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Abstract. We propose DRAI—a dual adversarial inference framework
with augmented disentanglement constraints—to learn from the image
itself, disentangled representations of style and content, and use this
information to impose control over conditional generation process. We
undergo two novel regularization steps to ensure content-style disentan-
glement. First, we minimize the shared information between content and
style by introducing a novel application of the gradient reverse layer
(GRL); second, we introduce a self-supervised regularization method to
further separate information in the content and style variables. We con-
duct extensive qualitative and quantitative assessments on two publicly
available medical imaging datasets (LIDC and HAM10000) and test for
conditional image generation and style-content disentanglement. We also
show that our proposed model (DRAI) achieves the best disentanglement
score and has the best overall performance.

1 Introduction

In recent years, conditional generation of medical images has become a popular
area for research using conditional Generative Adversarial Networks (cGAN) [20,
36]. One common pitfall of cGAN is that the conditioning codes are extremely
high-level and do not cover nuances of the data. This challenge is exacerbated
in the medical imaging domain where insufficient label granularity is a common
occurrence. We refer to the factors of variation that depend on the conditioning
vector as content. Another challenge in conditional image generation is that the
image distribution also contains factors of variation that are agnostic to the
conditioning code. These types of information are shared among different classes
or different conditioning codes. In this work we refer to such information as
style, which depending on the task, could correspond to position, orientation,
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location, background information, etc. Learning disentangled representation of
content and style allows us to control the detailed nuances of the generation
process.

In this work, we consider two types of information to preside over the image
domain: content and style, which by definition, are independent and this indepen-
dence criteria should be taken into account when training a model. By explicitly
constraining the model to disentangle content and style, we ensure their inde-
pendence and prevent information leakage between them. To achieve this goal,
we introduce Dual Regularized Adversarial Inference (DRAI), a conditional gen-
erative model that leverages unsupervised learning and novel disentanglement
constraints to learn disentangled representations of content and style, which in
turn enables more control over the generation process.

We impose two novel disentanglement constraints to facilitate this pro-
cess: Firstly, we introduce a novel application of the Gradient Reverse Layer
(GRL) [16] to minimize the shared information between the two variables. Sec-
ondly, we present a new type of self-supervised regularization to further enforce
disentanglement; using content-preserving transformations, we attract matching
content information, while repelling different style information.

We compare the proposed method with multiple baselines on two datasets.
We show the advantage of using two latent variables to represent style and con-
tent for conditional image generation. To quantify style-content disentanglement,
we introduce a disentanglement measure and show the proposed regularizations
can improve the separation of style and content information. The contributions
of this work can be summarized as follows:

– To the best of our knowledge, this is the first time disentanglement of content
and style has been explored in the context of medical image generation.

– We introduce a novel application of GRL that penalizes shared information
between content and style in order to achieve better disentanglement.

– We introduce a self-supervised regularization that encourages the model to
learn independent information as content and style.

– we introduce a quantitative content-style disentanglement measure that does
not require any content or style labels. This is especially useful in real world
scenarios where attributes contributing to content and style are not available.

2 Method

2.1 Overview

Let t be the conditioning vector associated with image x. Using the pairs
{(ti,xi)}, i = 1, . . . , N , where N denotes the size of the dataset, we train an
inference model Gc,z and a generative model Gx such that (i) the inference
model Gc,z infers content c and style z in a way that they are disentangled
from each other and (ii) the generator Gx can generate realistic images that
not only visually respect the conditioning vector t but also the style/content
disentanglement. An Illustration of DRAI is made in Fig. 1
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It is worth noting that our generative module is not constrained to require a
style image. Having a probabilistic generative model allows us to sample the style
code from the style prior distribution and generate images with random style
attributes. The framework also allows us to generate hybrid images by mixing
style and content from various sources (details can be found in Sect. B.2).

Fig. 1. Overview of DRAI. The dashed purple arrows mark the cycle consistency
between features implemented via �1 norm, while the solid purple arrows show the
imposed disentanglement constrains. On the right hand side of the figure we show all
the discriminators used for training. ĉ represents the inferred content, ẑ the inferred
style, x̂ the reconstructed input image and x̄ the image with mismatched conditioning.

2.2 Dual Adversarial Inference (DAI)

We follow the formulation of [30] for Dual Adversarial Inference (DAI) which is a
conditional generative model that uses bidirectional adversarial inference [14,15]
to learn content and style variables from the image data. To impose alignment
between conditioning vector t and the generated image x̃, we seek to match
p(x̃, t) with p(x, t). To do so, we adopt the matching-aware discriminator pro-
posed by [40]. For this discriminator—denoted as Dx,t—the positive sample is
the pair of real image and its corresponding conditioning vector (x, t), whereas
the negative sample pairs consist of two groups; the pair of real image with mis-
matched conditioning (x̄, t), and the pair of synthetic image with corresponding
conditioning (Gx(z, c), t). In order to retain the fidelity of the generated images,
we also train a discriminator Dx that distinguishes between real and generated
images. The loss function imposed by Dx,t and Dx is as follows:

min
G

max
D

Vt2i(Dx, Dx,t, Gx) = Epdata [logDx(x)] + Ep(z ),q(c )[log(1 − Dx(Gx(z , c)))] +

Epdata [logDx,t(x , t)] + 1
2

{
Epdata [log(1 − Dx,t(x̄ , t))] + Ep(z ),q(c ),pdata

[log(1 − Dx,t(Gx(z , c), t))]
}
,
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where x̃ = Gx(z, c) is the generated image and (x̄, t) designates a mis-matched
pair.

We use adversarial inference to infer style and content codes from the image.
Using the adversarial inference framework, we are interested in matching the con-
ditional q(z, c|x) to the posterior p(z, c|x). Given the Independence assumption
of c and z, can use the bidirectional adversarial inference formulation individ-
ually for style and content. This dual adversarial inference objective is thus
formulated as:

min
G

max
D

VdALI(Dx,z, Dx,c, Gx, Gc,z) = Eq(x ),q(z ,c |x )[logDx,z(x , ẑ ) + logDx,c(x , ĉ)]+

Ep(x |z ,c ),p(z ),p(c )[log(1 − Dx,z(x̃ , z )) + log(1 − Dx,c(x̃ , c))]. (1)

To improve the stability of training, we include image-cycle consistency
(Vimage-cycle) [51] and latent code cycle consistency (Vcode-cycle) objectives [12].

2.3 Disentanglement Constrains

The dual adversarial inference (DAI) encourages disentanglement through the
independence assumption of style and content. However, it does not explicitly
penalize entanglement. We introduce two constraints to impose style-content
disentanglement. Refer to the Appendix for details.

Content-Style Information Minimization: We propose a novel application
of the Gradient Reversal Layer (GRL) strategy [16] to explicitly minimize the
shared information between style and content. We train an encoder Fc to predict
the content from style and use GRL to minimize the information between the
two. The same process is done for predicting style from content through Fz.
This constrains the content feature generation to disregard style features and
the style feature generation to disregard content features.

Self-supervised Regularization: We incorporate a self-supervised regulariza-
tion such that the content is invariant to content-preserving transformations
(such as a rotation, horizontal or vertical flip) while the style is sensitive to such
transformations. More formally, we maximize the similarity between the inferred
contents of x and the transformed x′ while minimizing the similarity between
their inferred styles. This constrains the content feature generation to focus on
the content of the image reflected in the conditioning vector and the style feature
generation to focus on the transformation attributes.

DRAI is a probabilistic model that requires reparameterization trick to sam-
ple from the approximate posteriors q(z|x), q(c|x) and q(c|t). We use KL diver-
gence in order to regularize these posteriors to follow the normal distribution
N (0, I). Taking that into account, the complete objective criterion for DRAI is:

min
G

max
D,F

Vt2i + VdALI + Vimage-cycle + Vcode-cycle + VGRL + Vself+

λDKL(q(z|x) || N (0, I)) + λDKL(q(c|x) || N (0, I)) + λDKL(q(c|t) || N (0, I)).
(2)
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3 Experiments

We conduct experiments on two publicly available medical imaging datasets:
LIDC [4] and HAM10000 [46] (see Appendix for details on these datasets). To
evaluate the quality of generation, inference, and disentanglement, we consider
two types of baselines. To show the effectiveness of dual variable inference, we
compare our framework with single latent variable models. For this, we introduce
a conditional adaptation of InfoGan [12] referred to as cInfoGAN and a condi-
tional adversarial variational Autoencoder (cAVAE). We also compare DRAI to
Dual Adversarial Inference (DAI) [30] and show how using our proposed disen-
tanglement constraints together with latent code cycle-consistency can signifi-
cantly boost performance. See Appendix for more details on various baselines.
Finally, we conduct rigorous ablation studies to evaluate the impact of each
component in DRAI.

3.1 Generation Evaluation

To evaluate the quality and diversity of the generated images, we measure FID
and IS (see Appendix Sect. D.3) for the proposed DRAI model and various double
and single latent variable baselines described in Appendix Sect.D. The results
are reported in Table 1 for both LIDC and HAM10000 datasets. For the LIDC
dataset, we observe all methods have comparable IS score while DRAI and DAI
have significantly lower FID compared to other baselines, with DRAI having
better performance. For the HAM10000 dataset, DRAI once again achieves the
best FID score while D-cInfoGAN achieves the best IS.

Table 1. Comparison of image generation metrics (FID, IS) and disentanglement met-
ric(CIFC) on HAM10000 and LIDC datasets for single and double variable baselines.
CIFC is only evaluated for double variable baselines.

Method HAM10000 LIDC

FID (↓) IS (↑) CIFC (↓) FID (↓) IS (↑) CIFC (↓)
cInfoGAN 1.351 ± 0.33 1.326 ± 0.03 – 0.283 ± 0.06 1.366 ± 0.02 –

cAVAE 3.566 ± 0.56 1.371 ± 0.01 – 0.181 ± 0.03 1.424±0.01 –

D-cInfoGAN 1.684 ± 0.42 1.449±0.03 1.201 ± 0.17 0.333 ± 0.06 1.342 ± 0.09 1.625 ± 0.11

D-cAVAE 4.893 ± 0.99 1.321 ± 0.01 1.354 ± 0.03 0.378 ± 0.03 1.371 ± 0.04 1.944 ± 0.02

DAI [30] 1.327 ± 0.06 1.304 ± 0.01 0.256 ± 0.01 0.106±0.02 1.423 ±0.05 1.096 ± 0.28

DRAI 1.224±0.05 1.300 ± 0.01 0.210±0.01 0.089±0.02 1.422±0.03 0.456±0.06

We highlight that while FID and IS are the most common metrics for the
evaluation of GAN based models, they do not provide the optimum assessment [5]
and thus qualitative assessment is needed. We use the provided conditioning
vector for the generation process and only sample the style variable z. The
generated samples are visualized in Fig. 2. In every sub-figure, the first column
represents the reference image corresponding to the conditioning vector used for
the image generation, and the remaining columns represent synthesized images.
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DRAI DAI D-cAVAE D-cInfoGAN cInfoGAN cAVAE

Fig. 2. Conditional generations on LIDC and HAM10000. The images are generated
by keeping the content code (c) fixed and only sampling the style codes (z).

By fixing the content and sampling the style variable, we can discover the
types of information that are encoded as style and content for each dataset.
We observe that the learned content information are color and lesion size for
HAM10000, and nodule size for LIDC; while the learned style information are
location, orientation and lesion shape for HAM10000 and background for LIDC.
We also observe that DRAI is very successful in preserving the content informa-
tion when there is no stochasticity in the content variable (i.e., c is fixed). As for
other baselines, sampling style results in changing the content information of the
generated images, which indicates information leak from the content variable to
the style variable. The results show that compared to DAI and other baselines,
DRAI achieves better separation of style and content.

3.2 Style-Content Disentanglement

Achieving good style-content disentanglement in both inference and generation
phases is the main focus of this work. We conduct multiple quantitative and
qualitative experiments to asses the quality of disentanglement in DRAI (our
proposed method) as well as the competing baselines.

As a quantitative metric, we introduce the disentanglement error CIFC (refer
to Appendix for details). Table 1 shows results on this metric. As seen from this
table, in both HAM10000 and LIDC datasets, DRAI improves over DAI by a
notable margin, which demonstrates the advantage of the proposed disentan-
glement regularizations; on one hand, the information regularization objective
through GRL minimizes the shared information between style and content vari-
ables, and on the other hand, the self-supervised regularization objective not
only allows for better control of the learned features but also facilitates disen-
tanglement. In the ablation studies (Sect. 3.3), we investigate the effect of the
individual components of DRAI on disentanglement.
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Fig. 3. Qualitative evaluation of style-content disentanglement through hybrid image
generation on LIDC dataset. In every sub-figure, images in the first row present style
image references and those in the first column present content image references. Hybrid
images are generated by using the style and content codes inferred from style and
content reference images respectively.
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Fig. 4. Qualitative evaluation of style-content disentanglement through hybrid image
generation on HAM10000 dataset. In every sub-figure, images in the first row represent
style image references and those in the first column represent content image references.
Hybrid images are generated by using the style and content codes inferred from style
and content reference images respectively.
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To have a more interpretable evaluation, we qualitatively assess the style-
content disentanglement through generating hybrid images by combining style
and content information from different sources (See Appendix for details on
hybrid images). We can then evaluate the extent to which the style and content
of the generated images respect the corresponding style and content of the source
images. Figure 3 and Fig. 4 show these results on the two datasets. For the LIDC
dataset, DAI and DRAI learn CT image background as style and nodule as con-
tent. This is due to the fact that the nodule characteristics such as nodule size is
included in the conditioning factor and thus the content tends to focus on those
attributes. Thanks to the added disentanglement regularizations, DRAI has the
best content-style separation compared to all other baselines and demonstrates
clear decoupling of the two variables. Because of the self-supervised regulariza-
tion objective, DRAI assigns more emphases on capturing nodule characteristics
as part of the content and background as part of the style. Overall, it is evident
from the qualitative experiments that the proposed disentanglement regulariza-
tions help to decouple the style and content variables.

3.3 Ablation Studies

In this section, we perform ablation studies to evaluate the effect of each compo-
nent on disentanglement using the CIFC metric. Ablated models use the same
architecture with the same amount of parameters. The quantitative assessment
is presented in Table 2. We observe that on both LIDC and HAM10000, each
added component improves over DAI, while the best performance is achieved
when these components are combined together to form DRAI.

Table 2. Quantitative ablation study on LIDC and HAM10000 datasets

Method LIDC HAM10000

FID (↓) CIFC (↓) FID (↓) CIFC (↓)
DAI [30] 0.106±0.02 1.096 ± 0.284 1.327 ± 0.06 0.256 ± 0.01

DRAI = DAI+selfReg+MIReg+featureCycle 0.089±0.02 0.456±0.069 1.224±0.05 0.210±0.01

DAI+selfReg+MIReg 0.176 ± 0.06 0.554 ± 0.185 1.350 ± 0.12 0.233 ± 0.01

DAI+featureCycle 0.221 ± 0.07 0.913 ± 0.074 1.367 ± 0.12 0.311 ± 0.01

DAI+MIReg 0.154 ± 0.04 0.747 ± 0.226 1.298±0.12 0.228±0.01

DAI+selfReg 0.208 ± 0.05 0.781 ± 0.203 1.347 ± 0.14 0.219±0.04

4 Conclusion

We introduce DRAI, a frame work for generating synthetic medical images which
allows control over the style and content of the generated images. DRAI uses
adversarial inference together with conditional generation and disentanglement
constraints to learn content and style variables from the dataset. We compare
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DRAI quantitatively and qualitatively with multiple baselines and show its supe-
riority in image generation in terms of quality, diversity and style-content disen-
tanglement. Through ablation studies and comparisons with DAI [30], we show
the impact of imposing the proposed disentanglement constraints over the con-
tent and style variables.

A Disentanglement Constrains

Lao et al. [30] use double variable ALI as a criterion for disentanglement. How-
ever, ALI does approximate inference and does not necessarily guarantee disen-
tanglement between variables. To further impose disentanglement between style
and content, we propose additional constrains and regularization measures.

A.1 Content-Style Information Minimization

The content should not include any information of the style and vice versa. We
seek to explicitly minimize the shared information between style and content.
For this, we propose a novel application of the Gradient Reversal Layer (GRL)
strategy. First introduced in [16], the GRL strategy is used in domain adaptation
methods to learn domain-agnostic features, where it acts as the identity function
in the forward pass but reverses the direction of the gradients in the backward
pass. In domain adaptation literature, GRL is used with a domain classifier.
Reversing the direction of the gradients coming from the domain classification
loss has the effect of minimizing the information between the representations and
domain identity, thus, learning domain invariant features. Inspired by the liter-
ature on domain adaptation, we use GRL to minimize the information between
style and content. More concretely, for a given example x, we train an encoder
Fc to predict the content from style and use GRL to minimize the information
between the two. The same process is done for predicting style from content
through Fz, resulting in the following objective function:

min
G

max
F

VGRL(Fz, Fc, Gc,z) (3)

= −Ex∼q(x),(ẑ ,ĉ)∼q(z ,c|x)[‖ẑ − Fz(ĉ)‖ + ‖ĉ − Fc(ẑ)‖].

This constrains the content feature generation to disregard style features and
the style feature generation to disregard content features. Figure 5b shows a
visualization of this module.

We can show that Eq. (3) minimizes the mutual information between the
style variable and the content variable. Here, we only provide the proof for using
GRL with Fz to predict style from content. Similar reasoning can be made for
using GRL with Fc. Let I(z; c) denote the mutual information between the
inferred content and the style variables, where

I(z; c) = H(z) − H(z|c). (4)
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Once again, following [2], we define a variational lower bound on I(z; c) by
rewriting the conditional entropy in (4) as:

−H(z|c) = Eĉ∼q(c|x)[log q(z|ĉ) + DKL(p(z|ĉ)||q(z|ĉ))]],

and by extension:

I(z; c) = H(z) + max
Fz

Eĉ∼q(c|x)[log q(z|ĉ)], (5)

where the maximum is achieved when DKL(p(z|ĉ)||q(z|ĉ))] = 0. Since H(z) is
constant for Fz and ||ẑ − Fz(ĉ)|| corresponds to − log q(z|ĉ), minimization of
mutual information can be written as:

min
G

I(z; c) = min
G

max
Fz

−Eĉ∼q(c|x),ẑ∼q(z |x)[||ẑ − Fz(ĉ)||], (6)

which corresponds to Eq. (3).

A.2 Self-supervised Regularization

Self-supervised learning has shown great potential in unsupervised representa-
tion learning [11,21,39]. To provide more control over the latent variables c
and z, we incorporate a self-supervised regularization such that the content is
invariant to content-preserving transformations while the style is sensitive to
such transformations. The proposed self-supervised regularization constraints
the feature generator Gc,z to encode different information for content and style.
More formally, let T be a random content-preserving transformation such as a
rotation, horizontal or vertical flip. For every example x ∼ q(x), let x′ be its
transformed version; x′ = Ti(x) for Ti ∼ p(T ). We would like to maximize the
similarity between the inferred contents of x and x′ and minimize the similar-
ity between their inferred styles. This constrains the content feature generation
to focus on the content of the image reflected in the conditioning vector and
the style feature generation to focus on other attributes. This regularization
procedure is visualized in Fig. 5a. The objective function for the self-supervised
regularization is defined as:

min
G

Vself(Gc,z) = Ex∼q(x)[‖ĉ − ĉ′‖ − ‖ẑ − ẑ′‖], (7)

where (ẑ, ĉ) ∼ q(z, c|x) and (ẑ′, ĉ′) ∼ q(z, c|x′).

B Implementation Details

B.1 Implementation Details

In this section, we provide the important implementation details of DRAI.
Firstly, to reduce the risk of information leak between style and content, we use
completely separate encoders to infer the two variables. For the same reason, the
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(a) Self-Supervised regularization.
Given x and its transformed version
x′, their corresponding content codes
c and ĉ form a positive pair and the
disparity between them is minimized
(i.e., attract each other) while their
corresponding style codes z and ẑ
form a negative pair and the disparity
between them is maximized (i.e., repel
each other).

Content Predictor

Style Predictor

(b) Content-Style information mini-
mization. For a given image x, Fc is
trained to predict the content ĉ from
the style ẑ. By reversing the direction
of the gradients, the GRL penalizes
Gc,z to minimize the content informa-
tion in the style variable z. The same
procedure is carried out to minimize
style information in the content vari-
able c.

Fig. 5. Proposed disentanglement constraints.

dual adversarial discriminators are also implemented separately for style and con-
tent. The data augmentation includes random flipping and cropping. To enable
self-supervised regularization, each batch is trained twice, first with the origi-
nal images and then with the transformed batch. The transformations include
rotations of 90, 180, and 270 degrees, as well as horizontal and vertical flipping.
LSGAN (Least Square GAN) [34] loss is used for all GAN generators and dis-
criminators, while �1 loss is used for the components related to disentanglement
constraints, i.e., GRL strategy and self-supervised regularization. In general, we
found that “Image cycle-consistency” and “Latent code cycle-consistency” objec-
tives improve the stability of training. This is evident by DRAI achieving lower
prediction intervals (i.e., standard deviation across multiple runs with different
seeds) in our experiments.

We did not introduce any coefficients for the loss components in Equation (2)
since other than the KL terms, they were all relatively on the same scale. As for
the KL co-efficients λ, we tried multiple values and qualitatively evaluated the
results. Since the model was not overly sensitive to KL, we used a coefficient of
1 for all KL components.

All models including the baselines are implemented in TensorFlow [1] version
2.1, and the models are optimized via Adam [27] with initial learning rate 1e−5.

For IS and FID computation, we fine-tune the inception model on a 5 way
classification on nodule size for LIDC and a 7 way classification on lesion type
for HAM10000. FID and IS are computed over a set of 5000 generated images.
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B.2 Generating Hybrid Images

Thanks to our encoder that is able to infer disentangled codes for style and
content and also our generator that does not have a hard constraint on requiring
the conditioning embedding t, we can generate hybrid images where we mix
style and content from different image sources. Let i and j be the indices of two
different images. There are two ways in which DRAI can generate hybrid images:

1. Using a conditioning vector ti and a style image xj : In this setup, we use the
conditioning factor ti as the content and the inferred ẑj from the style image
xj as the style:

ci = Eϕ(ti)
ẑj , ĉj = Gc,z(xj)
x̃ij = Gx(ẑj , ci).

2. Using a content image xi and a style image xj : In this setup we do not rely on
the conditioning factor t. Instead, we infer codes for both style and content
(i.e., ẑj and ĉi) from style and content source images respectively.

ẑi, ĉi = Gc,z(xi)
ẑj , ĉj = Gc,z(xj)
x̃ij = Gx(ẑj , ĉi)

The generation of hybrid images is graphically explained in Fig. 6 for the afore-
mentioned two scenarios.

Fig. 6. Hybrid image generation: (a) via the conditioning factor ti (representing con-
tent) and the style code ẑj inferred from the style reference image. (b) via the content
code ĉi inferred from the content reference image and the style code ẑj inferred from
the style reference image.
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C Datasets

C.1 HAM10000

Human Against Machine (HAM10000) [46], contains approximately 10000 train-
ing images, includes 10015 dermatoscopic images of seven types of skin lesions
and is widely used as a classification benchmark. One of the lesion types,
“Melanocytic nevi” (nv), occupies around 67% of the whole dataset, while the
two lesion types that have the smallest data size, namely, “Dermatofibroma”
(df) and “Vascular skin lesions” (vasc), have only 115 and 143 images respec-
tively. Such data imbalance is undesirable for our purpose since limitations on
the data size lead to severe lack of image diversity of the minority classes. For
our experiments, we select the three largest skin lesion types, which in order of
decreasing size are: “nv” with 6705 images; “Melanoma” (mel) with 1113 images;
and “Benign keratosis-like lesions” (bkl) with 1099 images. Patches of size 48 × 48
centered around the lesion are extracted and then resized to 64× 64. To balance
the dataset, we augment mel and bkl three times with random flipping. We fol-
low the train-test split provided by the dataset, and the data augmentation is
done only on the training data.

C.2 LIDC

The Lung Image Database Consortium image collection (LIDC-IDRI) consists
of lung CT scans from 1018 clinical cases [4]. In total, 7371 lesions are annotated
by one to four radiologists, of which 2669 are given ratings on nine nodule char-
acteristics: “malignancy”, “calcification”, “lobulation”, “margin”, “spiculation”,
“sphericity”, “subtlety”, “texture” and “internal structure”. We take the follow-
ing pre-processing steps for LIDC: a) We normalize the data such that it respects
the Hounsfield units (HU), b) the volume size is converted to 256 × 256 × 256,
c) areas around the lungs are cropped out. For our experiments, we extract a
subset of 2D patches composing nodules with consensus from at least three radi-
ologists. Patches of size 48 × 48 centered around the nodule are extracted and
then resized to 64 × 64. Furthermore, we compute the inter-observer median of
the malignancy ratings and exclude those with malignancy median of 3 (out of
5). This is to ensure a clear separation between benign and malignant classes pre-
sented in the dataset. The conditioning factor for each nodule is a 17-dimensional
vector, coming from six of its characteristic ratings, as well as the nodule size.
Note that “lobulation” and “spiculation” are removed due to known annotation
inconsistency in their ratings [3], and “internal structure” is removed since it
has a very imbalanced distribution. We quantize the remaining characteristics
to binary values following the same procedure of Shen et al. [43] and use the one-
hot encoding to generate a 12-dimensional vector for each nodule. The remaining
five dimensions are reserved for the quantization of the nodule size, ranging from
2 to 12 with an interval of 2. Following the above described procedure, the nod-
ules with case index less than 899 are included in the training dataset while the
nodules of the remaining cases are considered as the test set. By augmenting the
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label in such way, we exploit the richness of each nodule in LIDC, which proves
to be beneficial for training.

D Baselines

To evaluate the quality of generation, inference, and disentanglement, we con-
sider two types of baselines. To show the effectiveness of dual variable infer-
ence, we compare our framework with single latent variable models. For this, we
introduce a conditional adaptation of InfoGan [12] referred to as cInfoGAN and
a conditional adversarial variational Autoencoder (cAVAE), both of which are
explained in this section.

To compare our approach to dual latent variable inference methods, we
extend InfoGAN and cAVAE to dual variables which we denote as D-cInfoGAN
and D-cAVAE respectively.

We also compare DRAI to Dual Adversarial Inference (DAI) [30] and show
how using our proposed disentanglement constraints together with latent code
cycle-consistency can significantly boost performance. Finally, we conduct rig-
orous ablation studies to evaluate the impact of each component in DRAI.

D.1 Conditional InfoGAN

InfoGAN is a variant of generative adversarial network that aims to learn unsu-
pervised disentangled representations. In order to do so, InfoGAN modifies the
original GAN in two ways. First, it adds an additional input c to the generator.
Second, using an encoder network Q, it predicts c from the generated image
and effectively maximizes a lower bound on the mutual information between the
input code c and the generated image x̃. The final objective is the combination
of the original GAN objective plus that of the inferred code ĉ ∼ Q(c|x):

min
G,Q

max
D

VInfoGAN(D, G, Q) = VGAN(D, G)−λ(EG(z ,c),p(c)[log Q(c|x)]+H(c)). (8)

The variable c can follow a discrete categorical distribution or a continuous
distribution such as the normal distribution. InfoGAN is an unsupervised model
popular for learning disentangled factors of variation [29,38,47].

We adopt a conditional version of InfoGAN –denoted by cInfoGAN– which is
a conditional GAN augmented with an inference mechanism using the InfoGAN
formulation. We experiment with two variants of cInfoGAN; a single latent vari-
able model (cInfoGAN) shown in Fig. 7a, where the discriminator Dx is trained
to distinguish between real (x) and fake (x̃) images while the discriminator Dx,t

distinguishes between the positive pair (x, t) and the corresponding negative pair
(x̃, t), where x̃ = Gx(z, t) and t is the conditioning vector representing content.
With the help of Gz, InfoGAN’s mutual information objective is applied on z
which represents the unsupervised style.

We also present a double latent variable model of InfoGAN (D-cInfoGAN)
shown in Fig. 7b where in addition to inferring ẑ we also infer ĉ through cycle
consistency using the �1 norm.



DRAI 59

(a) Conditional InfoGAN (cInfoGAN). (b) Dual conditional InfoGAN (D-
cInfoGAN).

Fig. 7. InfoGan baselines.

D.2 cAVAE

Variational Auto-Encoders (VAEs) [28] are latent variable models commonly
used for inferring disentangled factors of variation governing the data distribu-
tion. Let x be the random variable over the data distribution and z the random
variable over the latent space. VAEs are trained by alternating between two
phases, an inference phase where an encoder Gz is used to map a sample from
the data to the latent space and infer the posterior distribution q(z|x) and a gen-
eration phase where a decoder Gx reconstructs the original image using samples
of the posterior distribution with likelihood p(x|z).

VAEs maximize the evidence lower bound (ELBO) on the likelihood p(x):

max
G

VVAE(Gx, Gz) = Eq(z |x)[log p(x|z)] − DKL[q(z|x) || p(z)]. (9)

Kingma and Welling [28] also introduced a conditional version of VAE
(cVAE) where p(x|z, c) is guided by both the latent code z and conditioning
factor c. There have also been many attempts in combining VAEs and GANs.
Notable efforts are that of Larsen et al. [31,35] and [50].

Conditional Adversarial Variational Autoencoder (cAVAE) is very similar to
conditional Variational AutoEncoder (cVAE) but uses an adversarial formula-
tion for the likelihood p(x|z, c). Following the adversarial formulation for recon-
struction [32,35], a discriminator Dcycle is trained on positive pairs (x,x) and
negative pairs (x,x̂), where x̂ ∼ p(x|t, ẑ) and ẑ ∼ q(z|x). For the conditional gen-
eration we train a discriminator Dx,t on positive pairs (x, t) and negative pairs
(x̂, t), where t is the conditioning factor. We empirically discover that adding an
additional discriminator Dx,t,z which also takes advantage of the latent code ẑ
improves inference. Similar to cInfoGAN, we use two versions of cAVAE: a single
latent variable version denoted by cAVAE (Fig. 8a) and a double latent variable
version D-cAVAE (Fig. 8b), where in addition to the style posterior q(z|x), we
also infer the content posterior q(c|x). Accordingly, to improve inference on the
content variable, we add the discriminator Dx,t,c.
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(a) Conditional Adversarial VAE (cAVAE). (b) Dual conditional Adversarial VAE (D-
cAVAE).

Fig. 8. Adversarial VAE baselines

D.3 Evaluation Metrics

We explain in detail various evaluation metrics used in our experiments.

Measure of Disentanglement (CIFC). Multiple methods have been pro-
posed to measure the degree of disentanglement between variables [23]. In this
work, we propose a measure which evaluates the desired disentanglement char-
acteristics of both the feature generator and the image generator. To have good
feature disentanglement, we desire a feature generator (i.e., encoder) that sepa-
rates the information in an image in two disjoint variables of style and content
in such a way that 1) the inferred information is consistent across images. e.g.,
position and orientation is encoded the same way for all images; and 2) every
piece of information is handled by only one of the two variables, meaning that
the style and content variables do not share features. In order to measure these
properties, we propose Cross Image Feature Consistency (CIFC) error where we
measure the model’s ability to first generate hybrid images of mixed style and
content inferred from two different images and then its ability to reconstruct the
original images. Figure 9 illustrates this process. As seen in this figure, given two
images Ia and Ib, hybrid images Iab and Iba are generated using the pairs (ĉa,ẑb)
and (ĉb, ẑa) respectively. By taking another step of hybrid image generation, Iaa

and Ibb are generated as reconstructions of Ia and Ib respectively. To make the
evaluation robust with respect to high frequency image details, we compute
the reconstruction error in the feature space. In retrospect, the disentanglement
measure is computed as:

CIFC = E(Ia,Ib)∼qtest(x)[‖ẑa − ẑaa‖ + ‖ĉa − ĉaa‖ + (10)
‖ẑb − ẑbb‖ + ‖ĉb − ĉbb‖],

where qtest(x) represents the empirical distribution of the test images.
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Fig. 9. Cross Image Feature Consistency (CIFC) error. CIFC is computed by first gen-
erating hybrid images of mixed style and content across two different images and then
reconstructing the original images. For a more robust evaluation, CIFC is measured in
the feature space.

FID. The Frechet inception distance (FID) score [22] measures the distance
between the real and generated data distributions. An inception model is
required for calculating FID, but since the conventional inception model used
for FID is pretrained on colored natural images, it is not suitable to be used
with LIDC which consists of single channel CT scans. Consequently, we train an
inception model on the LIDC dataset to classify benign and malignant nodules.
We use InceptionV3 [45] up to layer “mixed3” (initialized with pretrained Ima-
geNet weights), and append a global average pooling layer followed by a dense
layer.

Inception Score. Inception Score (IS) [41] is another quantitative metric on
image generation which is commonly used to measure the diversity of the gener-
ated images. We use the same inception model described above to calculate IS.
The TensorFlow-GAN library [44] is used to calculate both FID and IS.

E Related Work

E.1 Connection to Other Conditional GANs in Medical Imaging

While adversarial training has been used extensively in the medical imaging
domain, most work uses adversarial training to improve image segmentation and
domain adaptation. The methods that use adversarial learning for image genera-
tion can be divided into two broad categories; the first group are those which use
image-to-image translation as a proxy to image generation. These models use an
image mask as the conditioning factor, and the generator generates an image
which respects the constraints imposed by the mask [13,13,19,26,37]. Jin et al.
[26] condition the generative adversarial network on a 3D mask, for lung nod-
ule generation. In order to embed the nodules within their background context,
the GAN is conditioned on a volume of interest whose central part containing
the nodule has been erased. A favored approach for generating synthetic fundus
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retinal images is to use vessel segmentation maps as the conditioning factor.
Guibas et al. [19] uses two GANs in sequence to generate fundus images. The
first GAN generates vessel masks, and in stage two, a second GAN is trained to
generate fundus retinal images from the vessel masks of stage one. Costa et al.
[13] first use a U-Net based model to generate vessel segmentation masks from
fundus images. An adversarial image-to-image translation model is then used to
translate the mask back to the original image.

In Mok and Chung [37] the generator is conditioned on a brain tumor mask
and generates brain MRI. To ensure correspondence between the tumour in
the generated image and the mask, they further forced the generator to output
the tumour boundaries in the generation process. Bissoto et al. [8] uses the
semantic segmentation of skin lesions and generate high resolution images. Their
model combines the pix2pix framework [25] with multi-scale discriminators to
iteratively generate coarse to fine images.

While methods in this category give a lot of control over the generated images,
the generator is limited to learning domain information such as low level texture
and not higher level information such as shape and composition. Such informa-
tion is presented in the mask which requires an additional model or an expert
has to manually outline the mask which can get tedious for a lot of images.

The second category of methods are those which use high level class informa-
tion in the form of a vector as the conditioning factor. Hu et al. [24] takes Gleason
score vector as input to the conditional GAN to generate synthetic prostate dif-
fusion imaging data corresponding to a particular cancer grade. Baur et al. [6]
used a progressively growing model to generate high resolution images of skin
lesions.

As mentioned in the introduction one potential pitfall of such methods is that
by just using the class label as conditioning factor, it is hard to have control over
the nuances of every class. While our proposed model falls within this category,
our inference mechanism allows us to overcome this challenge by using the image
data itself to discover factors of variation corresponding to various nuances of
the content.

E.2 Disentangled Representation Learning

In the literature, disentanglement of style and content is primarily used for
domain translation or domain adaptation. Content is defined as domain agnostic
information shared between the domains, while style is defined as domain specific
information. The goal of disentanglement to preserve as much content as possible
and to prevent leakage of style from one domain to another. Gonzalez-Garcia et
al. [18] used adversarial disentanglement for image to image translation. In order
to prevent exposure of style from domain A to domain B, a Gradient Reversal
Layer (GRL) is used to penalize shared information between the generator of
domain B and style of domain A. In contrast, our proposed DRAI, uses GRL
to minimize the shared information between style and content. In the medical
domain, Yang et al. [49] aim to disentangle anatomical information and modality
information in order to improve on a downstream liver segmentation task.
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Ben-Cohen et al. [7] used adversarial learning to infer content agnostic fea-
tures as style. Intuitively their method is similar to using GRL to minimize
leakage of content information into a style variable. However, while [7] prevents
leakage of content into style, it does not prevent the reverse effect which is leakage
of style into content and thus does not guarantee disentanglement.

Yang et al. [48] use disentangle learning of modality agnostic and modality
specific features in order to facilitate cross-modality liver segmentation. They use
a mixture of adversarial training and cycle consistency loss to achieve disentan-
glement. The cycle-consistency component is used for in-domain reconstruction
and the adversarial component is used for cross-domain translation. The two
components encourage the disentanglement of the latent space, decomposing it
into modality agnostic and modality specific sub-spaces.

To achieve disentanglement between modality information and anatomical
structures in cardiac MR images, Chartsias et al. [9] use an autoencoder with
two encoders: one for the modality information (style) and another for anatom-
ical structures (content). They further impose constraints on the anatomical
encoder such that every encoded pixel of the input image has a categorical dis-
tribution. As a result, the output of the anatomical encoder is a set of binary
maps corresponding to cardiac substructures.

Disentangled representation learning has also been used for denoising of med-
ical images. In Liao et al. [33], Given artifact affected CT images, metal-artifact
reduction (MAR) is performed by disentangling the metal-artifact representa-
tions from the underlying CT images.

Sarhan et al. [42] use β-TCAV [10] to learn disentangled representations on
an adversarial variation of the VAE. Their proposed model differs fundamentally
from our work; its is a single variable model, without a conditional generative
process, and does not infer separate style and content information.

Garcia1 et al. [17] used ALI (single variable) on structured MRI to discover
regions of the brain that are involved in Autism Spectrum Disorder (ASD).

In contrast to previous work, we use style-content disentanglement to control
features for conditional image generation. To the best of our knowledge this is
the first time such attempt has been made in the context of medical imaging.
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