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Part I
Planet Formation



Chapter 1
Planet Formation: Key Mechanisms and
Global Models

Sean N. Raymond and Alessandro Morbidelli

Abstract Models of planet formation are built on underlying physical processes. In
order to make sense of the origin of the planets we must first understand the origin
of their building blocks. This review comes in two parts. The first part presents a
detailed description of six key mechanisms of planet formation:

• The structure and evolution of protoplanetary disks
• The formation of planetesimals
• Accretion of protoplanets
• Orbital migration of growing planets
• Gas accretion and giant planet migration
• Resonance trapping during planet migration.

While this is not a comprehensive list, it includes processes for which our under-
standing has changed in recent years or for which key uncertainties remain. The
second part of this review shows how global models are built out of planet formation
processes. We present global models to explain different populations of known plan-
etary systems, including close-in small/low-mass planets (i.e., super-Earths), giant
exoplanets, and the Solar System’s planets. We discuss the different sources of water
on rocky exoplanets, and use cosmochemical measurements to constrain the origin
of Earth’s water. We point out the successes and failings of different models and how
they may be falsified. Finally, we lay out a path for the future trajectory of planet
formation studies.

S. N. Raymond (B)
Laboratoire d’Astrophysique de Bordeaux, CNRS and Université de Bordeaux, Pessac, France

A. Morbidelli
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4 S. N. Raymond and A. Morbidelli

1.1 Observational Constraints on Planet Formation Models

If planet building is akin to cooking, then a review of planet formation is a cookbook.
Planetary systems—like dishes—come inmany shapes and sizes. Just as one cooking
method cannot produce all foods, a single growth history cannot explain all planets.
While the diversity of dishes reflects a range of cooking techniques and tools, they
are all drawn from a common set of cooking methods. Likewise, the diversity of
planetary systems can be explained by different combinations of processes drawn
from a common set of physicalmechanisms.Our goal in this review is first to describe
the key processes of planet formation and then to show how they may be combined
to generate global models, or recipes, for different types of planetary systems.

To illustrate the processes involved, Fig. 1.1 shows a cartoon picture of our current
vision for the growth of Earth and Jupiter. Both planets are thought to have formed
from planetesimals in different parts of the Solar System. In our current understand-
ing, the growth tracks of these planets diverge during the pebble accretion process,
which is likely to bemuchmore efficient past the snow line (Lambrechts and Johansen
2014;Morbidelli et al. 2015). There exists a much larger diversity of planets than just
Jupiter and Earth, andmany vital processes are not included in the figure, yet it serves
to illustrate how divergent formation pathways can contribute to planetary diversity.

We start this review by summarizing the key constraints on planet formation mod-
els. Constraints come from Solar System measurements (e.g., meteorites), observa-
tions of other planetary systems (e.g., exoplanets and protoplanetary disks), as well
as laboratory measurements (e.g., to measure the sticking properties of small grains).

Solar System Constraints

Centuries of human observation have generated a census of the Solar System, albeit
one that is still not 100% complete. The most important constraints for planet for-
mation include our system’s orbital architecture as well as compositional and timing
information gleaned from in-situ measurements. An important but challenging exer-
cise is to distill the multitude of existing constraints into just a few large-scale factors
to which resolution-limited models can be compared.

The central Solar System constraints are:

• The masses and orbits of the terrestrial planets.1. The key quantities include
their number, their absolute masses and mass ratios, and their low-eccentricity,
low-inclination orbits. These have been quantified in studies that attempted to
match their orbital distribution. For example the normalized angular momentum
deficit AMD is defined as (Laskar 1997; Chambers 2001):

AMD =
∑

j m j
√
a j

(
1 − cos(i j )

√
1 − e2j

)

∑
j m j

√
a j

, (1.1)

1 The terms “terrestrial” and “rocky” planet are interchangeable: the Solar System community gen-
erally uses the term terrestrial and the exoplanet community uses rockyWe use both terminologies
in this review to represent planets with solid surfaces that are dominated (by mass) by rock and iron
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Fig. 1.1 Schematic view of some of the processes involved in forming Jupiter and Earth. This
diagram is designed to present a broad view of the relevant mechanisms but still does not show a
number of important effects. For instance, we know from the age distribution of primitivemeteorites
that planetesimals in the Solar System formed in many generations, not all at the same time. In
addition, this diagram does not depict the large-scale migration thought to be ubiquitous among any
planets more massive than roughly an Earth-mass (see discussion in text). Adapted from Meech
and Raymond (2019)

where a j , e j , i j , and m j correspond to planet j’s semimajor axis, eccentricity,
orbital inclination, and mass. The Solar System’s terrestrial planets have an AMD
of 0.0018.
The radial mass concentration statistic RMC (called Sc by Chambers 2001) is a
measure of the radial mass profile of the planets. It is defined as:

RMC = max

( ∑
m j

∑
m j [log10(a/a j )]2

)

. (1.2)

The function in brackets is calculated sweeping a across all radii, and the RMC
represents the maximum. For a one-planet system RMC is infinite. The RMC
is higher when the planets’ masses are concentrated in narrow radial zones (as
is the case in the terrestrial planets, with two large central planets and two small
exterior ones). The RMC becomes smaller for systems that are more spread out
and systems inwhich all planets have similarmasses. The Solar System’s terrestrial
planets’ RMC is 89.9.
Confronting distributions of simulated planets with these empirical statistics (as
well as other ones) has become a powerful and commonly-used discriminant of
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terrestrial planet formationmodels (Chambers 2001;O’Brien et al. 2006;Raymond
et al. 2006a, 2009b, 2014; Clement et al. 2018; Lykawka and Ito 2019).

• The masses and orbits of the giant planets. As for the terrestrial planets, the
number (two gas giant, two ice giant), masses and orbits of the giant planets are
the central constraints. The orbital spacing of the planets is also important, for
instance the fact that no pair of giant planets is located in mean motion resonance.
An important, overarching factor is simply that the Solar System’s giant planets
are located far from the Sun, well exterior to the orbits of the terrestrial planets.

• The orbital and compositional structure of the asteroid belt. While spread
over a huge area, the asteroid belt contains only ∼4.5 × 10−4 M⊕ in total mass
(Krasinsky et al. 2002; Kruijer and Folkner 2013; DeMeo and Carry 2013), orders
of magnitude less than would be inferred from models of planet-forming disks
such as the very simplistic minimum-mass solar nebula model (Weidenschilling
1977a; Hayashi 1981). The orbits of the asteroids are excited, with eccentricities
that are roughly evenly distribution from zero to 0.3 and inclinations evenly spread
from zero to more than 20◦ (a rough stability limit given the orbits of the planets).
While there are a number of compositional groupswithin the belt, the general trend
is that the inner main belt is dominated by S-types and the outer main belt by C-
types (Gradie and Tedesco 1982; DeMeo and Carry 2013, 2014). S-type asteroids
are associated with ordinary chondrites, which are quite dry (with water contents
less than 0.1% by mass), and C-types are linked with carbonaceous chondrites,
some of which (CI, CM meteorites) contain ∼10% water by mass (Robert et al.
1977; Kerridge 1985; Alexander et al. 2018).

• The cosmochemically-constrained growth histories of rocky bodies in the
inner Solar System. Isotopic chronometers have been used to constrain the accre-
tion timescales of different solid bodies in the Solar System. Ages are generally
measured with respect to CAIs (Calcium and Aluminum-rich Inclusions), mm-
sized inclusions in chondritic meteorites that are dated to be 4.568 Gyr old (Bou-
vier and Wadhwa 2010). Cosmochemical measurements indicate that chondrules,
which are similar in size to CAIs, started to form at roughly the same time (Con-
nelly et al. 2008; Nyquist et al. 2009). Age dating of iron meteorites suggests that
differentiated bodies—large planetesimals or planetary embryos—were formed in
the inner Solar System within 1 Myr of CAIs (Halliday and Kleine 2006; Kruijer
et al. 2014; Schiller et al. 2015). Isotopic analyses of Martian meteorites show that
Mars was fully formed within 5−10 Myr after CAIs (Nimmo and Kleine 2007;
Dauphas and Pourmand 2011), whereas similar analyses of Earth rocks suggest
that Earth’s accretion did not finish until much later, roughly 100 Myr after CAIs
(Touboul et al. 2007; Kleine et al. 2009).
There is evidence that two populations of isotopically-distinct chondritic
meteorites—the so-called carbonaceous and non-carbonaceous meteorites—have
similar age distributions (Kruijer et al. 2017). Given that chondrules are expected
to undergo very fast radial drift within the disk (Weidenschilling 1977b; Lam-
brechts and Johansen 2012), this suggests that the two populations were kept apart
and radially segregated, perhaps by the early growth of Jupiter’s core (Kruijer et al.
2017).
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Constraints from Observations of Planet-Forming Disks Around Other Stars

Gas-dominated protoplanetary disks are the birthplaces of planets. Disks’ structure
and evolution plays a central role in numerous processes such as howdust drifts (Birn-
stiel et al. 2016), where planetesimals form (Dra̧żkowska et al. 2016; Dra̧żkowska
and Alibert 2017), and what direction and how fast planets migrate (Bitsch et al.
2015a).

We briefly summarize the main observational constraints from protoplanetary
disks for planet formation models (see also dedicated reviews: Williams and Cieza
2011; Armitage 2011; Alexander et al. 2014):

• Disk lifetime. In young clusters, virtually all stars have detectable hot dust, which
is used as a tracer for the presence of gaseous disks (Haisch et al. 2001; Briceño
et al. 2001). However, in old clusters very few stars have detectable disks. Analyses
of a large number of clusters of different ages indicate that the typical timescale for
disks to dissipate is a fewMyr (Haisch et al. 2001; Briceño et al. 2001; Hillenbrand
et al. 2008; Mamajek 2009). Figure 1.2 shows this trend, with the fraction of
stars with disks decreasing as a function of cluster age. It is worth noting that
observational biases are at play, as the selection of stars that are members of
clusters can affect the interpreted disk dissipation timescale (Pfalzner et al. 2014).

Fig. 1.2 Two observational constraints on planet-forming disks. Left-hand panel: The fraction of
stars that have detectable disks in clusters of different ages. This suggests that the typical gaseous
planet-forming disk only lasts a fewMyr (Haisch et al. 2001; Briceño et al. 2001; Hillenbrand et al.
2008). Figure courtesy of Eric Mamajek, from Mamajek (2009). Right-hand panel: A comparison
between inferred disk masses and the mass in planets in different systems, as a function of host star
mass. The dust mass (red) is measured using sub-mm observations (and making the assumption
that the emission is optically thin), and the gas mass is inferred by imposing a 100:1 gas to dust
ratio. There is considerable tension, as the population of disks does not appear massive enough
to act as the precursors of the population of known planets. The solution to this problem is not
immediately obvious. Perhaps disk masses are systematically underestimated (Greaves and Rice
2011), or perhaps disks are continuously re-supplied with material from within their birth clusters
via Bondi-Hoyle accretion (Throop and Bally 2008; Moeckel and Throop 2009). Figure courtesy
of Carlo Felice Manara, from Manara et al. (2018)
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• Disk masses. Most masses of protoplanetary disks are measured using sub-mm
observations of the outer parts of the disk in which the emission is thought to be
optically thin (Williams and Cieza 2011). Disk masses are commonly found to be
roughly equivalent to 1% of the stellar mass, albeit with a 1–2 order of magnitude
spread (Eisner and Carpenter 2003; Andrews andWilliams 2005, 2007a; Andrews
et al. 2010;Williams and Cieza 2011). It has recently been pointed out that there is
tension between the inferred diskmasses and themasses of exoplanet systems, as a
large fraction of disks do not appear to contain enough mass to produce exoplanet
systems (Manara et al. 2018; Mulders et al. 2018), even assuming a very high
efficiency of planet formation (see Fig. 1.2).

• Disk structure andevolution.ALMAobservations suggest that disks are typically
10–100 au in scale (Barenfeld et al. 2017), similar to the expected dimensions of
the Sun’s protoplanetary disk (Hayashi 1981; Gomes et al. 2004; Kretke and Lin
2012). Sub-mm observations at different radii indicate that the surface density of
dust� in the outer parts of disks follows a roughly� ∼ r−1 radial surface density
slope (Mulders et al. 2000; Looney et al. 2003; Andrews and Williams 2007b;
Andrews et al. 2009), consistent with simple models for accretion disks. Many
disks observed with ALMA show ringed substructure (ALMA Partnership 2015;
Andrews et al. 2016, 2018). Disks are thought to evolve by accreting onto their
host stars, and the accretion rate itself has been measured to vary as a function of
time; indeed, the accretion rate is often used as a proxy for disk age (Hartmann
et al. 1998; Armitage 2011). As disks age, they evaporate from the inside-out
by radiation from the central star (Alexander and Armitage 2006; Owen et al.
2011; Alexander et al. 2014) and, depending on the stellar environment, may also
evaporate from the outside-in due to external irradiation (Hollenbach et al. 1994;
Adams et al. 2004).

• Dust around older stars. Older stars with no more gas disks often have observ-
able dust, called debris disks (recent reviews: Matthews et al., 2014; Hughes et al.,
2018). Roughly 20% of Sun-like stars are found to have dust at mid-infrared wave-
lengths (Bryden et al. 2006; Trilling et al. 2008; Montesinos et al. 2016). This dust
is thought to be associatedwith the slow collisional evolution of outer planetesimal
belts akin to our Kuiper belt, but generally containing much more mass (Wyatt
2008; Krivov 2010). The occurrence rate of dust is observed to decrease with the
stellar age (Meyer et al. 2008; Carpenter et al. 2009). More [less] massive stars
have significantly higher [lower] occurrence of debris disks (Su et al. 2006; Lega
et al. 2012). There is no clear observed correlation between debris disks and plan-
ets (Moro-Martín et al. 2007, 2015; Marshall et al. 2014). A significant fraction of
old stars have been found to have warm or hot exo-zodiacal dust (Absil et al. 2010;
Ertel et al. 2014; Kral et al. 2017). The origin of this dust remains mysterious as
there is no clear correlation between the presence of cold and hot dust (Ertel et al.
2014).

Constraints from Extra-Solar Planets

With a catalog of thousands of known exoplanets, the constraints from planets around
other stars are extremely rich and constantly being improved. Figure 1.3 shows the
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orbital architecture of a (non-representative) selection of known exoplanet systems.
While there exist biases in the detection methods used to find exoplanets (Winn and
Fabrycky 2015), their sheer number form the basis of a statistical framework with
which to confront planet formation theories.

We can grossly summarize the exoplanet constraints as follows:

• Occurrence and demographics. Over the past few decades it has been shown
using multiple techniques that exoplanets are essentially ubiquitous (Mayor et al.
2011; Cassan et al. 2012; Batalha et al. 2013). Despite the observational biases,
a huge diversity of planetary systems has been discovered. Yet when drawing
analogieswith the Solar System, it isworth noting that, if our Sunwere to have been
observed with present-day technology, Jupiter is the only planet that could have
been detected (Morbidelli and Raymond 2016; Raymond et al. 2018d). Thismakes
the Solar System unusual at roughly the 1% level. In addition, the Solar System
is borderline unusual in not containing any close-in low-mass planets (Martin and
Livio 2015; Mulders et al. 2018). For the purposes of this review we focus on
two categories of planets: gas giants and close-in low-mass planets, made up of
high-density ‘super-Earths’ and puffy ‘mini-Neptunes’.

• Gas giant planets: occurrence and orbital distribution. Radial velocity surveys
have found giant planets to exist around roughly 10% of Sun-like stars (Cumming
et al. 2008; Mayor et al. 2011). Roughly one percent of Sun-like stars have hot
Jupiters on very short-period orbits (Howard et al. 2010; Wright et al. 2011), very
fewhavewarmJupiterswith orbital radii of up to 0.5−1 au (Butler et al. 2006;Udry
et al. 2007), and the occurrence of giant planets increases strongly and plateaus
between 1 to several au, and there are hints that it decreases again farther out
(Mayor et al. 2011; Fernandes et al. 2019); see Fig. 1.16. Direct imaging surveys
have found a dearth of giant planets on wide-period orbits, although only massive
young planets tend to be detectable (Bowler and Nielsen 2018). Microlensing
surveys find a similar overall abundance of gas giants as radial velocity surveys
and have shown that ice giant-mass planets appear to be far more common than
their gas giant counterparts (Gould et al. 2010; Suzuki et al. 2016b). Giant planet
occurrence has also been shown to be a strong function of stellar metallicity,
with higher metallicity stars hosting many more giant planets (Gonzalez et al.
1997; Santos et al. 2001; Laws et al. 2003; Fischer and Valenti 2005; Dawson
and Murray-Clay 2013). More in-depth discussions of the above trends in giant
planet demographics at short, intermediate, and wide separations are presented in
Chap. 3 and 4.

• Close-in low-mass planets: occurrence and orbital distribution. Perhaps the
most striking exoplanet discovery of the past decadewas the amazing abundance of
close-in small planets. Planets between roughly Earth and Neptune in size or mass
with orbital periods shorter than 100 days have been shown to exist around roughly
30 − 50% of all main sequence stars (Mayor et al. 2011; Howard et al. 2012;
Fressin et al. 2013; Dong and Zhu 2013; Petigura et al. 2013; Winn and Fabrycky
2015). Both themasses and radii have beenmeasured for a subset of planets (Marcy
et al. 2014) and analyses have shown that the smaller planets tend to have high



10 S. N. Raymond and A. Morbidelli

densities and the larger ones have low densities, which has been interpreted as
a transition between rocky ‘super-Earths’ and gas-rich ‘mini-Neptunes’ with a
transition size or mass of roughly 1.5−2 R⊕ or ∼3−5M⊕ (Weiss et al. 2013;
Weiss and Marcy 2014; Rogers 2015; Wolfgang et al. 2016; Chen and Kipping
2017). For the purposes of this review we generally lump together all close-in
planets smaller than Neptune and call them super-Earths for simplicity. The super-
Earth population has a number of intriguing characteristics that constrain planet
formation models. While they span a range of sizes, within a given system super-
Earths tens to have very similar sizes (Millholland et al. 2017; Weiss et al. 2018).
Their period ratios form a broad distribution and do not cluster at mean motion
resonances (Lissauer et al. 2011; Fabrycky et al. 2014). Finally, in theKepler survey
themajority of super-Earth systems only contain a single super-Earth (Batalha et al.
2013; Rowe et al. 2014), which contrasts with the high-multiplicity rate found in
radial velocity surveys (Mayor et al. 2011). For detailed reviews and discussions
on the demographics of close-in small planets we refer the reader to Chap. 3.

Outline of This Review

The rest of this chapter is structured as follows.
In Sect. 1.2 we will describe six essential mechanisms of planet formation. These

are:

• The structure and evolution of protoplanetary disks (Sect. 1.2.1)
• The formation of planetesimals (Sect. 1.2.2)
• Accretion of protoplanets (Sect. 1.2.3)
• Orbital migration of growing planets (Sect. 1.2.4)
• Gas accretion and giant planet migration (Sect. 1.2.5)
• Resonance trapping during planet migration (Sect. 1.2.6).

This list does not include every process related to planet formation. These processes
have been selected because they are both important and are areas of active study.

Next we will build global models of planet formation from these processes
(Sect. 1.3). We will first focus on models to match the intriguing population of
close-in small/low-mass planets: the super-Earths (Sect. 1.3.1). Next we will turn
our attention to the population of giant planets, using the population of known giant
exoplanets to guide our thinking about the formation of our Solar System’s giant
planets (Sect. 1.3.2). Next we will turn our attention to matching the Solar System
itself (Sect. 1.3.3), starting from the classical model of terrestrial planet formation
(Sect. 1.3.3.1) and then discussing newer ideas: the Grand Tack (Sect. 1.3.3.2), Low-
mass Asteroid belt (Sect. 1.3.3.3) and Early Instability (Sect. 1.3.3.4) models. Then
we will discuss the different sources of water on rocky exoplanets, and use cosmo-
chemical measurements to constrain the origin of Earth’s water (Sect. 1.3.4). Finally,
in Sect. 1.4 we will lay out a path for the future trajectory of planet formation studies.
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Fig. 1.3 A sample of exoplanet systems selected by hand to illustrate their diversity (adapted from
Raymond et al., 2018d). The systems at the top were discovered by the transit method and the
bottom systems by radial velocity (RV). Of course, some planets are detected in both transit and
RV (e.g. 55 Cnc e; Demory et al., 2011). The planet’s size is proportional to its actual size (but is
not to scale on the x-axis). For RV planets without transit detections we used the M sin i ∝ R2.06

scaling law derived by Lissauer et al. (2011). For giant planets (M > 50M⊕) on eccentric orbits
(e > 0.1; also for Jupiter and Saturn), the horizontal error bar represents the planet’s pericenter
to apocenter orbital excursion. The central stars vary in mass and luminosity; e.g., TRAPPIST-1
is an ultracool dwarf star with mass of only 0.09M� (Gillon et al. 2017). A handful of systems
have∼Earth-sized planets in their star’s habitable zones, such as Kepler-186 (Quintana et al. 2014),
TRAPPIST-1 (Gillon et al. 2017), and GJ 667C (Anglada-Escudé et al. 2013). Some planetary
systems—for example, 55 Cancri (Fischer et al. 2008)—are found in multiple star systems

1.2 Key Processes in Planet Formation

In this sectionwe reviewbasic properties that affect the disk’s structure, planetesimals
and planet formation as well as dynamical evolution. These processes build the
skeleton of our understanding of how planetary systems are formed. As pieces of a
puzzle, they will then be put together to develop models on the origin of the different
observed structures of planetary systems in Sect. 1.3.
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1.2.1 Protoplanetary Disks: Structure and Evolution

Planet formation takes place in gas-dominated disks around young stars. These disks
were inferred by Laplace (1822) from the near-perfect coplanarity of the orbits of the
planets of the Solar System and of angular momentum conservation during the pro-
cess of contraction of gas towards the central star. Disks are now routinely observed
(imaged directly or deduced through the infrared excess in the spectral energy distri-
bution) around young stars. The largest among protoplanetary disks are now resolved
by the ALMAmm-interferometer (Andrews et al. 2018). Here we briefly review the
viscous-disk model and the wind-dominated model. For more in depth reading we
recommend Armitage (2011) and Turner et al. (2014).

1.2.1.1 Viscous-Disk Model(s)

The simplest model of a protoplanetary disk is a donut of gas and dust in rotation
around the central star evolving under the effect of its internal viscosity. This is
hereafter dubbed the viscous-disk model. Because of Keplerian shear, different rings
of the disk rotate with different angular velocities, depending on their distance from
the star. Consequently, friction is exerted between adjacent rings. The inner ring,
rotating faster, tends to accelerate the outer ring (i.e. it exerts a positive torque) and
the outer ring tends to decelerate the inner ring (i.e. exerting a negative torque of
equal absolute strength). It can be demonstrated (see for instance Hahn 2009) that
such a torque is

T = 3π�νr2�, (1.3)

where � is the surface density of the disk at the boundary between the two rings, ν
is the viscosity, and � is the rotational frequency at the distance r from the star.

A fundamental assumption of a viscous-disk model is that it is in steady state,
which means the the mass flow of gas Ṁ is the same at any distance r . Under this
assumption it can be demonstrated that the gas flows inwards with a radial speed

vr = −3

2

ν

r
(1.4)

and that the product ν� is independent of r . That is, the radial dependence of� is the
inverse of the radial dependence of ν. Of course the steady-state assumption is valid
only in an infinite disk. In a more realistic disk with a finite size, this assumption
is good only in the inner part of the disk, whereas the outer part expands into the
vacuum under the effect of the viscous torque (Lynden-Bell and Pringle 1974).

If viscosity rules the radial structure of the disk, pressure rules the vertical struc-
ture. At steady state, the disk has to be in hydrostatic equilibrium, which means that
the vertical component of the gravitational force exerted by the star has to be equal
and opposite to the pressure force, i.e.:
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GM�

r3
z = −1

ρ

dP

dz
, (1.5)

where M� is the mass of the star, z is the height over the disk’s midplane, ρ is
the volume density of the disk and P is its pressure. Using the perfect gas law
P = RρT/μ (where R is the gas constant, μ is the molecular weight of the gas and
T is the temperature) and assuming that the gas is vertically isothermal (i.e. T is a
function of r only), Eq. (1.5) gives the solution:

ρ (z) = ρ (0) exp

(

− z2

2H 2

)

, (1.6)

where H = √Rr3T/μ is called the pressure scale-height of the disk (the gas extends
to several scale-heights, with exponentially vanishing density).

We now need to compute T (r). The simplest way is to assume that the disk is
solely heated by the radiation from the central star (passive disk assumption, see
Chiang and Goldreich 1997). Most of the disk is opaque to radiation, so the star
can illuminate and deposit heat only on the surface layer of the disk, here defined
as the layer where the integrated optical depth along a stellar ray reaches unity. For
simplicity, we assume that the stellar radiation hits a hard surface, whose height
over the midplane is proportional to the pressure scale-height H . Then, the energy
deposited on this surface between r and r + δr from the star is:

E Irr
+ =

(
L�

4πr2

)

(2πr)(rδh), (1.7)

where δh is the change in aspect ratio H/r over the range δr , namely d(H/r)/drδr ;
the parentheses have been put in (1.7) to regroup the terms corresponding respec-
tively to (1) stellar brightness L� at distance r , (2) circumference of the ring and (3)
projection of H(r + δr) − H(r) on the direction orthogonal to the stellar ray hitting
the surface. On the other had, the same surface will cool by black-body radiation in
space at a rate

E Irr
− = 2πrδrσT 4, (1.8)

where σ is Boltzmann’s constant. Equating (1.7) and (1.8) and remembering the
definition of H as a function of r and T leads to

T (r) ∝ r−3/7 and H/r ∝ r2/7. (1.9)

The positive exponent in the dependence of the aspect ratio H/r on r implies that
the disk is flared. Notice that neither quantities in Eq. (1.9) depend on disk’s surface
density, opacity or viscosity.

However, because we are dealing with a viscous disk, we cannot neglect the heat
released by viscous dissipation, i.e. in the friction between adjacent rings rotating
at different speeds. Over a radial width δr , this friction dissipates energy at a rate
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(Armitage 2011)

EVisc
+ = 9

8
�ν�22πrδr. (1.10)

This heat is dissipated mostly close to the midplane, where the disk’s volume density
is highest. This changes the cooling with respect to Eq. (1.8). The energy cannot be
freely irradiated in space; it has first to be transported from the midplane through the
disk, which is opaque to radiation, to the “surface” boundary with the optically thin
layer. Thus the cooling term in Eq. (1.8) has to be divided by κ�, where κ is the
disk’s opacity. Again, by balancing heating and cooling and the definition of H we
find:

H/r ∝ (Ṁ2κ/νr)1/8, (1.11)

where we have used that Ṁ = 2πrvr� = −3πν�.
To know the actual radial dependence of this expression, we need to know the

radial dependences of κ and ν (remember that Ṁ is assumed to be independent of
r ). The opacity depends on temperature, hence on r in a complicated manner, with
abrupt transitions when the main chemical species (notably water) condense (Bell
and Lin 1994). Let’s ignore this for the moment. Concerning ν(r), Shakura and Sun-
yaev (1973) proposed from dimensional analysis that the viscosity is proportional to
the square of the characteristic length of the system and is inversely proportional to
the characteristic timescale. At a distance r from the star, the characteristic length of
a disk is H(r) and the characteristic timescale is the inverse of the orbital frequency
�. Thus they postulated ν = αH 2�, where α is an unknown coefficient of propor-
tionality. If one adopts this prescription for the viscosity, the viscous-disk model is
qualified as anα-disk model. Injecting this definition of ν into Eq. (1.11), one obtains

H/r ∝
(

κṀ2

α

)1/10

r1/20. (1.12)

This result implies that the aspect ratio of a viscously heated disk is basically inde-
pendent of r (and T ∝ 1/r ), in sharp contrast with the aspect ratio of a passive disk.
Because the disk is both heated by viscosity and illuminated by the star, its aspect
ratio at each r will be the maximum between Eqs. (1.12) and (1.9): it will be flat in
the inner part and flared in the outer part. Because Eq. (1.12) depends on opacity,
accretion rate and α, the transition from the flat disk and the flared disk will depend
on these quantities. In particular, given that Ṁ decreases with time as the disk is con-
sumed by accretion of gas onto the star (Hartmann et al. 1998), this transition moves
towards the star as time progresses (Bitsch et al. 2015a). The effects of non-constant
opacity introduce wiggles of H/r over this general trend (Bitsch et al. 2015a).

The viscous diskmodel is simple and neat, but its limitation is in the understanding
of the origin of the disk’s viscosity. The molecular viscosity of the gas is by orders
of magnitude insufficient to deliver the observed accretion rate Ṁ onto the central
star (Hartmann et al. 1998) given a reasonable disk’s density, comparable to that of
the Minimum Mass Solar Nebula model (MMSN: Weidenschilling 1977a; Hayashi
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1981). It was thought that the main source of viscosity is turbulence and that turbu-
lence was generated by the magneto-rotational instability (see Balbus and Hawley
1998). But this instability requires a relatively high ionization of the gas, which is
prevented when grains condense in abundance, at a temperature below ∼1000 K
(Desch and Turner 2015). Thus, only the very inner part of the disk is expected to be
turbulent and have a high viscosity. Beyond the condensation line of silicates, the vis-
cosity should be much lower. Remembering that ν� has to be constant with radius,
the drop of ν at the silicate line implies an abrupt increase of �. As we will see, this
property has an important role in the drift of dust and the migration of planets. It was
expected that near the surface of the disk, where the gas is optically thin and radiation
from the star can efficiently penetrate, enough ionization may be produced to sustain
the Magneto Rotational Instability (MRI; Stone et al. 1998). However, these low-
density regions are also prone to other effects of non-ideal magneto-hydrodynamics
(MHD), like ambipolar diffusion and the Hall effect (Bai and Stone 2013), which
are expected to quench turbulence. Thus, turbulent viscosity does not seem to be
large enough beyond the silicate condensation line to explain the stellar accretion
rates that are observed. This has promoted an alternative model of disk structure and
evolution, dominated by the existence of disk winds, as we review next.

1.2.1.2 Wind-Dominated Disk Models

Unlike viscous disk models, which can be treated with simple analytic formulae, the
emergence of disk winds and their effects are consequence of non-ideal MHD. Thus
their mathematical treatment is complicated and the results can be unveiled only
through numerical simulations. Therefore, this section will remain at a phenomeno-
logical level. For an in-depth study, we refer the reader to Bai and Stone (2013),
Turner et al. (2014) and Bai (2017).

As we have seen above, the ionized regions of the disk have necessarily a low
density. If the disk is crossed by a magnetic field, the ions atoms in these low-density
regions can travel along the magnetic field lines without suffering collision with
neutral molecules. This is the essence of ambipolar diffusion.

Consider a frame co-rotating with the disk at radius r0 from the central star. In
this frame, fluid parcels feel an effective potential combining the gravitational and
centrifugal potentials. If poloidal (r, z)magnetic field lines act as rigid wires for fluid
parcels (which happens as long as the poloidal flow is slower than the local Alfvén
speed2.), then a parcel initially at rest at r = r0 can undergo a runaway if the field
line to which it is attached is more inclined than a critical angle. Along such a field
line, the effective potential decreases with distance, leading to an acceleration of
magnetocentrifugal origin. This yields the inclination angle criterion θ > 30◦ for the

2 The Alfvén speed is defined as the ratio between the magnetic field intensity B and
√

μ0ρ, where
μ0 is the permeability of vacuum and ρ is the total mass density of the charged plasma particles.
Apart from relativity effects, the Alfvén speed is the phase speed of the Alfvén wave, which is a
magnetohydrodynamic wave in which ions oscillate in response to a restoring force provided by an
effective tension on the magnetic field lines.
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disk-surface poloidal field with respect to the vertical direction. Here fluid parcels
rotate at constant angular velocity and so increase their specific angular momentum.
Angular momentum is thus extracted from the disk and transferred to the ejected
material. As the disk loses angular momentum, some material has to be transferred
towards the central star, driving the stellar accretion. The efficiency of this process is
directly connected to the disk’s magnetic field strength, with a stronger field leading
to faster accretion.

In wind-dominated disk models the viscosity can be very low and the disk’s
density can be of the order of that of the MMSN. The observed accretion rate onto
the central star is not due to viscosity (the small value of ν� provides only a minor
contribution) but is provided by the radial, fast advection of a small amount of gas,
typically at 3-4 pressure scale heights H above the disk’s midplane (Gressel et al.
2015). The global structure of the disk can be symmetric (top panel of Fig. 1.4)
or asymmetric (bottom panel of Fig. 1.4) depending on simulation parameters and
the inclusion of different physical effects (e.g. the Hall effect). The origin of the
asymmetry is not fully understood. In some cases, the magnetic field lines can be
concentrated in narrow radial bands that can fragment the disk into concentric rings
(Béthune 2017; see bottom panel of Fig. 1.4). This effect is intriguing in light of the
recent ALMA observations of the ringed structure of protoplanetary disks (ALMA
Partnership 2015; Andrews et al. 2016, 2018). It should be stressed, however, that
there is currently no consensus on the origin of the observed rings. An alternative
possibility is that they are the consequence of planet formation (Zhang 2018) or of
other disk instabilities (Tominaga et al. 2019). Understandingwhether ring formation
in protoplanetary disks is a prerequisite for, or a consequence of, planet formation is
an essential goal of current research.

Depending on assumptions on the radial gradient of the magnetic field, and hence
of the strength of the wind, the gas density of the disk may be partially depleted in
its inner part (Suzuki et al. 2016a) or preserve a global power-law structure similar
to that of viscous-disk models (Bai 2016) (see Fig. 1.5). A positive surface density
gradient, as in Suzuki et al. (2016a), has implication for the radial drift of dust and
planetesimals (Ogihara et al. 2018a) and for the migration of protoplanets (Ogihara
et al. 2018b). In addition, in Suzuki et al. (2016a) the maximum of the surface
density (where dust and migrating planets tend to accumulate) moves outwards as
time progresses and the disk evolves.

Disk winds do not generate an appreciable amount of heat. In wind-dominated
models, the disk temperature is close to that of a passive disk (Mori et al. 2019;
Chambers 2006b), which has a snowline inward of 1 au (Bitsch et al. 2015a). The
deficit of water in inner solar system bodies (the terrestrial planets and the parent
bodies of enstatite and ordinary chondrites) demonstrates that the protoplanetary
solar disk inwards of 2–3 au was warm, at least initially (Morbidelli et al. 2016).
This implies that either the viscosity of the disk was quite high or another form of
heating—for instance the adiabatic compression of gas as it fell onto the disk from
the interstellar medium—was operating early on.
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Fig. 1.4 Disk structure in
two different
wind-dominated disk global
models. The top panel
(figure courtesy of Oliver
Gressel) from Gressel et al.
(2015), shows the intensity
and polarity of the magnetic
field, the field lines and the
velocity vectors of the wind.
This disk model is
symmetric relative to the
mid-plane (anti-symmetric in
polarity). The bottom panel
(figure courtesy of William
Béthune) from Béthune et al.
(2017), shows the gas
density, the magnetic field
lines and the wind velocity
vectors. This model has no
symmetry relative to the
midplane. Moreover, the disk
is fragmented in rings by the
accumulation of magnetic
field lines in specific radial
intervals

1.2.1.3 Dust Dynamics

The dynamics of dust particles is largely driven by gas drag. Any time that there is a
difference in velocity between the gas and the particle, a drag force is exerted on the
particle which tends to erase the velocity difference. The friction time t f is defined
as the coefficient that relates the accelerations felt by the particle to the gas-particle
velocity difference, namely:

v̇ = − 1

t f
(v − u), (1.13)

where v is the particle velocity vector and u is the gas velocity vector, while v̇ is the
particle’s acceleration. The smaller a dust particle the shorter its t f . In the Epstein
regime, where the particle size is smaller than the mean free path of a gas molecule,
t f is linearly proportional to the particle’s size R. In the Stokes regime the particle
size is larger than the mean free path of a gas molecule and t f ∝ √

R. It is convenient
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Fig. 1.5 Comparison between the radial surface density distribution of the wind-dominated disk
models of Suzuki et al. (2016a), Bai (2016) and an α-disk model

to introduce a dimensionless number, called the Stokes number, defined as τs = �t f ,
which represents the ratio between the friction time and the orbital timescale.

The effects of gas drag are mainly the sedimentation of dust towards the midplane
and its radial drift towards pressure maxima.

To describe an orbiting particle as it settles in a disk, cylindrical coordinates
are the natural choice. The stellar gravitational force can be decomposed into a
radial and a vertical component. The radial component is canceled by the centrifugal
force due to the orbital motion. The vertical component, Fg,z = −m�2z, where
m is the mass of the particle and z its vertical coordinate, instead accelerates the
particle towards the midplane, until its velocity vsettle is such that the gas drag force
FD = mvsettle/t f cancels Fg,z . This sets vsettle = �2zt f and gives a settling time
Tsettle = z/vsettle = 1/(�2t f ) = 1/(�τs). Thus, for a particle with Stokes number
τs = 1, the settling time is the orbital timescale. However, turbulence in the disk
stirs up the particle layer, which therefore has a finite thickness. Assuming an α-disk
model, the scale height of the particle layer is (Chiang and Youdin 2010):

Hp = H√
1 + τs/α

. (1.14)

Dust particles undergo radial drift due to a small difference of their orbital velocity
relative to the gas. The gas feels the gravity of the central star and its own pressure.
The pressure radial gradient exerts a force Fr = −(1/ρ)dP/dr which can oppose or
enhance the gravitational force. As we saw above, P ∝ ρT , and ρ ∼ �/H . Because
� and T in general decrease with r , dP/dr < 0. The pressure force opposes to the
gravity force, diminishing it. Consequently, the gas parcels orbit the star at a speed
that is slightly slower than the Keplerian speed at the same location. The difference
between the Keplerian speed vk and the gas orbital speed is η vK , where



1 Planet Formation: Key Mechanisms and Global Models 19

η = −1

2

(
H

r

)2 d log P

d log r
. (1.15)

The radial velocity of a particle is then:

vr = −2ηvK τs/(τ
2
s − 1) + ur/(τ

2
s − 1), (1.16)

where ur is the radial component of the gas velocity. Except for extreme cases,
ur is very small and hence the second term in the right-hand side of Eq. (1.16) is
negligible relative to the first term. Consequently, the direction of the radial drift
of dust depends on the sign of η, i.e., from Eq. (1.15), on the sign of the pressure
gradient. If the gradient is negative as in most parts of the disk, the drift is inwards.
But in the special regions where the pressure gradient is positive, the particle’s drift
is outwards. Consequently, dust tends to accumulate at pressure maxima in the disk.
We have seen above that theMHDdynamics in the disk can create a sequence of rings
and gaps, where the density is alternatively maximal and minimal (bottom panel of
Fig. 1.4). Each of these rings therefore features a pressure maximum along a circle.
In absence of diffusive motion, the dust would form an infinitely thin ring at the
pressure maximum. Turbulence produces diffusion of the dust particles in the radial
direction, as it does in the vertical direction. Thus, as dust sedimentation produces a
layer with thickness given by Eq. (1.14), dust migration produces a ring with radial
thickness wp = w/

√
1 + τs/α around the pressure maximum, where w is the width

of the gas ring assuming that it has a Gaussian profile (Dullemond et al. 2018).
Consequently, observations of the dust distribution in protoplanetary disks can

provide information on the turbulence in the disk. The fact that the width of the
gaps in the disk of HL Tau appears to be independent of the azimuth despite the
fact that the disk is viewed with an angle smaller than 90◦, suggests that the vertical
diffusion of dust is very limited such that α in Eq. (1.14) must be be 10−4 or less
(Pinte et al. 2016). In contrast, the observation that dust is quite broadly distributed
in each ring of the disks, suggest that α could be as large as 10−3, depending on the
particles Stokes number τs , which is not precisely known (Dullemond et al. 2018).
These observations therefore suggest that turbulence in the disks is such that the
vertical diffusion it produces is weaker than the radial diffusion. It is yet unclear
which mechanism could generate turbulence with this property.

1.2.2 Planetesimal Formation

Dust particles orbiting within a disk often collide. If collisions are sufficiently gentle,
they stick through electrostatic forces, forming larger particles (Blum and Wurm
2008). One could imagine that this process continues indefinitely, eventually forming
macroscopic bodies called planetesimals. However, as we have seen above, particles
drift through the disk at different speeds depending on their size (or Stokes number).
Thus, there is a minimum speed at which particles of different sizes can collide.
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Fig. 1.6 Map of collisional outcome in the disk (figure courtesy of Fredrik Windmark, fromWind-
mark et al., 2012). The sizes of colliding particles are reported on the axes. The colours denote the
result of each pair-wise collision. Green denotes growth, red denotes erosion and yellow denotes
neither of the above (i.e. a bounce). The label S stands for sticking, SB for stick and bounce, B for
bounce, MT for mass transfer, E for erosion and F for fragmentation. This map is computed for
compact (silicate) particles, at 3 au

Particles of equal size also have a distribution of impact velocities due to turbulent
diffusion.

Figure 1.6 shows a map of the outcome of dust collisions within a simple disk
model, from Windmark et al. (2012). Using laboratory experiments on the fate of
collisions as a function of particle sizes and mutual velocities, and considering a disk
with turbulent diffusion α = 10−3 and drift velocities as in a MMSN disk, Wind-
mark et al. (2012) computed the growth/disruption maps for different heliocentric
distances. The one from Fig. 1.6 is for a distance of 3 au. The figure shows that, in
the inner part of the disk, particles cannot easily grow beyond a millimeter in size.
A bouncing barrier prevents particles to grow beyond this limit. If a particle some-
how managed to grow to ∼10 cm, its growth could potentially resume by accreting
tiny particles. But as soon as particles of comparable sizes hit each other, erosion
or catastrophic fragmentation occurs, thus preventing the formation of planetesimal-
size objects.

The situation is no better in the outer parts of the disk. In the colder regions,
due to the lower velocities and the sticking effect of water ice, particles can grow
to larger sizes. But this size is nevertheless limited to a few centimeters due to the
so-called drift barrier (i.e. large enough particles start drifting faster than they grow:
Birnstiel et al. 2016). It has been proposed that if particles are very porous, they
could absorb better the collisional energy, thus continuing to grow without bouncing
or breaking (Okuzumi et al. 2012). Very porous planetesimals could in principle
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form this way and their low densities would make them drift very slowly through the
disk. But eventually these planetesimals would become compact under the effect of
their own gravity and of the ram pressure of the flowing gas (Kataoka et al. 2013).
This formation mechanism for planetesimals is still not generally accepted in the
community. At best, it could work only in the outer part of the disk, where icy
monomers have the tendency to form very porous structures, but not in the inner
part of the disk, dominated by silicate particles. Moreover, meteorites show that the
interior structure of asteroids is made mostly of compact particles of 100 microns
to a millimeter in size, called chondrules, which is not consistent with the porous
formation mode.

A mechanism called the streaming instability (Youdin and Goodman 2005) can
bypass these growth bottlenecks to form planetesimals. Although originally found
to be a linear instability (see Jacquet et al. 2011), this instability raises even more
powerful effects, which can be qualitatively explained as follows. This instability
arises from the speed difference between gas and solid particles. As the differential
makes particles feel drag, the friction exerted from the particles back onto the gas
accelerates the gas toward the local Keplerian speed. If there is a small overdensity
of particles, the local gas is in a less sub-Keplerian rotation than elsewhere; this in
turn reduces the local headwind on the particles, which therefore drift more slowly
towards the star. Consequently, an isolated particle located farther away in the disc,
feeling a stronger headwind and drifting faster towards the star, eventually joins this
overdense region. This enhances the local density of particles and reduces further its
radial drift. This process drives a positive feedback, i.e. an instability, whereby the
local density of particles increases exponentially with time.

Particle clumps generated by the streaming instability can become self-gravitating
and contract to form planetesimals. Numerical simulations of the streaming insta-
bility process (Johansen et al. 2015; Simon et al. 2016, 2017; Schäfer et al. 2017;
Abod et al. 2019) show that planetesimals of a variety of sizes are produced, but
those that carry most of the final total mass are those of ∼100 km in size. This size
is indeed prominent in the observed size-frequency distributions of both asteroids
and Kuiper-belt objects. Thus, these models suggest that planetesimals form (at least
preferentially) big, in stark contrast with the collisional coagulation model, in which
planetesimals would grow progressively from pair wise collisions. If the amount of
solid mass in small particles is large enough, even Ceres-size planetesimals can be
directly produced from particle clumps (Fig. 1.7).

While Fig. 1.7 shows that the streaming instability can clearly form planetesimals,
a concern arises from the initial conditions of such simulations. Simulations find
that quite large particles are needed for optimal concentration, corresponding to at
least decimeters in size when applied to the asteroid belt. Chondrules—a ubiquitous
component of primitive meteorites—typically have sizes from 0.1 to 1 mm but such
small particles are hard to concentrate in vortices or through the streaming instability.
High-resolution numerical simulations (Carrera et al. 2015; Yang et al. 2017) show
that chondrule-size particles can trigger the streaming instability only if the initial
mass ratio between these particles and the gas is larger than about 4%. The initial
solid/gas ratio of the Solar-System disk is thought to have been ∼1%. At face value,
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Fig. 1.7 Snapshots in time of a simulation of the streaming instability (figure courtesy of Jacob
B. Simon, from Simon et al. 2016). The color scale shows the vertically integrated particle surface
density normalized to the average particle surface density (log scale). Time increases from left to
right. The left panel shows the clumping due to the streaming instability in the absence of self-
gravity, but right before self-gravity is activated (t = 110�−1). The middle panel corresponds to
a point shortly after self-gravity was activated (t = 112.5�−1), and the right panel corresponds to
a time in which most of the planetesimals have formed (t = 117.6�−1). In the middle and right
panel, each planetesimal is marked via a circle of the size of the Hill sphere

planetesimals should not have formed as agglomerates of chondrules. A possibility
is that future simulations with even-higher resolution and run on longer timescales
will show that the instability can occur for a smaller solid/gas ratio, approaching the
value measured in the Sun.

Certain locations within the disk may act as preferred sites of planetesimal for-
mation. Drifting particles may first accumulate at distinct radii in the disc where
their radial speed is slowest and then, thanks to the locally enhanced particle/gas
ratio, locally trigger the streaming instability. Two locations have been identified for
this preliminary radial pile-up. One is in the vicinity of the snowline, where water
transitions from vapor to solid form (Ida and Guillot 2016; Armitage et al. 2016;
Schoonenberg and Ormel 2017). The other is in the vicinity of 1 au (Dra̧żkowska
et al. 2016). These could be the two locations where planetesimals could form very
early in the protoplanetary disk (Dra̧żkowska andDullemond 2018). Elsewhere in the
disk, the conditions for planetesimal formation via the streaming instability would
only be met later on, when gas was substantially depleted by photo-evaporation from
the central star, provided that the solids remained abundant (Throop and Bally 2008;
Carrera et al. 2017).

At least at the qualitative level, this picture is consistent with available data for
the Solar System. The meteorite record reveals that some planetesimals formed very
early, in thefirst few105 yr (Kleine et al. 2009;Kruijer et al. 2014; Schiller et al. 2015).
Because of the large abundance of short-lived radioactive elements present at the early
time (Grimm and McSween 1993; Monteux et al. 2018), these first planetesimals
melted and differentiated, and are today the parent bodies of iron meteorites. But a
second population of planetesimals formed 2 to 4 Myr later (Villeneuve et al. 2009).
These planetesimals did not melt and are the parent bodies of the primitivemeteorites
called the chondrites. We can speculate that differentiated planetesimals formed at
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the two particle pile-up locations mentioned above, whereas the undifferentiated
planetesimals formed elsewhere, for instance in the asteroid belt while the gas density
was declining. Yet these preferred locations were certainly themselves evolving in
time (Dra̧żkowska and Dullemond 2018).

Strong support for the streaming instability model comes from Kuiper belt bina-
ries. These binaries are typically made of objects of similar size and identical colors
(see Noll et al. 2008). It has been shown (Nesvorný et al. 2010) that the formation of
a binary is the natural outcome of the gravitational collapse of the clump of pebbles
formed in the streaming instability, if the angular momentum of the clump is large.
Simulations of this process can reproduce the typical semi-major axes, eccentricities
and size ratios of the observed binaries. The color match between the two compo-
nents is a natural consequence of the fact that both are made of the same material.
This is a big strength of the model because such color identity cannot be explained
in any capture or collisional scenario, given the observed intrinsic difference in col-
ors between any random pair of Kuiper belt objects (KBOs—this statement holds
even restricting the analysis to the cold population, which is the most homogeneous
component of the Kuiper belt population). Additional evidence for the formation of
equal-size KBO binaries by streaming instability is provided by the spatial orienta-
tion of binary orbits. Observations (Noll et al. 2008) show a broad distribution of
binary inclinations with �80% of prograde orbits (ib < 90◦) and �20% of retro-
grade orbits (ib > 90◦). To explain these observations, Nesvorný et al. (2019) ana-
lyzed high-resolution simulations and determined the angular momentum vector of
the gravitationally bound clumps produced by the streaming instability. Because the
orientation of the angular momentum vector is approximately conserved during col-
lapse, the distribution obtained from these simulations can be compared with known
binary inclinations. The comparison shows that the model and observed distribu-
tions are indistinguishable. This clinches an argument in favor of the planetesimal
formation by the streaming instability and binary formation by gravitational collapse.
No other planetesimal formation mechanism has been able so far to reproduce the
statistics of orbital plane orientations of the observed binaries.

1.2.3 Accretion of Protoplanets

Once planetesimals appear in the disk they continue to grow by mutual collisions.
Gravity plays an important role by bending the trajectories of the colliding objects,
which effectively increases their collisional cross-section by a factor

Fg = 1 + V 2
esc/V

2
rel, (1.17)

where Vesc is the mutual escape velocity defined as Vesc = [2G(M1 + M2)/(R1 +
R2)]1/2, M1, M2, R1, R2 are the masses and radii of the colliding bodies, Vrel is their
relative velocity before the encounter andG is the gravitational constant. Fg is called
the gravitational focusing factor (Safronov 1972).
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The mass accretion rate of an object becomes

dM

dt
∝ R2Fg ∝ M2/3Fg , (1.18)

where the bulk density of planetesimals is assumed to be independent of theirmass, so
that the planetesimal physical radius R ∝ M1/3. These equations imply two distinct
growth modes called runaway and oligarchic growth.

1.2.3.1 Runaway Growth

If one planetesimal (of mass M) grows quickly, then its escape velocity Vesc becomes
much larger than its relative velocity Vrel with respect to the rest of the planetesimal
population. Then, one can approximate Fg as V 2

esc/V
2
rel. Notice that the approximation

R ∝ M1/3 makes V 2
esc ∝ M2/3.

Substituting this expression into Eq. (1.18) leads to:

dM

dt
∝ M4/3

V 2
rel

, (1.19)

or, equivalently:
1

M

dM

dt
∝ M1/3

V 2
rel

. (1.20)

This means that the relative mass-growth rate is a growing function of the body’s
mass. In other words, small initial differences in mass among planetesimals are
rapidly magnified, in an exponential manner. This growth mode is called runaway
growth (Greenberg et al. 1978; Wetherill and Stewart 1989, 1993; Kokubo and Ida
1996, 1998).

Runaway growth occurs as long as there are objects in the disk for which Vesc 	
Vrel. While Vesc is a simple function of the largest planetesimals’ masses, Vrel is
affected by other processes. There are two dynamical damping effects that act to
decrease the relative velocities of planetesimals. The first is gas drag. Gas drag not
only causes the drift of bodies towards the central star, as seen above, but it also tends
to circularize the orbits, thus reducing their relative velocities Vrel. Whereas orbital
drift vanishes for planetesimals larger than about 1 km in size, eccentricity damping
continues to influence bodies up to several tens of kilometers across. However, in
a turbulent disk gas drag cannot damp Vrel down to zero: in presence of turbulence
the relative velocity evolves towards a size-dependent equilibrium value (Ida and
Lin 2008). The second damping effect is that of collisions. Particles bouncing off
each other tend to acquire parallel velocity vectors, reducing their relative velocity
to zero. For a given total mass of the planetesimal population, this effect has a strong
dependence on the planetesimal size, roughly 1/r4 (Wetherill and Stewart 1993).



1 Planet Formation: Key Mechanisms and Global Models 25

Meanwhile, relative velocities are excited by the largest growing planetesimals by
gravitational scattering, whose strength depends on those bodies’ escape velocities.
A planetesimal that experiences a near-miss with the largest body has its trajectory
permanently perturbed and will have a relative velocity Vrel ∼ Vesc upon the next
return. Thus, the planetesimals tend to acquire relative velocities of the order of
the escape velocity from the most massive bodies, and when this happens runaway
growth is shut off (see below).

To have an extended phase of runaway growth in a planetesimal disk, it is essential
that the bulk of the solid mass is in small planetesimals, so that the damping effects
are important. Because small planetesimals collide with each other frequently and
either erode into small pieces or grow by coagulation, this condition may not hold
for long. Moreover, if planetesimals really form with a preferential size of∼100 km,
as in the streaming instability scenario, the population of small planetesimals would
have been insignificant and therefore runaway growth would have only lasted a short
time if it happened at all.

1.2.3.2 Oligarchic Growth

When the velocity dispersion of planetesimals becomes of the order of the escape
velocity from the largest bodies, the gravitational focusing factor (Eq. 1.17) becomes
of order unity. Consequently the mass growth equation (Eq. 1.18) becomes

1

M

dM

dt
∝ M−1/3

V 2
rel

. (1.21)

In these conditions, the relative growth rate of the large bodies slows with the bodies’
growth. Thus, the mass ratios among the large bodies tend to converge to unity.

In principle, one could expect that the small bodies also narrow down their mass
difference with the large bodies. But in reality, the large value of Vrel prevents the
small bodies from accreting each other. Small bodies only contribute to the growth
of the large bodies (i.e. those whose escape velocity is of the order of Vrel). This
phase is called oligarchic growth (Kokubo and Ida 1998, 2000).

In practice, oligarchic growth leads to the formation of a group of objects of
roughly equal masses, embedded in the disk of planetesimals. The mass gap between
oligarchs and planetesimals is typically of a few orders of magnitude. Because of
dynamical friction—an equipartition of orbital excitation energy (Chandrasekhar
1943)—planetesimals have orbits that are much more eccentric than the oligarchs.
The orbital separation among the oligarchs is of the order of 5 to 10 mutual Hill radii
RH , where:

RH = a1 + a2
2

(
M1 + M2

3M�

)1/3

, (1.22)

and a1, a2 are the semi-major axes of the orbits of the objects with masses M1, M2,
and M� is the mass of the star.
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1.2.3.3 The Need for an Additional Growth Process

In the classic view of planet formation (Wetherill 1992; Lissauer 1987, 1993), the
processes of runaway growth and oligarchic growth convert most of the planetesi-
mals mass into a few massive objects: the protoplanets (sometimes called planetary
embryos). However, this picture does not survive close scrutiny.

In the Solar system, two categories of protoplanets formed within the few Myr
lifetime of the gas component of the protoplanetary disk (see Fig. 1.2). In the outer
system, a few planets of multiple Earth masses formed and were massive enough
to be able to gravitationally capture a substantial mass of H and He from the disk
and become the observed giant planets, from Jupiter to Neptune. In the inner disk,
instead, the protoplanets only reached a mass of the order of the mass of Mars
and eventually formed the terrestrial planets after the disappearance of the gas (see
Sect. 1.3.3.1). Thus, the protoplanets in the outer part of the disk were 10-100 times
more massive of those in the inner disk. This huge mass ratio is even more surprising
if one considers that the orbital periods, which set the natural clock for all dynamical
processes including accretion, are ten times longer in the outer disk.

The snowline represents a divide between the inner and the outer disk. The surface
density of solid material is expected to increase beyond the snowline due to the
availability of water ice (Hayashi 1981). However, this density-increase is only of
a factor of ∼2 (Lodders 2003), which is insufficient to explain the huge mass ratio
between protoplanets in the outer and inner parts of the disc (Morbidelli et al. 2015).

In addition, whereas in the inner disk oligarchic growth can continue until most
of the planetesimals have been accreted by protoplanets, the situation is much less
favorable in the outer disc. There, when the protoplanets become sufficiently massive
(about 1 Earth mass), they tend to scatter the planetesimals away, rather than accrete
them. In doing this, they clear their neighboring regions, which in turn limits their
own growth (Levison et al. 2010). In fact, scattering dominates over growth when
the ratio V 2

esc/2V
2
orb > 1, where Vesc is the escape velocity from the surface of the

protoplanet and Vorb is its orbital speed (so that
√
2Vorb is the escape velocity from

the stellar potential well from the orbit of the protoplanet). This ratio is much larger
in the outer disc than in the inner disc because V 2

orb ∝ 1/a, where a is the orbital
semi-major axis.

Consequently, understanding the formation of the multi-Earth-mass cores of the
giant planets and their hugemass ratiowith the protoplanets in the inner Solar System
is a major problem of the runaway/oligarchic growth models, and it has prompted
the elaboration of a new planet growth paradigm, named pebble accretion.

1.2.3.4 Pebble Accretion

Let’s take a step back to what seems to be most promising planetesimal formation
model: that of self-gravitating clumps of small particles (hereafter called pebbles
even though in the inner disc they are expected to be at most mm-size, so that
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Fig. 1.8 Efficiency of pebble accretion. The outer plot shows the accretion radius rd , normalized
to the Bondi radius rB , as a function of tB/t f , where t f is the friction time and tB is the time
required to cross the Bondi radius at the encounter velocity vrel. The smaller is the pebble the larger
is tB/t f . The inset shows pebble trajectories (black curves) with tB/t f = 1, which can be compared
with those of objects with tB/t f → 0 (grey curves). Clearly the accretion radius for the former is
much larger. A circle of Bondi radius is plotted in red. Figure courtesy of M. Lambrechts, from
Lambrechts and Johansen (2012)

grains would be a more appropriate term). Once a planetesimal forms, it remains
embedded in the disk of gas and pebbles and it can keep growing by accreting
individual pebbles. This process was first envisioned by Ormel and Klahr (2010)
and then studied in detailed by Lambrechts and Johansen (2012, 2014) (see also
Johansen and Lambrechts, 2017). To avoid confusion, we call below the accreting
body a protoplanet and we denote the accreted body as a pebble or a planetesimal,
depending on whether it feels strong gas drag.

Pebble accretion is more efficient than planetesimal accretion for two reasons.
First, the accretion cross-section for a protoplanet-pebble encounter is much larger
than for a protoplanet-planetesimal encounter. As seen above, in a protoplanet-
planetesimal encounter the accretion cross-section is πR2Fg , where R is the physical
size of the protoplanet and Fg is the gravitational focusing factor. But in a protoplanet-
pebble encounter it can be as large as πr2d , where rd is the distance at which the
protoplanet can deflect the trajectories of the incoming objects. This is because, as
soon as the pebble’s trajectory starts to be deflected, its relative velocity with the
gas increases and gas-drag becomes very strong. Thus, the pebble’s trajectory spirals
towards the protoplanet. This is shown in the inlet of Fig. 1.8, whereas the outer
panel of the figure shows the value of rd as a function of the pebble’s friction time,
normalized to the Bondi radius rB = GM/v2

rel (vrel being the velocity of the pebble
relative to the protoplanet, typically of order ηvK ).



28 S. N. Raymond and A. Morbidelli

The second reason that pebble accretion is more efficient than planetesimal accre-
tion is that pebbles drift in the disk. Thus, the orbital neighborhood of the protoplanet
cannot become empty. Even if the protoplanet accretes all the pebbles in its vicinity,
the local population of pebbles is renewed by particles drifting inward from larger
distances. This does not happen for planetesimals because their radial drift in the
disk is negligible.

Provided that the mass-flux of pebbles through the disk is large enough, pebble
accretion can grow protoplanets from about a Moon-mass up to multiple Earth-
masses, i.e. to form the giant planets cores within the disc’s lifetime (Lambrechts
and Johansen 2012, 2014). The large mass ratio between protoplanets in the outer
vs. inner parts of the disc can be explained by remembering that icy pebbles can be
relatively large (a few centimeters in size), whereas in the inner disc the pebble’s size
is limited to sub-millimeter by the bouncing silicate barrier (chondrule-size particles)
and by taking into account that pebble accretion is more efficient for large pebbles
than for chondrule-size particles (Morbidelli et al. 2015).

For all these reasons, while some factors remain unknown (particularly the pebble
flux and its evolution during the disk lifetime), pebble accretion is now considered
to the dominant process of planet formation.

An important point is that pebble accretion cannot continue indefinitely. When
a planet grows massive enough it starts opening a gap in the disk. This eventually
creates a pressure bump at the outer edge of the gap which stops the flux of pebbles.
Themass atwhich this happens is calledpebble isolationmass (Morbidelli et al. 2012;
Lambrechts et al. 2014) and depends on disk’s viscosity and scale height (Bitsch et al.
2018). Once a planet reaches the pebble isolation mass, it stops accreting pebbles.
Given that it blocks the inward pebble flux, thismeans that all protoplanets on interior
orbits are starved of pebbles, regardless of theirmasses. Turbulent diffusion can allow
some pebbles to pass through the pressure bump (Weber et al. 2018), particularly the
smallest ones, because the effects of diffusion are proportional to

√
α/τs .

1.2.4 Orbital Migration of Planets

Once a massive body forms in the disk, it perturbs the distribution of the gas in which
it is embedded. We generically denote the perturbing body as a planet. In this section
we consider planets smaller than a few tens of Earthmasses. The case of giant planets
will be discussed in the next section.

Analytic and numerical studies have shown that a planet generates a spiral density
wave in the disk, as shown in Fig. 1.9 (Goldreich and Tremaine 1979, 1980; Lin and
Papaloizou 1979;Ward 1986; Tanaka et al. 2002). The exterior wave trails the planet.
The gravitational attraction that the wave exerts on the planet produces a negative
torque that slows the planet down. The interior wave leads the planet and exerts a
positive torque. The net effect on the planet depends on the balance between these two
torques of opposite signs. It was shown byWard (1986) that for axis-symmetric disks
with any power-law radial density profiles, the negative torque exerted by the wave
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Fig. 1.9 The spiral density
wave launched by a planet in
the gas disk. The color
brightness is proportional to
the gas surface density.
Courtesy of F. Masset

in the outer disk wins. This is because a power-law disk is in slight sub-keplerian
rotation, so that the gravitational interaction of the planet with a disk’s ring located
at ap + δa (ap being the orbital radius of the planet) is stronger than with the ring
located at ap − δa, given that the relative velocity with the former is smaller. As a
consequence of this imbalance, the planet must lose angular momentum and its orbit
shrinks: the planet migrates towards the central star. This process is called Type-I
migration. The planet migration speed is:

da

dt
∝ Mp�g

( a

H

)2
, (1.23)

where a is the orbital radius of the planet (here assumed to be on a circular orbit), Mp

is its mass,�g is the surface density of the gas disk and H is its height at the distance
a from the central star. A precise migration formula, function of the power-law index
of the density and temperature radial profiles, can be found in Paardekooper et al.
(2010, 2011). The planet-disk interaction also damps the planet’s orbital eccentricity
and inclination if these are initially non-zero. These damping timescales are a factor
(H/a)2 smaller than the migration timescale (Tanaka and Ward 2004; Cresswell
et al. 2007).

Precise calculations show that an Earth-mass body at 1 au, in a Minimum Mass
Solar Nebula (�g = 1700 g/cm2) with scale height H/a = 5%, migrates into the
star in 200,000 yr. For different planets or different disks, the migration time can
be scaled using the relationship reported in Eq. (1.23). So, Lunar- to Mars-mass
protoplanets are only mildly affected by Type-I migration because their migration
timescales exceed the fewMyr lifetime of the gas disk. Conversely, for more massive
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planets, migration should be substantial and should bring them close to the star before
that the disk disappears.

Planet-disk interactions through the spiral density wave are only part of the story.
An important interaction occurs along the planet’s orbit due to fluid elements that are
forced to do horseshoe-like librations in a frame corotating with the planet. Along
these librations, as a fluid element passes from inside the planet’s orbit to outside, it
receives a positive angularmomentum kick and exerts an equivalent but negative kick
onto the planet. The opposite happenswhen a fluid element passes from outside of the
planet’s orbit to inside. It can be proven (Masset et al. 2006) that, if the radial surface
density gradient at the planet’s location is proportional to 1/r3/2 (i.e. the vortensity of
the disk is constant with radius), the positive and negative kicks cancel out perfectly,
and there is no net effect on the planet. But for different radial profiles, there is a net
torque on the planet, named the vortensity-driven corotation torque (Paardekooper
et al. 2010, 2011). If the disk’s profile is shallower than 1/r3/2 this corotation torque is
positive and it slows down migration relative to the rate from Eq. (1.23). Moreover,
if the disk’s radial surface density gradient is positive and sufficiently steep, the
corotation torque (positive) can exceed the (negative) torque exerted by the wave and
reverse migration (Masset et al. 2006). This implies the existence of a location in the
disk—typically near the density maximum—where migration stops, dubbed planet
trap (Lyra et al. 2010). Positive surface density gradients could exist at the inner edge
of the protoplanetary disk, where the disk is truncated by the stellar magnetic torque
(Chang et al. 2010), or at transition from the MRI-active to the MRI-inactive parts
of the disk (Flock et al. 2017, 2019)—also very close to the central star—or at the
inner edge of each ring observed in MHD simulations (see bottom panel of Fig. 1.4).
Therefore, there can be several planet traps in the disk (Hasegawa and Pudritz 2012;
Baillié et al. 2015).

The corotation region can also exert a positive torque on the planet in a region of
the disk where the radial temperature gradient is steeper that 1/r (Paardekooper and
Mellema2006). This torque is called entropy-driven corotation torque (Paardekooper
et al. 2010, 2011). Steep temperature gradients exist behind the “bumps” of the disk’s
aspect ratio that are generated by opacity transitions (Bitsch et al. 2015a). However,
because the disk evolves over time towards a passive disk,with a temperature gradient
shallower than 1/r , the outward migration regions generated by the entropy-driven
corotation torque exist only temporarily (Bitsch et al. 2015a).

Other torques can act on the planet and affect its migration in specific cases. If the
viscosity of the disk is very small, dynamical torques are produced as a feedback of
planet migration (Paardekooper 2014; Pierens 2015; Pierens and Raymond 2016).
The feedback is negative, i.e. it acts to decelerate the migration, if the disk’s surface
density profile is shallower than 1/r3/2 and migration is inwards, or if the profile is
steeper than 1/r3/2 and migration is outwards. In the opposite cases, the dynamical
torque accelerates the migration.

Low-viscosity disks are also prone to a number of instabilities generating vortices
when submitted to the perturbation of a planet. As a result, themigration of the planet
can become stochastic, due to the interaction with these variable density structures
(McNally et al. 2019).
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As it approaches the planet gas is compressed then decompressed so that its tem-
perature first increases then decreases. Because hot gas loses energy by irradiation,
the situation is not symmetric and the gas is colder (i.e. denser) after the conjunction
with the planet than it was before conjunction. This generates a negative torque (Lega
et al. 2014). On the other hand, if a planet is accreting solids, gravitational energy is
released as heat. This source of heat modifies the density of the gas in the vicinity
of the planet. In some conditions, this heating torque can exceed the previous effect,
so that the net effect is positive and can even overcome the negative torque exerted
by the wave (Benítez-Llambay et al. 2015). This torque, however, also enhances the
orbital eccentricity of the planet (Eklund and Masset 2017), which in turn reduces
its accretion rate. Thus some self-regulated regime can be achieved (Masset 2017).

Finally, even the steady-state dust distribution can be perturbed by the presence
of the planet, acquiring asymmetries that can exert torques on the planet (Benítez-
Llambay and Pessah 2018).

To summarize, although the migration of a small-mass planet is typically inward
and fast, there can be locations in the disk where migration is halted, as well as
a number of temporary mechanisms that can reduce or enhance the migration rate.
Therefore, the actualmigration of a planetmust be investigated in a case-by-case basis
and requires a realistic modeling of the disk, given that its density and temperature
gradients, opacity, viscosity and dust distribution play a key role. Unfortunately, so
far our limited theoretical and observational knowledge of disks hampers our ability
to model planet migration quantitatively.

1.2.5 Gas Accretion and Giant Planet Migration

A massive planet immersed in a gas disk can attract gas by gravity and build up an
atmosphere. To distinguish between the solid part of the planet from its atmosphere,
we will call the formed the core.

The closed set of equations that govern the distribution of gas in the atmosphere
are:

dP

dr
= GM(r)ρ(r)

r
, (1.24)

where ρ(r) is the density of the gas at a distance r from the center of the planet,
which describes hydrostatic equilibrium (gravity balanced by the internal pressure
gradient);

dM

dr
= 4πr2ρ(r), (1.25)

which describes the planet’smass-radius relationshipM(r) fromM(rc) = Mc, where
rc is the radius of the core and Mc is its mass;

dT

dr
= − 3κLρ

64πσr2T 3
, (1.26)
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Fig. 1.10 The value of Mcrit (on the horizontal axis) as a function of core’s accretion rate (on the
vertical axis), for different values of the opacity—increasing from left to right. The atmosphere
can be in hydrostatic equilibrium only if Mc < Mcrit . Figure courtesy of M. Lambrechts, from
Lambrechts and Johansen (2014)

where σ is Boltzmann’s constant, κ the gas opacity and L ∝ McṀc/rc is the lumi-
nosity of the core, due to the release of the gravitational energy delivered by the
accretion of solids at a rate Ṁc;

P = R
μρT

, (1.27)

which is the equation of state, here for a perfect gas (R being the perfect gas constant
and μ the molecular weight).

One can attempt to solve this set of equations using boundary condition ρ(rb) = ρ0
and T (rb) = T0,whereρ0 and T0 are the disk’s values for gas density and temperature,
respectively, and rb is the disk-planet boundary, typically the Bondi radius rb =
2GM/c2s (cs being the sound speed). A solution exists only for Mc < Mcrit(κ, L)

where Mcrit(κ, L) is a threshold value depending on opacity and luminosity (and
disk’s properties), as shown in Fig. 1.10 (Piso and Youdin 2014; Lambrechts and
Johansen 2014).

Mcrit tends to zero as the core’s accretion rate tends to zero. If L = 0, no hydrostatic
solution can exist. Recall from the previous section that when a planet reaches the
pebble isolation mass the accretion pebbles effectively stops (Morbidelli et al. 2012;
Bitsch et al. 2018). This drastically changes the value of L and hence Mcrit . If the
atmosphere of the planet was in hydrostatic equilibrium up to that point, it may
be out of equilibrium. As a rule of thumb, when Mc approaches Mcrit the mass of
the atmosphere in hydrostatic equilibrium approaches that of the core. This triggers
runaway gas accretion (Lambrechts and Johansen 2014).

When the atmosphere is no longer in hydrostatic equilibrium, it contracts under
the effect of gravity. The compression of gas releases energy, so the atmosphere can
only contract on theKelvin-Helmoltz timescale,which is effectively the atmosphere’s
cooling timescale through irradiation. As the atmosphere contracts, new gas can be
captured within the Bondi radius rb. This increases the mass of the atmosphere and
hence the gravity of the full planet. This triggers a positive feedback on the accretion
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Fig. 1.11 Runaway growth of a giant planet near Jupiter’s orbital radius. The solid curve shows
the mass of the solid core, the dotted curve the mass of the atmosphere and the dashed curve the
total mass of the planet. Here the accretion of solids onto the core is prescribed according to a now
obsolete planetesimal accretion model. The approximate boundary in time between the hydrostatic
regime and the runaway regime is at ∼7.5 Myr. While the runaway gas accretion regime is not in
hydrostatic equilibrium it can be modeled as a series of equilibrium states. Adapted from Pollack
et al. (1996)

rate, so that the mass of the planet’s atmosphere increases exponentially with time
(see Fig. 1.11) (Pollack et al. 1996; Hubickyj et al. 2005; Lissauer et al. 2009) .

A number of studies have modeled atmospheric accretion during the runaway
phase (Ikoma et al. 2000; Coleman et al. 2017; Lambrechts et al. 2019b) using
different approaches. All have confirmed the runaway gas accretion with a mass-
doubling timescales for Jupiter-mass planets of order 104−105 yr in a MMSN disk.
This raises the question of why Saturn-mass exoplanets outnumber Jupiter-mass
ones, which drastically outnumber super-Jupiters (Butler et al. 2006; Udry et al.
2007). One possibility is that giant planets enter in their runaway phase late, as the
disk is disappearing (Pollack et al. 1996; Bitsch et al. 2015b). Given that the mass
doubling timescale in the runaway phase is so much shorter than the disk’s lifetime,
this appears to be a surprising coincidence. The other possibility is that the growth of
a planet is limited by the ability of the disk to transport gas radially. We know from
observations, however, that the gas accretion rate onto the central star is typically of
the order of 10−8 M�/yr (Hartmann et al. 1998), which means that a Jupiter-mass of
gas passes through the orbit of a giant planet in only 105 yr, again much shorter than
the disk’s lifetime. Perhaps the study of giant planet growth in low-viscosity disks
dominated bywinds can bring a solution to the problem, given the different geometry
and mechanism of transport for the accreting gas relative to a classic, viscous disk.
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1.2.5.1 Gap Opening and Type-II Migration

As we have seen in Sect. 1.2.4, a planet embedded in a disk exerts a positive torque
on the outer part of the disk and a negative torque on the inner part. The torque is
proportional to the planet’s mass. If the planet is small, its torque is easily overcome
by the viscous torque that the annuli of the disk exert on each other. The global surface
density profile of the disk is not changed and only the spiral density wave appears.
But if the planet is massive enough the torque it exerts on the disk overwhelms the
disk’s viscous torque. In this case, the planet effectively pushes gas away from its
orbit: outer gas outwards and inner gas inwards. A gap opens in the gas distribution
around the orbit of the planet.

As gas is removed, the gap becomes deeper and wider. But as the gradients of the
disk’s surface density distribution become steeper at the edges of the gap, the disk’s
viscous torque is enhanced. In fact, the viscous torque acting on elementary rings
can be computed by differentiation of Eq. (1.3) to give:

δTν = −3

2
ν�

[
r

�

d�

dr
+ 1

2

]

(2πr�). (1.28)

Once the density gradient becomes steep enough, the viscous torque balances the
torque that the planet exerts on the same annulus of the disk (Varnière et al. 2004).

The depth of a gap—defined as the ratio between the surface density of the disk
perturbed by the planet �p and the original value �u—is (Kanagawa et al. 2018):

�p

�u
= 1

1 + 0.04K
, (1.29)

where

K =
(
Mp

M�

)2 (
H

r

)−5

α−1 (1.30)

and Mp, M� are the masses of the planet and the star, respectively, the aspect ratio
of the disk H/r is taken at the planet’s location, and as usual α = ν/(H 2�). This
formula holds up to K ∼ 104 (see Fig. 11 in Kanagawa et al. 2018). However, it
cannot hold indefinitely, in particular in the limit of low α. This is because, if the
density gradients at the edges of the gap become too steep, the rotational proper-
ties of the gas change so much under the effect of the pressure gradient that the
specific angular momentum of the disk r2�(r) is no-longer a growing function of
r (Kanagawa et al. 2015). When this happens the disk becomes Rayleigh unstable
and develops local turbulence, in turn enhancing the local viscosity. This effectively
limits the steepness of the gap “walls” and the depth of the gap. Because the pressure
gradient is also proportional to (H/r)2, this narrative implies that, in the limit of
vanishing viscosity, the denser the disk the shallower the gap. Thus, a gap opening
criterion—i.e. the minimal mass of a planet to cause a depletion of 90% of the gas in
the gap—must depend not only on viscosity but also on the disk’s aspect ratio. An
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often-quoted criterion is the following:

3

4

H

RH
+ 50

qRe
< 1, (1.31)

where q = Mp/M�, RH = (q/3)1/3 and Re = r2p�p/ν (Crida et al. 2006).
The formation of a gap profoundly changes a planet’s migration. This migration

mode has been dubbedType-IImigration. The gapmustmigrate alongwith the planet.
In particular, as the planet moves inwards, the disk has to refill the portion of the gap
“left behind” by the planet’s radial motion. Because the radial velocity of the gas in a
viscous unperturbed disk is vr = −(3/2)ν/r , this was the expected migration speed
of the planet, independent of the planet’s mass and disk’s scale aspect ratio (Ward
1997).

However, the planet’smigration rate is not so simple (Duffell et al. 2014;Dürmann
andKley 2015). It depends on the ratio between the disk’s density and themass of the
planet, exemplified by the dimensionless ratio r2p�/Mp (see Fig. 1.12), and also on
the disk’s aspect ratio. Depending on these quantities, the radial velocity of the planet
can be smaller or larger than the “idealized” Type-II migration speed of −(3/2)ν/r .

It is easy to understand that a planet’s migration speed is slower than the idealized
speed for the case of a low disk mass. A light disk obviously cannot push a heavy
planet. This is the inertial limit: the planet is an obstacle to the flow of the gas. But
how can a planet migrate faster than the radial speed of the gas? In principle the
gas should remain behind and the planet, losing contact from the outer disk, should
feel a weaker negative torque, eventually slowing down its migration until it moves
at the same speed of the gas. The explanation given by Duffell et al. (2014) and
Dürmann and Kley (2015) was that, as the planet migrates inwards, the gas from the
inner disk can pass through the gap, refilling the left-behind part of the gap. In this
way, the planet does not have to wait for the gas to drift-in at viscous speed. But
the passage of gas through the gap is insignificant if the gap is significantly wider
than the planet’s horseshoe region (Robert et al. 2018), which is the case for massive
planets in low-viscosity disks. In that case, as the planet moves inwards, the gapmust
be refilled from the outer disk. However, the steep density gradient at the edge of the
gap enhances the viscous torque, as discussed above, so that the gas radial speed can
be several times faster than −(3/2)ν/r . This explains why the planet can exceed the
idealized Type-II migration rate. Nevertheless, the migration rate of the planet must
linearly proportional to the viscosity of the disk (Robert et al. 2018).

The dependence of themigration rate of giant planets on disk’s viscosity opens the
possibility that, in low-viscosity disks, the migration timescale can exceed the disk’s
lifetime. This would be convenient to explain why most giant planets are warm/cold
Jupiters and not hot Jupiters3 (Butler et al. 2006; Udry et al. 2007). However, recall

3 We define a hot Jupiter as a giant planet within 0.1 au from its star and warm/cold Jupiters as
those that are beyond 0.5 au. Very few giant planets fall between 0.1 and 0.5 au so the exact values
of these boundaries are not important. Debiased observations suggest that hot Jupiters are about
1/10th or less as abundant as warm/cold Jupiters (Fernandes et al. 2019; Wittenmyer et al. 2016,
2020).
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Fig. 1.12 The migration rate as a function of the ratio r2p�/Mp for a giant planet in a disk with

α = 3 × 10−3, for three different disk’s aspect ratios. Notice that the migration rate can be smaller
or larger than the viscous drift rate of the gas, i.e. the idealized Type-II migration speed. Figure
courtesy of P. C. Duffell, from From Duffell et al. (2014)

fromSect. 1.2.1.1 that low-viscosity disks cannot explain the accretion rates observed
for the central stars. If viscosity is low, there must be some additional mechanism for
the radial transport of gas, possibly induced by angular momentum removal in disk
winds. The migration rate of giant planets in these kind of disks has not yet been
studied.

1.2.6 Resonance Trapping During Planet Migration

Numerical simulations show that multiple planets migrating in a disk have the ten-
dency to lock into mutual mean motion resonance, where the period ratio is very
close to the ratio of integer numbers (Terquem and Papaloizou 2007; Pierens and
Nelson 2008; Izidoro et al. 2017). Typically, these numbers differ by just one such
that the period ratios are 2:1, 3:2, 4:3 etc. These are called first-order resonances.

To understand this propensity to form resonant chains we need to dive into the
complex world of dynamical planet-planet interactions. To stay simple, we will con-
sider the planar three body problem, where two planets orbit a star on coplanar orbits.
This is the simplest example of dynamics of a planetary system, yet it already cap-
tures most of the complexities of real systems. The best mathematicians made huge
efforts to find an analytic solution of this problem, until Poincaré (1892) demon-
strated that this was impossible. A general analytic solution does not exist. The
system can exhibit chaotic behavior (Henon and Heiles 1964). Yet, some description
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can be provided, such as for instance for the dynamics of resonant planets with small
libration amplitude, which is that of interest to understand the formation of resonant
chains. This is what we attempt to do in this section.

To study the three body problem, the most effective approach is to use the Hamil-
tonian formalism. A system of first-order differential equations

dx
dt

= f(x, y),
dy
dt

= g(x, y) (1.32)

is said to be in Hamiltonian forms, if there exists a scalar functionH(x, y) such as

fi (x, y) = ∂H
∂yi

, gi (x, y) = −∂H
∂xi

, (1.33)

for each component i = 1, . . . , N of the vectors x, y, f, g. The functionH is called
theHamiltonian of the problem; x is called the vector of coordinates and y the vector
of momenta. If H is periodic on x, the coordinates are also called angles and the
momenta actions.

An important property ofHamiltonian dynamics is thatH is constant over the flow
x(t), y(t) that is solution of the equations of motion. This means that, in the special
case whereH is a function of only one component of x, namelyH ≡ H(x1, y), the
evolution of the system can be easily computed: y2, . . . , yN are constant of motion
from (1.32) and (1.33); the motion of x1, y1 can be obtained from the level curve of
H(x1, y1, y2, . . . , yN ) = H(x(0), y(0)), which is a 1D curve in a 2D x1, y1 space
(called phase space). In this case, the problem is integrable (i.e. the solution is
provided with analytic functions of time).

In studying a problemwritten in Hamiltonian form, a typical goal is to find a trans-
formation of variables x → x′, y → y′ that transforms the Hamiltonian function into
one that is independent of x ′

2, . . . , x
′
N . However, only transformations that preserve

the form of Hamilton equations (Eqs. 1.32 and 1.33), called canonical transforma-
tions, are allowed. There aremany forms of canonical transformations. In this section
we will use only linear transformations x′ = Ax, y′ = By where A, B are N × N
matrices. It can be proven that the transformation is canonical if and only if

B = [
A−1

]T
. (1.34)

In general, it is not possible to find a canonical transformation that makes the
Hamiltonian independent of N − 1 coordinates. Then, a goal in perturbation theory
is to find a canonical transformation that turnsH(x, y) into

H ′(x′, y′) = H ′
0(x

′
1, y

′) + εH ′
1(x

′, y′). (1.35)

In this caseH ′
0 is called the integrable approximation andH ′

1 the perturbation. The
latter can be neglected if one is interested in the dynamics up to a time t < 1/ε.
Depending on the goal in terms of accuracy, ε has to be sufficiently small.
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After this broad and shallow introduction to Hamiltonian dynamics, let’s turn to
the planar three-body problem. The problem admits a Hamiltonian description, with
Hamiltonian function:

H =
∑

j=1,2

∥
∥p j

∥
∥2

2μ j
− G(M� + m j )μ j∥

∥r j

∥
∥

+ p1.p2
M�

− Gm1m2

‖�‖ , (1.36)

where r j is the heliocentric position vector of planet j of reduced mass μ j =
m jM�/(m j + M�), p j = m jv j , with v j being the barycentric velocity vector (not a
typo!: positions and velocities have to be taken in different reference frames if one
wants a Hamiltonian description of the problem; Poincaré 1897) and � = r1 − r2.

Using the canonical Delaunay variables:

� j = μ j
√
G(M� + m j )a j , λ j = Mj + � j

� j = � j (1 −
√
1 − e2j ), γ j = −� j

where a j , e j are the semi major axes and eccentricities, � j are the perihelion longi-
tudes, Mj the mean anomalies and G is the gravitational constant, the Hamiltonian
(Eq. 1.36) becomes:

H = −G2
∑

j=1,2

μ3
j (M� + m j )

2

2�2
j

+ H1(�1,2, �1,2,λ1,2, γ1,2). (1.37)

The first term in the r.h.s. of Eq. (1.37), denoted K hereafter, taken alone, is an
integrable Hamiltonian, but the flow that it describes is trivially that of two uncou-
pled Keplerian motions: the actions�1,2, �1,2 are constant, the longitude of perihelia
γ1,2 are constants, and only the mean longitudes λ1,2 move with constant frequency

G2μ3
j (M� + m j )

2/�3
j =

√
G(M� + m j )/a3j . So, this kind of integrable approxima-

tion of the full Hamiltonian is not sufficient for our purposes and we need to find a
better one.

To this end, we expand H1 in power series of
√

� j ∼ √
� j/2e j and in Fourier

series of the angles λ j , γ j . The general form is therefore

H1 =
∑

l1,l2,k1,k2, j1, j2

cl1,l2,k1,k2, j1, j2(�1,�2)�
j1/2
1 �

j2/2
2 cos(k1λ1 + k2λ2 + l1γ1, l2γ2)

+ sl1,l2,k1,k2, j1, j2(�1,�2)�
j1/2
1 �

j2/2
2 sin(k1λ1 + k2λ2 + l1γ1, l2γ2)

(1.38)

The so-called D’Alembert rules give us information on which terms of this series
can have non-zero coefficients, namely:

• only the c coefficients can be non-zero, because the Hamiltonian must be invariant
for a change of sign of all angles (measuring angles clockwise or counter-clockwise
is arbitrary), so that the Fourier expansion can contain only cos terms;
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• only the cl1,l2,k1,k2, j1, j2 coefficients with k1 + k2 − l1 − l2 = 0 can be non-zero,
because the Hamiltonian has to be invariant by a rotation of the reference frame,
namely increasing all angles by an arbitrary phase δ0 (remember that γ = −�, so
if all orbital angles are increased by δ0, γ is decreased by δ0);

• only the cl1,l2,k1,k2, j1, j2 coefficients with j1 = |l1| + 2n and j2 = |l2| + 2i (with
n and i non-negative integer numbers) can be non-zero. This is because the
Hamiltonian is not singular for circular orbits (i.e. �1 = 0 and/or �2 = 0) so
that it has become a polynomial expression in the canonical variables p1 =√
2�1 cos γ1, q1 = √

2�1 sin γ1, p2 = √
2�2 cos γ2, q2 = √

2�2 sin γ2.

If we are interested in two planets near a mean motion resonance where P2 ∼
k/(k − 1)P1, where P1 and P2 are the orbital periods and k is a positive integer
number, the angle kλ2 − (k − 1)λ1 will have an almost null time-derivative (as one
can see remembering that λ̇ = 2π/P and using the relationship between the orbital
periodswritten above). Thus, it is a slow angle,whereas bothλ1 andλ2 are fast angles,
as it is their difference. To highlight this difference in timescales, let us define new
angles:

δλ = λ1 − λ2, θ = kλ2 − (k − 1)λ1. (1.39)

Using the rule (1.34), this linear transformation of the angles can be made canonical
by changing the actions as:

�λ = k�1 + (k − 1)�2, � = �1 + �2, (1.40)

so that (�λ, δλ) and (�, θ) are pairs of canonical action-angle variables.
Sincewe are interested in the long-term evolution of the dynamics, we can average

the Hamiltonian over δλ, which means that the averaged Hamiltonian will be inde-
pendent of this angle and, consequently, �λ will be a constant of motion. Because
the units of semi-major axis are arbitrary, one can always chose them so that�λ = 1.
In other words, changing the values of �λ does not change the dynamics; it simply
changes the unit of measure of the semi major axes.

Using the D’Alembert rules described above, the function in Eq. (1.38) takes the
form

H1 =
∑

m,n,i>0, j>0

dm,n,i, j (�,�λ)�
|n−m|/2+ j
1 �

|m|/2+i
2 cos[n(θ + γ1) + m(γ2 − γ1)],

(1.41)
where the coefficients dm,n,i, j come from the original coefficients cl1,l2,k1,k2, j1, j2
through a simple index algebra that follows trivially from the redefinition of the
angles (Eq. 1.39).

Because there are only two possible combinations of angles in the harmonics of
Eq. (1.41), it is convenient to identify each of them with a single angle, namely:

ψ1 = θ + γ1 δγ = γ2 − γ1, γ′
2 = γ2 . (1.42)
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Again, using the rule (Eq. 1.34) this linear transformation of the angles can be made
canonical by changing the actions as:

	1 = �, 	2 = � − �1, L = �1 + �2 − � . (1.43)

Now, the Hamiltonian K + H1 depends only on the angles ψ1 and δγ, and L is a
new constant of motion (related to the angular momentum of the system).

This Hamiltonian is still not integrable, because it depends on two angles. An
integrable approximation (dependent on only one angle) can be obtained if one retains
in Eq. (1.41) only the terms linear in the planets’ eccentricities, i.e. proportional to√

�1,2, and doing some cumbersome change of variables (Sessin and Ferraz-Mello
1984; Batygin andMorbidelli 2013). In this case one can then trace global dynamical
diagrams by plotting the level curves of the Hamiltonian (see for instance Fig. 3 in
Batygin andMorbidelli 2013). However, even in the general non-integrable case one
can look for the stable equilibriumpoints in (	1,ψ1, 	2, δγ) as a function ofL (recall
that �λ can be fixed to unity). The locus of equilibrium points, once transformed
back into the original orbital elements, describes a curve in e2, a2/a1 or, equivalently,
e1, a2/a1, like that shown in Fig. 1.13. Note that on the curve a2/a1 → ∞ as e1 →
0, e2 → 0. This feature comes from the fact that, from Hamilton’s equations γ̇1.2 =
∂H/∂�1.2 applied to (1.41), one has γ̇1,2 ∝ �

−1/2
1,2 , i.e. γ̇1,2 → ∞ as�1,2 ∝ e21,2 → 0.

Thus, to have the equilibrium ψ̇1 = 0 the value of θ̇ has to diverge, which means that
a2/a1 has to diverge as well.

This feature of the curve of equilibrium points is the key to understand reso-
nant capture. If the planets are far from resonance (i.e. a2/a1 is much larger than
the resonant ratio assuming Keplerian motion; a 3:2 resonance being located at
a2/a1 = 1.3103 in Fig. 1.13), the protoplanetary disk exerts damping forces on their
eccentricities, so that the planet’s orbits are basically circular. This means, from
the shape of the curve of equilibrium points, that the planets will be on the equi-
librium. As migration proceeds and a2 approaches a1 (this is the case if the outer
planet migrates faster towards to the star, which happens in Type-I migration if it
is more massive or if the inner planet is blocked at a planet trap), the ratio a2/a1
decreases. If this happens slowly compared to the libration period around the equi-
librium point, the dynamical evolution has to react adiabatically (Neishtadt 1984).
This means that the amplitude of libration around the equilibrium point has to be
conserved. Because initially the planets have vanishing amplitude of libration (their
eccentricities are basically null as those characterizing the equilibrium point), this
means that the planets have to evolve from one equilibrium point to the other, i.e.
they have to follow the curve traced in Fig. 1.13. As a2/a1 asymptotically approaches
the Keplerian resonant value, the eccentricities of the two planets increase.

If the convergent migration is too fast, the adiabatic condition is broken. The
amplitude of libration is not conserved. The planets can jump off resonance and
continue to approach each other more closely. But, because the libration frequency
of a resonance P2 ∼ k/(k − 1)P1 increases with k, eventually the planets will find a
resonancewith k large enough and libration frequencies fast enough that the adiabatic
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Fig. 1.13 The locus of equilibrium points for the 3:2 mean motion resonance in the plane e2 versus
a2/a1, for different planetary masses (here assumed to be equal to each other) in different colors.
The vertical orange line shows the location of the resonance in the Keplerian approximation (the
same a2/a1 for any eccentricity because the orbital frequencies depends only on semi major axes).
Adapted from Pichierri et al. (2018)

condition is satisfied. Then, they will be trapped in resonance. In essence, the faster is
the convergent migration, the higher the index k of the resonance in which the planets
will be trapped. But trapping always occurs, eventually. These arguments apply for
each pair of neighboring planets in a multi-planet system. This is why the formation
of configurations in resonant chains is a typical outcome of planet migration.

If the adiabatic condition is satisfied, is resonant trapping stable? Fig. 1.13 sug-
gests that the eccentricities of the planets should grow indefinitely. But in reality
the disk exerts eccentricity damping, so that the eccentricities grow until an equilib-
rium is established between the eccentricity damping from the disk and the resonant
conversion of convergent migration into eccentricity pumping. A precise formula to
compute this equilibrium in a variety of configurations (damping exerted on both
planets or only on one, inner planet at a planet-trap or not etc.) can be found in the
appendix of Pichierri et al. (2018). The equilibrium eccentricity is typically of order
(H/r)2, where (H/r) is the aspect ratio of the protoplanetary disk.

There is a complication. For the adiabatic principle to be applied, the dissipative
forces have to act on the parameters of the Hamiltonian, not on the dynamical vari-
ables. This is the case for migration. The change in semi-major axis ratio changes the
otherwise constant of motion L, i.e. a parameter of the Hamiltonian. But the eccen-
tricity damping affects �1,2, i.e. dynamical variables. Then, the equilibrium point
can become a focus, which means that the dynamical evolution spirals around it. The
spiral can be inward if the focus is stable (which means that any initial amplitude of
libration would shrink to 0) or outwards if the focus is unstable (which means that
the amplitude of libration grows indefinitely, even if it is initially arbitrarily small).
This unstable evolution, first pointed out by Goldreich and Schlichting (2014), is
called overstability.

Figure 1.14 shows a summary of the most detailed investigation of the stabil-
ity/overstability of a resonance in presence of eccentricity damping (Deck and Baty-
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gin 2015). If the eccentricity damping is proportional to the planetary masses (as
in the case where both planets are embedded in the disk), for the 3:2 and higher-k
resonances the resonant configuration is stable whenever m1 > m2. In the opposite
case, the stability/overstability depends on the total mass ratio εp = (m1 + m2)/M�.
There is a limit value of the ratio m1/m2 below which the system is overstable, and
this ratio decreaseswith increasing εp (Fig. 1.14a). For the 2:1 resonance the situation
is qualitatively similar, but the planets can be overstable even if m1/m2 > 1 if εp is
small enough (Fig. 1.14b). On the other hand, if there is no eccentricity damping on
the inner planet (τe1 → ∞, which happens if the inner planet has been pushed into
a disk’s cavity), the resonant configuration is always stable for any m1/m2 ratio.

Even if resonant planets are not in the overstable regime, they may be unstable
because of other processes. Due to their proximity and eccentric orbits they may
approach each other too much over their resonant trajectories and be destabilized
by a close-encounter (Pichierri et al. 2018). There can also be subtle secondary
resonances between a combination of the libration frequencies and the synodic fre-
quency λ̇1 − λ̇2. These secondary resonances cannot be described with the averaged
Hamiltonian (Eq. 1.41) because the terms in λ1−λ2 have been removed by the aver-
aging procedure. But they can be studied following a more precise and convoluted
approach. As the number of planets in a resonant chain increases, the number of libra-
tion frequencies increases as well and therefore a richer set of combined frequencies
is possible. This explains, at least at the qualitative level, why long resonant chains
are more fragile than short chains, as observed in numerical simulations (Matsumoto
et al. 2012; Cossou et al. 2013). The long-term evolution of multi-planet resonant
chains remains nevertheless an active area of research in celestial mechanics.

1.3 Global Models of Planet Formation

Building global models of planet formation is akin to putting together a puzzle. We
have a vague picture of what the puzzle should look like (i.e., from exoplanet demo-
graphics) but observational biases cloud our view. Moreover, the puzzle pieces—the
planet formation mechanisms—often change in number and in shape. The puzzle-
builders must constantly have an eye both on the evolution of the big picture and on
the set of viable puzzle pieces. One must not hesitate to discard a model when it no
longer serves.

We will describe our current best global models for the origin of super-Earth
systems (Sect. 1.3.1), giant planet systems (Sect. 1.3.2) and our own Solar System
(Sect. 1.3.3). Then we will look at how water may be delivered to rocky planets
(Sect. 1.3.4).
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Fig. 1.14 Each plot shows the region of the parameter plane τe1/τe2 and m1/m2, where τe1,2 is the
damping timescale of the eccentricity of planets 1 and 2, respectively, with masses m1 and m2, for
different planetary masses εp = (m1 + m2)/M�. The left plot is for the 3:2 resonance, the right plot
for the 2:1 resonance. For a planet ofmassm at semi-major axis a the eccentricity damping timescale
is τe ∝ (H/a)4/(m�

√
a), where� is the surface density of the disk and H/a its aspect ratio. Thus,

if the disk has a constant aspect ratio and� ∝ 1/
√
a the system should place on the dashed diagonal

line (i.e. m1/m2 = taue1/taue2 ). This shows, for instance, that a 3:2 system is stable if m1 < m2.
If instead the inner planet is in a low-density region (i.e. a disk’s cavity), τe1 → ∞ and therefore
the system is stable for all mass ratios. Adapted from Deck and Batygin (2015)

1.3.1 Origin of Close-in Super-Earths

The key properties of super-Earth systems that must be matched by any formation
model can be very simply summarized as follows (we refer the reader to Chap. 3 for
detailed reviews):

• A large fraction (roughly one third to one half) of stars have close-in super-Earths
(with periods shorter than 100 days; Fressin et al. 2013; Mulders et al. 2018), but
many (perhaps most) of them do not.

• Most super-Earth systems only have a single planet detected in transit, whereas
a fraction of systems is found with many planets in transit (Lissauer et al. 2011;
Fang and Margot 2012; Tremaine and Dong 2012).

• In multi-planet systems, pairs of neighboring super-Earths are rarely found to be
in mean motion resonance (Lissauer et al. 2011; Fabrycky et al. 2014).

• The masses of super-Earths extend from Earth to Neptune, with a preference for
a few M⊕ (Weiss et al. 2013; Marcy et al. 2014; Wolfgang et al. 2016; Chen and
Kipping 2017).

Models for the formation of super-Earths were developed before they were even
discovered (Raymond et al. 2008a).While certain models have been refined in recent
years, only a single new model has been developed.
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In-situ accretion is the most intuitive and simplest model for super-Earth forma-
tion, yet it has a fatal flaw. That model proposes that super-Earths simply accreted
from local material very close to their stars in a similar fashion to the classical model
of terrestrial planet formation in the Solar System (see Sect. 1.3.3.1 below). In-situ
accretion was proposed in 2008 (Raymond et al. 2008a) and discarded because the
masses implied in the innermost parts of disks seemed prohibitively large. In 2013
this idea was revisited by Chiang and Laughlin (2013), who used the population of
known super-Earths to generate a “minimum-mass extrasolar nebula” representing a
possible precursor disk that would have formed the population of super-Earths. The
high masses inferred in inner disks conflicts with measurements, but those measure-
ments are only of the outermost parts of disks (Williams and Cieza 2011). While it is
possible to imagine that inner disks can pile upmaterial, there is a simply-understood
timescale problem.With very high densities in the inner disk, the growth timescale for
super-Earths is extremely fast (Lissauer and Stevenson 2007; Raymond et al. 2007b;
Raymond and Cossou 2014; Inamdar and Schlichting 2015; Schlichting 2014; Ogi-
hara et al. 2015). In fact, the growth timescales are so fast and the requisite disks
so massive that migration is simply unavoidable (Ogihara et al. 2015). Even aero-
dynamic drag is strong enough to cause rapid orbital drift (Inamdar and Schlichting
2015). Thus, we cannot consider the planets to have formed in-situ because theymust
have migrated and their final orbits cannot represent their starting ones. Nonetheless,
it has been shown that if the right conditions were to arise, with the requisite amount
of solid material close to the star, accretion should indeed produce planetary sys-
tems similar to the observed super-Earths (Hansen and Murray 2012, 2013; Dawson
et al. 2015, 2016; Moriarty and Ballard 2016; Lee et al. 2014; Lee and Chiang 2016,
2017).

A number of the first processes to be explored for forming super-Earths relied on
giant planets. For example, migrating giant planets can shepherd material interior
to their orbits and stimulate the growth of super-Earths (Zhou et al. 2005; Fogg and
Nelson 2005, 2007; Raymond et al. 2006b; Mandell et al. 2007). Moving secular
resonances driven by giant planet interactions can do the same (Zhou et al. 2005).
However, these models have been ruled out as the main formation pathways for
super-Earths, because most super-Earth systems do not appear to have an associated
giant planet (although testing the correlation between super-Earths and outer gas
giants is an active area of study, e.g. Zhu and Wu 2018; Barbato et al. 2018; Bryan
et al. 2019).

The migration model has proven quite successful model in reproducing the
observed population of super-Earths (TerquemandPapaloizou 2007;Ogihara and Ida
2009; McNeil and Nelson 2010; Ida and Lin 2010; Cossou et al. 2014; Izidoro et al.
2017, 2019; Raymond et al. 2018b; Carrera et al. 2018). In that model, large plan-
etary embryos grow throughout the disk and migrate inward, driven by the gaseous
disk (Fig. 1.15 shows an example of a simulation of themigrationmodel). It is natural
to think that embryos would form first past the snow line, where pebble accretion is
thought to bemore efficient (see Sect. 1.2.3 andMorbidelli et al. 2015). However, it is
also possible that in some disks large embryos can form very close to their stars. This
might occur if inward-drifting pebbles are concentrated at a pressure bump, perhaps
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Fig. 1.15 Evolution of a simulation of the breaking the chains migration model for the origin of
close-in super-Earths. The panels show the evolution of a population of ∼lunar-mass planetary
embryos that grow by accreting pebbles, migrate inward and form a resonant chain anchored at the
inner edge of the disk. The resonant chain is destabilized shortly after the dissipation of the gaseous
disk, leading to a late phase of scattering and collisions that spreads out the planets and increases
their eccentricities and inclinations. Figure courtesy of A. Izidoro, from Izidoro et al. (2019)

associated with the inner edge of a dead zone4 (Chatterjee et al. 2014, 2015). While
the migration rate and direction depends on the disk model (Lyra et al. 2010; Kretke
and Lin 2012; Bitsch et al. 2013, 2014), inward migration is generally favored. The
inner edge of the disk creates a strong positive torque (Flock et al. 2019) that acts to
trap any inward-migrating embryo (Masset et al. 2006). This leads to a convergence
of bodies near the disk’s inner edge. Convergent migration leads to resonant trapping
(see Sect. 1.2.6) and tends to produce planets in long chains of resonances. Of course,
the observed super-Earths are not found in resonance. However, most resonant chains
become dynamically unstable as the gaseous disk dissipates. This leads to a phase
of giant collisions between embryos that is quite similar to that simulated by studies
that ignored the migration phase and invoked a large population of embryos in a
dissipating gaseous disk (Hansen and Murray 2012, 2013; Dawson et al. 2015). The
instability phase leads to scattering among embryos, breaks the resonant chains, and
causes systems to spread out and become dynamically excited. A small fraction of
resonant chains remain stable after the disk dissipates; these may represent iconic

4 This idea forms the basis of a model of super-Earth formation sometimes called inside-out planet
formation (Boley and Ford 2013; Chatterjee et al. 2014, 2015; Hu et al. 2016, 2018). That model
invokes the direct formation of super-Earths from pebbles at pressure bumps in the inner disk.
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systems such as Trappist-1 (Gillon et al. 2017; Luger et al. 2017) and Kepler-223
(Mills et al. 2016).

Simulations of the migration model have shown that the surviving systems quan-
titatively match the population of observed super-Earths as long as more than 90%
of resonant chains become unstable (Izidoro et al. 2017, 2019). When run through
a simulated observing pipeline, the significant dynamical excitation of the surviving
systems implies large enough inclinations such that most viewing geometries can
only see a single planet in transit. This solves the so-called Kepler dichotomy prob-
lem (Johansen et al. 2012; Fang and Margot 2012) and implies that all super-Earth
systems are inherently multiple. The period ratio distribution of simulated systems
matches observations, again taking observational biases into account (Izidoro et al.
2017, 2019; Mulders et al. 2019).

Yet questions remain. If super-Earth formation is as efficient as in simulations,
why don’t all stars have them? One possibility is that when an outer gas giant planet
forms, it blocks the inward migration of large embryos and those instead become ice
giants (Izidoro et al. 2015a, b). This implies an anti-correlation between the presence
of outer gas giants and systems with many super-Earths, and it remains unclear if
such an anti-correlation exists (Bryan et al. 2019; Zhu and Wu 2018; Barbato et al.
2018). The fraction of stars with gas giants appears to be far less than the fraction
of stars without super-Earths, which makes it difficult to imagine gas giants being
the main cause. Is it possible, instead, that outer ice giants or super-Earths are the
culprit? Probably not. While their occurrence rate is high (Gould et al. 2010; Suzuki
et al. 2016b), outer ice giants cannot efficiently block the inward migration of other
planets and are generally too low-mass to block the pebble flux (Morbidelli et al.
2012; Lambrechts and Johansen 2014; Bitsch et al. 2018). Perhaps, instead, many
disks are subdivided into radial zones (Johansen et al. 2009). Pebbles trapped within
a given zone may not be able to drift past the zone boundary such that the pebble flux
in certain regions of the disk would remain too low for planets to grow fast enough
for long-range migration (Lambrechts et al. 2019a). Such a scenario would also be
compatible with the ringed structures seen in many ALMA disks (Andrews et al.
2018).

The compositions of super-Earths may also provide a constraint for formation
models. It naively seems that the migration model should produce very volatile-
rich super-Earths because the main source of mass is beyond the snow line, where
the efficiency of pebble accretion is higher (Morbidelli et al. 2015; Izidoro et al.
2019; Bitsch et al. 2019a, b). This need not be true in 100% of cases, as inward-
migrating icy embryos can in some cases stimulate the growth of inner, purely rocky
planets (Raymond et al. 2018b). However, most super-Earths in the migration model
should be ice-rich (Izidoro et al. 2019). It is unclear whether this is consistent with the
observed distribution of bulk densities of super-Earths.While it has been claimed that
most super-Earths appear to be “rocky” (Owen andWu 2013, 2017; Lopez 2017; Jin
and Mordasini 2018), measurement uncertainties preclude any clear determination
of the compositions of super-Earths (Dorn et al. 2015, 2018). In addition, “rocky”
planets may in some context include water contents up to ∼20% by mass (Gupta
and Schlichting 2019). For context, that is similar to the approximate water contents
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Fig. 1.16 Mass and orbital radius distributions of giant exoplanets. Left-hand panel:The frequency
of giant planets as a function of orbital distance from radial velocity surveys (green) and the Kepler
transit statistics (purple). Figure courtesy of R. B. Fernandes, from Fernandes et al. (2019). Right-
hand panel: The occurrence rate of giant planets as a function of planet-to-star mass ratio q. The
different symbols correspond to different radial velocity studies whereas the black line and grey
regions are the results from microlensing surveys. Figure courtesy of T. K. Suzuki, from Suzuki
et al. (2016a)

of comet 67P (Pätzold et al. 2019), Pluto, and the most water-rich meteorites known
(thought to originate from the outer Solar System; Alexander 2019a; 2019b). Finally,
short-lived radionuclides such as Al-26 may efficiently dry out some super-Earths
(Lichtenberg et al. 2019). The rocky versus icy nature of super-Earths remains an
important outstanding issue.

The fact that super-Earths seem to ubiquitously have large radii consistent with
atmospheres of a few percent H/He by mass (Weiss and Marcy 2014; Wolfgang
et al. 2016; Fulton et al. 2017; Fulton and Petigura 2018) confirm that these planets
formed during the gaseous disk phase and certainly by a process quite different
than the formation of our own terrestrial planets. Formation models are starting to
be coupled to models of atmospheric accretion and loss (Inamdar and Schlichting
2015; Ginzburg et al. 2016; Carrera et al. 2018). However, given the complexities in
these processes (Lambrechts and Lega 2017) this remains an ongoing challenge.

1.3.2 Giant Exoplanets: Formation and Dynamics

Drawing fromnumerous radial velocity, transit andmicrolensing surveys for exoplan-
ets, the essential constraints on giant planet formation (further reviewed in Chaps. 3
and 4) are:

• Gas giants exist around roughly 10% of Sun-like stars (Cumming et al. 2008;
Mayor et al. 2011;Winn and Fabrycky 2015; Foreman-Mackey et al. 2016; Suzuki
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et al. 2016b; Fernandes et al. 2019) and are more/less common around more/less
massive stars (Lovis and Mayor 2007; Johnson et al. 2007; Clanton and Gaudi
2014, 2016).

• Most gas giants are on relatively wide orbits past 0.5–1 au (Butler et al. 2006;
Udry et al. 2007; Mayor et al. 2011; Rowan et al. 2016; Wittenmyer et al. 2016,
2020).

• Gas giant exoplanets tend to have much higher eccentricities than Jupiter and
Saturn, following a broad eccentricity distribution with a median of∼0.25 (Butler
et al. 2006; Udry and Santos 2007; Wright et al. 2009; Bonomo et al. 2017).

• There is a strong correlation between a star’s metallicity and the probability that
it hosts a gas giant planet (Gonzalez et al. 1997; Santos et al. 2001; Fischer and
Valenti 2005), especially among hot Jupiters and gas giants with eccentric orbits
(Dawson and Murray-Clay 2013).

There exist two categories of formation models for giant planets (Boley 2009;
Helled et al. 2014). The first is a top-down, collapse scenario in which a localized
instability in a protoplanetary disk can lead to the direct formation of one or more
giant planets. The second is the bottom-up, core accretion scenario (which we argue
below should really be called the core-migration-accretion scenario). In recent years
the core accretion model has become the dominant one, yet it is plausible that some
systems may be explained by the disk instability model.

Disk Instability

The disk instability scenario (Boss 1997, 1998, 2000; Mayer et al. 2002, 2007)
invokes a localized region of the disk that becomes gravitationally unstable. This is
usually quantified with the Toomre Q criterion (Toomre 1964):

cs �

π G �
< Qcrit ≈ 1, (1.44)

where cs is the sound speed, � is the local orbital frequency, G is the gravitational
constant, and � is the local surface density of the disk. Simulations show that in
disks that have Q � 1, fragmentation does indeed occur and Jupiter-mass clumps
form quickly (Boss 1998; Mayer et al. 2007; Boley et al. 2010). To become true gas
giants, these clumps must cool quickly to avoid being sheared apart by the Keplerian
flow.

It is generally thought that only the outermost parts of massive disks are able to
attain the criteria needed for instability (Meru andBate 2011;Armitage 2011;Kimura
and Tsuribe 2012). The very distant, massive planets such as those of the HR8799
system (Marois et al. 2008, 2010) may perhaps be explained by disk instability,
as other mechanism struggle to form such massive planets so far away from their
stars. However, it is not clear whether disk instability can produce Jupiter-like planets
(although the giant planet orbiting the low-mass starGJ 3512 is a very good candidate;
Morales et al. 2019). Planets or clumps that form very far out would also migrate
inward rapidly (Baruteau et al. 2011) and it is unclear whether they would survive.
In the tidal downsizing model, gravitational instability forms clumps in the outer
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parts of disks that migrate inward but are often disrupted to act as the seeds of much
smaller planets (Nayakshin et al. 2015).

Core-Migration-Accretion

The bottom-up, core accretion scenario forms the basis of the current paradigm of
giant planet formation. In its standard form the core-accretion model essentially
represents a combination of processes summarized in Sect. 1.2.3 (growth of proto-
planets) and 2.5 (gas accretion). As we shall see, another important process (orbital
migration—described in Sect. 1.2.4) must be included.

Since its inception, the canonical picture has suffered setbacks related to core
growth, migration, and gas accretion (see Sect. 1.2.3). Early models that invoked
planetesimals as the building blocks of large cores could not explain the rapid growth
of the∼10M⊕ cores needed to trigger rapid gas accretion (Levison and Stewart 2001;
Thommes et al. 2003; Rafikov 2004; Chambers 2006a; Levison et al. 2010). Even in
the most optimistic scenarios, planetesimal accretion was simply too slow. In recent
years it has been shown that pebble accretion is far more efficient and can indeed—
given that there is a sufficiently massive and drawn-out supply of pebbles (Johansen
and Lambrechts 2017; Bitsch et al. 2019a)—explain the rapid growth of giant planet
cores (Ormel and Klahr 2010; Lambrechts and Johansen 2012, 2014). It has also
been shown that gas accretion is actually not halted, and only modestly slowed down,
by the generation of a gap in the disk (D’Angelo et al. 2003; Uribe et al. 2013).

Migration remains a giant issue for the core accretion model, so much so that
the model itself could plausibly be renamed the core-migration-accretion model.
It is not so much a problem as an added dimension. The mass scale at which gas
accretion becomes an important phenomenon is similar to that at which migration
becomes important. Thus, planets that are undergoing gas accretion must necessarily
be migrating at the same time. Growth tracks of planets must include both radial and
mass growth.

Figure 1.17 shows the growth tracks of four different simulated planets. Starting
from ∼lunar-mass cores, each planet’s growth is initially determined simply by the
flux of pebbles across its orbit (Lambrechts and Johansen 2014; Ida et al. 2016).
Once each planet reaches several Earth masses, it starts to migrate inward. At the
same time it starts to slowly accrete gas. Above the pebble isolation mass (defined in
Sect. 1.2.3), pebble accretion is stopped butmigration and gas accretion continue. The
two inner planets in the simulation grew fast enough to undergo rapid gas accretion
and become gas giants, whereas the two outer planets did not accrete enough gas
before the disk dispersed and thus ended up as ice giants.

Figure 1.17 leads to a naive-sounding but surprisingly profound question:Why is
Jupiter at 5 au? In the model from Fig. 1.17, any core that started within roughly
10 au ended up as a hot Jupiter. Likewise, in order to finish at 5 au a core needed
to start at 15–20 au (see also Bitsch et al. 2015a; Ndugu et al. 2018). How, then did
our own Jupiter avoid this fate? There are currently four possible solutions. First,
perhaps Jupiter’s core simply did form at 15–20 au (Bitsch et al. 2015b). While this
is hard to rule out, it seems unlikely because most material that originated interior
to Jupiter’s orbit would have remained interior to Jupiter’s final orbit (Raymond and
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Fig. 1.17 Growth tracks for four different types of planets from simulations that include pebble
accretion and migration and gas accretion. The leftmost planet grows fast enough to migrate a long
distance and become a hot Jupiter. The second planet from the left starts as a core at ∼15 au and
ends up as a Jupiter-like planet at 5 au. The two planets on the right are ice giant analogs that never
undergo rapid gas accretion. In this case the pebble isolation mass—the mass above which the
pebble flux is blocked and pebble accretion shut off (Lambrechts et al. 2014; Bitsch et al. 2018)—
was fixed at 10M⊕. Each small dot denotes a time interval of 0.2 Myr along the growth tracks
and each large dot a time interval of 1 Myr. Figure courtesy of A. Johansen, from Johansen and
Lambrechts (2017)

Izidoro 2017a; Pirani et al. 2019). This would therefore require that only a few Earth
masses of material formed in the entire Solar System interior to 15-20 au. Second,
perhaps Jupiter’s migrationwasmuch slower than that shown in Fig. 1.17. That could
be the case if the disk’s viscosity was much lower than generally assumed, which is
consistent with new disk models (see Sect. 1.2.1). Third, perhaps Jupiter’s migration
was halted because the inner gas disk was evaporated away by energetic radiation
from the active young Sun (Alexander and Pascucci 2012). Indeed, disks are thought
to disperse by being photo-evaporated by their central stars (Alexander et al. 2014),
and this may be a consequence. Fourth, perhaps Jupiter’s migration was held back
by Saturn. Hydrodynamical simulations show that, while a Jupiter-mass planet on
its own migrates inward, the Jupiter-Saturn pair can avoid rapid inward migration
and sometimes even migrate outward (Masset and Snellgrove 2001; Morbidelli et al.
2007; Pierens and Nelson 2008; Zhang and Zhou 2010; Pierens and Raymond 2011;
Pierens et al. 2014). This forms the basis of the Grand Tack model of Solar System
formation, which we will discuss in detail in Sect. 1.3.3.2. However, that model’s
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potential fatal flaw is that avoiding inward migration requires that Jupiter and Saturn
maintain a specific mass ratio of roughly 3-to-1 (Masset and Snellgrove 2001) and
it is uncertain whether that ratio can be maintained in the face of gas accretion.

Despite these uncertainties, the core accretion model can match a number of fea-
tures of the known exoplanet population (Ida et al. 2004; Mordasini et al. 2009;
Ndugu et al. 2018), including the observed giant planet-metallicity correlation (Fis-
cher and Valenti 2005) and the much higher abundance of Neptune-mass compared
with Jupiter-mass planets (Butler et al. 2006; Udry et al. 2007; Suzuki et al. 2016b).

Unstable Giant Planet Systems and the Exoplanet Eccentricity Distribution

Gas giant exoplanets are often found on non-circular orbits. This is surprising
because, as we saw in Sect. 1.2, planets form in disks and so on orbits similar to
the disks’ streamlines, which are all circular and coplanar. The broad eccentricity of
giant planets was for years a subject of broad speculation (for a historical discussion
and a comprehensive list of proposed mechanisms, see Ford and Rasio, 2008). The
most likely culprit is amechanism often referred to as planet-planet scattering (Rasio
and Ford 1996; Weidenschilling and Marzari 1996; Lin and Ida 1997). The planet-
planet scattering model proposes that the giant exoplanets formed in systems with
many planets and that those that we see are the survivors of dynamical instabilities.
Instabilities lead to orbit crossing, followed by a phase of gravitational scattering that
usually concludes when one or more planets are ejected from the system entirely,
typically leaving the surviving planets with eccentric orbits (Marzari and Weiden-
schilling 2002; Adams and Laughlin 2003; Montesinos et al. 2005; Chatterjee et al.
2008; Jurić and Tremaine 2008; Nagasawa et al. 2008; Raymond et al. 2008b, 2009a,
2010, 2011, 2012; Beaugé and Nesvorný 2012).

Whereas instabilities among systems of rocky planets tend to lead to collisions,
among systems of giant planets they lead to scattering and ejection. This can be
understood by simply considering the conditions required for a planet to be able to
give a strong enough gravitational kick to eject another object. The Safronov number
� is simply the ratio of the escape speed from a planet’s surface to the escape speed
from the star at that orbital radius. It is defined as:

�2 =
(
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wheremp and M� are the planet and star mass, respectively, ap is the planet’s orbital
radius, and Rp its physical radius.When� < 1 collisions are (statistically-speaking)
favored over ejection, and when � > 1 ejection is favored. Scattering and ejection
are therefore favored for massive planets far from their stars. It is interesting to
note that � is defined in the same way as the gravitational focusing factor FG from
Eq. (1.17) in Sect. 1.2.2, which described the gravitational cross section of a growing
protoplanet such that FG = 1 + (Vesc/Vrel)

2. Here, in the context of scattering, the
dynamics are the same but in reverse. While the gravitational focusing factor FG

describes from how far away can a planet accrete another object, � is a measure of
how far a planet can launch another object.
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The planet-planet scattering model matches the observed eccentricity distribution
of giant exoplanets (Adams and Laughlin 2003; Jurić and Tremaine 2008; Chatter-
jee et al. 2008; Raymond et al. 2009a, 2010). The only requirement is that a large
fraction of systems have undergone instabilities. In simulations performed to date,
at least 75%—and probably more likely 90–95%—of giant planets systems must
have undergone planet-planet scattering in their past (Jurić and Tremaine 2008; Ray-
mond et al. 2010, 2011). Scattering can even explain the highest-eccentricity giant
exoplanets (Carrera et al. 2019).

There is an anti-correlation between giant exoplanet masses and eccentricities.
More massive planets are observed to have higher eccentricities (Jones et al. 2006;
Ribas and Miralda-Escudé 2007; Wright et al. 2008). This is the opposite of what
one would expect from planet-planet scattering. Given that scattering is a process
of equipartition of energy, one would naturally expect the low-mass planets to end
up with high eccentricities and the high-mass planets with low-eccentricities. This
is indeed what is seen in simulations of unstable systems starting with a dispersion
of different planet masses. The solution to this conundrum may be quite simply that
massive planets form in systems with many, roughly equal-mass planets (Raymond
et al. 2010; Ida et al. 2013). In that case, the most massive planets do indeed end up
on the most eccentric orbits, as observed.

A Breaking the Chains Scenario for Giant Planets

The evolution of giant planet systems may well parallel that of super-Earths. As we
saw in Sect. 1.3.1, the prevailing model for super-Earth formation—called breaking
the chains (Izidoro et al. 2017)—involves migration into resonant chains followed
by instability. Could this same evolutionary pathway apply to giant planet systems
(Fig. 1.18)?

The answer appears to be yes. Giant planets may indeed follow a breaking the
chains-style evolution that is similar, but not identical, to that of super-Earth systems.

Survival of resonances after the gaseous disk phase may be somewhat more com-
mon for giant planet systems. Only a few dozen giant planets are known to be found
in resonance (e.g., the GJ876 resonant chain of giant planets; Rivera et al. 2010).
Yet it is possible that many more resonant pairs of giant planets are hiding in plain
site. The radial velocity signatures of resonant planets can mimic those of a single
eccentric planet (Anglada-Escudé et al. 2010) and it is possible that up to 25% of the
current sample of eccentric planets are actually pairs of resonant planets (Boisvert
et al. 2018). The PDS 70 protoplanetary disk may host a pair of young giant planets
in resonance (Bae et al. 2019), and other disk signatures may require multi-resonant
planets to explain them (Dodson-Robinson and Salyk 2011). When multiple giant
planets form within a given disk it may thus slow and limit migration. This contrasts
with the case of super-Earths, which migrate all the way to the disk’s inner edge.

Instabilities appear to be ubiquitous among both super-Earths and giant exoplan-
ets. As discussed above, the eccentricities of giant exoplanets are easily matched if
most systems are survivors of instability. Instabilities may be triggered by the dis-
persal of the gaseous disk (Matsumura et al. 2010), chaotic diffusion within the giant
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planets’ orbits (Marzari and Weidenschilling 2002; Batygin and Morbidelli 2015),
or external perturbations, e.g. from wide binary stars (Kaib et al. 2013).

Connection with Rocky Planets and Debris Disks

When giant planets go unstable they affect their entire system. Given their large
masses and the high eccentricities they reach during the scattering phase, giant plan-
ets can wreak havoc on their inner and outer systems. Giant planet scattering sys-
tematically disrupts inner rocky planet systems (Veras and Armitage 2005, 2006;
Matsumura et al. 2013; Carrera et al. 2016) or their building blocks (Raymond et al.
2011, 2012), usually by driving inner bodies onto such eccentric orbits that they
collide with their host stars (see Fig. 1.19). Scattering also tends to destroy outer
planetesimals disks by ejecting planetesimals into interstellar space (Raymond et al.
2011, 2012, 2013; Marzari 2014). Outer planetesimal belts—when they survive and
contain enough mass to self-excite to a moderate degree—evolve collisionally to
produce cold dust observed as debris disks (Wyatt 2008; Krivov 2010; Matthews
et al. 2014; Hughes et al. 2018).

Raymond et al. (2011, 2012) proposed that, by influencing both the inner and
outer parts of their systems, giant planets induce a correlation between rocky inner
planets and debris disks. Hints of a correlation have been found (Wyatt 2012) but
more data are needed. It has also been suggested that giant planets—especially those
on very eccentric orbits—should anti-correlate with the presence of debris disks.
While there may be a tendency for debris disks to be less dense in systems with
eccentric giant planets (Bryden et al. 2009), no strong correlation or anti-correlation
between giant planets and debris disks has been observed to date (Moro-Martín et al.
2007, 2015).

Nonetheless, connections between planetary system architecture and the presence
and characteristics of dust remains an active area of study.

1.3.3 Solar System Formation

The standard timeline of Solar System formation proceeds as follows. Time zero
is generally taken as the formation of Calcium- and Aluminum-rich Inclusions, or
CAIs. CAIs are the oldest known inclusions in chondritic meteorites aged to be
4.568 Gyr old (Amelin et al. 2002; Bouvier and Wadhwa 2010; Connelly et al.
2012). Radioactive ages of iron meteorites suggest that their parent bodies—several
hundred to a thousand-km scale planetary embryos—were fully formed within 1
Myr after CAIs (Halliday and Kleine 2006; Kruijer et al. 2014; Schiller et al. 2015).
There are two isotopically distinct types of meteorites: the so-called carbonaceous
and non-carbonaceous groups (Warren 2011). There is a broad distribution in the ages
of both types of meteorites, whose overlap indicate that these very different types
of meteorites accreted simultaneously (Amelin et al. 2002; Warren 2011; Kruijer
et al. 2017). Chondrules—the primitive, mm-scale building blocks of chondritic
meteorites—are found at the size scale at which objects drift rapidly through the
disk due to aerodynamic drag (Weidenschilling 1977b; Lambrechts and Johansen
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Fig. 1.18 Cartoon comparison of the evolution of super-Earth and giant planets systems. The same
general processes could very well causing both populations to follow breaking the chains-like
pathways (Raymond et al. 2018d)

2012; Johansen et al. 2015). The separation of the two different types of chondritic
meteorites is interpreted as indicating that two isotopically-distinct reservoirs were
kept spatially segregated, perhaps by the rapid growth of a large planetary embryo
to the pebble isolation mass (Budde et al. 2016; Kruijer et al. 2017). This may thus
constrain the timing of the growth of Jupiter’s core to have been very rapid, reaching
the critical mass to block the pebble flux (of∼10−20M⊕; Bitsch et al., 2018) within
1–1.5 Myr after CAIs (Kruijer et al. 2017).

The gaseous disk probably lasted for roughly 5 Myr. Gaseous disks around other
stars are observed to dissipate on a few Myr timescale (see Fig. 1.2). The oldest
chondritic meteorites are the CB chondrites, which formed roughly 5Myr after CAIs
albeit perhaps in the absence of gas (Kita et al. 2005; Krot et al. 2005; Johnson et al.
2015). Given that gas is thought to be needed for planetesimal formation (Johansen
et al. 2014), this implies 5 Myr as an upper limit on the gas disk lifetime (at least in
some regions).

Hafnium-Tungsten measurements of Martian meteorites indicate that Mars’ for-
mation was basically finished within 5–10 Myr (Nimmo and Kleine 2007; Dauphas
and Pourmand 2011), meaning that it grew very little after the disk had dispersed.
In contrast, Hf/W measurements indicate that Earth’s last differentiation event—
generally thought to have been the Moon-forming impact—did not take place until
∼100 Myr after CAIs (Touboul et al. 2007; Kleine et al. 2009). However, uncertain-
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Fig. 1.19 Evolution of a simulation in which a system of gas giant went unstable, resulting in the
destruction of both an inner system of growing terrestrial planets (that were driven into collisions
with the central star) and an outer disk of ice-rich planetesimals (that was ejected into interstellar
space; see Raymond et al. (2018a, c). From Raymond et al. (2012)

ties in the degree of equilibration of the Hf/W isotopic system during giant impacts
make it hard to determine a more accurate timeframe (Fischer and Nimmo 2018).

Highly-siderophile (“iron-loving”) elements should in principle be sequestered
in the core during differentiation events. Thus, any highly-siderophile elements in
the terrestrial mantle and crust should in principle have been delivered after the
Moon-forming impact (Kimura et al. 1974). Simulations show that there is a clear
anti-correlation between the timing of the last giant impact on Earth and the mass
in planetesimals delivered after the last giant impact (Jacobson et al. 2014). The
total amount of highly-siderophile elements can therefore constrain the timing of
the impact. Assuming a chondritic composition, Earth accreted the last ∼0.5% of
its mass as a veneer after the Moon-forming impact (Morbidelli and Wood 2015).
This implies that the Moon-forming impact took place roughly 100 Myr after CAIs
(Jacobson et al. 2014), consistent with the Hf/W chronometer.

The Solar System’s giant planets are thought to have undergone an instability.
The so-called Nice model showed that the giant planets’ current orbital configura-
tion (Tsiganis et al. 2005; Nesvorný and Morbidelli 2012)—as well as the orbital
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properties of Jupiter’s Trojans (Morbidelli et al. 2005; Nesvorný et al. 2013), the
irregular satellites (Nesvorný et al. 2014), and the Kuiper belt (Levison et al. 2008;
Nesvorný 2015)—could be explained by a dynamical instability in the giant planets’
orbits (Nesvorný 2018b). The instability is generally thought to have been triggered
by interactions between the giant planets and a remnant planetesimal disk, essen-
tially the primordial Kuiper belt (Gomes et al. 2005; Morbidelli et al. 2007; Levison
et al. 2011; Quarles and Kaib 2019), although a self-driven instability is also possible
(Raymond et al. 2010; de Sousa et al. 2020). The instability was first proposed to
explain the so-called terminal lunar cataclysm, i.e. an abrupt increase in the flux of
projectiles hitting the Moon roughly 500 Myr after CAIs (Tera et al. 1974; Gomes
et al. 2005;Morbidelli et al. 2012). However, newer analyses suggest that no terminal
lunar cataclysm ever took place (Chapman et al. 2007; Boehnke and Harrison 2016;
Zellner 2017; Morbidelli et al. 2018; Hartmann 2019), and that the instability may
have taken place anytime in the first ∼100 Myr after CAIs (Morbidelli et al. 2018;
Nesvorný et al. 2018; Mojzsis et al. 2019).

Over the past decade, global models of Solar System formation have been revolu-
tionized (see Fig. 1.20). Decades-old models that assumed local growth of the plan-
ets (i.e., the so-called classical model; Weidenschilli 1977a; Wetherill 1978, 1992;
Chambers and Wetherill 1998; Chambers 2001; Raymond et al. 2004, 2009b; 2014;
O’Brien et al. 2006) have been supplantedwithmodels that explain the distribution of
the planets and small body belts by invoking processes such as long-range migration
of the giant planets (the Grand Tack model; Walsh et al. 2011; Raymond and Mor-
bidelli 2014;Brasser et al. 2016), non-uniformplanetesimal formationwithin the disk
(the Low-mass Asteroid beltmodel; Hansen 2009; Izidoro et al. 2015c; Dra̧żkowska
et al. 2016; Raymond and Izidoro 2017b) and an early instability among the giant
planets’ orbits (the Early Instability model; Clement et al., 2018, 2019a, b). Pebble
accretion has been proposed to play an important role during the terrestrial planets’
growth (Levison et al. 2015), the importance of which may be constrained by iso-
topic measurements of different types of meteorites as well as Earth samples (Warren
2011; Kruijer et al. 2017; Schiller et al. 2018; Budde et al. 2019).

Here we first describe the classical model and then the other competing models.
We then compare the predictions of different models.

1.3.3.1 The Classical Model

The classical model of terrestrial planet formation makes two dramatically sim-
plifying assumptions. First, it assumes that the planets formed roughly in place.
This implies that one can reconstruct the approximate mass distribution of the pro-
toplanetary disk by simply spreading the planets’ masses out in concentric annuli
(the so-called ‘minimum-mass solar nebula’ model;Weidenschilling 1977a; Hayashi
1981; Davis 2005). Second, it assumes that giant- and terrestrial planet formation can
be treated separately. Thus, one can study the influence of the giant planets’ orbits
on terrestrial planet formation after the gas disk had dispersed without the need to
consider their earlier effects.
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Fig. 1.20 Cartoon comparison between three plausible models for Solar System formation
described in Sects. 3.3.2, 3.3.3, and 3.3.4. From Raymond et al. (2018d)

Figure 1.21 shows a simulation of the classical model of terrestrial planet for-
mation (from Raymond et al. 2006a). In this case Jupiter is included on a supposed
pre-instability orbital configuration, on a near-circular orbit. The terrestrial disk is
initially composed of roughly 2000 planetary embryos with masses between that of
Ceres and the Moon. Accretion is driven from the inside-out by gravitational self-
stirring and from the outside-in by secular and resonant forcing from Jupiter. There
is a long chaotic phase of growth that involves many giant impacts between planetary
embryos (see e.g. Agnor et al. 1999; Kokubo and Ida 2007; Quintana et al. 2016). The
planets grow on a timescale of 10−100 Myr. Remnant planetesimals are cleared out
on a longer timeframe. There is sufficient radial mixing during growth for water-rich
material from past 2.5 au to have been delivered to the growing Earth (see extensive
discussion of the origin of Earth’s water in Sect. 1.3.4).

The classical model has a fatal flaw: it systematically produces Mars analogs that
are far more massive than the real Mars (Wetherill 1991). This can be seen in the
simulation fromFig. 1.21,which formed passableVenus andEarth analog, but aMars
analog roughly as massive as Earth. The true problem is not Mars’ absolute mass
but the large Earth/Mars mass ratio. The classical model tends to produce systems in
which neighboring planets have comparable masses rather than the∼9:1 Earth/Mars
ratio (Raymond et al. 2006a; O’Brien et al. 2006; Raymond et al. 2009b; Morishima
et al. 2008, 2010; Fischer and Ciesla 2014; Kaib and Cowan 2015). Classical model
simulations tend to have twoother problems related to the asteroid belt: large embryos
are often stranded in the belt (Raymond et al. 2009b), and they do not match the belt’s
eccentricity and inclination distributions (Izidoro et al. 2015c).
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Fig. 1.21 Simulation of the classical model of terrestrial planet formation (Raymond et al. 2006a).
The size of each planetary embryo scales with its mass m as m1/3. Colors represent the water con-
tents, initially calibrated to match the water contents of current orbital radii of different populations
of primitive asteroids (Gradie and Tedesco 1982; Raymond et al. 2004). Jupiter is the large black
circle

The building blocks of the terrestrial planets were roughlyMars-mass and thus the
inner Solar Systemmay only have contained roughly two dozen embryos (Morbidelli
et al. 2012). One may wonder how often a small Mars arises because, by chance, it
avoided any late giant impacts. Fischer and Ciesla (2014) showed that this happens in
a few percent of simulations. However, when one takes the asteroid belt constraints
into consideration the success rate of the classical model in matching the inner Solar
System drops by orders of magnitude (Izidoro et al. 2015c).

The ‘small Mars’ problem—first pointed out by Wetherill (1991) and
re-emphasized by Raymond et al. (2009b)—is thus the Achilles heel of the clas-
sical model. It prompted the development of alternate models, whose goal was to
explain how two neighboring planets could have such different masses.
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Fig. 1.22 Evolution of the Grand Tack model (Walsh et al. 2011). The giant planets’ migration
(black symbols) sculpts the distribution of rocky bodies in the inner Solar System. Here Jupiter
migrated inward, then Saturn migrated inward, and then the two planets migrated back out. The red
dots indicate presumably dry, S-type planetesimals that formed interior to Jupiter’s orbit, whereas
the blue dots represent planetesimals originally between and beyond the giant planets’ orbits. Rocky
planetary embryos are shown as empty circles. The bottom three panels include dashed contours of
the present-day main asteroid belt

1.3.3.2 The Grand Tack Model

The Grand Tack model (Walsh et al. 2011) proposed that Jupiter’s migration during
the gaseous disk phase was responsible for depletingMars’ feeding zone. The Grand
Tack is based on hydrodynamical simulations of orbital migration (see Sect. 2.4
and 2.5 for more details). Simulations show the giant planets carve annular gaps
in the disk (Lin and Papaloizou 1986; Ward 1997; Crida et al. 2006). A single
planet usually migrates inward on a timescale that is related to the disk’s viscous
timescale (D’Angelo et al. 2003; Dürmann and Kley 2015). Multiple planets often
migrate convergently and become trapped in mean-motion resonances (Snellgrove
et al. 2001; Lee and Peale 2002), often sharing a common gap. When the inner
planet is two to four times more massive than the outer one and both planets are in
the gap-opening regime, gas piles up in the inner disk and a toque imbalance causes
the two planets to migrate outward (Masset and Snellgrove 2001; Morbidelli et al.
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2007; Pierens and Nelson 2008; Zhang and Zhou 2010; Pierens and Raymond 2011;
Pierens et al. 2014).

The Grand Tack model proposes that Jupiter formed first and migrated inward.
Saturn formed more slowly, migrated inward and caught up to Jupiter. The two
planets became locked in resonance and migrated outward together until either the
disk dissipated or certain conditions slowed their migration (e.g., if the disk was
flared such that Saturn dropped below the gap-opening limit in the outer disk).

The evolution of the Grand Tack model is shown in Fig. 1.22. If Jupiter’s inward
migration reached 1.5−2 au then the inner disk would have been truncated at ∼1 au,
depleting Mars’ feeding zone but not Earth’s (Walsh et al. 2011; Brasser et al. 2016).
The terrestrial planets in simulations provide a good match to the real ones (Walsh
et al. 2011; Jacobson and Morbidelli 2014; Brasser et al. 2016).

The asteroid belt is severely depleted by Jupiter’s migration but is not completely
emptied (Walsh et al. 2011, 2012). The S-types were scattered outward by Jupiter’s
inwardmigration, thenback inwardby Jupiter’s outwardmigration,with an efficiency
of implantation of∼0.1%. TheC-types were scattered inward by Jupiter and Saturn’s
outward migration. The final belt provides a reasonable match to the real one—
particularly when evolved over Gyr timescales (Deienno et al. 2016). It is worth
noting, however, that the initial conditions in Fig. 1.22 neglect additional (possibly
much more important) phases of implantation that took place during Jupiter and
Saturn’s rapid gas accretion (Raymond and Izidoro 2017a).

The Grand Tack’s potential Achilles heel is the mechanism of outward migration
itself (see discussion in Raymond and Morbidelli 2014). The most stringent con-
straint on outward migration is that it requires a relatively limited range of mass
ratios between Jupiter and Saturn (roughly between a ratio of 2:1 and 4:1; Masset
and Snellgrove 2001). It remains to be seen whether long-range outward migration
remains viable when gas accretion is consistently taken into account, as the gas
giants’ mass ratio should be continuously changing during this phase. There may
also be geochemical constraints related to the speed of accretion in the Grand Tack
model (Zube et al. 2019).

1.3.3.3 The Low-Mass Asteroid Belt Model

The Low-Mass Asteroid belt model makes the assumption that Mars’ small mass is
a consequence of a primordial mass deficit between Earth and Jupiter’s present-day
orbits. Gas disks are generally expected to have smooth radial distributions, but this
is not the case for dust. Dust drifts within disks and ALMA images show that dust
rings are common in protoplanetary disks (ALMA Partnership 2015; Andrews et al.
2018). Given that planetesimal formation via the streaming instability is sensitive
to the local conditions (Simon et al. 2016; Yang et al. 2017), dust rings may be
expected to produce rings of planetesimals. One model of dust drift and coagulation,
combined with the conditions needed to trigger the streaming instability, showed that
planetesimals may indeed form rings (Dra̧żkowska et al. 2016).
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Fig. 1.23 Distribution of
simulated terrestrial planets
formed assuming that all of
the terrestrial planets’ mass
was initially found in a
narrow annulus between the
orbits of Venus and Earth
(denoted by the dashed
vertical lines). The open
circles show simulated
planets and the solid ones are
the real planets. From
Hansen (2009)

Since the 1990s it was known that if an edge existed in the initial distribution of
planetary embryos or planetesimals, any planet that formed beyond that edge would
be much less massive than the planets that formed within the main disk (Wetherill
1992, 1996; Chambers and Wetherill 1998; Agnor et al. 1999; Chambers 2001).
However, it was Hansen (2009) who proposed that such an edge might really have
existed in the early Solar System. Indeed, he showed that the terrestrial planets can
be matched if they formed from a narrow annulus of rocky material between the
orbits of Venus and Earth (see Fig. 1.23). In this model the large Earth/Mars mass
ratio is a simple consequence of the depletion of material past Earth’s orbit, and the
small Mercury/Venus mass ratio is a consequence of the analogous depletion interior
to Venus’ orbit.

The most extreme incarnation of the Low-mass asteroid belt model proposes that
no planetesimals formed between the orbits of Earth and Jupiter (Hansen 2009;
Raymond and Izidoro 2017b), but the model is also consistent with planetesimal
forming in the belt, just at a reduced efficiency.Yet, even an empty primordial asteroid
belt would have been dynamically re-filled with objects originating across the Solar
System. Rapid gas accretion onto Jupiter and later Saturn destabilizes the orbits of
nearby planetesimals, many of which are gravitationally scattered in all directions.
Under the action of gas drag, a fraction of planetesimals are trapped on stable, low-
eccentricity orbits, preferentially in the asteroid belt (Raymond and Izidoro 2017a),
and some are scattered past the asteroid belt to the terrestrial planet region itself
(see Fig. 1.27 and Sect. 1.3.4). On a longer timescale, the growing terrestrial planets
scatter remnant planetesimals outward, a small fraction of which are trapped in the
main belt, preferentially in the inner parts (Raymond and Izidoro 2017b).
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The main uncertainty in the Low-mass asteroid belt are the initial conditions.
When disk models, dust growth and drift, disk observations and interpretation
(including studies of ALMA-detected disks), and meteorite constraints (including
the broad age distribution of non-carbonaceous chondrites, which indicate many dif-
ferent planetesimal formation events; Kruijer et al. 2017) are all accounted for, will
it be a reasonable assumption that the terrestrial planets could have formed from a
narrow ring of planetesimals?

1.3.3.4 The Early Instability Model

It has beendemonstrated numerically that dynamical instabilities amonggiant planets
cause severe damage to the small bodies in their same systems (see Fig. 1.19). The
Solar System’s giant planets are thought to have undergone an instability, albeit a
much less violent one than the typical instability incurred by giant exoplanet systems.
Nonetheless, the Solar System’s instability is violent enough that, if they were fully-
formed at the time, the terrestrial planets would have had a very low probability of
survival (Kaib and Chambers 2016). Yet the timing of the instability is uncertain,
and it could have happened anytime in the first 100 million years of Solar System
evolution (Morbidelli et al. 2018;Mojzsis et al. 2019). Onemay thenwonder whether
a very early instability could have played a role in shaping the distribution of the
terrestrial planets.

The Early Instability model, conceived and developed by Clement et al. (2018,
2019a, b), is built on the premise that the giant planets’ instability took place within
roughly 10Myr of the dissipation of the gaseous disk. The evolution of one realization
of the model is shown in Fig. 1.24. The early evolution of the Early Instability model
is identical to that in the classical model. The giant planets’ dynamical instability—
triggered after 10 Myr in the simulation from Fig. 1.24—strongly excites the orbits
of inner Solar System objects extending through the asteroid belt in to Mars’ feeding
zone (Deienno et al. 2018; Clement et al. 2019b). The belt is strongly depleted
and dynamically excited, and Mars’ growth is effectively stunted. In a fraction of
simulations no Mars forms at all (Clement et al. 2018)! The growth of Earth and
Venus are largely unperturbed and qualitatively similar to the classical model.

The instability itself is stochastic in nature. Matching the instability statistically
requires a large number of numerical realizations, which produce a spectrum of
Solar Systems with different properties. Such simulations have more constraints
than many because they include all of the planets and not just the terrestrial planets.
One remarkable feature of the Early Instability model is that systems that provide the
best match to the outer Solar System are the same ones that provide the best match
to the terrestrial planets (Clement et al. 2018, 2019a, b).

The main uncertainty in the Early Instability model is simply the timing of the
instability. Mars’ formation was largely complete within 5–10 Myr (Nimmo and
Kleine 2007; Dauphas and Pourmand 2011), shortly after the disappearance of the
gaseous disk. To affect terrestrial planet formation, the giant planets must therefore
have gone unstable within perhaps 5 Myr of the disk’s dispersal. This would also
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Fig. 1.24 Evolution of the Early Instability model. In this case the giant planets’ instability was
triggered 10 Myr after the dissipation of the disk. The instability strongly excited the orbits of
growing planetesimals and planetary embryos in the asteroid belt and Mars’ feeding zone. Mars’
growth was stunted, but Earth and Venus continued to accrete for ∼100 Myr. The final system has a
large Earth/Mars mass ratio and an overall planetary system architecture similar to the actual Solar
System (shown at bottom for comparison). Figure courtesy of M. S. Clement, from Clement et al.
(2018)

imply a cometary bombardment in the inner Solar System thatwas coincidentwith the
late phases of terrestrial planet growth. While such a bombardment would deliver
only a very small amount of mass to Earth (Morbidelli et al. 2000; Gomes et al.
2005), it would provide a large component of Earth’s noble gases (Marty et al.
2016). The Xe isotopic compositions of the mantle and atmosphere are different
(Mukhopadhyay 2012; Caracausi et al. 2016), and it has been suggested that a comet-
delivered component contributed to the atmospheric Xe budget but not to the mantle
Xe (Marty et al. 2017). It remains to be understood whether or not this implies that
the bulk of Earth accreted with little cometary influx, which would constrain the
timing of cometary delivery and presumably of the instability itself.
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1.3.3.5 Other Models

It is worth noting that the three scenarios outlined above as alternatives to the classical
model are not the only ones that have been proposed. For example, it was suggested
that sweeping secular resonances during the dissipation of the gaseous disk could
have depleted and excited the asteroid belt and generated an edge in the terrestrial
planets’ mass distribution (Nagasawa et al. 2005; Thommes et al. 2008; Bromley and
Kenyon 2017). Themain uncertainty in that model is whether a non-zero eccentricity
of Jupiter can realistically be maintained during the gas dissipation phase.

It has also been suggested that pebble accretionmayhaveplayed a role in terrestrial
planet formation (Levison et al. 2015; Chambers et al. 2016). Isotopic analyses of
meteorites may help to constrain the degree to which carbonaceous pebbles from
the outer Solar System contributed to the growth of the terrestrial planets (Schiller
et al. 2018; Budde et al. 2019). In general, the formation of Earth-mass planets
within the disk lifetime poses a problem because, given that the gas disk is required
for pebble accretion, such planets should grow fast enough to migrate inward and
become super-Earths (Lambrechts et al. 2019a).

1.3.4 Origin of Water on Earth and Rocky Exoplanets

We now turn our attention to the origin of planets’ water. Cosmochemical tracers
such as isotopic ratios can be used to constrain the potential sources of Earth’s water
(see, e.g., Morbidelli et al. 2000; Marty 2012). While bulk density measurements of
solid exoplanets can in principle be used to trace water contents (Valencia et al. 2007;
Sotin et al. 2007; Fortney et al. 2007; Seager et al. 2007), in practice it is extremely
challenging (Adams et al. 2008; Selsis et al. 2007;Dorn et al. 2015). There have been a
few recent reviews on the origins of Earth’s water in dynamical and cosmochemical
context (O’Brien et al. 2018; McCubbin and Barnes 2019; Meech and Raymond
2019).

Earth is our benchmark for water. While it appears blue from space, all of Earth’s
oceans only add up to ∼2.5 × 10−4 M⊕ of water. This is generally referred to as one
“ocean” of water. The water budget of Earth’s interior is quite uncertain. Different
studies infer different quantities of water trapped in hydrated silicates, with overall
budgets between roughly one and ten oceans (Hirschmann 2006; Mottl et al. 2007;
Marty 2012; Halliday 2013). Earth’s core may be very dry (Badro et al. 2014) or
may contain fifty or more oceans of water (Nomura et al. 2014). While papers often
quote Earth as being roughly one part in a thousand water by mass, it is important
to be aware of the uncertainty.

Figure 1.25 shows the D/H ratios for a number of Solar System objects (for a
compilation of references to the D/H measurements, see Morbidelli et al. 2000;
Marty and Yokochi 2006; Alexander et al. 2012, 2018). The Sun and gas-dominated
planets have D/H ratios roughly six times lower than Earth’s. This is interpreted as
the isotopic composition of the gaseous protoplanetary disk. Carbonaceous chondrite
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Fig. 1.25 Measured 15/14N isotope ratios vs. D/H ratios of Solar System objects. Arrows indicate
how different processes would affect an object’s evolution in this isotope space. Figure courtesy of
B. Marty, from Marty et al. (2016)

meteorites have similar D/H values to Earth.Most measured comets have higher D/H
values than Earth, although two recently-measured Jupiter-family comets (Hartogh
et al. 2011; Lis et al. 2013) and one Oort cloud comet (Biver et al. 2016) have
Earth-like D/H ratios. In contrast, ESA’s Rosetta mission measured the D/H ratio
of comet 67P/C-G to be more than three times the terrestrial value. A recent result
(Sosa and Fernández 2011; Lis et al. 2019) found that very active comets tended to
have Earth-like D/H whereas less active ones have higher D/H. One interpretation
is that comets’ original water was Earth-like and loss processes during outgassing
have fractionated the surviving D/H. If true, that would mean render the D/H ratio
useless as a discriminant between comets and carbonaceous sources of water. One
must then resort to dynamical constraints or perhaps to other isotopic systems.

Figure 1.25 naively would suggest carbonaceous chondrite-like objects as the
source of Earth’s water and Nitrogen. Yet, even if Earth’s water were delivered by
carbonaceous objects, that is only a part of the story. A complete model must explain
the full evolution of our planetary system and, in the context of Earth’s water, ask:
where did the water-bearing objects themselves originate?

We can break down the various models for water delivery into six rough scenarios
that we outline below. Two of these models invoke local sources of water whereas
the others propose that Earth’s water was delivered from farther out in the disk. For
a comprehensive review of these models, see Meech and Raymond (2019).
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Adsorption of Water Vapor Onto Silicate Grains

In a simple picture of the structure of disks, water should exist as a solid past the snow
line and as a vapor closer-in. If water vapor was indeed present where silicate grains
were coalescing to form the terrestrial planets, then “in-gassing” may have attached
hydrogen molecules to silicate grains (Stimpfl et al. 2006; Muralidharan et al. 2008;
Asaduzzaman et al. 2014; Sharp 2017; D’Angelo et al. 2019). This process is called
adsorption. The mechanism can in principle have seeded Earth with a few oceans
of water, albeit without taking any water loss processes into account, such as 26Al-
driven heating (Grimm and McSween 1993; Monteux et al. 2018) or impact-related
losses (Genda and Abe 2005; Svetsov 2007). Yet at face value it should have seeded
Earth with nebular water, which has a D/H ratio six times smaller than Earth’s. It also
cannot explain the abundance of other volatiles such as C, N and the noble gases,
which would then require an alternate source containing little hydrogen. Finally, it
begs the question ofwhy the Enstatite chondrites—meteorites that provide the closest
chemicalmatch to Earth’s bulk composition (Dauphas 2017)—appear to have formed
without any water.

Oxidation of H-Rich Primordial Envelope

As planetary embryos grow, they gravitationally accrete H-rich envelopes if they
are more massive than a few tenths of Earth’s mass (Ikoma et al. 2000; Lambrechts
and Lega 2017). This hydrogen could have chemically reacted with Earth’s surface
magma ocean and generated water by hydrating silicates (Ikoma and Genda 2006).
Given that the D/H ratio of nebular gas was many times smaller than Earth’s water,
this model, like the previous one, predicts that Earth’s initial D/H ratio was small. In
this case, however, it is possible to envision that Earth’s D/H changed in time. The
loss of a thick hydrogen envelope would certainly entail mass fractionation, and for
a certain range of parameters Earth’s final D/H ratio can be matched even though
its water was acquired from gas (Genda and Ikoma 2008). However, the collateral
effects of this presumed atmospheric loss have not been quantified, and appear to
be at odds with other constraints, such as the abundance of 129Xe from the decay
of 129I (Marty et al. 2016). In addition, it seems quite a coincidence for Earth to
match carbonaceous chondrites in multiple isotopic systems as a result of such loss
processes, which would affect different molecules differently.

Pebble “Snow”

Planets beyond the snow line accrete water as a solid. It is simply a building block.
Yet the snow line is a moving target. As the disk evolves and cools, the snow line
generally moves inward (Sasselov and Lecar 2000; Lecar et al. 2006; Martin and
Livio 2012). A planet on a static orbit would see the snow line sweep past it. Such
a planet would start off in the rocky part of the disk but, once the snow line passed
interior to its orbit, would find itself outside the snow line, in the presumably icy part
of the disk (see Fig. 1.26).

As the snow line sweeps inward, new ice does not come from the condensation
of water vapor. This is because the speed at which gas moves through the disk is far
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faster than the motion of the snow line itself (Morbidelli et al. 2016). Thus, the gas
just interior to the snow line is dry. Rather, ice at the snow line comes from pebbles
and dust that drift inward through the disk. The source of these drifting pebbles
is thought to move outward as an analogous wave of dust coagulation and growth
sweeps radially out through the disk (Birnstiel et al. 2012; Lambrechts et al. 2014;
Birnstiel et al. 2016; Ida et al. 2016). If anything blocks the inward flow of pebbles—
such as a growing giant planet core (Lambrechts and Johansen 2014; Bitsch et al.
2018)—the snow line will continue to move inward but it will not bring any ice along
with it (Morbidelli et al. 2016). The source of water will also drop if the outward-
sweeping growth front producing pebbles reaches the outer edge of the disk (Ida
et al. 2019).

In the Solar System there is evidence that the pebble-sized building blocks car-
bonaceous and noncarbonaceous were segregated as of 1–1.5Myr after CAIs (Budde
et al. 2016; Kruijer et al. 2017). This would suggest that carbonaceous pebbles did
not deliver Earth’s water, as their widespread presence in the inner Solar System
would presumably have produced a category of meteorites intermediate in isotopic
composition between the carbonaceous and noncarbonaceous. The Enstatite chon-
drites, which formed near the end of the disk’s lifetime and are the closest chemical
match to Earth, are dry (Alexander et al. 2018).

Nonetheless, pebble snow may be a key mechanism in delivering water to rocky
exoplanets (see below).

Wide Feeding Zone

A planet’s feeding zone is simply the radial distribution of its constituents. In the
classical model, the terrestrial planets formed from a broad disk of planetary embryos
extending from Venus’ orbit out to Jupiter’s. For example, in the simulation from
Fig. 1.21, each of the three surviving terrestrial planets accreted material from a
broad swath of the disk. Given that the constituent planetesimals should have a
radial gradient in composition based on the local temperature (Dodson-Robinson
et al. 2009), this implies that volatiles are naturally incorporated into growing planets
if the planets’ feeding zones extend out far enough (Morbidelli et al. 2000; Raymond
et al. 2004, 2007a).

The planets’ broad feeding zones—in concert with the isotopic match between
Earth’s water and that of carbonaceous chondrites—led to the scenario that Earth’s
water was delivered by primordial carbonaceous planetesimals or planetary embryos
(Morbidelli et al. 2000; Raymond et al. 2004, 2007a). However, this idea was built
on the classical model. As the classical model crumbled under the weight of the
small Mars problem (see Sect. 1.3.3) the idea that Earth’s water was a result of its
broad feeding zone no longer made sense. The Early Instability model (Clement
et al. 2018, 2019a, b) starts from essentially the same initial conditions as the clas-
sical model and presents a viable solution to the small Mars problem all the while
delivering water to Earth by the same mechanism. However, like the classical model
(Raymond et al. 2009b), the Early Instability may only adequately deliver water
to Earth in simulations that fail to match Mars’ small mass (Clement and Rubie,
personal communication). The Early Instability model acknowledges that in order
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Fig. 1.26 The pebble snow model (Oka et al. 2011; Sato et al. 2016; Ida et al. 2019). Rocky
planetary embryos grow from rocky grains interior to the snow line. As the disk cools, the snow line
sweeps inward and ice-rich pebbles from the outer parts of the disk deliver water to the terrestrial
planet region. Figure courtesy of T. Sato, from Sato et al. (2016)

to understand in the first place the existence of water-rich asteroids intermixed with
water-poor asteroids in the asteroid belt, whichmay have been the result of the growth
and/or migration of the giant planets. That leads us to the next scenario.

External Pollution

The orbits of leftover planetesimals are strongly perturbed by the growth and migra-
tion of the giant planets. The phase of rapid gas accretion is particularly dramatic.
Themass of the giant planets can increase from∼10−20M⊕ up to hundreds of Earth
masses on a∼105 year timescale (Pollack et al. 1996; Ida et al. 2004). This rapid gas
accretion destabilizes the orbits of any nearby planetesimals that managed to avoid
being accreted. Many planetesimals undergo close gravitational encounters with the
growing planet and are scattered in all directions. Under the action of gas drag, many
planetesimals are trapped interior to the giant planet’s orbit (Raymond and Izidoro
2017a; Ronnet et al. 2018). This happens when a planetesimal on an eccentric orbit
that crosses the giant planet’s orbit at apocenter undergoes sufficient orbital energy
loss due to gas drag to drop its apocenter away from the giant planet, releasing it
from the gas giant’s dynamical clutches.

Figure 1.27 shows this process in action. Jupiter’s growth triggers a pulse of
planetesimal scattering, and a second is triggered when Saturn forms. The outcomes
of these pulses can vary because the disk itself changes in time as it both slowly
dissipates and, more importantly, is sculpted by the giant planets.
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Fig. 1.27 Scattering of ten thousand planetesimals driven by the growth of Jupiter (from 100 −
200 kyr) and Saturn (from 300 − 400 kyr). Planetesimals from the Jupiter-Saturn region end up
polluting the inner Solar System en masse. Some are trapped in the outer parts of the main asteroid
belt (shaded) and some are scattered past the belt to the terrestrial planet region (above the dashed
line). And even so, this example shows the minimum expected impact of the giant planets’ growth,
as it assumed the giant planets to have formed on low-eccentricity, non-migrating orbits in 3:2
resonance. Planetesimal colors correspond simply to each object’s starting location. There is an
underlying gaseous disk in the simulation, whose structure and overall density evolve in time in a
consistent way. In this example, planetesimals were assumed to be 100km in diameter for the gas
drag calculation. From Raymond and Izidoro (2017a)

The relative number of planetesimals that are trapped in the main asteroid belt
(providing an orbitalmatch to theC-types) vs. those that are scatteredpast the asteroid
belt to the terrestrial planets (to deliver water) varies as a function of the strength
of gas drag (Raymond and Izidoro 2017a). When gas drag is strong—i.e., for a
massive inner gas disk or smaller planetesimals—scattered planetesimals are rapidly
decoupled from Jupiter and are generally trapped in the outer parts of the main belt.
When gas drag is weak—for a low-density inner disk or large planetesimals—it takes
a large number of orbits for gas drag to decouple planetesimals’ orbits from Jupiter.
Planetesimals are more frequently scattered farther inward to pollute the terrestrial
planet-forming region and to deliver water.



70 S. N. Raymond and A. Morbidelli

A similarmechanism is driven by giant planetmigration. In theGrandTackmodel,
Jupiter and Saturn’s outward migration scatters a large number of planetesimals
inward (Walsh et al. 2011, 2012; see Fig. 1.22). Given that the giant planets are
migrating away, scattered planetesimals are more easily decoupled from the giant
planets. The distribution of scattered planetesimals that survive on orbits interior
to the giant planets’ have a much weaker size dependence than for those that were
scattered during the giant planets’ growth and for which gas drag played a central
role. The dependence on the gas surface density is also much weaker.

Both migration and growth can thus generate populations of terrestrial planet-
crossing planetesimals that originated beyond Jupiter. Given their distant origins
these planetesimals tend to have high-eccentricity orbits, but simulations show that
they are nonetheless accreted by the terrestrial planets on a geochemically consistent
timescale and in sufficient quantity to easily deliver Earth’s water budget (O’Brien
et al. 2014). In addition, they naturally match the compositions of carbonaceous
meteorites.

In the wide feeding zone model, the C-type asteroids represented the distant,
mother source of Earth’s water. In the pollution model, Earth’s water was delivered
from the same parent population as the objects that were implanted into the asteroid
belt as C-types. Thus, Earth’s water and C-type asteroids are brother and sister.

At present, the pollution scenario is the leading model to explain the origin of
Earth’s water. It matches the amount and chemical signature of Earth’s water, and
naturally fits within different models of Solar System formation.

Inward Migration

Earth-mass planets migrate relatively rapidly in protplanetary disks (see Sects. 1.2.2
and 1.3.1). Given that large embryos are thought to form fastest past the snow line
(Lambrechts and Johansen 2014; Morbidelli et al. 2015), this implies that many
inward-migrating planets or cores should be water-rich (Bitsch et al. 2019b). Indeed,
the migration model for super-Earth formation predicts that most should be water-
rich (Raymond et al. 2018b; Izidoro et al. 2019). Inward-migrating gas giants can
shepherd material interior to their orbits and trigger the formation of very water-rich
terrestrial planets (Raymond et al. 2006b; Mandell et al. 2007).

A number of lines of evidence point to the terrestrial planets having formed from
∼Mars-mass planetary embryos (Morbidelli et al. 2012). This is below the mass
threshold for large-scale migration (Ward 1997), and so we do not think that Earth
accreted any water from inward-migrating embryos.

However, migration may prove a central water delivery mechanism in other sys-
tems (see below).

Extrapolation to Exoplanets

Let us now very simply extrapolate these six water delivery (or water production)
mechanisms to exoplanet systems.Most of thesemechanisms can account for Earth’s
water budget with perhaps an order of magnitude variation.

We propose that the water contents of rocky planets are likely to have a bimodal
distribution.Migration is the key player. If embryos grew large enough andunderwent
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long-range migration then they must invariably pollute the terrestrial planet-forming
region (Izidoro et al. 2014). This should lead to elevated water contents of ∼10% by
mass. However, if migration was not involved, then the other mechanisms discussed
can still deliver an Earth-like or higher water budget. Gas giants are rare enough
around Sun-like and low-mass stars that they probably do not play the central role in
water delivery in general terms (although they likely dominate in their own systems).
Pebble snow can in principle deliver tens to hundreds of oceans, but requires a clear
path between the outward-sweeping icy pebble front and the rocky planet zone that
is unencumbered by pressure bumps, including those produced by growing planets
(which are themselves growing by consuming icy pebbles).

If migration is indeed the key, then one might predict an observational marker
between the action of migration and the planets’ water and other volatile contents.
Such an observational test is beyond current capabilities but may be imaginable in
the coming decade or two.

1.4 The Future of Planet Formation Studies

We conclude this broad-sweeping review with our vision for the future of planet
formation. We cannot pretend to have a coherent view of all of the theoretical and
empirical challenges that will push the field forward. Nonetheless, we proceed by
highlighting three action items: a key bottleneck for planet formation models, one
particularly promising path forward, and a call for connection.

A Key Bottleneck for Planet Formation

We consider the central bottleneck in planet formation to be understanding the under-
lying structure of protoplanetary disks (see Sect. 2.1 and discussion inMorbidelli and
Raymond, 2016). Disks are the birthplace of planets. Their underlying structure con-
trols how dust grows and drifts, where dust or pebbles pile up to become sufficiently
concentrated to form planetesimals, as well as how fast and in what direction planets
migrate. Simple viscous disk models do not match observations and have been sup-
planted by models that include effects such as ambipolar diffusion and wind-driven
angular momentum loss. ALMA observations of disks (Andrews et al. 2018) provide
ever more stringent constraints on such models, yet to date there is no underlying
model that matches the population of disk observations. Of course, interactions with
other stars during the embedded cluster phase leads to a diversity of disk properties,
but with statistically described distributions (Bate 2018). We encourage future work
to develop comprehensive, trustworthy disk models.

Coupling Dynamical and Chemical Models

One key path forward for understanding the early evolution of the Solar System is
coupling dynamical and accretion models with cosmochemical constraints. Some
constraints are already being used by current models. For example, the D/H ratio—
especially when combined with the 15/14N ratio (Marty and Yokochi 2006; Marty
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et al. 2016)—appears to be a powerful tracer of Earth’s water. Isotope systems such
as Hf/W already provide strong constraints on the timing of planetary accretion.
Some formationmodels also incorporate simple chemicalmodels (Rubie et al. 2015).
Yet, there remain many connections to be made between dynamical models and
cosmochemistry.

A Call to Connect Different Constraints and Models

We conclude this chapter with a call to create as many connections as possible. This
is a large variety of disciplines linked together to create the field of planet formation.
These include observations of protoplanetary disks and debris disks, exoplanet stud-
ies, meteorite analysis, planetary surfaces (e.g., crater modeling), orbital dynamics,
gasdynamics, small body studies, and a variety of different types of numerical mod-
eling. We encourage the reader to strive to make connections between their specialty
and others. Many of the most interesting dynamical models come from connections
between subdisciplines. For example, the idea of the Solar System’s instability (the
Nice model Tsiganis et al., 2005; Gomes et al., 2005; Nesvorný, 2018b) was born
from a dynamical model to explain the now-defunct terminal lunar cataclysm. The
Grand Tack model of Solar System formation (Walsh et al. 2011) was inspired by
numerical studies of planet migration designed to explain the origin of hot Jupiters
(Lin et al. 1996). Giant exoplanets orbiting stars with wide companions have more
eccentric orbits than giant exoplanets around single stars; this is a result of Oort cloud
comet-like oscillations in the orbits of wide binary stars (Kaib et al. 2013).

Connecting thedots in newways is essential tomoving thefieldof planet formation
forward.
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Part II
Star-Planet Interactions



Chapter 2
The Role of Interactions Between Stars
and Their Planets

A. F. Lanza

Abstract Stars interact with their close-by planets by tides, radiation, and mag-
netic fields. This chapter briefly introduces such interactions focusing on the basic
physical processes and considering their consequences for exoplanet demography,
in particular, for the distributions of the orbital semi-major axis as well as of radius
and mass of planets. The rotation of planet-hosting stars, as well as their magnetic
activity, are considered because they play a relevant role in the interactions.

Keywords Planet-star interactions, stars · Activity, stars · Late-type, stars ·
Rotation, stars · Coronae

2.1 Introduction

Stars interact with their planets through different mechanisms and those interactions
affect the physical parameters of the planets along their evolution having an impact
on their statistical distributions. Interactions are important especially for close-by
planets, that is, those preferentially detected by the planet-search techniques based
on transits or radial-velocity measurements. For example, tides raised inside a star
by a close-by massive planet produce a slow variation of the orbital semi-major
axis with the planet eventually coming closer and closer to its host. On the other
hand, tides raised by the star inside a close planet can synchronize its rotation in
a time interval much shorter than the main-sequence lifetime of the star and this
deeply affects the atmospheric dynamics of the planet and its evolution. In addition
to tides, stars produce strong irradiation of the atmospheres of close-by planets that
can produce their evaporation leaving a bare core with a significantly smaller radius
than that of the initial planet.Magnetic fields and stellar winds can affect planets up to
large distances as we see in the solar system. Therefore, a brief description of the
main processes responsible for star-planet interaction is in order when considering
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the demographics of extrasolar planets and their evolution, given that most of the
known extrasolar planets orbit very close to their host stars.

In this chapter, we shall focus on the basic mechanisms of star-planet interactions,
considering the roles of the different fields involved, that is

• gravity, responsible for tides;
• radiation, powering atmospheric evaporation and possibly radius inflation;
• magnetic fields, that permeate the atmospheres and winds of late-type stars and
can provide us with hints on the internal fluid dynamics of planetary interiors.

We shall limit ourselves to the discussion of a few relevant processes and interactions
considering their impact on the planet parameters, but without introducing a detailed
and complete presentation of the subject, always givingmore emphasis to the simplest
physical models of the processes to enlighten the most important effects. In this way,
wehope toprovide thebasic physical knowledge thatwill allow the reader to approach
more advanced reviews or research articles in the field.

2.2 Tides

2.2.1 A Simple Description of Tides

When we treat the gravitational interaction between two bodies by assuming that
both are point masses, we have the classic two-body problem. Tides arise when we
consider that at least one of the two bodies has a finite extension, while the other is
still treated as a point mass for simplicity.We denote as A the body of finite extension
and as B the point mass orbiting around it. The mass of body A is M , while its mean
radius is R; the mass of body B isM and their relative orbit is assumed to be circular,
while the spin of body A is aligned with the orbital angular momentum.

The gravitational force of B depends on the distance of each point of A from
B, thus it is not uniform across the extension of body A and produces a stress on
body A. If body A is fluid as in the case of a star or a gaseous or liquid planet, its
shape will adjust to the tidal potential originated by body B, producing an ellipsoidal
deformation at the first order as we shall see when we consider a detailed quantitative
formulation of the problem (see Sect. 2.2.2).

Limiting ourselves for the moment to a simplified treatment of the deformation
of the fluid body A, we can describe it as a tidal bulge with a radius amplitude δR
and consider the case of a small deformation, that is, δR � R (cf. Zahn 2008). To
first order, we can consider the relative deformation δR/R to be proportional to the
ratio of the difference of the gravitational acceleration between the two hemispheres
of A produced by body B to the mean acceleration produced at its surface by body
A itself, that is

δR

R
≈ GMR/d3

GM/R2
= M

M

(
R

d

)3

, (2.1)
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whereG is the gravitation constant and d the separation between A and B. Assuming
that body A is nearly homogeneous, the mass of the tidal bulge δM can be estimated
as:

δM ≈ δR

R
M. (2.2)

If body A consisted of an ideal fluid without any internal dissipation, the tidal bulge
would instantaneously adjust itself and point along the line joining the centers of
A and B. However, in the case of a real fluid, there is always some dissipation that
moves the tidal bulge ahead or behind the line OB joining the centers of the two
bodies depending on whether body A is rotating faster or slower than the orbital
motion of the system (cf. Fig. 2.1). This can be understood by describing dissipation
as a friction that carries the tidal bulge ahead of the line OB when the rotation of A is
faster than the orbital motion; conversely, the tidal bulge lags behind when rotation
is slower than the orbital motion. From a geometrical point of view, we can describe
this situation by specifying the angle α between the line joining the centers of the
two bodies and the axis of symmetry of the bulge.

When there is dissipation inside body A, α �= 0 and there is a torque acting on
body A that modifies its rotation by transferring angular momentum between its spin
and the orbital motion. The tidal torque acting on body A is:

Fig. 2.1 Illustration of the tidal deformation of fluid body A by the tidal potential produced by
body B. The blue ellipsoid with a dashed contour indicates the section of the tidally deformed body
A when there is no dissipation and A, being made of an ideal fluid, can immediately adjust to the
tidal potential. The green ellipsoid, conversely, indicates the section of body A in the case of a
finite dissipation and a rotation faster than the orbital motion (�s > �0). In this case, the tidal lag
angle α is positive because the tidal bulge is carried ahead of the line OB joining the centers of
A and B by a faster rotation and tidal dissipation. Note that the amplitude of α has been greatly
exaggerated to make the difference between the two cases (without and with dissipation inside body
A) immediately evident. The separation between the two bodies is indicated with d, while O is the
barycenter of body A
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� ≈ ( f2 − f1)R sin α ≈ −δM

(
GMR

d3

)
R sin α = −GM2

R

(
R

d

)6

sin α, (2.3)

where f2 and f1 are the gravitational forces acting on the hemispheres of the bulge
that are further or closer to body B, respectively (see Fig. 2.2), and we substituted
Eqs. (2.1) and (2.2) into Eq. (2.3) to express δM in terms of the other system param-
eters.

To compute �, we need an expression for the tidal lag angle α. In the case of weak
friction,α will depend linearly on the difference between the spin angular velocity�s

of body A, assumed to rotate rigidly, and the orbital angular velocity (ormeanmotion)
�0, and on the inverse of some characteristic time tdiss that measures tidal dissipation
inside body A. In other words, in the weak friction approximation, we can write:

α = (�s − �0)

tdiss

R3

GM
, (2.4)

where we have introduced the square of the free-fall frequency of body A, GM/R3,
to make α non-dimensional. Note that when�s < �0 and the tidal bulge lags behind
the line joining the centers of the two bodies, Eqs. (2.3) and (2.4) lead to� > 0 which
tends to accelerate the rotation of A transferring angular momentum from the orbit
to bring body rotation into synchronism with the orbital motion, thus reducing the
dissipation. The opposite happens when �s > �0 and the bulge is ahead of the line
joining the centers of the two bodies. In this case, angular momentum is transferred
from the rotation of A to the orbital motion, again in an attempt to drive the system
towards the synchronous state and reduce dissipation.

If we denote with q the ratio of the masses of the two bodies, q = M/M , and sub-
stitute Eq. (2.4) into Eq. (2.3) assuming α � 1 in the weak-friction approximation,
we have:

Fig. 2.2 Illustration of the gravitational forces f1 and f2 produced by the attraction of body B on
the tidal bulge of body A. The lag angle α has been greatly exaggerated to better illustrate the effect.
As in Fig. 2.1, body A is assumed to rotate faster than the orbital motion (�s > �0), so that α > 0,
while O is the barycenter of body A and d the separation between the two bodies
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� = − (�s − �0)

tdiss
q2MR2

(
R

d

)6

. (2.5)

Note that the tidal interaction decreases rapidly with the separation between the two
bodies as a consequence of the factor (R/d)6.

2.2.2 A More Detailed Theory of Tides

The simplifiedmodel introduced inSect. 2.2.1 is useful to understand the fundamental
effects of tides, but it is a rough simplification valid only in the case of a circular orbit
and when the spin axis of body A is aligned with the orbital angular momentum.
Moreover, it describes the tidal bulge as an ellipsoidal deformation, an assumption
that has not been motivated yet. Therefore, a more detailed model is required and it
will be introduced in the present section.

We consider a reference frame with the origin at the barycenter O of body A
and the polar axis ẑ directed along the spin axis of A assumed to rotate rigidly
in an inertial space with an angular velocity �s (see Fig. 2.3). A spherical polar
coordinate system (r, θ, φ) is adopted with r being the distance from the origin O , θ
the colatitude measured from the polar axis ẑ, and φ the azimuthal angle measured

Fig. 2.3 Reference frame adopted to study tides in this section. The origin O is at the barycenter
of the extended body A, the polar axis ẑ is directed along the spin axis of A (ẑ ≡ �̂s), while the
x̂ and ŷ axes are in the equatorial plane of body A, which is normal to its spin axis. The section
of body A, deformed by the tidal potential produced by body B, is indicated by the solid green
line, while a section of uniform (polar) radius is indicated by the dashed blue circle. The orbital
angular momentum is indicated by �0 and forms the obliquity angle i with the spin axis of body
A. The relative orbit of body B (in red) is indicated by the black dotted line and lies in the plane
perpendicular to the vector �0. The instantaneous separation between the centers of the two bodies
is indicated by d
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from some fixed axis in the inertial space. The gravitational potential of body B can
be developed into a series of spherical harmonics in the reference frame of body A
because it is a solution of the Laplace equation outside B. The zero-order term of
this series is a constant that can be dropped without any loss of generality; the first-
order term in 1/d, where d is the separation between the two bodies, is responsible
for the Keplerian (orbital) motion of the two bodies and is not relevant for the tidal
interaction; the higher-order terms in 1/d are the relevant ones for our analysis and
represent the tidal potential � that verifies the Laplace equation outside body B:
∇2� = 0. If we further develop the time dependence of the potential into a Fourier
series of the orbital frequency �0, we obtain in a non-rotating frame (see Sect. 2.1
in Ogilvie 2014 for details):

� = �
{ ∞∑

l=2

l∑
m=0

∞∑
n=−∞

GM
a

Al,m,n(e, i)
( r
a

)l
Y m
l (θ, φ) exp(− jn�0t)

}
, (2.6)

where �{x} indicates the real part of the complex quantity x , l is the degree and m
the azimuthal order of the spherical harmonic Ym

l in the series development of the
potential, n the order of the term in the Fourier series with respect to the time t , a
the semi-major axis, e the eccentricity, and i the obliquity of the relative orbit in the
assumed reference frame,1 Al,m,n(e, i) a coefficient that depends on the eccentricity
and the obliquity of the orbit, and j = √−1.

If the radius R of the extended body A is much smaller than the orbit semi-
major axis a, only the terms with l = 2 are important in the development of the tidal
potential. The amplitudes (but not the phases) of these quadrupolar components of
the tidal potential are given in Table2.1, correct to the first order in eccentricity
and obliquity. For a circular and coplanar orbit (e = 0 , i = 0) the static and the
asynchronous tides are the only relevant components and they produce an ellipsoidal
deformation of the fluid body A, thus justifying our assumption in Sect. 2.2.1. Note
that for a circular orbit n = m because of the rotational symmetry with respect to
the azimuthal coordinate, while l − m must be even for i = 0 because the spherical
harmonics Ym

l must be symmetric about the equatorial plane θ = π/2.
It is useful to consider a reference frame rotating with body A (the reference frame

of the fluid in tidal theory). In such a reference frame, the terms of the series of the
tidal potential will contain time frequencies of the form

ω̂(n,m) = n�0 − m�s (2.7)

that can be defined as the tidal frequencies in the frame rotating with the fluid. Specif-
ically, for a givenm and n, ω̂(n,m) represents the frequency of the periodic variation
of the tidal potential term with the same m and n as seen by an observer moving

1 Note that the obliquity i is the angle between the spin axis of body A and the orbital angular
momentum of body B. It is different from the inclination of the orbital plane I , that is, the angle
between the orbital angular momentum and the line of sight.
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Table 2.1 Quadrupolar components of the tidal potential

l m n |A| Description

2 0 0
√

π/5 Static tide

2 2 2
√
6π/5 Asynchronous tide

2 0 1 3e
√

π/5 Eccentricity tide

2 2 1 1
2 e

√
6π/5 Eccentricity tide

2 2 3 7
2 e

√
6π/5 Eccentricity tide

2 1 0 i
√
6π/5 Obliquity tide

2 1 2 i
√
6π/5 Obliquity tide

with the rotating body A, the angular Doppler shift frequency m�s coming from the
azimuthal factor of the spherical harmonic Ym

l (θ, φ) ∝ exp( jmφ). Therefore, the
tidal frequencies ω̂(n,m) represent the natural frequencies to be used when describ-
ing the action of the tidal potential in a reference frame rotating with the extended
body A.

In Sect. 2.2.1 we made an approximation by considering only the large-scale
deformation of body A and assuming a phase lag between the tidal potential and the
hydrostatic (equilibrium) deformation of body A. In the reference frame of the fluid,
the time-varying potential due to the orbiting companion produces a fluid motion
across the tidal bulge and the dissipation of its kinetic energy is responsible for
the tidal dissipation producing the lag angle α. In stars with an outer convection
zone, Zahn (1977, 1989) modeled the tidal dissipation by considering the effects of
turbulent convection on this tidal flow. This is called the equilibrium tide model and
it does not represent the full solution of the hydrodynamic equations describing all
the motions excited by the time-varying tidal potential inside body A.

To satisfy the equation of motion of the fluid, we must include both non-wave-
like as well as wave-like motions (dynamic tides). In particular, body A may support
different kinds of waves that may resonate with the time-varying tidal potential in the
frame rotating with the fluid. Acoustic wave modes, also called p-modes in the case
of stars, have periods on the order of a few minutes, while modes having buoyancy
as their restoring force, called g-modes, have periods on the order of hours in main-
sequence late-type stars. Therefore, they are generally not excited by the time-varying
tidal potentialwhose characteristic periodicities correspond to the orbital and rotation
period of the body A.2 On the other hand, inertial waves, having the Coriolis force as
their restoring force, can be excited by the tidal potential, provided that |ω̂| < 2�s.

2 The situation is different in close binaries with an early-type component having an outer radiative
envelope where g-modes can be excited close to the interface with the convective core and then
radiatively damped close to the surface. Zahn (1975) recognized tidal g-mode dissipation as the
dominant synchronization mechanism in binaries with early-type components, but we shall not
consider those stars here because most of the currently known exoplanets orbit around late-type
stars. In these stars, the excitation and dissipation of g-modes in the radiative core may play a
relevant role in tidal evolution only for planets with a mass at least comparable to that of Jupiter
and with orbital periods shorter than 1–2 days (see Barker 2020).
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When they are excited, inertial waves make a very important contribution to the
dynamical tides and can dominate the tidal dissipation both in the convection zones
and in the radiative zones of late-type stars and giant planets. Note that, all the
other parameters of the system being the same, the forcing of the inertial waves
is proportional to the intensity of the Coriolis force, that is, to the spin angular
velocity of the star �s. Therefore, in a linearized theory, the amplitude of the waves
is proportional to�s and their dissipation rate to�2

s because their energy scales with
the square of their amplitude (cf. Ogilvie 2013).

The dissipation of inertial waves is a very complicated process because most of
it occurs in a chaotic fashion in wave attractors when the star or the planet has an
inner discontinuity as in the case of the transition from a radiative interior to an
outer convective envelope in late-type stars, thus a prediction of the efficiency of
the tidal dissipation is not simple (see Ogilvie 2014 for a review). The change in
the internal structure of a solar-like star from the pre-main sequence to the zero-age
main-sequence and then along its main-sequence evolution modifies the dissipation
of inertial waves in a remarkable way. Detailed numerical modeling of the dissipation
along the entire evolution of a solar-like star is presently beyond our computing capa-
bilities. Nevertheless, interesting indications have been obtained by Mathis (2015)
by applying a simplified analytical model by Ogilvie (2013) to compute the inertial
wave dissipation in stars with different core and envelope radii and masses.

A complete treatment of the dynamical tides is extremely complicated owing
to the non-linear interactions of the different waves leading to their kinetic energy
dissipation. A simpler approach is that of considering separately the effect of each
Fourier component of the tidal potential of body B inside body A and quantify
it by the perturbation it produces in the outer gravitational potential of body A
(cf. Fig. 2.4). This approach is motivated by the fact that the tidal interaction between
the two bodies A and B is mediated only by gravity, thus the perturbation of body
A by the tidal potential of body B can be quantified by the resulting perturbation of
the outer gravitational potential of body A. If the perturbation produced by the tidal
potential component of body B is sufficiently small, the perturbation of the outer
gravitational potential of body A will depend linearly on the former. Specifically, if
the Fourier component of the tidal potential with frequency ω̂

� {A(r/R)lY m
l (θ, φ) exp(− jω̂t)

}
(2.8)

is applied to the fluid body A with a mean radius R, the resulting deformation of A
will generate an external gravitational potential perturbation whose component with
the same spherical harmonic and time frequency will be

� {B(R/r)l+1Ym
l (θ, φ) exp(− jω̂t)

}
. (2.9)

The complex non-dimensional ratio

kml (ω̂) ≡ B/A (2.10)
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Fig. 2.4 Flowchart showing
the perturbation of the outer
gravitational potential of
body A as produced by the
tidal perturbing potential of
body B. The ratio of the
complex amplitude of the
perturbation of the outer
potential of body A to the
complex amplitude of the
perturbing potential
produced by body B defines
the Love number k ≡ (B/A)

as explained in the text

is a measure of the linear response of body A to the given perturbing tidal potential
and is called potential Love number with order l and azimuthal degree m at the
frequency ω̂.

The importance of the potential Love numbers comes from the possibility of
expressing the tidal torque and the dissipation associated with each component of
the tidal potential as simple functions of them (see, e.g., Ogilvie 2013 and Sect. 2.2
in Ogilvie 2014). Specifically, the component of the tidal torque in the fluid frame
with frequency ω̂ is:

T = (2l + 1)R|A|2
8πG

�{kml (ω̂)}, (2.11)

where �{x} is the imaginary part of the complex number x ; while the corresponding
contribution to the tidal dissipation is:

D = T ω̂. (2.12)

We stress that this approach is valid in the limit of small perturbations of body A that
allows a linear and independent treatment of the effects of the different components
of the tidal potential in the reference frame of the fluid. Therefore, it represents a
substantial improvement with respect to the simple model of Sect. 2.2.1, but it is still
far from a complete treatment of tides. Nevertheless, it is the starting point for the
definition of several useful parameters widely applied in the description of tides in
close stellar binary and star-planet systems.

Since �{kml (ω̂)} is a quantity of order unity, weakly dependent on m and ω̂, it
can be approximated by its hydrostatic value kl that does not depend on m. For a
homogeneous body, it is

kl � k(hom)
l = 3

2(l − 1)
. (2.13)
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The generally adopted parameterizations for �{kml (ω̂)} are:

�{kml (ω̂)} = kl
Q(ω̂)

= k(hom)
l

Q′(ω̂)
, (2.14)

where Q(ω̂) and Q′(ω̂) are the tidal quality factor and modified tidal quality factor
for the considered tidal component (l,m) at the tidal frequency ω̂, respectively. For
l = 2 and a small tidal lag phase angle α (see Sect. 2.2.1), Q is related to α as

sin α(ω̂) � 1

Q(ω̂)
. (2.15)

If we introduce the time lag τ as τ ≡ α/|ω̂| and consider that sin α � α since α � 1,
we can summarize the usually adopted parameterizations to compute the tidal torque
and the tidal dissipation with Eqs. (2.11) and (2.12) as

�{km2 (ω̂)} = σ
k2

Q(ω̂)
= σ

3

2Q′(ω̂)
= k2τ ω̂, (2.16)

where σ ≡ ω̂/|ω̂| = ±1 so that Q and Q′ are always positive. Note that the intro-
duced parameters are functions of the tidal frequency and the internal structure of
body A. The dependence on the tidal frequency can be very complicated when the
dissipation of inertial waves dominates with Q′ wildly oscillating by several orders of
magnitude in the interval−2�s ≤ ω̂ ≤ 2�s (cf. Ogilvie andLin 2007;Ogilvie 2013).

2.2.2.1 Evolution of the Spin and Orbit Under the Effects of Tides

The tidal dissipation becomes zero when the spin of body A (and of body B, if it is
considered as an extended body) becomes aligned with the orbital angular momen-
tum, while the relative orbit becomes circular and synchronized with the spin of
body A (and B). This corresponds to �s = �0 = �, e = 0, and i = 0. This final
state can be reached provided that the total angular momentum of the system L (spin
+ orbital) is larger than or equal to a minimum critical angular momentum Lc that
corresponds to an equilibrium with �s = �0 = �c, where:

Lc = 4I�c with �c = (GMT)
1/2

(
MR

3I

)3/4

, (2.17)

where MT = M + M is the total mass, MR = MM/(M + M) the reduced mass,
and I = IA + IB the sum of the spin moments of inertia of the two bodies. If L < Lc,
no equilibrium is possible and the two bodies will eventually collide. On the other
hand, if L > Lc, there are two possible equilibria: the one with �s = �0 < �c is
stable because it corresponds to a minimum of the mechanical energy under the
constraint of constant total angular momentum L; the other with �s = �0 > �c is
unstable (see Hut 1980).
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The general direction of the tidal evolution can be predicted on the basis of the
simplified model in Sect. 2.2.1. In the case of a circular and coplanar orbit, when
the spin of body A is faster than the orbital motion, the orbiting body B lags behind
the tidal bulge and angular momentum is transferred from the spin of body A to the
orbit in an attempt to synchronize the system. On the other hand, when the spin of
body A is slower than the orbital motion, angular momentum is transferred from the
orbit to the spin of body A, again in an attempt to bring it into synchronism. As a
consequence, the orbit shrinks and the orbital period decreases. If the total angular
momentum is smaller than Lc, there is not enough angular momentum in the system
to spin up body A to synchronism and the result will be a faster and faster decay
of the orbit towards a final collision. If the orbit is eccentric, the tidal interaction
is stronger at the periastron, given the dependence of the tidal torque on (R/d)6

(cf. Eq. 2.5), thus tides will tend to synchronize the spin of body A with the orbital
angular velocity at periastron or, more precisely, with a value that produces a zero
net torque when averaged along the orbit (pseudo-synchronization).

It is possible to obtain closed-form expressions for the evolution of the orbital and
spin elements only if some additional hypotheses are introduced, for example, if we
assume a constant time lag τ all along the tidal evolution (e.g., Hut 1981; Eggleton
et al. 1998; Leconte et al. 2010) or a constant modified tidal quality factor Q′ (e.g.,
Mardling and Lin 2002). Assuming a constant time lag, the expression for the spin
angular velocity when pseudosynchronization is reached is (Zahn 2008):

�s

�0
= 1 + (15/2)e2 + (45/2)e4 + (5/16)e6

(1 − e2)3/2(1 + 3e2 + 3e4/8)
. (2.18)

2.2.2.2 Comparison with Observations of Close Binary Systems
and Hot Jupiters

Most of the planets known to date orbit around late-type main-sequence stars. The
efficiency of tidal dissipation inside those stars can be inferred from the observations
of close binary systems in open clusters of different ages, in particular looking for
the maximum orbital period corresponding to a circular orbit or, better, considering
the distribution of the orbital eccentricity in the binary population of a cluster of a
given age. This allows us to avoid systematic errors due to the binaries that were
born with a circular orbit and were not circularized as the result of tidal evolution
(e.g., Meibom and Mathieu 2005).

Considering the data available from open cluster studies, Ogilvie and Lin (2007)
find that the value of Q′, averaged over the tidal evolution of the close binaries,
is between 5 × 105 and 2 × 106, that is a value about 2–3 orders of magnitude
smaller than that predicted by the dissipation of the equilibrium tides in the turbulent
convection zones of late-type stars (Zahn 1977).3 This suggests that the dissipation

3 Note that the stronger the tidal dissipation, the smaller Q′ as we can deduce from the larger value
of the tidal lag angle α (cf. Eq. 2.15 and Mardling and Lin 2002; Zahn 2008).
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of dynamical tides in close binaries that are synchronized is relevant. More precisely,
Ogilvie and Lin (2007) propose that the dissipation of inertial waves excited in the
radiative cores and in the convective envelopes of synchronized binaries can be the
dominant effect. Note that for a synchronized or nearly synchronized binary with a
nearly circular orbit, the dominant tide has l = m = 2 so its frequency in the fluid
frame is ω̂ 22 = 2(�s − �0) � 2�s because �s ≈ �0, thus the condition for the
excitation of inertial waves is satisfied. The above estimate of Q′ refers to an average
value along with the system evolution and the spin frequency of the system (consider
that the dissipation rate of the inertial waves is proportional to �2

s as we saw in
Sect. 2.2.2, therefore Q′ ∝ �−2

s , all the other parameters being the same).
In the systems formed by a late-typemain-sequence star and a hot Jupiter, the total

angular momentum is almost always insufficient to reach a final tidal equilibrium
state (Levrard et al. 2009; see, however, Lanza et al. 2011). For very hot Jupiters,
the remaining lifetime estimated by assuming Q′ = 106 is 30–100 Myr, that is,
much shorter than the main-sequence lifetime of their stars (Ogilvie and Lin 2007).
Therefore, such a fast predicted orbital decay appears to be at variance with the
observed existence of those systems. Nevertheless, most of the stars hosting hot
Jupiters are far from synchronization with the planetary orbit, so the excitation of
inertial waves is not possible in those stars, contrary to the case of close stellar
binary systems. In hot Jupiter systems, only the dissipation of the equilibrium tide
can produce the decay of the orbit and this leads to an average Q′∼108–109 ensuring
a residual lifetime of hot Jupiters on the order of a few Gyrs, in agreement with their
presumed ages (Ogilvie and Lin 2007).

2.2.2.3 Magnetic Fields and Rotation of Late-Type Stars

Late-type stars have outer convection zones that host magnetic fields. We can see
them in detail in our Sun where they are responsible for active regions by modifying
the transport of energy and momentum by convection and producing non-radiative
heating in the outer layers of the atmosphere from the chromosphere to the corona.
A nice introduction to the observations of magnetic fields and of the active region
phenomena can be found in Chaps. 2–5 of Linsky (2019). For our discussion of tides,
we are interested in the effects of magnetic activity on stellar rotation because tidal
effects depend on the stellar spin.

The non-radiative heating of the outer atmosphere in the Sun and late-type stars
produces a hot corona with temperatures up to (1–3)×106 K that cannot be confined
by the gravitational field of the star, thus originating the solar and stellar winds.4 The
resulting mass loss carries angular momentum away from the star. Since the plasma

4 The first model of the solar wind was proposed by Parker (1958) and we shall apply it to study
the evaporation of the atmospheres of exoplanets in Sect. 2.4.1. For a comprehensive review of the
solar and stellar winds, their evolution, and impact on exoplanets, see Vidotto (2021).
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is frozen to the magnetic field5 up to some radius rA (called Alfvén radius), the spin
angular momentum loss rate is:

dLs

dt
=

(
dM

dt

)
r2A�s, (2.19)

where dM/dt is the mass-loss rate in the wind. The Alfvén radius is larger than
the surface radius R, rA ≈(10–100) R, because the magnetic energy density in the
corona is larger than the thermal and kinetic energy density of the plasma up to
several stellar radii. This is a consequence of the very low density of the coronal
plasma and of the relatively slow decrease with the distance of the large scale fields
of the stars that can be approximated by dipole fields. Only in the outer corona, the
magnetic energy density becomes so small that the kinetic energy of the wind flow
is capable of carrying the field lines away with the wind and the plasma can move
away from a star without extracting further angular momentum from the stellar spin.
In other words, the rigid structure of the magnetic field up to the Alfvén radius rA
makes the sphere of radius rA the effective source surface from which the angular
momentum is extracted and carried away by the wind. In the absence of a magnetic
field, the source of angular momentum would be at the surface of the star, that is, at
r = R, producing a much smaller angular momentum loss rate.

The steady loss of angularmomentumproduced by the solarwind has significantly
braked the Sun along its main-sequence lifetime. Stars of the same spectral type of
the Sun and with an age of 1 Gyr rotate with a period of ≈12 days, that is about
twice faster than the present Sun. With a present mass loss rate of ∼10−14 M� yr−1,
the total wind mass loss has been an insignificant ≈10−4 M� along the past 3.5Gyr,
while ∼50% of the angular momentum of the Sun at ∼1Gyr has been lost. A faster
solar rotation in the past was associated with a higher level of coronal density and
temperature and these produced a more intense solar wind because the intensity of
the magnetic fields and their filling factors are an increasing function of the stellar
spin �s at least for values smaller than a certain saturation limit (e.g., Pizzolato et al.
2003). Therefore, most of the angular momentum loss occurs during the early stages
of stellar evolution.

The observations of stellar rotation in associations and open clusters of different
ages can be used to constrain the angular momentum loss rate and find parameteriza-
tions that can be inserted intomodels of tidal evolution of star-planet systems. During
the pre-main sequence phase of their life, late-type stars have circumstellar discs with
a mean lifetime of a few Myr. Before the dissipation of the disc, the rotation of the
star is locked to the orbital motion of the inner edge of the disc by the strong mag-
netic fields present during the T Tauri phase, thus the rotation period stays constant
in spite of the contraction of the star. After the disc dissipates, the contracting star
is free to spin up as a consequence of the decrease of its moment of inertia because

5 An introduction to the physics of magnetized plasmas as described by magnetohydrodynamics
(MHD) can be found in Priest (1984) with the field frozen-in condition described in Chap. 2. For a
general introduction to MHD see also Spruit (2013).
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the stellar wind, although very strong, is not capable of counteracting this effect.
Late-type stars reach the zero-age main-sequence (ZAMS) as fast rotators, if their
discs were short-lived, while those with long-lived discs (up to∼10–12Myr at most)
reach the ZAMS as relatively slow rotators. Once on the main sequence, the moment
of inertia becomes constant and the wind starts to brake the rotation of the star. But
during the first phase of the main-sequence evolution, the surface rotation of the star
can be modified by the coupling between the convection zone and the radiative core
that provides an additional source of angular momentum to the convection zone that
slows down the wind braking process. Only after an initial phase of 300–600 Myr,
the exact duration of which depends on stellar parameters and initial conditions, the
stellar rotation becomes a relatively simple function of the stellar age and mass.

The parameterization used by current models of angular momentum loss (AML)
assume dLs/dt to be a function of the stellar radius R, mass M , and angular velocity
�s. Starting fromKawaler (1988) and considering the saturation of coronal magnetic
activity at some value of the stellar spin, Bouvier et al. (1997) considered a simple
parameterization of the type:

dLs

dt
=

⎧⎨
⎩

−KW�s�
2
sat

(
R
R�

)1/2 (
M
M�

)−1/2
for �s ≥ �sat,

−KW�3
s

(
R
R�

)1/2 (
M
M�

)−1/2
for � < �sat,

(2.20)

where KW is a calibration constant and �sat is the angular velocity of saturation at
which the dependence of the AML on the stellar spin changes. To reproduce the
observations, �sat must be a decreasing function of the stellar mass. More recent
descriptions of the AML consider more sophisticated and detailed formulations, in
some cases based on MHD models of stellar winds (e.g., Gallet and Bouvier 2013,
2015;Matt et al. 2015;Amard et al. 2016). This is a field of rapid development, thanks
to the new measurements of stellar rotation periods in clusters and associations that
are becoming available as a result of the search for transiting planets from the ground
(e.g., Super-WASP, NGTS) and space (e.g., CoRoT, Kepler, K2, TESS) and the new
stellar associations as revealed by Gaia astrometry.

Considering the simple case of a star settled on the main sequence and therefore
with a constant moment of inertia I , and assuming that it is rotating rigidly with
�s < �sat, the evolution of its spin in the absence of tidal interactions is given by:

d�s

dt
= −KW

I

(
R

R�

)1/2 (
M

M�

)−1/2

�3
s , (2.21)

that can be analytically integrated giving the solution �s ∝ t−1/2 for t � t0, where
t0 is the initial time when this evolution equation becomes valid. This solution is the
so-called Skumanich law for the evolution of stellar rotation.

To model the evolution of stellar rotation, Eq. (2.20) must be coupled with equa-
tions accounting for the variation of the moment of inertia along with the evolution
and the internal mechanical coupling between different layers inside the star. In gen-
eral, a simple parameterization is adopted to account for the coupling between the
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radiative interior and the convective envelope by expressing it through a character-
istic timescale τc for the exchange of angular momentum between them (e.g., Spada
et al. 2011). This so-called two-zone model (MacGregor and Brenner 2011) has the
advantage of a simple parameterization of the complex and largely unknown pro-
cesses that couple the dynamics of the radiative zone with the convection zone. It
assumes that both domains rotate rigidly, albeit with different angular velocities. As
a matter of fact, a significant differential rotation is seen in those models only during
the first phase of the main-sequence evolution. After that phase, the internal differ-
ential rotation between the core and the envelope becomes negligible (see Gallet and
Bouvier 2013, 2015).

A very interesting observational result, reproduced by the mentioned models of
AML, is the dependence of �s on the stellar age t and mass for stars with spectral
types from mid-F to late K. This provides a method to estimate the age of a star from
its rotation period (and mass) called gyrochronology (cf. Barnes 2003, 2007; Barnes
and Kim 2010). In its simplest version, the age is proportional to �−2

s , with the
proportionality constant being a function of the stellar mass, as derived by inverting
the Skumanich relationship. Gyrochronology cannot be applied to young stars (t
smaller than about 500 Myr) because of the non-negligible effects of the initial
conditions and a still poorly understood evolution of stellar rotation in the early
phases of the main sequence. For older stars, it seems to be applicable at least up to
the solar age (Barnes et al. 2016), although some authors have recently proposed that
stars older than the Sun could be experiencing a reduced AML owing to a transition
of their stellar dynamo towards a state of lower efficiency (van Saders et al. 2016;
Metcalfe and Egeland 2019).

2.2.2.4 Modeling Tides and Stellar Rotation in Star-Planet Systems

In a system consisting of a late-type star and a close-by planet, the evolution of stellar
rotation is ruled by the sum of the tidal torque and the magnetic wind torque that we
have introduced in Sects. 2.2.2 and 2.2.2.3. In turn, the tidal interaction controls the
evolution of the orbital elements of the planet and therefore the tidal torque. Because
of the dependence of the stellar rotation on the torques acting on the star, this system
has several feedbacks that can make its evolution non-monotone and remarkably
complex. In this context, a fundamental role is played by the stellar hydromagnetic
dynamo that produces the stellar field responsible for the wind carrying away stellar
angular momentum.

Dynamos in late-type stars are based on the interaction between rotation and
convection that produces differential rotation and the so-called α-effect, the basic
ingredients of the so-called α� dynamo. A general introduction can be found in
textbooks describing solar dynamo such as Priest (1984) or Stix (2004), while a
more detailed treatment can be found in, e.g.,Moffatt (1978), Rüdiger andHollerbach
(2004), or Brandenburg and Subramanian (2005).

Differential rotation comes from the interaction of rotation and convection (Rüdi-
ger and Hollerbach 2004) and produces the amplification of the magnetic field com-
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Fig. 2.5 Diagram showing the principal inter-connections among stellar rotation, tides, and hydro-
magnetic dynamo in late-type stars with close-by planets

ponent parallel to the equator (toroidal field component) starting from amuchweaker
component in the meridional plane (poloidal field component). The poloidal field is
re-generated from the toroidal field thanks to the helicity of the convective motions
produced by the Coriolis force that provides the α-effect, thus closing the dynamo
cycle. In general, this kind of dynamo produces an oscillating field that is responsible
for stellar activity cycles. An important role is played by turbulent convection that
dissipates the magnetic fields, thus getting rid of the fields of previous cycles, and by
the meridional circulation, which acts as a sort of conveyor belt changing the latitu-
dinal distribution of the field components and making them interact with each other.

The sketch in Fig. 2.5 shows the complex interplay between tides, dynamo, and
angular momentum loss by the stellar wind. Presently, we have only a limited under-
standing of all the inter-relationships because important aspects of the tidal dissipa-
tion, dynamo operation, wave-turbulence interaction, and stellar wind acceleration
are unknown. Nevertheless, the first attempts to build models that include most of
these effects, at least in parametrized and simplified ways, have appeared (see, e.g.,
Bolmont and Mathis 2016; Gallet et al. 2017, 2018; Benbakoura et al. 2019).

2.3 Tides and the Evolution of Exoplanets

The general introduction to tides and to the magnetic wind angular momentum loss
provided in the previous Section will now be complemented with some applications
to the study of star-planet systems. First of all, we have to include the effects of tides
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inside the planet. In the previous Section, we considered the secondary body B as
a point mass. However, it is not difficult to include the effects of tides inside B by
considering the same equations with the roles of the bodies exchanged, thus body A
is now considered the source of the tidal potential and is regarded as a point mass M .
Concerning the effects on the orbital elements, they will be the sum of the variations
produced by tides inside body A and inside body B.

The equations for the evolution of the semi-major axisa and the orbital eccentricity
e, in the simplified assumptions of constant modified tidal quality factors, orbital
period much shorter than the stellar rotation period, planet spin synchronized with
the orbit,6 zero obliquity i = 0 and small eccentricity (e < 0.1), can be cast in the
form (cf. Jackson et al. 2008):

1

e

de

dt
= −

[
63
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s )
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a−13/2,

(2.22)

whereG is the gravitation constant, Ms and Rs the mass and the radius of the star, Mp

and Rp the mass and the radius of the planet, Q′
s and Q′

p the modified tidal quality
factor of the star and the planet, respectively. These equations have been obtained by
a truncation of the full equations to second-order in the eccentricity and are useful
to discuss the contributions of the star and of the planet to the evolution of e and a,
respectively. To this purpose, we explicitly write the ratios of the contributions to
their variations produced inside the star and the planet:

(
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(2.23)

For a system consisting of a main-sequence late-type star and a hot Jupiter Ms/Mp ∼
103, Rp/Rs ∼ 0.1, and Q′

s/Q
′
p∼1–100 (see below for more details). Therefore, the

main contribution to the damping of the eccentricity comes from the dissipation

6 The timescale for the synchronization (or pseudosynchronization) of the planetary spin with the
orbit is much smaller than the main-sequence lifetime of the star, usually not exceeding 0.1–1 Myr
for Q′

p comparable to that of Jupiter (cf. Leconte et al. 2010). Therefore, we shall always assume
the planet spin to be synchronized with the orbit.
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of tides inside the planet, while for e<0.01–0.1 tidal dissipation inside the star
dominates the evolution of the semi-major axis. The evolution of a is determined
by the fact that the systems consisting of a star and a close-by planet generally
do not have enough total angular momentum to reach tidal equilibrium, so planets
will eventually be engulfed by their host stars (Levrard et al. 2009). This result was
obtainedwithout considering the angularmomentum carried away by themagnetized
stellar winds, which makes the situation even worse speeding up the tidal decay (e.g.,
Damiani and Lanza 2015; Gallet et al. 2018; Gallet and Delorme 2019).

An important question is the rate of decay of the orbits of close-by exoplanets
because this is relevant to directly confirm the above prediction about the ultimate fate
of those planets. From an observational point of view, transiting exoplanets offer the
best opportunity to measure orbital decay. Specifically, we can measure the observed
time of mid-transit O and compare it with the epoch C computed from an ephemeris
with a constant period. The rate of decay of the orbital period dPorb/dt is related to
the O − C difference by the formula:

O − C = 1

2
Porb

(
dPorb
dt

)
E2, (2.24)

where E is the number of orbital periods elapsed from the initial epoch when O = C
and the orbital period is Porb. Therefore, the sensitivity to the orbital decay increases
quadratically with time implying that a sufficiently long time baseline is required to
measure it.

As an example of a system that displays a measurable O − C , I briefly discuss
the case of WASP-12 (Hebb et al. 2011). It is a system consisting of an F-type star
accompanied by a very hot Jupiter with a period Porb = 1.09 days that has been
monitored for more than a decade. Its O − C diagram shows a parabolic shape that
implies dPorb/dt = −29 ± 3 ms/year, if interpreted according to Eq. (2.24). This
would imply a very fast orbital decay with a timescale Porb/Ṗorb = 3.2 Myr and a
stellar modified tidal quality factor Q′

s = 2 × 105. However, an orbital decay is not
the only possible explanation for the observed O − C . If the orbit of WASP-12 has a
small eccentricity on the order of 0.002, the line of the apsides of the orbit can precess
in the plane of the orbit itself (Patra et al. 2017; see also Damiani and Lanza 2011).
Such a precessionwill produce oscillating and opposite O − C’s for the times ofmid-
transit and mid-occultation of the planet, in analogy with the case of close eclipsing
binaries with an eccentric orbit (e.g., Wolf et al. 2013). The 1-σ upper limit for the
orbital eccentricity coming from the available observations is 0.02 (Bonomo et al.
2017). Therefore, discriminating between the two possible explanations requires a
longer time baseline. Patra et al. (2017) predict that an extension of the baseline by
another ∼10 year should be enough to distinguish a true orbital decay, for which the
O − C is the same for the transits and the occultations, from the precession of the
apsidal line, for which the O − C’s are oscillating and have opposite signs for transits
and occultations (cf. Fig. 2.6), because a precession period of≈14 year is predicted by
the present data. The recent investigation byYee et al. (2020) suggests that neither the
apsidal precession nor the possible presence of a third body are viable explanations,
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Fig. 2.6 Left panel: O − C versus the time in the case of a planetary orbit experiencing tidal decay.
The solid line indicates the O − C time difference for the transits, while the dashed line indicates
the O − C for the occultations of the planet by the star (secondary eclipses). The two parabolae are
actually superposed, but in this plot they have been vertically shifted for clarity. Right panel: same
as the left panel, but in the case of precession of the apsidal line. Note the opposite oscillations of
the O − C’s for the transits and the occultations

giving further support to a true orbital period decrease. Patra et al. (2020) and Turner
et al. (2021a) support such a conclusion estimating Q′

s = (1.6 ± 0.2) × 105 and
(1.39 ± 0.15) × 105, respectively. Nevertheless, the possibility that the long-term
orbital period changes of WASP-12 are cyclic and come from an angular momentum
exchange between the orbit and the rotation of the planet, has also been proposed
(Lanza 2020).

2.3.1 Resonant Chains and Tides

The first example of a resonant chainwas provided by the three inner Galileanmoons
of Jupiter, Io, Europa, and Ganymede. Their mean orbital motions (n ≡ 2π/Porb,
where Porb is the orbital period) verify the relationship (known as Laplace relation-
ship):

nIo − 3nEuropa + 2nGanymede = 0, (2.25)

to within the observational error (10−9 deg/day). This resonance minimizes the tidal
interactions between the three satellites because when two of them are aligned with
Jupiter, the third is at least 60◦ away from conjunction (Murray and Dermott 1999).
The Io-Europa resonancemaintains the small eccentricity of the Io’s orbit (e = 0.041)
that is responsible for the tidal heating of the moon that was first observed by the
Voyager I spacecraft in 1979 which detected an intense volcanic activity, three weeks
after it was predicted by Peale et al. (1979). The tidally dissipated power P inside a
body of modified tidal quality factor Q′

p on a moderately eccentric orbit (e < 0.2) is
given by:
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P = 63

4

[
(GMs)

3/2

(
MsR5

pe
2

Q′
p

)]
a−15/2, (2.26)

where the symbols have been introduced above and the subscript s refers in this case
to Jupiter or in general to the host star around which a planet is orbiting, while the
subscript p refers to Io or in general to the planet (Miller et al. 2009).

An astonishing example of a resonant chain is provided by the planets orbiting the
late M-type dwarf TRAPPIST-1. The star has a mass of only 0.09M�, a luminosity
∼5 × 10−4 L�, and hosts a compact system of seven Earth-like transiting planets,
the orbital periods of which are in the ratio 24 : 15 : 9 : 6 : 4 : 3 : 2 (Luger et al.
2017). These ratios minimize the tidal interactions between the planets, however
their orbits maintain non-zero eccentricities that produce tidal heating inside them
(Barr et al. 2018). In the case of TRAPPIST-1b, the tidal fluxmay reach values greater
than about 10Wm−2 (about three times that of Io) during the periodic oscillations
of its eccentricity (Luger et al. 2017). Note that the exact amount of dissipated heat
depends on themodified tidal quality factor, that is on the order of 102–103 for telluric
planets, and depends on their rheological properties. These are a complex function
of the tidal frequency, the details of their internal structure and composition, and the
presence of oceans on their surface (see Sect. 2.3.5). Therefore, an exact prediction
is impossible because of our ignorance of the interior structure of those planets (cf.
Tobie et al. 2019; Bolmont et al. 2020).

It is interesting to note that the resonant chain between the inner Galilean moons
couples their tidal evolutions due to their spin-orbit angular momentum exchanges
with Jupiter. The rotation period of Jupiter is shorter than the orbital period of Io,
thus angular momentum is transferred from Jupiter spin to the orbit of Io to push it
away from Jupiter. However, since Io is coupled to the other inner moons, the angular
momentum is redistributed among all of them and tidal evolution occurs for thewhole
system. By measuring such a secular evolution, Lainey et al. (2009) determined the
modified tidal quality factor of Jupiter as k2/Q = (1.102 ± 0.203) × 10−5 and of Io
as k2/Q = 0.015 ± 0.003. For a recent review of the measurements of the planetary
quality factors in the solar system, see Lainey (2016). When extrapolating Jupiter
Q′∼105 to the case of hot Jupiters, it is important to keep in mind the difference in
the rotation rate. For a similar planet rotating with a period of ∼70 h, the inertial
wave dissipation model considered in Sect. 2.2.2 predicts a Q′ larger by a factor of
∼50 because Q′ ∝ �−2

s .

2.3.2 Tides and the Formation of Hot-Jupiters

The existence of hot Jupiters is a challenge to our understanding of the formation
of planetary systems. As discussed in Chap.1, although a formation close to the star
nearly their current orbital distances has been proposed (e.g., Bailey and Batygin
2018), the common view is that they form far from the star, beyond the snow line of
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the protoplanetary discs, where the formation of ice cores provides an easy way to
rapid accretion of gas within the limited lifetimes of the protoplanetary discs. After
their formation, those giant planets migrate towards the star reaching a separation on
the order of 0.1 au. The migration can occur through angular momentum exchange
with the disc with the planet moving on circular orbits of progressively smaller and
smaller semi-major axis, or it can occur via tidal circularization of an initially highly
eccentric orbit with the planet coming very close to the star at the periastron (cf.
Dawson and Johnson 2018). The latter mechanism is usually called high-eccentricity
migration and relies on the crucial effects of tides to shrink and circularize the orbit
close to the star. The initial high-eccentricity orbit can be produced by planet-planet
scattering, or Lidov-Kozai cycles, or secular chaos in a multiplanet system. In the
case of planet-planet scattering, the process occurs during the early stages of the
system evolution when there could be several massive planets on unstable orbits that
can come very close to each other (cf. Marzari 2010). Lidov-Kozai cycles require
the presence of a distant companion on a nearly circular and sufficiently inclined
orbit (i>40◦) or on a low-inclination, but highly eccentric orbit (Naoz 2016). The
periodic exchanges of angular momentum between the giant planet and the distant
companion give rise to phases of high eccentricity in the orbit of the planet that let
it come very close to the star where it can have a strong tidal encounter with the star
itself. The result of this tidal encounter is a strong dissipation of the orbital kinetic
energy inside the planet that circularizes and shrinks its orbit, thus making it a hot
Jupiter. In the secular chaos model, there are long-term exchanges of orbital angular
momentum among the planets leading to a very eccentric orbit for the inner planet
that can finally be shrunk and circularized as in the previous mechanism forming a
hot Jupiter (Wu and Lithwick 2011).

From a quantitative point of view, the orbital angular momentum is given by:

Lorb = MsMp

Ms + Mp

√
G(Ms + Mp)a(1 − e2) � Mp

√
GMsa(1 − e2) if Mp � Ms,

(2.27)
while the mechanical energy of the orbit is given by:

Eorb = −GMsMp

2a
, (2.28)

where the meaning of the symbols is the same as in the previous sections. In the
secular chaos or Lidov-Kozai cycles, the mechanical energy of the orbits is constant,
while angular momentum is exchanged between the bodies orbiting the star. There-
fore, only the eccentricity of the planet orbit varies with e approaching the unity
when most of the orbital angular momentum of the planet is taken by the other bod-
ies.When the planet comes very close to the star at the periastron, the tidal interaction
becomes so strong that we can assume that the orbit is circularized at constant orbital
angular momentum because we can assume that tides do not affect significantly the
spin of the star. The strong tidal dissipation inside the planet reduces the orbital
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Fig. 2.7 Illustration of the formation of a hot Jupiter via high-eccentricity migration. The initial
highly eccentric orbit of the planet is plotted in red and has a periastron distance q = aR, where
aR is the separation corresponding to the planet coming in contact with its Roche lobe (dotted blue
line). The final circular orbit of the planet, reached after the dissipation of the excess kinetic energy
by the tides raised into the planet by the star, is plotted as a green line and has a radius af twice the
periastron separation of the initial highly eccentric orbit

energy and therefore the orbital semi-major axis becomes smaller reaching a final
value af corresponding to the circular orbit of the hot Jupiter. The conservation of the
orbital angular momentum Lorb and of the mass of the planet implies (cf. Eq. 2.27):

af = ai(1 − e2), (2.29)

where ai is the initial semi-major axis of the highly eccentric orbit that leads to the
tidal encounter between the planet and the star, and e is its eccentricity which is very
close to the unity. Since (1 − e2) = (1 + e)(1 − e) � 2(1 − e) and ai(1 − e) = q,
where q is the periastron distance on the highly eccentric orbit, we find:

af�2q, (2.30)

in other words, the orbital separation of a hot Jupiter when it forms is twice the
periastron distance of the highly eccentric orbit it had before coming close to the
star (see Fig. 2.7). The minimum allowed value for q is given by the star-planet
separation aR corresponding to the planet in contact with its Roche lobe because
a smaller separation would imply the transfer of mass from the planet to the star
leading to a rapid engulfment of the planet.7 Therefore, a prediction of the model
of high-eccentricity migration is that the orbital semi-major axis is at least twice the
Roche lobe separation aR of the planet. A more detailed analysis by Ford and Rasio
(2006) found that the distribution of the semi-major axis peaks at about three times
the Roche lobe separation of the planet.

7 The Roche lobe separation is given by: aR�2.16 Rp(Mp/Ms)
−1/3.
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2.3.3 Constraints on Tidal Quality Factors from Exoplanet
Demography

As we saw in Sect. 2.3, the attempts to directly measure the stellar modified quality
factors Q′

s through the orbital decay of hot Jupiters are hampered by the possibility of
alternative interpretations of the observed O − C diagrams. A different approach is
to make use of the orbital parameter distributions of hot Jupiters to derive constraints
on Q′

s and Q
′
p. Thiswould provide the best results if the initial conditions and the ages

of the systems were known because the present semi-major axes and eccentricities
can be derived from their initial values by integrating the equations of tidal evolution
(cf. Eq. 2.22). Unfortunately, we do not know the initial values of those parameters,
so this approach can be pursued only by making some assumptions. Results on
the stellar and planetary tidal dissipation efficiency were obtained in this way by,
for example, Jackson et al. (2008); Matsumura et al. (2008); Husnoo et al. (2012);
Hansen (2012). Here, I briefly report on two recent works that made use of extended
samples of close-by planets.

Bonomo et al. (2017) re-determined in a homogeneousway the system parameters
of a set of 231 transitingplanets andused them to investigate theprobablemechanisms
of close planet formation and the tidal quality factors. The distribution of the orbital
semi-major axes of these planets peaks at about three times aR, in agreement with
the prediction of the high-eccentricity migration model (see Sect. 2.3.2). Only a few
systems have a semi-major axis smaller than 2aR and these can be explained by the
tidal decay of their orbits after circularization close to their stars.

A lower limit to the planet modified tidal quality factor Q′
p can be derived for

the systems with an eccentric orbit, assuming that the eccentricity is established at
the formation of the system and is not excited by a third body at any later time. A
significant eccentricity requires that the timescale τe for the tidal decay of the eccen-
tricity itself be longer than the age of the system τage that can be estimated by fitting
isochrones to the position of the host star on the H-R diagram.Moreover, an eccentric
orbit puts a constraint on the dissipation inside the star because it contributes to the
decay of the eccentricity. In quantitative terms, for the systems with an eccentricity
significantly different from zero, we can write (cf. Matsumura et al. 2008):

Q′
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(2.31)

where Fs and Fp are functions of the orbital eccentricity and the spin angular velocity
of the star (and the planet) as given by Matsumura et al. (2008), while all the other
parameters have been introduced before. On the other hand, the systems with an
eccentricity not significantly different from zero, should have had time to circularize,
if they were born with an eccentric orbit. This implies τe < τage that sets an upper
limit on Q′

p as:
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Q′
p <

81

2
n

(
Ms

Mp

)(
Rp

a

)5

Fpτage. (2.32)

Using these relationships, Bonomo et al. (2017) derived both lower and upper limits
on Q′

p. Most of the lower limits were derived for systems with eccentric orbits within
0.1 au from their hosts, giving Q′

p > 105–106. The very close system WAPS-18 has
Q′

p > 5 × 107, but its radial-velocity curvemay indicate an apparently eccentric orbit
because of the tides raised by the planet in the star that distort the spectral line profiles
(cf. Maciejewski et al. 2020a, b). On the other hand, the upper limits for the planets
with clearly circular orbits within 0.1 au show that Q′

p < 106–109 with the upper
limit rapidly decreasing with increasing semi-major axis. These statistical results are
derived assuming that the planets have similar tidal dissipation and do not take into
account possible differences in their interior structure and rotation rate. For example,
a planet without an inner core should not develop chaotic attractors producing rapid
dissipation of inertial waves and should thus have a much higher Q′

p than a planet
with a similar radius and a density discontinuity at its core. The existence of close-
by planets with eccentric orbits poses a lower limit to the stellar Q′

s in the present
assumptions, that Bonomo et al. (2017) found to be between 107 and 104 for the
systems with a<0.1 au with a rapid decrease with increasing semi-major axis.

A different approach was taken by Collier Cameron and Jardine (2018) who
started by considering the distribution of the mass ratio Mp/Ms versus the relative
semi-major axis a/aR and found a lack of systems with relatively large Mp/Ms at
a/aR<2–3. They interpreted this as the result of planetary engulfment due to the tidal
decay of their orbits. By integrating the equation for the evolution of the semi-major
axis from a = 0 to the present value a, they found the remaining lifetime of a planet
τrem before it is engulfed (cf. Brown et al. 2011):

τrem = 2

117

Q′
s

n

Ms

Mp

(
a

Rs

)5

. (2.33)

For constant Q′
s, the value of τrem is smaller for the planets on the verge of the region

without observed systems in the diagram, which motivated the proposed interpreta-
tion.

A more detailed analysis was performed by Collier Cameron and Jardine (2018)
assuming an initially uniformdistribution of log a for hot Jupiters and evolving itwith
a constant Q′

s. The observed distribution of a together with the measured parameters
Ms, Rs, Mp, Rp, and the effective temperature of the star Teff , can be used to put
constraints on Q′

s for the population of stars hosting hot Jupiters. The most likely a
posteriori distribution of Q′

s was derived using a Bayesian approach and considering
the difference between systems where inertial waves can be excited inside the star
(|ω̂| ≤ 2�s) and those where they can not. For the former subset, Collier Cameron
and Jardine (2018) found log Q′

s = 7.31 ± 0.39 from 19 systems, while for the latter
log Q′

s = 8.26 ± 0.14 from 223 systems. The difference in the distributions of Q′
s is

significant at the 2-σ level, providing support for the dynamic tide theory by Ogilvie
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and Lin (2007). No significant dependence of Q′
s on Teff is found. A dependence of

the results on the assumed initial distribution of the semi-major axis is present, but it
does not have a major impact, except in the case of very small tidal dissipation rates
because in that case, the evolution of the semi-major axis is limited. An interesting
consequence of this model is that planets closer to their host stars are statistically
younger than more distant planets.

A limitation of the above approaches is the assumption that Q′
s is constant along

with the evolution of the systems. The role of the Q′
s evolution from the pre-main

sequence to the end of the main sequence was investigated by, e.g., Mathis (2015),
Bolmont and Mathis (2016), and Mathis (2018) who found that the strong tidal
dissipation during the pre-main-sequence phase, coupled with a faster initial stellar
rotation and a larger radius, push close-by planets away from their host star, thus
putting them at a safe separation where tides can no longer produce their engulfment
during the main-sequence lifetime of the system. On the other hand, models with a
constant Q′

s starting from the pre-main-sequence phase leads to planet engulfment
during the main-sequence lifetime of the star. The dependence of Q′

s on the internal
structure and evolution of the stars has been recently discussed by Barker (2020) who
confirmed the above results with a more sophisticated model of tidal dissipation.

2.3.4 Rotation of Planet-Hosting Stars

McQuillan et al. (2013) found a dearth of close-by planets around fast-rotating late-
type stars using Kepler data. Their results refer to transiting planets, while the stellar
rotation was measured from the modulation of the flux outside transits (see Fig. 2.8).
Teitler and Königl (2014) interpreted this result as the consequence of the decay of
the planet orbits under the effect of tides that leads eventually to engulfment of the
close-by planets and a transfer of their angular momentum to the star that becomes a
relatively fast rotator. Their model requires Q′

s ≤ 106 to reproduce the observations,
thus there is some tensionwith the larger values of Q′

s found by the statistical analyses
of the exoplanet population mentioned in Sect. 2.3.3 that suggest 107 < Q′

s < 108.
An alternative explanation has been introduced by Lanza and Shkolnik (2014)

who propose that the innermost planets in the compact systems detected by Kepler
experience secular chaotic interactions with distant, often undetected, companions
that, in combination with tidal dissipation, can decrease their semi-major axes. They
show that the probability for the innermost planet of coming closer and closer to
the star increases with the age of the system. In turn, this leads to a star rotating
more slowly, given the braking by the magnetic wind along with the main-sequence
evolution of late-type stars. A simple quantitative model based on the above ingre-
dients, i.e., chaotic evolution of the orbit of the innermost planet, star-planet tidal
interaction, and the Skumanich law for the braking of stellar rotation, is capable of
reproducing the observations.

The study of the rotation of stars hosting hot Jupiters suggests that those massive
planets are affecting their hostsmaking them rotate faster than single stars of the same
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Fig. 2.8 Rotation period of the host star Prot versus orbital period of its innermost transiting planet
Porb for the systems ofMcQuillan et al. (2013). The size of the red circle is proportional to the radius
of the planet as indicated in the legend. The solid green line is the regression found by McQuillan
et al. (2013) between the rotation period and the minimum orbital period of the innermost planet.
The dashed blue line represents Prot = Porb, that is, the locus of the systems that have reached tidal
synchronization

age (e.g., Pont 2009; Lanza 2010; Brown 2014; Maxted et al. 2015). Tidal spin-up
has been proposed as a possible explanation, but it does not appear to work for all
the systems (Lanza 2010; Maxted et al. 2015). Therefore, Lanza (2010) and Cohen
et al. (2010) proposed that a close-by massive planet may interact magnetically with
its host star reducing the efficiency of its magnetized wind and therefore the angular
momentum loss rate along its main-sequence evolution. This will lead to a faster
rotation of the star than predicted by gyrochronology according to its isochrone age.

The final word on these correlations will be said only after we get accurate ages
for the planetary systems. The European space mission PLATO will provide them
with a significant sample of transiting planets by applying asteroseismology to derive
the ages of the host stars within 10% (Rauer et al. 2014). Moreover, it will provide
accurate rotation periods for the host stars by measuring the rotational modulation
of their optical flux.

2.3.5 Tides in Telluric Planets

Telluric planets have a solid interior and can have oceans and atmospheres on their
surface. In the case of the Earth-Moon system, most of the tidal dissipation is due to
the gravito-inertial waves that propagate in the oceans. Although their mass is only
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0.023% of Earth’s mass, oceans dominate tidal dissipation in our planet (Mathis
2018). For a distant observer outside the solar system who detects the Earth and the
Moon by their transits across the Sun, oceans at Earth’s surface would be undetected,
thus any estimate of the tidal dissipation in our planet would be based on hypotheses
on the rheology of its solid body (cf. Bolmont et al. 2020) and would be seriously
wrong.

In addition to tides in the solid body of a telluric planet (Mathis 2018), a relevant
role can be played by tides in its atmosphere excited by the stellar insolation. These
atmospheric tides are generally not in phase with the gravitational tide acting on the
solid body of the planet or on its oceans. To understand why, we can consider a naive
model that assumes that the atmosphere consists of an ideal gas vertically stratified
and without horizontal winds, so the pressure is the same at all the points at the same
elevation above the surface of the planet. In this case, the region of the atmosphere
that faces the star receives themaximumof insolation and is, therefore, hotter than the
regions that are close to the terminator. Since the pressure p on a horizontal surface
is the same at the point of maximum insolation and at the terminator, the product
ρ × T , where ρ is the gas density and T its temperature, is constant on that surface.
Given that T is higher at the point of maximum insolation, the gas density will be at
its minimum there, while it will be maximum on the terminator. In other words, the
density profile of the atmosphere will show a bulge with the maximum density at the
terminator, that is out of phase by ∼90◦ with respect to the gravitational tidal bulge
that points along the line joining the centers of the planet and of the star (see Fig. 2.9).

Fig. 2.9 Illustration of the atmospheric tide on a telluric planet. The gravity tide produces a defor-
mation of the solid body of the planet (whose section is shown in brown) that is carried ahead of
the line joining the center of the planet O with the star S by the rotation of the planet (indicated
by the green arrow). The gravity tide lag angle is indicated by αT. The insolation of the star on the
planet’s atmosphere (whose section is shown in blue) produces a less dense region at the substellar
point and denser regions far away from that point. Therefore, the atmospheric tide lag angle αA can
be remarkably different from the gravity tide lag angle αT. An equilibrium between the torques of
the gravity tide and of the atmospheric tide can eventually be established, but with the planetary
rotation out of synchronism with the orbit
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The effects of the density bulge of the atmospheric tide can be as important as
that of the gravitational bulge depending on the properties of its atmosphere and the
rheology of the planetary rocky interior (Correia and Laskar 2010; Mathis 2018).
In the solar system, the atmospheric tide of Venus is regarded as responsible for its
retrograde rotation in spite of the fact that the mass of the atmosphere is only 0.01%
of Venus’ mass (e.g., Gold and Soter 1969; Correia and Laskar 2001).

In conclusion, tides in telluric planets are a complex phenomenon and we should
be ready to accept that their rotation can be very different from our predictions based
on simplified assumptions about their rheology and atmospheric properties. This can
have an important role on the heating of the planet because a non-synchronous rota-
tion produced by the atmospheric tides will lead to tidal dissipation in its interior
due to the gravitational tides. For simplicity, the case of solid bodies having a per-
manent ellipsoidal deformation such as Mercury or the Moon is not considered here.
The possibility of their capture into a spin-orbit resonance during their evolution is
discussed in Murray and Dermott (1999).

2.4 Planet Evaporation and High-Energy Stellar Radiation

Stellar radiation provides a source of energy to the atmospheres of exoplanets that
produces atmospheric dynamics, including evaporation, that can significantly affect
the distribution of themass and radius of the exoplanets, in particular of those smaller
than 3–4 R⊕, during their lifetime. Therefore, it is important to discuss the impact of
evaporation when studying the demography of exoplanets.

2.4.1 Evaporation of Planetary Atmospheres:
A Simplified Model

A preliminary understanding of planetary evaporation can be based on a simplified
model of the hydrodynamic wind escaping from an atmosphere and powered by the
heating produced by stellar radiation.

We assume a one-dimensional model, a steady flow with uniform temperature
(isothermal wind), and consisting of a single type of particles of mass m (e.g., pro-
tons). This simple model was introduced by Parker (1958) to explain the solar wind
and has been applied to a variety of phenomena, for example, the evaporation of
circumstellar discs or the winds produced by active galactic nuclei.

The basic equations of the model are:

4πr2nv = constant (mass continuity), (2.34)

mnv
dv

dr
= −dp

dr
− G

Mpmn

r2
(momentum equation), (2.35)
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p = nkBT (equation of state), (2.36)

where r is the radial coordinate measured from the center of the planet, n the number
density of particles of massm, v their velocity, p the pressure, T the temperature, Mp

the mass of the planet, kB the Boltzmann constant, and G the gravitation constant.
Note that only the pressure gradient and the planet gravity appear in the momentum
equation, thus the wind is accelerated by a pressure gradient that opposes gravity.
Since T is uniform, we can eliminate n between these equations and obtain:

(
v − v2

c

v

)
dv

dr
= 2

v2
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r
− G

Mp

r2
, (2.37)

where

vc ≡
(
kBT

m

)1/2

(isothermal sound speed). (2.38)

We define a critical radius rc as

rc ≡ GMp/(2v
2
c ), (2.39)

thus Eq. (2.37) can be integrated to give:
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+ C, (2.40)

where C is a constant of integration.
Depending on the initial conditions and the value of C , there are different types

of solutions of Eq. (2.40) that are illustrated in Fig. 2.10. We are interested in the
solutions that connect the surface of the planet r = Rp with the infinity because only
those solutions represent a truly evaporative mass flow that is effectively lost by
the body. Therefore, solutions of kind I and II are excluded. Similarly, we exclude
solutions of kind III because they assume a high initial velocity of the flow at the
surface of the planet. Solutions of type V, called thermal breezes, correspond to flows
that escape from the planet, but that are initially accelerated and then decelerated,
thus leading to a mass loss rate that goes to zero at infinity. The only acceptable
solution is that labeled with IV that corresponds to the trajectory going through the
point A of coordinates (rc, vc) (called critical point) in the r -v plane and that is
obtained for a value of the integration constant C = −3. The flow starts with a very
small velocity at the surface and is initially subsonic. When it crosses the critical
point, it becomes supersonic and continues to accelerate under the effect of the steady
pressure gradient. This solution, going through the critical point, corresponds to an
isothermal wind producing evaporation and a mass loss of the planet (Priest 1984).

An important consequence of the transition from the subsonic to the supersonic
regime is that any perturbation produced in the supersonic part of the flow cannot
modify the mass loss. This happens because the mass loss is fixed by the boundary
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Fig. 2.10 Illustration of the different types of solutions of Eq. (2.40) in the r -v plane (after Priest
1984). The critical point is indicated by A(rc, vc), where rc is the critical radius and vc the critical
velocity corresponding to the isothermal sound speed given by Eq. (2.38). The radius r0 from
which the wind is accelerated is also indicated. See the text for a discussion of the different kinds
of solutions labeled in the plot

conditions close to the surface of the planet and any perturbation propagates at the
isothermal sound speed. Therefore, perturbations excited in the supersonic part of the
flow are carried away by the flow itself without having the possibility to propagate
down to the surface of the planet where the wind is launched.

It is not difficult to compute the velocity close to the base of the wind at r = r0,
where v � vc and r0 � rc. Note that r0 is the level in the atmosphere where the wind
is launched and that can be slightly larger than the planet radius Rp as we shall see
below. We find the initial velocity:

v(r0) = exp(3/2)vc

(
r0
rc

)2

exp

(
−GMp

r0v2
c

)
. (2.41)

The mass loss rate in the evaporation is obtained by substituting the initial velocity
in the equation of continuity:

dMp

dt
= 4πr20v(r0)n(r0)m ∝ n(r0)T

5/2 exp

(
−GMpm

r0

1

kBT

)
, (2.42)

where we made use of Eqs. (2.38) and (2.39) to express rc and vc in terms of the
wind temperature.

Equation (2.42) allows us to compare the mass-loss rates that come from different
levels in the atmosphere of a planet. In particular, we can compare the mass loss of a
wind originating at the surface with that of a wind originating from the level where
photoionization produced by the stellar ultraviolet radiation occurs, corresponding
to an optical depth τEUV = 1 in the extreme ultraviolet (EUV, see Fig. 2.11). The
level corresponding to an optical depth of unity in the visible passband at r = Rp in a
strongly irradiated hot Jupiter reaches an equilibrium temperature of about∼2000 K
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Fig. 2.11 Sketch of the different relevant levels in the atmosphere of an exoplanet (hot Jupiter)
with indication of the typical radius r , pressure P , and temperature T (after Murray-Clay et al.
2009). The main chemical constituents of each layer are indicated. The red arrow indicates the
wind accelerated from the photoionization level τEUV = 1 and crossing the sonic point

with a pressure of∼1 bar, while the layer where photoionization occurs at r ∼ 1.1 Rp

has a temperature of about 104 K and a pressure of about 10−9 bar. Therefore, we
can compare the mass-loss rates from the two levels as given by Eq. (2.42) assuming
a ratio in the values of the base density n(r0) of 10−9 and temperatures of 2000 and
104 K, respectively. The result is that the mass-loss rate from the surface is ∼1.5 ×
10−21 times that coming from the photoionization level owing to the dominant role
played by the exponential factor in Eq. (2.42). In other words, themass-loss rate from
any thermalwind accelerated from the surface is completely negligible in comparison
with the wind originating from the photoionization level.

The stellar radiation powering the evaporation consists of the EUV photons with
a wavelength shorter than 91.2nm which corresponds to the ionization threshold of
hydrogen. Those photons ionize hydrogen and deposit their excess energy as heat
in the plasma. Since the cross-section for bound-free absorption by hydrogen is
proportional to λ−3, where λ is the wavelength of the radiation, the ionization cross-
section is maximum for photons close to the threshold and then decreases rapidly
going towards the X-ray domain.

The heated plasma cools essentially by radiation because thermal conduction is
not efficient at the low densities of planetary outer atmospheres. The radiation loss
function of a plasma� is a function of its temperature and chemical composition and
can be computed by assuming ionization and excitation equilibria for the ions (e.g.,
Raymond and Smith 1977; see Fig. 2.12). The energy radiated per unit volume in the
low-density regime of thewind is�(T )n2, where the dependence on the square of the
density comes from the collisional excitation of the ions followed by their radiative
de-excitation. This is similar to the case of stellar coronae that provides another
example of a radiatively cooled low-density plasma. The radiative loss function
�(T ) has a relative maximum at ∼(1–2) ×104 K associated with the strong Lyman-
α radiation emitted by a plasma with a solar composition (see Fig. 2.12). Therefore,
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Fig. 2.12 The radiative loss function � of a high-temperature plasma with solar composition
versus the temperature T after Reale and Landi (2012). The thin solid line labeled RTV is the
parameterization adopted by Rosner et al. (1978), while the thick line is computed with version 7
of the CHIANTI spectral code by Landi et al. (2012). The vertical blue arrow marks the relative
maximum around ≈ (1–2) ×104 K, associated with the emission of the Ly-α line, while the red
vertical arrow marks the absolute maximum around ≈ (1–2) ×105 K due to the strong emissions
in the lines of carbon, nitrogen, and oxygen

even a high flux of stellar EUV radiation is not capable of increasing the temperature
of the wind beyond ∼104 K because at higher temperatures the radiative loss rates
will be smaller and not capable of balancing the heating by the EUV flux. In this
way, the strong Ly-α emission acts as a sort of thermostat for the wind that becomes
denser with the increase of the EUV flux in order to balance the greater heating by
radiation.

Depending on the incoming stellar EUV flux, two regimes of evaporative mass
loss are possible (cf. Murray-Clay et al. 2009). At relatively low EUV fluxes, most
of the energy of the stellar radiation is used to lift the evaporating plasma out of
the gravitational potential well of the planet. In this case, there is an approximate
balance between the flux received by the planet and the work required to lift the
evaporating mass outside the gravitational field of the planet (energy-limited mass
loss rate), that is:

Ṁp ∼ επFEUVR2
p

GMp/Rp
∼ 6 × 106

( ε

0.3

)(
Rp

108m

)3 (
0.7MJ

Mp

)(
FEUV

0.45 W m−2

)
kg s−1,

(2.43)
where 0 < ε < 1 is a factor specifying the fraction of the EUV flux FEUV that is
converted intowork against gravity. In this regime, themass loss rate is approximately
proportional to the EUV stellar flux (see Murray-Clay et al. 2009 for details). On the
other hand, when the EUV flux is very strong, we are in the radiation-recombination
limited mass loss rate regime, where the wind is fully ionized and the radiative losses
keep the temperature at ≈104 K independently of the EUV flux. In this regime:
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Ṁp ∼ 4 × 109
(

FEUV

500 W m−2

)1/2

kg s−1. (2.44)

The dependence of the mass-loss rate on F1/2
EUV comes from the balance between the

radiative loss rate, that is proportional to �(T )n2, and the incoming EUV flux at a
fixed T∼104 K. Therefore, the base density and the mass-loss rate in the wind will
be proportional to n ∝ F1/2

EUV in this regime.
The simplified model of planet evaporation presented above, based on the simple

Parker isothermal wind, neglects several important effects. For example, the tidal
potential due to the starmodifies the gravitational field throughwhich the evaporation
flow moves, while the planet and stellar magnetic fields strongly affect the flow of
an ionized plasma (e.g., Adams 2011; Trammell 2011). We neglected also the effect
of the Coriolis force and the role played by the X-ray radiation.

Owen and Jackson (2012) discussed the different roles of the EUV and X-ray
radiations due to their different penetration depths in the atmosphere. The EUV flux
can penetrate down to the ionization level, while the X-rays can go much deeper
because of their smaller cross-section. If the sonic point is below the ionization
level, the EUV flux cannot power the wind because the mass loss is set below the
sonic point. In this case, we have X-ray-driven evaporation with X-rays delivering
energy below the sonic point to accelerate the wind. On the other hand, when the
sonic point is beyond the ionization level, the wind is powered by the EUV flux,
while the X-rays play a minor role as we considered in our model (cf. Fig. 2.11).

The maximum evaporation rates that can be reached in the case of hot Jupiters
around active host stars are on the order of 109–1010 kg s−1. Since the EUV flux emit-
ted by the host stars decreases rapidly during the first phase of their main-sequence
evolution (cf. Sect. 2.4.2), the impact on the hot Jupiters is generally regarded as
very limited with no more than ≈5–10% of their mass being evaporated along their
main-sequence lifetime. The situation is remarkably different for hot Neptunes and
Earth-size planets because their mass is smaller than that of giant planets, therefore,
we expect to see the most important effects, in particular on the planet radius, for
those planets (see Sect. 2.4.4).

2.4.2 Stellar Extreme Ultraviolet and X-Ray Radiation

In this section, I shall briefly introduce the relevant properties of the outer stellar
atmospheres of late-type stars that are necessary to understand planetary evaporation.
For a general and complete introduction to the observations and models of the outer
atmosphere of the Sun and of late-type stars, I suggest the textbooks by Priest (1984),
Mariska (1992), Aschwanden (2005), and the recent work by Linsky (2019).

Main-sequence late-type stars host hydromagnetic dynamos that amplify and
modulate magnetic fields in their interiors (cf. Sects. 2.2.2.3 and 2.2.2.4). Magnetic
flux tubes emerge from the interior to the photosphere (e.g., Priest 1984) where they
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produce active regionswith a rich variety of phenomena. Magnetic fields modify the
transport of momentum and energy in plasmas and produce non-radiative heating
of the outer atmospheres of late-type stars. The outer atmospheres are magnetically
dominated because the ratio between the thermal energy density of the plasma and
themagnetic energy density is remarkably smaller than the unity in the active regions.
In particular, the geometry and the hydrodynamics of the plasma are dominated by
the magnetic field, producing spatial inhomogeneities with strong departure from
spherical symmetry, and time variability associated with the evolution of the fields.
Transient phenomena, triggered by the fast dissipation of magnetic energy and its
conversion into kinetic energy and particle acceleration, are also observed (flares and
coronal mass ejections).

Considering the thermal profile of the outer atmosphere, we see that after reaching
aminimum in the photosphere, the temperature starts to increase in the chromosphere
(see Fig. 2.13). Chromospheric heating has a component coming from the dissipation
of acoustic shock waves, excited by convection immediately below the photosphere,
and another component produced by magnetic energy dissipation by magneto-sonic
waves, Alfvén waves, and magnetic reconnection. The former component is inde-
pendent of the magnetic fields and is considered responsible for the so-called basal
flux of the chromosphere, while the latter magnetic component is responsible for the
flux enhancement seen in the chromosphere of active regions. The temperature in
the chromosphere rises rather rapidly with height up to about (2–3) ×104 K. Above
the chromosphere, the temperature continues to increase up to the corona, separated
from the chromosphere by a thin transition region. Both the corona and the transition
region are spatially inhomogeneous and variable in time because they are dominated
by the magnetic field and there is no basal component in their emission attributable
to non-magnetic processes.

Fig. 2.13 Temperature versus height in a solar or stellar active region with the indication of the
different atmospheric domains. This is a simple illustrative sketch and does not provide exact
information on the run of the temperature that can change from one active region to the other or in
the same active region as a function of the time. The height is purely indicative because the structure
of the outer atmosphere is highly inhomogeneous
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The corona is heated by magnetic fields through dissipation by reconnection and
waves and reaches temperatures up to a few 107 K in the most active stars. In stars
with a low activity level, comparable with the Sun, the corona reaches temperatures
between ∼(0.7–1.0) ×106 K in the so-called coronal holes, that have mostly open
magnetic field lines, and ∼3 × 106 K in the cores of the brightest active regions.
The flux emitted by the coronal plasma comes from collisional excitation, mainly
by electron collisions, and the subsequent radiative decay of the excited ions or
from bound-free and free-free emission of the plasma electrons. Since the plasma is
optically thin and collisionally excited, the emitted flux depends on the square of the
particle number density n and the radiative loss function �(T ) (see Fig. 2.12) and is
emitted almost entirely in the X-ray owing to the high temperature T of the plasma:
FX ∝ n2�(T ). In the coronal loops consisting of closed field lines, the density is
about one order of magnitude higher than in the coronal holes, so they are about
two orders of magnitude brighter. On the other hand, the density in coronal holes
is kept low by the continuous outward flow of plasma forming the solar wind. The
acceleration of the wind is essentially due to the thermal pressure as discussed in
Sect. 2.4.1 where the Parker model was introduced.

In addition to the corona, emitting in the X-rays, the thin transition region emits a
spectrum consisting of emission lines in the EUV domain (Linsky 2017). The small
geometric thickness of the transition region is due to the profile of the radiative loss
function �(T ) that reaches its absolute maximum around 105 K, that is, the tem-
perature characteristic of the transition region (cf. Fig. 2.12). The associated intense
radiative emission, mostly in the lines of ions of carbon, nitrogen, and oxygen, cannot
be balanced by the magnetic heating in the transition region itself, so a steep tem-
perature gradient develops across the transition region to allow a strong conductive
flux of thermal energy from the corona in order to balance the radiative losses.8 This
explains the geometric thinness of the layers emitting the EUV radiation in late-type
stars because thicker layers would not allow a sufficiently steep gradient.

As a consequence of the connection between the two domains, the coronal and
transition region fluxes are strongly correlated with each other. The correlation is
also strong with the component of the chromospheric emission in excess of the basal
flux because it is also magnetically dominated. From a quantitative point of view,
such correlations are expressed as power laws that link the X-ray flux with the fluxes
in the different transition region and chromospheric lines (e.g., Oranje 1986; Piters
et al. 1997; Pagano 2013).

Stellar X-ray emission can be detected from relatively distant stars because it is
not strongly absorbed by the interstellar medium. On the other hand, the flux in the
EUV below 91.2nm is strongly absorbed by interstellar hydrogen, so we have very
few direct measurements in the EUV band, only for stars that are very close to the
Sun or that are intrinsically very active and for wavelengths shorter than ∼35 nm.
Therefore, the EUV flux must be reconstructed by indirect methods (Linsky et al.

8 The thermal conductivity of the plasma scales as T 5/2, making thermal conduction efficient in the
corona, especially along magnetic field lines, while the conductivity is much lower perpendicular
to the field lines (e.g., Priest 1984).
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2014; Linsky 2017). For example, one can use the above correlations between the
X-ray flux and the EUV line fluxes. Another approach is that of Sanz-Forcada et al.
(2011), who used a combination of X-ray observations and coronal loop models to
reconstruct the EUVcomponent of the stellar high-energy flux and study its evolution
along the main-sequence lifetime.

The main parameter controlling the X-ray flux in late-type stars is rotation. Stars
that rotate more rapidly have a larger X-ray flux up to reaching a saturation level. By
introducing the Rossby number Ro ≡ Prot/τc, where Prot is the rotation period and τc
the convective turnover time, empirically calibrated as a function of the B − V color
index, Pizzolato et al. (2003) found an approximately linear relationship between
LX/Lbol and Ro−2 that saturates for log Ro < −0.8.

Since the stellar rotation period increases rapidly owing to magnetic braking
during the first phase of the main-sequence lifetime of a star, its X-ray and EUV
emissions decay rapidly after the ZAMS and then more slowly during the remaining
part of the main-sequence lifetime (e.g., Sanz-Forcada et al. 2011). In other words,
most of the XUV radiation will reach the planets during the first 100–200 Myr of
their evolution with a decrease in flux up to two orders of magnitude after that initial
phase. This will have relevant consequences for the demography of exoplanets as we
shall see in Sect. 2.4.4.

2.4.3 Signatures of Planetary Evaporation

Evidence of evaporation from a hot Jupiter was first provided by Vidal-Madjar et al.
(2003) through observations of the stellar Ly-α line in HD 209458 with the STIS
spectrograph on theHubble Space Telescope. Although the core of the line is strongly
absorbed by the Earth geocoronal hydrogen atoms, there was a clear difference in
the line profile between in-transit and out-of-transit observations showing an excess
absorption during transits that was attributed to hydrogen atoms in an extended atmo-
sphere maintained by the planet evaporation. The number of transiting exoplanets
with similar signatures of an extended atmosphere is still small because these obser-
vations require bright stars, such as HD 189733, WASP-12, or GJ 436 and Ly-α is
not observable from the ground. For a recent review, see Bourrier and Lecavelier des
Etangs (2018).

An intriguing observation that can be indirectly related to planetary evapora-
tion was presented by Fossati et al. (2013) who found an anomalously low level of
chromospheric emission in a sample of stars with transiting hot Jupiters. The chro-
mospheric index log R′

HK, measuring emission in the cores of the Ca IIH&K lines
that are powered by chromospheric heating, is significantly lower in those stars in
comparison with field stars of similar B − V color. A detailed investigation of the
WASP-12 system points to absorption by circumstellar plasma as the cause of the
anomalously low level of flux in the cores of the Ca IIH&K lines. This is not the
only possible cause given that, in the case of WASP-18, the star was found to be
intrinsically much less active than expected according to its rotation rate and age
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(Pillitteri et al. 2014b; Fossati et al. 2018; cf. Sect. 2.5.4). Nevertheless, the presence
of circumstellar plasma around WASP-12 can be associated with the high evapora-
tion rate expected from its very close hot Jupiter, thus suggesting another indirect
signature of planetary evaporation.

The possibility that the plasma evaporated from a close-by planet forms a torus
around the star was suggested by some previous theoretical works showing that a
closed magnetic field configuration with an azimuthal flux rope can be formed in the
outer stellar corona, thanks to the continuous magnetic energy dissipation associated
with the orbital motion of the planet (cf. Sect. 2.5.3 and Fig. 2.17). The flux rope can
be filled by part of the evaporated plasma and helps to confine it around the star in
its equatorial plane (Lanza 2009). Recent numerical models of the hydrodynamics
of the evaporated plasma in WASP-12 confirm the possibility of forming a torus of
plasma in the orbital plane of the planet around the star. This happens because the
stellar wind is subsonic at the distance of the torus and kinetic and thermal pressures
are not sufficient to blow away the plasma torus even without invoking the confining
effect of the magnetic field (Debrecht et al. 2018).

An interesting consequence of having planet-evaporated absorbing material
around stars with hot Jupiters is that their chromospheric activity indexes, notably
log R′

HK, would be affected if the plane of the torus contains the line of sight as
happens in the case of transiting planets. Indeed, Hartman (2010) found a signif-
icant correlation between log R′

HK and the gravity of the planet,9 for stars with
4200 < Teff < 6200 K, Mp ≥ 0.1MJup, and semi-major axis a ≤ 0.1au. Specifi-
cally, stars hosting planets with a lower surface gravity have a statically lower chro-
mospheric index, which can be explained because a lower planetary gravity favors
the evaporation and therefore the formation of a more massive circumstellar torus
leading to stronger absorption of the chromospheric line flux (see Lanza 2014 for
details). Figueira et al. (2014) confirmed the results of Hartman (2010), while Fos-
sati et al. (2015) found a bimodality in the correlation that was interpreted by their
model on the basis of the observed bimodal distribution of the intrinsic level of chro-
mospheric activity in late-type field stars (e.g., Vaughan and Preston 1980; Wright
2004). The additional absorption produced by circumstellar material replenished by
the evaporation of close-by planets may represent a rather efficient way to select
targets for planet search as well as for analyzing the composition of the evaporated
planetary atmospheres (Haswell et al. 2020; Staab et al. 2020).

A different explanation for the correlation between planetary gravity and stellar
chromospheric emissionwas suggested byCollier Cameron and Jardine (2018). They
noted that surface gravity correlates strongly with planet mass, while the remaining
lifetime of a hot Jupiter scales with the inverse planet mass in Eq. (2.33). Their anal-
ysis also suggests that any planet, whose remaining life expectancy is significantly
shorter than the main-sequence lifetime of its star, is more likely to be seen when it
is young if the planetary birth rate is more or less uniform. A younger planet implies

9 The surface gravity of a transiting planet can be derived directly from radial-velocity and transit
observations, independently of stellar parameters (Sozzetti et al. 2007).
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a younger and more active star, thus qualitatively accounting for the observed cor-
relation. In summary, more massive planets with a larger gravity are expected to be
found around younger and more active stars.

2.4.4 Consequences of Stellar Irradiation and Planet
Evaporation for Planet Demography

The Kepler space telescope allows measuring the radius of transiting planets down
to about 1.0–1.2 R⊕. An accurate determination of the planet radius requires an
accurate value of the stellar radius that was not generally the case for the values listed
in the Kepler Input Catalogue. However, more recent work by the California Kepler
Survey project led to amuchmore homogeneous and accurate determination of stellar
parameters that unveiled a clear dichotomy in the distribution of the planet radii for
Rp < 4.5 R⊕ in a sample of 2025 planets (see Fulton et al. 2017, and Chap. III,
Sects. 3.2 and 4.2). Using stellar parameters derived with asteroseismic techniques,
VanEylen et al. (2018) confirmed the existence of the dichotomy, although for amuch
smaller sample of 117 stars. Clearly, PLATOwill provide amajor advance in this field
thanks to the systematic application of asteroseismic techniques that will allow to
obtainmeasurements of the stellar radii with an accuracy of 3% in the case of Sun-like
stars and the discovery of many more transiting small planets (Rauer et al. 2014).

A simple model to account for the observed dichotomy in the radius distribution
of small planets was proposed by Owen and Wu (2017). They interpret the reduced
fraction of planets with a radius around 2 R⊕ as the effect of the evaporation of
the planet outer envelope under the action of the stellar EUV irradiation leaving a
bare core with a smaller radius peaking around 1.3–1.5 R⊕. Specifically, this model
assumes that a planet initially consists of a core of uniform composition and an
envelope of hydrogen and heliumwith outer radii Rcore and Rp, respectively. Themass
of the core is Mcore, while that of the envelope is Menv ≡ XMcore, where X < 1. The
self-gravity of the envelope is neglected and the envelope is considered to be adiabatic
in the deep interior, while it is roughly isothermal (radiative) near the surface. The
planet luminosity arises from the gravitational contraction of the envelope.

The model by Owen & Wu allows to compute X as a function of the radii Rcore,
Rp, and the chemical composition of the core. Assuming a given flux of stellar EUV
photons and an energy-limited evaporation rate, the model allows to compute the
mass loss timescale of the planets that peaks when the planet radius is doubled by
the presence of the H/He envelope, corresponding to X ≈ 0.01 (see Fig. 2.14). When
the envelope is less massive (X < 0.01), the planet radius remains approximately
constant, thus its surface gravity is smaller, which reduces the evaporation timescale.
Similarly, when the envelope is more massive (X > 0.01), the planet swells up faster
than the accumulation of envelopemass, thus intercepting a larger EUVflux from the
star and reducing its evaporation timescale (Owen and Lai 2018). Since the stellar
EUV flux decreases fast with increasing stellar age, planets that have X ≈ 0.01
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Fig. 2.14 Ratio of the evaporation time scale τevap to the typical duration τEUV of the phase of
EUV strong emission in late-type stars versus X , the ratio of the mass of the atmospheric envelope
Menv to the core mass Mcore of an exoplanet. The mass of the core is fixed. If τevap/τEUV < 1,
the strong EUV flux has time to completely evaporate the envelope, while the envelope is retained
when τevap/τEUV > 1. The red horizontal dashed line marks the separation between these photo-
evaporation stable and unstable envelopes. The two stable configurations A and B are accessible
to low-mass planets and correspond to X � 10−2, that is, to a core almost entirely stripped of its
envelope, and to X > 10−2, respectively, both having a radius smaller than the maximum radius
(about twice the radius of the core, reached at X ∼ 10−2). The stable configuration C is charac-
teristic of more massive planets having most of their mass in the envelope such as giant planets

experience only a limited amount of evaporation of their envelopes and keep a radius
larger than 2 R⊕ at the end of the evaporation phase. On the other hand, planets with
X � 0.01 or X � 0.01 will rapidly lose their envelopes and expose their bare cores
displaying a significantly smaller radius than the planets which could retain much of
their envelopes. The duration τEUV of the initial phase of intense evaporation is on the
order of only 100–150 Myr because of the fast decay of the level of EUV and X-ray
emission in main-sequence stars. Therefore, for planets orbiting field stars with an
average age of some Gyr, the photoevaporation phase was completed long ago.

The radius dichotomy disappears for orbital periods longer than about 20 days
(Fulton et al. 2017; Owen and Wu 2017), thus supporting an interpretation based
on photoevaporation because the stellar EUV flux becomes too small to produce
a significant mass loss when we move sufficiently away from the star. The model
by Owen & Wu allows also to put constraints on the composition of the core. A
homogeneous core consisting of pure water ice is excluded by the observations,
while a core consisting of a mixture of iron and silicates is preferred, although the
mass fraction of the two main constituents cannot be precisely constrained.

A precise modeling of the planet evaporation and of the consequent radius evolu-
tion should go beyond a simplified approach based on the energy-limited evaporation,
(see, e.g.,Kubyshkina et al. 2018), and consider also the contribution of the internal
heat of the planet (e.g., Kubyshkina et al. 2020).
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Fig. 2.15 Projected planet mass versus orbital period showing the lack of planets in the domain
called sub-giovian desert (labeled). Credits: exoplanets.org database; Han et al. (2014)

In a diagramplotting theplanetmass versus the orbital period, there is a remarkable
paucity of objectswithmass<0.5–0.7 MJup in awedge-shaped domain running from
periods shorter than ∼3 days for the more massive planets to ∼20 days for the less
massive (cf. Fig. 2.15). This feature of the mass-period diagram has been called sub-
Jovian desert. Owen and Lai (2018) presented an evolutionary model to explain this
feature in the exoplanet distribution, based on the high-eccentricity migration and
the tidal disruption barrier in the case of massive planets (Mp ≥ 0.2 − 0.3MJup),
and on the photoevaporation in the case of low-mass planets (Mp ≤ 0.1 − 0.2MJup).
The shape of the sub-Jovian desert is interpreted as the effect of photoevaporation
on small-mass planets being much more efficient close to their star, while the orbit
of a more massive giant planet is circularized closer to the star because the Roche
lobe semi-major axis aR decreases with planet mass and high-eccentricity migration
produces a peak of the planetary separation at ∼3aR (see Sect. 2.3.2). This model
suggests that the evolution of planets in themass-period diagram can be fast for small
planets because most of the photoevaporation occurs during the first 100–150 Myr
of the stellar evolution on the main-sequence, while the high-eccentricity migration
of giant planets can take much longer, up to Gyrs in the case of a dynamic chaotic
evolution involving distant companions.

Finally, I mention the discrepancy between the radii of hot Jupiters as measured
by means of their transits and those expected on the basis of their structure models
(the so-called radius anomaly of hot Jupiter). There is a correlation between the
radius excess and the stellar flux received by the planet as quantified by its equilib-
rium temperature with hotter planets usually showing a greater radius anomaly. In
principle, a source of heating in the deep planetary interior, that has a nearly adiabatic
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stratification, can explain a larger radius, provided that its power is a few percent of
the stellar insolation. Several models have been proposed to account for this extra
heating, but no clearly definite mechanism has been proposed to explain how the
heat deposited by the stellar radiation in the planet atmosphere could be transferred
into the deep interior to inflate the adiabatically stratified layers of the planet (see
Laughlin 2018; Sainsbury-Martinez et al. 2019, for details).

2.5 Star-Planet Magnetic Interactions

Magnetic fields of extrasolar planets have not yet been measured directly as it has
been possible in our solar system. Nevertheless, they are expected to play a very
important role because they can reduce the evaporation rate (e.g., Adams 2011),
protect planetary atmospheres from the impacts of stellar coronal mass ejections,
affect the habitability of planets (e.g., Airapetian et al. 2019), and provide information
on planetary interiors where the fields are generated (e.g., Driscoll 2018). In this
section, I shall discuss the possibility of inferring information on planetary fields by
observing star-planet interaction effects in their host stars.

2.5.1 Stellar Winds and Magnetic Perturbations
by Close-By Planets

In the solar system, planets are in a region of spacewhere the velocity of the solarwind
vw is greater than the local Alfvén velocity vA = B/

√
μρ, where B is the magnetic

field intensity, μ the magnetic permeability, and ρ the density of the plasma wind.
The Alfvén velocity is the velocity of propagation of the perturbations along the
magnetic field lines10 (e.g., Priest 1984; Spruit 2013). The super-Alfvénic regime,
characteristic of the solar wind at the distance of the planets (vw > vA), implies that
any perturbation produced by the planets in the interplanetary field cannot propagate
down to the Sun, but it is blown away with the wind. In the case of our Earth,
a bow shock is generally present at the boundary between the solar wind and the
magnetosphere of our planet and the surface of the shock can be regarded as a
surface of discontinuity separating the wind field from the magnetospheric field with
little reconnection occurring between them.

In the case of close-byplanets observed aroundother stars, the situation is probably
different. A planet orbiting within 0.1–0.2 au from a solar-type star is likely located
in a region where the stellar wind is still accelerating, characterized by a sub-Alfvénic
regime, that is with vw < vA (Preusse et al. 2005). Therefore, perturbations excited

10 The Lorentz force in an incompressible plasma provides tension along the magnetic field lines,
similar to the tension along an elastic string, that allows the propagation of transverse waves along
the field lines (Alfvén waves). Their phase velocity is the Alfvén velocity.
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by the orbital motion of a close-by planet in the interplanetary field can travel down
to the star and produce observable effects in its atmosphere, at least in principle (cf.
Preusse et al. 2006; Kopp et al. 2011; Saur et al. 2013; Saur 2018). Specifically,
Alfvén waves will propagate through a moving medium, that is, the stellar wind. The
solutions of the wave equation indicate that they will travel along characteristics
given by c±

A = vw ± vA, where vw is the velocity of the wind, vA = B/
√

μρ the
vector Alfvén velocity, and the± sign indicates the two characteristics that originate
at the planet. One of the two characteristics points away from the star, while the
other generally points towards it, thus allowing the Alfvén waves traveling along it
to reach the star (Saur et al. 2013).

An example of a system where Alfvén waves propagate from an orbiting body
down to the atmosphere of the central body is provided by Jupiter with its inner
Galilean moons, Io, Europa, and Ganymede. They orbit inside the magnetosphere of
Jupiter and excite Alfvén waves that travel down to the planet along characteristics
dissipating their energy in its atmosphere and producing hot spots in the UV that
move in phase with the orbital motion of the moons. Spectacular images of these
phenomenahavebeenobtainedby theHubbleSpaceTelescope and show thehot spots
produced by the planet-moon magnetic interaction moving inside the auroral oval
of Jupiter well evident in the UV band. A model of the electromagnetic interaction
between Jupiter and its moons, in particular Io, was first proposed by Neubauer
(1980) (the so-called Alfvén-wing model). Note that the excitation of Alfvén waves
does not require an intrinsic magnetic field in Io (actually the satellite does not have
one), but only a conductive layer in its atmosphere or interior to couple with the
magnetic field lines of Jupiter’s field and excite their perturbations.

Inspired by these observations of the Jupiter system, Shkolnik et al. (2003, 2005)
observed a sample of stars hosting hot Jupiters and found some evidence of chromo-
spheric hot spots rotating in phase with the orbital motion of the planet rather than
with the (different) rotation period of the host star. Successive observations provided
further evidence of the phenomenon in the same stars (Shkolnik et al. 2008; Gur-
demir et al. 2012; Cauley et al. 2018), but revealed that it is clearly non-stationary
because it appears in some observing seasons, while it is absent in others. Moreover,
the enhancement in the chromospheric flux associated with the hot spots is of only
≈0.5–1% requiring telescopes at least of the 2–4-m class and a dedicated intensive
campaign to properly sample the rotational and orbital phases even in the case of
bright targets. Therefore, progress in the acquisition of new data has been slow.

Theoretical models of the star-planet interaction, based on the excitation and
dissipation of Alfvén waves by hot Jupiters in the framework of the Alfvén-wing
model, have recently been proposed by Saur et al. (2013) and Saur (2018). They
predict dissipated powers up to 1019 W in the case of the hot Jupiter systems that
appear to be at least one order of magnitude smaller than the power emitted in the
hot spot of HD179949 as observed by Shkolnik et al. (2005).

Numerical models of the Alfvén wings in the case of magnetized or unmagne-
tized planets have been computed by, e.g., Strugarek et al. (2014), Strugarek et al.
(2015), and Strugarek (2016). They show the difference between the cases in which
the planet has no intrinsic magnetic field (unipolar inductor) and when it has one
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(dipolar inductor) with the strength of the interaction being generally greater in the
latter case because of the larger effective cross-section provided by the planetary
magnetosphere. In the case of the dipolar inductor, the relative orientation of the
planet and wind magnetic fields is relevant making the available power change by
at least one order of magnitude between the aligned and anti-aligned configurations.
The interaction not only dissipates energy in the atmosphere of the star but also
transfer angular momentum between the stellar spin and the orbit, thus potentially
affecting the evolution of stellar rotation and star-planet separation with the most rel-
evant effects concentrated in the pre-main-sequence and early main-sequence phases
of the evolution of the star when its magnetic field is stronger (Lovelace et al. 2008;
Strugarek et al. 2017). A review of the results of these numerical models has been
provided by Strugarek (2018). They confirm the results of the analytical models by
Saur et al. (2013) regarding the power made available to account for chromospheric
hot spots in the Alfvén-wing scenario, thus suggesting that a different process is
necessary to interpret the observations by Shkolnik et al. (2005).

2.5.2 Stellar Coronal Magnetic Fields

Motivated by the limitation of the Alfvén-wing models to account for the power
irradiated in chromospheric hot spots, we investigate a different class of models con-
sidering a non-wave-like interaction between the stellar and the planetary magnetic
fields.11 In the coronae of late-type stars, the magnetic field is dominating the ener-
getics and the dynamics of the plasma in the closed loops and in general up to a
distance from the star where β ≡ 2μp/B2 < 1, with p the thermal pressure of the
plasma. Above a certain distance from the stellar center, the β parameter becomes
greater than the unity and the plasma flow takes control of the geometry of the field
lines that are frozen in it owing to the extremely high electric conductivity of the
plasma at coronal temperature (Priest 1984; Wiegelmann et al. 2017). In the case of
the Sun, this is estimated to happen at a radius of about∼2.5 R� and, above that level,
the coronal field lines become open because the plasma pressure cannot be counter-
balanced by the Lorentz force. However, a complete control of the plasma flow over
the magnetic field is reached only at the Alfvén radius, which is estimated to be at
least on the order of 10–15 R� in the case of the Sun (e.g., Weber and Davis 1967).

In this simplified model, the solar magnetic field can be considered to have closed
field lines up to about∼ 2.5 R� and radial field lines above this level, called the source
surface in coronal field models. The simplest model is obtained by considering the
minimum-energy configuration of the field corresponding to the boundary conditions
fixed at the photosphere and assuming the continuity of the radial field across the
source surface (because∇ · B = 0) and a purely radial field above it.Mathematically,
the minimum-energy configuration corresponds to a potential field that satisfies the
Laplace equation ∇2B = 0 with the boundary conditions fixed at the photosphere

11 For the case of planets without an intrinsic field see, e.g., Laine and Lin (2012).
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and at the source surface where the field becomes purely radial. This simple model,
called potential field source-surface (PFSS) model, has been widely applied to com-
pute the global magnetic field configuration of the Sun starting from photospheric
magnetograms (Altschuler and Newkirk 1969; Wiegelmann et al. 2017). In more
active stars, the radius of the source surface can be remarkably larger than in the case
of the Sun because the magnetic field is stronger (e.g., See et al. 2017).

The main limitation of the PFSS model is the assumption of a potential coronal
field, that is, the minimum energy field for the given boundary conditions. The true
coronal field is not potential, otherwise therewould be no energy to power phenomena
such as flares and coronal mass ejection. Although the global field geometry is
reproduced rather well by the PFSS model, it is useful to consider a class of more
general non-potential fields for the coronae of stars hosting exoplanets, at least for
the regions closer to the star where the magnetic field dominates the energetics and
the dynamics of the plasma.

We adopt the simplifying assumptions of neglecting the thermal pressure of the
plasma p, its kinetic pressure ρv2/2, and the gravity, so the only remaining force is
the Lorentz force, the expression of which is J × B per unit volume, where J = (∇ ×
B)/μ is the current density as given by the Ampere law because the displacement
current is negligible inMHDgiven that the plasma velocity v ismuch smaller than the
speed of light. An equilibrium configuration of the field then requires the vanishing
of the Lorentz force because it cannot be balanced by any other force in the regime
characteristic of a stellar corona where the β parameter is much smaller than the
unity (see Priest 1984; Wiegelmann et al. 2017 for more details):

(∇ × B) × B = 0. (2.45)

The magnetic field satisfying equation (2.45) is said to be force-free. It satisfies also
the equivalent equation:

∇ × B = αB, (2.46)

where α is a scalar function of the position. In other words, the general solution of
Eq. (2.45) implies that the current density be parallel to the field in the domain where
the force-free condition applies.12 By applying the solenoidal condition (∇ · B = 0)
to both sides of Eq. (2.46), we get:

B · ∇α = 0 (2.47)

implying that α is constant along each field line. Therefore, two general kinds of
solutions to Eq. (2.45) are possible: those where α is the same along all the field
lines, that is, it is a constant (linear force-free fields) and those where α is different
along different field lines (non-linear force-free fields).

12 Chandrasekhar (1961) showed that the only field that is force-free everywhere is a vanishing field
(B = 0). Therefore, the force-free condition (2.45) cannot be satisfied everywhere and the fieldmust
be stressed at some boundary.
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Linear force-free fields satisfy the vector Helmoltz equation (e.g., Morse and Fes-
hbach 1953) that is obtained by taking the curl of Eq. (2.45), applying the solenoidal
condition, and Eq. (2.46):

∇2B + α2B = 0. (2.48)

A general analytic solution of Eq. (2.48) in spherical geometry has been given by
Chandrasekhar and Kendall (1957), thanks to its linearity. On the other hand, no
general solution is known for the non-linear force-free equation (2.46), despite its
disarming simplicity (cf. Priest 1984).

Further progress in the study of force-free fields is possible by considering the
role of magnetic helicity. It is a quantity that is conserved in closed MHD systems
as a consequence of the gauge invariance in the definition of the magnetic vector
potential, that is, the vector field A such that B ≡ ∇ × A. If the magnetic field lines
are confined inside a closed surface � enclosing a finite volume V� , the quantity:

H(B) =
∫
V�

A · B dV (2.49)

called magnetic helicity of the field B, is conserved in ideal MHD, that is when the
conductivity of the plasma is infinite and the frozen-in condition is perfectly satisfied
(cf. Priest 1984). Moreover, the minimum-energy configuration for the given helicity
is a linear force-free field with that helicity (Priest 1984). Nevertheless, a real stellar
corona is not a closed domain and the conductivity of the plasma, although very
high, is finite. Berger and Field (1984) and Berger (1985) defined a relative helicity
to overcome the first problem. It is defined in an open volume such as a stellar
corona and it is based on the comparison between the given field and the potential
field Bp ≡ ∇ × Ap having the same normal component at the surface of the star:

HR(B) =
∫
V

(A + Ap) · (B − Bp) dV, (2.50)

where V is the infinite volume outside the stellar surface. The effects of the finite
conductivity and the magnetic energy dissipation in the current sheets of a stellar
corona were found to be negligible, thus we can assume that the relative magnetic
helicity is conserved during the evolution of the coronal field with fixed boundary
conditions at the photosphere (cf. Berger 1984; Heyvaerts and Priest 1984).

The minimum-energy property of the linear force-free fields was extended by
Heyvaerts and Priest (1984) to stellar coronal fields by means of the definition of
relative helicity, in the sense that the minimum energy configuration in a confined
domain with a given relative helicity is a linear force-free field. We can assume that,
for fixed photospheric boundary conditions, the coronal field evolves to reach that
minimum-energy configuration by making a transition from an initially non-linear
force-free configuration to the linear one with the given relative helicity. Note that
the absolute minimum energy configuration for the assigned boundary conditions is
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a potential field, but it cannot be reached unless the coronal field can get rid of its
helicity because the relative helicity of the potential field is zero by definition. Such a
transition can occur in major solar flares where the coronal field opens and a coronal
mass ejection carries away most of the helicity of the initial field, thus allowing a
transition to the absolute minimum-energy potential configuration (see, e.g., Lanza
2018 for more details).

2.5.3 Interactions Between the Stellar Coronal Fields
and a Close-By Planet

Considering the simplified force-free model for the stellar coronal field introduced
in Sect. 2.5.2 and assuming that the planet has its own magnetic field, we can have
two kinds of stationary configurations. If the stellar coronal field is potential, that
is, the force-free parameter α = 0 in Eqs. (2.46) and (2.48), it is possible to form a
magnetic loop interconnecting the star and the planet because the planetary field is
potential, given that its atmosphere is largely neutral and dissipates electric currents,
so that J = 0. Therefore, given that α must be constant along a given field line,
α = 0 on the field lines interconnecting the star and the planet. Conversely, if the
stellar field is force-free and non-potential, the two flux systems of the star and of
the planet reconnect at the boundary where they come into contact, but no steady
interconnecting loop can be formed because the condition α �= 0 in the stellar corona
cannot match the potential field condition α = 0 close to the planet (cf. Lanza 2009,
2012, 2013). This is illustrated in Fig. 2.16.

Fig. 2.16 Magnetic field configurations, in the case of an interconnecting magnetic flux system
with α = 0 (upper panel), or in the case of two topologically separated star-planet flux systems
(lower panel). Illustrative field lines are plotted in blue, while the star is in orange-yellow and the
planet in red. The red dashed ellipse encircles the region of magnetic reconnection between the
stellar coronal field and the planetary field
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In the case of an interconnecting loop, we can estimate the maximum power that
is conveyed into the loop by the orbital motion of the planet by considering the flux
of the Poynting vector across the base of the loop itself. We consider the simplified
model by Adams (2011) and assume that there is no ionosphere, thus the field at the
base of the loop is the same as that at the surface of the planet. The power made
available by the orbital motion of the planet is:

P = 2π

μ
fAPR

2
pB

2
pv0, (2.51)

where μ is the magnetic permeability of the plasma, fAP the fraction of the hemi-
sphere of the planet covered by the interconnecting field lines, Rp the radius of the
planet, Bp the intensity of the planetary field at its poles, and v0 the relative velocity
between the footpoints of the interconnecting loop (see Adams 2011; Lanza 2013).
The storage of magnetic energy into the loop must be accompanied by a simulta-
neous dissipation that keeps it in the minimum energy potential state, otherwise no
stationary interconnecting configuration is possible, at least in this simplified model.

On the other hand, in the case that the two flux systems of the planet and of the
star are topologically separated, magnetic energy can be released by reconnection
only at the boundary between the planetary field and the stellar field due to the orbital
motion of the planet. In this case, we have (cf. Lanza 2009, 2012):

P = γ
π

μ

[
Bs

(
a,

π

2

)]2
R2
mvrel, (2.52)

where 0 < γ < 1 is a factor depending on the relative orientation of the field lines
in the reconnection region having its maximum value for oppositely directed lines,
Bs(a, π/2) the stellar coronal field at the star-planet separation a on the stellar equa-
torial plane, Rm the radius of the planet magnetosphere, and vrel the relative velocity
between the two flux systems at the reconnection interface. The radius of the mag-
netosphere Rm is derived from the force balance at the boundary between the stellar
field and the planetary field (see Lanza 2009, 2012).

The observations of chromospheric hot spots moving in phase with the orbital
motion of hot Jupiters can be calibrated to derive the power dissipated by the spots
themselves. Assuming that the process of energy dissipation is similar to that of
solar flares, Cauley et al. (2019) derived the powers released by the magnetic star-
planet interaction in the case of the hot Jupiter systems HD179949, HD189733,
τ Bootis, and υAndromedae. They found dissipated powers between 0.4 × 1020 and
1.5 × 1020 W.

These stars have measurements of their surface fields, obtained by means of
spectropolarimetry (Moutou et al. 2018), that range between 2.5 and 27 G. Since the
orbital elements are well known and the radius of the hot Jupiters can be estimated,
it is possible to compare the outcomes of different star-planet interaction models
in terms of available power. The Alfvén-wing model requires a planetary field at
least 4,000 times greater than Jupiter’s field to deliver enough power. Similarly,
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unrealistically large planetary fields are required by the reconnection model in the
case of two separated flux systems as in Eq. (2.52). Among the proposed models,
only the interconnecting loop with steady dissipation appears capable of providing
the required powers with realistic magnetic field strengths.

By applying Eq. (2.51), Cauley et al. (2019) found magnetic field strengths at
the poles of these hot Jupiters between ∼20 and ∼120 G. These are about 10 − 100
times larger than the values predicted by classic dynamo models, but they are in
agreement with recently proposed scaling laws relating magnetic field strength with
the internal heat flux in giant planets that have been suggested considering the radius
inflation observed in hot Jupiters. Therefore, the observations of chromospheric hot
spots, in addition to provide the first (indirect) measurements of the magnetic fields
in hot Jupiters, have the potential to shed light on the mysterious phenomenon of
radius inflation in those close-by planets (Cauley et al. 2019). Note that a direct
measure of the magnetic field of hot Jupiters may come from radio observations
(e.g., Zarka 2018; Trigilio et al. 2017; Vidotto and Donati 2017; Trigilio et al. 2018).
In particular, observations in the low frequency bands (150–300 MHz) accessible to
LOFAR promise to provide relevant results (Turner et al. 2021b; de Gasperin et al.
2021). Related observations include the detection of electron cyclotron maser radio
emission from late-type stars, possibly powered by magnetic star-planet interactions
of the kinds introduced above (Vedantham et al. 2020; Pérez-Torres et al. 2021).

An alternative approach to estimate the magnetic fields of hot Jupiters has been
proposed by Vidotto et al. (2010b) and is based on the asymmetric transit profile
observed in WASP-12 in the UV with the Hubble Space Telescope showing an early
ingress with respect to the optical transit (Fossati et al. 2010). The early ingress has
been attributed to the extra absorption of a bow shock formed in front of the planet,
owing to its fast orbital motion through the stellar wind, and the stand-off distance,
measured from the time delay between the UV and optical transit profiles, has been
used to estimate a planetary magnetic field strength of ≈25 G in the hot Jupiter
(Vidotto et al. 2011b).13

A consequence of the energy released by magnetic reconnection is an increase in
the evaporation rate of the planet because such an energy can be conveyed by thermal
conduction and accelerated particles into the planet’s atmosphere where it is added
to the energy deposited by the stellar EUV flux. The contribution from magnetic
star-planet interaction may dominate over the stellar EUV flux for planets closer than
0.03–0.05 au, depending on the level of stellar activity of the host, the geometry of its
coronal field, and the stratification of the planetary atmosphere (Buzasi 2013; Lanza
2013). Kawahara et al. (2013) suggested that this magnetically powered evaporation
can be modulated by the uneven longitudinal distribution of the hosting star active
regions and provided a possible example of this phenomenon. Furthermore, star-
planet magnetic reconnection is important for the chemistry of the atmospheres of

13 Another indirect method to measure the magnetic fields of hot Jupiters from the longitudinal
temperature distributions in their atmospheres, derived from their phase curves, has been proposed
by Rogers (2017).
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close-by planets because it accelerates particles that can produce chemical reactions
leading to the formation of several molecules (see, e.g., Rimmer et al. 2014).

The steady reconnection produced by the orbital motion of the planet inside the
outer stellar corona produces a continuous energy dissipation. Therefore, it is con-
ceivable that the coronal field can adjust itself in order to minimize this continuous
dissipation reaching the minimum energy configuration compatible with its given
magnetic helicity within a finite volume, that is a linear force-free field. Lanza (2009)
and Lanza (2012) have explored such minimum energy configurations. They have
several interesting properties, including the possibility of azimuthally twisted mag-
netic field lines that can account for the observed phase lag between planets and
chromospheric hot spots, not explained by axisymmetric potential field models (cf.
also Lanza 2008), and the possibility of storing plasma evaporated from the planet
into azimuthal magnetic flux ropes encircling the star, thus explaining the observa-
tions of circumstellar absorption in systems such asWASP-12 (see Fig. 2.17). Finally,
a global transition of the stellar field from a non-linear to a linear force-free config-
uration triggered by a close-by planet can release energy to power large stellar flares
(cf. Lanza 2009, 2012, 2018). Flare activity phased with the hot Jupiter orbit has
indeed been proposed in HD 189733 (Pillitteri et al. 2011, 2014a, 2015; Gao 2021)
and HD17156 (Maggio et al. 2015).

Fig. 2.17 Meridional
section of a linear force-free
field in the corona of a star
with a close-by planet
indicated by the orange dot.
The field lines are plotted in
green, while in red is the
matter evaporated from the
planet and accumulated in
the minimum of the
gravitational potential along
the field lines that come close
to the star. The coordinates x
in the equatorial plane of the
star and z along its rotation
axis are given in units of the
stellar radius R∗. (Copyright
by ESO, figure from
Lanza, A. F., 2014,
Astronomy & Astrophysics,
vol. 472, L6)
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Numerical models overcome the simplifications of the analytical models consid-
ered above and can include the effects of plasma pressure and gravity. Cohen et al.
(2009, 2011a, b) considered models of interactions based on the measured magnetic
fields in the photosphere of HD 189733, confirming that magnetic field configura-
tions interconnecting the star with the planet can exist and release a large amount
of power when they are stressed by the relative motion of their footpoints. Models
of stellar magnetized winds and their interactions with close-by planets have been
proposed by, for example, Vidotto et al. (2009, 2010a, 2012, 2014); Vidotto and
Bourrier (2017); Vidotto (2018); Garraffo et al. (2016, 2017); Cohen et al. (2014);
Strugarek et al. (2017). They show the effects of the different MHD regimes (super-
Alfvénic and sub-Alfvénic) that can be experienced by a planet orbiting close to its
star because of the changing intensity and geometry of the stellar photospheric fields
that can be mapped by spectropolarimetry. The impact of the different regimes on
planetary evaporation can be relevant because in the super-Alfvénic case the plan-
etary magnetosphere is open in the direction opposite to the bow shock facing the
star, thus enhancing the escape of atmospheric gas (see Sect. 2.4). Conversely, when
the regime is sub-Alfvénic, the planetary magnetosphere is almost closed and the
atmospheric escape is reduced.

A numerical study of the different kinds of star-planet interactions, including tidal
effects, planetary evaporation, and magnetic fields, was presented by Matsakos et al.
(2015). They found four different regimes according to the ratios of the different
length scales, that is, the equilibrium distance between the stellar and planetary
winds Rw, the radius of planetary magnetosphere Rm, and the Roche-lobe radius
of the planet Rt . When the stellar wind dominates and the planet evaporation is
moderate, a bow-shock develops at the boundary of the planetary magnetosphere
facing the star, while an evaporation tail forms along the orbit of the planet. On
the other hand, if the planetary evaporation is strong, accretion of the evaporated
material onto the star and a dense plasma tail along the orbit of the planet develop.
The material falling on the star does not follow a radial trajectory, but there is a shift
in phase between the planet and the impact hot spot on the surface of the star, even
larger than 90◦. This mechanism has been considered as an alternative to the purely
star-planet magnetic interaction previously proposed to account for flares phased to
the orbital motion of the hot Jupiter in HD 189733 (Pillitteri et al. 2015).

2.5.4 Statistical Analyses of Star-Planet Interactions
and Some Intriguing Cases

In principle, if close-by planets are capable of increasing the level of activity of their
host stars either directly by star-planet magnetic interaction or indirectly by prevent-
ing the braking of stellar rotation (cf. Sect. 2.3.4), a statistical study should provide
evidence of such an enhancement. However, the enhancement in the chromospheric
emission is tiny with chromospheric hot spots providing less than 1% excess flux
(Shkolnik and Llama 2018) and the effects on the coronal and transition region emis-
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sions are difficult to be identified unambiguously because of several observational
biases and systematic effects that tend to produce spurious correlations (e.g., Pop-
penhaeger et al. 2010; Poppenhaeger and Schmitt 2011; Miller et al. 2015; France
et al. 2018).

The conclusion would be that there is no clear general statistical evidence for star-
planet interactions, althoughMiller et al. (2015) found some evidence of a correlation
between the X-ray luminosity and the parameters measuring the strength of magnetic
and/or tidal interaction in a subsample of systems with close-by massive planets.
Nevertheless, there are some intriguing cases that do not fit into this general scheme
and suggest that the reality can be more complicated than the simple view generally
adopted when we look for this kind of statistical correlations.

CoRoT-2 and HD 189733 are two stars accompanied by hot Jupiters that have
rotation periods of 4.52 and11.8 days, respectively, and levels of activity in agreement
with their rotation rates. They have visual companions that are M-type dwarfs the
activity levels of which can be used to assign them ages of several Gyrs. This is in
remarkable tension with the younger ages attributed to CoRoT-2 and HD 189733
on the basis of their rotation and level of activity (Poppenhaeger and Wolk 2014).
CoRoT-2 and HD 183733 therefore could be more active than they would be if they
had no close-by massive planets.

To make things even more complicated there is the case of WASP-18, an F6V
star with a very massive (10.4 ± 0.4MJ) hot Jupiter on an extremely close orbit
with a = 0.0205au. The age of the star is estimated between 0.5 and 2.0 Gyr on
the basis of isochrone fitting and lithium absorption in the spectrum, thus the star
should display easily detectable coronal and chromospheric emissions. Contrary to
this prediction, WASP-18 is unusually inactive with a chromospheric activity index
log R′

HK = −5.15, indistinguishable from the basal level, and undetected coronal
EUV and X-ray emissions (Pillitteri et al. 2014b; Fossati et al. 2018). The expected
level of coronal emission, based on the observations of stars of similar spectral type
and rotation period (v sin i = 10.9 ± 0.7 km/s forWASP-18), is two orders ofmagni-
tude greater than the observed upper limit. The low level of chromospheric emission
could be attributed to a circumstellar torus of plasma absorbing in the chromospheric
lines as in the case of WASP-12, but the torus cannot absorb EUV and X-ray radia-
tions. Therefore, the inescapable conclusion is that WASP-18 is intrinsically much
less magnetically active than expected for a star with its parameters. This suggests
that the very close-by and massive planet is somehow responsible for shutting off
the stellar dynamo, although a physical model for this process has not been proposed
yet (see discussion in Pillitteri et al. 2014b and Fossati et al. 2018).

In conclusion, the observations provide examples where a close-bymassive planet
is probably enhancing stellar activity, such as in CoRoT-2 and HD 183733, and cases
where a close-by massive planet is shutting off the stellar dynamo as in WASP-
18. Clearly, a much wider and well-characterized sample of hot Jupiter systems is
required before we can draw definitive conclusions. For the moment, the tentative
conclusion is that close-by massive planets can act differently in different systems,
thus complicating the search for any statistical evidence of star-planet interaction
affecting stellar magnetic activity.
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Chapter 3
The Demographics of Close-In Planets

K. Biazzo, V. Bozza, L. Mancini, and A. Sozzetti

Abstract The large sample of presently-known exoplanetary systems orbiting
within a few au from their parent stars has enabled detailed studies of their demo-
graphics, which provide essential constraints for improved understanding of the pro-
cesses at work in planet formation and evolution. In this Chapter, we first summarize
the strengths and weaknesses of the two detection methods that have unveiled the
population of short- and intermediate-separation exoplanets, i.e. the radial velocity
(RV) and photometric transit techniques. Secondly, we review the wealth of infor-
mation on the statistical properties of close-in exoplanets gathered from Doppler
and transit surveys, focusing on occurrence rates as a function of two fundamental
physical properties, mass and radius, and orbital separation. Next, we discuss statis-
tical trends and correlations in the orbital and structural properties of two classes of
planets that are not found in our Solar System, super Earths and sub-Neptunes. Then,
we present an overview of the global and planet-to-planet patterns in the demograph-
ics of multiple-plane systems. We conclude by discussing the (primarily dynamical)
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information content of the orbital architectures of close-in planets (eccentricities,
obliquities), and by highlighting the peculiar properties of the class of ultra-short
period exoplanets. Throughout this Chapter, we underline key aspects of the funda-
mental link between planetary and host stars’ properties and stress relevant elements
of the mutual feedback between observations and theory (This Chapter is based on
the lecture series given in May 2019 by A. Howard.).

3.1 Introduction

Out of the > 4300 known exoplanets to-date, for about 3800 (87%) the measured
orbital period is P � 1 year.1 Of course, this reflects an observational bias intrinsic
to the two most successful planet detection techniques, i.e. photometric transits and
radial velocities, which are primarily sensitive to close-in exoplanets. Furthermore,
the very slow orbital motion of planets in wide orbits makes the reconstruction of
the orbital parameters a very time-taking endeavor.

Whatever the reason, we can clearly see that the available statistics for close-in
exoplanets is nearly an order of magnitude richer than that of exoplanets on distant
orbits. With thousands of planets available, we can thus not only distinguish basic
exoplanetary populations by radius, mass, density, incident stellar flux, but we are
also starting to be sensitive to fine structures in the distributions (e.g., the famous
‘radius valley’, see Sect. 3.4.2) that can help us understand the formation scenarios
of different classes of exoplanets. Furthermore, the numerous detections of multiple
systems provide precious examples of the possible final outcomes of the formation
of planetary systems. The existence of planets on high eccentric orbits with high
obliquities with respect to the host star’s spin is indicative of non-trivial dynamical
interactions among the planets in the same disk. Every single system is thus important
in its own regard as an individual case study, besides adding one more brick to all
distributions of the various orbital and physical parameters.

3.2 Radial Velocity and Transit Measurement Techniques

Here we briefly review the basic concepts of the twomain detection methods respon-
sible for uncovering the present-day sample of close-in exoplanets, which has enable
the demographics studies discussed in the following sections of this chapter. We will
refer the reader to more specialized sources when necessary.

1 Source: http://exoplanet.eu.
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3.2.1 Radial Velocities

3.2.1.1 Doppler Measurements

The first successful observational campaign that found a planet around a solar-type
star was based on high-precision RVmonitoring of 51 Peg (Mayor andQueloz 1995).
The principle of the Doppler technique had been well-known for more than a century
and had been used to detect and characterize spectroscopic binaries (Pickering 1890).
The orbital motion of two bodies around the common center of mass determines a
periodic modulation of the radial velocity vr , which can be detected to very high
accuracy in terms of the Doppler shift z in the absorption lines in the spectrum:

z ≡ λ − λ0

λ0
= γ (1 + vr/c) − 1, (3.1)

where λ0 is the rest wavelength and γ is the relativistic Lorentz factor. For stellar
binaries with sufficiently bright components, we can follow the absorption lines of
both stars as they move periodically in opposite directions. In the case of a planetary
system,we can onlymeasure the RVvariations of the host star, with a semi-amplitude
K� that is related to that of the planet by the law of barycenter: K� = (Mp/M�) Kp. If
the radial velocity of a close-in terrestrial planet around a solar-type (Mp/M� � 10−5)
has Kp ∼ 105 m/s, the reflex velocity of the star would be of the order of 1ms−1,
which poses a severe challenge to current spectroscopic facilities.

In order to resolve such tiny displacements in the spectra, state-of-the-art instru-
ments are typically echelle spectrographs (Bouchy et al. 2001) working at very high
spectral resolution (i.e. with resolving power R ∼100,000). It is interesting to note
that a displacement of 30cms−1 in the spectrum may correspond to just a few atoms
on the detector surface! Therefore, such displacements can only be detected bymeans
of cross-correlation techniques on broad regions of the spectrum (Fellgett 1955; Grif-
fin 1967; Queloz 1995). Besides being very precise, the measurement apparatus must
be very stable over long timescales, in order to enable firm detection of longer-period
planets. For example, the motion of the Sun induced by Jupiter has a semi-amplitude
of 12ms−1 over a period of 12 years! For more information on the details of RV
measurements, we refer the reader to specific reviews (e.g., Hatzes 2016; Perryman
2018; Wright 2018).

3.2.1.2 Form of the Signal

If we neglect the mutual interactions between the planets of the system, the mea-
sured radial velocity of the host star will be the sum of the individual Keplerian
contributions. For n planets, we have
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vr (t) =
n∑

j=1

K j
[
cos(ω j + f j (t)) + e j cosω j

] + γ + γ̇ (t − t0), (3.2)

where t0 is a reference epoch, e j is the eccentricity of planet j , ω j is the argument of
the periastron, f j is the true anomaly (angular position of the planet taken from the
periastron), K j is the semi-amplitude of the modulation, as detailed below. Equation
(3.2) also contains a constant offset γ that corresponds to the stellar barycentric
motion with respect to the Solar System, and a linear trend γ̇ , which takes into
account possible systematic drifts in the measurement apparatus or long-term RV
signals induced by long-period companions that cannot be modeled in detail within
a finite duration campaign.

The semi-amplitude of the modulation is a function of the masses, period, eccen-
tricity and inclination of the system. For a planet with mass Mp, in convenient units,
it can be cast in the form

K� = 28.4m s−1

√
1 − e2

Mp sin i

MJup

(
Mp + M�

M�

)−2/3 (
P

1 year

)−1/3

, (3.3)

where M� is the solar mass and MJup � 10−3M� the Jupiter mass.
This formula shows how the semi-amplitude of the RV signal decreases for longer

period planets, following Keplerian laws. If the mass of the planet is negligible
compared to the mass of the star, the third factor only depends on the mass of the
host star. This implies that a conversion of the RV measure into a planetary mass
requires accurate knowledge of the mass of the host star. This is typically obtained
by means of techniques that match properties of the observed spectra to stellar model
libraries (e.g., Torres et al. 2012). Of course, this procedure leaves some systematic
uncertainty that is reflected in the ultimate error budget of the planetary mass.

Finally, we clearly see the well-known degeneracy between the mass of the planet
and the inclination of the system. With RVs we can only derive a lower limit for the
mass of the planet by fixing sin i = 1 (edge-on system). However, without indepen-
dent knowledge of the inclination, the mass of the planet can be anything from this
lower limit to infinity (sin i = 0 corresponds to a face-on system).

For hypothetical extrasolar analogues of the planets in our system, we get K =
12ms−1 for Jupiter and K = 0.09ms−1 for the Earth. Close-in planets are mildly
favored by Kepler’s third law. In fact, for a Jupiter-mass planet orbiting a solar-mass
star with a period of 3days we would have K� = 140ms−1, while an Earth-mass
planet orbiting in one day would have K = 0.6ms−1. A more typical Super-Earth
withMp = 10M⊕ and a period of 10 dayswould give K = 3ms−1.We conclude that
it is relatively easy to detect hot giants, while we need better than 1ms−1 accuracy
to reach the regime of detectability of Earths and Super-Earths or to detect planets
in wide orbits.

The shape of the radial velocity modulation, as shown in Eq. (3.3), is sinusoidal
in the true anomaly. This angle is a linear function of time only for zero eccentricity.
In general, in order to disclose the time-dependence of our signal, we must recall the
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relation between the true anomaly and the eccentric anomaly E j

tan
f j (t)

2
=

√
1 + e j
1 − e j

tan
E j (t)

2
. (3.4)

The eccentric anomaly as a function of time can be obtained by numerically solving
the Kepler equation

E j (t) − e j sin E j (t) = 2π(t − tp, j )

Pj
≡ Mj (t) , (3.5)

where tp, j is the epoch of periastron passage and the last quantity is called the mean
anomaly. Planets in eccentric orbits will move faster when they are at the periastron
and slower at the apoastron. Therefore, the sine wave will be compressed at the
periastron epoch and stretched at the apoastron. The position of the periastron is
given by ω j . In Fig. 3.1 we show how the shape of the Keplerian RV signal changes
for different values of e and ω.

3.2.1.3 Signal Analysis

A generic, unevenly sampled RV time series will contain periodic modulations
as described above superposed to instrumental and astrophysical noise. The latter
mainly comes from the stellar activity of the target star, which generates oscillations

Fig. 3.1 Shapes of the radial velocity signals for various eccentricities and periastron arguments.
Note that higher eccentricities lead to very rapid variations
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in the RVs due to a variety of time-variable stellar surface structures (Queloz et al.
2001; Fischer et al. 2016). In order to extract the planetary signal, one may use the
(Generalized) Lomb-Scargle periodogram (Lomb 1976; Scargle 1982; Zechmeister
and Kürster 2009), which evaluates the χ2 improvement coming from the fit of a
sine wave compared to a constant function using a figure of merit called periodogram
power computed as a function of a grid of trial periods. In such diagrams, the peri-
odic signals arise as sharp peaks in power over the background. Furthermore, the
periodogram may exhibit peaks produced by the cadence of the observations (the
so-called window function), dictated, for example, by Earth’s rotation and revolu-
tion period, and lunar cycles. Periodic RV signals induced by stellar activity will also
be revealed in a periodogram. For in-depth discussions of how to unveil planetary
signals in the presence of stellar activity see, for example, Haywood et al. (2014);
Hatzes (2016).

When a planetary signal is identified, it can be subtracted from the data and the
analysis can be repeated to search for progressively lower signals from other planets
until the noise level is reached (Fischer et al. 2008).Avariety of sophisticatedmethods
for Keplerian orbit fitting are utilized for the task (for a review, see e.g. Dumusque
et al. 2017)

The efficiency of a radial velocity campaign can be evaluated by injecting sim-
ulated signals with known characteristics in the data and then running the analysis
pipeline to recover the signal Howard and Fulton (2016). Figure3.2 illustrates the
efficiency for a given Doppler survey calculated in this way as a function of the
planetary mass and semi-major axis. Indeed the noise level constrains the efficiency
from below, while longer period planets cannot be detected with a finite duration
campaign.

Fig. 3.2 Completeness of the RV sample of planets in a Doppler survey estimated by injec-
tion/recovery of simulated signals in the data
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3.2.1.4 RV Surveys Highlights

Besides being the first method successfully employed for the detection of a planet
around a normal star, the RV technique has also been able to provide the detection of
the first multiple planetary systems (Butler et al. 1999), the detection of long-period
planets (Howard et al. 2010a), and, enabled by ms−1-level precision, the discovery
of the first low-mass planets, Neptunes and Super Earths (Lovis 2006; Mayor et al.
2009). Although next-generation spectrographs (e.g., ESPRESSO, Pepe et al. 2021;
EXPRES, Jurgenson et al. 2016; for a review see Fischer et al. 2016) are approaching
a nominal precision of 10cm s−1, the main limitation comes from the modeling of
stellar activity, which can easily produce RV signals with the dominant amplitude
when compared to those of low-mass planets (Dumusque et al. 2017).

3.2.2 Transits

About 70% of the currently known exoplanets have been discovered by the transit
method. Most of these discoveries come from the Kepler mission, to which we owe
the possibility to speak in so great detail about the statistics of close-in exoplanets, but
many ground-based surveys have contributed to the discovery of interesting systems.

3.2.2.1 Transit Geometry

As depicted in Fig. 3.3, planets on nearly edge-on orbits may transit in front of their
parent star, blocking the light coming from an area corresponding to their projected
disk. In a first approximation, the flux detected by the observer drops by a fraction

δ � R2
p

R2
�

, (3.6)

whichmeans that, if we know the radius of the star by its position on the HR diagram,
we can immediately infer the radius of the planet (Seager andMallén-Ornelas 2003).
More refined modeling of the transit light curve may take into account the limb
darkening profile of the star (Mandel and Agol 2002), the thermal flux from the
night side of the planet (Charbonneau 2003), oblateness (Carter andWinn 2010) and
so on (Winn 2010; Perryman 2018).

In general, the planet will also pass behind the star. In this secondary eclipse, the
light of the day-side of the planet is blocked, giving rise to a much shallower event
that, when observed, preciously increases our knowledge on the planet, as it allows
to further constrain the orbital eccentricity, but most importantly opens the door to
measurements of the properties of its atmosphere (Deming et al. 2005).
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Fig. 3.3 Light curve of a system with a transiting planet. The primary transit (planet in front of
the host star) is characterized by a duration T , a descent time τ and a deficit flux δ. The secondary
eclipse occurs when the planet dayside light is blocked by the star

The direct observables in a transit are the orbital period P , the depth δ, the duration
T and the time τ taken by the planet to cross the limb of the star (see also Chap. 4,
Sect. 4.4). Simple formulae relate these to physical parameters such as the ratio of
the radii Rp/R�, the semi-major axis in units of the star radius a/R�, the impact
parameter b, and the stellar density ρ∗ (Seager and Mallén-Ornelas 2003). Finally,
after the use of stellar models to derive the host star parameters, we may get Rp, a
and the orbital inclination i (for details, see e.g. Seager and Mallén-Ornelas 2003;
Collier Cameron 2016).

If the host star is bright enough, spectroscopic follow-up with high-precision RVs
and subsequent detection of the RV semi-amplitude can provide, combined with the
i value from the transit, a determination of the true planet mass. For these precious
planets, we can derive their bulk density and finally gain insights concerning their
internal composition (see Sect. 3.4.3).

Transiting planets obviously orbit on nearly edge-on configurations. Assuming
an isotropic distribution for the orbital planes, the probability that a generic planet
on a circular orbit transits in front of its star is roughly (Borucki and Summers 1984)

Ptra ≈ R∗
a

= 0.005

(
R∗
R�

) ( a

1AU

)−1
, (3.7)

which means that we need to survey thousands of stars before finding one transiting
planet. The probability decreases relatively fast with the orbital distance a, biasing
the technique toward the detection of very close-in planets.



3 The Demographics of Close-In Planets 151

Fig. 3.4 Histograms of the number of planets detected by the most successful ground-based all-
sky transit surveys versus host-star V mag. Data taken from the Transiting ExoPlanet Catalogue
(TEPCat; www.astro.keele.ac.uk/jkt/tepcat) as of May 2021

3.2.2.2 Transit Campaigns and Analysis

Surveys for the discovery of transiting exoplanets typically monitor large fields in
the sky with percent-level, high-cadence photometry. Ground-based surveys of F-
G-K-type stars have often used arrays of wide-field cameras on the same mount.
Here we mention HATNet (Bakos et al. 2004), WASP/SuperWASP (Pollacco et al.
2001; Wheatley 2015), OGLE (Udalski et al. 2002), TrES (Alonso et al. 2004), XO
(McCullough et al. 2005), KELT (Pepper et al. 2007), MASCARA (Snellen et al.
2012), QES (Alsubai et al. 2013), HATSouth (Bakos et al. 2013), WTS (Kovács et al.
2013), NGTS (Wheatley et al. 2013). Note that depending on the details of the tech-
nical implementations, choices of exposure time and observing strategy, and camera
sensitivity, all these surveys have differing sky coverages, limiting magnitudes for
faint targets and a minimum magnitude for bright stars leading to saturation, trans-
lating into a broad visual magnitude distribution of the detected companions (see
Fig. 3.4; for a review, see Collier Cameron 2016).

Other ground-based transit surveys (MEarth, Charbonneau et al. 2009; APACHE,
Sozzetti et al. 2013; TRAPPIST, Gillon et al. 2012; ExTrA, Bonfils et al. 2015;
SPECULOOS, Delrez et al. 2018; EDEN, Gibbs et al. 2020) have instead focused
on late-type M and ultra-cool dwarfs, adopting a one (or few) target(s) per field
approach and 40-cm to 1-m class telescope arrays. Such experiments exploit the
possibility to reach detection of short-period transiting sub-Neptunes, super Earths,
and even temperate Earth-sized, rocky planets from the ground with modest-size
telescopes, which is enabled by the small radii of low-mass stars, leading to deep
transits (�mag � 0.005mag), and by the low temperatures of the primaries, lead-

www.astro.keele.ac.uk/jkt/tepcat
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ing to much closer-in habitable zones that those of solar-type stars, and therefore
increased likelihood of observing transits of temperate planets.

Space-based transit photometry allows obtaining uninterrupted, high-cadence
light curves that can reach better than 10−4 precision, which is the level required for
detection of transits of Earth-sized planets across Sun-like stars. Figure3.5 depicts
the time progression of past, present and future transiting-planet space missions over
a quarter-century. The first planetary transit discovery in space was made by CoRoT
(Auvergne et al. 2009), which operated in the 2007–2013 time frame, but it was
indeed with Kepler (Borucki 2016) that the field experienced a dramatic revolution.
Kepler observed the same 10◦ × 10◦ field on the Galactic plane between the Cygnus
and Lyra constellations for 4 years (2009–2013), leaving us with more than 4000
transiting planet candidates. Most of them have either been statistically validated or
confirmed as true planets via dynamical mass measurements. Even in its refurbished
version (renamed K2) after the failure of the reaction wheels, the Kepler spacecraft
continued (in the period 2014–2018) to deliver transiting candidates distributed all
along the ecliptic plane (Vandenburg et al. 2016).

More recently theTESSmission, launched in2018, is performing an all-sky survey
of bright stars to look for transiting super-Earths and sub-Neptunes, particularly
around late-type dwarfs (Ricker et al. 2015). TESS is designed to be a primary
provider of bright transiting planets for spectroscopic follow-up measurements with
JWST (Greene et al. 2016), which, due to launch in December 2021, is expected
to provide an in-depth characterization of their atmospheres. The sample of bright
transiting planets will also be the key input list for ESA’s Ariel mission (launch
expected in 2029), which is expected to survey ∼ 1000 of them for the purpose
of atmospheric characterization (Tinetti et al. 2018). CHEOPS (launched in 2019)
is starting to observe known transiting planets to derive much more accurate radii
(Broeg et al. 2013). Finally, PLATO (launch expected in 2026) is designed tomonitor
approximately 50% of the visible sky and discover Earth-like transiting planets in
the habitable zone of Sun-like stars (Rauer et al. 2014).

Independent of the cadence and precision of the light curve, the search for plan-
etary transits is prone to a large number of false positives, i.e. transit-like events
caused by phenomena other than planetary transits. Astrophysical false positives are
mostly produced by a variety of configurations of stellar systems (for details on the
subject see e.g., Collier Cameron 2016).

Transit detection is performed by fitting a periodic box-like function (the Box
Least Squares technique; Kovács et al. 2002) to the photometric time-series phase-
folded over a large grid of trial frequencies. The frequency spectrum produced by the
box-fitting algorithm is then inspected for identification of a statistically significant
peak, corresponding to the period of the transit-like feature. Many sophisticated
algorithms are then able to fit for the detailed shape of the transit light curve and
retrieve the planet and stellar parameters. For more details, we direct the interested
readers to the review by Collier Cameron (2016), and also the works by, e.g., Mandel
and Agol (2002), Fulton et al. (2011), Eastman et al. (2013) and Southworth (2013).
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Fig. 3.5 Timeline of NASA and ESA space missions devoted to the detection and characterization
of transiting exoplanets

3.2.2.3 Transit Surveys Highlights

The first discovered transiting exoplanet, HD 209458b (Henry et al. 1999; Charbon-
neau et al. 2000), was a typical hot Jupiter, and provided the final proof that the
Doppler-detected companions since 1995 were, in fact, exoplanets. Ground-based
transit photometry allowed to discover GJ 436b, the first Neptune-sized planet (But-
ler et al. 2004; Gillon et al. 2007), and GJ 1214b, the first transiting Super Earth
orbiting a low-mass star (Charbonneau et al. 2009). However, in order to find the
first bona-fide rocky planets (CoRoT-7b, Kepler-10b), space missions were needed
(Léger et al. 2009; Batalha et al. 2011). Kepler has been able to find hundreds of
multi transiting-planet systems (see Sect. 3.5), containing up to six planets within
Mercury’s orbit, like Kepler-11 (Lissauer et al. 2011a). Kepler also unveiled a class
of transiting giant planets orbiting short-period eclipsing binaries, i.e. circumbinary
planets, Kepler-16b being the first of its kind (Doyle et al. 2011. For a review see
Welsh and Orosz 2018). Besides, ground-based surveys have continued to provide
spectacular results, such as the TRAPPIST-1multi-planet system (Gillon et al. 2017),
composedof 7 transitingEarth-sized,Earth-mass planets orbiting anultra-cool dwarf.
Probably three of these planets lie in the habitable zone and may harbor water on
their surface. Finally, transiting exoplanets have allowed us to enter the era of atmo-
spheric characterization of close-in planets orbiting main-sequence stars (see, e.g.,
the review by Sing 2018).
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3.3 Mass, Size, and Period Distributions

Modern Doppler and transit surveys have shown the prevalence of planets at short
and intermediate separations, which we will operationally define here as having
a semi-major axis a < 5au. The RV method has driven the field during its first
decade of development,while ground-based and space-borne transit surveys (CoRoT,
Kepler) have provided a major boost in the second decade. The initial focus of
such investigations was on the discovery of new exoplanets and on improving the
surveys’ sensitivities in order to expand the region of accessible parameter space.
When the sample of detected planets in individual surveys became large enough, the
first statistical analyses were performed.

The basic aim of such studies was to determine a) the intrinsic frequency of
stars with planets or b) the mean number of planets per star. These are two ways of
determining occurrence rates of exoplanets having properties (such as mass, radius,
and orbital distance) within a specified range. The key calculation to perform is the
following:

Occurrence Rate = # planets

# stars
, (3.8)

where # planets is the number of detected planets in the survey that have the stipulated
properties and # stars is the number of stars in the survey for which such planets could
have been detected. This is however not a trivial task, as an accurate measurement of
occurrence rate requires a large sample of stars that have been searched for planets
and the proper understanding of observational biases/selection effects that favor the
discovery of certain types of planets. For instance, in the representation of Fig. 3.6
one can appreciate how the most sensitive transit survey to-date, the Keplermission,
can discover planets with a very wide range of planetary radii up to a separation of
about 1au, beyond which it is essentially blind. Conversely, the Doppler domain can

Fig. 3.6 Relevant domains
of planet detection
techniques in the mass (o
radius) versus orbital period
(or semi-major axis)
parameter Space. Figure
showed by A. Howard in
May 2019 during his lecture
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Fig. 3.7 The observed
histogram (black line) of
planetary masses compared
with the equivalent
histogram after correcting
for the detection bias (gray
line). Figure adapted from
Mayor et al. (2011)

extend to significantly larger semi-major axes, but with variable sensitivity in terms
of accessible mass range.

In order to effectively compute occurrence rates, the strategy to adopt includes
modeling all effects, which cause planets to be missed during the detection process,
and correct for those asmuch as possible, so that remaining errors are small compared
to counting statistics. This implies achieving the best-possible understanding of the
underlying observational biases/selection effects that affect a survey’s completeness.
In thiswayonemoves fromameasurement of rawplanet counts (number distribution)
to a representation of the true underlying distribution (see Fig. 3.7). When biases are
not sufficiently well-understood, one is expected to honestly, clearly state caveats
and limitations of the performed analyses.

In the remainder of this Section we will focus on understanding how occurrence
is computed and then discuss major trends in occurrence at short and intermediate
separations for Doppler-detected and transiting planets, using mass, size, and orbital
period/semi-major axis as proxies of the accessible parameter space.

3.3.1 Doppler Surveys

The results from three major Doppler surveys have been used to address the issue of
planet occurrence around F-G-K-type stars in the solar neighborhood (d � 30pc).
The analysis of the Keck RV survey, which was performed by Cumming et al. (2008),
included 475F-G-K dwarfs monitored for about 8 years and found to host a total of
48 planets (including confirmed companions and candidates). Cumming et al. (2008)
determined the completeness-corrected occurrence rate of giant planetary compan-
ions with minimum mass in the range 0.3MJup < mp sin i < 10MJup and orbital
period P < 2000days. Limits on companion detectability were determined based
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Fig. 3.8 Giant-planet
occurrence based on the
Keck survey consisting of
475FGK-dwarf stars. Figure
adapted from Cumming et al.
(2008), © The Astronomical
Society of the Pacific.
Reproduced by permission
of IOP Publishing. All rights
reserved

on a Lomb-Scargle (Lomb 1976; Scargle 1982) periodogram analysis to identify
significant periodicities in the RV time-series. Signals with given RV amplitude K
and P producing a false-alarm probability (FAP; Horne and Baliunas 1986) below
10−3 were considered as detections and the fraction of stars, for which such an
instance occurred, recorded. Any detected RV amplitude K was transformed into
a corresponding minimum companion mass by inverting Eq.3.2. Cumming et al.
(2008) found that companions with K > 30 m s−1 would have been detected around
most of the stars in their sample. Corrections for incompleteness became important to
characterize the loss in sensitivity below that threshold. This was done in practice by
computing a missed planet correction factor F(P, mp sin i) for each detected planet
(both confirmed and candidates). If in a given region of the mass-period plane, plan-
ets can be ruled out for a fractionC of stars, the best estimate of the number of planets
is 1/C times the number of detections, and 1/C–1 planets remain undetected. The
corresponding completeness-corrected map produced by Cumming et al. (2008) is
shown in Fig. 3.8.

Cumming et al. (2008) then employed a maximum likelihood technique to fit
a simple power-law function to the exoplanet minimum mass-period distribution,
finding:

dN

d logmp sin i d log P
= C(mp sin i)

αPβ ∝ (mp sin i)
−0.31±0.20P0.26±0.10 . (3.9)

The normalization constant was chosen such that ∼ 10% of solar-type stars host at
least one planet with mass and period in the above range. This functional form to
represent the occurrence rate of planets eventually became a benchmark for many
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Fig. 3.9 Examples of RV time-series for targets in the Keck Eta-Earth survey with sparse and dense
sampling of the observations (left and right panel, respectively). Figure showed by A. Howard in
May 2019 during his lecture

subsequent studies.2 The mass and period power-law coefficients indicate that small-
mass planets are more common, and longer-period planets are more common. Cum-
ming et al. (2008) also extrapolated the occurrence rate of giant planets at wider
separations, estimating that ∼ 20% of solar-type stars host a giant planet with mass
> 0.3MJup within 20au.

The period distribution studied by Cumming et al. (2008) showed additional
structure, not directly captured by the power-law fits. They found evidence of a
pile-up of hot Jupiters (gas giants operationally defined as having P < 10days) at
P � 3days, followed by a ‘period valley’ of lower probability in the approximate
period range 10 − 100days, and then by a sharp rise in occurrence for separations
a � 1au. These findings are entirely in line with those first discussed by Udry et al.
(2003). In the Keck RV survey, the fraction of F, G, and K dwarfs in the solar
neighborhood hosting hot Jupiters was found to be 1.5% ± 0.6%, a number in line
with those later obtained by Mayor et al. (2011), using CORALIE and HARPS data
(0.89% ± 0.36%), and by Wright et al. (2012), based on data from the Keck and
Lick observatories (1.2% ± 0.38%).

The Keck Eta-Earth survey (Howard et al. 2010b) and the CORALIE+HARPS
survey (Mayor et al. 2011) provided thefirst opportunity to explore the domain of low-
mass (3–30M⊕) planets with periods � 50days. The two programs surveyed 166
G-K-M dwarfs and 376 G-K dwarfs, respectively. Most of the stars in both samples
were selected based on low levels of chromospheric activity, allowing to achieve a
typical rms dispersion in the Keck Eta-Earth and CORALIE+HARPS RV datasets of
2 − 4ms−1 and 1 − 3ms−1, respectively. Figure3.9 shows detection limits for two
individual objects with low and high cadence RV observations in the Keck Eta-Earth
survey.

The two surveys achieved comparable sensitivity to close-in planets with P <

50days (an example is shown in Fig. 3.10), and when accounting for the high
degree of incompleteness (10%–30%) forminimummasses in the super-Earth regime
(mp sin i < 10M⊕), the findings fromboth experiments provide a convergent picture:

2 More details on the mathematical formalism of the technique are provided in Sect. 2 of Chap. 4.
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Fig. 3.10 Minimum mass versus orbital period for the detected (yellow circles) and candidate
planets (FAPs ∼ 1 − 5%; red triangles) from the Eta-Earth survey. Contours refer to the search
completeness, that is the fraction of stars with enough RV measurements to be sensitive to planets
in circular orbits of a given orbital period and minimum mass. Dashed lines refer to five different
mass domains out to 50day orbits. The arrows identify high, intermediate, and low completeness.
Figure adapted from Howard et al. (2010b) and reproduced with permission from A. Howard

the planetmass function rises steeply towards lower-mass planets, such that the occur-
rence of planets with 3M⊕ � mp sin i � 30M⊕ is found to be around 20%–25%.3

These planets are at least an order of magnitude more common than giant planets in
the sameperiod range around solar-type stars. The results fromboth surveyswere also
broadly consistent in indicating a lack of hot Neptunes (10M⊕ � mp sin i � 30M⊕)
with P < 10 days, a population otherwise conspicuous at longer periods.

The findings of the Keck Eta-Earth and CORALIE+HARPS surveys were at
the time very informative for planet formation theory. Early attempts at produc-
ing models of synthetic planet populations (e.g., Ida and Lin 2005, 2008; Mor-
dasini et al. 2009a, b) predicted a “planet desert” in the super-Earth mass domain for
P < 50days or so, precisely where the two programs determined the highest val-

3 Similar findings were also presented by Wittenmyer et al. (2011), who reported that 17.4% of
stars host a planet with mp sin i < 10M⊕ and P < 50 days.
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Fig. 3.11 A
population-synthesis model
superimposed on the plot
shown in Fig. 3.10. Figure
adapted from Mordasini
et al. (2009b) and Howard
et al. (2010b) and showed by
A. Howard in May 2019
during his lecture

ues of completeness-corrected planet frequency (see Fig. 3.11). The observational
evidence put forth motivated significant improvements in population synthesis mod-
els of planet formation (e.g., Ida and Lin 2010, 2013; Mordasini et al. 2012a, b, c;
Paardekooper et al. 2011, 2013).

At intermediate separations, the Eta-Earth and CORALIE+HARPS surveys con-
firmed the trend of increasing frequency of giant planets with increasing orbital
period, up to∼ 5year (∼ 3au). This roughly corresponds to the location of the snow
line in protoplanetary disks around solar-type stars (e.g., Mulders et al. 2015b; Mor-
bidelli et al. 2016). Beyond 3au or so, the agreement of Doppler surveys appears
to degrade sharply with orbital separation. Recent studies indicate the presence of
a decline in giant planet occurrence with increasing separation (Fernandes et al.
2019), others (Wittenmyer et al. 2020) find no evidence of a turnover in giant planet
frequency at the snowline (see top and bottom panels of Fig. 3.12), and in general
observational uncertainties (e.g., sample sizes and their exact definition in terms of
mass interval, survey duration, sampling) do not allow yet achieving consensus on
the exact regime of orbital separations at which the occurrence rate of gas giants
might start declining as well as its possible dependence on planetary mass (Fulton
et al. 2021). The connection between occurrence rates at close-in, intermediate and
wide separations is further discussed in Chap. 4 (Sect. 5).

Finally, a large number of investigations has used the results from the above-
mentioned RV surveys and other Doppler programs to explore the dependence of
planet occurrence on stellar properties. In particular, giant planet frequency increases
sharply with increasing stellar metallicity for F-G-K dwarfs (Santos et al. 2004b;
Fischer and Valenti 2005; Sozzetti et al. 2009; Mortier et al. 2012), while whether
small-planet occurrence correlates positively with metallicity in the same stellar
samples is still a matter of debate (Sousa et al. 2008; Courcol et al. 2016; Sousa et al.
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Fig. 3.12 Top: occurrence rate of 0.1–20MJup planets (purple) with best-fit relations beyond 10
days: asymmetric broken power law (solid black line), symmetric broken power law (solid yellow
line), and log-normal (dotted yellow line). The location of the break is shown as a shaded region
(gray for the asymmetric broken power law and yellow for the other two fits). Figure adapted
from Fig. 3 of Fernandes et al. (2019) and reproduced with permission from R. Fernandes. Bottom:
frequency of giant planets as a function of orbital period. Figure adapted from Fig. 1 of Wittenmyer
et al. (2020)

2019; Bashi et al. 2020). The occurrence rate for giant planets within 3au increases
with host star mass up to ∼ 2M� (Johnson et al. 2010; Reffert et al. 2015; Ghezzi
et al. 2018), with low-mass M dwarfs hosting as few as 3–10 times less Jovian mass
companions than solar-type stars (e.g., Butler et al. 2004; Endl et al. 2006; Bonfils
et al. 2013; Tuomi et al. 2014). On the contrary, the occurrence rate of close-in super
Earths around M dwarfs could be higher than that for F-G-K stars by a factor of 2–3
(Bonfils et al. 2013) and it presents weak or no correlation with mass and metallicity,
respectively (Maldonado et al. 2020). The theoretical interpretation of the above
trends in terms of planet formation and evolution processes and models is provided
in Chap. 1.
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Fig. 3.13 The diagram of planet radius versus orbital period for the exoplanets belonging to the
Kepler sample. The error bars have been suppressed for clarity. Data were taken from the NASA
Exoplanet Archive in March 2021

3.3.2 Transit Surveys

The Kepler mission sample of thousands of transiting planet candidates (see
Fig. 3.13) has enabled a large number of analyses aimed at determining the occur-
rence rates of planets with radii as small as 1 R⊕, and at correlating planet occurrence
estimates in the Kepler field with stellar properties (e.g., Howard et al. 2012; Fressin
et al. 2013; Petigura et al. 2013a, b; Dressing and Charbonneau 2013, 2015; Burke
et al. 2015; Foreman-Mackey et al. 2015; Fulton et al. 2017; Fulton and Petigura
2018; Zhu and Wu 2018; Narang et al. 2018; Mulders et al. 2018; Petigura et al.
2018; Hardegree-Ullman et al. 2019; Hsu et al. 2019; Berger et al. 2020; Bryson
et al. 2020a, b; Lu et al. 2020; Yang et al. 2020).4

With time, the sophistication of the approaches to the analysis of Kepler data
for the purpose of occurrence rate calculation has increased. Most of the effort has
been devoted to the improved characterization of both completeness and reliability
against false alarms of the content of theKepler catalog of candidates. Thefirst studies
utilized simple Gaussian cumulative distribution functions, or their linear approxi-
mations, as proxies for pipeline completeness, or identified restricted sampleswith an
assumed high degree of completeness. These approaches evolved further into using
Poisson-likelihood-based calculations and approximate Bayesian computations that
took advantage of the most significant effort to characterize the reliability of the
Kepler planet candidates catalog realized in the final DR25 catalog paper (Thomp-
son et al. 2018). The interested reader can find additional details on the difficulties
inherent to accurate occurrence rate calculations (using theKepler survey as a guiding
example) in Sect. 3 of Chap. 4. We will focus here on the methodological approach

4 A non-exhaustive list of of planet occurrence rate papers, heavily focused on the analysis ofKepler
mission data, can be found at exoplanetarchive.ipac.caltech.edu/docs/occurrence_rate_papers.html.
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of Howard et al. (2012), who provided the first such estimate for transit candidates
within 0.25au of solar-type stars, matching the period range of Howard et al. (2010b)
analysis based on Doppler data.

Howard et al. (2012) adopted a carefully crafted strategy to effectively useEq. (3.8)
in the occurrence rate calculation. At the time, the Gaia mission had yet to provide
direct distance estimates for the overwhelming majority of stars in the Kepler field,
so they made careful cuts in effective temperature (4100K < Teff < 6100K) and
surface gravity (4.0 < log g < 4.9), and selected only bright stars with Kepler band-
pass magnitudes Kp < 15mag, so as to ensure sufficient photometric precision for
transit signal detectability. Similarly, transit candidates were selected based on a high
threshold in terms of signal-to-noise ratio (S/N) of the detection:

S/N = δ

σCDPP

√
ntr Tdur
3 hr

(3.10)

where δ is from Eq.3.6, ntr is the number of transits observed by Kepler in a 90-day
quarter, Tdur is the transit duration (see Eq.3.15), σCDPP is the Combined Differential
Photometric Precision, i.e. the empirical rms noise in 3-hr time interval bins com-
ing from the Kepler pipeline. The transit candidates where selected so as to have
Rp > 2 R⊕, P < 50days, and S/N > 10, substantially a regime of nearly complete
detection efficiency, with minimal pollution (∼ 5%) from false positives. The top
panel of Fig. 3.14 shows the final selection of candidates made by Howard et al.
(2012).

The occurrence rate calculationwas performed on a grid of cells in logarithmically
spaced intervals of orbital period and radius. If n� is the number of stars aroundwhich
that planet could have been detectedwith S/N > 10, and ptr = R�/a is the geometric
transit probability, then the average occurrence rate of planets within a cell is:

fcell =
npl,cell∑

j=1

1/ptr, j
n�, j

, (3.11)

where the sum is over all detected planets within the cell. The actual planet count
is thereby augmented taking into account that for each detected planet there are
actually 1/ptr planets in all orbital inclinations orbiting n� stars. The bottom panel
of Fig. 3.14 shows the result of the full occurrence rate calculation, color-coded in
terms of occurrence per logarithmic area units ( d2 f

d log P d log Rp
).

The distribution of planet occurrence provides crucial clues on planet forma-
tion, migration, and evolution processes. Summing occurrence over all periods in
the various radius bins, the top panel of Fig. 3.15 shows occurrence as a function
of planet radius, modeled with a power-law of the form d f/d log Rp = kRα , with
k = 2.9 ± 0.5 and α = −1.92 ± 0.11. Quite clearly, planet occurrence increases
with decreasing planet radius. This is qualitatively in agreement with the power-
law dependence of the planet mass function found by Howard et al. (2010b), albeit
with a significantly steeper dependence on radius. The bottom panel of Fig. 3.15
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Fig. 3.14 Top: planet radius versus orbital period for theKepler transit candidateswith P < 50days.
it Bottom: planet occurrence in the radius-orbital period plane for solar-type stars from Kepler. See
text for details. Figures adapted from Howard et al. (2012) and reproduced with permission from
A. Howard

shows instead the measured planet occurrence as a function of orbital period using
power-law fits with exponential cutoffs below a characteristic period P0 in the form:

dN

d log P
= kPβ

(
1 − e−(P/P0)γ

)
. (3.12)

Planet occurrence increases with log P for all planet classes considered (β > 0),
while P0 increases with decreasing planet radius, suggesting that the migration and
parking mechanism that deposits planets close-in depends on planet radius.
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Fig. 3.15 Top: histogram of planet occurrence as a function of planet radius for planets with Porb <

50days. The dashed line represents a power-law fit to occurrence measurements. In particular,
d f/d log Rp = kRα

p , with k = 2.9 ± 0.5 and α = −1.92 ± 0.11.Bottom: the filled circles represent
the measurements of planet occurrence as a function of the orbital period with best-fitting models
superimposed. Figures adapted from Howard et al. (2012) and reproduced with permission from A.
Howard

Finally, Howard et al. (2012) extended the occurrence rate calculation to include
cooler and hotter stars beyond the G-K dwarf sample initially selected, to unveil a
clear trend of increasing close-in planet frequency within decreasing M�, which was
fitted with a linear relation as a function of Teff :
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Fig. 3.16 Planet occurrence as a function of stellar effective temperature. Figure taken fromHoward
et al. (2012) and reproduced with permission from A. Howard

f = f0 + kT

(
Teff − 5100K

1000K

)
. (3.13)

The trend in occurrence (shown in Fig. 3.16) is produced entirely by the population
of super Earths and Neptunes with Rp < 8 R⊕, while for Rp > 8 R⊕ the opposite
trend is recorded, in agreement with the findings from Doppler surveys of increasing
giant planet frequency with stellar mass.

The findings by Howard et al. (2012) were extended to radii below 2 R⊕ and P >

50 days in a follow-on study by Petigura et al. (2013b). They utilized an independent
pipeline for transit candidates identification, a larger extent of Kepler photometry,
partial reconnaissance spectroscopy of the primary stars and the same Howard et al.
(2012) methodology to eventually estimate that 26 ± 3% of Sun-like stars harbor an
Earth-size planet (1 − 2 R⊕) with P = 5–100days (see Fig. 3.17). They produced
an extrapolation of the occurrence rate of such companions to the P = 200–400
days range (none was directly detected), corresponding to planets that receive stellar
flux comparable to Earth, and derived a first reliable estimate of the frequency of
Earth-like planets: η⊕ = 5.7+1.7

−2.2%.
The large body of works on global occurrence rate calculations and trends with

stellar properties in the Kepler field, which appeared since the Howard et al. (2012)
and Petigura et al. (2013b) analyses, has broadly confirmed the fact that planets of
increasingly smaller size and longer period are increasingly more common (e.g.,
Dong and Zhu 2013; Fressin et al. 2013; Batalha 2014; Burke et al. 2015). However,
differences in the assumptions underlying the baseline occurrence rates (e.g., detec-
tion and vetting completeness, characterization of false alarms and astrophysical
false positives, choice of the parent stellar population) can translate into significant
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Fig. 3.17 The measured
distributions of planet sizes
for Rp > 1 R⊕ and
Porb = 5 − 100days. The
first three bars are annotated
to reflect the number of
planets detected (light-gray
bars) and missed (dark-gray
bars). Figure adapted from
Petigura et al. (2013b),
©2013—National Academy
of Sciences

differences in terms of the specific numbers for different types of planets orbiting
different types of stars (the reader can find additional details on such issues in Chap.
4, Sect. 3).

For example,while the trend of increasing planet frequencywith decreasing stellar
mass is not in doubt, absolute values and strength of the dependence measured by the
different authors do not necessarily agree with each other (e.g., Foreman-Mackey
et al. 2014; Dressing and Charbonneau 2015; Mulders et al. 2015a; Silburt et al.
2015; Mulders et al. 2018; Narang et al. 2018; Hsu et al. 2019; Hardegree-Ullman
et al. 2019; Yang et al. 2020). Even more open for debate is the possible dependence
of occurrence rates of small planets in the Kepler field with stellar metallicity (e.g.,
Buchhave et al. 2012, 2014; Buchhave and Latham 2015; Wang and Fischer 2015;
Zhu et al. 2016; Petigura et al. 2018; Wilson et al. 2018; Zhu 2019; Lu et al. 2020),
which as we have seen is still an open issue also for Doppler surveys. As for the much
sought-afterη⊕ estimate, increasingly sophisticated attempts to constrain it have been
produced in recent times. When robust corrections for completeness and reliability
are included, this value appears to be constrained to lie in the approximate range 5-
50%, the dominant source of uncertainty being the virtual lack of true detections in
the relevant parameter space. Table3.1 summarizes the state of affairs of Earth-like
planets occurrence rates.

A key aspect of the occurrence rate calculations based on Kepler data is that the
use of a simple product of power laws in period and radius when modeling exoplanet
population statistics appears as a sub-optimal choice. This was already apparent in
Howard et al. (2012), Fressin et al. (2013), and Petigura et al. (2013a), where a
power law was a poor fit to the observed planet population as a function of radius. In
particular, additional structure in the radius distribution for Rp � 3.0 R⊕ was smeared
in those early studies due to the large uncertainties (typically 40%) in the stellar radii.
The combination of spectroscopically-determined radii based on data collected as
part of the California-Kepler Survey (CKS; Petigura et al. 2017) and the availability
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Table 3.1 Rates of occurrence of habitable-zone Earth-like planets as measured by several authors

Planet type η⊕ Reference Notes

(planet-radius
range in R⊕)

(planets per star)

0.5–1.5 0.37+0.48
−0.21–0.60

+0.90
−0.36 Bryson et al. (2021) FGK dwarfsa

0.5–1.5 0.58+0.73
−0.33–0.88

+1.28
−0.51 Bryson et al. (2021) FGK dwarfsb

0.75–1.5 0.13+0.09
−0.06–0.11

+0.07
−0.05 Kunimoto and Matthews (2020) G dwarfsa,b

0.5–1.5 0.302+0.181
−0.113 Bryson et al. (2020a) GK dwarfsa,c

0.5–1.5 0.126+0.095
−0.055 Bryson et al. (2020a) GK dwarfsa,d

0.7–1.5 0.11+0.06
−0.04 Pascucci et al. (2019) FGK dwarfsa, f

0.7–1.5 0.05+0.07
−0.03 Pascucci et al. (2019) FGK dwarfsa,g

0.75–1.5 0.33+0.10
−0.12 Hsu et al. (2020) M dwarfsa

0.75–1.5 0.04 − 0.40 Hsu et al. (2019) GK dwarfse

0.85–1.4 0.33 Hsu et al. (2019) GK dwarfsa

0.72–1.7 0.34 ± 0.02 Zink and Hansen (2019) G dwarfsa

1.0–1.5 0.41+0.29
−0.12 Hsu et al. (2018) GK dwarfsh

1.0–1.5 0.31+0.02
−0.03 Garrett et al. (2018) G dwarfsa

0.5–1.5 0.88+0.04
−0.03 Garrett et al. (2018) G dwarfsa

0.5–1.0 0.215+0.148
−0.099 Kopparapu et al. (2018) G dwarfsi

1.0–1.75 0.145+0.071
−0.0.061 Kopparapu et al. (2018) G dwarfs j

0.7–1.5 0.36 ± 0.14 Mulders et al. (2018) G starsa

1.0–1.5 0.16+0.17
−0.07 Dressing and Charbonneau (2015) M dwarfsa

1.5–2.0 0.12+0.10
−0.05 Dressing and Charbonneau (2015) M dwarfsa

1.0–1.5 0.21+0.08
−0.08 Burke et al. (2015) G dwarfsk

0.5–1.5 0.50+0.40
−0.20 Burke et al. (2015) G dwarfsk

1.0–2.0 0.064+0.034
−0.011 Silburt et al. (2015) FGK dwarfsl

0.6–1.7 0.017+0.018
−0.009 Foreman-Mackey et al. (2014) G dwarfsa

1.0–2.0 0.00059 Schlaufman (2014) G starsm,n

1.0–2.0 0.057+0.022
−0.017 Petigura et al. (2013b) G starsm

0.5–1.4 0.15+0.13
−0.06 Dressing and Charbonneau (2013) M dwarfsa

0.5–1.4 0.48+0.12
−0.24 Kopparapu (2013) M dwarfsa

0.5–2.0 0.34 ± 0.14 Traub (2012) FGK dwarfso

0.8–2.0 0.028+0.019
−0.009 Catanzarite and Shao (2011) FGK dwarfsp

0.5–3.0 2.75 ± 0.33 Youdin (2011) G dwarfs(q)

Notes: aconservative Habitable Zone estimate (Kopparapu 2013); boptimistic Habitable Zone
estimate (Kopparapu 2013); ccorrected for reliability; dnot corrected for reliability; e237 ≤ P ≤
500days; fmodel #4; gmodel #7; h237 ≤ P ≤ 320days; i0.28 ≤ Sinc ≤ 1.0; j0.30 ≤ Sinc ≤ 1.12;
k237 ≤ P ≤ 500days; l0.99 ≤ aHZ ≤ 1.7au; m200 ≤ P ≤ 400days; n the author also required
the Earth-sized planet to have a long-period giant-planet companion; o228 ≤ P ≤ 1377days;
p0.75 ≤ aHZ ≤ 1.8au; q P < 1year
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Fig. 3.18 The distribution of close-in planet sizes. The figure was showed by A. Howard in May
2019, during his lecture, and represents an update of the distribution reported by Fulton and Petigura
(2018)

of extremely precise direct distance estimates provided by the second intermediate
data release (DR2) of the Gaia mission (Gaia Collaboration 2016a, b, 2018) allowed
to reduce typical uncertainties on the radius of stars in the Kepler field by close
to a factor of 10. Using the improved knowledge of the stellar radii, Fulton et al.
(2017) and Fulton and Petigura (2018) revisited the radius distribution of close-in
(P < 100days), small-size (Rp < 4.0 R⊕) planets orbiting bright, unevolved solar-
type stars, unveiling its clear bimodality (Fig. 3.18). In particular, the occurrence
rate distribution at 1.5–2.0 R⊕ is suppressed by factor ∼ 2. This ‘gap’ splits the
population of close-in small planets into two size regimes of nearly identical intrinsic
frequency: super Earths with Rp < 1.5 R⊕ and sub-Neptunes with Rp = 2.0–3.0 R⊕.
The physical interpretation for the existence of the radius gap and in-depth studies
of these two classes of small planets are the objective of much of recent research in
the field, to which we now turn our attention.

3.4 Super-Earths and Sub-Neptunes

3.4.1 Key Questions

The bimodality of the small-radius planet distribution uncovered based on Kepler
mission data suggests that super-Earths and sub-Neptunes are primarily rocky plan-
ets, which were born with primary atmospheres a few percent by mass accreted
during the early stages of formation in the protoplanetary disk. Theoretical mod-
eling suggests that terrestrial planet core sizes reach a maximum of ∼ 1.6–1.7 R⊕
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(e.g., Fortney et al. 2007; Valencia et al. 2007; Rogers and Seager 2010; Mordasini
et al. 2012b; Rogers 2015; Dorn et al. 2015). Planets with larger radii are mostly low-
density and the inclusion of an extended atmosphere becomes a necessary ingredient.
The radius gap is thus observed to occur precisely at the transition radius separating
planets with and without gaseous envelopes.

Planets above the radius gap, the sub-Neptunes, were somehow able to retain
their atmospheres, while planets below it, the super Earths, likely have lost their
atmospheres and appear as naked cores. The mechanism that drives atmospheric loss
for these planets remains an outstanding question. As with the mass-loss mechanism,
the origin of the compositional properties of these two classes of planets is still a
matter of debate. The two plausible formation pathways presently considered are5:

(a) the growth and migration of embryos from beyond the ice line (the migration
model, e.g., Ida and Lin 2010; Morbidelli et al. 2015);

(b) inward-drifting of pebbles that coagulate to formplanets close-in (the driftmodel,
e.g., Ormel et al. 2017; Johansen and Lambrechts 2017).

In principle, density determination for transiting planets with measured radius and
mass allows to directly infer their bulk composition, and one would therefore expect
that the structural properties of exoplanets so determined would allow to distinguish
between proposed scenarios for their formation and evolution. However, mass-radius
relationships for small, low-mass planets from theoretical modeling (e.g., Bitsch
et al. 2019; Turbet et al. 2020, and references therein) carry intrinsic degeneracies,
with planets of vastly different composition (with different amounts of rock, ices,
and/or gas) predicted to have observationally indistinguishable bulk densities (e.g.,
Adams et al. 2008; Miller-Ricci et al. 2009; Lozovsky et al. 2018), particularly for
sub-Neptunes above the radius gap. Follow-up atmospheric characterization mea-
surements are therefore necessary to help break any compositional degeneracies.
However, density measurements are still of critical importance, as atmospheric anal-
yses rely on the precise (typically, better than 20%) knowledge of mass and radius
(e.g., Batalha et al. 2019).

The key questions on the true nature of close-in super Earths and sub-Neptunes
can be summarized as follows: Did they form in situ or beyond the snowline? What
causes the rock-gas transition and at what exact radius? What mechanism sculpted
the radius gap? What is the diversity of planet core masses and compositions? Does
it depend on stellar properties? There are the two observational channels routinely
explored today to tackle these questions, as we discuss in the remainder of this
Section: (1) in-depth statistical studies of the radius distribution of small Kepler
planets, and (2) detailed investigations of the mass-radius relation for small planets.

5 Excellent reviews of the subject can be found in Chap. 1 and, e.g., in Bean et al. (2021) and
references therein.
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Fig. 3.19 Two-dimensional distribution of planet size and incident stellar flux. There are at least
two peaks in the distribution. The figure was showed by A. Howard inMay 2019, during his lecture,
and represents an update of the distribution reported by Fulton et al. (2017) and Fulton and Petigura
(2018)

3.4.2 Precise Radius Demographics

In the Fulton et al. (2017) and Fulton and Petigura (2018) studies, the nature of
the two populations of super Earths and sub-Neptunes is best investigated when the
planet radius distribution is plotted as a function of incident flux (Fig. 3.19). First
of all, there is a clear dearth of Rp > 2 R⊕ sub-Neptunes orbiting in high incident
flux environments (Sinc > 300 S⊕). These should be the easiest to detect, yet they do
not appear in the Fulton et al. (2017) and Fulton and Petigura (2018) samples. The
two studies reinforced the evidence for a scarcity of short-period Neptune-type (in
size and mass) planets discussed in early analyses of exoplanet-population statistics
from the Keplermission, which had brought about the concept of ‘Neptunian desert’
(Szabó and Kiss 2011; Mazeh et al. 2016; Lundkvist et al. 2016). Second, most of
the super-Earths with radii below the gap are orbiting in environments with Sinc >

200 S⊕, while sub-Neptunes with radii above the gap typically receive Sinc < 80 S⊕.
Finally, from Fig. 3.19 it is also clear that the gap is present over a very wide range
of S⊕, and there is hint of dependence of the central radius gap value on stellar
insolation levels (or orbital period).

In the Fulton et al. (2017) and Fulton and Petigura (2018) studies the location of
the peaks in occurrence for super Earths and sub-Neptunes is found at Rp ∼ 1.3 R⊕
and Rp ∼ 2.4 R⊕, respectively. More recent analyses with different sub-samples of
Kepler planets all clearly resolved the radius valley, shifted the location of the peaks
closer to ∼ 1.5 R⊕ and ∼ 2.7 R⊕, moved the center of the radius valley at ∼ 1.9–
2.0 R⊕, and more robustly established that its position decreases with orbital period,
characterizing the slope of the valley as a power law R ∝ Pγ , with γ � −0.1 (Van
Eylen et al. 2018;Martinez et al. 2019; Petigura 2020) for the small-planet population
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Fig. 3.20 Two-dimensional distribution of stellar mass and planet size. A dashed line is plotted
at the location of the gap to guide the eye. Figure adapted from Fulton and Petigura (2018) and
reproduced with permission from B. J. Fulton

around F-G-K dwarfs in the Kepler field. A slope with an opposite sign is instead
recorded for the sample of close-in super Earths and sub-Neptunes found by Kepler
aroundMdwarfs (Cloutier andMenou 2020). Fulton and Petigura (2018),Wu (2019)
and Cloutier andMenou (2020) also showed that the feature locations (radius of both
peaks and valley) move to smaller planet radii with decreasing mass of the F-G-K-M
stellar primaries (see Fig. 3.20),

The radius gap (or valley), the ‘desert’ of hot sub-Neptunes, the location of the
peaks in occurrence for super Earths and sub-Neptunes in different regimes of inci-
dent flux, and the trends of the feature locations with stellar mass provide some of the
most formidable observational constraints for our understanding of the origin and
composition of exoplanets with radii between those of Earth and Neptune. The gap
has so far been explained primarily in terms of two atmospheric mass-loss mecha-
nisms: core-powered mass-loss (e.g., Ginzburg et al. 2018; Gupta and Schlichting
2019 and photoevaporation (e.g., Owen andWu 2016, 2017; Lopez & Fortney 2013;
Jin and Mordasini 2018).

3.4.2.1 Radius Valley from Core-Powered Mass-Loss

In the core-powered mass-loss model (Ginzburg et al. 2016, 2018; Gupta and
Schlichting 2019) the luminosity from a young, cooling rocky core heats a planet’s
envelope and drives its thermal evolution and mass loss. After a few Gyr of evolution
the two end-member states are: (i) super-Earths, stripped rocky cores found below
the radius valley, and (i i) sub-Neptunes, engulfed in H/He atmospheres and located
above the valley (see Fig. 3.21). This mechanism is indeed capable to match the val-
ley’s location, shape and slope in planet radius–orbital period parameter space, and
the relative magnitudes of the planet occurrence rate above and below the valley.
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Fig. 3.21 Schematic drawing of planet evolution regulated by the core-powered mass-loss mech-
anism. The main components of the planet structure (left-hand panel) are the core (dark grey),
the convective region (grey), and the radiative region (light grey). The thermal evolution and the
atmospheric mass loss at the Bondi radius (middle panel) bring to two possible states at the end of
evolution (right-hand panel). Figure taken from Gupta and Schlichting (2019) and reproduced with
permission from Akash Gupta

In order to reproduce the correct position of the valley, the model requires that the
observed planet population be predominantly composed of rocky cores with typical
water–ice fractions of less than ∼ 20%.

A key element of the model is that the mass-loss mechanism is a by-product
of planet formation processes, therefore it mostly depends on the properties of the
planet. The studies carried out thus far have yet to show a dependence of the planet
distribution parameters such as Sinc and Rp with stellar mass, which is instead clearly
observed.

3.4.2.2 Radius Valley from Photoevaporation

The fact that small planets at short orbital periods are strongly influenced by the
radiation of their host stars is generally expected within a broad range of theoretical
frameworks (for a review of the subject see e.g., Owen 2019). At young ages, close-
in planets, with extended atmospheres still in the cooling and contraction processes,
absorb more efficiently a large fraction of the central stars’ high-energy luminosity
component LXUV, which in turn emit the largest fraction of their total (bolometric)
luminosity LBol in this channel precisely when they are young. The evolution of
a star’s high-energy flux is typically split into two different regimes (e.g., Jackson
et al. 2012): a period lasting on the order of 100Myr during which LXUV is a con-
stant fraction of LBol (the so-called saturated regime), followed by a clear decline
in high-energy output that falls as LXUV/LBol ∝ ta , with a < −1.0 (see Fig. 3.22). It
is primarily in the saturated regime that the X-ray and UV radiation heats the outer
layers of a close-in planet’s envelope and drives mass loss, with the atmosphere
undergoing severe photoevaporative effects (see cartoon of Fig. 3.23).

Theoretical models predicting that atmospheric erosion of short-period planets
should result in the presence of a ‘photoevaporation valley’ in the radius distribution
of planets around 1.7 − 2.0 R⊕ appeared in the literature before the radius gap was
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Fig. 3.22 X-ray-to-bolometric luminosity ratio versus age for earlier- (left panel) and later-type
(right panel) stars in open clusters analyzed by Jackson et al. (2012). The solid lines indicate the
fits to the data, while the dashed line indicates a less certain fit. Figure adapted from Jackson et al.
(2012)

Fig. 3.23 Schematic drawing of mass loss by photoevaporation

actually observed (Owen and Wu 2013; Jin et al. 2014; Lopez and Fortney 2014;
Chen and Rogers 2016). An example of the very good match between theoretical
expectations and observational evidence is shown in the two panels of Fig, 3.24.
Photoevaporation within ∼ 100Myr or so effectively ‘herds’ small planets into a
population of closer-in super-Earths with∼ 1.4 R⊕, which have beenmostly stripped
of their envelopes and one of sub-Neptunes further out that retained a significant
fraction of their extended atmospheres and have approximately twice the core’s
radius (∼ 2.6 R⊕).



174 K. Biazzo et al.

Fig. 3.24 Comparison
between predicted and
observed population. Top:
Result of a
planetary-evolution
simulation; final radii of
planets with an initial mass
Mp < 20M⊕, as a function
of separation from a Sun-like
star. Different colors
represent different core
masses. Figure adapted from
Owen and Wu (2013) and
reproduced with permission
from James Owen. Bottom:
same as Fig. 3.19

The exact details of the location, shape, and slope of the radius valley are a
function of the adopted recipes in terms of planet formation processes, compositional
properties of the formed planets, and the physics of evaporation (e.g., Owen and Wu
2017; Lopez & Rice 2018). In the most successful photoevaporation model to-date
(Owen and Wu 2017), the valley location is found to be at:

Rvalley ∼ 1.85 R⊕
(

ρM⊕

5.5 g cm−3

)−1/3 (
Mc

3M⊕

)1/4

, (3.14)

where Mc is the core mass, and ρM⊕ is the density of a 1 − M⊕ core that depends
only on the core composition. For terrestrial composition, ρM⊕ = 5.5gcm−3, while
it is 11.0, 4.0, and 1.4gcm−3 for pure iron, silicate, and water/ice cores, respectively
(Fortney et al. 2007). As shown in Fig. 3.25, the observed data exclude ice-rich cores
and favor compositions that are roughly terrestrial, namely silicate–iron composites.
In the Owen and Wu (2017) model, the observed features in the small-size planet
radius distribution in the Kepler field can be explained in terms of a single popula-
tion of planets initially formed with typical core masses around 3M⊕ and terrestrial
compositions, that were born with typical H/He envelopes of a few percent in mass.
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Fig. 3.25 Comparison between the observed radius distribution andmodels of evolving planetswith
cores made up of pure iron (ρcore = 11gcm−3), pure silicate (ρcore = 41gcm−3), and pure water
(ρcore = 1.3gcm−3). Figure adapted from Owen and Wu (2017) and reproduced with permission
from James E. Owen

Furthermore, as the time-integrated ratioLXUV/LBol is a strong functionof stellarmass
(∝ M−3

� ), the photoevaporation model also predicts shifts in the Sinc and Rp distri-
bution with M� that are also observed (Fig. 3.20, see also Fulton and Petigura 2018).

3.4.2.3 Other Ways of Creating the Radius Valley

Other small planet formation mechanisms have been proposed that could potentially
produce a gap in the size distribution. These include: delayed formation in a gas-poor
disk (e.g., Lee et al. 2014; Lee and Chiang 2016) and sculpting by giant impacts (e.g.,
Lee et al. 2015; Schlichting et al. 2015; Inamdar and Schlichting 2016). However,
suchmodels fail to reproduce some of the observed features of the radius distribution,
such as the changing location of the gap radius as a function of orbital period or the
correct gap radius location.

A key point to consider is that both the photoevaporation and core-powered mass-
loss models are able to reproduce the correct position of the radius valley only
under the assumption that the remnant cores populating the first peak of the radius
distribution are mostly rocky in composition. This directly implies that such ice-
poor planets must have formed within the water ice line (Owen andWu 2017; Gupta
and Schlichting 2019). However, a pure dry core composition for most short-period
exoplanets is not really expected from formationmodels (Raymondet al. 2018;Bitsch
et al. 2019; Brügger et al. 2020), as the combination of prominent accretion beyond
the ice line and type I migration tends to move small-mass planets with Mp � 20M⊕
inwards quite effectively (e.g., Tanaka et al. 2002). Recent work coupling planet
formation and evolutionmodeling (Venturini et al. 2020) has shown that a bimodality



176 K. Biazzo et al.

in core mass and composition from birth naturally renders a radius valley at 1.5–
2.0 R⊕. In this framework, the first peak of the Kepler size distribution is confirmed
to be populated by bare rocky cores, as shown extensively by others (Owen and Wu
2017; Jin and Mordasini 2018; Gupta and Schlichting 2019), while the second peak
can host half-rock–half-water planets with thin or non-existent H-He atmospheres,
as suggested by a few previous studies (Dorn et al. 2017; Zeng et al. 2019).

3.4.3 Structural Properties of Small Planets

Themass-radius diagram for transiting exoplanets is the fundamental tool that allows
to directly compare the observational data with structural models, expressed in terms
of iso-density curves that describe the mass-radius relation for a fixed composition,
For almost a decade since the discovery of the first transiting planet (Charbonneau
et al. 2000), inferences on the structure of exoplanets were confined to the realm of
hot Jupiters, to which wide-field ground-based transit surveys (e.g., TrES, XO, HAT-
Net, HATSouth, Super-WASP) are mostly sensitive. Nevertheless, the growing num-
bers of Doppler-detected low-mass (mp sin i < 30M⊕) companions and the expec-
tations from very high-precision space-based transit photometry missions (CoRoT
and Kepler) motivated the development of early structural models and theoretical
mass-radius relations for super Earths and sub-Neptunes (e.g., Valencia et al. 2007;
Seager et al. 2007; Fortney et al. 2007).

3.4.3.1 The Dawn of Density Measurements of Small Planets

From a historical perspective, the two highly successful space-borne transit surveys,
CoRoT andKepler, were not the first to provide initial insights on the structural prop-
erties of small planets with Rp ∼ 1 − 4 R⊕. Indeed, the first planet with a Neptune-
like radius was discovered by Gillon et al. (2007) transiting the nearby M-dwarf
GJ436, as part of a follow-up project to search for transits of knownDoppler-detected
planets. Soon thereafter, the first ground-based transit survey aimed specifically at
finding small-size planets around mid- to late-M stars, the MEarth project, identi-
fied a transiting sub-Neptune with Rp = 2.79 ± 0.2 R⊕ around the M4.5V dwarf
GJ1214 (Charbonneau et al. 2009).

Eventually, the era of space-based transit photometry unfolded. Figure3.26 shows
themass-radius diagram for small planets as of summer 2011. The three notable addi-
tions belong to the class of ultra-short-period (Porb < 1day) planets (see Sect. 3.7):
a) CoRoT-7b, the first rocky super-Earth with measured radius (Léger et al. 2009;
Hatzes et al. 2010), Kepler-10b, the first rocky planet delivered by Kepler (Batalha
et al. 2011), and 55Cnce, a hot super Earth that constitutes one of the two most
important results from the MOST satellite (Winn et al. 2011). This handful of key-
stone planets is representative of the diversity of compositional properties of small
planets. By comparison with more recent structural and evolutionary models (Zeng
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Fig. 3.26 The mass-radius diagram for small transiting exoplanets in mid-2011. The positions
of the rocky and ice-giant planets of the Solar System are also shown. The different curves depict
internal structure models of a variable composition from Zeng et al. ((Zeng et al. 2019)) (as reported
in the legend): 100% iron, Earth-like (32.5% Fe + 67.5% MgSiO3), pure rock (100% MgSiO3),
50% Earth-like rocky core + 50% H2O layer by mass, and 100% H2O mass

and Sasselov 2013; Howe et al. 2014; Zeng et al. 2019) one infers that GJ1214b
and GJ436b could be described as rocky worlds with a variable degree of volatiles
in their interiors and substantial (2%–10% in mass), thick H2/He gaseous envelopes
of primordial origin (e.g., Lozovsky et al. 2018; Zeng et al. 2019). For Kepler-10b
and CoRoT-7b, a truly Earth-like composition fits very well the observed mass and
radius (e.g., Zeng et al. 2019), while 55Cnce has either a very low iron fraction or
an envelope of low-density volatiles (e.g., Dai et al. 2019).

3.4.3.2 An Instructive Example

One of the relevant results of the Eta-EarthKeck surveywas the discovery announced
by Howard et al. (2011) of a warm (P = 9.5days) low-mass planet around the bright
K1 dwarf HD97658. The planet was successively found transiting based on observa-
tions with the MOST and Spitzer satellites (Dragomir et al. 2013; Van Grootel et al.
2014). Its measured mass and radius are 7.8M⊕ and 2.2 R⊕, respectively, making it
a typical resident of the second peak in the radius distribution of small planets.

The physical properties of HD97658b imply a bulk composition that cannot
be uniquely determined. Its mass and radius are compatible with those of a planet
with a rocky core, a large silicate mantle, and a thin H2/He envelope. However, the
same mass and radius equivalently match those of a water-rich sub-Neptune, with
no gaseous envelope (Fig. 3.27). Alternatively, the similar mass and radius can also
be reproduced by structural models encompassing a 10%–20% super-critical water
hydrosphere topping a 80%–90%mantle-like composition interior (e.g.,Mousis et al.
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Fig. 3.27 The mass and
radius of HD97658b
highlight the problem of
compositional degeneracies
for sub-Neptunes, that
cannot be resolved solely
based on their physical
properties (see text)

2020). As a consequence, HD97658b’s formation history is also unclear, as a rocky
super Earth with a small H2/He envelope mass fraction could have formed in situ,
while a water-rich sub-Neptune is expected to have formed beyond the snowline
(� 2au) and then migrated inward to its present location at ∼ 0.1au.

To break compositional degeneracies for sub-Neptunes, atmospheric characteri-
zation measurements should play a decisive role. In particular, measurements of the
transmission spectra allow to directly estimate the mean molecular weight of the
planet’s atmosphere (e.g., Miller-Ricci et al. 2008a, b; Fortney et al. 2013), which
in turn provides improved constraints on its interior composition. Knutson et al.
(2014a) utilized HST/WFC3 to perform near-infrared transmission spectroscopy of
HD97658b’s atmosphere, retrieving a featureless transmission spectrum. The most
likely explanation is that the planet’s atmosphere is dominated by clouds or hydro-
carbon hazes that prevent one from detecting molecular absorption features. Similar
results have been derived with HST/WFC3 transmission spectroscopy of GJ1214b
(Kreidberg et al. 2014) and GJ436b (Knutson et al. 2014b). This is a potentially
strong limitation towards gaining further insights on the overall structural properties
of sub-Neptunes such as HD97568b. Fortunately, successful detections of molecular
absorption have also been reported in the most recent literature for such objects (e.g.,
Tsiaras et al. 2019; Benneke et al. 2019; Kreidberg et al. 2020; Guilluy et al. 2021;
Mikal-Evans et al. 2021). Even in the case of flat transmission spectra measured
with HST, there are encouraging prospects for accessing strong molecular features
in the atmospheres of sub-Neptunes at longer wavelengths with JWST (Crossfield
and Kreidberg 2017; Kawashima et al. 2019).

3.4.3.3 Modern-Day Mass-Radius Relationships

The wealth of Rp < 4 R⊕ transiting planet candidates uncovered by the Kepler
mission refocused the investment of observing time with high-resolution spectro-
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Fig. 3.28 The mass-radius diagram as of 2014. The colored boxes refer to the position of Earth,
Super-Earth and Neptunes planets (see the legend on the top of the right-hand panel). Prototypes
of these types of planets are shown to the right of the plots. Figure adapted from Weiss and Marcy
(2014) and reproduced with permission from Lauren M. Weiss

graphs with high-precision RV measurement capabilities in follow-up programs for
mass determination. Marcy et al. (2014) presented a first significant sample of mass
measurements (or meaningful upper limits) for small Kepler candidates based on
Keck/HIRES RVs. This study enabled the first empirical determination of the mass-
radius relation for super Earths and sub-Neptunes. Weiss and Marcy (2014) used
a sample of 65 planets with P < 100days and with either measured masses or
upper limits (including ∼ 10% of objects with negative masses!). They fit a simple
parametric model, a power-law, to the observed mass-radius distribution, obtain-
ing Rp ∝ M0.27

p for Rp < 1.5 R⊕ and Rp ∝ M1.07
p for 1.5 R⊕ ≤ Rp ≤ 4 R⊕. They

showed an increase in density with Rp, with a clear peak at ρp ∼ 7.6gcm−3 for
Rp ∼ (1.4–1.5) R⊕, followed by a sharp decline at larger radii (see Fig. 3.28).

TheWeiss andMarcy (2014) analysis constituted the first comparative study of the
observed mass-radius relation for close-in super Earths and sub-Neptunes with the-
oretical expectations. It broadly confirmed the notion that objects with Rp � 1.5 R⊕
are mostly rocky in composition, while planets with larger radii must be composed
of increasingly larger amounts of volatiles and/or H2/He gaseous envelopes. Weiss
and Marcy (2014) also found a large scatter around the empirical Mp − Rp relation,
indicating a significant diversity in planet composition at a given radius.

After the end of the original Kepler mission in 2013, its continuation, the K2
mission, and more recently (since 2018) the TESS mission have produced > 1000
new transiting planet candidates in the super-Earth and sub-Neptune radius regime.
Most importantly, a large fraction of the candidates orbits around much brighter stars
than the originalKepler sample. This has enabledmore successful, systematic follow-
up programs for mass determination with the Doppler method. As of March 2021,
there are 192 planets with Rp < 4 R⊕ and a non-zero mass measurement reported
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with any precision. This number becomes 146, 102, and 34 with the request of mass
measurements good to better than 30%, 20%, and 10% precision, respectively.6

With growing numbers of better characterized small-size, low-mass planets, mod-
eling efforts have revisited the initial studies on theoretical mass-radius relations
(e.g., Seager et al. 2007; Fortney et al. 2007; Rogers and Seager 2010; Valencia et al.
2010; Lopez et al. 2012). On the one hand, consensus appears to have been reached
on threshold radii for a given composition, representing the radius above which a
planet has a very low probability of being of that specific composition. Rogers (2015)
and Lozovsky et al. (2018) converged on a threshold value of ∼ 1.6 R⊕ for purely
rocky planets, and Lozovsky et al. (2018) determined that planets with radii above
∼ 2.6 R⊕ (and up to the radius ofNeptune)must have retained envelopes of hydrogen
and helium typically amounting to 1%–10% in terms of mass fraction. On the other
hand, the details of the compositional properties of super Earths and sub-Neptunes
have been fine-tuned, particularly in the latter case. Recent work has not only revis-
ited the notion that they could be rocky worlds with small amounts of volatiles in
their interiors and substantial, thick H2/He gaseous envelopes of primordial origin
(e.g., Owen and Wu 2017; Van Eylen et al. 2018; Gupta and Schlichting 2019), but
it has also re-assessed the likelihood that sub-Neptunes might be ‘water worlds’ or
‘ocean planets’, containing significant amounts of water in primarily solid (ices)
form, with thin or non-existent H2/He-dominated atmospheres (e.g., Léger et al.
2004; Zeng et al. 2019; Madhusudhan et al. 2020; Venturini et al. 2020). Finally,
recent investigations have also produced predictions on the mass-radius relation for
strongly irradiated water-rich rocky planets that might also possess endogenic thick
H2O-dominated, steam atmospheres, in which up to 100% of the planetary water
content appears in vaporized form (Dorn et al. 2018; Turbet et al. 2019; Zeng et al.
2019; Mousis et al. 2020).

From an (semi-)empirical point of view, updates to the Weiss and Marcy (2014)
power-law fits have been published in the recent past byWolfgang et al. (2016), Zeng
et al. (2016), Bashi et al. (2017), Chen and Kipping (2017), and most recently by
Otegi et al. (2020). These works used different cuts in the properties of the small
planet population, different prescriptions on the statistical confidence with which
planet radii and particularly masses are determined, and differ also in aspects of
the methodological approach. Despite some degree of heterogeneity in the planet
samples investigated, the above analyses provide broadly consistent results, as sum-
marized in Table3.2. Other determinations of the mass-radius relationship based on
slightly more flexible Bayesian or non-parametric approaches (Ning et al. 2018; Ma
&Ghosh 2019; Kanodia et al. 2019; Ulmer-Moll et al. 2019) capture itsmain features
similarly well, reducing in part the spread around the relation.

The two panels of Fig. 3.29 show the state-of-the-art of the mass, radius, and
density measurements of super Earths and sub-Neptunes, restricted to mass determi-
nations to better than 20% precision. In the left panel, the power-law fits from Otegi
et al. (2020) in the rocky and volatile-rich regime are overplotted. The two popu-
lations are rather clearly identified, The dispersion in the relation for rocky planets

6 Data from the transiting exoplanet catalogue TEPCat: https://www.astro.keele.ac.uk/jkt/tepcat/ .

https://www.astro.keele.ac.uk/jkt/tepcat/


3 The Demographics of Close-In Planets 181

Table 3.2 Parametric mass-radius relations derived for small planets by past studies

Authors Power-law Fit Regime of validity

Weiss and Marcy (2014) Rp ∝ M0.27
p Rp < 1.5 R⊕ (rocky)

Weiss and Marcy (2014) Rp ∝ M1.07
p 1.5R⊕ ≤ Rp ≤ 4.0 R⊕ (non-rocky)

Wolfgang et al. (2016) Rp ∝ M0.66
p Rp < 4 R⊕ (small planets)

Zeng et al. ((Zeng et al. 2016)) Rp ∝ M0.27
p 1M⊕ < Mp < 8 M⊕ (small planets)

Bashi et al. ((Bashi et al. 2017)) Rp ∝ M0.55
p Rp < 12.1 R⊕, or Mp < 124 M⊕ (small planets)

Chen and Kipping
((Chen and Kipping 2017))

Rp ∝ M0.28
p Mp < 2 M⊕ (Earth-like)

Chen and Kipping
((Chen and Kipping 2017))

Rp ∝ M0.59
p 2M⊕ < Mp < 120 M⊕ (Neptune-type)

Otegi et al. ((Otegi et al. 2020)) Rp ∝ M0.29
p ρp > 3.3 g cm−3 (rocky)

Otegi et al. ((Otegi et al. 2020)) Rp ∝ M0.63
p ρp < 3.3 g cm−3 (volatile-rich, up to Mp ∼ 120 M⊕)

Fig. 3.29 Left: the state-of-the-artmass-radius diagram for super-Earth and sub-Neptune exoplanets
having a mass that was determined with a precision better than 20%. Dashed and dot-dashed lines
are the best-fitting lines for the rocky and volatile-rich populations from Otegi et al. (2020). The
green stars denote the Solar System planets as in Fig. 3.26. Right: the radius-density diagram for the
same population. The two vertical dashed lines at 1.6 R⊕ and 2.6 R⊕ indicate the threshold radii
for the rocky to volatile-rich transition and for the transition between water worlds and planets with
gaseous envelopes, respectively

is rather small, with indications of a population of planet with very large iron cores
with masses in the approximate range 4 − 10M⊕. The most massive rocky planet
hasMp ∼ 25M⊕. The dispersion around the relation for volatile-rich planets is much
larger. In the right panel, the threshold radius of 1.6 R⊕ for the rocky to volatile-rich
transition rather clearly matches the point in which ρp changes its dependence with
Rp (from direct to inverse). At the transition radius of 2.6 R⊕ between water worlds
and planets with gaseous envelopes proposed by Lozovsky et al. (2018) nothing
special seems to happen.

It is finally worth mentioning how the growing sample of super Earths and sub-
Neptunes with well-determined properties can be investigated in a statistical sense in
order to uncover patterns (e.g., overdensities) in parameter space that might represent



182 K. Biazzo et al.

Fig. 3.30 Top: mass-radius diagram of sub-Neptunes with masses determined at the 3 σ level (or
better), orbiting primaries with Teff < 5700K. The objects are color-coded by their equilibrium
temperature. The different curves depict internal structure models of variable composition from
Zeng et al. 2019, as reported in the legend.Bottom: same plot, but for sub-Neptunes around primaries
with Teff < 5700K

fossil evidence of the planets’ formation and evolution history, as it has been done
using radius alone (Fulton et al. 2017; Fulton andPetigura 2018). Considering all sub-
Neptunes with masses detected to better than 30% precision, Sozzetti et al. (2021)
showed a possible lack of Mp > 10M⊕ companions around G- and F-type stars with
Teff > 5700K, particularly for objects with Rp � 2.5 R⊕ (see Fig. 3.30). This can be



3 The Demographics of Close-In Planets 183

interpreted as fossil evidence of planet formation around stars of varied mass. More
massive primaries typically have higher-mass disks. Upon reaching the critical mass
(10M⊕ or so), newly formed cores have a higher chance of quickly accreting large
amount of gas, ending up their formation process as giant planets.

3.5 Planet Multiplicity

The average number of planets per star is a very difficult parameter to constrain
precisely, because of the variety of selection effects and variable sensitivity to areas
of the parameter space inherent to different detection techniques. Our Solar System
has 8 planets, which sounds like a high degree of multiplicity, and a very interesting
architecture with the following relevant features: (a) quasi-geometric progression in
orbital spacings; (b) clear hierarchy in mass, with inner terrestrial planets 10–100s
of times lower in mass than the outer gas giants; (c) almost circular orbits; (d) mostly
prograde orbits; (e) almost coplanar orbits, with low mutual inclinations (Fig. 3.31).

Are we typical? This is one key question in the field of exoplanet demographics,
for which we have yet to find the answer. On the one hand, by comparison with
the astonishing diversity of the orbital and physical properties of known planetary
systems to-date (see Fig. 3 in Chap. 1 for examples from RV and transit surveys),
one would be inclined to draw the conclusion that the one we live in is unlike any

Fig. 3.31 Solar-system architecture. Figure showed by A. Howard in May 2019 during his lectures
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Fig. 3.32 Left: RV measurements for υ And from the Lick Observatory. Right: residual velocities
for υ And after removal of the 4.6-day Keplerian signal from the data. The line shows the best-fit
model describing the RV variations due to the outer two companions. Figures taken from Butler
et al. (1999) and reproduced with permission from R. P. Butler

other planetary systems, and the rate of occurrence of Solar-System analogs might be
(much) below 1% (e.g., Schlaufman 2014. See also Chap. 1). On the other hand, the
limited sensitivity of detection techniques toSolar-System-like architectures suggests
that the result is still due, at least in part, to observational biases rather than an
intrinsically low frequency of true analogs of the Solar System.

The study of the global architecture of planetary systems and the identification of
trends and patterns in their properties constitute some of the most formidable obser-
vational constraints for planet formation, orbital migration, and dynamical evolution
models. As far as multiple-planet systems at short and intermediate separation are
concerned, the Doppler and transit techniques have allowed us to make large strides
toward the understanding of how different other systems can be from our own.

3.5.1 Multi-planet Systems from Doppler Surveys

3.5.1.1 Early Investigations

The detection of the firstmulti-planet system around a solar-type star7 was announced
four years after the discovery of 51 Peg b byButler et al. (1999). Three giant planetary
companions were found orbiting the solar-type star υ Andromedae: a hot Jupiter
(Mp sin i = 0.7MJup) with P = 4.6d, and two super-Jupiters (Mp sin i ∼ 2.0MJup

and Mp sin i ∼ 4.0MJup) on longer periods (241d and 1278d, respectively).
Figure3.32 shows the original RV time-series and the multi-Keplerian orbit fit to

the RV signals induced by the two outer gas giants. The amplitudes and periods of

7 Prior to this announcement, Wolszczan and Frail (1992) had published the detection, based on the
pulsar timing technique, of two terrestrial-mass companions orbiting at 0.36au and 0.47au from
the neutron star PSR1257+12.
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the RVmodulations could not be explained in terms of any known star-related effects
(rotation, pulsations, magnetic cycles) that could mimic a truly Keplerian signal, and
their planetary nature therefore safely established.Adecade later,Wright et al. (2009)
presented a detailed analysis of 67 exoplanets in 28 multiple systems, at the time
comprising 14% of known host stars of extrasolar planets within 200pc. Figure3.33
presents the chart of semi-major axes and minimum masses for the Wright et al.
(2009) sample.

This remarkably diverse sample enabled the first systematic investigation of the
statistical properties ofmulti-planet systems. In particular,Wright et al. (2009) uncov-
ered difference in the population compared to that of systems with only one detected
planet: a) multiple systems appear to have typically lower eccentricities, b) planets
in multiple systems are somewhat lower in mass, and c) the distribution of orbital
distances for multi-planet systems differs from that of single planets. Wright et al.
(2009) also foundmarginal evidence for multi-planet hosts to be slightly moremetal-
rich that host stars of single planets, while no differences with stellar mass between
the two populations arose.

TheWright et al. (2009) sample contained important information on orbital spac-
ing of exoplanet systems. In particular, ∼ 20% of the sample was known at the
time to be in or near mean-motion resonances, characterized by period ratios that
are nearly equal to ratios of small integers. At least one system (GJ876) had been
shown to undergo strong dynamical interactions, with changes in orbital elements
on timescales comparable to those of the RV observations. The spacings of the other
systems indicated instead the presence of secular interactions, primarily dictated by
different types of apsidal motion (libration, circulation, or at the boundary between
the two states), and affecting particularly the values of eccentricity and mutual incli-
nations on very long timescales.

Broadly speaking, the observed orbital properties (in particular the eccentricity)
of the multiple-planet systems in the Wright et al. (2009) sample, as well as their
dynamical features in terms of resonant and secular behavior are consistent with
planet formation by core/pebble accretion followed by two possible pathways of
orbital evolution: (1) smooth gas-driven migration in the protoplanetary disk and
(2) a more violent history of early dynamical interactions involving planet-planet
scattering and subsequent high-eccentricity migration and tidal circularization. The
latter evolutionary channel appears to explain more effectively the properties of both
close-in single hot-Jupiter systems and multiple systems with a < 5au (more on this
in Sect. 3.6.1. See also Chap. 1).

3.5.1.2 Further Characterization of the Population

As of April 2021, there are ∼ 400 Doppler-detected exoplanets in ∼ 160 multiple
systems, including over 30 systems with at least one transiting planet.8 The left-
hand panel of Fig. 3.34 shows the distribution of period ratios for planet pairs with

8 Source: exoplanet.eu and https://exoplanetarchive.ipac.caltech.edu/ .



186 K. Biazzo et al.

Fig. 3.33 Chart of semi-major axes and minimummasses for the 28 known multiplanet systems as
of 2009. The first circle in each row represent the star, while the others represent the hosted planets.
The sizes of the circles are proportional to the cube root of the stellar mass and the planetary
Mp sin i , respectively. The horizontal line intersecting the planet represents the periapse to apoapse
excursion. Figure adapted fromWright et al. (2009) and reproduced with permission from Jason T.
Wright

Pout/Pin < 4. There are clear peaks just wide of the 3:2 and 2:1 resonances, and
another peak just interior to the 4:1 resonance. The smallest period ratio is recorded
for the pair of super Earths HD215152b,c (Delisle et al. 2018), ∼ 1% wide of the
5:4 resonance. From the right-hand panel of Fig. 3.34 we learn that the peak near
the 2:1 resonance is populated by pairs of giant planets with total mass � 1MJup, as
it had already been noted by (Winn and Fabrycky 2015). The pairs in the peaks next
to the 3:2 and 4:1 resonances are instead primarily composed of low-mass planets
with masses � 0.1MJup. In general, most pairs in multi-planet systems detected in
RV surveys do not lie near a period commensurability, however their mass correlates
rather clearly with period ratio (Fig. 3.35).
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Fig. 3.34 Left: the distribution of period ratios for Doppler-detected planet pairs with Pout/Pin < 4.
Vertical lines indicate first- and higher-order resonances. Right: total mass in a pair versus period
ratio. The vertical lines are the same as in the left panel

Fig. 3.35 Same as Fig. 3.34, but for all values of period ratio

The four panels of Fig. 3.36 show other interesting features of the population of
multi-planet systems from RV surveys. First, the mass ratio clearly correlates with
period ratio (top left panel), with only 28% of pairs in which the outer compan-
ion is the less massive one. Second, pairs with relatively low mass ratios (� 4) are
more often composed of low-mass planets (top right panel), with a sparse population
(∼ 10%) of systems with high mass ratios (> 10) composed of an inner low-mass
planet and an outer massive companion with a large period ratio. The masses of
planet pairs are strongly correlated across all mass regimes (bottom left panel), but
particularly so for companions with minimum masses below 10M⊕. The sample
of inner planets with 10M⊕ � Mp sin i � 30M⊕ is instead often accompanied by
an outer, significantly more massive companion. Finally, low-mass pairs are almost
exclusively found around K- andM-dwarf primaries (M� � 0.8M�), while the sam-
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Fig. 3.36 Top left: mass ratio versus period ratio for planet pairs in Doppler-detected multiple
systems. Top right: mass ratio versus total mass in pair. Bottom left: correlation diagram between
minimum masses of the inner and outer planet in pairs. Bottom right: total mass in planet pairs
versus mass of the stellar hosts

ple of planet pairs orbiting higher-mass stars is dominated by high-mass planets
(bottom right panel).

Compact systems of low-mass planets at short orbital separations are increasingly
more difficult (and very observing-time consuming) to unveil with high statistical
confidence in the detections around increasingly higher-mass stars, due to their very
low-amplitudeRVsignals (e.g., Delisle et al. 2018;Udry et al. 2019;Hara et al. 2020).
It is therefore difficult for Doppler surveys to establish whether the apparently higher
low-mass, close-in planet multiplicity for later spectral types is indeed real or due to
observational biases. For one thing, the highest planet multiplicity has been recorded
for the solar-type star HD10180, which hosts at least six, and up to nine!, planets, 5 or
6 inside the orbit of Mercury (Lovis 2011; Tuomi 2012). The fact that adjacent pairs
of close-in low-mass companions appear to have rather similar (minimum) masses
and similar spacings is instead quite intriguing, and awaits a clear explanation from
a theoretical viewpoint.

The structure of peaks and deficits near resonance in the period ratio distribution
can be interpreted in terms of a couple of alternative scenarios of formation and
subsequent orbital evolution of low-mass multi-planet systems. A viable path is
in-situ formation in gas-poor conditions, in the late stages of the disk’s lifetime,
with little or no orbital migration (e.g., Lithwick et al. 2012; Ogihara et al. 2018;
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Fig. 3.37 Average eccentricity versus total mass for planet pairs in Doppler-detected multiple-
planet systems

Terquem and Papaloizou 2019; Choksi and Chiang 2020, and references therein).
Alternatively, such systems might have formed early in the gas-rich regions of the
protoplanetary disk, undergone smooth disk-drivenmigration and resonance capture,
and subsequently escaped resonance due to dynamical instability effects driven by
a variety of other physical processes (e.g., Goldreich and Schlichting 2014; Izidoro
et al. 2017; Lambrechts et al. 2019).

The average eccentricity of planet pairs is clearly correlated with the total mass
(see Fig. 3.37), with low-mass multiples often compatible with having almost per-
fectly circular orbits.9 As the Super Earths and Neptunes uncovered by Doppler
surveys in multiple systems tend to have quite similar minimum masses (Fig. 3.36),
it is tempting to conclude that they are also likely to be on nearly coplanar orbits,
which could help in understanding whether their architectures have been shaped by
‘clean’ disk migration followed by phases of dynamical instability that retained both
low eccentricities and low mutual inclinations (e.g., Esteves et al. 2020, and refer-
ences therein), or they are produced by different in-situ formation conditions (e.g.,
MacDonald et al. 2020, and references therein).

Unfortunately,mutual inclination angles cannot be determined based onRVobser-
vations alone, unless planet-planet interactions produce detectable perturbations in
the host star’s motion beyond the simple superposition of Keplerian orbits. This has
been possible in practice only for the two gas giants in a 2:1 resonance in the four-

9 Note that the reported non-zero eccentricity values for low-mass companions are often compatible
with zero within the error bars (not shown in the plot). It is in fact notoriously difficult to measure
statistically significant small eccentricities for the low-amplitude RV signals induced by low-mass

planets, as the estimated uncertainty on e scales as σe = σK
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planet system around GJ876, which were determined to have a mutual inclination
of less than 5 deg (e.g., Rivera and Lissauer 2001; Bean et al. 2009; Rivera et al.
2010). The combination of RV data and relative HST astrometry (McArthur et al.
2010) allowed to measure a significant mutual inclination (30 ± 1deg) between the
two outer gas giants orbiting υ And. Most recently, the combination of RV data
and Gaia-Hipparcos absolute astrometry allowed to infer that the hot super Earth
found transiting around the naked-eye solar-type star π Men (Huang et al. 2018)
must be on a significantly non-coplanar configuration with the outer, eccentric, mas-
sive giant planetary companion (Damasso et al. 2020; see also De Rosa et al. 2020
and Xuan and Wyatt 2020). Smooth disk migration likely explains the architecture
of the resonant pair of gas giants around GJ876 (e.g., Dempsey and Nelson 2018 and
references therein). The detailed architectural properties of the υAnd andπ Men sys-
tems are more naturally explained by planet-planet scattering processes (e.g., Ford
et al. 2008). Any attempt at observationally determining the mutual inclination of
low-mass multiples in RV surveys remains so far elusive.

3.5.2 Architecture of Kepler ‘Multis’: Global Patterns

Two years after theWright et al. (2009) analysis, NASA’s Kepler mission provided
a new boost to the investigations of multi-planet demographics. Among the thou-
sands of new exoplanet candidates, it uncovered a population of ∼ 400 (as of April
2021) transiting multi-planet systems (Borucki et al. 2011; Lissauer et al. 2011b;
Latham et al. 2011; Burke et al. 2014; Rowe et al. 2014) with orbital separations
< 1au. Based on statistical as well dynamical stability arguments, almost all of them
are real (� 99%, e.g., Lissauer et al. 2012; Fabrycky et al. 2014). Kepler provided
the first statistically robust evidence for the existence of a class of close-in, densely
packed systems of small-size, low-mass planets, including record-holders Kepler-11
(six planets within Mercury’s orbit; Lissauer et al. 2011a), Kepler-20 (six planets
within Mercury’s orbit, one of which non-transiting; Buchhave et al. 2016 and refer-
ences therein), and Kepler-90 (eight planets within 1au but 5 within Mercury’s orbit;
Shallue and Vanderburg 2018 and references therein). Such a large sample enables
the robust identification of patterns in the intrinsic distributions of planets, which
provide fundamental insights for models of the formation and evolution of planetary
systems with a resolution that is not achievable by Doppler detections.

3.5.2.1 Kepler Singles Versus ‘Multis’

The first question to ask is whether Kepler’s multi-planet systems (dubbed ‘multis’
thereafter) and those in which a single planet is known to transit (non-transiting
planets could very well be present!) are drawn from the same parent population. The
visual comparison of the population of singles and multis in the radius-orbital period
space (Fig. 3.38) would make us infer this is indeed the case (except for hot Jupiters
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Fig. 3.38 The diagram of the planet radius versus orbital period for the planet candidates found
during the first four months of the Keplermission. Single candidate transiting planets are marked in
red, multiple candidate transiting planets are marked in blue. The CoRoT planets known at the time
are plotted in green. The figure was made by Samuel N. Quinn (Latham et al. 2011) and reproduced
with permission from D. W. Latham

that tend to be ‘lonely’; see, e.g., Latham et al. 2011; Steffen et al. 2012). Similarly,
the radius valley seems to be present both for singles and multis (Fig. 3.39, left
panel). Finally, the properties (particularly mass and metallicity) of the parent stars
of Kepler singles and multis appear indistinguishable (an example is shown in the
right panel of Fig. 3.39). This has brought many to conclude that the two populations
are statistically the same (e.g., Xie et al. 2016; Munoz Romero and Kempton 2018;
Zhu et al. 2018; Weiss et al. 2018a; for alternative views see, e.g., Brewer et al. 2018
and Anderson et al. 2021).

Small planet multiplicity within 1au in the original Kepler field is not, however,
independent of spectral type. We have already shown in Fig. 3.16 the dependence
of occurrence rates with stellar mass originally uncovered by Howard et al. (2012).
Several studies that followed confirmed the existence of the trend (e.g., Mulders et al.
2015a; Zhu et al. 2018). The latest work on the subject (Yang et al. 2020) has further
confirmed this notion, establishing that planet hostswith 3000K � Teff � 5500Kare
orbited typically by ∼ 2.8 planets with P < 400days, a number that drops sharply
to ∼ 1.8 for Teff � 6000K (Fig. 3.40).

3.5.2.2 The Kepler ‘Dichotomy’

With such a large number of multi-planet systems identified by Kepler, the answer
to the question: “What is the true multiplicity distribution of exoplanetary systems
out to 1au?” appears within reach. As the transit technique is by construction prone
to miss planets in systems that are not almost perfectly coplanar, in order to model
the planet number distribution one needs to make an hypothesis for both the the
intrinsic multiplicity distribution and the mutual inclination distribution. Lissauer
et al. (2011b) modeled the former as a uniform (or Poisson) distribution and the latter
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Fig. 3.39 Left: the distribution of planet radius for Kp < 14.2mag systems with one (red) and
multiple (blue) transiting planets. Only planets with 1 R⊕ < Rp < 4R⊕ and Porb > 3days are
shown. Right: cumulative distribution function (CDF) of the host-star masses for single and multi
Kepler systems. Figure taken fromWeiss et al. (2018a) and reproducedwith permission fromLauren
M. Weiss

Fig. 3.40 Number of planets per star for Kepler planet hosts as functions of Teff . Figure adapted
from Yang et al. (2020) and reproduced with permission from Jia-Yi Yang

as a Rayleigh distribution, with a good match to all observed multiplicities except
the singly transiting planets, whose occurrence was under-predicted by nearly 50%.
The discrepancy could be reconciled if one considers the Kepler singles and multis
as two distinct populations of planetary systems (orbiting stars with a broad range of
spectral types and metallicities), a feature usually dubbed as the ‘Kepler dichotomy’
(see Fig. 3.41): the first population is made up of dynamically ‘cold’, densely packed
compact planetary systems with small mutual inclinations (∼ 2◦), the second is
composed of truly single close-in planets or dynamically ‘hot’ multi-planet systems
(see cartoon of Fig. 3.42) with at least two companions with largelymutually inclined
orbits (e.g., Johansen et al. 2012; Fang and Margot 2012; Tremaine and Dong 2012;
Ballard and Johnson 2016; Munoz Romero and Kempton 2018; Mulders et al. 2018;
He et al. 2019).
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Fig. 3.41 Comparison between the Kepler multi-planet yield, in blue, to a best-fit power-law
mixturemodel inmultiplicity∝ mα with 1σ and 2σ confidence levels. Panel a shows the result from
the full model; panel b shows the contribution from a component with power-law index α = −2.5,
describing the high-multiplicity sector of the distribution; panel c shows the contribution from a
component with power-law index α = −4, describing the low-multiplicity sector of the distribution.
Figure adapted from Ballard and Johnson (2016)

Fig. 3.42 Schematic drawing of the Kepler dichotomy: planetary systems densely packed and with
small mutual inclinations are considered dynamically ‘cold’, whereas those composed of single
close-in planets or several planets with large mutual inclinations are considered dynamically ‘hot’

Recentwork argues that the dichotomousmodel is not necessary, depending on the
choice for the functional formof themultiplicity andmutual inclinations distributions
(Gaidos et al. 2016; Bovaird and Lineweaver 2017; Sandford et al. 2019). TheKepler
dichotomy might also artificially arise at least in part because of the increasingly
lower detection efficiency of the Kepler pipeline with increasing planet multiplicity
(Zink et al. 2019).
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Fig. 3.43 Schematic drawing of how the transit duration, T , can change according to the orbital
parameters. Here T0 represents the transit duration corresponding to a central (b = 0) transit for a
planet on a circular orbit (e = 0)

3.5.2.3 Eccentricities and Mutual Inclinations

A possibly convergent picture on the dynamical differences and similarities between
Kepler systems with different multiplicity can be drawn when considering the com-
bined information coming from in-depth studies of both eccentricity and mutual
inclination distributions. The full duration of a transit can be expressed as:

Tdur/T0 =
√

(1 + Rp/R�)2 − b2
√
1 − e2

1 + e sinω
, (3.15)

with T0 � 13 hr (P/year)1/3 (ρ�/ρ�)−1/3 the transit duration corresponding to a cen-
tral (b = 0) transit for a planet on a circular orbit (e = 0). See the cartoon of Fig. 3.43
for a visual description. It is therefore possible to study the distribution of Tdur/T0
to infer the underlying distribution of eccentricities. Early attempts at determining
the eccentricity distribution of Keplermultis (e.g., Moorhead et al. 2011; Kane et al.
2012; Wu and Lithwick 2013) were hampered by the pre-Gaia limited knowledge
of the host stars. With more precisely determined stellar properties, the method has
been applied by several authors (Van Eylen et al. 2015; Xie et al. 2016; Mills et al.
2019; Van Eylen et al. 2019). The clear, statistically robust picture portrayed by these
studies is that Kepler multis are found on nearly-circular orbits (median e ∼ 0.05),
while Kepler systems with one detected transiting planet exhibit a large eccentricity
dispersion, with a study-dependent median e in the range 0.15–0.3 (see Fig. 3.44 for
an example). There is tentative evidence that the most eccentricKepler singles might
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Fig. 3.44 Density histogram of the eccentricity distribution of Kepler systems with multiple tran-
siting planets and systems with a single transiting planet. The bins have an arbitrarily chosen width
of 0.075. Solid lines indicate kernel density estimates. Multi-planet systems clearly have a higher
density of low eccentricities. Figure adapted from Van Eylen et al. (2019) and reproduced with
permission from Vincent Van Eylen

preferentially orbit more metal-rich stars (Mills et al. 2019). We further elaborate on
this point in Sect. 3.6.2.

The normalized transit duration ratio:

ξ = Tdur,in/P
1/3
in

Tdur,out/P
1/3
out

(3.16)

contains information on the mutual inclination of a planet pair in a multi-planet
system (the subscripts in and out identify the inner and outer companion). Studies
of the ξ distribution for Kepler multis (Fang and Margot 2012; Tremaine and Dong
2012; Fabrycky et al. 2014) agree on the fact that the mutual inclinations between
Keplermultis can be described by a Rayleigh distribution with a dispersion of a few
degrees (see Fig. 3.45).

More recent analyses (e.g., Zhu et al. 2018; He et al. 2020) have further cor-
roborated the notion that mutual inclinations and eccentricities of Kepler multis are
strongly correlated, and quantified the power-law dependence of the two distributions
with multiplicity m (∝ mγ , with γ ∼ −1.7/ − 2.0 in both cases),10 providing addi-
tional evidence for the solution of the Kepler dichotomy. Finally, Dai et al. (2018a)
have uncovered a clear trend of increasing mutual inclination in planet pairs as a
function of decreasing orbital distance of the innermost planet (for more details, see
Sect. 3.7.6).

10 Studies based on RV multis or a combination of transiting and RV multis have also identified an
anti-correlation between orbital eccentricity and multiplicity (Limbach and Turner 2015; Zinzi and
Turrini 2017; Turrini et al. 2020; Bach-Møller and Jørgensen 2021).
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Fig. 3.45 Histograms of
normalized transit duration
ratios (Eq.3.16). The solid
histogram is the observed
distribution, the dashed
histogram is the distribution
from simulated detections
based on the best-fit model
described in (Fang and
Margot 2012). Figure
reproduced with permission
from Jean-Luc Margot

3.5.3 Architecture of Kepler ‘Multis’: Planet-to-Planet
Patterns

Several other studies of Kepler exoplanetary systems have identified additional pat-
terns in their observed architectures, particularly in relation to the intra-system vari-
ations of sizes and spacings, which are potentially very constraining for formation
and evolution models.

3.5.3.1 Size Ordering and Period Ratios

The two panels of Fig. 3.46 show Kepler multis containing three or more, four or
more planets ordered by orbital period or orbital separation of the innermost planet
as well as stellar mass (Fabrycky et al. 2014; Weiss et al. 2018b). Visually, it appears
that the largest planets are typically those with longer periods. It is also not difficult
to get the impression that generally systems appear to have rather similar sizes and
regular spacings.

Using a sample of∼ 900 planets in 365Keplermultis, Ciardi et al. (2013) studied
the relative sizes of the planetary radii for all planet pairs, finding that when at least
one planet in a pair has radius � 3 R⊕ then for ∼ 70% of the pairs the outer planet is
larger than the inner planet. This number is almost the same as the one derived when
looking at the minimum mass hierarchy in the RV sample of multis (Sect. 3.5.1.2).
For pairs with both radii below 3 R⊕ no such size ordering was recorded.

The second much discussed pattern in orbital architecture of Kepler multis is
related to the period ratio distribution. The histogram of period ratios for all pairs of
planets with radii< 4 R⊕ (Fig. 3.47) clearly shows that most of the systems are not in
or close to mean motion resonances, but but there are excesses of systems just wide
of the 3:2, 2:1, and 5:3 (and possibly 3:1) commensurabilities, and corresponding
deficits just short of these resonances (Lissauer et al. 2011b; Delisle and Laskar 2018;
Fabrycky et al. 2014; Xu and Lai 2016; Choksi and Chiang 2020). The similarity
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Fig. 3.46 Left: examples of architectures of Kepler multi-planet systems from Fabrycky et al.
(2014). Planets are represented with circles, whose size is proportional to their radius and are
colored by decreasing size within each system. The systems are ordered based on the orbital period
of the inner planet. Figure reproduced with permission from Daniel C. Fabrycky. Right: examples
of architectures of Kepler multi-planet systems with at least four transiting planets from Weiss
et al. (2018b). Planets are represented with circles, whose size is proportional to their radius. Color
indicates their equilibrium temperature. The systems are ordered based on the stellar primary mass,
which is reported on the right side. The rocky planets of the Solar System are also included for
comparison. Figure reproduced with permission from Lauren M. Weiss

with the histogram of Fig. 3.34 based on the RV sample of multis is compelling. The
minimum period ratio is also very similar, � 1.2 and � 1.26 for the Kepler and RV
multis, respectively.

3.5.3.2 The ‘Peas in a Pod’ Patterns

The visual appearance of similar sizes and regular spacings implies that sizes and
period ratios of pairs in the same systems should be correlated. Weiss et al. (2018a)
found exactly such a correlation in both parameters (Fig. 3.48). The null hypothesis



198 K. Biazzo et al.

Fig. 3.47 Period ratios P2/P1 for all pairs of sub-Neptunes with Rp < 4R⊕ (the subscript 1 denot-
ing the inner member of the pair and 2 the outer). N denotes the number of systems in a bin. Data
taken from the NASA Exoplanet Archive on August 2019. Figure adapted from Choksi and Chiang
(2020) and reproduced with permission from Nick Choksi

Fig. 3.48 Left: the radius of a planet versus the radius of the next planet out in Keplermulti-planet
systems. Right: the orbital period ratio of the outer planets versus the orbital period ratio of the
inner planets in Kepler systems with three or more planets. In both cases high Pearson correlation
coefficients correspond to a very low probability of no correlation. Figures taken from Weiss et al.
(2018b) and reproduced with permission from Lauren M. Weiss

of no correlation was tested in detail by Weiss et al. (2018b), based on a bootstrap
procedure in which stars and number of planets were preserved, but sizes and orbital
periods were randomly drawn from the observed distributions (Fig. 3.48, left-hand
panel). The correlationwas found to bemuchweaker for both parameterswith respect
to what was seen in real systems (Fig. 3.48, right-hand panel). The clear pattern of
similar sizes and regular spacings was then termed by Weiss et al. (2018b) “peas in
a pod”. Strong intra-system uniformity was also shown by Millholland et al. (2017)
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in mass-radius space for a sample of Kepler multis with mass measurements from
transit-timing variations. It is very interesting to note the close similarity of the
size correlation with the tight minimum-mass correlation plot of Fig. 3.36 for the
RV sample of low minimum-mass multis. Finally, Weiss et al. (2018b) also found
evidence for a correlation between the average planet size in an adjacent pair and the
period ratio of the pair, which also closely resembles the analogous plot (in minimum
mass vs. period ratio) of Fig. 3.36 for the RV sample, although on an overall different
scale of period ratios.

The nature of the “peas in a pod” pattern of correlations has been the subject of a
debate in the most recent literature, with evidence brought forward in support of both
its astrophysical origin or it being produced by selection effects due to observational
biases (He et al. 2019; Murchikova and Tremaine 2020; Weiss and Petigura 2020;
Zhu 2020; Jiang et al. 2020). While the jury is still out, investigations based on
state-of-the-art population synthesis models used for generating forward models of
the Kepler survey (EPOS, Mulders et al. 2018; SysSim, Hsu et al. 2018) appear to
indicate the former interpretation might be preferable (He et al. 2020; Gilbert and
Fabrycky 2020).

Finally, Kepler multis are not only regularly, but also very closely spaced. An
empirically-determined representation of the median spacing of a pair to ensure its
long-term dynamical stability is (Pu and Wu 2015):

� = 2.87 + 0.7 log

(
t

Pin

)
+ 2.4

[(
σe

RH/ain

)
+

(
σi

4RH/ain

)]
(3.17)

In the expression, t is the physical stability timescale, Pin the orbital period of the
innermost planet, RH is themutual Hill radius of a planet pair (see Eq.22 in Chap. 1) ,
ain is the semi-major axis of the innermost planet, and σe and σi are the multiplicity-
dependent dispersions of orbital eccentricities and mutual inclinations among the
planets. The spacing threshold for dynamical stability decreases from � ∼ 20 to
� ∼ 12 for n = 2 and n = 5, respectively,11 and it is rather close to the typically
observed values for Keplermultis (� ∼ 20, see, e.g., Fang and Margot 2012; Pu and
Wu 2015; Weiss et al. 2018b). One is then induced to conclude that Kepler multis
are indeed dynamically packed, and systematically close to empirical stability limits.
The major caveat in drawing this conclusion is the fact that for the overwhelming
majority of Keplermultis dynamical mass measurements are not available, therefore
the calculation of RH relies on the use of empirical mass-radius relationships.

3.5.3.3 Possible Interpretations

The eccentricity, mutual inclination and period ratio distributions for Kepler small
multi-planet systems (including those containing ultra-short-period companions),
and the ordering of and correlations between size and spacings bear key insights on

11 Delta is measured in mutual Hill radii RH
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the variety of channels for planet formation and dynamical evolution of planetary
systems. A variety of mechanisms have been invoked to reproduce the mixture of
dynamically hot and cold configurations of variable multiplicity in the Kepler sam-
ple. They all likely contribute to a higher or lesser degree to shape the details of
the distributions as a function of multiplicity. These include chaotic secular inter-
actions (Petrovich et al. 2019; Volk and Malhotra 2020), low-eccentricity migration
via planet-planet scattering (Pu and Lai 2019), interactions with an outer giant planet
(e.g., Johansen et al. 2012; Huang et al. 2017; Mustill et al. 2017; Becker and Adams
2017; Pu and Lai 2018; Poon andNelson 2020;Masuda et al. 2020, effects of primor-
dial host star obliquity and oblateness, and planetary obliquity tides (e.g., Spalding
and Batygin 2016; Li and Lai 2020; Becker et al. 2020; Millholland and Laughlin
2019; Millholland and Spalding 2020; Spalding and Millholland 2020), disk migra-
tion of (not necessarily) resonant chains that subsequently disrupt due to a variety of
mechanisms (e.g., Baruteau and Papaloizou 2013; Goldreich and Schlichting 2014;
Pu and Wu 2015; Chatterjee and Ford 2015; Izidoro et al. 2017; Lambrechts et al.
2019; Pichierri and Morbidelli 2020), or more or less in-situ formation (e.g., Hansen
and Murray 2013; Matsumoto and Kokubo 2017; Lee and Chiang 2017; Terquem
and Papaloizou 2019; MacDonald et al. 2020). Additional discussion can be found
in Chap. 1.

3.6 Eccentricity and Obliquity

Let us now further discuss the distributions of specific parameters, namely eccentric-
ity and obliquity, which can be considered optimal tracers of the dynamical temper-
ature of planetary systems.12 This concept was introduced in Sect. 3.5.2.2: exoplanet
systems with orbits that are almost circular and are well aligned with the host stars’
equatorial planes are defined as dynamically ‘cool’, whereas those that present mis-
aligned and eccentric orbits are dynamically ‘hot’ (see Fig. 3.42). The distributions
of these parameters and how they depend on stellar and planetary properties play
and important role to shed light on planet-formation mechanisms and the subsequent
evolution of planetary orbits (Winn and Fabrycky 2015).

3.6.1 Eccentricities of Giant Planets

The analysis of the eccentricity as a function of the orbital period or the semi-
major axis is one of the first diagnostics of the statistical properties of the exoplanet
population, which has been utilized since the early days of exoplanetary science (see
Fig. 3.49, where the planets of the Solar System are in the lower-right quadrant of

12 This section is based on the lecture performed in May 2019 by A. Howard, who thanked Josh
Winn for many slides that he presented during his lecture.
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Fig. 3.49 Diagram of the orbital eccentricity versus the semi-major axis of known exoplanets. The
planets are represented by circles, whose size is proportional to their mass, mp, or mp sin i . The
error bars have been suppressed for clarity. Color indicates the effective temperature of their parent
stars. Data were taken from the NASA Exoplanet Archive in September 2020. The positions of the
Solar-system planets are also reported by the initials of their names. Figure inspired by a similar
plot from J. Winn

this semi-major axis – eccentricity diagram). All giant planets in the Solar System
have very low-eccentricity orbits, and are found at at wider orbital separations than
the terrestrial planets. We would expect that to be the case for exoplanetary systems
as well, because, in order to become a giant planet, a core of solid material has to
grow to a certain critical size, which is roughly ten times the mass of the Earth.
At that critical size, the surface gravity of the planet becomes sufficient to start
accreting hydrogen and helium. As we learned from Chap. 1, this phenomenon can
only happen far away from the Sun, beyond the so-called snow line, because there
are a lot more solid materials there (especially volatile chemical compounds with
freezing points > 100K, such as water, ammonia, methane, etc.) that aggregate
to form large-core protoplanets, which subsequently become giant planets. Indeed,
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the initial expectation from theory is that the orbits of these giant planets should be
roughly circular, because the effective frictional force,which exists for planets that are
orbitingwithin amassive disk of gas and dust, would produce an effective damping of
any primordial eccentricity. Instead, examining Fig. 3.49, the observational evidence
tells a different story:

• first, there aremanygiant planets on very eccentric orbits (for example,HD80606b
has e ≈ 0.93; Naef et al. 2001). In our Solar system, these kind of eccentricities
are typically associated with comets;

• second and even more surprising, there are giant planets existing in abundance at
short orbital separations much inside the snow line, as close as ≈ 0.01 − 0.1au.

We already saw (Chap. 1 and Sect. 3.3) that these giant planets are known as hot
and warm Jupiters and likely formed in the outer regions of the protoplanetary disk
(where Jupiter did in the Solar system), but then through some processes they have
migrated from their initial locations to where we see them today.

As already discussed in this book (seeChap. 1, Sect. 2.4 and 3.2; Chap. 2, Sect. 3.2;
see also Sect. 3.5 of this Chapter), a number of physical mechanisms have been
proposed that are capable of evolving significantly the primordial orbit of a giant
planet, shrinking it and/or exciting its eccentricity. The two main ones are:

• early interactions between a giant planet and the protoplanetary disk in which it
formed. These can lead to the loss of energy and angular momentum from this
planet to the disk, resulting in the planet spiraling towards the central star, turning
it into a hot Jupiter (Lin et al. 1996; Ward 1997);

• planet-planet scattering in multiple systems (e.g., Rasio and Ford 1996; see also
Davies et al. 2014 and references therein). Gravitational interactions between plan-
ets in a system can lead to a chaotic evolution of orbital elements that can cause
planet orbits to cross. When that happens, giant planets rarely collide, but instead
gravitationally scatter, resulting in ejection of some of the companions while oth-
ers remain on high-eccentricity orbits. Through tidal dissipation mechanisms such
eccentric orbits are then shrunk and circularized.13

To understand which of the two models best explains the observed distributions, we
can examine the orientation of the planetary orbits. If planet-planet scattering is the
process that produces hot Jupiters, the same scattering encounters will randomize
to some degree the orbital planes, whereas disc-planet interactions keep the system
coplanar throughout the whole migration process and we will see flat architectures.
These expectations are well supported by numerical simulations. For example:

• Marzari and Nelson (2009) ran hydrodynamic simulations to investigate the
dynamical evolution of a Jupiter-mass planet injected into an orbit highly inclined

13 Similar to this case is the Kozai-migration mechanism, in which a planetary system is dynami-
cally perturbed by a distant third body, which could be a companion star or a massive planet (see, for
example, Wu and Murray 2003). Kozai oscillations can produce a very broad range of final orienta-
tions, primarily eccentric, misaligned and even polar and retrograde orbits are possible (Fabrycky
and Tremaine 2007).
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Fig. 3.50 Simulation of the
evolution of a giant planet
initially in an orbit inclined
with respect to a
circumstellar disk. The
planet started on an orbit
with semi-major axis equal
to 4au, eccentricity 0.4, and
inclination 20◦. The
exchange of angular
momentum between the disk
and the planet causes these
three planetary orbital
parameters to evolve
significantly over the
≈ 1000year timescale of the
simulation. Figure adapted
from Marzari and Nelson
(2009)

with respect to its protoplanetary disk. They found that, independently of the initial
values of the semi-major axis and eccentricity of the planet, the eccentricity and
inclination of its orbit are rapidly damped on a timescale of the order of 103 year,
see Fig. 3.50.

• Chatterjee et al. (2008) performed simulations of gravitational planet-planet scat-
tering, in systems containing three giant planets, orbiting solar-mass stars, on ini-
tially near-circular orbits and no gas disk. They found that in all of these systems,
at least one planet is eventually ejected before reaching a stable configuration. In
20% of the cases, two planets are lost through ejections or collisions, leaving the
system with only one giant planet, thus predicting the existence of many systems
with a single eccentric giant planet. The exact distribution of eccentricities for
the final remaining planets in stable orbits, after a secular evolution (≈ 109 year),
depends on the choice and range of the initial mass distribution but is in general
similar to what we observe in reality. The authors also found that it is possible to
scatter some planets into orbits with low perihelion distances and that the inclina-
tion distribution of such planets could be significantly broadened. Therefore, these
scattering events tend to amplify any initially small misalignments.

Indeed, planet–planet scattering processes can reproduce much of the observed dis-
tribution of exoplanet eccentricities for a wide range of initial conditions (Ford et al.
2008; Jurić and Tremaine 2008; Nagasawa et al. 2008; Matsumura et al. 2010; Ray-
mond et al. 2010; Dawson andMurray-Clay 2013; Carrera et al. 2019). Furthermore,
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Fig. 3.51 Diagram of the
orbital eccentricity versus
orbital period of known
exoplanets. The error bars
have been suppressed for
clarity. Most of the
high-eccentric, single planets
are found around
high-metallicity
([Fe/H] > 0) stars, as noted
by Buchhave et al. (2018).
Data taken from the NASA
Exoplanet Archive on
September 2020

the initial metal content of protoplanetary disks also likely plays a role in the structure
and architecture of planetary systems: high-metallicity systems are in fact expected
to contain multiple gas giants that can perturb each other gravitationally, leading to
enhanced planet–planet scattering rates. The eccentricity of cold gas giants should,
therefore, increase with host-star metallicity and this is also observed (e.g., Bryan
et al. 2016; Buchhave et al. 2018; see Fig. 3.51).

We would also expect that whatever mechanism perturbs the eccentricities of
giant planets and/or produces hot Jupiters may also change their orbit orientation in
space. Therefore, the angle between a planet’s orbital axis and its host star’s spin,
which is also known as spin-orbit obliquity or simply orbital obliquity,ψ , represents
a key parameter. Determiningψ for a statistically significant sample of exoplanetary
systems, preferably spanning a range of precise parent-star ages, can allow us to
figure out what the primary physical phenomenon related to the migration process of
a giant planet is. We discuss in Sect. 3.6.3 the inferences obtained based on present-
day statistics of ψ measurements.

3.6.2 Eccentricities of Super Earths and Sub-Neptunes

The Kepler space telescope (Borucki et al. 2010), with its exquisitely precise pho-
tometry, has given an enormous contribution to the study of planets with sizes smaller
than that of our Jupiter. The horn of plenty of small exoplanets unveiled by Kepler
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has allowed theoreticians to produce robust statistical inferences on the abundances
and properties of planetary systems. As we have seen in Sect. 3.3.2 and Sect. 3.4, the
analysis of Kepler data has in particular shown how the most common planets in the
Galaxy are sub-Neptunes and super-Earths.

As already discussed in Sect. 3.5.2.3, the eccentricity distribution of small-size
planets in the Kepler field can be studied based on transit duration statistics (see
Eq.3.15). Using this technique, Xie et al. (2016) derived the eccentricity distributions
of roughly 700 reliable Kepler candidates (Mullally et al. 2015), finding an interest-
ing dichotomy. Single transiting planets have a large mean eccentricity (ē ≈ 0.3),
whereas planets in multiple systems are on nearly circular orbits (mean eccentricity
ē < 0.07. Using a larger sample of validated Kepler planets (Coughlin et al. 2017)
and benefiting fromGaia parallaxes to derive high-precision measurements of stellar
radii (Gaia Collaboration 2016a, b, 2018), Mills et al. (2019) performed a new statis-
tical study of the eccentricity distribution of small planets, confirming that systems
with only a single transiting planet have a higher mean eccentricity (ē ≈ 0.2), com-
pared to those with multiple transiting planets (ē ≈ 0.05). Mills et al. (2019) also
found evidence that Kepler single planets with high eccentricity preferentially orbit
around high-metallicity ([Fe/H] > 0) stars, extending to the regime of Super Earths
and sub-Neptunes the same inference already gathered by earlier studies focused on
gas giants (Dawson and Murray-Clay 2013; Buchhave et al. 2018).

The eccentricity dichotomy can be possibly understood by considering that high-
metallicity environments favor the formation of giant planets. Dynamical interactions
between these giant planets and inner systems can excite the eccentricities and, at the
same time, can decrease the apparent multiplicity of close-in planets, which are also
subjected to mutual inclination excitation (e.g., Mustill et al. 2017; Pu and Lai 2018;
Masuda et al. 2020; Poon and Nelson 2020, and references therein). On the other
hand, close-in multi-planet systems which are not dynamically heated by cold gas
giants may not reach sufficiently high eccentricities and mutual inclinations through
self-excitation mechanisms (e.g., dynamical instabilities) during the late stages of
formation (e.g., Becker and Adams 2016; Poon et al. 2020).

3.6.3 Measuring the Orbital Obliquity

As mentioned in Sect. 3.6.1, the relative role of the two main mechanisms that can
act to shrink the orbits of giant planets, planet-planet scattering and disk-planet
interactions, can be probed using measurements of stellar obliquities, as proxies of
the orbital (mis)alignment of the planets. The reader may wonder what hope do we
have of measuring the obliquity ψ of the parent stars and therefore the orientations
of the planets since we cannot resolve the star and the planet and directly see in
which way the star is rotating and in which way the planet is orbiting. The class of
transiting planets comes crucially to our aid in this case.
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Fig. 3.52 The Rossiter-McLaughlin effect produced by two different transiting hot Jupiters, HAT-
P-22b and WASP-60b. The phase-folded radial-velocity data (black points with error bars) were
measured with the high-resolution spectrograph HARPS-N during planetary-transit events; super-
imposed are the best-fitting radial-velocity models (gray curves) (Mancini et al. 2018). The two
planets have roughly the same impact parameter, but very different transit trajectories, which high-
light the dependence of the Rossiter-McLaughlin radial velocity signature on λ

3.6.3.1 The Rossiter-McLaughlin Effect

The spin-orbit obliquity, ψ , which we learned is the angle between a planet’s orbital
axis and its host star’s spin, is, unfortunately, not easy to determine. However, its sky
projection, λ, is a quantity that is commonly measured for stars hosting transiting
exoplanets through the observation of theRossiter-McLaughlin (RML) effect (awell-
known phenomenon in the context of eclipsing-binary stars), by using high-precision
RV instruments. Usually, we see a transit as the apparent drop in brightness of the
parent star as the planet gets in front of it (see Sect. 3.2.2.1), but if we monitor the
transit event with a high-resolution spectrograph, which is sensitive to red or blue
shifts of a hundred parts per million or better, then the RV time-series during transit
would look similar to those in the top panels of Fig. 3.52.
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Fig. 3.53 A sketch of the Rossiter-McLaughlin effect, which can be measured during a planetary-
transit event. During its rotation around the parent star, a transiting planet will block out more of the
star’s rotationally blue-shifted light immediately after the transit ingress (panel a) and more of its
red-shifted light before the complete egress (panel c). This phenomenon changes the radial velocity
profile of the parent star according to the planet’s orbital phase. Figure inspired by a similar figure
from Perryman (2018)

The distortions in the RV measurements on top of the Doppler shifts induced by
the stellar orbital motion (see Sect. 3.2.1) occur because the parent star is rotating and
so the half of the star approaching looks slightly blue-shifted, whereas the receding
half looks slightly red-shifted.While transiting, a planet blocks first a small portion of
the stellar surface approaching us, and then a fraction of the receding one. The stellar
spectrum therefore becomes first anomalously red-shifted and then blue-shifted. This
anomaly is nullwhen the planet crosses the symmetry axis of the star.When the transit
is over the effect disappears (see Fig. 3.53). By tracking the Doppler shift of the star
throughout a complete planetary-transit event and by accurately measuring the shape
of the RML effect, we can measure the projected stellar obliquity. If we are facing a
system for which the planet’s orbital plane is well aligned with the equatorial plane
of the host star, i.e. a systemwith a low obliquity, we will measure a redshift and then
a blueshift as in the top left panel of Fig. 3.52. However, in case of strong spin-orbit
misalignment the planet could be spending, for example, all of its time covering
the blue-shifted surface of the star and then we would only observe an anomalous
redshift as in the case shown in the top right-hand panel of Fig. 3.52. Several cases of
even very high-obliquity configurations have been found, including retrograde orbits
(e.g., Winn et al. 2009; Narita et al. 2009).

In order to obtain an accurate modeling of the RM effect of a given planetary
system and, therefore, a correct estimation of λ, it is crucial to obtain a stable out-
of-transit baseline. This means that, similar to the case of a photometric transit light
curve, one has to start observing the target at least ∼ 60min before ingress and
∼ 60min after egress.

The expected RV amplitude of the RML effect is approximately equal to (Winn
2010)
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Rp/R�
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where v sin i� is the projected rotational velocity of the parent star and b is the impact
parameter, i.e. the sky-projected distance at the conjunction between the planet and
the star (b = 0 for a central transit). This means that giant planets orbiting around
rapidly rotating stars are the best objects to observe to get precise measurements of
λ, exploiting the RML effect.

3.6.3.2 Doppler Tomography

The detection of the RML effect in transiting-planetary systems as an anomalous
Doppler shift of the stellar atmospheric lines is routinely obtained as far as stellar
rotation is not the dominant line broadening mechanism. However, if the parent star
rotates quickly (� 10kms−1), there will be a distortion of the stellar line profiles that
change as the planet blocks parts of the rotating stellar surface during the transit. In
this case, as noted by Collier Cameron et al. (2010a), the parameters derived from
modeling the RML effect can be severely affected by systematic errors, which arise
from this time-variable asymmetry of the spectral lines. By monitoring a complete
planetary transit (including the out-of-transit baseline) with high-cadence and high-
resolution spectroscopy, we can detect such a distortion, also known as ‘Doppler
shadow’, moving across the line profiles. By mapping these line profile variations as
a function of stellar rotational velocity and orbital phase, the Doppler tomography
technique allows isolating and tracking the component of the starlight blocked by
a planet as it transits the host star, which can be self-consistently expressed as a
function of the projected spin-orbit misalignment angle.

In practice, the method of Doppler tomography entails subtracting the mean, out-
of-transit, line shape (i.e. the representation of the unobscured starlight) from all the
in-transit spectra, so that any dark inhomogeneity on the stellar surface (correspond-
ing to the missing starlight blocked by the transiting planet) will pop up as a positive
bump. In this way, we will see the bump appearing at ingress, moving along the
transit chord and disappearing at egress. As a result, in this mean line profile residual
map we will detect a trail that corresponds to the Doppler shadow of the transiting
planet (see Fig. 3.54). We can, then, model the shadow with a Gaussian having a
width of (Rp/R�)v sin i� and an area of 1 − f (t), where f (t) is the flux blocked by
the planet, centered on vp(t). The latter quantity is the projected rotational velocity
for the region of the star occulted by the planet (Cegla et al. 2016; Zhou et al. 2016),
which depends on v sin i� and λ.

Doppler imaging techniques have been effectively applied to measure the spin–
orbit angles of planetary systems with hot, fast-rotating primaries (e.g., Collier
Cameron et al. 2010a, b; Miller et al. 2010; Brown et al. 2012; Gandolfi et al.
2012; Hartman et al. 2015; Gaudi et al. 2017). In the case of ultra-hot Jupiters
(Teq � 2000K), the atmospheric RML effect can be detected (Borsa et al. 2019). It
corresponds to a deviation of the in-transit RVs from the classical RML effect that
occurs when the atmosphere of the planet is intercepted by the mask used to create
the stellar cross-correlation functions or mean line profile. The atmospheric trace
will appear in the tomographic map of the line profile residuals after removal of
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Fig. 3.54 The Doppler tomographic transit of the brown dwarf HATS-70b, as measured by Zhou
et al. (2019a) with the two cameras of the MIKE instrument on the 6.5m Magellan Clay telescope.
HATS-70b successively blocks parts of the rotating stellar surface, inducing a ‘Doppler shadow’
in the stellar line profile. These line profile variations are mapped as a function of stellar rotational
velocity and orbital phase. The vertical lines mark the v sin i� of the star, while the horizontal lines
mark the timings of ingress and egress. The planetary transit signal is the dark trail crossing from
bottom left to top right. The top two panels show the transit as seen with the blue and red cameras.
The middle panel shows the combined data set. The bottom two panels show the best-fit model and
the residuals after model subtraction. The figure is taken from Zhou et al. (2019a) and reproduced
with permission from George Zhou
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Fig. 3.55 Atmospheric RML effect of the ultra-hot-Jupiter KELT-9b. Left: the phase-folded radial-
velocity data (points with error bars) were measured with the high-resolution spectrograph HARPS-
N during four planetary-transit events of KELT-9b (the RVs of the four transits were averaged in
bins of 0.005 in phase). Right: The Doppler tomographic map of the transit of KELT-9b as in
Fig. 3.54. The line profile was averaged over four transit observations, with the horizontal white
lines indicating the transit ingress and egress. Both the Doppler shadow of the planet (red) and the
planetary atmospheric trace (blue) are clearly visible. The figure is taken from Borsa et al. (2019)
and reproduced with permission © ESO

planetary Doppler shadow, see Fig. 3.55. By studying the shape of this deviation one
can measure the extension of the planetary atmosphere that correlates with the stellar
mask (Borsa et al. 2021; Rainer et al. 2021). The method is applicable only in the
case of extremely hot planetary atmospheres, which show a chemical composition
similar to that of late-type stars (in particular due to the presence of neutral or ionized
iron).

Finally, if the star is a very fast rotator and the mass of the secondary is non-
negligible (i.e. it is a brown dwarf or low-mass star), more accurate measurements of
λ can be obtained by performing global modeling of the Doppler tomographic data,
the RVmeasurements, the photometric transit light curves and the gravity-darkening
effect (e.g., Zhou et al. 2019a, b).

3.6.3.3 Star-Spot Occultations

There is another fascinating technique that we can use tomeasure the spin-orbit angle
of a planetary system, which is based on a simultaneous observation of a planetary
transit and a star-spot crossing event. Instead of being spectroscopic, this technique
is purely photometric and consists inmeasuring the brightness variations of an active,
spotted star14 during a transit of its planet. If there is a single star spot or a star-spot
complex and the transiting planet occults it, then the transit depth will temporarily
decrease as the star will appear brighter (star spots have lower effective temperature

14 Just like the Sun can present sunspots, also the other stars that we observe in the Galaxy can have
star spots on their photosphere.
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Fig. 3.56 Top panels: The light curves of two consecutive transits of the hot Jupiter WASP-19b,
which has an orbital period of ≈ 0.8days, observed with the 3.6m New Technology Telescope
(Tregloan-Reed et al. 2013). Bottom panels: Representations of the WASP-19 stellar disc, star-spot
positions, and transit chords for the two transit events with star-spot crossings. The gray-scale of
each star-spot is related to its contrast. The two horizontal lines on each panel represent the upper
and lower parts of the planet pass. The authors estimated λ = 1.0 ± 1.2 deg. Data and bottom
figures kindly provided by Jeremy Tregloan-Reed

than the surrounding photosphere). A small bump will then be recorded in the transit
light curve, similar to those in Fig. 3.56. Now, if the planetary system is well aligned,
if the star has a plausible rotation period of roughly a month and the planet has,
instead, an orbital period of few days, the next time the planet transits in front of its
star, we will see that the star spot has only moved slightly across the stellar surface,
so that we will notice the same anomaly but occurring at a later transit phase. The
phase shift of the anomalous feature will continue until the spots disappear from the
visible hemisphere due to rotation. However, if the spin-orbit angle is significant,
the planet will never encounter again the same star spot at the subsequent transit, we
will no longer see the anomaly and we can put a lower limit on the stellar obliquity
(e.g., Dai and Winn 2017).



212 K. Biazzo et al.

In general, the occultation of the same star-spot complex in two or more transit
events indicates that there is good spin-orbit alignment, allowing the measurement
of λwith very good precision (e.g., Mancini et al. 2017). On the other hand, if in two
consecutive transits we observed two different star spots, their latitude difference is
completely degenerate with λ. Discriminating between the two cases is not trivial.
Crucial parameters that one has to take into account are the rotational period of the
host star, the flux modulation produced by the rotation of the starspots and the differ-
ence in position and time among the starspot-crossing events, which should be pre-
ciselymodeledwith sophisticated procedures (e.g., Désert et al. 2011; Sanchis-Ojeda
et al. 2011; Sanchis-Ojeda and Winn 2011; Sanchis-Ojeda et al. 2013b; Tregloan-
Reed et al. 2013;Mazeh et al. 2014; Tregloan-Reed et al. 2015; Juvan et al. 2018). The
projected obliquity can also be efficiently determined by a statistical method, corre-
lating the starspot anomalies observed in a sequence of transits (Dai et al. 2018b). In
this case, a large number of consecutive transits are required, restricting this method
only to long time-series photometric data collected with space missions, like Kepler
and K2. With this method, (Dai et al. 2018b) determined the obliquities for 10 stars
with hot Jupiters studying a sample of a bit more than 60 stars.

3.6.3.4 Other Methods

Another statistical approach for determining the spin-orbit alignment is the so-called
v sin i�method, which is based on searching anomalously low values of the projected
rotation velocity, v sin i�, in a large sample of stars hosting transiting planets. Since
low obliquity for a transiting-planet system implies that sin i ≈ sin i� ≈ 1, a low
value of v sin i� can be the sign of high-obliquity systems (Schlaufman 2010; Winn
et al. 2017a).

Other methods for measuring the obliquity have not found many applications so
far, because they require specific situations, like years of ultra-accurate photometry
with ≈ 1 minute cadence for studying the stellar pulsation modes (the asteroseismic
method; Gizon and Solanki 2003), or rapidly-rotating stars and high obliquity (the
gravity-darkening method; Barnes 2009), or very bright and rapidly rotating stars
(the interferometric method; Kraus et al. 2020).

3.6.4 Obliquity of Transiting Planetary Systems

Having determined λ, we can also estimate the real obliquity, ψ . For this purpose,
we need to know the planetary orbital inclination, i , and the stellar-spin inclination
angle, i�15 Then, by using the following formula (Winn et al. 2007)

15 Frequency analysis of the time-series light curves and the study of the oscillation modes induced
by stellar rotation (Asteroseismology) can be used for determining i�.
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cosψ = cos i� cos i + sin i� sin i cos λ , (3.19)

we can get the true orbital obliquity of a given transiting planetary system. To-date
(September 2020), λ has been measured for roughly 160 transiting exoplanets, while
ψ has been constrained for only roughly 30 ones.16 Except for the measurements of
theRMLeffect of fewbrowndwarfs, Neptune-, superEarth-size planets and, recently,
three rocky planets in the TRAPPIST-1 system (Hirano et al. 2020), the degree of
spin-orbit alignment has been mostly determined for hot Jupiters, representing the
only class for which we have a good statistical sample.

What this large collection of λ measurements for hot Jupiters is telling us is still a
matter of debate, as reviewed by (Triaud 2018). No convincing patterns or trends have
emerged from plotting the projected obliquity versus other parameters such as, for
example, planetary mass and radius, orbital separation, or stellar age. Interestingly,
however, early investigations based on smaller samples ofλmeasurements tentatively
identified two populations of more or less aligned hot Jupiters based on the effective
temperature Teff of their parent stars, the dividing line being related to the Kraft break
(Kraft 1967) and falling somewhere between 6090 and 6300K (Winn et al. 2010;
Albrecht et al. 2012; Dawson 2014). This is marked with a gray zone in Fig. 3.57,
where the absolute values of λ of hot Jupiters (0.1MJup < Mp < 13MJup) have been
plotted versus Teff .

On the left side of this plot we find planets orbiting stars with mostly convective
outer envelopes, whereas on the right side host stars have mostly radiative outer
envelopes. Therefore, the two populations of planet hosts are distinctively different
in terms of e.g., strength of the magnetic field, rotation rate and, especially, the tidal
dissipation rate (a star’s ability to convert tidal oscillations into heat). Mostly convec-
tive stars are cooler and supposed to have much more rapid tidal dissipation because
the convective cells are producing the turbulent cascades that lead to energy/heat
loss, whereas the radiative stars are thought to have much weaker tidal dissipation.
Therefore, hot Jupiters hosted by relatively cool stars (Teff < 6100K), should be
much more aligned than those hosted by hotter stars because in the former case
tides effectively damp any possible obliquity on timescales much shorter than those
in connection to the planet’s orbital decay (Lai 2012; Valsecchi and Rasio 2014).
However, although high-obliquity hot Jupiters were found regularly above the Kraft
break, many exceptions challenge this theory, as we can see from Fig. 3.57.

It was also noted that those planetary systems, in which the hot Jupiter is massive
(Mp > 3MJup) tend to have lower spin-orbit angles, because the parent star is much
more affected by planet’s tidal forces (Hébrard et al. 2011). We plot in Fig. 3.58 the
measured sky-projected obliquities of all known systems hosting 0.1MJup < Mp <

80MJup companions, including brown dwarfs such as WASP-30b, KELT-1b and
CoRoT-3b, as a function of scaled orbital distance from the host star a/R� < 12.5.
The larger circles in this plot, which are associated with companions with larger

16 Data taken from TEPC at:http://www.astro.keele.ac.uk/jkt/tepcat/rossi
ter.html (Southworth 2011).
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Fig. 3.57 Absolute values of the sky projected orbital obliquity angles of close-in giant planets as
a function of the host star’s effective temperature. The planets are represented by circles, whose
size is proportional to their mass. The error bars have been suppressed for clarity. Color indicates
their equilibrium temperature. The gray zone should discriminate two different populations of hot
Jupiters, according to several authors (e.g., Winn et al. 2010; Albrecht et al. 2012). Data were taken
from TEPCat in September 2020

masses, show that most of these systems present a good alignment (Zhou et al.
2019a).

Using the v sin i method (see Sect. 3.6.3.4),Winn et al. (2017a),Muñoz and Perets
(2018) and Louden et al. (2021) selected samples of well-studied Kepler planet host-
ing stars with reliably measured photometric periods and projected rotation veloci-
ties. The aim was to investigate in a statistical sense the obliquities of Kepler stars
that, as we know (cf. Sect 3.6.2), host planets spanning a wide range of sizes, most
of which are smaller than Neptune. The above studies helped drawing a picture in
which Kepler small-size planet hosts generally have higher values of projected rota-
tional velocities, and therefore lowobliquities, than control samples of field stars. The
result is thus a broad indication of spin-orbit alignment for Kepler planetary systems,
except for those orbiting hotter, late-F-type stars (Teff � 6250 K), that exhibit com-
patible to random orientations and therefore typically high obliquities (see Fig. 3.59).
The tentatively identified trend of increasing λ (or ψ) with Teff for hot Jupiters thus
appears to extend to other types of planets.

Important as the statistical inferences based on the v sin i method may be, it
would be highly desirable to expand the domain of true obliquity measurements for
other types of planets besides giant planets and brown dwarfs. Observations of the
RML effect for Neptunes and Super Earths are especially challenging given that
the amplitudes of the RV anomalies can be typically on the order of a few ms−1,
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Fig. 3.58 Sky projected orbital obliquity of massive planets and brown dwarfs (0.1MJup < Mp <

30MJup) as a function of their scaled orbital distance from the host star. The planets are represented
by circles, whose size is proportional to their mass. The error bars have been suppressed for clarity.
Color indicates the effective temperature of their parent stars. Data were taken from TEPCat in
September 2020. Figure inspired by similar plots from J. Winn; see also Zhou et al. (2019a)

Fig. 3.59 Measured sky-projected rotation velocity versus effective temperatures for a sample of
Kepler stars (blue points) with Teff between 5950 and 6550K. Orange points represent a control
sample of stars with matching spectroscopic properties and random orientations. Figure taken from
Louden et al. (2021) and reproduced with permission from Emma M. Louden
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or smaller (see Eq.3.18), unless the primary is a fast rotator. A particular focus has
been devoted recently to obliquity measurements for transiting systems at young
ages (e.g., DSTucAb: Zhou et al. 2020; K2-25b: Stefansson et al. 2020; AUMicb:
Addison et al. 2020; TOI-1726c: Dai et al. 2020), as in this case dynamical masses
are very difficult to determine due to the very high levels of activity and fast rotation
of the primaries, therefore detection of the RML effect also corresponds to a direct
planet confirmation. So far, these systems all appear well aligned, but the regime of
small-number statistics still prevents any clear conclusions to be drawn.

The emerging picture is that in the case of giant planets thewide range ofmeasured
obliquity values implies that dynamical processes such as planet-planet scattering and
secular perturbations are responsible for tilting their orbits. The situation for smaller
planets is less clear, as obliquities might be excited or damped based on a num-
ber of possible mechanisms, either environmental in nature (originally misaligned
protoplanetary disks, dynamical interactions with outer giant planets or stellar com-
panions; e.g. Bate et al. 2010; Spalding and Batygin 2015; Anderson and Lai 2018;
Takaishi et al. 2020), or star-specific (stochasticity of internal gravity waves in hotter
stars; e.g. Rogers et al. 2012).

3.7 Ultra-Short Period Planets

3.7.1 Introduction

One of the most intriguing findings in the field of exoplanetary science was the
discovery of small planets with ultra-short orbital periods, which are operationally
defined as having P � 1 day. A key step forward from space-based surveys came
in 2009 during the CoRoT mission, when Corot-7b was announced, a small (∼
1.5 − 1.6 R⊕) transiting planet with a very short period of 0.85 days (Léger et al.
2009). Two years later, the two super-Earth planets Kepler-10b and 55Cnce were
found with periods smaller than 0.8 days (Batalha et al. 2011; Winn et al. 2011).
Later on, many other surveys, both in space and from the ground, continued finding
new very short-period planets. For instance, by early 2021, 98 giant planets (R >

8R⊕) had been discovered with periods between 2 and 3 days, 65 with periods
between1 and2, and 8with periods shorter than one day (namely,NGTS-10b,WASP-
19b, WASP-43b, HATS-18b, NGTS-6b, WASP-103b, KELT-16b, HIP65Ab; see
exoplanetarchive.ipac.caltech.edu). The Kepler spacecraft has unveiled the presence
of over 100 ultra-short period (USP) small planets with Rp � 2 R⊕. It is clear that,
at least for solar-type stars, super Earths with periods shorter than one day occur as
frequently as hot Jupiters with periods of ∼ 1-10days and that their discovery was
previously hampered mainly because of their small signals.

The study of short-period planets is important for many reasons. They are so
close to their host stars that the geometric probability for transits can be as large as
40%. Moreover, the expected surface temperatures of USP planets can reach 2000 −
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3000K, allowing the detection of thermal emission from the planetary surface (e.g.,
Sanchis-Ojeda et al. 2013a), and the induced RV signals can be as high as a few
m/s, allowing the planet masses to be measured even for moderately faint stars
(Howard et al. 2013; Pepe et al. 2013). Therefore, this class of objects is important
to understand the formation and evolution of short-period planets in general, but
also to study star-planet interactions, atmospheric erosion, photoevaporation, and
other processes arising from strong irradiation and tidal forces (Winn et al. 2018,
and references therein).

3.7.2 The Case of Kepler-78b and the USP Planets

One object that emerged from the 4-year Kepler survey of about 200,000 stars was
the Earth-sized planet Kepler-78b (Sanchis-Ojeda et al. 2013a). This planet, with an
orbital period of 8.5hours, is important because is one of the very smallest planets
for which both mass and radius have been measured to better than 20% precision
(Howard et al. 2013; Pepe et al. 2013). Based on spectroscopicmonitoring performed
with HIRES@Keck, Howard et al. (2013) reported a radius of 1.20 ± 0.09 R⊕ and a
mass of 1.69 ± 0.41M⊕, implying a planet’s mean density of 5.3 ± 1.8 g/cm3. Sim-
ilar findings were also found by Pepe et al. (2013) from independent measurements
using the HARPS-N@TNG spectrograph. All these results are similar to the Earth
values, suggesting forKepler-78b a rock/iron composition and negligible atmosphere
(see Fig. 3.60).

Howard et al. (2013) explored some possibilities for the interior structure of
Kepler-78b using a simplified two-component model (Fortney et al. 2007) consist-
ing of an iron core surrounded by a silicate mantle, which is a model reproducing
correctly the masses of Earth and Venus. Applied to Kepler-78b, the model gives
an iron fraction of ∼ 20%, similar to that of the Earth and Venus and smaller than
that of Mercury. Moreover, with a star-planet separation of 0.01au, the dayside of
Kepler-78b is heated to temperatures of 2300-3100K, therefore any gaseous atmo-
sphere around the planet would probably have been lost due to photoevaporation by
intense starlight. Kepler-78b represents a ‘prototype’ for the class of USP planets
(the interested reader can find additional details in the recent review by Winn et al.
(2018) on Kepler-78 and the ultra-short period planets in general.)

3.7.3 The 1-Day Cutoff and Planet Occurrence

The boundary at one day for the orbital periods of USP planets is an arbitrary choice,
mainly due to the fact that such Porb < 1day regime was previously unexplored.
Therefore, there is no sharp astrophysical distinction between the USP planets with
periods less than one day and the short-period planets with periods of 1–10days.
Following the reasoning of Winn et al. (2018), it is possible to verify that the angular
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Fig. 3.60 The planet Kepler-78b (open square) placed on a planetary-mass diagram. Earth and
Venus are represented by filled circles, while the other extrasolar planets with well characterized
mass and radius are plotted as open circles. Model mass-radius relationships for idealized planets
consisting of 100% iron, rock (Mg2SiO4), and pure water are shown as dotted, dot-dashed, and
dot-dot-dot dashed lines, respectively (Seager et al. 2007; Fortney et al. 2007). Solid and dashed
lines denote Earth-like composition (67% rock, 33% iron) and Mercury-like composition (40%
rock, 60% iron). Exoplanet masses and radii (without restrictions on uncertainties) were taken from
the Exoplanet Orbit Database (Wright et al. 2011; September 2020). Data for Kepler-78 were taken
from (Howard et al. 2013). Figure inspired by a similar plot by Howard et al. (2013)

diameter of a main-sequence star in the sky of the USP planet is around fifty times
wider than the Sun in the sky of the Earth. This means that tidal interactions lead
to relatively rapid orbital and spin evolution. Therefore, when there is a USP planet
around a main-sequence star it is reasonable to assume that the planet has a circular
orbit and is tidally locked (with a permanent dayside and nightside). However, the
orbit of an Earth-like USP planet does not have enough angular momentum to spin
up the star and achieve a stable double-synchronous state, leading to its spiraling
towards the star (see, e.g., Patra et al. 2017). Moreover, a one-day planet around a
solar-like star intercepts around 2500 times the flux of the Sun impinging on the
Earth and should be bathed in strong UV and X-ray radiation. If all incident energy
is re-radiated locally, the planet’s surface can easily reach temperatures as high as
� 3000K (as in fact determined for Kepler-78b). This would lead to a complete loss
of any hydrogen-helium atmospheric envelope (Owen andWu 2016) and the melting
of silicates and iron, resulting in the so-called “lava worlds” or “hot Earths” (Léger
et al. 2011; Rouan et al. 2011).
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Fig. 3.61 Occurrence rates of sub-Neptunes orbiting FGKM dwarfs (Fressin et al. 2013; Dressing
and Charbonneau 2015). The Pbreak at ∼10days is shown as vertical dashed line. Short-period
planets at P < Pbreak appear distributed according to a P1.4−1.5 power law (dotted lines). USP
planets at P < 1days using data from Sanchis-Ojeda et al. (2014) are shown as open squares.
Points without arrows correspond to sub-Neptunes larger than 0.5 R⊕ for M-dwarf hosts, and larger
than 0.8 R⊕ for FGK stars. Points with arrows represent sub-Neptunes larger than 1 R⊕ (M dwarfs)
and larger than 1.25 R⊕ (FGK dwarfs). Figure adapted from Lee and Chiang (2017)

From Kepler data, Sanchis-Ojeda et al. (2014) found that the occurrence rate of
USP planets shows a strong dependence on the host star’s mass. They measured an
occurrence rate in the range ∼ 1.10% and ∼ 0.83% for M and K dwarfs, respec-
tively, and ∼ 0.51% and ∼ 0.15% for G and F dwarfs, respectively. This represents
the evidence that cooler stars aremore likely to host USP planets. Occurrence rates of
sub-Neptunes (R < R⊕) orbiting FGKM dwarfs as obtained by the Kepler mission
in combination with RV surveys are shown in Fig. 3.61 (Fressin et al. 2013; Dressing
and Charbonneau 2015), where USP planets around GK stars are marked with open
squares (Sanchis-Ojeda et al. 2014). At periods P > 100days sub-Neptunes appear
to be evenly distributed, while at shorter periods they are less common. The occur-
rence rate as a function of orbital period follows a broken power law, with a break
at Pbreak ∼ 10days (e.g., Youdin 2011; Mulders et al. 2015a). Within ∼ 10days,
the occurrence rate scales approximately as P1.4−1.5 depending on the spectral type,
while beyond ∼ 10days the occurrence rate shows a plateau. The lower occurrence
rate of planets at P < Pbreak may reflect a truncation of their disks, perhaps due to the
magnetosphere of their host stars (e.g., Mulders et al. 2015a). In fact, disk-locking
theory posits that the inner disk edge corotates with the host star in equilibrium (e.g.,
Camenzind 1990; Königl 1991; Romanova andOwocki 2016). The disk-locking sce-
nario is supported observationally by “dippers” in the light curves of young low-mass
stars with relatively evolved disks (see, e.g., Ansdell et al. 2020; Frasca et al. 2020,
and references therein). These stars exhibit material lifted out of the disk midplane,
near the corotation radius (see, e.g., Stauffer et al. 2015; Ansdell et al. 2016). The dis-
tribution of rotation periods of low-mass stars younger than∼ 5Myr typically ranges
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from 0.2 to 20 days with peaks around ∼ 10days and falls towards shorter periods.
This result has been interpreted as a possible connection between disk truncation at
corotation and occurrence rate of short-period planets (Lee and Chiang 2017).

3.7.4 Host Star Iron Abundance and Planet Formation

The connection between stellar iron abundance and the presence of planets offers
an observational link between conditions during the epoch of planet formation and
mature planetary systems. This is because the star iron abundance (usually expressed
as [Fe/H], the iron to hydrogen abundance ratio measured with respect to that of the
Sun) is thought to reflect the metallicity of the protostellar nebula and the protoplane-
tary disk fromwhich planets form. Since metal-rich protoplanetary disks are thought
to have enhanced surface densities of solids, one expects that metal-rich disks form
cores of gas giant planets and terrestrial planets with higher efficiency than metal-
poor disks (core-accretion theory; Lissauer et al. 1995; Pollack et al. 1996). As we
have already noticed in Sect. 3.3.1, the increase in giant planet occurrence with iron
abundance is well established, while in the regime of lower planetary masses this
trend appears less solid.

Figure3.62 shows the distribution of [Fe/H] for stars in three samples of Kepler
stars analyzed through Keck spectroscopy (Winn et al. 2017b):

1. USP planets selected from Sanchis-Ojeda et al. (2014);
2. hot Jupiters with radii in the range 4 − 20 R⊕ and orbital periods shorter than

10 days;
3. hot small planets with radii < 4 R⊕ and orbital periods between 1 and 10 days.

Even at a glance, it is clear that the hot Jupiters appear to be weighted toward higher
[Fe/H] than either the USP planets or the hot small planets. The distributions for
the USP and the small planets appear similar to one another. From a two-sample
Kolmogorov-Smirnov test, Winn et al. (2017b) concluded that it is very unlikely that
the USP planets and hot Jupiters are drawn from the same distribution, while the USP
planets and the hot smaller planets have distributions that are indistinguishable. The
association between high metallicity and occurrence of USP planets is of particular
interest because it was postulated that USP planets may be the remnants of disrupted
hot Jupiters (Jackson et al. 2013; Valsecchi et al. 2015). Since this correlation was
not found, it is unlikely that USP planets are the evaporated cores of hot Jupiters that
reached so close to their host stars that they completely lost their gas through pho-
toevaporation, or Roche lobe overflow, or other processes. It remains quite possible
that they are solid cores of formerly gaseous planets smaller than Neptunes.

Recently, Petigura et al. (2018), based on California-Kepler Survey results, mod-
eled the metallicity (M) distribution of planets as d f ∝ 10βMdM , where β is related
to the strength of any metallicity correlation. The authors found that the correla-
tion gets steeper with decreasing orbital period and increasing planet size, from
β = −0.3 ± 0.2 for warm super-Earths to β = 3.4 ± 0.9 for hot Jupiters. This result
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Fig. 3.62 Metallicity
distribution of three
statistical samples: UPS
planets (solid line;
[Fe/H]mean ∼ 0.06dex), hot
Jupiters (dashed line;
[Fe/H]mean ∼ 0.21dex), and
hot small planets (dotted
line; [Fe/H]mean ∼ 0.05dex).
Figure adapted from Winn
et al. (2017b)

supports the idea that high metallicities in protoplanetary disks increase the mass of
the largest rocky cores or the speed at which they are assembled, enhancing the pro-
duction of planets with higher masses. They conclude that the association between
high metallicity and short-period planets may reflect disk density profiles that facil-
itate the inward migration of solids or higher rates of planet-planet scattering.

3.7.5 Composition of Hot Earths

High-cadence RV monitoring of USP planets allows to fully sample their orbits in
just a few nights of observation. Furthermore, since the RV semi-amplitude scales
with P−1/3, the shorter the orbital period, the higher the amplitude of the RV signal,
increasing the likelihood of swift detection. However, because the planets tend to
be small, the Doppler signals typically have Kp not exceeding a few m/s, making
their detection challenging nonetheless. Accurate masses have been measured for
a few USP planets, as shown in Fig. 3.63, where the data points are color-coded
according to the level of insolation by the host star. Indeed, one might have expected
the more strongly irradiated planets to have a higher density, as a consequence of
photoevaporation. However, no clear correlation between planetary mean density
and level of irradiation appears. This could be due to the fact that all USP planets
are so strongly irradiated that they have been entirely stripped of any preexisting
hydrogen/helium atmospheres, as all of them show irradiation values much higher
than the threshold of 650 F⊕ above which close-in sub-Neptunes have undergone
photoevaporation (Lundkvist et al. 2016). In themass-radius diagram forUSPplanets
with well-characterized parameters, radii smaller than 2.2 R⊕ and orbital periods
smaller than 1day, most planets are placed between the theoretical relations for pure
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Fig. 3.63 Masses and radii of USP planets for which very accurate Doppler mass measurements
have been reported (filled circles). The circles are color-coded according to four levels of irradiation
by the star in units of F⊕, the insolation level received by Earth: light grey (< 2000 F⊕), dark gray
(2000 − 3000 F⊕), very dark gray (3000 − 4000 F⊕), black (> 4000 F⊕). The diamonds represent
Venus and Earth. The curves are theoretical mass-radius relationships for planets of different com-
positions: pure iron, iron core and silicate mantle, pure rock, and pure water (Zeng et al. 2016).
References for planetary masses and radii are: Howard et al. (2013); Haywood et al. (2014); Weiss
et al. (2016); Demory et al. (2016); Dai et al. (2017); Gunther et al. (2017); Christiansen et al.
(2017); Vanderburg et al. (2017); Malavolta et al. (2018); Santerne et al. (2018); Frustagli et al.
(2020). Figure inspired by a similar plot by (Dai et al. 2017)

rock (100% MgSiO3) and Earth-like (30% Fe and 70% MgSiO3) compositions (see
Fig. 3.63). K2-229b has high density suggesting a massive iron core compatible with
that of Mercury, although it was expected to be similar to that of Earth based on
host-star chemistry (Santerne et al. 2018).

Dressing et al. (2015) claimed that planets heavier than 6M⊕ should have gaseous
H/He envelopes, while Rogers (2015) found that planets with orbital periods shorter
than 50 days and radii smaller than 1.6 R⊕ are predominantly rocky. Later, Lopez
(2017) found that planets on USP orbits could often retain their envelopes even at
high irradiation levels if they formed with very high-metallicity water dominated
envelopes. This would imply that planets larger than 1.6 R⊕ to be more massive
than 6M⊕ and with densities compatible with water envelopes. Of the eleven USP
planets for which mass and radius have been both measured with high accuracy, six
are larger than∼ 1.5-1.6 R⊕ (HD3167b,K2-131b,WASP-47e, 55Cnce,HD80653b,
andCoRoT-7b). Three of them (namely, K2-131b,WASP-47e, 55Cnce) havemasses
heavier than 6M⊕ and a lowmean density (∼ 6.0–6.4g/cm3) compatible with a layer
of volatiles (like water) surrounding a rocky-iron body. For K2-106b, Sinukoff et al.
(2017) reported a planetary mass and radius of 9.0M⊕ and 1.82 R⊕, compatible



3 The Demographics of Close-In Planets 223

with a rocky composition and a water mass fraction of ∼ 2%, while the values by
Gunther et al. (2017) shown in Fig. 3.63 pointed to an iron-rich composition and
a water mass fraction < 20% (Dai et al. 2017). For HD3167b, Christiansen et al.
(2017) reported a planetary mass and radius of 5.02M⊕ and 1.70 R⊕ (consistent with
a rocky composition and a water mass fraction ∼ 15%, as shown in Fig. 3.63), while
Gandolfi et al. (2017) reported 5.69M⊕ and 1.575 R⊕, suggesting a predominantly
rocky composition (with a water mass fraction < 10%). The position of HD80653b
and its density is consistent with an Earth-like composition of rock and iron with
no significant envelope of volatiles or H/He surrounding the planet (Frustagli et al.
2020).

3.7.6 Formation and Early Evolution of USP Planets

The formation and early evolution ofUSPplanets and their relationship towider-orbit
planets are not fully understood. Dai et al. (2018b) considered a sample of Kepler
and K2 multiple-planet systems with the innermost planet of radius smaller than
4 R⊕ (to avoid giant planets) and a/R� < 12 (to consider inclinations of 85–90◦).
They measured the minimum difference �I = |I1 − I2| between the fitted orbital
inclinations of the innermost two planets as a function of the orbital distance of
the innermost planet (see Fig. 3.64). �I is equal to the mutual inclinations only if
the trajectories of the two planets across the stellar disk are parallel and on the same
hemisphere of the star. Among the systems with the closest-orbiting planets (a/R� <

5), there are about 10 systems for which �I = 5◦ − 10◦, larger than the typical
mutual inclinations inferred for planets in wider orbits. The planets with a/R� > 5
almost all have�I < 5◦. Thismeans that the planetswith smaller values ofa/R� have
a broader distribution of �I , nearly filling the full range of inclinations compatible
with transits. Similar results were obtained by, e.g., Tremaine and Dong (2012) and
Fabrycky et al. (2014). Dai et al. (2018b) also noted that higher values of �I are
associated with larger period ratios. They found that period ratios tend to be higher
when the inner planet’s period is shorter than about one day (Steffen and Farr 2013).
This means that the innermost planets have experienced both inclination excitation
and orbital shrinkage, and therefore that they are dynamically more separated.

The results by Dai et al. (2018b) can be interpreted as follows: the shortest-period
planets tend to have larger mutual inclinations, and thus are likely to be observed
to transit even when the wider-orbiting companions do not transit. These results
indicate that the shortest-period planets have a different orbital architecture, with
higher mutual inclinations and larger period ratios, meaning that whatever processes
led to the extremely tight orbits of these planets were also responsible for tilting the
orbit to a higher inclination.

Several theories have been proposed for the formation of very short-period sub-
Neptune planets:
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Fig. 3.64 Inclination difference �I versus a/R� of the innermost planet of a sample of Kepler/K2
multiple-planet systems. The orange solid line represents a power law model by Dai et al. (2018b),
while the black solid line is the boundary above which the inner planet would not transit. Figure
adapted from Dai et al. (2018b)

• Spalding and Batygin (2016) proposed that if the host star was initially rotating
rapidly, with a non-zero obliquity, the planets’ orbits would undergo nodal preces-
sion at different rates becoming misaligned, with the innermost planet being most
strongly affected.

• Lee and Chiang (2017) proposed that planets form frommaterial collected near the
innermost edge of the protoplanetary disk, begin with nearly circular well-aligned
orbits, and then the innermost planet undergoes tidal orbital decay.

• In the “secular dynamic chaos” scenario, the innermost planet of a multi-planet
system is launched into a high-eccentricity orbit via chaotic secular interactions
with its companion planet. If the period is short and the eccentricity becomes high
enough, tidal interactions with the host star shrink the orbit. Since eccentricity
and inclination are excited together, this theory predicts that the shortest-period
planets should have larger mutual inclinations (Petrovich et al. 2019).

• In the “forced-eccentricity migration” scenario, in which the interaction with outer
companions continually excites the eccentricity of the innermost planet, eccentric-
ity tides dissipate energy and shrink the orbit (Hansen and Murray 2015).

3.7.7 Brief Summary on USP Planets

Even though the origin of USP planets still remains a matter of debate, we can
summarize their main properties as follows:

• USP planets tend to be in multi-planet systems (with longer-period companions),
and very few of them have known transiting companions;

• the metallicity distribution of USP-planet-hosting stars does not resemble that of
hot-Jupiter hosts and it is indistinguishable from that of close-in sub-Neptunes
hosts;
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• only very few USP planets have densities compatible with the presence of sub-
stantial water envelopes;

• the shortest-period planets likely migrated inwards via a dynamical process that
excited orbital eccentricity and mutual inclinations simultaneously.

In conclusion,USPplanets seem to represent a subset of sub-Neptunes,most ofwhich
have lost their atmospheres because of photoevaporation, or Roche lobe overflow, or
other processes, with the exception of a few larger planets that have retained a water
(or other volatiles) envelope.
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Part IV
Wide-Orbit Exoplanets



Chapter 4
The Demographics of Wide-Separation
Planets

B. Scott Gaudi

Abstract I begin this review by first defining what is meant by exoplanet demo-
graphics, and then motivating why we would like as broad a picture of exoplanet
demographics as possible. I then outline the methodology and pitfalls to measuring
exoplanet demographics in practice. I next review the methods of detecting exoplan-
ets, focusing on the ability of these methods to detect wide separation planets. For
the purposes of this review, I define wide separation as separations beyond the “snow
line” of the protoplanetary disk, which is at � 3au for a sun-like star. I note that this
definition is somewhat arbitrary, and the practical boundary depends on the host star
mass, planet mass and radius, and detectionmethod. I review the approximate scaling
relations for the signal-to-noise ratio for the detectability of exoplanets as a function
of the relevant physical parameters, including the host star properties. I provide a
broad overview of what has already been learned from the transit, radial velocity,
direct imaging, and microlensing methods. I outline the challenges to synthesizing
the demographics using different methods and discuss some preliminary first steps
in this direction. Finally, I describe future prospects for providing a nearly complete
statistical census of exoplanets.

4.1 Introduction: The Demographics of Exoplanets

The demographics of exoplanets can be defined as the distribution of exoplanets as a
function of a set of physical properties of the planets, their host stars, or the environ-
ment of the planetary systems. It can be distinguished fromexoplanet characterization
by the depth of information that is measured about the exoplanet. Demographic sur-
veys generally only focus on the most basic properties of the planets, host stars, or
their environment. These properties are generally measured directly as parameters
intrinsic to the detection technique being used, or are inferred from these param-
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eters, sometimes requiring auxiliary information. In contrast, characterizing exo-
planets generally requires more sophisticated techniques to determine the detailed
properties of the exoplanets. Of course, the distinction between exoplanet demo-
graphics and characterization is somewhat arbitrary, but nevertheless it provides a
useful framework for outlining the basic goals of studies of exoplanets.

The primary motivation for measuring exoplanet demographics is to test planet
formation theories. A complete, ab-initio theory of planet formation must be able to
describe the physical processes by which micron-sized dust grains grow by ∼13–
14 orders of magnitude in size and ∼38–41 orders of magnitude in mass to their
final radii and masses between the radius and mass of the Earth and the radius and
mass of Jupiter. As is described in Chap.1 and references therein, as protoplanets
grow by these many orders of magnitude in size and mass, the physical mechanisms
that govern their growth and migration vary significantly. In principle, the signature
of many of these physical mechanisms should be imprinted in the distribution of
properties of mature planetary systems, including the properties of the planets, the
nature and diversity of system architectures, and their dependencies on the host
star properties and environment. Thus, a robust and unbiased measurement of the
demographics of exoplanets over a broad range of planet and host star properties
provides one of the most fundamental empirical tests of planet formation theories.

This review discusses methods for characterizing the population of wide-
separation planets, and constraints on the demographics of such planets from var-
ious surveys using these methods. For the purposes of this review, I will define
wide-separation as semi-major axes and periods greater than the “snow line” in the
protoplanetary disk

asl�3 au

(
M∗
M�

)∼1

, Psl� 5 year

(
M∗
M�

)∼5/4

, (4.1)

where M∗ is the mass of the host star. Equation (4.1) are motivated by the estimated
distance of the snow line in the solar protoplanetary disk (e.g.,Morbidelli et al. 2016),
and the scaling of the snow linewith host starmass estimated byKennedy andKenyon
(2008), although I note that this scaling is uncertain, and the location of the snow line
itself is a function of the age of the protoplanetary disk. This definition is useful to
the extent that planet formation likely proceeds differently beyond the snow line due
to the larger surface density of solid material, but I note that this is also uncertain. For
a more comprehensive discussion of the snowline in protoplanetary disks, its time
evolution, and its possible effect on planet formation, see the discussion in Chap. 1.
Despite these uncertainties, I will adopt Eq. (4.1) as approximate boundaries between
close and wide separation planets. As discussed in Sect. 4.4, the practical boundary
between close- and wide-separation planets depends on the detection method and
specifics of the survey, as well as on the planet mass and radius. Thus this boundary
should be not applied too rigidly.

There is a large body of literature on topics related to exoplanet demographics,
which cannot be comprehensively covered in this relatively short review chapter.
For a more comprehensive (if somewhat outdated) introduction to exoplanet demo-
graphics, I refer the reader to Winn and Fabrycky (2015). A more recent review

http://dx.doi.org/10.1007/978-3-030-88124-5_1
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is forthcoming in Zhu and Dong (2021). Chapter 3 of this book provides another
excellent source of recently reviewed literature on the subject.

The plan for this chapter is as follows. Section4.2 summarizes the mathemat-
ical formalism for constraining exoplanet demographics. Section4.3 discusses a
few of the possible pitfalls when constraining exoplanet demographics in practice.
Section4.4 briefly summarizes the primary methods of detecting planets, focusing
on the scaling of the sensitivity of each method with the planet and host star proper-
ties. Section4.5 highlights some of themain results from surveys for wide-separation
planets, including results from radial velocity (Sect. 4.5.1), transit (Sect. 4.5.2), direct
imaging (Sect. 4.5.3), and microlensing (Sect. 4.5.4) surveys. Section4.5.5 reviews
the relatively few attempts to synthesize results frommultiple methods, and Sect. 4.6
discusses a few notable comparisons between the predictions of the demographics
of planets from ab-initio planet formation theories and results from exoplanet sur-
veys. Section4.7 discusses future prospects for determining wide-orbit exoplanet
demographics. Finally, I briefly conclude in Sect. 4.8.

4.2 Mathematical Formalism

Although this review focuses on methods for measuring the demographics of wide-
separation planets and highlights some observational results to this end, it is worth-
while to present the generalmathematical formalism formeasuring the demographics
of planets (of all separations). Following Clanton and Gaudi (2014a), in very general
terms, I can mathematically define the goal of demographic surveys of exoplanets to
be a measurement of the distribution function dnNpl/dα, where α is a vector con-
taining the set of n physical parameters upon which the planet frequency intrinsically
depends. These can include (but are not limited to): parameters of the planets (mass
Mp, radius Rp), their orbits (period P , semi-major axis a, eccentricity e), proper-
ties of the host stars (mass M∗, radius R∗, luminosity L∗, effective temperature Teff ,
metallicity [Fe/H], multiplicity), and many others. The total number of planets Npl

in the domain covered by α is

Npl =
∫
α1

dα1

∫
α2

dα2 · · ·
∫
αn

dαn .
dnNpl

dα
(4.2)

Therefore, in principle, one could simply count the number of planets as a function
of the parameters α and then differentiate with respect to those parameters to derive
dnNpl/dα. This is essentially equivalent to binning in the parameters and counting
the number of planets per bin. This distribution function represents the most fun-
damental quantity that describes the demographics of a population of planets. With
such a distribution function in hand, one can then compare to the predictions for this
distribution that are the outputs of ab-initio planet formation theories (e.g., Ida et al.
2013; Mordasini et al. 2015) and determine how well they match the observations.
Furthermore, one can then vary the input physics in these models, or parameters
of semi-analytic parameterizations of the physics, to provide the best match to the
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observed distribution of physical parameters. Thus these models can be refined,
improving our understanding of planet formation and migration.

Unfortunately, it is generally not possible to measure dnNpl/dα directly, for sev-
eral reasons. First, all surveys are limited in the range of parameters to which they
are sensitive. Some of these are intrinsic to the detection method itself, while oth-
ers are due to the survey design. Second, all surveys suffer from inefficiencies and
detection biases. Thus the measured distribution of planet properties is not equal
to the true distribution. The effects of these first two issues can be accounted for
by carefully determining the survey completeness. Finally, each exoplanet detection
method is sensitive to a different set of parameters of the planetary system. Some
of these parameters belong to the set of the physical parameters of interest α, oth-
ers are a function of these parameters, others are parameters that are not directly
constrained by the data under consideration and must be accounted for using exter-
nal information or derived from external measurements, and others are essentially
nuisance parameters that must be marginalized over.

As a concrete example, consider radial velocity (RV) surveys for exoplanets. As
we saw in Chap.2, Sect. 2.1, the RV of a star arising from the reflex motion due to a
planetary companion can be described by 6 parameters: the RV semi-amplitude K ,
the orbital period P , eccentricity e, argument of periastron ω, and time of periastron
Tp (or the time of some fiducial point in the orbit for circular orbits, such as the time
of periastron), and the barycentric velocity γ . Of these parameters, generally, only
P and e are fundamental physical parameters that (potentially) contain information
about the formation and evolution of the system. The parameter ω is a geometrical
parameter that describes the orientation of the orbit with respect to the plane of
the sky from the perspective of the observer,1 and TP is an (essentially) arbitrary
conventional definition for the zero point of the radial velocity time series. The
parameter γ does not contain any information about the planet or its orbit, although
(if absolutely calibrated) does contain information about the Galactic orbit of the
system and thus theGalactic stellar population towhich the host star belongs. Finally,
K depends on P , e, the mass of the planet Mp, the mass of the host star M∗, and
the inclination i of the orbital plane with respect the plane of the sky, with i =
90◦ is edge-on). The inclination is another geometrical parameter, and thus is not
of intrinsic interest. However, Mp and M∗ are fundamental physical parameters of
interest. The latter cannot be estimated from RVmeasurements of the star alone, and
thus must be determined from external information. With an estimate of M∗ in hand,
the remaining physical quantity of interest, Mp, still cannot be determined directly,
since the inclination i is not constrained by RVmeasurements. Assuming Mp � M∗,
one can then infer the minimum mass of the companion Mp sin i . In order to infer
Mp, one must use the known a priori distribution of i (namely that cos i is uniformly
distributed), and an assumed prior on the distribution of true-planetmasses dN/dMp,

1 I note that in systemswithmultiple planets, any apsidal alignment can be inferred by the individual
values of ω. The existence of an apsidal alignment (or alignments) can provide constraints on the
formation and/or evolution of that system. See, e.g., Chiang et al. (2001).

http://dx.doi.org/10.1007/978-3-030-88124-5_2
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to infer the posterior distribution of Mp for any given detection.2 However, dN/dMp

is typically a distribution one would like to infer, and thus one must deconvolve
a distribution of minimum masses of a sample of detections to infer the posterior
distribution dN/dMp (see, e.g., Zucker and Mazeh 2001).

In order to deal with the difficulties in inferring the true distribution function
dnNpl/dα of some set of physical parameters α, one must account for not only the
survey completeness but also for the fact that the detectionmethod (ormethods) being
used to survey for planets are generally not directly sensitive to (all of the) parameters
of interest α. To deal with the latter point, several approaches can be taken. First, one
can attempt to transform the observable parameters into the physical parameters of
interest. This often requires introducing external information (such as the properties
of the star), or adopting priors for, and then marginalizing over, parameters that
are not directly constrained. Alternatively, one can simply choose to constrain the
distribution functions of the observable parameters that are most closely related to
the physical parameters of interest. It is also possible to adopt both approaches.

An important point is that the completeness of each individual target is obvi-
ously a function of the observable parameters, not the transformed physical param-
eters. Therefore the completeness of each target must first be determined in terms of
the observable parameters, and then transformed to the physical (or more physical)
parameters of interest (if desired).

In order to determine the completeness of a given survey of a set of targets Ntar,
one must first specify the criteria adopted to define a detection. An essential (but
often overlooked) point is that the criteria used to determine the completeness of
the entire sample of Ntar targets must strictly be the same criteria used to detect the
planets in the survey data to begin with. Failure to adhere to this requirement can
lead to (and indeed, has led to) erroneous inferences about the distribution of planet
properties. This is particularly important in regions of parameter space where the
number of detected planets is a strong function of the specific detection criteria.

Typically one computes the completeness or efficiency (hereafter referred to effi-
ciency for definiteness) of a given target as a function of the primary observables
whose distributions affect the detectability of the planets. I define this set of observ-
ables as β. I note that this set can be subdivided into two subsets. I define βI to be the
subset of the β observable parameters of interest whose distributions one would like
to constrain (or observables which will subsequently be transformed to other, more
physical parameters, whose distributions are to be constrained), and βN to be the
remainder of the set of observable ‘nuisance’ parameters (e.g., the parameters that
affect the detectability but are either considered nuisance parameters or parameters
whose distributions are not specifically of interest). The efficiency of a given target
j is given by

2 I note that the posterior distribution of Mp given a measurement Mp sin i is often estimated by
simply assuming that cos i is uniformly distributed. This leads to the familiar result that the median
of the true mass is only (sin [arccos(0.5)])−1�1.15 larger than the minimum mass. Unfortunately,
this is only correct if the distribution of true planet masses is such that dN/d logMp is a constant
(Ho and Turner 2011; Stevens and Gaudi 2013). For other distributions, the true mass can be larger
or smaller than this naive estimate.
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ε j (βI) =
∫
βN

dβN,1

∫
βN

dβN,2 · · ·
∫

βN,n

dβN,n
dnNpl

dβN
D(βN ). (4.3)

Here dnNpl/dβN is the assumed prior distribution of the observable ‘nuisance’
parameters βN , and D(x) is the set of detection criteria used to select planet
candidates. It is worth noting that the prior distribution for the nuisance parame-
ters βN is generally trivial, and does not contain any valuable physical informa-
tion. In the simplest case of a χ2 threshold as the only detection criterion, then
D = H[�χ2(βN ) − �χ2

min], where H(x) is the Heaviside step function and �χ2

is the difference between the χ2 of a fit to the data with a planet and the null hypoth-
esis of no planet, and �χ2

min is the minimum criterion for detection. In reality, most
surveys employ several detection criteria. The most robust method of determining
the efficiency ε j for each target is to inject planet signals into the data according to
the distribution function dnNpl/dβ, and then attempt to recover these signals using
the same set of detection criteria D (e.g., the same pipeline) used to construct the
original sample of detected planets.

In order to determine the overall survey efficiency 	(βI), one must compute the
efficiency for every target, whether or not the target contains a signal that passes the
set of detection criteriaD. The total survey efficiency is then

	(βI) =
Ntar∑
j=1

ε j (βI). (4.4)

Given the total survey efficiency 	, it is possible to marginalize over the parameters
βI to estimate the total number of expected planet detections Npl,exp in the survey,
given a prior assumption for the distribution function dnNpl/dβI:

Npl,exp =
∫

βI,1

dβI,1

∫
βI,2

dβI,2 · · ·
∫

βI,n

dβI,n
dnNpl

dβI
	(βI). (4.5)

Of course, it is precisely the distribution function dnNpl/dβI that we wish to infer.
Thus, in the usual Bayesian formalism, we must adopt a prior distribution of the
parameters of interest, and we then determine if this prior distribution is consistent
(in the likelihood sense) with the posterior distribution of these parameters. If not,
then we adjust the prior distribution and repeat. This is the way one ‘learns’ in the
Bayesian formalism.

It is also possible to convert the individual target efficiencies ε j (βI) as a function
of the observable parameters of interest βI to efficiencies as a function of physical
parameters (or more physical parameters) α by simply transforming from βI to
α. In this case, one would replace βI → α in Eq. (4.5) after transforming to α. In
general, such transformations can be relatively straightforward or fairly complicated,
depending on the details of what is known about the properties of the target sample,
and the variables that are being transformed. It is also important to note that such
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transformations can introduce additional sources of uncertainty; for example, if one
wants to convert from planet/host star mass ratio to planet mass, one must explicitly
account for the uncertainty in the host star mass. Finally, it is important to include the
Jacobian of the transformation of the adopted prior distribution of the observables
dnNpl/dnβI to the prior distribution of the physical parameters dnNpl/dnα, as a given
prior distribution on an observable parameterβI,i does not guarantee the desired prior
distribution on the physical parameters α.

With the individual values of ε j and total survey 	 efficiencies in hand, there
are two basic approaches that are typically taken to infer the posterior distribution
dnNpl/dβI (or the distribution of transformed variables dnNpl/dα).

Binning: The simplest andmost obviousmethod of inferring the distribution function
is simply to define bins in the parameters of interest βI (or α). For definiteness, I
assume one is working in the space of the observable parameters of interest βI. One
then counts the number of detected planets in each bin k ofβI, Ndet,k , and then divides
by the number of planets expected to be detected in each bin using Eqs. (4.4) and
(4.5), where, in this case, the integrals are over the span of each bin. The estimated
frequency of planets (more specifically, the number of planets per star) in each bin k
is then

dnNpl

dβI

∣∣∣∣
post,k

≡ Ndet,k

Npl,exp,k
, (4.6)

where the symbol
∣∣
post,k serves to indicate that the value of d

nNpl/dβI inferred from
Eq. (4.6) is the posterior distribution inferred for bin k. This gives the frequency
of planets in that bin, weighted by the assumed prior distribution function of the
bin parameters. In this case, the uncertainty in the inferred planet frequency of each
bin is given by Poisson statistics based on the number of detections in each bin,
weighted by the prior distribution. Although binning is generally not recommended
(for reasons discussed in Sect. 4.3), it can provide a useful method to visualize the
results of the survey. I note that, despite some claims to the contrary, binning is
neither a ‘non-parametric’ nor a ‘prior-free’ method of inferring the distribution of
planet properties. In reality, all inferences about the distribution of planet properties
from survey data are parametric and assume priors (whether those parameters or
priors are explicitly stated or not). This is clear from the discussion above, as the
value of Npl,exp,k is evaluated using Eq. (4.5), which itself depends on the assumed
prior distribution of dnNpl/dβI.

Although this method is conceptually quite straightforward, it is worthwhile to
point out that a somewhat different approach has been taken to implement thismethod
in practice, particularly for early results gleaned from theKepler data. This approach,
dubbed the inverse detection efficiencymethod (IDEM) by Foreman-Mackey (2014),
requires only evaluating the planet detection sensitivity for those stars around which
planets have been discovered. Specifically, the planet frequency (again, more specif-
ically the number of planets per star) in a given bin k is given by
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dnNpl

dβI

∣∣∣∣
post,k

≡ 1

Ntar

Ndet,k∑
j=1

1

ε j
. (4.7)

I again note that, while it may appear that this method is ‘non-parametric’ or ‘prior-
free’, this is not the case, as one must define the boundaries of each bin.

As discussed in detail in Foreman-Mackey (2014) and Hsu et al. (2018), this
approach is not optimal, and specifically is likely to yield biased inferences for
Npl,exp. This issue is particularly acute for transit surveys, for which a small number
of detections must be multiplied by large correction factors to estimate the intrinsic
frequency of planets. The fact that this approach is not optimal stems from several
reasons, the most important being that the stars with the largest intrinsic sensitivity
are those for which it is most likely that planets will be detected. I note that sev-
eral analyses of ground-based transit surveys published prior to any results from
Kepler (e.g., Mochejska et al. 2005; Burke et al. 2006; Hartman et al. 2009) utilized
the (more optimal) first method described above (i.e., the method where one esti-
mates and utilizes the sensitivity of all the target stars), rather than the IDEMmethod.

Maximum Likelihood: A second method to estimate the distribution function
dnNpl/dβI (or the distribution of transformed variables dnNpl/dα) is to use the
maximum likelihood method. The mathematics of this method can be derived by
starting with the method of binning described above, and then decreasing the bin
size such that there is only one detection in each bin (see, e.g., Appendix A of
Cumming et al. 2008 or Sect. 3.1 of Youdin 2011). Here one seeks to constrain the
parameters of a distribution function F , such that

dnNpl

dβI
= F(βI;�) , (4.8)

where� are the variables that parameterize the distribution function F .3 A common
form for F when two variables are being considered is a double power-law. In
this case, the vector � would consist of three parameters: a normalization, and
one exponent for each of the two parameters. Note this form implicitly assumes a
range for each of the two parameters, the minimum and maximum of which can
be considered as additional, hidden parameters, the choice of which can affect the
maximum likelihood inferences for the other, explicit parameters.

Given this parameterized form for the distribution function dnNpl/dβI, then one
can determine the likelihood of the observations given the parameters � of the
distribution function F (see the references below):

L(�) = exp−Npl,exp 

Ndet
j=1F(βI, j ;�)	(βI, j ) , (4.9)

3 Again, one might instead wish to instead transform βI → α and then constrain dnNpl/dα. For
brevity, I will no longer specifically call out this alternate method.
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where Ndet is the number of planets detected in the survey (more specifically, the
number of detections that pass all of the detection criteria D). Equation (4.9) can
then be used to estimate the likelihood that the function F(βI;�) with a given set
of parameters � describe the data. Using the usual methods of exploring likelihood
space (e.g., Markov Chain Monte Carlo), one can determine both the maximum
likelihood, as well the confidence intervals of the parameters. These methods are
generally well known and have been explored in many publications, and so I will not
reiterate them here.

I note that the above mathematical description of the methodology to estimate the
distribution of exoplanet properties (e.g., to determine the “demographics of exo-
planets”) was exceptionally abstract. This approach was taken intentionally in order
to make the discussion as general as possible. Nevertheless, it may be difficult to
apply this formalism to specific exoplanet surveys. I, therefore, invite the reader to
consult the following publications that apply the formalism discussed above (includ-
ing both binning and maximum likelihood) to specific exoplanet detection methods
and surveys. For readers interested in radial velocity surveys, I suggest starting with
Tabachnik and Tremaine (2002), Cumming et al. (2008), Howard et al. (2010), for
those interested in transit surveys, I suggest starting with Burke et al. (2006); Youdin
(2011), Dong and Zhu (2013), Dressing and Charbonneau (2013), Howard et al.
(2012), Burke et al. (2015), for those interested in microlensing surveys, I suggest
starting with Gaudi et al. (2002), Gould et al. (2010), Suzuki et al. (2016), and for
those interested in direct imaging surveys, I suggest starting with Bowler (2016),
Nielsen et al. (2019).

Finally, I note that much more sophisticated statistical methodologies for deter-
mining exoplanet demographics have been developed (e.g., hierarchical Bayesian
modeling, approximate Bayesian computation), particularly in application to Kepler
(see, e.g., Foreman-Mackey 2014; Hsu et al. 2018, 2019). Additional discussions of
results from all the above methodologies are provided in Chap.3.

4.3 Pitfalls to Measuring Exoplanet Demographics
in Practice

In this section, I outline a few of the difficulties inmeasuring exoplanet demographics
in practice.Manyof these should be fairly obvious given the discussion in the previous
section, but some are much more subtle. I do not claim this to be a comprehensive
list of where one might go wrong, but merely a partial list of common pitfalls that
one should avoid.

• Adopting different detection criteria to estimate the survey efficiency than
were used to identify the planet candidates. This is likely one of the most preva-
lent sources of systematic error when determining exoplanet demographics. An
excellent example is the Kepler survey (Borucki et al. 200). The earliest estimates
for the intrinsic distribution function of planet parameters assumed simple, ad

http://dx.doi.org/10.1007/978-3-030-88124-5_3
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hoc assumptions for the detection criteria. This approach was required due to the
fact that the algorithms used by the Kepler team to detect the announced planet
candidates were not initially publicly available. As a result, the adopted detection
criteria were often significantly different than the true detection criteria, leading
to inferences about the planet distribution that were sometimes egregiously incor-
rect. This issue is particularly important near the “edges” of the survey sensitivity,
where the number of detected planets can be a strong function of the detection
criteria (e.g., the signal-to-noise ratio). Later analyses circumvented this issue by
developing independent pipelines to identify planet candidates. These were then
used to determine the detection efficiency by injecting transit signals into the data
and recovering them using the same pipelines (e.g., Dressing and Charbonneau
2013; Petigura et al. 2013). Inferences about the exoplanet distributionmade in this
way are generally much more robust. See Chap.3, Sect. 3.2 for additional details.

• Use of ‘by-eye’ candidate selection. Quite often, candidates from exoplanets
surveys are subjected to human vetting. While this can be an excellent method of
eliminating false positives, it is obviously difficult to reproduce in an automated
way. While it is possible to inject a large number of signals into the data sets and
then have the ‘artificial’ candidates vetted by humans (e.g., Gould et al. 2006a), this
is both labor intensive and can impose biases (e.g., if the humans doing the vetting
know that they are searching for injected signals). It is possible to remove the step
of human vetting, as has been done using, e.g., the Robovetter tool developed by
the Kepler team (Thompson et al. 2018).

• Ignoring reliability. An implicit assumption that was made in Sect. 4.2 was that
all signals that passed the detection criteriaDwere due to real planets. This ignores
false positives, which can be astrophysical, instrumental, or simple statistical false
alarms. The reliability of a sample of candidate planets is simply the fraction of
candidates that are true planets. Thus, in order to determine the true distribution
of planet parameters from a survey, one must not only estimate the efficiency or
completeness of the survey (the fraction of true planets that are detected), but
one must also assess the reliability (the fraction of detections that are due to true
planets).

• Overly optimistic detection criteria. One of the more straightforward and
frequently-used detection criteria is a simple signal-to-noise ratio or �χ2 cut,
or some related statistic that quantifies how much better the data is modeled with
a planet signal than the null hypothesis of no planet. In principle, one should set
the threshold value of such detection criteria such that there are few or no statis-
tical false alarms. One might naively assume that the data have uncertainties that
are Gaussian distributed and uncorrelated, in which case the threshold value can
generally be estimated analytically (or semi-analytically) by simply computing
the probability (say 0.1%) of a given value of the statistic arising by random fluc-
tuations. In practice, setting the appropriate threshold value is significantly more
complicated. First, one requires detailed knowledge of the noise properties of the
data, which are often not Gaussian distributed and are also often correlated on var-
ious timescales. Second, one requires an estimate of the number of independent

http://dx.doi.org/10.1007/978-3-030-88124-5_3
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trials used to search for planetary signals to determine the threshold probability. In
practice, both can be difficult to estimate: the noise properties of the data may be
poorly behaved and difficult to characterize, and the number of independent trials
often cannot be estimated analytically andmust be estimated via, e.g.,Monte Carlo
simulations. A reasonably robust method of estimating the appropriate threshold
is to inject simulated planetary signals into the data, and compare the distribution
of the desired statistic (e.g.,�χ2) in the data where no planets were injected to the
distribution in the data where planets were injected.4 The optimal threshold can
therefore be chosen such that the completeness is maximized while minimizing
the number of false positives.

• The dangers of binning. It is often tempting to adopt the procedure outlined above
where one collects the detected planets in parameter bins of a given size, and then
estimates the intrinsic frequency of planets in that bin by dividing the number of
detected planets in that bin by the number of expected detections if every star has a
planet in that bin (see, e.g., Chap. 3, Sect. 3.2 and Fig. 4.14). Indeed, this is a useful
tool that can enable one to visualize the intrinsic distribution function of planet
properties, which can then inform the parameterized models to be fitted. However,
it should be noted that binning is not a well-defined procedure. In particular, one
can ask: What is the optimal bin size? If one makes the bin size too large (in
order to, e.g., decrease the Poisson uncertainty), then one risks smoothing over
real features in the underlying distribution of planet properties. On the other hand,
if the bin size is too small, the Poisson uncertainties blow up. Indeed, there is no
optimal bin size in this sense, and thus it is generally advised to fit parametric
models using the maximum likelihood approach briefly summarized above and
derived previously by many authors.

• Not accounting for uncertainties in the parameters of the detected planets
Note that in Eq. (4.9), the distribution function F(βI,�) and the total survey sen-
sitivity are evaluated at the point estimates of the values of the parameters βI,k

for each of the k = [1, Ndet] planet detections. This implicitly assumes that the
distributions of these parameters for each detected planet are unimodal with zero
uncertainty, neither of which is generically true. Therefore, one must marginalize
the likelihood over the uncertainties in the parameters βI (properly accounting
for covariances between these parameters), and account for multimodal degener-
ate solutions, as applicable. See Foreman-Mackey (2014); Hsu et al. (2018) for
discussions of the deleterious effects of ignoring the uncertainties on the planet
parameters.

• Poor knowledge of the properties of the target sample. When converting
between the observable parameters of detected exoplanet systems to the physi-
cal properties of the planets, one must often assume or infer properties of the host
star. When inferring exoplanet demographics as a function of the physical prop-
erties of the planets, one must typically assume or infer properties of the entire
target sample. Any systematic errors in these inferences will propagate directly

4 In general this method works only if the majority of the targets do not have a planetary signal that
is significant compared to the intrinsic noise distribution in the data.

http://dx.doi.org/10.1007/978-3-030-88124-5_3
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into systematic errors in the inferred exoplanet distributions. Even if systematic
uncertainties are not present, the statistical uncertainties in the host star proper-
ties should be taken into account by marginalizing over these uncertainties. As
a concrete example, transit surveys are directly sensitive to the transit depth δ,
which is just the square of the ratio of the radius of the planet to the radius of the
star, δ = (Rp/R∗)2. Thus, to infer the demographics of planets as a function of
(Rp, P), one must estimate the radii of all the target stars (not simply the ones that
have detected transit signals). Prior to Gaia (2016), it was generally not possible to
robustly estimate radii for most stars; rather these had to be estimated using other
observed properties of the star (e.g., Teff , log g, [Fe/H]), combined with theoreti-
cal evolutionary tracks. This led to systematic differences in the inferred radii of
subsamples of the Kepler targets, which in turn led to discrepancies in the inferred
radii of the detected planets, and the inferred planet radius distribution (Mann
et al. 2012; Pinsonneault et al. 2012; Dressing and Charbonneau 2013; Huber
et al. 2014; Gaidos et al. 2016).5

• Properly distinguishing between the fraction of stars with planets and the
average number of planets per star. A commonly overlooked subtlety in deter-
mining exoplanet demographics from surveys is the distinction between estimates
of the average number of planets per star (NPPS) and estimates of the fraction of
stars with planets (FSWP). Depending on the distribution of exoplanet multiplici-
ties, these two quantities can be significantly different (Youdin 2011; Brakensiek
and Ragozzine 2016). Generally, studies that consider all the planets detected in a
survey (including multi-planet systems) can be thought of as measuring the NPPS
(Youdin 2011; Brakensiek and Ragozzine 2016; Hsu et al. 2018).

• Including post-detection data or detections from other surveys. When inferred
planet occurrence rates from a survey, it is critical that the survey be ‘blind’. In
other words, the data that were used to detect the planets and characterize the
survey completeness must not have been influenced by the presence (or absence)
of significant planetary signals. For true surveys with predetermined and fixed
observation strategies (such as Kepler), this is generally not an issue. However, for
targeted surveys, it is common to acquire more data on targets that show tentative
evidence of a signal in order to bolster the significance of the signal (or determine
that is not real). It is also common to take additional data once a robust detection
is made, in order to better characterize the parameters of the system. Using this
data may result in biased estimates of the occurrence rate of planets. Similarly, it
is often the case that targets will stop being observed or will be observed at a lower
cadence after a certain time if there no evidence of a signal. Again, such a strategy
can lead to biased estimates of the occurrence rates. For similar reasons, one
must not use detections from other surveys or data from other surveys to confirm
marginal detections, as this may also lead to biased estimates of the occurrence
rates.

5 Fortunately, with the availability of near-UV to near-IR absolute broadband photometry, combined
with Gaia parallaxes and stellar atmosphere models, it is possible to measure the radii of most bright
stars nearly purely empirically to relatively high precision (Stassun et al. 2017; Stevens et al. 2017).
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• The dangers of extrapolation. No single survey or detection method, and indeed
even the totality of the surveys that have been conducted with all the detection
methods at our disposal, have yielded a “complete” statistical census of exoplan-
ets (see Sect. 4.4 and the discussion therein). It is therefore tempting to extrapolate
from regions of parameter space where exoplanet demographics have been rela-
tively well-measured to more poorly-studied regions of parameter space. Aside
from theoretical arguments why such extrapolations may not be well-motivated,
the dangers of such extrapolations have already been empirically demonstrated.
For example, initial extrapolations of power-law fits to the occurrence rate of giant
planets with semi-major axes of �3au as estimated from RV surveys (Cumming
et al. 2008) out to very large separations implied that ground-based direct imaging
surveys for young, giant planets should yield a large number of detections. This
prediction has not been borne out, and it is now known that very wide-separation
giant planet are relatively rare (see Sect. 4.5.3). Perhaps more strikingly, Dulz
et al. (2020) found that, by extrapolating the double power-law fit to the distribu-
tion of planets detected by Kepler found by Kopparapu et al. (2018) with periods
of �600 days to longer periods, many (and depending on the adopted uncertain-
ties in the fit by Kopparapu et al. (2018), even the majority) of the systems were
dynamically unstable.

4.4 Methods of Detecting Exoplanets: Inherent Sensitivities
and Biases

There are four primary methods that have been used to detect exoplanets: radial
velocities, transits, direct imaging, and microlensing. Another well-known method
of detecting exoplanets is astrometry. However, to date, there have been no con-
firmed detections of planetary companions using astrometry, although there are some
candidates that have yet to be confirmed. Nevertheless, astrometry is an extremely
promising method for detecting planets, particularly wide-orbit planets. In particu-
lar, as we discuss in Sect. 4.7, Gaia (2016) is expected to detect tens of thousands of
giant planets on relatively wide orbits (Casertano et al. 2008; Perryman et al. 2014).
Therefore, I will also discuss astrometry in this section. There are, of course, many
othermethods of detecting exoplanets (see Fig. 4.1). However, none of thesemethods
has yielded large samples of planets to date, and so I will not be discussing these in
this review.

Figures4.2 and 4.3 show the distribution of confirmed exoplanets as a function
of mass (or minimum mass in the case of RV detections) and period (Fig. 4.2), or
radius and period (Fig. 4.3). There are several noteworthy features:

• Most of the planetswith (minimum)massmeasurements andorbital periods greater
than ∼100 days were discovered via RV, and thus do not have radius measure-
ments. Conversely, the majority of planets with mass measurements and periods of
less than ∼100 days were discovered by ground-based transit surveys (e.g., “hot
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Fig. 4.1 Agraphical summary of exoplanet detectionmethods, including the number of discoveries
by eachmethod as of January 1, 2020. Courtesy of Perryman (2018) and reproducedwith permission

Fig. 4.2 The distributions of the ∼4300 confirmed low mass companions to stars as a function of
their mass (or minimum mass in the case of RV detections) and period. For planets detected by
microlensing and direct imaging, the projected semi-major axis has been converted to period using
Newton’s version of Kepler’s Third Law. The color-coding denotes the method by which planets
were detected. I note that ∼25 planets detected by direct imaging are not shown in this plot because
they have periods that are greater than �106 days. This figure is based on data from the NASA
Exoplanet Archive: https://exoplanetarchive.ipac.caltech.edu/. Courtesy of Jesse Christiansen with
assistance from Radek Poleski, reproduced with permission

https://exoplanetarchive.ipac.caltech.edu/


4 The Demographics of Wide-Separation Planets 251

Fig. 4.3 Same as Fig. 4.2, except showing the known planets in radius and period space. As with
Fig. 4.2, the color coding denotes the method by which planets were detected. This figure is based
on data from the NASA Exoplanet Archive: https://exoplanetarchive.ipac.caltech.edu/. Courtesy
of Jesse Christiansen, reproduced with permission

Jupiters”). This is because, although Kepler discovered far more transiting planets
than ground-based transit surveys, most of the host stars were too faint for RV
follow-up, and only a relatively small subset exhibited transit timing variations
that allow for a measurement of the planet mass.

• The number of hot Jupiters detected via RV is much smaller than the number of
hot Jupiters detected by ground-based transit surveys, and much smaller than the
number of Jovian planets (mostly discovered with RV) with periods �100 days.
This has several implications. From RV surveys, it is known that hot Jupiters are
relatively rare compared to the population of Jupiters with longer periods (Wright
et al. 2012). On the other hand, when hot Jupiters detected by transits are also
considered, the fact that the two populations appear comparable in number is due
to the strong selection bias of transit surveys toward short-period planets (e.g.,
Gaudi et al. 2005; Gaidos and Mann 2013).

• The vast majority of planets with measured radii do not have mass measurements.
As mentioned above, this is due to the fact that the Kepler host stars are generally
too faint for RV follow-up, and a minority of systems exhibit transiting timing
variations. The majority of planets that have both mass and radius measurements
were discovered by ground-based transit surveys.

https://exoplanetarchive.ipac.caltech.edu/
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• The fact that the spread in the radii of hot Jupiters is considerably smaller than the
spread in mass is a consequence of the fact that the radii of objects with masses
that span roughly the mass of Saturn up to the hydrogen-burning limit are all
approximately constant, with radii of ∼RJup.

• Finally, and most relevant to this review, there is paucity of planets in the lower
right corner of both figures (small masses/radii and long periods). This is purely a
selection effect, as I discuss below. It is also worth noting that this is the area that
is spanned by the planets in our solar system. In particular, essentially no detection
method is currently sensitive to analogs of any of the planets in our solar system
except for Jupiter (and, in the case of microlensing, Saturn and possibly analogs
of the ice giants).

4.4.1 A Note About Stars

Before discussing the sensitivities and biases of each detection method, I will first
make a few comments about stars. Although initial RV surveys focused primarily on
solar-type (FGK) stars, to date a wide range of stellar host types have been surveyed
for exoplanetary companions. These hosts span a broad range of properties that can
be relevant for exoplanet detection, including radius, mass, effective temperature,
projected rotation velocity, luminosity, activity, and local number density, to name a
few. Thus, as is well appreciated, in order to understand the impact of the sensitivities
and biases of a given detection method on the population of planets that can be
detected, it is essential to understand how these depend on the properties of the host
stars (“Know thy star, know thy planet”). Consequently, it is also important to have a
reasonably in-depth understanding of stellar properties and how they varywith stellar
type, as well as have a detailed accounting of the distribution of stellar properties of
any given exoplanet survey.

For the purposes of this review, I focus on relatively unevolved solar-type FGKM
main sequence stars. For such stars, the mass-luminosity and mass-radius relation
can very roughly be approximated by Torres et al. (2010)

L∗ = L�
(
M∗
M�

)4

(4.10)

R∗ = R�
(
M∗
M�

)
(4.11)

Teff = Teff,�
(
M∗
M�

)1/2

. (4.12)

The mass-radius relation holds from roughly the hydrogen-burning limit to ∼2 M�
for stars near the zero-age main sequence, whereas the luminosity-mass relation
holds from roughly the fully convective limit of ∼0.35 M� up to ∼10 M�. Below
the fully convective limit, the mass-luminosity relation is shallower than Eq. (4.10),
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and similarly, in this regime, the effective temperature-mass relationship deviates
from the scaling relation above. I will use these approximate relations to express the
sensitivities of the various detection methods as a function of the host star mass.

4.4.2 A General Framework for Characterizing Detectability

In the following few sections, I will discuss the scaling of the sensitivity of each of
the five methods discussed in this section (RV, transits, direct imaging, microlens-
ing, and astrometry) with planet and host star parameters, highlighting the intrinsic
sensitivities and biases of each method. I will not attempt to provide an in-depth dis-
cussion of these detection methods, as this material has been covered in numerous
other books and reviews (Seager 2010; Perryman 2018; Wright and Gaudi 2013;
Fischer et al. 2014; Bozza et al. 2016).

As outlined in Wright and Gaudi (2013), although the criteria to detect a planet
depends on the details of the planet signal, the data properties (e.g., cadence, uncer-
tainties), and the precise quantitative definition of a detection, one can often estimate
the scaling of the signal-to-noise ratio with the planet and host star properties by
decomposing the signal into two contributions. These are the overall magnitude of
the signal, and the detailed form of the signal itself. The magnitude of the signal typ-
ically depends on the parameters of the system (planet and host), and largely dictates
the detectability of the planet. The detailed form of the signal typically depends on
geometrical or nuisance parameters, but generally has a small impact on the mag-
nitude of the signal itself. These two contributions can often be relatively cleanly
separated, such that one only needs to consider the magnitude of the signal to gain
intuition about the scaling of the signal-to-noise ratio of a given method with the
stellar and planetary parameters, and thus detectability with these parameters. In the
language of Sect. 4.2, the magnitude of the signal generally depends on the set of the
(more) physical parameters of interest βI, whereas the form of the signal depends on
set of parameters βN , although I stress that this separability does not strictly apply
over all the detection methods.

Assuming this separability, the approximate signal-to-noise ratio of a planet signal
can be written in terms of the magnitude or amplitude of the signal A, the number
of observations Nobs, and the typical measurement uncertainty σ , such that

(S/N)�A(βI)
N 1/2
obs

σ
g(βN ), (4.13)

where g(βN ) is a function of βN whose value depends on the details of the signal,
but is typically of order unity. Thus, to roughly determine the scaling of the (S/N)

with the physical parameters of the planet and star (for an arbitrary survey), one must
simply consider the scaling of the amplitude A on the physical parameters.
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4.4.3 Radial Velocity

The set of parameters that canbemeasuredwith radial velocities areβ = {K , P, e, ω,

Tp, γ
}
(see Chap.3, Sect. 2.1). Assuming uniform and dense sampling of the RV

curve over a time span that is long compared to the period P , the signal amplitude
is A = K (P, M∗, Mp, e, i), and the total signal-to-noise ratio scales as

(S/N)RV ∝ A ∝ MpP
−1/3M−2/3

∗ ∝ Mpa
−1/2M−1/2

∗ . (4.14)

with a relatively weak dependence on eccentricity for e � 0.5.
Thus radial velocity surveys are more sensitive to more massive planets, with

the minimum detectable mass6 at fixed (S/N) scales as P1/3 for planet periods of
P < T , where T is the duration of the survey.

For P > T , it becomes increasingly difficult to characterize each of the parameters
β individually. For P � T , the signal of the planet is an approximately constant
accelerationA∗,with amagnitude that isA∗ = (2πK/P) f (φ, ω, e),where f (x) is a
function that depends onω, e, and the phase of the orbitφ. Thus, ameasurement of the
acceleration can constrain the combination Mp/P4/3. By combining a measurement
of A∗ with the direct detection of the companion causing the acceleration, one can
derive a lower limit on Mp (Torres 1999; Crepp et al. 2012).

4.4.4 Transits

The set of parameters than can bemeasuredwith transits areβ = {P, δ, T, τ, T0, F0},
where T is the full-width half-maximumduration of the transit, τ is the ingress/egress
duration,7 T0 is a fiducial reference time, and F0 is the out-of-transit baseline flux (see
Chap.3, Sect. 2.2). If the radius of the host star can be estimated, then the radius of the
planet can also be inferred via Rp = δ1/2R∗. If the radial velocity of the host star can
also be measured, it is then possible to determine the orbital eccentricity and planet
mass Mp, and thus the density of the planet ρp. Of course, with additional follow-up
observations, it is also possible to study the atmospheres for some transiting planets
(e.g., Seager 2010).

6 Formally, the minimum detectable Mp sin i .
7 I note that a common alternative parameterization is to use T14, the time between first and fourth
contact, and T23, the time between second and third contact (also referred to as Tfull and Tflat).
I strongly advise against adopting this parameterization, for several reasons. First, the algebra
required to transform from this parameterization to the physical parameters is significantly more
complicated (compare Seager and Mallén-Ornelas 2003 and Carter et al. 2008). Second, T14 and
T23 are generally much more highly correlated than T and τ , making the analytical interpretation of
fits using the former parameterization much more difficult than using the latter parameters. Finally,
the timescale estimated from the Boxcar Least Squares algorithm (Kovács et al. 2002) is muchmore
well approximated by T than T14 or T23.

http://dx.doi.org/10.1007/978-3-030-88124-5_3
http://dx.doi.org/10.1007/978-3-030-88124-5_2
http://dx.doi.org/10.1007/978-3-030-88124-5_3
http://dx.doi.org/10.1007/978-3-030-88124-5_2
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Assuming uniform sampling over a time span that is long compared to the tran-
sit period P , we have that the signal-to-noise ratio is (S/N )TR = N 1/2

tr (δ/σ ), where
Ntr = (Ntot/π)(R∗/a) is the number of data points in transit and Ntot is the total num-
ber of data points. Therefore, A = δ = f (Rp, R∗, M∗, P), or A = f (Rp, R∗, M∗, a).
The signal-to-noise ratio of the transit when folded about the correct planet period
scales as (Wright and Gaudi 2013)

(S/N)TR ∝ A ∝ R2
pP

−1/3M−5/3
∗ ∝ Mpa

−1/2M−3/2
∗ . (4.15)

Furthermore, the transit probability scales as

Ptr ∝ R∗
a

∝ P−2/3M2/3
∗ ∝ a−1M∗. (4.16)

Of course, the planet must transit and the signal-to-noise ratio requirement must be
met to detect the planet. Finally, transit surveys require at least two transits to estimate
the period of the planet, and often require at least three to aid in the elimination of
false positives. Thus the final requirement to detect a planet via transits is P ≤ T/3.

Thus transit surveys are more sensitive to large planets, with the minimum
detectable radius at fixed signal-to-noise ratio scaling as P1/6 up until P = T/3. Plan-
ets with periods longer than this are essentially undetectable with traditional transit
selection cuts (but see Sect. 4.5.2). Furthermore, the transit probability decreases as
P−2/3. Because of these two effects, transit surveys are very “front loaded” for rea-
sonable planet distributions that do not rise sharply with increasing period, meaning
that, e.g., doubling the duration of the survey will generally not double the yield of
planets.

4.4.5 Microlensing

Unlike most of the other detection methods discussed in this chapter, the detectabil-
ity of planets via microlensing does not lend itself as well to the simple analytic
description described above. In particular, it is not possible to write down a simple
scaling of the signal-to-noise ratio with the planet and/or host star properties. I will
therefore simply review the essentials of microlensing and the parameter space of
planets and stars to which it is most sensitive. For more detail, I refer the reader to
the following reviews and references therein (Gaudi 2012; Gould 2016).

Briefly, a microlensing event occurs whenever a foreground compact object (the
lens, which could be, e.g., a planet, brown dwarf, star, or stellar remnant) passes very
close to an unrelated background source star. In general, for a detectablemicrolensing
event to occur, the lens must pass within an angle of roughly the angular Einstein
ring radius θE of the lens,

θE ≡ (κMπrel)
1/2 , (4.17)
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whereπrel = πl − πs = au/Drel is the relative lens (πl )-source(πs)parallax,Drel
−1 ≡

D−1
l − D−1

s , Dl and Ds are the distances to the lens and source, respectively,
and κ ≡ 4G/(c2au) = 8.14 mas M−1

� is constant. For a typical stellar mass of
M∗ = 0.5M�, a source in the Galactic center with a distance of Ds = 8 kpc, and a
lens half way to the Galactic center with Dl = 4 kpc, θE � 700 µas. The minimum
lens-source alignment must be exquisite for a detectable microlensing event to occur,
and given the typical number density of lenses along the line of sight and typical
lens-source relative proper motions μrel, microlensing events are exceedingly rare.
Thus most microlensing surveys focus on crowded fields toward the Galactic center,
where there are many ongoing microlensing events per square degree at any given
time.

When a microlensing event occurs, the lens creates two images of the source,
whose separations are of order 2θE during the event, and are thus generally unre-
solved (c.f. Dong et al. 2019). However, the background source flux is significantly
magnified if the lens passes within a few θE of the source, resulting in a transient
brightening of the source: a microlensing event. The characteristic timescale of a
microlensing event is the Einstein ring crossing time,

tE ≡ θE

μrel
, (4.18)

whereμrel is the relative lens-source propermotion. The typical timescale of observed
microlensing events toward the Galactic bulge is tE∼20 days (Mroz et al. 2019a),
but can range from a few days to hundreds of days.

A bound planetary companion to the lens can be detected during a microlensing
event if it happens to have a projected separation and orientation that is close to the
paths that the two images create by the host lens trace on the sky. The planet will then
further perturb the light rays from the source, causing a short duration deviation to
the otherwise smooth, symmetric microlensing event due to the more massive host
(Mao and Paczynski 2011; Gould and Loeb 1992; Bennett and Rhie 1996). These
deviations are also of order hours to days for terrestrial to gas giant masses. Since
the planets must be located close to the paths of one of the two images to create a
significant perturbation, and the images are always close to the Einstein ring during
the primary microlensing events, the sensitivity of microlensing is maximized for
planets with angular separations of ∼ θE. At the distance of the lens, θE corresponds
to a linear Einstein ring radius of

rE ≡θEDl (4.19)

=2.85au

(
M

0.5M�

)1/2 (
Ds

8 kpc

)1/2 [
x(1 − x)

0.25

]1/2

, (4.20)

where x ≡ Dl/Ds . Thus the sensitivity of microlensing surveys for bound exoplan-
ets peaks for planets with semi-major axes of ∼3 au (M∗/0.5 M�)1/2, which cor-
responds to orbital separations relative to the snow line (as defined in Eq.4.1) of
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∼2 (M∗/0.5 M�)−1/2. Planets with a significantly smaller semi-major axes become
difficult to detect due to the fact that they perturb faint images. Planets with signifi-
cantly larger semi-major axis can be detected if the lens-source trajectory is aligned
with the host star-planet projected binary axis. However, the probability of having
the requisite alignment decreases with increasing semi-major axis. Eventually, the
probability of detecting the magnification due to both the host and planet becomes
exceedingly small. Thus very wide separation planets are generally only detected
as isolated, short-timescale microlensing events, which produce light curves that
are essentially indistinguishable from events due to free-floating planets (Han et al.
2005).8 Thus microlensing is, in principle, sensitive to planets with separations out
to infinity, e.g., including free-floating planets (Mroz et al. 2018, 2019b, 2020a;
Kim et al. 2020; Ryu et al. 2020). The timescales of microlensing events caused by
free-floating or widely-bound planets with terrestrial to gas giant masses also range
from hours to days (since tE ∝ θE ∝ M1/2

p ).
Microlensing events are rare and unpredictable. Furthermore, planetary pertur-

bations to these events are brief, unpredictable and generally uncommon. Typical
detection probabilities given the existence of a planet located with a factor of ∼2
of θE are a few percent to tens of percent for terrestrial to gas giant planets (Gould
and Loeb 1992; Bennett and Rhie 1996). As with free-floating planets, the duration
of planetary perturbations caused by bound planets scales as ∼M1/2

p , and thus range
from hours to days. Therefore, microlensing surveys for exoplanets must observe
many square degrees of the Galactic bulge on timescales of tens of minutes to both
detect the primary microlensing events and monitor them with the cadence needed
to detect the shortest planetary perturbations.

Themagnitudes of planetary perturbations are essentially independent of themass
of the planet, for planets with angular Einstein ring radii that are larger than the
angular size of the source, i.e., when θE � θ∗. For a source with R∗ ∼ R� at a
distance of Ds ∼ 8 kpc, θ∗ ∼ 1 μas. The angular Einstein ring radius for an Earth-
mass lens at a distance of 4 kpc and source distance of 8 kpc is θE ∼ 1 mas. Thus, for
planets with mass � M⊕, finite source effects will begin to dominate, as the planet
is only magnifying a fraction of the source at any given time.

In summary, while the magnitude of the planetary perturbations to microlens-
ing events, as well as the peak magnification of microlensing events due to widely-
separated and free-floating planets, is essentially independent of planetmass for plan-
ets with mass � M⊕, these signals become rarer and briefer with decreasing planet
mass. Nevertheless, planets with Mp � M⊕ can be detected from current ground-
based surveys (Suzuki et al. 2018), and planets with Mp � 0.01M⊕ (or roughly the
mass of the moon) can be detected with a space-based microlensing survey (Bennett
and Rhie 2002; Penny et al. 2019).

The parameters that can be measured from a microlensing event with a well-
sampled planetary perturbation are β = {

t0, tE, u0, Fs, Fb, αμL, q, s
}
. Here t0 is the

time of the peak of primary microlensing event, u0 is the minimum lens-source

8 I note that, in some cases, it is possible to disambiguate free-floating planets from bound planets
by detecting (or excluding) light from the host.
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angular separation in units of θE (which occurs at a time t0), Fs is the flux of the
source, Fb is the flux of any light blended with the source but not magnified, which
can include light from the lens, companions to the lens and/or source, and unrelated
stars, αμL is the angle of the source trajectory relative to the projected planet-star
axis,9 q ≡ Mp/M∗ is the planet-star mass ratio, and s is the instantaneous projected
separation in units of θE. Note that Fs and Fb can be (and usually are) measured in
several bandpasses. The primary physical parameters of interest are Fs , Fb, tE, q,
and s. For most planetary perturbations, the effect of the finite size of the source
on the detailed shape of the perturbation can also be detected, which allows one
to also infer ρ = θ∗/θE. Since θ∗ can be estimated from the color and flux of the
source, θE can generally be inferred, leaving a one-parameter degeneracy between
the lens mass and distance (assuming Ds can be estimated, as is usually the case).
This degeneracy can be broken in a number of ways (see Gaudi et al. 2002 for a
detailed discussion), but the most common method is to measure the flux of the lens
(Bennett et al. 2007). This requires isolating light from the lens in the blend flux Fb,
and thus typically requires high angular resolution from the ground using adaptive
optics, or from space, in order to resolve light from unrelated stars from the lens and
source flux. For space-based microlensing surveys, it is expected that the lens flux
will be detectable for nearly all luminous lenses (Bennett et al. 2007), and thus it
will be possible to estimate M∗, Mp, Dl , and the instantaneous projected separation
between the star and planet in physical units, for the majority of planet detections.
Sincemicrolensing events can be caused by stars (or planets) all along the line of sight
toward the Galactic bulge, it will be possible to determine the frequency of bound
and free-floating planets as a function of Galactocentric distance, and, in particular,
determine if the planet population is different in the Galactic disk and bulge (Penny
et al. 2016).

4.4.6 Direct Imaging

It is generally more complicated to characterize direct imaging observations. In part,
this is because there are three general cases of emission from the planet that must be
considered. The first, and the most relevant to current ground-based direct imaging
surveys, is the case where the luminosity of the planet is dominated by the residual
heat from formation and is thus decoupled from the luminosity of, and distance from,
its host star. In this case, it is possible to measure the angular separation of the planet
from its host star θ . The amplitude of the signal is simply the flux of the planet
in a specific band A = Fp,λ, and thus β = {

Fp,λ, θ
}
. With a distance to the star,

it is possible to determine the monochromatic luminosity of the planet as well as
the instantaneous physical separation projected on the sky. Using detailed cooling
models of exoplanets as well as an estimate of the age of the system, it is possible

9 I note that in the microlensing literature, this variable is typically simply referred to as α. Since I
have already defined α above, I adopt the form αμL to avoid confusion.
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to use the former to obtain a (model-dependent) estimate of the mass of the planet.
With multiple epochs spanning a significant fraction of the orbit of the planet, it is
possible to measure its Keplerian orbital elements (up to a two-fold degeneracy in
the longitude of the ascending node).

The second and third cases correspond towhen the energy output from the residual
heat from formation is negligible compared to the energy input due to the irradiation
from the host star (e.g., when the planet is in thermal equilibrium with the host star
irradiation). In this case, the spectrum of the planet has two components: reflected
starlight and the thermal emission from starlight that is absorbed and then re-radiated
as thermal emission. In the case of detection by reflected starlight, the basic param-
eters that can be measured are again the instantaneous angular separation from the
host star and the amplitude of the signal which is simply given by A = Fp,λ. Thus
β = {

Fp,λ, θ
}
. As before, the orbital elements can be inferred via a distance to the

system and multiple epochs of astrometric observations of the planet. In reflected
light, the flux of the planet at any given epoch depends on the radius of the planet, its
albedo, and its phase function. The phase function can be estimated from the mea-
surement of the planet flux over multiple epochs of its orbit, leaving a degeneracy
between the planet’s radius and albedo. The albedo can be roughly estimated from a
spectrum of the planet, with a precision that depends on the particular properties of
the system. For a detection in thermal emission, the directly-measured parameters
are (assuming that a spectrum can be obtained) β = {

θ, Fp,λ, Teq
}
, where Teq is the

equilibrium temperature of the planet. As with detection in reflected light, the orbital
elements can be determined with multiple epochs and a distance to the system. In
this case, the amplitude of the signal is also given by A = Fp,λ. By combining the
detection of a planet in both reflected light and thermal emission, it is possible to
determine Rp, Teq and the albedo.

In addition to these three kinds of emission, there are also multiple sources of
noise in direct imaging surveys. These include, but are not limited to: Poisson noise
from the planet itself, noise from imperfectly removed light from the host, noise
from the local zodiacal light, noise from the zodiacal light in the target system (the
“exozodi”), and any other sources of background noise (e.g., read noise and dark
current). Which of these dominate (if anyone dominate) depends on many factors,
including, e.g., the planet/star flux ratio, the limiting contrast floor, the amount of
exozodiacal dust in the target system, and the angular resolution of the telescope.

Rather than repeat the discussion of the parameters that can be measured in each
case, or how the various physical parameters interplay to affect the detectability of
directly-imaged planets, I will simply refer the reader to the discussion in Wright
and Gaudi (2013). However, in contrast with Wright and Gaudi (2013), I will not
assume any specific source of noise, and thus will not assume any specific relation
between the noise and the properties of the host star. Therefore, the scalings of the
signal-to-noise ratio below reflect only the contributions due to the planet flux signal,
and do not include any contributions to the noise from the planet or host star, and
thus do not include any scalings of the properties of the planet and/or host star with
their potential contribution to the noise.
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With these caveats in mind, we have that amplitude of the signal is given by
the planet flux A = Fp,λ. Considering the three different cases discussed above, we
have that, for planets that are not necessarily in thermal equilibrium with their host
star, Fp,λ ∝ R2

pTp, where Tp is the temperature of the planet and I have assumed
observations in the Rayleigh-Jeans tail (where the flux of a blackbody is linearly
proportional to its temperature). For planets in thermal equilibrium with their host
stars, we have that the planet flux is Fp,λ ∝ L∗R2

pa
−2 in reflected light, and Fp,λ ∝

R2
pTp ∝ R2

pL
1/4
∗ a−1/2 in the Rayleigh-Jeans tail. Thus the scalings are

(S/N)dir ∝ A ∝ R2
pa

−2M4
∗ ∝ R2

pP
−4/3M10/3 (Reflected Light, Equilibrium)

(4.21)

(S/N)dir ∝ A ∝ R2
pa

−1/2M∗ ∝ R2
pP

−1/3M5/6
∗ (Thermal, Equilibrium, RJ)

(4.22)

(S/N)dir ∝ A ∝ R2
pTp (Thermal, RJ), (4.23)

where the last two expressions are only valid for the Raleigh-Jeans tail.
In addition, the planet must have a maximum angular separation that is outside

the inner working angle θIWA of the direct imaging survey, which is essentially the
minimum angular separation from the star that the planet can be detected. This leads
to the requirement that

a � θIWAd, (4.24)

where d is the distance to the star. The inner working angle is generally tied to the
wavelength of light λ of the direct imaging survey, and the effective diameter D of
the telescope, or for interferometers, the distance between the individual apertures.
Specifically

θIWA ∼ N
λ

D
, (4.25)

where N is a dimensionless number that is typically between 2 and 4 that primarily
depends on the detailed properties of the starlight suppression system (coronagraph,
starshade, or interferometer).

In general, the above scalings imply that ground-based direct imaging surveys are
generally most sensitive to massive, young giant planets at projected separations of
�10 au from their host star. Direct imaging surveys for planets in thermal equilibrium
have a more complicated selection function. In terms of semi-major axis, they are
typically most sensitive to planets on semi-major axis that are just outside of the
inner working angle. At fixed semi-major axis and distance, they are more generally
sensitive to planets orbiting more massive stars. However, more massive stars are
generally rare and thusmore distant (and thus are less likely tomeet the innerworking
angle requirement). Furthermore, the contrast between the planet and star is larger
for more massive stars (at fixed planet radius and semi-major axis). Thus if residual
stellar flux is the dominant source of noise, lower mass stars are preferred. The net



4 The Demographics of Wide-Separation Planets 261

result of these various considerations is that space-based direct imaging surveys in
reflected light are generally most sensitive to solar-type stars, particularly for planets
in the habitable zone (e.g., Agol 2007).

4.4.7 Astrometry

Assuming a large number of astrometric measurements that cover a time span that
is significantly longer than the period of the planet, the parameters than can be
measured from the astrometric perturbation of star due to the orbiting planet are
β = {

θast, P, e, ω, Tp, i,�
}
, where � is the longitude of the ascending node,10 d is

the distance to star, and the amplitude of the astrometric signal due to the planet is
A = θast, where

θast ≡ a

d

Mp

M∗
. (4.26)

Note that Eq. (4.26) assumes Mp � M∗.
In practice, for planetary-mass companions, the magnitude of the stellar proper

motion μ∗ and parallax π is significantly larger than θast, and thus if the astrometric
perturbation from the planet can be detected, so can μ∗ and d. The mass of the star
can be estimated using the usual methods, and thus Mp and a can be inferred, along
with the Keplerian orbital elements and orientation of the orbit on the sky (up to the
two-fold degeneracy �).

Again, assuming a large number of astrometric measurements that cover a time
span that is significantly longer than the period of the planet, the signal-to-noise ratio
scales as

(S/N)AST ∝ A ∝ MpaM
−1
∗ d−1 ∝ MpP

2/3M−2/3
∗ d−1. (4.27)

Thus astrometry is more sensitive to more massive planets, as well as planets on
longer period orbits. However, unlike the RV method, the sensitivity of astrometry
declines precipitously for planets periods P greater than the duration of the survey
T . This is because such planets only produce an approximately linear astrometric
deviation of the host star (particularly for P � T ), which is then absorbed when
fitting for the (much larger) stellar proper motion (Casertano et al. 2008; Gould
2008).

Thus the detection and characterization of exoplanets via astrometry have an
additional criterion, namely that P � T . The net result is that the sensitivity function
of astrometry in Mp − P space has a ‘wedge-shaped’ appearance, with the minimum
detectable planet mass a given (S/N) decreasing as P−2/3 until P ∼ T , and then
increasing precipitously for P > T .

10 Note that, with only astrometric observations, there is a two-fold ambiguity in �.
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4.4.8 Summary of the Sensitivities of Exoplanet Detection
Methods

Considering the five primary methods of detecting exoplanets: radial velocities, tran-
sits, microlensing, direct imaging, and astrometry, it is clear that all methods are (not
surprisingly) more sensitive to more massive or larger planets.

Radial velocity and transit surveys are generally more sensitive to shorter-period
planets. The sensitivity of the radial velocity method (in the sense of the minimum
detectable planet mass) declines as P1/3, and maintains this sensitivity scaling up to
the survey duration T . Thus, long-period or wide-separations planets can be detected
only in radial velocity surveys with sufficiently long baselines. For planets with
P > T , planets produce accelerations or “trends”,which can constrain a combination
of the planet mass and period. The sensitivity of transit surveys (in the sense of the
minimum detectable planet mass) decline as P1/6 up until roughly T/3, assuming
three transits are required for a robust detection. Planets with periods longer than
this are undetectable under this criterion. Thus radial velocity and transit surveys
are generally less well-suited to constraining the demographics of long-period or
wide-separation exoplanets.

Astrometric surveys are more sensitive to longer-period planets, with their sen-
sitivity (in the sense of the minimum detectable planet radius) increasing as P2/3,
up to P ∼ T . For planets with P > T , the sensitivity of astrometric surveys drops
precipitously, e.g., it is very difficult to detect and characterize planets with P > T .

The sensitivity functions for microlensing and direct imaging surveys are gen-
erally more complicated. Microlensing surveys are most sensitive to planets with
semi-major axes that are within roughly a factor of two of the Einstein ring radius,
which is rE ∼ 3 au(M∗/M�)1/2 for typical lens and source distances. Microlens-
ing is relatively insensitive to planets with semi-major significantly smaller than
rE, but maintains some sensitivity to planets with separation significantly larger
than rE, although the detection probability drops as ∼ a−1. Microlensing is the only
method capable of detecting old free-floating planets with masses significantly less
than ∼MJup. The sensitivity functions of direct imaging surveys are similarly com-
plicated. Current ground-based surveys, which typically detect young planets via
thermal radiation from their residual heat from formation are typically sensitive to
planets that are relatively widely separated from (the glare of) their host stars. Future
space-based direct imaging surveys designed to detect mature planets in thermal
equilibrium with their host stars in reflected light are generally only sensitive to
planets with semi-major axes greater than ∼1au (due to the requirement that the
planet angular semi-major axis is outside the inner working angle, which is typically
a few λ/D), and their sensitivity declines as Rp ∝ a. Space-based direct imaging
mission surveys designed to detect mature planets in thermal equilibrium with their
host stars via their thermal emission are also generally only sensitive to planets with
semi-major axis � 1au, and their sensitivity declines as Rp ∝ a1/4.

Thus, the strongest constraints on the demographics of long-period or wide-
separation planets are expected to come from long-running radial velocity surveys,
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microlensing surveys, astrometric surveys, and direct imaging surveys. Relatively
short-duration radial velocity surveys and transit surveys, in general, do not con-
strain the demographics of long-period planets.

Finally, I will make a few comments about the sensitivity of the various methods
to the mass of the host star. All of the methods discussed here are more sensitive to
planets at fixed mass Mp or radius Rp and period P that orbit lower-mass stars, with
the exception of direct imaging surveys for planets in thermal equilibrium. For radial
velocity surveys, the scaling of the (S/N) at fixed period is ∝ M−2/3

∗ . For transits,
the scaling of the (S/N) at fixed period is ∝ M−5/3

∗ . For microlensing, the scaling is
approximately ∝ M−1/2

∗ . For direct imaging surveys, the scaling ranges from being
independent of the host star mass (for young planets detected in thermal emission) to
∝ M4∗ (for planets in thermal equilibrium detected in reflected light). For astrometric
surveys, the (S/N) at fixed period scales as ∝ M−2/3

∗ .

4.5 The Demographics of Wide-Separation Planets

I now turn to summarize some of the most important extant constraints on the demo-
graphics of long-period or wide separation planets. I will first summarize results
from each of the individual detection techniques that have placed at least some con-
straints on wide-separation planets, and then discuss efforts to synthesize results
from multiple surveys using the same technique, and multiple surveys using differ-
ent techniques. There have been very few attempts to synthesize results frommultiple
surveys (regardless of whether or not they use the same detection technique) in gen-
eral, for many reasons, some of which are discussed in Sect. 4.3. However, because
each technique is more or less sensitive to a particular region of the planet (Mp or Rp

and P or a) and host star parameter space, such a synthesis is needed to assemble
as complete a picture of exoplanet demographics as possible. Such a broad synthe-
sis of exoplanet demographics, when performed correctly, provides the empirical
ground truth to which all theories of planet formation and evolution must match.
Thus synthesizing results from multiple surveys remains a fruitful avenue of future
research.

I note that, while I will attempt to highlight the most relevant results from the
literature, it is simply not possible to provide a comprehensive and complete summary
of all exoplanet demographics surveys in the limited amount of space available here.
In particular, I will generally not discuss results regarding the demographics of short-
period planets, as this topic is already covered in Chap.3. Specifically, I will not be
discussing the vast literature on inferences about the demographics of relatively
short-period planets from Kepler.

http://dx.doi.org/10.1007/978-3-030-88124-5_3
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4.5.1 Results from Radial Velocity Surveys

Radial velocity surveys for exoplanets have been ongoing since the late 1980s (Camp-
bell et al. 1988; Latham et al. 1989; Mayor et al. 1992; Marcy and Butler 1992), with
the first widely-accepted discovery of an exoplanet using the radial velocity tech-
nique announced in 1995with the discovery of 51 Pegasi b (Mayor andQueloz 1995).
A few of these radial velocity surveys have been ongoing since the early 1990s and
thus have accrued a baseline of roughly 30 years (corresponding to a semi-major
axis of ∼10 au for a solar-type star, or roughly the semi-major axis of Saturn). The
minimum achievable precision of these surveys have generally decreased with time,
but the most relevant precision for detecting long-period planets is roughly the worst
precision, which for the surveys mentioned above was in the range of a few m/s.
For a Jupiter-sun analog, K∼13 m/s, P∼12 year whereas for a Saturn-sun analog,
K∼3m/s, P ∼ 30 year. Thus these long-term surveys are readily sensitive to Jupiter
analogs orbiting Sun-like stars, but Saturn analogs orbiting Sun-like stars are just at
the edge of their sensitivity (Bryan et al. 2016). Thus, extant radial velocity surveys
can only constrain the population of giant planets (Mp�0.15 MJup beyond the snow
line of Sun-like stars.

Surveys for planets orbiting M dwarfs generally have shorter baselines, but cover
the complete orbits of planets with semi-major axes out to 3 au (Johnson et al. 2010a;
Bonfils et al. 2013). Giant planets with orbits longer than the baseline of these surveys
can be detected via their trends, or, for sufficiently massive planets and sufficiently
precise radial velocity observations, the planet properties can be characterized using
partial orbits (Bonfils et al. 2013; Montet et al. 2014). However, as with surveys
for planets orbiting solar-like stars, these surveys can generally only constrain the
demographics of relatively massive planets beyond the snow line of M dwarfs.

Using the sample of planets discovered in theHARPS andCORALIE radial veloc-
ity surveys of planets orbiting primarily Sun-like stars fromMayor et al. (2011), and
accounting for the survey completeness, Fernandes et al. (2019) infer that the fre-
quency of giant planets with masses in the range of 0.1–20 MJup rises with increasing
period (in agreement with previous results, e.g., Cumming et al. 2008) up to roughly
2–3 au (e.g., roughly the snow line for Sun-like stars), at which point the frequency of
such planets begins to decrease with increasing period (see Fig. 4.4).11 Wittenmyer
et al. (2016) analyzed 17 years of data from theAnglo-Australian Planet Search radial
velocity survey of Sun-like stars. They estimated the frequency of “Jupiter analogs”,
which they define as planets with semi-major axes between a =3–7 au, mass of
Mp > 0.3 MJup, and eccentricity e < 0.3, to be 6.2+2.8

−1.6%. This is consistent with the
result from Fernandes et al. (2019), implying that true Jupiter analogs are relatively
rare. Furthermore, extrapolating the declining frequency of giant planets beyond the
snow line as inferred by Fernandes et al. (2019) results in a frequency of giant plan-

11 As noted in Chap.3, Sect. 3.1 and Fig. 4.12,Wittenmyer et al. (2020) find instead that long-period
giant planet frequency beyond the snowline does not appear to decline, while Fulton et al. (2021)
provide evidence that the turnover in occurrence rate of gas giants might start closer to 10 au, and
it might be mass-dependent.

http://dx.doi.org/10.1007/978-3-030-88124-5_3
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ets accessible to direct imaging surveys that is consistent with detection rates from
those surveys (with some caveats), which is not the case if one simply extrapolates
the increasing frequency of giant planets inferred by Cumming et al. (2008) from the
analysis of the shorter-baseline California-Carnegie planet survey out to separations
where direct imaging surveys would be sensitive to (young analogs) of them.

Using a database of 123 known exoplanetary systems (primarily hot and warm
Jupiters) monitored by Keck for nearly 20 years, combined with NIRC2 K-band
adaptive optics (AO) imaging, Bryan et al. (2016) estimated the frequency of giant
planets with masses between Mp = 1–20 MJup and a =5–20 au to be∼52 ± 5%. This
frequency is quite high, and in particular higher than the extrapolation of the results
from Cumming et al. (2008). This suggests that the existence of hot/warm Jupiters
and cold Jupiters may be correlated. In other words, the conditional probability of
a particular star hosting a cold Jupiter, given the existence of a hot/warm Jupiter, is
not random.

The constraints on the population of wide-separation planets orbiting low-mass
stars are generallyweaker. Surveys for giant planets orbiting low-massMstars (M∗ �
0.5 M�) have generally found a paucity of planets on relatively short orbital periods
interior to the snow line (Johnson et al. 2010a). This is seemingly a victory for
the core-accretion model of planet formation, which generally predicts that giant
planets should be rare around low-mass stars, due to their lower-mass disks and
longer dynamical timescales at the distances where giant planets are thought to have
formed (Laughlin et al. 2004; Johnson et al. 2010b). However, these constraints
were generally only applicable for planets with semi-major axes less than a few
au, implying that giant planets could still form efficiently around low-mass stars, but
perhaps do not migrate to the relatively close-in orbits where they can be detected via
the relatively short time baseline radial velocity surveys for exoplanets orbiting low-
mass stars. Indeed, a closer inspection of the results from the HARPS (Bonfils et al.
2013) and California-Carnegie (Montet et al. 2014) surveys for planets orbiting M
dwarfs hint at a significant population of giant planets at orbits with periods roughly
equal to the survey duration. See Fig. 4.4.

4.5.2 Results from Transit Surveys

As discussed in Sect. 4.4.4, transit surveys are generally not sensitive to planets with
periods longer than T/3 of the survey duration T . This is because such surveys
impose an arbitrary (but reasonable) criterion that at least three transits must be
detected. A robust detection of at least two transits is generally required to infer the
period of the planet, whereas the detection of a third transit largely eliminates most
false positives.

However, as first pointed out by Yee and Gaudi (2008), based on the arguments
from Seager and Mallén-Ornelas (2003), the robust detection of a single transit can
be used to estimate the period of the planet, given an estimate of the density of
the star ρ∗ and assuming zero eccentricity. Since single transits from long-period
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Fig. 4.4 Left-hand panel: Occurrence rate per ln P as a function of orbital period P based on the
analysis of the HARPS/CORALIE survey for exoplanets (Mayor et al. 2011). The red points show
the binned occurrence rate,whereas the black broken power law shows themaximum likelihoodfit to
the unbinned data. The blue broken power laws show samples from the 1σ range of fits. The dashed
line shows the initial starting value of the fit. Finally, the vertical lines show the range of periods
considered in the fit. FromFernandes et al. (2019).©AAS.Reproducedwith permission.Right-hand
panel: the distribution of the giant planet occurrence rates inferred from the California-Carnegie
radial velocity survey of 111M dwarfs. The median and 68% confidence interval of the distribution
implies that 6.5% ± 3.0% of M dwarfs host a planet with a mass between 1MJup − 13MJup, with
separations <20au. From Montet et al. (2014). ©AAS. Reproduced with permission

planets typically have long durations, they also typically have quite large signal-to-
noise ratios, which are sufficient to allow an estimate of the planet period, under
the assumptions above (Yee and Gaudi 2008). Indeed, Yee and Gaudi (2008) used
this fact to argue that the follow-up of single transit events could be used to extend
the period sensitivity of transit surveys, and in particular that of Kepler. As Yee and
Gaudi (2008) argued, not only does this require an estimate of ρ∗, but it also generally
requires nearly immediate radial velocity observations of the target star to measure
the acceleration of the star due to the planetary companion.

The suggestion of Yee and Gaudi (2008) was largely ignored during the primary
Kepler mission. Likely this was because the yield of such single-transit events was
expected to be small. Nevertheless, two groups (Foreman-Mackey 2016; Herman
et al. 2019) endeavored to estimate the planet occurrence rate for planets with periods
beyond the nominal range of the Kepler primary mission using the methods outlined
inYee andGaudi (2008). In particular, Herman et al. (2019) used updated information
about the planet host stars from the Gaia DR2 release (Gaia Collaboration 2018)
to improve the purity of the long-period single-transit sample (see Fig. 4.5). They
inferred a frequency of cold giant planets (radii between 0.3 and 1 RJup and periods of
∼2–10 of 0.70+0.40

−0.20. This rate is consistent with the results of Cumming et al. (2008),
albeit with larger uncertainties. They also infer a radius distribution of planets beyond
the snow line of

dN

d log Rp
= R

−1.6+1.0
−0.9

p , (4.28)
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Fig. 4.5 The results of the single-transit candidate search fromHerman et al. (2019). The parameters
of the candidates using revised stellar parameters are plotted in blue, while gray points indicate the
parameters inferred using the older Kepler input catalog values. The vertical dashed line denotes
the maximum possible period to exhibit at least three transits during the Kepler primary mission.
From Herman et al. (2019). ©AAS. Reproduced with permission

consistent with the conclusion from microlensing surveys that Neptunes are more
common than Jovian planets beyond the snow line (Gould et al. 2006b). Finally, they
note that 5 of the 13 long-period planet candidates they identify have confirmed inner
transiting planets, indicating that there is a strong correlation between the presence of
cold planets with warm/hot inner planets and that themutual inclinations between the
inner and outer planetsmust be small. The results ofHerman et al. (2019) demonstrate
the importance of a holistic picture of exoplanet demographics.

4.5.3 Results from Direct Imaging Surveys

A relatively recent, cogent, and exceptionally comprehensive review of direct imag-
ing surveys has been provided by Bowler (2016). Rather than attempt to reproduce
or replicate the contents of that exceptional review, I will simply highlight the most
important conclusions from direct imaging surveys as summarized therein.

As shown in Fig. 4.6, in the current state of the art direct imaging surveys for
exoplanets (Hinkley et al. 2011; Macintosh et al. 2014; Beuzit et al. 2019; Skemer
et al. 2014) are primarily sensitive to planets with masses of � MJup and orbits of
�10au.

These surveys have searched for planetary companions orbiting roughly ∼400,
relatively young (<300 Myear) stars, with spectral types ranging from low-mass M
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Fig. 4.6 Completeness contours from an ensemble analysis of ∼380 unique stars with published
high-contrast imaging observations. The contours denote 10, 30, 50, 70, and 90% completeness lim-
its. Note that low-mass stars provide stronger constraints for planets at a fixed mass and semi-major
axis. From Bowler (2016) © Publications and the Astronomical Society of the Pacific. Reproduced
with permissions

stars to B stars. Roughly 8 planetary (� 13 MJup) candidates with semi-major axes
of �100 au have been found orbiting main-sequence stars (Lagrange et al. 2010;
Macintosh et al. 2015; Rameau et al. 2013; Marois et al. 2008, 2010; Kraus and
Ireland 2012).

The majority of these candidates are very dissimilar to the giant planets in our
solar system: they are typically more massive and have much larger separations. This
has led to the speculation that these planets formed via a differentmechanism than the
core accretion mechanism (Pollack et al. 1996) that is typically invoked to explain
the formation of shorter-period giant planets detected by other methods. Indeed,
the massive, long-period planets detected by direct imaging have been suggested
to be evidence of planet formation via gravitational collapse (Boss 1997; Dodson-
Robinson et al. 2009). However, it has been argued that there are serious theoretical
difficulties with this formationmechanism (Rafikov 2005). If gravitational instability
can create long-period giant planets, the theoretical prediction is that there should
be a larger population of brown dwarfs (Kratter et al. 2010). Indeed, this has been
observed (Nielsen et al. 2019). There is some evidence that the orbits of directly-
imaged planets are distinct from those found via the radial velocity method, perhaps
suggesting that there are indeed two mechanisms for giant planet formation (Bowler
et al. 2020).

Even if there are two channels of forming giant planets, the population of planets
formed by these two different channels may not occupy distinct regions of parameter
space. For example, the directly-imaged planet candidate 51 Eridanib (Macintosh
et al. 2015), which has an estimated mass of ∼2 MJup and a semi-major axis of
∼13 au, has properties that are quite similar to the giant planets detected via radial
velocity surveys, as well as the giant planets in our solar system.
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Fig. 4.7 Distributions of the occurrence rate of giant planets from an ensemble analysis of direct
imaging surveys in the literature, as compared to the results from radial velocity surveys for giant
plants at small separations (�2.5 au) (Johnson et al. 2010b). There is no statistically significant
evidence for a correlation between the giant planet occurrence and host star spectral type for planets
at large separations probed by direct imaging surveys. Determining whether or not this is consistent
with the significant trend inferred by Johnson et al. (2010b) will require a larger sample of directly-
imaged planets. From Bowler (2016). © Publications of the Astronomical Society of the Pacific.
Reproduced with permission

Finally, it is worth noting that there is no statistically significant evidence for
an increase in the frequency of long-period giant planets with host star spectral
type (a proxy for host star mass) from direct imaging surveys, as shown in Fig. 4.7.
However, given the relatively small number of giant-planet candidates detected by
direct imaging surveys, this result is not statistically discrepant with the result from
radial velocity surveys that the frequency of shorter-period giant plants increases
with increasing host mass (Johnson et al. 2010b).

4.5.4 Results from Microlensing Surveys

Microlensing surveys for exoplanets cannot choose their target stars—rather, the
sample of hosts around which microlensing surveys can constrain the properties
of planetary systems is dictated by the number density of compact objects (brown
dwarfs, stars, and remnants) weighted by the event rate, which scales as θE ∝ M1/2

∗ .
Figure. 4.8 shows the predicted distribution of host masses probed by microlens-
ing (Henderson et al. 2014; Gould 2000). Ignoring brown dwarfs and remnants,
the median mass of main-sequence (MS) stars probed by microlensing surveys is
∼0.4M�. Thus, although a little over half the MS host stars will be M dwarfs,
microlensing surveys still probe the frequency of planets beyond the snow line orbit-
ing G and K type stars, a fact that is not widely appreciated.
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Fig. 4.8 The predicted distribution of host masses for microlensing surveys for exoplanets. Brown
dwarfs BD), main-sequence (MS) stars, and remnants [including white dwarfs (WD), neutron stars
(NS), and black holes (BH)] are included. Considering only MS stars, the median host star mass
surveyed by microlensing is ∼0.4M�. Note that MS stars with masses above the bulge turn-off
have been suppressed; in reality, the distribution of host star masses will include a small contribution
from more massive MS stars in the Galactic disk. From Gaudi et al. (2002), adapted from Gould
(2000). © ARAA. Reproduced with permission

The first constraints on the frequency of planets from microlensing surveys were
by Gaudi et al. (2002), based on five years of data from the Probing Lensing Anoma-
lies with a world-wide NETwork (PLANET) collaboration (Albrow et al. 1998).
Although they did not detect any planets, they were able to place a robust upper limit
on the frequency of massive companions. They concluded that <33% of hosts have
∼MJup companions with separations between 1.5 and 4 au, and less than < 45% of
hosts have ∼3MJup with separations between 1 and 7 au. As the majority of these
hosts were M dwarfs, this result provided the first significant limits on planetary
companions to M dwarfs.

The first conclusive discovery of an exoplanet bymicrolensing was in 2004 (Bond
et al. 2004). Additional detections followed soon after (Udalski et al. 2005; Beaulieu
et al. 2006; Gould et al. 2006b). Of the first four planets detected via microlensing,
two had Jovian mass-ratios, whereas the other two had super-Earth/Neptune mass
ratios. Given the decreasing sensitivity of microlensing for smaller mass ratios (see
4.4.5), this immediately implied that cold low-mass (super-Earth to Neptune) mass
planets were much more common than cold Jovian planets (Gould et al. 2006b).

To date, over 100 planets have been detected bymicrolensing.12 Individual surveys
have detected a sufficiently large sample of planets that they have been able to place
robust constraints on the population of cold planets orbiting main-sequence stars
(Sumi et al. 2010; Gould et al. 2010; Cassan et al. 2012; Shvartzvald et al. 2016),

12 See https://exoplanetarchive.ipac.caltech.edu/.

https://exoplanetarchive.ipac.caltech.edu/
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see Fig. 4.9 for a graphical representation of the constraints derived by Gould et al.
(2010) and Cassan et al. (2012).

The most recent and thorough analysis with the largest sample of planets is that
by Suzuki et al. (2016), who analyzed six years of data from the second generation
Microlensing Observations in Astrophysics (MOA-II) collaboration (Sumi 2013).
The analysis included 23 planets detected from 1474 alerted microlensing events.
They find that the distribution of mass ratios q and projected separations s is well-
described by a broken power law, with the form:

dN
d log q d log s =0.61+0.21

−0.16

[(
q
qbr

)−0.93±0.13H(q−qbr)+
(

q
qbr

)0.6+0.5
−0.4H(qbr−q)

]
s0.49

+0.47
−0.49 , (4.29)

where, as before, H(x) is the Heaviside step function. Thus, Suzuki et al. (2016)
find that the mass ratio function of cold exoplanets with mass ratios above that of
qbr ∼ 1.7 × 10−4 (roughly the mass ratio of Neptune to the Sun) is steeper than that
mass function for shorter-period giant planets found by Cumming et al. (2008). See
Fig. 4.9. In addition, the distribution of orbits for planets beyond the snow line is
consistent with a log-uniform distribution, and planets with Neptune/sun mass ratios
are likely the most common planets beyond the snow line. Suzuki et al. (2016) also
synthesized their MOA-II constraints with those of Cassan et al. (2012), which also
included constraints from Sumi et al. (2010) and Gould et al. (2010). The combined
results from these four surveys (Sumi et al. 2010; Gould et al. 2010; Cassan et al.
2012; Suzuki et al. 2016) are shown in Fig. 4.13.

Using a sample of seven planets detected by microlensing with well-measured
mass ratios of q < 10−4 and unique solutions, Udalski et al. (2018) confirmed the
result from Suzuki et al. (2016) that the mass ratio function for planets with mass
ratio below qbr declines with decreasing mass ratio. They inferred a power-law index
in this regime of 1.05+0.78

−0.68, as compared to the value of 0.6+0.5
−0.4 found by Suzuki et al.

(2016). By combining their results with those of Suzuki et al. (2016) and Udalski
et al. (2018), they refine the power-law index in this regime to 0.73+0.42

−0.34.
However, using a sample of 15 planets with well-measured mass ratios of q <

3 × 10−4, Jung et al. (2019) arrived at a somewhat different conclusion than Suzuki
et al. (2016) and Udalski et al. (2018). Again assuming the same double power-law
form as Eq. (4.29), they find a smaller value for the break in the mass function of
qbr = 0.55 × 10−4, e.g., a factor of ∼3 times smaller than found by Suzuki et al.
(2016). Furthermore, they inferred a very large difference in the slope of the mass
function for mass ratios above and below qbr, with a best fit of 5.5 (>3.3 at 1σ ).
Assuming the power-law index of −0.93 for q > qbr found by Suzuki et al. (2016),
which they did not constrain, this implies a very steep power-law index for q < qbr
of 4.6 (with an upper limit of 2.4 at 1σ ), as compared to the value of 0.6+0.5

−0.4 and
0.73+0.42

−0.34 found by Suzuki et al. (2016) and Udalski et al. (2018), respectively. Jung
et al. (2019) also note an apparent ‘pile-up’ of planets with mass ratio similar to
that of Neptune to the sun. Specifically, four of their 15 planets have mass ratios
between 0.55 × 10−4 and 5.9 × 10−4, a span of only � log q = 0.030, as compared
to the full range spanned by their sample of � log q = 0.875. However, they were
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Fig. 4.9 The distribution of planet/star mass ratios inferred from Suzuki et al. (2016). The black
line shows best-fit broken power-law mass-ratio function (see Eq.4.29), whereas the gray shaded
region shows the uncertainties about this best-fit model. This result is compared to compendium of
demographic constraints from other radial velocity and microlensing surveys (Mayor et al. 2011;
Howard et al. 2010; Cumming et al. 2008; Johnson et al. 2010a; Bonfils et al. 2013; Montet et al.
2014). Note that the typical primary host mass and semimajor axis range vary amongst the various
results. From Suzuki et al. (2016), adapted and updated from Gould (2000) and Gaudi et al. (2002).
©AAS. Reproduced with permission

unable to determine conclusively whether this ‘pile-up’ is real or due to a statistical
fluctuation.

As discussed in Sect. 4.4.5, microlensing is uniquely sensitive to widely-bound
and free-floating planets. These are detectable as isolated, very short timescale
(hours-to-days) microlensing events. The first constraints on the frequency of free-
floating orwidely bound planets frommicrolensingwere by Sumi et al. (2011). Based
on an excess of short timescale (∼1 day) events, the argued for the existence of a
population of free-floating or widely-separation planets with masses of ∼MJup, with
a frequency of roughly twice that of stars in the MilkyWay. By comparing to the fre-
quency of giant planets found by direct imaging surveys, Clanton and Gaudi (2017)
were able to demonstrate that �70% of these events must be due to free-floating
planets. There are significant difficulties with producing such a large population of
free-floating planets, which I will not expound upon here (but see Veras and Ray-
mond 2012; Ma et al. 2016). This is because a subsequent analysis of the Optical
Gravitational Lensing Experiment (OGLE, Udalski et al. 2015) data conclusively
demonstrated that the purported excess of short-timescale microlensing events by
MOA-II was spurious (Mroz et al. 2017).
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Fig. 4.10 Data for microlensing event OGLE-2016-BLG-1928, which has the shortest Einstein
timescale of any microlensing event detected to date. It is likely the lowest-mass free-floating or
widely-bound (�10 au) planet detected to date, with an estimatedmass betweenMars and the Earth.
From Mroz et al. (2020a). © AAS. Reproduced with permission

Curiously,Mroz et al. (2017) do find an excess of very short timescale (�0.5 days)
candidate microlensing events, which may be an indication of population of free-
floating or widely-bound planets with planets of mass of ∼1–10 M⊕. Some theories
of planet formation predict the ejection of a significant number of such low-mass
planets during the chaotic phase of planet formation.

Since the Mroz et al. (2017) result, a total of seven robust free-floating planet or
wide-orbit planets have been discovered via microlensing (Mroz et al. 2018, 2019b,
2020a; Kim et al. 2020; Ryu et al. 2020;Mroz et al. 2020b) primarily using data from
the OGLE and Korea Microlensing Telescope Network (KMTNet) collaborations
(Henderson et al. 2014; Kim et al. 2016).

Figure4.10 shows the data for the shortest-timescale microlensing event detected
to date, with an Einstein timescale of only tE∼40 min (Mroz et al. 2020a). The
lens likely has a mass in the Mars- to Earth-mass regime, with lower masses being
favored. If the planet is bound to a host star, it must have a projected separation of
�10 au.
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4.5.5 Synthesizing Wide-Separation Exoplanet
Demographics

Ultimately, because of the intrinsic sensitivities and biases of all exoplanet detection
methods (as discussed in Sect. 4.4), no single method or survey can provide broad
constraints on exoplanet demographics that are needed to properly constrain and
refine planet formation theories. Thus, multiple surveys using multiple detection
methods must be “stitched together” to provide the needed empirical constraints.

We are fortunate that the various detection methods at our disposal are largely
complementary, and can, in principle, constrain exoplanet demographics over nearly
the full range of planet and host-star properties needed to fully test planet formation
theories. However, combining the results from various surveys and methods is not
trivial. Often, exoplanet researchers have the relevant expertise in only one or perhaps
two detection methods. Surveys often do not report the details needed to combine
their results with other surveys, such as providing the appropriate information about
their target sample, or providing the individual detection sensitivities for each of their
targets (including those for which no planetary candidates were detected).

For these reasons and others, the obstacles to synthesizing the demographics of
exoplanets are significant, which is likely the reason why very little progress in this
area has been made. Nevertheless, exoplanet surveys now have significant overlap in
terms of the parameter space of the planet and host star properties, and thus there is
an opportunity to make significant progress in constructing a broad statistical census
of exoplanet demographics, using results that are already in hand.

In this section, I will highlight a few notable attempts to synthesize the results of
wide-orbit demographics from multiple surveys using multiple methods. However,
I emphasize that much more work needs to be done in this area.

Two of the first rigorous attempts to compare the frequency of giant planets as
constrained by radial velocity and microlensing surveys were performed by Montet
et al. (2014) and Clanton and Gaudi (2014a, b). Both groups focused on low-mass
stellar hosts and used the results from trends found in radial velocity surveys of
relatively low-mass hosts (e.g., evidence for companions with periods longer than
the duration of the survey) to constrain the frequency of long-period giant planets.
In particular, Montet et al. (2014) used adaptive-optics imaging to constrain the
mass of companions causing such trends to be in the planetary regime. They then
used their constraints to determine if the population of long-period giant planets
was consistent with that found by microlensing. In contrast, Clanton and Gaudi
(2014a, b) took a different approach and mapped the distribution of planets orbiting
low-mass stars as inferred from microlensing to that expected from RV surveys of
low-mass stars. Both groups concluded that the demographics of long-period giant
planets as determined by radial velocity and microlensing surveys were consistent.
In particular, both groups found that there exists a significant population of Jovian
planets at relatively long periods. Specifically, Clanton and Gaudi (2014b) found that
the frequency of Jupiters and super-Jupiters (1 < Mp sin i/MJup < 13) with periods
1 < P/days < 104 is 0.029+0.013

−0.015. This is a median factor of 4.3 smaller than the
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Fig. 4.11 Semimajor axis distributions of roughly Jovian-mass companions to M dwarfs. The
vertical axis shows point estimates of the semi-major axis distribution from several surveys (red
“X”s and uncertainties and/or upper limits shown as black error bars), as well as parametric fits to
these distributions from Clanton and Gaudi (2016) (blue curve) and Meyer et al. (2018) (red curve).
From Meyer et al. (2018). Reproduced with permission ©ESO

inferred frequency of such planets around FGK stars of 0.11 ± 0.02 (Cumming et al.
2008). Thus, although low-mass stars do indeed host giant planets, they are less
common than giant planets orbiting sun-like stars and tend to be at larger separations
(compared to the snow line; Kennedy and Kenyon 2008).

Several authors have combined results from radial velocity, microlensing, and
direct imaging surveys to constrain the population of giant planets with large semi-
major axes orbiting low-mass stars. In particular, Clanton and Gaudi (2016) syn-
thesized constraints on the population of long-period planets from five different
exoplanet surveys using three independent detection methods: microlensing, radial
velocity, anddirect imaging.Adopting a power-law form for properties of long-period
(>2 au) planets, they found

d2N

d logMp d log a
= 0.21+0.20

−0.15

(
Mp

MSat

)−0.86+0.21
−0.19 ( a

2.5 au

)1.1+1.9
−1.4

, (4.30)

with an outer cutoff of aout = 10+26
−4.7au. This result was for “hot-start” models, but

the results for “cold-start” models are very similar. This is because the typical host
stars are quite old, and as such the luminosity at fixed mass of planets assuming “hot
start” and “cold start” models have largely converged.

A similar analysiswas performedbyMeyer et al. (2018), although theyfit a (likely)
more well-motivated log-normal model for the semi-major axis distribution of giant
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planets orbiting M dwarfs. Their results are shown in Fig. 4.11. Their conclusions
are broadly consistent with those of Clanton and Gaudi (2017): generally speaking,
the frequency of giant planets orbiting M dwarfs increases with increasing semi-
major axis up to a few au and then declines for semi-major axes beyond ∼10 au. An
interesting but unanswered question is how the distribution of giant planets found by
Clanton and Gaudi (2017) and Meyer et al. (2018) differs from that found by radial
velocity surveys of giant planets for solar-type (FGK) stars, and whether or not they
are consistent with the expectations of ab-initio planet formation theories.

I note that the analyses of both Clanton and Gaudi (2017) and Meyer et al. (2018)
did not include the most recent and comprehensive microlensing constraints on the
demographics of planets from Suzuki et al. (2016). Therefore, there is a clear oppor-
tunity for improving and updating the syntheses provided in Clanton and Gaudi
(2017) and Meyer et al. (2018).

There have been several other studies that have attempted to synthesize the demo-
graphics of exoplanets determined by various methods.

• Howard et al. (2012) compared early demographic constraints from Kepler for
planets with periods of �50 days with the constraints from the Keck/HIRES Eta-
Earth RV survey for planets with periods in the same range as Howard et al. (2010).
By adopting a deterministic density-radius relation and restricting the analysis to
planets with masses �3 M⊕ and radii �2 R⊕ (where the Eta-Earth and [then
available] Kepler results were mostly complete), they were able to map the radius
distribution inferred from Kepler to the Mp sin i distribution from the Eta-Earth
survey. They found good agreement, particularly when they assumed that the den-
sity of planets increased with decreasing radii. See the discussion in Chap. 3,
Sect. 3.1 and Sect. 3.2.

• Both Gould et al. (2010) and Suzuki et al. (2016) compared constraints on the fre-
quency of planets inferred from microlensing surveys to several estimates of the
frequency of shorter-period planets found by several RV surveys of both solar-type
FGK stars as well as M stars (see, e.g., Fig. 4.9).

• As discussed in more detail in Sect. 4.5.3, Bowler (2016) compared the frequency
distribution giant planets as a function host star spectral type found by RV surveys
(Johnson et al. 2010b) with the distribution found by direct imaging surveys (see
Fig. 4.7).

• Using the DR25 Kepler catalog of planets between ∼1–6 R⊕ and P < 100 days,
and converting planet radii to planet masses using the Chen and Kipping (2017)
planet mass-radius relation, Pascucci et al. (2018) found a break in the mass ratio
function of planets at q ∼ 0.3 × 10−4, independent of host star mass. This break
is at a mass ratio that is ∼3–10 times lower than the break in the mass-ratio
function for longer-period planets found by microlensing as estimated by Suzuki
et al. (2016) and Udalski et al. (2018) (Fig. 4.9), but is similar (a factor of ∼2
smaller) than that inferred by Jung et al. (2019). Assuming the latter result holds,
this implies that Neptune mass-ratio planets are the most common planets both
interior and exterior to the snow line, at least down to the mass ratios that have

http://dx.doi.org/10.1007/978-3-030-88124-5_3
http://dx.doi.org/10.1007/978-3-030-88124-5_3
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been probed by transits and microlensing of �0.5 × 10−6, or slightly larger than
the Earth/sun mass ratio.

• Using results from both RV surveys and Kepler, Zhu and Wu (2018) studied the
relationship between the population of small-separation (a � 1au) super-Earths
(Mp roughly between that of the Earth and Neptune) and ‘cold’ Jupiters (a > 1au
and Mp > 0.3 MJup) orbiting sun-like stars. They found that the conditional proba-
bility of a systemwith a super-Earth hosting a cold Jupiter was∼ 30%, three times
higher than the frequency of cold Jupiters orbiting typical sun-like field stars (e.g.,
Cumming et al. 2008). Given the prevalence of super-Earths found from Kepler,
this implies that nearly every star that hosts a cold Jupiter also hosts an inner
super-Earth. Since our solar system has a cold Jupiter but does not host an inner
super-Earth, the corollary to this result is that solar systems with architectures like
ours are rare, ∼1%.

• Using a meta-analysis to combine the results of many demographics studies of
transiting planets detected by Kepler, the NASA Exoplanet Exploration Program
Analysis Group (ExoPAG) Study Analysis Group (SAG) 13 determined a consen-
sus estimate of the occurrence rates for planets with relatively short periods of P
= 10–640 days, and radii from roughly that of the Earth to that of Jupiter. This
estimate, and the process bywhich it was determined, is described in detail in Kop-
parapu et al. (2018). The double power-law fit to the SAG 13 occurrence rate was
extrapolated to longer periods by Dulz et al. (2020), who also synthesized these
results with the frequency of relatively long-period gas giants planets as deter-
mined by Cumming et al. (2008), Bryan et al. (2016), and Fernandes et al. (2019).
Taking care to eliminate systems that were dynamically unstable, Dulz et al. (2020)
provide a comprehensive synthesis of the demographics of planets with masses of
0.1–103 M⊕ and semimajor axes of 0.1–30 au, albeit with significant reliance on
extrapolation.

These and other results begin the process of “stitching together” the demographics
constraint ofmultiple surveys usingmultiple detectionmethods.However, the studies
itemized above, as well as the majority of other similar studies (additional pointers
to the relevant literature on the subject are provided in See Chap.3 Sect. 3.2), have
primarily focused on comparing the demographics of relatively short-period plan-
ets detected by different surveys, or by comparing the demographics of close and
wide-orbit companions. Thus, while very important, a comprehensive review of such
studies is beyond the scope of this chapter.

4.6 Comparisons Between Theory and Observations

Remarkably, despite the large number of exoplanets that have been confirmed to
date (∼4300), there have been relatively few studies that rigorously compare the
predictions of ab-initio exoplanet population synthesis models to empirical exo-
planet demographic data. The most important reason for this is that the majority of

http://dx.doi.org/10.1007/978-3-030-88124-5_3
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Fig. 4.12 Number of planets per star in a given radius bin for semi-major axes of a < 0.27 au.
The thick red histogram shows the predictions from the ab-initio population synthesis models
of Mordasini et al. (2012). The blue histogram with error bars shows the empirical distribution
inferred by Howard et al. (2010) from an early release of Kepler data. The black dotted histogram is
a preliminary analysis from the initial Kepler data. The Kepler data from the yellow shaded region
(Rp < 2R⊕) was substantially incomplete at the time of this study. From Mordasini et al. (2012).
Reproduced with permission ©ESO

the observational results on exoplanet demographics do not supply the data needed
to compare these theories with the empirical predictions. Such data include (but are
not limited to) the details of the target samples, the detection efficiencies (or com-
pleteness) of all of the target sample (not just those that have detected planets), and
the quantification of the false positive rate (or reliability).

One example of an attempt to compare the prediction of ab-initio models of planet
formation with empirical constraints is provided by Mordasini et al. (2012). They
compare an estimate of the radius distribution of planets from some of the first
results from Kepler (Howard et al. 2012) with the predictions from their population
synthesismodels for planetswith semi-major axis ofa � 0.3au.Theyfind reasonable
agreement between the predictions and the empirical results (see Fig. 4.12). I note
that this result applies to relatively short-period planets, and is thus formally out of
the scope of this review. Nevertheless, it does provide an important example of the
quantitative comparison of empirical results of the demographics of exoplanets with
ab-initio theories.

A direct comparison between the ab-initio predictions of multiple independent
planet formation theories (see Ida et al. 2013 andMordasini et al. 2015 and references
therein) and the demographics of cold exoplanets as constrained bymicrolensingwas
explored in Suzuki et al. (2016). As shown in Fig. 4.13, they find that the generic
prediction of the core accretion (or nucleated instability) model of giant formation
predicts a paucity of planets with masses roughly between that of Neptune and
Jupiter (e.g., Pollack et al. 1996). This prediction is not confirmed by the results
from microlensing surveys. This result appears to be fairly robust against some of
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Fig. 4.13 The planet/host star mass ratio distribution as measured by microlensing surveys for
exoplanets (Gould 2000;Cassan et al. 2012; Suzuki et al. 2016), compared to the predictedmass ratio
distribution function from ab-initio models of planet formation (see Ida et al. 2013 and Mordasini
et al. 2015 and references therein). The red histogram shows the measured mass-ratio distribution
frommicrolensing, along with the best-fit broken power-lawmodel and 1σ uncertainty indicated by
the solid black line and gray shaded regions. The dark and light blue histograms show the predicted
mass-ratio functions from the population synthesis models with migration, and the alternative
migration-free models. Left-hand panel: comparison to models from Ida and Lin (e.g., (Ida et al.
2013) and references therein). Right-hand panel: comparison to models from the Bern group (e.g.,
Mordasini et al. 2015 and references therein). The gold histogram shows the results for a lower-
viscosity disk model and 0.5 M� host stars. From Suzuki et al. (2018) © AAS. Reproduced with
permission

the model assumptions, including the treatment of migration and the viscosity of
the protostellar disk. Some possible resolutions to this discrepancy are discussed in
Suzuki et al. (2018).

Onepotential complication is that the condition for core-nucleated instability (e.g.,
runaway gas growth to become a giant planet) may be more sensitive to planet mass
than planet mass ratio.13 If this is the case, then the mass gap predicted by the core-
accretion theory may be smoothed out in the microlensing mass-ratio distribution,
given the relatively broad range of host masses probed in microlensing surveys (see
Fig. 4.8). This can be tested by measuring the masses of the host stars of planets
detected by microlensing (e.g., Bennett et al. 2007). Indeed, Bhattacharya et al.
(2018) measure the host and planet star masses of the microlensing planet OGLE-
2012-BLG-0950Lb, finding a host star mass of M∗ = 0.58 ± 0.04 M� and a planet
mass of Mp = 39 ± 8 M⊕, placing the planet in the middle of the mass gap predicted
by generic models of giant planet formation via core accretion.

13 Formally, the condition for runaway growth is that the mass of the gaseous envelop becomes
larger than that of the core, leading to a Jeans-like instability and rapid gas accretion (e.g., Mizuno
1980; Stevenson 1982; Pollack et al. 1996). However, the simplest models of protoplanetary disks
generally predict core masses of ∼10 M⊕, and thus the total critical mass for runaway accretion of
∼20 M⊕, e.g., somewhat larger than the masses of the ice giants.
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4.7 Future Prospects for Completing the Census
of Exoplanets

While substantial progress has been made in determining the demographics of wide-
separation planets, it is nevertheless the case that it is this regime of Mp − P and
Rp − P parameter space that remains the most incomplete, particularly for planets
with masses and radii less than that of Neptune (see Figs. 4.2 and 4.3). Fortunately,
there are several planned or candidate surveys on the horizon that will largely fill
in this region of parameter space, enabling a nearly complete statistical census of
planets with masses/radii greater than that of the Earth, and periods from < 1 day
to essentially infinity, including free-floating planets. In this section, I will briefly
summarize these future prospects.

• Radial Velocity surveys. The longest-running RV surveys have been monitoring
a sample of bright FGK stars for roughly 30 years, with precisions of a few to
∼10 m/s. These surveys are now sensitive to Jupiter analogs with P∼12 years
and Mp � MJup (e.g., Wittenmyer et al. 2016). For stars with the longest baselines
and RV precisions of a few m/s, Saturn analogs (P∼30 years and Mp � MSat)
are barely detectable, with K∼3 m/s. RV surveys are unlikely to be sensitive
to analogs of the ice giants in our solar system (Kane 2011) in the foreseeable
future, and are similarly unlikely to be sensitive to Neptune-mass planets on orbits
beyond ∼3 au, which would have RV semi-amplitudes of ∼1 m/s and periods
of P∼5 years. Beyond the difficulties with maintaining such RV precisions over
such long time spans, it is likely to be the case that the majority of the (already
oversubscribed) precision radial velocity resources will be focused on following-
up planets detected in current and future transit surveys such as the Transiting
Exoplanet Survey Satellite (TESS, Ricker et al. 2015) and the PLAnetary Transits
and Oscillation of stars mission (PLATO, Rauer et al. 2014), as well as search
for Earth analogs (e.g., Burt et al. 2020). Therefore, I reluctantly conclude that
radial velocity surveys are unlikely to contribute to significantly expanding our
knowledge of the population of wide-separation planets.

• The Transiting Exoplanet Survey Satellite. TESS is a NASA Medium-Class
Explorers (MIDEX) mission (Ricker et al. 2015), whose goal is to survey nearly
the entire sky (∼83%) to find systems with of transiting planets orbiting bright
host stars, which are the most amenable to detailed characterization of the planet
and host star. In particular, many of the planets detected by TESS will be ideal
targets for atmospheric characterization with the James Webb Space Telescope
(JWST). See, e.g., Beichman et al. (2014). Because TESS is designed to survey
the brightest stars in the sky for transiting planets, its dwell time for the majority
(∼74%) of its survey area is only 27 days for the prime mission (see Fig. 4.14).
For stars in the two continuous viewing zones at the ecliptic poles, TESS will
obtain nearly continuous observations for ∼ 350 days. Thus, even considering
extended missions, TESS’s region of sensitivity in the Mp − P planet will be
entirely within that of Kepler. Simply put, although TESS will (of course) provide
important demographic constraints, andwill provide themwith higher fidelity than
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Fig. 4.14 Left-hand panel: the original planned Transiting Exoplanet Survey Satellite (TESS)
2-year mission sky coverage, as a function of equatorial coordinates (solid white lines). TESS
originally planned tomonitor∼83% of the sky, excluding regions within∼6◦ of the ecliptic equator.
∼74%of its survey areawas planned to bemonitored for 27 days during the primemission,whereas a
region around the ecliptic poles (including the JWST continuous viewing zone) would bemonitored
for up to ∼350 days. Stray light issues forced the TESS team to deviate somewhat from this survey
strategy in the northern ecliptic hemisphere.Courtesy ofG.Ricker, reproducedbypermission.Right-
hand panel: an estimate of the number and period distribution of single-transit events expected from
the TESS primary mission. Single transit events from the 2-minute cadence postage stamp targets
are shown in the black histogram, whereas those from stars in the 30-minute cadence full-frame
images (FFIs) are shown in grey. Single transit events found for stars with Teff > 4000K are shown
in blue, whereas those for stars with stars Teff < 4000K are in red. The darker shades are for the
postage-stamp targets, while the lighter shades are for the FFI stars. A total of 241 single-transit
events due to planets are predicted in the postage stamp data and at least 977 single-transit events
are expected in the FFIs. Reproduced from Villanueva et al. (2019). ©AAS. Reproduced with
permission

Kepler (primarily because of the brightness of the target stars), in general TESS
will not significantly expand our knowledge of exoplanet demographics beyond
what has been learned by Kepler. Therefore, it will generally not contribute to the
demographics of wide-orbit planets.
However, one area where TESS may contribute to the demographics of wide-

orbit planets is via single transit events. As discussed in Sect. 4.5.2, single transit
events can be used to constrain the demographics of planets with periods beyond
the survey baseline. Because TESS will be looking at a much larger number of
stars for a shorter period of time than the primaryKepler survey, its yield of single-
transit events is expected to be significantly higher than that of Kepler. The yield
of single transit events in the 2-year TESS primary mission has been predicted
by Villanueva et al. (2019). Their results are shown in Fig. 4.14. They find that
over 1000 single-transit events due to planets are expected from the TESS primary
mission, with 241 of these coming from the 2min cadence targeted postage-stamp
data and a lower limit of 977 coming from stars in the full-frame images (FFIs).
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• Gaia. The primary goal of the European Space Agency’s (ESA) Gaia mission is
to provide exquisite astrometric measurements of ∼2 × 109 stars down to a mag-
nitude of V∼20.7 (Gaia Collaboration 2016). These measurements will produce a
sample of accurate and precise stellar propermotions and distances that is orders of
magnitude larger than is currently available. A ‘by-product’ of this unprecedented
database will be the detection of many thousands of giant planets at intermediate
periods via their astrometric perturbations on their host stars. There have been
many studies of the expected yield of planets with Gaia; here I will focus on two
papers (but see also Sozzetti et al. 2014).

Using double-blind experiments, Casertano et al. (2008) demonstrated that
planets can be detected if they induce astrometric signatures of roughly 3σast,
where σast is the single-measurement precision, provided that the period of the
planet is less than the survey duration (5 years for the primary Gaia mission). They
also noted that the threshold for reliable inference about the orbital parameters was
significantly higher. They determined that at twice the detection limit of 3σast, the
uncertainties in orbital parameters and planet masses were typical of order 15–
20%. They also demonstrated that for planets with periods longer than the survey
duration, the planet detectability dropped off more slowly with increasing planet
period than the precisionwithwhich the parameters of the system, and in particular
the planet mass, can be measured (see Fig. 4.15 and the discussion in Sect. 4.4.7).
Thus, although the astrometric signal of planetswith periods longer than the survey
may be detectable, these detections will be significantly compromised as they will
have large uncertainties in the orbital elements and, in particular, the planet mass.

A more recent estimate of the yield of planets from Gaia was performed by
Perryman (2018). In particular, these authors used updated planet occurrence rate
estimates, as well as updated estimates of the expected Gaia single-measurement
astrometric precision. They consider the detectability of known planetary compan-
ions with Gaia (see Fig. 4.15), as well as projections for as-yet undetected planets.
They find that Gaia should discover ∼104 planets with masses in the range of
∼1–15 MJup, the majority of which will have semi-major axes in the range of
∼2–5 au. They also estimate that Gaia should find ∼25–50 intermediate-period
P∼2–3 year transiting systems.
Thus, althoughGaia will likely deliver a very large number of planets, including a

large number of planetary systems, it will not be sensitive to a currently unexplored
region of Mp − a parameter space. Nevertheless, Gaia will be sensitive to the
mutual inclinations of planets in multi-planet systems, an important property of
planetary systems that has been poorly explored to date. Furthermore, because
Gaia should detect a very large number of planets, it will be sensitive to the “tails”
of the distribution of planetary properties, e.g., the “oddball” exoplanet systems.
Such systems often provide unique insights into the physics of planet formation
and evolution. Finally, the fact that itwill uncover temperate transiting giant planets
will enable the estimate of the mass-radius relationship for such planets, which
will provide important priors on the properties of the giant planets detected by
future direct imaging surveys.



4 The Demographics of Wide-Separation Planets 283

• The Nancy Grace Roman Space Telescope. The Nancy Grace Roman Space
Telescope, or Roman (née WFIRST), was the highest-priority large space mis-
sion from the National Academies of Science 2010 Astronomy Decadal Survey
(National Research Council 2010). As outlined by the Astro2010 Decadal Survey,
one of Roman’s primary goals is to “open up a new frontier of exoplanet studies
by monitoring a large sample of stars in the central bulge of the Milky Way for
changes in brightness due to microlensing by intervening solar systems. This cen-
sus, combined with that made by the Keplermission, will determine how common
Earth-like planets are over a wide range of orbital parameters.” This application
of Roman, based originally on the concept and simulations by Bennett and Rhie
(2002), promises to probe a broad region of planet mass/semi-major axis parame-
ter space that is inaccessible by any other exoplanet detection methods or surveys,
including ground-basedmicrolensing surveys. Initial estimates of the yield of such
a space-basedmicrolensing survey can be found inBennett andRhie (2002), Green
et al. (2011, 2012) and Spergel et al. (2013, 2015). The most up-to-date estimate
of the yield of bound planets by microlensing is provided by Penny et al. (2019).
In summary, Roman is expected to detect roughly ∼1500 bound and free-floating
planets with masses � M⊕ with separations >1 au. At the peak of its sensitivity,
Roman will be sensitive to bound planets with masses as low as ∼ 0.02 M⊕, or
roughly twice the mass of the moon and roughly the mass of Ganymede. Roman
will also be sensitive to free-floating planets, as explored by Johnson et al. (2020).
They predict thatRoman could detect∼250 free-floating planetswithmasses down
to that of Mars, including ∼60 with masses less than that of the Earth.
By combining the demographic constraints fromKeplerwith those from Roman,

it will be possible to obtain a nearly complete statistical census of exoplanets with
mass �M⊕ with arbitrary separations. See Fig. 4.16. It is also worth noting that
Roman will also have some sensitivity to potentially habitable planets, and thus
may provide constraints on η⊕. Finally, it will also be sensitive tomassive satellites
to wide-separation bound planets (Bennett and Rhie 2002), thus complementing
the sensitivity of transit surveys tomassive satellites orbiting shorter-period planets
(e.g., Kipping 2009a, b; Kipping et al. 2009).

• The PLAnetary Transits and Oscillations of stars mission. PLATO (Rauer
et al. 2014) is an ESA M-class mission that is designed to find transiting planets
with periods of �2 years orbiting relatively bright stars. The PLATO mission
can be thought of as an intermediate mission between Kepler and TESS. It will
survey stars with a longer baseline than TESS, and will survey brighter stars than
those surveyed by Kepler. Because the hosts of the transiting planets discovered
by PLATO will be brighter than Kepler, they will be more amenable to follow-
up. Given the current mission architecture and survey design, while PLATO is
predicted to expand upon Kepler’s sensitivity range in the Rp − P plane, it will
nevertheless not contribute significantly to our understanding of the demographics
of wide-orbit planets, excepting for the possibility of following-up single transit
events (e.g., Yee and Gaudi 2008; Herman et al. 2019; Villanueva et al. 2019).

• Future Direct Imaging Surveys. A comprehensive review of the potential of
future ground and space-based direct imaging surveys to contribute to our knowl-
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Fig. 4.15 Left-hand panel: Gaia sensitivity as a function of planet mass and semi-major axis. The
red curves show the estimated Gaia sensitivity for a ∼ M� primary at 200 pc. The meaning of the
different line styles is indicated in the figure. The blue curves are the same, except for a ∼ 0.5 M�
primary at 25 pc. The pink line shows the sensitivity of an RV survey assuming a precision of
3m/s, a M� primary, and a 10-year survey. The green curve shows the sensitivity of a transit
survey assuming � 1000 data points (approximately uniformly sampled in phase), each with a
photometric precision of ∼ 5 mmag, and a M� and R� primary. Black dots indicate the inventory
of exoplanets as of September 2007. Transiting systems are shown as light-blue filled pentagons.
Jupiter and Saturn are also shown as red pentagons. From Casertano et al. (2008). Reproduced with
permission ©ESO. Right-hand panel: astrometric signature versus period for the planets listed in
the exoplanet.eu archive as of September 1, 2014. The sizes of the circles are proportional to the
planet mass. The vertical lines roughly bracket the range in periods in which Gaia will be most
sensitive. The horizontal line delineates an astrometric signature of 1 μas. From Perryman (2018).
Courtesy of Michael Perryman. Reproduced with permission

edge of the demographics of exoplanets is well beyond the scope of this chapter.
Rather, I refer the reader to the review in this chapter of National Academies of
Science Exoplanet Science Strategy Report (National Research Council 2018),
and in particular Fig. 4.3 of that report. I will, however, make a few general com-
ments. First, current ground-based direct imaging surveys (e.g., Macintosh et al.
2014; Beuzit et al. 2019) are expected to continue to improve upon their current
sensitivity in terms of inner working angle and contrast, but are unlikely to do so by
an order of magnitude. Second, direct-imaging surveys using JWST will provide
modest improvements over ground-based surveys (Beichman and Greene 2018),
but are nevertheless not expected to reach the contrast ratios needed to detect
mature planets in reflected light or thermal emission. Third, the next generation
of ground-based Giant Segmented Mirror Telescopes (GSMTs) offer opportuni-
ties for dramatic improvements in the capabilities of direct-imaging surveys rel-
ative to current ground-based facilities. These opportunities include the potential
to directly detect mature “warm Jupiters” in reflected light, as well as to detect
temperate planets in thermal emission (e.g., Wang et al. 2019). However, these
improvements in capabilities also require dramatic breakthroughs in several key
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Fig. 4.16 (Left) The region of sensitivity in the Mp − a plane of the Kepler prime mission (red
solid line) versus the predicted region of sensitivity of theRoman (néeWFIRST)Galactic Exoplanet
Survey (RGES survey, blue solid line). The red dots show Kepler candidate and confirmed planets,
while the black dots show all other known planets extracted from the NASA exoplanet archive as of
2/28/2018. The blue dots show a simulated realization of the planets detected by the RGES survey.
Solar system bodies are shown by their images, including the satellites Ganymede, Titan, and the
Moon at the semi-major axis of their hosts. Images of the solar system planets courtesy of NASA.
Adapted from Penny et al. (2019). Courtesy of M. Penny. ©AAS. Reproduced with permission

Fig. 4.17 Predicted exoplanet detection yields with uncertainties for the HabEx and LUVOIR
mission concepts. Planet class types from left to right are: exoEarth candidates (green bar), rocky
planets, super-Earths, sub-Neptunes, Neptunes, and Jupiters. Red, blue, and ice blue bars indicate
hot, warm, and cold planets, respectively. The predicted yields are indicated under each bar. (Left)
Predictions for HabEx. (Right) Predictions for LUVOIR A. Both figures courtesy of Christopher
Stark. Reproduced with permission
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technology areas. Finally, I will note that there exists an enormous opportunity
for a future space-based direct imaging mission in the thermal mid-infrared (e.g.
Quanz et al. 2019).

• Future Space-Based Reflected Light Direct Imaging Surveys. Direct imag-
ing surveys for mature planets orbiting sun-like stars in reflected light generally
require space-based missions. This is because, for planets with radii and separa-
tions similar to those in our solar system, the planet/star contrast ratio is �10−8

and the planet/star angular separation for a system at ∼10 pc is � 0.5′′. For a
Jupiter/sun analog at 10 pc, the contrast is ∼ 10−9 with an angular separation of
∼ 0.5′′, whereas for a Earth/sun analog at 10 pc, the contrast is∼ 10−10 at an angu-
lar separation of ∼0.1′′. Achieving these contrasts at these angular separations is
essentially impossible from the ground (Guyon 2005).
Indeed, achieving these contrast ratios at these angular separation is exceptionally
challenging, even from space. Nevertheless, there are two promising techniques
for doing so, namely internal coronographs (see, e.g., Guyon et al. 2006, and
references therein) and external occulters, or starshades (Spitzer 1962; Cash 2006).
Both techniques have been extensively studied; a comprehensive review of these
methods is well beyond the scope of this chapter. Suffice it to say that, after decades
of laboratory demonstrations, there does not appear to be any insurmountable
obstacles to achieving the required contrasts at the required angular separations
using either technique.
In preparation for the National Academies of Science 2020 Astronomy Decadal

Survey (Astro2020), NASA constituted studies of four large space mission con-
cepts, currently named the Habitable Exoplanet Observatory (HabEx, Gaudi et al.
2020), the Large UV-Optical-InfraRed Telescope (LUVOIR, The LUVOIR Team
2019), Lynx (The Lynx Team 2018), and Origins (Meixner et al. 2019). Two of
these mission concepts, namely HabEx and LUVOIR, would be capable of pro-
viding important constraints on the demographics of both close and wide-orbit
planets orbiting relatively nearby (∼10–20 pc) FGK stars.
HabEx and LUVOIR differ primarily in ambition. The fiducial architecture of the

HabEx telescope is a 4-m monolithic, off-axis primary that utilizes both internal
coronagraphy and an external starshade to directly image and characterize planets
orbiting nearby stars. LUVOIR studied two architectures, but here I focus on the
most ambitious architecture for context. The LUVOIR A architecture baselines a
15-m diameter on-axis primary mirror that utilizes coronagraphy to directly image
exoplanets. Because of its larger aperture, LUVOIR A would be able to detect a
much larger sample of planets than the baseline architecture of HabEx. On the
other hand, because HabEx utilizes a (primarily) achromatic starshade, it would
be able to better characterize the (smaller number) of exoplanets it would detect.
The estimated yield of both mission concepts is shown in Fig. 4.17.
Regardless of the specific architecture, both HabEx and LUVOIR would be able

to determine the demographics of planetary systems orbiting nearby stars over a
wide range of planet orbits and sizes for individual systems. This in contrast to the
statistical compendium of different systems that will be enabled by combining the
demographic results from, e.g., Kepler and Roman. In particular, both HabEx and
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LUVOIR would be able to address such fundamental questions as: “What is the
conditional probability that, given the detection of a potentially habitable planet,
there exists an outer gas giant planet?” The answers to such questions are likely
to be essential for understanding the context of habitability.

4.8 Conclusion

The demographics of exoplanets, i.e., the distribution of exoplanets as a function
of the physical parameters, may encode the physical processes of planet formation
and evolution, and thus provides the empirical ground truth that all ab-initio planet
formation theories must reproduce. There exist numerous challenges to determining
the demographics of exoplanets over as broad a region of parameter space as possible.
In particular, the exoplanet detectionmethods at our disposal are sensitive to planets in
different regions of (planet and host star) parameter space, aswell as being sensitive to
planets orbiting different host star parameters.While this presents a challenge, in that
wemust construct robust statistical methodologies to combine the results of different
surveys and different detection methods, it also provides an opportunity to more
completely survey the demographics of exoplanets over the relevant regions of the
planet and host star parameter space. There exist many exciting future opportunities
to expand our understanding of the demographics of exoplanets.

The future of exoplanet demographics is bright. I expect that, within the next
few decades, we will have a nearly complete statistical census of exoplanets with
masses/radii greater than roughly than that of the earth, with essentially arbitrary sep-
arations (including free-floating planets). As well as providing the empirical ground
truth for theories of the formation and evolution of exoplanetary systems, this cen-
sus will provide the essential context for our detailed characterization of exoplanet
properties, and ultimately of our understanding of the conditions of exoplanet hab-
itability.
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Udalski, A., Jaroszyński, M., Paczyński, B., et al.: Astrophys. J. Lett. 628, L109 (2005)
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