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Abstract. Aspect-based sentiment classification aims to distinguish the sentiment
polarities over aspect terms in a sentence. Recent approaches to aspect-based sen-
timent classification use graph-based models to integrate the syntactic structure
of sentences. While being practical, these methods ignore the close relationship
between the topological structure of the dependency tree and the dependency dis-
tance. To solve this problem, we propose to build an Aspect Fusion Graph Convo-
lutional Network (AFGCN) of sentences to take advantage of syntactic informa-
tion and word dependencies. Specifically, we enhance the syntactic dependencies
of each instance by introducing dependency tree and dependency-position graph.
Then,we use twograph convolutional networks to fuse the dependency tree and the
dependency-position graph to generate the interactive emotion features of aspects.
Finally, we use a novel attention mechanism to fully integrate the significant fea-
tures related to aspect semantics in the hidden state vectors of the convolution
layer and the masking layer. Extensive experiments on five benchmark datasets
show that our method achieves state-of-the-art performance.

Keywords: Aspect-based sentiment analysis · Graph convolutional network ·
Syntactic dependency

1 Introduction

Aspect-based sentiment analysis (ABSA) aims at fine-grained sentiment analysis of
sentiment texts such as product reviews. More specifically, ABSA involves two tasks:
(1) identifying various aspects of a sentence, (2) determining the sentiment polarity (for
example, positive, negative, neutral) expressed in a particular aspect. This paper focuses
on the second task: Aspect-based Sentiment Classification. For example, in a comment
about a laptop saying, “From the speed to the multitouch gestures this operating system
beats Windows easily.”, the sentiment polarities for two aspects of operating system and
Windows are positive and negative, respectively. In the task of aspect sentiment analysis,
we need to distinguish sentiment polarity according to different aspects.

In the early research of ABSA (Jiang et al., Mohammad et al.) [1, 2], machine
learning algorithm is often used to construct sentiment classifiers. Dependency-based
parse trees are used to provide more comprehensive syntax information. Therefore, the
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whole dependency tree can be encoded from leaf to root by recursive neural network
(RNN) (Dong et al., Nguyen et al., Wang et al.) [3–5]. Then various neural network
models (Dong et al., Vo et al., Chen et al.) [3, 6, 7] are proposed, including long short-
term memory network (LSTM) (Wang et al.) [8], convolutional neural network-based
(CNN) (Huang et al., Li et al.) [9, 10], and memory-based (Tang et al.) [11] or hybrid
methods (Xue et al.) [12], or the distance of the internal node can be calculated and
used for attention weight decay (He et al.) [13]. These models represent a sentence as
a word sequence, ignoring the syntactic relationship between words, making it difficult
for them to find words far away from the expected words. In recent years, several studies
have used graph-basedmodels to combine sentence syntactic structure (Zhang et al., Sun
et al., Huang et al., Liang et al., Chen et al.) [9, 14–17], which has better performance
than the model without considering syntactic relationships. However, the above model
only fully considers the topology structure of dependency tree, or the actual distance
between words, but does not fully play to the advantages of dependency tree, and does
not fully integrate the topology structure of dependency tree and dependency distance.
The shortcomings of these approaches should not be overlooked.

To better capture opinion features for aspect sentiment classification, we propose
the AFGCN model, which fully combines the topological structure and the dependency
distance calculated from the dependency tree. Inspired by the position mechanism [18],
thismodel aggregates valid features in anLSTM-based architecture anduses the syntactic
proximity of a context word to the aspect, also known as proximity weight, to determine
its importance in a sentence. At the same time, we apply GCN network on dependency
tree and dependency-position graph, respectively. We can use long-range multiword
relations and syntactic information throughGCN to potentially draw syntactically related
words to the target. The output is fed into a masking mechanism, which filters out non-
aspect words to get focused aspect features. Aspect-specific features are fed into the
LSTM output, and the aspect fusion attention mechanism is used to update the most
relevant features. After all operations above, the representation of context and aspects
concentrated on passing through a linear layer to get the final output. Experiments
demonstrate the effectiveness of our model. The main contributions of this paper are
presented as follows:

• We build a complex task-specific syntactic dependency module, which profoundly
integrates dependency tree and dependency-position graph to enhance the syntactic
dependency of each instance.

• An aspect fusion graph convolutional network model (AFGCN) was proposed, which
combined attention mechanism to fully integrate prominent features related to aspect
semantics in the hidden state vectors of the convolutional layer and the masking layer,
to fully combine the topology structure and dependency distance of the dependency
tree.

• Experimental results on five benchmark datasets show the effectiveness of our
proposed model in capturing them in aspect-based sentiment classification.
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2 Related Work

In aspect sentiment analysis, some early work focused on using machine learning algo-
rithms to capture sentiment polarity based on rich features of content and syntactic
structure (Jiang et al., Kiritchenko et al.) [1, 2]. The latest development of aspect-level
sentiment classification (ASC) focuses on developing various types of deep learning
models. The neural models without considering the syntactic models can be divided into
several types: LSTM based (Tang et al., 2016a; Ma et al., 2017) [11, 19], CNN based
(Huang et al., Li et al.) [9, 10], memory-based methods (Tang et al., Chen et al.) [7, 11],
etc. In neural network approaches, some use RNN variants (such as LSTM and GRU)
to model the sentence representation (Majumder et al.) [20].

Syntactic information allows dependency information to be kept in long sentences
and helps to bridge the gap between aspects and opinion words. Tai et al. [21] proposed
a tree-structured LSTM, which enables people to learn the dependency information
between words and phrases. Mouetal et al. [22] utilizes the short path of dependency
trees and uses convolutional neural networks to learn the representation of sentences.
Recently, some studies use graph-based models to integrate syntactic structures. Zhang
et al. [14] uses GCN to capture specific aspects of syntactic information and word
dependency on the syntactic dependence tree. Liang et al. [23] proposes an Interactive
Graph Convolutional Networks (InterGCN) model to extract both aspect-focused and
inter-aspects sentiment features for the specific aspect. Zhang et al. [24] convolutes over
hierarchical syntactic and lexical graphs and builds a concept hierarchy on both the
syntactic and lexical graphs for differentiating dependency relations.

These observations enable us to build a neural model of dependency trees that fully
integrates syntactic dependence and distance and makes accurate sentiment predictions
about certain aspects. Specifically, we propose an Aspect Fusion Graph Convolutional
Networks model (AFGCN).

3 The Proposed Model

The overall architecture of the proposed AFGCN model is shown in Fig. 1. We first
assume a sentence with n words and m aspects from the SemEval-2014 dataset, i.e. s =
{w0,w1, ...,wa,wa+1, ...,wa+m−1, ...,wn−1}, where wi represents the i -th contextual
word and wa represents the start token of aspect words. Each word is embedded into
a low-dimensional real-valued vector with a matrix V ∈ R|N |×di , where |N | is the
size of the dictionary while di is the dimension of a word vector. We use the pre-
trained word embedding GloVe to initialize the word vectors, and the resulting word
embeddings are adopted to a bidirectional LSTM to produce the sentence hidden state
vectors ht . Since the input representation already contains aspect information, the context
representation specific to the aspect is obtained by linking the hidden state from both

directions: ht = [−→ht ;←−
ht ] where −→

ht is the hidden state from the forward LSTM and
←−
ht

is from the backward.
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3.1 Producing Dependency Tree

We use spacy1 to construct a given sentence into a directed dependency tree.
Then we construct the adjacency matrix based on the directed dependency tree, and

we set all the diagonal elements of the matrix to 1. If there is a dependency between two
words, we also write down the corresponding position in the matrix as 1.

And then, an adjacency matrix MT
ij ∈ Rn×n is derived from the dependency tree of

the input sentence.

3.2 Producing Dependency-Position Graph

To highlight the relationship between context and aspect, we compute the relative
position weight of each element of the adjacency matrix according to aspect.

WF
i,j =

⎧
⎪⎪⎨

⎪⎪⎩

1 if wi ∈ {asi } and wj ∈ {asi }
1/(|j − pb| + 1) if wi ∈ {asi }
1/(|i − pb| + 1) if wj ∈ {asi }

0 otherwise

(1)

where |·| is an absolute value function, pb is the beginning position of the aspect, {as} is
the word set of the aspect.

To establish a closer dependency relationship between context words, we integrate
ordinary dependency graphDG

i,j, which is obtained by the adjacency matrix of the depen-

dency tree symmetrically along the diagonal, and relative position weightWG
i,j to derive

the adjacency matrix of the dependency-position graph.

MG
i,j =

{
1 + WG

i,j if D
G
i,j = 1

WG
i,j otherwise

(2)

3.3 Proximity-Weight Convolution

Previous dependency tree-basedmodels mainly focus on the topology of the dependency
tree or the distance of the dependency tree. However, few models apply them together,
limiting the effectiveness of these models in identifying key context words used in repre-
sentation. This syntactic dependency information is formalized as an adjacent weight in
our proposed model, which describes the proximity between context and aspect. Recall
the example of the dependency tree in Fig. 1: “But the staff was so horrible to us.”
The actual distance between the aspect “staff” and the sentiment word “horrible” is 3,
but the dependency distance is 1. Intuitively, dependency distance is more beneficial to
aspect-based sentiment classification than ordinary distance.

1 In this work, we use spaCy toolkit for producing the dependency tree of the input sentence:
https://spacy.io/.

https://spacy.io/
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We construct a dependency tree and then compute the dependency distance for the
context words: the length of the shortest dependency path between the aspect and the
sentiment words. If the aspect contains multiple words, we minimize the dependency
distance between the context and all aspect words. The dependency proximity weights
of the sentence are computed by the formula below:

Fig. 1. Overview of aspect fusion graph convolutional network.

pi =
{
1 − di

n 0 ≤ i < τorτ + m ≤ i < n
0 τ ≤ i < τ + m

(3)

where proximity weight pi ∈ R, di is the dependency distance from the word to aspect
in the sentence.

Inspired by Zhang et al. [14], we introduce proximity-weight convolution. Unlike the
original definition of convolution, proximity-weighted convolution allocates proximity
weights before convolution calculation. It is essentially a one-dimensional convolution
with a length-l kernel. The proximity-weight convolution process is then assigned as:

qi ∈ max
(
WT

c [ri−t ⊕ · · · ⊕ ri ⊕ · · · ⊕ ri+t] + bc, 0
)

(4)

where ri = pihi and t =
⌊
l
2

⌋
, ri ∈ R2dh represents the proximity-weighted represen-

tation of the i -th word in the sentence, qi ∈ R2dh represents the feature representation
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obtained from the convolution layer, andWc ∈ Rl·2dh×2dh and bc ∈ R2dh are weight and
bias of the convolution kernel, respectively.

3.4 Aspect Fusion Graph Convolutional Network

Aiming to take advantage of syntactic dependency, we use two graph convolutional net-
works to fuse dependency tree and dependency-position graph, respectively, to generate
interactive sentiment features for aspect. The representation of each node is calculated
with graph convolution with normalization factor, and the representation of each node
is updated according to the hidden representations of its neighborhood:

hli = Relu((
∑n

j=1
MijW

lgl−1
j )/(di + 1) + bl) (5)

glj = P(hli) (6)

where gl−1
j ∈ R2dh is the representation of the j -th token evolved from the preceding

GCN layer. P(·) is a PairNorm function that integrates position-aware transformation
and has been used in previous GCN network (Xu et al., Zhao et al.) [25, 26].Mij includes
MG andMT , we take these two matrices integrating different dependency relationships
as the inputs of two groups of GCN, respectively. Di is the degree of the i -th token in
the tree. Wl and bl are trainable parameters, respectively.

Then, we can capture the final representation of theGCN layers fromdifferent inputs,
hG and hT , where hG is the representation of MG and hT is the representation of MT .
And thus, inspired by Liang et al. [23], we combine these two final representations to
extract the interactive relations between dependency-position feature and dependency
feature:

h̃ = hG + γ hT (7)

where γ is the coefficient of dependency feature. The combination method takes into
account both syntactical dependence and long-term multi-word relations. We use aspect
masking to mask non-aspect representations to highlight the critical features of aspect
words. In other words, we keep the final representation of the aspect words output by
the GCN layer and set the final representation of the non-aspect words to 0.

3.5 Aspect Fusion Attention Mechanism

We intend to fuse the significant features related to aspect semantic in the hidden state
vectors of the convolutional layer and the masking layer through a new way of Aspect
fusion Attention mechanism, and setting accurate attention weight for each contextual
word accordingly. The attention weights assigning process is formulated below:

uit = tanh(Wwqih
M
i + bw) (8)

αt = exp(uTit uw)
∑n

i=1exp(u
T
it uw)

(9)
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where hMi and qi are the final hidden state vectors output by the Masking layer and the
convolution layer respectively. Ww and Uw are weights that are randomly initialized.
Then we use the formula r = ∑n

t=1αtqi to get the corresponding attention weight.

Table 1. Statistics of the experimental datasets.

Dataset Positive Neural Negative

Train Test Train Test Train Test

Twitter 1561 173 3127 346 1560 173

Lap14 994 341 464 169 870 128

Rest14 2164 728 637 196 807 196

Rest15 912 326 36 34 265 182

Rest16 1240 469 69 30 439 117

3.6 Model Training

The aspect-based representation r is passed to a fully connected softmax layer whose
output is a probability distribution over the different sentiment polarities.

p = softmax(Wpr + bp) (10)

where Wp and bp are learnable parameters for the sentiment classifier layer.
The model is trained with the standard gradient descent algorithm by minimizing

the cross-entropy loss on all training samples:

ζ = −
∑J

i
pilog

∧
pi +λ||Θ|| (11)

where J is the number of training samples, pi and
∧
pi is the ground truth and predicted

label for the i -th sample, Θ represents all trainable parameters, and λ is the coefficient
of L2-regularization.

4 Experiments

4.1 Datasets and Experimental Settings

Datasets
Our experiments are conducted on five datasets: one is the twitter benchmark dataset
constructed by dong et al. [3]. The other four are from the SemEval2014 (Pontiki et al.,
2014) [27], SemEval2015 (Pontiki et al., 2015) [26], and SemEval2016 (Pontiki et al.,
2016) [28] benchmark datasets, which are composed of two types of data: laptops and
restaurants. Each sample is composed of comment sentences, aspects, and the sentiment
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polarity of the aspects. Building on previous work, we remove samples with conflicting
polarity and undefined aspects in rest15 and rest16 sentences. The statistics for the
datasets are shown in Table 1.

Settings
For the fairness of model comparison, we use similar parameters in the comparison
model. In all experiments, we use 300-dimensional preprocessing GloVe vectors (Pen-
nington et al.) [32] as initial word embeddings. The dimension of the hidden state vector
is set to 300. To train the model, we use Adam as the optimizer with a learning rate of
0.001. The coefficient of L2-regularization is 10–5, the coefficient γ is set to 0.2, and
the batch size is 32. Besides, the number of GCN layers is set to 2, which is the best
performing depth in the pilot study. We adopt Accuracy and Macro-Averaged F1 as the
evaluation metrics.

Table 2. Comparison results for all methods in terms of accuracy and Fl (%). The best results on
each dataset are in bold.

Model Twitter Lap14 Rest14 Rest15 Rest16

Acc. F1 Acc. F1 Acc. F1 Acc. F1 Acc. F1

SVM 63.40 63.30 70.49 – 80.16 – – – – –

ATAE-LSTM 69.65 67.40 69.14 63.18 77.32 66.57 75.43 56.34 83.25 63.85

Mem-Net 71.48 69.90 70.64 65.17 79.61 69.64 77.31 58.28 85.44 65.99

RAM 69.36 67.30 74.49 71.35 80.23 70.80 79.30 60.49 85.58 65.76

TNet-LF 72.98 71.43 74.61 70.14 80.42 71.03 78.47 59.47 89.07 70.43

TD-GAT 72.20 70.45 75.63 70.74 81.32 71.72 80.38 60.50 87.71 67.87

ASGCN 72.15 70.40 75.55 71.05 80.77 72.02 79.89 61.89 88.99 67.48

kumaGCN 72.45 70.07 76.12 72.42 81.43 73.64 80.69 65.99 89.39 73.19

BiGCN 74.16 73.35 74.59 71.84 81.97 73.48 81.16 64.79 88.96 70.84

AFGCN 74.69 73.23 77.43 73.64 82.50 73.66 79.89 66.29 89.61 72.02

4.2 Models for Comparison

A comprehensive comparison is carried out between our proposed model (AFGCN)
against several state-of-the-art baseline models, as listed below:

• SVM (Kiritchenko et al.) [2] is the model which has won SemEval 2014 task 4 with
conventional feature extraction methods.

• ATAE-LSTM (Wang et al.) [8] is a classic LSTM based model which explores the
relationship between aspect and the content of an attention-based LSTM sentence.

• Mem-Net: (Tang et al.) [11] utilizes multi-hops attention to the context words used
for sentence representation to illustrate the importance of each context word.
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• RAM (Chen et al.) [7] uses multi-hops of attention layers and combines the outputs
with a RNN for sentence representation.

• TNet-LF (Li et al.) [10] puts forward Context-Preserving Transformation (CPT) to
preserve and strengthen the informative part of contexts.

• TD-GAT (Huang et al.) [9] proposes a graph attention network to explicitly utilize
the dependency relationship among words.

• ASGCN (Zhang et al.) [13] employs a GCN over the dependency tree to exploit
syntactical information and word dependencies.

• BiGCN (Zhang et al.) [23] convolutes over hierarchical syntactic and lexical graphs
and build a concept hierarchy on both the syntactic and lexical graphs.

• kumaGCN (Chen et al.) [16] propose gating mechanisms to dynamically combine
information from word dependency graphs and latent graphs.

Among the baselines, the first five methods are classic models with typical neural
structures. The bottom five methods are graph-based and syntax-integrated ones.

We reproduce the results for baselines if the authors provide the source code. For the
methods (TD-GAT) with no released code, we implement them by ourselves using the
optimal hyperparameters settings reported in their papers. In our experiments, since we
report the results over three runs with the random initialization, we stop training when
the F1 score does not increase for a certain number (5) of rounds at one run.

4.3 Performance Comparison

The comparison results for all methods are shown in Table 2. From these results, we
make the following observations.

Our proposed model AFGCN shows significant improvements on the five datasets.
Table 2. shows the performance comparisons. Our method outperforms SVM by 2.34
and 6.94 Acc. score on Rest14 and Lap14, respectively. This indicates that our neural
approach extractsmore practical features than hardcoded feature engineering.Ourmodel
achieves the best performance on three datasets (Lap14, Rest14 and, Rest15) and is only
0.12% lower than the F1. score of the best-performing model on the Twitter dataset.
However, our model performed poorly on the Rest16 dataset, with a 1.17% difference
in F1. score from the best-performing kumaGCN. We speculate that the reason for its
poor performance may be caused by the different distribution of positive, neutral and
negative sentiment between the train set and the test set, as shown in Table 1.

The methods based on the combination of graph and syntax (TD-GAT, ASGCN,
kumaGCN, and BiGCN) are significantly better than the first five methods without con-
sidering syntax, indicating that the dependency relationship is beneficial to the recog-
nition of sentiment polarity, which is consistent with previous studies. However, they
are worse than the AFGCN model we proposed because our proposed model fully inte-
grates topology structure and dependent distance. The result proves that our AFGCN
model, which combines dependency tree and dependency distance, is helpful to improve
performance.

The large performance gaps between our model and baseline models confirm the
effectiveness of our proposed architecture.We believe that using context and dependency
information from the sentence, we can encode aspect vectors through proximity-weight
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convolution andGCN layers. Proximity-weight convolution andGCN layers can be con-
sidered messaging networks that propagate information along word sequence chains or
syntactic dependency paths. Since relevant information is transmitted to aspect, we only
need a simple Attention mechanism to encode the weighted information in significant
words, thus preserving information relevant to the categorization task.

4.4 Ablation Study

We conduct an ablation study further to analyze the impact of different components of
AFGCN. The results are shown in Table 3.

Table 3. Ablation study results (%). Acc. represents accuracy, F1 represents Macro-F1 score.

Model Twitter Lap14 Rest14 Rest15 Rest16

Acc. F1 Acc. F1 Acc. F1 Acc. F1 Acc. F1

AFGCN w/o P-w 72.98 71.46 77.58 73.70 80.71 72.01 79.73 63.35 89.11 69.18

AFGCN w/o GCN 73.12 70.89 75.70 71.96 81.33 73.33 78.22 60.67 88.96 71.26

AFGCN w/o Att 73.84 72.19 76.95 72.84 80.62 72.38 79.33 63.28 88.79 73.24

AFGCN w/o tree 73.98 72.28 76.95 73.32 81.25 72.04 80.07 65.08 88.96 71.19

AFGCN w/o graph 73.55 71.98 75.70 71.82 82.31 73.23 79.52 64.35 88.14 71.15

AFGCN 74.69 73.23 77.43 73.64 82.50 73.56 79.89 66.29 89.61 72.02

First, removal of proximity-weight convolution (i.e., AFGCN w/o P-w.) degrades
the performance of four datasets but improves the performance for about 0.1% of Lap14
datasets. We argue that if the syntax is not essential to the data, then the integration of
adjacent weights does not help reduce the noise of user-generated content.

Second, the removal of GCN layers is generally an evident performance degradation.
Thus, it can be seen that GCN layers promote the development of AFGCN to a great
extent because GCN captures both syntactic lexical dependencies and long-range lexical
relationships. We can also observe that removing “aspect fusion Attention mechanism”
(i.e., AFGCN w/o Att.) slightly degrades performance, indicating that our Attention
mechanism helps integrate significant features related to aspect semantics in sentences
and is an integral part of AFGCN.

Then we investigate the impacts of dependency tree (i.e., AFGCN w/o tree.) and
dependency-position graph (i.e., AFGCN w/o graph.) Compared with the complete
AFGCN, the performance of both is degraded, indicating that the effect of one graph
(tree) is not as good as that of two fused graphs. We also found that the two com-
pete on Rest datasets, with each having their contribution from a lexical and syntactic
perspective.

4.5 Impact of GCN Layers

We investigate the effect of the number of layers on the performance of our proposed
AFGCN. We vary the layer number from 1 to 8 and report the results in Fig. 2. It can
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be seen that our model achieves the best results with two layers, and thus we set the
number of GCN layers as 2 in our experiments. Using only one layer of AFGCN is not
enough to obtain specific syntactic dependencies of the context on aspect. However, the
performance does not constantly get improved with the increasing number of layers. The
performance of AFGCN fluctuates with the increase of the number of GCN layers and
basically decreases when the model depth is greater than 2. Analysis implies that a larger
model introduces more parameters, resulting in a less generic model and challenging to
train.

Fig. 2. Impacts of GCN layers.

Fig. 3. Impacts of the dependency fusion parameter γ.

Fig. 4. Visualization results for RAM, AF-LSTM and AFGCN, where
√

and × denotes the
correct and wrong prediction, respectively.

4.6 Impact of the Dependency Fusion Parameter γ

To investigate how the trade-off between using dependency-position graph and depen-
dency tree affects AFGCN performance, we use a step size of 0.1 to vary γ from 0 to 0.8.
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Figure 3 shows the F1. scores obtained by AFGCN on Lap14 and Rest14 with different
γ . When γ = 0, the model degenerates to GCN of fused dependency-position graph
only. It can be observed that the performance significantly improves with the increase
of γ value from 0 to 0.2, indicating that the fusion of graph and tree is beneficial to
focusing the aspect related features. the curve reaches its maximum value when γ =
0.2, indicating that the dependency-position graph and dependency tree structure in this
model are complementary. When γ is greater than 0.2, the curve shows a fluctuating
downward trend. Thus, we set γ = 0.2.

4.7 Case Study and Error Analysis

To gain more insights into our model’s behavior, we show two case studies in Fig. 4.
We visualize the attention scores, the predicted and the ground truth labels for these
examples.

As can be seen from Fig. 4(a), the aspect for the given example is “staff” with
negative sentiment, and only our model predicts correct sentiment. This example uses
the subjunctive word “should”, which makes it extra difficult to detect grammar. Due
to the lack of syntax information, RAM and AF-LSTM cannot make the right decision
for the two examples. Both models assign the highest weight to the word “friendly”,
which is an irrelevant sentiment word to this target, leading to an incorrect prediction.
In contrast, our model assigns the largest weight to the sentiment keyword “should” and
correctly predict the negative polarity of the aspect “staff” in the first sentence.

Figure 4(b) shows the examples for error analysis. RAM gives relatively high atten-
tion weight to the words “nothing” and “special”, but it still predicts the wrong senti-
ment polarity. Although AF-LSTM calculates the relationship between the context and
the aspect, the short distance between “food” and “okay” causes the LSTM to assign
the most significant attention scores to “okay”. On the other hand, since “good” and
“food” are closely related in the dependency tree, the solid positive polarity of “good”
also prejudices the AFGCN decision. This type of error frequently appears in neutral
cases. If negative expression (e.g., “nothing”, “shouldn’t”) is related to aspect, the neural
model does not differentiate well.

5 Conclusion

Previous methods for aspect-based sentiment classification depended on the syntactic
relationship between aspect and context often ignore the dependency distance relation-
ship between context. In this paper, we have built a framework that leverages graph-
based approaches and syntactic dependencies between contextual terms and aspect to
construct an applicable model. In addition to dependency tree, we built a dependency-
position graph to enhance the syntactic dependencies of each instance. And we propose
an aspect fusion graph convolutional networkmodel to fully combine the topology struc-
ture and dependency distance of dependency tree. Finally, we design the aspect fusion
attention module to fully integrate the significant features related to aspect semantics in
the hidden state vectors of the convolution layer and the masking layer. Experimental
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results demonstrate the effectiveness of our proposed model and suggest that depen-
dency distance and syntactic dependency are more beneficial to aspect-based sentiment
classification.
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