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Abstract. Due to its prominent applications, time series classification is
one of the most important fields of machine learning. Although there are
various approaches for time series classification, dynamic time warping
(DTW) is generally considered to be a well-suited distance measure for
time series. Therefore, in the early 2000s, techniques based on DTW dom-
inated this field. On the other hand, deep learning techniques, especially
convolutional neural networks (CNN) were shown to be able to solve
time series classification tasks accurately. Although CNNs are extraor-
dinarily popular, the scalar product in convolution only allows for rigid
pattern matching. In this paper, we aim at combining the advantages
of DTW and CNN by proposing the dynamic convolution operation and
dynamic convolutional neural networks (DCNNs). The main idea behind
dynamic convolution is to replace the dot product in convolution by
DTW. We perform experiments on 10 publicly available real-world time-
series datasets and demonstrate that our proposal leads to statistically
significant improvement in terms of classification accuracy in various
applications. In order to promote the use of DCNN, we made our imple-
mentation publicly available at https://github.com/kr7/DCNN.
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1 Introduction

Time series classification is the common denominator of numerous recognition
tasks in various domains ranging from biology, medicine and healthcare over
astronomy and geology to industry and finance. Such tasks include signature
verification, speech recognition, earthquake prediction or the diagnosis of heart
diseases based on electrocardiograph signals. Due to the aforementioned appli-
cations, and many others, time series classification is one of the most prominent
fields of machine learning.

In the last decades, various approaches have been introduced for time series
classification, including methods based on neural networks, Bayesian networks,
hidden Markov models, genetic algorithms, support vector machines, decision
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trees, frequent pattern mining and hubness-aware classifiers, see e.g. [4,6,7,11,
13,14,20] and [3,17] for introductory surveys. However, one of the most surpris-
ing results states that the simple k-nearest neighbor classifier using dynamic time
warping (DTW) as distance measure is competitive (if not superior) to many
other classifiers. In particular, Xi et al. compared various time series classifiers
and concluded that 1-nearest neighbor with DTW “is an exceptionally compet-
itive classifier” [19]. Although, this result dates back to 2006, the observation
has been confirmed by many researchers who used DTW in their approach and
achieved high accuracy, see e.g. [15,17] and the references therein. The primary
reason why DTW is appropriate for time series classification is that DTW is
an elastic distance measure in the sense that it allows for shifts and elongations
while matching two time series.

Although DTW is a well-suited distance measure for time series classifica-
tion, meanwhile state-of-the-art solutions are based on deep learning techniques,
see e.g. [8,18,20,21]. Especially, recent convolutional neural networks (CNNs)
perform well for time series classification tasks, in many cases they outperform
the previous baseline of kNN-DTW, see [7] for a review on CNNs for time series
classification. Convolution is intended to act as local pattern detector, however,
convolution itself only allows for rigid pattern matching by design. Therefore,
convolutional layers are usually followed by pooling layers in state-of-the-art
CNNs. While these pooling layers may alleviate the aforementioned issue of
rigidity in pattern matching to some extent, as we will explain in Sect. 3.1 in
detail, this solution is inherently limited and the resulting operation is somewhat
irregular in terms of its ability to account for translations of local patterns.

In this paper, we aim at exploiting the flexibility of DTW in convolutional
neural networks. In particular, in order to allow for local shifts and elongations,
we replace the dot product in the first convolutional layer by DTW and call the
resulting operation dynamic convolution. We perform experiments on publicly
available real-world time-series datasets and demonstrate that our proposal leads
to statistically significant improvement in terms of classification accuracy in
various applications.

The remainder of the paper is organized as follows. A short review of related
work on time series classification with CNNs and the embedding of DTW into
neural networks is given in Sect. 2. This is followed by the definition of dynamic
convolution and its integration with CNNs in Sect. 3. In Sect. 4, we describe the
datasets, experimental protocols, and compare the results obtained by CNNs
using conventional and dynamic convolutional layers. The last section presents
the conclusions.

2 Related Work

Works that are most closely related to ours fall into two categories: (i) meth-
ods based on convolutional neural networks for time series classification and
(ii) approaches that integrate DTW with neural networks.

As for the former, we refer to the recent survey of Fawaz et al. [7] and we point
out that our approach is orthogonal to convolutional network architectures as it
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can be used with any convolutional network by replacing the (first) convolutional
layer by our dynamic convolution.

Regarding the approaches that integrate DTW with neural networks, we
point out the works of Iwana et al. [10] and Cai et al. [5] who used DTW
to construct features. In contrast, Afrasiabi et al. [1] used neural networks to
extract features and used DTW to compare the resulting sequences. Shulman [16]
proposed “an approach similar to DTW” to allow for flexible matching in case
of the dot product. In our current work, we propose to use DTW instead of
modifying the dot product.

Most closely related to our work is probably the DTW-NN approach, in case
of which the authors considered neural networks and replaced “the standard
inner product of a node with DTW as a kernel-like method” [9]. However, they
only considered multilayer perceptrons (MLP). In contrast, we focus on convo-
lutional networks.

3 Our Approach

In this section, we describe the proposed approach in detail. We begin this section
by discussing the limitations of “usual” convolution and max pooling. This is
followed by the definition of dynamic convolution. Subsequently, we will discuss
how the “usual” convolution can be replaced by dynamic convolution and how
the weights (parameters) of dynamic convolution can be learned.

3.1 Convolution and Max Pooling

In CNNs, convolutional layers act as local pattern detectors and they are often
followed by max pooling layers. Max pooling layers allow for some flexibility in
pattern matching by hiding the exact location of a pattern within the time series.
In other words: even if the pattern is shifted by a few positions, depending on
the window size used in the max pooling layer, the activation of the layer may
remain unchanged. However, max pooling is only able to establish this robustness
in pattern matching if the pattern is shifted within the max pooling window: if
the pattern is located at the boundary of the max pooling window, even if it is
shifted just by one position outside the max pooling window, the activation of
the max pooling layer will change. This is illustrated in Fig. 1 where the same
pattern has been shifted by one position to the left and right. In the former case,
the activation of the max pooling layer remains unchanged, whereas in the later
case, the activation of the max pooling layer changes to a non-negligible extent.
We argue that this behavior is somewhat irregular as one would expect the same
changes regardless whether the pattern is shifted to the left or to the right.

More importantly, while convolution with max pooling may account for minor
translations (even if its behaviour is somewhat irregular), we point out that
there may be other types of temporal distortions as well, such as elongations
within local patterns, that can not be taken into account by the dot product in
convolution.
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Fig. 1. Convolution with max pooling allows for a limited and, more importantly,
irregular robustness against translations of local patterns. The convolutional kernel in
the top is expected to detect ‘V’-shaped local patterns. In the left, the pattern has been
detected at one of the central positions in the time series which is reflected by the high
activation of the max pooling layer at the second position (see the highlighted ‘3’). In
the time series depicted in the center of the figure, the pattern has been translated by
one position to the left. The activation of the max pooling layer remains unchanged
indicating the robustness against small translations. On the other hand, in the time
series in the right, the same pattern has been translated by one position to the right
(compared to its original location in the time series in the left), and the activation of
the max pooling layer changed.

3.2 Dynamic Convolution

The main idea behind dynamic convolution is to replace the calculation of dot
products (or inner products) in convolution by the calculation of DTW distances
between the kernel and time series segments. This is illustrated in Fig. 2. We
omit the details of the calculation of DTW distances, as it has been described
in various works, see e.g. [3] or [17].

Regarding dynamic convolution in neural networks, we propose to use
dynamic convolution in the first hidden layer (i.e., directly after the input layer).
We call the resulting model dynamic convolutional neural network or DCNN for
short.

In order to determine the parameters of the dynamic convolutional layer, we
propose to train an analogous neural network with “usual” convolution in the
first hidden layer and use its learned kernel as kernel of the dynamic convolu-
tion. With pre-training phase of DCNN, we refer to the aforementioned process
of training the analogous neural network with “usual” convolution in its first
hidden layer. Once the pre-training is completed, the weights (parameters) of
dynamic convolution are frozen (i.e., they do not change anymore), and other
layers of DCNN can be trained by various optimization algorithms, such as
stochastic gradient descent or Adam [12]. In order to implement training effi-
ciently, the activation of the dynamic convolutional layer may be pre-computed
(as the weights of dynamic convolution do not change after pre-training).
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Fig. 2. Convolution (left) vs. dynamic convolution (right). In case of dynamic convolu-
tion, instead of the dot product (or inner product), DTW distances between the kernel
and time series segments are calculated.

4 Experimental Evaluation

The goal of our experiments is to examine whether the proposed dynamic con-
volution improves the accuracy of neural networks in the context of time series
classification.

Data: We performed experiments on real-world time series datasets that are pub-
licly available in “The UEA & UCR Time Series Classification Repository” [2].
The datasets used in our experiments are listed in the first column on Table 1.

Experimental Settings: In order to assess the contribution of dynamic convolu-
tion, we trained two versions of the same networks: with and without dynamic
convolution, and compared the results. In the former case, the first hidden layer
was a dynamic convolutional layer (with DTW calculations), whereas in the later
case, we used the “usual” convolution (with dot product).

To account for the fact that dynamic convolution may be used in various
neural networks, we assessed the contribution of dynamic convolution in case of
two different neural networks:

– Net1 is a simple convolutional network, containing a single convolutional layer
with 10 filters, followed by a max pooling layer with window size of 2, and a
fully connected layer with 100 units.

– Net2 contains a convolutional layer with 25 filters, followed by a max pooling
layer with window size of 2, a second convolutional layer with 10 filters, a
second max pooling layer with window size of 2 and a fully connected layer
with 100 units.
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Table 1. Average accuracy ± its standard deviation (calculated over 10 folds) for the
neural networks with “usual” convolution (denoted as CNN) and dynamic convolution
(denoted as DCNN). The best out of the both networks is denoted by bold font. In each
case we also provide a symbol •/◦ denoting if the observed difference is statistically
significant (•) or not (◦) according to paired t-test at significance level (p-value) of
0.05.

Dataset Net1 Net2

CNN DCNN CNN DCNN

Adiac 0.506 ± 0.061 0.575 ± 0.046 • 0.558 ± 0.052 0.640 ± 0.055 •
ArrowHead 0.886 ± 0.064 0.896 ± 0.083 ◦ 0.900 ± 0.062 0.887 ± 0.082 ◦
Beef 0.733 ± 0.170 0.800 ± 0.163 • 0.700 ± 0.180 0.783 ± 0.130 •
EarthQuakes 0.725 ± 0.042 0.733 ± 0.069 ◦ 0.699 ± 0.072 0.731 ± 0.063 ◦
ECG200 0.870 ± 0.050 0.890 ± 0.044 ◦ 0.865 ± 0.084 0.870 ± 0.064 ◦
FiftyWords 0.702 ± 0.033 0.714 ± 0.045 ◦ 0.686 ± 0.034 0.715 ± 0.027 •
Plane 0.981 ± 0.032 0.990 ± 0.029 ◦ 0.976 ± 0.032 0.995 ± 0.014 •
SwedishLeaf 0.864 ± 0.041 0.883 ± 0.027 • 0.862 ± 0.036 0.881 ± 0.033 ◦
WordSynonyms 0.682 ± 0.031 0.714 ± 0.050 • 0.681 ± 0.049 0.727 ± 0.047 •
Yoga 0.951 ± 0.013 0.960 ± 0.012 • 0.945 ± 0.022 0.959 ± 0.008 ◦

In both cases, the output layer contains as many units as the number of classes
in the dataset. Both in case of Net1 and Net2, we experimented with the afore-
mentioned two versions, i.e., with and without dynamic convolution in the first
hidden layer. Although, there may be other neural networks that are better
suited for a particular time series classification task, we observed that both Net1
and Net2 lead to accurate models in the examined tasks and we point out that
the primary goal of our experiments was to assess the contribution of dynamic
convolution. We implemented both Net1 and Net2 in pytorch. In order to cal-
culate DTW distances quickly, we used a function that was implemented in
Cython. We executed the experiments in Google Colab.1

We performed experiments according to the 10-fold cross-validation protocol
and report average classification accuracy together with its standard deviation
for both versions of Net1 and Net2 in Table 1. Additionally, we used paired t-
test at significance level (p-value) of 0.05 in order to assess whether the observed
differences are statistically significant (denoted by •) or not (denoted by ◦).

Codes: In order to assist reproduction of the results, we published our code in
our GitHub repository

https://github.com/kr7/DCNN

in form of IPython notebooks that can be directly executed in Google Colab.

1 https://colab.research.google.com.

https://github.com/kr7/DCNN
https://colab.research.google.com
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Results: As one can see in Table 1, in half of the examined cases, DCNN signif-
icantly outperforms CNN. In the remaining cases, where the difference is sta-
tistically insignificant, DCNN still usually performs better than CNN, the only
exception is the experiment with Net2 on the ArrowHead dataset. These results
indicate that the proposed dynamic convolution may indeed improve the accu-
racy of convolutional neural networks.

Discussion: We point out that both Net1 and Net2 contain max pooling layers.
Therefore, our results also demonstrate that “usual” convolution with max pool-
ing was not able to account for all the temporal distortions that are present in
the data. This is inline with our expectations based on our analysis in Sect. 3.1
where we discussed the rigidity of the dot product and pointed out that max
pooling only has a limited ability to account for translations, however, it can not
take elongations into account.

Training Time and Complexity: The method to train DCNN consists of two
phases: in the first (pretrain) phase, a CNN is trained; whereas in the second
phase, the weights of DCNN (except for the weights of the dynamic convolutional
layer) are learned. Therefore, the overall training time is roughly twice of the
training time of a single CNN. However, as pointed out in Sect. 3.2, the activation
of the dynamic convolutional layer may be precomputed, i.e., it needs to be
computed only once, even if the network is trained for many epochs in the
second phase. Therefore, the second phase of training may actually be slightly
faster than the training of an analogous CNN.

In the sense of complexity theory, under the assumptions that the number of
convolutional filters in the dynamic convolutional layer is a constant, the sizes
of each of them is a (small) constant and the length of time series is constant
as well, the time required for computation of the activation of the dynamic
convolutional layer is constant which does not change the complexity of training
in the sense of algorithm theory. Also training two networks instead of one, is
just a multiplication by a constant factor of 2 which again does not change the
complexity in the sense of algorithm theory. Therefore, the theoretical complexity
of training DCNN is the same as training a “usual” CNN.

5 Conclusions and Outlook

In this paper we introduced dynamic convolution as an alternative to the “usual”
convolution operation. Dynamic convolutional layers can be used within various
neural networks. We performed experiments in context of time series classifica-
tion on publicly available real-world datasets. The results are very promising:
they show that dynamic convolution is indeed competitive with “usual” convolu-
tion, moreover, the neural networks using dynamic convolutional layers system-
atically, often statistically significantly, outperform analogous neural networks
with “usual” convolutional layers. In principle, the proposed neural networks
with dynamic convolution may be used for any time series classification tasks,
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such as handwriting recognition, signature verification, ECG-based diagnosis of
various heart diseases, etc. In order to assist reproduction of our work and to pro-
mote using dynamic convolutional layers in various applications, we published
our codes.

As future work, we plan to perform experiments with additional neural net-
work architectures, such as deeper neural network, or networks with residual
connections. Moreover, in order to examine the generality of our results, we plan
to experiment with further datasets as well.
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