
Implementing and Measuring KEMTLS

Sof́ıa Celi1(B) , Armando Faz-Hernández1,2 , Nick Sullivan1,2,
Goutam Tamvada3 , Luke Valenta1,2 , Thom Wiggers4 , Bas

Westerbaan5 , and Christopher A. Wood1,2

1 Cloudflare, Inc., Lisbon, Portugal
{sceli,armfazh,nick,lvalenta,chriswood}@cloudflare.com

2 Cloudflare, Inc., San Francisco, United States
3 University of Waterloo, Waterloo, Canada

goutam.tamvada@uwaterloo.ca
4 Radboud University, Nijmegen, Netherlands

thom@thomwiggers.nl
5 PQShield, Ltd, Oxford, UK

bas@westerbaan.name

Abstract. KEMTLS is a novel alternative to the Transport Layer Secu-
rity (TLS) handshake that integrates post-quantum algorithms. It uses
key encapsulation mechanisms (KEMs) for both confidentiality and
authentication, achieving post-quantum security while obviating the
need for expensive post-quantum signatures. The original KEMTLS paper
presents a security analysis, Rust implementation, and benchmarks over
emulated networks. In this work, we provide full Go implementations
of KEMTLS and other post-quantum handshake alternatives, describe
their integration into a distributed system, and provide performance
evaluations over real network conditions. We compare the standard (non-
quantum-resistant) TLS 1.3 handshake with three alternatives: one that
uses post-quantum signatures in combination with post-quantum KEMs
(PQTLS), one that uses KEMTLS, and one that is a reduced round trip
version of KEMTLS (KEMTLS-PDK). In addition to the performance
evaluations, we discuss how the design of these protocols impacts TLS
from an implementation and configuration perspective.

Keywords: Post-quantum cryptography · KEMTLS · Transport
Layer Security · Cryptographic engineering

1 Introduction

Transport Layer Security (TLS) is one of the most widely used protocols on the
Internet today [11,22], and provides confidentiality, integrity, and authenticity
to communications between two parties. The most recent version, TLS 1.3 [29],
uses ephemeral (elliptic curve) Diffie-Hellman (-EC-DH) to establish keys, which
are used to encrypt parts of the handshake and the traffic that will be sent in

Bas Westerbaan—Cloudflare, Inc, Amsterdam, Netherlands

c© Springer Nature Switzerland AG 2021
P. Longa and C. Ràfols (Eds.): LATINCRYPT 2021, LNCS 12912, pp. 88–107, 2021.
https://doi.org/10.1007/978-3-030-88238-9_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-88238-9_5&domain=pdf
http://orcid.org/0000-0002-3333-7764
http://orcid.org/0000-0001-5502-8666
http://orcid.org/0000-0002-5784-1658
http://orcid.org/0000-0001-8936-0499
http://orcid.org/0000-0001-8967-8456
http://orcid.org/0000-0002-3195-6238
http://orcid.org/0000-0003-3297-4216
https://doi.org/10.1007/978-3-030-88238-9_5


Implementing and Measuring KEMTLS 89

the connection. Authentication of the server and (optionally) of the client can
be achieved by using digital signatures. The corresponding public keys for those
signatures are transmitted during the handshake in digital certificates, which are
signed by a certificate authority (CA).

Given that TLS 1.3 is the most widely used protocol today to secure con-
nections [22], it is vital to start thinking about how to integrate post-quantum
cryptography into it to protect from the imminent threat of quantum comput-
ing. Advances in quantum computing are promising and motivate a swift move
to quantum-resistant algorithms. However, widespread adoption and protocol
standardization are slow processes that can take several years to reach consen-
sus among the parties1. In fact, the National Institute of Standards and Tech-
nologies (NIST) is organizing a multi-year competition to select post-quantum
algorithms for standardization [27]. Several proposals on how to integrate post-
quantum cryptography into TLS have already been suggested in the form of
specifications, implementations, and experiments.

Related Work. Many early experiments focused on transitional security to pro-
tect against adversaries capable of recording today’s communications with the
hope of decrypting them in the future with a quantum computer. They focus on
the key exchange phase of the handshake and add quantum-resistant confiden-
tiality. This latter property is achieved by replacing the (EC-)DH key exchange
by one based on a post-quantum Key Encapsulation Mechanism (KEM). How-
ever, this strategy does not address quantum-resistant authentication.

In 2016, a post-quantum experimentation project was initiated by Google [7],
and was later expanded to a large-network scale in collaboration with Cloudflare
in 2019 [21,24]. In the latter experiment, connections made from experimental ver-
sions of the Chrome browser to Cloudflare’s edge servers used post-quantum key
exchange algorithms in the TLS 1.3 handshake to secure connections and provide
quantum-resistant confidentiality. The handshake used a “hybrid” key exchange
protocol that combined post-quantum key exchange algorithms with traditional
algorithms in order to safely use experimental cryptography without sacrificing
any security guarantees. The experiment included two hybrid post-quantum key
exchange protocols: X25519 [5] with the lattice-based KEM NTRU-HRSS [14] and
X25519 with the supersingular-isogeny-based KEM SIKE [16]. These experiments
focused on post-quantum confidentiality, but still relied on traditional authenti-
cation using non-quantum-resistant digital signature algorithms.

From a specification level, these works on quantum-resistant confidential-
ity mechanisms have taken priority [8,13,19,31,32,37,42], without much actual
integration into real-world systems.

While these previous experiments provided valuable insights about the per-
formance impact of post-quantum cryptography in real networks, post-quantum
confidentiality is only one part of the picture: full post-quantum security also
requires post-quantum authentication. In this sense, there are some research
efforts towards this goal by using post-quantum signatures. But, most post-
quantum signature schemes participating in the NIST competition have large
1 It took, for example, 5 years to standardize TLS 1.3 [39].



90 S. Celi et al.

public keys or signatures, and/or have significant performance considerations in
their cryptographic operations. Sikeridis et al. [35] suggest that only the lattice-
based candidates Dilithium [25] and Falcon [28] are viable contenders to be used
in the TLS handshake, taking into account the trade-off between lengthy signa-
tures and computationally heavy cryptographic operations.

Post-quantum KEM operations are, in practice, more efficient than post-
quantum signature operations. A new approach, called KEMTLS [33], achieves
authentication using KEMs instead of relying on digital signatures. This tech-
nique consists of encapsulating under the long-term KEM public key advertised
in the peer’s certificate, obtaining a shared secret in the process. Only the peer
that has the private key corresponding to the public key in the advertised cer-
tificate can decapsulate the shared secret and decrypt any encrypted data sent
under that key. Thus, KEMTLS uses post-quantum KEMs for both confidentiality
and authentication to achieve full post-quantum security. A tweaked version of
KEMTLS, called KEMTLS-PDK [34], achieves the same properties while reducing
the number of round-trips needed.

Contributions. The focus of this paper is analyzing how the integration of
post-quantum cryptography impacts the TLS 1.3 handshake from a performance,
implementation, and configuration perspective. We developed a framework for
establishing TLS 1.3 handshakes using post-quantum algorithms on a real-world
system: a distributed network that is subject to actual Internet traffic conditions
and that spans two continents. We examined several handshake configurations:
one that uses KEMs for confidentiality and post-quantum signature schemes
for authentication, which we called PQTLS; and we evaluate the KEMTLS pro-
tocol and its reduced round trip version called KEMTLS-PDK. We measured
the latency of these handshakes and compare them against the baseline TLS 1.3
handshake by considering both server-only and mutual authentication. Addition-
ally, we touch upon the engineering process of implementing all these protocols
in the Go language, and report some constraints found in the design of KEMTLS.
Our implementations are publicly available for further experimentation.

Organization. In Sect. 2, we describe the integration of post-quantum algo-
rithms into the TLS 1.3 handshake. Section 3 covers details of our implemen-
tation and our integration into the testbed network used for experimentation.
In Sect. 4, we discuss our experimental methodology and measurement results,
and finally in Sect. 5, we state our conclusions.

2 Post-quantum Cryptography in TLS 1.3

We first give an overview of the TLS 1.3 handshake, and then discuss proposed
specifications, implementations, and experiments for integrating the PQTLS,
KEMTLS and KEMTLS-PDK post-quantum handshakes.

2.1 Reviewing the TLS 1.3 Protocol

Standardized in 2018, the TLS 1.3 protocol emerged in response to dissatisfaction
with the outdated design of the TLS 1.2 handshake, its two-round-trip overhead,



Implementing and Measuring KEMTLS 91

and the increasing number of practical attacks on older versions of TLS [1–3,6].
The pressure to increase efficiency also motivated the creation of alternative
protocols such as the QUIC protocol [15]. In light of this, the main improvements
of TLS 1.3 are: reducing the handshake’s latency, encrypting as many messages as
possible of the handshake itself, improving resilience to cross-protocol attacks,
and removing legacy features [39]. It achieves a one-round-trip time (1-RTT)
handshake and even a 0-RTT handshake through a resumption mode.

The default2 mode of the protocol uses certificates for authentication and
(EC-)DH for shared secret generation. In this mode, the handshake starts with
the client sending a ClientHello (CH) message to the server. This message
advertises the supported (EC-)DH groups and the ephemeral (EC-)DH keyshares
offered by the client and specified in the supported_groups and key_shares
extensions, respectively. The CH message also advertises the signature algorithms
supported in the signature_algorithms extension. It also contains a nonce and
a list of supported symmetric-key algorithms (ciphersuites).

The server processes the ClientHello message and chooses the appropriate
cryptographic parameters to be used in the connection. If (EC-)DH key exchange
is in use (meaning the client sent the key_shares extension), the server sends a
ServerHello (SH) message containing a key_share extension with the server’s
(EC-)DH key corresponding to one of the key_shares advertised by the client.
The SHmessage also contains a server-generated nonce and the ciphersuite chosen.

An ephemeral shared secret is then computed at both ends (the client com-
putes it when it receives SH). After this point, all subsequent handshake messages
are encrypted using keys derived from this secret.

The server then sends a certificate chain (ServerCertificate message) and a
message that contains a proof that the server possesses the private key correspond-
ing to the public key advertised in its leaf certificate. This proof is a signature over
the handshake transcript and it is sent in the ServerCertificateVerify mes-
sage. The advertised signature_algorithms in CH are used to decide which algo-
rithms can be used to generate this signature. The goal of this message is to pro-
vide proof of possession of the server’s private key, which is essential for achieving
authentication. The server also sends the ServerFinished message that provides
integrity of the handshake up to this point. It contains a message authentication
code (MAC) over the entire transcript providing key confirmation and binding the
server’s identity to any computed keys.

Optionally, the server can send a CertificateRequest message, prior to
sending its ServerCertificate message, requesting a certificate from the client
for authentication. At this point, the server can immediately send applica-
tion data to the unauthenticated client. Upon receiving the server’s mes-
sages, the client verifies the signature of the ServerCertificateVerify mes-
sage and the MAC of the ServerFinished message. If requested, the client
must respond with their own authentication messages, ClientCertificate and
ClientCertificateVerify, to achieve mutual authentication. Finally, the client

2 Advanced modes of the TLS 1.3 handshake can also use a pre-shared key (PSK)
exchange, PSK with ephemeral key exchange, and password-based authentication.



92 S. Celi et al.

must confirm their view of the handshake by sending a MAC over the handshake
transcript in the ClientFinished message.

It is only after this process that the handshake is completed, and the client
and server can derive the keying material required by the record layer to exchange
application data protected with authenticated encryption.

2.2 PQTLS: Signed Post-quantum TLS 1.3

A variety of specifications, implementations and experiments explain how to inte-
grate post-quantum cryptography into the TLS 1.3 handshake. Regarding the
post-quantum key exchange phase of TLS 1.3 (without addressing post-quantum
authentication), several Internet-Drafts are proposed [13,19,31,37,42], as well as
some experimental demonstrations [9,21,23,24]. On the other hand, fewer works
have focused on post-quantum authentication. In [18,35], the authors recom-
mended that the adoption of at least two post-quantum signature algorithms is
viable for the TLS 1.3 handshake.

There are no theoretical obstacles for transitioning TLS 1.3 to a post-
quantum world. One can use post-quantum signature algorithms for authen-
tication and the (EC-)DH key exchange can be replaced by a post-quantum
KEM; we call this approach PQTLS.

In practice, however, this replacement is not so simple. CAs must adapt their
software to include post-quantum signatures, and, historically, the Web Public
Key Infrastructure (PKI) and other X.509 PKIs have limited which algorithms
can be used. It could take a long time until new algorithms are widely deployed.
These changes may occur in the future but, for the purpose of experimentation
and rapid deployment, these issues become limitations.

We propose a practical approach for overcoming this problem. Specifically, we
rely on a delegation mechanism for credentials. A Delegated credential (DC) is an
authenticated credential valid for a short period (at most 7 days) that can be used
to decouple the handshake authentication algorithm from the authentication
algorithms used in the certificate chain: a delegated credential can contain an
algorithm to be used in the handshake and, in turn, it is cryptographically
bound to the end-entity certificate as it is authenticated by it. The process of
authenticating the DC is executed at the TLS stack level.

Using DCs in itself does not give us full post-quantum security, but it allows
us to support post-quantum authentication algorithms that are not supported
by existing CAs. An existing certificate is used to authenticate this delegated
credential (by signing in a classical way in our experiments), and the adver-
tised algorithm in the DC is used to authenticate the handshake.3 The Internet

3 Authentication is as strong as its weakest link, so until the entire certificate chain has
post-quantum security we do not have a fully post-quantum authenticated protocol.
However, the approach suffices for the purpose of our experiments.



Implementing and Measuring KEMTLS 93

Engineering Task Force (IETF) draft describing this technique, “Delegated Cre-
dentials for TLS” [4], is on track for standardization.4

Using delegated credentials comes with other advantages for our cases. Unlike
a regular certificate, a delegated credential is smaller and has no other extensions,
such as revocation lists and certificate statuses, which makes it a perfect fit for
experiments where the size of parameters is important. Also, DCs are validated
only at the TLS stack level, which reduces the number of codebases or systems
where we needed to roll out new algorithms.

If full post-quantum security is wanted, the whole certificate chain will need
to contain post-quantum algorithms. A peer wanting to authenticate another
peer with its certificate (and the public key in it) in the TLS 1.3 handshake
requires confidence that the associated private key is owned by the certificate
owner’s peer. This confidence is obtained through the use of public key certifi-
cates that bind these values to an identity. A CA signs certificates after asserting
proof of possession of the private key. If the peer does not hold the public key of
the CA that signed the other peer’s certificate, then it might need an additional
certificate to obtain that public key. These certificates are called ’intermediates’.

For a client to authenticate a server it uses this chain of certificates: a root
CA’s one, followed by at least one intermediate CA certificate, and then the leaf
certificate of the server. Certificates can be cached, pre-installed or suppressed,
which means that less data needs to be transmitted during the handshake; but
these mechanisms are not widely deployed. In turn what this means is that
for a full post-quantum TLS 1.3 handshake, peers will need to transmit the
whole certificate chain and verify all their authentication proofs (at least three
signatures or other proofs of authentication). If a DC is used in this scenario,
data transmitted is increased, as well of the number of authentication operations.

2.3 KEMTLS: KEMs Everywhere

Using post-quantum signatures for authentication comes with another challenge.
The proposed signature schemes participating in the NIST post-quantum com-
petition have public keys or signatures much larger than their classical coun-
terparts. For most algorithms, this size increase for post-quantum signatures is
bigger than for post-quantum KEMs. The large size of cryptographic material
can become an issue in the PQTLS scenario.

KEMTLS suggests the use of KEMs as the primary asymmetric building block
for both the key exchange and authentication phases of the TLS 1.3 handshake.
Its goal is to achieve a TLS 1.3 handshake that provides full post-quantum
security (confidentiality and authentication) in an efficient way. KEMs instead
of signatures are used for authentication because the KEM’s public keys and
ciphertexts are smaller.

4 While it is stated in the draft that the DC signature algorithm “is expected to be the
same as the sender’s CertificateVerify.algorithm”, this is not a hard requirement,
and in KEMTLS the Certificate Verify messages are not sent.



94 S. Celi et al.

Like in PQTLS, the client advertises their support of post-quantum KEMs as
part of the supported_groups extension, and their supported ephemeral KEM
public keys as part of their key_shares extension. Support for KEMTLS authen-
tication, via KEM leaf certificates or DCs with KEMs, is indicated by including
KEMs in the signature_algorithms extension.

The server, in turn, determines the appropriate cryptographic parameters to
be used in the connection, and replies with a ciphertext: an encapsulation against
one of the advertised ephemeral KEM public keys of the ClientHello message.
The encapsulation generates a second output: an unauthenticated ephemeral
shared secret. From this point onward, all subsequent messages will be encrypted
under the secret, after applying the appropriate key schedule operations. The
server also sends its certificate chain (ServerCertificate message): the leaf
certificate (or DC) should advertise a post-quantum KEM public key. Optionally,
the server can send a CertificateRequest message, which is sent prior to the
ServerCertificate message, asking the client to authenticate.

Contrary to TLS 1.3, the server cannot provide explicit proof of possession
(using digital signatures) of the private key corresponding to the public key
advertised as part of the leaf certificate (or DC). Instead, in KEMTLS, the client
must receive the ServerCertificate message first, and reply with the encap-
sulation of the public key advertised in it. This encapsulation (a ciphertext) is
sent as part of a new TLS message called ClientKEMCiphertext. The KEMTLS
handshake diverges from the TLS 1.3 standard, as the server must wait for this
message adding another flight or half round-trip to the protocol.

The second output of the client key encapsulation is an implicitly authenti-
cated shared secret. This secret is mixed into the key schedule operations and
will afterwards be used to encrypt all subsequent messages. Only the intended
server can decrypt any messages encrypted under this key. By being able to do
so, the server proves possession of the private key corresponding to the public key
in it’s certificate. If the server did not request client authentication (server-only
authentication), the client can immediately send their ClientFinished message
in this flight, which contains a MAC over the entire transcript. The client can
also send at this point application data, which is implicitly authenticated, and
has slightly weaker downgrade resilience and forward secrecy compared to when
digital signatures are used.

When receiving the ClientKEMCiphertext message and decapsulating their
parameters, the server can send their confirmation message ServerFinished,
authenticating the handshake transcript. In the same flight, the server can
now send application data encrypted by the shared secret of the decapsulation
mechanism. Once the client receives and verifies the ServerFinished message,
the server is explicitly authenticated, and the handshake has full downgrade
resilience and strong forward secrecy.

Ciphersuite Negotiation and Middlebox Compatibility. TLS 1.3 allows
clients and servers to negotiate the used algorithms. For key exchange, the
supported algorithms are advertised in the supported_groups extension. For
authentication, the mandatory signature_algorithms extension contains a list



Implementing and Measuring KEMTLS 95

of algorithms that can be used by the peer to pick the appropriate certificate
advertised by the corresponding peer. Post-quantum KEMs can simply be added
to these lists and negotiated accordingly.

Any compliant TLS 1.3 implementation that does not understand or wish
to negotiate KEMTLS will simply ignore any advertised post-quantum KEMs
for the key exchange, and will not send a leaf certificate (or DC) with a KEM
public key. As all messages following ServerHello are encrypted, changes in the
protocol should be opaque to any non-decryption traffic interception; otherwise,
a barrier on its adoption will be observed, similar to the “Middlebox” issues
that arose when moving from TLS 1.2 to TLS 1.3 [20,38]. Issues may still arise
if traffic interception servers enforce stricter constraints on key sizes than those
required by the TLS 1.3 standard; these kinds of issues are harder to control.

Mutual Authentication. TLS 1.3 requires that “the client’s identity should
be protected against both passive and active attackers” [29, Sec. E.1]. Thus, both
TLS 1.3 and KEMTLS cannot send the client’s certificate (its identity) before
the server has been authenticated. In TLS 1.3, the client can authenticate to the
server, after receiving a request to do so from it, by providing its certificate and
a signature over the handshake transcript.

In the sketch of client authentication in KEMTLS [33, App. C], upon request
from the server, the client responds with the ClientCertificate message, where
the leaf certificate (or DC) must contain a post-quantum KEM public key. This
message must be sent in the same flight as when the ClientKEMCiphertext mes-
sage is sent (but after it). In turn, the server sends the ServerKEMCiphertext
message containing an encapsulation against the client certificate’s KEM public
key after processing the ClientKEMCiphertext and ClientCertificate mes-
sages. The client must wait for a ServerKEMCiphertext message from the server
prior to sending their ClientFinished or any other message. Therefore, the
client proves their identity by showing that both sides can arrive to the same
shared key: the output of the encapsulation of the client’s public key sent in the
leaf certificate (or DC). Finally, once the server receives the ClientFinished, it
can send ServerFinished, which achieves full downgrade resilience and forward
secrecy.

The straightforward addition of these messages adds a round-trip to the
handshake, as they can not be sent until the server has been authenticated. This
extra round does not occur in the TLS 1.3 handshake because an explicit proof
of authentication (the signature) is sent in the same flight as the certificate.

For a practical instantiation for our experiments, we use classically signed
DCs that wrap KEM public keys to provide certified KEM keys.

2.4 KEMTLS-PDK: Reducing Round Trips

KEMTLS-PDK is a technique that relies on pre-distributed keys and has the
goal of improving KEMTLS round-trips. It assumes the client knows the server’s
public key beforehand. This is not an uncommon situation as, for example,
web browsers cache certificates of frequently accessed servers, mobile apps pin
certificates, or server certificates are pre-distributed through DNS [17].



96 S. Celi et al.

During the handshake, servers can authenticate earlier to the client, when
KEM authentication keys are pre-distributed. We implement this mechanism
using the TLS cached information extension5 [30], so the client sends an encap-
sulation against the server’s public KEM key in the first flight (alongside the
ClientHello message: either as a separate message or as an extension for it).
This allows the server to be explicitly authenticated by sending ServerFinished
in the first message to the client and to immediately send application data.

On the other hand, the situation is more complex for achieving earlier client
authentication since the client has to proactively know that the server will ask
for its authentication. Nonetheless, this assumption does occur in certain appli-
cations such as in virtual private networks (VPN), where the client could send
the certificate as early as possible.

Recall that for privacy reasons, TLS 1.3 requires that the server must be
authenticated prior to transmitting the client certificate, and that this certificate
must be sent encrypted. For the former requirement, KEMTLS-PDK assumes the
client knows the server’s certificate so it is sent after the ClientKEMCiphertext
message in the first flight (as a separate message from the ClientHello one). For
the latter requirement, the client certificate is encrypted under the shared secret
resulting from the encapsulation mechanism used for ClientKEMCiphertext.
Thus, it is possible to remove a full round-trip from KEMTLS with mutual
authentication.

Early client authentication can be secured by caching a CertificateRequest
message using the TLS cached information extension. The client certificate will
then contain a key with an authentication algorithm that is likely known to be
supported by the server. However, further investigation is needed for coming
with a mechanism to encrypt the client’s certificate.

3 Implementation Details

3.1 Implementation in Go

Go is a high-level programming language with support for the TLS protocol
(including version 1.3). Its standard library is open, which allowed us to made
modifications to its internals without requiring third-party libraries. While Go
is well-known for developing web server applications, it also has mechanisms to
interact with low-level features of the computer architecture. This is particularly
useful for accessing architecture-specific capabilities, which are only available
through assembler code.

Some implementations of post-quantum algorithms are available. The teams
currently contending at the ongoing NIST’s post-quantum competition provide
implementations in C/C++. The Open-Quantum Safe [36] project wraps C imple-
mentations to run in Go through the cgo programming interface. However, per-
formance degradation in it can be observed due to this wrapping procedure. The
CIRCL [10] library implements a number of post-quantum algorithms natively in

5 This extension is only available for TLS 1.2, so we adapted it to be used in TLS 1.3.



Implementing and Measuring KEMTLS 97

Go, including SIDH and SIKE [16]. As part of our contributions, we integrate to
the CIRCL library AVX2-optimized implementations of the Dilithium signature
scheme (round 2) and the Kyber key encapsulation mechanism.

Go provides a clean implementation of TLS 1.3. However, the implementation
is conservative in regards to the type of extensions and algorithms that it sup-
ports. Changing the TLS 1.3 implementation to include delegated credentials
and PQTLS required including some extensions and adding certain algorithm
identifiers. It also meant adding a way for generating and validating delegated
credentials, as well as adding the ability to include the delegated credentials
X.509 extension to generated certificates. We also added the cached information
extension [30] and modified it to work with TLS 1.3 for KEMTLS-PDK.

Integrating KEMTLS and KEMTLS-PDK was more challenging. Doing so
required the interruption of the handshake’s flow depending on whether there
is cached information, whether it is server-only authentication, or whether it is
mutual authentication. As noted, the flow of messages in KEMTLS and KEMTLS-
PDK is different depending on the authentication modes: server-only, mutual or
with cached information. This differs from the standard TLS 1.3 handshake that
follows the same flow of messages regardless if server-only or mutual authenti-
cation is performed. These differences were an important lesson learned during
our implementation as it was often a source of errors.

We made available all of these modifications in a fork of Go at https://github.
com/cloudflare/go/tree/cf-pq-kemtls. This code integrates CIRCL and can be
used as a replacement of the standard Go to compile other Go programs. Hence,
anyone wanting to use post-quantum algorithms or the new handshake protocols
can benefit from our code by compiling programs with our modified Go.

3.2 A Testbed Network

To test and measure TLS connections, we looked for a service that operates under
common Internet conditions and spans across different geographical locations.
We chose Drand [40], a distributed randomness beacon written in Go, as the
target of our experimentation. In this network, Drand servers are linked so they
can collectively produce publicly-verifiable random numbers at fixed intervals of
time. A threshold signature scheme prevents collusion or biasing the generation
of numbers. Nodes in the network communicate with one another using a gRPC
protocol [26] with TLS authentication. Additionally, the Drand service exposes
public randomness through an HTTPS endpoint.

Changes in the Drand code base are minimal. We needed to provide and
configure a certificate with the DCs extension enabled for servers and clients.
We also needed to state which protocol will be initiated (KEMTLS or PQTLS)
by stating so at the TLS configuration level. If KEMTLS-PDK wanted to be
used, a “regular” KEMTLS handshake is first run, information is cached (the
ServerCertificate message), and then cached information is used in a fresh
KEMTLS-PDK handshake by configuring it at the TLS configuration level. We
added those configuration options for ease of experimentation: in a more realistic

https://github.com/cloudflare/go/tree/cf-pq-kemtls
https://github.com/cloudflare/go/tree/cf-pq-kemtls


98 S. Celi et al.

scenario stating which key exchange and signature algorithms are supported
should be enough to trigger the appropriate protocol execution.

At run time, fresh delegated credentials are generated each time that a
request arrives. However, these credentials can be further cached and stored so
they can be reused between connections. A mechanism that routinely checks the
validity of these credentials can also be implemented. This shows that delegated
credentials can be easily implemented and used without needing to constantly
modify certificate storage or retrieval. It is worth noting that adding delegated
credentials increases the number of validations that need to be executed: the
certificate has to be validated, the delegated credential has to be validated and
the handshake has to be validated.

4 Measurement Experiment and Discussion

The goal of our experiment is to analyze the effects on the TLS handshake when
using post-quantum algorithms. To do that, we measure the time it takes for
a TLS 1.3 handshake using certificate-based authentication to complete, and
compare all experiments to this standard measure.

4.1 Experiment Setup

We build a Drand cluster with one leader node and three worker peers. Each node
independently ran in a data center located in Portland, USA. The connection of
each internal node and the external HTTPS interface are configured to support
post-quantum handshake protocols.

A Drand client retrieves randomness from the Drand network. We opted for
locating the client far from the Drand network itself, so it is located in Lisbon,
Portugal. With this setup our experiment faces the same traffic conditions found
in transatlantic connections. Source codes of the client program are available at
https://github.com/claucece/KEMTLS-local-measurements.

We choose a combination of cryptographic algorithms for setting up the fol-
lowing handshake configurations:

TLS 1.3 handshake using Ed25519 certificates for authentication (baseline).
TLS 1.3+DC handshake with Ed25519 certificate and delegated credentials

either using Ed25519 or Ed448 algorithms for authentication.
PQTLS handshake with SIKEp434 and Kyber512 for key exchange, and hybrid

signatures using round-two Dilithium mode 3 and mode 4, respectively, paired
with Ed25519 and Ed448 for authentication (the authentication algorithms
are advertised in DCs).

KEMTLS handshake with SIKEp434 and Kyber512 for both key exchange and
authentication (the authentication algorithms are advertised in DCs).

KEMTLS-PDK handshake using the same configuration as KEMTLS (server
authentication only).

https://github.com/claucece/KEMTLS-local-measurements


Implementing and Measuring KEMTLS 99

4.2 Measurements

For each client to server connection, we measured the time elapsed until comple-
tion of the TLS handshake, that is until the client can send encrypted application
data, for each different handshake configuration. We also measured the elapsed
time for each flight of the handshake, i.e., the time elapsed that a peer (server
or client) waits for receiving messages from their counterpart. We initiated two
timers: one for the client (which started when the CH message was constructed
and sent) and one for the server (which started when the CH message is received).
Therefore, the first and second flight, as seen in the tables, do not include net-
work latency, as the timer is started prior to the message being sent or just
when it is received, respectively. Note that the round trip times (RTT) from the
third flight onward are affected by the conditions of the state of the network.
We tested the scenarios over an average-latency network.

To reduce the effects caused by the state of the network, the Drand client
was instructed to fetch randomness from the Drand server consecutively dur-
ing one hour. The total number of connections during this period amounts to
approximately 5 × 103 connections. From them, we calculated the average time
of the connections and report the timings in Table 1 and Table 2. We also mea-
sured the total average time until the handshake is completed (note that these
times include the sending and receiving of encrypted application data). These
measures are listed in Table 3 and Table 4.

In server-only authentication, the handshake performs the following flights:

1st (C ⇒ S) Sending ClientHello for all cases.
KEMTLS-PDK: this message includes the ClientKEMCiphertext message,
and a hash of the cached server’s ServerCertificate message.
2nd (C ⇐ S) Processing of ClientHello.
Standard and PQTLS: reply with the ServerHello, ServerCertificate,
ServerCertificateVerify and ServerFinished messages.
KEMTLS: reply with the ServerHello and ServerCertificate.
KEMTLS-PDK: reply with the ServerHello and ServerFinished messages.
3rd (C ⇒ S) Processing of received messages based on the protocol.
Standard and PQTLS: processing of ServerHello, ServerCertificate,
ServerCertificateVerify and ServerFinished messages.
Reply with ClientFinished and immediate sending of encrypted application
data.
KEMTLS: processing of ServerHello and ServerCertificate. Reply with
ClientKEMCiphertext and ClientFinished messages and immediate send-
ing of encrypted application data.
KEMTLS-PDK: processing of ServerHello and ServerFinished messages.
Reply with ClientFinished and immediate sending of encrypted application
data.
4th (C ⇐ S) Processing of received messages based on the protocol.
Standard and PQTLS: processing of ClientFinished message and of
encrypted application data.



100 S. Celi et al.

KEMTLS: processing of ClientKEMCiphertext and ClientFinished mes-
sages. Reply with ServerFinished message.
KEMTLS-PDK: processing of ClientFinished message and of encrypted
application data.

In mutual authentication, the handshake performs the following flights:

1st (C ⇒ S) Sending ClientHello for all cases.
2nd (C ⇐ S) Processing of ClientHello.
Standard and PQTLS: reply with the ServerHello, ServerCertificate,
ServerCertificateVerify, CertificateRequest messages followed by the
ServerFinished message.
KEMTLS: reply with the ServerHello, the ServerCertificate and the
CertificateRequest messages.
3rd (C ⇒ S) Processing of received messages based on the protocol.
Standard and PQTLS: processing of ServerHello, ServerCertificate,
ServerCertificateVerify, CertificateRequest messages followed by the
ServerFinished message.
Reply with the ClientCertificate, the ClientCertificateVerify and the
ClientFinished messages, and immediate sending of encrypted application
data.
KEMTLS: processing of the ServerHello, the ServerCertificate and the
CertificateRequest messages.
Reply with ClientKEMCiphertext and ClientCertificate messages.
4th (C ⇐ S) Processing of received messages based on the protocol.
Standard and PQTLS: processing of the received ClientCertificate,
ClientCertificateVerify and ClientFinished messages, and received
encrypted application data.
KEMTLS: processing of ClientKEMCiphertext and ClientCertificate
messages. Reply with ServerKEMCiphertext message.
5th (C ⇒ S) This case only happens in KEMTLS. It includes the processing of
ServerKEMCiphertext message and sending of the ClientFinished message.
Immediate sending of encrypted application data.
(C ⇐ S) This case only happens in KEMTLS. It includes the process-
ing of ClientFinished message and any application data. Sending of the
ServerFinished message.

4.3 Discussion

As noted, we initiated two timers for our measurements: one for the client (which
started when the CH message was constructed and sent) and one for the server
(which started when the CH message is received). This is the reason why the first
and second flights see small timings as they do not take into account network
latency. Starting from the third flight, the impact of network latency can be
seen. An important point to note as well is that encrypted application data is
sent already on the 3rd flight of all experiments except for KEMTLS for mutual



Implementing and Measuring KEMTLS 101

Table 1. Average time in 10−3 s of messages for server-only authentication. Note that
timings are measured per-client and per-server: each one has its own timer. The ‘KEX’
label refers to the Key Exchange and the ‘Auth’ label refers to authentication.

Handshake KEX Auth Handshake flight

1st 2nd 3rd 4th

TLS 1.3 X25519 Ed25519 0.227 0.436 123.838 180.202

TLS 1.3+DC X25519 Ed25519 0.243 0.489 156.954 186.868

TLS 1.3+DC X25519 Ed448 0.242 0.907 165.395 183.124

PQTLS Kyber512 Dilithium3 0.350 0.701 173.814 198.256

PQTLS SIKEp434 Dilithium4 2.533 4.856 441.732 212.924

KEMTLS Kyber512 Kyber512 0.412 0.217 157.123 187.147

KEMTLS SIKEp434 SIKEp434 3.058 7.215 352.840 291.592

KEMTLS-PDK Kyber512 Kyber512 0.623 0.327 181.132 189.442

KEMTLS-PDK SIKEp434 SIKEp434 9.573 12.507 396.818 287.550

authentication (as the client has to wait two flights in order to be able to send
application data), which can increase the timing numbers.

When adding delegated credentials to the TLS 1.3 handshake, a peer receiv-
ing a delegated credential must validate that it was signed by the appropriate
end-entity certificate (which is sent as part of the handshake) and must validate
the certificate chain, as well. In our measurements, we observed a short increase
in the latency of the flights when DCs are added; but the impact is almost
negligible (specially, in the second flight when the DCs are received).

This is not the case when adding either post-quantum signatures or post-
quantum KEMs for certain algorithms. The first observable difference appears
in the ClientHello in both server-only authentication and mutual authenti-
cation: this message advertises both classic and post-quantum key exchange
algorithms because this could be the realistic scenario for systems when tran-
sitioning to post-quantum cryptography. The timings increase specially when
using SIKEp434 as a KEM in both KEMTLS and PQTLS, because its KEM
decapsulation time takes in average 8.92 ms (when using the implementation
of the CIRCL library). The predominant factor that slows down PQTLS is the
number of signature validations; but this is similar (when using Kyber512) to
using Ed448.

In regards to KEMTLS, its biggest drawback is the number of round-trips that
it has to perform, specially when performing mutual authentication. The KEM
cryptographic operations do not seem to heavily impact the connection if the
underlying algorithm operations are fast. An ideal scenario for post-quantum
cryptography is the use of KEMs for both confidentiality and authentication
provided that the number of round trips do not increase, which is the case
of KEMTLS-PDK for server authentication. This prediction matches with the



102 S. Celi et al.

Table 2. Average time in 10−3 s of messages for mutual authentication. Note that
timings are measured per-client and per-server: each one has its own timer. The ‘KEX’
label refers to the Key Exchange and the ‘Auth’ label refers to authentication.

Handshake KEX Auth Handshake flight

1st 2nd 3rd 4th 5th 6th

TLS 1.3 X25519 Ed25519 0.113 0.420 111.358 121.349

TLS 1.3+DC X25519 Ed25519 0.148 0.546 129.638 178.90

TLS 1.3+DC X25519 Ed448 0.154 0.221 137.131 192.283

PQTLS Kyber512 Dilithium3 0.125 1.326 231.232 191.187

PQTLS SIKEp434 Dilithium4 3.324 7.294 459.888 216.077

KEMTLS Kyber512 Kyber512 0.244 0.303 231.752 175.490 375.202 346.308

KEMTLS SIKEp434 SIKEp434 2.450 6.206 431.445 228.414 510.591 436.301

timings in tables: note that the best scenario is KEMTLS-PDK for server-only
authentication, specifically, when it is used with Kyber512.

Let’s look now at the measurements in regards to the kind of peer authenti-
cation they perform:

In the case of server-only authentication, KEMTLS performs faster than
PQTLS and, in both cases, a client can immediately send application data on
the third flight (when the client sends its ClientFinished). Nevertheless, for
KEMTLS the server still has to wait for the ClientFinished to arrive and to
send their ServerFinished in turn, in order to be able to send application data.
Sending of the ServerFinished completes the handshake for the server, and
provides full downgrade-resilience and forward-secrecy for the whole connection.
However, this extra half-round trip forces the server to wait for a time before
sending application data, which could not be an ideal scenario for real-world
systems. In contrast, the client can send application data after sending their
ClientFinished (as noted in the measurements) but it has weaker security
protections (weak downgrade-resilience and forward-secrecy), and, therefore, a
client might also wait until receiving the ServerFinished message to send its
data in turn. This adds an extra round-trip which is not noted in the measure-
ments. If we look at Fig. 1, we see that the best protocol to use is KEMTLS,
if we don’t take into consideration that application data sent at that point has
weaker security properties. The ideal case is using KEMTLS-PDK which allows
the sending of application data much earlier and with the stronger notions of
the security properties.

For mutual authentication, KEMTLS has the biggest impact on the hand-
shake completion timings, as an extra flight is needed prior to be able to send
encrypted application data, as seen in Fig. 1. SIKEp434, on average, increases
the handshake timings by approximate 10ms compared with Kyber512 for the
verification of the peer’s Certificate in both cases. For this reason, the PQTLS
completion time is also slowed down when using SIKEp434 even without the
extra round-trip addition. Although, we do not provide timings for the KEMTLS-



Implementing and Measuring KEMTLS 103

PQTLS KEMTLS KEMTLS-PDK

0

100

200
174

157

181
199

187 189

L
at
en

cy
(m

s)

PQTLS KEMTLS

0

200

400

231
192

232

176

0

376

0

346

L
at
en

cy
(m

s)

3rd flight 4th flight 5th flight 6th flight

Fig. 1. Comparison of: on the left, server authentication flows for the 3rd, and 4th
flights; on the right, mutual authentication flows for the 5th and 6th flights. Both
using Kyber512.

Table 3. Total average handshake completion time (in 10−3 s) for server-only authen-
tication.

Handshake Key Exchange Authentication Handshake time

Server Client

TLS 1.3 X25519 Ed25519 187.296 552.518

TLS 1.3+DC X25519 Ed25519 197.568 578.097

TLS 1.3+DC X25519 Ed448 220.576 614.366

PQTLS Kyber512 Dilithium3 199.025 556.203

PQTLS SIKEp434 Dilithium4 219.401 634.546

KEMTLS Kyber512 Kyber512 200.237 792.168

KEMTLS SIKEp434 SIKEp434 277.304 901.292

KEMTLS-PDK Kyber512 Kyber512 209.872 583.582

KEMTLS-PDK SIKEp434 SIKEp434 200.126 561.068

PDK handshake with mutual authentication, our timings can provide an insight
about the cost of the operations and the relevance of the algorithm selection.

4.4 Optimizations

The cost of transmitting post-quantum parameters is tangible in our measure-
ments. These costs can be further optimized by using a form of certificate com-
pression [12] or of suppression of the intermediate certificates [41]. Still, the costs
of post-quantum operations needed remains.



104 S. Celi et al.

Table 4. Total average handshake completion time (in 10−3 s) for mutual
authentication.

Handshake Key exchange Authentication Handshake time

Server Client

TLS 1.3 X25519 Ed25519 190.587 592.801

TLS 1.3+DC X25519 Ed25519 179.653 549.760

TLS 1.3+DC X25519 Ed448 222.902 541.695

PQTLS Kyber512 Dilithium3 191.939 542.599

PQTLS SIKEp434 Dilithium4 223.470 609.646

KEMTLS Kyber512 Kyber512 352.448 881.928

KEMTLS SIKEp434 SIKEp434 571.057 1096.708

5 Conclusions

Our experimental results are the first ones that integrate different post-quantum
handshake alternatives to the TLS 1.3 handshake into a real-world system. These
results have shown us how post-quantum algorithms can impact the handshake
completion time, and, therefore, impact the establishment of real-world con-
nections. In general, on the reliable network that we used, the different post-
quantum TLS 1.3 handshake alternatives do not have a handshake completion
time that is ostensibly different to a regular TLS 1.3 handshake. The only some-
what exception to this is KEMTLS, as the extra half or full round trip that is
added does increase the completion time. For this reason, it is vital to think
more in depth around KEMTLS-PDK, as it could reduce the completion time.

In this paper, we dive into the implementation of post-quantum algorithms in
native Go language, adapt different handshake configurations and modify TLS
extensions, and we explore the deployment of a test bed distributed network
for enabling measurements. As a result, we developed a measurement frame-
work that allows to perform transatlantic post-quantum TLS 1.3 connections
for retrieving random numbers from a Drand network.

We remark that an important piece to achieve crypto-agility on the transition
to post-quantum algorithms is the use of delegated credentials. They allowed us
to advertise post-quantum KEMs or post-quantum signatures without generat-
ing new certificates or asking certificate authorities to support new algorithms.

Future work can involve increasing the number of connections tested, mod-
ifying the latency of the network, and testing with more post-quantum algo-
rithms; we intend to continue our experiments. We further can extend our
experiments to implement KEMTLS-PDK with mutual authentication, but more
investigation is needed to determine the security requirements for encrypting
the ClientCertificate message. Another interesting topic for further investi-
gation lies around on how to properly integrate post-quantum algorithms into
certificate chains and experiment with certificate authorities.



Implementing and Measuring KEMTLS 105

Acknowledgements. Authors wish to thank Latincrypt’s reviewers for their useful
suggestions. A special mention to Jonathan Hoyland for reviewing an early version
of this document. Thom Wiggers was supported during this work by the European
Commission through the ERC Starting Grant 805031 (EPOQUE). Goutam Tamvada
was supported by the Natural Sciences and Engineering Research Council of Canada
(NSERC) Discovery grant RGPIN-2016-05146.

References

1. Adrian, D., et al.: Imperfect forward secrecy: how Diffie-Hellman fails in practice.
In: Proceedings of the 22nd ACM SIGSAC Conference on Computer and Com-
munications Security, CCS 2015, pp. 5–17. Association for Computing Machinery,
New York (2015). https://doi.org/10.1145/2810103.2813707

2. Arai, K., Matsuo, S.: Formal verification of TLS 1.3 full handshake protocol using
proverif (Draft-11). IETF TLS mailing list (2016). https://mailarchive.ietf.org/
arch/msg/tls/NXGYUUXCD2b9WwBRWbvrccjjdyI

3. Aviram, N., et al.: DROWN: breaking TLS using SSLv2. In: 25th USENIX
Security Symposium (USENIX Security 2016), pp. 689–706. USENIX Associa-
tion, Austin, August 2016. https://www.usenix.org/conference/usenixsecurity16/
technical-sessions/presentation/aviram

4. Barnes, R., Iyengar, S., Sullivan, N., Rescorla, E.: Delegated credentials for TLS.
Internet-Draft draft-ietf-tls-subcerts-10, Internet Engineering Task Force, Jan-
uary 2021. https://datatracker.ietf.org/doc/html/draft-ietf-tls-subcerts-10. Work
in Progress

5. Bernstein, D.J.: Curve25519: new Diffie-Hellman speed records. In: Yung, M.,
Dodis, Y., Kiayias, A., Malkin, T. (eds.) PKC 2006. LNCS, vol. 3958, pp. 207–
228. Springer, Heidelberg (2006). https://doi.org/10.1007/11745853 14

6. Beurdouche, B., et al.: A messy state of the union: taming the composite state
machines of TLS. In: 2015 IEEE Symposium on Security and Privacy, pp. 535–552
(2015). https://doi.org/10.1109/SP.2015.39

7. Braithwaite, M.: Experimenting with post-quantum cryptography. Google Security
Blog, Google Online Security, July 2016. https://security.googleblog.com/2016/07/
experimenting-with-post-quantum.html. Accessed 16 Feb 2021

8. Campagna, M., Crockett, E.: Hybrid post-quantum key encapsulation methods
(PQ KEM) for transport layer security 1.2 (TLS). Internet-Draft draft-campagna-
tls-bike-sike-hybrid-06, Internet Engineering Task Force, March 2021. https://
datatracker.ietf.org/doc/html/draft-campagna-tls-bike-sike-hybrid-06. Work in
Progress

9. Crockett, E., Paquin, C., Stebila, D.: Prototyping post-quantum and
hybrid key exchange and authentication in TLS and SSH. In: Sec-
ond PQC Standardization Conference, University of California, Santa Bar-
bara, August 2019. https://csrc.nist.gov/Presentations/2019/prototyping-post-
quantum-and-hybrid-key-exchange

10. Faz-Hernández, A., Kwiatkowski, K.: Introducing CIRCL: An Advanced Cryp-
tographic Library. Cloudflare, Inc, June 2019. https://blog.cloudflare.com/
introducing-circl/. Accessed Feb 2021

11. Feman, R.C., Willis, T.: Securing the web, together. Google Security Blog,
March 2016. https://security.googleblog.com/2016/03/securing-web-together 15.
html. Accessed 16 May 2021

https://doi.org/10.1145/2810103.2813707
https://mailarchive.ietf.org/arch/msg/tls/NXGYUUXCD2b9WwBRWbvrccjjdyI
https://mailarchive.ietf.org/arch/msg/tls/NXGYUUXCD2b9WwBRWbvrccjjdyI
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/aviram
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/aviram
https://datatracker.ietf.org/doc/html/draft-ietf-tls-subcerts-10
https://doi.org/10.1007/11745853_14
https://doi.org/10.1109/SP.2015.39
https://security.googleblog.com/2016/07/experimenting-with-post-quantum.html
https://security.googleblog.com/2016/07/experimenting-with-post-quantum.html
https://datatracker.ietf.org/doc/html/draft-campagna-tls-bike-sike-hybrid-06
https://datatracker.ietf.org/doc/html/draft-campagna-tls-bike-sike-hybrid-06
https://csrc.nist.gov/Presentations/2019/prototyping-post-quantum-and-hybrid-key-exchange
https://csrc.nist.gov/Presentations/2019/prototyping-post-quantum-and-hybrid-key-exchange
https://blog.cloudflare.com/introducing-circl/
https://blog.cloudflare.com/introducing-circl/
https://security.googleblog.com/2016/03/securing-web-together_15.html
https://security.googleblog.com/2016/03/securing-web-together_15.html


106 S. Celi et al.

12. Ghedini, A., Vasiliev, V.: TLS Certificate Compression. RFC 7924, RFC Editor,
December 2020. https://doi.org/10.17487/RFC8879

13. Hoyland, J., Wood, C.: TLS 1.3 extended key schedule. Internet-Draft draft-
jhoyla-tls-extended-key-schedule-03, Internet Engineering Task Force, Decem-
ber 2020. https://datatracker.ietf.org/doc/html/draft-jhoyla-tls-extended-key-
schedule-03. Work in Progress

14. Hülsing, A., Rijneveld, J., Schanck, J., Schwabe, P.: High-speed key encapsulation
from NTRU. In: Fischer, W., Homma, N. (eds.) CHES 2017. LNCS, vol. 10529, pp.
232–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66787-4 12

15. Iyengar, J., Thomson, M.: QUIC: A UDP-Based Multiplexed and Secure Transport.
RFC 9000, May 2021. https://doi.org/10.17487/RFC9000

16. Jao, D., et al.: SIKE. Technical report, National Institute of Standards and Tech-
nology (2020). https://csrc.nist.gov/projects/post-quantum-cryptography/round-
3-submissions

17. Josefsson, S.: Storing Certificates in the Domain Name System (DNS). RFC 4398,
RFC Editor, March 2006. https://doi.org/10.17487/RFC4398

18. Kampanakis, P., Sikeridis, D.: Two post-quantum signature use-cases: non-issues,
challenges and potential solutions. In: 7th ETSI/IQC Quantum Safe Cryptography
Workshop 2019, November 2019. https://eprint.iacr.org/2019/1276

19. Kiefer, F., Kwiatkowski, K.: Hybrid ECDHE-SIDH Key Exchange for TLS.
Internet-Draft draft-kiefer-tls-ecdhe-sidh-00, Internet Engineering Task Force, May
2019. https://datatracker.ietf.org/doc/html/draft-kiefer-tls-ecdhe-sidh-00. Work
in Progress

20. Kumar, D., et al.: Security challenges in an increasingly tangled web. In: Barrett,
R., Cummings, R., Agichtein, E., Gabrilovich, E. (eds.) Proceedings of the 26th
International Conference on World Wide Web, WWW 2017, Perth, Australia, 3–7
April 2017, pp. 677–684. ACM (2017). https://doi.org/10.1145/3038912.3052686

21. Kwiatkowski, K., Langley, A., Sullivan, N., Levin, D., Mislove, A., Valenta,
L.: Measuring TLS key exchange with post-quantum KEM. University of Cal-
ifornia, Santa Barbara, August 2019. https://csrc.nist.gov/Presentations/2019/
measuring-tls-key-exchange-with-post-quantum-kem

22. Lamik, M.: Introducing Cloudflare Radar. The Cloudflare Blog, September 2020.
https://blog.cloudflare.com/introducing-cloudflare-radar. Accessed 16 May 2021

23. Langley, A.: CECPQ2. ImperialViolet, December 2018. https://www.
imperialviolet.org/2018/12/12/cecpq2.html. Accessed 16 Feb 2021

24. Langley, A.: Real-world measurements of structured-lattices and supersingular
isogenies in TLS. ImperialViolet, October 2019. https://www.imperialviolet.org/
2019/10/30/pqsivssl.html. Accessed 16 Feb 2021

25. Lyubashevsky, V., et al.: CRYSTALS-DILITHIUM. Technical report, National
Institute of Standards and Technology (2020). https://csrc.nist.gov/projects/post-
quantum-cryptography/round-3-submissions

26. Marculescu, M.: Introducing gRPC, a new open source HTTP/2 RPC framework.
Google Developers, February 2015. https://developers.googleblog.com/2015/02/
introducing-grpc-new-open-source-http2.html

27. National Institute of Standards and Technology: Post-Quantum Cryptogra-
phy Standardization, January 2017. https://csrc.nist.gov/projects/post-quantum-
cryptography/post-quantum-cryptography-standardization. Accessed 16 May
2021

28. Prest, T., et al.: FALCON. Technical report, National Institute of Standards and
Technology (2020). https://csrc.nist.gov/projects/post-quantum-cryptography/
round-3-submissions

https://doi.org/10.17487/RFC8879
https://datatracker.ietf.org/doc/html/draft-jhoyla-tls-extended-key-schedule-03
https://datatracker.ietf.org/doc/html/draft-jhoyla-tls-extended-key-schedule-03
https://doi.org/10.1007/978-3-319-66787-4_12
https://doi.org/10.17487/RFC9000
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://doi.org/10.17487/RFC4398
https://eprint.iacr.org/2019/1276
https://datatracker.ietf.org/doc/html/draft-kiefer-tls-ecdhe-sidh-00
https://doi.org/10.1145/3038912.3052686
https://csrc.nist.gov/Presentations/2019/measuring-tls-key-exchange-with-post-quantum-kem
https://csrc.nist.gov/Presentations/2019/measuring-tls-key-exchange-with-post-quantum-kem
https://blog.cloudflare.com/introducing-cloudflare-radar
https://www.imperialviolet.org/2018/12/12/cecpq2.html
https://www.imperialviolet.org/2018/12/12/cecpq2.html
https://www.imperialviolet.org/2019/10/30/pqsivssl.html
https://www.imperialviolet.org/2019/10/30/pqsivssl.html
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://developers.googleblog.com/2015/02/introducing-grpc-new-open-source-http2.html
https://developers.googleblog.com/2015/02/introducing-grpc-new-open-source-http2.html
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions


Implementing and Measuring KEMTLS 107

29. Rescorla, E.: The Transport Layer Security TLS Protocol Version 1.3. RFC 8446,
RFC Editor, August 2018. https://doi.org/10.17487/RFC8446

30. Santesso, S., Tschofenig, H.: Transport Layer Security (TLS) Cached Information
Extension. RFC 7924, RFC Editor, July 2016. https://doi.org/10.17487/RFC7924

31. Schanck, J.M., Stebila, D.: A Transport Layer Security (TLS) Extension For Estab-
lishing An Additional Shared Secret. Internet-Draft draft-schanck-tls-additional-
keyshare-00, Internet Engineering Task Force, April 2017. https://datatracker.ietf.
org/doc/html/draft-schanck-tls-additional-keyshare-00. Work in Progress

32. Schanck, J.M., Whyte, W., Zhang, Z.: Quantum-Safe Hybrid (QSH) Ciphersuite
for Transport Layer Security (TLS) version 1.2. Internet-Draft draft-whyte-qsh-
tls12-02, Internet Engineering Task Force, January 2017. https://datatracker.ietf.
org/doc/html/draft-whyte-qsh-tls12-02. Work in Progress

33. Schwabe, P., Stebila, D., Wiggers, T.: Post-quantum TLS without handshake signa-
tures. In: Ligatti, J., Ou, X., Katz, J., Vigna, G. (eds.) ACM CCS 2020: 27th Con-
ference on Computer and Communications Security, pp. 1461–1480. ACM Press,
Virtual Event, 9–13 November 2020. https://doi.org/10.1145/3372297.3423350

34. Schwabe, P., Stebila, D., Wiggers, T.: More efficient post-quantum KEMTLS with
pre-distributed public keys (2021). https://eprint.iacr.org/2021/779

35. Sikeridis, D., Kampanakis, P., Devetsikiotis, M.: Post-quantum authentication in
TLS 1.3: a performance study. In: ISOC Network and Distributed System Security
Symposium - NDSS 2020. The Internet Society, San Diego, 23–26 February 2020

36. Stebila, D., Mosca, M.: Post-quantum Key exchange for the internet and the open
quantum safe project. In: Avanzi, R., Heys, H. (eds.) SAC 2016. LNCS, vol. 10532,
pp. 14–37. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-69453-5 2

37. Steblia, D., Fluhrer, S., Gueron, S.: Hybrid key exchange in TLS 1.3. Internet-
Draft draft-ietf-tls-hybrid-design-03, Internet Engineering Task Force, April
2021. https://datatracker.ietf.org/doc/html/draft-ietf-tls-hybrid-design-03. Work
in Progress

38. Sullivan, N.: Why TLS 1.3 isn’t in browsers yet. The Cloudflare Blog, December
2017. https://blog.cloudflare.com/why-tls-1-3-isnt-in-browsers-yet/. Accessed 15
April 2021

39. Sullivan, N.: A detailed look at RFC 8446 (a.k.a. TLS 1.3). The Cloudflare
Blog, August 2018. https://blog.cloudflare.com/rfc-8446-aka-tls-1-3/. Accessed 16
February 2021

40. Syta, E., et al.: Scalable bias-resistant distributed randomness. In: 2017 IEEE
Symposium on Security and Privacy (SP), pp. 444–460 (2017). https://doi.org/10.
1109/SP.2017.45. https://drand.love

41. Thomson, M.: Suppressing intermediate certificates in TLS. Internet-Draft
draft-thomson-tls-sic-00, Internet Engineering Task Force, March 2019. https://
datatracker.ietf.org/doc/html/draft-thomson-tls-sic-00. Work in Progress

42. Whyte, W., Zhang, Z., Fluhrer, S., Garcia-Morchon, O.: Quantum-Safe Hybrid
(QSH) Key Exchange for Transport Layer Security (TLS) version 1.3. Internet-
Draft draft-whyte-qsh-tls13-06, Internet Engineering Task Force, October 2017.
https://datatracker.ietf.org/doc/html/draft-whyte-qsh-tls13-06. Work in Progress

https://doi.org/10.17487/RFC8446
https://doi.org/10.17487/RFC7924
https://datatracker.ietf.org/doc/html/draft-schanck-tls-additional-keyshare-00
https://datatracker.ietf.org/doc/html/draft-schanck-tls-additional-keyshare-00
https://datatracker.ietf.org/doc/html/draft-whyte-qsh-tls12-02
https://datatracker.ietf.org/doc/html/draft-whyte-qsh-tls12-02
https://doi.org/10.1145/3372297.3423350
https://eprint.iacr.org/2021/779
https://doi.org/10.1007/978-3-319-69453-5_2
https://datatracker.ietf.org/doc/html/draft-ietf-tls-hybrid-design-03
https://blog.cloudflare.com/why-tls-1-3-isnt-in-browsers-yet/
https://blog.cloudflare.com/rfc-8446-aka-tls-1-3/
https://doi.org/10.1109/SP.2017.45
https://doi.org/10.1109/SP.2017.45
https://drand.love
https://datatracker.ietf.org/doc/html/draft-thomson-tls-sic-00
https://datatracker.ietf.org/doc/html/draft-thomson-tls-sic-00
https://datatracker.ietf.org/doc/html/draft-whyte-qsh-tls13-06

	Implementing and Measuring KEMTLS
	1 Introduction
	2 Post-quantum Cryptography in TLS 1.3
	2.1 Reviewing the TLS 1.3 Protocol
	2.2 PQTLS: Signed Post-quantum TLS 1.3
	2.3 KEMTLS: KEMs Everywhere
	2.4 KEMTLS-PDK: Reducing Round Trips

	3 Implementation Details
	3.1 Implementation in Go
	3.2 A Testbed Network

	4 Measurement Experiment and Discussion
	4.1 Experiment Setup
	4.2 Measurements
	4.3 Discussion
	4.4 Optimizations

	5 Conclusions
	References




