
Chapter 6
The Burnside Problem

In this chapter we discuss some instances of the Burnside Problem. There are three
versions of this problem, the first one being the

General Burnside Problem: Is it true that if a group G is finitely generated and tor-
sion, then it is finite?

We discuss the General Burnside problem for locally finite groups (Section 6.2),
for polycyclic-by-finite and solvable groups (Section 6.3), as well as its bounded
version for linear groups (Section 6.4). Finally, in Section 6.5 we discuss the
Kurosh–Levitzky problem (on nil algebras) and explain the construction of Golod
and Shafarevich yielding a negative answer to the Kurosh–Levitzky problem and
therefore to the General Burnside Problem.

6.1 Formulation of the Burnside Problems

The General Burnside Problem, posed by William Burnside in 1902 [46] – one of
the oldest and most influential questions in group theory – asks whether or not a
finitely generated group in which every element has finite order is necessarily finite.

Problem 6.1 (General Burnside Problem). Is it true that if a group G is finitely
generated and torsion, then it is finite?

Sometimes, the word periodic is used instead of “torsion”. In order to approach
the study of the General Burnside Problem, we introduce the following useful no-
tion.

Definition 6.2 (Burnside property). A class C of groups satisfies the Burnside
property if for every torsion group G in C the following holds: every finitely gener-
ated subgroup of G is finite.

A weaker formulation of the General Burnside Problem is the following. First
recall that a group G is said to be periodic with bounded exponent, or just a group
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with bounded exponent, if there exists an integer n ≥ 1 such that gn = 1G for all
g ∈ G.

Problem 6.3 (Bounded Burnside Problem). Is it true that if a group G is finitely
generated and of bounded exponent, then G is finite?

There is also a restricted version of the Burnside problem.

Problem 6.4 (Restricted Burnside Problem). Is it true that for every m,n ∈ N
there are finitely many (up to isomorphism) finite groups G with m generators and
of bounded exponent n?

6.2 Locally Finite Groups and the General Burnside Problem

Definition 6.5. Let P be a property of groups (e.g., being finite). We say that a
group G is locally P if every finitely generated subgroup of G satisfies P .

Example 6.6. Every abelian torsion group is locally finite. This immediately fol-
lows from the structure theorem of finitely generated abelian groups (see Corollary
1.30).

We can rephrase the General Burnside Problem in the following way.

Problem 6.7 (Reformulation of the General Burnside Problem). Is every torsion
group locally finite?

Notice that Lemma 2.34 says that the General Burnside Problem has a posi-
tive solution for nilpotent groups, equivalently, the class of nilpotent groups has the
Burnside property.

The class of locally finite groups is clearly closed under taking subgroups, ho-
momorphic images and finite direct products (exercise). Next we show that it is also
closed under extensions.

Lemma 6.8. Let G be a group. Let H ≤ G be a normal subgroup and suppose that
both H and G/H are locally finite. Then G is locally finite.

Proof. Let K ≤ G be a finitely generated subgroup of G. The image of K in G/H is
KH/H ∼= K/(K∩H), which is finite by assumption. Hence [K : K∩H]< ∞, which
implies that K ∩H is finitely generated (cf. Corollary 1.11). Hence K ∩H ≤ H is
finite by the assumption on H. We deduce that K is also finite. �

In fact, we can show that every group contains a largest locally finite subgroup.
Here, “largest” means that it contains all the other locally finite subgroups: this is
stronger than “maximal”. In order to do so, the following two propositions will be
useful.

Proposition 6.9. Let K,LEG, and let both K and L be locally finite. Then KL is
locally finite.
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Proof. KL/K ∼= L/(K∩L) is locally finite, hence KL is an extension of locally finite
groups (K and KL/K). Therefore, by the previous lemma, KL itself is locally finite.

�

Let I be a directed set, that is, a set equipped with an order � such that for every
i1, i2 ∈ I there exists an i∈ I with i1 � i and i2 � i. Let G be a group. A family (Hi)i∈I
of subgroups of G is said to be increasing if Hi ≤ H j for all i, j ∈ I such that i � j.
If in addition we have

⋃
i∈I Hi = G, then we say that the family (Hi)i∈I exhausts G.

Proposition 6.10. Let G be a group. Let (Hi)i∈I be an increasing and exhausting
family of subgroups of G. Suppose that Hi is locally finite for every i ∈ I. Then G
itself is locally finite.

Proof. Let X ⊆ G be a finite subset. Since (Hi)i∈I is increasing and exhausting, we
can find i = i(X) such that X ⊆ Hi. Since Hi is locally finite, it follows that the
subgroup generated by X is finite. This shows that G is locally finite. �

Corollary 6.11. Every group G contains a largest locally finite normal subgroup
L(G) such that G/L(G) does not contain nontrivial locally finite normal subgroups.

Proof. Let I denote the set of all locally finite normal subgroups of G. Equip I with
the order given by inclusion and observe that, by Proposition 6.9, it is a directed
set. It follows from Proposition 6.10 that the subgroup L(G) :=

⋃
H∈I H is locally

finite. Moreover, since conjugation by elements in G preserves local-finiteness of
subgroups, we have that L(G)EG. It is clear from the construction that every locally
finite normal subgroup of G is contained in L(G).

On the other hand, if H/L(G) ≤ G/L(G) is a locally finite normal subgroup,
then H ≤ G is locally finite by Lemma 6.8. But we have just seen that H must be
contained in L(G), hence H/L(G) is the trivial subgroup. �

6.3 The General Burnside Problem for Polycyclic-by-Finite and
Solvable Groups

The following theorem gives a positive solution to the General Burnside Problem
for polycyclic-by-finite and solvable groups.

Theorem 6.12 (General Burnside Problem for polycyclic-by-finite and solvable
groups). Let G be a torsion group. Then

(1) if G is solvable, then it is locally finite;
(2) if G is polycyclic-by-finite (e.g polycyclic), then it is finite.

Proof. If G is solvable, then consider its derived series. The quotients of this series
are abelian and torsion, and therefore locally finite (cf. Example 6.6). Then G is
locally finite by recursively applying Lemma 6.8.

If G is polycyclic-by-finite, consider any finite subnormal series with cyclic quo-
tients. Since G is torsion, these quotients are necessarily finite. Since extensions of
finite groups by finite groups are finite, it follows that G is finite. �
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6.4 The Bounded Burnside Problem for Linear Groups

This section is devoted to the proof of the following theorem, which is due to Burn-
side.

Theorem 6.13 (Bounded Burnside Problem for linear groups). Let G be a sub-
group of GL(n,K), where K is a field. Suppose that G is finitely generated and of
bounded exponent. Then G is finite.

Proof. Notice that ifK is the algebraic closure ofK, then G≤GL(n,K)≤GL(n,K).
Hence, without loss of generality, we can assume that K is algebraically closed.

We can also assume that G acts irreducibly on V = Kn. Indeed, we can always
find a chain of subspaces

{0} ≤V1 ≤V2 ≤ ·· · ≤Vs =V,

such that G acts irreducibly on each Vi/Vi−1, i = 1,2, . . . ,s (cf. the proof of the
first Claim in Section 4.5). Taking a basis for each factor, consider the basis of V
obtained by taking the union of these bases. Then, in this basis, G will be in block
upper triangular form:

g =


M1(g) ∗ · · · ∗

0 M2(g) · · · ∗
...

...
. . .

...
0 0 · · · Ms(g)

 ,

for every g ∈ G, where Mi(g) ∈ GL(Vi/Vi−1), i = 1,2, . . . ,s. Consider now the ho-
momorphism

g 7→ ϕ(g) :=


M1(g) 0 · · · 0

0 M2(g) · · · 0
...

...
. . .

...
0 0 · · · Ms(g)

 .

The kernel of this map consists of matrices of the form
In1 ∗ · · · ∗
0 In2 · · · ∗
...

...
. . .

...
0 0 · · · Ins


where Ini ∈ GL(ni,K) denotes the identity matrix and ni = dimK(Vi/Vi−1), i =
1,2, . . . ,s. Thus ker(ϕ), being a subgroup of UT(n,K), is a nilpotent group (cf. Ex-
ample 2.5.(b)). Since every nilpotent group is solvable, we deduce from Theorem
6.12 and the hypothesis that G is torsion, that ker(ϕ) is locally finite. On the other
hand, the image of ϕ is a finite direct product of linear groups acting irreducibly, by
construction. Hence if we know the result for G acting irreducibly, then ϕ(G), being
the finite direct product of locally finite groups, is locally finite by Lemma 6.8. We
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then deduce that G, being an extension of locally finite groups, is locally finite by
applying once more Lemma 6.8. Since G is finitely generated, it is in fact finite.

To finish the proof, we need some more Wedderburn theory (cf. Section 4.4).
Let A be an algebra, A ⊆ EndK(V ) with n :=dimKV < ∞ and suppose that A

acts irreducibly. Then A acts completely reducibly on V and therefore, by Proposi-
tion 4.29, its radical vanishes: N(A) = {0}. Then, since K is algebraically closed,
Wedderburn’s Theorem (Theorem 4.20) guarantees that A ∼= A/N(A) ∼= Mn1(K)⊕
·· · ⊕Mnr(K). Let us show that A is in fact simple, that is, that r = 1. Suppose,
by contradiction, that r ≥ 2. Let e1 denote the identity of Mn1(K) ⊆ A (here we
are identifying Mn1(K) with the corresponding ideal of A). Then e1V is a proper
A-submodule of V , contradicting the irreducibility of the action of A on V . Thus
A ∼= Ms(K) ⊆ EndK(V ) ∼= Mn(K). In particular, s ≤ n. Let us show that, in fact,
s = n, so that A = EndK(V )∼= Mn(K).

Choosing a suitable basis of V , we can assume that E1,1, the matrix that has 1 in
the (1,1) position and zero elsewhere, belongs to A. Since E1,1V 6= {0}, we can find
a vector v ∈ V such that E1,1v 6= 0. Now, AE11v is an A-submodule of V , therefore
AE1,1v = V , since V is A-irreducible. Moreover, AE1,1 is the set of matrices with
possibly nonzero entries only in the first column, i.e. of the form

∗ 0 · · · 0
∗ 0 · · · 0
...

...
. . .

...
∗ 0 · · · 0

 ∈Ms(K).

Now dimKV = dimK Ae11v≤ s, so that n≤ s. Hence n = s, and A = EndK(V ). We
just proved:

Theorem 6.14 (Wedderburn). LetK be an algebraically closed field and let V be a
finite-dimensional vector space overK. Suppose that A⊆ EndK(V ) acts irreducibly
on V . Then A = EndK(V ). �

Corollary 6.15 (Burnside). Let K be an algebraically closed field and let V be a
finite-dimensional vector space over K. If G⊆ GL(V ) and G acts irreducibly on V ,
then spanK(G) = EndK(V ). �

We now finish the proof of the Burnside Theorem for linear groups.
Recall that G ≤ GL(n,K), G is finitely generated and there exists a positive in-

teger d such that gd = 1 for all g ∈ G. Also, by the preceding arguments, we may
assume that G acts irreducibly. Then, by Corollary 6.15, G spans Mn(K). Hence
there exist g1,g2, . . . ,gn2 ∈ G which form a basis for Mn(K). Let g ∈ G. Observe
that since K is algebraically closed g is triangularizable, that is, g is similar to a
matrix of the form 

α1 ∗ · · · ∗
0 α2 · · · ∗
...

...
. . .

...
0 0 . . . αn


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where α1,α2, . . . ,αn ∈ K. Since gd = 1, we have αd
i = 1 for all i. It follows that

we have at most d possible values for each αi. This implies that, as g varies in G,
the distinct values of the traces tr(g) are at most dn. Hence the number of distinct
n2-tuples (tr(g1g), tr(g2g), . . . , tr(gn2g)) as g varies in G is at most (dn)n2

= dn3
.

Claim. Given g ∈G, the tuple (tr(g1g), tr(g2g), . . . , tr(gn2g)) determines g uniquely.
We first observe that the bilinear form f : Mn(K)×Mn(K) → K defined by

f (a,b) := tr(ab) for all a,b ∈Mn(K) satisfies the condition

f (ab,c) = f (a,bc)

for all a,b,c ∈ Mn(K). It follows that the set I = {a ∈ Mn(K) : f (a,b) = 0 for all
b ∈ Mn(K)} is an ideal of Mn(K). As the algebra Mn(K) is simple (exercise), we
have that I = {0}, equivalently, f is non-degenerate.

Let then g′,g′′ ∈G and suppose that tr(gig′) = tr(gig′′) for all i = 1,2, . . . ,n2. By
subtracting we get tr(gi(g′− g′′)) = 0 for i = 1, . . . ,n2. Since the gi’s span Mn(K),
this implies f (a,(g′− g′′)) = tr(a(g′− g′′)) = 0 for all a ∈ Mn(K). It follows that
g′−g′′ = 0 by the non-degeneracy of f . The claim follows.

All this shows that there are finitely many possibilities for g ∈ G. Hence G is
finite, and this finishes the proof of the Burnside theorem for linear groups. �

6.5 The Golod–Shafarevich Construction

In this section we describe the negative solution to the General Burnside Problem
provided by Golod and Shafarevich.

It turns out that their solution goes through the negative solution to a problem in
associative algebras strictly connected to the General Burnside Problem.

LetK be a field and let A be an associative algebra overK. For two subsets S and
T of such an algebra we set ST :=spanK{st | s ∈ S, t ∈ T}. For a positive integer n,
we denote by Sn the product SS · · ·S of S with itself n times: by associativity, this is
well defined.

Definition 6.16. An element a ∈ A is called nilpotent if there exists an integer n≥ 1
such that an = 0. We say that A is a nil algebra if every a ∈ A is nilpotent. We say
that A is nilpotent if there exists an integer n≥ 1 such that An = {0}.

Note that every nilpotent algebra is nil. Conversely, we have the following theo-
rem, whose proof is left as an exercise.

Theorem 6.17 (Wedderburn). A finite-dimensional nil algebra is nilpotent.

Remark 6.18. In fact, Wedderburn proved even more, namely that a finite-dimens-
ional algebra which admits a linear basis consisting of nilpotent elements is nilpo-
tent.

The following problem is related to the General Burnside Problem.
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Problem 6.19 (Kurosh–Levitzky). Let A be a finitely generated nil algebra. Does
this imply that A is nilpotent (and hence finite-dimensional)?

An algebra in which any finitely-generated subalgebra is nilpotent is called lo-
cally nilpotent. The following proposition is somewhat similar to Lemma 6.8. Its
proof is left as an exercise.

Proposition 6.20. Let A be a algebra. Let I ≤ A be an ideal and suppose that both
A/I and I are locally nilpotent. Then A is locally nilpotent.

So for any associative algebra A there exists a largest locally nilpotent ideal which
is called the Levitzky radical.

Remark 6.21. In analogy with the reformulation of the General Burnside Problem,
the Kurosh–Levitzky Problem asks whether nil and local nilpotence are equivalent
conditions.

The answer to the Kurosh–Levitzky Problem is negative. To see this, we fix some
notation.

Let K be a field. Denote by K〈x1,x2, . . . ,xn〉=K〈X〉 the free associative algebra
with coefficients in K freely generated by X = {x1,x2, . . . ,xn}. We simply call it the
free algebra generated by X .

Let R⊆K〈X〉 be any subset. We denote by (R) the (two-sided) ideal generated by
R, i.e. the set consisting of all finite sums ∑i airibi where ri ∈ R and ai,bi ∈ K〈X〉.
We then say that the algebra K〈X〉/(R) has the presentation 〈X | R〉 and that the
elements of X (resp. R) are the corresponding generators (resp. relators).

A unital algebra A is said to be graded if it has a direct sum decomposition into
K-subspaces

A = A0⊕A1⊕A2⊕·· ·=
⊕
i∈N

Ai (6.1)

where A0 :=K1A and AiA j ⊆ Ai+ j for all i, j = 0,1, . . . We say that the elements of
Ai are the homogeneous elements of degree i. An ideal I of a graded algebra A is said
to be homogeneous provided that for every element a ∈ I, the homogeneous parts
of a are also contained in I. If I is a homogeneous ideal of a graded algebra A, then
A/I is also a graded algebra, and it has decomposition

A/I =
⊕
i∈N

(Ai + I)/I.

Example 6.22. (1) Let X be a set. Then the free algebra K〈X〉 generated by X is
graded. Indeed, the homogeneous elements of degree i are the homogeneous (non-
commutative) polynomials of degree i together with the 0 polynomial.

(2) The algebra A :=K[x1, . . . ,xn] of (commutative) polynomials with coeffi-
cients in K is also graded. Here, the homogeneous elements of degree i are the
homogeneous (commutative) polynomials of degree i together with the 0 polyno-
mial.

Let A be a graded algebra as in (6.1) and suppose that dimK Ai < ∞ for all i. Then
the associated Hilbert series is the formal power series
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HA(t) :=∑
i≥0

dimK(Ai)t i.

Given two formal powers series ∑i≥0 ait i and ∑i≥0 bit i, we write

∑
i≥0

ait i �∑
i≥0

bit i

provided that ai ≤ bi for all i≥ 0, and define their product as

∑
k≥0

cktk :=

(
∑
i≥0

ait i

)(
∑
j≥0

b jt i

)

where
ck :=a0bk +a1bk−1 + · · ·+akb0

for all k ≥ 0.
Suppose that R⊆K〈X〉 is a subset consisting of homogeneous linearly indepen-

dent elements of degree ≥ 2, and let ri denote the number of elements of degree i in
R for all i≥ 2. We set

HR(t) :=r2t2 + r3t3 + · · · .

Then the ideal (R) generated by R is a graded ideal and the algebra A = 〈X |
R〉 :=K〈X〉/(R) is a graded algebra.

The following theorem constitutes the key ingredient of the Golod–Shafarevich
construction.

Theorem 6.23 (Golod–Shafarevich). With the above notation we have

HA(t)(1−nt +HR(t))� 1. (6.2)

Before proving the theorem, let us show how we can derive from it a negative
answer to the Kurosh–Levitzky Problem.

Suppose that we manage to find a real number 0 < t0 < 1 such that

(1) HR(t) converges at t0 and
(2) 1−nt0 +HR(t0)< 0.

Then HA(t) does not converge at t0. In fact if it converges, then necessarily HA(t0)≥
0, since t0 > 0, which, together with (2), contradicts (6.2). This implies that A is
infinite-dimensional: in fact for a finite-dimensional algebra A, the power series
HA(t) is a polynomial, which converges everywhere.

Remark 6.24. This argument can be used in several ways to conclude that an alge-
bra with a given presentation is infinite-dimensional.

For example, suppose that we are given a finite subset R ⊆ K〈X〉2 of quadratic
relators such that r := |R| < n2/4 (recall that n = |X |). Then for t = 2/n, one has
1−nt +HR(t) = 1−nt + rt2 < 0, and therefore the algebra A = 〈X | R〉 is infinite-
dimensional.
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Let K be countable, and observe that K〈X〉 is also countable. Denote by K0〈X〉
the ideal ofK〈X〉 consisting of all elements with 0 constant term and let a1,a2, . . . be
an enumeration of all the elements of K0〈X〉. Finally, recursively define R⊆K0〈X〉
as follows. Let R1 ⊆K0〈X〉 be the set of all homogeneous components of (a1)

2 and
let n2 ∈ N be greater than the degrees of all elements in R1.

Example 6.25. If a1 = x1+x2x3, then a2
1 = x2

1+x1x2x3+x2x3x1+x2x3x2x3, so R1 =
{x2

1,x1x2x3 + x2x3x1,x2x3x2x3}. Here we can take n2 ≥ 5.

Suppose we have defined Ri ⊆ K0〈X〉 and ni+1 ∈ N. Then we define Ri+1 ⊆
K0〈X〉 as the set of all homogeneous components of (a1)

2,(a2)
n2 , . . . ,(ai+1)

ni+1

and we choose ni+2 ∈ N greater than the degrees of all elements in Ri+1. Note that
Ri ⊆ Ri+1. We then set R :=

⋃
i≥1 Ri.

Remark 6.26. The choice of starting with a2
1 is made in order to ensure that all the

elements of R have degree at least 2 (recall that the ai’s have zero constant term).

Set
B :=K0〈X〉/(R).

We first notice that B is nil. Indeed, R contains all the homogeneous components
of (ai)

ni for all i ≥ 1, so that every element of B is nilpotent. Note that B is clearly
finitely generated, so in order to prove that B is a counterexample to the Kurosh–
Levitzky problem, we only need to show that it is infinite-dimensional.

Consider now the (graded) algebra A :=K〈X〉/(R) and observe that A∼=K1A⊕B
as vector spaces, so that B is infinite-dimensional if and only if A is. Now, to prove
that dimK A is infinite, it will be enough to show that there exists a t0 such that
1− nt0 +∑i≥2 rit i

0 < 0. Recall that ri is the number of homogeneous elements of
degree i in R. By construction, the ri’s are either 0 or 1, hence we can assume that
ri = 1 for all i, since ∑i≥2 rit i � ∑i≥2 t i.

Now 1−nt +∑i≥2 t i converges for all 0 < t < 1 and for these values of t we have

1−nt +∑
i≥2

t i = 1−nt +
t2

1− t
=

(n+1)t2− (n+1)t +1
1− t

.

Consider the inequality

(n+1)t2− (n+1)t +1
1− t

< 0. (6.3)

The discriminant of the quadratic polynomial at the numerator of (6.3) is positive
for n≥ 4 and, in this case, the corresponding roots are

α
± :=

n+1±
√
(n+1)2−4(n+1)
2(n+1)

.

Note that 0 < α− < α+ < 1 and that (6.3) is satisfied for every α− < t < α+. It
follows that we can find 0 < t0 < 1 such that 1−nt0 +HR(t0)< 0.

This completes the proof that A is infinite-dimensional over K, so that B is a
counterexample to the Kurosh–Levitzky problem.
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Proof of the Golod–Shafarevich theorem (Theorem 6.23). It is straightforward to
check the inequalities implicit in (6.2) for the constant term and the coefficient of
t. Indeed for the constant term it reduces to 1 ≥ 1, while for the coefficient of t, it
reduces to dimK A1−n = n−n≥ 0.

To check it for the other coefficients, we proceed as follows. Let K〈X〉 =⊕
i≥0K〈X〉i be the decomposition in homogeneous components, so that we have

dimKK〈X〉i = ni. Set I :=(R), and denote by I =
⊕

i≥2 Ii the decomposition of the
graded ideal I into homogeneous components (note that Ii = I ∩K〈X〉i for all i).
Also set ai :=dimK Ai and observe that we have dimK Ii = ni− ai. Moreover, set
Ri :=R∩K〈X〉i and ri = |Ri| for all i. For every i we choose a subspace Ãi such that
K〈X〉i = Ii⊕ Ãi, so that dimK Ãi = ai.

We clearly have I =K〈X〉R+ IX . It follows that

Is =
s

∑
i=2
K〈X〉s−iRi + Is−1X

for all s≥ 2. In fact, we have

Is =
s

∑
i=2

Ãs−iRi + Is−1X

for s≥ 2. To see this, it is enough to observe that Is−iRi ⊆ Is−1X for i≥ 2, so that

Is =
s

∑
i=2
K〈X〉s−iRi + Is−1X =

s

∑
i=2

(Is−i⊕ Ãs−i)Ri + Is−1X

=
s

∑
i=2

Ãs−iRi +
s

∑
i=2

Is−iRi + Is−1X =
s

∑
i=2

Ãs−iRi + Is−1X .

Hence, looking at the dimension over K of these subspaces, we deduce that

ns−as ≤
s

∑
i=2

as−iri +(ns−1−as−1)n,

that is,

as +
s

∑
i=2

as−iri−nas−1 ≥ 0.

It remains only to notice that, for s≥ 1, the coefficient of ts in HA(t)(1−nt+HR(t))
is exactly as−nas−1 +∑

s
i=2 as−iri. �

We are now going to use our counterexample to the Kurosh–Levitzky problem to
produce a counterexample to the General Burnside Problem.

Let K be a countable or finite field of characteristic ch(K) = p > 0. Consider the
algebra A that we just constructed. We have A = K1⊕B as vector spaces, where
1 = 1A is the unit of the algebra A, and B = K0〈X〉/(R) is an infinite dimensional
nil algebra. Consider the set A× of all invertible elements of A.
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Now for every b ∈ B, the element 1+ b ∈ A is invertible, and in fact has finite
order. Indeed, since B is nil, there exists an `≥ 1 such that bp` = 0; hence (1+b)p` =

1+bp` = 1 (here we are using ch(K) = p > 0). It follows that 1+B⊆ A×.
Let us denote again by xi the cosets xi+(R) in A≡K〈X〉/(R), where xi ∈X . Then

the elements 1+ xi, i = 1,2, . . . ,n are invertible and torsion. Consider the subgroup
G ⊆ 1+B ⊆ A× generated by {1+ x1,1+ x2, . . . ,1+ xn}. This is clearly a finitely
generated torsion group.

Theorem 6.27. G is infinite.

Proof. Suppose not and assume |G| = d. Then every element g of G can be ex-
pressed as

g = (1+ xi1)(1+ xi2) · · ·(1+ xir)

with r < d (we don’t need the inverses, since (1+ x j)
k j = 1 for some k j). Indeed,

suppose that g = (1+ x j1) · · ·(1+ x j`) with ` minimal and ` ≥ d. Then at least two
of the d +1 elements

1,1+ x j1 ,(1+ x j1)(1+ x j2), . . . ,(1+ x j1)(1+ x j2) · · ·(1+ x jd )

must be equal, say (1+ x j1)(1+ x j2) · · ·(1+ x jh) and (1+ x j1)(1+ x j2) · · ·(1+ x jk),
where 0≤ h < k ≤ d. But then

g = (1+ x j1)(1+ x j2) · · ·(1+ x jh)(1+ x jk+1)(1+ x jk+2) · · ·(1+ x j`)

is a product of h+(`−k)<` generators, contradicting the minimality of `. So `< d.
Let us show that the set of products {x j1x j2 · · ·x jr : 1 ≤ ji ≤ n,1 ≤ i ≤ r < d}

spans B. To do so, it is sufficient to prove that every word w = xi1xi2 · · ·xid of length
d is a linear combination of shorter words.

We have

(1+ xi1)(1+ xi2) · · ·(1+ xid ) = (1+ x j1)(1+ x j2) · · ·(1+ x jr)

with r < d as we have just shown. Keeping the factor xi1xi2 · · ·xid on the left-hand
side, and bringing everything else to the right-hand side, gives the desired expression
of w as a linear combination of shorter words.

It follows that dimK A = 1+dimK B≤ 1+(1+n+ · · ·+nd−1), contradicting the
fact that A is infinite-dimensional. Therefore G must be infinite. �

6.6 Notes

William Burnside [47] solved the Bounded Burnside Problem for linear groups. Issai
Schur [305] proved the General Burnside Problem for linear groups. The Bounded
Burnside Problem has been checked for exponent n = 2 (trivial: abelian groups),
n = 3 (Burnside [46]), n = 4 (Ivan N. Sanov [302]) and n = 6 (Marshall Hall [153]).



In 1964 Evgenii S. Golod and Igor R. Shafarevich [125] constructed a 2-
generated infinite p-group, thus providing a counterexample to the General Burnside
Problem.

In 1980 Rostislav I. Grigorchuk [129] constructed his renowned group of inter-
mediate growth which, among other most important properties, provides a negative
solution to the General Burnside Problem. See the Notes to Chapter 7 for more on
the Grigorchuk group.

In 1968 Pëtr S. Novikov and Sergei I. Adyan [258] found a counterexample to
the Bounded Burnside Problem for all odd exponents n≥ 4381.

In 1992 both Sergei V. Ivanov and Igor Lysënok announced a counterexample to
the Bounded Burnside Problem for all but finitely many exponents: Ivanov [188] for
n≥ 248 and Lysënok [220] for n≥ 8000.

In 1980 Alexander Yu. Olshanskii [260] constructed the so-called Tarski mon-
sters. A Tarski monster is an infinite group G such that every proper subgroup H of
G, other than the identity subgroup, is a cyclic group of order a fixed prime number
p. Such a group G is necessarily finitely generated. In fact it is clearly generated by
every two non-commuting elements. Then Olshanskii showed that there is a Tarski
p-group for every prime p > 1075.

In 1991 Efim I. Zelmanov [361, 362] gave a positive solution to the Restricted
Burnside Problem.

The Kurosh–Levitzky problem goes back to Alexander G. Kurosh [206] and
Jakob Levitzky [214] in the early 1940s.

For a comprehensive relatively recent account on the Burnside problem, we also
refer to Adyan’s survey [3].

6.7 Exercises

Exercise 6.1. Show that the class of locally finite groups is closed under taking
subgroups, homomorphic images, and finite direct products.

Exercise 6.2. Let K be a field. Show that the algebra Mn(K) is simple.

Exercise 6.3. Show that a finitely-dimensional algebra which admits a linear ba-
sis consisting of nilpotent elements is nilpotent. This proves Wedderburn theorem
(Theorem 6.17).


	Chapter 6 The Burnside Problem
	6.1 Formulation of the Burnside Problems
	6.2 Locally Finite Groups and the General Burnside Problem
	6.3 The General Burnside Problem for Polycyclic-by-Finite and Solvable Groups
	6.4 The Bounded Burnside Problem for Linear Groups
	6.5 The Golod–Shafarevich Construction
	6.6 Notes
	6.7 Exercises




