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DGM4MICCAI 2021 Preface

It was our genuine honor and great pleasure to hold the inaugural Workshop on Deep
Generative Models for Medical Image Computing and Computer Assisted Intervention
(DGM4MICCAI 2021), a satellite event at the 24th International Conference onMedical
Image Computing and Computer Assisted Intervention (MICCAI 2021). In addition to
the workshop, we organized an associated challenge the AdaptOR: Deep Generative
Model Challenge for Domain Adaptation in Surgery.

DGM4MICCAI was a single-track, half-day workshop consisting of high-quality,
previously unpublished papers, presented orally (virtually), intended to act as a forum
for computer scientists, engineers, clinicians and industrial practitioners to present their
recent algorithmic developments, new results, and promising future directions in deep
generative models. Deep generative models such as generative adversarial networks
(GANs) and variational auto-encoders (VAEs), are currently receiving widespread atten-
tion from not only the computer vision and machine learning communities but also the
MIC and CAI community. These models combine the advanced deep neural networks
with classical density estimation (either explicit or implicit) for achieving state-of-the-
art results. The AdaptOR challenge formulated a domain adaptation problem “from
simulation to surgery”, which was a clinically relevant technical problem due to data
availability and data privacy concerns. As such, DGM4MICCAI provided an all-round
experience for deep discussion, idea exchange, practical understanding, and community
building around this popular research direction.

This year’s DGM4MICCAI was held on October 1, 2021, virtually in Strasbourg,
France. There was a very positive response to the call for papers for DGM4MICCAI
2021.We received 15workshop papers and 2 challenge papers. Each paper was reviewed
by at least two reviewers and we ended up with 10 accepted papers for the workshop
and 2 for the AdaptOR challenge. The accepted papers present fresh ideas on broad
topics ranging frommethodology (image-to-image translation, synthesis) to applications
(segmentation, classification).

The high quality of the scientific programofDGM4MICCAI 2021was due first to the
authors who submitted excellent contributions and second to the dedicated collaboration
of the international Program Committee and the other researchers who reviewed the
papers. We would like to thank all the authors for submitting their valuable contributions
and for sharing their recent research activities.

We are particularly indebted to the Program Committee members and to all the
external reviewers for their precious evaluations, which permitted us to set up this pro-
ceedings. We were also very pleased to benefit from the keynote lectures of the invited
speakers: AndreasMaier, FAUNürnberg, Germany, and Stefanie Speidel, NCTDresden,
Germany. We would like to express our sincere gratitude to these renowned experts for
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making the inaugural workshop a successful platform to rally deep generative models
research within the MICCAI context.

August 2021 Sandy Engelhardt
Ilkay Oksuz
Dajiang Zhu
Yixuan Yuan

Anirban Mukhopadhyay
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DALI 2021 Preface

This volume contains the proceedings of the 1st International Workshop on Data Aug-
mentation, Labeling, and Imperfections (DALI 2021) which was held on October 1,
2021, in conjunction with the 24th International Conference on Medical Image Com-
puting and Computer Assisted Intervention (MICCAI 2021). This event was originally
planned for Strasbourg, France, but was ultimately held virtually due to the COVID-19
pandemic. While this is the first workshop under the “DALI" name, it is the result of
a joining of forces between previous MICCAI workshops on Large Scale Annotation
of Biomedical data and Expert Label Synthesis (LABELS 2016–2020) and on Medical
Image Learning with Less Labels and Imperfect Data (MIL3ID 2019–2020).

Obtaining the huge amounts of labeled data that modern image analysis methods
require is especially challenging in the medical imaging domain. Medical imaging data
is heterogeneous and constantly evolving, and expert annotations can be prohibitively
expensive and highly variable. Hard clinical outcomes such as survival are exciting
targets for prediction but can be exceptionally difficult to collect. These challenges are
especially acute in rare conditions, some of which stand to benefit the most frommedical
image analysis research. In light of this, DALI aims to bring together researchers in the
MICCAI community who are interested in the rigorous study of medical data as it relates
to machine learning systems.

This year’s DALI workshop received 32 paper submissions from authors all over the
world. Each paper was reviewed by at least three peer-experts, and in the end, 15 high-
quality papers were selected for publication. The workshop day included presentations
for each of these 15 papers as well as longer-form invited talks from Margrit Betke of
Boston University, Ekin Dogus Cubuk of Google Brain, Jerry Prince of Johns Hopkins
University, Adrian Dalca of Massachusetts Institute of Technology, and Stephen Wong
of Weill Cornell Medical College.

No scientific programwould be successful without amonumental effort on the part of
its peer reviewers. We are deeply grateful to the more than 30 scientists who volunteered
a substantial amount of their time to provide valuable feedback to the authors and to
help our editorial team make final decisions. We would also like to thank Histosonics
Inc. for its generous financial support of the DALI workshop.

August 2021 Nicholas Heller
Sharon Xiaolei Huang

Hien V. Nguyen
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Frequency-Supervised MR-to-CT Image
Synthesis

Zenglin Shi1(B), Pascal Mettes1, Guoyan Zheng2, and Cees Snoek1

1 University of Amsterdam, Amsterdam, The Netherlands
z.shi@uva.nl

2 Shanghai Jiao Tong University, Shanghai, China

Abstract. This paper strives to generate a synthetic computed tomog-
raphy (CT) image from a magnetic resonance (MR) image. The synthetic
CT image is valuable for radiotherapy planning when only an MR image
is available. Recent approaches have made large strides in solving this
challenging synthesis problem with convolutional neural networks that
learn a mapping from MR inputs to CT outputs. In this paper, we find
that all existing approaches share a common limitation: reconstruction
breaks down in and around the high-frequency parts of CT images. To
address this common limitation, we introduce frequency-supervised deep
networks to explicitly enhance high-frequency MR-to-CT image recon-
struction. We propose a frequency decomposition layer that learns to
decompose predicted CT outputs into low- and high-frequency compo-
nents, and we introduce a refinement module to improve high-frequency
reconstruction through high-frequency adversarial learning. Experimen-
tal results on a new dataset with 45 pairs of 3D MR-CT brain images
show the effectiveness and potential of the proposed approach. Code is
available at https://github.com/shizenglin/Frequency-Supervised-MR-
to-CT-Image-Synthesis.

Keywords: Deep learning · CT synthesis · Frequency supervision

1 Introduction

Magnetic resonance (MR) image is widely used in clinical diagnosis and can-
cer monitoring, as it is obtained through a non-invasive imaging protocol, and
it delivers excellent soft-tissue contrast. However, MR image does not provide
electron density information that computed tomography (CT) image can pro-
vide, which is essential for applications like dose calculation in radiotherapy
treatment planning [2,5,10,18] and attenuation correction in positron emission
tomography reconstruction [16,22,24]. To overcome this limitation, a variety
of approaches have been proposed to recreate a CT image from the available
MR images [9,11,25,26,31]. Recently, deep learning-based synthesis methods
[9,11,19,25,26,31] have shown superior performance over alternatives such as
segmentation-based [1,5,17] and atlas-based methods [3,4,7,30].
c© Springer Nature Switzerland AG 2021
S. Engelhardt et al. (Eds.): DGM4MICCAI 2021/DALI 2021, LNCS 13003, pp. 3–13, 2021.
https://doi.org/10.1007/978-3-030-88210-5_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-88210-5_1&domain=pdf
https://github.com/shizenglin/Frequency-Supervised-MR-to-CT-Image-Synthesis
https://github.com/shizenglin/Frequency-Supervised-MR-to-CT-Image-Synthesis
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4 Z. Shi et al.

A typical approach for deep learning-based synthesis is through 2D convo-
lutional networks on 2D MR images [8,9,11,14,18,28,31]. A downside of this
setup is that 2D approaches are applied to 3D MR images slice-by-slice, which
can cause discontinuous prediction results across slices [26]. To take full use of
3D spatial information of volumetric data, 3D-based synthesis models have been
explored using 3D convolutional networks [25,29] and 3D GANs [26]. In this
work we adopt a similar setup, which uses paired MR and CT images during
training, but we tackle a common limitation amongst existing 3D-based syn-
thesis approaches: imperfect CT image synthesis in high-frequency parts of the
volume.

The main motivation behind our work is visualized in Fig. 1. For MR (a) to
CT (b) image synthesis using 3D networks [6], the reconstruction error (c) is
most dominant in regions that directly overlap with the high-frequency parts of
the CT image (d). This is a direct result of the used loss function, e.g., an �1
or �2 loss, which results in blurring since they are minimized by averaging all
possible outputs [13,23]. As a result, the low-frequency parts are reconstructed
well, at the cost of the high-frequency parts. Interestingly, Lin et al. [21] also
found CNN-based synthesis models tend to lose high-frequency image details
for CT-to-MR image synthesis. To address this limitation, they propose the
frequency-selective learning, where multiheads are used in the deep network for
learning the reconstruction of different frequency components. Differently, in this
work, we propose frequency-supervised networks that explicitly aim to enhance
high-frequency reconstruction in MR-to-CT image synthesis.

We make three contributions in this work: i) we propose a frequency decom-
position layer to decompose the predicted CT image into high-frequency and
low-frequency parts. This decomposition is supervised by decomposing ground
truth CT images using low-pass filters. In this way, we can focus on improving
the quality of the high-frequency part, assisted by ii) a high-frequency refinement
module. This module is implemented as a 3D symmetric factorization convolu-
tional block to maximize reconstruction performance with minimal parameters;
and iii) we outline a high-frequency adversarial learning to further improve the
quality of the high-frequency CT image. Experimental results on a dataset with
45 pairs of 3D MR-CT brain images shows the effectiveness and potential of the
proposed approach.

2 Method

We formulate the MR-to-CT image synthesis task as a 3D image-to-image trans-
lation problem. Let X = {xi}H×W×L

i=1 be an input MR image of size H × W × L,
and Y = {yi}H×W×L

i=1 be the target CT image for this MR image, where yi is
the target voxel for the voxel of xi. The transformation from input images to
target images can be achieved by learning a mapping function, i.e., f : X �→ Y.
In this paper, we learn the mapping function by way of voxel-wise nonlin-
ear regression, implemented through a 3D convolutional neural network. Let
Ψ(X ) : R

H×W×L �→ R
H×W×L denote such a mapping given an arbitrary 3D

convolutional neural network Ψ for input MR image X .
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Fig. 1. High-frequency supervision motivation for MR-to-CT image synthesis.
For MR (a) to CT (b) image synthesis using 3D networks [6], the reconstruction error
(c) is most dominant in regions that directly overlap with the high-frequency parts
of the CT image (d). For computing the high-frequency CT image, we first obtain a
low-frequency CT image through a Gaussian low-pass filter. Then, we subtract the low-
frequency CT image from the raw CT image to generate a high-frequency CT image.
In the error image (c), the brighter the voxel, the bigger the error.

2.1 Frequency-Supervised Synthesis Network

We propose a 3D network that specifically emphasizes the high-frequency parts
of CT images. Standard losses for 3D networks, such as the �1 loss, perform
well in the low-frequency parts of CT images, at the cost of loss in precision
for the high-frequency parts. Our approach is agnostic to the base 3D network
and introduces two additional components to address our desire for improved
synthesis in the high-frequency parts: a decomposition layer and a refinement
module, which is explicitly learned with a specific high-frequency supervision.
The overall network is visualized in Fig. 2.

Decomposition Layer. We account for a specific focus on high-frequency CT
image parts through a decomposition layer. This layer learns to split the output
features of a 3D base network into low-frequency and high-frequency components
in a differentiable manner. Let V = Ψ(X ) ∈ R

C×H×W×L denote the output of
the penultimate layer of the base network for input X . We add a 3 × 3 × 3 con-
volution layer with parameters θd ∈ R

C×2×3×3×3, followed by a softmax func-
tion to generate probability maps P = [pl, ph] = softmax(θdV ) ∈ R

2×H×W×L.
The probability scores for each voxel denote the likelihood of the voxel belong-
ing to the low- or high-frequency parts of the CT images. Using the probabili-
ties, we obtain low-frequency features Vl = pl ∗ V and high-frequency features
Vh = ph ∗ V , where pl and ph are first tiled to be the same size as V . For the
low-frequency part, we use a 3 × 3 × 3 convolution layer with the parameters
θl ∈ R

C×1×3××3 to generate the low-frequency CT image Ŷl = θlVl.

Refinement Module. To generate the high-frequency CT image Ŷh, we intro-
duce a refinement module to improve the quality of the high-frequency features
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Fig. 2. Frequency-supervised network architecture. Our approach is agnostic
to the base 3D MR-to-CT image synthesis network. The decomposition layer splits
the output features of the 3D base network into two parts that generate the low-
frequency and high-frequency components of the CT image. Then a refinement module
improves synthesis in the high-frequency parts and is explicitly learned with a specific
high-frequency supervision. Finally, the predicted high-frequency CT image is further
enhanced by means of adversarial learning. ⊕ denotes the element-wise sum.

Vh. Since the high-frequency features are close to zero in most regions, its learn-
ing usually requires a large receptive field for capturing enough context infor-
mation. The enhancement is performed on top of a base network, e.g., a 3D
U-Net [6], thus we should limit the amount of extra parameters and layers to
avoid making the network hard to optimize. To this end, we introduce a 3D sym-
metric factorization module. The module explicitly factorizes a 3D convolution
into three 1D convolutions along three dimensions. To process each dimension
equally, the module employs a symmetric structure with the combination of
(k × 1 × 1)+(1 × k × 1)+(1 × 1 × k), (1 × k × 1)+(1 × 1 × k)+(k × 1 × 1),
and (1 × 1 × k)+(k × 1 × 1)+(1 × k × 1) convolutions. Specifically, the input
of this module is convolved with three 1D convolutions for each dimension, the
output of each 1D convolution is convolved two more times over the remaining
dimensions. Then the outputs of last three 1D convolutions is summed as the
output of this module. Compared to a standard 3D k × k × k convolution layer,
parameters is reduced from k3 to 9k. In this paper, we use k = 13 for relatively
large receptive field. The module is denoted as φ with the parameters θe. Then
we use a 3 × 3 × 3 convolution layer with the parameters θh ∈ R

C×1×3×3×3 to
generate the high-frequency CT image Ŷh = θhφ(Vh).

Optimization. We use a specific loss for high-frequency CT image synthesis
to explicitly learn the high-frequency refinement module. Another loss is used
for overall CT image synthesis. Empirically, low-frequency CT image can be
synthesised correctly with only an overall loss. Thus, we minimize the difference
between predicted high-frequency CT image Ŷh and its ground-truth Yh, and
the difference between predicted CT image (Ŷh + Ŷl) and its ground-truth Y
using the L1-norm, which is defined as:

L = ‖ Ŷh − Yh ‖1 + ‖ (Ŷl + Ŷh) − Y ‖1 . (1)

During training, the ground truth high-frequency CT image Yh is obtained
fully automatically without any manual labeling. Specifically, we first obtain a
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low-frequency CT image through a Gaussian low-pass filter with filtering size
σ = 15. Then we subtract the low-frequency CT image from the CT image to
obtain the high-frequency CT image. During inference, we input a MR X , and
output (Ŷl + Ŷh) as the synthesised CT image.

2.2 High-Frequency Adversarial Learning

Lastly, we enhance the predicted high-frequency CT image Ŷh by means of adver-
sarial learning. Adversarial learning has shown its benefits in MR-to-CT image
synthesis by Nie et al. [26]. We have observed that the low-frequency CT image
can be reconstructed well. Thus, we propose to apply the discriminator only
on the high frequencies. This reduces the complexity of the problem, making it
easier for the discriminator to focus on the relevant image features. We use the
relativistic discriminator introduced by [15]. The discriminator makes adversarial
learning considerably more stable and generates higher quality images.

3 Experiments and Results

3.1 Experimental Setup

Dataset and Pre-processing. We evaluate our approach on a dataset with
45 pairs of 3D MR-CT brain images. When comparing the size of our data to
previous supervised works, our data set size is reasonable. Such as, Nie et al.
[26] report on 38 data pairs and Han et al. [11] use 33 data pairs. Our images
are acquired in the head region for the clinical indications of dementia, epilepsy
and grading of brain tumours. The MR images have a spacing of 0.8 × 0.8 × 0.8
mm3 while the CT images have a spacing of 0.9 × 0.9 × 2.5 mm3. Registration
is performed to align the two modalities and to sample the aligned images with
a spacing of 1.0 × 1.0 × 1.5 mm3. The gray values of the CT were uniformly
distributed in the range of [−1024, 2252.7] Hounsfield unit. We resample all the
training data to isotropic resolution and normalized each MR image as zero mean
and unit variance. We also normalize each CT image into the range of [0, 1] and
we expect that the output synthetic values are also in the same range. The final
synthetic CT will be obtained by multiplying the normalized output with the
range of Hounsfield unit in our training data.

Implementation Details. Implementation is done with Python using Ten-
sorFlow. Network parameters are initialized with He initialization and trained
using Adam with a mini-batch of 1 for 5,000 epochs. We set β1 to 0.9, β2 to 0.999
and the initial learning rate to 0.001. Data augmentation is used to enlarge the
training samples by rotating each image with a random angle in the range of
[−10◦, 10◦] around the z axis. Randomly cropped 64 × 64 × 64 sub-volumes
serve as input to train our network. During testing, we adopt sliding window
and overlap-tiling stitching strategies to generate predictions for the whole vol-
ume. We use MAE (Mean Absolute Error), PSNR (Peak Signal-to-Noise Ratio)
and SSIM (Structural Similarity Index Measure) as evaluation measurements.
These measurements are reported by 5-fold cross-validation.
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Table 1. Effect of frequency-supervised learning. For all base networks, our
high-frequency supervised learning results in improved synthesis across all metrics.

3D FC-Net [25] 3D Res-Net [20] 3D U-Net [6]

MAE↓ PSNR↑ SSIM↑ MAE↓ PSNR↑ SSIM↑ MAE↓ PSNR↑ SSIM↑
Base network 94.55 24.43 0.681 81.26 25.89 0.724 79.09 26.10 0.726

w/Boundary refinement [27] 90.15 25.03 0.697 82.54 25.76 0.723 82.83 25.63 0.723

w/This paper 84.31 25.72 0.736 73.61 26.72 0.741 72.71 26.86 0.747

Table 2. Effect of refinement module. L denotes layer number, C denotes chan-
nel number and K denotes kernel size. Our proposed refinement module introduces
relatively few parameters with large receptive fields, leading to improved performance.

Stacking Large kernel size This paper

3D Convolutions MAE↓ #params 3D Convolutions MAE↓ #params 1D Convolutions MAE↓ #params

(L = 3, C = 32, K = 3) 76.38 82.9k (L = 3, C = 32, K = 3) 76.38 82.9k (L = 9, C = 32, K = 3) 74.08 64.5k

(L = 6, C = 32, K = 3) 79.60 165.9k (L = 3, C = 32, K = 5) 75.78 384.0k (L = 9, C = 32, K = 13) 72.71 119.8k

(L = 9, C = 32, K = 3) 81.89 248.8k (L = 3, C = 32, K = 7) 79.09 1053.7k (L = 9, C = 32, K = 19) 72.69 175.1k

3.2 Results

Effect of Frequency-Supervised Learning. We first analyze the effect of the
proposed frequency-supervised learning. We compare it to two baselines. The
first performs synthesis using the base network only. Here, we compare three
widely used network architectures, i.e., 3D fully convolutional network (3D FC-
Net) [25], 3D residual network (3D Res-Net) [20] and 3D U-Net [6]. The second
baseline adds a boundary refinement module introduced by [27] on top of the
base network, which improves the structures of the predicted image by means
of residual learning. The losses of these two baseline models are optimized with
respect to the overall CT image estimation. As a result, low-frequency parts of
predicted CT image are reconstructed well, at the cost of high-frequency parts.
By contrast, we first decompose the predicted CT image into low-frequency and
high-frequency parts, and then improve the quality of high-frequency parts with
a high-frequency refinement module, which is learned by a specific high-frequency
loss. The results are shown in Table 1. With the base network only, 3D U-Net
obtains the best performance. With the addition of the boundary refinement
module, only the performance of the 3D FC-Net is improved. By contrast, our
method improves over all three base networks. Figure 3 highlights our ability to
better reduce synthesised errors, especially in high-frequency parts. We conclude
our frequency-supervised learning helps MR-to-CT image synthesis, regardless of
the 3D base network, and we will use 3D U-Net as basis for further experiments.

Effect of High-Frequency Refinement Module. In the second experiment,
we demonstrate the effect of the proposed refinement module. To capture more
context information by enlarging the receptive field, standard approaches include
stacking multiple 3 × 3 × 3 convolutional layers or use convolutions with larger
kernel, e.g., 7 × 7 × 7. The experimental results in Table 2 show that neither
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Fig. 3. Effect of frequency-supervised learning. The right images of (b) and (c)
are the error images, where the brighter the voxel, the bigger the error. Our method
better reduces the synthesised errors than 3D U-Net, as highlighted by the red squares.
(Color figure online)

Table 3. Effect of high-frequency adversarial learning. Our approach, with both
frequency-supervision and high-frequency adversarial learning, outperforms 3D U-Net
with standard adversarial learning.

MAE↓ PSNR↑ SSIM↑
3D U-Net 79.09 26.10 0.726

3D GAN 76.83 26.55 0.742

This paper: Frequency-supervised synthesis 72.71 26.86 0.747

This paper: Frequency-supervised synthesis
and adversarial learning

69.57 27.39 0.758

approach works well. Such as, the MAE of stacking three 3×3×3 convolutional
layers is 76.38, while the MAE of stacking six is 79.60. The MAE of stacking three
3× 3× 3 convolutional layers is 76.38, while the MAE of stacking three 7× 7× 7
is 79.09. By contrast, our proposed module with k = 13 introduces relatively few
parameters with large convolution kernels, leading to a better MAE of 72.71.

Effect of High-Frequency Adversarial Learning. In this experiment, we
show the effectiveness of the proposed high-frequency adversarial learning. For
the generator network, we use the 3D U-Net for standard adversarial learning,
and frequency-supervised synthesis network for our high-frequency adversarial
learning, as shown in Fig. 2, where 3D U-Net is the base network. For the dis-
criminator, we both use the relativistic average discriminator introduced in [15]
(See Sect. 2.2). The network architecture of the discriminator is the same as the
encoder of 3D U-Net. 3D U-Net combined with standard adversarial learning
leads to a 3D GAN based synthesis model, as the work of Nie et al. [26]. As
shown in Table 3, the 3D GAN achieves better synthesis performance than 3D
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Fig. 4. Effect of high-frequency adversarial learning. From the figure, one can
observe that the proposed method reduces the synthesized error and yields synthesized
CT images with better perceptive quality, as highlighted by the red squares. In the
error images, the brighter the voxel, the bigger the error. (Color figure online)

Fig. 5. Evaluations by segmentation. The regions with black color represent back-
ground and air, the regions with red color represent soft tissue, the regions with green
color represent bone tissue. Our method achieves better synthetic bone tissues, as
highlighted by the blue squares. (Color figure online)

U-Net only. Our high-frequency adversarial learning further improves the per-
formance of our frequency-supervised synthesis network. From Fig. 4, we observe
the proposed method yields synthesized CT images with better perceptive qual-
ity, in particular higher structural similarity and more anatomical details.

Evaluation by Segmentation. To further evaluate the quality of synthesised
CT images generated by various methods. Following Hangartner [12], we use a
simple thresholding to segment ground-truth and synthesised CT images into
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three classes: 1) background and air; 2) soft tissue; and 3) bone tissue. As shown
in Fig. 5, our proposed methods mainly improve the model’s capability on bone
tissue synthesis compared to other methods.

4 Conclusion

In this paper, we have shown that existing deep learning based MR-to-CT image
synthesis methods suffer from high-frequency information loss in the synthe-
sized CT image. To enhance the reconstruction of high-frequency CT images,
we present a method. Our method contributes a frequency decomposition layer,
a high-frequency refinement module and a high-frequency adversarial learning,
which are combined to explicitly improve the quality of the high-frequency CT
image. Our experimental results demonstrate the effectiveness of the proposed
methods.
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Abstract. The use of deep learning in medical image analysis is hin-
dered by insufficient annotated data and the inability of models to gen-
eralize between different imaging settings. We address these problems
using a novel variational style-transfer neural network that can sample
various styles from a computed latent space to generate images from a
broader domain than what was observed. We show that using our genera-
tive approach for ultrasound data augmentation and domain adaptation
during training improves the performance of the resulting deep learning
models, even when tested within the observed domain.

Keywords: Style transfer · Variational autoencoder · Generative
models · Data augmentation · Domain generalization

1 Introduction

Deep learning in medical imaging has immense potential but the challenge is
that images taken by different machines or in different settings follow differ-
ent distributions [4]. As a result, models are usually not generalized enough to
be used across datasets. Especially in ultrasound, images captured by different
imaging settings on different subjects can be so different that the model trained
on one dataset could completely fail on another dataset. Besides, since annota-
tion of medical images is laborious work which requires experts, the number of
annotated images is limited. It is extremely difficult to get a large dataset of
annotated medical images that are from different distributions. Therefore, we
propose a continuous neural style transfer algorithm, which is capable of gener-
ating ultrasound images with known content from unknown style latent space.

In the first attempt at style transfer with convolutional neural networks
(CNNs), the content and style features were extracted using pretrained VGGs
[21] and used to iteratively optimize the output image on-the-fly [6]. Feed-forward
frameworks were then proposed to get rid of the numerous iterations during infer-
ence [10,23]. The gram matrix, which describes the style information in images,
were further explained in [14]. To control the style of the output, ways to manip-
ulate the spatial location, color information and spatial scale were introduced in
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[7]. Adaptive Instance Normalization (AdaIN) was proposed as a way to perform
arbitrary style transfer in real-time [8]. Further improvements were made where
the image transformation network was directly generated from a style image via
meta network [20]. Some works are dedicated to using style transfer as a data
augmentation tool [17,25], which showed that style transfer on natural images
can improve the performance of classification and segmentation.

In medical image analysis, [22] directly applied style transfer to fundus images
for augmentation, while [3] analyzed the style of ultrasound images encoded by
VGG encoders. [16] improved the segmentation results of cardiovascular MR
images by style transfer. [5] built their network upon StyleGAN [11] to generate
high-resolution medical images. [24] showed that generated medical images based
on style transfer can improve the results of semantic segmentation on CT scans.
[15] proposed a method to do arbitrary style transfer on ultrasound images.

However, current works can only generate one result given a content and a
style image, and few can sample the style from a latent space. Works in medical
domain are mostly tested on images with similar styles, limiting the ability of
generalization. As the style should follow a certain distribution instead of some
specific values, we intent to generate multiple plausible output images given a
content and a style image. Furthermore, we also want to sample the style in a
continuous latent space so that we would be able to generate images from unseen
styles. We propose a variational style transfer approach on medical images, which
has the following contribution: (1) To the best of our knowledge, our method is
the first variational style transfer approach that to explicitly sample the style
from a latent space without giving the network a style reference image. (2) Our
approach can be used to augment the data in ultrasound images, which results
in better segmentation. (3) The method that we propose is able to transform
the ultrasound images taken in one style to an unobserved style.

2 Methods

Our style transfer network consists of three parts: style encoder Es, content
encoder Ec, and decoder D. The network structure is shown in Fig. 1, where Is

is the style image, Ic is the content image and Î is the output image. During
training, the decoder D learns to generate Î with the Gaussian latent variables
z conditioned on the content image Ic, while the style encoder Es learns the
distribution of z given style image Is. Before putting the three parts together,
we pre-train the style encoder and the content encoder separately to provide
better training stability. When generating images, our method can either use
certain given style, or sample the style from the latent space.

2.1 Style Encoder

The style encoder Es is the encoder part of a U-Net [19] based Variational
Autoencoder (VAE) [13]. The difference between our VAE and traditional ones
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Fig. 1. The network structure of the proposed method, which consists of two encoders
that process the style image and content image separately, and a decoder. The style
encoder generates distributions for some latent variables given the style image qφ(z|Is),
to create style that could change continuously.

is that our latent variables are at different scales to generate images with bet-
ter resolutions. The style encoder Es approximates the distribution of latent
variables at different scale. In other words, it learns distributions qφ(zi|I) that
approximates the intractable true distribution pθ(zi|I), where φ is the varia-
tional parameters, while θ is the generative model parameters. Therefore the
variational lower bound could be written as:

L(θ, φ; Is) = −KL(qφ(z|Is)||pθ(z)) + Eqφ(z|Is) log pθ(Is|z) (1)

where KL(·) is the Kullback–Leibler (KL) divergence between two distributions,
and we further assume z|θ ∼ N (0, 1).

The encoder is further incorporated into the style transfer network while
the decoder here is only used during initial training. The structure of the style
encoder is shown in Fig. 1, while the decoder part is a traditional U-Net decoder.

2.2 Content Encoder

The structure of the content encoder Ec is shown in Fig. 1, and like the style
encoder Es, it is the encoder of a U-Net autoencoder, where the decoder is only
used in the initial training with the exact opposite structure of the encoder.

2.3 Decoder

The decoder takes in the encoded style and content before generating a new
image, and is also designed based on a traditional U-Net. The structure is shown
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in Fig. 1. Denote the content features as fc = Ec(Ic) and the style feature as
fs = Es(Is). Also denote the content and style features at scale i as f

(i)
c and f

(i)
s

respectively. The features of the output images at scale i, f̂ (i), can be treated as
the input into the decoder of a normal U-Net. Inspired by [8], we utilize AdaIN
to perform style transfer in feature space at each scale to calculate f̂ (i) based on
f
(i)
c and f

(i)
s . The calculation can be expressed as:

f̂ (i) = AdaIN(f (i)
c , f (i)

s ) = σ(f (i)
s (

f
(i)
c − μ(f (i)

c )

σ(f (i)
c )

)) + μ(f (i)
s ) (2)

2.4 Loss Functions

The training objective of the network is to generate an output image Î containing
the contents in the content image Ic and having the style of the style image Is,
all while maximizing the variational lower bound. Therefore, the loss function is
made up of three parts: perceptual loss, style loss, and KL divergence loss.

Perceptual and style losses, are based on high level features extracted by
pre-trained VGGs [21] and were first utilized in [6]. Perceptual loss is the dif-
ference between two feature maps encoded by a CNN. Since spatial correlation
is considered in perceptual loss Lp, it is deemed as an expression of the content
similarity between two images, which can be expressed as follows:

Lp =
NV GG∑

i=1

wp
i ||ψi(Ic) − ψi(Î)|| (3)

where ψi(x) extracts the layer i of VGG from x, wp
i is the weight at layer i for

perceptual loss, and NV GG as the total number of layers in VGG.
Denote the number of channels, height, and width of the i th layer of the

feature map as Ci, Hi, and Wi respectively. We also denote the Ci × Ci gram
matrix of i th layer of the feature map of image x as Gi(x). The gram matrix
can be described as:

Gi(x)(u, v) =
∑Hi

h=1

∑Wi

w=1 ψi(x)(h,w, u)ψi(x)(h,w, v)
CiHiWi

(4)

Since the gram matrix only records the relationship between different chan-
nels rather than the spatial correlation, it is considered to be the representation
of the general textures and patterns of an image. Let ws

i be the weight of the loss
at layer i for style loss, the style loss Ls is the distance of two gram matrices:

Ls =
NV GG∑

i=1

ws
i ||Gi(Is) − Gi(Î)|| (5)

To maximize the variational lower bound, we need to minimize the KL diver-
gence between qφ(z|Is) and pθ(z). Under the assumption that all the latent vari-
ables are i.i.d., we calculate the KL divergence on each scale and sum over all the
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KL divergence to get the KL loss. Since we already assume that z|θ ∼ N (0, 1),
we can derive the KL divergence at each scale as:

KL(qφ(z|Is)||pθ(z)) =
1
2
(
μ2

σ2
+ σ2 − log σ2 − 1) (6)

where we assume z|Is;φ ∼ N(μ, σ).

2.5 Implementation Details

Encoders and decoders in the network follow the architecture below. There are 2
convolutional layers in each ConvBlock, followed by batch normalization [9] and
swish activation [18]. We use 5 ConvBlocks in the encoder side which are followed
by a max pooling layer, except for the last one. The number of convolutional
filters are 64, 128, 256, 512, 1024 respectively. The decoders follow the inverse
structure of the encoder. Note that in the style encoder, shown in Fig. 1, there
is an additional ConvBlock before generating the distribution qφ(zi|Is) after
the normal U-Net [19] encoder at each scale. There is also another ConvBlock
after sampling zi from qφ(zi|Is) to calculate f

(i)
s at each scale. The weights for

perceptual and style loss are set to 0, 0, 0, 0, 0.01 and 0.1, 0.002, 0.001, 0.01, 10
for block1 conv1, block2 conv1, block3 conv1, block4 conv1, block5 conv1 of VGG
respectively. The network is optimized via Adam optimizer [12] with a learning
rate of 5 × 10−5 and trained for 20 epochs on a single Nvidia Titan RTX GPU.

3 Experiments

The images in the experiments are a combination of numerous datasets: (1) lung
images on clinical patients by Sonosite ultrasound machine with HFL38xp lin-
ear transducer, (2) chicken breast images by UF-760AG Fukuda Denshi using
a linear transducer with 51 mm scanning width (FDL), (3) live-pig images by
FDL, (4) blue-gel phantom images by FDL, (5) leg phantom images by FDL,
(6) Breast Ultrasound Images Dataset [2], (7) Ultrasound Nerve Segmentation
dataset from Kaggle [1], (8) arteries and veins in human subjects by aVisualson-
ics Vevo 2100 UHFUS machine with ultrahigh frequency scanners. In total, there
are 18308, 2285, 2283 images for training, validation, and testing respectively in
the combined dataset. During training, we randomly select a pair of content and
style images from the combined dataset without any additional restrictions.

3.1 Qualitative Results

In the first experiment, we directly generate the outputs given the content and
style images. We transfer the style of images across (1)–(8). Shown in Fig. 2,
the visual results are good in each combination of content and style images.
Moreover, all the results still have the anatomy in the content images, including
but not limited to vessels and ligaments, while looking like the style images. On
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Fig. 2. Results of the algorithm given style and content images. We transfer content
images from the first column to the style in the corresponding image in the first row.
The content images from top to bottom and the style images from left to right are
images from dataset (1)–(8).

Fig. 3. Results of the method by Huang et al. [8]. The left is the content image (same
as the last one in Fig. 2), whose style is transferred to styles of (1)–(8) (right 8 images).

the contrary, shown in Fig. 3, method proposed by Huang et al. [8], is not able
to capture the fine details in the content and generate realistic textures.

Another qualitative experiment is that we directly sample the style from
the latent space without giving the model a style image. Figure 4 shows the
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Fig. 4. The distribution (flattened to fit the paper) of styles in the latent space.

Fig. 5. Results of directly sampling from the latent space and interpolation. The first
column are the content image. We sampled the second and the last column (starting
point and ending point of the arrows in Fig. 4), then interpolate in between in the
latent space in the direction of the corresponding arrows.

distribution of our training style images in the latent space. We then randomly
sampled two styles (at the end points of the arrow in Fig. 4) from the latent
space and interpolate between the two, and the results can be found in Fig. 5.
We observe that even without a style image, the model can still generate visually
reasonable ultrasound images given the content image without losing significant
details while sampling from latent space that is not covered by the training data.

3.2 Quantitative Results

To show that our approach is effective in augmentation, assume that we only
have limited live-pig data while having more leg-phantom data for veins and
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Table 1. Comparison between style-transfer-based augmentation and the traditional
augmentation

Veins Arteries
Dice IoU Pre. Rec. Dice IoU Pre. Rec.

vt-ph/pig-99/aug. 0.96 0.92 0.93 0.99 0.93 0.86 0.87 0.99
vt-ph/pig-99 0.97 0.95 0.96 0.99 0.95 0.91 0.92 0.99
dt-ph/pig-99/aug. 0.94 0.90 0.92 0.97 0.92 0.84 0.88 0.96
dt-ph/pig-99 0.89 0.81 0.82 0.98 0.83 0.71 0.71 0.99
pig-99/aug. 0.87 0.77 0.84 0.90 0.86 0.75 0.81 0.91
pig-99 0.83 0.71 0.73 0.96 0.81 0.68 0.70 0.95
ph/pig-99/aug. 0.07 0.04 0.04 0.59 0.02 0.01 0.01 0.97
ph/pig-99 0.05 0.03 0.36 0.03 0.14 0.07 0.13 0.14
vt-ph/pig-77/aug. 0.95 0.91 0.95 0.96 0.93 0.87 0.91 0.95
vt-ph/pig-77 0.93 0.88 0.91 0.96 0.90 0.81 0.95 0.90
dt-ph/pig-77/aug. 0.93 0.88 0.89 0.98 0.87 0.77 0.78 0.98
dt-ph/pig-77 0.94 0.90 0.92 0.97 0.91 0.84 0.85 0.99
pig-77/aug. 0.92 0.86 0.87 0.98 0.91 0.84 0.85 0.98
pig-77 0.88 0.78 0.90 0.86 0.68 0.51 0.71 0.65
ph/pig-77/aug. 0.07 0.04 0.04 0.55 0.03 0.02 0.02 0.06
ph/pig-77 0.38 0.23 0.68 0.25 0.21 0.12 0.22 0.19
vt-ph/pig-55/aug. 0.74 0.59 0.80 0.69 0.79 0.65 0.73 0.87
vt-ph/pig-55 0.80 0.66 0.87 0.73 0.59 0.41 0.65 0.54
dt-ph/pig-55/aug. 0.70 0.53 0.71 0.69 0.53 0.36 0.59 0.48
dt-ph/pig-55 0.76 0.61 0.88 0.67 0.66 0.60 0.56 0.81
pig-55/aug. 0.67 0.50 0.87 0.54 0.43 0.27 0.37 0.27
pig-55 0.15 0.01 0.09 0.43 0.01 0 0.01 0
ph/pig-55/aug. 0.04 0.02 0.02 0.07 0.02 0.02 0.01 0.81
ph/pig-55 0.22 0.12 0.45 0.14 0.1 0.05 0.05 0.53
vt-ph/pig-33/aug. 0.54 0.37 0.63 0.47 0.37 0.23 0.42 0.33
vt-ph/pig-33 0.43 0.28 0.38 0.49 0.56 0.39 0.43 0.82
dt-ph/pig-33/aug. 0.11 0.06 0.13 0.10 0.06 0.03 0.03 0.37
dt-ph/pig-33 0.53 0.37 0.68 0.44 0.34 0.20 0.36 0.32
pig-33/aug. 0.15 0.08 0.09 0.66 0.01 0 0 0.01
pig-33 0.06 0.03 0.06 0.06 0 0 0.01 0
ph/pig-33/aug. 0.07 0.04 0.04 0.58 0.02 0.01 0.01 0.37
ph/pig-33 0.01 0 0.02 0 0 0 0 0

arteries (405 images). Denote vt-ph, dt-ph and ph as variational-style-transferred
(ours), deterministic-style-transferred [8] and original phantom images respec-
tively, aug. as traditional augmentation methods including gamma transform,
Gaussian blurring, and image flipping. We further evaluate the effects of the
number of the real images have on the final results. We transfer the leg-phantom
images into the style of pig images. For live-pig data, we set 99 images as train-
ing set while having 11 images in each of the validation set and test set. In
the experiments, we train U-Nets with the same network implementation and
training settings as [19], on 99, 77, 55, 33 live-pig images denoted as pig-99,
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pig-77 etc. to show that our method works with very limited number of images.
Note that, we balance the phantom data and pig data as roughly 1:1 ratio in
each epoch. Shown in Table 1, the segmentation performs better by the networks
trained on variational-style-transferred phantom images and pig images than the
ones trained on other images in general. Additional augmentation on top of our
variational-style-transfer augmentation sometimes improve the performance but
our variational-style-transfer augmentation is an upgrade over the traditional
augmentation and deterministic style transfer by Huang et al. [8]. Besides, when
the number of real live-pig data is really limited, only style-transfer augmenta-
tion can produce a decent result. In any case, it can be seen that style-transfer-
based approach has a significant improvement over traditional methods and our
variantional approach is superior than Huang et al.’s method [8].

4 Conclusion

We demonstrated that our method is capable of transferring the style of one
ultrasound image to another style, e.g. from the style of phantom data to that
of pig data, from the style of normal ultrasound machines to the style of high
frequency ultrasound machines, etc.. Besides, it is also able to sample arbitrary
and continuous style from a latent space. Our method can generate ultrasound
images from both observed and unobserved domains, which helps address the
insufficiency of data and labels insufficiency in medical imaging.
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Abstract. Image synthesis via Generative Adversarial Networks
(GANs) of three-dimensional (3D) medical images has great potential
that can be extended to many medical applications, such as, image
enhancement and disease progression modeling. Current GAN technolo-
gies for 3D medical image synthesis must be significantly improved to
be suitable for real-world medical problems. In this paper, we extend
the state-of-the-art StyleGAN2 model, which natively works with two-
dimensional images, to enable 3D image synthesis. In addition to the
image synthesis, we investigate the behavior and interpretability of the
3D-StyleGAN via style vectors inherited form the original StyleGAN2
that are highly suitable for medical applications: (i) the latent space pro-
jection and reconstruction of unseen real images, and (ii) style mixing.
The model can be applied to any 3D volumetric images. We demonstrate
the 3D-StyleGAN’s performance and feasibility with ∼12,000 three-
dimensional full brain MR T1 images. Furthermore, we explore different
configurations of hyperparameters to investigate potential improvement
of the image synthesis with larger networks. The codes and pre-trained
networks are available online: https://github.com/sh4174/3DStyleGAN.

1 Introduction

Generative modeling via Generative Adversarial Networks (GAN) has achieved
remarkable improvements with respect to the quality of generated images [3,4,
11,21,32]. StyleGAN2, a style-based generative adversarial network, has been
recently proposed for synthesizing highly realistic and diverse natural images. It
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https://doi.org/10.1007/978-3-030-88210-5_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-88210-5_3&domain=pdf
https://github.com/sh4174/3DStyleGAN
https://doi.org/10.1007/978-3-030-88210-5_3


3D-StyleGAN for Generative Modeling of 3D Medical Images 25

progressively accounts for multi-resolution information of images during training
and controls image synthesis using style vectors that are used at each block of
a style-based generator network [18–21]. StyleGAN2 achieves the outstanding
quality of generated images, and enhanced control and interpretability for image
synthesis compared to previous works [3,4,20,21]. Despite of its great potential
for medical applications due to its enhanced performance and interpretability, it
is yet to be extended to the generative modeling of 3D medical images.

One of the challenges of using generative models such as GANs for medical
applications is that medical images are often three-dimensional (3D) and have
a significantly higher number of voxels compared to two-dimensional natural
images. Due to the high-memory requirements of GANs, it is often not feasible
to directly apply large networks for 3D image synthesis [4,22,30]. To address this
challenge, some models for 3D image synthesis generate the image in successive
2D slices, which are then combined to render a 3D image while accounting for
relationships among slices [30]. However, these methods often result in disconti-
nuity between slices, and the interpretation and manipulation of the slice-specific
latent vectors is complicated [30].

In this paper, we present 3D-StyleGAN to enable synthesis of high-quality 3D
medical images by extending the StyleGAN2. We made several changes to the
original StyleGAN2 architecture: (1) we replaced 2D operations, layers, and noise
inputs with their 3D counterparts, and (2) significantly decreased the depths of
filter maps and latent vector sizes. We trained different configurations of 3D-
StyleGAN on a collection of ∼12,000 T1 MRI brain scans [6]. We additionally
demonstrate (i) the possibility of synthesizing realistic 3D brain MRIs at 2mm
resolution, corresponding to 80 × 96 × 12 voxels, (ii) projection of unseen test
images to the latent space that results in reconstructions of high fidelity to
the input images by a projection function suitable for medical images and (iii)
StyleGAN2’s style-mixing used to “transfer” anatomical variation across images.
We discuss the performance and feasibility of the 3D-StyleGAN with limited
filter depths and latent vector sizes for 1mm isotropic resolution full brain T1
MR images. The source code and pre-trained networks are publicly available in
https://github.com/sh4174/3DStyleGAN.

2 Methods

Figure 1 illustrates the architecture of the 3D-StyleGAN. A style-based generator
was first suggested in [20] and updated in [21]. We will briefly introduce the style-
based generator suggested in [21] and then summarize the changes we made for
enabling 3D image synthesis.

StyleGAN2: A latent vector z ∈ Z is first normalized and then mapped by a
mapping network m to w = m(z), w ∈ W. A synthesis network g starts with
a constant layer with a base size B ∈ R

d, where d is the input dimension (two
for natural images). The transformed A(w) is modulated (Mod) with trainable
convolution weights w and then demodulated (Demod), which act as instance
normalization to reduce artifacts caused by arbitrary amplification of certain

https://github.com/sh4174/3DStyleGAN
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Fig. 1. The style-based generator architecture of 3D-StyleGAN. The mapping network
m, made of 8 fully-convolutional layers, maps a normalized latent vector z to an inter-
mediate latent vector w. This is then transformed by a learned feature-wise affine
transform A at each layer, then further used by modulation (Mod) and demodulation
(Demod) operations that are applied on the weights of each convolution layer [8,17].
The synthesis network starts with a constant 5 × 6 × 7 block and applies successive
convolutions with modulated weights, up-sampling, and activations with Leaky ReLU.
3D noise maps, downscaled to the corresponding layer resolutions, are added before
each nonlinear activation by LReLU. At the final layer, the output is convolved by a 1
× 1 × 1 convolution to generate the final image. B is the size of base layer (5 × 6 ×
7). The discriminator network (3D-ResNet) was omitted due to space constraint.

feature maps. Noise inputs scaled by a trainable factor B and a bias b are added
to the convolution output at each style block. After the noise addition, the Leaky
Rectifier Linear Unit (LReLU) is applied as nonlinear activation [23]. At the final
layer in the highest resolution block, the output is fed to the 1 × 1 convolution
filter to generate an image.

Loss Functions and Optimization: For the generator loss function, Style-
GAN2 uses the logistic loss function with the path length regularization [21]:

Ew,y∼N (0,I)(||∇w(g(w) · y)||2 − a)2, (1)

where w is a mapped latent vector, g is a generator, y is a random image
following a normal intensity distribution with the identity covariance matrix,
and a is the dynamic constant learned as the running exponential average of
the first term over iterations [21]. It regularizes the gradient magnitude of a
generated image g(w) projected on y to be similar to the running exponential
average to smooth the (mapped) latent space W. The generator regularization
was applied once every 16 minibatches following the lazy regularization strategy.
For the discriminator loss function, StyleGAN2 uses the standard logistic loss
function with R1 or R2 regularizations.
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2.1 3D-StyleGAN

We modified StyleGAN2 for 3D image synthesis by replacing the 2D convolu-
tions, upsampling and downsampling with 3D operations. We started from Style-
GAN2 configuration F (see [21]), but switched back to the original StyleGAN
generator with (De)Mod operators, as it achieved the best performance in the
preliminary experiments for 3D images [13,14,21]. We used the 3D residual net-
work for the discriminator and the standard logistic loss without regularization
for the discriminator loss function that showed the best empirical results.

Image Projection: An image (either generated or real) can be projected to the
latent space by finding w and stochastic noise n at each layer that minimize a
distance between an input image I and a generated image g(w,n). In the original
StyleGAN2, LPIPS distance was used [31]. However, the LPIPS distance uses the
VGG16 network trained with 2D natural images, which is not straightforwardly
applicable to 3D images [29]. Instead, we used two mean squared error (MSE)
losses, one computed at full resolution, and the other at an (x8) downsampled
resolution. The second loss was added to enhance the optimization stability.

Configurations: We tested different resolutions, filter depths, latent vector
sizes, minibatch sizes summarized in Table 1. Because of the high dimensionality
of 3D images, the filter map depths of the 3D-StyleGAN needed to be signif-
icantly lower than in the 2D version. We tested five different feature depths:
16, 32, 64, and 96, with 2mm isotropic resolution brain MR images to investi-
gate how different filter depths affect the quality of generated images. For 1mm
isotropic images, we used the filter depth of 16 for the generator and discrim-
inator, 32 filter depth for the mapping network, and 32 latent vector size that
our computational resource allowed.

Slice-specific Fréchet Inception Distance Metric: Conventionally, the
Fréchet Inception Distance (FID) score is measured by comparing the distri-
butions of randomly sampled real images from a training set and generated
images [15]. Because FID relies on the Inception V3 network that was pre-trained
with 2D natural images, it is not directly applicable to 3D images [29]. Instead,
we measured the Fréchet Inception Distance (FID) scores on the middle slices
on axial, coronal, and sagittal planes of the generated 3D images [15].

Additional Evaluation Metrics: In addition to the slice-specific FID metric,
we evaluated the quality of generated images with the batch-wise squared Maxi-
mum Mean Discrepancy (bMMD2) as suggested in [22] and [30]. Briefly, MMD2

measures the distance between two distributions with finite sample estimates
with kernel functions in the reproducing kernel Hilbert space [12]. The bMMD2

measures the discrepancy between images in a batch with a dot product as a
kernel [22,30]. To measure the diversity of generated images, we employed the
pair-wise Multi-Scale Structural Similarity (MS-SSIM) [22,30]. It captures the
perceptual diversity of generated images as the mean of the MS-SSIM scores of
pairs of generated image [28].
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Table 1. The list of configurations of 3D-StyleGAN with different filter map depths,
latent vector sizes and minibatch sizes.

Config. Filter depth Latent vector

size

Minibatch size {B,

2B, 22B, 23B, 24B}
# trainable

params

2mm-fd96 96 96 {32, 32, 16, 16} 6.6M

2mm-fd64 64 64 {32, 32, 16, 16} 3.0M

2mm-fd32 32 128 {32, 32, 16, 16} 0.9M

2mm-fd16 16 64 {32, 32, 16, 16} 0.2M

1mm-fd16 16 64 {64, 64, 32, 16, 16} 0.2M

Fig. 2. Uncurated randomly generated 3D images by the 3D-StyleGAN. The images
are generated by the network trained with configuration 2mm-fd96. The middle slices
of sagittal, axial, and coronal axes of five 3D images were presented.

3 Results

For all experiments, we used 11,820 brain MR T1 images from multiple pub-
licly available datasets: ADNI, OASIS, ABIDE, ADHD2000, MCIC, PPMI,
HABS, and Harvard GSP [5–7,10,16,24–27]. All images were skull-stripped,
affine-aligned, resampled to 1mm isotropic resolution, and trimmed to 160 ×
192 × 224 size using FreeSurfer [6,9]. For the experiments with 2mm isotropic
resolution, the images were resampled to an image size of 80 × 96 × 112. Among
those images, 7,392 images were used for training. The remaining 4,329 images
were used for evaluation. The base layer was set to B = 5 × 6 × 7 to account
for the input image size. For each experiment, we used four NVIDIA Titan Xp
GPUs for the training with 2mm-resolution images, and eight for the training
with 1mm-resolution images. The methods were implemented in Tensorflow 1.15
and Python 3.6 [1].
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(a) 2mm-fd96 (b) 2mm-fd64

Fig. 3. The qualitative comparison between the networks trained with the filter map
depths of (a) 96 (2mm-fd96) and (b) 64 (2mm-fd64). While the generated images of
the 2mm-fd64 are sharper, e.g., cerebellum and sulci, the overall brain structures are
not as coherent as those in the images generated with 2mm-fd96.

Real

Proj.

Fig. 4. Results of projecting real, unseen 3D images to the latent space. Top row
shows the real image, and bottom row shows the reconstruction from the projected
embedding. Configuration used was 2mm-fd96. The middle sagittal, axial and coronal
slices of the 3D images are displayed. The differences between the real and reconstructed
images are indistinguishable other than lattice-like artifacts caused by the generator.

3D Image Synthesis at 2 mm Isotropic Resolution: Figure 2 shows
randomly generated 2mm-resolution 3D images using 3D-StyleGAN that was
trained with the configuration fd-96 with the filter map depth of 96 (see Table 1
for all configurations). Each model was trained for the average of ∼2 days. We
observe that anatomical structures are generated correctly and are coherently
located.

In Table 2, we show the bMMD2, MS-SSIM, and FIDs for the middle sagittal
(FID-Sag), axial (FID-Ax) and coronal (FID-Cor) slices calculated using 4,000
generated images with respect to the unseen test images. One interesting obser-
vation was that the slice-specific FIDs of middle sagittal and axial slices of the
network trained with the filter map depth of 64 were lower than the one with
the filter map depth of 96. Figure 3 provides a qualitative comparison between
images generated by networks with a filter map depth of 64 vs. 96. Networks
with a filter depth of 64 produce sharper boundaries in the cerebellum and sulci,
but the overall brain structures are not as coherent as in the images with filter
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Table 2. The quantitative evaluations of generated images with different configura-
tions. The Maximum Mean Discrepancy (bMMD2) and Multi-Scale Structural Simi-
larity Index (MS-SSIM) were calculated on each set of 3D generated and training real
images. The slice-specific Fréchet Inception Distance (FID) of the middle slices (Sag:
Sagittal, Ax: Axial, and Cor: Coronal) of generated and training real images with
respect to test unseen real images were summarized.

Configurations bMMD2 MS-SSIM FID-Sag FID-Ax FID-Cor

2mm-fd16 7026 (555.79) 0.96 (0.03) 145.6 153.6 164.1

2mm-fd32 4470 (532.65) 0.94 (0.07) 129.3 144.3 128.8

2mm-fd64 4497 (898.53) 0.93 (0.12) 106.9 71.3 90.2

2mm-fd96 4475 (539.38) 0.96 (0.04) 138.3 83.2 88.5

2mm-Real 449 (121.43) 0.85 (0.002) 3.0 2.1 2.9

depth of 96. This is possibly caused by the characteristics of the FID score that
focuses on the texture of the generated images, rather than taking into account
the overall structures of the brain [31]. The network with filter map depth of
32 showed the best bMMD2 result while the distributions of the metrics largely
overlapped between fd-32, fd-64, and fd-96. The MS-SSIM showed that the net-
work with filter map depth of 64 showed the most diversity in generated images.
This may indicate that the better FID metrics of the fd-64 configuration was
due to the diversity of generated images and the fd-96 configuration possibly
overfit and did not represent the large variability of real images.

Image Projection: Figure 4 shows the results of projecting unseen images onto
the space of latent vector w and noise map n. Top row shows the real, unseen
image, while the bottom row shows the reconstruction from the projected embed-
ding. Reconstructed images are almost identical to the input images, a result
that has also been observed by [2] on other datasets, likely due to the over-
parameterization of the latent space of StyleGAN2.

Style Mixing: Figure 5 shows the result of using 3D-StyleGAN’s style mixing
capability. The images at the top row and the first column are randomly gener-
ated from the trained 3D-StyleGAN with the configuration 2mm-fd96. The style
vectors of the images at the top row were used as inputs into the high resolution
style blocks (i.e., the 5th to 9th). The style vector of the image in the first column
is provided to the low resolution style blocks (i.e., the 1st to 4th). We observed
that high-level anatomical variations, such as the size of a ventricle and a brain
outline, were controlled by the style vectors of the image at the first column
mixed to the lower-resolution style blocks. These results indicate that the style
vectors at different layers could potentially control different levels of anatomical
variability although our results are preliminary and need further investigation.

Failure Cases: We trained the 3D-StyleGAN for image synthesis of 1mm
isotropic resolution images. The depths of filter map and latent vectors sizes
were set to 16 and 32, respectively, because of the limited GPU memory (12 GB).
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(a) Sagittal View (b) Coronal View

Fig. 5. Style-mixing example. The style vectors of two 3D images at the top row at
the high resolution (5th–9th) style blocks were mixed with the style vectors at at the
low resolution (1st–4th) style blocks of an image at the first column were mixed and
generated new images. Higher-level anatomical variations, such as the size of a ventricle
and corpus callosum (red boxes), were controlled by the lower-resolution style blocks
and the detailed variations, such as sulci and cerebellum structures (yellow boxes) by
the higher-resolution style blocks. Three input images were randomly generated full
3D images and displayed on the (a) sagittal and (b) coronal views of the respective
middle slices. (Color figure online)

(a) 1mm resolution (b) 2mm resolution

Fig. 6. Failure cases of 1mm and 2mm isotropic resolution with the filter map depth
of 16. The low filter map depth resulted in the low quality of images.

The model was trained for ∼5 days. Figure 6 (a) shows the examples of gener-
ated 1mm-resolution images on the sagittal view after 320 iterations. The results
showed the substantially lower quality of generated images compared to those
from the networks trained with deeper filter depths for 2 mm-resolution images.
Figure 6 (b) shows the image generation result for 2 mm-resolution images with
the same filter depth, 16. Compared to the generated images shown in Fig. 2, the
quality of generated images is also substantially lower. This experiment showed
that the filter map depth of generator and discriminator networks need to be
above certain thresholds to assure the high quality of generated images.

4 Discussion

We presented 3D-StyleGAN, an extension of StyleGAN2 for the generative mod-
eling of 3D medical images. In addition to the high quality of the generated
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images, the latent space projection of unseen real images and the control of
anatomical variability through style vectors can be utilized to tackle clinically
important problems. One limitation of this work is in the use of limited evalu-
ation metrics. We used FIDs that evaluated 2D slices due to their reliance on
the 2D VGG network. We plan to address 3D quantitative evaluation metrics
on perceptual similarity with a large 3D network in future work. Another limi-
tation is the limited size of the training data and the trained networks. We plan
to address this in future work through extensive augmentation of the training
images and investigating memory-efficient network structures. We believe our
work will enable important downstream tasks of 3D generative modeling, such
as super-resolution, motion correction, conditional atlas estimation, and image
progression modeling with respect to clinical attributes.
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Abstract. Medical image translation has the potential to reduce the
imaging workload, by removing the need to capture some sequences,
and to reduce the annotation burden for developing machine learning
methods. GANs have been used successfully to translate images from
one domain to another, such as MR to CT. At present, paired data
(registered MR and CT images) or extra supervision (e.g. segmentation
masks) is needed to learn good translation models. Registering multiple
modalities or annotating structures within each of them is a tedious and
laborious task. Thus, there is a need to develop improved translation
methods for unpaired data. Here, we introduce modified pix2pix models
for tasks CT→MR and MR→CT, trained with unpaired CT and MR
data, and MRCAT pairs generated from the MR scans. The proposed
modifications utilize the paired MR and MRCAT images to ensure good
alignment between input and translated images, and unpaired CT images
ensure the MR→CT model produces realistic-looking CT and CT→MR
model works well with real CT as input. The proposed pix2pix variants
outperform baseline pix2pix, pix2pixHD and CycleGAN in terms of FID
and KID, and generate more realistic looking CT and MR translations.

Keywords: Medical image translation · Generative adversarial
network

1 Introduction

Each medical imaging modality captures specific characteristics of the patient. In
many medical applications, complimentary information from multiple modalities
can be combined for better diagnosis or treatment. However, due to limited time,
cost and patient safety, not all desired modalities are captured for every patient.
Medical image translation can play a vital role in many of these scenarios as
it can be used to generate non-critical (i.e. the ones which are not needed for
fine pattern matching) missing modalities. One such clinical application is in
MR-based radiotherapy, where MR images are used for delineating targets (e.g.
tumors) and organs-at-risk (OARs). However, the clinicians still need CT scans
for calculating the dose delivered to OARs and targets. Since this CT scan is
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S. Engelhardt et al. (Eds.): DGM4MICCAI 2021/DALI 2021, LNCS 13003, pp. 35–44, 2021.
https://doi.org/10.1007/978-3-030-88210-5_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-88210-5_4&domain=pdf
http://orcid.org/0000-0002-2570-5870
http://orcid.org/0000-0001-5088-4041
https://doi.org/10.1007/978-3-030-88210-5_4


36 P. Paavilainen et al.

(a) MR (DIP) (b) MRCAT (c) CT

Fig. 1. MR and MRCAT are voxel-aligned, while CT is from a different patient.

used to compute dose delivered to various structures, the alignment of the patient
anatomy is more important than the precise voxel intensities. There exist few
commercial solutions which can be used to generate synthetic CT scans, such as
Philips’ MRCAT. However, these translated images do not look very realistic due
to quantization artifacts, failure to reduce blurring caused by patient breathing
and lack of air cavities, etc. (see Fig. 1b).

Medical image translation can also play a critical role in development of
machine learning based image analysis methods. In many applications, same
tasks are performed in different modalities, e.g. in radiotherapy, OAR contouring
is done in either CT or MR. Medical image translation can significantly speed-
up the development of these automated methods by reducing the annotation
requirements for new modalities/sequences. A large dataset can be annotated in
one modality and then image translation can be used to generate scans of new
modalities and annotations copied to synthetic scans.

During recent years, there has been increased interest in using Generative
Adversarial Networks (GANs) [8] in medical image generation. The research in
the field includes low-dose CT denoising [28], MR to CT translation [7,19,20,27],
CT to MR translation [13], applications in deformable image registration [24] and
segmentation [12], data augmentation [23], PET to CT translation, MR motion
correction [1], and PET denoising [2] (for review, see [29]).

pix2pix [11] and CycleGAN [32] are two popular general-purpose image-to-
image translation methods. pix2pix requires paired and registered data, while
CycleGAN can be trained with unpaired images. pix2pix and its variants can pro-
duce high quality realistic-looking translations, however, capturing voxel-aligned
scans or registering scans is a time-consuming task. In the medical imaging field,
there is often lack of paired data, making CycleGAN more suitable method.
However, without any additional constraints, it is difficult to optimize and the
translated images may not always have good alignment with input scans. Many
variants have been proposed which impose additional constraints, e.g. mask
alignment between both input and output scans [31].

Besides CycleGAN, another relatively popular unpaired image-to-image
translation method is UNsupervised Image-to-image Translation (UNIT) [18],
which is a Variational Autoencoder (VAE)-GAN-based method [8,15,16]. UNIT
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MR GA sCT

MRCAT ||MRCAT − sCT ||1

DA fake DACT real

Fig. 2. pix2pixM→C has a generator GA, which generates sCT from MR, and a dis-
criminator DA, which distinguishes between real CT and sCT. L1 loss between MRCAT
(pair of MR) and sCT is used as an auxiliary supervision.

has been utilized for T1 to T2 MR and T2 to T1 MR translation [26], PET to
CT translation, and MR motion correction [1]. Other potential generative models
for unpaired image translation include Multimodal UNIT (MUNIT) [10], Dis-
entangled Representation for Image-to-Image Translation++ (DRIT++) [17],
Multi-Season GAN (MSGAN) [30], and StarGAN v2 [4].

We propose modifications to original pix2pix model for tasks CT→MR and
MR→CT for situations where there is only unpaired CT and MR data. MR
scans can be used to generate voxel-aligned (paired) Magnetic Resonance for
Calculating ATtenuation (MRCAT) scans, which look somewhat like CT but
are not very realistic and thus not suitable for many tasks (see Fig. 1). Our
proposed models utilize the alignment information between MR and MRCAT as
an auxiliary supervision and produce more realistic CT and MR translations.

2 Methods

We propose two pix2pix variants, pix2pixM→C and pix2pixC→M , for tasks
MR→CT and CT→MR, respectively. These models are trained with unpaired
CT and MR, and paired MR and MRCAT, which are used as auxiliary supervi-
sion to preserve anatomic alignment between input and translated images. We
use U-Net-based [22] generators and PatchGAN discriminators as in [11].

pix2pixM →C (MR→CT): pix2pixM→C consists of one generator GA and an
unconditional discriminator DA (Fig. 2). The generator is trained to generate
synthetic CT (sCT=GA(MR)) from real MR input, while the discriminator
DA is trained to classify between the sCT and real CT. pix2pixM→C has an
unconditional GAN objective, LGAN (GA,DA), as the conditional GAN (cGAN)
objective cannot be used due to lack of paired CT and MR. Following [8,11],
DA is trained to maximize this objective, while GA is trained to maximize
log(DA(GA(MR))).

LGAN (GA,DA) = ECT [log DA(CT )] + EMR[log(1 − DA(GA(MR)))] (1)

In addition, GA is trained to minimize an L1 loss between MRCAT and the
generated sCT, LL1(GA). Note that we do not have ground truth CTs for the
MRs, which is why we use MRCATs in the L1 loss. The L1 loss plays similar
role as cGAN objective in original pix2pix [11] as it encourages the sCTs to
be aligned with the input MRs. Our target distribution is the distribution of
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CT

GB

GB(CT ) DB,u fake DB,uMR real

MRCAT GB(MRCAT )

MRCAT

MR ||MR−GB(MRCAT )||1

DB,c fake DB,c

MR

MRCAT

real

Fig. 3. pix2pixC→M has a generator GB , for producing sMR, and two discriminators,
DB,u and DB,c. DB,c, is conditioned on the input MRCAT, and learns to classify
between GB(MRCAT ) and real MR. DB,u distinguishes between GB(CT ) and real
MR. →: path for CT input. →: path for MRCAT input.

real CTs instead of MRCATs, which is why the MRCATs are only used as an
auxiliary supervision.

LL1(GA) = EMRCAT,MR[||MRCAT − GA(MR)||1] (2)

The full training objective of pix2pixM→C is

L(GA,DA) = LGAN (GA,DA) + λLL1(GA) (3)

pix2pixC→M (CT→MR): pix2pixC→M consists of one generator GB and two
discriminators DB,u and DB,c. The generator takes either real CT, with proba-
bility of 0.5, or MRCAT as input during training, and it is trained to generate
synthetic MR (sMR) images from both input modalities. The unconditional dis-
criminator DB,u is trained to classify between the sMR generated from real CT,
GB(CT ), and real MR. The conditional discriminator DB,c is conditioned on
MRCAT, and is trained to classify between the synthetic MR generated from
MRCAT, GB(MRCAT ), and real MR.

pix2pixC→M has two GAN objectives: LGAN (GB ,DB,u) and
LcGAN (GB ,DB,c). Following [8,11], DB,u and DB,c are trained to maximize
LGAN (GB ,DB,u) and LcGAN (GB ,DB,c), respectively, while GB is trained to
maximize log(DB,u(GB(CT ))) and log(DB,c(MRCAT,GB(MRCAT ))).

LGAN (GB ,DB,u) =EMR[log DB,u(MR)] + ECT [log(1 − DB,u(GB(CT )))] (4)

LcGAN (GB ,DB,c) =EMRCAT,MR[log DB,c(MRCAT,MR)]
+ EMRCAT [log(1 − DB,c(MRCAT,GB(MRCAT )))] (5)

In addition, G is trained to minimize the L1 loss between MR and the sMR
generated from MRCAT, LL1(GB). Since we do not have paired CT and MR,
we cannot compute L1 loss between GB(CT ) and MR. While our primary goal
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is CT→MR translation, the introduction of MRCAT inputs allows us to use
the alignment information between the MRCAT and MR pairs to encourage the
generator to produce sMR that is aligned with the input.

LL1(GB) = EMR,MRCAT [||MR − GB(MRCAT )||1] (6)

The full training objective of pix2pixC→M is as follows

L(GB ,DB,u,DB,c) = LGAN (GB ,DB,u) + LcGAN (GB ,DB,c) + λLL1(GB) (7)

Training Details: We use random horizontal flip, random zoom (scale: 0.6 −
1.4) and random crop as data augmentations. In ablation experiments, we use
down-sampled (by a factor of 4) images. We utilize the code [6,21] provided by
the authors [11,25,32]. We use instance normalization, and a batch size of 8 for
pix2pixHD, and batch size of 16 for the other models. All models are trained for
50 epochs, and 13K iterations per epoch. We use Adam optimizer with constant
learning rate (LR) (0.0002) for the first 30 epochs and with linearly decaying
LR from 0.0002 to zero over the last 20 epochs.

For pix2pixM→C and pix2pixC→M , we use the vanilla GAN loss (the cross-
entropy objective) like in original pix2pix [11] (Table 1). For pix2pixC→M we
use λ = 100, and discriminator receptive field (RF) size 70 × 70 in ablation
(low resolution) experiments and 286×286 in our final model. For pix2pixM→C ,
we use λ = 50, and discriminator RF size 70 × 70. Since CycleGAN with the
default 70 × 70 discriminators fails, we use a stronger baseline CycleGAN with
discriminator RF size 142 × 142.

3 Experiments

Dataset: The dataset contains 51 pairs of Dixon-In-Phase (DIP) MR and
MRCAT scans, and 220 unpaired CT scans of prostate cancer patients, treated
with radiotherapy, from Turku University Hospital. Scans were randomly split
into training and evaluation set. The number of training/evaluation scans is
41/10 for MR and MRCAT, and 179/41 for CT.

Evaluation Metrics: We use Kernel Inception Distance (KID) [3] and Fréchet
Inception Distance (FID) [9] between real and translated images as the evalua-
tion metrics. They measure the distance between the distribution of the gener-
ated images and the target distribution of real images, and lower values indicate
better performance. In addition, we use DICE coefficient between automatically
segmented [14] structures (e.g. Body, Femurs, Prostate, etc.) of input and trans-
lated images to evaluate the anatomic alignment and quality of translations.
For task MR→CT, we also compute the mean absolute HU intensity difference
(HU-Dif) between mean HU value for each segmented ROI in real and translated
CT.
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Table 1. Overview of the models. Paired data refers to MR and MRCAT pairs. CTs
are unpaired with MRs/MRCATs.

Model Generator GAN mode Training data #CT #MR #MRCAT

CycleGAN unet 512 lsgan unpaired 179 41 0

pix2pixHD global lsgan paired 0 41 41

pix2pix unet 512 vanilla paired 0 41 41

pix2pixM→C/pix2pixC→M unet 512 vanilla unpaired & paired 179 41 41

Table 2. MR→CT translation: Performance comparison.

Model Training data FIDCT,sCT KIDCT,sCT DICE HU-Dif

CT MR MRCAT

CycleGAN � � 42.8 0.019 0.80±0.20 15.5

pix2pixHD � � 121.9 0.118 0.91±0.10 23.2

pix2pix � � 122.6 0.119 0.91±0.12 23.0

pix2pixM→C � � � 34.3 0.009 0.88±0.14 16.1

3.1 Comparison with Baselines

We compare our models, pix2pixM→C and pix2pixC→M , with pix2pix [11] and
pix2pixHD [25], and CycleGAN [32]. Table 1 provides the details of the models
and training data.

MR→CT: Table 2 shows that pix2pixM→C outperformed all other methods in
terms of FID and KID, indicating that its translated images better resembled
real CT. It had slightly worse DICE (standard deviation is much higher than the
difference) compared to pix2pix and pix2pixHD, which can partly be explained
by the fewer artifacts produced by these models. However, since pix2pix and
pix2pixHD were trained using MRCAT as their target, their predictions had
similar limitations as the MRCAT, e.g. clear quantization artifacts were present
(see bones in Fig. 4). pix2pix and pix2pixHD had high FID and KID, primarily
due to absence of the patient couch in the translated CT. CycleGAN translations
had small misalignment with inputs and some moderate artifacts, lowering its
DICE score. pix2pixM→C had some prominent artifacts, primarily in the bottom
few slices, these might have been caused by the slight difference in the field-of-
view of MR and CT datasets. pix2pixM→C and CycleGAN generated air cavities
and hallucinated patient tables.

CT→MR: pix2pixC→M had the best performance in terms of FID, KID and
DICE, as shown in Table 3. pix2pix and pix2pixHD produced relatively good
translations of the patient anatomy but due to their failure to ignore the couch
(see Fig. 5), visible in CT, their FID and KID values were high. CycleGAN
had the worst translations, with large artifacts in some parts of the body (see
Fig. 5e), frequently causing large segmentation failures and leading to very low
DICE. pix2pixC→M produced less artifacts and more realistic sMRs, however,
some sMR slices had a small misalignment with inputs near the couch.
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(a) Input (b) pix2pix (c) pix2pixHD (d) pix2pixM→C (e) CycleGAN

Fig. 4. sCTs produced by pix2pixM→C and the baselines. First row: Slices from com-
plete scans. Second row: cropped slices.

Table 3. CT→MR translation: Performance comparison.

Model Training data FIDMR,sMR KIDMR,sMR DICE

CT MR MRCAT

CycleGAN � � 55.9 0.029 0.58±0.29

pix2pixHD � � 127.8 0.122 0.81±0.17

pix2pix � � 90.8 0.086 0.81±0.16

pix2pixC→M � � � 45.3 0.021 0.83±0.15

(a) Input (b) pix2pix (c) pix2pixHD (d) pix2pixC→M (e) CycleGAN

Fig. 5. sMRs generated by pix2pixC→M and the baselines. First row: Slices from com-
plete scans. Second row: cropped slices.
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Table 4. Training objectives for pix2pixM→C in low resolution. λ = 50.

Objective Training data FIDCT,sCT KIDCT,sCT DICE

CT MR MRCAT

L1 � � 147.4 0.146 0.72

GAN � � 67.3 0.032 0.23

GAN + λL1 � � � 39.4 0.014 0.73

Table 5. Training objectives for pix2pixC→M in low resolution. λ = 100.

Objective Training data FIDMR,sMR KIDMR,sMR DICE

CT MR MRCAT

GAN � � 40.0 0.015 0.24

GAN+cGAN � � � 32.8 0.013 0.52

GAN+cGAN+λL1 � � � 30.0 0.012 0.57

3.2 Ablation Studies

pix2pixM →C Objective: When the training objective included both L1 and
GAN loss, the translations looked realistic and the performance of pix2pixM→C

was better in terms of FID, KID and DICE scores compared to the experiment
with only L1 objective or only GAN objective (Table 4). When only GAN objec-
tive was used, the generated sCTs had poor alignment with the input MRs.

pix2pixC→M Objective: When only CT inputs were used with a GAN objec-
tive (see → path in Fig. 3), the generated sMR images were not well aligned
with the inputs. The translations were better aligned when the cGAN objective
was included, i.e. with a probability of 0.5 either CT or MRCAT input was used.
Inclusion of the L1 objective (between sMR generated from MRCAT and real
MR) with GAN+cGAN produced the best results in terms of FID, KID and
DICE (see Table 5).

4 Conclusion

Our results show that CT→MR and MR→CT translation with unpaired CT
and MR, using the MR and MRCAT pairs as an auxiliary supervision, produces
more realistic translated CT and MR images. This additional supervision reduces
artifacts and improves alignment between the input and the translated images.
The proposed pix2pixM→C and pix2pixC→M , outperformed the baseline pix2pix,
pix2pixHD and CycleGAN, in terms of FID and KID scores.

pix2pixM→C and pix2pixC→M , like other GAN-based methods, may be use-
ful in producing realistic-looking translated images for research purposes. Since
these methods can hallucinate features in images [5], they require extensive vali-
dation of their image quality and fidelity before clinical use. It remains as task for
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future research to develop improved translation methods and design quantitative
metrics which better capture the quality of translations.
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Abstract. We propose DRAI—a dual adversarial inference framework
with augmented disentanglement constraints—to learn from the image
itself, disentangled representations of style and content, and use this
information to impose control over conditional generation process. We
undergo two novel regularization steps to ensure content-style disentan-
glement. First, we minimize the shared information between content and
style by introducing a novel application of the gradient reverse layer
(GRL); second, we introduce a self-supervised regularization method to
further separate information in the content and style variables. We con-
duct extensive qualitative and quantitative assessments on two publicly
available medical imaging datasets (LIDC and HAM10000) and test for
conditional image generation and style-content disentanglement. We also
show that our proposed model (DRAI) achieves the best disentanglement
score and has the best overall performance.

1 Introduction

In recent years, conditional generation of medical images has become a popular
area for research using conditional Generative Adversarial Networks (cGAN) [20,
36]. One common pitfall of cGAN is that the conditioning codes are extremely
high-level and do not cover nuances of the data. This challenge is exacerbated
in the medical imaging domain where insufficient label granularity is a common
occurrence. We refer to the factors of variation that depend on the conditioning
vector as content. Another challenge in conditional image generation is that the
image distribution also contains factors of variation that are agnostic to the
conditioning code. These types of information are shared among different classes
or different conditioning codes. In this work we refer to such information as
style, which depending on the task, could correspond to position, orientation,
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location, background information, etc. Learning disentangled representation of
content and style allows us to control the detailed nuances of the generation
process.

In this work, we consider two types of information to preside over the image
domain: content and style, which by definition, are independent and this indepen-
dence criteria should be taken into account when training a model. By explicitly
constraining the model to disentangle content and style, we ensure their inde-
pendence and prevent information leakage between them. To achieve this goal,
we introduce Dual Regularized Adversarial Inference (DRAI), a conditional gen-
erative model that leverages unsupervised learning and novel disentanglement
constraints to learn disentangled representations of content and style, which in
turn enables more control over the generation process.

We impose two novel disentanglement constraints to facilitate this pro-
cess: Firstly, we introduce a novel application of the Gradient Reverse Layer
(GRL) [16] to minimize the shared information between the two variables. Sec-
ondly, we present a new type of self-supervised regularization to further enforce
disentanglement; using content-preserving transformations, we attract matching
content information, while repelling different style information.

We compare the proposed method with multiple baselines on two datasets.
We show the advantage of using two latent variables to represent style and con-
tent for conditional image generation. To quantify style-content disentanglement,
we introduce a disentanglement measure and show the proposed regularizations
can improve the separation of style and content information. The contributions
of this work can be summarized as follows:

– To the best of our knowledge, this is the first time disentanglement of content
and style has been explored in the context of medical image generation.

– We introduce a novel application of GRL that penalizes shared information
between content and style in order to achieve better disentanglement.

– We introduce a self-supervised regularization that encourages the model to
learn independent information as content and style.

– we introduce a quantitative content-style disentanglement measure that does
not require any content or style labels. This is especially useful in real world
scenarios where attributes contributing to content and style are not available.

2 Method

2.1 Overview

Let t be the conditioning vector associated with image x. Using the pairs
{(ti,xi)}, i = 1, . . . , N , where N denotes the size of the dataset, we train an
inference model Gc,z and a generative model Gx such that (i) the inference
model Gc,z infers content c and style z in a way that they are disentangled
from each other and (ii) the generator Gx can generate realistic images that
not only visually respect the conditioning vector t but also the style/content
disentanglement. An Illustration of DRAI is made in Fig. 1
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It is worth noting that our generative module is not constrained to require a
style image. Having a probabilistic generative model allows us to sample the style
code from the style prior distribution and generate images with random style
attributes. The framework also allows us to generate hybrid images by mixing
style and content from various sources (details can be found in Sect. B.2).

Fig. 1. Overview of DRAI. The dashed purple arrows mark the cycle consistency
between features implemented via �1 norm, while the solid purple arrows show the
imposed disentanglement constrains. On the right hand side of the figure we show all
the discriminators used for training. ĉ represents the inferred content, ẑ the inferred
style, x̂ the reconstructed input image and x̄ the image with mismatched conditioning.

2.2 Dual Adversarial Inference (DAI)

We follow the formulation of [30] for Dual Adversarial Inference (DAI) which is a
conditional generative model that uses bidirectional adversarial inference [14,15]
to learn content and style variables from the image data. To impose alignment
between conditioning vector t and the generated image x̃, we seek to match
p(x̃, t) with p(x, t). To do so, we adopt the matching-aware discriminator pro-
posed by [40]. For this discriminator—denoted as Dx,t—the positive sample is
the pair of real image and its corresponding conditioning vector (x, t), whereas
the negative sample pairs consist of two groups; the pair of real image with mis-
matched conditioning (x̄, t), and the pair of synthetic image with corresponding
conditioning (Gx(z, c), t). In order to retain the fidelity of the generated images,
we also train a discriminator Dx that distinguishes between real and generated
images. The loss function imposed by Dx,t and Dx is as follows:

min
G

max
D

Vt2i(Dx, Dx,t, Gx) = Epdata [logDx(x)] + Ep(z ),q(c )[log(1 − Dx(Gx(z , c)))] +

Epdata [logDx,t(x , t)] + 1
2

{
Epdata [log(1 − Dx,t(x̄ , t))] + Ep(z ),q(c ),pdata

[log(1 − Dx,t(Gx(z , c), t))]
}
,
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where x̃ = Gx(z, c) is the generated image and (x̄, t) designates a mis-matched
pair.

We use adversarial inference to infer style and content codes from the image.
Using the adversarial inference framework, we are interested in matching the con-
ditional q(z, c|x) to the posterior p(z, c|x). Given the Independence assumption
of c and z, can use the bidirectional adversarial inference formulation individ-
ually for style and content. This dual adversarial inference objective is thus
formulated as:

min
G

max
D

VdALI(Dx,z, Dx,c, Gx, Gc,z) = Eq(x ),q(z ,c |x )[logDx,z(x , ẑ ) + logDx,c(x , ĉ)]+

Ep(x |z ,c ),p(z ),p(c )[log(1 − Dx,z(x̃ , z )) + log(1 − Dx,c(x̃ , c))]. (1)

To improve the stability of training, we include image-cycle consistency
(Vimage-cycle) [51] and latent code cycle consistency (Vcode-cycle) objectives [12].

2.3 Disentanglement Constrains

The dual adversarial inference (DAI) encourages disentanglement through the
independence assumption of style and content. However, it does not explicitly
penalize entanglement. We introduce two constraints to impose style-content
disentanglement. Refer to the Appendix for details.

Content-Style Information Minimization: We propose a novel application
of the Gradient Reversal Layer (GRL) strategy [16] to explicitly minimize the
shared information between style and content. We train an encoder Fc to predict
the content from style and use GRL to minimize the information between the
two. The same process is done for predicting style from content through Fz.
This constrains the content feature generation to disregard style features and
the style feature generation to disregard content features.

Self-supervised Regularization: We incorporate a self-supervised regulariza-
tion such that the content is invariant to content-preserving transformations
(such as a rotation, horizontal or vertical flip) while the style is sensitive to such
transformations. More formally, we maximize the similarity between the inferred
contents of x and the transformed x′ while minimizing the similarity between
their inferred styles. This constrains the content feature generation to focus on
the content of the image reflected in the conditioning vector and the style feature
generation to focus on the transformation attributes.

DRAI is a probabilistic model that requires reparameterization trick to sam-
ple from the approximate posteriors q(z|x), q(c|x) and q(c|t). We use KL diver-
gence in order to regularize these posteriors to follow the normal distribution
N (0, I). Taking that into account, the complete objective criterion for DRAI is:

min
G

max
D,F

Vt2i + VdALI + Vimage-cycle + Vcode-cycle + VGRL + Vself+

λDKL(q(z|x) || N (0, I)) + λDKL(q(c|x) || N (0, I)) + λDKL(q(c|t) || N (0, I)).
(2)
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3 Experiments

We conduct experiments on two publicly available medical imaging datasets:
LIDC [4] and HAM10000 [46] (see Appendix for details on these datasets). To
evaluate the quality of generation, inference, and disentanglement, we consider
two types of baselines. To show the effectiveness of dual variable inference, we
compare our framework with single latent variable models. For this, we introduce
a conditional adaptation of InfoGan [12] referred to as cInfoGAN and a condi-
tional adversarial variational Autoencoder (cAVAE). We also compare DRAI to
Dual Adversarial Inference (DAI) [30] and show how using our proposed disen-
tanglement constraints together with latent code cycle-consistency can signifi-
cantly boost performance. See Appendix for more details on various baselines.
Finally, we conduct rigorous ablation studies to evaluate the impact of each
component in DRAI.

3.1 Generation Evaluation

To evaluate the quality and diversity of the generated images, we measure FID
and IS (see Appendix Sect. D.3) for the proposed DRAI model and various double
and single latent variable baselines described in Appendix Sect.D. The results
are reported in Table 1 for both LIDC and HAM10000 datasets. For the LIDC
dataset, we observe all methods have comparable IS score while DRAI and DAI
have significantly lower FID compared to other baselines, with DRAI having
better performance. For the HAM10000 dataset, DRAI once again achieves the
best FID score while D-cInfoGAN achieves the best IS.

Table 1. Comparison of image generation metrics (FID, IS) and disentanglement met-
ric(CIFC) on HAM10000 and LIDC datasets for single and double variable baselines.
CIFC is only evaluated for double variable baselines.

Method HAM10000 LIDC

FID (↓) IS (↑) CIFC (↓) FID (↓) IS (↑) CIFC (↓)
cInfoGAN 1.351 ± 0.33 1.326 ± 0.03 – 0.283 ± 0.06 1.366 ± 0.02 –

cAVAE 3.566 ± 0.56 1.371 ± 0.01 – 0.181 ± 0.03 1.424±0.01 –

D-cInfoGAN 1.684 ± 0.42 1.449±0.03 1.201 ± 0.17 0.333 ± 0.06 1.342 ± 0.09 1.625 ± 0.11

D-cAVAE 4.893 ± 0.99 1.321 ± 0.01 1.354 ± 0.03 0.378 ± 0.03 1.371 ± 0.04 1.944 ± 0.02

DAI [30] 1.327 ± 0.06 1.304 ± 0.01 0.256 ± 0.01 0.106±0.02 1.423 ±0.05 1.096 ± 0.28

DRAI 1.224±0.05 1.300 ± 0.01 0.210±0.01 0.089±0.02 1.422±0.03 0.456±0.06

We highlight that while FID and IS are the most common metrics for the
evaluation of GAN based models, they do not provide the optimum assessment [5]
and thus qualitative assessment is needed. We use the provided conditioning
vector for the generation process and only sample the style variable z. The
generated samples are visualized in Fig. 2. In every sub-figure, the first column
represents the reference image corresponding to the conditioning vector used for
the image generation, and the remaining columns represent synthesized images.
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DRAI DAI D-cAVAE D-cInfoGAN cInfoGAN cAVAE

Fig. 2. Conditional generations on LIDC and HAM10000. The images are generated
by keeping the content code (c) fixed and only sampling the style codes (z).

By fixing the content and sampling the style variable, we can discover the
types of information that are encoded as style and content for each dataset.
We observe that the learned content information are color and lesion size for
HAM10000, and nodule size for LIDC; while the learned style information are
location, orientation and lesion shape for HAM10000 and background for LIDC.
We also observe that DRAI is very successful in preserving the content informa-
tion when there is no stochasticity in the content variable (i.e., c is fixed). As for
other baselines, sampling style results in changing the content information of the
generated images, which indicates information leak from the content variable to
the style variable. The results show that compared to DAI and other baselines,
DRAI achieves better separation of style and content.

3.2 Style-Content Disentanglement

Achieving good style-content disentanglement in both inference and generation
phases is the main focus of this work. We conduct multiple quantitative and
qualitative experiments to asses the quality of disentanglement in DRAI (our
proposed method) as well as the competing baselines.

As a quantitative metric, we introduce the disentanglement error CIFC (refer
to Appendix for details). Table 1 shows results on this metric. As seen from this
table, in both HAM10000 and LIDC datasets, DRAI improves over DAI by a
notable margin, which demonstrates the advantage of the proposed disentan-
glement regularizations; on one hand, the information regularization objective
through GRL minimizes the shared information between style and content vari-
ables, and on the other hand, the self-supervised regularization objective not
only allows for better control of the learned features but also facilitates disen-
tanglement. In the ablation studies (Sect. 3.3), we investigate the effect of the
individual components of DRAI on disentanglement.
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Fig. 3. Qualitative evaluation of style-content disentanglement through hybrid image
generation on LIDC dataset. In every sub-figure, images in the first row present style
image references and those in the first column present content image references. Hybrid
images are generated by using the style and content codes inferred from style and
content reference images respectively.
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Fig. 4. Qualitative evaluation of style-content disentanglement through hybrid image
generation on HAM10000 dataset. In every sub-figure, images in the first row represent
style image references and those in the first column represent content image references.
Hybrid images are generated by using the style and content codes inferred from style
and content reference images respectively.
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To have a more interpretable evaluation, we qualitatively assess the style-
content disentanglement through generating hybrid images by combining style
and content information from different sources (See Appendix for details on
hybrid images). We can then evaluate the extent to which the style and content
of the generated images respect the corresponding style and content of the source
images. Figure 3 and Fig. 4 show these results on the two datasets. For the LIDC
dataset, DAI and DRAI learn CT image background as style and nodule as con-
tent. This is due to the fact that the nodule characteristics such as nodule size is
included in the conditioning factor and thus the content tends to focus on those
attributes. Thanks to the added disentanglement regularizations, DRAI has the
best content-style separation compared to all other baselines and demonstrates
clear decoupling of the two variables. Because of the self-supervised regulariza-
tion objective, DRAI assigns more emphases on capturing nodule characteristics
as part of the content and background as part of the style. Overall, it is evident
from the qualitative experiments that the proposed disentanglement regulariza-
tions help to decouple the style and content variables.

3.3 Ablation Studies

In this section, we perform ablation studies to evaluate the effect of each compo-
nent on disentanglement using the CIFC metric. Ablated models use the same
architecture with the same amount of parameters. The quantitative assessment
is presented in Table 2. We observe that on both LIDC and HAM10000, each
added component improves over DAI, while the best performance is achieved
when these components are combined together to form DRAI.

Table 2. Quantitative ablation study on LIDC and HAM10000 datasets

Method LIDC HAM10000

FID (↓) CIFC (↓) FID (↓) CIFC (↓)
DAI [30] 0.106±0.02 1.096 ± 0.284 1.327 ± 0.06 0.256 ± 0.01

DRAI = DAI+selfReg+MIReg+featureCycle 0.089±0.02 0.456±0.069 1.224±0.05 0.210±0.01

DAI+selfReg+MIReg 0.176 ± 0.06 0.554 ± 0.185 1.350 ± 0.12 0.233 ± 0.01

DAI+featureCycle 0.221 ± 0.07 0.913 ± 0.074 1.367 ± 0.12 0.311 ± 0.01

DAI+MIReg 0.154 ± 0.04 0.747 ± 0.226 1.298±0.12 0.228±0.01

DAI+selfReg 0.208 ± 0.05 0.781 ± 0.203 1.347 ± 0.14 0.219±0.04

4 Conclusion

We introduce DRAI, a frame work for generating synthetic medical images which
allows control over the style and content of the generated images. DRAI uses
adversarial inference together with conditional generation and disentanglement
constraints to learn content and style variables from the dataset. We compare
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DRAI quantitatively and qualitatively with multiple baselines and show its supe-
riority in image generation in terms of quality, diversity and style-content disen-
tanglement. Through ablation studies and comparisons with DAI [30], we show
the impact of imposing the proposed disentanglement constraints over the con-
tent and style variables.

A Disentanglement Constrains

Lao et al. [30] use double variable ALI as a criterion for disentanglement. How-
ever, ALI does approximate inference and does not necessarily guarantee disen-
tanglement between variables. To further impose disentanglement between style
and content, we propose additional constrains and regularization measures.

A.1 Content-Style Information Minimization

The content should not include any information of the style and vice versa. We
seek to explicitly minimize the shared information between style and content.
For this, we propose a novel application of the Gradient Reversal Layer (GRL)
strategy. First introduced in [16], the GRL strategy is used in domain adaptation
methods to learn domain-agnostic features, where it acts as the identity function
in the forward pass but reverses the direction of the gradients in the backward
pass. In domain adaptation literature, GRL is used with a domain classifier.
Reversing the direction of the gradients coming from the domain classification
loss has the effect of minimizing the information between the representations and
domain identity, thus, learning domain invariant features. Inspired by the liter-
ature on domain adaptation, we use GRL to minimize the information between
style and content. More concretely, for a given example x, we train an encoder
Fc to predict the content from style and use GRL to minimize the information
between the two. The same process is done for predicting style from content
through Fz, resulting in the following objective function:

min
G

max
F

VGRL(Fz, Fc, Gc,z) (3)

= −Ex∼q(x),(ẑ ,ĉ)∼q(z ,c|x)[‖ẑ − Fz(ĉ)‖ + ‖ĉ − Fc(ẑ)‖].

This constrains the content feature generation to disregard style features and
the style feature generation to disregard content features. Figure 5b shows a
visualization of this module.

We can show that Eq. (3) minimizes the mutual information between the
style variable and the content variable. Here, we only provide the proof for using
GRL with Fz to predict style from content. Similar reasoning can be made for
using GRL with Fc. Let I(z; c) denote the mutual information between the
inferred content and the style variables, where

I(z; c) = H(z) − H(z|c). (4)
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Once again, following [2], we define a variational lower bound on I(z; c) by
rewriting the conditional entropy in (4) as:

−H(z|c) = Eĉ∼q(c|x)[log q(z|ĉ) + DKL(p(z|ĉ)||q(z|ĉ))]],

and by extension:

I(z; c) = H(z) + max
Fz

Eĉ∼q(c|x)[log q(z|ĉ)], (5)

where the maximum is achieved when DKL(p(z|ĉ)||q(z|ĉ))] = 0. Since H(z) is
constant for Fz and ||ẑ − Fz(ĉ)|| corresponds to − log q(z|ĉ), minimization of
mutual information can be written as:

min
G

I(z; c) = min
G

max
Fz

−Eĉ∼q(c|x),ẑ∼q(z |x)[||ẑ − Fz(ĉ)||], (6)

which corresponds to Eq. (3).

A.2 Self-supervised Regularization

Self-supervised learning has shown great potential in unsupervised representa-
tion learning [11,21,39]. To provide more control over the latent variables c
and z, we incorporate a self-supervised regularization such that the content is
invariant to content-preserving transformations while the style is sensitive to
such transformations. The proposed self-supervised regularization constraints
the feature generator Gc,z to encode different information for content and style.
More formally, let T be a random content-preserving transformation such as a
rotation, horizontal or vertical flip. For every example x ∼ q(x), let x′ be its
transformed version; x′ = Ti(x) for Ti ∼ p(T ). We would like to maximize the
similarity between the inferred contents of x and x′ and minimize the similar-
ity between their inferred styles. This constrains the content feature generation
to focus on the content of the image reflected in the conditioning vector and
the style feature generation to focus on other attributes. This regularization
procedure is visualized in Fig. 5a. The objective function for the self-supervised
regularization is defined as:

min
G

Vself(Gc,z) = Ex∼q(x)[‖ĉ − ĉ′‖ − ‖ẑ − ẑ′‖], (7)

where (ẑ, ĉ) ∼ q(z, c|x) and (ẑ′, ĉ′) ∼ q(z, c|x′).

B Implementation Details

B.1 Implementation Details

In this section, we provide the important implementation details of DRAI.
Firstly, to reduce the risk of information leak between style and content, we use
completely separate encoders to infer the two variables. For the same reason, the
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(a) Self-Supervised regularization.
Given x and its transformed version
x′, their corresponding content codes
c and ĉ form a positive pair and the
disparity between them is minimized
(i.e., attract each other) while their
corresponding style codes z and ẑ
form a negative pair and the disparity
between them is maximized (i.e., repel
each other).

Content Predictor

Style Predictor

(b) Content-Style information mini-
mization. For a given image x, Fc is
trained to predict the content ĉ from
the style ẑ. By reversing the direction
of the gradients, the GRL penalizes
Gc,z to minimize the content informa-
tion in the style variable z. The same
procedure is carried out to minimize
style information in the content vari-
able c.

Fig. 5. Proposed disentanglement constraints.

dual adversarial discriminators are also implemented separately for style and con-
tent. The data augmentation includes random flipping and cropping. To enable
self-supervised regularization, each batch is trained twice, first with the origi-
nal images and then with the transformed batch. The transformations include
rotations of 90, 180, and 270 degrees, as well as horizontal and vertical flipping.
LSGAN (Least Square GAN) [34] loss is used for all GAN generators and dis-
criminators, while �1 loss is used for the components related to disentanglement
constraints, i.e., GRL strategy and self-supervised regularization. In general, we
found that “Image cycle-consistency” and “Latent code cycle-consistency” objec-
tives improve the stability of training. This is evident by DRAI achieving lower
prediction intervals (i.e., standard deviation across multiple runs with different
seeds) in our experiments.

We did not introduce any coefficients for the loss components in Equation (2)
since other than the KL terms, they were all relatively on the same scale. As for
the KL co-efficients λ, we tried multiple values and qualitatively evaluated the
results. Since the model was not overly sensitive to KL, we used a coefficient of
1 for all KL components.

All models including the baselines are implemented in TensorFlow [1] version
2.1, and the models are optimized via Adam [27] with initial learning rate 1e−5.

For IS and FID computation, we fine-tune the inception model on a 5 way
classification on nodule size for LIDC and a 7 way classification on lesion type
for HAM10000. FID and IS are computed over a set of 5000 generated images.
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B.2 Generating Hybrid Images

Thanks to our encoder that is able to infer disentangled codes for style and
content and also our generator that does not have a hard constraint on requiring
the conditioning embedding t, we can generate hybrid images where we mix
style and content from different image sources. Let i and j be the indices of two
different images. There are two ways in which DRAI can generate hybrid images:

1. Using a conditioning vector ti and a style image xj : In this setup, we use the
conditioning factor ti as the content and the inferred ẑj from the style image
xj as the style:

ci = Eϕ(ti)
ẑj , ĉj = Gc,z(xj)
x̃ij = Gx(ẑj , ci).

2. Using a content image xi and a style image xj : In this setup we do not rely on
the conditioning factor t. Instead, we infer codes for both style and content
(i.e., ẑj and ĉi) from style and content source images respectively.

ẑi, ĉi = Gc,z(xi)
ẑj , ĉj = Gc,z(xj)
x̃ij = Gx(ẑj , ĉi)

The generation of hybrid images is graphically explained in Fig. 6 for the afore-
mentioned two scenarios.

Fig. 6. Hybrid image generation: (a) via the conditioning factor ti (representing con-
tent) and the style code ẑj inferred from the style reference image. (b) via the content
code ĉi inferred from the content reference image and the style code ẑj inferred from
the style reference image.
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C Datasets

C.1 HAM10000

Human Against Machine (HAM10000) [46], contains approximately 10000 train-
ing images, includes 10015 dermatoscopic images of seven types of skin lesions
and is widely used as a classification benchmark. One of the lesion types,
“Melanocytic nevi” (nv), occupies around 67% of the whole dataset, while the
two lesion types that have the smallest data size, namely, “Dermatofibroma”
(df) and “Vascular skin lesions” (vasc), have only 115 and 143 images respec-
tively. Such data imbalance is undesirable for our purpose since limitations on
the data size lead to severe lack of image diversity of the minority classes. For
our experiments, we select the three largest skin lesion types, which in order of
decreasing size are: “nv” with 6705 images; “Melanoma” (mel) with 1113 images;
and “Benign keratosis-like lesions” (bkl) with 1099 images. Patches of size 48 × 48
centered around the lesion are extracted and then resized to 64× 64. To balance
the dataset, we augment mel and bkl three times with random flipping. We fol-
low the train-test split provided by the dataset, and the data augmentation is
done only on the training data.

C.2 LIDC

The Lung Image Database Consortium image collection (LIDC-IDRI) consists
of lung CT scans from 1018 clinical cases [4]. In total, 7371 lesions are annotated
by one to four radiologists, of which 2669 are given ratings on nine nodule char-
acteristics: “malignancy”, “calcification”, “lobulation”, “margin”, “spiculation”,
“sphericity”, “subtlety”, “texture” and “internal structure”. We take the follow-
ing pre-processing steps for LIDC: a) We normalize the data such that it respects
the Hounsfield units (HU), b) the volume size is converted to 256 × 256 × 256,
c) areas around the lungs are cropped out. For our experiments, we extract a
subset of 2D patches composing nodules with consensus from at least three radi-
ologists. Patches of size 48 × 48 centered around the nodule are extracted and
then resized to 64 × 64. Furthermore, we compute the inter-observer median of
the malignancy ratings and exclude those with malignancy median of 3 (out of
5). This is to ensure a clear separation between benign and malignant classes pre-
sented in the dataset. The conditioning factor for each nodule is a 17-dimensional
vector, coming from six of its characteristic ratings, as well as the nodule size.
Note that “lobulation” and “spiculation” are removed due to known annotation
inconsistency in their ratings [3], and “internal structure” is removed since it
has a very imbalanced distribution. We quantize the remaining characteristics
to binary values following the same procedure of Shen et al. [43] and use the one-
hot encoding to generate a 12-dimensional vector for each nodule. The remaining
five dimensions are reserved for the quantization of the nodule size, ranging from
2 to 12 with an interval of 2. Following the above described procedure, the nod-
ules with case index less than 899 are included in the training dataset while the
nodules of the remaining cases are considered as the test set. By augmenting the
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label in such way, we exploit the richness of each nodule in LIDC, which proves
to be beneficial for training.

D Baselines

To evaluate the quality of generation, inference, and disentanglement, we con-
sider two types of baselines. To show the effectiveness of dual variable infer-
ence, we compare our framework with single latent variable models. For this, we
introduce a conditional adaptation of InfoGan [12] referred to as cInfoGAN and
a conditional adversarial variational Autoencoder (cAVAE), both of which are
explained in this section.

To compare our approach to dual latent variable inference methods, we
extend InfoGAN and cAVAE to dual variables which we denote as D-cInfoGAN
and D-cAVAE respectively.

We also compare DRAI to Dual Adversarial Inference (DAI) [30] and show
how using our proposed disentanglement constraints together with latent code
cycle-consistency can significantly boost performance. Finally, we conduct rig-
orous ablation studies to evaluate the impact of each component in DRAI.

D.1 Conditional InfoGAN

InfoGAN is a variant of generative adversarial network that aims to learn unsu-
pervised disentangled representations. In order to do so, InfoGAN modifies the
original GAN in two ways. First, it adds an additional input c to the generator.
Second, using an encoder network Q, it predicts c from the generated image
and effectively maximizes a lower bound on the mutual information between the
input code c and the generated image x̃. The final objective is the combination
of the original GAN objective plus that of the inferred code ĉ ∼ Q(c|x):

min
G,Q

max
D

VInfoGAN(D, G, Q) = VGAN(D, G)−λ(EG(z ,c),p(c)[log Q(c|x)]+H(c)). (8)

The variable c can follow a discrete categorical distribution or a continuous
distribution such as the normal distribution. InfoGAN is an unsupervised model
popular for learning disentangled factors of variation [29,38,47].

We adopt a conditional version of InfoGAN –denoted by cInfoGAN– which is
a conditional GAN augmented with an inference mechanism using the InfoGAN
formulation. We experiment with two variants of cInfoGAN; a single latent vari-
able model (cInfoGAN) shown in Fig. 7a, where the discriminator Dx is trained
to distinguish between real (x) and fake (x̃) images while the discriminator Dx,t

distinguishes between the positive pair (x, t) and the corresponding negative pair
(x̃, t), where x̃ = Gx(z, t) and t is the conditioning vector representing content.
With the help of Gz, InfoGAN’s mutual information objective is applied on z
which represents the unsupervised style.

We also present a double latent variable model of InfoGAN (D-cInfoGAN)
shown in Fig. 7b where in addition to inferring ẑ we also infer ĉ through cycle
consistency using the �1 norm.
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(a) Conditional InfoGAN (cInfoGAN). (b) Dual conditional InfoGAN (D-
cInfoGAN).

Fig. 7. InfoGan baselines.

D.2 cAVAE

Variational Auto-Encoders (VAEs) [28] are latent variable models commonly
used for inferring disentangled factors of variation governing the data distribu-
tion. Let x be the random variable over the data distribution and z the random
variable over the latent space. VAEs are trained by alternating between two
phases, an inference phase where an encoder Gz is used to map a sample from
the data to the latent space and infer the posterior distribution q(z|x) and a gen-
eration phase where a decoder Gx reconstructs the original image using samples
of the posterior distribution with likelihood p(x|z).

VAEs maximize the evidence lower bound (ELBO) on the likelihood p(x):

max
G

VVAE(Gx, Gz) = Eq(z |x)[log p(x|z)] − DKL[q(z|x) || p(z)]. (9)

Kingma and Welling [28] also introduced a conditional version of VAE
(cVAE) where p(x|z, c) is guided by both the latent code z and conditioning
factor c. There have also been many attempts in combining VAEs and GANs.
Notable efforts are that of Larsen et al. [31,35] and [50].

Conditional Adversarial Variational Autoencoder (cAVAE) is very similar to
conditional Variational AutoEncoder (cVAE) but uses an adversarial formula-
tion for the likelihood p(x|z, c). Following the adversarial formulation for recon-
struction [32,35], a discriminator Dcycle is trained on positive pairs (x,x) and
negative pairs (x,x̂), where x̂ ∼ p(x|t, ẑ) and ẑ ∼ q(z|x). For the conditional gen-
eration we train a discriminator Dx,t on positive pairs (x, t) and negative pairs
(x̂, t), where t is the conditioning factor. We empirically discover that adding an
additional discriminator Dx,t,z which also takes advantage of the latent code ẑ
improves inference. Similar to cInfoGAN, we use two versions of cAVAE: a single
latent variable version denoted by cAVAE (Fig. 8a) and a double latent variable
version D-cAVAE (Fig. 8b), where in addition to the style posterior q(z|x), we
also infer the content posterior q(c|x). Accordingly, to improve inference on the
content variable, we add the discriminator Dx,t,c.
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(a) Conditional Adversarial VAE (cAVAE). (b) Dual conditional Adversarial VAE (D-
cAVAE).

Fig. 8. Adversarial VAE baselines

D.3 Evaluation Metrics

We explain in detail various evaluation metrics used in our experiments.

Measure of Disentanglement (CIFC). Multiple methods have been pro-
posed to measure the degree of disentanglement between variables [23]. In this
work, we propose a measure which evaluates the desired disentanglement char-
acteristics of both the feature generator and the image generator. To have good
feature disentanglement, we desire a feature generator (i.e., encoder) that sepa-
rates the information in an image in two disjoint variables of style and content
in such a way that 1) the inferred information is consistent across images. e.g.,
position and orientation is encoded the same way for all images; and 2) every
piece of information is handled by only one of the two variables, meaning that
the style and content variables do not share features. In order to measure these
properties, we propose Cross Image Feature Consistency (CIFC) error where we
measure the model’s ability to first generate hybrid images of mixed style and
content inferred from two different images and then its ability to reconstruct the
original images. Figure 9 illustrates this process. As seen in this figure, given two
images Ia and Ib, hybrid images Iab and Iba are generated using the pairs (ĉa,ẑb)
and (ĉb, ẑa) respectively. By taking another step of hybrid image generation, Iaa

and Ibb are generated as reconstructions of Ia and Ib respectively. To make the
evaluation robust with respect to high frequency image details, we compute
the reconstruction error in the feature space. In retrospect, the disentanglement
measure is computed as:

CIFC = E(Ia,Ib)∼qtest(x)[‖ẑa − ẑaa‖ + ‖ĉa − ĉaa‖ + (10)
‖ẑb − ẑbb‖ + ‖ĉb − ĉbb‖],

where qtest(x) represents the empirical distribution of the test images.
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Fig. 9. Cross Image Feature Consistency (CIFC) error. CIFC is computed by first gen-
erating hybrid images of mixed style and content across two different images and then
reconstructing the original images. For a more robust evaluation, CIFC is measured in
the feature space.

FID. The Frechet inception distance (FID) score [22] measures the distance
between the real and generated data distributions. An inception model is
required for calculating FID, but since the conventional inception model used
for FID is pretrained on colored natural images, it is not suitable to be used
with LIDC which consists of single channel CT scans. Consequently, we train an
inception model on the LIDC dataset to classify benign and malignant nodules.
We use InceptionV3 [45] up to layer “mixed3” (initialized with pretrained Ima-
geNet weights), and append a global average pooling layer followed by a dense
layer.

Inception Score. Inception Score (IS) [41] is another quantitative metric on
image generation which is commonly used to measure the diversity of the gener-
ated images. We use the same inception model described above to calculate IS.
The TensorFlow-GAN library [44] is used to calculate both FID and IS.

E Related Work

E.1 Connection to Other Conditional GANs in Medical Imaging

While adversarial training has been used extensively in the medical imaging
domain, most work uses adversarial training to improve image segmentation and
domain adaptation. The methods that use adversarial learning for image genera-
tion can be divided into two broad categories; the first group are those which use
image-to-image translation as a proxy to image generation. These models use an
image mask as the conditioning factor, and the generator generates an image
which respects the constraints imposed by the mask [13,13,19,26,37]. Jin et al.
[26] condition the generative adversarial network on a 3D mask, for lung nod-
ule generation. In order to embed the nodules within their background context,
the GAN is conditioned on a volume of interest whose central part containing
the nodule has been erased. A favored approach for generating synthetic fundus
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retinal images is to use vessel segmentation maps as the conditioning factor.
Guibas et al. [19] uses two GANs in sequence to generate fundus images. The
first GAN generates vessel masks, and in stage two, a second GAN is trained to
generate fundus retinal images from the vessel masks of stage one. Costa et al.
[13] first use a U-Net based model to generate vessel segmentation masks from
fundus images. An adversarial image-to-image translation model is then used to
translate the mask back to the original image.

In Mok and Chung [37] the generator is conditioned on a brain tumor mask
and generates brain MRI. To ensure correspondence between the tumour in
the generated image and the mask, they further forced the generator to output
the tumour boundaries in the generation process. Bissoto et al. [8] uses the
semantic segmentation of skin lesions and generate high resolution images. Their
model combines the pix2pix framework [25] with multi-scale discriminators to
iteratively generate coarse to fine images.

While methods in this category give a lot of control over the generated images,
the generator is limited to learning domain information such as low level texture
and not higher level information such as shape and composition. Such informa-
tion is presented in the mask which requires an additional model or an expert
has to manually outline the mask which can get tedious for a lot of images.

The second category of methods are those which use high level class informa-
tion in the form of a vector as the conditioning factor. Hu et al. [24] takes Gleason
score vector as input to the conditional GAN to generate synthetic prostate dif-
fusion imaging data corresponding to a particular cancer grade. Baur et al. [6]
used a progressively growing model to generate high resolution images of skin
lesions.

As mentioned in the introduction one potential pitfall of such methods is that
by just using the class label as conditioning factor, it is hard to have control over
the nuances of every class. While our proposed model falls within this category,
our inference mechanism allows us to overcome this challenge by using the image
data itself to discover factors of variation corresponding to various nuances of
the content.

E.2 Disentangled Representation Learning

In the literature, disentanglement of style and content is primarily used for
domain translation or domain adaptation. Content is defined as domain agnostic
information shared between the domains, while style is defined as domain specific
information. The goal of disentanglement to preserve as much content as possible
and to prevent leakage of style from one domain to another. Gonzalez-Garcia et
al. [18] used adversarial disentanglement for image to image translation. In order
to prevent exposure of style from domain A to domain B, a Gradient Reversal
Layer (GRL) is used to penalize shared information between the generator of
domain B and style of domain A. In contrast, our proposed DRAI, uses GRL
to minimize the shared information between style and content. In the medical
domain, Yang et al. [49] aim to disentangle anatomical information and modality
information in order to improve on a downstream liver segmentation task.
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Ben-Cohen et al. [7] used adversarial learning to infer content agnostic fea-
tures as style. Intuitively their method is similar to using GRL to minimize
leakage of content information into a style variable. However, while [7] prevents
leakage of content into style, it does not prevent the reverse effect which is leakage
of style into content and thus does not guarantee disentanglement.

Yang et al. [48] use disentangle learning of modality agnostic and modality
specific features in order to facilitate cross-modality liver segmentation. They use
a mixture of adversarial training and cycle consistency loss to achieve disentan-
glement. The cycle-consistency component is used for in-domain reconstruction
and the adversarial component is used for cross-domain translation. The two
components encourage the disentanglement of the latent space, decomposing it
into modality agnostic and modality specific sub-spaces.

To achieve disentanglement between modality information and anatomical
structures in cardiac MR images, Chartsias et al. [9] use an autoencoder with
two encoders: one for the modality information (style) and another for anatom-
ical structures (content). They further impose constraints on the anatomical
encoder such that every encoded pixel of the input image has a categorical dis-
tribution. As a result, the output of the anatomical encoder is a set of binary
maps corresponding to cardiac substructures.

Disentangled representation learning has also been used for denoising of med-
ical images. In Liao et al. [33], Given artifact affected CT images, metal-artifact
reduction (MAR) is performed by disentangling the metal-artifact representa-
tions from the underlying CT images.

Sarhan et al. [42] use β-TCAV [10] to learn disentangled representations on
an adversarial variation of the VAE. Their proposed model differs fundamentally
from our work; its is a single variable model, without a conditional generative
process, and does not infer separate style and content information.

Garcia1 et al. [17] used ALI (single variable) on structured MRI to discover
regions of the brain that are involved in Autism Spectrum Disorder (ASD).

In contrast to previous work, we use style-content disentanglement to control
features for conditional image generation. To the best of our knowledge this is
the first time such attempt has been made in the context of medical imaging.
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Abstract. Diversity in data is critical for the successful training of deep
learning models. Leveraged by a recurrent generative adversarial net-
work, we propose the CT-SGAN model that generates large-scale 3D
synthetic CT-scan volumes (≥224 × 224 × 224) when trained on a small
dataset of chest CT-scans. CT-SGAN offers an attractive solution to
two major challenges facing machine learning in medical imaging: a small
number of given i.i.d. training data, and the restrictions around the shar-
ing of patient data preventing to rapidly obtain larger and more diverse
datasets. We evaluate the fidelity of the generated images qualitatively
and quantitatively using various metrics including Fréchet Inception Dis-
tance and Inception Score. We further show that CT-SGAN can signifi-
cantly improve lung nodule detection accuracy by pre-training a classifier
on a vast amount of synthetic data.

Keywords: Computerized tomography · Data augmentation · Deep
learning · Generative adversarial networks · Wasserstein distance

1 Introduction

Recently, deep learning has achieved significant success in several applications
including computer vision, natural language processing, and reinforcement learn-
ing. However, large amounts of training samples, which sufficiently cover the
population diversity, are often necessary to develop high-accuracy machine learn-
ing and deep learning models. Unfortunately, data availability in the medical
image domain is quite limited due to several reasons such as significant image
acquisition costs, protections on sensitive patient information, limited numbers
of disease cases, difficulties in data labeling, and variations in locations, scales,
and appearances of abnormalities. Despite the efforts made towards constructing
large medical image datasets, options are limited beyond using simple automatic
methods, huge amounts of radiologist labor, or mining from radiologist reports
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[9]. Therefore, it is still a challenge to generate effective and sufficient medical
data samples with no or limited involvement of experts.

The production of synthetic training samples is one tempting alternative.
However, in practice, it is less appealing due to weaknesses in reproducing high-
fidelity data [9]. The advancement in generative models such as the generative
adversarial networks (GANs) [5], however, is creating an opportunity in produc-
ing real-looking additional (training) data. This possibility has been enhanced
with refinements on fully convolutional [19] and conditional GANs [15]. For
example, Isola et al. extend the conditional GAN (cGAN) concept to predict
pixels from known pixels [8]. Within medical imaging, Nie et al. use a GAN to
simulate CT slices from MRI data [16]. For lung nodules, Chuquicusma et al.
train a simple GAN to generate simulated images from random noise vectors,
but do not condition based on surrounding context [3]. Despite recent efforts
to generate large-scale CT-cans with the help of GANs [18,22], to the best of
our knowledge, all of these generative models have one or more important pieces
missing which are: (1) the (non-progressive) generation of the whole large-scale
3D volumes from scratch with a small number of training samples, (2) the gener-
ation of CT-scans without working with a sub-region of a volume or translating
from one domain/modality to another domain/modality, and (3) examining their
generative model with real-life medical imaging problems such as nodule detec-
tion. The absence of these missing pieces can be due to large amounts of GPU
memory needed to deal with 3D convolutions/deconvolutions [14,17,21]. This
limitation makes even the most well-known GANs for the generation of high-
resolution images [11,25] impractical once they are applied to the 3D volumes.
On the other hand, the generation of large-scale CT-scan volumes is of signifi-
cant importance as in these scans, fine parenchymal details such as small airway
walls, vasculature, and lesion texture, would be better visible which in turn lead
to more accurate prediction models.

In this work, we propose a novel method to generate large-scale 3D synthetic
CT-scans (≥224 × 224 × 224) by training a recurrent generative adversarial net-
work with the help of a small dataset of 900 real chest CT-scans. As shown in
Fig. 1, we demonstrate the value of a recurrent generative model with which the
volumes of CT-scans would be generated gradually through the generation of their
sub-component slices and slabs (i.e., series of consecutive slices). By doing so, we
can subvert the challenging task of generating large-scale 3D images to one with
notably less GPU memory requirement. Our proposed 3D CT-scan generation
model, named CT-SGAN, offers a potential solution to two major challenges fac-
ing machine learning in medical imaging, namely a small number of i.i.d. train-
ing samples, and limited access to patient data. We evaluate the fidelity of gener-
ated images qualitatively and quantitatively using Fréchet Inception Distance and
Inception Score. We further show training on the synthetic images generated by
CT-SGAN significantly improves a downstream lung nodule detection task across
various nodule sizes. The contributions of this work are twofold:

– We propose a generative model capable of synthesizing 3D images of lung
CT. The proposed CT-SGAN leverages recurrent neural networks to learn
slice sequences and thus has a very small memory footprint.
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Fig. 1. Generated samples from the CT-SGAN model (224 × 224 × 224) compared
with samples of the same positions from a real CT-scan. The upper part of the figure
also demonstrates CT-SGAN, with the help of its BiLSTM network as well as slab
discriminator, is capable to learn anatomical consistency across slices within every 900
real training CT-scan volumes reflecting the same behavior in all three perspectives of
axial, sagittal, and coronal at generation time. See Appendix for more samples.
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– We demonstrate a successful use case of pre-training a deep learning model
on 3D synthetic CT data to improve lung nodule detection.

2 Methods

Fig. 2. CT-SGAN has 4 sub-networks: the recurrent neural network (BiLSTM), Rv;
the slice generator, Gslice; the slice and the slab discriminators, Dslice and Dslab. Gslice

generates a volume by getting zs from Rv concatenated with the constant noise. The
discriminators verify the consistency and the quality of the generated slices with respect
to original CT-scan volumes.

The structure of the CT-SGAN model is depicted in Fig. 2. The model architec-
ture is closely related to a work done by Tulyakov et al. [24] for the generation
of videos. In our work, however, instead of considering frames of a video that
are meant to be generated sequentially in terms of time, we have a series of
slices (i.e., slabs from a volume) that are needed to be generated consecutively
in terms of space. Some major modifications in the network designs such as
the critical change in z size, consideration of gradient penalty, sampling from
the slab regions, consideration of Bidirectional Long/Short-Term Memory (BiL-
STM) network for Rv instead of Gated Recurrent Units, and employment of 3D
slices differentiate CT-SGAN from their study. These changes specifically help
the generation of large-scale 3D CT-scans to be efficient and with high fidelity
to real data.

Succinctly, CT-SGAN generates a CT-scan volume by sequentially gener-
ating a single slice each of size 224 × 224 (×3); from these 3D slices, which
lead to more fine-grain quality, the collection of center slices form a volume
when piled on top of each other (the first and the last 1D slices in the vol-
umes are the neighbors of their associate 3D slices; hence 222 3D slices in total).
At each time step, a slice generative network, Gslice, maps a random vector
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z to a slice. The random vector consists of two parts where the first is sam-
pled from a constant patient-specific subspace and the second is sampled from a
variable slice-specific subspace. Patient-specific noise can also cover the overall
color range and contrast within a volume (e.g., scanner-specific information).
Since contents of CT-scans slices in one volume usually remains the same, we
model the patient/scanner-specific space using a constant Gaussian distribution
over all slices for a particular volume. On the other hand, sampling from the
slice-specific space is achieved through a BiLSTM network (Rv) where the net-
work is fed with random inputs (εi and h0), and its parameters are learned
during training. Despite lacking supervision regarding the decomposition of gen-
eral (patient/scanner-specific) content and slice-specific properties in CT-scan
volumes, we noticed that CT-SGAN can learn to disentangle these two factors
through an adversarial training scheme as the absence of either noise hurt the
overall quality. Both discriminators Dslice and Dslab play the judge role, provid-
ing criticisms to Gslice and Rv. The slice discriminator Dslice is specialized in
criticizing Gslice based on individual CT-scan slices. It is trained to determine if
a single slice is sampled from a real CT-scan volume, v, or from v′ with respect
to the slice position. On the other hand, Dslab provides criticisms to Gslice based
on the generated slab. Dslab takes a fixed-length slab size, say T (center) slices,
and decides if a slab was sampled from a real CT-scan volume or from v′. The
adversarial learning problem writes as:

max
Gslice,Rv

min
Dslice,Dslab

Fvolume (Dslice,Dslab, Gslice, Rv) (1)

where the vanilla Jensen-Shannon divergence objective function Fvolume is (N is
the number of slices sampled from a slab region):

∑N
i=1

[
Ev [− log Dslice (Si(v))]

+Ev′ [− log (1 − Dslice (Si(v′)))]
]

+Ev [− log Dslab (ST (v))]
+Ev′ [− log (1 − Dslab (ST (v′)))]

(2)

We train CT-SGAN using the alternating gradient update algorithm [4]. Specif-
ically, in one step, we update Dslice and Dslab while fixing Gslice and Rv. In the
alternating step, we update Gslice and Rv while fixing Dslice and Dslab.

3 Datasets and Experimental Design

The evaluation of the generated CT-scans was designed to be done under two
scrutinies: (1) qualitative inspection of the generated volumes from CT-SGAN
where the diverse variation and consistency across all three views of axial, coro-
nal, and sagittal were met (2) quantitative demonstration that synthetic data
from CT-SGAN are valuable to build deep learning models for which limited
training data are available. We evaluate the efficacy of data augmentation by
three nodule detection classifier experiments (i) training with only real dataset
(ii) training with only 10,000 synthetic volumes (iii) training with 10,000 syn-
thetic volumes as a pretraining step and then continue to train on the real dataset
(i.e., fine-tuning).
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3.1 Dataset Preparation

The dataset preprocessed and prepared for the training and evaluation contained
1200 volumes of CT-scans; the first half (clear of any nodules) was from the
National Lung Screening Trial (NLST) study [23] and the second half (contain-
ing nodules) was from the Lung Image Database Consortium (LIDC) reference
database [2] (i.e., the dataset covers at least two distributional domains), where
both are publicly available. This combined dataset was divided into 3 stratified
non-overlapping splits of training, validation, and test. Explicitly, of this com-
bined dataset (referred as real dataset hereafter), 900 CT-scans were used for
CT-SGAN training (as well as the nodule detection classifier when needed), 150
scans for validation of the nodule detection classifier, and the nodule detection
results were reported on the remaining 150 CT-scans. The CT-SGAN model
was trained only on the training split; however, since CT-SGAN generates sam-
ples unconditioned on the presence of the nodules, the nodules from LIDC were
removed in advance (i.e., CT-SGAN generates nodule-free CT-scans). Regarding
nodule detection experiment, as the real CT-scans came from two resources (i.e.,
LIDC scanners and NLST scanners), one of which contained nodules, the train-
ing, validation and test dataset of the nodule detection classifier was created by
following Fig. 3(a) to create an unbiased (source- and device-agnostic) dataset.
For this purpose, a nodule injector and a nodule eraser were adopted based on
a lung nodule simulation cGAN [10].

The nodule injector was trained on the LIDC data, which contains nodules
information such as location and radius. At training time the inputs were the
masked central nodules regions and the volumes of interest containing the nod-
ules, while at inference mode the input was only the masked central nodules
regions, see Appendix. The outputs were the simulated nodules when provided
with masked regions. In a similar fashion to lung nodule simulation cGAN [10],
the nodule eraser was trained to remove nodules on nodule-injected NLST sam-
ples. At training time, the inputs of the eraser were the volumes of interest with
and without a nodule, and the model learned how to replace the nodules with
healthy tissues at inference time, see Appendix.

To mitigate the device noise in the real dataset, the LIDC data was divided
evenly and the nodule eraser was applied to remove the nodules from half of the
LIDC scans. Similarly, the NLST data was split evenly and the nodule injector
was applied to insert the nodules into half of the NLST scans.

To obtain the synthetic volumes for augmentation, the nodule eraser was first
applied to the LIDC data to ensure the CT-SGAN training set was nodule-free.
We argue the synthetic scans were nodule-free as the nodules in training data
were removed. The trained nodule injector was employed to randomly insert nod-
ules inside the lungs of the synthetic volumes, and the number of nodules to be
inserted was determined by the nodule amount distribution of the LIDC dataset.
The 10,000 synthetic data augmentation were created by injecting nodules into
half of the volumes and leave the rest untouched.
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4 Results and Discussion

4.1 Qualitative Evaluation

The visual qualitative evaluation of the generated volumes was studied based
on three criteria: (1) Anatomical consistency of the generated slices, (2) Fidelity
of generated slices to the real ones, and (3) diverse generation of CT-scans.
Regarding the first two, Fig. 1 shows these requirements were met as in thousand
of generated CT-scans we rarely noticed any anomalies. For the high quality of
the slices and slabs, we observed consideration of 3D slices and the inclusion of
both patient- and slice-specific noises played important roles. As to the diversity
in the generated CT-scans, i.e. to avoid mode collapse, and also to ensure stability
in training, the discriminators’ losses contained the gradient penalty discussed
in [13] introducing variations in the generated volumes. While CT-SGAN was
preferably trained with Wasserstein loss [1], we did not notice a drastic change
when the vanilla Jensen-Shannon loss was employed. Also, even though artifacts
could appear in the generated CT-scans, the presence of them was partially
related to the noise in real CT-scans produced by scanners.

4.2 Quantitative Evaluation

3D-SqueezeNet [7] was used as the nodule detection classifier. Input volumes were
normalized between 0 and 1, and the classifier predicts the existence of nodules as
a binary label (0 or 1). Adam optimizer [12] was used with learning rate = 0.0001,
β1 = 0.9, β2 = 0.999. 3 different seeds were used to initialize the classifier and
choose the location and number of nodules to inject into the synthetic volumes.
Moreover, 6 different sizes of simulated nodules were compared, see Appendix
for the distribution of nodule radius in LIDC dataset. Figure 3(b) summarized
the nodule detection classification results. We observe that with a larger number
of synthetic training data (10,000 generated CT-scans), the trained classifiers
have better performance when compared with the classifier trained with 900
real volumes; the accuracy improvement is significant for the nodule sizes of 14
and 16. Also, nodule classification accuracy increases even further by pre-training
the classifier on synthetic data and then fine-tuning on the 900 real volumes.

Fréchet Inception Distance (FID) [6] and Inception Score (IS) [20] were also
computed, as shown in Table 1. FID measures the disparity between the distri-
bution of generated synthetic data and real volumes. IS indicates how diverse
a set of generated CT volumes is. To compute FID, we randomly selected two
different scans in the data source (real or synthetic) and computed the FID slice
by slice in order. Similarly, IS was also computed slice-by-slice. The average IS
for the synthetic data is 2.3703 while the average IS for the real data is 2.2129.
We believe that the IS for real volumes is lower due to the limited real volumes
(only 900 scans). The FID between synthetic data and real data is 145.187. As a
point of reference, the FID between two splits of the real data is 130.729. As the
generation of small-size volumes (e.g., 128 × 128 × 128) with a vanilla 3D GAN,
and then resizing the generated scans (at the cost of losing details and diversity)
determined the baseline in our model comparison Table 1 also provides that.
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(a) (b)

Fig. 3. (a) The real dataset consists of both LIDC and NLST data. To overcome
the effect of device noise on the nodule detection classifier, a nodule injector and a
nodule eraser were trained to mix the nodule information and device information to
alleviate the device bias. (b) Results for classifiers trained on real and synthetic images.
Accuracy is provided for the balanced binary test set. We observe that (pre-)training
the classifier on a large amount of synthetic data will notably improve the nodule
detection performance.

Table 1. Inception Score and Fréchet Inception Distance for the real scans and the
synthetic scans generated by vanilla 3D GAN and CT-SGAN.

Data Source IS (↑) FID (↓)

Real Data 2.21 ± 0.21 130.72 ± 31.05

3D GAN Synthetic Data (1283) 2.16 ± 0.26 206.34 ± 59.12

CT-SGAN Synthetic Data (2243) 2.37 ± 0.19 145.18 ± 25.97

5 Conclusions

We introduced CT-SGAN, a novel deep learning architecture that can generate
authentic-looking CT-scans. We quantitatively demonstrated the value of data
augmentation using CT-SGAN for the nodule detection task. By pretraining the
nodule detection classifier on a vast amount of synthetic volumes and fine-tuning
on the real data, the performance of the classifier improved notably. For future
work, we aim to generate a larger size of CT-scans with the proposed model, as
well as extend CT-SGAN to conditional CT-SGAN to avoid external algorithms
for the inclusion or exclusion of nodules.
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Appendix

A Sample Synthetic CT-scans from CT-SGAN

See Figs. 4 and 5.
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Fig. 4. Middle-region CT-SGAN samples compared with real samples of the same
positions.
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Fig. 5. Comparison between several samples of real and CT-SGAN generated CT,
from various corresponding regions. The figure shows how the CT-SGAN generated
images, respect the anatomy of the lung.
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B Nodule Injector and Eraser

See Figs. 6, 7 and 8.

Volume of Interest Masked Volume of Interest

Nodule Injector

Synthetic Nodules

Fig. 6. Illustration of the Nodule Injector during inference mode. Volume of interests
(VOIs) were selected as a sub-volume, and a mask was applied to the centre of VOIs
as input for the Nodule Injector. The output was the injected synthetic nodules, and
the injected VOIs will be pasted back to the CT-scans.

Volume of Interest (i.e., Real Nodules)

Nodule Eraser

Erased Nodules

Fig. 7. Illustration of the Nodule Eraser during inference mode. Volume of interests
(VOIs) were selected as a sub-volume as input for the Nodule Eraser. The output was
the sub-volume without the real nodules, and the erased VOIs will be pasted back to
the CT-scans.
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Fig. 8. LIDC Nodule Radius Distribution.
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Abstract. Image inpainting is a well established problem in computer
vision which aims to fill in missing regions in images. In medical appli-
cations, it can be combined with other tools to remove artifacts or fill
in occluded regions, allowing better understanding of the images from
doctors or downstream algorithms. However, current methods that solve
the problem usually pay no attention to the underlying pixel-intensity
distributions in the missing input regions, and most approaches deter-
ministically provide only one result per input region instead of several
plausible results. We estimate the intensity distributions within each
masked region using a novel Variational Autoencoder (VAE) based hier-
archical probabilistic network. Our approach then generates a diverse set
of inpainted images, all of which appear visually appropriate.

Keywords: Image inpainting · Variational inference · Artifacts
removal · Needle tracking · Probabilistic graphical models

1 Introduction

Image inpainting is a fundamental problem whose goal is to fill in the missing
patches in images with reasonable contents. In medical image analysis, it could
be used as a tool to remove artifacts or fill in unclear regions. Because neural
networks are very sensitive to small perturbation in noises and pixel values [1],
correctly removing artifacts and occlusions in the images is important in med-
ical domain to perform computer-aided diagnosis. When humans perform such
task, different experts would agree on the semantic contents to fill in, but dis-
agree on the fine details of the contents (e.g. the distribution of speckle noises
in ultrasound images). The results should be plausible as long as 1) the filled-in
content is semantically correct; 2) the general continuity of the image is kept; 3)
the inpainted content is visually realistic, i.e. has the same noise distribution as
a real image. However, the subjectivity of this problems are rarely discussed in
literature, and most works focus on inpainting images deterministically. Besides,
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due to the noisy nature of ultrasound images, recent approaches with tradi-
tional loss functions (e.g. L2 loss) would smooth the image, making the results
unrealistic. Therefore, we propose a variational inpainting method with more
complicated training objectives to solve the issue.

Unlike traditional diffusion-based or patch-based methods [2,3], the majority
of recent works have been done on natural images where they mainly focus on
developing neural networks to either suppress the piece-meal artifact near the
boundaries of the masks [9,28], or recover fine detailed textures in the masked
region [14,16,23,25,28]. Besides, a few works have been working on generating
multiple reasonable results instead of one [7,29]. In medical image analysis, prior
semantic information was incorporated into the network to guide inpainting in
[27] while a pyramid Generative Adversarial Network (GAN) was proposed to
remove cross symbols in thyroid ultrasound images by inpainting. Due to the fact
that training images only provide one plausible inpainted content, a traditional
Variational Autoencoder (VAE) would underestimate the variance in the coded
distribution. To synthesize the images by sampling from some distributions to
generate multiple outputs instead of directly predict an output deterministically,
we propose a hierarchical probabilistic approach, which utilizes the distribution
of the masked images to resemble the distribution of the unmask images.

To generate multiple plausible results on ultrasound images, we follow the
design of the state-of-the-art NVAE [22] and HPU-Net [13] in terms of the model
architecture. A series of hierarchical latent variables are injected into the decoder
part of a U-Net [19]. During training, we can get a posterior from the pair of
incomplete image and complete image, and during inference, we directly sample
from the prior distribution. To generate the correct noise pattern, we use loss
functions including deep losses enforced by VGG along with other traditional
losses [9]. Our method is capable of generating multiple plausible inpainting
results on ultrasound images, and removing artifacts.

2 Methods

We propose a VAE-based method that employs a hierarchical latent space decom-
position. Shown in Fig. 1, our method aims to learn the posterior given the
complete and incomplete image and the prior given the incomplete images by
maximizing the variational lower bound (ELBO). During inference, the method
estimates the complete image given the incomplete one and the prior.

2.1 Learning

In learning phase, both incomplete image x and complete image y are observed.
With respect to latent variables {zi}, we aim to learn n posterior distributions

qφn
(zn|x,y),

qφi
(zi|x,y,z>i),

(1)
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zn zn−1 z2 z1

dn dn−1 d2 d1 y

x

Fig. 1. Probabilistic Graphical Model (PGM) interpretation of our method, where {zi}
denotes Gaussian latent variables, while di represents a compressed representation of
z≥i. x represents the incomplete images and y represents the completed image, where
both of them are observed during training and only x is observed during inference.

n prior distributions
pθn

(zn|x),
pθi(zi|x,z>i),

(2)

and a final projection function

pθ (y|x,z1, . . . ,zn), (3)

such that the ELBO can be written as

Eqφ i

[
log p{θi}(y|x, {zi}) −

∑

i

DKL(qφi
(zi|x,y,z>i)‖pθi

(zi|z>i))
]

(4)

DKL(·) is the Kullback-Leibler (KL) divergence between two distributions.

2.2 Inference

In the inference stage, only the incomplete image x are observed. Therefore, we
can first sample latent variables from the priors:

z̃n ∼ pθi
(zn|x)

z̃i ∼ pθi
(zi|x,z>i)

(5)

And then perform the inference using {z̃i}:

ỹ ∼ pθ (y|x, z̃1, . . . , z̃n) (6)

2.3 Objectives

To generate correct semantic information and textures, we divide the loss func-
tion enforced on the outputs into three parts: reconstruction loss, perceptual
loss, and style loss. [9] shows that similar division is effective. The reconstruc-
tion loss constrains the outputs to structurally resemble the ground truth, while
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it only has limited capability in reconstructing the fine details. Perceptual loss
and style loss, are used to obtain the fine details in textures. In addition, the KL
divergence between the posterior and the prior are also important because the
network would learn the correct distribution it samples from by minimizing it.

Reconstruction Loss. Since matching the semantic information is more crucial
than the exact same noise, we assign higher weights to the layers with lower
resolution in Laplacian pyramid loss [4]. Besides, we assign lower weights to the
pixels that are further away from the seen regions. Denote the generated image
as Î and the ground truth image as I, Îk and Ik as the k th layer of the respective
Laplacian Pyramid, dk as k th layer of Gaussian pyramid of the distance map
which represents the distance to the closest seen pixel, and K as the total number
of layers the pyramid. The reconstruction loss Lrec is given by:

Lrec = wrec
K∑

k=1

rkα−dk

HkWk
||Ik − Îk|| (7)

where Hk and Wk are the height and width of the image in the k th layer of the
pyramid. α is a positive constant that controls how much the weight decays in
the masked region as it gets further away from the unmasked region. The weight
parameters of different layers rk are designed to have the loss give larger weights
to low frequency contents and wrec is the weight for the reconstruction loss.

Perceptual Loss and Style Loss. Perceptual and style loss [8] are enforced by
the high-level features extracted by a VGG [20] that is pre-trained on ImageNet
[6]. The error metric is enforced on the deep features instead of the original
images, since deep features consist of some form of semantic information about
the images. Perceptual loss Lp retains the spatial correlation of the deep features,
so minimizing it would recover the significant content of the missing region. Let
ψj(x) be the function to extract the output of layer j of VGG from x, and have
wp

j as the weight of the loss at layer j for perceptual loss, and J as the set of
layers in VGG.

Lp =
∑

j∈J

wp
j ||ψj(I) − ψj(Î)|| (8)

Style loss is enforced by the gram matrix, which does not preserve the spatial
correlation between pixel. Therefore, style loss only makes sure that the gener-
ated style matches the ground truth. Denote the weight of the loss at layer j of
VGG for style loss as ws

j , the style loss Ls could be expressed as:

Ls =
∑

j∈J

ws
j ||Gj(I) − Gj(Î)|| (9)

where Gj(x) is the Cj ×Cj gram matrix of the feature map of layer j of image x.
Let Cj , Hj , and Wj be the number of channels, height, and width of the feature
map of layer j respectively, then the gram matrix would be:

Gj(x)(u, v) =
∑Hj

h=1

∑Wj

w=1 ψj(x)(h,w, u)ψj(x)(h,w, v)
CjHjWj

(10)
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KL Divergence. Inspired by [22], we use a similar KL divergence represen-
tation as theirs, where instead of directly predicting the posterior distribution,
we predict the difference between the prior and posterior distributions. Specif-
ically, denote the distribution for the j th variable in zi in prior as a Nor-
mal distribution pθi

(zj
i |z<i) = N (μj(z<i), σj(z<i)). We define the posterior

as qφi
(zj

i |z<i,x,y) = N (μj(z<i) + Δμj(z<i,x,y), σj(z<i,x)Δσj(z<i,x,y)),
where Δμj and Δσj are the predicted mean difference and variance difference.
Therefore, the KL divergence between prior and posterior can be denoted as

KL(qφi
(zj

i |z<i,x,y)||, pθi
(zj

i |z<i)) =
1
2
(
Δμ2

j

σ2
j

+ Δσ2
j − log σ2

i − 1) (11)

The total KL divergence loss LKL is the sum over all the KL divergence between
all the priors and posteriors by the weight wKL

i .

2.4 Implementation

Our model is implemented in the form of the network in Fig. 2, where the prior
and posterior are computed by different U-Net-like [19] network separately and
are optimized at the same time by maximizing the ELBO. We utilize dilated
convolution [15] in the middle of the network to improve the fine details in
the output by increasing the receptive field. In our ConvBlock shown in Fig. 2,
batch normalization [11] is used followed by swish activation [18] after convo-
lution. CBAM [24] is put after each swish activation to perform channel-wise
and spatial attention. Swish activation and CBAM have been shown effective in
image generation tasks [17,22]. Each layer of the network consist of 1 ConvBlock.
In addition, we merge the generated image and the original image based on the
mask to create the final output.

Fig. 2. The structure of the network and ConvBlock. Each layer of the network consists
of 1 ConvBlock. Blue, green, and yellow layers in the network indicate dilation rate of
1 (which is normal convolution), 2 and 4 respectively. At the blue layers, max pooling
or transpose convolution is used to down- or up-sample. (Color figure online)
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We have 6 layers in the encoder while the number of filter are 64, 128, 256,
512, 1024 and 1024. The structure of the decoder is the inverse of the encoder
while there are Gaussian latent variables in all the layers of the decoder. The
weights for perceptual loss wp and style loss ws are set to 0, 0, 0, 0, 0.1 and 0.2,
0.005, 0.002, 0.02, 20 for block1 conv1, block2 conv1, block3 conv1, block4 conv1,
block5 conv1 of VGG respectively. These weights are selected based on empirical
results. In addition, the weight for reconstruction loss wrec ranges from 100 to
500 depending on different application, while all the weights for KL divergence
loss wKL

i are set to 10. The model is optimized by Adam optimizer [12] with a
learning rate of 1 × 10−5.

3 Experiments

Images are captured by UF-760AG Fukuda Denshi on a live-pig, and a blue-
gel anthropomorphic tissue phantom with simulated blood vessels (Advanced
Medical Technologies, WA), with a linear transducer with 51 mm scanning width.
The models in this paper are either trained on 4 Nvidia Tesla V100 GPUs, or
on a single Nvidia Titan RTX GPU. The training masks in Sects. 3.1 and 3.2 is
based on the mask generation algorithm in [26].

3.1 Inpainting on Live-Pig Images

In this experiment, we train (800 images) and test (180 images) our algorithm on
live-pig ultrasound images with 180 images in validation set (1,160 total images).
We randomly sample from the latent space to generate multiple plausible results.
As shown in Fig. 3, we inpaint in the regions within the green boundaries. Our
results have different noise patterns which are visually correct. The differences
between random samples are more apparent in the supplementary video.

Fig. 3. Demonstration of different random samples. We inpaint within the green
boudaries. Different samples have different generated noise patterns and brightness.

Furthermore, we compare our hierarchical probabilistic inpainting algorithm
(HPI) against Telea et al.’s method [21] (Telea), Deep Fusion [9] with both our
training objective (DF) and L2 loss (DF-L2), Partial Convolution [16] with both
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our training objectives (PConv) and L2 loss (PConv-L2), and with our network
structure without variational inference (HPI-woVI). As shown in the top 2 rows
of Fig. 4, Telea cannot handle the textures while PConv and PConv-L2 com-
pletely fail on pig images. DF and DF-L2 learned the semantic information but
results are both blurry. HPI-woVI can correctly learn the semantic information
but creates significant stitching artifacts at the boundaries of the mask. HPI
is able to generate visually correct images with correct semantic information
even though they do not look exactly the same as the ground truth. To evaluate
quantitatively, we draw a bounding box around the masked region and extend 5
pixels in each direction to crop out the patch. We then calculate the L1, PSNR,
SSIM on these patches. The results are shown in Table 1, where HPI outperforms
other methods, even though our goal is not to completely reconstruct the ground
truth images. Note that even though DF-L2 has decent results by numbers, it
does not generate visually correct textures.

Fig. 4. First 2 rows: pig images. Last 2 rows: artifact removal. Only our approach
generates visually correct results without introducing significant new artifacts.

Table 1. Comparison between our methods against others

Telea DF DF-L2 PConv PConv-L2 HPI-woVI HPI

L1 0.030 0.056 0.023 0.093 0.027 0.026 0.023

PSNR 19.99 16.81 22.30 12.75 21.12 21.33 23.00

SSIM 0.545 0.373 0.616 0.246 0.578 0.564 0.635

3.2 Filling in Artifact Regions After Segmentation

To demonstrate filling in artifact regions, needles were put into the blue-gel
phantom to create reverberation artifacts. Such artifacts are generated by sound



90 A. L. Y. Hung et al.

waves bouncing between the posterior and anterior surfaces of highly reflective
objects, resulting in additional echoes in the image that do not exist in reality
[30]. We apply a reverberation artifact segmentation algorithm [10] and then
inpaint where the artifacts were segmented. We trained the inpainting networks
on 1145 images with no reverberation artifacts and test them on reverberation-
artifact-corrupted data. Like the previous experiments, we also compare our
method with those other methods. Shown in the last 2 rows of Fig. 4, other
methods create either completely wrong pixel values in the artifacts region (DF,
PConv), checkerboard patterns (HPI-woVI), non-existant anatomic boundaries
(DF-L2), blurry patches (Telea), or discontinuity in the image (PConv-L2), while
ours generates images with reverberation artifacts correctly removed.

3.3 Needle Tracking

We use our inpainting algorithm to assist a needle tracking algorithm [5] to show
our inpainting method’s potential application in enhancing the appearance of
partially non-visible needles. The dataset includes four 2.5-in. echogenic needles
with different amount of pre-bent curvature inserted into the blue-gel phantom.
The dataset includes 6 trials of insertion for each kind of needles. There are 384,
364, 408, 373 test images for straight, small-curvature, medium-curvature, and
large-curvature needles respectively. We select the inpainted regions following the
steps below. In [5], we use an intensity thresholding and a Sobel filter response
thresholding to select the candidate points for weighted-RANSAC fitting. First,
we ran both thresholding methods in the bounding box of the ground-truth
labels of the needle to select the candidate pixels for weighted-RANSAC fitting.
We then search along the labeled needle axis and detect the boxes where there
is no candidate points and inpaint the regions inside the boxes. The evaluation
metrics are: the error of the tip localization (distance between the detected and
labeled tips) and the shaft fitting error (the mean absolute error of the pixels on
the polynomial of the labeled needle to the detected needle). Results in Table 2
show inpainting lowers the tip and shaft errors in most cases, allowing better
needle tracking. The visualization of the needle tracking can be found in the
supplementary materials.

Table 2. Comparison between the needle tracking accuracy with and w/o inpainting

Needle type Tip Error/mm Shaft Error/mm

w inpaint w/o inpaint w inpaint w/o inpaint

Straight needle 1.52±1.22 2.56 ± 2.17 0.65±0.71 0.77 ± 0.63

Small curvature 2.50±2.19 2.92 ± 2.62 0.56±0.67 0.76 ± 0.95

Medium curvature 2.89 ± 3.53 2.87±3.43 0.77±1.08 0.78 ± 1.16

Large curvature 2.51±2.06 3.35 ± 3.92 0.60±0.92 0.84 ± 1.17
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4 Conclusion

We propose a hierarchical probabilistic ultrasound image inpainting algorithm
that can be trained via variational inference. We show that the algorithm is
able to generate visually correct outputs with some variance in the inpainted
regions. This method can be used to fill in where artifacts have been automati-
cally detected and to enhance the appearance of partially non-visible needles for
improved needle tracking.
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Abstract. Weakly supervised learning has been rapidly advanced in
biomedical image analysis to achieve pixel-wise labels (segmentation)
from image-wise annotations (classification), as biomedical images nat-
urally contain image-wise labels in many scenarios. The current weakly
supervised learning algorithms from the computer vision community are
largely designed for focal objects (e.g., dogs and cats). However, such
algorithms are not optimized for diffuse patterns in biomedical imaging
(e.g., stains and fluorescence in microscopy imaging). In this paper, we
propose a novel class-aware codebook learning (CaCL) algorithm to per-
form weakly supervised learning for diffuse image patterns. Specifically,
the CaCL algorithm is deployed to segment protein expressed brush bor-
der regions from histological images of human duodenum. Our contribu-
tion is three-fold: (1) we approach the weakly supervised segmentation
from a novel codebook learning perspective; (2) the CaCL algorithm
segments diffuse image patterns rather than focal objects; and (3) the
proposed algorithm is implemented in a multi-task framework based on
Vector Quantised-Variational AutoEncoder (VQ-VAE) via joint image
reconstruction, classification, feature embedding, and segmentation. The
experimental results show that our method achieved superior perfor-
mance compared with baseline weakly supervised algorithms. The code
is available at https://github.com/ddrrnn123/CaCL.

Keywords: Weakly supervised learning · Segmentation · AutoEncoder

1 Introduction

Mapping the location of 19,628 human protein?coding genes plays a critical role
as a “census” of proteins, which further increases our knowledge of human biol-
ogy and enables new insights into principles of life. For instance, the Human
Protein Atlas (HPA) project1 has applied >25,000 antibodies to characterize

1 https://www.proteinatlas.org.
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Fig. 1. The performances of object segmentation. This figure shows the performances of
object segmentation using different attention-based weakly supervised learning meth-
ods. The former method, GradCAM, is designed for focal objects rather than diffuse
objects. Our proposed method, CaCL, can obtain better results on diffuse objects.

the tissue-level spatial expression by collecting 10 million immunohistochemistry
(IHC) images. The IHC images indicate the location and distribution of pro-
tein expression. For example, understanding the area ratio between IHC stained
regions and cell body regions at the brush border of the human duodenum reveals
the specificity of gene expressions.

The color deconvolution algorithm [13] is regarded as the de facto standard
approach to segment IHC stained histopathology images. However, the manual
tuning of IHC staining parameters (e.g., segmentation threshold) to deal with
heterogeneous image qualities and attributes is labor-intensive. Moreover, color
deconvolution cannot understand the semantic information of a figure.

Recent weakly supervised learning techniques have played a critical role in
image segmentation with the benefits of only needing image-wise annotation [15].
Zhou et al., [18] proposed Class Activation Mapping (CAM) for Convolutional
Neural Network(CNN) with a global average pool to allow CNNs to visual-
ize object localization. Then, Selvaraju et al., [14] developed Gradient-weighted
Class Activation Mapping (GradCAM) and Guided GradCAM (G-GradCAM)
for better visual explanations with localization information. Later on, Fong et
al., [6,7] introduced a framework for learning meta-predictors. However, the cur-
rent weakly supervised learning algorithms from the computer vision community
are mostly designed for focal objects and may display attention with any image,
which are not optimized for diffuse patterns in biomedical imaging [4](Fig. 1).

Meanwhile, there have been several weakly supervised learning approaches
in histology [12]. Belharbi et al., [3] proposed an active learning framework to
jointly perform supervised image-level classification and active learning for seg-
mentation. Xu et al., [16] proposed a weakly supervised learning framework
for histopathology image segmentation, using multiple instance learning (MIL)-
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Fig. 2. The backbone of our method. Our method includes CaCL embedding, GAN
based reconstruction and classification, and weakly supervised learning segmentation.

based label enrichment and fully supervised training with image-level labels.
These methods achieved superior performances. With the development of deep
learning technology, more unsupervised segmentation models were proposed for
medical image analysis [1,2,10,17]. However, most of the attention-based meth-
ods only obtained attention maps for partial classification tasks rather than
segmentation tasks. Herein, we provided a weakly supervised learning model to
achieve robust segmentation images directly from attention maps.

A new generative model, Vector Quantised-Variational AutoEncoder (VQ-
VAE) [9], was proposed to encode an image from an infinite continuous feature
space to a finite discrete feature space using a codebook with a fixed number of
codes. Inspired by VQ-VAE, we propose a novel class-aware codebook learning
(CaCL) algorithm to segment diffuse patterns in medical imaging. The central
idea is to split the original codebook into two separate codebooks. One code-
book encodes the discriminative class patterns (codebook C), while the other
encodes the common image patterns between two groups of images (codebook
S). Then, the pixels that used in the codebook S + C during the encoding pro-
cess are used as an attention to perform weakly supervised segmentation. Briefly,
the innovations of the proposed approach is in three-fold: (1) We approach the
weakly supervised segmentation from a novel codebook learning perspective; (2)
We introduce the CaCL algorithm to segment diffuse image patterns rather than
focal objects; (3) The proposed algorithm is implemented in a multi-task frame-
work based on Vector Quantised-Variational AutoEncoder (VQ-VAE) via joint
image reconstruction, classification, feature embedding, and segmentation.

2 Methods

The entire framework of the proposed CaCL method is presented in Fig. 2. The
CaCL algorithm consists of three sections: (1) a class-aware codebook for feature
embedding; (2) generative adversarial image reconstruction and classification;
and (3) weakly supervised segmentation from diffuse patterns.



96 R. Deng et al.

Fig. 3. The design of the class-aware codebook. This figure shows the design of the
class-aware codebook. One encodes class discriminative features (codebook C), while
another encodes the shared features among two classes (codebook S).

2.1 Class-Aware Codebook Based Feature Encoding

In this study, we design a class-aware codebook inspired by VQ-VAE2 [11]. With
the VQ-VAE framework, three steps are used to process an input image. First,
the encoder E is used to convert a RGB image into a feature map. Second, the
feature map is coded by the codebook from an infinite solution space to a fixed
number of codes for each pixel. For example, if the codebook contains 32 codes,
each pixel can only be one of the 32 types of features. Last, the coded feature
maps were decoded to the input image resolution as a encoder-decoder design.

As opposed to VQ-VAE, which only used one codebook to encode all inputs,
we propose to use two codebooks in CaCL. One encodes class discriminative
features (codebook C), while another encodes the shared features among two
classes (codebook S), as shown in Fig. 3. In this study, the images with positive
protein expression patterns (dark brown at the brush broader) are defined as
IP , while the images without protein expression patterns are defined as IN .
Then, for each input image, we will first retrieve one raw feature map from E.
Second, two coded feature maps will be obtained by using codebook S only and
codebook S + C, respectively. Two images will be reconstructed using the same
decoder D. One image only has common diffuse patterns across positive and
negative images (Recons Negative RN in Fig. 2), while another image contains
both common diffuse patterns and class discriminative patterns (Recons Positive
RP in Fig. 2).

2.2 Loss Definition

Commitment Loss and Codebook Loss: Herein, we implement the com-
mitment loss and codebook loss in VQ-VAE2 that retains the reconstruction
features close to the chosen codebook vectors.

Lcommitment(I,D(e)) = ||sg[e] − E(I)||22 (1)

Lcodebook(I,D(e)) = ||sg[E(I)] − e||22 (2)

where e is the coded feature map for the input I, E is the encoder function, and
D is the decoder function. The operator sg refers to a non-gradient operation
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that stops the gradients from flowing into its argument. It uses the exponential
moving average updates for the codebook with a decay parameter.

Reconstructive Loss: The reconstructive loss is applied to supervise the qual-
ity of reconstruction images RP and RN . Each input image I will go through the
combined codebook C and S and the single codebook S, which obtain both RP

and RN . RP is calculated through the mean-square-error as the reconstruction
loss with IP , and RN is compared with images IN , respectively.

Lrecons(I,RP , RN ) = (1 − M)||I − RP ||22 + M ||I − RN ||22

Where M =

{
1, I = IN

0, I = IP

(3)

Discriminative-Codebook Loss: To encourage the model to use codebook C,
we introduce a new discriminative-codebook loss to calculate the mean-square-
error of the quantized feature maps eN and eP in the non-zero channels from
codebook C. Briefly, if the image is negative, we force the feature maps to be
identical from two code books. If the image is positive, we force the feature maps
to be different from two code books by using Ldiscriminative−codebook.

Ldiscriminative−codebook(I, eN , eP ) = K||eN − eP ||22

Where K =

{
1, I = IN

−1, I = IP

(4)

Hybrid Discriminator Loss: The hybrid discriminator loss performs both: (1)
real/fake; and (2) positive/negative classification tasks on reconstructed images.
The implementation of the discriminator and the generator are followed by a
generative adversarial network (GAN) design [19]. We create two image pools
Pdata to separately store all fake positive and fake negative images to train
the discriminator. We use one resnet18 [8], named as Cls, as the discriminator
(classifier).

Lclassifier(IP , IN , RP , RN ) = TRP
log(Cls(X ∼ Pdata(RP )))

+ TRN
log(Cls(X ∼ Pdata(RN )))

+ TIP log(Cls(IP )) + TIN log(Cls(IN ))
(5)

Lmapping(RP , RN ) = TIP log(Cls(RP )) + TIN log(Cls(RN )) (6)

where TIP , TIN , TRP
, TRN

are the targets of IP , IN , RP , RN , respectively.
The aforementioned loss functions are aggregated into Lcombine with weights

λ. Since the discriminators typically converge faster than generators, we perform
back-propagation at different frequencies. During the training, the classification
loss (Lclassifier) is updated in every ten epochs, while Lcombine is updated in
each epoch.

Lcombine = λmappingLmapping + λcommitmentLcommitment + λreconsLrecons

+ λdiscriminative−codebookLdiscriminative−codebook

(7)
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2.3 Training Strategy

The class consistency is normalized by computing commitment loss and recon-
structive loss. For all positive images (Ip), only reconstructed positive images
(Rp) are calculated in reconstructive loss. The raw features E(Ip) from positive
input images (Ip) are computed in commitment loss with positive coded features
(ep). The same principles are implemented for all negative inputs (In).

To train the codebooks, all the vectors in both codebook S and C are updated
after quantizing the coded positive features (ep). In contrast, only the vectors in
codebook S are updated after quantizing the coded negative features (en). Mean-
while, we use mean-square-error to reduce the difference between encoded fea-
tures (ep and en) from the negative inputs (In), while simultaneously amplifying
the distinctions between ep and en from the positive inputs in the discriminative-
codebook loss Ldiscriminative−codebook. Such a process guides the codebook S and
codebook C to assemble distinctive features in different classes, independently.

Next, a classifier is used to identify four types of images, which are Input
Positive (Ip), Input Negative (In), Reconstructive Positive (Rp), and Recon-
structive Negative(Rn). Meanwhile, we employ a discriminator to reconcile the
differences between the input images (Ip, In) and the reconstructive images (Rp,
Rn). Ideally, only Rp from Ip contain the positive patterns from the codebook
C.

2.4 Weakly Supervised Learning Segmentation

Ideally, after training the model, only pixels using class-specific codebook C
should contribute to the differences between the two classes. Therefore, we simply
mark those pixels as 1, and mark the remaining pixels as 0. The outcome mask
is used as our weakly supervised segmentation results.

3 Data and Experiments

This research study was conducted retrospectively using human subject data
made available in open access by the Human Protein Atlas (https://www.
proteinatlas.org). Ethical approval was not required as confirmed by the license
attached with the open access data. 42 high resolution duodenum histological
micro-array images were obtained from the Human Protein Atlas. 27 images con-
tained high brush border protein expression, while the remaining ones did not.
The protein expression is specified as the IHC staining pattern (dark brown).
Patches in an 8 × 8 grid without overlapping from each high-resolution image
were extracted. Due to the GPU memory limitation, we downsample these
patches with 375 × 375 pixels to image patches with 128 × 128 pixels. We
randomly selected 1480 patches for training, 200 patches for validation, and 200
for testing. Half of the testing images were from the brush border area to evaluate
the performance of our method.

The design of the class-aware codebook is in Fig. 3. The number of descrip-
tors in codebook S is 27, while the number of descriptors in codebook C is 5.

https://www.proteinatlas.org
https://www.proteinatlas.org
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Fig. 4. CaCL at the testing stage. This figure shows the example outcomes from the
proposed CaCL framework, which include reconstructed images, classification results
and segmentation results.

Each descriptor has 64 channels, where 32 non-overlapping channels are from
each codebook S and C, respectively. The remaining locations of the codebook
are set to 0. The decay in each codebook update is 0.98. For all the experi-
ments, we use the Adam solver for optimization with a batch size of one. The
learning rate of the classification loss is 0.0001, while the learning rate of the
combined loss is 0.0003. The size of the image pool is 64. The weights λ of com-
mitment loss, reconstructive loss, discriminative-codebook loss, and discrimina-
tor loss are empirically set to 0.25,100,50, and 1, respectively. These parameters
were determined by fine-tuning process to obtain superior performances in both
segmentation metrics and reconstructive visualizations.

The color deconvolution was employed as the current standard IHC stain
segmentation method. CAM and GradCAM were utilized as the benchmarks of
attention based weakly supervised learning. All experiments were completed on
the same workstation, with NVIDIA Quadro P5000 GPU.

4 Results

In Fig. 4, the example input IP and IN images, and the corresponding recon-
structed RP and RN , are presented. Figure 5 shows the qualitative weakly seg-
mentation results, while Table 1 presents the quantitative results. The Dice
Similarity Coefficient (DSC), Positive Predictive Value (Precision), Sensitivity
(Recall), and Binary Cross-Entropy (BCE) are used as evaluation metrics. For
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Fig. 5. Pixel-wise attention segmentation. This figure shows the results of brush bor-
der segmentation using pixel-wise attention from different weakly supervised learning
methods.

Table 1. Segmentation results.

Method Dice Recall Precision BCE

Color deconv. [13] 0.347 0.400 0.363 7.066

CAM [18] 0.065 0.038 0.260 15.813

GradCAM [14] 0.061 0.035 0.298 19.586

G-GradCAM [14] 0.030 0.018 0.099 14.273

CaCL (Ours) 0.623 0.787 0.574 1.079

CaCL+morph. (Ours) 0.703 0.712 0.723 1.258

each IN image, if all the pixels inside the predicted segmentation masks are 0,
then DSC, Precision, and Recall are computed as 1. Otherwise, those metrics
are 0, according to [5]. All the results of baseline models in Table 1 are the best
performances by iterating all the intensity values as thresholds. A simple mor-
phological dilation operation with radius 1 is also tested in Table 1. As a result,
our method achieved the best quantitative performance.

5 Discussion

In this study, we presented a new weakly supervised learning method with a
class-aware codebook. The proposed CaCL approach achieved diffuse pattern
segmentation without pixel-wise annotation. Our proposed method combines
with the classification task and the segmentation task as a whole with “pixel-wise
attention” from image-wise weak labels, while previous CAM based attention is
more coerce.

The codebook-based reconstruction uses the region-level features from pixel-
wise feature maps, which inhibit positive features. The purpose of the dilation
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enhancement is to decrease this impact from neighbor pixels, which achieve
better segmentation results in Table 1.

The goal of our method is to achieve both focal pattern segmentation and
controlling the expression of positive patterns with the realistic reconstructive
images by class-aware codebooks. In our experiment, simply using the standard
reconstruction loss without the discriminator loss Lmapping generates numerous
unreasonable noise pixels as fake patterns on the reconstructive images, which
can cheat in the classifier Lclassifier and fail to control the pattern expression.
In Fig. 5, our design can receive segmentation results while achieving consistent
expression control in IHC stained histopathology images.

At current stage, there are still major limitations. One obvious limitation is
the size of our dataset. The number of the training and testing images is limited
due to the limitation of resources and extensive labor costs, as well as time
needed to achieve pixel-wise manual annotations. More training data would lead
to better segmentation performance. In the future, one promising improvement
of the proposed method would be to extend the current binary classification and
segmentation approach to multi-class scenarios.
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Abstract. Alzheimer’s disease (AD) is the most common age-related
dementia, which significantly affects an individual’s daily life and impact
socioeconomics. It remains a challenge to identify the individuals at risk
of dementia for precise management. Brain MRI offers a non-invasive
biomarker to detect brain aging. Previous evidence shows that the struc-
tural brain network generated from the diffusion MRI promises to clas-
sify dementia accurately based on deep learning models. However, the
limited availability of diffusion MRI challenges the model training of
deep learning. We propose the BrainNetGAN, a variant of the generative
adversarial network, to efficiently augment the structural brain networks
for dementia classifying tasks. The BrainNetGAN model is trained to
generate fake brain connectivity matrices, which are expected to reflect
the latent distribution and topological features of the real brain net-
work data. Numerical results show that the BrainNetGAN outperforms
the benchmarking algorithms in augmenting the brain networks for AD
classification tasks.

Keywords: Data augmentation · Generative adversarial network ·
Brain connectivity · Classification

1 Introduction

Alzheimer’s disease (AD) is the most common age-related dementia that sig-
nificantly impacts the cognitive performance and the socioeconomic status of
patients [13]. The structural brain network, constructed from the diffusion MRI
(dMRI), is an emerging technique to quantify the complex brain white mat-
ter structure and incorporate the prior knowledge of brain anatomy. Specifically,
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tractography performed on dMRI can quantify the connectivity strength between
the separated anatomical brain regions defined on the brain atlas. Numerous
studies have reported the usefulness of the structural brain network in charac-
terising a broad spectrum of neurological diseases [8,19], including AD [2].

In parallel, machine learning approaches based on the structural network
have shown promise in the classification tasks to distinguish AD patients from
healthy controls (CN). Particularly, state-of-the-art deep learning models have
been widely used in predicting dementia using end-to-end training schemes [1].
A deep learning model, however, often requires a large amount of training data
as well as balanced class labels for reasonable classification performance, which
both are not feasible in clinical practice.

To mitigate this challenge, recent studies employed data augmentation tech-
niques to increase the training sample sizes. For the augmentation of traditional
images, image rotation and flipping schemes are generally effective. Nevertheless,
a brain network matrix cannot be simply rotated or flipped, as it could completely
change the order of brain regions and introduce artifacts to the predictive model.
Therefore, data augmentation approaches tailored for brain networks are desired.

1.1 Related Work

Other data augmentation approaches have been developed to synthesize brain
network matrices and adjust the imbalanced classes of the training data. Among
these approaches, oversampling techniques, such as Synthetic Minority Oversam-
pling Technique (SMOTE) [5], and Adaptive Synthetic Sampling (ADASYN)
[10], are widely used. Unlike the naive augmentation methods that randomly
replicate the minority samples, SMOTE generates synthetic samples by linearly
interpolating two neighboring real samples. The neighborhood is identified by a
standard K-nearest neighbor (KNN) approach. Developed based on the SMOTE,
ADASYN produces fake samples according to the density of the class label dis-
tribution. More fake samples of minority classes are generated than the major-
ity classes. ADASYN also adopts the KNN to cluster the samples and adjust
the boundary of multiple minority classes. In recent years, ADASYN has been
used to synthesize brain networks for the classification of AD [17]. However,
the KNN-assisted oversampling techniques may not effectively capture the topo-
logical property of the high dimensional brain networks, leading to significant
information loss in constructing the synthetic samples.

Generative adversarial networks (GAN) [7] is a generative model invented
recently for data synthesis. It is well known in computer vision applications, where
synthetic images can be indistinguishable from real images. Previous research
shows that data augmentation using GAN has been successful in image classifica-
tion tasks [3]. However, it is unclear whether the GAN can retain the topological
properties of brain networks, which would require a tailored GAN architecture.

1.2 BrainNetGAN

We propose a new variant of GAN with specialized architecture for conditional
brain network synthesis in this work. Inspired by [3], we hypothesize that data
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augmentation could improve the performance of dementia classification tasks
where brain network matrices are used as the input. The proposed GAN variant,
BrainNetGAN, can generate fake brain network matrices for both AD and CN.
The main contributions of this work include:

– To our best knowledge, this is the first GAN variant developed specialized
for synthesizing brain network matrices in dementia classification tasks.

– A specialized 2D convolutional kernel was applied to learn the topological
property of brain networks [11].

– By adopting the architecture of the Wasserstein GAN with gradient penalty
[9], fast and stable training of GAN was enabled on generating network matri-
ces.

– A graph neural network (GNN) was specially adopted as the classifier to effec-
tively evaluate the ability of algorithms in learning the topological property
of brain networks.

Our experiments show that the proposed method outperforms the baseline
and other benchmarking techniques, suggesting the advantage of using GAN for
data augmentation in brain networks.

2 Methods

2.1 Structural Brain Networks

Adjacency matrices of the structural brain network were generated using the
following steps (Fig. 1A). Firstly, dMRI was pre-processed in the FSL (FMRIB
software library). Tractography was then performed on the processed dMRI using
the Diffusion Toolkit [14]. The grey matter regions of dMRI were divided into
90 brain regions using the Automated Anatomical Labelling (AAL) atlas, after
a nonlinear registration to the standard space using Advanced Normalization
Tools [4,18]. The structural brain networks were constructed by counting the
number of tracts between each pair of brain regions to produce an adjacency
matrix, as the inputs of the following models. The tract counts of the brain
network were normalized to between 0 and 1.

2.2 Data Augmentation Using BrainNetGAN

The proposed BrainNetGAN consists of three components: a generator (G), a
discriminator (D), and a classifier (C). The G network is a feed-forward deep
neural network (DNN) with four hidden layers. G takes both the random vector
z sampled from a standard Gaussian distribution and one-hot coded class labels
c of the brain networks (i.e., AD or CN). The output of the G network is a
1 × 4005 vector that is then reshaped to a 90 × 90 brain network matrix (with
diagonal values equal to zero) as shown in Fig. 1C.

Both the D and C networks are convolutional neural networks (CNN) con-
sisting of three convolutional layers with specialized kernels developed by [11]
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Fig. 1. Architecture of the BrainNetGAN and its elements. A. Preparation of brain
network matrices from dMRI, see Sect. 2.1 for details. B. Design of BrainNetGAN.
The framework consists of a generator G, a discriminator D and a classifier C. BCE-
loss: binary cross entropy loss, W-loss: Wasserstein loss. C. The G network is a feed-
forward DNN with ReLU activation functions. The numbers in C indicate the layer-wise
input/output information. D. The D and C networks both contain special convolution
kernels for the adjacency matrix of networks, see Sect. 2.2 for details.

and five fully connected layers (Fig. 1D). Unlike standard convolutional kernels
that only consider local neighbors of an element in a matrix, the adopted ker-
nels take the entire row and column of the element for convolution operation,
simulating both edge-edge and edge-node convolutions (e.g. a row of adjacency
matrix represents all edges connecting to one node in the graph). The input of
both D and C networks is a 90 × 90 matrix, either synthetic (fake) or real brain
network matrices. Although the architecture of both the D and the C networks
are identical, the loss functions are different. Specifically, a cross-entropy loss is
adopted for the C network to perform binary classification (AD/CN), while the
Wasserstein loss is employed in the D network to evaluate the difference between
the real and fake network matrices.

The objective function of the BrainNetGAN consists of two components:

LD = Ex∼Pr [D(x)] − Ex̃∼Pg [D(x̃)] + λEx̂∼Pg [(‖∇x̂D(x̂)‖2 − 1)2] (1)

LC = Ex̃∼Pg [log(C(x̃))] + Ex∼Pr [log(C(x))] (2)

Equation 1 represents the Wasserstein loss with gradient penalty. The first
two components denote the Earth-Mover distance W (Pr, Pg) between real and
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fake distributions that the generator tries to minimize. Pr denotes the distribu-
tion of real samples, D is the discriminator, D(x) represents the outcome of D
given input x, Pg denotes the distribution of fake samples defined by x̃ = G(z|c),
z ∼ p(z). G(z|c) describes the generative process using a Gaussian noise z condi-
tioned on label c. The third component of Eq. 1 represents gradient penalty that
enforces the 1-Lipschitz continuity [9] by penalizing the gradient norm of the
random samples x̂ ∼ Px̂ . λ denotes the gradient penalty coefficient. Equation 2
is the loss of classifier C which represents the log-likelihood of the correct class
that the generator G and the classifier C both try to maximize.

2.3 Data Acquisition and Experimental Setup

Fig. 2. Components of the experiments. A. Overall experimental design. A.Left: Real
data was first used to generate the same amount of fake data using different data
generating methods. A.Right: The fake samples were used in AD/CN classification
tasks to quantitatively evaluate the performance of data augmentation methods. The
similarity between real and fake network matrices was also calculated using the graph
features extracted from the GNN. B. An 4-fold cross-validation was used in the net-
work training. C. A graph convolutional neural network was adopted as the classifier to
classify AD from CN, and at the same time, evaluate (through the extracted graph fea-
tures) the performance of the data augmentation methods in capturing the topological
property of the brain networks.

In this study, diffusion MRIs of 110 AD and 110 age-matched CN were
obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI)
(adni.loni.usc.edu).

http://adni.loni.usc.edu
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The generated data from BrainNetGAN and baseline methods was evaluated
by both classifying AD/CN and similarity metrics of graph features (Fig. 2A).
In assessing the similarity metrics, all real data was used to generate fake data.
For the classification task, real data was shuffled and split into the training,
validation and testing sets with a ratio of 3 : 1 : 1 to perform an 4-fold cross-
validation (Fig. 2B). For each training set, three different methods produced the
same sample size as the training real data.

For BrainNetGAN, the learning rate (lr) of G, D, and C were the same during
hyper-parameters tuning, the value of lr ranged between 0.00001 and 0.001. In
an empirical study, 0.0005 was the large lr to guarantee the fastest convergence.
The input dimension of noise z was empirically tested from 64 to 256, and 64
was used in this work as it produced the most reliable convergence results. The
SMOTE and ADASYN methods were both implemented using imblearn library
[12].

A GNN classifier with graph convolutional layers implemented using pytorch-
geometric [6] was used as the AD/CN classifier to evaluate whether the gener-
ated data captured the topological differences between AD and CN networks
(Fig. 2C). The GNN consists of graph convolutional layers called GraphConv
[15], and fully connected layers that embed the graphs. Two experiments were
conducted: in the first experiment, the fake data generated by the multiple meth-
ods was fed into the classifier without the real training data. In the second exper-
iment, the generated data was mixed with the real training data for training the
classifier. The classifiers were trained for a maximum of 100 epochs with ran-
dom initial weights, and the training was repeated five times to avoid statistical
bias. An early stopping scheme was applied to prevent over-fitting so that the
training is stopped when the validation loss stops decreasing. Average accuracy,
precision, and recalls of validation and test are reported.

3 Numerical Results

Data augmentation performance of BrainNetGAN was evaluated using the pro-
posed dementia classifier, and results were compared to those in the base-
line dataset (no augmented data) and augmented data from different methods
(Table 2). The results show that the model with data generated by BrainNet-
GAN achieved higher performance in the classification compared to other mod-
els. Notably, the higher recall and precision of the model augmented by Brain-
NetGAN imply that the distribution of the augmented data by BrainNetGAN
is less biased than other methods.

Moreover, the results on the testing set showed that the classification accu-
racy was improved from 0.79 to 0.83, when the fake samples generated by Brain-
NetGAN were added to the real samples, which doubled the sample size of the
training dataset.

In addition, we verify the similarity between the graph features of real and
fake networks generated by different methods. Kullback-Leibler divergence and
Maximum mean discrepancy were used to compare three data augmentation
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Table 1. The similarity between graph features of real and fake brain networks

Kullback-Leibler Divergence Maximum Mean Discrepancy

CN AD CN AD

Edge weight

SMOTE 0.510 0.482 0.101 0.119

ADASYN 0.523 0.533 0.120 0.132

BrainNetGAN 0.473 0.460 0.110 0.123

Node strength

SMOTE 0.603 0.613 0.045 0.054

ADASYN 0.611 0.587 0.056 0.059

BrainNetGAN 0.545 0.559 0.025 0.037

Local efficiency

SMOTE 0.428 0.398 0.035 0.037

ADASYN 0.523 0.410 0.042 0.039

BrainNetGAN 0.247 0.214 0.009 0.014

Global efficiency

SMOTE 0.539 0.484 0.042 0.064

ADASYN 0.514 0.543 0.056 0.064

BrainNetGAN 0.277 0.243 0.013 0.020

Table 2. Evaluate data augmentation performance using graph neural networks

Validation Test

Accuracy Precision Recall Accuracy Precision Recall

Baseline 0.819± 0.083 0.790± 0.061 0.710± 0.059 0.791± 0..027 0.658± 0.083 0.668± 0.063

Substitute real training data for generated fake data in AD/CN classification task

SMOTE 0.819± 0.069 0.709± 0.049 0.790± 0.068 0.767± 0.023 0.725± 0.096 0.748± 0.094

ADASYN 0.793± 0.075 0.712± 0.040 0.705± 0.087 0.742± 0.105 0.702± 0.115 0.702± 0.098

BrainNetGAN 0.831± 0.072 0.772± 0.086 0.822± 0.062 0.812± 0.068 0.795± 0.104 0.803± 0.102

Combine real training data with generated fake data in AD/CN classification task

Baseline ± SMOTE 0.820± 0.092 0.801± 0.051 0.820± 0.055 0.802± 0.025 0.798± 0.085 0.812± 0.119

Baseline ± ADASYN 0.778± 0.093 0.745± 0.065 0.712± 0.070 0.788± 0.124 0.718± 0.094 0.711± 0.132

Baseline ± BrainNetGAN 0.852± 0.085 0.805± 0.091 0.825± 0.043 0.829± 0.058 0.809± 0.142 0.825± 0.113

methods (Table 1). Both metrics evaluate the distance between the distribution
of real and fake data, where a lower value indicates high similarity. Edge weight,
node strength, local efficiency, and global efficiency were computed using the
Brain Connectivity Toolbox [16]. We compared the similarities of those graph
features calculated from the brain networks augmented by the three methods.

As shown in the Table 1, the data generating performance of the two methods
were consistent between AD and CN. The BrainNetGAN outperformed other
methods in the comparison of most topological features, indicating that the
topological properties of the fake brain networks generated by BrainNetGAN
approximate the real data.
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4 Discussion and Conclusion

We propose the BrainNetGAN to perform data augmentation of brain network
matrices for dementia classification. Numerical results demonstrated that the
BrainNetGAN outperformed the benchmarking methods and generated high-
quality fake samples which effectively improved the classification performance.
Future work can focus on improving the brain network edge performance in
fake data generation and more deliberated analysis of different types of entries
in the connectivity matrix (therefore to generate better fake samples). To con-
clude, GAN based brain network augmentation is a promising technique that
can provide clinical values in training deep learning models for the classification
of neuropsychiatric diseases.

References

1. Ahmed, M.R., Zhang, Y., Feng, Z., Lo, B., Inan, O.T., Liao, H.: Neuroimaging
and machine learning for dementia diagnosis: recent advancements and future
prospects. IEEE Rev. Biomed. Eng. 12, 19–33 (2018)

2. Ajilore, O., Lamar, M., Kumar, A.: Association of brain network efficiency with
aging, depression, and cognition. Am. J. Geriatr. Psychiatry 22(2), 102–110 (2014)

3. Antoniou, A., Storkey, A., Edwards, H.: Data augmentation generative adversarial
networks. arXiv preprint arXiv:1711.04340 (2017)

4. Avants, B.B., Tustison, N., Song, G.: Advanced normalization tools (ants). Insight
j 2(365), 1–35 (2009)

5. Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic
minority over-sampling technique. J. Artif. Intell. Res. 16, 321–357 (2002)

6. Fey, M., Lenssen, J.E.: Fast graph representation learning with PyTorch geometric.
In: ICLR Workshop on Representation Learning on Graphs and Manifolds (2019)

7. Goodfellow, I.J., et al.: Generative adversarial networks. arXiv preprint
arXiv:1406.2661 (2014)

8. Griffa, A., Baumann, P.S., Thiran, J.P., Hagmann, P.: Structural connectomics in
brain diseases. Neuroimage 80, 515–526 (2013)

9. Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.: Improved
training of Wasserstein GANs. arXiv preprint arXiv:1704.00028 (2017)

10. He, H., Bai, Y., Garcia, E.A., Li, S.: ADASYN: adaptive synthetic sampling
approach for imbalanced learning. In: 2008 IEEE International Joint Conference
on Neural Networks (IEEE World Congress On Computational Intelligence), pp.
1322–1328. IEEE (2008)

11. Kawahara, J., et al.: BrainNetCNN: convolutional neural networks for brain net-
works; towards predicting neurodevelopment. Neuroimage 146, 1038–1049 (2017)
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Abstract. Generative Adversarial Networks (GANs) have recently
gained large interest in computer vision being used in many tasks, but
their evaluation is still an open issue. This is especially true in medi-
cal imaging where GAN application is at its infancy, and where the use
of scores based on models trained on datasets far away from the medi-
cal domain, e.g. the Inception score, can lead to misleading results. To
overcome such limitations we propose a framework to evaluate images
generated by GANs in terms of fidelity and structural similarity with the
real ones. On the one hand, we measure the distance between the prob-
ability densities of the real and generated samples by exploiting feature
representations given by a Convolutional Neural Network (CNN) trained
as a discriminator. On the other hand, we compute domain-independent
metrics catching the image high-level quality. We also introduce a visual
layer explaining the CNN. We extensively evaluate the proposed app-
roach with 4 state-of-the-art GANs over a real-world medical dataset of
CT lung images.

Keywords: GAN · Evaluation · CNN · Explainability

1 Introduction

Recent years have witnessed a rising interest towards Generative Adversarial
Networks (GANs) in Medical Image Analysis (MIA), which are able to syn-
thesise images with an unprecedented level of realism. Although their use in
this field is in an early stage, it already accounts for a wide set of applications
from medical image synthesis to segmentation or classification [11]. Besides these
opportunities, the way the GANs should be evaluated is still an open and critical
issue. While the interested readers can find in [3] a comprehensive review of GAN
evaluation metrics, categorised into qualitative and quantitative scores, there is
no general consensus on which should be employed in fair comparisons. The
most famous qualitative measure, widely used in the medical domain [4,5,8,11],
is based on human visual judgement. Its validity is still questionable [11] and
raises the need of exploring quantitative measures suited for real-world medical
tasks. The literature employing quantitative measures is dominated by those
c© Springer Nature Switzerland AG 2021
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based on the Inception Net [6], such as the Inception Score (IS) [21] or rather
the Fréchet Inception Distance (FID) [7], which assume that the Inception Net is
able to grasp the underlying properties and information hidden in the data. How-
ever, the Inception Net is not trained on a medical dataset and, hence, it exploits
domain-specific representations that may lead to misleading results in the medi-
cal domain [2]. To avoid this limitation, in MIA several work adopt image quality
scores working at pixel level rather than domain-specific measures. Nevertheless,
they are also limited since they do not grasp the benefits introduced by GANs,
i.e. rendering of coherent image features beyond the pixel-level [11].

These observations suggest that assessing GANs in MIA is a topic deserving
further research efforts. In this respect, we hereby introduce two main contribu-
tions. First, we present a framework to evaluate images generated by GANs in
terms of: (i) discriminability, i.e. the fidelity between generated and real images
at feature level measured exploiting a Convolutional Neural Network (CNN),
which acts as a general-purpose discriminator revealing the underlying distribu-
tions of the data; (ii) structural similarity between generated and real images
measured by means of domain-independent metrics catching the image high level
quality; these scores permit also to detect risk of failure modes, i.e. overfitting
(when the GAN merely memorises the real training) and mode collapse (when a
GAN generates only a small subset of samples, also known as a mode). Second,
we introduce a visual layer that permits us to explain the CNN results.

We exploit this framework to compare 4 state-of-the-art GANs tested on a
real-world medical dataset. Indeed, determining which architecture can harvest
all the relevant features held in the available dataset is a first and essential step
within a more general setting, aiming to combine a GAN and a CNN in the MIA
application described in Sect. 3.

2 Methods

The proposed framework evaluates n GANs used to synthesise medical images. It
is divided into two steps: the first measures sample discriminability, whereas the
second carries out the structural evaluation comparing directly a set of synthetic
samples with the real ones. As general procedure, we first divide the real image
set R into two disjoint portions, i.e. Real Training set (RTr) and Real Test set
(RTs), so that RTr ∩ RTs = ∅. Each GANi learns the distribution of RTr to
generate a Synthetic Training set (STri) and a Synthetic Test set (STsi).

Discriminability Evaluation. The first step of our assessment analyses the
underlying information hidden in the synthetic images grasped by a specific rep-
resentation. The generative ability of a GAN is measured by a classifier discrim-
inating the synthetic samples from the real ones. Such an analysis, inspired by
the Classifier Two Sample Test [13], determines whether two samples are drawn
from the same distribution exploiting a binary classifier as a proxy. The intuition
behind this evaluation relies on creating a representation specifically tailored for
distinguishing real and synthetic images. The GANs distributions are assessed
in a features space built ad-hoc for the fidelity-evaluation task: if the synthetic
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Table 1. Evaluation metrics for GAN assessment. Rows 1–2: CNN-based evaluation;
Rows 3–4: structural data evaluation.

Metric Definition

Mahalanobis distance d2M = (x− µY )T
∑−1

Y (x− µY )

Fréchet distance d2F =| µX − µY |2 +tr(
∑

X +
∑

Y −2(
∑

X

∑
Y )1/2)

MS-SSIM MS-SSIM(x̃, y) = LM (x̃, y)αM
∏M

j=1 Cj(x̃, y)
βjSj(x̃, y)

γj

Template matching CCR(p, q) =

∑
p̂,q̂(x̃(p̂,q̂)·Γ (p+p̂,q+q̂))

√∑
p̂,q̂ x̃(p̂,q̂)2·∑p̂,q̂ Γ (p+p̂,q+q̂)2

representation can fool the classifier in a space designed to separate synthetic
from real samples, the generator has learned to synthesise useful features from
real data support. Note that the use of an unsupervised model instead of a
supervised one would build a not-specific representation space. Accordingly, the
dichotomisers are n CNNs (described in Sect. 4), trained to distinguish between
real and synthetic samples, acting as independent discriminators that can be
compared across the different GANs. Note that each CNN is trained with the
images synthesised by GANi (STri) with RTr and are tested on the indepen-
dent set generated by GANi (STsi) and RTs. The recall on each class can be
regarded as a proxy measure of the discriminability: the lower the recall of the
CNN on an STsi ∪ RTs, the better the generation of GANi, i.e. the synthetic
samples distribution lies closer to the real samples. To further prove this intu-
ition and to explain the CNNs behaviour, we leverage the embedding given by
the last dense layer of each CNN which is regarded as a continuous feature space.
To simplify the notation, X and Y indicate the representations of synthetic and
real samples in such a feature space, respectively. With X and Y we compute the
Mahalanobis distance [16] and the Fréchet Inception Distance (FID) [3], i.e. two
measures estimating the distance of the probability distributions of samples. The
first computes the distance between each feature vector x of synthetic samples
from the distribution of real samples. Its formal definition is reported in Table 1,
where μY and

∑
Y denote the mean and covariance matrix of real samples rep-

resentation Y . The FID measure [3] is currently used for GANs evaluation in
combination with the Inception Net: we revisit it for MIA by substituting the
Inception Net representation with those returned by the CNNs discriminators.
The formal definition in Table 1 considers the distribution distance between X
and Y , where μ and

∑
denote the mean and covariance matrix of each set.

We also add to this quantitative evaluation a visual layer providing a graphical
representation of the distribution proximity in a low-dimensional feature space.
To this end we work as follows: (i) we compute a common reference of real
images as the average representation returned by the CNNs; (ii) we apply the
PCA on this dataset, keeping the first 2 principal components; (iii) in this 2D
space we project samples in STsi∪RTs; (iv) we plot this representation, adding
an ellipsoid centred in the mean of each distribution, where the orthogonal axes
have length equal to one standard deviation and direction given by covariance
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Table 2. GAN loss functions. The upper panel lists the losses of unsupervised GANs,
whereas the lower panel reports the supervised loss functions.

GAN Discriminator Loss Generator Loss

Unsupervised DCGAN −Ex∼pdata [logD(x)] − Ez∼pz [log(1 − D(G(z)))] −Ez∼pz [log(D(G(z)))]

LSGAN −Ex∼pdata [(D(x) − 1)2] + Ez∼pz [(D(G(z)))2] − 1
2
Ez∼pz [(D(G(z)))2]

WGAN-GP −Ex∼pdata [D(x)] + Ez∼pz [D(G(z))] + λEx̂∼ps [(||∇x̂D(x̂)||2 − 1)2] −Ez∼pz [D(G(z))]

Supervised ACGAN Lsource + Lclass Lsource − Lclass

where Lsource = E[logP (S = real | pdata)] + E[logP (S = fake | pg)]; Lclass = E[logP (C = c | pdata)] + E[logP (C = c | pg)]

matrix eigenvectors. Straightforwardly, the larger the fidelity between generated
and real images, the closer the corresponding ellipses.

Structural Evaluation. Here we evaluate the synthesis result against the
ground truth with quantitative scores indicating the similarity between artificial
and real images. The rationale is based on two assumptions: (i) the exhaustive
comparison between synthetic and real allows to catch overfitting ; hence, we
search for a high one-to-one similarity between generated and real distribution;
(ii) comparing the intra-group similarity of both synthetic and real images we
search for low samples variability assessing whether the GAN is subjected to
mode collapse. According to [3], we exploit measures with well-defined bounds
and low sensitivity to image distortions, e.g. translations, rotations, etc. On these
premises, we compare images generated by each GAN with the real ones using 2
measures. One is the Multiscale Structural Similarity Index (MS-SSIM), a vari-
ant of the SSIM score working at multiple scales [23] and ranging from 0 (low
similarity) to 1 (high similarity). Its definition is in Table 1, where x̃ and y denote
the synthetic and the real images, and where we omit to detail the other symbols
for space reason, referring the reader to [23]. As translation invariant measure we
employ the Template Matching (TM), i.e. a method for searching the location of
a template image in a larger one. Each synthetic image is regarded as a template
image x̃, which is convoluted in 2D over Γ , an image composing in a 2D lattice
several real samples y. TM compares x̃ and Γ by computing for each location
(p, q) ∈ Γ the normalised cross-correlation (Table 1). The result is a grayscale
heatmap in [0, 1], where each pixel denotes how much its neighbourhood matches
with the template: the larger the heatmap, the better the match.

Table 3. Hyperparameters of the used GANs. Batch Normalisation (BN) resulted
in sample oscillation and training instability for all GANs except the WGAN-GP.
Abbreviations: Kernel (K), LeakyReLU (LReLU), Label Smoothing (LS).

GAN αG αD β1 β2 K G, D z size Activation G, D BN LS Training parameters

DCGAN 0.0001 0.0001 0.5 0.99 3, 5 100 LReLU(0.2), LReLU(0.2) × � Training epochs, batch size 1000, 128

LSGAN 0.0001 0.0001 0.5 0.99 3, 5 1024 ReLU, LReLU(0.2) × × Optimiser Adam

WGAN-GP 0.0002 0.0001 0 0.90 3, 3 128 LReLU(0.2), LReLU(0.2) G × D : G update ratio 2:1

AC-GAN 0.0002 0.0002 0.5 0.99 5, 3 110 ReLU, LReLU(0.2) × × Random noise (z) Spherical Gaussian distribution
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We acknowledge that such metrics have been widely discussed in the liter-
ature [3,7,23]: but here they are originally employed to interpret the different
aspects of GANs generation.

2.1 Competing GANs

The goal of GANs is to learn the real data distribution pdata from a set of samples
to generate new samples. To this end, a generative network G maps the input
z, that is random noise , to the image space pg = G(z) and aims to achieve
pg = pdata. Then a discriminator network D aims to discern between real and
generated images [9]. The generator aims to synthesise realistic images G(z) that
D will consider real with high probability.

We hereby considered for comparison 3 unsupervised architectures and 1
supervised architecture, whose losses are in Table 2. The first is DCGAN, the
most famous employed in MIA, which has improved the standard GANs [9]
introducing convolutional layers to GAN architecture. To improve the gradient
information we deploy the DCGAN with non-saturating loss [9]. LSGAN solves
the problem of the vanishing gradient when updating the generator weights using
the synthetic samples that are on the right side (i.e. the real data side) of the
decision boundary but are still far from real data distribution [17]. It employs
a least-squares loss function for the discriminator penalising the samples lying
far away on the right side of the decision boundary, even if they are correctly
classified. WGAN-GP extends the Wasserstein GAN introduced in [1], which
uses the Earth-Mover or Wasserstein distance to train a GAN and relies on a
hard clipping of discriminator weights ensuring that are K-Lipschitz for some
K. WGAN-GP provides an alternative and soft way to enforce the Lipschitz
constraint besides weight clipping, penalising with a factor λ the discriminator
if the gradient norm for interpolated samples between real and synthetic data
points deviates from 1 [10]. The Auxiliary Classifier AC-GAN leverages side
information as samples class, adding more structure to the generator latent space
and resulting in higher quality samples [18]. Here D provides the probability that
a sample is real along with its class probability, and G is fed with the noise z
along with the class label information to generate synthetic samples pg = G(z, c).

3 Materials

We use a radiomic dataset with CT scans of 123 patients with Locally Advanced
stage III non-small cell lung cancer (protocol ID: NCT03583723). They belong
to two classes: adaptive patients, who showed a tumour volume reduction during
the chemo-radiotherapy treatment, and non-adaptive patients, who on the con-
trary didn’t show any reduction [20]. We considered 2690 2D slices of patients’
CT scans, where the region-of-interests are given by the clinical target volumes
manually delineated by expert radiation oncologists.
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Table 4. Explainable classifier-based evaluation results. Best scores are in bold.

Adaptive Non-adaptive

DCGAN LSGAN WGAN-GP AC-GAN DCGAN LSGAN WGAN-GP AC-GAN

Recall .82 ± .13 .93 ± .04 .88 ±.09 .80 ± .09 .66 ± .13 .91 ± .03 .87 ± .09 .87 ± .05

Specificity .78 ± .12 .94 ± .02 .81 ± .10 .87 ± .07 .71 ± .13 .94 ± .03 .90 ± .08 .79 ± .09

Mahalanobis distance 20.45 ± 1.12 23.63 ± 0.46 19.51 ± 1.02 19.22 ± 0.33 16.96 ± 0.37 18.32 ± 0.51 18.03 ± 0.87 20.38 ± 1.27

Fréchet distance 19.20 ± 14.12 140.19 ± 32.03 27.67 ± 9.18 26.44 ± 8.27 9.44 ± 4.23 114.10 ± 36.48 42.82 ± 19.12 63.71 ± 21.40

4 Experimental Results

To ensure a fair comparison among the GANs, their architectures correspond
to those presented in the original paper [10,17–19], adapting the depth of the
networks and the feature maps of each layer for grayscale 80×80 inputs. Further-
more, pixel intensities of CT images were rescaled to [−1, 1]. Table 3 summarises
the GAN hyperparameters and their training parameters. To generate labelled
lung lesion and exploit the methodology presented in Sect. 2, we include 99 cases
in RTr and 24 cases in RTs. This results in 2182 training slices (1024 adaptive,
1158 non-adaptive), and 508 evaluation slices (225 adaptive, 283 non-adaptive).
We trained the unsupervised GANs once per class, whilst the supervised AC-
GAN is trained directly on RTr including both classes.

Let us now briefly describe the CNN working as a general-purpose discrimi-
nator: its architecture is inspired to the VGG Net [22] and accepts input images
of 80 × 80, whose pixel intensities range in [0, 1]. Our CNN has 4 consecutive
blocks, each containing a stack of two convolutional layers and a max-pooling
layer, then implements LeakyReLU [15] as activation (slope = 0.2), a 128 neu-
rons dense layer after the last convolutional layer and a final dense layer with
one neuron and the sigmoid activation function. Weights initialisation uses Glo-
rot Uniform and loss is measured with binary cross-entropy. Each convolutional
block, with a kernel of 3, doubles the number of filters in each block. We train
each CNNi for 20 epoch using Adam [12] (α = 0.001). We allowed a moderate
degree of overfitting on the training set since our CNN acts as a discrimina-
tor: high-specialised networks allow to better understand the difference between
generated and real samples coherently with GANs theory [10]. The proposed
method was deployed using Python 3.5.6 and Tensorflow 2.2.0, whilst all the
experiments were performed with a NVIDIA TESLA V100 16GB.

As discussed in Sect. 1, measures as the IS or FID cannot be used in MIA. To
prove this observation, we fine-tuned the representation learnt from the Incep-
tion Net to classify our CT ROIs as adaptive or non-adaptive. We got a low
AUC score (61%) at the patient level, confirming the impossibility of applying
scores that leverage the ImageNet representation. Turning now the attention to
our discriminability evaluation, the upper panel of Table 4 shows the recall and
the specificity returned by each CNNi, averaged over 50 runs. As presented in
Sect. 2, a lower performance indicates that the GAN is able to generate samples
hard to be distinguished from the real ones. These results show that DCGAN is
the best architecture for the task at hand, except for the recall on the adaptive
class. This finding was also confirmed using other machine learning classifiers
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Fig. 1. Test sample distribution in the 2D PCA space of real samples.

(Decision Tree, Random Forest, Support Vector Machine with a linear kernel,
k-Nearest Neighbours and AdaBoost) trained as discriminators on the feature
representations extracted from the CNNs, whose results are omitted for brevity.
The high fidelity of DCGAN generation we obtained also agrees with [14], where
the authors report that, with proper training, it can successfully learn the real
distribution. Moreover, analysing the distribution distance using both the Maha-
lanobis and Fréchet distances (lower panel of Table 4), we observe that: (i) the
DCGAN STs shows the lowest distance from RTs on both classes with the
Fréchet distance; (ii) with the Mahalanobis distance DCGAN is outperformed
only on the adaptive class by AC-GAN. This last finding can be explained recall-
ing that, whilst Fréchet computes the distance among the whole distributions of
samples, Mahalanobis considers the distance of each synthetic sample from the
reference real distribution. Hence, if the synthetic samples have outliers very close
to the real distribution, the average Mahalanobis distance would be lower than
the average Fréchet distance. As final confirmation of this considerations, Fig. 1
presents the information extracted from the visual layer of the CNN to explain
the results as described in Sect. 2. Indeed, the DCGAN ellipsoid is the closest
one to that of the real samples for non-adaptive class, while it has a high overlap
with AC-GAN for the adaptive class, a result that agrees with the metrics shown
in Table 4.

Whilst the assessment of synthetic images fidelity reported so far neglects the
memory-GAN phenomenon, the proposed structural evaluation favours models
synthesising diverse samples, overcoming this issue. Figure 2 shows the distribu-
tions of the MS-SSIM maximum value for the adaptive and non-adaptive class
when we compare: (i) each synthetic image against all synthetic ones to estimate
the intra-group variability of the generated distribution (denoted as Synthetic-
vs-Synthetic (S S)), (ii) each synthetic image against all real samples to catch
the inter-group variability (denoted as Synthetic-vs-Real (S R)), (iii) each real
sample opposed to all real ones to provide a baseline of the real samples similarity
(denoted as Real-vs-Real (R R)). In S R distributions (yellow), we note that all
GAN distributions have a median value near 0.8, indicating a high correlation.
Even if we cannot present an interpretation of which GAN wins, these results
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Fig. 2. MS-SSIM maximum value distribution across GANs. Abbreviations: Synthetic-
vs-Synthetic (S S), Synthetic-vs-Real (S R), Real-vs-Real (R R).

Fig. 3. Comparison between GANs images for adaptive class.

suggest that GANs succeeded as they synthesise samples with high structural
similarity to the real ones. The lower structural similarity of S R distribution
with respect to the S S (blue) and R R (green) distributions highlights that
GANs do not simply memorise the real dataset. These results are also confirmed
analysing the S S and the baseline R R distributions: S S is shifted downwards
with respect to R R, indicating a lower correlation within the synthetic dataset
despite a real dataset characterised by high similarity. Indeed, the 2690 slices
were extracted from a small pool of patients. These considerations further prove
that all GANs do not suffer from overfitting and mode collapse. The structural
analysis allows extending the previous findings but considering a diverse aspect
than fidelity: (i) the representation learned for non-adaptive seems to be less
prone to overfitting with respect to the adaptive class considering the lowest S R
median value; (ii) the overlap of the real and AC-GAN ellipsoids can be related
to a small degree of overfitting on adaptive class; (iii) all GANs capture the real
dataset support generating more diverse features than the feature retained in the
real images. The study carried out using TM confirms the results obtained (the
corresponding figures are omitted for brevity). Besides these insights, the struc-
tural analysis has a limitation: since there is no absolute threshold to assess the
appropriate similarity between the distributions, it can’t determine which GAN
is the most effective in the generation task, but it can only identify eventual
overfitting or mode collapse.

Finally, Fig. 3 shows synthetic and real images for the adaptive class, proving
that the visual assessment of CT slices is a challenging task. Indeed, the human
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eye fails in extracting structural and general features needed to: (i) determine
which GAN is the most suitable for the generation task; (ii) assess overfitting.

5 Conclusions

In this work, we study how to assess GANs in MIA since visual inspection can
be prone to error, further to be a burdensome task and measures relying on a
pre-trained Inception Net cannot be used. Since a single score cannot detail the
whole generation process, we introduce a framework that measures the sample
discriminability via an explainable CNN and structural information of synthetic
data. We provide empirical evidence that such an approach is a feasible method
to assess the fidelity of synthetic samples with respect to real ones, providing an
interpretation of the metric itself that ensures the trustability of the process.

Overall, the proposed framework results suitable to be adapted to MIA appli-
cations since it does not rely on any prior information, providing the data scien-
tist with an effective method to choose the more effective GAN for the clinical
task at hand. As a next step, we aim to show that using the DCGAN’s synthetic
images would help developing more robust learning models for a given applica-
tion, e.g. the radiomic dataset considered here. Also, future research includes:
testing other GANs, including other image datasets, investigating a clinical-
based metric in order to evaluate and explain GANs.
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Medico di Roma under the programme “University Strategic Projects”.
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Abstract. Mitral valve repair is a very difficult operation, often requir-
ing experienced surgeons. The doctor will insert a prosthetic ring to
aid in the restoration of heart function. The location of the prosthesis’
sutures is critical. Obtaining and studying them during the procedure is
a valuable learning experience for new surgeons. This paper proposes a
landmark detection network for detecting sutures in endoscopic pictures,
which solves the problem of a variable number of suture points in the
images. Because there are two datasets, one from the simulated domain
and the other from real intraoperative data, this work uses cycleGAN to
interconvert the images from the two domains to obtain a larger dataset
and a better score on real intraoperative data. This paper performed the
tests using a simulated dataset of 2708 photos and a real dataset of 2376
images. The mean sensitivity on the simulated dataset is about 75.64 ±
4.48% and the precision is about 73.62 ± 9.99%. The mean sensitivity on
the real dataset is about 50.23 ± 3.76% and the precision is about 62.76
± 4.93%. The data is from the AdaptOR MICCAI Challenge 2021, which
can be found at https://zenodo.org/record/4646979#.YO1zLUxCQ2x.

Keywords: Heatmap · Landmark detection · CycleGAN

1 Introduction

In mitral valve repair, the surgeon repairs part of the damaged mitral valve
to allow the valve to fully close and stop leaking. The surgeon may tighten or
reinforce the ring around a valve by implanting an artificial ring. The surgeon
may place approximately 12 to 15 sutures on the mitral annulus [1]. We need
to know how sutures are placed because analyzing the pattern and distances
between them can help us improve the quality of this surgery. Furthermore,
the position of the sutures may aid the medico in learning how to perform this
surgery by reconstructing it in a 3D virtual environment.

Deep learning methods have been widely used in the field of medical images.
This task belongs to the landmark detection task in computer vision. In general,
people mainly use the heatmap-based [6] method, coordinate regression method,
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and patch-based method. Payer et al. [6] used the SpatialConfiguration-Net
which combines the local appearance of landmarks with their spatial configu-
ration. Because the coordinate regression method is too difficult to converge and
the patch-based method is difficult to distinguish adjacent points, we choose the
heatmap-based method.

Many state-of-the-art heatmap-based deep learning methods focus on detect-
ing fixed key points which are not suitable for our task. Stern et al. [9] proposed
a heatmap-based method to detecting a varying number of key points. Inspired
by that, we present an improved heatmap-based method that can deal with a
varying number of sutures and get better performance than that.

The data set is mainly split into two endoscopic sets. One is simulation data
set and the other is real data set. Inspired by Engelhardt et al. [2], we also
implement the image to image translation to get more real data. We use the
cycleGAN [11] network to do this task.

The work proposed a network to detect a varying number of landmarks and
used the cycleGAN to translate images from two different domains. And we are
participating within the scope of the AdaptOR challenge.

2 Materials and Methods

2.1 Data Set

Our data set comes from the AdaptOR challenge [8]. The data set is mainly split
into two endoscopic sets:

(1) Sim-Domain is the image acquired during simulating mitral valve repair on
a surgical simulator. More information on the simulator can be found in [3]
and [4]. The simulator dataset used for training consists of 2708 frames,
which were extracted from 10 surgeries. We divide it into 5 fold. To prevent
data leakage, dataset splitting was always carried out on the level of the
surgeries.

(2) Intraop-Domain is the Intraoperative endoscopic data from real minimally
invasive mitral valve repair. Since the intraoperative dataset consists of 2376
frames extracted from 4 simulated surgeries, we split it into 4 fold with each
surgery comprising one fold.

The Label of this data set is stored in the format of a JSON file. In addition,
the data splitting is shown in Table 1.

Table 1. Data set.

Domain Split Number of frames

f1 f2 f3 f4 f5

Sim Train 2246 2144 1960 2174 2308

Validation 462 564 748 534 400

Intraop Train 1582 1852 2004 1690 –

Validation 794 524 372 686 –
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2.2 Outline of the Proposed Method

We have a lot of simulated data, but we don’t have enough real data. So the
first step is the image to image translation. We use a cycleGAN to convert
simulated data to real data in order to obtain more real data, which will help
our model score higher on the real dataset. The second step is to generate the
heatmap. Unlike other tasks about landmark detection, which use one channel
for each landmark, we do not have fixed points in this task. So we generate all
the points in one channel. And each of them is a 2D Gaussian kernel. We do
some augmentation for both the original image and heatmap. Then the enhanced
images would be the input of the U-net-based [7] network. The corresponding
heatmap would be the label of the image. Then, we use the Otsu [5] to get the
thresholding image. We also Use the open operation to remove the noise in the
image and make the binarized area smoother. Finally, we use the cutting method
to separate very close points and the centroid of each region is taken as the final
result. All of these are shown in Fig. 1.

Fig. 1. Outline

2.3 Pre-processing

Image to Image GAN. In this task, our datasets come from two domains,
one is the simulation domain and the other is the Intraop domain. The data set
of the Intraop domain is smaller than the data set of the simulation domain. We
decided to transform the simulation domain data into Intraop domain data to
get a higher score on the Intraop domain. We introduced cycleGAN to solve this
problem.
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The cycleGAN has two mapping functions, as shown in Fig. 2, one is G and
the other is F. G transforms the image of X domain into the image of Y domain,
and F transforms the image of Y domain into the image of X domain. Two
discriminators identify the real domain image and the generated image.

Fig. 2. CycleGAN

Applied to this task, the overall flow is shown in Fig. 3. This diagram only
shows the process from the simulation domain to the Intraop domain and vice
versa, which is not shown here.

Fig. 3. CycleGAN in this task

Heatmap. Unlike the traditional landmark detection method, we do not gener-
ate a heatmap for each point but generate all the points onto the same heatmap.
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Because in other tasks, the number of feature points is fixed, while in our task,
the number of feature points varies with the image, ranging roughly from 0 to
15.

Each of our points is a 2D Gaussian kernel, and a variable number of points
make up this heatmap, which will be used as the model’s label. The heatmap is
shown in Fig. 4.

Fig. 4. Heatmap

Data Augmentation. During training the images are randomly augmented
using Albumentations functions: horizontally and vertically with a probability
of 50%, rotation of ±40◦, ColorJitter with a probability of 50%, RandomBright-
nessContrast with a probability of 50%.

2.4 Point Detection

This work uses a U-Net-based architecture with a depth of 5. After each 3 × 3-
convolution, batch normalization is applied. The first convolutional layer has
16 filter maps, while the bottleneck layer has 512 filter maps. We choose the
Resnext [10] network as our encoder. We don’t have an activation function after
the final 1 × 1-convolutional layer while training, but we apply the sigmoid
function when we predict the heatmap. The loss function is dice loss.

The input images are RGB images with 3 channels. One channel output
is the heatmap. The heatmap becomes the real output point after a series of
subsequent operations.

2.5 Post-processing

Otsu. The maximum between-class variance method is a nonparametric and
unsupervised method of automatic threshold selection for picture segmentation.
According to the gray characteristics of the image, the image is divided into
background and objects. Among them, the greater the variance between the
background and objects shows that the difference between the two parts of the
image is also greater. This method calculates the relationship between the aver-
age gray level between background pixels and foreground pixels and their pro-
portion in the whole image, so as to obtain the global threshold when the image
segmentation effect is the best, and finally segment the image according to this
value.
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Opening. We discovered that the network’s predicted images were connected
together in blocks that should have been separated after Otsu. The open oper-
ation is used to separate them. This also smoothes the edges of the segmented
blocks and removes some of the noise.

Centre Mass and Cutting. After the opening process, we identify the cen-
troid of each segmented block in the output image, and these are regarded the
final predicted points, but we discovered that the form of some of these blocks
compared to the circle generated by the point in the heatmap image is somewhat
irregular. Therefore, we assess whether a segmentation block should be clipped
depending on whether the area of each segmented block in an output image
exceeds the average value of all its segmented blocks. Then, based on the height
and width of the segmented blocks’ bounding box, decide the cutting direction.
The cutting point is the centroid of the segmented blocks that need to be sliced.
Cutting is done in the x-axis direction if the bounding box’s height is higher than
its width. If the bounding box’s height is less than its width, the cutting is done
using Cut in the y-axis direction. We recalculate the centroid of the partitioned
block after cutting as the output points and save them in JSON files.

The example of post-processing is shown in Fig. 5.

Fig. 5. Example of post-processing. (a) input, (b) predict, (c) Otsu, (d) opening, (e)
Centre mass and Cutting

2.6 Evaluation

A point detection is considered successful if the centres of mass of ground truth
and prediction are less than 6 pixels apart. On an image of size 512 × 288, this
radius roughly corresponds to the thickness of a suture when it enters the tissue.
Every matched point from the produced mask is considered a true positive (TP).
Predicted points that could not be matched to any ground truth point are defined
as false positives (FP) and all ground truth points without a corresponding
point in the produced mask are false negatives (FN). Precision and sensitivity
are computed over all landmarks. And F1-score presents the harmonic mean of
precision and sensitivity.

Precision =
TP

TP + FP
(1)

Sensitivity =
TP

TP + FN
(2)

F1 =
2 ∗ Precision ∗ Sensitivity

Precision + Sensitivity
(3)
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3 Results

There are some visual examples in Fig. 6(a) and Fig. 6(b).

Fig. 6. Example results of two domain. The green circles are true positives (TP). The
red circles show false positives (FP). The yellow circles represent false negatives (FN).

The result of the simulation domain is shown in Table 2, and the result of
the intraop domain is shown in Table 3.

The baseline results come from this paper [9]. We can not calculate the
standard deviation of the baseline F1 score since the baseline does not give
experimental data for F1 score.

As shown in Tables 2 and 3, while our precision is lower than the baseline, our
sensitivity is much higher. As a result, when comparing F1 scores, our method
outperforms the baseline on both the simulation and intraop domains. Because
the images in the intraop domain have more interference factors and less data,
the recognition effect of the two methods in the intraop domain is slightly inferior
to that of the simulation domain.

Table 2. Simu result.

Cross-validation result on Simu data

Metric Model f1 f2 f3 f4 f5 μ ± σ

Precision Baseline – – – – – 81.50 ± 5.77

Ours 84.37 54.79 76.84 74.18 77.89 73.62 ± 9.99

Sensitivity Baseline – – – – – 61.60 ± 6.11

Ours 79.63 72.25 68.64 80.20 77.48 75.64 ± 4.48

F1 score Baseline – – – – – 69.78

Ours 81.94 62.33 72.51 77.07 77.69 74.31 ± 6.69
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Table 3. Intra result.

Cross-validation result on Intra data

Metric Model f1 f2 f3 f4 μ ± σ

Precision Baseline – – – – 66.68 ± 4.67

Ours 62.24 67.35 54.92 66.54 62.76 ± 4.93

Sensitivity Baseline – – – – 24.45 ± 5.06

Ours 51.81 54.44 44.22 50.45 50.23 ± 3.76

F1 score Baseline – – – – 35.78

Ours 56.56 60.22 48.99 57.38 55.79 ± 4.15

4 Conclusions

We present a novel method for predicting multiple key points in endoscopic
images in this paper. Our method differs from traditional key point detection
methods, which have a fixed number of prediction key points. Our method can
detect multiple key points at the same time, significantly reducing detection time
and model calculation. We also introduce cycleGAN, which can interconvert
images from two domains to create a larger dataset. Our results outperform
the baseline as well as other related methods after many repeated and rigorous
experiments.
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Abstract. Mitral regurgitation (MR) is a frequent indication for valve
surgery. One of its treatments, mitral valve performed with endoscopic
video recordings, is a complex minimally invasive procedure which is
facing the problem of data availability and data privacy. Therefore, the
simulation cases are widely used to form surgery training and planning.
However, the cross-domain gap may affect the performance significantly
as Deep Learning methods rely heavily on data. We propose to develop
an algorithm to reduce the domain gap between simulation and intra-
operative cases. The task is to learn the distance and location information
of the points and predict a series of 2D landmarks’ location, the coor-
dinates of the landmark were both marked on real and simulate dataset
by the AdaptOR Challenge organizer. Our work has merged the data
from both domains by using a relation heatmap generation algorithm,
which can generate a relation key point heatmap based on the distance
measurement of landmarks and explicitly represent the geometric rela-
tion between landmarks. The MSE loss function is used to minimize the
error between the ground-truth and predicted heatmaps. We test our
methods on a challenge dataset, in which the model has achieved a good
F1 score of 66.19%.

Keywords: Landmark detection · Mitral regurgitation · Deep learning

1 Introduction

Mitral regurgitation (MR) is the second most frequent indication for valve
surgery in Europe and may occur for organic or functional causes [1]. Previ-
ous study has reported that the endoscopic video recordings are playing a more
and more important role in one of treatments of MR, mitral valve repair by min-
imally invasive procedures. For example, mitral valve repair, which is aimed at
re-storing the function of the mitral valve by inserting an annuloplasty ring, the
blue and white mattress sutures anchor the ring. The points where the sutures
enter or exit the tissue are our major research objectives. However, the endo-
scopic evaluations are facing the problem that is the lack of dataset, so the

c© Springer Nature Switzerland AG 2021
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physical mitral valve simulator is widely used as a method of surgical training
and simulation [4]. Both the simulation and intraoperative cases are marked
by the 2D landmarks. The landmarks are referred for doctors to perform the
mitral valve repair surgical operations. In this work, the challenge proposes to
reduce the cross-domain gap between simulation and reality cases and use the
data from both domains to predicted the coordinates of the points in a new
validation frame.

The goal is to predict the landmarks coordinates by using these labels with
the method of what is called relation heatmap generation algorithm. We convert
both intraop-domain (intraoperative cases) and sim-domain (simulation cases)
points images to the heatmap mask, and merge them as the training dataset, then
use the backbone network, HRNet [8], to find the similar location or distribution
features.

Our system is trained with 33872 annotated intraoperation landmarks and
23938 annotated simulation landmarks in total. An intro-domain dataset which
have 524 images was our validation dataset, the evaluation results show that our
approach can achieve an accurate and automatic estimate which is equivalent of
the challenge’s request. The work in this paper has been accomplished and will
participate in the AdaptOR Challenge [3].

2 Method

We first introduce our heatmap generation algorithm to produce relation
heatmap that best represents the correspondences of points where these sutures
enter or exit the tissue before the ring is sewed. Then, the inference details are
described in the end.

2.1 Generating Heatmap of Key Points for Training

Because our label is the coordinate of the point, we convert the points to the
heatmap mask with the help of Gaussian-shaped kernel. The value of the center
of the area is 1 and the values of nearby pixels gradually decay until it reaches
its boundary (we set this hype-parameters which control the size of boundary
named radius).

Most networks such as ResNet follow the design of LeNet-5. The rule is to:
(i) gradually reduce the spatial size of the feature maps, (ii) connect the con-
volutions from high resolution to low resolution in series, and (iii) lead to a
low-resolution representation, which is further processed for classification. How-
ever, high-resolution representations are needed for position-sensitive tasks such
as semantic segmentation. HRNet [8] is able to maintain high-resolution repre-
sentations through the whole process, so we choose HRNet to be our backbone
in this task. Its overall architecture has been illustrated in Fig. 1, which starts
from a high resolution convolution stream, then gradually add high-to-low reso-
lution convolution streams one by one, and connect the multi-resolution streams
in parallel at last.
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Fig. 1. The architecture of HRNet. The resulting network consists of several (4 in this
paper) stages, and the n-th stage contains n streams corresponding to n resolutions.
We conduct repeated multi-resolution fusions by exchanging the information across the
parallel streams over and over.

What’s more, We have also take some extensive attempts to make better use
of the two types of data, sim-domain and intraop-domain.

(1) We simply join intraop-domain and sim-domain images into one dataset as
training set and take them with their corresponding heatmaps as input to
train our model, we take HRNet and Deeplabv3+ [2] as backbone to find
the better performing model.

Lbackbone =
∑

xintraop

Lintraop
mse + λsim

∑

xsim

Lsim
mse (1)

λsim is a hyper-parameters ranging from 0 to 1, and the first Sub-formula is
MSE loss same as the second Sub-formula as follows, and IXsim

is the output
of backbone:

Lsim
mse = Lsim

mse(Ixsim
, heatmapsim) (2)

Having datasets and its labels of two domain, we try to compare the follow-
ing two methods to investigate whether these methods can make better use
of the different datasets and get more robust representations.

(2) We combine two datasets same as first method and we added adversarial
training approach [5]. It involves two net-works.One network generate the
predictions for the input image, which could be from intraop-domain or
sim-domain, while another network acts as a discriminator which takes the
feature maps from the backbone network and tries to predict domain of the
input. The backbone network tries to fool the discriminator, thus making
the features from the two domains have a similar distribution. However, it
didn’t work well in this task.
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The loss of discriminator is:

LD =
∑

xintraop

LD(Ixintraop
, 1) +

∑

xsim

LD(Ixsim
, 0) (3)

We construct a fully-convolutional discriminator network D taking Ix as
input and that produces domain classification outputs class label 1 (0) for
the intraop-domain( sim-domain).

The loss of our backbone is:

Lbackbone =
∑

xintraop

Lintraop
mse + λsim

∑

xsim

Lsim
mse + λadv

∑

xsim

LD(Ixsim
, 1) (4)

(3) We call this method as Collaborative training. Different from the first meth-
ods combining two domain datasets, We split datasets based their domain
and use two datasets to train two different model which their backbone are
identical. If the input is from the domain that the model’s training set are
from, this model can perform better than the other model. By using the
average of Kullback-Leibler (KL) divergence loss [6], a model learn from
one domain can teach the model trained on the other one, which allows that
model to learn the knowledge from two domains which are different but
share many similarities. The loss of two models is quite similar:

Lbackbone =
∑

xintraop

Lintraop
mse + λKL

∑

k

Lkl
k−>i(ISk

Sk
||ISk

Si
), (5)

Lkl
k−>i(ISk

Sk
||ISk

Si
) = − 1

XSk

∑
σ(ISk

SK
)log(

σ(ISk

Si
)

σ(ISk

Sk
)
), (6)

where X , I, Y are the input image, outputs of networks and the corre-
sponding heatmap respectively. subscript indicates that I is generated by
Msiwhile the superscript indicates I is the feature computed for images
from domain Sk, σ() indicates the sigmoid function, |X| represents the num-
ber of pixels in image X.

2.2 Inference Procedure

When predicting landmark heatmap I, we detect all responses whose value is
greater or equal to its connected neighbors(the number of neighbors are con-
trolled by the kernel size of the layer of max pooling). For each peak p̂i , we
adopt the keypoint value Ixi,yi

(i.e., prediction probability in the keypoint loca-
tion ( x̂i, ŷi )) as its detection confidence score, and keep the top 30 confident
peaks. In order to prevent the confidence score of certain images are too low or
too high, we set Upper bound(4) and lower bound(10), and the specific number
of each images is controlled by the confidence score ( score ≥ 0.1).
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3 Experiments

3.1 Datasets

There is two domain datasets with resolution of 512 × 288 in this task. One is
intraop-domain, 2708 mono frames from 10 simulations (192–374 frames each)
with 33872 annotated landmarks, the other is sim-domain, 2376 mono frames
from 4 patients (372–794 frames each) with 23938 annotated landmarks. The
purpose of this task is getting a well-performing model in intraop-domain with
the help of datasets in sim-domain.

Our test set is aicm13, the subset of datasets in intraop-domain, having
524 images. The training set consists of all datasets of sim-domin, having 2708
images. and remaining datasets of intraop-domin, having 1852 images.

3.2 Implementation Details

When we use the Gaussian kernel [7] to smooth each annotated boundary box
around its center point to obtain the ground truth of landmark keypoint heatmap
Y, the hyper-parameters sigma and radius will affect the generation of heatmap.
But in this task, this two hyper-parameters has little affect and we set sigma =
5, radius = 24.

We will describe the specific details of the three methods next. We employ
PyTorch deep learning framework in the implementations. All experiments are
done on a single NVIDIA 2080TI GPU with 11 GB memory.

(1) Intuitively, sim-domain datasets share many similarities with intraop-
domain datasets, we experiments whether combine this extra sim-domain
datasets with intraop-domain datasets will help our model perform well.So
our loss function is defined as follows:

Lseg = Lintraop
seg + λsim · Lsim

seg (7)

when λsim = 0, this means we don’t use sim-domain datasets, when 0 <
λsim ≤ 1, this means we use sim-domain datasets. Our model is trained
using Stochastic Gradient Descent optimizer with learning rate 5 × 10−5,
momentum 0.9 and weight decay 10−4. And in the inferences procedure, we
keep the top 30 confident peaks points, and select at least 10 points until its
confidence scores is lower than threshold (Table 1).

Table 1. Different value of λsim.

value of λsim f1 score

0 0.5230

0.5 0.5516

1 0.5632
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As illustrated in the methods section, we try there methods for this task.
But the other 2 methods didn’t work well. And finally we submitted the model
trained by method one.

(2) In the adversarial training approach, Our model, except the adversarial
discriminator, is trained using Stochastic Gradient Descent optimizer with
learning rate 1×10−5, momentum 0.9 and weight decay 10−4, We use Adam
optimizer with learning rate 1×10−5 to train the discriminator. And λadv set
value 1.0 which balance the loss of segmentation and loss of discriminator.

(3) In the collaborative training method, these four model are trained with
different Stochastic Gradient Descent optimizer with same hyper-parameters
that learning rate 1×10−5, momentum 0.9 and weight decay 10−4. And λKL

set value 0.1 which balance the loss of segmentation and Kullback-Leibler
(KL) divergence loss.

What’s more, after analysing the general number of points, the first inference
rules don’t generate points well, so we change the rules of generating points: in
order to prevent the confidence score of certain images are too low or too high,
we set Upper bound(4) and lower bound(10) through experimental verification,
and the specific number of each images is controlled by the confidence score(score
≥ 0.1).

3.3 Results

After using new inference rules, the f1 score improve from 0.5632 to 0.6619.
However, The f1 score of methods2(adversarial training) is 0.5842 and f1 score
of methods3(two model trained with KL loss) is 0.4481 as illustrated in Table 2.
And finally we submitted the model trained by method one. We visualize the
heatmap of images and the prediction of heatmap in Fig. 2.

Table 2. The results of three methods.

Method f1 score Sensitivity Precision

Method 1 0.6619 0.6010 0.7367

Method 2 0.5842 0.6368 0.5397

Method3 0.4481 0.4884 0.4139
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(a) Input image (b) Ground truth (c) Output

Fig. 2. Visualization of method 1.

4 Conclusion

In this work, we present an algorithm to achieve the cross-domain landmarks
detection in both simulation and intra-operative cases. Specifically, we design a
task to learn the distance and location information of the points and predict a
series of 2D landmarks’ location. We train the network on both domains through
a relation heatmap generation algorithm, which can generate a relation key point
heatmap based on the distance measurement of landmarks. We test this method
on a public challenge dataset and achieve good detection.
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Abstract. Landmark localization plays an important role in medical
image analysis. Learning based methods, including convolutional neural
network (CNN) and graph convolutional network (GCN), have demon-
strated the state-of-the-art performance. However, most of these meth-
ods are fully-supervised and heavily rely on manual labeling of a large
training dataset. In this paper, based on a fully-supervised graph-based
method, deep adaptive graph (DAG), we proposed a semi-supervised
extension of it, termed few-shot DAG, i.e., five-shot DAG. It first trains
a DAG model on the labeled data and then fine-tunes the pre-trained
model on the unlabeled data with a teacher-student semi-supervised
learning (SSL) mechanism. In addition to the semi-supervised loss, we
propose another loss using Jensen–Shannon (JS) divergence to regulate
the consistency of the intermediate feature maps. We extensively evalu-
ated our method on pelvis, hand and chest landmark detection tasks. Our
experiment results demonstrate consistent and significant improvements
over previous methods.

Keywords: Few-shot learning · GCN · Landmark localization · X-ray
images · Deep adaptive graph · Few-shot DAG

1 Introduction

Landmark localization is a fundamental tool for a wide spectrum of medical
image analysis applications, including image registration, developmental dys-
plasia diagnosis, and scoliosis assessment. Although many recent improvements
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have been proposed [3,18], most of them are still based on fully-supervised learn-
ing and rely heavily on the manual labeling of a large amount of training data.
Human labeling is prohibitively expensive and requires medical expertise. Thus,
it is challenging to obtain large-scale labeled training data in practical appli-
cations and decreased scales of training data can impede achieving strong per-
formance. Yet, large-scale unlabeled X-ray images can be efficiently collected
from picture archiving and communication systems (PACSs). Hence, a promis-
ing strategy is to adopt semi-supervised learning (SSL) scheme, which enables
efficient learning from both labeled and unlabeled data.

State-of-the-art landmark detection methods are typically learning-based,
i.e., graph convolutional network (GCN) [6,7], heatmap regression [12,16], and
coordinate regression [8,15,19,20]. Among these, deep adaptive graph (DAG) [6]
employs GCNs to exploit both the visual and structural information to local-
ize landmarks. By incorporating a shape prior, DAG reaches a higher robustness
compared to heatmap-based and coordinate regression-based methods [6]. While
there are efforts towards SSL for landmark localization [2,13], they are based off
of convolutional neural network (CNN)-only approaches, rather than the state-
of-the-art GCN-based DAG. Some other prominent SSL successes in medical
imaging have also been reported, such as for segmentation [1,10] and abnormal-
ity detection [17], but these are also CNN-based. Most other SSL methods are
mainly developed for natural image classification tasks [4,5,14], which likewise
do not address GCN-based landmark localization.

In this work, we propose few-shot DAG, an effective SSL approch for land-
mark detection. Few-shot DAG can achieve strong landmark localization perfor-
mance with only a few training images (e.g., five). The framework of few-shot
DAG is illustrated in Fig. 1. We first train a fully-supervised DAG model on the
labeled data and then fine-tune the pre-trained DAG model using SSL on the
unlabeled data. Inspired by [14], for SSL, dual models are used, i.e., a teacher
and a student model. The output of the teacher model is used as the pseudo
ground truth (GT) to supervise the training and back-propagation of the stu-
dent model. The parameters of the teacher model are updated by the exponential
moving average (EMA) of the parameters of the student model. In addition to
the semi-supervised loss inspired by [14], we further add a Jensen–Shannon (JS)
divergence loss on the intermediate feature map, to encourage similar feature
distributions between the teacher and student models. The proposed few-shot
DAG is validated on pelvis, hand and chest X-ray images with 10, 10, and 20
labeled samples and 5000, 3000, and 5000 unlabeled samples, showing consistent,
notable and stable improvements compared with state-of-the-art fully-supervised
methods [9] and other semi-supervised methods [4,11].

2 Method

Our work enhances prior efforts at using DAG for landmark detection [6]. We
first briefly describe the network structure and training mechanism of DAG in
Sect. 2.1 and then introduce the proposed SSL extension of DAG with the JS
divergence loss in Sect. 2.2.
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Fig. 1. An illustration of the proposed few-shot DAG framework with the teacher
student SSL scheme and JS divergence loss.

2.1 Deep Adaptive Graph

DAG [6] formulates landmark localization as a graph evolution task, where the
vertices of the graph represent the landmarks to be localized. The evolution starts
from the mean shape generated from the training data, and the evolution policy
is modeled by a CNN feature extractor followed by two GCNs. The CNN encodes
the input image as a feature map, from which graph features are extracted via
bi-linear interpolation at the vertex locations. The graph with features is further
processed by cascading a global GCN and local GCNs to respectively estimate
the affine transformation and vertex displacements toward the targets.

The DAG is trained via fully-supervised learning using a global GCN and
local GCN loss. Specifically, the global GCN outputs an affine transformation
that globally transforms the initial graph vertices (i.e., the mean shape). The
average L1 distances between the affine transformed vertices and the GT loca-
tions are calculated as the global loss:

Lglobal = [E (|vglobal − vgt|) − m]+ , (1)

where [x]+ := max(0, x), vglobal and vgt denote the affine transformed and GT
vertices, respectively. m is a hyper-parameter specifying the margin of allowable
error. The local GCN iteratively displaces vglobal to refine their locations. The
average L1 distances between the displaced vertices and the GT are calculated
as the local loss:

Llocal = E (|vlocal − vgt|) , (2)
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where vlocal denotes the vertices after displacement by the local GCN. The final
loss for DAG is Lglobal + w1 × Llocal, where w1 is a weight used to adjust the
ratio between the global and local loss.

2.2 Few-Shot DAG

Inspired by [14], we adopt a mean teacher mechanism to exploit both the labeled
and unlabeled data. In particular, we first train a DAG model using only the
labeled dataset, referred to as the pre-trained model. In the mean teacher train-
ing, the teacher and student models share the same architecture and are both
initialized using the pre-trained model. The same input images are fed into the
teacher and student models. Gaussian noises are added to the input images of
the student model as an additional augmentation. For unlabeled images, a con-
sistency loss is enforced between the teacher and student models. In the proposed
few-shot DAG, we apply two forms of unlabeled loss.

First, the landmarks detected by the teacher model are used as the pseudo
GT to supervise the training of the student model. In particular, the output
vlocal of the teacher model is used as the pseudo GT for the student model to
calculate the global and local losses of Eq. (1) and (2), respectively. While this
is helpful, it only applies a sparse consistency constraint on the GCN outputs.
As a result, we apply a second loss in the form of JS divergence between the
CNN feature maps of the teacher and student model, encouraging a similar
distribution between the two. Specifically, the output feature maps of CNN are
converted to pseudo-probabilities via a Softmax along the channel dimension.
The JS divergence loss is then formulated as:

Ljs =
1

2|Ω|
∑

x∈Ω

(D(aS(x),m(x)) + D(aT (x),m(x)) (3)

where D(.) is the Kullback-Leibler divergence, aS and aT are the student and
teacher activation maps, respectively, Ω is their batch, spatial and channel
domain, and m is the mean of aS and aT .

For the labeled data, we use the fully-supervised loss: Lglobal + w1 × Llocal.
For the unlabeled data, we calculate L′

global + w1 × L′
local + w2 ∗ Ljs, where

L′
global +w1 ×L′

local use the pseudo GT produced by the teacher model and w2

balances the contribution of the JS divergence loss. The labeled and unlabeled
batches are fed with a ratio 1 : R (R is 100 in our experiments) to form the
semi-supervised training iterations. Finally, the weights of the student model
are updated through back-propagation of the loss. The weights of the teacher
model are updated iteratively via the EMA of the student model’s weights [14]:

θtT = αθt−1
T + (1 − α)θtS , (4)

where θT and θS are the weights of the teacher and student models, respectively,
t is the training step, and α is a smoothing coefficient to control the pace of
knowledge updates.
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Table 1. The mean and std Euclidean error and the failure rate of the proposed
method, with comparisons to Payer et al., pseudo label, Π-model and temporal ensem-
ble on the pelvis, hand and chest datasets. Best performance is in bold.

Data Method Mean error Std error Failure rate

Pelvis Payer et al. [9] 46.29 106.63 12.62%

Pseudo label [11] 20.50 34.27 2.21%

Π-Model [4] 58.31 98.41 14.66%

Temporal ensemble [4] 21.12 42.90 2.07%

DAG [6] 25.89 44.60 4.29%

Few-shot DAG 19.63 34.29 1.27%

Few-shot DAG + JS 18.45 30.69 1.31%

Hand Payer et al. [9] 12.29 37.81 1.24%

Pseudo label [11] 9.27 24.82 0.77%

Π-Model [4] 17.96 45.07 3.56%

Temporal ensemble [4] 10.20 22.35 0.81%

DAG [6] 10.97 27.60 1.51%

Few-shot DAG 9.07 21.76 0.50%

Few-shot DAG + JS 9.07 19.67 0.47%

Chest Payer et al. [9] 61.41 131.27 5.75%

Pseudo label [11] 55.33 57.84 8.32%

Π-Model [4] 208.38 138.45 64.80%

Temporal ensemble [4] 52.41 47.54 5.92%

DAG [6] 58.99 73.55 12.35%

Few-shot DAG 54.94 55.00 9.37%

Few-shot DAG + JS 43.46 47.22 5.28%

3 Results

Experimental Setup. The proposed few-shot DAG is validated on three X-
ray datasets: pelvis, hand, and chest. All datasets were collected from Chang
Gung Memorial Hospital, Linkou, Taiwan, ROC, after de-identification of the
patient information. In the pelvis, hand, and chest experiments, 6029, 93, and
1092 images are used for the testing while 10, 6, and 10 images are used for the
validation. In the comparison experiment in Table 1, 10, 6, and 20 labeled images
are used for the training for the pelvis, hand and chest dataset, respectively. In
the ablation study experiment in Table 2, our method is trained using 1/5/50,
1/5/30 and 1/5/10/50 images for the pelvis, hand and chest dataset, respectively.
The Euclidean distance between the GT and the predicted landmarks is used
as the main evaluation metric. In addition, the failure rate (defined as error
larger than 5% of the image width) is supplied as a supplementary evaluation
metric. As the failure rate may change along the chosen threshold, we view the
Euclidean error as more important and objective.
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Table 2. The mean and std Euclidean error and the failure rate of DAG, few-shot DAG
and few-shot DAG + JS on different numbers of training examples. Best performance
is in bold. - indicates no convergence.

Data Training samples Method Mean error Std error Failure rate

Pelvis 1 DAG [6] – – –

5 DAG [6] 55.53 80.05 14.72%

Few-shot DAG 34.48 44.17 3.22%

Few-shot DAG + JS 27.31 39.14 3.19%

10 DAG [6] 25.89 44.60 4.29%

Few-shot DAG 19.63 34.29 1.27%

Few-shot DAG + JS 18.45 30.69 1.31%

50 DAG [6] 15.62 34.40 1.29%

Few-shot DAG 13.44 30.03 0.55%

Few-shot DAG + JS 13.37 28.26 0.58%

Hand 1 DAG [6] – – –

5 DAG [6] 24.17 47.05 5.07%

Few-shot DAG 23.30 36.13 2.52%

Few-shot DAG + JS 15.41 31.99 1.78%

10 DAG [6] 10.97 27.60 1.51%

Few-shot DAG 9.07 21.76 0.50%

Few-shot DAG + JS 9.07 19.67 0.47%

30 DAG [6] 8.44 22.00 0.67%

Few-shot DAG 8.09 17.51 0.40%

Few-shot DAG + JS 7.74 17.55 0.43%

Chest 1 & 5 DAG [6] – – –

10 DAG [6] 133.09 121.57 38.49%

Few-shot DAG 128.74 102.61 39.73%

Few-shot DAG + JS 76.11 78.01 14.80%

20 DAG [6] 58.99 73.55 12.35%

Few-shot DAG 54.94 55.00 9.37%

Few-shot DAG + JS 43.46 47.22 5.28%

50 DAG [6] 27.31 42.33 2.69%

Few-shot DAG 23.32 28.64 1.07%

Few-shot DAG + JS 22.49 27.29 0.85%

Comparison with Other Baselines. We compare against the fully-supervised
DAG [6] and also Payer et al. [9], who introduced a heatmap based method
focusing on leveraging the spatial information. Three semi-supervised methods
are used for the comparison: (1) pseudo label [11], which trains the SSL model
with the pseudo GT generated by the pre-trained model in Sect. 2.1; (2) Π-
Model [4], which maintains only a student model with the semi-supervised loss
between the two input batches (one is with Gaussian noise and one is not);
(3) temporal ensemble [4], which updates the pseudo GT after each epoch via
the EMA of historically and currently generated pseudo GT. For the proposed
method, performance in stages is offered, including few-shot DAG and few-shot
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DAG + JS. It is worth mentioning that temporal ensemble consumes much
longer training time than other methods.

Detailed results of validating the seven methods on the pelvis, hand and chest
data set are presented in Table 1. We can see that for the main evaluation metric,
i.e., mean and std Euclidean error, out of the fully-supervised methods, DAG
noticeably outperforms Payer et al. For the semi-supervised methods, few-shot
DAG + JS outperforms Π-Model with large margins while also outperforms
pseudo label and temporal ensemble with notable margins. Furthermore, the
proposed method shows consistent performance gains from DAG to few-shot
DAG, and to few-shot DAG + JS, demonstrating the value of the proposed SSL
scheme and JS divergence loss. For the supplementary evaluation metric - failure
rate, similar trends can be observed. Even though few-shot DAG + JS does not
achieve the lowest failure rate in one experiment, its failure rate is very close to
the lowest value, i.e., 1.31% vs. 1.27% on the pelvis.

Ablation Study on the Scalability of Few-Shot DAG. We show that the
proposed few-shot DAG can work well for different scales of training data. To
illustrate this, we conduct experiments on varied numbers of labeled data. The
corresponding results are shown in Table 2. We can see that the fully-supervised
DAG cannot converge on extremely few training examples, i.e., 1 for pelvis, 1
for hand, 1 and 5 for chest, resulting in non-converged few-shot DAG as well.
On converged experiments with few training examples, for the main evaluation
metric, the proposed SSL scheme (DAG vs. few-shot DAG) achieves notable
performance improvements on all experiments. The proposed JS divergence loss
(few-shot DAG vs. few-shot DAG + JS) performs best on most experiments,
except one (hand-50) where the std error is comparable (17.55 vs. 17.51). For
the supplementary evaluation metric, the proposed semi-supervised methods,
including few-shot DAG and few-shot DAG + JS fail much less than the fully-
supervised method. While in most experiments, few-shot DAG + JS fails less
than few-shot DAG; only in three experiments (pelvis-10, pelvis -50, hand-50),
comparable failure rates are achieved for semi-supervised DAG with or without
the JS divergence loss.

4 Conclusion

In this paper, we introduced few-shot DAG, an SSL enhancement of DAG that
significantly improves landmark localization. It first trains a DAG model on a
few labeled training examples (e.g., five), and then fine-tunes the trained model
on a large number of unlabeled training examples using consistency losses tai-
lored for CNN and GCN outputs. Overall, our approach achieves strong land-
mark localization performances with only a few training examples. As shown
in the validation on three datasets, the proposed few-shot DAG consistently
out-performs both previous fully-supervised and semi-supervised methods with
notable margins, indicating its good performance, robustness and potentially
wide application in the future.
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Abstract. Surgical tool detection in computer-assisted intervention sys-
tem aims to provide surgeons with specific supportive information. Exist-
ing supervised methods heavily rely on the volume of labeled data.
However, manually annotating location of tools in surgical videos is
quite time-consuming. To overcome this problem, we propose a semi-
supervised pipeline for surgical tool detection, using strategies of highly
confident pseudo labeling and strong augmentation driven consistency.
To evaluate the proposed pipeline, we introduce a surgical tool detec-
tion dataset, Cataract Dataset for Tool Detection (CaDTD). Compared
to the supervised baseline, our semi-supervised method improves mean
average precision (mAP) by 4.3%. In addition, an ablative study was
conducted to validate the effectiveness of the two strategies in our tool
detection pipeline, and the results show the mAP improvement of 1.9%
and 3.9%, respectively. The proposed dataset, CaDTD, is publicly avail-
able at https://github.com/evangel-jiang/CaDTD.

Keywords: Surgical video analysis · Tool detection · Semi-supervised
learning · Pseudo labeling · Strong augmentation

1 Introduction

In recent years, the development of computer assisted intervention (CAI) system
has improved surgeons’ work efficiency and surgical safety in modern operating
rooms, especially for endoscopic and microscopic surgeries [1]. The CAI system
usually consists of multiple sub-components, such as tool presence detection, tool
detection, tool segmentation, and workflow recognition, etc. [2]. The semantic
recognition and understanding of surgical scenes can provide reliable supports
for surgeons to make better intra-operative decisions [3] and perform effective
surgical analysis post-operatively [4,5].
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It is challenging to achieve surgical tool detection for the lack of datasets with
annotated tool boundaries. Annotating the location of tools present in surgical
videos requires experts to delineate the bounding box of each instance frame
by frame, which is a complex and time-consuming work. Only few surgical tool
detection datasets [5–7] are publicly available, especially those based on in-vivo
surgical videos [6]. Existing studies [6,8] on surgical tool detection are quite
limited and mainly based on supervised learning. Jin et al. [6] utilized Faster R-
CNN [9] to locate surgical tools. Zhang et al. [8] deployed a modulated anchoring
network to achieve surgical tools detection. Limited amount of labeled data in
current tool detection datasets makes it difficult for supervised learning to obtain
promising results. On the contrary, numerous unlabeled videos are easy to access,
which can be utilized by semi-supervised learning.

With the awareness of utilizing unlabeled data, semi-supervised learning has
shown promising results on improving model performance in deep learning [10].
One semi-supervised method for surgical tool detection is pseudo labeling via a
combination of object detector and tracker [11]. However, it is reliant upon man-
ual post-correction to remove the unlabeled images with wrong pseudo labels.
An effective way to generate high-quality pseudo labels without post-correction
is self-training and augmentation driven consistency (STAC) regularization [12].

To overcome the challenges above and inspired by [12], we focus on improving
the reliability of pseudo labels and the model robustness in semi-supervised sur-
gical tool detection. The contributions of this paper are two-fold: 1) We introduce
highly confident pseudo labeling and strong augmentation driven consistency in
semi-supervised surgical tool detection without manual post-correction; 2) We
generate CaDTD, a cataract surgical tool detection dataset with two optional
tool setups, and thus provide a reference for subsequent research.

2 Methodology

2.1 Dataset

To relieve the shortage of datasets for surgical tool detection and to reduce
annotation cost, CaDTD, a dataset annotated with the bounding box of surgical
tools is proposed in this paper and will be released publicly. As mentioned before,
public datasets for surgical tool detection are scanty. One representative dataset
is m2cai16-tool-locations [6], which consists of endoscopic surgery videos. To
provide a reference for subsequent research on microscopic surgery, we present
a new tool detection dataset on cataract surgery. Cataract is one of the main
causes for blindness and cataract surgery is one of the most commonly performed
surgeries [13]. Therefore, introducing tool detection dataset for cataract surgery
is of significant importance.

CaDTD consists of 50 cataract surgical videos of tool-tissue interactions
derived from CATARACTS dataset [13]. All these surgeries were performed
at Brest University Hospital, and most of them are performed by a renowned
expert. All videos were obtained at 30 fps and have the resolution of 1920×1080.
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Among the 50 videos, 25 videos are unlabeled and others are labeled with bound-
ing box based on the semantic segmentation information in CaDIS [14]. In order
to reduce the annotation workload, the annotated frames are down sampled to
a resolution of 720 × 540 and the adjacent frames are at least 3 s apart.

Table 1. The class IDs and names of surgical tools in CaDTD.

ID Class Name ID Class Name

1 Phacoemulsifier Handpiece* 7 Hydrodissection Cannula*

2 Lens Injector* 8 Viscoelastic Cannula

3 I/A Handpiece* 9 Capsulorhexis Cystotome*

4 Secondary Knife* 10 Bonn Forceps*

5 Micromanipulator 11 Secondary Knife*

6 Capsulorhexis Forceps 12 Primary Knife*

In CaDTD, we define two types of tool setups, setup 1 and setup 2, as shown
in Table 1. Setup 1 focuses on the whole tool, including both the head and the
handle of tools, while setup 2 focuses only on the head of tools. The classes
marked with * indicate tools those were annotated differently on the two tool
setups. It is noteworthy that, for the tools present only in few videos or even few
frames, we consider them as noise and ignore them in CaDTD. Besides, in this
work, we only concern about tools so that the anatomy is ignored as well.

2.2 Methods

The proposed semi-supervised pipeline for surgical tool detection, as shown in
Fig. 1, is based on a teacher-student framework which consists of the following
steps: a) Train a teacher model using labeled data; b) Generate pseudo labels for
unlabeled data via a predicting process on the teacher model; c) Train a student
model using both labeled and unlabeled data.

Specifically, the teacher model is trained to predict labels (bounding box
of each tool) for unlabeled data, thus the student model trained on the unla-
beled data can be supervised with those pseudo labels. In addition, a solution to
generate highly confident pseudo labels and a strong augmentation driven con-
sistency regularization strategy are applied in our framework to improve model
robustness. The details are described in the following subsections.

Highly Confident Pseudo Labeling. The quality of pseudo labels has a sig-
nificant impact on the training of student model. Therefore, the pseudo labels
for tools (bounding boxes) are not straightforwardly generated from the teacher
model in this paper. Different from the existing semi-supervised method for surgi-
cal tool detection [11], in our pipeline, manual post-correction for pseudo labels is
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Fig. 1. The proposed semi-supervised pipeline for surgical tool detection. There are
two models in the pipeline, a teacher and a student. The modules in orange, blue, and
green stand for step a), b), and c), separately. (Color figure online)

optimized by an automatic filtering process with a confidence threshold τ . Since
the detector predicts multiple results for each target, the filtering process utilizes
a non-maximum suppression (NMS) to remove repetitive bounding boxes. The
bounding box with a confidence score lower than τ is therefore dropped out. The
threshold τ is a hyper-parameter set to a high value in our work to automatically
select the most reliable pseudo labels. With reliable pseudo labels, the unlabeled
data together with the labeled data can be utilized to train the student model
with sufficient supervised information.

Table 2. The list of strong augmentation operations used in this paper.

Operation Name Description

Color transformation Change color of the image, including con-
trast,
brightness, etc.

Cutout [15] Cut out part of the image using square
masks

Box-level geometric transformation Apply rotation, shearing, or translation to a
random region within the bounding box

Image-level geometric transformation Apply rotation, shearing, or translation to
the whole image

Strong Augmentation Driven Consistency. The idea of consistency reg-
ularization is to generate a robust model by constraining the prediction to be
consistent when adding noise to the data or model. In the proposed pipeline, we
introduce a series of data augmentation as noise signal on unlabeled images to
perform consistency regularization. There are two types of augmentation strate-
gies in our pipeline, weak augmentation and strong augmentation. Weak augmen-
tation consists of resizing and horizontal flipping. Strong augmentation extends
from the RandAugment [16], which is adapted for object detection according to
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[17]. The strong augmentation operations used in the proposed pipeline are listed
in Table 2. Specifically, color transformation is firstly applied, then followed by
the geometric transformations, including image-level and box-level operation,
and cutout [15]. In our pipeline, to obtain accurate information from limited
expert-labeled surgery videos, we adjust the augmentation strategy in [12] and
apply weak augmentation to all labeled data and strong augmentation for all
unlabeled data as shown in Fig. 2.

Fig. 2. Visualization of strong augmentation to the unlabeled video frames used in the
proposed pipeline.

Loss Function. The loss function in the proposed pipeline consists of super-
vised loss Ls for labeled data and unsupervised loss Lu for unlabeled data. We
implement tool detection using Faster R-CNN [9], so the two loss functions are
formatted as Eq. 1 and Eq. 2:

Ls =
1

Ncls

∑

i

�cls(pi, qi) +
λ

Nreg

∑

i

qi�reg(si, ti) (1)

Lu = ωi

[
1

Ncls

∑

i

�cls(pi, q∗
i ) +

λ

Nreg

∑

i

qi�reg(si, t∗i )

]
(2)

where i is the index of an anchor, pi is the predicted probability of the anchor
i being a surgical tool, and qi is the matching binary label which equals 1 if
i is indeed positive. si is a vector describing the location of the anchor i via
four-dimensional coordinates, and ti is the coordinates vector of the label corre-
sponding to a positive anchor. The two terms of Ls are normalized by Ncls and
Nreg, and then added together with a weight λ. q∗

i and t∗i denotes the pseudo
labels. ωi is a binary parameter indicating whether the confidence score of the
predicted bounding box is higher than the threshold τ .

When training the student model, the loss function is sum of the supervised
loss and unsupervised loss weighted by the hyper-parameter λu as Eq. 3:

Lstu = Ls + λuLu (3)
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3 Experiments

We extensively validate the proposed semi-supervised pipeline on the CaDTD
dataset. Three of the 25 labeled videos are used to evaluate the model perfor-
mance. The backbone ResNet-50 in the Faster R-CNN model is implemented by
Tensorpack [18] and initialized by weights pre-trained on ImageNet. During the
student training process, we set τ = 0.9 to rigorously filter the pseudo labels,
and set λu = 2 as in [12].

3.1 Comparative Results

We evaluate the performance of our pipeline using mean average precision (mAP)
of all tools, a commonly used metric of object detection. mAP50 indicates the
mAP when the detection is considered correct if the intersection over union (IoU)
between the predicted bounding box and its ground-truth reached 50%. Though
most research on surgical tool detection take mAP50 as the evaluation metric,
it is a saturated metric as mentioned in [12]. To be more convincing, mAP50:95,
which averages the values at a range of IoU between 50% to 95% is the major
evaluation metric in this paper.

Table 3. The detection results for both tool setups on CaDTD (%).

Tool Setup 1 Tool Setup 2

mAP50:95 mAP50 mAP50:95 mAP50

Supervised (Teacher) 67.6 88.3 69.4 91.0

Semi-supervised (Student) 71.9 (+4.3) 91.2 (+2.9) 72.1 (+2.7) 92.2 (+1.2)

p-value 0.0014 0.0510 0.0428 0.2994

Table 3 shows the comparison between the baseline supervised model and
our semi-supervised model on both tool setups of CaDTD with the paired sam-
ple t-test. It can be seen that our semi-supervised model achieves an overall
improvement on both tool setups, and the improvement of mAP50:95 is signifi-
cant (p < 0.05). The improvement of mAP50:95 on tool setup 1 is 4.3%, which is
greater than that of setup 2. Whereas, the general mAP of tool setup 2 is higher.
Therefore, it can be inferred that when focusing on the whole body of tools, using
unlabeled surgical videos to enlarge the training data via semi-supervised learn-
ing is more effective. In addition, Table 4 presents the detailed average precision
of each surgical tool on setup 1. Except for class 1 (Phacoemulsifier Handpiece),
our semi-supervised model shows significant improvement on all classes.

3.2 Ablation Study

We conduct ablation study on two strategies to show their effectiveness. We
evaluate the surgical tool detectors with various strategies on the dataset of
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Table 4. The average precision (AP50:95) per class of tool setup 1 on CaDTD (%).

Class ID 1 2 3 4 5 6 7 8 9 10 11 12

Supervised (Teacher) 74.2 55.0 65.5 79.1 48.8 53.6 76.1 73.9 73.9 55.1 81.4 74.1

Semi-supervised (Student) 74.0 60.1 68.9 82.9 56.7 62.8 77.3 75.8 74.5 65.0 89.1 75.5

tool setup 1 in CaDTD, and the detection results are shown in Table 5. HC
denotes highly confident pseudo labeling which filters pseudo labels with a high
threshold (τ = 0.9). SA denotes strong augmentation driven consistency. SSL,
derived from semi-supervised learning, indicates a basic semi-supervised method
with the teacher-student framework. To be more specific, in the SSL method,
the threshold of confidence sore is set to a default value (τ = 0.5), and both
labeled and unlabeled videos are weakly augmented.

Table 5. The results of ablation experiments on tool setup 1 of CaDTD (%).

Model mAP50:95

Supervised 67.6

SSL 68.8 (+1.2)

SSL + HC 69.5 (+1.9)

SSL + SA 71.5 (+3.9)

SSL + HC + SA (Ours) 71.9 (+4.3)

As shown in Table 5, the model performance improves when adding HC or SA
alone, and reaches the best outcome when adding them both. This demonstrates
that both key strategies in our method are effective. However, the SSL model is
slightly greater (1.2%) than the supervised model, which further indicates that
directly using the basic method of semi-supervised learning may not obtain much
improvement since numerous unlabeled data with incorrect pseudo labels may
bring noise to the network.

4 Conclusion

In this paper, we present a dataset CaDTD and propose a semi-supervised
pipeline for surgical tool detection by introducing strategies of highly confi-
dent pseudo labeling and strong augmentation driven consistency. With the two
strategies utilized, the proposed pipeline enables the tool detector to exploit unla-
beled surgical videos without manual post-correction. We evaluate our method
on CaDTD and show that our semi-supervised detector achieves a noteworthy
overall improvement over the supervised detector. Future works include improv-
ing the detecting speed and further utilizing it in surgical workflow recognition.
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Abstract. Landmark detection in medical images is important for many
clinical applications. Learning-based landmark detection is successful at
solving some problems but it usually requires a large number of the
annotated datasets for the training stage. In addition, traditional meth-
ods usually fail for the landmark detection of fine objects. In this paper,
we tackle the issue of automatic landmark annotation in 3D volumetric
images from a single example based on a one-shot learning method. It
involves the iterative training of a shallow convolutional neural network
combined with a 3D registration algorithm in order to perform auto-
matic organ localization and landmark matching. We investigated both
qualitatively and quantitatively the performance of the proposed app-
roach on clinical temporal bone CT volumes. The results show that our
one-shot learning scheme converges well and leads to a good accuracy of
the landmark positions.

Keywords: One-shot learning · Landmarks detection · Deep learning

1 Introduction

Landmarks detection for target object localization plays a pivotal role in many
imaging tasks. Automatic landmark detection can alleviate the challenges of
image annotation by human experts and can also save time for many image
processing tasks. The difficulty of landmark detection in clinical images may
come from anatomical variability, or changes in body position which can lead to
large differences of shape or appearance. The literature on automatic landmarks
detection approaches can be roughly split into learning based versus non-learning
based algorithms.
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Fig. 1. Overview of the proposed framework.

Non-Learning Based Landmarks Detection. In [1] is proposed the augmenta-
tion of the scale-invariant feature transform (SIFT) to arbitrary n dimensions
(n-SIFT) for 3D-MRI volumes. However, the computation cost for 3D SIFT fea-
tures is heavy as their complexity is a cubic function of the image size. Wörz
et al. [2] leverage parametric intensity models for image landmarks detection.
Ricardo et al. [3] use log-Gabor filters to extract frequency features for 3D Phase
Congruency (PC) applied to detect head and neck landmarks.

Learning Based Landmarks Detection. Probabilistic graphical models were used
for bones landmark labelling in [4] and [5]. Potesil et al. [6] use joint spatial priors
and parts based graphical models to improve the landmarks detection accuracy
of organs. Shouhei et al. [7] proposed a Bayesian inference of landmarks through
a parametric stochastic landmark detector of the candidates. Donner et al.[8]
applied random forest and Markov Random Field (MRF) for vertebral body
landmarks detection. Mothes et al. [9] proposed a one-shot SVM based land-
marks tracking method for X-Ray image landmark detection. Suzani et al. [10]
proposed to train a convolutional neural network (CNN) with an annotated
dataset for automatic vertebrae detection and localization. Liang et al. [11] pro-
posed a two-step based residual neural network for landmarks detection. Deep
reinforcement learning for landmarks detection was investigated by Ghesu et
al. [12] where landmarks localization is considered as a navigation problem.

The main drawback of the above deep learning based landmarks detection
methods is that the creation of manually annotated dataset with 3D landmarks
is time consuming and in practice very difficult to collect. To tackle this problem,
Zhang et al. [13] proposed a deep learning based landmarks detection method
that can be used a limited number of annotated medical images. Their framework
consists of two CNNs: one for regressing the patches and the second to predict the
landmark positions. Yet, this method like the rest of the learning-based methods
are not suited when only one annotated image is available. Another source of
difficulties is to detect landmarks that are concentrated on a small part of the
image. A typical example is the detection of cochlear landmarks from CT images
since the human cochlea is a tiny structure. In this paper, we tackle the problem
of automatic determination of 3D landmarks in a volumetric image from a single
example consisting of a reference image with its landmarks. We propose a one-
shot learning approach that first localizes a Structure Of Interest (SOI) (e.g. the



Metal Artifacts Reduction in Post-operative Cochlear Implant CT Imaging 165

cochlea in a CT image of the inner ear) which lies next to the landmarks. A
2D CNN is trained offline by generating arbitrary oriented slices of a reference
image with the binary mask of the SOI. Given a target image, the location of
the SOI is iteratively estimated by applying the 2D CNN on 3 orthogonal sets of
slices. After aligning the orientations of the two SOI on the target and reference
images, a non-rigid registration algorithm is applied to propagate the landmarks
to the target image. We apply this approach on 200 CT images of the temporal
bone to locate 3 cochlear landmarks and show that the positioning error is within
the intra-rater variability. To the best of our knowledge, this is the first one-shot
learning method for landmark detection which makes it highly applicable for
several clinical problems.

2 Method

2.1 Overview

The proposed approach is described in Fig. 1. The algorithm requires as input
a reference image Iref where a set of landmarks Lref are positioned. In addition,
we require that a binary mask of a visible anatomical or pathological structure
Sref ⊂ Iref including the landmarks Lref ∈ Sref be provided. Given a target
image Itarget, landmarks Ltarget are estimated by applying an image registration
algorithm between an image patch Pref ⊂ Iref centered on the reference land-
marks and an image patch Ptarget ⊂ Itarget extracted on the target image. The
main challenge is to automatically extract the target image patch Ptarget such
that it is roughly aligned in position and orientation with the reference image
patch in order to ease the non-rigid image registration task. To extract the cen-
tered target image patch, we first train a 2D CNN to segment the mask Sref

on random slices of the reference image. This stage is performed offline and also
requires an additional validation image Ival where the same visible structure Sval

has been segmented. Given a target image, the localization stage extracts the
target image patch Ptarget by iteratively applying the segmentation network to
find the center of mass of the structure and by aligning its axis of inertia. The
last stage applies a registration algorithm to estimate the position of landmarks
Ltarget.

2.2 Offline One-Shot CNN Training

The objective is to train an algorithm that can roughly segment the structure
of interest Sref ⊂ Iref . That structure must include the landmarks or must lie
in the vicinity of the landmarks Lref . It should also be present in all target
images and must be easy to detect int the image with some visible borders.
One issue of one-shot learning is the limited amount of training data that can
easily lead to overfitting [14,15]. To this end, we chose to train a shallow 2D
U-net fω segmentation network in order to segment the SOI that surrounds the
landmarks. The training set consists of slices of the reference image Iref along
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arbitrary rotations and translation offsets together with the associated binary
masks created by slicing accordingly the reference segmentation Sref . The 2D
CNN is trained by minimizing the Binary Cross-Entropy (BCE) loss function.
To limit the risk of overfitting, we use a validation set consisting of another
volumetric image Ival and its segmentation Sval. The training is stopped when
the segmentation performance of fω on the 3 orthogonal slices of Ival start to
decrease. The details of the training procedure are provided in Algorithm 1.
The CNN training can be performed offline and the 2D random image slices are

Algorithm 1: One-shot training of CNN
Inputs: image: Iref , Ival, segmentation: Sref , Sref

Output: CNN parameters ω
Initialize: fω, ΔT, ΔR;
while Lval decreases do

T ← (U(−1, 1)ΔT )3; ; // Uniform Random Translation

R ← (U(−1, 1)ΔR)3 ; // Uniform Random Rotation

Itrans ← Resample(Iref , R, T ) ; // Transformed Image

Strans ← Resample(Sref , R, T ) ; // Transformed Segmentation

for i = 1; i < K; i + + do

fω
ω←− Itrans[i]|Strans[i] ; // Train the CNN

end
Lval ← loss(Sval, fcnn(Ival)) ; // Validation loss

end

centered on the center of mass Cref (for T = 0) of the segmented structure of
interest Sref . Furthermore, the 2D image size of the CNN input is chosen as to
cope with the translation ΔT and rotation ΔR offsets such that random slices
do not include any missing pixel values.

2.3 Online Structure Detection

Given an input image Itarget, we seek to locate the structure of interest Starget

with the proper translation and orientation offsets in order to ease the last image
registration stage.

Translation offset estimation To determine the 3D translation offset between
Itarget and Iref , we propose to align the centers of the mass corresponding to
the structures of interest Starget and Sref . We rely on the trained CNN fω() to
determine Starget given Itarget. However, with the limited training set of fω(),
we need to cope with its possible poor performance. To this end, we propose an
iterative method described in Algorithm 2 and Fig. 2, where the estimation of
the translation offset is progressively refined. We write as fω(Ix

target[k])[i, j] the
output of the CNN applied on the slice k in the X direction of the volumetric
image Itarget which is a 2D probability map. We apply the CNN on the slices of
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Itarget extracted along the X,Y,Z directions. To improve the robustness of the
center of mass estimation of Itarget, we combine their output by multiplying the
3 probabilities outputs for each voxel. The joint output of the network at voxel
[i, j, k] is then written as :

p[i, j, k] = fω(IZ
target[k])[i, j] · fω(IY

target[j])[k, i] · fω(Ix
target[i])[j, k] (1)

The product of the 3 probability maps favors the pixels where the 3 outputs
agree. This helps to filter out the false positive pixels produced by the network
that are not correlated on the 3 slice orientations. The center of mass Ctarget

is then simply estimated as the barycenter of the image voxels weighted by the
joint probability p[i, j, k]:

Ctarget=
(∑

i,j,k x[i,j,k]∗p[i,j,k],
∑

i,j,k y[i,j,k]∗p[i,j,k],
∑

i,j,k z[i,j,k]∗p[i,j,k])T
∑

i,j,k p[i,j,k] (2)

The target image is then cropped around the detected center Ctarget which is
written as P̃target. When the translation offset between the target and reference
images is large, the CNN segmentation performances tend to degrade since it has
been trained with slices roughly centered on the center of Sref . This is why we
propose to iteratively apply the same approach on Itarget after being centered on
Ctarget. This way, we expect the centered image to be more and more accurately
segmented by the neural network since it sees slices that resemble more and more
to its training set. We stop the process when the changes in the detected center
Ctarget become smaller than a threshold.

Algorithm 2: Iterative center of mass localization
Inputs: image: Itarget, CNN: fω(·)
Output: Center of structure in target image Ctarget

Initialize: ε;
Ctarget ← Cref ;
while |Cold − Ctarget| < ε do

P̃target ← Crop(Itarget,Ctarget) ; // Patch centered on Ctarget

while o ∈ {X, Y, Z} do
for i = 1; i < K[o]; i + + do

out[o][i] ← fomega(P̃ o
target[i]); // apply CNN on slices

end

end
p ← out[X] · out[Y ] · out[Z]; // Combine probability maps as Eq. 1

Cold ← Ctarget;
Ctarget ← Eq. 2; // Update center of mass

end

P̃target ← Crop(Itarget,Ctarget) ; // Patch centered on Ctarget
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Fig. 2. Iterative determination of the center of mass of the structure of interest. Steps
(1) - (2) show the 2D CNN segmentation of the structure of interest from the 3 set of
orthogonal slices; (3) The probability maps of the 3 views are combined; (4) Update
of the center of mass from the joint probability maps; (5) The target image is cropped
around the center of mass.

Rotation offset estimation After having aligned the center of mass of the two
structures of interest, the rotation offset is determined by aligning the moments
of inertia of Sref and Starget. More precisely, the matrix of inertia captures the
ellipsoid appearance of each structure and it determines the structure orientation
unambiguously if that structure does not have any axis of symmetry. Therefore
the alignment of the matrices of inertia consists in applying a rotation to Starget

such that the eigenvectors of the 2 matrices coincide [16,17] when they are sorted
according to their eigenvalues. The moments of inertia of Starget are computed
based on the combined probability p[i, j, k] as computed in Eq. 1. Thus, after
performing the eigenvalue decomposition of the 2 matrices, the rotation matrix
centered on Ctarget is applied on the image patch P̃target to get the final target
image patch Ptarget.

2.4 Online Image Patch Registration

After the two previous stages, the estimation of the landmarks Ltarget is achieved
by performing a non-rigid registration of the reference image patch Pref onto
the target image patch Ptarget. The two image patches have the same size, are
both centered on the structure of interest and their orientation roughly coincide.
This is a good initialization for applying the standard diffeomorphic demons
algorithm [18] as implemented in “itk::DiffeomorphicDemonsRegistrationFilter”.
This algorithm starts with a multi-resolution rigid registration followed by the
non-rigid transformation parameterized by a stationary velocity field. It assumes
that intensity distribution matches between the two images patches with a sum
of square difference as similarity measure. The reference landmarks Lref are then
transported to the target image patch Ptarget through the estimated non-rigid
transformation. Finally, the landmarks Ltarget on the original target image Itarget
are positioned by inverting the rigid transforms and cropping performed during
the first two stages of the method.
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3 Experiment

3.1 Dataset

The dataset consists of 200 volumetric CT images of the left temporal bones
acquired by a GE LightSpeed CT scanner at the Nice University Center Hospi-
tal. The image dimensions are (512, 512, 160) in 3D with corresponding spacing
of (0.25 mm, 0.25 mm, 0.24 mm). In this case, the structure of interest is the
cochlea, a relatively small bone having a spiral shape similar to a snail shell and
without any axis of symmetry. The cochlea is easily visible on CT images. Two
volumetric images were randomly selected to serve as reference and validation
images and their cochlea was then segmented by an expert in a semi-automatic
fashion. Three landmarks corresponding the cochlea top, center and round win-
dow were manually set on the reference image as shown in Fig. 1.

3.2 Network Architecture and Training Details

We use a 2D U-net like network [19] for segmenting the cochlea in 2D images.
The network structure is shown in Fig. 1 and is relatively shallow in order to
minimize its complexity. The network input size is [·, 100, 100, 1] followed with 4
convolutional layers (shape: [·, 100, 100, 64]). Feature maps are convoluted with
a group of halved size layers but doubled in channels (shape: [·, 50, 50, 128]).
Up-sampling layer applied to recover the size of the feature maps to merged
with the jump concatenates feature maps (shape:[·, 100, 100, 64 + 128]). Finally,
5 convolutional layers (shape:[·, 100, 100, 64], chn = 64 for middle layers, chn =
1 for the last layer) are used for generating the final feature map. An Adam
optimizer is used with a learning rate initialized to lr = 0.1 and decreasing with
the number of epochs. The neural network was implemented with Tensorflow 2.0
framework and trained on one NVIDIA 1080 Ti GPU. The offline stage of the
CNN takes less than 1h for training and the online stages takes around 30 s.

4 Results

The proposed approach was evaluated qualitatively and quantitatively. In
Fig. 3(a), we show the position of the center of mass of the segmented cochlea
Ctarget during three iterations of Algorithm 2. We see that the 3 points are get-
ting closer to each other after each iteration thus demonstrating the convergence
of the algorithm. In practice, we found that between 2 to 6 iterations are neces-
sary to get a change of mass center position between two iterations less than 1
mm.

For a quantitative assessment of performance, an expert positioned twice
the 3 landmarks on 20 additional volumes in order to estimate the positioning
error and the intra-rater variability. In addition, we also try to employ a naive
registration-based landmarks detection method without the iterative localiza-
tion. The setup of the naive method shares the same registration conditions as
the registration steps in the proposed framework.



170 Z. Wang et al.

Fig. 3. (a) Positions of the center of mass of the cochlea during 3 iterations of the
translation offset determination. The 3 cross marks in red, white, green correspond to
the 1st, 2nd, 3rd iterations; Row (b) shows the result of the landmarks detection in the
whole image Itarget; Row (c) zooms on the detected landmarks before applying the last
registration stage; Row (d) zooms on the generated landmarks (’x’ marks) after the
registration stage and the manually positioned landmarks (‘+’ marks) by an expert.
(Color figure online)

In Fig. 3(d) we show the 3 landmarks generated by our algorithm with the
same landmarks positioned by the expert. Clearly those points are very close to
each other on the 3 views. In Table 1(top), we list the average position error of
the 3 landmarks on the 20 images with respect to one set of landmarks manually
positioned by an expert, and in the bottom rows, we show the corresponding
results obtained by the naive registration based method.

In average, the position error of Ltarget is around 0.6mm which corresponds
to a difference of position of 2 to 3 voxels. This result is satisfactory when consid-
ering the small size of the cochlea (width: 6.53±0.35 mm, height: 3.26±0.24 mm
[20]) within the full CT volume (128mm × 128mm × 55mm). In contrast, the
naive method is almost unusable for cochlea landmarks detection as the rela-
tive error (on average 9.48mm) is too large in comparison with the size of the
cochlea. For a better assessment, we also provide the intra-expert landmark posi-
tion error in Table 1(middle). It shows that the algorithm error is similar to the
intra-expert variability, with a lower error for two (the center and window land-
marks) out of the three landmarks. When computing the landmark position error
with the second set of landmarks made by the expert, or with the average of the
2 annotations, we also found that the algorithm was performing similarly to the
expert. Since the intra-rater variability is in most cases lower than inter-rater
variability, we believe that the proposed method is an effective way to automate
landmark positioning around the cochlea on CT images. Note that the mean
landmark position errors reported by Zhang et al. [13] also correspond between
2.5 to 3 times the voxel size whereas Grewal et al. [21] after training on 168
scans reports errors between 2 to 9 times the voxel size (2–9 mm).
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Table 1. Position errors of the 3 cochlear landmarks (centre, top and window) auto-
matically generated landmarks (AUTO), a second set of manual (MANU) ones, and
automatically generated landmarks of registration based naive method (REG).

Image ID 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 μ/σ

CEN AUTO 0.88 0.28 0.49 0.7 0.72 0.57 0.19 0.49 0.49 0.39 0.65 0.84 0.87 0.67 0.72 0.72 0.73 0.54 0.33 0.39 0.58±0.19 mm

TOP AUTO 0.7 1.33 0.56 0.73 0.72 0.37 0.31 0.78 0.35 0.2 1.63 1.15 1 0.26 1.04 0.67 0.8 1.23 0.55 0.39 0.73±0.39 mm

WIN AUTO 0.86 0.65 0.84 0.55 0.65 1.12 1.35 0.31 0.6 0.49 0.26 1.06 1.54 0.72 0.88 0.81 0.54 0.34 1.43 0.88 0.79±0.3 mm

CEN MANU 0.28 0.56 0.53 1.06 0.65 0.59 0.45 0.57 0.25 1.09 0.94 0.84 1.09 0.53 0.37 0.5 0.25 0.54 0.59 0.3 0.60±0.27 mm

TOP MANU 0.43 0.38 0.49 0.25 0.31 0.25 0.31 0.19 0.24 1.09 0 0.5 0.75 0.25 0.31 0.19 0.6 0.42 0.33 0.66 0.40±0.24 mm

WIN MANU 0.69 0.62 1.11 1.1 0.31 1.07 0.31 0.77 0.43 0.57 0.79 1.22 0.91 0.77 0.97 0.75 0.9 1.01 1.18 1.25 0.84±0.29 mm

CEN REG 4.42 10.95 15.78 16.49 12.83 13.04 14.28 15.09 9.66 16.21 6.82 12.91 11.06 6.96 22.69 6.16 2.22 11.68 17.79 9.74 11.84±4.97 mm

TOP REG 1.11 8.85 13.73 14.12 10.47 11.25 12.69 12.90 7.55 14.29 4.30 9.56 7.28 4.84 20.27 3.77 0.25 12.88 15.33 13.65 9.95±5.18 mm

WIN REG 2.21 2.82 8.62 9.73 4.15 5.67 5.37 7.44 2.51 7.89 1.09 6.42 3.46 1.45 15.33 1.77 4.91 16.20 9.40 16.77 6.66±4.8 mm

5 Conclusion

To the best of our knowledge, the proposed method is the first one-shot learning
approach for 3D landmarks detection in volumetric images. We showed that
the proposed approach was effective in localizing 3D landmarks in the cochlea
from CT images of the inner ear. It relies on a segmentation stage and the
registration of a single user-defined image patch which makes it easy explainable
and interpretable. The approach is generic and could be applied to the detection
of landmarks in CT imaging and other imaging modalities. In the future, we
plan to use more complex image similarity measures in the final registration
algorithm and to introduce more annotated data (few-shot learning) to address
challenging landmark detection problems. Other network architectures proposed
in the literature for one-shot deep learning such as [22–25] can be explored.
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Abstract. Unsupervised learning algorithms (e.g., self-supervised learn-
ing, auto-encoder, contrastive learning) allow deep learning models to
learn effective image representations from large-scale unlabeled data. In
medical image analysis, even unannotated data can be difficult to obtain
for individual labs. Fortunately, national-level efforts have been made
to provide efficient access to obtain biomedical image data from previ-
ous scientific publications. For instance, NIH has launched the Open-i�

search engine that provides a large-scale image database with free access.
However, the images in scientific publications consist of a considerable
amount of compound figures with subplots. To extract and curate indi-
vidual subplots, many different compound figure separation approaches
have been developed, especially with the recent advances in deep learn-
ing. However, previous approaches typically required resource extensive
bounding box annotation to train detection models. In this paper, we
propose a simple compound figure separation (SimCFS) framework that
uses weak classification annotations from individual images. Our tech-
nical contribution is three-fold: (1) we introduce a new side loss that is
designed for compound figure separation; (2) we introduce an intra-class
image augmentation method to simulate hard cases; (3) the proposed
framework enables an efficient deployment to new classes of images,
without requiring resource extensive bounding box annotations. From
the results, the SimCFS achieved a new state-of-the-art performance
on the ImageCLEF 2016 Compound Figure Separation Database. The
source code of SimCFS is made publicly available at https://github.com/
hrlblab/ImageSeperation.

Keywords: Compound figures · Separation · Biomedical data · Deep
learning

1 Introduction

Unsupervised learning algorithms [4,23] allow deep learning models to learn
effective image representations from large-scale unlabeled data, such as self-
supervised learning, auto-encoder, and contrastive learning [5]. However, even
c© Springer Nature Switzerland AG 2021
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Compound Figure 
Separation (CFS)

Single Figures for 
Deep Learning

Journals

Search Engine

Fig. 1. Value of compound figure separation. This figure shows the hurdle (red arrow) of
training self-supervised machine learning algorithms directly using large-scale biomed-
ical image data from biomedical image databases (e.g., NIH OpenI) and academic
journals (e.g., AJKD). When searching desired tissues (e.g., search “glomeruli”), a
large amount of data are compound figures. Such data would advance medical image
research via recent unsupervised learning algorithms, such as self-supervised learning,
contrasting learning, and auto encoder networks [13] (Color figure online)

large-scale unannotated glomerular images can be difficult to obtain for individ-
ual labs [26]. Fortunately, many resources (e.g., NIH Open-i� [7] search engine,
academic images released by journals) have provided the opportunity to obtain
extra large-scale images. However, the images from such resources consist of a
considerably large amount of compound figures with subplots (Fig. 1). To extract
and curate individual subplots, compound figure separation algorithms can be
applied [19].

Various compound figure separation approaches have been developed [1,6,12,
14,18,24,25], especially with recent advances in deep learning. However, previ-
ous approaches typically required resource extensive bounding box annotation to
train detection models. In this paper, we propose a simple compound figure sep-
aration (SimCFS) framework that utilizes weak classification annotations from
individual images for compound figure separation. Briefly, the contribution of
this study are in three-fold:

• We propose a new side loss, an optimized detection loss for figure separation.
• We introduce an intra-class image augmentation method to simulate hard

cases.
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• The proposed framework enables an efficient deployment to new classes of
images, without requiring resource extensive bounding box annotations.

We apply our technique to conduct compound figure separation for renal
pathology. Glomerular phenotyping [17] is a fundamental task for efficient diag-
nosis and quantitative evaluations in renal pathology. Recently, deep learning
techniques have played increasingly important roles in renal pathology to reduce
the clinical working load of pathologists and enable large-scale population based
research [3,8–10,16]. Due to the lack of publicly available annotated dataset for
renal pathology, the related deep learning approaches are still limited on a small-
scale [13]. Therefore, it is appealing to extract large-scale glomerular images from
public databases (e.g., NIH Open-i� search engine) for downstream unsupervised
or semi-supervised learning [13].

2 Related Work

In biomedical articles, about 40–60% of figures are multi-panel [15]. Several works
have been proposed in the document analysis community, extracting figure and
semantic information. For example, Huang et al. [12] presented their recognition
results of textual and graphical information in literary figures. Davila et al. [6]
presented a survey of approaches of several data mining pipelines for future
research.

In order to collect scientific data massively and automatically, various
approaches have been proposed by different researchers [19–21]. For example,
Lee et al. (2015) [18] proposed an SVM-based binary classifier to distinguish
complete charts from visual markers like labels, legend, and ticks. Apostolova et
al. [1] proposed a figure separation method by capital index. These traditional
computer vision approaches are commonly based on the figure’s grid-based lay-
out or visual information. Thus, the separation was usually accomplished by an
x-y cut. However there are more complicated cases in compound figures like no
white-space gaps or overlapped situations.

In the past few years, recent deep learning based algorithms using convo-
lutional neural networks(CNNs) provided considerably better performance in
extracting and processing textual and non-textual content from scholarly arti-
cles. Tsutsui and Crandall (2017) [25] proposed the first deep learning based app-
roach to compound figure separation in which they applied a deep convolutional
network to train the separator. They also implemented training on artificially-
constructed datasets and reported superior performances on ImageCLEF data
sets [11]. Shi et al. [24] developed a multi-branch output CNN to predict the
irregular panel layouts and provided augmented data to drive learning; their
network can predict compound figures of different sizes of structures with a bet-
ter accuracy. Jiang et al. [14] combined the traditional vision method and high
performance of deep learning networks by firstly detecting the sub-figure label
and then optimizing the feature selection process in the sub-figure detection
part. This improved the detection precision by 9%. In Tsutsui’s study [25], they
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applied You Only Look Once (YOLO) Version 2 [22], a CNN based detection net-
work. Deep learning based detection approaches utilized a single convolutional
network to predict bounding boxes and class probabilities from full images simul-
taneously, which can achieve high speed detection and are in favor of sub-figure
detection tasks.

3 Methods

The overall framework of the SimCFS approach is presented in Fig. 2. The train-
ing stage of SimCFS contains two major steps: (1) compound figure simulation,
and (2) sub-figure detection. In the testing stage, only the detection network is
needed.

Fig. 2. The overall workflow of the proposed simple compound figure separation (Sim-
CFS) workflow. In the training stage, SimCFS only requires single images from different
categories. The pseudo compound figures are generated from the proposed augmenta-
tion simulator (SimCFS-AUG). Then, a detection network (SimCFS-DET) is trained
to perform compound figure separation. In the testing stage (the gray panel), only the
trained SimCFS-DET is required for separating the images.

3.1 Anchor Based Detection

YOLOv5, the latest version in the YOLO family [2], is employed as the backbone
network for sub-figure detection. The rationale for choosing YOLOv5 is that the
sub-figures in compound figures are typically located in horizontal or vertical
orders. Herein, the grid-based design with anchor boxes is well adaptable to our
application. A new side loss is introduced to the detection network that further
optimizes the performance of compound figure separation.

3.2 Compound Figure Simulation

Our goal is to only utilize single images, which are non-compound images with
weak classification labels in training a compound image separation method. In
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previous studies, the same task typically requires stronger bounding box anno-
tations of subplots using real compound figures. In compound figure separation
tasks, a unique advantage is that the sub-figures are not overlapped. Moreover,
their spatial distributions are more ordered compared with natural images in
object detection. Therefore, we propose to directly simulate compound figures
from individual images as the training data for the downstream sub-figure detec-
tion.

Tsutsui et al. [25] proposed a compound figure synthesis approach (Fig. 3).
The method first randomly samples a number of rows and random height for
each row. Then a random number of single figures fills the empty template.
However, the single figures are naively resized to fit the template, with large
distortion (Fig. 3).

Inspired by prior arts [25], we propose a simple compound figure separation
specific data augmentation strategy, called SimCFS-AUG, to perform compound
figure simulation. Two groups of simulating compound figures are generated
which are row-restricted and column-restricted. The length of each row or column
is randomly generated within a certain range. Then, images from our database
are randomly selected and concatenated together to fit in the preset space. As
opposed to previous studies, the original ratio of individual images is kept in
our SimCFS-AUG simulator, without distortion. Moreover, we introduce a new
class within compound image separation augmentation to SimCFS-AUG so as
to simulate the specific hard case in which all images belong to the same class.

3.3 Side Loss for Compound Figure Separation

For object detection on natural images, there is no specific preference between
over detection and under detection as objects can be randomly located and even
overlapped. In medical compound images, however, the objects are typically
closely attached to each other, but not overlapping. In this case, over detection

Fig. 3. Compound figure simulation. The left panel shows the current compound figure
simulation strategy, which distorts the images with random ratios. The right panel
presents the proposed SimCFS-AUG compound figure simulator. It keeps the original
ratio of individual images. Moreover, intra-class augmentation is introduced to simulate
the hard cases that the figures with similar appearances attach to each other.
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Fig. 4. Proposed Side loss for figure separation. The upper panel shows the principle
of side loss, in which penalties only apply when vertices of detected bounding boxes
are outside of true box regions. The lower left panel shows the bias of current IoU loss
towards the over detection. When an under detection case (yellow box) and an over
detection case (red box) have the same margins (d), from predicted to true boxes, the
over detection has the smaller loss (larger IoU). The lower right panel shows that the
under detection and over detection examples of the compound figure separation, with
the same IoU loss. The Side loss is proposed to break the even IoU loss, given the
results in the yellow boxes are less contaminated by nearby figures than the results in
the red boxes (green arrows). (Color figure online)

would introduce undesired pixels from the nearby plots (Fig. 4), which are not
ideal for downstream deep learning tasks. Unfortunately, the over detection is
often encouraged by the current Intersection Over Union (IoU) loss in object
detection (Fig. 4), compared with under detection.

In the SimCFS-DET network, we introduce a simple side loss, which will
penalize over detection. We define a predicted bounding box as Bp and a ground
truth box as Bg, with coordinates: Bp = (xp
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The over detection penalty of vertices for each box is computed as:

xI
1 = max(0, xg

1 − xp
1), y

I
1 = max(0, yg

1 − yp
1)

xI
2 = max(0, xp

2 − xg
2), y

I
2 = max(0, yp

2 − yg
2)

(1)

Then, the side loss is defined as:
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Side loss is combined with canonical loss functions in YOLOv5, including
bounding box loss (Lbox), object probability loss (Lobj), and classification loss
(Lcls).

Ltotal = λ1Lbox + λ2Lobj + λ3Lcls + λ4Lside, where λ1, λ2, λ3, λ4 are
constant weights to balance the four loss functions. Following the YOLOv5’s
implementation1, the parameters were set as λ1 = box × (3/nl), λ2 = obj ×
(imgsize/640)2 × (3/nl), λ3 = (cls×num cls/80)× (3/nl), where num cls was
the number of classes, nl was the number of layers, and imgsize was the image
size. The λ4 of the Side loss was empirically set to λ1/30 across all experiments
as the Side loss and Box loss are all based on the coordinates.

4 Data and Implementation Details

We collected two in-house datasets for evaluating the performance of differ-
ent compound figure separation strategies. One compound figure dataset (called
Glomeruli-2000) consisted of 917 training and 917 testing real figure plots from
the American Journal of Kidney Diseases (AJKD), with the keywords “glomeru-
lar OR glomeruli OR glomerulus” as the keywords. Each figure was annotated
manually with four classes, including glomeruli from (1) light microscopy, (2)
fluorescence microscopy, and (3) electron microscopy, and (4) charts/plots.

To obtain single images to simulate compound figures, we downloaded 5,663
single individual images from other resources. Briefly, we obtained 1,037 images
from Twitter, and obtained 4,626 images from the Google search engine, with
five classes, including single images from (1) glomeruli with light microscopy, (2)
glomeruli with fluorescence microscopy, (3) glomeruli with electron microscopy,
(4) charts/plots, and (5) others. The individual images were combined using
the SimCFS-AUG simulator to generate 9,947 pseudo training images. 2,000 of
the pseudo images were simulated using intra-class augmentation, while 2,947
of them were simulated with only single sub-figures. The implementation of
SimCFS-DET was based on YOLOv5 with PyTorch implementations. Google
Colab was used to perform all experiments in this study.

In the experiment setting, the parameters are empirically chosen. We set the
learning rate to 0.01, weight decay to 0.0005 and momentum to 0.937. The input
image size was set to 640, box to 0.5, obj to 1, cls to 0.5, and number of layers to
3. For our in-house datasets, we trained 50 epochs using a batch size of 64. For
the imageCLEF2016 dataset [11], we trained 50 epochs using a smaller batch
size of 8.

1 https://github.com/ultralytics/yolov5.

https://github.com/ultralytics/yolov5
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Fig. 5. Qualitative results. This figure shows the qualitative results of comparing pro-
posed SimCFS approach with the YOLOv5 benchmark.

5 Results

5.1 Ablation Study

The Side loss is the major contribution to the YOLOv5 detection backbone. In
this ablation study, we show the performance of using 917 real compound images
with manual box annotations as training data (as “Real Training Images”) in
Table 1 and Fig. 5. This also shows the results of merely using simulated images
as training data (as “Simulated Training Images”). The proposed side loss con-
sistently improves the detection performance by a decent margin. The intra-class
self-augmentation improves the performance when only using simulated training
images.

5.2 Comparison with State-of-the-Art

We also compare CFS-DET with the state-of-the-art approaches including Tsu-
isui et al. [25] and Zou et al. [27] using the ImageCLEF2016 dataset [11]. Image-
CLEF2016 is the commonly accepted benchmark for compound figure sepa-
ration, including total 8,397 annotated multi-panel figures (6,783 figures for
training and 1,614 figures for testing). Table 2 shows the results of the Image-
CLEF2016 dataset. The proposed CFS-DET approach consistently outperforms
other methods by considering evaluation metrics.
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Table 1. The ablation study with different types of training data.

Training data Method Side loss AUG All Light Fluo. Elec. Chart

Real training images YOLOv5 [2] 69.8 77.1 71.3 73.4 57.4

SimCFS-DET (ours) � 79.2 86.1 80.9 84.2 65.8

Simulated training images YOLOv5 [2] 66.4 79.3 62.1 76.1 48.0

SimCFS (ours) � 69.4 77.6 67.1 84.1 48.8

YOLOv5 [2] � 71.4 82.8 72.1 75.3 47.1

SimCFS (ours) � � 80.3 89.9 78.7 87.4 58.8

*AUG is the intra-class self-augmentation. ALL is the Overall mAP0.5:.95, which is reported for all classes,

class Light, class Florescence and class Electron.

Table 2. The results on ImageCLEF2016 dataset.

Method Backbone mAP0.5 mAP0.5:.95

Tsutsui et al. [25] YOLOv2 69.8 –

Tsutsui et al. [25] Transfer 77.3 –

Zou et al. [27] ResNet152 78.4 –

Zou et al. [27] VGG19 81.1 –

YOLOv5 [2] YOLOv5 85.3 69.5

SimCFS-DET (ours) YOLOv5 88.9 71.2

6 Conclusion

In this paper, we introduce the SimCFS framework to extract images of interests
from large-scale compounded figures with merely weak classification labels. The
pseudo training data can be built using the proposed SimCFS-AUG simulator.
The anchor-based SimCFS-DET detection achieves state-of-the-art performance
by introducing a simple Side loss.
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11. Garćıa Seco de Herrera, A., Schaer, R., Bromuri, S., Müller, H.: Overview of the
ImageCLEF 2016 medical task. In: Working Notes of CLEF 2016 (Cross Language
Evaluation Forum), September 2016

12. Huang, W., Tan, C.L., Leow, W.K.: Associating text and graphics for scientific
chart understanding. In: Eighth International Conference on Document Analysis
and Recognition (ICDAR 2005), pp. 580–584. IEEE (2005)

13. Huo, Y., Deng, R., Liu, Q., Fogo, A.B., Yang, H.: AI applications in renal pathology.
Kidney Int. 99, 1309–1320 (2021)

14. Jiang, W., Schwenker, E., Spreadbury, T., Ferrier, N., Chan, M.K., Cossairt,
O.: A two-stage framework for compound figure separation. arXiv preprint
arXiv:2101.09903 (2021)

15. Kalpathy-Cramer, J., de Herrera, A.G.S., Demner-Fushman, D., Antani, S.,
Bedrick, S., Müller, H.: Evaluating performance of biomedical image retrieval
systems–an overview of the medical image retrieval task at ImageCLEF 2004–2013.
Comput. Med. Imaging Graph. 39, 55–61 (2015)

16. Kannan, S., et al.: Segmentation of glomeruli within trichrome images using deep
learning. Kidney Int. Rep. 4(7), 955–962 (2019)

17. Koziell, A., et al.: Genotype/phenotype correlations of NPHS1 and NPHS2 muta-
tions in nephrotic syndrome advocate a functional inter-relationship in glomerular
filtration. Hum. Mol. Genet. 11(4), 379–388 (2002)

18. Lee, P.-S., Howe, B.: Detecting and dismantling composite visualizations in the
scientific literature. In: Fred, A., De Marsico, M., Figueiredo, M. (eds.) ICPRAM
2015. LNCS, vol. 9493, pp. 247–266. Springer, Cham (2015). https://doi.org/10.
1007/978-3-319-27677-9 16

19. Lee, P.S., Howe, B.: Dismantling composite visualizations in the scientific litera-
ture. In: ICPRAM (2), pp. 79–91. Citeseer (2015)

20. Li, P., Jiang, X., Kambhamettu, C., Shatkay, H.: Compound image segmentation
of published biomedical figures. Bioinformatics 34(7), 1192–1199 (2017). https://
doi.org/10.1093/bioinformatics/btx611

21. Li, P., Jiang, X., Kambhamettu, C., Shatkay, H.: Segmenting compound biomedical
figures into their constituent panels. In: Jones, G.J.F., et al. (eds.) CLEF 2017.
LNCS, vol. 10456, pp. 199–210. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-65813-1 20

22. Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: unified,
real-time object detection. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 779–788 (2016)

http://arxiv.org/abs/1708.00251
http://arxiv.org/abs/2101.09903
https://doi.org/10.1007/978-3-319-27677-9_16
https://doi.org/10.1007/978-3-319-27677-9_16
https://doi.org/10.1093/bioinformatics/btx611
https://doi.org/10.1093/bioinformatics/btx611
https://doi.org/10.1007/978-3-319-65813-1_20
https://doi.org/10.1007/978-3-319-65813-1_20


Compound Figure Separation of Biomedical Images with Side Loss 183

23. Sathya, R., Abraham, A.: Comparison of supervised and unsupervised learning
algorithms for pattern classification. Int. J. Adv. Res. Artif. Intell. 2(2), 34–38
(2013)

24. Shi, X., Wu, Y., Cao, H., Burns, G., Natarajan, P.: Layout-aware subfigure decom-
position for complex figures in the biomedical literature. In: 2019 IEEE Interna-
tional Conference on Acoustics, Speech and Signal Processing (ICASSP), ICASSP
2019, pp. 1343–1347. IEEE (2019)

25. Tsutsui, S., Crandall, D.J.: A data driven approach for compound figure separation
using convolutional neural networks. In: 2017 14th IAPR International Conference
on Document Analysis and Recognition (ICDAR), vol. 1, pp. 533–540. IEEE (2017)

26. Zhang, Y., Yang, L., Chen, J., Fredericksen, M., Hughes, D.P., Chen, D.Z.: Deep
adversarial networks for biomedical image segmentation utilizing unannotated
images. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L.,
Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10435, pp. 408–416. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-66179-7 47

27. Zou, J., Thoma, G., Antani, S.: Unified deep neural network for segmentation and
labeling of multipanel biomedical figures. J. Am. Soc. Inf. Sci. 71(11), 1327–1340
(2020)

https://doi.org/10.1007/978-3-319-66179-7_47


Data Augmentation with Variational
Autoencoders and Manifold Sampling

Clément Chadebec(B) and Stéphanie Allassonnière
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Abstract. We propose a new efficient way to sample from a Variational
Autoencoder in the challenging low sample size setting (A code is avail-
able at https://github.com/clementchadebec/Data Augmentation with
VAE-DALI). This method reveals particularly well suited to perform

data augmentation in such a low data regime and is validated across
various standard and real-life data sets. In particular, this scheme allows
to greatly improve classification results on the OASIS database where
balanced accuracy jumps from 80.7% for a classifier trained with the
raw data to 88.6% when trained only with the synthetic data generated
by our method. Such results were also observed on 3 standard data sets
and with other classifiers.

Keywords: Data augmentation · VAE · Latent space modelling

1 Introduction

Despite the apparent availability of always bigger data sets, the lack of data
remains a key issue for many fields of application. One of them is medicine
where practitioners have to deal with potentially very high dimensional data
(e.g. functional Magnetic Resonance Imaging for neuroimaging) along with very
low sample sizes (e.g. rare diseases or heterogeneous cancers) which make statis-
tical analysis challenging and unreliable. In addition, the wide use of algorithms
heavily relying on the deep learning framework [6] and requiring a large amount
of data has made the need for data augmentation (DA) crucial to avoid poor
performance or over-fitting [16]. As an example, a classic way to perform DA on
images consists in applying simple transformations such as adding random noise,
rotations etc. However, it may be easily understood that such augmentation tech-
niques are strongly data dependent1 and may still require the intervention of an
expert assessing the relevance of the augmented samples. The recent develop-
ment of generative models such as Generative Adversarial Networks (GAN) [7]
1 Think of digits where rotating a 6 gives a 9 for example.
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or Variational AutoEncoders (VAE) [9,14] paves the way for consideration of
another way to augment the training data. While GANs have already seen some
success [2,4,17] and even for medical data [11,15] VAEs have been of least inter-
est. One limitation of the use of both generative models relies in their need of a
large amount of data to be able to generate faithfully. In this paper, we argue
that VAEs can actually be used to perform DA in challenging contexts provided
that we amend the way we generate the data. Hence, we propose:

– A new non prior-dependent generation method using the learned geometry of
the latent space and consisting in exploring it by sampling along geodesics.

– To use this method to perform DA in the small sample size setting on stan-
dard data sets and real data from OASIS database [13] where it allows to
remarkably improve classification results.

2 Variational Autoencoder

Given a set of data x ∈ X , a VAE aims at maximizing the likelihood of the asso-
ciated parametric model {Pθ, θ ∈ Θ}. Assuming that there exist latent variables
z ∈ Z living in a lower dimensional space Z, the marginal distribution writes

pθ(x) =
∫

Z
pθ(x|z)q(z)dz, (1)

where q is a prior distribution over the latent variables and pθ(x|z) is most
of the time a simple distribution and is referred to as the decoder. A varia-
tional distribution qϕ (often taken as Gaussian) aiming at approximating the
true posterior distribution and referred to as the encoder is then introduced.
Using Importance Sampling allows to derive an unbiased estimate of pθ(x) such
that Ez∼qϕ

[
p̂θ

]
= pθ(x). Therefore, a lower bound on the logarithm of the objec-

tive function of Eq. (1) can be derived using Jensen’s inequality:

log pθ(x) ≥ Ez∼qϕ

[
log pθ(x, z) − log qϕ(z|x)

]
= ELBO. (2)

Using the reparametrization trick makes the ELBO tractable and so can be
optimised with respect to both θ and ϕ, the encoder and decoder parameters.
Once the model is trained, the decoder acts as a generative model and new data
can be generated by simply drawing a sample using the prior q and feeding it to
the decoder. Several axes of improvement of this model were recently explored.
One of them consists in trying to bring geometry into the model by learning the
latent structure of the data seen as a Riemannian manifold [3,5].

3 Some Elements on Riemannian Geometry

In the framework of differential geometry, one may define a Riemannian manifold
M as a smooth manifold endowed with a Riemannian metric G which is a smooth
inner product G : p → 〈·|·〉p on the tangent space TpM defined at each point
p of the manifold. The length of a curve γ between two points of the manifold
z1, z2 ∈ M and parametrized by t ∈ [0, 1] such that γ(0) = z1 and γ(1) = z2 is
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given by L(γ) =
1∫
0

‖γ̇(t)‖γ(t)dt =
1∫
0

√〈γ̇(t)|γ̇(t)〉γ(t)dt. Curves minimizing such

a length are called geodesics. For any p ∈ M, the exponential map at p, Expp,
maps a vector v of the tangent space TpM to a point of the manifold p̃ ∈ M
such that the geodesic starting at p with initial velocity v reaches p̃ at time 1.
In particular, if the manifold is geodesically complete, then Expp is defined on
the entire tangent space TpM.

4 The Proposed Method

We propose a new sampling method exploiting the structure of the latent space
seen as a Riemannian manifold and independent from the choice of the prior
distribution. The view we adopt is to consider the VAE as a tool to perform
dimensionality reduction by extracting the latent structure of the data within a
lower dimensional space. Having learned such a structure, we propose to exploit it
to enhance the data generation process. This differs from the fully probabilistic
view which uses the prior to generate. We believe that this is far from being
optimal since the prior appears quite strongly data dependent. We will adopt
the same setting as [5] and so use a RHVAE since the metric used by the authors
is easily computable, constraints geodesic path to travel through most populated
areas of the latent space and the learned Riemannian manifold is geodesically
complete. Nonetheless, the proposed method can be used with different metrics
as well as long as the exponential map remains computable. We now assume
that we are given a latent space with a Riemannian structure where the metric
has been estimated from the input data.

4.1 The Wrapped Normal Distribution

The notion of normal distribution may be extended to Riemannian manifolds in
several ways. One of them is the wrapped normal distribution. The main idea is
to define a classic normal distribution N (0, Σ) on the tangent space TpM for any
p ∈ M and pushing it forward to the manifold using the exponential map. This
defines a probability distribution on the manifold N W (p,Σ) called the wrapped
normal distribution. Sampling from this distribution is straight forward and
consists in drawing a velocity in the tangent space from N (0, Σ) and mapping
it onto the manifold using the exponential map [12]. Hence, the wrapped normal
allows for a latent space prospecting along geodesic paths. Nonetheless, this
requires to compute Expp which can be performed with a numerical scheme (see.
App. C). On the left of Fig. 1 are displayed some geodesic paths with respect to
the metric and different starting points (red dots) and initial velocities (orange
arrows). Samples from N W (p, Id) are also presented in the middle and the right
along with the encoded input data. As expected this distribution takes into
account the local geometry of the manifold thanks to the geodesic shooting steps.
This is a very interesting property since it encourages the samples to remain close
to the data as geodesics tend to travel through locations with the lowest volume
element

√
detG(z) and so avoid areas with very poor information.
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Fig. 1. Left : Geodesic shooting in a latent space learned by a RHVAE with dif-
ferent starting points (red dots) and initial velocities (orange arrows). Middle and
right : Samples from the wrapped normal NW (p, Id). The log metric volume element
log

√
detG(z) is presented in gray scale. (Color figure online)

4.2 Riemannian Random Walk

A natural way to explore the latent space of a VAE consists in using a random
walk like algorithm which moves from one location to another with a certain
probability. The idea here is to create a geometry-aware Markov Chain (zt)t∈N

where zt+1 is sampled using the wrapped normal zt+1 ∼ N W (zt, Σ). However,
a drawback of such a method is that every sample of the chain is accepted
regardless of its relevance. Nonetheless, by design, the learned metric is such
that it has a high volume element far from the data [5]. This implies that it
encodes in a way the amount of information contained at a specific location of
the latent space. The higher the volume element, the less information we have.
The same idea was used in [10] where the author proposed to see the inverse
metric volume element as a maximum likelihood objective to perform metric
learning. In our case the likelihood definition writes

L(z) =
ρS(z)

√
detG−1(z)∫

Rd

ρS(z)
√

detG−1(z)dz
, (3)

where ρS(z) = 1 if z ∈ S, 0 otherwise, and S is taken as a compact set so that
the integral is well defined. Hence, we propose to use this measure to assess the
samples quality as an acceptance-rejection rate α in the chain where α(z̃, z) =

min

(
1,

√
detG−1(z̃)√
detG−1(z)

)
, z is the current state of the chain and z̃ is the proposal

obtained by sampling from the wrapped Gaussian N W (z,Σ). The idea is to
compare the relevance of the proposed sample to the current one. The ratio is
such that any new sample improving the likelihood metric L is automatically
accepted while a sample degrading the measure is more likely to be rejected in the
spirit of Hasting-Metropolis sampler. A pseudo-code is provided in Algorithm 1.
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Algorithm 1. Riemannian random walk
Input: z0, Σ
for t = 1 → T do

Draw vt ∼ N (0, Σ)
z̃t ← Expzt−1

(vt)
Accept the proposal z̃t with probability α

end for

4.3 Discussion

It may be easily understood that the choice of the covariance matrix Σ in Algo-
rithm 1 has quite an influence on the resulting sampling. On the one hand,
a Σ with strong eigenvalues will imply drawing velocities of potentially high
magnitude allowing for a better prospecting but proposals are more likely to be
rejected. On the other hand, small eigenvalues involve a high acceptance rate
but it will take longer to prospect the manifold. An adaptive method where Σ
depends on G may be considered and will be part of future work.

Remark 1. If Σ has small enough eigenvalues then Algorithm 1 samples from
Eq. (3).

For the following DA experiments we will assume that Σ has small eigenvalues
and so will sample directly using this distribution. See App. A for sampling
results using the aforementioned method.

5 Data Augmentation Experiments for Classification

In this section, we explore the ability of the method to enrich data sets to improve
classification results.

5.1 Augmentation Setting

We first test the augmentation method on three reduced data sets extracted from
well-known databases MNIST and EMNIST. For MNIST, we select 500 samples
applying either a balanced split or a random split ensuring that some classes are
far more represented. For EMNIST, we select 500 samples from 10 classes such
that they are composed of both lowercase and uppercase characters so that we
end up with a small database with strong variability within classes. These data
sets are then split such that 80% is allocated for training (referred to as the raw
data) and 20% for validation. For a fair comparison, we use the original test set
(e.g. ∼1000 samples per class for MNIST) to test the classifiers. This ensures sta-
tistically meaningful results while assessing the generalisation power on unseen
data. We also validate the proposed DA method on the OASIS database which
represents a nice example of day-to-day challenges practitioners have to face and
is a benchmark database. We use 2D gray scale MR Images (208 × 176) with a
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Table 1. Summary of OASIS database demographics, mini-mental state examination
(MMSE) and global clinical dementia rating (CDR) scores.

Data set Label Obs. Age Sex M/F MMSE CDR

OASIS CN 316 45.1 ± 23.9 119/197 29.1 ± 1.1 0: 316

AD 100 76.8 ± 7.1 41/59 24.3 ± 4.1 0.5: 70, 1: 28, 2: 2

Train CN 220 45.6 ± 23.6 86/134 29.1 ± 1.2 0: 220

AD 70 77.4 ± 6.8 29/41 23.7 ± 4.3 0.5: 47, 1: 21, 2: 2

Val CN 30 48.9 ± 24.1 11/19 29.2 ± 0.8 0: 30

AD 12 75.4 ± 7.2 4/8 25.8 ± 4.2 0.5: 7, 1: 5, 2: 0

Test CN 66 41.7 ± 24.3 22/44 29.0 ± 1.0 0: 66

AD 18 75.1 ± 7.5 8/10 25.8 ± 2.7 0.5: 16, 1: 2, 2: 0

mask notifying brain tissues and are referred to as the masked T88 images in
[13]. We refer the reader to their paper for further image preprocessing details.
We consider the binary classification problem consisting in trying to detect MRI
of patients having been diagnosed with Alzheimer Disease (AD). We split the
416 images into a training set (70%) (raw data), a validation set (10%) and
a test set (20%). A summary of demographics, mini-mental state examination
(MMSE) and global clinical dementia rating (CDR) is made available in Table 1.
On the one hand, for each data set, the train set (raw data) is augmented by
a factor 5, 10 and 15 using classic DA methods (random noise, cropping etc.).
On the other hand, VAE models are trained individually on each class of the
raw data. The generative models are then used to produce 200, 500, 1k or 2k
synthetic samples per class with either the classic generation scheme (i.e. the
prior) or the proposed method. We then train classifiers with 5 independent runs
on 1) the raw data; 2) the augmented data using basic transformations; 3) the
augmented data using the VAE models; 4) only the synthetic data generated by
the VAEs. A DenseNet model2 [8] is used for the toy data while we also train
hand made MLP and CNN models on OASIS (See App. E). The main metrics
obtained on the test set are reported in Tables 2 and 3.

5.2 Results

Toy Data. As expected generating new samples using the proposed method
improves their relevance. The method indeed allows for a quite impressive gain in
the model accuracy when synthetic samples are added to the real ones (leftmost
column of Table 2). This is even more striking when looking at the rightmost
column where only synthetic samples are used to train the classifier. For instance,
when only 200 synthetic samples per class for MNIST are generated with a VAE
and used to train the classifier, the classic method fails to produce meaningful
samples since a loss of 20 pts in accuracy is observed when compared to the

2 We use the code in [1] (See App. E).
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raw data. Interestingly, our method seems to avoid such an effect. Even more
impressive is the fact that we are able to produce synthetic data sets on which
the classifier outperforms greatly the results observed on the raw data (3 to 6
pts gain in accuracy) while keeping a relatively low standard deviation (see gray
cells). Secondly, this example also shows why geometric DA is still questionable
and remains data dependent. For instance, augmenting the raw data by a factor
10 (including flips and rotations) does not seem to have a notable effect on the
MNIST data sets but still improves results on EMNIST. On the contrary, our
method seems quite robust to data set changes.

OASIS. Balanced accuracy obtained on OASIS with 3 classifiers is made avail-
able in Table 3. In this experiment, using the new generation scheme again
improves overall the metric for each classifier when compared to the raw data
and other augmentation methods. Moreover, the strong relevance of the cre-
ated samples is again supported by the fact that the classifiers are again able
to strongly outperform the results on the raw data even when trained only with
synthetic ones. Finally, the method appears robust to classifiers and can be
used with high-dimensional complex data such as MRI.

Table 2. DA on toy data sets. Mean accuracy and standard deviation across 5 indepen-
dent runs are reported. In gray are the cells where the accuracy is higher on synthetic
data than on the raw data.

Data sets MNIST MNIST** EMNIST** MNIST MNIST** EMNIST**

Raw data 89.9 (0.6) 81.6 (0.7) 82.6 (1.4) - - -

Raw + Synthetic Synthetic only

Aug. (X5) 92.8 (0.4) 86.5 (0.9) 85.6 (1.3) - - -

Aug. (X10) 88.3 (2.2) 82.0 (2.4) 85.8 (0.3) - - -

Aug. (X15) 92.8 (0.7) 85.9 (3.4) 86.6 (0.8) - - -

VAE-200* 88.5 (0.9) 84.1 (2.0) 81.7 (3.0) 69.9 (1.5) 64.6 (1.8) 65.7 (2.6)

VAE-500* 90.4 (1.4) 87.3 (1.2) 83.4 (1.6) 72.3 (4.2) 69.4 (4.1) 67.3 (2.4)

VAE-1k* 91.2 (1.0) 86.0 (2.5) 84.4 (1.6) 83.4 (2.4) 74.7 (3.2) 75.3 (1.4)

VAE-2k* 92.2 (1.6) 88.0 (2.2) 86.0 (0.2) 86.6 (2.2) 79.6 (3.8) 78.9 (3.0)

RHVAE-200* 89.9 (0.5) 82.3 (0.9) 83.0 (1.3) 76.0 (1.8) 61.5 (2.9) 59.8 (2.6)

RHVAE-500* 90.9 (1.1) 84.0 (3.2) 84.4 (1.2) 80.0 (2.2) 66.8 (3.3) 67.0 (4.0)

RHVAE-1k* 91.7 (0.8) 84.7 (1.8) 84.7 (2.4) 82.0 (2.9) 69.3 (1.8) 73.7 (4.1)

RHVAE-2k* 92.7 (1.4) 86.8 (1.0) 84.9 (2.1) 85.2 (3.9) 77.3 (3.2) 68.6 (2.3)

Ours-200* 91.0 (1.1) 84.1 (2.0) 85.1 (1.1) 87.2 (1.1) 79.5 (1.6) 77.1 (1.6)

Ours-500* 92.3 (1.1) 87.7 (0.9) 85.1 (1.1) 89.1 (1.3) 80.4 (2.1) 80.2 (2.0)

Ours-1k* 93.3 (0.8) 89.7 (0.8) 87.0 (1.0) 90.2 (1.4) 86.2 (1.8) 82.6 (1.3)

Ours-2k* 94.3 (0.8) 89.1 (1.9) 87.6 (0.8) 92.6 (1.1) 87.6 (1.3) 86.0 (1.0)

* Number of generated samples ** Unbalnced data sets
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Table 3. DA on OASIS data base. Mean balanced accuracy on independent 5 runs
with several classifiers.

Networks MLP CNN Densenet

Raw data 80.7 (4.1) - 72.5 (3.5) - 77.4 (3.3) -

Raw + Synthetic Raw + Synthetic Raw + Synthetic

Synthetic Only Synthetic Only Synthetic Only

Aug. (X5) 84.3 (1.3) - 80.0 (3.5) - 73.9 (5.1) -

Aug. (X10) 76.0 (2.8) - 82.8 (3.7) - 78.3 (4.1) -

Aug. (X15) 78.7 (5.3) - 80.3 (3.7) - 76.6 (1.1) -

VAE-200
∗

80.7 (1.5) 77.8 (1.3) 79.4 (3.6) 65.0 (12.3) 76.5 (3.2) 74.0 (3.0)

VAE-500
∗

79.7 (1.4) 77.4 (1.5) 72.6 (7.0) 70.2 (5.0) 74.9 (4.3) 72.8 (1.8)

VAE-1000
∗

81.3 (0.0) 76.5 (0.6) 74.4 (9.4) 73.0 (3.3) 73.5 (1.3) 74.9 (2.6)

VAE-2000
∗

80.7 (0.3) 78.1 (1.6) 71.1 (4.9) 76.9 (2.6) 74.0 (4.9) 73.3 (3.4)

Ours-200
∗

84.3 (0.0) 86.7 (0.4) 76.4 (5.0) 75.4 (6.6) 78.2 (3.0) 74.3 (4.8)

Ours-500
∗ 87.2 (1.2) 88.6 (1.1) 81.8 (4.6) 81.8 (3.7) 80.2 (2.8) 84.2 (2.8)

Ours-1000
∗

84.2 (0.3) 84.4 (1.8) 83.5 (3.2) 79.8 (2.8) 82.2 (4.7) 76.7 (3.8)

Ours-2000
∗

85.3 (1.9) 84.2 (3.3) 84.5 (1.9) 83.9 (1.9) 82.9 (1.8) 73.6 (5.8)

* Number of generated samples

6 Conclusion

In this paper, we proposed a new way to generate new data from a Variational
Autoencoder which has learned the latent geometry of the input data. This
method was then used to perform DA to improve classification tasks in the low
sample size setting on both toy and real data and with different kind of classi-
fiers. In each case, the method allows for a impressive gain in the classification
metrics (e.g. balanced accuracy jumps from 80.7 to 88.6 on OASIS). Moreover,
the relevance of the generated data was supported by the fact that classifiers
were able to perform better when trained with only synthetic data than on the
raw data in all cases. Future work would consist in using the method on even
more challenging data such as 3D volumes and using smaller data sets.
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Abstract. The development of high quality medical image segmenta-
tion algorithms depends on the availability of large datasets with pixel-
level labels. The challenges of collecting such datasets, especially in case
of 3D volumes, motivate to develop approaches that can learn from other
types of labels that are cheap to obtain, e.g. bounding boxes. We focus on
3D medical images with their corresponding 3D bounding boxes which
are considered as series of per-slice non-tight 2D bounding boxes. While
current weakly-supervised approaches that use 2D bounding boxes as
weak labels can be applied to medical image segmentation, we show that
their success is limited in cases when the assumption about the tightness
of the bounding boxes breaks. We propose a new bounding box correc-
tion framework which is trained on a small set of pixel-level annotations
to improve the tightness of a larger set of non-tight bounding box anno-
tations. The effectiveness of our solution is demonstrated by evaluating
a known weakly-supervised segmentation approach with and without
the proposed bounding box correction algorithm. When the tightness is
improved by our solution, the results of the weakly-supervised segmen-
tation become much closer to those of the fully-supervised one.

Keywords: Weakly-supervised image segmentation · Bounding box ·
Noisy labels · Computed tomography

1 Introduction

Automatic solutions for medical image segmentation are designed to increase
the work efficiency of medical practitioners, as manual segmentation is an error-
prone and time-consuming process. Deep convolutional neural networks (CNN)
are known to achieve state-of-the-art performance for this task. However, their
success highly depends on the availability of large collections of pixel-level anno-
tations performed by experts. Drawing masks for a 2D image typically requires
∼8x more time than delineating a bounding box, and ∼78x more time than
assigning an image-level label [2]. For 3D medical images, the need to have high-
quality pixel-level labels makes the manual annotation even more tedious. This
motivates to develop methods that leverage large amounts of data labelled by
weak annotations that are cheaper to obtain. There exist various forms of weak
c© Springer Nature Switzerland AG 2021
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labels, including image-level tags, scribbles, bounding boxes. We focus on the
latter ones as they are simple, cheap in terms of annotation cost and, moreover,
they provide the localization information about an object. Weak labels can be
used individually in the context of weak supervision, or in combination with a
small set of accurate pixel-level annotations for semi-supervised learning.

In the 2D case, bounding boxes can be defined by the coordinates of two
opposing corners. In 3D, bounding boxes can be defined either as a series of
coordinates of two corners for each slice along a chosen axis, or by three corner
coordinates for the entire 3D volume. As we will show, the first alternative is
suitable for applying existing weakly- or semi-supervised 2D image segmentation
methods. The downside is that the delineation of a bounding box in each 2D
layer of the entire volume is time-consuming. The second alternative allows to
obtain bounding boxes easily, by quick inspection of a region of interest in three
dimensions, but the quality of segmentation approaches can drop increasingly
when they are trained using bounding boxes that are far from being tight.

Our contribution is three-fold. First, we show the limitation of current
weakly-supervised approaches that use 2D bounding boxes as weak labels, when
applied to medical image segmentation in cases when the bounding boxes are not
tight. Second, we propose a bounding box correction framework which shrinks
the bounding boxes closer to the actual size of the object cross-section in each
slice of the 3D volume. Finally, we demonstrate that the proposed solution allows
increasing the accuracy of 3D computed tomography (CT) segmentation algo-
rithms trained using pseudo-annotations generated from weak labels.

2 Related Work

Weakly-supervised learning methods can significantly reduce the cost of annota-
tion that is needed to collect a training set. The methods differ by the type
of weak annotation they rely on, such as image-level labels [12], points [2],
partial labels [13] or global image statistics [1]. In this work, we build upon
the recent papers that have focused on training neural networks using pseudo-
annotations generated from bounding boxes. In [15] and [14], Xu et al. formu-
lated the weakly-labeled segmentation as a sparse boundary point detection task
solved by training a CNN that predicts the offsets from the given bounding box to
the true object boundary. In [5], Kervadec et al. proposed an image segmentation
approach based on global constraints derived from bounding box annotations,
including the deep tightness prior and background emptiness constraint. The use
of these priors allowed the authors of [5] to significantly outperform DeepCut [9]
which also relied on bounding boxes for supervision. In [6], bounding boxes are
treated as noisy labels, and per-class attention maps are produced to guide the
cross-entropy loss to focus on foreground pixels.

Semi-supervised learning is the ability of neural networks to derive informa-
tion from limited sets of labeled data. The authors of [7] proposed an algorithm
for semi-supervised semantic image segmentation based on adversarial training
with a feature matching loss to learn from unlabeled images. The approach of
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Ouali et al. [8] to the same task is based on cross-consistency, where the general
idea of consistency loss is to encourage smooth predictions of the same data
under different perturbations. Ibrahim et al. [3] proposed to train a primary
segmentation model on a small fully-labeled dataset with the aid of an ancillary
model that generates segmentation labels for a larger weakly-labeled dataset. In
this work, we also use the advantage of a small set of accurately labeled data to
train a bounding box correction framework.

3 Methodology

3.1 Bounding Box Correction

Consider a three-dimensional object within a volume. It is straightforward to
produce a 3D bounding box of the object by finding its extreme points in the
three coordinate axes. While this 3D bounding box will be tight in the 3D sense,
its rectangular cross-sections will not, in general, remain tight with respect to
the planar cross-sections of the volume. Figure 1 illustrates such a case for the
task of liver segmentation in a CT volume. In the Experiments section we show
that the success of existing 2D weakly-supervised segmentation methods relies on
the bounding boxes being tight and therefore the tightness of the individual 2D
bounding boxes should be corrected before training and applying a segmentation
CNN.

(a) (b) (c) (d)

Fig. 1. (a) Ground truth mask, (b) tight bounding box for ground truth mask, (c)
non-tight bounding box for a 2D slice of the 3D volume, (d) breaking of the bounding
box tightness assumption (see Sect. 3.2).

We propose a method to improve the tightness of bounding boxes by using
a patch-based classification neural network. The network is trained on a lim-
ited subset of ground truth data which is accurately annotated on a pixel level.
The proposed solution consists of four steps shown in Fig. 2. First, a non-tight
bounding box is cropped from each slice of the 3D image. Second, each crop
is divided into patches of size p × p pixels, with an overlap equal to p/2. Each
patch is assigned a binary label y: y = 1 if the foreground object occupies more
than 50% of the patch area; otherwise y = 0. Third, during training and infer-
ence, the classification neural network assigns a label for every patch inside the
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cropped bounding box area. Finally, the patches that the classification network
has labeled as foreground determine the extent of the corrected bounding box.
During inference, we apply this neural network to data annotated by non-tight
bounding boxes, and, following the classification step, obtain more accurate and
more tight bounding boxes.

Fig. 2. Bounding box correction framework.

3.2 Bounding Boxes for Weakly Supervised Segmentation

We test the bounding box correction method in combination with the novel
weakly-supervised framework proposed by Kervadec et al. [5]. The authors per-
form medical image segmentation by deriving several global constrains from
bounding box annotations. In order to regularize the output of the network,
they leverage the bounding box tightness prior which was reformulated as a
set of global constrains. At the same time, in order to enforce the network to
predict no foreground outside the bounding box, the authors add a global back-
ground emptiness constraint. The training of a neural network is performed
using a sequence of unconstrained losses based on an extension of the log-barrier
method.

The global bounding box tightness prior mentioned above assumes that each
of side of the box is sufficiently close to the target region. This means that for any
region shape, each vertical or horizontal line inside the bounding box will cross
at least one pixel belonging to the target region. This condition does not hold
when the provided annotation comes as a 3D bounding box which is represented
as a series of per-slice non-tight 2D bounding boxes. In this case, there will exist
vertical or horizontal lines shown as stripes in Fig. 1(d), that will lie outside of
the actual object boundary. In the Experiments section we demonstrate the poor
performance of the weakly-supervised approach from [5] when the user-provided
bounding box is much wider than the true object of interest.

3.3 Implementation Details

For patch classification that is used for correcting the bounding boxes, we train
a VGG-16 [10] CNN using cross-entropy loss. After the bounding boxes are
corrected, we use a residual version of a standard UNet [5] neural network which
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we trained in a 2.5D manner by taking a stack of three neighboring slices as
input and outputting a segmentation for the single central slice of the stack.
This approach allows to take advantage of richer spatial information compared
to 2D, while requiring less computations compared to 3D CNNs. Following [5],
we trained the segmentation model using the tightness prior in combination with
constraint on the global size and masked cross-entropy. We performed three-fold
cross-validation to study the variability of image segmentation.

Both the classification and segmentation neural networks are trained using
Adam optimizer with learning rate equal to 10−4. The mini-batch size and the
number of epochs are set to 32 and 50 respectively. We set the bounding box
tightness prior parameters following [5].

4 Experiments and Discussion

We validate the proposed bounding box correction method, followed by the
weakly-supervised segmentation framework, on the liver segmentation dataset
provided by the organizers of the Medical Segmentation Decathlon [11]. The
data consist of 131 3D contrast-enhanced CT images and was divided into train-
ing and validation sets in the proportion 100:31. We normalize the CT data
as suggested in [4]. First, the intensity values of pixels that fall under the seg-
mentation masks are collected for the whole training set. Second, the intensity
values for the entire dataset are clipped to the [0.5, 99.5] percentiles of the col-
lected values. Third, z-score normalization is applied based on the statistics of
the collected values.

To train the bounding box correction framework, we further divided the
training set into a small subset of accurate pixel-level and a larger subset of
weak bounding box annotations, with the size of the small subset equal to 5%,
10% and 20% of the whole training set. We also studied the effect of patch size
on the tightness of corrected bounding boxes and on the segmentation accuracy,
which was measured as the Dice similarity coefficient between the CNN outputs
and ground truth masks.

4.1 Weakly-Supervised Segmentation of 3D CT Volume Using
Bounding Box Correction

In Table 1 we compare the performance of fully- and weakly-supervised training
strategies for the liver CT dataset, where 3D voxel-level segmentation masks are
available for each 3D CT scan. In this case one can easily obtain a 3D bounding
box for the entire object of interest, or a series of tight 2D bounding boxes
corresponding to each individual cross-section of the object. The first alternative
implies the absence of the bounding box tightness property on most of the 2D
slices of the volume.

The weakly-supervised approach [5] can be efficiently applied to slice-wise
2D image segmentation of a 3D object, as long as the ground truth labels are
given as tight bounding boxes for each image slice (Table 1). If, instead of a
series of 2D bounding boxes, the ground truth segmentation labels are given as
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(a) (b) (c) (d)

Fig. 3. (a) Ground truth mask. Segmentation results of a 2.5D UNet trained on: (b)
2D tight bounding boxes, (c) 3D non-tight bounding boxes, (d) 3D corrected bounding
boxes.

a 3D bounding box computed over the entire object of interest embedded within
a 3D image, then, depending on the shape of the object, the edges of many
rectangular 2D cross-sections of a 3D bounding box will be quite distant from
the boundaries of the object. In this case, the performance of the semi-supervised
approach drops considerably. In order to boost the performance of segmentation
networks trained on this kind of weak and noisy labels, we use the advantage
of the proposed bounding box correction framework described in Sect. 3.1 and
pictured in Fig. 2. In Table 2 we show the bounding box tightness computed as
the intersection over union (IoU) between the tight bounding box generated from
a 2D ground truth mask, and the bounding box coming from a 3D box before
and after applying our correction procedure on the liver CT dataset. As shown
in Table 1 (‘3D corrected’), the improvement of bounding box tightness using
our approach results in higher segmentation accuracy of models trained with
weak supervision. The experiments also show that a smaller patch size (p = 16)
used for correcting the bounding boxes results in higher segmentation accuracy.
The amount of accurately labeled data that is used to train the bounding box
correction network also plays the role in the final segmentation accuracy. By
providing 20 examples one can achieve the quality that is comparable to the
performance of segmentation models trained using tight 2D bounding boxes
(Figs. 3 and 4).

(a) (b) (c) (d)

Fig. 4. (a) Tight bounding box for ground truth mask, (b) non-tight bounding box
for a 2D slice of the 3D volume, (c) output of patch classification CNN, (d) corrected
bounding box for a 2D slice of the 3D volume.
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Table 1. Segmentation of 3D liver CT images: Dice scores obtained by training seg-
mentation models using weak supervision provided as tight, non-tight and corrected
bounding boxes. The Dice score for full supervision (voxel-level masks) is 0.92 ± 0.03.

2D tight 3D non-tight 3D corrected number of images for box correction

5 10 20

0.90± 0.01 0.28± 0.06 p = 16 0.83± 0.02 0.86± 0.01 0.90±0.04

p = 32 0.82± 0.04 0.84± 0.03 0.89± 0.02

Table 2. Mean IoU values before and after 3D bounding box correction computed
with respect to tight slice-wise ground truth bounding boxes.

3D non-tight bounding box 3D corrected number of images for box correction

5 10 20

0.15± 0.01 p = 16 0.87± 0.02 0.89± 0.04 0.93±0.04

p = 32 0.89± 0.01 0.89± 0.02 0.92± 0.01

5 Conclusions and Discussions

We have addressed the main limitation of a known approach to weakly-
supervised 2D and 3D medical segmentation that assumes that the labels, coming
in the form of two-dimensional bounding boxes, are tight. We have shown that
in a practical case when a single 3D bounding box is provided for the whole
object, the tightness of 2D slice-wise bounding boxes deteriorates, which results
in poor segmentation accuracy of neural networks trained with this type of super-
vision. We have proposed a bounding box correction framework that improves
the tightness by using a patch-based classification network trained on a small
subset of pixel-level annotated data. By producing higher quality annotations
out of weak labels, our approach allows to increase the accuracy of 3D medical
weakly-supervised segmentation.

Since the performance of the proposed approach may depend on the soft
tissue contrast, its applicability for segmentation of other organs is yet to be
investigated. The patch size and the share of fully-supervised samples used for
bounding box correction may play an important role.
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Abstract. High quality data labeling is essential for improving the
accuracy of deep learning applications in medical imaging. However,
noisy images are not only under-represented in training datasets, but
also, labeling of noisy data is low quality. Unfortunately, noisy images
with poor quality labels are exacerbated by traditional data augmenta-
tion strategies. Real world images contain noise and can lead to unex-
pected drops in algorithm performance. In this paper, we present a non-
traditional, purposeful data augmentation method to specifically transfer
high quality automated labels into noisy image regions for incorporation
into the training dataset. The overall approach is based on the use of
paired images of the same cells in which variable image noise results
in cell segmentation failures. Iteratively updating the cell segmentation
model with accurate labels of noisy image areas resulted in an improve-
ment in Dice coefficient from 77% to 86%. This was achieved by adding
only 3.4% more cells to the training dataset, showing that local label
transfer through graph matching is an effective augmentation strategy
to improve segmentation.

Keywords: Data labels · Data augmentation · Graph matching · Cell
segmentation · U-Net

1 Introduction

Conventional data augmentation has been shown to be effective for enlarging
training data to improve the performance of deep neural networks [15], and is
especially important for medical imaging applications. Most simply, data aug-
mentation starts by translating, rotating, and flipping of images, or by changing
intensity values. Beyond this, image fusion has also been demonstrated as a
method to augment training data to improve the performance of brain glioma
segmentation [2]. However, applying arbitrary transformations or changes can
lead to the introduction of unrealistic images [5].

Generative adversarial networks (GANs) are able to generate realistic images
that more closely resemble real world images [4], and can therefore be used as an
effective strategy to augment medical imaging datasets in which there is limited
c© Springer Nature Switzerland AG 2021
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training data available, such as for tumor classification where tumor images for
training are relatively rare [3]. For image segmentation applications, in which seg-
mentation masks are needed alongside training data, translation-to-translation
conditional GANs have been proposed [7]. Conditional GANs have also been
applied to augment medical data [6], such as retinal cell segmentation [10]. How-
ever, noisy images that are a key reason for drops in algorithm performance are
seldom generated through GANs methods.

Unfortunately, it is challenging to accurately label noisy images, which moti-
vates us to develop a targeted strategy to incorporate high quality labeling,
specifically from noisy images, into training datasets to improve the performance
of deep learning based algorithms. In optical imaging, image noise is often non-
uniform, with neighboring cells containing different amounts of noise (Fig. 1). In
this example, a pair of images showing the same cells imaged on two different
days illustrates the effect of image noise on cell segmentation obtained using
U-Net [11]. We consider the use of actual noisy images of cells, with the goal
to obtain objective labels of these noisy images (Fig. 1 arrows) so that they can
be introduced into the training data to improve the overall cell segmentation
model. By iteratively refining the cell segmentation model with the addition of
high quality labels of noisy cells, the overall performance of the cell segmentation
model on native images of noisy cells can be improved.

Fig. 1. Adaptive optics (AO) retinal images [14] of cone photoreceptor cells. (A-D)
show the same cells imaged across two separate days. In the image from the first day
(A), all of the cells are correctly segmented (B). Some cells are noisier on the second
visit (C), leading to errors in segmentation (D) (white arrows). Scale bar, 10 µm.

2 Methodology

2.1 Cell Segmentation Initialization

Using images of cells that are not noisy, the cell segmentation model, imple-
mented using U-Net, is initialized. The U-Net takes AO images and predicts
both cell centroid and region maps. For this initial cell segmentation model,
the combination of dice coefficient and binary cross entropy is used as the loss
function to train the model. Following a previously-developed cell segmentation
model [11], cell centroids are extracted by thresholding the predicted centroid
maps. Next, cell regions are extracted using Otsu’s method [13] on the predicted
region maps, which is in turn combined with the cell centroids to separate each
individual cell regions through watershed segmentation [12].
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Fig. 2. Overview of iterative label transfer method to improve cell segmentation. (A)
A pair of AO images of the same exact cells, acquired over two separate visits, is
segmented using a U-Net model which predicts cell centroid and region maps for the
two AO images. After using a graph matching framework to determine cell-to-cell
correspondences, segmentation labels of centroid and region maps for noisy cells within
the image pair are bidirectionally transferred to add additional labels to the images. The
updated segmentation maps are used to re-train and update the segmentation model.
This process is then repeated. (B) Iteratively, as the training dataset is augmented with
additional examples of noisy cells, the overall cell segmentation accuracy improves.

2.2 Cell-to-Cell Correspondence Using Graph Matching

The initial cell segmentation model is applied to a pair of AO images of the
same retinal region in which the same exact cells are imaged, but where cells
are noisier in one image compared to the other (Fig. 1). Before labels can be
transferred from one cell to its noisier pair, the cell-to-cell correspondence has
to be solved. Mathematically, we aim to determine a set of unique one-to-one
correspondences between two sets of cell centroids (C1 and C2), which we solve
using bipartite graph matching. Relative image deformation between two AO
images is estimated as an affine transform using a spatial transformer network
[8], and the bipartite graph G is constructed by transforming C1 and connecting
possible corresponding points in C2 that are within 30 pixels of the transformed
C1 (this distance corresponds to approximately the diameter of one cell).

We begin with the set of all possible cell connections at G which can be
expressed as C1 × C2, from which we define C as the reduced subset of cell con-
nections restricted to a local neighborhood around each cell (discarding far away
cells). Solving for the unique cell-to-cell correspondences can be formulated as
finding a binary-valued vector m = {0, 1}C that represents matched cell connec-
tions between C1 and C2, subject to the following criterion: if a cell connection
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α is an actual cell correspondence, mα = 1; otherwise, mα = 0. Three con-
straints are used to ensure that m represents true cell-to-cell correspondences:
including visual similarity, topological configuration similarity, and one-to-one
cell correspondence.

Visual similarity is measured by comparing visual feature representations at
cell regions. Given two cell centroids, p1 ∈ C1 and p2 ∈ C2, the visual feature
vectors f1 and f2 at p1 and p2 are established by vectorizing two 16 × 16 × 16
image regions from the 16-layer feature space of the last convolution layer of the
U-Net (the later layers in neural networks are assumed to represent the object
features). Based on this, we define the visual similarity constraint as

Ev(m) =
∑

α∈C

‖f1 − f2‖1 · mα (1)

Topological configuration similarity evaluates if two matched cells have sim-
ilar topologies with their neighbored cells. We define S to contain all adjacent
cell pairs to a given correspondence, given by

S = {〈(p1, p2), (q1, q2)〉 ∈ C × C|pi ∈ N(qi) ∧ qi ∈ N(pi), i = 1, 2} (2)

where N is the 6-nearest neighborhood in C1 and C2 based on cell hexagonal
packing [9]. The topological constraint includes both distant and angular com-
ponents.

Et(m) =
∑

(α,β)∈S

(
exp

(
δ2α,β

) − 1
)

+
(
exp

(
γ2

α,β

) − 1
) · mα · mβ

δα,β = |‖p1 − q1‖ − ‖p2 − q2‖|/(‖p1 − q1‖ + ‖p2 − q2‖)
γα,β = arccos((p1 − q1)/‖p1 − q1‖, (p2 − q2)/‖p2 − q2‖) (3)

The last constraint term is to ensure unique one-to-one correspondence and
is given by

Ep(m) = 1 −
∑

α∈A

mα/min{|P1|, |P2|} (4)

The overall constraint function is thus given by the sum of Ev, Et, and Ep.
Dual decomposition approach [9] is applied to minimize this function to obtain
the cell-to-cell correspondence.

2.3 Data Augmentation Through Iterative Label Transfer

Once the cell-to-cell correspondence is found, it can be used to guide the trans-
fer of labels across images (Fig. 2A). Starting with a pair of input AO images
I1 and I2, we illustrate the process to update the segmentation mask of I1 by
transferring segmentation labels from I2. The transfer is bi-directional as the
mirror process is used to update the segmentation mask of I2 from I1. The
average cell size s̄ and standard deviation σ are computed for the segmentation
mask of I1. The cells are kept if their size s is within two σ of the expected size
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Fig. 3. Automated segmentation label transfer facilitated by cell-to-cell correspon-
dence. (A, D): AO image pair from two visits in which the top visit has noisier cells.
(B, E) Predicted cell region masks from the initial cell segmentation model. (C, F)
Updated cell region masks guided by cell-to-cell correspondence. In (C), cell regions in
green are those that are kept from the original predicted region maps; red denotes seg-
mentation labels that were not previously present and were transferred from a matched
cell; blue denotes a segmentation labels that was previously under-segmented from the
initial cell segmentation model, which was subsequently modified by a matched cell.
Scale bar, 25 µm. (Color figure online)

s̄ − 2σ ≤ s ≤ s̄ + 2σ. Otherwise, the cell is treated as falsely-segmented, and
the segmentation labels from the mask of I2 are transferred (e.g. blue regions,
Fig. 3C). We also search for isolated cells in I2 that are missing cell correspon-
dences in I1and transfer in the missing segmentation masks from I2, which occurs
when segmentation labels are missing due to noisy cells (red regions, Fig. 3C).
The updated segmentation masks are sent back to retrain the U-Net segmen-
tation model. Iteratively, the U-Net model is improved to better segment noisy
cells (Fig. 2B).

2.4 Data Collection and Validation Methods

Sixteen subjects (age: 28.4 ± 8.1 years, mean ± std) were recruited to perform
AO imaging across two non-contiguous days from which 1,138 AO images were
extracted (333 × 333 pixels). From this dataset, 386 AO images that did not have
substantial image degradation were selected and manually marked to compose a
labeled training data, which is used to initialize the U-Net based cell segmenta-
tion model. From the remaining 752 images, 604 unlabeled images (correspond-
ing to 302 two-visit image pairs) which had noisy regions were imported into
the graph matching framework to augment the training data for improving the
U-Net model. The remaining 148 AO images were used as the test dataset to
validate cell segmentation improvement.
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Six metrics were used to evaluate segmentation accuracy: area overlap (AP),
Dice coefficient (DC), area difference (AD), average symmetric contour ditance
(ASD), symmetric room mean square contour distance (RSD), and maximum
symmetric absolute contour distance (MSD) [11]. The segmentation model
trained on 386 non-noisy AO images was considered to be the state-of-the-art
model for comparison against the proposed iterative label transfer based models.

3 Experimental Results

3.1 Iterative Cell Segmentation in Noisy Images

Fig. 4. Examples of cone segmentation improved through label transfer on two subjects
corresponding to each row. Overall, segmentation improved from iteration 1 to 5. In
the first subject, some cells in noisy image regions are missed (B), which are recovered
after one iteration except for one cell which was initially missing after iteration 1
but recovered after iteration 5 (D). The second subject has dense cell packing, which
causes missed cells in the noisy regions. Segmentation accuracy is improved after the
iterations. Scale bar, 25 µm.

Overall, the iterative label transfer strategy successfully segmented cells that
were missed by the U-Net baseline model. These cells were located in noisy image
regions. Figure 4 illustrates two examples from two subjects (corresponding to
each row). In the first subject, cell over-segmentation and extra cell segmentation
were observed (white arrows, Fig. 4B). After one iteration, the improved cell
segmentation model could identify some cells but with the cost of missing some
cells that were identified by the baseline (Fig. 4C). These were all successfully
segmented after five iterations (Fig. 4D). The image from the second subject,
with denser cell packing, showed some missed cell segmentations (Fig. 4F). After
one iteration, the segmentation model could identify all these cells but there
were examples of over-segmentation (Fig. 4G). The over-segmentation was fixed
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Table 1. Evaluation of image generation comparing real and generated images.

Model AP (%) DC (%) AD (%) ASD (Pix) RSD (Pix) MSD (Pix)

U-Net 62.6± 10.9 74.0± 10.4 48.7± 67.7 3.7± 1.9 4.1± 1.9 7.3± 3.3

Iter. 1 65.8± 10.0 77.2± 10.4 48.4± 55.7 3.1± 1.9 3.4± 1.6 6.5± 2.9

Iter. 2 69.5± 9.5 80.7± 8.5 48.5± 45.4 2.4± 1.3 2.8± 1.4 5.6± 2.4

Iter. 3 74.3± 10.0 82.0± 8.5 40.5± 40.7 2.2± 1.2 2.6± 1.3 5.2± 2.3

Iter. 4 78.5± 10.4 85.3± 8.5 33.3± 37.7 2.2± 1.1 2.6± 1.2 4.1± 2.2

Iter. 5 79.2± 10.8 85.9± 8.5 30.9± 36.0 2.2± 1.1 2.6± 1.2 4.0± 2.2

after five iterations (Fig. 4H). These two examples show that the iterative cell
segmentation model is particularly useful for improving the segmentation results
of noisy image areas which are often discarded in analyses (Table 1).

3.2 Purposeful Data Augmentation Improves Training Results

Quantification of the cell segmentation accuracy in the test dataset showed an
improvement over the baseline U-Net model which continued to improve with
additional iterations. The segmentation accuracy of the model with five iter-
ations was significantly better than the baseline model (p < 0.05, two-tailed
paired t-test). Importantly, the number of cells in noisy image regions that was
added over the iterations was small. Out of a total of 47,195 cells in the train-
ing dataset in iteration 1, only 1,612 new cells were added by iteration 5 (3.4%
increase). Despite this relatively small increase, there was a substantial improve-
ment in accuracy from iteration 1 to 5, demonstrating that adding even a very
small amount of accurately labeled noisy image regions can be very effective for
improving cell segmentation training.

4 Conclusion and Future Work

Using graph matching to transfer segmentation labels to noisy image regions
improved the ability of the cell segmentation model to handle noisy image regions
without adversely affecting the non-noisy image regions. In contrast to existing
augmentation methods that focus on realistic image generation, our method
enhances training data with noisy images which often result in segmentation
failures. Our strategy complements existing data augmentation strategies and
can be deployed where longitudinal data is collected, often available in most
medical imaging modalities [1]. The incorporation of non-perfect images broad-
ens the scope of the available training data to better encapsulate the full range
of image quality that is more typically encountered in medical imaging. Once
trained, the overall improvement in segmentation on single-visit noisy images can
be substantially improved, making the overall medical image analysis pipeline
more robust and applicable to real-world situations.
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Abstract. U-Net architectures are an extremely powerful tool for seg-
menting 3D volumes, and the recently proposed multi-planar U-Net has
reduced the computational requirement for using the U-Net architec-
ture on three-dimensional isotropic data to a subset of two-dimensional
planes. While multi-planar sampling considerably reduces the amount of
training data needed, providing the required manually annotated data
can still be a daunting task. In this article, we investigate the multi-
planar U-Net’s ability to learn three-dimensional structures in isotropic
sampled images from sparsely annotated training samples. We extend
the multi-planar U-Net with random annotations, and we present our
empirical findings on two public domains, fully annotated by an expert.
Surprisingly we find that the multi-planar U-Net on average outperforms
the 3D U-Net in most cases in terms of dice, sensitivity, and specificity
and that similar performance from the multi-planar unit can be obtained
from half the number of annotations by doubling the number of auto-
matically generated training planes. Thus, sometimes less is more!

Keywords: 3D imaging · Segmentation · Deep learning · U-Net ·
Sparse annotations

1 Introduction

Deep learning methods for the segmentation of 3D image data typically require
large quantities of manually labeled data for training. Often, similar structures
in the images are labeled repeatedly, even when the model could learn from fewer
samples. In this paper, we investigate how well the Multi-planar U-Net [5] ex-
tension of the 2D U-net [6] can learn to segment 3D images from only sparsely
annotated label maps in comparison with the 3D U-Net [8].

Typical approaches to 3D image segmentation include fitting a 3D segmen-
tation model to the data directly, or a 2D model to 2D image-slices along a
single axis. The former approach is computationally demanding and requires
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more training data, while the latter is inherently limited in its ability to account
for 3D structures.

In contrast, the multi-planar U-Net [5] makes use of the computational and
statistical efficiency of the 2D U-Net while including resampled, off-plane training
images. This is a welcome improvement to standard data augmentation since
it results in improved estimates of the true underlying distribution of image
patches as opposed to merely guessing, as often done when augmenting image
data. For some datasets, such as brain tissue imaged using electron microscopy,
there are no intrinsic orientations of the imaged objects within the volume at
medium scale, and hence, it should be expected that the multi-planar U-Net
performs well, since resampling planes at any angle will result in statistically
similar images.

In this paper, we investigate the hypothesis that multi-planar sampling [5]
allows the model to maximize the use of the available information in sparsely
labeled datasets thus facilitating a stronger learning signal. Our paper is orga-
nized as follows: First, we motivate and formalize our method and the sampling
technique. Then we present an empirical investigation on the relation between
the number of annotated pixels and the Dice score on two public domain, expert-
annotated 3-dimensional datasets (electron microscopy and cardiac MRI), and
we compare the multi-planar U-Net and 3D U-Net’s performance on similarly
sparse datasets. Finally, we give our conclusions.

2 Methods

In this paper, we study the effect of sparsity on the multi-planar U-Net in com-
parison with the 3D U-Net. Therefore, we randomly select training-planes in
which we randomly select annotation lines that are annotated by an expert. We
analyze the performance of the 2D U-Net and the 3D U-Net for varying numbers
of training-planes and annotation lines.

In practice, we simulate sparse, random annotations by sampling from fully
annotated 3D images. Specifically, we randomly select a set of annotation-planes
and a set of training-planes. We produce fully annotated 2D images by intersect-
ing the annotation-planes with the fully annotated 3D-image, and we produce
sparse training-images by intersecting the training-planes with the annotation-
planes. The process is exemplified in Fig. 1.

We used trilinear interpolation and nearest-neighbor interpolation for sam-
pling the image and the label sets, respectively. An example of a training-plane
overlaid with 4 random annotation lines is shown in Fig. 2.

The multi-planar U-Net [5] is a 2D U-Net for 3D images, which as input
takes resampled 2D images from multiple angles across a single 3D image and as
output aggregates the resulting 2D images into a single 3D image. At the center
of the multi-planar U-Net is the popular U-Net [6] architecture modified to use
nearest neighbor up-sampling blocks [4] and batch normalization [1] layers. It has
4 down-sampling and 4 up-sampling blocks and a total of 31,044,289 trainable
parameters. No information is supplied to the model regarding the position and
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(a) (b) (c) (d)

Fig. 1. (a) Mitochondria (green) and 4 annotation-planes, (b) sparsely-labeled vol-
ume used for training-plane generation, (c) an example training-plane (red) that slices
through the sparsely-labeled volume, (d) the example training-plane, where only non-
black pixels contribute to the loss-function. (Color figure online)

Fig. 2. An example of a training-plane taken from the electron microscopy mitochon-
dria dataset.

orientation of training and prediction-planes. We aggregate the prediction-planes
as the thresholded average across all such planes. For simplicity in our exper-
iments, we choose K = 3 random prediction-angles and produce K sequences
of parallel prediction planes such that all voxels are predicted by exactly K dif-
ferently oriented prediction-planes. In practice, we rotate the volume to each
orientation and present all 2D slices along the x-axis to the 2D U-Net, thus gen-
erating a rotated prediction volume Pk. Each prediction volume is then rotated
back and the data is aggregated into single volume P = mean({Pk}) which is
considered the final segmentation.

We compare the multi-planar U-Net to a 3D U-Net implemented as in [8]
with an input shape of 64 × 64 × 64.

For both networks, we performed data augmentations on the fly and include
a combination of 2D and 3D equivalent flips, rotations, scaling, brightness, con-
trast, gamma adjustments, and random noise. We minimize a masked cross-
entropy loss function in which only annotated pixels in the input images con-
tribute to the loss and backpropagation of gradients. We used the Adam opti-
mizer [2] with a learning rate of η = 10−5 and default β1 = 0.9, β2 = 0.999 and
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ε = 10−7 parameters. We monitored the performance of the model on a held-out
validation with half as many annotation-planes as the training set. Optimiza-
tion continued for 22400 gradient updates. The best observed model (as per
validation performance) was selected for further analysis on a held-out test set.

For the multi-planar U-Net, the loss function is evaluated on batches of 4
slices. For the 3D U-Net, a batch size of 1 is used to match the multi-planar
version in the number of pixels seen.

3 Datasets

We consider 2 datasets: the publicly available mitochondria [3] and cardiac [7]
datasets. Both are fully annotated by experts and have been used as benchmark
datasets. The mitochondria dataset is an electron microscope image of a 5 ×
5 × 5µm section of the CA1 hippocampus region of a rodent brain with two
annotated 165 × 768 × 1024 sub-volumes (a training and testing volume) with a
voxel resolution of approximately 5× 5× 5 nm. The training volume is split into
4 sub-volumes of dimensions 165 × 448 × 448. The evaluation set contains four
165 × 165 × 165 sub-volumes taken from the testing volume.

The cardiac dataset consists of 20 mono-modal MRIs of dimension 320 ×
320×z, where z varies between 90 and 130 depending on the scan. Out of the 20
available MRIs, 4 were set aside and used as the held-out test set. The remaining
16 volumes were divided into 12 training volumes and 4 validation volumes. New
train-validation splits were made in each experimental repetition.

4 Experiments and Results

We tested the performance of the multi-planar U-Net and the 3D U-Net as a
function of two optimization hyperparameters: The number of annotation- and
sampling-planes, which we denote na and nt.

We fit both models using all combinations of na ∈ {4, 8, 12, 16} and
nt ∈ {0, 128, 256, 384, 512} and repeated each experiment 12 times with new
annotation- and training-planes in each repetition. When the number of sam-
pled training-planes nt = 0, the model is fit to only the na fully annotated planes
without resampling. In all other cases, each model observes only the sampled
sparse training-planes. Some of the resulting statistics for nt > 0 was fitted to

f(na, nt) = αa log(na) + αt log(nt) + β (1)

using Matlab’s Statistics and Machine Learning Toolbox function fitlm and we
performed ANOVA tests using the anova function from the same toolbox. We
report the F-score and the p-values of the fitted model against the models αa = 0,
αt = 0, and αa = αt = 0. In the following, we will discuss the segmentation
problem of the mitochondria and the cardiac dataset.



How Few Annotations are Needed for Segmentation 213

(a) (b) (c)

(d) (e) (f)

Fig. 3. (a) Mean number of annotated pixels in the set used to train each model, (b)
Mean Dice scores on the held-out test set, (c) Best fit plane through mean Dice scores
using log of na and nt, (d) Standard deviation of the number of pixels used to train
each model, (e) Standard deviation of Dice scores on the held-out test set, (f) Best fit
plane through the standard deviations of Dice scores using the log of na and nt.

Mitochondrial Segmentation: For the multi-planar U-Net, we evaluated the per-
formance of each experimental configuration on the held-out test set. We report
the mean and standard deviation Dice scores and the mean and standard devi-
ation of the number of annotated pixels across the 12 repetitions. As expected,
the performance for the mitochondria segmentation task improves as both the
number of initial annotation planes and the number of generated training planes
increases, see Fig. 3.

The models trained with na = 4 and nt = 0 have the highest variability
(standard deviation of 0.2826 and median absolute deviation of 0.1167) and
lowest scores (mean of 0.5952 and median of 0.6929). This suggests a difficulty
during optimization and is the result of some of the experimental runs overfitting
to the 4 samples in the training set, thus performing poorly on the held-out test
set.

Surprisingly, we see that we can achieve nearly the same performance with
na = 4 and nt = 512 as we can with na = 16 and nt = 0 (0.8949 and 0.8955
respectively). Consequently, with this dataset we can achieve roughly the per-
formance of 16 manually annotated planes with only 25% of the manual segmen-
tation effort. Interestingly, models trained with na = 4 and nt = 512 have, on
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Fig. 4. Except for nt = 0, the multi-planar U-Net (top row) consistently outperforms
the 3D U-Net (bottom row) on mean Dice, sensitivity, and specificity on the mitochon-
dria dataset.

average, more than 70% fewer annotated pixels in the dataset than those trained
with na = 16 and nt = 0 yet the model still performs just as well. Impressively,
the highest Dice score achieved, 0.9228, (when na = 16 and nt = 512) is compa-
rable to the score of 0.9288 achieved with full supervision in [3].

We fitted (1) to the Dice scores resulting in (αa, αt, β) = (0.019, 0.010, 0.80),
see Fig. 3c. The (F-score, p-value) for αa = 0, αt = 0, and αa = αt = 0 was
(36, 9.1e − 9), (9.9, 0.0019), and (23, 1.1e − 9) respectively. Thus, for the mito-
chondria dataset, we observe that the Dice score has a statistically significant
increase linearly in log(na) and log(nt), and further by Fig. 3d, that the standard
deviation also decrease linearly in log(na) and log(nt).

For comparison, we also trained the 3D U-Net models with equivalent sparsity
and 12 times for each combination. The mean Dice, sensitivity, and specificity
scores for the multi-planar and the 3D U-Net are shown in Fig. 4. Fitting (1) to
3D U-Net’s Dice scores gave (αa, αt, β) = (0.042, 0.016, 0.68), and the (F-score,
p-value) for αa = 0, αt = 0, and αa = αt = 0 was (44.7, 2.6e − 10), (6.2, 0.14),
and (25, 1.7e − 10) respectively. Thus, we observe that the Dice score for the
3D U-Net also has a statistically significant linear increase in log(na), and that
this is slightly worse than the multi-planar U-Net. We further note that the
mean Dice, sensitivity, and specificity fluctuates vary more in comparison to
the multi-planar U-Net suggesting added optimization challenges in spite the
reduced number of parameters for the 3D U-Net.

The training time for the 3D model takes approximately 3 h and 20 min,
while the multi-planar version takes 1 h and 5 min. The longer training time
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observed in the 3D model is partially due to the data augmentations performed
on-the-fly during training being more computationally intensive in 3D than 2D.
The prediction times for the multi-planar and the 3D U-Net were 45 and 30 s
per volume respectively, where the prediction time of the multi-planar U-Net
depends on number of prediction planes to be aggregated.

Cardiac Segmentation: We performed a similar set of experiments on the cardiac
dataset.

For the multi-planar U-Net, the mean Dice scores for nt > 0 fell in the range
[0.74, 0.83]. For nt = 0, we observed mean dice scores in the range [0.57, 0.75]. Fit-
ting (1) to the Dices scores for nt > 0 gave (αa, αt, β) = (0.045,−0.00075, 0.69).
The (F-score, p-value) for αa = 0, αt = 0, and αa = αt = 0 was (26, 8.2e − 7),
(0.0071, 0.93), and (13, 5.1e − 6) respectively. We observe that |αt| ≈ 0, and in
comparison with αt = 0 the F-score is low and the p-value is high, hence, little
new is learned when increasing the number of training planes above 128. The
opposite is the case for αa, and we further observe that the exponential increase
in the number of annotation planes gives about twice the increase in Dice score
as observed in the mitochondria dataset.

For the 3D U-Net, the mean Dice scores for nt > 0 fell in the range [0.36, 0.57].
For nt = 0, we observed mean dice scores in the range [0.47, 0.5]. Fitting (1) to
the Dices scores for nt > 0 gave we got (αa, αt, β) = (0.011, 0.022, 0.35). The (F-
score, p-value) for αa = 0, αt = 0, and αa = αt = 0 was (0.20, 0.65), (0.79, 0.38),
and (0.5, 0.61) respectively. We observe that the mean Dice scores are very low
and that all the F-scores are low and all the corresponding p-value are high,
hence, the fitted model did not learn the essential features of the cardiac dataset
and the fit is not statistically significantly different from the constant model.

Comparing the multi-planar and the 3D U-Net, the training time was the
same as for the mitochondria dataset for both models. The prediction times for
the multi-planar and the 3D U-Net were 83 and 45 s per volume respectively. We
observe that the multi-planar U-Net has learned essential features of the cardiac
dataset, but the 3D U-Net has not.

5 Discussion

Segmenting data in 3D is usually the first step in analyzing 3D medical data. As
such, we must do this in a way that is both accurate and time-efficient both in
training/evaluation time as well as annotation time.

With the multi-planar U-Net [5] we can achieve a good segmentation of a
3D volume via a 2D U-Net from only sparsely annotated samples. The multi-
planar U-Net has two important advantages over traditional 2D U-Nets applied
to 3D data: 1) We can learn rotational invariance by resampling, where the
added knowledge is from real data rather than from guessing by augmentation.
2) Sparse sampling reduces the annotations needed, while still statistically rep-
resenting a large area in an image.
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Comparing the multi-planar and 3D U-Net models it seems that the multi-
planar method performs slightly better with faster training time but slower pre-
diction time. The improved performance may be caused by the multi-planar
U-Net having more parameters, but it is in spite of the multi-planar U-Net
only having access to 2D planar views of the 3D data. Future investigation into
improvements to the standard 3D U-Net may improve its performance.

For the multi-planar U-Net, we conclude that the combination of sparse anno-
tation and a high number of random training-planes significantly lessens the
annotation burden. E.g., comparing all entries in Fig. 3a and 3b for na > 4, we
observe that the mean dice score is higher for all nt > 0 as compared to nt = 0
even though that the corresponding mean number of annotated pixels is lower.

In summary, we provide evidence that the multi-planar U-Net outperforms
the standard 3D U-Net and that with a small initial set of samples, we can
increase the segmentation performance by generating more unique datasets with
fewer annotated pixels per sample, but with more variation in viewing angles.
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Abstract. Pre-training can alleviate the requirement of labeling data
for a new task. However, Pre-training as a sequential learning typically
suffers in fact from forgetting the older tasks. Especially in complex
medical image segmentation tasks, this problem is more prominent. To
solve above problem, we propose a network structure based on feature
space transformation (FS-Net) for data expansion of medical image seg-
mentation. FS-Net share parameters during training to help exploiting
regularities present across tasks and improving the performance by con-
straining the learned representation. In the experiment, we use M&Ms
as the extended dataset of HVSMR, these two tasks have the same seg-
mentation target (heart). The segmentation accuracy of FS-Net is up to
7.12% higher than the baseline network, which is significantly better
than Pre-training. In addition, we use Brats2019 as expansion dataset
on WMH, and the segmentation accuracy is improved by 0.77% com-
pared with the baseline network. And Brats2019 (glioma) and WMH
(white matter hyperintensities) have different segmentation targets.

Keywords: Data expansion · Pre-training · Medical image
segmentation · Deep learning

1 Introduction

Segmentation and quantitative evaluation of region of interest in medical images
are of great importance in formulating therapeutic strategies, monitoring the dis-
ease’s progress and predicting the prognosis of patients [1]. Data-driven methods
such as deep convolution neural network (DCNN) have recently achieved state-
of-the-art performance in medical image segmentation tasks [2–7]. As we all
know, one of the basic facts contributing to this success is a large amount of
c© Springer Nature Switzerland AG 2021
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labeled training data [8,9]. However, it is incredibly difficult to construct large
medical image datasets due to the rarity of diseases, patient privacy, medical
experts’ requirements for labels, and the cost and labor required for medical
image processing.

Pre-training [10,11] has received much attention throughout the history of
deep learning, which can alleviate the requirement of labeling data for a new task
to a certain extent. Since many vision tasks are related, a pre-trained model on
one dataset can help another. This is very helpful for downstream tasks to obtain
“general features” in advance on large-scale image dataset [12]. Suppose taking
natural image domain for example, it is now common practice to pre-train the
backbones of object detection and segmentation models on ImageNet [13] clas-
sification. However, Pre-training as a sequential learning typically suffers in fact
from forgetting the older tasks, a phenomenon aptly referred to as “catastrophic
forgetting” in [14]. On the other hand, compared with natural images, medical
images have huge differences among different datasets due to different organs,
different types of diseases, different data acquisition methods and different data
sizes, and their task complexity and difficulty are significantly improved. This
makes it more difficult for pre-training to work.

To solve above problem, we propose a new paradigm (FS-Net) of data expan-
sion for medical image segmentation. FS-Net share parameters during training
to help exploiting regularities present across tasks and improving the perfor-
mance by constraining the learned representation [15,16]. In order to solve
“catastrophic forgetting” of Pre-training, FS-Net optimize one single network
based on datasets of many different segmentation tasks at the same time, so
that the network can extract more common features and greatly enhance the
network capacity. FS-Net is to supersede the common paradigm of addressing
different image understanding problems independently, using ad-hoc solutions
and learning different and largely incompatible models for each of them. Just
like the human brain is capable of addressing a very large number of different
image analysis tasks, so it should be possible to develop models that address well
and efficiently a variety of different computer vision problems, with better effi-
ciency and generalization than individual networks. In order to train the dataset
of different medical image segmentation tasks in the same network, we adopt
two strategies: (1) Images channel coding and re-encoding the ground truth; (2)
The feature transformation module is proposed to map different domains to the
same separable feature space. The above two strategies can transform the data
of different segmentation tasks into the form that a single network can train at
the same time. Finally, we introduce the weighted loss function to optimize the
whole network. The weighted loss mainly realizes the optimization of the target
datset in the training process, and other dataset only play the role of constraint
regularization [15].

In the experiment, we use M&Ms [17] as the extended dataset of HVSMR
[18], these two tasks have the same segmentation target (heart). The segmenta-
tion accuracy of FS-Net is up to 7.12% higher than the baseline network, which
is significantly better than Pre-training. In addition, we use Brats2019 [19–21]
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Fig. 1. An overview of our proposed FS-Net. After channel coding and feature trans-
formation, the outputs of different FS branches are concatenated and then input to the
segmentation network to realize simultaneous training of different datasets (concatena-
tion is performed on batch size). The network output is split according to the previous
concatenation, and the weighted loss function is used to calculate the loss value. Our
implementation is available at https://github.com/********

as expansion dataset on WMH, and the segmentation accuracy is improved
by 0.77% compared with the baseline network. Among them, Brats2019 and
WMH have different segmentation targets (glioma, white matter hyperintensi-
ties). Especially the use of completely different datasets for a segmentation task
to assist in improving the performance of the target task has very practical value.

2 Proposed FS-Net

The whole network consists of three parts. Firstly, the original data from differ-
ent segmentation tasks are channel coded to further improve the discrimination
between different tasks. At the same time, we make unified one-hot coding for
the labels of different tasks to enable one single decoding branch to decode dif-
ferent classes of different tasks at the same time. Then, the encoded data is
transformed by FS module to solve the problem that it is difficult for one single
network to train data of different segmentation tasks at the same time. Finally,
the transformed data of different tasks are concated to train the network, and
an weighted loss function is introduced to optimize the whole network. The
weighted loss function makes the network update the network mainly according
to the main task, and other tasks only has similar regularization effect.

https://github.com/
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Fig. 2. An overview of the images channel coding and re-encoding the ground truth.
The figure only gives the general form of implementation. Such as channel coding, We
can also uniformly encoded data into two channels.

2.1 Images Channel Coding and Re-Encoding the Ground Truth

FS-Net share parameters during training to help exploiting regularities present
across tasks and improving the performance by constraining the learned repre-
sentation. In FS-Net, we use one single U-Net to train multiple datasets at the
same time, as shown in Fig. 1. Please note that we have shared the encoding
branch and decoding branch parameters at the same time. However, different
datasets labels have overlapping problems, for example, all different datasets
will contains label 1. In order to enable a single decoding branch to decode dif-
ferent classes of different datasets at the same time, we first make unified one-hot
coding for different datasets, as shown in Fig. 2(a). In this way, different classes
of different datasets have unique labels during simultaneous training.

On the other hand, different classes of different datasets may have similar
texture features on the original images. At this time, if different data is directly
input into FS-Net, it will be difficult for the network to distinguish the two
classes. To solve this problem, we have performed channel coding on the original
image to further improve the discrimination between different data of different
tasks, as shown in Fig. 2(b). Although the channel coding changes the number
of original images, the new channels are only simple background with the value
of 0, so it does not destroy the texture information of the original images.

2.2 FS Module

Because there are certain differences in data distribution in different tasks or
in different scenarios of the same task, domain adaptation is required in order
to be able to train multiple datasets in a single network at the same time.
To solve this problem, we design a feature space transformation module (FS),
which can transform different data into the same feature space with the same
dimension. Then input the converted data into the same segmentation network
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for training at the same time. The effect of this feature transformation is learned
adaptively by the network under the supervision of the loss function. FS module
is implemented by 1× 1 convolution and channel attention mechanism. Channel
attention mechanism can effectively reduce the information redundancy caused
by previous image channel coding. The structure of channel attention module is
illustrated in Fig. 1, which adopts the realization of [22]. Firstly, we calculate the
channel attention map X ∈ RC×C from the inputting features A ∈ RC×H×W .
We reshape A to RC×N , and then perform a matrix multi-plication between A
and the transpose of A. Finally, we apply a softmax layer to obtain the channel
attention map X. We perform a matrix multiplication between the transpose of
X and A and reshape their result to RC×H×W . Then we perform an element-
wise sum operation with A to obtain the final output E ∈ RC×H×W . The final
feature of each channel is a weighted sum of the features of all channels and
original features, which models the long-range semantic dependencies between
feature maps. It helps to boost feature discriminability.

2.3 Weighted Loss

We introduce the weighted loss function to optimize the whole network. The
network output is split according to the previous concatenation, and the weighted
loss function is used to calculate the loss value, as shown in Fig. 1. Let x and
y represents training images and its label, respectively. The loss function is as
following:

�(g(x), y) =
M∑

m=1

δm�(gm(x), y) (1)

Where gm(x) is the softmax output of the m’th dataset, δm is the optimal
weight. The weighted loss function sets a larger weight for the target task, which
mainly realizes the optimization of the target data in the training process, and
other data only play the role of constraint regularization. In this paper, we set
the weight of the main task to 0.95 and the weight of the auxiliary task to 0.05.

3 Experiments

3.1 Datasets

HVSMR: The dataset is provided by the MICCAI Workshop on Whole-Heart
and Great Vessel Segmentation from 3D Cardiovascular MRI in Congenital Heart
Disease 2016 (HVSMR) [18]. HVSMR2016 provides three types of data. Here we
only use full-volume images data for verification. Labels contain three different
classes: Background, blood pool (BP) and ventricular myocardium (VM). All
images are randomly split into training (6 images), test (4 images).

M&Ms: The dataset provides by Multi-Centre, Multi-Vendor & Multi-Disease
Cardiac Image Segmentation Challenge (M&Ms) [17]. The training sets contain
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75 training data with labels. The labels include contours for the left (LV, label
1) and right ventricle (RV, label 3) blood pools, as well as for the left ventricular
myocardium (MYO, label 2).

WMH: This is our private data, which contain 53 annotated images. For each
subject, a 3D T1 weighted image and a 3D T2-FLAIR image were provided. All
images have been segmented by experienced clinicians, including Background,
WMH (WM). All images randomly assign into a training set (33 images), a
validation set (10 images), and a test set (10 images).

BraTS2019: The dataset is provided by the MICCAI Brain Tumor Segmenta-
tion Challenge 2019 (BraTS2019) [19–21]. Here we only use HGG for verification.
Each case provides a T1, a T1Gd, a T2, and a FLAIR volume and the corre-
sponding annotation results. Four different tissues were combined into three sets:
(1) the whole tumor (label 1, 2, 4); (2) the tumor core (label 1, 4); (3) tumor
enhanced area (label 4).

Table 1. The network architectures and training parameters used in our study.

Task U-Net Patch Batch lr 2D/3D Loss

Conv s Conv e depth

HVSMR 16 128 4 128× 128× 6 6 0.0005 3D Dice

M&Ms 16 128 4 128× 128× 6 6 0.0005 3D Dice

WMH 16 128 4 128× 128× 32 4 0.0001 3D Dice+ce

BraTS2019 16 128 4 128× 128× 32 4 0.0001 3D Dice+ce

“Conv s” and “Conv e” represent the width of the first and last convolution layer of the
coding layer, respectively. “ce” represent cross entropy loss function

Table 2. Results of FS-Net, U-Net and Pre-training in two data expansion scenarios.

Architecture HVSMR WMH

BP VM WM

U-Net 74,90 85.59 78.25

Pre-training 76.13 86.57 78.31

FS-Net 82.02 89.03 79.02

3.2 Baselines and Implementation

The details of the network architectures and training parameters are shown in
Table 1. Without loss of generality, we use U-Net [8] as the segmentation network
in FS-Net, which is popular for bio-medical segmentation. Besides, we did not
add too many extra tricks and post-processing techniques in order to exclude
other interference factors and show the effect of FS-Net simply and directly.
U-Net has 4 encoder and decoder steps. Each encoder step is made by two
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convolutions layer with stride 1. The decoder is made by transpose convolution
with stride 2, followed by a convolution with stride 1. Each convolution has
kernel size 3, He weights initialization [23] and 1 padding. The number of filters
are doubled at each encoder step.

Our experiments are implemented with Pytorch. Adam used as the optimizer
with different learning rate. To ensure the experiment’s objectivity, we strictly
guarantee that the training parameters are consistent. All the experiments are
performed using four NVIDIA TESLA V-100 (Pascal) GPUs with 32 GB memory
each. Dice-coefficient is used to evaluate segmentation performance.

3.3 Results

Here, we divide data expansion into two scenarios: First, different datasets with
the same segmentation target, such as HVSMR (heart) and M&Ms (heart); Sec-
ond, different datasets have different segmentation targets, such as Brats2019
(glioma) and WMH (white matter hyperintensities); There are certain differ-
ences in the data distribution of different tasks or different scenarios of the
same task. Table 2 shows we use M&Ms as the extended dataset of HVSMR,
the segmentation accuracy of FS-Net is up to 7.12% higher than the baseline
network. In addition, we use Brats2019 as expansion dataset on WMH, and
the segmentation accuracy is improved by 0.77% compared with the baseline
network. Especially the use of completely different datasets for a segmentation
task to assist in improving the performance of the target task has very practi-
cal value. M&Ms and Brats2019 are used as expansion data without calculating
their segmentation accuracy.

Table 3. Ablation study for image channel coding, FS-module, and weighted loss
function

HVSMR BP VM

FS-Net 82.02 89.03

Joint training 76.22 87.75

FS-Net w/0 channel coding 81.77 88.38

FS-Net w/0 FS-module 81.22 88.08

FS-Net w/0 weighted loss 77.65 88.17

3.4 Ablation Study

In this section, we perform ablation experiments to investigate the effect of
different components in FS-Net. These experiments provide more insights into
FS-Net. All following experiments were performed on HVSMR dataset. Table 3
shows image channel coding, FS-module, and weighted loss function can improve
the accuracy of the network. Among them, the effect of weighted loss function
is the most obvious. We also compared the joint training, and its performance
is also lower than FS-Net.
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4 Conclusions

In this paper, we proposed a new paradigm (FS-Net) of data expansion for medi-
cal image segmentation. FS-Net effectively solves the problems of Pre-training as
a sequential learning typically suffers in fact from forgetting the older tasks. FS-
Net shares encoding and decoding parameters at the same time during training
to help exploiting regularities present across tasks and improving the perfor-
mance by constraining the learned representation. We show that FS-Net has
a significant improvement over pre-traing through two sets of experiments in
different scenarios. Especially the use of completely different data for a segmen-
tation task to assist in improving the performance of the target task has very
practical value.
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Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11071, pp.
21–29. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00934-2 3

3. Ibtehaz, N., Sohel Rahman, M.: MultiResUNet: rethinking the U-Net architecture
for multimodal biomedical image segmentation. arXiv:1902.04049 (2019). http://
arxiv.org/abs/1902.04049

4. Jiang, H., et al.: Improved cGAN based linear lesion segmentation in high myopia
ICGA images. Biomed. Opt. Express 10(5), 2355 (2019)

5. Trullo, R., Petitjean, C., Ruan, S., Dubray, B., Nie, D., Shen, D.: SEG-mentation
of organs at risk in thoracic CT images using a SharpMask architecture and con-
ditional random fields. In: Proceedings of IEEE 14th International Symposium on
Biomedical Imaging (ISBI), pp. 1003–1006, April 2017

6. Chiu, S.J., Allingham, M.J., Mettu, P.S., Cousins, S.W., Izatt, J.A., Farsiu, S.:
Kernel regression based segmentation of optical coherence tomography images with
diabetic macular edema. Biomed. Opt. Express 6(4), 1172 (2015)

7. Venhuizen, F.G., et al.: Deep learning approach for the detection and quantification
of intraretinal cystoid fluid in multivendor optical coherence tomography. Biomed.
Opt. Express 9(4), 1545 (2018)

8. Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomed-
ical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F.
(eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-24574-4 28

9. Halevy, A., Norvig, P., Pereira, F.: The unreasonable effectiveness of data. IEEE
Intell. Syst. 24(2), 8–12 (2009)

https://doi.org/10.1007/978-3-030-00934-2_3
http://arxiv.org/abs/1902.04049
http://arxiv.org/abs/1902.04049
http://arxiv.org/abs/1902.04049
https://doi.org/10.1007/978-3-319-24574-4_28


FS-Net: A New Paradigm of Data Expansion 225

10. Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accu-
rate object detection and semantic segmentation. In: CVPR (2014)

11. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic
segmentation. In: CVPR (2015)

12. Zoph, B., Ghiasi, G., Lin, T.Y., et al.: Rethinking pre-training and self-training
(2020)

13. Russakovsky, O., et al.: ImageNet large scale visual recognition challenge. Int. J.
Comput. Vis. 115(3), 211–252 (2015)

14. French, R.M.: Catastrophic forgetting in connectionist networks. Trends Cogn. Sci.
3(4), 128–135 (1999)

15. Bilen, H., Vedaldi, A.: Universal representations: the missing link between faces,
text, planktons, and cat breeds. arXiv preprint arXiv:1701.07275 (2017)

16. Caruana, R.: Multitask learning. Mach. Learn. 28, 41–75 (1997)
17. Campello, M., Lekadir, K.: Multi-centre multi-vendor & multi-disease cardiac

image segmentation challenge (M&Ms). In: Medical Image Computing and Com-
puter Assisted Intervention (2020)

18. Pace, D.F., Dalca, A.V., Geva, T., Powell, A.J., Moghari, M.H., Golland, P.: Inter-
active whole-heart segmentation in congenital heart disease. In: Navab, N., Horneg-
ger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 80–88.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4 10

19. Menze, B.H., et al.: The multimodal brain tumor image segmentation benchmark
(BRATS). IEEE Trans. Med. Imaging 34(10), 199–2024 (2014)

20. Bakas, S., et al.: Advancing the cancer genome atlas glioma MRI collections with
expert segmentation labels and radiomic features. Sci. Data 4, 170117 (2017)

21. Bakas, S., et al.: Identifying the best machine learning algorithms for brain
tumor segmentation, progression assessment, and overall survival prediction in the
BRATS challenge. arXiv preprint arXiv:1811.02629 (2018)

22. Fu, J., et al.: Dual attention network for scene segmentation. In: 2019 IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR). IEEE (2020)

23. He, K., et al.: Delving deep into rectifiers: surpassing human-level performance on
ImageNet classification. In: Proceedings of the IEEE International Conference on
Computer Vision (2015)

http://arxiv.org/abs/1701.07275
https://doi.org/10.1007/978-3-319-24574-4_10
http://arxiv.org/abs/1811.02629


An Efficient Data Strategy for the
Detection of Brain Aneurysms from MRA

with Deep Learning

Youssef Assis1(B), Liang Liao2, Fabien Pierre1, René Anxionnat2,3,
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Abstract. The detection of intracranial aneurysms from Magnetic Res-
onance Angiography images is a problem of rapidly growing clinical
importance. In the last 3 years, the raise of deep convolutional neural net-
works has instigated a streak of methods that have shown promising per-
formance. The major issue to address is the very severe class imbalance.
Previous authors have focused their efforts on the network architecture
and loss function. This paper tackles the data. A rough but fast anno-
tation is considered: each aneurysm is approximated by a sphere defined
by two points. Second, a small patch approach is taken so as to increase
the number of samples. Third, samples are generated by a combination
of data selection (negative patches are centered half on blood vessels and
half on parenchyma) and data synthesis (patches containing an aneurysm
are duplicated and deformed by a 3D spline transform). This strategy is
applied to train a 3D U-net model, with a binary cross entropy loss, on a
data set of 111 patients (155 aneurysms, mean size 3.86 mm ± 2.39 mm,
min 1.23 mm, max 19.63 mm). A 5-fold cross-validation evaluation pro-
vides state of the art results (sensitivity 0.72, false positive count 0.14,
as per ADAM challenge criteria). The study also reports a comparison
with the focal loss, and Cohen’s Kappa coefficient is shown to be a better
metric than Dice for this highly unbalanced detection problem.

Keywords: Brain aneurysm detection · Data sampling · CNN

1 Introduction

Intracranial aneurysms are local dilations of the cerebral blood vessels. Their
rupturing accounts for 85% of subarachnoid hemorrhages (SAH), and is related
to high mortality and morbidity rates [13]. The generalization of radiologic
examinations in the diagnostic process has exposed the detection of unrup-
tured aneurysms as a problem of increasing clinical importance. The need to
browse through 3D Computed Tomography Angiography (CTA) or Magnetic
c© Springer Nature Switzerland AG 2021
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Resonance Angiography (MRA) data in an ever increasingly time-constrained
clinical setting however leads to inevitable errors. The innocuity of 3D Time-of-
Flight (TOF) MRA makes it particularly suited for screening, even though the
detection of small aneurysms (<5 mm) may be challenging [8]. A reliable auto-
mated method would be a valuable asset to assist radiologists in their clinical
routine.

The first computer-assisted detection (CAD) system reported in the litera-
ture [1] was based on traditional image processing. Recently, convolutional neu-
ral networks (CNNs) have proven their superior performance in visual tasks,
including medical image analysis. Detecting brain aneurysms is very challenging
because aneurysms are scarce (a few tens to hundreds of positive voxels among
millions in the MRA data), and their number is indefinite a priori. Therefore, it
has been but very recently that deep learning approaches have been investigated
in that context. First, several 2D approaches have been proposed in the litera-
ture [12,17], but all most recent approaches are fully 3D. The performance of
the dual-path multiscale DeepMedic model was deemed promising [14] but as a
complement to an expert reader [6]. Last year, the ADAM challenge enabled an
objective comparison of a variety of other 3D approaches. The leading 3 meth-
ods for the detection task were based on 3D U-net [3] to evade the problem of
the indefinite number of aneurysms through the generation of a heat map. The
scarcity, and thereby high class imbalance, was tackled either through the loss
function and/or the model. The Dice similarity coefficient, and the Binary Cross
Entropy (BCE) and TopK losses were combined to form an ensemble loss in [11].
A different ensemble loss approach was taken in [18]. Fours models based on the
No New-Net were trained and the final segmentation was decided in a major-
ity voting amongst these models. The leader method [2] focused on the model
architecture with a Retina U-net model that aggregates an encoder network and
a feature pyramid network to guide the high-resolution detection with strong
semantic features at low resolution. The actual impact of all these variants was
questioned by the recent emergence of a new leader with a vanilla 3D U-net
model trained with a combined Dice and BCE loss, and a prediction based on
an ensemble of 5 models [19]. We believe a major difference dwells in the samples
generation. If the first 3 methods used large patches ({192, 224, 256} × 256× 56
voxels), this last one used 1283 patches with a rich data augmentation process.
Another limitation that we see is the small size of the dataset and the drudgery
of the voxel-wise annotation.

The current study focuses on the data strategy to generate input samples that
are better designed to tackle the class imbalance and reduced data set issues. We
used a vanilla 3D U-net in all our experiments but small patches (483) were used.
Aneurysm annotation is approximate but fast. This approximation is claimed
to be precise enough for the detection task. A combination of guided sample
selection and sample synthesis is also proposed, and BCE and focal losses are
compared. Finally, we advocate for the use of Cohen’s Kappa as a better metric
than Dice in this class imbalance situation.
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Fig. 1. Aneurysm annotation as an approximate sphere with 2 points in Slicer

2 Materials and Methods

2.1 Dataset and Data Annotation

A total of 111 TOF-MRA examinations (56 females, 55 males) were collected at
our medical institution between April 2015 and January 2020. The criterion for
inclusion was the presence of an aneurysm. All aneurysms are saccular. Criteria
for exclusion were any pre-treated aneurysm and large aneurysms (>20 mm).
The images were acquired on a 3T scanner (GE Healthcare) with the following
parameters: TR = 28 ms, TE = 3.4 ms, slice thickness = 0.8 mm, FOV = 24, flip
angle = 17◦, 4 slabs (54 slices/slab), acquisition time = 6 min 28 s, resulting in
512 × 512 × 254 volumes with a 0.47 × 0.47 × 0.4mm3 voxel size. Each DICOM
data was anonymized and converted to NIfTI format on the clinical site before
processing. Each examination contained from one (81/111) to five aneurysms (1
case) for a total of 155 aneurysms with a mean diameter of 3.86 mm ± 2.39 mm
(min: 1.23 mm, max: 19.63 mm). These were mostly small aneurysms since 60
were below 3 mm and 66 between 3–5 mm, which makes it a challenging dataset.

Previous works rely on databases where aneurysms have been segmented
voxel-wise. This annotation is both tedious and tainted with intra- and inter-
rater variability. Since we only aim at detecting aneurysms, we deployed a less
accurate but much faster annotation: each aneurysm was annotated, by a radi-
ologist with 10 years of experience, by placing two points, one at the center of
the neck and the other at the dome, so as to define a sphere that approximated
the aneurysm sack. 3D Slicer software was used [7] to place points in volume
rendering view (see Fig. 1).

2.2 Model Implementation

Our software code was written in Python (3.8.5) using Keras (2.4.3). It was
based on D.G. Ellis’s open-source 3D U-net implementation [5] with 4 layers.
Our first investigations with the available regular patch sampling did not show
convergence of the model. As a consequence, the patch generator described below
was plugged as input to the model. The following hyperparameters were used:
100 epochs, constant learning rate = 10−4, BCE loss, Adam optimizer, batch
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Table 1. Comparison of model variations: Model0 is our proposed model. Dice and κ
(Kappa) coefficients were evaluated on the validation set at the end of training. Other
ADAM and patch-wise metrics were measured on the test set (11 patients).

Model Validation set ADAM metrics Patch-wise metrics

Dice κ Sensitivity FPs/case TP FP FN TN

Model0 0.339 0.665 0.970 0.454 14 5 2 2194

Model1 0.089 0.527 0.803 0.190 12 2 4 2197

Model2 0.038 −1.21e-8 0 0 0 0 16 2199

Model3 0.434 0.772 0.879 1.545 14 11 2 2188

Model4 0.245 0.589 0.833 1.0 13 8 3 2191

size = 10, with batch normalization. Each input volume was normalized between
0 and 1.

A full volume could be predicted by patch reconstruction: the initial volume
was resampled to an isotropic 0.4 mm voxel size; predictions were computed for
patches that cover the entire volume; and the resulting volume was resampled
to the original resolution. To avoid border effects due to convolutions on small
patches, an overlap of 8 voxels was considered between neighboring patches and
only the central 32 × 32 × 32 part of the patches were juxtaposed to cover the
final volume.

2.3 Patch Generation and Data Augmentation

The discriminative power of a classifier depends on its capacity to statistically
model both the background (negative samples) and the foreground (positive
samples). In large patches approaches, an aneurysm is present in most patches,
which requires healthy patients in the database. In our small patch approach,
negative (aneurysm-free) patches are very common outside the aneurysm sur-
roundings, but multiple instances need to be extracted from each patient data to
build reliable statistics on the background. On the opposite side, only one single
positive patch exists for each aneurysm. Adapted data sampling is an efficient
strategy to handle this problem [9]. Our first sampling strategy then consists in
duplicating 50 times each positive patch, centered on each aneurysm. A variety of
shapes are synthesized by applying a random distortion to each duplicate: each
control point on a 3× 3× 3 lattice enclosing the patch, except the central point,
is moved randomly by 4 mm in all 3 space directions and patch voxel locations
in the original volume are computed using cubic spline interpolation. But class
imbalance also emanates from the vascular information that only represents 3
to 5% of the background signal. In order to guide the model to discriminate
between healthy and pathological vessels, our second sampling strategy consists
in taking half of the negative samples centered on a blood vessel. The 100 bright-
est voxels were selected as patch centers. The other 100 centers were randomly
selected within voxel values between the 20th and the 80th percentiles. Patch
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overlap was avoided by enforcing a minimum 20 mm distance between any two
patch centers.

As a result we used 200 negative patches, and 50 positive patch duplicates.
We used 48 × 48 × 48 patches with an isotropic voxel size of 0.4 mm, closest to
the nominal resolution, so that patches were cubes with a side length of 19 mm.
Data augmentation was applied in the process with random rotations by 0 to
180◦ and shifts by 10 mm in all 3 space directions.

2.4 Metrics and Performance Evaluation

The training was monitored with the Dice coefficient. However, since the aneu-
rysms are scarce and small, this metric lacks sensitivity to detection errors. We
also computed Cohen’s Kappa coefficient (κ) [4], that is more robust to class
imbalance. These metrics are computed voxel-wise on the collection of input
patches.

The performance of a model was evaluated on a test set, using mean sensitiv-
ity and FP count/case scores as defined for Task 1 in the ADAM challenge [16].
The connected components (CC) in both ground truth and predicted full vol-
umes were labeled. A True Positive (TP) is a CC in the ground truth that
contains the center of gravity of a predicted CC. A False Negative (FN) is a
CC in the ground truth with no such predicted CC. A False Positive (FP) is a
predicted CC whose center is not contained in any ground truth CC.

However, the above metrics do not enable True Negative count, and thereby
prevent from computing specificity. Thereafter, we also computed patch-wise
statistics (no positive duplicate): a patch is considered positive if it contains
a positive voxel, else it is negative. This enables to compute a full confusion
matrix.

3 Experiments and Results

3.1 Ablation Study

A first set of experiments aimed at evaluating the relevance of various parts of
the model and the patch sampling strategy described in Sects. 2.2 and 2.3, which
will be denoted as Model0. 4 variants were tested.

BCE is very sensitive to class imbalance [15]. In order to see the effectiveness
of our data strategy to counter class imbalance, Model1 was trained the same
as model0 but using the focal loss [10], that was designed to focus the training
on the minority class. Model2 only generates 5 duplicates (instead of 50) for
each positive patch. Model3 uses 50 duplicates but without random distortion
applied. Model4 only considers 100 background patches (instead of 200, 50 on
vessels, 50 outside).

The data set was split into 3 sets used for: training (78 cases, 70%), validation
(22 cases, 20%) and test (11 cases, 10%). All models were trained with the trai-
ning set, and were monitored with the validation set. Table 1 reports the results
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Method Sensi- FP count
tivity /case

abc [19] 0.68 0.40
mibaumgartner [2] 0.67 0.13

joker [18] 0.63 0.16
junma [11] 0.61 0.18
Our model 0.72 0.14

Fig. 2. (left) FROC curve for our model: AUC = 85.24%. (right) Comparison with 4
leading methods in ADAM challenge (in decreasing order).

of this study. Dice and κ are observed on the validation set at the end of training.
Other performance metrics (see Sect. 2.4) are computed on the test data set.

No real improvement could be observed with the focal loss (Model1), and BCE
is even more sensitive, which demonstrates the efficacy of our sampling strategy.
The Dice score remained very low because the predicted CC were very small.
However, κ could better capture the relatively good performance of this model.
Model2 did not converge: class imbalance is indeed an issue. Model3 provided
good results but with too many FPs, due the lack of diversity in the aneurysm
shapes shown to the model during training. The excess in positive voxels leads
to larger TPs, which explains the better Dice and κ scores. Finally, the class
balance is improved in Model4, but it underperforms Model0 because the sample
size for the negative patches is too small to reliably model background statistics.

3.2 5-Fold Validation

The global performance of our proposed model (Model0) was assessed using 5-
fold validation. 5 models were trained, each time with 4 subsets for training and
leaving one subset for test. Predictions were generated for each patient in each
test set, providing a prediction for each patient. The mean aneurysm diameters
in the 5 splits were: 3.82 mm, 3.74 mm, 3.96 mm, 3.84 mm and 3.93 mm.

Figure 2 displays the Free-response Receiver Operating Characteristics
(FROC) curve: It reports the sensitivity and FP count scores, as per ADAM,
computed on all 111 patients in our dataset for various detection thresholds.
By adjusting the detection threshold, and by comparison with abc method, our
method achieves a sensitivity of 0.80 @ 0.40 FP/case, and, with mibaumgartner
method, a sensitivity of 0.70 @ 0.13 FP/case. The Area Under Curve (AUC) is
85.24%. The optimal detection threshold was determined as the closest point to
the upper left corner. Our model reaches a sensitivity of 0.72@0.14 FP/case.

4 Discussion

In this study, in order to determine the impact of our data strategy we voluntarily
used a vanilla 3D U-net model with a BCE score and simple optimization process
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Fig. 3. (left) Branching of small arteries (here, ophtalmic artery, see arrow) may be
mistaken for an aneurysm (predicted CC are in red, annotation points are present).
(middle) Example of an overlooked aneurysm (arrow). (right) Typical surge of κ is a
good predictor of the final convergence (around epoch 10).

(e.g. fixed learning rate and number of epochs). The focus was put on the data
to assess the impact of various aspects of their preparation on learning.

First, a rough, but fast annotation was employed, which enables to rapidly
label a large number of MRA volumes. Besides, a small patch approach was
chosen. Small, non-intersecting patches are assumed independent, which allows
for an efficient exploitation of even a small set of original MRA images (111).
Second, we proposed an adapted data sampling process in two steps. On one side,
guided sampling: The negative (aneurysm-free) patches are extracted by half
centered on blood vessels and the other half elsewhere. We have shown that 200
patches were better able than 100 to capture the background statistics (Model0
vs Model4). On the other side, data synthesis: The positive patches are duplicated
50 times, which enables to counter the high class imbalance (Model0 vs Model2),
and various shapes are synthesized by applying random non-rigid distortions,
which describes the foreground statistics more accurately and enables a reduction
of FPs (Model0 vs Model3).

The proposed model has a sensitivity of 0.72, with a FP count/case of 0.14.
FROC analysis showed that it is competitive with the best current leading meth-
ods in the ADAM challenge. Our method will have to be adapted to the ADAM
challenge conditions for a definite comparison to be made. Future efforts will aim
at further reducing FPs. Tests with the Focal Loss (Model1) generated smaller
CC, which reduced the FP score but at the expense of sensitivity. Besides cases
that are easy for a radiologist to discard, the most challenging FPs are located
where a small artery, close to the resolution limit, branches onto a large artery.
These are mistaken for small aneurysms (see Fig. 3, left). Indeed the perfor-
mances of our model are lower on small aneurysms. Of all 155 aneurysms, 34
were not detected (FN). But 18 of these FNs had a diameter below 2 mm and
10 more were below 3 mm. The sensitivity of our model is 0.53 for aneurysms
smaller than 2 mm, and reaches 0.89 for larger aneurysms. But this difficulty in
detecting small aneurysms is inherent to MRA [8]. Note that during the visual
review of the results by a radiologist with 30 years of experience, 8 FPs proved
to be actual aneurysms that had been overlooked during the initial annotation
(see Fig. 3, middle).
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In our experiments, we observed a typical sudden surge in κ score that was
correlated to a satisfactory convergence of the training phase (see Fig. 3, right).
We interpreted it as a better sensitivity of κ over Dice to even small intersections
between prediction and ground truth volumes.

5 Conclusion

In this paper, we presented an efficient data sampling strategy to detect intracra-
nial aneurysms from MRA images, that is able to reach a state of the art sensitiv-
ity of 0.72 at 0.14 FP/case. Joining forces will hopefully decrease the number of
FPs to design a more specific classifier. A future extension of this work is combin-
ing this data strategy with more sophisticated architectures and loss functions
whose efficacy has been demonstrated, in particular by the ADAM challenge.
Furthermore, a current work in progress investigates the κ score as a loss func-
tion, to leverage its capacity to assess the quality of a classifier despite the highly
class imbalance problem.
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Abstract. In supervised image classification, convolutional deep neu-
ral networks have become the dominant methodology showing excel-
lent performance in a number of tasks. These models typically require a
very large number of labelled data samples to achieve required perfor-
mance and generalisability. While data acquisition is relatively easy, data
labelling, particularly in the case of medical imaging where expertise is
required, is expensive. This has led to the investigation of active learn-
ing methods to improve the effectiveness of choosing which data should
be prioritised for labelling. While new algorithms and methodologies
continue to be introduced for active learning, each reporting improved
performance, one key aspect that can be overlooked is the underlying
data distribution of the dataset. Many active learning papers are bench-
marked using curated datasets with balanced class distributions. This is
not representative of many real-world scenarios where the data acquired
can be heavily skewed towards a certain class. In this paper, we eval-
uate the performance of several established active learning techniques
on an unbalanced dataset of 15153 chest X-Ray images, forming a more
realistic scenario. This paper shows that the unbalanced dataset has a
significant impact on the performance of certain algorithms, and should
be considered when choosing which active learning strategy to imple-
ment.

1 Introduction

Deep learning has become the primary methodology for tackling image classifica-
tion tasks, ever since AlexNet took the top result in the ImageNet 2012 challenge.
Since then, subsequent leader-boards on the ImageNet challenges have been filled
with different and novel deep learning implementations [5], which cements deep
convolutional models as the go-to method to deal with image classification tasks.

Deep learning has shown a number of successes in medical image classifica-
tion tasks in recent years. However, these methods often require large amounts
of labelled data to achieve high performance. For example, in the detection
of Diabetic Retinopathy, over 128,000 retinal fundus photographs were used
for training [3]. Similarly, 80,000 Optical Coherence Tomography image slices
c© Springer Nature Switzerland AG 2021
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were needed to classify age-related macular degeneration in [8]. Other examples
include skin cancer detection [2] (130,000 images) and lung cancer stratification
[10]. This last dataset additionally typifies a common property of medical imag-
ing where class numbers are unbalanced due to varying prevalence of disease: the
training data used consisted of 14,761 benign nodules (5,972 patients) but only
932 malignant nodules (575 patients). In such cases, important decisions have to
be taken about how to curate the most effective training dataset. Given the high
cost of expert labelling of medical images, being able to efficiently choose which
data to label can improve efficiency. Moreover, when data collection results in
unbalanced distributions, prioritising which data is used for training is key to
ensuring good performance across all important classes.

The field of active learning [13] aims to increase the efficiency and effective-
ness of the labelling process by intelligently selecting which data to label. Over
the active learning cycle, this allows the model to choose the data it deems
most effective for it, instead of picking unlabelled samples at random. Redun-
dant images not only waste annotator time as they add data instances that do
not benefit in the model’s performance, but also needlessly increases the time it
takes to train the model. Furthermore, allowing data imbalances in training can
have negative impacts on end results [7]. Active learning algorithms free us from
having to manually analyse and select the most effective data instances to label
and avoid redundancy.

Despite this, active learning is not a panacea. As a relatively new field tied
to a lot of fast-moving research, papers have reported wildly different baseline
results ([17] at 86% accuracy whereas [14] at 74%). Many active learning papers
are tested on balanced datasets, which is a prior assumption on the unlabelled
data distribution that should not be assumed.

1.1 Active Learning in Medical Imaging

Active learning has gained traction in the medical domain particularly due to the
high cost of labelling by trained medical professionals. There have been several
medical specific active learning papers, summarised in [1] and references therein.
A recent paper [16], integrates active learning into a hybrid lung segmentation
and classification model. Here, the authors sample from an available dataset
which has already been curated to have a balance of 300 patients in each of
the three classes being predicted. The evaluation of different active learning
strategies on balanced and bespoke datasets in prior art is one of the fundamental
challenges to evaluating the benefits of such methods in practical applications.

The aim of this paper is not to produce a bespoke active learning methodol-
ogy for a particular dataset, but to evaluate different fundamental active learning
strategies in the context of both balanced and unbalanced datasets. Evaluat-
ing these strategies on a unbalanced dataset, which has not been deliberately
curated, more closely reflects the reality of acquisition of medical image data
for deep learning classification. As [1] concludes, “developing baseline human-
in-the-loop methods to compare to will be vital to assess the contributions of
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individual works in each area and to better understand the influences of com-
peting improvements in these areas”. This is the goal of our current paper.

1.2 Active Learning Methodology

Active learning can be split into two stages, the scoring stage and the sampling
stage. The scoring function is the process in which the unlabelled data is scored
based on its informativeness score and ranked accordingly. In the sampling stage,
an algorithm is employed to sample from the unlabelled data utilising the infor-
mativeness scores.

For informativeness scoring, the uncertainty scoring method introduced in
the classical setting [13] was also explored in the deep learning context [15] by
utilising several metrics to predict model uncertainty, such as utilising the confi-
dence of the top predicted class, utilising the top two predicted classes (margin
sampling) or by only sampling the positive classes (positive sampling). Other
than utilising model uncertainty, another method of scoring the informativeness
of data is to maximising expected model change (EMC) [6].

2 Methods

In this section, we outline several techniques and established active learning
algorithms from recent AL papers [14,17] that will be tested on the unbalanced
dataset, as well as the parameters and scale of the experiments.

2.1 Datasets

The most common datasets used to benchmark deep learning with active learning
and image classification papers are CIFAR and ImageNet, which are all datasets
where class distributions are balanced. Even medical domain specific papers like
[16], which employs active learning on COVID-19 Chest CT images, choose a
subset of the full dataset which is balanced. In the real world, no assumption
should be placed on the unlabelled prior distribution, and this paper evaluates
several active learning techniques on this basis. In fact, medical image datasets
tend to be unbalanced, as pathology occurs far more rarely than normal controls.

This paper utilises the COVID-19 dataset from [11], which features an unbal-
anced dataset of 15153 Chest X-Ray images, with 10192 samples normal control
images (NC), 3616 samples of COVID positive cases (NCP), and 1345 samples
of normal pneumonia cases (CP). Data augmentation is performed as a regu-
larisation and normalisation step, and does not influence the data distribution
during training. Data augmentation includes random crop, random horizontal
flip, and image value normalisation. The paper also utilises CIFAR-10 as a base-
line dataset, to compare results on balanced and unbalanced data.
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2.2 Scoring Functions

A scoring function is a function that assesses how informative a new data point
would be when added to the training pool. Different underlying motivations exist
when designing scoring functions and the following will be evaluated.

Model Uncertainty. Query the instances where the model is least certain of
what the output should be. This is one of the simpler and most commonly used
framework [15]. For classification tasks, there are several uncertainty scoring
functions that utilise the probabilistic output of the model:

Uncertainty Scoring - Confidence. Score the informativeness of the data
based on the confidence predicted by model. By sampling these confidences from
the unlabelled data, we identify the labels where the model is least confident.
Below, y∗ refers to the label with the highest confidence.

φLC = (1 − Pθ(y∗|x))

Uncertainty Scoring - Margin Scoring. Similar to confidence, instead of
taking the absolute least confident labels, we measure using the margin of the
top two predicted classes of the label. This potentially improves the scoring
function as it directly chooses labels where the model is uncertain between two
classes, which improves the decision boundaries between the two classes after
training. Below, y∗

0 is the label with the most confidence and y∗
1 is the label with

the second most confidence.

φM = (1 − (Pθ(y∗
0 |x) − Pθ(y∗

1 |x)))

Expected Model Change. Query the instances which would lead to the great-
est change to the current model once learned. This would be the instance where,
for each possible class designation, we calculate the gradients if that class desig-
nation was indeed the actual class label, and we take the highest predicted class
designation’s gradient.

2.3 Sampling Strategies

The sampling strategy refers to the algorithms which determine which instances
get picked. The following four methods will be evaluated, as explored in [4].

Top-N Sampling. By utilising the informativeness score, we choose the top-N
most uncertain samples. One of the popular, more efficient methods to utilise the
uncertainty scores produced by the scoring functions, but lacks any exploration.
It is a greedy sampling method that is very efficient as it does not require com-
puting any distance metrics and hence can scale with larger query and unlabelled
data sizes.

K-Nearest Neighbours Sampling. We take the K-nearest samples of known
data points based on some heuristic, in this case, based on the scoring functions



Evaluating AL Techniques on Unbalanced Data Distributions 239

[9]. The intuition is to exploit the embedding representation produced by the
model to help sample from areas where the model is uncertain.

Core-Set Sampling. By modelling the sampling process as an optimisation
problem to find the optimal subset of points that best covers the whole dataset,
we get the core-set problem. The core-set approach was introduced into the active
learning sphere by [12]. This technique requires solving a mixed-integer optimi-
sation problem, but an efficient greedy approximation (known as K-centre) is
often used in practice.

Mixture Sampling. This strategy relies on mixing top-N and random sampling
to allow the model to both greedily sample points that it believes is the most
informative points whilst also introducing exploration via. random sampling.

3 Experiments

In this section, we exhaustively measure how the active learning scoring functions
and sampling algorithms perform on the balanced and unbalanced datasets.

3.1 Experimental Setup

We utilise the ResNet18 model to benchmark results for the CIFAR-10 dataset,
and the MobileNet v2 model for the COVID-19 dataset. For both datasets, we
initialise the active learning cycle with 10% of the full dataset as the starting
seed, using a uniform random sampling. We train the model to convergence
and sample an additional 10%, and repeat this cycle 3 times until we reach
40% of the original dataset size. We use a 80:10:10 train/val/test split for both
datasets. The results are validated with 5 validation runs. For evaluation we
report the final test accuracy for each experiment. Our open-source code to run
these experiments is available at www.github.com/justincqz/active learning cv.

3.2 Results

Scoring Functions. We test each of the three scoring functions against all
sampling algorithms, over both datasets separately (Tables 1 and 2). Different
scoring functions come out on top for both datasets, and the margins between
scoring functions remain similar for both datasets throughout different sampling
strategies. The scoring function is not affected by the unbalanced datasets. The
tradeoff of performing margin and confidence scoring over expected model change
make them the best scoring metrics to use, although there is no clear answer.

Sampling Algorithms. Taking a look at the four sampling algorithms, it is
clear that Core-Set comes out on top for both datasets. However, the cost of
performing core-set is also the most expensive (requires building the distance
matrix over all unlabelled data). However, we see that top-N uncertainty based
sampling actually performs worse than random sampling when applied to the

www.github.com/justincqz/active_learning_cv
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COVID-19 dataset (where the data is imbalanced). Taking a closer look at the
sampling distributions in Figs. 1 and 2, we can see that the top-N sampling
oversamples from the NC class, whereas core-set samples more images from the
NCP class than any other class, explaining its improved performance. This is
because K-Nearest neighbours also out-performs random sampling by a smaller
margin, but has a similar computational cost as core-set. Core-Set is clearly the
best performing metric.

Table 1. Comparison of the scoring
functions and sampling strategies with
40% of the CIFAR10 dataset

CIFAR10

Sampling Scoring Test Acc. (%)

Random – 73.53

Top-N Margin 75.72

Confidence 75.87

EMC 75.16

Mixture Sampling Margin 78.47

Confidence 77.77

EMC 77.44

K-Nearest Margin 79.79

Confidence 81.04

EMC 81.00

Core-Set Margin 82.02

Confidence 81.29

EMC 81.95

Table 2. Comparison of the scoring
functions and sampling strategies with
40% of the COVID-19 dataset

COVID-19

Sampling Scoring Test Acc. (%)

Random – 86.99

Top-N Margin 84.50

Confidence 83.53

EMC 82.03

Mixture Sampling Margin 86.23

Confidence 85.73

EMC 85.47

K-Nearest Margin 88.77

Confidence 87.53

EMC 85.60

Core-Set Margin 89.86

Confidence 90.87

EMC 89.9

4 Discussion

The key take-away of the results of our experiments is that the active learn-
ing strategies based on uncertainty and entropy methods perform worse than
random sampling. This differs from results of prior art where these methods

Fig. 1. Samples selected by Top-N Fig. 2. Samples selected by Core-Set



Evaluating AL Techniques on Unbalanced Data Distributions 241

were shown to work well when applied to datasets with a balanced number of
classes. Only the strongly diverse sampling algorithms of K-Nearest Neighbours
and Core-Set manage to continue to outperform random sampling.

To dive deeper, Fig. 1 shows that the top-N sampling method prioritises NC
instances over other classes. One explanation could be that the model is confi-
dently incorrect. Since in active learning, when we evaluate the informativeness
of an unlabelled instance unknown to the model, the model could completely
mislabel those instances. This means that exploitation sampling strategies pri-
oritises the uncertain instances that are within the state space that it is familiar
with, leading to the repeated sampling of normal class instances even though a
large majority of the training set consists of instances from this class.

On the other hand, the core-set sampling Fig. 2, the sampling strategy pri-
oritises the NCP over the NC instances. This could be hypothesised as when
the model improves, so does its understanding of the distinguishing features
between the classes. Therefore when modelling the state-space, the model can
better distance NCP class feature vectors from NC feature vectors, which in
turn allows the core-set sampling strategy to sample from the newly recognised
feature space.

Core-Set sampling and other diversity sampling algorithms are more focused
on state-space exploration rather than model exploitation. In uneven scenar-
ios, given a small biased training set causes the model to biasly over-predict
the majority class, which leads to an oversampling from the majority class in
exploitation algorithms. This leads to diversity algorithms showing a substan-
tial improvement in the quality of querying in the cases of class imbalance.

5 Conclusion

This paper shows that the assumption of balanced class distributions in the
unlabelled data can have a profound impact to the overall results of the exper-
iments, particularly for active learning algorithms which rely on exploitation of
the informativeness scores. Our initial results suggest that methods based on
diversity sampling should be favoured in this case.

Future benchmarks of active learning algorithms and techniques should
include a section which evaluates the performance on unbalanced data, by
artificially introducing the unbalanced class distributions in currently available
datasets. This is an important factor to consider if active learning was to be
applied to a real-world scenario.
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Abstract. Domain shift is one of the most salient challenges in med-
ical computer vision. Due to immense variability in scanners’ parame-
ters and imaging protocols, even images obtained from the same person
and the same scanner could differ significantly. We address variability
in computed tomography (CT) images caused by different convolution
kernels used in the reconstruction process, the critical domain shift fac-
tor in CT. The choice of a convolution kernel affects pixels’ granularity,
image smoothness, and noise level. We analyze a dataset of paired CT
images, where smooth and sharp images were reconstructed from the
same sinograms with different kernels, thus providing identical anatomy
but different style. Though identical predictions are desired, we show
that the consistency, measured as the average Dice between predictions
on pairs, is just 0.54. We propose Filtered Back-Projection Augmentation
(FPBAug), a simple and surprisingly efficient approach to augment CT
images in sinogram space emulating reconstruction with different kernels.
We apply the proposed method in a zero-shot domain adaptation setup
and show that the consistency boosts from 0.54 to 0.92 outperforming
other augmentation approaches. Neither specific preparation of source
domain data nor target domain data is required, so our publicly released
FBPAug (https://github.com/STNLd2/FBPAug) can be used as a plug-
and-play module for zero-shot domain adaptation in any CT-based task.

1 Introduction

Computed tomography (CT) is a widely used method for medical imaging. CT
images are reconstructed from the raw acquisition data, represented in the form
of a sinogram. Sinograms are two-dimensional profiles of tissue attenuation as
a function of the scanner’s gantry angle. One of the most common reconstruc-
tion algorithms is Filtered Back Projection (FBP) [11]. This algorithm has an
important free parameter called convolution kernel. The choice of a convolution
kernel defines a trade-off between image smoothness and noise level [10]. Recon-
struction with a high-resolution kernel yields sharp pixels and a high noise level.
c© Springer Nature Switzerland AG 2021
S. Engelhardt et al. (Eds.): DGM4MICCAI 2021/DALI 2021, LNCS 13003, pp. 243–250, 2021.
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In contrast, usage of a lower-resolution kernel results in smooth pixels and a low
noise level. Depending on the clinical purpose, radiologists use different kernels
for image reconstruction.

Modern deep neural networks (DNN) are successfully used to automate com-
puting clinically relevant anatomical characteristics and assist with disease diag-
nosis. However, DNNs are sensitive to changes in data distribution which are
known as domain shift. Domain shift typically harms models’ performance even
for simple medical images such as chest X-rays [13]. In CT images, factors con-
tributing to domain shift include [4] slice thickness and inter-slice interval, dif-
ferent radiation dose, and reconstruction algorithms, e.g., FBP parameters. The
latter problem is a subject of our interest.

Recently, several studies have reported a drop in the performance of convo-
lutional neural networks (CNN), trained on sharp images while being tested on
smooth images [1,5,6]. Authors of [9] proposed using generative adversarial net-
works (GAN) to generate realistic CT images imitating arbitrary convolution
kernels. A more straightforward approach simultaneously proposed in [6], [1],
and [5] suggests using a CNN to convert images reconstructed with one kernel
to images reconstructed with another. Later, such image-to-image networks can
be used either as an augmentation during training or as a preprocessing step
during inference.

We propose FBPAug, a new augmentation method based on the FBP recon-
struction algorithm. This augmentation mimics processing steps used in propri-
etary manufacturer’s reconstruction software. We initially apply Radon transfor-
mation to all training CT images to obtain their sinograms. Then we reconstruct
images using FBP but with different randomly selected convolution kernels. To
show the effectiveness of our method, we compare segmentation masks obtained
on a set of paired images, reconstructed from the same sinograms but with dif-
ferent convolutional kernels. These paired images are perfectly aligned; the only
difference is their style: smooth or sharp. We make our code and results pub-
licly available, so the augmentation could be easily embedded into any CT-based
CNN training pipeline to increase its generalizability to smooth-sharp domain
shift.

2 Materials and Methods

In this section, we detail our augmentation method, describe quality metrics,
and describe datasets which we use in our experiments.

2.1 Filtered Back-Projection Augmentation

Firstly, we give a background on a discrete version of inverse Radon Transform
– Filtered Back-Projections algorithm. FBP consists of two sequential opera-
tions: generation of filtered projections and image reconstruction by the Back-
Projection (BP) operator.
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Projections of attenuation map have to be filtered before using them as an
input of the Back-Projection operator. The ideal filter in a continuous noiseless
case is the ramp filter. Fourier transform of the ramp filter κ(t) is F [κ(t)](w) =
|w|.

The image I(x, y) can be derived as follows:

I(x, y) = FBP(pθ(t)) = BP(pθ(t) ∗ κ(t)), (1)

where ∗ is a convolution operator, t = t(x, y) = x cos θ + y sin θ and κ(t) is the
aforementioned ramp filter.

Assume that a set of filtered-projections pθ(t) available at angles θ1, θ2, ..., θn,
such that θi = θi−1 + Δθ, i = 2, n and Δθ = π/n. In that case, BP operator
transforms a function fθ(t) = f(x cos θ + y sin θ) as follows:

BP (fθ(t))(x, y) =
Δθ

2π

n∑

i=1

fθi
(x cos θi + y sin θi) =

1
2n

n∑

i=1

fθi
(x cos θi + y sin θi)

In fact, κ(t) that appears in (1) is a generalized function and cannot be
expressed as an ordinary function because the integral of |w| in inverse Fourier
transform does not converge. However, we utilize the convolution theorem that
states that F(f ∗ g) = F(f) · F(g). And after that we can use the fact that the
BP operator is a finite weighted sum and Fourier transform is a linear operator
as follows:

F−1F [I(x, y)] = F−1F [BP(pθ ∗κ)] = BP(F−1F [pθ ∗κ]) = BP(F−1{F [pθ]·|w|}),

I(x, y) = BP
(F−1{F [pθ] · |w|})

.

However, in the real world, CT manufacturers use different filters that
enhance or weaken the high or low frequencies of the signal. We propose a family
of convolution filters ka,b that allows us to obtain a smooth-filtered image given
a sharp-filtered image and vice versa. Fourier transform of the proposed filter is
expressed as follows:

F [ka,b](w) = F [κ](w)(1 + aF [κ](w)b) = |w|(1 + a|w|b).

Thus, given a CT image I obtained from a set of projections using one kernel,
we can simulate the usage of another kernel as follows:

Î(x, y) = BP
(F−1{F [R(I)] · F [ka,b]}

)
.

Here, a and b are the parameters that influence the sharpness or smoothness
of an output image and R(I) is a Radon transform of image I. The output of the
Radon transform is a set of projections. Figure 1 shows an example of applying
sharping augmentation on a soft kernel image (Fig. 1(a) to (c)) and vice versa:
applying softening augmentation on a sharp kernel image (Fig. 1(b) to (d)).
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2.2 Comparison Augmentation Approaches

We compare the proposed method with three standard augmentations: gamma
transformation (Gamma), additive Gaussian noise (Noise), and random window-
ing (Windowing), the technique proposed by [4]. As a baseline method, we train
a network without any intensity augmentations (Baseline).
Gamma [12], augments images using gamma transformation:

Î(x, y) =
(

I(x, y) − m

M − m

)γ

· (M − m) + m,

where M = max(I(x, y)), m = min(I(x, y)) with a parameter γ, such that we
randomly sample logarithm of γ from N (0, 0.2) distribution.
Noise is the additive gaussian noise from N (0, 0.1) distribution.
Windowing [4] make use of the fact that different tissue has different atten-
uation coefficient. We uniformly sample the center of the window c from
[−700,−500] Hounsfield units (HU) and the width of the window w from
[1300, 1700] HU. Then we clip the image to the [c − w/2, c + w/2] range.
FBPAug parameters were sampled as follows. We uniformly sample a from
[10.0, 40.0] and b from [1.0, 4.0] in sharpening case and a from [−1.0, 0], b from
[0.1, 1.0] in smoothing case.

In all experiments, we zoom images to 1×1 mm pixel size and use additional
rotations and flips augmentation. With probability 0.5 we rotate an image by
multiply of 90 degrees and flip an image horizontally or vertically.

Fig. 1. An example of paired CT slices (top row) and the effect of the augmentation
by the proposed method (bottom row). The top row contains original images: a slice
reconstructed either with a smooth kernel (a) or sharp kernel (b). The bottom row
shows augmented images: the top-left image processed by FBPAug with parameters
a = 30, b = 3 shifting it from smooth to sharp (c); the top-right image processed by
FBPAug with parameters a = −1, b = 0.7 from sharp to smooth (d).
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Fig. 2. Bland-Altman plot showing prediction agreement using FBPAug (proposed
augmentation, red) and next best competitor (Gaussian noise, blue). Agreement is
measured between predictions on paired images reconstructed with soft and hard con-
volution kernels from Covid-private dataset. Difference in image pairs were always
computed as Volumesoft − Volumesharp. (Color figure online)

2.3 Datasets

We report our results on two datasets: Mosmed-1110 and a private collection of
CT images with COVID-19 cases (Covid-private). Both datasets include chest
CT series (3D CT images) of healthy subjects and subjects with the COVID-19
infection.

Mosmed-1110. The dataset consists of 1110 CT scans from Moscow clinics col-
lected from 1st of March, 2020 to 25th of April, 2020 [7]. The original images
have 0.8 mm inter-slice distance, however the released studies contain every 10th
slice so the effective inter-slice distance is 8 mm. Mosmed-1110 contains only 50
CT scans that are annotated with the binary masks of ground-glass opacity
(GGO) and consolidation. We additionally ask three experienced radiologists to
annotate another 46 scans preserving the methodology of the original annota-
tion process. Further, we use the total of 96 annotated cases from Mosmed-1110
dataset.

Covid-Private. All images from Covid-private dataset are stored in the DICOM
format, thus providing information about corresponding convolution kernels. The
dataset consists of paired CT studies (189 pairs in total) of patients with COVID-
19. In contrast with many other datasets, all of studies contain two series (3D
CT images); the overall number of series is 378. Most importantly, every pair
of series were obtained from one physical scanning with different reconstruc-
tion algorithms. It means the slices within these images are perfectly aligned,
and the only difference is style of the image caused by different convolutional
kernels applied. Covid-private does not contain ground truth mask of GGO or
consolidation, thus we only use it to test predictions agreement.
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2.4 Quality Metrics

For the comparison, we use the standard segmentation metric, Dice Score. Dice
Score (DSC) of two volumetric binary masks X and Y is computed as DSC =
2|X∪Y |
|X|+|Y | , where |X| is the cardinality of a set X.

Furthermore, we perform statistical analysis ensure significance of the results.
We use one-sided Wilcoxon signed-rank test as we consider DSC scores for two
methods are paired samples. To adjust for multiple comparisons we use Bonfer-
roni correction.

3 Experiments

3.1 Experimental Pipeline

To evaluate our method, we conduct two sets of experiments for COVID-19
segmentation.

First, we train five separate segmentation models: baseline with no augmen-
tations, FBPAug, Gamma, Noise, and Windowing on a Mosmed dataset to check
if any augmentation results in significantly better performance. Mosmed is stored
in Nifti format and does not contain information about the kernels. Thus, we
use it to estimate the in-domain accuracy for COVID-19 segmentation problem.

Second, we use trained models from the previous experiment to make pre-
dictions on a paired Covid-private dataset. We compare masks within each pair
of sharp and soft images using Dice score to measure prediction agreement for
the isolated domain shift reasons, as the only difference between images within
each pair is their smooth or sharp style, see Fig. 3.

3.2 Network Architecture and Training Setup

For all our experiments, we use a slightly modified 2D U-Net [8]. We prefer the
2D model to 3D since in the Mosmed-1110 dataset images have an 8 mm inter-
slice distance and the inter-slice distance of Covid-private images is in the range
from 0.8 mm to 1.25 mm. Furthermore, the 2D model shows performance almost
equal to the performance of the 3D model for COVID-19 segmentation [2]. In
all cases, we train the model for 100 epochs with a learning rate of 10−3. Each
epoch consists of 100 iterations of the Adam algorithm [3].

At each iteration, we sample a batch of 2D images with batch size equals to
32. The training was conducted on a computer with 40GB NVIDIA Tesla A100
GPU. It takes approximately 5 hours for the experiments to complete.

4 Results

Table 1 summarizes our results. First, experiments on Mosmed-1110 show
that segmentation quality almost does not differ for compared methods. The
three best augmentation approaches are not significantly different (p-value for
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Wilcoxon test are 0.17 for FBPAug vs Gamma and 0.71 for FBPAug vs Window-
ing). Thus our method does not harm segmentation performance. Our segmenta-
tion results are on-par with best reported for this dataset [2]. Next, we observe a
significant disagreement in predictions on paired (smooth and sharp) images for
all methods, except FBPAug (p-values for Wilcoxon test for FBPAug vs every
other method are all less than 10−16). For FBPAug and its best competitor, we
plot a Bland-Altman plot, comparing GGO volume estimates Fig. 2. We can see
that the predictions of FBPAug model agree independent of the volume of GGO.

Fig. 3. Example prediction. Left - example image reconstructed with a smooth kernel.
Right - image reconstructed with a sharp kernel from the same sinogram. Red dashed
contour - the baseline model (predictions agreement is 0.64), blue contour - FBPAug
(predictions agreement is 0.91). (Color figure online)

Table 1. Comparison results. Numbers are mean (std) obtained on 3-fold cross-
validation. Results for Mosmed-1110 are segmentation Dice score compared with
ground truth; for Covid-private are predictions agreement (between paired images)
measured using Dice score.

Baseline FBPAug Gamma Noise Windowing

Mosmed-1110 0.56 (0.23) 0.59 (0.22) 0.61 (0.19) 0.56 (0.21) 0.59 (0.18)

Covid-private 0.54 (0.27) 0.92 (0.05) 0.68 (0.21) 0.79 (0.13) 0.63 (0.23)

5 Conclusion

We propose a new physics-driven augmentation methods to eliminate domain
shifts related to the usage of different convolution kernels. It outperforms existing
augmentation approaches in our experiments. We release the code, so our flexible
and ready-to-use approach can be easily incorporated into any existing deep
learning pipeline to ensure zero-shot domain adaptation.

The results have been obtained under the support of the Russian Foundation
for Basic Research grant 18-29-26030.
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Label Noise in Segmentation Networks:
Mitigation Must Deal with Bias
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Abstract. Imperfect labels limit the quality of predictions learned by
deep neural networks. This is particularly relevant in medical image
segmentation, where reference annotations are difficult to collect and
vary significantly even across expert annotators. Prior work on mitigat-
ing label noise focused on simple models of mostly uniform noise. In
this work, we explore biased and unbiased errors artificially introduced
to brain tumour annotations on MRI data. We found that supervised
and semi-supervised segmentation methods are robust or fairly robust
to unbiased errors but sensitive to biased errors. It is therefore impor-
tant to identify the sorts of errors expected in medical image labels and
especially mitigate the biased errors.

Keywords: Label noise · Segmentation · Neural networks

1 Introduction

The reference annotations used to train neural networks for the segmentation of
medical images are few and imperfect. The number of images that can be anno-
tated is limited by the need for expert annotators and the result is subject to
high inter- and intra-annotator variability [1]. Furthermore, the objects targetted
by medical image segmentation also tend to be highly variable in appearance.
Thus, to make the best of use of limited labeled data, it is important to under-
stand which sorts of errors in reference annotations most affect the segmentation
performance of deep neural networks.

Noisy labels can be dealt with by modeling the noise [2–4], re-weighting
the contribution of labels depending on some estimate of their reliability [5,6],
training on pseudo-labels [5,7], designing noise-tolerant objective functions [8,9],
or estimating true labels [10–14].

A generative model of the noise was presented in [4]. A true segmentation map
is estimated using this model, and the segmentation model is updated accord-
ingly. For this approach, a good estimate of the noise model must be known. In
[3] and [2], it is learned with the limitation that a fraction of the dataset has to
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doi.org/10.1007/978-3-030-88210-5 25) contains supplementary material, which is
available to authorized users.
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be known to have clean labels. Instead of estimating the noise model directly, the
reliability of labels could be estimated instead so that examples with unreliable
labels are reweighted to contribute little to the loss function. This was done in
[6] by filtering for examples for which gradient directions during training differ
greatly from those measured on known clean examples. A similar estimate can be
made without requiring clean examples by giving a low weight to examples that
tend to produce higher error during training [5]. Alternatively, model predictions
[5] (especially those deemed confident by an adversarially trained discriminator
[7]) can be used as pseudo-labels in further training iterations.

The choice of objective function also affects robustness to label noise. Mean
absolute error (MAE) in particular exhibits some theoretically grounded robust-
ness to noise [9] and is the inspiration for a modified Dice loss that makes Dice
less like a weighted mean squared error objective and more like MAE.

True labels can be estimated from multiple imperfect reference labels with
expectation minimization (EM) [10–13]. Creating multiple segmentation anno-
tations is typically too expensive but lower quality results can be obtained with
crowdsourcing [15]. Indeed, it has been demonstrated that the most efficient
labeling strategy is to collect one high quality label per example for many exam-
ples and then estimate the true labels with model-bootstrapped EM [14]. The
authors state that this is effective when “the learner is robust to noise” and
then assume that label errors are random and uniform. This raises the question:
which sorts of errors in data labels are deep neural networks robust to?

We show that recent supervised and semi-supervised deep neural network
based segmentation models are robust to random “unbiased” annotation errors
and are much more affected by “biased” errors. We refer to errors as biased when
the perturbation applied to reference annotations during training is consistent.
We test recent supervised and semi-supervised segmentation models, including
“GenSeg” [16], trained on artificially noisy data with different degrees of bias.
Overall, we demonstrate that:

1. All models have robustness to unbiased errors.
2. All models are sensitive to biased errors.
3. GenSeg is less sensitive to biased errors.

2 Segmentation Models

Four different deep convolutional neural networks are tested for robustness to
label noise in this work. Network architectures and training are detailed in [16];
the models are briefly described below.

Supervised. The basic segmentation network is a fully convolutional network
(FCN) with long skip connections from an image encoder to a segmentation
decoder, similar to the U-Net [17]. It is constructed as in [16], with compressed
long skip connections, and trained fully supervised with the soft Dice loss.

Autoencoder. The supervised FCN is extended to semi-supervised training by
adding a second decoder that reconstructs the input image, as in [16].
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Mean Teacher. The supervised FCN is extended to mean teacher training
as in [18]. A teacher network maintains an exponential moving average of the
weights in a student network. When an input has no reference annotation to train
on, the student network learns to match the teacher. A potential limitation of
this method is that the reliability of the teacher may depend on the size and
richness of the annotated training dataset. The supervised FCN architecture is
re-used and hyperparameters were selected as in [16].

GenSeg. GenSeg extends the FCN for tumour segmentation by using image-to-
image translation between “healthy” and “diseased” image domains as an unsu-
pervised surrogate objective for segmentation [16]. In order to make a diseased
image healthy or vice versa, the model must learn to disentangle the tumour
from the rest of the image. This disentangling is crucial for a segmentation
objective. Importantly, this generative method can learn the locations, shapes,
and appearance of tumours conditioned on healthy tissue without relying on
tumour annotations.

3 Model Performance on Corrupted Labels

We aim to evaluate the robustness of segmentation models to errors in the ref-
erence annotations. To that end, we test different types of perturbations applied
to the annotations of the training data. Each perturbation (except for permuta-
tion) is applied on the fly—that is, the annotation is perturbed from its reference
state each time it is loaded during training (once per epoch). Experiments on
these various types of perturbation are presented below, along with some loose
intuition on their level of bias.

All experiments were performed on the 2D brain tumour dataset proposed
in [16], using the same training, validation, and testing data split. Created from
axial slices extracted from the MRI volumes of the 3D brain tumor segmentation
challenge (BraTS) 2017 data [19], this dataset includes a set of 8475 healthy slices
(without tumour) and a set of 7729 diseased slices (with tumour).

Segmentation performance was evaluated as a Dice score computed on the
test set over all inputs combined together. That is, all reference and predicted
annotations are stacked together before computing this overlap metric.

3.1 Random Warp

We introduced random errors into annotations during training by randomly
warping every tumour mask by an elastic deformation. The deformation map
was computed with b-spline deformation with a 3 × 3 grid of control points.
Each time warping was applied, each control point was randomly shifted from
its initial grid configuration by some number of pixels sampled from a zero-mean
Normal distribution with standard deviation σ. Examples of random warping
performed for different values of σ are shown in Fig. 1.

When warping the tumour mask, the per-pixel label error depends on other
pixels, so it cannot be simply averaged out. Nevertheless, there is no bias in
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Fig. 1. Example of warped annotations with different σ (red) vs original (blue). FLAIR,
T1, T1C, and T2 are the MRI acquisition sequences that compose the four channels
of each input image. (Color figure online)

the displacement of the control points (all sampled from a zero-mean Normal
distribution) and there is no bias in the distribution of shapes produced; in a
sense, the original tumour shape remains the average case. Thus, we consider
warping to be a largely unbiased error.

The relative performance of segmentation models trained on warped tumour
masks is shown in Fig. 2a. For different σ, segmentation performance is evaluated
relative to the Dice score achieved with no perturbation of the annotations. All
models show a linear relationship of percent reduction in Dice score to σ, with
no measurable reduction in performance for small deformations at σ = 2 and a
reduction of only between 4% and 6% for unrealistically large deformations at
σ = 20. Interestingly, when annotations were only provided for about 1% of the
patient cases, σ had no effect on model performance (Fig. 2b). As expected, the
semi-supervised autoencoding (AE), mean teacher (MT), and especially GenSeg
segmentation methods outperformed fully supervised segmentation in this case.
These results show that state of the art segmentation models are surprisingly
robust to unbiased deformations of the tumour masks.

3.2 Constant Shift

We introduced consistent errors into annotations during training by shifting the
entire tumour mask by n pixels, creating a consistent misalignment between the
target segmentation mask and the input image. Because this error is consistent
and the correct (original) annotations cannot be inferred from the distribution of
corrupted annotations, we refer to shifting as a biased error. As shown in Fig. 2c,
this kind of error strongly affected all models, resulting in about 10% lower
Dice scores when n = 5. Interestingly, GenSeg showed remarkable robustness
to extreme shift errors, compared to other models. GenSeg was the only model
to not show a linear relationship between segmentation performance and the
amount of shift, n; at an urealistic shift of n = 30, GenSeg showed a 27% drop
in performance compared to the mean teacher (MT), autoencoding (AE), and
purely supervised segmentation (Seg) models which each performed about 53%
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(a) Random warp (b) Random warp (1% labeled)

(c) Constant shift (d) Random crop

Fig. 2. Relative segmentation performance for different kinds of errors applied to
tumour annotations during training. Compares semi-supervised autoencoding (AE),
mean teacher (MT), and GenSeg models, as well as a fully supervised (Seg) network.
Performance is relative to each model’s peak performance (as Dice score) on clean data.
Each experiment was repeated three times. Solid lines: mean; shaded regions: standard
deviation. Variance calculations considered both the variance of the presented experi-
ments and of results on clean data.

worse than on error-free annotations. The same trends were observed when 99%
of the annotations were omitted. These experiments suggest that segmentation
models are sensitive to biased errors in the annotations.

3.3 Random Crop

To further test the effect of bias in annotation errors, we devised three variants
of cropping errors. In all cases, we made sure that half of each tumour area is
cropped out on averaged. First, we performed a simple a consistent crop of the
left side of each tumour (“left”). Second, we cropped out a random rectangle
with relative edge lengths distributed in [0.5, 1] as a fraction of the tumour’s
bounding box (“rand 0.5”); the rectangle was randomly placed completely within
the bounding box. Third, we did the same but with relative edge lengths in
[0, 1] (“rand 0”). For both “rand 0.5” and “rand 0”, edge lengths were sampled
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according to a linear random distribution with a slope selected empirically so as
to ensure that half of the tumour area is cropped out on average, as is the case
with “left”. We consider “left” as the most biased error because it consistently
removes the same part of each tumour from the mask. Following this reasoning,
“rand 0.5” is a biased error because it consistently reduces the tumour area—
that is, there is always a hole in the tumour—but it is less biased than “left”
because there is no part of the tumour that is never shown to models during
training. Finally, “rand 0” is the closest to unbiased because it is inconsistent
both in which pixels are made incorrect and in how much of the tumour is
removed. Indeed, with “rand 0”, there is a chance that the tumour annotation
is unmodified.

Experimental results with these random cropping strategies are presented
in Fig. 2d. Similarly to what we observed with unbiased warp errors and biased
shift errors, segmentation performance relative to Dice score on clean data drops
the most for all models with the biased “left” cropping strategy. Surprisingly,
performance only decreased between 5% and 8% when half of each tumour was
consistently missing from the training set. Similarly, the less biased “rand 0.5”
strategy reduced segmentation performance but less severely. Finally, the fairly
unbiased “rand 0” strategy did not result in reduced segmentation performance
at all. These results further suggest that segmentation models are robust to
unbiased errors but sensitive to biased errors in the annotations.

3.4 Permutation

Occasionally, annotations and images end up being matched incorrectly during
the creation of a dataset. We test the effect of this kind of biased error on the
performance of a supervised segmentation network. Before training, we randomly
permuted the annotations for a percentage of the data. Permutation was done
only one time and maintained throughout training. We compared segmentation
performance, as the Dice score, to training on clean data but with the same
percentage of data discarded from the training dataset. As shown in Fig. 3, per-
mutation errors reduce segmentation performance far more than if the corrupted
data were simply discarded.

4 Limitations and Future Work

We presented the effects of various biased and unbiased errors, applied to the
annotation maps in the training subset of data, on segmentation performance.
Although it appears that models are more sensitive to biased errors than unbi-
ased ones, it would be prudent to test many more strategies for introducing
error. One simple test could be randomly switching the class of each pixel, inde-
pendently. This sort of error is commonly considered in the literature for clas-
sification; it would be interesting to measure whether segmentation models are
more robust to it due to the contextual information from neighbouring pixels.
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Fig. 3. The segmentation Dice score goes down as the percentage of the dataset for
which annotations are permuted, or as the percentage of the dataset that is removed
from the training set, goes up. Corrupting data by permuting the labels is more detri-
mental to model performance than discarding the data.

All tested models used the soft Dice objective since they were trained as
in [16]. However, different objective functions have different robustness to label
noise [8,9] so it would be prudent to explore these options further. Furthermore,
it would be interesting to evaluate how much of the errors that we introduced
could be removed with model-bootstrapped EM [14] or accounted for with an
explicit model of the expected noise [2,3]. Finally, it would be interesting to
estimate how much of the error in intra- or inter-annotator variability in medical
imaging is systematic biased error, and thus potentially difficult to reduce.

5 Conclusion

State of the art deep neural networks for medical image segmentation have some
inherent robustness to label noise. We find empirically that while they are robust
or partially robust to unbiased errors, they are however sensitive to biased errors.
We loosely define biased errors as those which most consistently modify parts of
an annotation. We conclude then that when considering on annotation quality
(e.g. crowdsourcing vs expert annotation) or when working on robustness to
label noise, it is particularly important to identify and mitigate against biased
errors.

References

1. Vorontsov, E., et al.: Deep learning for automated segmentation of liver lesions at
CT in patients with colorectal cancer liver metastases. Radiol.: Artif. Intell. 1(2),
180014 (2019)

2. Patrini, G., Rozza, A., Krishna Menon, A., Nock, R., Qu, L.: Making deep neural
networks robust to label noise: a loss correction approach. In: Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, pp. 1944–1952
(2017)



258 E. Vorontsov and S. Kadoury

3. Sukhbaatar, S., Bruna, J., Paluri, M., Bourdev, L., Fergus, R.: Training convolu-
tional networks with noisy labels arXiv preprint arXiv:1406.2080 (2014)

4. Mnih, V., Hinton, G.E.: Learning to label aerial images from noisy data. In: Pro-
ceedings of the 29th International Conference on Machine Learning (ICML-12),
pp. 567–574 (2012)

5. Karimi, D., Dou, H., Warfield, S.K., Gholipour, A.: Deep learning with noisy labels:
exploring techniques and remedies in medical image analysis. Med. Image Anal.
65, 101759 (2020)

6. Mirikharaji, Z., Yan, Y., Hamarneh, G.: Learning to segment skin lesions from
noisy annotations. In: Wang, Q., et al. (eds.) DART/MIL3ID -2019. LNCS, vol.
11795, pp. 207–215. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
33391-1 24

7. Nie, D., Gao, Y., Wang, L., Shen, D.: ASDNet: attention based semi-supervised
deep networks for medical image segmentation. In: Frangi, A.F., Schnabel, J.A.,
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Abstract. In recent years, the research landscape of machine learning
in medical imaging has changed drastically from supervised to semi-,
weakly- or unsupervised methods. This is mainly due to the fact that
ground-truth labels are time-consuming and expensive to obtain manu-
ally. Generating labels from patient metadata might be feasible but it
suffers from user-originated errors which introduce biases. In this work,
we propose an unsupervised approach for automatically clustering and
categorizing large-scale medical image datasets, with a focus on cardiac
MR images, and without using any labels. We investigated the end-to-end
training using both class-balanced and imbalanced large-scale datasets.
Our method was able to create clusters with high purity and achieved
over 0.99 cluster purity on these datasets. The results demonstrate the
potential of the proposed method for categorizing unstructured large
medical databases, such as organizing clinical PACS systems in hospi-
tals.

Keywords: Deep clustering · Unsupervised learning · Categorization ·
DICOM sequence classification · Cardiac MRI

1 Introduction

Highly curated labelled datasets have recently been emerging to train deep
learning models for specific tasks in medical imaging. Thanks to these fully-
annotated images, supervised training of convolutional neural networks (CNNs),
either from scratch or by fine-tuning, has become a dominant approach for auto-
mated biomedical image analysis. However, the data curation process is often
manual and labor-intensive as well as requiring expert domain knowledge. This
time-consuming procedure is simply not practical for each single task in medical
imaging, and therefore, automation is a necessity.
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The first step of data curation in medical imaging typically starts from data
cleaning where desired images are extracted from a hospital image database
such as a PACS system. Due to the nature of such image databases in hospitals,
these systems often record important attributes such as image sequences in an
unstructured fashion as meta-data in the DICOM header of the images. Meta-
data in the DICOM standard, the most widely adapted format for data storage
in medical imaging, may seem as a reliable option for automated annotation but
it is often incorrect, incomplete and inconsistent. This represents a major chal-
lenge for data curation. Gueld et al. [8] analyzed the quality of the DICOM tag
Body Part Examined in 4 imaging modalities at Aachen University Hospital and
found that, in 15% of the cases, the wrong information had been entered for the
tag because of the user-originated errors. Misra et al. [11] reported that labelling
with the user-defined meta-data containing inconsistent vocabulary may intro-
duce human-reporting bias in datasets, which degrades the performance of deep
learning models. Categorization can be even more difficult for images stored in
other formats, e.g. NIfTI in neuroimaging, where meta-data is limited and/or
simply not available for image categorization.

To categorize medical images in a realistic scenario, designing fully super-
vised methods would require a prior knowledge about the data distribution of
the entire database, accounting for long-tailed rare classes and finally devoting
significant effort to accurately and consistently obtaining manual ground-truth.
In this work, we propose a different paradigm by efficiently using abundant unla-
belled data and perform unsupervised learning. Specifically, we demonstrate that
large-scale datasets of cardiac magnetic resonance (CMR) images can be cate-
gorized with a generalizable clustering approach that uses basic deep neural
network architectures. Our intuition is that categorization of unknown medical
images can be achieved if clusters with high purity are generated from learned
image features without any supervision. Our approach builds on a recent state-
of-the-art method, DeepCluster [4].

Our main contributions are the following: (i) we show that pure clusters for
CMR images can be obtained with a deep clustering approach; (ii) we investigate
end-to-end training of the approach for both class-balanced dataset and highly
imbalanced data distributions, the latter being particularly relevant for medi-
cal imaging applications where diseases and abnormal cases can be rare; (iii)
we discuss the design considerations and evaluation procedures to adapt deep
clustering for medical image categorization. To the best of our knowledge, this
is the first study to perform simultaneous representation learning and clustering
for cardiac MR sequence/view categorization and evaluating its performance on
a large-scale imbalanced dataset (n = 192,272 images).

2 Related Work

A number of self-supervised and unsupervised methodologies have been explored
to train machine learning models with abundant unlabelled data. In self-
supervised learning (SSL), a pretext task is defined to train a model without
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ground-truth. While several studies have been explored in the context of self-
supervision [3,7], domain expertise is typically needed to formulate a pretext task
unlike our work. Similar to self-supervised learning, different strategies of unsu-
pervised learning have been implemented with generative networks [6] and deep
clustering [20] to learn visual features. In this study, we focus on unsupervised
deep clustering approaches at large scale. Although this has been investigated in
a number of studies for natural images [4,5], various attempts in medical imag-
ing have explored them with only limited amount of curated data in contrast to
our methodology.

Moriya et al. [12] extended the JULE framework [20] for simultaneously learn-
ing image features and cluster assignments on 3D patches of micro-computed
tomography (micro-CT) images with a recurrent process. Perkonigg et al. [15]
utilized a deep convolutional autoencoder with clustering whose loss function is
a sum of reconstruction loss and clustering loss to predict marker patterns of
image patches. Ahn et al. [1] implemented an ensemble method of deep cluster-
ing methods based on K-means clustering. Pathan et al. [14] showed clustering
can be improved iteratively with joint training for segmentation of dermoscopic
images. Maicas et al. [10] combined deep clustering with meta training for breast
screening.

One related approach to our study is the “Looped Deep Pseudo-task Opti-
mization” (LDPO) framework proposed by Wang et al. [19]. LDPO extracts
image features with joint alternating optimization and refine clusters. It requires
a pre-trained model (trained on medical or natural images) at the beginning to
extract features from radiological images and then fine-tunes the model param-
eters by joint learning. Therefore, the LDPO framework starts with a priori
information and strong initial signal about input images. On the contrary, our
model is completely unsupervised and trained from scratch with no additional
processing. In addition, we do not utilize any stopping criteria, which is another
difference from LPDO [19].

3 Method

Our method builds upon the framework of DeepCluster [4]. The idea behind
their approach is that a CNN with random parameters θ provides a weak signal
about image features to train a fully-connected classifier reaching an accuracy
(12%) higher than the chance (0.1%) [13]. DeepCluster [4] combines CNN archi-
tectures and clustering approaches, and it proposes a joint learning procedure.
The joint training alternates between extracting image features by the CNN
and generating pseudo-labels by clustering the learned features. It optimizes the
following objective function for a training set X = {x1, x2, ..., xN}:

min
θ,W

1
N

N∑

n=1

�(gw(fθ(xn)), yn) (1)

Here gw denotes a classifier parametrized by w, fθ(xn) denotes the features
extracted from image xn, yn denotes the pseudo-label for this image and l denotes
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the multinominal logistic loss [4]. Pseudo-labels are updated with new cluster
assignments at every epoch. To avoid trivial solutions where output of the CNN
is always same, the images are uniformly sampled to balance the distribution of
the pseudo-labels [4].

In this study, we keep parts of DeepCluster [4] such as VGG-16 with batch
normalization [18] as the deep neural architecture and K-means [9] as the clus-
tering method, and then we adapt the rest for cardiac MR image categoriza-
tion, illustrated in Fig. 1. To begin with, we add an adaptive average pooling
layer between the VGG’s last feature layer and the classifier. In DeepCluster
[4], PCA is performed for dimensionality reduction which results in 256 dimen-
sions whereas we preserve the original features. These features are �2-normalized
before clustering. DeepCluster [4] feeds Sobel-filtered images to the CNN instead
of raw images. In contrast, our method uses raw cardiac MR images in our exper-
iments. We utilize heavy data augmentations including random rotation, resizing
and cropping with random scale/aspect ratio for both training and clustering.
Lastly, we normalize our images with z-scoring independently instead of using
global mean and standard deviation.

VGG16 w/ BN Fully-ConnectedCardiac Images

Pseudolabels

Data Augmenta on
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l2norm
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Fig. 1. Entire processing pipeline of our method based on DeepCluster [4]

We utilize the UK Biobank cardiac MR dataset which is open to researchers
and contains tens of thousands of subjects. The whole dataset contains 13 image
sequences/views, including short-axis (SA) cine, long-axis (LA) cine (2/3/4
chamber views), flow, SHMOLLI, etc. [16]. These images are in 2D, 2D + time
or 3D + time. UK Biobank employs a consistent naming convention for different
cardiac sequences and view-planes. We generated ground-truth labels using this
naming convention and classified images into 13 categories [2]. To investigate the
effect of class distribution on our methodology as well as the training stability,
we designed three experiment settings using subsets of the entire dataset: (i) a
subset of 3 well-balanced classes (LA 2/3/4 chamber views), and (ii) the large
dataset of and (iii) the smaller dataset of high class imbalance of 13 classes. In
these datasets, 2D images at t = 0 were saved in PNG format for faster loading
and training. If the images are in 3D + time, every single slice in z direction at
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t = 0 were saved. Total numbers were 47,637 images in the dataset (i), 192,272
images in the dataset (ii), 23,943 images in dataset (iii). Example images are
illustrated in Fig. 1, and the class distributions are reported at the Table 1 in the
supplementary material.

4 Results and Discussion

In our experiments, we followed a systematic analysis of the proposed method-
ology. We want to answer these four questions below:

1. Is it feasible to categorize uncurated large-scale cardiac MR images based on
their cluster assignments?

2. How does the class balance affect deep clustering for medical images?
3. How stable is training given there are no clear stopping criterion?
4. How should we interpret the evaluation metrics?

Experiment Settings: For training, we set the total number of epochs as 200.
Our optimizer was stochastic gradient descent (SGD) with momentum 0.9 and
weight decay of 1e−5. Our batch size was 256 and initial learning rate was 0.05.
In the literature, there is a large body of empirical evidence which indicates that
over-segmentation improves the performance of a deep clustering method [4].
Based on this evidence, we set the number of clusters to be 8 times of number
of classes in the datasets, which corresponded to 24 for the dataset of 3 well-
balanced classes, and 104 for the datasets with 13 classes.

Evaluation Metrics: We used normalized mutual information (NMI) [17] and
cluster purity (CP) [17] to evaluate the clustering quality of our models.

NMI(X,Y ) =
2I(X;Y )

H(X) + H(Y )
(2)

Here I is the mutual information between X and Y and H is the entropy. For
our experiments, we calculate two NMI values: NMI against the previous cluster
assignments (t − 1) and NMI against ground-truth labels.

CP (X,L) =
1
N

∑

k

max
j

|xk ∩ lj | (3)

Here N is the number of images, X are the cluster assignments at epoch t and
L is the ground-truth labels.

Accurate interpretation of our metrics, CP and NMI, is important. CP has
a range from 0 to 1, which shows poor and perfect clusters, respectively. As the
number of clusters increases, CP generally tends to increase until every image
forms a single cluster, which achieves perfect clusters. In addition, we utilize
NMI which signifies the mutual shared information between cluster assignments
and labels. If clustering is irrespective of classes, i.e. random assignments, NMI
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has a value of 0. On the other hand, if we can form classes directly from cluster
assignments, then NMI has a value of 1. The number of clusters also affects
the NMI value but normalization enables the clustering comparison [17]. In our
experiments, we did not employ any stopping criteria; thus, we always used the
last model. In addition, during the training, we did not use NMI between cluster
assignments and ground-truth, or cluster purity for validation.

Table 1. Performance of our method for different data configurations after 200 epochs

Balanced # of # of # of NMI NMI Cluster
Dataset

Classes Images Classes Clusters t vs t-1 t vs labels Purity

(i) ✓ 47,637 3 24 0.675 0.519 0.997

(ii) ✗ 192,272 13 104 0.782 0.605 0.991

(iii) ✗ 23,943 13 104 0.745 0.609 0.994

Discussion: Metrics and loss progression throughout the training are given at
Fig. 2. Results of our deep clustering method, which are calculated from features
at the 200th epoch, are given at Table 1. Our method is able to reach a clustering
purity above 0.99 for both class balanced and imbalanced datasets, which shows
the feasibility of the deep clustering pipeline to categorize large-scale medical
images without any supervision or labels. The class imbalance does not affect
overall performance but balanced classes provide a more stable purity throughout
the training. We also show that a relatively smaller dataset can be enough for
efficient clustering with high cluster purity.

Fig. 2. Training metrics of our method for different data configurations

Additionally, we want to extend the discussion about deep clustering at [4] to
medical imaging in a realistic scenario. One major challenge in deep clustering
is the lack of a stopping criterion. Supervised training with labelled data as a
stopping criterion could be utilized but this usually requires the prior knowledge
of classes, which may not be possible to have beforehand at an unstructured
hospital database. Pre-defined threshold-based methods on evaluation metrics,
e.g. NMI and purity from adjacent epochs [19], could be another option but
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their robustness has yet to be proven. This is why it is important to investigate
whether the training diverges. For this aim, we trained the dataset (iii) with
1000 epochs to observe the training stability. As we can see from Fig. 3, although
we observed some fluctuations in metrics from time to time, they were stable
throughout the training, which is similar to the observation at [4].

Fig. 3. Training stability and metrics for 1000 epochs

Lastly, we observed that changes in NMI and CNN loss could indicate changes
in clustering quality. Normally, we expect to see a steady increase in NMI and
a steady decrease in CNN loss during the training. A sudden decrease in NMI
and/or a sudden increase in CNN loss may be a sign of worse clusters generated.
However, steady decrease in CNN loss does not necessarily mean better cluster
purity. Therefore, we think that it is beneficial to closely monitor not one but
all metrics for unusual changes as well as to consider other metrics of clustering.

5 Conclusion

In this work, we propose an unsupervised deep clustering approach with end-
to-end training to automatically categorize large-scale medical images without
using any labels. We have demonstrated that our method is able to generate
highly pure clusters (above 0.99) under both balanced and imbalanced class dis-
tributions. In future work, expanding the evaluation, adapting deep clustering
approaches to other clinical tasks and improving their robustness and generaliz-
ability are some of interesting avenues that could be explored.

Acknowledgement. This work is supported by the UK Research and Innovation
London Medical Imaging and Artificial Intelligence Centre for Value Based Healthcare.
This research has been conducted using the UK Biobank Resource under Application
Number 12579.

References

1. Ahn, E., Kumar, A., Feng, D., Fulham, M., Kim, J.: Unsupervised feature learning
with k-means and an ensemble of deep convolutional neural networks for medical
image classification. arXiv preprint arXiv:1906.03359 (2019)

http://arxiv.org/abs/1906.03359


266 T. Kart et al.

2. Bai, W., et al.: Automated cardiovascular magnetic resonance image analysis
with fully convolutional networks. J. Cardiovasc. Magn. Reson. 20(1), 65 (2018).
https://doi.org/10.1186/s12968-018-0471-x

3. Bai, W., et al.: Self-supervised learning for cardiac MR image segmentation by
anatomical position prediction. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS,
vol. 11765, pp. 541–549. Springer, Cham (2019). https://doi.org/10.1007/978-3-
030-32245-8 60

4. Caron, M., Bojanowski, P., Joulin, A., Douze, M.: Deep clustering for unsupervised
learning of visual features. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y.
(eds.) Computer Vision – ECCV 2018. LNCS, vol. 11218, pp. 139–156. Springer,
Cham (2018). https://doi.org/10.1007/978-3-030-01264-9 9

5. Caron, M., Bojanowski, P., Mairal, J., Joulin, A.: Unsupervised pre-training of
image features on non-curated data. In: Proceedings of the IEEE/CVF Interna-
tional Conference on Computer Vision, pp. 2959–2968 (2019)
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Abstract. Few-shot learning is a standard practice in most deep learn-
ing based histopathology image segmentation, given the relatively low
number of digitized slides that are generally available. While many mod-
els have been developed for domain specific histopathology image seg-
mentation, cross-domain generalization remains a key challenge for prop-
erly validating models. Here, tooling and datasets to benchmark model
performance across histopathological domains are lacking. To address
this limitation, we introduce MetaHistoSeg – a Python framework that
implements unique scenarios in both meta learning and instance based
transfer learning. Designed for easy extension to customized datasets
and task sampling schemes, the framework empowers researchers with
the ability of rapid model design and experimentation. We also curate
a histopathology meta dataset - a benchmark dataset for training and
validating models on out-of-distribution performance across a range of
cancer types. In experiments we showcase the usage of MetaHistoSeg
with the meta dataset and find that both meta-learning and instance
based transfer learning deliver comparable results on average, but in
some cases tasks can greatly benefit from one over the other.

Keywords: Histopathology image segmentation · Transfer learning ·
Meta learning · Pan-cancer study · Meta-dataset

1 Introduction

For cancer diagnosis and therapeutic decision-making, deep learning has been
successfully applied in segmenting a variety of levels of histological structures:
from nuclei boundaries [1] to epithelial and stromal tissues [2], to glands [3,4]
across various organs. It’s generalizability that makes it effective across a wide
variety of cancers and other diseases. Admittedly, the success relies largely on
the abundance of datasets with pixel level segmentation labels [5–9].

Few-shot learning is of particular importance to medicine. Whereas tra-
ditional computer vision benchmarks may contain millions of data points,
histopathology typically contains hundreds to thousands. Yet in histopathology
images, different cancers often share similar visual components. For instance,
c© Springer Nature Switzerland AG 2021
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adenocarcinomas, which occur in glandular epithelial tissue, contain similar mor-
phological structure across many organs where they can arise [10]. Thus models
that distill transferable histopathological features from one cancer can poten-
tially transfer this knowledge to other cancers. To utilize different histopathol-
ogy datasets collectively, benchmarks and tooling that enable effective learning
across domains are strongly desired to support more accurate, and more gener-
alizable models across cancers.

The key question is how to formulate the learning-across-task setup for
histopathology segmentation? Naturally meta-learning [11–13] is the best ref-
erence as for its precise effectiveness to handle limited data availability. It is
widely used in few shot classification with a canonical setup: a task of K-way-N-
shot classification is created on the fly by sampling K classes out of a large class
pool followed by sampling N instances from each of the K classes. Then a deep
neural network is trained by feeding batches of these artificial tasks. Eventually
during inference the whole network is shared with new tasks (composed by K
classes never seen during training) for refinement.

While this setup is ubiquitous in meta classification, we find that it is dif-
ficult to extend to the meta segmentation problem. First, a task of segment-
ing histopathology images should justify medical validity (e.g. cancer diagnosis)
before even created. One cannot generate factitious tasks by randomly combin-
ing K layers of pixels based on their mask label, as oppose to the routine in
meta classification. For example, based on a well-defined Gleason grading sys-
tem, a prostate cancer histopathology image usually requires to be classified into
6 segments for each pixel. Meanwhile for another histopathology image in nuclei
segmentation, researchers in general need to classify each pixel as either nuclei
or others. Notwithstanding each case exhibits a valid medical task in its own
right, criss-crossing them just as in the canonical setup to form a new task is
not medically sound. Moreover, the underlying assumption of meta classification
is that shared knowledge must exist across any K-way classification tasks. It is
generalizable among tasks by a composite of any K classes, as long as the num-
ber of classes involved is K. Generally, we will not observe this “symmetrical”
composite in segmentation task space. In the same example, the first task is to
segment 6 classes pixel wise whereas the other is to segment 2 classes. Therefore,
the knowledge sharing mechanism in the deep neural also needs to be adjusted
to reflect this asymmetry.

In this paper, we introduce a Python framework MetaHistoSeg to facilitate
the proper formulation and experimentation of meta learning methodology in
histopathology image segmentation. We also curate a histopathology segmen-
tation meta-dataset as the exemplar segmentation task pool to showcase the
usability of MetaHistoSeg. To ensure the medical validity of the meta dataset,
we build it from existing open-source datasets that are (1) rigorously screened
by world-wide medical challenges and (2) well-annotated and ready for ML use.

MetaHistoSeg offers three utility modules that cover the unique scenarios in
meta learning based histopathology segmentation from end to end:
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1) Data processing functions that normalize each unique dataset pertaining to
each medical task into a unified data format.

2) Task level sampling functions (the cornerstone of the meta learning formula-
tion in segmentation) for batch generation and instance level sampling func-
tions provided as a baseline.

3) Pre-implemented task-specific heads that are designed to tail customized
backbone to handle the asymmetry of tasks in a batch, with multi-GPU
support.

We open-source both MetaHistoSeg and the meta-dataset for broader use
by the community. The clear structure in MetaHistoSeg and the accompanying
usage examples allow researcher to easily extend its utility to customized datasets
for new tasks and customized sampling methods for creating task-level batches.
Just as importantly, multi-GPU support is a must in histopathology segmen-
tation since a task level batch consists of fair number of image instances, each
of which is usually in high resolution. We also benchmark the performance of
meta learning based segmentation as compared with the instance based transfer
learning as a baseline. Experiments show that both meta-learning and instance
based transfer learning and deliver comparable results on average, but in some
cases tasks can greatly benefit from one over the other.

2 MetaHistoSeg Framework

MetaHistoSeg offers three utilities: task dataset preprocessing, task or instance
level batch sampling, task-specific deep neural network head implementation.

2.1 Histopathology Task Dataset Preprocessing

MetaHistoSeg provides preprocessing utility functions to unify the heterogene-
ity of independent data sources with a standard format. Here we curate a meta
histopathology dataset to showcase how knowledge transfer is possible via meta
learning among different segmentations tasks. Following the tasks in the dataset
as examples, users can easily create and experiment with new tasks from cus-
tomized datasets.

The meta-dataset integrates a large number of histopathology images that
come from a wide variety of cancer types and anatomical sites. The contex-
tual information of each data source, the preprocessing method and the meta
information of their data constituents are detailed as follows.

– Gleason2019 : a dataset with pixel-level Gleason scores for each stained
prostate cancer histopathology image sample. Each sample has up to six
manual annotations from six pathologists. During preprocessing, we use the
image analysis toolkit SimpleITK [14] to consolidate multiple label sources
into a single ground truth. The dataset contains 244 image samples with reso-
lution of 5120×5120 and each pixel belongs to one of 6 Gleason grade grades.
The data source was a challenge [5] hosted in MICCAI 2019 Conference.
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– BreastPathQ : a dataset of patches containing lymphocytes, malignant epithe-
lial and normal epithelial cell nuclei label. This is an auxiliary dataset in the
Cancer Cellularity Challenge 2019[6] as part of the 2019 SPIE Medical Imag-
ing Conference where the original task is to evaluate patch as a single score. In
our context, we use the dataset for segmentation. Since the annotations only
contain the centroid of each cell nuclei, we generate the segmentation mask
by assuming each cell is a circle with a fixed radius. The dataset contains 154
samples and each pixel belongs to one of 4 classes.

– MoNuSeg : a dataset of pixel-level nuclei boundary annotations on
histopathology images from multiple organs, including breast, kidney, liver,
prostate, bladder, colon and stomach. This dataset comes from the nuclei
segmentation challenge [7] as an official satellite event in MICAII 2018. It
contains 30 samples and each label has 2 classes.

– Glandsegmenatation: a dataset of pixel-level gland boundary annotations on
colorectal histopathology images. This data source comes from the gland seg-
mentation challenge [8] in MICAII 2015. The dataset contains 161 samples
and each label has 2 classes.

– DigestPath: a dataset of colon histology images with pixel-level colonoscopy
lesion annotations. The data source [9] is part of MICCAI 2019 Grand Pathol-
ogy Challenge. It contains 250 samples and each pixel belongs to one of the 2
classes. Although the original challenge contains both Signet ring cell detec-
tion and Colonoscopy tissue segmentation task, we only consider the latter
in our context for the obvious reason.

2.2 Task and Instance Level Batch Sampling

MetaHistoSeg implements this core data pipeline of meta learning. It abstracts
task level batch creation as a dataloader class episode loader. Since episode loader
essentially unrolls the entire task space, researchers can customize their sampling
algorithm just by specifying a probability distribution function. This enables
users to quickly switch between training frameworks, empowering them to focus
on model design and experimentation rather than building data pipelines. It also
encapsulates instance level batch creation in dataloader class batch loader as a
baseline. The sampling schemes are as follows,

– Task level sampling: we sample a task indexed by its data source and then
sample instances given the task to form an episode. Then it is split into
support and query set. Here a batch is composed of several such episodes.

– Instance level sampling: we first mix up instances from different data sources
as a pool and sample instances directly. Noting that data source imbalance
can be a problem here, we dynamically truncate each data source to the same
size before mixing up. We refresh the random truncation in each epoch.

Figure 1 shows how the preprocessing and batch sampling functions in
MetaHistoSeg can be used to construct the data pipelines. Each data source
is color coded. In meta learning setting, a batch is organized as episodes, each
of which comes from the same data source. In instance based learning, a batch
is organized as instances, which comes from mixed up data sources.
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Fig. 1. MetaHistoSeg diagram: utility functions enable fast construction of data
pipelines for meta-learning and instance based learning on the meta-dataset.

2.3 Task-Specific Heads and Multi-GPU Support

Since the tasks sampled in a batch usually predict different number of seg-
ments, we pre-implement the last layer of a neural network as task-specific heads
and route the samples of a task only to its own head during forward propaga-
tion (FP). This feature frees researchers from handling task asymmetry in meta
segmentation. Meanwhile, note that the default multi-GPU support in pytorch
(nn.DataParallel) requires a single copy of network weights. This conflicts with
the meta learning scenario, where two copies of weight parameters are involved
in its bi-level optimization. Thus we re-implement multi-GPU FP process.

3 Experiments

We use MetaHistoSeg to benchmark MAML [11] on the histopathology image
segmentation meta dataset and compare it with instance based transfer learning
as a baseline. For each data source in the meta-dataset, we fix it as a test task
and train a model using some subset of the remaining data sources, using both
MAML and instance based transfer learning.

3.1 Implementation Details

For data augmentation, we resize an input image with a random scale factor from
0.8 to 1.2, followed by random color jittering (with 0.2 variation on brightness,
contrast and 0.1 variation on hue and saturation), horizontal and vertical flipping
(0.5 chance) and rotation (a random degree from –15 to 15). The augmented
image is ultimately cropped to 768×768 before feeding into the neural networks.

During training, we use 4 Nvidia Titan GPU (16G memory each) simul-
taneously. This GPU memory capacity dictates the maximum batch size as 4
episodes with each consisting of 16 image samples. During meta learning, each
episode is further split into a support set of size 8 and a query set of size 8.
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When forming a batch, we use MetaHistoSeg.episode loader to sample data in
a bi-level fashion: first among data sources then among instances.

In both methods we choose U-Net [15] as the backbone model given its effec-
tiveness at medical image segmentation tasks. Training is performed with an
Adam optimizer and a learning rate of 0.0001 for both methods. For MAML, we
adapt once with a step size of 0.01 in the inner loop optimization. The maximum
training iteration is set to 300000 for both settings.

We use the mean Intersection Over Union (mIoU) between predicted seg-
mentation and ground truth as our performance metric:

mIoU =
1
N

∑

i

Pi ∩ Ti

Pi ∪ Ti
(1)

where Pi and Ti are the predicted and ground truth pixels for class i, respectively,
across all images in evaluation, and N is the number of classes.

3.2 Results

Table 1 summarizes the mIoU scores for both methods where each data source
is treated as a new task, and models are trained on some subset of the remain-
ing data sources. We enumerate over the other data sources as well as their
combination to form five different training sets - the five columns in the table.

Table 1. mIoU performance on each new task (row) refined from pretrained models
with different predecessor tasks (column)

New task Training tasks

All others BreastPathQ MoNuSeg Gland segmentation DigestPath

MAML TransferL MAML TransferL MAML TransferL MAML TransferL MAML TransferL

BreastPathQ 0.301 0.282 NA NA 0.302 0.287 0.326 0.300 0.285 0.299

MoNuSeg 0.669 0.676 0.682 0.636 NA NA 0.691 0.694 0.639 0.653

Gland segmentation 0.557 0.556 0.540 0.539 0.563 0.573 NA NA 0.535 0.553

DigestPath 0.632 0.628 0.609 0.613 0.607 0.599 0.624 0.617 NA NA

As shown in the table, MAML and instance based transfer learning deliver
comparable performance across tasks, with MAML outperforming the other in 9
of the 16 settings. Of note, for a number of tasks, one of the two performs notice-
ably better than the other. However, we don’t observe a consistent advantage
of one methodology over the other on all testing data sources. We hypothesize
that the suitability of a knowledge sharing methodology highly depends on the
interoperability between the predecessor tasks and the testing task. For example,
when evaluating data source MoNuSeg as a new task, meta learning outperforms
transfer learning with BreastPathQ as predecessor task while the reverse is true
with GlandSegmentation or DigestPath as predecessor tasks. This suggests that
BreastPathQ might share more task level knowledge with MoNuSeg than Gland-
Segmentation and DigestPath.



274 Z. Yuan et al.

Fig. 2. Meta-dataset task examples. Top to bottom: GlandSegmentation, MoNuSeg,
digestpath and BreastPathQ. Left to right: original image, ground truth, segmentation
by MAML and segmentation by instance based transfer learning.

Figure 2 depicts the visual comparison of two knowledge sharing method-
ologies. Each row is a sample of each data source while each column is origi-
nal histopathology images, the ground truth masks, segmentation results from
MAML and instance based transfer learning respectively. Note that for Breast-
PathQ (the fourth row), the raw label is standalone centroid of each nuclei and
we augment them into circles with a radius of 12 pixels to generate the seg-
mentation masks. Yet we don’t impose this simplified constraint on predictions.
Therefore the results are not necessarily isolated circles. We also observe that
for breastPathQ, both methodologies sometimes make predictions that falsely
detect (green region) a long tail class. This is due to the innate class imbalance in
the data source and can be alleviated by weighted sampling. Another interesting
observation is that sometimes pathologists can make ambiguous annotations. As
the third row shows, there is an enclave background in the tissue while human
labeler regards it as the same class as the surrounding tissue, perhaps out of med-
ical consistency. Whereas it also makes sense in the prediction results the two
methodologies still predict it as background. Overall, as shown in these figures,
MAML and transfer learning produce similar qualitative results.

4 Conclusions

In this work, we introduced a Python based meta learning framework MetaHis-
toSeg for histopathology image segmentation. Along with a curated histopathol-
ogy meta-dataset, researchers can use the framework to study knowledge trans-
ferring across different histopathological segmentation tasks. To enable easy
adoption of the framework, we provide sampling functions that realize the stan-
dard sampling procedures in classical knowledge transferring settings. We also
benchmark against the meta dataset using MAML and instance based transfer
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learning. Based on experiment results, MAML and transfer learning deliver com-
parable results, and it is worthwhile to attempt each when fitting models. How-
ever, it remains unclear how interoperability of the testing task and predecessor
task(s) in the training set precisely determine meta learning and transfer learn-
ing effectiveness. Also, we observe there isn’t always performance gain when
we add more predecessor task sources. It concludes that a naive combination of
task-level training data may not be beneficial. This addressed observation points
to a future research goal of explainable interoperability between tasks.
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