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Abstract. The differential attack is a basic cryptanalytic technique for
block ciphers. Application of machine learning shows promising results
for the differential cryptanalysis. In this paper, we present a new tech-
nique to extend the classical differential distinguisher using machine
learning (ML). We use r-round classical differential distinguisher to build
an s-round ML based differential distinguisher. This s-round ML distin-
guisher is used to construct an (r+s)-round differential-ML distinguisher
with the reduced data complexity. We demonstrate this technique on the
lightweight block ciphers SPECK32, SIMON32, and GIFT64 by con-
structing the differential-ML distinguishers. The data complexities of
distinguishers for 9-round SPECK32, 12-round SIMON32, and 8-round
GIFT64 are reduced from 230 to 220, 234 to 222, and 238 to 220 respec-
tively. Moreover, the differential-ML distinguisher for SIMON32 is the
first 12-round distinguisher with the data complexity less than 232.

Keywords: Block cipher · Differential cryptanalysis · Machine
learning

1 Introduction

Cryptanalysis of block ciphers witnessed the remarkable progress after the pro-
posal of differential attack on DES by Biham and Shamir [8] in 1990. The dif-
ferential attack is a basic and widely used cryptanalytic approach against the
block ciphers. This attack is generalised and combined with other cryptanalytic
techniques to reduce the attack complexity. High probability differential charac-
teristics are the first and foremost requirement for the attack to succeed. In 1994,
M. Matsui proposed a method based on the branch-and-bound technique [17]
to search the high probability differential characteristics. In 2011, Mouha et
al. proposed a new technique using mixed integer linear programming (MILP)
to search the differential characteristics [18]. The method based on MILP uses
optimization problem solvers to construct high probability differential charac-
teristics. Most of the block ciphers follow the Shannon’s principles [14] and wide
trail design strategy [11] to thwart the differential attack. In practice, we need
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a differential with the probability greater than 2−n to distinguish r rounds of
an n-bit block cipher from the random data. Any r-round characteristic with
a probability less than 2−n cannot be used to mount the differential attack on
r or more rounds of a block cipher. A differential characteristic is useful till it
requires less data than the available limit i.e. 2n pairs. The motivation of this
paper is to find a technique which can be used to extend the classical differential
characteristics without (much) increasing the data complexity. Machine learning
based differential cryptanalysis approach works well to solve this problem.

Machine learning techniques are used to determine the meticulous relations
in the data. Since such relations define the security strength of the cipher, iden-
tification of these relations plays an important role. In cryptanalysis domain,
the machine learning techniques are explored very recently to mount the key
recovery attack using differential cryptanalysis [12].

In this paper, we combine the classical and machine learning techniques to
design an ML based generic extension for any classical differential distinguisher.
This approach provides the better results with (much) lower data complexity.
We extend an r-round high probability classical differential distinguisher with
an s-round ML based differential distinguisher. The extended distinguisher is
used to distinguish the (r + s) rounds of a block cipher using less data. With
this extension, the hybrid distinguisher outperforms both the classical and ML
based distinguisher. We call this hybrid distinguisher a differential-ML distin-
guisher. This technique is experimented on three different types of lightweight
block ciphers SPECK32 [4], SIMON32 [4], and GIFT64 [3] and better results
are obtained with very high accuracy.

The remaining part of the paper is organised as follows. In Sect. 2, we compare
our technique with the previous work. In Sect. 3, we provide a brief description of
the lightweight block ciphers SIMON32, SPECK32 and GIFT64. We discuss the
classical differential distinguisher and machine learning based differential distin-
guisher in Sect. 4 and describe the existing work on differential distinguishers
using machine learning. In Sect. 5, we propose a novel technique to construct
the differential-ML distinguisher. We demonstrate our technique on SPECK32,
SIMON32, and GIFT64 block ciphers and present the results in Sect. 6. The
paper is concluded in Sect. 7.

Notations: We have used the following notations in this paper:

- Δr :Output difference after r rounds
- 2−pr :Probability of r-round differential characteristic
- Dx···y :Distinguisher for (y − x + 1) rounds; x and y are round indices
- DCD

x···y :Classical differential distinguisher
- DML

x···y :Machine learning based differential distinguisher
- DCD→ML

x···y :Differential-ML distinguisher

Conventions: Throughout the paper, we refer an r-round differential distin-
guisher with the single input and single output difference as a classical differen-
tial distinguisher DCD

1···r.
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2 Comparison with the Previous Work

A. Gohr [12] used machine learning techniques and proposed the idea of learning
the differences to mount a key recovery attack. He presented a technique to
construct the ML based differential distinguisher and used it for the key recovery
attack on SPECK32. Gohr compared this technique with the classical differential
attack and showed that complexity of the key recovery attack is reduced by
using the ML distinguisher. Baksi et al. [2] also used the same approach to
design the ML distinguisher for GIMLI cipher and GIMLI hash [5]. Various ML
architectures are compared in [2] and it is claimed that ML distinguisher for
GIMLI outperforms the classical differential distinguisher.

A. Gohr presented the 11-round key recovery attack on SPECK32. In this
attack, 7-round ML based distinguisher is used and it is extended to 9 rounds
by pre-pending a 2-round high probability differential distinguisher. In Gohr’s
approach, the accuracy and the data complexity of the 9-round extended dis-
tinguisher is not discussed explicitly. Although, the accuracy of extended dis-
tinguisher is quite low, yet it is used in the key recovery with various cipher
specific optimizations. In this paper, we present a new technique to extend r-
round classical differential distinguisher using an s-round ML distinguisher. Now,
the extended distinguisher works as the (r + s) rounds differential-ML distin-
guisher. The proposed technique ensures that the accuracy of differential-ML
distinguisher is high and comparable to the classical differential distinguisher.
We experimentally show that there is an exponential reduction in the data com-
plexity of the (r + s)-round distinguisher by using the proposed differential-ML
distinguisher.

3 Block Ciphers: SPECK32, SIMON32, and GIFT64

SPECK and SIMON are two families of the block ciphers proposed by Beaulieu
et al. [4] in 2013. These block ciphers are designed to provide the high perfor-
mance across a range of devices. There are 10 versions of each cipher based on
the block and key size combinations which makes them suitable for a wide range
of applications. We discuss the encryption algorithm for 32-bit block size and
64-bit key variants of each block cipher. We omit the key expansion algorithm
and original paper [4] can be referred for more details.

GIFT is designed by improving the bit permutation of the lightweight block
cipher PRESENT. Based on the input plaintext block size, there are two versions
of GIFT namely GIFT64 and GIFT128. In each version, the 128-bit key is used
to encrypt the input plaintext. A brief description of SPECK32, SIMON32, and
GIFT64 block ciphers is provided in the following subsections.

3.1 Description of SPECK32

SPECK32 is a block cipher with 32-bit block size and 64-bit key size. There
are total 22 rounds in SPECK32. It is based on the Feistel network and can
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be represented by the composition of two Feistel maps. Its encryption algorithm
divides the 32-bit input into the two 16-bit words (Lr, Rr) and the key expansion
algorithm extracts the 16-bit round subkeys (RKr) for each round. The round
function comprises of addition modulo 216, bitwise XOR, left and right circular
shift operations as described in Algorithm 1.

Algorithm 1: Encryption Algorithm of SPECK32
1 Input: P = (L0||R0) and RKr(0 ≤ r ≤ 21)
2 Output: C = (L22||R22)
3 for r=0 to 21 do
4 Lr+1 = ((Lr ≫ 7) + Rr) ⊕ RKr

5 Rr+1 = Lr+1 ⊕ (Rr ≪ 2)
6 end

3.2 Description of SIMON32

SIMON32 is a block cipher with 32-bit block size and 64-bit key size. There
are total 32 rounds in SIMON32 and it is also based on the Feistel network. Its
encryption algorithm divides the 32-bit input into two 16-bit words (Lr, Rr).
The key expansion algorithm expands the 64-bit master key to provide the 16-
bit round subkeys (RKr) for each round. It applies a round function consisting
the bitwise XOR, bitwise AND, and left circular shift operations on the left 16-
bit words in each round. The encryption algorithm of SIMON32 is described in
Algorithm 2.

Algorithm 2: Encryption Algorithm of SIMON32
1 Input: P = (L0||R0) and RKr(0 ≤ r ≤ 31)
2 Output: C = (L32||R32)
3 for r=0 to 31 do
4 Lr+1 = (Lr ≪ 1 & Lr ≪ 8) ⊕ (Lr ≪ 2) ⊕ Rr ⊕ RKr

5 Rr+1 = Lr

6 end

3.3 Description of GIFT64

GIFT64 encrypts a 64-bit plaintext block using the 128-bit key and generates
a 64-bit ciphertext block [3]. There are total 28 rounds in GIFT64. In each
round, S-box, bit permutation, round subkeys and constant additions are applied
through the round function. The key expansion algorithm extracts the 32-bit
subkeys (RKr) from the 128-bit key. Its encryption algorithm uses a 4-bit S-box
S (Table 1), bit permutation P64 (Table 2), 6-bit round constants Cr (Table 3)
and 32-bit round subkeys RKr as described in Algorithm 3.
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Algorithm 3: Encryption Algorithm of GIFT64
1 Input: P (= X0) = (x63, x62, · · · , x0) and RKr = (U, V )(0 ≤ r ≤ 27)
2 Output: C = X28

3 for r=0 to 27 do
4 for j=0 to 15 do
5 (y

′
3+4∗j , y

′
2+4∗j , y

′
1+4∗j , y

′
0+4∗j) = S(x3+4∗j , x2+4∗j , x1+4∗j , x0+4∗j)

6 end
7 (y63, y62, · · · , y0) = P64(y

′
63, y

′
62, · · · , y

′
0)

8 for k=0 to 5 do
9 y3∗(k+1)+k = cr ⊕ y3∗(k+1)+k

10 end
11 for l=0 to 15 do
12 y4l+1 = y4l+1 ⊕ ul

13 y4l = y4l ⊕ vl

14 end
15 Xr+1 = (y63, y62, · · · , y0) ⊕ (1 � 63)
16 end

S-box: The 4-bit S-box (Table 1) is applied 16 times in parallel in each round.

Table 1. S-Box

x 0 1 2 3 4 5 6 7 8 9 A B C D E F

S(x) 1 a 4 c 6 f 3 9 2 d b 7 5 0 8 e

Bit Permutation: The diffusion layer uses a permutation P64 (Table 2) on 64
bits in each round.

Table 2. Bit permutation

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

P64(i) 0 17 34 51 48 1 18 35 32 49 2 19 16 33 50 3

i 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

P64(i) 4 21 38 55 52 5 22 39 36 53 6 23 20 37 54 7

i 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

P64(i) 8 25 42 59 56 9 26 43 40 57 10 27 24 41 58 11

i 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

P64(i) 12 29 46 63 60 13 30 47 44 61 14 31 28 45 62 15
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Round Constants: In each round, the 6-bit round constant Cr given in the
Table 3 is used, where c0 refers to the least significant bit. For subsequent rounds,
it is updated as follows:

(c5, c4, c3, c2, c1, c0) ← (c4, c3, c2, c1, c0, c5 ⊕ c4 ⊕ 1)

Table 3. Round constants

Rounds (r) Constants (Cr)

1–14 01 03 07 0F 1F 3E 3D 3B 37 2F 1E 3C 39 33

15–28 27 0E 1D 3A 35 2B 16 2C 18 30 21 02 05 0B

4 Differential Cryptanalysis

Differential cryptanalysis was applied on DES [19] and its exhaustive attack
complexity was reduced. This created a path for other cryptanalytic techniques
e.g. linear [16], impossible differential [6], algebraic [10], etc. [9]. While designing
a block cipher, its output is tested for indistinguishability from the random
permutations. However, there may not exist any relationship between the single
input and output occurrences but there may exist the non-random relations
between the input and output differences. The basic approach of differential
attack is to study the propagation of input differences and exploitation of non-
random relations between the input and output differences. This attack works
with differential characteristics providing the high probability relation between
the input and output differences. The high probability differential characteristics
are used in the key recovery attack by adding some rounds on the top and bottom
of the differential characteristic.

4.1 Classical Differential Distinguisher

There exists several automated techniques to search the optimal differential dis-
tinguishers for block ciphers [13]. In this paper, we use the available differential
distinguishers for SPECK32 [1] and SIMON32 [7]. We extend the 6-round dis-
tinguisher for SPECK32 and 7-round distinguisher for SIMON32 using the ML
distinguisher. For GIFT64, we construct the high probability differential char-
acteristics for 4 rounds using the branch-and-bound based search technique [15]
and extend this distinguisher with the ML distinguisher.

4.1.1 Differential Characteristic for SPECK32
Abed et al. [1] presented the 9-round differential characteristics for SPECK32
with the probability of 2−31. We choose 8-round differential characteristic pre-
sented in Table 4 [1] and use the 6-round differential characteristic (Δ0 → Δ6)
with the probability of 2−13 in our experiments.
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Table 4. Differential characteristic of SPECK32 [1]

Round (r) Input difference (�r) Probability (2−pr )

0 0211 0A04 1

1 2800 0010 2−4

2 0040 0000 2−6

3 8000 8000 2−6

4 8100 8102 2−7

5 8000 840A 2−9

6 850A 9520 2−13

7 802A D4A8 2−19

8 81A8 D30B 2−26

4.1.2 Differential Characteristic for SIMON32
Biryukov et al. [7] presented the 12-round differential characteristics for
SIMON32 with the probability of 2−34. From the 12-round characteristic pre-
sented in Table 5 [7], we use the 7-round differential characteristic (Δ0 → Δ7)
with the probability of 2−16 in our experiments.

Table 5. Differential characteristic of SIMON32 [7]

Round (r) Input difference (�r) Probability (2−pr )

0 0400 1900 1

1 0100 0400 2−2

2 0000 0100 2−4

3 0100 0000 2−4

4 0400 0100 2−6

5 1100 0400 2−8

6 4200 1100 2−12

7 1D01 4200 2−16

8 0500 1D01 2−24

9 0100 0500 2−27

10 0100 0100 2−29

11 0500 0100 2−31

12 1500 0500 2−34

4.1.3 Differential Characteristic for GIFT64
We construct the 4-round optimal differential characteristic with high probability
using branch-and-bound based search algorithm [15]. We use this 4-round differ-
ential characteristic with the probability of 2−12 to construct the differential-ML
distinguisher for GIFT64 (Table 6).
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Table 6. Differential characteristic of GIFT64

Round (r) Input difference (�r) Probability (2−pr )

0 0000 0000 0000 000A 1

1 0000 0000 0000 0001 2−2

2 0008 0000 0000 0000 2−5

3 0000 0000 2000 1000 2−7

4 0044 0000 0011 0000 2−12

4.2 Differential Distinguisher Using Machine Learning

For a chosen input difference, we use the neural distinguisher design proposed
by A. Gohr [12]. We also consider the improvements in this design suggested by
Baksi et al. [2] and use dense layers of MLPs (Multi Layers Perceptrons) instead
of the convolution networks. We use two hidden layers with 1024 neurons in each
layer and train the model on ciphertext differences rather than ciphertext pairs.
These improvements increase the learning efficiency of the model.

The model is trained on the data with chosen and random differences. This
approach works well because the model learns sensitivity as well as specificity in
the data. The sensitivity corresponds to the true positive predictions while the
specificity corresponds to the true negative predictions. Initially, we generate
a set of random plaintexts (P1, P2, · · · , PN ) and assign a label 0 or 1 to each
plaintext randomly. If label of the plaintext Pi is 1, then we generate another
plaintext P

′
i having a difference Δr with Pi otherwise P

′
i is generated randomly.

The difference Δr corresponds to the output difference of the classical differential
distinguisher. We encrypt the plaintexts Pi and P

′
i using the s-round CIPHERs

to get the ciphertexts Ci and C
′
i . The set of ciphertext differences (Ci ⊕ C

′
i)

along with the labels is used as training data (TD) for the training phase. Other
than the training data, we also generate the validation data (VD) which is used
by the trained model M to determine the validation accuracy. Size of TD and
VD is subjected to the available computing resources. We train the model M
on training data till the validation accuracy is saturated. The saturation implies
that there is a negligible improvement in the validation accuracy of ith training
epoch (αsi

) in comparison to the validation accuracies (αsi−1 and αsi−2) of the
last two training epoches. We consider the model M as a valid distinguisher
(DML

r+1···r+s) if the validation accuracy (αs) is at least 0.51 (Algorithm 4).
Once a valid ML based distinguisher(DML

r+1···r+s) is obtained, we generate a
pair of plaintexts with chosen difference (Δr). ORACLE is queried for the corre-
sponding ciphertexts and DML

r+1···r+s is used to make the prediction on ciphertexts
difference. If the prediction probability is at least 0.51 then we consider that the
ciphertext pair belongs to the CIPHERs otherwise not. The accuracy of such
prediction is expected to be αs.
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Algorithm 4: ML based differential distinguisher DML
r+1···r+s

1 Function DataGeneration(N ,Δr,s=no. of rounds):
2 Data Set (D) ← (.)
3 K ← Choose a random key

4 (P1, P2, · · · , PN ) ← Generate a set of random plaintexts

5 (b1, b2, · · · , bN ) ← Initialize a set of labels
6 for i ← 1 to N do

7 bi ← random(0, 1) � random(0, 1) return either 0 or 1 randomly

8 if bi = 0 then

9 P
′
i ← Choose a random plaintext

10 end

11 else

12 P
′
i = Pi ⊕ Δr

13 end
14 Ci ← CIPHERs(Pi, K) � s-round encryption

15 C
′
i ← CIPHERs(P

′
i , K) � s-round encryption

16 Append D by (Ci ⊕ C
′
i , bi)

17 end

18 return D

19 End Function

20 Procedure Trainig Phase(DCD
1···r(Δ0 → Δr),s=no of rounds):

21 Training Data (TD) ← DataGeneration(225, Δr,s)

22 Validation Data (VD) ← DataGeneration(222, Δr,s)
23 for i ← 1 to 10 do
24 Train ML Model (M) on TD

25 Validate M on VD
26 αsi ← Validation Accuracy of M

27 if (i ≥ 3 and αsi ≈ αsi−1 and αsi−1 ≈ αsi−2) then

28 αs = αsi

29 goto Line 32

30 end

31 end

32 if αs ≥ 0.51 then
33 DML

r+1···r+s ← M

34 end
35 else

36 M is not a valid distinguisher
37 end

38 End Procedure

39 Procedure Prediction Phase(DCD
1···r(Δ0 → Δr), DML

r+1···r+s):

40 P ← Choose a random plaintext

41 P
′
= P ⊕ Δr

42 C ← ORACLE(P )

43 C
′ ← ORACLE(P

′
)

44 p ← prediction probability for (C ⊕ C
′
) using DML

r+1···r+s

45 if (p ≥ 0.51) then
46 ORACLE = CIPHERs

47 end
48 else

49 ORACLE �= CIPHERs

50 end

51 End Procedure
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5 Differential-ML Distinguisher: Extending Classical
Differential Distinguisher Using Machine Learning

The accuracy plays an important role to design the machine learning based dif-
ferential distinguisher. There is a trade-off between the accuracy and the number
of rounds covered. If we increase the number of rounds then accuracy of the ML
distinguisher may decrease. The data complexity of a low accuracy distinguisher
cannot be compared with the classical distinguisher due to high amount of false
positive and false negative in the ML distinguisher. Therefore, we propose a new
technique which uses the ML distinguisher to extend the existing classical dis-
tinguisher. Since, the accuracy of the proposed extended distinguisher is high,
we can compare its data complexity with the classical distinguisher.

Classcial

Distinguisher 1

Plaintext Difference: Δ0

Round 1
Round 2

Round r − 1
Round r

(Δ1, 2
−p1)

(Δ2, 2
−p2)

(Δr−1, 2
−pr−1)

(Δr, 2
−pr )

ML

Distinguisher2

Round r + 1
Round r + 2

Round r + s − 1
Round r + s

(Trained for Δr)

Differential-ML

Distinguisher3

Accuracy: αs

Round 1
Round 2

Round r + s − 1
Round r + s

(Trained for Δr)

Data Complexity:

2pr+δ

Accuracy: αr+s

Fig. 1. Extending the classical distinguisher using ML distinguisher (1. Classical dis-
tinguisher: DCD

1···r 2. ML distinguisher: DML
r+1···r+s 3. Differential-ML distinguisher:

DCD→ML
1···r+s )
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Algorithm 5: Differential-ML distinguisher DCD→ML
1···r+s : (DCD

1···r, DML
r+1···r+s,

T = αs, CT , β)

1 Function Construction Phase(DCD
1···r(Data: 2pr), DML

r+1···r+s, T = αs):
2 δ ← 0
3 repeat
4 for k ← 1 to 10 do
5 K ← Choose a random key
6 (PΔ0 , P

′
Δ0

) ← 2δ ∗ 2pr plaintext pairs with difference Δ0

7 (PR, P
′
R) ← 2δ ∗ 2pr plaintext pairs with random difference

8 (CΔ0 , C
′
Δ0

) ← (CIPHERr+s(PΔ0 ,K),CIPHERr+s(P
′
Δ0

,K))
9 (CR, C

′
R) ← (CIPHERr+s(PR,K),CIPHERr+s(P

′
R,K))

10 pΔ0 ← prediction probabilities for (CΔ0 ⊕ C
′
Δ0

) using
DML

r+1···r+s

11 pR ← prediction probabilities for (CR ⊕ C
′
R) using DML

r+1···r+s

12 TP ← number of elements with pΔ0 ≥ T
13 TN ← number of elements with pR ≥ T
14 Plot the curve for TP and TN values
15 end
16 δ ← δ +1
17 until (TP and TN curves do not intersect);
18 CT ≈ average of ordinates of closest points on TP and TN curves
19 Data Complexity(β) ← 2δ ∗ 2pr

20 return CT , β

21 End Function
22 Procedure Prediction Phase( DCD→ML

1···r+s ):
23 Test Data (TD) ← (.)
24 for i ← 1 to β do
25 Pi ←Choose a random plaintext
26 P

′
i = Pi ⊕ Δ0

27 Ci ← ORACLE(Pi)
28 C

′
i ← ORACLE(P

′
i )

29 Append TD by Ci ⊕ C
′
i

30 end
31 p ← prediction probabilities for elements in TD using DML

r+1···r+s

32 if ((number of pairs with p ≥ T ) ≥ CT ) then
33 ORACLE = CIPHERr+s

34 end
35 else
36 ORACLE 
= CIPHERr+s

37 end
38 end Procedure
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To extend the r-round classical differential distinguisher DCD
1···r (Δ0 → Δr), we

use the difference Δr to model s-round distinguisher (DML
r+1···r+s) with an accu-

racy αs. The accuracy αs defines the distinguishing ability of the distinguisher and
better accuracy gives better predictions. Now, the distinguisher DML

r+1···r+s can be
used to distinguish the output of CIPHERs with an accuracy αs.

The data complexity of the r-round classical differential distinguisher (Δ0 →
Δr, probability: 2−pr ) is 2pr chosen plaintext pairs. It is expected to get at least
one occurrence of Δr in the output difference. If we provide 2pr ciphertext pairs
after the (r + s) rounds of encryption to the distinguisher DML

r+1···r+s then we
expect that the ML distinguisher DML

r+1···r+s will correctly predict one occurrence
corresponding to the difference Δr. Since ML distinguisher learns the multiple
output differences, we expect that it will learn the pattern of differences which are
suggested by the classical differential distinguisher. Therefore, we require at least
2pr data to model the (r + s)-round differential-ML distinguisher (DCD→ML

1···r+s ).
Now, the accuracy αs of the s-round ML distinguisher plays a significant role.
If accuracy αs is low then the accuracy αr+s of the distinguisher DCD→ML

1···r+s for
2pr data will also be low. The accuracy of the differential-ML distinguisher must
be high to compare it with the (r + s)-round classical differential distinguisher.
To increase the accuracy αr+s, we propose a novel technique which requires
additional data (2δ). Therefore, data complexity of the differential-ML distin-
guisher DCD→ML

1···r+s becomes 2pr+δ, where δ defines the additional data required
to increase the accuracy of predictions (Fig. 1).

In our technique, we define the differential-ML distinguisher DCD→ML
1···r+s with

five parameters (DCD
1···r, DML

r+1···r+s, T = αs, CT , β). Where, T is the threshold
probability, CT is the cutoff on the number of pairs with the prediction proba-
bility ≥ T and β is data complexity of the differential-ML distinguisher. These
parameters are required to construct the differential-ML distinguisher. We set
αs as the threshold probability (T ) and propose an experimental approach to
calculate CT and β (Algorithm 5). We start with the minimum data (2pr ) and
set δ as 0. We generate a set of 2pr plaintext pairs with the difference Δ0 and
another set of 2pr plaintext pairs with the random differences. These pairs are
encrypted using the CIPHERr+s. The distinguisher DML

r+1···r+s is used to get the
prediction probabilities pΔ0 and pR as explained in Algorithm 5.

Using these probabilities, we get the True Positive (TP) and the True Neg-
ative (TP) values. We repeat this process 10 times and plot the curve for TP
and TN values. If the TP and TN curves intersect, then we increase the data
requirement and repeat the process with the increased data. We repeat the pro-
cess until we get the non intersecting curves. Once such curves are obtained, data
complexity (β) of the differential-ML distinguisher DCD→ML

1···r+s becomes 2pr+δ. To
calculate CT , we take average of the closest points on the TP and TN curves.
Closest points correspond to the minimum number of predictions on TP curve
and maximum number of predictions on TN curve. The value of CT is taken as
the separation cutoff for TP and TN curves and it is used by the distinguisher
(DCD→ML

1···r+s ) to distinguish the data sample correctly. The complete procedure
to construct the differential-ML distinguisher is described in Algorithm 5.
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The differential-ML distinguisher DCD→ML
1···r+s act as the (r + s)-round distin-

guisher. We choose a set of β plaintext pairs with the difference Δ0 and get
the ciphertext pairs after (r + s) rounds. The distinguisher DCD→ML

1···r+s makes the
prediction for each ciphertext pair. If the number of pairs with the prediction
probability greater than T is above the cutoff threshold CT then the distin-
guisher DCD→ML

1···r+s classifies whether the given data is an output from the target
CIPHERr+s or not. The prediction procedure is described in the prediction
phase of the Algorithm 5.

With the proposed distinguisher DCD→ML
1···r+s , we can achieve very high accu-

racy to distinguish the output of the CIPHERr+s and it can be used to mount
a key recovery attack. The experiments to construct the differential-ML distin-
guishers are presented in the next section.

6 Experimental Results

We construct the differential-ML distinguisher for the 32-bit variants of the
lightweight block ciphers SPECK and SIMON and 64-bit variant of GIFT. We
experimented on 32-bit and 64-bit block ciphers due to constraints on avail-
able resources. With more computing power, ciphers with larger block size can
be explored to construct differential-ML distinguisher. We extend the classical
differential distinguisher discussed in Sect. 4 with the ML distinguisher. Using
this novel technique, we construct the differential-ML distinguishers for 9-round
SPECK32, 12-round SIMON32, and 8-round GIFT64 with (much) less data
complexity than the classical distinguishers.

We used Keras-GPU1 library in Google colab2 for the model training and
predictions. In each experiment, ADAM optimizer is used for the adaptive learn-
ing rates and the Mean-Square-Error is used as the loss function. The validation
batch accuracy is considered as the accuracy (αs) of the trained model.

6.1 Differential-ML Distinguisher: SPECK32

For SPECK32, we use the classical differential characteristic for 6 rounds (Δ0 →
Δ6) as described in the Table 4. We have an output difference 0x850A9520 after
6 rounds with the probability of 2−13. We train the 3-round ML distinguisher
using Δ6 as the input difference and the model is trained with the accuracy
of 0.79 using Algorithm 4. The batch accuracy and loss are described in the
Appendix A.

6.1.1 Construction
The probability of the 6-round classical differential distinguisher is 2−13. There-
fore, we will require at least 213 data to make the predictions with the
9-round differential-ML distinguisher. We calculate T , CT , and β as discussed in

1 https://keras.io.
2 https://colab.research.google.com.

https://keras.io
https://colab.research.google.com
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Algorithm 5 and construct the 9-round differential-ML distinguisher DCD→ML
1···r+s

by extending the 6-round classical distinguisher. We draw the graphs for TP and
TN values (Fig. 2) and calculate data complexity (β) and cutoff (CT ). We experi-
mented with the various samples of different sizes and obtained a clear separation
between true positive and true negative curves for a sample size of 220. We calcu-
late the value of CT as 73100 and β as 220 with the help of graph (d) in Fig. 2.
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Fig. 2. Calculation of CT and data complexity (β) for SPECK32 (DCD→ML
1···r+s )

6.1.2 Prediction
We constructed the 9-round differential-ML distinguisher DCD→ML

1···r+s in the pre-
vious subsection. The accuracy (αr+s) of this differential-ML distinguisher for
different experiments is mentioned in the Table 7.

In the experiments, we take 50 samples belonging to the plaintext difference
Δ0 (=0x0211 0A04) of the classical distinguisher and other 50 samples belonging
to the random input differences. The differential-ML distinguisher DCD→ML

1···r+s
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Table 7. Accuracy for SPECK32 with T = 0.79, CT = 73100 and β = 220

Experiment no. Sample size Correctly distinguished
(true positive, true negative)

1 100 98(50,48)

2 100 98(50,48)

3 100 99(49,50)

4 100 97(48,49)

5 100 96(49,47)

predicts whether the given sample belongs to the difference Δ0 or not by using
the Algorithm 5. We used 220 data in each sample and achieved the accuracy
(αr+s) more than 96% in each experiment.

Therefore, the data complexity of the 9-round differential-ML distinguisher
for SPECK32 is 220. However, the data complexity of the 9-round classical dif-
ferential distinguisher is 231 as presented in [1]. The best known differential
characteristics for SPECK32 exists for 9-rounds with the data complexity of
230 [7]. Using the differential-ML technique, we have constructed the 9-round
distinguisher with the data complexity far less than the existing classical differ-
ential distinguisher.

6.2 Differential-ML Distinguisher: SIMON32

For SIMON32, we use the classical differential characteristic for 7 rounds as
described in the Table 5. We have an output difference 0x1D014200 (Δ7) after
7 rounds with the probability of 2−16. We use Δ7 as the input difference for
the training phase of the 5-round ML distinguisher. We train the model with
the accuracy of 0.57 using the Algorithm 4. The batch accuracy and loss are
described in the Appendix A.

6.2.1 Construction
The probability of the 7-round classical differential distinguisher is 2−16. So, we
will require at least 216 data for the 12-round differential-ML distinguisher of
SIMON32 and additional data (2δ) will be required to increase the accuracy
of the differential-ML distinguisher. Similar to the SPECK32 case, we require
T , CT , and β to construct the 12-round differential-ML distinguisher DCD→ML

1···r+s

which extends the existing 7-round classical distinguisher. We calculate the data
complexity (β) and cutoff (CT ) by using the Algorithm 5 and the graphs for TP
and TN values (Fig. 3). It is observed from the graphs that a clear separation
between true positive and true negative values exists for the sample size of 222.
We calculated the value of CT as 656300 and data complexity(β) as 222 on the
basis of this separation.
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Fig. 3. Calculation of CT and data complexity (β) for SIMON32 (DCD→ML
1···r+s )

6.2.2 Prediction
The 5-round ML distinguisher (DML

r+1···r+s) is trained with the validation accu-
racy of 0.57. It is used to extend the 7-round classical differential distinguisher.
The accuracy of the 12-round differential-ML distinguisher DCD→ML

1···r+s for differ-
ent experiments is mentioned in the Table 8.

Similar to the previous case, we take 50 samples belonging to the initial input
difference Δ0 (=0x04001900) of the classical distinguisher and other 50 samples
belonging to the random input differences. We make predictions with 222 data
using the value of CT calculated in the previous step and the accuracy (αr+s)
greater than 97% is achieved in each experiment. From these experiments, 12-
round differential-ML distinguisher DCD→ML

1···r+s with data complexity of 222 is
constructed, while data complexity for the 12-round classical differential distin-
guisher is 234 (Table 5). In this case, we present the first 12-round distinguisher
with the data complexity less than 232. This shows that the differential-ML
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Table 8. Accuracy for SIMON32 with T = 0.57, CT = 656300 and β = 222

Experiment no. Sample size Correctly distinguished
(true positive, true negative)

1 100 98(48,50)

2 100 98(48,50)

3 100 98(49,49)

4 100 97(48,49)

5 100 98(48,50)

distinguisher provides the better results than the classical differential distin-
guisher in case of SIMON32 also.

6.3 Differential-ML Distinguisher: GIFT64

For GIFT64, we searched an optimal differential characteristic for 4 rounds which
is described in the Table 6. We obtain the output difference after 4 rounds as Δ4

= 0x0044000000110000 with the probability of 2−12. The difference Δ4 is used to
train the 4-round ML based distinguisher. We train a model with the accuracy
of 0.65 using the Algorithm 4. The batch accuracy and loss are described in
Appendix A.

6.3.1 Construction
The probability of the 4-round classical differential characteristic is 2−12. There-
fore, data complexity of the 4-round differential distinguisher will be 212. So,
the 8-round differential-ML distinguisher for GIFT64 will require at least 212

data. We calculate T , CT , and data complexity (β) by using Algorithm 5. These
are required to construct the 8-round differential-ML distinguisher by extending
the 4-round classical differential distinguisher. It can be easily inferred from the
graphs depicted in Fig. 4 that a clear separation between true positive and true
negative values exists for the sample size of 220. We use this separation to get the
cutoff threshold (CT = 103750) and data complexity (β = 220) for DCD→ML

1···r+s .

6.3.2 Prediction
The 4-round ML distinguisher DML

r+1···r+s is trained with the validation accuracy
of 0.65 and it is used to extend the 4-round classical differential distinguisher.
Accuracy of the 8-round differential-ML distinguisher DCD→ML

1···r+s for different
experiments is mentioned in the Table 9.

Similar to SPECK32 and SIMON32 cases, we take 50 samples belonging
to the input difference Δ0 (=0x000000000000000A) of the classical distinguisher
and other 50 samples belonging to the random input differences. For each sample,
we use 220 data to achieve the accuracy (αr+s) greater than 98% in each exper-
iment. Therefore, data complexity of the 8-round differential-ML distinguisher
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Fig. 4. Calculation of CT and data complexity (β) for GIFT64 (DCD→ML
1···r+s )

Table 9. Accuracy for GIFT64 with T = 0.65, CT = 103650 and β = 220

Experiment no. Sample size Correctly distinguished
(true positive, true negative)

1 100 99(50,49)

2 100 100(50,50)

3 100 98(50,48)

4 100 100(50,50)

5 100 100(50,50)
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is 220, while data complexity of the 8-round classical differential distinguisher
was 238 [20].

6.4 Comparison with the Classical Differential Distinguishers

We have constructed the differential-ML distinguishers for the block ciphers
based on three different types of structures (Feistel, SPN, and ARX). We are
able to distinguish the same number of rounds using less amount of data in com-
parison to the classical distinguisher. These results indicate that our technique
provides better results for the block ciphers based on all types of structures.
The source code for the above mentioned experiments is available on GitHub3.
We provide a comparison of the data complexities between the differential-ML
distinguisher and the classical differential distinguisher in Table 10.

Table 10. Summary of results

Cipher Distinguisher Round Data complexity Source

SPECK32 Differential 9 230 [7]

SPECK32 Differential-ML 9 220 Sec. 6.1

SIMON32 Differential 12 234 [7]

SIMON32 Differential-ML 12 222 Sec. 6.2

GIFT64 Differential7 8 238 [20]

GIFT64 Differential-ML 8 220 Sec. 6.3

There exists differential distinguisher for 12 rounds with the data com-
plexity of 260.

7 Conclusion

In this paper, we have proposed a novel technique to extend the classical differen-
tial distinguisher using machine learning. We have constructed the high accuracy
(more than 96%) differential-ML distinguishers for 9-round SPECK32, 12-round
SIMON32, and 8-round GIFT64. For SPECK32, we have extended the 6-round
classical differential distinguisher with the 3-round ML distinguisher and the data
complexity of 9-round differential-ML distinguisher is 220. For SIMON32, the clas-
sical differential distinguisher for 7-rounds is extended with the 5-round ML dis-
tinguisher and data complexity of the 12-round differential-ML distinguisher is
222. For GIFT64, the 8-round differential-ML distinguisher is constructed with the
data complexity of 220 whereas data complexity of the 8-round classical differen-
tial distinguisher was 238. The data complexity of the distinguishers for SPECK32,
SIMON32, and GIFT64 is significantly reduced using differential-ML distinguish-
ers in comparison to the classical distinguishers.

3 https://github.com/tarunyadav/Differential-ML-Distinguisher.

https://github.com/tarunyadav/Differential-ML-Distinguisher
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Appendix A - Accuracy and Loss Graphs
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(c) SIMON32: Validation Batch Accuracy
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(d) SIMON32: Validation Batch Loss
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(e) GIFT64: Validation Batch Accuracy
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