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Preface

This book includes the proceedings of the 7th International Conference on Cryptology
and Information Security in Latin America, LATINCRYPT 2021. This event is
organized in cooperation with the International Association of Cryptologic Research.
The conference was originally planned to take place in 2020 at the Universidad del
Rosario in Bogotá, Colombia, but was rescheduled to the next year due to the COVID-19
pandemic and finally changed to be a virtual event.

The 22 accepted papers in this volume were carefully selected, after a double-blind
review process, from 47 submissions from authors in 26 countries. All submissions
received at least three reviews and committee-member submissions at least four. We
wish to thank the Program Committee (PC) for the hard work and the active discussions
and, most particularly, those PC members that shepherded a paper.

The program of LATINCRYPT 2021 included three invited talks. Shweta
Agrawal (Indian Institute of Technology Madras, India) discussed “Recent Progress
and Challenges in Lattice-Based Cryptography”, Luca De Feo (IBM Research
Zürich, Switzerland) discussed “What’s Next for Isogeny-Based Cryptography?”,
and Dan Boneh (Stanford University, USA) told us about “Recent Developments in
Cryptography”.

As is usual, the school in cryptography ASCrypto took place on the two days before
the conference. Itwas decided tofind speakerswhocould introduce inmoredetail someof
the topics addressed in the keynote talks. The speakers were Alice Pellet-Mary, Thomas
Prest, Riad S. Wahby, Armando Faz-Hernández, and Jesús-Javier Chi-Domínguez. We
would like to express our sincere gratitude for their collaboration.

We would also like to thank the general chair Valerie Gauthier Umaña for her tireless
effort in organizing the conference and the school, and in particular, for making it as
close as it could be to an in-person event in beautiful Bogotá.We are also very grateful to
FranciscoRodríguez-Henríquez for sharing his knowledge and experience fromprevious
editions. We thank the steering committee for giving us the chance to edit this volume.
The submission and review process was handled with the Websubrev review software,
with the kind support of Shai Halevi, who set up the submission server for us.

Finally, the conference would not have been possible without our sponsors, the
Technology Innovation Institute, UAE, and the Universidad del Rosario, Colombia,
through an “Internal Research Funding” grant.

October 2021 Patrick Longa
Carla Ràfols
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Tight Bounds for Simon’s Algorithm

Xavier Bonnetain(B)

Institute for Quantum Computing, Department of Combinatorics and Optimization,
University of Waterloo, Waterloo, Canada

xbonnetain@uwaterloo.ca

Abstract. Simon’s algorithm is the first example of a quantum algo-
rithm exponentially faster than any classical algorithm, and has many
applications in cryptanalysis. While these quantum attacks are often
extremely efficient, they are generally missing some precise cost estimate.
This article aims at resolving this issue by computing precise query costs
for the different use cases of Simon’s algorithm in cryptanalysis.

We show that it requires little more than n queries to succeed in most
cases. We perform the first concrete cost analysis for the offline Simon’s
algorithm, and show that it require little more than n + k queries. We
also find that for parameter sizes of cryptographic relevance, it is pos-
sible to truncate the output of the periodic function to a dozen of bits
without any impact on the number of queries, which can save roughly a
factor 3 in qubits in reversible implementations of Simon’s algorithm.

Keywords: Simon’s algorithm · Quantum cryptanalysis · Symmetric
cryptanalysis · Query complexity

1 Introduction

Simon’s algorithm [30] is the first example of a quantum algorithm exponentially
faster than any classical one, and lead the way to Shor’s algorithm [29]. This
algorithm aims at solving the following problem:

Definition 1 (Simon’s problem (informal)). Let f : {0, 1}n → X be a
periodic function. Find its period.

For a long time, this algorithm had no concrete application. This changed
in 2010, with a polynomial-time quantum distinguisher on the 3-round Feistel
cipher [20], which is classically proven secure. This opened the way to many other
attacks [1,2,6,9,11,13,15,17,18,21,24,27,28], including the Grover-meets-Simon
technique, which uses Simon’s algorithm as a test in a quantum search [22]. All
these attacks have an important restriction: they only fit in the quantum query
model, that is, they require access to a quantum circuit that can compute the
corresponding construction including its secret material.

This last restriction was overcomed in 2019, with the offline Simon’s algo-
rithm [4] that uses Simon’s algorithm in a quantum search in a novel way, and
c© Springer Nature Switzerland AG 2021
P. Longa and C. Ràfols (Eds.): LATINCRYPT 2021, LNCS 12912, pp. 3–23, 2021.
https://doi.org/10.1007/978-3-030-88238-9_1
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https://doi.org/10.1007/978-3-030-88238-9_1


4 X. Bonnetain

makes some of the previous attacks applicable when we only have access to
classical queries to the secret function, but with a polynomial gain only.

The Grover-meets-Simon and its specialization, the offline Simon’s algorithm,
aim at solving the following problem:

Definition 2 (Grover-Meets-Simon (Informal)). Let f1, . . . , f2k be a set of
functions from {0, 1}n to X, such that exactly one of them is periodic. Find the
index of the periodic function.

In the literature, the query cost of these attacks is often left as a O (n).
Very few concrete estimates are proposed, and they tend to be loose estimates.
Hence, in the current situation, we have asymptotically efficient attacks, but their
effiency in practice is less clear, and we are lacking tools to compare between these
attacks and others. Moreover, in many attacks, an ad-hoc analysis was required
to ensure that Simon’s algorithm was efficient. This work aims at resolving this
issue, by providing results allowing to directly compute the query cost of a
Simon-based attack in any cryprographical use case. It has already been used in
[5] to provide concrete circuits for the offline Simon’s algorithm. Our analysis is
crucial for many of the optimizations they propose.

We focus here on giving precise bounds on the number of queries required
by Simon’s algorithm in its different use cases. Note that we do not give here
concrete lower bounds for Simon’s problem. To our knowledge, the sole work in
this direction is [19], where a lower bound in n/8 queries is proven.

Previous Works. The first concrete estimate comes from [18, Theorem 1 and
2], where it is shown that cn queries, for c > 3 that depends on the function, is
enough to have a success probability exponentially close to 1. In [22, Theorem
2], a bound of 2(n +

√
n) queries for the Grover-meets-Simon algorithm with a

perfect external test is shown, for a success probability greater than 0.4, assuming
that the periodic function has been sampled uniformly at random, and that the
output and input size are equal. In [1], a heuristic cost of 1.2n + 1 for Simon’s
algorithm is used. In the recent [23, Theorem 3.2], it is shown that for 2-to-1
functions, Simon’s algorithm needs on average less than n + 1 queries, and that
for functions with 1 bit of output, on average less than 2(n + 1) queries are
needed, if each query uses a function sampled independently uniformly over the
set of functions with the same period.

Contributions. Our contributions can be summarized around three axis:

• We propose an exact query analysis of all the proposed variant of Simon’s
algorithm in the litterature, and in particular give the first non-asymptotical
cost estimate for the offline Simon’s algorithm and the exact variant of
Simon’s algorithm.

• We study comprehensively the algorithm’s behaviour with random functions.
• We show the algorithm’s behaviour is not impacted by a significant reduction

of the function’s output size.
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This allows us to propose heuristics, meant to be directly used in quantum
cryptanalysis. They are heuristics, in the sense that technically, some counter-
examples exists. Still, we show the functions that do not satisfy these heuristics
are completely degenerate, and are far too rare to appear in practice.

The results we obtain can be summarized by the following heuristic:

Heuristic 1 (Simplified Estimates). Simon’s algorithm needs n queries,
except in its offline version, where it needs n + k queries, assuming the output
size of the function is at least �3.5 + log2(q)� bits, with q the number of queries.

We also propose more refined heuristics with an exact query cost in function
of the success probability in Subsect. 7.2, as well as theorems to support them.

Cryptographic Applications. In general, our work can be used as-is to pro-
pose concrete costs estimates for any Simon-based cryptanalysis. Moreover, this
work also has some interesting consequences:

• The original concrete proof for Grover-meets-Simon [22] assumed a large out-
put size, while the original proof of the Offline Simon’s algorithm [4] focuses
on the asymptotical behaviour. We propose concrete estimates with a very
small output size limitation. This allows to give concrete estimates for attacks
that were missing them, such as some slide attacks [6] or some cryptanalyses
of Chaskey [16].

• Some attacks apply Simon’s algorithm in a nested fashion [6,9]. Our improve-
ment in query is multiplied in that case, and the gain of a small constant
becomes much larger in that case.

• Fewer queries and a smaller output size means a reduced memory footprint for
reversible applications of Simon’s algorithm (such as the nested algorithms,
Grover-meets-Simon or the Offline Simon’s algorithm). While the exact gain
depends on the concrete attack, we can estimate these two improvements
allow to save around a factor 10 in memory, without any drawback nor pre-
venting any other optimization.

Outline. Sect. 2 recalls the amplitude amplification results useful in the following
paper. Sections 3, 4, 5 and 6 respectively presents and analyze precisely Simon’s
algorithm, its exact variant, the Grover-meets-Simon algorithm and the offline
Simon’s algorithm. We present a survey of the Simon-based attacks and discuss
what the previous analysis means in practice for concrete attacks in Sect. 7.

2 Amplitude Amplification

We assume basic knowledge of quantum computing. For a detailed introduction,
we refer to [25]. We will use amplitude amplification [8] with Simon’s algorithm
as a test function in the following sections. We recall here these standard results.

Lemma 1 (Amplitude Amplification [8]). Let C be a quantum circuit such
that C |0〉 =

√
p |Good〉 +

√
1 − p |Bad〉,
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Let Og be an operator that fulfills Og |Good〉 = − |Good〉 and Og |Bad〉 =
|Bad〉, and O0 the operator I − 2 |0〉 〈0|, let θ = arcsin(

√
p). Then

(CO0C
†Og)tC |0〉 = sin((2t + 1)θ) |Good〉 + cos((2t + 1)θ) |Bad〉.

Lemma 2 (Exact Amplitude Amplification for p = 1/2 [7]). Let C be a
quantum circuit such that C |0〉 = 1√

2
|Good〉 + 1√

2
|Bad〉,

Let Sg be an operator that fulfills Sg |Good〉 = i |Good〉 and Sg |Bad〉 = |Bad〉,
and S0 the operator I − (1 − i) |0〉 〈0|. Then CS = S0C

†SgC |0〉 = |Good〉.
Remark 1. The operators Og and Sg can be easily implemented given a quantum
circuit T that computes 1 for the good elements and 0 for the bad ones.

For our numerical analysis, we propose slight variants of the amplitude ampli-
fication lemma that will be used for the Grover-meets-Simon and Offline Simon
analysis.

Proposition 1 (Unprecise Amplitude Amplification). Let C be a quan-
tum circuit such that C |0〉 =

√
p |Good〉 +

√
1 − p |Bad〉, If p ∈ [(1 − β)p0, p0],

then after π
4 arcsin

√
p0

iterations, the probability of measuring an element in
|Good〉 is at least 1 − (2β + 2p0 +

√
p0)2. If p ∈ [p0, p0(1 + β)], then after

π
4 arcsin

√
p0

iterations, the probability of measuring an element in |Good〉 is at

least 1 − (β +
√

(1 + β)p0 + 2
√

1 + β
3
p0)2.

Proof. See the full version [3].

Proposition 2 (Amplitude Amplification with Aapproximate Test).
Let C be a quantum circuit such that C |0〉 =

√
p |Good〉 +

√
1 − p |Bad〉,

Let Og be an operator that fulfills Og |Good〉 = − |Good〉 and Og |Bad〉 =
|Bad〉, and O0 the operator I − 2 |0〉 〈0|, let θ = arcsin(

√
p).

Let Ôg be an approximation of Og, such that for all |x〉, Ôg |x〉 = Og |x〉+ |δ〉,
with |δ〉 an arbitrary vector such that ||δ〉| ≤ ε. Then if tε ≤ sin((2t + 1)θ), a
measurement of (CO0C

†Ôg)tC |0〉, will give an element in |Good〉 with probability
at least (sin((2t + 1)θ) − tε)2.

Proof. See the full version [3].

3 Simon’s Algorithm

3.1 Algorithm Description

Simon’s algorithm [30] tackles the Hidden Subgroup problem when the group is
{0, 1}n. We can formulate the problem as follows:

Problem 1 (Simon’s Problem). Let n ∈ N, H a subgroup of {0, 1}n and X a
set. Let f : {0, 1}n → X be a function such that for all (x, y) ∈ ({0, 1}n)2,
[f(x) = f(y) ⇔ x ⊕ y ∈ H]. Given oracle access to f , find a basis of H.
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The promise in the problem can also be relaxed:

Problem 2 (Relaxed Simon’s Problem). Let n ∈ N, H a subgroup of {0, 1}n and
X a set. Let f : {0, 1}n → X be a function such that for all (x, y) ∈ ({0, 1}n)2,
[x ⊕ y ∈ H ⇒ f(x) = f(y)] and that for all h /∈ H, there exists an x such that
f(x) = f(x ⊕ h). Given oracle access to f , find a basis of H.

We consider two types of functions, depending on the problem we solve:

Definition 3 (Periodic permutations, periodic functions). We call a
periodic permutation a function f that fulfills the promise of Problem 1. If f
is constant over the cosets of H, but not necessarily injective over {0, 1}n/(H),
we say that f is a periodic function.

Algorithm Description. Circuit 1 is the circuit of Simon’s algorithm. It pro-
duces a random value orthogonal to H, and can be described as Algorithm 1.

Algorithm 1. Simon’s routine
Input: n, Of : |x〉 |0〉 �→ |x〉 |f(x)〉 with f : {0, 1}n → X hiding H
Output: y orthogonal to H

1: Initialize two n-bits registers : |0〉 |0〉
2: Apply H gates on the first register, to compute

∑2n−1
x=0 |x〉 |0〉

3: Apply Of , to compute
∑2n−1

x=0 |x〉 |f(x)〉
4: Reapply H gates on the register, to compute

∑

x

2n−1∑

j=0

(−1)x·j |j〉 |f(x)〉 =
∑

x0∈{0,1}n/(H)

∑

x1∈H

2n−1∑

j=0

(−1)(x0⊕x1)·j |j〉 |f(x0)〉

5: The register is in the state

∑

x0∈{0,1}n/(H)

2n−1∑

j=0

(−1)x0·j ∑

x1∈H
(−1)x1·j |j〉 |f(x0)〉

6: Measure j, f(x0), return them.
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Lemma 3 (Adapted from [18, Lemma 1]). Let H be a subgroup of {0, 1}n.
Let y ∈ {0, 1}n. Then

∑

h∈H
(−1)y·h =

{ |H| if y ∈ H⊥

0 otherwise

Proof. See the full version [3].

Hence, at the end of Simon’s algorithm, the amplitude of j is nonzero if and
only if j ∈ H⊥. Hence, this routine samples uniformly values orthogonal to H.

The complete algorithm calls the routine until the values span a space of
maximal rank or, if the rank is unknown, a fixed T times. Finally, with linear
algebra, we can recover a basis of H. In practice, we’ll see in the next sections
that T = n + O(1) is sufficient to succeed.

Remark 2 (Reversible Implementations). In Algorithm 1, the measurements are
optional. Without them, we compute the superposition of the elements of H⊥.
In that case, the linear algebra part has to be computed quantumly.

First of all, we present the following lemma that will allow us to study only
the aperiodic case in Simon’s algorithm.

Lemma 4 (Simon Reduction). Let n ∈ N, let X be a set. There exists a
bijection ϕc from {f ∈ {0, 1}n → X|f hides a subgroup of dimension c} to

{H ⊂ {0, 1}n|dim(H) = c} ×
{

f̂ ∈ {0, 1}n−c → X
∣∣∣f̂ is aperiodic

}

such that, with ϕc(f) = (H, f̂), the behaviour of Simon’s algorithm with f and
f̂ is identical, up to isomorphism. Moreover, f is a periodic permutation if and
only if f̂ is a permutation.

Proof. See the full version [3].

3.2 Analysis with Periodic Permutations

Proposition 3 (Simon’s Algorithm Success Probability). Let f be a func-
tion on n bits that fullfils the promise of Problem 1, H its hidden subgroup. With
T ≥ n − dim(H) queries, Simon’s algorithm succeeds with probability

prT =
n−dim(H)−1∏

i=0

(
1 − 1

2T−i

)
.

Moreover,
(
1 − 2n−T−dim(H)−1

)2 ≤ prT ≤ 1 − 2n−T−dim(H)−1.

Proof. See the full version [3].
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Theorem 1 (Simon’s Algorithm Query Complexity). Let f be a function
on n bits that fullfils the promise of Problem 1, H its hidden subgroup. To succeed,
Simon’s algorithm requires, on average:

• n − dim(H) + 2 queries if n − dim(H) ≥ 2.
• 2 queries if n − dim(H) = 1

Proof. See the full version [3].

3.3 Limitations of Simon’s Algorithm

We might want to apply Simon’s algorithm on functions that are only periodic
functions, and can have more preimages per image. However, we cannot expect
to have a functioning algorithm in all cases. Indeed, let’s consider

fs :
{0, 1}n → {0, 1}

x �→
{

1 if x ∈ {0, s}
0 otherwise

.

The function fs has the hidden subgroup {0, s}. This function can be con-
structed from oracle access to a test function ts(x) = δx,s. Hence, as finding the
hidden subgroup from fs is equivalent to recovering s, and as quantum search is
optimal to recover s given quantum oracle access to ts(x) [31], we cannot hope
for a polynomial, over even subexponential algorithm in this case.

This inherent limitation of Simon’s algorithm forces to estimate wether the
periodic function will work well. The general argument to support the efficiency
of Simon’s algorithm in practice is, as we will prove below, that it works well
for random functions, and that the functions that makes Simon’s algorithm
fail are degenerate enough to be distinguishable classically from random, which
makes the cryptosystem likely to be breakable classically. We present here two
approaches in this direction, which amounts in either ensuring that the function
does not have any unwanted collision, or showing that these unwanted collisions
are not a problem in practice.

Long Outputs. The first approach amounts in remarking that if the output of
the function is long enough, there is a very low chance to find a collision in the
function. This principle of lenght extension is for example used in [27].

Proposition 4 (Functions with Long Output). The fraction of functions
from {0, 1}n to {0, 1}2n+α that are not a permutation is lower than 2−α.

Proof. See the full version [3].

If the output is not large enough, we can extend it by considering the function
g(x) = (f(x), f(x⊕ 1), f(x⊕ 2), . . . ). This function will have a lower probability
to have unwanted collisions than f , and with enough queries, will likely be a
permutation.
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There is however two limitations with this approach: first, the number of
queries is multiplied by the number of copies of f we have in g, which is especially
significant as the number of queries, from the previous section, is linear. Second,
this may not be sufficient to prevent unwanted collisions to occur, and there
are functions for which f(·) and (f(·), f(· ⊕ 1)) have exactly as many collisions.
Hence, there is still a need for a more precise analysis.

We will now present the other approach, which aims at showing that even
with unwanted collisions, the pathological cases that prevent Simon’s algorithm
to succeed in a reasonable number of queries are too scarce to be an issue.

3.4 A General Criterion

To quantify how bad a function is, we define ε(f) similarly to [18]:

ε(f) = max
t∈{0,1}n/(H)

Pr
x

[f(x ⊕ t) = f(x)].

This value estimates the probability that any given t is present as an additional
period for some of the output vectors of Algorithm 1. It allows to bound the
success probability of Simon’s algorithm.

Proposition 5 (Success probability with More Preimages, adapted
from [18, Theorem 1]). Let f be a periodic function, H its hidden subgroup,
and ε(f) be defined as above. After c(n − dim(H)) steps, Simon’s algorithm on

f succeeds with probability greater than 1 −
(
2
(

1+ε(f)
2

)c)n−dim(H)

.

Proof. See the full version [3].

Theorem 2 (Number of Queries in General). Let f be a periodic function,
H its hidden subgroup, ε(f) be defined as above. Simon’s algorithm on f fails
with probability lower than 2−α after 1

1−log2(1+ε(f)) (n − dim(H) + α) queries.

Proof. See the full version [3].

3.5 With Random Functions

Now, we want to estimate the value of ε(f). We show below that for all but a
negligible fraction of functions, as long as the domain of the function is large
enough, it is too small to have any impact on the number of queries.

Lemma 5. Let F = {0, 1}n → {0, 1}m. Then
∣∣{f ∈ F∣∣ε(f) ≥ 2�

2n

}∣∣ ≤
2n 2(n−m)�

�! |F|
Proof. See the full version [3].

Theorem 3 (ε for large enough m). Let F = {0, 1}n → {0, 1}m. The pro-
portion of functions in F such that ε ≥ e21−m + 21−n(n + α) is upper bounded
by 2−α.
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Proof. See the full version [3].

Theorem 4 (Success Probability of Simon’s Algorithm with Random
Functions). Assume m ≥ log2(4e(n−h+α+1)). Then the fraction of functions
in {0, 1}n → {0, 1}m with a hidden subgroup of dimension h such that, after
n−h+α+1 queries, Simon’s algorithm fails with a probability greater than 2−α

is bounded by 2n−h− 2n−h

4(n−h+α+1) .

Proof. See the full version [3].

Theorem 5 (Average Complexity of Simon’s Algorithm with Random
Functions). Assume m ≥ log2(4e((n − h) + 1)). Then the fraction of func-
tions in {0, 1}n → {0, 1}m with a hidden subgroup of dimension h such that, on
average, Simon’s algorithm requires more than n − h + 3 queries is bounded by

2n−h− 2n−h

4(2(n−h)+2) .

Proof. See the full version [3].

4 Exact Variant of Simon’s Algorithm

An exact version of Simon’s algorithm was proposed by Brassard and Høyer in
1997 [7]. We propose here a more efficient variant of this algorithm, and prove
that its query complexity is bounded by 3n−h+1 if the function operates on n
bits and the hidden subgroup has dimension h. Note that this algorithm is only
exact for periodic permutations.

4.1 The Algorithm of Brassard and Høyer

The idea of Algorithm 2 is to ensure that any measurement we perform gives
us some information about the period. This is done by doing exact amplitude
amplification over a subset of the values outputted by Simon’s algorithm. More-
over, the subset we seek can be empty. In the original algorithm, the empty case
meant that we should try with another subset until we find a non-empty one, or,
if there is none, that the algorithm can end. As there is at most n such subsets,
the algorithm is polynomial.

4.2 Our Improved Variant

We improve over the previous algorithm by remarking that the knowledge that
a subset is empty actually gives some information on the hidden subgroup: it
shows that a given vector is not in he subgroup’s dual. Moreover, we show that
this case is actually better, that is, we can reuse the quantum state, and save 1
query each time this occurs. This is Algorithm 3.

Theorem 6 (Complexity and Correctness of Algorithm 3). Let f be a
periodic permutation from {0, 1}n with a hidden subgroup of dimension h. Algo-
rithm 3 returns a basis of H in less than min(3n − h + 1, 3n) queries.

Proof. See the full version [3].
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Algorithm 2. Exact Simon’s algorithm, from [7]
Input: n, Of : |x〉 |0〉 �→ |x〉 |f(x)〉 with f : {0, 1}n → X hiding H
Output: a basis of H

1: V = ∅ � Basis of H⊥

2: for i from 1 to n do
3: Choose a set W such that V,W forms a basis of {0, 1}n.
4: for j from i to n do
5: Apply Algorithm 1, without measuring

The state is
∑

x0∈{0,1}n/(H)

2n−1∑

y=0
(−1)x0·y ∑

x1∈H
(−1)x1·y |y〉 |f(x0)〉

6: amplify the marked vectors: � Exact amplitude amplification
7: Decompose y as

∑
vk∈V δkvk +

∑
wj∈W γ�w�

8: Mark if γj = 1
9: end amplify

10: Measure |γj〉
11: if γj = 1 then measure the first register, add the result to V , break
12: end if
13: end for
14: if V has not been updated then break
15: end if
16: end for
17: return a basis of V ⊥

5 Grover-meets-Simon

5.1 Algorithm Description

The Grover-meets-Simon algorithm [22] aims at solving the following problem1:

Problem 3 (Grover-meets-Simon). Let f : {0, 1}k ×{0, 1}n → {0, 1}m be a func-
tion such that there exists a unique k0 such that f(k0, ·) hides a non-trivial
subgroup H. Find k0 and H.

The idea to solve this problem is to use Simon’s algorithm as a distinguisher:
for the wrong k, Simon’s algorithm should return the trivial subgroup, while
for k0 it will always return a non-trivial subgroup. We can then use it as a test
function to find k0, as in Algorithm 4.

The issue with this test is that it allows many false positives: indeed, even
for some incorrect k, Simon’s algorithm may return a non-trivial subgroup, and
these bad cases will also be amplified.

The idea to overcome this issue is to use a test outside of Simon’s algorithm
to check if its output is correct.

1 In [22], the algorithm they introduce is in fact a special case of what we call here
Grover-meets-Simon with a perfect external test.
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Algorithm 3. Improved variant of the exact Simon’s algorithm
Input: n, Of : |x〉 |0〉 �→ |x〉 |f(x)〉 with f : {0, 1}n → X hiding H
Output: a basis of H

1: V = ∅ � Basis of H⊥

2: W = ∅ � Basis of {0, 1}n/(H⊥)
3: for i from 1 to n do
4: if No quantum state is available then
5: Apply Algorithm 1, without measuring

The state is
∑

x0∈{0,1}n/(H)

2n−1∑

y=0
(−1)x0·y ∑

x1∈H
(−1)x1·y |y〉 |f(x0)〉

6: end if
7: amplify the marked vectors: � Exact amplification
8: Choose a set Z such that V,W,Z forms a basis of {0, 1}n.
9: Decompose each y as

∑
vk∈V δkvk +

∑
zj∈Z γjzj , mark if γ1 = 1

10: end amplify
11: Measure |γ1〉
12: if γ1 = 1 then Measure the first register, add the result to V , discard

the quantum state
13: else Add z1 to W , uncompute steps 7–10 � Get the state from step 5
14: end if
15: end for
16: return a basis of V ⊥

Algorithm 4. Grover-meets-Simon
Input: n, Of : |k〉 |x〉 |0〉 �→ |x〉 |f(k, x)〉 with f(k0, ·) of Hidden subgroup H
Output: k0, a basis of H.

1: amplify over k with the following test:
2: H ← Simon’s algorithm over f(k, ·)
3: return H = {0}
4: end amplify

Hence, instead of only checking the dimension of the subgroup, we compute
the subgroup and check if it is correct. This is something we can always do if
dim(H) ≥ 1 and f(k, ·) is aperiodic if k = k0, as presented in Algorithm 5. This
test is only perfect with periodic permutations, otherwise it may happen that
these equalities hold for an aperiodic function, but it can in general rule out false
positives more efficiently than by adding more queries in Simon’s algorithm.
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Algorithm 5. Periodicity test
Input: k,H

Output: (k,H) ?= (k0,H)
1: for some x, h ∈ {0, 1}n × H \ {0} do
2: if f(k, x) = f(k, x ⊕ h) then
3: return False
4: end if
5: end for
6: return True

5.2 Cost Analysis

Here, Simon’s algorithm is used to identify one function among a family. The
main issue is that there can be false positives, that is, functions that are identified
as periodic while they are not, which create terms in k − α in Theorem 7.

Theorem 7 (Success Probability for Plain Grover-meets-Simon). Let
f : {0, 1}k × {0, 1}n → {0, 1}m be a function such that there exists a unique
i0 such that f(i0, ·) hides a non-trivial subgroup H. If for all i = i0, Simon’s
algorithm on f(i, ·), succeeds with probability at least 1 − 2−α, then Algorithm 4
succeeds in π

4 arcsin
√
2−k

iterations with probability at least 1−2k−α −22(k−α)+1−
2−k+2 − 2−α+2 − 2−2k+6 + 2k−3α+6.

Proof. See the full version [3].

Now, we study the situation with external tests, either when we have perfect
external tests, or using Algorithm 5, with Theorem 8.

Theorem 8 (Grover-meets-Simon with Perfect External Test). Let f :
{0, 1}k × {0, 1}n → {0, 1}m be a function such that there exists a i0 such that
f(i0, ·) hides a subgroup H, and there exists a test function T such that T (i,H) =
1 if and only if (i,H) = (i0,H). If for f(i0, ·), Simon’s algorithm succeeds with
probability at least 1−2−α, then Algorithm 4 with a perfect external test succeeds
in π

4 arcsin
√
2−k

iterations with probability at least 1 − (2−α+1 + 2−k/2 + 2−k+1)2.

Proof. See the full version [3].

Remark 3 (Grover-meets-Simon for Periodic permutation). There is a perfect
test for periodic permutations which costs only 2 queries. It amounts in testing
wether or not the function fullfils f(0) = f(hi), with (hi) a basis of the guessed
hidden subgroup H. This will only be the case if the function is indeed periodic.

Remark 4. The external test allows to remove the error terms in k − α, which
means that there is no longer a dependency in k for the nimimal number of
queries. We only need n plus a constant number of queries to succeed.

When there is no perfect external test (for example in the case of quantum
distinguishers), we can still do better than Theorem 7 using Algorithm 5.
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Theorem 9 (Grover-meets-Simon with Periodicity Test). Let k ≥ 3, f :
{0, 1}k × {0, 1}n → {0, 1}m be a function such that there exists a unique i0 such
that f(i0, ·) hides a non-trivial subgroup H. If for all f(i, ·), Simon’s algorithm
succeeds with probability at least 1 − 2−α and for all i = i0, ε(f(i, ·)) ≤ ε, then
Algorithm 4 with γ queries in Algorithm 5 succeeds in π

4 arcsin
√
2−k

iterations with

probability at least 1 − εγ2k−α+1 − (2−α+1 + 2−k/2 + 2−k+1)2.

Proof. See the full version [3].

6 The Offline Simon’s Algorithm

6.1 Algorithm Description

The offline Simon’s algorithm [4] is the only known application of Simon’s algo-
rithm that does not require quantum access to a secret function. It can be seen
as a variant of the Grover-meets-Simon algorithm that leverages a special struc-
ture of the periodic function. Concretely, the algorithm can solve the following
problem:

Problem 4 (Constructing and Finding a Periodic Function). Let Ek : {0, 1}n →
{0, 1}� be a function, f : {0, 1}k ×{0, 1}n → {0, 1}� be a family of functions. Let
P be a quantum circuit such that

P |i〉
∑

x∈{0,1}n

|x〉 |Ek(x)〉 = |i〉
∑

x∈{0,1}n

|x〉 |f(i, x)〉

Assume that there exists a unique i0 ∈ {0, 1}k such that f(i0, ·) hides a
non-trivial subgroup. Given oracle access to Ek and P , find i0 and the period of
f(i0, ·).

Here, the compared to Grover-meets-Simon, we add the assumption that the
family of functions can be efficiently computed from a fixed function Ek. In most
cases, we can restrict ourselves to the following simpler problem, with f the sum
of two functions:

Problem 5 (Asymmetric Search of a Periodic Function). Let g : {0, 1}m ×
{0, 1}n → {0, 1}� and Ek : {0, 1}n → {0, 1}� be some functions.

Assume that there exists a unique i0 ∈ {0, 1}m such that g(i0, ·) ⊕ Ek hides
a non-trivial subgroup. Given oracle access to g and Ek, find i0.

The idea to solve Problem 4 is to see Simon’s algorithm slightly differently
than usual. Instead of querying an oracle to a function, we suppose that the algo-
rithm is given as input a database of Ek, a set of superpositions

∑
x |x〉 |Ek(x)〉.

It then computes the periodic function from this set, and finally extracts the
period. We note |ψm

Ek
〉 =

⊗m
j=1

∑
x |x〉 |Ek(x)〉, a state which contains m copies

of the superpositions of input/outputs of Ek.
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Hence, the algorithm is very similar to Algorithm 4, but instead of querying
the function Ek, the test function fetches |ψm

Ek
〉, uses it to check if the function is

periodic, and finally uncomputes everything, to get back a state close to |ψm
Ek

〉,
which can then be reused in the next iteration. This is Algorithm 6. Thus, m
corresponds to the number of queries required by Simon’s algorithm.

Algorithm 6. The offline Simon’s algorithm
Input: n, An oracle OEk

and a quantum circuit P that fullfils the constraints
of Problem 4
Output: i0.

1: Query m times OEk
, to construct |ψm

Ek
〉

2: amplify over i with the following test:
3: Compute m copies of

∑
x |x〉 |f(i, x)〉 from |ψm

Ek
〉 and P .

4: Apply a Hadamard gate on the first register of each copy.
5: Compute in superposition the rank r of the values in each first register.
6: b ← r = n
7: Uncompute everything but the value of b, to recover |ψm

Ek
〉.

8: Return b
9: end amplify

Remark 5. In this algorithm, all the queries have to be done at the begin-
ning of Simon’s algorithm. Hence, it is not possible to use the exact variant of
Algorithm 3 here.

Now, it remains to estimate the deviation due to the fact that we are not
exactly testing if i is equal to i0.

Lemma 6 (Deviation for the Offline Simon’s Algorithm). If Simon’s
algorithm fails with probability at most 2−α, then the test function in Algorithm
6 tests if i = i0 and adds a noise of amplitude smaller than 2−α/2+1.

Proof. See the full version [3].

Algorithm 6 allows to only make the quantum queries to Ek once, at the
beginning. Now, the idea to use only classical queries is to construct manually
the quantum superposition over Ek from the classical queries of all its 2n possible
inputs. This is presented in Algorithm 7. As this is can only be done in O (2n)
time, we really need to reuse the queries to still have a time-efficient algorithm.
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Algorithm 7. Generation of |ψm
Ek

〉 from classical queries
Input: A classical oracle to Ek, m
Output: |ψm

Ek
〉

1: |φ〉 ← ⊗
m

∑
x |x〉 |0〉

2: for 0 ≤ i < 2n do
3: Query Ek(i)
4: Apply to each register in |φ〉 the operator

|x〉 |y〉 �→
{|x〉 |y ⊕ Ek(i)〉 if x = i

|x〉 |y〉 otherwise

5: end for
6: return |φ〉

6.2 Cost Analysis

The offline Simon’s algorithm reuses the quantum queries between the tests.
This allows to make the algorithm work with classical queries, at the expense of
having more noise than with the Grover-meets-Simon algorithm.

Theorem 10 (Success Probability for the Offline Simon’s Algorithm).
Let f : {0, 1}k × {0, 1}n → {0, 1}m be a function such that there exists a unique
i0 such that f(i0, ·) hides a non-trivial subgroup H. If for all i = i0, Simon’s
algorithm on f(i, ·) succeeds with probability at least 1 − 2−α, then Algorithm 6
succeeds in π

4 arcsin
√
2−k

iterations with probability at least 1−2k−α−(2k/2−α/2+1+

2k−α +
√

2−k + 2−α + 2−k+1
√

1 + 2k−α
3
)2

Proof. See the full version [3].

Remark 6. Contrary to the Grover-meets-Simon case, we cannot remove the
error terms in 2k−α with an external test, which means that we cannot remove
the direct dependency in k in the number of queries.

Theorem 11 (The Offline Simon’s Algorithm with Random Func-
tions). Assume that m ≥ log2(4e(n + k + α + 1)) and k ≥ 5. The fraction
of functions in {0, 1}k × {0, 1}n → {0, 1}m such that the offline Simon’s algo-
rithm with n+ k +α+1 queries per iterations succeeds in π

4 arcsin
√
2−k

iterations
with probability lower than

1 − 2−α −
(
2−α/2+1 + 2−α + 2−k/2+1

)2

is lower than 2n+k− 2n

4(n+k+α+1) .

Proof. See the full version [3].
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7 Applications in Cryptanalysis

We separate three use cases of Simon’s algorithm in cryptanalysis:

• Quantum distinguishers, that aims at telling wether the input oracle has a
given structure or has been chosen uniformly at random,

• Forgeries, in which the knowledge of the hidden subgroup is not sufficient to
compute fully the secret oracle (but is enough to forge valid ciphertext),

• Key recoveries, in which all the secret information is recovered.

7.1 Landscape of Known Simon-Based Attacks

We present the distinguishers in the literature in Table 1, the forgeries in Table 2
and the key recoveries in Table 3. There are two models for these attacks: the
quantum chosen-plaintext model (qCPA) assumes we can query the encryption
oracle quantumly. The more powerful quantum chosen-ciphertext model (qCCA)
assumes that we can also query the decryption oracle.

From these tables, we can see that periodic permutations are almost never
used, that the hidden subgroup is generally of dimension 1, the only known
exception being the quantum cryptanalysis of AEZ [1]. Finally, in these attacks,
the domain of the function has generally almost the same size as the codomain,
or a larger size with the offline Simon’s algorithm, as it fixes part of the input.
The dimension of the problem can be estimated between 32 and 256, as the block
size of the affected symetric constructions generally ranges between 64 and 256
bits. Hence, if we restrict ourselves to an error probability greater than 2−256,
the probability that a function does not satisfy Theorem 4 is at best 2−220 .

7.2 Cost Estimates in Practice

Dimension of the Subgroup. In almost all cases, the dimension is 0 or 1.
Hence, we consider that it is 0, which is an increase of at most 1 query.

Simon’s Algorithm. For plain Simon’s algorithm, we can directly apply The-
orem 5 and Theorem 4 to get the following heuristic:

Heuristic 2 (Simon’s algorithm). Simon’s algorithm succeeds in n + 3
queries on average and with n+α+1 queries, it succeeds with probability 1−2−α.
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Table 1. Known Simon-based distinguishers. n is the input size, d is the number
of branches. GFN means generalized Feistel Network. The algorithm is always plain
Simon’s algorithm, but the distinguishers can be converted to key recoveries and
extended to more rounds with a quantum search or a nested Simon, as proposed
in [9,12,24]. ∗Note that if the distinguisher is given a random permutation/function,
Simon’s algorithm will not operate on a permutation.

Target Number Periodic Group Input Output Source

of rounds permutation dim. size size

Feistel 3 (qCPA) Yes∗ 0–1 n/2 + 1 n/2 [20]

4 (qCCA) 0–1 n/2 + 1 n/2 [17]

Type-1 GFN 3d− 3 (qCPA) 0–1 n/d+ 1 n/d [24]

d2 − d+ 1 (qCCA) 0–1 n/d+ 1 n/d [24]

Type-2 GFN d+ 1 (qCPA) 0–1 n/d+ 1 n/d [11]

Type-3 GFN d (qCPA) 0–1 n/d+ 1 n/d [13]

Contracting GFN 2d− 1 (qCPA) 0–1 n/d+ 1 n/d [9]

Table 2. Known Simon-based forgeries. No attack use a periodic permutation. Forg-
eries for Chaskey and other versions of AEZ are not presented, as a key recovery exists.

Target Group dim. Input size Output size Algorithm Source

MAC CBC-MAC 1 n+ 1 n Simon [18,28]

PMAC 1 n+ 1 n Simon [18]

GMAC 1 n+ 1 n Simon [18]

Modes LRW 1 n+ 1 n Simon [18]

OCB 1 n+ 1 n Simon [18]

GCM 1 n+ 1 n Simon [18]

AE schemes Minalpher 1 257 256 Simon [18]

OMD 1 129 128 Simon [18]

AEZ10 1–2 128 128 Simon [1]

Nested Simon’s Algorithm. A few attacks require a mested use of Simon’s
algorithm. This still makes for some polynomial attacks, albeit of larger degree.
In that case, precise estimates have a larger impact, as a cost estimate of cn+o(n)
lead to a nested cost of cknk + o(nk). Our work shows that we can use c = 1.

External Tests in Grover-meets-Simon. In general, a perfect external test
amounts to checking if the output of a secret function (say, a block cipher)
matches the output of the guessed function, secret function whose size will be,
in practice, around the dimension of the Simon instance. Hence, this test will fail
with probability 2−n, which means that we need

⌈
k
n

⌉
tests to filter out all the

false positives. This is close to what we have with a periodicity test. However,
the external test might use a cheaper function than the periodic function, which
would then allow a small gain.
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Table 3. Known Simon-based key recoveries. No attack use a periodic permutation.
Chaskey’s output size is a parameter to be chosen by the user. ∗The 4 articles present
distinct models of quantum related-keys.

Target
Group Input Output

Algorithm
Offline

Source
dim. size size variant

Even-Mansour 1 n n Simon Yes [21]

FX construction 0–1 n n Grover+Simon Yes [22]

AEZ 1–3 128 128 Simon [1]

Feistel-MiMC/GMiMC 1 n/2 n/2 Simon Yes [2]

8-round SMS4 0–1 33 32 Grover+Simon Yes [14]

Chaskey 1 128 t ≤ 128 Simon Yes [16]

HCTR/HCH 1 n n Simon Yes [26]

Round-keys

Self-

similar

Feistel

1 1 n/2 n/2 Simon [6,10]

2 1 n + 1 n Simon [6,10]

4 1 n/2 + 1 n/2 Nested Simon [6]

4+Whitening 0–1 n + 1 n/2 Grover+Simon [6]

any in related-key∗ 1 n/2 n/2 Variable [9]

Self-

similar

SPN

1 1 n + 1 n Simon [18]

any 0–1 n + 1 n Grover+Simon Yes [4]

any in related-key∗ 1 n + 1 n Simon [15]

Block ciphers
1 n n Simon Yes [4,27]

in related-key∗

Grover-meets-Simon. We use Theorem 8 or Theorem 9, depending on
whether an external test is available. We assume that testing the periodicity⌈

k
n

⌉
times is enough to rule out the false positives. Moreover, we assume that

the dominant term in the error will be the term in 2−2α+2, which means that
α � k/2 − 1. Under that assumption, we have the following heuristic:

Heuristic 3 (Grover-meet-Simon). Grover-meet-Simon succeeds with prob-
ability 1 − 2−α in n + α/2 + 2

⌈
k
n

⌉
queries per iteration.

With a perfect external test, it succeeds with probability 1 − 2−α in n + α/2
queries plus one query to the external test per iteration.

The Offline Simon’s Algorithm. Using external tests does not really improve
the offline Simon’s algorithm, and we can directly rely on Theorem 11. We
assume that the dominant term in the term in the square is 2−α/2+1, which
implies α � k. Under that assumption, we have the following heuristic:

Heuristic 4 (The offline Simon’s algorithm). The offline Simon’s algo-
rithm succeeds with probability 1 − 2−α in n + k + α + 4 queries per iteration.

Truncating the Output. For the functions we consider, we generally have the
same input and output size, which is more than enough for Simon’s algorithm
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to be efficient. From Theorem 4, with q queries, we only need log2(4eq) bits
of output, any longer would have no impact on the query cost. Hence, we can
propose the following heuristic:

Heuristic 5 (Truncating functions in reversible implementations). A
reversible implementation of Simon’s algorithm with q queries only needs a peri-
odic function with �3.5 + log2(q)� bits of output.

Memory Gain. The truncation technique allows to gain memory in reversible
implementations, as all the oracle calls have to be made in parallel. For the offline
Simon’s algorithm, we typically have an input size of n/3 bits and an output
size of n bits. Thus, we can improve from 4n/3 qubits to n/3 + log2(n) + 3.5
per query. With typical parameters, this corresponds to n/3 + 15 which is a free
gain of around a factor 3 in memory. Combined with the reduction in query,
depending on the concrete attack, we can estimate an overall gain of around a
factor 10 in memory.

8 Conclusion

We computed precise concrete query estimates for all use cases of Simon’s algo-
rithm, including the first concrete estimates for the exact variant of Simon’s
algorithm and the offline Simon’s algorithm. With a query cost of 3n queries, it
is not competitive for cryptographic applications, as the success probability of
the plain algorithm with 3n queries is overwhelming. We showed that relaxing
the promise of Simon’s algorithm has a negligible impact on its complexity. These
estimates pave the way to quantum circuits for concrete Simon-based attacks,
which would give precise and optimized time cost estimates. For example, the
recent [5] crucially relies on our results.

Our analysis showed that there is a gap between the Grover-meets-Simon
and offline Simon’s algorithm, the latter being less precise, and requiring more
queries to succeed. Finally, it showed that it is possible to truncate the periodic
function without any impact on the query cost, which allows to save memory in
all reversible implementations of Simon’s algorithm for free.

Open Problems. There is still one case out of reach with our current tech-
niques: periodic functions with 1 bit of output, which were proposed in [23]. More
generally, there is the question of how reduced the output size can be while still
having a negligible impact on the query cost.

While we showed a matching lower bound on the query cost of Simon’s
algorithm, our analysis does not rule out the existence of a different algorithm
that needs less than n − h queries. It would be of interest to prove this lower
bound, or, in the unlikely event that it exists, propose a more efficient algorithm.

Acknowledgements. The author would like to thank André Schrottenloher and Aki-
nori Hosoyamada for interesting discussions.
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Abstract. An indistinguishability obfuscator is a polynomial-time prob-
abilistic algorithm that takes a circuit as input and outputs a new cir-
cuit that has the same functionality as the input circuit, such that for any
two circuits of the same size that compute the same function, the out-
puts of the indistinguishability obfuscator are indistinguishable. Here, we
study schemes for indistinguishability obfuscation for quantum circuits.
We present two definitions for indistinguishability obfuscation: in our first
definition (qiO) the outputs of the obfuscator are required to be indistin-
guishable if the input circuits are perfectly equivalent, while in our sec-
ond definition (qiOD), the outputs are required to be indistinguishable as
long as the input circuits are approximately equivalent with respect to a
pseudo-distanceD. Our main results provide (1) a computationally-secure
scheme for qiO where the size of the output of the obfuscator is exponen-
tial in the number of non-Clifford (T gates), which means that the con-
struction is efficient as long as the number of T gates is logarithmic in the
circuit size and (2) a statistically-secure qiOD, for circuits that are close
to the kth level of the Gottesman-Chuang hierarchy (with respect to D);
this construction is efficient as long as k is small and fixed.

1 Introduction

At the intuitive level, an obfuscator is a probabilistic polynomial-time algorithm
that transforms a circuit C into another circuit C ′ that has the same functionality
as C but that does not reveal anything about C, except its functionality i.e.,
anything that can be learned from C ′ about C can also be learned from black-
box access to the input-output functionality of C. This concept is formalized in
terms of virtual black-box obfuscation, and was shown [11] to be unachievable in
general. Motivated by this impossibility result, the same work proposed a weaker
notion called indistinguishability obfuscation (iO).

In the classical context, an indistinguishability obfuscator is a probabilistic
polynomial-time algorithm that takes a circuit C as input and outputs a cir-
cuit iO(C) such that iO(C)(x) = C(x) for all inputs x and the size of iO(C)
is at most polynomial in the size of C. Moreover, it must be that for any two
circuits C1 and C2 of the same size and that compute the same function, their
c© Springer Nature Switzerland AG 2021
P. Longa and C. Ràfols (Eds.): LATINCRYPT 2021, LNCS 12912, pp. 24–43, 2021.
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obfuscations are computationally indistinguishable. It is known that iO achieves
the notion of best possible obfuscation, which states that any information that is
not hidden by the obfuscated circuit is also not hidden by any circuit of similar
size computing the same functionality [28]. Indistinguishability obfuscation is a
very powerful cryptographic tool which is known to enable, among others: digi-
tal signatures, public key encryption [38], multiparty key agreement, broadcast
encryption [13], fully homomorphic encryption [18] and witness-indistinguishable
proofs [12]. Notable in the context of these applications is the punctured pro-
gramming technique [38] which manages to render an iO(C) into an intriguing
cryptographic building block, and this, despite that fact that the security guar-
antees of iO(C) appear quite weak as they are applicable only if the two original
circuits have exactly the same functionality.

The first candidate construction of iO was published in [24], with security
relying on the hardness of multilinear maps [20,26,34]. Unfortunately, there have
been many quantum attacks on multilinear maps [6,19,21]. Recently, new iO
schemes were proposed under different assumptions [9,25,32]. Whether or not
these schemes are resistant against quantum attacks remains to be determined.

Indistinguishability obfuscation has been studied for quantum circuits in [4,
5]. In a nutshell (see Sect. 1.2 for more details), [5] shows a type of obfuscation for
quantum circuits, but without a security reduction. On the other hand, the focus
of [4] is on impossibility of obfuscation for quantum circuits in various scenarios.
Thus, despite these works, until now, the achievability of indistinguishability
obfuscation for quantum circuits has remained wide open.

1.1 Overview of Results and Techniques

Our contribution establishes indistinguishability obfuscation for certain families
of quantum circuits. Below we overview each of our two main definitions, and
methods to achieve them. We then compare the two approaches.

Indistinguishability Obfuscation for Quantum Circuits. First, we define
indistinguishability obfuscation for quantum circuits (qiO) (Sect. 3) as an exten-
sion of the conventional classical definition. This definition specifies that on input
a classical description of a quantum circuit Cq, the obfuscator outputs a pair
(|φ〉, C ′

q), where |φ〉 is an auxiliary quantum state and C ′
q is a quantum circuit.

For correctness, we require that ||C ′
q(|φ〉, ·) − Cq(·)||� = 0, whereas for security,

we require that, on input two functionally equivalent quantum circuits, the out-
puts of qiO are indistinguishable. As a straightforward extension of the classical
results, we then argue that inefficient indistinguishability obfuscation exists.

In terms of constructing qiO, we first focus on the family of Clifford cir-
cuits and show two methods of obfuscation: one straightforward method based
on the canonical representation of Cliffords, and another based on the principle
of gate teleportation [30]. Clifford circuits are quantum circuits that are built
from the gate-set {X,Z,P,CNOT,H}. They are known not to be universal for
quantum computation and are, in a certain sense, the quantum equivalent of
classical linear circuits. It is known that Clifford circuits can be efficiently sim-
ulated on a classical computer [29]; however, note that this simulation is with
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respect to a classical distribution, hence for a purely quantum computation,
quantum circuits are required, which motivates the obfuscation of this circuit
class. Furthermore, Clifford circuits are an important building block for fault-
tolerant quantum computing, for instance, due to the fact that Cliffords admit
transversal computations in many fault-tolerant codes. We provide two methods
to achieve qiO for Clifford circuits.

Obfuscating Cliffords Using a Canonical Form. Our first construction of qiO for
Clifford circuits starts with the well-known fact that a canonical form is an iO.
We point out that a canonical form for Clifford circuits was presented in [2];
this completes this construction (we also note that an alternative canonical form
was also presented in [39]). This canonical form technique does not require any
computational assumptions. Moreover, the obfuscated circuits are classical, and
hence can be easily communicated, stored, used and copied.

Obfuscating Cliffords Using Gate Teleportation. Our second construction of qiO
for Clifford circuits takes a very different approach. We start with the gate tele-
portation scheme [30]: according to this, it is possible to encode a quantum com-
putation Cq into a quantum state (specifically, by preparing a collection of entan-
gled qubit pairs, and applying Cq to half of this preparation). Then, in order to
perform a quantum computation on a target input |ψ〉, we teleport |ψ〉 into the
prepared entangled state. This causes the state |ψ〉 to undergo the evolution of Cq,
up to some corrections, based on the teleportation outcome. If Cq is chosen from
the Clifford circuits, these corrections are relatively simple1 and thus we can use a
classical iO to provide the correction function. In contrast to the previous scheme,
the gate teleportation scheme requires the assumption of quantum-secure classical
iO for a certain family of functions (see [16]) and the obfuscated circuits include a
quantum system. While this presents a technological challenge to communication,
storage and also usage, there could be advantages to storing quantum programs
into quantum states, for instance to take advantage of their uncloneability [1,17].

Obfuscating Beyond Cliffords. Next, in our main result for Sect. 5, we generalize
the gate teleportation scheme for Clifford circuits, and show a qiO obfuscator
for all quantum circuits where the number of non-Clifford gates is at most loga-
rithmic in the circuit size. For this, we consider the commonly-used Clifford+T
gate-set, and we note that the T relates to the X,Z as: TXbZa = XbZa⊕bPbT. This
means that, if we implement a circuit C with T gates as in the gate teleportation
scheme above, then the correction function is no longer a simple Pauli update
(as in the case for Cliffords). However, this is only partially true: since the Paulis
form a basis, there is always a way to represent an update as a complex, linear
combination of Pauli matrices. In particular, for the case of a T, we note that
P = (1+i

2 )I + (1−i
2 )Z. Hence, it is possible to produce an update function for

general quantum circuits that are encoded via gate teleportation. To illustrate
this, we first analyze the case of a general Clifford+T quantum circuit on a sin-
gle qubit (Sect. 5.1). Here, we are able to provide qiO for all circuits. Next, for
1 The correction is a tensor products of Pauli operators, which is computed as a func-

tion of Cq and of the teleportation outcome.
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general quantum circuits, (Sect. 5.2), we note that the update function exists
for all circuits, but becomes more and more complex as the number of T gates
increases. We show that if we limit the number of T gates to be logarithmic in the
circuit size, we can reach an efficient construction. Both of these constructions
assume a quantum-secure, classical indistinguishability obfuscation.

To the best of our knowledge, our gate teleportation provides the first method
for indistinguishability obfuscation that is efficient for a large class of quantum
circuits, beyond Clifford circuits. Note, however that canonical forms (also called
normal forms) are known for single qubits universal quantum circuits [27,36]. We
note that, for many other quantum cryptographic primitives, it is the case that
the T-gate is the bottleneck (somewhat akin to a multiplication in the classical
case). This has been observed, e.g., in the context of homomorphic quantum
encryption [15,23], and instantaneous quantum computation [41]. Because of
these applications, and since the T is also typically also the bottleneck for fault-
tolerant quantum computing, techniques exist to reduce the number of T gates
in quantum circuits [7,8,22] (see Sect. 1.2 for more on this topic).

Indistinguishability Obfuscation for Quantum Circuits, with Respect
to a Pseudo-distance. Next in Sect. 6, we define indistinguishability obfus-
cation for quantum circuits with respect to some pseudo-norm D, which we
call qiOD. This definition specifies that on input a classical description of a
quantum circuit Cq, the obfuscator outputs a pair (|φ〉, C ′

q), where |φ〉 is an aux-
iliary quantum state and C ′

q is a quantum circuit. For correctness, we require
that D(C ′

q(|φ〉, ·), Cq(·)) ≤ negl(n), whereas for security, we require that, on
input two approximately equivalent quantum circuits (Definition 7), the outputs
of qiOD are statistically indistinguishable. This definition is more in line with [4].

We show how to construct a statistically-secure quantum indistinguishability
obfuscation with respect to the pseudo-distance D (see Algorithm 4) for quantum
circuits that are very close to kth level of the Gottesman-Chuang hierarchy [30],
for some fixed k (see [16]). The construction takes a circuit Uq as an input
with a promise that the distance D(Uq, C) ≤ ε < 1

2k+1/2 for some C ∈ Ck. It
computes the conjugate circuit U†

q and then runs Low’s learning algorithm as
a subroutine on inputs Uq and U†

q [35]. The algorithm outputs whatever Low’s
learning algorithm outputs. Note that Low’s learning algorithm runs in time
super-polynomial in k, therefore for our construction to remain efficient the
parameter k is some small fixed integer (say k = 5). Note that for k > 2, the
set Ck includes all Clifford unitaries as well as some non-Clifford unitaries [35].

Comparison of the Two Approaches. Our notions of qiO and qiOD are
incomparable. To see this, on one hand, note that the basic instantiation of an
indistinguishability obfuscator that outputs a canonical form is no longer secure
in the definition of indistinguishability with respect to a pseudo-norm.2 On the
other hand, the construction for qiOD that we give in Algorithm 4 does not
satisfy the definition of qiO, because the functionality is not perfectly preserved,

2 If two different circuits are close in functionality but not identical, then we have no
guarantee that their canonical forms are close.
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which is a requirement for qiO. We recall that in the classical case, it is generally
considered an advantage that iO is a relatively weak notion (since it is more easily
attained) and that, despite this, a host of uses of iO are known. We thus take
qiO as the more natural extension of classical indistinguishability obfuscation to
the quantum case, but we note that issues related to the continuity of quantum
mechanics and the inherent approximation in any universal quantum gateset
justify the relevance for our approach to qiOD.

We now compare the schemes that we achieve. The most general scheme that
we give as a construct for qiO (Algorithm 3) allows to obfuscate any polynomial-
size quantum circuit (with at most logarithmic number of non-Clifford gates).
While this is a restricted class, it is well-understood and we believe that this
technique may be amenable to an extension that would result into a full qiO.

In comparison, the scheme that we give for qiOD, based on Low’s learning
algorithm [35] has some advantages over the teleportation-based constructions.
Firstly, the circuits to be obfuscated don’t need to be of equal size or perfectly
equivalent and the outputs of the obfuscator remain statistically indistinguish-
able as long as the circuits are approximately equivalent (with respect to the
pseudo-distance D). Secondly, Algorithm 4 does not require any computational
assumptions, whereas the teleportation-based constructions require a quantum-
secure classical indistinguishability obfuscator. However, beyond the fact that Ck

contains all Clifford circuits, it is not clear how powerful unitaries are in the
kth level of the Gottesman-Chuang hierarchy (especially for a fixed small k).
Even when k → ∞, the hierarchy does not include all unitaries. In terms of
extending this technique, Low’s learning algorithm exploits the structure of the
Gottesman-Chuang hierarchy and it not obvious how one can apply this tech-
nique to arbitrary quantum circuits.

1.2 More on Related Work

Quantum Obfuscation. Quantum obfuscation was first studied in [5], where a
notion called (G,Γ )-indistinguishability obfuscation was proposed, where G is a
set of gates and Γ is a set of relations satisfied by the elements of G. In this
notion, any two circuits over the set of gates G are perfectly indistinguishable if
they differ by some sequence of applications of the relations in Γ. Since perfect
indistinguishability obfuscation is known to be impossible under the assumption
that P �= NP [28], one of the motivations of this work was to provide a weaker def-
inition of perfectly indistinguishable obfuscation, along with possibility results.
However, to the best of our knowledge, (G,Γ )-indistinguishability obfuscation is
incomparable with computational indistinguishability obfuscation [11,24], which
is the main focus of our work.

Quantum obfuscation is studied in [4], where the various notions of quan-
tum obfuscation are defined (including quantum black-box obfuscation, quan-
tum indistinguishability obfuscation, and quantum best-possible obfuscation).
A contribution of [4] is to extend the classical impossibility results to the quan-
tum setting, including e.g. showing that each of the three variants of quantum
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indistinguishability obfuscation is equivalent to the analogous variant of quan-
tum best-possible obfuscation, so long as the obfuscator is efficient. This work
shows that the existence of a computational quantum indistinguishability obfus-
cation implies a witness encryption scheme for all languages in QMA. Various
impossibility results are also shown: that efficient statistical indistinguishability
obfuscation is impossible unless PSPACE is contained in QSZK3 (for the case
of circuits that include measurements), or unless coQMA4 is contained in QSZK
(for the case of unitary circuits). Notable here is that [4] defines a notion of indis-
tinguishability obfuscation where security must hold for circuits that are close
in functionality (this is similar to our definition of qiOD); it is however unclear
if their impossibility results hold for a notion of quantum indistinguishability
along the lines of our definition of qiO. See Sect. 3 for further discussion of the
links between this definition and ours. We note that [4] does not provide any
concrete instantiation of obfuscation.

Recently it has been shown that virtual black-box obfuscation of classical
circuits via quantum mechanical means is also impossible [3,10].

Quantum Homomorphic Encryption. In quantum homomorphic encryption, a
computationally-weak client is able to send a ciphertext to a quantum server,
such that the quantum server can perform a quantum computation on the
encrypted data, thus producing an encrypted output which the client can
decrypt, and obtaining the result of the quantum computation.

This primitive was formally defined in [15] (see also [14,23]), where it was
shown how to achieve homomorphic quantum computation for quantum cir-
cuits of low T-depth, by assuming quantum-secure classical fully homomorphic
encryption. We note that even the simplest scheme in [15] (which allows the
homomorphic evaluation of any Clifford circuit), requires computational assump-
tions in order for the server to update homomorphically the classical portion of
the ciphertext, based on the choice of Clifford. In contrast, here we are able
to give information-theoretic constructions for this class of circuits (essentially,
because the choice of Clifford is chosen by the obfuscator, not by the evaluator).
We thus emphasize that in iO, we want to hide the circuit, whereas in homomor-
phic encryption, we want to hide the plaintext (and allow remote computations
on the ciphertext). Since the evaluator in homomorphic encryption has control
of the circuit, but not of the data, the evaluator knows which types of gates
are applied, and the main obstacle is to perform a correction after a T-gate,
controlled on a classical value that is held only in an encrypted form by the
evaluator. In contrast to this, in iO, we want to hide the inner workings of the
circuit. By using gate teleportation, we end up in a situation where the evalua-
tor knows some classical values that have affected the quantum computation in
some undesirable way, and then we want to hide the inner workings of how the

3 PSPACE is the class of decision problems solvable by a Turing machine in polynomial
space and QSZK is the class of decision problems that admit a quantum statistical
zero-knowledge proof system.

4 coQMA is the complement of QMA, which is the class of decision problems that can
be verified by a one-message quantum interactive proof.
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evaluator should compensate for these undesirable effects. Thus, the techniques
of quantum homomorphic encryption do not seem directly applicable, although
we leave as an open question if they could be used in some indirect way, perhaps
towards efficient qiO for a larger family of circuits.

1.3 Open Questions

The main open question is efficient quantum indistinguishability obfuscation
for quantum circuits with super-logarithmic number of T-gates. Another open
question is about the applications of quantum indistinguishability obfuscation.
While we expect that many of the uses of classical iO carry over to the quantum
case, we leave as future work the formal study of these techniques.

Outline. The remainder of this paper is structured as follows. Section 2 overviews
basic notions required in this work. In Sect. 3, we formally define indistinguisha-
bility obfuscation for quantum circuits. In Sect. 4, we provide the construction
for Clifford circuits. In Sect. 5, we give our main result which shows quantum
indistinguishability obfuscation for quantum circuits, which is efficient for cir-
cuits having at most a logarithmic number of T gates. Finally in Sect. 6, we
consider the notion of quantum indistinguishability obfuscation with respect to
a pseudo-distance, and show how to instantiate it for a family of circuits close
to the Gottesman-Chuang hierarchy.

2 Preliminaries

2.1 Basic Classical Cryptographic Notions

Let N be the set of positive integers. For n ∈ N, we set [n] = {1, · · · , n}. We
denote the set of all binary strings of length n by {0, 1}n. An element s ∈ {0, 1}n

is called a bitstring, and |s| = n denotes its length. Given two bit strings x and y
of equal length, we denote their bitwise XOR by x ⊕ y. For a finite set X, the
notation x

$←− X indicates that x is selected uniformly at random from X. We
denote the set of all d × d unitary matrices by U(d) = {U ∈ C

d×d | UU† = I},
where U† denotes the conjugate transpose of U. A function negl : N → R

+∪{0}
is negligible if for every positive polynomial p(n), there exists a positive integer n0

such that for all n > n0, negl(n) < 1/p(n). A typical use of negligible functions
is to indicate that the probability of success of some algorithm is too small to be
amplified to a constant by a feasible (i.e., polynomial) number of repetitions.

2.2 Classical Circuits and Algorithms

A deterministic polynomial-time (or PT) algorithm C is defined by a polynomial-
time uniform5 family C = {Cn | n ∈ N} of classical Boolean circuits over some
5 Recall that polynomial-time uniformity means that there exists a polynomial-time

Turing machine which, on input n in unary, prints a description of the nth circuit
in the family.
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gate set, with one circuit for each possible input size n ∈ N. For a bitstring x,
we define C(x) := C|x|(x). We say that a function family f : {0, 1}n → {0, 1}m

is PT-computable if there exists a polynomial-time C such that C(x) = f(x)
for all x; it is implicit that m is a function of n which is bounded by some
polynomial, e.g., the same one that bounds the running time of C. Note that in
the literature, circuits that compute functions whose range is {0, 1}m are often
called multi-output Boolean circuits [31], but in this paper we simply called them
Boolean circuits [40]. A probabilistic polynomial-time algorithm (or PPT) is
again a polynomial-time uniform family of classical Boolean circuits, one for each
possible input size n. The nth circuit still accepts n bits of input, but now also has
an additional “coins” register of p(n) input wires. Note that uniformity enforces
that the function p is bounded by some polynomial. For a PPT algorithm C,
n-bit input x and p(n)-bit coin string r, we set C(x; r) := Cn(x; r). In contrast
with the PT case, the notation algorithm C(x) will now refer to the random

variable algorithm C(x; r) where r
$←− {0, 1}p(n).

2.3 Classical Indistinguishability and Obfuscation

Here, we define indistinguishability for classical random variables, against a
quantum distinguisher (Definition 2), as well as classical indistinguishability
obfuscation.

Definition 1. (Statistical Distance) Let X and Y be two random variables over
some countable set Ω. The statistical distance between X and Y is

Δ(X,Y ) =
1
2

{∑
ω∈Ω

|Pr[X(ω)] − Pr[Y (ω)]|
}

.

Definition 2. (Indistinguishability) Let X = {Xn}n∈N and Y = {Yn}n∈N be
two distribution ensembles indexed by a parameter n. We say

1. X and Y are perfectly indistinguishable if for all n, Δ(Xn, Yn) = 0.
2. X and Y are statistically indistinguishable if there exists a negligible function

negl such that for all sufficiently large n, Δ(Xn, Yn) ≤ negl(n).
3. {Xn}n∈N and {Yn}n∈N are computationally indistinguishable if for quantum

distinguisher Dq that runs in polynomial-time, there exists a negligible func-

tion negl such that
∣∣∣Pr[Dq(Xn) = 1] − Pr[Dq(Yn) = 1]

∣∣∣ ≤ negl(n).

Let C be a family of probabilistic polynomial-time circuits. For n ∈ N, let Cn

be the circuits in C of input length n. We now provide a definition of classical
indistinguishability obfuscation (iO) as defined in [28], but where we make a few
minor modifications.6

6 We make a few design choices that are more appropriate for our situation, where
we show the possibility of iO against quantum adversaries: our adversary is a prob-
abilistic polynomial-time quantum algorithm, we dispense with the mention of the
random oracle, and note that our indistinguishability notions are defined to hold for
all inputs.
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Definition 3. (Indistinguishability Obfuscation, iO) A polynomial-time
probabilistic algorithm is a quantum-secure indistinguishability obfuscator (iO)
for a class of circuits C, if the following conditions hold:

1. Preserving Functionality: For any C ∈ Cn :

iO(x) = C(x), for all x ∈ {0, 1}n

The probability is taken over the iO’s coins.
2. Polynomial Slowdown: There exists a polynomial p(n) such that for all input

lengths, for any C ∈ Cn, the obfuscator iO only enlarges C by a factor of
p(|C|) :

|iO(C)| ≤ p(|C|).
3. Indistinguishability: An iO is said to be a computational/statistical/

perfect indistinguishability obfuscation for the family C, if for all large enough
input lengths, for any circuit C1 ∈ Cn and for any C2 ∈ Cn that computes
the same function as C1 and such that |C1| = |C2|, the distributions iO(C1))
and iO(C2) are (respectively) computationally/statistically/perfectly indistin-
guishable.

2.4 Basic Quantum Notions

Given an n-bit string x, the corresponding n-qubit quantum computational basis
state is denoted |x〉. The 2n-dimensional Hilbert space spanned by n-qubit basis
states is denoted: Hn := span {|x〉 : x ∈ {0, 1}n}. We denote by D(Hn) the set of
density operators (i.e., valid quantum states) on Hn. These are linear operators
on D(Hn) which are positive-semidefinite and have trace equal to 1.

We refer to [16] for background information and notation on quantum circuits
and algorithms, quantum teleportation, gate teleportation and the Gottesman-
Chuang hierarchy.

2.5 Norms and Pseudo-distance

The trace distance between two quantum states ρ, σ ∈ D(Hn) is given by: ||ρ −
σ||tr := 1

2 Tr
(∣∣∣

√
(ρ − σ)†(ρ − σ)

∣∣∣
)

, where |·| denotes the positive square root of

the matrix
√

(ρ − σ)†(ρ − σ).
Let Φ and Ψ be two admissible operators of type (n,m)7. The diamond norm

between two quantum operators is ||Φ−Ψ ||� := max
ρ∈D(H2n)

||(Φ⊗In)ρ−(Ψ⊗In)ρ||tr .

The Frobenius norm of a matrix A ∈ C
n×m is defined as ||A||F =

√
Tr(AA†).

Let U1, U2 ∈ U(d) be two d × d unitary matrices. The phase invariant

7 An operator is admissible if its action on density matrices is linear, trace-preserving,
and completely positive. A operator’s type is (n, m) if it maps n-qubit states to
m-qubit states.
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distance between U1 and U2 is D(U1, U2) = 1√
2d2 ||U1 ⊗ U∗

1 − U2 ⊗ U∗
2 ||F =√

1 −
∣∣∣Tr(U1U†

2 )
d

∣∣∣
2

, where U∗
i denotes the matrix with only complex conjugated

entries and no transposition and |z| denotes the norm of the complex number z.
Note that D is a pseudo-distance since D(U1, U2) = 0 does not imply U1 = U2,
but that U1 and U2 are equivalent up to a phase so the difference is unobserv-
able. It is easy to see that D satisfies the axioms of symmetry (D(U1, U2) =
D(U2, U1)), the triangle inequality (D(U1, U2) ≤ D(U1, U)+D(U,U2)) and non-
negativity (D(U1, U2) ≥ 0).

2.6 Quantum Indistinguishability

Here, we define indistinguishability for quantum states and define the case of
perfectly equivalent quantum circuits.

Definition 4. (Indistinguishability of Quantum States) Let R = {ρn}n∈N and
S = {σn}n∈N be two ensembles of quantum states such that ρn and σn are n-qubit
states. We say

1. R and S are perfectly indistinguishable if for all n, ρn = σn.
2. R and S are statistically indistinguishable if there exists a negligible function

negl such that for all sufficiently large n, ||ρn − σn||tr ≤ negl(n).
3. R and S are computationally indistinguishable if there exists a negligible

function negl such that for every state ρn ∈ R, σn ∈ S and for all polynomial-
time quantum distinguisher Dq, we have∣∣∣Pr[Dq(ρn) = 1] − Pr[Dq(σn) = 1]

∣∣∣ ≤ negl(n).

Definition 5. (Perfectly Equivalent Quantum Circuits): Let Cq0 and Cq1 be
two n-qubit quantum circuits. We say Cq0 and Cq1 are perfectly equivalent if
||Cq0 − Cq1 ||� = 0.

3 Indistinguishability Obfuscation for Quantum Circuits

We now define our notion of quantum indistinguishability obfuscation for equiv-
alent circuits (Sect. 3) and make an observation about the existence of inefficient
quantum indistinguishability obfuscation.

Definition 6. (Quantum Indistinguishability Obfuscation for Perfectly Equiv-
alent Quantum Circuits): Let CQ be a polynomial-time family of reversible
quantum circuits. For n ∈ N, let Cn

q be the circuits in CQ of input
length n. A polynomial-time quantum algorithm for CQ is a Computa-
tional/Statistical/Perfect quantum indistinguishability obfuscator (qiO) if the
following conditions hold:
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1. Functionality: There exists a negligible function negl(n) such that for
every Cq ∈ Cn

q

(|φ〉, C ′
q) ← qiO(Cq) and ||C ′

q(|φ〉, ·) − Cq(·)||� = 0.

Where |φ〉 is an -qubit state, the circuits Cq and C ′
q are of type (n, n) and

(m,n) respectively (m =  + n).8
2. Polynomial Slowdown: There exists a polynomial p(n) such that for any

Cq ∈ Cn
q ,  ≤ p(|Cq|), m ≤ p(|Cq|), and |C ′

q| ≤ p(|Cq|).
3. Computational/Statistical/Perfect Indistinguishability: For any

two perfectly equivalent quantum circuits Cq1 , Cq2 ∈ Cn
q , of the same size,

the two distributions qiO(Cq1) and qiO(Cq2) are (respectively) computation-
ally/statistically/perfectly indistinguishable.

Remark 1. A subtlety that is specific to the quantum case is that Definition 6
only requires that (|φ〉, C ′

q) enable a single evaluation of Cq. We could instead
require a k-time functionality, which can be easily achieved by executing the
single-evaluation scheme k times in parallel. This justifies our focus here on the
single-evaluation scheme.

Note 1. As described in Sect. 1.2, our Definition 6 differs from [4] as it requires
security only in the case of equivalent quantum circuits (see Definition 8 for a
definition that addresses this). Compared to [4], we note that in this work we
focus on unitary circuits only.9 Another difference is that the notion of indis-
tinguishability (computational or statistical) in [4] is more generous than ours,
since it allows a finite number of inputs that violate the indistinguishability
inequality. Since our work focuses on possibility of obfuscations, our choice leads
to the strongest results; equally, since [4] focuses on impossibility, their results
are strongest in their model. We also note that that [4] defines the efficiency of
the obfuscator in terms of the number of qubits. We believe that our definition,
which bounds the size of the output of the obfucation by a polynomial in the size
of the input circuit, is more appropriate10 and follows the lines of the classical
definitions. As far as we are aware, further differences in our definition are purely
a choice of style. For instance, we do not include an interpreter as in [4], but
instead we let the obfuscator output a quantum circuit together with a quantum
state; we chose this presentation since it provides a clear separation between the
quantum circuit output by the qiO and the “quantum advice state”.

Inefficient Quantum Indistinguishability Obfuscators Exist Finally, we
note a simple extension of a result in [11]: inefficient indistinguishability obfus-
cators exist for all quantum circuits. This is achieved by letting qiO(Cq) be the
lexicographically first circuit of size |Cq| that computes the same map as Cq.
8 A circuit is of type (i, j) if it maps i qubits to j qubits.
9 This is without loss of generality, since a qiO for a generalized quantum circuit can

be obtained from a qiO for a reversible version of the circuit, followed by a trace-out
operation (see [16]).

10 It would be unreasonable to allow an obfuscator that outputs a circuit on n qubits,
but of depth super-polynomial in n.
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4 Quantum Indistinguishability Obfuscation for Clifford
Circuits

Here, we show how to construct qiO for Clifford circuits with respect to definition
Definition 6. The first construction (Sect. 4.1) is based on a canonical form, and
the second is based on gate teleportation (Sect. 4.2).

4.1 qiO for Clifford Circuits via a Canonical Form

Aaronson and Gottesman developped a polynomial-time algorithm that takes a
Clifford circuit Cq and outputs its canonical form (see [2], section VI), which
is invariant for any two equivalent n-qubit circuits11. Moreover the size of the
canonical form remains polynomial in the size of the input circuit. Based on this
canonical form, we define a qiO in Algorithm 1. The proof is in [16].

Algorithm 1. qiO-Canonical
– Input: An n-qubit Clifford Circuit Cq.

1. Using the Aaronson and Gottesman algorithm [2], compute the canonical form

of C′
q

canonical form←−−−−−−−−−−− Cq.
2. Let |φ〉 be an empty register.
3. Output

(|φ〉, C′
q

)
.

Lemma 1. Algorithm 1 is a Perfect Quantum Indistinguishability Obfuscation
for all Clifford Circuits.

4.2 qiO for Clifford Circuits via Gate Teleportation

In this section, we show how gate teleportation (see [16,30]) can be used to
construct a quantum indistinguishability obfuscation for Clifford circuits. Our
construction, given in Algorithm 2, relies on the existence of a quantum-secure iO
for classical circuits; however, upon closer inspection, our construction relies on
the assumption that a quantum-secure classical iO exists for a very specific class
of classical circuits12. In fact, it is easy to construct a perfectly secure iO for
this class of circuits: like Clifford circuits, the circuits that compute the update
functions also have a canonical form. Then the iO takes as input a Clifford
circuit and outputs a canonical form of a classical circuit that computes the
update function for Cq. The iO is described formally in [16].

Theorem 1. (See [16] for the proof). Algorithm 2 is a perfect quantum
indistinguishability obfuscation for all Clifford Circuits.
11 Their algorithm outputs a canonical form (unique form) provided it runs on the

standard initial tableau see pages 8–10 of [2].
12 Circuits that compute update functions for Clifford circuits, see [16].



36 A. Broadbent and R. A. Kazmi

Algorithm 2. qiO via Gate Teleportation for Clifford
– Input: An n-qubit Clifford Circuit Cq.

1. Prepare a tensor product of n Bell states: |β2n〉 = |β00〉 ⊗ · · · ⊗ |β00〉.
2. Apply the circuit Cq on the right-most n qubits to obtain a system |φ〉 =

(In ⊗ Cq)|β2n〉.
3. Compute a classical circuit C that computes the update function FCq . The

classical circuit C can be computed in polynomial-time [16].
4. Set C′ ← iO(C), where iO(C) is a perfectly secure indistinguishability obfus-

cation defined in [16].
5. Description of the circuit C′

q :
(a) Perform a general Bell measurement on the leftmost 2n-qubits on the

system |φ〉 ⊗ |ψ〉, where |φ〉 is an auxiliary state and |ψ〉 is an input state.
Obtain classical bits (a1, b1 . . . , an, bn) and the state

Cq(X
⊗n

i=1bi · Z⊗n
i=1ai)|ψ〉. (1)

(b) Compute the correction bits

(a′
1, b

′
1, . . . , a

′
n, b′

n) = C′(a1, b1 . . . , an, bn). (2)

(c) Using the above, the correction unitary is U ′ = (X⊗n
i=1b

′
i · Z⊗n

i=1a
′
i).

(d) Apply U ′ to the system Cq(X
⊗n

i=1bi · Z⊗n
i=1ai)|ψ〉 to obtain the state

Cq(|ψ〉).
6. Output

(|φ〉, C′
q

)
.

5 Obfuscating Beyond Clifford Circuits

In this section, we extend the gate teleportation technique to show how we can
construct qiO for any quantum circuit. Our construction is efficient as long as
the circuit has T-count at most logarithmic in the circuit size. For the sake of
simplicity, we first construct a qiO for an arbitrary 1-qubit quantum circuit
(Sect. 5.1), then extend the 1-qubit construction to any n-qubit quantum circuit
(Sect. 5.2).

We first start with some general observations on quantum circuits which are
relevant to this section. Consider the application of the T-gate on an encrypted
system using the quantum one-time pad. The following equation relates the T-
gate to the X- and Z-gates:

TXbZa = XbZa⊕bPbT . (3)

If b = 0, then Pb is the identity; otherwise we have a P-gate correction. This is
undesirable as P does not commute with X, making the update of the encryption
key (a, b) complicated (since it is no longer a tensor product of Paulis). Note that
we can write P =

(
1+i
2

)
I +

(
1−i
2

)
Z, therefore Eq. (3) can be rewritten as:

TXbZa = XbZa⊕b

[(
1 + i

2

)
I +

(
1 − i

2

)
Z

]b

T (4)
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Since
[(

1+i
2

)
I +

(
1−i
2

)
Z
]b

=
(
1+i
2

)
I +

(
1−i
2

)
Zb for b ∈ {0, 1}, we can rewrite

Eq. (4) as,

TXbZa = XbZa⊕b

[(
1 + i

2

)
I+

(
1− i

2

)
Zb

]
T =

[(
1 + i

2

)
XbZa⊕b +

(
1− i

2

)
XbZa

]
T.

It follows from the above that for any a, b ∈ {0, 1}, we can represent TXbZa

as a linear combination of X and Z: TXbZa = (α1I+α2X+α3Z+α4XZ)T, where
αj ∈ {

0, 1, 1+i
2 , 1−i

2

}
, for j ∈ [4].

We further note that for a general n-qubit quantum unitary U and n-qubit
Pauli P , there exists a Clifford C such that UP |ψ〉 = CU |ψ〉. This is due to the
Clifford hierarchy [30]. We also mention that if an n-qubit Clifford operation is
given in matrix form, an efficient procedure exists in order to produce a circuit
that executes this Clifford [37]. This is a special case of the general problem of
synthesis of quantum circuits, which aims to produce quantum circuits, based
on an initial description of a unitary operation.

5.1 Single-Qubit Circuits

Here, we show an indistinguishability obfuscation for single-qubit circuits. As
previously mentionned, we note that for the single-qubit case, an efficient indis-
tinguishability obfuscation can also be built using the Matsumoto-Amano normal
form [27,36]. Here, we give an alternate construction based on gate teleportation.
Let Cq be a 1-qubit circuit we want to obfuscate and |ψ〉 be the quantum state
on which we want to evaluate Cq. Note that we can write any 1-qubit circuit as
a sequence of gates from the set {H,T}13

Cq = (g|Cq|, . . . , g2, g1), gi ∈ {H,T} .

For the indistinguishability obfuscation of a single-qubit circuit, we use the gate
teleportation protocol ([16,30]), which leaves us (after the teleportation) with a
subsystem of the form CqX

bZa(|ψ〉)

CqX
bZa(|ψ〉) = (g|Cq|, . . . , g2, g1)XbZa(|ψ〉), (5)

and to evaluate the circuit on |ψ〉, we have to apply a correction unitary. Now
suppose we apply the gate g1. We can write the system in Eq. (5) as

CqX
bZa(|ψ〉) = (g|Cq|, . . . , g2)(α0I + α1X + α2Z + α3XZ)g1(|ψ〉) (6)

where αi ∈ {
0, 1, 1+i

2 , 1−i
2

}
. Since {I,X,Z,XZ}, forms a basis, after applying the

remaining gates in the sequence (g|Cq|, . . . , g3, g2), we can write Eq. (6) as

CqX
bZa(|ψ〉) = (β1I + β2X + β3Z + β4XZ)(g|Cq|, . . . , g2, g1)(|ψ〉) (7)

13 The set {H,T} is universal for 1-qubit unitaries [33].
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where each βi ∈ C and is computed by multiplying and adding numbers from the
set {0, 1, 1+i

2 , 1−i
2 }. We show in [16] that the size of the coefficients βi grows at

most as a polynomial in the number of T-gates. Therefore it follows from Eq. (7)
that the update function for any 1-qubit circuit Cq can be defined as a map
of the form: FCq

: {0, 1}2 → C
4, (a, b) → (β1, β2, β3, β4), and is in one-to-one

correspondence with the correction unitary β1I+β2X+β3Z+β4XZ. As indicated,
our construction for 1-qubit circuits is nearly the same as the gate teleportation
scheme for Clifford circuits (Algorithm 2). The proof that this is a qiO scheme
is also very similar to the proof for the Clifford construction (Sect. 4.2); we thus
omit the formal proof here (it can also be seen as a special case of the proof of
Theorem 2). Some subtleties, however are addressed below: the equivalence of
the update functions (Lemma 2) and the circuit synthesis (Lemma 3).14

Lemma 2. (See [16] for the proof). Let Cq1 and Cq2 be two equivalent 1-
qubit circuits. Then their corresponding update functions in the gate teleportation
protocol are also equivalent.

Lemma 3. Based on the classical iO that computes the coefficients in Eq. (7),
it is possible to build a quantum circuit that performs the correction efficiently.

Proof. Given a 2 × 2 unitary matrix that represents a Clifford operation as in
Eq. (7), it is simple to efficiently derive the Clifford circuit that implements the
unitary. This is a special case of the general efficient synthesis for Clifford circuits
as presented in [37].

5.2 qiO via Gate Teleportation for all Quantum Circuits

In this section, we construct a qiO for all quantum circuits. The construction
is efficient whenever the number of T-gates is at most logarithmic in the circuit
size (see Algorithm 3). The reason for this limitation is that the update function
blows up once the number of T-gates is greater than logarithmic in the circuit
size. The construction is very similar to the gate teleportation for Clifford cir-
cuits (Sect. 4.2) and assumes the existence of a quantum-secure iO for classical
circuits. We are now ready to present our main theorem (Theorem 2); see [16]
for the proof.

Theorem 2. (Main Theorem) If iO is a perfect/statistical/computational
quantum-secure indistinguishability obfuscation for classical circuits, then Algo-
rithm 3 is a perfect/statistical/computational quantum indistinguishability obfus-
cator for any quantum circuit Cq with T-count ∈ O(log |Cq|).

14 We note that, on top of being equal, the circuits that compute the update functions
FCq1

, FCq2
can be assumed to be of the same size. This follows by an argument very

similar to the one in [16].
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Algorithm 3. qiO via Gate Teleportation for Quantum Circuits
– Input: A n-qubit quantum Circuit Cq with T-count ∈ O(log(|Cq|)).

1. Prepare a tensor product of n Bell states: |β2n〉 = |β00〉 ⊗ · · · ⊗ |β00〉.
2. Apply the circuit Cq on the right-most n qubits to obtain a system |φ〉 =

(In ⊗ Cq)|β2n〉.
3. Set Ĉ ← iO(C). Where C is a circuit that computes the update function FCq

as in [16] Note the size of C is at most a polynomial in |Cq| (see [16]).
4. Description of the circuit C′

q :
(a) Perform a general Bell measurement on the leftmost 2n-qubits on the

system |φ〉 ⊗ |ψ〉, where |φ〉 is an auxiliary state and |ψ〉 is an input
state. Obtain classical bits (a1, b1 . . . , an, bn) and the state Cq(X

⊗n
i=1bi ·

Z⊗n
i=1ai)|ψ〉.

(b) Compute the correction using the obfuscated circuit
((β1, s1), . . . , (βn, sk)) = Ĉ(a1, b1 . . . , an, bn).

(c) Using the above, the correction unitary is UFCq
=

∑4k

i=1 βiX
bi1Zai1 ⊗· · ·⊗

XbinZain . Compute a quantum circuit that applies UFCq
, using the circuit

synthesis method of [37].
(d) Apply the quantum circuit for UFCq

to the system Cq(X
⊗n

i=1bi ·Z⊗n
i=1ai)|ψ〉

to obtain the state Cq(|ψ〉).

6 Quantum Indistinguishability Obfuscation with
Respect to a Pseudo-Distance

In this section, we provide a definition for circuits that are approximately equiv-
alent (with respect to a pseudo-distance) (Definition 7). In Sect. 6.2, we present a
definition of quantum indistinguishability obfuscation with respect to a pseudo-
distance, and in Sect. 6.3, we present a scheme that satisfies this definition, for
circuits close to a fixed level of the Gottesman-Chuang hierarchy.

6.1 Approximately Equivalent Quantum Circuits

Definition 7. (Approximately Equivalent Quantum Circuits): Let Cq0 and Cq1

be two n-qubit quantum circuits and D be a pseudo-distance. We say Cq0 and
Cq1 are approximately equivalent with respect to D if there exists a negligible
function negl(n) such that D(Cq0 , Cq1) ≤ negl(n).

6.2 Indistinguishability Obfuscation for Approximately Equivalent
Quantum Circuits

In this section, we provide a definition of quantum indistinguishability obfusca-
tion for approximately equivalent circuits, qiOD. To be consistent with Definition
6, we require that the obfuscator, on input a quantum circuit Cq, outputs an
auxiliary quantum state |φ〉 and a quantum circuit C ′

q, but note in the actual
construction (Algorithm 4), the state |φ〉 is an empty register. Here, we consider
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only the case of statistical security. Notable here is the indistinguishability prop-
erty is required to hold not only for equivalent quantum circuits, but also for
approximately equivalent quantum circuits. Also, contrary to Definition 6, we
only require the indistinguishability for large values of n.

Definition 8. Let CQ be a polynomial-time family of reversible quantum circuits
and let D be a pseudo-distance. For n ∈ N, let Cn

q be the circuits in CQ of input
length n. A polynomial-time quantum algorithm for CQ is a statistically secure
quantum indistinguishability obfuscator (qiOD) for CQ with respect to D if the
following conditions hold:

1. Functionality: There exists a negligible function negl(n) such that for
every Cq ∈ Cn

q

(|φ〉, C ′
q) ← qiOD(Cq) and D(C ′

q(|φ〉, ·), Cq(·)) ≤ negl(n).

Where |φ〉 is an -qubit state, the circuits Cq and C ′
q are of type (n, n) and

(m,n) respectively (m =  + n).15
2. Polynomial Slowdown: There exists a polynomial p(n) such that for any

Cq ∈ Cn
q ,  ≤ p(|Cq|), m ≤ p(|Cq|) and |C ′

q| ≤ p(|Cq|).
3. Statistically Secure Indistinguishability: For any two approxi-

mately equivalent quantum circuits Cq0 , Cq1 ∈ Cn
q , of the same size and

for large enough n, the two distributions qiOD(Cq0) and qiOD(Cq1) are
statistically indistinguishable.

6.3 qiOD for Circuits Close to the Gottesman-Chuang Hierarchy

Here, we present a quantum indistinguishability obfuscation (Definition 6) for a
family of circuits that are approximately equivalent (Definition 7) with respect
to the pseudo-distance D(U1, U2) = 1√

2d2 ||U1 ⊗ U∗
1 − U2 ⊗ U∗

2 ||F (see Sect. 2.5).
There are two main ingredient in our construction, one is Low’s learning algo-
rithm [35] (described below) and the second is Lemma 4.

In [35] Low presents a learning algorithm that, given oracle access to a uni-
tary U and its conjugate U† with the promise that the distance D(U,C) ≤
ε < 1

2k−1/2 for some C ∈ Ck, outputs a circuit Cq for computing C with

probability at least 1 − δ with O
(

1
ε′2 (2n)k−1 log

(
(2n+1)k−1)

δ

))
queries. Where

ε′ :=
√

2(1 − (2k−1ε)2 − 1 > 0 and D(U1, U2) = 1√
2d2 ||U1 ⊗ U∗

1 − U2 ⊗ U∗
2 ||F is

the pseudo-distance defined in Sect. 2.5.
Based on Low’s work, we construct an quantum indistinguishability obfusca-

tion qiOD with respect to this pseudo-distance D for circuits that are very close
to Ck. Note that the run-time of Low’s algorithm is exponential in k. Moreover,
the algorithm becomes infeasible if ε′ is very small. Therefore, to ensure that our
construction in Algorithm 4 runs in polynomial-time we set k to be some fixed
positive integer and ε ≤ negl(n) < 1

2k−1/2 for all n. Note if ε < 1
2k−1/2 , then

ε′ ≥
√
7
2 − 1.

15 A circuit is of type (i, j) if it maps i qubits to j qubits.
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Lemma 4 (from [35]). Let U and C be unitaries. If the distance D(U,C) <
1

2k−1/2 for some C ∈ Ck, then C is unique up to phase.

Theorem 3 (See [16] for the proof). Consider the polynomial-time family of
reversible quantum circuits CQ = {Uqn,k | n ∈ N and k is fixed positive integer}.
Here, Uqn,k denotes the n-qubit circuits for which there exists a negligible func-
tion negl(n) such that for any Uq ∈ Uqn,k , there exists a Cq ∈ Ck that satisfies
D(Uq, Cq) < negl(n) < 1

2k+1/2 . Then Algorithm 4 is a statistically-secure quan-
tum indistinguishability obfuscation for CQ with respect to D.

Algorithm 4. qiO-Gottesman-Chuang
– Input: An n-qubit circuit Uq ∈ Uqn,k , k and δ = negl(n)).

1. From Uq compute the circuit U†
q .

2. Using Low’s approximate learning algorithm on inputs Uq and Uq
† compute

the circuit Cq [35].
3. Output the circuit Cq.
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Abstract. SPHINCS+ is a state-of-the-art hash based signature scheme,
the security of which is either based on SHA-256, SHAKE-256 or on the
Haraka hash function. In this work, we perform an in-depth analysis of how
the hash functions are embedded into SPHINCS+ and how the quantum
pre-image resistance impacts the security of the signature scheme. Sub-
sequently, we evaluate the cost of implementing Grover’s quantum search
algorithm to find a pre-image that admits a universal forgery.

In particular, we provide quantum implementations of the Haraka
and SHAKE-256 hash functions in Q# and consider the efficiency of
attacks in the context of fault-tolerant quantum computers. We restrict
our findings to SPHINCS+-128 due to the limited security margin of
Haraka. Nevertheless, we present an attack that performs better, to the
best of our knowledge, than previously published attacks.

We can forge a SPHINCS+-128-Haraka signature in about 1.5 · 290

surface code cycles and 2.03 · 106 physical qubits, translating to about
1.55 ·2101 logical-qubit-cycles. For SHAKE-256, the same attack requires
8.65 · 106 qubits and 1.6 · 284 cycles resulting in about 2.65 · 299 logical-
qubit-cycles.

Keywords: Post-quantum cryptography · Quantum implementation ·
Resource estimation · Cryptanalysis

1 Introduction

Overview and Related Work. Ongoing research in the area of quantum tech-
nologies has led to the belief that quantum computers will be able to break
current public-key cryptosystems within the coming decades. On the contrary,
symmetric-key primitives are believed to be somewhat resistant against quan-
tum attacks, with the most promising generic attack being Grover’s search algo-
rithm [15]; Its quadratic improvement over a classical brute force search can
easily be countered by doubling the key length of the underlying primitives.

In order to prepare for the (public-key) quantum menace the National Insti-
tute for Standards and Technology (NIST) started the post-quantum standard-
ization competition in 2017. From the initial 69 submissions, only 7 were selected
c© Springer Nature Switzerland AG 2021
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as finalists [24]. Additionally, 8 schemes were chosen as alternate candidates
based on a high confidence of their security, but with a drawback in perfor-
mance compared to the 7 finalists. Briefly speaking, they may be considered as
Backup candidates for standardization. Among the alternate candidates is the
stateless hash-based signature scheme SPHINCS+ [16]. SPHINCS+ builds on
the hardness of inverting one-way functions, i.e., Haraka [20], SHAKE-256 [22]
or SHA-256 [11], the first of which can be derived from block-ciphers and thus
is believed to provide similar security guarantees against quantum adversaries.

An estimate of the security of SPHINCS+, based on cryptographic assump-
tions, was given within the scope of the NIST submission: The authors consid-
ered general attacks [16, Sec. 9.3.1] on the distinct-function multi-target second
preimage resistance of the underlying hash functions and estimated the success
probability of such an attack as Θ

(
(qhash+1)2/2n

)
, where qhash is the number of

hash queries and n a security parameter. Generally, they quantify the security
based on the number of required hash function invocations and thus on the
probability of an successful adversary.

The NIST competition features 5 security levels [23,24]: The first level pro-
vides security equivalent to performing a key search on AES-128, the second a
collision attack on SHA-256 and the fifth a key search on AES-256. Moreover
they categorize attacks with quantum computers according to the maximal cir-
cuit depth, where each level resembles a number of gates that can be serially
computed over a plausible time period. Specifically, NIST estimates that quan-
tum circuits up to a depth of 240 gates can be computed within a single year,
up to a depth of 264 in a single decade and up to 296 in a millennium. Respec-
tively, the number of quantum gates to break AES is estimated by NIST to be
2170/maxdepth, i.e. 2130, 2104 and 274. [17] gave precise estimates for attacking AES-
128 for different values of maxdepth and respective parallelization. Equivalently,
NISt estimates 2143 classical computational steps. However, we note the most
promising attack on AES-128 can be performed in 2126.1 classical steps as shown
by [4]. SPHINCS+ features parameters for each security levels, i.e. SPHINCS+-
SHAKE-256 and SPHINCS+-SHA-256 both provide a sufficient amount of secu-
rity for all 5 NIST security levels. On the other side, SPHINCS+-Haraka achieves
security level 1 or 2 at most.

An analysis of the security of SHAKE-256 has been given by [1], whose result
is the main motivation for our work. They present a quantum circuit to imple-
ment a Grover search and attack the 256-bit pre-image resistance of the SHA3-
256 hash function and give concise and fault-tolerant estimates for the resources
required to implement such a circuit: They claim that their circuit requires 2153.8

surface code cycles using 212.6 logical qubits, resulting in an overall requirement
of about 2166.4 logical-qubit-cycles using 2128 black box queries for a 256-bit
preimage search. Their results may be adapted to estimate the work required to
break the hash function for the SPHINCS+ signature scheme. However, there is
still considerable ambiguity on the specific construction to forge a signature.

The quantum security of Haraka has not been explicitly analyzed yet. How-
ever, due to the capacity of the sponge construction in SPHINCS+-Haraka using
only 256 bits, attacking the second-preimage-resistance as described in [3] only
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requires about 2129.5 classical hash function invocations, producing a collision
on the internal state of the hash function in the process. The best known generic
quantum collision attacks on hash functions is the BTH algorithm by [7], which
finds a collision using O(2n/3) Grover iterations, (where n is a security param-
eter), however, also requiring O(2n/3) quantum RAM (QRAM). The concept of
QRAM is highly controversial, as quantum states that interact with the envi-
ronment eventually decay. [10, Thm 2] presented a trade-off using only Õ(n)
QRAM but Õ(22n/5) Grover iterations, resulting in a work effort of about 2102

iterations for a collision search with n = 256 on Haraka.
The (quantum) invocation of the hash function induces a significant overhead

and has to be accounted for. Moreover the implementation on a fault-tolerant
quantum computer requires additional overhead to compensate for error correc-
tion within the circuit. In our analysis we adapt the concept of logical-qubit-
cycles as quantum cost metric, such that each cycle is roughly equivalent to a
single (classical) hash function invocation [1]. Briefly speaking, a logical-qubit-
cycle is the time-space product of the (fault-tolerant) number of quantum gates
and the number of qubits (space) that is used during the computation. The cost
to implement the generic attack on a fault-tolerant quantum computer has not
been analyzed yet. Instead we can consider the time-space product of Grover
iterations and memory, which is Õ(23n/5), resulting in a cost of about 2153.

Contribution. In this work we consider attacks on SPHINCS+ based on invert-
ing the underlying hash functions at specific points, i.e. attacking the XMSS or
FORS structure. We chose particularly Haraka, because of its placement as a
potential component within the NIST competition. Moreover, preimage resis-
tance of the Haraka [20] hash function has not, to the best of our knowledge,
been explicitly evaluated in the quantum setting in any literature. We evaluate
the logical resources required to implement our attacks on the Haraka as well as
the SHAKE-256 hash-functions and further estimate the fault-tolerant cost to
attack the SPHINCS+-128 scheme. For the sake of completeness and compara-
bility we also present the numbers to attack the SPHINCS+-256 scheme.

In Sect. 2 we recall parts of the SPHINCS+, Haraka and SHAKE-256 scheme,
and review the Grover algorithm with respective metrics for fault-tolerant quan-
tum computing. In our work, we use the logical-qubit-cycles metric (introduced
in [1]) which compares to classical hash function invocations. Section 3 shows
the results for our implementation1 of the hash functions in Q#. To construct a
circuit for Haraka, we partially reused the work of [17] on AES functions, result-
ing in the first implementation of the Haraka hash function in the quantum
setting. The implementation for SHAKE-256 was built from scratch. For both
circuits, we consider the number of qubits as well as different metrics based on
the gate count and T-Depth. As a result, our implementation of the Haraka512
permutation in the hash function consumes about 2.2 · 106 quantum gates on
1144 logical qubits. Our Keccak permutation in the SHAKE-256 hash function
consumes about 3.3 · 106 quantum gates on 3200 logical qubits.

1 https://github.com/RobinBerger/Grover-Sphincs.

https://github.com/RobinBerger/Grover-Sphincs
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In Sect. 4, we analyze the most promising points of attack in the SPHINCS+

signature scheme. We propose that the weakest link is the XMSS authentication
path for a given WOTS+ public key, as this allows a universal forgery attack. Our
most promising attack on SPHINCS+-128-Haraka requires about 1.6 · 286 quan-
tum gates. The same circuit to attack SPHINCS+-128-SHAKE-256 has about
1.2 · 286 gates.

In Sect. 5, we partially follow the approach of [1] to estimate the resources
for this attack in the context of fault-tolerant quantum computing. We compute
the amount of error correction in terms of surface code cycles and the optimal
scheme for magic state distillation.

For the Haraka hash function, our attack requires 3.91 · 1030 ≈ 1.55 · 2101

logical-qubit-cycles on 2.03 ·106 physical qubits, which is better than the generic
quantum collision attack on the hash function, which requires 2102 quantum
hash function invocations (without considering the cost of implementing the
hash function), or a time-space product of 2153, which appears to be the more
realistic comparison to the cost of logical-qubit-cycles. Performing our attack
with the SHAKE-256 hash function instead requires 7.44 · 1029 ≈ 2.65 · 299

logical-qubit-cycles on 8.65 · 106 physical qubits.

2 Preliminaries

2.1 The SPHINCS+ Signature Scheme

In this section we partially review the SPHINCS+ signature scheme as proposed
and submitted by [16] to the second and third round of NIST’s post-quantum
cryptography competition. The structure of the SPHINCS+-scheme combines a
hypertree (HT) of eXtended Merkle Signature Schemes (XMSS) and Winter-
nitz One-Time Signature schemes (WOTS) with a Forest Of Random Subsets
(FORS) as represented in the attack Fig. 3.

In the following, we consider a signature σx
y using the scheme y to sign the

message x and a hash function H ∈ {SHAKE-256, Haraka-512, Haraka-sponge}
for all the subsequent hashes. Moreover, each scheme is associated with a
KeyGen(·), Sign(·) and V erify(·) functionality. Let pkSPHINCS+ , skSPHINCS+

be a SPHINCS+ key pair associated with seeds to deterministically generate
the subsequent keys of the scheme. Then a signature of a message m is a
tuple of value σr and signatures from the hypertree and FORS: σm

SPHINCS+ :=
(σr||σm

FORS ||σpkFORS

HT ). The value σr will be mostly ignored in the remaining
paper.

During signing, one generates a FORS instance, signs a message digest with
the FORS key, and signs the FORS pk with the hypertree. The hypertree consists
of several layers of XMSS instances. Each XMSS instance is a binary hash tree
with WOTS schemes at the leaves, where the value of each node is the output of
hashing its child nodes. Each XMSS tree is associated with a root node pkXMSS

and a set of WOTS keys pkWOTS , skWOTS . An XMSS signature consists of a
WOTS signature and an authentication path σx

XMSS := (σx
WOTS ,pathXMSS),
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Algorithm 1: SPHINCS+ − KeyGen()

1 skseed
$←− {0, 1}n, skprf

$←− {0, 1}n, pkseed
$←− {0, 1}n

2 pkroot ← KeyGenHT(skseed, pkseed)
3 return (pkSPHINCS+ := (pkseed, pkroot), skSPHINCS+ := (skseed, skprf))

Algorithm 2: SPHINCS+ − Sign(m := {0, 1}∗, skSPHINCS+)

1 r
$←− {0, 1}n

2 σr ← prf msg(skprf, r, m)
3 md ← H(σr, pkseed, pkroot, m)

4 σmd
FORS ← SignFORS(md, skseed, pkseed)

5 pkFORS ← pkFromSigFORS(σFORS , m, pkseed)

6 σ
pkFORS
HT ← SignHT(pkFORS, skseed, pkseed, md)

7 return (σ := (σr||σmd
FORS ||σpkFORS

HT ))

where pathXMSS consists of all sibling nodes on the path from a leaf to the root
of the tree. The WOTS instances at the leaf nodes are then used to sign the
root node of the next layer, resulting in a hypertree. The root node of the top
tree is the public key of the hypertree. The bottom WOTS instances represent
the respective secret key of the hypertree that is used to create the signature
σ
pkFORS

HT .
To validate a signature σm

SPHINCS+ , one first computes a FORS public key
from σm

FORS and then verifies the hypertree signature σ
pkFORS

HT . For the lat-
ter, one has to compute the authentication path through the hypertree and
finally compare the resulting public key pk′

HT to the key associated with the
SPHINCS+ signature scheme. The Algorithms 1, 2, 3 review these procedures
using the respective signature schemes and a function prf msg, that generates a
pseudo-random value as part of the signature. We note that the description is
not complete (as in [16]), i.e. it is restricted to a level appropriate to follow the
remaining paper.

2.2 Quantum Computing

We assume the reader to be familiar with the basics of quantum information the-
ory (e.g. see [25]). In the following we first describe the general attack strategy
using Grover’s algorithm [15]. Then, we recall the setup to estimate quantum
resources on a fault-tolerant quantum computing architecture based on the excel-
lent description of [19] using surface codes [13] and magic state distillation [8].

2.3 Grover’s Algorithm on Preimage Resistance

For a fixed n, given a predicate p : {0, 1}n → {0, 1} marking M elements x ∈
{0, 1}n, Grover’s algorithm finds an element x, for which p (x) = 1. Let the initial
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Algorithm 3: SPHINCS+ − Verify

(σ := (σr||σmd
FORS ||σpkFORS

HT ),m,pkSPHINCS+)

1 md ← H(σr, pkseed, pkroot, m)
2 pkFORS ← pkFromSigFORS(σFORS , m, pkseed)
3 return V erifyHT(pkFORS , σHT , pkseed, md, pkroot)

superposition be |φ〉 =
√

(N−M)/N |{x|p(x) = 0}〉 +
√

M/N |{x|p(x) = 1}〉. Then
the algorithm of Grover operates in the space spanned by |φ〉 and |{x|p(x) = 1}〉,
where 〈φ| |{x|p(x) = 1}〉 = sin(θ). The initial value is θ = arcsin(

√
M/N), and

is increased in every iteration by roughly
√

M/N, where the advance diminishes
during the last few iterations. Thus the probability to measure a marked element
is the largest after R =

⌊
π/4

√
N/M

⌋
Grover iterations. Our implementation of

the Grover iteration follows the principle construction for oracle invocations.
If the number of matches M is not (exactly) known, and one performs too

many iterations, the value of θ decreases. Instead one can run Grover’s algorithm
multiple times with different values for M . [6, Theorem 3] have shown that the
expected number of iterations remains in O(

√
N/M).

In the context of hash functions and the random oracle model, we assume
the number of matches to be M = 1, i.e. we are given a value y and we are
looking for a single value x, so that y = H (x). Whereas there is no guarantee
that there are no collisions (i.e. M > 1), M = 1 is to be expected, since the
input and output domain of the hash functions are of equal size in our case.

2.4 Fault-Tolerant Resource Estimation

The layered architecture in [19] describes the physical design of a fault-tolerant
quantum computer. The first and second layer cover the physical processes and
the virtual interfaces of the hardware and are not considered in the analysis. The
third layer provides reliable QubitClifford-gates, but not T-gates, by performing
a series of measurements and faulty gate applications on physical qubits to cor-
rect errors. Each of these intervals is called a surface code cycle. Then, the logical
layer provides a universal gate set. The final layer consists of the application of
Grover’s algorithm.

In the following we describe the layers in more detail, review the cost metrics
of [1] in our setting and explicitly mention the assumptions (since quantum
benchmarks are not available) required for the analysis. Our description of the
different layers, which are pictured in Fig. 1, is tailored to our resource estimate.
We combine these with the cost metrics used by [1] for comparability.

Assumption 1. The cost for a computation of a large-scale fault-tolerant quan-
tum computer is well approximated using surface codes [1,18,26].

The following parameters approximate today’s state of the art [1,12]. We use
these for comparability, but note that other values have also been suggested [19].
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Fig. 1. Layered architecture for quantum computers including parameters for the error
correction layer (left) and exemplary magic state distillation (right).

While Assumption 3 does not hold for our oracle implementation per se, it does
so for the Grover algorithm over multiple Grover iterations.

Assumption 2. pin is the initial error probability of a quantum state, i.e. before
any layer of error correction pin ≈ 10−4. pgate ≈ pin/10 is the gate error rate. tsc =
200 ns is the approximate time for a single surface code cycle.

Assumption 3. All quantum gates are distributed uniformly across all layers.

Quantum Error Correction. Let C1, C2, εtresh be parameters determined by the
implementation of the surface code with distance d. Given an initial error rate
of pin one can calculate the distance d for a targeted error rate pout as per
pout ≈ C1 (C2

pin/εtresh)�d+1/2� [19, Sec. IV.B]. We follow the suggestion in [14,
Fig. 8] and estimate that each logical qubit requires 2 · (d + 1)2 physical qubits
to be implemented in a surface code with distance d.

Logical Layer. We deploy the Reed-Muller-15-to-1 distillation introduced by [8],
each layer uses 15 magic states with an input error rate of pin and produces one
magic state with lower error rate pdist ≈ 35pin

3. We follow the work of [1] and
assume that the amount of logical errors introduced during distillation is already
covered in the process resulting in pout = (1 + ε) pdist, hence pin ≈ 3

√
pout/35(1+ε)

The distillation is repeated until pout reaches a target value.
Let di be a surface code distance for layer i with i = 1 being the top layer of

distillation, where each distillation requires 10·di cycles. For this, [12, Sec. II] gives
an example calculation, [1, Alg. 4] gives an explicit algorithm that takes an initial
gate error pgate and calculates the number of layers of magic state distillation as
well as their respective surface code distance. Each layer i requires 16 · 15(i−1)

logical qubits. The number of physical qubits in the code is calculated based on
the respective surface code.
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Algorithm 4: Haraka512Permutation(A[x] : {0, 1}128 , 0 ≤ x < 4)

1 for 0 ≤ i < 5 do
2 for 0 ≤ j < 4 do
3 A[j] := aesEnc(aesEnc(A[j], keyi,j,1), keyi,j,0)

4 A := mix(A)

5 return A

Application Layer. For our implemented circuits we consider the total count
for T-, CNOT- and QubitClifford gates, along with the T-depth and T-width,
motivated in [1,17]. For a circuit implementing our attacks, i.e. using Grover’s
algorithm, let gd be the total depth (i.e. number of layers) of a circuit and let
scc be the number of surface code cycles for each layer. First, we consider the
total number of surface code cycles as costSCC = scc·gd. Then, we consider the
number of logical qubits qlog

G required to implement the Grover algorithm and
the number of logical qubits qlog

MD to perform the magic state distillation. Finally,
we consider the metric of logical-qubit-cycles from [1, As. 4 and Cost Metric 1],
where each cycle is comparable to one (classical) hash function invocation. The
number of logical-qubit-cycles is considered to be the total cost of the attack:
costlqc = costSCC ·(qlog

G +qlog
MD). We consider this metric to be the most fitting

in comparison to the time-space product given for the best generic attack in [10].

3 Reversible Implementations

We implemented2 the Haraka and SHAKE-256 hash functions in Q#. We briefly
review the schemes and describe our reversible implementations. To the best of
our knowledge, this is the first reversible implementation of Haraka.

3.1 Haraka

Haraka, as specified in [20], consists of AES encryptions (aesEnc) and a mixing
step (mix) for the permutation, which is used in turn to instantiate a sponge
construction with a capacity of 256 bits, resulting in the Haraka-Sponge hash
function. The Haraka512 hash function is defined as the truncated XOR of the
input value and the output of the Haraka512 permutation on said input. Algo-
rithm4 describes the Haraka512 permutation. We partially reuse the AES imple-
mentation from [17] and adjust it to our use case.

For the AES encryption [21], we implement each of its four steps. The
SubBytes step consists of applying the AES S-Box on each 8-bit block of the
input. We use the implementation of [17] for the S-Box and additionally imple-
ment its inverse based on the proposed circuit in [5] using 120 ancillary qubits.
This allows us to compute the output of the operation into new qubits and then
2 https://github.com/RobinBerger/Grover-Sphincs.

https://github.com/RobinBerger/Grover-Sphincs
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step.
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(b) Quantum circuit of the Keccak round
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Fig. 2. Implementation of the round function components of Haraka and SHAKE-256.

using the adjoint inverse S-Box to reset the input qubits. In contrast to the
implementation in [17], this allows us to recursively apply AES multiple times
without needing additional qubits for every application, at the cost of additional
quantum gates required. The ShiftRows step swaps qubits. Thus we simply
apply all following gates to different qubits (resulting in no additional cost). The
MixColumns operation is the same implementation as the one by [17]. The
AddKey operation is implemented using classically controlled NOT gates, as we
use classical AES round keys, whereas [17] use quantum round keys. Figure 2a
shows the complete circuit for the AES encryption.

Similarly to the ShiftRows operation, we implemented the mixing step for
the Haraka permutation by redirecting the quantum wires.

The AES encryption operation computes the output into a new set of qubits,
freeing up the input qubits. We apply this twice on each input block, alternating
the input and output qubits, followed by the mixing step. This completes the
round function that is repeated a total of 6 times for the Haraka512 permutation.

We implement the Haraka512 hash function by copying the input into ancil-
lary qubits using CNOT gates, then applying the Haraka512 permutation on
these qubits. Next, the relevant qubits from the output of the permutation and
the input of the hash function are XORed into the output qubits using CNOT
gates. Finally, the ancilla qubits are freed up again by applying the adjoint
Haraka512 permutation. The Haraka-based sponge construction is implemented
by instantiating a sponge construction with the Haraka512 permutation.

The quantum gate count for our implementations of the Haraka permuta-
tion and hash function can be seen in Table 1. Note that Q# optimizes the
width of the quantum circuit, reusing ancillary qubits whenever possible, even
if this results in a significantly higher depth of the quantum circuit. As the
exact amount of quantum gates required depends on the SPHINCS+ instance,
all round constants for determining the gate count here and in the rest of this
work are assumed to be zero. When using the default round constants, 2582
additional NOT gates are required for every application of the Haraka512 per-
mutation, which is negligible compared to the gates required for the rest of the
implementation.
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Table 1. Resources for our implementation of the Haraka512 permutation and hash
function. The width of the circuit includes the input and output qubits.

T CNOT QubitClifford T-Depth Width

Permutation 609 289 1 383 040 189 440 69 125 1144

Hash function 1 218 560 2 767 616 378 880 138 250 1912

Algorithm 5: KeccakPermutation(A[x][y][z] : {0, 1} , 0 ≤ x, y < 5, 0 ≤
z < 64)

1 for 0 ≤ i < 24 do
2 A := ι ((χ ◦ π ◦ ρ ◦ θ) (A) , i)

3 return A

3.2 SHAKE-256

The SHAKE-256 hash function, as specified in [22], consists of the Keccak per-
mutation, which is used to instantiate a sponge construction. The Keccak per-
mutation consists of iterating the steps θ, ρ, π, χ and ι 24 times. The complete
permutation is described in Algorithm 5, where the five steps are defined as

θ : C[x][z] :=
⊕

0≤j<5

A[x][j][z]

D[x][z] := C[x − 1][z] ⊕ C[x + 1][z − 1]
A′[x][y][z] := A[x][y][z] ⊕ D[x][z]

ρ : A′[x][y][z] := A[x][y][z + c[x][y]]
π : A′[x][y][z] := A[x + 3y][x][z]
χ : A′[x][y][z] := A[x][y][z] ⊕ ((A[x + 1][y][z] ⊕ 1) · A[x + 2][y][z])

ι : A′[x][y][z] :=

{
A[x][y][z] ⊕ RCi[z] x = 0 ∧ y = 0
A[x][y][z] otherwise

.

We note that our implementation follows closely the definition in [22] and
thus has a similar structure to the one used by [1]. The operation θ is split into
three parts θ1,2,3. θ1 and θ2 are a straight forward implementation of the SHA-3
specification, where we compute intermediate values in step θ1 which are used in
θ2 to compute the output of the θ step. θ3 implements θ−1 to uncompute inter-
mediate values and is based on the KeccakTools reference implementation [2]. All
XOR operations are implemented using CNOT gates. ρ and π are permuting the
input and output bits by adjusting the subsequent quantum wires. The χ step of
the Keccak permutation is a straight forward implementation of the specification
with binary addition and multiplication based on CNOT and Toffoli gates, χ−1

is the respective inverse, where the adjoint χ−1 uncomputes the input qubits.
This is the design also used by [1]. The ι step XORS a round constant on the
state, which is implemented using classically controlled NOT gates.
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Table 2. Quantum gate count for our implementation of the Keccak permutation and
for the work by [1]. Gate counts for θ and χ are given for one round. Gate counts for
ι, and the complete Keccak permutation are given for all 24 rounds.

Step T CNOT QubitClifford T-Depth Width

Our implementation θ1,2,3 0 63 040 0 0 2240

χ 11 200 19 200 3200 25 3200

χ−1 13 440 23 360 3840 30 3200

ι 0 0 86 0 1600

Keccak 591 360 2 534 400 169 046 1176 3200

Implementation in [1] Keccak 591 360 33 269 760 169 045 792 3200

Optimized 499 200 34 260 480 169 045 432 3200

The padding for the sponge construction is implemented using classically
controlled NOT gates on the state.

The quantum circuit for the round function is represented in Fig. 2b. The
Keccak permutation consists of applying this implementation 24 times while
alternating input and output qubits.

The quantum gates for our implementation of the Keccak permutation and
a comparison with [1] can be seen in Table 2. The most notable differences are
that we use more than an order of magnitude fewer CNOT gates, because we
use ancilla qubits for the θ operation and that we use the T-depth 5 Toffoli gate
provided by Q# while [1] use a T-depth 3 Toffoli gate.

4 Attacking the SPHINCS+ Signature Scheme

We analyzed the WOTS, FORS and XMSS components of the SPHINCS+

scheme to identify weak points and compared resources to mount an attack.
Briefly speaking, we determined that forging an XMSS signature requires the
fewest logical resources to forge a complete SPHINCS+ signature. In the follow-
ing sections we describe two of our attacks in more detail.

4.1 Forging a SPHINCS+ Signature on the XMSS component

To compute a universal forgery for a signature of a message m̃, we create a new
SPHINCS+ instance associated with a secret key s̃kSPHINCS+ . The root node
of the topmost XMSS instance of our new hypertree evaluates to the original
public key pkSPHINCS+ as in Fig. 3.

Let σ̃m̃
SPHINCS+ := (σ̃m̃

FORS , σ̃
p̃kFORS

HT ) be a forged signature. The FORS sig-
nature is a freshly generated signature and the validation of which depends only
on the new key pair. To forge the signature σ̃

p̃kFORS

HT we use the public key of the
topmost WOTS instance generated from s̃kSPHINCS+ and replace the respective
XMSS signature with a forged signature σ̃XMSS : Therefore, we need to find an
authentication path ˜pathXMSS in the respective tree, so that computing the root
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Fig. 3. Forged SPHINCS+ signature using a forged XMSS signature.

node of the tree along the path with the respective WOTS public key results in
the given XMSS public key.

Let p1 . . . ph′ be the nodes on the path from the given WOTS public key node
to the root of the XMSS tree with p1 being the leaf and ph′ being the root node.
Also, let v1 . . . vh′−1 be the respective sibling nodes. p1 is the WOTS public key
and pi is computed from pi−1 and vi−1 for i > 0.

To find values vi for an authentication path, we select the first h′ − 2 values
v1 . . . vh′−2 at random from {0, 1}n. This results in fixed values p1 . . . ph′−1. Then
we can forge the authentication path ˜pathXMSS if we can find a value vh′−1 to
complete the path. We can estimate the probability of such a preimage vh′−1

existing for a fixed v1 . . . vh′−2 and a given public key, if we assume that the
deployed hash function behaves like a random oracle, i.e. with each value H (x)
being chosen uniformly at random independently from each other:

P (∃x ∈ {0, 1}n : H (x) = pk) = 1 − P (∀x ∈ {0, 1}n : H (x) �= pk)

≥ 1 − 1
e

(1)

This means that a preimage vh′−1 exists with probability ≥ 1 − 1/e. Therefore,
forging a valid signature for a message depends only on finding the value vh′−1.
In the remaining paper we are concerned with estimating the resources to find
this value using Grover’s algorithm on a fault-tolerant quantum computer.

While this attack can be modified by generating WOTS instances for one half
of the attacked XMSS instance, allowing to easily forge signatures for multiple
messages if they fall on that side of the XMSS tree, the setup and the cost for
the preimage search is the same, so we will not go into more detail with this.

Resource Estimate. To forge the XMSS signature, we need to find a preimage
of the Haraka-based sponge or the SHAKE-256 hash function using Grover’s
algorithm. In the following estimate, let n be the security parameter in bits.
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Table 3. Gate count for our implementation of the Grover components in one Grover
iteration.

T CNOT QubitClifford T-Depth Width

SPHINCS+-128-Haraka 2 438 891 5 535 202 758 282 275 713 1400

SPHINCS+-128-SHAKE-256 1 184 491 5 071 842 338 614 3635 3456

SPHINCS+-256-Haraka 2 440 683 5 538 274 758 794 276 865 1656

SPHINCS+-256-SHAKE-256 1 186 283 5 076 450 339 126 4787 3712

Grover diffusion (128 bit) 1771 2530 1022 1139 –

Grover diffusion (256 bit) 3563 5090 2046 2291 –

Table 4. Resource estimate for a preimage search to forge an XMSS signature, where
the target column indicates if the left or right node of the hash tree is attacked.

SPHINCS+ instantiation Gate count T-Depth T-Depth-Times-Width

SPHINCS+-128-Haraka 1.6 · 286 1.7 · 281 1.1 · 292

SPHINCS+-128-SHAKE-256 1.2 · 286 1.8 · 275 1.5 · 287

SPHINCS+-256-Haraka 1.6 · 2150 1.7 · 2145 1.4 · 2156

SPHINCS+-256-SHAKE-256 1.2 · 2150 1.4 · 2140 1.2 · 2152

For the Haraka instantiation, the input to the hash function consists of a 256
bit address and two n-bit values, one of which is the hash value of a node in
the XMSS tree, the other one is the value searched for by Grover’s algorithm
to forge the signature. For the SHAKE-256 instantiation, the input to the hash
function consists of a n-bit public key seed and the same inputs as with Haraka.

Using n = 128 for the Haraka instantiation, we can save resources by precom-
puting one iteration of the Haraka512 permutation. As the rate of the sponge
instantiation is 256 bits, the first iteration absorbing the address can always
be precomputed, so the quantum circuit is implemented using a different ini-
tial state, skipping this iteration. Using the same security parameter for the
SHAKE-256 instantiation, none of the iterations can be precomputed. The gate
count for the implementation of these Grover oracles as well as for the Grover
diffusion operator for the SPHINCS+-128 and SPHINCS+-256 parameter sets as
determined by Q# are shown in Table 3. While we include the 256-bit parameter
sets for comparison, we want to note that for the Haraka hash function, more
efficient attacks exist for that parameter set.

For n = 128, Grover’s algorithm requires roughly 1.6 · 263 iterations. Com-
bining these gate counts with the amount of Grover iterations, we can evaluate
two cost metrics for this attack. These results are shown in Table 4.

We can see that the attack using the SHAKE-256 hash function performs
better on both cost metrics than the attack using Haraka. This results from the
additional iterations of the Haraka permutation compared to SHAKE-256.
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4.2 Forging a SPHINCS+ Signature on the WOTS Component

An alternate approach to forging SPHINCS+ signatures is to attack the WOTS
component. Similarly to the previous attack, this is a universal forgery attack,
however we also require a message m, that already has a valid signature σ.

The general attack strategy is similar to [9], i.e. the selection of the WOTS
instance and the construction of the SPHINCS+ signature from the other com-
ponents: We generate a SPHINCS+ signature for a new message using a new
secret key, making sure that this signature uses the first-layer WOTS instance
at the same position as the one in σ. We then forge a WOTS signature, that
authenticates our second-layer XMSS public key for the first-layer WOTS pub-
lic key in the original structure. In comparison to [9], who use a fault injection
attack, we forge the WOTS signature using a quantum preimage attack.

Custom Selection of WOTS Instances. Similarly to [9], when creating a
SPHINCS+ signature σ∗ for a message m∗, we need to use a FORS instance,
that results in σ∗ using the first-layer WOTS instance at the same position as
σ does. They state that this is possible on a classical computer with feasible
effort. In the setting of SPHINCS+-128 [16], this takes an average of ≈ 29 hash
function invocations.

Forging WOTS Signatures. As the WOTS signature scheme divides a mes-
sage into message and checksum blocks and then signs each block individually,
forging a WOTS signature requires forging a signature for each block. A signa-
ture for a block containing a message mi consists of the mi-th element of a hash
chain.

Let mi and m∗
i be the message in the i-th block of m and m∗ respectively.

For mi ≤ m∗
i , a signature for block i can be computed, by advancing in the hash

chain m∗
i − mi times by applying the hash function. For mi > m∗

i , we need to
go back mi − m∗

i times in the hash chain. To do this, we can apply Grover’s
algorithm.

Such a preimage to a value of the hash chain must exist, as σ was generated
using this value. As it might not be unique, but only the value used to generate
σ is guaranteed to have a preimage again, this means that instead of applying
Grover’s algorithm multiple times, to go back in the hash chain once in each
step, we need to do a preimage search on a recursive application of the hash
function in a single step. If multiple preimages of the recursive application of the
hash function exist, any one of them produces a valid signature for that block.

Let the length of each block be log2 w. As the messages for the WOTS signa-
ture scheme are outputs of a hash function and therefore the message blocks mi

and m∗
i are blocks of an output of a hash function, it is reasonable to assume,

that they are distributed uniformly at random from the set {0, . . . , w − 1}, inde-
pendently from each other. However we cannot assume this assumption to hold
for the checksum blocks. Using this assumption for the message blocks, we
can estimate the recursion depth of the hash function required for this attack.
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Table 5. Gate count required by our implementation of the Grover oracles for a recur-
sion depth 5 of the hash functions.

T CNOT QubitClifford T-Depth Width

SPHINCS+-128-Haraka 12 187 371 27 667 810 3 789 310 1 369 814 1912

SPHINCS+-128-SHAKE-256 11 828 971 50 694 370 3 381 550 26 098 3968

SPHINCS+-256-Haraka 12 189 163 27 674 850 3 789 822 1 357 142 2680

SPHINCS+-256-SHAKE-256 11 830 763 50 700 770 3 382 062 27 250 4736

Grover diffusion (128 bit) 1771 2530 1022 1139 –

Grover diffusion (256 bit) 3563 5090 2046 2291 –

We will follow a simple approach, only considering a single preimage search for
a message block, neglecting the amount of preimage searches required for check-
sum blocks and the possibility of searching for weak instances. A more detailed
approach also considering the aforementioned aspects is beyond the scope of this
work.

For the recursion depth required for a preimage search we take the value d,
so the probability of a recursion depth of ≥ d and ≤ d being required for the
preimage search is ≥ 1/2. For the SPHINCS+ parameters proposed in [16] with
log w = 4, this results in d = 5.

Resource Estimate. For forging a WOTS signature and carrying out this
attack, we need to do multiple preimage searches of a recursive application of
the SHAKE-256 or Haraka512 hash function. Let n be the security parameter
in bits in the following resource estimate.

For the Haraka instantiation, the input to the hash function consists of a
256 bit address and the n bit value searched for. The SHAKE-256 instantiation
additionally gets an n bit public key seed as input.

Using n = 128, we will only go into detail for a hash function recursion depth
of 5, as calculated previously. The gate count required for the Grover oracles for
this attack for both of the hash functions and for the diffusion operator are
shown in Table 5.

As with the previous attack, for n = 128, ≈ 1.6 · 263 Grover iterations are
required for one preimage attack. We can again combine this with the gate
counts from Table 5 to evaluate the cost metrics for this attack. This is shown
in Table 6. As mentioned previously, the cost metric does not capture that this
attack requires multiple preimage attacks of variable recursion depths.

As the Haraka512 hash function is used here and not the Haraka-Sponge hash
function used in the previous attack, the amount of applications of the underlying
permutation is the same for the Haraka and SHAKE-256 instantiation, with the
Haraka permutation requiring fewer quantum gates explaining the results of the
gate count metric. As in the previous attack, Haraka performs worse in the T-
Depth-Times-Width metric, as the Haraka permutation has a significantly higher
T-Depth.
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Table 6. Resource estimate for a preimage search to forge a WOTS signature.

SPHINCS+ instantiation Gate count T-Depth T-Depth-Times-Width

SPHINCS+-128-Haraka 1.0 · 289 1.0 · 284 1.9 · 294

SPHINCS+-128-SHAKE-256 1.5 · 289 1.3 · 278 1.3 · 290

SPHINCS+-256-Haraka 1.0 · 2153 1.0 · 2116 1.3 · 2159

SPHINCS+-256-SHAKE-256 1.5 · 2153 1.4 · 10142 1.6 · 2154

5 Fault-Tolerant Cost

In this section, we give tight cost estimates of carrying out the most promis-
ing attack on XMSS signatures in Sect. 4.1. In particular, we analyze the
resource requirements for the SPHINCS+-128 parameter sets, i.e. Haraka and
SHAKE-256 hash function. A comparison of all results can be found in Table 7.
The analysis follows the approach by [1], but optimizes the parallelization of the
magic state distillation.

5.1 Haraka

Setup. The entire Grover circuit for the attack using the Haraka hash function
consists of tHaraka = 3.54 · 1025 T-gates, gcnot

Haraka = 8.02 · 1025 CNOT-gates and
gc
Haraka = 1.1 · 1025 QubitClifford-gates with the Hadamard-gates dominating,

thus other types of gates are ignored. The circuit has a width of qw
Haraka = 1400

and a T-depth of td
Haraka = 4.01 · 1024.

Magic State Distillation. Given the desired output error rate relative to the size
of the circuit pout = 1/td

Haraka and the assumptions given in Sect. 2.4 one can
determine the number of layers of magic distillation required. We require two
layers as in Fig. 4a, each with a surface code distance di, number of logical qlog

i

and respectively physical qubits qphy
i . In total, the number of logical qubits for

a single distillery is qlog
MD, Haraka = 240.

The layers can be optimized based on the cost metrics from Sect. 2.4, i.e.
costlqc = costSCC · (qG + qMD) and costSCC = scc · gd, thus increasing the
number of cycles scales the cost by both, cycles and qubits. Consider an increase
of cycles by a factor X and an increase of qubits by a factor Y . Then the optimal
distillery can be found by computing min

X,Y
XqG + XY qMD.

Surface Code. The gates in the circuit are embedded into a surface code of dis-
tance dG,Haraka = 25, with pout = 1/ (gcnot

Haraka + gc
Haraka) as targeted error rate.

This results in each of the qlog
G,Haraka = 1400 logical qubits to require 1352 physi-

cal qubits. In total, the algorithm requires qphy
G,Haraka ≈ 1.89 ·106 physical qubits.

Results. On average, about 9 T-gates are applied in each layer of T-depth. The
number of physical qubits is dominated by the surface code, therefore we suggest
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(a) Distance of the er-
ror correcting code di and
number of logical and
physical qubits for each
layer i.

Layer i di qlog
i qphy

i

Top 1 19 16 12800
Bottom 2 9 240 48000

(b) Pipelining the production of 3 magic states allows to
reuse the qubits from the bottom layer in the top layer.

90
4.8·104

90
4.8·104

90
4.8·104

190

1.28·104
190

1.28·104
190

1.28·104
460.0
cycles

4.8·104 qubits

Fig. 4. Magic state distillation scheme for attacking SPHINCS+-128.

to compute all magic states in parallel using 3 magic state distilleries and qphy
MD =

3 · 48000 = 1.6 · 104 physical qubits in sccm
Haraka = 460 cycles. The average

number of gates per layer of T-depth for each CNOT and QubitClifford gates,
gcnot
Haraka/qw

Haraka·td
Haraka ≈ 0.0143 and gc

Haraka/qw
Haraka·td

Haraka ≈ 0.002, is significantly
smaller than the number of surface code cycles required to implement a single
layer required for magic state distillation.

Therefore, the total number of surface code cycles for the entire algorithm
is dominated by the magic state distilleries, which is costSCC = sccm

Haraka ·
td
Haraka = 460 · 4.01 · 1024 ≈ 1.5 · 290. The total number of logical qubits required

is 2120. With 200 ns per surface code cycle, this would take 1.17 ·1013 years. The
total cost of running the attack is then costlqcHaraka = costSCC · (1400 + 3 ·
240) = 1.5 · 290 · (2120) ≈ 3.91 · 1030 ≈ 1.55 · 2101.

5.2 SHAKE-256

Setup. When using the SHAKE-256 hash function, our quantum circuit for the
entire Grover algorithm for the attack contains gT

SHAKE-256 = 1.72 · 1025 T-
gates and gcnot

SHAKE-256 = 7.35 · 1025 CNOT-gates. It also contains gc
SHAKE-256 =

4.92 · 1024 QubitClifford gates, most of which are Hadamard-gates. We will
ignore any QubitClifford gates, that are not Hadamard-gates. The quantum
circuit has a logical width of qw

SHAKE-256 = 3456 qubits and a T-Depth of
td
SHAKE-256 = 6.92 · 1022.

Magic State Distillation. The number of layers and thus the values for magic
state distillation are reminiscent to those of Sect. 5.1, in particular, of Fig. 4a.

Surface Code. The distance of the surface code remains as dG,SHAKE-256 = 25,
with the same targeted error rate. This results in each of the qlog

G,SHAKE-2563456
logical qubits to require 1953 physical qubits. In total the algorithm requires
qphy

G,SHAKE-256 ≈ 6.75 · 106 physical qubits.
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Table 7. Fault-tolerant cost for our attack from Sect. 4.1 using the SHAKE-256 and
Haraka hash functions. The collision attack of [10] refers to attacking the internal state
of Haraka.

SPHINCS+- SHAKE-256 Haraka

Collision attack [10] #Grover Iterations − 1.32 · 2102

Time-Space Product − 1.51 · 2153

#Classical hash function invocations − 2129.5

Our attack on 128 #Distilleries φ 83 × 3 3 × 3

#Log. Qubits qlog 23876 2120

#Total Phys. Qubits qphy 8.65 · 106 2.03 · 106

#Total ECC cycles costSCC 1.6 · 284 1.5 · 290

logical-qubit-cycles costlqc 2.65 · 299 1.55 · 2101

Our attack on 256 #Distilleries φ 42 × 4 9 × 1

#Log. Qubits qlog 1.7 · 105 0.38 · 105

#Total Phys. Qubits qphy 5.8 · 107 1.5 · 107

#Total ECC cycles costSCC 1.02 · 2152 3.95 · 2154

logical-qubit-cycles costlqc 1.31 · 2169 1.44 · 2171

Results. On average, about 249 T-gates are applied in each layer of T-depth.
Therefore, we suggest to use 83 distilleries each generating 3 states in parallel,
using a total of qphy

MD = 83 ·48000 = 3.98 ·106 physical qubits in sccm
SHAKE-256 =

460 cycles. The average number of CNOT gates per layer of T-depth is 0.31, and
0.021 Hadamard gates.

Again, magic state distillation dominates resulting in a total number of
costSCC = sccm

SHAKE-256 · td
SHAKE-256 = 460 · 6.92 · 1022 ≈ 1.6 · 284 surface

code cycles.
The total number of logical qubits required is 23876. With 200 ns per surface

code cycle, this would take 2.02 ·1011 years. The total cost of running the attack
is then costlqcSHAKE-256 = costSCC · (3456 + 83 · 240) = 1.6 · 284 · (23876) ≈
7.44 · 1029 ≈ 2.65 · 299.

6 Conclusion

We presented quantum implementations for the Haraka (and respectively
SHAKE-256) hash function in the context of the SPHINCS+ signature scheme.
Subsequently, we proposed and reviewed multiple points of attack in the
SPHINCS+-128-Haraka signature scheme based on applying Grover’s algorithm
to find pre-images. A tight estimate of the resources required to carry out the
most promising attack on a fault tolerant quantum computer is given. Our attack,
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that forges a signature in 1.55·2101 steps, improves over the previously best known
attack on SPHINCS+-128-Haraka.

Following the suggestion by NIST to review the security in terms of a maximal
depth for quantum circuits, it is clear that for a depth of 296 the attack can be
implemented without any further constraints and would be more efficient than
the classical counter part. For a depth of 240 and 264 the overhead induced by
error correction needs to be reevaluated and optimized to the respective depth.
A detailed analysis is out of scope for this paper and left as future work.
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Abstract. Anonymity networks, such as the Tor network, are highly
decentralized and make heavy use of ephemeral identities. Both of these
characteristics run in direct opposition to a traditional public key infras-
tructure, so entity authentication in an anonymity network can be a
challenge. One system that Tor relies on is key-blinded signatures, which
allow public keys to be transformed so that authentication is still pos-
sible, but the identity public key is masked. This is used in Tor during
onion service descriptor lookup, in which a .onion address is resolved
to a rendezvous point through which a client and an onion service can
communicate. The mechanism currently used is based on elliptic curve
signatures, so a post-quantum replacement will be needed.

We consider three fully post-quantum key-blinding schemes, and prove
the unlinkability and unforgeability of all schemes in the random-oracle
model. We provide a generic framework for proving unlinkability of key-
blinded schemes by reducing to two properties, signing with oracle repro-
gramming and independent blinding. Of the three schemes, one is based
on a Round 3 candidate in NIST’s post-quantum signature standardiza-
tion process, Dilithium. The other two are based on much newer schemes,
CSI-FiSh and LegRoast, which have more favourable characteristics for
blinding. CSI-FiSh is based on isogenies and boasts a very small public
key plus signature sizes, and its group action structure allows for key-
blinding in a straightforward way. LegRoast uses the Picnic framework,
but with the Legendre symbol PRF as a symmetric primitive, the homo-
morphic properties of which can be exploited to blind public keys in a
novel way. Our schemes require at most small changes to parameters,
and are generally almost as fast as their unblinded counterparts.

1 Introduction

Among the many difficulties in building a robust anonymity network, how enti-
ties are authenticated can be a unique challenge that cannot be solved with
direct cryptographic techniques. Most networks will accomplish authenticity
goals through the use of a signature scheme, but in a network with anonymity
goals, the public keys used for signing can run contrary to those goals. One tech-
nique to overcome this contradiction is used in the Tor network: key-blinding.

A signature scheme with key-blinding works similarly to a regular signature
scheme, but with the added property that given a public key pk and a nonce
c© Springer Nature Switzerland AG 2021
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τ , a new public key pkτ can be derived, which in turn can be used for signing
and verification. This is useful in contexts where two parties wish to exchange
signed material, but must do so in the presence of a potential eavesdropper who
may attempt to de-anonymize them. Tor describes such a scheme, and its use,
in version 3 of the rendezvous specification, describing how clients connect to
onion services in the network [28]. In Subsect. 2.1 we will describe precisely how
key-blinding is used in Tor, and the security it is meant to provide.

It is useful to describe the key-blinding scheme as it exists in Tor, to gain
some intuition for how such a scheme works and what security it provides. Key-
blinding in Tor today uses the Ed25519 signature scheme [7]. Keys in this sig-
nature scheme are made with respect to a generator B of a cyclic group of size
� (written with additive notation). Secret keys are an integer a ∈ {1, . . . , � − 1}
and the corresponding public key is A = aB. We refer to [7] for a complete
description of the signing and verification processes, but for our description, it
suffices to know that any such (a,A) pair are a valid key pair for Ed25519.

To blind a public key with a nonce τ , one computes a value t ← H(τ ||A),
with t ∈ {1, . . . , � − 1}. Then the blinded public key is tA, with corresponding
secret key t · a (mod �). This forms a new key pair that is entirely compatible
with Ed25519, so that it can be used for signing and verification.

It is fairly easy to see why this scheme has the desired security properties.
Given two blinded keys and the associated nonces, there is no way to tell if
they come from the same identity public key or not. Without knowledge of the
identity public key, the distribution of the blinded public key is entirely uniform
over the public key space, so that these keys are entirely unlinkable to each other.
Furthermore, the keys retain their unforgeability, as the blinded secret key ta
requires both t and a to be known. Formal proofs of the security properties can
be found in a tech report posted to the Tor developer mailing list [20].

This system works quite well for Tor today, but with the development of
quantum computers, cryptography based on the discrete logarithm problem
will eventually be rendered insecure. To ensure the long-term security of Tor, a
replacement post-quantum signature scheme with key-blinding will be needed.

1.1 Our Contributions and Paper Structure

In our work we address the challenge of extending post-quantum signature
schemes to have a key-blinding functionality. We focus on three promising post-
quantum signature schemes. Dilithium is a lattice-based signature scheme that
is currently under consideration in NIST’s Post-Quantum Cryptography stan-
dardization effort [17]. Instead of directly working with Dilithium, we will work
with the Dilithium-QROM variant [22]. Dilithium-QROM has simpler provable
guarantees by neatly fitting into the ‘Lossy ID scheme’ framework [1], so to
ensure that our scheme has similar guarantees we work within the same frame-
work. CSI-FiSh is a relatively new post-quantum signature scheme based on
the CSIDH group action [12]. LegRoast is based on the Picnic framework, but
replaces the more traditional symmetric function used with the Legendre PRF,
the homomorphic properties of which allow for small signatures [10,15]. In the
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Scheme |pk| |σ| KeyGen Blind Sign Verify

Dilithium-QROM 7.7 kB 5.7 kB 3810ms - 9360ms 2890ms
blDlithium-QROM 10 kB 5.7 kB 2180ms 1650ms 28300ms 717ms
Increase from blinding 1.3× 1× 0.6× - 3× 0.25×
LegRoast 0.50 kB 7.94 kB 0.9ms - 12.4ms 11.7ms
blLegRoast 0.50 kB 11.22 kB 0.9ms 0.9ms 18.6ms 17.8ms
Increase from blinding 1.0× 1.4× 1.0× - 1.5× 1.5×
CSI-FiSh-Merkleized 32 B 1.8–2.1 kB 10900ms - 559ms 559ms
CSI-FiSh-unMerkleized 16 kB 0.45 kB 10800ms - 554ms 553ms
blCSI-FiSh 16 kB 0.45 kB 10600ms 10600ms 546ms 540ms
Increase from blinding 1.0× 1.0× 1.0× - 1.0× 1.0×

Fig. 1. Performance results from the implemented key-blinding schemes. Note that we
emphasize the increase over the raw numbers for the timing information. Implementa-
tions are not optimized and may not reflect how long a ‘proper’ implementation will
take. Nonetheless, the increase reflects how much additional work is required to use
the scheme for key-blinding. For all schemes, blinded public keys have the same size as
their unblinded version and so we do not distinguish between the two.

full version of this paper, available on the IACR Cryptology ePrint archive, we
also consider Picnic itself. Picnic is another submission to NIST’s efforts, which
constructs a signature scheme out of the ‘MPC-in-the-head’ paradigm [14,21].
We show how all of these signature schemes can be extended to support key-
blinding. For CSI-FiSh, Dilithium, and LegRoast this process is done similarly
to the existing Ed25519 scheme, by homomorphically incorporating a blinding
factor into the public key. In all the schemes, blinding is generally around as effi-
cient as key generation, while signing is either as efficient, or at worst half as fast.
We provide a generic framework for proving the unlinkability property, showing
that it reduces to two easily proven properties. We prove all these schemes both
unlinkable and unforgeable in the random oracle model. Note that each of the
signature schemes we have discussed are built out of the Fiat-Shamir paradigm.
We discuss why this is the case, and what some of the challenges are for building a
key-blinded scheme out of a trapdoor signature scheme. Finally, we provide pro-
totype implementations out of the CSI-FiSh, LegRoast, and Dilithium-QROM
schemes and discuss aspects of their performance as it applies to Tor. Our results
from the three implemented schemes are shown in Fig. 1.

Section 2 provides background information on Tor and definitions for key-
blinding, which is needed to follow discussion in the remainder of the paper. We
discuss the property of unlinkability, and how it can be achieved in all of our
schemes in Sect. 3. In Sect. 4 we extend Dilithium-QROM with key-blinding and
discuss the proof of security, then repeat this process with CSI-FiSh in Sect. 5,
and LegRoast in Sect. 6. Finally we provide details of our implementations and
their performance in Sect. 7 before concluding in Sect. 8.
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In the full version, we include an outline of a key-blinded Picnic scheme, as
well as the detailed descriptions of the other schemes and the associated proofs
of unlinkability and unforgeability.

1.2 Related Work

As mentioned, the schemes that we choose to base blinded signature schemes off
of are Dilithium [17,22], CSI-FiSh [12], LegRoast/PorcRoast [10], and, in the full
version, Picnic [14]. While to our knowledge, this is the first attempt to construct
post-quantum key-blinded signatures, there are a few other papers who have
attempted to build similar primitives, for different reasons. In a 2018 preprint [3],
the authors considered post-quantum PKIs in vehicle-to-anything (V2X) com-
munications. One of the techniques they developed to provide anonymity to
vehicles in such a context involved transformations on public key materials sim-
ilar to that of key-blinding. Their construction was based on the lattice scheme
qTESLA, which was a candidate for standardisation in the first two rounds of
NIST’s process. The process of key-blinding also bears a similarity to hierarchi-
cal deterministic wallets used for Bitcoin [18,23]. These wallets allow a user to
create child public and secret keys for the delegation of abilities for spending.
Such a protocol has much stronger requirements than simple key-blinding, which
does not need to be hierarchical and does not need for the child secret keys to
contain no information about parent secret keys. Some work on post-quantum
deterministic wallets has been published [2], with their scheme also based on
qTESLA.

It is important to distinguish between the key-blinding schemes we dis-
cuss here and the notion of ‘blind signatures’, for which post-quantum schemes
already exist [19,25]. Blind signatures are an interactive protocol that allow a
user to obtain a signature on a message without the signer knowing the message.
This is very different from key-blinded schemes, which have the same function-
ality as a traditional signature scheme, but with the extra ability to randomize
public keys.

2 Background

2.1 Onion Services

The Tor network serves millions of clients a day, providing anonymity to users
from the websites they connect to, and concealing what they are connecting to
from their Internet service provider and any other intermediary in their path [27].
An important part of the Tor networks is onion services (previously known as
hidden services). Onion services allow users to not only access content with Tor’s
strong privacy guarantees, but also serve content.

At a high level, onion services work by uploading a three hop path (called
a circuit in Tor terminology) to a Tor node called a introduction point. This
path begins at the introduction point and ends at the onion service. Because of
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Tor’s layered encryption, the introduction point does not know where the onion
service lives, only where the next node in the path lives. For a client to connect
to the onion service, they use the .onion address to find the introduction point,
who will then direct their communication towards the onion service.

In the most recent version of the rendezvous specification (the specification
that describes the process of connecting to an onion service), the .onion address
is the long-lived EdDSA public key of the onion service. Time in the Tor network
is divided into periods, with the period length a consensus parameter and the
period number the number of periods that have occurred since the Unix epoch.
So given a public key, a nonce, and consensus parameters of the Tor network,
the blinding factor t is computed by hashing together the public key, the nonce,
and the current period number, as well as some parameters of both the Tor
network and the signature scheme. As mentioned in the introduction, this value
t is treated as an integer in the range 1 to � − 1, with � the order of the cyclic
group, so that public keys are transformed by simply multiplying by t.

The blinded key can then be used to index the descriptors while they are
held by the HSDir. Clients can derive the blinded key from the .onion address
and query for a descriptor by providing the blinded key. So, the blinded key
serves as a private index from which the descriptor may be queried. This also
implicitly means that the client is implicitly checking the connection between
the identity public key from the .onion address and the blinded public key. For
security it is important that only the actual owner of the .onion address can
upload a descriptor to a given index. This is where the signing functionality of
key-blinding is used. Onion services also upload a signature on the descriptor,
which can be verified with the blinded key. When HSDirs verify this signature,
they ensure that the descriptor is being uploaded by the actual owner of the
identity public key—all without knowing what the .onion address is.

A malicious actor with a quantum computer could forge a signature with
respect to a chosen blinded public key, and use this to upload false information
about an introduction point. This would mean that queries to the onion service
could be redirected to the adversary.

2.2 Key-Blinding Signature Scheme Definitions

Definition 1. A key-blinding signature scheme Δ consists of four algorithms
(KeyGen,BlindPk,Sign,Verify) where

– KeyGen() generates an identity key pair (pk, sk).
– BlindPk(pk, τ) deterministically generates a blinded public key pkτ .
– Sign(m, sk, τ) may deterministically or probabilistically generate a signature

σ for the message m using the identity secret key sk and epoch τ .
– Verify(m,σ, pkτ ) accepts if the signature is valid under the message m and

epoch τ used to generate pkτ , otherwise it rejects.

We require the usual correctness properties for signature schemes, but
extended for key-blinding. That is, if (pk, sk) is a keypair generated from KeyGen,
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pkτ is then derived from BlindPk with a given nonce τ , and σ ← Sign(m, sk, τ),
then with overwhelming probability Verify(m,σ, pkτ ) will accept. Anyone with-
out knowledge of the identity public key can verify using the pkτ given in the
descriptor, while someone with knowledge of the identity key can take the addi-
tional step of checking pkτ = BlindPk(pk, τ). Note that we do not require that
blinded keys can be blinded again.

Signatures with key-blinding must satisfy two security requirements. First,
they must be unlinkable, which means that an adversary without knowledge of
the identity public key who observes many public key blindings as well as signa-
tures under those blindings cannot distinguish a fresh blinding of the public key
from an entirely unrelated key. Second, the scheme must satisfy unforgeability.
This property is largely the same for signature schemes with key-blinding as it is
for typical signature schemes. However, rather than just devising an (m,σ) such
that Verify(m,σ, pk) accepts, the adversary must be able to provide an (m,σ, τ)
such that Verify(m,σ, pkτ ) accepts where pkτ ← BlindPk(pk, τ).

Earlier versions of both of these formulations appear in [20]. The security
definitions that we present here are more general. The definitions in [20] were
tied to the exact usage of key-blinding in Tor, and do not consider security in
situations where the blinding process is decoupled from the signing process, so
that multiple signatures can be issued under the same blinded public key.

Definition 2 (Unlinkability). Let Δ = (KeyGen,BlindPk,Sign,Verify) be a
key-blinding signature scheme. Define ExpUL−CMEA

Δ (A) as follows:

– Let (pk, sk) ← KeyGen() be freshly generated identity keys.
– A may query τ to a public key-blinding oracle to get pkτ ← BlindPk(pk, τ).
– A may query (m, τ) to a signing oracle to receive σm,τ ← Sign(m, sk, τ) for

any τ previously queried to the public key-blinding oracle.
– A makes a challenge query τ∗ not previously queried to the public key-

blinding oracle. A bit b is uniformly sampled, pk0 ← pk, and a fresh
pair of identity public keys (pk1, sk1) ← KeyGen() is generated. A receives
pk∗

b ← BlindPk(pkb, τ
∗).

– A may additionally query the public key-blinding oracle or the signing oracle,
except that if the queried τ = τ∗, the oracles use pk∗

b .
– A provides a bit b∗ after expending t-bounded computational resources, qB-

bounded public key-blinding oracle queries, and qS-bounded signing queries;
and the game outputs 1 if b∗ = b, otherwise it outputs 0.

The UL − CMEA (unlinkability under chosen message and epoch attack) advan-
tage is defined as AdvUL−CMEA

Δ (A) =
∣
∣
∣Pr[ExpUL−CMEA

Δ (A) = 1] − 1
2

∣
∣
∣ .

Definition 3 (Unforgeability). Let Δ = (KeyGen,BlindPk,Sign,Verify) be a
key-blinding signature scheme. Define ExpEUF−CMEA

Δ (A) as follows:

– Let (pk, sk) ← KeyGen() be freshly generated identity keys.
– A may query (m, τ) to a signing oracle which generates pkτ ← BlindPk(pk, τ)

and σm,τ ← Sign(m, sk, τ), and sends (pkτ , σm,τ ) to A.
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– A submits (m∗, σ∗, τ∗) after expending t-bounded computational resources
and qS-bounded signing queries, and the game outputs 1 if (m∗, τ∗) was
not previously queried and Verify(m∗, σ∗,BlindPk(pk, τ∗)) = 1, otherwise it
outputs 0.

The EUF − CMEA (existential unforgeability under chosen message and epoch
attack) advantage is defined as AdvEUF−CMEA

Δ (A) = Pr[ExpEUF−CMEA
Δ (A) = 1].

3 Unlinkability of Signature Schemes with Key-Blinding

We want to establish that an adversary who has access to a blinding oracle and
a signing oracle still cannot distinguish a new blinding of the identity public
key from the blinding of a fresh public key. We observed a common technique
that could be used for showing unlinkability among the signature schemes we
consider. To establish unlinkability, we devise a property we call independent
blinding, which asks that the distribution of the output of the blinding function
is independent from its input. This means that seeing any number of blindings
of a public key leaks no information on the identity public key.

While our techniques provide a generic framework to establish unlinkabil-
ity, they do not extend to showing unforgeability or provide a way to gener-
ically construct schemes with key-blinding out of Fiat–Shamir style signature
schemes. This is because the mechanism by which blinding is accomplished
changes depending on the scheme. As a result, there is no common framework
for constructing a key-blinding scheme, and the proof of unforgeability similarly
must take the blinding mechanism into account.

To guarantee that the signing oracle leaks no information about the identity
public key, we require that the distribution of signatures is dependent only on
the public key. This is best characterized by a property we call signing with
oracle reprogramming, which states that if we have the ability to reprogram
the random oracle used in the signature scheme, then we can create signatures
indistinguishable from real ones for any message.

Many signature schemes show their security by first establishing just such
a property. As an example, for signature schemes built from an identification
protocol and the Fiat–Shamir heuristic, the zero-knowledge property is typically
proven by establishing the ability to simulate transcripts given only the public
key. When given control of the random oracle, we can sample transcripts and
reprogram the random oracle to generate a signature.

To formalize this notion, we require a concept we call a reprogrammed point
extractor. This is a simple function, efficiently computable and publicly known
to all, which, given a signature σ, public key, and message, can extract the point
on which the random oracle is reprogrammed to make the signature verify.

It is best to illustrate this with an example. Consider a generic form of
the Probabilistic Signature Scheme [6] defined with respect to a trapdoor per-
mutation T . To sign a message, sample a random salt r and compute x =
T−1(H(pk‖m‖r)). The signature is σ = (x, r). To verify a signature, simply
check that T (x) = H(pk‖m‖r). It is straightforward to show that signatures can



74 E. Eaton et al.

be generated if the random oracle can be reprogrammed. On input of a message
m, sample a random (x, r) and reprogram H so that H(pk‖m‖r) = T (x). If T
is a permutation, it is easy to see that (x, r) will have the same distribution
as in a real signature, and the reprogramming cannot be detected as long as
r is sufficiently long (so that the adversary is unlikely to have queried pk‖m‖r
beforehand). Let Ext denote our reprogrammed point extractor. For the example
above, we have Ext((x, r), pk,m) = pk‖m‖r.

Definition 4 (Signing with oracle reprogramming). Let Σ be a signature
scheme that relies on a random oracle H. We say that the signature scheme
admits signing with oracle reprogramming if there exists a reprogrammed point
extractor Ext and a forgery function Forge that takes in pk,m and returns (y, σ)
such that Σ.VerifyH:Ext(σ,pk,m) �→y(pk,m, σ) → ‘accept’, where H : x �→ y denotes
the random oracle reprogrammed such that H(x) = y.

In order to use oracle reprogramming to sign a message, we need to consider
the probability that an adversary is capable of noticing that the real signing
algorithm wasn’t used. This amounts to considering the joint distribution of the
signature as well as the input and output of the hash function on the repro-
grammed point.

Definition 5. Let Σ = (Sign,Verify) be a signature scheme defined with respect
to a random oracle H and a public key space PK that admits signing with oracle
reprogramming via a point extractor Ext and a forgery function Forge.

For a public key and message pk,m, we consider the adversary’s ability to dis-
tinguish the distribution of (yforged, σforged) ← Forge(pk,m) from the distribu-
tion of (yreal, σreal) where σreal ← Sign(pk,m) and yreal = H(Ext(σreal, pk,m))
(i.e., the output of the hash on the input that would be reprogrammed).

We denote L1 distance between these distributions as δ, that is

δ =
∑

σ,y

∣
∣Pr[σreal = σ, yreal = y] − Pr[σforged = σ, yforged = y]

∣
∣ .

As well, we need to consider the ability of an adversary to detect that repro-
gramming has occurred. This can be evaluated by considering the min-entropy of
the point that is reprogrammed, to ensure that the probability that an adversary
queries this point prior to reprogramming is low. Let hmin denote the min-entropy
of Ext(σ, pk,m), where (y, σ) ← Forge(pk,m).

Note that in the above definition we are implicitly assuming that the statistical
distance and the entropy are not dependent on m, pk, or H. For all of the
schemes that we construct this is the case. Even if these values were dependent
on pk, m, or H, the scheme could still be secure as long as they were sufficiently
small on average. However to simplify the proof and notation, our definition only
considers schemes where they do not depend on pk, m, or H.

We now consider the unlinkability experiment ExpUL−CMEA
Δ . We will show

a reduction from an adversary who makes queries to the signing oracle to an
adversary who makes none.
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Lemma 1. Let Δ be a key-blinding signature scheme which admits signing with
oracle reprogramming with L1 distance δ and min-entropy of reprogrammed
points hmin. Let A be an adversary making qB queries to the blinding oracle,
qS queries to the signing oracle, and qH queries to the random oracle. Using A,
we construct an adversary AqS=0 that makes no signing queries (i.e., a key-only
adversary) for which AdvUL−CMEA

Δ (A) ≤ AdvUL−CMEA
Δ (AqS=0) + qHqS2−hmin +

qSδ.

Proof. To construct the adversary AqS=0 while relying on the adversary A as a
subroutine, we must show how to handle queries to the blinding oracle and the
signing oracle. For queries to the blinding oracle, AqS=0 can simply pass along
these queries to the blinding oracle provided to them.

To handle the signing queries, we rely on signing with oracle reprogramming.
Whenever a signing query is made with respect to a blinded public key pkτi , we
reprogram the random oracle in order to provide a signature. Thus we need to
consider the adversary’s ability to distinguish that the secret key is not being
used to sign messages. To realize this, the adversary either needs to observe
that the oracle has been reprogrammed, or notice a difference in the observed
distribution of some part of the signature.

To distinguish that reprogramming has occurred during signing, the adver-
sary must have queried the random oracle on the reprogrammed point previously.
In total, qS points will be reprogrammed. So the adversary makes qH guesses,
and then qS points are chosen to be reprogrammed from a distribution with min
entropy hmin, and we want to consider the probability of a match between the
qH and qS points. We can upper-bound this by qHqS2−hmin .

Next we consider the output distribution of the programmed points. There
are qS reprogrammed points, and the statistical (L1) distance between the forged
values and the real values is δ, so the adversary’s advantage in distinguishing
based on the distribution of reprogrammed values is at most qSδ. �	

We now only need to consider the advantage of AqS=0, an adversary who
makes no queries to the signing oracle. So, we need only consider how the blinding
oracle and random oracle provide information to the adversary.

To characterize the security of blinding, we want to insist that the distribu-
tion of the public key returned by BlindPk is independent of the identity public
key input, so that no knowledge is gained. However care must be taken here,
because the BlindPk algorithm is actually deterministic on the inputs pk and τ .
So when we refer to the ‘distribution’ of BlindPk we need to be clear over what
randomness.

In practice, the BlindPk function hashes the public key and the nonce τ to
generate some randomness, and then uses that randomness to blind the public
key. To separate out the process of hashing to generate randomness and using
the randomness, we will define a new function randBlind(pk; r), which takes in
a public key and some randomness, and blinds the public key. Then BlindPk is
defined by making randBlind deterministic through the random oracle H. Specif-
ically, BlindPk(pk, τ) = randBlind(pk;H(pk‖τ)).
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Definition 6 (Independent Blinding). Let Δ be a key-blinding signature
scheme and let n be a positive integer. Let pk0, pk1, . . . , pkn be public keys gener-
ated from KeyGen. Sample uniform randomness r1, r2, . . . , rn. The independent
blinding advantage, denoted AdvInd−Blind

Δ,n (A), is the advantage that an adversary
has in distinguishing the following two distributions:

1) randBlind(pk0; r1), randBlind(pk0; r2), . . . , randBlind(pk0; rn)
2) randBlind(pk1; r1), randBlind(pk2; r2), . . . , randBlind(pkn; rn)

This ensures that the adversary AqS=0 may observe many blindings of the
public key with respect to arbitrary nonces but what they see is close to a
distribution independent of the identity public key.

Lemma 2. Let Δ be a key-blinding signature scheme and let hpk be the min-
entropy of the public key returned from Δ.KeyGen. Let AqS=0 be an UL − CMEA
adversary that makes no queries to its signing oracle. Then there exists an algo-
rithm B such that AdvUL−CMEA

Δ (AqS=0) ≤ AdvInd−Blind
Δ,n (B) + qH2−hpk , where n

is the number of blinding queries AqS=0 makes to its public key-blinding oracle
and the runtime of B is approximately the same as the runtime of A.

Proof. We use a simple game-hopping proof to bound the adversary’s suc-
cess probability. Game G0 proceeds according to ExpUL−CMEA with the adver-
sary making no signing queries by assumption. In game G1, when the adver-
sary queries the blinding oracle with input τ , rather than responding with
BlindPk(pk, τ) = randBlind(pk,H(pk‖τ)), we sample a uniformly random r and
return randBlind(pk, r). Note that there is no difference between these games
until an adversary queries H(pk‖τ) for some τ ; we let bad be the event that the
adversary makes such a query. Games G0 and G1 are identical-until-bad [5].

In game G2 we modify the response to each blinding query from
randBlind(pk, r) by sampling a fresh pk′ each time from KeyGen and return-
ing randBlind(pk′, r). We can construct, from an adversary that distinguishes G1

from G2, a reduction B that distinguishes the two distributions in the indepen-
dent blinding property: G1 uses the first distribution in Definition 6, whereas
G2 uses the second. Thus G2 can be distinguished from G1 with advantage at
most AdvInd−Blind

Δ,n (B).
We now consider the probability of event bad—i.e., the adversary querying

H(pk‖τ)—in G2. Since none of the blindings actually use pk, the success prob-
ability is bounded by the adversary’s ability to guess the public key. For this
we use the min-entropy of the public key returned from key-generation. Over
qH queries, the probability that an adversary is able to guess the public key is
bounded by qH2−hpk . By the fundamental lemma of game playing [5], this is the
probability that an adversary is able to distinguish between game G0 and G1.

Finally, in game G2 all blinded public keys are independent of the original
key, so everything the adversary sees is independent of the challenge bit b, and
thus the adversary’s advantage in G2 is 0, yielding the desired result (Fig. 2). �	
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blDilithium-QROM.KeyGen()

1 : K ← {0, 1}256

2 : (s1, s2)
$←− Sη × Sk

η

3 : t ← As1 + s2

4 : t1 ← Power2Roundq(t, d − 1)

5 : t0 ← t t1/2 2d

6 : pk ← t1

7 : sk ← (s1, s2, t0, K)

8 : return (pk, sk)

blDilithium-QROM.BlindPk(pk = t1, τ )

1 : (s1, s2) ← G(pk τ)

2 : t ← As1 + s2

3 : t1 ← Power2Roundq(t , d − 1)

4 : t1,τ ← t1 + t1

5 : pkτ ← t1,τ

6 : return pkτ

Fig. 2. Key generation and blinding algorithms for blDilithium-QROM.

One could go to the effort of computing or bounding the min-entropy hpk of the
public key returned from KeyGen for each scheme. It is convenient to observe
that 2−hpk ≤ AdvEUF−CMEA

Δ (A) for any adversary A: otherwise, for a scheme
where certain public keys have abnormally high change of being generated, an
adversary could break unforgeability by repeatedly running KeyGen until the
desired public key (and a corresponding secret key) is generated. Thus,

Corollary 1. Let Δ and AqS=0 be as in Lemma 2. Then there exist
algorithms B1,B2 such that AdvUL−CMEA

Δ (AqS=0) ≤ AdvInd−Blind
Δ,n (B1) +

qHAdvEUF−CMEA
Δ (B2), where n is the number of blinding queries AqS=0 makes to

its public key-blinding oracle and the runtimes of B1 and B2 are approximately
the same as that of A.

4 A Lattice-Based Key-Blinding Scheme

Dilithium [17] is a finalist in the NIST post-quantum signature standardization
process and comes from a long line of lattice-based signature schemes. We present
a key-blinded version of Dilithium-QROM [22] which modifies Dilithium to per-
mit lossy key generation, hence allowing a reduction from the scheme to Module
Learning with Errors (MLWE) assumption. Later, in Sect. 4.3, we discuss the
challenges in blinding Dilithium itself.

Our construction, blDilithium-QROM utilizes the fact addition is homomor-
phic. As a result, the A matrix is a public matrix used by all parties in the
network. In addition, both signing and verification use the public key when sam-
pling the challenge c. Finally, the identity public key consists of an extra bit as
this permits key-blinding.

4.1 blDilithium-QROM Description

We make use of functions defined in [22]. In addition, our notation mirrors that
in [22]. A complete description is in the full version.
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Signing is performed by using G to sample blinding secrets adding these to
the identity public key secrets, and performing the operations in KeyGen. Then,
the procedure in [22] is followed except that the public key is added to the hash
to produce the challenge c. Verification is also similar to that in [22] except that
ct1,τ is multiplied by 2d−1. The full scheme is supplied in the full version.

The parameters are identical to the parameters in [22], except that d = 7
and β = 644.

4.2 blDilithium-QROM Security

We now consider the security of blDilithium-QROM by addressing unforgeability
and unlinkability as defined in Sect. 2. Since the proof of unforgeability closely
follows the proof of unforgeability for Dilithium-QROM in [22], we give a sum-
mary here and provide the detailed proof in the full version. In addition, the
proof of unlinkability can be found in the full version due to space constraints.

We first address unforgeability, in which we follow the framework set out
in [22]. To begin, we create a version of blDilithium-QROM where the identity
public key pk = t, which we then use to construct an identification protocol
ID whose Fiat-Shamir transform is equivalent to the scheme with the larger
public key. We then follow the techniques in [22] to show that ID is non-abort
honest verifier zero knowledge (naHVZK) and lossy, and establish bounds on
its correctness and min-entropy. This allows us to use Theorem 3.1 of [22] to
establish the following bound:

Theorem 1. Let A be any adversary that makes at most qH hash queries and qS

signing queries against the unforgeability of blDilithium-QROM with parameters
as specified in Subsect. 4.1. Then there exists an algorithm B such that

AdvEUF−CMEA
blDilithium-QROM(A) ≤ AdvSA-MLWE

k,�,U (B) + 8(qH + 1) · 2−137 + 2−2899

In general, the proof of naHVZK and bounds on correctness and min-entropy
are identical to those in [22], except that the blinding factor is introduced and
‖2cs‖∞ must be bounded by β. Lossiness differs in that the added blinding factor
contributes to the bound on size of the solutions of a specific equation, hence
raising the bound εls.

We now turn our attention to unlinkability and discuss independent blinding
and signing with oracle reprogramming discussed in Sect. 3.

Theorem 2. For any adversary A that makes qS signing queries and qH random
oracle queries, there exists an algorithm B such that

AdvUL−CMEA
blDilithium-QROM,t(A) ≤ 2tAdvSA-MLWE

m,k,U,A(B1) + qHAdvEUF−CMEA
blDilithium-QROM(B2) + qHqS2−2899

At a high level, the theorem follows from the fact a blinded public key t+ t′

can be replaced by t+ t̃′ where t̃′ is uniformly sampled. Since we are working in
Rk

q , then t+t̃′ is itself uniformly random. We make t hops away from independent
blindings of a single public key using the replacement as above, then use another
t hops to return to independent blindings of independent public keys.
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We also know that blDilithium-QROM permits signing with oracle repro-
gramming as we can use the simulator from unforgeability to create a forgery
function with δ = 0 and the min-entropy bound comes directly from the min-
entropy bound in unforgeability.

As we make no changes to the set of parameters that contributes to MLWE
hardness, the classical and quantum bit-security from [22] apply here. In par-
ticular, they argue that as there is no known attack that leverages the module
structure of the assumption, it is common to directly apply LWE bit security
directly to MLWE security. We make the further assumption that the SA-MLWE
assumption is also as secure as the MLWE assumption.

4.3 Key-Blinding Dilithium

We briefly describe a key-blinded version of Dilithium [17] but we provide no
security analysis or guarantees.

As is with blDilithium-QROM, A is a public parameter of the network and
thus ρ can be omitted from the scheme. In addition, Power2Round is modified to
release one extra bit for t1 while keeping t0 the same. The appropriate changes
to Sign and Verify are made in a similar fashion to the changes made from
Dilithium-QROM to blDilithium-QROM.

Note that during signing, tr may be recomputed as it is dependent solely on
the identity public key and not the blinded public key. One possibility could be
to set tr = CRH(s1,τ , ‖s2,τ ).

No parameters need to be changed to modify the correctness of the blinded
scheme.

5 An Isogeny-Based Key-Blinding Scheme

In this section we briefly describe how to realize a key-blinding signature scheme
from CSI-FiSh [12], which is an isogeny-based signature scheme that uses the
structure of the CSIDH [13] group action. The ‘group’ here refers to class group
Cl(O), with O being the endomorphism ring EndFp

(E), the ring of endomor-
phisms from a curve E to itself defined over Fp, which is an order in the imag-
inary quadratic field Q(

√−p). A main contribution of the CSI-FiSh paper was
to calculate the precise structure of this group, so that it can be described as a
cyclic group of order N . This allows for two crucial operations with respect to
the group action: group elements can now be sampled uniformly from the group,
and group elements can now be given a canonical representation as a member
of ZN , so that for example, when revealing to an adversary a group element
g = g1 · g2, we can be assured that no information about g1 or g2 is leaked by
how g is represented.

For our purpose, we will describe the scheme as an abstract group action,
and avoid notation that refers to how the group is actually constructed. For
complete details about the group action we refer to the CSI-FiSh paper [12].
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We briefly recall the details of a group action. We have a group G and a set
E along with an operation � : G×E → E. The operation � satisfies the property
that if id ∈ G is the identity group element, then id � E = E for all E ∈ E .
Furthermore, for g1, g2 ∈ G, it must be the case that g1 � (g2 � E) = (g1 · g2) � E.
In fact, the group action described in [12] is both free and transitive, meaning
that for E1, E2 ∈ E there is one and only one g ∈ G such that g � E1 = E2.
Furthermore, the group G in our case is cyclic, and we will denote the order N .

In CSI-Fish, signatures correspond to a zero-knowledge proof of knowledge
of a secret group element gsk such that gsk �E0 = Epk, with Epk being the public
key and E0 being a system parameter. Proving knowledge of such a gsk is done
via a simple sigma protocol. The commitment is created by uniformly sampling
g

$←− G and computing Ecom = g � Epk as the commitment. The verifier then

selects a bit b
$←− {0, 1} as the challenge, and the prover responds by sending g

if b = 0, and g · gsk if b = 1.
The verifier then checks: if b = 0 that g � Epk = Ecom; and if b = 1 that

(g · gsk) � E0 = Ecom. Soundness follows from the fact that, from two responses
g and g · gsk, the secret key gsk can quickly be recovered. Honest-verifier zero-
knowledge can be shown by simulating transcripts in a straightforward way (here
we rely on the fact that group elements have a canonical representation).

The basic idea of how key-blinding functionality can be added to the scheme
is already apparent. From a value τ , a group element gτ can be generated, and
the public key Epk is blinded to Eτ = gτ � Epk. Anyone who knows the public
key and τ can perform this operation, but to sign a message, one must know gτ

and gsk so the scheme is still unforgeable. Furthermore, because the group action
is transitive, the action of gτ entirely hides Epk. Observing many blindings still
leaks no information about Epk, ensuring that the scheme is unlinkable.

Of course, the soundness of this zero-knowledge scheme is only 1/2, and
would have to be repeated many times in order for the signature scheme to
be existentially unforgeable. The authors of CSI-FiSh employed many clever
techniques in order to improve on the efficiency of the scheme over just repeating
the signature scheme 128 times. Most notably, the public keys of CSI-FiSh consist
of many curves Epk,1, Epk,2, . . . , Epk,L, generated by computing gsk,1 �E0, gsk,2 �
E0, etc. Then rather than choosing a single bit for the challenge, an index from 0
to L can be chosen. This increases the soundness significantly, and so the protocol
can be repeated fewer times to achieve the same level of security, allowing for
a trade-off between the signature size and the public key size. To blind, we can
similarly sample independent blinding factors gτ,1, gτ,2, . . . and apply each of
them to each part of the public key.

A further advantage that CSI-FiSh optionally takes is to then ‘Merkleize’
the public key. Rather than including each of Epk,1, . . . , Epk,L, key generation
commits to these public keys by constructing a Merkle tree with each curve as
a leaf node. When signing a message, each Epk,i that gets used, as well as the
Merkle path that proves the commitment, is provided. This causes the public
key to be only 32 Bytes, at the expense of increasing the size of signatures and
making signing and verification slightly slower. Unfortunately, it is not possible
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to use this technique for a blinded version. The raw Epk,i values must be available
in order to construct the blinded version of the public key, and so ‘Merkleization’
is impossible.

In the full version we describe signing and verification, which are essentially
unchanged from in CSI-FiSh. There we also prove the unlinkability of the scheme,
and discuss the proof of unforgeability of the scheme.

6 A Number-Theoretic Key-Blinding Scheme

LegRoast and PorcRoast are new adaptations of Picnic that use the Legendre
Symbol as a symmetric PRF [10,15]. In this section we show how the math-
ematical structure of LegRoast enables a more efficient key-blinding signature
scheme.

Recall that the Legendre symbol modulo a prime p, denoted (a
p ), is defined

as 0 if a ≡ 0 (mod p), 1 if a is a quadratic residue modulo p, and −1 if it is
not. To use the Legendre symbol as a 1-bit keyed PRF with input X and key
K, we can define a function that returns values in {0, 1}. For an odd prime p,
define LK(X) to return 0 if K + X is a quadratic residue or 0 (mod p), and 1
otherwise. This concept can be generalized to consider the �-th power residue,
instead of just quadratic residues. This allows for a keyed PRF with log � bits of
output to be defined as

L�
K(X) =

{

i, if (X + K)/gi ≡ h� (mod p) for some h ∈ F
×
p

0, if K + X ≡ 0 (mod p).

A key property of this PRF is that it is a group homomorphism from F
×
p to

Z�. This is helpful for proving statements in zero-knowledge about preimages of
the PRF. To prove knowledge of a K such that L�

K(X) = s, one can sample a
random value r ∈ F

×
p and send (K+X)·r and L�

0(r). The prover then only needs
to prove that the multiplication of (K + X) · r was computed correctly for the
verifier to calculate s and be convinced of knowledge of K.1 Since the equation
being proven consists of a single multiplication gate, the resulting proof can be
comparatively short.

1 The verifier must also be convinced that the prover did not lie about the value of
L�

0(r). This is accomplished by having the prover commit to this value before the
challenge X is issued, so that the prover cannot choose the output of the PRF in a
way to help them.
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Algorithm 1. blLegRoast.BlindPk
Input: identity public key pk = (w1, w2, . . . , wL), epoch τ
Output: blinded public key pkτ = (w1,τ , w2,τ , . . . , wL,τ )
1: T ← KDF (pk||τ)
2: v1 ← L�

T (j1), . . . , vL ← L�
T (jL)

3: w1,τ ← w1 + v1 (mod �), . . . , wL,τ ← wL + vL (mod �)
4: return pkτ

LegRoast and PorcRoast [10] expand this idea into a signature scheme that
uses the Fiat–Shamir heuristic. Public keys consist of the output of L compu-
tations of the Legendre PRF, with inputs I = i1, . . . , iL, which can be public
parameters. We define the function F , which is parameterized by � and I, as
taking in the secret key K and returning L�

K(im) for m ∈ [L]. Hence, key gen-
eration consists of sampling a random secret key K ∈ F

×
p and computing the

public key F �
I(K) =

(L�
K(i1), . . . ,L�

K(iL)
)

.
The same homomorphic property that makes the Legendre symbol an

attractive option for zero knowledge proofs is also what allows for a
blinding mechanism. Hashing the nonce and public key to a value T ∈
F

×
p , we can calculate L computations of the Legendre PRF with sepa-

rate inputs j1, . . . , jL. The public key blinded under the value T becomes
(L�

K(i1) + L�
T (j1), . . . ,L�

K(iL) + L�
T (jL)

)

, where addition is performed mod-
ulo �. Due to the homomorphic property of L, this can also be written as
(L�

0((K + im) · (T + jm))
)

m∈[L]
.

As mentioned, LegRoast works by presenting parts of the public key mul-
tiplied by random values r(j) ∈ F

×
p , the results of which are denoted by

o(j). Then the signer proves knowledge of K by presenting a zero knowledge
proof that a random linear combination of B (K + I(j)) · r(j) − o(j) terms is
equal to 0; here the I(j) values are a random re-indexing of the i(j) values
in the public key. We call such a linear combination the error term, which
should be equal to zero. Once the coefficients {λ(j)} of the linear combina-
tion are defined, the error term is E =

∑B
j=1 λ(j)

(

(K + I(j)) · r(j) − oj
)

=

K ·
(
∑B

j=1 λ(j)r(j)
)

+
∑B

j=1 λ(j)(I(j)r(j) −o(j)). Since only the K and r(j) values
are secret, the only time we have a secret value multiplied by a secret value is in
the K ·∑ λ(j)r(j) term, so this can be verified to be 0 with only one multiplication
gate.

If we are using a blinded public key, then the corresponding error term is the
summation of λ(j)((K +I(j))(T +J (j))r(j) −o(j)) terms. Through rearranging in
a similar way to that of LegRoast, we get an error term that has three multipli-
cation gates as opposed to one. Due to the nature of the zero-knowledge proof
system used, the complete description of signing and verifying is quite large,
and so we move it to the full version. We focus on a description of the blinding
process.
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To complete the security assessment for blLegRoast, we still need to establish
(i) the independent blinding property, (ii) the signing with oracle reprogramming
property, and (iii) the existential unforgeability of the scheme. As the scheme
uses the Fiat–Shamir heuristic, signing with reprogramming is possible by choos-
ing the output of the hash function in advance and constructing the signature
accordingly. The existential unforgeability of the scheme follows from how find-
ing a K and T that satisfy the relations informed by the public key is still hard.
As these proofs require careful details of the scheme itself, we present them in
the full version, where the complete description of the scheme can be found.

7 Implementation Details

We implemented the blDilithium-QROM, the blCSI-FiSh, and blLegRoast
schemes; code for each is available at http://github.com/tedeaton/pq-key-
blinding. The code for blCSI-FiSh and blLegRoast is forked from the CSI-FiSh
and LegRoast code respectively [9,11] and is written primarily in C. The code
for blDilithium-QROM is written in Sage. Results can be seen in Fig. 1 in Sect. 1.
Our performance metrics indicate that the increase over the unblinded version
of schemes is quite reasonable.

blDilithium-QROM. For blDilithium-QROM, key generation and verification are
in fact faster since a fixed parameter A is used for all users and can be pre-
generated, rather than being pseudorandomly generated each time. The signing
procedure of blDilithium-QROM is three times slower than that of Dilithium-
QROM. We caution that, since our blDilithium-QROM implementation is writ-
ten in Sage, the implementation is non-optimized and results not be used an
absolute measure of performance, but can still give insight when compared to a
similar Sage implementation of non-blinded Dilithium-QROM.

blLegRoast. Blinded LegRoast’s performance is compelling both in absolute
terms (under 1 ms for key generation and blinding, under 20 ms for signing and
verifying) and comparative terms (no worse than 1.5× slower than unblinded
LegRoast).

blPicnic. We leave an implementation of blPicnic as future work. New advance-
ments to the zero knowledge protocol that Picnic uses are still being made [4],
so the performance of the scheme, and any blinded version, will change. We can
summarize what we expect to see in a blPicnic implementation however. Public
keys should be maintained at a straightforward 32 bytes, which is very attrac-
tive. We do not have exact calculations for the signature size, but the circuit
being used is twice as large (for two encryptions), so we would expect the size to
be roughly twice as large. In practice it may not be quite twice as large, however,
as some of the values sent are independent of the length of the circuit.

blCSI-FiSh. Our blCSI-FiSh implementation achieves sizes and performance
effectively matching that of CSI-FiSh-unMerkleized. The CSI-FiSh and blCSI-
FiSh implementations use the CSIDH-512 parameter set. This parameter set

http://github.com/tedeaton/pq-key-blinding
http://github.com/tedeaton/pq-key-blinding
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aims to achieve NIST level 1 security (comparable to the security of AES-128
against a quantum adversary), though whether it achieves this level of security
has been a matter of contention [24]. Unfortunately, increasing the parameters
in CSI-FiSh is a matter of great difficulty. It is essential to CSI-FiSh that the
structure of the class group be known. Calculating the order N of the group was
a subexponential computation that took the CSIDH authors 52 core years. If
the parameters are increased, then a new computation must happen, which will
almost certainly be infeasible. Quantum computers could calculate the structure
of the class group much more easily, so by the time CSI-FiSh is needed, there
may also be the ability to use it by computing the class group number.
Tor Integration. Recall that Tor uses identity public keys as the URL for .onion
addresses. This means that, unless the onion service lookup process changes,
users directly interact with an onion service’s public key, whether by clicking on it
as a link or copying and pasting it into a browser window. This motivates keeping
public keys as small as possible. For this purpose, blPicnic and blLegRoast are
the most attractive of the schemes considered. In the context of Tor, the process
for connecting to an onion service is quite lengthy (several seconds, usually), so
there may be less sensitivity to increased computation time.

8 Conclusion

We have considered the problem of building post-quantum key blinding schemes.
We have shown that the unlinkability property can be reduced to two properties
that are often relatively easy to establish: that blinding properly re-randomizes
the public key (independent blinding) and that the distribution of signatures is
only dependent on the public key (signing with oracle reprogramming). We have
shown four different ways that post-quantum key blinding can be achieved: with
supersingular isogenies via CSI-FiSh, lattices via Dilithium-QROM, with only
symmetric primitives via Picnic, and by a number theoretic construction via
LegRoast. We implemented blDilithium-QROM, blCSI-FiSh, and blLegRoast,
and saw small performance impact compared to the unblinded versions.

Each of these four schemes is built out of the Fiat–Shamir paradigm. We did
not consider any schemes built out of other ways to build signature schemes, such
as hash-based signatures like SPHINCS+ [8], or the hash-and-sign paradigm like
Rainbow [16] or Falcon [26].

It is difficult to envision a hash-based key blinding scheme. As public keys are
the root of a Merkle tree, the only simple operation to blind a public key would
be to hash it again. This could satisfy independent blinding, but not signing with
oracle reprogramming: hash-based signatures work by providing paths up to the
root, so the identity public key would be revealed on that path.

Hash-and-sign algorithms appear to have the opposite problem. A blinded
version would almost certainly satisfy the signing with oracle programming prop-
erty. If the trapdoored function is F , then by choosing a point x in the domain
of F and programming the hash function so that H(msg) = F (x), we obtain
a signature; this is how hash-and-sign signature schemes often prove security.
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But it is not clear how to justify the independent blinding property. The most
simple blinding mechanism would be to compose the trapdoor function F with
another mapping G based on the blinding factor. This requires the range of F to
match the domain of G, which makes it an interesting problem to be used with
a hash-and-sign scheme. As well, to ensure the independent blinding property,
we need that F ◦ G cannot be decomposed into the two mappings, which is a
more novel security assumption. Because RSA is a trapdoor permutation, the
structure of its mapping may allow for key-blinding, but it is not clear if any
post-quantum primitive immediately does.

For these reasons, signature schemes that follow the Fiat–Shamir paradigm
appear to admit key blinding much more readily. While homomorphic properties
over the key space are certainly useful for key blinding (as in Dilithium and CSI-
FiSh), they are not actually necessary, as the Picnic construction shows.
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Abstract. KEMTLS is a novel alternative to the Transport Layer Secu-
rity (TLS) handshake that integrates post-quantum algorithms. It uses
key encapsulation mechanisms (KEMs) for both confidentiality and
authentication, achieving post-quantum security while obviating the
need for expensive post-quantum signatures. The original KEMTLS paper
presents a security analysis, Rust implementation, and benchmarks over
emulated networks. In this work, we provide full Go implementations
of KEMTLS and other post-quantum handshake alternatives, describe
their integration into a distributed system, and provide performance
evaluations over real network conditions. We compare the standard (non-
quantum-resistant) TLS 1.3 handshake with three alternatives: one that
uses post-quantum signatures in combination with post-quantum KEMs
(PQTLS), one that uses KEMTLS, and one that is a reduced round trip
version of KEMTLS (KEMTLS-PDK). In addition to the performance
evaluations, we discuss how the design of these protocols impacts TLS
from an implementation and configuration perspective.

Keywords: Post-quantum cryptography · KEMTLS · Transport
Layer Security · Cryptographic engineering

1 Introduction

Transport Layer Security (TLS) is one of the most widely used protocols on the
Internet today [11,22], and provides confidentiality, integrity, and authenticity
to communications between two parties. The most recent version, TLS 1.3 [29],
uses ephemeral (elliptic curve) Diffie-Hellman (-EC-DH) to establish keys, which
are used to encrypt parts of the handshake and the traffic that will be sent in
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the connection. Authentication of the server and (optionally) of the client can
be achieved by using digital signatures. The corresponding public keys for those
signatures are transmitted during the handshake in digital certificates, which are
signed by a certificate authority (CA).

Given that TLS 1.3 is the most widely used protocol today to secure con-
nections [22], it is vital to start thinking about how to integrate post-quantum
cryptography into it to protect from the imminent threat of quantum comput-
ing. Advances in quantum computing are promising and motivate a swift move
to quantum-resistant algorithms. However, widespread adoption and protocol
standardization are slow processes that can take several years to reach consen-
sus among the parties1. In fact, the National Institute of Standards and Tech-
nologies (NIST) is organizing a multi-year competition to select post-quantum
algorithms for standardization [27]. Several proposals on how to integrate post-
quantum cryptography into TLS have already been suggested in the form of
specifications, implementations, and experiments.

Related Work. Many early experiments focused on transitional security to pro-
tect against adversaries capable of recording today’s communications with the
hope of decrypting them in the future with a quantum computer. They focus on
the key exchange phase of the handshake and add quantum-resistant confiden-
tiality. This latter property is achieved by replacing the (EC-)DH key exchange
by one based on a post-quantum Key Encapsulation Mechanism (KEM). How-
ever, this strategy does not address quantum-resistant authentication.

In 2016, a post-quantum experimentation project was initiated by Google [7],
and was later expanded to a large-network scale in collaboration with Cloudflare
in 2019 [21,24]. In the latter experiment, connections made from experimental ver-
sions of the Chrome browser to Cloudflare’s edge servers used post-quantum key
exchange algorithms in the TLS 1.3 handshake to secure connections and provide
quantum-resistant confidentiality. The handshake used a “hybrid” key exchange
protocol that combined post-quantum key exchange algorithms with traditional
algorithms in order to safely use experimental cryptography without sacrificing
any security guarantees. The experiment included two hybrid post-quantum key
exchange protocols: X25519 [5] with the lattice-based KEM NTRU-HRSS [14] and
X25519 with the supersingular-isogeny-based KEM SIKE [16]. These experiments
focused on post-quantum confidentiality, but still relied on traditional authenti-
cation using non-quantum-resistant digital signature algorithms.

From a specification level, these works on quantum-resistant confidential-
ity mechanisms have taken priority [8,13,19,31,32,37,42], without much actual
integration into real-world systems.

While these previous experiments provided valuable insights about the per-
formance impact of post-quantum cryptography in real networks, post-quantum
confidentiality is only one part of the picture: full post-quantum security also
requires post-quantum authentication. In this sense, there are some research
efforts towards this goal by using post-quantum signatures. But, most post-
quantum signature schemes participating in the NIST competition have large
1 It took, for example, 5 years to standardize TLS 1.3 [39].
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public keys or signatures, and/or have significant performance considerations in
their cryptographic operations. Sikeridis et al. [35] suggest that only the lattice-
based candidates Dilithium [25] and Falcon [28] are viable contenders to be used
in the TLS handshake, taking into account the trade-off between lengthy signa-
tures and computationally heavy cryptographic operations.

Post-quantum KEM operations are, in practice, more efficient than post-
quantum signature operations. A new approach, called KEMTLS [33], achieves
authentication using KEMs instead of relying on digital signatures. This tech-
nique consists of encapsulating under the long-term KEM public key advertised
in the peer’s certificate, obtaining a shared secret in the process. Only the peer
that has the private key corresponding to the public key in the advertised cer-
tificate can decapsulate the shared secret and decrypt any encrypted data sent
under that key. Thus, KEMTLS uses post-quantum KEMs for both confidentiality
and authentication to achieve full post-quantum security. A tweaked version of
KEMTLS, called KEMTLS-PDK [34], achieves the same properties while reducing
the number of round-trips needed.

Contributions. The focus of this paper is analyzing how the integration of
post-quantum cryptography impacts the TLS 1.3 handshake from a performance,
implementation, and configuration perspective. We developed a framework for
establishing TLS 1.3 handshakes using post-quantum algorithms on a real-world
system: a distributed network that is subject to actual Internet traffic conditions
and that spans two continents. We examined several handshake configurations:
one that uses KEMs for confidentiality and post-quantum signature schemes
for authentication, which we called PQTLS; and we evaluate the KEMTLS pro-
tocol and its reduced round trip version called KEMTLS-PDK. We measured
the latency of these handshakes and compare them against the baseline TLS 1.3
handshake by considering both server-only and mutual authentication. Addition-
ally, we touch upon the engineering process of implementing all these protocols
in the Go language, and report some constraints found in the design of KEMTLS.
Our implementations are publicly available for further experimentation.

Organization. In Sect. 2, we describe the integration of post-quantum algo-
rithms into the TLS 1.3 handshake. Section 3 covers details of our implemen-
tation and our integration into the testbed network used for experimentation.
In Sect. 4, we discuss our experimental methodology and measurement results,
and finally in Sect. 5, we state our conclusions.

2 Post-quantum Cryptography in TLS 1.3

We first give an overview of the TLS 1.3 handshake, and then discuss proposed
specifications, implementations, and experiments for integrating the PQTLS,
KEMTLS and KEMTLS-PDK post-quantum handshakes.

2.1 Reviewing the TLS 1.3 Protocol

Standardized in 2018, the TLS 1.3 protocol emerged in response to dissatisfaction
with the outdated design of the TLS 1.2 handshake, its two-round-trip overhead,
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and the increasing number of practical attacks on older versions of TLS [1–3,6].
The pressure to increase efficiency also motivated the creation of alternative
protocols such as the QUIC protocol [15]. In light of this, the main improvements
of TLS 1.3 are: reducing the handshake’s latency, encrypting as many messages as
possible of the handshake itself, improving resilience to cross-protocol attacks,
and removing legacy features [39]. It achieves a one-round-trip time (1-RTT)
handshake and even a 0-RTT handshake through a resumption mode.

The default2 mode of the protocol uses certificates for authentication and
(EC-)DH for shared secret generation. In this mode, the handshake starts with
the client sending a ClientHello (CH) message to the server. This message
advertises the supported (EC-)DH groups and the ephemeral (EC-)DH keyshares
offered by the client and specified in the supported_groups and key_shares
extensions, respectively. The CH message also advertises the signature algorithms
supported in the signature_algorithms extension. It also contains a nonce and
a list of supported symmetric-key algorithms (ciphersuites).

The server processes the ClientHello message and chooses the appropriate
cryptographic parameters to be used in the connection. If (EC-)DH key exchange
is in use (meaning the client sent the key_shares extension), the server sends a
ServerHello (SH) message containing a key_share extension with the server’s
(EC-)DH key corresponding to one of the key_shares advertised by the client.
The SHmessage also contains a server-generated nonce and the ciphersuite chosen.

An ephemeral shared secret is then computed at both ends (the client com-
putes it when it receives SH). After this point, all subsequent handshake messages
are encrypted using keys derived from this secret.

The server then sends a certificate chain (ServerCertificate message) and a
message that contains a proof that the server possesses the private key correspond-
ing to the public key advertised in its leaf certificate. This proof is a signature over
the handshake transcript and it is sent in the ServerCertificateVerify mes-
sage. The advertised signature_algorithms in CH are used to decide which algo-
rithms can be used to generate this signature. The goal of this message is to pro-
vide proof of possession of the server’s private key, which is essential for achieving
authentication. The server also sends the ServerFinished message that provides
integrity of the handshake up to this point. It contains a message authentication
code (MAC) over the entire transcript providing key confirmation and binding the
server’s identity to any computed keys.

Optionally, the server can send a CertificateRequest message, prior to
sending its ServerCertificate message, requesting a certificate from the client
for authentication. At this point, the server can immediately send applica-
tion data to the unauthenticated client. Upon receiving the server’s mes-
sages, the client verifies the signature of the ServerCertificateVerify mes-
sage and the MAC of the ServerFinished message. If requested, the client
must respond with their own authentication messages, ClientCertificate and
ClientCertificateVerify, to achieve mutual authentication. Finally, the client

2 Advanced modes of the TLS 1.3 handshake can also use a pre-shared key (PSK)
exchange, PSK with ephemeral key exchange, and password-based authentication.
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must confirm their view of the handshake by sending a MAC over the handshake
transcript in the ClientFinished message.

It is only after this process that the handshake is completed, and the client
and server can derive the keying material required by the record layer to exchange
application data protected with authenticated encryption.

2.2 PQTLS: Signed Post-quantum TLS 1.3

A variety of specifications, implementations and experiments explain how to inte-
grate post-quantum cryptography into the TLS 1.3 handshake. Regarding the
post-quantum key exchange phase of TLS 1.3 (without addressing post-quantum
authentication), several Internet-Drafts are proposed [13,19,31,37,42], as well as
some experimental demonstrations [9,21,23,24]. On the other hand, fewer works
have focused on post-quantum authentication. In [18,35], the authors recom-
mended that the adoption of at least two post-quantum signature algorithms is
viable for the TLS 1.3 handshake.

There are no theoretical obstacles for transitioning TLS 1.3 to a post-
quantum world. One can use post-quantum signature algorithms for authen-
tication and the (EC-)DH key exchange can be replaced by a post-quantum
KEM; we call this approach PQTLS.

In practice, however, this replacement is not so simple. CAs must adapt their
software to include post-quantum signatures, and, historically, the Web Public
Key Infrastructure (PKI) and other X.509 PKIs have limited which algorithms
can be used. It could take a long time until new algorithms are widely deployed.
These changes may occur in the future but, for the purpose of experimentation
and rapid deployment, these issues become limitations.

We propose a practical approach for overcoming this problem. Specifically, we
rely on a delegation mechanism for credentials. A Delegated credential (DC) is an
authenticated credential valid for a short period (at most 7 days) that can be used
to decouple the handshake authentication algorithm from the authentication
algorithms used in the certificate chain: a delegated credential can contain an
algorithm to be used in the handshake and, in turn, it is cryptographically
bound to the end-entity certificate as it is authenticated by it. The process of
authenticating the DC is executed at the TLS stack level.

Using DCs in itself does not give us full post-quantum security, but it allows
us to support post-quantum authentication algorithms that are not supported
by existing CAs. An existing certificate is used to authenticate this delegated
credential (by signing in a classical way in our experiments), and the adver-
tised algorithm in the DC is used to authenticate the handshake.3 The Internet

3 Authentication is as strong as its weakest link, so until the entire certificate chain has
post-quantum security we do not have a fully post-quantum authenticated protocol.
However, the approach suffices for the purpose of our experiments.
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Engineering Task Force (IETF) draft describing this technique, “Delegated Cre-
dentials for TLS” [4], is on track for standardization.4

Using delegated credentials comes with other advantages for our cases. Unlike
a regular certificate, a delegated credential is smaller and has no other extensions,
such as revocation lists and certificate statuses, which makes it a perfect fit for
experiments where the size of parameters is important. Also, DCs are validated
only at the TLS stack level, which reduces the number of codebases or systems
where we needed to roll out new algorithms.

If full post-quantum security is wanted, the whole certificate chain will need
to contain post-quantum algorithms. A peer wanting to authenticate another
peer with its certificate (and the public key in it) in the TLS 1.3 handshake
requires confidence that the associated private key is owned by the certificate
owner’s peer. This confidence is obtained through the use of public key certifi-
cates that bind these values to an identity. A CA signs certificates after asserting
proof of possession of the private key. If the peer does not hold the public key of
the CA that signed the other peer’s certificate, then it might need an additional
certificate to obtain that public key. These certificates are called ’intermediates’.

For a client to authenticate a server it uses this chain of certificates: a root
CA’s one, followed by at least one intermediate CA certificate, and then the leaf
certificate of the server. Certificates can be cached, pre-installed or suppressed,
which means that less data needs to be transmitted during the handshake; but
these mechanisms are not widely deployed. In turn what this means is that
for a full post-quantum TLS 1.3 handshake, peers will need to transmit the
whole certificate chain and verify all their authentication proofs (at least three
signatures or other proofs of authentication). If a DC is used in this scenario,
data transmitted is increased, as well of the number of authentication operations.

2.3 KEMTLS: KEMs Everywhere

Using post-quantum signatures for authentication comes with another challenge.
The proposed signature schemes participating in the NIST post-quantum com-
petition have public keys or signatures much larger than their classical coun-
terparts. For most algorithms, this size increase for post-quantum signatures is
bigger than for post-quantum KEMs. The large size of cryptographic material
can become an issue in the PQTLS scenario.

KEMTLS suggests the use of KEMs as the primary asymmetric building block
for both the key exchange and authentication phases of the TLS 1.3 handshake.
Its goal is to achieve a TLS 1.3 handshake that provides full post-quantum
security (confidentiality and authentication) in an efficient way. KEMs instead
of signatures are used for authentication because the KEM’s public keys and
ciphertexts are smaller.

4 While it is stated in the draft that the DC signature algorithm “is expected to be the
same as the sender’s CertificateVerify.algorithm”, this is not a hard requirement,
and in KEMTLS the Certificate Verify messages are not sent.
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Like in PQTLS, the client advertises their support of post-quantum KEMs as
part of the supported_groups extension, and their supported ephemeral KEM
public keys as part of their key_shares extension. Support for KEMTLS authen-
tication, via KEM leaf certificates or DCs with KEMs, is indicated by including
KEMs in the signature_algorithms extension.

The server, in turn, determines the appropriate cryptographic parameters to
be used in the connection, and replies with a ciphertext: an encapsulation against
one of the advertised ephemeral KEM public keys of the ClientHello message.
The encapsulation generates a second output: an unauthenticated ephemeral
shared secret. From this point onward, all subsequent messages will be encrypted
under the secret, after applying the appropriate key schedule operations. The
server also sends its certificate chain (ServerCertificate message): the leaf
certificate (or DC) should advertise a post-quantum KEM public key. Optionally,
the server can send a CertificateRequest message, which is sent prior to the
ServerCertificate message, asking the client to authenticate.

Contrary to TLS 1.3, the server cannot provide explicit proof of possession
(using digital signatures) of the private key corresponding to the public key
advertised as part of the leaf certificate (or DC). Instead, in KEMTLS, the client
must receive the ServerCertificate message first, and reply with the encap-
sulation of the public key advertised in it. This encapsulation (a ciphertext) is
sent as part of a new TLS message called ClientKEMCiphertext. The KEMTLS
handshake diverges from the TLS 1.3 standard, as the server must wait for this
message adding another flight or half round-trip to the protocol.

The second output of the client key encapsulation is an implicitly authenti-
cated shared secret. This secret is mixed into the key schedule operations and
will afterwards be used to encrypt all subsequent messages. Only the intended
server can decrypt any messages encrypted under this key. By being able to do
so, the server proves possession of the private key corresponding to the public key
in it’s certificate. If the server did not request client authentication (server-only
authentication), the client can immediately send their ClientFinished message
in this flight, which contains a MAC over the entire transcript. The client can
also send at this point application data, which is implicitly authenticated, and
has slightly weaker downgrade resilience and forward secrecy compared to when
digital signatures are used.

When receiving the ClientKEMCiphertext message and decapsulating their
parameters, the server can send their confirmation message ServerFinished,
authenticating the handshake transcript. In the same flight, the server can
now send application data encrypted by the shared secret of the decapsulation
mechanism. Once the client receives and verifies the ServerFinished message,
the server is explicitly authenticated, and the handshake has full downgrade
resilience and strong forward secrecy.

Ciphersuite Negotiation and Middlebox Compatibility. TLS 1.3 allows
clients and servers to negotiate the used algorithms. For key exchange, the
supported algorithms are advertised in the supported_groups extension. For
authentication, the mandatory signature_algorithms extension contains a list
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of algorithms that can be used by the peer to pick the appropriate certificate
advertised by the corresponding peer. Post-quantum KEMs can simply be added
to these lists and negotiated accordingly.

Any compliant TLS 1.3 implementation that does not understand or wish
to negotiate KEMTLS will simply ignore any advertised post-quantum KEMs
for the key exchange, and will not send a leaf certificate (or DC) with a KEM
public key. As all messages following ServerHello are encrypted, changes in the
protocol should be opaque to any non-decryption traffic interception; otherwise,
a barrier on its adoption will be observed, similar to the “Middlebox” issues
that arose when moving from TLS 1.2 to TLS 1.3 [20,38]. Issues may still arise
if traffic interception servers enforce stricter constraints on key sizes than those
required by the TLS 1.3 standard; these kinds of issues are harder to control.

Mutual Authentication. TLS 1.3 requires that “the client’s identity should
be protected against both passive and active attackers” [29, Sec. E.1]. Thus, both
TLS 1.3 and KEMTLS cannot send the client’s certificate (its identity) before
the server has been authenticated. In TLS 1.3, the client can authenticate to the
server, after receiving a request to do so from it, by providing its certificate and
a signature over the handshake transcript.

In the sketch of client authentication in KEMTLS [33, App. C], upon request
from the server, the client responds with the ClientCertificate message, where
the leaf certificate (or DC) must contain a post-quantum KEM public key. This
message must be sent in the same flight as when the ClientKEMCiphertext mes-
sage is sent (but after it). In turn, the server sends the ServerKEMCiphertext
message containing an encapsulation against the client certificate’s KEM public
key after processing the ClientKEMCiphertext and ClientCertificate mes-
sages. The client must wait for a ServerKEMCiphertext message from the server
prior to sending their ClientFinished or any other message. Therefore, the
client proves their identity by showing that both sides can arrive to the same
shared key: the output of the encapsulation of the client’s public key sent in the
leaf certificate (or DC). Finally, once the server receives the ClientFinished, it
can send ServerFinished, which achieves full downgrade resilience and forward
secrecy.

The straightforward addition of these messages adds a round-trip to the
handshake, as they can not be sent until the server has been authenticated. This
extra round does not occur in the TLS 1.3 handshake because an explicit proof
of authentication (the signature) is sent in the same flight as the certificate.

For a practical instantiation for our experiments, we use classically signed
DCs that wrap KEM public keys to provide certified KEM keys.

2.4 KEMTLS-PDK: Reducing Round Trips

KEMTLS-PDK is a technique that relies on pre-distributed keys and has the
goal of improving KEMTLS round-trips. It assumes the client knows the server’s
public key beforehand. This is not an uncommon situation as, for example,
web browsers cache certificates of frequently accessed servers, mobile apps pin
certificates, or server certificates are pre-distributed through DNS [17].
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During the handshake, servers can authenticate earlier to the client, when
KEM authentication keys are pre-distributed. We implement this mechanism
using the TLS cached information extension5 [30], so the client sends an encap-
sulation against the server’s public KEM key in the first flight (alongside the
ClientHello message: either as a separate message or as an extension for it).
This allows the server to be explicitly authenticated by sending ServerFinished
in the first message to the client and to immediately send application data.

On the other hand, the situation is more complex for achieving earlier client
authentication since the client has to proactively know that the server will ask
for its authentication. Nonetheless, this assumption does occur in certain appli-
cations such as in virtual private networks (VPN), where the client could send
the certificate as early as possible.

Recall that for privacy reasons, TLS 1.3 requires that the server must be
authenticated prior to transmitting the client certificate, and that this certificate
must be sent encrypted. For the former requirement, KEMTLS-PDK assumes the
client knows the server’s certificate so it is sent after the ClientKEMCiphertext
message in the first flight (as a separate message from the ClientHello one). For
the latter requirement, the client certificate is encrypted under the shared secret
resulting from the encapsulation mechanism used for ClientKEMCiphertext.
Thus, it is possible to remove a full round-trip from KEMTLS with mutual
authentication.

Early client authentication can be secured by caching a CertificateRequest
message using the TLS cached information extension. The client certificate will
then contain a key with an authentication algorithm that is likely known to be
supported by the server. However, further investigation is needed for coming
with a mechanism to encrypt the client’s certificate.

3 Implementation Details

3.1 Implementation in Go

Go is a high-level programming language with support for the TLS protocol
(including version 1.3). Its standard library is open, which allowed us to made
modifications to its internals without requiring third-party libraries. While Go
is well-known for developing web server applications, it also has mechanisms to
interact with low-level features of the computer architecture. This is particularly
useful for accessing architecture-specific capabilities, which are only available
through assembler code.

Some implementations of post-quantum algorithms are available. The teams
currently contending at the ongoing NIST’s post-quantum competition provide
implementations in C/C++. The Open-Quantum Safe [36] project wraps C imple-
mentations to run in Go through the cgo programming interface. However, per-
formance degradation in it can be observed due to this wrapping procedure. The
CIRCL [10] library implements a number of post-quantum algorithms natively in

5 This extension is only available for TLS 1.2, so we adapted it to be used in TLS 1.3.
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Go, including SIDH and SIKE [16]. As part of our contributions, we integrate to
the CIRCL library AVX2-optimized implementations of the Dilithium signature
scheme (round 2) and the Kyber key encapsulation mechanism.

Go provides a clean implementation of TLS 1.3. However, the implementation
is conservative in regards to the type of extensions and algorithms that it sup-
ports. Changing the TLS 1.3 implementation to include delegated credentials
and PQTLS required including some extensions and adding certain algorithm
identifiers. It also meant adding a way for generating and validating delegated
credentials, as well as adding the ability to include the delegated credentials
X.509 extension to generated certificates. We also added the cached information
extension [30] and modified it to work with TLS 1.3 for KEMTLS-PDK.

Integrating KEMTLS and KEMTLS-PDK was more challenging. Doing so
required the interruption of the handshake’s flow depending on whether there
is cached information, whether it is server-only authentication, or whether it is
mutual authentication. As noted, the flow of messages in KEMTLS and KEMTLS-
PDK is different depending on the authentication modes: server-only, mutual or
with cached information. This differs from the standard TLS 1.3 handshake that
follows the same flow of messages regardless if server-only or mutual authenti-
cation is performed. These differences were an important lesson learned during
our implementation as it was often a source of errors.

We made available all of these modifications in a fork of Go at https://github.
com/cloudflare/go/tree/cf-pq-kemtls. This code integrates CIRCL and can be
used as a replacement of the standard Go to compile other Go programs. Hence,
anyone wanting to use post-quantum algorithms or the new handshake protocols
can benefit from our code by compiling programs with our modified Go.

3.2 A Testbed Network

To test and measure TLS connections, we looked for a service that operates under
common Internet conditions and spans across different geographical locations.
We chose Drand [40], a distributed randomness beacon written in Go, as the
target of our experimentation. In this network, Drand servers are linked so they
can collectively produce publicly-verifiable random numbers at fixed intervals of
time. A threshold signature scheme prevents collusion or biasing the generation
of numbers. Nodes in the network communicate with one another using a gRPC
protocol [26] with TLS authentication. Additionally, the Drand service exposes
public randomness through an HTTPS endpoint.

Changes in the Drand code base are minimal. We needed to provide and
configure a certificate with the DCs extension enabled for servers and clients.
We also needed to state which protocol will be initiated (KEMTLS or PQTLS)
by stating so at the TLS configuration level. If KEMTLS-PDK wanted to be
used, a “regular” KEMTLS handshake is first run, information is cached (the
ServerCertificate message), and then cached information is used in a fresh
KEMTLS-PDK handshake by configuring it at the TLS configuration level. We
added those configuration options for ease of experimentation: in a more realistic

https://github.com/cloudflare/go/tree/cf-pq-kemtls
https://github.com/cloudflare/go/tree/cf-pq-kemtls
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scenario stating which key exchange and signature algorithms are supported
should be enough to trigger the appropriate protocol execution.

At run time, fresh delegated credentials are generated each time that a
request arrives. However, these credentials can be further cached and stored so
they can be reused between connections. A mechanism that routinely checks the
validity of these credentials can also be implemented. This shows that delegated
credentials can be easily implemented and used without needing to constantly
modify certificate storage or retrieval. It is worth noting that adding delegated
credentials increases the number of validations that need to be executed: the
certificate has to be validated, the delegated credential has to be validated and
the handshake has to be validated.

4 Measurement Experiment and Discussion

The goal of our experiment is to analyze the effects on the TLS handshake when
using post-quantum algorithms. To do that, we measure the time it takes for
a TLS 1.3 handshake using certificate-based authentication to complete, and
compare all experiments to this standard measure.

4.1 Experiment Setup

We build a Drand cluster with one leader node and three worker peers. Each node
independently ran in a data center located in Portland, USA. The connection of
each internal node and the external HTTPS interface are configured to support
post-quantum handshake protocols.

A Drand client retrieves randomness from the Drand network. We opted for
locating the client far from the Drand network itself, so it is located in Lisbon,
Portugal. With this setup our experiment faces the same traffic conditions found
in transatlantic connections. Source codes of the client program are available at
https://github.com/claucece/KEMTLS-local-measurements.

We choose a combination of cryptographic algorithms for setting up the fol-
lowing handshake configurations:

TLS 1.3 handshake using Ed25519 certificates for authentication (baseline).
TLS 1.3+DC handshake with Ed25519 certificate and delegated credentials

either using Ed25519 or Ed448 algorithms for authentication.
PQTLS handshake with SIKEp434 and Kyber512 for key exchange, and hybrid

signatures using round-two Dilithium mode 3 and mode 4, respectively, paired
with Ed25519 and Ed448 for authentication (the authentication algorithms
are advertised in DCs).

KEMTLS handshake with SIKEp434 and Kyber512 for both key exchange and
authentication (the authentication algorithms are advertised in DCs).

KEMTLS-PDK handshake using the same configuration as KEMTLS (server
authentication only).

https://github.com/claucece/KEMTLS-local-measurements
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4.2 Measurements

For each client to server connection, we measured the time elapsed until comple-
tion of the TLS handshake, that is until the client can send encrypted application
data, for each different handshake configuration. We also measured the elapsed
time for each flight of the handshake, i.e., the time elapsed that a peer (server
or client) waits for receiving messages from their counterpart. We initiated two
timers: one for the client (which started when the CH message was constructed
and sent) and one for the server (which started when the CH message is received).
Therefore, the first and second flight, as seen in the tables, do not include net-
work latency, as the timer is started prior to the message being sent or just
when it is received, respectively. Note that the round trip times (RTT) from the
third flight onward are affected by the conditions of the state of the network.
We tested the scenarios over an average-latency network.

To reduce the effects caused by the state of the network, the Drand client
was instructed to fetch randomness from the Drand server consecutively dur-
ing one hour. The total number of connections during this period amounts to
approximately 5 × 103 connections. From them, we calculated the average time
of the connections and report the timings in Table 1 and Table 2. We also mea-
sured the total average time until the handshake is completed (note that these
times include the sending and receiving of encrypted application data). These
measures are listed in Table 3 and Table 4.

In server-only authentication, the handshake performs the following flights:

1st (C ⇒ S) Sending ClientHello for all cases.
KEMTLS-PDK: this message includes the ClientKEMCiphertext message,
and a hash of the cached server’s ServerCertificate message.
2nd (C ⇐ S) Processing of ClientHello.
Standard and PQTLS: reply with the ServerHello, ServerCertificate,
ServerCertificateVerify and ServerFinished messages.
KEMTLS: reply with the ServerHello and ServerCertificate.
KEMTLS-PDK: reply with the ServerHello and ServerFinished messages.
3rd (C ⇒ S) Processing of received messages based on the protocol.
Standard and PQTLS: processing of ServerHello, ServerCertificate,
ServerCertificateVerify and ServerFinished messages.
Reply with ClientFinished and immediate sending of encrypted application
data.
KEMTLS: processing of ServerHello and ServerCertificate. Reply with
ClientKEMCiphertext and ClientFinished messages and immediate send-
ing of encrypted application data.
KEMTLS-PDK: processing of ServerHello and ServerFinished messages.
Reply with ClientFinished and immediate sending of encrypted application
data.
4th (C ⇐ S) Processing of received messages based on the protocol.
Standard and PQTLS: processing of ClientFinished message and of
encrypted application data.
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KEMTLS: processing of ClientKEMCiphertext and ClientFinished mes-
sages. Reply with ServerFinished message.
KEMTLS-PDK: processing of ClientFinished message and of encrypted
application data.

In mutual authentication, the handshake performs the following flights:

1st (C ⇒ S) Sending ClientHello for all cases.
2nd (C ⇐ S) Processing of ClientHello.
Standard and PQTLS: reply with the ServerHello, ServerCertificate,
ServerCertificateVerify, CertificateRequest messages followed by the
ServerFinished message.
KEMTLS: reply with the ServerHello, the ServerCertificate and the
CertificateRequest messages.
3rd (C ⇒ S) Processing of received messages based on the protocol.
Standard and PQTLS: processing of ServerHello, ServerCertificate,
ServerCertificateVerify, CertificateRequest messages followed by the
ServerFinished message.
Reply with the ClientCertificate, the ClientCertificateVerify and the
ClientFinished messages, and immediate sending of encrypted application
data.
KEMTLS: processing of the ServerHello, the ServerCertificate and the
CertificateRequest messages.
Reply with ClientKEMCiphertext and ClientCertificate messages.
4th (C ⇐ S) Processing of received messages based on the protocol.
Standard and PQTLS: processing of the received ClientCertificate,
ClientCertificateVerify and ClientFinished messages, and received
encrypted application data.
KEMTLS: processing of ClientKEMCiphertext and ClientCertificate
messages. Reply with ServerKEMCiphertext message.
5th (C ⇒ S) This case only happens in KEMTLS. It includes the processing of
ServerKEMCiphertext message and sending of the ClientFinished message.
Immediate sending of encrypted application data.
(C ⇐ S) This case only happens in KEMTLS. It includes the process-
ing of ClientFinished message and any application data. Sending of the
ServerFinished message.

4.3 Discussion

As noted, we initiated two timers for our measurements: one for the client (which
started when the CH message was constructed and sent) and one for the server
(which started when the CH message is received). This is the reason why the first
and second flights see small timings as they do not take into account network
latency. Starting from the third flight, the impact of network latency can be
seen. An important point to note as well is that encrypted application data is
sent already on the 3rd flight of all experiments except for KEMTLS for mutual



Implementing and Measuring KEMTLS 101

Table 1. Average time in 10−3 s of messages for server-only authentication. Note that
timings are measured per-client and per-server: each one has its own timer. The ‘KEX’
label refers to the Key Exchange and the ‘Auth’ label refers to authentication.

Handshake KEX Auth Handshake flight

1st 2nd 3rd 4th

TLS 1.3 X25519 Ed25519 0.227 0.436 123.838 180.202

TLS 1.3+DC X25519 Ed25519 0.243 0.489 156.954 186.868

TLS 1.3+DC X25519 Ed448 0.242 0.907 165.395 183.124

PQTLS Kyber512 Dilithium3 0.350 0.701 173.814 198.256

PQTLS SIKEp434 Dilithium4 2.533 4.856 441.732 212.924

KEMTLS Kyber512 Kyber512 0.412 0.217 157.123 187.147

KEMTLS SIKEp434 SIKEp434 3.058 7.215 352.840 291.592

KEMTLS-PDK Kyber512 Kyber512 0.623 0.327 181.132 189.442

KEMTLS-PDK SIKEp434 SIKEp434 9.573 12.507 396.818 287.550

authentication (as the client has to wait two flights in order to be able to send
application data), which can increase the timing numbers.

When adding delegated credentials to the TLS 1.3 handshake, a peer receiv-
ing a delegated credential must validate that it was signed by the appropriate
end-entity certificate (which is sent as part of the handshake) and must validate
the certificate chain, as well. In our measurements, we observed a short increase
in the latency of the flights when DCs are added; but the impact is almost
negligible (specially, in the second flight when the DCs are received).

This is not the case when adding either post-quantum signatures or post-
quantum KEMs for certain algorithms. The first observable difference appears
in the ClientHello in both server-only authentication and mutual authenti-
cation: this message advertises both classic and post-quantum key exchange
algorithms because this could be the realistic scenario for systems when tran-
sitioning to post-quantum cryptography. The timings increase specially when
using SIKEp434 as a KEM in both KEMTLS and PQTLS, because its KEM
decapsulation time takes in average 8.92 ms (when using the implementation
of the CIRCL library). The predominant factor that slows down PQTLS is the
number of signature validations; but this is similar (when using Kyber512) to
using Ed448.

In regards to KEMTLS, its biggest drawback is the number of round-trips that
it has to perform, specially when performing mutual authentication. The KEM
cryptographic operations do not seem to heavily impact the connection if the
underlying algorithm operations are fast. An ideal scenario for post-quantum
cryptography is the use of KEMs for both confidentiality and authentication
provided that the number of round trips do not increase, which is the case
of KEMTLS-PDK for server authentication. This prediction matches with the
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Table 2. Average time in 10−3 s of messages for mutual authentication. Note that
timings are measured per-client and per-server: each one has its own timer. The ‘KEX’
label refers to the Key Exchange and the ‘Auth’ label refers to authentication.

Handshake KEX Auth Handshake flight

1st 2nd 3rd 4th 5th 6th

TLS 1.3 X25519 Ed25519 0.113 0.420 111.358 121.349

TLS 1.3+DC X25519 Ed25519 0.148 0.546 129.638 178.90

TLS 1.3+DC X25519 Ed448 0.154 0.221 137.131 192.283

PQTLS Kyber512 Dilithium3 0.125 1.326 231.232 191.187

PQTLS SIKEp434 Dilithium4 3.324 7.294 459.888 216.077

KEMTLS Kyber512 Kyber512 0.244 0.303 231.752 175.490 375.202 346.308

KEMTLS SIKEp434 SIKEp434 2.450 6.206 431.445 228.414 510.591 436.301

timings in tables: note that the best scenario is KEMTLS-PDK for server-only
authentication, specifically, when it is used with Kyber512.

Let’s look now at the measurements in regards to the kind of peer authenti-
cation they perform:

In the case of server-only authentication, KEMTLS performs faster than
PQTLS and, in both cases, a client can immediately send application data on
the third flight (when the client sends its ClientFinished). Nevertheless, for
KEMTLS the server still has to wait for the ClientFinished to arrive and to
send their ServerFinished in turn, in order to be able to send application data.
Sending of the ServerFinished completes the handshake for the server, and
provides full downgrade-resilience and forward-secrecy for the whole connection.
However, this extra half-round trip forces the server to wait for a time before
sending application data, which could not be an ideal scenario for real-world
systems. In contrast, the client can send application data after sending their
ClientFinished (as noted in the measurements) but it has weaker security
protections (weak downgrade-resilience and forward-secrecy), and, therefore, a
client might also wait until receiving the ServerFinished message to send its
data in turn. This adds an extra round-trip which is not noted in the measure-
ments. If we look at Fig. 1, we see that the best protocol to use is KEMTLS,
if we don’t take into consideration that application data sent at that point has
weaker security properties. The ideal case is using KEMTLS-PDK which allows
the sending of application data much earlier and with the stronger notions of
the security properties.

For mutual authentication, KEMTLS has the biggest impact on the hand-
shake completion timings, as an extra flight is needed prior to be able to send
encrypted application data, as seen in Fig. 1. SIKEp434, on average, increases
the handshake timings by approximate 10ms compared with Kyber512 for the
verification of the peer’s Certificate in both cases. For this reason, the PQTLS
completion time is also slowed down when using SIKEp434 even without the
extra round-trip addition. Although, we do not provide timings for the KEMTLS-
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Fig. 1. Comparison of: on the left, server authentication flows for the 3rd, and 4th
flights; on the right, mutual authentication flows for the 5th and 6th flights. Both
using Kyber512.

Table 3. Total average handshake completion time (in 10−3 s) for server-only authen-
tication.

Handshake Key Exchange Authentication Handshake time

Server Client

TLS 1.3 X25519 Ed25519 187.296 552.518

TLS 1.3+DC X25519 Ed25519 197.568 578.097

TLS 1.3+DC X25519 Ed448 220.576 614.366

PQTLS Kyber512 Dilithium3 199.025 556.203

PQTLS SIKEp434 Dilithium4 219.401 634.546

KEMTLS Kyber512 Kyber512 200.237 792.168

KEMTLS SIKEp434 SIKEp434 277.304 901.292

KEMTLS-PDK Kyber512 Kyber512 209.872 583.582

KEMTLS-PDK SIKEp434 SIKEp434 200.126 561.068

PDK handshake with mutual authentication, our timings can provide an insight
about the cost of the operations and the relevance of the algorithm selection.

4.4 Optimizations

The cost of transmitting post-quantum parameters is tangible in our measure-
ments. These costs can be further optimized by using a form of certificate com-
pression [12] or of suppression of the intermediate certificates [41]. Still, the costs
of post-quantum operations needed remains.
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Table 4. Total average handshake completion time (in 10−3 s) for mutual
authentication.

Handshake Key exchange Authentication Handshake time

Server Client

TLS 1.3 X25519 Ed25519 190.587 592.801

TLS 1.3+DC X25519 Ed25519 179.653 549.760

TLS 1.3+DC X25519 Ed448 222.902 541.695

PQTLS Kyber512 Dilithium3 191.939 542.599

PQTLS SIKEp434 Dilithium4 223.470 609.646

KEMTLS Kyber512 Kyber512 352.448 881.928

KEMTLS SIKEp434 SIKEp434 571.057 1096.708

5 Conclusions

Our experimental results are the first ones that integrate different post-quantum
handshake alternatives to the TLS 1.3 handshake into a real-world system. These
results have shown us how post-quantum algorithms can impact the handshake
completion time, and, therefore, impact the establishment of real-world con-
nections. In general, on the reliable network that we used, the different post-
quantum TLS 1.3 handshake alternatives do not have a handshake completion
time that is ostensibly different to a regular TLS 1.3 handshake. The only some-
what exception to this is KEMTLS, as the extra half or full round trip that is
added does increase the completion time. For this reason, it is vital to think
more in depth around KEMTLS-PDK, as it could reduce the completion time.

In this paper, we dive into the implementation of post-quantum algorithms in
native Go language, adapt different handshake configurations and modify TLS
extensions, and we explore the deployment of a test bed distributed network
for enabling measurements. As a result, we developed a measurement frame-
work that allows to perform transatlantic post-quantum TLS 1.3 connections
for retrieving random numbers from a Drand network.

We remark that an important piece to achieve crypto-agility on the transition
to post-quantum algorithms is the use of delegated credentials. They allowed us
to advertise post-quantum KEMs or post-quantum signatures without generat-
ing new certificates or asking certificate authorities to support new algorithms.

Future work can involve increasing the number of connections tested, mod-
ifying the latency of the network, and testing with more post-quantum algo-
rithms; we intend to continue our experiments. We further can extend our
experiments to implement KEMTLS-PDK with mutual authentication, but more
investigation is needed to determine the security requirements for encrypting
the ClientCertificate message. Another interesting topic for further investi-
gation lies around on how to properly integrate post-quantum algorithms into
certificate chains and experiment with certificate authorities.
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Abstract. With the advent of large-scale quantum computers, factoring
and discrete logarithm problems could be solved using the polynomial-
time quantum algorithms. To ensure public-key security, a transition to
quantum-resistant cryptographic protocols is required. Performance of
hardware accelerators targeting different platforms and diverse applica-
tion goals plays an important role in PQC candidates’ differentiation.
Hardware accelerators based on FPGAs and ASICs also provide higher
flexibility to create a very low area or ultra-high performance implemen-
tations at the high cost of the other. While the hardware/software co-
design development of PQC schemes has already received an increasing
research effort, a cost analysis of efficient pure hardware implementation
is still lacking. On the other hand, since FPGA has various types of hard-
ware resources, evaluating and making the accurate and fair comparison
of hardware-based implementations against each other is very challeng-
ing. Without a common foundation, apples are compared to oranges.
This paper demonstrates a pure hardware architecture for Kyber as one
of the finalists in the third round of the NIST post-quantum cryptog-
raphy standardization process. To enable real, realistic, and comparable
evaluations in PQC schemes over hardware platforms, we compare our
architecture over the ASIC platform as a common foundation showing
that it outperforms the previous works in the literature.

Keywords: ASIC · Hardware architecture · Kyber · Lattice-based
cryptography · NTT · Post-quantum cryptography

1 Introduction

The hard problems of traditional public-key cryptosystems, e.g., RSA and ECC,
can be easily solved using Shor’s algorithm [1], so current cryptographic algo-
rithms cannot be secure anymore against quantum attacks. To prepare for
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security concerns caused by building large-scale quantum computers, in 2016,
the National Institute of Standards and Technology (NIST) started the post-
quantum cryptography (PQC) standardization process for the quantum-safe
cryptographic algorithm. After several rounds, NIST announced finalist can-
didates in July 2020, including four key encapsulation mechanisms (KEM), i.e.,
Classic-McEliece, Kyber, NTRU, and Saber. The majority of the finalists are
based on lattice-based cryptography offering a high-performance scheme and rel-
atively small ciphertext and key sizes. Kyber KEM [2] is one of the PQC finalists,
which is constructed on the hardness of the module learning-with-errors problem
(M-LWE) in module lattices [3].

Performance of hardware accelerators plays an important role in the NIST
standardization process because the overall complexity of the winner schemes will
have to be minimal to be implemented in widely-deployed cryptosystems [4]. As
a consequence, hardware benchmarking of PQC candidates is crucial considering
the advantages of hardware-based designs to exploit parallelism, which leads to
improvements in the efficiency of the overall system. While software (SW) imple-
mentations for embedded systems have more flexibility than hardware-based
approaches, they have a lower performance. Hardware/Software (HW/SW) co-
design approaches increase the performance but keeping the flexibility of a SW
solution to cope with embedded constraints. Although the HW/SW approach
offers flexibility and a shorter design cycle than pure HW schemes, they may not
lead to the best performance. Simultaneously, pure hardware implementation of
PQC schemes is extremely challenging due to their high algorithmic complexity,
considering both algorithmic and architectural alternatives, and also the lack of
hardware description language libraries for the basic building blocks.

An accurate and fair comparison between hardware accelerators is very chal-
lenging. One of the main challenges is they target different optimization per-
spectives, including performance, required resources, power consumption, and
energy usage. To address this challenge, one can consider efficiency as an area-
time product for a comprehensive comparison. Additionally, another challenge
for a fair comparison is that most HW/SW designs proposed a unified core for
several schemes [5–7]. Therefore, there appear to be very few hardware imple-
mentations that focus only on a specific scheme and make the best of all its
features. Moreover, the comparisons are too complicated and cannot indicate
the advantage of one architecture over another, especially when they do not
belong to the same platform. NIST’s recommendation to use the Xilinx Artix-7
FPGA family for hardware prototyping is in an effort to improve the accuracy of
comparison in the same chip architecture family. Nevertheless, the effect of dif-
ferent resources, e.g., DSPs and BRAMs, has not been taken into consideration
in the calculation of the total area. Consequently, ASIC results can be chosen
as a benchmark to have a fair comparison with existing implementations with
respect to efficiency.

In this paper, we propose a monolithic hardware implementation, including
polynomial sampling, NTT, and point-wise multiplication, that is parallelized
by virtue of the Kyber algorithm that is naturally parallelizable to accelerate
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Fig. 1. Performance (in log10) and resource utilization comparison in three different
Kyber-512 implementation approaches: software (SW), hardware/software (HW/SW),
and hardware (HW). Kyber architecture is breakdown into three main cores, includ-
ing Keccak (hashing and sampling), NTT (polynomial multiplication), and Control
(controller and all other required functions).

lattice-based PQC exploiting fewer resources. The efficiency of our proposed
PQC implementation has performance levels comparable to or even significantly
better than ECC-based schemes [8–10].

The first hardware implementation of Kyber was proposed in [11] employing
the high-level synthesis (HLS) approach. In this work, the authors designed
a map of high-level C specifications of round 2 candidates into FPGA and
ASIC implementations. Although some dedicated optimizations, particularly for
Kyber, are applied, the results are significantly less efficient from other hardware-
based implementations. The authors in [5] presented a configurable core based on
RISC-V architecture over ASIC targeting power consumption optimization. To
provide FPGA results, the authors extended their work in [12]. In [6], another
RISC-V accelerator called RISQ-V was introduced synthesized for an FPGA
prototype and an ASIC. The authors in [7] proposed a lightweight design for
NewHope and Kyber based on the RISC-V processor integrated with a finite
field multiplier for FPGA. A vector processor was proposed in [13] for ASIC
implementations targeting a high-performance architecture. The first pure hard-
ware implementation of Kyber is reported in [14] based on RTL methodology
in FPGA. The work of [15] also presented a pure hardware approach for Kyber.
However, this design heavily relies on memory units between components. More-
over, a compact architecture was proposed in [16] to reduce the required block
RAMs. In [17], the authors proposed a highly optimized NTT core to achieve
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significant speedup for Kyber KEM. The hardware architecture for polynomial
multiplication targeting Kyber parameters has been studied by several imple-
mentations [18–21]; however, these architectures cannot perform the complete
Kyber protocols.

Figure 1 illustrates the comparison between different development approaches,
i.e., SW, HW/SW, and HW implementations of Kyber KEM based on the required
time and resources. The reported cycle counts for SW implementation in [22–24]
show 60–80% of the overall computation time is spent on hashing and sampling.
Thus, Keccak is the most performance-critical part of SW implementation. How-
ever, this core can be accelerated in a hardware architecture since Keccak is a
hardware-friendly design of SHA. For HW/SW co-design approach, a wide range
of results was reported for polynomial multiplication. While the work of [13] occu-
pied 55% of the total area for vectorized NTT core, in [6], only 12% of resources
were utilized for NTT. Additionally, implementing a software-based processor,
e.g., RISC-V architecture, increases the occupied resources for the controller in
HW/SW compared to the HW approach. For example, the controller requires
31% and 71% of total resources in [5] and [6], respectively. However, in pure HW
implementation of lattice-based PQC, the controller cost was reduced to 5% [25].
Accordingly, the pure HW can significantly accelerate the Kyber KEM by par-
allelizing NTT and hiding the Keccak latency on the one hand, and reduces the
required resources compared to HW/SW approach on the other hand.

1.1 Contributions

Polynomial multiplication computations take a significant portion of Kyber
KEM latency on hardware implementation. To improve the efficiency of Kyber,
one should increase efficiency on the NTT core, providing higher through-
put using fewer hardware resources. This paper proposes an efficient hardware
implementation of the module lattice-based post-quantum KEM CRYSTALS-
Kyber on the application-specific integrated circuit (ASIC) platform. Our pro-
posed architecture provides a monolithic hardware implementation to accelerate
lattice-based PQC exploiting compact resources. The contributions of this paper
are itemized in the following:

1. We propose a compact hardware architecture for NTT and INTT, support-
ing both decimation-in-frequency (DIF) and decimation-in-time (DIT) NTT
algorithms. Our proposed reconfigurable architecture avoids utilizing addi-
tional resources for the same computations while reduces the pre-processing
cost of NTT and post-processing cost of INTT. The proposed architecture sig-
nificantly reduces the overall area and memory consumption with no impact
on performance.

2. We highly parallelize the operations in polynomial sampling cores through
tightly coupling with Keccak core to decrease the required cycles. The per-
formance of proposed parallel scheduling for binomial sampler indicates a sig-
nificant improvement, while our rejection sampler latency can be completely
absorbed by the Keccak core.
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3. We propose a high-performance coprocessor architecture for lattice-based
public-key cryptography with Kyber KEM as a case study. Our result utilizes
the proposed high-speed NTT core and outperforms all reported implemen-
tations by reducing the total time.

The rest of the paper is organized as follows. In Sect. 2, we discuss the prelimi-
naries of lattice-based cryptography and the relevant mathematical background
based on the Kyber algorithm. In Sect. 3, our proposed algorithms and archi-
tectures for implementing a high-performance Kyber KEM are discussed. We
discuss our results and compare them to the counterparts in Sect. 4. Finally, we
conclude the paper in Sect. 5.

2 Preliminaries

In this section, employed notation, Kyber protocols and relevant mathematical
background are briefly described.

2.1 Symbol Definition

In this paper, to make the paper more readable, regular font lower-case letters (a)
shows polynomials, bold lower-case letters (a) determines vectors of polynomials,
bold upper-case letters (A) indicates matrices of polynomials, and their NTT-
domain representation are referred by (â), (â) and (Â), respectively. For a vector
a (or matrix A), its transpose is aT (or AT ). Also, the lower-case Greek letters ρ,
σ, and μ stand for random bit-strings. The polynomial ring Rq = Zq[X]/(Xn+1)
is defined over the field of Zq = Z/qZ in which n is the dimension and q is the
prime modulo. Let a and b be polynomial vectors in Rq, we denote point-wise
multiplication by a ◦ b ∈ Rq. The ◦ product between a matrix and a vector is
the natural generalization of point-wise multiplication between their polynomial
vectors.

2.2 The Kyber Protocol

Kyber is an IND-CCA secure KEM [26], including three algorithms, i.e., key
generation, encryption, and decryption. In key generation, a matrix A and a
secret key s are sampled from a uniform and binomial distribution, respectively.
Then a public key is computed by multiplication between A and s in the NTT
domain and adding noise to the product. In encryption, a message m should be
added to the product of the public key and a sampled random r in the normal
domain to generate a vector v. Additionally, another polynomial multiplication
is performed between r and uniform distribution matrix Â to compute matrix
u. The encryption output, called ciphertext ct, is composed of compression of u
and v, while the message can then be decrypted by recovering an approximation
of v by computing the product of secret key and u.
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Table 1. Parameter sets for Kyber Implementation [2]

Algorithm NIST-Level Parameters Size (in Bytes)

n k q (η1, η2) (du, dv) Secret
key (sk)

Public
key (pk)

Ciphertext
(ct)

Kyber-512 1 (AES-128) 256 2 3,329 (3, 2) (10, 3) 1,632 800 768

Kyber-768 3 (AES-192) 256 3 3,329 (2, 2) (10, 4) 2,400 1,184 1,088

Kyber-1024 5 (AES-256) 256 4 3,329 (2, 2) (11, 5) 3,168 1,568 1,568

All polynomials in the Kyber scheme have 256 coefficients over k-dimensional
vectors, where k = 2, 3, 4 indicates the three different post-quantum security lev-
els. Kyber parameter sets corresponding to these levels are reported in Table 1 to
construct a Chosen Plaintext Attack (CPA) secure public-key encryption scheme.
Moreover, a CCA-secure Kyber KEM can be constructed using an adapted
Fujisaki-Okamoto transformation [27]. For details, we refer interested readers
to [2].

2.3 Polynomial Multiplication

The most important operation in lattice-based cryptography is polynomial multi-
plication, which can be performed using different methods, e.g., NTT or school-
book polynomial multiplication algorithm. Polynomial multiplication in NTT
domain can be computed efficiently over a polynomial ring Zq[X]/ 〈Xn + 1〉
when the modulus provides m-th primitive roots of unity for a sufficiently high
power of two m (ideally, m = 2n or m = n). The NTT is defined as a fast
Fourier transform (FFT) in a finite field. Let f be a polynomial of degree n,
where f =

∑n−1
i=0 fiX

i and fi ∈ Zq, and ωn be n-th primitive root of unity such
that ωn

n = 1 mod q. The forward NTT is defined by f̂ = NTT (f), such that:

f̂i =
n−1∑

j=0

fjω
ij
n mod q (1)

The inverse NTT, shown by INTT, as a back transformation form NTT
domain to normal domain is shown by f = INTT (f̂), such that:

fi = n−1
n−1∑

j=0

f̂jω
−ij
n mod q (2)

Accordingly, a polynomial multiplication between polynomial vectors f and g
employing NTT and INTT results in a polynomial vector which can be performed
such that:

f · g = INTT(NTT(f) ◦ NTT(g)) (3)

To avoid the overhead of zero padding in the polynomial multiplication over
Zq[X]/ 〈Xn + 1〉, the negative wrapped convolution (NWC) was proposed in
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[28] at the cost of pre-processing of NTT and post-processing of INTT. Let
ψ =

√
ωn be a primitive 2n-th root of unity. Pre-processing of NTT includes

multiplication between the coefficients of the input polynomials and ψi, while
the post-processing of INTT is multiplication between the coefficients of the
output polynomial and ψ−i.

However, the work of [29] merged the pre-processing of NTT into butterfly
operations. The work of [30] presented an algorithm to avoid the post-processing
overhead of INTT. The KRED reduction algorithm was proposed in [31] to accel-
erate the NTT and reduce the post-processing overhead of INTT. NTT computa-
tion can be implemented by Cooley-Turkey (CT) [32] or Gentleman-Sande (GS)
[33] butterfly configuration. Employing the CT as NTT and the GS as INTT
[31,34] is a well-known trick in the literature to avoid the bit-reverse permutation.

Algorithm 1 presents the NTT computation. Figure 2 illustrates an 8-point
NTT-based multiplication employing both CT and GS butterfly operations. The
matrix-vector multiplication Â ◦ ŝ in NTT domain for Kyber-512 is shown in (4).

Â ◦ ŝ =
[
Â00 Â01

Â10 Â11

]

◦
[
ŝ0
ŝ1

]

=
[
Â00 ◦ ŝ0 + Â01 ◦ ŝ1

Â10 ◦ ŝ0 + Â11 ◦ ŝ1

]

(4)

A point-wise multiplication includes 128 multiplications of polynomial of
degree 2 modulo X2 − ζ2br7(i)+1. For example, multiplication between two coef-
ficients Âj,i ◦ ŝi can be performed as shown in (5) where ζ = 17 is the first
primitive 256-th root of unity modulo q, and br7 is the bit reversal function.

(âj,2i + âj,2i+1X) · (ŝ2i + ŝ2i+1X)

= (âj,2iŝ2i + âj,2i+1ŝ2i+1ζ
2br7(i)+1)

+ (âj,2iŝ2i+1 + âj,2i+1ŝ2i)X (mod X2 − ζ2br7(i)+1) (5)

3 Proposed Architecture

In this section, the proposed components to design a high-performance and effi-
cient Kyber KEM are described.

3.1 Keccak Core

Keccak core is required in KEM to compute four different functions, including
two hash functions SHA3-256 and SHA3-512, SHAKE-128 as an extendable out-
put function (XOF), and SHAKE-256 as a pseudo random function (PRF) and
key-derivation function (KDF). Keccak is a hardware-oriented design based on
bit-oriented operations. Since we compute 24 rounds for Keccak-f [1600], various
architectures can be employed considering different optimization perspectives,
i.e., high-performance, lightweight, or anything in between. In our proposed high-
performance core, we slightly modify the implementation of the high-speed core
by the Keccak team [36] by designing a serial-in parallel-out (SIPO) buffer in
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Algorithm 1. Iterative In-Place NTT Algorithm Based on Cooley-Tukey But-
terfly [35]
Input: a polynomial a(x) ∈ Zq[X]/(Xn + 1), n-th primitive root of unity ωn ∈ Zq,
n = 2l

Output: â(x) = NTTωn(a) ∈ Zq[X]/(Xn + 1)
1: â ← bit-reverse(a)
2: for (i = 1; i < l; i + +) do
3: m = 2l−i

4: ωm ← ω
n/m
n

5: for (j = 0; j < n; j = j + m) do
6: ω ← 1
7: for (k = 0; k < m/2; k + +) do
8: T ← ω · â[k + j + m/2] mod q
9: U ← â[k + j]

10: â[k + j] = U + T mod q
11: â[k + j + m/2] = U − T mod q
12: ω ← ω · ωm mod q
13: end for
14: end for
15: end for
16: return â(x)

Table 2. Failure probabilities in Kyber rejection sampling for performing different
Keccak rounds

Total
round

Keccak
outputs (bit)

Total
samples

Required
valid sample

Failure
probability

3 4,032 336 256 0.0083

4 5,376 448 256 2.2E−32

5 6,720 560 256 2.3E−79

input and parallel-in serial-out (PISO) buffer for accelerating the data transition
with this core. The serial data width for these buffers is set to 64-bit, and the
parallel line is 1344-bit. A maximum of 21 cycles is needed to read/write to/from
these buffers in serial mode, while the Keccak sponge function takes 24 cycles.
Therefore, data transforming can be hidden by simultaneously performing Kec-
cak computation without resource conflict and data dependency to reduce clock
cycles.

3.2 Rejection Sampling

This unit takes 64-bit data from the output of SHAKE-128 stored in a PISO
buffer. The required cycles for this unit are variable due to the non-deterministic
pattern of rejection sampling. Since the public key computed by rejection sam-
pling is not secret, the SCA countermeasure against timing attack is not required.
Nevertheless, since most SCA evaluation methods, e.g., t-test, can be performed
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Fig. 2. An 8-point NTT-based polynomial multiplication. Dataflow graph includes
CT butterfly-based NTT, point-wise multiplication, and GS butterfly-based INTT.
Polynomial â is in NTT domain and s and t are in normal domain.

on a constant-time design, we perform constant rounds of SHAKE-128 to form a
constant-time implementation. While 112 samples can be evaluated by rejection
unit for each round of Keccak core, the failure probability that 256 valid coef-
ficients can be sampled by performing different rounds of SHAKE-128 is listed
in Table 2. As a result, four rounds are performed for each required vector of
A while the failure probability is negligible. In our optimized architecture, this
unit works in parallel with the Keccak core. Therefore, the latency for rejection
sampling is completely absorbed within the latency for a concurrently running
Keccak core. An alternative approach is to sample directly on the Keccak state;
however, this approach increases the complexity of hardware-based architecture.

3.3 Binomial Sampling

There are two different configurations for binomial sampling unit correspond-
ing to η = 2 and η = 3. We propose an optimized configurable architecture
that can compute the Hamming weight for both values of η. To support both
architectures, the data from PISO is buffered in a 96-bit register, of which only
64-bit is utilized in η = 2. The results are in [−η, η] are presented in 13-bit
signed representation to simplify the addressing. Our proposed binomial sam-
pling architecture for two first sampled data is depicted in Fig. 3.

3.4 Configurable Butterfly Core

To avoid the bit-reverse cost in polynomial multiplication, two different butterfly
configurations, i.e., CT and GS, are required for NTT and INTT, respectively.
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Fig. 3. Proposed configurable binomial sampling unit.

In our proposed architecture, a configurable butterfly core is proposed to support
both CT and GS operations and reduce required hardware resources. In order
to design a high-performance architecture, the resource sharing technique from
[5,37] is extended by using compact storage for pre-computed twiddle factors
from [35] and doubled bandwidth scheme from [18,30].

Since CT configuration is used in NTT, we assume that the input poly-
nomials are in normal order, while the public and secret keys are in bit-reverse
order. Hence, the point-wise multiplication works in bit-reverse order in the NTT
domain, and the results are transformed back to the normal domain with normal
order employing GS configuration. We take advantage of the NTT definition in
the Kyber scheme to perform two independent NTT computations for odd and
even coefficients based on (6) and (7).

â2i =
127∑

j=0

a2jζ
(2i+1)j (6)

â2i+1 =
127∑

j=0

a2j+1ζ
(2i+1)j (7)

Two butterfly cores are employed in parallel for NTT computation to reduce
execution time to N

2 log2
N
4 . Each line of RAM block stores two consecutive

coefficients, i.e., si,2j and si,2j+1, in two columns to feed both butterfly cores.
Reading from two addresses of memory provides four coefficients, i.e., si,2j and
si,2j+1 from address j, and si,2k and si,2k+1from address k of memory. The lower
columns storing the even coefficients, i.e., si,2j and si,2k, are used for the first
butterfly, while the higher columns including the odd coefficients, i.e., si,2j+1

and si,2k+1, are fed into the second core. The results should be stored similarly
in the second RAM.

Our proposed NTT architecture includes five different main modules: two
RAM blocks, an address generator (working in three modes for NTT, INTT,
and point-wise multiplication), a pre-computed twiddle factor ROM, and an
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Fig. 4. Proposed configurable butterfly architecture.

arithmetic unit. The dual-port capabilities of the RAM blocks are exploited in
our proposed design to increase efficiency. Moreover, the address generator com-
putes the two read and write addresses to load and store the required coefficients
as well as the corresponding address for the twiddle factor in each operation.

The arithmetic unit consists of a multiplier, a modular reduction, an addi-
tion, and a subtraction, while there are also some registers to balance the
pipeline latency in different configurations. The proposed architecture is depicted
in Fig. 4. Different reduction units have been studied in the literature. While
Barrett reduction works in the normal domain, Montgomery reduction needs
more resources and latency to perform the transformation into and out of the
Montgomery domain. The proposed architecture employing Barrett reduction is
implemented in a pipelined fashion to increase the throughput to 1 output per
cycle.

3.5 Area/Performance Trade-Offs

The main goal of the proposed architecture is to achieve high-speed compu-
tation employing small area requirements. However, we can target different
area/performance trade-offs by increasing the number of butterfly cores, taking
advantage of polynomial vector structure in the Kyber algorithm. For example,
in Kyber-512 having 2 polynomial vectors, increasing the number of implemented
butterfly core from 2 to 4 can drastically reduce to a half of NTT/INTT latency.
Nevertheless, implementing more arithmetic units needs higher bandwidth. In
this case, the number of occupied RAM blocks will be doubled while they are
implemented in parallel to provide the required bandwidth.



A Monolithic Hardware Implementation of Kyber 119

Table 3. Implementation results for Kyber KEM on 65-nm ASIC

Protocol Area Freq [MHz] Cycles Total

time† [µs]Logic gates

[kGE]

SRAM

[kB]

KeyGen

[CCs]

Encaps

[CCs]

Decaps

[CCs]

Kyber-512 95 10 200 4,267 6,769 10,015 83.9

Kyber-768 93 22 200 6,641 9,683 13,569 116.3

Kyber-1024 104 24 200 9,971 13,278 17,676 154.8
† Total time includes Encaps + Decaps, as the key generation can be done offline.

Area
4%

18%

25%

12%
< 1%

9%

32%

Time
14%

2%

6%
0%

49%

29%
Butterfly
Polynomial Cache
Keccak-f[1600]
Rejection Sampler
Binomial Sampler
Compress/Decompress
Controller and others
NTT/INTT
Point-wise Mult.

Fig. 5. Area breakdown (left) and time breakdown (right) during encapsulation of
Kyber-512.

4 Implementation Results And Comparisons

Our proposed architecture is synthesized using a 65-nm TSMC cell library [38] to
show the required area. VHDL has been used as the design entry to the Synopsys
Design Compiler [38]. In addition, using the area of a NAND gate in the utilized
65-nm library, which is 1.35 µm2, we have provided the gate equivalent (GE)
so that area comparisons among different technologies are meaningful. Although
similar to the previous work presented in [13], we have not fabricated a chip on
silicon, our detailed results are intended for benchmarking the metrics for the
previous and proposed research works. All the designs are synthesized with a 5
ns clock period.

Table 3 reports the required hardware resources and latency specifications for
our proposed architecture in three different security levels. The total time is the
summation of key encapsulation and key decapsulation (Encaps + Decaps), as
the key generation can be done offline. We implement 2, 3, and 4 of our proposed
NTT architecture for security levels 1, 3, and 5, respectively. As one can see,
for NIST level 1 security, our proposed architecture occupies 95 kGE, and 10
kB SRAM. It also runs at 200 MHz and performs the whole Kyber protocol in
83.9µs.

The area breakdown of our design and the latency breakdown in encapsula-
tion of Kyber-512 is illustrated in Fig. 5. Our proposed Keccak, butterfly, and
sampling units utilize 4%, 25%, and 13% of the total area. For reporting latency
breakdown, when the butterfly is parallel with other units, the latency is consid-
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Table 4. Comparisons with existing hardware-based implementations of NTT for
Kyber KEM.

Work Platform Tech
[nm]

Freq
[MHz]

NTT
[CCs]

INTT
[CCs]

Point-wise
Mult. [CCs]

Karabulut et al. [19] Virtex-7 – NA 43,756 NA NA

Alkim et al. [7] Artix-7 – 59 6,868 6,367 2,395

Chen et al. [18] Artix-7 – 130 2,055 NA 7,197

Huang et al. [15] Artix-7 – 155 1,834 NA NA

Bisheh-Niasar et al. [17] Artix-7 – 222 324 324 NA

Fritzmann et al. [21] ASIC 65 25 2,056 NA NA

Fritzmann et al. [6] ASIC 65 45 1,935 1,930 NA

Banerjee et al. [5] ASIC 40 72 1,289 NA NA

Xin et al. [13] ASIC 28 300 41 NA NA

This work ASIC 65 200 474 602 1,289

ered for NTT or point-wise multiplication. As one can see, the more expensive
operation from a resource utilization point of view in Kyber KEM is Keccak
core. However, using the compact version of Keccak core results in more delay
in sampling units which reduces the total efficiency. In the timing breakdown, the
point-wise multiplication and NTT are the first two time-consuming operations.
It should be noted that although Kyber reduces the number of required stages
for NTT computation from 8 stages to 7, the special form of multiplication in
this scheme increases the computation overhead in point-wise multiplication.

Table 4 reports area and latency specifications for our NTT architecture
which works in three different modes, i.e., NTT and INTT, and point-wise mul-
tiplication. Other state-of-the-art NTT designs for the Kyber scheme over hard-
ware platforms are also listed. We report the results for both Kyber parameters
in the previous rounds and round-3, i.e., q = 3329 and q = 7681, respectively.

Our results show a significant improvement requiring only 474, 602, and
1,289 clock cycles for NTT, INTT, and point-wise multiplication, respectively.
We presented a highly optimized FPGA-based NTT core in our previous work
[17] which shows 31% NTT performance improvement at the cost of occupying
a 2 × 2 butterfly units. The work in [6] optimized an NTT core based on hard-
ware/software approach over RISC-V architecture, while it works at 45 MHz on
the ASIC platform. Our architecture results in 4× and 18× speedup in terms of
required cycles and time for NTT computation, respectively. The works in [19]
and [7] also presented an NTT architecture over RISC-V, which requires con-
siderably greater cycle count, while our optimized design achieves 92× and 49×
speedup, respectively. The FPGA-based design was proposed in [15] employing
Montgomery reduction; however, our design reduces the required cycles achiev-
ing a speedup factor of 3.9. Our design also improves almost 6.7× and 8.6×
the required latency for NTT and point-wise multiplication, respectively. In [5],
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Fig. 6. Comparisons with other software implementations of Kyber-512.

a RISC-V-based architecture proposed working at 72 MHz over a 40-nm ASIC
platform. Our proposed architecture achieves 7.5× better timing results com-
pared to this work. The work of [13] employed the vectorized architecture at
the cost of utilizing 521 kGE. Although the proposed architecture in [13] shows
17.3× speedup, it consumes 137× more resources compared to our design.

Figure 6 depicts the comparison of timing results for our proposed architec-
ture and software implementations of Kyber on a mainstream desktop Intel Core
i7 CPU with the optimization of AVX2 and an embedding Cortex-M4 CPU. The
Core i7 CPU works at 3,492 MHz, while the results for the Discovery board are
reported in 24 MHz. As one can see, our proposed ASIC architecture is 2.8×
slower than Intel core [2]. However, ours achieves more than 600× speedup com-
pared to [22]. Nevertheless, this speedup is not surprising since HW significantly
reduces total time compared to SW employing parallel computation.

Table 5 lists the detailed resource consumption and performance results (fre-
quency, required cycles, and execution time) of Kyber coprocessor designs for
all NIST security levels. There are several hardware/software implementations
targeting Kyber KEM in the literature. However, a direct comparison is not pos-
sible between the listed hardware implementations due to the varying techniques
of different platforms, targeting different optimization goals, and using different
design methodologies. The work in [5] implemented a configurable coproces-
sor based on a RISC-V architecture that can be used for multiple lattice-based
schemes, including Kyber. Its architecture performs almost 263 KEM per second
for Kyber-512, which is 45× slower than our design. In [6], another RISC-V-
based architecture was proposed to accelerate NTT-based schemes. This design
requires 23× more cycles for encapsulation and decapsulation while consuming
2.8× more resources. Additionally, in [13], a high-performance hardware archi-
tecture was proposed based on RISC-V. Nevertheless, our design achieves 5×



122 M. Bisheh-Niasar et al.

Table 5. ASIC Implementation results for Kyber KEM and comparison with state-of-
the-art.

Work Tech

[nm]

Area Total

Area†
[kGE]

Freq

[MHz]

Latency Total

Time‡
[μs]

A × T

[GE×s]Logic gates

[kGE]

SRAM

[kB]

KeyGen

[kCCs]

Encaps

[kCCs]

Decaps

[kCCs]

Kyber-512

Basu et al. [11] 65 1,341 – 3,531 200 – – 43 – –

Fritzmann et al. [6] 65 170 465§ 635 45 150 193 205 8,844 5,615

Banerjee et al. [5] 40 106 40.25 547 72 75 132 142 3,806 2,081

Xin et al. [13] 28 979 12 1,131 300 19 46 80 420 475

This work 65 95 10 222 200 4 7 10 84 18

Kyber-768

Fritzmann et al. [6] 65 170 465§ 635 45 273 326 340 14,800 9,398

Banerjee et al. [5] 40 106 40.25 547 72 112 178 191 5,125 2,803

This work 65 93 22 372 200 7 10 14 116 43

Kyber-1024

Fritzmann et al. [6] 65 170 465§ 635 45 350 405 425 18,444 11,711

Banerjee et al. [5] 40 106 40.25 547 72 149 223 241 6,444 3,524

Xin et al. [13] 28 979 12 1,131 300 40 82 136 727 822

This work 65 104 24 409 200 10 14 18 155 63

† The total area is calculated based on the reported fabric dimension corresponding to their technology.

For non-fabricated results, a rough estimation of 55% area overhead is considered for implementing SRAM

similar to [39].
‡ Total time includes Encaps + Decaps, as the key generation can be done offline.
§ The reported numbers are in kGE.

faster KEM and improves 80% resource utilization while occupying 5× fewer
area compared to [13]. An HLS evaluation was proposed in [11] for Kyber-512
employing different implementations for encapsulation and decapsulation. How-
ever, this approach comes at a considerably far larger area consumption. Hence,
our design achieves almost 16 and 4.3 times better are and timing results com-
pared to HLS-based implementation. For the other security level, the same trend
can be seen.

We also illustrated a summary of comparison with other ASIC implemen-
tation of Kyber-512 in Fig. 7. For different implementations, the total time (T )
and the equivalent area (A), including the required logic gates and SRAM are
shown. The efficiency in terms of A × T is also computed. As one can see, our
proposed design achieves better latency using significantly fewer resources. Fur-
thermore, the proposed Kyber-512 implementation improves 312×, 116×, and
26× efficiency compared to [5,6] and [13], respectively.

The experimental result shows that taking advantage of the proposed NTT
architecture to implement lattice-based KEM schemes as full-hardware architec-
ture results in high-speed and efficient design. For Kyber KEM, our coproces-
sor architecture outperforms the reported implementations in the literature in
terms of efficiency. Furthermore, although one of the drawbacks of various post-
quantum cryptosystems is requiring larger key sizes and more computational
power than the current pre-quantum algorithms, the efficiency of our proposed
implementation already has performance levels comparable to or even signifi-
cantly better than pre-quantum algorithms [8,9,40].
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Fig. 7. Comparisons with other ASIC implementations of Kyber-512.

Table 6. Comparisons with existing FPGA-based PQC implementations of CCA-
secure KEM schemes in NIST security level 1.

Protocol Platform Area (Gates Equivalent) or

(LUTs/FFs/Slices/DSPs/BRAMs)

Freq [MHz] Time [us]

SIKEp434 [43] Virtex-7 12,818/18,271/5,527/195/32 249.6 8,800

Frodo-640 [44]† Artix-7 6,881/5,081/1,947/16/12.5 149 2,621

LightSaber [45] ASIC 742 kGE‡ 400 5

Kyber-512 [This work] ASIC 222 kGE 200 84
† Different architectures for Encaps and Decaps are used.
‡ The reported area is 0.38 mm2 in 40 nm process.

Several performance optimizations of other PQC schemes were proposed
recently [41–45]. Table 6 lists other PQC scheme results implemented on the
hardware platform for NIST security level 1. Elkhatib et al. in [43] implemented
a supersingular isogeny-based KEM performed in 8.8 ms. Howe et al. [44] pre-
sented a flexible FrodoKEM architecture that performs 825 and 710 encapsu-
lations and decapsulation. The work of [45] proposed an energy-efficient archi-
tecture for Saber employing 8-level hierarchical Karatsuba, which consumes 859
and 1,075 clock cycles for encapsulation and decapsulation, respectively.

5 Conclusion

This paper proposed a high-performance and efficient architecture for NTT-
based polynomial multiplication and lattice-based public-key cryptography
coprocessor with Kyber KEM as a case study. We optimize the implementation
of the NTT core by creating a configurable butterfly core. Besides, we propose
a coprocessor architecture that can perform all KEM operations for Kyber. The
proposed Kyber coprocessor architecture performs key generation, encapsula-
tion, and decapsulation in 21.3, 33.8, and 50µs for a security level comparable
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to AES-128 respectively, by consuming only 95 kGE and 10 kB SRAM, on an
65-nm ASIC platform.
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Abstract. The notion of functional encryption (FE) was proposed as a
generalization of plain public-key encryption to enable a much more fine-
grained handling of encrypted data, with advanced applications such as
cloud computing, multi-party computations, obfuscating circuits or Tur-
ing machines. While FE for general circuits or Turing machines gives a
natural instantiation of the many cryptographic primitives, existing FE
schemes are based on indistinguishability obfuscation or multilinear maps
which either rely on new computational hardness assumptions or heuris-
tically claimed to be secure. In this work, we present new techniques
directly yielding FE for inner product functionality where secret-keys
provide access control via polynomial-size bounded-depth circuits. More
specifically, we encrypt messages with respect to attributes and embed
policy circuits into secret-keys so that a restricted class of receivers would
be able to learn certain property about the messages. Recently, many
inner product FE schemes were proposed. However, none of them uses a
general circuit as an access structure. Our main contribution is design-
ing the first construction for an attribute-based FE scheme in key-policy
setting for inner products from well-studied Learning With Errors (LWE)
assumption. Our construction takes inspiration from the attribute-based
encryption of Boneh et al. from Eurocrypt 2014 and the inner product
functional encryption of Agrawal et al. from Crypto 2016. The scheme
is proved in a stronger setting where the adversary is allowed to ask
secret-keys that can decrypt the challenge ciphertext. Doing so requires
a careful setting of parameters for handling the noise in ciphertexts to
enable correct decryption. Another main advantage of our scheme is that
the size of ciphertexts and secret-keys depends on the depth of the cir-
cuits rather than its size. Additionally, we extend our construction in a
much desirable multi-input variant where secret-keys are associated with
multiple policies subject to different encryption slots. This enhances the
applicability of the scheme with finer access control.
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P. Longa and C. Ràfols (Eds.): LATINCRYPT 2021, LNCS 12912, pp. 127–148, 2021.
https://doi.org/10.1007/978-3-030-88238-9_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-88238-9_7&domain=pdf
https://doi.org/10.1007/978-3-030-88238-9_7


128 T. Pal and R. Dutta

1 Introduction

Controlling access to encrypted data is an essential requirement in today’s world
of cloud computing and data privacy. Plain public-key encryption either hides
the entire data or reveals nothing depending on the availability of the secret-key.
In many applications of cloud computing, such all-or-nothing type encryption
is insufficient. For example, we often need to embed a decryption policy into
the secret-key so that only users who satisfy the policy can decrypt the cipher-
text. In another scenario, we may want to issue a secret-key that can only let a
user learn a specific statistical property of the encrypted data such as average
or weighted sum. The notion of (key-policy) attribute-based encryption (ABE),
introduced by [25,33], is a solution to the former example and the latter can be
resolved using inner product functional encryption (IPFE) [1] which is a particu-
lar class of functional encryption [14]. We consider more general situation where
a decryption key requires to serve the functionality of both ABE and IPFE.

To illustrate the potential of the proposed scheme we consider the follow-
ing example. Suppose in a pandemic, a vaccine developing company stores some
characteristics in an encrypted form of the patients who are undergoing trials
of a newly created vaccine. The authority wants to issue a decryption key that
can be used by selected members of the company (e.g. a specific group of sci-
entists and the members in the board of directors). The key only decrypts a
specific statistical computation on the characteristics of patients that may help
to determine the usability of the vaccine in a larger scale. However, such statistics
should not be revealed to all the members and the secret-key should not be able
to decrypt the whole data-set due to the welfare of the company. Therefore, we
need to embed a policy (indicating the members who are eligible to learn) and
a specific vector (which will be operated on the data-set to compute a specific
statistic) into a single key that can be given to the selected members. In other
words, we need to have attribute-based access control in IPFE scheme.

A natural solution to the above problem is given by the notion of functional
encryption (FE) [14,30] which allows us to compute a secret-key skF corre-
sponding to a function F that consists of a policy f1 and a vector y. Given
an encryption of message m = (att,x), one learns F (m) = 〈x,y〉 if f(att) = 0,
using the secret-key skF . The indistinguishability security requires that an adver-
sary should be unable to distinguish between encryptions of m0 = (att,x0) and
m1 = (att,x1) even if it possesses many secret-keys for the functions F1, . . . , Fn

satisfying Fi(m0) = Fi(m1), for all i. However, candidate FEs supporting the
required function class exist from indistinguishable obfuscation (IO) or multilin-
ear maps (Mmaps) [10,21] the security of which is not well-understood. While
some candidate Mmaps (with degree ≥ 2) based constructions [9,22] are still
conjectured to be secure, the other FE constructions relying on IO are currently
going through a break-and-repair cycle [11]. Therefore, the security of exist-
ing FEs for general functions cannot be guaranteed from well-known standard
assumptions. Looking into the current state of the art, it is more preferable to

1 A policy is a boolean function and we say an input a satisfies the policy f if f(a) = 0.
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construct FE for the needed functionality instead of focusing on FE for gen-
eral function class. Our goal is to build an efficient FE scheme from standard
assumption for a class containing only functions like F as described above. This
motivation leads us to the following question.
Is it possible to construct a public-key FE scheme where we can embed any boolean
function along with a predicate vector into the secret-keys and encrypt a message
vector with respect to an attribute so that decryption outputs the inner product
between the predicate and message vectors only when the attribute satisfies the
boolean function?

Our Contribution. To address the above concern, we present a primitive called
attribute-based IPFE (ABIPFE) where policies are associated with the secret-
keys and attributes are taken while encrypting messages. Our main contribution
is a construction of such ABIPFE from Learning With Errors (LWE) assumption
in the standard model. The policies can be represented by any polynomial-size
bounded-depth boolean circuits and the size of secret-keys or ciphertext relies
on the depth of the circuits. Our work takes inspiration from the framework of
Abdalla et al. [3]. To obtain an ABIPFE supporting general class of policies, we
devise a technique to combine the LWE-based ABE scheme of Boneh et al. [13]
(which we call BGG+-ABE) and the LWE-based IPFE scheme of Agrawal et al.
[5] (which is abbreviated as ALS-IPFE).

In an ABIPFE scheme, using a master secret-key msk, a central authority
generates secret-keys of the form skf,y for a tuple (f,y) where f is a depth-d
circuit and y is a predicate vector that belongs to Z

�
q for an integer (possibly

prime) q. The sender uses the master public-key mpk to encrypt a message vec-
tor x ∈ Z

�
q with respect to an attribute a which is a binary string of length k

and produces a ciphertext ct. A receiver having skf,y , can recover 〈x,y〉 from
ct if f(a) = 0. We prove the co-selective indistinguishability (coSel-IND) of the
ABIPFE where the adversary A submits a challenge attribute a∗ and a function
f∗ such that f∗(a∗) = 0 before seeing mpk. However, A can adaptively choose a
polynomial number of predicate vectors y and gets secret-keys of the form skf∗,y .
So, A is given access to many secret-keys that can decrypt the challenge cipher-
text. The adversary can also query a secret-key for (f,y) such that f(a∗) = 1. If
x0,x1 are the challenge messages (which can be picked adaptively), we require
that 〈x0,y〉 = 〈x1,y〉 for all y for which a secret-key skf∗,y is released during
key query phase. Note that using a standard complexity leveraging argument as
in [12], we can also allow A to choose the challenge attribute adaptively.

Theorem 1 (Informal). Assuming subexponential LWE, there exists a coSel-IND
secure ABIPFE scheme with short secret-keys, the size of which depends on the
maximum depth of the functions supported by the scheme.

We show that our single input ABIPFE can be extended to a multi-input variant
of ABIPFE which we call attribute-based multi-input IPFE (ABMIPFE) scheme.
Suppose there are n encryption slots and each slot is associated with a single
attribute ai which is linked to a party that belongs to the system. The i-th party
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can encrypt a vector xi with respect to ai to produce a ciphertext cti. The secret-
keys are associated to tuples of form ({fi,yi}n

i=1) which can be used to learn∑n
i=1〈xi,yi〉 if fi(ai) = 0 for all i = 1, . . . , n. For security, we define a co-adaptive

indistinguishability (coAdp-IND) notion where the adversary is forced to submit
n functions f1, . . . , fn before setup whereas it can choose the predicate vectors
({yi}n

i=1) adaptively for key queries. If {x0
i ,x

1
i }n

i=1 are the challenge messages
then all the secret-key queries should satisfy

∑n
i=1〈x0

i ,yi〉 =
∑n

i=1〈x1
i ,yi〉.

Theorem 2 (Informal). Assuming subexponential LWE, there exists a
coAdp-IND secure ABMIPFE scheme with short secret-keys, the size of which
depends on the maximum depth of the functions supported by the scheme and
linear to the number of parties in the scheme.

Comparison to Existing Approaches. We briefly compare our resulting
IPFE schemes in reference to existing approaches. The notion of attribute-based
functional encryption (ABFE) was formalized by Chen, Zang and Yiu [17] where
they proposed a ciphertext-policy ABIPFE (CP-ABIPFE) scheme for limited
functionality based on three decisional assumptions in bilinear groups of com-
posite order. They prove the adaptive security in a comparatively weaker setting
where the adversary is not allowed to query any secret-key that can decrypt the
challenge ciphertext. Improving the security and efficiency, Abdalla et al. [3] gave
constructions of CP-ABIPFE based on Decisional Diffie-Hellman (DDH) assump-
tion in bilinear groups of prime order. They utilized the DDH-based IPFE of [5]
and any ABE schemes that support dual-system encryption methodology [35] to
achieve access control in IPFE setting that can mainly handle policies of equal-
ity testing, orthogonality testing, read-once monotone span programs whereas
one of the appealing feature of our construction compared to these schemes is
that we can embed any general policy represented by a boolean function into
the secret-keys of our ABIPFE. The first construction of [3] is selectively secure
in simulation setting and the other is adaptively secure in indistinguishability
setting. Both of these schemes allow the adversary to have many secret-keys for
different attributes that can decrypt the challenge ciphertext, but the advantage
of the adversary grows linearly with the number of secret-key queries. In the same
work, they also present a natural extension of their pairing-based CP-ABIPFEs
to MIPFEs using a generic transformation originally presented in the work of
[2]. In this context, it is worth mentioning that our ABIPFE and ABMIPFE are
based on standard LWE assumption and hence they are post-quantum secure.

The second main contribution of [3] is the constructions of two adaptively
secure identity-based IPFE (IBIPFE) schemes based on the hardness of LWE
problem. They combined the ALS-IPFE with two existing LWE-based IBEs.
The first one uses the IBE from [24] to get a scheme secure in the random oracle
model and the second one relies on the IBE from [4] to obtain a scheme secure in
the standard model. In another work [20], Dufour-Sans and Pointcheval built a
selectively secure identity-based FE scheme for unbounded inner product func-
tionality in the random-oracle model under Bilinear Decisional Diffie-Hellman
assumption. The main advantage of their scheme is the constant size master
public-key and secret-keys, in particular, each of them consists of only one group
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element. Compared to all these IPFE schemes, our IPFE undoubtedly provides
a much more finer access control that covers almost all practical applications.

In the context of constructing indistinguishability obfuscation, the authors
of [8,26,27] built a primitive called restricted FE (latterly renamed as partially-
hiding FE or PHFE) where the supported function class can execute degree-2
computation on its private input and offers a variety of computations on the
public input such as degree-2 functions, NC0 or NC1 circuits. While all these
PHFEs are described in secret-key setting, recently in [23], the authors proposed
a public-key PHFE scheme supporting degree-2 functions in the private input
and arithmetic NC1 functions over the public attribute. The PHFEs are proven
secure relying on pairing-based assumptions. On the other hand, our ABIPFE
is the first to support any polynomial-size boolean functions over the attributes
in public-key setting with security based on standard LWE assumption.

Technical Overview. The starting point is the IBIPFE construction of Abdalla
et al. [3] where secret-keys and ciphertexts need to be associated with the same
identity for a successful decryption. We use BGG+-ABE and ALS-IPFE to
build our ABIPFE and its multi-input variant. The challenge comes in control-
ling the noise in the ciphertexts for correct decryption and handling secret-key
queries that decrypts the challenge ciphertext. We briefly describe the technical
road towards achieving this goal. Our core approach utilizes the homomorphic
evaluation procedure of [13] which can handle any polynomial-size bounded-
depth (unbounded fan-in) boolean circuits of the form f : {0, 1}k → {0, 1}.
Given matrices

−→
B = (B1, . . . ,Bk), there are encoding mechanisms such that

for any a ∈ {0, 1}k and function f we have Ba ← Encodea(
−→
B ,a) and

Bf ← Encodef (
−→
B , f). When a Regev encryption (as described in [24,32])

ca = B�
a s+noise with respect to the public matrix Ba is available, one can apply

a conversion algorithm Convertct to compute Convertct(ca,a, f) = B�
f s + noise′

whenever f(a) = 0. The master public-key mpk of our ABIPFE consists of matri-
ces A ∈ Z

n×m
q ,

−→
B ∈ (Zn×m

q )k,D ∈ Z
n×�
q and the master secret-key is a short

basis TA of the lattice Λ⊥
q (A). To generate a secret-key skf,y for a tuple (f,y),

the authority first computes Bf ← Encodef (
−→
B , f) and generates a low-norm

matrix Rf using TA such that (A|Bf ) ·Rf = D. Finally, it sets skf,y = Rf · y.
An encryption of a message vector x ∈ Z

�
q with respect to an attribute a ∈

{0, 1}k proceeds to compute Ba ← Encodea(
−→
B ,a) and a Dual-Regev encryption

(c0 = A�s+e0, ca = B�
a s+e1). It encrypts the message as c = D�s+e2 +x.

Here, e0,e1,e2 denote the noise vectors. The ciphertext ct consists of (c0, ca, c).
A receiver holding a secret-key skf,y such that f(a) = 0 first obtains cf =

Convertct(ca,a, f) and then computes the inner product as

y�c − sk�
f,y (c0|cf ) ≈ (Dy)�s + y�x − (Rf · y)�(A|Bf )�s

= (Dy)�s + 〈x,y〉 − y�((A|Bf ) · Rf )�s = 〈x,y〉
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We prove coSel-IND security for our ABIPFE scheme using the proof techniques
of BGG+-ABE and IBIPFE scheme of [3]. The main technical difference is to
program the public matrix D in such a way that we can generate secret-keys for
a fixed function f while varying the associated predicate vectors without using
msk. In other words, we need to generate a matrix Z satisfying (A|Bf )Z = D
such that each row of Z follows the same distribution D as that of Rf . For that,
we first pick a matrix Z1 whose rows are coming from D and define a matrix
D1 = AZ1. Then, we choose another matrix Z2 following the same distribution
as of Z1 and set D = D1 + BfZ2. Since Z1 is a low-norm matrix, D1 = AZ1

is uniformly distributed over Z
n×�
q by a left-over hash lemma [4]. This ensures

that D is also uniform over Zn×�
q and we can set Z =

(
Z1

Z2

)

which is distributed

according to Rf . We can now generate a secret-key skf,y for any vector y as
Z · y. The secret matrix Z1 plays the role of master secret-key in the ALS-IPFE
scheme when we finally depend on the hardness of LWE problem to conclude the
security of our scheme.

We convert any single-input ABIPFE into an ABMIPFE via a generic trans-
formation inspired from the works of Abdalla et al. [2,3] where they generically
convert an IPFE into a multi-input IPFE (MIPFE) without using any additional
primitive. The fact that our ABIPFE satisfies certain additional structural prop-
erties, namely two-step decryption and linear encryption [2], helps us to build
the first ABMIPFE based on LWE assumption.

2 Preliminaries

Notations. For n ∈ N, we denote by [n] the set {1, . . . , n}. We denote by x ← D
the process of sampling a value x according to the distribution of D. We consider
x ← S as the process of random sampling of a value x according to the uniform
distribution over a finite set S. We denote by A⊗B the tensor product between
the matrices A and B. The inner product between two vectors x,y ∈ Z

� is
written as 〈x,y〉 =

∑�
i=1 xiyi = yT x. For any λ > λ0, if a non-negative function

negl satisfies negl(λ) < 1/λc, c is a constant, then negl is called a negligible
function over the positive integers.

2.1 Attribute-Based Inner Product Functional Encryption

An attribute-based inner product functional encryption (ABIPFE) scheme for a
class of functions Fλ = {f : Sλ → {0, 1}}, a predicate space Yλ and a mes-
sage space Xλ consists of four probabilistic polynomial time (PPT) algorithms
ABIPFE = (Setup,KeyGen,Enc,Dec) satisfying the following requirement:

– (mpk,msk) ← Setup(1λ, 1�,Fλ): The setup algorithm on input a security
parameter λ, a vector length parameter � and a function class Fλ, outputs a
master public-key mpk and a master secret-key msk.
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– skf,y ← KeyGen(mpk,msk, f,y): The key generation algorithm takes as input
the key pairs (mpk, msk), a function f ∈ Fλ and a vector y ∈ Yλ of length �.
It outputs a secret-key skf,y which also includes the description of f and the
vector y.

– ct ← Enc(mpk, a,x): The encryption algorithm takes input the master public-
key mpk, an attribute a ∈ Sλ and a message vector x ∈ Xλ. It outputs a
ciphertext ct which contains the attribute a.

– ⊥ or ζ ← Dec(mpk, skf,y , ct): The decryption algorithm is deterministic. It
takes as input the master public-key mpk, a secret-key skf,y and a ciphertext
ct. It outputs either a message ζ ∈ Z or a symbol ⊥ indicating failure.

Definition 1 (Correctness). An ABIPFE is said to be correct if for all λ ∈
N, f ∈ Fλ,y ∈ Yλ, a ∈ Sλ,x ∈ Xλ we have

Pr
[〈x,y〉 = Dec(mpk, skf,y , ct)

∧ f(a) = 0 :
(mpk,msk) ← Setup(1λ, 1�,Fλ),
skf,y ← KeyGen(mpk,msk, f,y),

ct ← Enc(mpk, a,x)

]

= 1 − negl(λ)

where the probability is taken over the random coins of Setup, KeyGen and Enc.

We define Q-bounded coSel-IND security for ABIPFE. Let a∗ ∈ Sλ be the target
attribute. We call f a target accepting function if f(a∗) = 0. In Q-bounded
coSel-IND game, the adversary A submits the target attribute a∗ and Q target
accepting functions before seeing mpk. Note that, A is allowed to adaptively
choose associated predicate vectors and functions which output 1 on input a∗.

Definition 2 (Q-bounded coSel-IND security for ABIPFE). For an
ABIPFE scheme ABIPFE = (Setup,Keygen,Enc,Dec) for a function family Fλ,
a predicate space Yλ, an attribute space Sλ, a message space Xλ and for
any PPT adversary A, we define Q-bounded coSel-IND security experiment
ExptcoSel-IND

A,ABIPFE(1
λ) as follows.

1. Pre-Setup Phase. The adversary A on input 1λ, outputs a target attribute
a∗ ∈ Sλ and a set {f1, . . . , fQ} of Q target accepting functions.

2. Setup Phase. On input 1λ, 1� and Fλ, the challenger samples (mpk,msk) ←
Setup(1λ, 1�,Fλ). It gives mpk to A.

3. Query Phase. During the experiment A can make the following queries in
any arbitrary order. A can make unbounded many key queries, however, it is
allowed to make only one challenge query.
(a) Key Queries. A sends (f,y) ∈ Fλ × Yλ and the challenger returns

skf,y ← KeyGen(mpk,msk, f,y).
(b) Challenge Query. A submits a pair of messages (x0,x1) ∈ X 2

λ . The
challenger samples a bit b ← {0, 1} and returns ct ← Enc(mpk, a∗,xb).

We require that any secret-key query (fj ,yj) should satisfy (j ∈ [Q] ∧
〈x0,yj〉 = 〈x1,yj〉) or fj(a∗) = 1.

4. Guess Phase. A outputs a guess bit b′. The experiment outputs 1 if b = b′.
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The ABIPFE is said to satisfy Q-bounded coSel-IND security (or simply co-
selective security when Q is clear from the context) if the advantage

AdvcoSel-IND
A,ABIPFE(λ) =

∣
∣
∣
∣Pr[ExptcoSel-IND

A,ABIPFE(1
λ) = 1] − 1

2

∣
∣
∣
∣

of A in the above game is negligible in λ.

We can also define stronger versions of the security such as selective and adap-
tive experiments. In Sel-IND security game the adversary A submits the target
attribute a∗ in the pre-setup phase and it is allowed to choose the target accept-
ing functions adaptively. We give more power to A in the Adp-IND security
experiment. In particular, A has the freedom to choose the target attribute a∗

in the challenge phase and target accepting functions in the key query phase.
Accordingly, we can define the advantages by the functions AdvSel-IND

A,ABIPFE(λ) and
AdvAdp-IND

A,ABIPFE(λ) in the selective and adaptive security experiments respectively.

2.2 Lattice Preliminaries [3,13]

We recall basics of lattices and some important results related to our construc-
tion of ABIPFE. Let n,m, q be positive integers such that n = poly(λ) and
m ≥ n�log q. For a matrix A ∈ Z

n×m
q , we let Λ⊥

q (A) denotes the lattice
{x ∈ Z

m : Ax = 0 in Zq}. More generally for u ∈ Z
n
q , we let Λu

q (A) denote the
lattice {x ∈ Z

m : Ax = u in Zq}.

Matrix Norms. For a vector u, we let ||u|| denote its �2 norm. For a matrix
R ∈ Z

k×m, let R̃ be the result of applying Gram-Schmidt (GS) orthogonalization
to the columns of R. We define the following norms.

– ||R|| denotes the �2 norm of the longest column of R.
– ||R||2 denotes the operator norm of R defined as ||R||2 = sup||x||=1||Rx||.
– s1(R) denotes the spectral norm of R (largest singular value of R).

In addition, we know that ||R̃|| ≤ ||R|| ≤ ||R||2 ≤ √
kR. The spectral norm

of concatenating matrices are bounded as s1(R|S) ≤ √
s1(R)2 + s1(S)2. The

following lemma provides a bound on spectral norm.

Lemma 1 [19]. Let X ∈ R
n×m be a sub-Gaussian random matrix with param-

eter s. There exists a universal constant C ≈ 1√
2π

such that for any t ≥ 0, we
have s1(X) ≤ C · s · (√m+

√
n+ t) except with probability at most 2 · exp(−πt2).

Lemma 2 (Gram-Schmidt minimum [15]). For any arbitrary n-dimensional
integer lattice Λ, it holds that:

1 ≤ λ1(Λ∗) · minB||B̃|| ≤ γ2n,

where the minimum is over all (ordered) bases B of lattice Λ and γ is a constant.
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Gaussian Distribution. For any n-dimensional lattice Λ, the discrete Gaus-
sian distribution over Λ with center c ∈ R

n and parameter σ > 0 is defined
as DΛ,σ,c(x) = ρσ,c(x)/ρσ,c(Λ), ∀x ∈ R

n where ρσ,c(x) = exp(−π‖x − c‖2
2/σ2)

and ρσ,c(Λ) =
∑

x∈Λ ρσ,c(x). When c = 0, we use Dσ(Λu
q (A)) for a parameter

σ > 0 to denote a discrete Gaussian distribution over the lattice Λu
q (A). For a

random matrix A ∈ Z
n×m
q and σ = Ω̃(

√
n), a vector x sampled from Dσ(Λu

q (A))
has �2 norm less than σ

√
m with probability at least 1 − negl(m). For a matrix

U = (u1| · · · |uk) ∈ Z
n×k
q , we let Dσ(ΛU

q (A)) be a distribution on matrices in
Z

m×k where the i-th column is sampled from Dσ(Λui
q (A)) independently for

i = 1, . . . , k. Clearly if R is sampled from Dσ(ΛU
q (A)) then AR = U in Zq.

Learning with Errors (LWE) [32]. Fix integers n,m, a prime integer q and
a noise distribution χ over Z. The LWEq,χ,n problem is to distinguish between
the distributions (A,A�s + e) and (A,u) where A ∈ Z

n×m
q , s ∈ Z

n
q ,u ∈ Z

m
q

are independently sampled.

Proposition 1 [32]. Let α = α(n) ∈ (0, 1) and let q = q(n) be a prime such that
α · q > 2

√
n. If there exists an efficient (possibly quantum) algorithm that solves

LWEq,Ψα
, then there exists an efficient quantum algorithm for approximating

SIVP and GapSVP in the �2 norm, in the worst case, to within Õ(n/α) factors.

Here Ψα is distributed as �qX� mod q where X is a normal random variable with
mean 0 and standard deviation α/

√
2π.

Solving AZ = U. We review algorithms for finding a low-norm matrix Z ∈
Z

m×k
q such that AZ = U.

Theorem 3 [24]. There is a PPT SampleD that, given a basis B of an n-
dimensional lattice Λ = L(B), a parameter σ ≥ ||B̃|| · ω(

√
log n) and a center

c ∈ R
n, outputs a sample from a distribution that is statistically close to Dσ,c(Λ).

Proposition 2 [6]. For any prime q = poly(n) and any m ≥ 5n lg q, there is a
probabilistic polynomial-time algorithm SampleMat that, on input 1n, outputs a
matrix A ∈ Z

n×m
q and a full-rank set S ⊂ Λ⊥

q (A), where the distribution of A
is statistically close to uniform over Z

n×m
q and the length ||S|| ≤ L = m2.5.

Also, S can be converted efficiently to a “good” basis T of Λ⊥
q (A) such that

||T̃|| ≤ ||S̃|| ≤ L.

Lemma 3 (Preimage samplable functions [24]). For any prime q =
poly(n), any m ≥ 6n log q, and any σ ≥ L · ω(

√
log m), it holds that there exists

PPT algorithms TrapGen, SampleD, SamplePre such that:

1. TrapGen computes (A,TA) ← TrapGen(1n, 1m, q), where A is statistically
close to uniform over Zn×m

q and TA ⊂ Λ⊥
q (A) is a good basis with ||T̃A|| ≤ L.

The matrix A is public and TA is the trapdoor.
2. SampleD is used to sample vectors from Dσ(Zm×k).
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3. The trapdoor inversion algorithm SamplePre(A,TA,U, σ) outputs a matrix
Z ∈ Z

m×k such that AZ = U.

In addition, it holds that the following distributions are statistically close:

Dist1 := (A,Z,U) s.t. (A,TA) ← TrapGen(1n, 1m, q), U ← Z
n×k,

Z ← SamplePre(A,TA,U, σ)

Dist2 := (A,Z,AZ) s.t. A ← Z
n×m
q , Z ← Dσ(Zm×k) : ||zi|| ≤ σ

√
m, i ∈ [k],

where zi is the i-th column of Z

Trapdoor Generators. The following Lemma states properties of algorithms
for generating short basis of lattices.

Lemma 4 [13]. Let n,m, q > 0 be integers with q prime. There are polynomial-
time algorithms with the properties below:

1. (A,TA) ← TrapGen(1n, 1m, q) ([6,7,29]): a randomized algorithm that, when
m = Θ(n log q), outputs a full-rank matrix A ∈ Z

n×m
q and basis TA ∈ Z

m×m

for Λ⊥
q (A) such that A is negl(n)-close to uniform and ||T̃A|| = O(

√
n log q),

with all but negligible probability in n.
2. TA|B ← ExtendRight(A,TA,B) ([16]): a deterministic algorithm that given

full-rank matrices A,B ∈ Z
n×m
q and a basis TA of Λ⊥

q (A) outputs a basis
TA|B of Λ⊥

q (A|B) such that ||T̃A|| = ||T̃A|B||.
3. TH ← ExtendLeft(A,G,TG,S) where H = (A|G+AS) ([4]): a deterministic

algorithm that given full-rank matrices A,G ∈ Z
n×m
q and a basis TG of

Λ⊥
q (G) outputs a basis TH of Λ⊥

q (H) such that ||T̃H|| = ||T̃G|| · (1 + ||S||2)
4. For m = n�log q there is a fixed full-rank matrix G ∈ Z

n×m
q such that the

lattice Λ⊥
q (G) has a publicly known basis TG ∈ Z

m×m with ||T̃G|| ≤ √
5.

Lemma 5 [4,16]. Let n,m, �, q > 0 be integers with q prime. There exist the
following polynomial-time algorithms.

1. Z ← SampleRight(A,TA,B,U, σ): a randomized algorithm that given full-
rank matrices A,B ∈ Z

n×m
q , matrix U ∈ Z

n×�
q , a basis TA of Λ⊥

q (A) and
σ ≥ ||T̃A|| · ω(

√
log m), outputs a random sample Z ∈ Z

2m×�
q from a dis-

tribution that is statistically close to Dσ(ΛU
q (A|B)). This algorithm is the

composition of two algorithms: TA|B ← ExtendRight(A,TA,B) and Z ←
SamplePre((A|B),TA|B,U, σ).

2. Z ← SampleLeft(A,S, y,U, σ): a randomized algorithm that given full-rank
matrix A ∈ Z

n×m
q , matrices S ∈ Z

m×m
q ,U ∈ Z

n×�
q , y �= 0 ∈ Zq and σ ≥√

5 · (1+ ||S||2) ·ω(
√

log m), outputs a random sample Z ∈ Z
2m×�
q from a dis-

tribution that is statistically close to Dσ(ΛU
q (A|yG+AS)). This algorithm is

the composition of two algorithms: T(A|yG+AS) ← ExtendLeft(A, yG,TG,S)
and Z ← SamplePre((A|yG + AS),T(A|yG+AS),U, σ).

Randomness Extraction. We consider a version of left-over hash lemma.
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Lemma 6 [4]. Suppose that m > (n + 1) log2 q + ω(log n) and that q > 2 is a
prime. Let S be an m × k matrix chosen uniformly in {±1}m×k mod q where
k = k(n) is a polynomial in n. Let A and B be matrices chosen uniformly
in Z

n×m
q and Z

n×k
q respectively. Then, for all vectors e ∈ Z

m
q , the distribution

(A,AS,S�e) is statistically close to the distribution (A,B,S�e).

Note that the Lemma holds for every vector e in Z
m
q including low norm vectors.

Noise Rerandomization. We describe the algorithm NoiseGen(R, s) from [28].
On input a matrix R ∈ Z

m×t and s ∈ R
+ such that s > s1(RR�), it first samples

e1 := Re + (s2Im − RR�)
1
2 e′, where Im denotes the identity matrix of order

m, and e ← Dt
σ, e′ ← Dm√

2σ
are independent spherical continuous Gaussian

noises. Then, it samples e2 ← Ds
√

2σ(Zm − e1), and returns e1 + e2. We have
the following Lemma:

Lemma 7 (Noise distribution [28]). Let R ← Z
m×t and s > s1(R). Then,

for all vectors e ← Dσ(Zt), the distribution of Re+NoiseGen(R, s) is statistically
close to D2sσ(Zm).

2.3 Homomorphic Evaluation Procedures

We follow the abstraction of evaluation procedure in the LWE-based ABE scheme
of [13]. Let n,m, k, q = q(n) be positive integers such that m = Θ(n log q) and
G ∈ Z

n×m
q be a fixed matrix obtained by padding In ⊗ (1, 2, 4, 8, . . . , 2	log q
)

with zero columns.

Theorem 4.There exist efficient deterministic algorithms Evalpk,Evalct,Evalsim

such that for any sequence of matrices (B1, . . . ,Bk) ∈ (Zn×m
q )k, for any family

of boolean functions F = {f : {0, 1}k → {0, 1}} with maximum depth d and for
every a = (a1, . . . , ak) ∈ {0, 1}k, the following properties hold:

1. Bf ← Evalpk(f, (B1, . . . ,Bk)) : On input a function f ∈ F and matrices
{Bi}i∈[k], it outputs a matrix Bf ∈ Z

n×m
q .

2. cf ← Evalct(f, ((ai,Bi, ci))k
i=1) : On input a function f ∈ F , ai ∈ {0, 1},

Bi ∈ Z
n×m
q and ci ∈ Z

m
q for i ∈ [k], it outputs a vector cf ∈ Z

m
q such that

if {ci = (aiG + Bi)�s + ei}i∈[k] then cf = (f(a)G + Bf )�s + ef

where a = (a1, . . . ,ak) ∈ {0, 1}k and Bf = Evalpk(f, (B1, . . . ,Bk)). Further-
more, we require that ||ef || < γF · maxi∈[k]||ei||.

3. Sf ← Evalsim(f, ((ai,Si))k
i=1,A) : On input a function f ∈ F , ai ∈

{0, 1},Si ∈ {±1}m×m for i ∈ [k] and A ∈ Z
n×m
q , it outputs a matrix

Sf ∈ Z
m×m
q that satisfies

ASf + f(a)G = Bf where Bf = Evalpk(f, (AS1 + a1G, . . . ,ASk + akG)).

Furthermore, we require that ||Sf ||2 ≤ γF .

For any family F of depth-d boolean functions the noise γF (in worst case) is
upper bounded by O(

√
mmd).
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3 Our Construction of ABIPFE from LWE

In this section, we describe our construction of an ABIPFE scheme based on
the hardness of LWE problem in standard model. In particular, we use the ABE
scheme of [13] and the ALS-IPFE scheme [5] with a slight modification [3,34] in
the distribution of the master secret-key matrix. We describe the modified ALS-
IPFE in Sect. 3 of the full version of this paper [31]. We present our ABIPFE
for a class of functions Fλ = {f : {0, 1}k → {0, 1}}, a predicate space Yλ =
{0, . . . , V (λ) − 1}� and a message space Xλ = {0, . . . , X(λ) − 1}�. In addition,
we assume that |〈x,y〉| < K where K = �V X and Fλ is the class of all circuits
having input length k = k(λ) and depth at most d(λ) = O(log λ). We use the
matrix G, defined in Sect. 2.3, in our construction and security proof.

Setup(1λ, 1�,Fλ): On input 1λ, 1� and Fλ, the setup algorithm defines the param-
eters n = n(λ),m = m(λ), q = q(λ). It then proceeds as follows.
1. Sample (A,TA) ← TrapGen(1n, 1m, q) such that A ∈ Z

n×m
q .

2. Sample random matrices (B1, . . . ,Bk) ← (Zn×m
q )k,D ← Z

n×�
q .

3. Output the master public-key mpk = (A,B1, . . . ,Bk,D) and the master
secret-key msk = TA. We assume that mpk also contains a set of public
parameters param = {n,m, q, �,X, V,K, ρ, σ, τ}.

KeyGen(mpk,msk, f,y) : The key generation algorithm takes as input mpk, msk,
a function f ∈ Fλ and a vector y ∈ Yλ, and works as follows.
1. Compute Bf = Evalpk(f, (B1, . . . ,Bk)) where Bf ∈ Z

n×m
q .

2. Compute Rf ← SampleRight(A,TA,Bf ,D, ρ) so that (A|Bf ) ·Rf = D.
3. Output the secret-key as skf,y = Rf · y. We assume that the secret-key

trivially includes f and y.
Enc(mpk,a,x) : The encryption algorithm takes as input mpk, an attribute a =

(a1, . . . , ak) ∈ {0, 1}k and a message x ∈ X . It proceeds as follows.
1. Compute Ha = (A|a1G + B1| · · · |akG + Bk) ∈ Z

n×m(k+1)
q .

2. Sample s ← Z
n
q and e1 ← Dσ(Zm),e2 ← Dσ(Z�),e3 ← Dτ (Z�), and

matrices Si ← {±1}m×m for i ∈ [k].
3. Set υ = (Im|S1| · · · |Sk)� · e1 ∈ Z

m(k+1)
q .

4. Compute ct1 = H�
a s+υ ∈ Z

m(k+1)
q , ct2 = D�s+e2+e3+� q

K �·x ∈ Z
�
q.

5. Output the ciphertext ct = (ct1, ct2). We assume that the ciphertext
includes the attribute a.

Dec(mpk, skf,y , ct) : The decryption algorithm takes as input mpk, a secret-key
skf,y corresponding to a function f and a predicate vector y and a ciphertext
ct associated with an attribute a. It proceeds as follows.
1. Parse ct = (ct1, ct2) where ct1 = (c0, c1, . . . , ck) ∈ (Zm

q )k+1, ct2 ∈ Z
�
q and

skf,y ∈ Z
2m.

2. Compute cf = Evalct(f, ((ai,Bi, ci))k
i=1) where a = (a1, . . . , ak).

3. Compute ζ ′ = y�ct2 − sk�
f,y · (c0|cf ).

4. Output ζ ∈ {0, . . . , K} which minimizes |� q
K � · ζ − ζ ′|.
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Correctness. For correctness we first observe that ci = (aiG + Bi)�s + S�
i e1

with ||S�
i e1|| < σ

√
m for all i ∈ [k]. Therefore, using Theorem 4, we have

cf = (f(a)G + Bf )�s + ef ∈ Z
m
q where ||ef || < σ

√
m · γF . Consequently,

(c0|cf ) = (A|f(a)G + Bf )�s + (e1|ef ) ∈ Z
2m
q .

Now, the secret-key skf,y = Rf · y where Rf is sampled from Dσ(ΛD
q (A|Bf )).

Thus, (A|Bf ) ·Rf = D and ||Rf || < ρ
√

2m�. Since e2 ← Dσ(Z�),e3 ← Dτ (Z�),
with overwhelming probability we have ||e2|| < σ

√
� and ||e3|| < τ

√
�. Finally,

if f(a) = 0 then the element ζ ′ can be viewed as

ζ ′ = y�ct2 − sk�
f,y · (c0|cf )

= y�(D�s + e2 + e3 +
⌊

q

K

⌋

· x) − (Rf · y)� · ((A|Bf )�s + (e1|ef ))

=
⌊

q

K

⌋

· 〈x,y〉 + y�(e2 + e3) − (Rfy)�(e1|ef ) =
⌊

q

K

⌋

· 〈x,y〉 + error

and |error| < V �(σ + τ) + 2ρσV �m(1 + γF ) with overwhelming probability. To
ensure the correct decryption we need to set q > 4KV �(σ + τ) + 8ρσKV �m(1 +
γF ) so that ζ = 〈x,y〉 minimizes |� q

K � · ζ − ζ ′|.
Theorem 5 (1-bounded coSel-IND Security). Assuming the modified vari-
ant of ALS-IPFE scheme (see [31]) with parameters n, q,m, σ, ρ, α is secure
under LWEq,α,n and the parameters additionally satisfy m ≥ 6n log q, q >
4KV �(σ + τ) + 8ρσKV �m(1 + γF ), the above ABIPFE scheme with τ >
2Cρσ(2

√
m +

√
�)γF for a constant C is 1-bounded coSel-IND secure under the

LWEq,α,n assumption.

Proof. The proof is done by considering the sequence of games used in the selec-
tively secure ABE of [13]. We also incorporate the idea of [3] to simulate the
secret-key queries correspond to the target accepting function. However, we
make crucial changes along the way to let proof go through. As in Definition 2
with Q = 1, we assume that the adversary A submits a target attribute a∗

and a target accepting function f∗ (i.e. f∗(a∗) = 0) before seeing the mas-
ter public-key. A secret-key query (f,y) should satisfy either f(a∗) = 1 or
(f = f∗ ∧ 〈x0,y〉 = 〈x1,y〉) where x0,x1 are the challenge messages chosen
adaptively from Xλ.

Game 0: The is the standard ABIPFE experiment as defined in Definition 2.

Game 1: We modify the setup algorithm. The challenger selects a random
matrix A distributed uniformly over Z

n×m
q , instead of sampling (A,TA) ←

TrapGen(1n, 1m, q). However, a short basis of Λ⊥
q (A) is required to answer A’s

secret-key queries. For that, we enumerate all short bases of Λ⊥
q (A) and select

one of these bases as TA. Note that, from Lemma 2, we have min||B̃|| < O(m)
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where minimum is taken over all ordered bases of Λ⊥
q (A). To apply SampleD

with the input basis B (Theorem 3), we need to set ρ > ||B̃|| · ω(
√

log m). Since
m = Θ(n log q), this suggests to set ρ > n · ω(

√
n).

The challenger is inefficient in this game, but this should not be a problem as
long as we establish statistical indistinguishability between the games [3]. The
matrix A used in game 0 is generated by TrapGen(1n, 1m, q) and Lemma 3 states
that the distribution of A is statistically close to uniform over Zn×m

q . Therefore,
game 0 and game 1 are statistically indistinguishable as required.

Game 2: In this game the public matrix D ∈ Z
n×�
q is programmed by the

challenger as follows. First, it samples Z1,Z2 ← Dρ(Zm×�) and set D1 = AZ1.
Since A submits the target accepting function f∗ before setup, the challenger
computes Bf∗ ← Evalpk(f∗, (B1, . . . ,Bk)) and set D = D1 + Bf∗Z2. In partic-

ular, if we take Z =
(
Z1

Z2

)

∈ Z
2m×�, then D = (A|Bf∗)Z. Instead of computing

Rf∗ ← SampleRight(A,TA,Bf∗ ,D, ρ), the challenger uses Z and answers secret-
key queries for (f∗,y) as skf∗,y = Z · y. Note that, both Rf∗ and Z follow the
same distribution Dρ(Z2m×�), as given in Lemma 5. However, the challenger still
computes Rf ← SampleRight(A,TA,Bf ,D, ρ) and outputs Rf · y as a reply to
a secret-key query corresponding to (f,y) if f(a∗) = 1.

We show that D is uniformly distributed over Z
n×�
q . Specifically, we observe

that for a matrix A uniform over Zn×m
q and a short basis TA the distributions

Dist1 := (A,Z1,D1) s.t. D1 ← Z
n×�, Z1 ← SamplePre(A,TA,D1, ρ),

Dist2 := (A,Z1,AZ1) s.t. Z1 ← Dρ(Zm×�)

are statistically close by Lemma 3. Therefore, D1 = AZ1 is statistically close to
uniform over Zn×�

q and hence the matrix D = D1 +Bf∗Z2 of game 2 is also sta-
tistically close to uniform over Z

n×�
q . Thus, game 1 and game 2 are statistically

indistinguishable.

Game 3: Instead of selecting (B1, . . . ,Bk) uniformly from (Zn×m
q )k, the chal-

lenger first chooses random matrices S∗
i ← {±1}m×m in advance and uses the

challenge attribute a∗ = (a∗
1, . . . , a

∗
k) to set Bi = AS∗

i +a∗
iG for all i ∈ [k]. Note

that, the matrices S∗
1, . . . ,S

∗
k will be utilized to create the challenge cipher-

text ct∗ = (ct∗1, ct
∗
2). In particular, a fixed e1 ← Dσ(Zm) and low-norm vectors

S∗
i · e1 ∈ Z

m for all i ∈ [k] are used to create ct∗1.
Observe that the distribution (A,AS∗

i ,S
∗
i e1) is statistically close to the dis-

tribution (A,B′,S∗
i e1) by lest-over hash lemma (Lemma 6) where B′ is uniform

over Zn×m
q . This holds for all i ∈ [k] and hence all matrices AS∗

i are statistically
close to uniform over Z

n×m
q . In other words, given (S∗

1| · · · |S∗
k) · e1, all matrices

Bi = AS∗
i +a∗

iG of game 3 are statistically close to uniform as in game 2. Thus,
game 2 and game 3 are statistically indistinguishable.
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Game 4: In this game, we make the challenger efficient, that is the short basis
TA is not required in the key query phase. Recall that a secret-key query (f,y)
of A should satisfy either f(a∗) = 1 or (f = f∗ ∧ 〈x0,y〉 = 〈x1,y〉). If f =
f∗, the challenger uses the secret matrix Z to send the secret-key as skf∗,y =
Z · y as in the previous game. When f(a∗) = 1, instead of sampling Rf ←
SampleRight(A,TA,Bf ,D, ρ) satisfying, (A|Bf )Rf = D the challenger does
the following.

1. Compute Sf = Evalsim(f, ((a∗
i ,Si))k

i=1,A) which satisfies ASf +G = Bf and
||Sf ||2 < γF by Theorem 4.

2. Sample Rf ← SampleLeft(A,Sf , 1,D, ρ) which is distributed according to
Dρ(ΛD

q (A|ASf + G)) by Lemma 5.
3. Finally, the challenger outputs skf,y = Rf · y

Observe that Rf satisfies (A|ASf + G)Rf = (A|Bf )Rf = D as required. To
apply SampleLeft, we need to set ρ ≥ √

5·(1+||Sf ||2)·ω(
√

log m). We also require
ρ > n · ω(

√
n) as suggested in game 2. Combining, we set ρ > nγF · ω(

√
n). The

public parameters and secret-key queries in this game are statistically close to
that of game 3. Hence, A’s advantage in distinguishing between game 3 and
game 4 is at most negligible in λ.

Game 5: In this game, we rely on the security of ALS-IPFE (Sect. 3 of the
full version [31]) to establish the indistinguishability of the challenge ciphertext
encrypting xb for b ← {0, 1}. We consider an intermediate adversary B that
interacts with the ALS-IPFE challenger. Let B receives the master public-key
mpkALS = (AALS,DALS) from the ALS-IPFE challenger and a pair of attribute
and target accepting function (a∗, f∗) from A. Now, B simulates A as follows.
B(1λ,mpkALS,a∗, f∗):

Setup. Pick Z2 ← Dρ(Zm×�) and S∗
i ← {±1}m×m for i ∈ [k], and set

A = A�
ALS, Bi = AS∗

i − a∗
iG ∀ i ∈ [k], D = D�

ALS + Bf∗Z2,

where a∗ = (a∗
1, . . . , a

∗
k) and Bf∗ = Evalpk(f∗, (B1, . . . ,Bk)). It sends the

master public-key as mpk = (A,B1, . . . ,Bk,D).
Secret-Key Queries. Suppose A asks a secret-key for a tuple (f,y).

(a) If f = f∗ then B requests a secret-key for y from the ALS-IPFE chal-

lenger. Let skALS
y be the secret-key. Then B sends skf∗,y =

(
(skALS

y )�

Z2y

)

as the secret-key for (f∗,y).
(b) If f(a∗) = 1 then B uses Evalsim and SampleLeft to obtain a matrix

Rf ∈ Z
2m×� and outputs Rf · y as in the previous game.

Challenge Ciphertext. Let (x0,x1) be the challenge messages submitted by A.
Then, B submits the same to the ALS-IPFE challenger and receives ctALS

b =
(ctALS

1 , ctALS
2 ). Now, B computes and sends the challenge ciphertext ct∗ =

(ct∗1, ct
∗
2) for A as

ct∗1 = ctALS
1 + (S∗)� · ctALS

1 and ct∗2 = ctALS
2 + Z�

2 · cf∗ + NoiseGen(Z�
2 , s)
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where we take S∗ = (S∗
1| · · · |S∗

k) ∈ {±1}m×km, ct∗1 = (c0, c1, . . . , ck) ∈
(Zm

q )k+1, cf∗ = Evalct(f∗, ((a∗
i ,Bi, ci))k

i=1) and NoiseGen is the randomized
algorithm with s > s1(Z�

2 ) from Lemma 7.

We show that the distribution of the master public-key, secret-key queries and
the challenge ciphertext are statistically close to that of in game 4. Let DALS =
ZALSAALS for some matrix ZALS ← Dρ(Z�×m). Therefore, we have

D = (ZALSAALS)� + Bf∗Z2 = AZ�
ALS + Bf∗Z2 = (A|Bf∗)Z

where Z =
(
Z�

ALS

Z2

)

is distributed according to Dρ(Z2m×�). Note that, ZALS

plays the role of master secret-key of ALS-IPFE and the secret-keys of the form

skf∗,y =
(
Z�

ALSy

Z2y

)

= Z · y are distributed similar to the previous game. Thus,

the master public-key mpk and the secret-keys skf∗,y for (f∗,y) are distributed
according to game 4. Moreover, secret-keys for (f,y) satisfying f(a∗) = 1 are
identically distributed as in game 4.

Now, let ctALS
1 = AALSs + e1 and ctALS

2 = DALSs + e2 + � q
K � · xb for some

e1 ← Dσ(Zm) and e2 ← Dσ(Z�). Hence, we can write the challenge ciphertext

ct∗1 = ctALS
1 + (S∗)� · ctALS

1 = A�s + e1 + (S∗)� · (A�s + e1)

= (A|AS∗)�s + (Im|S∗)� · e1 = H�
a∗s + υ

where Ha∗ = (A|a∗
1G + B1| · · · |a∗

kG + Bk) = (A|AS∗) and υ = (Im|S∗)� · e1.
Observe that, by Theorem 4, Evalct(f∗, ((a∗

i ,Bi, ci))k
i=1) = (f∗(a∗)G+Bf∗)�s+

ef∗ = B�
f∗s + ef∗ = cf∗ with ||ef∗ || < σ

√
m · γF which implies

ct∗2 = ctALS
2 + Z�

2 · cf∗ + NoiseGen(Z�
2 , s)

= (D − Bf∗Z2)�s + e2 +
⌊ q

K

⌋ · xb + Z�
2 · (B�

f∗s + ef∗) + NoiseGen(Z�
2 , s)

= D�s + e2 + Z�
2 ef∗ + NoiseGen(Z�

2 , s) +
⌊ q

K

⌋ · xb

From Lemma 1, we have s1(Z�
2 ) ≤ Cρ(2

√
m +

√
�) and Lemma 7 implies that

Z�
2 ef∗ + NoiseGen(Z�

2 , s) is distributed statistically close to Dτ (Z�) where τ >

2Cρσ(2
√

m +
√

�)γF . Therefore, we can write ct∗2 = D�s + e2 + e3 + � q
K � · xb

where e2,e3 are distributed as Dσ(Z�) and Dτ (Z�) respectively. This proves that
the challenge ciphertext is distributed statistically close to that of in the previous
game. Also, the advantage of A in guessing the challenge bit is upper bounded
by the advantage of B in breaking the security of ALS-IPFE scheme.

Parameter Setting. First we choose n,m, q, σ, ρ as in ALS-IPFE described in
the full version [31]. We modify them step by step according to our requirement
for correctness and security of our ABIPFE scheme. The modifications are made
without violating the security of ALS-IPFE.
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1. For TrapGen algorithm we set m ≥ 6n log q.
2. To obtain a short basis TA for a uniformly chosen matrix A as required in

game 1, we set ρ > n · ω(
√

n).
3. The parameters already satisfy the constrain in the left-over hash lemma

(game 3 of the security proof).
4. For SampleRight and SampleLeft we need to set ρ > max{||T̃A|| ·

ω(
√

log m),
√

5(1 + ||Sf ||2)ω(
√

log m)} where ||Sf ||2 < γF . This is due to
correctness and game 4 of the security proof. Thus, combining with step 2,
we can set ρ > nγF · ω(

√
n).

5. To apply NoiseGen in game 5, we need to keep τ > 2Cρσ(2
√

m +
√

�)γF .
6. For the hardness of LWEq,α,n we want the standard deviation to satisfy αq >

2
√

n.

Finally, the parameters of our ABIPFE can be set as

q > 4KV �(σ + τ) + 8ρσKV �m(1 + γF ), σ = 2C ′αq(
√

m +
√

n +
√

�)

m ≥ 6n log q, ρ > nγF · ω(
√

n), τ > 2Cρσ(2
√

m +
√

�)γF

where C (as in game 5), C ′ (as in ALS-IPFE) are constants.

4 Generic Construction of ABMIPFE from ABIPFE

We define an ABMIPFEn,m scheme with access control given by a class of
polynomial size circuits where n denotes the number of encryption slots and
m denotes the number of attributes supported by each slot. Consider a class
of attributes Att = {((a(j)

1 , . . . ,a(j)
n ))m

j=1} where i-th encryption slot is asso-

ciated to the attribute set Atti = {a(1)
i , . . . ,a(m)

i } and a(j)
i ∈ {0, 1}k for all

i ∈ [n], j ∈ [m]. We represent the attribute class as Att = [Att1| · · · |Attn]. The
i-th encryption slot encrypts a vector x ∈ Z

�
q with respect to an attribute a(j)

i

for j ∈ [m]. We denote Fd,k
λ by the set of all polynomial size circuits with input

space {0, 1}k and depth bounded by d. A secret-key is generated for a tuple
(S ⊆ [n], (fi,yi)i∈S) where fi ∈ Fd,k

λ , yi ∈ Z
�
q for all i ∈ S. The secret-key allows

a receiver to learn
∑

i∈S〈xi,yi〉 if fi(a
(j)
i ) = 0 for all i ∈ S where xi is encrypted

for the i-th slot with an attribute a(j)
i ∈ Atti. For security, we first consider adap-

tive indistinguishability (Adp-IND) where the adversary A has the freedom to
choose secret-key queries and encryption queries depending on the mpk. We also
define a weaker security notion called Q-bounded co-adaptive indistinguishabil-
ity (coAdp-IND) where A is restricted to submit all functions f1, . . . , fQ to be
queried along with the predicate vectors in the key query phase before seeing
the mpk. This is similar to the coSel-IND notion of ABIPFE. We formally define
ABMIPFEn,m and its security notions in the full version [31].

We utilize the transformation of [2,3] to convert a single input ABIPFE
into an ABMIPFEn,1. Let us consider an ABIPFE for the function class
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Fk,d
λ along with the predicates space {0, . . . , V (λ) − 1}� and message space

{0, . . . , X(λ) − 1}�. Combining we say that the ABIPFE is associated with a
class (Fk,d

λ ,F�,V,X
λ ). We construct an ABMIPFEn,1 for a class (Fk,d

λ ,F�,V,X
λ )

using an ABIPFE associated with a class (Fk,d
λ ,F�,V,3X

λ ). The ABIPFE should
satisfy the structural properties namely two step decryption and linear encryp-
tion as required for the transformation of [2,3]. We describe the properties as
follows:

1. Two step decryption. An ABIPFE scheme (Setup, KeyGen, Enc, Dec) admits
additional PPT algorithms Setup∗,Dec1,Dec2 and an encoding function E
such that
(a) For all λ, �, n, V,X, Setup∗(1λ,F�,V,X

λ ,Fk,d
λ , 1n) uses Setup(1λ, 1�,Fk,d

λ )
to outputs (mpk, msk) where mpk includes a bound B ∈ N, a group
description (G, ◦) of order L > n�V X, which defines an encoding function
E : ZL × Z → G.

(b) For all x ∈ Z
�,a ∈ {0, 1}k, ct ← Enc(mpk,a,x) and y ∈ Z

�, f ∈
Fk,d

λ , skf,y ← KeyGen(sk, f,y), we have

Dec1(mpk, skf,y , ct) = E(〈x,y〉 mod L, noise)

for some noise ∈ N. Furthermore, for all x,y ∈ Z
� we have Pr[noise <

B] = 1 − negl(λ). We also require that E(γ, 0) is efficiently computable
for any γ ∈ ZL. Moreover, the encoding is linear, that is for γ, γ′ ∈
ZL, noise, noise′ ∈ Z, we have

E(γ, noise) ◦ E(γ′, noise′) = E(γ + γ′ mod L, noise + noise′)

(c) For all γ < n�V X and noise < nB, Dec2(E(γ, noise)) = γ.
2. Linear encryption. There exists a deterministic algorithm Add such that for

all a ∈ {0, 1}k,x,x′ ∈ Z
�, the distributions Add(Enc(mpk,a,x),x′) and

Enc(mpk,a,x + x′ mod L) are identically distributed. This property will be
used in the security proof.

We present the transformation of ABMIPFEn,1 from ABIPFE = (Setup′,
KeyGen′,Enc′,Dec′) which satisfies the above properties.

Setup(1λ, 1�,Fd,k
λ ,Att) : It computes (mpki,mski) ← Setup∗(1λ,F�,V,3X

λ ,

Fk,d
λ , 1n) and samples ui ← Z

�
L for i ∈ [n]. Then it outputs (mpk =

{mpki}i∈[n],msk = ({mski,ui}i∈[n]), {eki = ui}i∈[n]). We take Att =
(a1, . . . ,an) ∈ {0, 1}kn as each party has a single attribute.

KeyGen(msk,S, (fi,yi)i∈S) : If fi(ai) = 1 for some i ∈ S then returns ⊥. Oth-
erwise, it computes skfi,yi

← KeyGen′(mski, fi,yi) for i ∈ S and outputs
(S, skf,y = ({skfi,yi

}i∈S, z =
∑

i∈S〈ui,yi〉)). We assume that the secret-key
includes a description of (fi,yi)i∈S.

Enc(mpk, eki,ai,xi) : It returns cti ← Enc′(mpki,ai,xi + eki mod L).
Dec(mpk,S, skf,y , {cti}n

i=1) : It parses skf,y = ({skfi,yi
}i∈S, z) and computes

ζi ← Dec1(mpki, skfi,yi
, cti) for i ∈ S. Then it returns Dec2(◦i∈S ζi ◦E(−z, 0)).
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Correctness. Let us assume that fi(ai) = 0 for all i ∈ S. By the correctness of
Dec1 and Dec2 of ABIPFE, we see ζi = E(〈xi+ui,yi〉 mod L, noisei) for all i ∈ S
where |noisei| < B with high probability. Since z =

∑
i∈S〈ui,yi〉, by the linearity

of E , we have ◦i∈S ζi ◦ E(−z, 0) = E(
∑

i∈S〈xi + ui,yi〉 − z mod L, noise) =
E(

∑
i∈S〈xi,yi〉 mod L, noise) where |noise| < nB. Finally, |∑i∈S〈xi,yi〉| < L

implies Dec2(◦i∈S ζi ◦ E(−z, 0)) returns
∑

i∈S〈xi,yi〉.
Theorem 6. Assuming the single input ABIPFE is Sel-IND secure (respectively,
Q-bounded coSel-IND secure) for a class (Fk,d

λ ,F�,V,3X
λ ), then the above construc-

tion of ABMIPFEn,1 for the class (Fk,d
λ ,F�,V,X

λ ) is Adp-IND secure (respectively,
Q-bounded coAdp-IND secure). More specifically, for any PPT adversary A, there
exists a PPT adversary B such that

Advxx-IND
ABMIPFEn,1,A(λ) ≤ n · Advyy-IND

ABIPFE,B(λ) + negl(λ)

where (xx, yy) ∈ {(Adp,Sel), (coAdp, coSel)}.
We prove this Theorem in the full version [31]. Our 1-bounded coSel-IND secure
ABIPFE of Sect. 3 can be fit into the above transformation. Formally, we state
the result in the following corollary which is proved in the full version [31].

Corollary 1. Assuming LWEq,α,n is hard with q, α, n are as defined at the end
of Sect. 3, there exists a κ-bounded coAdp-IND secure ABMIPFEκ,1 scheme.

5 Conclusion

We have shown the way of embedding any polynomial-size boolean circuit into
the secret-keys of the existing IPFE scheme [5] and its multi-input variants
[2]. The secret-keys are short and both the secrete-keys and ciphertexts of our
ABIPFEs depend on the depth of the circuits. Moreover, the security is based on
LWE assumption which makes our ABIPFEs post-quantum secure. The notion of
1-bounded coSel-IND security permits the adversary to query many secret-keys
that can decrypt the challenge ciphertexts. This delivers a partial solution to
the open problem in the key-policy setting given by Abdalla et al. [3].

However, the secret-keys that decrypt challenge messages are all correspond-
ing to a single function. Achieving Q-bounded coSel-IND security with Q > 1
or (stronger) Sel-IND security for ABIPFE is a challenging open problem. Other
than strengthening the security of ABIPFE, we can also investigate decentral-
ized ABIPFE [34], attribute-based access control in case of unbounded IPFE
[20] or traceable ABIPFE [18] for a specific class of policies.
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Abstract. Let N = pq be an RSA modulus with balanced prime factors.
In 2018, Murru and Saettone presented a variant of the RSA cryptosys-
tem based on a cubic Pell equation in which the public key (N, e) and the
private key (N, d) satisfy ed ≡ 1 (mod

(
p2 + p + 1

) (
q2 + q + 1

)
). They

claimed that the classical small private attacks on RSA such as Wiener’s
continued fraction attack do not apply to their scheme. In this paper, we
show that, on the contrary, Wiener’s method as well as the small inverse
problem technique of Boneh and Durfee can be applied to attack their
scheme. More precisely, we show that the proposed variant of RSA can
be broken if d < N0.5694. This shows that their scheme is in reality more
vulnerable than RSA, where the bound of vulnerability is d < N0.292.

Keywords: RSA · Factorization · Continued fractions · Small inverse
problem · Coppersmith’s method

1 Introduction

Data transaction during early 70’s was conducted using symmetric cryptosys-
tems which means the same key were used for encryption and decryption pro-
cesses. However, problems on distributing keys arose as the number of users
increased. In 1976, this problem was solved mathematically by Diffie and Hell-
man [10], and improved in 1978 by Rivest, Shamir and Adleman [23]. Rivest,
Shamir and Adleman invented an elegant cryptosytem named RSA which uti-
lized different keys for encryption and decryption algorithms. The construction
of RSA begins with key generation process. Let N = pq be the modulus of RSA
where p and q are large primes. To resist the factorization attacks, it is recom-
mended that p and q should be of the same bitsize, that is q < p < 2q. Let e be an
integer such that gcd(e, φ(N)) = 1 where φ(N) = (p − 1)(q − 1) is Euler-totient
function. Let d ≡ e−1 (mod φ(N)). The key (N, e) is public while p, q, d, φ(N)
are kept secret. For encryption and decryption processes, both involve modulo
c© Springer Nature Switzerland AG 2021
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operations. To encrypt a message m, one needs to compute c ≡ me (mod N)
while to decrypt and retrieve back the message, one needs to compute m ≡ cd

(mod N).
It can be seen that the private exponent d is needed to decrypt the cipher-

text c. Note that the cost incurred to decrypt increases directly proportional
with the size of d. Thus, one would prefer to use small value of d. Unfortu-
nately, Wiener [27] showed that the cryptosystem that employ a small value of
d is vulnerable. Wiener showed that for d < 1

3N
1
4 , one could retrieve d via the

continued fraction expansion of e
N and thus factor the modulus N . This bound

was then improved by Boneh and Durfee [6] up to d < N0.292. Later in 2004,
Blömer and May [2] described a generalized Wiener’s attack. Utilizing the com-
bination of lattice reduction and continued fraction, Blömer and May showed
that if there exists three integers x, y, z such that ex−yφ(N) = z with x < 1

3N
1
4

and |z| < exN−3/4, then N can be factored.
Since then, researchers studied thoroughly on this cryptosystem in order to

find any other weakness that could lead to the vulnerabilities of RSA. They
found that, any leakage on either of the primes could lead to the factorization of
N . In 1996, Coppersmith [8] showed that RSA is susceptible given only half of
the most significant bits of one of the primes. Later, Boneh et al. [4] showed that
if one knew half of the least significant bit of either prime p or q, then RSA can
be factored. Ernest et al. [11] and Boneh et al. [4] also worked upon this matter
and they showed that indeed RSA is susceptible if one knows some information
on bits of either most significant bits (MSBs) or least significant bits (LSBs) of
private exponents.

Meanwhile, some researchers began to design variants of the RSA cryptosys-
tem purposely to enhance its security. Takagi [25] was the first that designed
a variant of RSA using the modulus N = pr−1q for r ≥ 3 and showed that
this scheme is more efficient in both its key generation and decryption algo-
rithms. However, the studies from [1,5,24] showed that this variant of RSA is
also insecure from attacks if certain conditions are satisfied.

In 2018, another scheme was invented by Murru and Saettone [21]. They
introduced a new variant of the RSA cryptosystem based on the cubic Pell
equation x3 + ry3 + r2z3 − 3rxyz = 1. In their cryptosystem, they utilized the
standard modulus N = pq, a public exponent e, a private exponent d, and the
key equation ed− kψ(N) = 1 with ψ(N) = (p2 + p+1)(q2 + q +1). The authors
investigated the proposed cryptosystem for efficiency and security, and claimed
that the attack of Wiener is not usable against their scheme.

In this paper, we show that the attack of Wiener, as well as the method of
Boneh and Durfee, can be applied to factor N = pq with q < p < 2q when the
decryption exponent d is sufficiently small. More precisely, we set e = Nα, and
d = N δ, and we show that Wiener’s attack can solve the equation ed−kψ(N) = 1
and factor N if δ < 5

4 − 1
2α. In the normal case where e ≈ N2, the bound becomes

d < N
1
4 . Astonishingly, this is roughly the same bound than the classical bound

obtained by Wiener’s method for standard RSA. Similarly, we show that the
method of Boneh and Durfee can be applied if δ < 7

3 − 2
3

√
3α + 1. When e ≈ N2,
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the bound reduces to d < N0.5694. Here, we observe that 0.5694 is twice the
weaker bound 0.2847 obtained by Boneh and Durfee [6] with the small inverse
problem attack on RSA.

The framework of this paper is as follows. In Sect. 2 and Sect. 3, we describe
some important tools and useful lemmas respectively. In Sect. 4, we present our
first results while Sect. 5 presents our second results. We conclude the paper in
Sect. 6.

2 Preliminaries

In this section, we summarize the scheme of Murru and Saettone [21], and
describe briefly on some important tools that are needed in our attacks.

2.1 The Scheme of Murru and Saettone

Let (F,+, ·) be a field, and r ∈ F be a non-cubic integer. Then the polynomial
t3 − r is irreducible in F[t], and the quotient field A = F[t]/

(
t3 − r

)
is the set of

elements of the form x + ty + t2z with (x, y, z) ∈ F
3. A product • between the

elements of A can be conducted by the rule

(x1, y1, z1) • (x2, y2, z2)
= ((x1x2 + (y2z1 + y1z2)r, x2y1 + x1y2 + rz1z2, y1y2 + x2z1 + x1z2).

The norm of an element x + ty + t2z ∈ A is defined by

N(x, y, z) = x3 + ry3 + r2z3 − 3rxyz.

The cubic Pell equation is defined by the solutions (x, y, z) ∈ F
3 of the equation

N(x, y, z) = 1. The solutions form the commutative group (C, •) where

C =
{
(x, y, z) ∈ F

3, x3 + ry3 + r2z3 − 3rxyz = 1
}

.

In (C, •), the identity is (1, 0, 0) and the inverse of (x, y, z) ∈ C is (x, y, z)−1 =(
x2 − ryz, rz2 − xy, y2 − xz

)
. Next, let B = A

∗/F∗ be the quotient group. Let
α �∈ F be fixed. The elements of B are of one of the forms m + nt + t2, or m + t,
or 1. As a consequence, B reduces to

B = (F × F) ∪ (F × {α}) ∪ {(α, α)},

where (α, α) will play the point at infinity for the addition operation 	 defined
by the following cases

– (m,α) 	 (p, α) = (mp,m + p),
– if n + p �= 0, then (m,n) 	 (p, α) =

(
mp+r
n+p , m+np

n+p

)
,

– if n + p = 0 and m − n2 �= 0, then (m,n) 	 (p, α) =
(

mp+r
m−n2 , α

)
,

– if n + p = 0 and m − n2 = 0, then (m,n) 	 (p, α) = (α, α),
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– if m + p + nq �= 0, then (m,n) 	 (p, q) =
(

mp+(n+q)r
m+p+nq , np+mq+r

m+p+nq

)
,

– if m+p+nq = 0 and np+mq +r �= 0, then (m,n)	 (p, q) =
(

mp+(n+q)r
np+mq+r , α

)
,

– if m + p + nq = 0 and np + mq + r = 0, then (m,n) 	 (p, q) = (α, α),

Then (B,	) is a commutative group, and the scheme of Murru and Saettone [21]
is based on the cubic Pell equation x3 + ry3 + r2z3 − 3rxyz = 1 where r is
a non-cubic integer. When F = Z/pZ where p is a prime number, one can
take α = ∞, and A = Fp3 is the Galois field with p3 elements. Hence, B =
Bp is a cyclic group of order p2 + p + 1, and for every (m,n) ∈ Bp, one has
(m,n)�(p2+p+1) = (α, α) (mod p) where x�k = x 	 x 	 · · · x (k times). Using
these facts, a variant of the RSA cryptosystem can be built by choosing an RSA
modulus N = pq, an integer r which is non-cubic modulo p, q, and N , and by
combing the cyclic groups Bp and Bq. In this scheme, the public exponent is an
integer e satisfying gcd

(
e,

(
p2 + p + 1

) (
q2 + q + 1

))
= 1. To encrypt a message

M ∈ B, the operation is C = M�e (mod N), and to decrypt C, the operation is
M = C�d (mod N) where d ≡ e−1 (mod

(
p2 + p + 1

) (
q2 + q + 1

)
). We notice

that the idea of constructing a variant of RSA based on a cubic curve has already
been used in [7,16–18]. We also notice that the XTR cryptosystem [20] uses the
arithmetic that consists of representing the elements of F∗

p6 with order dividing
p2 − p + 1 by their trace over F

2
p.

In [21], the efficiency and the security of the RSA variant are studied. The
authors claim that classical small exponent attacks such as Wiener’s continued
fraction attack can not be applied since the trapdoor function is not a simple
monomial power as in RSA. In this paper, we show that Wiener’s attack as well
as Boneh and Durfee lattice reduction based attack can be applied to this variant
of RSA. Moreover, we show that it is more vulnerable in general than RSA.

2.2 Continued Fraction

The continued fraction expansion of a real number ξ can be written in the form

ξ = a0 +
1

a1 +
1

a2 +
1

a3 +
1

a4 + · · ·

(1)

where a0 ∈ Z and ai ∈ Z
+ are the partial quotients. The form in (1) is often

expressed as ξ = [a0, a1, . . . , an]. Thus, for i ≥ 0, every rational number r
s , such

that
r

s
= [a0, a1, . . . , an]

is a convergent of the continued fraction expansion of ξ. The continued fraction
expansion is finite if ξ is a rational number. Moreover, r and s are coprime. The
following theorem is a tool to test if a rational number r

s is a convergent of ξ
(see [12], Theorem 184).
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Theorem 1. Let ξ be a positive number. Suppose that gcd(r, s) = 1 and
∣
∣
∣ξ − r

s

∣
∣
∣ <

1
2s2

.

Then r
s is a convergent of the continued fraction expansion of ξ.

2.3 Lattices and Coppersmith’s Method

Let ω and n be two positive integers. Let u1, · · · , uω ∈ R
n be a set of ω linearly

independent vectors. A lattice L is constructed based on the linear combinations
of u1, . . . , uω such that L = {∑ω

i=1 λiui| λi ∈ Z}. For full ranked lattice which
means ω = n, the determinant is defined as det(L) = (det(UUT ))

1
2 = |det(U)|.

In 1982, Lenstra, Lenstra, and Lovász [19] introduced an important algorithm
called LLL that is used to produce a reduced basis with optimal properties.
Their result is described as follows.

Theorem 2 (LLL). Let L be a lattice that is constructed by a basis (u1, . . . , uω).
The LLL algorithm yields a new basis (b1, . . . , bω) of L satisfying

‖b1‖ ≤ . . . ≤ ‖bi‖ ≤ 2
ω(ω−1)

4(ω+1−i) det(L)
1

ω+1−i ,

for i = 1, 2, . . . , ω.

One of the numerous applications of the LLL algorithm is Coppersmith’s method
[8]. The method is suited to find the small solutions of an univariate polyno-
mial modular equation f(x) = 0 (mod N), or a bivariate polynomial equation
f(x, y) = 0. Coppersmith’s method has various applications, especially in crypt-
analysis, and has been extended to more variables. Two of the key ingredients
in Coppersmith’s method are lattice reduction and the following result, as refor-
mulated by Howgrave-Graham [14].

Theorem 3 (Howgrave-Graham). Let h(x, y) =
∑

aijx
iyj ∈ Z[x, y] ∈

Z[x, y] be a polynomial with at most ω monomials and norm ‖h(x, y)‖ =
√∑

a2
ij.

If |x0| < X, |y0| < Y , and

h (x0, y0) ≡ 0 (mod em), ‖h(xX, yY )‖ <
em

√
ω

,

then h (x0, y0) = 0 holds over the integers.

In this paper, we will consider the bivariate modular polynomial equation
f(x, y) = x(y2 + ay + b) + 1 ≡ 0 (mod e), where a, b, and e are fixed integers.
To find the small solutions of this equation, we build a lattice L of dimension ω
with a basis formed by the coefficients of a class of polynomials G(x, y) derived
from f(x, y). Each polynomial G(x, y) is such that G(x, y) ≡ 0 (mod em) for a
fixed integer m. Then, applying the LLL algorithm, we reduce the basis and con-
struct new polynomials h(x, y) such that h(x, y) ≡ 0 (mod em). Under certain
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conditions, we have also h(x, y) = 0 over the integers for some polynomials. Then,
assuming that such polynomials are algebraically independent, we use Gröbner
basis technique to find the common roots. The assumption can be formulated as
follows.

Assumption 1. The lattice reduced basis yields algebraically independent poly-
nomials, and the common roots of these polynomials can be efficiently computed
using the Gröbner basis technique.

3 Useful Lemmas

Let N = pq be an RSA modulus with q < p < 2q. The following result gives the
bounds for p, and q in terms of N (see [22]).

Lemma 1. Let N = pq be the product of two unknown integers with q < p < 2q.
Then √

2
2

√
N < q <

√
N < p <

√
2
√

N.

The former lemma can be used to find an upper and a lower bound for ψ(N).

Proposition 1. Let N = pq be the product of two unknown prime integers with
q < p < 2q, and ψ(N) =

(
p2 + p + 1

) (
q2 + q + 1

)
. Then

(
N +

√
N + 1

)2

< ψ(N) <

(
N +

3
4

√
2
√

N + 1
)2

− 3
8
N.

Proof. Plugging q = N
p in ψ(N) =

(
p2 + p + 1

) (
q2 + q + 1

)
, we get a function

f with p as a variable, namely

f(p) =
(
p2 + p + 1

)
(

N2

p2
+

N

p
+ 1

)
.

The derivative of f at p is

f ′(p) =

(
p2 − N

) (
2p2 + (N + 1)p + 2N

)

p3
.

By Lemma 1, we have p2 > N , which implies f ′(p) > 0. It follows that f
is increasing with p. Also, by Lemma 1, we have

√
N < p <

√
2
√

N . Hence
f

(√
N

)
< f(p) < f

(√
2
√

N
)
, which leads to

(
N +

√
N + 1

)2

< ψ(N) <

(
N +

3
4

√
2
√

N + 1
)2

+
3
8
N.

This terminates the proof. �
The former proposition can be used to find a good approximation for ψ(N).
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Proposition 2. Let N = pq be the product of two unknown prime integers with
q < p < 2q, and

ψ0(N) =
1
2

(
N +

√
N + 1

)2

+
1
2

(
N +

3
4

√
2
√

N + 1
)2

+
3
16

N.

Then
|ψ(N) − ψ0(N)| <

1
2
N

3
2 .

Proof. By Proposition 1, ψ0(N) is the mean value of the two bounds(
N +

√
N + 1

)2

and
(
N + 3

4

√
2
√

N + 1
)2

+ 3
8N . Then

|ψ(N) − ψ0(N)| ≤ 1
2

((
N +

3
4

√
2
√

N + 1
)2

−
(
N +

√
N + 1

)2

+
3
8
N

)

=
1
2

(
3
4

√
2 − 1

) √
N

(
2N +

(
3
4

√
2 + 1

) √
N + 2

)
+

3
16

N

=
(

3
4

√
2 − 1

)
N

3
2

(
1 +

(
3
8

√
2 +

1
2

)
N− 1

2 + N−2

)
+

3
16

N

<
1
2
N

3
2 ,

which is valid for all N > 2. This terminates the proof. �
The following result shows that one can factor the modulus N = pq if ψ(N) is
known.

Proposition 3. Let N = pq be the product of two unknown integers with q < p.
Suppose that ψ(N) =

(
p2 + p + 1

) (
q2 + q + 1

)
is known. Then

p =
1
2

(
S +

√
S2 − 4N

)
, q =

1
2

(
S −

√
S2 − 4N

)
,

where

S =
1
2

(√
(N + 1)2 + 4 (ψ(N) − (N2 − N + 1)) − (N + 1)

)
.

Proof. Expanding ψ(N) =
(
p2 + p + 1

) (
q2 + q + 1

)
and rearranging, we get

(p + q)2 + (N + 1)(p + q) + N2 − N + 1 − ψ(N) = 0.

Solving for p + q, we get

p + q =
1
2

(√
(N + 1)2 + 4 (ψ(N) − (N2 − N + 1)) − (N + 1)

)
.

Let S = 1
2

(√
(N + 1)2 + 4 (ψ(N) − (N2 − N + 1)) − (N + 1)

)
. Using q = N

p ,

we get p2 − Sp + N = 0. Then solving this equation for p, we get

p =
1
2

(
S +

√
S2 − 4N

)
, and q =

1
2

(
S −

√
S2 − 4N

)
.

This gives the result. �
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4 Application of Continued Fractions

In this section, we give an upper bound for d for which the continued fractions
algorithm will succeed to find d and factor the modulus N = pq.

4.1 The Attack

Theorem 4. Let N = pq be the product of two unknown prime numbers with
q < p < 2q. Suppose that ed−kψ(N) = 1 with ψ(N) =

(
p2 + p + 1

) (
q2 + q + 1

)
,

e = Nα, and d = N δ. Then, for 3
2 < α < 5

2 , one can find d and factor N in
polynomial time if

δ <
5
4

− 1
2
α.

Proof. Suppose that ed − kψ(N) = 1 with ψ(N) =
(
p2 + p + 1

) (
q2 + q + 1

)
.

Let

ψ0(N) =
1
2

(
N +

√
N + 1

)2

+
1
2

(
N +

3
4

√
2
√

N + 1
)2

+
3
16

N.

Then
∣
∣
∣
∣
k

d
− e

ψ0(N)

∣
∣
∣
∣ =

|ed − kψ0(N)|
dψ0(N)

≤ |ed − kψ(N)| + k|ψ(N) − ψ0(N)|
dψ0(N)

.

We have |ed − kψ(N)| = 1, and, by Proposition 2, we have |ψ(N) − ψ0(N)| <
1
2N

3
2 . Also, by Proposition 1, we have

ψ(N) >
(
N +

√
N + 1

)2

> N2.

Using this, we get
∣
∣
∣
∣
k

d
− e

ψ0(N)

∣
∣
∣
∣ <

1 + 1
2kN

3
2

dψ0(N)
<

k

2d
· 2 + N

3
2

ψ0(N)

By Proposition 1, we have

ψ0(N) >
(
N +

√
N + 1

)2

> N2 + 2
√

N.

Then ∣
∣
∣
∣
k

d
− e

ψ0(N)

∣
∣
∣
∣ <

k

2d
· 2 + N

3
2

N2 + 2
√

N
=

k

2d
√

N

Now, we have kψ(N) = ed − 1 < ed, which leads to

k

d
<

e

ψ(N)
<

Nα

N2
= Nα−2.

We then obtain ∣
∣
∣
∣
k

d
− e

ψ0(N)

∣
∣
∣
∣ <

1
2

Nα−2

√
N

=
1
2
Nα− 5

2 .
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Now, if α − 5
2 < −2δ, that is δ < 5

4 − 1
2α, then

∣
∣
∣
∣
k

d
− e

ψ0(N)

∣
∣
∣
∣ <

1
2d2

.

Consequently, by Theorem 1, k
d is a convergent of e

ψ0(N) that can be computed
by the continued fraction algorithm. Using k

d in ed−kψ(N) = 1, we get ψ(N) =
ed−1

k . By Proposition 3, this leads to the values of the prime factors p and
q. Observe that we must have δ > 0, which implies that 5

4 − 1
2α > 0, and

consequently α < 5
2 . Also, we must have δ + α > 2. This implies that α > 3

2 . �
If e is a full size exponent, that is e ≈ N2, then the bound on δ becomes δ < 1

4 ,
which is the bound that can be attained by applying Wiener’s method to the
standard RSA.

4.2 A Numerical Example

As an example for the continued fraction attack, let us consider the small public
key

N = 232133791034339655955539211937770616372332996733998207,
e = 380450490442297682094223716703548547490913325181786182\

14247652734641735300091007341624503250212580335918003.

We have e ≈ Nα with α ≈ 1.997. We apply the continued fraction algorithm to
e

ψ0(N) and get the first 30 partial quotients

[0, 1, 2, 2, 2, 23, 2, 12, 5, 2, 2, 8, 8, 1, 10, 1, 1, 1, 17, 6, 1, 1, 29, 1, 2, 1, 34, 22, 2, 1, 10, . . .]

All the corresponding convergents are candidates for k
d . We consider only the

convergents such that ψ = ed−1
k is an integer. This happens for the 2th, 3th, 4th

and 26th convergents. Among them, we consider only the convergents such that
the system of equations

{(
p2 + p + 1

) (
q2 + q + 1

)
= ψ,

pq = N,

has a solution as given in Proposition 3. This happens only for the 26th conver-
gent, that is for k

d = 14646831653369
20745421813476 . It leads to

ψ(N) = 53886096939974470038369301629051749283201431422018206\
725952642886800244273357202657271138657794039600145283,

and, by Proposition 3, we get

p = 544726659808151712460129079,
q = 426147292141154398781533433.

We observe that d ≈ N δ with δ ≈ 0.249, which satisfies the condition of Theo-
rem 4, that is δ < 5

4 − 1
2α ≈ 0.251.
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5 Application of Coppersmith’s Method

Let e and d be the public and the private exponent such that ed−kψ(N) = 1 with
ψ(N) =

(
p2 + p + 1

) (
q2 + q + 1

)
. In this section, we focus on solving the small

inverse problem x(y2+ay+b)+1 (mod e), where a = N +1 and b = N2−N +1.
We then apply the method to show that one can factor N if k or d is sufficiently
small.

5.1 The Small Inverse Problem

Theorem 5. Let N = pq be the product of two unknown prime factors with q <
p < 2q. Let a = N +1 and b = N2 −N +1. Suppose that x

(
y2 + ay + b

)
+1 ≡ 0

(mod e) with e = Nα, y < 2
√

2N
1
2 , and x = Nγ . Then, for 1 < α < 15

4 , one
can find x and y in polynomial time if

γ < α +
1
3

− 2
3
√

3α + 1.

Proof. Let N = pq be an RSA modulus. Let e be a public exponent satisfying
x

(
y2 + ay + b

)
+ 1 ≡ 0 (mod e) where a = N + 1 and b = N2 − N + 1. Con-

sider the polynomial f(x, y) = x
(
y2 + ay + b

)
+ 1. The small solutions of the

former equation could be found by Coppersmith’s method [8] combined with the
extended strategy of Jochemsz and May [15]. Let m and t be positive integers.
For 0 ≤ k ≤ m, define the set

Mk =
⋃

0≤h≤t

{xiyj+h
∣
∣
∣ xiyj is a monomial of fm(x, y)

and
xiyj

(xy2)k
is a monomial of fm−k(x, y)}.

We have

fm(x, y) =
m∑

i1=0

i1∑

j1=0

i1−j1∑

j2=0

(
m

i1

)(
i1
j1

)(
i1 − j1

j2

)
aj2bi1−j1−j2xi1y2j1+j2 .

It follows that xiyj is a monomial of fm(x, y, z) if

i = 0, . . . ,m, j = 0, . . . , 2i.

Then, we deduce that xiyj is a monomial of fm−k(x, y) if

i = 0, . . . ,m − k, j = 0, . . . , 2i.

It follows that, if xiyj is a monomial of fm(x, y), then xiyj

(xy2)k is a monomial of

fm−k(x, y) if i = k, . . . ,m, j = 2k, . . . , 2i. Hence, the set Mk is as follows

xiyj ∈ Mk if i = k, . . . ,m, j = 2k, . . . , 2i + t.
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Similarly, we have

xiyj ∈ Mk+1 if i = k + 1, . . . , m, j = 2k + 2, . . . , 2i + t.

Then xiyj ∈ Mk

∖
Mk+1 if

i = k, . . . ,m, j = 2k, 2k + 1 or i = k, j = 2k + 2, . . . , 2i + t.

For 0 ≤ k ≤ m, we define the polynomials

gk,i,j(x, y) =
xiyj

(xy2)k
f(x, y)kem−k with xiyj ∈ Mk

∖
Mk+1.

They reduce to one of the following polynomials

gk,i,j(x, y) = xi−kyj−2kf(x, y)kem−k,

for k = 0, . . . m, i = k, . . . ,m, j = 2k, 2k + 1,

or k = 0, . . . m, i = k, j = 2k + 2, . . . , 2i + t.

Next, define the lattice L spanned by the coefficient vectors of the polynomials
gk,i,j(xX, yY ) where X and Y are positive integers satisfying

X = Nγ , Y = 2
√

2N
1
2 .

The rows of the matrix of the lattice are denoted gk,i,j and ordered following
the natural order of (i, j), completed by k. Similarly, the monomials xiyj are
ordered as in the natural order of (i, j). In Table 1, we present an example of the
matrix of the lattice for m = 2, t = 2, where every symbol � is a non zero entry.

We obtain a left triangular matrix and its determinant is the product of the
diagonal terms, where only X, Y , and e are used. Hence, the determinant is of
the form

det(L) = XnX Y nY ene . (2)

Table 1. The matrix of the lattice for m = 2, t = 2.

1 y y2 x xy xy2 xy3 xy4 x2 x2y x2y2 x2y3 x2y4 x2y5 x2y6

g0,0,0 e2 0 0 0 0 0 0 0 0 0 0 0 0 0 0

g0,0,1 0 Y e2 0 0 0 0 0 0 0 0 0 0 0 0 0

g0,0,2 0 0 Y 2e2 0 0 0 0 0 0 0 0 0 0 0 0

g0,1,0 0 0 0 Xe2 0 0 0 0 0 0 0 0 0 0 0

g0,1,1 0 0 0 0 XY e2 0 0 0 0 0 0 0 0 0 0

g1,1,2 � 0 0 � � XY 2e 0 0 0 0 0 0 0 0 0

g1,1,3 0 � 0 0 � � XY 3e 0 0 0 0 0 0 0 0

g1,1,4 0 0 � 0 0 � � XY 4e 0 0 0 0 0 0 0

g0,2,0 0 0 0 0 0 0 0 0 X2e2 0 0 0 0 0 0

g0,2,1 0 0 0 0 0 0 0 0 0 X2Y e2 0 0 0 0 0

g1,2,2 0 0 0 � 0 0 0 0 � � X2Y 2e 0 0 0 0

g1,2,3 0 0 0 0 � 0 0 0 0 � � X2Y 3e 0 0 0

g2,2,4 � 0 0 � � � 0 0 � � � � X2Y 4 0 0

g2,2,5 0 � 0 0 � � � 0 0 � � � � X2Y 5 0

g2,2,6 0 0 � 0 0 � � � 0 0 � � � � X2Y 6
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Define

S(z) =
m∑

k=0

m∑

i=k

2k+1∑

j=2k

z +
m∑

k=0

k∑

i=k

t∑

j=2k+2

z

We set t = mτ , where τ ≥ 0 will be optimised later. The exact values of nX ,
nY , and ne, as well as the dimension ω of the lattice, and their approximations
are

nX = S(i) =
1
6
m(m + 1)(4m + 3τ + 5)

=
1
6
(3τ + 4)m3 + o(m3)

nY = S(j) =
1
6
(m + 1)

(
4m2 + 6mτ + 3τ2 + 5m + 3τ

)

=
1
6

(
3τ2 + 6τ + 4

)
m3 + o(m3)

ne = S(m − k) =
1
6
m(m + 1)(4m + 3τ + 5)

=
1
6
(3τ + 4)m3 + o(m3)

ω = S(1) = (m + 1)(m + 1 + τ)

= (τ + 1)m2 + o(m2).

(3)

In order to combine Theorem 3 and Theorem 2 for i = 2, we need

2
ω
4 det(L)

1
ω−1 <

em

√
ω

,

which gives

det(L) <
2− ω(ω−1)

4

(
√

ω)ω−1 em(ω−1).

Combining with (2), we get

ene−mωXnX Y nY <
2− ω(ω−1)

4

(
√

ω)ω−1 e−m. (4)

Substituting the values of nX , nY , ne, and ω from (3) as well as X = Nγ and
Y = 2

√
2N

1
2 in (4), taking logarithms, and dividing by log(N), we get

3τ2 + 6(γ − α + 1)τ + 4(2γ − α + 1) < −ε1,

where ε1 is a small positive constant, that depends on m and N . The optimal
value for τ in the left side is τ0 = α − γ − 1. It gives

−3γ2 + 2(1 + 3α)γ − 3α2 + 2α + 1 < −ε1,
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which is true if

γ < α +
1
3

− 2
3
√

3α + 1.

We need γ ≥ 0. This is satisfied if

α +
1
3

− 2
3
√

3α + 1 ≥ 0,

that is α ≥ 1. On the other hand, we need τ0 = α − γ − 1 ≥ 0, that is γ ≤ α − 1.
Hence, for α ≥ 1, we have

γ < min
(

α − 1, α +
1
3

− 2
3
√

3α + 1
)

= α +
1
3

− 2
3
√

3α + 1.

Using two vectors in the LLL reduced basis, we form two polynomials G1(x, y),
G2(x, y) satisfying

G1(x, y) = G2(x, y) = 0.

Assuming that the polynomials are algebraically independent, we apply resultant
techniques or Gröbner basis method to find the solution (x, y). This terminates
the proof. �

5.2 The Attack with Small k

As an application of the method of Theorem 1, we have the following result.

Corollary 1. Let N = pq be the product of two unknown prime factors with
q < p < 2q. Suppose that ed−kψ(N) = 1 with ψ(N) =

(
p2 + p + 1

) (
q2 + q + 1

)
,

e = Nα, and k = Nγ . Then, for 1 < α, one can factor N in polynomial time if

γ < α +
1
3

− 2
3
√

3α + 1.

Proof. Let N = pq be an RSA modulus. Let e be a public exponent satisfying
ed − kψ(N) = 1, with ψ(N) =

(
p2 + p + 1

) (
q2 + q + 1

)
, e = Nα, and k = Nγ .

Since (
p2 + p + 1

) (
q2 + q + 1

)
= (p + q)2 + a(p + q) + b

where a = N + 1 and b = N2 − N + 1, then the equation ed − kψ(N) = 1 can
be rewritten as

k
(
(p + q)2 + a(p + q) + b

)
+ 1 ≡ 0 (mod e).

Consider the polynomial f(x, y) = x
(
y2 + ay + b

)
+1. Then (x0, y0) = (k, p+q)

is a solution of the polynomial modular equation f(x, y) ≡ 0 (mod e). The
equation can be solved by the method of Theorem 5 if γ < α + 1

3 − 2
3

√
3α + 1.

Using p + q = y0, and pq = N , this leads to the factorization of N . �
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Let us present a small numerical example for Corollary 1. Consider

N = 437444022784453, e = 37003639176520939574044739800.

Since e ≈ N1.951, then the bound is γ < α + 1
3 − 2

3

√
3α + 1 ≈ 0.539. So we

take X = �N0.6�, Y = 3
⌊√

N
⌋
, m = 4, and t = 3. We build a lattice with a

dimension ω = 40. Then applying our method, we get the solution

x = k = 164427, y = p + q = 42593626.

Combining with pq = N , we finally get p = 25310567, and q = 17283059, which
factors the modulus.

5.3 The Attack with Small d

Now, we focus on the attack on the scheme when d is small.

Theorem 6. Let N = pq be the product of two unknown prime factors with
q < p < 2q. Suppose that ed−kψ(N) = 1 with ψ(N) =

(
p2 + p + 1

) (
q2 + q + 1

)
,

e = Nα, and d = N δ. Then, for 1 < α < 15
4 , one can find d, and factor N in

polynomial time if

δ <
7
3

− 2
3
√

3α + 1.

Proof. Let N = pq be an RSA modulus. Let e be a public exponent satisfying
ed − kψ(N) = 1, where ψ(N) =

(
p2 + p + 1

) (
q2 + q + 1

)
. We use the bounds

e = Nα, d = N δ. By Proposition 1, we have (p+q)2+a(p+q)+b = ψ(N) > N2.
Then

k =
ed − 1

(p + q)2 + a(p + q) + b
< Nα+δ−2.

We apply Corollary 1 with γ = α + δ − 2. The condition is

γ = α + δ − 2 < α +
1
3

− 2
3
√

3α + 1,

which is true if

δ <
7
3

− 2
3
√

3α + 1.

Since ed = kψ(N) + 1 > ψ(N) > N2, then we need α + δ > 2. The condition is
satisfied if

α +
7
3

− 2
3
√

3α + 1 > 2,

and is valid if α > 1. On the other hand, we need δ > 0. This is satisfied if

α +
7
3

− 2
3
√

3α + 1 > 0,

leading to α < 15
4 . This terminates the proof. �

If e is a full size exponent, that is e ≈ N2, then the bound on δ becomes
δ < 7

3 − 2
3

√
7 ≈ 0.569. This is twice the bound obtained by Boneh and Durfee [6]

with the small inverse problem attack on RSA.
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5.4 Experimental Results

We implemented the method described in Theorem 6, and conducted intensive
experiments in Windows 10 environment on a computer with Intel(R) Core(TM)
i5-8250U CPU 1.60 GHz, 8.0 GO. We experimented the method with the fol-
lowing process

– We generate two random prime numbers p, q of various sizes up to 1024 bits.
– We compute N = pq, and ψ(N) =

(
p2 + p + 1

) (
q2 + q + 1

)
.

– We generate a random integer d = N δ with δ < 0.56 and gcd(d, ψ(N)) = 1.
– We compute e ≡ d−1 (mod ψ(N)).
– We apply the method described in Theorem 6 to find the small solutions of

the equation x
(
y2 + ay + b

)
+ 1 ≡ 0 (mod e).

– Using p + q = y and pq = N , we retrieve p and q.

The longest phase in the method is the computation of the reduced basis when
applying the LLL algorithm. It depends mainly on the dimension ω and the size
of N .

So far, we succeeded to factor the very small RSA modulus N =
601396198489 for e = 1569479955769308430. Since e ≈ N1.544, then the bound
on δ is δ < 7

3 − 2
3

√
3α + 1 ≈ 0.750. So we applied our method with X =

⌊
N0.75

⌋
,

Y = 3
⌊√

N
⌋
, m = 6, and t = 3. We get a lattice with a dimension ω = 70.

We solved the equation x
(
y2 + ay + b

)
+ 1 ≡ 0 (mod e), and get the solution

x = 13, y = 1559590. Then, using p + q = y and pq = N , we get p = 861551,
and q = 698039. We notice here that d = N δ with δ ≈ 0.55. The whole process
took less than 240 s.

When N is a 1024 bit modulus, we were able to factor N with d = N δ for
δ < 0.43, with m = 4, t = 2, ω = 35, X =

⌊
N0.5

⌋
, and Y = 3

⌊√
N

⌋
. The

computation took approximately 8372 s.

6 Conclusion

In this paper, we presented two distinct attacks on a cubic Pell equation variant
of the RSA cryptosystem presented by Murru and Saettone in 2018. The variant
is based on an RSA modulus N = pq, with a public exponent e = Nα, a
private exponent d and a key equation of the form ed − kψ(N) = 1 where
ψ(N) =

(
p2 + p + 1

) (
q2 + q + 1

)
. For the first attack, we extended Wiener’s

attack and showed that one can factor the modulus N via the continued fraction
expansion provided d = N δ for δ < 5

4− 1
2α. Moreover, we showed that this variant

of RSA is more vulnerable by our second attack which is based on Coppersmith’s
method. We extended the method of Boneh and Durfee and showed that the RSA
variant is insecure whenever δ < 7

3 − 2
3

√
3α + 1. When α ≈ 2, the bound resumes

to d < N0.5694, which is much larger than the classical bound d < N0.292 for
RSA. As a conclusion, the variant RSA scheme is more vulnerable than the RSA
cryptosystem.
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Abstract. Basic key exchange protocols built from the learning with
errors (LWE) assumption are insecure if secret keys are reused in the face
of active attackers. One example of this is Fluhrer’s attack on the Ding,
Xie, and Lin (DXL) LWE key exchange protocol, which exploits leakage
from the signal function for error correction.

In this work, we demonstrate improved and new attacks exploiting key
reuse in several LWE-based key exchange protocols. First, we show how
to greatly reduce the number of samples required to carry out Fluhrer’s
attack and reconstruct the secret period of a noisy square waveform,
speeding up the attack on DXL key exchange by a factor of over 200.
We show how to adapt this to attack a protocol of Ding, Branco, and
Schmitt (DBS) designed to be secure with key reuse, breaking the claimed
128-bit security level in 12 min. Our results show that building secure
key exchange protocols directly from LWE that resist key reuse attacks
remains a challenging and mostly open problem.

Keywords: Learning with errors · Key exchange · Key reuse

1 Introduction

The learning with errors (LWE) problem [22] can be used to construct a variety
of post-quantum cryptographic algorithms, such as digital signatures, public-key
encryption, key encapsulation mechanisms (KEMs), and key exchange, the lat-
ter being the focus of this paper. LWE-based key exchange protocols are appeal-
ingly similar to the Diffie–Hellman (DH) protocol [7] which is the prototypical
unauthenticated key exchange protocol. Authenticated key exchange (AKE) can
be built from unauthenticated DH through two main techniques, either explicit
authentication using digital signatures, or implicit authentication where public-
key encryption or DH keys are used as long-term credentials for authentication.

Passively Secure LWE-Based Key Exchange. LWE-based key exchange
can be constructed from LWE-based public-key encryption [19,22]: the core idea
is that two (plain or ring) LWE samples asA + eA and asB + eB are combined
to form approximately equal shared secrets close to asAsB (where a is a public
parameter, sA and sB are the initiator and responder’s secret keys, and eA and

c© Springer Nature Switzerland AG 2021
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eB are secret noise). Reliable passively secure key exchange can be achieved by
transmitting error correcting hints about the shared secret, such as the signal
function of Ding, Xie, and Lin (DXL) [13] or Peikert’s reconciliation function [21].
The basic idea of DXL’s signal function is as follows. In the ring-LWE variant
of DXL key exchange, both Alice and Bob derive a polynomial that is their
copy of the approximately equal shared secret. The signal function is applied
to each coefficient of the polynomial, and returns a bit indicating whether the
coefficient is within a certain range, namely, within {−�q/4�, . . . , �q/4�}, where q
is the modulus defining the ring. These signal bits are computed by Bob and
transmitted to Alice. This extra information allows both parties to derive from
each coefficient one or more exactly equal secret bits with high probability.

Attacks Against Passively Secure LWE-Based Key Exchange. Bare
LWE public key encryption [19,22] and key exchange [13,21] are not designed
to be secure against active adversaries, and in fact are insecure against active
adversaries. For example, Regev’s search-to-decision equivalence for LWE [22] is
a chosen ciphertext attack that recovers the LWE secret given an oracle for deci-
sion LWE. Fluhrer [14] constructed an active attack against a simplified form
of DXL key exchange [13], in which an attacker Eve sends malicious public keys
and uses information leaked via the signal function to recover a party’s secret
key. [9] refines this to work on the full DXL protocol using signal leakage.

Prevention of Key Reuse Attacks in LWE-Based Protocols. Authenti-
cated key exchange should be secure against active attacks. There is a small selec-
tion of literature building AKE from generic building blocks such as public key
encryption [2] or KEMs [5,6,15,23]. There have also been attempts to build AKE
protocols directly from LWE such as [26], in many cases using techniques paral-
leling some DH-based AKE protocols such as MQV [18,20] and HMQV [16].

Ding, Branco, and Schmitt (DBS) [10] propose two key exchange protocols
from LWE that are designed to be secure against key reuse and inspired by the
HMQV design of combining the ephemeral and static keys alongside pseudoran-
dom masking values. Their first protocol, which we call the DBS reusable-keys
protocol, aims to achieve what they call “key reuse robustness” with an approx-
imately equal shared secret of the form a(sA + c)(sB + d) for public values c
and d. Their second protocol, which we call the DBS AKE protocol, achieves
AKE security in the Bellare–Rogaway (BR) model [3] with weak forward secrecy,
using an approximate shared secret of the form a(rA + sA + c)(rB + sB + d).

Our Contributions. In this paper, we improve the query complexity of the
key reuse attack using signal leakage and apply the improved attack in several
settings. Table 1 compares our improvements and new attacks to the literature.

Improved Attack Using Signal Leakage. The key reuse attack exploiting signal
leakage [9,14] sends malformed public keys pA = k for all k ∈ {0, . . . , q − 1}.
This obtains a full picture of the noisy “waveform” ≈ ksB [i] induced for each
coefficient sB [i] of the secret key, then recovers the period from that binary
waveform. To assemble the full waveform formerly q samples were used, with a
rather large value of q, e.g. ≈26 million in [10].
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Table 1. Summary of attacks on LWE key exchange protocols with key reuse

Attack Protocol Security model Query complexity

Claimed Of attack

[9] DXL [13] Passive Key reuse rob. (1 + z)q

[11, §5] DXL [13] Passive Key reuse rob. ≈32000n2α

[11, §7] DXL [13] Passive Key reuse rob. (1 + z) q
2
+ O(1)

Ours, Sect. 4 DXL [13] Passive Key reuse rob. ≈36(1 + 2z)α

Ours, Sect. 5 DBS reusable [10] Key reuse rob. Key reuse rob. ≈3600(1 + 4z)α2

Ours (full v.) DBS AKE [10] BR eCK ≈1467(1 + 4z)α2

Legend: n: LWE dimension; q: modulus; α: standard deviation of the secret/noise
distribution; z: number of consecutive zeros in the secret key, typically z ≈ 4.

We show that far fewer samples suffice for determining the period of the noisy
waveform, given that the period—which depends on the secret key—is bounded
by some known value h (for example, for reasonable parameters, the secret key
coefficients have magnitude less than 15 with high probability). If there was
no noise, then the waveform would be square and have exactly 2sB [i] switches,
equally distributed. With noise, there will be many switches bunched around the
period. However, based on the standard deviation of the noise distribution, we
can bound the region in which these noisy switches occur with high probability.
If we could sample from the stable regions, where noisy switches do not occur,
we would be able to reconstruct the period and thus the secret key coefficient.
Our technique is to sample every tth value, where t is chosen so that we will
collect at least one value from each stable region and at most one value from
each noisy region around period switches, allowing efficient computation of the
period.

Our optimizations yield an active key recovery attack against the DXL pro-
tocol that uses (1 + 2z)8Cα queries, where α is the standard deviation of the
noise distribution, z is the maximum number of consecutive zeros in a secret
key plus one, and C is a small constant; for the parameters we consider, C ≈ 5
and z = 4 suffice for the attack to work with high probability. We implemented
our attack against the same parameters used in the previous best attack [9]:
n = 1024, α = 3.197, q = 214 + 1. Our attack succeeds with probability 0.97 in
on average 62 s, compared to 3.8 h of [9].

Attack on DBS Reusable-Keys Protocol. In Sect. 5, we examine the DBS reusable-
keys protocol and observe that its countermeasure for achieving security against
key reuse is unfortunately not sufficient. Using our improved attack, we experi-
mentally recover the key of the proposed 128-bit security parameters successfully.

The main idea of our attack is as follows. Recall that the approximate shared
secret is a(sA + c)(sB + d), for pseudorandom values c and d distributed accord-
ing to the error distribution. From Bob’s perspective, this is computed (ignoring
small error terms) as ≈ (pA + ac)(sB + d) = pAsB + (pAd + acsB + acd), where
pA is the attacker’s public key. DBS calls the process of adding ac to pA before
multiplying by the secret key sB “pasteurization” and claims it “force[s] the
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parties involved in the KE scheme to behave honestly”. In fact, this pasteuriza-
tion does not force honest behaviour. Consider an attacker who uses the basic
signal leakage attack described above, and sends malformed public keys pA = k
for k ∈ {0, . . . , q − 1}. Noting that asB is approximately equal to Bob’s public
key pB , from the attacker’s perspective, the shared secret is pAsB (which the
attacker does not know) plus pAd+pBc+acd (which is known to the adversary).
This known sum is approximately uniformly distributed, so each coefficient will
be 0 with probability around 1/q, and most importantly the adversary knows
when it is 0. Thus, when the ith coefficient of this known sum is 0, the signal
function is being applied to the ith coefficient of (pAsB)[i] directly—with no
“pasteurization”—and we are able to apply the original attack! We discuss the
potential gap in the proof of “key reuse robustness” in Sect. 5.8.

Our optimizations to the attack against DXL key exchange also apply in this
scenario, yielding an attack that runs in (1 + 4z) · 144C2α2, where α, z, and C
are as above. We implemented our attack against the parameters proposed by
DBS for 128-bit security, with n = 512, α = 4.19, and q ≈ 26 million, and on
average successfully recovered the key in less than 12 min; see Sect. 5.7.

The pasteurization technique has also been adopted by Seyhan et al. [24] in a
module-LWE-based analogue of the DBS reusable keys protocol. We are similarly
able to deconstruct the shared secret as the sum of a single unknown term plus
several known terms, effectively eliminating pasteurization. A full attack on the
Seyhan et al. protocol would need to use the “key mismatch oracle” technique
[11] since the protocol does not transmit a signal value.

Attack on LWE-Based AKE Protocols in the eCK Model. Briefly in Sect. 6 and
with more detail in the full version of this paper [4], we consider whether our
attack applies to two more LWE-based AKE protocols, the ZZDSD AKE proto-
col [26] and the DBS AKE protocol [10], which are shown secure in the Bellare–
Rogaway (BR) security model [3]. Our attack does not immediately apply in the
BR security model. We could attack the DBS AKE protocol using the ephemeral
key reveal capabilities in the stronger eCK security model [17], but were unable
to apply our attack to the ZZDSD AKE protocol even in the eCK model.

2 Background

Notation. An instance of the ring learning with errors (RLWE) problem will
be specified by a prime modulus q, a dimension n, and distribution χα with
standard deviation α which is used for both the secrets and errors. The ring is
Rq[x] = Zq[x]/〈f(x)〉 for an irreducible polynomial f(x). Elements of Zq may
be represented as either {0, . . . , q −1} or {−(q−1)/2, . . . , (q−1)/2} as required. The
coefficient of xi of y ∈ Rq[x] is denoted by y[i]. We write #S to denote the
number of elements in set S. x ←$ S denotes sampling x uniformly from set S.
If χ is a distribution on S, x ←$ χ denotes sampling from S according to χ.
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Initiator (Alice) Responder (Bob)

sA, eA ←$ χα sB , eB ←$ χα

pA ← asA + 2eA ∈ Rq pB ← asB + 2eB ∈ Rq

pA gB ←$ χα

gA ←$ χα kB ← pAsB + 2gB

kA ← pBsA + 2gA
pB , wB wB ← Sig(kB) ∈ {0, 1}n

skA ← Mod2(kA, wB) skB ← Mod2(kB , wB)

Sig(v) = 0 if v ∈ E else 1
(extended component-wise)

E = {−�q/4� + r, · · · , �q/4� + r}
for r ←$ {0, 1}
Mod2(v, w) =((

v + w q−1
2

)
mod q

)
mod 2

for (v, w) ∈ Zq × {0, 1}

Fig. 1. Ring-LWE-based key exchange protocol of Ding, Xie, and Lin (DXL) [13].

Basic Ring-LWE Key Exchange. The basic ring-LWE-based key exchange pro-
tocol of Ding, Xie, and Lin (DXL) [13] is shown in Fig. 1, and was the basis of
the NIST PQC Round 1 submission “Ding Key Exchange”. It makes use of a
component-wise “signal” function Sig(v) shown on the right-side of Fig. 1.

Key Reuse. Let Π be a 2-pass key exchange protocol between two parties A and
B. Key reuse means that each party is willing to run multiple sessions using
the same long-term secret. To model this, [9] defines a key reuse oracle S which
executes party B’s responses. The oracle S has access to the (fixed) secret key
of party B (e.g., sB , eB in Fig. 1). On receiving pA from party A, S computes
and returns pB according to the protocol using the same secret key for every
response. Key reuse robustness [10] means that it is safe for a party to reuse a
key, even in the face of maliciously generated messages from the other party.

2.1 Fluhrer’s Key Reuse Attack on DXL RLWE-Based Key
Exchange

The original key reuse attack by Fluhrer [14] and refined by [9] against RLWE-
based key exchange protocols, such as the DXL protocol depicted in Fig. 1, takes
advantage of the signal function to determine the coefficients of the reused secret
sB . The attack can be described by the following two steps.

Absolute Value Recovery. Adversary A invokes oracle S with input pA = k for
k = 0, . . . , q − 1. As k changes from 0 to q − 1, the corresponding signal wB [i] of
the ith coefficient will essentially be a noisy version of a periodic function with
|2sB [i]| signal changes between zero and one. By recovering the period from this
noisy signal, A can determine |sB [i]|. Applied component-wise to all coefficients
of wB , the adversary can reveal the absolute values of all coefficients of sB .

Relative Sign Recovery. To determine the sign of each secret coefficient, the
adversary A invokes the oracle S with input (1 + x)pA where pA = k for
k = 0, . . . , q − 1. Again, by recovering the period from this noisy signal, A
can determine the value of the coefficients of (1 + x)sB , up to sign. The coeffi-
cients of (1 + x)sB are sB[0] − sB [n − 1], sB [1] + sB [2], . . . , sB [n − 2] + sB [n − 1].
With this information, A can determine the relative signs of adjacent pairs of
coefficients in sB. If there are z − 1 consecutive zeros in the sB (which can be
seen from the absolute value recovery stage), this technique must be repeated
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P1 P2 P3 P4 P5 P6

I

P1 P2 P3 P4 P5 P6

S1 S2 S3 S4 S5 S6 S7
N1 N2 N3 N4 N5 N6

Fig. 2. Periodic function f (left) and noisy version g (right) over interval I with m = 6
signal changes at points Pi, split into stable (Si) and noisy (Ni) regions.

with (1+xz)k to determine relative signs between coefficients z positions apart.
Once all relative signs are recovered, this narrows the possibilities down to two
options: ±sB .

Although the values pA = k sent by the adversary look atypical and one
could try to protect against this attack by filtering such values out, it is possible
to adapt the attack to work with values that look random [8, §4.4].

3 Sparse Signal Collection

As described in the previous section, the main tool in Fluhrer’s attack is recov-
ering the secret period from the noisy binary signal induced by Sig(kB). In this
section, we present our improvements which use a much smaller number of sam-
ples from the signal, hence we call this sparse signal collection.

We aim to keep our presentation in this section generic, but it helps to keep in
mind the application to RLWE-based key exchange protocols like DXL (Fig. 1).
In DXL, as a result of the error term gB , there are frequent changes in the value
of the signal function when kB [i] is near the boundary of E. As kB [i] moves
away from the boundary, the impact of the error term gB decreases and the
signal stabilizes. Filtering out the fluctuations near the boundaries of E, the
noiseless signal changes would determine sB [i]. The attack as described in [9]
collects all signals but does not specify a general algorithm to determine the
secret coefficients. In this section, we describe a new method of signal collection
that determines the period with high probability while substantially reducing
the number of samples needed to carry out the attack.

Requirements. Let I be a finite integer interval and b some bound specified
below. Let f : I → {0, 1} be a periodic signal function, changing signals at
points P1, ..., Pm, equally spaced out over the interval I, i.e., Pi+1 − Pi = #I/m

for 1 ≤ i ≤ m − 1. Without loss of generality, assume f(x) = 0 for x < P1

and x ≥ Pm. Let g : I → {0, 1} be a function that approximates f . By this we
mean the following: there exist m + 1 non-empty (“stable”) intervals Si ⊂ I,
with Si ∩ Sj = ∅ for i �= j such that f(Si) = g(Si) for i = 1, ...,m + 1. Let
the intervals be ordered in the sense that all elements of Si are strictly smaller
than all elements in Sj for i < j. Furthermore, let #S1 = #Sm+1 = #Si/2 for
1 < i < m + 1. (Strictly speaking, this requirement is not needed in general but
simplifies our explanation and is closer to the case of RLWE-based key exchange.)
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b b

Fig. 3. Two different sets of collected signals (marked with dashed vertical lines).

In addition, we define the (ordered) set of remaining (“noisy”) intervals (in
between the Si) to be N1, ..., Nm, with Pi ∈ Ni. We assume that for all i it
holds that #Ni ≤ b for some integer bound b ≤ #Sk for 1 < k < m + 1 and
Ni ∩ Nj = ∅ for i �= j. We visualize the above definitions in Fig. 2.

The problem of interest is recovering the unknown period m using samples
from g. The problem may be constrained in the sense that m is upper bounded.

Description. Rather than collecting signals for every k in the interval I, we only
collect a few signals in the intervals Si skipping the areas Nj ; or at least limiting
the number of samples coming from noisy periods. In particular, if we could
guarantee that we collect (i) at least one sample from every stable region and
(ii) at most one signal from every noisy region, we could still determine the
period. The main task becomes bounding the width b of the noisy region and
determining how far apart samples should be taken to ensure that both (i) and
(ii) are satisfied while trying to minimize the number of samples collected.

Figure 3 shows two examples that involve collecting every (b + 1)th signal.
Since the width of the noisy region is bounded by b, no matter where the signal
collection begins, at most one sample will be collected from each noisy region.

In order for the count of signal changes to be correct, we must ensure that at
least one value from every stable interval Si is collected. There are m + 1 stable
periods, where the intervals S2, ..., Sm and #(S1 ∪ Sm+1) have width #I/m − b.
Thus, at least every (#I/2m − b/2)th value of g(x) must be collected. Since we
assumed that the values of g during the first and last stable interval are equal to
zero, actually only at least every (#I/m − b)th value of g(x) needs to be collected.

4 Improvements to Existing Key Reuse Attacks

We now apply the sparse signal collection strategy of Sect. 3 to Fluhrer’s
attack [9,14] against the DXL RLWE-based key exchange protocol [13] in Fig. 1.

4.1 Determining Sparse Signal Collection Parameters

For the remainder of this section, we focus on recovering the ith coefficient of kB ,
i.e., kB [i] = (pAsB +2gB)[i]. In the notation of Sect. 3, the interval I corresponds
to [0, ..., q − 1]; the approximation function f corresponds to the response of the
oracle S except that gB = 0, i.e., f(pA) = Sig(pAsB)[i], while g is defined as
g(pA) = Sig(pAsB + 2gB)[i]. We say that a signal at some index i is noisy if the
addition of 2gB [i] causes the signal to be flipped.
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Determining b. In the case of a signal change from 0 to 1, a noisy signal
occurs if 2gB [i] and �q/4� + r − (pAsB)[i] have the same sign and |2gB [i]| ≥
|�q/4� + r − (pAsB)[i]|. Similarly, in the case of a signal change from 1 to 0, a
noisy signal occurs if 2gB [i] and �3q/4� + r − (pAsB)[i] have the same sign and
|2gB [i]| ≥ |�3q/4� + r − (pAsB)[i]|.

As pA changes, the difference between (pAsB)[i] and the closest point of signal
change Pj changes as well. This means that the farther away the absolute value
of (pAsB)[i] is from �q/4�+r, the larger must be |2gB [i]| in order to cause a noisy
signal. Since gB is sampled from a discrete Gaussian distribution, there is some
value, say h, where it is highly unlikely that |2gB [i]| > h. So suppose h ≥ |2gB [i]|.
(Many practical LWE and ring-LWE protocols have bounded sB since they use
approximate Gaussian distributions, e.g., FrodoKEM has errors between ±12.)
Our choice of h will determine the success probability of the attack. As sB [i]
increases, the distance between (pAsB)[i] and the boundaries of E changes at a
faster rate as pA increases. Hence, the noisy intervals are largest when sB [i] = 1
(when sB [i] = 0, the noise changes the signal when |2gB [i]| ≥ �q/4� + r which we
assume does not occur). Thus, we choose b such that it upper bounds the size
of Ni corresponding to sB[i] = 1; namely, b = 2h.

Determining the Maximum Number of Signal Changes m. In Fluhrer’s attack,
signals are collected for two different purposes: to find the absolute value of a
coefficient, and to determine the relative sign of two coefficients. In the first
case, the number m of signal changes observed in our sparse signal collection
corresponds to the maximum absolute value of sB [i] times two. If sB is chosen
with discrete Gaussian distribution, the maximum number of signal changes is
m = 2h, following the same reasoning as for b. In case of finding the relative sign
of two coefficients, the number m of signal changes corresponds to the maximum
value of sB [i] + sB [j], i.e., m = 4h.

Number of Signals Needed to be Collected. Following Sect. 3, in order to ensure
we collect at least one value from every stable period, we must collect at least
every (q/2m − b/2)th signal. Moreover, in order to ensure we collect at most one
value from every noisy period, we must collect at most every bth signal, with
b = 2h. Say we collect every t1th signal when recovering absolute value and every
t2th signal when recovering the sign of a coefficient; this means that we must
choose t1 such that 2h < t1 < q/4h − h and t2 such that 2h < t2 < q/8h − h.

4.2 Description of the Improved Attack

Absolute Value Recovery. The adversary A invokes the oracle S with input pA =
k where k takes on every t1th value from 0 to q − 1. The signal returned, wB [i],
will change exactly |2sB [i]| times. So, A can determine the value of sB [i] up to
the ± sign for each coefficient of sB .

Relative Sign Recovery. The adversary A invokes the oracle S with input pA =
(1+x)k where k takes on every t2th value from 0 to q−1. Again, by checking the
number of signal changes, A can determine the absolute value of the coefficients
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of (1+x)sB . As in Sect. 2.1, A can determine the relative signs of adjacent pairs
of coefficients in sB . Repeat this step as necessary with (1 + xz)pA to determine
relative signs of coefficients between which there are z − 1 zeros. This narrows
the possibilities down to two options, namely sB or −sB .

4.3 Success Probability

Next, we determine the success probability of our attack. In particular, we ana-
lyze the probability that coefficients of sB, gB exceed the bound h.

Suppose |sB [i]| > h for some coefficient i, which might hinder collecting at
least one signal from every stable interval. The probability that this occurs is
ρ1 ≈ 2

∑∞
x=h+1

1√
2π·α2 exp(−x2

/2α2); otherwise, |sB [i]| ≤ h. When |sB [i]| ≤ h,
the attack may fail if there is some error that causes enough noise which results
in the collection of an incorrect signal. This occurs if gB [i] is greater than or equal
to t1/2 + r. This probability is given by ρ2 = 2

∑∞
x=t1/2+1

1√
2π·α2 exp(−x2

/2α2).
There are 2|sB [i]| + 1 noisy intervals, |sB [i]| ≤ h, n coefficients of sB , and

1/t1 chance that we collect this incorrect signal. Given that each sB[i], gB [i] is
chosen independently, it is reasonable to assume that the probability of collecting
an incorrect signal at each noisy interval is independent. Then, the probability
of failure of absolute value recovery is at most n(ρ1 + (1 − ρ1)(2h + 1) 1

t1
ρ2).

Similarly, the probability of failure in one iteration of relative sign recovery
is n(ρ1 + (1 − ρ1)(4h + 1) 1

t2
ρ3), where ρ3 = 2

∑∞
x=t2/2+1

1√
2π·α2 exp(−x2

/2α2).
Putting this all together, the probability of failure of the entire attack is
n

(
ρ1 + (1 − ρ1)(2h + 1) 1

t1
ρ2

)
+ zn

(
ρ1 + (1 − ρ1)(4h + 1) 1

t2
ρ3

)
, where z is the

maximum number of consecutive zeros in the key plus one. We compute the
number of needed queries next.

4.4 Query Complexity

The key reuse attack requires qS = (z +1)q queries where z denotes the number
of times the relative sign recovery step must be taken, i.e., the maximum number
of consecutive zeros between two nonzero coefficients plus one. The probability
of sampling z − 1 consecutive zeros is 1 − (1 − 1/(

√
2πα2)z−1)n−z.

To improve the query complexity, [11] suggested collecting signals for values
of k until the signal changes and stabilizes. That method requires q/2+ c queries
to recover |sB [i]|, where c is a small constant, leading to a total of (1+z)(q/2+c)
queries. Suppose we choose h = Cα, where C is a constant such that it is highly
unlikely that |sB [i]| ≥ Cα, and t1 = q/8h, which satisfies 2h < t1 < q/4h − h for
parameters we consider. Our method requires only 8Cα queries to recover |sB [i]|.
Since t2 ≈ 2t1, the total number of queries we require is qS = 8Cα + z(16Cα) =
(1 + 2z)8Cα. This is a significant improvement since α � q. We compare the
number of queries from [9,11] with sparse signal collection in Table 1.

The choice of the constant C will affect the efficiency and the success prob-
ability. For practical LWE parameters, C ≈ 4.5, accompanied with a reasonable
choice of t1 and t2, provides high success probability of approximately 97%.
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Initiator (Alice) Responder (Bob)

sA, eA ←$ χα sB , eB ←$ χα

pA ← asA + 2eA
pA pB ← asB + 2eB

c ← H1(idA, idB , pA)
d ← H1(idA, idB , pA, pB)
gB , g

′
B ←$ χα

pA ← pA + ac + 2gB

c ← H1(idA, idB , pA) kB ← pA(sB + d) + 2g
′
B

d ← H1(idA, idB , pA, pB) pB , wB wB ← Sig(kB)
gA, g

′
A ←$ χα

pB ← pB + ad + 2gA

kA ← pB(sA + c) + 2g
′
A

skA ← Mod2(kA, wB) skB ← Mod2(kB , wB)

Fig. 4. DBS reusable-keys protocol [10]

4.5 Experimental Results

For the parameters proposed in [9] n = 1024, q = 214 + 1, α = 3.197, we choose
h = 14, hence the noisy intervals have at most b = 2·28 = 56 elements. Moreover,
the stable interval has at least 264 elements during absolute value recovery and
118 elements when recovering relative signs. Thus, collecting every tth value with
t1 = t2 = t, for any 56 < t < 118 is sufficient.

Suppose we collect every t = 100th signal value. Following Sect. 4.3, the
probability that some coefficient of sB exceeds h is approximately 2−17.53. The
probability that some coefficient of the error term exceeds t/2 = 50 is approx-
imately 2−50.25. Therefore, the probability of failure is at most 0.027, i.e., the
success probability is at least 97.3%.

Our experimental implementation obtains correct results up to sign in an
average of 62.82 s over ten runs (with an average of 766 queries), compared to
3.8 h of the original attack [9]. The execution of our attack was performed using
a MacBook Air equipped with a 1.6 GHz dual-core Intel Core i5 CPU.

5 Attack on DBS Reusable-Keys Protocol

In this section, we show a new variant of Fluhrer’s attack [9,14] that, combined
with our sparse signal collection technique, yields a successful and efficient key
recovery attack against a protocol by Ding, Branco, and Schmitt [10] that was
designed to be secure against key reuse attacks.

The protocol in question is the DBS reusable-keys protocol as shown in Fig. 4.
It relies on a public parameter a ←$ Rq and a hash function H1 : {0, 1}∗ →
χα whose outputs follow the discrete Gaussian distribution χα with standard
deviation α. In [10], the protocol is claimed to provide key reuse robustness for
the initiator and responder, under the assumption that the Hermite-normal-form
ring-LWE assumption is hard and H1 is a random oracle. For the purpose of key
reuse, the values that the responder reuses are sB , eB , and pB . We discuss the
potential gap in the proof of the security in Sect. 5.8.
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5.1 High-Level Idea of the Attack

For the purposes of simplifying the explanation of the attack idea, in this sub-
section we assume that eB = gB = g′

B = 0; Sect. 5.2 describes the attack with
error terms following the original distribution.

Let S be the oracle described in Sect. 2 with access to the fixed secret key
sB . During the attack, adversary A invokes S on pA = k (and an identity idA)
for some k ∈ {0, ..., q − 1}. The oracle S then samples gB , g′

B ←$ χα, computes

kB = pA(sB + d) + 2g′
B = (pA + ac + 2gB)(sB + d) + 2g′

B

= pAsB + (cpB + acd + dpA)︸ ︷︷ ︸
Δ

+ (2gBsB + 2gBd + 2g′
B − 2ceB)︸ ︷︷ ︸

ε

,

and returns (pB , wB) = (pB ,Sig(kB)). Notice that gB , eB , c, d, g′
B , sB are all

distributed according to χα, and hence, ε = 2gBsB + 2gBd + 2g′
B − 2ceB is the

sum of small values. Furthermore, A knows a, controls pA, receives pB , is able to
compute d and c, and hence, is able to compute the value of Δ = cpB +acd+dpA.

The core idea of our attack is as follows: an adversary is able to find pA

and an identity idA such that the ith coefficient of Δ is equal to zero. Invoking
the oracle S with such pA, idA, returns Sig(pAsB + Δ) (assuming ε = 0 for
simplicity), with Sig(pAsB [i] + Δ[i]) = Sig(pAsB [i]) = Sig(pAsB)[i].

The key observation is that the probability that Δ[i] = 0 is close to 1/q, as
analyzed in Sect. 5.4. Moreover, the adversary can tell when Δ[i] = 0 occurs.
When it does occur, the adversary can determine the coefficient of sB [i] up to
its sign by counting the number of signal changes as in the original key reuse
attack. Now, this only succeeds 1/qth of the time, specifically when Δ[i] = 0,
but since q is not cryptographically large, it is feasible to repeat this ≈ q times.
(We show how to do this with fewer than q repetitions below.) Thus, for each
pA ranging from k = 0, . . . , q − 1, we repeat this with different idA (different pA

and idA will induce random c and d, thereby randomizing Δ) until observing
a sample with Δ[i] = 0, which we then use as for k in the original key reuse
attack. Having done this for all k ∈ {0, . . . , q − 1} for every coefficient, we have
the information needed to recover the entire secret sB up to sign.

5.2 The Complete Attack

We now assume eB , gB , g′
B ←$ χα and, hence, upon input pA, idA the oracle S

returns Sig(pAsB + Δ + ε). In our description below, we will follow the notation
from Sect. 3 and 4. Table 2 summarizes the tuneable parameters of the attack.
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Table 2. Attack parameters

Symbol Description

h1 Upper bound on error terms added to key

h2 Upper bound on known terms used during absolute value collection

h3 Upper bound on secret coefficients

t1 Collect every t1-th signal in absolute value recovery

h′
2 Upper bound on known terms used during relative sign collection

h′
3 Upper bound on difference of secret coefficients

t2 Collect every t2-th signal in relative sign recovery

z Maximum number of consecutive zeros in the secret plus one

Adversary Construction of pA and Deconstructing Corresponding kB. In the
simple form of the attack, the adversary uses values of the form pA = k for
k = 0, ..., q − 1. Party B could in principle thwart this attack by checking
whether pA is a constant polynomial. To undermine such countermeasures,
we pick pA to take the form of a RLWE sample, namely pA = asA + keA

with sA ←$ χα and eA = 1. The key determined by the oracle S is then
kB = (pA + ac + 2gB)(sB + d) + 2g′

B = asAsB + ksB + Δ + ε. The value asAsB

is constant as we loop over values of k. Hence, the number of signal changes will
still be |2sB | for each coefficient. The first ith signal will correspond to the value
of asAsB[i] (plus some error term), so it is not guaranteed to start at 0. In fact,
all signals of the ith coefficient will be shifted by the value of asAsB [i]. Hence, we
cannot assume the first and last signal to be 0. However, a simple modification
of the signal processing, which checks if there is a signal change between the last
and first signal received, is sufficient to correctly account for this shift. Also, the
known value will be different due to the factor of dpA but is still expected to be
approximately uniform.

Determine the Number of Signals Needed. To determine the number of signals
needed during absolute value and relative sign recovery, t1 and t2 respectively,
we first need to bound the width b of the noisy intervals and the number of signal
changes m (see Sect. 4.1). To this end, we make the following observations.

The terms Δ = cpB +acd+dpA and ε = 2gBsB +2gBd+2g′
B −2ceB add noise

which may change the value of the signal. In the simplified form of the attack, we
demanded Δ[i] = 0 in order to make use of a sample. However in the complete
attack we can relax this and just demand that this is sufficiently small. At some
boundary, β ∈ {�q/4� , �3q/4�}, the signal may change if |Δ + ε| > |β − pAsB |.
Thus, in order to bound b and m, we need find bounds h1, h2 and h3 (compare
with h in Sect. 4.1) such that (1) h1 ≥ |ε| with high probability, (2) h2 ≥ |Δ|
with probability 2h2/q, since the known values are indistinguishable from uniform
(see Sect. 5.4), and (3) h3 ≥ |sB | with high probability.

In Sect. 5.3, we show that the sum ε of error terms is normally distributed
with some standard deviation αe. Choosing h1 ≈ 4.5αe means the probability
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n 128 256 512 1024
q 2 255 041 9 205 761 26 038 273 28 434 433

α 4.19 2.6 4.19 2.6 4.19 2.6 4.19 2.6

h2 17 000 30 000 75 000 125 000 220 000 350 000 240 000 380 000
t1 40 000 63 000 164 000 255 000 465 000 720 000 500 000 790 000
h′
2 6 500 14 000 35 000 62 000 110 000 175 000 115 000 190 000

t2 20 000 31 000 82 000 128 000 230 000 360 000 253 000 395 000

Fig. 5. Parameters of attack on DBS reusable-keys protocol

that ε is greater than h1 is at most 2−17. Similarly, we choose h3 ≈ 4.5α and,
hence, the probability that |sB | ≥ h3 is at most 2−17. Additionally, we choose
h2 such that 2(h1 + h2) < q/2h3 − 2(h1 + h2). That is, h2 < 1/4(q/2h3 − 4h1) =
q/8h3−h1. A larger value of h2 will increase the efficiency but decrease the success
probability.

Following Sect. 4.4, we can now determine the number of signals needed for
absolute and sign recovery, t1 and t2 respectively. Namely, collecting every t1th
signal for any t1 satisfying 2 (h1 + h2) < t1 < q

2h3
− 2(h1 + h2) ensures that at

most one signal in every noisy interval Ni and at least one signal for every stable
interval Sj is collected. The value of h2 will determine how large this range is.
A t1 value closer to either bound will decrease the success probability, so, to
optimize the success probability, choose some t1 value in the middle of either
bound. However, a larger value of t1 will improve the efficiency of the attack.

During relative sign recovery, we are collecting values corresponding to the
difference between two coefficients. These coefficients are bounded by 2h3 with
high probability. Similarly, we can compute a collection interval t2 for relative
sign recovery using h′

3 = 2h3 and h′
2 < q/8h′

3 − h1. The parameter choices used
for experimental results in Sect. 5.7 are given in Fig. 5.

To summarize, the two stages of the attack are as follows.

Absolute Value Recovery. Invoke the oracle S with input pA = asA + k (taking
eA = 1) where k takes on every t1th value from 0 to q − 1. For each of these
k, collect signals wB [i] where the value of the known term Δ at coefficient i is
less than or equal to h2 (a single sample wB may provide satisfying samples
for several indices). Stop when a signal has been collected for every i ∈ [0, n]
for each k. For each coefficient i, as k changes, the signal returned, wB [i], will
change exactly |2sB [i]| times. Thus, the value of sB [i] can be determined up to
± sign by dividing the number of signal changes by 2.

Relative Sign Recovery. Invoke the oracle S with input (1 + x)pA where pA =
asA + k (taking eA = 1) where k takes on every t2th value from 0 to q − 1. For
each of these k, collect signals when the value of the known term Δ is less than or
equal to h′

2. Checking the number of signal changes, the value of the coefficients
of (1 + x)sB can be determined up to sign. The coefficients of (1 + x)sB are
sB [0] − sB [n − 1], sB [1] + sB [2], . . . , sB [n − 2] + sB[n − 1], which determine the
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relative signs of adjacent pairs of coefficients in sB . Repeat this step as necessary
with (1 + xz)pA based on the number of consecutive zeroes.

The following subsections provide our theoretical analysis and experimental
results. More concretely, they can be summarized as follows:

Section 5.3 Determining the distribution of the error terms ε. We find that
each coefficient of the error term ε is distributed according to a Gaussian
distribution with standard deviation

√
12nα4 + 4α2.

Section 5.4 Determining the distribution of the known term Δ. Under the deci-
sion RLWE assumption for appropriate parameters, the known term Δ is
indistinguishable from uniform. We check experimentally that for our param-
eters of interest the distribution appears sufficiently uniform.

Section 5.5 Calculating the number of queries required to collect sufficiently
many samples. By extending the query complexity analysis of sparse signal
recovery on DXL key exchange as in show that the number of queries Sect. 4.4,
we show that the number of queries required to collect samples to carry out
our attack against the DBS reusable-keys protocol is (1 + 4z) · 144C2α2, for
a small constant C. For our parameters of interest, C ≈ 5 and z ≈ 4 suffice.

Section 5.6 Calculating the success probability of the attack. By extending the
success probability analysis of sparse signal recovery on DXL key exchange
as in Sect. 4.3, we compute a lower bound on the success probability of our
attack against the DBS reusable-keys protocol.

Section 5.7 Providing our experimental results.
Section 5.8 Discussing a mistake in [10] that might have lead to the wrong

conclusion that the DBS reusable-keys protocol is robust against key reuse
attacks.

5.3 Distribution of the Error Terms

Recall that the key computed by the oracle S is given by kB = pAsB + Δ + ε,
where ε = 2gBsB + 2gBd + 2g′

B − 2ceB . During the attack, values such that
Δ[i] = 0 (or is small) and thus kB [i] = (pAsB + ε)[i] are found, where the
polynomials gB , d, g′

B , c, eB are sampled with discrete Gaussian distribution with
standard deviation α. In what follows, we argue that we can assume that the
error ε also follows a discrete Gaussian distribution with standard deviation γ
to be determined.

The Central Limit Theorem (CLT) says that, for a set of N independent
random variables X1, ...,XN with a common distribution with mean μ and vari-
ance α2, the distribution of X1 + ... + XN follows the normal distribution with
variance Nα2 (for sufficiently large N). Moreover, the sum X1 +X2 of two inde-
pendent random variables X1 and X2 with normally distribution N (μ1 = 0, α1)
and N (μ2 = 0, α2), respectively, is of normal distribution N (μ = 0,

√
α2
1 + α2

2).
Thus, one coefficient of 2gBsB , 2gBd, or 2ceB is normally distributed standard
deviation 2

√
nα2. Hence, each coefficient of ε is normally distributed with stan-

dard deviation
√

12nα4 + 4α2.
Although the Central Limit Theorem only holds asymptotically, its results

are good enough for our concrete parameters. For example, we experimentally
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measured the variance of ε observed over 10000 samples for α = 4.19, n = 512
and q = 26 038 273, which was 1.862 million, compared to the variance of 10000
samples from N (0,

√
12nα4 + 4α2) which was 1.894 million.

5.4 Distribution of the Known Term Δ

We now take a look at the distribution of the so-called known terms Δ = cpB +
acd + dpA = a(csB + cd + dsA) + (ceB + deA) in the computation of kB . We
define s = csB + cd+dsA and e = ceB +deA. Applying the CLT, we can assume
that s ∼ χψ and e ∼ χφ with standard deviations ψ and φ, respectively. Let
Aq,ψ,φ be the distribution of the pair (a, as + e) ∈ Rq × Rq where a ←$ Rq,
s ←$ χψ and e ←$ χφ. Under the decision RLWE assumption on Aq,ψ,φ, (a,Δ)
is indistinguishable from uniform. Rather than trying to calculate the specific ψ
and φ in question and arguing these are reasonable φ and ψ for which the RLWE
assumption might hold, it suffices for our purposes to observe experimentally
that Δ[i] ≤ h2 with reasonable probability. As a check, we collected samples
of approximately 133 million coefficients of randomly-constructed Δ for RLWE
parameters suggested in [10], i.e., α = 4.19, n = 512 and q = 26 038 273. We
found that the distribution at this granularity of bucketing is close to uniform,
and that the proportion of Δ[i] values satisfying Δ[i] ≤ h2 was approximately
h2/q. Thus, we proceed assuming that the coefficients of Δ follow a distribution
close to uniform over Rq, and consequently that the probability of observing
values such that(cpB + acd + dpA)[i] = 0, is close to 1/q.

5.5 Query Complexity

In this section, we calculate the number of queries required to collect samples
to carry out our attack against the DBS reusable-keys protocol as (1 + 4z) ·
144C2α2, for a small constant C. For the range of parameters we consider in our
experiments (see Sect. 5.7), C ≈ 5 and z ≈ 4 suffice.

The query complexity depends on choices of h1, h2, h3, t1, and t2. For the
following argument, we assume that n ≥ 2C2α and α > 1. Suppose we choose
some constant C such that h3 = Cα and h1 = C

√
12nα4 + 4α2. Also, suppose

we choose t1 = q/4h3, i.e., the midpoint between 2(h1+h2) and q/2h3 −2(h1+h2).
Then the number of signals collected for each coefficient is q/t1 = 4Cα.

For each of these signals, we require the corresponding coefficient of δ to
have absolute value less than or equal to h2, where h2 < q/4h3 − h1 = q/8Cα −
C

√
12nα4 + 4α2. We want to choose some h2 that is close to but does not exceed

this bound. One way of doing so is to find some value γ that is close to, but
slightly greater than C

√
12nα4 + 4α2. Then we can let h2 = q/8Cα − γ.

Lemma 1. For C > 0, n, α > 1, Cq/4.5n > C
√

12α4 + 4α2.

Proof. By the correctness lemma [10], we must have q > 16α2n
3
2 +2α

√
n, so it is

enough to show that C
4.5n

(
16α2n

3
2 + 2α

√
n
)

> C
√

12α4 + 4α2. If C, n > 0, this

statement simplifies to 13n2α2 +64nα − 81n+4 > 0. Since n, α > 0, this is true
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Fig. 6. Closeness of f1(n) = C
4.5

16α2n
3/2+2α

√
n

n
to h1(n) = C

√
12nα4 + 4α2

if and only if α > 9
√
13n+12−32

13n . As a function of n, 9
√
13n+12−32

13n is decreasing
for n ≥ 1 and 9

√
13n+12−32

13n = 1 when n = 1. So, since n, α > 1 by assumption,
it follows that α > 9

√
13n+12−32

13n as required. ��
Applying this fact, let γ = Cq/4.5n and h2 = q

8Cα − Cq
4.5n < q

8Cα −
C

√
12nα4 + 4α2.
In addition, Fig. 6 exemplifies that for parameters of interest, h1(n) =

C
√

12nα4 + 4α2 is indeed slightly less than f1(n) = C/4.5n
(
16α2n3/2 + 2α

√
n
)
,

and hence, it seems γ = Cq/4.5n is a reasonable choice.
This choice of h2 is positive when n > (16/9)C2α, which is true by assump-

tion. Since the known values are approximately uniform (see Sect. 5.4), we
expect to find some known value with absolute value less than h2 in approx-
imately q/2h2 = 36Cnα/9n−16C2α queries. Moreover, by assumption, it holds
that n ≥ 2C2α so q

2h2
= 36Cnα

9n−16C2α ≤ 36Cnα
n = 36Cα. Thus, we expect that

4Cα · 36Cα = 144C2α2 queries will be sufficient to collect enough signals to
complete absolute value recovery and obtain |sB [i]|.

For relative sign collection, we can choose h′
2 to be h2/2 and t2 to be t1/2. Then

we expect the number of queries for each iteration of relative sign collection to
be 4 · 144C2α2. Therefore, (1 + 4z)144C2α2 queries suffice to complete relative
sign recovery and retrieve sB or −sB.

As n increases and α decreases, z becomes larger; however, we still expect z
to be small in practice. Average values of z from experimental results are given in
Fig. 7. Although z does depend on n, larger values of n only increase z by a small
amount. Different choices for h1, h2, h3, and t1 will affect the query complexity,
but we note that our analysis shows that it is possible to make choices such that
the complexity does not depend on q and depends very little on n. Thus, as q
becomes large, the query complexity remains the same and as n becomes large,
the query complexity increases at a slow rate.

5.6 Success Probability

We now compute the success probability of our attack. In particular, the attack
may fail if any of the bounds h1, h2 or h3 are exceeded.
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Similarly to Sect. 4.3, we start with the case |sB [i]| > h3 for some i; this
would lead to not counting enough signal changes because the stable intervals
are smaller than expected. The probability that this occurs is ρ1 as defined in
Sect. 4.3 with h = h3. Otherwise, |sB [i]| ≤ h3. In this case, the attack may
fail if we count too many signal changes. That is, a noisy interval is larger
than expected, i.e., when 2 (|ε[i]| + |Δ[i]|) | > t1. Since the absolute value of
the known value Δ[i] is guaranteed to be less than or equal to h2, and we
chose t1 such that 2(h1 + h2) < t1, this implies that the absolute value of the
error term at coefficient i exceeds t1/2 − h2. The probability that this occurs is

ρ2 = 2
∑∞

x=
t1
2 −h2+1

exp
(

−x2

2(12nα4+4α2)

)
√

2π·(12nα4+4α2)
. There are 2|sB [i]| + 1 boundary periods

where this error could occur (note |sB [i]| ≤ h3) and a 1/t1 chance we actually
collect the incorrect signal so the probability that this occurs (for any coefficient)
is at most n (ρ1 + (1 − ρ1) (2h3 + 1)ρ2/t1). Similarly, the probability of failure
of relative sign recovery is at most zn (ρ1 + (1 − ρ1) (4h3 + 1)ρ3/t2), where ρ3 =

2
∑∞

x=
t2
2 −h′

2+1

exp
(

−x2

2(12nα4+4α2)

)
√

2π·(12nα4+4α2)
. Then, the overall failure probability is at most

n
(
ρ1 + (1 − ρ1) (2h3 + 1)ρ2

t1

)
+ zn

(
ρ1 + (1 − ρ1) (4h3 + 1)ρ3

t2

)
.

To demonstrate the high success probability while needing only a small num-
ber of queries, we instantiate the above parameters using parameters proposed in
[10], i.e., n = 512, α = 4.19, q = 26 038 273. Moreover, recall our choice of param-
eters in Sect. 5.5: h1 = C

√
12nα4 + 4α2, h2 = q/(8Cα) − Cq/(4.5n), h′

2 = h2/2,
h3 = Cα, t1 = q/(4h3) = 2 and t2 = t1/2. Then t1

2 − h2 = Cq
4.5n and t2

2 − h′
2 = Cq

9n .

Hence, the probability of failure is at most n
(
ρ1 + (1 − ρ1) (2Cα + 1)4Cα

q ρ2

)
+

zn
(
ρ1 + (1 − ρ1) (4Cα + 1)8Cα

q ρ3

)
.

Continuing our example, suppose z = 3 and C = 4.5, leading to some secret
coefficient being greater than h3 = 19 with probability ≈ 2−18.3. Moreover,
since Cq/9n > h1 = 6193, the probability that some coefficient of an error
term is greater than h1 is ≈ 2−19.1. Thus, the overall failure probability is at
most ≈ 0.00634, i.e., the success probability is at least 99.36%. Using the query
complexity derived in the previous section, this success probability is achieved
with only q

t1
· q

h2
+ z · q

t2
· q

h′
2

≤ 217.7 ≈ 212 900 queries to the oracle S in total.

5.7 Experimental Results

We ran our attack against the DBS reusable-keys protocol for the two parameter
sets proposed in [10] and additional sets for n = 128, 256, 512, and 1024, with
two different choices of α = 4.19 and 2.6. The corresponding q were chosen based
on the correctness requirement [10, Lemma 16].

Figure 7 shows the experimental results which are the average over 15 tests,
on a 2.4 GHz Intel Xeon CPU E7-8870 with 80 cores and 1 TB RAM. Our code
is publicly available at https://git.uwaterloo.ca/ssveitch/improved-key-reuse.

As n increases, the runtime increases largely due to more time spent on poly-
nomial multiplication, since polynomial multiplication increases quadratically in

https://git.uwaterloo.ca/ssveitch/improved-key-reuse
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) α = 4.19

α = 2.6

n 128 256 512 1024
q 2 255 041 9 205 761 26 038 273 28 434 433

α = 4.19

z (avg.) 2.73 3.00 3.20 3.73
max. (h:m:s) 3:37 5:06 21:13 2:18:12
avg. (h:m:s) 2:12 4:46 16:56 1:22:54
min. (h:m:s) 1:20 4:35 15:09 59:16

α = 2.6

z (avg.) 3 3.47 3.93 4.8
max. (h:m:s) 0:59 3:07 11:59 53:47
avg. (h:m:s) 0:43 2:54 10:23 49:39
min. (h:m:s) 0:31 2:00 8:02 39:06

# queries (avg.) 202 999.6 239 637.5 305 094.4 401 806.3

Fig. 7. Experimental runtime of attack on DBS reusable-keys protocol

n and key recovery increases linearly in n. The runtime for a set of parameters
varies depending on the value of z and the amount of queries it takes to find
known values that are sufficiently small.

5.8 Analysis of the Claimed Proof Showing Robustness

As our experiments and theoretical analysis show, the DBS reusable-keys pro-
tocol is not robust against key reuse as claimed in [10, Theorem 14]. We point
out a mistake in the proof that might have lead to this wrong conclusion.

The idea of the proof of [10, Theorem 14] is essentially that, because
of the use of the random oracle H1 to compute c = H1(idA, idB , pA) and
d = H1(idA, idB , pA, pB), the shared secret key kj is “indistinguishable from
a uniformly chosen value of Rq from the point-of-view of [the adversary] A” [10].
In particular, it is said that if A (impersonating the initiator) samples pA from
an arbitrary distribution, the distribution of pA = pA + aH1(idA, idB , pA)+2gB

(with gB ←$ χα) is “statistically close to the uniform distribution [over Rq]” [10].
At the core of this argument is [10, Lemma 10] (originally stated in [12]):

“Let φ be an arbitrary distribution over Rq and ψ be a distribution over Rq

statistically close to the uniform distribution over Rq. Let x ←$ φ and y ←$ ψ.
Then, the distribution of x̄ = x+y is statistically close to uniform [over Rq].” The
statement assumes implicitly that x and y are independent random variables.

In the proof of [10, Theorem 14], the variable x corresponds to pA (the
value controlled by the adversary A) and y corresponds to aH1(idA, idB , pA) +
2gB . While the output of the random oracle by assumption, it is fixed by the
output. Since pA is given as input to H1 (the adversary can even choose it
themselves), the random variables x and y are not independent from each other
from the perspective of an adversary who can query the random oracle. Indeed,
the dependency of H1(idA, idB , pA) on pA is exploited in our attack by finding
pA and idA such that the ith coefficient of the known values Δ = cpB +acd+dpA

is equal to 0 (or small).
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Initiator (Alice) Responder (Bob)

sA, eA ←$ χα sB , eB ←$ χα

pA ← asA + 2eA pB ← asB + 2eB

rA, fA ←$ χα rB , fB ←$ χα

yA ← arA + 2fA yB ← arB + 2fB

yA c ← H1(idA, idB , yA)

d ← H1(idA, idB , yA, yB)

gB , g
′
B ←$ χα

c ← H1(idA, idB , yA) yA ← yA + ac + 2gB

d ← H1(idA, idB , yA, yB) kB ← (pA + yA)(sB + rB + d) − pAsB + 2g
′
B

gA, g
′
A ←$ χα

yB , wB wB ← Sig(kB)

yB ← yB + ad + 2gA σB ← Mod2(kB , wB)

kA ← (pB + pB)(sA+yA + c) − pBsA + 2g
′
A

σA ← Mod2(kA, wB)

skA ← H2(idA, idB , yA, yB , wB , σA) skB ← H2(idA, idB , yA, yB , wB , σB)

Fig. 8. DBS AKE protocol [10]

5.9 Application to Seyhan et al. Reusable Keys Protocol

Seyhan et al. [24] present a module-LWE-based analogue of the DBS reusable
keys protocol that also uses the pasteurization technique. Our core observation
also applies here: we can deconstruct the shared secret as the sum of a single
unknown term plus several known terms, effectively eliminating pasteurization.
In particular, the shared secret is

kB = (sT
B + dT )(pA + Ac + gB) + g′

B

= sT
BpA + pBc + dT pA + dT Ac︸ ︷︷ ︸

Δ

−eBc + sT
BgB + cgB + g′

B︸ ︷︷ ︸
ε

.

One difference between the Seyhan et al. reusable keys protocol and the DBS
reusable-keys protocol is that the Seyhan et al. protocol does not transmit a
signal value, and instead relies on most-significant bit rounding for error correc-
tion. (In fact this casts in to doubt the correctness of their protocol.) The lack
of signal value is not a fundamental problem, and can be solved by shifting the
overall attack to use the “key mismatch oracle” technique of Ding et al. [11].

6 Extension to Authenticated Key Exchange Protocols

We briefly consider the application of our techniques to two different authenti-
cated key exchange protocols with a similar structure; details appear in the full
version. Figure 8 shows the DBS AKE protocol [10] which was shown secure in
the Bellare–Rogaway (BR) model [3] with weak forward secrecy. The BR model
permits the adversary to compromise session keys of any session except the target
session, and long-term secret keys of any parties except the two parties involved
in the session before the session has completed (weak forward secrecy).
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The value kB can be written as kB = yAsB + Δ + ε, where Δ = pArB +
pAd + cpB + yArB + yAd + 2g′

B and ε = 2gBsB − 2eBc. We cannot immediately
apply our attack from Sect. 5 in the BR model, since a BR adversary will not be
able to determine terms involving rB . But in the extended Canetti–Krawczyk
(eCK) model [17], the adversary is permitted to reveal ephemeral keys of certain
sessions, giving enough information to allow the adversary to compute all of Δ,
and thereby apply our attack. As the authenticated key exchange proposed by
Akleylek and Seyhan [1] makes use of the same pasteurization technique, our
attack can be applied to their protocol as well.

This in no way invalidates the security claims of [1,10], since our attack is
in a stronger model. But we still think it worth observing since the DBS AKE
protocol uses a design inspired by the MQV protocol [18,20], some variants of
which are eCK-secure [25]. The ZZDSD AKE protocol [26] is also inspired by
an MQV design, but we were not able to apply our attack in the eCK model
to the ZZDSD AKE protocol, in part because the ZZDSD AKE protocol uses
the c and d values multiplicatively, rather than additively as in the DBS AKE
protocol.
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Abstract. The differential attack is a basic cryptanalytic technique for
block ciphers. Application of machine learning shows promising results
for the differential cryptanalysis. In this paper, we present a new tech-
nique to extend the classical differential distinguisher using machine
learning (ML). We use r-round classical differential distinguisher to build
an s-round ML based differential distinguisher. This s-round ML distin-
guisher is used to construct an (r+s)-round differential-ML distinguisher
with the reduced data complexity. We demonstrate this technique on the
lightweight block ciphers SPECK32, SIMON32, and GIFT64 by con-
structing the differential-ML distinguishers. The data complexities of
distinguishers for 9-round SPECK32, 12-round SIMON32, and 8-round
GIFT64 are reduced from 230 to 220, 234 to 222, and 238 to 220 respec-
tively. Moreover, the differential-ML distinguisher for SIMON32 is the
first 12-round distinguisher with the data complexity less than 232.

Keywords: Block cipher · Differential cryptanalysis · Machine
learning

1 Introduction

Cryptanalysis of block ciphers witnessed the remarkable progress after the pro-
posal of differential attack on DES by Biham and Shamir [8] in 1990. The dif-
ferential attack is a basic and widely used cryptanalytic approach against the
block ciphers. This attack is generalised and combined with other cryptanalytic
techniques to reduce the attack complexity. High probability differential charac-
teristics are the first and foremost requirement for the attack to succeed. In 1994,
M. Matsui proposed a method based on the branch-and-bound technique [17]
to search the high probability differential characteristics. In 2011, Mouha et
al. proposed a new technique using mixed integer linear programming (MILP)
to search the differential characteristics [18]. The method based on MILP uses
optimization problem solvers to construct high probability differential charac-
teristics. Most of the block ciphers follow the Shannon’s principles [14] and wide
trail design strategy [11] to thwart the differential attack. In practice, we need
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a differential with the probability greater than 2−n to distinguish r rounds of
an n-bit block cipher from the random data. Any r-round characteristic with
a probability less than 2−n cannot be used to mount the differential attack on
r or more rounds of a block cipher. A differential characteristic is useful till it
requires less data than the available limit i.e. 2n pairs. The motivation of this
paper is to find a technique which can be used to extend the classical differential
characteristics without (much) increasing the data complexity. Machine learning
based differential cryptanalysis approach works well to solve this problem.

Machine learning techniques are used to determine the meticulous relations
in the data. Since such relations define the security strength of the cipher, iden-
tification of these relations plays an important role. In cryptanalysis domain,
the machine learning techniques are explored very recently to mount the key
recovery attack using differential cryptanalysis [12].

In this paper, we combine the classical and machine learning techniques to
design an ML based generic extension for any classical differential distinguisher.
This approach provides the better results with (much) lower data complexity.
We extend an r-round high probability classical differential distinguisher with
an s-round ML based differential distinguisher. The extended distinguisher is
used to distinguish the (r + s) rounds of a block cipher using less data. With
this extension, the hybrid distinguisher outperforms both the classical and ML
based distinguisher. We call this hybrid distinguisher a differential-ML distin-
guisher. This technique is experimented on three different types of lightweight
block ciphers SPECK32 [4], SIMON32 [4], and GIFT64 [3] and better results
are obtained with very high accuracy.

The remaining part of the paper is organised as follows. In Sect. 2, we compare
our technique with the previous work. In Sect. 3, we provide a brief description of
the lightweight block ciphers SIMON32, SPECK32 and GIFT64. We discuss the
classical differential distinguisher and machine learning based differential distin-
guisher in Sect. 4 and describe the existing work on differential distinguishers
using machine learning. In Sect. 5, we propose a novel technique to construct
the differential-ML distinguisher. We demonstrate our technique on SPECK32,
SIMON32, and GIFT64 block ciphers and present the results in Sect. 6. The
paper is concluded in Sect. 7.

Notations: We have used the following notations in this paper:

- Δr :Output difference after r rounds
- 2−pr :Probability of r-round differential characteristic
- Dx···y :Distinguisher for (y − x + 1) rounds; x and y are round indices
- DCD

x···y :Classical differential distinguisher
- DML

x···y :Machine learning based differential distinguisher
- DCD→ML

x···y :Differential-ML distinguisher

Conventions: Throughout the paper, we refer an r-round differential distin-
guisher with the single input and single output difference as a classical differen-
tial distinguisher DCD

1···r.
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2 Comparison with the Previous Work

A. Gohr [12] used machine learning techniques and proposed the idea of learning
the differences to mount a key recovery attack. He presented a technique to
construct the ML based differential distinguisher and used it for the key recovery
attack on SPECK32. Gohr compared this technique with the classical differential
attack and showed that complexity of the key recovery attack is reduced by
using the ML distinguisher. Baksi et al. [2] also used the same approach to
design the ML distinguisher for GIMLI cipher and GIMLI hash [5]. Various ML
architectures are compared in [2] and it is claimed that ML distinguisher for
GIMLI outperforms the classical differential distinguisher.

A. Gohr presented the 11-round key recovery attack on SPECK32. In this
attack, 7-round ML based distinguisher is used and it is extended to 9 rounds
by pre-pending a 2-round high probability differential distinguisher. In Gohr’s
approach, the accuracy and the data complexity of the 9-round extended dis-
tinguisher is not discussed explicitly. Although, the accuracy of extended dis-
tinguisher is quite low, yet it is used in the key recovery with various cipher
specific optimizations. In this paper, we present a new technique to extend r-
round classical differential distinguisher using an s-round ML distinguisher. Now,
the extended distinguisher works as the (r + s) rounds differential-ML distin-
guisher. The proposed technique ensures that the accuracy of differential-ML
distinguisher is high and comparable to the classical differential distinguisher.
We experimentally show that there is an exponential reduction in the data com-
plexity of the (r + s)-round distinguisher by using the proposed differential-ML
distinguisher.

3 Block Ciphers: SPECK32, SIMON32, and GIFT64

SPECK and SIMON are two families of the block ciphers proposed by Beaulieu
et al. [4] in 2013. These block ciphers are designed to provide the high perfor-
mance across a range of devices. There are 10 versions of each cipher based on
the block and key size combinations which makes them suitable for a wide range
of applications. We discuss the encryption algorithm for 32-bit block size and
64-bit key variants of each block cipher. We omit the key expansion algorithm
and original paper [4] can be referred for more details.

GIFT is designed by improving the bit permutation of the lightweight block
cipher PRESENT. Based on the input plaintext block size, there are two versions
of GIFT namely GIFT64 and GIFT128. In each version, the 128-bit key is used
to encrypt the input plaintext. A brief description of SPECK32, SIMON32, and
GIFT64 block ciphers is provided in the following subsections.

3.1 Description of SPECK32

SPECK32 is a block cipher with 32-bit block size and 64-bit key size. There
are total 22 rounds in SPECK32. It is based on the Feistel network and can
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be represented by the composition of two Feistel maps. Its encryption algorithm
divides the 32-bit input into the two 16-bit words (Lr, Rr) and the key expansion
algorithm extracts the 16-bit round subkeys (RKr) for each round. The round
function comprises of addition modulo 216, bitwise XOR, left and right circular
shift operations as described in Algorithm 1.

Algorithm 1: Encryption Algorithm of SPECK32
1 Input: P = (L0||R0) and RKr(0 ≤ r ≤ 21)
2 Output: C = (L22||R22)
3 for r=0 to 21 do
4 Lr+1 = ((Lr ≫ 7) + Rr) ⊕ RKr

5 Rr+1 = Lr+1 ⊕ (Rr ≪ 2)
6 end

3.2 Description of SIMON32

SIMON32 is a block cipher with 32-bit block size and 64-bit key size. There
are total 32 rounds in SIMON32 and it is also based on the Feistel network. Its
encryption algorithm divides the 32-bit input into two 16-bit words (Lr, Rr).
The key expansion algorithm expands the 64-bit master key to provide the 16-
bit round subkeys (RKr) for each round. It applies a round function consisting
the bitwise XOR, bitwise AND, and left circular shift operations on the left 16-
bit words in each round. The encryption algorithm of SIMON32 is described in
Algorithm 2.

Algorithm 2: Encryption Algorithm of SIMON32
1 Input: P = (L0||R0) and RKr(0 ≤ r ≤ 31)
2 Output: C = (L32||R32)
3 for r=0 to 31 do
4 Lr+1 = (Lr ≪ 1 & Lr ≪ 8) ⊕ (Lr ≪ 2) ⊕ Rr ⊕ RKr

5 Rr+1 = Lr

6 end

3.3 Description of GIFT64

GIFT64 encrypts a 64-bit plaintext block using the 128-bit key and generates
a 64-bit ciphertext block [3]. There are total 28 rounds in GIFT64. In each
round, S-box, bit permutation, round subkeys and constant additions are applied
through the round function. The key expansion algorithm extracts the 32-bit
subkeys (RKr) from the 128-bit key. Its encryption algorithm uses a 4-bit S-box
S (Table 1), bit permutation P64 (Table 2), 6-bit round constants Cr (Table 3)
and 32-bit round subkeys RKr as described in Algorithm 3.
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Algorithm 3: Encryption Algorithm of GIFT64
1 Input: P (= X0) = (x63, x62, · · · , x0) and RKr = (U, V )(0 ≤ r ≤ 27)
2 Output: C = X28

3 for r=0 to 27 do
4 for j=0 to 15 do
5 (y

′
3+4∗j , y

′
2+4∗j , y

′
1+4∗j , y

′
0+4∗j) = S(x3+4∗j , x2+4∗j , x1+4∗j , x0+4∗j)

6 end
7 (y63, y62, · · · , y0) = P64(y

′
63, y

′
62, · · · , y

′
0)

8 for k=0 to 5 do
9 y3∗(k+1)+k = cr ⊕ y3∗(k+1)+k

10 end
11 for l=0 to 15 do
12 y4l+1 = y4l+1 ⊕ ul

13 y4l = y4l ⊕ vl

14 end
15 Xr+1 = (y63, y62, · · · , y0) ⊕ (1 � 63)
16 end

S-box: The 4-bit S-box (Table 1) is applied 16 times in parallel in each round.

Table 1. S-Box

x 0 1 2 3 4 5 6 7 8 9 A B C D E F

S(x) 1 a 4 c 6 f 3 9 2 d b 7 5 0 8 e

Bit Permutation: The diffusion layer uses a permutation P64 (Table 2) on 64
bits in each round.

Table 2. Bit permutation

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

P64(i) 0 17 34 51 48 1 18 35 32 49 2 19 16 33 50 3

i 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

P64(i) 4 21 38 55 52 5 22 39 36 53 6 23 20 37 54 7

i 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

P64(i) 8 25 42 59 56 9 26 43 40 57 10 27 24 41 58 11

i 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

P64(i) 12 29 46 63 60 13 30 47 44 61 14 31 28 45 62 15



196 T. Yadav and M. Kumar

Round Constants: In each round, the 6-bit round constant Cr given in the
Table 3 is used, where c0 refers to the least significant bit. For subsequent rounds,
it is updated as follows:

(c5, c4, c3, c2, c1, c0) ← (c4, c3, c2, c1, c0, c5 ⊕ c4 ⊕ 1)

Table 3. Round constants

Rounds (r) Constants (Cr)

1–14 01 03 07 0F 1F 3E 3D 3B 37 2F 1E 3C 39 33

15–28 27 0E 1D 3A 35 2B 16 2C 18 30 21 02 05 0B

4 Differential Cryptanalysis

Differential cryptanalysis was applied on DES [19] and its exhaustive attack
complexity was reduced. This created a path for other cryptanalytic techniques
e.g. linear [16], impossible differential [6], algebraic [10], etc. [9]. While designing
a block cipher, its output is tested for indistinguishability from the random
permutations. However, there may not exist any relationship between the single
input and output occurrences but there may exist the non-random relations
between the input and output differences. The basic approach of differential
attack is to study the propagation of input differences and exploitation of non-
random relations between the input and output differences. This attack works
with differential characteristics providing the high probability relation between
the input and output differences. The high probability differential characteristics
are used in the key recovery attack by adding some rounds on the top and bottom
of the differential characteristic.

4.1 Classical Differential Distinguisher

There exists several automated techniques to search the optimal differential dis-
tinguishers for block ciphers [13]. In this paper, we use the available differential
distinguishers for SPECK32 [1] and SIMON32 [7]. We extend the 6-round dis-
tinguisher for SPECK32 and 7-round distinguisher for SIMON32 using the ML
distinguisher. For GIFT64, we construct the high probability differential char-
acteristics for 4 rounds using the branch-and-bound based search technique [15]
and extend this distinguisher with the ML distinguisher.

4.1.1 Differential Characteristic for SPECK32
Abed et al. [1] presented the 9-round differential characteristics for SPECK32
with the probability of 2−31. We choose 8-round differential characteristic pre-
sented in Table 4 [1] and use the 6-round differential characteristic (Δ0 → Δ6)
with the probability of 2−13 in our experiments.
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Table 4. Differential characteristic of SPECK32 [1]

Round (r) Input difference (�r) Probability (2−pr )

0 0211 0A04 1

1 2800 0010 2−4

2 0040 0000 2−6

3 8000 8000 2−6

4 8100 8102 2−7

5 8000 840A 2−9

6 850A 9520 2−13

7 802A D4A8 2−19

8 81A8 D30B 2−26

4.1.2 Differential Characteristic for SIMON32
Biryukov et al. [7] presented the 12-round differential characteristics for
SIMON32 with the probability of 2−34. From the 12-round characteristic pre-
sented in Table 5 [7], we use the 7-round differential characteristic (Δ0 → Δ7)
with the probability of 2−16 in our experiments.

Table 5. Differential characteristic of SIMON32 [7]

Round (r) Input difference (�r) Probability (2−pr )

0 0400 1900 1

1 0100 0400 2−2

2 0000 0100 2−4

3 0100 0000 2−4

4 0400 0100 2−6

5 1100 0400 2−8

6 4200 1100 2−12

7 1D01 4200 2−16

8 0500 1D01 2−24

9 0100 0500 2−27

10 0100 0100 2−29

11 0500 0100 2−31

12 1500 0500 2−34

4.1.3 Differential Characteristic for GIFT64
We construct the 4-round optimal differential characteristic with high probability
using branch-and-bound based search algorithm [15]. We use this 4-round differ-
ential characteristic with the probability of 2−12 to construct the differential-ML
distinguisher for GIFT64 (Table 6).
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Table 6. Differential characteristic of GIFT64

Round (r) Input difference (�r) Probability (2−pr )

0 0000 0000 0000 000A 1

1 0000 0000 0000 0001 2−2

2 0008 0000 0000 0000 2−5

3 0000 0000 2000 1000 2−7

4 0044 0000 0011 0000 2−12

4.2 Differential Distinguisher Using Machine Learning

For a chosen input difference, we use the neural distinguisher design proposed
by A. Gohr [12]. We also consider the improvements in this design suggested by
Baksi et al. [2] and use dense layers of MLPs (Multi Layers Perceptrons) instead
of the convolution networks. We use two hidden layers with 1024 neurons in each
layer and train the model on ciphertext differences rather than ciphertext pairs.
These improvements increase the learning efficiency of the model.

The model is trained on the data with chosen and random differences. This
approach works well because the model learns sensitivity as well as specificity in
the data. The sensitivity corresponds to the true positive predictions while the
specificity corresponds to the true negative predictions. Initially, we generate
a set of random plaintexts (P1, P2, · · · , PN ) and assign a label 0 or 1 to each
plaintext randomly. If label of the plaintext Pi is 1, then we generate another
plaintext P

′
i having a difference Δr with Pi otherwise P

′
i is generated randomly.

The difference Δr corresponds to the output difference of the classical differential
distinguisher. We encrypt the plaintexts Pi and P

′
i using the s-round CIPHERs

to get the ciphertexts Ci and C
′
i . The set of ciphertext differences (Ci ⊕ C

′
i)

along with the labels is used as training data (TD) for the training phase. Other
than the training data, we also generate the validation data (VD) which is used
by the trained model M to determine the validation accuracy. Size of TD and
VD is subjected to the available computing resources. We train the model M
on training data till the validation accuracy is saturated. The saturation implies
that there is a negligible improvement in the validation accuracy of ith training
epoch (αsi

) in comparison to the validation accuracies (αsi−1 and αsi−2) of the
last two training epoches. We consider the model M as a valid distinguisher
(DML

r+1···r+s) if the validation accuracy (αs) is at least 0.51 (Algorithm 4).
Once a valid ML based distinguisher(DML

r+1···r+s) is obtained, we generate a
pair of plaintexts with chosen difference (Δr). ORACLE is queried for the corre-
sponding ciphertexts and DML

r+1···r+s is used to make the prediction on ciphertexts
difference. If the prediction probability is at least 0.51 then we consider that the
ciphertext pair belongs to the CIPHERs otherwise not. The accuracy of such
prediction is expected to be αs.
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Algorithm 4: ML based differential distinguisher DML
r+1···r+s

1 Function DataGeneration(N ,Δr,s=no. of rounds):
2 Data Set (D) ← (.)
3 K ← Choose a random key

4 (P1, P2, · · · , PN ) ← Generate a set of random plaintexts

5 (b1, b2, · · · , bN ) ← Initialize a set of labels
6 for i ← 1 to N do

7 bi ← random(0, 1) � random(0, 1) return either 0 or 1 randomly

8 if bi = 0 then

9 P
′
i ← Choose a random plaintext

10 end

11 else

12 P
′
i = Pi ⊕ Δr

13 end
14 Ci ← CIPHERs(Pi, K) � s-round encryption

15 C
′
i ← CIPHERs(P

′
i , K) � s-round encryption

16 Append D by (Ci ⊕ C
′
i , bi)

17 end

18 return D

19 End Function

20 Procedure Trainig Phase(DCD
1···r(Δ0 → Δr),s=no of rounds):

21 Training Data (TD) ← DataGeneration(225, Δr,s)

22 Validation Data (VD) ← DataGeneration(222, Δr,s)
23 for i ← 1 to 10 do
24 Train ML Model (M) on TD

25 Validate M on VD
26 αsi ← Validation Accuracy of M

27 if (i ≥ 3 and αsi ≈ αsi−1 and αsi−1 ≈ αsi−2) then

28 αs = αsi

29 goto Line 32

30 end

31 end

32 if αs ≥ 0.51 then
33 DML

r+1···r+s ← M

34 end
35 else

36 M is not a valid distinguisher
37 end

38 End Procedure

39 Procedure Prediction Phase(DCD
1···r(Δ0 → Δr), DML

r+1···r+s):

40 P ← Choose a random plaintext

41 P
′
= P ⊕ Δr

42 C ← ORACLE(P )

43 C
′ ← ORACLE(P

′
)

44 p ← prediction probability for (C ⊕ C
′
) using DML

r+1···r+s

45 if (p ≥ 0.51) then
46 ORACLE = CIPHERs

47 end
48 else

49 ORACLE �= CIPHERs

50 end

51 End Procedure
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5 Differential-ML Distinguisher: Extending Classical
Differential Distinguisher Using Machine Learning

The accuracy plays an important role to design the machine learning based dif-
ferential distinguisher. There is a trade-off between the accuracy and the number
of rounds covered. If we increase the number of rounds then accuracy of the ML
distinguisher may decrease. The data complexity of a low accuracy distinguisher
cannot be compared with the classical distinguisher due to high amount of false
positive and false negative in the ML distinguisher. Therefore, we propose a new
technique which uses the ML distinguisher to extend the existing classical dis-
tinguisher. Since, the accuracy of the proposed extended distinguisher is high,
we can compare its data complexity with the classical distinguisher.

Classcial

Distinguisher 1

Plaintext Difference: Δ0

Round 1
Round 2

Round r − 1
Round r

(Δ1, 2
−p1)

(Δ2, 2
−p2)

(Δr−1, 2
−pr−1)

(Δr, 2
−pr )

ML

Distinguisher2

Round r + 1
Round r + 2

Round r + s − 1
Round r + s

(Trained for Δr)

Differential-ML

Distinguisher3

Accuracy: αs

Round 1
Round 2

Round r + s − 1
Round r + s

(Trained for Δr)

Data Complexity:

2pr+δ

Accuracy: αr+s

Fig. 1. Extending the classical distinguisher using ML distinguisher (1. Classical dis-
tinguisher: DCD

1···r 2. ML distinguisher: DML
r+1···r+s 3. Differential-ML distinguisher:

DCD→ML
1···r+s )
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Algorithm 5: Differential-ML distinguisher DCD→ML
1···r+s : (DCD

1···r, DML
r+1···r+s,

T = αs, CT , β)

1 Function Construction Phase(DCD
1···r(Data: 2pr), DML

r+1···r+s, T = αs):
2 δ ← 0
3 repeat
4 for k ← 1 to 10 do
5 K ← Choose a random key
6 (PΔ0 , P

′
Δ0

) ← 2δ ∗ 2pr plaintext pairs with difference Δ0

7 (PR, P
′
R) ← 2δ ∗ 2pr plaintext pairs with random difference

8 (CΔ0 , C
′
Δ0

) ← (CIPHERr+s(PΔ0 ,K),CIPHERr+s(P
′
Δ0

,K))
9 (CR, C

′
R) ← (CIPHERr+s(PR,K),CIPHERr+s(P

′
R,K))

10 pΔ0 ← prediction probabilities for (CΔ0 ⊕ C
′
Δ0

) using
DML

r+1···r+s

11 pR ← prediction probabilities for (CR ⊕ C
′
R) using DML

r+1···r+s

12 TP ← number of elements with pΔ0 ≥ T
13 TN ← number of elements with pR ≥ T
14 Plot the curve for TP and TN values
15 end
16 δ ← δ +1
17 until (TP and TN curves do not intersect);
18 CT ≈ average of ordinates of closest points on TP and TN curves
19 Data Complexity(β) ← 2δ ∗ 2pr

20 return CT , β

21 End Function
22 Procedure Prediction Phase( DCD→ML

1···r+s ):
23 Test Data (TD) ← (.)
24 for i ← 1 to β do
25 Pi ←Choose a random plaintext
26 P

′
i = Pi ⊕ Δ0

27 Ci ← ORACLE(Pi)
28 C

′
i ← ORACLE(P

′
i )

29 Append TD by Ci ⊕ C
′
i

30 end
31 p ← prediction probabilities for elements in TD using DML

r+1···r+s

32 if ((number of pairs with p ≥ T ) ≥ CT ) then
33 ORACLE = CIPHERr+s

34 end
35 else
36 ORACLE 
= CIPHERr+s

37 end
38 end Procedure
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To extend the r-round classical differential distinguisher DCD
1···r (Δ0 → Δr), we

use the difference Δr to model s-round distinguisher (DML
r+1···r+s) with an accu-

racy αs. The accuracy αs defines the distinguishing ability of the distinguisher and
better accuracy gives better predictions. Now, the distinguisher DML

r+1···r+s can be
used to distinguish the output of CIPHERs with an accuracy αs.

The data complexity of the r-round classical differential distinguisher (Δ0 →
Δr, probability: 2−pr ) is 2pr chosen plaintext pairs. It is expected to get at least
one occurrence of Δr in the output difference. If we provide 2pr ciphertext pairs
after the (r + s) rounds of encryption to the distinguisher DML

r+1···r+s then we
expect that the ML distinguisher DML

r+1···r+s will correctly predict one occurrence
corresponding to the difference Δr. Since ML distinguisher learns the multiple
output differences, we expect that it will learn the pattern of differences which are
suggested by the classical differential distinguisher. Therefore, we require at least
2pr data to model the (r + s)-round differential-ML distinguisher (DCD→ML

1···r+s ).
Now, the accuracy αs of the s-round ML distinguisher plays a significant role.
If accuracy αs is low then the accuracy αr+s of the distinguisher DCD→ML

1···r+s for
2pr data will also be low. The accuracy of the differential-ML distinguisher must
be high to compare it with the (r + s)-round classical differential distinguisher.
To increase the accuracy αr+s, we propose a novel technique which requires
additional data (2δ). Therefore, data complexity of the differential-ML distin-
guisher DCD→ML

1···r+s becomes 2pr+δ, where δ defines the additional data required
to increase the accuracy of predictions (Fig. 1).

In our technique, we define the differential-ML distinguisher DCD→ML
1···r+s with

five parameters (DCD
1···r, DML

r+1···r+s, T = αs, CT , β). Where, T is the threshold
probability, CT is the cutoff on the number of pairs with the prediction proba-
bility ≥ T and β is data complexity of the differential-ML distinguisher. These
parameters are required to construct the differential-ML distinguisher. We set
αs as the threshold probability (T ) and propose an experimental approach to
calculate CT and β (Algorithm 5). We start with the minimum data (2pr ) and
set δ as 0. We generate a set of 2pr plaintext pairs with the difference Δ0 and
another set of 2pr plaintext pairs with the random differences. These pairs are
encrypted using the CIPHERr+s. The distinguisher DML

r+1···r+s is used to get the
prediction probabilities pΔ0 and pR as explained in Algorithm 5.

Using these probabilities, we get the True Positive (TP) and the True Neg-
ative (TP) values. We repeat this process 10 times and plot the curve for TP
and TN values. If the TP and TN curves intersect, then we increase the data
requirement and repeat the process with the increased data. We repeat the pro-
cess until we get the non intersecting curves. Once such curves are obtained, data
complexity (β) of the differential-ML distinguisher DCD→ML

1···r+s becomes 2pr+δ. To
calculate CT , we take average of the closest points on the TP and TN curves.
Closest points correspond to the minimum number of predictions on TP curve
and maximum number of predictions on TN curve. The value of CT is taken as
the separation cutoff for TP and TN curves and it is used by the distinguisher
(DCD→ML

1···r+s ) to distinguish the data sample correctly. The complete procedure
to construct the differential-ML distinguisher is described in Algorithm 5.
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The differential-ML distinguisher DCD→ML
1···r+s act as the (r + s)-round distin-

guisher. We choose a set of β plaintext pairs with the difference Δ0 and get
the ciphertext pairs after (r + s) rounds. The distinguisher DCD→ML

1···r+s makes the
prediction for each ciphertext pair. If the number of pairs with the prediction
probability greater than T is above the cutoff threshold CT then the distin-
guisher DCD→ML

1···r+s classifies whether the given data is an output from the target
CIPHERr+s or not. The prediction procedure is described in the prediction
phase of the Algorithm 5.

With the proposed distinguisher DCD→ML
1···r+s , we can achieve very high accu-

racy to distinguish the output of the CIPHERr+s and it can be used to mount
a key recovery attack. The experiments to construct the differential-ML distin-
guishers are presented in the next section.

6 Experimental Results

We construct the differential-ML distinguisher for the 32-bit variants of the
lightweight block ciphers SPECK and SIMON and 64-bit variant of GIFT. We
experimented on 32-bit and 64-bit block ciphers due to constraints on avail-
able resources. With more computing power, ciphers with larger block size can
be explored to construct differential-ML distinguisher. We extend the classical
differential distinguisher discussed in Sect. 4 with the ML distinguisher. Using
this novel technique, we construct the differential-ML distinguishers for 9-round
SPECK32, 12-round SIMON32, and 8-round GIFT64 with (much) less data
complexity than the classical distinguishers.

We used Keras-GPU1 library in Google colab2 for the model training and
predictions. In each experiment, ADAM optimizer is used for the adaptive learn-
ing rates and the Mean-Square-Error is used as the loss function. The validation
batch accuracy is considered as the accuracy (αs) of the trained model.

6.1 Differential-ML Distinguisher: SPECK32

For SPECK32, we use the classical differential characteristic for 6 rounds (Δ0 →
Δ6) as described in the Table 4. We have an output difference 0x850A9520 after
6 rounds with the probability of 2−13. We train the 3-round ML distinguisher
using Δ6 as the input difference and the model is trained with the accuracy
of 0.79 using Algorithm 4. The batch accuracy and loss are described in the
Appendix A.

6.1.1 Construction
The probability of the 6-round classical differential distinguisher is 2−13. There-
fore, we will require at least 213 data to make the predictions with the
9-round differential-ML distinguisher. We calculate T , CT , and β as discussed in

1 https://keras.io.
2 https://colab.research.google.com.

https://keras.io
https://colab.research.google.com
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Algorithm 5 and construct the 9-round differential-ML distinguisher DCD→ML
1···r+s

by extending the 6-round classical distinguisher. We draw the graphs for TP and
TN values (Fig. 2) and calculate data complexity (β) and cutoff (CT ). We experi-
mented with the various samples of different sizes and obtained a clear separation
between true positive and true negative curves for a sample size of 220. We calcu-
late the value of CT as 73100 and β as 220 with the help of graph (d) in Fig. 2.
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Fig. 2. Calculation of CT and data complexity (β) for SPECK32 (DCD→ML
1···r+s )

6.1.2 Prediction
We constructed the 9-round differential-ML distinguisher DCD→ML

1···r+s in the pre-
vious subsection. The accuracy (αr+s) of this differential-ML distinguisher for
different experiments is mentioned in the Table 7.

In the experiments, we take 50 samples belonging to the plaintext difference
Δ0 (=0x0211 0A04) of the classical distinguisher and other 50 samples belonging
to the random input differences. The differential-ML distinguisher DCD→ML

1···r+s
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Table 7. Accuracy for SPECK32 with T = 0.79, CT = 73100 and β = 220

Experiment no. Sample size Correctly distinguished
(true positive, true negative)

1 100 98(50,48)

2 100 98(50,48)

3 100 99(49,50)

4 100 97(48,49)

5 100 96(49,47)

predicts whether the given sample belongs to the difference Δ0 or not by using
the Algorithm 5. We used 220 data in each sample and achieved the accuracy
(αr+s) more than 96% in each experiment.

Therefore, the data complexity of the 9-round differential-ML distinguisher
for SPECK32 is 220. However, the data complexity of the 9-round classical dif-
ferential distinguisher is 231 as presented in [1]. The best known differential
characteristics for SPECK32 exists for 9-rounds with the data complexity of
230 [7]. Using the differential-ML technique, we have constructed the 9-round
distinguisher with the data complexity far less than the existing classical differ-
ential distinguisher.

6.2 Differential-ML Distinguisher: SIMON32

For SIMON32, we use the classical differential characteristic for 7 rounds as
described in the Table 5. We have an output difference 0x1D014200 (Δ7) after
7 rounds with the probability of 2−16. We use Δ7 as the input difference for
the training phase of the 5-round ML distinguisher. We train the model with
the accuracy of 0.57 using the Algorithm 4. The batch accuracy and loss are
described in the Appendix A.

6.2.1 Construction
The probability of the 7-round classical differential distinguisher is 2−16. So, we
will require at least 216 data for the 12-round differential-ML distinguisher of
SIMON32 and additional data (2δ) will be required to increase the accuracy
of the differential-ML distinguisher. Similar to the SPECK32 case, we require
T , CT , and β to construct the 12-round differential-ML distinguisher DCD→ML

1···r+s

which extends the existing 7-round classical distinguisher. We calculate the data
complexity (β) and cutoff (CT ) by using the Algorithm 5 and the graphs for TP
and TN values (Fig. 3). It is observed from the graphs that a clear separation
between true positive and true negative values exists for the sample size of 222.
We calculated the value of CT as 656300 and data complexity(β) as 222 on the
basis of this separation.
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Fig. 3. Calculation of CT and data complexity (β) for SIMON32 (DCD→ML
1···r+s )

6.2.2 Prediction
The 5-round ML distinguisher (DML

r+1···r+s) is trained with the validation accu-
racy of 0.57. It is used to extend the 7-round classical differential distinguisher.
The accuracy of the 12-round differential-ML distinguisher DCD→ML

1···r+s for differ-
ent experiments is mentioned in the Table 8.

Similar to the previous case, we take 50 samples belonging to the initial input
difference Δ0 (=0x04001900) of the classical distinguisher and other 50 samples
belonging to the random input differences. We make predictions with 222 data
using the value of CT calculated in the previous step and the accuracy (αr+s)
greater than 97% is achieved in each experiment. From these experiments, 12-
round differential-ML distinguisher DCD→ML

1···r+s with data complexity of 222 is
constructed, while data complexity for the 12-round classical differential distin-
guisher is 234 (Table 5). In this case, we present the first 12-round distinguisher
with the data complexity less than 232. This shows that the differential-ML
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Table 8. Accuracy for SIMON32 with T = 0.57, CT = 656300 and β = 222

Experiment no. Sample size Correctly distinguished
(true positive, true negative)

1 100 98(48,50)

2 100 98(48,50)

3 100 98(49,49)

4 100 97(48,49)

5 100 98(48,50)

distinguisher provides the better results than the classical differential distin-
guisher in case of SIMON32 also.

6.3 Differential-ML Distinguisher: GIFT64

For GIFT64, we searched an optimal differential characteristic for 4 rounds which
is described in the Table 6. We obtain the output difference after 4 rounds as Δ4

= 0x0044000000110000 with the probability of 2−12. The difference Δ4 is used to
train the 4-round ML based distinguisher. We train a model with the accuracy
of 0.65 using the Algorithm 4. The batch accuracy and loss are described in
Appendix A.

6.3.1 Construction
The probability of the 4-round classical differential characteristic is 2−12. There-
fore, data complexity of the 4-round differential distinguisher will be 212. So,
the 8-round differential-ML distinguisher for GIFT64 will require at least 212

data. We calculate T , CT , and data complexity (β) by using Algorithm 5. These
are required to construct the 8-round differential-ML distinguisher by extending
the 4-round classical differential distinguisher. It can be easily inferred from the
graphs depicted in Fig. 4 that a clear separation between true positive and true
negative values exists for the sample size of 220. We use this separation to get the
cutoff threshold (CT = 103750) and data complexity (β = 220) for DCD→ML

1···r+s .

6.3.2 Prediction
The 4-round ML distinguisher DML

r+1···r+s is trained with the validation accuracy
of 0.65 and it is used to extend the 4-round classical differential distinguisher.
Accuracy of the 8-round differential-ML distinguisher DCD→ML

1···r+s for different
experiments is mentioned in the Table 9.

Similar to SPECK32 and SIMON32 cases, we take 50 samples belonging
to the input difference Δ0 (=0x000000000000000A) of the classical distinguisher
and other 50 samples belonging to the random input differences. For each sample,
we use 220 data to achieve the accuracy (αr+s) greater than 98% in each exper-
iment. Therefore, data complexity of the 8-round differential-ML distinguisher
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Fig. 4. Calculation of CT and data complexity (β) for GIFT64 (DCD→ML
1···r+s )

Table 9. Accuracy for GIFT64 with T = 0.65, CT = 103650 and β = 220

Experiment no. Sample size Correctly distinguished
(true positive, true negative)

1 100 99(50,49)

2 100 100(50,50)

3 100 98(50,48)

4 100 100(50,50)

5 100 100(50,50)
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is 220, while data complexity of the 8-round classical differential distinguisher
was 238 [20].

6.4 Comparison with the Classical Differential Distinguishers

We have constructed the differential-ML distinguishers for the block ciphers
based on three different types of structures (Feistel, SPN, and ARX). We are
able to distinguish the same number of rounds using less amount of data in com-
parison to the classical distinguisher. These results indicate that our technique
provides better results for the block ciphers based on all types of structures.
The source code for the above mentioned experiments is available on GitHub3.
We provide a comparison of the data complexities between the differential-ML
distinguisher and the classical differential distinguisher in Table 10.

Table 10. Summary of results

Cipher Distinguisher Round Data complexity Source

SPECK32 Differential 9 230 [7]

SPECK32 Differential-ML 9 220 Sec. 6.1

SIMON32 Differential 12 234 [7]

SIMON32 Differential-ML 12 222 Sec. 6.2

GIFT64 Differential7 8 238 [20]

GIFT64 Differential-ML 8 220 Sec. 6.3

There exists differential distinguisher for 12 rounds with the data com-
plexity of 260.

7 Conclusion

In this paper, we have proposed a novel technique to extend the classical differen-
tial distinguisher using machine learning. We have constructed the high accuracy
(more than 96%) differential-ML distinguishers for 9-round SPECK32, 12-round
SIMON32, and 8-round GIFT64. For SPECK32, we have extended the 6-round
classical differential distinguisher with the 3-round ML distinguisher and the data
complexity of 9-round differential-ML distinguisher is 220. For SIMON32, the clas-
sical differential distinguisher for 7-rounds is extended with the 5-round ML dis-
tinguisher and data complexity of the 12-round differential-ML distinguisher is
222. For GIFT64, the 8-round differential-ML distinguisher is constructed with the
data complexity of 220 whereas data complexity of the 8-round classical differen-
tial distinguisher was 238. The data complexity of the distinguishers for SPECK32,
SIMON32, and GIFT64 is significantly reduced using differential-ML distinguish-
ers in comparison to the classical distinguishers.

3 https://github.com/tarunyadav/Differential-ML-Distinguisher.

https://github.com/tarunyadav/Differential-ML-Distinguisher
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Appendix A - Accuracy and Loss Graphs
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(a) SPECK32: Validation Batch Accuracy
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(b) SPECK32: Validation Batch Loss
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(c) SIMON32: Validation Batch Accuracy
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(d) SIMON32: Validation Batch Loss
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(e) GIFT64: Validation Batch Accuracy
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Abstract. In recent years, many papers have shown that deep learning
can be beneficial for profiled side-channel analysis. However, to obtain
good performance with deep learning, an evaluator or an attacker face the
issue of data. Due to the context, he might be limited in the amount of
data for training. This can be mitigated with classical Machine Learning
(ML) techniques such as data augmentation. However, these mitigation
techniques lead to a significant increase in the training time; first, by
augmenting the data and second, by increasing the time to perform the
learning of the neural network.

Recently, weight initialization techniques using specific probability
distributions have shown some impact on the training performances in
side-channel analysis. In this work, we investigate the advantage of using
weights initialized from a previous training of a network in some different
contexts. The idea behind this is that different side-channel attacks share
common points in the sense that part of the network has to understand
the link between power/electromagnetic signals and the corresponding
intermediate variable. This approach is known as Transfer Learning (TL)
in the Deep Learning (DL) literature and has shown its usefulness in vari-
ous domains. We present various experiments showing the relevance and
advantage of starting with a pretrained model. In our scenarios, pre-
trained models are trained on different probe positions/channels/chips.
Using TL, we obtain better accuracy and/or training speed for a fixed
amount of training data from the target device.

Keywords: Side-channel analysis · Profiling attacks · Neural
networks · Electromagnetic emanations · Transfer learning

1 Introduction

Since its introduction at the end of the 90’s [14], the exploitation of side-channel
information observed from a cryptographic device has grown significantly. Using
physical quantities such as time, heat, power, electromagnetic field, photon emis-
sion, sound, it is possible to recover secret data. Defenses against side-channel
attacks can be found in smart-cards, set-top boxes, video game consoles, or
smartphones for instance.

Profiled attacks are considered as the strongest type of side-channel attacks.
They are based on the principle that the attacker is able to derive a relevant
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leakage model for the targeted device. Template attacks [5] are considered as
optimal [10] and often the noise distribution is modeled as multivariate Gaus-
sian. However, this approach may not be the most effective in practice due to
some limitations. Among them, the Gaussian model that may not be perfectly
suited or the spreading of the leakage points (e.g. due to some jitter) that may
lead to intractable computations for model estimation. A new trend in side-
channel analysis (SCA) is to explore the use of deep learning (DL) tools for
profiled attacks [2,20]. These tools may help in solving problems such as trace
misalignment, or high dimensional data in combination with masking counter-
measures. However, deep learning tools still require a sufficient amount of data
to construct relevant models, which may not be possible in particular scenarios.

Data augmentation [4] has been shown as a solution to cope with insufficient
amount of data in some contexts. On the downside, adding data increases the
amount of resources needed for both generating and processing this additional
data. In this paper, we investigate the opportunity of exploiting information
previously learnt from a different context to mount a new attack.

Traditionally, the dataset for profiling is assumed to come from a distribu-
tion identical to the one of the target device. In the research community, often
only one dataset is measured, which is then divided into profiling and attack-
ing datasets. Lately, the problematic of portability has been brought up and
investigated [3,6,8]. In these works, portability refers to the differences between
training and attacking dataset distributions and the consequences on the learnt
model. The differences investigated in these works mostly arise due to fixed key
alterations or variations in the manufacturing process of the device. The authors
show that indeed the impact of the differences in distribution are notably in the
effectiveness of the side-channel attack.

So far, the changes investigated could be mostly considered as minor com-
pared to scenarios tackled, for example, in the field of image classification or
computer vision. In the same context, transfer learning has recently1 gained
attention in the deep learning community [9], which allows to refine models that
have been built solving different – but still related – problems. These pretrained
models may allow to build accurate models for different tasks in a time-saving
way as less data and training may be required.

Following this path, we investigate if data coming from sources that are not
identical to the target dataset can actually benefit the side-channel attacker
or evaluator. In particular, we adapt the concept of pretrained models to the
side-channel community and extend the currently used attacker models. One
could argue that pretrained models could be open-sourced and available in the
community easily as it is done, for example, in the image classification domain.

In this paper, we investigate if using pretrained weights from different con-
texts, such as

– different EM probe positions,
– different side-channel sources (power instead of EM), and
– different devices,

1 The concept itself has been already discussed in 1995 at NIPS [21].
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could benefit an attacker/evaluator. We experiment both the naive approach
of directly using the pretrained model itself and the transfer learning approach
where the pretrained models are first fine-tuned for the new task with some
available labelled data. The latter one can be seen as initializing the network
weights with some application-dependent values.

2 State-of-the-Art on Deep Learning Techniques for SCA

First works using machine learning techniques in side-channel analysis showed
that Support Vector Machine (SVM) and Random Forest (RF) are effective
profiled side-channel attacks [12,17]. Particularly, when the size of the training
dataset is limited, SVM can be more efficient than Gaussian templates due to
the underlying estimation problem [11]. More recently, deep learning techniques
have shown to be even more advantageous in several settings. Using the advan-
tages of deep learning in side-channel analysis is becoming a very “fruitful” topic,
with newly published works very frequently. Nevertheless, how to use the full
potential of deep learning for side channel analysis has not been developed yet.
One of the first works [20] showed that when an implementation is protected
with a masking countermeasure, neural networks can reveal sensitive key infor-
mation even without the need of a higher order combination function [22] or
an additional step of point of interest selection. Shortly after the introduction
of deep learning techniques for side-channel analysis, a database of side-channel
measurements (called ASCAD) has been published [2] to facilitate comparable
research works in this direction. The database consists of EM measurements
of an AES-128 implementation protected with a masking countermeasure. Fur-
thermore, the authors provide a software tool to artificially add a random delay
countermeasure. Together with the database, the authors provide a study of
neural network architectures, parameter selection, and pretrained neural net-
work models. On the same lines as against masking countermeasures, neural
networks are extremely effective against random delay countermeasures [4].

To strengthen profiled side-channel attacks based on neural networks, recent
works showed techniques to further improve their attacking strength. The
authors [4] highlighted that data augmentation techniques, i.e., the addition
of artificial data, are significantly improving the success of an attack when shuf-
fling (jitter-based) protections are present. A practical parameter selection guide
is given by Maghrebi [19], i.e. the author provides some recommendations and
practical hints to either enhance the efficiency from an adversary’s perspective or
to strengthen the resistance of the cryptographic implementations against these
attacks from a security developer’s perspective. A follow-up on parameter selec-
tion has also been published by Zaid et al. [27] where authors try to find minimal
networks to greatly improve the training time at a negligible cost in terms of
final accuracy, which was further improved by Wouters et al. [26]. The influence
of weight initalizations on CNN has been compared in terms of guessing entropy
by Li et al. [18]. A realistic real-world study has been performed by Bhasin
et al. [3], and similarly by Das et al. [8], and by Wang et al. [25]. These works
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investigated the scenario when the profiling and attacking devices are different
(to some extent), which is relevant in practice, but not always studied in research.
In addition the work [25] also investigate how cryptographic algorithm implemen-
tation diversity affects classification accuracy. In these works, researchers trained
MLP or CNN in order to study their performance on several chips of the same
device, and/or different keys, or different modes of operation. To overcome the
problem of overfitting to one specific device chip, the authors [3] trained on one
device, validated on a second device, and attacked on the third device. A different
approach was discussed by Das et al. [8], where the authors trained on multiple
chips of the same device to avoid influences from cross-devices dissimilarities.
Note that all these papers investigated simple devices running an 8-bit micro-
controller. In this paper, we consider another variability source also on more
complex devices. We investigate several devices, probe positions and types, and
we derive a workaround to diversity by fine-tuning a pretrained model (which
is known as “transfer learning” in the machine learning community). Transfer
learning has been shown to be successful in a simulated environment by Tha-
par et al. [24], where results show that transfer learning may help to lower the
requirement on the number of traces in the learning phase.

3 On Transferring Side-Channel Model Knowledge

3.1 Approach

Profiled side-channel analysis requires a sufficient amount of representative data
in the learning phase, in particular, when using deep learning techniques. Fortu-
nately, the community has put forward open-source datasets and models trained
on these datasets recently. Naturally, the available data and pretrained models
may not correspond exactly to the conditions an attacker faces on the target
device. This problem of data discrepancy between training and testing datasets
or data limitation of the training dataset is already known in other research fields
and is tackled, for example, with the concept of transfer learning using neural
networks. In particular, the idea of transfer learning is to transfer “knowledge”
from a previous task or on related data to reduce the complexity of the learning
on the actual suitable training dataset. Using this knowledge is simply achieved
by using the weights of an already trained network as initialization instead of
random weights according to some distributions. Seeing it from an implementa-
tion point of view, an attacker simply needs to download the pretrained model
and load it into his framework before starting the training. Then, when reusing
previously learnt models, the amount of data needed from the target device and
the training time can be reduced. Or to put it the other way around, with less
data it is possible to achieve higher effectiveness.

Transfer learning has shown to be efficient in several domains such as food
classification [13], illustration classification [16] and for saliency [15].

In SCA, the first publicly known pretrained model is the ASCAD model [2],
since then some other pretrained models have been published independently
[26,27].
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Remark 1 (Clone Dataset). Conditions that are not identical between training
and attacking may not only come from device variations, but also from the
measurement setup (as in our experiments later on). We therefore use the term
“clone dataset” instead of the state-of-the-art term “clone device” if we want to
refer to a dataset which is identical to the one in the attacking phase.

Depending on the available amount of data and the attack/evaluation con-
text, multiple choices are available for training. We define three different training
strategies that use throughout the paper:

Definition 1 (Training the Model on a Clone Dataset). A (small) clone
profiling dataset is available. This clone dataset is obtained from a setup that is
identical to the attack dataset one (illustrated in Fig. 1a and labeled as S0).

Definition 2 (Training the Model on a Different Dataset). In this sce-
nario, possessing a clone dataset is not possible at all. One can only take advan-
tage of a pretrained neural network that has been trained on a related (but not
identical) setup (illustrated in Fig. 1b and labeled as S1).

Definition 3 (Fine-tuning the Pretrained Model with a (Small) Clone
Dataset). A (small) clone profiling dataset is available. This dataset is used to
fine-tune a model previously trained on some related setup (illustrated in Fig. 1c
and labeled as S2).

Remark 2. Training strategy in Definition 1 corresponds to the traditional pro-
filed attacker that has been originally introduced in the context of template
attacks. Definition 3 also corresponds to the traditional profiled view, however,
in here we additionally consider pretrained models from the outside. Assum-
ing only a limited clone dataset (without the knowledge of pretrained models)
has been investigated in recent works on side-channel attacks using machine
or deep learning. For instance, authors [4] suggest to use Data Augmentation
by generating new traces by the addition of noise (here temporal noise). Data
Augmentation is known as a relevant technique to deal with too small datasets,
however adding data increases the resource complexity.

(a) Strategy S0 using a
clone dataset; traditional
profiled attacker

(b) Strategy S1 using only
a pretrained model

(c) Strategy S2 using a pre-
trained model and a clone
dataset to finetune

Fig. 1. Training strategies.
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In this paper, we do not consider variations due to the manufacturing pro-
cess of the chip, but differences arising from the measuring setup, side-channel
information source, or from different devices (while still being close enough). We
investigate three main scenarios in our experiments.

1. The position and type of the EM probe differ between pretrained model and
target dataset.

2. The source of side-channel information differs between pretrained model and
target dataset. Here, we investigate the use of power consumption and EM.

3. The device differs between pretrained model and target dataset. In this work,
we consider the STM32Fx family as explained in more details later on.

3.2 CNN Architecture

Thorough study of CNN was introduced by Benadjila et al. [2] and is commonly
called ASCAD network. Its architecture was chosen through exhaustive evalu-
ation of many design principles and parameters. The best performing network
(in their selection) is relying on the architecture of VGG-16 [23] with five blocks
and 1 convolutional layer per block, a number of filters equal to (64, 128, 256,
512, 512) with kernel size 11 (“same” padding), ReLU activation functions and
an average pooling layer for each block. The CNN has two final dense layers
of 4 096 units. The network is illustrated in Fig. 2. The weights of the network
are initialized with the “Glorot uniform” initializer. To conform to Benadjila
et al.’s use-case [2], we have selected time frames for each experiment to reduce
the input trace to 700 points based on the highest value of SNR.

C
on

v1
D

P
oo

lin
g1

D

C
on

v1
D

P
oo

lin
g1

D

C
on

v1
D

P
oo

lin
g1

D

C
on

v1
D

P
oo

lin
g1

D

C
on

v1
D

P
oo

lin
g1

D

F
la
tt
en

M
L
P

So
ft
m
ax

Fig. 2. ASCAD network

A fine-tuned and more efficient version of ASCAD was introduced by Zaid
et al. [27] where the authors show that their network outperforms the ASCAD
network while significantly reducing the network complexity. We label the net-
work as ASCAD++. It is composed of one convolutional layer with a number
of filters equal to 4 with kernel size 1 (same padding), one batch normalization
layer, and one average pooling layer. The network has two final dense layers of
10 units. The network is illustrated in Fig. 3a. As for the ASCAD network, we
used the Glorot uniform initializer for weight initialisation and the size of the
time frame for each of our experiments is equal to 700 points.

An enhancement of the ASCAD++ was given by Wouters et al. [26]. Authors
point out that the convolutional layer of ASCAD++ network acts as a normal-
ization and that it is useless on normalized inputs. Hence, this network does
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(b) NoConv1 network

Fig. 3. Enhancements of the ASCAD network

not contain any convolutional layers. It is only composed of one average pool-
ing layer, and has two final dense layers of 10 units. The network is illustrated
in Fig. 3b. As ASCAD++ and ASCAD network, we use the network with the
Glorot uniform initializer and the size of the time frames for our experiments is
equal to 700 points. In the following section, this network is called NoConv1.

3.3 CNN Training

Naturally, for S0 and S1, a large enough amount of data is needed to train the
neural network, because none of the parameters of both convolutional and dense
layers are fitted to the classification problem faced in side-channel analysis when
starting from a random initial state.

However, for S2, different strategies using transfer learning are available. For
example, an attacker could have only trained dense layers (thus freezing convo-
lutional layers) or could have reset some specific layers while keeping previous
parameters for other layers. Those strategies may permit to decrease the amount
of data needed to train the neural network. The parameters kept from the first
training may be better suited than a random initialization, thus getting the
starting point closer to a minimum in the search space. In addition, some strate-
gies where layers are frozen reduce the number of parameters to update in the
neural network, which may increase the training speed. We apply two strate-
gies on initial experiments: re-training the complete network during the second
step and freezing the convolutional layers2 (assuming that feature extraction is
similar from one context to another but only decision changes). Since both gave
similar results on our first runs, we decided to focus on retraining the full net-
work, since then we do not make any hypothesis (that could end up to be false
in some cases). Investigating deeply different techniques is clearly an interesting
extension of this work.

We used a similar amount of data across experiments. The choices have been
made i) to have most of the direct approaches leading to working attacks ii) to
show the data requirement drops when performing transfer learning, and iii) to
take into account that pretrained models are open-sourced from another party
that may have higher available resources than the attacker itself. The number
of traces used are hence:

2 If existent.
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– 100 000 traces to pretrain a network on a dataset different than the clone
dataset,

– 12 500 traces for direct attacks, or to fine-tune a network.

In our experiments, we use a batch size of 128, and the number of epochs is
set to 100, for which we observed a convergence of the ASCAD network3. For
the ASCAD network, the optimizer is the RMSprop optimizer with a learning
rate equal to 1e–5 as introduced by Benadjila et al. [2]. For the ASCAD++
and NoConv1 networks, we used Adam optimizer with a learning rate equal to
1e–5. We do not apply an early stopping criterion to stop the training of the
neural networks if it reaches a minimal loss error. We simply save the best model
according to the lowest (validation) loss error during the training.

3.4 Evaluation Metrics and Targeted Value

Experiments have been performed on first-order leakage from the output of the
AES substitution box (SBox) [7]. In Sect. 5 and Sect. 6 we use a simple imple-
mentation of AES and target the Sbox output that is y = SBox(t ⊕ k) with
t being a plaintext byte and k a key byte. In Sect. 4, we collect datasets with
multiple probes for which the setup is similar to the one introduced by Benadjila
et al. [2]. We then chose the highest first-order leakage source that is the masked
output of the Sbox.2

To evaluate the amount of leakage, we use the signal-to-noise ratio (SNR).
Let X denote the captured side-channel measurement, let Y be the label that is
determined by the plaintext and the secret fixed key, then SNR gives the ratio
between the deterministic data-dependent leakage and the remaining noise, i.e.
SNR = Var(E(X|Y ))

E(Var(X|Y )) , where E(·) is the expectation and Var(·) the variance of a
random variable.

To evaluate the ability to retrieve the key, we use the guessing entropy (GE),
by computing the average rank of the secret key k∗ within a vector of key guesses.
In particular, the vector of key guesses gi,1, . . . , gi,|K| for the ith measurement
is calculated by mapping each key guess k to a label j with probability p̂i,j and
applying the maximum-likelihood principle over 1 to m measurements. The rank
is then the position of the secret key k∗ in the sorted vector of key guesses, where
the sorting is applied to the probabilities in descending order. In other words,
the guessing entropy gives the expected number of key guesses an attacker needs
to perform before he reveals the secret key.

Remark 3. In our experiments, we observed that in some cases, GE inversely
converges, i.e., instead of going down towards zero, it increases towards 255. We
(and others) have observed this effect already on other datasets and models, yet
this observation has not been published or explained. In our experiments, GE is
“inverted” as a straightforward solution when seeing this effect.
3 NoConv1 and ASCAD++ may require a larger number of epochs before convergence

and thus the guessing entropy might be still improvable using more epochs. An
extended evaluation on the convergence and the corresponding guessing entropies
will be provided on eprint.
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4 Transferring Between EM Probe Position and Type

In this section, we investigate transferring knowledge from a network trained on
a dataset obtained using a different probe type or position. The motivation for
this scenario is twofold.

First, when using EM as a side-channel source, the type of probe as well
as its exact position, i.e., location and angle, play a crucial role (see for exam-
ple [1]). In some situations, an attacker may not be able to precisely replicate
the measurement setup from training on the attacked device.

Second, from an evaluation lab point of view, this scenario is related to
the problematical duration of a fine-grained cartography. Leveraging transfer
learning between probe positions, it is then possible to decrease the acquisition
time since fewer traces are needed to train the network at each new position.
The methodology would be to acquire a lot of traces on a seemingly relevant
position to train a network, then to measure a few traces on each other position
and adapt the network using transfer learning.

Fig. 4. Multi-probe experiment setup Fig. 5. Measurement trace from each
of the three channels

For our experiments, we use a similar measurement setup and device as
introduced by Benadjila et al. [2], namely a raw AtMega8515 microcontroller on
the AVR STK500 platform4. We used the same AES-128 encryption than the one
from ASCAD, which is protected using a masking countermeasure. The compiler
optimization flag was set to --O0 but we did not embed the SOSSE operating
system. The chip frequency was set to 3.686 MHz. Recall that for consistency
between experiments, we targeted the masked output of the Sbox while knowing
the output mask to target a significant first-order leakage. The measurements are
obtained using different Langer near-field EM probes (two RF-B 0,3-3 and one
RF-K 7-4) connected to 30 dB amplifiers while the overall is having a bandwidth
maximum frequency of 3 GHz. The signal was then digitized by an RTO2014
oscilloscope from Rohde and Schwarz having a bandwidth of 1 GHz (thus being
the limiting link).
4 For ASCAD a smart-card embedding this micro-controller has been used.
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Fig. 6. SNR evaluation for each channel (from left to right: EM2, EM3, EM4)

We focused on the first AES round with a sampling frequency of 1Gs per
second and obtained traces containing 20K samples. We observed that the leak-
ages we obtained have a different location than the one reported by Benadjila
et al. [2], however, we obtained similar leakages for the most informative part of
the signal.

We show for example a measurement trace for each of the three channels in
Fig. 5. The probes on channels 2 and 3 (EM2, EM3) are placed to capture data-
dependent leakage signals, whereas channel 4 (EM4) is capturing mostly noise5.
Moreover, EM2 and EM3/EM4 are different types of probes, which explains the
different amplitude as well. This is confirmed in Fig. 6 showing the SNRs for
EM2, EM3, EM4. One can see that EM2 provides higher SNR levels then EM3
and EM4, however, the leakage positions in time are consistent. Note that, even
though EM4 is very noisy, one can still observe minor leakages.

4.1 Experimental Results

Figure 7 shows the GE when targeting EM2, which is the channel with the
highest SNR value. On the left side, we see that the pretrained model of EM2
(even if limited in traces) is converging quickly towards zero, with ASCAD++
and NoConv1 being slightly more effective. Pretrained models on other EM
channels also succeed (even for EM4 which contains a high amount of noise),
again on these ASCAD++ is the most effective, closely followed by NoConv1.
On the other hand, using transfer learning is not improving the GE in most
cases.

Next, Fig. 8 shows the GE when targeting EM3, which has a medium SNR
and is using the same probe type as EM4. Interestingly, a pretrained model on
EM4 is slightly more effective than using a model trained on EM3 when directly
used for attacking EM3. Again, ASCAD++ and NoCOnv1 are performing better
than ASCAD. When using transfer learning, the results are slightly improved
for the pretrained model of EM4, and improved for ASCAD using EM2.

5 Channel 1 was used for triggering.
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Fig. 7. Guessing entropy when targeting EM2

Fig. 8. Guessing entropy when targeting EM3

Fig. 9. Guessing entropy when targeting EM4

In Fig. 9 we show the GE targeting EM4 that has the lowest SNR from
all three EM positions. Directly applying a pretrained model from EM3 using
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NoConv1 works sufficiently well, followed by ASCAD++ network from EM3,
and a pretrained model on EM4 using ASCAD. Interestingly, using directly
the pretrained model EM2, which is the channel containing the highest amount
of information, does not perform better than less informative channels. Using
transfer learning improves the result for EM3+NoConv1, EM3+ASCAD++,
EM3+ASCAD, and EM2+ASCAD.

Summary. When targeting noisy channels, our results show that the performance
increases when using pretrained models on another channel with more available
data, compared to training a model that is identical to the one of the target
dataset (clone dataset) with less amount of data. In addition, on this dataset
which is related to the original ASCAD dataset, NoConv1 and ASCAD++ (that
have been fine-tuned on the ASCAD dataset) perform (slightly) better than the
ASCAD network. Even though these two architectures are very specific and
restricted, they still improve in some scenarios using transfer learning.

5 Transferring Between Power and EM

In this scenario, we investigate the transfer between side-channels. The main
motivation for this experiment comes from the duality between power and EM
side-channels. Usually, measuring power consumption is achieved by adding a
resistor to a power line. This implies that the obtained values usually corre-
spond to all (or at least a big part of) the chip (including highly consuming but
unrelated features). On the contrary, EM may allow a more precise selection
of the leakage, but this induces a risk of not capturing all relevant signals or
introducing noise.

In some contexts, the attacker cannot add a resistor to the PCB of the
target and thus has to use an EM probe for attacking. On the contrary, he
may buy a clone device and build a dedicated card enabling power consumption
measurements. He may thus train on power beforehand to build a pretrained
model which makes use of all possible leakages, and then attack using EM where
only a part of the signal are available (depending on the probe position for
instance).

Again, from the evaluation lab point of view, this scenario is linked to the
cartography problem. EM source is more localized and may lead to better results
than power, but it needs a fine-grained cartography of the chip. First, training
a network with power speeds up the cartography as mentioned in the previous
experiment. Using power for a first training prevents from making a bad position
choice for the first acquisition run (with no signal or a too specialized one).

We use the chipwhisperer lite capture board combined with the CW308 UFO
board on STM32Fx target devices. Like in the previous setup, we measure the
beginning of an AES-128 encryption, where we used the TINYAES implementation
integrated in the chipwhisperer software. The chip frequency was set to 7.37 MHz
and the measurements are sampled at 4 × 7.37 Ms/s. Power consumption is
collected through the measurement shunt on the CW308 UFO board. To capture
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(a) Electromagnetic emanation (b) Power consumption

Fig. 10. SNR evaluation for each targeted device

EM signals, we used a Langer near-field EM probe (RF-U 5-2) connected to a
20 dB amplifier.

Figure 10a and Fig. 10b show the SNRs obtained with EM emissions and
power consumption for each device. Depending on the device, we have different
SNR levels for power and EM emissions. However, the shapes corresponding to
power and EM are close to each other. The SNR values for power are higher than
for EM. Seemingly, the EM emission measurements contain more noise than the
ones from power. We expect that transfer learning can use the knowledge given
by power to improve the models to target EM.

5.1 Experimental Results

We now compare the effectiveness of applying pretrained models against using
transfer learning when targeting EM measurements and having available pre-
trained models on power consumption. We consider the four previously intro-
duced devices (namely, F0, F1, F2, and F4).

In Fig. 11 we plot the guessing entropy obtained when targeting device F0
with EM (F0em). On the left, one can observe that for all three neural networks
the attack does not converge within 1000 traces. When using transfer learning
(right side), i.e., using the weights obtained when training on power consumption
as initialization, all networks show a decreasing GE, whereas ASCAD is the most
effective network nearly reaching a GE of 0.

Figure 12 presents the results when attacking F1 with electromagnetic emis-
sion. Similarly as before, when applying pretrained networks directly (even when
using EM measurements), none of the networks seem to have a decreasing GE.
However, when updating the pretrained model with transfer learning, one can
observe that ASCAD is reaching a GE close to 0.
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Fig. 11. Guessing entropy when targeting F0em

Fig. 12. Guessing entropy when targeting F1em

Fig. 13. Guessing entropy when targeting F2em

Targeting F2em, Fig. 13 shows that using a pretrained model on power and
the NoConv1 network results in converging GE towards 0, whereas the other two
networks trained on power as well as all networks on EM fail to decrease within
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1000 traces. Interestingly, we see that in this scenario transfer learning is very
effective on all three networks, while ASCAD is the most effective one, reaching
a GE of 0 with less than 100 traces.

Fig. 14. Guessing entropy when targeting F4em

On device F4, directly applying a pretrained model with the NoConv1 net-
work results in an effective attack converging towards GE 0 rather quickly, where
all other pretrained models and networks do not converge. When using transfer
learning, one can see that all 3 neural networks pretrained on power consump-
tion are decreasing in GE with NoConv1, while ASCAD is the most effective
one.

Summary. In all of the four scenarios, the effectiveness of using pretrained mod-
els with transfer learning instead of training on the dataset corresponding to the
target dataset can be seen. Moreover, in most of the cases, using transfer learning
instead of applying directly the pretrained network is showing superior results.
When using transfer learning, the ASCAD network is the most effective one,
whereas when directly applying pretrained networks, only NoConv1 converges
in the scenario of F2em.

6 Transferring Between Different Devices

In this scenario, we investigate the possible use of pretrained models stemming
from different devices. The motivation here is that an attacker may have access
to public datasets and/or publicly trained networks corresponding to some other
chip. Then, based on this, he may try to attack another device that is different
but still close (same architecture for instance). From an evaluation lab perspec-
tive, it boils down to leveraging previous analyses with similar enough chips to
speed up the current one.

We use the same measurement setup as in the previous section. In Fig. 10b,
we show the SNR values obtained from measuring the power consumption of the
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devices F0, F1, F2, and F4. We see that the highest SNR levels are obtained by
F2, followed by F1, F4, and finally F0.

6.1 Experimental Results

In Fig. 15 we show the guessing entropy when targeting F0 and pretrained models
are built from F0, F1, F2, F4. One can see that when using directly pretrained
models, the model on F0 is the most effective, that not all pretrained models
converge towards 0, and ASCAD is the best among the three neural networks.
When compared to transfer learning, all pretrained models are improved, where
using ASCAD with a pretrained model on F2 and F4 is the most effective one.
Note that F0 and F2/F4 have different ARM Cortex M versions and the highest
values of SNR are at different time locations (see Fig. 10), still using knowledge
from devices with different architectures brings improvements.

Fig. 15. Guessing entropy when targeting F0

Figure 16 shows a similar trend. When directly applying pretrained mod-
els, the most effective pretrained model is the one trained on the target device,
where the ones on F2 may also converge given a higher number of attacking
traces. Using the pretrained models as weight initialisation improves all net-
works. Again, the ASCAD network is the most effective one, but the difference
between networks is rather marginal.

Figure 17 shows the results when targeting F2, again using a pretrained net-
work on the target device is the best performing one, while transfer learning
improves the results for all pretrained models and architectures. Interestingly, in
this scenario we see a clear advantage of using transfer learning against the net-
work directly trained on the target device. This shows that initializing weights
using a network trained on a similar problem is more suited than using the
classical initialization (here default Glorot uniform initialization).
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Fig. 16. Guessing entropy when targeting F1

Fig. 17. Guessing entropy when targeting F2

Fig. 18. Guessing entropy when targeting F4
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Figure 18 shows the GE of target F4. Using a pretrained model on F2 together
with the ASCAD network with transfer learning is the most effective attack,
followed by a pretrained network trained on F0 and F1 together with transfer
learning. Interestingly, all three are performing better than a pretrained model
on F4 directly.

Summary. In this scenario, we see a disadvantage of the NoConv1 network
for both cases, using directly pretrained models and updating the pretrained
model with transfer learning. In all scenarios, the ASCAD network is the most
effective one. This would suggest that the ASCAD network is more suited for
STM32 targets when the amount of available data is low. Another interesting
observation is that, in all scenarios, using the pretrained model on F4 as weight
initialization is the best performing one, even though it is not the model with
the highest SNR values.

7 Conclusion

In this work, we considered three training strategies:

– S0: training a neural network with a (limited) clone dataset (i.e. a dataset
that is identical to the one from the target device);

– S1: using an available pretrained model trained on a (large) dataset with
different conditions than the target dataset;

– S2: using an available pretrained model as weight initialization and then fine-
tuning it using a (smaller) clone dataset.

We compared these training strategies using three state-of-the-art neural
network models (ASCAD, ASCAD++, NoConv1) on three different scenarios of
data discrepancy: EM probe type and/or positions, side-channel sources (EM vs
power) and target devices. Our results show that directly applying pretrained
models (S1) can lead to successful attacks in a few investigated scenarios. Much
better and stable results can be achieved through transfer learning in all scenar-
ios when using the weights of a pretrained model as initialization and further
fine-tune them on a (limited) clone dataset (S2). The improvement of transfer
learning can be seen on all three networks, even for the specific and limited net-
work of ASCAD++ and NoConv1. Interestingly, these two networks show only
the best effectiveness on a dataset that is close to the ASCAD dataset for which
they have been fine-tuned on. On our other datasets, the ASCAD network, which
is more general, achieves the most effective results.

In general, we could observe that in the vast majority of cases, using a pre-
trained model as weight initialization gives better results as the standard uniform
Glorot initalizer.

The interest of these results is twofold.

1. First, a profiled attacker scenario should not be rejected due to a too small
number of available labeled traces.
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2. Second, evaluation process (and particularly trace acquisition) can be signif-
icantly speed up and improved by using transfer learning with an already
trained network (from a previous evaluation or another position in the case
of a cartography).

We chose to train the whole network again to avoid misinterpretations due to
wrong choices of the frozen layers. However, to improve even more the efficiency
of the training, investigating different fine-tuning strategies may be of interest.
This is part of the natural extension of the presented work. Another extension
which is less straightforward (but may be linked to layer freezing) would be to
leverage transfer learning to help a network to converge on a protected (masked)
implementation. A network has to understand the signal structure, then extract
the information, and then process it. The hope is that the signal structure knowl-
edge could be obtained from an easier setup (unprotected) to focus the second
learning on the extraction of relevant information and its smart combination.
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15. Kümmerer, M., Wallis, T.S.A., Bethge, M.: Deepgaze II: reading fixations from
deep features trained on object recognition. CoRR abs/1610.01563 (2016)

16. Lagunas, M., Garces, E.: Transfer learning for illustration classification. CoRR
abs/1806.02682 (2018)

17. Lerman, L., Bontempi, G., Markowitch, O.: Side channel attack: an approach based
on machine learning. In: COSADE 2011, pp. 29–41 (2011)
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Abstract. Recently, Bar-On et al. introduced at Eurocrypt’19 a new
tool, called the differential-linear connectivity table (DLCT), which
allows for taking into account the dependency between the two sub-
ciphers E0 and E1 involved in differential-linear attacks.

This paper presents a theoretical characterization of the DLCT, which
corresponds to an autocorrelation table (ACT) of a vectorial Boolean
function. We further provide some new theoretical results on ACTs of
vectorial Boolean functions.
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1 Introduction

Let n,m be two arbitrary positive integers. We denote by F2n the finite field
with 2n elements and by F

n
2 the n-dimensional vector space over F2. Vectorial

Boolean functions from F
n
2 to F

m
2 , also called (n,m)-functions, play a crucial

role in block ciphers. Many attacks have been proposed against block ciphers,
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and have led to diverse criteria, such as low differential uniformity, high non-
linearity, high algebraic degree, etc., that the implemented cryptographic func-
tions must satisfy. At Eurocrypt’18, Cid et al. [18] introduced a new concept on
S-boxes: the boomerang connectivity table (BCT) that analyzes the dependency
between the upper part and lower part of a block cipher in a boomerang attack.
The work of [18] quickly attracted attention in the study of BCT property of cryp-
tographic functions [6,28,33,40] and stimulated research progress in other crypt-
analysis methods. Very recently, in Eurocrypt’19, Bar-On et al. [1] introduced a
new tool called the differential-linear connectivity table (DLCT) that similarly
analyzes the dependency between the two subciphers in differential-linear attacks,
thereby improving the efficiency of the attacks introduced in [26]. The authors of
[1] also presented the relation between the DLCT and the differential distribution
table (DDT) of S-boxes.

This paper aims to provide a theoretical characterization of the main proper-
ties of the DLCT, explicitly of the set formed by all its entries and of the high-
est magnitude in this set, for generic vectorial Boolean functions. To this end, we
first observe that the DLCT coincides (up to a factor 2) with the autocorrelation
table (ACT) of vectorial Boolean functions, which is extended from Boolean func-
tions. Based on the study of the autocorrelation of vectorial Boolean functions,
we give some characterizations of the DLCT by means of the Walsh transform
and the DDT, and provide a lower bound on the absolute indicator (i.e., equiva-
lently, on the highest absolute value in the DLCT excluding the first row and first
column) of any (n,m)-function; then we exhibit an interesting divisibility prop-
erty of the autocorrelation of (n,m)-functions F , which implies that the entries
of DLCT of any (n, n)-permutations are divisible by 4. Next, we investigate the
invariance property of the autocorrelation (and the DLCT) of vectorial Boolean
functions under affine, extended-affine (EA) and Carlet-Charpin-Zinoviev (CCZ)
equivalence, and show that the autocorrelation spectrum is affine-invariant and
its maximum in magnitude is EA-invariant but not CCZ-invariant. Based on the
classification of optimal 4-bit S-boxes by Leander and Poschmann [27], we explic-
itly calculate their autocorrelation spectra (see [12, Appendix A, Table 2]). More-
over, for certain functions like APN, plateaued and AB functions, we present the
relation of their autocorrelation (and DLCT) with other cryptographic criteria.
We show that the autocorrelation of APN and AB/plateaued functions can be
converted to the Walsh transform of two classes of balanced Boolean functions.
Finally, we investigate the autocorrelation spectra of some special polynomials
with optimal or low differential uniformity, including monomials, cubic functions,
quadratic functions and inverses of quadratic permutations.

The rest of this paper is organized as follows. Section 2 recalls basic defi-
nitions, particularly the generalized notion of autocorrelation, the new notion
of DLCT, and the connection between them. Most notably, we show that the
highest magnitude in the DLCT coincides (up to a factor 2) with the abso-
lute indicator of the function. Section 3 is devoted to the characterization of
the autocorrelation: we first characterize the autocorrelation by means of the
Walsh transform and of the DDT of the function. We then exhibit generic lower
bounds on the absolute indicator of any vectorial Boolean function and study
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the divisibility of the autocorrelation coefficients. Besides, we study the invari-
ance of the absolute indicator and of the autocorrelation spectrum under the
affine, EA and CCZ equivalences. We also present all possible autocorrelation
spectra of optimal 4-bit S-boxes. At the end of this section, we study some prop-
erties of the autocorrelation of APN, plateaued and AB functions. In Sect. 4, we
consider the autocorrelation of some special polynomials. Finally, Sect. 5 draws
some conclusions of our work.

2 Preliminaries

In this section, we first recall some basics on (vectorial) Boolean functions and
known results that will be useful for our subsequent discussions. Since the vector
space F

n
2 can be deemed as the finite field F2n for a fixed choice of basis, we will

use the notation F
n
2 and F2n interchangeably when there is no ambiguity. We

will also use the inner product a · b and Tr2n(ab) in the context of vector spaces
and finite fields interchangeably. For any set E, we denote the nonzero elements
of E by E∗ (or E \ {0}) and the cardinality of E by #E.

2.1 Walsh Transform, Bent Functions, AB Functions and Plateaued
Functions

An n-variable Boolean function is a mapping from F
n
2 to F2. For any n-variable

Boolean function f , Wf (ω) :=
∑

x∈Fn
2
(−1)f(x)+ω·x is its Walsh transform, where

“·” is an inner product on F
n
2 . The Walsh transform of f can be seen as the

discrete Fourier transform of the function (−1)f(x) and yields the well known
Parseval’s relation [14]:

∑
ω∈Fn

2
W 2

f (ω) = 22n. The linearity of f is defined by
L(f) := maxω∈Fn

2
|Wf (ω)|, where |r| denotes the absolute value of any real value

r, and the nonlinearity of f is defined by NL(f) := 2n−1− 1
2L(f). According to the

Parseval’s relation, it is easily seen that the nonlinearity of an n-variable Boolean
function is upper bounded by 2n−1 − 2n/2−1. Boolean functions achieving the
maximum nonlinearity are called bent functions and exist only for even n; their
Walsh transforms take only two values ±2n/2 [38].

For an (n,m)-function F from F
n
2 to F

m
2 , its component corresponding to

a nonzero v ∈ F
m
2 is the Boolean function given by Fv(x) := v · F (x). For

any u ∈ F
n
2 and nonzero v ∈ F

m
2 , the Walsh transform of F is defined by

those of its components Fv, i.e., WF (u, v) :=
∑

x∈Fn
2
(−1)u·x+v·F (x). The linear

approximation table (LAT) of an (n,m)-function F is the 2n × 2m table, in
which the entry at position (u, v) is: LATF (u, v) = WF (u, v), where u ∈ F

n
2 and

v ∈ F
m
2 . The maximum absolute entry of the LAT, ignoring the 0-th column,

is the linearity of F denoted as L(F ), i.e., L(F ) := maxu∈Fn
2 ,v∈Fm

2 \{0} |WF (u, v)|.
Similarly, the nonlinearity of F is defined by the nonlinearities of the components,
namely, NL(F ) := 2n−1 − 1

2L(F ).
An (n,m)-function F is called vectorial bent, or shortly bent if all its com-

ponents Fv(x) = v · F (x) for each nonzero v ∈ F
m
2 are bent. It is well known

(n,m)-bent functions exist only if n is even and m ≤ n
2 . Interested readers can
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refer to [32,43] for more results on bent functions. For (n,m)-functions F with
m ≥ n − 1, the Sidelnikov-Chabaud-Vaudenay bound

NL(F ) ≤ 2n−1 − 1
2

(
3 · 2n − 2(2n − 1)(2n−1 − 1)

2m − 1
− 2

)1/2

gives a better upper bound for nonlinearity than the universal bound [16]. When
n = m andn is odd, the inequality becomes NL(F ) ≤ 2n−1−2

n−1
2 , and it is achieved

by the almost bent (AB) functions. It is well known that an (n, n)-function F is AB
if and only if its Walsh transform takes only three values 0,±2

n+1
2 [16].

A Boolean function is called plateaued if its Walsh transform takes at most
three values: 0 and ±μ, where μ, a positive integer, is called the amplitude of
the plateaued function. It is clear that bent functions are plateaued. Because of
Parseval’s relation, the amplitude μ of any plateaued function must be of the
form 2r for certain integer r ≥ n/2. An (n,m)-function is called plateaued if all its
components are plateaued, with possibly different amplitudes. In particular, an
(n,m)-function F is called plateaued with single amplitude if all its components
are plateaued with the same amplitude. It is clear that AB functions form a
subclass of plateaued functions with the single amplitude 2

n+1
2 .

2.2 Differential Uniformity and APN Functions

For an (n,m)-function F and any u ∈ F
n
2\{0}, the function DuF (x) := F (x) +

F (x+u) is called the derivative of F in direction u. The differential distribution
table (DDT) of F is the 2n × 2m table, in which the entry at position (u, v)
is DDTF (u, v) = #{x ∈ F

n
2 | DuF (x) = v}, where u ∈ F

n
2 and v ∈ F

m
2 . The

differential uniformity [34] of F is defined as maxu∈Fn
2 \{0},v∈Fm

2
DDTF (u, v). Since

DuF (x) = DuF (x+u) for any x, u in F
n
2 , the entries of DDT are always even and

the minimum of differential uniformity of F is 2. The functions with differential
uniformity 2 are called almost perfect nonlinear (APN) functions.

2.3 The DLCT and the Autocorrelation Table

Differential-linear cryptanalysis tries to exploit a strong differential over one part
of an iterated block cipher in combination with a strong linear hull over the other
part. They are then combined into a relation of the form v · (F (x) + F (x + u))
and the differential-linear bias is defined as

ε(u, v) = 2−n#{x ∈ F
n
2 | v · (F (x) + F (x + u)) = 0} − 1

2
,

where F is an (n,m)-function. Until recently we had to assume the differen-
tial and linear parts of the relation to be independent, while several real world
examples observed inaccuracies for the resulting bias. The recent work by Bar-
On et al. [1] introduced the concept of the differential-linear connectivity table
(DLCT) of (n,m)-functions F , to better handle this combination, when depen-
dencies between the two parts of the differential-linear relation occur.
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Definition 1 ([1]). Let F be an (n,m)-function. The DLCT of F is the 2n ×
2m table whose rows correspond to input differences to F and whose columns
correspond to output masks of F , defined as follows: for u ∈ F

n
2 and v ∈ F

m
2 , the

DLCT entry at (u, v) is defined by

DLCTF (u, v) = #{x ∈ F
n
2 | v · F (x) = v · F (x + u)} − 2n−1.

The DLCT is then used to analyse the transition between the differential and
linear parts, similar to the sandwich extension for boomerang attacks and the
recently introduced boomerang connectivity table (BCT).

Since for any u ∈ F
n
2\{0}, DuF (x) = DuF (x + u), DLCTF (u, v) must be

even. Furthermore, for a given u ∈ F
n
2\{0}, if DuF (x) is a 2�-to-1 mapping for

a positive integer �, then DLCTF (u, v) is a multiple of 2�. Moreover, it is trivial
that for any (u, v) ∈ F

n
2 × F

m
2 , |DLCTF (u, v)| ≤ 2n−1, and DLCTF (u, v) = 2n−1

when either u = 0 or v = 0. Therefore, we only need to focus on the cases for
u ∈ F

n
2\{0} and v ∈ F

m
2 \{0}.

Our first observation on the DLCT is that it coincides with the autocor-
relation table (ACT) of F [45, Sect. 3]. Below we recall the definition of the
autocorrelation of Boolean functions, see e.g. [14, P. 277], and extend it to vec-
torial Boolean functions.

Definition 2 ([44]). Given a Boolean function f on F
n
2 , the autocorrelation of

the function f at u is defined as ACf (u) =
∑

x∈Fn
2
(−1)f(x)+f(x+u). Furthermore,

the absolute indicator of f is defined as Δf = maxu∈Fn
2 \{0} |ACf (u)|.

Similarly to Walsh coefficients, this notion can naturally be generalized to vec-
torial Boolean functions as follows.

Definition 3. Let F be an (n,m)-function. For any u ∈ F
n
2 and v ∈ F

m
2 , the auto-

correlation of F at (u, v) is defined as ACF (u, v) =
∑

x∈Fn
2
(−1)v·(F (x)+F (x+u)),

the autocorrelation spectrum is ΛF = {ACF (u, v) | u ∈ F
n
2 \ {0}, v ∈ F

m
2 \ {0}}.

Moreover, ΔF := maxu∈Fn
2 \{0},v∈Fm

2 \{0} |ACF (u, v)| is the F ’s absolute indicator.

In [45], the term Autocorrelation Table (ACT) for a vectorial Boolean function
was introduced. Similarly to the LAT, it contains the autocorrelation spectra of
the components of F : ACTF (u, v) = ACF (u, v). It is also worth noticing that
ACF (u, v) = WDuF (0, v).

From Definitions 1 and 3, we immediately have the following connection
between the DLCT and the autocorrelation of vectorial Boolean functions.

Proposition 1. Let F be an (n,m)-function. Then for any u ∈ F
n
2 and v ∈ F

m
2 ,

the autocorrelation of F at (u, v) is twice the value of the DLCT of F at the same
position (u, v), i.e., DLCTF (u, v) = 1

2ACF (u, v). Moreover

max
u∈Fn

2 \{0},v∈Fm
2 \{0}

|DLCTF (u, v)| =
1
2
ΔF .

For the remainder of this paper we thus stick to the established notion of the
autocorrelation table instead of DLCT, and we will study the absolute indicator
of the function since it determines the highest magnitude in the DLCT.
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Remark 1. Let us recall some relevant results on the autocorrelation table. The
entries ACF (u, v), v �= 0 in each nonzero row in the ACT of an (n, n)-function F
sum to zero if and only if F is a permutation (see e.g. [3, Proposition 2]). The
same property holds when the entries ACF (u, v), u �= 0 in each nonzero column
in the ACT are considered (see e.g. [3, Eq. (9)]).

3 Properties of the Autocorrelation Table

In this section, we give some characterizations and properties of the ACT of
vectorial Boolean functions introduced in Subsect. 2.3.

3.1 Links Between the Autocorrelation and the Walsh Transform

In this subsection, we express the autocorrelation by the Walsh transform of the
function. The following proposition shows that the restriction of the autocorre-
lation function u �→ ACF (u, v) can be seen as the discrete Fourier transform of
the squared Walsh transform of Fv: ω �→ WF (ω, v)2.

Proposition 2. Let F be an (n,m)-function. Then for any u ∈ F
n
2 and v ∈ F

m
2 ,

WF (u, v)2 =
∑

ω∈Fn
2

(−1)ω·uACF (ω, v).

Conversely, the inverse Fourier transform leads to

ACF (ω, v) =
1
2n

∑

u∈Fn
2

(−1)u·ωWF (u, v)2 (1)

Moreover, we have ∑

u∈Fn
2

ACF (u, v) = WF (0, v)2 (2)

and ∑

u∈Fn
2

ACF (u, v)2 =
1
2n

∑

ω∈Fn
2

WF (ω, v)4. (3)

Proof. According to the definition, for any u ∈ F
n
2 ,

WF (u, v)2 =
∑

x∈Fn
2

(−1)u·x+v·F (x)
∑

y∈Fn
2

(−1)u·y+v·F (y)

=
∑

x,y∈Fn
2

(−1)u·(x+y)+v·(F (x)+F (y))

=
∑

x,ω∈Fn
2

(−1)u·ω+v·(F (x)+F (x+ω))

=
∑

ω∈Fn
2

(−1)u·ω ∑

x∈Fn
2

(−1)v·(F (x)+F (x+ω))

=
∑

ω∈Fn
2

(−1)u·ωACF (ω, v).
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The inverse Fourier Transform then leads to Eq. (1). Then Eq. (2) is obtained
from Eq. (1) by summing over u. Furthermore, Parseval’s equality leads to
Eq. (3).

Remark 2. It should be noted that the relations Eq. (1) and Eq. (3) were already
obtained in [22] and [44] for Boolean functions. Here we generalize the results to
vectorial Boolean functions.

3.2 Links Between the Autocorrelation and the DDT

[45, Section 3] showed that, for an (n, n)-function, the row of index a in the
autocorrelation table b �→ ACF (a, b) corresponds to the Fourier transform of the
row of index a in the DDT: v �→ DDTF (a, v). This relation coincides with the one
provided in [1, Proposition 1]. We here express it in the case of (n,m)-functions.
It is worth noticing that this correspondence points out the well known relation
between the Walsh transform of F and its DDT exhibited by [5,16].

Proposition 3. Let F be an (n,m)-function. Then, for any u ∈ F
n
2 and v ∈ F

m
2 ,

we have

ACF (u, v) =
∑

ω∈Fm
2

(−1)v·ωDDTF (u, ω) (4)

DDTF (u, v) = 2−m
∑

ω∈Fm
2

(−1)v·ωACF (u, ω). (5)

Most notably, ∑

v∈Fm
2

ACF (u, v) = 2mDDTF (u, 0) (6)

implying ∑

u∈Fn
2 ,v∈Fm

2

ACF (u, v) = 2m+n, (7)

and ∑

v∈Fm
2

ACF (u, v)2 = 2m
∑

ω∈Fm
2

DDTF (u, ω)2. (8)

Proof. The first equation holds since ACF (u, v) =
∑

x∈Fn
2
(−1)v·(F (x)+F (x+u)) =

∑
ω∈Fm

2
(−1)v·ωDDTF (u, ω). The inverse Fourier transform then leads to Eq. (5).

For v = 0, we then get Eqs. (6) and (7). Finally, Parseval’s relation implies
Eq. (8).

Note that Nyberg [36,37] and Mesnanger et al. [33] linked the boomerang con-
nectivity table (BCT) to the DDT, which results in the following link to the
ACT (see e.g., [37, Proposition 1]):

∑
v∈Fm

2
ACF (u, v)2 = 2m

∑
ω∈Fm

2
BCTF (u, ω).
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3.3 Bounds on the Absolute Indicator

Similar to other cryptographic criteria, it is interesting and important to know
how “good” the absolute indicator of a vectorial Boolean function could be. It
is clear that the absolute indicator of any (n,m)-function is upper bounded by
2n. But finding its smallest possible value is an open question investigated by
many authors. From the definition, the autocorrelation spectrum of F equals
{0} if and only if F is a bent function, which implies that n is even and m ≤ n

2 .
However, finding lower bounds in other cases is much more difficult. For instance,
Zhang and Zheng conjectured [44, Conjecture 1] that the absolute indicator of
a balanced Boolean function of n variables is at least 2

n+1
2 . But this was later

disproved first for odd values of n ≥ 9 by modifying the Patterson-Wiedemann
construction, namely for n ∈ {9, 11} in [25], for n = 15 in [23,29] and for
n = 21 in [21]. For the case n even, [42] gave a construction for balanced Boolean
functions with absolute indicator strictly less than 2n/2 when n ≡ 2 mod 4. Very
recently, similar examples for n ≡ 0 mod 4 were exhibited by [24]. However, we
now show that such small values for the absolute indicator cannot be achieved
for (n, n)-vectorial functions.

Proposition 3 leads to the following lower bound on the sum of all squared
autocorrelation coefficients in each row. This result can be found in [35] (see also
[3, Theorem 2]) in the case of (n, n)-functions. We here detail the proof in the
case of (n,m)-functions for the sake of completeness.

Proposition 4. Let F be an (n,m)-function. Then, for all u ∈ F
n
2 , we have∑

v∈Fm
2
ACF (u, v)2 ≥ 2n+m+1. Moreover, equality holds for all nonzero u ∈ F

n
2

if and only if F is APN.

Proof. From Eq. (8), we have that, for all u ∈ F
n
2 ,

∑

v∈Fm
2

ACF (u, v)2 = 2m
∑

ω∈Fm
2

DDTF (u, ω)2

Cauchy-Schwarz inequality implies that

⎛

⎝
∑

ω∈Fm
2

DDTF (u, ω)

⎞

⎠

2

≤
⎛

⎝
∑

ω∈Fm
2

DDTF (u, ω)2

⎞

⎠ × #{ω ∈ F
m
2 |DDTF (u, ω) �= 0} ,

with equality if and only if all nonzero elements in {DDTF (u, ω)|ω ∈ F
m
2 } are

equal. Using that
#{ω ∈ F

m
2 |DDTF (u, ω) �= 0} ≤ 2n−1

with equality for all nonzero u if and only if F is APN, we deduce that
∑

ω∈Fm
2

DDTF (u, ω)2 ≥ 2n+1
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with equality for all nonzero u if and only if F is APN. Equivalently, we deduce
that ∑

v∈Fm
2

ACF (u, v)2 ≥ 2n+m+1

with equality for all nonzero u if and only if F is APN.
From the previous proposition, we deduce that

∑
v∈Fm

2 \{0} ACF (u, v)2 ≥
2n+m+1−22n. Since

∑
v∈Fm

2 \{0} ACF (u, v)2 ≤ Δ2
F (2m−1), we get for the absolute

indicator ΔF ≥
√

2m+n+1−22n

2m−1 . Thus we have the following result.

Theorem 1. Let F be an (n,m)-function, where m ≥ n. Then

ΔF ≥
√

2m+n+1 − 22n

2m − 1
. (9)

Most notably, if m = n, ΔF > 2n/2.

Note that the condition m ≥ n in Theorem 1 is to ensure the term under the
square root is strictly greater than 0.

3.4 Divisibility of the Autocorrelation

In this subsection, we investigate the divisibility property of the autocorrelation
coefficients of vectorial Boolean functions.

Proposition 5. Let n > 2 and F : Fn
2 → F

m
2 be a vectorial Boolean function

with algebraic degree at most d. Then, for any u ∈ F
n
2 and v ∈ F

m
2 , ACF (u, v)

is divisible by 2� n−1
d−1 �+1. In particular, when m = n and F is a permutation,

ACF (u, v) is divisible by 8.

Proof. By definition, for any u ∈ F
n
2 and v ∈ F

m
2 ,

ACF (u, v) = WDuFv
(0).

Note that for given u ∈ F
n
2 and v ∈ F

m
2 , the Boolean function

hu,v(x) = DuFv(x) = v · (F (x) + F (x + u)),

satisfies two properties: deg(hu,v) ≤ d − 1 since F has degree at most d and
hu,v(x) = hu,v(x + u).

We now focus on the divisibility of Whu,v
(0). First, assume for simplicity that

u = en = (0, · · · , 0, 1), we discuss the general case afterwards. Since hen,v(x +
en) = hen,v(x), the value of hen,v(x) is actually determined by the first (n − 1)
coordinates of x. Hence hen,v(x) can be expressed as hen,v(x) = h(x′) : Fn−1

2 →
F2 and the Walsh transform of hen,v at point 0 satisfies

When,v
(0) =

∑

x′∈F
n−1
2 ,xn∈F2

(−1)hen,v(x
′,xn) = 2 ·

∑

x′∈F
n−1
2

(−1)h(x′) = 2 · Wh(0).
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It is well known that the values taken by the Walsh transform of a Boolean
function f from F

n
2 to F2 with degree d are divisible by 2� n

d−1 � (see [31] or [14,
Section 3.1]). We then deduce that Wh(0) is divisible by 2� n−1

d−1 �, implying that
When,v

(0) is divisible by 2� n−1
d−1 �+1. Most notably, if m = n and F is bijective,

then d < n. We then have that
⌈n − 1

d − 1

⌉
≥ 2,

implying that ACF (u, v) is divisible by 8.
In the case that u �= en, we can find a linear transformation L such that

L(en) = u, with which we have the affine equivalent function G = F ◦ L. We
will show in a moment, see the next section, that for affine equivalent functions,
their autocorrelation spectra are invariant (Theorem 2). Thus, the same holds
for ACG(u, v) in this case.

In particular, for (n,m)-functions of algebraic degree 3, we have the following
result.

Proposition 6. Suppose an (n,m)-function F has algebraic degree 3. Then for
nonzero u and v, we have

|ACF (u, v)| ∈
{

0, 2
n+δ(u,v)

2

}
,

where δ(u, v) = dim {w ∈ F
n
2 | DuDwfv = c} and c ∈ F2 is constant.

The proof can be found in [12, Appendix B]. Proposition 6 implies that any entry
in the autocorrelation table of a cubic function is divisible by 2

n+ψ
2 , where ψ is

the smallest integer among δ(u, v) when u, v run through F
n
2 \ {0} and F

m
2 \ {0},

respectively. It is clear that ψ ≥ 1. Furthermore, when ψ ≥ 2, Proposition 6
improves the result in Proposition 5.

3.5 Invariance Under Equivalence Relations

Let n,m be two positive integers. There are several equivalence relations of
functions from F

n
2 to F

m
2 and they play vital roles in classifying functions with

good properties, like AB and APN functions [9]. In this subsection, we first recall
three equivalence relations, i.e., affine, EA and CCZ [15]. Then we study the
autocorrelation and related concepts with respect to these equivalence relations.

Definition 4. [8] Let n,m be two positive integers. Two functions F and F
′

from F
n
2 to F

m
2 are called

1. affine equivalent (resp. linear equivalent) if F
′

= A1 ◦ F ◦ A2, where the
mappings A1 and A2 are affine (resp. linear) permutations of F

m
2 and F

n
2 ,

respectively;
2. extended affine equivalent (EA equivalent) if F

′
= A1 ◦F ◦A2 +A, where the

mappings A : Fn
2 → F

m
2 , A1 : Fm

2 → F
m
2 , A2 : Fn

2 → F
n
2 are affine and where

A1 and A2 are permutations;
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3. Carlet-Charpin-Zinoviev equivalent (CCZ equivalent) if for some affine per-
mutation L over F

n
2 × F

m
2 , the image by L of the graph of F is the graph

of F
′
, that is L(GF ) = GF ′ , where GF = {(x, F (x))|x ∈ F

n
2} and GF ′ =

{(x, F
′
(x))|x ∈ F

n
2}.

It is known that affine equivalence is a particular case of EA-equivalence,
which is again a particular case of CCZ-equivalence. In addition, every permu-
tation is CCZ-equivalent to its compositional inverse. Two important properties
of cryptographic functions, the differential uniformity and the nonlinearity, are
invariant under CCZ-equivalence. However, as we will show in this subsection,
the autocorrelation spectrum is invariant under affine equivalence, and further
its extended autocorrelation spectrum, i.e., the multiset {|ACF (u, v)| : u ∈
F

n
2 , v ∈ F

m
2 }, is invariant under extended affine equivalence. However, they are

generally not invariant under compositional inverse, thereby are not invariant
under CCZ-equivalence.

Theorem 2. Assume two (n,m)-functions F and F
′
are EA-equivalent. Then

the extended autocorrelation spectrum of F equals that of F ′. In particular, if
they are affine equivalent, then the autocorrelation spectrum of F equals that of
F ′.

The proof is detailed in [12, Appendix C].
To examine the behavior under CCZ equivalence, we focus on the autocor-

relation of a permutation and the autocorrelation of its compositional inverse.
When n = m and F permutes F

n
2 , Zhang et al. showed in [45, Corollary 1] that

ACTF −1 = H−1 · ACTF · H,

where H is the Walsh-Hadamard matrix of order 2n. In our notation this is

ACF −1(u, v) =
1
2n

∑

a,b∈Fn
2

(−1)u·b+v·aACF (a, b). (10)

The relation in Eq. (10) indicates that the autocorrelation spectrum of an (n, n)-
permutation F is in general not equal to that of F−1.

This observation is indeed confirmed by many examples, in which an (n, n)-
permutation F has linear structures but its inverse has not. Recall from [45] that
a linear structure for an (n,m)-function F is a tuple (u, v) ∈ F2n ×F2m such that
x �→ v · (F (x) + F (x + u)) is constant, zero or one, and ACF (u, v) = ±2n if and
only (u, v) forms a linear structure. For instance, the S-boxes from safer [30],
SC2000 [39], and Fides [4] have linear structures in one direction but not in the
other direction. This is also the case of the infinite family formed by the Gold
permutations as analyzed in Sect. 4.2.

Below, we also provide an example that demonstrates that the autocorrela-
tion spectrum is not invariant under EA-equivalence.

Example 1. Let F (x) = 1
x ∈ F27 [x] and F

′
(x) = 1

x + x. Then F and
F

′
are EA-equivalent. However, F ’s autocorrelation spectrum is ΛF =

{−24,−16,−8, 0, 8, 16} where as ΛF ′ = {−24,−16,−8, 0, 8, 16, 24}.
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In [27], the authors classified all optimal permutations over F
4
2 having the

best differential uniformity and nonlinearity (both 4) up to affine equivalence
and found that there are only 16 different optimal S-boxes, see [12, Appendix A,
Table 1]. Based on the classification of optimal S-boxes, we exhaust all possi-
bilities of the autocorrelation spectra of optimal S-boxes in [12, Appendix A,
Table 2], where the superscript of each autocorrelation value indicates the num-
ber of its occurrences in the spectrum.

3.6 Autocorrelation of Plateaued, AB and APN Functions

APN and AB functions provide optimal resistance against differential attacks
and linear attacks, respectively. Many researchers have studied some other prop-
erties of APN and AB functions (see for example [8]). This subsection will inves-
tigate the autocorrelation of these optimal functions. We start with a general
result for plateaued functions, which generalizes a result from [22], where the
authors studied the autocorrelation of a plateaued Boolean function f in terms
of its dual function.

Proposition 7. Let F be an (n,m)-plateaued function. For v ∈ F
m
2 \{0}, we

denote the amplitude of the component Fv by 2rv and define a dual Boolean
function of fv as

f̃v(b) =

{
1, if Wfv

(b) �= 0,

0, if Wfv
(b) = 0.

(11)

Then
ACF (u, v) = −22rv−n−1W

˜fv
(u).

Furthermore, when F is an AB function from F
n
2 to itself, namely, rv = n+1

2 for
any v ∈ F

n
2\{0},

ACF (u, v) = −W
˜fv

(u).

Proof. According to Eq. (1), we have

ACF (u, v) =
1

2n

∑

ω∈Fn
2

(−1)u·ωWF (ω, v)2 = 22rv−n
∑

ω∈Fn
2

(−1)u·ω f̃v(ω)

= 22rv−n
∑

ω∈Fn
2

(
1

2

(
1− (−1)

˜fv(ω)
))

(−1)u·ω = −22rv−n−1
∑

ω∈Fn
2

(−1)
˜fv(ω)+u·ω

= −22rv−n−1W
˜fv
(u).

Particularly, when F is an AB function, i.e., rv = n+1
2 for any v ∈ F

m
2 \{0}, it

is clear that ACF (u, v) = −W
˜fv

(u).

Similar to the AB functions, the autocorrelation of APN functions can also be
expressed in terms of the Walsh transforms of some balanced Boolean functions.
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Proposition 8. Let F be an APN function from F
n
2 to itself. For any nonzero

u ∈ F
n
2 , we define the Boolean function

γu(x) =

{
1, if x ∈ Im(DuF ),
0, if x ∈ F

n
2 \ Im(DuF ).

(12)

Then the autocorrelation of F can be expressed by the Walsh transform of γu as

ACF (u, v) = −Wγu
(v).

Proof. Since the APN function F has a 2-to-1 derivative function DuF (x) at
any nonzero u, we know that Im(DuF ) has cardinality 2n−1. Then,

ACF (u, v) =
∑

x∈Fn
2

(−1)v·(F (x+u)+F (x)) = 2
∑

y∈Im(DuF )

(−1)v·y

=
∑

y∈Im(DuF )

(−1)v·y −
∑

y∈Fn
2 \Im(DuF )

(−1)v·y = −
∑

y∈Fn
2

(−1)γu(y)+v·y = −Wγu (v).

From Proposition 8, we see that the autocorrelation of any APN function
corresponds to the Walsh transform of the Boolean function γu in Eq. (12),
which is balanced. We then immediately deduce the following corollary.

Corollary 1. Let n be a positive integer. If there exists an APN function from
F

n
2 to F

n
2 with absolute indicator Δ, then there exists a balanced Boolean function

of n variables with linearity Δ.

To our best knowledge, the smallest known linearity for a balanced function is
obtained by Dobbertin’s recursive construction [20]. For instance, for n = 9, the
smallest possible linearity for a balanced Boolean function is known to belong to
the set {24, 28, 32}, which implies that exhibiting an APN function over F9

2 with
absolute indicator 24 would determine the smallest linearity for such a function.

One of the functions whose absolute indicator is known is the inverse mapping
F (x) = x2n−2 over F2n .

Proposition 9 (Charpin et al. [17]). The autocorrelation spectrum of the
inverse function F (x) = x2n−2 over F2n is given by

ΛF =
{

K (v) − 1 + 2 × (−1)Tr2n (v)
∣
∣v ∈ F

∗
2n

}
,

where K(a) =
∑

x∈F∗
2n

(−1)Tr2n( 1
x+ax) is the Kloosterman sum over F2n . Fur-

thermore, the absolute indicator of the inverse function is given by:

i) when n is even, ΔF = 2
n
2 +1;

ii) when n is odd, ΔF = L(F ) if L(F ) ≡ 0 (mod 8), and ΔF = L(F ) ± 4
otherwise.

When n is odd, the inverse mapping is APN. Then, from Proposition 8,
its autocorrelation table is directly determined by the corresponding Boolean
function γ. This explains why the absolute indicator of the inverse mapping
when n is odd, is derived from its linearity as detailed in the following example.



246 A. Canteaut et al.

Example 2 (ACT of the inverse mapping, n odd). For any u ∈ F
∗
2n , the Boolean

function γu, which characterizes the support of Row u in the DDT of the inverse
mapping F : x �→ x−1, coincides with (1 + Fu−1) except on two points:

γu(x) =

⎧
⎪⎨

⎪⎩

1 + Tr2n(u−1x−1) if x �∈ {0, u−1}
0 if x = 0
1 if x = u−1

.

This comes from the fact that the equation (x+u)−1 +x−1 = v for v �= u−1 can
be rewritten as x + (x + u) = v(x + u)x or equivalently when v �= 0, by setting
y = u−1x, y2 + y = u−1v−1. It follows that this equation has two solutions if
and only if Tr2n(u−1v−1) = 0. From the proof of the previous proposition, we
deduce

ACF (u, v) = −Wγu
(v) = WFu−1 (v) + 2

(
1 − (−1)Tr2n (u−1v)

)
,

where the additional term corresponds to the value of the sum defining the Walsh
transform WFu−1 (v) at points 0 and u−1.

4 Autocorrelation Spectra and Absolute Indicator of
Special Polynomials

This section mainly considers some polynomials of special forms. Explicitly, we
investigate the autocorrelation spectra and the absolute indicator of the Gold
permutations and their inverses, and of the Bracken-Leander functions. Our
study is divided into two subsections.

4.1 Monomials

In the subsection, we consider the autocorrelation of some special monomials of
cryptographic interest, mainly APN permutations and one class of permutations
with differential uniformity 4, over the finite field F2n . Firstly, we present a
general observation on the autocorrelation of monomials, which is similar with
other cryptographic criteria.

Proposition 10. Let F (x) = xd ∈ F2n [x]. Then ΛF = {ACF (1, v) | v ∈ F
∗
2n}.

Moreover, if gcd (d, 2n − 1) = 1, then ΛF = {ACF (u, 1) | u ∈ F
∗
2n}.

Proposition 10 implies that it suffices to focus on the autocorrelation of the
single component function Tr2n

(
xd

)
in the study of the autocorrelation table of

the monomial xd with gcd (d, 2n − 1) = 1.
We next discuss the autocorrelation of some cubic monomials. From Propo-

sition 6, if n = m is odd, we obviously have that ΔF ≥ 2
n+1
2 . Furthermore, the

equality is achieved when dim({w ∈ F
n
2 | DuDwFv = c}) = 1 for all nonzero u

and v. Additionally, an upper bound on the absolute indicator can be established
for two cubic APN permutations, namely the Kasami power function and the
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Welch function. We denote the Kasami power functions Ki and the Welch power
function W by

Ki : F2n → F2n

x �→ x22i−2i+1 and
W : F2n → F2n

x �→ x2(n−1)/2+3 .

Proposition 11 (Carlet [13], Lemma 1). The absolute indicator for W on
F2n is upper bounded by ΔW ≤ 2

n+5
2 .

As long as the (regular) degree of the derivatives is small compared to the field
size, the Weil bound gives a nontrivial upper bound for the absolute indicator
of a vectorial Boolean function. This is particularly interesting for the Kasami
functions as the Kasami exponents do not depend on the field size (contrary to
for example the Welch exponent).

Proposition 12. The absolute indicator of Ki on F2n is upper bounded by
ΔKi

≤ (4i − 2i+1) × 2
n
2 . In particular, ΔK2 ≤ 2

n+5
2 .

Proof. Note that the two exponents with the highest degree of any derivative of
Ki are 4i − 2i and 4i − 2i+1 + 1. The first exponent is even, so it can be reduced
using the relation Tr2n(y2) = Tr2n(y). The result then follows from the Weil
bound. Combining the bound with Proposition 6 yields the bound on K2.

Some other results on the autocorrelations of cubic Boolean functions
Tr2n(xd) are known in the literature, which can be trivially extended to the
vectorial functions xd if gcd(d, n) = 1, see [22, Theorem 5], [13] and [41, Lem-
mas 2 and 3]. In the case n = 6r and d = 22r +2r +1, the power monomial xd is
not a permutation, but results for all component functions of xd were derived in
[11]. We summarize these results about the absolute indicator in the following
proposition.

Proposition 13. Let F (x) = xd be a function on F2n .

1. If n is odd and d = 2r + 3 with r = n+1
2 , then ΔF ∈ {2

n+1
2 , 2

n+3
2 }.

2. If n is odd and d is the i-th Kasami exponent, where 3i ≡ ±1 (mod n), then
ΔF = 2

n+1
2 .

3. If n = 2m and d = 2m+1 + 3, then ΔF ≤ 2
3m
2 +1.

4. If n = 2m, m odd and d = 2m + 2
m+1

2 + 1, then ΔF ≤ 2
3m
2 +1.

5. If n = 6r and d = 22r + 2r + 1, then ΔF = 25r.

We now provide a different proof of the second case in the previous proposition
that additionally relates the autocorrelation table of Ki with the Walsh spectrum
of a Gold function.

Proposition 14 (Dillon [19]). Let n be odd, not divisible by 3 and 3i ≡ ±1
(mod n). Set f = Tr2n(xd) where d = 4i − 2i + 1 is the i-th Kasami exponent.
Then Supp(Wf ) =

{
x | Tr2n

(
x2i+1

)
= 1

}
.
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Proposition 15. Let n be odd, not divisible by 3 and 3i ≡ ±1 (mod n). Then

ACKi
(u, v) = −

∑

x∈F2n

(−1)Tr2n (uv1/dx+x2i+1),

where d = 4i − 2i + 1 is the i-th Kasami exponent and 1/d denotes the inverse
of d in Z2n−1. In particular, ΔKi

= 2
n+1
2 .

Refer to [12, Appendix D] for the proof. Note that the cases 3i ≡ 1 (mod n) and
3i ≡ −1 (mod n) are essentially only one case because the i-th and (n − i)-th
Kasami exponents belong to the same cyclotomic coset. Indeed, (4n−i − 2n−i +
1)22i ≡ 4i − 2i + 1 (mod 2n − 1).

From the known result in the literature, it appears that (n, n)-functions with
a low absolute indicator are rare objects, which is also confirmed by experimental
results for small integer n.

The Bracken-Leander function [7] is a cubic permutation with differential
uniformity 4. In the following, we determine the autocorrelation spectrum and
the absolute indicator of the Bracken-Leander function.

Theorem 3. Let F (x) = xq2+q+1 ∈ Fq4 [x], where q = 2k. Then for any nonzero
u, v, ACF (u, v) ∈ {−q3, 0, q3

}
and ΔF = q3.

The proof is listed in [12, Appendix E].

4.2 Quadratic Functions and Their Inverses

In this subsection, we first consider the general quadratic functions and deter-
mine the autocorrelation spectra of the Gold functions and of their inverses. The
possible values in the autocorrelation table of a quadratic function are easy to
be computed since the differential function of a quadratic function is linearized.

Proposition 16. Let F (x) =
∑

0≤i<j≤n−1 aijx
2i+2j ∈ F2n [x]. Then the auto-

correlation table of F takes values from {0,±2n} and ΔF = 2n.

More precisely, we can determine the autocorrelation spectrum of the Gold
functions completely.

Corollary 2. Let F (x) = x2i+1 ∈ F2n [x]. Assume k = gcd(i, n) and n′ = n/k.
Then

ΛF =

⎧
⎪⎨

⎪⎩

{0, 2n} if n
′

is even,

{−2n, 0} if n
′

is odd and k = 1,

{−2n, 0, 2n} otherwise.

See [12, Appendix F] for the proof.
As previously observed, the autocorrelation spectrum and the absolute indi-

cator are not invariant under compositional inversion. Then, in the following, we
consider the absolute indicator of the inverse of a quadratic permutation, which
is not obvious at all. Indeed, the absolute indicator depends on the considered
function, as we will see later.
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Example 3. For n = 9, the inverses of the two APN Gold permutations x3 and
x5, namely x341 and x409, do not have the same absolute indicator: the absolute
indicator of x341 is 56 while the absolute indicator of x409 is 72.

Nevertheless, the specificity of quadratic APN permutations for n odd is
that they are crooked [2], which means that the image set of every derivative
DuF, u �= 0, is the complement of a hyperplane 〈π(u)〉⊥. Moreover, it is known
(see e.g. [10, Proof of Lemma 5]) that all these hyperplanes are distinct, which
implies that π is a permutation of Fn

2 when we add to the definition that π(0) = 0.
Then, the following proposition shows that, for any quadratic APN permutation
F , the autocorrelation of F−1 corresponds to the Walsh transform of π.

Proposition 17. Let n be an odd integer and F be a quadratic APN permuta-
tion over F

n
2 . Let further π be the permutation of Fn

2 defined by

Im(DuF ) = F
n
2\〈π(u)〉⊥, when u �= 0,

and π(0) = 0. Then for any nonzero u, v in F
n
2 , we have ACF −1(u, v) =

−Wπ(v, u). It follows that ΔF −1 ≥ 2
n+1
2 with equality if and only if π is an

AB permutation.

The proof is given in [12, Appendix G].
It is worth noticing that the previous proposition is valid, not only for

quadratic APN permutations, but for all crooked permutations, which are a
particular case of AB functions. However, the existence of crooked permutations
of degree strictly higher than 2 is an open question.

As a corollary of the previous proposition, we get some more precise informa-
tion on the autocorrelation spectrum of the quadratic power permutations cor-
responding to the inverses of the Gold functions. Recall that x2i+1 and x2n−i+1

are affine equivalent since the two exponents belong to the same cyclotomic coset
modulo (2n − 1). This implies that their inverses share the same autocorrelation
spectrum.

Corollary 3. Let n > 5 be an odd integer and 0 < i < n with gcd(i, n) = 1. Let
F be the APN power permutation over F2n defined by F (x) = x2i+1. Then, for
any nonzero u and v in F2n , we have

ACF −1(u, v) = −Wπ(v, u), where π(x) = x2n−2i−2.

Most notably, the absolute indicator of F−1 is strictly higher than 2
n+1
2 .

Again, see [12, Appendix H] for the proof.
In the specific case n = 5, it can easily be checked that the inverses of all

Gold APN permutations F (x) = x2i+1 have absolute indicator 8.
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5 Conclusion

This paper intensively investigates the differential-linear connectivity
table (DLCT) of vectorial Boolean functions by clarifing its connection to the
autocorrelation table of vectorial Boolean functions. The main contributions of
this paper are the following. Firstly, we provide bounds on the absolute indicator
of (n,m)-functions when m ≥ n and we exhibit the divisibility property of the
autocorrelation of any vectorial Boolean function. Moreover, we investigate the
invariance of the autocorrelation table under affine, EA and CCZ equivalence
and exhaustively compute the autocorrelation spectra of optimal 4-bit S-boxes.
Secondly, we analyze some properties of the autocorrelation of cryptographically
desirable functions, including APN, plateaued and AB functions and express the
autocorrelation of APN and AB functions with the Walsh transform of certain
Boolean functions. Finally, we investigate the autocorrelation spectra of some
special polynomials, including monomials with low differential uniformity, cubic
monomials, quadratic functions and inverses of quadratic permutations.

Open Problems

1. Determine a (tight) lower bound on the absolute indicator of vectorial Boolean
functions. Are there constructions exhibiting (near) optimal vectorial Boolean
functions with respect to that bound?

2. For an odd integer n, are there (n, n)-power functions F with ΔF = 2(n+1)/2

other than the Kasami APN functions?
3. From Corollary 1 it follows that an APN function with very low absolute

indicator is of interest. Is there an APN function in 9 variables with absolute
indicator Δ = 24?

4. In addition, the absolute indicators of the Kasami and Welch functions have
not been determined completely. Determine the absolute indicators of the
Kasami and Welch functions completely.
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Abstract. Division properties, introduced by Todo at Eurocrypt 2015,
are an extension of square attack (also called saturation attack or integral
cryptanalysis). Given their importance, a large number of works tried to
offer automatic tools to find division properties, primarily based on MILP
or SAT/SMT. This paper studies better modeling techniques for finding
division properties using the Constraint Programming and SAT/SMT-
based automatic tools. We use the fact that the Quine-McCluskey algo-
rithm produces a concise CNF representation corresponding to the divi-
sion trail table of an Sbox. As a result, we can offer significantly more
compact models, which allow SAT and Constraint Programming tools to
outperform previous results.

To show the strength of our new approach, we look at the NIST
lightweight candidate KNOT and Ascon. We show several new distin-
guishers with a lower data complexity for 17-round KNOT-256, KNOT-
384 and 19-round KNOT-512. In addition, for the 5-round Ascon, we get
a lower data distinguisher than the previous division-based results.

Finally, we revisit the method to extend the integral distinguisher by
composing linear layers at the input and output. We provide a formu-
lation to find the optimal number of linear combinations that need to
be considered. As a result of this new formulation, we prove that 18-
round KNOT-256 and KNOT-384 have no integral distinguisher using
conventional division property and we show this more efficiently than
the previous methods.

Keywords: Constraint programming · Division property · Integral
cryptanalysis · KNOT · Ascon

1 Introduction

The Square attack was introduced by Daemen et al. in [7] to attack the SQUARE
block cipher. A variant of this attack was applied to the Twofish cipher by Lucks
in [18] and named the Saturation attack. These were formalized by Knudsen and
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Wagner in [15], under the name Integral cryptanalysis. The main idea behind the
integral attack is to find different properties of a set of ciphertexts correspond-
ing to a set of plaintexts with a certain structure. These properties propagate
through different operations of the cipher. Let us consider a set of plaintexts P
from (Fm

2 )n and then any element of P can be seen as (p1, p2, · · · , pn) where
pi ∈ F

m
2 , i.e., vector of m-bit words. Integral distinguisher exploits the propa-

gation of some simple properties of the words from plaintext to ciphertext. The
integral distinguisher considers the following properties: ALL (if the word posi-
tion considers all possible values exactly once), BALANCED (if the word position
is zero in the XOR sum of all elements), CONSTANT (if the word position is
identical for all vectors). Based on these properties, an attacker can distinguish
a cryptographic function from a random function. For example, the well-known
4-round integral distinguisher used in [12], to attack 6-round AES [8]. The inte-
gral distinguishers have since been also applied to a variety of ciphers [17,33,35].

The Division property was proposed as a generalization of the integral prop-
erty by Todo at Eurocrypt 2015 [28] and was used in [29] to offer the first
attack on the full MISTY1. The division property proposed by Todo was word-
based division property, i.e., the propagation of the division property captures
information only from the word level. In FSE 2016, Todo and Morii first intro-
duced the bit-based division property [30]. In such bit-based division prop-
erties, the propagation captures information at the bit level which naturally
captures more information than word-based division properties. The idea of
the division property is the same as the integral property: consider an affine
subspace of plaintexts and then check if the resulting set of ciphertexts has
some balanced bits, i.e., their XOR sum is zero. To detect these balanced bits
we consider the algebraic normal form (ANF) of a vectorial Boolean func-
tion. Suppose that f : F

n
2 → F

n
2 is a vectorial Boolean function that maps

x = (x0, x1, · · · , xn−1) to y = (f0(x), f1(x), · · · , fn−1(x)). Let X ⊂ F
n
2 be an

input set and Y = {f(x) : x ∈ X}. The bit-based division property exploits
the fact that, for some i ∈ {0, 1, · · · , n − 1},

⊕
y∈Y yi =

⊕
x∈X fi(x) = 0 is

predictable or not.

1.1 Related Work

The bit-based division property is an important tool for integral cryptanalysis.
However, finding the bit-based division property is a tedious job. Direct program-
ming approach is used in [29] to find bit-based division properties of SIMON-32
and SIMECK-32. Both ciphers have a block size of 32 bits. Unfortunately, this
direct approach fails for larger block sizes used in modern ciphers.

In this case, automatic tools play a significant role. The main idea is to trans-
form this bit-based property search problem into some mathematical problem
and use an automatic tool to solve it. In this direction, Xiang et al. first pro-
posed to use Mixed Integer Linear Programming (MILP) based tool in [34]. This
approach has been used to attack many ciphers in the last few years [23,25,32].
A different approach suggested by Sun et al. [24] is to use SAT/SMT model-
ing [6]. Based on this method, Eskandari et al. studied many block ciphers in [11]
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and built a tool called SOLVATORE. In [14], the authors studied the bit-based
division property for the ciphers with complex linear layers and modeled using
SAT/SMT tool. Another approach is the use of Constraint Programming (CP)
based tools. This approach was proposed in [26] to find the integral distinguisher
of the PRESENT [4] block cipher. An extension of the integral cryptanalysis was
proposed by Lambin et al. in [16], where they proposed to compose linear layers
in the input and output to extend the distinguisher. With this approach, they
found a 10-round distinguisher for the RECTANGLE [36] block cipher.

1.2 Our Contribution

Our work aims at using compact modeling of the Sbox to improve the automatic
search of bit-based division properties. We use the SAT/SMT and the CP-based
automatic approach to find bit-based division properties of all variants of the
KNOT family [31] and Ascon [10]. We also test again some of the previous
results on GIFT, Rectangle and PRESENT. While we check our approach for
consistency, the comparison allows us to determine that for all tested models,
our approach significantly reduces the running times of the tools. We express
the propagation of bit-based division properties using Boolean logical formulas.
We observe that modeling a formula in the Conjunctive Normal Form (CNF)
instead of the table-based approach used in [14], gives a significant advantage in
performance. We also provide a comparative analysis of these two methods. The
above-mentioned tool SOLVATORE [11] was also modeled using the CNF, where
the authors used the trivial approach to find the CNF of a function. Here we
propose to use the Quine-McCluskey algorithm [19,21] to find the minimum size
CNF. The Quine-McCluskey algorithm was previously used in the context of dif-
ferential cryptanalysis in [1]. From our result, we can observe that for the KNOT
and Ascon, the CP-based approach outperforms the SAT-based approach.

We also provide a concrete algorithm for finding lower data distinguishers.
This algorithm is a formalization of two previous works in [11,24]. We used our
algorithm on the KNOT and Ascon and found many distinguishers, which are
more efficient. Table 1 compares the known results and our results.

Finally, we studied the direction provided in [16] to extend distinguishers
by composing linear layers at the input and output. For the output layer, we
used linear combinations instead of linear maps to reduce the search space, as
suggested in [9]. Here we provide a formal way to find the optimal number
of linear combinations that need to be considered, using Depth First Search
(DFS) to find these. As an application of this theory, we found a new result
that 18-round KNOT-256 and KNOT-384 have no integral distinguisher using
conventional division property and we proved that more efficiently than before.

2 Preliminaries

2.1 Notations

The Hamming weight of a ∈ F
n
2 is wt(a) =

∑i=n
i=1 ai and for any vector a =

(a0, a1, · · · , am−1) ∈ F
l0
2 × F

l1
2 × · · · × F

lm−1
2 , the vectorial Hamming weight of a
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Table 1. Summary of previous results and our best results

Primitive #Rounds Data #Balanced bits Source

KNOT-256 17 2255 1 [31]

17 2254 7 Sect. 5

18 Does not exist Sect. 7

KNOT-384 17 2383 1 [31]

17 2380 19 Sect. 5

18 Does not exist Sect. 7

KNOT-512 19 2511 1 [31]

19 2508 139 Sect. 5

Ascon 5 216 320 [11]

5 212 2 Sect. 6

is W (a) = (wt(a0), wt(a1), · · · , wt(am−1)) ∈ Z
m. For any k ∈ Z

m and k′ ∈ Z
m,

we define k � k′ if ki ≥ k′
i for all i. For any integer k ∈ {0, 1, .., n} we define

the set S
n
k = {a ∈ F

n
2 : k ≤ wt(a)} and for any vector k ∈ ({0, 1, .., n})m we

define the set S
m,n
k = {a = (a1, a2, ..., am) ∈ (Fn

2 )m : k � W (a)}. For any
vector u ∈ F

n
2 and x ∈ F

n
2 , we define the bit product πu : Fn

2 → F2 as πu(x) =∏n
i=1 xi

ui and for any vector u ∈ (Fn
2 )m and x ∈ (Fn

2 )m, we define the vectorial

bit product πu : (Fn
2 )m → F

n
2 as πu (x) =

∏m
i=1 πui

(xi) =
∏m

i=1

( ∏n
j=1 x

uij

ij

)
.

The Algebraic Normal Form (ANF) of a function f : Fn
2 → F2 can be defined as

f(x) =
⊕

u∈Fn
2

af
uπu(x) and the degree of a function f : Fn

2 → F2 is d if d is the
degree of the largest monomial in the ANF of f , i.e., d = maxu∈Fn

2 ,af
u �=0 wt(u). We

define ini1,i2,...,ip is the vector in F
n
2 with all coordinates 1 expect for the positions

i1, i2, ..., ip and we define outj1,j2,...,jp is the vector in F
n
2 with all coordinates 0

expect for the positions j1, j2, ..., jp. Similarly, we use in(k,�) to denote the binary
matrix with all the elements are 1 except for (k, �) position and out(k,�) to denote
the binary matrix with all the elements are 0 except for (k, �) position.

2.2 Definitions

Definition 1. (Division Property [28]) A multi-set X ⊆ F
n
2 is said to have the

division property of order k, Dn
k for some 1 ≤ k ≤ n, if the sum over all vectors

x ∈ X of the product xu = 0, for all vectors u with hamming weight less than k,
i.e., ⊕

x∈X

πu(x) = 0,∀u ∈ F
n
2 with wt(u) < k.

Definition 2. (Vectorial Division Property [28]) A multi-set X ⊆ F
l0
2 × F

l1
2 ×

· · · × F
lm−1
2 is said to have the division property Dl0,l1,···lm−1

K
for some set of m-

dimensional vectors K whose i-th element takes a value between 0 to li, it fulfills
the following conditions:
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⊕

x∈X

πu (x) =

{
unknown, if there is k ∈ K s.t W (u) � k

0, otherwise

Moreover, if each li is restricted to 1, we will say bit-based division property and
we will denote it by D1,n

K
.

Definition 3. (Balanced Position [28]) Let Y ⊆ F
n
2 be a multi-set of vectors. A

coordinate position 0 ≤ i < n is called balanced position if
⊕

y∈Y yi = 0.

Definition 4. (Even Polynomial) Let f be a polynomial in the ring

F2[x0, x1, ......, xm−1]/(x2
0 + x0, x

2
1 + x1, ......, x

2
n−1 + xm−1)

with the algebraic normal form (ANF) f(xm−1, · · · , x0) =
⊕

u∈Fm
2

af
uπu(x).

Then f is called a even polynomial over a multiset X if the following holds
∀u ∈ F

m
2 :

af
u

⊕

x∈X

πu(x) = 0.

3 Propagation of Bit-Based Division Property

Let us consider a function F : Fn
2 → F

n
2 . This function can be an Sbox, linear

function or even a round function. We are interested in how the division prop-
erty can propagate through this function. We consider the input set X as an
affine subspace. Suppose X has division property D1,n

{k0} and after propagation

through F , we get a division property D1,n
{k1}. If k0 = (k0

0, k
0
1, · · · , k0

n−1) and
k1 = (k1

0, k
1
1, · · · , k1

n−1), then we call (k0
0, k

0
1, · · · , k0

n−1, k
1
0, k

1
1, · · · , k1

n−1) a valid
division trail through F . A formal definition of division trails was given in [34].

Our main motivation is to model such a search problem that each solution of
it be a valid division trail. Then we can solve that problem using various tools
like constraint programming, SAT solver, etc. Suppose that we are given an r-
round primitive Er : Fn

2 → F
n
2 . Let (a0, a1, · · · , an−1) be the variables denoting

the input division property vectors and (b0, b1, · · · , bn−1) be the variables denot-
ing the output division property vectors. We set values to the input variables
(a0, a1, · · · , an−1) of the first round by a vector k ∈ {0, 1}n of our choice and
find the balanced positions in the output vector from the last round. Once we
have a set of balanced positions corresponding to an input division property k,
we can distinguish Er from a random function. For this, we take a set X ⊂ F

n
2

of plaintexts and get an output set Y such that Y = {y = Er(x) | x ∈ X}.
The set X is an affine subspace, constructed corresponding to the input division
property k. For each vector x = (x0, · · · , xn−1) ∈ X, if the i-th coordinate of k
is 1 then xi can accepts all possible values from {0, 1} and if the i-th coordinate
of k is 0 then xi is set to a fixed constant ci ∈ {0, 1}. From the division property,
we can guarantee that the balanced positions of the vectors of Y are balanced,
which can distinguish Er from a random function. As the size of the set X is
2wt(k), the data complexity is 2wt(k).
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3.1 Modeling the Sbox

From the above discussion, we can observe that modeling a primitive is the main
step in the attack. Xiang et al. [34] proposed an algorithm to accurately compute
the propagation of bit-based division property through an Sbox. This algorithm
takes the input division property vector k = (k0, k1, · · · , kn−1) as the input and
outputs a set of vectors Kk such that the output multi-set has division property
D1,n

Kk
. Here we have denoted the output set as Kk to attach it with the input

property k. For any (k, u) ∈ F
n
2 ×F

n
2 is a valid division trail if and only if u ∈ Kk,

where Kk is the output of the Algorithm on input k.

3.2 CNF from Division Trail

As discussed in the previous part we can form a division trail table T , such that

T = {(a, b) ∈ F
2n
2 | b ∈ Ka}.

From the construction of T it is clear that T c = F
2n
2 \T contains all the invalid

division trails. We can consider a Boolean function FS from F
2n
2 , corresponding

to a given Sbox S with the following property:

FS(a, b) =

{
1, if (a, b) ∈ T

0, if (a, b) ∈ T c

Here we are interested in modeling this function to SAT/CP formula. One idea
of this kind of modeling is the table-based approach, used in [14]. This table-
based approach is the same as considering the disjunctive normal form (DNF) of
FS . However, we observe that the performance of this model is very low. Hence,
we propose modeling using the conjunctive normal form (CNF) of the function
Fs. The difference between the time requirements of these two methods suggests
that we can significantly improve the performance by using the CNF instead
of the DNF. Let us discuss how to compute the CNF of a given function FS .
We do so by first computing another function G(x) = Fs(x), i.e., G(a, b) = 1
if (a, b) ∈ T c. The disjunctive normal form (DNF) of the function G can be
trivially found, as used in [11]. Then we can again convert G(x) to G(x) to get
the CNF of Fs(x) using De Morgan’s laws. However, this approach results in
a huge CNF representation. The number of terms in the CNF is the same as
the size of T c. To counter this effect, we propose to use the Quine-McCluskey
algorithm [19,21] to find a minimum size CNF.

We modeled the division property propagation problem using two different
tools: as an SMT problem and as a Constraint programming problem. This is
done to identify which of these two approaches are better for the CNF clauses.
As we report in Sect. 5, CP based approach on the CNF, is more efficient.

There are many public solvers to solve SAT and SMT problems. Here we
construct our model using the CVC [3] language and give it to an SMT solver.
The SMT solver solves the satisfiability problem with the help of an SAT solver.
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We used the STP 2.3.31 [13] as the SMT solver and the Cryptominisat 5.7.1 [22]
as the SAT solver. We modeled our CP problem in MiniZinc [20], which is a
solver-independent open-source language that can be used to express CP models
readable by multiple solvers. Then the model is given to the publicly available
solver Chuffed2 0.10.4 [5].

4 Input Division Property and Output Division Property

Consider an SPN structure block cipher or a permutation. Each round function
consists of parallel applications of a certain number of Sboxes, followed by a
linear layer. We construct a model for each layer and repeat the procedure r
times for an r-round primitive. Then we set values to the input variables a =
(a0, a1, · · · , an−1) and the output variables b = (b0, b1, · · · , bn−1), and solve the
model. We now have to choose those values for a and b.

4.1 Input Division Property

Our initial division property is selected on the basis of the embedded property,
introduced in [24], whose definition is recalled as follows.

Proposition 1 (Embedded Property [24]). Let Er be an r-round iterated
encryption algorithm, R be the round function, which only composes of Substi-
tution, Copy, XOR, Split and Concatenation operations. Suppose that the input
and the output take values from F

n
2 and k0, k1 are two initial division properties

with k0 � k1. If the output multi-set under k0 does not have integral property,
then the output multi-set under k1 also has no integral property.

Thus we consider n vectors with Hamming weight n − 1 as ini =
(1, ..., 1, 0, 1, ..., 1) (0 is in the i-th position) for 0 ≤ i ≤ n − 1. If we start from
each of these ini, i.e., set a = ini and cannot find any integral distinguisher then
we can conclude that there is no integral distinguisher. We do not to check with
the other initial properties according to the above Proposition 1.

4.2 Output Division Property

The choice of the output division property depends on when we need to stop the
search, i.e., when we get a set without an integral property. This is described in
the following proposition from [34].

Proposition 2 ([34]). Let X be a multi-set with bit-based division property Dn
K
,

then X does not have integral property iff K contains all vectors of weight 1.

Thus here, if the output multi-set (set of ciphertexts) has the division prop-
erty K where K contains each outj , then the output multi-set has no integral
distinguishers. So we set the output variable with each outj and solve the model.
1 https://stp.github.io/.
2 https://github.com/chuffed/chuffed.

https://stp.github.io/
https://github.com/chuffed/chuffed
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4.3 Automatic Algorithm for Finding Division Properties

Now we recall an algorithm to find the maximum round r for which we can
find an integral distinguisher from [24]. If for r-round, the system is consistent
(satisfiable) for all ini and outj then there is no distinguisher, because from any
input division property, the set of output division property contains all outj . In
that case, we set r − 1 as the highest possible round. On the other hand, if for
some ini and outj , the model is not consistent with a = ini and b = outj , then
the j-th bit of the output multi-set is balanced. In that case, we can try finding
a division trail for more rounds.

4.4 Reduction of Data Complexity

Till now, we have discussed how to find the maximal number of rounds with a
division property. Suppose that for some ini and outj , the model is inconsistent
with the input variable a = ini and output variable b = outj , i.e., there is an
integral distinguisher. This distinguisher uses a set of plaintext vectors X ⊂ F

n
2

such that the i-th bit is constant and the other bits take all possible ({0, 1})
values. The data complexity of this distinguisher is 2n−1 plaintexts. We now
discuss an idea from [24] to reduce the data complexity.

We first find an index set S such that for each i ∈ S, if we set the initial
division property as ini, we have at least one j such that the j-th bit of the output
multi-set is balanced. The set S = {0, 1, · · · , n − 1}\S is called the necessary
set [24]. This name necessary set follows from the fact that we can get a balanced
bit at the output only if we set ai = 1 for all i ∈ S. The set S also called a
sufficient set [24]. To choose an index i such that a = ini, the set S is sufficient.
Now if | S |> 1, then we may set more than one ai = 0 where i ∈ S and still
have some balanced bits. Suppose we choose m indices {i0, i1, · · · , im−1} from S

and set ai = 0 for all i ∈ {i0, i1, · · · , im−1} and still have some balanced bit. In
that case, we have an integral distinguisher with data complexity of 2n−m.

Given the sufficient set S, we can try with all possible subsets from S, as sug-
gested in [24], to see which offers the best data complexity. If we get a balanced bit
for some subset, we stop this search; otherwise, we continue. This strategy brute
forces all the subsets, i.e., its worst-case time complexity is

(|S|
t

)
calls to the solver.

An improved idea proposed in [11], is to test only those combinations of
indices from S which already have common balanced bits. Now we discuss the
idea from [11] more formally and we provide an algorithm to use this search
process. Let us consider a set OUTi of all indices j such that the j-th bit is
balanced when the input division property is ini. We find the following set

IN2 = {{i0, i1} : (i0 �= i1) ∧ (OUTi0 ∩ OUTi1 �= φ),∀i0, i1 ∈ S}.

We test if there are some balanced bits with initial division property ini0,i1 for
each {i0, i1} ∈ IN2. If we can find some balanced bit for some {i0, i1} then we
have a lower data distinguisher. Note that in this stage we are checking only with
those outj such that j ∈ (OUTi0 ∩ OUTi1), i.e., which are already balanced in
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the previous stage. This gives a significant advantage over searching for all outj .
The idea can be trivially generalized to INm where INm = {{i0, i1, · · · , im−1} :
(i0 �= i1 �= · · · �= im−1) ∧ ((∩m−1

j=0 OUTij ) �= φ),∀i0, · · · , im−1 ∈ S}. According to
this, we can take IN1 = S.

This search starts from lowest value of m, i.e., m = 2 and increases by 1
if there is some balanced bits from an element of INm. To justify this we are
proposing the following new Proposition 3.

Proposition 3. Let m0 and m1 be two non-zero integers with m0 < m1. If
we cannot get any integral distinguisher by setting the initial division property
a = ini0,i1,··· ,im0−1 for each {i0, i1, · · · , im0−1} ∈ INm0 then there is no integral
property from any index set of INm1 .

Proof. If m1 > m0, then for any element {j0, j1, · · · , jm1−1} ∈ INm1 there is some
element {i0, i1, · · · , im0−1} ∈ INm0 such that ini0,i1,··· ,im0−1 � inj0,j1,··· ,jm1−1 . So
the proof follows from the embedded property in Proposition 1.

It was also suggested in [11] to continue the process until we find some m
such that INm is empty. But from the above Proposition 3 it also follows that we
can stop our search when m is such that no element of INm leads to a balanced
bit.

Algorithm 1 captures the above proposition. This algorithm outputs the size
of the maximum possible combination from S for which we can get an inte-
gral distinguisher with data complexity 2n−t. This algorithm also outputs a set
Z = {i0, i1, · · · , it−1} of such a combination. Note that if the algorithm cannot
find any larger combination, we can take any element from IN1, so Z can be ini-
tialized with any one element from IN1. In Algorithm 1 we initialized Z with an
i ∈ IN1 such that it gives a maximum number of balanced bits. Finally, once we
have such a set Z we can get balanced bits corresponding to the initial division
property ini0,i1,··· ,in−1 . Here if we keep track of the list OUT from Algorithm 1,
then we can use that to find balanced bits efficiently. In that case we search only
on ∩i∈{i0,i1,··· ,it−1}OUT [i] for balanced bits.

Remark 1. One important remark is that the time complexity of Algorithm 1
may not be feasible if the size of S is very large. The main work is needed here to
compute the sets OUTi for all i ∈ S. For every element in S we need to call our
model n times. If this is computationally infeasible, one can sample a smaller
subset of S as we show in the next section.

5 Application to the KNOT Permutation

KNOT is a family of bit-slice lightweight authenticated encryption algorithms
and hash functions [31], submitted to the NIST lightweight crypto competi-
tion [27]. The KNOT permutation is the main primitive used in the KNOT
family and comprises three variants with different sizes: 256 bits, 384 bits and
512 bits (denoted by KNOT-b).
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Algorithm 1. OptimalDistinguisher
Require: SAT/CP model for the primitive, Max round r > 1, Sufficient set S

Ensure: t and Z such that t is the max possible size and Z is one combination of size
t

1: IN1 = S

2: OUT is empty list of sets
3: for i ∈ IN1 do
4: OUTi = φ
5: a = (a0, · · · , an−1) = ini

6: for 0 ≤ j < n do
7: b = (b0, · · · , bn−1) = outj
8: {solve the r-round model with a and b
9: as first round and last round variable, respectively}

10: if not satisfiable then
11: OUTi = OUTi ∪ {j}
12: end if
13: end for
14: OUT [i] = OUTi

15: end for
16: Flag = True
17: t = 1
18: Z = maxi∈IN1 | OUT [i] |
19: while Flag = True do
20: FLAG = False
21: t = t + 1
22: compute INt

23: for {i0, i1, · · · , it−1} ∈ INt do
24: a = ini0,i1,··· ,it−1

25: B = ∩i∈{i0,i1,··· ,it−1}OUT [i]
26: for (b0, · · · , bn−1) ∈ B do
27: b = (b0, · · · , bn−1) = outj
28: {solve the r-round model with a and b
29: as first round and last round variable, respectively}
30: if not satisfiable then
31: Flag = True
32: Z = {i0, i1, · · · , it−1}
33: break
34: end if
35: end for
36: if Flag = True then
37: break
38: end if
39: end for
40: end while
41: t = t − 1
42: return t, Z
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Table 2. KNOT’s Sbox

x 0 1 2 3 4 5 6 7 8 9 A B C D E F

S(x) 4 0 A 7 B E 1 D 9 F 6 8 5 2 C 3

Table 3. Shift Row offsets for the KNOT permutation

b c1 c2 c3

256 1 8 25

384 1 8 55

512 1 16 25

5.1 Specification

The underlying permutations iteratively applies an SP-network round transfor-
mation. Each round is the composition of three operations: Add round constants,
Sub Column, Shift Row. The round constants do not affect the division property.
So we do not describe them here and refer the interested reader to [31]. Each b-bit
state of the KNOT-b can be seen as a 4 × b

4 matrix, where b = 256, 384 or 512.
The operation of Sub Column is a parallel application of b

4 similar Sboxes to
the 4 bits in the same column. The Sbox S : F4

2 → F
4
2 is given in Table 2. The Shift

Row transformation left rotate each row by 0, c1, c2 and c3 bits, respectively. The
offsets c1, c2 and c3 are different for different state size, given in Table 3.

5.2 Application of Our Model

We applied both SAT and CP models to KNOT. When the state size is b, we have
in total b

4 many 4-bit Sboxes for each round. Thus we have a total b
4 × r many

constraints for r rounds. To implement r-round KNOT we have the variable
matrices a0, a1, a2, ..., ar of the form

ai =

⎡

⎢
⎢
⎢
⎢
⎣

ai
0,0 ai

0,1 ai
0,2 · · · ai

0, b4−1

ai
1,0 ai

1,1 ai
1,2 · · · ai

1, b4−1

ai
2,0 ai

2,1 ai
2,2 · · · ai

2, b4−1

ai
3,0 ai

3,1 ai
3,2 · · · ai

3, b4−1

⎤

⎥
⎥
⎥
⎥
⎦

∀i ∈ {0, 1, ..., r},

where each ai
j,k ∈ {0, 1}. In our model, the variables are related with some

constraints. Each column of ai and a(i+1) are related with parallel application
of b

4 Sboxes. Then ai is rotated according to the shift row and we get bi. Note
that as this is only a permutation of variables we do not need to introduce new
variables for bi, instead we can just connect ai and bi according to shift row.
The chain of propagation is as follows (omitted last shift row):

a0 Sbox−−−→ a1 rotation−−−−−→ b1
Sbox−−−→ a2 rotation−−−−−→ · · · br−1 Sbox−−−→ ar.
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Table 4. Distinguishers for the KNOT with input property a = in(3,0)

KNOT-b #Rounds #Data #Balanced-bits SAT SAT/CNF CP CP/CNF

KNOT-256 17 2255 89 13 h 19min >15 h 12min

KNOT-384 17 2383 140 >15 h 45min >15 h 17min

KNOT-512 19 2511 269 >15 h 2.1 h >15 h 70min

5.3 Finding the Longest Division Properties

The authors of KNOT used the MILP-based search strategy to analyze KNOT’s
integral properties. They found 17, 17, 19-round integral distinguishers for the
sizes b = 256, 384 and 512, respectively. All of the distinguishers have data
complexity of 2b−1 and in all cases, they found one balanced bit at position
(3, 0). To the best of our knowledge, this is the only available result on the
KNOT in the context of the integral attacks. Also, the authors did not provide
any time requirements for these findings.

We obtained several new results on the KNOT-256, KNOT-384 and KNOT-
512. All of our experiments are conducted on the following 64-bit Linux platform:
Intel Core i7-3520M CPU @ 2.90 GHz, 8.00 G RAM. We used the model pro-
posed in Sect. 5.2 and solved it using SAT/SMT and CP based tools. All the
source codes are available in public domain at https://github.com/ShibamCrS/
AutomaticSearchforBBDP.

First, for all versions of KNOT, we considered the initial division property
in(k,�) (all coordinates 1 except for the (k, �)-th position) for each 0 ≤ k < 4
and 0 ≤ � < b

4 . We are getting at least two balanced bits on the output states
after 17-rounds KNOT-256 and KNOT-384 and 19-round KNOT-512. From this
result, we can say that the sufficient index set S defined in Sect. 4.4 contains all of
the b bits positions for b = 256, 384, 512. Secondly, if we set the input variables as

a0 = in(3,0) =

{
0, if (k, �) = (3, 0)
1, otherwise

then we can get many balanced bits after 17 rounds for the KNOT-256 and
KNOT-384 and after 19 rounds for the KNOT-512, which spread over all the
four rows. These results outperform the previous result in [31], where the authors
found only one balanced bit in each version. The time requirements with the
number of balanced positions are given in Table 4.

5.4 More Efficient Distinguishers

From the previous result, as the sufficient index set S is huge, here we cannot
use the whole set on the data complexity reduction algorithm. Instead we used
a subset S

′ of S. If we consider only the first column, i.e., we set constant at
positions S

′ = {(0, 0), (1, 0), (2, 0), (3, 0)}.

https://github.com/ShibamCrS/AutomaticSearchforBBDP
https://github.com/ShibamCrS/AutomaticSearchforBBDP
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Table 5. Distinguisher for 17-round KNOT-384 (data complexity 2380)

Constant positions (0, 0), (1, 0), (2, 0), (3, 0)

Balanced positions at the third row [24, 31, 38, 39, 40, 77, 78, 79, 80, 86, 87, 89]

Balanced positions at the fourth row [40, 77, 79, 80, 86, 87, 89]

Table 6. Distinguisher for 19-round KNOT-512 (data complexity 2508)

Constant (0, 0), (1, 0), (2, 0), (3, 0)

1st row {0, 7, 8, 15, 16, 30, 31, 32, 40, 47, 55, 56, 64, 79, 80, 88, 112, 127}
2nd row {0, 7, 8, 14, 15, 16, 23, 30, 31, 32, 39, 40, 47, 48, 55, 56, 63, 64, 79, 80,

87, 88, 95, 96, 103, 111, 112, 119, 127}
3rd row {0, 5, 6, 7, 8, 14, 15, 16, 22, 23, 24, 29, 30, 31, 32, 38, 39, 40, 41, 47, 48,

55, 56, 57, 63, 64, 65, 70, 71, 79},

{80, 81, 86, 87, 88, 89, 94, 95, 96, 102, 103, 104, 109, 110, 111, 112, 118,
119, 120, 126, 127}

4th row {0, 5, 6, 7, 8, 14, 15, 16, 23, 29, 30, 31, 32, 39, 40, 41, 47, 48, 55, 56, 57,
63, 64, 65, 71, 79}
{80, 81, 87, 88, 89, 95, 96, 103, 104, 109, 111, 112, 118, 119, 127}

KNOT-256: For the KNOT-256 we calculated the balanced bits for each con-
stant positions in {(0, 0), (1, 0), (2, 0), (3, 0)}. Then we applied Algorithm 1 with
S

′ = {(0, 0), (1, 0), (2, 0), (3, 0)} on 17 round KNOT-256. It gives the output t = 2
and Z = {(0, 0), (1, 0)}. Now we can get balanced positions with input Z. We get
two balanced positions (2, 16) and (2, 56) after 17 rounds. By a similar approach
we can get several distinguishers.

KNOT-384: For the KNOT-384 we took S
′ = {(0, 0), (1, 0), (2, 0), (3, 0)}

and we apply Algorithm 1 for 17 rounds. It gives the outputs t = 4 and
Z = {(0, 0), (1, 0), (2, 0), (3, 0)}. We get in total 19 many balanced bits from
Z, spread over the last two rows given in Table 5.

KNOT-512. For the KNOT-512 also we found a lower complexity distinguisher
on 19 rounds. Here also we took S

′ = {(0, 0), (1, 0), (2, 0), (3, 0)} and we apply
Algorithm 1 which outputs t = 4 and Z = {(0, 0), (1, 0), (2, 0), (3, 0)}. We get
in total 139 many balanced bits from Z, spread over all the four rows given in
Table 6.

6 Other Results

To show the strength of our approach, we considered some well-known ciphers
RECTANGLE [36], GIFT [2], PRESENT [4]. While we obtained results that do
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Table 7. Division property results

Primitives #Round #Data #Balanced bits SAT SAT(CNF) CP CP(CNF)

Ascon-320 5 212 2 >15 h 20min >15 h 10min

RECTANGLE-64 9 260 16 70 s 35 s 50 s 40 s

RECTANGLE-64 10 No Distinguisher* 1.48 h 41min 1.44 h 39min

PRESENT-64 9 260 1 76 s 21 s 17min 45 s

PRESENT-64 10 No Distinguisher* 1.5 h 24min 1.7 h 38min

GIFT-64 9 261 5 103 s 60 s 58min 62 s

GIFT-64 10 No Distinguisher* 1.49 h 42min 1.19 h 43min

*Time required for exhaustive search with all possible ini and outj

not improve the previously known results, they demonstrate the clear advan-
tage of using CNF models. The difference between the time requirements of
two methods is given in the Table 7. We also implement our model to NIST
lightweight candidate Ascon [10] and we obtain a distinguisher with data com-
plexity 212. This result improves the previous result in [11], where data com-
plexity was 216. The 12 active bit positions in the Ascon state matrix are
(0, 0),(1, 0),(2, 0),(3, 0),(4, 0), (0, 1),(1, 1),(2, 1),(3, 1),(4, 1),(0, 2),(1, 2).

7 Proving the Non-Existence of Longer Division Trails

In a very recent work in [16], Lambin et al. proposed a new way to extend the
integral distinguisher. The main motivation of these types of extensions is that
the division properties are not linearly invariant. If we consider a linear map L
and an Sbox S then the division properties of L ◦ S and S ◦ L may be different
from those of S and consequently, the division trail table may differ. Thus by
choosing a proper L, we may get new distinguishers which were impossible when
modeling S alone. Thus, for a given r-round primitive Er, the authors of [16]
proposed to consider Lout ◦ Er ◦ Lin instead of Er where both Lin and Lout are
linear mappings. This way, we may get some distinguisher on Lout ◦ Er ◦ Lin

which is not possible on Er. Lambin et al. also described some ideas to choose
proper Lin and Lout. Note that the search space of these linear combinations is
huge and this space needs to be reduced. On this direction, Lambin et al.’s first
proposed the following Proposition 4.

Proposition 4. Let S be an invertible m-bit Sbox and P be an m-bit permuta-
tion. Let S1 = S ◦ P and S2 = P ◦ S and k

S−→ k′ be any valid division property
propagation through S. Then both of the propagations

P−1(k) S1−→ k′andk
S2−→ P (k′)

are also valid.

Proof of the above proposition is obvious. As we consider the bit-based division
property, bit-permutation just permutes the division property vector. But this
plays a crucial role in reducing the search space.
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We focus on linear mapping which are block diagonals, each block corre-
sponds to an m-bit Sbox in the Sbox layer (an m × m matrix). So we can write
Lin = (L0

in, L1
in, · · · , Ls−1

in ) and Lout = (L0
out, L

1
out, · · · , Ls−1

out ) where each Lj
in

and Lj
out is an m × m matrix. To find the i-th block Li

in Lambin et al. consid-
ered the following permutation equivalence classes

Ein(L) = {L′ ∈ GLm(F2)|∃ permutation P s.t. L′ = L ◦ P}.

Similarly to find Li
out we have

Eout(L) = {L′ ∈ GLm(F2)|∃ permutation P s.t. L′ = P ◦ L}.

The number of these classes is
∏m−1

i=0 2m−2i

m! . This number is much lower than the
total number of m × m invertible matrices, which is

∏m−1
i=0 2m − 2i. Now if we

can find each Ein(L) and Eout(L), we consider only one linear map from each of
the classes. For example, if m = 4, there are in total 840 of such classes instead
of 20160 matrices.

7.1 Further Reduction of the Search Space for Lout

We now discuss the method to find an optimal number of Lout. It was suggested
in [9] that finding proper linear combinations of the output bits is enough to
find an integral distinguisher instead of a linear map. Indeed, here our main
motivation is that multiplying the output vectors with a matrix is the same as
taking linear combinations. If we cannot get any balanced bit by linear combina-
tions, we cannot get them by matrix multiplication. Thus, we check all possible
nonzero linear combinations. This reduces the search space from

∏m−1
i=0 2m−2i

m! to
2m − 1. If m = 4, it reduced from 840 to 15. However, checking for all those 15
linear combinations is also a huge task. We now discuss how to further reduce
this number.

Let us consider an r-round primitive Er. Here we want to take linear combi-
nations of each Sbox output, not the whole state. For an m × m Sbox, there are
2m − 1 linear combinations. If the Sbox S : Fm

2 → F
m
2 maps (xm−1, · · · , x0) to

(ym−1, · · · , y0) then any linear combination of (ym−1, · · · , y0) is also a Boolean
function. Its ANF can be determined from the ANF of yi’s. If c is an integer
with binary representation (cm−1, · · · , c0) then Pc is the linear combination cor-
responding to c, i.e.,

Pc = (cm−1, · · · , c0) · (ym−1, · · · , y0) =
m−1∑

i=0

ciyi.

So there are 2m − 1 polynomials P1, P2, · · · , P2m−1 corresponding to each Sbox.
Each of these can be written as Pc(xm−1, · · · , x0) =

⊕
u∈Fm

2
aPc

u πu(x).
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7.2 Checking Polynomials

We now discuss the process to check a polynomial is even polynomial or not. To
do so, we check each monomial present in the polynomial by our SAT/CP model.
Suppose that we want to check a monomial xi

j0
xi

j1
· · · xi

jk
, where (xi

m−1, · · · , xi
0)

is the input to the i-th Sbox of the last round. To check the monomial
xi

j0
xi

j1
· · · xi

jk
we set the output property as outj0,j1,··· ,jk , where outj0,j1,··· ,jk is

a vector with all zero except for positions j0, · · · , jk. If we get the system unsat-
isfiable for some initial property, then we can say that the monomial is even.
Consequently, if all the monomials in the ANF are even, then the polynomial is
even polynomial and there is an integral distinguisher. One important thing is
that we solve the model for r − 1 rounds to decide whether a balanced bit exists
after r rounds.

Let us consider an Sbox of size m. There are in total 2m − 1 linear combina-
tions polynomial P1, · · · , P2m−1. Each Pi corresponds to the linear combination
obtained from the binary representation of i. However, there is no need to check
all 2m − 1 polynomials. We identify a subset of polynomials which are sufficient,
i.e., if these polynomials are not even, then there is no division property. We
define an order (�) among the polynomials such that if Pi � Pj then we check if
the polynomial Pi is even polynomial or not. Suppose Pi is not even, then there
is no need to check for Pj . If Pi is even, we have a distinguisher and for more
distinguishers, we can check Pj ’s such that Pi � Pj . The definition of this order
is as follows.

Definition 5. Let us consider two polynomials P and Q from the ring

F2[x0, x1, ......, xm−1]/(x2
0 + x0, x

2
1 + x1, ......, x

2
n−1 + xm−1).

We say that Q is Dependent on P , denoted by P � Q if any monomial (term)
in P divides at least one monomial (term) of Q.

Proposition 5. If we have two linear combination polynomials P and Q with
P � Q and we can find that P is not even, then Q is not even.

Proof. If P is not even then according to Definition 4 of the even polynomial we
can get some monomials in P which is not even, i.e., there is some u ∈ F

m
2 such

that aP
u = 1 and

⊕
x∈Fm

2
πu(x) is unknown. As P � Q, then that unknown term

must divide some term of Q and that term of Q must be unknown according to
the definition of division property. So Q can not be an even polynomial.

For example there are 15 polynomials for the KNOT Sbox. Let us consider
P4 and P2, for which the terms of P4 are {x0, x2x1, x1, x2, x3, 1} and the terms
of P2 are {x3x0, x3x2x1, x1, x3x2, x2}. We can observe that x0, x3 divides x3x0

and x1, x2, x1x2 divides x3x2x1. Hence, P4 � P2.

Minimal Number of Polynomials. Finally, we want to decide how many
polynomials we need to check. According to the dependency relation defined
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above, we form a few clusters of polynomials so that all the polynomials present
in a cluster depend on a single polynomial and then by checking that single
polynomial, we can decide about all other polynomials in the cluster.

To form this cluster we consider a dependency graph G = (V,E), where each
vertex vP in the vertex set V corresponds to a polynomial P and there is a
directed edge from vP to vQ if and only if P � Q. Then we choose a starting
vertex vP and try to construct a trail. It is clear that the order (�) relation is
transitive. So, for all the vertices vQ that fall in the trail starting from vP must
satisfy P � Q. Also, We have to find a trail of size as large as possible. The
reason is that if the size of the trail is large, we can check a large number of
polynomials at once. We use Depth First Search (DFS) from each vertex one by
one for the task of finding a trail starting from that vertex.

Table 8. Trails from each vertex

Length c

11 [4, 2, 3, 7, 11, 15, 6, 10, 14, 5, 13]

11 [8, 1, 3, 7, 11, 15, 5, 13, 9, 10, 14]

9 [12, 3, 7, 11, 15, 5, 13, 10, 14]

8 [1, 3, 7, 11, 15, 5, 13, 9]

8 [2, 3, 7, 11, 15, 6, 10, 14]

8 [6, 2, 3, 7, 11, 15, 10, 14]

8 [9, 1, 3, 7, 11, 15, 5, 13]

6 [5, 3, 7, 11, 15, 13]

6 [10, 3, 7, 11, 15, 14]

6 [13, 3, 7, 11, 15, 5]

6 [14, 3, 7, 11, 15, 10]

4 [3, 7, 11, 15]

4 [7, 3, 11, 15]

4 [11, 3, 7, 15]

4 [15, 3, 7, 11]

Table 9. Final trails of considerations

Starting Trails

4 [4, 2, 3, 7, 11, 15, 6, 10, 14, 5, 13]

8 [8, 1, 9]

12 [12]

7.3 Application on the KNOT

The trails for the KNOT Sbox are given in Table 8 where the first element
is the starting linear combination c. From Table 8 we can see that one of the
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maximum length trails can be formed from the polynomial P4 (i.e., from the
vertex vP4). First we remove all the vertices that are reachable from vP4 , which
are {vP4 , vP2 , vP3 , vP7 , vP11 , vP15 , vP6 , vP10 , vP14 , vP5 , vP13} and then we move to
the next cluster. As the next cluster starts with vP8 and vP8 does not belong
to the previously removed cluster we can start a search from vP8 and construct
a cluster with remaining vertices. If vP8 was already removed, just consider
starting vertex of the next cluster on the list and so on. Finally, we have found
the following trails given in Table 9. We note that this greedy approach may not
be the most optimal sequence. However, determining the exact sequence seems
to be an NP-complete problem. Furthermore, it seems that the greedy algorithm
suffices.

According to this result first we need to check the following three polynomials:

y2(x) = x0 + x2x1 + x1 + x2 + x3 + 1, linear combination for 4 = (0, 1, 0, 0)
y3(x) = x1x0 + x1 + x2 + x3, linear combination for 8 = (1, 0, 0, 0)

y3(x) + y2(x) = x1x0 + x0 + x2x1 + 1, linear combination for 12 = (1, 1, 0, 0)

If this set of polynomials are not even then we need not check further. Also, we
can see that there are only 6 different monomials {x0, x1, x2, x3, x0x1, x1x2} in
all those three polynomials that we need to check. Among these 6, we start from
x0x1 and x1x2 because none of the polynomials are even if these two are not
even.

Let br−1 be the input variables to the rth round Sbox Sr−1 where
ar−1 rotation−−−−−→ br−1. Let us take linear combination of the output of the first
Sbox. Then to check x0x1 is even or not we set 1 to the positions br−1

0,0 and br−1
1,0

and to check x1x2 we set 1 to br−1
1,0 and br−1

2,0 as follows:

br−1 =

⎡

⎢
⎢
⎣

1 0 0 · · · 0
1 0 0 · · · 0
0 0 0 · · · 0
0 0 0 · · · 0

⎤

⎥
⎥
⎦ and br−1 =

⎡

⎢
⎢
⎣

0 0 0 · · · 0
1 0 0 · · · 0
1 0 0 · · · 0
0 0 0 · · · 0

⎤

⎥
⎥
⎦ .

Finally, we solve the model in both cases with all possible input vectors in(k,�)

of weight b − 1.

Result for the KNOT. For the KNOT-256 and KNOT-384, we searched for
all initial vectors for all Sboxes after 17 rounds and we did not get any even
monomial. This proves that we can not extend the integral distinguisher to 18
rounds by this method. In other words, the 18-round KNOT-256 and KNOT-
384 have no integral distinguisher using a conventional division property. This
follows from the fact that y0, y1, y2, y3 are also belong to the set of all linear
combinations as we have P1 = y0, P2 = y1, P4 = y2 and P8 = y3. However,
note that here for each column, we need to solve a 17-round SAT/CP model
twice per Sbox, whereas in the usual method, we need to solve the 18-round
model four times per Sbox. In other words, not only we proved a strong result
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about KNOT-256 and KNOT-384, we did so more efficiently. Our CP model
takes 20 h for KNOT-256 and 50 h for KNOT-384 to complete this search, which
is significantly more efficient compared to the usual method used in [31], which
was terminated after several days.

Adding Lin. We also tried to add a linear layer Lin at the input. But we could
not find any useful information for any versions of the KNOT and Ascon.

8 Conclusion

In this paper we provided several new distinguishers for the KNOT permutation
and Ascon using the SAT and CP-based automatic tools. To model the division
trail table of an Sbox we used the Quine-McCluskey method, which gives the
minimal size CNF. We provided a compact algorithm to find the optimal dis-
tinguishers. Our model is much more efficient and accurate than the previous
result on KNOT and Ascon. Finally, we provided a way to get the optimal num-
ber of linear combinations for extended integral attack and using this, we have
shown that 18-round KNOT-256 and KNOT-384 have no integral distinguisher
conventional division property.
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Abstract. Leakage-resilient authenticated encryption (AE) schemes
received considerable attention during the previous decade. Two core
security models of bounded and unbounded leakage have evolved, where
the latter has been motivated in a very detailed and practice-oriented
manner. In that setting, designers often build schemes based on (tweak-
able) block ciphers due to the small state size, such as the recent two-pass
AE scheme TEDT from TCHES 1/2020. TEDT is interesting due to its
high security guarantees of O(n−log(n2))-bit integrity under leakage and
similar AE security in the black-box setting. Though, a detail limited it
to provide only n/2-bit privacy under leakage.

In this work, we extend TEDT to TEDT2 in three aspects with the help
of a tweakable block cipher with a 3n-bit tweakey: we (1) adopt the idea
from the design team of Romulus of replacing TEDT’s previous internal
hash function with Naito’s MDPH, (2) move the nonce from the hash to
the tag-generation function both for more efficiency, and (3) strengthen
the security of the encryption to obtain beyond-birthday-bound security
also under leakage.

Keywords: Symmetric-key cryptography · Authenticated encryption ·
Provable security · Leakage resilience

1 Introduction

1.1 Leakage-Resilient Authenticated Encryption

Authenticated encryption (AE) has been established as an invaluable crypto-
graphic primitive [3,42] for various practical use cases that need the protection
of both authenticity and the confidentiality of transmitted data. While the usual
security notions treat the primitives as black boxes to the adversary, side channels
[32,33] are a highly important threat to many systems. The protection of primi-
tives against side-channel leakage – be it due to timing, memory accesses, power
consumption, induced faults, or electromagnetic radiation – is usually left to the
implementors and engineers. On a hardware level, the signal can be blurred by
noise or special circuits, whereas on the implementation level, countermeasures
include masking (i.e., secret sharing) [11,22] or shuffling [46]. Since side-channel
protection is often inhibitive in terms of area, additional power consumption,
c© Springer Nature Switzerland AG 2021
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Fig. 1. High-level comparison on existing two–pass designs and our proposal.

and efficiency, a line of research has been devoted to developing leakage-resilient
schemes. The interested reader can find in-depth surveys in [6,31].

Schools of Thought. The literature on confidentiality with leakage could be
categorized into three approaches: (1) “only computation leaks” (OCL) [36] with
bounded leakage [21], (2) absence of oracles and hard-to-invert leakage [47], and
(3) efficient simulatability of leakage [45]. The latter is still unsolved [34].

The former direction started with the framework by Barwell et al. [2] that
contained notions capturing arbitrary non-adaptive leakage in the bounded-leak-
age setting. The approach has found widespread adoption, e.g. in [14,17,19].
Characteristic is that security is lacking while leakage occurs, but is guaranteed
again once the leakage ends. Thus, schemes can provide nonce-misuse robust-
ness in the sense of [43]. The second school of thought can be located by the
group around Standaert. The school considers unbounded leakage with leveled
implementations [40]. It has evolved stepwise with early focus on integrity [40],
integrity with decryption leakage [9], and the composition with confidentiality
[8], along to attempts to include misuse-resilience [7,25], to the recent summary
at CRYPTO’20 [6]. In contrast to the bounded-leakage school, their notions
cannot provide nonce-misuse resistance, but only resilience in the sense of [1].

Recent Schemes. The portfolio of leakage-resilient AE schemes has grown sig-
nificantly recently, with focus on permutation-based designs like ISAP [15,16]
and the generic Sponge and Duplex [14,17] in the OCL line of research. In con-
trast, the unbounded-leakage direction preferred leveled implementations with
a few calls to a strongly protected primitive and the majority of computations
to a more efficient, less protected primitive. Proposals using this approach often
employed only a (tweakable) block cipher [7,25], but several permutation-based
designs [5,10,26] with few calls to a protected block cipher followed.

Leveled block-cipher-based constructions such as TEDT are interesting for
potentially higher efficiency compared to the permutation-based schemes; firstly,
the latter employ a very small rate for the nonce absorption in the key-derivation
phase [14,15]; secondly, tweakable block ciphers (TBCs) can be realized in a
more lightweight manner compared to permutations, as shown by Naito et al.



TEDT2 – Highly Secure Leakage-Resilient TBC 277

[38]. Since a high-level view can help identify concepts, we will look briefly at
FGHF′ and TEDT, which can be compared well, in the following (Table 1).

Table 1. Comparison between existing (T)BC-based leakage-resilient AE schemes and
our proposal. Security in bits, #primitive calls for messages of at most m n-bit blocks
and at most a-block associated data. • = see CCAmL2, – = not available, (x) = probably
x-bit security, but no proof is known, (∗) = keyed hashing, (†) = can be one call less
depending on the hash-input length.

Scheme Black-box bit Security Leakage bit Security #Primitive calls

CCA CI MR CCAmL1 CCAmL2 CIML2 Enc Hash KDF TGF

1 Pass

TET [7] (n) (n) – (n/2) – (n) 2m 2a 1 1

AET-LR [23] n n/2 – n – (n/2) m a/2 (∗) 1 1

2 Pass

Romulus-LR-TEDT
[29]

n−log(n2) n−log(n2) – • n/2 n−log(n2) 2m a + m + 3(†) 1 1

TEDT [7] n−log(n2) n−log(n2) – • n/2 n−log(n2) 2m 2a + 2m + 4 1 1

TEDT2 [This

work]

n − log(n) n − log(n) – • n − log(n) n − log(n) 2m a + m + 2(†) 2 1

3 Pass

FEMALE [25] n/2 n/2 n/2 • n/2 n/2 4m 2a + 2m + 8 2 1

Based on the analysis of Encrypt-then-MAC under leakage by [2], Degabriele
et al. [14] suggested FGHF′, where the acronym reflects the structure. The result
of a key-derivation function F takes the nonce and produces an IV for a pseu-
dorandom stream generator G. H hashes the resulting ciphertext, nonce, and
associated data and forwards the output to a keyed function F ′ to generate the
tag. The high-level structure is similar in other designs, e.g., ISAP or TEDT.
The latter, which stands for Tweakable Encrypt-Digest-and-Tag is built from a
TBC and comes with strong security guarantees, a single small-size primitive,
and a single key. It has only a few structural differences compared to FGHF′:
TEDT employs a TBC, an invertible tag-generation function for integrity under
decryption leakage, and uses the nonce as IV to G, as illustrated in Fig. 1.

1.2 Research Questions

TEDT is interesting for its efficiency and the leveled approach that spares the
expensive protections for most primitive calls. However, the low-level view in the
analysis by Guo et al. [25] may be hard to have a clear view of all details. We can
identify three aspects of improvements, where we could use (1) a more efficient
hash function, (2) the nonce in the finalization for more efficient authentication,
and (3) a 2n-bit tweakey in the encryption for higher security under leakage.

Firstly, TEDT employed Hirose’s compression function with Merkle-Dåmgard
strengthening [27] for hashing. Compared to TEDT, we can use Naito’s proposal
MDPH[π̃] from [37] that had also been suggested for Romulus-LR-TEDT [29]
and AET-LR [23]. Like Romulus-LR-TEDT, we also suggest using a 3n-bit TBC.
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Thus, our proposal can process a 2n-bit message block with each iteration of
two primitive calls. Thus, the hash-function rate increases from 1/2 to 1.

Secondly, both FGHF′ and TEDT process all inputs to the public hash func-
tion H nonce, associated data, and ciphertext. A similar approach is followed in
the instantiation of FGHF′ and in ISAP, which use the nonce as an initialization
vector. Using a TBC with 3n-bit tweakey, we can spare to process the nonce
during hashing and use it in the tag-generation function (TGF) instead.

Thirdly, TEDT uses two primitive calls per message block: one to derive a
new key for the subsequent block and one to produce a keystream block that is
added to the current message block. The resulting rate-1/2 encryption provided
O(n − log(n))-bit security in the single-user black-box setting, but only n/2-bit
security under leakage due to collisions and a hybrid argument. We generalize
the encryption to use a larger tweak efficiently. Using a TBC based on the
TWEAKEY framework by Jean et al. [30], we obtain a longer tweakey for higher
security, whose encryption need two primitive calls for the tweakey update per
message block. To compensate for the additional call, we use the tweakey for
processing two message blocks. We obtain a more secure rate-1/2 construction
that provides O(n− log(n))-bit security in both the black-box setting and under
leakage, where we adopt from TEDT the assumption that the distinguishing
advantage for the XORs of the plain/ciphertexts with the PRG keystream does
not endanger the security.

Outline. The remainder of this work is structured as follows: After Sect. 2 gives
general preliminaries, Sect. 3 provides a design rationale of our improvements
before Sect. 4 describes our proposal. Section 5 explains our used security model
before Sects. 6 and 7 summarize the results of the security analysis. Section 8
concludes this work. Due to space limitations, the analysis details are provided
in a full version that will be published alongside this work.

2 Preliminaries

General Notations. We use uppercase characters for variables and functions,
lowercase characters for indices, calligraphic characters (X , Y, . . .) for sets and
spaces, and bold characters (X, Y, . . .) for vectors, matrices, and adversaries. For
a non-negative integer x, we define [x] =def {1, . . . , x} and [0..x] =def {0, . . . , x}.
F

n
q denotes the n-dimensional extension of the field with characteristic q, where

the elements of F
n
2 can be represented as bit strings and ε is the empty string.

For a list L, we define [] as the empty list and L ∪← x denotes appending an
element x to L. Given sets X and Y, we define Func(X ,Y) for the set of all
functions F : X → Y, P̃erm(T ,X ) for the set of all tweakable permutations over
X , and TBC(K, T ,X ) for the sets of all tweakable block ciphers with key space
K and tweak space T over X . We define X1,X2, . . . � X for random uniform
sampling X1, X2, . . . , independently from each other and other samplings from
X . Furthermore, we define n-bit strings for arbitrary n as X = (Xn−1, . . . X0)
where Xi is the i-th least significant bit. We denote by msbc(X) and lsbc(X)
the c least significant bits of X.
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Distinguishers. An adversary is a computationally unbounded algorithm that
shall win a security game against a challenger. In this work, we focus on adver-
saries that are distinguishers. A distinguisher A is given access to one of two
worlds and shall output a decision bit at the end of its interaction that shall
denote which setting it interacted with. The challenger chooses one of the worlds
by a fair coin toss at the start and provides A with access to either the real world
O1 and an ideal world O0 with identical interfaces. We define

Δ
A

(O1
1, . . . , O

1
r

︸ ︷︷ ︸

O1

; O0
1, . . . , O

0
r

︸ ︷︷ ︸

O0

)(A) def=
∣

∣

∣Pr
[

AO1
1 ,...,O1

r ⇒ 1
]

− Pr
[

AO0
1 ,...,O0

r ⇒ 1
]∣

∣

∣ ,

where the probabilities are over the coins in the game, if any. Later, we will use
labeled oracles, such as ΔA(EK ,DK ; $,⊥), where we use ⊥ as a function that
always outputs the ⊥ symbol as the indicator for a failed decryption: ⊥(X) =
⊥ for all X. We will use Oj to mean the j-th oracle in the sequence in each
world, e.g., O1 will refer to EK or $. We consider computationally unbounded
distinguishers whose complexities are measured only by the number of queries
to their oracles. Moreover, we assume that adversaries do not ask duplicate
queries or queries to which they already know the answer. W.l.o.g., we focus on
deterministic distinguishers since for any probabilistic distinguisher, there exists
a deterministic one with at least the same success probability, cf. [18].

Notion Conventions. For a notion X, we write AdvX
Π(A) for the advantage

of A on some scheme Π. We define that A is a (r1, . . . , rk)-X-adversary for a
notion X if A uses at most the resources r1, . . . , rk (certain types of queries or
blocks). We write AdvX

Π(r1, . . . , rk) def= maxA

{

AdvX
Π(A)

}

for the maximum
advantage over all (r1, . . . , rk)-X-adversaries A on Π.

Query Restrictions. The security models we consider contain query restric-
tions that are necessary to prevent trivial wins of the adversary. We use Oi �↪→ Oj

to say that A must not ask the result of an earlier query to Oi in a later query
to Oj . We write Oi,N �↪→ Oj,N to indicate that A must not ask a query with a
nonce N to Oj,N if N was used in an earlier query to Oi. For sets of oracles Si,
Sj , we write Si �↪→ Sj for Oi �↪→ Oj for each combination of Oi, Oj ∈ Si × Sj .
For example, O1 �↪→ {O1, O2} means that a result from O1 must not be used as
input to O1 or O2. Similarly, we write Si �� Sj that a query to any oracle in Sj

must not have occured earlier to any oracle in Si. Finally, we denote as Oi ↪→ Oj

that Oj accepts only those queries that have been used earlier as queries to Oi.
This will be useful for models with several leaking oracles that allow A to collect
additional leakage traces for earlier queries.

Nonce-Based Authenticated Encryption. Let K, N , A, M, C, T be non-
empty sets or spaces for keys, nonces, associated data, messages, ciphertexts,
and tags, respectively. Following [39], a nonce-based AE (nAE) scheme consists
of a pair of deterministic algorithms E : K × N × A × M → C × T and D :
K ×N ×A×C ×T → M∪{⊥} for encryption and decryption, respectively. We
assume correctness and tidiness: For all K,N,A,M ∈ K × N × A × M, it holds
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Fig. 2. Naito’s hash function MDPH[π̃] [37], based on the double-block-length com-
pression function [27] and the MDP mode [28].

Table 2. Number of primitive calls of π̃ ∈ TBC(Fn
2 , Ft

2, F
n
2 ) in the hash functions. a

and m denote the number of n-bit message blocks after padding each.

Scheme Hash MAC (a + m) mod 2

t 0 1

TEDT [7] Hirose [27] HaT n 2a + 2m + 4

TEDT Hirose [27] HaT 2n a + m + 4 a + m + 5

Romulus-LR-TEDT [29] MDPH [28,37] HaT 2n a + m + 2 a + m + 3

TEDT2 [This work] MDPH [28,37] NHaT 2n a + m + 2 a + m + 1

that DN,A
K (EN,A

K (M)) = M , and for all (K,N,A,C, T ) ∈ K×N ×A×C×T where
∃M ∈ M s.t. EN,A

K (M) = (C, T ), it holds that EN,A
K (DN,A

K (C, T )) = (C, T ).

3 Design Rationale

TEDT. From a high-level perspective, TEDT encrypts a message M as

IV ← ˜EK(N), C ← G[ ˜E](IV,N) ⊕ M, (U, V ) ← H[ ˜E](N,A,C), T ← ˜EV
K(U)

under a secret key K and a nonce N . G and H are based on the same TBC ˜E ∈
TBC(Fn

2 , Fn
2 , Fn

2 ), where G is a variant of the Bellare-Yee rekeying PRG [4]. In
contrast to FGHF′, TEDT uses an invertible tag-generation function F ′ inspired
by [9]: instead of computing a leaking tag for a decryption query, the scheme
inverts F ′−1(T ) and compares the output with the hash of nonce, associated
data, and ciphertext. Since FGHF′ and other permutation-based schemes output
only a fraction of the state as tag, they are usually not efficiently invertible.

Reducing the Hash Function. TEDT2 employs three ways for more efficient
hashing compared to TEDT. It adopts the use of a TBC with 3n-bit tweakey from
AET-LR [23] and Romulus-LR-TEDT [29], processing 2n bits of message material
by each hash-function iteration with two calls, saving half of the primitive calls.
Moreover, it adopts “Merkle-Dåmgard with permutation”, MDPH [28]. In [37],
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Fig. 3. Encryption (left) and tag-generation function (right) of TEDT2.

Naito showed its indifferentiability for up to O(2n/n) queries when instantiated
with the compression function from [27]. The construction is illustrated for two
blocks in Fig. 2. Compared to [27] with Merkle-Dåmgard strengthening (MDS)
[13,35], MDPH[π̃] spares a compression-function call and allows smaller key-
tweak inputs than Hirose’s compression function with MDS [27]. Finally, TEDT2
need not hash the nonce. If the number of n-bit blocks of the padded hash-
function input is even, TEDT2 saves an iteration (i.e., two calls) for messages of
random length on average, which is detailed in Table 2.

Strengthening the Authentication and Hashing More Efficiently.
Unkeyed hashing avoids the need for strong leakage protection. Though, the
absence of a key allows an offline adversary to evaluate the hash function sep-
arately. For authentication, TEDT employed a variant of Cogliati et al.’s MAC
Hash-as-Tweak (HaT) [12], which provides n-bit security independent of nonces,
but with unkeyed hashing. Given an n+t-bit hash, it uses the n-bit part as state
and the t-bit part as the tweak in a tweakable block cipher to generate the tag.
Since we have a TBC with an (n + t)-bit tweak, we can employ the nonce in the
finalization. We call the resulting MAC Nonce-and-Hash-as Tweak (NHaT).

The Encryption in TEDT. One iteration of the PRG G in TEDT computes
Ki+1 = π̃PK

Ki
(N ‖ 〈i〉�n/4�−1 ‖ 0) and Ci = π̃PK

Ki
(N ‖ 〈i〉�n/4�−1 ‖ 1), where PK is

a user-dependent public constant. G provides beyond-birthday-bound security
in the black-box setting [7], but the bound is tight under leakage using a hybrid
argument of the form σ ·AdvLUP-2

F [π̃] (p, σ), where F [π̃] represents one iteration of
the PRG, σ the total number of blocks by the adversary and p the number of
leakage measures per iteration. This is the bottleneck of TEDT due to the n-bit
key size since AdvLUP-2

F [π̃] (p, σ) ∈ O (σ/2n). Over all σ blocks of the adversary, the
term leads to a birthday bound of O

(

σ2/2n
)

.

Modes. Our aim for a mode was to obtain n-bit security under leakage. We
assume an ephemeral-key scheme with (1) n-bit CPA security under nonce-
respecting adversaries and leakage and (2) unpredictability of the iteration in
O(σ/22n) to allow the use of a hybrid argument in the CCA analysis, and (3) a
rate of at least 1/2 comparable with G in TEDT. For security, we suggest a 2n-bit
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Table 3. Domain parameters of TEDT2.

Part Domains Rationale

Encrypt {0, 1, 2, 3, 4, 5} For key, tweak, full and partial message blocks
KDF {6, 7} Two calls
TGF {8}

tweakey in a TWEAKEY-based primitive that treats both n-bit tweakey words
similarly as secrets. During our studies, we considered five modes in total: (1)
Generalized TET [7] (GTET), (2) Generalized FEMALE [24] (GFBE), (3) Rekey-
ing counter mode (RCTR), (4) Rekeying OCB (ROCB), and (5) Rekeying OTR
(ROTR). In the full version of this work, we study them in more detail. For
TEDT2, we opted for the RCTR, which is illustrated for r = 2 message blocks
per iteration in Fig. 3a. Thus, an iteration needs two calls the primitive to derive
the subsequent tweakey (Ki+1, Ti+1) from the previous 2n-bit tweakey (Ki, Ti).
To compensate the additional primitive call without lowering the rate, we use
the tweakey for two primitive calls to derive (Ci,1, Ci,2). While this provides a
side-channel adversary with six instead of three traces, it must recover a 2n-
bit tweakey compared to TEDT. While GTET and GFBE have a higher rate of
r/(r + 1), RCTR has the advantage of being a PRG, which simplifies the decryp-
tion and is a direct extension of the PRG in TEDT.

The tweakey could be expanded further to 3n or 4n bits, etc. given a primitive
with a larger tweak at the cost of increased state size. Such primitives have been
announced by Peyrin [41] for more efficient hashing. Such a primitive will be
slightly slower for encryption, but more efficient if the rate can be increased
further. Though, this should be considered in detail under the concrete side-
channel analysis, which cannot be addressed satisfactorily in the present work.

4 Definition of TEDT2

Primitive and Domains. We instantiate TEDT2 with a tweakable block cipher
˜E ∈ TBC(Fn

2 , F2n
2 , Fn

2 ). Concretely, we suggest Skinny-64-192, Skinny-128-384, or
Deoxys-BC-128-384. We assume a TWEAKEY-based block cipher where key and
tweak words are treated (almost) equivalently and in a generalizable manner.
The tweak allows us to have a single primitive for all occasions using domains
for the different purposes of key derivation, encryption, hashing, and tag gener-
ation. We assume that key derivation and tag generation use strongly protected
implementations of ˜E, e.g. against simple (SPA) and differential-power analysis
(DPA), and all other calls to ˜E use a less protected implementation, e.g. against
only SPA (cf. [6]).

Sets and Primitive. Define positive integers k = τ = n, d = 4, and ν = n − d.
Let K = F

k
2 , N = F

ν
2 , A = F

≤n·amax
2 , M = C = F

≤n·mmax
2 , and T = F

τ
2 be spaces

for keys, nonces, associated data, messages, ciphertexts, and authentication tags,
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Algorithm 1. Definition of TEDT2.

11: function E [ ˜E]N,A
K (M)

12: KE ← KDF[ ˜E]K(N)

13: C ← Encrypt[ ˜E]KE (M)

14: T ← TGF[ ˜E]K(N, A, C)
15: return (C, T )

16: function KDF[ ˜E]K(N)
17: return ˜E6,0,0

K (N), ˜E7,0,0
K (N)

20: function TGF[ ˜E]K(N, A, C)
21: X ← concatn(A, C)

22: (U, V ) ← Hash[ ˜E](X)

23: return ˜E8,N,V
K (U)

25: function Encrypt[ ˜E]NK(M)
26: (K1, T1) ← K

27: (M1, . . . , Mm)
2n←− M

28: for i ← 1..m − 1 do
29: Ki+1 ← ˜E0,i,Ti

Ki
(N)

30: Ti+1 ← ˜E1,i,Ti
Ki

(N)

31: Si ← ˜E2,i,Ti
Ki

(N) ‖ ˜E3,i,Ti
Ki

(N)
32: Ci ← Si ⊕ Mi

33: (d1, d2) ← getDomainForM(|Mm|)
34: Sm ← ˜Ed1,m,Tm

Km
(N) ‖ ˜Ed2,m,Tm

Km
(N)

35: Cm ← trunc|Mm|(Sm) ⊕ Mm

36: return (C1 ‖ · · · ‖ Cm)

41: function concatn(X, Y )
42: X∗ ← padzeroesn(X)
43: Y ∗ ← padzeroesn(Y )
44: L ← 〈|X|〉n/2 ‖ 〈|Y |〉n/2

46: function padzeroesx(X)
47: � ← |X| mod x
48: if � ≡ 0 then return X
49: return X ‖ 0x−�

51: function D[ ˜E]K(N, A, C, T )
52: KE ← KDF[ ˜E]K(N)

53: if Verify[ ˜E]K(N, A, C, T ) then
54: return Decrypt[ ˜E]NKE

(C)

55: return ⊥
56: function Verify[ ˜E]K(N, A, C, T )
57: X ← concatn(A, C)

58: (U, V ) ← Hash[ ˜E](X)

59: U ′ ← ˜D8,N,V
K (T )

60: return U = U ′

61: function Decrypt[ ˜E]NK(C)
62: return Encrypt[ ˜E]NK(C)

66: function Hash[ ˜E](M)
67: (M1,1, M1,2, . . . , Mm,1, Mm,2)

n←− M
68: (U0, V0) ← (0n, 0n)
69: for i ← 1..m do
70: if i = m then Ui−1 ← Ui−1 ⊕ 〈2〉
71: Ki ← Vi−1

72: Ti ← Mi,1 ‖ Mi,2

73: Wi ← Ui−1 ⊕ 〈1〉
74: Ui ← ˜ETi

Ki
(Ui−1) ⊕ Ui−1

75: Vi ← ˜ETi
Ki

(Wi) ⊕ Wi

76: return (Um, Vm)

81: function truncx(X)
82: if |X| ≤ x then return X

83: return msbx(X)

86: function padx(X)
87: � ← (|X| + 1) mod x
88: if � ≡ 0 then return X ‖ 1
89: return X ‖ 1 ‖ 0x−�

91: function getDomainForM(�)
92: if � = 2n then return (2, 3)
93: else if n ≤ � ∧ � < 2n then return (2, 5)
94: else return (4, 5)

respectively. We define a domain space D = F
d
2 and a compound tweak space

TD = D × T1 × T2 = F
2n
2 , where T1 = F

n−d
2 and T2 = F

n
2 . Thus, we define

the nonce space as F
n−d
2 , to have d bits for the domain. We use the domains

from Table 3 encoded as d-bit integers, e.g., 〈8〉d = 1000. We will often use
block indices, where we assume that they are encoded as n − d-bit integers, like
domains. We define TEDT2 for at most amax = 2n/2 n-bit blocks of associated
data and at most mmax = 2n/2 blocks per message and at most 2n/2 messages.

Encryption and Decryption. The encryption E [ ˜E]K expects a nonce, asso-
ciated data, and message (N,A,M) ∈ N × A × M and encrypts M under a
key K ∈ K and the nonce to a tuple of ciphertext C ∈ C and tag T ∈ T such
that |M | = |C| and returns (C, T ). The decryption algorithm D[ ˜E]K expects a
nonce, associated data, ciphertext, and a tag (N,A,C, T ) ∈ N × A × C × T .
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If the tuple is deemed invalid, the decryption outputs ⊥. Otherwise, it decrypts
C under the key K ∈ K and the nonce to the single possible message M ∈ M
such that E [ ˜E]N,A

K (M) = (C, T ) and outputs M . The algorithms are correct and
tidy. Algorithm 1 defines the encryption and decryption procedures.

5 Security Model

Comparison to [7,24,25]. We follow the framework of unbounded leakage under
oracle-free hard-to-invert leakage functions [7,25] since it captures leakage in
all queries. The notions follow a convention of [PI,CI,CPA,CCA][m,M,-][L〈i〉] (for
plaintext/ciphertext integrity, chosen-plain-/ciphertext attack), where m means
nonce-misuse resilience, i.e., nonces may repeat except in challenge queries. L〈i〉
indicates leakage in i oracles; L2 means leakage in en- and decryption. Though,
we differ in three minor aspects from their notions.

First, the notions from [25] used only a single challenge query, where CCAmL2
was extended to a multi-challenge variant in [24]. We will use multi-challenge
but single-user notions (and denote this by a q) throughout this work since they
are much more common and make our results comparable with those for TEDT,
which was proven under multi-challenge notions muCIML2 and muCCAmL2 [7].

Second, we replace the left-or-right style for confidentiality with a real-or-
random style, where the ideal world samples a message at random. We make this
explicit by a -$ in the notions. While left-or-right and real-or-random notions are
roughly equally strong, the latter seems more natural for avoiding dependencies
on how an adversary chooses alternative messages. We stress that our real-or-
random definitions only sample the message at random but process it with the
same construction and key; they do not define an abstract ideal without the real
construction since leakage of idealized objects is difficult to define (cf. [7,25,44]).

Third, we focus on information-theoretic distinguishers whose resources are
bounded only by the numbers of queries and bits/blocks to the available oracles.
Complexity-theoretic results can be derived in a straightforward manner.

We will write notions as distinguishing games. Note that we will usually add
primitive oracles similar as in the ideal-cipher model in [7,25].

Leakage Functions. We inherit three usual assumptions that leakage functions
Λ are (1) probabilistic, (2) oracle-free, and (3) not efficiently invertible from the
notions of [7,25]. We use a non-empty random-coin set R and sample R � R for
every call to a leakage function (cf. [2]), which ensures that repeated calls may
result in different leakage traces. We denote by [Li]p = (L1, . . . , Lp) a p-element
list of leakages Li from the same leakage function Λ collected under independent
random coins. Since leakage functions chosen by an adversary could compute
some state in the future, they are usually prohibited from calling the primi-
tives and are therefore called oracle-free (cf. [47]) to prevent future-computation
attacks, where Λ(Ki, . . .) might otherwise leak outputs about Kj for a later
occurring key i < j, which would render any confidentiality goal unachievable.
This model reflects practice where leakages are a function of the primitive’s
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Algorithm 2. The qCIML2 experiment, adapted from [7] and [24,25].

11: procedure Initialize

12: K � K; Q ← ∅; b ← {0, 1}
21: function Finalize(b′)
22: return b = b′

31: function ̂EK(N, A, M, Λ)
32: R � R
33: (C, T ) ← EN,A

K (M)

34: Q ∪← {(N, A, C, T )}
35: L ← ΛN,A

K (M ;R)
36: return (C, T, L)

41: function ̂DK(N, A, C, T, Λ)
42: R � R
43: M ← DN,A

K (C, T )
44: L ← ΛN,A

K (C, T ;R)
45: return (M, L)

51: function ̂Dch
K (N, A, C, T, Λ)

52: R � R
53: L ← ΛN,A

K (C, T ;R)
54: if (N, A, C, T ) ∈ Q∨b = 0 then return (⊥, L)

55: M ← DN,A
K (C, T )

56: return (M, L)

Algorithm 3. The qCCA$mL2 experiment, adapted from [7] and [24,25].

11: procedure Initialize

12: K � K; b � {0, 1}
13: QN ← ∅; Q ← ∅
14: Qch

N ← ∅; Qch ← ∅

21: function ̂EK(N, A, M, Λ)
22: if N ∈ Qch

N then return ⊥
23: R � R
24: (C, T ) ← EN,A

K (M)

25: Q ∪← {(N, A, C, T )}; QN
∪← {N}

26: L ← ΛN,A
K (M ;R)

27: return (C, T, L)

31: function ̂DK(N, A, C, T, Λ)
32: if (N, A, C, T ) ∈ Qch then return ⊥
33: R � R
34: M ← DN,A

K (C, T )
35: L ← ΛN,A

K (C, T ;R)
36: return (M, L)

41: function Finalize(b′)
42: return b = b′

51: function ̂Ech
K (N, A, M, Λ)

52: if N ∈ Qch
N ∨ N ∈ QN ∨ M = ε then

53: return ⊥
54: M∗ ← M
55: R � R
56: if b = 0 then M∗ � F

|M|
2

57: (C, T ) ← EN,A
K (M∗)

58: Qch ∪← {(N, A, C, T )}; Qch
N

∪← {N}
59: L ← ΛN,A

K (C, T ;R)
60: return (C, T, L)

66: function ̂Dch
K (N, A, C, T, Λ)

67: if (N, A, C, T ) �∈ Qch then return ⊥
68: R � R
69: L ← ΛN,A

K (C, T ;R)
70: return L

in- and outputs. Moreover, we assume that leakage functions are not efficiently
invertible in the sense of exponentially hard-to-invert functions [20].

We assume that leakage-function sets are used for the queries corresponding
to their subscripts, i.e., LE and LD correspond E and D oracle(s), respectively.
We mark leaking oracles by a hat, i.e. the leaking variant of EK is ̂EK , where leak-
ing means that ̂EK takes a leakage function Λ ∈ LE as an additional parameter
that is called with the remaining parameters of EK and random coins.

5.1 Notion for Authenticity

qCIML2 is a single-user variant of muCIML2 [7] and a distinguisher version of
CIML2; every forgery allows distinguishing. qCIML2, as defined in Algorithm 2,
splits the decryption queries into two oracles, one for collecting decryption leak-
age from earlier encryption queries, and one as a challenge oracle. Note that ̂⊥
always outputs the decryption ⊥, but also outputs decryption leakage.
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Definition 1 (qCIML2). Let Π = (EK ,DK) be an nAE scheme, K � K, and
LE and LD be sets of leakage functions. Let A be an adversary on Π. Then, the
qCIML2 advantage of A on Π is defined as

AdvqCIML2
EK ,DK ,LE ,LD

(A) def= Δ
A

(̂EK , ̂DK , ̂Dch
K ; ̂EK , ̂DK , ̂⊥) where O1 �↪→ O3.

5.2 Notions for Confidentiality

We define qCCA$mL2 in Algorithm 3 as a real-or-random variant of mCCAmL2
[24] or as a single-user variant of muCCAmL2 [7]. In the ideal world, the chal-
lenge encryption oracle ̂$E encrypts a random string of |M | bits with the real
construction to produce a ciphertext and leakage. The challenge decryption ora-
cle is defined similarly as ̂$D. Though, in both worlds, ̂$D accepts only queries
that were previous outputs from ̂$E (denoted as O3 ↪→ O4) and outputs only the
corresponding decryption leakages and not the decryption to avoid trivial wins.

qCPA$mL2 is a real-or-random variant of the mCPAmL2 notion by [24], which
differs from qCCA$mL2 in the fact that it has no non-challenge decryption oracle.
Thus, it is defined in Algorithm 3 without Lines 31–36.

Definition 2 (qCCA$mL2 and qCPA$mL2). Let Π = (EK ,DK) be an nAE
scheme, K � K, and LE and LD be sets of leakage functions. Then, the
qCCA$mL2 advantage of an adversary A on Π is defined as

AdvqCCA$mL2
EK ,DK ,LE ,LD

(A) def= Δ
A

(̂EK , ̂DK , ̂Ech
K , ̂Dch

K ; ̂EK , ̂DK ,̂$E ,̂$D),

where O3,N �� O1,N , {O1,N , O3,N} �� O3,N , O3 �↪→ O2, O3 ↪→ O4. The qCPA$mL2
advantage of an adversary A on Π is defined as

AdvqCPA$mL2
EK ,DK ,LE ,LD

(A) def= Δ
A

(̂EK , ̂Ech
K , ̂Dch

K ; ̂EK ,̂$E ,̂$D),

where O2,N �� O1,N , {O1,N , O2,N} �� O2,N , O2 ↪→ O3.

We adapt two auxiliary notions, LUP-4 and XOR$, from [6,7] that reflect
practical attacks under leakage regarding its non-invertability and the indistin-
guishability of XORs, respectively. Algorithms 4 and 5 defines their experiments.

Unpredictability. For TEDT, the LUP-2 game [7] modeled the unpredictability
under leakage of a single iteration of the used PRG. LUP-4 generalizes the notion
to the setting in RCTR. It takes a larger tweakey K0, T0 ∈ F

n
2 × F

n
2 from the

adversary, samples K1 � F
n
2 and T1 � F

n
2 and uses them for p decryptions, as

well as p calls of one iteration of the PRG in TEDT2 that generates two n-bit
outputs and K2, T2. A can query the encryption p times to collect a vector of
input- and output leakages from all primitive calls except for the calls to M0,1

and M0,2, where it is not provided with input leakage. A outputs a set K′ of q
tuples (K1, T1) and wins iff the correct tweakey is contained.



TEDT2 – Highly Secure Leakage-Resilient TBC 287

Algorithm 4. LUP-4 experiment.

11: procedure Initialize(K0, T0)
12: K1 � F

n
2 ; T1 � F

n
2

13: M0,1 ← ( ˜E0,0,T0
K0

)−1(K1)

14: M0,2 ← ( ˜E1,0,T0
K0

)−1(T1)

21: function
Leak[ ˜E](Λin, Λout, K, T, X, Y )

22: Rin, Rout � R
23: Lin ← Λin(K, T, X;Rin)
24: Lout ← Λout(K, T, Y ;Rout)
25: return (Lin, Lout)

31: function Finalize(K′)
32: win ← |K′| ≤ q∧
33: (K1, T1) ∈ K′

34: if win then
35: return 1
36: return 0

41: function ̂E [ ˜E](N, Λin, Λout)
42: for i ← 1..p do
43: Rout

0,1, R
out
0,2 � R

44: K1 ← ˜E0,0,T0
K0

(M0,1); T1 ← ˜E1,0,T0
K0

(M0,2)

45: K2 ← ˜E0,1,T1
K1

(N); T2 ← ˜E1,1,T1
K1

(N)

46: Z1,1 ← ˜E2,1,T0
K0

(N); Z1,2 ← ˜E3,1,T1
K0

(N)
47: Lout

0,1 ← Λout
0 (K0, (0, 0, T0), K1;R

out
0,1)

48: Lout
0,2 ← Λout

0 (K0, (1, 0, T0), T1;R
out
0,2)

49: L0 ← Lout
0,1, L

out
0,2

50: Lin
1,1, L

out
1,1 ← Leak[ ˜E](Λin, Λout, K1, (0, 1, T1), N, K2)

51: Lin
1,2, L

out
1,2 ← Leak[ ˜E](Λin, Λout, K1, (1, 1, T1), N, T2)

52: Lin
1,3, L

out
1,3 ← Leak[ ˜E](Λin, Λout, K1, (2, 1, T1), N, Z1,1)

53: Lin
1,4, L

out
1,4 ← Leak[ ˜E](Λin, Λout, K1, (3, 1, T1), N, Z1,2)

54: L1,1 ← Lin
1,1, L

out
1,1; L1,2 ← Lin

1,2, L
out
1,2

55: L1,3 ← Lin
1,3, L

out
1,3; L1,4 ← Lin

1,4, L
out
1,4

56: return (K2, T2, Z1,1, Z1,2,
57: [L0]p, [L1,1]p, [L1,2]p, [L1,3]p, [L1,4]p)

Algorithm 5. XOR$ experiment.

11: function Initialize(K, T, M, Λout, Λ⊕)
12: Y � F

n
2 ; b � {0, 1}

13: M∗ ← M
14: if b = 0 then
15: M∗ � F

n
2

16: X ← ( ˜ET
K)−1(Y )

21: function Finalize(b′)
22: return b = b′

31: function ̂E [ ˜E]K(Λout, Λ⊕)
32: Rout, R⊕ � R
33: Y ← ˜ET

K(X); C ← Y ⊕ M∗

34: Lout ← Λout(K, T, Y ;Rout)
35: L⊕ ← Λ⊕(Y, C;R⊕)
36: for i ← 2..p do
37: Rout, R⊕ � R
38: Y ← ˜ET

K(X); M∗ ← C ⊕ Y
39: Lout ← Λout(K, T, Y ;Rout)
40: L⊕ ← Λ⊕(Y, M∗;R⊕)

41: return (C, [Lout]p, [L⊕]p)

Definition 3 (LUP-4). Let π̃ ∈ TBC(Fn
2 , TD, Fn

2 ). Let Lin and Lout be sets of
leakage functions. Let A be an adversary that provides K0, T0 ∈ F

n
2 to and plays

the LUP-4 experiment against ̂E [π̃], and outputs a set K′ ⊆ (Fn
2 × F

n
2 )∗ with

|K′| ≤ q. The LUP-4 advantage of A is defined as

AdvLUP-4
̂E[π̃]∗,∗,T0

K0
,Lin,Lout

(A) def= Pr [(K1, T1) ∈ K′] .

We define AdvLUP-4
̂E[π̃],Lin,Lout

(p, q) as the maximum of all LUP-4 adversaries A

on ̂E [π̃] that ask at most p queries and output a set of at most q guesses.

Indistinguishability of XOR. An implementation that shall provide confiden-
tiality must protect all operations. An XOR that leaks a single bit can destroy
privacy, but the probability may be non-negligible [6,7,26]. However, it should
be addressed in the security analysis. Their works proposed a notion of Left-
or-Right XOR security that can be evaluated in practice on an isolated compo-
nent. The XOR$ game in Algorithm 5 is our real-or-random variant thereof for
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consistency, where the real world processes a message M ∈ F
n
2 chosen by the

adversary, and the ideal world samples and processes a message M∗ � F
n
2 .

Definition 4 (XOR$). Let π̃ ∈ TBC(K, TD, Fn
2 ) and K1 � K. Let Lout, L⊕

1 ,
and L⊕ be sets of leakage functions. Let A be a adversary that plays the
XOR$ experiment given in Algorithm 5 against ̂E [π̃]. Then, the XOR$ advan-
tage of Ab ⇒ b′, interacting with world b and outputting b′ is defined as
AdvXOR$

̂E[π̃]K ,Lout,L⊕(A) def=
∣

∣Pr
[

A1 ⇒ 1
]

− Pr
[

A0 ⇒ 1
]∣

∣.

We define AdvXOR$
̂E[π̃]K ,Lout,L⊕(p, q) for the maximum advantage over all XOR$

adversaries A on ̂E [π̃]K that ask at most q queries under p measurements each.

6 Authentication Security Analysis of TEDT2

TEDT2 inherits the single-user CIML2 security from [7]. Since it is similar to the
proof of TEDT, we provide a cleaned and slightly adapted description in the full
version of this work. As for TEDT, we assume that all intermediate values may
leak completely, except for the key K of the key-derivation and tag-generation
functions. The leakage-function sets are defined as singletons LE = {ΛE} and
LD = {ΛD}, where on input (N,A,M), ΛE and ΛD return

– (K,S,X, Y ) for each primitive call of the PRG G, where S = (D,T,U) ∈ TD,
– (X,S, Y ) for each call to the key-derivation function,
– (N,U, V, T ) for each call to the tag-generation function, and
– (A,B) for each XOR of A ⊕ B.

We follow the steps by Berti et al. [7]:

(1) We replace the KDF and TGF by ideal secret tweakable keyed permuta-
tions, independent of each other and all other permutation calls.

(2) Then, we study the calls to the TGF and upper bound the probability of
partial collisions and partial multi-collisions in V as bad events.

(3) Third, we upper bound the probability of forgeries for good transcripts.

The result is given in Theorem 1 and proven in the full version of this work.

Theorem 1 (qCIML2 Security). Let π̃ ∈ TBC(K, TD, Fn
2 ), K � K, and n ≥

4. Let A be a qCIML2-adversary on Π[π̃]K = TEDT2[π̃]K that makes at most
qc construction queries of at most σ message blocks and σa associated-data
blocks in total and qp primitive queries. Let qe be the numbers of encryption
construction queries, qd the cumulative decryption construction queries to the
oracles and μ be the number of encryption queries with repeating nonces in non-
challenge encryption queries. Let σp = 3σ +σa +2qc + qp ≤ 2n−3 be the number
of ideal-primitive calls in all primitive and construction queries of A. Let the
sets of leakage functions LE and LD be as defined in Sect. 6. Then

AdvqCIML2
Π[π̃]K ,π̃±,LE ,LD

(qe, qd, σ, qp) ≤ AdvTPRP
π̃ (2qc) + AdvSTPRP

π̃ (qe, qd)

+
2n(qp + qd) + 3(σ + σa) + 1

2n
+

9σ2
p + 2σp + 8qp(qd + μ)

22n
.
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7 Encryption Security Analysis of TEDT2

We adopt the definitions of π̃ and K from Sect. 6. The leakage-function sets are
singletons LE = {ΛE} and LD = {ΛD}, where on input (N,A,M), ΛE outputs

– Λin(K,T,X) and Λout(K,T, Y ) for each call of π̃T
K(X) = Y in Encrypt.

– Λ⊕(A,B) for each XOR of two values A ⊕ B by internal actions
– All intermediate values during hashing, i.e., the hash function is unprotected.

On input (N,A,C, T ), ΛD returns the values corresponding to the above that
occur during regular decryption in Algorithm 1. We let Lin = {Λin}, Lout =
{Λout}, and L⊕ = {Λout} be the leakage-function sets that contain the parts of
ΛE and ΛD, respectively, that are used in the LUP-4 and XOR$ notions.

Theorem 2. Let A be an qCCA$mL2 adversary on Π[π̃]K = TEDT2[π̃]K that
asks at most qe encryption queries and qd decryption queries of at most σ blocks
in total and qp primitive queries. Let F [π̃] be an iteration of RCTR[π̃]. Let n ≥ 4,
σ ≤ 2n−3, and let LE and LD be as defined at the top of Sect. 7. Then

AdvqCCA$mL2
Π[π̃]K ,π̃±,LE ,LD

(qe, qd, σ, qp) ≤ 4qp(σ + qc) + 4(σ + qc)2

22n

+ AdvqCIML2
Π[π̃]K ,π̃±,LE ,LD

(qe, qd, σ, qp) + 2σ · AdvLUP-4
F [π̃],Lin,Lout(p, σ + qc + qp)

+ σ · AdvXOR$
F [π̃],Lout,L⊕(p, 2σ + 2qc + qp).

The latter term reflects side-channel tweakey recovery and has a birthday-
bound complexity of

O

(

σ · σ + qc + qp

c · 22n

)

.

Following the argument by Berti et al. [7], the three leakage traces per tweakey
should not render the value of c significant. While TEDT2 doubles the number
of available traces for every tweakey to six, two n-bit values must be recovered.
Thus, we assume that the resulting term of c ·22n that reflects six traces remains
insignificant. The term σ ·AdvXOR$

F [π̃] (p, 2qc+2σ+qp) represents the distinguishing
advantage in the case of “minimal message manipulation” and is inevitable for
schemes that employ XOR during encryption.

Proof. The proof can follow the steps of the muCCAmL2 proof for TEDT in [7].
All queries of A will be stored in a transcript τ = τc ∪ τp. In this context, τc

consists of the construction queries of A and their corresponding responses. τp

represents the primitive queries of A to π̃± and their associated responses. We
have to show that

(1) Encryption queries provide confidentiality.
(2) Leakages from the decryption oracle do not affect confidentiality.
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From Theorem 1, we can upper bound the advantage that TEDT2 is qCIML2-
secure. Thus, unless A can forge, non-trivial decryption queries will yield only
the ⊥ symbol and leak only the invalid decryptions from (π̃8,N,H(A,C)

K )−1(T ).
We can capture this as follows.

Δ
A

(̂EK , ̂DK , ̂Ech
K , ̂Dch

K , π̃±,LE ,LD ; ̂EK , ̂DK ,̂$E ,̂$D, π̃±,LE ,LD) (1)

with the restrictions O3,N �� O1,N , {O1,N , O3,N} �� O3,N , O3 �↪→ O2, and O3 ↪→

O4. We can introduce an intermediate step of

Δ
A

(̂EK , ̂DK , ̂Ech
K , ̂Dch

K , π̃±,LE ,LD ; ̂EK , ̂⊥, ̂Ech
K , ̂Dch

K , π̃±,LE ,LD),

with the restrictions as for Eq. (1) plus O1 �↪→ O2. Its left-hand side is equivalent
to that in Eq. (1) since every adversary that wanted to ask a query that was
output from O1 ↪→ O2 before could now use O3 ↪→ O4 for this purpose. This
setting can be reformulated as

Δ
A

(̂EK , ̂DK , ̂DK , π̃±,LE ,LD ; ̂EK , ̂DK , ̂⊥, π̃±,LE ,LD)

≤ AdvqCIML2
E[π̃],D[π̃],π̃±,LE ,LD

(qe, qd, σ, qp) (2)

since the nonce restrictions to two encryption oracles are irrelevant. The remain-
ing restrictions merge to O1 �↪→ O3 for Eq. (2), which yields the qCIML2 notion.
The remaining step is to upper bound the distinguishing advantage of

Δ
A

(̂EK , ̂⊥, ̂Ech
K , ̂Dch

K , π̃±,LE ,LD ; ̂EK , ̂⊥,̂$E ,̂$D, π̃±,LE ,LD)

= Δ
A

(̂EK , ̂Ech
K , ̂Dch

K , π̃±,LE ,LD ; ̂EK ,̂$E ,̂$D, π̃±,LE ,LD)

≤ AdvqCPA$mL2
E[π̃],D[π̃],π̃±,LE ,LD

(qe, qd, σ, qp) (3)

with the restrictions O2,N �� O1,N , {O1,N , O2,N} �� O2,N , and O2 ↪→ O3. The
advantage in Eq. (3) for TEDT2 can be upper bounded by Lemma 1. its proof
is deferred to the full version of this work. ��

Lemma 1 (qCPA$mL2 Security of TEDT2 with RCTR). Let π̃ � TBC(K,
TD, F

n
2 ). Let A be an qCPA$mL2 adversary on Π[π̃]K = TEDT2[π̃]K that asks

at most qe encryption queries and qd decryption queries of at most σ blocks
in total and qp primitive queries. Let F [π̃] be an iteration of RCTR[π̃]. Let n ≥ 2,
σ ≤ 2n−3, and let LE and LD be as defined at the top of Sect. 7. Then

AdvqCPA$mL2
Π[π̃]K ,π̃±,LE ,LD

(qe, qd, σ, qp) ≤ 4qp(σ + qc) + 4(σ + qc)2

22n

+ 2σAdvLUP-4
F [π̃],Lin,Lout(p, σ + qc + qp) + σAdvXOR$

F [π̃],Lout,L⊕(p, 2σ + 2qc + qp) .

Comparison of Security Bounds. Figure 4 compares the single-user CCAmL2
and CIML2 bounds for TEDT with the corresponding qCCA$mL2 and qCIML2
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Fig. 4. Single-user CIML2 and CCAmL2 bounds of TEDT and qCIML2 and qCCA$mL2
bounds for TEDT2, for n = 128 and where qc = qp = σ = q are used.

bounds for TEDT2. The plot uses n = 128 and qc = qp = σ as an exam-
ple. It contains the bounds for the LUP-2 and LUP-4 terms, respectively, but
must omit the terms for XOR$ security since it strongly depends on the imple-
mentation and must be determined in practice. The lines that represent the
qCCA$mL2 and qCIML2 security bounds for TEDT2 almost overlap, which is
natural since the qCCA$mL2 bound contains the dominating bound for qCIML2
security. The difference in the terms of qCIML2 is largely due to the presentation.
The main effect is the difference between the birthday-bound term for LUP-2 in
the CCAmL2 bound of TEDT, while the 2n-bit tweakey of TEDT2 leads to an
improved bound.

8 Discussion and Future Work

Under the umbrella aim of maintaining qCIML2 and qCCA$mL2 security, our
core goals for TEDT2 were three-fold: to adopt a more efficient hash function,
to render the authentication more efficient by moving the nonce to the tag-
generation function, and to strengthen the encryption under leakage beyond the
birthday bound. For this purpose, we adopted the more efficient hash function
from Naito’s result on MDPH and used a TBC with 3n-bit tweakey to have a rate
of about one while hashing. We could spare the effort for hashing the nonce and
obtain higher security for the encryption mode and thus for the scheme under
leakage, using a TWEAKEY-based TBC with 3n-bit tweakey. We emphasize
that the use of MDPH and a TBC with 3n-bit tweakey has been also proposed
for AET-LR and Romulus-LR-TEDT. We do not claim this adoption as a novel
idea. We further stress that AET-LR used a more efficient sequential hashing of
the associated data that used both state input and tweak, which is efficient and
secure in the black-box setting but needs costly protection against DPAs [23]
under leakage.

We identify several potential future improvements: the efficiency of the hash
function can be further increased with longer tweaks, as suggested by Peyrin [41].
Concerning the PRG, the rate of 1/2 may limit the applicability of our proposal
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in high-performance settings. While the same tweakey could be used for more
blocks, this would need a fine-grained study of the leakage. Alternatively, other
PRGs such as a generalization of TET from [7] might appear useful. Thanks to
having modular proofs, only the confidentiality proof would have to be revised in
this case. Finally, while our focus was on security in the usual single-user setting,
an interesting future work could be to consider multiple users.

Acknowledgments. We thank the reviewers of Latincrypt 2021 for their highly fruit-
ful comments. The author was supported by DFG Grant LU 608/9-1.
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Abstract. We propose a framework for building Nakamoto-style proof-
of-work blockchains where blocks are treated differently in the “longest
chain rule”. The crucial parameter is a weight function assigning different
weights to blocks according to their hash value. Our framework enables
the analysis of different weight functions while proving all statements
at the appropriate level of abstraction. This allows us to quickly derive
protocol guarantees for different weight functions. We exemplify the use-
fulness of our framework by capturing the classical Bitcoin protocol as
well as exponentially growing functions as special cases. We show the
typical properties—chain growth, chain quality and common prefix—for
both, and further show that the latter provide an additional guaran-
tee, namely a weak form of optimistic responsiveness. More precisely, we
prove for a certain class of exponentially growing weight functions that
in periods without corruption, the confirmation time only depends on
the unknown actual network delay instead of the known upper bound.

Keywords: Blockchain · Proof of work · Chain-selection rule · Block
weight · Optimistic responsiveness

1 Introduction

In classical blockchains such as Nakamoto’s Bitcoin [9], the parties run a dis-
tributed “lottery” to decide who is allowed to append the next block to the
existing chain. When there is a winner of the lottery, a block is produced and
disseminated to the other parties, that will perform a series of checks to guaran-
tee that the block is valid and that the party that produced the block actually
won the lottery. If all the checks are correct, the parties append the new block to
their local view of the chain. Classical blockchains (also called Nakamoto-style,
or NSB for short) usually assume the majority of the resources (e.g., computa-
tional power or stake) to be trusted, from which they can achieve totally ordered
broadcast.

Bitcoin is a NSB based on proof-of-work (PoW) where a block is only con-
sidered valid and allowed to be appended to the chain if its hash value is below
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some threshold value T . The probability of this is proportional to T . The value
T is computed in real time by the network such that a single valid block is cre-
ated, on average, every 10 min. In a period where T is fixed1 the “best-chain”
rule for Bitcoin is determined by how many blocks are on the chain. Previous
analyses of the Bitcoin protocol [4,5,10,11,14] show that under certain network
assumptions, Bitcoin satisfies the properties of chain growth, chain quality and
common prefix (introduced by [4]) for some choice of parameters.

The block time of a NSB is the average time between blocks. Existing anal-
yses use at their core the fact that the block time is longer than the average
network delay. This allows for honest block winners to typically having seen
all previous honest blocks when they add a new block. This allows the longest
chain to grow by one block when there is an honest winner. If blocks are pro-
duced faster than they propagate, then all “bets are off”. Therefore the block
time of existing NSB needs to be set conservatively to some worst case value.
At a conceptual level, our study is motivated by the simple observation that on
existing NSBs, whenever the block time is fixed to a constant, the protocols do
not respond with higher throughput when the network is in fact much faster
than the worst case assumed. At a technical level, our study departs from the
observation that not all types of blocks are equal. In Bitcoin there are two types
of blocks, those above the threshold T , which do not count at all, and those
below T , which count as one block. However, blocks with hash below T/m for
some integer m have average block time about m times as long as blocks with
hash below T . Therefore, one could for instance consider counting blocks with
hash below T/m with “weight” m or “weight” 2m. That is, we can consider dif-
ferent weight functions assigning weights to blocks based on their hash values.
This raises the following question:

Can we get better guarantees for NSBs if we assign different weights to the
blocks?

In that vein, we provide a general framework to analyze PoW protocols under
different weight functions. The main goal of the framework is to provide useful
tools where one can easily explore and analyze the impact of different weight
functions applied to a Bitcoin-like protocol. As a sanity check, we first instantiate
the (standard) Bitcoin weight function in our framework (Sect. 4.2) and show
similar bounds as previous work.

As evidence of the usefulness of our framework in exploring different weight
functions, we show that a large class of weight functions achieves a weak form
of “optimistic responsiveness” (c.f. [13]). In a nutshell, we show that in periods
without corruption, the time it takes for blocks to be in a common prefix only
depends on the actual network delay instead of a known upper bound.

1 For simplicity, in this work we only consider the case of fixed participation. We leave
the case of adaptive T as future work.



Weight-Based Nakamoto-Style Blockchains 301

1.1 Overview of Our Results

Our contributions are twofold: (1) We provide a general framework for easy
exploration and design of protocols with different weight functions and (2) we
show that there are weight functions that are strictly better than the traditional
longest chain rule of Bitcoin. We detail our contributions next:

Generic Framework. Our framework constitutes the backbone of a PoW
blockchain where its valid block predicate and best-chain rule rely on a weight
function that establishes a numerical value (i.e., weight) to each individual block
in the chain. The best chain at any given time is the chain with more accumu-
lated weight over all its blocks. We provide general lemmas for several bounds on
the produced weight of a PoW protocol instantiated with any weight function.
Furthermore, we derive for any weight function the concrete bounds that are
needed for the main blockchain properties of growth, quality and common-prefix
to be guaranteed, and calculate how these bounds translate into guarantees for
the protocol. The main goal of our generic framework is that any weight func-
tion can be “plugged-in” to the framework and the parameters needed for the
desired levels of guarantees can be obtained almost directly. This enables an easy
exploration and design of protocols without needing to redo a series of complex
and potentially error-prone proofs.

Weakly Optimistically Responsive Protocol. We introduce in Sect. 4 the class of
T -capped weight functions, which are monotonically increasing weight functions
that are constant if the input is larger than a threshold T . We show that a PoW
blockchain that employs a particular weight function from such a class achieves
chain growth, chain quality and common-prefix parameters similar to the ones
achieved by Bitcoin in previous works [4,5]. We also note that instantiating a
PoW protocol with a particular T -capped weight function can make it weakly
optimistically responsive, i.e., under no corruption we show common-prefix guar-
antees for the protocol that are based on the real network delay, and not on the
known upper bound.

Intuitively, a weight function needs to satisfy two properties: First, blocks
produced at a good frequency with respect to the actual network delay should
get enough weight to cancel out the weight of blocks that are produced too fast.
Secondly, it should be difficult for the adversary to produce extremely heavy
blocks as these can be used to cause huge rollbacks and violate common prefix. To
satisfy both conditions, we let the weight functions grow exponentially until they
reach a threshold, which is determined by the known upper bound Δ̂Net on the
network delay; above the threshold the weight remains constant. The cap ensures
that the adversary cannot cause rollbacks longer than this upper bound with a
single block. Growing exponentially below the threshold gives us responsiveness
in the all-honest setting: Assume the actual network delay ΔNet is much lower
than the known upper bound Δ̂Net. Blocks produced at the right frequency with
respect to ΔNet are weighted much heavier than more frequent blocks. Thus, the
honest parties essentially build a chain just with these blocks, and the lighter ones



302 S. H. Kamp et al.

are negligible in comparison. It is not necessary to wait for even heavier blocks
up to the threshold to get the desired properties. Note that this only provides
responsiveness if there are no corrupted parties: A single dishonest party can
with non-negligible probability produce a block with maximal possible weight,
and thus cause a roll-back of honest blocks produced in Δ̂Net time.

While this may seem not particularly useful, the responsiveness can still
greatly improve the throughput of the chain when the protocol is combined with
a finality layer such as Casper the Friendly Finality Gadget [2], GRANDPA [16],
or Afgjort [3], where blocks are declared as final (and cannot be rolled back) as
soon as they are in the common-prefix of honest users. In that case, the time
it takes for blocks to be in the common prefix in periods without corruption
only depends on the actual network delay, and finalization ensures that all users
know which blocks to trust. We leave it as interesting future work to analyze the
feasibility of responsiveness in the face of active corruption.

Due to space constraints, all non-trivial proofs of lemmas and theorems are
left out of this version. We refer to the full version of this paper [6] for these.

1.2 Related Work

The first formal analysis of NSB blockchains was given in the seminal paper [4]
for a fixed threshold T , which was later extended to a variable threshold in [5],
and to a different setting with more variable message delivery times, adaptive
corruption, and spawning of new players in [11]. Ren [14] gives a simpler analysis
of the standard Bitcoin protocol under the assumption that mining on Bitcoin
can be modeled as a Poisson process.

Responsiveness was defined by Pass and Shi [12] as the property of a
blockchain that achieves a liveness parameter expressed in terms of the actual
network delay, independent of the conservative upper bound on the network delay
used to instantiate the protocol. They show that a protocol tolerating up to a 1

3
corruption can achieve responsiveness, and that this bound is tight. They later
show in [13] that assuming only honest majority (and a delay for the corruption
of parties) it is possible to obtain the weaker property of optimistic responsive-
ness, i.e., responsiveness under some additional “goodness” condition, while still
providing security in the worst case. In particular, they show responsiveness in
the case of more than 3

4 honest computing power and an additional assumption
of an honest accelerator. In [15] a lower bound is given for the latency in the
optimistic setting of [13] alongside a protocol achieving this within a constant
factor of the actual network delay.

Since [13] and [15] both require a committee and an accelerator, their results
only hold assuming considerably delayed corruption, allowing the accelerator
to make progress. Our generic weighted protocol, on the other hand, can tol-
erate immediate adaptive corruptions, as desired in the permissionless setting.
However, our result is weaker with respect to the “goodness” condition since
we only achieve responsiveness in the case of no corruption. Whether one can
get responsiveness with non-zero fully adaptive corruption in the permissionless
setting remains an open problem.
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The concept of assigning different weights to blocks based on their hash value
has already been considered in the context of proofs of proof of work [7,8]. The
purpose there, and consequently the analysis, was completely different: Heavy
blocks are used to link to older blocks in addition to the direct parents, to allow
for faster verification of recent transactions without verifying the whole chain.

2 Our Generic Framework for Weight-Based Analysis

In this section we formally describe our generic framework and we introduce
the concept of weight functions for PoW blockchains. In Sects. 2.2 and 2.4 we
provide generic definitions and tools that will be used to show the properties
of chain growth, chain quality and common prefix for PoW blockchains that
leverages weight functions (in Sect. 3). Our analysis builds upon the ideas of
previous work [4,14] and extends those to the more general setting of weighted
blocks. We start by describing the blockchain model that we consider for our
framework.

2.1 Blockchain Model

Network and Time. We assume that time is divided into rounds which corre-
spond to the smallest unit of time of interest. We assume a network with bounded
delay, which is parameterized by an upper bound ΔNet on the network delivery
time. It allows parties to multicast messages. That is, any message sent by an
honest party in round r is guaranteed to arrive at all honest parties until round
r + ΔNet. As in, e.g., [11], we assume a gossip network, which ensures that all
messages (sent by a dishonest sender and) received by an honest party in round r
are received by all honest parties until round r + ΔNet. Note that the latter can
be achieved by resending all freshly received messages. The actual delay of mes-
sages (per message and party) can be set by the adversary (within ΔNet). The
delay ΔNet is not known to the honest parties. However, we assume that honest
parties know a rough upper bound Δ̂Net, potentially much larger than ΔNet, on
the network delay.

Random Oracle. Following [11], we assume every “party” can make at most one
query to a random oracle in each round. The idea is that one round corresponds
to the time it takes to evaluate the hash function on one CPU and is the smallest
unit of time of interest. To model real-world parties with different amounts of
computing power, one can assume that they control different amounts of these
“one-query-per-round” parties. As in [1,4,11], we allow the corrupted parties to
make their queries sequentially, while honest parties have to make the queries in
parallel. We assume the range of the random oracle to be H := {1, . . . , 2k}.

In the remainder of the paper, we let q ∈ N denote the number of parties in
the protocol. As each party has one query this is also the maximal amount of
queries that can be made to the oracle in each round.
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Corruptions. We allow the adversary to adaptively corrupt up to a β < 1
2

fraction of all parties before each round. Newly corrupted parties are then fully
under the adversary’s control from that round on. We denote by α := 1 − β the
minimal fraction of participating parties that are honest at any time. Note that
by our definition of the random oracle, there can be at most qβ random-oracle
queries by corrupted parties in each round, and there are at least qα queries
by honest parties in each round (since honest parties in our protocol query the
random oracle in each round). We will thus for most of the paper only consider
these upper and lower bounds on the numbers of dishonest and honest queries,
and not explicitly map these to parties.

Mining. As in Bitcoin, miners in our protocol continuously take what they cur-
rently consider the best chain and try to extend it with a new block. The proof
of work aspect corresponds to miners finding an input to a hash function with
certain properties. In the Bitcoin protocol a valid block must satisfy (among
others things) that its hash is smaller than some threshold T . The challenge of
finding a nonce which makes the block hash small enough is what makes Bitcoin
a proof-of-work blockchain. The threshold T is adjusted such that the block-
production rate is approximately constant. The constant is chosen as a trade-off
between performance and security. The block validity predicate of Bitcoin thus
consists of checking the block hash along with some (for our purposes unimpor-
tant) syntactic well-formedness conditions on the block and its contents. In our
protocol blocks are considered valid independent of their hash value. Instead,
the hash of a block determines how much the block weighs when selecting the
best-chain. To avoid having many low-weight blocks swarm the network we can
use a cutoff. Since it does not impact the security of the protocol but merely a
parameter that can be optimized for throughput, we will ignore it in this paper.

We define the round in which a block was mined to be the round in which
the corresponding query to the random oracle was made.

Best Chain. In Bitcoin (with fixed difficulty), the length of the chain is what
decides how “good” a chain is [4,9]. Thus, in Bitcoin, chains with more blocks
are considered better. In our protocol we use a best-chain rule that is based on
the accumulated weight of the blocks in a chain, i.e., the heavier a chain is, the
better, as in bitcoin with variable difficulty [5].

No Insertions, Copies, and Predictions. To simplify our analysis and follow-
ing [4], we assume throughout the paper that it never happens that a new block
is added between two existing blocks (insertion), the same block occurs in two
different positions (copy), or a block extends a block that is mined in a later
round (prediction). As shown in [4], insertions and copies can only occur if there
is a collision in the random oracle linking blocks together, which has negligible
probability, and the probability of guessing a block is negligible as well.
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2.2 Basic Definitions

In this section, we first present some basic definitions for the weight of a chain and
the weight of a block. Then we present a categorization for certain good events
which are important for the analysis, and finally we introduce the notation for
upper and lower bounds on the weight produced.

Weight. We define the chain of a block B denoted Chain(B) to be the list of all
blocks one gets by following the pointers in the chain from B up to the genesis
block. We next define the concept of weight for blocks and chains.

Definition 1 (Weight functions, weight of blocks and chains). We define
a weight function to be a function of type H → R≥0. Let w be a weight function.
We then define the weight of a block B to be Weightw(B) = w(Hash(B)), and the
weight of a chain C to be Weightw(C) =

∑
B∈C Weightw(B) .

Next, we define the weight range, that is analogous to the depth of a block
in Bitcoin.

Definition 2 (Weight range). Given a weight function w, we define the start
weight of a blockB to be StartWeightw(B) := Weightw(Chain(B))−Weightw(B) and
the end weight to be EndWeightw(B) := Weightw(Chain(B)). We define the weight
range of a block B to be WeightRangew(B) := (StartWeightw(B),EndWeightw(B)].
Consequently, |WeightRangew(B)| = Weightw(B).

Good Events. Previous analyses [4,10,11,14] are based on the fact that in a
certain amount of rounds a block is produced that has enough time to propagate
to all honest parties before a new block is mined. Ren [14] takes a slightly
different approach and defines this in terms of blocks rather than rounds. More
concretely, he defines a “non-tailgater” to be an honest block mined at time t
such that no other honest block is mined between time t−ΔNet and t. We believe
that this is closer to the intuition for the proof, namely that once in a while an
honest party mines a block that has enough time to propagate. In his analysis,
mining is assumed to be a Poisson process and therefore no mining events occur
simultaneously with positive probability. In our model, however, it can happen
that several blocks are mined in the same round. If several blocks are mined in
a round after ΔNet empty rounds, we can count one of them as a “good” block.

To leverage this in the analysis, we introduce an order in the mined blocks
that we call “proof-order”. With the order fixed, one can choose, e.g., the first
of these blocks as the “good” block.2 More formally, we introduce an arbitrary
but fixed total order on all blocks produced in the protocol. We order blocks

2 The proof-order could be defined to take the block with maximal weight in each
round instead of ordering them by the parties. This would give a slightly tighter
analysis as there then would be slightly more “good” weight. For simplicity, have we
chosen not to take this approach.



306 S. H. Kamp et al.

lexicographically first based on the production round (i.e., the round the block
was created) and secondly on the party that made the query to the random ora-
cle. Note that the production time of a block is well-defined, even for adversarial
blocks as they also need to make a query to the random oracle in some round.
We stress that this enumeration and induced order of blocks is completely unre-
lated to the total order of blocks that the protocol achieves, and only needed as
an artifact of our proofs. To avoid confusion will we refer to the above as the
proof-order.

We now use this order on blocks to precisely categorize certain “good” events
(blocks mined with sufficient time between them). We further generalize previous
notions to our setting with different weights, i.e., instead of requiring that no
blocks are mined within a propagation period, we only require that no blocks
above a certain threshold are mined within this period.

Definition 3 (h-(left-)isolation). Let h ∈ H, and let B be a block mined in
round r ∈ N. We say B is h-left-isolated if B is honest, Hash(B) > h, and
there is no block left of B in the proof-order with hash above h mined in rounds
[r−ΔNet, r]. If B is honest, Hash(B) > h, and no other blocks with hash above h
are mined in rounds [r − ΔNet, r + ΔNet], we say B is h-isolated.

Note that we define h-(left-)isolation with respect to the unknown upper
bound ΔNet on the network delay, not on the known bound Δ̂Net.

Remark 1. Similar notions have been defined in previous work [4,10,11,14]. We
deviate from these definitions by defining (resp. left-) isolation to require that
no blocks are mined on either side (resp. to the left) of a block, whereas earlier
work had the requirement that no other honest block was mined within that
period. We use the stricter definition because it simplifies some of the arguments
(especially with respect to adaptive corruptions). Only considering honest blocks
may potentially allow to prove tighter bounds, though. Note that we define the
round in which a block was mined to be the round in which the corresponding
query to the random oracle was made, so this is also well-defined for corrupted
parties, who may send their block in a later round.

Left-isolated blocks are called “non-tailgaters” and isolated blocks are called
“loners” by Ren [14]. Analogous notions to that of a round with a left-isolated
block has in previous work been called an “effective-round” [10] and “isolated
successful round” [4]. The event of a isolated block has in previous work been
called “convergence opportunity” [11], “uniquely effective round” [10] and an
“uniquely isolated successful round” [4]. We chose the terms “left-isolated” and
“isolated” as we believe them to be more intuitive.

2.3 Bounds on Produced Weight

We now introduce some definitions for weight functions describing different
bounds on weight that can be produced with a specific weight function. We
start with the upper-bounds on how much weight a certain number of queries
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can produce. We will later use this fact to reason about how much weight any
adversary can produce.

We say a weight function is
(
Ŵg, p̂g

)
-upper-bounding for some parameter

g ≤ q if the weight of all blocks mined in r rounds (for all r ∈ N) with at
most g queries (honest or dishonest) per round is at most Ŵg(r), except with
probability p̂g(r). Similarly, we introduce

(
Ŵ≤h0

g , p̂≤h0
g

)
-below-threshold-upper-

bounding to bound the weight produced by blocks with hash value at most h0,
and

(
Ŵ>h0

g , p̂>h0
g

)
-above-threshold-upper-bounding to bound the weight pro-

duced by blocks with hash value more than h0.

Definition 4. Let w be a weight function, let g ∈ N, h0 ∈ H, let Ŵg,Ŵ≤h0
g ,

Ŵ>h0
g : N → R, and let p̂g, p̂

≤h0
g , p̂>h0

g : N → [0, 1] be monotonically decreasing.
Further, let Wg,r for r ∈ N be the random variable corresponding to the total
weight of all blocks weighted with w mined in r consecutive rounds with at most
g queries in each round, and similarly W≤h0

g,r (W>h0
g,r ) for r ∈ N be the random

variable corresponding to the total weight of all blocks with hash value at most h0

(more than h0) weighted with w mined in r consecutive rounds with at most g
queries in each round. We say w is

(
Ŵg, p̂g

)
-upper-bounding if for all r ∈ N,

Pr
[
Wg,r ≥ Ŵg(r)

] ≤ p̂g(r),

w is
(
Ŵ≤h0

g , p̂≤h0
g

)
-below-threshold-upper-bounding if for all r ∈ N,

Pr
[
W≤h0

g,r ≥ Ŵ≤h0
g (r)

]
≤ p̂≤h0

g (r),

and w is
(
Ŵ>h0

g , p̂>h0
g

)
-above-threshold-upper-bounding if for all r ∈ N,

Pr
[
W>h0

g,r ≥ Ŵ>h0
g (r)

]
≤ p̂>h0

g (r).

Next, we introduce the definition for lower-bounds on the amount of (left-)
isolated weight, i.e., on how much weight is produced by honest parties with
sufficient time in between. By our definition of (left-)isolated blocks, only hon-
est blocks can be left-isolated. We therefore do not use a parameter g here,
but always consider q queries in each round in total, with at least qα queries
from honest parties. We introduce the notion of a

(
W̌Isoh , p̌Isoh

)
-isolated-lower-

bounding weight function. It means that the total weight of all h-isolated blocks
mined in r consecutive rounds is at least W̌Isoh(r), except with probability
p̌Isoh(r). Left-isolated-lower-bounding weight functions are defined analogously.

Definition 5. Let w be a weight function, and let h0 ∈ H, W̌Isoh0 ,
W̌LeftIsoh0 : N → R, and let p̌Isoh0 , p̌LeftIsoh0 : N → [0, 1] be monotonically decreas-
ing. Further let Wr,Isoh0 for r ∈ N be the random variable corresponding to
the total weight of all h-isolated blocks weighted with w mined in r consecutive
rounds, and let Wr,LeftIsoh0 for r ∈ N be the random variable corresponding to the
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total weight of all h-left-isolated blocks weighted with w mined in r consecutive
rounds. We say w is

(
W̌Isoh0 , p̌Isoh0

)
-isolated-lower-bounding if for all r ∈ N,

Pr
[
Wr,Isoh0 ≤ W̌Isoh0 (r)

]
≤ p̌Isoh0 (r),

and w is
(
W̌LeftIsoh0 , p̌LeftIsoh0

)
-left-isolated-lower-bounding if for all r ∈ N,

Pr
[
Wr,LeftIsoh0 ≤ W̌LeftIsoh0 (r)

]
≤ p̌LeftIsoh0 (r).

2.4 Proving Bounds from Properties of the Weight Functions

In this section, we show how to derive some of the thresholds defined in Sect. 2.3.

Notation. In the remainder of the paper we define p≤h0 := h0
2k to be the

probability that a single random oracle query returns a value at most h0,
and wmax≤h0 := maxh∈{1,...,h0} w(h), wmax>h0 := maxh∈{h0+1,...,2k} w(h), and
wmin>h0 = minh∈{h0+1,...,2k} w(h) (for the weight function that is clear from the
context).

First, we provide a simple upper-bound for the total weight above and below
a threshold.

Lemma 1 (Weight above and below a threshold). Let w be a weight func-
tion, let g ∈ N, and h0 ∈ H. Then, for all δ ∈ (0, 1), w is

(i)
(
Ŵ≤h0

g , p̂≤h0
g

)
-below-threshold-upper-bounding with

Ŵ≤h0
g = wmax≤h0 · (1 + δ) · g · r · p≤h0 , p̂≤h0

g = e− δ2·g·r·p≤h0
3 ,

(ii) and
(
Ŵ>h0

g , p̂>h0
g

)
-above-threshold-upper-bounding with

Ŵ>h
g (r) = wmax>h0 · (1 + δ) · g · r · (1 − p≤h0), p̂>h

g (r) = e− δ2·g·r·(1−p≤h0
)

3 .

Proof. The probability to get a block below a threshold in just one query is p≤h0

and above a threshold is 1−p≤h0 . The amount of blocks below/above a threshold
can be upper bounded with Chernoff Each block below contributes with weight
at most wmax≤h0 , and blocks above with weight at most wmax>h0 . ��

We next prove bounds on the number of (left-)isolated blocks and afterwards
use this for a simple bound on the amount of (left-)isolated weight. The proof
follows some ideas from Ren [14].

Lemma 2 (Amount of (left-)isolated blocks). Let r be a number of con-
secutive rounds, let h0 ∈ H, let Nr,LeftIsoh0 denote the number of h0-left-isolated
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blocks produced, and let Nr,Isoh0 denote the number of h0-isolated blocks produced
during these r rounds. We then have for any δ ∈ (0, 1),

Pr
[
Nr,LeftIsoh0 ≤ (1 − δ) · αqr · (1 − p≤h0) · pqΔNet

≤h0

]
≤ 2e−

δ2·αqr·(1−p≤h0)·pqΔNet
≤h0

16 ,

(1)

Pr
[
Nr,Isoh0 ≤ (1 − δ) · αqr · (1 − p≤h0) · p2·qΔNet

≤h0

]
≤ 3e−

δ2·αqr·(1−p≤h0)·p2qΔNet
≤h0

108 .

(2)

Lemma 3. Let w be a weight function and h0 ∈ H. Then, for all δ ∈ (0, 1),

(i) w is
(
W̌LeftIsoh0 , p̌LeftIsoh0

)
-left-isolated-lower-bounding with

W̌LeftIsoh(r) = wmin>h0 · (1 − δ) · αqr · (1 − p≤h0) · (p≤h0)
qΔNet ,

p̌LeftIsoh(r) = 2e− δ2·αqr·(1−p≤h0
)·(p≤h0

)qΔNet

16 ,

(ii) and w is
(
W̌Isoh0 , p̌Isoh0

)
-isolated-lower-bounding with

W̌Isoh(r) = wmin>h0 · (1 − δ) · αqr · (1 − p≤h0) · (p≤h0)
2qΔNet ,

p̌Isoh(r) = 3 · e− δ2·αqr·(1−p≤h0
)·(p≤h0

)2qΔNet

108 .

Proof. Each (left-)isolated block contributes at least wmin>h0 weight. Hence, the
bounds on the amount of (left-)isolated blocks from Lemma 2 directly imply the
lower bounds on (left-)isolated weight. ��

3 Proving Chain Properties

In this section we prove the standard properties of chain growth, chain quality,
and common prefix for our generic framework by only assuming bounds on the
produced weight, as introduced in Sect. 2. We consider a fixed weight function w
for the entire section so we leave it out of the notations.

We warm-up with some fundamental lemmas that will be used as building
blocks when proving the more complex theorems of the chain properties.

The following lemma is a generalization of Lemma 5 (i) in [14]. It intuitively
says that if we only consider blocks above a certain hash, and enough time has
passed since an honest block was mined, then a new honest block will have a
different position in the chain than the previous block.

Lemma 4. Let h ∈ H and let B �= B′ be h-left-isolated blocks. Then, B and B′

have disjoint weight ranges.
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Proof. We assume without loss of generality that B is mined first. The party
P ′ who mines B′ receives B within ΔNet rounds, which is by definition of h-
left-isolation before B′ is mined. After receiving B, P ′ only extends chains with
weight at least EndWeight(B). Hence, EndWeight(B) ≤ StartWeight(B′), and
thus, WeightRange(B) ∩ WeightRange(B′) = ∅. ��

The next lemma is a generalization of Lemma 5 (ii) in [14]. The lemma says
that if we only consider honest blocks above a certain hash, then if such a block
has had enough time to propagate before the next block is produced and no other
block was mined in a period before, then this block will not share a position in
the chain with any other block.

Lemma 5. Let h ∈ H and let B be a h-isolated block. Further let B′ �= B be an
honest block with Hash(B′) > h. Then, B and B′ have disjoint weight ranges.

Proof. Let B0 ∈ {B,B′} be the block which is mined first. By definition of h-
isolation, the other block is mined more than ΔNet rounds later. As in the proof
of Lemma 4, we can thus conclude that the party mining the second block knows
B0 beforehand and thus extends a chain with weight at least EndWeight(B0).
Hence, WeightRange(B) ∩ WeightRange(B′) = ∅. ��

3.1 Chain Growth

The chain growth property intuitively says that a chain will increase its weight
by at least a fixed bound at every round. We give a formal definition of our
weight-based chain growth property next.

Definition 6 (Chain Growth). Let w be a weight function. The chain growth
property with parameters ρ ∈ N and τ ∈ R, states that for any honest party P
that has a chain C1, it holds that after any ρ consecutive rounds P adopts a
chain C2 such that Weight(C2) ≥ Weight(C1) + (ρ · τ) for τ > 0.

Next, we show that the accumulated weight of the chain grows at least by
the accumulated weight of the left-isolated blocks at each round, and therefore
satisfies the property of Definition 6. We show a slightly more general version of
chain growth as this is useful for proving chain quality later.

Theorem 1 (Chain Growth). Let C1 be the best chain of P1 in round r1 and
let C2 be the best chain of P2 in round r2, where r1 ≤ r2 − 2ΔNet + 1. For any
h0 ∈ H such that the weight function is

(
W̌LeftIsoh0 , p̌LeftIsoh0

)
-left-isolated-lower-

bounding, we have

Pr
[
Weight(C2) < Weight(C1) + W̌LeftIsoh0 (r2 − r1 − 2ΔNet + 1)

]

≤ p̌LeftIsoh0 (r2 − r1 − 2ΔNet + 1).

When this theorem is instantiated with P1 = P2, we obtain chain growth for

ρ > 2ΔNet and τ =
W̌

LeftIsoh0 (ρ−2ΔNet)

ρ except with probability p̌LeftIsoh0 (ρ−2ΔNet).
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3.2 Chain Quality

The chain quality property intuitively says that within any consecutive chunk
of blocks of an honest party’s chain, at least a ratio of the blocks was produced
by honest parties. We give a formal definition next.

Definition 7 (Chain Quality). The chain quality property with parameters
Λ ∈ R and μ ∈ R, states that for any honest party P that has a chain C as their
best chain, it holds that for any sequence of consecutive blocks with a weight
range of size at least Λ in C, it holds that the ratio of honest weight is at least μ.

We believe that it is more intuitive to reason about the chain quality property
in terms of elapsed time instead of weight. Hence, we present our results for a
“timed” version of the chain quality property,3 which intuitively ensures that
a fraction of honest weight is contained in a sequence of blocks that are mined
within some time-period.

Theorem 2 (Chain quality). Let P be an honest party with best chain
C = B1B2 . . . Bn and let R = Bi . . . Bj be any consecutive list of blocks in
C with 1 ≤ i < j ≤ n where block Bi was mined in round ri, Bj in round rj,
and rj − ri ≥ 2ΔNet. Further let h0 ∈ H and X ∈ R such that the weight func-

tion is
(
W̌LeftIsoh0 , p̌LeftIsoh0

)
-left-isolated-lower-bounding and

(
Ŵqβ , p̂qβ

)
-upper-

bounding such that for any ρ ≥ rj − ri, we have W̌LeftIsoh0 (ρ − 2ΔNet + 1) ≥
Ŵqβ(ρ) + X. Finally let pbad be the probability that the fraction of honest weight
in R is less than X

Weight(R) . Then,

pbad ≤ p̌LeftIsoh0 (rj − ri − 2ΔNet + 1) + p̂qβ(rj − ri).

In Appendix A we state the weighted version of the chain quality as a corol-
lary of Theorem 2 together with the fact that the amount of weight produced
during a time period is bounded.

3.3 Common Prefix

The common prefix property is arguably the most important property of block-
chains. It informally says that the chains of honest parties are always a common
prefix of each other after removing some blocks on the chain. Next, we formally
define the concept of “removing some blocks” of the chain in the form of pruning.

Definition 8 (Pruning). Let C be a chain, w ∈ R be a weight, and let r ∈ N be
a round. We define C

W�w to be the longest prefix of C such that Weight
(
C

W�w
) ≤

Weight(C)−w, i.e., blocks with total weight at least w are removed from the end
of C. We further define C

R>�r to be the chain containing all blocks from C
that were mined until round r, i.e., all blocks mined after round r are removed
from C.
3 We omit the formal definition here as it can be easily derived from Definition 7.
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Similarly to chain quality, we believe it to be more intuitive to reason about the
common-prefix property with respect to the absolute number of rounds (time).
It states that for any pair of honest parties that adopted chains at different
rounds, the oldest chain is a prefix of the most recent chain.

Definition 9 (Common Prefix). For parameter ρ ∈ N, let C1 be the best
chain of honest party P1 in round r1, and let C2 be the best chain of honest party
P2 in round r2 for r1 ≤ r2. The common-prefix property says that C1

R>�r1−ρ 

C2.

In Theorem 3 we prove that given certain restrictions on the weight function
our protocol satisfies Definition 9. Similarly to [4] we prove this in two steps,
by first showing a weaker version of the property that says that the best chain
of any pair of honest players at the same round must be a prefix of each other.
Afterwards, we extend the proof to capture the case where the honest parties
might be at different rounds.

Theorem 3 (Common prefix). Let ρ ≥ 2ΔNet − 1, let P1, P2 be (not neces-
sarily different) honest parties, let r1 ≤ r2 be rounds, and let C1 be the best chain
of P1 in round r1. Further let pbad be the probability that P2 has a best chain C2

in round r2 with C1

R>�r1−ρ �
 C2. We have

(i) For all h0 ∈ H such that the weight function is
(
W̌LeftIsoh0 , p̌LeftIsoh0

)
-left-

isolated-lower-bounding and
(
Ŵq, p̂q

)
-upper-bounding, and for all ρ′ ≥ ρ

2 · W̌LeftIsoh0 (ρ′ − 2ΔNet + 1) ≥ Ŵq(ρ′),

we have
pbad ≤ 2p̌LeftIsoh0 (ρ − 2ΔNet + 1) + 2p̂q(ρ).

(ii) For all h0 ∈ H such that the weight function is
(
Ŵ≤h0

q , p̂≤h0
q

)
-below-threshold-

upper-bounding,
(
Ŵ>h0

qβ , p̂>h0
qβ

)
-upper-bounding, and

(
W̌Isoh0 , p̌Isoh0

)
-isolated-

lower-bounding, and for all ρ′ ≥ ρ

W̌Isoh0 (ρ′ − 2ΔNet + 1) ≥ Ŵ≤h0
q (ρ′) + Ŵ>h0

qβ (ρ′),

we have

pbad ≤ 2p̌Isoh0 (ρ − 2ΔNet + 1) + 2p̂≤h0
q (ρ) + 2p̂>h0

qβ (ρ).

In Appendix A we prove the weighted version of the common-prefix property
as a corollary of Theorem 3.

4 Applying the Framework to Capped Weight Functions

Our framework allows the exploration of infinitely many different weight func-
tions. Intuitively, good weight functions should ensure that a majority of weight
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is produced by honest parties that have a nearly complete view of all other hon-
est blocks, i.e., the winning events that produce most of the weight should on
average occur so rarely that they have enough time to propagate before the next
time such a rare event occurs. On the other hand the weight difference between
such winning events should not be too large as this increases the variance and
thus gives worse bounds on the probabilities.

These considerations led us to focus on a special class of functions which
we call capped weight functions that we use our framework to analyze in this
section. We first prove general conditions that ensures common prefix for this
class of functions using only very loose bounds. Next, we derive a condition
that such functions should satisfy to additionally provide a weak form of opti-
mistic responsiveness. We then discuss how to pick such functions, and how
additionally combining such a function with a finality layer provides very fast
confirmation. Finally, we show how previous analyses of Bitcoin are subsumed
by our framework, and present a weight function that is strictly better than the
Bitcoin function with respect to the properties presented in this work.

4.1 Definitions and General Results

To derive concrete equations for the bounds the weight functions should satisfy,
we instantiate Theorem 3 with the loose bounds from Sect. 2.4. The specific
conditions we achieve for any weight function are captured by the lemma below.

Lemma 6. Let w be a weight-function. Further let h0 ∈ H. We assume that
wmin>h0 > 0. Let δ ∈ (0, 1) and ρ > 2ΔNet − 1 such that

α · (1 − δ) · (1 − p≤h0) · (p≤h0)
2qΔNet

≥ ρ

ρ − 2ΔNet + 1

(
wmax≤h0

wmin>h0

· p≤h0 +
wmax>h0

wmin>h0

· β · (1 − p≤h0)
)

.

Let P1, P2 be (not necessarily different) honest parties, let r1 ≤ r2 be rounds,
and let C1 be the best chain of P1 in round r1. Finally let pbad be the probability
that P2 has a best chain C2 in round r2 with C1

R>�r1−ρ �
 C2. We then have

(i) for any β

pbad ≤ 10e− δ2·qβ·(ρ−2ΔNet+1)·(1−p≤h0
)·(p≤h0

)2qΔNet

432 ,

(ii) and for β = 0

pbad ≤ 8e− δ2·q·(ρ−2ΔNet+1)·(1−p≤h0
)·(p≤h0

)2qΔNet

432 .

We now introduce the notion of a capped-weight-function to encapsulate the
intuition for the properties a useful weight function should have.

Definition 10 (Capped weight functions). Let w be a weight function, and
T ∈ H. We say that w is T -capped if for all h, h′ ∈ H, with h, h′ > T , we have
w(h) = w(h′).
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Using this definition we consider two special cases of the general common-
prefix property: What should be satisfied to ensure common prefix under the
worst case conditions and how fast do we achieve common prefix in the best
case where the adversary only controls the network delay?

We next show one way to pick T such that the common-prefix property holds
for the special case where w is T -capped weight function. To this end, we use
Lemma 6 with h0 = T . The specific conditions we achieve are captured by the
lemma below.

Lemma 7. Let P1, P2 be (not necessarily different) honest parties, let r1 ≤ r2
be rounds, let εc := α − β > 0, let δ ∈ (0, 1), and let C1 be the best chain of
P1 in round r1. Finally let pbad be the probability that P2 has a best chain C2 in
round r2 with C1

R>�r1−ρ �
 C2.. If ρ > 2Δ̂Net − 1 and w is a T -capped-weight-
function that satisfies

T ≥
(

β · ρ
(
β + εc

2

)
(1 − δ)(ρ − 2Δ̂Net + 1)

) 1
2qΔ̂Net

· 2k, (3)

and
1

2Δ̂Net

· (1 − δ) · εc
2

· (1 − p≤T ) · (p≤T )2qΔ̂Net−1 ≥ wmax≤T

wmin>T
, (4)

then

pbad ≤ 10e
− δ2·qβ2·ρ·(1−p≤T )

432(β+ εc
2 )(1−δ) . (5)

Furthermore, if ρ > 2ΔNet − 1, α = 1, β = 0, and for all h0 ≤ T

1
2Δ̂Net

· (1 − δ)
e · 2qΔ̂Net

≥ wmax≤h0

wmin>h0

, (6)

then

pbad ≤ 8e
− δ2·q·(ρ−2ΔNet+1)

432·e·(2qΔNet+1) . (7)

Choosing a Weight Function. In order to instantiate a T -capped weight
function we suggest the following approach. Pick T such that it satisfies equa-
tion (3) for a sufficiently large ρ. Next pick the function such that it additionally
ensures the condition from Eq. (4). For monotone functions this can simply be
done by increasing the growth of the function such that wmax≤T

wmin>T
is sufficiently

small. When a T -capped weight function is instantiated like this, it provides
common prefix except with the probability given by (5). To further satisfy
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equation (6) one can additionally increase the growth of the function until it
is true for all h0 ≤ T .4

Waiting Time for Common Prefix. To ensure that parties are on a common
prefix except with negligible probability, one has to wait until pbad is negligible.
If κ is the security parameter, this means that one has to wait ρ rounds such that
ρ · q(1 − p≤T ) = Ω(κ). Note that q(1 − p≤T ) is the expected number of blocks
with hash above the threshold T produced in each round. This means one needs
to wait for Ω(κ) blocks above the threshold. This matches the bounds derived
for the plain Bitcoin backbone, e.g., in [4].

In the case without corruption, one has to wait ρ rounds such that ρ · 1
ΔNet

=
Ω(κ). Note that this only depends on ΔNet, not on Δ̂Net. Hence, the protocol is
responsive in this case!

Chain Growth and Chain Quality. Note that this approach automatically ensures
some chain growth and chain quality as the preconditions for Theorem 1 and
Theorem 2 are weaker than the precondition for Theorem 3. One can also obtain
tighter bounds by optimizing for this, but we leave that for future work.

Finality Layers. A practical issue of the responsiveness that is provided by
Lemma 7 is that it is hard to know whether there are actively corrupted nodes
or not. This means that even in the good case without corruption, where all
parties quickly agree on blocks, parties typically do not know for sure that there
is no corruption, and thus cannot confirm transactions quickly. As a solution to
this issue, we propose to use a finality layer, such as Casper the Friendly Finality
Gadget [2], GRANDPA [16], or Afgjort [3]. These act as an additional layer on
top of a NSB, where a committee votes on blocks to become final, and finalized
blocks are never rolled back by adjusting the chain-selection rule to prefer chains
with more finalized blocks. In such finality layers, a block can be declared final as
soon as enough committee members vote for that block. In the optimistic case,
this happens as fast as the actual network conditions allow in our responsive
blockchain, as all honest parties will in fact have the same common-prefix and
thus vote for the same. And given the decision from the finalization committee,
one can immediately trust these finalized blocks, yielding a high overall efficiency.

4 In our analysis, we need to set
wmax≤h0
wmin>h0

sufficiently small to satisfy both conditions (4)

and (6). Note that no condition places a lower bound on this fraction. This means
the weight function can be chosen to grow arbitrarily fast.

The trade-off that is hidden in our analysis is that faster growing functions lead
to less responsiveness if there is some corruption. That is because it becomes easier
to produce very heavy blocks that can roll back a huge number of lighter blocks.
The growth of the function should thus not be set higher than necessary. We leave
exploring this trade-off for future work.
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4.2 Examples of Capped Weight Functions

In this section, we provide two concrete instantiations of weight functions using
our framework. For means of comparison, we first instantiate the standard Bit-
coin weight function and afterwards a capped-exponential weight function, which
we compare to the Bitcoin protocol.

Bitcoin Weight. The Bitcoin protocol originally considers the best chain to
be the one that is the longest. Each block added to a chain can therefore be
considered as incrementing the weight of the chain with 1. If a block is invalid
it does not change the weight of a chain and it can thus be thought of as having
weight 0. With this interpretation, the Bitcoin weight function with threshold T
can be defined as5

wBC
T (h) :=

{
0, if h ≤ T,

1, else.

This is clearly an instance of a T -capped-weight-function. Thus, the approach
from Sect. 4.1 can be applied for picking T , i.e., simply set T such that (3) is an
equality.

For w = wBC
T , we have wmin>T = 1 and wmax≤T = 0. Hence, Eq. (4) is

trivially satisfied and (5) thus provides the probability bound for the common-
prefix violations. As explained in Sect. 4.1, this matches known bounds.

There only exists a single h0 such that condition (6) is satisfied, namely
h0 = T . This matches well with the intuition: Bitcoin is clearly not reactive as
T needs to be set based on the worst case network delay to ensure security.

Capped Exponential Weight. We now provide an example weight function
that can be instantiated such that we obtain an optimistically responsive proto-
col. For some parameter c ∈ R and a threshold T ∈ H, we define

wEXP
c,T (h) :=

{
ehc, if h ≤ T,

e(T+1)c, else.

Let h ∈ H, h ≤ T . We then have for w = wEXP
c,T ,

wmax≤h

wmin>h
=

wEXP
c,T (h)

wEXP
c,T (h + 1)

=
ehc

e(h+1)c
= e−c.

Again we pick T such that (3) is an equality. We now pick c such that both
Eq. (4) and Eq. (6) are satisfied for all h0. In other words, we pick c such that
both

e−c =
wmax≤T

wmin>T
≤ 1

2Δ̂Net

· (1 − δ) · εc
2

· (1 − p≤T ) · (p≤T )2qΔ̂Net−1,

5 To adapt to our framework we negate the condition on the valid block predicate.
Note that this is without loss of generality.
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and

e−c =
wmax≤h0

wmin>h0

≤ 1
2Δ̂Net

· (1 − δ)
e · 2qΔ̂Net

,

are satisfied. Such a c exists as both right hand sides are constant and e−c drops
exponentially in c. Instantiating w in this way provides a protocol that under
worst case conditions performs as the Bitcoin protocol but in good conditions is
perfectly responsive to the actual network delay.

5 Conclusions and Directions for Future Work

We have provided a framework for analyzing blockchain protocols with different
weight functions. Using this framework, we have shown how to obtain a pro-
tocol that is responsive during periods without corruption. After this first step
introducing the relevant concepts, several interesting questions remain open: Are
there other weight functions with even better guarantees? Is it possible to achieve
graceful degradation with respect to responsiveness under some corruption? How
can our analysis be extended to variable thresholds to handle changing partici-
pation? We believe that our framework provides the right tools for investigating
these and further questions.

A Weight-Based Chain Quality and Common Prefix

In this section we state the weighted variant of the chain quality and common
prefix theorems. We start with chain quality and we use Theorem 2 together with
the fact that the amount of weight produced during a time period is bounded;
moreover, we use the collective mining rate to do this mapping, which is by no
means a tight bound.

Corollary 1 (Weighted chain quality). Let P be an honest party, let R be
any consecutive list of blocks from the best chain of this party, and let ρ ∈ N,
ρ ≥ 2ΔNet be the largest value such that Ŵq(ρ) ≤ Weight(R). Further, let h0 ∈ H
and X ∈ R such that the weight function is

(
W̌LeftIsoh0 , p̌LeftIsoh0

)
-left-isolated-

lower-bounding and
(
Ŵqβ , p̂qβ

)
-upper-bounding such that for any ρ′ ≥ ρ, we

have W̌LeftIsoh0 (ρ′ − 2ΔNet + 1) ≥ Ŵqβ(ρ′) + X. Let pbad be the probability that
the fraction of honest weight in R is less than X

Weight(R) . Then,

pbad ≤ p̌LeftIsoh0 (ρ − 2ΔNet + 1) + p̂qβ(ρ) + p̂q(ρ).

Proof. By our assumption on the weight function, it took at least ρ rounds to
produce R, except with probability p̂q(ρ). We can thus apply Theorem 2 to
conclude the proof of the corollary. ��
We next show the weighted common-prefix property.
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Corollary 2 (Weighted common prefix). Let ω ∈ R, and let ρ ∈ N be the
largest value such that Ŵq(ρ) ≤ ω and ρ ≥ 2ΔNet − 1. Further let h0 ∈ H such

that the weight function is
(
W̌LeftIsoh0 , p̌LeftIsoh0

)
-left-isolated-lower-bounding and

(
Ŵq, p̂q

)
-upper-bounding, and for all ρ′ ≥ ρ, we have 2·W̌LeftIsoh0 (ρ′−2ΔNet+1) ≥

Ŵq(ρ′). Let P1, P2 be (not necessarily different) honest parties, let r1 ≤ r2 be
rounds, and let C1 be the best chain of P1 in round r1. Then, the probability that
P2 has a best chain C2 in round r2 with C1

W�ω �
 C2 is at most

2p̌LeftIsoh0 (ρ − 2ΔNet + 1) + 2p̂q(ρ).

Proof. By our assumption on the weight function, there is at most Ŵq(ρ) <
ω weight produced in ρ rounds, except with probability p̂q(ρ). In this case,
all blocks on C1

W�ω are mined before round r1 − ρ, i.e., C1

W�ω 
 C1

R>�r1−ρ.
Therefore, we have C1

R>�r1−ρ �
 C2. We can thus apply Theorem 3 to conclude
the proof of the theorem. ��

References

1. Badertscher, C., Maurer, U., Tschudi, D., Zikas, V.: Bitcoin as a transaction ledger:
a composable treatment. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS,
vol. 10401, pp. 324–356. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-63688-7 11

2. Buterin, V., Griffith, V.: Casper the friendly finality gadget. CoRR, abs/1710.09437
(2017)

3. Dinsdale-Young, T., Magri, B., Matt, C., Nielsen, J.B., Tschudi, D.: Afgjort: a
partially synchronous finality layer for blockchains. In: Galdi, C., Kolesnikov, V.
(eds.) SCN 2020. LNCS, vol. 12238, pp. 24–44. Springer, Cham (2020). https://
doi.org/10.1007/978-3-030-57990-6 2

4. Garay, J., Kiayias, A., Leonardos, N.: The bitcoin backbone protocol: analysis
and applications. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS,
vol. 9057, pp. 281–310. Springer, Heidelberg (2015). https://doi.org/10.1007/978-
3-662-46803-6 10

5. Garay, J., Kiayias, A., Leonardos, N.: The bitcoin backbone protocol with chains
of variable difficulty. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol.
10401, pp. 291–323. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
63688-7 10

6. Kamp, S.H., Magri, B., Matt, C., Nielsen, J.B., Thomsen, S.E., Tschudi, D.:
Weight-based Nakamoto-style blockchains. Cryptology ePrint Archive, Report
2020/328 (2020). https://eprint.iacr.org/2020/328

7. Kiayias, A., Lamprou, N., Stouka, A.-P.: Proofs of proofs of work with sublinear
complexity. In: Clark, J., Meiklejohn, S., Ryan, P.Y.A., Wallach, D., Brenner,
M., Rohloff, K. (eds.) FC 2016. LNCS, vol. 9604, pp. 61–78. Springer, Heidelberg
(2016). https://doi.org/10.1007/978-3-662-53357-4 5

8. Kiayias, A., Miller, A., Zindros, D.: Non-interactive proofs of proof-of-work. Cryp-
tology ePrint Archive, Report 2017/963 (2017). https://eprint.iacr.org/2017/963

9. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system (2009). http://www.
bitcoin.org/bitcoin.pdf

https://doi.org/10.1007/978-3-319-63688-7_11
https://doi.org/10.1007/978-3-319-63688-7_11
https://doi.org/10.1007/978-3-030-57990-6_2
https://doi.org/10.1007/978-3-030-57990-6_2
https://doi.org/10.1007/978-3-662-46803-6_10
https://doi.org/10.1007/978-3-662-46803-6_10
https://doi.org/10.1007/978-3-319-63688-7_10
https://doi.org/10.1007/978-3-319-63688-7_10
https://eprint.iacr.org/2020/328
https://doi.org/10.1007/978-3-662-53357-4_5
https://eprint.iacr.org/2017/963
http://www.bitcoin.org/bitcoin.pdf
http://www.bitcoin.org/bitcoin.pdf


Weight-Based Nakamoto-Style Blockchains 319

10. Niu, J., Feng, C., Dau, H., Huang, Y.C., Zhu, J.: Analysis of Nakamoto consensus,
revisited. Cryptology ePrint Archive, Report 2019/1225 (2019). https://eprint.iacr.
org/2019/1225

11. Pass, R., Seeman, L., Shelat, A.: Analysis of the blockchain protocol in asyn-
chronous networks. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017.
LNCS, vol. 10211, pp. 643–673. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-56614-6 22

12. Pass, R., Shi, E.: Hybrid consensus: efficient consensus in the permissionless model.
In: 31st International Symposium on Distributed Computing, DISC 2017, Vienna,
Austria, 16–20 October 2017, pp. 39:1–39:16 (2017)

13. Pass, R., Shi, E.: Thunderella: blockchains with optimistic instant confirmation. In:
Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10821, pp. 3–33.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78375-8 1

14. Ren, L.: Analysis of Nakamoto consensus. Cryptology ePrint Archive, Report
2019/943 (2019). https://eprint.iacr.org/2019/943

15. Shrestha, N., Abraham, I., Ren, L., Nayak, K.: On the optimality of optimistic
responsiveness. In: Ligatti, J., Ou, X., Katz, J., Vigna, G. (eds.) ACM CCS 2020,
pp. 839–857. ACM Press, November 2020

16. Stewart, A., Kokoris-Kogia, E.: Grandpa: a byzantine finality gadget (2020)

https://eprint.iacr.org/2019/1225
https://eprint.iacr.org/2019/1225
https://doi.org/10.1007/978-3-319-56614-6_22
https://doi.org/10.1007/978-3-319-56614-6_22
https://doi.org/10.1007/978-3-319-78375-8_1
https://eprint.iacr.org/2019/943


LOVE a Pairing

Diego F. Aranha1,4(B), Elena Pagnin2,4, and Francisco Rodŕıguez-Henŕıquez3,4
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Abstract. The problem of securely outsourcing the computation of a
bilinear pairing has been widely investigated in the literature. Design-
ing an efficient protocol with the desired functionality has, however,
been an open challenge for a long time. Recently, Di Crescenzo et al.
(CARDIS’20) proposed the first suite of protocols for securely and effi-
ciently delegating pairings with online inputs under the presence of a
malicious server. We progress along this path with the aim of LOVE
(Lowering the cost of Outsourcing and Verifying Efficiently) a pairing.
Our contributions are threefold. First, we propose a protocol (LOVE)
that improves the efficiency of Di Crescenzo et al.’s proposal for securely
delegating pairings with online, public inputs. Second, we provide the
first implementation of efficient protocols in this setting. Finally, we eval-
uate the performance of our LOVE protocol in different application sce-
narios by benchmarking an implementation using BN, BLS12 and BLS24
pairing-friendly curves. Interestingly, compared to Di Crescenzo et al.’s
protocol, LOVE is up to 29.7% faster for the client, up to 24.9% for the
server and requires 23–24% less communication cost depending on the
choice of parameters. Furthermore, we note that our LOVE protocol is
especially suited for subgroup-secure groups: checking the correctness of
the delegated pairing requires up to 56.2% less computations than eval-
uating the pairing locally (no delegation). This makes LOVE the most
efficient protocol to date for securely outsourcing the computation of a
pairing with online public inputs, even when the server is malicious.

1 Introduction

Cryptographic bilinear pairings (a.k.a. pairings, in short) have proven to be
an extremely versatile building block to realize novel and advanced crypto-
graphic tools including identity-based encryption [12], short signatures [14],
aggregate signatures [13], and zero knowledge-Succinct Non-interactive ARgu-
ment of Knowledge (zk-SNARK) [27]. Very recently, pairings found applications
in isogeny-based cryptography, to compress public keys in key exchange [45] and
to construct verifiable delay functions [21].
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Pairing-based protocols critically rely on an efficient implementation of the
pairing, which has computational cost far more expensive than any other of the
protocol’s building blocks. Several clever algorithmic breakthroughs [8,41], capi-
talized on efficient software and hardware implementations (see [1], [36, Chapter
11] for a comprehensive overview), producing an impressive reduction of the
latency associated to a pairing. Nonetheless, as of 2015, the timing cost for the
execution of a single pairing on the BN curve at the 128-bit security level, was five
to six times higher than the one of a scalar multiplication (over G1) [46, Table II].
The considerably higher cost of evaluating a pairing motivated a line of research
on how to outsource this computation in a secure and efficient way.

Secure and Efficient Pairing Delegation. For many years, researchers and devel-
opers have addressed the problem of how a resource-constrained device (Client),
can safely delegate the computation of a pairing to a much more powerful com-
putational entity (Server). This setting is particularly relevant in the Internet of
the Things (IoT): if secure and efficient pairing delegation is possible, IoT devices
(acting as clients) can manage advanced pairing-based protocols without having
to pay the cost of locally evaluating pairings. Intuitively, a protocol for secure
and efficient pairing delegation should provide mechanisms allowing the client
to verify the correctness of the output returned by the server. With respect to
efficiency, we want the client’s computational costs associated to such delega-
tion be strictly less expensive than the action of computing the pairing solely on
the client’s device. However, the verification normally involves the computation
of costly exponentiations (over GT ), membership tests (in GT ), and at times,
additional lighter operations such as scalar multiplications (on G1 and G2). Pro-
gressive efficiency improvements on pairing evaluation rapidly closed the gap
between the cost of verifying the delegated pairing and actually computing the
pairing locally. As a result, many of the pairing delegation protocols with the
verifiability property proposed to date [16,17,25,31], fail to meet the efficiency
requirement stated above. This situation has called to question the whole idea
of delegating a pairing in the first place.

In 2020, Di Crescenzo, Khodjaeva, Kahrobaei and Shpilrain put forth a
promising solution to realize efficient pairing delegation in the offline/online
setting [20]. In a nutshell, this means that the protocol splits into two subse-
quent phases: an offline phase (run by the client only), followed by an online
phase when the inputs to the pairing are disclosed and the client interacts with
the server. The key idea is that the offline phase is independent of the pairing
inputs, can be run at any point in time, and collects the bulk of the computation
required from the client. In contrast, the online phase should be as lightweight
as possible for the client, so that verifying the outsourced pairing computation
is less expensive than evaluating the pairing locally on the client device. In this
paper, we carefully investigate about the efficiency claims of [20] in the con-
text of the new parameter recommendations for pairings at the 128- and 192-bit
security level. We additionally introduce minor changes to the original protocol
to further optimize its efficiency and test our implementation on a simulated
client-server interaction.
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Our Contributions. This paper provides the first implementation of a secure
and efficient protocol for pairing delegation in the offline/online setting. We focus
only on the case of public inputs, because our experimental results indicate that
delegating a pairing with private inputs remains inefficient and more expensive
than performing the local computation. Concretely, we take the most efficient
protocols proposed in [20] and make slight but clever modifications with the aim
of LOVE (Lowering the cost of Outsourcing and Verifying Efficiently) a pairing.
As a result, we obtain the most efficient protocols to date for securely outsourcing
the computation of a pairing with online public inputs, even in cases where
we cannot trust the server. We formally prove the security for our ‘adjusted’
protocol LOVE. Finally, we experimentally evaluate LOVE with several choices
of curves at different security levels. As a byproduct (and a result of independent
interest), we provide updated costs for scalar multiplication and exponentiation
in pairing groups using optimized implementations. Interestingly, in lieu of the
new optimizations, the performance improvement of delegating a pairing is lower
than the reported in previous work, when state of the art implementations are
used and the cost of membership checks in GT is considered. Furthermore, our
results reinforce the observation stated in [6] that even at the cost of a small
performance penalty for its individual building blocks, choosing subgroup-secure
parameters provides an overall better performance when the whole protocol is
analyzed.

Applications. Delegating the computation of a pairing on public inputs may seem
a task with little use, yet, we will argue next that it has interesting implications
in the realm of efficient verification.

First of all, such a scheme can be deployed to realize server-aided signature
verification for schemes that involve pairings in the verification process. This
setting has been studied, e.g., in [37], and becomes of particular interest for
verifications that involve several pairing computations, e.g. [4]. We note that, if
one assumes a trusted set up (for instance, a set up that outputs γ = e(P1, P2)),
verifiers could leverage the pairing γ provided by the set up in their offline
phase, and thus run the signature verification without needing to ever compute
a pairing locally. This simple observation is of particular interest for IoT devices,
where one may wish to minimize the code loaded on a constrained device without
compromising too much its limited computing resources.

Another venue of application for delegating the computation of a pairing
on public inputs is the recent isogeny-based Verifiable Delay Function (VDF)
construction presented in [21]. VDFs [11], have important applications for
Blockchain proof of space and stake, design of trustworthy randomness bea-
cons and benchmarking of high-end servers, among others. In a VDF setting,
given an input challenge x and public parameters pp, the Prover must compute
a function Eval(pp, x) �→ (y, π), where y is the output of the function Eval and
π is its proof. A second entity, known as the Verifier, must compute a deci-
sion function Verify(pp, x, y, π) �→ {True, False}, which determines whether the
Prover satisfactorily completed its task or not. By design running Eval shall
take time comparable with a prescribed delay T ; more formally, it should be
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computationally intractable, regardless of the amount of parallelization employed
by the Prover, to calculate Eval in time less than T . Moreover, once y along
with its proof π are produced, the output y should be easily verifiable by any-
one in a much shorter Polylog(T ) time. Recently, De Feo, Masson, Petit and
Sanso proposed in [21] an isogeny-based VDF construction that uses a pairing
for its verification algorithm. In this protocol, the verifier sets up the scheme,
and checks the correctness of the evaluation’s output by computing two pairings
(and by performing other, less expensive checks). Notably, the pairings’ inputs
are public values, so it seems natural to apply our technique: include the pairing
delegation setup in the VDF set up, and enjoy a more efficient verification pro-
cedure. This change clearly increases the computational demands on the Prover
(running Eval) and thus its delay, which is a desirable feature in the VDF set-
ting, and at the same time it speeds up the verification. At the moment, the
improvement we described above only works for one of the pairings (the right
hand side one, on line 2. of Verify in Fig. 1 and 2 of [21]) and assuming that the
verifier knows the point Q at set up time.

1.1 Related Work

The seminal work on secure pairing delegation protocols is due to Girault and
Lefranc [25] who formalized this notion as Server-Aided Verification. The aim
of [25] was to improve the efficiency of signature verification by relying on a
server to carry out the expensive pairing computation. This approach sparked
a long line of research, which includes more expressive models for server-aided
verification [18,37,43], security notions for pairing delegation (in the framework
of verifiable computation) [17], and several constructions aiming at concrete effi-
ciency and/or better security [16,20,30,31,42,44]. Paradoxically, the state of the
art in this matter seems to suggest that delegating a pairing computation in a
secure and verifiable way inherently requires more computations than evaluating
the pairing locally. To overcome this problem, Di Crescenzo et al. [20] adopted
a new strategy. Instead of relying on the standard server-aided verification syn-
tax (two-message protocol), they considered an offline phase (traditionally called
key generation, which runs independently of the computational input), and an
online phase where the pairing arguments are disclosed and the verifier (acting as
a client) interacts with the server. The offline/online approach seems a winning
concept: it allows the verifier to run the bulk of computations during the offline
phase, which may happen at any point in time before the actual pairing com-
putation is needed. Once the pairing arguments are disclosed, the verifier enjoys
more efficient procedures that rely on the output of the expensive offline phase.
While this setting is promising, [20] provides no concrete implementation of the
suggested protocols and the efficiency estimates are extrapolated from a hypo-
thetical text-book implementation using the well-known, but by now outdated,
performance figures from [15].

Interestingly, the problem of pairing delegation appears to be easier in the
batch setting, where the client wants to compute several pairings e(Ai, Bi) for
Ai ∈ G1 and Bi ∈ G2. The first solution came out in 2007, when Tsang, Chow
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and Smith [40] proposed the first batch pairing delegation protocols and related
security notions. They classified the possible pairing arguments in 16 types (all
combinations of public/secret, variable/constant inputs) and proposed protocols
tailored to 4 of these settings. Unfortunately, their main protocol was limited
to pairings sharing the same secret first argument and involved costly exponen-
tiation in the target group. Later, Mefenza and Vergnaud [34] proposed new
efficient batch pairing delegation protocols in the same settings by adopting the
endomorphism idea from Guillevic and Vergnaud [30] and reducing the size of
exponents. Performance improvements ranged from 40% to 74% at the 128-bit
security level in comparison with previous work.

2 Preliminaries

Notation. We denote by λ (resp. σ) the computational (resp. statistical) secu-
rity parameter of a scheme. We use choosing at random or randomly choosing to
refer to sampling from the given set according to the uniform distribution, and
denote this by x ←$ X. We denote by poly(λ) a generic polynomial function in
the variable λ, and by negl a negligible function, that is negl(λ) < 1/poly(λ), for
any poly and large enough values of λ. We denote by cost(·) a function that, given
as input an algorithm returns its computational cost (in some desired computa-
tional model). Unless otherwise specified, all groups we work with have order q,
which is a 2λ-bit prime; and Pi denotes a generator of the group cyclic group
Gi. We denote by Bool(·) the boolean function that returns 1 if the statement
given in input is true/satisfied, and 0 otherwise.

The parameters p, q, φk(p) and k, denote the base field prime, the pairing
group order and the k-th cyclotomic polynomial evaluated at p and the embed-
ding degree, respectively. These parameters are formally defined next.

2.1 Pairings

Let E be an elliptic curve defined over the finite field Fp, where p is a large
prime. Denote by E(Fp) the set of points (x, y) ∈ Fp that satisfy the elliptic
curve equation along with the point at infinity denoted by O. It is known that
E(Fp) forms an additive Abelian group with respect to the elliptic point addition
operation. Let #E denote the cardinality of E(Fp), and let q be a large prime
that divides #E with gcd(q, p) = 1. Then, the embedding degree of a curve is
defined as the smallest integer k, such that q divides pk − 1. Let Fpk be an
extension field of Fp of degree k, and let F

∗
pk be the field composed by the

non-zero elements of Fpk . We say that G1,G2 and GT are an order-q subgroup
of E(Fp), an order-q subgroup of E(Fpk), and the order-q subgroup of F

∗
pk ,

respectively. Groups G1,G2 are typically written additively, while group GT is
always written multiplicatively.

The standard procedure for computing a pairing is based on an iterative
algorithm, proposed by Victor Miller in 1986 [35]. Let R ∈ E(Fpk) and let s
be a non-negative integer. A Miller function fs,R of length s is a function in
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Fpk(E) with divisor (fs,R) = s(R) − (sR) − (s − 1)(∞), where ∞ denotes the
point at infinity. Miller’s algorithm calculates a value f that is only unique
up to a multiplicative power of q. The reduced Tate pairing computes a final
exponentiation step, where the value f is raised to the power (pk − 1)/q. This
exponentiation is known as the final exponentiation, and maps the result into
the desired subgroup of q-th roots of unity. For even embedding degree k and
k-th cyclotomic polynomial ψk(·), the final exponentiation is split in the easy
and hard parts as (pk − 1)/q =

[
(pk/2 − 1) · (pk/2 + 1)/φk(p)

] · [φk(p)/q]. This
way one gets a bilinear pairing, whose main properties are summarized below.

A pairing is an efficiently-computable map e : G1 × G2 → GT defined over
groups of prime order q, that enjoys the following properties:

Bilinearity. e(aP1, bP2) = e(P1, P2)ab, ∀a, b ←$
Zq, P1 ∈ G1 and P2 ∈ G2

Non-degeneracy. If P1 and P2 are generators of G1 and G2 respectively, then
gT = e(P1, P2) is a generator for GT .

The pairing e is of Type 1 (symmetric) if G1 = G2. This implies that the curve
is equipped with a distortion map to produce a linearly independent second
argument for non-degeneracy. The pairing e is of Type 3 (asymmetric) if G1 �= G2

and there are no homomorphisms between the two groups. In the latter case a
twist is typically used to compress group elements in G2.

The state of the art in pairing-based cryptography employs the optimal Ate
pairing [41] operating on a family of curves of small embedding degree, called
pairing-friendly [22]. Pairing-friendly curves are specified by means of associated
parameterized polynomial formulae for the prime modulus p and the prime order
subgroup q. For the sake of efficiency, these formulae are instantiated using seeds
with low Hamming weight (cf. Table 1). Known pairing-friendly families offer
different trade-offs between the field sizes (for security in GT ), and curve orders
(for security in G1 and G2). With the aim of achieving a better performance, we
normally choose larger embedding degrees when targeting higher security levels.
This design decision allows us to work with moderate sizes of the base field and
the curve order.

Selecting a suitable pairing-friendly curve and its associated finite fields and
pairing parameters requires trying many seeds with low Hamming weight, until a
curve with the right performance properties and security requirements is found,
inside the chosen family. Design aspects to be considered include the existence
of endomorphisms to accelerate scalar multiplication and exponentiation in the
pairing groups, the degree of the twist, an optimized towering to represent Fpk ,
efficient ways to test for membership or to hash bit strings to group elements,
among others. Security requirements include the hardness of solving the dis-
crete logarithm problem in all groups, and the necessity of verifying that group
elements have the right order and were not maliciously selected. The latter is
alleviated by choosing curves providing subgroup security [6], which mandates
that E(Fp) and E(Fpk) do not contain subgroups significantly smaller than the
subgroups G1 and G2, both of prime order q. The related GT -strength security
notion applies this idea to GT only [38]. Checking the order of group elements
is called subgroup membership testing.
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After the TNFS algorithm was proposed to solve the discrete logarithm
in parameterized composite-degree extension fields [32], prime-order Barreto-
Naehrig curves [9] lost the top performance spot at 128-bit security. Cur-
rently, the families that offer better performance are Barreto-Lynn-Scott curves
(BLS) [7] with embedding degree 12 at the 128-bit security level, and 24 at the
192-bit security level [5]. The corresponding curve with embedding degree 48 has
been considered for the 256-bit security level [33].

3 Delegating Pairings with Online Public Inputs

In this section, we recall part of Di Crescenzo et al.’s work [20] both for complete-
ness and for providing more intuitive notations, descriptions, as well as a more
rigorous formalism. Concretely, we begin by presenting a formal framework for
offline/online pairing delegation, and a suitable security model. Our goal here
is to spell out the details of the intuitions provided in [20], by having rigor-
ous definitions, which simplify the well-established VC model of [24] to the case
of pairing delegation. We then describe the original protocol for online public
inputs provided in [20], with an improved notation, and along with correctness,
security and efficiency considerations.

3.1 Modeling Offline/Online Pairing Delegation Protocols

We describe a formal model for offline/online pairing delegation. In a nutshell,
this model makes use of correctness and (output) security as introduced for veri-
fiable computation (VC) by Gennaro, Gentry and Parno [24]. These notions are,
however, adapted (and simplified) to the special setting of our work. We prefer to
re-name the standard VC algorithms (KeyGen, ProbGen, Compute, and Verify)
to something with a more explicit meaning for our setting, namely (offSetup,
onSetup, Compute, and onVerify).

Definition 1 (Offline/Online Pairing Delegation). An offline/online pro-
tocol for pairing delegation consists of the five algorithms (GlobalSetup, offSetup,
onSetup,Compute, onVerify) with the following syntax:

GlobalSetup(λ) → bilin.group this is a randomized algorithm that takes as input
a value λ (the computational security parameter) and returns the description
of a bilinear group bilin.group = (q,G1, P1,G2, P2,GT , e), where q is a 2λ-
bit prime, and e is a pairing. We assume bilin.group is implicitly available
to all subsequent algorithms. (This is a one-time set up).

offSetup(σ) → off.pp this is a randomized algorithm that takes as input a value
σ (the statistical security parameter). It returns some values off.pp. (This
algorithm is run in by the client during the offline phase).

onSetup(off.pp, (A,B)) → (pub, sec) this is a randomized algorithm that takes
as input off.pp, and a pairing argument (A,B) ∈ G1×G2. It returns a public
value pub, and a secret value sec. (This algorithm is run by the client, and
is the first algorithm of the online phase. At this point off.pp and sec are
only known to the client, while pub will be sent to the server).
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Compute(pub) → out this is a deterministic algorithm that takes as input the
public value pub; and returns a public output out. (This algorithm is run by
the server, and is the second algorithm of the online phase).

Verify(sec, out) → value this is a deterministic algorithm that takes as input
the secret value sec (generated by the online setup) and the server’s output
out. It returns a value value ∈ {GT ∪ ⊥}. (This algorithm is run by the
client, and is the last algorithm of the online phase. It is designed to verify
the correctness of the computation carried out by the server).

Figure 1 displays a graphical summary of the syntax introduced in Definition 1.

client server

offSetup() → off.pp // offline phase

onSetup(off.pp, (A,B)) → (pub, sec) // begin online phase (A, B)

Compute(pub) → out

onVerify(sec, out) → value // end online phase

off.pp

pub

out

Fig. 1. Diagram visualizing the model for offline/online pairing delegation. Notably,
the pairing arguments (A, B) are revealed only at the start of the online phase. The
one-time GlobalSetup is omitted from the picture.

A protocol for offline/online delegation of a pairing computation is correct
if for all possible input arguments (A,B) ∈ G1 × G2, (and for any possi-
ble randomness used by offSetup and onSetup) the protocol execution returns
value = e(A,B), assuming all algorithms are run honestly. This is formalized
by the following definition (which is closely similar to the correctness for VC
in [24], but tailored to our case of interest).

Definition 2 (Correctness). A protocol for offline/online pairing delegation
is correct if for any value of λ and σ, and for all of possible input arguments
(A,B) ∈ G1 × G2 it holds that:

Prob

⎡

⎢
⎢
⎢
⎢
⎣
value = e(A,B)

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

bilin.group ← GlobalSetup(λ)
off.pp ← offSetup(σ)

(pub, sec) ← onSetup(off.pp, (A,B))
out ← Compute(pub)

value ← onVerify(sec, out)

⎤

⎥
⎥
⎥
⎥
⎦

= 1.
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A protocol for offline/online delegation of a pairing computation is secure
if no adversary (in the shoes of a malicious server) is able to produce a value
out∗ that is not rejected by the verifier and that results in a incorrect output
value∗ �= e(A,B). This is formalized in the following security definition and the
experiment Expsec

A . Notably, Expsec
A is a simplification of the security experiment

for VC in [24]: we reduce the number of adversarial queries to a single one, since
in the setting of [20], every new input (A,B) requires a new run of offSetup. Our
adversary is a pair of algorithms A = (A1,A2) that share an internal state st.

Security Experiment Expsec
A (n, σ)

1 : bilin.group ← GlobalSetup(n)

2 : off.pp ← offSetup(σ)

3 : ((A, B), st) ← A1(n, σ, bilin.group)

4 : (pub, sec) ← onSetup(off.pp, (A, B))

5 : out
∗ ← A2(st, pub, (A, B))

6 : value
∗ ← onVerify(sec, out∗)

7 : if value
∗ = ⊥ return 0

8 : if value
∗ = e(A, B) return 0

9 : return 1

We remark that, in order to reach the winning condition in Expsec
A , the adversary

needs to produce an output out∗ that is not rejected by the verification (i.e.,
value∗ �= ⊥) and that yields an incorrect value value∗ �= e(A,B). Such an
output would indeed fool the client into accepting an incorrect value as the result
of the outsourced pairing computation. A protocol is secure if any adversary has
only negligible probability of winning the security experiment Expsec

A .

Definition 3 (Security). A protocol for offline/online pairing delegation is
said to be secure if for any probabilistic, polynomial time algorithm A = (A1,A2)
it holds that:

Prob [Expsec
A (λ, σ) = 1] ≤ 2−σ + negl(λ).

Regarding efficiency, we cannot use the amortized efficiency framework of
VC, where the computational cost of running KeyGen –our offSetup– can be
amortized over several executions of the core delegation protocol. In our case,
for security reasons, the output of offSetup can be used only for a single pairing
delegation. As we discussed already in the introduction, it is hopeless to expect
a pairing delegation protocol be efficient in the strictest sense; the best we can
hope to achieve is efficiency in the online verification. This is formalized in the
following definition.

Definition 4 (Efficient Online Verification). A protocol for offline/online
pairing delegation is said to have efficient online verification if (cost(onSetup) +



LOVE a Pairing 329

cost(onVerify)) < cost(e(·, ·)), i.e., the cost of running the online phase on the
client-side is less than the cost of computing the pairing on the client’s device.

3.2 Di Crescenzo et al.’s Protocol

In [20], Di Crescenzo et al. propose five different protocols for securely delegat-
ing the computation of e(A,B), given the points A ∈ G1, B ∈ G2. The most
efficient protocol (described in Section 3 of [20], and here in Figure 2) works in
the setting where (A,B) are public. In the protocol description, the value q
(which determines the size of the field from which r is sampled), depends on
the security parameter λ (that sets up the bilinear group). The value σ, instead,
represents the parameter for statistical security that delivers the information
theoretic security guarantee of the protocol. Finally, we recall that the handle
bilin.group = (q,G1, P1,G2, P2,GT , e) generated by GlobalSetup(λ), is avail-
able to all algorithms.

offSetup(σ) → off.pp

1 : U1 ←$
G1, U2 ←$

G2

2 : c ←$ [1, . . . , 2σ], r ←$
Z

∗
q

3 : V2 ← (r−1 mod q) · U2

4 : γ ← e(U1, U2)

5 : off.pp := (c, r, U1, U2, V2, γ)

onSetup(off.pp, (A, B)) → (pub, sec)

1 : parse

off.pp = (c, r, U1, U2, V2, γ)

2 : V1 ← r · (A − U1)

3 : W2 ← c · B + U2

4 : pub := (A, B, V1, V2, W2)

5 : sec := c

onVerify(sec, out) → value

1 : parse sec = c

2 : if Bool(γ0 /∈ GT ) return ⊥
3 : if Bool(γ2 /∈ GT ) return ⊥
4 : if Bool(γ1 = γc

0 · γ2 · γ)

return ⊥
5 : value := γ0

Compute(pub) → out

1 : parse pub = (A,B, V1, V2, W2)

2 : γ0 ← e(A,B)

3 : γ1 ← e(A,W2)

4 : γ2 ← e(V1, V2)

5 : out := (γ0, γ1, γ2)

off.pp

pub

out

Fig. 2. Di Crescenzo et al.’s protocol for secure pairing delegation with online public
inputs (see Section 3 in [20]). This description uses a different, more intuitive notation.
The GlobalSetup is not included explicitely as it is trivial.

Correctness. The correctness is trivial by inspection. By line 2 in Compute and
line 5 in onVerify it follows that value = γ0 = e(A,B), since for correctness
all parties are required not to deviate from the algorithms descriptions, and all
communication happens via a perfect, noise-free channel.
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Security. The security essentially relies on the fact that an adversary (playing
the role of a malicious server) cannot guess the challenge value c, except with
probability 2−σ (which is small by construction). We refer the reader to [20] for
a detailed security proof.

Efficiency. Regarding efficient online verification, we would need to estimate the
client’s computational cost in the online phase, i.e., cost(onSetup)+cost(onVerify)
and compare it to the cost of computing the pairing cost(e(·, ·)). This is already
done by [20] in an abstract way through a theoretical complexity analysis based
on cost estimates extracted from Bos et al.’s work [15]. Interestingly, this effi-
ciency analysis disregards the cost of membership testing in GT which can be
quite significant for some parameters [6]. In contrast, we aim to provide concrete
efficiency analysis of complete algorithm executions (see Sect. 5). To this end,
we implement the protocol in Fig. 2, collect actual computational complexity
and timings, and compare its performance against our LOVE variant (that we
introduce in the next section, Fig. 3).

4 Our Protocol for LOVE a Pairing

Our LOVE protocol is obtained from few simple but clever twists on the original
proposal of [20] presented in Fig. 2. Concretely, LOVE’s GlobalSetup, offSetup
and onSetup are the same as in the previous proposal; the only changes are in
Compute and onVerify, and we highlight them with a frame box in Fig. 3.

onVerify(sec, out) → value

1 : parse sec = c

2 : if Bool(γ0 /∈ GT )

return ⊥
3 : if Bool( γ = γc

0 · γ )

return ⊥
4 : value := γ0

Compute(pub) → out

1 : parse pub = (A, B, V1, V2, W2)

2 : γ0 ← e(A, B)

3 : γ1 ← e(A, W2)

4 : γ2 ← e(V1, V2)

5 : γ ← γ1 · γ−1
2

6 : out := (γ0, γ )

out

Fig. 3. LOVE: Lowering the cost of Outsourcing and Verifying Efficiently a pairing.
The algorithms GlobalSetup, offSetup and onSetup are exactly as in Fig. 2. For clarity,
we frame the points in which LOVE differs from the previous proposal.

Correctness. The correctness of our LOVE protocol (depicted in Fig. 3) is evident
by inspection: value := γ0 (line 4 in onVerify ) and γ0 ← e(A,B) (line 2 in
Compute).



LOVE a Pairing 331

Security. The security proof for LOVE follows from the same arguments as the
one for original protocol given in [20]. For completeness, we present below the full
proof for our LOVE variant using the formalism of the offline/online framework
introduced in Sect. 3.1.

In the security experiment Expsec
A (λ, σ), A chooses the pairing argument

(A,B) ∈ G1×G2, and receives the string pub = (A,B, V1, V2,W1). The adversary
wins the game if she can forge an output out∗ = (γ∗

0 , γ′∗) on which onVerify
returns value /∈ {⊥, e(A,B)}, i.e., the verification does not reject the forgery
and returns a value different from the correct one.

Since we work with cyclic groups, each element has a unique representation as
a multiple of a generator. For convenience let us describe the elements in pub in
terms of their respective discrete logarithms (convention: lower case Latin letters
denote the dlog of the corresponding capital case group element): A = a · P1,
B = b · P2, U1 = u1 · P1, V1 = v1 · P1, U2 = u2 · P2, V2 = v2 · P2, W2 = w2 · P2.
By construction we have: ⎧

⎨

⎩

v1 = ra − ru1

v2 = r−1u2

w2 = cb + u2

(1)

where u1, u2 are uniform random variables (u.r.v.) on Zq, r is a u.r.v. on Z
∗
q ,

and c is a u.r.v. on [1, . . . , 2σ]. We make no assumptions on the distributions of
a and b since these may be chosen by the adversary.

Our first step is to prove that pub leaks no information about c. We do so
by showing that the distribution of (v1, v2, w2), seen as the Cartesian product of
the random variables obtained as the combination of (a, b, c, r, u1, u2) defined in
System (1), is independent of the distribution of (a, b, c). Formally,

Prob[{(v1, v2, w2)}|{(a, b, c)}] = Prob[{(v1, v2, w2)}] + negl(λ).

Proposition 1. Prob[{(v1, v2, w2)}] is negligibly close to q−3 (u.r.v. on Z
3
q).

This is immediate since adding a u.r.v. defined on Zq to any r.v. on any subset
of Zq yields a u.r.v. on Zq (this is the argument for v1 and w2); and any r.v.
on any subset of Zq multiplied by a u.r.v. on Zq yields a u.r.v. with overwhelm-
ing probability, i.e., except when either variable takes the value 0 (this is the
argument for v2). The latter event has probability q−1 which is negligible in the
security parameter λ (r �= 0 since it is invertible).

Our next goal is to show that the same statement holds even when condi-
tioning the probability to a given event {(a, b, c)} ∈ Zq × Zq × [1, . . . , 2σ].

Proposition 2. Prob[{(v1, v2, w2)}|{(a, b, c)}] is negligibly close to q−3.

This is immediate for the same reasoning as Proposition 1. In detail, w2 =
cb+u2 is uniformly distributed over Zq since so is u2, even conditioned to (b, c).
Whenever u2 �= 0, v2 = r−1u2 is uniformly distributed since so is r, and this
holds independently of b, c and w2. Finally, v1 = ra−ru1 is uniformly distributed
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since so is u1 (and r �= 0 since it is invertible by construction), and this holds
independently of a, b, c and v2, w2.

Once established that pub leaks no information about c to A (except with a
negligible probability in λ), we can move on to consider A’s forgery attempts.

Proposition 3. Given γ = e(U1, U2) ∈ GT , for any eligible forgery, i.e., for
any (γ∗

0 , γ′∗) ∈ G
2
T with γ∗

0 �= e(A,B), there exists a unique value c, for which it
holds that γ′∗ = γ∗

0
c · γ.

Because GT is a multiplicative group, we can re-write the probabilistic verifi-
cation check as γ∗

0
c = γ′∗ · γ−1. Since GT is cyclic and of prime order, any

element of GT is a generator (except for its unit). Thus, c = DLogγ∗
0
(γ∗

0
c) =

DLogγ∗
0
(γ′∗ · γ−1) is unique, modulus q (the group order).

Proposition 4. For any out∗ = (γ0∗, γ′∗) ∈ G
2
T such that γ0

∗ �= e(A,B),
Expsec

A (λ, σ) outputs 1 with probability at most 2−σ + negl(λ).

By Propositions 1 and 2, the string pub does not leak any information about c. This
implies that, for a malicious server, all values in [1, . . . , 2σ] are still equally likely for
c, even when conditioning over the A’s view pub. By Proposition 3, the probability
that any two values (γ∗

0 , γ′∗) ∈ GT satisfy the probabilistic test is one divided by
the number of possible values c can take. Since to A all values of c are still equally
likely, we get: Prob[Expsec

A (λ, σ) = 1] ≤ 2−σ + negl(λ), which corresponds to A
randomly guessing the value γ′∗ that passes the verification equation (there are
only 2σ such values, given that γ0

∗, γ ∈ GT and c ∈ [1, . . . 2σ]), or A’s view leaking
some information about c. �

Efficiency. The next section collects the actual computational complexity, tim-
ings and performance comparison against the original proposal of [20]. Here we
provide only high-level arguments by counting the main operations of both pro-
tocols. Compared to the original protocol in Fig. 2, the onVerify algorithm of
LOVE saves one membership test for a GT group element, and one multipli-
cation in GT . Regarding communication, LOVE beats the original protocol by
transmitting one less GT -element. Moreover, from the server side, LOVE’s opti-
mization also allows to compute γ′ as a product of pairings and share the final
exponentiation, which brings potential additional efficiency gains.

5 Implementation Results

We implemented LOVE and Di Crescenzo et al.’s protocol [20] using four differ-
ent sets of parameters with the help of the RELIC cryptographic library [2]. The
first choice is the legacy BN-254 curve previously used to set speed records [3]
at the 128-bit security level, whose security guarantees have been degraded to a
security level lying somewhere between 100 and 110 bits. The second choice is the
curve BN-382, adjusted for new security levels. The third choice is BLS12-381
with embedding degree k = 12 and 255-bit prime-order subgroup popularized
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by the ZCash cryptocurrency [10]. The fourth choice is BLS12-383, a GT -strong
curve generated by Scott [38,39] for applications where subgroup membership
checking is performance-critical.1 The last choice is the BLS24-509 curve origi-
nally proposed by Costello [19] and recently suggested by Guillevic as promising
at the 192-bit security [28]. RELIC provides dedicated Assembly acceleration for
Intel 64-bit platforms for all these curves using a shared codebase, which means
that finite field arithmetic is implemented using essentially the same techniques,
which permits fair comparisons across different curves and protocols.2 Given that
our choices of λ range from 100 to 192, in order to improve protocol performance
we selected a much lower statistical security level of σ = 50 bits in comparison
to 128 used in [20].

Table 1. Parametrization and concrete parameters for the BN, BLS12 and BLS24
pairing-friendly curves used in our implementation. For the specified seed choice z0,
the curve BN-254 provides around 100 bits of security; and the curves BN-382, BLS12-
381 and BLS12-383 provide a conjectured 128-bit security level. The curve BLS24-509
yields a conjectured security level of 192-bits.

BN curves: k = 12 BLS12 curves: k = 12 BLS12 curves: k = 12

p(z) 36z4 + 36z3 + 24z2 + 6z + 1 (z − 1)2(z4 − z2 + 1)/3 + z (z − 1)2(z8 − z4 + 1)/3 + z

q(z) 36z4 + 36z3 + 18z2 + 6z + 1 z4 − z2 + 1 z8 − z4 + 1

t(z) 6z2 + 1 z + 1 z + 1

h(z) 1 (z − 1)2/3 (z − 1)2/3

E b z0 �log2 p� �log2 q� �log2 h�
BN-254 2 −(262 + 255 + 1) 254 254 1

BN-382 2 −(294 + 278 + 267 + 264 + 248 + 1) 382 382 1

BLS12-381 4 −(263 + 262 + 260 + 257 + 248 + 216) 381 255 126

BLS12-383 4 264 + 251 + 224 + 212 + 29 383 256 126

BLS24-509 1 −251 − 228 + 211 − 1 509 408 100

Table 1 summarizes the main parameters corresponding to the BN [9], BLS12
and BLS24 [7] families of elliptic curves. Note that all of these curves are param-
eterized by an integer z, and they are defined by an equation of the form
Y 2 = X3 + b, and have a twist of degree d = 6. Table 1 also reports the salient
parameters of the BN, BLS12 and BLS24 curve instantiations using a concrete
choice of seed z0, suitable for implementing pairing-based protocols at the 128-
and 192-bit security level (this last security level is only achieved by the curve
BLS24-509). The requirements for these security levels are in good agreement
with the recommendations recently given in [28,29].

1 Following the definition given in [38], a curve is said to be GT -strong, if φk(p)/q does
not have small factors.

2 The resulting code is available in the library repository for reproducibility.
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Membership Testing in GT . The traditional way of performing a subgroup mem-
bership test for a group element g, i.e., to explicitly verify whether or not g ∈ GT ,
is to exponentiate g by the group order q to check whether gq is equal to the iden-
tity. An alternative way is first checking if g belongs to the cyclotomic subgroup
of order φk(p). Thanks to the Frobenius endomorphism, this is an inexpensive
operation (see below). If this test is passed, the second check consists of raising
g to a power given by the cofactor φk(p)/q, such that the final result lies in the
right subgroup. For GT , the first strategy is usually more efficient because the
cofactor φk(p)/q is typically considerably large, having, for the curve families
considered in this paper, a bitlength at least three times larger than that of q.

For the specific case of prime-order BN curves, we know that q = p + 1 − t,
so testing for membership can be done by checking that gq = gp+1−t ?= 1T , or
gp ?= g6z2

, which costs an efficient Frobenius map and an exponentiation by the
short exponent 6z2 [38]. The exponentiation can be performed after checking
that g is in the cyclotomic subgroup of order p4 − p2 + 1 through the equation
g · gp4 ?= gp2

, which only requires a few applications of powers of the Frobenius
and one multiplication. In the cyclotomic subgroup, faster [26] and compressed
squarings [3] are available and are favored due to the low Hamming weight of
the exponent.

The case for BLS12 curves is split into the two options, but we start by
checking for cyclotomic subgroup membership in both. The BLS12-383 curve is
GT -strong, so further checks can be omitted. For BLS12-381, the situation is
more complicated, as the cofactor is known to be composite but hard to factor.
A conservative way involves exploiting gq = g(p+1−t)/h ?= 1T to check gp ?= gz

and gh �= 1T , as implemented in the MIRACL library3. A faster way consists of
following the recommendation in [6] to perform the exponentiation by the group
order with the 4-GLS method using the Frobenius as an efficient endomorphism
in GT [23]. The 4-dimensional decomposition is fixed and sparse for the group
order, such that the exponentiation requires only an exponentiation by sparse z,
two multiplications and two applications of the Frobenius.

For the BLS24-509 curve, we first check for membership in the cyclotomic
subgroup of order p8 − p4 + 1 and then proceed with the same conservative and
fast strategies as in the BLS12 curve, namely, exploiting the group order equation
or optimizing the 8-GLS exponentiation. The latter approach only involves an
exponentiation by z followed by four multiplications and four Frobenius.

5.1 Timings for Operations in Pairing Groups

We implemented the conservative and fast membership testing in GT as
described in the previous section, and benchmarked the other pairings group
operations on a high-end Intel Core i7-6700K Skylake processor running at 4.0
GHz, with HyperThreading (HT) and TurboBoost (TB) turned off to reduce
measurement noise. RELIC was built for each curve using the available config-
uration presets with GCC 11.0.1 on a Fedora 34 operating system.
3 https://github.com/miracl/MIRACL/.

https://github.com/miracl/MIRACL/
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The target platform is obviously not representative of an embedded sys-
tem, but to keep comparisons fair we do not make usage of any memory-heavy
operation that would benefit either the pairing computation or the additional
protocol operations in one platform or another. In particular, the protocols we
implemented do not require fixed-base scalar multiplications or exponentiations
that could benefit from large precomputed tables in any of the groups.

Timings can be found in Table 2, for scalar multiplication in the unknown
point case for G1 and G2 using endomorphisms and a left-to-right w-NAF algo-
rithm with w = 4. Exponentiation of a variable base in GT does not rely on
precomputation and uses cyclotomic squarings and GLS endomorphisms with a
simple NAF algorithm, since inversion in a cyclotomic subgroup is just conjuga-
tion. We also include timings for operations with short scalar/exponents using
a simple NAF approach to show savings for shorter 50-bit challenges. We hope
these results can update the figures from [15] with current parameters, and note
that the rate at which the cost of performing operations increases from G1 to
G2, and to GT is lower than [15], indicating that we employ a more efficient
implementation of extension field arithmetic.

Table 2. Timings of pairing group operations implemented in RELIC reported in 103

cycles in a Skylake processor, averaged over 104 executions (HT and TB disabled). The
operations are scalar multiplication or exponentiation by a random integer r ←$

Z
∗
q or

a short 50-bit scalar c, and membership testing in GT (both conservative and fast vari-
ants). The pairing computation is split between Miller loop and Final exponentiation.

Operation\Curve BN-254 BN-382 BLS12-381 BLS12-383 BLS24-509

[r]P in G1 214 587 402 404 969

[c]P in G1, short c 72 133 134 134 210

[r]Q in G2 381 1268 836 879 5231

[c]Q in G2, short c 139 305 322 322 1631

gr in GT 601 1952 1317 1318 8323

gc in GT , short c 282 633 634 634 2487

Cons. Test in GT 262 895 683 – 2483

Fast test in GT – – 382 – 1660

e(P, Q) 1086 3664 3255 3187 16730

Miller Loop 641 2183 1469 1446 5924

Final Exp 445 1481 1786 1741 10806
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5.2 Timings for Delegated Pairing Computation

We implemented the original protocol due to Di Crescenzo et al. and our LOVE
variant in the same benchmarking machine, and collected the timings in Table 3.
We implemented both the public and the private input versions for completeness,
and adopted the fast membership check for a best-case scenario. The protocol
operations include preco (corresponding to the client’s offSetup), the server-side
portion of the computation server (Compute) and client-side online algorithms
client (onSetup and onVerify). We first note that the offline setup of both protocols
is the same, so no significant performance difference is observed in that step.
Compared to [20], LOVE has significant improvements for the client in all curves,
except for BLS12-383 because the main savings come from skipping one subgroup
membership checking. In the public inputs case, the LOVE’s improvements range
from 18.0% to 29.7%; while in the private inputs case, they decrease to around
10.3% and 14.9%. From the server’s point of view, the savings are between 20.2%
and 24.9% for public inputs; and 15.1% to 18.7% for private inputs. These extra
savings come from interleaving products of pairings inside Compute for the LOVE
protocol. We do not take the communication latency in consideration for our
performance estimates, but a simple analysis of how many bytes are transmitted
points out that LOVE saves 23–24% communication cost depending on the choice
of parameters by reducing by one the number of GT elements transmitted.

Now considering the cost of computing a pairing, we observe performance
improvements of LOVE in comparison with local computation ranging from

Table 3. Timings from running the pairing delegation protocols implemented in RELIC
reported in 103 cycles in a Skylake processor, averaged over 104 executions (HT and
TB disabled). For all protocols the statistical security parameter is set to σ = 50.
The label preco refers to the offline precomputation (offSetup), client to the client-side
online computation (onSetup and onVerify), and server to server-side online compu-
tation (Compute). We mark in bold the combination of parameter and setting that
provides a performance improvement over computing the pairing locally. In these
cases, we display between parenthesis the corresponding efficiency gain computed as
(1 − cost(client)/cost(e(P, Q)). Higher percentage values imply larger efficiency gains.

Protocol\Curve BN-254 BN-382 BLS12-381 BLS12-383 BLS24-509

cost(e(P,Q)) 1086 3664 3255 3187 16730

[20] (preco) 2055 6520 5207 5225 27659

[20] (client) 1183 3459 (5.6%) 2167 (33.4%) 1472 (53.8%) 8928 (46.6%)

[20] (server) 3284 11070 9889 9710 50363

LOVE (preco) 2050 6516 5199 5217 27657

LOVE (client) 916 (15.7%) 2433 (33.6%) 1768 (45.7%) 1397 (56.1%) 7322 (56.2%)

LOVE (server) 2595 8829 7600 7442 37800

Priv-[20] (preco) 4892 15607 12100 12219 65852

Priv-[20] (client) 2452 7071 4406 3358 18459

Priv-[20] (server) 4404 14800 13237 12991 67179

Priv-LOVE (preco) 4892 15619 1209 12219 65845

Priv-LOVE (client) 2130 6017 3953 3304 16298

Priv-LOVE (server) 3704 12560 10887 10701 54591
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15.7% to 56.2%. The speedup is higher for the curves BLS12-383 and BLS24-509
because of the GT -strong property. LOVE provides speedups even in the BN-254
and BN-382 curves, where [20] underperforms. Neither protocol is efficient in the
private inputs case. The significantly lower performance of Di Crescenzo et al.’s
protocol, even in the favourable setting when σ = 50 reduces the impact of GT

exponentiations, directly contradicts the estimates given in [20]. We attribute
this effect to the lack of membership checks in the performance estimates and
an inaccurate extrapolation from [15] to new security levels.

6 Conclusions

In this paper, we introduced LOVE: the most efficient protocol to date for secure
offline/online delegation of a pairing computation. While developing and ana-
lyzing LOVE we identified interesting questions that stem out of our research.

For instance, is there a secure way to leverage the first pairing delegation to
efficiency advantage of delegating one-more pairing? In other words, can ‘batch
delegation’ of n pairings be secure and more efficient than just repeating LOVE
n times? An orthogonal direction would be to investigate if one can securely
delegate other building blocks of the verification, such as hash-to-point or mem-
bership tests.

Also, protocol-tailored solutions might be interesting. For instance, in the
context of Groth’s zk-SNARK [27], the verifier needs to compute l scalar multi-
plications in G1, 3 executions of the Miller’s loop and 1 computation of the final
exponentiation (here l is a parameter of the zk-SNARK protocol). In this setting,
can we design a secure and efficient delegation protocol for the computation of
the three Miller loops and the final exponentiation? These are all components
needed for the computation of a pairing, but we are not aware of works that
outsource these components, instead of the whole pairing.

Finally, we identified the need for efficient and reliable GT -membership test-
ing. Since the BLS12-381 curve is being considered for standardization4, we
suggest starting a computational effort to find out the integer factorization of
the GT cofactor of this curve or bounds on its prime factors to better understand
its subgroup security.
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Abstract. Reporting sexual assault or harassment is notoriously diffi-
cult, and even though more victims are coming forward every year, a
significant percentage of victims do not formally report it (Morgan and
Oudekerk - U.S. Department of Justice). Studies have shown that most
sexual assault episodes occur by repeat perpetrators and that people are
more likely to report if they know that other victims of the same aggressor
exist (Callisto Homepage). Recently, the WhoToo protocol (Kuykendall,
Krawczyk and Rabin - POPETS 2019) presented a system in which the
identities of the accuser and the accused are protected until a certain
pre-specified number (quorum) of victims reports the same perpetrator.
We revisit this protocol from an implementation perspective, shedding
light on necessary clarifications and optimizations.

We first identify several key operations whose implementation was left
unclear. One of such operations, if implemented in a straightforward fash-
ion by using other WhoToo subroutines would compromise anonymity.
Fixes for another were simple but required a new (but straightforward)
security proof. Such fixes, although rather minor, are important for a
system whose design emphasizes practicality and fast operations.

Our second contribution concerns efficiency. Using a Distributed Input
PRF and a variant of Robust Anonymous IBE Encryption, we improve
detection of duplicated and matching accusations. Given N accusations,
our solution requires O(1) instead of O(N) distributed operations (the
most expensive primitive in WhoToo) to detect duplicates and match-
ing accusations once the quorum is reached. Our results give raise to
WhoToo+, a practical and more efficient variant of WhoToo that preserves
the original security guarantees.

Keywords: Privacy-preserving reporting of sexual misconduct ·
Anonymity · Secure multiparty computation · Efficient
implementations

1 Introduction

Sexual harassment is a common problem across all countries and contexts.
In educational settings it is specially prevalent. A recent study by Pontificia
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Universidad Católica de Chile has shown that, in one of the biggest universities
in the country, 39,9% of students declare that they have been victims of sexual
harassment, yet 65% of them did not formally report it [21]. Similar numbers
have been reported for female students at other universities [8,18], showing that
a significant number of victims never come forward. On the other hand, research
has shown that people are more likely to report sexual assault if they know
other victims of the same perpetrator exist [7]. Furthermore, an overwhelming
majority of sexual misconduct episodes are caused by offenders who have com-
mitted sexual assault before [7]. Project Callisto [24] was the first to address
this problem considering all these factors. They proposed a protocol in which
the identity of the accuser and the accused remain hidden until two victims
accuse the same perpetrator. Since then, two other protocols based on the same
premise have been proposed: WhoToo [20] and SAE [4]. Both define a quorum
q so that accusations are revealed only when q accusations against a certain
person are submitted. The first provides strong security guarantees, however, it
can become increasingly inefficient as the number of unopened accusations in
the system grows. SAE is significantly more efficient than WhoToo and even
though its security guarantees are stronger than Callisto, it reveals information
about matching accusations (accusing the same perpetrator) before the quorum
is reached.

We started our project aiming to implement WhoToo as securely and effi-
ciently as possible. Rather surprisingly, even if the protocol provides significant
security improvements over previous protocols, we uncovered and corrected two
gaps in the specification of key aspects (these gaps were not trivial, as they could
possibly compromise the protocol security), and identify some other aspects
whose design can be significantly improved in terms of efficiency.

1.1 Contributions

We revisit the WhoToo protocol, both correcting two key operations whose
implementations were left unclear and significantly improving the protocol’s
efficiency. First, we identify an inconsistency in a key element used to evaluate
whether a quorum of accusations has been reached. The protocol uses a random
encrypted polynomial, yet the operations in which the polynomial is used are
defined for polynomials in the clear (not encrypted). A straightforward modifi-
cation with a randomization step fixes the issue, yet it requires a new security
proof which we provide. Then, we identify another operation whose specification
leaves an implementation gap. WhoToo describes how to securely compare two
ElGamal encodings. The protocol, however, requires the simultaneous compari-
son of two pairs of ElGamal encodings. In this case, the solution is not as simple,
as a straightforward clarification would compromise either the anonymity of the
accuser or the accused. Instead of concocting a local fix for the issue, we take a
step back and re-examine the particular phase where it arises. Our solution then
solves this issue while carrying a positive side effect: efficiency.

Our second contribution is indeed improving WhoToo’s efficiency. When
receiving a new accusation, the protocol from Kuykendall et al. must compare
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it with every element of a list of unopened accusations, in order to achieve
two goals: (1) preventing duplicated accusations (those involving the same pair
accuser-accused), and (2) identifying all existent accusations for a given accused,
when the quorum has been reached. WhoToo’s strategy to deal with these tasks
becomes increasingly inefficient as the number of unopened accusations grows:
it takes O(N) interactive distributed operations to review a total number of
N unopened accusations in the system, for each of the abovementioned goals.
Inspired by SAE [4], we propose an alternative to the duplicate revision (goal
(1)) requiring only a constant number of (interactive distributed) operations,
by employing a distributed input pseudorandom function (DIPRF) in a new
way. Additionally, by relying on a different technique – a variant of strongly
robust identity-based encryption (IBE) – we reduce the number of interactive
distributed operations required to identify existent accusations (goal (2)) from
O(N) to a constant number too.1 This last technique may have applications to
other server-based privacy-preserving protocols and is of independent interest.

We provide security proofs for our modified protocol WhoToo+, together with
the first open-source implementation of WhoToo+(and WhoToo). Due to space
constrains, the security definitions are mostly informal and more complete proofs
can be found on the full version [17].

1.2 Related Work

Project Callisto: The first protocol specifically designed for privacy-preserving
sexual assault accusations [24]. Its design criteria was explicitly motivated by the
fact that “those who experience unwanted sexual contact may be more willing
to report it if they know that others have spoken up as well” [24] attempting to
privately preserve the names of accusers and accused so they can be compared
with those of new reports. Using cryptographic tools, Callisto hides all identities
until a second accusation is made against the same perpetrator.

Kuykendall, Krawczyk, and Rabin [20] describe three attacks against Callisto,
showing that there is no binding between the accuser’s identity and the accu-
sation, and that the identities of the accusers and the accused are not entirely
protected.

WhoToo: Following Callisto’s principles, Kuykendall, Krawczyk and Rabin
[20] propose WhoToo, a distributed protocol that provides a stronger binding
between the accuser’s identity and their accusation, as well as stronger security
definitions to protect the identities of the accusers and accused. Furthermore,
WhoToo works for any fixed quorum q, in contrast to Callisto where the quorum
was fixed to 2. Below, we present a brief summary of WhoToo. A more complete
picture is described in the next sections as WhoToo is indeed the base of our
proposed protocol.

1 Our protocol still takes O(N) local operations for goals (1) and (2) but they are local
operations as opposed to distributed operations.
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The protocol relies on threshold cryptography, so t + 1 out of n servers need
to agree in order to reveal any information, for some fixed 1 ≤ t ≤ n. Accusations
are stored in privacy-preserving multisets, represented as (encrypted) polynomi-
als whose roots are the accused people’s identifiers. Therefore, in order to add
an accusation, the servers multiply the existing set (polynomial) by (x − s),
where s represents the perpetrator’s identifier. Checking if the quorum has been
reached is simply done by checking if the (q − 1)th-derivative of the polynomial
evaluated at s is zero. Multiset confidentiality and robustness follows from the
servers computing over encrypted polynomials using verifiable secret sharing.

WhoToo seeks to protect all identities and avoid leaking information while
at most t servers are corrupt. The protocol relies on a clever combination of
ElGamal encryption, verifiable secret sharing, and group signatures based on
signatures of knowledge. The authors claim that this protocol would be feasible
in practice, yet they do not provide an implementation.

SAE: Secure Allegation Escrows (SAE) [4] is a distributed protocol for anony-
mous allegations that is based in the same quorum principles as Callisto and
WhoToo. It provides accusation confidentiality, accuser anonymity, accountabil-
ity, and scalability as long as there is an honest majority. Adding a new accu-
sation requires O(1) distributed operations. Arun et al. introduce a Distributed
Input Verifiable Pseudo-Random Function (DVRF), which is computed over a
distributed input and key. They describe a bucketing algorithm for accusation
matching, where each server locally can locally check if the quorum has been
reached by verifying if enough repeated DVRF values exist. Even though this
achieves a matching algorithm that needs no distributed operations, it comes at
a price: servers get to know if there are repeated values before the quorum is
reached. This information leak could be used for potential attacks by a malicious
user and an honest but curious server. A corrupted user colluded with an honest
but curious escrow server, for example, could make a false accusation against
a specific identifier and recover the number of accusations (with equal or lower
quorum) made against that identifier.

Organization: The rest of the paper is organized as follows. First, in Sect. 2,
we present some preliminaries needed to understand both the original WhoToo
protocol and our extension. Then, in Sect. 3, we review some tools and defini-
tions used in our solution WhoToo+. We then identify and correct two operations
that where left unclear in the WhoToo protocol, adding a new security proof for
the modified protocol. Afterwards, we present the optimizations that WhoToo+

provides, introducing the new schemes and describing the necessary modifica-
tions. Then, we outline the security proofs for the modified protocol. Finally, we
briefly analyze the efficiency of WhoToo+ and compare it to the original protocol.

2 Preliminaries

In this section we present the main components of the WhoToo Protocol.
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Security Requirements and threat model: The WhoToo protocol pro-
vides secrecy, anonymity, accountability and metadata hiding. Secrecy means
all information about a submitted accusation is protected until the quorum is
reached. Anonymity ensures that the identities of the accuser and the accused
are protected until the quorum is reached. Accountability guarantees that the
identity of the accuser is bound to a real world identity. Finally, metadata hiding
establishes that other than the total number of accusations in the system, no
partial information about the accusations and its matches is leaked.

WhoToo and WhoToo+ use the standard static threat model for threshold
cryptography, where an adversary can control up to t servers and any number
of users. Moreover, all communication for user key generation occurs over an
authenticated and confidential channel, while accusation submission occurs over
an anonymous and confidential channel.

2.1 WhoToo: An Introduction

This section provides an informal description of the WhoToo Protocol [20]. At a
high level, each accuser can submit an accusation against a certain person and
the identities of the accuser and the accused remain hidden until the quorum is
reached, namely, until a pre-specified number of accusers file accusations against
the same person.

Participating parties: The protocol strongly relies on threshold cryptography,
where in order to compute or reveal any information that could reveal private
values, t + 1 of the n servers need to agree or cooperate. This group of servers is
called the Distributed Authority (DA). The cooperation guarantees that as long
as no more than t servers are corrupted, all operations are performed correctly
and no server learns private values.

Accusers can be any user U of the system which are identified with a public
key R computed by the DA during registration. The identity of the accused is
represented by an arbitrary string D: a name, e-mail or any unique identifier.
For simplicity, we assume this value is unique but in practice the accuser can file
different accusations for every identity under which the accused is known [20].

Registration: WhoToo assumes there exists an external registration authority
which verifies the identities of the potential accusers. All registered users are valid
accusers. We envision the system used in a community where all members may
submit accusations.

For every user U in this list, the DA computes a public key R and registers
that the key R corresponds to user U . It also computes a private key α which is
only obtained by U .

Submitting accusations: In order to submit an accusation against D from a
user with identifier R, the user needs to provide encodings cD and cR of these
values. These values are intrinsically linked to D and R respectively, yet reveal no
useful information about D and R unless t+1 DA servers cooperate. Moreover,
the DA needs to be able to make computations on the encoded values in order
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to know if there are a certain number of accusations against the same D without
revealing anything about D.

To achieve this, two main tools are used. First, using verifiable secret sharing
[23], the user distributes shares of D to every server so if t + 1 or more of them
cooperate they can recover the secret, yet t or less servers learn nothing about it.
A linear secret sharing scheme allows efficient computation of some operations
from the shared values without revealing D. Additionally, R and D are encoded
using a threshold public key encryption scheme. Any user can encrypt using
the public key while cooperation is needed in order to recover the plaintext
as the secret key is distributed among the DA servers. Both of these schemes
preserve anonymity of the accuser and the accused as long as at most t servers
are corrupted.

Finally, the user also signs these encodings with their private key α, guar-
anteeing accountability. It also provides zero-knowledge proofs for the encoded
values so that the DA can verify that there are no malformed accusations while
preserving anonymity.

Discarding malformed and duplicated accusations: Once the DA
receives an accusation from a user, it verifies the signature and zero-knowledge
proofs, and discards any malformed accusations. Then, it must verify that it
is not a duplicated accusation, namely, that there is not already an accusation
from the same R to the same D in the system. This is non-trivial as the check
must not reveal anything about R or D other than if both are equal to a pre-
vious accusation. In order to do this, WhoToo introduces a distributed equality
testing that verifies if two ciphertexts encode the same plaintext. They use this
to compare the new accusation to every other cR and cD in the system.

Finding matching accusations: Accusations are stored in privacy-preserving
multisets, represented as polynomials where the roots are the accused people’s
identifiers. In order to add an accusation, the servers multiply the existing set
by (x − D) and checking if the quorum has been reached is done by verifying if
the (q − 1)th-derivative of the polynomial evaluated at D is zero.

The polynomial coefficients are encrypted using threshold public key encryp-
tion that is multiplicatively homomorphic. This allows to efficiently implement
the required set operations (adding a new element and checking if the quo-
rum has been reached) described above. The DA servers use their shares of
D to multiply the existing encoded polynomial by (x − D) when adding a
new accusation.

Once the quorum is reached, the DA needs to identify the individual match-
ing accusations. WhoToo uses the same equality testing used to discard dupli-
cated accusations to compare cD of the last submitted accusation to every other
accusation in the system.

Once the matching accusations and its respective accusers are identified, this
information is given to the corresponding authority.
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2.2 WhoToo+ Overview

In WhoToo+, we provide additional steps during registration and accusation sub-
mission, which together with significant changes during verification, duplicate
revision and finding matching accusations, allow us to correct some inconsisten-
cies found in WhoToo and improve efficiency. Consequently, WhoToo+ achieves
scalability, making it practical for real world implementation, even under a sig-
nificant backlog of unopened accusations. An overview of these changes is next.

Registration: The DA servers calculate k tokens for each valid user R using a
distributed message authentication scheme (MAC), and privately send the shares
to each user who reconstructs the tokens. No one else learns the value of these
tokens.

Submitting accusations: The user also provides a sharing of the secret R.
The user must submit one of the tokens from the registration which the DA uses
to validate the correctness of the sharing.

Discarding malformed and duplicated accusations: In order to check for
duplicated accusations, instead of using the distributed equality testing proposed
in WhoToo, we produce a combined distributed input x = f(R,D) with an
injective f . The DA computes a distributed input PRF on input x which then
each server locally compares with previous submissions to detect duplicates.

Finding matching accusations: During this phase, we also propose an alter-
native to the equality testing used in the original protocol. Using a threshold
variant of Robust Anonymous IBE, the DAs can distributively compute a valid
encoding for a specific identity D starting from only the shares of D. When an
accusation is received, the DA servers use their shares of D to compute an encod-
ing ρD, without learning anything about D. Once the quorum is reached and D
is revealed, the servers compute and publish skD. Each server can attempt to
decrypt ρD′ using skD for every other accusation (other than the one which trig-
gered the quorum being reached); if successful, then it is a matching accusation.
Since the IBE scheme is strongly robust (meaning ciphertexts do not reveal the
intended recipient even when valid secret keys of different recipients are known),
the privacy of not matching accusations is preserved.

3 Building Blocks

This section describes the components and notation used in the WhoToo+ con-
struction. We follow the original WhoToo presentation.

Notation, Assumptions, and Model: In what follows, we write [n] to denote
{ 1, . . . , n } for n ∈ Z. If S is a set, x ∈R S denotes picking x uniformly at random
from the elements in S. If V is an algorithm, running V and assigning its output
to variable a is denoted by a ← V . When describing distributed protocols which
share values among the players or servers, we use the notation {xi} or simply
{x} to denote that x is a shared value among servers and xi to denote the share



348 A. Hevia and I. Mergudich-Thal

of x corresponding to the i-th server. The protocols presented in this paper rely
on a variety of standard Diffie-Hellman assumptions which consider probabilistic
polynomial-time (PPT) adversaries. Due to space constraints, we refer the reader
to [4,20]. Also, all hash functions used here are treated as random oracles for
the security proofs.

Bilinear groups: Let (G1,G2,GT , e, g1, g2) be a Type-3 bilinear group with
prime order p, where g1 and g2 are generators of G1 and G2 respectively. We
suggest using the curves BLS12-381 or BN254.

ElGamal Encryption: WhoToo and WhoToo+ use three variants of ElGamal
encryption [11]. The first one is the (standard) multiplicatively homomorphic
ElGamal, which allows encryption of group elements, using the following primi-
tives:

ElGamal.Setup: Choose x ∈R Zp and h ∈R G1, and set g ← h1/x. Output
sk ← x and pk ← (g, h).

ElGamal.Enc(pk,m): Choose a ∈R Zp and output (c1, c2) ← (ga, ham).
ElGamal.Dec(sk, (c1, c2)): Output c2/cx

1 .
The second one is an extension of ElGamal to encrypt strings [1] which

uses a symmetric key authenticated encryption scheme (AuthEnc,AuthDec) with
keyspace K and a hash function HK with codomain K:

ElGamal.EncString(pk,m): Choose a ∈R Zp and output (c1, c2) ← (ga,
AuthEnc(HK(ha),m)).

ElGamal.DecString(sk, (c1, c2)): Output AuthDec(HK(cx
1), c2).

Finally, in our setting, the secret key sk = {x} for the ElGamal scheme must
be secret shared among the servers, so we use a variant that adds distributed
decryption to the previous ElGamal extension:

ElGamal.DistDec(c1, c2, {x}): Compute d ← SecShare.Exp(c1, {x}) and output
c2/d. Here SecShare.Exp is the distributed exponentiation protocol described
later in this section.

ElGamal.DistDecString(c1, c2, {x}): Compute d ← SecShare.Exp(c1, {x}) and
output AuthDec(H(d), c2).

The first and third ElGamal variants are CPA-secure under the Decisional
Diffie-Hellman assumption. The extension to strings is CCA-secure under the
strong computational Diffie-Hellman assumption if HK is a random oracle [1].

Zero-knowledge proofs: We require proofs of plaintext knowledge to detect
when users submit malformed accusations [20]. These proofs are standard, based
on the Schnorr’s protocol [25], applying the Fiat-Shamir heuristic [12] to make
it non-interactive.

ElGamal.Prove(c, a, ρ): Given c, an ElGamal encryption of m with randomness
a, output π, a non interactive proof of knowledge of m. Here ρ is the value used
to derive the random oracle challenge.

ElGamal.Verify(pk, π, c, ρ): Check if π is a valid zero-knowledge proof for the
plaintext encoded in c.
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3.1 Distributed Operations

Threshold Operations: Both WhoToo and WhoToo+ strongly rely on thresh-
old cryptography, and in particular, on the following threshold operations. They
require a group G with generators g and h. In WhoToo+, G = G1 and g = g1
unless stated otherwise.

Verifiable Secret Sharing (VSS): All threshold operations are based on
VSS which requires Shamir Secret Sharing [26]. In Shamir’s protocol, in order
to share a value x ∈ Zp, a random polynomial P of degree t ≤ n is chosen
such that P (0) = x, and then shares xi = P (i) are sent to the i-th server.
In this way, t or less servers learn nothing about x, but any greater number of
servers can recover the secret. Recovery is done by simply publishing the xi’s and
using Lagrange interpolation. Pedersen VSS [23] introduced share verification
by asking the party that wants to share x to compute both the sharing of x
and the sharing of a random value r ∈ Zp. At the same time, it must compute
verification values vi ← gaihbi , for i = 0, ..., t, where ai and bi are the coefficients
of the polynomials used for secret sharing x and r respectively. Observe that
x = a0 and r = b0. When each server DAi receives its shares, it verifies them
by checking if gxihri =

∏t
j=0 vij

j were xi and ri are the shares of DAi for x
and r respectively. We use the convention that if the operation outputs shares,
they are output locally to the servers themselves (each server obtaining their
own single share), as opposed to the case it outputs values, which are publicly
revealed. This functionality is captured in the following three operations:

SecShare.Encode(x): output2 {ω} = ({x}, {r}), v, e0 and r, where r is the
random value used for Pedersen VSS, v are the Pedersen verification values and
e0 ← gr.

SecShare.Verify(wi, v): Compute Pedersen verification, as described above.
Output false if verification fails and true otherwise [9].

SecShare.Reconstruct({x}): Reconstruct the secret x from its shares.
Many other operations can be build on top of Pedersen VSS such as recon-

structing gx without reconstructing x, or operating on the shares to compute
shares for a given function of x. We use several of them: Add, Multiply, Invert,
among others, which given shared inputs, output the shares of the corresponding
operation. For example, SecShare.Add({x}, {y}) outputs {z} where z = x + y.
We enumerate some of them here and provide a full list in [17].

SecShare.Gen(): Generates a shared secret {x} in a distributed manner so
x ∈R Zp is unknown to t servers or less [14].

SecShare.Exp(b,{x}): Reconstruct bx from the shares {x} directly by releas-
ing bxi and performing interpolation on the exponent, namely computing bx =∏

(bxi)λi , for Lagrange coefficients λi [20].
SecShare.ExpLocal(b, {x}, U): Output the pair (bxi , πi) privately to user U ,

where πi and a zero-knowledge proof of equality of discrete logarithm for bxi and
gxi . This operation is called PublicExponentiate in [4].
2 For this work, we slightly modify the semantics for the function SecShare.Encode(x)

so all shares {w} are received by the party who invokes the function.
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SecShare.CheckConsistent({ω}, e0): Extract ({s}, {r}) ← {ω} and output true
if e0 = SecShare.Exp(g, {r}) and false otherwise [20].

For conciseness’ sake, we sometimes use a simpler notation, where secret
share addition, multiplication, share inversion, and exponentiation are written in
infix notation. For example, given shares {x} and {y}, their addition is denoted
by {x} + {y}, their multiplication by {x} · {y}, inverting {x} by {x}−1, and

exponentiation of b ∈ G by b{x}. By {x} $← G we will also denote running
SecShare.Gen(), and share reconstruction by x ← {x}.

The following operations can be easily implemented from the previous oper-
ations, but we name them to make the presentation easier:

SecShare.Gen(g): Given a generator g of G, generates a shared secret {x} in
a distributed manner for x ∈R Zp, and outputs a public value gx ∈ G [14].

SecShare.GenInv(g): Given a generator g of G, generate a random shared
secret {x} in a distributed manner and output a public value g1/x [13]. This is

equivalent to computing g{y} where {x} $← G, {y} ← {x}−1.
SecShare.ExpRR((e0, e1), {x}): Given (e0, e1) an ElGamal encryption of gm,

output an encryption of gmx [20].
SecShare.MultExp(b1, b2, {x}, {y}): Reconstructs bx

1 · by
2 without exposing bx

1

nor by
2. The procedure is new, needed for WhoToo+. It is described in [17]. We

use the simpler notation {z} ← b
{x}
1 · b

{y}
2 .

All of these operations are secure multiparty computations and therefore
the view of the honest servers can be computationally simulated using only
public outputs (the verification values), a fact we use in the security proofs.
Indeed, with the exception of SecShare.ExpLocal, the operations that take a
shared value {x} and produce (the shares of) a new shared value {y} (e.g.
{y−1} = SecShare.Invert({x})) mentioned above, also publicly output new verifi-
cation values. To keep things simple, we do not include these values in the nota-
tion. Each operation also provides correctness, meaning that the reconstruction
does actually recover the secret shared value.

3.2 Distributed Group Signatures

A group signature scheme allows any member of set of participants to sign a
message on behalf of a group without disclosing their identity unless a spe-
cial participant, the group manager, wishes to trace and expose the signer. In
[20], Kuykendall et al. present a distributed variant of the Boneh, Boyen, and
Shacham group signature [6] where the manager is distributed among the servers.
This scheme is used to validate an accuser’s identity and reveal it once their accu-
sation has reached the quorum. BBS signatures provide a signature of knowledge
of a private key α together with an ElGamal encryption of R. To prevent dis-
closure of the identity of the signer, the private key to decrypt the second value
is distributed among the servers.

The distributed operations we need for both WhoToo and WhoToo+ are the
following:
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DistBBS.Setup(g1, g2): The servers compute secret keys {x} and {γ}, h ← gx,
w ← gγ

2 , and publish public keys pkeg ← (g1, h, w).
DistBBS.UserKeyIssueU ({γ}): The servers compute the private key {α} for

user U and send them their shares so that U can reconstruct α. They also
compute the public key R ← g

1/(α+γ)
1 .

BBS.Sign(pk, skU ,m): Compute cR ← ElGamal.Enc(pkeg,R) and σ, the sig-
nature of knowledge of skU . Output (cr, σ).

BBS.Verify(pk,m, c, σ): Verify that σ is a valid signature of knowledge.
DistBBS.Trace(cR, {x}): Output ElGamal.DistDec(cR, {x}).
Under the security notions of [5] this scheme is correct, fully anonymous and

fully traceable under the k-strong Diffie Hellman assumption in G1, as long as
the secret sharing operations are secure. The implementation of these functions
is detailed in [20].

3.3 Privacy-Preserving Multisets

One of the innovative aspects of WhoToo was the efficient use of new privacy-
preserving data structures. One of them is the multisets proposed by Kissner
and Song [19], constructed from encoded polynomials. In this solution, a set
is represented by a polynomial F (x) and elements in the multiset are repre-
sented as the roots of F (x). Adding a new element s is done by multiplying
F (x) with (x − s), and checking if the quorum has been reached after adding
a value s is done by calculating F (q−1)(x), the (q − 1)th-derivative of F (x) and
verifying if F (q−1)(s) = 0. We follow the description and notation from [20],
and let eF = (eF0 , eF1 , ..., eFd

) represent the encoded coefficients of polynomial
F (x) = F0 + F1x + ... + Fdx

d, where eFi
is an ElGamal encryption of gFi . Thus,

given an ElGamal encryption scheme, any polynomial F can be represented
by an encoded polynomial eF . Polynomials can be operated with the following
distributed operations:

PrivatePoly.Subtract(eF , eG): Output eH where H = F − G.
Private.Poly.Differentiate(eF , 	): Output eG where G is the 	th-derivative

of F .
PrivatePoly.Multiply(eF , R): Given an encoded polynomial F and a polyno-

mial R in the clear, output eG where G = F · R.
PrivatePoly.MultiplyLinear(eF , {s}): Output eG where G = F · (x − s).
PrivatePoly.ZeroTest(eF , {s}): Output true if F (s) = 0, false otherwise.

For a detailed description of these operations, see [20]. Using these opera-
tions over polynomials, Kuykendall et al. define the following privacy-preserving
multiset operations:

Set.Init(): Output eg0 . This creates the set.
Set.Add(eF , {s}): Output PrivatePoly.MultiplyLinear(eF , s). Adding a value s

to F is simply multiplying F by (x − s).
Set.Quorum(eF , {s}): Output true if (x − s)q divides F and false otherwise.

Value q is the pre-specified quorum for the protocol.
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In terms of security notions, we say the data structure is correct if all opera-
tions over the multiset (additions, and evaluating if any element has multiplicity
q) properly correlates to the above operations over the polynomials. Also, the
structure achieves (computational) hiding if any PPT adversary with limited
interaction with the data structure (who gets to choose some elements to add,
sees some of the other additions but does not get to see all added elements)
does not obtain any information other than the size of the set and what it can
infer from the multiplicity tests (see [19] for formal definitions). The WhoToo
protocol [20] required that these operations achieve perfect completeness and
computational hiding of the elements of the set. The only information revealed
should be the size of the set, e.g., the degree of the polynomial.

A first gap: As we mentioned in the introduction, our analysis detected some
minor inconsistencies in the specification of Set.Quorum, steaming from its use of
PrivatePoly.Multiply, PrivatePoly.MultiplyLinear and PrivatePoly.ZeroTest. We thus
provide a detailed description of all these operation in the following section.

4 Two Issues in WhoToo

In this section, we discuss two key aspects of the WhoToo protocol that (we
believe) require some clarifications before a secure and working version of the
protocol can be properly implemented. Although they are arguably small, finding
a secure working solution seems to require, in one case, revisiting the security
proof of a key component of the protocol and, in the other case, coming up
with a secure yet not obvious subprotocol to compare four encrypted values in
a pairwise fashion.

4.1 Securely Evaluating Quorum in WhoToo

There is an inconsistency between functions PrivatePoly.Multiply and Set.Quorum
as stated in the published version of [20]. The first function takes two arguments:
an encoded polynomial eF and a polynomial R in the clear. Yet, in [20, Fig. 5],
Set.Quorum invokes PrivatePoly.Multiply with two encoded polynomials. (The syn-
tax is consistent with this interpretation as SecShare.Gen returns an encoding
of the shared value when implementing with Pedersen VSS, as suggested in the
paper.)

Of course, at first glance, the most reasonable explanation is a typo. Indeed, it
seems we may simply take R (the second and random polynomial) in the clear.
This solution, however, requires revisiting Lemma 6.5 [20, page 423] because
this version of the Set.Quorum protocol does not hide all information on the set.
We notice that since R is “in the clear”, taking the derivative of the encoding of
(F ·R)′ and then evaluating it on s (say obtaining a value s∗) reveals information,
as s∗ only depends on (the actual, non-encoded) F and the publicly known
polynomial R. A concrete attack is described in the full version [17].

To prevent this attack, we decided to put forward a simple but robust modi-
fication of PrivatePoly.ZeroTest so value s∗ is randomized if not null before being
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publicly exposed. This randomization is done using protocol MsgRand before
decryption [20], details in [17]. In this way, we can have the random polyno-
mial R in the clear without leaking any information. We prove the following two
lemmas in the full version [17].

Lemma 4.1. The modified PrivatePoly.ZeroTest does not reveal any information
other than if the shared value s is a root of the encrypted polynomial eF .

Lemma 4.2. The modified Set.Quorum hides all elements of the set, revealing
only its size and whether or not the multiplicity of a shared value s is above of
a fixed threshold.

4.2 Identifying Duplicate Accusations

In WhoToo, in order to validate accusations, servers need to remove duplicate
accusations. They are those that identify the same pair of accused D and accuser
R. To eliminate them, servers must check whether a given pair (s = H(D), R)
has already appeared in some previous valid accusations, on the list Accusations
of unopened accusations. The protocol uses s = H(D) ∈ Zp as the identifier for
the accused so that it can be secret shared. To guarantee privacy, values s and R
are both encoded (encrypted) using a multiplicatively homomorphic ElGamal.
Let es′ and cR′ be encodings associated to an existing (valid) accusation in the
set Accusations, say the i-th accusation on the list. The WhoToo protocol pro-
vides Equal, a distributed equality testing operation that, given two encodings,
divides, randomized, and decrypts the result, so the only exposed value is 1 if
the plaintexts are equal, and a uniformly random value if not. We could cer-
tainly use Equal(es, es′) to compare whether two encodings es and es′ have equal
plaintexts s and s′. Protocol Equal indeed works perfectly and does not reveal
additional information when two encodings are compared. However, it does not
suffice in order to identify duplicate accusations, as we need to do more: we must
compare es and cR from two different accusations, simultaneously. The original
description for this step (WhoToo.VerifyAcc, line 4) calls for Equal on inputs
(es, cR), (es′ , cR′). The meaning of such call is confusing, at least, as the input
comprises four ciphertexts, not two. No description nor explanation is given
about how this equality test must be computed with four ciphertexts. At this
point, the most natural solution is to compare them sequentially, say first (es, es′)
and then (cR, cR′). This approach, unfortunately, compromises the anonymity
of the accuser. Consider the case that s = s′ but R �= R′. If we apply the above
strategy, everyone learns that there are two accusations against s, and since later
we learn that R �= R′, the accusations are not duplicated, thus valid. If the com-
parison is made starting with (cR, cR′), it is easy to see that the anonymity of
the accuser may be compromised this time. Even though no individual value for
the “unequal” plaintext is computed, learning that there are other accusations
in the system with the same identities would clearly compromise anonymity.

It is not trivial to adapt Equal for multiple inputs. The fact that it is unclear
and left open for the protocol implementer to decide, could potentially compro-
mise the security of the entire protocol.
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In the following section we provide an alternative to this process which pre-
serves anonymity and, in fact, is more efficient.

5 Improving WhoToo

WhoToo uses the distributed equality testing mentioned in the previous section
in two different components of the protocol: to identify repeated accusations
(same pair accuser, accused, the case above) and to identify accusations for the
same accused, in order to identify the accusations that triggered the quorum.
In each of these components, the test is used to compare a specific accusation
to all other unopened accusations. Therefore, the DA must compute as many
distributed operations as there are unopened accusations. If there is a big backlog
of accusations that have not reached the quorum, this becomes very inefficient.
We propose alternatives to each of these components where the DA only needs
to compute a constant number of distributed operations to obtain the same
information.

5.1 Duplicate Revision

As mentioned in the previous section, this component aims to check whether a
new accusation has already been submitted, by detecting if the same accuser
R has already submitted an accusation against the same s = H(D). Instead of
following the (rather problematic) WhoToo approach, we propose an alternative
inspired upon the SAE protocol. We use a distributed input pseudorandom func-
tion (DIPRF) introduced in SAE [4]. This DIPRF is a distributed variant of the
distributed verifiable PRF from [10].

Distributed Input Pseudorandom Functions (DIPRF): A DIPRF is a
pseudo-random function where the key and input are secret shared among the
computing parties. It outputs a sharing of the calculated pseudo-random value,
which can be sent directly to a user U or simply reconstructed by the servers.
The DIPRF introduced in SAE [4] can be securely and efficiently computed
among the servers. Their function is also verifiable, but we ignore that feature.
Indeed, we use the following result from [10]:

Proposition 1. Given a bilinear group G with generator g where a q-Decisional
Bilinear Diffie Hellman Inversion assumption holds, with sk ∈R Zq and pk =
gsk, Fsk(x) = e(g, g)(1/(x+sk)) is a PRF.

A slight modification gives us a DIPRF over Type-III pairings, namely Fsk(x) =
e(g1, g2)1/(x+sk). We further extend it, based on a similar construction in [4], to
obtain a distributed-input PRF variant whose sk is secret shared. It is shown in
Fig. 1. The security is discussed in [17].

Our solution: The intuition for our solution is the following. We create an
input that non-malleably combines the values R and s, and let the servers jointly
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DIPRF.Setup():

1. g ∈R G

2. ({skd}, pkd = gskd ) ← SecShare.Gen(g)
3. Publish pkd

DIPRF.Calculate({skd}, {x}, recipients):

1. {t} ← {skd} + {x}
2. {exp} ← {t}−1

3. if recipients = all DAs:

(a) output e(g, g){exp}

4. else if : recipients = U :
(a) {res} ← SecShare.ExpLocal

(e(g, g), {exp}, U)
Shares of {res} are sent to user U

5. else if recipients = none:

(a) {res} ← e(g, g){exp}

DIMAC.Setup():

1. (pkm, {skm}) ← DIPRF.Setup()
2. V = ∅

DIMAC.Tag({skm}, τ, U):

1. {j} $← Zp

2. {pj} ←DIPRF.Calculate({skm}, {j}, none)
3. {x} ← τ + {pj}
4. {dj} ← DIPRF.Calculate({skm}, {x}, U)
5. Send shares of j and dj to user U .

DIMAC.Verify({sk}, {τ}, dj , j):

1. if (dj , j) ∈ V : output False
2. {pj} ← DIPRF.Calculate({skm}, j, none)
3. {x} ← {τ} + {pj}
4. dj ← DIPRF.Calculate({skm}, {x}, all DAs)

5. V ← V ∪ {(dj, j)}
6. output dj = dj

Fig. 1. Distributed input PRF and MAC. Operations involving shares use arguments
with braces (e.g. {x}) as described in Sect. 3.1.

compute the DIPRF on that input. Then for every new accusation the servers
only need to compute this value once and compare it with the previously stored
ones. If a majority of servers agree that the new DIPRF value has not been
calculated before, then the accusation is not duplicated.

Since we can not use R directly, we define τ = H ′(R). When the accusation
is prepared, the user must provide a secret sharing of τ . The combined input for
the DIPRF will be {x} = {s} + {τ}. Under the random oracle model, the value
s+τ uniquely identify a valid pair of accused and accuser, except with negligible
probability [17].

Avoiding Mismatched Accusations: If we only use the DIPRF in this way, a
corrupted user could send shares of τ that do not match R, namely τ �= H ′(R).
In order to ensure that there is no mismatch between R and τ , we build a
Distributed Input MAC using the DIPRF in a somewhat standard way. The
resulting DIMAC scheme is described in Fig. 1.

Using the DIMAC scheme, we modify the protocol so that the DA computes τ
during initialization and then calculates k values T = DIMAC({sk}, τ), sending
the shares of each T directly to the user, so that no servers learn any of the
values of the DIMACs. Each value T is a pair (dj , j), where j is a random value
added to the DIPRF input. Our protocol uses k random j’s to prevent reusing
τ ’s and to prevent a malicious user from sending another user’s τ and a random
(dj′ , j′), which even though would fail verification, would reveal and invalidate
(spend) a real user’s DIMAC.

When making a new accusation, a user U sends their shares of τ with any
unused dj and the corresponding j to the DA. To ensure the shares of τ cor-
respond to the value given during initialization, the DA verifies (recomputes)
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the DIMAC. As a consequence of this approach, our protocol only allows each
user to submit at most k different accusations. We believe this is a reasonable
tradeoff.

5.2 Matching Accusations

Once Set.Quorum returns true, all accusations against the same perpetrator must
be opened. In order to find the matching accusations, WhoToo performs a linear
scan, distributively comparing each es in the Accusations set to the last accusa-
tion. If N = |Accusations|, this means that every time the quorum is reached, N
interactive distributed operations must be computed.

A naive approach to reduce this number is to generate public and private keys
(pks, sks) for every possible s and encrypt every sks with the servers’ public key.
When making an accusation against s, the user could include an encryption
of some value (say 1) with pks. Let ρs = Encpks

(1). Then, once the quorum
is reached for a certain s, the servers could cooperate to obtain sks and each
server could locally try to decrypt every ρs in the Accusations set. If the decrypted
value is 1, then it is a matching accusation. This approach would require only
one distributed operation, nevertheless, it has two significant issues: (1) gener-
ating and encrypting keys for every possible s is extremely inefficient and (2)
we need to ensure that no information about accusations that do not match is
revealed, which would require a robust encryption scheme that can guarantee
Decsks

(Encpks′ (1)) �= 1 for every s �= s′.
We propose a distributed variant of a Strongly-Robust Identity-Based encryp-

tion scheme, which allows to have a similar approach solving both issues.

Strongly Robust Distributed IBE: An Identity-Based Encryption is a public
key encryption scheme in which any user can use public parameters and a specific
identifier ID to compute a public key for that ID [16]. The corresponding secret
key is computed by a centralized trusted authority using a master secret key,
public parameters and the given ID. Notice that secret keys to decrypt messages
encrypted with public keys can be created after the message is encrypted.

Going back to our problem, we first notice that using IBE encryption solves
the first issue above, as secret keys can be computed when needed instead of pre-
computing them for all possible identities. To solve the second issue, we need a
new property for our (IBE) encryption scheme: Strong Robustness [3]. Strongly
robust IBE guarantees that DecskID

(EncskID′ (m)) = ⊥ for all m and for all
ID = ID′. Indeed, this ensures that no information is revealed when trying to
decrypt a message encrypted for a specific identity with a (valid) secret key that
does not match that identity. This security notion is formalized as SROB [3].

From IBE to Distributed IBE: In our setting, however, we do not have a
centralized trusted authority, so we create a variant with a distributed authority.
To achieve our goal, the servers operate as a distributed key center, providing
secret keys to decrypt IBE encrypted messages to any identity. Indeed, they
first compute a shared master private key and publish public parameters that
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anyone can use to encrypt for any identifier ID. Furthermore, the servers (not
the users) compute all IBE encryptions. Interestingly, our solution does not need
to encrypt any message (the empty message suffices), it simply must provide an
identity-based proof that the ciphertext was generated for the correct ID.

To describe our solution, we present the scheme we use as starting point, and
how we modify it to make it distributed.

IBE Syntax: More formally, an identity-based encryption scheme is a 4-tuple
(Setup,KeyGen,Enc, Dec) where Setup, on input λ (the security parameter), cre-
ates public parameters params and a master private key msk, KeyGen, on input
params and a given ID, creates the corresponding secret key skID, Enc, on
input message M , encrypts it under a given ID using params, and Dec, on
input ciphertext C and a secret key skID returns the corresponding plaintext
M .

We start from an identity-based encryption scheme proposed by Gentry [16]
which was later modified to work with Type-3 bilinear groups and to achieve
strongly robust ANON-IND-ID-CCA security by Okano et al. [22]. To obtain a
strongly robust scheme (SROB), Okano et al. apply the transform proposed by
Abdalla, Bellare and Neven [3]. Since our threat model is weaker (the servers will
generate the IBE ciphertext, so no chosen-ciphertext is needed), we can simply
use the original IBE scheme with the modifications for Type-3 pairings, which is
ANON-IND-ID-CPA secure as long as the truncated decision q-ABDHE assump-
tion holds for (G,GT , e) [16]. In the modified version, we require the truncated
decision q-ABDHE assumption to hold for (G1,G2,GT , e). Furthermore, since
we do not encrypt any message, we do not need IND-CPA security, therefore,
we aim to construct a strongly robust ANON-ID-CPA secure scheme.

The basic scheme: Consider a bilinear group (G1,G2,GT , e, g1, g2) with no
efficient known isomorphism between G1 and G2 of prime order p where g1
and g2 are generators of G1 and G2 respectively. Let H : {0, 1}∗ → Zp be a
universal one-way hash function. The following scheme IBE is a straightforward
simplification of the scheme by Okano et al. [22].

IBE.Setup(): The authority chooses random g′, h′ ∈ GT and h ∈ G2. Then, it
chooses a random value msk from Zp as master private key, and a public key
g′
1 ← gmsk

1 . The private output is msk and the public output is params =
(g′, h′, g1, g′

1, g2, h) and msk.

IBE.KeyGen(params, {msk}, ID): The authority computes a random rID ∈ Zp

and hID ← (h · g−rID
2 )1/(msk−ID). The output is the private key skID =

(rID, hID = (h · g−rID
2 )1/(msk−ID)).

IBE.Enc(params, {ID}): The authority chooses random values dec, s ∈ Zp and
computes com ← g′IDh′dec, C1 ← g′s

1 g−sID
1 , C2 ← e(g1, g2)s, and C3 ←

h′dece(g1, h)−s. It outputs ciphertext C ← (com,C1, C2, C3).

IBE.Dec(params, skID, C, ID): Given skID, it computes h′dec ← e(C1, hID) ·
CrID

2 · C3 and outputs true if com=g′IDh′dec otherwise it outputs false.
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DistIBE.Setup():

1. g , h ←R
GT

2. ({αi}t,n, g1 = gα
1 ) ← SecShare.Gen(g1)

3. h ←R
G2

4. params ← (g , h , g1, g1, g2, h, H)
5. {msk} ← {α}
6. output params, {msk}

DistIBE.KeyGen(params, {msk}, ID):

1. {γ} ← {msk} − ID

2. {γInv} ← {γ}−1

3. rID
$← Zp

4. hID ← (hg
−rID
2 ){γInv}

5. skID ← (ID, rID, hID)
6. output skID

DistIBE.Enc(params, {ID}):

1. {dec} $← Zp

2. com ← g ID} · h dec}

3. {s} $← Zp

4. {t} $← Zp

5. {tInv} ← {t}−1

6. {x} ← {t} · {ID}
7. a ← g

t}
1 · (g−1

1 ){x}

8. {y} ← {s} · {tInv}
9. C1 ← a{y}

10. C2 ← e(g1, g2)
{s}

11. C3 ← h dec} · (e(g1, h)−1){s}

12. C ← (com, C1, C2, C3)
13. output C

DistIBE.Dec(params, skID, C, ID):

1. h dec ← e(C1, hID)C
rID
2 C3

2. output com = g IDh dec

Fig. 2. Strongly Robust Distributed IBE. Operations involving shares use arguments
with braces (e.g. {x}) as described in Sect. 3.1.

Lemma 5.1 ([22]). Scheme IBE is ANON-ID-CPA secure and strongly robust
(SROB) under the q-ABDHE assumption for (G1,G2,GT , e).

The Decentralized scheme: The scheme above can be adapted for a dis-
tributed trusted central authority. The scheme, called DistIBE, is in Fig. 2. We
remark that, despite the name, DistIBE.Dec is not distributed since skID is
known by everyone, so this operation is simply performed locally by each server.

In terms of security notions, we adapt both ANON-ID-CPA and SROB to
the distributed setting in the obvious way. See [17] for details and proof of the
following lemma.

Lemma 5.2. DistIBE is ANON-ID-CPA secure and strongly robust (SROB)
under the q-ABDHE assumption for (G1,G2,GT , e) in the distributed setting.

Our Solution: When an accusation is received, the servers encrypt a mes-
sage with ID = s, which they obtain as a shared secret from the user in Who-
Too.Accuse, and add it to Accusations. We will call this value ρs. Similarly to the
naive approach, once the quorum is reached and s is revealed, the servers jointly
compute the private key for ID = s and then locally try to decrypt every ρs in
Accusations with that key. If the value can be decrypted with that key, then it
is an accusation against s.

Because it is a strongly robust scheme, the main result is a test of whether the
message can be decrypted by that key, a test that anyone who knows the secret
key for identity ID can perform. We can think of this scheme as an instance of
searchable encryption [2], where the keywords that can be searched for are the
identities.
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WhoToo+.Initialize():

1. ValidAccuser← GetUsers()
2. (pk, {msk}) ← DistBBS.Setup()
3. (pkd, {skd}) ← DIPRF.Setup()
4. (pkm, {skm}) ← DIMAC.Setup()
5. (params, {mskIBE)} ← DistIBE.Setup()
6. IdentityMap ← ∅
7. for each U ∈ ValidAccusers:

(a) R ← DistBBS.UserKeyIssueU ({msk})
(b) τ ← H (R)
(c) IdentityMap[R]← U
(d) for i ∈ [k]:

i. dj , j ← DIMAC.Tag({skm}, τ, U)
8. S ← Set.Init()
9. Accusations← ∅

10. UniqueAccs ← ∅
WhoToo+.Accuse():

1. U :
(a) (acci)i∈[n] ← WhoToo.PrepareAcc(D)
(b) Send acci to server DAi of the DA

over anonymous confidential channel
2. DAi : if not WhoToo.VerifyAcc(acci): halt
3. ρs ← DistIBE.Enc(params, {s})
4. S ← Set.Add(S, {s})
5. Accusations ← Accusations ∪{(cR, ρs, cD)}
6. if Set.Quorum(S, {s})

(a) Run WhoToo.OpenAccusations
(ρs, {s}, cD)

WhoToo+.OpenAccusations(ρs, {s}, cD):

1. Accusers ← ∅
2. s ← {s}
3. D ← Null
4. skID ← DistIBE.KeyGen

(params, {mskIBE}, s)
5. for each (cR , ρs , cD ) ∈ Accusations
6. if DistIBE.Dec(params, skID, ρs )
7. R ← ElGamal.DistDec(skeg, cR )
8. U ← IdentityMap[R ]
9. Accusers ← Accusers∪{U}

10. D ← ElGamal.DistDec(skeg, cD )
11. if H(D ) = s: D ← D
12. if D =Null: halt
13. Run Investigate(D, Accusers)

WhoToo+.PrepareAcc(D):

1. s ← H(D)
2. {ω}, v, e0, rs ← SecShare.Encode(s)
3. es ← (e0, v0)

4. rD
$← Zp

5. cD ← ElGamal.EncString(pkeg, D, rD)
6. {ωτ }, vτ , e0τ , rτ ← SecShare.Encode(τ)
7. for each i ∈ [n]

(a) mi ← cD||ωi||v||e0;
(b) (cR, σ) ← BBS.Sign(mi, skU )
(c) π0 ← ElGamal.Prove(es, rs, cR||σ)
(d) π1 ← ElGamal.Prove(cD , rD , cR||σ)
(e) acci ← (cR, cD, ωi, ωτi

, v, vτ , e0,
e0τ , σ, π0, π1, dj , j)

8. output (acci)i∈[n]

WhoToo+.VerifyAcc(cR, cD, ωi, ωτi
, v, vτ ,

e0, e0τ , σ, π0, π1, dj, j):

1. es ← (e0, v0)
2. mi ← cD||ωi||v||e0
3. (si, ri) ← ωi

4. τi, rτi
← ωτi

5. if any of the following fail: output False

(a) DIMAC.Verify({skm}, {ωτ }, dj , j)
(b) ElGamal.Verify(pkeg, π0, es, cR||σ)
(c) ElGamal.VerifyString(pkeg, π1,

cD, cR||σ)
(d) BBS.Verify(pk, mi, cR, σ)
(e) SecShare.Verify(ωi , v)
(f) SecShare.Verify(ωτi

, vτ )
(g) SecShare.CheckConsistent({rs}, v, e0)
(h) SecShare.CheckConsistent({rτ }, vτ , e0τ )

6. {x} ← {s} + {τ}
7. p ← DIPRF.Calculate({skd}, {x}, all DAs)
8. if p in UniqueAccs: output False
9. UniqueAccs ← UniqueAccs∪{p}

10. output true

Fig. 3. The WhoToo+ Protocol. Operations involving shares use arguments with braces
(e.g. {x}) as described in Sect. 3.1.

5.3 The Full WhoToo+ Description:

Figure 3 presents a full description of WhoToo+, including the modifications
needed to use DIPRF for duplicate revision and DistIBE for finding matched
accusations. Changes are shown in gray. See [17] for a more detailed description.

6 Security Analysis

In this section, we discuss the security argument for the WhoToo+protocol. To
obtain composability under threshold adversaries, we heavily rely on the fact
that the secret sharing operations SecShare (used to implement several of the
distributed operations used here) are simulatable (given the appropriate ideal
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Initialize:

1. ValidAccusers ← GetUsers()
2. Accusers ← ∅
3. UniqueAccs ← ∅

Accuse:
1. ValidAccusers ← GetUsers()
2. Receive D from user U
3. if U ValidAccusers: halt
4. else if (D, U) ∈ UniqueAccs: halt
5. else:

(a) Accusers[D] ← Accusers[D]∪{U}
(b) UniqueAccs ← UniqueAccs ∪{(D, U)}
(c) if |Accusers[D]| ≥ q:

i. Run Investigate(D, Accusers[D])

Fig. 4. FWhoToo+ : ideal functionality for WhoToo+ [20].

functionality) from only public outputs under a static adversary that corrupts
up to t < n/2 servers, under the discrete logarithm assumption [15].

Theorem 1. Let A be a real world adversary attacking WhoToo+ protocol and
corrupting up to t servers and any number of users. Under the assumption stated
above, the execution of WhoToo+ protocol under A can be simulated by an ideal
adversary given the ideal functionality FWhoToo+ (Fig. 4).

Due to space constraints, we only sketch the proof. Let A be a PPT adversary
that statically corrupts up to t out of the n >= 2t + 1 servers and an arbitrary
number of users. Our argument proceed in steps, considering a sequence of games
G1, . . . , G13, where G1 is the WhoToo+ protocol in real world under the real world
adversary A1 = A, and G13 is the ideal world with functionality FWhoToo+ and
ideal adversary A13. In each game Gi for i = 2, . . . , 13, we show how adversary
Ai−1 can be replaced by a new adversary Ai in such a way that the view for
all players and adversary Ai−1 in game G1 is computationally indistinguishable
from the view for all players and adversary Ai. To move between games, we first
use that under the discrete logarithm assumption, each secret sharing operation
SecShare from Sect. 3.1 can be simulated against a PPT adversary that statically
corrupts a minority of the servers and any number of users given the outputs
of the corresponding functionality [15]. Indeed, for DIPRF, the DIMAC, and the
DistBBS scheme, we use that these primitives depend on the distributed key
generation protocol by Gennaro et al. [14] (which is simulatable), they can be
simulated as so the keys are known to the simulator. We also use that the
security of all the distributed schemes is reduced to the security of the basic
(non distributed) version.

7 Efficiency Analysis

In this section we compare the efficiency between WhoToo and WhoToo+. Let
N be the total number of accusations in the system and m the total number of
valid users. Notice that all generations of random values can be pre-computed.
Table 1 presents the main results, showing the total number of online and offline
distributed operations required for duplicate revision (DR), matching accusa-
tions (MA) and verifying if the quorum has been reached (Quorum).
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Table 1. Efficiency comparison given a total number N of accusations, m valid users,
a maximum number k of accusations per user and quorum q.

RD

offline

RD

online

MA

offline

MA

online

Quorum

offline

Quorum

online

Total

offline

Total

online

WhoToo 0 6N 0 3N N + q + 5 N + 2 N + 2 10N + 2

WhoToo+ 5(mk+1) 6 12 14 N + q + 5 N + 2 5mk + N

+q + 22

N + 22

Our modifications lower the number of online distributed operations from
10N +2 to N +22, making WhoToo+more efficient if there is a backlog of at least
3 accusations. WhoToo+’s efficiency still depends on the number of accusations in
the system because the process of determining if the quorum has been reached
depends on the size of the multiset that records the accusations. Even though
the number of offline distributed operations increases, they can be pre-computed
and do not affect scalability.

When running the prototype on an Intel Core i9 CPU and 32 GB of RAM,
initialization for 1000 users and k = 3 took approximately 45 min. We believe
this is a reasonable amount of time for a practical solution. Submitting a new
accusation with a backlog of 100 unopened accusations takes 19 s if it does
not reach the quorum, and 27 s if it does, while WhoToo takes 42 and 70 s
respectively.
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Abstract. We consider threshold ring signatures (introduced by Bres-
son et al. [BSS02]), where any t signers can sign a message while
anonymizing themselves within a larger (size-n) group. The signature
proves that t members of the group signed, without revealing anything
else about their identities.

Our contributions in this paper are two-fold. First, we strengthen
existing definitions of threshold ring signatures in a natural way; we
demand that a signer cannot be de-anonymized even by their fellow sign-
ers. This is crucial, since in applications where a signer’s anonymity is
important, we do not want that anonymity to be compromised by a
single insider. Our definitions demand non-interactive signing, which is
important for anonymity, since truly anonymous interaction is difficult
or impossible in many scenarios.

Second, we give the first rigorous construction of a threshold ring sig-
nature with size independent of n, the number of users in the larger
group. Instead, our signatures have size linear in t, the number of sign-
ers. This is also a very important contribution; signers should not have
to choose between achieving their desired degree of anonymity (possibly
very large n) and their need for communication efficiency.

Keywords: Threshold ring signatures · Anonymity · Unique ring
signatures · Compact signatures

1 Introduction

It is often desirable for parties to anonymously sign on behalf of a group. A group
signature scheme [Cv91] enables this; the signature proves that a member of the
group signed, but does not reveal which one. However, the downside of group
signatures is that the group must be set up and maintained by a trusted group
manager.1 Threshold (group) signatures similarly allow any t of the parties in
1 List signatures [CSST06] are a related primitive. Like group signatures, list signa-

tures require a group manager to set up the keys and parameters. However, in a
list signature scheme, signers may only sign a certain amount of times before their
anonymity is revoked.
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a group to sign on behalf of the group together. The signature proves that t
members of the group signed without revealing which ones. But, as in group
signatures, trusted setup is required for each group.

A ring signature scheme (introduced by Rivest et al. [RST01]) enables signing
on behalf of a group without the need for interactive or trusted setup. Instead,
everyone independently generates a key pair, and publishes their public key. The
signer chooses the group (or ring) to anonymize herself amongst at signing time,
and does so using that ring’s public keys. In this paper, we focus on threshold ring
signature schemes (introduced by Bresson et al. [BSS02]), which are a natural
extension of ring signature schemes. In a threshold ring signature scheme, any t
signers can sign a message together while anonymizing themselves within a larger
(size-n) group. Like a ring signature scheme, a threshold ring signature scheme
allows the signers to pick the larger group they want to anonymize themselves
amongst in an ad-hoc way at signing time.

We make two major contributions in this paper: a strengthening of threshold
ring signature definitions, and a new construction with more compact signatures.
Our new definition demands that a signer cannot be de-anonymized even by
their fellow signers. In applications where a signer’s anonymity is important,
this protects their anonymity from insiders.

Our construction has signatures of size linear in t, the number of signers. All
prior rigorous constructions have signatures with size dependent on n, the size of
the larger group. Compact signatures are important; signers should not have to
choose between achieving their desired degree of anonymity (possibly very large
n) and their need for communication efficiency.

1.1 Application: Whistleblowing

We can imagine a set of people within a large corporation wanting to blow the
whistle on some corrupt activity within that organization; however, they are
afraid to come forward publicly because of the repercussions they might face.
On the other hand, blowing the whistle anonymously may not be effective, since
it is important that the public believe that the message came from within the
organization, from a sufficient number of organization members (and that it thus
has credibility). Threshold ring signatures are the perfect solution. The whistle-
blowers form a size-t sub-group, and anonymize themselves within the entire
size-n organization. Anyone can then verify that t members of the organization
all blew the whistle on the corrupt activity.

Small signature sizes are important here, since often the size n of an organiza-
tion is unreasonably large. In this application, it also becomes especially impor-
tant that each individual whistleblower retain anonymity, even against their
fellow whistleblowers. Otherwise, in order to de-anonymize all of the whistle-
blowers, all the organization administration would have to do is get one of the
whistleblowers’ cooperation.
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1.2 Our Contributions

As we mentioned earlier, we make two contributions: we give a stronger definition
of threshold ring signatures, and a construction that meets those definitions while
achieving signatures with size O(t).

Stronger Definitions. Our most significant definitional contribution is a strength-
ening of the anonymity property. We require that an adversary not be able to
tell the difference between signatures produced by two different subsets of sign-
ers of the same size t (within the same group of size n), as long as the two
subsets contain the same corrupt parties. All previous definitions of anonymity
[YLA+11,PBB12,OTYO18,HS20] do not allow the sets of signers to contain
any corrupt parties at all; this is a dealbreaker in many applications, where one
insider should not be able to bring down the entire group.

We use a strong syntax that fits well with our stronger notion of anonymity.
We require that signers be able to produce partial signatures locally, without
interacting with their fellow signers; the partial signatures should preserve the
signers’ anonymity, and should be combinable into a threshold signature by
any third party. Having such a noninteractive structure is crucial for preserving
anonymity against fellow signers; if signing were interactive, signers might learn
their peers’ identities via e.g. their IP addresses.

Construction with Succinct Signatures. We build the first threshold ring signa-
ture scheme with signatures of size O(t); all previous constructions have signa-
tures with size dependent on n. For groups of signers of size t significantly smaller
than the larger group of size n they wish to anonymize themselves amongst, this
is crucial.

Naively, to produce a threshold ring signature, each of the t signers could pro-
duce a ring signature, and their threshold ring signature would simply be a con-
catenation of these. The issue here is that a verifier would need to be convinced
that these ring signatures were produced by distinct signers. An immediate solu-
tion to this would be a zero-knowledge proof that each signature was generated
using a different secret key; however, this proof would be large, inefficient, and
producing it would require interaction between the signers.

Instead, we base our threshold ring signature scheme on a primitive called a
unique ring signature scheme (URS), introduced by Franklin and Zhang [FZ12]2.
A unique ring signature scheme is a ring signature scheme which allows the
linking of two signatures produced by the same signer on the same message with
respect to the same ring. We can construct a threshold ring signature simply by
concatenating t unique ring signatures. A verifier can check that no two unique

2 A similar approach to building a threshold ring signature scheme was mentioned
by Yuen et al. [YLA+13] where they would instead use a traceable ring signature
scheme [FS06]; however, it was not formalized or proven. As far as we can tell, the
definition of security they use for a traceable ring signature scheme does not seem
to allow such a proof.
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ring signatures were produced by the same signer, and so is convinced that t of
the n users signed the message.

Any unique ring signature scheme (secure under our definitions, which are
slightly modified from those of Franklin and Zhang) can be used to construct a
threshold ring signature scheme in such a way. We present a new, intuitive unique
ring signature scheme with signatures of size O(1) which draws inspiration from
the construction of Dodis et al. [DKNS04]. Unlike the work of Yuen et al., we
leverage a random oracle, allowing us to get smaller unique signatures. We addi-
tionally use an RSA accumulator [Bd94]3 and the generalized DDH assumption.
These assumptions are more standard than the Link-Decisional RSA assumption
used in some traceable ring signature constructions [TW05,ACST06]. Existing
constructions [FZ13] require an OR-proof showing that the signer is within the
ring that the message is being signed with respect to. This leads to a signature
size that scales with the size of the ring. We are the first to propose a URS with
signatures of size independent of the ring size.

At a high level, our unique ring signature scheme works as follows: each signer
in the ring hashes the message (together with the set of n public keys belonging
to the super-set of users), and raises it to the power of their secret signing key.
By the generalized DDH assumption, this does not reveal the signer’s identity.
Each signer then proves using non-interactive zero knowledge (NIZK) that they
used a signing key corresponding to one of the public keys belonging to the ring.4

It may seem that such a proof must be linear in the number n of public keys, but
we get around that by using an accumulator [Bd94] (a compact representation of
an arbitrarily large set that supports efficient proofs of membership) to represent
the set of public keys, like in the construction of Dodis et al. [DKNS04].

As required by our definitions, our construction is completely non-interactive;
each of the t signers produces a unique ring signature independently, and those
signatures are then simply concatenated to produce the threshold ring signature.
This concatenation can be done by any third party. An important consequence of
this is that the scheme is flexible, meaning that a signer can contribute a partial
signature at any point, resulting in a threshold signature with a threshold t that
is larger by 1.

3 We could instead use a bilinear map accumulator [CKS09]; however, the use of such
an accumulator would require an a-priori upper bound on the ring size.

4 Our use of NIZK proofs requires the presence of a common reference string (CRS).
At first glance, since a CRS is a form of setup, this might seem to make our construc-
tion a group signature scheme instead of a ring signature scheme. However, there is a
qualitative difference between a CRS (which is a global and reusable trusted setup)
and a per-user trusted setup (in group signatures, parties’ secret keys need to be
distributed by a trusted party). In particular, once the CRS is generated in a trusted
way (perhaps using an MPC ceremony), the parties in our system can generate their
own keys independently.
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1.3 Fully Compact Threshold Ring Signatures

While our threshold ring signature scheme is the first scheme to give signatures
of size independent of the ring size n, the signature size does still depend linearly
on the threshold t. A natural question to ask is,

Is it possible to build a threshold ring signature scheme
with signatures of constant size?

The answer is that it is possible; any threshold ring signature scheme can be
altered to have constant-size signatures with the use of succinct non-interactive
arguments of knowledge (SNARKs). This can be done simply by allowing any
third party—or perhaps one of the signers—to take the produced signature
(whose size might depend on n or t) and replace it with a SNARK of a ver-
ifying signature for the given ring. Since SNARK sizes do not depend on the
statement being proven or the witness for that statement, this yields a constant-
size signature.

While this transformation is optimal from an asymptotic point of view, the
non-black box use of public-key cryptography inside a SNARK would make this
construction prohibive in practice.5

1.4 Related Work

Work Signature Size Adversarial Keys? Assumptions
Our work O(t) Yes Generalized DDH, RSA, RO

Bresson et al. [BSS02] O(n log n) No RSA, RO
Petzoldt et al. [PBB12] O(n) No Quadratic MQ-problem, RO
Liu et al. [YLA+13] O(t

√
n) No Q-Strong DH, Subgroup Decision in Gq, DDH-Inversion

Zhou et al. [ZZY+17] O(n) No Syndrome Decoding Problem, Indistinguishability of Goppa Codes, RO
Chen et al. [CHGL18] O(n) No Ideal Lattice, Shortest Independent Vector Problem, RO

Okamoto et al. [OTYO18] O(tn) No Discrete Log, RO, Trusted Dealer
Haque et al. [HS20] O(n) Yes (Any) Trapdoor Commitments, QROM

Haque et al. [HKSS20] O(t) No SPB hashing, NIWI

Fig. 1. Threshold ring signature constructions

In Fig. 1 we list some known threshold ring signature constructions, their signa-
ture sizes, whether they support adversarial key generation, and the assumptions
they leverage. All prior constructions of threshold ring signatures have signatures
whose size depends on the number n of users in the ring R. This is not ideal, as
the threshold t may be much smaller than n.

5 Even the most basic public-key type operation, a scalar multiplication in an elliptic
curve, requires billions of gates [JLE17] when represented by a circuit. This needs
to be multiplied by a function of n for any existing threshold ring signature, or t
for our construction. While this is the state of the art, we cannot of course rule out
that more efficient constructions might emerge in the future, and this could be an
interesting venue for further research.
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Concurrent Work. Haque et al. [HKSS20], posted shortly after this paper, also
construct threshold ring signatures of size O(t). The advantage of their work
is that their construction does not require a common reference string (CRS),
which our construction uses for non-interactive zero knowledge (NIZK) proofs.
They get around the need for a CRS by using NIWI (non-interactive witness-
indistinguishable) proofs instead of NIZK proofs. However, the advantage of our
work is that we support adversarially generated public keys. In the scheme of
Haque et al., an adversary who is able to generate and register keys himself is
immediately able to break anonymity and unforgeability.6

Relying on honestly generated keys is significantly riskier than relying on an
honestly generated CRS. CRS generation occurs once, and therefore efficiency
is not too much of a concern: we can ensure security e.g. via secure multiparty
computation (which can be slow), by involving a large number of parties all
of whom are extremely unlikely to collude. However, taking such measures in
the generation of every party’s key pair, which can happen frequently, would be
unreasonable.

1.5 Outline

In Sect. 2, we define ring and threshold ring signatures. In Sect. 3, we describe our
threshold ring signature construction. Please refer to the full version [MOY20]
for a description of the tools and assumptions necessary for our constructions,
such as cryptographic accumulators.

2 (Threshold) Ring Signature Definitions

In this section, we recall the definitions of ring signatures and threshold ring
signatures (focusing on the latter).

2.1 Ring Signature Definitions

Ring signatures were originally defined by Rivest et al. [RST01] as a natural
extension of group signature schemes. Group signatures require some trusted
authority to act as a group manager, predefining groups of signers and dis-
tributing keys to members of those groups. These keys can then be used to
anonymously sign messages on behalf of the entire group. However, requiring a
trusted authority that distributes—and knows—signers’ keys can be a big draw-
back. Ring signatures instead allow signers to generate their own key pairs, and
to form groups in an ad-hoc way.
6 This is by design; in the proof of anonymity, the authors need to create simulated

NIWI proofs that are independent of the identities of the signers. They do this by
additionally allowing a witness to demonstrate a relationship between two keys in the
ring, where this relationship never holds between keys that are honestly generated. If
an adversary was able to register maliciously generated keys, she could register two
keys that do have this relationship, and use this to forge signatures with arbitrarily
high threhsolds, as long as those two corrupt keys are in the ring in question.
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Ring Signature Syntax. A ring signature scheme is defined as a tuple of four
algorithms (setup, keygen, sign, verify):

setup(1λ) → pp:
An algorithm that takes a security parameter λ and outputs a set of public
parameters pp. These public parameters pp include the security parameter
itself, and any global parameters which can be used within the other algo-
rithms.

keygen(pp) → (pk, sk):
An algorithm that takes the public parameters pp and outputs a key pair
(pk, sk).

sign(pp,msg, {pkj}j∈R, ski) → σ:
An algorithm that takes the public parameters, a message msg ∈ {0, 1}∗ to
be signed, the set of public keys of the users within the ring {pkj}j∈R, and
the secret key ski of the signer i ∈ R (which must correspond to a public
key within the set of public keys {pkj}j∈R). Outputs a signature σ on the
message msg.

verify(pp,msg, {pki}i∈R, σ) → accept/reject:
An algorithm that takes the public parameters, the message, the set of public
keys of the users within the ring, and a signature σ. Outputs accept or
reject, reflecting the validity of the signature σ on the message msg.

An important property of ring signatures is setup freeness, which requires
that signers’ keys be generated independently. (We note that most ring signature
schemes do have a setup algorithm that is run by a trusted authority. However,
this authority does not produce the secret keys for the signers; its only job is to
produce the public parameters such as moduli and generators used throughout
the scheme. The signers can then generate their keys independently using those
public parameters.)

Ring Signature Security Definitions. Informally, a ring signature scheme
must satisfy the following properties [Liu19,BSS02,DKNS04]:

– Correctness requires that a correctly generated signature must verify.
– Unforgeability requires that an adversary should not be able to forge a signa-

ture on behalf of another user.
– Anonymity requires that a signature should completely hide the identity of

the signer, even if the adversary has access to a signing oracle.
– Unlinkability requires that no adversary should be able to determine whether

two signatures were produced by the same signer, even if the adversary has
access to a signing oracle.

Remark 1. Note that anonymity implies unlinkability, and vice versa; however,
when access to signing oracles is removed, this is no longer the case.

We omit the formal definitions of ring signatures from this paper, focusing
instead on threshold ring signatures.
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2.2 Threshold Ring Signature Definitions

Threshold ring signatures are similar to ring signatures, but instead of allowing
any one signer to anonymize themselves among a set of signers, a threshold ring
signature scheme allows any t signers to anonymize themselves among a larger
set (or ring) of signers R. A verifier can then check that at least t signers in the
ring R signed the message. Note that a ring signature scheme can be viewed as
a threshold ring signature scheme with t = 1.

Threshold Ring Signature Syntax. A threshold ring signature scheme is
usually defined as a tuple of four algorithms (setup, keygen, sign, verify), where
sign is interactive and requires the secret keys of t of the signers. We instead
choose to define a threshold ring signature scheme as a tuple of five algorithms,
by adding combisign. We let sign be locally executed by each signer i (requiring
only that signer’s secret key ski), and produce partial signatures σi; combisign
can then be run by any third party to combine those partial signatures into a
threshold signature.

We describe the syntax of combisign below. Notice that it does not require
the secret keys of any of the signers.

combisign(pp, {σi}i∈S , t) → σ:
An algorithm that takes partial signatures {σi}i∈S from t signers, and outputs
a combined signature σ.

The syntax of setup, keygen, sign and verify remain unchanged from those of
a ring signature scheme, except that sign outputs partial signatures, and verify
takes the threshold t as input.

This syntax specification is very strong. In particular, it demands the follow-
ing desirable properties:

Setup Freeness
Every signer can generate their own key pair. This is a feature of all ring
signature schemes.

Dynamic Choice of Ring Size n
Different sets of signers can choose rings of different sizes.

Dynamic Choice of Threshold t
Arbitrarily many signers’ partial signatures can be combined into a single
threshold signature; the signers don’t need to know t when they produce
their partial signature. Verification takes a threshold t, and checks that at
least that many signers have signed. The upside of this is what is called
flexibility [OTYO18], meaning that signers can contribute their partial sig-
natures after others have signed. Our syntax demands a weak notion of flex-
ibility where signers can contribute their signatures before combination via
combisign; if combisign is as simple as e.g. concatenation of the partial sig-
natures, the stronger notion of flexibility—where signers can contribute even
after combination—follows.
The downside of this flexibility is that the number of signers cannot be hidden
by a signature σ.
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Non-interactive Signing
As per our syntax, parties generate partial signatures locally; those par-
tial signatures can be combined into a threshold signature by any third
party. Non-interactive signing is essential in ensuring the signers’ privacy
(even against their peers), since anonymous interactive signing would require
anonymous communication, which is often difficult to achieve in practice.

Threshold Ring Signature Security Definitions. We base our security
definitions on Bresson et al. [BSS02] and Haque et al. [HS20]. (In particular,
we require security against an adversary who can generate and register public
keys, as required by Haque et al.) We strengthen the definition of anonymity to
require that signers remain anonymous even to their fellow signers.

Additionally, both of our security games are defined using partial signatures,
where a complete signature will be formed by combining the partial signatures
of all the signers. This allows for a simple statement of the games while still
demanding security against fellow members of the signing rings R. An adversary
wins the unforgeability game if he is able to forge a partial signature, and he wins
the anonymity game if he is able to distinguish between two partial signatures.

Definition 1 (TRS). A threshold ring signature scheme is secure if it sat-
isfies correctness (Definition 2), unforgeability (Definition 3), and anonymity
(Definition 4).

Definition 2 (Correctness for TRS). Correctness requires that verification
return accept on any honestly generated signature.

More formally, let TRS = (setup, keygen, sign, combisign, verify) be a TRS
scheme. We say that TRS is correct if for all security parameters λ ∈ N, for
all messages msg ∈ {0, 1}∗, all rings R, and all signer sets S ⊆ R:

Pr

⎡
⎢⎢⎢⎢⎣

pp ← TRS.setup(1λ),
{(pki, ski) ← TRS.keygen(pp)}i∈R,
{σi ← TRS.sign(pp,msg, {pkj}j∈R, ski)}i∈S ,
σ ← TRS.combisign(pp, {σi}i∈S , t = |S|) :
TRS.verify(pp,msg, {pkj}j∈R, σ, t = |S|) = accept

⎤
⎥⎥⎥⎥⎦

= 1

Definition 3 (Unforgeability for TRS). Unforgeability requires that no effi-
cient adversary A is able to forge a valid signature σ for some ring R and mes-
sage msg∗ for which A has issued fewer than t corruption queries (on signers in
R) or signing queries (for ring R and message msg∗), where t is the threshold.

More formally, let TRS = (setup, keygen, sign, combisign, verify) be a TRS
scheme. Consider the game GameUnforge

TRS,A (1λ) in Fig. 2 between a probabilistic
polynomial-time adversary A and a challenger CH.

We say that TRS is unforgeable if for any efficient adversary A,

Pr[A wins Gameunforge
TRS,A (1λ)] ≤ negl(λ)

for some negligible function negl(λ).
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Gameunforge
TRS,A (1λ)

A CH
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Setup phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

U Qcorrupt = ∅, Qsign = ∅

pp ← TRS.setup(1λ)

{(pki, ski) ← TRS.keygen(pp)}i∈U

pp, {pki}i∈U

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Query phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
A may issue polynomially many corruption (C), signing (S) or registration (R) queries

C(i) / S(msg, R, i) / R(i, pki)

Corrupt :
add i to Qcorrupt, and look up ski ∈ {skj}j∈U ,

Sign :
ignore the query if i ∈ Qcorrupt

σi ← TRS.sign(pp, msg, {pkj}j∈R, ski)
add (msg, R, i) to Qsign

Register :
add i to U and to Qcorrupt, and store pki.

ski / σi / ⊥
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Challenge phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

σ∗, msg∗, R∗ ⊂ U , t

If all of the following checks pass, A wins:
TRS.verify(pp, msg∗, {pki}i∈R∗ , σ∗, t) = accept

Let Qmsg∗,R∗
sign be the set of challenge signer indices

on which signing queries on the challenge message
and ring have been issued

|R∗ ∩ (Qcorrupt ∪ Qmsg∗,R∗
sign )| < t

Fig. 2. The unforgeability game for TRS

Remark 2. Note that in the unforgeability game, the challenger responds to
signing queries with partial signatures. This is to capture that the adversary
might know some of the secret keys (due to corruption queries), and is therefore
only interested in seeing the partial signatures by the honest parties. The same
holds true for the anonymity game.

Definition 4 (Anonymity for TRS). Anonymity requires that no efficient
adversary A be able to distinguish between partial signatures produced by two
different signers in the same ring.

More formally, let TRS = (setup, keygen, sign, combisign, verify) be a TRS
scheme. Consider the game Gameanon

TRS,A(1λ) in Fig. 3 between a probabilistic
polynomial-time adversary A and a challenger CH.
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Gameanon
TRS,A(1

λ)

A CH
. . . . . . . . . . . . . . . . . . . . .Setup phase: as in Gameunforge

TRS,A (1λ) . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . .First Query phase: as in Gameunforge
TRS,A (1λ) . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Challenge phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

msg∗, R∗ ⊂ U , i∗0, i
∗
1

b ←R {0, 1}
σi ← TRS.sign(pp, msg∗, {pkj}j∈R∗ , ski∗

b
)

σi∗
b

. . . . . . . . . . . . . . . . . Second query phase: as in first query phase . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . .Challenge response phase . . . . . . . . . . . . . . . . . . . . . . . . . .

b′
If all of the following checks pass, A wins:

b′ = b,

∀β ∈ {0, 1} : (msg∗, R∗, i∗β) 
∈ Qsign,

i∗β ∈ R∗, i∗β 
∈ Qcorrupt

Fig. 3. The anonymity game for TRS

We say that TRS is anonymous if for any efficient adversary A,

Pr[A wins Gameanon
TRS,A(1λ)] ≤ 1

2
+ negl(λ)

for some negligible function negl(λ).

3 Our Threshold Ring Signature Construction

A natural approach to building threshold ring signatures is having each of the t
signers produce a ring signature, and then appending to the list of t signatures
a zero knowledge proof that all of the signatures were produced using distinct
signing keys. However, this approach has two downsides.

1. Producing the zero knowledge proof requires interaction among the signers.
2. The zero knowledge proof may be complex. (One way to do this is to commit

to the secret keys used, order the commitments by secret key, prove that
each key was used to produce the corresponding signature, and use t range
proofs to prove that each committed key is strictly larger than the previous
one - since we need to prove that the signatures were produced by t distinct
signers).

In order to circumvent these two issues, we leverage unique ring signatures
(URS) [FZ12,FZ13], which allow the linking of two signatures produced by the
same signer on the same message with respect to the same ring.
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There are several related primitives in this space. Linkable ring signatures
[LWW04] allow the linking of any two signatures produced by the same signer,
regardless of message and ring. Traceable ring signatures [FS06] additionally use
nonces, and allow the linking of any two signatures produced by the same signer
with respect to the same nonce. Furthermore, traceable ring signatures allow a
notion of anonymity revocation; if a signer produced two signatures on different
messages using the same nonce, her identity can be recovered.

Unique ring signatures can be thought of as traceable ring signatures,
with nonces always equal to the message together with the ring, and without
anonymity revocation. Unique ring signatures are called unique because in most
constructions, there is a part of the signature (called the tag) which is determin-
istic given the message, ring and signing key.

To build our threshold ring signatures, each of the t signers produce a unique
ring signature; then, there is no need to additionally prove that the signatures
were produced using distinct signing keys, since this is immediately apparent.7

If the underlying unique ring signatures have size O(1), then the threshold ring
signatures will have size O(t).

The rest of this section proceeds as follows:

1. In Sect. 3.1, we state the definition of a unique ring signature scheme (URS)
[FZ12].

2. In Sect. 3.2, we construct a URS scheme with signatures of size O(1).
3. In Sect. 3.3, we use our URS scheme to construct a TRS scheme with signa-

tures of size O(t).

3.1 Unique Ring Signature Definitions

We leverage the notion of unique ring signature (URS) schemes, as defined by
Franklin and Zhang [FZ12]. We modify the definitions of Franklin and Zhang to
allow the adversary to register its own public keys.

Unique Ring Signature Syntax. We define a unique ring signature scheme
as a tuple of five algorithms (setup, keygen, sign, verify, link). The setup, keygen,
sign and verify algorithms all have the same input and output behavior as the
corresponding ring signature algorithms. The link algorithm (described below)
allows any verifier to determine whether two signatures were produced by the
same signer (on the same message).

link(pp, msg, {pkj}j∈R, σ0, σ1) → {linked, unlinked}:
An algorithm that takes a message msg, public keys belonging to members of

7 A similar idea was mentioned by Yuen et al. [YLA+13]; however, it was not for-
malized or proven. In particular, a stronger linkability property is needed from the
underlying traceable ring signature scheme in order for the TRS construction to be
secure. Additionally, since Yuen et al. focus on avoiding the random oracle assump-
tion and we do not, we obtain a TRS construction with size O(t) signatures, while
they obtain a TRS construction with size O(t

√
n) signatures.).
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a ring R, and two signatures σ0, σ1. Outputs linked or unlinked, depending
on whether the two signatures were produced by the same signer.

Franklin and Zhang avoid the need for a link algorithm by requiring that a
part (called the tag) of every signature be uniquely determined by the message,
ring and signing key; however, we introduce the link algorithm, which is a more
general formalization of this requirement.

Unique Ring Signature Security Definitions. Informally, a unique ring
signature scheme must satisfy the following properties:

– Correctness requires that a correctly generated signature must verify (this is
inherited from ring signatures)

– Uniqueness requires that no t − 1 corrupt signers can produce t signatures
that verify for the same message and ring and appear unlinked (we present
this property as Definition 6).

– Anonymity requires that no adversary can determine whether two signatures
that verify for different messages or under different rings were produced by
the same signer (we present this property as Definition 7).

Definition 5 (URS). A unique ring signature scheme is secure if it satisfies
correctness, uniqueness (Definition 6) and anonymity (Definition 7).

Definition 6 (Uniqueness for URS). Let URS = (setup, keygen, sign, verify,
link) be a URS scheme. Consider the game Gameunique

URS,A(1λ) in Fig. 4 between a
probabilistic polynomial-time adversary A and a challenger CH.

We say that URS is unique if for any efficient adversary A,

Pr[A wins Gameunique
URS,A(1λ)] ≤ negl(λ)

for some negligible function negl(λ).

Definition 7 (Anonymity for URS). Given two signatures for different
messages it should be infeasible for an adversary to determine whether they
were created by the same signer or not. More formally, let URS = (setup,
keygen, sign, verify, link) be a URS scheme. Consider the game Gameanon

URS,A(1λ)
in Fig. 5 between a probabilistic polynomial-time adversary A and a challenger
CH.

We say that URS is anonymous if for any efficient adversary A,

Pr[A wins Gameanon
URS,A(1λ)] ≤ 1

2
+ negl(λ)

for some negligible function negl(λ).
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Gameunique
URS,A(1

λ)

A CH
U Qcorrupt = ∅, Qsign = ∅

pp ← URS.setup(1λ)

{(pki, ski) ← URS.keygen(pp)}i∈U
pp, {pki}i∈U

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Query phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
A may issue polynomially many queries corruption (C), signing (S) or registration (R) queries

C(i) / S(msg, R, i) / R(i, pki)

Corrupt :
add i to Qcorrupt, and look up ski ∈ {skj}j∈U

Sign :
ignore the query if i ∈ Qcorrupt or if i R∈

σ ← URS.sign(pp, msg, {pkj}j∈R, ski)
add (msg, R, i) to Qsign

Register :
add i to U and to Qcorrupt, and store pki

ski / σ / ⊥

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Challenge phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

msg∗, R∗, {σk}k∈[t]

Let Qmsg∗,R∗
sign be the set of signer indices i such that

(msg∗, R, i) ∈ Qsign, where R is any ring s.t. {pki}i∈R∗ = {pki}i∈R.

If all of the following checks pass, A wins:

|R∗ ∩ (Qcorrupt ∪ Qmsg∗,R∗
sign )| < t

For k ∈ [t]:

URS.verify(pp, msg∗, {pkj}j∈R∗ , σk) = accept

For l ∈ [t], l 
= k:

URS.link(pp, msg∗, {pkj}j∈R∗ , σk, σl) = unlinked

Fig. 4. The uniqueness game for URS. Note that t verifying pairwise-unlinked signa-
tures only count as a win for the adversary if the adversary has not corrupted (or
queried the signing oracle on the appropriate message and ring for) t or more of the
relevant parties.

3.2 A Unique Ring Signature Scheme

We describe a unique ring signature scheme in Construction 1 in terms of an
underlying accumulator scheme ACC, a non-interactive zero-knowledge argu-
ment of knowledge scheme NIZKAoK, a group G (of order p, with generator g)
in which the generalized DDH problem is hard, and a random oracle H which
maps arbitrary strings to elements in G. We refer to the full version [MOY20]
for a description of these building blocks.

The non-interactive zero-knowledge argument of knowledge scheme
NIZKAoK will be used for the relation Rsig, which is described below.
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Gameanon
URS,A(1

λ)

A CH
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Setup phase: as in Gameunique

URS,A(1λ). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . First query phase: as in Gameunique
URS,A(1λ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Challenge phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

msg∗, R∗, i0, i1 ∈ R∗

b ←R {0, 1}
σ∗ ← URS.sign(pp, msg∗, {pkj}j∈R∗ , skib)

σ∗

. . . . . . . . . . . . . . . . . . . . . . . . . . . . Second query phase: as in first query phase . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Challenge response phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

b′
If all of the following checks pass, A wins:

b′ = b

i0 
∈ Qcorrupt, i1 
∈ Qcorrupt

(msg∗, R∗, i0) 
∈ Qsign, (msg∗, R∗, i1) 
∈ Qsign

Fig. 5. The anonymity game for URS. Note that, if the adversary queried the signing
oracle on either of the challenge signer identities with the challenge message and ring,
he could legitimately link the output of the signing oracle to one of the signatures,
helping him determine whose secret key was used to produce it. So, if such a signing
query was asked, we do not count the adversary’s win.

Rsig

⎛
⎝

φ = (G, g,ACC.pp,
aR, σ′, h),

w = (pk, sk, wa)

⎞
⎠ =

⎛
⎝

(pk = gsk)
∧ACC.verify(ACC.pp, aR, pk, wa)
∧(σ′ = hsk)

⎞
⎠

Construction 1

setup(1λ):
– Sample a DDH group (G, g, p) with security parameter 1λ.
– Run ACC.pp ← ACC.setup(1λ).
– Run (NIZKAoK.crs,NIZKAoK.td) ← NIZKAoK.setup(1λ,Rsig).
– Set pp = ((G, g, p),ACC.pp,NIZKAoK.crs).

keygen(pp):
– Pick sk ← Zp at random.
– Set pk = gsk.
– If pk is not prime (when interpreted as an integer), redo the first two

steps until it is. (We require the public keys to be prime so that they are
within the domain of the RSA accumulator.)

sign(pp,msg, {pkj}j∈R, sk):
– Check that each pkj is prime.
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– Accumulate {pkj}j∈R as

aR ← ACC.accumulate(ACC.pp, {pkj}j∈R).

(Note that this is publicly computable from the set of public keys, and thus
does not need to be included in the threshold ring signature.)

– Let pk = gsk ∈ {pkj}j∈R. Compute an accumulator witness

wa ← ACC.witcreate(ACC.pp, {pkj}j∈R, pk) .

– Compute σ′ = H(msg, {pkj}j∈R)sk.
– Compute π proving that σ′ is H(msg, {pkj}j∈R) raised to the power of

a secret key corresponding to a public key in the accumulator. In other
words,

π ← NIZKAoK.prove

⎛
⎜⎜⎝

NIZKAoK.crs,
φ = (G, g,ACC.pp,

aR, σ′,H(msg, {pkj}j∈R)),
w = (pk, sk, wa)

⎞
⎟⎟⎠

– Return σ = (σ′, π).
verify(pp,msg, {pkj}j∈R, σ = (σ′, π)):

– Check that each pkj is prime.
– Accumulate {pkj}j∈R as

aR ← ACC.accumulate(ACC.pp, {pkj}j∈R)

– Verify the proof π; return

NIZKAoK.verify(NIZKAoK.crs, φ =

(G, g,ACC.pp, aR, σ′,H(msg, {pkj}j∈R)), π).
(1)

link(pp,msg, {pkj}j∈R, σ0 = (σ′
0, π0), σ1 = (σ′

1, π1)):
return linked if σ′

0 = σ′
1, and unlinked otherwise.

Theorem 1. If NIZKAoK is a secure non-interactive zero knowledge argu-
ment of knowledge, if ACC is a secure accumulator, if H is a random oracle,
and if the generalized DDH problem is hard in G, then Construction 1 is a secure
unique ring signature scheme (Definition 5).

The proof of Theorem 1 can be found in the full version [MOY20].

3.3 A Threshold Ring Signature Scheme

We build threshold ring signatures out of unique ring signatures in a generic
way. If the underlying unique ring signatures have size O(1), then the resulting
threshold ring signatures have size O(t), where t is the threshold. We require the
additional assumption that no message msg is ever signed twice by the same ring
R. This is because we use the underlying unique ring signature scheme to sign
the message together with the ring; if the same message is signed twice by the
same ring, then the partial signatures will be linkable across the two threshold
signature instances, and in this case we cannot guarantee anonymity.
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We describe our TRS construction formally below, in terms of the underlying
URS. (We assume the public keys are always ordered in a canonical way (e.g.
lexicographically), so that in the underlying URS, the same message and set of
keys always hashes to the same value.)

Construction 2

–setup(1λ): Return URS.pp ← URS.setup(1λ).
–keygen(pp): Return (sk, pk) ← URS.keygen(URS.pp).
–sign(pp,msg, ski, {pkj}j∈R): Return σi ← URS.sign(URS.pp,msg, {pkj}j∈R,

ski).
–combisign(pp, {σi}i∈S , t = |S|): Return σ = {σi}i∈S . (So simple!)8

–verify(pp,msg, {pkj}j∈R, σ = {σi}i∈S , t):
– If |σ| < t, return reject.
– For σi ∈ σ, if URS.verify(URS.pp,msg, {pkj}j∈R, σi) = reject, return

reject.
– For all pairs of different signatures σi, σj in σ, if URS.link(URS.pp,msg,

{pkj}j∈R, σi, σj) = linked, return reject.9

– Return accept.

Remark 3. Note that, since combisign simply takes a concatenation of the partial
signatures, our construction satisfies flexibility [OTYO18]. Flexibility requires
that a signer i ∈ R can take an existing threshold signature σ on message msg
using the ring R that verifies with threshold t, and create a signature σ∗ on the
same msg and R, that verifies with threshold t + 1. This is trivially achieved
in our construction; signer i simply produces his own partial signature σi, and
appends it to the existing signature.

Remark 4. Note that there is an immediate transformation from this construc-
tion to a linkable threshold ring signature scheme. Our threshold ring signature
scheme uses a unique ring signature scheme as a primitive, providing a way of
using the signatures to verify the distinctness of the t signers while disallowing
linking across signatures. If one instead uses a regular linkable ring signature
scheme (where signatures from the same signer are linkable across messages and
rings), our TRS construction (Construction 2) would also be linkable across
multiple signatures. See Munch-Hansen [MH20] for details.

Theorem 2. If URS is a secure unique ring signature scheme (Definition 5),
then Construction 2 is a secure threshold ring signature scheme (Definition 1).

The proof of Theorem 2 can be found in the full version [MOY20].

8 The signing set S is only mentioned here for the sake of clarity. The set of signers
is never leaked to the party who performs the combining of the signatures, as each
signature is anonymous and does not leak the individual signers.

9 Recall that the link algorithm simply checks equality of two sub-strings in σi, σj .
Thus the running time of verify can be made O(t log(t)) by sorting these strings and
checking for repeated entries.
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Abstract. In this paper we present a series of applications steming from
a formal treatment of linear secret-sharing isomorphisms, which are lin-
ear transformations between different secret-sharing schemes defined over
vector spaces over a field F and allow for efficient multiparty conversion
from one secret-sharing scheme to the other. This concept generalizes the
folklore idea that moving from a secret-sharing scheme over Fp to a secret
sharing “in the exponent” can be done non-interactively by multiplying
the share unto a generator of e.g., an elliptic curve group. We generalize
this idea and show that it can also be used to compute arbitrary bilinear
maps and in particular pairings over elliptic curves.

We include the following practical applications originating from our
framework: First we show how to securely realize the Pointcheval-Sanders
signature scheme (CT-RSA 2016) in MPC. Second we present a construc-
tion for dynamic proactive secret-sharing which outperforms the current
state of the art from CCS 2019. Third we present a construction for MPC
input certification using digital signatures that we show experimentally
to outperform the previous best solution in this area.

1 Introduction

A (t, n)-secure secret-sharing scheme allows a secret to be distributed into n
shares in such a way that any set of at most t shares are independent of the
secret, but any set of at least t + 1 shares together can completely reconstruct
the secret. In linear secret-sharing schemes (LSSS), shares of two secrets can be
added together to obtain shares of the sum of the secrets. A popular example of
a (n−1, n)-secure LSSS is additive secret sharing, whereby a secret s ∈ Fp (here
Fp denotes integers modulo a prime p) is secret-shared by sampling uniformly
random s1, . . . , sn ∈ Fp subject to s1 + · · · + sn ≡ s mod p. Another well-known
example of a (t, n)-secure LSSS is Shamir secret sharing [Sha79] that distributes
a secret s ∈ Fp by sampling a random polynomial f(x) over Fp of degree at most
t such that f(0) = s, and where the i-th share is defined as si = f(i).

c© Springer Nature Switzerland AG 2021
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Linear secret-sharing schemes are information-theoretic in nature: they do
not rely on any computational assumption and therefore tend to be very effi-
cient. Furthermore, they are widely used in multiple applications like distributed
storage [GGJR00] or secure multiparty computation [CDM00]. Linear secret-
sharing schemes can be augmented with techniques from public-key cryptogra-
phy, such as elliptic-curve cryptography. As an example, consider (a variant of)
Feldman’s scheme for verifiable secret sharing1 [Fel87]: To distribute a secret
s ∈ Fp, the dealer samples a polynomial of degree at most t such that f(0) = s,
say f(x) = s + r1x + · · · + rtx

t, and sets the i-th share to be si = f(i). On top
of this, the dealer publishes s · G, r1 · G, . . . , rt · G, where G is a generator of an
elliptic-curve group G of order p for which the discrete-log problem is hard. Each
party can now detect if its share si is correct by computing si · G and checking
that it equals s · G + i1(r1G) + i2(r2G) + · · · + it(rtG).

While the general idea of using secret sharing “in the exponent” has been
used multiple times in the literature, we find that this has been done in a rather
ad-hoc way. Thus, a more formal and general treatment of these techniques is
currently missing.

1.1 Our Contributions

In this work we expand the range of applications which benefits from performing
“MPC in the exponent” by considering the case of secure signatures, proactive
secret sharing and input certification, providing novel protocols in each of these
settings that improve over the state of the art. We also provide experimental
results for some of our protocols. Furthermore, we generalize the idea of “secret
sharing in the exponent” by using a formal mathematical definition of linear
secret sharing, extending it to general vector spaces—of which elliptic curves are
particular cases—and using linear transformations between these vector spaces
to convert from one secret-shared representation to a different one. Less expres-
sive frameworks were presented in prior work like [DKO+20,ST19,CCXY18],
to cite some examples. Among other things our extensions show how generic
multiplication triples over Fp can be used to securely compute general bilinear
maps, of which bilinear pairings are a particular case.

The contributions made in this work are summarized below. This listing also
serves as an overview of the rest of the paper.

– We show how generic multiplication triples can be used to compute securely
any bilinear map, after presenting an adequate mathematical foundation for
LSS isomorphisms. As we have mentioned, this is achieved by formalizing
the concept of linear secret-sharing isomorphisms (LSS isomorphisms)
which can be seen as a generalization of the idea of “putting the share in
the exponent”. Due to space constraints in this proceeding version, this and
other contributions can be found in the full version of this paper [ADEO20].

1 A verifiable secret-sharing scheme is one in which parties can verify that the dealer
shared the secret correctly.
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– We demonstrate how LSS isomorphisms allow computation of scalar products
and furthermore show that it is possible to use our techniques to compute
bilinear pairings over secret-shared data using any secure computation pro-
tocol. This can be found in the full version too.

– To illustrate the usefulness of our LSS isomorphisms, we provide 3 applica-
tions. The first of these is a demonstration of how digital signatures can be
computed and verified on secret-shared data. This is done in Sect. 3.

– Our second application demonstrates a protocol for dynamic proactive secret-
sharing (PSS). This uses the digital signatures and the result is a dynamic
PSS protocol with better communication complexity than the current state
of the art. This is done in Sect. 4.

– Our final application is input certification. We present a method for verifying
that a certain party provided input to a secure computation that was previ-
ously certified by a trusted party. We benchmark our protocol experimentally
and show that it significantly outperforms the previous best solution for input
certification for any number of inputs. The protocol is presented in Sect. 5,
and our experiments are presented in Sect. 6.

1.2 Related Work

As already mentioned, the idea of “putting the shares in the exponent” is folk-
lore and dates back at least to verifiable secret sharing [Fel87]. It has since
then been used in a variety of other contexts such as e.g. threshold decryp-
tion [CDI05,Sho00], attribute-based encryption [GPSW06], polynomial commit-
ments [KZG10], etc. More recent works [DKO+20,ST19] have made use of this
idea to develop generic protocols for MPC over elliptic curves, mostly motivated
by threshold ECDSA signatures (a task which has received much attention lately
due to its impact on developing secure key-management solutions for cryptocur-
rencies). Compared to previous work, our approach is to describe the folklore idea
in the most general framework, applying it to any linear secret-sharing scheme
and also any vector space isomorphism, since we believe that by providing a more
general framework we can enable a wider class of applications, as demonstrated
by the example applications in this paper. Other works have formalized a sim-
ilar notion, like the K-linear secret-sharing schemes from [CCXY18]. However,
transformations across these schemes have not been considered in full generality
before.

In a recent work [FN20] the authors present protocols to securely compute
over elliptic curves (and also over lattices). The authors consider key generation
of elliptic-curve ElGamal, as well as decryption, based on generic MPC proto-
cols. In addition, a protocol for solving the discrete log of a secret-shared value
is presented. We present an alternative to such a decoding scheme in the full
version.

In [CKR+20] the authors construct protocols for multiplying matrices and
other bilinear operations such as convolutions based on the observation that
the widely used Beaver multiplication technique [Bea92] extends to these oper-
ations as well. This turns out to be a particular instantiation of our framework
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from Sect. 2 when the vector spaces are instantiated with matrix spaces and the
bilinear map is instantiated with matrix product.

Multiple works have addressed the problem of proactive secret-sharing. It
was originally proposed in [HJKY95,OY91], and several works have built on
top of these techniques [HJJ+97,SLL08,BELO15,BELO14,MZW+19], includ-
ing ours. Among these, the closest to our work is the state-of-the-art [MZW+19],
which also makes use of pairing-friendly elliptic curves to ensure correctness of
the transmitted message. However, a crucial difference is that in their work,
a commitment scheme based on elliptic curves, coupled with the technique of
“putting the share in the exponent” is used to ensure each player individually
behaves correctly. Instead, in our work, we use elliptic curve computation on the
secret rather than on the shares, which reduces the communication complexity,
as shown in Sect. 4.

Finally, not many works have been devoted to the important task of input
certification in MPC. For general functions, the only works we are aware of are
[BB16,KMW16,ZBB17,BJ18]. Among these, only [BJ18] tackles the problem
from a more general perspective, having multiple parties and different protocols.
In [BJ18], the concept of signature schemes with privacy is introduced, which
are signatures that allow for an interactive protocol for verification, in such a
way that the privacy of the message is preserved. The authors of [BJ18] present
constructions of this type of signatures, and use them to solve the input cer-
tification problem. However, the techniques from [BJ18] differ from ours at a
fundamental level: Their protocols first computes a commitment of the MPC
inputs, and then engage in an interactive protocol for verification to check the
validity of these inputs. Furthermore, these techniques are presented separately
for two MPC protocols: one from [DN07] and one from [DKL+13]. Instead, our
results apply to any MPC protocol based on linear secret-sharing schemes, and
moreover, is much simpler and efficient as no commitments, proofs of knowledge,
or special verification protocol are needed.

2 LSS Isomorphisms and Bilinear Maps

Let F be a prime field of order p. We use a ∈R A to represent that a is sampled
uniformly at random from the finite set A.

2.1 Linear Secret Sharing

In this section we define the notion of linear secret sharing that we will use
throughout this paper. Most of the presentation here can be seen as a simplified
version of [CDN15, Section 6.3], but it can also be regarded as a generalization
since we consider arbitrary vector spaces. Similar notions have been considered
in the literature before. For example, the same concept presented in a slightly
different way has been consider in [CCXY18] under the term of general K-linear
secret-sharing schemes.
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Definition 1. Let F be a field. A linear secret sharing scheme (LSSS) S over F

for n players is defined by a matrix M ∈ F
m×(t+1), where m ≥ n, and a function

label : {1, . . . , m} → {1, . . . , n}. We say M is the matrix for S. We can apply
label to the rows of M in a natural way, and we say that player Plabel(i) owns the
i-th row of M . For a subset A of the players, we let MA be the matrix consisting
of the rows owned by players in A.

To secret-share a value s ∈ F, the dealer samples uniformly at random a
vector rs ∈ F

t+1 such that its first entry is s, and sends to player Pi each row of
M · rs owned by this player.2 We write [[s, rs]] for the vector of shares M · rs, or
simply [[s]] if the randomness vector rs is not needed. Observe that the parties
can obtain shares of s1 + s2 from shares of s1 and shares of s2 by locally adding
their respective shares. We denote this by [[s1 + s2]] = [[s1]] + [[s2]].

The main properties of a secret sharing scheme are privacy and reconstruc-
tion, which are defined with respect to an access structure. In this work, and for
the sake of simplicity, we consider only threshold access structures. That said,
our results generalize without issue to more general access structures as well.

Definition 2. An LSSS S = (M, label) is (t, t+1)-secure if the following holds:

– (Privacy) For all s ∈ F and for every subset A of players with |A| ≤ t, the
distribution of Mrs is independent of s

– (Reconstruction) For every subset A of players with |A| ≥ t + 1 there is a
reconstruction vector eA ∈ F

mA such that eᵀ
A(MArs) = s for all s ∈ F.

2.2 LSS over Vector Spaces

Let V be a finite-dimensional F-vector space, and let S = (M, label) be an LSSS
over F. Since V is isomorphic to F

k for some k, we can use the LSSS S to secret-
share elements in V by simply sharing each one of its k components. This is
formalized as follows.

Definition 3. A linear secret-sharing scheme over a finite-dimensional F-vector
space V is simply an LSSS S = (M, label) over F. To share a secret v ∈ V , the
dealer samples uniformly at random a vector rv ∈ V t+1 such that its first entry
is v, and sends to player Pi each row of M · rv ∈ V m owned by this player.
(t, t + 1)-security is preserved. To reconstruct, a set of parties A with |A| > t
uses the reconstruction vector eA as eᵀ

A(MArv) = v.

As before, given v ∈ V we use the notation [[v, rv]]V , or simply [[v]]V , to denote
the vector in V m of shares of v. Similar notions have appeared in the literature
under the name multi-linear [BBPT14] or folded-linear [BBFP21] secret sharing.

2 Note that the use of the vector rv here where all but one entries are random is similar
to e.g., the choice of a random polynomial with a fixed 0-coefficient in Shamir’s secret
sharing.
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2.3 LSS Isomorphisms

Let U and V be two finite-dimensional F-vector spaces, and let φ : V → U be
a vector-space isomorphism (we extend the definition of φ to operate on vectors
over V pointwise when convenient). According to the definition in Sect. 2.2, any
given LSSS S = (M, label) over F can be seen as an LSSS over V or over U .
However, the fact that there is a vector-space isomorphism from V to U implies
that, for any v ∈ V , the parties can locally get [[φ(v)]]U from [[v]]V . We formalize
this below.

Definition 4. Let U and V be two finite-dimensional F-vector spaces, and let
φ : V → U be a vector-space isomorphism. Let S = (M, label) be an LSSS over
V . We say that the pair (S, φ) is a linear secret-sharing isomorphism.

The following simple proposition illustrates the value of considering LSS iso-
morphisms.

Proposition 1. Let U and V be two finite-dimensional F-vector spaces, and let
(S, φ) be a LSS isomorphism from U to V . Given v ∈ V and [[v, rv]]V , applying
φ to each share leads to [[φ(v), φ(rv)]]U .

Proof. Observe that φ ([[v, rv]]V ) = φ(Mrv) = Mφ(rv) = [[φ(v), φ(rv)]]U . ��

Remark 1 (About generalizing to LSS homomorphisms). In the definition above
we could have considered, more generally, LSS homomorphisms, where the map-
ping φ : V → U is a homomorphism that is not necessarily a bijection. If φ is not
surjective we can simply restrict the codomain to the vector space φ(V ) ⊆ U .
However, when φ is not injective, then (t, t + 1)-security may not hold on the
resulting LSSS over φ(V ), which makes the notion meaningless. This can be
seen, for example, if φ is the zero mapping, in which case the resulting scheme
over φ(V ) = {0} only allows sharing the value 0 with zero-shares.

2.4 LSSS with Bilinear Maps

In Sect. 2.3 we saw how the parties could locally convert from sharings in one
vector space to another vector space, provided there is a linear transformation
between the two. The goal of this section is to extend this to the case of bilinear
maps. More precisely, let U, V,W be F-vector spaces of dimension d, and let
S = (M, label) be an LSSS over F. From Sect. 2.2, S is also an LSSS over U , V
and W . Let ψ : U × V → W be a bilinear map, that is, the functions ψ(·, v) for
v ∈ V and ψ(u, ·) for u ∈ U are linear.

We show how the parties can obtain [[ψ(u, v)]]W from [[u]]U and [[v]]V , for
u ∈ U and v ∈ V . Unlike the case of a linear transformation, this operation
requires communication among the parties. Intuitively, this is achieved by using a
generalization of “multiplication triples” [Bea92] to the context of bilinear maps.
At a high level, the parties preprocess “bilinear triples” ([[α]]U , [[β]]V , [[ψ(α, β)]]W )
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where α ∈ U and β ∈ V are uniformly random, open δ = u − α and ε = v − β,
and compute [[ψ(u, v)]]W as

ψ(δ, ε) + ψ(δ, [[β]]V ) + ψ([[α]]U , ε) + [[ψ(α, β)]]W = [[ψ (δ + α, ε + β)]]W
= [[ψ (u, v)]]W .

In the full version we formalize this intuition and define a protocol Πbilinear param-
eterized by the map ψ, which takes as input [[u]]U , [[v]]V and outputs [[w]]W with
w = ψ(u, v).

3 Threshold Signature Schemes

In this section we show how our techniques can be used to securely sign and
verify messages that are secret shared, using keys that are similarly secret-shared.
More precisely, we present here three protocols: First, a key generation protocol
ΠKeygen for generating (pk, [[sk]]) securely where pk is a public key and [[sk]] a
secret-shared private key. Second, a signing protocol ΠSign protocol that on input
a secret shared message [[m]] and [[sk]] output from ΠKeygen outputs [[σ]] where σ
is a signature on m under sk. Finally, we present a verification protocol ΠVerify

which on input [[m]], [[σ]] and pk outputs [[b]] where b is a value indicating whether
or not σ is a valid signature on m under the private key corresponding to the
public key pk.

We choose to use the signature scheme [PS16] by Pointcheval and Sanders
(henceforth PS) as our starting point. The primary reason for choosing the PS
scheme is that signatures are short and independent of the message length, and
that messages do not need to be hashed prior to signing.3

Primitives for MPC. For this section, and for the rest of the paper, we will rely
on the existence of several functionalities to securely compute on secret-shared
data. We list them here in brief. Also, for a functionality/protocol Fabc/Πabc,
we denote by Cabc its total communication cost, in bits.

– FMulTriple outputs a triple ([[a]], [[b]], [[c]]) where c = ab.
– FDotProd takes as input ([[xi]])L

i=1 and ([[yi]])L
i=1, and produces [[z]], where z =

∑L
�=1 φ(x�y�).

– FMul takes two inputs [[x]] and [[y]], and outputs [[w]] where w = xy. FMul is a
particular case of FDotProd for L = 1 (with φ the identity function).

– FRand(K) outputs [[x]] where x ∈ K, where K is a F-vector space. Notice
that it is enough to have a functionality which samples a secret-shared field
element: to get a secret point, parties can locally apply an appropriate LSS
isomorphism to obtain a secret-shared group element.

– FCoin(K) outputs a uniformly random s ∈ K to all parties.

3 A downside of e.g., ECDSA signatures is that messages have to be hashed first,
which creates a significant problem when messages are secret-shared, as hashing
secret-shared data is quite expensive.
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The functionalities above are defined irrespectively of whether the adversary
is passive (that is, they respect the protocol specification) or active (the adver-
sary may deviate arbitrarily).4 The following functionality only makes sense for
settings with active security.

– FDotProd∗ takes as input ([[xi]])L
i=1 and ([[yi]])L

i=1, and produces [[z + δ]], where
z =

∑L
�=1 φ(x�y�) and δ ∈ F is an error provided by the adversary.

The reason to consider this dot product functionality, which produces incor-
rect results, is that (1) for some secret-sharing schemes this functionality can be
instantiated with a communication complexity that is independent of the length
L, and (2) that it suffices for some of the applications we consider later on. How
these functionalities are instantiated depends naturally on the choice of secret-
sharing scheme. We discuss instantiations for popular secret sharing schemes,
including the ones we will focus on what follows (additive and Shamir secret
sharing), in the full version.

3.1 The PS Signature Scheme

The PS signature scheme [PS16] signs a vector of messages m ∈ F
r as follows

(we present the multi-message variant here):

– Setup(1λ): Output pp ← (p,G1,G2,GT , e) where G1 �= G2 and where no
efficient homomorphism exists between G1 and G2 (i.e., a type-3 pairing).

– Keygen(pp): Select random H ← G2 and (x, y1, . . . , yr) ← F
r+1. Com-

pute (X,Y1, . . . , Yr) = (xH, y1H, . . . , yrH) set sk = (x, y1, . . . , yr) and
pk = (H,X, Y1, . . . , Yr).

– Sign(sk,m): Select random G ← G1 \ {0} and output the signature σ =
(G, (x +

∑r
i=1 miyi) · G).

– Verify(pk,m, σ): Parse σ as (σ1, σ2). If σ1 �= 0 and e(σ1,X +
∑

miYi) =
e(σ2,H) output 1. Otherwise output 0.

The remainder of this section will focus on how to instantiate the threshold
PS signature scheme securely.

3.2 Threshold PS Signatures

The ΠKeygen protocol presented below shows how to generate keys suitable for
signing messages of r blocks. The protocol proceeds as follows: parties invoke
FCoin and FRand a suitable number of times to generate the private key and then
use an appropriate LSS isomorphism to compute the public key.

4 One caveat is that the shares on their own may not define the secret if the adversary
is allowed to change the corrupt parties’ shares, which is the case for an active
adversary. This is an issue for example with additive secret sharing and an dishonest
majority (which can be fixed by adding homomorphic MACs), but not for Shamir
secret sharing with an honest majority. We discuss this in detail in the full version.
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Protocol ΠKeygen

Inputs: pp = (p,G1,G2,GT , e), r
Outputs: (pk, [[sk]])

1. Parties invoke FCoin(G2) to obtain H, and invoke FRand(F) a total of r + 1
times to obtain ([[x]], [[y1]], . . . , [[yr]]).

2. Let φ2 : F → G2 be LSS-isomorphism given by φ2 : x �→ xH. Using φ2,
compute [[X]]G2 = φ2([[x]]) and [[Yi]]G2 = φ2([[yi]]) for i = 1, . . . , r.

3. Parties open X ← [[X]]G2 and Yi ← [[yi]]G2 for i = 1, . . . , r. Output the pair
(pk, [[sk]]) where pk = (H, X, Y1, . . . , Yr) and [[sk]] = ([[x]], [[y1]], . . . , [[yr]]).

The communication complexity of ΠKeygen is CKeygen = CCoin(1) + CRand(r +
1) + COpen(r + 1) field elements.

Next up is computing Sign on secret-shared inputs (assumed to be gener-
ated by a FInput functionality) given the tools we have described so far. The
ΠSign protocol below outputs a signature (σ1, [[σ2]]G1). The reasons for keeping
σ1 public are (1) that it simplifies things when we use this later, and (2) makes
signing more efficient. If, however, σ1 cannot be revealed then ΠPairing is needed
for step 3.

Protocol ΠSign

Inputs: [[sk]] = ([[x]], [[y1]], . . . , [[yr]]), [[m]] = ([[m1]], . . . , [[mr]])
Outputs: [[σ]]

1 Parties obtain σ1 ∈R G1 by invoking FCoin(G1). If σ1 = 0, repeat this step.
2 Parties invoke [[z]] ← FDotProd (([[yi]])

r
i=1, ([[mi]])

r
i=1) and then compute

[[w]] = [[x]] + [[z]].
3 Parties use the LSS isomorphism x �→ x · σ1 to compute locally [[σ2]]G1 ←

ΠScalarMul([[w]], σ1).
4 Output (σ1, [[σ2]]G1).

Protocol ΠSign produces a correct signature with communication complexity
CCoin(1) + CDotProd(r).

Finally, we show a verification protocol ΠVerify in which a secret-shared GT

element [[b]]GT
where b = 1GT

if the signature was valid, or a uniform random
group element otherwise. While this is not a bit, it nevertheless carries the same
information. Below the signature we verify is (σ1, [[σ2]]G1), however if this is not
the case (in particular, if σ1 is secret-shared) then ΠPairing is needed in step 4.
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Protocol ΠVerify

Inputs: pk = (H, X, Y1, . . . , Yr), [[m]] = ([[mi]])
r
i=1, σ = (σ1, [[σ2]]G1)

Outputs: [[b]]GT = [[1GT ]] if Verify(pk,m, σ) = 1 and a random value otherwise.

1 If σ1 = 0 then output [[μ]]GT ← FRand(GT ).
2 Compute [[α]]GT = e([[σ2]], H) using the LSS isomorphism x �→ xH.
3 Locally compute [[β]]GT = e(σ1, X +

∑r
i=1[[mi]]Yi) using LSS isomorphisms.

4 Output [[b]]GT ← ΠScalarMul([[ρ]], [[α]]GT /[[β]]GT ) where [[ρ]] was obtained by
invoking FRand.

The communication complexity of the ΠVerify protocol is CRand(1) +
CScalarMul(1). We now argue security.

Lemma 1. Protocol ΠVerify outputs a secret-sharing of 1GT
if σ = (σ1, [[σ2]]G1)

is a valid signature on [[m]] with public key pk, otherwise the protocol outputs a
secret-sharing of a uniformly random element.

Proof. Note that [[α]]GT
/[[β]]GT

= [[e(σ1,X +
∑

i miYi)/e(σ2,H)]]GT
which is 1GT

if and only if e(σ1,X +
∑

i miYi) = e(σ2,H); that is, if the signature is valid.
Thus we have that the distribution of [[b]]GT

= [[(a/β)ρ]]GT
is either uniformly

random (if α �= β), or 1GT
(if α = β). To see that [[b]]GT

is uniformly random
when α �= β it suffices to note that α/β is a generator of GT and that ρ was
picked at random. ��

It is likewise possible to see that any successful attack on (ΠKeygen,ΠSign,
ΠVerify) can easily be turned into an attack on the original PS signature scheme,
in particular on the EUF-CMA [GMR88] property of the PS signature scheme.

We consider an ideal threshold signature functionality roughly equivalent
to the Ftsig functionality presented in [CGG+20], the main difference being
that we do not consider key refreshment. It is possible to show that ΠPS =
(ΠKeygen,ΠSign,ΠVerify) securely realizes this functionality

The Ftsig functionality records a message as signed once it has received a sign
request from t+1 parties. During verification, Ftsig receives a tuple (m,σ, pk) and
does one of three things: If (m,σ, b) was previously recorded, then b is returned
(that is, the signature was previously verified and b was the result); If m was
never signed, then b = 0 is returned, and if (m,σ) was not previously verified
but m was signed, then b = Verify(pk,m, σ) is returned.

Importantly, distinguishing between ΠPS and Ftsig happens only if the adver-
sary manages to input a pair (m,σ, pk) such that m was never signed, but
1 = Verify(pk,m, σ). However, this corresponds precisely to breaking the EUF-
CMA property of the PS signature scheme.

Due to our black-box use of the MPC functionality, the security of the result-
ing threshold-signature scheme will inherit the same security properties (e.g.,
number of parties, honest vs. dishonest majority, passive vs. active security,
stand-alone vs. UC security, etc.) as the MPC protocol used to implement the
functionality.
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Extensions to Other Schemes. Our techniques, here presented for the PS signa-
ture scheme, could easily generalize to any other “sufficiently algebraic” signa-
ture scheme (a formal definition of “algebraic signatures” has recently appeared
in [DHH+21]). In fact, most signatures used for anonymous credentials are sim-
ilarly algebraic e.g., CL [CL04], BBS+ [CL04,ASM06], Boneh-Boyen [BB04], as
well as algebraic MACs [CMZ14,CPZ20] (note that one can see PS signatures
as an instance of an algebraic MAC from [CMZ14] instantiated in a group with
a pairing to enable public verification).

4 Applications to Proactive Secret Sharing

Secret sharing allows a dealer to distribute a secret such that an adversary with
only access to some subset of the shares cannot learn anything about the secret.
However as time passes it becomes harder to argue that no leakage beyond this
subset takes place, and thus that the secret remains hidden from the adversary.
Proactive Secret-sharing (PSS) deals with this problem by periodically “refresh-
ing” (or proactivizing) shares such that shares between two proactivization stages
become “incompatible”.

Typically, the case of interest in the PSS setting is honest majority, since in
this case the value of the underlying secret is determined by the shares from the
honest parties only. In this section we focus on Shamir secret-sharing, and we
denote such sharings by [[·]]. We assume that 2t + 1 = n. Multiple PSS schemes
have been proposed for this case, but for the special situation of dynamic PSS
(a PSS scheme is dynamic if the number of parties and threshold can change
between each proactivization), CHURP is presented in [MZW+19]. In a nutshell,
CHURP first performs an optimistic proactivization and, if cheating is detected,
falls back to a slower method that is able to detect cheaters.

In what follows we show how to use the protocols for signatures developed in
Sect. 3 to obtain a conceptually simple and efficient dynamic PSS with abort. We
first develop a highly efficient protocol for proactivizing a secret that guarantees
privacy, but allows the adversary to tamper with the transmitted secret. Then,
we use our signatures to transmit a signature on the secret, that can be checked
by the receiving committee. In this way, due to the unforgeability properties
of the signature scheme, an adversary cannot make the receiving committee
accept an incorrectly transmitted message. This construction leads to a 9-fold
improvement in terms of communication with respect to the optimistic protocol
from [MZW+19].

We say that the parties have consistent sharings of a secret x if each Pi

knows a value si such that there exists a polynomial f(x) of degree at most t
with f(i) = si and f(0) = s.

4.1 Proactive Secret Sharing

We present here the definitions of proactive secret sharing, or PSS for short. We
remark that our goal is not to provide formal definitions of these properties but



Improved Threshold Signatures 393

rather a high level description of what a PSS scheme is, so that we can present
in a clear manner our optimizations to the work of [MZW+19].

In a PSS scheme a set of n parties have consistent Shamir shares of a secret
[[s]] = (s1, . . . , sn) with threshold t. At a given stage, a proactivization mechanism
is executed, from which the parties obtain [[s′]] = (s′

1, . . . , s
′
m). A PSS scheme

satisfies:

– (Correctness). It must hold that s = s′

– (Privacy). An adversary corrupting a set of at most t parties before the
proactivization, and also a (potentially different) set of at most t′ parties
after the proactivization, cannot learn anything about the secret s.

The PSS schemes we consider in this work are dynamic in that the set of
parties holding the secret before the proactivization step may be different than
the set of parties holding the secret afterwards. Note that the number of parties,
as well as the threshold, can change as part of the proactivization.

4.2 Partial PSS

In what follows we denote by C = {Pi}n
i=1 and C′ = {P ′

i}m
i=1 the old and

new committees, respectively. Furthermore, we denote U = {Pi}t+1
i=1 and U ′ =

{P ′
i}t′+1

i=1 . As mentioned before, we consider Shamir secret-sharing, with thresh-
old t < n/2 (resp. t′ < m/2). This ensures that the corrupt parties cannot
modify their shares without resulting in an error, thanks to error-detection (fur-
ther details on this can be found in the full version). Our protocol ΠPartialPSS is
inspired by the protocol from [BELO15], except that, since we do not require
the transmitted message to be correct, we can remove most of the bottlenecks
like the use of hyper-invertible matrices or consistency checks to ensure parties
send shares consistently.

Protocol ΠPartialPSS([[s]]C)

Inputs A shared value [[s]]C = (s1, . . . , sn) among a committee C.

Output: Either a consistently shared value [[s′]]C
′
or abort. If all parties behave

honestly then s′ = s.

1. Each Pi ∈ C samples si1, . . . , si,t+1 ∈R F such that si =
∑t+1

j=1 sij and
sends sij to Pj for j = 1, . . . , t + 1.

2. Each Pi ∈ U samples rki ∈R F for k = 1, . . . , t′, and sets r0,i = 0.

3. Each Pi ∈ U sets aij = sji +
∑t′

k=0 rki · jk and sends aij to P ′
j , for each

j = 1, . . . , m.

4. Each P ′
j ∈ C′ sets s′

j :=
∑t′+1

i=1 aij .
5. The parties in C′ output the shares (s′

1, . . . , s
′
m).

Theorem 1. Protocol ΠPartialPSS satisfies the following properties.
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1. Assume that initially the parties in C had consistent shares of a secret s. Then
the protocol results in the parties in C′ having consistent shares of s+δ, where
δ is an additive error known by the adversary.

2. An adversary simultaneously controlling t parties in C and t′ parties in C′

does not learn anything about the secret input s.

The proof appears in the full version.

Extending to Group Elements. ΠPartialPSS can be extended to proactivize shares
[[α]]C

G
, where G is an elliptic curve group by running the same protocol “in the

exponent”. More formally, the LSS isomorphism x �→ x·G, where G is a generator
of G, is used. This will be used later on in our protocol. Finally, observe that
ΠPartialPSS communicates a total of n(n + 1) field elements.

4.3 Simple and Efficient PSS with Abort

The protocol ΠPartialPSS presented in the previous section guarantees privacy and
consistency of the new sharings, but it does not satisfy the main property of a
PSS, which is guaranteeing that the secret remains the same. More precisely, a
malicious party may disrupt the output as [[s + γ]]C

′ ← ΠPartialPSS([[s]]C), where
γ is some value known by the adversary. This is of course not ideal, but it
can be fixed by making use of the signature protocols proposed in Sect. 3. In
a nutshell, the committee C uses ΠPartialPSS to send to C′ not only the secret
s, but also a signature on this secret using a secret-key shared by C. Then,
upon receiving shares of the message-signature pair, the parties in C′ proceed
to verifying this pair securely using C’s public key, and if this check passes then
it can be guaranteed that the message was correct, since the adversary cannot
produce a valid message-signature pair for a new message.

The protocol is presented more formally in Protocol ΠPSS below. The setup
regarding secret/public key pairs is also presented in the protocol.

Protocol ΠPSS([[s]]C)

Inputs: A shared value [[s]]C = (s1, . . . , sn) among a committee C.

Output: Consistent shares [[s]]C
′

or abort.
Setup: Parties in C have a shared secret-key [[skC]]

C, and its corresponding
public key pkC is known by the parties in C′. This can be easily generated by
using protocol ΠKeygen from Section 3.

1. Parties in C call (σ1, [[σ2]]
C) ← ΠSign([[skC]]

C, [[s]]C).

2. Parties in C ∪ C′ call [[s′]]C
′ ← ΠPartialPSS([[s]]

C) and [[σ′
2]]

C′ ←
ΠPartialPSS([[σ2]]

C).
3. P1, . . . , Pt+1 all send σ1 to the parties in C′. If some party in Pj ∈ C′

receives two different σ1 from two different parties, then the parties abort.
4. Parties in C′ call [[v]]C

′ ← ΠVerify([[s
′]]C

′
, (σ1, [[σ

′
2]]

C′
), pkC) and open v using

error detection. If v = 0GT then the parties in C′ output [[s′]]C
′
. Else, they

abort.



Improved Threshold Signatures 395

Intuitively, the protocol guarantees that the parties do not abort if and only
if the message is transmitted correctly. This follows from the unforgeability of
the signature scheme: If an adversary can cause the parties to accept with a
wrong message/signature pair, then this would constitute a forged signature.
The fact that privacy is maintained regardless of whether the parties abort or
not is more subtle, but essentially follows from the fact that decision to abort
can be shown to be independent of the secret (thus ruling out a selective failure
attack). Put differently, a decision depends only on the error introduced by the
adversary which is independent of the secret.

We summarize these properties in Theorem 2 below. In our proof we do
not reduce to the unforgeability of the signature scheme, but instead to a hard
problem over elliptic curves directly. This is easier and cleaner in our particular
setting, given that the signatures are produced and checked within the same
protocol. The computational problem we reduce the security of Protocol ΠPSS

to is the following, which can be seen as a natural variant of Computational
Diffie-Hellman (CDH) problem over G1.

Definition 5 (co-CDH Assumption). Let G ∈ G1 and G′ ∈ G2 be genera-
tors. Given (G,G′, aG, bG′) for a, b,∈R F, an adversary cannot efficiently find
(ab)G.

With this assumption at hand, which is assumed to hold for certain choices
of pairing settings (see [FG12]), we can prove the following about the security
of ΠPSS.

Theorem 2. Protocol ΠPSS instantiates the PSS-with-abort functionality
described in Sect. 4.1, that is, if the parties do not abort in the protocol ΠPSS,
then the parties in C′ have shares [[s]]C

′
, where [[s]]C was the input provided to the

protocol. Furthermore, privacy of s is satisfied regardless of whether the parties
abort or not.

The proof appears in the full version.
Although we did not address this in our security arguments, the setup needed

for the protocol ΠPSS, namely that the parties in C have a shared secret-key
for which the parties in C′ know the corresponding public key, can be reused
for multiple successful proactivizations. Intuitively, this holds because, if the
adversary cheats in the proactivization, Theorem 2 shows that this is detected
with overwhelming probability, and if the adversary does not cheat then no
extra information about the secret-key from the committee C is leaked to the
adversary.

Communication Complexity. The communication complexity of the ΠPSS pro-
tocol when proactivizing L values is CPartialPSS(L + 1) + CSign(L) + CVerify(L).
We ignore the opening of [[v]] at the end as this is independent of L. Recall
that CSign(L) = CCoin(1) + CDotProd(L), and CVerify(L) = CRand(1) + CScalarMul(1)
For the case of Shamir secret sharing, CRand(1) = 2n log |F|, using the protocol
from [DN07] and amortizing over multiple calls to FRand. Also, CDotProd(L) =
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5.5n log |F|, and CScalarMul(1) = 5.5n log |F| too, using a specialized bilinear pro-
tocol Πshm

DotProd for Shamir SS that we describe in the full verison. We ignore the
cost CCoin(1) since it can be instantiated non-interactively using a PRG.

Given the above, the total communication complexity of the ΠPSS protocol
is

log(|F|) · ((L + 1) · n · (n + 1) + 13n) bits.

Comparison with CHURP. The dynamic PSS protocol proposed in [MZW+19],
is to our knowledge state-of-the-art in terms of communication complexity. At
a high level, CHURP is made of two main protocols, Opt-CHURP, which is
able to detect malicious behavior during the proactivization but is not able
to point out which party or parties cheated, and Exp-CHURP, which performs
proactivization while enabling cheater detection at the expense of requiring more
communication. Since in this work we have described a PSS protocol with abort,
we compare our protocol against Opt-CHURP.

The total communication complexity of Opt-CHURP is 9Ln2 log |F| bits in
point-to-point channels, plus 256n bits over a blockchain,5 so our novel method
presents a 9-fold improvement over the state of the art. Furthermore, although
not mentioned in our protocol, a lot of the communication that appears in the
13n term in our ΠPSS protocol can be regarded as preprocessing, that is, it is
independent of the message being transmitted and can be computed in advance,
before the proactivization phase.

We note that our novel protocol ΠPSS is conceptually much more simple than
Opt-CHURP. Unlike in Opt-CHURP, our protocol does not require the expensive
use of commitments and proofs at the individual level (i.e. per party) in order
to ensure correctness of the transmitted value. Instead, we compute a global
signature of the secret and check its validity after the proactivization.

Finally, we present an optimization if multiple shared elements are to be
proactivized in the full version.

5 Applications to Input Certification

MPC does not put any restriction on what kind of inputs are allowed, yet such
a property has its place in many applications. For example, one might want to
ensure that the two parties in the classic millionaires problem [Yao82] do not lie
about their fortunes.

Signatures seem like the obvious candidate primitive for certifying inputs in
MPC: A trusted party T will sign all inputs xi of party Pi that need certification.
Then, after Pi have shared its input [[x′

i]], which it may change if it is misbehaving,
parties will verify that [[x′

i]] is a value that was previously signed by T . While this
approach clearly works (if Pi could get away with sharing x′

i, then Pi produced
a forgery) it is nevertheless hindered by the fact that signature verification is
expensive to compute on secret-shared values, arising from the fact that the usual

5 For a more detailed derivation of this complexity, see the full version.
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first step in verifying a signature is hashing the message, which is prohibitively
expensive in MPC. In this section we show that by using our secure PS signatures
from Sect. 3, this approach is no longer infeasible, and in fact, it is quite efficient.

5.1 Certifying Inputs with PS Signatures

We consider a setting in which n parties P1, . . . , Pn wish to compute a function
f(x1, . . . ,xn), where xi ∈ F

L corresponds to the input of party Pi. We assume
that all parties hold the public key pk of some trusted authority T , who provided
each Pi with a PS signature (σi

1, σ
i
2) on its input xi. We also assume a function-

ality FInput that, on input xi from Pi, distributes to the parties consistent shares
[[xi1]], . . . , [[xiL]]. We also assume the existence of a broadcast channel.

Our protocol, ΠCertInput, allows a party Pi to distribute shares of its input,
only if this input has been previously certified. (If multiple parties are providing
inputs, just repeat the protocol for all Pi’s).

Protocol ΠCertInput

Input: Index i ∈ {1, . . . , n} and
(
(xj)

L
j=1, σ1, σ2

)
from Pi.

Output: [[xj ]] if Verify(pk, [[xj ]], (σ1, σ2)) = 1 for all j = 1, . . . , L, or abort.

1. Pi calls FInput to distribute
(
([[xj ]])

L
j=1, [[σ2]]G1

)
. Also, Pi broadcasts σ1 to

all parties.
2. Parties call [[b]]GT ← ΠVerify(pk, ([[xj ]])

L
j=1, σ1, [[σ2]]G1).

3. Parties open [[b]]GT , who output ([[xj ]])
L
j=1 if b = 1GT and abort otherwise.

Complexity Analysis. The communication complexity of the protocol ΠCertInput

is CInput(L) + CVerify(L) + COpen(1) bits.

Security. The ΠCertInput protocol provides security in the sense defined in [BJ18].
In a nutshell, ΠCertInput guarantees that, if ΠCertInput succeeds, then the inputs
provided by the parties were certified by some authority. Indeed, this follows
immediately from the security of the protocols presented in Sect. 3: If a corrupt
Pi sends an incorrect share to an honest party, then that directly corresponds
to creating a forgery in the PS signature scheme.6

We present an optimization if multiple parties are intended to provide input
in the full version.

Comparison with [BJ18]. Certifying inputs for MPC with the help of signatures
has been studied previously in [BJ18]. However, the approach followed in that
work is conceptually much more complex than the one we presented here. At a

6 Notice that in the case the protocol does not succeed, nothing can be said about
what caused it to abort. If this property is desired, then the protocol underlying
ΠCertInput have to support identifiable abort.
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high level, instead of verifying the signature in MPC, the parties jointly produce
commitments of the secret-shared inputs, and then each input owner uses these
commitments, together with the signatures, to prove via an interactive protocol
(that roughly resembles a zero-knowledge proof of knowledge) “possession” of
the signatures. Furthermore, the protocols presented in [BJ18] depend on the
underlying secret-sharing scheme used, and two ad-hoc constructions, one for
Shamir secret-sharing (using the MPC protocol from [DN07]) and another one for
additive secret sharing (using the MPC protocol from [DKL+13]), are presented.
Instead, our approach is completely general and applies to any linear secret-
sharing scheme, as defined in Sect. 2.

There are no claims about round complexity in [BJ18], but we counted eight
rounds of communication and two zero-knowledge proofs that can be made non-
interactive. Our protocol requires only 3 rounds: one to distribute the signature
and shares of the inputs, another to perform arithmetic in GT in MPC for
verifying the signature, and the final opening of the verification result.

We present in Sect. 6.1 a more experimental and quantitative comparison
between our work and [BJ18]. We observe that, in general, our approach is at
least 2 times more efficient in terms of computational and communication costs.

6 Implementation and Benchmarking

We implemented our protocols with the RELIC toolkit [AGM+] using the 128-
bit-secure pairing-friendly BLS12-381 curve. This curve has embedding degree
k = 12 and a 255-bit prime-order subgroup, and became popular after it was
adopted by the ZCash cryptocurrency [BCG+14]. It is now in the process of
standardization due to its attractive performance characteristics, including an
efficient towering of extensions, efficient GLV endomorphisms for scalar multi-
plications, cyclotomic squarings for fast exponentiation in GT , among others. In
terms of security, the choice is motivated by recent attacks against the DLP in
GT [KB16] and is supported by the analysis in [MSS16]. Our implementation
makes use of all optimizations implemented in RELIC, including Intel 64-bit
Assembly acceleration, and extend the supported algorithms to allow computa-
tion of arbitrarily-sized linear combinations of G2 points through Pippenger’s
algorithm. We take special care to batch operations which can be performed
simultaneously, for example merging scalar multiplications together or combin-
ing the two pairing computations within MPC signature verification as a product
of pairings. We deliberately enabled the variable-time but faster algorithms in
the library relying on the timing-attack resistance built in MPC, since compu-
tations are performed essentially over ephemeral data. The resulting code was
included in the library.

We benchmarked our implementation on an Intel Core i7-7820X Skylake
CPU clocked at 3.6 GHz with HyperThreading and TurboBoost turned off to
reduce noise in the benchmarks. Each procedure was executed 104 times and the
averages are reported in Table 1. It can be seen from the table that the MPC
versions of scalar multiplications and exponentiations introduce a computational
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Table 1. Efficiency comparison between local computation and two-party computation
of the main operations in pairing groups and PS signature computation/verification.
We display execution times in 103 clock cycles (cc) for each of the main operations in
the protocols and report the average for each of the two parties.

Operation Local (cc) Two-party (cc)

Scalar multiplication in G1 386 612

Scalar multiplication in G2 1,009 1,796

Exponentiation in GT 1,619 2,772

Pairing computation 3,107 4,063

PS key generation (1 msg) 2,670 4,723

PS signature computation (1 msg) 626 654

PS signature verification (1 msg) 5,153 8,065

PS key generation (10 msgs) 11,970 23,464

PS signature computation (10 msgs) 656 668

PS signature verification (10 msgs) 10,144 12,953

Table 2. Efficiency comparison between our certified input protocol from Sect. 5 and
the one presented in [BJ18]. Performance numbers are measured in millions of clock
cycles (cc), and communication cost is represented in thousands of bytes (KB). Figures
are presented per party with highest runtime/communication cost.

Number of messages

1 10 102 103 104 105 106

Ours 8.07 12.95 62.71 357.45 2,334.74 22,281.05 220,572.62

Comm. 0.93 1.22 4.10 32.90 320.90 3,209.00 32,090.00

[BJ18] 11.45 18.69 103.95 970.20 9,723.00 111,090.00 -

Comm. 1.02 2.81 20.70 200.00 1,950.00 19,500.00 195,000.00

overhead ranging from 1.59 to 1.78, while pairing computation becomes only 30%
slower. For the PS protocol, key generation and signature verification in MPC
are penalized in comparison to local computation by less than a 2-factor, while
the cost of signature computation stays essentially the same. There is no perfor-
mance penalty for signature computation involving many messages because of
the batching possibility in the PS signature scheme.

6.1 Certified Inputs

Here we compare our protocol for input certification from Sect. 5 with the exper-
imental results reported in [BJ18]. We choose [BJ18] as our point of comparison
as it is the only other work which performs input certification using a general
n-party protocol. In their paper, the experiments are conducted with three par-
ties. To perform a fair comparison, we converted the timings from the second
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half of Table 2 in [BJ18] to clock cycles using the reported CPU frequency of
2.1 GHz for an Intel Sandy Bridge Xeon E5-2620 machine. We used as refer-
ence the largest running time or transmission cost of the running parties (input
provider and another party) reported in [BJ18], since the computation would be
bounded by the maximum running time and the communication latency by the
maximum bandwidth requirement. Each procedure in our implementation was
executed 104 times for up to 102 messages, after which we decreased the num-
ber of executions linearly with the increase in number of messages. Our results
are shown in Table 2, and show that our implementations are already faster for
small numbers of messages, but improve on related work by a factor of 2–5
when the number of messages is at least 100. Similar savings can be observed
in communication. While the two benchmarking machines are different (Intel
Sandy Bridge and Skylake), our implementations do not make use of any per-
formance feature specific to Skylake, such as more advanced vector instruction
sets. Hence we claim that the performance of our implementations would not be
different enough in Sandy Bridge to explain the difference, and just converting
performance figures to clock cycles makes the results generally comparable. The
efficiency improvements are also large enough that they would be preserved if
our implementation were scaled up to three parties as in [BJ18].
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[AGM+] Aranha, D.F., Gouvêa, C.P.L., Markmann, T., Wahby, R.S., Liao, K.:
RELIC is an Efficient LIbrary for Cryptography. https://github.com/relic-
toolkit/relic

[ASM06] Au, M.H., Susilo, W., Mu, Y.: Constant-size dynamic k -TAA. In: De
Prisco, R., Yung, M. (eds.) SCN 2006. LNCS, vol. 4116, pp. 111–125.
Springer, Heidelberg (2006). https://doi.org/10.1007/11832072 8

[BB04] Boneh, D., Boyen, X.: Short Signatures Without Random Oracles. In:
Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027,
pp. 56–73. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-
540-24676-3 4

https://eprint.iacr.org/2020/691
https://eprint.iacr.org/2020/691
https://github.com/relic-toolkit/relic
https://github.com/relic-toolkit/relic
https://doi.org/10.1007/11832072_8
https://doi.org/10.1007/978-3-540-24676-3_4
https://doi.org/10.1007/978-3-540-24676-3_4


Improved Threshold Signatures 401

[BB16] Blanton, M., Bayatbabolghani, F.: Efficient server-aided secure two-party
function evaluation with applications to genomic computation. PoPETs
2016(4), 144–164 (2016)

[BBFP21] Bamiloshin, M., Ben-Efraim, A., Farràs, O., Padró, C.: Common informa-
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Abstract. In this work, we show how to garble arithmetic circuits with
full active security in the general multiparty setting, secure in the full-
threshold setting (that is, when only one party is assumed honest). Our
solution allows interfacing Boolean garbled circuits with arithmetic gar-
bled circuits. Previous works in the arithmetic circuit domain focused on
the two-party setting, or on semi-honest security and assuming an honest
majority – notably, the work of Ben-Efraim (Asiacrypt 2018) in the semi-
honest, honest majority security model, which we adapt and extend. As
an additional contribution, we improve on Ben-Efraim’s selector gate. A
selector gate is a gate that given two arithmetic inputs and one binary
input, outputs one of the arithmetic inputs, based on the value of the
selection bit input. Our new construction for the selector gate reduces
the communication cost to almost half of that of Ben-Efraim’s gate. This
result applies both to the semi-honest and to the active security model.

Keywords: Arithmetic garbling · Active security · Efficient selector
gate

1 Introduction

Garbled circuits have been an indispensable cryptographic tool in the field of
secure computation since the seminal work of Yao [26]. From a theoretical point
of view, garbled circuits are important as they provide the means by which we
can construct constant-round secure computation protocols, originally only in
the two-party setting, but later generalised to the multiparty setting, following
the paradigm of Beaver et al. [5]. In the two-party setting, garbled circuits are
typically Boolean circuits executed between two asymmetric parties – a garbler
and an evaluator. However, many secure computation problems require arith-
metic operations to emulate integer arithmetic, which are inefficient to realise
with a Boolean circuit (e.g., requiring 1000 AND gates for an addition mod p
and 100000 AND gates for a multiplication mod p, for p ≈ 2128). Towards the
goal of efficient constant-round computation of arithmetic circuits, one theoret-
ical approach was given by Applebaum et al. [2] and more recently a practical
solution was proposed by Ball et al. [4], in the two-party setting.
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In this work we focus on multiparty arithmetic garbling. The work of Ben-
Efraim [6] was the first to explore multiparty garbling of arithmetic circuits,
and gave protocols secure in the presence of a passive adversary in the honest-
majority setting. The goal of multiparty arithmetic garbling protocols is the
functionality FAC for computing an arithmetic circuit, given in Fig. 1. This func-
tionality is the goal of all Multiparty Computations (MPC), but offers only
security with abort instead of full robustness, in which honest parties can always
obtain the correct output after the initial inputs are provided, or fairness, in
which honest parties always receive the output if the corrupt parties receive it.

Functionality FAC

Let S denote the ideal-world adversary and A [n] the indexing set of corrupt
parties.

Evaluate On input (Evaluate, C,xi) from each party Pi, or S if i ∈ A, if C is
an arithmetic circuit over Fp and xi ∈ F

ti
p for all i such that n

i=1 ti is the
arity of C, send y := C(x1, . . . ,xn) to S and await a message Abort or OK
from S. If the message is OK, then send y to all honest parties and halt;
otherwise, send the message Abort to all honest parties and halt.

Fig. 1. Functionality FAC for evaluating an arithmetic circuit, secure with abort.

In our approach, we allow a (limited) combination of arithmetic and Boolean
circuits, as this appears to be desirable for many real-world applications. From
the simplest motivating example that one can consider, such as the one of con-
ditional summation that Ben-Efraim [6] suggests, to the most complicated com-
putations, such as evaluation of Machine Learning (ML) algorithms, a combina-
tion of arithmetic with Boolean gates is required to yield an efficient solution.
Machine Learning as a Service is becoming increasingly popular, and when pri-
vacy concerns arise, secure computation solutions should be deployed. The most
commonly used ML algorithms (e.g., Support Vector Machines (SVMs) and Neu-
ral Networks) contain one or more components that require linear operations –
for which arithmetic operations are more appropriate – and one or more compo-
nents that require non-linear operations, such as argmax or sign computation –
where Boolean computation is best. Thus it seems sensible to attempt to support
both types of gates to achieve efficient solutions to realistic applications.

Related Work. Our work combines the work of Ben-Efraim [6], and Ball et
al. [4], and extends them in such a way as to achieve full-threshold active secu-
rity by using recent actively-secure secret-sharing-based MPC to construct the
circuit, a technique initiated by Lindell et al. [19]. In the work of Ball et al.,
which is based on some of the techniques discussed also in the work of Malkin
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et al. [21], the authors propose a two-party arithmetic garbling scheme, secure
in the presence of a semi-honest adversary, where the arithmetic takes place
in a ring isomorphic to a cyclic group of primorial modulus. They show how
to use a Chinese Remainder Theorem (CRT) representation of the inputs (and
intermediate values) of the circuit to achieve great performance gains over the
straightforward conversion of ring elements to binary. In this approach, garbling
of linear gates (e.g., addition and scalar multiplication) requires no communica-
tion and can be viewed as an arithmetic analogue of the FreeXOR technique due
to Kolesnikov and Schneider [18] for Boolean circuits; multiplication, exponenti-
ation by (public) constant, and high fan-in gates are also significantly improved
beyond the näıve implementations. However, operations such as comparison of
two numbers remain challenging, and prohibitively costly in the CRT represen-
tation. To overcome this issue, Ball et al. suggested a method to convert CRT
numbers to a positional number system other than the binary system, namely
the primorial mixed radix (PMR) system. Although highly improved over the
straightforward (convert to binary) approach, the solution is still costly.

The work of Ben-Efraim [6] is secure in the presence of a passive adversary
and assumes an honest majority, and involves a circuit construction comprising a
mixture of arithmetic and Boolean gates. Ben-Efraim’s construction also allows
linear operations to be performed for free, while for multiplication gates a “des-
ignated” solution is proposed, inspired by the half-gates approach of Zahur et
al. [27], extended to the multiparty setting. This is because projection gates (that
is, gates that convert values in one ring to the equivalent values in another ring)
are difficult to achieve in the multiparty setting, unlike the two-party setting,
where as shown by Ball et al. [4], general projection gates are feasible.

Unfortunately, row-reduction techniques [22,24] in the Boolean setting, and
also applied in [4], cannot be directly applied in the multiparty setting as proto-
cols for more than two parties are (usually) symmetrical – that is, every party
acts both as garbler and evaluator. However, by elegantly re-applying a variation
of the half-gates approach [27], Ben-Efraim proposes a construction for a “desig-
nated” selector gate solution (i.e., a gate which selects one out of two arithmetic
inputs u and v, based on a third, binary input b) that reduces computation cost.
Specifically, after describing the construction of a straightforward selector (pro-
jecting the bit to characteristic p, and then performing a multiplication using
the standard multiplexing equation u + (v − u)b), Ben-Efraim demonstrates the
designated selector gate, which has the same communication cost as the straight-
forward one (2p + 2 ciphertexts), but it improves the computation cost by 33%
(i.e., 2 decryptions for the designated construction, instead of 3).

Concurrently and independently of our work, Ball et al. [3] propose a series
of optimisations over the previous state-of-the-art in the two-party setting [4],
which is tailored to the garbling of neural networks. One of their main techni-
cal contributions is the new mixed-modulus half-gate, which allows efficiently
multiplying circuit wires from different domains. This can be thought of as a
generalisation of the alternative selector gate that we present in this work, as
we can only multiply bit wires by arithmetic wires, while their construction is
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not limited to bits. While our method can only treat mixed-modulus half-gate
multiplications if one of the two domains is the F2, the approach of Ball et al. [3]
is generalisable to multiplication of wires from any (different) domain. This is
achieved by exploiting the asymmetry between the parties in the two-party case,
where we can choose certain labels to only be used in one of the parties’ half-
gates. This does not extend to the multiparty garbling setting, which is our focus,
because all parties play the role of the garbler. Still, we maintain that garbled
multiplication of an integer by a bit is indeed the most commonly occurring
mixed-modulus multiplication (e.g., selector gates). Note that the communica-
tion cost of our approach is almost the same as the cost of the approach of Ball
et al. [3] (in the case of multiplying by a bit). The second contribution of that
work is an improved mixed-radix addition, which is important for increasing the
efficiency of the non-linear parts of a garbled neural network. Mixed-radix oper-
ations (other than the ones where the one operand is base 2) do not appear to
extend readily to the multiparty case.

Our Contribution. We continue the study of Ben-Efraim [6] of multiparty gar-
bling of circuits that contain both arithmetic and Boolean gates. Ben-Efraim [6]
showed how to construct a designated selector gate in this setting, based on an
extension of the half-gate technique. The communication cost of Ben-Efraim’s [6]
selector gate is the same as in the straightforward construction, while that work
manages to reduce the computation cost by approximately 33% (i.e., 2 decryp-
tions instead of 3 at evaluation time). We propose an alternative designated
selector gate, which while it requires again 3 decryptions at evaluation time, it
reduces the communication cost to almost half of that of Ben-Efraim’s solution.
We achieve this by making use of preprocessed data called daBits, proposed by
Rotaru and Wood [25] and improved on in [1].

The other contribution of this work is to show how to perform multiparty
garbling of both arithmetic circuits with active security in the full-threshold
multiparty setting. We achieve this by using an authentication subprotocol akin
to those in MASCOT [16] and in SPDZ2k [11] to apply the Boolean circuit
garbling approach by Hazay et al. [14] to arithmetic garbling. One can view our
contribution as extending the work of Hazay et al. [14] to the arithmetic case
and combining it with recent arithmetic garbling techniques.

Paper Organisation. In Sect. 2 we introduce the assumed (full-threshold
active) security model; the universal composability (UC) framework of
Canetti [10]; secret sharing; (multiparty) garbling; and the half-gates optimi-
sation. In Sect. 3, we explain how we achieve active security against n − 1 out of
the total n parties. Due to space considerations, we defer the proofs of Lemma 1,
and Theorem 1 to the full version of the paper [20]. In Sect. 4, we give the con-
struction of our alternative selector gate, and in Sect. 5, we provide an efficiency
evaluation and comparison to previous work. Section 6 concludes our work.
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2 Preliminaries

Security Model. The protocols in this work are proved secure in the universal
composability (UC) framework of Canetti [10]. We consider an active, static
adversary that can corrupt up to n − 1 out of the n total parties. An active
adversary may deviate arbitrarily from the protocol description, and a static
adversary can choose which parties it will corrupt at the beginning of the protocol
execution but not thereafter. Consequently, the functionalities are assumed to
know at the beginning of their execution the set of corrupt parties: in the more
general setting, the ideal-world adversary sends special “corruption” messages
so that the functionality knows how to interact with different parties. Security
is parameterised by the statistical security parameter, σ, and the computational
security parameter, κ. We do not provide an implementation but typically one
sets κ ∈ {64, 96, 128} and σ ∈ {40, 80} with σ < κ. We will make use of the
standard functionalities FRand given in Fig. 2 and FCommit given in Fig. 3.

Functionality FRand

On input (Rand, X) from all parties, sample x
$← X uniformly and send x to

all honest parties and S.

Fig. 2. Functionality FRand for agreeing on random strings sampled uniformly from a
specified domain.

Functionality FCommit

The ideal-world adversary is denoted by S and the indexing set of corrupt
parties by A.

Initialise On input (Initialise, sid) from all honest parties, initialise a database
DB.

Commit On input (Commit, x, i, sid) from party Pi, sample idx,i, store (idx,i, x)
in DB, and send idx,i to all honest parties and S.

Open On input (Open, idx,i, sid) from all parties and S, retrieve (idx,i, x) in
DB;
– If i ∈ A then await a message OK or Abort from S. If the message is OK

then send x to all honest parties; otherwise, send the message Abort to
all honest parties and halt.

– If i ∈ [n] \ A, then send x to all honest parties and S and continue.

Fig. 3. Standard commitment functionality.
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Secret-Sharing. We use the notation 〈x〉 to denote that the secret x is addi-
tively shared amongst the n parties: that is, the dealer samples {xi}n−1

i=1 uniformly
at random from F, sets xn := x − ∑n−1

i=1 xi, and for each i ∈ [n] sends xi (i.e.,
the ith additive share of x) to party Pi.

We denote an authenticated shared value x by [[x]], which means that x is
shared as above, and additionally there is some procedure for verifying that
the sharing of x is not modified by the adversary. In the full-threshold setting,
this is typically achieved by secret-sharing an information-theoretic Message
Authentication Code (MAC) on every secret, as is done in BDOZ [8], TinyOT
[23] and SPDZ [12]. The details of how secrets are authenticated in Fp and
verified for correctness are not important for this work. If an error is introduced
on any variable written as [[x]], this will be detected by the honest parties.

Garbling. We assume the reader is familiar with circuit garbling, but pro-
vide an overview here. A garbled circuit is a randomised version of a circuit
that allows multiple parties to evaluate a function on the union of their private
inputs without revealing anything more about their private inputs than what
can be inferred from their own inputs and the output alone. In the two-party
setting, this procedure is asymmetric; the high-level idea is as follows: one party,
called the garbler, generates a “garbled” version of a circuit, hardwiring its own
inputs in the circuit; then the other party, called the evaluator, evaluates the
garbled circuit on its inputs (given some encoding information by the garbler
that is provided in such a way that the garbler does not learn the evaluator’s
inputs) to obtain a “garbled” encoding of the output. At the end, the two parties
communicate to reveal the final output to both.

Now we make things more concrete. Each fan-in-2 gate g : F2 → F in the cir-
cuit with input wires u and v and output wire w is expressed as a table with one
row for each (α, β) ∈ F

2 so that a row in the table has the form (α, β, g(α, β)).
The garbler then samples a key for each possible value of α, β and γ := g(α, β).
These keys typically live in some finite extension of the base field F

� where � is
O(κ), so that the keys live in O(2κ), but general garbling does not prescribe how
these keys should look except that certain garbling optimisations constrain the
encryption scheme to have certain properties. The values in the input/output
table are replaced with their corresponding encryption keys. Finally, the keys
corresponding to the output wire w of the table are encrypted first under the
key corresponding to the input on wire u input, and then under the key corre-
sponding to the input on wire v input. In practice, the encryption function is a
pseudorandom one-time-pad using a pseudorandom function (PRF) taking two
keys, and using the gate index as a nonce so that the entry for input (α, β) in
the table representation of gate g is converted to a ciphertext:

g̃α,β := Fku,α,kv,β
(g) + kw,g(α,β),

where g is a gate index and acts as a nonce for the encryption, and kw,g(α,β) is the
key. All of these |F|2 ciphertexts (i.e., the final column of the table) are handed to
the evaluator. To begin evaluating, the evaluator is handed keys corresponding
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to its inputs and decrypts gates by computing g̃α,β −Fku,α,kv,β
(g). This results in

a key that can be used to decrypt the next gate in the circuit (after the evaluator
has also obtained the output key of another gate from elsewhere in the circuit).
The evaluation involves proceeding iteratively through the circuit in this way,
decrypting using pairs of keys, until a final output key is obtained.

To hide the inputs of the evaluator from the garbler when obtaining the
initial gate input keys, the keys are sent using oblivious transfer (OT). Oblivious
transfer is a channel in which a sender sends many messages, and the receiver
selects one, with the guarantees that the sender cannot know which option the
receiver selected and the receiver learns nothing about the messages it did not
pick. In circuit garbling, for each wire on which the evaluator has input, the
garbler sends the |F| different possible keys and the evaluator chooses the one
corresponding to its input.

The circuit has the values of the garbler hardwired in. This is achieved, for
example, by only encrypting under the “v” keys if the garbler provides the input
on wire u for a given gate. However, this way the order of the ciphertexts may
reveal to the evaluator the input of the garbler. To hide the garbler’s input from
the evaluator, the ciphertexts are randomly permuted using so-called permuta-
tion or masking values chosen by the garbler. In the arithmetic case, this is a
rotation of the table rows. In order to evaluate the gates correctly, when eval-
uating a gate, in addition to learning the output key, the evaluator must learn
a so-called external or signal value, which is the real value v masked with the
masking value λ, that is, e := v+λ, so that it knows which ciphertexts to decrypt
for each gate despite the rows being permuted. The ciphertexts are then

g̃α,β := Fku,α,kv,β
(g) +

(
kw,g(α−λu,β−λv)+λw

∥
∥
∥(g(α − λu, β − λv) + λw

)
,

where g(α−λu, β−λv)+λw is the masked output wire (i.e., external) value. (The
reader should think of the key as being in F

� for some � of size O(κ), and the
external value as being in F, and F : F� ×F

� ×{0, 1}log2(|g|) → F
�+1.) The reader

is referred to the original work of Beaver et al. [5] for a complete discussion of
the permutation method (known as point-and-permute).

A technique known as FreeXOR, generalised for arithmetic circuits by Ben-
Efraim et al. [7], can be employed to allow linear gates to be evaluated for free:
the garbler chooses a global difference R and then for every non-linear gate,
the wire key for the value 0 is a random element kw,0 of F and the wire key
for each value γ ∈ Fp \ {0} is set to kw,γ := kw,0 + γ · R. Then for linear (i.e.,
addition) gates, the output 0 wire key is defined as kw,0 := ku,0 + kv,0 and the
corresponding mask as λw := λu + λv. Other gates are computed as:

g̃α,β :=Fku,α,kv,β
(g)

+
(
kw,0 + (g(α − λu, β − λv) + λwR)

∥
∥
∥(g(α − λu, β − λv) + λw)

)
.

Note that instead of encrypting a concatenation of the masking bit with the
key, the garbler can use a form of authenticated encryption, and then the evalu-
ator decrypts ciphertexts until it finds a valid decrypted message and considers
this the output key. This technique will be used in the garbling described later.
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Half Gates. During the evaluation of the circuit, the signal values learnt by the
evaluator “contain” the real values (in the sense that they are linearly dependent
on them); likewise, the keys contain information regarding the real values. The
idea behind half-gates is to exploit this information to reduce the amount of
garbling required: during evaluation, the evaluator can compute the product of
a signal value eu with a key kv,ev

to obtain “almost” a key for the product
vu · vv, and then can correct the errors that arise from the masking values using
garbled gates (i.e., ciphertexts) in the more usual way1. In a sense, the difficult
part of the multiplication gate, namely the cross-term vu · vv in the output key
kw,ew

= kw,0 + (λw + vuvv)R, is computed by computing eu · kv,ev
. The reason

this is useful is that the errors that must be corrected in the product are each
functions in the value of only one of the two real wire values vu or vv (and
a combination of the (fixed) masking values). This means that the ciphertexts
containing the corrections can be generated independently for each pair of inputs
in F

2
p into the gate, which means only p + p ciphertexts are needed, rather than

p · p as required by garbling in the conventional manner.
To design a half gate, one observes what can be obtained from products of

signal value with keys of input wires, namely from eu · kv,ev
, or from ev · ku,eu

.
For example,

eukv,ev
= (vu + λu)(kv,0 + (vv + λv)R)
= vukv,0 + λukv,0 + vuvvR + λuvvR + vuλvR + λuλvR

= vuvvR + vukv,0 + vuλvR
︸ ︷︷ ︸
Dependent on vu

+ λuvvR
︸ ︷︷ ︸

Dependent on vv

+ λukv,0 + λuλvR
︸ ︷︷ ︸
Dependent on neither

Now since the goal is to obtain kw,ew
= kw,0 + (λw + vuvv)R, for every γ ∈ Fp

the garbler generates two ciphertexts: one encrypting

kw,g,0 + λwR − ((γ − λu)(kv,0 + λvR) + (λukv,0 + λuλvR)) ,

and the other encrypting

kw,e,0 − (γ − λv)(λuR) .

The output wire key is set to kw,0 := kw,g,0 + kw,e,0. The evaluator will decrypt
the ciphertexts corresponding to γ = eu for the first half gate and γ = ev for
the second; since eu − λu = vu and ev − λv = vv, they will obtain the correct
key by summing the two resulting plaintexts and the value eukv,ev

. Note that in
the original two-party protocols, one gate input was assumed to come from the
garbler and the other from the evaluator, so the evaluator would also be involved
in the garbling of the half gates. This results in reduced communication since
each party knows one of the wire masks. In the multiparty setting described
later, no party knows the wire masks, so the main saving comes from reducing
the quadratic cost p2 to the linear cost 2 · p.
1 This is analogous to the key-switching operation required for relinearisation of cipher-

texts in somewhat-homomorphic encryption (SHE) schemes, where one first does a
“näıve” multiplication, and then corrects the errors.
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Some recent papers evaluate over a ring of primorial modulus rather than over
a prime field in order to reduce the size of multiplication gates from (

∑t
i=1 pi)2 to

∑t
i=1 p2i total ciphertexts. However, using the half-gate technique, the cost is the

same regardless of the modulus, at 2 · ∑t
i=1 pi ciphertexts. The CRT approach

is also useful for performing non-linear operations such as computing powers.
These operations are quite expensive even in the passive security setting. While
it may be useful to have an actively-secure protocol for arithmetic circuits over a
composite modulus ring, there are difficult challenges to overcome arising from
the presence of zero divisors; thus we leave this to future work.

We evaluate the garbled circuits in Fp, for which the straightforward garbling
approach requires that p be small enough to allow parties to send O(p) cipher-
texts per multiplication gate, but large enough so that the PRF keys used for
encryption are computationally secure. To do this, we evaluate circuits in Fp,
but take keys in an extension field, specifically Fp�κ , where �κ := 1 + �κ/ log p�.

Multiparty Garbling. In multiparty garbling, originally developed by Beaver
et al. [5], all parties act as garbler and evaluator. Lindell et al. [19] showed how to
use actively-secure secret-sharing-based MPC to compute a multiparty garbled
circuit with active security. Using MPC, each party generates keys for a circuit,
and the masking values are chosen randomly and are unknown to the parties.
This way for each gate, each party holds n ciphertexts, indexed by j:

g̃j
α,β :=

n∑

i=1

Fki
u,α,ki

v,β
(g, j) +

(
kj

w,0 + (g(α − λu, β − λv) + λw)Rj
)

.

Since each party Pi generates one set of keys (those indexed by i), the external
values on the wires can be learnt by each party examining the output plaintext
mi from its own circuit and setting ew := (mi − ki

w,0) · Ri−1 and ki
w,ew

:= mi.
In many ways, the protocol we present in this work is a straightforward

generalisation of garbling protocols over F2. Notice that for a Boolean circuit,
the half-gate approach is no more efficient than the näıve approach, unless we are
in the two-party setting in which one party is the garbler and one the evaluator,
rather than all being both as in the multiparty setting.

PRF Assumption. To encrypt a gate, a single-keyed PRF is evaluated on a
nonce and used to one-time-pad encrypt a key. To make use of the (generalised)
FreeXOR technique, the following assumption is required.

Let F : Fp�κ × N → Fp�κ be a keyed pseudorandom function (PRF). Define
the oracle OF,R in the following way:

OF,R : Fp�κ × Fp × N × Fp → Fp�κ

OF,R(k, γ, x, δ) 	→ Fk+γ·R (x) + δ · R

Now define FRO to be an oracle that, on input a query m = (k, γ, x, δ) ∈
Fp�κ × Fp × N × Fp, if m has not been queried before, samples r

$← Fp�κ and
outputs r, and otherwise outputs whatever was sampled previously.
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The following definition was given by Hazay et al. [14] for Boolean functions,
and a similar definition for arithmetic circuits was given by Ball et al. [4].

Definition 1 (Circular Correlation Robustness). For the oracles above,
define legal queries as those with inputs in the correct domain, and additionally:

1. The oracle may not be queried when γ = 0.
2. The oracle may not be queried twice for the same δ unless at least one other

variable changes.

Then we say that F is circular correlation robust if for all probabilistic
polynomial-time distinguishers D, it holds that

∣
∣
∣
∣
∣
∣

Pr
R

$←F
p�κ

[DOF,R(1κ)] − Pr[DFRO(1κ)]

∣
∣
∣
∣
∣
∣
= O(2−κ)

In the garbling protocols, the PRF is queried on values (g, j), where g ∈ N

is the gate index and j ∈ [n] is the party index, parsed as a natural number
�log n/ log 10� · g + j.

The choice for this definition comes from the fact that parties should not be
able to distinguish between keys generated using global differences and uniform
keys in the field. Note that while the keys generated for each wire are only in
some coset kw,0 + {γR : γ ∈ Fp} of Fp�κ , the distinguisher is only allowed to
query once per key per nonce for a fixed δ. This corresponds to the fact that in
the garbling, the evaluator(s) can only decrypt a single ciphertext.

3 Full-Threshold Active Security

We define an n-party arithmetic garbling protocol by extending the state-of-the-
art techniques used by Hazay et al. [14] for Boolean garbling to arithmetic gar-
bling, using actively-secure MPC over Fp as a black box, and using the half-gate
techniques described for arithmetic circuits by Ben-Efraim [6]. In this section we
describe the actively-secure garbling of the “standard” multiplication gate, since
using the classical garbling techniques one can replace the multiplication func-
tion with any gate g : F2

p → Fp; our techniques for active security also apply to
other gates, and indeed in the protocol later we garble multiplication half gates.
Many of the techniques due to Hazay et al. [14] apply almost immediately to
the arithmetic case and so the exposition here closely follows theirs. We will first
explain the components of the garbling protocol at a high level, then discuss how
to realise these different parts, and finally we will give the complete protocol.

3.1 Overview

In the arithmetic analogue of the multiparty garbling protocol of Beaver et
al. [5], with the half-gates optimisations [6,27], we aim to produce a set of p2 · n
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ciphertexts, indexed by j ∈ [n] and (α, β) ∈ F
2
p, for each multiplication gate, of

the form:

g̃j
α,β :=

(
n∑

i=1

Fki
u,α,ki

v,β
(g, j)

)

+ kj
w,0 + Rj · ((α − λu) · (β − λv) + λw) ,

where the wire masks λu, λv and λw are not known to any party and the keys
indexed by i are generated by Pi. For now, the reader can think of ku,α, kv,β ,
kw,0 and Rj as lying in a finite extension of Fp – the same space as the codomain
of the PRF. The approach of Hazay et al. for Boolean circuits to produce these
ciphertexts with active security is to generate a secret-shared version of g̃j

α,β for
every j ∈ [n] and open them, in the following way:

1. Use a generic “Bit-MPC” functionality, FBitMPC, for parties to obtain authen-
ticated secret-shared random bits [[λu]], [[λv]] and [[λw]] and to compute
[[λu · λv]].

2. Use correlated oblivious transfer (COT) to compute the products by the
global differences: for each j ∈ [n] to compute secret-shared versions of:

Rj · λu, Rj · λv, Rj · (λw + λu · λv).

3. Locally combine the secret-shared values with local PRF evaluations to obtain
a sharing of each gate g̃j

α,β .
4. Open all the sharings.

A key observation, first made by Lindell et al. [19], is that the sharings need
not be authenticated, as the parties will abort during circuit evaluation with
overwhelming probability if the adversary introduces errors. This means that
the PRF evaluations need neither be authenticated, nor proved correct using a
zero-knowledge proof. Authentication is required on the wire masks to ensure
the multiplication is performed correctly. Thus, only one secure Bit-MPC mul-
tiplication is required per AND gate, along with an amortised COT operation.

Our approach here is to give the simple generalisation for the field Fp, noting
that the keys must live in the space Fp�κ , where �κ := 1 + �κ/ log p�. We first
describe the replacement of FBitMPC with MPC over a field, denoted by FMPC, and
second show how to replace COT with correlated oblivious product evaluation
(COPE) (also known as vector oblivious linear function evaluation (vOLE)).

3.2 Secret-Sharing-Based Wire Mask Arithmetic

For arithmetic circuits, the bit masks are replaced with masks in Fp and the
functionality FBitMPC is replaced with FMPC, shown in Fig. 4. Instead of any
generic FMPC functionality, we model here a secret-sharing-based functionality,
which can be instantiated with any actively secure protocol for secret-sharing-
based arithmetic MPC. We denote by [[x]] an authenticated secret shared value x
that is stored internally by FMPC. Then, xi denotes party Pi’s additive share of x.
In the garbling protocol, just as in the work of Hazay et al. [14], to obtain a wire
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mask λu, each party samples λi
u

$← Fp and calls FMPC to create an authenticated
sharing of this value; then they call Add to obtain [[λu]] =

∑n
i=1[[λ

i
u]]. They do

similarly for λv and λw so that the parties obtain [[λu]], [[λv]] and [[λw]], and then
call Multiply to multiply [[λu]] and [[λv]], and obtain [[λuv]] = [[λu · λv]].

Functionality FMPC

The functionality assumes n parties P1, . . . , Pn, and the ideal-world adversary
S, who controls a subset of parties I ⊂ [n]. If a command is received where sid
differs from what was sent during Initialise, ignore the command and await
the next. At any point, the ideal-world adversary S can send the message Abort
and the functionality sends the message Abort to all honest parties and halts.

Initialise On input (Initialise, F, sid), store the field F and initialise a new
database, DB := ∅.

Input On input (Input, i, id1, . . . , id , x1, . . . x , sid) from Pi and
(Input, i, id1, . . . id , ⊥, sid) from all other parties, where xi ∈ F and
idi are distinct new identifiers, append the entries (idi, xi) to DB.

Add On input (Add, idx, idy , idz, sid) from all parties, where idx and idy are
identifiers in the database and idz is a new identifier, retrieve (idx, x) and
(idy, y) from memory and append the entry (idz, x + y) to DB.

Multiply On input (Multiply, idx, idy, idz, sid) from all parties, where idx and
idy are identifiers in the database and idz is a new identifier, retrieve (idx, x)
and (idy, y) from memory and compute z := x · y. Receive shares zi ∈ F

from S, for i ∈ I , randomly sample honest parties’ shares zj ∈ F for j /∈ I
s.t. n

i=1 zi = z, send zi to Pi, i ∈ [n], and append (idz, z) to DB.
Output On input (Output, idx, sid) from all parties, retrieve the entry (idx, x)

from DB, send x to S, and await a message OK or Abort; if the message is
OK then send x to all honest parties, and otherwise send the message Abort
to all honest parties and halt.

Fig. 4. Functionality FMPC for performing general MPC, secure with abort.

3.3 Wire Mask/Global Difference Products

In the garbling protocol, for every wire w the parties require (unauthenticated)
sharings of Rj · λw for every j ∈ [n]. Since λw is additively shared, the parties
actually compute sharings of Rj ·λi

w for every j ∈ [n] and i �= j. Since the global
difference is fixed for all gates in the circuit, in the Boolean case such sharings
can be generated using COT, in which a sender chooses a fixed correlation,
namely Rj , and the receiver inputs their sharing of the mask λi

w; then the sender
obtains some qj,i and the receiver some ti,j such that qj,i + ti,j = λi

w ·Rj . Hazay
et al.’s [14] protocol for computing the wire mask/global difference products is
called ΠBit×String, since Rj ∈ F2k and the masks are bits.
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We can apply essentially the same techniques here, and correctness of the
protocol follows in exactly the same way. The difference is that we are now
interested in masks in Fp and global differences in Fp�κ . Thus, we must use the
correlated oblivious product evaluation (COPE) presented in Fig. 5, which is an
extension of the protocol ΠBit×String [14], operating in any finite field, instead
of only in F2. Note that FCOPE accepts inputs from the sender in Fp�κ , but in
our protocol the inputs are assumed to be in Fp, as they are circuit wire masks.
Thus a corrupt sender could send an element of Fp�κ \ Fp in the instance of
FCOPE. However, the follow-up checks that take place during the execution of
the subprotocol ΠMask×Diff (Fig. 6) ensure that secrets lie in Fp. A functionality
such as F t,1

OLE by Ghosh et al. [13] that accepts input from the sender in a small
field, from the receiver in an extension field and outputs a sharing in the larger
field could be used, but for a technical reason it is not amenable to OT extension
[15] as is FCOPE and is therefore less efficient when performing a large number of
multiplications. Realising a product functionality more efficiently would improve
the overall efficiency of the garbling protocol and we leave this for future work.

Functionality FCOPE (from [16])

Let g : F
log |F → F be any map such that for every x ∈ F, if x ∈ {0, 1} log |F

represents its bit-decomposition, then g(x) = x. Let g−1(x) denote the bit-
decomposition of x, which is well-defined by uniqueness of decomposition.

Initialise On receiving the message (Initialise, F, Pj , Pi, sidj,i) from parties Pi

and Pj , await Δ ∈ F from Pj , store Δ, and set Δ := g−1(Δ).
Extend On receiving the message (Extend, sidj,i) from both parties,

1. – If Pi and Pj are honest then await x ∈ F from Pi, sample q
$← F and

set
t = x · Δ − q

– If Pi is corrupt and Pj is honest then await t ∈ F and x ∈ F
log |F

from S and set
q = g(x ∗ Δ) − t

where ∗ denotes the coordinatewise product.
– If Pi is honest and Pj is corrupt then await x ∈ F from Pi and q ∈ F

from S and compute
t := x · Δ − q.

2. Send t to Pi and q to Pj .

Fig. 5. Functionality for correlated oblivious product evaluation.

The subprotocol for mutliplying global differences with wire masks is given
in Fig. 6.
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Subprotocol ΠMask×Diff

Initialise For every ordered pair of parties (Pj , Pi), call an instance of FCOPE,

denoted by F(j,i)
COPE with Pi as the sender and Pj as the receiver, with input

(Initialise, Fp κ , Pj , Pi, sidj,i), and input Rj from Pj .

Multiply To compute unauthenticated sharings ( xk · Ri )m
k=1 from authenti-

cated sharings ([[xk]])m
k=1 for which the parties additionally hold ( xk )m

k=1,
the parties do the following:
1. Mask The parties generate σ := σ/ log p masks: for each l ∈ [ σ],

(a) For each i ∈ [n], party Pi samples xi
m+l

$← Fp and calls FMPC with
input (Input, i, xi

m+l, idxi
m+l

) while each party Pj , j = i, provides

corresponding input (Input, i, ⊥, idxi
m+l

).

(b) The parties obtain [[xm+l]] = n
i=1[[x

i
m+l]] by creating a new identifier

idxm+l and calling the Add procedure of FMPC multiple times.
2. Generate For each j ∈ [n],

(a) For every i = j,

i. Pi and Pj call F(i,j)
COPE with input (Extend, sidi,j):

A. Pi provides xi
1, . . . , x

i
m+l as input.

B. Pi receives (ti,j
k )m+l

k=1 and Pj receives (qj,i
k )m+l

k=1 .
ii. It holds that qj,i

k + ti,j
k = xi

kRj . Party Pi sets zi,j
k := ti,j

k .
(b) Party Pj sets zj,j

k := xj
kRj + i=j qj,i

k .
3. Check

(a) Call FRand with input (Rand, F σ×m
p ) to obtain a matrix H =

(χl,k)l∈[ σ],k∈[m].

(b) Let x := (xk)m
k=1 and x̂ := (xm+l) σ

l=1. The parties compute [[c]] :=
H · [[x]] + [[x̂]] and call FMPC with input (Output, idc, sid) to obtain c.
If it aborts, then the parties abort.

(c) Each party Pi computes ci,j := H · (zi,j
k )m

k=1 + (zi,j
m+l)

σ
l=1 and ci,i :=

−c · Ri + H · (zi,i
k )m

k=1 + (zi,i
m+l)

σ
l=1.

(d) Each party Pi calls FCommit with input (Commit, ci,j , i, sid) for all
j ∈ [n].

(e) When idci,j has been received from FCommit for all i, j ∈ [n]2, call
FCommit with input (Open, idci,j , sid).

(f) Check that n
i=1 ci,j = 0 for all j ∈ [n]. If so, then each party Pi

(locally) outputs (zi,j
k )k∈[m],j∈[n]; otherwise, they abort.

Fig. 6. Subprotocol ΠMask×Diff for multiplying global differences with wire masks.

For active security, it is necessary to check that each Pj provides the same
global difference Rj with every other Pi, and that every Pi provides the same
sharing λi

w with every other Pj . Observe that
⎛

⎝xj · Rj +
∑

i�=j

qj,i

⎞

⎠+

⎛

⎝
∑

i�=j

ti,j

⎞

⎠ = Rj ·
⎛

⎝xj +
∑

j �=i

(qj,i + ti,j)

⎞

⎠ = Rj ·
(

n∑

i=1

xi

)
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where the first summand is computed by party Pj and for each i �= j, ti,j

is held by Pi. The fact that this relationship must hold (by design) can be
used to check correctness of a batch of secrets {[[xk]]}m

k=1 as follows: parties
can take an additional mask [[xm+1]], reveal a random linear combination c :=
xm+1 +

∑m
k=1 χkxk, χk ∈ Fp∀k, and check for all j ∈ [n] that 〈zj〉 defined by

zi,j := ti,jm+1 +
m∑

k=1

χk · ti,jk (i �= j)

and

zj,j := −c · Rj +

⎛

⎝xj
m+1 · Rj +

∑

i�=j

qj,i
m+1

⎞

⎠ +
m∑

k=1

χk ·
⎛

⎝xj
k · Rj +

∑

i�=j

qj,i
k

⎞

⎠

is an additive sharing of 0. It is shown in the proof of Lemma 1 (provided in the
full version of the paper [20]) that the probability that parties are inconsistent
but all of the n sharings {〈zi〉}n

i=1 are zero is bounded above by p−1; thus the
check is performed independently �σ := �σ/ log p� times in parallel to ensure at
least σ bits of statistical security.

Concrete Instantiation. One of the reasons that the protocol of Hazay et al. [14]
is so efficient is that the functionality FBitMPC can be realised using the n-party
variant [9] of the TinyOT [23] protocol, in which bits are authenticated exactly
via sharings of bi ·Rj , where Rj is taken to be the secret key of Pj . Thus sharings
of the wire mask/global difference products are immediately available to the
parties by the correctness of the FBitMPC functionality, without the need for a
separate ΠBit×String protocol. However, currently the most efficient protocols in
the setting of a large prime field use a different form of authentication and so this
optimisation cannot be directly applied here. Instead, we can use, for example,
the most recent version of the SPDZ protocol [12] known as Overdrive [17].
Note that in MASCOT [16], pairwise MACs are generated and then combined
to create global MACs, so it may be that this approach, which then obviates the
need to perform the protocol ΠMask×Diff separately, is better in practice.

Lemma 1, states that an adversary succeeds in cheating without detection in
ΠMask×Diff with negligible probability in the statistical security parameter, σ.

Lemma 1. For the outputs (zi,j
k )i,j∈[n] of the subprotocol ΠMask×Diff it holds that

∑n
i=1 zi,j

k = xi
k · Rj for all j except with probability at most 2−σ.

Notice that in order to establish a unique signal value after decrypting cipher-
texts, it is necessary to multiply by R−1, which means that R must be invertible.
However, since R is sampled from a field, the random choice is invertible except
if it is 0, which happens with probability p−�κ < 2−κ < 2−σ.

3.4 The Complete Garbling and Evaluation Protocols

Following the analysis of the necessary components for garbling we now present
the complete garbling and evaluation protocols. The subprotocol for garbling is
given in Fig. 7, and the one for evaluation in Fig. 8.
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Subprotocol ΠGarble

For simplicity, the session identifiers for functionalities are taken as implicit.

Initialise
1. Agree on a new session identifer, a computational and statistical security

parameter, κ and σ, and a circuit C to evaluate, with circuit input wires
Win, circuit output wires Wout, and a set of gates G comprised of a set
of multiplication gates Gmul, a set of addition gates Gadd, and a set of
selection gates Gsel. Let PID() : Win → [n] denote the map determining
which party provides input on which wire.

2. Set κ := κ/ log p .

3. For each i ∈ [n], Pi samples Ri $← Fp κ and then the parties execute the
procedure Initialise from ΠMask×Diff.

4. Call an instance of FMPC with input (Initialise, Fp, sid).
Wire Masks and Keys

Circuit Input Wires For circuit input wire w ∈ Win, let i := PID(w) and
then do the following:

1. Party Pi samples λw
$← Fp and calls FMPC with this value as input.

2. Each party Pj , j ∈ [n], samples a key kj
w,0

$← Fp κ and for each

α ∈ Fp sets kj
w,α := kj

w,0 + α · Rj .
Addition Output Wires For each wire w that is an output of an addition

gate with input wires u and v, do the following:
1. Compute [[λw ]] = [[λu + λv]] by calling FMPC.
2. For each i ∈ [n], party Pi computes ki

w,0 := ki
u,0 + ki

v,0 and for each
α ∈ Fp sets ki

w,α := ki
w,0 + α · Ri.

Multiplication Output Wires For a wire w that is an output of a mul-
tiplication gate with input wires u and v,
1. For each x ∈ {g, e},

(a) For each i ∈ [n], party Pi samples λi
w,x

$← Fp and calls FMPC with
this value as input.

(b) Compute [[λw,x]] := [[ n
i=1 λi

w,x]] by calling FMPC.

(c) For each i ∈ [n], party Pi samples a key ki
w,x,0

$← Fp κ and for

each γ ∈ Fp sets ki
w,x,γ := ki

w,x,0 + γ · Ri.
2. For each i ∈ [n], party Pi sets ki

w,0 := ki
w,g,0+ki

w,e,0 and for all γ ∈ Fp

sets ki
w,γ := ki

w,0 + γ · Ri.
Wire Mask/Global Difference Products

Multiplication Gates For each g ∈ Gmul, let u and v be the input
wires and w the output wire; then do the following:

1. Compute [[λuv ]] := [[λu · λv]] by calling FMPC.
2. Execute the procedure Multiply from ΠMask×Diff on the set

{λu, λv, λuv, λw,g, λw,e}g∈Gmul to obtain, for all i ∈ [n], (unau-
thenticated) sharings

Ri · λu , Ri · λv , Ri · λuv , Ri · λw,g , Ri · λw,e
g∈Gmul

.

3. For each i ∈ [n], for each γ ∈ Fp, set

ρi,g,g,γ := −γ Ri · λv + Ri · λuv + Ri · λw,g

ρi,g,e,γ := −γ Ri · λu + Ri · λw,e

Garbling
Multiplication Gates For each g ∈ Gmul, for each i ∈ [n], for each γ ∈ Fp,

1. The parties compute the garbler half gate:
– Pi sets gi,i

g,γ := Fki
u,γ

(g, i) + ki
w,g,0 + ρi

i,g,g,γ

– For every j = i, Pj sets gi,j
g,γ := F

kj
u,γ

(g, i) + ρj
i,g,g,γ

2. The parties compute the evaluator half gate:
– Party Pi sets gi,i

e,γ := Fki
v,γ

(g, i) + ki
w,e,0 − γ · ki

u,0 + ρi
i,g,e,γ

– Every party Pj , j = i, sets gi,j
e,γ := F

kj
v,γ

(g, i) + ρj
i,g,e,γ

Fig. 7. Subprotocol ΠGarble for garbling a circuit.
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Subprotocol ΠEval

Input Wires For each wire w ∈ W which is an input wire, the parties do the
following:
1. Let i = PID(w): then party Pi computes and broadcasts ew := vw + λw,

where vw ∈ Fp, is Pi’s input.
2. For each i ∈ [n], party Pi broadcasts ki

w,ew
.

Opening For each g ∈ Gmul, for each x ∈ {g, e}, for each i ∈ [n],
1. For each j ∈ [n], for each γ ∈ Fp, Pi broadcasts gj,i

x,γ .
2. All parties compute gi

x,γ := n
j=1 gi,j

x,γ .
Circuit Evaluation Traversing the circuit in topological order, for every gate

G with input wires u and v and output wire w, the parties do the following:
– If g is an addition gate, each party does the following:

1. Set the external wire value to be ew := eu + ev.
2. Compute the output keys as: for each i ∈ [n], ki

w,ew
:= ki

u,eu
+ ki

v,ev
.

– If g is a multiplication gate, each party does the following:
1. For each i ∈ [n], compute

ki
w,ew

:= gi
g,eu

−
n

j=1

F
k
j
u,g,eu

(g, i)

Garbler half gate

+ gi
e,ev

−
n

j=1

F
k
j
v,e,ev

(g, i)

Evaluator half gate

+ev·ki
u,eu

.

2. Each party Pi determines the signal value ew by computing ew :=
(ki

w,ew
− ki

w,0) · (Ri)−1.
Output To obtain the output of wire w ∈ Wout, call FMPC to execute the

procedure Output to reveal the value ew − [[λw ]].

Fig. 8. Subprotocol ΠEval for evaluating the garbled circuit.

Theorem 1. The execution of the subprotocol ΠGarble followed by the execution
of the subprotocol ΠEval, making use of the subprotocol ΠMask×Diff, UC-securely
realises the functionality FAC in the presence of a static, active adversary that
corrupts up to n − 1 parties, in the FCommit, FCOPE, FMPC, FRand-hybrid model,
assuming the PRF F satisfies correlation-robustness.

The proof of Theorem 1 can be found in the full version of the paper [20].
All of the protocols in this section can be realised using protocols (with minor

modifications) given in MASCOT [16]; however, the two parts of the computation
outlined above are most optimally performed using a mixed approach: using the
Overdrive protocol [17] to realise FMPC, and using MASCOT-like protocols to
perform the Wire Mask/Global Difference products. The reason is that Overdrive
is more efficient over large prime fields, as opposed to large extension fields such
as F2k for which MASCOT is better.
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4 Selector Gate

It was argued by Ben-Efraim [6] that a selector gate taking a Boolean selection
bit and choosing between field elements is a desirable feature of garbling proto-
cols as the selection bit is likely to come from the evaluation of some Boolean
subcircuit. Such a construction was given in [6]; in this section we give an alterna-
tive construction, which we call the alternative selector gate, which, specifically,
takes one input in F2, held as a signal bit with a corresponding key in F2κ and
viewed as output from a Boolean circuit, and two inputs in Fp, and outputs one
of the field elements according to the selection bit. Note that if the selection bit
is also a field element then the standard 2 · p ciphertexts for general field/field
multiplication is required, as is the case in Ben-Efraim’s work [6].

Multifield Shared Bits. Rotaru and Wood [25] showed how to generate secret-
sharings of uniformly-random bits shared in two fields with authentication in
each; these were called daBits, for doubly-authenticated bits. This can be viewed
as an actively-secure version of the multi-field bits discussed by Ben-Efraim,
which can be used in arithmetic garbling of selector gates. The protocol for
generating such bits uses authentication in a black-box way, and so any actively-
secure MPC protocol can be used to generate them. In this work, we use daBits
shared in Fp and F2κ for our selector gates.

4.1 New Selector Gate

Recall that the standard cost of multiplication in Fp is p · p ciphertexts; the
garbler/evaluator half-gate approach reduces this to p+p ciphertexts. The main
observation driving our alternative selector gate is that the actual selection oper-
ation is a multiplication of a bit by an element in Fp, and thus the goal is to
reduce the näıve 2 · p ciphertexts to (almost) 2 + p.

A selection gate based on selection bit b between the values on wires u and v
is computed via the standard multiplexer u + (v − u) · b. Since linear operations
are garbled without communication or preprocessing, we focus on the product
of the wire w := v −u ∈ Fp with the bit b ∈ F2; the output wire is denoted by z.

The point is that while the previous approach by Ben-Efraim involved con-
verting the bit to Fp using a so-called projection gate and evaluating a standard
multiplication gate in Fp, we can use daBits to perform this projection directly.
We will now explain how to garble the new selector gate; this explanation is
followed by a formal protocol description.

Let b′ be the Boolean wire, and let b be the Fp wire to which we wish to
convert. We let the wire mask output of the Boolean wire be a daBit λb′ ∈ {0, 1}
and convert it to an Fp wire using 2n ciphertexts in Fp�κ as follows: for every
β ∈ {0, 1}, for every j ∈ [n],

gj
β :=

n∑

i=1

Fki
b′,β

(g, j) + kj
b,0 + ((β + λb′ − 2 · β · λb′) + λb) · Rj ,



Full-Threshold Actively-Secure Multiparty Arithmetic Circuit Garbling 425

where ki
b′,β ∈ F2κ for all i ∈ [n] and λb is a uniform mask in Fp. Since the PRF

used in previous sections takes keys of length at least κ bits, we may assume the
same PRF is used here, with additional padding if necessary. Here, we use the
fact that in any field, if a and b are in {0, 1} then their XOR is computed as

a ⊕ b = a + b − 2 · a · b,

which means that we can remove the mask in Fp since the mask λb′ used in the
garbling of the Boolean circuit was a daBit. The two ciphertexts (for each i ∈ [n])
are indexed by the two possible Boolean external values, which is denoted by eb′ ;
the external value on the output, denoted by eb, is not needed in the next steps,
but can be computed by the evaluators in the usual way (i.e., by Pi comparing
the output key indexed by i to its own p keys). In doing so, the evaluators learn
either 0 + λb or 1 + λb, but do not learn which they hold. In fact, this external
value eb is never used by the evaluators.

The multiplication gate is then computed in two halves:

gj
g,α :=

n∑

i=1

Fki
w,α

(g, j) + kj
g,z,0 − α(kj

b,0 + λbR
j)

gj
e,β :=

n∑

i=1

Fki
b,β

(g, j) + kj
e,z,0 − (β + λb′ − 2βλb′)λwRj + λzR

j

Now when evaluating, the parties will obtain ew and eb′ , will compute a :=
Dec(gg,ew

) and b := Dec(ge,eb′ ) and will compute

kz,ez
= a + b + ewkb,eb

=
(
kj
g,z,0 − ew(

�
�kj
b,0 + λbR

j)
)

+
(
kj
e,z,0 − (eb′ + λb′ − 2eb′λb′)λwRj + λzR

j
)

+ ew(��kb,0 + ebR
j)

=
(
kj
g,z,0 − ewλbR

j
)

+
(
kj
e,z,0 − vbλwRj + λzR

j
)

+ ewebR
j

=
(
kj
g,z,0 − (vw + λw)λbR

j
)

+
(
kj
e,z,0 − vbλwRj + λzR

j
)

+ (vw + λw)(vb + λb)Rj

=
(
kj
g,z,0 −�������

(vw + λw)λbR
j
)

+
(
kj
e,z,0 − vbλwRj + λzR

j
)

+ ((vw + λw)vb +������(vw + λw)λb)Rj

= kj
g,z,0 +

(
kj
e,z,0 + λzR

j −����
vbλwRj

)
+ ((vw +��λw)vb)Rj

= kj
z,0 + (vwvb + λz)Rj .

In total, this requires p + 4 ciphertexts per party: 2 for the conversion, 2 for
the first half gate and p for the second.

We do not provide a complete proof of the security of the alternative selector
gate as it follows straightforwardly from the security of the selector gate of Ben-
Efraim [6]. The high-level intuition is that the keys kj

g,z,0 and kj
e,z,0 are sampled
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3. Each party Pi samples a key ki
b,0

$← Fp κ .
4. Generate an Fp output wire mask [[λz ]] in the same way as for

[[λb]], above.
5. Let [[λu]] and [[λv ]] be the masks stored in FMPC for wires u and v,

respectively, generated when garbling an addition or multiplica-
tion gate or input wire. Set [[λw ]] := [[λv]] − [[λu]] by calling FMPC.

6. Let ki
u,0 and ki

v,0 be the keys previously generated by party Pi for
wires u and v. For each i ∈ [n], party Pi sets ki

w,0 := ki
v,0 − ki

u,0.

7. For each i ∈ [n], party Pi samples a wire key ki
w,g,0

$← Fp κ and

sets ki
w,e,0 := ki

w,0 − ki
w,g,0.

8. Compute [[λb w]] := [[λb · λw]] by calling FMPC.
9. Execute ΠMask×Diff to obtain

Ri · λb , Ri · λb , Ri · λw , Ri · λb w , Ri · λz .

10. For each i ∈ [n], for each α ∈ Fp and β ∈ {0, 1}, set

ρi,g,b,β := (1 − 2 · β) Rj · λb + Rj · λb

ρi,g,g,α := −α Rj · λb

ρi,g,e,β := −β Rj · λw (1 − 2 · β) Rj · λb w + Rj · λz .

Garbling
Selection Gates If g is a selection gate with input wires u and v and

selection bit wire b,
1. The parties generate ciphertexts for converting the Boolean input

wire b to an Fp wire b: for every i ∈ [n],
– Pi sets gi,i

b,β := Fki
b,β

(g, i) + ki
b,0 + β · Ri + ρi

i,g,b,β

– For every j = i, Pj sets gi,j
b,β := Fki

b,β
(g, i) + ρj

i,g,b,β

2. The parties compute the gates for the product of wire w := (v − u)
with wire b:
(a) The parties compute the garbler half gate:

– Pi sets gi,i
g,α := Fki

g,z,α
(g, i) + ki

g,z,0 − α · ki
b,0 + ρi

i,g,g,α

– For every j = i, Pj sets gi,j
g,α := F

k
j
g,z,α

(g, i) + ρj
i,g,g,α

(b) The parties compute the evaluator half gate:
– Pi sets gi,i

e,β := Fki
e,b,β

(g, i) + ki
e,z,0 + ρi

i,g,e,β

– For every j = i, Pj sets gi,j
e,β := F

kj
e,b,β

(g, i) + ρj
i,g,e,β

Subprotocol ΠSelect

This subprotocol takes a gate with Boolean input wire b and arithmetic inputs
u and v and output wire z = u + (v − u) · b .

Wire Masks and Keys
Wire Mask/Global Difference Products

Selection Gates If g is a selection gate with input wires u and v, se-
lection bit wire b, and output wire z,
1. If b is the Boolean input wire, let λb be the Fp daBit mask stored

as [[λb]] in FMPC.
2. Generate an Fp wire mask [[λb]]:

(a) For each i ∈ [n], party Pi samples λi
b

$← Fp and calls FMPC

with this value as input.
(b) Compute [[λb]] := [[ n

i=1 λi
b]] by calling FMPC.

Fig. 9. Subprotocol ΠSelect for garbling a selector gate.
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uniformly at random, and independently of one another, and so their sum kz,0

is also uniformly random, as is required of 0 keys; furthermore, the wire mask
λz is uniform and not known to any individual party, so the external value of
the output wire perfectly hides the real value vw · vb. The complete protocol for
garbling these new selector gates is given in Fig. 9. The evaluation protocol is
the same as the evaluation of a multiplication gate and is therefore omitted.

5 Evaluation in Comparison to Previous Work

We evaluate our work in comparison to all previous works in the field of arith-
metic garbling; both in the two-party, and in the multiparty paradigm. As shown
in Table 1, we are the only work providing full-threshold active security, and
proving our garbling techniques UC-secure under the named assumptions. Pre-
vious work provided either two-party, passively secure constructions [3,4], or
multiparty, passively secure constructions in the honest majority setting [6].

Recall that, in the multiparty setting, projection gates (significantly increas-
ing the efficiency of previous work [3,4]) are non-trivial to construct, and are
not universal (i.e., tailored techniques per gate are required). Given that in the
multiparty setting all parties play the role of the garbler, we cannot exploit
the asymmetry between garbler and evaluator that two-party solutions enjoy. In
addition, as already pointed out by Ben-Efraim [6], each garbled table row in
the multiparty setting requires n ciphertexts, versus a single ciphertext in the
two-party setting, and each row decryption requires n2 PRF calls in the multi-
party setting, versus a single PRF call in the two-party setting. These values are
reflected in our cost description provided in Table 1.

For the works that did not suggest an improved version of a specific garbled
gate (e.g., multiplication gates in both our work, and the work of Ball et al. [3]),
we assume the same cost as the cost of the best previous technique of which they
make use. Our work almost halves the communication cost of the selector gate,
compared to the previous work in the multiparty setting [6], at the cost of losing
the ∼33% improvement of computation cost that Ben-Efraim’s approach enjoys
(in addition to the generation of daBits). This is an overall improvement, given
that the main bottleneck is the communication cost, and that the computation
cost is dominated by hash function calls, which are efficient. Garbling is a tech-
nique suitable for secure computation over unreliable networks, where continuous
connectivity cannot be guaranteed. Although most of the communication hap-
pens during the preprocessing phase, the communication cost remains the main
bottleneck of garbling. Performing one additional PRF call during the online
phase, given that it comes at such a significant efficiency increase of the offline
phase, is less of a concern, since PRFs are a symmetric primitive, with significant
hardware optimisations on modern processors. Our selector gate remains com-
petitive even with the related work in the two party setting [3], where we consider
a selector gate to be the so-called cross-modulus multiplication for q = 2. We
require p+4 ciphertexts per party, while Ball et al. [3] require p+1. This minor
difference comes mainly from the fact that we cannot deploy the row reduction
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techniques in the multiparty setting. Note that the cost of our protocols that
comes from applying actively secure MPC techniques, instead of the passively
secure approach in previous works, is not digested in Table 1.

Table 1. Comparison of our garbling techniques with the garbling of [4], [6], and [3], in
terms of security model supported, number of parties supported, number of ciphertexts
required per multiplication and selection gate, and number of decryptions required per
multiplication and selection gate.

Protocol Model Parties Multiplication Selection

#Ciphertexts #Decryptions #Ciphertexts #Decryptions

[4] Passive 2 6p − 5 6 2p − 1 2

[6] Passive n 2p · n 2n2 (2p + 2) · n 2n2

[3] Passive 2 6p − 5 6 p + 1 2

Ours Active n 2p · n 2n2 (p + 4) · n 3n2

6 Conclusion

Our work continues the study of multiparty arithmetic garbling initiated by
Ben-Efraim [6]. Specifically, we extend the previous work from the semi-honest,
honest majority setting, to the full-threshold actively-secure setting. Given the
practical importance of circuits, which combine Boolean and arithmetic gates, we
follow this paradigm, also considered in the work of Ben-Efraim [6]. We consider
a selector gate as suggested by Ben-Efraim [6] (essentially a multiplexer); we
extend it to the full-threshold actively-secure equivalent, and show how to garble
such a gate, while almost halving the communication cost it incurs.

Representations of Boolean circuits have clear advantages over arithmetic
circuits when it comes to non-linear operations. On the other hand, appropriate
representations of arithmetic circuits are orders of magnitude more efficient than
Boolean circuits for linear operations on arithmetic values. Garbling techniques
that enable the construction of circuits, which integrate both Boolean and arith-
metic gates, are essential to treat numerous real-world application scenarios, and
allow computation of arbitrary circuits in constant rounds. This is the reason
why the design of such garbling schemes is on the rise. It remains an interesting
open problem to devise techniques that allow a seamless and efficient conversion
between the two representations with active security in the multiparty setting.

Acknowledgements. The authors would like to thank Dragos Rotaru and the anony-
mous reviewers for their valuable feedback on this manuscript.
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Abstract. Programmers are used to the rounding and error proper-
ties of IEEE double precision arithmetic, however in secure computing
paradigms, such as provided by Multi-Party Computation (MPC), usu-
ally a different form of approximation is provided for real number arith-
metic. We compare the two standard variants using for LSSS-based MPC,
with an implementation of IEEE compliant double precision using binary
circuit-based MPC. We compare the relative performance, and conclude
that the addition cost of IEEE compliance maybe too great for some
applications. Thus in the secure domain standards bodies may wish to
examine a different form of real number approximations.

1 Introduction

Multi-Party Computation (MPC) is a technique which enables a set of parties
to compute a function on their own joint private input, whilst at the same time
revealing nothing about their private inputs to each other; other than what
can be deduced from the output of the function. Most MPC protocols fall into
one of two broad categories: garbled circuits or linear-secret-sharing-scheme-
based (LSSS-based) MPC. The garbled-circuit approach began with the work of
Yao [29], who gave a two party protocol in which one party ‘garbles’ (or encrypts)
a binary circuit (along with their input) and then another party ‘evaluates’ the
garbled circuit using their own input. By contrast, the LSSS-based approach [7,
12] involves the parties dividing each secret value into several shares, over a
finite field Fp, and perform computations on the shares, and then reconstruct
the secret at the end by combining the shares to determine the output.

Since their invention in the mid 1980s such technologies have come a long way.
The garbled circuit (GC) based approach of Yao was generalized to the honest-
majority multi-party setting by Beaver et al. [6]. Where now the collection of
parties “garble” the binary circuit, and then later the same collection of parties
jointly evaluating the garbled circuit. Recent work [17,28] (which we denote by
HSS and WRK respectively) have given very efficient multi-party protocols for
binary circuits using this methodology for the dishonest majority setting.
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The other line of LSSS based work has also had considerable recent practical
advances, e.g. [8,15], for the case of large prime p and full threshold access
structures, or [13] for the case of honest majority style access structures for a
large prime. For ‘small prime’ LSSS based MPC Araki et al. [5] propose a method
for the threshold case of (n, t) = (3, 1) using replicated sharing. This method is
relatively easy to generalize to any Q2 access structure represented by replicated
sharing.

In all settings, the state-of-the-art is now protocols which provide so-called
active (a.k.a. malicious security), namely they allow honest parties to detect
when adversarial parties arbitrarily deviate from the protocol. In addition, recent
work has also focused on combining the two approaches so as to get the advan-
tages of working with function representations given by binary circuits, as well as
function representations tailored to the LSSS-based approaches (working with
large basic data types, i.e. integers modulo p). The work [3], implemented in
the Scale-Mamba system [2], combines the HSS protocol [17] in the GC world
with either the SPDZ protocol [15] (for full threshold adversaries) or the Smart-
Wood protocol [27] (for non-full threshold adversaries) in the LSSS world. This
conversation is itself based on so-called daBits, introduced in [25].

In real applications one does not want to work either directly with binary cir-
cuit based representations of functions, nor does one want to work with integers
modulo p. After all many practical real world applications involve processing real
numbers. But real numbers are not native datatypes in MPC systems, just as
they are not native in normal computing, thus approximations have to be made.
In standard (in-the-clear) computing we approximate real numbers by floating
point operations; with the IEEE-754 representation being the standard.

For efficiency reasons much prior work on real number arithmetic in secure
computation has mainly focused on fixed point operations. This follows from
the work of Catrina and Saxena [11], who showed how to perform efficient fixed
point operations within an LSSS-based MPC system. Over the years various
authors have examined efficient LSSS-based MPC arithmetic on such fixed point
numbers, e.g. [4,20,21]. However, as is well known in standard in-the-clear com-
putation, fixed point arithmetic is not particularly suitable for many real world
applications.

Using a floating point representation is possible with an MPC system. By
utilizing binary circuits one can implement the IEEE-754 representation as a
circuit and then execute them, so as to produce true IEEE-754 compliant secure
floating point operations. However, unlike normal circuit design, the binary cir-
cuits for GC-operations are composed purely of AND, XOR and NOT gates;
with the major cost associated to AND gates. Thus we need to produce circuits
which are optimized for this cost metric and not the usual electronic circuit style
cost metrics. We present a solution to this circuit creation problem in this work,
and present gate counts and run-times of our IEEE-754 compliant circuits.

Utilizing an LSSS-based MPC system one can often obtain a more efficient
form of floating point arithmetic, using the methodology of [1]. This tries to
emulate the real number arithmetic, not in a computer whose native operations
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are modulo a power-of-two (as in IEEE-754 format), but in a computing machine
whose native arithmetic is modulo a large prime number p. The methodology
of [1] gives a number of tunable values, such as the usual mantissa and expo-
nent sizes, but also a ‘statistical security’ parameter which controls how close
‘leaked’ values are from uniformly random values1. The paper [18] also imple-
ments floating point arithmetic but in a passively secure honest-majority three
party setting, utilizing secret sharing modulo 2v. The work approximates IEEE
arithmetic using a technique similar to [1], but tuned for the case of sharing
modulo 2v. This work was extended and improved in [20].

In this work, we compare the binary circuit based approach for IEEE-754
arithmetic (which follows the IEEE-754 standard with respect to round errors),
with the approach of [1] which follows a different approach to rounding errors.
As remarked above a modern trend is to utilize the two types of MPC systems
together. Thus we also present methodologies to convert from the IEEE-754 rep-
resentation to the representation used in [1]. Our work is most closely related to
that of [24], which combines, as we do, a binary circuit approach for IEEE 754
arithmetic with a linear secret sharing approach for other MPC operations. They
also use the CBMC-GC approach to obtain the binary circuits. However, their
MPC implementation is restricted to passive security and the honest-majority
three party setting (as opposed to our actively secure approach for general access
structures). The evaluation of the circuits in [24] is performed by classical gar-
bling, as opposed to our approach (in the honest majority setting) of utilizing
an LSSS-based protocol. Thus in the three party case, we achieve roughly a
five fold performance improvement for basic operations such as addition and
multiplication, whilst at the same time we achieve active security.

We aim to answer the question; what is the performance penalty one incurs
from requiring adherence to the IEEE-754 standard? We present run-times for
all the above variants, and compare these against run-times for the fixed point
representation mentioned above. We only examine the basic floating point oper-
ations of addition, multiplication and division. For higher level functions (such
as sin, cos, sqrt, log etc.) there are often specific protocols in the secure compu-
tation domain for these functions which differ from the ‘standard’ methodolo-
gies, see [1,4]. We conclude that the performance penalty for utilizing IEEE-754
compliant arithmetic as opposed to a tailored form of arithmetic for MPC com-
putations may be too great.

2 Preliminaries

In this section, we introduce three forms of approximating real numbers, as well
as our MPC-black box. The key set in all our methodologies is Z〈k〉, which we
define as the set of integers {x ∈ Z : −2k−1 ≤ x ≤ 2k−1 − 1}, which we embed
into Fp via the map x �→ x (mod p), assuming k < log2 p. We let [n] denote the
set {1, . . . , n}. We assume a statistical security parameter sec, which one can

1 The closer they are to uniformly random, then the less information is leaked.
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think of as being equal to 40. This measures the statistical distance between
various distributions in the underlying protocols.

2.1 MPC-Black Box

Here we describe our two MPC systems (one GC-based and one LSSS-based) and
how they fit together using the ‘Zaphod’ methodology given in [3]. The systems
are in the active security with abort paradigm, i.e. if a malicious party deviates
from the protocol then the protocol will abort with overwhelming probability.

LSSS-Based MPC: We let [[·]]p denote an (authenticated) linear secret sharing
scheme (LSSS) over the finite field Fp (for a large prime p) which realizes either
a full threshold access structure or a Q2-access structure (a Q2-access struc-
ture [22], for readers not familiar with this terminology, can be thought of as a
generalization of a threshold system in which the threshold t satisfies t < n/2).
There are various MPC protocols that enable actively secure MPC with abort
to be carried out using such an LSSS, e.g. [13,15,27].

The simplest LSSS is the one which supports full threshold access structures.
In this situation, a secret x ∈ Fp is held secure by n parties, by each party holding
a value xi ∈ Fp so that x =

∑
xi (mod p). This produces an unauthenticated

sharing which we denote by 〈x〉p. To ensure correctness in the presence of active
adversaries such a secret sharing needs to be authenticated with a distributed
MAC value, i.e. each party also holds γi ∈ Fp such that α · x =

∑
γi for some

fixed global secret MAC key α; see [14,15] for details and how one can define
MPC in this context in the pre-processing model. Such authentication is called
a SPDZ-style MAC, and the combined sharing of x we denote by [[x]]p.

For threshold Q2-access structures, which can tolerate up to t corrupt parties
out of n, where t < n/2, one can define the secret sharing scheme using Shamir’s
secret sharing [26]. In this method, a secret x ∈ Fp is shared as the zero’th
coefficient of a polynomial f(X) of degree t with player i being given the share
f(i). Share reconstruction can be performed using Lagrange interpolation. Active
security of the underlying MPC protocol is achieved using the error detection
properties of the Reed-Solomon code associated to the Shamir sharing, see [27].
Thus we automatically obtain a sharing [[x]]p which authenticates itself to be
correct.

We can also consider LSSS-based MPC over a small prime p, for example
p = 2. Utilizing Shamir sharing is impossible here, without using relatively
expensive field extensions, thus it is common in this situation to represent the
Q2-access structure via replicated sharing. This is only possible when the number
of maximally unqualified sets2 (i.e. n!/(t! ·(n−t)!)) is ‘small’. For such Q2-access
structures over F2 we use a generalization of the method of [5]. This protocol
uses Maurer’s passively secure multiplication protocol [22] to generate passively
secure multiplication triples over F2. These are then turned into actively secure
2 A maximally unqualified set is a set of parties which cannot recover the secret, but

for which adding an arbitrary additional player will make the set qualified.
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triples using the method of [5] [Protocol 3.1]. Finally, the triples are consumed
in a standard secret sharing based online phase, using the methodology of [27]
to ensure active security, whilst using the techniques of [19] to reduce the total
amount of communication performed. Again, the use of Q2 access structures
ensures that the sharing authenticates itself. We let [[x]]2 denote such an authen-
ticated sharing of a bit x ∈ F2 using this replicated sharing.

GC-Based n-party MPC: For full threshold access structures we cannot use
the trick of utilizing replicated sharing, thus to execute binary circuits in the
full threshold case we turn to general n-party Garbled Circuit based MPC; i.e.
constant round protocols based on the HSS protocol [17]. Being an n-party GC
protocol the data is still secret shared between the parties, but with a different
sharing to that used above. We first pick a large finite field of characteristic two,
in our case we select K = F2128 . The size is determined so that an event with
probability 1/|K| can be considered negligible. For each element x ∈ F2 (resp.
K), we denote 〈x〉2 (resp. 〈x〉K) the unauthenticated additive sharing of x over
F2 (resp. K), where x =

∑
i∈[n] xi, with party Pi holding xi ∈ F2 (resp. K).

To obtain active security with abort we need to authenticate these sharings.
However, for technical reasons, this is done using a BDOZ-style MAC introduced
by Bendlin et al. [8], as opposed to a SPDZ-style MAC, introduced in [15]. In
particular every party Pi authenticates their share bi towards party Pj , for each
j �= i, by holding a MAC M j

i ∈ K, such that M j
i = Ki

j + bi · Δj ∈ K, where
Pj holds the local key Ki

j ∈ K and the fixed global MAC key Δj ∈ K. This
defines an n-party authenticated representation of a bit, denoted by [[b]]2, where
b =

∑n
i=1 bi and each Pi holds the bit-share bi, n−1 MACs M j

i , n−1 local keys
Kj

i and Δi, i.e. [[b]]2 = {bi,Δi, {M j
i ,Kj

i }j �=i}i∈[n].
We denote by [[b]]2 a bit that is linearly secret shared according to 〈·〉2

and authenticated according to the pairwise MACs. The extension to vectors
of shared bits is immediate. We let [[b]]2 denote a secret sharing of a vector b,
the sharing of the i-bit will be denoted by [[b(i)]]2, whilst the i-bit of the clear
vector b will be denoted by b(i). Using such sharings one can create an n-party
MPC protocol to evaluate binary circuits, see [17] for details.

Combining the Binary and Large Prime Variants: To combine the binary
and large prime worlds we use the Zaphod methodology [3], which we briefly
recap on. Our interest is in the function dependent online phase, so we focus on
the online functionalities only. When using the mapping from binary to arith-
metic circuits the data being transferred has bit length bounded by 64. In other
words every data item x is an element of Z〈264〉. We will be interested in the
‘large prime’ regime of Zaphod, so we will require that 64 + sec < log2 p, for a
statistical security parameter sec. This guarantees that selecting log2 p bits bi at
random and then forming, for x ∈ Z〈264〉,

x +
�log2 p�∑

i=0

bi · 2i (mod p)
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will statistically hide the value of x.

Functionality FMPC - Zaphod Evaluation

The functionality runs with parties P1, . . . , Pn and an ideal adversary Adv. Let A be
the set of corrupt parties. Given a set I of valid identifiers, all values are stored in
the form (varid , domain, x), where varid ∈ I, domain ∈ {F64

2 ,Fp} and x ∈ domain.
We assume p is restricted as in the main text.

Initialize: On input (Init) from all parties, the functionality activates.
If (Init) was received before, do nothing.

Input: On input (Input , Pi, varid , domain, x) from Pi and
(input , Pi, varid , domain) from all other parties, with varid a fresh iden-
tifier, store (varid , domain, x).

Evaluate: Upon receiving ({varidj}j∈m, varid , domain, Cf̄ ), from all parties,
where f̄ : {domain}m → domain and varid is a fresh identifier, if {varidj}j∈[m]

were previously stored, proceed as follows:
1. Retrieve (varidj , domain, xj), for each j ∈ [m]
2. Store (varid , domain, xm+1 ← f̄(x1, . . . , xm))

Output: On input (Output , varid , domain, type), from all parties with type ∈
{0, . . . , n} (if varid is present in memory):
1. If type = 0 (Public Output): Retrieve (varid , y) and send it to Adv. If

the adversary sends Deliver, send y to all parties.
2. Otherwise (Private Output): Send (varid) to Adv. Upon receiving Deliver

from Adv, send y to Pi.
Abort: The adversary can at any time send abort, upon which send abort to all

honest parties and halt.

Fig. 1. Functionality FMPC - Zaphod Evaluation

In Fig. 1 and Fig. 2 we provide the functionalities for our MPC black box.
Each value in FMPC is uniquely identified by an identifier varid ∈ I, where I is a
set of valid identifiers, and a domain set domain ∈ {Fp,F

64
2 }. One can see FMPC-

Zaphod Evaluation as a combination of two MPC black boxes, specified by the set
assigned to domain, along with two conversion routines, namely ConvertToField
and ConvertToBinary, given in FMPC-Zaphod Conversion. If domain = Fp, the
MPC black box provides arithmetic operations over the finite field Fp, whereas
if domain = F

64
2 , it enables one to execute arbitrary binary circuits over binary

vectors of length 64, i.e. function with arguments and results in the set F
64
2 .

FMPC-Zaphod Conversion permits parties to switch between the two MPC
black boxes. Note that we have defined ConvertToBinary and ConvertToField to
ensure that they are mutual inverses of each other (if the Fp-input element
is fewer than 64 bits in length when in the centered interval (−p/2, . . . , p/2]).
The algorithms to implement the conversion functions given below are given
in [3]. To ease notation we will write these two operations, for x ∈ Z〈264〉, as
[[x]]p ← convert([[x]]2) and [[x]]2 ← convert([[x]]p). A trivial modification of the
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protocol ‘Convert To Field’ allows us to perform an unsigned conversion (i.e.
when we think of the bits [[x]]2 representing an integer x ∈ [0, . . . , 264), which we
will denote by [[x]]p ← convertu([[x]]2).

Functionality FMPC - Zaphod Conversion

Convert To Field: On input (Convert , varid1, F64
2 , varid2, Fp):

1. Retrieve (varid1,F
64
2 ,x) and convert x to an element y ∈ Fp by setting

y ← −x63 · 263 + ∑62
i=0 xi · 2i.

2. Store (varid2,Fp, y).
Convert To Binary: On input (Convert , varid1, Fp, varid2, F

64
2 ):

1. Retrieve (varid1,Fp, x) as an integer in the range (−p/2, . . . , p/2).
2. Express y = x (mod 264) as y =

∑64
i=0 yi · 2i for yi ∈ {0, 1}

3. Consider the values yi as elements in F2 and pack them into a vector
y ∈ F

64
2 .

Fig. 2. Functionality FMPC - Zaphod Conversion

To describe our protocols we will let [[x]]2, for a boldface x, denote a vector
of 64 secret shared bits in the binary arithmetic based side of the computation.
We let [[x]]2 for a non-boldface value x denote a single shared bit x ∈ {0, 1} in
the binary side of the computation. An execution of Output, for type = 0, we
will denote by x ← Open([[x]]p) (resp. x ← Open([[x]]2).

We let [[x]]2 + [[y]]2 (resp. [[x]]2 · [[y]]2) denote the execution of the Garbled
Circuit to evaluate the addition (resp. multiplication) of two 64-bit integers.
Likewise, we let [[x]]2 ⊕ [[y]]2 denote the bit-wise XOR of the two secret 64-bit
bitstrings x and y, and [[x]]2 · [[y]]2 denote the secure bitwise AND of the single
shared bit x with the secret shared bits of the vector y. Clearly operations such
as left/right-shift (i.e. [[x]]2 � 3) can be done for free, as they are just moving
data around in memory. We let [[x]](i)2 denote the i-th bit of x, with bit zero
representing the least significant bit.

A value [[x]]p will always represent a shared value x ∈ Fp. We let [[x]]p + [[y]]p
(resp. [[x]]p · [[y]]p) denote addition (resp. multiplication) modulo Fp. If we know
x ∈ Z〈264〉 then we can also perform shift operations such as [[x]]p � 3, however
these are more expensive and require specific protocols which are outlined in [10]
(amongst other works).

2.2 IEEE-754

The accepted standard for floating-point arithmetic operations is the IEEE-754
standard, first published in 1985. We use version IEEE-754-2008, published in
August 2008. We note that the relevant international standard, ISO/IEC/IEEE
60559:2011 is identical to IEEE-754-2008. IEEE-754 defines representations of
finite numbers, infinities, and non-numeric values (so-called “NaNs”); a set of
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defined arithmetic operations on representable numbers; rounding modes to be
used in generating correct outputs of those operations; and a variety of error
conditions that may arise during those operations. In this paper we concentrate
on the double precision binary format of the IEEE-754 standard.

The IEEE representation has 64 bits in total with the least significant bit
(lsb) b0 (which we assume placed to the right) and the most significant bit (msb)
b63 (which we assume placed to the left). The three parts of the representation
are the sign bit, in position b63, the exponent, in positions b62 · · · b52, and the
mantissa in positions b51 · · · b0.

If the sign bit is equal to one, then the number is negative. The eleven
bits of exponent represent a number e ∈ [0, . . . , 2047], which becomes the ‘real’
exponent after subtracting the number 1023. The mantissa gives an integer m ∈
[0, . . . , 252 −1], although this is not the ‘mathematically correct’ mantissa as the
initial trailing one bit in the msb position has already been deleted. There are
two special cases for e, corresponding to the cases of the eleven bits being all
zeros or all ones. If e = 0 and m = 0 then this represents the value zero (which
can be positive or negative depending on b63). If e = 2047 and m = 0 then we
have either +∞ or −∞ depending on the sign bit b63. When e = 2047 and m �= 0
then we have the special number NaN, meaning ‘Not a Number’. Thus assuming
e �= 2047 the real number represented by this representation is given by

(−1)b63 ·
(
1 +

52∑

i=1

(b52−i · 2−i)
)

· 2e−1023.

2.3 Secure-Floats via Fp-Arithmetic

The standard floating point representation in LSSS-based MPC over a finite
field Fp of odd characteristic is due to [1], which itself builds on the work of [10].
Unlike [1] we always carry around a value err, which the reader should think of
as a value which corresponds to the NaN in IEEE-754 arithmetic.

Floating point numbers are defined by two global, public integer parameters
(�, k) which define the size of the mantissa and the exponent respectively. Each
floating point number is represented as a five-tuple (v, p, z, s, err), where

– v ∈ [2�−1, 2�) is an �+1-bit significant with its most significant bit always set
to one (note here the msb is not dropped as in the IEEE format).

– p ∈ Z〈k〉 is the signed exponent.
– z is a bit to define whether the number is zero or not.
– s is a sign bit (equal to zero if non-negative).
– err is the error flag (equal to zero if no rounding or arithmetic error has

occurred, it holds a non-zero value otherwise).

Thus assuming err = 0 this tuple represents the value u = (1−2 ·s) ·(1−z) ·v ·2p.
We adopt the conventions that when u = 0 we also have z = 1, v = 0 and p = 0,
and when err �= 0 then the values of v, p, z and s are meaningless.

Such errors can be triggered by ‘higher level’ functions such as trying to
compute

√−1 or log(−1), they can be triggered by division by zero operations
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or an underflow/overflow operation. An underflow or overflow occurs when the
value p from a computation falls out of the range Z〈k〉. When an error occurs in
an operation the err flag is incremented by one. Thus the operation z ← x/0+ y
results in z.err = 1, whereas z ← x/0 + y/0 results in z.err = 2 (assuming in
both cases x.err = y.err = 0.

Following the documentation of Scale-Mamba [2] we refer to such a floating
point value as an sfloat (secure-float) when the values (v, p, z, s, err) are all secret
shared. In which case, we write ([[v]]p, [[p]]p, [[z]]p, [[s]]p, [[err]]p). Unlike in [1] the
value err is kept permanently masked. When an sfloat value ([[v]]p, [[p]]p, [[z]]p, [[s]]p,
[[err]]p) is unmarked, first the value [[b]]p ← ([[err]]p = 0) is computed. Then the
five values ([[b]]p · [[v]]p, [[b]]p · [[p]]p, [[b]]p · [[z]]p, [[b]]p · [[s]]p, 1− [[b]]p) are opened. In this
way no information leaks, including how many errors were accumulated, when
a value with err �= 0 is transferred from the secure to the insecure domain.

Arithmetic is implemented using the algorithms in [1], with correctness and
security maintained as long as 2 · � + sec < log2 p, for the statistical security
parameter sec. In particular, 2−sec represents the statistical distance between
values leaked by the algorithms in Fp, and uniformly random values chosen from
Fp.

2.4 Fixed Point Representation

For comparison, we also compare how the above two methods compare against
the standard LSSS-based approach to approximating floating point values;
namely a fixed point representation first given in [11], which also utilizes the
work in [10]. We define Q〈k,f〉 as the set of rational numbers {x ∈ Q : x =
x · 2−f , x ∈ Z〈k〉}. We represent x ∈ Q as the integer x · 2f = x ∈ Z〈k〉, which is
then represented in Fp via the mapping used above. Thus x ∈ Q is in the range
[−2e, 2e − 2−f ] where e = k − f . As we are working with fixed point numbers
we assume that the parameters f and k are public. For the algorithms to work
(in particular fixed point multiplication and division) we require that f < k and
2 · k + sec < log2 p, again for the statistical security parameter sec. Again the
documentation of Scale-Mamba [2] we refer to such a fixed point value as an sfix
when the value x is secret shared as [[x]]p.

3 Generating Circuits for IEEE Arithmetic

In this section, we implement circuits for floating-point arithmetic operations
which are suitable for MPC based on binary circuit computation. While some
of this machinery (with respect to NaN computations etc.) may at first glance
appear superfluous, leading to more complex circuits than necessary; however,
floating point implementations that lack this machinery may fail to meet the
expectations of real-world users. Thus for our work to be as relevant to real-
world settings as possible, we choose to implement fully IEEE-754-compliant
circuit designs.
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Unfortunately, because IEEE-754 is the recognized standard, and because
floating-point performance is a key competitive metric for hardware implementa-
tions such as those found in modern microprocessors, IEEE-754 compatible arith-
metic circuit designs are generally proprietary and optimized for the hardware.
In our application we require combinatorial circuits which are optimized for low
AND-depth. To achieve our goal of IEEE-754 compliance without readily avail-
able compliant circuit designs, we choose to generate our own standard-compliant
circuit designs. To do so, we choose one of the few thoroughly tested open-source
IEEE-754 compliant software libraries, the Berkeley SoftFloat library, release
2c [16], from which we automatically derive circuit designs using a C-to-circuit
compiler designed for MPC applications (CBMC-GC) [9].

float64 float64_add(float64 a,float64 b)

{ flag aSign, bSign;

aSign = extractFloat64Sign(a);

bSign = extractFloat64Sign(b);

if ( aSign == bSign )

{ return addFloat64Sigs(a,b,aSign); }

else

{ return subFloat64Sigs(a,b,aSign); } }

Fig. 3. The original SoftFloat C-code for IEEE-754 double addition

For each circuit of interest in this work, we started with the relevant main
function in the SoftFloat library, and modified the circuit to make it acceptable
as input to the CBMC-GC compiler. The necessary edits in each case were
minor: changing the name of the relevant function to mpc main so that CBMC-
GC would compile that function; renaming the input and output arguments
to match the expectations of the compiler and modifying the code to contain
only a single output assignment statement and return point, with a specific
output naming convention, at the end of the function. Figure 3 shows as an
example the original SoftFloat code for IEEE-754 compliant 64-bit floating-point
addition, whilst Fig. 4 shows the same function after modification for compilation
by CBMC-GC.

CBMC-GC is a compilation pipeline designed to convert software functions
written in the C programming language into circuit specifications suitable for use
in secure multi-party computation – most particularly, garbled circuit computa-
tion. The compiler CBMC proceeds by first unrolling loops in the source algo-
rithm. Next, the compiler converts the algorithm into static single-assignment
form. Finally, the compiler uses multiple passes of optimization techniques with
the aim of reducing gate count in the resulting circuit or reducing depth of
that circuit. Optimization begins with conversion of the circuit into and-inverter
graph (AIG) form – Boolean networks comprised of 2-input AND gates and
inverter gates. During AIG construction, CBMC-GC employs structural hash-
ing [23] to prevent addition of redundant AND gates, resulting in an AIG with
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void mpc_main(float64 INPUT_X_a,

float64 INPUT_Y_b)

{ flag aSign, bSign;

float64 temp_output, OUTPUT_A_x;

aSign = extractFloat64Sign(INPUT_X_a);

bSign = extractFloat64Sign(INPUT_Y_b);

if ( aSign == bSign )

{ temp = addFloat64Sigs(INPUT_X_a,

INPUT_Y_b,aSign);

goto done; }

else { temp =

subFloat64Sigs(INPUT_X_a,

INPUT_Y_b,aSign);

goto done; }

done:

OUTPUT_A_X = temp; }

Fig. 4. SoftFloat C-code after modification for CBMC-GC

partial canonicity. The compiler uses constant propagation techniques to further
reduce unnecessary gates (those that result in constant outputs due to one or
more inputs being constant). The compiler also applies heuristic re-write rules to
reduce subcircuit complexity, and employs SAT sweeping [30] to identify addi-
tional circuit nodes that realize equivalent logical functions, and then remove
such redundancies.

When optimizing for minimum depth, CBMC-GC precedes these optimiza-
tion passes with a step of “aggregating” gates – parallelizing otherwise sequential
structures of gates in order to achieve lower circuit depth. For the addition cir-
cuit, we specify no compiler flags. For the multiplication circuit, we specify the
“–low-depth” flag, so that the compiler optimizes for the lowest possible gate
depth. For the division circuit, which is programmed using an iterative approx-
imation loop, we specify compiler flags that limit the loop unrolling to a factor
of 24. We choose this unrolling depth to closely match the number of stages
typically used in modern microprocessor floating-point division pipelines, thus
the output is (experimentally) indistinguishable from the output of the circuits
used in a modern microprocessor. Finally, we use the circuit-utils tool in the
CBMC-GC tool suite to convert the optimized circuit into the “Bristol Fashion”
used by the Scale-Mamba suite. We have the Bristol format converter remove
OR gates as well, resulting in circuits that contain only AND, XOR, and INV
gates.
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Eventually, we obtain the following circuit sizes for our three basic operations
of IEEE-754 compliant floating-point addition, multiplication, and division:

No. ANDs No. XORs No. INVs AND depth

add 5385 8190 2062 235

mul 19626 21947 3326 129

div 82269 84151 17587 3619

In the above table, we also present the AND-depth of the circuit; since when
operating in the Q2-domain using an LSSS-based MPC enginer modulo 2 the
dominant cost is not the number of AND gates but the depth of the AND gates
in the circuit.

4 Converting Between Representations

Converting between the two representations is mathematically trivial from a
functional perspective. However, our conversion needs to be executed in the
secure domain, and thus we need to ensure that no sensitive data leaks during
the conversion and in addition, we must use constructions which can be executed
reasonably efficient in the secure domain.

We first present two trivial extensions to the conversion algorithms in [3]
which were given earlier. The conversion algorithms work by utilizing a corre-
lated randomness source, called daBits. A call ([[b]]2, [[b]]p) ← daBits produces a
doubly-shared bit b ∈ {0, 1}, which is shared with respect to the two different
methodologies. Having such a correlated randomness source allows us to perform
conversions. See [3,25] for how such correlated randomness is produced.

The first conversion algorithm, which we denote by [[x]]p ← convert([[x]]2),
converts a single bit x from the binary-world to the LSSS-world. This is executed
as follows:

1. ([[r]]2, [[r]]p) ← daBits.
2. [[v]]2 ← [[x]]2 ⊕ [[r]]2.
3. v ← Open([[v]]2).
4. [[x]]p ← v + [[r]]p − 2 · v · [[r]]p.

The converse algorithm takes a value [[x]]p in the LSSS-world, which we know to
represent a value x ∈ {0, 1} ⊂ Fp and converts it to a shared bit in the binary-
world; an operation which we denote by [[x]]2 ← convert([[x]]p). The procedure for
this is a little more complex, and requires that sec + 1 ≤ min{64, log2 p}, which
will hold in practice in any case. This operation proceeds as follows:

1. For i = 0, . . . , sec execute ([[ri]]2, [[ri]]p) ← daBits.
2. [[r]]p ← ∑sec

i=0[[ri]]p · 2i.
3. [[v]]p ← [[x]]p + [[r]]p.
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4. v ← Open([[v]]p).
5. [[x]]2 ← v − [[r]]2.

This works as the value v = x+r is guaranteed to hold a 64-bit unsigned integer,
and it is also statistically hiding of the single bit x. The final subtraction is
performed using a binary circuit for 64-bit subtraction.

We can now present our two algorithms for conversion between a secure IEEE
floating point double, held as a bit vector [[x]]2 in the binary circuit world, and
an sfloat value ([[v]]p, [[p]]p, [[z]]p, [[s]]p, [[err]]p) in the LSSS world; and vice-versa.
These algorithms are given in Fig. 5 and Fig. 6, with the main complexity coming
from needing to deal with the variable values � and k representing the sizes of
the mantissa and exponent in the sfloat datatype. We mark the lines which cost
nothing in the secure domain with a comment of “free”.

IEEE to sfloat

Input: [[x]]2.
Output: ([[v]]p, [[p]]p, [[z]]p, [[s]]p, [[err]]p), (with parameters � and k).

1. [[s]]p ← convert([[x(63)]]2).
2. [[z]]2 ← ([[x]]2 = 0)
3. [[v]]2 ← [[x]]2 � 11. //free

4. [[v(63)]]2 ← 1 − [[z]]2. //free

5. If � ≥ 64 then
(a) [[v]]p ← convertu([[v]]2).
(b) [[v]]p ← [[v]]p � (� − 64).

6. If � < 63 then
(a) [[v]]2 ← [[v]]2 � (64 − �). //free

(b) [[v]]p ← convert([[v]]2).
7. [[x′]]2 ← [[x]]2. //free

8. [[x′(63)]]2 ← 0. //free

9. [[p]]2 ← [[x′]]2 � 52. //free

10. [[p′]]2 ← (−(� − 1) − 1023) + [[p]]2
11. [[p]]p ← convert([[p′]]2).
12. [[z]]p ← convert([[z]]2).
13. [[e]]2 ← ([[p]]2 = 2047).
14. If k < 11 then

(a) mask ← 264 − 1 − (2k − 1). //free

(b) [[t]]2 ← [[p′]]2 & mask.
(c) [[e′]]2 ← [[t(63)]]2. //free

(d) [[e′′]]2 ← ([[t]]2 = 0).
(e) [[e]]2 ← [[e]]2 ⊕ ( 1 − [[e′]]2) · ( 1 − [[e′′]]2 ).

15. [[err]]p ← convert([[e]]2).
16. Return ([[v]]p, [[p]]p, [[z]]p, [[s]]p, [[err]]p).

Fig. 5. IEEE to sfloat
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IEEE to sfloat: Algorithm Fig. 5, shows how we can securely convert a number
from IEEE in the binary-world to sfloat in the LSSS-world. Step 1 extracts the
single bit corresponding to the sign bit. This uses our optimized methodology
for doing such conversions given earlier. In step 2 we test whether the shared
vector x is equal to zero. This is done by forming [[z]]2 ← ∏63

i=0(1 − [[x(i)]]2).
In steps 3–6b we are extracting the mantissa v. A naive way to do this would

be to take 64 bits of the IEEE representation, shift by 12 to the left and then
shift back by 12 to right. Then, to obtain the 52 bit mantissa, we dd one bit
in the most significant bit position which is bit position 52 and finally convert
the value to the [[v]]p used in sfloat, at which point we could adjust this to cope
with the required value of �. However, this would be very inefficient. We try
to maintain as much of the bit-shifting operations in the [[·]]2 domain, as their
bit-shifts come for free. Thus we first shift left by eleven places and then add
the one bit into the top position (which only needs to happen if the value x is
non-zero, thus we use [[z]]2 for this). We then have two cases to consider, if � ≥ 64
then we actually need to shift the value up even more, but we are already using
64-bits. Thus we convert, using the unsigned conversion routine (Step 5a) to a
modulo p value, and then perform the shift up in this domain (which is relatively
expensive but unavoidable given the basic instructions available to us). When
� < 63 we perform the shift down in the binary domain (Step 6a) and then do
the conversion (using an unsigned conversion as we know the top bit is zero).

Steps 7–9 extract the bits of the IEEE exponent p, whereas step 10 converts
it to the correct exponent for the sfloat representation. Now obtaining [[z]]p and
[[p]]p is relatively straight forward. Note, to obtain [[z]]p we use the optimized bit
conversion protocol given earlier in this section.

Steps 13 onwards deal with computing the error flag [[err]]p. This is first
computed using bit operations in the modulo two domain, and then converted
to [[err]]p using the above optimized conversion (in the penultimate step). We
need to set the flag err if either [[p]]2 represents the value 2047, or there is an
error introduced due to a low value of k in the sfloat representation. The first
test, in step 13, is accomplished by setting [[e]]2 ← ∏11

i=0[[p
(i)]]2. The second

test, in steps 14a–14e, test whether the value of [[p′]]2 lies outside the range
[−2k−1, . . . , 2k−1 − 1] or not.

sfloat to IEEE. Algorithm Fig. 6, shows how we can convert a number from sfloat
to IEEE. In steps 1–6, we are computing the mantissa of IEEE from [[v]]p. To do
so, first we need to get rid of the most significant bit of [[v]]p (step 1) as the sfloat
representation stores the msb, whereas IEEE does not. Since bit-shifting in the
[[·]]p domain is expensive, whereas bit-shifting in the [[·]]2 domain costs nothing
we do a complete shift (step 3) when � > 64 down to 53-bits, but when � < 64
we delay the shifting until we have converted [[v]]p to [[v]]2 (step 5).



The Cost of IEEE Arithmetic in Secure Computation 445

sfloat to IEEE

Input: ([[v]]p, [[p]]p, [[z]]p, [[s]]p, [[err]]p), (with parameters � and k).
Output: [[x]]2.

1. [[v′]]p ← [[v]]p − 2�−1 · ( 1 − [[z]]p ).
2. �′ ← �.
3. If � > 64 then

(a) �′ ← 53
(b) [[v′]]p ← [[v′]]p � (� − 53).

4. [[v]]2 ← convert([[v′]]p).
5. If �′ < 53 then [[v]]2 ← [[v]]2 � (53 − �′). //free

6. Else [[v]]2 ← [[v]]2 � (�′ − 53). //free

7. [[ok]]p ← ([[err]]p == 0).
8. [[ok]]2 ← convert([[ok]]p).
9. [[p]]2 ← convert(( 1 − [[z]]p ) · ( [[p]]p + � + 1023 − 1 )).

10. If k > 11 then
(a) [[t]]2 ← [[p]]2 & 0xFFFFFFFFFFFFFF800
(b) [[ok]]2 ← [[ok]]2 & ([[t]]2 == 0).

11. [[s]]2 ← convert([[s]]p).
12. [[x]]2 ← ( [[p]]2 � 52 ) ⊕ [[v]]2. //free

13. [[x(63)]]2 ← [[s]]2.
14. [[z]]2 ← convert([[z]]p).
15. NaN ← 0x7FF0000000000001
16. [[x]]2 ← (1 − [[z]]2) & [[x]]2.
17. [[x]]2 ← ([[ok]]2 & [[x]]2) ⊕ ((1 − [[ok]]2) & NaN).
18. Return [[x]]2.

Fig. 6. sfloat to IEEE

In step 7–8, we are dealing with the error flag which says if we should end
up with NaN or not. To make it easier to follow we define ok flag which will
be one when the error flag is zero. In step 9, we are converting the exponent of
the sfloat into the IEEE exponent. When k > 11 this value could overflow the
allowed IEEE representation, so this is detected in step 10 and the ok flag is
updated accordingly.

The sign bit is dealt with in step 11 using the optimized bit conversion
protocol which was explained earlier. In steps 12–13, we need to pack all the
preceding values together to obtain the IEEE representation. This leaves us
with dealing with the two special values of zero and NaN. These are dealt with
in steps 14–17, where we use a fixed NaN value of 0x7FF0000000000001.
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5 Experimental Results

In this section, we give results on our implementation of different operations
namely, addition, multiplication, division, as well as our conversion algorithms
of IEEE to sfloat and sfloat to IEEE which are presented in Sect. 4. These are
given in the Full Threshold case for n = 2, . . . , 8 parties and in the threshold
case for (n, t) values with t < n/2 and n = 3, . . . , 8. In the latter case, we do
not present run times for (n, t) = (8, 3) as in this situation the number of maxi-
mally unqualified sets starts to become too big for our replicated secret sharing
based technique for evaluating binary circuits. For the large prime sharing in the
threshold case we utilize Shamir sharing.

The experiments were done in Scale-Mamba version 1.11 [2]. The sfloat data
type was instantiated using mantissas with bit length l = 53 and (signed) expo-
nents with bit length k = 11. To satisfy the required equation 2 · � + κ < log2 p,
for sfloat, we used a prime with 148 bit length and statistical security parameter
κ = 40. In all experiments we measured the online run time averaged over 500
runs.

For the basic operations on IEEE values using binary circuit based MPC
(Fig. 7) the runtime of the Full-Threshold variants grows with the number of
parties. The average online time per operation in this case ranges for addition
from 0.025 s (for n = 2) to 0.216 s (for n = 8), for multiplication from 0.092 s (for
n = 2) to 0.672 s (for n = 8), for division from 0.634 s (for n = 2) to 3.27 s (for
n = 8). For the threshold variants we see a range of run-times depending on the
precise values of (n, t), growing as functions of n and t. The range of values is
in the threshold case for addition from 0.013 s to 0.035 s, for multiplication from
0.022 s to 0.041 s, for division from 0.191 s to 0.643 s. So depending on the number
of parties and the precise operation the performance of the threshold variants are
between 2 and 6 times faster than their full threshold counterparts. This behavior
is to be expected as the IEEE operations are performed via binary circuits. In
the full threshold case these are done via the HSS protocol, which is low round
complexity but requires a lot of data to be sent and a lot of computation to
be performed. When in the threshold case this is performed using a replicated
LSSS, which requires higher round complexity but the total amount of data sent
and computation performed is less.

We next turn to the sfix operations. Recall sfix addition is a local operation,
and involves no communication thus it is very fast in all situations irrespective of
the underlying access structure or the number of parties, taking roughly 0.2µs
on average per addition. For multiplication, the run times scales with the number
of parties, and the threshold, ranging from 0.001 s to 0.0004 s for n = 8 in the
Full Threshold case. For division, again, the runtime scales with the number of
parties; ranging from 0.0026 s for n = 2 to 0.0082 for n = 8 in the Full Threshold
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Fig. 7. Execution time in sec to execute the binary circuit based IEEE-754 operations
addition (blue), multiplication (red), division (green) for Full Threshold access struc-
ture with n players (left column) and Shamir access structures (n, t) (right column)
(Color figure online)

case. For the case of threshold Shamir sharing the times are roughly twice as fast
as in the Full Threshold case. See Fig. 8 for details. Thus using sfix instead of
IEEE arithmetic equates to savings (in execution times) of orders of magnitude.

The main issue with sfix operations is the inherent precision loss in fixed-
point operations, thus we next turn to examine the performance (in Fig. 9) of
the sfloat operations. Recall these are approximations to real numbers much like
standard IEEE arithmetic, but not exactly the same, as they are more flexible
and tunable to the MPC environment. Much like the sfix operations, the sfloat
operations do not require the execution of binary circuits. The run time of the
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Fig. 8. Execution time in sec to execute the LSSS-based sfix operations addition (blue),
multiplication (red), division (green) for Full Threshold access structure with n players
(left column) and Shamir access structures (n, t) (right column) (Color figure online)

Shamir based threshold access structures is about half that of the Full Threshold
access structures we tested. In the Full Threshold case, we obtain execution
times ranging from 0.005 s–0.018 s for addition, 0.002 s–0.008 s for multiplication
and 0.004 s–0.010 s for division.

In summary for the basic operations we have a trade off between accuracy
sfix-sfloat-IEEE and speed IEEE-sfloat-sfix. For multiplication the performance
improvement between sfloat and sfix is a factor of two, whereas the performance
improvement between sfloat and IEEE multiplication is a factor of around one
hundred.
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Fig. 9. Execution time in sec to execute the LSSS-based sfloat operations addition
(blue), multiplication (red), division (green) for Full Threshold access structure with n
players (left column) and Shamir access structures (n, t) (right column) (Color figure
online)

Finally, we turn to the conversion routines between sfloat and IEEE represen-
tations given in Sect. 4. We see that since these operations require a combination
of LSSS-based operations over the large field, as well as binary circuit based oper-
ations over F2, there is less of a pronounced difference between the run times
for Full Threshold and those for thresholds with t < n/2. The conversion from
IEEE to sfloat is roughly 2–4 times faster than the conversion from sfloat to
IEEE. The timings are given in Fig. 10.
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Fig. 10. Execution time in sec to execute the conversion operations sfloat to IEEE-764
(blue) and IEEE-764 to sfloat (red) for Full Threshold access structure with n players
(left column) and Shamir access structures (n, t) (right column) (Color figure online)
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Abstract. In this work we focus on improving the communication com-
plexity of the online phase of honest majority MPC protocols. To this
end, we present a general and simple method to compile arbitrary secret-
sharing-based passively secure protocols defined over an arbitrary ring
that are secure up to additive attacks in a malicious setting, to actively
secure protocols with abort. The resulting protocol has a total communi-
cation complexity in the online phase of 1.5(n−1) shares, which amounts
to 1.5 shares per party asymptotically. An important aspect of our tech-
niques is that they can be seen as generalization of ideas that have been
used in other works in a rather ad-hoc manner for different secret-sharing
protocols. Thus, our work serves as a way of unifying key ideas in recent
honest majority protocols, to understand better the core techniques and
similarities among these works. Furthermore, for n = 3, when instan-
tiated with replicated secret-sharing-based protocols (Araki et al. CCS
2016), the communication complexity in the online phase amounts to
only 1 ring element per party, matching the communication complexity
of the BLAZE protocol (Patra & Suresh, NDSS 2020), while having a
much simpler design.

1 Introduction

Multiparty Computation, or MPC for short, is a cryptographic technique that
allows multiple parties to compute a given function f on private inputs without
revealing anything beyond the output of the computation, even if an adversary
collectively corrupts a subset of the parties. Different types of MPC protocols
exist depending on the desired security level and desired guarantees about the
output of the computation. For example, regarding the level of security, a typ-
ical dividing line lies in the fraction of parties is allowed to corrupt: In the
dishonest majority setting the adversary is allowed to corrupt all but one of

This work has been supported by the European Research Council (ERC) under the
European Union’s Horizon 2020 research and innovation programme under grant agree-
ments No 669255 (MPCPRO), and the Danish Independent Research Council under
Grant-ID DFF-6108-00169 (FoCC). The first author did this work while a student at
Aarhus University.

c© Springer Nature Switzerland AG 2021
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the parties, whereas in the honest majority setting the adversary can only cor-
rupt less than half of the parties. The adversary in the former scenario is much
stronger and therefore much harder to achieve, and protocols in this setting, like
[6,19,22,29,30], are computationally expensive and must rely in computational
hardness assumptions. In contrast, honest majority protocols are possible with-
out relying on computational assumptions [8,11,23], which makes them more
resilient to attacks, as well as more efficient due to their simplicity and absence
of a computational security parameter.

Another dividing line is drawn with respect to the type of corruption the
adversary is allowed to make. Typically, two types of corruptions are considered:
passive and active corruptions, with the former type consisting of corrupt parties
respecting the protocol specifications (but trying to learn as much as they can
from sent/received messages); in contrast, actively corrupt parties can deviate
arbitrarily. Finally, regarding the output of the computation there are three
typical notions considered: guaranteed output delivery, where the honest parties
must be able to get output regardless of the adversarial behavior, fairness, where
the honest parties must get output if the adversary gets output, and security
with abort, where either the honest parties get the correct output or they abort.

Many protocols have been designed and optimized for different scenarios and
use-cases. However, in spite of being an active and fruitful research field for
more than three decades, state-of-the-art MPC protocols still add a consider-
able overhead with respect to plain “insecure” computation, which puts some
applications out of reach for the time being. Most of the complexities appear
from the interactive nature of MPC, which require parties to constantly commu-
nicate typically large amounts of data distributed across multiple rounds, which
is highly dependent on the network conditions. Hence, an important task in
MPC today is minimizing the communication complexity of the protocols for all
kind of adversarial settings. One successful approach at achieving this consists
of splitting the computation into an offline and online phase [7], with the former
consisting of all the interaction that is independent of the parties’ inputs and the
latter, which tends to be orders of magnitude more efficient, made of the exe-
cution that requires knowledge of the parties’ inputs. Given this separation, it
is natural to optimize mostly the online phase since it dictates the total latency
from the time the inputs are provided to the time the output is obtained.

Among all the possible adversarial settings, it is fair to say that honest major-
ity MPC with abort is one of the scenarios that has received a lot of attention due
to its practical, concrete efficiency [2,18,24,32,35], and it has been used already
for applications like secure training and prediction of machine learning models
[3,16,21,34,37]. Moreover, several recent works have focused on improving the
concrete communication complexity of protocols in these settings. For example,
BLAZE [36] achieves secure computation for three parties and one active corrup-
tion over rings with a communication complexity in the online phase of only 1
ring element per party. For an arbitrary number of parties, very recently, Goyal
and Song [27] showed how to improve the overall communication complexity of
Shamir-based honest majority protocols by presenting a novel method to check
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the correctness of multiplication gates with a communication complexity that is
essentially independent of (specifically, logarithmic in) the circuit size, achieving
an amortized communication complexity of 6 field elements per multiplication
gate, distributed as 4 elements in the offline phase and 2 elements in the online
phase.

1.1 Our Contribution

In this work we focus on improving the communication complexity of the online
phase of honest majority MPC protocols that achieve security with abort. To
this end, we present a general method to obtain from any secret-sharing-based
passively secure protocol defined over an arbitrary ring that is secure up to addi-
tive attacks in a malicious setting, an actively secure protocol with abort over
the same ring. The resulting protocol has a total communication complexity in
the online phase of 1.5(n − 1) shares, where n is the number of parties, which
amounts to 1.5 shares per party asymptotically. For three parties, when instan-
tiated with protocols based on replicated secret-sharing [4], the communication
complexity in the online phase amounts to only 1.5 · 2 = 3 shares in total, or 1
share per party, which matches the communication complexity of state-of-the-
art protocols like BLAZE [36], while having a much simpler and generalizable
design.

In addition to this, our construction has the appealing feature that, in the
online phase, a secure dot product of arbitrary length can be computed with a
communication complexity that is independent of the length of the input vec-
tors.1 This is in contrast to other protocols, specially these in the dishonest-
majority setting, that require L secure multiplications to produce a dot product
of length L. This feature enables highly efficient secure linear algebra, which
can be applied for example to linear machine learning models such as linear
regression or neural networks.

Our main protocol, presented in Sect. 3, is considerably simple and general,
and provides great efficiency. Furthermore, it achieves the strongest privacy
notion in the online phase, namely, perfect security. On top of matching the
online complexity of state-of-the-art protocols, our protocol allows us to inter-
pret the core techniques behind some of the most efficient protocols for specific
settings like 3 and 4-party computation, namely [16,17,36], in a unified frame-
work which highlights the main tools used in these works to achieve such low
communication complexity. These protocols are constructed in an ad-hoc man-
ner, introducing specific building blocks that seem to be inherently entangled to
the particular setting (3-4 parties). However, our techniques enable the identifi-
cation of a common and generalizable pattern behind these constructions. This
is generally very useful as, on top of achieving good efficiency for more general

1 More precisely, at the time of securely computing the dot product only the cost of
a single multiplication must be paid. However, this does not rule out the potential
cost that had to be paid to obtain shares of the inputs to this dot product in a first
place.
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settings instead of only scenarios with 3 and 4 parties, it enhances the under-
standing of these protocol by establishing clear relations among their design. We
discuss this in the full version of this work.

The communication pattern of our protocol allows almost half of the parties
to be shut down during most of the online phase, which saves in costs and
reduces communication channels. However, in some concrete settings it would
be ideal if these parties could be shut down during all of the online phase, as this
could potentially help saving in operational costs. As an additional contribution,
we present in Sect. 4 a variant of our first protocol that allows to shut down
essentially half of the parties during the whole online phase.

Finally, we note that the description of our protocols from Sects. 3 and 4
considers computation over a field F. We discuss in the full version of this work
how to extend our protocols from Sects. 3 and 4 to the ring setting. One of the
necessary steps to achieve this involves extending the results from [27], which
are set over fields, to the ring setting, which may be of independent interest.

1.2 Overview of Our Techniques

First Protocol. Our compiler is conceptually simple and efficient, and requires
little modifications to the underlying MPC protocol that is used as a basis.
We achieve our results by leveraging a function-dependent preprocessing that
reduces the communication complexity of a multiplication gate in the online
phase to that of opening one single shared element, coupled with the simple but
crucial observation that, in the honest-majority setting, only t + 1 parties are
required to open a shared value non-robustly.

To provide a high level description of the techniques mentioned above, let us
illustrate our compiler for the case of Shamir secret-sharing over a field F. Let
[x]d denote a degree-d sharing of x ∈ F. We assume the existence of a method to
multiply two shared values [z]t ← [x]t ·[y]t, where z = x·y+δ and δ is an additive
error known by the adversary in the case of an active attack. For our compiled
protocol, we define an alternative type of sharings: We write 〈x〉 if the parties
have shares of a random mask [λx]t, together with the public value ex = x − λx.
This method for secret-sharing is inspired by the work of Ben-Efraim et al. [10]
that shows how to reduce the communication of the SPDZ protocol by half by
making use of a circuit-dependent preprocessing. Furthermore, the core idea of
having a masked version of a secret together with shares of the mask has been
used already in previous works, such as [28] and the works we consider in the
full version. We write 〈x〉 = ([λx]t , ex).

Processing addition gates in the scheme 〈·〉 can be done locally, while pro-
cessing multiplication gates require some interaction: To obtain 〈x · y〉 from 〈x〉
and 〈y〉 we assume that the parties have shares [λx · λy]t from a preprocessing
phase, which we produce in our work via the protocol from [27]. Let [λz]t be the
random mask that will be used for this multiplication. The parties can obtain
ez = x · y − λz by opening exey + ex [λy]t + ey [λx]t + [λxλy] − [λz]t, thus pre-
serving the invariant. Notice that the shares ([λx]t , [λy]t , [λxλy]t) correspond to
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circuit-dependent multiplication triples, which can be preprocessed very effi-
ciently using the novel batch-checking technique of Goyal and Song [27].

Using the techniques sketched above, each multiplication gate in the online
phase reduces to opening one single shared value. However, the most efficient
method for achieving this, which uses the “king idea” from [23], requires n − 1
parties to send their share to one single party (the “king”), who then reconstructs
the secret and sends the result to the other parties. Overall, this implies an overall
communication complexity of 2 · (n − 1) field elements. To further reduce this
count, we notice that it is not necessary for all the parties to send their share to
the king. Indeed, a subset of t parties, plus the king, suffices, as these together
hold t + 1 shares—enough to reconstruct the secret. Assuming n = 2t + 1, this
reduces the number of field elements transmitted to t + (n − 1) = 3

2 (n − 1).
The optimization above comes with a downside in terms of security: By using

t + 1 shares to reconstruct the secret rather than all the n shares, it is possible
for a malicious party to fool an honest king into reconstructing an incorrect
value.2 To overcome this issue we observe that, even if the intermediate shares
were opened non-robustly using only t + 1 shares, the parties still have full
degree-t shares of these values. To verify that the openings were done correctly,
we let the parties take a random linear combination of these shared values,
open this single result robustly (i.e. using all the shares), and then compare the
opened value against the corresponding combination of the values that were non-
robustly opened during the execution of the protocol. This idea can be seen as
an adaptation of the “partial opening” procedure of the SPDZ protocol to the
honest majority setting.

Second Protocol. Due to the fact that we open shared values using only t + 1
parties, we can set the communication pattern of the protocol sketched above
in such a way that only some fixed subset of t + 1 parties communicates during
the online phase, until the output phase. In the final check, the parties in this
subset would broadcast the intermediate opened values to the other t parties,
and the check would then be executed.

The fact that all the parties need to be available for the final check is a down-
side if one wants to shut down these parties “for good”, once the online phase
has started. To allow the t + 1 parties that are active during the online phase
to perform the final correctness check without the help of the other parties, we
resort to a rather standard technique in the dishonest majority setting involving
the use of MACs: A value x is shared as [x] together with [r · x] for a random
and global [r]. Then, to check that [x] is opened correctly, the t + 1 parties that
were active during the online phase (among which a dishonest majority may
be corrupt) use the MAC [r · x] and the key [r]. Furthermore, this check can
be easily batched so that its communication complexity is independent of the
number of openings being verified.

2 As presented here, a corrupt king can already disrupt the reconstruction of the secret
even if all n shares are used. This is handled in [23] by considering multiple kings
and using error correction techniques.
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Extension to Rings. Most of the techniques used in our work carries over seam-
lessly to the ring setting. For example, the online phase of our first protocol from
Sect. 3 does not exploit any specific property of fields, and so works the same
over Z2k . The main issue appears in the offline phase, given that the protocol
from [27] that we use to produce the necessary preprocessing material only works
over fields. To extend the protocol from [27] to the ring setting, we observe that
the core technique used in this protocol is basic polynomial interpolation, which
can be made to work over Z2k by taking a Galois ring extension of large enough
degree, as done in [1]. This idea was already used in [12] for the three-party
setting, whereas our results are applicable to an arbitrary number of parties and
any linear secret-sharing scheme.

Finally, the online phase of our second protocol from Sect. 4 does not work
directly over Z2k as it relies on the AMD code (x, r ·x, r), which does not provide
any integrity of Z2k due to the lack of invertible elements. Fortunately, the work
of [19] shows how to extend this integrity mechanism to the ring Z2k by operating
over a larger ring Z2k+κ , where κ is the statistical security parameter. We show
in the full version of our work that this technique also applies to our protocol.

1.3 Related Work

Honest majority MPC with a small communication footprint has been studied
in a number of works in the last decade or so. One attractive feature of such
protocols, is that they work well for a large number of parties where it is reason-
able to assume that not everyone colludes (in particular, where only a minority
colludes). This setting was investigated in [5], which demonstrated a concretely
efficient protocol for large number of parties, based on a protocol adapted from
[9].

While [9] has a linear communication complexity, recent research (which we
have already mentioned) have brought this down to logarithmic [27]. Moreover,
for the specific setting of 3 and 4 parties, specialized protocols have been shown
to be concretely efficient [20,31,33,36].

Compiling honest majority protocols from passive to active security have also
been studied previously. [18] shows how to efficient convert a passively secure
honest majority protocol with the same properties we require (security against
an active adversary up to additive attacks), into an active secure protocol with a
concretely very small overhead. The authors of [2] show, employing a similar app-
roach as [18], how to get a similar compiler for ring based protocols. Finally, the
work of [13] also aims at reducing communication in honest majority secure com-
putation, and they also achieve 1.5 field elements per party while also achieving
guaranteed output delivery, but their work is set in the computational setting,
whereas our results are information-theoretic.
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2 Preliminaries

2.1 Notation

We let n be the number of parties among which t are corrupt. In the honest
majority setting it holds that t < n/2, but for simplicity in the presentation, we
will assume that n = 2t+1.3 Let R be a ring of the form Zpk or GF(pk) for some
prime p and some non-negative integer k. We write s ∈R A when s is uniformly
sampled from a finite set A. We let κ denote the statistical security parameter.

2.2 Security Definition

In this work we assume a synchronous network of secure point-to-point channels,
together with a broadcast channel. We consider simulation-based security, which
can be either the universally composability framework [15] or the stand-alone
setting [26] as our techniques apply to both. We focus on providing security with
abort, in which the adversary can make the honest parties abort at any point in
the protocol; in particular, the adversary itself may get output before the honest
parties and immediately abort the computation. We assume the existence of a
broadcast channel with abort (that is, the parties either get the value that was
broadcast, or they abort), and we assume that when an honest party aborts, all
honest parties abort, which can be easily achieved using the broadcast channel.
Since the broadcast channel allows for abort, it can be efficiently instantiated via
echo-broadcast by letting the sender distribute the value to be broadcast via the
point-to-point channels, and then letting the receiving parties exchange hashes
of his value and abort if an inconsistency is detected.

When measuring communication complexity, M + BC(N) means that M
ring elements are communicated over point-to-point channels, and N ring ele-
ments are communicated over the broadcast channel. With the broadcast method
sketched above, we would have that BC(N) = (n − 1) · N , which amounts to the
messages sent by the broadcaster (we ignore the cost of the hash exchange as it
is independent of N).

2.3 Linear Secret-Sharing

We consider a linear secret-sharing scheme (LSSS) [·] over R. Such a scheme
for our purposes consists of a randomized injective function share : R → (Rm)n

such that the following holds for all x ∈ R. Below, we let share(x) = {xi}ni=1.

– Privacy. For any subset J ⊆ {1, . . . , n} such that |J | ≤ t, the mutual infor-
mation between {xi}i∈J and x is 0.

3 Some technical complications arise if 2t + 1 < n, like the fact that the set of hon-
est parties is strictly larger than t + 1, so different subsets of honest parties may
reconstruct shared secrets to different values. This is not really a problem with the
protocols, but it introduces some notational overhead that we would like to avoid.
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– Reconstruction. There is a function rec : (Rm)t+1 → R such that, for any
subset J ⊆ {1, . . . , n} such that |J | = t + 1, it holds that rec ({xi}i∈J) = x
(the function rec is implicitly taking the set J as a parameter).

– Linearity. Given {yi}ni=1 = share(y), it holds that {xi + yi}i lies in the image
of share(x + y).4

To ease the notation a bit, we may write [x]J := {xi}i∈J , and [x] := [x]{1,...,n}.
The definition of rec is extended to more than t + 1 shares as follows: Let

K ⊆ {1, . . . , n} such that |K| ≥ t+1. We write rec ({xi}i∈K) = x if, for all J ⊆ K
with |J | = t+1, it holds that rec ({xi}i∈J) = x. Else, we write rec ({xi}i∈K) = ⊥.
In the former case we say that the shares {xi}i∈K are consistent, and in the latter
case we say they are inconsistent.

An important factor of honest-majority secret-sharing (and one which does
not hold for a dishonest-majority) is that, when the sharings are consistent, it
is ensured that the correct value will be reconstructed. More precisely, if the
adversary modifies the t entries in [x] corresponding to the corrupt parties, but
if rec ([x]) = x′ �= ⊥, then it is guaranteed that x′ = x. Indeed, if H denotes the
set of honest parties, which satisfies |H| = n − t = t + 1, then rec ([x]) = x′ �= ⊥
implies that rec

(
[x]H

)
= x′. But since the shares [x]H are not modified, this

implies that x′ = x.

2.4 Reconstruction Protocols

In the previous section we defined secret-sharing as a set of functions, but in
practice it is used as a set of protocols for distributing and reconstructing data
among n parties. In this section we discuss different ways in which the parties
can reconstruct a shared value [x] = {xi}i, where party Pi has the share xi.
We consider two variants: Robust opening, where the value that is opened is
guaranteed to be correct, and a much more efficient non-robust—or “loose”—
opening, where the value that is opened may be incorrect. As we will see in
subsequent sections, a key optimization in this work lies in using loose openings
for the majority of our protocols in a way which does not harm correctness or
privacy. Our subprotocols for reconstruction are presented in Fig. 1.

Improving Communication Complexity. The public reconstruction protocols
ΠRec and ΠLooseRec, as described in Fig. 1, have a communication complexity
that is quadratic in the number of parties as they require (almost) all parties
sending shares to all other parties. This can be improved to linear communica-
tion in n as follows: For ΠLooseRec([x]), the t + 1 parties P1, . . . , Pt+1 send their
shares to P1, who reconstructs x using these shares, and broadcasts this value to
all parties. The total communication is then t ring elements over point-to-point
channels, plus 1 ring element over the broadcast channel.
4 This extends naturally to multiplication by constants. Furthermore, addition by a

constant z can be obtained by the parties generating public shares [z] (e.g., by letting
z1 = z and zi = 0 for 1 < i < n), and then using the linearity between shared values.
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Fig. 1. Different reconstruction protocols we use in our work

Unfortunately, this does not work for ΠRec since the king can lie about the
reconstructed value. To handle this, one can use the techniques from [23] to
obtain linear amortized complexity in n (for multiple simultaneous openings).
In a nutshell, this works by batching a sequence of secrets to be opened into
a vector, and encoding this vector using a linear error-correcting code. Then,
each secret in the codeword is opened by using the king idea from above with a
different king for each symbol, and then error correction/detection is applied to
the resulting opened codeword.

2.5 Sampling Shares of Random Values

We assume two functionalities for sampling shared randomness:

– FRand: Produces a shared value [r] where r ∈R R.
– FCoin: Produces a value r ∈R R known to all parties.

FRand can be instantiated, for example, using the techniques outlined in [23],
which are based on Vandermonde matrices, although more efficient instantiations
of FRand exist for particular secret-sharing schemes like replicated secret sharing
cf. [2,18]. FCoin can be instantiated by calling FRand to sample [r], followed by
r ← rec([r]), or by cointossing using a commitment functionality FCommit.

2.6 Correct Multiplication

We assume a functionality FCorrectMult that takes as input two shared values
[x] , [y], and returns [x · y]. This functionality will be only used in the prepro-
cessing. An instantiation of this functionality is discussed in the full version.
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3 Optimizing the Online Phase

In this section we present our first protocol whose online phase is optimized so
that the parties only send, in total, 3

2 (n − 1) · k · log(p) bits per multiplication
gate. On top of being conceptually very simple, our optimization allows for a
communication pattern in which only t + 1 parties are present for most of the
online phase, except that the remaining t parties must return for the output
phase. In Sect. 4 we present a protocol for which this is not required, that is,
only t+1 parties are required to run all of the online phase, including the output
phase.

We begin by presenting in Sect. 3.1 the secret-sharing construction we will
use in our protocols. Then, in Sect. 3.2, we present an intuitive overview of our
protocol, and finally, in Sect. 3.3, we describe our protocol in detail, analyze its
complexity and discuss its security.

3.1 Masked Secret-Sharing

Let [·] be a secret-sharing scheme over R, as defined in Sect. 2.3. We define the
following LSSS over R that builds on top of [·]:
– share〈·〉(x): Sample a random mask λx ∈ R, call share[·](λx) and append to

each share the value μx = x−λx. We denote this by 〈x〉 = ([λx] , μx = x−λx).
– rec〈·〉 ([λx] , μx): Call λx ← rec[·]([λx]) and if λx �= ⊥ then output λx + μx,

else output ⊥.

It is easy to see that this new scheme is additively homomorphic. Indeed,
given 〈x〉 = ([λx] , μx) and 〈y〉 = ([λy] , μy) parties can compute shares of the
sum as 〈z〉 = ([λx + λy] , μx + μy).

3.2 General Overview

We begin by providing a high-level view of our protocol. To this end, it is instruc-
tive to begin with a very simple and naive protocol that makes use of the original
LSSS [·], together with correct multiplication triples. We consider this below, as
well as optimizations.

Naive Protocol. As we mentioned in Sect. 2.3, a crucial property of honest
majority LSSS is that either the correct value is reconstructed or an abort sig-
nal is generated. This property can be leveraged to obtain simple and efficient
actively MPC protocol, presented in Fig. 2.

It is easy to see that this protocol satisfies security with abort. First, cor-
rectness holds given that addition gates are local and the formula used for the
multiplication gates satisfies

d · b + e · a + c + d · e = x · y,
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Fig. 2. A simple protocol for secure computation with abort.

as can be verified. In regards to privacy, begin by observing that every shared
value throughout the computation is consistent. This is because consistent shar-
ings are assumed to be produced in the preprocessing, and a proper broadcast
channel is used in the input phase, which ensures this also extends to the input
sharings and also for subsequent wires in the circuit as these are computed using
only linear operations.

Finally, notice that due to the robustness properties of the LSSS and the
consistency of the sharings, the adversary cannot cheat in any opening without
causing an abort, so the only values opened are the d = x−a and e = y − b from
the multiplication gates, which leak nothing about the inputs x and y given that
a and b are uniformly random elements in R unknown to the adversary.

Remark 1. In the template above we pushed all the complexities of dealing with
the additive errors to the preprocessing, where the multiplication triples are pro-
duced. This is good for the problem we have at hand, which is optimizing the
communication complexity in the online phase. However, a different approach
would be to deal with the additive errors in a “post-processing” phase, that is,
one may allow additive errors during the multiplications in the online phase (for
which one could either use potentially incorrect triples, or use the assumed mul-
tiplication produce directly in the online phase, avoiding extra preprocessing),
and then perform some check that guarantees that these errors are zero.

This is what is done by many of the existing honest-majority protocols that
have been proposed in recent years. For example, this approach is taken in [25],
where cut-and-choose and triple sacrificing techniques are used to ensure all
multiplications are handled correctly. This approach is also considered in [27],
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where, instead of using their novel triple verification techniques in the prepro-
cessing phase, as we do here, the authors use the check after the online phase has
been executed to check all multiplications are correct. [24] also follows a similar
“post-processing” approach.

Optimizing the Naive Protocol. The basic template presented above can
be (and has been) optimized in many different ways. However, in our work we
aim at optimizing the online phase as much as possible, which implies that our
preprocessing phase may be more inefficient than some of the existing works.
The two optimizations we incorporate to the basic template sketched above are
the following:

1. We use the secret sharing scheme 〈·〉 instead of [·], and we handle multiplica-
tion gates as described in Fig. 2 instead of using triples directly in the online
phase (correct triples must still be preprocessed). This lowers the complexity
of a multiplication gate from two openings to only one opening.5

2. Instead of performing each opening robustly, the parties perform the open-
ings using ΠLooseRec, which is cheaper but may cause reconstructed values to
be incorrect. After all loose openings are done, but before the final output
gates, the correctness of these openings is checked by taking a random lin-
ear combination of the opened values, and opening robustly the same linear
combination over the corresponding shares.6

The first optimization only has an effect on the amount of communication
in the online phase. However, the second optimization, on top of reducing the
overall amount of bits sent, contributes in a much more impactful way: By using
loose openings instead of robust openings, and by cleverly rearranging the com-
munication pattern, the online phase can be run by just the parties P1, . . . , Pt+1,
while the remaining parties Pt+2, . . . , Pn only have to come back for the final
check. Removing communication channels among the parties is likely to have a
much more noticeable impact in the efficiency than merely lowering the com-
munication complexity. Furthermore, as these servers do not participate for the
majority of the computation, this also frees up computing resources and is more
energy efficient.

We remark that, even though we described the masked secret-sharing con-
struction and the naive starting protocol over the arbitrary ring R, in our actual
protocol below the computation ring R is assumed to be a field (which we will
denote as F). We discuss in the full version how to extend our protocol so that
it also works over a ring of the form Z2k .

5 This optimization was already introduced in [10] in the context of the SPDZ protocol.
6 This is similar to what is done in the SPDZ protocol [22], where values are “partially

opened” for each multiplication gate (that is, without using the MACs), and only
at the end of the computation these openings are checked by taking a random linear
combination.
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Fig. 3. Our first protocol with low online communication. The algebraic structure used
for the computation is assumed to be a field F with |F| ≥ 2κ.

3.3 Main Protocol

With the above intuitive explanation of our protocol, we proceed to a more
formal description of our protocol shown in Fig. 3.

Remark 2. Observe that in the online phase the additions and multiplications
can be handled only by P1, . . . , Pt+1, by performing the openings only among
these parties. Hence, most of the online phase involves communication only
among P1, . . . , Pt+1, which in practical terms means that parties Pt+2, . . . , Pn

can go offline until the checking phase is reached. At this point, the offline par-
ties must rejoin the computation, receive the partially opened values from the
other parties and participate in the checking and output procedures. Having the
ability to shut down parties has many relevant effects in practice. For instance,
it can help in saving operational costs, as well as allowing parties to allocate
resources more effectively by, say, placing most of the computation on the more
powerful servers. Additionally, shutting down communication channels is partic-
ularly good in wide area networks, where strong use of communication is heavily
penalized.
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It can be checked that

μxμy + μxλy + μyλx + λxλy − λz = x · y − λz,

which shows that the multiplication gates lead to correct 〈·〉-sharings of the
product of the inputs, and in particular shows that the protocol produces the
right output if all openings are done correctly. Furthermore, to see that the pro-
tocol preserves privacy, observe that, before the checking phase, all intermediate
values remain private since the only openings done throughout the protocol are
the the values μx = x − λx, and since the masks λx are uniformly random and
secret-shared among the parties, μx looks uniformly random as well.

It only remains to be checked that openings are correct with high probability.
As in the protocol, let [η1] , . . . , [ηM ] be the shares that were loosely opened to
η′
1, . . . , η

′
M during the computation phase. Write η′

i = ηi + δi, that is, we express
the loosely opened value as the correct one plus an additive error from the
adversary. In the checking phase, parties open

η′ − η =
M∑
i=1

αi(η′
i − ηi) =

M∑
i=1

αi(ηi + δi − ηi) =
M∑
i=1

αiδi,

and check whether it is 0. Because each αi is sampled after the adversary intro-
duces the error δi (specifically, αi is sampled after the computation concludes),
the above sum is 0 with high probability if and only if δi = 0 for all i = 1, . . . ,M .

A formal proof of security is provided in the full version.

Communication Complexity. The offline phase of our protocol consists of sam-
pling the masks [λx] and preprocessing the triples ([λx] , [λy] , [λz]). This pro-
cess overall has linear communication complexity with respect to the number
of parties n. For the online phase, which is of our particular interest, the total
communication per multiplication gate, ignoring the check phase and the calls
to FCoin, amounts to one call to ΠLooseRec which equals t + BC(1) ring elements.
Using the broadcast protocol with abort sketched in Sect. 2.2, this amounts to
t + (n − 1) = 3

2 (n − 1).

4 Removing the Extra Parties from the Output Phase

As we discussed before, our protocol from Sect. 3 has the appealing feature that
most of the online phase can be run by only t + 1 parties. More precisely, the
only part in which the extra t parties are required is in the preprocessing and
in the output phase. This not only helps in saving in communication, but it
allows these extra t parties to be turned off during the online phase. However,
it would be ideal if the online phase could be run in its entirety, including the
output phase, by t + 1 parties only. This would allow these extra t parties to be
switched off “for good” once the offline phase is finished, which can represent
noticeable savings in many practical scenarios, as for example, when parties run
on rented servers.
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In this section we show how to run the entire online phase with only t + 1
active parties. The price for this optimization, is that slightly more communica-
tion have to be done in the offline phase. Another downside is that the ring R
has to be a field F, although we show in the full version how to overcome this
limitation.

We begin by providing a general overview of our protocol in Sect. 4.1, and
then we describe our protocol in detail in Sect. 4.2, together with its complexity
analysis and security proof.

4.1 General Overview

The intuition behind our protocol is that, if 2t + 1 participates in the offline
phase, then it suffices—by being clever as to what kind of material is produced
during preprocessing—to only have t + 1 parties participate in the online phase.

More precisely, consider the case of a field F, and let us revisit our protocol
from Sect. 3. Recall that the online phase can be run by t + 1 parties only
since, after the preprocessing is done, only openings are required during the
online phase. However, since the threshold of the secret-sharing scheme is t, t+1
parties only do not provide enough redundancy, which allows an active adversary
to additively tamper these opened values. We solved this issue in our previous
protocol from Sect. 3 as follows. Let [η1] , . . . , [ηM ] the shares that were opened
to η′

1, . . . , η
′
M .

1. The parties sample random public values α1, . . . , αM ∈ F. Let [η] =∑M
i=1 αi [ηi] and η′ =

∑M
i=1 αiη

′
i.

2. It suffices to check that [η] opens to η′, which is done by opening η′ − [η] using
all of the 2t + 1 parties, which guarantees that this value is correct.

In the protocol we present in this section we replicate the same steps, except
that we do not want to involve the extra t parties to open [η] robustly. As
mentioned above, t + 1 parties alone cannot open [η] robustly, and so we resort
to a technique from the dishonest majority MPC literature: Instead of sharing
a value v ∈ F as [v], it is shared as ([v] , [r · v]), where r ∈ F is a global (i.e. it is
the same for all shared values) random key that is also shared as [r]. This “new”
sharing scheme is easily verified to be linear and therefore its invariant can be
kept throughout the whole computation.

The fact that [r] is hidden, and that the sharing ([v] , [r · v]) is linear, can be
used to ensure correctness, provided errors inserted by the adversary during the
check are independent of the honest parties shares. In order to enforce this, we
take a “commit-and-open” approach. In more detail, to open a value [v], each
Pi first commits to their share v(i) of v using an ideal commitment functionality
FCommit (), after which they call ΠLooseRec where the received share is checked
against the committed value. While this still permits the adversary to reveal the
wrong value, the error that is induced is nevertheless going to be independent
of the honest parties shares. Note that this commit-and-open is only needed in
the checking and output phase of the protocol; during computation, invoking
ΠLooseRec suffices.
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Using this technique, once the M values [η1] , . . . , [ηM ] have been opened to
η1 + δ1, . . . , ηM + δm by the t + 1 parties running the online phase, these parties
can also check the correctness of these openings without involving the other t
parties by using the extra sharings [r · η1] , . . . , [r · ηM ] , [r] as follows:

1. Like in our protocol from Sect. 3, begin by sampling random public values
α1, . . . , αM . Let [r · η] =

∑M
i=1 αi [r · ηi] and η′ =

∑M
i=1 αi(ηi + δi). Also, let

[β] = [r · η] − η′ · [r].
2. The parties loosely open β + ε ← [β] and abort if this is not equal to 0.

It is easy to see that the check passes if and only if r ·
(∑M

i=1 αiδi

)
= ε, which

happens with probability at most 1/|F| if there is at least one δi that is non-
zero.7 This idea is already widely used in other dishonest-majority protocols like
[6,19,22,29,30], but, to the best of our knowledge, our work is the first to make
use of this technique in the honest-majority setting with the goal of reducing
the amount of parties needed for robust opening.8

Observe that the communication complexity of the online phase of this new
approach is essentially the same as the one from the protocol in Sect. 3 because
FCommit can be instantiated efficiently in UC with global setup [14], and given
that the online phase is comprised mostly of loose openings. However, the offline
phase of this new approach is more expensive since, on top of generating the
necessary multiplication triples, it also generates the necessary MACs, which
essentially doubles the required amount of preprocessed material.

4.2 Full Protocol Description

We present our optimized protocol in full detail in Fig. 4.
As we mentioned already, this protocol can be seen as an adaptation of [10]

to the honest majority setting, where a dishonest majority is used for the online
phase. Its security follows directly from the security of [10], which essentially boils
down to the following two observations. First, privacy is preserved throughout
the protocol execution because of the same reason as in ΠMPCLowOnline (only
masked values μx are ever opened). Secondly, in the checking phase the sharing
[β] is opened to β + ε. It is easy to see that β + ε is equal to 0 if and only if
r · ∑M

i=1 αiδi = ε and that this happens with low probability if there is some
δi �= 0. Indeed, in this case we have

∑M
i=1 αiδi �= 0 with overwhelming probability,

which in turn implies that r = ε ·
(∑M

i=1 αiδi

)−1

. However, this cannot be the
case except with negligible probability as it implies the adversary could compute
r before it was opened; an impossible task considering r is a uniform random
value. A similar argument holds for the check done in the output phase.
7 For simplicity we assume that |F| is big enough so that 1/|F| is negligible. The general

case is easily handled by iterating the current construction with multiple r’s.
8 [18] also uses this idea, but in a different way and with a different goal. In [18], the

MACs are used not to ensure correct openings, since a complete honest majority is
used for reconstruction, but to disallow additive attacks after multiplications.
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Fig. 4. Our second protocol with minimal online complexity. In this protocol, the online
phase can be run by only t + 1 parties, unlike the protocol from Fig. 3. This protocol
requires the underlying algebraic structure to be a large enough field F.

Finally, observe that since parties Pt+2, . . . , Pn disconnected, they would not
be receiving output. If they were supposed to receive output, they could return to
the final output phase. The difference with respect to our protocol from Sect. 3
is that, in this case, these returning parties do not need to participate in the
protocol, they only need to receive the shares from the other parties.

A formal proof of security is presented in the full version.

Communication Complexity. Our protocol communicates a linear number of field
elements (in n) in the offline phase, as in protocol ΠMPCLowOnline. For the online
phase, ignoring the final checking phase, the protocol requires t + BC(1) field
elements communicated per multiplication gate. Since the broadcast involves
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only the parties P1, . . . , Pt+1, we have that BC(1) = t, so the communication per
multiplication gate is of t + t = n − 1 field elements.
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