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Abstract. The use of deep learning in medical image analysis is hin-
dered by insufficient annotated data and the inability of models to gen-
eralize between different imaging settings. We address these problems
using a novel variational style-transfer neural network that can sample
various styles from a computed latent space to generate images from a
broader domain than what was observed. We show that using our genera-
tive approach for ultrasound data augmentation and domain adaptation
during training improves the performance of the resulting deep learning
models, even when tested within the observed domain.
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1 Introduction

Deep learning in medical imaging has immense potential but the challenge is
that images taken by different machines or in different settings follow differ-
ent distributions [4]. As a result, models are usually not generalized enough to
be used across datasets. Especially in ultrasound, images captured by different
imaging settings on different subjects can be so different that the model trained
on one dataset could completely fail on another dataset. Besides, since annota-
tion of medical images is laborious work which requires experts, the number of
annotated images is limited. It is extremely difficult to get a large dataset of
annotated medical images that are from different distributions. Therefore, we
propose a continuous neural style transfer algorithm, which is capable of gener-
ating ultrasound images with known content from unknown style latent space.

In the first attempt at style transfer with convolutional neural networks
(CNNs), the content and style features were extracted using pretrained VGGs
[21] and used to iteratively optimize the output image on-the-fly [6]. Feed-forward
frameworks were then proposed to get rid of the numerous iterations during infer-
ence [10,23]. The gram matrix, which describes the style information in images,
were further explained in [14]. To control the style of the output, ways to manip-
ulate the spatial location, color information and spatial scale were introduced in
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[7]. Adaptive Instance Normalization (AdaIN) was proposed as a way to perform
arbitrary style transfer in real-time [8]. Further improvements were made where
the image transformation network was directly generated from a style image via
meta network [20]. Some works are dedicated to using style transfer as a data
augmentation tool [17,25], which showed that style transfer on natural images
can improve the performance of classification and segmentation.

In medical image analysis, [22] directly applied style transfer to fundus images
for augmentation, while [3] analyzed the style of ultrasound images encoded by
VGG encoders. [16] improved the segmentation results of cardiovascular MR
images by style transfer. [5] built their network upon StyleGAN [11] to generate
high-resolution medical images. [24] showed that generated medical images based
on style transfer can improve the results of semantic segmentation on CT scans.
[15] proposed a method to do arbitrary style transfer on ultrasound images.

However, current works can only generate one result given a content and a
style image, and few can sample the style from a latent space. Works in medical
domain are mostly tested on images with similar styles, limiting the ability of
generalization. As the style should follow a certain distribution instead of some
specific values, we intent to generate multiple plausible output images given a
content and a style image. Furthermore, we also want to sample the style in a
continuous latent space so that we would be able to generate images from unseen
styles. We propose a variational style transfer approach on medical images, which
has the following contribution: (1) To the best of our knowledge, our method is
the first variational style transfer approach that to explicitly sample the style
from a latent space without giving the network a style reference image. (2) Our
approach can be used to augment the data in ultrasound images, which results
in better segmentation. (3) The method that we propose is able to transform
the ultrasound images taken in one style to an unobserved style.

2 Methods

Our style transfer network consists of three parts: style encoder Es, content
encoder Ec, and decoder D. The network structure is shown in Fig. 1, where Is

is the style image, Ic is the content image and Î is the output image. During
training, the decoder D learns to generate Î with the Gaussian latent variables
z conditioned on the content image Ic, while the style encoder Es learns the
distribution of z given style image Is. Before putting the three parts together,
we pre-train the style encoder and the content encoder separately to provide
better training stability. When generating images, our method can either use
certain given style, or sample the style from the latent space.

2.1 Style Encoder

The style encoder Es is the encoder part of a U-Net [19] based Variational
Autoencoder (VAE) [13]. The difference between our VAE and traditional ones
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Fig. 1. The network structure of the proposed method, which consists of two encoders
that process the style image and content image separately, and a decoder. The style
encoder generates distributions for some latent variables given the style image qφ(z|Is),
to create style that could change continuously.

is that our latent variables are at different scales to generate images with bet-
ter resolutions. The style encoder Es approximates the distribution of latent
variables at different scale. In other words, it learns distributions qφ(zi|I) that
approximates the intractable true distribution pθ(zi|I), where φ is the varia-
tional parameters, while θ is the generative model parameters. Therefore the
variational lower bound could be written as:

L(θ, φ; Is) = −KL(qφ(z|Is)||pθ(z)) + Eqφ(z|Is) log pθ(Is|z) (1)

where KL(·) is the Kullback–Leibler (KL) divergence between two distributions,
and we further assume z|θ ∼ N (0, 1).

The encoder is further incorporated into the style transfer network while
the decoder here is only used during initial training. The structure of the style
encoder is shown in Fig. 1, while the decoder part is a traditional U-Net decoder.

2.2 Content Encoder

The structure of the content encoder Ec is shown in Fig. 1, and like the style
encoder Es, it is the encoder of a U-Net autoencoder, where the decoder is only
used in the initial training with the exact opposite structure of the encoder.

2.3 Decoder

The decoder takes in the encoded style and content before generating a new
image, and is also designed based on a traditional U-Net. The structure is shown
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in Fig. 1. Denote the content features as fc = Ec(Ic) and the style feature as
fs = Es(Is). Also denote the content and style features at scale i as f

(i)
c and f

(i)
s

respectively. The features of the output images at scale i, f̂ (i), can be treated as
the input into the decoder of a normal U-Net. Inspired by [8], we utilize AdaIN
to perform style transfer in feature space at each scale to calculate f̂ (i) based on
f
(i)
c and f

(i)
s . The calculation can be expressed as:

f̂ (i) = AdaIN(f (i)
c , f (i)

s ) = σ(f (i)
s (

f
(i)
c − μ(f (i)

c )

σ(f (i)
c )

)) + μ(f (i)
s ) (2)

2.4 Loss Functions

The training objective of the network is to generate an output image Î containing
the contents in the content image Ic and having the style of the style image Is,
all while maximizing the variational lower bound. Therefore, the loss function is
made up of three parts: perceptual loss, style loss, and KL divergence loss.

Perceptual and style losses, are based on high level features extracted by
pre-trained VGGs [21] and were first utilized in [6]. Perceptual loss is the dif-
ference between two feature maps encoded by a CNN. Since spatial correlation
is considered in perceptual loss Lp, it is deemed as an expression of the content
similarity between two images, which can be expressed as follows:

Lp =
NV GG∑

i=1

wp
i ||ψi(Ic) − ψi(Î)|| (3)

where ψi(x) extracts the layer i of VGG from x, wp
i is the weight at layer i for

perceptual loss, and NV GG as the total number of layers in VGG.
Denote the number of channels, height, and width of the i th layer of the

feature map as Ci, Hi, and Wi respectively. We also denote the Ci × Ci gram
matrix of i th layer of the feature map of image x as Gi(x). The gram matrix
can be described as:

Gi(x)(u, v) =
∑Hi

h=1

∑Wi

w=1 ψi(x)(h,w, u)ψi(x)(h,w, v)
CiHiWi

(4)

Since the gram matrix only records the relationship between different chan-
nels rather than the spatial correlation, it is considered to be the representation
of the general textures and patterns of an image. Let ws

i be the weight of the loss
at layer i for style loss, the style loss Ls is the distance of two gram matrices:

Ls =
NV GG∑

i=1

ws
i ||Gi(Is) − Gi(Î)|| (5)

To maximize the variational lower bound, we need to minimize the KL diver-
gence between qφ(z|Is) and pθ(z). Under the assumption that all the latent vari-
ables are i.i.d., we calculate the KL divergence on each scale and sum over all the



18 A. L. Y. Hung and J. Galeotti

KL divergence to get the KL loss. Since we already assume that z|θ ∼ N (0, 1),
we can derive the KL divergence at each scale as:

KL(qφ(z|Is)||pθ(z)) =
1
2
(
μ2

σ2
+ σ2 − log σ2 − 1) (6)

where we assume z|Is;φ ∼ N(μ, σ).

2.5 Implementation Details

Encoders and decoders in the network follow the architecture below. There are 2
convolutional layers in each ConvBlock, followed by batch normalization [9] and
swish activation [18]. We use 5 ConvBlocks in the encoder side which are followed
by a max pooling layer, except for the last one. The number of convolutional
filters are 64, 128, 256, 512, 1024 respectively. The decoders follow the inverse
structure of the encoder. Note that in the style encoder, shown in Fig. 1, there
is an additional ConvBlock before generating the distribution qφ(zi|Is) after
the normal U-Net [19] encoder at each scale. There is also another ConvBlock
after sampling zi from qφ(zi|Is) to calculate f

(i)
s at each scale. The weights for

perceptual and style loss are set to 0, 0, 0, 0, 0.01 and 0.1, 0.002, 0.001, 0.01, 10
for block1 conv1, block2 conv1, block3 conv1, block4 conv1, block5 conv1 of VGG
respectively. The network is optimized via Adam optimizer [12] with a learning
rate of 5 × 10−5 and trained for 20 epochs on a single Nvidia Titan RTX GPU.

3 Experiments

The images in the experiments are a combination of numerous datasets: (1) lung
images on clinical patients by Sonosite ultrasound machine with HFL38xp lin-
ear transducer, (2) chicken breast images by UF-760AG Fukuda Denshi using
a linear transducer with 51 mm scanning width (FDL), (3) live-pig images by
FDL, (4) blue-gel phantom images by FDL, (5) leg phantom images by FDL,
(6) Breast Ultrasound Images Dataset [2], (7) Ultrasound Nerve Segmentation
dataset from Kaggle [1], (8) arteries and veins in human subjects by aVisualson-
ics Vevo 2100 UHFUS machine with ultrahigh frequency scanners. In total, there
are 18308, 2285, 2283 images for training, validation, and testing respectively in
the combined dataset. During training, we randomly select a pair of content and
style images from the combined dataset without any additional restrictions.

3.1 Qualitative Results

In the first experiment, we directly generate the outputs given the content and
style images. We transfer the style of images across (1)–(8). Shown in Fig. 2,
the visual results are good in each combination of content and style images.
Moreover, all the results still have the anatomy in the content images, including
but not limited to vessels and ligaments, while looking like the style images. On
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Fig. 2. Results of the algorithm given style and content images. We transfer content
images from the first column to the style in the corresponding image in the first row.
The content images from top to bottom and the style images from left to right are
images from dataset (1)–(8).

Fig. 3. Results of the method by Huang et al. [8]. The left is the content image (same
as the last one in Fig. 2), whose style is transferred to styles of (1)–(8) (right 8 images).

the contrary, shown in Fig. 3, method proposed by Huang et al. [8], is not able
to capture the fine details in the content and generate realistic textures.

Another qualitative experiment is that we directly sample the style from
the latent space without giving the model a style image. Figure 4 shows the
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Fig. 4. The distribution (flattened to fit the paper) of styles in the latent space.

Fig. 5. Results of directly sampling from the latent space and interpolation. The first
column are the content image. We sampled the second and the last column (starting
point and ending point of the arrows in Fig. 4), then interpolate in between in the
latent space in the direction of the corresponding arrows.

distribution of our training style images in the latent space. We then randomly
sampled two styles (at the end points of the arrow in Fig. 4) from the latent
space and interpolate between the two, and the results can be found in Fig. 5.
We observe that even without a style image, the model can still generate visually
reasonable ultrasound images given the content image without losing significant
details while sampling from latent space that is not covered by the training data.

3.2 Quantitative Results

To show that our approach is effective in augmentation, assume that we only
have limited live-pig data while having more leg-phantom data for veins and
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Table 1. Comparison between style-transfer-based augmentation and the traditional
augmentation

Veins Arteries
Dice IoU Pre. Rec. Dice IoU Pre. Rec.

vt-ph/pig-99/aug. 0.96 0.92 0.93 0.99 0.93 0.86 0.87 0.99
vt-ph/pig-99 0.97 0.95 0.96 0.99 0.95 0.91 0.92 0.99
dt-ph/pig-99/aug. 0.94 0.90 0.92 0.97 0.92 0.84 0.88 0.96
dt-ph/pig-99 0.89 0.81 0.82 0.98 0.83 0.71 0.71 0.99
pig-99/aug. 0.87 0.77 0.84 0.90 0.86 0.75 0.81 0.91
pig-99 0.83 0.71 0.73 0.96 0.81 0.68 0.70 0.95
ph/pig-99/aug. 0.07 0.04 0.04 0.59 0.02 0.01 0.01 0.97
ph/pig-99 0.05 0.03 0.36 0.03 0.14 0.07 0.13 0.14
vt-ph/pig-77/aug. 0.95 0.91 0.95 0.96 0.93 0.87 0.91 0.95
vt-ph/pig-77 0.93 0.88 0.91 0.96 0.90 0.81 0.95 0.90
dt-ph/pig-77/aug. 0.93 0.88 0.89 0.98 0.87 0.77 0.78 0.98
dt-ph/pig-77 0.94 0.90 0.92 0.97 0.91 0.84 0.85 0.99
pig-77/aug. 0.92 0.86 0.87 0.98 0.91 0.84 0.85 0.98
pig-77 0.88 0.78 0.90 0.86 0.68 0.51 0.71 0.65
ph/pig-77/aug. 0.07 0.04 0.04 0.55 0.03 0.02 0.02 0.06
ph/pig-77 0.38 0.23 0.68 0.25 0.21 0.12 0.22 0.19
vt-ph/pig-55/aug. 0.74 0.59 0.80 0.69 0.79 0.65 0.73 0.87
vt-ph/pig-55 0.80 0.66 0.87 0.73 0.59 0.41 0.65 0.54
dt-ph/pig-55/aug. 0.70 0.53 0.71 0.69 0.53 0.36 0.59 0.48
dt-ph/pig-55 0.76 0.61 0.88 0.67 0.66 0.60 0.56 0.81
pig-55/aug. 0.67 0.50 0.87 0.54 0.43 0.27 0.37 0.27
pig-55 0.15 0.01 0.09 0.43 0.01 0 0.01 0
ph/pig-55/aug. 0.04 0.02 0.02 0.07 0.02 0.02 0.01 0.81
ph/pig-55 0.22 0.12 0.45 0.14 0.1 0.05 0.05 0.53
vt-ph/pig-33/aug. 0.54 0.37 0.63 0.47 0.37 0.23 0.42 0.33
vt-ph/pig-33 0.43 0.28 0.38 0.49 0.56 0.39 0.43 0.82
dt-ph/pig-33/aug. 0.11 0.06 0.13 0.10 0.06 0.03 0.03 0.37
dt-ph/pig-33 0.53 0.37 0.68 0.44 0.34 0.20 0.36 0.32
pig-33/aug. 0.15 0.08 0.09 0.66 0.01 0 0 0.01
pig-33 0.06 0.03 0.06 0.06 0 0 0.01 0
ph/pig-33/aug. 0.07 0.04 0.04 0.58 0.02 0.01 0.01 0.37
ph/pig-33 0.01 0 0.02 0 0 0 0 0

arteries (405 images). Denote vt-ph, dt-ph and ph as variational-style-transferred
(ours), deterministic-style-transferred [8] and original phantom images respec-
tively, aug. as traditional augmentation methods including gamma transform,
Gaussian blurring, and image flipping. We further evaluate the effects of the
number of the real images have on the final results. We transfer the leg-phantom
images into the style of pig images. For live-pig data, we set 99 images as train-
ing set while having 11 images in each of the validation set and test set. In
the experiments, we train U-Nets with the same network implementation and
training settings as [19], on 99, 77, 55, 33 live-pig images denoted as pig-99,
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pig-77 etc. to show that our method works with very limited number of images.
Note that, we balance the phantom data and pig data as roughly 1:1 ratio in
each epoch. Shown in Table 1, the segmentation performs better by the networks
trained on variational-style-transferred phantom images and pig images than the
ones trained on other images in general. Additional augmentation on top of our
variational-style-transfer augmentation sometimes improve the performance but
our variational-style-transfer augmentation is an upgrade over the traditional
augmentation and deterministic style transfer by Huang et al. [8]. Besides, when
the number of real live-pig data is really limited, only style-transfer augmenta-
tion can produce a decent result. In any case, it can be seen that style-transfer-
based approach has a significant improvement over traditional methods and our
variantional approach is superior than Huang et al.’s method [8].

4 Conclusion

We demonstrated that our method is capable of transferring the style of one
ultrasound image to another style, e.g. from the style of phantom data to that
of pig data, from the style of normal ultrasound machines to the style of high
frequency ultrasound machines, etc.. Besides, it is also able to sample arbitrary
and continuous style from a latent space. Our method can generate ultrasound
images from both observed and unobserved domains, which helps address the
insufficiency of data and labels insufficiency in medical imaging.
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