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Abstract. The problem of securely outsourcing the computation of a
bilinear pairing has been widely investigated in the literature. Design-
ing an efficient protocol with the desired functionality has, however,
been an open challenge for a long time. Recently, Di Crescenzo et al.
(CARDIS’20) proposed the first suite of protocols for securely and effi-
ciently delegating pairings with online inputs under the presence of a
malicious server. We progress along this path with the aim of LOVE
(Lowering the cost of Outsourcing and Verifying Efficiently) a pairing.
Our contributions are threefold. First, we propose a protocol (LOVE)
that improves the efficiency of Di Crescenzo et al.’s proposal for securely
delegating pairings with online, public inputs. Second, we provide the
first implementation of efficient protocols in this setting. Finally, we eval-
uate the performance of our LOVE protocol in different application sce-
narios by benchmarking an implementation using BN, BLS12 and BLS24
pairing-friendly curves. Interestingly, compared to Di Crescenzo et al.’s
protocol, LOVE is up to 29.7% faster for the client, up to 24.9% for the
server and requires 23–24% less communication cost depending on the
choice of parameters. Furthermore, we note that our LOVE protocol is
especially suited for subgroup-secure groups: checking the correctness of
the delegated pairing requires up to 56.2% less computations than eval-
uating the pairing locally (no delegation). This makes LOVE the most
efficient protocol to date for securely outsourcing the computation of a
pairing with online public inputs, even when the server is malicious.

1 Introduction

Cryptographic bilinear pairings (a.k.a. pairings, in short) have proven to be
an extremely versatile building block to realize novel and advanced crypto-
graphic tools including identity-based encryption [12], short signatures [14],
aggregate signatures [13], and zero knowledge-Succinct Non-interactive ARgu-
ment of Knowledge (zk-SNARK) [27]. Very recently, pairings found applications
in isogeny-based cryptography, to compress public keys in key exchange [45] and
to construct verifiable delay functions [21].
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Pairing-based protocols critically rely on an efficient implementation of the
pairing, which has computational cost far more expensive than any other of the
protocol’s building blocks. Several clever algorithmic breakthroughs [8,41], capi-
talized on efficient software and hardware implementations (see [1], [36, Chapter
11] for a comprehensive overview), producing an impressive reduction of the
latency associated to a pairing. Nonetheless, as of 2015, the timing cost for the
execution of a single pairing on the BN curve at the 128-bit security level, was five
to six times higher than the one of a scalar multiplication (over G1) [46, Table II].
The considerably higher cost of evaluating a pairing motivated a line of research
on how to outsource this computation in a secure and efficient way.

Secure and Efficient Pairing Delegation. For many years, researchers and devel-
opers have addressed the problem of how a resource-constrained device (Client),
can safely delegate the computation of a pairing to a much more powerful com-
putational entity (Server). This setting is particularly relevant in the Internet of
the Things (IoT): if secure and efficient pairing delegation is possible, IoT devices
(acting as clients) can manage advanced pairing-based protocols without having
to pay the cost of locally evaluating pairings. Intuitively, a protocol for secure
and efficient pairing delegation should provide mechanisms allowing the client
to verify the correctness of the output returned by the server. With respect to
efficiency, we want the client’s computational costs associated to such delega-
tion be strictly less expensive than the action of computing the pairing solely on
the client’s device. However, the verification normally involves the computation
of costly exponentiations (over GT ), membership tests (in GT ), and at times,
additional lighter operations such as scalar multiplications (on G1 and G2). Pro-
gressive efficiency improvements on pairing evaluation rapidly closed the gap
between the cost of verifying the delegated pairing and actually computing the
pairing locally. As a result, many of the pairing delegation protocols with the
verifiability property proposed to date [16,17,25,31], fail to meet the efficiency
requirement stated above. This situation has called to question the whole idea
of delegating a pairing in the first place.

In 2020, Di Crescenzo, Khodjaeva, Kahrobaei and Shpilrain put forth a
promising solution to realize efficient pairing delegation in the offline/online
setting [20]. In a nutshell, this means that the protocol splits into two subse-
quent phases: an offline phase (run by the client only), followed by an online
phase when the inputs to the pairing are disclosed and the client interacts with
the server. The key idea is that the offline phase is independent of the pairing
inputs, can be run at any point in time, and collects the bulk of the computation
required from the client. In contrast, the online phase should be as lightweight
as possible for the client, so that verifying the outsourced pairing computation
is less expensive than evaluating the pairing locally on the client device. In this
paper, we carefully investigate about the efficiency claims of [20] in the con-
text of the new parameter recommendations for pairings at the 128- and 192-bit
security level. We additionally introduce minor changes to the original protocol
to further optimize its efficiency and test our implementation on a simulated
client-server interaction.
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Our Contributions. This paper provides the first implementation of a secure
and efficient protocol for pairing delegation in the offline/online setting. We focus
only on the case of public inputs, because our experimental results indicate that
delegating a pairing with private inputs remains inefficient and more expensive
than performing the local computation. Concretely, we take the most efficient
protocols proposed in [20] and make slight but clever modifications with the aim
of LOVE (Lowering the cost of Outsourcing and Verifying Efficiently) a pairing.
As a result, we obtain the most efficient protocols to date for securely outsourcing
the computation of a pairing with online public inputs, even in cases where
we cannot trust the server. We formally prove the security for our ‘adjusted’
protocol LOVE. Finally, we experimentally evaluate LOVE with several choices
of curves at different security levels. As a byproduct (and a result of independent
interest), we provide updated costs for scalar multiplication and exponentiation
in pairing groups using optimized implementations. Interestingly, in lieu of the
new optimizations, the performance improvement of delegating a pairing is lower
than the reported in previous work, when state of the art implementations are
used and the cost of membership checks in GT is considered. Furthermore, our
results reinforce the observation stated in [6] that even at the cost of a small
performance penalty for its individual building blocks, choosing subgroup-secure
parameters provides an overall better performance when the whole protocol is
analyzed.

Applications. Delegating the computation of a pairing on public inputs may seem
a task with little use, yet, we will argue next that it has interesting implications
in the realm of efficient verification.

First of all, such a scheme can be deployed to realize server-aided signature
verification for schemes that involve pairings in the verification process. This
setting has been studied, e.g., in [37], and becomes of particular interest for
verifications that involve several pairing computations, e.g. [4]. We note that, if
one assumes a trusted set up (for instance, a set up that outputs γ = e(P1, P2)),
verifiers could leverage the pairing γ provided by the set up in their offline
phase, and thus run the signature verification without needing to ever compute
a pairing locally. This simple observation is of particular interest for IoT devices,
where one may wish to minimize the code loaded on a constrained device without
compromising too much its limited computing resources.

Another venue of application for delegating the computation of a pairing
on public inputs is the recent isogeny-based Verifiable Delay Function (VDF)
construction presented in [21]. VDFs [11], have important applications for
Blockchain proof of space and stake, design of trustworthy randomness bea-
cons and benchmarking of high-end servers, among others. In a VDF setting,
given an input challenge x and public parameters pp, the Prover must compute
a function Eval(pp, x) �→ (y, π), where y is the output of the function Eval and
π is its proof. A second entity, known as the Verifier, must compute a deci-
sion function Verify(pp, x, y, π) �→ {True, False}, which determines whether the
Prover satisfactorily completed its task or not. By design running Eval shall
take time comparable with a prescribed delay T ; more formally, it should be
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computationally intractable, regardless of the amount of parallelization employed
by the Prover, to calculate Eval in time less than T . Moreover, once y along
with its proof π are produced, the output y should be easily verifiable by any-
one in a much shorter Polylog(T ) time. Recently, De Feo, Masson, Petit and
Sanso proposed in [21] an isogeny-based VDF construction that uses a pairing
for its verification algorithm. In this protocol, the verifier sets up the scheme,
and checks the correctness of the evaluation’s output by computing two pairings
(and by performing other, less expensive checks). Notably, the pairings’ inputs
are public values, so it seems natural to apply our technique: include the pairing
delegation setup in the VDF set up, and enjoy a more efficient verification pro-
cedure. This change clearly increases the computational demands on the Prover
(running Eval) and thus its delay, which is a desirable feature in the VDF set-
ting, and at the same time it speeds up the verification. At the moment, the
improvement we described above only works for one of the pairings (the right
hand side one, on line 2. of Verify in Fig. 1 and 2 of [21]) and assuming that the
verifier knows the point Q at set up time.

1.1 Related Work

The seminal work on secure pairing delegation protocols is due to Girault and
Lefranc [25] who formalized this notion as Server-Aided Verification. The aim
of [25] was to improve the efficiency of signature verification by relying on a
server to carry out the expensive pairing computation. This approach sparked
a long line of research, which includes more expressive models for server-aided
verification [18,37,43], security notions for pairing delegation (in the framework
of verifiable computation) [17], and several constructions aiming at concrete effi-
ciency and/or better security [16,20,30,31,42,44]. Paradoxically, the state of the
art in this matter seems to suggest that delegating a pairing computation in a
secure and verifiable way inherently requires more computations than evaluating
the pairing locally. To overcome this problem, Di Crescenzo et al. [20] adopted
a new strategy. Instead of relying on the standard server-aided verification syn-
tax (two-message protocol), they considered an offline phase (traditionally called
key generation, which runs independently of the computational input), and an
online phase where the pairing arguments are disclosed and the verifier (acting as
a client) interacts with the server. The offline/online approach seems a winning
concept: it allows the verifier to run the bulk of computations during the offline
phase, which may happen at any point in time before the actual pairing com-
putation is needed. Once the pairing arguments are disclosed, the verifier enjoys
more efficient procedures that rely on the output of the expensive offline phase.
While this setting is promising, [20] provides no concrete implementation of the
suggested protocols and the efficiency estimates are extrapolated from a hypo-
thetical text-book implementation using the well-known, but by now outdated,
performance figures from [15].

Interestingly, the problem of pairing delegation appears to be easier in the
batch setting, where the client wants to compute several pairings e(Ai, Bi) for
Ai ∈ G1 and Bi ∈ G2. The first solution came out in 2007, when Tsang, Chow
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and Smith [40] proposed the first batch pairing delegation protocols and related
security notions. They classified the possible pairing arguments in 16 types (all
combinations of public/secret, variable/constant inputs) and proposed protocols
tailored to 4 of these settings. Unfortunately, their main protocol was limited
to pairings sharing the same secret first argument and involved costly exponen-
tiation in the target group. Later, Mefenza and Vergnaud [34] proposed new
efficient batch pairing delegation protocols in the same settings by adopting the
endomorphism idea from Guillevic and Vergnaud [30] and reducing the size of
exponents. Performance improvements ranged from 40% to 74% at the 128-bit
security level in comparison with previous work.

2 Preliminaries

Notation. We denote by λ (resp. σ) the computational (resp. statistical) secu-
rity parameter of a scheme. We use choosing at random or randomly choosing to
refer to sampling from the given set according to the uniform distribution, and
denote this by x ←$ X. We denote by poly(λ) a generic polynomial function in
the variable λ, and by negl a negligible function, that is negl(λ) < 1/poly(λ), for
any poly and large enough values of λ. We denote by cost(·) a function that, given
as input an algorithm returns its computational cost (in some desired computa-
tional model). Unless otherwise specified, all groups we work with have order q,
which is a 2λ-bit prime; and Pi denotes a generator of the group cyclic group
Gi. We denote by Bool(·) the boolean function that returns 1 if the statement
given in input is true/satisfied, and 0 otherwise.

The parameters p, q, φk(p) and k, denote the base field prime, the pairing
group order and the k-th cyclotomic polynomial evaluated at p and the embed-
ding degree, respectively. These parameters are formally defined next.

2.1 Pairings

Let E be an elliptic curve defined over the finite field Fp, where p is a large
prime. Denote by E(Fp) the set of points (x, y) ∈ Fp that satisfy the elliptic
curve equation along with the point at infinity denoted by O. It is known that
E(Fp) forms an additive Abelian group with respect to the elliptic point addition
operation. Let #E denote the cardinality of E(Fp), and let q be a large prime
that divides #E with gcd(q, p) = 1. Then, the embedding degree of a curve is
defined as the smallest integer k, such that q divides pk − 1. Let Fpk be an
extension field of Fp of degree k, and let F

∗
pk be the field composed by the

non-zero elements of Fpk . We say that G1,G2 and GT are an order-q subgroup
of E(Fp), an order-q subgroup of E(Fpk), and the order-q subgroup of F

∗
pk ,

respectively. Groups G1,G2 are typically written additively, while group GT is
always written multiplicatively.

The standard procedure for computing a pairing is based on an iterative
algorithm, proposed by Victor Miller in 1986 [35]. Let R ∈ E(Fpk) and let s
be a non-negative integer. A Miller function fs,R of length s is a function in
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Fpk(E) with divisor (fs,R) = s(R) − (sR) − (s − 1)(∞), where ∞ denotes the
point at infinity. Miller’s algorithm calculates a value f that is only unique
up to a multiplicative power of q. The reduced Tate pairing computes a final
exponentiation step, where the value f is raised to the power (pk − 1)/q. This
exponentiation is known as the final exponentiation, and maps the result into
the desired subgroup of q-th roots of unity. For even embedding degree k and
k-th cyclotomic polynomial ψk(·), the final exponentiation is split in the easy
and hard parts as (pk − 1)/q =

[
(pk/2 − 1) · (pk/2 + 1)/φk(p)

] · [φk(p)/q]. This
way one gets a bilinear pairing, whose main properties are summarized below.

A pairing is an efficiently-computable map e : G1 × G2 → GT defined over
groups of prime order q, that enjoys the following properties:

Bilinearity. e(aP1, bP2) = e(P1, P2)ab, ∀a, b ←$
Zq, P1 ∈ G1 and P2 ∈ G2

Non-degeneracy. If P1 and P2 are generators of G1 and G2 respectively, then
gT = e(P1, P2) is a generator for GT .

The pairing e is of Type 1 (symmetric) if G1 = G2. This implies that the curve
is equipped with a distortion map to produce a linearly independent second
argument for non-degeneracy. The pairing e is of Type 3 (asymmetric) if G1 �= G2

and there are no homomorphisms between the two groups. In the latter case a
twist is typically used to compress group elements in G2.

The state of the art in pairing-based cryptography employs the optimal Ate
pairing [41] operating on a family of curves of small embedding degree, called
pairing-friendly [22]. Pairing-friendly curves are specified by means of associated
parameterized polynomial formulae for the prime modulus p and the prime order
subgroup q. For the sake of efficiency, these formulae are instantiated using seeds
with low Hamming weight (cf. Table 1). Known pairing-friendly families offer
different trade-offs between the field sizes (for security in GT ), and curve orders
(for security in G1 and G2). With the aim of achieving a better performance, we
normally choose larger embedding degrees when targeting higher security levels.
This design decision allows us to work with moderate sizes of the base field and
the curve order.

Selecting a suitable pairing-friendly curve and its associated finite fields and
pairing parameters requires trying many seeds with low Hamming weight, until a
curve with the right performance properties and security requirements is found,
inside the chosen family. Design aspects to be considered include the existence
of endomorphisms to accelerate scalar multiplication and exponentiation in the
pairing groups, the degree of the twist, an optimized towering to represent Fpk ,
efficient ways to test for membership or to hash bit strings to group elements,
among others. Security requirements include the hardness of solving the dis-
crete logarithm problem in all groups, and the necessity of verifying that group
elements have the right order and were not maliciously selected. The latter is
alleviated by choosing curves providing subgroup security [6], which mandates
that E(Fp) and E(Fpk) do not contain subgroups significantly smaller than the
subgroups G1 and G2, both of prime order q. The related GT -strength security
notion applies this idea to GT only [38]. Checking the order of group elements
is called subgroup membership testing.
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After the TNFS algorithm was proposed to solve the discrete logarithm
in parameterized composite-degree extension fields [32], prime-order Barreto-
Naehrig curves [9] lost the top performance spot at 128-bit security. Cur-
rently, the families that offer better performance are Barreto-Lynn-Scott curves
(BLS) [7] with embedding degree 12 at the 128-bit security level, and 24 at the
192-bit security level [5]. The corresponding curve with embedding degree 48 has
been considered for the 256-bit security level [33].

3 Delegating Pairings with Online Public Inputs

In this section, we recall part of Di Crescenzo et al.’s work [20] both for complete-
ness and for providing more intuitive notations, descriptions, as well as a more
rigorous formalism. Concretely, we begin by presenting a formal framework for
offline/online pairing delegation, and a suitable security model. Our goal here
is to spell out the details of the intuitions provided in [20], by having rigor-
ous definitions, which simplify the well-established VC model of [24] to the case
of pairing delegation. We then describe the original protocol for online public
inputs provided in [20], with an improved notation, and along with correctness,
security and efficiency considerations.

3.1 Modeling Offline/Online Pairing Delegation Protocols

We describe a formal model for offline/online pairing delegation. In a nutshell,
this model makes use of correctness and (output) security as introduced for veri-
fiable computation (VC) by Gennaro, Gentry and Parno [24]. These notions are,
however, adapted (and simplified) to the special setting of our work. We prefer to
re-name the standard VC algorithms (KeyGen, ProbGen, Compute, and Verify)
to something with a more explicit meaning for our setting, namely (offSetup,
onSetup, Compute, and onVerify).

Definition 1 (Offline/Online Pairing Delegation). An offline/online pro-
tocol for pairing delegation consists of the five algorithms (GlobalSetup, offSetup,
onSetup,Compute, onVerify) with the following syntax:

GlobalSetup(λ) → bilin.group this is a randomized algorithm that takes as input
a value λ (the computational security parameter) and returns the description
of a bilinear group bilin.group = (q,G1, P1,G2, P2,GT , e), where q is a 2λ-
bit prime, and e is a pairing. We assume bilin.group is implicitly available
to all subsequent algorithms. (This is a one-time set up).

offSetup(σ) → off.pp this is a randomized algorithm that takes as input a value
σ (the statistical security parameter). It returns some values off.pp. (This
algorithm is run in by the client during the offline phase).

onSetup(off.pp, (A,B)) → (pub, sec) this is a randomized algorithm that takes
as input off.pp, and a pairing argument (A,B) ∈ G1×G2. It returns a public
value pub, and a secret value sec. (This algorithm is run by the client, and
is the first algorithm of the online phase. At this point off.pp and sec are
only known to the client, while pub will be sent to the server).
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Compute(pub) → out this is a deterministic algorithm that takes as input the
public value pub; and returns a public output out. (This algorithm is run by
the server, and is the second algorithm of the online phase).

Verify(sec, out) → value this is a deterministic algorithm that takes as input
the secret value sec (generated by the online setup) and the server’s output
out. It returns a value value ∈ {GT ∪ ⊥}. (This algorithm is run by the
client, and is the last algorithm of the online phase. It is designed to verify
the correctness of the computation carried out by the server).

Figure 1 displays a graphical summary of the syntax introduced in Definition 1.

client server

offSetup() → off.pp // offline phase

onSetup(off.pp, (A,B)) → (pub, sec) // begin online phase (A, B)

Compute(pub) → out

onVerify(sec, out) → value // end online phase

off.pp

pub

out

Fig. 1. Diagram visualizing the model for offline/online pairing delegation. Notably,
the pairing arguments (A, B) are revealed only at the start of the online phase. The
one-time GlobalSetup is omitted from the picture.

A protocol for offline/online delegation of a pairing computation is correct
if for all possible input arguments (A,B) ∈ G1 × G2, (and for any possi-
ble randomness used by offSetup and onSetup) the protocol execution returns
value = e(A,B), assuming all algorithms are run honestly. This is formalized
by the following definition (which is closely similar to the correctness for VC
in [24], but tailored to our case of interest).

Definition 2 (Correctness). A protocol for offline/online pairing delegation
is correct if for any value of λ and σ, and for all of possible input arguments
(A,B) ∈ G1 × G2 it holds that:

Prob

⎡

⎢
⎢
⎢
⎢
⎣
value = e(A,B)

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

bilin.group ← GlobalSetup(λ)
off.pp ← offSetup(σ)

(pub, sec) ← onSetup(off.pp, (A,B))
out ← Compute(pub)

value ← onVerify(sec, out)

⎤

⎥
⎥
⎥
⎥
⎦

= 1.
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A protocol for offline/online delegation of a pairing computation is secure
if no adversary (in the shoes of a malicious server) is able to produce a value
out∗ that is not rejected by the verifier and that results in a incorrect output
value∗ �= e(A,B). This is formalized in the following security definition and the
experiment Expsec

A . Notably, Expsec
A is a simplification of the security experiment

for VC in [24]: we reduce the number of adversarial queries to a single one, since
in the setting of [20], every new input (A,B) requires a new run of offSetup. Our
adversary is a pair of algorithms A = (A1,A2) that share an internal state st.

Security Experiment Expsec
A (n, σ)

1 : bilin.group ← GlobalSetup(n)

2 : off.pp ← offSetup(σ)

3 : ((A, B), st) ← A1(n, σ, bilin.group)

4 : (pub, sec) ← onSetup(off.pp, (A, B))

5 : out
∗ ← A2(st, pub, (A, B))

6 : value
∗ ← onVerify(sec, out∗)

7 : if value
∗ = ⊥ return 0

8 : if value
∗ = e(A, B) return 0

9 : return 1

We remark that, in order to reach the winning condition in Expsec
A , the adversary

needs to produce an output out∗ that is not rejected by the verification (i.e.,
value∗ �= ⊥) and that yields an incorrect value value∗ �= e(A,B). Such an
output would indeed fool the client into accepting an incorrect value as the result
of the outsourced pairing computation. A protocol is secure if any adversary has
only negligible probability of winning the security experiment Expsec

A .

Definition 3 (Security). A protocol for offline/online pairing delegation is
said to be secure if for any probabilistic, polynomial time algorithm A = (A1,A2)
it holds that:

Prob [Expsec
A (λ, σ) = 1] ≤ 2−σ + negl(λ).

Regarding efficiency, we cannot use the amortized efficiency framework of
VC, where the computational cost of running KeyGen –our offSetup– can be
amortized over several executions of the core delegation protocol. In our case,
for security reasons, the output of offSetup can be used only for a single pairing
delegation. As we discussed already in the introduction, it is hopeless to expect
a pairing delegation protocol be efficient in the strictest sense; the best we can
hope to achieve is efficiency in the online verification. This is formalized in the
following definition.

Definition 4 (Efficient Online Verification). A protocol for offline/online
pairing delegation is said to have efficient online verification if (cost(onSetup) +



LOVE a Pairing 329

cost(onVerify)) < cost(e(·, ·)), i.e., the cost of running the online phase on the
client-side is less than the cost of computing the pairing on the client’s device.

3.2 Di Crescenzo et al.’s Protocol

In [20], Di Crescenzo et al. propose five different protocols for securely delegat-
ing the computation of e(A,B), given the points A ∈ G1, B ∈ G2. The most
efficient protocol (described in Section 3 of [20], and here in Figure 2) works in
the setting where (A,B) are public. In the protocol description, the value q
(which determines the size of the field from which r is sampled), depends on
the security parameter λ (that sets up the bilinear group). The value σ, instead,
represents the parameter for statistical security that delivers the information
theoretic security guarantee of the protocol. Finally, we recall that the handle
bilin.group = (q,G1, P1,G2, P2,GT , e) generated by GlobalSetup(λ), is avail-
able to all algorithms.

offSetup(σ) → off.pp

1 : U1 ←$
G1, U2 ←$

G2

2 : c ←$ [1, . . . , 2σ], r ←$
Z

∗
q

3 : V2 ← (r−1 mod q) · U2

4 : γ ← e(U1, U2)

5 : off.pp := (c, r, U1, U2, V2, γ)

onSetup(off.pp, (A, B)) → (pub, sec)

1 : parse

off.pp = (c, r, U1, U2, V2, γ)

2 : V1 ← r · (A − U1)

3 : W2 ← c · B + U2

4 : pub := (A, B, V1, V2, W2)

5 : sec := c

onVerify(sec, out) → value

1 : parse sec = c

2 : if Bool(γ0 /∈ GT ) return ⊥
3 : if Bool(γ2 /∈ GT ) return ⊥
4 : if Bool(γ1 = γc

0 · γ2 · γ)

return ⊥
5 : value := γ0

Compute(pub) → out

1 : parse pub = (A,B, V1, V2, W2)

2 : γ0 ← e(A,B)

3 : γ1 ← e(A,W2)

4 : γ2 ← e(V1, V2)

5 : out := (γ0, γ1, γ2)

off.pp

pub

out

Fig. 2. Di Crescenzo et al.’s protocol for secure pairing delegation with online public
inputs (see Section 3 in [20]). This description uses a different, more intuitive notation.
The GlobalSetup is not included explicitely as it is trivial.

Correctness. The correctness is trivial by inspection. By line 2 in Compute and
line 5 in onVerify it follows that value = γ0 = e(A,B), since for correctness
all parties are required not to deviate from the algorithms descriptions, and all
communication happens via a perfect, noise-free channel.
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Security. The security essentially relies on the fact that an adversary (playing
the role of a malicious server) cannot guess the challenge value c, except with
probability 2−σ (which is small by construction). We refer the reader to [20] for
a detailed security proof.

Efficiency. Regarding efficient online verification, we would need to estimate the
client’s computational cost in the online phase, i.e., cost(onSetup)+cost(onVerify)
and compare it to the cost of computing the pairing cost(e(·, ·)). This is already
done by [20] in an abstract way through a theoretical complexity analysis based
on cost estimates extracted from Bos et al.’s work [15]. Interestingly, this effi-
ciency analysis disregards the cost of membership testing in GT which can be
quite significant for some parameters [6]. In contrast, we aim to provide concrete
efficiency analysis of complete algorithm executions (see Sect. 5). To this end,
we implement the protocol in Fig. 2, collect actual computational complexity
and timings, and compare its performance against our LOVE variant (that we
introduce in the next section, Fig. 3).

4 Our Protocol for LOVE a Pairing

Our LOVE protocol is obtained from few simple but clever twists on the original
proposal of [20] presented in Fig. 2. Concretely, LOVE’s GlobalSetup, offSetup
and onSetup are the same as in the previous proposal; the only changes are in
Compute and onVerify, and we highlight them with a frame box in Fig. 3.

onVerify(sec, out) → value

1 : parse sec = c

2 : if Bool(γ0 /∈ GT )

return ⊥
3 : if Bool( γ = γc

0 · γ )

return ⊥
4 : value := γ0

Compute(pub) → out

1 : parse pub = (A, B, V1, V2, W2)

2 : γ0 ← e(A, B)

3 : γ1 ← e(A, W2)

4 : γ2 ← e(V1, V2)

5 : γ ← γ1 · γ−1
2

6 : out := (γ0, γ )

out

Fig. 3. LOVE: Lowering the cost of Outsourcing and Verifying Efficiently a pairing.
The algorithms GlobalSetup, offSetup and onSetup are exactly as in Fig. 2. For clarity,
we frame the points in which LOVE differs from the previous proposal.

Correctness. The correctness of our LOVE protocol (depicted in Fig. 3) is evident
by inspection: value := γ0 (line 4 in onVerify ) and γ0 ← e(A,B) (line 2 in
Compute).
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Security. The security proof for LOVE follows from the same arguments as the
one for original protocol given in [20]. For completeness, we present below the full
proof for our LOVE variant using the formalism of the offline/online framework
introduced in Sect. 3.1.

In the security experiment Expsec
A (λ, σ), A chooses the pairing argument

(A,B) ∈ G1×G2, and receives the string pub = (A,B, V1, V2,W1). The adversary
wins the game if she can forge an output out∗ = (γ∗

0 , γ′∗) on which onVerify
returns value /∈ {⊥, e(A,B)}, i.e., the verification does not reject the forgery
and returns a value different from the correct one.

Since we work with cyclic groups, each element has a unique representation as
a multiple of a generator. For convenience let us describe the elements in pub in
terms of their respective discrete logarithms (convention: lower case Latin letters
denote the dlog of the corresponding capital case group element): A = a · P1,
B = b · P2, U1 = u1 · P1, V1 = v1 · P1, U2 = u2 · P2, V2 = v2 · P2, W2 = w2 · P2.
By construction we have: ⎧

⎨

⎩

v1 = ra − ru1

v2 = r−1u2

w2 = cb + u2

(1)

where u1, u2 are uniform random variables (u.r.v.) on Zq, r is a u.r.v. on Z
∗
q ,

and c is a u.r.v. on [1, . . . , 2σ]. We make no assumptions on the distributions of
a and b since these may be chosen by the adversary.

Our first step is to prove that pub leaks no information about c. We do so
by showing that the distribution of (v1, v2, w2), seen as the Cartesian product of
the random variables obtained as the combination of (a, b, c, r, u1, u2) defined in
System (1), is independent of the distribution of (a, b, c). Formally,

Prob[{(v1, v2, w2)}|{(a, b, c)}] = Prob[{(v1, v2, w2)}] + negl(λ).

Proposition 1. Prob[{(v1, v2, w2)}] is negligibly close to q−3 (u.r.v. on Z
3
q).

This is immediate since adding a u.r.v. defined on Zq to any r.v. on any subset
of Zq yields a u.r.v. on Zq (this is the argument for v1 and w2); and any r.v.
on any subset of Zq multiplied by a u.r.v. on Zq yields a u.r.v. with overwhelm-
ing probability, i.e., except when either variable takes the value 0 (this is the
argument for v2). The latter event has probability q−1 which is negligible in the
security parameter λ (r �= 0 since it is invertible).

Our next goal is to show that the same statement holds even when condi-
tioning the probability to a given event {(a, b, c)} ∈ Zq × Zq × [1, . . . , 2σ].

Proposition 2. Prob[{(v1, v2, w2)}|{(a, b, c)}] is negligibly close to q−3.

This is immediate for the same reasoning as Proposition 1. In detail, w2 =
cb+u2 is uniformly distributed over Zq since so is u2, even conditioned to (b, c).
Whenever u2 �= 0, v2 = r−1u2 is uniformly distributed since so is r, and this
holds independently of b, c and w2. Finally, v1 = ra−ru1 is uniformly distributed
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since so is u1 (and r �= 0 since it is invertible by construction), and this holds
independently of a, b, c and v2, w2.

Once established that pub leaks no information about c to A (except with a
negligible probability in λ), we can move on to consider A’s forgery attempts.

Proposition 3. Given γ = e(U1, U2) ∈ GT , for any eligible forgery, i.e., for
any (γ∗

0 , γ′∗) ∈ G
2
T with γ∗

0 �= e(A,B), there exists a unique value c, for which it
holds that γ′∗ = γ∗

0
c · γ.

Because GT is a multiplicative group, we can re-write the probabilistic verifi-
cation check as γ∗

0
c = γ′∗ · γ−1. Since GT is cyclic and of prime order, any

element of GT is a generator (except for its unit). Thus, c = DLogγ∗
0
(γ∗

0
c) =

DLogγ∗
0
(γ′∗ · γ−1) is unique, modulus q (the group order).

Proposition 4. For any out∗ = (γ0∗, γ′∗) ∈ G
2
T such that γ0

∗ �= e(A,B),
Expsec

A (λ, σ) outputs 1 with probability at most 2−σ + negl(λ).

By Propositions 1 and 2, the string pub does not leak any information about c. This
implies that, for a malicious server, all values in [1, . . . , 2σ] are still equally likely for
c, even when conditioning over the A’s view pub. By Proposition 3, the probability
that any two values (γ∗

0 , γ′∗) ∈ GT satisfy the probabilistic test is one divided by
the number of possible values c can take. Since to A all values of c are still equally
likely, we get: Prob[Expsec

A (λ, σ) = 1] ≤ 2−σ + negl(λ), which corresponds to A
randomly guessing the value γ′∗ that passes the verification equation (there are
only 2σ such values, given that γ0

∗, γ ∈ GT and c ∈ [1, . . . 2σ]), or A’s view leaking
some information about c. �

Efficiency. The next section collects the actual computational complexity, tim-
ings and performance comparison against the original proposal of [20]. Here we
provide only high-level arguments by counting the main operations of both pro-
tocols. Compared to the original protocol in Fig. 2, the onVerify algorithm of
LOVE saves one membership test for a GT group element, and one multipli-
cation in GT . Regarding communication, LOVE beats the original protocol by
transmitting one less GT -element. Moreover, from the server side, LOVE’s opti-
mization also allows to compute γ′ as a product of pairings and share the final
exponentiation, which brings potential additional efficiency gains.

5 Implementation Results

We implemented LOVE and Di Crescenzo et al.’s protocol [20] using four differ-
ent sets of parameters with the help of the RELIC cryptographic library [2]. The
first choice is the legacy BN-254 curve previously used to set speed records [3]
at the 128-bit security level, whose security guarantees have been degraded to a
security level lying somewhere between 100 and 110 bits. The second choice is the
curve BN-382, adjusted for new security levels. The third choice is BLS12-381
with embedding degree k = 12 and 255-bit prime-order subgroup popularized
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by the ZCash cryptocurrency [10]. The fourth choice is BLS12-383, a GT -strong
curve generated by Scott [38,39] for applications where subgroup membership
checking is performance-critical.1 The last choice is the BLS24-509 curve origi-
nally proposed by Costello [19] and recently suggested by Guillevic as promising
at the 192-bit security [28]. RELIC provides dedicated Assembly acceleration for
Intel 64-bit platforms for all these curves using a shared codebase, which means
that finite field arithmetic is implemented using essentially the same techniques,
which permits fair comparisons across different curves and protocols.2 Given that
our choices of λ range from 100 to 192, in order to improve protocol performance
we selected a much lower statistical security level of σ = 50 bits in comparison
to 128 used in [20].

Table 1. Parametrization and concrete parameters for the BN, BLS12 and BLS24
pairing-friendly curves used in our implementation. For the specified seed choice z0,
the curve BN-254 provides around 100 bits of security; and the curves BN-382, BLS12-
381 and BLS12-383 provide a conjectured 128-bit security level. The curve BLS24-509
yields a conjectured security level of 192-bits.

BN curves: k = 12 BLS12 curves: k = 12 BLS12 curves: k = 12

p(z) 36z4 + 36z3 + 24z2 + 6z + 1 (z − 1)2(z4 − z2 + 1)/3 + z (z − 1)2(z8 − z4 + 1)/3 + z

q(z) 36z4 + 36z3 + 18z2 + 6z + 1 z4 − z2 + 1 z8 − z4 + 1

t(z) 6z2 + 1 z + 1 z + 1

h(z) 1 (z − 1)2/3 (z − 1)2/3

E b z0 �log2 p� �log2 q� �log2 h�
BN-254 2 −(262 + 255 + 1) 254 254 1

BN-382 2 −(294 + 278 + 267 + 264 + 248 + 1) 382 382 1

BLS12-381 4 −(263 + 262 + 260 + 257 + 248 + 216) 381 255 126

BLS12-383 4 264 + 251 + 224 + 212 + 29 383 256 126

BLS24-509 1 −251 − 228 + 211 − 1 509 408 100

Table 1 summarizes the main parameters corresponding to the BN [9], BLS12
and BLS24 [7] families of elliptic curves. Note that all of these curves are param-
eterized by an integer z, and they are defined by an equation of the form
Y 2 = X3 + b, and have a twist of degree d = 6. Table 1 also reports the salient
parameters of the BN, BLS12 and BLS24 curve instantiations using a concrete
choice of seed z0, suitable for implementing pairing-based protocols at the 128-
and 192-bit security level (this last security level is only achieved by the curve
BLS24-509). The requirements for these security levels are in good agreement
with the recommendations recently given in [28,29].

1 Following the definition given in [38], a curve is said to be GT -strong, if φk(p)/q does
not have small factors.

2 The resulting code is available in the library repository for reproducibility.
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Membership Testing in GT . The traditional way of performing a subgroup mem-
bership test for a group element g, i.e., to explicitly verify whether or not g ∈ GT ,
is to exponentiate g by the group order q to check whether gq is equal to the iden-
tity. An alternative way is first checking if g belongs to the cyclotomic subgroup
of order φk(p). Thanks to the Frobenius endomorphism, this is an inexpensive
operation (see below). If this test is passed, the second check consists of raising
g to a power given by the cofactor φk(p)/q, such that the final result lies in the
right subgroup. For GT , the first strategy is usually more efficient because the
cofactor φk(p)/q is typically considerably large, having, for the curve families
considered in this paper, a bitlength at least three times larger than that of q.

For the specific case of prime-order BN curves, we know that q = p + 1 − t,
so testing for membership can be done by checking that gq = gp+1−t ?= 1T , or
gp ?= g6z2

, which costs an efficient Frobenius map and an exponentiation by the
short exponent 6z2 [38]. The exponentiation can be performed after checking
that g is in the cyclotomic subgroup of order p4 − p2 + 1 through the equation
g · gp4 ?= gp2

, which only requires a few applications of powers of the Frobenius
and one multiplication. In the cyclotomic subgroup, faster [26] and compressed
squarings [3] are available and are favored due to the low Hamming weight of
the exponent.

The case for BLS12 curves is split into the two options, but we start by
checking for cyclotomic subgroup membership in both. The BLS12-383 curve is
GT -strong, so further checks can be omitted. For BLS12-381, the situation is
more complicated, as the cofactor is known to be composite but hard to factor.
A conservative way involves exploiting gq = g(p+1−t)/h ?= 1T to check gp ?= gz

and gh �= 1T , as implemented in the MIRACL library3. A faster way consists of
following the recommendation in [6] to perform the exponentiation by the group
order with the 4-GLS method using the Frobenius as an efficient endomorphism
in GT [23]. The 4-dimensional decomposition is fixed and sparse for the group
order, such that the exponentiation requires only an exponentiation by sparse z,
two multiplications and two applications of the Frobenius.

For the BLS24-509 curve, we first check for membership in the cyclotomic
subgroup of order p8 − p4 + 1 and then proceed with the same conservative and
fast strategies as in the BLS12 curve, namely, exploiting the group order equation
or optimizing the 8-GLS exponentiation. The latter approach only involves an
exponentiation by z followed by four multiplications and four Frobenius.

5.1 Timings for Operations in Pairing Groups

We implemented the conservative and fast membership testing in GT as
described in the previous section, and benchmarked the other pairings group
operations on a high-end Intel Core i7-6700K Skylake processor running at 4.0
GHz, with HyperThreading (HT) and TurboBoost (TB) turned off to reduce
measurement noise. RELIC was built for each curve using the available config-
uration presets with GCC 11.0.1 on a Fedora 34 operating system.
3 https://github.com/miracl/MIRACL/.

https://github.com/miracl/MIRACL/
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The target platform is obviously not representative of an embedded sys-
tem, but to keep comparisons fair we do not make usage of any memory-heavy
operation that would benefit either the pairing computation or the additional
protocol operations in one platform or another. In particular, the protocols we
implemented do not require fixed-base scalar multiplications or exponentiations
that could benefit from large precomputed tables in any of the groups.

Timings can be found in Table 2, for scalar multiplication in the unknown
point case for G1 and G2 using endomorphisms and a left-to-right w-NAF algo-
rithm with w = 4. Exponentiation of a variable base in GT does not rely on
precomputation and uses cyclotomic squarings and GLS endomorphisms with a
simple NAF algorithm, since inversion in a cyclotomic subgroup is just conjuga-
tion. We also include timings for operations with short scalar/exponents using
a simple NAF approach to show savings for shorter 50-bit challenges. We hope
these results can update the figures from [15] with current parameters, and note
that the rate at which the cost of performing operations increases from G1 to
G2, and to GT is lower than [15], indicating that we employ a more efficient
implementation of extension field arithmetic.

Table 2. Timings of pairing group operations implemented in RELIC reported in 103

cycles in a Skylake processor, averaged over 104 executions (HT and TB disabled). The
operations are scalar multiplication or exponentiation by a random integer r ←$

Z
∗
q or

a short 50-bit scalar c, and membership testing in GT (both conservative and fast vari-
ants). The pairing computation is split between Miller loop and Final exponentiation.

Operation\Curve BN-254 BN-382 BLS12-381 BLS12-383 BLS24-509

[r]P in G1 214 587 402 404 969

[c]P in G1, short c 72 133 134 134 210

[r]Q in G2 381 1268 836 879 5231

[c]Q in G2, short c 139 305 322 322 1631

gr in GT 601 1952 1317 1318 8323

gc in GT , short c 282 633 634 634 2487

Cons. Test in GT 262 895 683 – 2483

Fast test in GT – – 382 – 1660

e(P, Q) 1086 3664 3255 3187 16730

Miller Loop 641 2183 1469 1446 5924

Final Exp 445 1481 1786 1741 10806
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5.2 Timings for Delegated Pairing Computation

We implemented the original protocol due to Di Crescenzo et al. and our LOVE
variant in the same benchmarking machine, and collected the timings in Table 3.
We implemented both the public and the private input versions for completeness,
and adopted the fast membership check for a best-case scenario. The protocol
operations include preco (corresponding to the client’s offSetup), the server-side
portion of the computation server (Compute) and client-side online algorithms
client (onSetup and onVerify). We first note that the offline setup of both protocols
is the same, so no significant performance difference is observed in that step.
Compared to [20], LOVE has significant improvements for the client in all curves,
except for BLS12-383 because the main savings come from skipping one subgroup
membership checking. In the public inputs case, the LOVE’s improvements range
from 18.0% to 29.7%; while in the private inputs case, they decrease to around
10.3% and 14.9%. From the server’s point of view, the savings are between 20.2%
and 24.9% for public inputs; and 15.1% to 18.7% for private inputs. These extra
savings come from interleaving products of pairings inside Compute for the LOVE
protocol. We do not take the communication latency in consideration for our
performance estimates, but a simple analysis of how many bytes are transmitted
points out that LOVE saves 23–24% communication cost depending on the choice
of parameters by reducing by one the number of GT elements transmitted.

Now considering the cost of computing a pairing, we observe performance
improvements of LOVE in comparison with local computation ranging from

Table 3. Timings from running the pairing delegation protocols implemented in RELIC
reported in 103 cycles in a Skylake processor, averaged over 104 executions (HT and
TB disabled). For all protocols the statistical security parameter is set to σ = 50.
The label preco refers to the offline precomputation (offSetup), client to the client-side
online computation (onSetup and onVerify), and server to server-side online compu-
tation (Compute). We mark in bold the combination of parameter and setting that
provides a performance improvement over computing the pairing locally. In these
cases, we display between parenthesis the corresponding efficiency gain computed as
(1 − cost(client)/cost(e(P, Q)). Higher percentage values imply larger efficiency gains.

Protocol\Curve BN-254 BN-382 BLS12-381 BLS12-383 BLS24-509

cost(e(P,Q)) 1086 3664 3255 3187 16730

[20] (preco) 2055 6520 5207 5225 27659

[20] (client) 1183 3459 (5.6%) 2167 (33.4%) 1472 (53.8%) 8928 (46.6%)

[20] (server) 3284 11070 9889 9710 50363

LOVE (preco) 2050 6516 5199 5217 27657

LOVE (client) 916 (15.7%) 2433 (33.6%) 1768 (45.7%) 1397 (56.1%) 7322 (56.2%)

LOVE (server) 2595 8829 7600 7442 37800

Priv-[20] (preco) 4892 15607 12100 12219 65852

Priv-[20] (client) 2452 7071 4406 3358 18459

Priv-[20] (server) 4404 14800 13237 12991 67179

Priv-LOVE (preco) 4892 15619 1209 12219 65845

Priv-LOVE (client) 2130 6017 3953 3304 16298

Priv-LOVE (server) 3704 12560 10887 10701 54591
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15.7% to 56.2%. The speedup is higher for the curves BLS12-383 and BLS24-509
because of the GT -strong property. LOVE provides speedups even in the BN-254
and BN-382 curves, where [20] underperforms. Neither protocol is efficient in the
private inputs case. The significantly lower performance of Di Crescenzo et al.’s
protocol, even in the favourable setting when σ = 50 reduces the impact of GT

exponentiations, directly contradicts the estimates given in [20]. We attribute
this effect to the lack of membership checks in the performance estimates and
an inaccurate extrapolation from [15] to new security levels.

6 Conclusions

In this paper, we introduced LOVE: the most efficient protocol to date for secure
offline/online delegation of a pairing computation. While developing and ana-
lyzing LOVE we identified interesting questions that stem out of our research.

For instance, is there a secure way to leverage the first pairing delegation to
efficiency advantage of delegating one-more pairing? In other words, can ‘batch
delegation’ of n pairings be secure and more efficient than just repeating LOVE
n times? An orthogonal direction would be to investigate if one can securely
delegate other building blocks of the verification, such as hash-to-point or mem-
bership tests.

Also, protocol-tailored solutions might be interesting. For instance, in the
context of Groth’s zk-SNARK [27], the verifier needs to compute l scalar multi-
plications in G1, 3 executions of the Miller’s loop and 1 computation of the final
exponentiation (here l is a parameter of the zk-SNARK protocol). In this setting,
can we design a secure and efficient delegation protocol for the computation of
the three Miller loops and the final exponentiation? These are all components
needed for the computation of a pairing, but we are not aware of works that
outsource these components, instead of the whole pairing.

Finally, we identified the need for efficient and reliable GT -membership test-
ing. Since the BLS12-381 curve is being considered for standardization4, we
suggest starting a computational effort to find out the integer factorization of
the GT cofactor of this curve or bounds on its prime factors to better understand
its subgroup security.
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