverse diagonal nonzero,
there are at least 234 master keys such that ΔX → ΔW is possible for 5-round
AES-128.

Proof. It is sufficient to prove that for any input truncated difference ΔX ′ with
two columns nonzero and any output truncated difference ΔW ′ with one column
nonzero, there are at least 234 master keys such that

DP (ΔX ′ G−→ ΔW ′) > 0.

Let the i1-th and i2-th columns of ΔX ′ and the j-th column of ΔW ′ be nonzero,
i1 �= i2, 0 ≤ i1, i2, j ≤ 3. We need to find a differential ΔX ′ → ΔW ′ such that
χ(ΔX ′) = ΔX ′, χ(ΔW ′) = ΔW ′, and

DP (ΔX ′ G−→ ΔW ′) > 0.

The propagation of the differential is shown in Fig. 3. Similar to the proof of
Theorem 1, there exist ΔZ with only four bytes in the j-th column nonzero
and ΔW ′ with χ(ΔW ′) = ΔW ′ such that f(Z) + f(Z + ΔZ) = ΔW ′, where

On the Provable Security Against Truncated Impossible Differential 393

Fig. 3. The propagation of the differential in Set 2

Z ∈ F
4×4
28 and the bytes except the j-th column of Z can take arbitrary values.

Let ΔZ∗ = SR−1(ΔZ), and then SR−1◦MC−1(ΔZ∗) ∈ (F∗
28)

4×4. From Lemma
2, there exists ΔY ∗ with only eight bytes in the i1-th and i2-th inverse diagonals
nonzero such that g(Y ∗) + g(Y ∗ + ΔY ∗) = ΔZ∗ for some Y ∗ ∈ F

4×4
28 . Let

ΔY = SR−1(ΔY ∗). By Lemma 2 again, there exists input difference ΔX ′ such
that χ(ΔX ′) = ΔX ′ and g(X ′) + g(X ′ + ΔX ′) = ΔY , where X ′ ∈ F

4×4
28 and

the bytes except the i1-th and i2-th columns of X ′ can take arbitrary values.
Denote Y = h(X ′), the bytes except the i1-th and i2-th columns of Y can take
arbitrary values.

Taking K ′
2 = SR(Y)+Y ∗ or K ′

2 = SR(Y)+Y ∗+ΔY ∗, then the output states
of SR ◦ h and the input states of g are connected. The bytes except the i1-th
and i2-th inverse diagonals of K ′

2 can take arbitrary values. Denote Z∗ = g(Y ∗).
Taking K3 = Z∗ + SR−1(Z) or K3 = Z∗ + SR−1(Z) + ΔZ∗, then the output
states of g and the input states of f ◦ SR are connected. The bytes except the
j-th diagonal of K3 can take arbitrary values. From Lemma 4, for any given
values of the i1-th and i2-th inverse diagonals of K ′

2 and the j-th diagonal of K3,
there are 232 master keys under the key schedule of AES-128. Thus there are at
least 234 master keys such that ΔX ′ → ΔW ′ is possible for G. ��

Lemma 5. Suppose the master keys of AES-128 are independent and uniformly
random. Then any inverse diagonal of K ′

r and any two diagonals of Kr+1 are
independent, and for any given values of the twelve bytes there are 232 master
keys under the key schedule of AES-128, 0 ≤ r ≤ 9.

Proof. By the assumption, the 16 bytes of Kr are independent and uniformly
random. Let (p, q, s, t) ∈ {(0, 7, 10, 13), (1, 4, 11, 14), (2, 5, 8, 15), (3, 6, 9, 12)} be

394 X. Yan et al.

any inverse diagonal. Then K ′
r,{p,q,s,t} can be represented by the bytes of Kr in

(1). Note that four diagonals of Kr+1 are represented by the bytes of Kr in (2),
(3), (4) and (5) respectively. We combine (1) with any two of (2), (3), (4) and
(5) to form 6 systems of equations. For each system, there are four bytes of Kr

that can be taken as free variables. That is, Kr,{5,6,12,13} are free variables in
the system of (1), (2) and (3). Kr,{7,13,14,15} are free variables in the system of
(1), (2) and (4). Kr,{2,7,12,13} are free variables in the system of (1), (2) and (5).
Kr,{1,5,12,14} are free variables in the system of (1), (3) and (4). Kr,{0,12,13,14}
are free variables in the system of (1), (3) and (5). Kr,{0,4,13,14} are free variables
in the system of (1), (4) and (5). When the free variables are determined the
other bytes of Kr have unique solution in each combined system of equations.
Since K ′

r,{p,q,s,t} and any two diagonals of Kr+1 can take arbitrary values, they
are independent. Furthermore, for their any given values there are 232 master
keys under the key schedule of AES-128. ��
Theorem 3. For any input truncated difference ΔX with one diagonal nonzero
and any output truncated difference ΔW with two inverse diagonals nonzero,
there are at least 234 master keys such that ΔX → ΔW is possible for 5-round
AES-128.

Proof. It is sufficient to prove that for any input truncated difference ΔX ′ with
one column nonzero and any output truncated difference ΔW ′ with two columns
nonzero, there are at least 234 master keys such that

DP (ΔX ′ G−→ ΔW ′) > 0.

Let the i-th column of ΔX ′ and the j1-th and j2-th columns of ΔW ′ be nonzero,
j1 �= j2, 0 ≤ i, j1, j2 ≤ 3. We just need to find a differential ΔX ′ → ΔW ′ such
that χ(ΔX ′) = ΔX ′, χ(ΔW ′) = ΔW ′, and

DP (ΔX ′ G−→ ΔW ′) > 0.

The propagation of the differential is shown in Fig. 4. From Lemma 1, there
exists ΔW ′ such that χ(ΔW ′) = ΔW ′ and the eight bytes in the j1-th and
j2-th columns of MC−1(ΔW ′) are nonzero. Let f(Z) + f(Z + ΔZ) = ΔW ′,
where Z ∈ F

4×4
28 and the bytes except the j1-th and j2-th columns of Z can take

arbitrary values. By the differential distribution of S-box, each byte in the j1-th
and j2-th columns of ΔZ has 127 possible values. Denote ΔZ∗ = SR−1(ΔZ),
then each column of ΔZ∗ has two nonzero bytes and each nonzero byte has 127
possible values. That is, the number of ΔZ∗ is 1278. But the number of ΔZ∗

such that MC−1(ΔZ∗) /∈ (F∗
28)

4×4 is at most (127 · 4)4. So there exists ΔZ∗

such that MC−1(ΔZ∗) ∈ (F∗
28)

4×4, and then SR−1 ◦ MC−1(ΔZ∗) ∈ (F∗
28)

4×4.
From Lemma 2, there exists input difference ΔY ∗ with only four bytes in the
i-th inverse diagonal nonzero such that g(Y ∗) + g(Y ∗ + ΔY ∗) = ΔZ∗ for some
Y ∗ ∈ F

4×4
28 . Let ΔY = SR−1(ΔY ∗). From Lemma 2 again, there exists input

difference ΔX ′ such that χ(ΔX ′) = ΔX ′ and h(X ′) + h(X ′ + ΔX ′) = ΔY,

On the Provable Security Against Truncated Impossible Differential 395

Fig. 4. The propagation of the differential in Set 3

where X ′ ∈ F
4×4
28 and the bytes except the i-th column of X ′ can take arbitrary

values. Denote Y = h(X ′), then the bytes except the i-th column of Y can take
arbitrary values.

Taking K ′
2 = SR(Y) + Y ∗ or K ′

2 = SR(Y) + Y ∗ + ΔY ∗, the output states
of SR ◦ h and the input states of g are connected. Denote Z∗ = g(Y ∗). Taking
K3 = Z∗ +SR−1(Z) or K3 = Z∗ +SR−1(Z)+ΔZ∗, then the output states of g
and the input states of f ◦ SR are connected. The bytes except the i-th inverse
diagonal of K ′

2 as well as the bytes except the j1-th and j2-th diagonals of K3

can take arbitrary values. From Lemma 5, for any given values of the i-th inverse
diagonal of K ′

2 and the j1-th and j2-th diagonals of K3, there are 232 master
keys under the key schedule of AES-128. Thus there are at least 234 master keys
such that ΔX ′ → ΔW ′ is possible for G. ��

From the view of provable security, we can get the following theorem. The
result also holds for AES-192 and AES-256 because their master keys have larger
degrees of freedom.

Theorem 4. There do not exist truncated impossible differentials in Set 1, Set
2 and Set 3 for 5-round AES even considering the key schedule. That is, for any
truncated differential ΔX → ΔW in Set 1, Set 2 or Set 3, we have

EDP (ΔX
5−roundAES−−−−−−−−−→ ΔW) > 0.

4 Conclusion

In this paper, we prove theoretically that there do not exist three kinds of trun-
cated impossible differentials for 5-round AES in the master-key setting. Further-

396 X. Yan et al.

more, for any given truncated differentials of the three kinds, the lower bounds of
the number of master keys such that the truncated differentials are possible for 5-
round AES-128 are given. The lower bounds could be improved by more detailed
analysis. These results improve the provable security evaluation of the real AES.
It seems difficult to study the differentials in the master-key setting, because the
dependence of round keys affects the propagation of states. Thanks to the simple
algebraic relation of consecutive two-round keys in the key schedule, we prove
the independence between the key bytes involved for the three kinds of truncated
differentials. And for any given values of the key bytes involved, the number of
master keys under the key schedule of AES-128 are also presented by analysing
the number of solutions of the corresponding systems of algebraic equations. In
the master-key setting, the nonexistence of r-round impossible differentials can
not lead to the nonexistence of (r + 1)-round impossible differentials. There are
still many problems that need to be studied in the future. For example, it is
not clear that whether other kinds of truncated differentials are impossible for
5-round AES in the master-key setting. When the concrete differentials are con-
sidered, whether they are impossible for round-reduced AES in the master-key
setting.

Acknowledgements. The authors are grateful to the anonymous reviewers for their
helpful comments and suggestions. This work was supported by the National Cryp-
tography Development Fund of China under grant numbers MMJJ20170103 and
MMJJ20180204.

References

1. Bahrak, B., Aref, M.R.: Impossible differential attack on seven-round AES-128.
IET Inf. Secur. 2(2), 28–32 (2008)

2. Bar-On, A., Dunkelman, O., Keller, N., Ronen, E., Shamir, A.: Improved key recov-
ery attacks on reduced-round AES with practical data and memory complexities.
J. Cryptol. 33(3), 1003–1043 (2020)

3. Bardeh, N.G., Rønjom, S.: The exchange attack: how to distinguish six rounds
of AES with 288.2 chosen plaintexts. In: Galbraith, S.D., Moriai, S. (eds.) ASI-
ACRYPT 2019. LNCS, vol. 11923, pp. 347–370. Springer, Cham (2019). https://
doi.org/10.1007/978-3-030-34618-8 12

4. Biham, E., Biryukov, A., Shamir, A.: Cryptanalysis of Skipjack reduced to 31
rounds using impossible differentials. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS,
vol. 1592, pp. 12–23. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-
48910-X 2

5. Biham, E., Keller, N.: Cryptanalysis of reduced variants of Rijndael. In: The 3rd
AES Conference (2000)

6. Boura, C., Lallemand, V., Naya-Plasencia, M., Suder, V.: Making the impossible
possible. J. Cryptol. 31(1), 101–133 (2018)

7. Boura, C., Naya-Plasencia, M., Suder, V.: Scrutinizing and improving impossible
differential attacks: applications to CLEFIA, Camellia, LBlock and Simon. In:
Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8873, pp. 179–199.
Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45611-8 10

https://doi.org/10.1007/978-3-030-34618-8_12
https://doi.org/10.1007/978-3-030-34618-8_12
https://doi.org/10.1007/3-540-48910-X_2
https://doi.org/10.1007/3-540-48910-X_2
https://doi.org/10.1007/978-3-662-45611-8_10

On the Provable Security Against Truncated Impossible Differential 397

8. Chen, J., Wang, M., Preneel, B.: Impossible differential cryptanalysis of the
lightweight block ciphers TEA, XTEA and HIGHT. In: Mitrokotsa, A., Vaudenay,
S. (eds.) AFRICACRYPT 2012. LNCS, vol. 7374, pp. 117–137. Springer, Heidel-
berg (2012). https://doi.org/10.1007/978-3-642-31410-0 8

9. Cheon, J.H., Kim, M.J., Kim, K., Jung-Yeun, L., Kang, S.W.: Improved impossible
differential cryptanalysis of Rijndael and Crypton. In: Kim, K. (ed.) ICISC 2001.
LNCS, vol. 2288, pp. 39–49. Springer, Heidelberg (2002). https://doi.org/10.1007/
3-540-45861-1 4

10. Derbez, P., Fouque, P.-A., Jean, J.: Improved key recovery attacks on reduced-
round AES in the single-key setting. In: Johansson, T., Nguyen, P.Q. (eds.) EURO-
CRYPT 2013. LNCS, vol. 7881, pp. 371–387. Springer, Heidelberg (2013). https://
doi.org/10.1007/978-3-642-38348-9 23

11. Dunkelman, O., Keller, N., Ronen, E., Shamir, A.: The retracing boomerang attack.
In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020. LNCS, vol. 12105, pp. 280–
309. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45721-1 11

12. Ferguson, N., et al.: Improved cryptanalysis of Rijndael. In: Goos, G., Hartmanis,
J., van Leeuwen, J., Schneier, B. (eds.) FSE 2000. LNCS, vol. 1978, pp. 213–230.
Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44706-7 15

13. Leurent, G., Pernot, C.: New representations of the AES key schedule. In: Can-
teaut, A., Standaert, F.-X. (eds.) EUROCRYPT 2021. LNCS, vol. 12696, pp. 54–
84. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-77870-5 3

14. Grassi, L.: Mixture differential cryptanalysis: New approaches for distinguishers
and attacks on round-reduced AES. IACR Trans. Symmetric Cryptol. 2018(2),
133–160 (2018)

15. Grassi, L., Rechberger, C., Rønjom, S.: Subspace trail cryptanalysis and its appli-
cations to AES. IACR Trans. Symmetric Cryptol. 2016(2), 192–225 (2016)

16. Grassi, L., Rechberger, C., Rønjom, S.: A new structural-differential property of
5-round AES. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS,
vol. 10211, pp. 289–317. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-56614-6 10

17. Hu, K., Cui, T., Gao, C., Wang, M.: Towards key-dependent integral and impossible
differential distinguishers on 5-round AES. In: Cid, C., Jacobson, M., Jr. (eds.) SAC
2018. LNCS, vol. 11349, pp. 139–162. Springer, Cham (2019). https://doi.org/10.
1007/978-3-030-10970-7 7

18. Hu, X., Li, Y., Jiao, L., Tian, S., Wang, M.: Mind the propagation of states. In:
Moriai, S., Wang, H. (eds.) ASIACRYPT 2020. LNCS, vol. 12491, pp. 415–445.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64837-4 14

19. Kanda, M., Matsumoto, T.: Security of camellia against truncated differential
cryptanalysis. In: Matsui, M. (ed.) FSE 2001. LNCS, vol. 2355, pp. 286–299.
Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45473-X 24

20. Knudsen, L.R.: DEAL - a 128-bit cipher. Technical report, Department of Infor-
matics, University of Bergen, Norway (1998)

21. Mala, H., Dakhilalian, M., Rijmen, V., Modarres-Hashemi, M.: Improved impossi-
ble differential cryptanalysis of 7-round AES-128. In: Gong, G., Gupta, K.C. (eds.)
INDOCRYPT 2010. LNCS, vol. 6498, pp. 282–291. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-17401-8 20

22. Rønjom, S., Bardeh, N.G., Helleseth, T.: Yoyo tricks with AES. In: Takagi, T.,
Peyrin, T. (eds.) ASIACRYPT 2017. LNCS, vol. 10624, pp. 217–243. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-70694-8 8

https://doi.org/10.1007/978-3-642-31410-0_8
https://doi.org/10.1007/3-540-45861-1_4
https://doi.org/10.1007/3-540-45861-1_4
https://doi.org/10.1007/978-3-642-38348-9_23
https://doi.org/10.1007/978-3-642-38348-9_23
https://doi.org/10.1007/978-3-030-45721-1_11
https://doi.org/10.1007/3-540-44706-7_15
https://doi.org/10.1007/978-3-030-77870-5_3
https://doi.org/10.1007/978-3-319-56614-6_10
https://doi.org/10.1007/978-3-319-56614-6_10
https://doi.org/10.1007/978-3-030-10970-7_7
https://doi.org/10.1007/978-3-030-10970-7_7
https://doi.org/10.1007/978-3-030-64837-4_14
https://doi.org/10.1007/3-540-45473-X_24
https://doi.org/10.1007/978-3-642-17401-8_20
https://doi.org/10.1007/978-3-319-70694-8_8

398 X. Yan et al.

23. Sun, B., Liu, M., Guo, J., Qu, L., Rijmen, V.: New insights on AES-Like SPN
ciphers. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9814, pp.
605–624. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53018-
4 22

24. Sun, B., Liu, M., Guo, J., Rijmen, V., Li, R.: Provable security evaluation of
structures against impossible differential and zero correlation linear cryptanalysis.
In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9665, pp.
196–213. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49890-
3 8

25. Tsunoo, Y., Tsujihara, E., Shigeri, M., Saito, T., Suzaki, T., Kubo, H.: Impossible
differential cryptanalysis of CLEFIA. In: Nyberg, K. (ed.) FSE 2008. LNCS, vol.
5086, pp. 398–411. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-
540-71039-4 25

26. Wang, Q., Jin, C.: Upper bound of the length of truncated impossible differentials
for AES. Des. Codes Crypt. 86(7), 1541–1552 (2017). https://doi.org/10.1007/
s10623-017-0411-z

27. Wang, Q., Jin, C.: More accurate results on the provable security of AES against
impossible differential cryptanalysis. Des. Codes Crypt. 87(12), 3001–3018 (2019).
https://doi.org/10.1007/s10623-019-00660-7

28. Zhang, W., Wu, W., Feng, D.: New results on impossible differential cryptanalysis
of reduced AES. In: Nam, K.-H., Rhee, G. (eds.) ICISC 2007. LNCS, vol. 4817, pp.
239–250. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-76788-
6 19

https://doi.org/10.1007/978-3-662-53018-4_22
https://doi.org/10.1007/978-3-662-53018-4_22
https://doi.org/10.1007/978-3-662-49890-3_8
https://doi.org/10.1007/978-3-662-49890-3_8
https://doi.org/10.1007/978-3-540-71039-4_25
https://doi.org/10.1007/978-3-540-71039-4_25
https://doi.org/10.1007/s10623-017-0411-z
https://doi.org/10.1007/s10623-017-0411-z
https://doi.org/10.1007/s10623-019-00660-7
https://doi.org/10.1007/978-3-540-76788-6_19
https://doi.org/10.1007/978-3-540-76788-6_19

Adaptive Side-Channel Analysis Model
and Its Applications to White-Box Block

Cipher Implementations

Yufeng Tang1, Zheng Gong1(B), Tao Sun2, Jinhai Chen1, and Fan Zhang3,4

1 School of Computer Science, South China Normal University, Guangzhou, China
2 China Information Technology Security Evaluation Center (Guangdong Office),

Guangzhou, China
3 College of Computer Science and Technology, Zhejiang University,

Hangzhou, China
4 Key Laboratory of Blockchain and Cyberspace Governance of Zhejiang Province,

Hangzhou, China

Abstract. White-box block cipher (WBC) aims at protecting the secret
key of a block cipher even if an adversary has full control over the
implementations. At CHES 2016, Bos et al. proved that WBC are also
threatened by side-channel analysis (SCA), e.g., differential fault anal-
ysis (DFA) and differential computation analysis (DCA). Therefore,
advanced countermeasures have been proposed by Lee et al. for resisting
DFA and DCA, such as table redundancy and improved masking meth-
ods, respectively. In this paper, we introduce a new adaptive side-channel
analysis model which assumes that an adversary adaptively collects the
intermediate values of a specific function and can mount the DFA/DCA
attack with chosen inputs. In the adaptive SCA model, both theoret-
ical analysis and experimental results show that Lee et al.’s proposed
methods are vulnerable to DFA and DCA attacks. Moreover, a nega-
tive proposition is also demonstrated on the corresponding high-order
countermeasures under our new model.

Keywords: White-box block cipher · Adaptive side-channel analysis ·
Differential fault analysis · Differential computation analysis

1 Introduction

The concept of white-box attack context was introduced in 2002 by Chow, Eisen,
Johnson, and van Oorschot (CEJO) [14,15]. It assumes that an adversary can
analyze the details of a cryptosystem with full control over its execution. White-
box block cipher (WBC) aims at preventing the secret key of a block cipher algo-
rithm from being extracted in a white-box environment. The first two attempts
of WBC were white-box AES [15] (CEJO-WBAES) and DES [14] proposed by
CEJO. The fundamental idea of them is to convert the operations of a cryp-
tographic algorithm with a secret key into look-up tables (LUTs) and apply
c© Springer Nature Switzerland AG 2021
Y. Yu and M. Yung (Eds.): Inscrypt 2021, LNCS 13007, pp. 399–417, 2021.
https://doi.org/10.1007/978-3-030-88323-2_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-88323-2_22&domain=pdf
https://doi.org/10.1007/978-3-030-88323-2_22

400 Y. Tang et al.

linear and non-linear encodings to protect the intermediate values. In 2004, Bil-
let et al. [7] presented an algebraic attack which was named BGE attack against
CEJO-WBAES. From then on, although several improvements on white-box
AES [13,23,35] were mentioned to resist cryptanalysis, all of them were subse-
quently broken [16–18].

In addition to algebraic attacks, side-channel analysis (SCA) has been
demonstrated on WBC. At CHES 2016, Bos et al. [9,12] proposed to use dif-
ferential fault analysis (DFA) and differential computation analysis (DCA) to
attack white-box implementations. DFA induces faults in intermediate values
and analyzing the differential equations with faulty and unencoded ciphertexts.
DCA adapts a statistical technique of differential power analysis (DPA) but
uses software computation traces consisting of noise-free intermediate values
and accessed data. These attacks perform statistical analysis on the intermedi-
ate values such that avoid a time-consuming reverse engineering step and can
be implemented automatically. SCA attacks are the major threats to white-box
implementations as shown in the security assessment of the submissions of Whi-
bOx 2017/19 competition [11,22].

Advanced SCA Methods on WBC. At CHES 2017, Banik et al. [6] devel-
oped zero difference enumeration attack which records software traces for pairs
of selected plaintexts and performs an analysis on the difference of traces. Bock
et al. [10] analyzed the ineffectiveness of internal encoding on white-box imple-
mentations under DCA attack. Amadori et al. [4] presented a new DFA attack
that combines the techniques of DFA and BGE on a class of white-box AES
implementation with 8-bit external encodings. At CHES 2019, Rivain and Wang
[30] investigated mutual information analysis and collision attack to defeat
the internal encoding. Another DCA-like approach, called statistical bucketing
attack, was published by Zeyad et al. [36] for recovering the key by capturing
computation traces based on the cryptanalysis technique introduced by Chow
et al. [14]. For mitigating DFA, Lee et al. proposed a table redundancy method
[26] which replaces the comparison step for fault detection with an exclusive-or
(XOR) operation based on the white-box diversity and linearity of encodings.
For countering DCA, Lee et al. [28] proposed the masking technique to the
key-dependent value before applying encodings in the table generating phase.
However, Rivain and Wang [30] described a 2-byte key guessing model of DCA
and analyzed the first-round output of which the state is unmasked. To thwart
the existing DCA attacks, Lee and Kim [27] improved their proposed scheme
[28] by extending the masking to the round outputs.

Our Contribution. The main contributions of this paper are summarized as
follows. (1) Based on the abilities of a white-box attacker and the efficiency
of SCA attacks on white-box implementations, we introduce an adaptive SCA
model for WBC. (2) The instantiation of adaptive DFA and DCA attacks are
presented to break Lee et al.’s table redundancy [26] and improved masking
[27] white-box implementations, respectively. The adaptive DFA replaces the

Adaptive Side-Channel Analysis Model and Its Applications 401

ninth-round inputs with the adaptively collected states to bypass the XOR phase
for fault detection. And the adaptive DCA exploits the collision of output mask
to choose the plaintexts which have the same mask at the first-round output. (3)
The higher-order table redundancy and improved masking are also discussed.
Moreover, the adaptive higher-order DFA and DCA attacks are extended to
defeat such countermeasures. The comparison between the applications of tra-
ditional and adaptive SCA models is shown in Table 1.

Table 1. The comparison between the applications of traditional and adaptive SCA
models.

Method SCA Adaptive SCA

(Higher-order)
Table redundancy [26]

(Higher-order)
DFA resisted

DFA succeed, adap-
tively chosen
ninth-round inputs
(Sect. 3.2, 5)

(Higher-order)
Improved masking [27]

(Higher-order)
DCA resisted

DCA succeed, adap-
tively chosen
plaintexts (Sect. 3.3, 5)

Organization. The remainder of this paper is organized as follows. Section 2
reviews the table redundancy [26] and improved masking [27] for white-box
implementation. Section 3 describes the core idea of the adaptive SCA model on
WBC. And then we provide instances of adaptive DFA and DCA attacks against
table redundancy and improved masking methods. Afterward, Sect. 4 shows the
experimental results of the adaptive DFA and DCA attacks, and Sect. 5 extends
the attacks to the higher-order countermeasures. Section 6 concludes this paper.

2 Preliminaries

In this section, we briefly recall CEJO-WBAES and its SCA attacks. The state-
of-the-art countermeasures on those SCA attacks are also reviewed.

2.1 CEJO-WBAES

In 2002, Chow et al. [15] defined the white-box attack context and introduced
CEJO-WBAES to resist key extraction in cryptographic implementations. The
basic idea is to convert the round functions of AES into a series of LUTs and
apply secret invertible encodings to protect the intermediate values. Let T denote
a LUT, f and g be random bijective mappings. Then the encoded LUT T ′ is
defined as T ′ = g ◦ T ◦ f−1, where f−1 and g are called the input and output
encoding, respectively. To maintain the functionality of AES, the input and out-
put encodings of consecutive rounds should be constructed as pairwise invertible

402 Y. Tang et al.

mappings. Therefore, the input encoding can also play a role as input decoding
since it decodes the previous encoded output to recover the secret state. Let an
encoded LUT R′ be defined as R′ = h ◦ R ◦ g−1 such that a networked encoding
can be depicted as R′ ◦ T ′ = (h ◦ R ◦ g−1) ◦ (g ◦ T ◦ f−1) = h ◦ (R ◦ T) ◦ f−1.

The basic principles of CEJO-WBAES are recalled as follows. Note that an
AES state is represented by a byte array such that the index is ranked from
0 to 15. By means of partial evaluation, for each round, AddRoundKey and
SubBytes operations are composed as 16 8-bit bijective key-dependent LUTs
which are defined as T-boxes as follows.

T r
i (x) = S(x ⊕ k̂r−1

i), for i ∈ [0, 15] and r ∈ [1, 9],

T 10
i (x) = S(x ⊕ k̂9

i) ⊕ k̂10
i , for i ∈ [0, 15],

where S denotes the Sbox, k̂r represent the result of applying ShiftRows to
the byte array of round key. With matrix partitioning, the multiplication of
MixColumns can be decomposed into four 32-bit vectors.

⎡
⎢⎢⎣

02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02

⎤
⎥⎥⎦

⎡
⎢⎢⎣

x0

x1

x2

x3

⎤
⎥⎥⎦ = x0

⎡
⎢⎢⎣

02
01
01
03

⎤
⎥⎥⎦ ⊕ x1

⎡
⎢⎢⎣

03
02
01
01

⎤
⎥⎥⎦ ⊕ x2

⎡
⎢⎢⎣

01
03
02
01

⎤
⎥⎥⎦ ⊕ x3

⎡
⎢⎢⎣

01
01
03
02

⎤
⎥⎥⎦

= Ty0(x0) ⊕ Ty1(x1) ⊕ Ty2(x2) ⊕ Ty3(x3).

T yj for 0 ≤ j ≤ 3 denote the 8 bits to 32 bits mappings for the decomposition
of MixColumns. For rounds 1 ≤ r ≤ 9, the T-boxes and Tyj are then merged
together to construct 16 TMCr

i for 0 ≤ i ≤ 15. Each TMCr
i is defined as follows.

TMCr
i = Tyj ◦ T r

i , for 0 ≤ i ≤ 15 and j = i mod 4.

To add diffusion and confusion to each key-dependent intermediate value, the
Mixing Bijections and Nibble Encodings are applied to all inputs and outputs of
tables. An 8×8-bit linear transformation Lr

i and a 32×32-bit one MB are inserted
before and after TMCr

i , respectively. Subsequently, 4-bit non-linear encodings N
are applied to the table inputs and outputs. The resulting encoded TMCr

i are
denoted by TypeII which is defined as follows.

TypeII: N ◦ MB ◦ TMCr
i ◦ Lr

i ◦ N−1.

To cancel out the effect of MB and convert it to (Lr+1
i)−1 to from the net-

worked encoding, a TypeIII table is introduced accordingly and shown in below.
Note that the table is generated by the technique of matrix partitioning as well.

TypeIII: N ◦ (Lr+1
i)−1 ◦ MB−1 ◦ N−1.

Besides, all the XOR operations between encoded values are conducted by
TypeIV tables which decode two 4-bit inputs and provides a 4-bit encoded XOR
result. The combination of the outputs of TypeII is aptly named TypeIV II while

Adaptive Side-Channel Analysis Model and Its Applications 403

the one of TypeIII is aptly named TypeIV III. Due to the linearity of XOR, the
encoding and decoding phases of TypeIV only consist of non-linear encodings.
Combining these tables, one can obtain an encoded fixed-key white-box AES
such that G◦AES◦F−1, where F−1 and G denote the external input and output
encodings respectively. Since the external encoding lacks of compatibility, most
of the theoretical analyses and constructions have not taken it into consideration
(e.g., WhibOx 2017/19 competitions [1,2]). We note that every 4 bytes of CEJO-
WBAES can also be interpreted as a column vector of 4 × 4 state matrix. For a
detailed description of CEJO-WBAES, please refer to the tutorial paper [29].

2.2 Differential Fault Analysis

Following the ninth-round DFA attack model [19], Teuwen et al. [34] applied
fault attacks against CEJO-WBAES. The attack injects a byte fault into the
steps between the eighth-round and ninth-round MixColumns. Suppose that a
fault is injected at the first byte x ∈ F

8
2 of the ninth-round inputs. Let δ, δ′ ∈ F

8
2

denote the difference between the original byte and the faulty one before and
after SubBytes, respectively. Such that δ′ = S(x) ⊕ S(x ⊕ δ), where S denotes
the Sbox of SubBytes. The 4-byte difference after the MixColumn is represented
by (2δ′, δ′, δ′, 3δ′), where 2, 1, 1, 3 are the coefficients of MixColumns. Let
S−1 be the inverse SubBytes. For the fault-free ciphertexts C0...C7...C10...C13

(Ci ∈ F
8
2, i ∈ [0, 15]) and the faulty ciphertexts C∗

0 ...C∗
7 ...C∗

10...C
∗
13 (C∗

i ∈ F
8
2, i ∈

{0, 7, 10, 13}, Cj ∈ F
8
2, j ∈ [0, 15]\{i}), the following equations can be listed to

find the tenth-round subkey candidate K∗
i (i ∈ {0, 7, 10, 13}). By injecting two

such faults, the tenth-round 4-byte subkey can be determined by the differential
equations. The other subkeys can be recovered by the similar analysis.

2δ′ = S−1(C0 ⊕ K∗
0) ⊕ S−1(C∗

0 ⊕ K∗
0),

δ′ = S−1(C7 ⊕ K∗
7) ⊕ S−1(C∗

7 ⊕ K∗
7),

δ′ = S−1(C10 ⊕ K∗
10) ⊕ S−1(C∗

10 ⊕ K∗
10),

3δ′ = S−1(C13 ⊕ K∗
13) ⊕ S−1(C∗

13 ⊕ K∗
13).

2.3 The Table Redundancy Method Against DFA

As introduced by Lee et al. [26], table redundancy method uses multiple branches
of LUTs for the vulnerable rounds (e.g., the sixth to ninth rounds) and XOR
the outputs to obfuscate the fault injection. The description of the scheme can
be shown in three parts as follows. (1) Sharing the LUTs from Round 1 to
5. (2) Transforming independently in parallel with two sets of LUTs from the
sixth round to ninth-round TypeII. These two computations are constructed
with different sets of LUTs built by different encodings. (3) Sharing the LUTs
from ninth-round TypeIV II to Round 10. Note that the basic technique for
constructing the LUTs is followed by CEJO-WBAES [15].

Let MBl ∈ F
32×32
2 and MBr ∈ F

32×32
2 (l (resp. r) represents the left (resp.

right) part of the two computations) be the 32-bit Mixing Bijections of the

404 Y. Tang et al.

ninth-round TypeII. The xl ∈ F
8
2 and xr ∈ F

8
2 denote the two unencoded bytes of

ninth-round inputs. Such that TMC(xl) and TMC(xr) represent the outputs of
SubBytes and MixColumns from xl and xr, respectively. The outputs of the two
computations XOR with each other by a type of TypeIV followed by the shared
TypeIV II. Let x ∈ F

8
2 be the original state at ninth-round inputs of standard

AES, the XOR process can be shown as

MBl · TMC(xl) ⊕ MBr · TMC(xr) =
(MBl ⊕ MBr) · TMC(x), iff xl = xr = x.

Hence, the inverse Mixing Bijection MB−1 ∈ F
32×32
2 in ninth-round TypeIII

can be depicted as
MB−1 = (MBl ⊕ MBr)−1.

The Mixing Bijections can be combined with ⊕ because both of them are
linear transformations and the underlying state x is fault-free. Once xl or xr is
injected by a fault, the XOR cannot lead to a valid differential equation.

2.4 Differential Computation Analysis

At CHES 2016, Bos et al. [12] introduced DCA as the software counterpart of
DPA [25] to break white-box implementations. DCA divides the measurement
traces in two distinct sets according to the value of one of the bits of Sbox output.
Let xi be an input, vi be the collected traces, b = Sj(xi ⊕ k) denote the j-th bit
of Sbox. For each j and k, sorting the traces vi into two sets b0 and b1 based on
the value of b. The mean trace is defined as

b̄{0,1} =

∑
v∈b{0,1}

v

|b{0,1}|
.

And the difference of means is calculated as

Δ = |b̄0 − b̄1|.

Let Δj denote the difference of means trace obtained at j-th bit for a key
hypothesis kh. Let denote the best target bit which has the highest peak for kh

by Δj′
. Then Δj′

is selected as the best difference of means trace for kh and
is denoted as Δh. The final step is to select the best difference which has the
highest peak among all Δh and it is denoted as Δh′

. Such that the hypothesis
kh′

corresponding to Δh′
is the most probably correct key.

2.5 The Improved Masking Method Against DCA

To thwart DCA, Lee et al. presented the improved masking method [27] which
applies the random masks to the round outputs. When building TypeII, the
masks are randomly picked for each input, and each output of Tyj XOR with
the random mask. The 8 × 8 linear transformations L are applied to the masks

Adaptive Side-Channel Analysis Model and Its Applications 405

to form the mask table. The outputs of masked TypeII continue to feed the
following tables of the first round (i.e., TypeII IV, TypeIII, and TypeIII IV).
Both the masked TypeII and mask table are combined as TypeII MO as shown
in Fig. 1.

used masks

masked TypeII mask table

Fig. 1. TypeII MO table in the first round. The input encoding is omitted because of
the absence of external encoding.

For clarity, let vs (value state) and ms (mask state) denote the round outputs
of masked state and mask table itself, respectively. The TypeII table in the
second round takes each corresponding byte of vs and ms as inputs. Thus, vs
and ms are combined by XOR to unmask in the input decoding phase of the
second round to form the TypeII MIMO table as illustrated in Fig. 2. Since the
unmasking is combined with the input decoding phase of TypeII MIMO table in
the second round, the intermediate values of the first round are all masked with
the random masks. Figure 3 shows the look-up sequence from the first column of

vs ms

Fig. 2. The input decoding phase of TypeII MIMO table in the second round. The
following TMC2

i and the output encodings are omitted.

406 Y. Tang et al.

Fig. 3. LUT sequences of Lee et al.’s improved masking method.

plaintexts to the first entry of TypeII MIMO in the second round. TypeIV IIM
represents a type of TypeIV table to XOR the outputs of mask table.

The solid line in Fig. 3 denotes the masked intermediate values in the first
round while the dotted line represents the encoded masks. Hence, the collected
traces of the encoded first-round Sbox are independent of the hypothetical values
due to the presence of random masks. For a detailed description of the improved
masking method, one can refer to the original proposal [27].

3 Adaptive Side-Channel Analysis Model and Its
Applications

In the previous section, we recall the two proposed countermeasures for protect-
ing against DFA and DCA on CEJO-WBAES. The table redundancy method
[26] exploits the white-box diversity to combine the redundant computations
with fault detection. The improved masking technique [27] randomizes the out-
put value of key-dependent LUTs before encodings. Although the two proposals
can mitigate the original DFA and DCA attacks, the designer did not take into
account the ability of a white-box adversary. For concerning a white-box attacker
with the technique of SCA, an adaptive SCA model on WBC is proposed in this
section.

3.1 The Adaptive Side-Channel Analysis Model on WBC

Compared with the algebraic attacks [7,16–18] which need to retrieve the encod-
ings, SCA on WBC has been proved to reduce the time complexity of recovering
the secret key of the implementation with limited knowledge (e.g., side-channel

Adaptive Side-Channel Analysis Model and Its Applications 407

deduce (partial) secret key

random (chosen) inputs

side-channel analysis

(a) SCA model

random (chosen) inputs

query for intermediates/outputs

deduce (partial) secret key

chosen-inputs
SCA

analysis of intermediates/outputs

chosen inputs

side-channel analysis

adaptive
analysis

(b) adaptive SCA model

Fig. 4. The flowchart of SCA and adaptive SCA models.

information). The main benefits of SCA attack are that it do not need knowl-
edge of particular implementation and the effort of reverse engineering. WBC is
more vulnerable to SCA attacks even if it is intended to thwart a more powerful
attack in the white-box setting (i.e., with full control of the implementation).
The steps of an SCA attack in a white-box scenario can be informally described
as follows, which are also illustrated in Fig. 4(a).

1. The adversary invokes the white-box implementation many times with ran-
dom (chosen) inputs.

2. During each execution, the adversary performs a modeling analysis on the
side-channel information (e.g., intermediate values) for deducing the (partial)
secret key.

Note that the modification and record of side-channel information can be
implemented with the help of dynamic binary instrumentation tools, such as
Intel PIN [3]. For mitigating the SCA attacks, the side-channel countermeasure
(e.g., table redundancy and improved masking) prevents the generalized SCA
attacks by introducing a newly generated component (e.g., redundant computa-
tion and mask table). In practice, an adversary can extend the technique of SCA
attacks with the powerful ability in the white-box attack context. An attacker
can analyze the correlation between the original and newly generated component
to collect the inputs which will contribute to a successful SCA attack. Such a new
attack extends the efficiency of generalized SCA and is adapted to the dedicated
countermeasure. Now, we introduce an Adaptive Side-Channel Analysis model
to break the side-channel countermeasure for WBC implementations. The steps
of an adaptive SCA attack are divided into two phases: adaptive analysis and
chosen-inputs SCA as informally described as follows, which are also illustrated
in Fig. 4(b).

408 Y. Tang et al.

– Adaptive analysis. The adversary pinpoints the entry of a specific function and
queries it with random (chosen) inputs for collecting intermediates/outputs.
The adversary then performs an analysis on the intermediates/outputs to
choose inputs for repeating query or for the following SCA attack.

– Chosen-inputs SCA. The adversary makes her choice of the inputs to the
cryptographic algorithm and mounts the generalized SCA attacks to retrieve
the secret key.

The attacker can pinpoint a dedicated region by the exploitation of data
dependency analysis [21] and fault attacks [4,5,8]. The concrete steps and time
complexity are related to the code obfuscation techniques used in the white-
box implementation. Since the obscurity of the location of a function in a WBC
implementation cannot provide the security on the algorithm itself, our adaptive
SCA model assumes that an entry can be pinpointed with affordable complexity.
After the adaptive analysis phase, chosen-inputs SCA can be mounted automat-
ically with the help of practical SCA tools [31,32]. Moreover, we note that an
adaptive SCA adversary is capable of all known SCA attacks on WBC.

The main difference between SCA and adaptive SCA model is that an adap-
tive SCA attacker needs to obtain a set of target inputs before an SCA attack.
The previous work [24] described an adversary with the ability of choosing inputs
for SCA attacks. But it follows the gray-box model instead of the white-box
model and is out of scope for this work. The adaptive SCA model in a gray-box
setting is left as future work. In the next section, we will show the adaptive
DFA and DCA attacks against Lee et al.’s table redundancy [26] and improved
masking methods [27].

3.2 Adaptive DFA on the Table Redundancy Method

To break the table redundancy method [26], the fault needs to be simultaneously
induced at both the original and redundant computations and thus their under-
lying states are the same value. Concerning the fault-free process of table redun-
dancy method, the decoded states of both sides always keep the equal values
since both of the two computations are the same AES encryption. Although the
diversity of WBC is considered in the redundant design, the internal encodings
are fixed when the implementation is running. So the intermediate input values
of the ninth-round TypeII always appear pairwise. Let yli ∈ F

8
2 and yri ∈ F

8
2

(i ∈ [0, 15]) be an 8-bit input value of the two ninth-round TypeII, respectively.
Let xi ∈ F

8
2 (i ∈ [0, 15]) be an 8-bit unencoded input state of the ninth round.

The Pli and Pri (i ∈ [0, 15]) denote an 8-bit input decoding on F
8
2 (i.e., Mixing

Bijections and non-linear encodings) of yli and yri, respectively. For the decoding
process of the ninth-round inputs , we have

xi = Pli(yli) = Pri(yri), i ∈ [0, 15].

Since xi have 256 different values and the mappings of input decoding (i.e.,
Pli and Pri) are bijections, each pair of (yli, yri) can be collected from the

Adaptive Side-Channel Analysis Model and Its Applications 409

corresponding inputs of the ninth round. Let T be a set of pairwise values, such
that

Ti = {(yli, yri) | yli ∈ F
8
2, yri ∈ F

8
2}, with #Ti = 256, i ∈ [0, 15].

Based on the ninth-round DFA attack model [19], the fault can be injected
at one of the four bytes of a column to recover the four-byte subkey in the tenth
round. Such that Tj for j = 0, 4, 8, 12 are sufficient for obtaining the tenth-round
key. For simplicity, the index j is discarded and the injection on one byte of the
ninth round can be concluded by the following steps. The other locations of the
ninth-round inputs are similar to this example.

1. Querying for the pairwise values at the original and redundant ninth-round
inputs by repeatedly running the implementation with random plaintexts to
form the set T .

2. Getting a fault-free ciphertext by running with a random plaintext and denot-
ing the pairwise values at the ninth-round inputs as (yl, yr).

3. Replacing (yl, yr) with other pairs in T \(yl, yr) which are denoted as (y∗
l , y

∗
r)

and collecting the faulty ciphertexts by running the cryptographic program
with the same plaintext.

4. Repeating Step 3 and using the DFA tools to perform the analysis between
the fault-free and faulty ciphertexts.

Let x∗ ∈ F
8
2 be the underlying state of the faulty pairs (y∗

l , y
∗
r). The decoding

Pl and Pr are fixed into the parts of LUTs in the encryption, thus x will be
tampered as x∗ if (yl, yr) are replaced with (y∗

l , y
∗
r). The modification from x to

x∗ represents that the faults are injected successfully at the ninth-round inputs.
This process simultaneously modifies the underlying states of the two computa-
tions into other ones by replacing the pairwise values at the ninth-round inputs
with the other pairs in T . In this way, MB can be combined in the XOR process
since the decoded states after the ninth-round TMC are identical to each other
between two computations. Note that T can be collected with overwhelming
probability because of the splendid confusion and diffusion of the first 8-round
AES. Concerning the practical analysis, the subkey can be recovered by only
two faults in the same location, thus T need not be a full set. In this way, the
adaptive DFA attack on the table redundancy method exploits the replacement
on the ninth-round inputs to bypass the elaborately designed XOR phases of
TypeII. Thus, the vulnerability of table redundancy under DFA attack is identi-
cal to CEJO-WBAES [15]. The adaptive DFA can also be extended to break a
table redundant white-box implementation with 8-bit external encodings since
we assume that the attacker knows the technique of existing DFA attack [4].

3.3 Adaptive DCA on the Improved Masking Method

Since the improved masking conceals the key-dependent outputs of the first
round by introducing the random masks, DCA fails to analyze the correlation
between the intermediate and hypothesis values. In the following text, Qi and

410 Y. Tang et al.

Q′
i for 0 ≤ i ≤ 3 denote bijective mapping on F

8
2 and are referred to as output

encodings of vs and ms (refer to Sect. 2.5), respectively. Let yi, y
′
i : (F8

2)
4 → F

8
2

for 0 ≤ i ≤ 3 be the functions of the mappings from plaintexts to vs and ms,
ki ∈ F

8
2 for 0 ≤ i ≤ 3 be the subkeys in the first round, and (x0, x1, x2, x3) ∈ (F8

2)
4

denote the first column of plaintexts. Such that the function of vs in the first
column which is depicted by solid line in Fig. 3 can be shown as follows.

yi(x0, x1, x2, x3) = Qi ◦ (mci,0 · S(x0 ⊕ k0) ⊕ mci,1 · S(x1 ⊕ k1)
⊕ mci,2 · S(x2 ⊕ k2) ⊕ mci,3 · S(x3 ⊕ k3) ⊕ Mi).

The corresponding function of ms which is depicted by the dotted line in Fig. 3
can be represented in below.

y′
i(x0, x1, x2, x3) = Q′

i ◦ (Mi).

Note that Mi denote the mask used and take all the values on F
8
2, mci denote

the MixColumns coefficient, 0 ≤ i ≤ 3 denotes the index of states.
Mentioned by Lee et al. [27], each Mi is independently generated for different

inputs such that its randomness and uniformity help to mask the key-dependent
output of yi. However, since Mi need to be annihilated between the outputs of
yi and y′

i, the underlying Mi used in the function of vs and ms for the same
(x0, x1, x2, x3) are identical to each other. Due to the fact that the encodings
Q′

i are fixed bijective mapping, a collision in an encoded byte Q′
i(x) corresponds

with a collision in the decoded byte x as well. Thus, one can sort the inputs by
the identical outputs of y′

i, i.e., to get the set

Pi = {(x0, x1, x2, x3) | y′
i(x0, x1, x2, x3) = c},

where c is a constant and i denotes the index of entry. For simplicity, the following
analysis takes i = 0. Based on the 2-byte key guessing model [30], we suppose
that (α, β, 0, 0), (α′, β′, 0, 0) ∈ P0 such that y′

0(α, β, 0, 0) = y′
0(α

′, β′, 0, 0), which
also implies that Q′

0(M0) = Q′
0(M

′
0). In this way, M0 = M ′

0, thus (α, β, 0, 0) and
(α′, β′, 0, 0) have the same mask value M0. Once the underlying mask of yi are
constant for different plaintexts, DCA can recover the secret key for analyzing
the correlation between the computation traces and hypothesis outputs. The
detailed attack can be represented by the following steps on recovering the first
two bytes of the first-round key. The steps for other key bytes are similar to this
one.

1. Querying for the plaintexts as the set P0 which have the same output of y′
0

by enumerating the first two bytes of the inputs and fixing the other bytes of
y′
0 (e.g., y′

0(x0, x1, 0, 0)).
2. Collecting the bit traces υ which include the values of the outputs of y0 by

choosing the plaintexts in P0.
3. Selecting the XOR of the first two outputs of MixColumns as the hypothetical

value b, that is

b = mci,0 · S(x0 ⊕ k′
0) ⊕ mci,1 · S(x1 ⊕ k′

1),

where k′
0 and k′

1 are key guesses.

Adaptive Side-Channel Analysis Model and Its Applications 411

4. Mounting the DCA attack on analyzing the correlation between υ and b to
recover k0 and k1.

For k2 and k3, the attack needs to enumerate x2 and x3 and fix the other
bytes. The key recovery of other columns is similar to this example. Note that
the collected y′

0 need not be set as a pre-defined value since any constant on F
8
2

can help to sort the plaintexts. For a practical attack, the number of plaintexts
in P0 depends on the number of traces that are exploited by the original DCA.

Suppose that the mask value is fixed as a constant m, such that

y0(x0, x1, 0, 0) = Q0 ◦ (mci,0 · S(x0 ⊕ k0) ⊕ mci,1 · S(x1 ⊕ k1) ⊕ γ ⊕ m),

where the constant γ = mci,2 · S(0 ⊕ k2) ⊕ mci,3 · S(0 ⊕ k3). Note that the XOR
phase of constant can be combined with the linear part of the encoding Q0 to
form a new encoding Q̃0. Thus, y0(x0, x1, 0, 0) = Q̃0 ◦ (mci,0 ·S(x0 ⊕k0)⊕mci,1 ·
S(x1 ⊕ k1)). Because of the ineffectiveness of internal encodings [10], the strong
correlations can be computed between v and b.

The adaptive DCA attack on the improved masking method utilizes the
collision on y′ to sort the plaintexts which have the same mask. Such that the
elaborately designed masking can be bypassed since a constant mask cannot
prevent the leakage of a secret key. In this way, the vulnerability of improved
masking under DCA attack is identical to CEJO-WBAES [15].

4 Theoretical Analysis and Experimental Results

This section performs the practical attacks on table redundancy and improved
masking based on the adaptive SCA model. Following such a model, a white-
box adversary can directly locate and modify any intermediate values in an
implementation. Such that for efficiency, the experiment collects the target val-
ues during the table look-up operations by modifying the corresponding source
code of encryption. Our attack is conducted on a PC with Intel Core i5-6200U
processor @2.3 GHz, 12 GB RAM. The compiler for building a shared library
is GCC 8.2.0, while “-O2” optimization is enabled. All the counts have been
measured 100,000 times to get the averages. For verifying our results, the crucial
components of our experiments are open-sourced1.

4.1 Results of the Adaptive DFA on the Table Redundancy Method

The experiment firstly generates the sets Tj for j = 0, 4, 8, 12 consisting of pair-
wise bytes of the ninth-round inputs between which one is the original state and
the other is the redundant one. The result shows that each Tj can be fully filled
up by 1,548 executions, encrypting with random plaintexts. Due to the fact that
two faults injection at the first byte of a column in the ninth round can help to
recover a 4-byte subkey of the tenth round, Tj can only be collected by three

1 https://github.com/scnucrypto/Adaptive-SCA.

https://github.com/scnucrypto/Adaptive-SCA

412 Y. Tang et al.

pairwise states instead of a full set. Note that, the first element of Tj can be
found by the first encryption and the corresponding plaintext can be recorded
as the one for the fault injection. Such that the replacement for adaptive DFA
attack only relies on another two elements of Tj which can be collected by extra
2 executions with random plaintexts based on our further experiment. The cor-
relation between the number of plaintexts and the number of the adaptively
chosen elements of Tj is illustrated in Fig. 5. Note that each Tj has 256 elements
at most.

Fig. 5. The number of the plaintexts used to adaptively choose the pairwise ninth-
round inputs to form the elements of Tj .

Subsequently, the pairwise states at the first byte in each of four columns
are collected to form four corresponding Tj . The adaptive replacement between
the original pairwise state at ninth-round inputs and the elements in Tj is per-
formed to yield a result as the fault injection. After the fault-free ciphers and
faulty ciphertexts are recorded, the tools Jean Grey [32] is invoked to solve the
differential equations and recover the tenth-round key. The main key can be
obtained from the tenth-round key by using the key scheduling reversers sup-
ported by Stark [33] tools. To sum up, at least 5 executions (3 times for collecting
Tj and 2 times for the replacement of fault injection) of the white-box imple-
mentation can recover the 4-byte subkey of the tenth round. Totally at least 20
executions of encryption can extract the 16-byte tenth-round key.

4.2 Results of the Adaptive DCA on the Improved Masking
Method

The experiment focuses on collecting P0 as an example. The collision of y′
0

for (x0, x1, 0, 0) can help to choose the plaintexts of which the mask value are
identical to each other. Such that DCA can recover k0 and k1 based on the 2-
byte key guessing model [30]. Similarly, the collision of y′

0(0, 0, x2, x3) for all x2

and x3 helps to choose the plaintexts to retrieve k2 and k3 by DCA. Note that
the collision relies on the mapping on (F8

2)
2 → F

8
2. Based on the randomness

Adaptive Side-Channel Analysis Model and Its Applications 413

and uniformity of the mask, for each constant c ∈ F
8
2, there are 256 possible

inputs for y′
0(x0, x1, 0, 0) = c. This implies that 256 plaintexts (also 256 traces

with the same mask) at most help to recover a 2-byte key. The result shows
that 53,884 executions with the enumeration of (x0, x1) ∈ (F8

2)
2 can collect all

256 inputs which map to a same constant through the function y′
0 to form the

set P0. Subsequently, the elements in P0 are adaptively chosen as plaintexts for
the white-box implementation and thus the DCA attack can be mounted by the
tools [20,31].

Fig. 6. The number of the plaintexts used to adaptively choose the target plaintexts
which have a same mask value in y0 to form the elements of P0.

In practice, a 2-byte key leakage attack can be captured under DCA by
analyzing less than 256 traces. Our experimental result shows that at least 25
plaintexts in P0 can successfully help to recover the 2-byte key with the traces
that are composed of y0. Figure 6 shows the relation between the number of
the elements in P0 and the number of required plaintexts. The plaintexts are
adaptively chosen by enumerating (x0, x1) ∈ (F8

2)
2. Note that each P0 has 256

elements at most because of the uniform distribution with random mask. As
illustrated in Fig. 6, nearly 3,240 executions of encryption can help to collect
25 elements of P0. Note that each 2-byte key is obtained by DCA with chosen
4-byte plaintexts. Such that, in summary, at least about 3,265 executions (3,240
times for obtaining Pj corresponding to four 4-byte plaintexts and 25 times
for collecting computation traces which comprises the outputs of yj , for j =
0, 4, 8, 12) of the white-box implementation can recover four 2-byte subkeys of
the first round. Totally at least about 6,530 executions of encryption can extract
the 16-byte first-round key.

5 Adaptive SCA on Lee et al.’s Higher-Order
Countermeasures

In [26], Lee et al. also discussed an enhancement on the security of the table
redundancy method for protecting against DFA. The proposal increases the

414 Y. Tang et al.

number of redundant computations and is introduced as the higher-order version
of the table redundancy method in this paper. Higher-order table redundancy
consists of more than one redundant computation. This implies that the faults
need to be injected simultaneously on every state so that the combination of the
original and redundant computations still can induce the available faulty ciphers.
The higher-order adaptive DFA attack exploits the sets of pre-collected inter-
mediate values at the ninth-round inputs to implement a replacement between
the fault-free and faulty states. Such fault injection takes place in the ninth-
round inputs which are not affected by the XOR phase of table redundancy.
The required times of encryption for the adaptive DFA on higher-order table
redundancy does not increase due to the identical collection as the attack on the
one redundant computation.

Higher-order improved masking consists of more than one mask to enhance
the security for protecting against DCA attack. The higher-order adaptive DCA
needs to successively find the collisions of ms (refer to Sect. 2.5) to obtain the tar-
get plaintexts which have the same masks. Subsequently, the attacker can mount
a successful DCA attack by the chosen plaintexts and collecting the software
traces which include the value of vs (refer to Sect. 2.5). This process requires the
adaptive DCA attacker to collect the plaintexts from each mask table in turn.
The theoretical result shows that, to attack a third-order improved masking,
232 + 224 + 216 lookups of the mask tables can obtain 28 plaintexts which have
the same masks. However, it is worth noting that, the higher-order improved
masking is not practical for white-box implementations because the multiple
inputs of TypeII MIMO (refer to Fig. 2) will result in an exponential increase in
the space footprint.

6 Conclusion

In this paper, a novel SCA model has been proposed for introducing the adaptive
analysis and chosen-inputs SCA phases to traditional SCA attacks on WBC.
The new adaptive model is applied to Lee et al.’s improved countermeasures.
For the practical security of WBC, our results motivate to explore new SCA
countermeasures on WBC by concerning the abilities of adaptive SCA attacker.
In future work, it is interesting to build an adaptive algebraic analysis model
to break the state-of-the-art countermeasures of algebraic attacks (e.g., BGE
attack) on WBC.

Acknowledgments. We are grateful to the anonymous reviewers for their insight-
ful comments. This work was supported in part by National Key R&D Program of
China (2020AAA0107700), National Natural Science Foundation of China (62072192,
62072398), and National Cryptography Development Fund (MMJJ20180206). Fan
Zhang was also supported by Alibaba-Zhejiang University Joint Institute of Frontier
Technologies, by Zhejiang Key R&D Plan (2021C01116).

Adaptive Side-Channel Analysis Model and Its Applications 415

References

1. CHES 2017 capture the flag challenge - the WhibOx contest, an ecrypt white-
box cryptography competition. https://whibox.io/contests/2017/. Accessed 1 June
2021

2. CHES 2019 capture the flag challenge - the WhibOx contest edition 2. https://
whibox.io/contests/2019/. Accessed 1 June 2021

3. Pin - a dynamic binary instrumentation tool. https://software.intel.com/content/
www/us/en/develop/articles/pin-a-dynamic-binary-instrumentation-tool.html.
Accessed 1 June 2021

4. Amadori, A., Michiels, W., Roelse, P.: A DFA attack on white-box implementations
of AES with external encodings. In: Paterson, K.G., Stebila, D. (eds.) SAC 2019.
LNCS, vol. 11959, pp. 591–617. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-38471-5 24

5. Amadori, A., Michiels, W., Roelse, P.: Automating the BGE attack on white-box
implementations of AES with external encodings. In: 2020 IEEE 10th Interna-
tional Conference on Consumer Electronics (ICCE-Berlin), pp. 1–6. IEEE (2020).
https://doi.org/10.1109/ICCE-Berlin50680.2020.9352195

6. Banik, S., Bogdanov, A., Isobe, T., Jepsen, M.: Analysis of software countermea-
sures for whitebox encryption. IACR Trans. Symmetric Cryptol. 307–328 (2017).
https://doi.org/10.13154/tosc.v2017.i1.307-328

7. Billet, O., Gilbert, H., Ech-Chatbi, C.: Cryptanalysis of a white box AES imple-
mentation. In: Handschuh, H., Hasan, M.A. (eds.) SAC 2004. LNCS, vol. 3357, pp.
227–240. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30564-
4 16

8. Biryukov, A., Udovenko, A.: Attacks and countermeasures for white-box designs.
In: Peyrin, T., Galbraith, S. (eds.) ASIACRYPT 2018. LNCS, vol. 11273, pp. 373–
402. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03329-3 13

9. Bock, E.A., et al.: White-box cryptography: don’t forget about grey-box attacks.
J. Cryptol. 32(4), 1095–1143 (2019). https://doi.org/10.1007/s00145-019-09315-1

10. Alpirez Bock, E., Brzuska, C., Michiels, W., Treff, A.: On the ineffectiveness of
internal encodings - revisiting the DCA attack on white-box cryptography. In:
Preneel, B., Vercauteren, F. (eds.) ACNS 2018. LNCS, vol. 10892, pp. 103–120.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-93387-0 6

11. Bock, E.A., Treff, A.: Security assessment of white-box design submissions of the
CHES 2017 CTF challenge. IACR Cryptology ePrint Archive 2020, 342 (2020).
https://eprint.iacr.org/2020/342

12. Bos, J.W., Hubain, C., Michiels, W., Teuwen, P.: Differential computation analysis:
hiding your white-box designs is not enough. In: Gierlichs, B., Poschmann, A.Y.
(eds.) CHES 2016. LNCS, vol. 9813, pp. 215–236. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-53140-2 11

13. Bringer, J., Chabanne, H., Dottax, E.: White box cryptography: Another attempt.
IACR Cryptology ePrint Archive 2006, 468 (2006). https://eprint.iacr.org/2006/
468

14. Chow, S., Eisen, P., Johnson, H., van Oorschot, P.C.: A white-box DES imple-
mentation for DRM applications. In: Feigenbaum, J. (ed.) DRM 2002. LNCS, vol.
2696, pp. 1–15. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-
44993-5 1

https://whibox.io/contests/2017/
https://whibox.io/contests/2019/
https://whibox.io/contests/2019/
https://software.intel.com/content/www/us/en/develop/articles/pin-a-dynamic- binary-instrumentation-tool.html
https://software.intel.com/content/www/us/en/develop/articles/pin-a-dynamic- binary-instrumentation-tool.html
https://doi.org/10.1007/978-3-030-38471-5_24
https://doi.org/10.1007/978-3-030-38471-5_24
https://doi.org/10.1109/ICCE-Berlin50680.2020.9352195
https://doi.org/10.13154/tosc.v2017.i1.307-328
https://doi.org/10.1007/978-3-540-30564-4_16
https://doi.org/10.1007/978-3-540-30564-4_16
https://doi.org/10.1007/978-3-030-03329-3_13
https://doi.org/10.1007/s00145-019-09315-1
https://doi.org/10.1007/978-3-319-93387-0_6
https://eprint.iacr.org/2020/342
https://doi.org/10.1007/978-3-662-53140-2_11
https://eprint.iacr.org/2006/468
https://eprint.iacr.org/2006/468
https://doi.org/10.1007/978-3-540-44993-5_1
https://doi.org/10.1007/978-3-540-44993-5_1

416 Y. Tang et al.

15. Chow, S., Eisen, P., Johnson, H., Van Oorschot, P.C.: White-box cryptography
and an AES implementation. In: Nyberg, K., Heys, H. (eds.) SAC 2002. LNCS,
vol. 2595, pp. 250–270. Springer, Heidelberg (2003). https://doi.org/10.1007/3-
540-36492-7 17

16. De Mulder, Y., Roelse, P., Preneel, B.: Cryptanalysis of the Xiao – Lai white-box
AES implementation. In: Knudsen, L.R., Wu, H. (eds.) SAC 2012. LNCS, vol.
7707, pp. 34–49. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-
35999-6 3

17. De Mulder, Y., Roelse, P., Preneel, B.: Revisiting the BGE attack on a white-box
AES implementation. IACR Cryptology ePrint Archive 2013, 450 (2013). https://
eprint.iacr.org/2013/450

18. De Mulder, Y., Wyseur, B., Preneel, B.: Cryptanalysis of a perturbated white-box
AES implementation. In: Gong, G., Gupta, K.C. (eds.) INDOCRYPT 2010. LNCS,
vol. 6498, pp. 292–310. Springer, Heidelberg (2010). https://doi.org/10.1007/978-
3-642-17401-8 21

19. Dusart, P., Letourneux, G., Vivolo, O.: Differential fault analysis on A.E.S. In:
Zhou, J., Yung, M., Han, Y. (eds.) ACNS 2003. LNCS, vol. 2846, pp. 293–306.
Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45203-4 23

20. Fakub: White-box DPA processing: Scripts for trace acquisition, filtering,
processing and displaying results. https://github.com/fakub/White-Box-DPA-
Processing. Accessed 1 June 2021

21. Goubin, L., Paillier, P., Rivain, M., Wang, J.: How to reveal the secrets of an
obscure white-box implementation. J. Cryptogr. Eng. 10(1), 49–66 (2019). https://
doi.org/10.1007/s13389-019-00207-5

22. Goubin, L., Rivain, M., Wang, J.: Defeating state-of-the-art white-box countermea-
sures with advanced gray-box attacks. IACR Trans. Cryptogr. Hardware Embed-
ded Syst. 2020(3), 454–482 (2020). https://doi.org/10.13154/tches.v2020.i3.454-
482

23. Karroumi, M.: Protecting white-box AES with dual ciphers. In: Rhee, K.-H.,
Nyang, D.H. (eds.) ICISC 2010. LNCS, vol. 6829, pp. 278–291. Springer, Hei-
delberg (2011). https://doi.org/10.1007/978-3-642-24209-0 19

24. Keren, O., Polian, I.: IPM-RED: combining higher-order masking with robust
error detection. J. Cryptogr. Eng. 11(2), 147–160 (2020). https://doi.org/10.1007/
s13389-020-00229-4

25. Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999).
https://doi.org/10.1007/3-540-48405-1 25

26. Lee, S., Jho, N.S., Kim, M.: Table redundancy method for protecting against fault
attacks. IEEE Access 9, 92214–92223 (2021). https://doi.org/10.1109/ACCESS.
2021.3092314

27. Lee, S., Kim, M.: Improvement on a masked white-box cryptographic implementa-
tion. IEEE Access 8, 90992–91004 (2020). https://doi.org/10.1109/ACCESS.2020.
2993651

28. Lee, S., Kim, T., Kang, Y.: A masked white-box cryptographic implementation for
protecting against differential computation analysis. IEEE Trans. Inf. Forensics
Secur. 13(10), 2602–2615 (2018). https://doi.org/10.1109/TIFS.2018.2825939

29. Muir, J.A.: A tutorial on white-box AES. In: Kranakis, E. (eds.) Advances in
Network Analysis and Its Applications. MATHINDUSTRY, vol. 18, pp. 209–229.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-30904-5 9

https://doi.org/10.1007/3-540-36492-7_17
https://doi.org/10.1007/3-540-36492-7_17
https://doi.org/10.1007/978-3-642-35999-6_3
https://doi.org/10.1007/978-3-642-35999-6_3
https://eprint.iacr.org/2013/450
https://eprint.iacr.org/2013/450
https://doi.org/10.1007/978-3-642-17401-8_21
https://doi.org/10.1007/978-3-642-17401-8_21
https://doi.org/10.1007/978-3-540-45203-4_23
https://github.com/fakub/White-Box-DPA-Processing
https://github.com/fakub/White-Box-DPA-Processing
https://doi.org/10.1007/s13389-019-00207-5
https://doi.org/10.1007/s13389-019-00207-5
https://doi.org/10.13154/tches.v2020.i3.454-482
https://doi.org/10.13154/tches.v2020.i3.454-482
https://doi.org/10.1007/978-3-642-24209-0_19
https://doi.org/10.1007/s13389-020-00229-4
https://doi.org/10.1007/s13389-020-00229-4
https://doi.org/10.1007/3-540-48405-1_25
https://doi.org/10.1109/ACCESS.2021.3092314
https://doi.org/10.1109/ACCESS.2021.3092314
https://doi.org/10.1109/ACCESS.2020.2993651
https://doi.org/10.1109/ACCESS.2020.2993651
https://doi.org/10.1109/TIFS.2018.2825939
https://doi.org/10.1007/978-3-642-30904-5_9

Adaptive Side-Channel Analysis Model and Its Applications 417

30. Rivain, M., Wang, J.: Analysis and improvement of differential computation attacks
against internally-encoded white-box implementations. IACR Trans. Cryptogr.
Hardware Embedded Syst. 225–255 (2019). https://doi.org/10.13154/tches.v2019.
i2.225-255

31. Side-Channel-Marvels: Deadpool: Repository of various public white-box cryp-
tographic implementations and their practical attacks. https://github.com/
SideChannelMarvels/Deadpool. Accessed 1 June 2021

32. Side-Channel-Marvels: JeanGrey: A tool to perform differential fault analysis
attacks (DFA). https://github.com/SideChannelMarvels/JeanGrey. Accessed 1
June 2021

33. Side-Channel-Marvels: Stark: Repository of small utilities related to key recovery.
https://github.com/SideChannelMarvels/Stark. Accessed 1 June 2021

34. Teuwen, P., Hubain, C.: Differential fault analysis on white-box AES imple-
mentations. https://blog.quarkslab.com/differential-fault-analysis-on-white-box-
aes-implementations.html. Accessed 1 June 2021

35. Xiao, Y., Lai, X.: A secure implementation of white-box AES. In: 2009 2nd Inter-
national Conference on Computer Science and its Applications, pp. 1–6. IEEE
(2009). https://doi.org/10.1109/CSA.2009.5404239

36. Zeyad, M., Maghrebi, H., Alessio, D., Batteux, B.: Another look on bucketing
attack to defeat white-box implementations. In: Polian, I., Stöttinger, M. (eds.)
COSADE 2019. LNCS, vol. 11421, pp. 99–117. Springer, Cham (2019). https://
doi.org/10.1007/978-3-030-16350-1 7

https://doi.org/10.13154/tches.v2019.i2.225-255
https://doi.org/10.13154/tches.v2019.i2.225-255
https://github.com/SideChannelMarvels/Deadpool
https://github.com/SideChannelMarvels/Deadpool
https://github.com/SideChannelMarvels/JeanGrey
https://github.com/SideChannelMarvels/Stark
https://blog.quarkslab.com/differential-fault-analysis-on-white-box-aes-implementations.html
https://blog.quarkslab.com/differential-fault-analysis-on-white-box-aes-implementations.html
https://doi.org/10.1109/CSA.2009.5404239
https://doi.org/10.1007/978-3-030-16350-1_7
https://doi.org/10.1007/978-3-030-16350-1_7

Public Key Cryptography

Fully Secure Lattice-Based ABE
from Noisy Linear Functional Encryption

Geng Wang(B), Ming Wan, Zhen Liu, and Dawu Gu

School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong
University, Shanghai 100072, People’s Republic of China

wanggxx@sjtu.edu.cn

Abstract. Constructing lattice-based fully secure attribute-based
encryption (ABE) has always been a challenging task. Although there
are many selective secure ABE schemes from the hardness of learning
with errors (LWE) problem, it is hard to extend them to fully security,
since the dual system technique in pairing-based cryptography cannot
be applied to lattice-based constructions.

In this paper, we take a different approach: constructing fully secure
ABE from another primitive called noisy linear functional encryption
(NLinFE) which can be constructed from LWE problem. We give a fully
secure ciphertext-policy ABE scheme for CNF formulae which security
relies on the security of NLinFE and hardness of LWE. Since current
constructions for NLinFE only satisfy bounded collusion security, our
resulting scheme is also bounded collusion only, but it can be easily
extended into unbounded security if unbounded NLinFE can be shown
to exist. Also, since existing NLinFE schemes are inefficient, we give a
new construction for NLinFE with better efficiency, hence our ABE con-
struction is more efficient than other existing bounded collusion ABE/FE
schemes.

Keywords: Attribute-based encryption · Noisy linear functional
encryption · LWE · Lattice-based cryptography

1 Introduction

Attribute-based Encryption (ABE for short) was first brought by Sahai and
Waters in 2005 [37]. In an ABE scheme, the decryption is correct only if the
provided attribute set satisfies a certain access policy. By using different types
of access policies, ABE can handle flexible access control matters, without using
complex key distribution techniques. There are mainly two types of ABE, one
is called key-policy ABE (KP-ABE) [25], other is called ciphertext-policy ABE
(CP-ABE) [10]. In KP-ABE, the access policy is embedded in the decryption
key, while the ciphertext is related to a set of attributes; in CP-ABE, the access
policy is embedded in the ciphertext, and attributes are related to the decryption
key, held by the users. In [13], ABE is considered as a special case of a more gen-
eralized primitive called functional encryption (FE), which given an encrypted
c© Springer Nature Switzerland AG 2021
Y. Yu and M. Yung (Eds.): Inscrypt 2021, LNCS 13007, pp. 421–441, 2021.
https://doi.org/10.1007/978-3-030-88323-2_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-88323-2_23&domain=pdf
https://doi.org/10.1007/978-3-030-88323-2_23

422 G. Wang et al.

data Enc(x), calculate the function output f(x) of an encrypted message for a
certain class of function class f ∈ F .

Most of these early ABE schemes [10,19,25,33,36,41] are from a weak secu-
rity model, which is called selective security. In a selective security model,
the adversary must first give the challenge policy (for CP-ABE) or challenge
attribute set (for KP-ABE) before it was allowed to get the public key and
query for secret keys. It is easy to see that the selective security model greatly
restricts the ability of the adversary, and cannot handle many types of real world
attacks.

Many researchers focus on removing the restriction to get full security for
ABE schemes. Many different approaches have been proposed, but the most suc-
cessful one among them is the dual-system encryption method, given by Waters
in 2009 [40]. Although the original method is for IBE and HIBE, which are
only simplified versions of ABE, it was soon used to construct fully secure ABE
schemes for various access policies, as in [9,18,27–30,42].

The schemes above are constructed in bilinear groups, which suffer from
quantum attacks. Recently, many researchers have been working on construct-
ing ABE schemes using lattice assumptions, such as learning with error (LWE)
problem [3,4,14]. Lattice-based ABE schemes are not only quantum secure, but
also more powerful than schemes in bilinear groups, as they support much richer
classes of access policies, even for arbitrary circuits [12,16,23].

However, the existing schemes are only selective secure, except for some
recent works [26,38] that can only support a quite weak class of access poli-
cies. Since the original dual-system method is highly related to the properties
of pairing in bilinear groups, it was not known whether there exists an ana-
logue for dual-system in lattice, which could be used to prove the full security of
lattice-based ABE schemes. This question has been raised in many earlier works,
and has been considered as a long time open problem in lattice-based cryptog-
raphy. In this paper, we present a similar method for constructing fully secure
lattice-based ABE schemes using noisy linear functional encryption (NLinFE),
also give a CP-ABE scheme supporting CNF policies and prove its full security
in the standard model.

The security properties of our constructed CP-ABE scheme rely on the secu-
rity properties of the underlying NLinFE scheme. With bounded collusion public-
key NLinFE in [7] (eprint version), and secret-key NLinFE in [1,6], we get both
a fully secure bounded collusion CP-ABE and a fully secure secret-key CP-
ABE from lattice assumptions. We also give a construction for NLinFE with
weaker security which only supports random key queries, but outperforms [7] in
the ciphertext size, hence get a bounded collusion CP-ABE which has shorter
ciphertexts. If public key unbounded NLinFE can be proven to exist, we can
simply construct a fully secure unbounded CP-ABE supporting CNF policies,
which beats all current results.

Fully Secure Lattice-Based ABE from NLinFE 423

1.1 Related Works

There are currently a few researches working on lattice-based fully secure
identity-based encryption (IBE) [2,15,17,43], which can be considered as ABE
which access policy is point function. These security proofs rely on various prim-
itives, such as admissible hash or pseudorandom functions. It is not known how
these techniques can be used for other access policies. In [23], the authors claimed
that using a result from [11], the selective security of the scheme can be extended
to full security assuming the subexponential hardness of LWE. Despite the non-
standardness of the hardness assumption, it seems that this method cannot be
extended into CP-ABE schemes. In [16,24], the authors focused on semi-adaptive
security of ABE schemes. Although stronger than selective security, it is still
weaker than full security.

In [38], the author gave the first fully secure ABE scheme (other than IBE)
from standard LWE assumption using a new primitive called conforming cPRF,
which is a huge step forward. However, the access policy is only t-CNF for a
constant t, which means that each clause exactly contains t literals. A similar
construction is from [26] which supports inner products. These are weaker than
our access policy, which is (unrestricted) CNF. The authors claimed that the
access policy is only related to the expressibility of the conforming cPRF, how-
ever, constructing conforming cPRF supporting various access policies seems to
be extremely difficult. Despite the complexity in the conforming cPRF itself,
the function needs to be evaluated through key-homomorphic encryption [12],
which makes the scheme almost impossible for implementation, while our scheme
is more simple and efficient for implementation.

In [39], a fully secure decentralized ABE is constructed from inner product
encryption based on LWE assumption [5]. The idea of using NLinFE in our
scheme is partly borrowed from the use of (non-approximate) IPE in their work.
Their construction is also with bounded collusion. We note that our result highly
overlaps with this work. (Using similar techniques, it seems that our scheme can
also be made decentralized, but we will not discuss that in this paper.) However,
the number of calls to IPE is related to the vector dimension of IPE, hence the
number of key queries, while our number of calls to NLinFE is only related to
the access policy, which leads to a more efficient scheme.

It seems that fully secure ABE with bounded collusion can also be instan-
tiated by fully secure functional encryption with bounded collusion as in
[5,7,21,22]. However, since these constructions are for arbitrary polynomial cir-
cuits, their schemes have larger ciphertexts, and are more complex and hard to
implement compared with ours.

The Table 1 below compares the ciphertext size between this work and other
ABE or FE schemes with bounded collusion, where Q is the number of key
queries. We also point out that in [8], the authors introduced a new technique on
any bounded collusion schemes, such that the ciphertext size which is polynomial
in Q becomes polynomial in the security parameter λ and linear in Q (e.g. the
ciphertext size of our construction becomes O(Qλ log λ) instead of O(Q log Q)).
This does not change the fact that our ciphertext size is smaller than others.

424 G. Wang et al.

Table 1. Compare with other bounded collusion ABE and FE

Supporting functions Ciphertext size CT Size with [AV19]

GVW12 [22] P/poly O(Q4) O(Qλ4)

AR17 [7] P/poly O(Q2) O(Qλ2)

WFL19 [39] 0-1 LSSS O(Q2 log Q) O(Qλ2 log λ)

This work CNF O(Q log Q) O(Qλ log λ)

2 Preliminaries

Notations. x ← χ for a distribution χ means that x is sampled from χ. x ← X
for a set X means that x is uniformly random chosen from X. For any odd
modulus q, Zq and the operation mod q takes value from [− q−1

2 , q−1
2]. We say

that ε is negligible in λ, if ε < 1/Ω(λc) for any c > 0 for sufficiently large λ. For
two distributions X,Y , let Δ(X,Y) be the statistical distance between X and
Y . ‖.‖ is the 2-norm, while ‖.‖∞ is the infinity norm.

2.1 Conjunctive Normal Form

Definition 2.1. Let L be a set of literals (a literal is either α or ¬α for some
variable α), and T1, ..., Tk ⊆ L be a set of clauses.

A conjunctive normal form (CNF) is a boolean function f =
∧k

i=1(
∨

Ti),
which inputs a set of literals L ⊆ L (for each variable α, α and ¬α not both in
L), and outputs the value f(L) =

∧k
i=1(

∨
Ti(L)). Here

∨
Ti(L) = 1 if and only

if Ti ∩ L �= ∅.
Let l = |L|, and we label the literals in L by 1 to l.

Note that we do not consider the relationship between α and ¬α, and sim-
ply let them be two different elements. Such representation does not lower the
expressibility of CNF policy. In fact, our definition is stronger than boolean for-
mulas: for an attribute (literal) set L, we allow that both α and ¬α are not in
L, which means that we “do not care” the value of α, as in [19].

2.2 Ciphertext-Policy Attribute-Based Encryption

Definition 2.2. A CP-ABE scheme for CNF formula f consists of four algo-
rithms (Setup,Enc,KeyGen,Dec):

– Setup(1λ) → (mpk,msk): The setup algorithm gets as input the security
parameter λ, and outputs the public parameter mpk, and the master key msk.

– Enc(mpk, f,m) → ctf : The encryption algorithm gets as input mpk, a CNF
formula f , and a message m ∈ M. It outputs a ciphertext ctf . Note that the
policy is known if we know the ciphertext.

Fully Secure Lattice-Based ABE from NLinFE 425

– KeyGen(msk, L) → skL: The key generation algorithm gets as input msk and
a set of literals L. It outputs a secret key skL.

– Dec(skL, ctf) → m: The decryption algorithm gets as input a secret key and
a ciphertext, and outputs either ⊥ or a message m ∈ M.

The CP-ABE scheme is correct if and only if the decryption algorithm returns
the correct message when f(L) = 1, and returns ⊥ when f(L) = 0.

Definition 2.3. A CP-ABE scheme is fully secure, if for any adversary, the
advantage of winning the following CPA-CP-ABE game is negligible:

Setup. The challenger runs Setup and gives the adversary mpk.
Phase 1. The adversary submits a set of literals L for a KeyGen query.

These queries can be repeated adaptively.
Challenge. The adversary submits two messages m0 and m1 of equal length,

and a CNF formula f , and f(L) = 0 for all previously queried L. The challenger
chooses a random bit b ∈ {0, 1}, and encrypts mb under f . The encrypted cipher-
text ctf is returned to the adversary.

Phase 2. The adversary repeats Phase 1 to get more secret keys. Each
queried L must have f(L) = 0.

Guess. The adversary outputs a guess b′ for b.
The advantage of an adversary A in the CPA-CP-ABE game is defined by

AdvABE
A (λ) = |Pr[b′ = b] − 1/2|.

2.3 Lattice and Smoothing Parameters

Definition 2.4. Let b1, ...,bn be a set of vectors in R
m for m ≥ n. A lattice Λ

is defined as {∑n
i=1 cibi : c1, ..., cn ∈ Z}, and b1, ...,bn is called a basis of Λ.

Definition 2.5 [34].
Given its center c ∈ Z

m, for vector x ∈ Z
m, let ρs,c(x) =

exp(−π‖x − c‖2/s2).
For a lattice Λ and c ∈ Z

m, the discrete Gaussian distribution DΛ,s,c is
defined as:

DΛ,s,c(x) =
ρs,c(x)

∑
v∈Λ ρs(v)

.

DΛ,s,c is sometimes also written as DΛ+c,s, Λ + c is a lattice coset. We also
write ρs(Λ) =

∑
v∈Λ ρs(x).

There is an important property for lattice called smoothing parameter,
defined as below:

Definition 2.6 [32]. For any n-dimensional lattice Λ and ε > 0, the smoothing
parameter ηε(Λ) is the smallest s such that ρ(Λ∗ − {0}) ≤ ε, where Λ∗ = {x ∈
R

n : ∀v ∈ Λ, 〈x,v〉 ∈ Z}.
The following properties for lattice are related to its smoothing parameter,

and will be used in our proof.

426 G. Wang et al.

Lemma 2.1 [20]. For any n-dimensional lattice Λ, ε > 0, and any ω(
√

log n)
function, there is a negligible ε(n) for which ηε(Λ) ≤ ω(

√
log n)/λ∞

1 (Λ∗), λ∞
1 (Λ∗)

is the length of shortest non-zero vector in Λ∗.

Lemma 2.2 [20]. For any n-dimensional lattice Λ, c ∈ span(Λ), real ε ∈ (0, 1),
and s ≥ ηε(Λ), Prx←DΛ,s,c [‖x − c‖ > s

√
n] ≤ 1+ε

1−ε · 2−n.

Lemma 2.3 [38]. Let y ∈ Z, the statistical difference between DZ,σ and DZ,σ +y
is at most |y|/σ.

2.4 Lattice Trapdoor and Learning with Error

The following lemma in [20,31] shows that there exists a trapdoor and a preimage
sampling algorithm for discrete Gaussian distribution.

Lemma 2.4 [20,31]. There is an efficient algorithm TrapSamp(1n, 1m, q) that,
given n ≥ 1, q ≥ 2, m = Ω(n log q), outputs A ∈ Z

n×m
q and a “trapdoor” T such

that the distribution of A is negl(n)-close to uniform.
Moreover, let Λ⊥

u (A) = {x : Ax = u} (which is a lattice coset). Then
there is an efficient randomized algorithm SamplePre that for any u ∈ Z

n
q ,

s = Ω(
√

n log q), SamplePre(A,T,u, s) outputs a vector r ∈ Z
m, which dis-

tribution is statistically close to DΛ⊥
u (A),s (with negligible distance).

We sometimes omit the parameter s if there is no confusion.
The following lemma is required for our security proof:

Lemma 2.5. Let (A,T) ← TrapSamp(1n, 1m, q), (A′,T′) ← TrapSamp(1n′
, 1m,

q), n′ > n, and we write A′ =
(
Ā
Ã

)
, Ā ∈ Z

n×m
q , and Ã ∈ Z

(n′−n)×m
q . Then there

exists s > 0 such that the following two distribution are statistically indistinguish-
able:

– A,x ← SamplePre(A,T,u, s);
– Ā, x̄ ← SamplePre(A′,T′,

(
u
b

)
, s), where b ← Z

n′−n
q .

Proof. See Appendix A. ��
Now we introduce our hardness assumption: the (decisional) learning with

error (LWE) problem, first introduced in [35]. It has the nice property called
worst-case to average-case reduction: solving LWE on the average is as hard as
(quantumly) solving GapSVP and SIVP problems in the worst case.

Definition 2.7 (LWE problem) [35]. For a vector s ∈ Z
n
q called the secret, the

LWE distribution As,χ over Z
n
q × Zq is sampled by choosing a ← Z

n
q uniformly

at random, choosing e ← χ, and outputting (a, b = sTa + e mod q).
The decisional learning with errors (LWE) problem LWEn,q,χ,m is that given

m independent samples (ai, bi) ∈ Z
n
q × Zq where the samples are distributed

according to either As,χ for a uniformly random s or the uniform distribution,
distinguish which is the case with non-negligible advantage.

Fully Secure Lattice-Based ABE from NLinFE 427

For parameters, it is often required that m = poly(n), q = O(2nε

) for some
ε > 0, and χ is the discrete Gaussian. We say that the distribution χ is β-
bounded, if |χ| ≤ β with overwhelming probability. We can choose appropriate
parameters for χ to be β-bounded given β = poly(λ) such that LWEn,q,χ,m is
hard.

We give a lemma which will be used in our proof:

Lemma 2.6. For s ← Z
n
q , let {(ai, bi)}i∈[m] be sampled from As,χ. Let M ⊆ [m],

and {(a′
i, b

′
i)}i∈[m] be defined as: for i ∈ M , (a′

i, b
′
i) ← As,χ, otherwise (a′

i, b
′
i) is

uniformly random. Then {(ai, bi)}i∈[m] and {(a′
i, b

′
i)}i∈[m] are indistinguishable

assuming the hardness of LWEn,q,χ,m.

Proof. Let {(a∗
i , b

∗
i)}i∈[m] be a set of m uniformly random samples, then it is

indistinguishable with {(ai, bi)}i∈[m] from the hardness of LWEn,q,χ,m. For those
i ∈ M , we replace only (a∗

i , b
∗
i) by LWE samples from As,χ to get {(a′

i, b
′
i)}i∈[m],

and the two are also indistinguishable from the hardness of LWEn,q,χ,m. ��
Below we also use another assumption called mheLWE [5], which hardness

can be reduced to the standard LWE assumption.

Definition 2.8 [5]. Let q,m, t be integers, σ be a real and τ be a distribution
over Z

t×m, all of them functions of a parameter n. The multi-hint extended-
LWE problem mheLWEn,q,σ,m,t,τ is to distinguish between the distributions of the
tuples: (A,A · s + e,Z,Z · e) and (A,u,Z,Z · e), where A ← Z

m×n
q , s ← Z

n
q ,

u ← Z
m
q , e ← Dm

Z,σ, and Z ← τ .

Lemma 2.7 [5]. Let n ≥ 100, q ≥ 2, t < n and m with m = Ω(n log n) and
m ≤ nO(1). There exists ξ ≤ O(n4m2 log 5/2n) and a distribution τ over Z

t×m

such that the following statements hold:

– There is a reduction from LWEn−t,q,σ,m in dimension to mheLWEn,q,σξ,m,t,τ

that reduces the advantage by at most 2Ω(t−n);
– It is possible to sample from τ in time polynomial in n;
– Each entry of matrix τ is an independent discrete Gaussian τi,j = DZ,σi,j ,ci,j

for some ci,j ∈ {0, 1} and σi,j ≥ Ω(
√

mn log m);
– All rows from a sample from τ have norms ≤ ξ without a negligible probability.

3 Noisy Linear Functional Encryption with Bounded
Collusion

In this section, we construct an indistinguishability-based secure noisy linear
functional encryption scheme with random key queries. Our construction is sim-
ilar to the inner-product encryption scheme in [5].

Definition 3.1. An NLinFE scheme consists of the following algorithms:

– Setup(1λ, 1l): output a pair (PK,MSK).
– KeyGen(MSK,x): for x ∈ Z

l
q, output a secret key skx.

428 G. Wang et al.

– Enc(PK,y): for y ∈ Z
l
q, output a ciphertext cty.

– Dec(cty, skx): Output an approximate inner product for y,x.

An NLinFE scheme is γ-correct if for any cty ← Enc(PK,y) and skx ← KeyGen
(MSK,x), |Dec(cty, skx)−〈y,x〉| mod q ≤ γ except for a negligible probability.

Now we give our construction for NLinFE with random keys.

– Setup(1λ, 1l): Let τ be a distribution over Z
(l+1)×m as in the definition of

mheLWE. Sample A ← Z
m×n
q and Z ← τ (as defined in Lemma 2.7), compute

U = Z · A ∈ Z
(l+1)×n
q . Let PK = (A,U) and MSK = Z.

– KeyGen(MSK,x): Given a vector x ∈ Z
l which is indistinguishable from

DZl,σ, let x̄ =
(
x
0

)
, return the secret key skx = (x, zx := x̄TZ ∈ Z

m).
– Enc(PK,y): To encrypt a vector y ∈ Z

l
q, let ȳ =

(
y
α

)
, α ← Zq. Sample s ∈ Z

n
q ,

e0 ← Dm
Z,σ, e1 ← Dl+1

Z,σ′ , and compute ct = (c0 = A·s+e0, c1 = U·s+e1+ȳ).
– Dec(ct, skx): Let ct = (c0, c1), compute μ = 〈x, c1〉 − 〈zx, c0〉.

Note that we add restrictions on x in each KeyGen query, such that x is indis-
tinguishable from a specific distribution: say, DZl,σ. This limits the usage of our
NLinFE scheme. However, it is enough to construct the required ABE scheme.

Correctness. Since 〈x,y〉 = 〈x̄, ȳ〉, we see that (〈x̄, c1〉 − 〈zx, c0〉) − 〈x,y〉 =
〈x̄, e1〉 − 〈zx, e0〉. By Lemma 2.2, we have that ‖x̄‖ ≤ σ

√
l, ‖zx‖ ≤

σ max{σi,j}l
√

m, ‖e0‖ ≤ σ
√

m, ‖e1‖ ≤ σ′√l. So the scheme is γ-correct for
γ ≥ σσ′l + σ2 max{σi,j}lm.

We define the fully indistinguishability-based security by the following inter-
active game:

Definition 3.2. An NLinFE scheme with random keys is fully β-indistinguish-
ability-based secure, if for any adversary, the advantage of winning the following
game is negligible:

Setup. The challenger runs the Setup algorithm and gives the adversary
PK.

Phase 1. The adversary submits a vector x for a KeyGen query which
distribution is indistinguishable from DZl,σ. The challenger answers with a secret
key skx for x. These queries can be repeated adaptively.

Challenge. The adversary chooses two challenge messages y0,y1 and gives
it to the challenger. The challenger first checks whether for all queried x, there is
|〈x,y0 −y1〉| ≤ β. If this does not hold, then the challenger aborts. Otherwise, it
chooses a random bit b ∈ {0, 1}, and returns cty = Enc(PK,yb) to the adversary.

Phase 2. The adversary repeats Phase 1, under the restriction that each
queried x satisfies that |〈x,y0 − y1〉| ≤ β.

Guess. The adversary outputs a guess b′ for b, and the winning advantage
is defined as |Pr[b′ = b] − 1/2|.
Theorem 3.1. For some properly chosen σ, τ, σ′, q, n, l < n and m =
Θ(n log q), the NLinFE scheme above is fully indistinguishability-based
secure with k-bounded collusion for k ≤ l/3, assuming the hardness of
mheLWEn,q,σ,m,l,τ .

Fully Secure Lattice-Based ABE from NLinFE 429

Proof. The proof of this theorem is similar to the proof in [5]. We refer the
readers to AppendixB.

We see that the number of maximal key queries can be bounded by l/3
where l is the vector dimension, hence the vector dimension must grow linearly
in Q. We note that in order to successfully decrypt, the modulus q should also
grow polynomially in the vector dimension, so it leads to a ciphertext size of
O(Q log Q). This is better than [7] where the modulus q grows exponentially in
the vector dimension, which leads to O(Q2) ciphertext size.

4 Fully Secure CP-ABE Scheme for CNF Policies

4.1 Construction

Let NLinFE be γ-correct and β-indistinguishability-based secure as in Sect. 3.
We choose a β-bounded error distribution χ, and β/γ = O(2−λε

) for some ε > 0.
The CP-ABE scheme is constructed as follows:

– Setup(1λ, 1l): Let l be the maximal number of literals. Sample l+1 uniformly
random matrixes in Z

n×m
q along with trapdoor: (A1,T1), ..., (Al,Tl), (A,T),

and a uniformly random vector u ∈ Z
n
q . Run NLinFE.Setup l + 1 times

to generate (PK1,MSK1), ..., (PKl,MSKl), (PK,MSK). Output mpk =
(A1, ...,Al,A,u, PK1, ..., PKl, PK), and msk = (T1, ...,Tl,T,MSK1, ...,
MSKl,MSK).

– KeyGen(msk,L): Randomly choose a ∈ Z
n
q . Sample x ∈ Z

m such that Ax =
a+u, and use NLinFE.KeyGen(MSK,x) to generate an NLinFE secret key
K. For each literal i ∈ L, sample xi ∈ Z

m such that Aixi = a, and use
NLinFE.KeyGen(MSKi,xi) to generate an NLinFE secret key Ki. Return the
secret key K, {Ki}i∈L.

– Enc(mpk, f, μ): Let T1, ..., Tk be clauses in f . Generate uniform s1, ..., sk ∈ Z
n
q .

For each j ∈ Ti, let Ci,j = NLinFE.Enc(PKj , sT
i Aj). Let C = NLinFE.Enc

(PK, (
∑k

i=1 si)TA), and C ′ = (
∑k

i=1 si)Tu + μ�q/2� + ē, ē ← χ. Return the
ciphertext ({Ci,j}i∈[k],j∈Ti

, C, C ′).
– Dec(ctf , skL): First check if L satisfy the policy f . If f(L) = 1, then for each

i ∈ [k], there is at least one literal li ∈ L∩Ti, let di = NLinFE.Dec(Kli , Ci,li).
Let d = NLinFE.Dec(K,C). Calculate (

∑k
i=1 di) − d + C ′, if the value is close

to 0, return 0; if the value is close to q/2, return 1.

Theorem 4.1. Let q > 4(l + 1)γ + 4β, and NLinFE is γ-correct. Then the
CP-ABE scheme above is correct.

Proof. First, by the correctness of NLinFE, for j ∈ L ∩ Ti, di = sT
i Ajxj + ei =

sT
i a+ ej , |ej | ≤ γ. Also, d = (

∑k
i=1 si)TAx+ e = (

∑k
i=1 si)T (a+u)+ e, |e| ≤ γ.

So (
∑k

i=1 di) − d + C ′ = μ�q/2� +
∑k

i=1 ei − e + ē, which is (l + 1)γ + β-close
to 0 or �q/2�. Since (l + 1)γ + β < q/4, we can get the correct message. ��

430 G. Wang et al.

Now we give the security result of the scheme above.

Theorem 4.2. The construction above is fully secure under bounded collusion,
assuming the existence of an indistinguishability-based secure NLinFE scheme
with bounded collusion and the hardness of LWE problem.

We combine Theorem 4.2, Theorem 3.1 and Lemma 2.7, and immediately
get the following result:

Corollary 4.3. The construction above is fully secure under bounded collusion,
assuming the hardness of LWE problem.

4.2 Hyper-functional Keys and Semi-functional Ciphertexts

Now we are ready to prove Theorem 4.2. But before we start the security proof,
we first define hyper-functional secret keys and semi-functional ciphertexts.

Hyper-functional Key. For a hyper-functional key, we not only change the key
generation algorithm, but also the setup algorithm. In Setup, instead of gen-
erating A along with its trapdoor, we generate A′ ∈ Z

(n+1)×m
q along with its

trapdoor T′. We write the first n rows of A′ as A, and the last row as ãT ,
which means that A′ =

(
A
ãT

)
. A is included in the public key as normal. We also

generate t ← Z
n
q .

For KeyGen queries, we first sample e′, e ← χ. Let x ← SamplePre(A′,T′,(
a+u

tT (a+u)+e′+ē+e

)
). Then we have (ãT − tTA)x = e′ + ē + e ≈ 0. Let K ←

NLinFE.KeyGen(MSK,x) and other key elements generated the same as normal.
We say that the secret key is hyper-functional related to ãT − tTA.

Note that we also say that a the secret key is “normal”, if x ← SamplePre(A′,
T′,

(
a+u

b

)
) for b ← Zq.

For the indistinguishability between hyper-functional and normal keys, we
have the following lemma:

Lemma 4.4. Let (A0,T0) ← TrapSamp(1n, 1m, q). For i ∈ [Q] and ai ← Z
n
q ,

xi
0 = SamplePre(A0,T0,ai). Let (A′,T′) ← TrapSamp(1n+1, 1m, q), xi

1 = Sample

Pre(A′,T′,
(

ai

a′i+ei

)
), where A′ =

(
A1
ã

)
, ei ← χ, a′i ∈ Zq. Then (A0, {xi

0}i∈[Q]) is
computationally indistinguishable from (A1, {xi

1}i∈[Q]) assuming the hardness of
LWE.

Proof. We prove the lemma by showing the following distributions are pairwise
indistinguishable (either statistical or computational).

– (1) Let (A′′,T′′) ← TrapSamp(12n+1, 1m, q), A′′T = (AT
2 |ĀT |āT). Let

xi
2 = SamplePre(A′′,T′′, (aiT |b̄i

T |b̄i)
T
), where b̄i ← Z

n
q and b̄i ←

Zq. By Lemma 2.5, (A0, {xi
0}i∈[Q]) is statistically indistinguishable from

(A2, {xi
2}i∈[Q]).

Fully Secure Lattice-Based ABE from NLinFE 431

– (2) We first choose b̃i ← Z
n
q and write b̄i = b̃i + a′i. This does not change the

distribution.
– (3) We first choose s ← Z

n
q , let b̄′i = sT b̄i + ei + a′i, and let x′

2
i =

SamplePre(A′′,T′′, (aiT |b̄i
T |b̄′i)

T
). By the hardness of LWE problem, any

adversary cannot distinguish between b̄i, b̃i and b̄i, sT b̄i + ei, hence cannot
distinguish between xi

2 and x′
2
i.

– (4) Let ã = ā − ĀT s, and we have ãTx′
2
i = a′i + ei.

– (5) This time we write A′′T = (AT
2 |ĀT |ãT), and set x′′

2
i = SamplePre(A′′,

T′′, (aiT |b̄i
T |a′i + ei)

T
). Then x′

2
i and x′′

2
i are from the same distribution.

– (6) By Lemma 2.5, (A2, {x′′
2

i}i∈[Q]) is statistically indistinguishable from
(A1, {xi

1}i∈[Q]).

��

Semi-functional Ciphertext. A ciphertext is semi-functional, if the ciphertext
element C is NLinFE.Enc(PK,

(
∑k

i=1 si − t)TA + ã) instead of NLinFE.Enc(PK, (
∑k

i=1 si)TA).
It follows directly from the indistinguishable security of NLinFE that a semi-

functional ciphertext element is indistinguishable from a normal one if all secret
keys are hyper-functional.

Along with hyper-functional keys and semi-functional ciphertexts, we also
define temporary hyper-functional keys and i-temporary semi-functional cipher-
texts, which will be used in our security proof. We note that in our defini-
tion, “hyper-functional” and “temporary hyper-functional” form two indepen-
dent dimensions: a temporary hyper-functional key can be either normal or
hyper-functional.

Temporary Hyper-functional Key. Let l be the number of literals. Like the defini-
tion of hyper-functional keys, we not only change the key generation algorithm,
but also the setup algorithm. In Setup, instead of generating Aj , j ∈ [l] along
with its trapdoor, we generate A′

j ∈ Z
(n+1)×m
q along with its trapdoor T′

j . We
write the first n rows of A′

j as Aj , and the last row as ãj
T , which means that

A′
j =

(Aj

ãj
T

)
. Aj is included in the public key as normal.

For KeyGen queries, let L be the queried literal set. For j ∈ L, let xj ←
SamplePre(A′

j ,T
′
j ,

(
a

tT a+e′+ej

)
), where ej ← χ, and if the key is normal, we

sample e′ ← χ, if the key is hyper-functional, we use the same e′ as in the
generation of x. Then we have (ãj

T − tTAj)xj = e′ + ej ≈ 0. Let Kj ←
NLinFE.KeyGen(MSKj ,xj). We say that the secret key is temporary hyper-
functional related to {ãT

j − tTAj}j∈S .
We can also use Lemma 4.4 to prove the indistinguishability between normal/

hyper-functional keys and temporary hyper-functional keys.

432 G. Wang et al.

i-Temporary Semi-functional Ciphertext. A ciphertext is i-temporary semi-
functional, if each ciphertext element Ci,j is NLinFE.Enc(PKj , (si − t)TAj + ãj)
instead of NLinFE.Enc(PKj , sT

i Aj).
It follows directly from the indistinguishability-based security of NLinFE

that a temporary semi-functional ciphertext element is indistinguishable from a
semi-functional one if all secret keys but those skL, L ∩ Ti = ∅ are temporary
hyper-functional.

4.3 Security Proof

We first give the outline of our proof.

– Switch all queried secret keys into hyper-functional keys.
– Switch the challenge ciphertext into semi-functional ciphertext.
– For the p-th query in Phase 1 which challenge literal set is L:

• Switch all secret keys into temporary hyper-functional secret keys.
• Switch the ciphertext into i-temporary semi-functional ciphertext such
that L ∩ Ti = ∅.
• Switch the p-th secret key into a normal one using LWE assumption.
• Switch the ciphertext into a non-temporary semi-functional ciphertext.
• Switch all secret keys into non-temporary normal or hyper-functional
secret keys.

– For queries in Phase 2, and i ∈ [k], k is the maximal number of clauses:
• Switch all secret keys into temporary hyper-functional secret keys.
• Switch the ciphertext into i-temporary semi-functional ciphertext.
• Switch all Phase 2 secret keys such that L ∩ Ti = ∅ into a normal one
using LWE assumption.
• Switch the ciphertext into a non-temporary semi-functional ciphertext.
• Switch all secret keys into non-temporary normal or hyper-functional
secret keys.

– Now C is uniformly random, independent with any queried secret keys. We
further switch C ′ into a uniformly random element, and thus have our result.

Now we define the game sequence.

Game 0 is the original game.
Game 1: Each queried secret key is a hyper-functional key. Game 0 and

Game 1 are indistinguishable by Lemma 4.4.
Game 2: The challenge ciphertext is semi-functional. We first define Game

1a and Game 2a as follows:

– The Setup phase and Phase 1 are the same as Game 1 or Game 2.
– Let Q2 be the maximal number of Phase 2 queries. In the Challenge phase,

before the challenge ciphertext is given, for each r ∈ [Q2], we generate ar ←
Z

n
q , e′r, er ← χ, and xr ← SamplePre(A′,T′,

(
ar+u

tT (ar+u)+e′r+ē+er

)
). Let Kr =

NLinFE.KeyGen(MSK,xr).

Fully Secure Lattice-Based ABE from NLinFE 433

– In Game 1a, the challenger returns a normal ciphertext, and in Game 2a, it
returns a semi-functional one.

– In the r-th Phase 2 query, we let e′ = e′r, e = er, a = ar, and the key element
K = Kr. Other key elements are generated as before.

It is easy to see that Game 1 and Game 1a; Game 2 and Game 2a are
the same from the adversary’s point of view. We now show that Game 1a and
Game 2a are indistinguishable.

For the challenger, instead of generating all Ks and C itself, it now runs a
indistinguishable game for NLinFE, get K by the KeyGen query of NLinFE,
and get C as the challenge ciphertext of NLinFE. Because |(ãT − tTA)x| ≤ 3β
and β/γ = O(2−λε

), we have the indistinguishable result by Theorem 3.1.
Game 2(p), p ∈ [Q1 + 1], Q1 is the number of phase 1 queries: The first

p − 1 Phase 1 keys are normal, and the rest of the keys are hyper-functional;
the challenge ciphertext is semi-functional. Then Game 2(1) is Game 2, and
in Game 2(Q1 + 1), all Phase 1 keys are normal. We prove the following result:

Lemma 4.5. Game 2(p) and Game 2(p + 1) are indistinguishable assuming
the security of NLinFE and the hardness of LWE.

Proof. We prove this by the following game sequence:

Game 2-1(p): Game 2-1(p) is same as Game 2(p), except that we change
all keys into temporary hyper-functional keys. Game 2-1(p) is indistinguishable
from Game 2(p) according to Lemma 4.4.

Let L be the challenge literal set in the p-th query of Phase 1. So there must
be clause Ti such that L ∩ Ti = ∅. This i will be used in the following games.

Game 2-2(p, j): Game 2-2(p, j) is same as Game 2-1(p), except that for any
Ci,j′ such that j′ ≤ j and j′ ∈ Ti, Ci,j′ is generated as NLinFE.Enc(PKj′ , (si −
t)TAj′ + ãT

j′). So Game 2-2(p, 0) is Game 2-1(p), and in Game 2-2(p, l), the
ciphertext is i-temporary semi-functional. We now show that Game 2-2(p, j−1)
is indistinguishable from Game 2-2(p, j).

We define Game 2-2a(p, j) and Game 2-2b(p, j) as follows:

Game 2-2a(p, j): The game is the same as Game 2-2(p, j), except that:

– In the Challenge phase, before the challenge ciphertext is given, we first check
whether j + 1 ∈ Ti. If j + 1 �∈ Ti, the game proceeds as Game 2-2(p, j). If
j + 1 ∈ Ti, for each r ∈ [Q2], we generate ar ← Z

n
q , e′r, er

j+1 ← χ, and
xr

j+1 ← SamplePre(A′
j+1,T

′
j+1,

(
ar

tT ar+e′r+er
j+1

)
). Let Kr

j+1 = NLinFE.KeyGen

(MSKj+1,xr
j+1).

– In the r-th Phase 2 query, if j + 1 ∈ Ti, we let e′ = e′r, ej+1 = er
j+1, a = ar,

and the key element Kj+1 = Kr
j+1. Then, generate other key elements as in

Game 2-2(p, j).

Game 2-2b(p, j): The game is the same as Game 2-2(p, j), except that:

434 G. Wang et al.

– In the Challenge phase, before the challenge ciphertext is given, we first
check whether j ∈ Ti. If j �∈ Ti, the game proceeds as Game 2-2(p, j). If
j ∈ Ti, for each r ∈ [Q2], we generate ar ← Z

n
q , e′r, er

j ← χ, and xr
j ←

SamplePre(A′
j ,T

′
j ,

(
ar

tT ar+e′r+er
j

)
). Let Kr

j = NLinFE.KeyGen(MSKj ,xr
j).

– In the r-th Phase 2 query, if j ∈ Ti, we let e′ = e′r, ej = er
j , a = ar, and

the key element Kj = Kr
j . Then, generate other key elements as in Game

2-2(p, j).

It is easy to see that Game 2-2(p, j), Game 2-2a(p, j) and Game 2-2b(p, j)
are the same from the adversary’s point of view. We now show that Game
2-2a(p, j − 1) and Game 2-2b(p, j) are indistinguishable.

For the challenger, instead of generating all Kjs and Ci,j itself, it now runs
a indistinguishable game for NLinFE, get Kj by the KeyGen query of NLinFE,
and get Ci,j as the challenge ciphertext of NLinFE. Since |(ãj

T −tTAj)xj | ≤ 2β
and β/γ = O(2−λε

) by assumption, we only need to show that the NLinFE game
can proceed correctly. If j ∈ Ti, all KeyGen queries are made before the challenge
ciphertext, which is legal in the NLinFE game. If j �∈ Ti, the NLinFE challenge
ciphertext is never required, so all KeyGen queries can be made correctly. Thus
we have the indistinguishable result by Theorem 3.1.

Thus we have that Game 2-1(p) is indistinguishable from Game 2-2(p, l).
Game 2-3(p): The game is the same as Game 2-2(p, l), except that:

– In the challenge phase, we generate s̄ ← Z
n
q , {si′}i′ 	=i ← Z

n
q , and write Ci,j

for any j ∈ Ti as NLinFE.Enc(PKj , (s̄ − ∑
i′ 	=i si′)TAj + ãj).

– We also write C = NLinFE.Enc(PK, s̄TA+ãT), and C ′ = (s̄+t)Tu+μ�q/2�+
ē.

Note that in Game 2-3(p), we implicitly set si = s̄ + t − ∑
i′ 	=i si′ , so that

for the adversary, Game 2-3(p) is the same as Game 2-2(p, l). Now we see that
t only occurs in C ′ and in KeyGen queries. All these occurrences of t take the
form of LWE samples: tTa + e′, and tTu + ē.

Game 2-4(p): For the p-th query, we choose a uniformly random
b̃ ← Zq, and x ← SamplePre(A′,T′,

(
a

b̃+tT u+ē+e

)
). For i ∈ [l], xi ←

SamplePre(A′
i,T

′
i,

(
a

b̃+ei

)
).

Game 2-3(p) and Game 2-4(p) are indistinguishable using Lemma 2.6, by
the hardness of LWE problem. We also define Game 2-4a(p), which removes s̄,
and si is uniformly sampled in the challenge phase. Game 2-4a(p) is the same
as Game 2-4(p) from the adversary’s point of view.

Game 2-5(p, j): Game 2-5(p, j) is same as Game 2-4a(p), except that for
any Ci,j′ such that j′ ≤ j and j′ ∈ Ti, Ci,j′ is generated as NLinFE.Enc(PKj′ ,
sT
i Aj′). So Game 2-5(p, 0) is Game 2-4a(p), and in Game 2-5(p, l), the cipher-

text is (non-temporary) semi-functional.
The indistinguishability between Game 2-5(p, j − 1) and Game 2-5(p, j) is

nearly the same as Game 2-2(p, j − 1) and Game 2-2(p, j), except that this
time, for the p-th query with literal set L, |(ãj

T − tTAj)xj | may not be small.
However, since L ∩ Ti = ∅, for each j ∈ Ti where it is required to generate the

Fully Secure Lattice-Based ABE from NLinFE 435

ciphertext element Ci,j , the corresponding key element xj does not occur. So
the ciphertext can be generated correctly in the reduction. Now we have that
Game 2-4a(p) is indistinguishable from Game 2-5(p, l).

Game 2-6(p): Game 2-6(p) is same as Game 2-5(p, l) except that in the
p-th KeyGen query, instead of generating random b̃, we sample b ← Zq, and set
b̃ = b−tTu− ē−e. Game 2-6(p) is same as Game 2-5(p, l) from the adversary’s
point of view. We can see that Game 2-6(p) is indistinguishable from Game
2(p + 1) from Lemma 4.4. ��

Game 3(i), i ∈ [k + 1], k is the number of clauses in the challenge access
policy: The Phase 1 keys are normal, and for the Phase 2 keys which challenge
literal set is L, the key is normal iff there exists i′ < i such that L ∩ Ti′ = ∅.
Game 3(1) is the same as Game 2(Q1 + 1). Since L must not satisfy the access
policy, it is easy to see that in Game 3(k + 1), all keys are normal.

Lemma 4.6. Game 3(i) and Game 3(i + 1) are indistinguishable assuming
the security of NLinFE and the hardness of LWE.

Proof. The proof is essentially the same as Lemma 4.5. We omit the details
here. ��

Game 4: Game 4 is same as Game 3(k + 1), except that all secret keys
are temporary hyper-functional keys. Game 4 is indistinguishable from Game
3(k + 1) by Lemma 4.4.

Game 5: Game 5 is same as Game 4, except that the challenge ciphertext
is 1-temporary semi-functional. Using similar discussion from Game 2-2(p, j)
in Lemma 4.5, we have that Game 4 and Game 5 are indistinguishable by
Theorem 3.1.

Game 6: The game is the same as Game 5, except that:

– In the challenge phase, we generate s̄ ← Z
n
q , {si′}i′ 	=1 ← Z

n
q , and write C1,j

for any j ∈ T1 as NLinFE.Enc(PKj , (s̄ − ∑
i′ 	=1 si′)TAj + ãj).

– We also write C = NLinFE.Enc(PK, s̄TA+ãT), and C ′ = (s̄+t)Tu+μ�q/2�+
ē.

Game 6 is the same as Game 5 from the adversary’s point of view. Note that
this time, tTu only occurs in C ′.

Game 7: The game is the same as Game 6, except that in the challenge
phase, C ′ is generated by s̄Tu+v+μ�q/2�, v ← Zq. Game 7 is indistinguishable
from Game 6 by Lemma 2.6 from LWE assumption.

Game 8: The game is the same as Game 7, except that in the challenge
phase, we let v′ ← Zq, and v = v′ − s̄Tu − μ�q/2�, so C ′ = v′. Game 7 and
Game 8 are the same from the adversary’s point of view. Then in Game 8, the
ciphertext contains no information on μ, so the advantage for any adversary is
1/2. Thus we finish our proof.

436 G. Wang et al.

5 Conclusion and Future Works

In this paper, we give a construction for lattice-based fully secure ABE schemes
from noisy linear functional encryption, which can be considered as a lattice ver-
sion of the widely used dual-system method from pairing-based cryptography.
Our scheme supports CNF formula as its access policy, and any predetermined
number of key queries. Compared with other methods for constructing bounded
collusion fully secure ABE, our scheme is simpler and has smaller ciphertext
size. Since dual-system encryption has shown to be useful in pairing-based cryp-
tography, we hope that we can also extend our scheme for richer functionalities.

Although our scheme supports only bounded collusion, it is easy to see that
it can be extended into unbounded case if there exists an unbounded NLinFE
scheme. Although in [1], a secret key version of unbounded NLinFE has been
introduced, it is currently unknown how to transform it into a public key scheme.
This shall be our future work.

Acknowledgements. This work is partially supported by the National Natural Sci-
ence Foundation of China (No. 62072305, No. 61672339), the National Cryptography
Development Fund (No. MMJJ20170111), and the Foundation of Science and Technol-
ogy on Information Assurance Laboratory (No. KJ-17-109).

A Proof of Lemma 2.5

We first give the following lemma which is proven in [20,32].

Lemma A.1 [20].
For any ε ∈ (0, 1), there exists η > 0, such that for s ≥ η, ρs(Λ⊥

u (A)) ∈
[1−ε
1+ε , 1] · ρs(Λ⊥

0 (A)).

By Lemma 2.1, we have that the distribution of x is statistically close to
DΛ⊥

u (A),s. So we only need to show that the distribution of x′ is statistically
close to DΛ⊥

u (A′),s.
It is easy to see that {Λ⊥

(uT |bT)T (A′)}
b∈Z

n′−n
q

forms a partition of the lattice

co-set Λ⊥
u (Ā). So by the definition of discrete Gaussian, we have that, for any

c ∈ Λ⊥
u (A′), let b = Ãc, we have Pr(x = c) = q−(n′−n)ρs(c)/ρs(Λ⊥

(uT |bT)T (A′)).
For a negligible ε, we choose s satisfies Lemma A.1. Then we have that for any
b′, ρs(Λ⊥

(uT |bT)T (A′))/ρs(Λ⊥
(uT |b′T)T (A′)) ∈ [1−ε

1+ε ,
1+ε
1−ε].

By definition, we have:

DΛ⊥
u (A′),s(c) =

ρs(c)
ρs(Λ⊥

u (Ā))
=

ρs(c)∑
b′T ∈Z

n′−n
q

ρs(Λ⊥
(uT |b′T)T (A′))

.

So:
1 − ε

1 + ε
· ρs(c)
qn′−nρs(Λ⊥

(uT |bT)T (A′))
≤ DΛ⊥

u (A′),s(c) ≤ 1 + ε

1 − ε
· ρs(c)
qn′−nρs(Λ⊥

(uT |bT)T (A′))
.

Now we have that the statistical distance between the two distributions is no
more than 2ε, thus we have our result.

Fully Secure Lattice-Based ABE from NLinFE 437

B Proof of Theorem 3.1

We prove this by a sequence of interactive games. Let Game 0 be the full security
game defined above.

Game 1: Instead of c1 = U·s+e1+yβ , we compute c1 = Z·c0−Z·e0+e1+yβ .
Game 1 is the same as Game 0.

Game 2: In Game 2, c0 is chosen uniform randomly from Z
m
q instead of

As + e0. Game 2 is indistinguishable from Game 1 by the hardness of mheLWE.
Now, we remain to prove that in Game 2, the distinguishing advantage for

any adversary is negligible. Let x1, ...,xκ be the largest set of independent vec-
tors in the key query, and we write X = (x1|...|xκ), and κ ≤ k. We write the
ciphertext ctβ = (c0, c

β
1). By the construction of our scheme, we only need to

show that any adversary cannot distinguish between (A,ZA,X,XZ, c0, c
0
1) and

(A,ZA,X,XZ, c0, c
1
1) with non-negligible probability.

Let y = c01 −c11 =
(
y0−y1
α0−α1

)
for α0, α1 ← Zq. Since the last row of X is 0, so y

is linearly independent with X except for a negligible probability. We find a short
solution t, such that XT t = 0, yT t �= 0, the coefficients of t is co-prime, and
‖t‖ = O(poly(n)). The solution exists by Siegel’s Lemma. We append vectors
orthogonal to t,y and linear independent with X to form a invertible n × n
matrix (modulus q), written as X̄ = (X|y|X′).

Given the invertible matrix X̄, we have that (A,ZA,X,XZ, c0, c
0
1)

and (A,ZA,X,XZ, c0, c
1
1) are indistinguishable if and only if (A,ZA,X,XZ,

c0, X̄T c01) and (A,ZA,X,XZ, c0, X̄
T c11) are indistinguishable.

We then write X̄T cβ
1 as (XT cβ

1 ,X′T cβ
1 ,yT cβ

1). By the choice of X′, we have
that X′T c01 = X′T c11.

By the definition of β-indistinguishability-based security, we have that
|〈xi,y0〉−〈xi,y0〉| ≤ β. So we have that XT c01 = XTZ(c0−e0)+XT e1+XTy0 =
XTZ(c0 − e0) + XTe1 + XTy1 + b where ‖b‖∞ ≤ β. By the lemma below, we
show that XTe1 is indistinguishable from XTe1 + b.

Lemma B.1. Given A ∈ Z
n×m, where each row of A is independently sampled

from DZm,σ, σ = O(poly(n)), m ≥ 3n, b ∈ Z
n, and ‖b‖∞ ≤ β = O(poly(n)).

Then there exists x ∈ Z
m and ‖x‖∞ ≤ δ = O(poly(n)) such that Ax = b except

for a negligible probability.

Proof. This proof is using standard methods in linear algebra and number theory,
we only give a proof sketch due to the page limits.

The proof consists of the several steps:

– For A ∈ Z
n×m, show that Ax = b has an integer solution iff the determinants

of all n × n sub-matrixes of A are co-prime. This is proven by constructing
the elementary row/column transformations that transform A into I|0.

– Show that for A sampled as defined and each prime p < q, the probability that
the determinants of all n×n sub-matrixes of A are a multiple of p is negligible,
hence the probability of Ax = b has no integer solution is negligible. This is

438 G. Wang et al.

proven by induction on n: as long as there is at least one (k − 1) × (k − 1)
sub-matrix of A which determinant is not a multiple of p, there is at least
one k × k sub-matrix which determinant is not a multiple of p except for a
negligible probability.

– We write A0 as the first n − 1 rows of A, and aT as the last row of A.
Using Siegel’s lemma, A0x = 0 has a set of linear independent solutions with
norm at most poly(n), we write them as x1, ...,xm−n+1. Let ci = aTxi, then
ci = poly(n) and c1, ..., cm−n+1 are co-prime (otherwise there is no integer
solution for Ax = en, en = (0, ..., 0, 1)T). By Bezout’s lemma, we construct
d1, ..., dm−n+1 such that di = poly(n) and c1d1 + ...+ cm−n+1dm−n+1 = 1, so
d1x1 + ... + dm−n+1xm−n+1 is an integer solution of Ax = en with norm at
most poly(n).

– Similarly, we construct integer solutions for Ax = ei for i ∈ [n], and use them
to construct a solution for Ax = b with norm at most poly(n).

��
Now we find r such that XT r = b and ‖r‖∞ ≤ δ, and we can write XTe1+b

as XT (e1 + r). So we only need to show that e1 and e1 + r are indistinguish-
able. By Lemma 2.3, we can choose large enough σ′ such that e1 is statistical
indistinguishable from e1 + r.

We write Xtop = (X|X′). Now we only need to show that given A,ZA,X,XT

Z, c0,X
T
topc

0
1, y

T c01 is indistinguishable from yT c11. The discussion is exactly the
same as Theorem 2 in [5], except that the vector orthogonal to Xtop here is t,
instead of y. We omit the details here due to the page limits.

References

1. Agrawal, S.: Indistinguishability obfuscation without multilinear maps: new meth-
ods for bootstrapping and instantiation. In: Ishai, Y., Rijmen, V. (eds.) EURO-
CRYPT 2019. LNCS, vol. 11476, pp. 191–225. Springer, Cham (2019). https://doi.
org/10.1007/978-3-030-17653-2 7

2. Agrawal, S., Boneh, D., Boyen, X.: Lattice basis delegation in fixed dimension and
shorter-ciphertext hierarchical IBE. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol.
6223, pp. 98–115. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-
14623-7 6

3. Agrawal, S., Boyen, X., Vaikuntanathan, V., Voulgaris, P., Wee, H.: Functional
encryption for threshold functions (or fuzzy IBE) from lattices. In: Fischlin, M.,
Buchmann, J., Manulis, M. (eds.) PKC 2012. LNCS, vol. 7293, pp. 280–297.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-30057-8 17

4. Agrawal, S., Freeman, D.M., Vaikuntanathan, V.: Functional encryption for inner
product predicates from learning with errors. In: Lee, D.H., Wang, X. (eds.) ASI-
ACRYPT 2011. LNCS, vol. 7073, pp. 21–40. Springer, Heidelberg (2011). https://
doi.org/10.1007/978-3-642-25385-0 2

5. Agrawal, S., Libert, B., Stehlé, D.: Fully secure functional encryption for inner
products, from standard assumptions. In: Robshaw, M., Katz, J. (eds.) CRYPTO
2016. LNCS, vol. 9816, pp. 333–362. Springer, Heidelberg (2016). https://doi.org/
10.1007/978-3-662-53015-3 12

https://doi.org/10.1007/978-3-030-17653-2_7
https://doi.org/10.1007/978-3-030-17653-2_7
https://doi.org/10.1007/978-3-642-14623-7_6
https://doi.org/10.1007/978-3-642-14623-7_6
https://doi.org/10.1007/978-3-642-30057-8_17
https://doi.org/10.1007/978-3-642-25385-0_2
https://doi.org/10.1007/978-3-642-25385-0_2
https://doi.org/10.1007/978-3-662-53015-3_12
https://doi.org/10.1007/978-3-662-53015-3_12

Fully Secure Lattice-Based ABE from NLinFE 439

6. Agrawal, S., Pellet-Mary, A.: Indistinguishability obfuscation without maps:
attacks and fixes for noisy linear FE. In: Canteaut, A., Ishai, Y. (eds.) EURO-
CRYPT 2020. LNCS, vol. 12105, pp. 110–140. Springer, Cham (2020). https://
doi.org/10.1007/978-3-030-45721-1 5

7. Agrawal, S., Rosen, A.: Functional encryption for bounded collusions, revisited. In:
Kalai, Y., Reyzin, L. (eds.) TCC 2017. LNCS, vol. 10677, pp. 173–205. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-70500-2 7

8. Ananth, P., Vaikuntanathan, V.: Optimal bounded-collusion secure functional
encryption. In: Hofheinz, D., Rosen, A. (eds.) TCC 2019. LNCS, vol. 11891, pp.
174–198. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-36030-6 8

9. Attrapadung, N.: Dual system encryption via doubly selective security: frame-
work, fully secure functional encryption for regular languages, and more. In:
Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 557–
577. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-55220-5 31

10. Bethencourt, J., Sahai, A., Waters, B.: Ciphertext-policy attribute-based encryp-
tion. In: IEEE Symposium on Security and Privacy, pp. 321–334 (2007)

11. Boneh, D., Boyen, X.: Efficient selective-ID secure identity-based encryption with-
out random oracles. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004.
LNCS, vol. 3027, pp. 223–238. Springer, Heidelberg (2004). https://doi.org/10.
1007/978-3-540-24676-3 14

12. Boneh, D., et al.: Fully key-homomorphic encryption, arithmetic circuit ABE and
compact garbled circuits. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014.
LNCS, vol. 8441, pp. 533–556. Springer, Heidelberg (2014). https://doi.org/10.
1007/978-3-642-55220-5 30

13. Boneh, D., Sahai, A., Waters, B.: Functional encryption: definitions and challenges.
In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 253–273. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-19571-6 16

14. Boyen, X.: Attribute-based functional encryption on lattices. In: Sahai, A. (ed.)
TCC 2013. LNCS, vol. 7785, pp. 122–142. Springer, Heidelberg (2013). https://
doi.org/10.1007/978-3-642-36594-2 8

15. Boyen, X., Li, Q.: Towards tightly secure lattice short signature and id-based
encryption. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016. LNCS, vol.
10032, pp. 404–434. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-
662-53890-6 14

16. Brakerski, Z., Vaikuntanathan, V.: Circuit-ABE from LWE: unbounded attributes
and semi-adaptive security. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS,
vol. 9816, pp. 363–384. Springer, Heidelberg (2016). https://doi.org/10.1007/978-
3-662-53015-3 13

17. Cash, D., Hofheinz, D., Kiltz, E., Peikert, C.: Bonsai trees, or how to delegate a
lattice basis. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 523–
552. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5 27

18. Chen, J., Gong, J., Kowalczyk, L., Wee, H.: Unbounded ABE via bilinear entropy
expansion, revisited. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018.
LNCS, vol. 10820, pp. 503–534. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-78381-9 19

19. Cheung, L., Newport, C.: Provably secure ciphertext policy ABE. In: Proceedings
of the 14th ACM conference on Computer and Communications Security, pp. 456–
465 (2007)

20. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new
cryptographic constructions. In: Symposium on the Theory of Computing, pp.
197–206 (2008)

https://doi.org/10.1007/978-3-030-45721-1_5
https://doi.org/10.1007/978-3-030-45721-1_5
https://doi.org/10.1007/978-3-319-70500-2_7
https://doi.org/10.1007/978-3-030-36030-6_8
https://doi.org/10.1007/978-3-642-55220-5_31
https://doi.org/10.1007/978-3-540-24676-3_14
https://doi.org/10.1007/978-3-540-24676-3_14
https://doi.org/10.1007/978-3-642-55220-5_30
https://doi.org/10.1007/978-3-642-55220-5_30
https://doi.org/10.1007/978-3-642-19571-6_16
https://doi.org/10.1007/978-3-642-36594-2_8
https://doi.org/10.1007/978-3-642-36594-2_8
https://doi.org/10.1007/978-3-662-53890-6_14
https://doi.org/10.1007/978-3-662-53890-6_14
https://doi.org/10.1007/978-3-662-53015-3_13
https://doi.org/10.1007/978-3-662-53015-3_13
https://doi.org/10.1007/978-3-642-13190-5_27
https://doi.org/10.1007/978-3-319-78381-9_19
https://doi.org/10.1007/978-3-319-78381-9_19

440 G. Wang et al.

21. Goldwasser, S., Kalai, Y.T., Popa, R.A., Vaikuntanathan, V., Zeldovich, N.:
Reusable garbled circuits and succinct functional encryption. In: Symposium on
Theory of Computing Conference, STOC 2013, pp. 555–564 (2013)

22. Gorbunov, Sergey, Vaikuntanathan, Vinod, Wee, Hoeteck: Functional encryption
with bounded collusions via multi-party computation. In: Safavi-Naini, Reihaneh,
Canetti, Ran (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 162–179. Springer, Hei-
delberg (2012). https://doi.org/10.1007/978-3-642-32009-5 11

23. Gorbunov, S., Vaikuntanathan, V., Wee, H.: Attribute-based encryption for cir-
cuits. In: Symposium on the Theory of Computing, pp. 545–554 (2013)

24. Goyal, R., Koppula, V., Waters, B.: Semi-adaptive security and bundling func-
tionalities made generic and easy. In: Hirt, M., Smith, A. (eds.) TCC 2016. LNCS,
vol. 9986, pp. 361–388. Springer, Heidelberg (2016). https://doi.org/10.1007/978-
3-662-53644-5 14

25. Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-
grained access control of encrypted data. In: Proceedings of the 13th ACM Con-
ference on Computer and Communications Security 2006, pp. 89–98 (2006)

26. Katsumata, S., Nishimaki, R., Yamada, S., Yamakawa, T.: Adaptively secure inner
product encryption from LWE. In: Moriai, S., Wang, H. (eds.) ASIACRYPT 2020.
LNCS, vol. 12493, pp. 375–404. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-64840-4 13

27. Kowalczyk, L., Lewko, A.B.: Bilinear entropy expansion from the decisional lin-
ear assumption. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol.
9216, pp. 524–541. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-
662-48000-7 26

28. Kowalczyk, L., Wee, H.: Compact adaptively secure ABE for NC1 from k -Lin.
In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019. LNCS, vol. 11476, pp. 3–33.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17653-2 1

29. Lewko, A., Okamoto, T., Sahai, A., Takashima, K., Waters, B.: Fully secure
functional encryption: attribute-based encryption and (hierarchical) inner prod-
uct encryption. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp.
62–91. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5 4

30. Lewko, A., Waters, B.: New proof methods for attribute-based encryption: achiev-
ing full security through selective techniques. In: Safavi-Naini, R., Canetti, R.
(eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 180–198. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-32009-5 12

31. Micciancio, D., Peikert, C.: Trapdoors for lattices: simpler, tighter, faster, smaller.
In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp.
700–718. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-
4 41

32. Micciancio, D., Regev, O.: Worst-case to average-case reductions based on Gaussian
measures. SIAM J. Comput. 37(1), 267–302 (2007)

33. Ostrovsky, R., Sahai, A., Waters, B.: Attribute-based encryption with non-
monotonic access structures. In: Proceedings of the 14th ACM Conference on
Computer and Communications Security, pp. 195–203 (2007)

34. Regev, O.: New lattice-based cryptographic constructions. J. ACM (JACM) 51(6),
899–942 (2004)

35. Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-
phy. J. ACM 56(6), 34 (2009)

36. Rouselakis, Y., Waters, B.: Practical constructions and new proof methods for large
universe attribute-based encryption. In: Proceedings of the 2013 ACM SIGSAC
Conference on Computer & Communications Security, pp. 463–474 (2013)

https://doi.org/10.1007/978-3-642-32009-5_11
https://doi.org/10.1007/978-3-662-53644-5_14
https://doi.org/10.1007/978-3-662-53644-5_14
https://doi.org/10.1007/978-3-030-64840-4_13
https://doi.org/10.1007/978-3-030-64840-4_13
https://doi.org/10.1007/978-3-662-48000-7_26
https://doi.org/10.1007/978-3-662-48000-7_26
https://doi.org/10.1007/978-3-030-17653-2_1
https://doi.org/10.1007/978-3-642-13190-5_4
https://doi.org/10.1007/978-3-642-32009-5_12
https://doi.org/10.1007/978-3-642-29011-4_41
https://doi.org/10.1007/978-3-642-29011-4_41

Fully Secure Lattice-Based ABE from NLinFE 441

37. Sahai, A., Waters, B.: Fuzzy identity-based encryption. In: Cramer, R. (ed.) EURO-
CRYPT 2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg (2005). https://
doi.org/10.1007/11426639 27

38. Tsabary, R.: Fully secure attribute-based encryption for t-CNF from LWE. In:
Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11692, pp. 62–85.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26948-7 3

39. Wang, Z., Fan, X., Liu, F.-H.: FE for inner products and its application to decen-
tralized ABE. In: Lin, D., Sako, K. (eds.) PKC 2019. LNCS, vol. 11443, pp. 97–127.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17259-6 4

40. Waters, B.: Dual system encryption: realizing fully secure IBE and HIBE under
simple assumptions. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 619–
636. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03356-8 36

41. Waters, B.: Ciphertext-policy attribute-based encryption: an expressive, efficient,
and provably secure realization. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi,
A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 53–70. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-19379-8 4

42. Wee, H.: Dual system encryption via predicate encodings. In: Lindell, Y. (ed.) TCC
2014. LNCS, vol. 8349, pp. 616–637. Springer, Heidelberg (2014). https://doi.org/
10.1007/978-3-642-54242-8 26

43. Yamada, S.: Adaptively secure identity-based encryption from lattices with asymp-
totically shorter public parameters. In: Fischlin, M., Coron, J.-S. (eds.) EURO-
CRYPT 2016. LNCS, vol. 9666, pp. 32–62. Springer, Heidelberg (2016). https://
doi.org/10.1007/978-3-662-49896-5 2

https://doi.org/10.1007/11426639_27
https://doi.org/10.1007/11426639_27
https://doi.org/10.1007/978-3-030-26948-7_3
https://doi.org/10.1007/978-3-030-17259-6_4
https://doi.org/10.1007/978-3-642-03356-8_36
https://doi.org/10.1007/978-3-642-19379-8_4
https://doi.org/10.1007/978-3-642-54242-8_26
https://doi.org/10.1007/978-3-642-54242-8_26
https://doi.org/10.1007/978-3-662-49896-5_2
https://doi.org/10.1007/978-3-662-49896-5_2

Revocable Identity-Based Encryption
with Server-Aided Ciphertext Evolution

from Lattices

Yanhua Zhang1(B), Ximeng Liu2, Yupu Hu3, and Huiwen Jia4

1 Zhengzhou University of Light Industry, Zhengzhou 450001, China
yhzhang@email.zzuli.edu.cn

2 Fuzhou University, Fuzhou 350108, China
3 Xidian University, Xi’an 710071, China

yphu@mail.xidian.edu.cn
4 Guangzhou University, Guangzhou 510006, China

hwjia@gzhu.edu.cn

Abstract. Revocable identity-based encryption (RIBE) with server-
aided ciphertext evolution (RIBE-CE), recently proposed by Sun et al.
at TCS 2020, offers significant advantages over previous identity (or key)
revocation mechanisms when considering the scenario of a secure data
sharing in the cloud setting. In this new system model, the user (i.e., a
recipient) can utilize the current short-term decryption key to decrypt all
ciphertexts sent to him, meanwhile, the ciphertexts in the cloud evolve
to new ones with the aided of the cloud server and the old ones are com-
pletely deleted, and thus, the revoked users cannot access to both the
previously and subsequently shared data.

In this paper, inspired by Sun et al.’s work, we propose the first lattice-
based RIBE-CE. Our scheme is more efficient and secure than the existing
constructions of lattice-based RIBE. Simultaneously, the private key gen-
erator (PKG) maintains a binary tree (BT) to handle key revocation only
with a logarithmic complexity workload in time key update, not growing
linearly in the numbers of system users N , which serves as one solution
to the challenge proposed by Sun et al. and based on the hardness of
the learning with errors (LWE) problem, we prove that our first scheme
is selectively secure in the standard model. Subsequently, based on the
main techniques for lattice basis delegation with hierarchical IBE (HIBE),
we construct our second lattice-based RIBE-CE scheme with decryption
key exposure resistance (DKER), a default security requirement for RIBE,
which has not been considered by Sun et al.

Keywords: IBE · Lattices · Key revocation · Ciphertext evolution

1 Introduction

Identity-based encryption (IBE), a seminal notion envisaged by Shamir [25] at
Crypto 1984, can eliminate the needs for providing a public-key infrastructure in
c© Springer Nature Switzerland AG 2021
Y. Yu and M. Yung (Eds.): Inscrypt 2021, LNCS 13007, pp. 442–465, 2021.
https://doi.org/10.1007/978-3-030-88323-2_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-88323-2_24&domain=pdf
https://doi.org/10.1007/978-3-030-88323-2_24

RIBE with Server-Aided Ciphertext Evolution from Lattices 443

conventional public-key cryptosystems. Until 2001, the first realizations of IBE
based on pairings and on quadratic residual problem were introduced by Boneh
and Franklin [5] and Cocks [8], respectively. In addition, Boneh and Franklin [5]
also suggested a naive solution to the issue of identity (or key) revocation in IBE,
that is, each non-revoked user needs to be periodically reassigned a private key
by communicating with the private key generator (PKG) per time epoch via a
secret channel. Obviously, this solution is inefficient for a large-scale IBE system,
because the PKG’s workload grows linearly in the number of system users N .

The first scalable IBE with key revocation, or simply revocable IBE (RIBE)
was set forth by Boldyreva et al. [4] at CCS 2008, whose scheme is designed by
adopting a binary tree (BT) based revocation method [19] and PKG’s workload is
only logarithmic in N . Though the time key updating process of [4] can be exactly
executed for all the non-revoked users over a public channel, each non-revoked
user still requires different time keys to accomplish ciphertexts decryption for
different time periods, and each user in IBE should store a series of time update
keys which grow linearly in the whole periods. Additionally, when considering a
practical application of RIBE, there is a problem that ciphertexts generated for
a user, but prior to the user’s revocation, remain available to the revoked user.
This problem may be undesirable for some applications, such as the scenario of
a secure data sharing in the cloud setting.

To solve both the aforementioned two problems simultaneously in a practical
manner, Sun et al. [27] recently introduced revocable identity-based encryption
with server-aided ciphertext evolution (RIBE-CE) - a new revocation method in
which the user (i.e., a recipient) has to utilize the current short-term decryption
key to decrypt all ciphertexts sent to him, meanwhile, the ciphertexts in the cloud
evolve to new ones with the aided of the cloud server and old ones are completely
deleted, and thus, the revoked users cannot access to both the previously and
subsequently shared data. To be more specific, an RIBE-CE scheme should be
carried out as follows: once the system is set up, PKG issues a long-term private
key to user. A time update key is generated by PKG and sent to the cloud server
(and all users) via a public channel at each time period. The cloud server should
do ciphertext evolution on the encrypted data which may be just uploaded by a
data owner or have been stored in the cloud for some time to new ciphertexts by
using the time update key, and the old ciphertexts are deleted. Because only the
non-revoked user can obtain a valid short-term decryption key, any revoked users
cannot decrypt the ciphertexts (including the former ciphertexts) sent to him.
In [27], apart from introducing this new RIBE model, Sun et al. also described a
generic construction and the pairing-based instantiations of RIBE-CE.

In this paper, inspired by the clear advantages of RIBE-CE, we bring it into
the world of lattice-based cryptograph which has faster arithmetic operations
and is believed to the most promising candidate for post-quantum cryptography.

Related Works. The first scalable RIBE scheme was introduced by Boldyreva
et al. [4], whose scheme is constructed by combining a fuzzy IBE scheme [23]
and a subset cover framework [19]. Subsequently, an adaptive-id secure RIBE

444 Y. Zhang et al.

and RIBE with decryption key exposure resistance (DKER) from bilinear groups
were proposed by Libert and Vergnaud [15] and Seo and Emura [24], respectively.

Lattice-based cryptography, believed to be secure in a quantum com-
puter attack environment, enjoys some competive advantages over conven-
tional number-theoretic cryptography, such as simpler arithmetic operations
and proven secure based on the worst-case hardness assumptions. Following the
model of [4], the first lattice-based RIBE scheme without DKER, the first schemes
with bounded DKER and unbounded DKER and an adaptively secure scheme in
the quantum random oracle model were proposed by Chen et al. [7], Takayasu
and Watanabe [29], Katsumata et al. [11] and Takayasu [28], respectively.

Cloud-based technology, including cloud computing and cloud storage, etc.,
has already created a new generation of computing paradigm, and with a flexible
assistance of cloud (e.g., irrespective of time and location), many conventional
costly computations and bulky storages can be performed with ease. Therefore,
introducing cloud computing services into RIBE is an interesting idea to alleviate
the workloads of PKG and each user. The study of outsourcing RIBE (O-RIBE)
was initiated by Li et al. [13], in which a semi-trusted key update cloud service
provider is adopted to update each user’s time key. Though Liang et al. [14]
attempted to solve the same problems as in this work with proxy re-encryption
technique, their scheme is insecure to resist the re-encryption key forgery attack
and collusion attack [30]. To overcome the decryption challenges for users only
with limited resources, Qin et al. [21] introduced a new revocation method called
server-aided RIBE (SA-RIBE), contrary to previous O-RIBE, all workloads on the
users side are outsourced to the cloud server. Inspired by these two new models,
Nguyen et al. [20] and Dong et al. [9] respectively designed the first lattice-based
SA-RIBE scheme and the first lattice-based O-RIBE scheme. Recently, the generic
constructions of RIBE with complete subset (CS) method and subset difference
(SD) method were respectively proposed by Ma and Lin [16] and Lee [12].

Our Contributions. In this paper, we introduce two (and the first) construc-
tions of lattice-based RIBE-CE. We inherit and extend the main efficiency and
security advantages of Sun et al.’s model for RIBE: the system users do not
have to store each time update key, as they can utilize the current short-term
decryption key to decrypt all ciphertexts sent to him, meanwhile, the revoked
users cannot access to both the previously and subsequently shared data in the
cloud. Furthermore, PKG maintains a BT and adopts the CS method to handle
key revocation with a logarithmic complexity workload in time key update, not
growing linearly in the numbers of system users as in Sun et al. [27]. As for
previous lattice-based RIBE schemes [7,11,20,28,29], our two constructions only
work for one-bit message, but the multi-bit version can be achieved by adopting
a standard transformation technique showed in [1,10]. As in [7,9,11,28,29], the
public parameters almost enjoy the same asymptotic efficiency, though the bit-
size of our final ciphertext in our two schemes is linear in the length of identity
id, while all ciphertexts (the secure data) are stored in cloud, thus for the local
users the storage cost is not a challenge. More startlingly, our two schemes are

RIBE with Server-Aided Ciphertext Evolution from Lattices 445

naturally SA-RIBE as [20] in which the recipient does not need to communicate
with PKG for time update key, thus the recipient enjoys a lower decryption cost.

As in [20], each user’s long-term private key of our second scheme is a trap-
door matrix, thus having a relatively large bit-size, but constant in the number
of system users. In particular, the later scheme satisfies DKER, a default security
requirement for RIBE, which is not considered by Sun et al. A detailed compar-
ison among the schemes [7,11,20,28,29] and ours is shown in Table 1.

As a high level, the design method of our first lattice-based RIBE-CE scheme
is similar to the pairing-based concrete construction of Sun et al., and a double
encryption mechanism is also adopted as the core building block. In our second
scheme, instead of only using a conventional IBE scheme as in Sun et al., a lattice-
based two-level hierarchical IBE (HIBE) scheme [1] is introduced, from which the
PKG can issue a long-term private key (a trapdoor matrix, not a vector) to each
user id. This technique enables a user id with a long-term private key to derive
partial short-term decryption key corresponding to his identity id and time t all
by himself, and thus achieving DKER.

Table 1. Comparison of lattice-based RIBE schemes.

Schemes |pp| |skid| |ukt| |dkid,t| |ctid,t| CE DKER Model

[7] ˜O(n2) ˜O(n2) O(r log N
r) · ˜O(n) ˜O(n) ˜O(n) no no Standard

[20] ˜O(n2) ˜O(n2) O(r log N
r) · ˜O(n) ˜O(n) ˜O(n) no Unbounded Standard

[29] ˜O(n2) d · ˜O(n2) O(r log N
r) · ˜O(n) ˜O(n) ˜O(n) no Bounded Standard

[11] ˜O(n2) ˜O(n2) O(r log N
r) · ˜O(n) ˜O(n) ˜O(n) no Unbounded Standard

[28] ˜O(n2) d · ˜O(n2) O(r log N
r) · ˜O(n) ˜O(n) ˜O(n) no Bounded Quantum ROM

Ours-1 ˜O(n2) ˜O(n) O(r log N
r) · ˜O(n) ˜O(n) ˜O(n2) yes no Standard

Ours-2 ˜O(n2) ˜O(n2) O(r log N
r) · ˜O(n) ˜O(n) ˜O(n2) yes Unbounded Standard

Note: n is a security parameter, N = 2n is the maximum numbers of system users, r is the number

of revoked users, d is the number of private keys stored in each node over path(id); | · | denotes

the bit-size, pp is public parameters, skid is long-term private key, ukt is time update key, dkid,t

is short-term decryption key, and ctid,t is ciphertext; CE denotes ciphertext evolution and ROM

denotes random oracle model.

Furthermore, looking into the details on time key update. The PKG in Sun
et al. [27] issues a time update key for each non-revoked user with a conventional
IBE scheme, and thus the workload of PKG grows linearly in the numbers of the
non-revoked users. Instead, we adapt the classical BT-based revocation mecha-
nism [19] to obtain a logarithmic complexity workload of PKG which serves as
one solution to the challenge proposed by Sun et al., and an extended cipher-
text design technique recently employed by Ma and Lin [16], which works as
follows: the sender encrypts a message under a HIBE scheme and an IBE scheme
corresponding to the time and node pairs (t, θ) where θ ∈ path(id) and the recip-
ient id is assigned to a leaf node in BT. Given a user revocation list (RL), PKG
computes the time update key under the IBE scheme corresponding to the time
and node pairs (t, θ′) where θ′ ∈ KUNode(BT,RL, t) denotes all the non-revoked
children of revoked id with t, only a non-revoked id at t can derive a short-term

446 Y. Zhang et al.

decryption key consisting of two parts, which are corresponding to the two-level
HIBE and the unique node θ ∈ path(id) ∩ KUNode(BT,RL, t). Unfortunately, the
bit-size of final ciphertext in our constructions is linear in the length of id.

The security of our lattice-based RIBE-CE schemes rely on a lattice-based IBE
scheme [1] and a lattice-based double encryption scheme employed by Nguyen
et al. [20] in the design of lattice-based SA-RIBE. The constructions are selec-
tively secure in the standard model for our two schemes based on the hardness
assumption of the learning with errors (LWE) problem.

Organization. The organization of the paper is as follows. In Sect. 2, we review
the definition of RIBE-CE and some background knowledge on lattices. A lattice-
based RIBE-CE scheme without DKER and a scheme with DKER in the standard
model are described and analyzed in Sects. 3 and 4, respectively. In the final
Sect. 5, we conclude our whole paper.

2 Definition and Security Model

Table 2 refers to the notations used in this paper.

Table 2. Notations of this paper.

Notation Definition

a,A Vectors, matrices
$←− Sampling uniformly at random

‖ · ‖, ‖ · ‖∞ Euclidean norm �2, infinity norm �∞
�e�, �e� The smallest integer not less than e, the integer closet to e

O, ˜O, ω Standard asymptotic notations

log e Logarithm of e with base 2

ppt Probabilistic polynomial-time

2.1 RIBE with Server-Aided Ciphertext Evolution

We first review the definition and security model of RIBE-CE introduced by Sun
et al. [27]. An RIBE-CE is an extension of RIBE that supports key revocation, and
additionally it delegates ciphertext evolution to a cloud server (Cloud). A trusted
center first issues a master secret key (msk) and public parameters (pp). The PKG
issues a long-term private key skid for each system user id and a time update
key ukt with time t by using msk, meanwhile, it distributes ukt to Cloud (and all
users) and maintains a revocation list (RL) to record the state information on
revoked users. The Cloud periodically transforms a ciphertext for id with t into
a new one for t′ > t by using ukt. To decrypt a ciphertext which specifies an
identity id and a time t, the non-revoked recipient combines his long-term private

RIBE with Server-Aided Ciphertext Evolution from Lattices 447

Fig. 1. System model of RIBE-CE.

key skid and current time update key ukt to derive a short-term decryption key
dkid,t. The system model of RIBE-CE is shown in Fig. 1.

Definition 1. An RIBE-CE scheme involves four distinct entities: PKG, a cloud
server Cloud, sender and recipient, associated with identity space I, time space
T (time is treated as discrete and the size of T is polynomial in the security
parameter) and message space M, and consists of eight polynomial-time (pt)
algorithms which are described as follows:

– Setup(1n, N): The setup algorithm is run by PKG, and it takes as input a
security parameter n and the maximal number of system users N . It outputs
a master secret key msk, the public parameters pp, a user revocation list RL
(initially empty), and a state st. Note: msk is kept in secret by PKG and pp
is made public and as an implicit input of all other algorithms.

– PriKeyGen(msk, id): The key generation algorithm is run by PKG, and it takes
as input an identity id, and the master secret key msk. It outputs a long-term
private key skid. Note: skid is sent to the recipient via a secret channel.

– KeyUpd(RL, t,msk, st): The key update algorithm is run by Cloud, and it takes
as input current revocation list RL, a time t, the master secret key msk, and
a state st. It outputs a time update key ukt. Note: ukt is sent to Cloud and all
users via a public channel.

– DecKeyGen(skid, ukt, t): The decryption key derivation algorithm is run by the
recipient id, and it takes as input a long-term private key skid, a corresponding
time update key ukt (or ⊥), and the current time t. It outputs a short-term
decryption key dkid,t (or ⊥ indicating that the recipient id was revoked).

– Encrypt(id, t,m): The encryption algorithm is run by the sender, and it takes
as input a recipient’s identity id, an encryption time t, and a message m. It
outputs a ciphertext ctid,t.

– Evolve(ctid,t, t
′, ukt): The ciphertext evolution algorithm is run by Cloud, and

it takes as input a ciphertext ctid,t with identity id and time t, a new time
t′ > t, and the current time update key ukt. It outputs a new ciphertext ctid,t′ .
Note: If id has been revoked at time t, the ciphertext remains unchanged.

448 Y. Zhang et al.

– Decrypt(dkid′,t′ , ctid,t): The decryption algorithm is run by the recipient, and
it takes as input a ciphertext ctid,t and a decryption key dkid′,t′ . It outputs a
message m ∈ M, or a symbol ⊥.

– Revoke(id, t,RL, st): The revocation algorithm is run by PKG, and it takes as
input the current revocation list RL, an identity id, a revoked time t, and a
state st. It outputs an updated revocation list RL = RL∪{(id, t)}. Note: a copy
of RL will be sent to Cloud via a public channel.

The correctness of an RIBE-CE scheme is described as follows: for all pp, msk,
RL, and st generated by Setup(1n, N), skid generated by PriKeyGen(msk, id, st) for
id ∈ I, ukt generated by KeyUpd(RL, t,msk, st) for t ∈ T and RL, ctid,t generated
by Encrypt(id, t,m) for id ∈ I, t ∈ T and m ∈ M, and ctid,t′ generated by
Evolve(ctid,t, t

′, ukt), then it is required that:

– If (id, t′) /∈ RL for all t′ ≤ t, then DecKeyGen(skid, ukt, t) = dkid,t.
– If (id, t′) /∈ RL for all t′ < t, then Evolve(ctid,t′ , t, ukt) = ctid,t.
– If (id = id′) ∧ (t = t′), then Decrypt(dkid′,t′ , ctid,t) = m.

Since RIBE-CE is an extension of RIBE, the indistinguishability under chosen-
plaintext attack (ind-cpa) security of RIBE must be satisfied to guarantee message
hiding security against an inside attacker A0 who owns a long-term private key
(e.g., a revoked user), and an outside attacker A1 who knows all time update
keys (e.g., the cloud server Cloud).

Sun et al. [27] defined the security against adaptive-revocable-identity-time
chosen-plaintext attacks for RIBE-CE. Here, we only consider selective-revocable-
identity-time security (a weaker notion initially was suggested in RIBE by
Boldyreva et al. [4], subsequently by Chen et al. [7], Nguyen et al. [20] and
Katsumata et al. [11], in which an adversary A (A0 or A1) sends a chal-
lenge identity and time pair (id∗, t∗) to the challenger C before the execution
of Setup(1n, N). A slight difference is that we formalize the ind-cpa security
adopting a game capturing a stronger privacy property called indistinguishable
from random as defined in [1] and a stronger security property called DKER
defined in [24].

In our ind-cpa security model of RIBE-CE, the attacker can request long-
term private key, time update key, revocation, short-term decryption key (as in
Sun et al., in our first construction, there is also no this query), and ciphertext
evolution queries. One of the most restrictions of this model is that if the attacker
has requested a long-term private key for the challenge identity id∗, then id∗

must be revoked before (or at) the time update key query of challenge time t∗.
Finally, the goal of the attacker is to determine that the challenge ciphertxet is
completely random, or correctly encrypted on the challenge m∗ corresponding
to (id∗, t∗). A detailed definition is described as follows:

Definition 2. The ind-cpa security of RIBE-CE is shown in the following game:

– Intial: The adversary A first declares a challenge identity and time pair
(id∗, t∗).

RIBE with Server-Aided Ciphertext Evolution from Lattices 449

– Setup: The challenger C runs Setup(1n, N) to obtain (msk, pp,RL, st). Note:
RL is initially empty, C keeps msk in secret by himself and provides pp to A.

– Query phase 1: The query-answer between A and C is described in
Table 3. Remark: PriKenGen(·),KeyUpd(·),Revoke(·),DecKeyGen(·) and CE
share st and the queries should be with some restrictions defined later. The
DecKeyGen(·) oracle is used to define DKER for our second scheme, which
has not been provided by Sun et al.

– Challenge: A submits a message m∗ ∈ M. C samples a bit b
$←− {0, 1}. If

b = 0, C returns a challenge ciphertext ct∗id∗,t∗ by running Encrypt(id∗, t∗,m∗),

otherwise, a random ct∗id∗,t∗
$←− U .

– Query phase 2: A can continue to make additional queries as before with the
same restrictions.

– Guess: A outputs a bit b∗ ∈ {0, 1}, and wins if b∗ = b.
In the above game, the following restrictions should be satisfied:
– KeyUpd(·) and Revoke(·) must be queried in a non-decreasing order of

time.
– Revoke(·) cannot be queried at t if KeyUpd(·) has been queried at t.
– Revoke(·) must be queried on (id∗, t) for t ≤ t∗ if PriKenGen(·) has been

queried on id∗.
– DecKeyGen(·) cannot be queried at t if KeyUpd(·) was not queried at t.
– DecKeyGen(·) cannot be queried on (id∗, t∗), and in CE query, t′ > t.

A’s advantage is defined as Advind-cpaRIBE-CE,A(n) = |Pr[b∗ = b]−1/2|. An RIBE-CE

scheme is secure if Advind-cpaRIBE-CE,A(n) is negligible in the security parameter n.

Table 3. The query-answer between A and C.

PriKenGen(·) KeyUpd(·) Revoke(·) DecKeyGen(·) CE

A id RL, t RL, id, t id, t ctid,t, t, t′

C skid ukt RL = RL ∪ {(id, t)} dkid,t ctid,t′

2.2 Lattices

In this subsection, we recall the knowledge on integer lattices.

Definition 3. Given n, m, q ≥ 2, a random A ∈ Z
n×m
q , and u ∈ Z

n
q , the m-

dimensional q-ary orthogonal lattice Λ⊥
q (A) (and its shift Λu

q (A)) is defined as:
Λ⊥

q (A) = {e ∈ Z
m | A ·e = 0 mod q} and Λu

q (A) = {e ∈ Z
m | A ·e = u mod q}.

The discrete Gaussian distribution over Λ with the center c ∈ Z
m and a

Gaussian parameter s > 0 is denoted as DΛ,s,c, and we omit the subscript and
denote it as DΛ,s if c = 0.

450 Y. Zhang et al.

Lemma 1 ([10]). For integers n, q ≥ 2, m ≥ 2n
log q�, assume that the columns
of a random A ∈ Z

n×m
q generates Z

n
q , let ε ∈ (0, 1/2) and s ≥ ηε(Λ⊥(A)), then

the followings hold:

1. For e $←− DZm,s, the statistical distance between u = A · e mod q and u′ $←−
Z

n
q is at most 2ε.

2. For e $←− DZm,s, then Pr[‖e‖∞ ≤
s · log m�] holds with a larger probability.
3. The min-entropy of DZm,s is at least m − 1.

A ppt trapdoor generation algorithm returning a statistically close to uniform
A ∈ Z

n×m
q together with a low Gram-Schmidt norm basis for Λ⊥

q (A) plays a key
role in lattice-based cryptography. The algorithm was first introduced by Ajtai
[2], and two improvements were investigated in [3,18].

Lemma 2 ([2,3,18]). Let n ≥ 1, q ≥ 2, m = 2n
log q�, there is a ppt algorithm
TrapGen(q, n,m) that returns A ∈ Z

n×m
q statistically close to an uniform matrix

in Z
n×m
q and a trapdoor RA for Λ⊥

q (A).

Gentry et al. [10] showed an algorithm to sample short vectors (or matrices)
from a discrete Gaussian distribution, and an improvement was given in [18].
Meanwhile, to delegate a trapdoor for a super-lattice was given in [6].

Lemma 3 ([10,18]). Let n ≥ 1, q ≥ 2, m = 2n
log q�, given A ∈ Z
n×m
q ,

a trapdoor RA for Λ⊥
q (A), a parameter s = ω(

√
n log q log n), and a vector

u ∈ Z
n
q , there is a ppt algorithm SamplePre(A,RA,u, s) returning a shorter

vector e ∈ Λu
q (A) sampled from a distribution statistically close to DΛu

q (A),s.

Lemma 4 ([6]). Let q ≥ 2, m = 2n
log q�, given A ∈ Z
n×m
q who can gen-

erate Z
n
q , a basis RA ∈ Z

m×m for Λ⊥
q (A), a random A′ ∈ Z

n×m′
q , there is

a deterministic algorithm ExtBasis(RA,A∗ = A|A′) returning a basis RA∗ ∈
Z
(m+m′)×(m+m′) for Λ⊥

q (A∗), especially, RA, RA∗ are with equal Gram-Schmidt
norm. Note: the result holds for any given permutation of all columns of A∗.

Lemma 5 ([6]). Let n ≥ 1, q ≥ 2, m = 2n
log q�, s ≥ ‖˜RA‖ ·ω(
√

log n), RA ∈
Z

m×m is a basis for Λ⊥
q (A), there is a ppt algorithm RandBasis(RA, s) returning

a new basis R′
A ∈ Z

m×m and ‖R′
A‖ ≤ s · √

m. In particular, for two basis

matrices R(1)
A and R(2)

A for Λ⊥
q (A), and s ≥ max{‖ ˜

R(1)
A ‖, ‖ ˜

R(2)
A ‖} · ω(

√
log n),

RandBasis(R(1)
A , s) is statistically close to RandBasis(R(2)

A , s).

Lemma 6 ([1]). Let q > 2, m > n, A ∈ Z
n×m
q , A′ ∈ Z

n×m′
q , and s > ‖˜RA‖ ·

ω(
√

log(m + m′)), given a trapdoor RA for Λ⊥
q (A) and u ∈ Z

n
q , there is a ppt

algorithm SampleLeft(A|A′,RA,u, s) returning a shorter e ∈ Z
2m sampled from

a distribution statistically close to DΛu
q (A|A′),s.

Lemma 7 ([1]). Let q > 2, m > n, A, B ∈ Z
n×m
q , s > ‖˜RB‖ · O(

√
m) ·

ω(
√

log m), given a trapdoor RB, a low-norm R ∈ {−1, 1}m×m, and u ∈ Z
n
q ,

there is a ppt algorithm SampleRight(A,B,R,RB,u, s) returning a shorter e ∈
Z
2m distributed statistically close to DΛu

q (F),s, where F = [A|AR + B].

RIBE with Server-Aided Ciphertext Evolution from Lattices 451

We recall the learning with errors (LWE) problem introduced by Regev [22].

Definition 4. The LWE problem is defined as follows: given s $←− Z
n
q , a distri-

bution χ over Z, let As,χ be the distribution (A,A�s + e) where A $←− Z
n×m
q ,

e $←− χm, and to make distinguish between As,χ and U $←− Z
n×m
q × Z

m
q . Let

β ≥ √
n · ω(log n), for a prime power q, given a β-bounded χ, the LWE problem

is as least as hard as the shortest independent vectors problem SIVP
˜O(nq/β).

An injective encoding function H : Zn
q → Z

n×n
q is adopted for our RIBE-CE

schemes. An explicit design called encoding with full-rank differences (FRD) was
proposed by Agrawal et al. [1].

Definition 5. Let n > 1, prime q ≥ 2, an injective encoding function H : Zn
q →

Z
n×n
q is called FRD if:

1. For ∀e1, e2 ∈ Z
n
q , e1 �= e2, H(e1) − H(e2) ∈ Z

n×n
q is full-rank.

2. H can be computed in a polynomial time, i.e., O(n log q).

Two followings two facts will be used in the security proofs of this work.

Lemma 8 ([1]). Let n ≥ 1, prime q > 2, m > (n + 1) log q + ω(log n), A $←−
Z

n×m
q , B $←− Z

n×k=poly(n)
q , and R $←− {−1, 1}m×k mod q. Then, for all w ∈

Z
m
q , (A,AR,R�w) is statistically close to (A,B,R�w).

Lemma 9 ([1]). Let R $←− {−1, 1}m×m and w ∈ R
m, Pr[‖R · w‖∞ > ‖w‖∞ ·√

m · ω(
√

log m)] < negl(m).

3 Our Lattice-Based RIBE-CE Scheme Without DKER

Our first RIBE-CE scheme adopts a lattice-based IBE scheme [1] from which the
PKG issues a long-term private key to each user id and a time update key to Cloud
for ciphertext evolution, a classical BT revocation mechanism [19] to alleviate
the load of PKG (a logarithmic complexity and a user id is viewed as a leaf node
of BT, each node in BT has an identifier which is a fixed and unique binary
string1, and an extended ciphertext design method [16] to resolve the problem
of the same state information of BT is used in PriKeyGen(·) and KeyUpd(·).

1 Set an identifier of the root node (root) as 0, and an identifier of other node is
assigned as follows: each edge in BT is assigned with 0 or 1 depending on whether
it is connected to a left or right child node, thus an identifier of each node is
defined as all labels of edges in the path from root to this node. Obviously, each
user id = (0, id1, id2, · · · , idlogN) ∈ 0||{0, 1}logN is with a path path(id), where N is
the maximal number of system users. Additionally, the detailed description of KUN-
odes(BT,RL,t) algorithm is omitted in this paper and any interested readers please
refer to [4,7,9,20,21,24].

452 Y. Zhang et al.

3.1 Description of the Scheme

As in Sun et al. [27], our lattice-based RIBE-CE scheme also consists of eight pt
algorithms: Setup, PriKeyGen, KeyUpd, DecKeyGen, Encrypt, Evolve, Decrypt and
Revoke. The main algorithms are described as follows:

– Setup(1n, N): On input a security parameter n and the maximal number of
users N = 2n, set prime modulus q = ˜O(n3), dimension m = 2nk where
k =
log q�, Gaussian parameter s = ˜O(m) and norm bound β = ˜O(

√
n) for

a distribution χ. PKG specifies the following steps:
1. Let identity space I = 0||{0, 1}n, time space T ⊂ 0||{0, 1}n, and message

space M = {0, 1}.
2. Run TrapGen(q, n,m) to generate A ∈ Z

n×m
q with a trapdoor RA, and

B ∈ Z
n×m
q with a trapdoor RB.

3. Sample a collision-resistance hash function G : {0, 1}∗ → Z
n
q , and an FRD

function H : Zn
q → Z

n×n
q .

4. Sample A0,A1,B0,B1
$←− Z

n×m
q , v $←− Z

n
q , and U $←− Z

n×k
q .

5. Set the sate st = BT that BT is with at least N leaf nodes, and the initial
revocation list RL = ∅.

6. Set pp = (A,A0,A1,B,B0,B1,v,U,G,H), and msk = (RA,RB).
7. Output (pp,msk,RL, st) where msk is kept in secret by PKG, and pp is

made public and as an implicit input of all other algorithms.
– PriKeyGen(msk, id): On input an identity id ∈ I and the master secret key

msk. PKG specifies the following steps:
1. View id as an unassigned leaf node of BT, thus, id ∈ 0||{0, 1}n.
2. Define Aid = [A|A0 + H(G(id))A1] ∈ Z

n×2m
q .

3. Run SampleLeft(Aid,RA,v, s) to generate eid ∈ Z
2m satisfying Aid ·eid =

v mod q.
4. Output skid = eid. Note: skid is sent to user id via a secret channel.

– KeyUpd(RL, t,msk, st): On input a time t ∈ T , the master secret key msk, a
revocation list RL and the state st. PKG specifies the following steps:
1. For θ ∈ KUNodes(BT,RL, t), define Btθ = [B|B0 + H(G(t||θ))B1] ∈

Z
n×2m
q .

2. Run SampleLeft(Btθ ,RB,U, s) to generate Eθ ∈ Z
2m×k satisfying Btθ ·

Eθ = U mod q.
3. Output ukt = (θ,Eθ)θ∈KUNodes(BT,RL,t).

– DecKeyGen(skid, ukt, t): On input a long-term private key skid = eid, a time t
and current time update key ukt = (θ,Eθ)θ∈KUNodes(BT,RL,t). The recipient id
specifies the following steps:
1. If path(id) ∩ KUNodes(BT,RL, t) = ∅, return ⊥ and abort.
2. Otherwise, select θ ∈ (path(id) ∩ KUNodes(BT,RL, t)) (only one θ exists).
3. Return dkid,t = (eid,Eθ).

– Encrypt(id, t,m): On input an identity id ∈ I, a time t ∈ T , and a message
m ∈ {0, 1}. The sender will specify the following steps:
1. Let Aid = [A|A0 + H(G(id))A1] ∈ Z

n×2m
q .

2. For θ ∈ path(id), define Bidθ,t = [B|B0 + H(G(t||θ))B1] ∈ Z
n×2m
q .

RIBE with Server-Aided Ciphertext Evolution from Lattices 453

3. Sample s0, s′
0

$←− Z
n
q , e0

$←− χ, e′
0

$←− χk, e1, e′
1

$←− χm, and

R1,R2
$←− {1,−1}m×m.

4. Let c0 = vTs0 + e0 + m� q
2� mod q ∈ Zq, c1 = AT

ids0 +
[

e1
RT

1 e1

]

∈ Z
2m
q .

5. Let c′
0 = UTs′

0 +e′
0 +bin(c0)� q

2� mod q ∈ Z
k
q , c2,θ = BT

idθ,ts
′
0 +

[

e′
1

RT
2 e

′
1

]

∈

Z
2m
q . Note: a binary decomposition function bin : Zq → {0, 1}k is adopted

here, and for all e ∈ Zq we have that e = (1, 2, · · · , 2k−1) · bin(e).
6. Output ctid,t = (id, t, c′

0, c1, (c2,θ)θ∈path(id) ∈ (0||{0, 1}n)2×Z
k
q ×(Z2m

q)n+2.
– Evolve(ctid,t, t

′, ukt): On input a ciphertext ctid,t = (id, t, c′
0, c1, (c2,θ)θ∈path(id),

a new t′ > t, and the current time update key ukt = (θ,Eθ)θ∈KUNodes(BT,RL,t).
The Cloud specifies the following steps:
1. If the recipient of ctid,t has been revoked before (or at) time t, set ctid,t′ =

ctid,t.
2. Otherwise, compute w0 = c′

0 −ET
θ ·c2,θ mod q ∈ Z

k
q , here, θ ∈ (path(id)∩

KUNodes(BT,RL, t)).
3. Compute c0 = (1, 2, · · · , 2k−1) · � 2

qw0� ∈ Zq.

4. Sample s′′
0

$←− Z
n
q , e′′

0
$←− χk, e′′

1
$←− χm, and R′

2
$←− {1,−1}m×m.

5. For θ ∈ path(id), define Bidθ,t′ = [B|B0 + H(G(t′||θ))B1] ∈ Z
n×2m
q .

6. Let c′′
0 = UTs′′

0 + e′′
0 + bin(c0)� q

2� mod q ∈ Z
k
q , and c′

2,θ = BT
idθ,t′s

′′
0 +

[

e′′
1

R
′T
2 e′′

1

]

mod q ∈ Z
2m
q .

7. Output ctid,t′ = (id, t′, c′′
0 , c1, (c′

2,θ)θ∈path(id) ∈ (0||{0, 1}n)2 × Z
k
q ×

(Z2m
q)n+2.

– Decrypt(dkid′,t′ , ctid,t): On input a ciphertext ctid,t = (id, t, c′
0, c1,

(c2,θ)θ∈path(id) and a decryption key dkid′,t′ . The recipient id′ specifies the
following steps:
1. If (id �= id′) ∨ (t �= t′), return ⊥ and abort.
2. Otherwise, compute w0 = c′

0 −ET
θ ·c2,θ mod q ∈ Z

k
q , here, θ ∈ (path(id)∩

KUNodes(BT,RL, t)).
3. Compute c0 = (1, 2, · · · , 2k−1) · � 2

qw0� ∈ Zq, and w = c0 − eTidc1 ∈ Zq.
4. Output � 2

q w� ∈ {0, 1}.
– Revoke(id, t,RL, st): On input current revocation list RL, an identity id, a time

t, and a state st = BT. PKG specifies the following steps:
1. Add (id, t) to RL for all nodes associated with id.
2. Output an updated RL = RL ∪ {(id, t)}.

3.2 Analysis

We analysis the efficiency, correctness and security of our lattice-based RIBE-CE
scheme without DKER.

Efficiency: The efficiency aspect of our lattice-based RIBE-CE without DKER with
N = 2n is as follows:

454 Y. Zhang et al.

– The bit-size of public parameters pp is (6nm + n + nk + 2n) log q = ˜O(n2).
– The long-term private key skid has a short vector of bit-size ˜O(n).
– The time update key ukt has bit-size O(r log N

r) · ˜O(n) where r is the number
of revoked users.

– The ciphertext ctid,t has bit-size 2(n + 1) + (k + 2m(n + 2)) log q = ˜O(n2).
– The short-term decryption key dkid,t has bit-size ˜O(n).

Correctness: If the first lattice-based RIBE-CE scheme is operated correctly as
specified, and a recipient id is not revoked at time t ∈ T , then dkid,t = (eid,Eθ)
satisfies Aid ·eid = v mod q and Btθ ·Eθ = U mod q. In the decryption algorithm,
the non-revoked id tries to derive m by using dkid,t:

Given a ciphertext (no matter an original or evolutive ciphertext) ctid,t =
(id, t, c′

0, c1, (c2,θ)θ∈path(id).

1. Parse c2,θ =
[

c2,0

c2,1

]

where c2,i∈{0,1} ∈ Z
m
q , θ ∈ (path(id) ∩

KUNodes(BT,RL, t)).
2. Compute

w0 = c′
0 − ET

θ c2,θ = UTs′
0 + e′

0 + bin(c0)�
q

2
� − ET

θ

[

c2,0

c2,1

]

= bin(c0)�
q

2
� + e′

0 − ET
θ

[

e′
1

RT
2 e

′
1

]

︸ ︷︷ ︸

error′

According to our parameters settings, it can be checked that the error term
error′ is bounded by q/5 (i.e., ‖error′‖∞ < q/5), thus, we have the conclusion
(1, 2, · · · , 2k−1) · � 2

qw0� = c0 with overwhelming probability.

3. Parse c1 =
[

c1,0

c1,1

]

where c1,i∈{0,1} ∈ Z
m
q , and compute

w = c0 − eTidc1 = vTs0 + e0 + m�q

2
� − eTid

[

c1,0

c1,1

]

= m�q

2
� + e0 − eTid

[

e1
RT

1 e1

]

︸ ︷︷ ︸

error

According to our parameters settings, it can be checked that the error term
error is bounded by q/5 (i.e., ‖error‖∞ < q/5), thus, we have the conclusion
� 2

q w� = m with overwhelming probability.

Theorem 1. Our lattice-based RIBE-CE without DKER is ind-cpa secure if the
LWE assumption holds.

Proof. To proof this theorem, we define a list of games where the first one is
identical to the original ind-cpa game as in Definition 2 and show that a ppt
adversary A has advantage zero in the last game. We show that A cannot dis-
tinguish between these games, and thus A has negligible advantage in winning

RIBE with Server-Aided Ciphertext Evolution from Lattices 455

the original ind-cpa game. In particular, the LWE hardness assumption is adopted
to prove that Game 2 and Game 3 are indistinguishable.

Let id∗ be a challenge identity and t∗ be a challenge time, we consider two
types of adversaries:

– Type-0: An inside adversary A0 who requests a long-term private key on the
challenge identity id∗. In this case, id∗ must be revoked at t ≤ t∗.

– Type-1: An outside adversary A1 who only requests a long-term private key
on the identity id �= id∗.

For Type-0 adversary, we simulate the game as follow:

Game 0. It is the original ind-cpa game defined in Definition 2.
Game 1. We slightly change the way that C0 generates B0 in pp. C0 sam-

ples R∗
2

$←− {1,−1}m×m mod q at the setup phase, and defines B0 =
BR∗

2 − H(G(t∗||θ))B1 mod q. For the remainders, they are unchanged and
identical to those in Game 0. Next, we show that Game 0 and Game 1 are indis-
tinguishable. In Game 1, R∗

2 is used only in the designs of B0, R∗T
2 e′

1. Accord-
ing to Lemma 8, (B,BR∗

2,R
∗T
2 e′

1) is statistically close to (B,C0,R∗T
2 e′

1),

where C0
$←− Z

n×m
q . In A0’s view, BR∗

2 is statistically close to uniform, and
thus B0 is close to uniform. Hence, B0 in Game 1 and Game 0 are indistin-
guishable.

Game 2: We redesign B and B1. C0 samples B $←− Z
n×m
q and runs

TrapGen(q, n,m) to obtain B1 with a trapdoor RB1 . Let Btθ = [B|BR∗
2 +

(H(G(t||θ)) − H(G(t∗||θ∗)))B1], due to the collision-resistance property of G
and the main property of FRD, H(G(t||θ)) − H(G(t∗||θ∗)) is full-rank, and
RB1 is also a trapdoor for Λ⊥

q ((H(G(t||θ)) − H(G(t∗||θ∗)))B1). C0 responds
a time update key query for any t �= t∗ (id∗ has been revoked before or at
t∗) by running SampleRight(B, (H(G(t||θ)) − H(G(t∗||θ∗)))B1,R∗

2,RB1 ,U, s)
that returns Eθ∈KUNodes(BT,RL,t). Additionally, the parameter s = ˜O(m) is suf-
ficiently large. According to Lemma 7, Eθ is statistically close to that in Game
1. For the remainders, they are unchanged and identical to those in Game 1.
Because B and B1 are statistically close to those in Game 1, the advantage
of A0 in Game 2 is at most negligibly different from that in Game 1.

Game 3: We redesign the partial challenge ciphertexts c′∗
0 and c∗

2,θ, and the
remainders (including c∗

1) are unchanged and identical to those in Game 2.

C0 samples c′∗
0

$←− Z
k
q and c∗

2,θ
$←− Z

2m
q . Because c′∗

0 and c∗
2,θ are always

random, the advantage of A0 in returning a correct c0 is zero, and the same
advantage zero for the message m = � 2

q (c0 − eTid∗c∗
1)� is returned correctly.

A reduction from the LWE problem will be given to show that Game 2 and
Game 3 are computationally indistinguishable for a ppt adversary.
A reduction from LWE: Assume that there is a ppt adversary A0 distinguishing
Game 2 and Game 3 with non-negligible advantage, then we use A0 to design an
algorithm B0 to solve the LWE problem defined in Definition 4.

Given an LWE instance, a fresh pair (ai, bi) ∈ Z
n
q × Zq for i = 1, · · · ,m(n +

1)+k, from a sampling oracle, which is truly random R$ or noisy pseudo-random

456 Y. Zhang et al.

Rs′
0

for a secret vector s′
0 ∈ Z

n
q . The target of B0 is to distinguish between the

two oracles by utilizing A0 as follows:

Instance: B0 receives an LWE instance (i.e., (ai, bi), i = 1, · · · ,m(n + 1) + k).
Setup: B0 does as follows:

1. Assemble B ∈ Z
n×m
q from m of the given LWE samples, that is, define

B = [a1|a2| · · · |am].
2. Assemble U ∈ Z

n×k
q from the unused samples, define U =

[am+1| · · · |am+k].
3. Run TrapGen(q, n,m) to generate A ∈ Z

n×m
q and a trapdoor RA, sample

A0,A1
$←− Z

n×m
q , v $←− Z

n
q .

4. Design the remainders of public matrices, B0,B1 ∈ Z
n×m
q , as in Game 2

by using id∗, t∗, and R∗
2.

5. Sample a collision-resistance hash function G : {0, 1}∗ → Z
n
q , and an FRD

function H : Zn
q → Z

n×n
q .

6. Let pp = (A,A0,A1,B,B0,v,B1,U,G,H), and send pp to A1.
Queries: B0 answers a time update key query for t as in Game 2. As B0 knows

the master secret key RA, it can answer a long-term private key query for id
(a shorter vector eid) as in the real game.

Challenge: Once receive a message m∗ ∈ M, B0 computes a challenge ciphertext
for id∗ and t∗ as follows:
1. Let Aid∗ = [A|A0 + H(G(id∗))A1] ∈ Z

n×2m
q .

2. Sample s0
$←− Z

n
q , e0

$←− χ, e1
$←− χm, and R1

$←− {1,−1}m×m.

3. Let c∗
0 = vTs0 + e0 + m∗� q

2� mod q ∈ Zq, c∗
1 = AT

id∗s0 +
[

e1
RT

1 e1

]

∈ Z
2m
q .

4. Assemble e′∗
1,θ from m of the given LWE samples, define e′∗

1,θ =

⎡

⎢

⎣

b|θ|m+1

...
b|θ|m+m

⎤

⎥

⎦
,

b∗ =

⎡

⎢

⎣

bm(n+1)+1

...
bm(n+1)+k

⎤

⎥

⎦
, where θ ∈ path(id∗) and |θ| denotes the length of θ.

5. Blind the message string by defining c′∗
0 = b∗ + bin(c∗

0)� q
2� ∈ Z

k
q , and

c∗
2,θ =

[

e′∗
1,θ

R∗T
2 e′∗

1,θ

]

∈ Z
2m
q .

6. Send ctid∗,t∗ = (id∗, t∗, c′∗
0 , c∗

1, (c
∗
2,θ)θ∈path(id∗)) to A0.

We first show that if the LWE instance is from a noisy pseudo-random Rs′
0
,

so (c∗
0, c

∗
1) ∈ ctid∗,t∗ enjoys a distribution exactly as in Game 2. First, it can be

checked that Bid∗
θ ,t∗ = [B|BR∗

2]. Second, it can be checked that e′∗
1,θ = BTs′

0 +

e′
1 mod q where e′

1
$←− χm. Thus, c∗

2,θ enjoys the following structure:

c∗
2,θ =

[

e′∗
1,θ

R∗T
2 e′∗

1,θ

]

=
[

BTs′
0 + e′

1

(BR∗
2)

Ts′
0 + R∗T

2 e′
1

]

= BT
id∗

θ ,t∗s
′
0 +

[

e′
1

R∗T
2 e′

1

]

mod q,

RIBE with Server-Aided Ciphertext Evolution from Lattices 457

which implies that c∗
2,θ is exactly the c2,θ part of a valid challenge ciphertext in

Game 2.
We then show that if the LWE instance is from a truly random R$, then

(c′∗
0 , (c∗

2,θ)θ∈path(id∗)) ∈ ctid∗,t∗ enjoys a distribution exactly as in Game 3. It can
be checked that b∗ is unform over Z

k
q , and e′∗

1,θ are unform over Z
m
q . Thus, c∗

2,θ

is unform and independent over Z
2m
q , which implies that c∗

2,θ is exactly the c2,θ

part of a valid challenge ciphertext in Game 3.

Guess: After making some additional queries, A0 returns a guess for which chal-
lenger, Game 2 or Game 3, it is interacting with. Then, B0 returns the guess
of A0 as an answer to the given LWE instance.

According to the above analysis, if the LWE instance is from Rs′
0
, A0’s view

is as in Game 2, and if the LWE instance is from R$, A0’s view is as in Game 3,
and thus, the advantage of B0 in solving the LWE problem is the same as that
of A0 in distinguishing Game 2 and Game 3.

For Type-1 adversary, we simulate the game as follow:

Game 0. It is the original ind-cpa game defined in Definition 2.
Game 1. We slightly change the way that C1 generates A0 in pp. C1 samples

R∗
1

$←− {1,−1}m×m at the setup phase, let A0 = AR∗
1−H(G(id∗))A1 mod q.

For the remainders, they are unchanged and identical to those in Game 0.
Next, we show that Game 0 and Game 1 are indistinguishable. In Game 1,
R∗

1 is used only in the designs of A0 and R∗T
1 e1. So, according to Lemma

10, (A,AR∗
1,R

∗T
1 e1) is statistically close to (A,C1,R∗T

1 e1), where C1
$←−

Z
n×m
q . In A1’s view, AR∗

1 is statistically close to uniform, and thus A0 is
close to uniform. Hence, A0 in Game 1 and Game 0 are indistinguishable.

Game 2: We redesign A, A1. C2 samples A $←− Z
n×m
q and runs TrapGen(q, n,m)

to get A1 with trapdoor RA1 . Let Aid = [A|AR∗
0+(H(G(id))−H(G(id∗)))A1],

and due to the collision-resistance property of G and the main property of
FRD, H(G(id)−H(G(id∗)) is full-rank, RA1 is a trapdoor for Λ⊥

q ((H(G(id))−
H(G(id∗)))A1). C1 can respond a long-term private key query for any id �=
id∗ by running SampleRight(Aid, (H(G(id)) − H(G(id∗)))A1,R∗

1,RA1 ,v, s) to
generate a short vector eid ∈ Z

3m. The parameter s = ˜O(m) is sufficiently
large, and according to Lemma 7, eid is statistically close to that in Game 1.
The remainders are unchanged and identical to those in Game 1. A and A1

are statistically close to those in Game 1, the advantage of A1 in Game 2 is
at most negligibly different from that in Game 1.

Game 3: We redesign the partial challenge ciphertexts c∗
1 and c′∗

0 , and the
remainders (including c∗

2,θ) are unchanged and identical to those in Game

2. C1 first samples c∗
0

$←− Zq and c∗
1

$←− Z
3m
q , then set c′∗

0 = UTs′
0 + e′

0 +
bin(c∗

0)� q
2� mod q ∈ Z

k
q . Because c∗

0 and c∗
1 are always random, the advantage

of A1 in returning a correct c∗
0 is zero, and the same advantage zero for the

message m is returned correctly.

458 Y. Zhang et al.

A reduction from the LWE problem will be given to show that Game 2 and
Game 3 are computationally indistinguishable for a ppt adversary.
A reduction from LWE: Assume that there is a ppt A1 distinguishing Games 2
and 3 with non-negligible advantage, then we use A1 to design an algorithm B1

to solve the LWE problem defined in Definition 4.
Given an LWE instance, a fresh pair (ai, bi) ∈ Z

n
q ×Zq for i = 1, 2, · · · ,m+1,

from a sampling oracle, which is truly random R$ or noisy pseudo-random Rs0

for a secret vector s0 ∈ Z
n
q . The target of B1 is to distinguish between the two

oracles by utilizing A1 as follows:

Instance: B1 receives an LWE instance (i.e., (ai, bi), i = 1, 2, · · · ,m + 1).
Setup: B1 does as follows:

1. Assemble A ∈ Z
n×m
q from m of the given samples, define A =

[a1| · · · |am].
2. Assemble v ∈ Z

n
q from the unused samples, that is, define v = am+1.

3. Run TrapGen(q, n,m) to generate A1 ∈ Z
n×m
q and a trapdoor RA1 , B ∈

Z
n×m
q and a trapdoor RB, sample U $←− Z

n×k
q , B0,B1

$←− Z
n×m
q .

4. Design A0 ∈ Z
n×m
q , as in Game 2 by using id∗ and R∗

1.
5. Sample a collision-resistance hash function G : {0, 1}∗ → Z

n
q , and an FRD

function H : Zn
q → Z

n×n
q .

6. Let pp = (A,A0,A1,B,B0,v,B1,U,G,H), and send pp to A1.
Queries: B1 answers a long-term private key query for id �= id∗ as in Game 2. As

B1 knows the master secret key RB, it can answer a time update key query
for any t (a list of shorter matrices (Eθ)θ∈KUNodes(BT,RL,t)) as in the real game.

Challenge: Once receive m∗, B1 computes a challenge for id∗ and t∗ as follows:

1. Assemble e∗
1 from m of the samples, define e∗

1 =

⎡

⎢

⎣

b1
...

bm

⎤

⎥

⎦
, and v∗ = bm+1.

2. Blind m∗ by defining c∗
0 = v∗ + m∗� q

2� ∈ Zq, and c∗
1 =

[

e∗
1

R∗T
1 e∗

1

]

∈ Z
2m
q .

3. For θ ∈ path(id∗), define Bid∗
θ ,t∗ = [B|B0 + H(G(t∗||θ))B1] ∈ Z

n×2m
q .

4. Sample s′
0

$←− Z
n
q , e′

0
$←− χk, e′

1
$←− χm, and R2

$←− {1,−1}m×m.

5. Let c′∗
0 = UTs′

0 + e′
0 + bin(c∗

0)� q
2�, and c∗

2,θ = BT
id∗

θ ,ts
′
0 +

[

e′
1

RT
2 e

′
1

]

∈ Z
2m
q .

6. Send ctid∗,t∗ = (id∗, t∗, c′∗
0 , c∗

1, (c
∗
2,θ)θ∈path(id∗)) to A1.

Obviously, c∗
0 can be derived from (c′∗

0 , (c∗
2,θ)θ∈path(id∗)) by using a time

update key (Eθ)θ∈KUNodes(BT,RL,t∗). We first show that if the LWE instance is
from a noisy pseudo-random Rs0 , so (c∗

0, c
∗
1) enjoys a distribution exactly as in

Game 2. First, it can be checked that Aid∗ = [A|AR∗
1] ∈ Z

n×2m
q . Second, it can

be checked that e∗
1 = ATs0 + e1 mod q, where e1

$←− χm. Thus, c∗
1 enjoys the

following structure:

c∗
1 =

[

ce∗
1

R∗T
1 e∗

1

]

=
[

ATs0 + e1
(AR∗

1)
Ts0 + R∗T

1 e1

]

= AT
id∗s0 +

[

e1
R∗T

1 e1

]

mod q,

RIBE with Server-Aided Ciphertext Evolution from Lattices 459

which implies that c∗
1 is exactly the c1 part of a valid challenge in Game 2.

We then show that if the LWE instance is from a truly random R$, so (c∗
0, c

∗
1)

enjoys a distribution exactly as in Game 3. It can be checked that v∗ is unform
over Zq, and e∗

1 is unform over Z
m
q . Thus, c∗

1 is unform and independent over
Z
2m
q , which implies that c∗

1 is exactly the c1 part of a valid challenge ciphertext
in Game 3.

Guess: After making some additional queries, A1 returns a guess for which chal-
lenger, Game 2 or Game 3, it is interacting with. Then, B1 returns the guess
of A1 as an answer to the given LWE instance.

According to the above analysis, if the LWE instance is from Rs0 , A1’s view
is as in Game 2, and if the LWE instance is from R$, A1’s view is as in Game 3,
and thus, the advantage of B1 in solving the LWE problem is the same as that
of A1 in distinguishing Game 2 and Game 3. This completes the proof.

4 Our Lattice-Based RIBE-CE Scheme with DKER

Our RIBE-CE scheme with DKER in the standard model is a combination of a
two-level lattice-based HIBE scheme and an IBE scheme [1] from which the PKG
still issues a long-term private key to each system user id, yet this private key
is a trapdoor matrix, not a shorter vector as in our first scheme. This trapdoor
matrix ensures each user id computing a short-term decryption key (a shorter
vector) for any time period on their own. Similarly, the BT revocation mechanism
is adopted to alleviate the workload of PKG.

4.1 Description of the Scheme

As in our first scheme, our lattice-based RIBE-CE with DKER in the standard
model consists of eight pt algorithms: Setup, PriKeyGen, KeyUpd, DecKeyGen,
Encrypt, Evolve, Decrypt and Revoke. The algorithms are described as follows:

– Setup(1n, N): On input a security parameter n and the maximal number of
users N = 2n, parameters q,m, k, s and β = ˜O(

√
n) are the same as in our

first scheme. PKG specifies the same steps as in our first scheme except it
additionally samples A2

$←− Z
n×m
q , and thus:

1. Set pp = (A,A0,A1,A2,B,B0,B1,v,U,G,H), and msk = (RA,RB).
2. Output (pp,msk,RL, st) where msk is kept in secret by PKG, and pp is

made public and as an implicit input of all other algorithms.
– PriKeyGen(msk, id): On input an identity id ∈ I and the master secret key

msk. PKG specifies the following steps:
1. View id as an unassigned leaf node of BT, thus, id ∈ 0||{0, 1}n.
2. Define Aid = [A|A0 + H(G(id))A2] ∈ Z

n×2m
q .

3. Run RandBasis(ExtBasis(RA,Aid), s) to generate a trapdoor RAid
for

Λ⊥
q (Aid).

4. Output skid = RAid
.

460 Y. Zhang et al.

– KeyUpd(RL, t,msk, st): The same as in our first scheme.
– DecKeyGen(skid, ukt, t): On input a long-term private key skid = RAid

, a time
t and current time update key ukt = (θ,Eθ)θ∈KUNodes(BT,RL,t). The recipient
id specifies the following steps:
1. If path(id) ∩ KUNodes(BT,RL, t) = ∅, return ⊥ and abort.
2. Otherwise, define Aid,t = [Aid|A1 + H(G(t))A2] ∈ Z

n×3m
q .

3. Run SampleLeft(Aid,t,RAid
,v, s) to generate eid,t ∈ Z

3m satisfying Aid,t ·
eid,t = v mod q.

4. Select θ ∈ (path(id) ∩ KUNodes(BT,RL, t)), and return dkid,t = (Eθ, eid,t).
– Encrypt(id, t,m): On input an identity id ∈ I, a time t ∈ T , and a message

m ∈ {0, 1}. The sender will specify the following steps:
1. Let Aid,t = [A|A0 + H(G(id))A2|A1 + H(G(t))A2] ∈ Z

n×3m
q .

2. For θ ∈ path(id), define Bidθ,t = [B|B0 + H(G(t||θ))B1] ∈ Z
n×2m
q .

3. Sample s0, s′
0

$←− Z
n
q , e0

$←− χ, e′
0

$←− χk, e1, e′
1

$←− χm, and

R0,R1,R2
$←− {1,−1}m×m.

4. Let c0 = vTs0 + e0 + m� q
2� mod q ∈ Zq, c1 = AT

id,ts0 +

⎡

⎣

e1
RT

0 e1
RT

1 e1

⎤

⎦ ∈ Z
3m
q .

5. Let c′
0 = UTs′

0 + e′
0 + bin(c0)� q

2� ∈ Z
k
q , and c2,θ = BT

idθ,ts
′
0 +

[

e′
1

RT
2 e

′
1

]

∈

Z
2m
q .

6. Output ctid,t = (id, t, c′
0, c1, (c2,θ)θ∈path(id) ∈ (0||{0, 1}n)2 × Z

k
q × Z

3m
q ×

(Z2m
q)n+1.

– Evolve(ctid,t, t
′, ukt): On input an original ciphertext ctid,t = (id, t, c′

0, c1,
(c2,θ)θ∈path(id) or an evolutive ciphertext ctid,t = (id, t′′, t, c′

0, c1,
(c2,θ)θ∈path(id), a new time t′ > t > t′′, and the current time update key
ukt = (θ,Eθ)θ∈KUNodes(BT,RL,t). The Cloud specifies the following steps:
1. If the recipient has been revoked before (or at) time t, set ctid,t′ = ctid,t.
2. Otherwise, compute w0 = c′

0 −ET
θ ·c2,θ mod q ∈ Z

k
q , here, θ ∈ (path(id)∩

KUNodes(BT,RL, t)).
3. Compute c0 = (1, 2, · · · , 2k−1) · � 2

qw0� ∈ Zq.

4. Sample s′′
0

$←− Z
n
q , e′′

0
$←− χk, e′′

1
$←− χm, and R′

2
$←− {1,−1}m×m.

5. For θ ∈ path(id), define Bidθ,t′ = [B|B0 + H(G(t′||θ))B1] ∈ Z
n×2m
q .

6. Let c′′
0 = UTs′′

0 +e′′
0 +bin(c0)� q

2� ∈ Z
k
q , c′

2,θ = BT
idθ,t′s

′′
0 +

[

e′′
1

R
′T
2 e′′

1

]

∈ Z
2m
q .

7. Output ctid,t′ = (id, t(or t′′), t′, c′′
0 , c1, (c′

2,θ)θ∈path(id) ∈ (0||{0, 1}n)3×Z
k
q ×

Z
3m
q × (Z2m

q)n+1.
– Decrypt(dkid′,t′ , ctid,t): On input an original ciphertext ctid,t = (id, t, c′

0, c1,
(c2,θ)θ∈path(id) or an evolutive ciphertext ctid,t = (id, t′′, t, c′′

0 , c1,
(c′

2,θ)θ∈path(id), and a decryption key dkid′,t′ . The recipient id′ needs to specify
the following steps:

1. For the original ciphertext ctid,t = (id, t, c′
0, c1, (c2,θ)θ∈path(id):

RIBE with Server-Aided Ciphertext Evolution from Lattices 461

1.1. If (id �= id′) ∨ (t �= t′), return ⊥ and abort.
1.2. Otherwise, compute w0 = c′

0 − ET
θ · c2,θ mod q ∈ Z

k
q , here, θ ∈

(path(id) ∩ KUNodes(BT,RL, t)).
1.3. Compute c0 = (1, 2, · · · , 2k−1) · � 2

qw0� ∈ Zq, w = c0 − eTid,tc1 ∈ Zq.
1.4. Output � 2

q w� ∈ {0, 1}.
2. For the evolutive ciphertext ctid,t = (id, t′′, t, c′

0, c1, (c
′
2,θ)θ∈path(id):

2.1. If (id �= id′) ∨ (t �= t′), return ⊥ and abort.
2.2. Otherwise, compute w0 = c′′

0 − ET
θ · c′

2,θ mod q ∈ Z
k
q , here, θ ∈

(path(id) ∩ KUNodes(BT,RL, t)).
2.3. Compute c0 = (1, 2, · · · , 2k−1) · � 2

qw0� ∈ Zq.
2.4. Define Aid,t′′ = [Aid|A1 + H(G(t′′))A2] ∈ Z

n×3m
q .

2.5. Run SampleLeft(Aid,t′′ ,RAid
,v, s) to generate eid,t′′ ∈ Z

3m satisfying
Aid,t′′ · eid,t′′ = v mod q.

2.6. Define w = c0 − eTid,t′′c1 mod q ∈ Zq.
2.7. Output � 2

q w� ∈ {0, 1}.
– Revoke(id, t,RL, st): The same as in our first scheme.

4.2 Analysis

We analysis the efficiency, correctness and security of our lattice-based RIBE-CE
scheme with DKER in the standard model.

Efficiency: The efficiency aspect of our lattice-based RIBE-CE scheme with DKER
in the standard model and N = 2n is as follows:

– bit-size of public parameters pp is (7nm + n + nk + 2n) log q = ˜O(n2).
– The long-term private key skid has a trapdoor matrix of bit-size ˜O(n2).
– The time update key ukt has bit-size O(r log N

r) · ˜O(n) where r is the number
of revoked users.

– The ciphertext ctid,t has bit-size 2(n+1)+(k+3m+2m(n+1)) log q = ˜O(n2).
– The short-term decryption key dkid,t has bit-size ˜O(n).

Correctness: If the first lattice-based RIBE-CE with DKER in the standard model
is operated correctly as specified, and a recipient id is not revoked at time t,
then dkid,t = (Eθ, eid,t) satisfies Btθ · Eθ = U mod q and Aid,t · eid,t = v mod q.
In the decryption algorithm, the non-revoked id tries to derive m by using dkid,t

(sometimes, id also needs to use the long-term private key to derive a new shorter
vector according to a new time):

– If the given ciphertext is an original ciphertext, ctid,t = (id, t, c′
0, c1,

(c2,θ)θ∈path(id).

1. Parse c2,θ =
[

c2,0

c2,1

]

where c2,i∈{0,1} ∈ Z
m
q and θ ∈ (path(id) ∩

KUNodes(BT,RL, t)).

462 Y. Zhang et al.

2. Compute

w0 = c
′
0 − E

T
θ c2,θ = U

T
s

′
0 + e

′
0 + bin(c0)	

q

2

 − E

T
θ

[

c2,0

c2,1

]

= bin(c0)	
q

2

 + e

′
0 − E

T
θ

[

e′
1

RT
2 e′

1

]

︸ ︷︷ ︸

error′

According to our parameters settings, it can be checked that the error
term error′ is bounded by q/5 (i.e., ‖error′‖∞ < q/5), thus, we have the
conclusion (1, 2, · · · , 2k−1) · � 2

qw0� = c0 with overwhelming probability.

3. Parse c1 =

⎡

⎣

c1,0

c1,1

c1,2

⎤

⎦ where c1,i∈{0,1,2} ∈ Z
m
q , and compute

w = c0 − e
T
id,tc1 = v

T
s0 + e0 + m	 q

2

 − e

T
id,t

⎡

⎣

c1,0

c1,1

c1,2

⎤

⎦ = m	 q

2

 + e0 − e

T
id,t

⎡

⎣

e1

RT
0 e1

RT
1 e1

⎤

⎦

︸ ︷︷ ︸

error

According to our parameters settings, it can be checked that the error term
error is bounded by q/5 (i.e., ‖error‖∞ < q/5), thus, we have the conclusion
� 2

q w� = m with overwhelming probability.
– If the given ciphertext is an evolutive ciphertext, ctid,t = (id, t′′, t,

c′′
0 , c1, (c′

2,θ)θ∈path(id),

1. Parse c′
2,θ =

[

c′
2,0

c′
2,1

]

where c′
2,i∈{0,1} ∈ Z

m
q and θ ∈ (path(id) ∩

KUNodes(BT,RL, t)).
2. Compute

w0 = c
′′
0 −E

T
θ c

′
2,θ = U

T
s

′′
0 +e

′′
0 +bin(c0)	

q

2

−E

T
θ

[

c′
2,0

c′
2,1

]

= bin(c0)	
q

2

+e

′′
0 − E

T
θ

[

e′′
1

R
′T
2 e′′

1

]

︸ ︷︷ ︸

error′′

According to our parameters settings, it can be checked that the error
term error′′ is bounded by q/5 (i.e., ‖error′′‖∞ < q/5), thus, we have the
conclusion (1, 2, · · · , 2k−1) · � 2

qw0� = c0 with overwhelming probability.
3. Let Aid,t′′ = [Aid|A1 + H(G1(t′′))A2] ∈ Z

n×3m
q .

4. Run SampleLeft(Aid,t′′ ,RAid
,v, s) to generate eid,t′′ ∈ Z

3m satisfying
Aid,t′′ · eid,t′′ = v mod q.

5. Parse c1 =

⎡

⎣

c1,0

c1,1

c1,2

⎤

⎦ where c1,i∈{0,1,2} ∈ Z
m
q , and compute

w = c0−eTid,t′′c1 = vTs0+e0+m�q

2
�−eTid,t′′

[

c1,0

c1,1

c1,2

]

= m�q

2
� + e0 − e

T
id,t′′

⎡

⎢

⎣

e1

RT
0 e1

RT
1 e1

⎤

⎥

⎦

︸ ︷︷ ︸

error

According to our parameters settings, it can be checked that the error term
error is bounded by q/5 (i.e., ‖error‖∞ < q/5), thus, we have the conclusion
� 2

q w� = m with overwhelming probability.

RIBE with Server-Aided Ciphertext Evolution from Lattices 463

Theorem 2. Our RIBE-CE scheme with DKER in the standard model is ind-cpa
secure if the LWE assumption holds.

Proof. The proof is similar to that in Theorem 1, and due to the limited space,
the details are presented in the full paper.

5 Conclusion

In this paper, we propose two (and the first) lattice-based RIBE schemes with
server-aided ciphertext evolution. In comparison with previous lattice-based con-
structions of RIBE, our two schemes enjoy a significant advantage in terms of
ciphertext security when considering the scenario of a secure data (i.e., cipher-
text) sharing in the cloud setting and the revoked users cannot access to both
the previously and subsequently shared data. The BT revocation mechanism is
adopted for time key update, thus our three schemes only obtain a logarithmic
complexity workload of the PKG, which serves as one solution to the challenge
posed by Sun et al. In particular, we remedy the security model and introduce
DKER property into RIBE-CE, a default security requirement for RIBE, which
has not been considered by Sun et al. Our first and second lattice-based RIBE-
CE schemes are without DKER in the standard model and with DKER in the
standard model, respectively.

Acknowledgments. The authors would like to thank the anonymous reviewers of
Inscrypt 2021 for their helpful comments and this research was supported by National
Natural Science Foundation of China (Grant No. 61802075), Guangxi key Laboratory of
Cryptography and Information Security (Grant No. GCIS201907) and Natural Science
Foundation of Henan Province (Grant No. 202300410508.

References

1. Agrawal, S., Boneh, D., Boyen, X.: Efficient Lattice (H)IBE in the standard model.
In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 553–572. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5 28

2. Ajtai, M.: Generating Hard Instances of Lattice Problems (Extended Abstract).
In: STOC, pp. 99–108. ACM (1996). https://doi.org/10.1145/237814.237838

3. Alwen, J., Peikert, C.: Generating shorter bases for hard random lattices. Theor.
Comput. Sys. 48(3), 535–553 (2011). https://doi.org/10.1007/s00224-010-9278-3

4. Boldyreva, A., Goyal, V., Kumar, V.: Identity-based encryption with efficient
revocation. In: CCS, pp. 417–426. ACM (2008). https://doi.org/10.1145/1455770.
1455823

5. Boneh, D., Farnklin, M.: Identity-based encryption from the weil pairing. In: Kilian,
J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg (2001).
https://doi.org/10.1007/3-540-44647-8 13

6. Cash, D., Hofheinzy, D., Kiltz, E., et al.: Bonsai trees, or how to delegate a lattice
basis. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 523–552.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5 27

https://doi.org/10.1007/978-3-642-13190-5_28
https://doi.org/10.1145/237814.237838
https://doi.org/10.1007/s00224-010-9278-3
https://doi.org/10.1145/1455770.1455823
https://doi.org/10.1145/1455770.1455823
https://doi.org/10.1007/3-540-44647-8_13
https://doi.org/10.1007/978-3-642-13190-5_27

464 Y. Zhang et al.

7. Chen, J., Lim, H.W., Ling, S., Wang, H., Nguyen, K.: Revocable identity-based
encryption from lattices. In: Susilo, W., Mu, Y., Seberry, J. (eds.) ACISP 2012.
LNCS, vol. 7372, pp. 390–403. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-31448-3 29

8. Cocks, C.: An identity based encryption scheme based on quadratic residues. In:
Honary, B. (ed.) Cryptography and Coding 2001. LNCS, vol. 2260, pp. 360–363.
Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45325-3 32

9. Dong, C., Yang, K., Qiu, J., et al.: Outsouraced revocable identity-based encryption
from lattices. Trans. Emerging Tel. Tech. e3529 (2018). https://doi.org/10.1002/
ett.3529

10. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoor for hard lattices and new
cryptographic constructions. In: STOC, pp. 197–206. ACM (2008). https://doi.
org/10.1145/1374376.1374407

11. Katsumata, S., Matsuda, T., Takayasu, A.: Lattice-based revocable (Hierarchical)
IBE with decryption key exposure resistance. In: Lin, D., Sako, K. (eds.) PKC
2019. LNCS, vol. 11443, pp. 441–471. Springer, Cham (2019). https://doi.org/10.
1007/978-3-030-17259-6 15

12. Lee, K.: A generic construction for revocable identity-based encryption with subset
difference methods. PLOS ONE 15(9), e0239053 (2020). https://doi.org/10.1371/
journal.pone.o239053

13. Li, J., Li, J., Chen, X., et al.: Identity-based encryption with outsourced revocation
in cloud computing. IEEE Trans. Comput. 64(2), 426–437 (2015). https://doi.org/
10.1109/TC.2013.208

14. Liang, K., Liu, J.K., Wong, D.S., Susilo, W.: An efficient cloud-based revoca-
ble identity-based proxy re-encryption scheme for public clouds data sharing. In:
Kuty�lowski, M., Vaidya, J. (eds.) ESORICS 2014. LNCS, vol. 8712, pp. 257–272.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11203-9 15

15. Libert, B., Vergnaud, D.: Adaptive-ID secure revocable identity-based encryption.
In: Fischlin, M. (ed.) CT-RSA 2009. LNCS, vol. 5473, pp. 1–15. Springer, Heidel-
berg (2009). https://doi.org/10.1007/978-3-642-00862-7 1

16. Ma, X., Lin, D.: Generic constructions of revocable identity-based encryption. In:
Liu, Z., Yung, M. (eds.) Inscrypt 2019. LNCS, vol. 12020, pp. 381–396. Springer,
Cham (2020). https://doi.org/10.1007/978-3-030-42921-8 22

17. Micciancio, D., Peikert, C.: Hardness of SIS and LWE with small parameters.
In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 21–39.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40041-4 2

18. Micciancio, D., Peikert, C.: Trapdoors for lattices: simpler, tighter, faster, smaller.
In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp.
700–718. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-
4 41

19. Naor, D., Naor, M., Lotspiech, J.: Revocation and tracing schemes for stateless
receivers. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 41–62. Springer,
Heidelberg (2001). https://doi.org/10.1007/3-540-44647-8 3

20. Nguyen, K., Wang, H., Zhang, J.: Server-aided revocable identity-based encryption
from lattices. In: Foresti, S., Persiano, G. (eds.) CANS 2016. LNCS, vol. 10052, pp.
107–123. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-48965-0 7

21. Qin, B., Deng, R.H., Li, Y., Liu, S.: Server-aided revocable identity-based encryp-
tion. In: Pernul, G., Ryan, P.Y.A., Weippl, E. (eds.) ESORICS 2015. LNCS, vol.
9326, pp. 286–304. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
24174-6 15

https://doi.org/10.1007/978-3-642-31448-3_29
https://doi.org/10.1007/978-3-642-31448-3_29
https://doi.org/10.1007/3-540-45325-3_32
https://doi.org/10.1002/ett.3529
https://doi.org/10.1002/ett.3529
https://doi.org/10.1145/1374376.1374407
https://doi.org/10.1145/1374376.1374407
https://doi.org/10.1007/978-3-030-17259-6_15
https://doi.org/10.1007/978-3-030-17259-6_15
https://doi.org/10.1371/journal.pone.o239053
https://doi.org/10.1371/journal.pone.o239053
https://doi.org/10.1109/TC.2013.208
https://doi.org/10.1109/TC.2013.208
https://doi.org/10.1007/978-3-319-11203-9_15
https://doi.org/10.1007/978-3-642-00862-7_1
https://doi.org/10.1007/978-3-030-42921-8_22
https://doi.org/10.1007/978-3-642-40041-4_2
https://doi.org/10.1007/978-3-642-29011-4_41
https://doi.org/10.1007/978-3-642-29011-4_41
https://doi.org/10.1007/3-540-44647-8_3
https://doi.org/10.1007/978-3-319-48965-0_7
https://doi.org/10.1007/978-3-319-24174-6_15
https://doi.org/10.1007/978-3-319-24174-6_15

RIBE with Server-Aided Ciphertext Evolution from Lattices 465

22. Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-
phy. In: STOC, pp. 84–93. ACM (2005). https://doi.org/10.1145/1060590.1060603

23. Sahai, A., Waters, B.: Fuzzy identity-based encryption. In: Cramer, R. (ed.) EURO-
CRYPT 2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg (2005). https://
doi.org/10.1007/11426639 27

24. Seo, J.H., Emura, K.: Revocable identity-based encryption revisited: security model
and construction. In: Kurosawa, K., Hanaoka, G. (eds.) PKC 2013. LNCS, vol.
7778, pp. 216–234. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-
642-36362-7 14

25. Shamir, A.: Identity-based cryptosystems and signature schemes. In: Rabin, T.
(ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 98–115. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-14623-7 6

26. Shor, P.: Polynomial-time algorithms for prime factorization and dislogarithms on
a quantum computer. SIAN J. Comput. 26(5), 1485–1509 (1997). https://doi.org/
10.1016/j.tcs.2020.02.03

27. Sun, Y., Mu, Y., Susilo, W., et al.: Revocable identity-based encryption with server-
aided ciphertext evolution. Theor. Comput. Sci. 2020(815), 11–24 (2020). https://
doi.org/10.1016/j.tcs.2020.02.03

28. Takayasu, A.: Adaptively secure lattice-based revocable IBE in the QROM: com-
pact parameters, tight security, and anonymity. Des. Codes Cryptogr. (2021).
https://doi.org/10.1007/s10623-021-00895-3

29. Takayasu, A., Watanabe, Y.: Lattice-based revocable identity-based encryption
with bouned decryption key exposure resistance. In: Pieprzyk, J., Suriadi, S. (eds.)
ACISP 2017. LNCS, vol. 10342, pp. 184–204. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-60055-0 10

30. Wang, C., Fang, J., Li, Y.: An improved cloud-based revocable identity-based proxy
re-rncryption scheme. In: Niu, W., Li, G., Liu, J., et al. (eds.) ATIS 2015. LNCS,
vol. 557, pp. 14–26. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-
662-48683-2 2

https://doi.org/10.1145/1060590.1060603
https://doi.org/10.1007/11426639_27
https://doi.org/10.1007/11426639_27
https://doi.org/10.1007/978-3-642-36362-7_14
https://doi.org/10.1007/978-3-642-36362-7_14
https://doi.org/10.1007/978-3-642-14623-7_6
https://doi.org/10.1016/j.tcs.2020.02.03
https://doi.org/10.1016/j.tcs.2020.02.03
https://doi.org/10.1016/j.tcs.2020.02.03
https://doi.org/10.1016/j.tcs.2020.02.03
https://doi.org/10.1007/s10623-021-00895-3
https://doi.org/10.1007/978-3-319-60055-0_10
https://doi.org/10.1007/978-3-319-60055-0_10
https://doi.org/10.1007/978-3-662-48683-2_2
https://doi.org/10.1007/978-3-662-48683-2_2

Homomorphic Modular Reduction and
Improved Bootstrapping for BGV Scheme

Ruiqi Li1 and Chunfu Jia1,2(B)

1 College of Cyber Science, Nankai University, Tianjin 300350, China
lrq@mail.nankai.edu.cn, cfjia@nankai.edu.cn

2 Tianjin Key Laboratory of Network and Data Security Technology,

Tianjin 300350, China

Abstract. Bootstrapping is a crucial subroutine of fully homomorphic
encryption (FHE), where a homomorphic encryption scheme evaluates
its own decryption circuits. Homomorphic modular reduction is a crucial
part of bootstrapping a BGV ciphertext.

In this paper, we investigate the homomorphic modular reduction
technique. We propose a new homomorphic modular reduction algorithm
based on the idea of “blind rotation”. This new homomorphic modular
reduction procedure requires no basic homomorphic operations, hence
it has lower noise accumulation and more suitable for implementing.
Furthermore, we also resort to the blind rotation to construct a new
bootstrapping procedure for the BGV scheme. We analyze the noise per-
formance and the computational complexity of our scheme. The results
illustrate that our new bootstrapping scheme achieves low noise accumu-
lation so that the lattice approximation factor for the underlying worst-
case lattice assumption is smaller than that of Chen and Zhang’s work.
Meanwhile, the complexity of our bootstrapping scheme is comparable
with their scheme.

Keywords: Homomorphic encryption · Bootstrapping · Modular
reduction

1 Introduction

Fully homomorphic encryption (FHE) is an emerging cryptographic primitive
that enables homomorphic computations on encrypted data without decryption.
In 2009, Gentry [17,18] proposed the blueprint for achieving fully homomorphism
and constructed the first FHE scheme. After Gentry’s breakthrough, many FHE
schemes emerge [3,5,7,13,15,23,27].

Almost all existing HE schemes include “noise” in ciphertexts, and the
“noise” accumulates during homomorphic operations. When the “noise” rises
up to some extent, ciphertexts cannot be decrypted correctly. To address this
problem, Gentry proposed a technique called bootstrapping in [17] to refresh

c© Springer Nature Switzerland AG 2021
Y. Yu and M. Yung (Eds.): Inscrypt 2021, LNCS 13007, pp. 466–484, 2021.
https://doi.org/10.1007/978-3-030-88323-2_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-88323-2_25&domain=pdf
http://orcid.org/0000-0002-7452-104X
http://orcid.org/0000-0002-5588-9690
https://doi.org/10.1007/978-3-030-88323-2_25

Homomorphic Modular Reduction and Improved Bootstrapping 467

ciphertexts. Generally, a bootstrapping procedure is to evaluate decryption func-
tion homomorphically on encryptions of secret key. Bootstrapping is a compu-
tationally fairly expensive procedure, and it is the main bottleneck of making
FHE schemes practical. Therefore, there are many studies aimed at improving
the efficiency of bootstrapping to make FHE faster.

Currently, researches of improving bootstrapping are pursued following two
main approaches. The first approach, studied in [2,4,6,9,16,22,30], is to present
bootstrapping techniques for HE schemes based on the Gentry-Sahai-Waters
(GSW) scheme [23]. These schemes try to decrease the cost of bootstrapping
a single ciphertext as much as possible, even at the expense of having to per-
form bootstrapping after evaluating every gate of the circuit. However, the above
schemes have some limitations that the bootstrapping procedure has to be per-
formed for essentially every gate of the circuit, and do not support packing
several messages into a single ciphertext. The only exception is [30], since it first
packs a number of LWE ciphertexts into an RLWE ciphertext and then refresh
it.

Another approach explored in [1,8,11,12,14,19–21,24,25,31] aims at provid-
ing bootstrapping techniques for FHE schemes that can pack several messages
into one ciphertext and refresh them in parallel. At present, BGV (Brakerski-
Gentry-Vaikuntanathan) HE schemes [5,21] are one class of the most efficient
somewhat homomorphic encryption (SWHE) schemes that support batching.
Since BGV schemes can encrypt a ring element rather than a single bit in
one ciphertext, they naturally support packing a number of messages into inde-
pendent “slots” and performing Single-Instruction-Multiple-Data (SIMD) oper-
ations using the techniques based on Chinese Remainder Theorem (CRT) [33].
Therefore, many bootstrapping techniques for BGV scheme are studied. While
bootstrapping such kind of schemes may be costly, it can simultaneously refresh
plenty of messages in a single bootstrapping execution. Though the bootstrap-
ping schemes of the first approach can reduce the runtime of bootstrapping a
single ciphertext as much as possible, bootstrapping methods of the batched
BGV scheme still have much better amortized per-bit runtime.

However, in the BGV scheme, the noise of ciphertext grows quadratically
after every homomorphic multiplication, therefore these schemes essentially incur
quasi-polynomial noise when decryption circuits have polynomial multiplica-
tion levels, and consequently require worst-case lattice assumptions with super-
polynomial approximation factors. [14] is an exception among these works, which
utilizes the techniques of [2] to refresh BGV ciphertexts. These techniques allow
their construction to achieve worst-case assumptions with polynomial approxi-
mation factors. A smaller approximation factor leads to a weaker assumption.
Relying on such weaker assumption allows us to use a smaller dimension lattice
to achieve the same security level, and hence the efficiency of the scheme can be
improved.

The decryption function of the BGV scheme can be represented as

Dec(c, sk) = μ + te mod (q, Φm(X)) (1)

468 R. Li and C. Jia

where c is the encryption of message μ under the secret key sk, t is a plaintext
modulus, q is a modulus and Φm(X) is a cyclotomic polynomial modulus. There-
fore, a bootstrapping procedure of BGV scheme consists of two steps: homomor-
phic polynomial arithmetic and homomorphic modular reduction. This indicates
that we can make homomorphic modular reduction algorithm more practical so
as to obtain a bootstrapping procedure which has better performance.

Our Results. In this paper, we investigate the homomorphic modular reduction
algorithm in the procedure of bootstrapping a BGV ciphertext. We propose
a new homomorphic modular reduction algorithm based on the idea of blind
rotation used in the FHEW-like scheme [16,29]. Our new algorithm is suitable
for all RLWE-based HE schemes whose decryption circuits satisfy Eq. 1. We
obtain a new bootstrapping procedure for the BGV scheme. We analyze the
noise growth and the computational complexity. Theoretic analysis results show
that our scheme can bootstrap BGV ciphertexts with polynomial noise and
has lower noise accumulation than Chen and Zhang’s work [14], hence we can
achieve smaller lattice approximation factor for the underlying worst-case lattice
assumption. Meanwhile, the computational complexity is comparable with that
of [14].

2 Preliminaries

In this paper, we use lower case letters to denote scalers including integers, reals,
e.g. a, and use italic bold lower case letters to denote polynomials, e.g. a. We
use −→a to denote a vector. We write the ceiling, floor and rounding functions as
�·�, �·�, and �·�, respectively. For integers n, t, [n]t represents the reduction of n
modulo t, and [n]t ∈ (−�t/2�, �t/2�].

We use a ← χ to denote sampling a according to the distribution χ, and
use U(S) to denote a uniform distribution whose support is a finite set S. We
denote by χkey a ternary distribution, which samples a value from {−1, 0, 1}.
χerr is used to denote a discrete Gaussian distribution with a standard deviation
σerr. All logarithms in this paper are base two, unless stated otherwise.

2.1 Cyclotomic Rings

In this paper, BGV schemes and our bootstrapping procedure are supposed to
perform over power-of-two cyclotomic rings.

Let N be a power of two, we denote the 2N -th cyclotomic ring by R :=
Z[X]/(XN + 1) and its quotient ring by Rq := R/qR. For a polynomial a ∈ R,
we write a = a0 + a1X + · · · aN−1X

N−1, and denote its coefficient vector by−→a = (a0, a1, . . . , aN−1). We denote the �∞ norm of a as ‖a‖∞ = ‖−→a ‖∞ =
max0≤i<N {|ai|}. There exists a constant δR such that ‖a ·b‖∞ ≤ δR‖a‖∞‖b‖∞
for any a, b ∈ R, and we use the bound δR = 2

√
N for R = Z[X]/(XN + 1).

Homomorphic Modular Reduction and Improved Bootstrapping 469

Let a = a0 +a1X + · · · aN−1X
N−1 be a polynomial in R and m be a positive

integer less than N . Notice that

a · Xm mod (XN + 1)

= −aN−m − · · · − aN−1X
m−1 + a0X

m + · · · + aN−1−mXN−1

The above equation implies that a · Xm is a cyclic rotation of a with the cycled
entries negated, and that the �∞-norm of a · Xm is equal to that of a.

2.2 (Ring) LWE Problems and Ciphertexts

We now introduce the LWE problem and the ring-LWE problem. Firstly, we
bring in the definition of B-bounded distribution.

Definition 1 (B-bounded distribution). A distribution ensemble {χn}n∈N,
supported over the integers or polynomial rings, is called B-bounded if

Pre←χn
[‖e‖∞ > B] = negl(n).

The LWE problem was firstly introduced by Regev in [32].

Definition 2 (Decisional LWE (DLWE) [32]). For security parameter λ,
let n = n(λ), q = q(λ) be integers, and let χ = χ(λ) be a distribution over Z. The
decisional LWE problem (denoted by DLWEn,q,χ) is to distinguish the following
two distributions: In the first distribution, one first draws a secret vector s ∈ Z

n
q

uniformly, and then samples tuples (bi,ai) ∈ Zq × Z
n
q by choosing ai ← Z

n
q

uniformly at random and a noise term ei ← χ, and setting bi = 〈ai, s〉 + ei. In
the second distribution, one samples (bi,ai) uniformly from Z

n+1
q .

The RLWE problem was firstly introduced by Lyubashevsky et al. in [28].

Definition 3 (Decisional RLWE (DRLWE) [28]). Let K be a number field
and R be the ring of integers of K. R∨ ⊂ K is the dual fractional ideal of R. Let
χ be a distribution over KR = K ⊗QR. The decisional version of RLWE problem
(denoted by DRLWEq,χ) is to distinguish the following two distributions: In the
first distribution, one first draws s ← Rq uniformly at random, and samples (a, b)
by sampling a ← Rq uniformly, and a noise term e ← χ, and setting b = a ·s+e.
In the second distribution, one samples (a, b) uniformly over Rq × K ⊗Q R.

The theorem below captures reductions from ideal lattice GapSVP (or GapSIVP)
to RLWE, and we state the result in terms of B-bounded distributions.

Theorem 1 (Adapted from [14]). Let R be the m-th cyclotomic ring, and
n = φ(m). Let q = q(n), q ≡ 1 mod m be an integer and B = ω(

√
n log n). Let

χ be a B-bounded distribution. There is a polynomial time quantum reduction
from nω(1)q/B-approximate SVP on ideal lattices in R to DRLWEq,χ.

In the following, we introduce two forms of ciphertexts based on LWE prob-
lem and RLWE problem.

470 R. Li and C. Jia

Definition 4 (LWE ciphertexts). Let n, q be positive integers. An LWE
ciphertext of m ∈ Z under the secret key −→s ∈ Z

n is defined as

LWE−→s ,q(m, e) := (−→a , b) = (−→a ,−〈−→a ,−→s 〉 + e + m) ∈ Z
n+1
q

where −→a ← U(Zn
q) and e is a small error.

Definition 5 (Ring-LWE ciphertexts). Let Q be a positive integer and N
be a power of 2. An RLWE ciphertext of m ∈ R under the secret key s ∈ R is
defined as

RLWEs,Q(m) := (a, b) = (a,−a · s + e + m) ∈ R2
Q

where a ← U(RQ) and e is a small error.

Sample Extraction (adapted from [9,29]). A RLWE ciphertext consists of
two polynomials with N coefficients in R and it is easy to homomorphically
extract a coefficient as a scalar LWE ciphertext with the same key. Let (a, b) =
RLWEs,q(m,e) be an RLWE ciphertext. Multiplication of two polynomials a
and s in R can be written as:

s · a =
N−1∑

i=0

⎛

⎝
i∑

j=0

sj · ai−j −
N−1∑

j=i+1

sj · ai−j+N

⎞

⎠ Xi

Let −→s = (s0, . . . , sN−1) ∈ Z
N be a vector of coefficients of s. We can extract

LWE ciphertexts LWE−→s ,q(mi, ei) = (−→a (i), bi) for 0 ≤ i < N from a, where

−→a (i) = (ai, ai−1, . . . , a0,−aN−1,−aN−2, . . . ,−ai+1).

We denote this procedure as (−→a (i), bi) ← Extracti((a, b)), and we simply write
Extract((a, b)) when i = 0.

2.3 BGV Scheme

The BGV scheme [5,20] is one of frequently-used RLWE-based HE schemes. In
the BGV scheme, n is the degree of underlying cyclotomic polynomial, t is the
plaintext modulus, and q is the coefficient modulus. In this paper, we assume
that the BGV scheme is defined over R = Z[X]/(Xn + 1) where n is a power
of 2. The plaintext space is Rt = R/tR, and the secret key s is an element of
Rq = R/qR. In practice, each coefficient of s is usually sampled from the ternary
distribution χkey. A BGV ciphertext is a pair (a, b) of elements in Rq.

Specifically, the BGV scheme is essentially parameterized by a sequence of
decreasing moduli qL � qL−1 � · · · � q0. For 0 ≤ � ≤ L, a level-� ciphertext
(a(�), b(�)) of a message m ∈ Rt under the key s(�) ∈ R satisfies

Dec(a(�), s(�)) = m + t · e(�) mod (q�, Φ(X))

Homomorphic Modular Reduction and Improved Bootstrapping 471

where e(�) is the noise of the ciphertext (a(�), b(�)) and t · ‖e(�)‖∞ � q�. After
each homomorphic operation, modulus q� of level � needs to be switched to q�−1

of level � − 1 by Modulus Switching, and the corresponding key is also switched
by Key Switching. When the level comes to 0, we cannot perform any more
homomorphic operations and thus require the bootstrapping procedure, i.e. we
have to refresh the ciphertext to obtain a new one with a level-L secret key.

In this paper, we denote a BGV ciphertext of m ∈ Rt under the secret key
s as BGVt

s,q(m,e) ∈ R2
q , where e is an error. Notice that BGVt

s,q(m,e) is in
fact an RLWE ciphertext RLWEs,q(m, t·e). Therefore, the properties of RLWE
ciphertexts introduced in Sect. 2.2 also work for BGV ciphertexts.

2.4 A Ring Variant of the GSW Scheme

In this section, we adapt the definitions of RLWE′ and RGSW from [26,29] to
describe a ring variant of the GSW HE scheme [2,23] over R.

Let −→g = (g0, g1, . . . , gd−1) ∈ Z
d be a gadget vector. Let h ∈ RQ be a

polynomial and g−1(h) = (h0,h1, . . . ,hd−1) ∈ Rd be a gadget decomposition
of h such that h =

∑d−1
i=0 gi · hi. For a power of two modulus Q, we will use a

power gadget vector (1, B,B2, . . . , Bd−1) with a power of two B.
For a gadget vector −→g ∈ Z

d, we define

RLWE′
s,Q(m) := (RLWEs,Q(g0 · m, e0), . . . ,RLWEs,Q(gd−1 · m, ed−1)) ∈ R2×d

Q .

In order to explain the homomorphic scalar multiplication, we firstly intro-
duce the multiplication between a scalar and an RLWE ciphertext. Let c ∈ RQ

be a scalar and RLWEs,Q(m,e) := (a, b). The multiplication between c and
RLWEs,Q(m,e) is defined as

c · RLWEs,Q(m,e) := (c · a, c · b) = RLWEs,Q(c · m, c · e).

In the rest of this paper, we regard an RLWE ciphertext as a single element
in the procedure of the scalar multiplication, so we can further generalize the
multiplication between a scalar and an RLWE ciphertext to “inner product”
between a vector of scalars and a vector of RLWE ciphertexts.

On the basis of the above discussion, the homomorphic scalar multiplication
between RLWE′

s,Q(m) and a polynomial h ∈ RQ is defined as

h � RLWE′
s,Q(m)

= 〈g−1(h), (RLWEs,Q(g0 · m,e0), · · · ,RLWEs,Q(gd−1 · m,ed−1))〉

=
d−1∑

i=0

hi · RLWEs,Q(gi · m,ei)

= RLWEs,Q(
d−1∑

i=0

gi · hi · m,

d−1∑

i=0

hi · ei)

= RLWEs,Q(h · m,e′) ∈ R2
Q

472 R. Li and C. Jia

The procedure of the homomorphic scalar multiplication h � RLWE′
s,Q(m)

produces an RLWE ciphertext RLWEs,Q(h · m,e′) where e′ =
∑d−1

i=0 hi · ei.
The following lemma states the computational complexity of the homomorphic
scalar multiplication and the upper bound of the error of the resulting ciphertext.

Lemma 1. Let E be an upper bound of error in RLWE′
s,Q(m). The homomor-

phic scalar multiplication between RLWE′
s,Q(m) and an element h ∈ RQ can

be computed in time Õ(dN), and the error of the resulting RLWE ciphertext is
bounded by 2d

√
NBE.

Proof. Note that computing hi ·RLWEs,Q(gi ·m,ei) requires 2 multiplications
of two elements in R, so the whole procedure requires 2d multiplications. In
addition, the complexity of multiplications for ring elements of R by FFT (Fast
Fourier Transform) is O(N log N). Generally, the time complexity of the homo-
morphic scalar multiplication is no more than Õ(dN).

The error of the output RLWE ciphertext is e′ =
∑d−1

i=0 hi ·ei, and ‖hi‖∞ ≤
B, ‖ei‖∞ ≤ E. Therefore, the error of the output ciphertext is bounded by
2d

√
NBE.

The form of ciphertexts of our RGSW scheme is defined as follows.

Definition 6 (RGSW ciphertexts). Let Q be a positive integer and N be a
power of 2. Let −→g ∈ Z

d be a gadget vector. An RGSW encryption m ∈ R under
the secret key s ∈ R is defined as

RGSWs,Q(m) := (RLWE′
s,Q(s · m),RLWE′

s,Q(m)) ∈ R4×d
Q

We can define an external product between an RLWE ciphertext and an
RGSW ciphertext, similar to [9,10].

Lemma 2 (External Product). Let RLWEs,Q(m1,e) = (a, b) be an RLWE
ciphertext and g−1(a) = (ai)0≤i≤d−1, g

−1(b) = (bi)0≤i≤d−1. Let

RGSWs,Q(m2)
= (RLWE′

s,Q(s · m2),RLWE′
s,Q(m2))

= ((RLWEs,Q(gi · s · m2,e1,i))0≤i≤d−1, (RLWEs,Q(gi · m2,e2,i))0≤i≤d−1)

be an RGSW ciphertext. The external product between these two ciphertexts is
computed by

RLWEs,Q(m1, e) × RGSWs,Q(m2) = a � RLWE′
s,Q(s · m2) + b � RLWE′

s,Q(m2).

in time Õ(dN) and produces an RLWE ciphertext RLWEs,Q(m1 ·m2,e
′) where

e′ = m2 ·e+
∑d−1

i=0 aie1,i +bie2,i. If we assume that m2 = Xv with some integer
v, ‖e‖∞ ≤ E1 and ‖e1,i‖∞, ‖e2,i‖∞ ≤ E2, then ‖e′‖∞ ≤ E1 + 4

√
NdBE2.

Homomorphic Modular Reduction and Improved Bootstrapping 473

Proof. The external product is computed as

a � RLWE′
s,Q(s · m2) + b � RLWE′

s,Q(m2)

= RLWEs,Q(a · s · m2,

d−1∑

i=0

ai · e1,i) + RLWEs,Q(b · m2,

d−1∑

i=0

bi · e2,i)

= RLWEs,Q((a · s + b) · m2,

d−1∑

i=0

ai · e1,i + bi · e2,i)

= RLWEs,Q(m1 · m2 + e · m2,

d−1∑

i=0

ai · e1,i + bi · e2,i)

= RLWEs,Q(m1 · m2,m2 · e +
d−1∑

i=0

ai · e1,i + bi · e2,i) ∈ R2
Q

In fact, the external product is computed by two homomorphic scalar multi-
plications. Hence, according to Lemma 1, we know the time complexity of the
external product procedure is within Õ(dN).

Since the error of the output ciphertext can be written as e′ = m2 · e +∑d−1
i=0 ai · e1,i + bi · e2,i, then we have ‖e′‖∞ ≤ E1 + 4

√
NdBE2.

3 New Homomorphic Modular Reduction Algorithm

3.1 The Basic Idea

The basic idea of our homomorphic modular reduction is inspired by the “blind
rotation” technique used in [9,10,16].

Notice that 〈X〉 = {1,X, . . . ,XN−1,−1, . . . ,−XN−1} forms a cyclic group
in R = Z[X]/(XN + 1). If we set q = 2N , then Zq

∼= 〈X〉. This means that we
can map an integer v ∈ Zq to an element Xv of the group 〈X〉. Note that the
degree of a test polynomial is at most N in R, but there are q = 2N possible
values for v ∈ Zq, and we have to verify every possible value of v to obtain [v]t.
Therefore, we cannot use the test polynomials similar to the one proposed in [9].

Let wi be the constant term of X−v · Xi for v ∈ [0, q − 1] and i ∈ [0, N − 1].
We observe that

wi =

⎧
⎪⎨

⎪⎩

1, i = v,

−1, i = v − q/2,

0, otherwise.

holds. This result can be used to find v from the range {0, 1, . . . , q−1}. However,
this fact is not sufficient yet, since there are two possible non-zero values of the
constant term of X−v · Xi (i.e., 1 or −1). What we want is that the constant
term of X−v · Xi is equal to 1 whenever i = v or i = v − q/2. Fortunately, we
find that if we set αi as the constant term of

⌊
1
2Xi · X−v + 1

4

⌉
and βi as the

474 R. Li and C. Jia

constant term of
⌊− 1

2Xi · X−v + 1
4

⌉
for 0 ≤ i < N and v ∈ {0, 1, . . . , q − 1},

then we have

αi =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

⌊
3
4

⌉
= 1, i = v,

⌊
−1

4

⌉
= 0, i = v − q/2,

⌊
1
4

⌉
= 0, otherwise.

βi =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

⌊
−1

4

⌉
= 0, i = v,

⌊
3
4

⌉
= 1, i = v − q/2,

⌊
1
4

⌉
= 0, otherwise.

Utilizing the above equations, we can design the following method to obtain [v]t
for v ∈ {0, 1, . . . , q − 1}:

N−1∑

i=0

(αi · [i]t + βi · [i + N]t) = [v]t

As a toy example, let q = 2N = 8 and v = 5. We can obtain that α0 =
� 1
4� = 0, α1 = �− 1

4� = 0, α2 = � 1
4� = 0, α3 = � 1

4� = 0, and that β0 = � 1
4� = 0,

β1 = � 3
4� = 1, β2 = � 1

4� = 0, β3 = � 1
4� = 0. Hence, we have that

3∑

i=0

(αi · [i]t + βi · [i + N]t) = β1 · [1 + 4]t = [5]t.

3.2 Homomorphic Modular Reduction

In this subsection, we elaborate our new homomorphic modular reduction
algorithm. The entire HomModRed procedure is formalized in Algorithm1.
Lemma 3 states the correctness of the homomorphic modular reduction and the
noise performance of this procedure.

Algorithm 1. The HomModRed Algorithm
Input: An RLWE ciphertext RLWE2s,Q(X−v, 2te) = (a, b) ∈ R2

2N

Output: An LWE ciphertext LWE−→s ,Q([v]t, e
′) //−→s is the coefficient vector of s

1: (−→a , b) ← (
−→
0 , 0);

2: for i = 1 to N − 1 do
3: (a, b) ← X · (a, b);
4: (c,d) ← (a,

⌊
1
2
b + 1

4

⌉
), (c′,d′) ← (−a,

⌊− 1
2
b + 1

4

⌉
);

5: (−→c , d) ← Extract((c,d)), (−→c ′, d′) ← Extract((c′,d′));
6: (−→a , b) ← (−→a , b) + [i]t · (−→c , d) + [i + N]t · (−→c ′, d′);
7: end for
8: return (−→a , b);

Homomorphic Modular Reduction and Improved Bootstrapping 475

Lemma 3. Let RLWE2s,Q(X−v, 2te) = (a, b) where 0 ≤ v ≤ 2N − 1 and
‖e‖∞ ≤ E. There exists an algorithm HomModRed that on input (a, b), out-
puts an LWE ciphertext LWE−→s ,Q([v]t, te′) in time O(N2), where |e′| ≤ tNE/2.

Proof. At the i-th loop, we have that

(c,d) = (a · Xi,

⌊
1
2
(−a · Xi · 2s + 2te · Xi + X−v · Xi) +

1
4

⌉
)

= (a · Xi,−a · Xi · s + te · Xi +
⌊

1
2
X−v · Xi +

1
4

⌉
),

(c′,d′) = (−a · Xi,

⌊
−1

2
(−a · Xi · 2s + 2te · Xi + X−v · Xi) +

1
4

⌉
)

= (−a · Xi,a · Xi · s − te · Xi +
⌊
−1

2
X−v · Xi +

1
4

⌉
).

Hence, we have that (−→c , d) and (−→c ′, d′) satisfy

(−→c , d) = (−→c ,−〈−→c ,−→s 〉 + te + α),
(−→c ′, d′) = (−→c ′,−〈−→c ′,−→s 〉 − te + β),

where −→s is the coefficient vector of s, e is the constant term of e·Xi, α is the con-
stant term of

⌊
1
2X−v · Xi + 1

4

⌉
and β is the constant term of

⌊− 1
2X−v · Xi + 1

4

⌉
.

Therefore, after N − 1 iterations, (−→a , b) can be represented as

−→a =
N−1∑

i=1

[i]t−→c + [i + N]t−→c ′,

b = −〈−→a ,−→s 〉 + t

N−1∑

i=1

([i]t − [i + N]t)ei +
N−1∑

i=1

([i]tαi + [i + N]tβi).

According to the discussion in Sect. 3.1, we have that

b = −〈−→a ,−→s 〉 + te′ + [v]t

where e′ =
∑N−1

i=1 ([i]t − [i + N]t)ei,0, therefore (−→a , b) is an LWE ciphertext of
[v]t under the key −→s .

In one loop, Step 3 in Algorithm1 is just to perform cyclic rotation with the
cycled entries negated on coefficients of a, b, and Step 5 is just to extract and
shuffle several coefficients from polynomials. We think these two steps hardly
contribute to the computational complexity of the whole algorithm. Step 4 in
Algorithm 1 is to perform scalar multiplications in R, and the computational
complexity of scalar multiplications in R is O(N). Step 6 requires two multipli-
cations between a scalar and a vector of integers and an addition of two vectors
of integers, hence the complexity of this step is O(N). Therefore, the whole
algorithm runs in time O(N2).

Now we start to analyze the noise performance. Based on the properties of
power-of-two cyclotomic ring described in Sect. 2.1, we can get that ‖e ·Xi‖∞ =
‖e‖∞ ≤ E, so |ei| ≤ ‖e · Xi‖∞ ≤ E. In addition we know |[i]t − [i + N]t| ≤ t/2.
Therefore, |e′| ≤ tNE/2.

476 R. Li and C. Jia

4 Improved Bootstrapping for BGV Scheme

Let the BGV ciphertext to be bootstrapped is BGVt
s,q0(m,e) ∈ R2

q0 . The
blueprint of our bootstrapping procedure is described below and illustrated in
Fig. 1.

Modulus Switching. One fixes a power of two N and compute a new cipher-
text BGVt

s,2N (m, ẽ) which encrypts the same plaintext m but has smaller size.
In addition, it needs to be stressed that ‖m + tẽ‖∞ ≤ N .

Extraction. BGVt
s,2N (m, ẽ) is in fact an RLWE ciphertext RLWEs,2N (m,

tẽ). Here we useExtract to obtain n LWE ciphertexts {LWE−→s ,2N (mi, tẽi)}0≤i<n

from RLWEs,2N (m, tẽ), where −→s is the coefficient vector of s.

Blind Rotation. For an LWE ciphertext LWE−→s ,2N (mi, tẽi) = (−→a , b), we use
a blind rotation procedure to get an RLWE ciphertext RLWE2z ,Q(X−m̃i , 2tẽi),
where m̃ = b +

∑n−1
j=0 aj · sj . The output of this step is n RLWE ciphertexts of

the form RLWE2z ,Q(X−m̃i , tẽi).

Homomorphic Modular Reduction. When the above steps are done, we
obtain n RLWE ciphertexts. Then, we will apply Algorithm1 to each of RLWE
ciphertexts, resulting in n LWE ciphertexts {LWE−→z ,Q([m̃i]t, tēi)}0≤i<n.

Repacking. Finally, we repack the LWE ciphertexts output by the previous
step into one single ciphertext which encrypts m.

In the following, we will elaborate the blind rotation procedure and the
repacking procedure.

4.1 Blind Rotation

After the Extraction procedure, we obtain n LWE ciphertexts. Each of these
ciphertexts can be represented as LWE−→s ,2N (m, te) = (−→a , b) satisfying

b + 〈−→a ,−→s 〉 = b +
n−1∑

i=0

ai · si = m + te mod 2N.

For an LWE ciphertext LWE−→s ,2N (m, te) = (−→a , b), we start the
blind rotation with ACC ← RLWE2z ,Q(X−b, 0) (For simplicity, we set
RLWE2z ,Q(X−b, 0) = (0,X−b). To homomorphically compute X−b−∑n−1

i=0 ai·si ,
we need encryptions of si, which form the alleged bootstrapping key). The boot-
strapping key is bk = {RGSW2z ,Q(s+i),RGSW2z ,Q(s−

i)}, where
{

s+i = 1, si = 1
s+i = 0, otherwise

,

{
s−

i = 1, si = −1
s−

i = 0, otherwise
for i ∈ [0, N − 1]

Homomorphic Modular Reduction and Improved Bootstrapping 477

Fig. 1. Bootstrapping procedure

We iteratively compute

RGSW2z ,Q(X−ai·si)

= I2 ⊗ −→g + (X−ai − 1) · RGSW2z ,Q(s+i) + (Xai − 1) · RGSW2z ,Q(s−
i)

where I2 is a 2×2 identity matrix and ⊗ means tensor product. (In fact, I2 ⊗−→g
is a trivial RGSW encryption of 1 under any key.) The above equation is correct
since si ∈ {−1, 0, 1} and at least one of s+i and s−

i is zero. Then we update
ACC ← ACC � RGSW2z ,Q(X−ai···si).

After ACC is updated iteratively, the result is

RLWE2z ,Q(X−b−a0s0−···−an−1sn−1 , 2tẽ) = RLWE2z ,Q(X−(m+te), 2tẽ)

The BlindRotate algorithm is described in Algorithm 2.
The following lemma concludes the noise growth and computational com-

plexity of Algorithm2.

Lemma 4. Let LWE−→s ,2N (m, te) = (−→a , b) ∈ Z
n+1
2N be an LWE ciphertext and

bk = {RGSW2z ,Q(s+i),RGSW2z ,Q(s−
i)} be a bootstrapping key. There exists

a BlindRotate algorithm that on input LWE−→s ,2N (m, te) = (−→a , b) ∈ Z
n+1
2N and

bk, outputs an RLWE ciphertext RLWE2z ,Q(X−(m+te), 2tẽ) in time Õ(dN2),
and ‖ẽ‖∞ is bounded by 4n

√
NdBEbk if error of the bootstrapping key is bounded

by Ebk.

478 R. Li and C. Jia

Algorithm 2. The BlindRotate Algorithm
Input: An LWE ciphertext LWE−→s ,2N (m, te) = (−→a , b) ∈ Z

n+1
2N ;

A bootstrapping key bk = {RGSW2z ,Q(s+i),RGSW2z ,Q(s−
i)}};

Output: An RLWE ciphertext RLWE2z ,Q(X−(m+te), 2tẽ);
1: ACC ← (0, X−b);
2: for i = 0 to n − 1 do
3: ACC ← ACC � RGSW2z ,Q(X−ai·si);
4: end for
5: return ACC;

Proof. The correctness of this algorithm is stated above. Here we mainly prove
the computational complexity and the noise performance. The cost of this algo-
rithm is dominated by Step 3 of Algorithm2, and the operation is essentially an
external product. By Lemma 2, we know the cost of Step 3 is Õ(dN) and error
ei of ACCi at i-th loop satisfies ‖ei‖∞ ≤ ‖ei−1‖∞ + 4

√
NdBEbk. Therefore,

the computational cost of the whole algorithm is no more than Õ(dnN), and the
error of the output ciphertext is bounded by 4n

√
NdBEbk.

4.2 Repacking

As described at the beginning of Sect. 4, we need a procedure to repack several
LWE ciphertexts into a BGV ciphertext, so we resort to the repacking tech-
nique proposed in [30]. The Repack algorithm is formalized in Algorithm3, and
Lemma 5 illustrates the correctness of the repacking algorithm and the error
growth during this procedure.

Algorithm 3. The Repack Algorithm
Input: {LWE−→z ,Q(mi, tei) = (−→a i, bi)}0≤i<n;

rpk = {BGVt
s,q(zj · gk, ej,k)}0≤j<N,0≤k<d;

Output: BGVt
s,q(m, e); //m(X) =

∑n−1
i=0 miX

i

1: b =
∑n−1

i=0 biX
i;

2: for j = 0 to n − 1 do
3: aj =

∑n−1
i=0 ai,jX

i;
4: (aj,0, . . . ,aj,d−1) ← g−1(aj)
5: end for
6: (ã, b̃) ← (0, b) +

∑
j,k aj,k · BGVt

s,q(zj · gk, ej,k);

7: return (ã, b̃);

Lemma 5. Algorithm3 is an algorithm that on input LWE−→z ,Q(mi, tei) =
(−→a i, bi) for 0 ≤ i < n with error E, and a repacking key

rpk = {BGVt
s,q(zj · gk,ej,k)}0≤j<N,0≤k<d = {(cj,k,dj,k)}0≤j<N,0≤k<d

Homomorphic Modular Reduction and Improved Bootstrapping 479

with error Erepack, outputs a BGV ciphertext BGVt
s,q(m,e) encrypting m =∑n−1

i=0 miX
i in time Õ(dnN), with error at most E + 2

√
ndNErepack.

Proof. For an LWE ciphertext LWE−→z ,Q(mi, tei) = (−→a i, bi), we have that bi +
〈−→a i,

−→z 〉 = mi + tei, i.e., bi +
∑N−1

j=0 ai,j · zj = mi + tei. We also have that
∑n−1

i=0 ai,jX
i =

∑d−1
k=0 aj,k · gk, and

BGVt
s,q(zj · gk,ej,k) = (cj,k,dj,k) = (cj,k,−cj,ks + tej,k + zj · gk)

Hence, it holds that

ã = 0 +
∑

j,k

aj,kcj,k =
∑

j,k

aj,kcj,k

b̃ = b +
∑

j,k

aj,k · dj,k

= b + (−
∑

j,k

aj,kcj,ks + t
∑

j,k

aj,kej,k +
∑

j,k

zj · gk · aj,k)

= b + (−
∑

j,k

aj,kcj,ks + t
∑

j,k

aj,kej,k +
N−1∑

j=0

n−1∑

i=0

ai,jX
i · zj)

= −
∑

j,k

aj,kcj,ks + t
∑

j,k

aj,kej,k +
n−1∑

i=0

(
N−1∑

j=0

ai,j · zj)Xi +
n−1∑

i=0

biX
i

= −
∑

j,k

aj,kcj,ks + t
∑

j,k

aj,kej,k +
n−1∑

i=0

(mi + tei)Xi

= −
∑

j,k

aj,kcj,ks + t
∑

j,k

aj,kej,k + t

N−1∑

i=0

eiX
i + m

Therefore, we have that (c̃, d̃) is a BGV ciphertext BGVt
s,q(m,

∑
j,k aj,kej,k +

∑N−1
i=0 eiX

i), which encrypts m =
∑

i miX
i.

Notice that error of the output ciphertext can be written as e =
∑

i eiX
i +∑

j,k aj,kej,k. Since |ei| ≤ E for 0 ≤ i < n, we have ‖∑n−1
i=0 eiX

i‖∞ ≤ E. Using
‖ej,k‖∞ ≤ Erepack, we get that ‖∑

j,k aj,kej,k‖∞ ≤ 2
√

ndNErepack Therefore,
the error of the output is at most E + 2

√
ndNErepack.

Step 6 of Algorithm 3 dominates the computational complexity of the entire
algorithm. In this step, main operations consist of scalar multiplications and
additions in R. Therefore, the runtime of this algorithm is no more than Õ(dnN).

4.3 Bootstrapping

Combining HomModRed described in Sect. 3.2 with BlindRotate and
Repack, we can obtain an improved bootstrapping procedure for BGV scheme.

480 R. Li and C. Jia

Let a BGV ciphertext to be bootstrapped be parameterized by a plaintext modu-
lus t, a modulus cyclotomic polynomial Xn +1 with a power of two n, a modulus
q�. The blueprint of our bootstrapping procedure is formalized by Algorithm4.

Algorithm 4. The Bootstrap Algorithm
Input: A BGV ciphertext BGVt

s,q�
(m, e) = (a, b);

A bootstrapping key bk = {RGSW2z ,qL(s+i),RGSW2z ,Q(s−
i)}0≤i<n;

A repacking key rpk = {BGVt
s(L),qL

(zj · gk, ej,k)}0≤j<N,0≤k<d;

Output: A level-L BGV-type ciphertext BGVt
s(L),qL

(m, ẽ);

1: BGVt
s(�),2N

(m, e′) ← ModSwitch(BGVt
s(�),q�

(m, e));
2: for i = 0 to n − 1 do
3: LWE−→s ,2N (mi, tei) ← Extracti(BGVt

s(�),2N
(m, e′));

4: RLWE2z ,qL(X−m̃i , ei) ← BlindRotate(LWE−→s ,2N (mi, tei),bk);
//m̃i = mi + tei;

5: LWE−→z ,qL
(mi, e

′
i) ← HomModRed(RLWE2z ,qL(X−m̃i , ei));

6: end for
7: (ã, b̃) ← Repack({LWE−→z ,Q(mi, e

′
i), rpk});

8: return (ã, b̃);

In the following, we state two theorems to show the noise growth and com-
putational complexity of the entire bootstrapping procedure based on our new
homomorphic modular reduction algorithm. For parameters used in our boot-
strapping procedure, we set t = O(1), N = Θ(n), qL = poly(n), B = O(1) and
d = O(log n).

Noise Analysis. The noise performance of the entire bootstrapping method is
analyzed by the following theorem.
Theorem 2. Given a bootstrapping key with initial noise Ebk and a repack-
ing key with initial noise Erpk, we can bootstrap BGV homomorphic encryption
scheme within Õ((n2.5Ebk + n1.5Erpk)).

Proof. According to Lemma 4, the output ciphertext of BlindRotate has an
error bounded by 4n

√
NdBEbk. By Lemma 1, the error of the output ciphertext

of HomModRed is bounded by tN/2 · E, where E is an upper bound of the
output of BlindRotate. Based on Lemma 5, we know that Repack outputs a
ciphertext whose error is within E′ + 2

√
ndNErpk, where E′ is an upper bound

of the output of HomModRed. In conclusion, Algorithm 4 output a ciphertext
whose error is within 2nN1.5dBEbk + 2n0.5dNErpk = Õ(n2.5Ebk + n1.5Erpk).

Computational Complexity. Computational complexity of our bootstrapping
method is stated by the following theorem.
Theorem 3. The computation complexity of bootstrapping procedure described
in Algorithm4 is no more than Õ(n3).

Proof. By Lemma 3, 4, 5, we can easily get that the computation complexity of
our bootstrapping procedure is no more than Õ(nN2 +dnN2 +dn2N) = Õ(n3).

Homomorphic Modular Reduction and Improved Bootstrapping 481

Asymptotic Parameters. In the worst case, to make decryption correct at level-L,
we need to ensure that

Õ(n2.5Ebk + n1.5Erpk)M+1 ≤ qL

2t

Therefore qL = Õ(n2.5Ebk + n1.5Erpk)M+1, where M can be any positive con-
stant integer that is chosen at first and independent of dimension n and security
parameter λ. For instance, if we set Ebk = Erpk = ω(

√
n log n) and M = 1, then

qL = Õ(n6) suffices. According to Theorem 3, the security of our scheme can be
relied on the hardness of Õ(n5.5)-approximate SVP. The similar result in [14] is
that the security of their scheme relies on Õ(n6.5)-approximate SVP. The follow-
ing table illustrates the comparison results between Chen and Zhang’s work and
ours. The results show that the computational complexity of our bootstrapping
procedure is almost the same with the CZ17 scheme in terms of algorithm com-
plexity, but our scheme is more suitable for implementing than the CZ17 scheme.
For noise performance, our bootstrapping scheme has lower noise accumulation
than that of [14], hence it allows to use worst-case complexity assumption with
lower approximation factors (Table 1).

Table 1. Comparison with CZ17 scheme.

Time complexity Noise growth Assumption

Our scheme Õ(n3) Õ(n6) GapSVPÕ(n5.5)

CZ17 Õ(n3) Õ(n7) GapSVPÕ(n6.5)

5 Conclusion

Bootstrapping technique is a pivotal component to construct a fully homomor-
phic encryption scheme. The computational cost of bootstrapping procedure has
a major influence on the performance of the entire FHE scheme. Meanwhile, it
is vital for a bootstrapping scheme to incur polynomial noise since it requires
worst-case lattice assumptions with polynomial approximation factors. There-
fore, it is worthy to study a better bootstrapping procedure with polynomial
noise.

In this paper, we investigate the homomorphic modular reduction algorithm
in the procedure of bootstrapping BGV scheme. We use the idea of blind rota-
tion to design a new homomorphic modular reduction algorithm and apply it to
bootstrapping BGV scheme. We carry out an analysis of the noise accumulation
and the computational cost. The results show that our bootstrapping scheme
incurs polynomial noise accumulation and has lower noise growth, therefore our
improvement decreases the approximate factor for the underlying worst-case
lattice assumption from Õ(n6.5) to Õ(n5.5). Moreover, our new homomorphic
modular reduction can be applied independently to other applications where
one needs to perform modular reduction homomorphically.

482 R. Li and C. Jia

Acknowledgements. We would like to thank all anonymous reviewers for their help-
ful advice and comments. This work was supported by National Key R&D Program of
China (2018YFA0704703); National Natural Science Foundation of China (61972215,
61972073); Natural Science Foundation of Tianjin (20JCZDJC00640).

References

1. Alperin-Sheriff, J., Peikert, C.: Practical bootstrapping in quasilinear time. In:
Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 1–20. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-40041-4 1

2. Alperin-Sheriff, J., Peikert, C.: Faster bootstrapping with polynomial error. In:
Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol. 8616, pp. 297–314.
Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44371-2 17

3. Brakerski, Z.: Fully homomorphic encryption without modulus switching from clas-
sical GapSVP. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol.
7417, pp. 868–886. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-32009-5 50

4. Bonnoron, G., Ducas, L., Fillinger, M.: Large FHE gates from tensored homo-
morphic accumulator. In: Joux, A., Nitaj, A., Rachidi, T. (eds.) AFRICACRYPT
2018. LNCS, vol. 10831, pp. 217–251. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-89339-6 13

5. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (Leveled) fully homomorphic
encryption without bootstrapping. In: Proceedings of the 3rd Innovations in The-
oretical Computer Science 2012, pp. 309–325. ACM (2012)

6. Biasse, J.-F., Ruiz, L.: FHEW with efficient multibit bootstrapping. In: Lauter, K.,
Rodŕıguez-Henŕıquez, F. (eds.) LATINCRYPT 2015. LNCS, vol. 9230, pp. 119–135.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-22174-8 7

7. Brakerski, Z., Vaikuntanathan, V.: Efficient fully homomorphic encryption from
(standard) LWE. In: IEEE 52nd Annual Symposium on Foundations of Computer
Science, pp. 97–106 (2011)

8. Chen, H., Chillotti, I., Song, Y.: Improved bootstrapping for approximate homo-
morphic encryption. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019. LNCS,
vol. 11477, pp. 34–54. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
17656-3 2

9. Chillotti, I., Gama, N., Georgieva, M., Izabachène, M.: Faster fully homomorphic
encryption: bootstrapping in less than 0.1 S. In: Cheon, J.H., Takagi, T. (eds.) ASI-
ACRYPT 2016. LNCS, vol. 10031, pp. 3–33. Springer, Heidelberg (2016). https://
doi.org/10.1007/978-3-662-53887-6 1

10. Chillotti, I., Gama, N., Georgieva, M., Izabachne, M.: TFHE: fast fully homomor-
phic encryption over the torus. J. Cryptol. 33(1), 34–91 (2020)

11. Chen, H., Han, K.: Homomorphic lower digits removal and improved FHE boot-
strapping. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol.
10820, pp. 315–337. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
78381-9 12

12. Cheon, J.H., Han, K., Kim, A., Kim, M., Song, Y.: Bootstrapping for approximate
homomorphic encryption. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018.
LNCS, vol. 10820, pp. 360–384. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-78381-9 14

https://doi.org/10.1007/978-3-642-40041-4_1
https://doi.org/10.1007/978-3-662-44371-2_17
https://doi.org/10.1007/978-3-642-32009-5_50
https://doi.org/10.1007/978-3-642-32009-5_50
https://doi.org/10.1007/978-3-319-89339-6_13
https://doi.org/10.1007/978-3-319-89339-6_13
https://doi.org/10.1007/978-3-319-22174-8_7
https://doi.org/10.1007/978-3-030-17656-3_2
https://doi.org/10.1007/978-3-030-17656-3_2
https://doi.org/10.1007/978-3-662-53887-6_1
https://doi.org/10.1007/978-3-662-53887-6_1
https://doi.org/10.1007/978-3-319-78381-9_12
https://doi.org/10.1007/978-3-319-78381-9_12
https://doi.org/10.1007/978-3-319-78381-9_14
https://doi.org/10.1007/978-3-319-78381-9_14

Homomorphic Modular Reduction and Improved Bootstrapping 483

13. Cheon, J.H., Kim, A., Kim, M., Song, Y.: Homomorphic encryption for arith-
metic of approximate numbers. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT
2017. LNCS, vol. 10624, pp. 409–437. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-70694-8 15

14. Chen, L., Zhang, Z.: Bootstrapping fully homomorphic encryption with ring plain-
texts within polynomial noise. In: Okamoto, T., Yu, Y., Au, M.H., Li, Y. (eds.)
ProvSec 2017. LNCS, vol. 10592, pp. 285–304. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-68637-0 18

15. van Dijk, M., Gentry, C., Halevi, S., Vaikuntanathan, V.: Fully homomorphic
encryption over the integers. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS,
vol. 6110, pp. 24–43. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-
642-13190-5 2

16. Ducas, L., Micciancio, D.: FHEW: bootstrapping homomorphic encryption in less
than a second. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS,
vol. 9056, pp. 617–640. Springer, Heidelberg (2015). https://doi.org/10.1007/978-
3-662-46800-5 24

17. Gentry, C.: A fully homomorphic encryption scheme. Thesis (2009). http://www.
pqdtcn.com/thesisDetails/289F3CEC4CD0013B0C9716D3BED41535

18. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Proceedings
of the 41st Annual ACM Symposium on Theory of Computing, STOC 2009, pp.
169–178. ACM (2009)

19. Gentry, C., Halevi, S., Peikert, C., Smart, N.P.: Ring switching in BGV-Style
homomorphic encryption. In: Visconti, I., De Prisco, R. (eds.) SCN 2012. LNCS,
vol. 7485, pp. 19–37. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-32928-9 2

20. Gentry, C., Halevi, S., Smart, N.P.: Better bootstrapping in fully homomorphic
encryption. In: Fischlin, M., Buchmann, J., Manulis, M. (eds.) PKC 2012. LNCS,
vol. 7293, pp. 1–16. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-30057-8 1

21. Gentry, C., Halevi, S., Smart, N.P.: Fully homomorphic encryption with polylog
overhead. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS,
vol. 7237, pp. 465–482. Springer, Heidelberg (2012). https://doi.org/10.1007/978-
3-642-29011-4 28

22. Gama, N., Izabachène, M., Nguyen, P.Q., Xie, X.: Structural lattice reduction:
generalized worst-case to average-case reductions and homomorphic cryptosystems.
In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666, pp. 528–
558. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49896-5 19

23. Gentry, C., Sahai, A., Waters, B.: Homomorphic encryption from learning with
errors: conceptually-simpler, asymptotically-faster, attribute-based. In: Canetti,
R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 75–92. Springer, Hei-
delberg (2013). https://doi.org/10.1007/978-3-642-40041-4 5

24. Halevi, S., Shoup, V.: Algorithms in HElib. In: Garay, J.A., Gennaro, R. (eds.)
CRYPTO 2014. LNCS, vol. 8616, pp. 554–571. Springer, Heidelberg (2014).
https://doi.org/10.1007/978-3-662-44371-2 31

25. Halevi, S., Shoup, V.: Bootstrapping for HElib. In: Oswald, E., Fischlin, M. (eds.)
EUROCRYPT 2015. LNCS, vol. 9056, pp. 641–670. Springer, Heidelberg (2015).
https://doi.org/10.1007/978-3-662-46800-5 25

26. Kim A., Deryabin M., Eom J., et al.: General bootstrapping approach for RLWE-
based homomorphic encryption. IACR Cryptology ePrint Archive (2021). https://
eprint.iacr.org/2021/691

https://doi.org/10.1007/978-3-319-70694-8_15
https://doi.org/10.1007/978-3-319-70694-8_15
https://doi.org/10.1007/978-3-319-68637-0_18
https://doi.org/10.1007/978-3-319-68637-0_18
https://doi.org/10.1007/978-3-642-13190-5_2
https://doi.org/10.1007/978-3-642-13190-5_2
https://doi.org/10.1007/978-3-662-46800-5_24
https://doi.org/10.1007/978-3-662-46800-5_24
http://www.pqdtcn.com/thesisDetails/289F3CEC4CD0013B0C9716D3BED41535
http://www.pqdtcn.com/thesisDetails/289F3CEC4CD0013B0C9716D3BED41535
https://doi.org/10.1007/978-3-642-32928-9_2
https://doi.org/10.1007/978-3-642-32928-9_2
https://doi.org/10.1007/978-3-642-30057-8_1
https://doi.org/10.1007/978-3-642-30057-8_1
https://doi.org/10.1007/978-3-642-29011-4_28
https://doi.org/10.1007/978-3-642-29011-4_28
https://doi.org/10.1007/978-3-662-49896-5_19
https://doi.org/10.1007/978-3-642-40041-4_5
https://doi.org/10.1007/978-3-662-44371-2_31
https://doi.org/10.1007/978-3-662-46800-5_25
https://eprint.iacr.org/2021/691
https://eprint.iacr.org/2021/691

484 R. Li and C. Jia

27. López-Alt, A., Tromer, E., Vaikuntanathan, V.: On-the-fly multiparty computation
on the cloud via multikey fully homomorphic encryption. In: Proceedings of the
44th Symposium on Theory of Computing Conference, STOC 2012, pp. 1219–1234.
ACM (2012)

28. Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors
over rings. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 1–23.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5 1

29. Micciancio, D., Polyakov, Y.: Bootstrapping in FHEW-like cryptosystems. IACR
Cryptology ePrint Archive (2020). https://eprint.iacr.org/2020/086

30. Micciancio, D., Sorrell, J.: Ring packing and amortized FHEW bootstrapping. In:
45th International Colloquium on Automata, Languages, and Programming, vol.
107, pp. 100:1–100:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2018)

31. Orsini, E., van de Pol, J., Smart, N.P.: Bootstrapping BGV ciphertexts with a
wider choice of p and q. In: Katz, J. (ed.) PKC 2015. LNCS, vol. 9020, pp. 673–
698. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46447-2 30

32. Regev, O.: On lattices, learning with errors, random linear codes, and cryptog-
raphy. In: Gabow, H.N., Fagin, R. (eds.) Proceedings of the 37th Annual ACM
Symposium on Theory of Computing, pp. 84–93. ACM (2005)

33. Smart, N.P., Vercauteren, F.: Fully homomorphic SIMD operations. Des. Codes
Crypt. 71(1), 57–81 (2014). https://doi.org/10.1007/s10623-012-9720-4

https://doi.org/10.1007/978-3-642-13190-5_1
https://eprint.iacr.org/2020/086
https://doi.org/10.1007/978-3-662-46447-2_30
https://doi.org/10.1007/s10623-012-9720-4

Real World Cryptography

Privacy Preserving OpenPGP Public Key
Distribution with Spamming Resistance

Wenyuan Li1,2, Wei Wang1,3(B), Jingqiang Lin4, Qiongxiao Wang1,2,
and Wenjie Wang1,2

1 State Key Laboratory of Information Security, Institute of Information
Engineering, Chinese Academy of Sciences, Beijing 100089, China

wangwei@iie.ac.cn
2 School of Cyber Security, University of Chinese Academy of Sciences,

Beijing 100089, China
3 Data Assurance and Communication Security Research Center, CAS,

Beijing 100089, China
4 School of Cyber Security, University of Science and Technology of China,

Hefei 230027, Anhui, China

Abstract. OpenPGP public key distribution via Synchronizing Key-
Servers (SKS) is facing the challenges of user privacy leakage caused
by keyword search behaviors and service unavailability of OpenPGP
software caused by OpenPGP certificate spamming attack (CVE-2019-
13050). Most existing solutions to the problem dispense with the neces-
sary features and functions of SKS or Web of Trust (WoT) for attack
mitigation. In this paper, we put forward a solution which is privacy-
preserving and spamming-resistant, while maintaining the functionali-
ties of SKS and WoT. Considering the characteristics of our scenario,
we protect user privacy by introducing a third-party server, and propose
a specific third party-based private set intersection protocol to improve
usability of OpenPGP software. Our protocol helps users filter out the
required key data by intersection computation between unbalanced sets
of keywords. We also propose an enhanced scheme for multi-key query
and further privacy protection. We evaluate the usability and privacy
of our schemes. Experimental results show that our scheme can largely
reduce unnecessary data download with appropriate filter parameters.
The proposed solution relies on the security of Elliptic Curve Diffie–
Hellman, HMAC-based Key Derivation Function, Bloom filter and sym-
metric cryptographic encryption to defend against semi-honest adver-
saries.

Keywords: Pretty Good Privacy · Key distribution · Keyword
search · Private set intersection

This work was supported by National Key R&D Program of China (Grant No.
2020YFB1005800) and National Natural Science Foundation of China (Grant No.
61772518).

c© Springer Nature Switzerland AG 2021
Y. Yu and M. Yung (Eds.): Inscrypt 2021, LNCS 13007, pp. 487–506, 2021.
https://doi.org/10.1007/978-3-030-88323-2_26

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-88323-2_26&domain=pdf
https://doi.org/10.1007/978-3-030-88323-2_26

488 W. Li et al.

1 Introduction

Pretty Good Privacy (PGP) is an encryption program that provides crypto-
graphic privacy and authentication for end-to-end data communication espe-
cially for e-mail communication. OpenPGP is a standard for e-mail encryption
originally derived from PGP. PGP adopts Web of Trust (WoT) structure for dis-
tributed key management. Besides Public Key Infrastructure (PKI) with Certifi-
cate Authorities (CA), WoT is another mechanism for verifying digital identities
on the Internet. In WoT, any entity can certify another entity by signing a cer-
tification signature for the binding relationship between a public key and the
signee’s identity. Certification signatures are the basis of WoT. Researchers have
investigated the properties of WoT [37] which is similar to Online Social Network
(OSN) such as Facebook and Twitter.

Since the beginning of year 2000, a write-only keyserver pool named Synchro-
nizing KeyServers (SKS) has been employed to OpenPGP public key distribu-
tion. To date, SKS has provided over 6 million OpenPGP public keys1 for users
to query without restriction. Other major key distribution approaches include
Web Key Directory (WKD) [24] and DNS-Based Authentication of Named Enti-
ties (DANE) [39]. WKD over HTTPS only provides keys without signatures.
DANE simplifies key content by adding only a few signatures that are consid-
ered helpful. OpenPGP public key distribution via SKS has two disadvantages.
One disadvantage is user privacy leakage caused by query behaviors. The other is
low availability of OpenPGP software caused by OpenPGP certificate spamming
attack.

On the one hand, the behaviors of users to query OpenPGP public keys from
SKS will reveal the privacy of users. The attackers may infer the identity of users
on the basis of the query information and the properties of WoT. Querying
OpenPGP public keys via SKS can be regarded as a fundamental database
operation called Keyword Search (KS) [15]. KS involves two parties: i) a server,
holding a database comprised of a set of payloads and associated keywords. ii)
a client, who may send queries consisting of keywords and receive the payloads
associated with these keywords. Searchable encryption [4] is a positive way to
protect sensitive data of users, which supports keyword search on encrypted
data. However, the huge amount of legacy data which is already known to SKS
in plain text renders the searchable encryption approach unrealistic.

On the other hand, the attackers of OpenPGP certificate spamming attack [1]
expanded the size of OpenPGP public keys in SKS by spamming a quan-
tity of signatures or large size signatures. The attack caused the failure of
key import in OpenPGP software such as GNU Privacy Guard (GPG) and
other usability issues. To mitigate the negative effects of the attack, GPG has
updated a new version [23] to ignore all the signatures except self-signatures
received from SKS. A draft [17] has proposed several simple mitigation methods

1 https://pool.sks-keyservers.net/pks/lookup?op=stats

.

https://pool.sks-keyservers.net/pks/lookup?op=stats.
https://pool.sks-keyservers.net/pks/lookup?op=stats.
https://pool.sks-keyservers.net/pks/lookup?op=stats.

Privacy Preserving OpenPGP Public Key Distribution 489

mainly from the perspective of keyservers. Moreover, a new keyserver named
keys.openpgp.org [2] separates an OpenPGP public key into identity informa-
tion and non-identity information. Identity information is only distributed with
consent, and certification signatures in non-identity information are not dis-
tributed via keys.openpgp.org. Most of the mitigation recommendations and
measures above suggest to obsolete SKS, eliminate the features of WoT, and put
restrictions on user behaviors, which goes against the original intention of PGP
developers.

For privacy protection, we first reconstruct the database in SKS into pairs of
payloads and associated keywords, and split certification signatures and other
key information by disparate keywords. Then we introduce a third-party server
which helps users to search on encrypted pairs in SKS with encrypted key-
words in requests. To mitigate OpenPGP public key distribution attack with
the reservation of SKS and WoT, one solution is to give users the option to filter
the OpenPGP public key data before downloading by computing intersection
between sets of keywords in the user requests and in the database.

The research efforts of Private Set Intersection (PSI) focus on protocols [7,
20,22] for the case where two parties holding sets compare encrypted versions
of these sets in order to compute the intersection. While these protocols turn
out to be impractical for use-cases like OpenPGP public key distribution with
SKS. In our scenario, the PSI protocol needs a third-party server and should be
suitable for unbalanced sets when keys queried have been spammed. We propose
a third party-based PSI protocol specially for our scenario, and apply Elliptic
Curve Diffie–Hellman (ECDH), HMAC-based Key Derivation Function (HKDF),
Bloom filter, and symmetric cryptographic encryption to ensure security. The
third-party server for PSI computation in our scheme is called PSI Proxy. In
summary, we frame our key contributions as follows:

• We solve the problems of OpenPGP public key distribution with SKS on the
basis of the original features and normal functions of SKS and WoT for key
validation and verification.

• We first propose an OpenPGP public key distribution scheme for private
preserving and spamming resistance with a third party-based PSI protocol,
and an enhanced scheme with better privacy protection.

• We evaluate our schemes in terms of usability through user behavior simula-
tions and privacy in the semi-honest model. Our scheme can largely reduce
unnecessary data download, and has the high ability to resist various attacks.

The remainder of this paper is structured as follows. We review our research
background in Sect. 2. In Sect. 3, we describe the problem in brief, and give our
design principles and threat model afterwards. In Sect. 4, we describe our basic
and enhanced schemes for OpenPGP public key distribution with a third party-
based PSI protocol. We provide an evaluation of our scheme in terms of usability
and privacy in Sect. 5. Finally, we summarize related work in Sect. 6, and give a
conclusion in Sect. 7.

490 W. Li et al.

2 Background

To start, we focus on the status quo and properties of OpenPGP public key
distribution, and introduce cryptographic building blocks that are required for
the remainder of this work.

2.1 OpenPGP and Web of Trust

OpenPGP is a standard [12,13] for providing end-to-end security for e-mail
communication. In OpenPGP, User ID (including a user name and e-mail
address) identifies a user, and is associated with a public/private key pair (either
DSA/ElGamal or RSA) held by the user. Users can issue certification signatures
to each other by signing the binding relationship between a public key and an
identity with their private keys. These certification signatures are a significant
part of a valid OpenPGP public key. An OpenPGP public key consists of a num-
ber of records called packets. OpenPGP packets are assembled into sequences in
order to transfer keys. There is a public key ID in each Public-Key packet and an
issuer key ID in each Signature packet. The essential elements of a transferable
OpenPGP public key are as follows:

– One Public-Key packet (each contains a public key ID)
– Zero or more revocation signatures
– One or more User ID packets
– After each User ID packet, zero or more Signature packets (each contains an

issuer key ID)
– Zero or more User Attribute packets
– After each User Attribute packet, zero or more Signature packets
– Zero or more Subkey packets
– After each Subkey packet, one Signature packet, plus optionally a revocation.

In PGP environment [40], a key that is not revoked or expired is valid if
it is users own key, or it is certified(signed) by other valid and trusted keys.
Certification signatures are shared on keyservers, and show that the issuer is sure
about the signee’s identity. While trust is only locally (by users themselves) and
not shared, and defines whose certification signatures users trust for validating
other’s keys. In GPG, the trust model is similar, but the trust information is
specifically stored in a local file named trustdb. Users sign each other’s keys and
progressively build a web of public keys interconnected by these certification
signatures which is so-called WoT [3].

2.2 Synchronizing Keyservers

SKS is widely used for OpenPGP public key distribution, and typically exists as
a keyserver pool which consists of several keyservers. The main innovation of SKS
is a highly-efficient set reconciliation algorithm [28] for keeping the keyservers
synchronized. The algorithm reconciles two similar sets held by different hosts.

Privacy Preserving OpenPGP Public Key Distribution 491

OpenPGP users communicate with SKS using OpenPGP HTTP Keyserver Pro-
tocol (HKP) [35]. Developers have primitively designed SKS to be write-only, so
that the government can not forcibly delete or tamper the key data in SKS. The
original design purposes of SKS and WoT are necessary for key validation and
trust transitivity, which results in the difficulty to deal with OpenPGP certifi-
cate spamming attack. The reasons for the attack are as follows: i) OpenPGP
does not restrict the maximal amount of signatures in an OpenPGP public key.
ii) SKS only writes and does not validate the correctness and completeness of
uploaded keys or signatures. Any user can verify a key in SKS and upload a cer-
tification signature to SKS without authentication. iii) GPG or other OpenPGP
software has limitations on the size of the keys imported. The software may crash
when the imported data blocks become too large. iv) SKS runs a reconciliation
algorithm implemented as a software developed in Ocaml which is complex to
maintain.

2.3 Private Set Intersection

PSI is a cryptographic technique of secure multiparty computation (MPC). It
allows two parties holding sets to compare encrypted versions of these sets in
order to compute the intersection. In traditional scenario, neither party reveals
anything to the counterparty except for the elements in the intersection. While
in the server-client scenario, only the client learns the intersection of her set with
the set of the server, without the server learning intersection of his set with the
clients [32]. A naive solution of PSI has been proposed that both parties apply a
cryptographic hash function to their inputs and compare these hash values, which
is efficient but insecure. The researchers have proposed a variety of advanced PSI
protocols based on public key, oblivious transfer, circuit, third party and so on.
Inbar et al. [20] implemented PSI based on secret sharing and Garbled Bloom
Filter (GBF) as a variant of Bloom filter. Chen et al. [7] constructed a fast PSI
protocol with a small amount of communication between two parties using full
homomorphic encryption. This protocol is specially designed for the application
scenario when one of the two sets is much smaller than the other. These two sets
are named unbalanced sets. Third Party-Based PSI [22] realized a multi-party
PSI protocol aided by a third-party server.

2.4 Bloom Filter

Bloom filter is a data structure that was conceived by Burton Howard Bloom in
1970 to retrieve whether an element is in a collection [5]. Bloom filter will tell
either “possibly in set” or “definitely not in set”, and the degree of false positive
rate can be configured. Bloom filter represents a set X of n elements by an array
of m bits, and uses k independent hash functions. We describe below the initial,
add and check process of Bloom filter.

492 W. Li et al.

1) Before initialization, the generation parameters of Bloom filter m and k are
calculated according to n and an intended false positive rate p.

m = −n × ln p

(ln 2)2
k = ln 2 × m

n
(1)

2) During initialization, an array with the length of m bits is generated, and
each bit is initialized to 0.

3) When adding an element s of X to Bloom filter, s is hashed with k hash
functions to get k indices and set 1 to these indices of Bloom filter.

4) When checking whether an element s′ belongs to X, s′ is hashed with k hash
functions to get k indices. If all these indices of Bloom filter are 1 then s′ is
considered to probably in X, otherwise s′ is not in X.

2.5 HMAC-Based Key Derivation Function

HKDF [25] is a special Key derivation function (KDF) [6] based on HMAC.
HKDF function is divided into two phases: Extract and Expand. The Extract
phase converts the input key into a short key that satisfies the pseudo-random
nature. The Expand phase expands the pseudo-random key to the desired length.
The inputs of HKDF function contain a hash function, a source key material,
a extractor salt (which may be null or constant), a number of key bits to be
produced by HKDF, and a “context information” string (which may be null) [26].
The number and length of the output key depend on the particular cryptographic
algorithm that requires the key.

3 Assumptions and Goals

To present our proposal, we introduce the existing system of OpenPGP public
key distribution with SKS in brief, and point out its drawbacks. Based on the
issues in the existing system, we establish our design principles and threat model.

3.1 Problem Description

We provide the existing system of OpenPGP public key distribution via SKS
in Fig. 1. Users are able to connect to SKS by setting an access point such as
pool.sks-keyservers.net in their OpenPGP software, and retrieve keys from SKS
with keyword like Key ID, User ID or Fingerprint. After sending a query request
to one of the keyservers, users will receive a response with payload (which is
usually a complete OpenPGP public key) associated with keyword in OpenPGP
format from the keyserver. Users can import payload into local keyring by using
an OpenPGP software if needed. In the above-mentioned system, usability is
lessened when users download or import payload with a quantity of signatures
which have been spammed into keys. Upon most occasions, a tiny minority of
these signatures are helpful for key validation or trust transitivity. At the same

Privacy Preserving OpenPGP Public Key Distribution 493

time, user privacy is revealed when a user query SKS with keyword. All the
OpenPGP public keys in SKS are retrievable to users with no authentication
mechanisms. Moreover, the user communicates with SKS using HKP protocol,
which is considered insecure. There is probably a relationship between the user
and the owner of the key associated with keyword. The attackers may infer the
user’s identity on the basis of the query information and the properties of WoT.

Fig. 1. Existing OpenPGP public key distribution system

3.2 Design Principles

Considering the privacy and usability issues of the existing OpenPGP public key
distribution system, our scheme aims to achieve the following goals.

1) Compatible: Users can continue to use the original functions of SKS and
WoT for key validation and trust transitivity. There is no modification
required to the configuration of OpenPGP software for users to retrieve
payload which contains certification signatures.

2) Efficient: Users can filter payload before downloading with specific filter
conditions. The filtration can reduce user downloads of payload which fur-
ther mitigates OpenPGP certificate spamming attack. Users can only import
useful signatures for key validation and trust transitivity (For example, issuer
key ID of a signature and Key ID of an introducer in trustdb are the same).
We allow a moderate number of false positives to be introduced to hide the
accurate number of filter conditions.

3) Anonymous: Attackers including semi-honest SKS and PSI Proxy can not
obtain any private data in the query or filter requests of users, and thus are
incapable of inferring the attributes of a user.

3.3 Threat Model

We develop our threat model with semi-honest adversaries including SKS and
PSI Proxy. There is no collusion between SKS and PSI Proxy. An attacker seeks
to learn the private information of a user. The private information consists of
keyword of query requests, filter conditions (like trustdb) and identity informa-
tion (like User ID). We list four types of possible attacks in the key distribution
process. An attacker can first perform a dictionary attack, an eavesdropping
attack or/and a replay attack to obtain the query or filter information, and then
perform an attribute inference attack to infer user identity or other attributes.
While the IP address tied to requests, a user can rely on a mix network such as
Tor. IP address issue is out of scope of our threat model.

494 W. Li et al.

Dictionary Attack: In OpenPGP, the data type and length of keyword have
been explicitly defined. Key ID is defined as a fixed eight-octet scalar. User ID
is an UTF-8 text with no restrictions on its content. The fingerprint of a key
is a MD5 hash which has been deprecated or a 160-bit SHA-1 hash. Given the
format and length of keyword, a dictionary can be pre-computed by an attacker.
The attacker can create requests with keyword in the dictionary, and attempt to
collide with the query or filter information of any other users with these requests.

Eavesdropping or Replay Attack: In an eavesdropping attack, an attacker
may take advantage of unsecure network communications to access the request
and response of a query between users, SKS, and PSI Proxy. In a replay attack,
an attacker can intercept a request of a user and re-transmit it to acquire payload.
As all the payload in SKS and the local trust information of the user are con-
stantly updated, the attacker can compare the present data to the previous ones,
and may learn the private information of the user from the delta data.

Attribute Inference Attack: In attribute inference attack [19] towards OSN,
an attacker aims to propagate attribute information of social network users with
publicly visible attributes to users with missing or incomplete attribute data.
Further, attackers can identify users in OSN with limited information [38]. In
attribute inference attack towards WoT, an attacker may infer user identity
on the strength of keyword and filter conditions. There may be a relationship
between the user and the owner of the key queried or trusted. Based on the rela-
tionships and the characteristics of WoT, the user’s attributes such as OpenPGP
public key ID, User ID or its circle of friends can be inferred. Attackers can take
advantage of these attributes to attack not only the user but also their friends
through spam, XSS, phishing or malware which have occurred in OSN [14].

4 Scheme

Refer to our design principles, we propose an OpenPGP public key distribution
system which introduces a third-party server PSI Proxy for PSI computation
in Fig. 2. When a user sends a query request with keyword to SKS, SKS sends
processed payload associated with keyword to PSI Proxy. Then the user sends
a filter request with filter conditions such as trustdb to PSI Proxy. PSI Proxy
filters payload by running a specific PSI protocol between the sets of keyword
in trustdb and payload, and returns filtered payload to the user.

Our design relies on a combination of ECDH2, HKDF, Bloom filter3 to
address all the risks outlined in our threat model. Here, we explain the rea-
son why the existing PSI protocols can not be directly used in our scenario.
Then we depict our basic scheme with a PSI protocol dedicated to OpenPGP
2 Our scheme can use other key exchange algorithms such as Diffie-Hellman (DH).
3 Bloom filter can be replaced by Cuckoo filter [11]. Both filters are very fast and

compact, and may return false positives as answers to set-membership queries.

Privacy Preserving OpenPGP Public Key Distribution 495

Fig. 2. Privacy Preserving and spamming resisting OpenPGP public key distribution
system

public key distribution, and detail the data exchanged between a user, SKS,
and PSI Proxy. We also present a strengthened scheme for further privacy pro-
tection, and provide suggestions for optimization to improve compatibility and
availability.

4.1 Protocol Selection

The PSI protocol in our scheme should meet two requirements. The first one is
filtering payload to reduce downloads. The second one is hiding the query and
filter information both in content and in number. We observe the characteristics
of our scenario, and classify our scenario into one of PSI application scenarios.
All the payload in SKS is openly searchable. Thus we need to select the PSI
protocols that apply to the server-client scenario. In addition, when a key suffers
from a certificate spamming attack, the number of signatures spammed into the
key is much larger than the number of introducers in trustdb. Therefore, PSI
protocols for unbalanced sets are proper for our scenario.

We focus on several existing PSI protocols which may fulfill our requirements.
The PSI protocol using secret sharing and GBF requires users to receive complete
data, which can not achieve the purpose of filtering. When applying the PSI
protocol using full homomorphic encryption for unbalanced sets to our scenario,
users still need to send the intersection results as keyword to get associated
payload from SKS. SKS can learn the filter information from the intersection.
The PSI protocols using a third party can hide the query information from SKS,
but the third-party server simply computes the intersection and can not index
keyword to the corresponding payload. Thus, we design a PSI protocol that is
proposed specifically for OpenPGP public key distribution scenario.

4.2 Scheme Details

Our scheme consists of two main phases: Query phase and Filter phase. In Query
phase, a user sends a query request with keyword to SKS. SKS processes the
payload and associated keyword, and sends them to PSI Proxy. In Filter phase,
the user sends trustdb in a filter request to PSI Proxy. PSI Proxy filters the

496 W. Li et al.

Table 1. Notation list

Symbol Description

H A public set that contains n hash functions, H = {h1, h2, h3, . . . , hn}
K A symmetric key generated by ECDH

IV An initialization vector for symmetric encryption

qid An auto-increment ID in a long int type for each query

L A number of key bits produced by HKDF

XTS A secret extractor salt of HKDF

CTXinfo A “context information” string of HKDF

err rate An intended false positive rate of Bloom filter

nh A number of hash functions of Bloom filter

m A length of Bloom filter

pidi Public key ID of ith key

sidi,j Issuer key ID of jth signature in ith key

tidi Key ID of ith introducer in trustdb

infoi Other key information except signatures in ith key

sigi,j jth signature in ith key

info pairi The pair of infoi and associated pidi, info pairi = (pidi, infoi)

sig pairi,j The pair of sigi,j and associated Key IDs (including pidi and sidi,j),
sig pairi,j = ((pidi, sidi,j), sigi,j)

S1 The database of info pairi in SKS

S2 The database of sig pairi,j in SKS

S The entire database in SKS, S = S1 ∪ S2

processed payload by running a PSI protocol between the sets of keyword in
trustdb and database. We define the variants in our scheme, and list them in
Table 1. We reconstruct the database S in SKS as two kinds of pairs: info pairi

represented as (pidi, infoi), and sig pairi,j represented as ((pidi, sidi,j), sigi,j).
Before querying, the user and SKS generate K, and then safely transmit other
parameters including IV , qid, nh (nh ≤ n), L and XTS with K.

Query Phase: When querying an OpenPGP public key p̂k, an user sends
public key ID ˆpid of p̂k as keyword4. SKS finds the pairs (both info pairi

and sig pairi,j) having ˆpid as keyword. For these pairs, SKS calculates HKDF
values SKDi,j of issuer key IDs, and encrypts all the payload using Algorithm 1
to complete the data processing in Eq. (2). SKS uses sidi,j as SKM and qid as
CTXinfo for HKDF function. After processing, SKS sends qid, encî, and the
set of processed pairs Sig pairî to PSI Proxy.

((pidi, sidi,j), sigi.j) → ((pidi, SKDi,j), EncK (sigi,j)) (2)

4 We choose Key ID as keyword to make our solution more concise. Users can also
use User ID or fingerprint in the implementation.

Privacy Preserving OpenPGP Public Key Distribution 497

Algorithm 1. ProcessData
Input: S1, S2, IV, H, nh, XTS, qid, L
Output: encî, Sig pairî
1: for (pidi, infoi) ∈ S1 do
2: if pidi = ˆpid then
3: î ← i
4: encî ← EncK (infoî)
5: for j = 1; j ≤ ns

î
; j + + do

6: for k = 1; k ≤ nh; k + + do
7: SKDî,j [k] ← HKDF (hk, XTS, sidî,j , qid, L)
8: end for
9: encî,j ← EncK

(
sigî,j

)

10: Sig pairî[j] ← ((pidî, SKDî,j), encî,j)
11: end for
12: end if
13: end for

Filter Phase: The user locally adds tidi to Bloom filter BFc by HKDF values
TKDi of tidi in trustdb, which is outlined in Algorithm2. The user uses tidi

as SKM and qid as CTXinfo for HKDF function. Then the user sends qid,
BFc, and nh in a filter request to PSI Proxy. m and nh of BFc are calculated
by err rate and the set size nt of trustdb using Eq. (1) in Sect. 2.4. PSI Proxy
searches Sig pairî according to qid as the input of Algorithm3. The output Sig
which contains nsf signatures is sent to the user together with encî as payload.
All the data received by the user can be decrypted with K and IV , and imported
into local keyring.

Algorithm 2. CreateFilterRequest
Input: err rate, nt, H, nh, XTS, trustdb, qid, L
Output: BFc

1: initial(BFc, err rate, nt)
2: for tidi ∈ trustdb do
3: for k = 1; k ≤ nh; k + + do
4: TKDi[k] ← HKDF (hk, XTS, tidi, qid, L)
5: add(BFc, TKDi[k])
6: end for
7: end for

4.3 Extension to Public Key IDs

Our scheme applies for single-key queries, and can not hide public key IDs
queried from SKS. We suggest users to rely on Tor to query. On the basis of our
scheme, we propose an enhanced scheme shown in Fig. 3 by applying a “double
filtration” solution. As the number of keys queried is far less than the amount of
keys in SKS, the PSI computation for issuer key IDs can also be applied to public

498 W. Li et al.

Algorithm 3. ComputeSetIntersection
Input: BFc, Sig pairî
Output: Sig, nsf

1: for j = 1, nsf = 1; j ≤ nsi ; j + + do
2: iscontian ← check(BFc, SKDî,j)
3: if iscontain == 1 then
4: ĵ ← j
5: Sig[nsf + +] ← Enck

(
Sigî,ĵ

)

6: end if
7: end for

key IDs. Especially when the user queries multiple keys in a query, this extension
can further enhance privacy protection with a few downloads of payload.

In Query phase, SKS needs to shuffle the orders of pairs before processing (in
case semi-honest PSI Proxy acts as a user to get the indices of all the data). Then
as shown in Eq. (3) and Eq. (4), SKS computes HKDF values PKDi of pidi, and
processes all the pairs in S. SKS sends PKDi and the processed database to
PSI Proxy.

(pidi, infoi) → (PKDi, EncK (infoi)) (3)

((pidi, sidi,j), sigi.j) → ((PKDi, SKDi,j), EncK (sigi,j)) (4)

In Filter phase, when querying nq keys with a set of public key IDs named
qlist, the user uses Algorithm 2 to add these keys into Bloom filter BFq by
HKDF values PKDi (err rate of BFq can differ from that of BFc). The user
then sends BFq to PSI Proxy. PSI Proxy uses Algorithm3 to filter info pairi

in S1 with BFq as the first level of filtration, finding nkf public key IDs that
may be involved in qlist. PSI Proxy then performs Filter phase of the basic
scheme towards sig pairi,j having the same keyword pidi in S2 with BFc as the
second level of filtration, and sends the output as payload to the user. The user
encrypts the filter result with K and IV , and selects the desired payload by
qlist. While the limitation of this solution is for each query, SKS is required to
process the entire database S, including HKDF calculation of all the keyword
and symmetric encryption of all the payloads.

4.4 Optimization

On top of our scheme, several optimizations can be carried out to improve com-
patibility and availability. With no need to modify the original functions of SKS,
one or more proxy servers can be deployed on SKS side. The proxy server takes
charge of SKS for the interactions with users or PSI Proxy and payload pro-
cessing to improve compatibility. Simplifying HKDF function to simple Hash
function in our scheme helps decrease computation of SKS, which may suffer
from a dictionary attack. However, the employ of Bloom filter still introduces
false positives to hide the set size and content of keyword. By adjusting the

Privacy Preserving OpenPGP Public Key Distribution 499

Fig. 3. An extended scheme to enhance privacy protection which applies two levels of
filtration. Before filtering, SKS shuffles all the OpenPGP public keys in the database,
and users generate BFq with qlist and BFc with trustdb. In first filtration, PSI Proxy
filters pid with BFq to get the intersection sk of public keys. In second filtration, PSI
Proxy filters sid which has certified sid in sk with BFc to get the intersection ss of
signatures. With all the Key IDs in sk and ss as keyword, PSI Proxy sends encrypted
payload as filter result to users.

parameter err rate and L (not less than the hash function output length), the
communication amount of HKDF values from SKS to PSI Proxy can be effec-
tively reduced.

5 Evaluation

We evaluate our solutions in terms of usability and privacy. We set disparate
benchmarks to evaluate the effect of filtering in the basic scheme. We also analyze
the complexities and the storage required for the parties in both solutions. For
the possible attacks in threat model, we evaluate the cryptographic operations
and techniques in our scheme for the processing and transmission of sensitive
data.

5.1 Experimental Settings

We implement our scheme including a GPG user, PSI Proxy, and one keyserver
of SKS in Ubuntu 16.04 operating system and C++ programming language. We

500 W. Li et al.

use OpenSSL library (v. 1.1.1) for 128-bit ECDH key exchange, HKDF com-
putation, and AES-128-CBC symmetric encryption. We need to simulate the
private information qlist and trustdb of users. As the characteristics of WoT are
similar to those of OSN, With reference [29] to the number of friends in OSN, the
number of key IDs in the user’s local trustdb is assumed to be in the range of 0
to 100. We randomly generate Key IDs in qlist and trustdb in the normal range.
We choose the main keyserver of SKS of which the URL is https:// pool. sks-
keyservers. net/. For an OpenPGP public key in SKS, the reasonable number

of signatures should be less than or around 1000 [34] which can be regarded as a
criterion for whether the key has been attacked. We find several representative
keys that have suffered from OpenPGP certificate spamming attack in SKS. The
user name of these keys are Yegor Timoshenko (174622 signatures), Robert J.
Hansen (149120 signatures), Ryan McGinnis (100002 signatures), Patrick Brun-
schwig (151491 signatures), Lance Cottrell (34391 signatures).

Our scheme also consider data updates in SKS and in users’ trustdb. There
are constant updates on the key data in SKS such as revocations of the existing
keys or signatures or the uploading of fresh keys or signatures. In the implemen-
tation, users send a query request with a parameter of time range, and receive
the key data with updates in this time range from SKS. Users can modify the
trust information in trustdb subjectively. When trustdb changes, the parameters
of Bloom filter need to be modified by users to generate a new filter.

(a) nt = 10 (b) nt = 20

(c) nt = 50 (d) nt = 100

Fig. 4. Experimental results of filtration. We choose the set size nt of trustdb ∈
{10, 20, 50, 100} and the average set size of signatures of the target keys ns ∈
{538, 1480, 34391, 100002, 147622}. We get the ratio filter rate of user downloads to
the original key size under different err rate.

https://pool.sks-keyservers.net/
https://pool.sks-keyservers.net/

Privacy Preserving OpenPGP Public Key Distribution 501

5.2 Usability Evaluation

We compare the filtering effect in the basic scheme under diverse set sizes of
keyword through the experimental results. As shown in Fig. 4, the greater the
disparity of the set sizes, the greater the mitigation effect of OpenPGP certificate
spamming attack. Then we set different err rate of Bloom filter to evaluate the
impact of it on downloads. In most cases in Fig. 4, as err rate reduces, the
decrease of downloads becomes more pronounced. We suggest err rate to be
less than 0.3 whthin which the reduction of downloads can be more than half.
Supposing the average size of signatures is s, regardless of the fact that the size
of signatures can be exaggerated, we get the decline d of downloads which can
be approximately calculated as ns(1 − p)s theoretically if ns is large enough.

For the basic solution in Sect. 4.2 and the improved solution in Sect. 4.3,
we depict the computation and communication complexities of users and SKS,
and the storage required by PSI Proxy during key distribution in Table 2. The
complexities and storage are linear to the number of users. The computation
complexity is expressed as the number of symmetric cryptographic operations
(sym) and the number of HKDF operations (hkdf). ECDH operations which
perform only once before each query are not represented in Table 2. The com-
munication complexity of a user in our schemes is much lower than that in the
existing system for the most part, and the computation complexity depends
mainly on the number of symmetric encryption operations. The complexities of
SKS depend on the number of signatures in the keys queried in the basic scheme.
While they depend on the total amount of pairs in SKS in the improved scheme.
In addition, the data volume that PSI Proxy needs to store is approximately
equal to the communication amount transmitted by SKS.

Table 2. Complexities and storage for OpenPGP public key distribution (σ: bit size
of the communication required for key exchange and data transmission before query;
�: bit size of qid; hkdf: HKDF operations; sym: symmetric cryptographic operations;
nk, nkf : set sizes as defined in Sect. 4.2; ns, nsf : the average number of the signatures
in each key and in the intersection; k, s: bit size of infoi and sigi,j defined in Sect. 4.2;
L: HKDF parameter; m, nh: Bloom filter parameters).

Role Type Basic scheme Improvement scheme

User Computation

(#ops hkdf/sym)

ntnh hkdf

nsf + 1 sym

(nt + nq)nh hkdf

(nsk + 1)nkf sym

Communication (bit) σ + m + � + k + nsfs σ+2m+ �+nkfk+nkfnsfs

SKS Computation

(#ops hkdf/sym)

nsnh hkdf

ns + 1 sym

nsnknh hkdf

(ns + 1)nk sym

Communication (bit) σ + �+ k +nss+nsnhL σ + � + nkk + nknss +

nsnknhL

PSI proxy Storage (bit) m+ �+k+nss+nsnhL 2m + � + nkk + nknss +

nsnknhL

502 W. Li et al.

5.3 Privacy Evaluation

Before the privacy evaluation of our proposal, we explain the security of crypto-
graphic algorithms and techniques used in our solution which consists of ECDH,
HKDF, Bloom filter and symmetric encryption. ECDH is one of key exchange
schemes based on ECC which provides the same cryptographic strength as the
RSA system, but with much smaller keys. We apply HKDF function on the
basis of the properties of the HMAC scheme both as extractor and pseudoran-
dom function. In our solution, we further strengthen the security of HKDF with
a secret salt. For Bloom filter, a query returns either “possibly in set” or “defi-
nitely not in set” rather than an exact element in the set. The apply of Bloom
filter also automatically introduces false positives for filtering, which can hide
the accurate set size and content. For each query, a key for symmetric encryp-
tion is pre-shared between users and SKS, and is invalidated each time the user
decrypts the result. In both our basic and extended scheme, all the sensitive data
and parameters between users, SKS, and PSI Proxy are transmitted in a non-
plaintext form, except public key ID in the basic scheme. We carry out security
analysis of our scheme towards possible attacks outlined in the threat model on
the basis of the security of cryptographic algorithms and techniques.

Collision Resistant: The parameters of HKDF function are agreed between
users and SKS in a secure channel. Without the parameters of other users, an
attacker can not launch a dictionary attack by the computation of HKDF val-
ues for all the keywords. Although SKS can obtain the parameters and compute
HKDF values, it can not create filter requests without qlist and trustdb of users.
In our enhanced solution, we ask SKS to shuffle all the payload before process-
ing to prevent semi-honest PSI Proxy. If SKS processes the payload in a fixed
sequence, PSI Proxy can act as a user to query with all the keywords in the
dictionary. Thus, PSI Proxy can learn the real data content by the sequential
index. When a user filers payload through PSI Proxy, PSI Proxy can learn the
privacy information of the user by the indices of filter results. After SKS shuffling
all the keys, PSI Proxy can not learn the plaintext of payload by indices.

Eavesdropping and Replay Resistant: The attacker eavesdropping on users,
SKS, and PSI Proxy can not learn any privacy information from the requests
and responses which are all encrypted. Our schemes can also resist replay attacks
by adding a query ID for each query. Query ID is auto-increment for each query
and is associated with the symmetric key exchanged between users and SKS.
The attacker can be detected by SKS or PSI Proxy when re-transmitting the
query or filter requests with the same or uncorrect query ID.

Identity Anonymous: An attacker can not identify a user with no access to
user privacy information particularly the filter information like trustdb. In the
basic scheme, semi-honest SKS can only obtain keyword of the key queried.
While SKS can not get either qlist as keyword and trustdb in the enhanced

Privacy Preserving OpenPGP Public Key Distribution 503

scheme. Other attackers like semi-honest PSI Proxy can not obtain all the sen-
sitive information. Both qlist and trustdb are in the form of Bloom filter, and
payload processed by SKS is in the form of ciphertext. Moreover, the parameters
of Bloom filter are constantly modified by users to generate new filters, so that
attackers are agnostic about the variation of qlist and trustdb.

6 Related Work

PSI protocols for unbalanced sets have been used to protect user privacy in
many application scenarios. Thomas et al. [36] introducing a PSI protocol based
on ECDH key Exchange which is used to mitigate credential stuffing attack.
Kales et al. [21] implemented a PSI protocol based on Oblivious Pseudo-Random
Function (OPRF) and Cuckoo filter to protect the privacy of contact informa-
tion of mobile devices. Related to PSI, private keyword search which is also
introduced as Oblivious Keyword Search (OKS) [31] has become another prob-
lem to solve for privacy protection of query. Kushilevitz and Ostrovsky [27] first
suggests a single-server Private Information Retrieval (PIR) protocol for obtain-
ing a semi-private Keyword Search (KS) protocol. PIR schemes allow a user to
retrieve the ith bit of an n-bit database, without revealing to the database the
value of i. There are two classes of PIR protocols. Information-theoric PIR (IT-
PIR) [9] provides security guarantees, and is usually more computationally effi-
cient. However, any non-trivial IT-PIR requires multiple non-colluding servers.
Chor et al. [8] proved that the trivial protocol in which clients are sent the entire
database is communication optimal in the single-server setting. Computational
PIR (cPIR) [10] can achieve sublinear communication with a single server, but
is typically more computationally expensive as it usually involves cryptographic
operations based on public-key primitives to be carried out on each element of
the database. Other techniques for private keyword search are homomoephic
encryption [16], oblivious transfer [33], oblivious-RAM (ORAM) [18], oblivious
polynomial Evaluation [30] and searchable encryption [4].

7 Conclusion

In this paper, We first propose an OpenPGP public key distribution scheme
with an effective third party-based PSI protocol for unbalanced sets to deal
with user privacy leakage and certificate spamming attack. We enhance our
scheme by applying a “double filtration” solution for further user privacy pro-
tection. Our schemes applies cryptographic operations and techniques to prevent
privacy disclosure to defend against semi-honest adversaries. With appropriate
filter parameters, our schemes can effectively reduce unnecessary user download
to resist certificate spamming attack.

However, in our enhanced scheme, each query requires SKS to fully encrypt
the database, which increases the computational and communication complexity.
Future research may consider to combine PIR to remove the third party and
perfect our proposal which can be implemented in a multi-user scenario.

504 W. Li et al.

References

1. CVE-2019-13050 (2019). https:// nvd. nist. gov/ vuln/ detail/ CVE- 2019-
13050

2. keys.openpgp.org (2019). https:// keys. openpgp. org
3. Abdul-Rahman, A.: The pgp trust model. EDI Forum J. Electron. Commer. 10,

27–31 (1997)
4. Bellare, M., Boldyreva, A., O’Neill, A.: Deterministic and efficiently searchable

encryption. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 535–
552. Springer, Heidelberg (2007). https:// doi. org/ 10. 1007/ 978- 3- 540- 74143-
5 30

5. Bloom, B.H.: Space/time trade-offs in hash coding with allowable errors. Commun.
ACM 13(7), 422–426 (1970)

6. Camenisch, J., Fischer-Hübner, S., Rannenberg, K.: Privacy and Identity Man-
agement for Life. Springer, Heidelberg (2011). https:// doi. org/ 10. 1007/ 978-
3- 642- 20317- 6

7. Chen, H., Laine, K., Rindal, P.: Fast private set intersection from homomorphic
encryption. In: Proceedings of the 2017 ACM SIGSAC Conference on Computer
and Communications Security, pp. 1243–1255 (2017)

8. Chor, B., Gilboa, N., Naor, M.: Private information retrieval by keywords. Citeseer
(1997)

9. Demmler, D., Herzberg, A., Schneider, T.: RAID-PIR: practical multi-server PIR.
In: Proceedings of the 6th edition of the ACM Workshop on Cloud Computing
Security, pp. 45–56 (2014)

10. Dong, C., Chen, L.: A fast single server private information retrieval protocol
with low communication cost. In: Kuty�lowski, M., Vaidya, J. (eds.) ESORICS
2014. LNCS, vol. 8712, pp. 380–399. Springer, Cham (2014). https:// doi. org/
10. 1007/ 978- 3- 319- 11203- 9 22

11. Fan, B., Andersen, D.G., Kaminsky, M., Mitzenmacher, M.D.: Cuckoo filter: prac-
tically better than bloom. In: Proceedings of the 10th ACM International on Con-
ference on Emerging Networking Experiments and Technologies, CoNEXT 2014,
pp. 75–88. Association for Computing Machinery, New York (2014). https:// doi.
org/ 10. 1145/ 2674005. 2674994

12. Finney, H., Donnerhacke, L., Callas, J., Thayer, R.L., Shaw, D.: OpenPGP Message
Format. RFC 4880 (November 2007). https:// doi. org/ 10. 17487/ RFC4880,
https:// rfc- editor. org/ rfc/ rfc4880. txt

13. Finney, H., Thayer, R.L., Donnerhacke, L., Callas, J.: OpenPGP Message Format.
RFC 2440 (November 1998). https:// doi. org/ 10. 17487/ RFC2440, https://
rfc- editor. org/ rfc/ rfc2440. txt

14. Fire, M., Goldschmidt, R., Elovici, Y.: Online social networks: threats and solu-
tions. IEEE Commun. Surv. Tutorials 16(4), 2019–2036 (2014)

15. Freedman, M.J., Ishai, Y., Pinkas, B., Reingold, O.: Keyword search and oblivious
pseudorandom functions. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 303–
324. Springer, Heidelberg (2005). https:// doi. org/ 10. 1007/ 978- 3- 540- 30576-
7 17

16. Gentry, C., et al.: A Fully Homomorphic Encryption Scheme, vol. 20. Stanford
University, Stanford (2009)

17. Gillmor, D.K.: Abuse-Resistant OpenPGP Keystores. Internet-Draft draft-dkg-
openpgp-abuse-resistant-keystore-04, Internet Engineering Task Force (August
2019, work in progress). https:// datatracker. ietf. org/ doc/ html/ draft- dkg-
openpgp- abuse- resistant- keystore- 04

https://nvd.nist.gov/vuln/detail/CVE-2019-13050
https://nvd.nist.gov/vuln/detail/CVE-2019-13050
https://keys.openpgp.org
https://doi.org/10.1007/978-3-540-74143-5_30
https://doi.org/10.1007/978-3-540-74143-5_30
https://doi.org/10.1007/978-3-642-20317-6
https://doi.org/10.1007/978-3-642-20317-6
https://doi.org/10.1007/978-3-319-11203-9_22
https://doi.org/10.1007/978-3-319-11203-9_22
https://doi.org/10.1145/2674005.2674994
https://doi.org/10.1145/2674005.2674994
https://doi.org/10.17487/RFC4880
https://rfc-editor.org/rfc/rfc4880.txt
https://doi.org/10.17487/RFC2440
https://rfc-editor.org/rfc/rfc2440.txt
https://rfc-editor.org/rfc/rfc2440.txt
https://doi.org/10.1007/978-3-540-30576-7_17
https://doi.org/10.1007/978-3-540-30576-7_17
https://datatracker.ietf.org/doc/html/draft-dkg-openpgp-abuse-resistant-keystore-04
https://datatracker.ietf.org/doc/html/draft-dkg-openpgp-abuse-resistant-keystore-04

Privacy Preserving OpenPGP Public Key Distribution 505

18. Goldreich, O.: Towards a theory of software protection and simulation by obliv-
ious rams. In: Proceedings of the 19th Annual ACM Symposium on Theory of
Computing, pp. 182–194 (1987)

19. Gong, N.Z., Liu, B.: Attribute inference attacks in online social networks. ACM
Trans. Priv. Secur. (TOPS) 21(1), 1–30 (2018)

20. Inbar, R., Omri, E., Pinkas, B.: Efficient scalable multiparty private set-intersection
via garbled bloom filters. In: Catalano, D., De Prisco, R. (eds.) SCN 2018. LNCS,
vol. 11035, pp. 235–252. Springer, Cham (2018). https:// doi. org/ 10. 1007/ 978-
3- 319- 98113- 0 13

21. Kales, D., Rechberger, C., Schneider, T., Senker, M., Weinert, C.: Mobile private
contact discovery at scale. In: 28th USENIX Security Symposium (USENIX Secu-
rity 19), pp. 1447–1464 (2019)

22. Kamara, S., Mohassel, P., Raykova, M., Sadeghian, S.: Scaling private set inter-
section to billion-element sets. In: Christin, N., Safavi-Naini, R. (eds.) FC 2014.
LNCS, vol. 8437, pp. 195–215. Springer, Heidelberg (2014). https:// doi. org/ 10.
1007/ 978- 3- 662- 45472- 5 13

23. Koch, W.: Gnupg 2.2.17 released to mitigate attacks on keyservers (2019). https://
lists. gnupg. org/ pipermail/ gnupg- announce/ 2019q3/ 000439. html

24. Koch, W.: OpenPGP Web Key Directory. Internet-Draft draft-koch-openpgp-
webkey-service-11, Internet Engineering Task Force (November 2020, work
in progress). https:// datatracker. ietf. org/ doc/ html/ draft- koch- openpgp-
webkey- service- 11

25. Krawczyk, D.H., Eronen, P.: HMAC-based Extract-and-Expand Key Deriva-
tion Function (HKDF). RFC 5869 (May 2010). https:// doi. org/ 10. 17487/
RFC5869, https:// rfc- editor. org/ rfc/ rfc5869. txt

26. Krawczyk, H.: Cryptographic extraction and key derivation: the HKDF scheme.
In: Annual Cryptology Conference (2010)

27. Kushilevitz, E., Ostrovsky, R.: Replication is not needed: single database,
computationally-private information retrieval. In: Proceedings 38th Annual Sym-
posium on Foundations of Computer Science, pp. 364–373. IEEE (1997)

28. Minsky, Y., Trachtenberg, A.: Practical set reconciliation. In: 40th Annual Allerton
Conference on Communication, Control, and Computing, vol. 248. Citeseer (2002)

29. Mislove, A., Marcon, M., Gummadi, K.P., Druschel, P., Bhattacharjee, B.: Mea-
surement and analysis of online social networks. In: Proceedings of the 7th ACM
SIGCOMM Conference on Internet Measurement, IMC 2007, pp. 29–42. Associ-
ation for Computing Machinery, New York (2007). https:// doi. org/ 10. 1145/
1298306. 1298311

30. Naor, M., Pinkas, B.: Oblivious polynomial evaluation. SIAM J. Comput. 35(5),
1254–1281 (2006)

31. Ogata, W., Kurosawa, K.: Oblivious keyword search. J. Complex. 20(2–3), 356–371
(2004)

32. Pinkas, B., Schneider, T., Segev, G., Zohner, M.: Phasing: private set intersection
using permutation-based hashing. Cryptology ePrint Archive, Report 2015/634
(2015). https:// eprint. iacr. org/ 2015/ 634

33. Rabin, M.O.: How to exchange secrets with oblivious transfer. IACR Cryptology
ePrint Archive 2005(187) (2005)

34. Richters, O., Peixoto, T.P.: Trust transitivity in social networks. PLOS ONE 6(4),
e18384 (2011)

https://doi.org/10.1007/978-3-319-98113-0_13
https://doi.org/10.1007/978-3-319-98113-0_13
https://doi.org/10.1007/978-3-662-45472-5_13
https://doi.org/10.1007/978-3-662-45472-5_13
https://lists.gnupg.org/pipermail/gnupg-announce/2019q3/000439.html
https://lists.gnupg.org/pipermail/gnupg-announce/2019q3/000439.html
https://datatracker.ietf.org/doc/html/draft-koch-openpgp-webkey-service-11
https://datatracker.ietf.org/doc/html/draft-koch-openpgp-webkey-service-11
https://doi.org/10.17487/RFC5869
https://doi.org/10.17487/RFC5869
https://rfc-editor.org/rfc/rfc5869.txt
https://doi.org/10.1145/1298306.1298311
https://doi.org/10.1145/1298306.1298311
https://eprint.iacr.org/2015/634

506 W. Li et al.

35. Shaw, D.: The OpenPGP HTTP Keyserver Protocol (HKP). Internet-Draft
draft-shaw-openpgp-hkp-00, Internet Engineering Task Force (March 2003, work
in progress). https:// datatracker. ietf. org/ doc/ html/ draft- shaw- openpgp-
hkp- 00

36. Thomas, K., et al.: Protecting accounts from credential stuffing with password
breach alerting. In: 28th USENIX Security Symposium (USENIX Security 19), pp.
1556–1571 (2019)

37. Ulrich, A., Holz, R., Hauck, P., Carle, G.: Investigating the OpenPGP web of
trust. In: Atluri, V., Diaz, C. (eds.) ESORICS 2011. LNCS, vol. 6879, pp. 489–
507. Springer, Heidelberg (2011). https:// doi. org/ 10. 1007/ 978- 3- 642- 23822-
2 27

38. Vesdapunt, N., Garcia-Molina, H.: Identifying users in social networks with limited
information. In: 2015 IEEE 31st International Conference on Data Engineering, pp.
627–638 (2015). https:// doi. org/ 10. 1109/ ICDE. 2015. 7113320

39. Wouters, P.: DNS-Based Authentication of Named Entities (DANE) Bindings
for OpenPGP. RFC 7929 (August 2016). https:// doi. org/ 10. 17487/ RFC7929,
https:// rfc- editor. org/ rfc/ rfc7929. txt

40. Zimmermann, P.R.: The Official PGP User’s Guide. MIT Press (1995)

https://datatracker.ietf.org/doc/html/draft-shaw-openpgp-hkp-00
https://datatracker.ietf.org/doc/html/draft-shaw-openpgp-hkp-00
https://doi.org/10.1007/978-3-642-23822-2_27
https://doi.org/10.1007/978-3-642-23822-2_27
https://doi.org/10.1109/ICDE.2015.7113320
https://doi.org/10.17487/RFC7929
https://rfc-editor.org/rfc/rfc7929.txt

Collaborative Verifiable Delay Functions

Liam Medley(B) and Elizabeth A. Quaglia

Royal Holloway, University of London, London, UK
liam.medley.2018@rhul.ac.uk

Abstract. We propose and define a new primitive, collaborative verifi-
able delay functions (coVDFs), an extension to VDFs allowing multiple
parties to jointly compute a publicly verifiable delay, whilst encapsulat-
ing a personal input from each party. These personal inputs can contain
information such as a hash of a bid in an auction, or some public identifier
of the solving party. We highlight the differences between the single-party
and the multi-party settings, and discuss some applications facilitated by
the additional properties offered by coVDFs.

We formalise this new primitive, as well as the relevant security prop-
erties, and we introduce the notions of robustness and traceability, which
mitigate adversarial behaviour arising from the introduction of multiple
parties. We propose two candidate constructions: the first is an extension
of Wesolowski’s VDF construction from EUROCRYPT 2019, relying on
repeated squaring in a finite abelian group. We prove that this extension
satisfies the traceability property, however it is not robust. Our second
construction is based on the hashgraph protocol proposed by Baird in
2016, and involves each of the n parties repeatedly implementing a gossip
protocol to one another and computing a hash each time they do. The
construction results in every party producing a copy of the same graph,
and is robust, meaning it runs correctly, in the presence of up to n/3
malicious parties.

Keywords: Verifiable delay functions · Repeated squaring ·
Hashgraph

1 Introduction

In recent years, the rapid growth of distributed ledger technology has fuelled
research into proving effort has been expended. The most well-known case is
the proof of work system used by Bitcoin [28], among other blockchains. How-
ever, this resource-intensive design has received widespread criticism due to its
vast energy consumption and the associated impact on climate change. Alter-
native, more energy efficient methods of showing that computational effort has
been expended have been proposed [12,13,20,26], among them verifiable delay
functions (VDFs) [10,11,15,16].

VDFs, first formalised in [10] in 2018, have quickly become a very active
research area [16,29,32]. They are used to show that some amount of clock time
c© Springer Nature Switzerland AG 2021
Y. Yu and M. Yung (Eds.): Inscrypt 2021, LNCS 13007, pp. 507–530, 2021.
https://doi.org/10.1007/978-3-030-88323-2_27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-88323-2_27&domain=pdf
https://doi.org/10.1007/978-3-030-88323-2_27

508 L. Medley and E. A. Quaglia

has elapsed, by running a sequential algorithm resistant to massive parallelisa-
tion: regardless of how many cores each participant has access to, they must be
able to reach the same solution at approximately the same time. VDFs enable
a variety of applications including building resource efficient blockchains, public
randomness beacons and timestamping mechanisms [10,13].

More formally, a VDF consists of a triple of algorithms, Setup, Eval and
Verify. Setup takes security parameter λ and delay parameter t, and outputs
public parameters which specify how to compute and verify the VDF. Eval takes
an input and the public parameters, and provides an output y and a proof π.
Verify uses π to efficiently verify that y is the correct output for x, implying that
t steps have been calculated. A VDF must be sequential, efficiently verifiable,
and have a unique output for any input. The sequentiality property links this
computation to wall-clock time, by requiring that each step of the computation
relies on the output of the previous step. This prevents the entire computation
being parallelised, and is how a delay is achieved. Uniqueness ensures that work
from one VDF instance cannot be re-used in another computation to circumvent
the delay.

In this work, we extend VDFs to a group setting and define a collaborative
verifiable delay function (coVDF), where n parties jointly compute the delay
function. We additionally allow each party to embed a personal input into the
computation. This gives the primitive additional functionality, allowing the delay
to be utilised in a wider array of settings. A personal input can be a commitment
to a vote or a bid, or it could be some public information showing the age of a
document, or an indicator of how much work has been contributed by a single
party.

Furthermore, with our new primitive we can take a VDF application such as
timestamping and ‘batch’ it, allowing multiple parties to timestamp documents
together in an either synchronised or sequential way. That is, we can either
show multiple documents to all be the same age, or obtain an ordering of such
documents, where documents are added incrementally. We discuss applications
in greater detail in Sect. 1.2.

1.1 Related Work

VDFs were first introduced by Boneh et al. in 2018 [10], motivated by applica-
tions in decentralized systems, such as public randomness beacons, leadership
elections in consensus protocols, and timestamping.

Three candidate VDF schemes were proposed soon after [16,29,32], based on
repeated squaring in a group of unknown order, and on isogenies over elliptic
curves. An intuitive approach to building a coVDF could be to use a single-
party VDF and split the work between each of the n solvers. In practice, this
is not necessarily easy as output proofs also need to be split, and some method
is required to add personal inputs into the protocol. In AppendixA, we show
that this intuition does work in specific cases, and, in particular, we extend
Wesolowski’s VDF [32] to a coVDF, giving a concrete instantiation from repeated
squaring.

Collaborative Verifiable Delay Functions 509

In EUROCRYPT 2020, Ephraim et al. introduced the notion of a continuous
VDF (cVDF) [15], defined as a VDF which can be verified at regular intervals
rather than at the end of the computation. This allows standard VDF applica-
tions such as timestamping or providing a randomness beacon to be outsourced,
and also allows for another party to take over the computation at any verifica-
tion point. Whilst cVDFs are similar to (a specific class of) coVDFs, the key
difference is that coVDFs allow users to include a personal input, enabling more
functionalities.

Extending a VDF to a multi-user setting can be seen as closely related to
Multi-Party Computation (MPC), which allows evaluation of an arbitrary func-
tion on private inputs from multiple parties without revealing the inputs. In a
coVDF, a group of parties jointly provide a set of private inputs, with a computa-
tional timestamp and proof of effort associated with the primitive’s computation.
One typical application of secure MPC is blind auctions, which we discuss in the
next section as a potential application of coVDFs.

1.2 Applications of a coVDF

We next explore some use cases of coVDFs, distinguishing between two distinct
classes of coVDFs, namely sequential and parallel, for which we provide a formal
definition (Definition 2) in Sect. 2. Intuitively, in a sequential coVDF parties
provide their personal input at various stages in the computation, while parallel
coVDFs require parties to provide their personal input at the same time, i.e., at
the beginning of the computation. This leads to separate applications arising in
each setting, which we expand upon next.

Applications of Sequential coVDFs. In a sequential coVDF, parties take
turns to calculate their part of the computation, before passing it on to another
party to continue. In a trusted setting, the key advantage of a coVDF when
compared with iterating a standard VDF is that only one verification procedure
is required, rather than multiple, which can make a noticeable difference in prac-
tice: Attias et al. [1] showed that the proving time of Wesolowski and Pietrzak’s
VDFs is of the same order of evaluation.

Sequential coVDFs can find a natural application in the setting of collabora-
tive work. Consider an entity such as an employer or teacher, who wants a group
(such as employees or students) to complete some collaborative activity, which
requires effort from all parties, but each part of this activity relies on the previ-
ous one being completed. In such a scenario, the use of a sequential coVDF can
be used to provide evidence that the work has been done by each party, as well
as providing the next party the required information to start their task. Alterna-
tively, a coVDF can be used by a group of parties as a proof of expended effort,
in return for access to some resource owned by a company. In particular, this
can be done by parties who can only expend effort at certain times, for example
at night when electricity is cheaper [6,19]. Upon verification, the company can
then use this computation to implement a randomness beacon. In AppendixC,
we outline how to achieve this using our sequential coVDF construction from
AppendixA.

510 L. Medley and E. A. Quaglia

Applications of Parallel coVDFs. Using a parallel coVDF, n parties each
submit a personal input, and together calculate a delay on this set of inputs.
The knowledge that all parties submitted these inputs together, and before some
particular event, can be useful in various settings. The example we focus on is
decentralised blind auctions.

In a blind auction, each party submits a sealed bid, such that no bidder
knows the bid of any other participant. The party with the highest bid wins the
auction, and pays the price they submitted for the goods [14]. Blind auctions
have been subject to recent study in the decentralised setting, for example [17]
and [3] propose auctioneer-free sealed-bid protocols, using smart contracts on
Ethereum and multi-party computation, respectively. However, in schemes such
as those listed above, parties post their bids on a public bulletin board. The
drawback of this is that those who bid later have knowledge of how many bids
have been submitted, which can be construed as an advantage over those who
bid first. This can also mean that bidders bid higher: when bidders have constant
absolute risk aversion, the expected selling price in such auctions is higher when
the bidders do not know how many other bidders there are, compared with when
they do know this [27]. These two points provide an argument that an auction
where all parties know n is fairer for the bidders.

coVDFs can be used to instantiate fair, blind auctions in a decentralised
setting, in such a way that no private communication channels are required
and all results are publicly verifiable. Running a coVDF will give each party
an opportunity to bid simultaneously, whilst knowing n, and hence providing a
fairer system. In Sect. 4, we provide a construction for a parallel coVDF, and in
AppendixC, we show explicitly how our construction can be used in the context
of blind auctions.

1.3 Our Contributions

In this paper we propose and formally define a collaborative VDF, a primitive
in which a fixed number of parties n take an external input and a personal input
and spend a certain amount of time t computing an output, using sequential
calculations. Once this computation has been completed, it can be verified as
correct by anybody in time O(polylog(t)). We define the security notions of
correctness, soundness and sequentiality for coVDFs.

When moving to a trustless multi-party setting, one must consider malicious
parties who wish to abort the protocol in order to learn some information [2,24].
To mitigate this problem, we introduce two properties: traceability - which allows
malicious parties to be identified and removed from the protocol, allowing a
successful rerun; and robustness - capturing the idea that the protocol still runs
correctly even when some fraction of n is malicious. We model these properties
formally in the context of our new primitive.

We propose two constructions: for our first, we show how to adapt an existing
single-party VDF scheme [32], which is based on repeated squaring in a group of
unknown order, to the multi-party setting. We describe a method for obtaining
traceability, and prove its security.

Collaborative Verifiable Delay Functions 511

Our second construction is based on gossip and sequential hashing, and satis-
fies robustness. For this construction we borrow techniques from the hashgraph
consensus protocol proposed in [4]1. Each hash, known as an event, is recorded
in a graph. The n solvers repeatedly implement a gossip protocol, in which
they “gossip about gossip”: each time a party gossips to another, they tell the
receiving party all the new events that they became aware of since the last sync
between the two parties. The receiving party creates an event to represent this
new sync, by hashing the most recent event from both parties. In this process,
information spreads exponentially quickly through the n solvers, and each party
ends up with a graph that is consistent with all other parties. We use the tech-
niques of [4] to ensure that all parties obtain a copy of the same graph, and to
show that our construction is robust, providing we have a 2/3 honest majority.

2 coVDFs: Definitions and Security Properties

A collaborative verifiable delay function (coVDF) allows users to jointly compute
a delay, with the option of embedding a personal input. We begin by providing a
formal definition for coVDFs, before categorising constructions as sequential or
parallel. We define a coVDF, as well as the properties of correctness, soundness
and sequentiality using syntax which covers both of these cases.

Notation. In what follows, we refer to two different types of input for each
party: We denote the external input of party i by ci, which is the standard input
used to run the computation. This may come from another solving party, or
from the third party who generates the instance. In particular, c0 is the seed
used at the start of each instance, and this should be generated independently
of all solving parties. We denote by xi the optional personal input as described
in Sect. 1.2. We use N to refer to the set of all n solving parties. Finally, H
denotes a collision resistant hash function.

Definition 1 (coVDF). A collaborative verifiable delay function V = (Setup,
Eval, Verify) consists of the following triple of algorithms, implemented by an
initiator, n solvers, and a verifier:

Setup(λ, t, n) → pp = (ek, vk) is ran by the initiator, taking a security parameter
λ, delay parameter t, and the number of solvers n as inputs. Setup returns
the following public parameters: an evaluation key ek and the corresponding
verification key vk. Where appropriate, the public parameters also specify the
input space X and the output space Y.
Eval(ek, ci, xi) → (yi, πi) is an algorithm run by each solver, in which the solvers
take an evaluation key ek, some external input ci ∈ X , and a possibly empty per-
sonal input xi ∈ X . Each solver then outputs yi ∈ Y and a (possibly empty) proof
πi. The time taken for all solvers to run Eval, each using at most O(poly(t, λ))
processors, must be at least t.
1 Baird introduced the Hashgraph in 2016 as a fair, fast consensus protocol. It has

since been used as the basis for a cryptocurrency, Hedera Hashgraph [5].

512 L. Medley and E. A. Quaglia

Verify(vk,X, Y,Π) → {(Yes, aux), (No, aux)} is an algorithm running in time
O(polylog(t), λ, n), which takes the verification key vk, along with a set of inputs
X = ({ci}i∈R, {xi}i∈S), a set of outputs Y = {yi}i∈U , and a set of proofs
Π = {πi}i∈V , where R,S, U, V are each a subset of the n solving parties. Verify
then outputs Yes or No, along with some (possibly empty) auxiliary information
aux.

On comparison of our definition with that of the single-party case given in
[10], one can see that the latter is a special case of the former. The multi-party
definition contains the following additional information: the number of solvers
n, an optional personal input xi, and some optional auxiliary information, aux.
Let n = 1, and remove the optional values of xi and aux. Upon observing that
each set X,Y,Π will contain at most a single element in the single-party case,
we have an equivalent definition to that of [10].

In proposing this new primitive, we differentiate between two classes of
coVDFs, sequential and parallel, distinguished as follows.

Definition 2 (Sequential vs Parallel coVDFs). A collaborative verifiable
delay function is sequential if the external input of each solver (excluding the
first) depends on the output of a previous solver. If all parties share a common,
fixed external input, we instead say it is parallel. For a sequential construction
we require that the first solver take some fixed external input. We refer to this,
as well as the common external input in the parallel case, as the seed c0.

A coVDF, whether sequential or parallel, must satisfy correctness, soundness,
sequentiality, uniqueness and be efficiently verifiable.

2.1 Correctness, Soundness and Sequentiality

We provide formal security definitions in the widely adopted framework of prov-
able security, which allows for formal security proofs. We start by defining cor-
rectness for a coVDF, which ensures that if the computation is performed cor-
rectly, then Verify will output Yes with overwhelming probability. We present
the correctness game in Fig. 1.

Definition 3 (Correctness). A collaborative VDF is correct if for any pp
there exists a negligible function in λ, negl(λ) such that the Correctness Game
in Fig. 1 outputs Yes with probability at least 1−negl(λ).

While correctness implies an honest evaluation overwhelmingly outputs Yes
upon verification, the soundness property ensures that an incorrect evaluation
of the protocol will not verify with overwhelming probability. We model this
formally in Fig. 2.

Collaborative Verifiable Delay Functions 513

pp = (ek, vk) R←− Setup(λ, t, n)
Setup is ran by the initiator

for i in 1:n do
(yi, πi) ← Eval(ek, ci, xi)

All solving parties run the Eval algorithm

{Yes, No} ← Verify(vk, X = {c0, x1, · · · , xn}, Y = {y1, · · · , yn}, Π = {π1, · · · , πn})

Fig. 1. Correctness Game

In the soundness game, the adversary, on input the public parameters, out-
puts a subset of parties M to subvert. They provide a personal input xj and an
external input cj for each party in M . Our model is generic enough to capture
both the sequential and parallel setting, where cj is the output of solver j − 1 or
a fixed input, respectively. The adversary wins the game if Verify outputs Yes,
for a false evaluation.

pp R←− Setup(λ, t, n)
Setup is ran by the initiator.

M ⊆ N ← A(pp)
Adversary outputs a subset M of parties to subvert

For j ∈ M : (cj , xj) ← A
Adversary outputs an external and personal input for each subverted

party.

For j ∈ M : (yj , πj) ←− A(pp, cj , xj)
Adversary produces output and proof.

A wins if Yes ← Verify(vk, {c0, x1, · · · , xn}, {y1, · · · , yn}, {π1, · · · , πn}) ∧ (yj , πj) =
Eval(ek, cj , xj), for any j ∈ M

Fig. 2. Soundness Game

Definition 4 (Soundness). A collaborative VDF is sound if for any PPT
adversary A there exists a negligible function in λ, negl(λ), such that A can-
not win the Soundness Game with probability greater than negl(λ).

Finally, we formalise the sequentiality property to capture how resistant a
scheme is to parallelisation: an adversary with vast parallel resources should be
able to evaluate the function no faster than αt, for some α ∈ (0, 1), close to 1.

In our game, shown in Fig. 3, an adversary is given the public parameters for
precomputation, before choosing an index j to subvert. The adversary produces

514 L. Medley and E. A. Quaglia

a personal input, and an external input for party j. Using these, along with the
preprocessing Z, the adversary attempts to replicate the correct output of Eval.
A wins the game if this can be achieved, and security relies on precomputation
and parallelisation providing a negligible speed up.

Definition 5 (Sequentiality). Take any pair of randomised algorithms A0 and
A1, where A0 runs in time O(poly(t, λ)), and A1 runs either in time α(t) (for a
parallel construction) or α(t/n) (for a sequential construction). We call a coVDF
(p, α)-sequential if for any adversary A = (A0,A1), there exists a negligible
function in λ, negl(λ), such that the Sequentiality Game cannot be won by A
with probability greater than negl(λ) on at most p processors.

pp R←− Setup(λ, t, n)
Setup is ran by the initiator.

(Z, j, cj , xj)
R←− A0(pp)

Adversary preprocesses based on pp, and outputs an index j, an external

input cj and a personal input xj.

(yj , πj) ←− A1(Z,pp, cj , xj)
Adversary produces output and proof.

A wins if (yj , πj) = Eval(ek, cj , xj).

Fig. 3. Sequentiality Game

Uniqueness and Efficient Verification. Additionally, a coVDF should sat-
isfy uniqueness, and be efficiently verifiable. Similarly to a VDF [10], a coVDF
satisfies uniqueness if the output of any one instance of a coVDF cannot be
mangled into another, circumventing the delay. For a coVDF to have practical
applications, a time gap is required between Eval and Verify. We define verifica-
tion to be efficient if it runs in time O(polylog(t), λ, n), where t is the time taken
for all parties to run Eval. This is incorporated in Definition 1.

The properties we have presented above correspond to those required in a
single-party VDF (cf. [10]). However, the presence of multiple parties introduces
further security concerns, since some parties may not act honestly. As clock time
is intrinsic to coVDFs and their applications, protocol aborts can be damaging.
As such, we next define the additional properties of traceability and robustness,
which help to prevent such aborts.

2.2 Security in a Trustless Setting

When used by a group of mutually trusting parties, the properties defined in
Sect. 2.1 are sufficient for most applications. However, once we extend coVDFs

Collaborative Verifiable Delay Functions 515

to a trustless environment, e.g., for use in auctions (Sect. 1.2), we want to ensure
that a malicious party can’t simply abort the protocol, leading to the loss of com-
putation. To achieve this, we introduce two new security properties for coVDFs:
traceability and robustness.

Traceability. In order to provide incentives for good behaviour, we introduce
traceability. The property of traceability has been used in a variety of primitives
and protocols such as signature schemes and voting schemes [21,22], and it typi-
cally involves the use of a trace algorithm, whose goal is to allow an entity (such
as an administrator) to discover some information about some or all parties.
In our context, this property is useful as it allows us to use the technique of
punishable abort [7,18], where each party first places a deposit on a blockchain,
and can only reclaim it if they act honestly.

To define traceability, we extend the definition of a coVDF to include a Trace
algorithm. We define this algorithm in such a way that the tracer discovers
all parties who acted dishonestly. The property of traceability is captured by
defining the correctness and soundness of the trace algorithm, which ensure that
no honest parties are output, and all malicious parties are output, respectively.

Trace is run after Verify outputs No in a run of the protocol. The tracer
obtains the inputs, computation outputs and proofs of each party from Eval,
and runs the Trace algorithm, which outputs a list of dishonest parties. Trace is
formally described as follows.

M ←Trace(vk, ({ci}, {xj}), {yk}, {πh}), where M ⊆ N , is a PPT algorithm
which takes the verification key vk, along with a set of inputs ({ci}, {xj}), a set
of outputs {yk}, and a set of proofs {πh}, which are each a subset of size at most
n. Trace outputs a list of misbehaving parties, corresponding to indices in M .

In Fig. 4, we define the Trace Correctness Game where the trace algorithm
is run on a coVDF instance where Verify outputs No. The tracer wins the Trace
Correctness Game if no honest parties are output by Trace.

In Fig. 5, we define the Trace Soundness Game we again run the trace algo-
rithm on a coVDF instance where Verify outputs No. The adversary chooses a
subset M of parties to subvert, and wins the Trace Soundness Game if for any
party j ∈ M , their output is different from Eval(ek, cj , xj), and yet j is not
included in the set output by Trace.

pp R←− Setup(λ, t, n)
Setup is ran by the initiator.

Let X, Y, Π correspond to the inputs, outputs and proofs of all n solving parties.

M ← Trace(vk, X, Y, Π)
Tracer C runs trace.

C wins the game if M ⊆ N ∧ ∀m ∈ M : (ym, πm) = Eval(ek, cm, xm)

Fig. 4. Trace Correctness Game

516 L. Medley and E. A. Quaglia

Definition 6 (Traceability). A collaborative VDF satisfies traceability if for
any public parameters, and any PPT adversary A = (A0,A1), there exist negli-
gible functions of λ such that the following hold

1. The tracer C wins the Trace Correctness Game with probability 1−negl1(λ),
2. Adversary A cannot win the Trace Soundness Game with probability greater

than negl2(λ).

Robustness. Many applications of coVDFs are time-sensitive, meaning the con-
sequences of a protocol abort can be significant. We introduce robustness to
capture the idea of a protocol being resistant to a fraction σ of malicious par-
ties: if the number of dishonest parties is smaller than σn, the protocol can still
run correctly, producing a time delay of t. We define robustness by letting the
adversary control a fraction of the solvers, and causing Verify to fail on the set
of honest users.

In Fig. 6 we let an adversary A choose a subset of malicious parties M ⊆ N ,
and allow them to run any PPT algorithm. A wins the game if set M is smaller
than σn and Verify run on the honest solvers is caused to output No.

Definition 7 (Robustness). We say a collaborative VDF V is σ-robust for
some 0 < σ < 1 if for any PPT adversary A there exists a negligible function
negl such that A wins the Robustness Game in Fig. 6 with probability at most
negl(λ).

pp R←− Setup(λ, t, n)
Setup is ran by the initiator.

M ⊆ N ← A(pp)
Adversary outputs a subset M of parties to subvert.

For j ∈ M : (xj , cj) ← A
Adversary outputs a personal and external input for each subverted

party.

For j ∈ M : (yj , πj)
R←− A(pp, cj , xj)

Adversary produces an output and proof for each subverted party.

Let X, Y, Π correspond to the inputs, outputs and proofs of all n parties.

Z ← Trace(vk, X, Y, Π)
Tracer C outputs set of cheating parties.

A wins the game if Z ⊆ N ∧ (yj , πj) = Eval(ek, cj , xj) ∧ j /∈ Z for any j ∈ M

Fig. 5. Trace Soundness Game

Collaborative Verifiable Delay Functions 517

A scheme is robust if when the adversary corrupts a subset of the solvers,
this corrupted subset can be identified and removed, with Verify outputting Yes
on the subset of honest solvers. Note that this is distinguished from soundness,
as A wins the soundness game (Fig. 2) if Verify outputs Yes when run on the set
of all outputs and proofs, rather than just the honest subset.

pp R←− Setup(λ, t, n)
Setup is ran by the initiator.

M ⊆ N ← A(pp)
Adversary outputs a subset M of parties to corrupt.

For k ∈ H = N \ M : (yk, πk) ← Eval(ek, ck, xk)
The honest parties run Eval.

A wins if |M | < σn ∧
(No,aux) ← Verify (vk, {xk}k∈H , {yk}k∈H , {πk}k∈H)

Fig. 6. Robustness Game

We note that our security model does not prevent an adversary from honestly
computing multiple parts of a coVDF themselves. In doing so, however, they
would expend significant effort, for no gain. Consider this in the applications
given: In the collaborative work example, they would work on multiple parts,
whereby a single part would be sufficient to provide access to some resource,
meaning they have expended additional effort for no reason. Similarly, in an
auction, this approach would mean making multiple bids, each requiring effort,
where all but the largest bid is irrelevant. If a party wishes to compute the
coVDF alone, then a standard VDF should be used instead.

We have now defined the properties of a coVDF. In the remainder of the paper
we present our two candidate constructions for coVDFs: the first is a sequential
construction which satisfies traceability but not robustness; this motivates our
second, parallel construction, which is robust.

3 A Sequential coVDF

We propose a construction for a sequential coVDF based on Wesolowski’s VDF
[32], which we modify for the collaborative setting. In particular, we allow each
party to embed the personal input xi in the evaluation stage by multiplying xi

with the output of the underlying VDF computation. Furthermore, we design a
trace algorithm to prove the honesty of each party in the case of an abort. This
requires the addition of a second verification-style protocol, using the personal
input instead of the external input. We present details of the construction and
relevant security proofs in AppendixA.

518 L. Medley and E. A. Quaglia

4 A Robust coVDF Construction

In this section, we propose a parallel coVDF construction based on repeated
hashing, which we will see achieves 1/3-robustness, i.e., it withstands up to n/3
malicious parties whilst still running correctly. Such a parallel scheme will be
particularly useful in applications such as blind auctions, as discussed in Sect. 1.2
and discussed more in detail in AppendixC.

Sequential hashes have been used in a similar scenario: in [26], Mahmoody et
al. provide a proof of sequential work based on a directed acyclic graph (DAG), in
which a prover first creates a DAG, and then hashes all edges between the nodes
of the graph. This creates a tree of hashes, which can be verified probabilistically
by checking some fraction of the hashes. This construction naturally satisfies
most of the properties of a verifiable delay function, however it does not satisfy
uniqueness. This is because for a given solution, changing a single edge will
provide a different output, whilst being unlikely to be picked up by random
challenges.

In this section, we look at a method of mitigating this whilst extending the
scheme to multiple parties. Rather than creating a suitable DAG prior to the
hashing procedure, we instead create it during the hashing phase at random.
This is achieved by solvers randomly syncing to another party, who then creates
a hash to mark the event. This process stops once some parties have completed
t hashes, achieving the required delay.

To ensure each party generates the same graph, and to enable us to prove
security notions, we base our construction on the hashgraph consensus protocol
proposed in [4].

The Hashgraph Consensus Protocol. The Swirlds hashgraph consensus pro-
tocol [4] is an asynchronous Byzantine Fault Tolerance consensus protocol which
is proved to be fast and fair. Here we give a brief description of the key concepts
of this protocol, and in the full version of this paper, we present the relevant
definitions and results from [4] more formally. We refer the reader to [4] for a
full description and proofs of the ideas presented.

Gossip About Gossip. The underlying idea of this protocol is that as often as
possible each party runs a gossip protocol2 in which they sync with another party,
transmitting all the new events (‘gossip’) they have learned from previous syncs
from other parties. Using this method, all information will spread exponentially
fast through the group of parties. Each time a sync occurs, the party receiving
the sync creates a new node, also known as an event, by hashing their most
recent event concatenated with the most recent event of the party who initiated
the sync. Through repeated syncing, each party will eventually end up with a
copy of the same graph, up to a certain point in time.

Sequential hashing makes this scheme resistant to parallelisation, and the
required delay is defined by the number of hashes computed by each solver.

2 A gossip protocol is a procedure in which nodes propagate information through a
group, based on the way epidemics spread; see [23].

Collaborative Verifiable Delay Functions 519

4.1 coVDF from Repeated Hashing

In this construction, parties build a graph together, populating it with events, or
nodes. It is necessary that all parties reach consensus on the ordering of nodes.
This ensures that each party has a copy of the same graph, allowing for a single
output which can be efficiently verified. To achieve a unique output, and to
prove robustness, our protocol uses features from [4]. In this section we outline
the major intuitive ideas, presenting the technical details in the security analysis
provided in the full version of this paper.

We first write our coVDF as a triple of algorithms: V2 = (Setup2, Eval2, Ver-
ify2) as follows.

Setup. Setup2(λ, t, n) → pp = (H,G,m) takes a security parameter λ, time
delay t, and the number of solvers n; and outputs public parameters pp= (H,G,
m), where H is a collision resistant hash function H: {0, 1}2m → {0, 1}m, G is
an empty directed acyclic graph, containing a random ordering of the n parties
dictating where each party’s events will sit on the graph, and m is used to define
the hash function and the input space, X = {0, 1}m. The output space is defined
to be a populated graph of depth at least t. Additionally, we require each per-
sonal input xi to be some data hashed by H.

Eval. The initiator randomly samples an external input c0 ∈ {0, 1}m, and passes
it to the solvers. Each of the n solvers runs Eval2(pp, c0, xi)→ (G,H) by taking
the external input c0, providing a personal input xi, and doing as prescribed
in Fig. 7. The output is G, the completed directed graph up to the point where
consensus has been reached, along with H, the set of parties who agree with the
output graph G, voting Yes on Line 9 of Fig. 7.

1: Compute i’s first event H(xi||c0).
2: Let G be the graph output by Setup2.
3: while At least n/3 different parties have fewer than t nodes do
4: Call Sync as both sender and receiver in parallel, with different parties.
5: for j in 1 : n/3 do
6: if i = j then
7: Output graph Gj up to consensus.
8: else
9: Vote Yes if graphs Gi and Gj are consistent, and No otherwise.

10: If graph gets at least 2n/3 votes, end Eval and output this graph.
11: Abort protocol.

Fig. 7. Eval2

In the Eval2 algorithm, each party first hashes their personal input with c0,
before repeatedly running a gossip protocol (Fig. 8). Each party then repeatedly
syncs at random with other parties, creating a hash to record each sync. During

520 L. Medley and E. A. Quaglia

1: Let i be the sender, and let j be the receiver.
2: i sends j all new events since their previous sync.
3: j updates G with these new events, and creates a new event H(x||y), where x and

y are the most recent events by j and i respectively.
4: j calls divideRounds
5: j calls decideFame
6: j calls findOrder
7: Output Gj

Fig. 8. Sync

each sync, the syncing party, i, will tell the receiving party, j, all events that
have been gossiped to i since the last sync between i and j. This sync is known
as gossip.

This process will stop once at least 2n/3 parties have computed t hashes (see
Line 3). Any party who has calculated less than φt hashes will be dropped from
the group prior to verification, where φ is a parameter representing the minimum
amount of work required to not be considered lazy.

Next, parties vote on which graph to output. This is achieved as follows:
Party 1 outputs their graph up to (1 − ε)t nodes (this is the point at which
consensus has been reached on the graph - we go into greater detail on ε later).
All parties check their copy of the graph is consistent with that of party 1. They
then vote Yes or No accordingly. If at least 2n/3 votes are Yes, this graph is
output. If not, party 2 outputs their graph and repeats the process. This can be
repeated up to n/3 times. If no graph receives enough votes by this point, the
protocol is aborted.

Note that the last three lines of Fig. 8 are commands to run three new proce-
dures, all of which can be found in the full version of this paper, as well as in [4].
These procedures are necessary to provide uniqueness and robustness, but not
to provide an intuition of the scheme. In short, these three algorithms ensure
that all parties have the same ordering on all events, by splitting the graph
up into epochs, and marking the first node in each epoch as a witness. Wit-
nesses which are quickly gossiped to more than 2n/3 of parties are then called
famous. divideRounds is used to determine the round of events in the previous
round, decideFame is used to determine whether a witnesses in previous rounds
are famous, findOrder is used to provide consensus on the ordering of events.
The notions of a node being a witness, famous and having a round number are
expanded on in the full version of this paper, as well as in [4]. In AppendixB,
we provide an example to illustrate how the graph is built using Eval2.

Verify. The verify algorithm Verify2(H, c0,G,H)→ {Yes, No} takes the hash
function H, the external input c0 and the graph G, along with the subset H who
voted Yes on the graph (Fig. 9).

Collaborative Verifiable Delay Functions 521

1: On graph G, choose k(t) nodes created by each party in H. These are the challenge
nodes.

2: for All challenge nodes do
3: Hash the two parents of each node together and compare with the node. If they

are different, remove the node creator from H.
4: if #H > 2n/3 then
5: Output Yes.
6: else
7: Output No.

Fig. 9. Verify2

The verifier then checks k(t) = ω(λ) log t hashes at random for each player,
where ω(λ) is an increasing function which ensures the probability of any mali-
cious party remaining in H is negligible with respect to the security parameter.
Any party found to have incorrectly computed a hash will be removed from H.
If the number of parties remaining in H is greater than 2n/3 after all checks are
completed, the verifier outputs Yes.

Efficiency Remarks. This construction is based upon a fast, fair consensus pro-
tocol which makes very efficient use of bandwidth.

Setup2 simply provides an ordering of the parties, as well as specifying a cryp-
tographic hash function, and the size of inputs. This requires little computational
overhead. Eval2 repeatedly calls a subroutine Sync (Fig. 8), which involves one
party i sending j the set of new events i learned since their precious sync. Impor-
tantly, sync is run in parallel, meaning all parties can act as both the receiver and
the sender simultaneously. As soon as party j has completed the hash, and added
the new events from the sync, they can receive another sync whilst running the
procedures divideRounds, decideFame and findOrder. This ensures each party is
continuously hashing new events. In [4] it is shown that the gossip protocol is
very efficient in terms of bandwidth: each member will receive each transaction
once, and also send each transaction on average once. The hashes for gossiped
events don’t have to be sent during the sync - it is sufficient to send the identity
of the creator of the event, and the event number of its other parent, which can
be stored in a single array.

4.2 Security of V2

In the full version of this paper, we provide a detailed security analysis of our
parallel coVDF construction V2, showing it satisfies the properties of correctness,
robustness, sequentiality and uniqueness. Due to lack of space, here we provide
a brief intuition.

Correctness. If all parties run the Eval2 algorithm, then they will construct a
graph with a minimum depth of t, and all nodes will have been hashed correctly.
Hence all checks will be correct, and Verify2 will output Yes.

522 L. Medley and E. A. Quaglia

Robustness. For robustness to hold we require that provided at least 2n/3 par-
ties act honestly, the computation should be accepted by the verifier, regardless
of the behaviour of the remaining parties. We analyse the possible behaviour of
malicious parties, which include lack of participation, faking hash values, and
dishonest gossiping. We utilise results from Baird [4] to show that in each case,
we still get consistency under an honest majority of 2/3.

Sequentiality. The sequentiality of this construction is based upon sequential
hashing, which has been used previously as a proof of sequential work [26]. The
sequentiality of V2 follows directly from the assumption that iterated hashing is
resistant to parallelisation.

Uniqueness. We show that assuming that we have a 2/3 honest majority of
parties, then an output graph cannot be mangled into another such graph. This
is due to the graph relying directly on the set of personal inputs, which due to
the collision resistance of the hash function cannot be recovered.

5 Concluding Remarks

In this work we introduced the idea of collaborative VDFs, extending the def-
initions of the single party case. We formalized the primitive and its security
properties, and we categorised coVDFs as either sequential or parallel. We addi-
tionally defined the new properties of traceability and robustness to address the
behaviour of dishonest solvers in the multi-party setting.

An approach to achieving a sequential construction is to take an existing
VDF scheme and splitting the work into n parts, where each solver computes
one such part before passing the work on to the next solver. We proved this is
possible by giving a concrete extension of Wesolowski’s VDF [32], additionally
providing traceability. We then proposed a candidate parallel construction in
which all parties build a graph together, using gossip and sequential hashing.
These constructions show the flexibility of this primitive, and allow the use of
coVDFs in a variety of applications.

A A Sequential coVDF Construction

In this section we take the VDF scheme presented by Wesolowski [32], and extend
it to a coVDF. Our construction incorporates both personal inputs from each
party as well as traceability.

In the construction given by Wesolowski in [32], the prover takes as input a
base element x, performs a hash H on it, and then calculates H(x)2

t

, where t
is the delay parameter. This calculation has to be done in a particular type of
finite group, G - see [11] for a discussion on concrete groups. The verifier then
uses a public-coin succinct argument [31] to efficiently verify the output. We will
use this scheme to construct a coVDF in the following way.

Recall that H is a collision resistant hash function, let Primes(λ) be the
set containing the first 22λ prime numbers, and let N be the set of n solvers.

Collaborative Verifiable Delay Functions 523

Let bin(x) be the representation of an element x as a binary string. We define
V1 = (Setup1,Eval1,Verify1) as follows.

Setup1(λ, t, n) takes security parameter λ, time delay t, and the number of
solvers n and outputs public parameters pp, which consist of a finite abelian
group of unknown order G, a hash function H mapping any string s to G, and a
hash function Hprime mapping any string s to Primes(λ). The public parameters
also specify an ordering on the solvers.

The initiator randomly samples a seed c0 ∈ G, and passes it to the first solver.
Each solver runs Eval1(pp, ci, xi) on an external input ci and their personal input
xi, to compute yi and πi, as described in Fig. 10. For the first solver, c0 is used
as the external input. For every other solver, ci ← yi−1 will be received from the
previous solver.

Along with yi, each solver also outputs three values which enable the trace
algorithm to be non-interactive. These are zi, τi and ωi. τi and ωi each consist of
a tuple of the form (gq, l), and are used to run Wesolowski’s proof algorithm on
the input xi, and its inverse zi = x−1

i respectively. These three values are only
included for use in Trace, and are not used in Verify1.

To verify the output computation, the verifier runs Verify1(pp, X,Y,Π) on
the set of inputs, X, the set of outputs Y and the set of proofs Π. Solver n and
the verifier run an extension of Wesolowski’s succinct argument as described in
Fig. 12, and the verifier outputs either Yes or No.

We define the number of steps needed to be 2nt, and split this into 2t for each
of the n solvers. During Eval1, each player i computes 2t modular exponentiations
on ci, and then multiplies this by xi. The value yi ← xic

2t

i is the output of player
i, and the external input of player i+1. This value yi will be raised to the power
of 2(n−i)t by the remaining solvers.

1: Check ci ∈ G, and abort if not.
2: Compute yi ← xi · c2

t

i .
3: Pass yi to solver i + 1.
4: Compute the inverse of the personal input: zi ← x−1

i .
5: Compute πi ← z2(n−i)t

i .
6: Compute τi and ωi by running the proof algorithm in Figure 11 on (ci, yi · zi) and

(zi, πi) respectively.
7: Output (y∗

i , π∗
i), where y∗

i = (yi, zi), and π∗
i = (πi, τi, ωi).

Fig. 10. Eval1

1: Take a pair of inputs (g, h).
2: Sample a prime l ← Hprime(bin(g)||bin(h)).
3: The solver finds a linear combination of h and l, such that h = ql+r, with 0 ≤ r ≤ l.
4: Output (gq, l).

Fig. 11. Proof algorithm

524 L. Medley and E. A. Quaglia

1: Solver n computes y ← ynπ1 · · · πn.
2: The verifier checks c0, y ∈ G, and outputs No if not.
3: The verifier sends solver n a random prime l ∈ Primes(λ).
4: Solver n then finds a linear combination of 2nt and l, such that 2nt = ql + r, with

0 ≤ r ≤ l. τ := cq0 is then sent to the verifier.
5: The verifier computes r from 2nt mod l. If τ ∈ G and y = τ lcr0 ∈ G, the verifier

outputs Yes. If not, the verifier outputs No.

Fig. 12. Verify1

The output of player n can be written as

c2
nt

0 xnx2t

n−1 · · · x2nt

1 .

We want to cancel out all terms apart from c2
nt

0 . We require all parties to compute
zi ← x−1

i to achieve this. The personal input of player i will be raised to the
power of 2(n−i)t subsequent solvers. Therefore, solver i must then raise zi to the
power of 2(n−i)t. This allows us to ‘unwrap’ each of the inputs, by cancelling the
personal input out with the correct power of zi.

zi is output along with yi to enable traceability, which we describe later.
Similarly, Fig. 11 is run twice by each player i to compute proofs that both their
output yi, and their proof πi are correct. This is to ensure a tracer has all the
information needed to run the trace algorithm non-interactively, and the outputs
τi and ωi are not used in Verify1.

In Verify1, solver n multiplies their output yn by each of the πi values to
obtain y = c2

nt

0 . This allows solver n and the verifier to run Wesolowski’s succinct
argument, which runs as follows.

The verifier first checks c0 and y are in the group G. The verifier then sends
solver n a prime l taken from Primes(λ). Solver n writes 2nt as a linear combi-
nation of l, such that 2nt = ql + r, with r ≤ l. Solver n then computes τ ← cq

0

and sends this to the verifier. The verifier checks this τ ∈ G and computes the
value r from 2nt mod l. The verifier then computes τ lcr

0. If all parties have acted
honestly, this is equal to (cq

0)
lcr

0 = cql+r
0 = c2

nt

0 = y.
Note that Verify1 can be made non-interactive using the Fiat-Shamir heuris-

tic [8] by sampling primes using Hprime, as in Fig. 11.

Traceability. As discussed in Sect. 2.2, traceability allows one to remove dishon-
est parties prior to restarting the protocol. This allows a punishable abort [7,18]
to be incorporated into the scheme, providing an incentive to good behaviour.

In Eval1, each party first checks their external input is in G, and aborts the
computation if it is not. If party i triggers such an abort, we immediately know
party i − 1 has acted dishonestly, removing the need for the trace algorithm.

In the case that all parties output yi, πi ∈ G, but Verify1 outputs No, we
require a Trace algorithm. One way to obtain traceability is to run the succinct
argument used in Verify1 on each of the proofs and each of the outputs. Trace

Collaborative Verifiable Delay Functions 525

outputs all parties with an incorrect proof or output. In order to achieve this
whilst ensuring that Trace is non-interactive, we have each solver compute τi

and ωi to allow a tracer to run the succinct argument twice on each player to
ensure they acted correctly.

We define M ←Trace1(X,Y,Π) as an algorithm run by the tracer C on the
set of all inputs (private and external), the set of all outputs and the set of all
proofs, as prescribed in Fig. 13. The output is the subset of dishonest parties,
M .

1: Let M be an empty set.
2: for i ∈ N do
3: Compute prime l ← Hprime(bin(ci)||bin(yi · zi)).
4: Compute ri from yi · zi mod l.
5: If τi ∈ G ∧ yi · zi = τ l

i c
ri
i ∈ G is not true, add i to M .

6: Compute prime k ← Hprime(bin(zi)||bin(πi)).
7: Compute ai from πi mod k.
8: If ωi ∈ G ∧ πi = ωk

i zai
i ∈ G is not true, add i to M .

9: Output M .

Fig. 13. Trace1

The tracer runs Wesolowski’s succinct argument, acting as the prover, twice
for each party. On line 4, τi is used to prove that yi was calculated correctly,
and on line 6, ωi is used to prove that πi was calculated correctly. This is done
using an identical argument to that in Verify1. The primes are reconstructed to
ensure they were correctly sampled from Primes(λ).

We have presented an efficient coVDF with the traceability property. This
construction allows for applications such as collaborative work, as described in
Sect. 1.2. In AppendixC we show concretely how this construction can be used
in such a setting. In the following section, we provide a security analysis of this
construction.

A.1 Security of V1

In the full version of this paper, we provide a detailed security analysis of our
parallel coVDF construction V1, showing it satisfies the properties of correctness,
robustness, sequentiality and uniqueness. Due to lack of space, here we instead
provide a brief intuition for our results.

Correctness. On a correct run of the protocol, the personal input and proof
will cancel out, meaning the underlying verification protocol will run on c0 and
c2

nt

0 , and hence output 1.

Soundness. Consider an adversary A who chooses a set of parties M to corrupt,
along with inputs cj , and xj for each j ∈ M . This adversary then runs some

526 L. Medley and E. A. Quaglia

algorithm A1 �= Eval1 for each j. To break the soundness property, they would
have to output a pair (yj , πj) such that c2

t

j (x2n−j

j πj) = yj �= 1G for each j. Even
if A lets xj = πj = 1, then they still have to find a solution for t sequential
squarings of cj without running the squaring algorithm. This reduces to the
adaptive root assumption of the underlying construction [32], and so has an
overwhelmingly small probability of being correct.

Sequentiality. The sequentiality of this scheme directly relies upon the task
of repeated squaring. This has been a base assumption for many time-lock con-
structions [25,30], and is considered a standard assumption.

Traceability. Trace correctness holds if all parties output by Trace have not
run Eval1(pp, ci, xi). Any party who runs Eval1(pp, ci, xi) will have the correct
values of τi and ωi, as well as the correct values of zi, πi and yi. This gives us
trace correctness. Meanwhile, trace soundness holds if all parties j who output
(y∗

j , π∗
j) �= Eval1(pp, ci, xi) are output by Trace. Trace runs Wesolowski’s suc-

cinct argument twice: once on the output yj , and once on the proof πj . As this
procedure is deterministic, any party j who outputs (y∗

j , π∗
j) �= Eval1(pp, ci, xi)

will fail one of the succinct arguments, and so be output by Trace.

B Example of Graph Built Using Eval2

Each node is calculated from the hash of two previous nodes; the most recent
node by the receiver of the sync, concatenated with the most recent node of the
initiator of the sync. We refer to these two nodes as the parents of the new node.
We will use the notation k||l to refer to the hashing of node k concatenated with
node l. In Fig. 14, the two ingoing arrows to each node represent the parents.

In Fig. 14, we show the start of a graph with n = 4 being populated. Each
party’s first event, {1, 2, 3, 4}, is the result of hashing xi||c0. After this, each
party repeatedly syncs with other parties, and the receiving party creates a new
node each time. For example node 5 is created by hashing 1||2, and node 8 is
created by hashing 3||6.

We give an example of the next sync to occur after Fig. 14, leading to a new
event (which would be node 14) being added to the graph: solver 1 (Blue) syncs
with solver 2 (Green). We see that Blue knows every event, as each party’s most
recent event has been gossipped via 9 → 10 → 12 → 13.

In the most recent sync between Blue and Green, Green had events
{1, 2, 3, 4, 5, 6} in their graph. Therefore Blue sends the hash labels and cor-
responding parents for nodes {7, · · · , 13}. Green now updates their graph and
adds the new node 14 by hashing 9||13.

Now, if Red were to sync with Green, Red would also send events {4, 7, 10, 12}
as these are the events Red has learned since their previous sync with Green
(which resulted in the creation of node 9). Green would check that these were
consistent with those currently in their graph, and add event 15 by hashing
14||12.

Collaborative Verifiable Delay Functions 527

Time

c0

1

5

11

13

2

6

9

3

8

12

4

7

10

Fig. 14. Example (Color figure online)

C Examples

We provide two concrete examples illustrating how to use each of our proposed
coVDF constructions in the applications discussed in Sect. 1.2.

C.1 Collaborative Work

We consider a scenario where a group of n mutually distrusting parties wish
to access a private resource owned by a company. In return for this access,
the company asks the group to compute a coVDF in order to implement a
randomness beacon.

The company wishes to ensure that only parties who contributed gain access,
and parties all want to contribute the same amount of effort, whilst keeping their
identity hidden from other parties. We assume that each party has a private
communication channel with the company, and that each party deposits some
funds on a blockchain, under the condition that this is returned only if they
carry out the protocol honestly.

Let the required length of evaluation be nt, and let each party have some per-
sonal input xi ∈ G, obtained by hashing their public identifier. By setting these
hashes as the personal inputs, we show how this group can together compute
such a coVDF.

The company runs Setup1(λ, t, n) → pp = (G,H,Hprime), taking as input a
chosen security parameter λ and time delay t, and the number of parties n. The

528 L. Medley and E. A. Quaglia

outputs are the public parameters, which consist of a group G, as well as hash
functions H and Hprime, as described in AppendixA. The company then chooses
some ordering on the parties, and provides the starting party with a seed c0,
sampled at random from G.

Parties run Eval1 in turns, as described in AppendixA, using their hashed
identifiers xi as personal inputs. The first party will use c0 as their external input,
and subsequent parties will use the output of the previous party, ci = yi−1. Then
the final party and the company run Verify1, which will output Yes or No.

If Verify outputs Yes, we can use Trace to allow parties to each privately
reveal their identity to the company. This is done by running lines 6 to 8 of
Trace on each party, to verify that xi, was indeed the personal input of i, and
then the party reveals their public identifier. After checking that this identifier
hashes to xi, The company will then give i access to the resource, and each party
will receive their deposit back.

If Verify outputs No, Trace is ran by the company, and honest parties are
refunded their deposit. The remaining funds can be split between the authority
and honest parties.

C.2 Decentralised Blind Auctions

In our second example, we show how to instantiate a fair, decentralised blind
auction using a parallel coVDF. Consider a seller who wishes to auction off some
goods in a decentralised fashion, to avoid the fees associated with an auction
house. Suppose this seller requires interested parties to show legitimate interest
with a proof of effort (i.e. a delay of time t), to avoid fake bids. We allow the n
interested parties place bids in this auction, as discussed in Sect. 1.2.

We can achieve this by using our proposed parallel coVDF, V2. Parties all
hash their bids concatenated with some randomness at the same time, and each
compute t steps of iterated computation, serving as the proof of effort. This
proceeds as follows:

Once the seller has advertised this auction and is ready to accept bids, they
will run Setup2 on the number of interested parties n. This means that when all
parties bid, they have full transparency of the number of parties involved in this
auction, providing a fair setting.

Setup2(λ, t, n) → pp = (H,G,m) takes a security parameter λ, time delay
t, and the number of solvers n; and outputs public parameters pp= (H,G, m),
which give the parties the necessary details to produce a hashgraph. Parties can
now hash their bid using H to obtain their personal input xi. The seller then
randomly samples an element c0 ∈ G as the external input allowing parties to
use this c0 and their personal inputs xi to run Eval2, together producing a graph
of depth t.

We have now successfully instantiated an auction, and we can use standard
techniques from secure multi party computation to calculate the highest bid,
whilst keeping all others private. An example of this is Borealis [9], which is an
efficient, low interaction protocol for secure computation of rank among integers.

Collaborative Verifiable Delay Functions 529

References

1. Attias, V., Vigneri, L., Dimitrov, V.: Implementation study of two verifiable delay
functions. In: Tokenomics (2020)

2. Aumann, Y., Lindell, Y.: Security against covert adversaries: efficient protocols
for realistic adversaries. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp.
137–156. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-70936-
7 8

3. Bag, S., Hao, F., Shahandashti, S.F., Ray, I.G.: SEAL: sealed-bid auction without
auctioneers. IEEE Trans. Inf. Forensics Secur. 15, 2042–2052 (2019)

4. Baird, L.: The swirlds hashgraph consensus algorithm: fair, fast, byzantine fault
tolerance (2016)

5. Baird, L., Harmon, M., Madsen, P.: Hedera: a governing council & public hashgraph
network (2018)

6. Bakos, G.: Energy management method for auxiliary energy saving in a passive-
solar-heated residence using low-cost off-peak electricity. Energy Build. 31(3), 237–
241 (2000)

7. Bentov, I., Kumaresan, R.: How to use bitcoin to design fair protocols. In: Garay,
J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol. 8617, pp. 421–439. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-662-44381-1 24

8. Bernhard, D., Pereira, O., Warinschi, B.: How not to prove yourself: pitfalls of
the Fiat-Shamir heuristic and applications to Helios. In: Wang, X., Sako, K. (eds.)
ASIACRYPT 2012. LNCS, vol. 7658, pp. 626–643. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-34961-4 38

9. Blass, E.-O., Kerschbaum, F.: BOREALIS: building block for sealed bid auc-
tions on blockchains. Cryptology ePrint Archive, Report 2019/276 (2019). https://
eprint.iacr.org/2019/276

10. Boneh, D., Bonneau, J., Bünz, B., Fisch, B.: Verifiable delay functions. In:
Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10991, pp. 757–
788. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96884-1 25

11. Boneh, D., Bünz, B., Fisch, B.: A survey of two verifiable delay functions. IACR
Cryptology ePrint Archive (2018). https://eprint.iacr.org/2018/712.pdf

12. Cohen, B., Pietrzak, K.: Simple proofs of sequential work. In: Nielsen, J.B., Rijmen,
V. (eds.) EUROCRYPT 2018. LNCS, vol. 10821, pp. 451–467. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-78375-8 15

13. Cohen, B., Pietrzak, K.: The Chia network blockchain (2019)
14. Coppinger, V.M., Smith, V.L., Titus, J.A.: Incentives and behavior in English,

Dutch and sealed-bid auctions. Econ. Inq. 18, 1–22 (1980)
15. Ephraim, N., Freitag, C., Komargodski, I., Pass, R.: Continuous verifiable delay

functions. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020. LNCS, vol. 12107,
pp. 125–154. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45727-3 5

16. De Feo, L., Masson, S., Petit, C., Sanso, A.: Verifiable delay functions from super-
singular isogenies and pairings. In: Galbraith, S.D., Moriai, S. (eds.) ASIACRYPT
2019. LNCS, vol. 11921, pp. 248–277. Springer, Cham (2019). https://doi.org/10.
1007/978-3-030-34578-5 10

17. Galal, H.S., Youssef, A.M.: Verifiable sealed-bid auction on the Ethereum
blockchain. In: Zohar, A., et al. (eds.) FC 2018. LNCS, vol. 10958, pp. 265–278.
Springer, Heidelberg (2019). https://doi.org/10.1007/978-3-662-58820-8 18

18. Gao, H., Ma, Z., Luo, S., Wang, Z.: BFR-MPC: a blockchain-based fair and robust
multi-party computation scheme. IEEE Access 7, 110439–110450 (2019)

https://doi.org/10.1007/978-3-540-70936-7_8
https://doi.org/10.1007/978-3-540-70936-7_8
https://doi.org/10.1007/978-3-662-44381-1_24
https://doi.org/10.1007/978-3-642-34961-4_38
https://eprint.iacr.org/2019/276
https://eprint.iacr.org/2019/276
https://doi.org/10.1007/978-3-319-96884-1_25
https://eprint.iacr.org/2018/712.pdf
https://doi.org/10.1007/978-3-319-78375-8_15
https://doi.org/10.1007/978-3-030-45727-3_5
https://doi.org/10.1007/978-3-030-34578-5_10
https://doi.org/10.1007/978-3-030-34578-5_10
https://doi.org/10.1007/978-3-662-58820-8_18

530 L. Medley and E. A. Quaglia

19. Huisman, R., Huurman, C., Mahieu, R.: Hourly electricity prices in day-ahead
markets. Energy Econ. 29(2), 240–248 (2007)

20. Kiayias, A., Russell, A., David, B., Oliynykov, R.: Ouroboros: a provably secure
proof-of-stake blockchain protocol. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017.
LNCS, vol. 10401, pp. 357–388. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-63688-7 12

21. Kiayias, A., Tsiounis, Y., Yung, M.: Traceable signatures. In: Cachin, C.,
Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 571–589.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24676-3 34

22. Ling, L., Liao, J.: Anonymous electronic voting protocol with traceability. In: 2011
International Conference for Internet Technology and Secured Transactions, pp.
59–66 (2011)

23. Li, H.C., et al.: BAR gossip. In: Proceedings of the 7th Symposium on Operating
Systems Design and Implementation, pp. 191–204. USENIX Association (2006)

24. Lysyanskaya, A., Triandopoulos, N.: Rationality and adversarial behavior in multi-
party computation. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 180–
197. Springer, Heidelberg (2006). https://doi.org/10.1007/11818175 11

25. Mahmoody, M., Moran, T., Vadhan, S.: Time-lock puzzles in the random Oracle
model. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 39–50. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-22792-9 3

26. Mahmoody, M., Moran, T., Vadhan, S.: Publicly verifiable proofs of sequential
work. In: Proceedings of the 4th Conference on Innovations in Theoretical Com-
puter Science, pp. 373–388. Association for Computing Machinery (2013)

27. McAfee, P., McMillan, J.: Auctions with a stochastic number of bidders. J. Econ.
Theor. 43, 1–19 (1987)

28. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system (2008)
29. Pietrzak, K.: Simple verifiable delay functions. In: 10th Innovations in Theoretical

Computer Science Conference, ITCS 2019 (2019)
30. Rivest, R.L., Shamir, A., Wagner, D.A.: Time-lock puzzles and timed-release

crypto (1996)
31. Smart, N.: Cryptography: An Introduction, vol. 3. McGraw-Hill, New York (2003)
32. Wesolowski, B.: Efficient verifiable delay functions. In: Ishai, Y., Rijmen, V. (eds.)

EUROCRYPT 2019. LNCS, vol. 11478, pp. 379–407. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-17659-4 13

https://doi.org/10.1007/978-3-319-63688-7_12
https://doi.org/10.1007/978-3-319-63688-7_12
https://doi.org/10.1007/978-3-540-24676-3_34
https://doi.org/10.1007/11818175_11
https://doi.org/10.1007/978-3-642-22792-9_3
https://doi.org/10.1007/978-3-030-17659-4_13

SMCOS: Fast and Parallel Modular
Multiplication on ARM NEON

Architecture for ECC

Wenjie Wang1,2, Wei Wang1,3(B), Jingqiang Lin4,5(B), Yu Fu1,2,
Lingjia Meng1,2, and Qiongxiao Wang1,2

1 State Key Laboratory of Information Security, Institute of Information
Engineering, Chinese Academy of Sciences, Beijing 100089, China

wangwei@iie.ac.cn
2 School of Cyber Security, University of Chinese Academy of Sciences,

Beijing 100089, China
3 Data Assurance and Communication Security Research Center, CAS,

Beijing 100089, China
4 School of Cyber Security, University of Science and Technology of China,

Hefei 230027, Anhui, China
linjq@ustc.edu.cn

5 Beijing Institute, University of Science and Technology of China, Beijing, China

Abstract. Elliptic Curve Cryptography (ECC) is considered a more
effective public-key cryptographic algorithm in some scenarios, because
it uses shorter key sizes while providing a considerable level of security.
Modular multiplication constitutes the “arithmetic foundation” of mod-
ern public-key cryptography such as ECC. In this paper, we propose
the Cascade Operand Scanning for Specific Modulus (SMCOS) vector-
ization method to speed up the prime field multiplication of ECC on
Single Instruction Multiple Data (SIMD) architecture. Two key features
of our design sharply reduce the number of instructions. 1) SMCOS
uses operands based on non-redundant representation to perform a
“trimmed” Cascade Operand Scanning (COS) multiplication, which min-
imizes the cost of multiplication and other instructions. 2) One round
of fast vector reduction is designed to replace the conventional Mont-
gomery reduction, which consumes less instructions for reducing interme-
diate results of multiplication. Further more, we offer a general method
for pipelining vector instructions on ARM NEON platforms. By this
means, the prime field multiplication of ECC using the SMCOS method
reaches an ever-fastest execution speed on 32-bit ARM NEON platforms.
Detailed benchmark results show that the proposed SMCOS method per-
forms modular multiplication of NIST P192, Secp256k1, and Numsp256d1

within only 205, 310 and 306 clock cycles respectively, which are roughly
32% faster than the Multiplicand Reduction method, and about 47%
faster than the Coarsely Integrated Cascade Operand Scanning method.

This work was partially supported by Shandong Province Key Research & Development
Plan/Major Science & Technology Innovation Project (Grant No. 2020CXGC010115).

c© Springer Nature Switzerland AG 2021
Y. Yu and M. Yung (Eds.): Inscrypt 2021, LNCS 13007, pp. 531–550, 2021.
https://doi.org/10.1007/978-3-030-88323-2_28

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-88323-2_28&domain=pdf
https://doi.org/10.1007/978-3-030-88323-2_28

532 W. Wang et al.

Keywords: Public-key cryptography · Vector instructions · Modular
multiplication · SIMD · ECC · ARM NEON

1 Introduction

Effective implementation of public-key cryptographic algorithms on general-
purpose computing devices facilitates the application of cryptography in com-
munication security. As a crucial component of modern public-key cryptography,
the Elliptic Curve Cryptography (ECC) based on the discrete logarithm problem
has been widely used, because of its shorter key sizes than other cryptographic
algorithms (e.g. DSA and RSA). Despite more than three decades of research
efforts, ECC defined over general fields of large prime characteristic is still consid-
ered computation-intensive due to underlying arithmetic operations performed
between large integers, especially when executed on embedded processors. Multi-
precision modular multiplication is a performance-critical building block in ECC,
which demands careful optimization to achieve acceptable performance [27].

In recent years, an increasing number of commodity processors were equipped
with co-processors that provide vector instruction set extensions to perform sin-
gle instruction multiple data (SIMD) operations. Advanced Vector Extension
(AVX), the vector instruction set provided by Intel, is mostly used for applica-
tion optimization on large server hosts and PCs. In terms of embedded platforms,
due to the limitation of their computing capability, more and more ARM embed-
ded processors (e.g. ARM Cortex-A, Cortex-R series) start to use NEON vector
instructions to execute a wide variety of compute-intensive applications. For con-
ventional cryptosystems, the parallel computing power provided by the SIMD
co-processor can readily be used to optimize the implementation of public-key
cryptographic algorithms such as RSA and ECC. In order to improve the per-
formance of cryptographic algorithms, the research community has studied ways
to reduce the latency of multi-precision modular multiplication through SIMD
vectorization.

In these designs, one of the most often vectorized modular reduction tech-
niques is the Montgomery algorithm [3,10,17,22,25–27,31]. It was originally
proposed in 1985 [19] and has been widely deployed in real-world applications.
Montgomery modular multiplication, as a general modular multiplication design,
has good execution efficiency and can be applied in multi-precision modular
multiplication of cryptographic algorithms such as RSA and ECC. However, the
Montgomery modular multiplication has the following two defects. One is that
the instructions used by Montgomery reduction are usually expensive, which are
roughly the same as the consumption of multiplication. On the other hand, a
conditional subtraction could occur at the end of Montgomery modular multipli-
cation in order to keep the result valid, which can be exploited in conventional
timing-based side-channel attacks [15,25,29].

Besides, since the redundant representation suggested in [14] can handle
carry propagation more easily, it is adopted by many vectorization solutions
[2,5,10,11,13,16,24,25]. The redundant representation allows several products

SMCOS: Fast and Parallel Modular Multiplication 533

of big numbers to be summed up, without causing an overflow inside the “con-
tainer” (usually, a register) that holds the accumulation result. The cumbersome
handling of the carry propagation can therefore be avoided [10]. However, the
redundant representation introduces more multiplication instructions to com-
pute more partial products than the non-redundant representation. Also, when
it is used for multiplicand or intermediate result reduction and carry propaga-
tion, the inconsistency of the size in bits of partial operands divided by redundant
representation and the word size of the processors (32- or 64-bit) will cause addi-
tional overhead of instructions (e.g. bic, shift instruction) for handling reduction
and carry.

In this paper, we propose an innovative design for ECC over the prime field
Fp, which uses non-redundant representation to implement a non-Montgomery
form of vectorized modular multiplication, called Cascade Operand Scanning for
Specific Modulus (SMCOS). Two key features of our design sharply reduce the
number of instructions and pipeline stalls. 1) In a non-redundant representation,
the multiplicands perform a “trimmed” Cascade Operand Scanning (COS) mul-
tiplication and obtain an intermediate result without carry propagation. COS
vector multiplication was introduced in [27], which greatly eliminates Read-
After-Write (RAW) dependencies in the instruction flow, and non-redundant
representation reduces the number of multiplication instructions. When applied
to SMCOS, the carry propagation at the end of COS is removed to avoid extra
pipeline stalls due to sequential scalar operations in vector registers. 2) For the
specific form of prime modulus in ECC, we introduce a fast vector reduction
method in SMCOS to reduce the intermediate results of multiplication, instead
of the general Montgomery reduction. The number of vector instructions con-
sumed by this reduction is only about 12%−23% of the Montgomery reduction
in [27] (see Sect. 4.2 for details). Furthermore, the SMCOS modular multiplica-
tion runs in constant time to resist certain types of side-channel attacks using
timing and branch prediction.

On the Cortex-A9 platform, the SMCOS and two other fast vector modular
multiplication methods for ARM NEON architecture, the Multiplicand Reduc-
tion (MR) [24] and the Coarsely Integrated Cascade Operand Scanning (CICOS)
[27], are respectively integrated into the cryptographic algorithm library OpenSSL
1.1.1k [21], libsecp256k1 [23] and MSR ECCLib 2.0 [18]. After that, we make
comprehensive comparisons of the execution time in terms of modular multipli-
cation, point addition, point doubling, Elliptical Curve Diffie-Hellman (ECDH)
for key exchange, Elliptic Curve Digital Signature Algorithm (ECDSA), etc.
The detailed benchmark results indicate that SMCOS brings larger performance
enhancements to all levels of ECC arithmetic. Taking ECDSA signature as an
example, the signature performance of NIST P192 curve based on SMCOS, is
about 17% faster than the MR method, 22% faster than the CICOS method,
and 58% faster than the native OpenSSL signature. And for Secp256k1 curve,
SMCOS’s is roughly 10% faster than libsecp256k1 optimized by manual assem-
bly language before, and 26% faster than CICOS. Also for Numsp256d1 curve, the
signature performance using SMCOS is approximately 17% faster than CICOS
and 25% faster than MSR ECCLib (see Sect. 5 for details).

534 W. Wang et al.

The main contributions of our work are as follows.

• Firstly, a vector modular multiplication design based on specific modulus is
proposed to fully exploit the computing power of SIMD co-processors for
ECC. To the best of our knowledge, this is the first non-redundant represen-
tation and non-Montgomery form of vector modular multiplication design in
the prime field Fp.

• Secondly, due to the specific modulus of the prime field for ECC, we design
a single round of fast vector reduction method to reduce the intermediate
results of multiplication.

• Thirdly, we investigate the timing of ARM SIMD integer instructions and
provide a general method of pipelining on 32-bit ARM NEON platforms.

• Finally, thanks to highly optimized multiplication in Fp, the performance of
ECC protocols obtains great enhancements on 32-bit ARM processors with
NEON.

The rest of the paper is organized as follows. Section 2 surveys the related
work. The preliminaries about ARM NEON and the representation of prime field
elements are presented in Sect. 3. Sections 4 describes the design and implemen-
tation of our SMCOS modular multiplication. In Sect. 5, performance results of
the SMCOS method and ECC implementations are given and compared with
other works and cryptographic algorithm libraries. We conclude in Sect. 6.

2 Related Work

The first practice and evaluation of cryptographic algorithm on ARM NEON
architecture belonged to Bernstein and Schwabe in CHES’12 [2]. The authors
showed that NEON supports elliptic curve cryptography at surprised high
speeds, and summarized useful instructions for vectorization of cryptographic
algorithms. In 2013, Câmaraand et al. employed NEON’s VMULL.P8 instruction
to describe a novel vector implementation for 64-bit polynomial multiplication
in ECC based on the binary field F2m [4]. [1,9,20,28,30] proposed accelerated
implementations of applying NEON instructions to other cryptographic algo-
rithms (e.g. AES, RSA, LWE, pairing-based and lattice-based cryptography,
etc.). Despite recent research progress, for cryptographic algorithms, in par-
ticular public-key cryptography, the efficient implementation of multi-precision
modular multiplication on the SIMD architecture is still an interesting and chal-
lenging topic.

The authors of [25] and [10] used Intel SSE and AVX2 vector instructions to
implement Montgomery multiplication with redundant representation, and inte-
grated them into RSA modular exponentiation. In SAC 2013, Bos et al. intro-
duced a 2-way Montgomery modular multiplication, which uses non-redundant
representation and splits the Montgomery modular multiplication into two parts:
modular multiplication and reduction, being computed in parallel [3]. This is
the first Montgomery modular multiplication parallel design with non-redundant
representation, but its performance is compromised by the RAW dependencies in
the instruction flow. Based on the work of Bos, Seo et al. proposed the Coarsely

SMCOS: Fast and Parallel Modular Multiplication 535

Integrated Cascade Operand Scanning (CICOS) method in ICISC 2014 [27]. This
method eliminates the RAW dependencies of the 2-way Montgomery modular
multiplication in the carry propagation, thereby reducing the number of pipeline
stalls and reaching record execution time.

In [24], the Multiplicand Reduction (MR) modular multiplication was intro-
duced to implement NIST-recommended prime-field curves including P192 and
P224. The design adopts the redundant representation suggested in [14], and uses
a kind of fast reduction instead of the Montgomery reduction to reduce multipli-
cands in advance. It is significantly faster than some schoolbook multiplication
with intermediate reduction methods [21].

3 Preliminaries

3.1 ARM NEON Architecture

The 32-bit RISC-based ARM architecture, which includes ARMv7, is the most
popular in embedded devices. It features 13 general-purpose 32-bit registers (R0-
R12), and additional three 32-bit registers which have special names and usage
models: R13 for stack pointer, R14 for link register, as well as R15 for program
counter. Its instruction sets support 32-bit operations or, in the case of Thumb
and Thumb2, a mix of 16- and 32-bit operations [1].

Many ARM cores include NEON, a powerful 128-bit SIMD engine that comes
with sixteen 128-bit registers (Q0-Q15) which can also be viewed as thirty-two
64-bit registers (D0-D31). The NEON instructions provide data processing and
load/store operations, and are integrated into the ARM and Thumb instruction
sets. NEON includes support for 128-, 16-, 8-, 4-, or 2-way SIMD operations
using vectors of 1-, 8-, 16-, 32- and 64-bit integer elements respectively. The
number of elements operated on is indicated by the specified register size. For
example, VADD.U8 Q0, Q1, Q2 indicates an addition operation on 8-bit integer
elements stored in 128-bit Q registers. This means that the addition operation is
on sixteen 8-bit lanes in parallel. Some instructions can have different size input
and output registers. For example, VMULL.U32 Q0, D2, D3 uses two pairs of 32-
bit integers stored in two 64-bit D registers as inputs to generate a pair of 64-bit
products and stores them in a 128-bit Q register. Similarly, there is a VMLAL.U32
instruction that executes a VMULL.U32 operation and adds the result to a 128-bit
Q register (treated as two 64-bit integers). For more detailed information, refer
to [12].

3.2 Representation of Prime Field Elements

The elements of Fp are usually represented by the integers in the range 0 to p−1
and the arithmetic operations remain as usual as in the integers except for the
computation of a reduction modulo p at the end of each operation, which has
the purpose of bringing the result within an original range. If p is a large integer
of several hundreds or even thousands of bits, in order to store an Fp element in
memory, an m-bit vector is needed, where m is the size of p in bits. However,

536 W. Wang et al.

the word size of prevailing processors is either n = 32 or n = 64 bits, which
in any case is shorter than the size of the large integer p. Therefore, multi-
precision arithmetic must be implemented to handle integers larger than the
word of processors [8]. At present, there are two popular designs for representing
elements in Fp, which are used in multi-precision arithmetic to divide an m-bit
large number.

The non-redundant (full-radix) representation divides an Fp element into sev-
eral parts with the word size of processors. In this way, an element can be stored
by s words of n bits, i.e. s = �m

n �. The advantage of this representation is that
its storage is compact, which usually means that fewer iterations are required to
complete a multi-precision operation. However, one of the disadvantages of using
this representation on an n-bit architecture is that some arithmetic operations
impose a sequential evaluation of integer operations, for example, in the mod-
ular addition, the carry bits must be propagated from the least- to the most-
significant digits. If non-redundant representation, there will be no extra space
to store these carry bits, which limits the opportunities for calculating additions
in parallel [7].

The second representation, redundant (reduced-radix) representation, divides
an Fp element into s′ shorter slices than the word size of processors, where
s′ = �m

n′ �, n′ ∈ R
+ and n′ < n. Because it relies on the selection of a real

number n′ < n, each word will have enough bits to store the carry bits produced
by several modular additions. This feature can delay the carry propagation to the
end and facilitate the implementation of parallelization. However, as mentioned
above, compared to the non-redundant representation, it needs more iterations
(s′ ≥ s) for completing a multi-precision operation, so more instructions are
consumed.

4 Modular Multiplication for ECC Using SIMD
Extensions

In this section, we firstly describe the design of the Cascade Operand Scan-
ning for Specific Modulus (SMCOS) method for the prime field multiplication in
ECC and its implementation details on the ARM NEON architecture. Then, we
analyze the expected performance of our design, and compare it with the Mul-
tiplicand Reduction (MR) method in [24] and the Coarsely Integrated Cascade
Operand Scanning (CICOS) method in [27]. Finally, we offer a general method
of pipelining on 32-bit ARM NEON platforms.

4.1 Cascade Operand Scanning for Specific Modulus on SIMD

“Trimmed” COS. The COS Multiplication was first proposed in [27]. As a
multiplication using non-redundant representation, it eliminates RAW depen-
dencies in the instruction flow and has preferable efficiency. When it is used in
SMCOS, we remove the carry propagation at the end of multiplication, which
produces more pipeline stalls due to sequential scalar operations in vector reg-
isters.

SMCOS: Fast and Parallel Modular Multiplication 537

Fig. 1. Carry propagation in non-redundant representation. The lower bits are added
to higher bits of lower intermediate results. The additions with same serial number are
executed in parallel.

Taking the 32-bit word with 256-bit multiplication as an example, “trimmed”
COS method is described in Algorithm1. In the beginning, the algorithm con-
ducts VTRN vector transpose instruction to re-organize and classify the operand B̄
as groups ((b7, b3), (b6, b2), (b5, b1), (b4, b0)) instead of the normal order ((b7, b6),
(b5, b4), (b3, b2), (b1, b0)). Next, in the first round, the products of (a0, a0) and
elements in ((b7, b3), (b6, b2), (b5, b1), (b4, b0)) are separately computed by VMLAL
vector multiplication instruction, which supports 2-way multiplication in paral-
lel. The partial product pairs are stored in ([L7, L3], [L6, L2], [L5, L1], [L4, L0]),
where each Li is a 64-bit D register. Following which, the VTRN instruction
is reused to separate the partial products into higher 32 bits (63−32) and
lower 32 bits (31−0), generating eight pairs of 32-bit data stored in 16 D
registers, L0−L7 and H0−H7. Finally, the lower bits are added to higher
bits of lower intermediate results. For example, the lower 32 bits stored in
([L7, L3], [L6, L2], [L5, L1], L4) are added to the corresponding higher 32 bits in
([H6,H2], [H5,H1], [H4,H0],H3). By referring to Fig. 1, this operation uses 3
vector addition VADD and 1 ADD instruction. After addition, the least significant
word c0 (lowest 32 bits of B̄ × a0) is obtained, and other more significant words
are stored in H0 to H7.

In the next round, we need to perform B̄ × a1, because a1 is higher than
a0, the products of (a1, a1) and ((b7, b3), (b6, b2), (b5, b1), (b4, b0)) happen to be
accumulated to intermediate results in ([H7,H3], [H6,H2], [H5,H1], [H4,H0]) of
the first round, and we can perform a new round of operations in the same way.
This process is repeated with operands (a1−a7) by seven times more, we get the
intermediate result C̄ of B̄ × Ā. Its lower 256 bits are eight 32-bit values c0 to
c7, which are the least significant words output at the end of each round. And
higher 256-bit intermediate results are in L0 to L7 after the last round, 64-bit C8

to C15. The higher 32 bits of them are carry bits to upper intermediate results.
After that, the original COS multiplication will carry out the final carry

propagation to align. Because it conducts sequential scalar operations directly
in vector registers, the RAW dependencies incur more pipeline stalls. But in
SMCOS, we keep the intermediate results of the multiplication to the next stage
and straightforwardly reduce the results without pipeline stalls.

538 W. Wang et al.

Algorithm 1. “Trimmed” COS. This arithmetic performs B̄ × Ā and obtains
the intermediate result C̄. Note that C̄ consists of two parts, ci with a range of
0 ∼ 232 − 1 and Ci with a range of 0 ∼ 2 × (232 − 1).
Input: Two multiplicand Ā and B̄ such that Ā =

∑7
i=0 ai2

32i, B̄ =
∑7

i=0 bi2
32i, 0 ≤

ai, bi < 232.
Output: Multiplication intermediate result C̄ =

∑7
i=0 ci2

32i +
∑15

j=8 Cj2
32j .

1: B̄ ← VTRN(B̄)
2: Initialize Li ← 0 for all i ∈ {0, 1, ..., 7}
3: for i = 0 to 7 do
4: for j = 0 to 3 do
5: [Lj+4, Lj] ← VMLAL([Lj+4, Lj], (ai, ai), (bj+4, bj))
6: end for
7: Initialize Hk ← 0 for all k ∈ {0, 1, ..., 7}
8: for j = 0 to 3 do
9: ([Lj+4, Lj], [Hj+4, Hj]) ← VTRN([Lj+4, Lj], [Hj+4, Hj])

10: end for
11: for j = 0 to 2 do
12: [Hj+4, Hj] ← VADD([Lj+5, Lj+1], [Hj+4, Hj])
13: end for
14: H3 ← ADD(L4, H3)
15: ci ← (L0)0..31
16: Let Lj ← Hj for all j ∈ {0, 1, ..., 7}
17: end for
18: Let Ci+8 ← Li for all i ∈ {0, 1, ..., 7}
19: return C̄

Fast Reduction for Specific Modulus. Unlike most solutions [3,17,26–28]
that use Montgomery reduction, we design a fast vector reduction method for
the characteristic that most prime fields for ECC have specific modulus, and gain
great performance advantages. We take NIST P192 and Secp256k1 as examples
to illustrate different use cases of fast vector reduction on different curves, and
offer our reduction method for modulo P = 2256 − 232 − 977 in Secp256k1, see
Algorithm 2.

In the reduction process, we will reduce the intermediate results of “trimmed”
COS multiplication. For NIST-standard prime-field curves, NIST primes are
special primes which are of the form 2m ±2n − ...−1. The smallest prime among
NIST primes is p192 = 2192 − 264 − 1, then any number larger than this prime
can be reduced by using the relation 2192 ≡ 264 + 1(modp192). So for curves
over NIST prime fields, we can use these relations to construct reduction for
intermediate results of multiplication larger than NIST primes. Take NIST P192
as an example, as shown in Fig. 2, the intermediate results of 192-bit “trimmed”
COS multiplication are separated into two groups. One group is the 32-bit c0 to
c5 corresponding to 20, 232, ..., 2160 respectively, and they are less than p192, so
no reduction is required. We respectively store them in two 64-bit D registers
on a Q register in pairs ((c5, c4), (c3, c2), (c1, c0)). The second group is the 64-
bit intermediate results C6 to C11 that are larger than p192. They are items

SMCOS: Fast and Parallel Modular Multiplication 539

Fig. 2. One round of fast vector reduction for NIST P192. 32-bit S registers where “O”
is located are cleared. The multiplication intermediate result to be processed is on the
left, and the processing flow is on the right.

corresponding to 2192, 2224, ..., 2352. Using the above reduction relation, C6 ×
2192 ≡ C6 × 264 + C6(modp192). So, C6 is reduced from 2192 to 264 and 20,
which correspond to the positions of c2 and c0 respectively.

In the same way, after reduction, the positions and times of C7 to C11 can also
be calculated, as shown in Fig. 2. We find that for the intermediate results of the
multiplication, the reduction can be further performed in an additive and parallel
manner. By referring to Algorithm1, the value range of C6 to C11 is 0−2×(232−
1). Accumulating them several times with c0−c5 will not result in an overflow of
the 64-bit D register. We use the form of ([C11, C10], [C9, C8], [C7, C6]) in pairs
(the locations marked in Fig. 2) and add them to the corresponding positions to
complete all the reductions. Only 7 VADD vector additions are consumed, and we
get six 64-bit reduction results, C0 to C5.

For the elliptic curves over non-NIST primes, take Secp256k1 as an exam-
ple. Although its modulo P = 2256 − 232 − 977 is more irregular than NIST
primes, the relation 2256 ≡ 232 +977(modP) still works. This relation results in
some reduction items that may carry a multiplication factor, 977. As shown in
Fig. 3, c0 to c7 are items less than modulo P , we store them in four Q registers
in pairs ((c7, c3), (c6, c2), (c5, c1), (c4, c0)). For C8 to C15, we can also execute
the reduction relation of modulo P to find out the positions of reduction items.
But unlike NIST primes, we must multiply some items with the constant 977 to
further transform their reduction to the method of NIST primes. Since 32-bit
ARM NEON platforms do not provide 64-bit multiplication and vector mul-
tiplication instructions, we skillfully adopt vector shift (e.g. VSHL, VSRA) and
vector subtraction VSUB to construct the multiplication, based on the relation

540 W. Wang et al.

Fig. 3. One round of fast vector reduction for Secp256k1. 32-bit S registers where “O”
is located are cleared. The multiplication intermediate result to be processed is on the
left, and the processing flow is on the right.

of 977 = (210 + 20) − (25 + 24). Fortunately, even if C8 to C15 are multiplied
by 977, they are far from beyond the range of the D register. Finally, after the
multiplication with 977, we successfully conduct the reduction for modulo P in
the similar manner with NIST primes, using 7 vector addition VADD and 3 ADD
instructions.

For a more detailed description, see Algorithm 2, where VSHL is a vector shift
left instruction, and VSRA is a vector shift right and accumulate instruction. In
addition, for the third curve used in the experiment, Numsp256d1, the modulo
P is 2256 − 189. The reduction method in Secp256k1 can be reused with a little
transformation.

Final Alignment on Main Processor. SIMD co-processor is very effective in
performing vector operations (e.g. parallel multiplication), but performs poorly
for scalar operations like carry propagation and may pose more pipeline stalls
[24]. Therefore, different from the previous vector modular multiplication designs
[2,27,28], which deal directly with the final carry propagation and alignment
in vector registers, we design SMCOS as SIMD co-processor and ARM main
processor working together. Multiplication and reduction are implemented using

SMCOS: Fast and Parallel Modular Multiplication 541

Algorithm 2. One round of fast vector reduction for Secp256k1. This arithmetic
performs C̄ ′ ≡ C̄(mod(2256 − 232 − 977)).
Input: Multiplication intermediate result C̄ such that C̄ =

∑7
i=0 ci2

32i +∑15
j=8 Cj2

32j , 0 ≤ ci < 232, 0 ≤ Cj ≤ 2 × (232 − 1).

Output: Reduction result C̄′ =
∑7

k=0 Ck2
32k.

1: Initialize Ci ← ci for all i ∈ {0, 1, ..., 7}
2: for i = 1 to 3 do
3: [Ci+4, Ci] ← VADD([Ci+4, Ci], [Ci+11, Ci+7])
4: end for
5: C4 ← ADD(C4, C11)
6: C1 ← ADD(C1, C15)
7: for i = 0 to 3 do
8: [C′

i+12, C
′
i+8] ← VSHL([Ci+12, Ci+8],#5)

9: [C′′
i+12, C

′′
i+8] ← VSHL([Ci+12, Ci+8],#10)

10: [C′
i+12, C

′
i+8] ← VSRA([C′

i+12, C
′
i+8],#1)

11: [C′′
i+12, C

′′
i+8] ← VSRA([C′′

i+12, C
′′
i+8],#10)

12: [Ci+12, Ci+8] ← VSUB([C′′
i+12, C

′′
i+8], [C

′
i+12, C

′
i+8])

13: [Ci+4, Ci] ← VADD([Ci+4, Ci], [Ci+12, Ci+8])
14: end for
15: C0 ← ADD(C0, C15)
16: return C̄′

NEON vector instructions, but the final alignment is migrated to scalar registers.
This change effectively breaks RAW dependencies in the instruction flow and
reduces pipeline stalls. When carry bits are propagated to the most significant
coefficient, no matter whether the digit (higher 32 bits of C7 in Fig. 3) larger
than modulo P is 0, we will use reduction relations to perform a simple reduction
and the second round of alignment, ensuring that SMCOS runs in constant time
for resisting timing-based side-channel attacks.

4.2 Performance Analysis

In this section, we analyze the performance of our Cascade Operand Scanning
for Specific Modulus (SMCOS) method, and compare it with the Multiplicand
Reduction (MR) method in [24] and the Coarsely Integrated Cascade Operand
Scanning (CICOS) method in [27].

For the clock cycle of instructions on the ARM NEON architecture, we denote
2-cycle instructions (e.g. VMULL, VMLAL, etc.) as X, and 1-cycle instructions (e.g.
VADD, ADD, VTRN, etc.) as Y . For the modular multiplication in NIST P192, in the
process of multiplication, the SMCOS and CICOS methods using non-redundant
representation need to be executed 6 rounds. In each round they mainly conduct
3 VMLAL (VMULL), 3 VTRN, 2 VADD, and 1 ADD instructions, the instructions con-
sumed in each round are equal to 3X+6Y . Therefore, for the SMCOS and CICOS
methods, their total instructions in the multiplication process are approximately
18X + 36Y . The MR with redundant representation is 8 rounds in total, and

542 W. Wang et al.

Table 1. Comparison of instructions for modular multiplication. X represents a 2-cycle
instruction and Y represents a 1-cycle instruction.

Elliptic curve Stage MR [24]a CICOS [27] Our SMCOS

NIST P192 Multiplication 32X 18X + 36Y 18X + 36Y

Reduction 35Y 18X + 36Y 7Y

Final Alignment 48Y 12Y 12Y

Total 32X + 83Y 36X + 84Y 18X + 55Y

Secp256k1 Multiplication – 32X + 64Y 32X + 64Y

Reduction – 32X + 64Y 30Y

Final Alignment – 16Y 16Y

Total – 64X + 144Y 32X + 110Y

Numsp256d1 Multiplication – 32X + 64Y 32X + 64Y

Reduction – 32X + 64Y 24Y

Final Alignment – 16Y 16Y

Total – 64X + 144Y 32X + 104Y
a The MR method is not applicable to Secp256k1 and Numsp256d1.

each round only conducts VMULL (VMLAL) four times, which is equal to 4X, and
its total execution instructions are about 32X.

In the reduction stage, the SMCOS method only requires one round, seven
VADD instructions, so the total number of instructions used is 7Y . Each round
of MR mainly requires 2 VEXT, 1 BIC, and 2 ADD instructions, 7 rounds in total,
and the instructions can be represented as 35Y . As for CICOS, its reduction
and multiplication are all completed by a COS multiplication, so the instruc-
tions used for reduction are also about 18X + 36Y . In the final alignment, the
instructions consumed by the SMCOS and CICOS methods with non-redundant
representation are mainly additions, and each alignment needs carry only six
times, and the total instructions are about 12Y . Compared with them, the MR
using redundant representation also requires a shift and a bic instruction to
complete carry, and each alignment executes 8 times, so the total instructions
are roughly 48Y .

Based on the same standard, we count the instructions of the SMCOS
and CICOS methods at each stage, when they are applied to Secp256k1 and
Numsp256d1. As shown in Table 1, both 2-cycle instruction (X) and 1-cycle
instruction (Y) used by SMCOS are significantly reduced compared to MR and
CICOS methods. According to Table 1, it can be further estimated that clock
cycles of the instructions conducted by the SMCOS method are reduced by about
38% compared with MR, and about 36%−42% compared with CICOS. In par-
ticular, for the vector modular multiplication designs implemented by NEON,
the main 2-cycle instructions used are VMULL and VMLAL vector multiplication
instructions. For the two instructions with larger execution cycles, the SMCOS
method greatly reduces the frequency of their use, which is mainly reflected in
the following two aspects. 1) In the multiplication stage, we use a non-redundant

SMCOS: Fast and Parallel Modular Multiplication 543

representation, which reduces the number of partial products compared to the
MR method with redundant representation. Taking NIST P192 as an example,
MR uses a radix-224 representation (i.e. 24 bits per word) for 192-bit operands,
the total number of partial products is 8×8 = 64, which requires 32 vector mul-
tiplication instructions. On the other hand, SMCOS uses non-redundant repre-
sentation based on a radix of 232, and reduces the number of partial products
to 6 × 6 = 36, only 18 vector multiplication instructions. Besides, there are also
fewer other instructions for reduction and carry propagation, because the size in
bits of operands separated in a non-redundant way is the same as the word size
of ARM processors. 2) In the reduction stage, our choice is not the Montgomery
reduction adopted by CICOS, because it consumes the same instructions as the
multiplication stage. A fast vector reduction design is used by SMCOS, so that
SMCOS does not need to use any multiplication and only requires some instruc-
tions (e.g. addition, shift, and subtraction) with smaller clock cycles to complete
the reduction.

4.3 Making SMCOS Fully Pipelined

Data dependencies in the instruction flow may cause pipeline stalls during the
execution of vector instructions. If an instruction about to be executed has to
wait for the operands written by the previous instruction for several cycles,
in the meantime no other instructions enter the pipeline, the cycles of SIMD
co-processors will be wasted and the performance will be compromised [31].
This kind of data dependencies between instructions are called Read-After-Write
(RAW) dependencies, and the purpose of pipelining is to reduce or avoid RAW
dependencies. Due to a large number of pipeline stalls, the 2-way Montgomery
modular multiplication in [3] even obtains lower performance than scalar meth-
ods, when they are all implemented on ARM. Therefore, in order to maximize
the performance of SMCOS, we need to perform sophisticated pipelining. And
we investigate the clock cycles and delay of the instructions used by SMCOS.
The advanced SIMD integer instruction timing on ARM Cortex-A9 platforms is
provided in [6], as shown in Table 2.

We conduct sophisticated pipelining in each stage of the SMCOS implemen-
tation. During the execution of SMCOS, every vector instruction will be per-
formed in terms of the sequence in the assembly code, so we manually adjust
the instruction sequence to avoid pipeline stalls. Take the construction of vec-
tor multiplication with 977 in Algorithm2 as an example, the original assembly
code is ASM Code 1 in Fig. 4. According to the timing of vector instructions in
Table 2, the manually adjusted assembly code is ASM Code 2 in Fig. 4.

As described in Algorithm 2, ASM Code 1 uses 2 VSHL, 2 VSRA, and 1 VSUB
instructions to construct a vector multiplication with constant 977 on four pairs
of 64-bit data stored in Q8 to Q11. The processing code of Q8 is in lines 1
to 5 of ASM Code 1, and the codes of Q9 to Q11 can be deduced by anal-
ogy. There are a lot of RAW dependencies in the original assembly code. Even
though the execution cycle of the 20 instructions in ASM Code 1 is only 20 clock
cycles in total, in fact, according to Table 2, due to pipeline stalls caused by the

544 W. Wang et al.

Table 2. Advanced SIMD integer instruction timing on ARM Cortex-A9 [6]

Instruction Description Issue cyclesa Available resultb

VADD Vector Addition 1 3

VDUP Vector Duplication 1 2

VMOV Vector Move 1 3

VSWP Vector Swap 1 2

VSUB Vector Subtraction 1 3

VEXT Vector Extraction and Concatenate 1 2

VTRN Vector Traspose 1 2

VSHL Vector Shift Left 1 3

VSRA Vector Shift Right with Addition 1 4

VMULL Vector Multiplication 2 7

VMLAL Vector Multiplication with Addition 2 7
a This is the number of issue cycles the particular instruction consumes.
b The Result field indicates the execution cycle when the result is ready.

instruction dependencies, it takes 50 cycles to complete execution and get all the
results. This is absurd but true. In order to reduce pipeline stalls, we insert sev-
eral independent instructions into any two data-dependent instructions to break
these dependencies, so that the pipeline can be filled with new instructions again
and fully utilized while an instruction is waiting for the result of the previous
instruction. By referring to Table 2, we perform pipelining to ASM Code 1, the
adjusted ASM Code 2 only takes 22 clock cycles to get all results, which is 44%
of ASM Code 1.

5 Results

In this section, we conduct the experiments to evaluate our SMCOS method and
ECC implementations on the 32-bit ARM Cortex-A9 processor and compare
our results with related work and several ECC algorithm libraries, in terms of
modular multiplication, point addition, point doubling, ECDH, and ECDSA.

5.1 Target Platforms

The ARM Cortex-A series are full implementations of the ARMv7, v8 architec-
ture including NEON engine. The Cortex-A processors provide a series of appli-
cation scenarios for devices using operating systems such as Linux or Android.
These devices are used in various applications, from low-cost handheld devices to
smartphones, tablets, set-top boxes, and corporate network devices. Among the
Cortex-A series processors, we choose the Cortex-A9 on 32-bit ARMv7 architec-
ture as the experimental platform, which is consistent with the previous imple-
mentations [1,3,16,17,27,28]. The Cortex-A9 processor is widely used in several

SMCOS: Fast and Parallel Modular Multiplication 545

1 vshl.u64 q12 , q8, #5
2 vsra.u64 q12 , q12 , #1
3 vshl.u64 q8, q8, #10
4 vsra.u64 q8, q8, #10
5 vsub.u64 q8, q8, q12

6 vshl.u64 q13 , q9, #5
7 vsra.u64 q13 , q13 , #1
8 vshl.u64 q9, q9, #10
9 vsra.u64 q9, q9, #10

10 vsub.u64 q9, q9, q13

11 vshl.u64 q14 , q10 , #5
12 vsra.u64 q14 , q14 , #1
13 vshl.u64 q10 , q10 , #10
14 vsra.u64 q10 , q10 , #10
15 vsub.u64 q10 , q10 , q14

16 vshl.u64 q15 , q11 , #5
17 vsra.u64 q15 , q15 , #1
18 vshl.u64 q11 , q11 , #10
19 vsra.u64 q11 , q11 , #10
20 vsub.u64 q11 , q11 , q15

(a) ASM Code 1 (Original)

1 vshl.u64 q12 , q8, #5
2 vshl.u64 q8, q8, #10
3 vshl.u64 q13 , q9, #5
4 vshl.u64 q9, q9, #10
5 vshl.u64 q14 , q10 , #5
6 vshl.u64 q10 , q10 , #10
7 vshl.u64 q15 , q11 , #5
8 vshl.u64 q11 , q11 , #10
9 vsra.u64 q12 , q12 , #1

10 vsra.u64 q8, q8, #10
11 vsra.u64 q13 , q13 , #1
12 vsra.u64 q9, q9, #10
13 vsra.u64 q14 , q14 , #1
14 vsra.u64 q10 , q10 , #10
15 vsra.u64 q15 , q15 , #1
16 vsra.u64 q11 , q11 , #10
17 vsub.u64 q8, q8, q12

18 vsub.u64 q9, q9, q13

19 vsub.u64 q10 , q10 , q14

20 vsub.u64 q11 , q11 , q15

(b) ASM Code 2 (Adjusted)

Fig. 4. Two pieces of code for constructing vector multiplication with 977.

devices including iPad 2, iPhone4S, Galaxy S2, Galaxy S3, Galaxy Note 2, Kin-
dle Fire, and NVIDIA Tegra T30. At the same time, the NEON instructions on
its ARMv7 architecture are compatible with ARMv8.

5.2 Performance Comparison of Prime Field Multiplication

We perform the experiments on the Exynos 4412 development board equipped
with the Cortex-A9 processor (1.4GHz), and clock cycles are measured by read-
ing counter registers from Performance Monitoring Unit (PMU) inside CP15
co-processor of ARM. We select three elliptic curves over prime fields with dif-
ferent categories and security levels, NIST P192, Secp256k1, and Numsp256d1,
to deploy the experiments. We implement the SMCOS, MR [24] and CICOS
[27] vector modular multiplication methods in ARM assembly language, and
integrate them into several ECC algorithm libraries for comparison. In order
to control the variables, specifically, for NIST P192 curve, we choose OpenSSL
1.1.1k [21] to perform the replacements and evaluations of the above three vec-
tor methods on corresponding prime field. For Secp256k1 curve, libsecp256k1
[23], the fastest official algorithm library used for Bitcoin protocol implementa-
tions, is selected for method replacements. It is worth mentioning that its mod-
ular multiplication implementation is optimized by manual assembly before. As
for Numsp256d1 curve, we choose the ECC algorithm library MSR ECCLib 2.0
[18] provided by Microsoft Research.

546 W. Wang et al.

For our SMCOS method, MR method, CICOS method, and several ECC
libraries, Table 3 summarizes the number of clock cycles required to perform one
modular multiplication operation on the three curves. This result impressively
demonstrates the efficiency of SMCOS for modular multiplication in ECC, and
indirectly supports the performance analysis of Sect. 4.2, that is, SMCOS uses
fewer instructions in the multiplication and reduction stages, and has higher
performance.

Table 3. Comparison of clock cycles for modular multiplicationa

Elliptic curve Field Implementation Mod-Mul

NIST P192 F2192−264−1 Our SMCOS 205

MR [24] 301

CICOS [27] 387

OpenSSL [21] 1,079

Secp256k1 F2256−232−977 Our SMCOS 310

CICOS [27] 574

libsecp256k1 [23] 434

OpenSSL [21] 2,051

Numsp256d1 F2256−189 Our SMCOS 306

CICOS [27] 574

MSR ECClib [18] 1,050
a Entries are clock cycles measured on a ARM Cortex-A9 pro-
cessor.

The detailed results are as follows. For NIST P192 curve, our SMCOS method
only needs 205 clock cycles to complete a modular multiplication operation,
which is about 32% faster than MR, about 47% faster than CICOS, and more
than five times as fast as the special NIST modular multiplication in OpenSSL.
For Secp256k1 curve, the clock cycles of SMCOS is only 310, which is almost
equal to the time to conduct a 256-bit multiplication in [27]. This result is roughly
46% faster than CICOS, 29% faster than the hand-optimized modular multipli-
cation of libsecp256k1, and 85% faster than the Montgomery method used by
OpenSSL. For Numsp256d1 curve, SMCOS also has an overwhelming advantage,
about 47% faster than CICOS and about 71% faster than MSR ECClib. More-
over, for these ECC algorithm libraries, except for the modular multiplication
of libsecp256k1, other libraries are implemented in C language on ARM plat-
forms. This is why the performance of these libraries is much lower than that of
several vector methods such as SMCOS.

5.3 Performance Comparison of Elliptic Curve Arithmetic

Point addition and point doubling based on underlying prime field arithmetic
are the core operations of various ECC protocols. Table 4 shows the clock cycles
of point addition and point doubling for each implementation. Profit from the

SMCOS: Fast and Parallel Modular Multiplication 547

better optimization of the prime field multiplication, the point addition and
point doubling using the SMCOS method also gain better experimental results
than other methods. In OpenSSL’s NIST P192, our SMCOS method requires
6340 and 5755 clock cycles to perform point addition and point doubling, which
are roughly 18% and 23% faster than MR, roughly 27% and 32% faster than
CICOS. As for Secp256k1, SMCOS makes point addition and point doubling
reach record-setting execution times on Cortex-A9 processors, they only con-
sume 5853 and 2736 clock cycles, which are about 18% and 11% faster than
libsecp256k1, also about 35% and 40% faster than CICOS. For Numsp256d1
curve, the point addition and point doubling on SMCOS require 7657 and 3297
clock cycles, which are about 36% faster than CICOS, and about three times as
fast as MSR ECClib.

By referring to Table 4, compared to libsecp256k1 and MSR ECClib for 256-
bit ECC, the performance of 192-bit NIST P192 in native OpenSSL is lower. So
even if we use several vector methods to replace its prime field multiplication,
point addition and point doubling do not gain good benchmark results. This is
also the reason why we choose efficient dedicated libraries for Secp256k1 and
Numsp256d1 curves. But even so, deploying our SMCOS method to OpenSSL still
has a greater performance enhancement than other designs.

Table 4. Comparison of clock cycles for point addition and point doublinga

Elliptic curve Implementation Point addition Point doubling

NIST P192 Our SMCOS 6,340 5,755

MR [24] 7,692 7,409

CICOS [27] 8,727 8,419

OpenSSL [21] 17,003 14,860

Secp256k1 Our SMCOS 5,853 2,736

CICOS [27] 9,017 4,563

libsecp256k1 [23] 7,132 3,064

OpenSSL [21] 25,840 24,751

Numsp256d1 Our SMCOS 7,657 3,297

CICOS [27] 11,893 5,164

MSR ECClib [18] 19,424 9,220
a Entries are clock cycles measured on a ARM Cortex-A9 processor.

5.4 Performance Results of ECDH and ECDSA

The ultimate goal of our SMCOS method is to reduce the computational com-
plexity of ECC protocols such as ECDSA and ECDH, and improve their perfor-
mance, so that they can be used more extensively on general-purpose computing
devices, especially on embedded devices. As far as the performance of ECDSA
and ECDH, to evaluate the impact of our implementation techniques, we com-
pare SMCOS with two fast vector modular multiplication methods, MR and
CICOS, and several ECC libraries.

548 W. Wang et al.

Table 5. Comparison of clock cycles for ECDH and ECDSAa

Elliptic curve Implementation ECDH key exchange ECDSA signature

NIST P192 Our SMCOS 2,282 2,852

MR [24] 2,855 3,423

CICOS [27] 3,117 3,672

OpenSSL [21] 6,206 6,781

Secp256k1 Our SMCOS 950 1,291

CICOS [27] 1,429 1,737

libsecp256k1 [23] 1,103 1,438

OpenSSL [21] 12,285 13,063

Numsp256d1 Our SMCOS 1,401 1,996

CICOS [27] 2,085 2,418

MSR ECClib [18] 3,816 2,653
a Entries are 103 clock cycles measured on a ARM Cortex-A9 processor.

Table 5 shows the benchmark results of ECDH key exchange and ECDSA sig-
nature based on several implementations. For ECDH key exchange, the SMCOS
method is roughly 27%−34% faster than CICOS (all 3 curves), 20% faster
than MR (NIST P192), 63% faster than OpenSSL (NIST P192), 14% faster than
libsecp256k1 (Secp256k1), and 63% faster than MSR ECClib (Numsp256d1).
Moreover, ECDSA signature using SMCOS is about 17%−26% faster than
CICOS, 17% faster than MR, 58% faster than OpenSSL, 10% faster than
libsecp256k1, and 25% faster than MSR ECClib. In summary, ECDSA signa-
ture and ECDH key exchange based on SMCOS obtain better performance on
ARM Cortex-A9 platforms than other methods. There are two main reasons
responsible for the results: 1) performing an ECDSA signature or ECDH key
exchange often requires thousands or even tens of thousands of modular multi-
plication operations; 2) the SMCOS multi-precision modular multiplication has
better performance than other methods for these ECC implementations.

6 Conclusions

In this paper, we introduce an optimization technique to improve the perfor-
mance of multi-precision modular multiplication on ARM NEON platforms.
More specifically, we propose a design and implementation of prime field multi-
plication for specific modulus, called SMCOS, to make full use of the computing
power of SIMD co-processors for ECC. On the ARM Cortex-A9 platform, our
SMCOS method performs modular multiplication of NIST P192, Secp256k1, and
Numsp256d1 within only 205, 310 and 306 clock cycles, which are roughly 32%
faster than MR method of Pabbuleti et al. and about 47% faster than CICOS
method of Seo et al.

The SMCOS modular multiplication can be applied to other ECC algorithms
as primitives. At the same time, one of the most obvious future work is to apply
the proposed modular multiplication routines to Intel-AVX processors.

SMCOS: Fast and Parallel Modular Multiplication 549

References

1. Azarderakhsh, R., Liu, Z., Seo, H., Kim, H.: NEON PQCRYTO: fast and parallel
ring-LWE encryption on ARM NEON architecture. IACR Cryptol. ePrint Arch.
2015, 1081 (2015)

2. Bernstein, D.J., Schwabe, P.: NEON crypto. In: Prouff, E., Schaumont, P. (eds.)
CHES 2012. LNCS, vol. 7428, pp. 320–339. Springer, Heidelberg (2012). https://
doi.org/10.1007/978-3-642-33027-8 19

3. Bos, J.W., Montgomery, P.L., Shumow, D., Zaverucha, G.M.: Montgomery mul-
tiplication using vector instructions. In: Lange, T., Lauter, K., Lisoněk, P. (eds.)
SAC 2013. LNCS, vol. 8282, pp. 471–489. Springer, Heidelberg (2014). https://
doi.org/10.1007/978-3-662-43414-7 24

4. Câmara, D., Gouvêa, C.P.L., López, J., Dahab, R.: Fast software polynomial mul-
tiplication on arm processors using the NEON engine. In: Cuzzocrea, A., Kittl,
C., Simos, D.E., Weippl, E., Xu, L. (eds.) CD-ARES 2013. LNCS, vol. 8128, pp.
137–154. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40588-
4 10

5. Cheng, H., Großschädl, J., Tian, J., Rønne, P.B., Ryan, P.Y.A.: High-throughput
elliptic curve cryptography using AVX2 vector instructions. In: Dunkelman, O.,
Jacobson, Jr., M.J., O’Flynn, C. (eds.) SAC 2020. LNCS, vol. 12804, pp. 698–719.
Springer, Cham (2021). https://doi.org/10.1007/978-3-030-81652-0 27

6. ARM Cortex: A9 NEON media processing engine technical reference manual revi-
sion: r4p1 (2012)

7. Faz-Hernández, A., López, J.: Fast implementation of Curve25519 using AVX2. In:
Lauter, K., Rodŕıguez-Henŕıquez, F. (eds.) LATINCRYPT 2015. LNCS, vol. 9230,
pp. 329–345. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-22174-
8 18

8. Faz-Hernández, A., Lopez, J., Dahab, R.: High-performance implementation of
elliptic curve cryptography using vector instructions. ACM Trans. Math. Softw.
(TOMS) 45(3), 1–35 (2019)

9. Grewal, G., Azarderakhsh, R., Longa, P., Hu, S., Jao, D.: Efficient implementation
of bilinear pairings on arm processors. In: Knudsen, L.R., Wu, H. (eds.) SAC 2012.
LNCS, vol. 7707, pp. 149–165. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-35999-6 11

10. Gueron, S., Krasnov, V.: Software implementation of modular exponentiation,
using advanced vector instructions architectures. In: Özbudak, F., Rodŕıguez-
Henŕıquez, F. (eds.) WAIFI 2012. LNCS, vol. 7369, pp. 119–135. Springer, Hei-
delberg (2012). https://doi.org/10.1007/978-3-642-31662-3 9

11. Hisil, H., Egrice, B., Yassi, M.: Fast 4 way vectorized ladder for the complete set
of montgomery curves. IACR Cryptol. ePrint Arch. 2020, 388 (2020)

12. Holdings, A.: Arm architecture reference manual, ARMV7-A AND ARMV7-R edi-
tion. Arm Holdings (2014)

13. Huang, J., Liu, Z., Hu, Z., Großschädl, J.: Parallel implementation of SM2 elliptic
curve cryptography on Intel processors with AVX2. In: Liu, J.K., Cui, H. (eds.)
ACISP 2020. LNCS, vol. 12248, pp. 204–224. Springer, Cham (2020). https://doi.
org/10.1007/978-3-030-55304-3 11

14. Intel Corporation: Using streaming SIMD extensions (SSE2) to perform big mul-
tiplications, application note AP-941, July 2000. http://software.intel.com/sites/
default/files/14/4f/24960

https://doi.org/10.1007/978-3-642-33027-8_19
https://doi.org/10.1007/978-3-642-33027-8_19
https://doi.org/10.1007/978-3-662-43414-7_24
https://doi.org/10.1007/978-3-662-43414-7_24
https://doi.org/10.1007/978-3-642-40588-4_10
https://doi.org/10.1007/978-3-642-40588-4_10
https://doi.org/10.1007/978-3-030-81652-0_27
https://doi.org/10.1007/978-3-319-22174-8_18
https://doi.org/10.1007/978-3-319-22174-8_18
https://doi.org/10.1007/978-3-642-35999-6_11
https://doi.org/10.1007/978-3-642-35999-6_11
https://doi.org/10.1007/978-3-642-31662-3_9
https://doi.org/10.1007/978-3-030-55304-3_11
https://doi.org/10.1007/978-3-030-55304-3_11
http://software.intel.com/sites/default/files/14/4f/24960
http://software.intel.com/sites/default/files/14/4f/24960

550 W. Wang et al.

15. Kocher, P.C.: Timing attacks on implementations of Diffie-Hellman, RSA, DSS,
and other systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp.
104–113. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-68697-5 9

16. Longa, P.: FourQNEON: faster elliptic curve scalar multiplications on ARM pro-
cessors. In: Avanzi, R., Heys, H. (eds.) SAC 2016. LNCS, vol. 10532, pp. 501–519.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-69453-5 27

17. Márquez, R.C., Sarmiento, A.J.C., Sánchez-Solano, S.: Speeding up elliptic
curve arithmetic on arm processors using neon instructions. Revista Ingenieŕıa
Electrónica, Automática y Comunicaciones 41(3), 1–20 (2020). ISSN: 1815-5928

18. Microsoft Research: MSR Elliptic Curve Cryptography library (MSR ECClib)
(2014). http://research.microsoft.com/en-us/projects/nums

19. Montgomery, P.L.: Modular multiplication without trial division. Math. Comput.
44(170), 519–521 (1985)

20. Oder, T., Pöppelmann, T., Güneysu, T.: Beyond ecdsa and rsa: Lattice-based
digital signatures on constrained devices. In: 2014 51st ACM/EDAC/IEEE Design
Automation Conference (DAC). pp. 1–6. IEEE (2014)

21. OpenSSL: The open source toolkit for SSL. Download at https://www.openssl.org
22. Orisaka, G., Aranha, D.F., López, J.: Finite field arithmetic using AVX-512 for

isogeny-based cryptography. In: Anais do XVIII Simpósio Brasileiro em Segurança
da Informação e de Sistemas Computacionais, pp. 49–56. SBC (2018)

23. Wuille, P., et al.: libsecp256k1: Optimized C library for EC operations on curve
Secp256k1 (2015)

24. Pabbuleti, K.C., Mane, D.H., Desai, A., Albert, C., Schaumont, P.: SIMD acceler-
ation of modular arithmetic on contemporary embedded platforms. In: 2013 IEEE
High Performance Extreme Computing Conference (HPEC), pp. 1–6. IEEE (2013)

25. Page, D., Smart, N.P.: Parallel cryptographic arithmetic using a redundant mont-
gomery representation. IEEE Trans. Comput. 53(11), 1474–1482 (2004)

26. Sánchez, A.H., Rodŕıguez-Henŕıquez, F.: NEON implementation of an attribute-
based encryption scheme. In: Jacobson, M., Locasto, M., Mohassel, P., Safavi-
Naini, R. (eds.) ACNS 2013. LNCS, vol. 7954, pp. 322–338. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-38980-1 20

27. Seo, H., Liu, Z., Großschädl, J., Choi, J., Kim, H.: Montgomery modular multi-
plication on ARM-NEON revisited. In: Lee, J., Kim, J. (eds.) ICISC 2014. LNCS,
vol. 8949, pp. 328–342. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
15943-0 20

28. Seo, H., Liu, Z., Großschädl, J., Kim, H.: Efficient arithmetic on ARM-NEON and
its application for high-speed RSA implementation. Secur. Commun. Netw. 9(18),
5401–5411 (2016)

29. Walter, C.D., Thompson, S.: Distinguishing exponent digits by observing modular
subtractions. In: Naccache, D. (ed.) CT-RSA 2001. LNCS, vol. 2020, pp. 192–207.
Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45353-9 15

30. Wang, J., Vadnala, P.K., Großschädl, J., Xu, Q.: Higher-order masking in practice:
a vector implementation of masked AES for ARM NEON. In: Nyberg, K. (ed.) CT-
RSA 2015. LNCS, vol. 9048, pp. 181–198. Springer, Cham (2015). https://doi.org/
10.1007/978-3-319-16715-2 10

31. Zhao, Y., Pan, W., Lin, J., Liu, P., Xue, C., Zheng, F.: PhiRSA: exploiting the
computing power of vector instructions on Intel Xeon Phi for RSA. In: Avanzi, R.,
Heys, H. (eds.) SAC 2016. LNCS, vol. 10532, pp. 482–500. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-69453-5 26

https://doi.org/10.1007/3-540-68697-5_9
https://doi.org/10.1007/978-3-319-69453-5_27
http://research.microsoft.com/en-us/projects/nums
https://www.openssl.org
https://doi.org/10.1007/978-3-642-38980-1_20
https://doi.org/10.1007/978-3-319-15943-0_20
https://doi.org/10.1007/978-3-319-15943-0_20
https://doi.org/10.1007/3-540-45353-9_15
https://doi.org/10.1007/978-3-319-16715-2_10
https://doi.org/10.1007/978-3-319-16715-2_10
https://doi.org/10.1007/978-3-319-69453-5_26

Correction to: Differential-Linear
Cryptanalysis of the Lightweight
Cryptographic Algorithm KNOT

Shichang Wang, Shiqi Hou, Meicheng Liu, and Dongdai Lin

Correction to:
Chapter “Differential-Linear Cryptanalysis
of the Lightweight Cryptographic Algorithm KNOT”
in: Y. Yu and M. Yung (Eds.): Information Security
and Cryptology, LNCS 13007,
https://doi.org/10.1007/978-3-030-88323-2_9

In an older version of this paper, there was an orthographical error in the title. This has
been corrected.

The updated version of this chapter can be found at
https://doi.org/10.1007/978-3-030-88323-2_9

© Springer Nature Switzerland AG 2022
Y. Yu and M. Yung (Eds.): Inscrypt 2021, LNCS 13007, p. C1, 2022.
https://doi.org/10.1007/978-3-030-88323-2_29

https://doi.org/10.1007/978-3-030-88323-2_9
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-88323-2_29&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-88323-2_29&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-88323-2_29&domain=pdf
https://doi.org/10.1007/978-3-030-88323-2_9
https://doi.org/10.1007/978-3-030-88323-2_29

Author Index

AlTawy, Riham 61

Chen, Jinhai 399
Chen, Siwei 212
Cui, Hongrui 269

El Aimani, Laila 151

Fan, Shuqin 251
Fu, Yu 531

Gao, Wang 129
Gong, Zheng 399
Gu, Dawu 421
Gulliver, T. Aaron 61

Hao, Yonglin 191
Hong, Chunlei 212
Hou, Shiqi 171
Hu, Yupu 442
Huguenin-Dumittan, Loïs 111

Ikematsu, Yasuhiko 235

Jia, Chunfu 466
Jia, Huiwen 442
Jiang, Yupeng 371

Kong, Wenhui 301

Leontiadis, Iraklis 111
Li, Geng 85
Li, Juanru 129
Li, Luyang 351
Li, Ruiqi 466
Li, Shuaigang 251
Li, Wenyuan 487
Li, Xiao 316
Lin, Da 212
Lin, Dongdai 171, 301, 371
Lin, Jingqiang 487, 531
Liu, Jianwei 85
Liu, Meicheng 171
Liu, Ximeng 442

Liu, Yi 281
Liu, Zhen 421
Lu, Xianhui 251
Lyu, Yunlong 129

Ma, Siqi 129
Medley, Liam 507
Meng, Lingjia 531

Nakamura, Shuhei 235
Nassurdine, Mohamed 42

Pan, Zhizhong 316
Pasalic, Enes 351

Qi, Wen-Feng 371
Qi, Wenfeng 384
Quaglia, Elizabeth A. 507

Santoso, Bagus 235
Song, Jie 23
Sun, Qibin 129
Sun, Tao 399

Tan, Lin 384
Tang, Yufeng 399
Teşeleanu, George 3

Wan, Ming 421
Wang, Geng 421
Wang, Mingxing 191
Wang, Qi 281
Wang, Qiongxiao 487, 531
Wang, Shichang 171
Wang, Wei 487, 531
Wang, Wenjie 487, 531
Wei, Yongzhuang 351
Wen, Yunhua 23
Wu, Wenling 351

Xiang, Zejun 212
Xu, Hong 384
Xu, Maozhi 331

552 Author Index

Yan, Xueping 384
Yasuda, Takanori 235
Yehia, Mahmoud 61
Yiu, Siu-Ming 281

Zhang, Fan 399
Zhang, Fangguo 42
Zhang, Hailong 351
Zhang, Huang 42

Zhang, Kaiyi 269
Zhang, Shasha 212
Zhang, Yangpan 331
Zhang, Yanhua 442
Zhang, Yanting 85
Zhang, Zongyang 85
Zheng, Qun-Xiong 371
Zhong, Jianghua 301
Zhou, Yu 351

	 Preface
	 Organization
	 Contents
	Signatures
	Concurrent Signatures from a Variety of Keys
	1 Introduction
	2 Preliminaries
	2.1 Groups
	2.2 1-out-of-n Signatures
	2.3 Concurrent Signatures

	3 1-out-of-n Signatures with Key Separation
	3.1 Description
	3.2 Security Analysis
	3.3 Concrete Examples

	4 Concurrent Signatures with Key Separation
	4.1 Description
	4.2 Security Analysis

	5 Conclusion
	A 1-out-of-n Signatures Without Key Separation
	A.1 Description
	A.2 Security Analysis

	B Same Group 1-out-of-n Concurent Signature
	B.1 Description
	B.2 Security Analysis

	References

	A Generic Construction of Fuzzy Signature
	1 Introduction
	1.1 Our Contributions
	1.2 Our Approach

	2 Preliminaries
	2.1 Bilinear Groups
	2.2 Signature Scheme
	2.3 Fuzzy Extractor

	3 Fuzzy Signature
	4 Construction of Fuzzy Signature
	4.1 Correctness
	4.2 Security

	5 Instantiation
	5.1 First Instantiation
	5.2 Second Instantiation

	References

	Identity Based Linkable Ring Signature with Logarithmic Size
	1 Introduction
	2 Preliminaries
	2.1 Notations
	2.2 Bilinear Map
	2.3 Pedersen Commitment
	2.4 ID-Based Linkable Ring Signature

	3 ID-based Linkable Ring Signature Scheme
	3.1 Construction
	3.2 Security Proofs

	4 Conclusions and Future Works
	A Proof of Theorem 1
	B The Underlying Sigma-Protocol
	References

	Security Analysis of DGM and GM Group Signature Schemes Instantiated with XMSS-T
	1 Introduction
	2 Preliminaries
	3 Specification of Related Schemes
	3.1 Extended Merkle Signature Scheme-Tightened (XMSS-T)
	3.2 Group Merkle (GM)
	3.3 Dynamic Group Merkle (DGM)

	4 Instantiating GM and DGM with XMSS-T
	5 DGM with XMSS-T Security Analysis
	5.1 Multi-target Attacks and XMSS-T
	5.2 Multi-target Attacks on DGM
	5.3 DGM Bit Security

	6 DGM+ with Optimal Parameters
	6.1 Message Hashing with DM-SPR
	6.2 DGM and DGM+ Comparison

	7 Conclusion
	A XMSS-T Addressing Scheme
	References

	System Security
	UC-Secure Cryptographic Reverse Firewall–Guarding Corrupted Systems with the Minimum Trusted Module
	1 Introduction
	1.1 Our Contribution
	1.2 Related Work

	2 Preliminary
	2.1 Notations
	2.2 Proud-but-Malicious Adversary
	2.3 The Current Definition of a CRF

	3 Security Model
	3.1 Protocol Framework
	3.2 Protocol Equipped with a CRF
	3.3 Define a CRF by UC-emulation

	4 Universal Composition of Protocols Deployed with a CRF
	5 From the New Definition to the Current Definition
	6 Construction of a Deterministic CRF
	A The Current Definition of a CRF
	B CRF Construction in Work ch5DMS:2016:MTR
	B.1 Two-round Message-Transmission Protocol
	B.2 Rerandomizable Encryption and Key Malleability Encryption
	B.3 CRF Construction for Two-round Message-Transmission Protocols

	References

	A Message Franking Channel
	1 Introduction
	2 Notation
	3 Commiting AEAD
	4 Cryptographic Channel for Message Franking (MFC)
	4.1 Correctness of the Channel

	5 Security for Message Franking Channel
	5.1 Confidentiality
	5.2 Integrity
	5.3 Binding Security Notions

	6 MFC Instantiation
	6.1 Construction
	6.2 Security Analysis

	7 Conclusion
	References

	SparrowHawk: Memory Safety Flaw Detection via Data-Driven Source Code Annotation
	1 Introduction
	2 Motivation
	2.1 Challenges
	2.2 Insights

	3 SparrowHawk
	3.1 Overview
	3.2 Programming Language Aware Word Segmentation
	3.3 Targeted Function Annotation
	3.4 Flaw Detection
	3.5 Implementation

	4 Real-World Evaluation
	4.1 RQ 1: Function Prototype Segmentation
	4.2 RQ 2: Function Annotation
	4.3 RQ 3: Flaw Detection

	5 Related Work
	5.1 Deep Learning Based Flaw Detection
	5.2 Program Analysis Based Flaw Detection

	6 Conclusion
	References

	Symmetric Cryptanalysis
	A New Approach for Finding Low-Weight Polynomial Multiples
	1 Introduction
	1.1 Related Work
	1.2 Our Approach

	2 Theoretical Background
	2.1 Notations and Conventions
	2.2 Random Functions

	3 First Algorithm
	3.1 Building Blocks
	3.2 The Algorithm
	3.3 Experimental Results

	4 Second Algorithm
	4.1 Computation of
	4.2 The Algorithm
	4.3 Experimental Results

	5 Comparison with the State-of-the-art
	6 Time-Memory Trade-Off Variants
	References
	Differential-Linear Cryptanalysis of the Lightweight Cryptographic Algorithm KNOT-6pt
	1 Introduction
	1.1 Our Contributions
	1.2 Paper Organization

	2 Preliminaries
	2.1 Description of KNOT-AEAD
	2.2 Notations
	2.3 MILP-Based Automatic Search for Differential and Linear Trails

	3 The Framework of Differential-Linear Attacks
	3.1 The Classic Differential-Linear Attack
	3.2 Recent Improvements

	4 Differential-Linear Cryptanalysis of KNOT-AEAD
	4.1 Searching Differential-Linear Distinguishers
	4.2 Attack on 15-Round KNOT-AEAD(128,256,64)
	4.3 Attack on 17-Round KNOT-AEAD(128,384,192)

	5 Conclusion
	References

	Revisit Two Memoryless State-Recovery Cryptanalysis Methods on A5/1
	1 Introduction
	2 Preliminary
	2.1 The Keystream Generation Procedure of A5/1
	2.2 A Brief Review of Golic's Guess-and-Determine Attack
	2.3 The General Process of Zhang's Near Collision Attack
	2.4 Unit of the Time Complexity

	3 The Move Pattern Guessing Technique
	3.1 The Basic Concepts of the Move Pattern
	3.2 Move Guessing vs. Clock Guessing

	4 Guess-and-Determine Attack Based on the Move Guessing Technique
	5 Revisit Zhang's Near Collision Attack
	5.1 Inaccurate Evaluations of Some Attack Parameters
	5.2 Near Collision Attack with Original Clock-Guess-Based RP-Recovery
	5.3 Improved Near Collision Attack with Move-Based RP-Recovery

	6 Conclusion and Future Works
	References

	More Accurate Division Property Propagations Based on Optimized Implementations of Linear Layers
	1 Introduction
	1.1 Our Contributions
	1.2 Organization of the Paper

	2 Preliminaries
	2.1 (Bit-Based) Division Property and Its MILP-aided Applications
	2.2 Heuristics for Optimizing the Implementations of Linear Layers

	3 BDP Propagations Based on Linear Layer Optimization
	3.1 Construct BDP Propagation Models of Linear Layers
	3.2 Division Trails of Different Models
	3.3 On the Effectiveness of Our Method

	4 Applications of Our New Technique
	4.1 Application to Midori64
	4.2 Application to Skinny64
	4.3 Application to LED

	5 Conclusion
	References

	Asymmetric Cryptanalysis
	Security Analysis on an ElGamal-Like Multivariate Encryption Scheme Based on Isomorphism of Polynomials
	1 Introduction
	2 IP2S and BIPC Problems
	2.1 IP2S Problem
	2.2 BIPC Problem and ElGamal-Like BIPC Encryption Scheme
	2.3 Previous Analysis

	3 Linear Stack Attack
	3.1 Key Lemma
	3.2 The Algorithm of the Linear Stack Attack
	3.3 Complexity and Experimental Results

	4 Conclusion
	References

	Attacking ECDSA Leaking Discrete Bits with a More Efficient Lattice
	1 Introduction
	1.1 Contributions
	1.2 Roadmap

	2 Preliminaries
	2.1 The Lattice Attack of Recovering the ECDSA Secret Key
	2.2 Elliptic Curve Digital Signature Algorithm (ECDSA)
	2.3 The Information Leaked
	2.4 The Extended Hidden Number Problem (EHNP)
	2.5 The Approximate Shortest Vector Problem (SVP)

	3 Basis Attack
	3.1 Extracting Information
	3.2 Reducing the Problem of Recovering the Secret Key to the EHNP
	3.3 Reducing the EHNP to the Approximate SVP

	4 Constructing a More Efficient Lattice
	4.1 Reducing the Dimension of the Lattice
	4.2 Reducing the Length of the Target Vector
	4.3 Improving the Success Probability

	5 Experiments
	6 Conclusion
	References

	Cryptographic Protocols
	A Simple Post-Quantum Non-interactive Zero-Knowledge Proof from Garbled Circuits
	1 Introduction
	1.1 Our Construction
	1.2 Related Works

	2 Preliminaries
	2.1 Zero Knowledge Proof
	2.2 Garbled Circuit

	3 Construction
	3.1 ZK in the Standard Model
	3.2 ZK in the CRS Model
	3.3 Discussion

	4 Implementation and Experiments
	5 Conclusion
	References

	Improved Zero-Knowledge Argument of Encrypted Extended Permutation
	1 Introduction
	1.1 Contribution
	1.2 Overview of Our Idea

	2 Preliminaries
	3 Our Main Protocol
	4 Sub-Protocols
	5 Analysis
	References

	Mathematical Foundations
	Isomorphism and Equivalence of Galois Nonlinear Feedback Shift Registers
	1 Introduction
	2 Preliminaries
	2.1 Boolean Network
	2.2 Nonlinear Feedback Shift Register

	3 Isomorphism of Galois NFSRs
	4 Equivalence of Galois NFSRs
	5 Conclusion
	References

	Elliptic Curve and Integer Factorization
	1 Introduction
	2 Torsion Subgroups and Parity Conjecture
	2.1 Notations
	2.2 Torsion Subsubgroups
	2.3 Parity Conjecture

	3 A Brief Introduction to Two-Descent Method
	4 Integer Factorization and the Mordell-Weil Group
	5 Compute S'() and S()
	6 Examples
	References

	On the Linear Complexity of Feedforward Clock-Controlled Sequence
	1 Introduction
	2 Pre-requisite Knowledge
	2.1 Feedforward Clock-Controlled Sequence
	2.2 Linear Complexity and Circulant Matrix
	2.3 Block Matrix and Matrix over Ring

	3 Linear Complexity Estimation Model for Feedforward Clock-Controlled Sequences
	3.1 Primary Transformation of the Circulant Matrix Mcir(C)
	3.2 Decomposition of the Matrix over the Ring
	3.3 Linear Complexity Estimation Model
	3.4 Section Summary

	4 LIFI-128, and It's Linear Complexity
	4.1 Description of LIFI-128
	4.2 Linear Complexity
	4.3 Section Summary

	5 Conclusion
	References

	Symmetric Cryptography
	On Characterization of Transparency Order for (n,m)-functions
	1 Introduction
	2 Preliminaries
	2.1 Definition of Boolean Functions
	2.2 Some Indicators for Boolean Functions
	2.3 Definition of (n, m)-functions and the Transparency Order

	3 Cryptographic Properties of RTO
	3.1 The Existence of (n,m)-functions Reaching the Upper Bound m on TO
	3.2 The Upper and Lower Bounds on RTO(F)
	3.3 Relating RTO to the Absolute Cross-Correlation Indicator
	3.4 The Relationships Between RTO and Other Cryptographic Properties

	4 RTO of S-Boxes of Size 4 4
	4.1 RTO of 302 Affine Equivalent Representative (4,4) S-Box
	4.2 RTO of AGi for 16 Optimal S-Box Gi

	5 Conclusions
	References

	Binary Sequences Derived from Monomial Permutation Polynomials over GF(2p)
	1 Introduction
	2 Preliminaries
	2.1 Dual Bases
	2.2 Maximal Length Monomial Sequences

	3 Properties of Coordinate Sequences Derived from MLM-sequences
	3.1 Period Properties of the Coordinate Sequences
	3.2 Shift-Equivalence of the Coordinate Sequences

	4 Conclusions
	References

	On the Provable Security Against Truncated Impossible Differential Cryptanalysis for AES in the Master-Key Setting
	1 Introduction
	2 Preliminaries
	2.1 Brief Description of AES
	2.2 Definitions

	3 Main Results
	4 Conclusion
	References

	Adaptive Side-Channel Analysis Model and Its Applications to White-Box Block Cipher Implementations
	1 Introduction
	2 Preliminaries
	2.1 CEJO-WBAES
	2.2 Differential Fault Analysis
	2.3 The Table Redundancy Method Against DFA
	2.4 Differential Computation Analysis
	2.5 The Improved Masking Method Against DCA

	3 Adaptive Side-Channel Analysis Model and Its Applications
	3.1 The Adaptive Side-Channel Analysis Model on WBC
	3.2 Adaptive DFA on the Table Redundancy Method
	3.3 Adaptive DCA on the Improved Masking Method

	4 Theoretical Analysis and Experimental Results
	4.1 Results of the Adaptive DFA on the Table Redundancy Method
	4.2 Results of the Adaptive DCA on the Improved Masking Method

	5 Adaptive SCA on Lee et al.'s Higher-Order Countermeasures
	6 Conclusion
	References

	Public Key Cryptography
	Fully Secure Lattice-Based ABE from Noisy Linear Functional Encryption
	1 Introduction
	1.1 Related Works

	2 Preliminaries
	2.1 Conjunctive Normal Form
	2.2 Ciphertext-Policy Attribute-Based Encryption
	2.3 Lattice and Smoothing Parameters
	2.4 Lattice Trapdoor and Learning with Error

	3 Noisy Linear Functional Encryption with Bounded Collusion
	4 Fully Secure CP-ABE Scheme for CNF Policies
	4.1 Construction
	4.2 Hyper-functional Keys and Semi-functional Ciphertexts
	4.3 Security Proof

	5 Conclusion and Future Works
	A Proof of Lemma 2.5
	B Proof of Theorem 3.1
	References

	Revocable Identity-Based Encryption with Server-Aided Ciphertext Evolution from Lattices
	1 Introduction
	2 Definition and Security Model
	2.1 RIBE with Server-Aided Ciphertext Evolution
	2.2 Lattices

	3 Our Lattice-Based RIBE-CE Scheme Without DKER
	3.1 Description of the Scheme
	3.2 Analysis

	4 Our Lattice-Based RIBE-CE Scheme with DKER
	4.1 Description of the Scheme
	4.2 Analysis

	5 Conclusion
	References

	Homomorphic Modular Reduction and Improved Bootstrapping for BGV Scheme
	1 Introduction
	2 Preliminaries
	2.1 Cyclotomic Rings
	2.2 (Ring) LWE Problems and Ciphertexts
	2.3 BGV Scheme
	2.4 A Ring Variant of the GSW Scheme

	3 New Homomorphic Modular Reduction Algorithm
	3.1 The Basic Idea
	3.2 Homomorphic Modular Reduction

	4 Improved Bootstrapping for BGV Scheme
	4.1 Blind Rotation
	4.2 Repacking
	4.3 Bootstrapping

	5 Conclusion
	References

	Real World Cryptography
	Privacy Preserving OpenPGP Public Key Distribution with Spamming Resistance
	1 Introduction
	2 Background
	2.1 OpenPGP and Web of Trust
	2.2 Synchronizing Keyservers
	2.3 Private Set Intersection
	2.4 Bloom Filter
	2.5 HMAC-Based Key Derivation Function

	3 Assumptions and Goals
	3.1 Problem Description
	3.2 Design Principles
	3.3 Threat Model

	4 Scheme
	4.1 Protocol Selection
	4.2 Scheme Details
	4.3 Extension to Public Key IDs
	4.4 Optimization

	5 Evaluation
	5.1 Experimental Settings
	5.2 Usability Evaluation
	5.3 Privacy Evaluation

	6 Related Work
	7 Conclusion
	References

	Collaborative Verifiable Delay Functions
	1 Introduction
	1.1 Related Work
	1.2 Applications of a coVDF
	1.3 Our Contributions

	2 coVDFs: Definitions and Security Properties
	2.1 Correctness, Soundness and Sequentiality
	2.2 Security in a Trustless Setting

	3 A Sequential coVDF
	4 A Robust coVDF Construction
	4.1 coVDF from Repeated Hashing
	4.2 Security of V2

	5 Concluding Remarks
	A A Sequential coVDF Construction
	A.1 Security of V1

	B Example of Graph Built Using Eval2
	C Examples
	C.1 Collaborative Work
	C.2 Decentralised Blind Auctions

	References

	SMCOS: Fast and Parallel Modular Multiplication on ARM NEON Architecture for ECC
	1 Introduction
	2 Related Work
	3 Preliminaries
	3.1 ARM NEON Architecture
	3.2 Representation of Prime Field Elements

	4 Modular Multiplication for ECC Using SIMD Extensions
	4.1 Cascade Operand Scanning for Specific Modulus on SIMD
	4.2 Performance Analysis
	4.3 Making SMCOS Fully Pipelined

	5 Results
	5.1 Target Platforms
	5.2 Performance Comparison of Prime Field Multiplication
	5.3 Performance Comparison of Elliptic Curve Arithmetic
	5.4 Performance Results of ECDH and ECDSA

	6 Conclusions
	References
	Correction to: Differential-Linear Cryptanalysis of the Lightweight Cryptographic Algorithm KNOT
	Correction to: Chapter “Differential-Linear Cryptanalysis of the Lightweight Cryptographic Algorithm KNOT” in: Y. Yu and M. Yung (Eds.): Information Security and Cryptology, LNCS 13007, https://doi.org/10.1007/978-3-030-88323-2_9

	Author Index

