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Foreword

It is a privilege to introduce this book on the celebrated theorem of Misha Gromov
and everything that is related to it.

In 1981, Gromov stunned the mathematical world with his beautiful proof of Mil-
nor’s Conjecture on groups of polynomially bounded growth. The proof combined
ideas from many areas of mathematics and was at least as important as the result
itself. It ushered in a new era in the history of infinite groups. The subject became
a crossroad of different areas of mathematics and different mathematical cultures.
It became a fertile ground where mathematical areas competed and showed their
prowess.

The book captures this “multicultural” spirit, systematically and generously out-
lining the related areas including measures on groups, hyperbolic geometry, random
walks, relevant harmonic analysis etc., in addition to being a wonderful introduction
to the subject of infinite groups itself.

In the exposition, the authors have always selected ideas and examples over tech-
nical detail.

The book, with well selected numerous exercises, could be the basis for a gradu-
ate course.

The authors clearly enjoyed writing the book. I hope that the reader will enjoy
reading it as well.

San Diego, May 2021 Efim I. Zelmanov
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Preface

ix

The main purpose of these lecture notes is to present Gromov’s theorem on groups
of polynomial growth, which is one of the milestones in the theory of infinite groups.
The idea of looking at a finitely generated group with a geometer’s eye by investi-
gating the properties of the family consisting of all its word metrics is due to Misha
Gromov and constitutes the central, ingenious idea for the proof of this beautiful
theorem. One often refers to 1981, the year of its publication, as the date of birth
of the flourishing branch of mathematics which is commonly known as geometric
group theory.

Motivated by their studies in differential geometry, Efremovich and Schwarz
in the 1950s and, independently, Milnor and Wolf in the 1960s, introduced

G,
together with a symmetric generating subset X ⊆ G, one associates the Cayley
graph Cay(G,X) with vertex set V :=G and edge set E :={(g,gx) : g ∈ G,x ∈ X};
the corresponding graph distance d = dX makes G into a metric space for which the
set Br :={g = x1x2 · · ·xn : xi ∈ X ,0 ≤ n ≤ r} ⊂ G is the ball of radius r ∈ [0,+∞)
centered at the identity element 1G ∈ G.

This led to the definition of groups of (sub-)polynomial growth, of sub-exponen-
tial growth, and of exponential growth (of the cardinality of Br, as r→ ∞) and to
the study of the algebraic properties of the groups in the corresponding classes.
For instance, the free abelian group Zd has polynomial growth of degree d and,
more generally, a finitely generated nilpotent group has polynomial growth whose
corresponding polynomial degree is expressed (Guivar’ch–Bass formula) in terms
of the free-ranks of the consecutive quotients from its lower central series. On the
other hand, the nonabelian free group F2 (and therefore any finitely generated group
G having nonabelian free subgroups) has exponential growth. Moreover (Milnor–
Wolf theorem), finitely generated solvable groups of sub-exponential growth are
virtually nilpotent (i.e. have a finite-index nilpotent subgroup) and therefore have
polynomial growth.

Gromov’s theorem (1981) then characterizes the groups of polynomial growth
exactly as the virtually nilpotent groups.

the concept of growth of finitely generated groups (typically, fundamental groups
of manifolds) viewed as metric spaces. With a finitely generated group
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The importance of this theorem, besides its statement, lies in its beautiful proof
and the fascinating techniques developed to achieve it.

In his original proof, Gromov developed a notion of “limit of metric spaces”,
with respect to what is now called the “Gromov-Hausdorff” distance, which turned
out to play a key role in the proof. Given a finitely generated group G generated
by a symmetric subset X ⊆ G, one then considers the sequence of metric spaces
((G,d/n))n∈N, where d = dX is the associated distance function: this corresponds,
roughly speaking, to viewing G from farther and farther away. For instance, if G=Z
(or more generally, G=Zd , for some d ∈N) then the associated limit is (R,δ ) (resp.
(Rd ,δ )), where δ is the `1-distance. Now, this limit metric space inherits a natural
G-action (the limit of the Cayley action of G on itself) and, provided one chooses an
appropriate subsequence, if needed, it has “nice” topological and geometric prop-
erties (it is connected, arc-wise connected, locally connected and locally arc-wise
connected, and – if G has polynomial growth – it is separable, locally compact,
and finite dimensional) so that, by virtue of an important result of Montgomery
and Zippin (a solution to Hilbert’s 5th problem), G is essentially a Lie group
(and therefore a linear group). A deep and far reaching theorem of Tits (1970)
states that a finitely generated linear group is either virtually solvable or contains
a nonabelian free subgroup (and therefore has exponential growth). At this point, a
combination of the Tits alternative and the Milnor–Wolf theorem then yields that if
G has polynomial growth it is necessarily virtually nilpotent, concluding the proof.

In 1984 van den Dries and Wilkie, using methods from nonstandard Analysis,
namely the use of ultrafilters and their associated ultraproducts and ultralimits, re-
visited the construction of Gromov’s limits, which in this context are now called
“asymptotic cones”. This approach greatly simplified the proof by the use of the
elegant formalism of ultrafilters. This is the one we present in these lecture notes.

More recently, new proofs of Gromov’s theorem, of a more “analytical flavour”
have appeared. We mention, for instance, the proofs of Kleiner (in terms of suitable
spaces of harmonic functions), Shalom–Tao (a finitary version), Breuillard–Green–
Tao, Hrushovsky, and Ozawa (in terms of the analysis of reduced cohomology and
Shalom’s property HFD). The advantage of          these       new       proofs         consists       in     the     fact     that    
they rely neither on the Montgomery–Zippin theorem nor on Tits’ alternative. However,
the beauty of the geometric construction due to Gromov (and simplified by van den
Dries and Wilkie) is completely lost. As our main target is to enlighten the “geometry”
of (finitely generated) groups, we preferred to present
for our presentation.

It seems to us quite appropriate to quote here Zelmanov’s statement: “It would
have been a tragedy if Kleiner’s proof had appeared before Gromov’s proof: geo-
metric group theory would have never been born!”.

Growth of groups has developed as a central topic in geometric and analytic
group theory: it is related to (and in fact motivated the flourishing of the theory of)
automata groups (e.g. the famous group of intermediate growth constructed by
Grigorchuk (1980): its growth function is super-polynomial but sub-exponential),
branch groups, and fractal groups, as well as to numerous analytic and combinato-
rial questions, power series, asymptotic expansions and zeta-functions. In addition
to this central topic, we present a self-contained and reasonably exhaustive treat-

the Gromov–vdD–W approach
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ment of more “algebraic group theory” such as free groups (including Klein’s
ping-pong lemma, which plays a crucial role in the search for free subgroups, for
instance in the Tits alternative), nilpotent groups (with Malcev’s beautiful theory
culminating with their linearity), residually finite groups, solvable groups (with
Malcev virtual triangularizability theorem), polycyclic groups (including Malcev’s
theorems and the Auslander-Swan theorem), and the Burnside problem and the
Golod–Shafarevich construction; of more “geometric theory” such as some basic
hyperbolic plane geometry as an introduction to a particular (yet significant) case
of the Tits alternative, a quick introduction to topological groups (locally compact
groups, their Haar measure, locally compact Abelian groups and the Pontryagin
duality, Lie groups and Hilbert’s fifth problem), a self-contained exposition of di-
mension theory (we use the approach of Hurewicz and Wallman in their classical
monograph based on the inductive dimension) including Hausdorff dimension, and a
comprehensive treatment of the necessary background of non-standard analysis (fil-
ters and ultrafilters on N, ultralimits, ultrapowers, ultraproducts, asymptotic cones)
with a particular emphasis on the important example consisting of hyperbolic metric
spaces; of more “analytic group theory” such as amenability (a notion introduced
by von Neumann in his studies of the Hausdorff–Banach–Tarski paradox) with
its several characterizations – including the Tarski alternative, the Følner criterion,
Kesten’s theorem, the Grigorchuk co-growth criterion (this is expressed in terms of
“relative growth” of the normal subgroup N ≤ F of a finitely generated free group
such that G ∼= F/N) – Følner functions and isoperimetric profiles; and “probabilis-
tic group theory”. The last chapter, indeed, is devoted to “random walks on groups”
and to a presentation of the Polya–Varopoulos theorem. A celebrated result of
Polya asserts that the symmetric random walk on Zd is recurrent (i.e., with proba-
bility one, a random walker visits every x ∈ Zd , infinitely many times) for d = 1,2
and transient (i.e., for any finite subset Ω ⊂ Zd , there exists a time t(Ω) ∈ N, such
that, with probability one, the position x(t) of the random walker at time t ≥ t(Ω)
satisfies that x(t) ∈ Zd \Ω ). A celebrated theorem of Varopoulos generalizes Polya’s
result and characterizes the infinite finitely-generated groups for which the simple
random walks are recurrent: these are exactly the groups admitting a finite index
subgroup isomorphic to either Z or Z2. It is a remarkable fact that Gromov’s theorem
plays a crucial role in this characterization.

***

In mid February 2003 and in February–March 2004, TCS visited Efim Zelmanov
at UCSD and attended a few lectures from his graduate course on “Groups and Com-
binatorics” which included the proof of Gromov’s theorem along Gromov’s original
lines. In the academic year 2006–7, as a first-year graduate student at UCSD, MDA
attended the whole course by Zelmanov: the proof of Gromov’s theorem, this time,
followed the Wilkie and van den Dries non-standard analysis approach. The present
book was started under the strong encouragement by Zelmanov: it is based on the
notes taken at his course, duly detailed, and expanded with several worked-out ex-
amples, exercises, and related material. The chapters on Non-Standard Analysis,
Dimension Theory, on the Tits alternative, on topological groups and Hilbert’s Fifth
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Problem, on Amenability, and on the Polya–Varopoulos theorem were not covered
in the original course.

***

Our main targets are mature undergraduate and graduate students in mathematics
(familiar with the first rudiments in basic group theory and topology) interested in
geometric, analytic, and probabilistic aspects of infinite groups. The material cov-
ered in this book constitutes, in our opinion, a possible approach to these topics.
In particular, given the strong interdisciplinary aspect of the treatment, we believe
that the reader will be stimulated to deepen – or even to approach for the first
time – related areas such as Harmonic and Functional Analysis (spectral theory,
L2-spaces and their related invariants, isoperimetric questions, amenability and in-
variant measures), Probability Theory (Random Walks, Markov Chains, and Dis-
crete Potential Theory, percolation), Analysis and Logic (ultrafilters, ultraproducts,
and asymptotic cones), Geometric Analysis (dimension theory), the theory of Al-
gebras (Lie rings and group rings, Gelfand–Kirillov dimension, PI-algebras), and
Combinatorics (graph theory, matching theory, etc). This way, the book may be used
as a textbook for a three-quarters (equivalently, two-semesters) course on “Infinite
groups: algebra, geometry, and probability”. Eventually, this book may also be use-
ful to the mature researcher as a source for several important results and examples.

***

We heartily thank Efim Zelmanov for introducing us to the beautiful mathematics
around Gromov’s theorem, for allowing and in fact strongly encouraging us to write
down, expand, and publish the notes from his course, and for honoring our modest
work with his foreword.

We express our deepest gratitude also to many other friends and colleagues, in
primis to Pierre de la Harpe and Slava Grigorchuk, as well as to Laurent Bartholdi,
Florin Boca, Corentin Bodart, Alexander I. Bufetov, Matteo Cavaleri, Michel Coor-
naert, Daniele D’Angeli, Alfredo Donno, Larissa Horn, Donatella Iacono, Alex
Lubotzky, Avinoam Mann, Mauro Mariani, Tatiana Nagnibeda, Pierre Pansu, Mark
Sapir, Fabio Scarabotti, Paul Schupp, Zoran Sunic, Filippo Tolli, Alain Valette, and
Wolfgang Woess for several remarks, suggestions, and encouragement.

Last but not least, we wish to thank our editor, Elena Griniari from Springer
Verlag, for her precious advice and constant enthusiastic encouragement at all stages
of the production of this book.

Rome, September 2021 TCS and MDA
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8.4 Isometries of the Lobachevsky–Poincaré Half-Plane . . . . . . . . . . . . . 140
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Notation

Throughout this book, the following notational conventions are used:

• N is the set of nonnegative integers, so that 0 ∈ N;
• a countable set is a set which admits a bijection onto a subset of N, so that finite

sets are countable;
• given a set X , we denote by P(X) (resp. P∗(X)) the set of all subsets (resp.

nonempty subsets) of X ;
• the notation A ⊂ B means that each element in the set A is also in the set B, so

that A and B may coincide;
• given two sets A and B, we denote by AB the set consisting of all maps f : B→ A;
• |A| denotes the cardinality of a (possibly infinite) set A;
• in a group G, we denote by 〈X〉 ⊂G the subgroup generated by the subset X ⊂G;
• given a group G and two subsets A,B⊂ G, we set AB :={ab : a ∈ A and b ∈ B}.

If A = {a} (resp. B = {b}) is a singleton set, then we simply write aB (resp. Ab)
instead of {a}B (resp. A{b});

• given a group G and a subgroup H, we write HEG when H is normal in G;
• given a group G and a subgroup H ≤ G we denote by G/H :={gH : g ∈ G} the

set of all left cosets and by H\G :={Hg : g ∈ G} the set of all right cosets of H
in G.

• all rings are assumed to be associative (but not necessarily commutative) with a
unity element;

• a field is a nonzero commutative ring in which each nonzero element is invertible.

xix
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Chapter 1
Free Groups

Free groups are the free objects in the category of groups: a group F is free if there
exists a subset X ⊆ F (called a basis) such that every map f : X→G, where G is any
group, extends in a unique way to a group homomorphism ϕ : F → G. Free groups
do exist! Indeed, given any set X there exists a free group FX , unique up to isomor-
phism, which admits X as a basis (Theorem 1.5). As a consequence, every group is
isomorphic to a quotient group of a free group. We prove the celebrated Nielsen–
Schreier theorem (Theorem 1.15) which states that subgroups of free groups are
free. In Section 1.7 we prove Klein’s Ping-Pong lemma (Theorem 1.17), a useful
criterion to establish that certain transformations generate free groups, and present
some examples of applications. Finally, in Section 1.8 we study free abelian groups:
these are the abelianizations of free groups. We show that subgroups of free abelian
groups are free abelian (Theorem 1.29) and deduce the structure theorem for finitely
generated abelian groups (Corollary 1.30).

1.1 Words

Let A be a set, and for n ∈ N denote by A×n the Cartesian product of A with itself n
times. An element w = (a1,a2, . . . ,an) of A×n is called a word on A. We then set

A∗ :=
⋃

n∈N
A×n.

The unique element of A×0, denoted by ε , is called the empty word.
The concatenation of two words on A, w = (a1,a2, . . . ,am) ∈ A×m and w′ =

(b1,b2, . . . ,bn) ∈ A×n, is the word w1w2 ∈ A×(m+n) defined by

ww′ :=(a1,a2, . . . ,am,b1,b2, . . . ,bn).

For all w,w′,w′′ ∈ A∗, we have (ww′)w′′ = w(w′w′′), and by convention ε w = wε =
w. It follows that A∗ is a monoid for the concatenation product, with the empty word
ε as identity element. It is called the free monoid over A.

3© Springer Nature Switzerland AG 2021
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4 1 Free Groups

A∗ satisfies the following universal property: if M is a monoid, then any map
f : A→M uniquely extends to a monoid homomorphism ϕ : A∗→M.

Note that each word w = (a1,a2, . . . ,an) ∈ A×n may be uniquely written as a
product of elements of A = A×1, namely w = a1a2 · · ·an. In the sequel, we shall
adopt this notation. The non-negative integer `(w) :=n is then called the length of
the word w = a1a2 · · ·an.

Given two words u,w ∈ A∗, one says that u is a subword (resp. prefix) of w if
there exist u′,u′′ ∈ A∗ such that w = u′uu′′ (resp. w = uu′′).

1.2 Definition of Free Groups

Definition 1.1. A group F is called a free group if there exists a subset X ⊆ F satis-
fying the following universal property: for every group G and any map f : X → G,
there exists a unique group homomorphism ϕ : F → G extending f , that is, such
that ϕ(x) = f (x) for every x ∈ X . One then says that F is based at X or that X is a
(free) basis for F .

The proofs of the following remarks are left as exercises.

Remark 1.2. Let X (resp. X1, resp. X2) be a set and let F (resp. F1, resp. F2) be a
free group based at X (resp. X1, resp. X2).

(a) By the universal property, the unique homomorphism ϕ : F → F extending
the inclusion map i : X → F is the identity idF of F .

(b) Suppose that there exists a bijective map f : X1 → X2. Then the free groups
F1 and F2 are isomorphic.

(c) F is generated by X .
As a consequence, one also says that F is the free group generated by X , or that

X freely generates F . We shall also write F = FX . Moreover, we say that F is the
free group generated by X , since, by (b), such a group, if it exists, is unique up to
isomorphism.

(d) Let ψ : F → G be an isomorphism from F onto a group G. Then G is a free
group as well, based at ψ(X).

(e) Suppose that there exist subsets X ,Y ⊂ F such that F is free based on both
X and Y , then there exists a bijection f : X → Y . The cardinality |X | of the (= any)
base X ⊂ F is called the rank of the free group F .

(f) Let Y ⊆ X and let K denote the subgroup of F generated by Y . Then K is a
free group (based at Y ).

1.3 Reduced Forms

Let X be a set. Let γ : X → X ′ be a bijective map from X onto a disjoint copy X ′ of
X (thus X ∩X ′ = ∅) and set A :=X ∪X ′. For each a ∈ A, define the element ã ∈ A
by setting
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ã :=

{
γ(x) if a = x ∈ X ,

γ−1(x′) if a = x′ ∈ X ′.

Observe that the map a 7→ ã is an involution of A: ˜̃a = a for all a ∈ A.
Consider now the set A∗ consisting of all words on A (see Section 1.1). Recall

that A∗ is a monoid for the product given by the concatenation of words, whose
identity element is the empty word ε .

We say that a word w∈A∗ may be obtained from a word w′ ∈A∗ by an elementary
reduction if there exist an element a ∈ A and words u,v ∈ A∗ such that w = uv and
w′ = uaãv. Given words w,w′ ∈ A∗, we write w ≈ w′ if either w may be obtained
from w′ by an elementary reduction or, vice versa, w′ may be obtained from w by
an elementary reduction. Finally, we define a relation ≡ on A∗ (this is called the
transitive closure of the relation≈) by writing w≡w′ for w,w′ ∈ A∗ if there exist an
integer n≥ 1 and a sequence of words w1,w2, . . . ,wn ∈ A∗ with w1 = w, wn = w′ and
wi ≈ wi+1 for i = 1,2, . . . ,n−1. It is an exercise to check that ≡ is an equivalence
relation on A∗.

Definition 1.3. A word w ∈ A∗ is said to be reduced if it contains no subword of the
form aã with a ∈ A, that is, if there is no word w′ ∈ A∗ which can be obtained from
w by applying an elementary reduction.

Note that the empty word ε is reduced and that every subword of a reduced word
is itself reduced.

Theorem 1.4. Every equivalence class for ≡ contains a unique reduced word.

Proof. Since any word w ∈ A∗ can be transformed into a reduced word by applying
a suitable finite sequence of elementary reductions, we have that every equivalence
class for ≡ contains at least one reduced word.

Let us prove uniqueness. Denote by R ⊆ A∗ the set of all reduced words on A.
For a ∈ A and r ∈ R, define the word αa(r) ∈ A∗ by

αa(r) :=

{
w if r = ãw for some w ∈ A∗,
ar otherwise.

Note that in fact αa(r) ∈ R. This defines a map αa : R→ R for each a ∈ A. We claim
that

αa ◦αã = αã ◦αa = idR (1.1)

for all a ∈ A. Indeed, let a ∈ A and r ∈ R. If r = aw for some w ∈ A∗, then αã(r) = w
and hence αa(αã(r)) = αa(w) = aw = r (observe that w cannot start with ã since r
is reduced). Otherwise, we have αã(r) = ãr and therefore αa(αã(r)) = αa(ãr) = r.
It follows that αa ◦αã = idR. Since ·̃ is an involution on A, by replacing a by ã, we
get αã ◦αa = idR, completing the proof of the claim.

From (1.1), we deduce that αa : R→ R is a bijection, equivalently, is a permuta-
tion of R, for all a ∈ A.

By setting
αw :=αa1 ◦αa2 ◦ · · · ◦αan
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for every word w = a1a2 · · ·an ∈ A∗, we get a monoid homomorphism w 7→ αw from
A∗ into Sym(R), where Sym(R) denotes the symmetric group of R, consisting of all
permutations of R equipped with the composition operation.

Note that
αr(ε) = r for all r ∈ R. (1.2)

On the other hand, it immediately follows from (1.1) that αw =αw′ whenever w,w′ ∈
A∗ satisfy w ≈ w′. Thus, if r1,r2 ∈ R are in the same equivalence class, we have
αr1 = αr2 and therefore, from (1.2) we deduce that r1 = r2. �

1.4 Existence of Free Groups

We have already observed in Remark 1.2.(c) that given a set X , if a free group F
based at X exists, then it is unique up to isomorphisms. We now show that such a
free group always exists.

Theorem 1.5. Let X be a set. Then there exists a free group F based at X.

Proof. With the notation of Section 1.3, we denote by F the set of all reduced words
on A = X ∪X ′. Given an element u ∈ A∗, by virtue of Theorem 1.4 there exists a
unique reduced word denoted [u]F such that [u]F ≡ u. We observe that [r]F = r for
every r ∈ F . Let now u1,u2,v1,v2 ∈ A∗ and suppose that u1 ≡ v1 and u2 ≡ v2. We
then have u1u2 ≡ u1v2 ≡ v1v2, so that [u1u2]F = [v1v2]F . In particular,

[u1u2]F = [[u1]F [u2]F ]F . (1.3)

This shows that the product of r1 and r2 in F given by

r1 · r2 :=[r1r2]F (1.4)

is well defined.
Note that this product differs from the concatenation of words: for instance, given

x∈X , if r1 = x and r2 = x−1, we have r1 ·r2 = [xx−1]F = [ε]F = ε , while r1r2 = xx−1,
which is distinct from ε in A∗.

Let us show that the multiplication defined in (1.4) gives a group structure on F .
For all r1,r2,r3 ∈ F , using (1.3), we have

(r1 · r2) · r3 = [r1r2]F · r3

= [[r1r2]F [r3]F ]F

= [(r1r2)r3]F

= [r1(r2r3)]F

= [[r1]F [r2r3]F ]F

= r1 · [r2r3]F

= r1 · (r2 · r3).

This shows that the multiplication is associative. Moreover, for all r ∈ F , we have
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ε · r = [εr]F = [r]F = r and r · ε = [rε]F = [r]F = r.

This shows that 1F :=ε is an identity element. In order to prove that F is a group, we
are only left to show that every element in F admits an inverse. For w = a1a2 · · ·an ∈
A∗, define the word w̃ ∈ A∗ by setting

w̃ := ãnãn−1 · · · ã1.

Observe that w ∈ A∗ is reduced if and only if w̃ is reduced. Moreover, if r =
a1a2 · · ·an ∈ F we have

r · r̃ = [a1a2 · · ·anãn · · · ã2ã1]F

= [a1 · · ·an−1ãn−1 · · · ã1]F

...
= [a1a2ã2ã1]F

= [a1ã1]F

= [ε]F

= 1F .

Thus, we have r · r̃ = 1F . Similarly, r̃ · r = 1F . In other words, r̃ is an inverse of r.
This proves that F is a group.

Let us show that F is free, based at X . First observe that every a ∈ A is a reduced
word. Thus, X ⊆ F . Also observe that since x′ = (x̃′)−1 ∈ X−1 :={x−1 : x ∈ X} for
every x′ ∈ X ′, we have that X generates F as a group. Let now f : X → G be a map
from X into a group G and let us prove that there exists a unique homomorphism
ϕ : F → G extending f .

Uniqueness follows from the fact that X generates F .
In order to construct ϕ , we first extend f to a map f : A→ G by setting, for all

a ∈ A,

f (a) :=

{
f (a) if a ∈ X
f (ã)−1 if a ∈ X .

Note that f (ã) = f (a)−1 for all a ∈ A. Consider the map ϕ : A∗→ G defined by
setting

ϕ(w) := f (a1) f (a2) · · · f (an)

for all w = a1a2 · · ·an ∈ A∗. We have

ϕ(ww′) = ϕ(w)ϕ(w′) (1.5)

for all w,w′ ∈ A∗. Moreover, if w ≈ w′, say w = uv and w′ = uaãv for some a ∈ A
and u,v ∈ A∗, then

ϕ(w′) = ϕ(u) f (a) f (ã)ϕ(v) = ϕ(u) f (a) f (a)−1
ϕ(v) = ϕ(u)ϕ(v) = ϕ(w).



8 1 Free Groups

By an inductive argument, we deduce that ϕ(w) = ϕ(w′) for all w,w′ ∈ A∗ such that
w≡ w′. In particular, ϕ(w) = ϕ([w]F) for all w ∈ A∗. As a consequence of this, we
get, for all r1,r2 ∈ F ,

ϕ(r1 · r2) = ϕ([r1r2]F) = ϕ(r1r2) = ϕ(r1)ϕ(r2).

Therefore, ϕ is a group homomorphism. On the other hand, for all x ∈ X , we have

ϕ(x) = f (x) = f (x),

which shows that ϕ extends f .
All this proves that F is a free group based at X . �

Corollary 1.6. Let F be a free group and let X be a free basis of F. Then every
element r ∈ F can be uniquely written in the form

r = xh1
1 xh2

2 · · ·x
hn
n (1.6)

with n ≥ 0, h1,h2, . . . ,hn ∈ Z \ {0}, and x1,x2, . . . ,xn ∈ X satisfying xi 6= xi+1 for
1≤ i≤ n−1. �

Definition 1.7. The expression (1.6) is called the reduced form of the element r in
the free group F relative to the free basis X .

Corollary 1.8. Let G be a group. Let U ⊆ G be a subset such that

uk1
1 uk2

2 · · ·u
kn
n 6= 1G, (1.7)

for all n≥ 1, k1,k2, . . . ,kn ∈ Z\{0}, and u1,u2, . . . ,un ∈U satisfying ui 6= ui+1 for
1≤ i≤ n−1. Then the subgroup of G generated by U is free, with basis U.

Proof. Let F be the free group based at U (cf. Theorem 1.5). Denote by H the
subgroup of G generated by U and by i : U → H the inclusion map. Then there
exists a unique homomorphism ϕ : F → H that extends i. Note that ϕ is surjective
since ϕ(F)⊇ ϕ(U) = i(U) =U and U generates H.

Let us show that ϕ is also injective. Consider an element r ∈ F written in reduced
form, say r = uh1

1 uh2
2 · · ·uhn

n with n≥ 0, h j ∈ Z\{0} and u j ∈U for 1≤ j ≤ n such
that u j 6= u j+1 for 1≤ j ≤ n−1. Then, since ϕ(u j) = i(u j) = u j for 1≤ j ≤ n, we
have

ϕ(r) = ϕ(u1)
h1ϕ(u2)

h2 · · ·ϕ(un)
hn = uh1

1 uh2
2 · · ·u

hn
n = r.

It follows from (1.7) that ϕ(r) = 1H if and only if n = 0, that is, if and only if
r = 1F . This shows that ϕ is also injective, and hence it is an isomorphism.

It follows from Remark 1.2.(d) that H is the free group based at U . �
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1.5 Subgroups, Quotients, and Extensions of Finitely Generated
Groups

Let G be a group. Recall that a subset X ⊆ G generates G, and one writes G = 〈X〉,
provided that every element g ∈ G can be expressed as a product of elements in
X ∪X−1, where X−1 = {x−1 : x ∈ X}, that is, there exist n≥ 0, x1,x2, . . . ,xn ∈ X and
ε1,ε2, . . . ,εn ∈ {1,−1} such that

g = xε1
1 xε2

2 · · ·x
εn
n .

A generating subset X ⊂ G is symmetric if X = X−1, i.e., x−1 ∈ X for all x ∈ X . If
this is the case, then we can simply express an element g ∈ G as g = x1x2 · · ·xn for
suitable x1,x2, . . . ,xn ∈ X .

Let now H ≤ G be a subgroup of G. Consider the set H\G :={Hg : g ∈ G} of
all right cosets of H in G. For each coset Hg we fix a representative g ∈ Hg. As a
representative of the coset H we choose the identity element 1G. Note that

gg−1, g(g)−1 ∈ H for every g ∈ G. (1.8)

Let S :={g : g ∈ G} ⊆ G denote the corresponding set of all such representatives.
This set is called a (right) transversal of H in G.

Observe that for all h ∈ H and g ∈ G we have hg = g. Also, since g1g2 ∈ Hg1g2,

g1g2 = g1g2 for all g1,g2 ∈ G. (1.9)

Proposition 1.9. Let G be a group and let H ≤ G be a subgroup. Let X ⊆ G be a
generating subset of G and let S⊆ G be a right transversal of H in G. Then the set

Y :={sx(sx)−1 : s ∈ S, x ∈ X} (1.10)

is contained in H and generates it.

Proof. The inclusion Y ⊆ H immediately follows from (1.8).
Consider now h∈H. Since X generates G, we can find m≥ 0 and a1,a2, . . . ,am ∈

X ∪X−1 such that
h = a1a2 · · ·am.

Keeping in mind (1.9), we have(
1Ga1

(
1Ga1

)−1
)
·
(

a1a2
(
a1a2

)−1
)
·
(

a1a2a3
(
a1a2a3

)−1
)
· · · ·

· · · ·
(
(a1a2 · · ·am−1am) ·

(
a1a2 · · ·am−1am

)−1
)

= a1a2 · · ·am (a1a2 · · ·am)
−1

= h,

where the last equality follows from the fact that a1a2 · · ·am = 1G, since a1a2 · · ·am =
h ∈ H. This shows that we can write h as a product of elements from the set
{sa(sa)−1 : s ∈ S, a ∈ X ∪ X−1}. In order to show that Y generates H, we will
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prove that in such a product we can replace any factor of the form sx−1(sx−1)−1,
with s ∈ S and x ∈ X , by the inverse of an element of Y .

Let then s ∈ S, x ∈ X and set t :=sx−1 ∈ S. By using (1.8), we get

tx = sx−1x = sx−1x = s = s

so that tx(tx)−1 = txs−1. It follows that

tx(tx)−1 · sx−1(sx−1)−1 = txs−1 · sx−1(sx−1)−1 = 1G,

and therefore
sx−1(sx−1)−1 = (tx(tx)−1)−1 ∈ Y−1. (1.11)

This shows that Y = {sx(sx)−1 : s ∈ S, x ∈ X} generates H. �

Definition 1.10. Let G be a group and let H ≤ G be a subgroup. Let X ⊆ G be a
generating subset of G and let S ⊆ G be a right transversal of H. The elements in
the set Y (cf. (1.10)) are called the Schreier generators for H (relative to S and X).

If G is a finitely generated group, we denote by rk(G) the rank of G, that is, the
minimal cardinality |X | of a finite generating subset X ⊆ G.

Corollary 1.11. Let G be a group and let H ≤G be a subgroup of finite index. Then
G is finitely generated if and only if H is finitely generated. In particular,

rk(G)≤ [G : H]+ rk(H)−1 (1.12)

and
rk(H)≤ [G : H] · rk(G). (1.13)

Proof. Let us fix a right transversal S ⊆ G of H in G with 1G ∈ S, and observe that
|S|= [G : H].

Suppose that H is finitely generated and let Y ⊆ H be a generating subset for H
of minimal cardinality, that is, |Y |= rk(H). Then the set X :=Y ∪ (S\{1G}) clearly
generates G. This shows (1.12).

Conversely, if G is finitely generated and X ⊆ G is a finite generating subset for
G, then the set Y in (1.10) generates H. Hence rk(H) ≤ |Y | ≤ |S| · |X |, and (1.13)
follows as well. �

We leave the proof of the following proposition as an exercise.

Proposition 1.12. Let G be a group and let N be a normal subgroup of G.
(1) If G is finitely generated, then the quotient group G/N is finitely generated,

and rk(G/N)≤ rk(G).
(2) If N and the quotient group G/N are both finitely generated, then G is finitely

generated, and rk(G)≤ rk(N)+ rk(G/N).
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1.6 Subgroups of Free Groups

Definition 1.13. Let F be a free group. Let X ⊆ F be a free basis and let H ≤ F be a
subgroup. A right transversal S of H in F is called a Schreier system of representa-
tives of H\F with respect to X provided that it is closed under the operation of taking
prefixes, that is, for every element (expressed as a reduced word) s = a1a2 · · ·am ∈ S,
where ai ∈ X ∪X−1, i = 1,2, . . . ,m, one has a1a2 · · ·am−1 ∈ S.

Lemma 1.14. Let F be a free group. Let X ⊆ F be a free basis and let H ≤ F be a
subgroup. Then there exists a Schreier system of representatives of H\F with respect
to X.

Proof. Let X = {xi : i ∈ I}, and assume first that I = {1,2, . . . ,n} for some n ∈ N,
or I = N. We introduce a total order on X ∪X−1 by setting 1F < x1 < x−1

1 < x2 <

x−1
2 < · · · . We then extend this order to the whole of F (viewed as the set of all

reduced words on X) as follows. Given two elements g1,g2 ∈ F , we say that g1 < g2
if either `(g1)< `(g2), or we have decompositions (of reduced words!) g1 = u1xε1 u
and g2 = u2yε2u with x,y ∈ X , ε1,ε2 ∈ {1,−1}, u1,u2,u ∈ F such that `(u1) = `(u2)
and xε1 < yε2 . For instance, if X = {x1,x2}, the elements of length 2 are ordered as

x2
1 < x2x1 < x−1

2 x1 < x−2
1 < x2x−1

1 < x−1
2 x−1

1

< x1x2 < x−1
1 x2 < x2

2 < x1x−1
2 < x−1

1 x−1
2 < x−2

2 .

Observe that for every g∈ F the set {g′ ∈ F : g′ ≤ g} is finite so that every subset
of F admits a minimum.

Hence we construct a set S by taking for every coset its minimum with respect to
this order. It is an exercise to show that S is a Schreier system of representatives of
H\F with respect to X .

We leave it as an exercise to adapt the proof to the uncountable case (hint: use
the fact that every set I admits a well-order, i.e. an order in which every subset J ⊆ I
has a minimum (this fact is equivalent to the axiom of choice)). �

Theorem 1.15 (Nielsen–Schreier theorem on subgroups of free groups). Let F
be a free group and let H ≤ F be a subgroup. Then H is free. Moreover, if X ⊆ F is
a free basis of F and S is any Schreier system of representatives of H\F with respect
to X, then the set Y :={sx(sx)−1 : s ∈ S,x ∈ X}\{1F} is a basis of H.

Proof. In order to show that Y is a free basis of H, we consider a nonempty reduced
product of elements in Y ∪Y−1. By Corollary 1.8, it is enough to prove that this
product is different from 1F .

By virtue of equality (1.11), we can assume that this reduced product is of the
form

. . . · sxε(sxε)−1 · tyδ (tyδ )−1 · . . . (1.14)

where s, t ∈ S, x,y ∈ X , and ε,δ =±1.

Claim 1. Suppose that sa(sa)−1 6= 1F , where s ∈ S and a ∈ X ∪X−1. If s and sa are
written in reduced form, then the product s ·a · (sa)−1 is reduced.
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We argue by contradiction. First, suppose that a cancellation in the product s · a
occurs. In this case, in reduced form, s = ta−1, where t ∈ F . Then t ∈ S because S is
a Schreier system. But then sa = ta−1a = t = t, which gives sa(sa)−1 = ta−1at−1 =
1F , contradicting our assumptions.

Suppose instead that a cancellation occurs in the product a · (sa)−1. Then, in re-
duced form, (sa)−1 = a−1t−1, for a suitable t ∈ F , so that sa = ta. As before, t ∈ S.
Moreover, from sa = ta we deduce that Hsa = Hta, hence s ∈Ht. This implies that
t = s. This gives sa(sa)−1 = saa−1s−1 = 1F , yielding again a contradiction. The
claim follows.

Claim 2. Any cancellation occurring in (1.14) stops before reaching xε or yδ .
There are three cases:
Case 1: the cancellation reaches xε first, i.e., t = sxε · x−ε ·w. But now, since S is

a Schreier system, sxε x−ε ∈ S, hence sxε x−ε = sxε x−ε = sxε x−ε = s = s. We deduce
that sxε(sxε)−1 = 1F , a contradiction.

Case 2: the cancellation reaches yδ first: the proof is the same as in the previous
case, so it is left as an exercise.

Case 3: the cancellation reaches xε and yδ simultaneously, that is, sxε = t and
xε = y−δ . As a consequence, tyδ = sxε x−ε = sxε x−ε = s = s, which gives

sxε(sxε)−1 = tyδ y−δ t−1 =
(

tyδ (tyδ )−1
)−1

,

contradicting the fact that the product in (1.14) was reduced. This proves the claim.

From Claim 1 and Claim 2 we deduce that our product cannot be equal to 1F ,
completing the proof of the theorem. �

In the remainder of this section we determine the rank of a finite index subgroup
of a finitely generated free group.

Theorem 1.16. Let F be a free group of rank m and let H ≤ F be a subgroup of
finite index [F : H] = n. Then rk(H) = 1+(m−1)n.

Proof. Let X ⊆ F be a free basis of F , so that |X | = m, and let S ⊆ F be a
Schreier system of representatives of H\F with respect to X , so that |S| = n. We
set Z :={(s,x) ∈ S×X : sx(sx)−1 = 1F}. Also, for x ∈ X and a ∈ X ∪X−1, we de-
note by Sa the set of elements of S whose reduced form ends with a and we set
Zx :={s ∈ S : sx(sx)−1 = 1F}. Note that for s ∈ S, we have s ∈ Zx if and only if
(s,x) ∈ Z, so that

|Z|= ∑
x∈X
|Zx|. (1.15)

Let s∈ S, x ∈ X and set t :=sx. We have s∈ Zx if and only if sx = sx, i.e., if and only
if t ∈ S. So either s is a prefix of t, and hence the word sx is reduced and t = sx ∈ Sx,
equivalently, s ∈ (Sx)x−1, or t is a prefix of s, equivalently s ∈ Sx−1 .

It follows that |Zx|= |Sx−1 |+ |(Sx)x−1|= |Sx−1 |+ |Sx|. From (1.15) we deduce

|Z|= ∑
x∈X

(|Sx−1 |+ |Sx|) = |S\{1F}|= n−1.
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From Theorem 1.15, by using the notation for Y therein, we deduce that

rk(H) = |Y |= |X | · |S|− |Z|= mn− (n−1) = 1+(m−1)n.

The proof is complete. �

1.7 The Ping-Pong Lemma

The following theorem is often used to prove that a group is free.

Theorem 1.17 (Klein’s Ping-Pong lemma). Let G be a group. Let X be a gener-
ating subset of G having at least two distinct elements. Suppose that G acts on a set
E and that there is a family (Ax)x∈X of nonempty subsets of E such that

Ay 6⊆ Ax for all distinct elements x,y ∈ X (1.16)

and
xkAy ⊆ Ax for all x,y ∈ X s.t. x 6= y, and k ∈ Z\{0}. (1.17)

Then G is a free group with basis X.

Proof. Consider an element g ∈ G written as a nontrivial reduced word on the gen-
erating subset X , that is, in the form

g = xk1
1 xk2

2 . . .xkn
n ,

where n≥ 1, xi ∈ X , ki ∈ Z\{0} for 1≤ i≤ n, and xi 6= xi+1 for 1≤ i≤ n−1. By
Corollary 1.8, it is enough to show that g 6= 1G.

Suppose first that either X contains at least three distinct elements or X has ex-
actly two elements and x1 = xn. In this case, we can find an element y ∈ X such that
y 6= x1 and y 6= xn. By successive applications of (1.17), we get

gAy = xk1
1 xk2

2 . . .xkn−2
n−2 xkn−1

n−1 xkn
n Ay

⊆ xk1
1 xk2

2 . . .xkn−2
n−2 xkn−1

n−1 Axn

⊆ xk1
1 xk2

2 . . .xkn−2
n−2 Axn−1

. . .

⊆ xk1
1 xk2

2 Ax3

⊆ xk1
1 Ax2

⊆ Ax1 .

Since Ay 6⊆ Ax1 and Ay 6=∅ by our hypotheses, we deduce that g 6= 1G.
It remains to treat the case when X has exactly two elements and x1 6= xn. Then

xk1
1 gx−k1

1 = x2k1
1 xk2

2 xk3
3 . . .xkn

n x−k1
1
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is a reduced form of xk1
1 gx−k1

1 . We have xk1
1 gx−k1

1 6= 1G by the first case, and therefore
g 6= 1G. �

Corollary 1.18. Let F be a free group of rank 2 and let 2≤ n≤∞. Then F contains
a free subgroup of rank n.

Proof. Let {a,b} be a free basis for F . Let I = {0,1, . . . ,n−1} (resp. I =N) and let
G be the (free) subgroup of F generated by the subset

X :={xi :=aiba−i : i ∈ I}.

Let G act on F by left multiplication. For each i ∈ I, denote by Axi ⊆ F the set of
elements of F whose reduced form starts by aibh for some h ∈ Z\{0}. For i, j ∈ I
distinct we have Axi ∩Ax j = ∅ and, moreover, for every k ∈ Z \ {0}, all elements
of xk

i Ax j have a reduced form starting by aibka j−ibh, for some h ∈ Z \ {0}, so that
xk

i Ax j ⊆ Axi . Thus, the family (Ax)x∈X of subsets of F satisfies the hypotheses of
Theorem 1.17. This shows that G is free based at X (and therefore has rank |I|). �

Example 1.19. Let SL(2,Z) :={A∈M2(Z) : detA = 1}, where Mn(R) is the ring of
n×n matrices with coefficients in a ring R, and detA is the determinant of a matrix
A. Let

x1 =

(
1 2
0 1

)
, x2 =

(
1 0
2 1

)
, E = R2 =

{(
α

β

)
: α,β ∈ R

}
and

Ax1 =

{(
α

β

)
: |β |> |α|

}
, Ax2 =

{(
α

β

)
: |β |< |α|

}
.

We have

xk
1

(
α

β

)
=

(
α +2kβ

β

)
and xk

2

(
α

β

)
=

(
α

2kα +β

)
for all k ∈ Z, thus showing that xk

1Ax2 ⊆ Ax1 and xk
2Ax1 ⊆ Ax2 for all k ∈ Z \ {0}. It

follows from Theorem 1.17 that x1 and x2 generate a subgroup of SL(2,Z) which is
free of rank 2.

1.8 Free Abelian Groups

Let F be an abelian group.

Definition 1.20. A subset X ⊆ F is said to be a basis of F provided that X generates
F and, for distinct x1,x2, . . . ,xk ∈ F and n1,n2, . . . ,nk ∈ Z, one has

n1x1 +n2x2 + · · ·+nkxk = 0 ⇒ n1 = n2 = · · ·= nk = 0.

Proposition 1.21. Let F be an abelian group. The following conditions are equiva-
lent:
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(a) F admits a nonempty basis;
(b) F is the direct sum of infinite cyclic subgroups;
(c) there exists an index set X such that F ∼=

⊕
x∈X Z;

(d) there exists a nonempty subset X ⊆ F such that given any abelian group G and
any map f : X→G there exists a unique group homomorphism ϕ : F→G which
extends f , i.e. such that ϕ(x) = f (x) for all x ∈ X.

Proof. We will prove, in order, the implications: (a)⇒ (b)⇒ (c)⇒ (a), and (a)⇒
(d)⇒ (c).

(a)⇒ (b). Let X ⊆ F be a basis of F . Then for every x ∈ X and n ∈ Z we have
nx = 0 if and only if n = 0. It follows that the subgroup Fx = 〈x〉 generated by x ∈ X
is infinite cyclic. As F = 〈X〉 we also have F = 〈

⋃
x∈X Fx〉. Suppose that z ∈ X is

such that Fz ∩ 〈
⋃

x∈X
x 6=z

Fx〉 6= {0}. Then we can find n,n1,n2, . . . ,nk ∈ Z, n 6= 0, and

distinct elements x1,x2, . . . ,xk ∈ X \ {z} such that nz = n1x1 + n2x2 + · · ·nkxk. But
this contradicts the fact that X is a basis. It follows that Fz ∩ 〈

⋃
x∈X
x 6=z

Fx〉 = {0} and

therefore F =
⊕

x∈X Fx.
(b)⇒ (c). This follows immediately from the fact that Fx ∼= Z for all x ∈ X .
(c) ⇒ (a). Suppose that F ∼=

⊕
x∈X Z and let θ : F →

⊕
x∈X Z be a group iso-

morphism. For each x ∈ X denote by fx ∈
⊕

x∈X Z the element defined by setting
fx(y) = 1 if x = y and fx(y) = 0, otherwise. It is immediate that the set { fx : x ∈ X}
is a basis of

⊕
x∈X Z. As a consequence, the set {θ−1( fx) : x ∈ X} ⊆ F is a basis of

F .
(a) ⇒ (d). Let X ⊆ F be a basis of F and suppose that we are given a map

f : X → G, where G is an abelian group. Since X is a basis of F , for every u ∈ F
there exist unique k ∈ N, x1,x2, . . . ,xk ∈ X (distinct), and n1,n2 . . . ,nk ∈ Z such that
u = n1x1+n2x2+ · · ·+nkxk. We then define f : F→G by setting f (u) = n1 f (x1)+
n2 f (x2)+ · · ·+ nk f (xk). Note that f is well defined, that it extends f and, since G
is abelian, it is a group homomorphism. Uniqueness follows from the fact that X
generates F .

(d) ⇒ (c). Suppose (d) holds and let G =
⊕

x∈X Z. Let fx ∈ G be defined by
fx(y) = 1 if x = y, and fx(y) = 0 otherwise, and consider the map f : X→G defined
by f (x) = fx for all x ∈ X . Then f extends uniquely to a group homomorphism
f : F→G. Note that f is surjective since f (F)⊃ f (X) = { fx : x ∈ X} and the latter
generates G. On the other hand the map h : { fx : x ∈ X} → F defined by h( fx) = x
for all x ∈ X also extends to a unique homomorphism h : G→ F . Since h◦ f = IdX
we deduce that h◦ f = IdF so that f is an isomorphism. It follows that F ∼=

⊕
x∈X Z.
�

Definition 1.22. An abelian group F satisfying one of the equivalent conditions (a) –
(d) in Proposition 1.21 is said to be a free abelian group.

In the sequel, if X is a basis of a free abelian group F we shall denote by Zx
the infinite cyclic subgroup 〈x〉 ⊆ F , for x ∈ X , and we shall therefore write F =⊕

x∈X Zx.

Proposition 1.23. Let F be a free abelian group. Then any two bases X ,Y ⊆ F have
the same cardinality.
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Proof. Consider the subgroup 2F :={2a : a ∈ F} of F . If X is a basis of F , then
F =

⊕
x∈X Zx and 2F =

⊕
x∈X 2Zx. Therefore F/2F ∼=

⊕
x∈X Z/2Z. Hence F/2F

is finite if and only if X is finite.
From this we deduce the following alternative: either all the bases of F are finite,

or they are all infinite.
In the first case, the cardinality of any basis is clearly log2[F : 2F ].
Otherwise, the statement is then achieved by observing that if X ⊆ F is an in-

finite basis then |X | = |F |. Indeed |X | ≤ |F |, trivially. Conversely, denoting by
P f (X) the set of all finite subsets of X , which is ordered by inclusion, we have
F =

⋃
Y∈P f (X)〈Y 〉, and |〈Y 〉|= |

⊕
y∈Y Zy|= |Z||Y | = ℵ0 for every Y ∈P f (X). As

|P f (X)| = |X | we deduce that |F | ≤ ℵ0|X | = |X |. Thus |X | = |F | by the Cantor–
Bernstein theorem (see [155, Chapter 22] and/or [59, Corollary H.3.5]). �

The cardinality of a basis of a free abelian group F is called the (free abelian)
rank of F , denoted rk(F). When F is finitely generated, rk(F) coincides with the
rank of F .

We leave the proof of the following proposition (whose proof is analogous to that
of Proposition 1.23) as an exercise.

Proposition 1.24. Two free abelian groups are isomorphic if and only if they have
the same (free abelian) rank.

We now study the relation between free groups and free abelian groups.

Definition 1.25. Let G be a group. The commutator of two elements x,y ∈ G is
the element [x,y] :=x−1y−1xy ∈ G. The commutator subgroup of G is the subgroup
generated by all the commutators [x,y] with x,y ∈ G, and it is denoted by G′.

For all x,y,g ∈ G, we have g−1[x,y]g = [g−1xg,g−1yg]. We deduce that G′ is a
normal subgroup of G.

Let X be a set. We denote by Ab(X) :=
⊕

x∈X Z the free abelian group on the
index set X .

Proposition 1.26. Let F be a free group and let X ⊆ F be a free basis. Then F/F ′ ∼=
Ab(X).

Proof. Let π : F → F/F ′ denote the canonical quotient homomorphism, and ob-
serve that, by Corollary 1.6, it induces a bijection between X ⊆ F and π(X)⊆ F/F ′.

Given any map f : π(X)→G, where G is an abelian group, consider the compo-
sition f ◦π : X→G. Since F is free based at X , there exists a unique homomorphism
ϕ : F → G extending f ◦π .

As all the commutators of F are in the kernel ker(ϕ) of ϕ , we have F ′ ⊆ ker(ϕ).
This yields a unique homomorphism ϕ : F/F ′→ G such that ϕ ◦π = ϕ . Clearly ϕ

extends f since

ϕ(π(x)) = (ϕ ◦π)(x) = ϕ(x) = ( f ◦π)(x) = f (π(x))

for any x ∈ X .
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It follows that F/F ′ satisfies the universal property of free abelian groups based
at π(X) (see Proposition 1.21.(d)) and therefore F/F ′ ∼= Ab(π(X)). Since we al-
ready observed that |X | = |π(X)|, Proposition 1.24 implies Ab(π(X)) ∼= Ab(X),
completing the proof. �

We can now deduce a fundamental result about free groups.

Corollary 1.27. Let F1 (resp. F2) be a free group and let X1 ⊆ F1 (resp. X2 ⊆ F2) be
a free basis. Then F1 is isomorphic to F2 if and only if |X1|= |X2|. In particular, two
finitely generated free groups are isomorphic if and only if they have the same rank.

Proof. Suppose that F1 and F2 are isomorphic. Then any isomorphism between them
induces an isomorphism between F1/F ′1 and F2/F ′2. Proposition 1.26 gives Fi/F ′i ∼=
Ab(Xi), i = 1,2. But then by Proposition 1.24 we deduce that X1 and X2 have the
same cardinality.

The converse follows from Remark 1.2.(b). �

We now present a characterization of finitely generated abelian groups.

Lemma 1.28. Let X = {x1,x2, . . . ,xk} be a basis of a free abelian group F, and let
z ∈ Z. Then for all 1≤ i 6= j ≤ k the set X ′ = {x1,x2, . . . ,x j−1,x j + zxi,x j+1, . . . ,xk}
is a basis of F.

Proof. Since x j = (x j + zxi)− zxi, we have that X ′ generates F . Moreover, if
n1,n2, . . . ,nk ∈ Z and n1x1 +n2x2 + · · ·+n j−1x j−1 +n j(x j + zxi)+n j+1x j+1 + · · ·+
nkxk = 0, then (say i < j) we also have n1x1 +n2x2 + · · ·+ni−1xi−1 +(ni + zn j)xi +
ni+1xi+1+ · · ·+n j−1x j−1+n jx j +n j+1x j+1+ · · ·+nkxk = 0 so that, since X is a ba-
sis, n1 = n2 = · · ·= ni−1 = (ni+zn j) = ni+1 = · · ·= n j = · · ·= nk = 0 (and therefore
also ni = 0). It follows that X ′ is a basis of F . �

Theorem 1.29 (Dedekind). Let F be a free abelian group of finite rank k and let
G≤ F be a nontrivial subgroup. Then G is free abelian of rank r ≤ k. In fact, there
exist a basis X = {x1,x2, . . . ,xk} of F and positive integers d1,d2, . . . ,dr, with di
dividing di+1 for i = 1,2, . . . ,r−1, such that the subset Y = {d1x1,d2x2, . . . ,drxr} is
a basis of G.

Proof. We prove the statement by induction on the rank k of F . If k = 1 we have
F = 〈x1〉 ∼= Z so that there exists a positive integer d1 such that G = 〈d1x1〉 ∼= Z. So
in this case r = 1, X = {x1} and Y = {d1x1}.

Suppose that we have proved the statement for all free abelian groups of rank
≤ k−1.

For every basis Y = {y1,y2, . . . ,yk} ⊆ F we denote by ZY the set of all n∈Z such
that there exists 1≤ i≤ k and coefficients n1,n2, . . . ,ni−1,ni+1, . . . ,nk ∈ Z such that

n1y1 +n2y2 + · · ·+ni−1yi−1 +nyi +ni+1yi+1 + · · ·+nkyk ∈ G.

Let d1 denote the least positive integer belonging to some ZY ’s, where Y runs
over all bases of F . Then we can find a basis Y = {y1,y2, . . . ,yk} and an element
g ∈ G such that g = d1y1 +n2y2 + · · ·+nkyk. Applying Euclidean division we have
ni = d1qi + ri where qi ∈ Z and 0≤ ri < d1 for all i = 2, . . . ,k. It follows that
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g = d1(y1 +q2y2 + · · ·+qkyk)+(r2y2 + r3y3 + · · ·+ rkyk).

Let x1 :=y1 +q2y2 + · · ·+qkyk. Then, by Lemma 1.28, the set Y ′ = {x1,y2, . . . ,yk}
is also a basis of F . Since g = d1x1 + r2y2 + r3y3 + · · ·+ rkyk ∈ G, we deduce that
r2,r3, . . . ,rk ∈ ZY ′ and therefore, by minimality of d1, we necessarily have r2 = r3 =
· · · = rk = 0. In particular, d1x1 = g ∈ G. Consider now the group H generated by
y2,y3, . . . ,yk. It is free abelian of rank k−1 and F = 〈x1〉⊕H.

We claim that G = 〈d1x1〉⊕ (G∩H). First observe that 〈d1x1〉∩ (G∩H) = {0}
since Y ′ is a basis of F . Suppose now that g = m1x1 +m2y2 + · · ·+mkyk ∈G, where
m1,m2, . . . ,mk ∈ Z. By applying again the Euclidean algorithm we can write m1 =
d1q1 + r1 where q1 ∈ Z and 0 ≤ r1 < d1. Thus g− q1d1x1 = r1x1 +m2y2 + · · ·+
mkyk ∈ G so that, necessarily, r1 = 0 by minimality of d1. It follows that m2y2 +
· · ·+mkyk ∈ G∩H so that g = (d1x1)+ (m2y2 + · · ·+mkyk) ∈ 〈d1x1〉⊕ (G∩H).
The claim follows.

Now, either G∩H = {0}, in which case G = 〈d1x1〉 and the statement follows, or
G∩H 6= {0}. But then, by the inductive hypothesis (recall that H has rank k−1), we
can find a basis X ′ = {x2,x3, . . . ,xk} of H and positive integers r, with 2≤ r≤ k, and
d2,d3, . . . ,dr such that di divides di+1 for i = 2,3, . . . ,r−1, and G∩H is free abelian
with basis {d2x2,d3x3, . . . ,drxr}. We thus have F = 〈x1〉⊕H = 〈x1,x2, . . . ,xk〉 and
G = 〈d1x1〉⊕G∩H = 〈d1x1,d2x2, . . . ,drxr〉. We are only left to show that d1 | d2.
We have d2 = qd1 + r where q ∈ Z and 0 ≤ r < d1. By Lemma 1.28 we have that
X = {x1+qx2,x2,x3, . . . ,xk} is a basis of F and d1(x1+qx2)+rx2 = d1x1+d2x2 ∈G
so that r ∈ ZX . By minimality of d1 we necessarily have r = 0, therefore d1 divides
d2. �

From this theorem we deduce the following structure theorem for finitely gener-
ated abelian groups. We leave the details of the proof as an exercise (see also [67,
Section 1.3]).

Corollary 1.30 (Invariant factor decomposition). Let G be a finitely generated
abelian group. Then there exist k ∈ N and a finite abelian group T such that
G ∼= Zk ⊕ T . In addition, there exist r ∈ N and positive integers d1,d2, . . . ,dr,
with di dividing di+1 for i = 1,2, . . . ,r− 1 such that, in fact, G is isomorphic to
Zk⊕ (Z/d1Z)⊕ (Z/d2Z)⊕·· ·⊕ (Z/drZ).

1.9 Notes

Free groups arose at the end of the 19th century in the study of hyperbolic geome-
try, as examples of Fuchsian groups (these are discrete groups acting by isometries
on the hyperbolic plane: they were first studied by Henri Poincaré in [280] who
named them after Lazarus Fuchs [119]). Walther von Dyck in 1882 in his paper [99]
remarked that free groups are the groups with the simplest possible presentation:
a group is free if and only if it admits a presentation with no (defining) relations.
The algebraic study of free groups was initiated by the topologist Jakob Nielsen in
1924, who, in a series of fundamental papers [253, 254, 255], gave them their name
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and established many of their basic properties. Kurt Reidemeister included a com-
prehensive treatment of free groups in his pioneering book [289] on combinatorial
topology.

The Nielsen–Schreier theorem (Theorem 1.15) is a non-abelian analogue of an
older result of Richard Dedekind, namely that “every subgroup of a free abelian
group is free abelian” (Theorem 1.29). First it was proved by Max Dehn in an unpub-
lished work where he exploited a graph-theoretic method for describing free groups.
Nielsen [254] proved it for finitely-generated groups and Otto Schreier proved it in
its full generality in his habilitation thesis published in [303].

A topological proof, based on the fact that “free groups are fundamental groups
of bouquets of circles” was given in 1930 by Reinhold Baer and Friedrich Levi [11].

Another proof of the Nielsen–Schreier theorem can be immediately deduced
from the following result: “A group is free if and only if it can act freely by au-
tomorphisms on a tree”. This statement, which can be found in Reidemeister’s book
as well as in Serre’s [310, 311], constitutes the initial fundamental result of the Bass–
Serre theory. This theory, developed in the 1970s by Jean-Pierre Serre (originally
motivated by his studies of certain algebraic groups whose Bruhat–Tits buildings
are trees) and Hyman Bass [20], resulted in a fundamental tool of geometric group
theory and geometric topology, particularly in the study of 3-manifolds. We finally
mention that John Stallings [321] put forward a topological approach to the study
of the algebraic structure of subgroups of free groups based on the methods of cov-
ering space theory that also used a simple graph-theoretic framework. The paper
introduced the notion of a Stallings subgroup graph for describing subgroups of
free groups, and also introduced a folding technique (used for approximating and
algorithmically obtaining the subgroup graphs) and the notion of a Stallings fold-
ing. Stallings subgroup graphs and Stallings foldings have been used as key tools in
the approach of the Hanna Neumann conjecture. This conjecture – posed by Hanna
Neumann in 1957 [250] and motivated by a theorem of Howson [178] who proved
in 1954 that the intersection of any two (nontrivial) finitely generated subgroups H
and K of a free group is always finitely generated – states that

rk(H ∩K)−1≤ (rk(H)−1)(rk(K)−1).

The Hanna Neumann conjecture (and in fact a strengthened version) was proved in
2011 by Joel Friedman [117] and, independently, by Igor Mineyev [240].

The proof of Theorem 1.5 is based on the so-called van der Waerden trick from
[345] which indeed applies to the more general setting of free products of groups: a
free group (based at X) is a free product of copies (indexed by X) of Z.

The criterion in Theorem 1.17 was largely used by Felix Klein [200] in his studies
of Schottky groups, though its present formulation is more recent.

Around 1945, Alfred Tarski asked whether free groups on two or more generators
have the same first-order theory (also called elementary theory), and whether this
theory is decidable. The first question was answered by Zlil Sela [309] in 2006
by showing that any two nonabelian free groups have the same elementary theory.
Independently and in the same year, Olga Kharlampovich and Alexey Myasnikov
[199] answered both questions, showing that this theory is indeed decidable.
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A similar, yet unsolved question asks whether or not the von Neumann group
algebras of any two non-abelian finitely generated free groups are isomorphic. This
led to the foundation and development of free probability theory initiated by Dan
Voiculescu around 1986 (see [344]).

The structure theorem for finitely generated abelian groups (Corollary 1.30) that
we present is in terms of the invariant factor decomposition; there is also another
version in terms of the primary factor decomposition, where the finite part is ex-
pressed as a direct sum of primary (= of order a power of a prime) cyclic groups.
The two versions are equivalent because of the Chinese remainder theorem, which
here states that Z/mZ'Z/ jZ⊕Z/kZ if and only if j and k are coprime and m= jk.
The structure theorem for finite abelian groups was proved by Leopold Kronecker
[205] in 1870 who generalized an earlier result of Carl Friedrich Gauss from Disqui-
sitiones Arithmeticae (1801). The theorem was stated and proved in the language of
the theory of groups by Ferdinand Georg Frobenius and Ludwig Stickelberger [118]
in 1878. The structure theorem for finitely generated abelian groups was proved by
Henri Poincaré [281] in 1900, using matrix methods (which generalize to principal
ideal domains) for his computations of the homology (Betti numbers and torsion
coefficients) of a complex. Another proof, based on and generalizing Kronecker’s
finite case proof, was found by Emmy Noether [257] in 1926.

1.10 Exercises

Exercise 1.1. Let F1 and F2 be free groups based on the sets X1 and X2, respectively.
Suppose that there exists a bijective map f : X1→ X2. Show that the free groups F1
and F2 are isomorphic.

Exercise 1.2. Let F be a free group based at X . Show that F is generated by X .

Exercise 1.3. Show that the group Z is free (with basis X = {1}).

Exercise 1.4. Show that a free group is torsion-free. Deduce that no finite (nontriv-
ial) group can be free.

Exercise 1.5. Let F be a free group and let ψ : F → F̃ be an isomorphism from F
onto a group F̃ . Show that F̃ is a free group as well, based at X̃ :=ψ(X).

Exercise 1.6. Let F be a free group with basis X ⊆ F . Let Y ⊆ X and let K denote
the subgroup of F generated by Y . Show that K is a free group with basis Y .

Exercise 1.7. A group P is termed projective if the following holds: if G and H are
two groups, π : G→ H is a surjective group homomorphism, and ϕ : F → H is a
group homomorphism, then there exists a group homomorphism ψ : P→ G such
that ϕ = π ◦ψ . Show that a group is projective if and only if it is free (cf. Exercise
1.20).

Exercise 1.8. Show that the system S defined in the proof of Lemma 1.14 is a
Schreier system of representatives for H\F .
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Exercise 1.9. Show that the statement of the Nielsen–Schreier theorem does not
hold for free monoids.

Exercise 1.10. Find an example of a group G with a (finite) generating subset
X ⊂ G, a group H, and a map f : X → H which does not extend to a group ho-
momorphism G→ H.

Exercise 1.11. Let n ∈ N. Find a free group F together with a surjective group ho-
momorphism F → Sym(n), the symmetric group of degree n.

Exercise 1.12. Prove that for every m,n ∈ N with m ≤ n, any free group F of rank
n has, as homomorphic image, a group G such that: (i) G is free of rank m; (ii) G is
a subgroup of F .

Exercise 1.13. Let F be the free group of rank 2, freely generated, say by the
elements a,b ∈ F . Let G = Z2 (written additively). The map f : {a,b} → G de-
fined by f (a) = (1,0) and f (b) = (0,1) extends to a unique group homomorphism
ϕ : F → G. Show that (i) ϕ is surjective; (ii) ker(ϕ) = [F,F ], the commutator sub-
group of F .

Exercise 1.14. Prove that a free group of rank n has a subgroup of index m for all
n,m ∈ N, n≥ 1.

Exercise 1.15. Let F be the free group of rank 3, say freely generated by a,b,c. Let
N ≤F denote the normal subgroup generated by c (i.e., the intersection of all normal
subgroups containing c). Show that (i) if g∈N, then there exist m∈N, εi ∈ {1,−1},
fi ∈ F , i = 1,2, . . . ,m, such that g = g1cε1g−1

1 g2cε2g−1
2 · · ·gmcεmg−1

m ; and (ii) F/N is
free of rank 2 (indeed, freely generated by aN and bN).

Exercise 1.16. Using the Nielsen–Schreier theorem prove that if F is a free group
and u,v ∈ F commute then they are powers of a common element in F . Deduce that
the relation u∼ v if uv = vu is an equivalence relation on F \{1}.

Exercise 1.17. Show that if F is free non-abelian, then its center Z(F) :={z ∈ F :
zg = gz for all g ∈ F} is trivial.

Exercise 1.18. Show that if F is a free group, then for every nontrivial element
g ∈ F , g cannot be conjugate to g−1.

Exercise 1.19. Show that for k ≥ 2 the matrices A =

(
1 k
0 1

)
and B =

(
1 0
k 1

)
in

SL(2,Z) generate a free group. Show that, however, for k = 1, this is no longer the
case.

Exercise 1.20. An abelian group P is termed projective (as an abelian group) if the
following holds: if G is an abelian group, H ≤ G is a subgroup, and ϕ : P→ G/H
is a group homomorphism, then there exists a homomorphism ψ : P→ G such that
ϕ = π ◦ψ , where π : G→ G/H is the canonical quotient homomorphism. Show
that an abelian group is projective if and only if it is free abelian (cf. Exercise 1.7).
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Exercise 1.21. Show that a free abelian group is a free group if and only if it is
either trivial (in this case the basis is X =∅) or isomorphic to Z (cf. Exercise 1.3).

Exercise 1.22. Let G be a finite abelian group. Using the structure theorem for
finitely generated abelian groups (cf. Corollary 1.30), show that if H ≤ G is a sub-
group, then there exists a subgroup K ≤G which is isomorphic to the quotient G/H.

Exercise 1.23. Show that the multiplicative group of the positive rational numbers
Q+ :={q ∈Q : q > 0} is free abelian.

Exercise 1.24. Let G be an abelian group generated by n elements. Let H ≤ G be a
subgroup. Show that H is generated by m elements with m≤ n.



Chapter 2
Nilpotent Groups

A group G is called nilpotent if it has a finite central series, that is, a sequence of
normal subgroups {1G}= G0 ≤ G1 ≤ ·· · ≤ Gn = G such that Gi+1/Gi is contained
in the center of G/Gi for all i = 0,1, . . . ,n− 1. Equivalently, G is nilpotent if its
lower central series G = γ1(G) ≥ γ2(G) ≥ ·· · , where γi+1(G) :=[G,γi(G)] is the
commutator subgroup of G and γi(G), i = 1,2, . . ., eventually reaches the trivial
subgroup {1G} of G. The least integer c≥ 1 such that γc+1(G) = {1G} is called the
nilpotency class of G.

The group UT(n,R) of upper unitriangular n× n matrices with coefficients in a
commutative ring R is nilpotent; in contrast, the group B(n,R) of upper triangular
n× n matrices with coefficients in a commutative ring R with 2 ∈ R invertible is
not nilpotent. In Section 2.4 we compute their lower central series (as well as their
upper central series).

The first fundamental result that we present is due to Malcev (Theorem 2.20)
and gives a linear representation of finitely generated torsion-free nilpotent groups:
every such group is embeddable in UT(m,Z) for some m ≥ 1. The proof includes,
as a side result of independent interest, the fact (also due to Malcev) that the co-
efficients of the product of two group elements in a finitely generated torsion-free
nilpotent group, when expressed in terms of a canonical generating system (called
a Malcev basis), have a polynomial expression in terms of the coefficients of the
two group elements (Lemma 2.31). In the last section, we study finitely generated
nilpotent groups with torsion and show that every finitely generated nilpotent group
is virtually torsion-free (Lemma 2.42). From Theorem 2.20, we then deduce that
every finitely generated nilpotent group is linear, in fact embeddable into GL(m,Z)
for some m≥ 1 (Corollary 2.44).

2.1 Commutator Identities

Let G be a group. Let a and b be two elements of G. The commutator of a and b is
the element [a,b] ∈ G defined by

23© Springer Nature Switzerland AG 2021
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[a,b] :=a−1b−1ab.

We also set
ab :=b−1ab.

More generally, given n≥ 3 and elements a1,a2, . . . ,an ∈ G, we recursively define

[a1,a2, . . . ,an] :=[[a1,a2, . . . ,an−1],an]. (2.1)

An element as in (2.1) is called a simple commutator of weight n.
The proof of the following lemma is left as an exercise.

Lemma 2.1. Let G be a group. For all a,b,c∈G the following basic identities hold:

(1) [a,b]−1 = [b,a];
(2) [ab,c] = [a,c]b[b,c] = [a,c][a,c,b][b,c];
(3) [a,bc] = [a,c][a,b]c = [a,c][b,a,c]−1[a,b];
(4) [a,b−1] = ([a,b]b

−1
)−1;

(5) [a−1,b] = [b,a]a
−1

;
(6) [a,b−1,c]b[b,c−1,a]c[c,a−1,b]a = 1 (Hall–Witt identity).

Recall that a subgroup H of G is said to be normal in G, and we write HEG, if
hg ∈H for all h ∈H and g ∈G. Also, H is said to be characteristic in G if ϕ(h) ∈H
for all h ∈ H and all automorphisms ϕ of G.

Let H and K be subgroups of G. We denote by [H,K] the subgroup of G generated
by all commutators [h,k], where h ∈H and k ∈ K. Notice that by Lemma 2.1.(1) we
always have [H,K] = [K,H].

It is an exercise to see that [H,K]⊆K (resp. [H,K]⊆H) if K (resp. H) is normal
in G, and that [H,K] is normal (resp. characteristic) in G if H and K are both normal
(resp. characteristic) in G.

Lemma 2.2 (The three subgroup lemma). Let G be a group, let NEG be a normal
subgroup, and let H,K,L ≤ G be three subgroups. If [[H,K],L] and [[K,L],H] are
contained in N, then [[L,H],K] is also contained in N.

Proof. First observe that by Lemma 2.1.(2), the subgroup [[H,K],L] (resp. [[K,L],H],
resp. [[L,H],K]) is generated by the commutators [h,k, `] (resp. [k, `,h], resp. [`,h,k]),
where h ∈H, k ∈ K and ` ∈ L. The statement then follows from the Hall–Witt iden-
tity (Lemma 2.1.(6)). �

2.2 The Lower Central Series

Let G be a group. A descending (resp. ascending) series in G is a sequence (Hk)k≥1
of subgroups of G such that

G = H1 ≥ H2 ≥ ·· · ≥ Hk ≥ Hk+1 ≥ ·· ·
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(resp, {1G} = H1 ≤ H2 ≤ ·· · ≤ Hk ≤ Hk+1 ≤ ·· · ). The subgroups H1,H2, . . . are
called the terms of the series.

A descending (resp. ascending) series (Hk)k≥1 in G is called finite provided that
there exists a k ∈ N such that Hk = {1G} (resp. Hk = G). The minimal integer k for
which this happens is called the length of the series.

A descending (resp. ascending) series (Hk)k≥1 in G is called normal if Hk is
normal in G for all k.

Definition 2.3. Let G be a group. The lower central series of G is the sequence
(γk(G))k≥1 of subgroups of G recursively defined by

γ1(G) :=G and γk+1(G) :=[γk(G),G] for all k ≥ 1.

It is an exercise to show that γk(G) is characteristic (and therefore normal) in G and
that γk+1(G)⊆ γk(G) for all k. It follows that the lower central series is a descending
normal series.

Definition 2.4. A group G is said to be nilpotent if its lower central series is finite,
that is, if there is an integer k ≥ 1 such that γk(G) = {1G}. If this is the case, the
smallest integer c ≥ 1 such that γc+1(G) = {1G} is then called the nilpotency class
of G.

Example 2.5. (a) Every abelian group is nilpotent, of nilpotency class c = 1.
(b) Let R be a unital commutative ring with identity 1 :=1R, and let n≥ 2 be an

integer. An n× n matrix M with coefficients in R is said to be upper unitriangular
provided that its entries are equal to 1 on the diagonal and vanish below the diagonal.
More explicitly, a matrix M = ‖xi j‖1≤i, j≤n, with xi j ∈ R for all 1≤ i, j ≤ n, is upper
unitriangular if for all i, j = 1,2, . . . ,n we have xii = 1 and xi j = 0 provided i > j. In
other words, an upper unitriangular matrix is of the form:

M =


1 x12 x13 · · · x1(n−1) x1n
0 1 x23 · · · x2(n−1) x2n
...

...
...

...
...

...
0 0 0 · · · 1 x(n−1)n
0 0 0 · · · 0 1

 .

It is an exercise to see that the set UT(n,R) consisting of all n× n upper unitri-
angular matrices with coefficients in R forms a group with the usual multiplica-
tion of matrices. It is a slightly harder exercise to see that for k ≥ 1, the k-th term
γk(UT(n,R)) of the lower central series of UT(n,R) consists of all upper unitri-
angular matrices M = ‖xi j‖1≤i, j≤n satisfying xi j = 0 provided 1 ≤ j− i ≤ k. In
particular, γn(UT(n,R)) = {In}, where In denotes the n× n identity matrix, but
γn−1(UT(n,R)) 6= {In}, so that UT(n,R) is nilpotent of nilpotency class n−1.

Lemma 2.6. Let G be a group. Then

[γi(G),γ j(G)]⊆ γi+ j(G) (2.2)

for all i, j ≥ 1.
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Proof. We prove the statement by induction on i. For i = 1, in (2.2) we have that
[γ1(G),γ j(G)] = [G,γ j(G)] equals γ j+1(G) for all j ≥ 1, by definition. Suppose the
statement is true for i≥ 1 and let us show that for all j

[γi+1(G),γ j(G)]⊆ γi+ j+1(G). (2.3)

We first claim that given a,b ∈ γi+1(G) and c ∈ γ j(G) we have

[ab,c] = [a,c][b,c] modulo γi+ j+1(G) (2.4)

and
[a−1,c] = [a,c]−1 modulo γi+ j+1(G). (2.5)

Indeed, we have a ∈ γi+1(G) ⊆ γi(G) so that, by the inductive hypothesis, [a,c] ∈
[γi(G),γ j(G)]⊆ γi+ j(G). As a consequence, [a,c,b] = [[a,c],b]∈ [γi+ j(G),γ j(G)]⊆
[γi+ j(G),G] = γi+ j+1(G). Also, by Lemma 2.1.(2), we have

[ab,c] = [a,c][a,c,b][b,c] = [a,c][b,c]([b,c]−1[a,c,b][b,c]).

Hence, by normality of γi+ j+1(G), also [b,c]−1[a,c,b][b,c] = [a,c,b][b,c] is in the set
γi+ j+1(G), so this proves (2.4).

By taking b = a−1 in (2.4) one deduces (2.5). This proves the claim.
As a consequence, in order to prove (2.3) we may limit ourselves to check it on

the generators of γi+1(G), i.e. to show that

[a,x,b] ∈ γi+ j+1(G) for all a ∈ γi(G),x ∈ G, and b ∈ γ j(G). (2.6)

Now, the Hall–Witt identity (Lemma 2.1.(6)) gives

[a,x,b] =
(
([b,a−1,x−1]a)−1([x−1,b−1,a]b)−1

)x
.

On the other hand, observing that, by the inductive hypothesis, [b,a−1,x−1] ∈
[γi+ j(G),G] = γi+ j+1(G) and [x−1,b−1,a] ∈ [γ j+1(G),γi(G)]⊆ γi+ j+1(G), recalling
that γi+ j+1(G) is a normal subgroup, we deduce (2.6). �

A descending series (Gk)k≥1 in G

G = G1 ≥ G2 ≥ ·· · ≥ Gk ≥ Gk+1 ≥ ·· ·

is said to be central if [Gi,G j] ⊆ Gi+ j for all i, j ≥ 1. Observe that this condition
implies that each Gi is normal in G, since [Gi,G] = [Gi,G1]⊆ Gi+1 ⊆ Gi.

Thus we can reformulate Lemma 2.6 by saying that the lower central series of
a group G is a central series. The following lemma explains the etymology for the
term “lower”.

Lemma 2.7. Let G be a group. Suppose that (Gk)k≥1 is a descending central series
of G. Then Gi ⊇ γi(G) for all i≥ 1.

Proof. We proceed by induction on i. For i= 1 this is obvious since G1 =G= γ1(G).
Suppose the statement holds for i≥ 1. From the defining property of a central series
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and the inductive hypothesis, we deduce

Gi+1 ⊇ [Gi,G1]⊇ [γi(G),G] = γi+1(G).

This completes the proof of the lemma. �

These considerations immediately imply the following characterization of nilpo-
tency: we leave the details as an exercise.

Proposition 2.8. A group is nilpotent if and only if it admits a finite central series.

We end this section by recording two important hereditary properties of the class
of nilpotent groups.

Proposition 2.9. Let G be a nilpotent group of nilpotency class c. Then any sub-
group and any quotient of G is nilpotent of nilpotency class ≤ c.

Proof. Let H ⊂ G be a subgroup. It immediately follows by induction that γi(H)⊆
γi(G) for all i = 1,2, . . . ,c. In particular, γc+1(H)⊆ γc+1(G) = {1G}, thus showing
that H is nilpotent with nilpotency class ≤ c.

Let ϕ : G→ G be a surjective homomorphism onto a group G. Let H,K ⊆ G be
two subgroups. For all h ∈ H and k ∈ K we have ϕ([h,k]) = [ϕ(h),ϕ(k)] so that
ϕ([H,K]) = [ϕ(H),ϕ(K)]. It follows that

γi+1(G) = γi+1(ϕ(G)) = [γi(ϕ(G)),ϕ(G)] = ϕ([γi(G),G]) = ϕ(γi+1(G))

for all i = 1,2, . . . ,c. In particular, γc+1(G) = ϕ(γc+1(G)) = {1G}, thus showing that
G is nilpotent with nilpotency class ≤ c. �

2.3 The Upper Central Series

We now introduce another important series in a group G.

Definition 2.10. Let G be a group. The upper central series of G is the ascending
series (Zk(G))k≥0 in G defined by setting

Z0(G) :={1G} and Zi+1(G) :=π
−1
i (Z(G/Zi(G))) for i≥ 0,

where πi : G→ G/Zi(G) denotes the quotient homomorphism, and, for any group
H, we denote by Z(H) :={z ∈ H : zh = hz for all h ∈ H} the center of H.

Thus, for all i ∈ N we have

Z(G/Zi(G)) = Zi+1(G)/Zi(G).

In particular, Z1(G) = Z(G) is the center of G.
The proof of the following lemma is left as an exercise.
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Lemma 2.11. Let G be a group. Suppose that the upper central series of G is fi-
nite, say {1G} = Z0(G) ≤ Z1(G) ≤ ·· · ≤ Zk(G) = G. Then the descending series
(Zk−i+1(G))k+1

i=1 is central.

The following lemma explains the etymology for the term “upper”.

Lemma 2.12. Let G be a group. Suppose that G admits a finite central series
G = G1 ≥ G2 ≥ ·· · ≥ Gr = {1G}. Then Zi(G) ⊇ Gr−i for all i ≥ 0. In particular,
Zr−1(G) = G.

Proof. We prove the statement by induction on i. For i = 0 this is obvious: Z0(G) =
{1G} = Gr. Suppose the statement holds for some i ≥ 0 and let us show that
Zi+1(G) ⊇ Gr−i−1. By definition, we have to show that πi(Gr−i−1) ⊆ Z(G/Zi(G)),
equivalently, that [Gr−i−1,G] ⊆ Zi(G). But this follows from [Gr−i−1,G] ⊆ Gr−i,
since the series is central, and from Gr−i ⊆ Zi(G), by induction. �

Remark 2.13. From what we have just proved, if the lower central series has length
c, then Zc−1(G)⊇ γc−(c−1)(G) = γ1(G) =G. Hence the upper central series, denoted
(Zk−i+1(G))k+1

i=1 , reaches the whole group G at least as “fast” as the lower central
series reaches the trivial group {1G}, i.e. k ≤ c−1, that is k+1≤ c.

On the other hand, by Lemma 2.11, the upper central series in this case is central.
Therefore, if the length of the upper central series is k+1 = c− r, with r ≥ 1, then
already Zc−r−1(G) = G. But by Lemma 2.7 we have γi(G)⊆ Zc−r−i(G) for all i’s. In
particular, γc−r(G)⊆ Zc−r−(c−r)(G) = Z0(G) = {1G}, contradicting the definition of
c. This shows that the lower central series cannot be “faster” than the upper central
series.

Hence these two series must have the same length. In particular, if the upper
central series of G has length c, then G is nilpotent of nilpotency class c.

From the above discussion, we deduce the following characterization of nilpo-
tency.

Proposition 2.14. A group is nilpotent if and only if its upper central series is finite.
�

2.4 Two Examples

In this section we study two important examples of groups, and we compute their
lower central series and upper central series.

Example 2.15. Let R be a commutative ring with identity 1 = 1R, and let UT(n,R)
be the group of n×n upper unitriangular matrices (see Example 2.5.(b)).

Let (γi)i≥1 be the lower central series of UT(n,R). Let G1 :=UT(n,R), and, for
k = 2, . . . ,n, let Gk be the group of upper unitriangular matrices with all (i, j)-th
coefficients equal to zero when 1 ≤ j− i ≤ k− 1. So Gn is the trivial subgroup of
UT(n,R); also by convention Gh :=Gn for h≥ n+1.
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We want to show that γi = Gi for all i.
The inclusion γi ⊆ Gi is clear. To show the other inclusion, we need some nota-

tion: let I(n) be the identity matrix of order n× n and let N(n)
1 be the n× n matrix

with 1 in the positions (i, i+1) and 0 elsewhere. For example

N(4)
1 =


0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

 .

Also, we denote by E(n)
i, j the n×n matrix with 1 in the position (i, j), and 0 elsewhere.

We leave it as an exercise to check that for m≥ 3

[I(m)+N(m)
1 , I(m)+E(m)

2,m ] = I(m)+E(m)
1,m . (2.7)

Using this observation, looking at the block diagonal matrices with one block
of the form I(m) + N(m)

1 or I(m) + E(m)
2,m and the others equal to 1, one can show

that, for j− i≥ 2, the subgroup γ2 = [γ1,γ1] contains all unitriangular matrices with
an arbitrary coefficient in position (i, j) and 0 elsewhere. This easily implies that
γ2 ⊇ G2. Inductively, we can use the same observation to show the other inclusions
γi ⊇Gi, since γi = [γ1,γi−1] = [G1,Gi−1], and I(m)+E(m)

2,m will always be in Gi−1 for
the given m.

In particular, this computation shows that UT(n,R) has nilpotency class n−1.
Let now (Zi)i≥0 be the upper central series of UT(n,R). We want to show that

Zi = Gn−i = γn−i for 0≤ i≤ n−1.
The inclusion Gn−i = γn−i ⊆ Zi is proved in Lemma 2.12. To show the other

inclusion, first observe that for i = 0 the statement is true. We now compute Z1 =

Z(UT(n,R)). Let M ∈ Z1. Then we must have [I(n)+N(n)
1 ,M] = I(n). But this implies

that for each k = 1,2, . . . ,n− 1, the coefficients of M in the positions (i, i+ k) for
i = 1,2, . . . ,n−k must all be equal to a common value αk. Consider now the matrix
I(n)+E(n)

n−1,n. For example

I(4)+E(4)
3,4 =


1 0 0 0
0 1 0 0
0 0 1 1
0 0 0 1

 .

Since M is in the center, we have [I(n) +E(n)
n−1,n,M] = I(n), which implies that the

αk’s must be equal to 0 for k = 1,2, . . . ,n−2. This gives γn−1 = Gn−1 ⊇ Z1. Induc-
tively, we can argue similarly for the other inclusions Gn−i = γn−i ⊇ Zi, recalling
that Zi/Zi−1 = Z(UT(n,R)/Zi−1) = Z(UT(n,R)/Gi−1).

Example 2.16. Here we assume that 2 = 1+1 ∈ R is invertible in R. For example,
this is always the case when R is a field of characteristic different from 2.

Let then B(n,R) be the group of n× n upper triangular matrices with diagonal
entries from R×, the group of invertible elements of R.



30 2 Nilpotent Groups

Let now (γi)i≥1 be the lower central series of B(n,R), and let (Gi)i≥1 be, as in
the previous example, the lower central series of UT(n,R).

We have the obvious inclusions

[B(n,R),UT(n,R)]⊆ [B(n,R),B(n,R)]⊆ UT(n,R).

We want to show that in fact [B(n,R),UT(n,R)]⊇ UT(n,R), and hence

[B(n,R),UT(n,R)] = [B(n,R),B(n,R)] = UT(n,R).

To see this, in the notation of the previous example, observe that for m≥ 2

[I(m)+E(m)
1,m , I

(m)+E(m)
m,m] = I(m)+E(m)

1,m . (2.8)

Remark 2.17. Notice that here we use the assumption that 1+ 1 = 2 ∈ R×. If 2
is not invertible in R, then the inclusion [B(n,R),UT(n,R)] ⊇ UT(n,R) may not
be true. For instance, if R = Z and n = 2, then it is an exercise to show that
[B(2,Z),UT(2,Z)] = UT(2,2Z).

Using this observation, looking at the block diagonal matrices with one block of
the form I(m)+E(m)

1,m or I(m)+E(m)
m,m and the others equal to 1, we can show that I(n)+

E(n)
i, j ∈ [B(n,R),UT(n,R)] for all j > i, and this easily implies [B(n,R),UT(n,R)]⊇

UT(n,R).
From this we conclude that the lower central series of B(n,R) is given by γ1 =

B(n,R), and γi = UT(n,R) for all i≥ 2.
In particular, this computation shows that B(n,R) is not a nilpotent group.
Let (Zi)i≥0 be the upper central series of B(n,R). We want to show that for all

i≥ 1

Zi = Z(B(n,R)) = R×I(n). (2.9)

To see this, let M ∈ Z1 = Z(B(n,R)). For all j = 1,2, . . . ,n we must have [I(n)−
2E(n)

j, j ,M] = I(n). But this implies that the coefficients of M in the positions ( j, j+k)
and ( j+k, j) must be equal to zero for k = 1,2, . . . ,n− j. Hence M must be diagonal.
But then [I(n)+N(n)

1 ,M] = I(n) implies that all the diagonal entries must be equal.
This shows that Z1 ⊆ R×I(n), and hence Z1 = R×I(n).

To see now that Z2 = Z1, just remember that

Z2/Z1 = Z(B(n,R)/Z1) = Z(B(n,R)/R×I(n)),

and notice that we can apply the arguments that we just used for B(n,R) to the
quotient B(n,R)/R×I(n), to deduce that the center of B(n,R)/R×I(n) is trivial, and
hence Z2 = Z1. This implies (2.9).

Note that, using Proposition 2.14, this computation gives another way of showing
that B(n,R) is not a nilpotent group.
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2.5 Nilpotent Ideals

The term “nilpotency” comes from Ring Theory. Given a unital ring R and an ideal
J ⊆ R we denote by Jn ⊆ R the ideal consisting of all finite sums of elements of the
form x1x2 · · ·xn with x1,x2, . . . ,xn ∈ J. We say that J is nilpotent provided that there
exists an integer n≥ 1 such that Jn = {0}. The minimal n with this property is called
the nilpotency class of J.

Proposition 2.18. Let R be a unital ring with unit 1R. Let J ⊆ R be a nilpotent ideal
of nilpotency class n, and consider the set G :=1R +J = {1R +x : x ∈ J} ⊆ R. Then
G is a nilpotent group of nilpotency class at most n.

Proof. Let us first show that G is a group. Let x,y ∈ J. We have

(1R + x)(1R + y) = 1R +(x+ y+ xy) ∈ 1R + J;

this shows that G is closed under multiplication. Moreover, 1R is the identity element
1G in G. Finally, if n is the class of nilpotency of J, for every x ∈ J we have

(1R + x)(1R− x+ x2−·· ·+(−x)n−1) = 1R,

thus showing that every element of G is invertible. It follows that G is a group.
For k≥ 1, let Hk :=1R+Jk ⊆G. Notice that the ideal Jk is also nilpotent. Indeed

(Jk)n = Jnk = (Jn)k = {0}k = {0}. Moreover, it follows from the first part of the
proof that Hk is a subgroup of G. As Jk = J ·Jk−1 ⊆ Jk−1, we have Hk ⊆Hk−1. Also
Hn = 1R + Jn = 1R +{0}= {1R}= {1G}.

Let us prove that the finite descending series (Hk)k≥1 in G is central. We have
to show that if a ∈ Hk and b ∈ H`, then [a,b] ∈ Hk+` = 1R + Jk+`; equivalently,
[a,b]−1R ∈ Jk+`. If a = 1R + x, with x ∈ Jk and b = 1R + y, with y ∈ J`, we have

[a,b]−1R = a−1b−1ab−1R

= a−1b−1(ab−ba)

= a−1b−1((1R + x)(1R + y)− (1R + y)(1R + x))

= a−1b−1(1R + x+ y+ xy−1R− y− x− yx)

= a−1b−1(xy− yx)

∈ R · (Jk · J`+ J` · Jk)

⊆ Jk+`.

This shows that G is nilpotent of nilpotency class ≤ n. �

2.6 Torsion-Free Finitely Generated Nilpotent Groups

In this section we study finitely generated nilpotent groups which are torsion-free,
that is, that have no nontrivial elements of finite order.
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We start with a lemma.

Lemma 2.19. Let G be a torsion-free (possibly infinitely generated) nilpotent group
with upper central series (Zk(G))k≥0. Then all factors Zi+1(G)/Zi(G), i ≥ 0, are
torsion-free abelian groups.

Proof. We proceed by induction on the nilpotency class c of G. If c = 1, then
Z1(G)/Z0(G) = G/{1G} ∼= G is abelian and, by hypothesis, it is also torsion-free.
Suppose that the statement holds true for all nilpotent groups of nilpotency class
c− 1 and let us suppose that G has nilpotency class c. Set H :=G/Z1(G). It fol-
lows from the definitions and an immediate induction that Zi(H) = Zi+1(G)/Z1(G)
for all i = 1,2, . . . ,c− 1 (exercise). In particular, H is nilpotent of class c− 1.
Since Zi+1(G)/Zi(G)∼= (Zi+1(G)/Z1(G))/(Zi(G)/Z1(G)) = Zi(H)/Zi−1(H) for all
i= 1,2, . . . ,c−1, in order to finish the proof it suffices to show that H is torsion-free.

Let a ∈ G and suppose that there exists an integer m ≥ 1 such that am ∈ Z1(G).
We need to show that a ∈ Z1(G). By contradiction, suppose that a /∈ Z1(G). Since
Z1(G) = Z(G), we can find b ∈ G which does not commute with a, i.e. such that
[a,b] 6= 1G. Let then i∈ {1,2, . . . ,c−1} be the maximal index for which there exists
a b∈ γi(G) such that [a,b] 6= 1G, where G = γ1(G)≥ γ2(G)≥ ·· · ≥ γc+1(G) = {1G}
is the lower central series of G. It follows from Hall’s identities (Lemma 2.1.(2))
that

1G = [am,b] = [a ·am−1,b] = [a,b]a
m−1

[am−1,b].

Now [a,b] ∈ γi+1(G), hence, by the maximality of the index i, the element a (and
therefore am−1) commutes with [a,b]. This implies [a,b]a

m−1
= [a,b] so that 1G =

[am,b] = [a,b][am−1,b]. Iterating the above argument, we get

1G = [a,b][am−1,b] = [a,b]2[am−2,b] = · · ·= [a,b]m.

Since G is torsion-free, this gives [a,b] = 1G, a contradiction. Hence a ∈ Z1(G) and
therefore H = G/Z1(G) is torsion-free. �

The remainder of this section is devoted to the proof of the following theorem,
due to Malcev, which gives a linear representation of finitely generated torsion-free
nilpotent groups.

Theorem 2.20 (Malcev). Let G be a finitely generated torsion-free nilpotent group.
Then there exists an integer n≥ 1 and an embedding G ↪→ UT(n,Z).

We start with an easy reduction.

Lemma 2.21. It is sufficient to embed G into UT(n,Q).

Proof. Let ι : G ↪→UT(n,Q) be an embedding. Consider a finite set S of generators
for G. Let N be the least common multiple of the denominators of all the entries of
the elements in ι(S)⊆ UT(n,Q). Then, conjugating each element

ι(s) =

 1 αi, j
. . .

0 1
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s ∈ S, by the matrix

MN :=


1 0

N
. . .

0 Nn


we obtain a matrix  1 βi, j

. . .
0 1


where now βi, j =N−iαi, jN j ∈Z (since i< j). Denoting by γMN ∈Aut(UT(n,Q)) the
conjugation by the matrix MN , it follows that γMN ◦ ι yields the desired embedding
of G into UT(n,Z). �

With this lemma we reduced the problem to finding a Q-linear action of G.
We need some notation and terminology.

Definition 2.22. Let G be a group and let K be a field.
Given a K-vector space V , we denote by EndK(V ) the set (in fact, a K-algebra)

of all linear maps ϕ : V →V .
A K-vector space V equipped with a linear action of G is called a G-module. A

G-endomorphism of a G-module V is a linear map ϕ : V →V which centralizes the
action of G, i.e., satisfies ϕ(gv) = gϕ(v) for all g ∈ G and v ∈V .

If V is a G-module, we denote by EndG(V ) the set (in fact, a K-subalgebra of
EndK(V )) of all G-endomorphisms of V .

Let V be a G-module. A vector subspace W ≤V which is G-invariant (i.e., gw ∈
W for all g ∈ G and w ∈W ) is called a G-submodule of V . One then says that V is
irreducible provided that the only proper G-submodule is the trivial one.

The following is an elementary but extremely useful result in the representation
theory of groups and algebras. It is due to Issai Schur.

Lemma 2.23 (Schur). Let V be an irreducible G-module and suppose that ϕ ∈
EndG(V ) is a G-endomorphism of V . Suppose that ϕ admits an eigenvector. Then ϕ

is a scalar multiple of the identity map idV : V →V .

Proof. Let v ∈ V be an eigenvector of ϕ and let α ∈ K denote the correspond-
ing eigenvalue. Since ϕ centralizes the action of G, the eigenspace Vα = {w ∈ V :
ϕ(w) = αw} ⊆V is a nontrivial (since v∈Vα ) G-submodule of V . By irreducibility,
we necessarily have Vα =V . This is equivalent to saying that ϕ = α idV . �

Definition 2.24. Let V be a vector space over a field K. A linear transformation
ϕ : V →V is said to be unipotent if 1 is its only eigenvalue.

Note that if V is finite-dimensional then, by the Cayley–Hamilton Theorem (cf.
[210, Chapter X §2]), ϕ ∈ EndK(V ) is unipotent if and only if there exists an n≥ 1
such that (ϕ− idV )

n = 0.

The following lemma provides the first step towards proving Malcev’s theorem
(Theorem 2.20).
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Lemma 2.25. Let V be a finite-dimensional vector space over a field K. Let G be a
unipotent nilpotent subgroup of EndK(V ). Then there exists a vector basis of V such
that G⊆ UT(n,K).

Notice that the statement of the lemma is not a tautology: from the assumption
that for every element in G there exists a basis in which the corresponding matrix
lies in UT(n,K), we want to conclude that we can find a single basis in which the
matrices of all the elements of G are in UT(n,K).
Proof of Lemma 2.25. Let us assume first that G acts irreducibly. We show that G =
{idV} and that V is one-dimensional. Suppose by contradiction that G is nontrivial.
Then, by nilpotency, we have that its center Z(G) = Z1(G) is nontrivial as well. Let
z ∈ Z(G)\{idV} and observe that z centralizes the action of G. By virtue of Schur’s
lemma (Lemma 2.23), since G acts irreducibly on V , z is a multiple of idV ; but
from the unipotency of z, we deduce that z = idV , a contradiction. Thus G = {idV}.
Moreover, since the action is irreducible, V must be one-dimensional.

Let us now drop the irreducibility assumption and denote by

{0}=V0 $V1 $ · · ·$Vn =V

a maximal chain of G-submodules of V . By maximality, we have that the quotient
G-modules Vi/Vi−1 are irreducible for all i= 1,2, . . . ,n. By the first part of the proof,
we have dimK(Vi/Vi−1) = 1. Taking vi ∈Vi \Vi−1 for all i = 1,2, . . . ,n yields a basis
of V with respect to which the elements of G are represented by upper-triangular
matrices. Indeed, for every g ∈ G we have gv1 = v1, gv2 ∈ v2 +V1, . . . , gvn = vn +
Vn−1 so that we can find αi, j = αi, j(g) ∈K, 1≤ i < j ≤ n such that

gv1 = v1
gv2 = v2 +α1,2v1
gv3 = v3 +α2,3v2 +α1,3v1
· · ·
gvn = vn +αn−1,nvn−1 + · · ·α1,nv1.

Setting αi, j = 0 for 1 ≤ j < i ≤ n and αi,i = 1 for i = 1,2, . . . ,n, we have that the
matrix M(g) = ‖αi, j‖1≤i, j≤n representing g is upper unitriangular. This shows that
G⊆ UT(n,K). �

Hence, to complete the proof of Malcev’s theorem (Theorem 2.20), we need to
find a finite-dimensional Q-vector space V on which G acts unipotently and nilpo-
tently. To construct such a module we look at a special normal series of G.

Lemma 2.26. Let G be a group and let (Gi)i≥1 be a central series. Then the map

Gi/Gi+1×G j/G j+1 → Gi+ j/Gi+ j+1
(aiGi+1,b jG j+1) 7→ [ai,b j]Gi+ j+1

(2.10)

is well defined and Z-bilinear. Moreover, the quotient groups Gi/Gi+1 are abelian
for all i≥ 1.

Proof. Suppose that ai = a′i mod Gi+1 so that a′i = aici+1, where ci+1 ∈ Gi+1. By
using the Hall identities (Lemma 2.1.(2)) we deduce
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[a′i,b j] = [aici+1,b j] = [ai,b j][ai,b j,ci+1][ci+1,b j] = [ai,b j] mod Gi+ j+1,

since [ai,b j,ci+1] ∈G2i+ j+1 ⊆Gi+ j+1 and [ci+1,b j] ∈Gi+ j+1. Analogously, if b j =
b′j mod G j+1 one can show that [ai,b j] = [ai,b′j] mod Gi+ j+1. This shows that the
map (2.10) is well defined.

To show the Z-bilinearity, let ai,a′i ∈ Gi. We have, again by the Hall identities,

[aia′i,b j] = [ai,b j][ai,b j,a′i][a
′
i,b j]

= [ai,b j][a′i,b j][ai,b j,a′i]
[a′i,b j ] (2.11)

= [ai,b j][a′i,b j] mod Gi+ j+1,

since [ai,b j,a′i] ∈ G2i+ j+1 ⊆ Gi+ j+1 and Gi+ j+1 is normal in G. This gives the lin-
earity in the first component; the linearity in the second one is proved analogously.

Finally, let ai,bi ∈ Gi. Then

aiGi+1biGi+1 = aibiGi+1 = biai[aibi]Gi+1 = biaiGi+1 = biGi+1aiGi+1

since Gi+1 is a normal subgroup and [ai,bi]∈G2i⊆Gi+1. This shows that the groups
Gi/Gi+1, for i≥ 1, are abelian. �

Remark 2.27. From (2.11) we deduce, by an easy inductive argument, that

[am
i ,b j] = [ai,b j]

m mod Gi+ j+1 (2.12)

for all ai ∈ Gi and b j ∈ G j, and all integers m≥ 1.

Proposition 2.28. Let G be a finitely generated group and let (γi)i≥1 denote its lower
central series. Let X ⊆ G be a finite generating subset of G. Then for every i =
1,2, . . . , the group γi/γi+1 is abelian and finitely generated. More precisely, it is
generated by the elements [x1,x2, . . . ,xi]γi+1, where x1,x2, . . . ,xi ∈ X.

Proof. The groups γi/γi+1 are abelian by the previous lemma, since the lower central
series is central.

We prove that they are finitely generated arguing by induction on i. First no-
tice that since γi is generated by the commutators [h,k] with h ∈ γi−1 and k ∈ γ1 =
G, we have that the Z-span of the image of the Z-bilinear map ϕi, j : γi/γi+1 ×
γ j/γ j+1 → γi+ j/γi+ j+1 given by ϕi, j(aiγi+1,b jγ j+1) :=[ai,b j]γi+ j+1 is the whole
γi+ j/γi+ j+1. Now, it is clear that γ1/γ2 is generated by the elements xγ2, where
x ∈ X . On the other hand, suppose by induction that γi−1/γi is generated by the
elements [x1,x2, . . . ,xi−1]γi, with x1,x2, . . . ,xi−1 ∈ X . It follows that γi/γi+1 is gen-
erated by the elements ϕi−1,1([x1,x2, . . . ,xi−1]γi,xγ2) = [[x1,x2, . . . ,xi−1],x]γi+1 =
[x1,x2, . . . ,xi−1,x]γi+1, with x1,x2, . . . ,xi−1,x ∈ X . �

We can finally provide the normal series of G that we need.

Corollary 2.29. Let G be a finitely generated nilpotent group. Then there exists a
finite descending normal series in G

G = N1 ≥ N2 ≥ ·· · ≥ Ns ≥ Ns+1 = {1}
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such that Nk/Nk+1 is a cyclic group and [Nk,G]⊆ Nk+1 for all k = 1,2, . . . ,s.

Proof. Let (γi)i≥1 be the lower central series of G. Since γi/γi+1 is finitely generated
and abelian, by the characterization theorem (cf. Corollary 1.30) we can find normal
subgroups Ni, j, j = 1,2, . . . , ti, such that

γi = Ni,1 ≥ Ni,2 ≥ ·· · ≥ Ni,ti = γi+1

with Ni, j/Ni, j+1 cyclic for all j = 1,2, . . . , ti−1. Moreover,

[Ni, j,G]⊆ [γi,γ1] = γi+1 = Ni,ti ⊆ Ni, j+1. (2.13)

Note that, incidentally, (2.13) implies that the Ni, j’s are normal in G. To finish,
we rename the subgroups N1,1,N1,2, . . . ,N1,t1 = N2,1,N2,2, . . . ,N2,t2 = N3,1, . . . as
N1,N2,N3, . . . �

With the notation of Corollary 2.29, we now pick elements ak ∈ Nk such that
Nk/Nk+1 = 〈akNk+1〉, k = 1,2, . . . ,s. So every element g ∈ G can be represented as

g = aα1
1 aα2

2 · · ·a
αs
s , (2.14)

where αi ∈ Z, and such that 0≤ αi < |Ni/Ni+1| whenever the cyclic group Ni/Ni+1
is finite.

Note that the representation (2.14) is unique (exercise).
Consider now the space F = F(G,Q) = QG consisting of all maps f : G→ Q.

We define a right action of G on F by setting g f (h) = f (gh) for all g,h ∈ G and
f ∈ F . Also, we define the elements t1, t2 . . . , ts ∈ F by setting ti(g) = αi for every
element g ∈ G represented as in (2.14).

Consider the G-module V :=QGt1 +QGt2 · · ·+QGts. This is going to be the G-
module that we were looking for. At this point, it is not even clear that this module
is finite-dimensional. This follows from the next lemma.

Lemma 2.30. Let G be a finitely generated torsion-free nilpotent group and let V
be a G-module over a field K. Suppose that a generating set A = {a1,a2, . . . ,as} ⊆
G acts unipotently (i.e., for all v ∈ V there exists an integer n(v) ≥ 1 such that
(ai− idV )

n(v)v = 0 for all i’s). Then, for all v ∈ V , the G-submodule KGv is finite-
dimensional.

Proof. First observe thatKGv equals theK-span of the vectors aα1
1 aα2

2 · · ·aαs
s v, with

α1,α2, . . . ,αs ∈ Z. Notice, however, that since the action is unipotent, there exists a
ds ∈ N such that (as− idV )

ds v = 0, so that in fact ads
s v belongs to the K-linear span

of the vectors ai
sv, i = 0,1, . . . ,ds−1. Also from

(a−1
s − idV )

ds v = a−ds
s ads

s (a−1
s − idV )

dsv

= a−ds
s (idV −as)

dsv

= ±a−ds
s (as− idV )

dsv

= 0
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we deduce that a−ds
s v belongs to the K-span of the vectors a−i

s v, i = 0,1, . . . ,ds−1.
Altogether, this implies that KGv equals the K-linear span of the vectors
aα1

1 aα2
2 · · ·aαs

s v with α1,α2, . . . ,αs ∈ Z satisfying |αs|< ds.
Consider the finite set Ws = {a−ds+1

s v,a−ds+2
s v, . . . ,a−1

s v,v,asv,a2
s v, . . . ,ads−1

s v} ⊆
V . Again by unipotency of the G-action, there exists a ds−1 ∈ N such that (a±1

s−1−
idV )

ds−1w = 0 for all w ∈Ws. As a consequence, the G-module KGv equals the K-
linear span of the vectors aα1

1 aα2
2 · · ·aαs

s v with α1,α2, . . . ,αs ∈ Z satisfying |αs−1|<
ds−1 and |αs|< ds.

Continuing in this way, we can find d1,d2, . . . ,ds ∈ N such that the G-module
KGv equals the K-linear span of the vectors aα1

1 aα2
2 · · ·aαs

s v with α1,α2, . . . ,αs ∈ Z
satisfying |αi| < di for i = 1,2, . . . ,s. As all these vectors constitute a finite set, we
deduce that KGv is finite-dimensional. �

Hence, to finish our proof, we only need to show that we can find a set of gener-
ators of G that act unipotently and nilpotently on our module V .

In the following, by the expression poly(x1,x2, . . . ,xn) we mean a (not explicitly
determined) polynomial in the n variables x1,x2, . . . ,xn with coefficients in Z.

Lemma 2.31. With the notation we introduced after Corollary 2.29 (cf. (2.14)), we
have

(aα1
1 aα2

2 · · ·a
αs
s ) · (aβ1

1 aβ2
2 · · ·a

βs
s ) = a f1

1 a f2
2 · · ·a

fs
s , (2.15)

where
fi = αi +βi +poly(α1, . . . ,αi−1,β1, . . . ,βi−1).

In particular, for all m≥ 1,

(aα1
1 aα2

2 · · ·a
αs
s )m = ah1

1 ah2
2 · · ·a

hs
s (2.16)

where
hi = mαi +poly(α1, . . . ,αi−1).

Proof. In order to prove (2.15), we use a triple induction on j (with 1 ≤ j ≤ s) to
simultaneously prove that, for all i = 1,2, . . . , j−1,

a−αi
i a

α j
j aαi

i = a
α j
j [a

α j
j ,aαi

i ] = a
α j
j a

z j+1
j+1 a

z j+2
j+2 · · ·a

zs
s (2.17)

where
zt = poly(αi;α j)

for t = j+1, j+2, . . . ,s,

(a
α j
j a

α j+1
j+1 · · ·a

αs
s ) · (aβ j

j a
β j+1
j+1 · · ·a

βs
s ) = a

f j
j a

f j+1
j+1 · · ·a

fs
s , (2.18)

where, for t = j, j+1, . . . ,s,

ft = αt +βt +poly(α j,α j+1, . . . ,αt−1;β j,β j+1, . . . ,βt−1),

and, for all i = 1,2, . . . , j−1,

a−αi
i (a

α j
j a

α j+1
j+1 · · ·a

αs
s )aαi

i = a
g j
j a

g j+1
j+1 · · ·a

gs
s , (2.19)
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where, for t = j, j+1, . . . ,s,

gt = αt +poly(αi;α j,α j+1, . . . ,αt−1).

The base of the induction for (2.18) is

aαs
s ·aβs

s = aαs+βs
s

so that fs = αs +βs.
Similarly, the base of the induction for both (2.17) and (2.19) is

a−αi
i aαs

s aαi
i = aαs

s

(recall that as is in the center of G), so that gs = αs.
Assume now that (2.17), (2.18) and (2.19) hold, and let us show that, for all

i = 1,2, . . . , j−2,

a−αi
i a

α j−1
j−1 aαi

i = a
α j−1
j−1 [a

α j−1
j−1 ,aαi

i ] = a
α j−1
j−1 a

z′j
j a

z′j+1
j+1 · · ·a

z′s
s (2.20)

where
z′t = poly(αi;α j−1)

for t = j, j+1, . . . ,s,

(a
α j−1
j−1 a

α j
j · · ·a

αs
s ) · (aβ j−1

j−1 a
β j
j · · ·a

βs
s ) = a

f ′j−1
j−1 a

f ′j+1
j · · ·a f ′s

s , (2.21)

where, for t = j−1, j, . . . ,s,

f ′t = αt +βt +poly(α j−1,α j, . . . ,αt−1;β j−1,β j, . . . ,βt−1),

and,

a−αi
i (a

α j−1
j−1 a

α j
j · · ·a

αs
s )aαi

i = a
g′j−1
j−1 a

g′j
j · · ·a

g′s
s , (2.22)

where, for t = j−1, j, . . . ,s,

g′t = αt +poly(αi;α j−1,α j, . . . ,αt−1).

For 1≤ i < j ≤ s, and ε,δ ∈ {−1,1}, since [aε
j ,a

δ
i ] ∈ N j+1, we fix the notation

[aε
j ,a

δ
i ] = a

k j+1
j+1 a

k j+2
j+2 · · ·a

ks
s , (2.23)

where kt = kt(i, j,ε,δ ) ∈ Z for t = j+1, j+2, . . . ,s.
To prove (2.20), we use induction on |αi|+ |α j−1|. The base of the induction is

simply (2.23), where |αi|+ |α j−1|= 2.
Suppose that |αi|+ |α j−1| ≥ 3. To fix our ideas, we assume that α j−1 ≥ 2 (the

other cases are dealt with in a similar way). Using Lemma 2.1.(2), we have
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a−αi
i a

α j−1
j−1 aαi

i = a
α j−1
j−1 [a

α j−1
j−1 ,aαi

i ]

= a
α j−1
j−1 [a

α j−1−1
j−1 ,aαi

i ]a j−1 [a j−1,a
αi
i ].

Using induction for [a
α j−1−1
j−1 ,aαi

i ] and [a j−1,a
αi
i ], we have

[a
α j−1−1
j−1 ,aαi

i ] = a
p j
j a

p j+1
j+1 · · ·a

ps
s and [a j−1,a

αi
i ] = a

q j
j a

q j+1
j+1 · · ·a

qs
s ,

where pt = poly(αi;α j−1 − 1) = poly(αi;α j−1) and qt = poly(αi) for t = j, j +
1, . . . ,s.

By (2.19),

[a
α j−1−1
j−1 ,aαi

i ]a j−1 = (a
p j
j a

p j+1
j+1 · · ·a

ps
s )a j−1 = a

g′j
j a

g′j+1
j+1 · · ·a

g′s
s

where
g′t = pt +poly(α j−1; p j, p j−1, . . . , pt−1) = poly(αi,α j−1).

Using (2.18),

[a
α j−1−1
j−1 ,aαi

i ]a j−1 [a j−1,a
αi
i ] =

(
a

g′j
j a

g′j+1
j+1 · · ·a

g′s
s

)(
a

q j
j a

q j+1
j+1 · · ·a

qs
s

)
= a

f ′′j
j a

f ′′j+1
j+1 · · ·a

f ′′s
s ,

where

f ′′t = g′t +qt +poly(g′j,g
′
j+1, . . . ,g

′
t−1;q j,q j+1, . . . ,qt−1) = poly(αi,α j−1).

Setting z′t := f ′′t for t = j, j+1, . . . ,s, we finally have

a−αi
i a

α j−1
j−1 aαi

i = a
α j−1
j−1 a

f ′′j
j a

f ′′j+1
j+1 · · ·a

f ′′s
s = a

α j−1
j−1 a

z′j
j a

z′j+1
j+1 · · ·a

z′s
s ,

where z′t = poly(αi;α j−i) for t = j, j+1, . . . ,s. This proves (2.20).
In order to prove (2.21), we have

(a
α j−1
j−1 a

α j
j · · ·a

αs
s ) · (aβ j−1

j−1 a
β j
j · · ·a

βs
s )

= a
α j−1
j−1 a

β j−1
j−1

(
a
−β j−1
j−1 (a

α j
j a

α j+1
j+1 · · ·a

αs
s )a

β j−1
j−1

)
· (aβ j

j a
β j+1
j+1 · · ·a

βs
s )

=∗ a
α j−1+β j−1
j−1 ·

(
a

g j
j a

g j+1
j+1 · · ·a

gs
s

)
· (aβ j

j a
β j+1
j+1 · · ·a

βs
s )

=∗∗ a
α j−1+β j−1
j−1 · (a

f ′j
j a

f ′j+1
j+1 · · ·a

f ′s
s ),

where in =∗ (resp. =∗∗) we use the inductive step (2.19) (resp. (2.18)), and, for
t = j−1, j, . . . ,s,

gt = αt +poly(β j−1;α j,α j+1, . . . ,αt−1), (2.24)
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and

f ′t = gt +βt +poly(g j,g j+1, . . . ,gt−1;β j,β j+1, . . . ,βt−1)

(by (2.24)) = αt +βt +poly(α j−1,α j, . . . ,αt−1;β j−1,β j, . . . ,βt−1).

This shows (2.21).
We now prove (2.22). We have

a−αi
i (a

α j−1
j−1 a

α j
j · · ·a

αs
s )aαi

i = a−αi
i a

α j−1
j−1 aαi

i ·a
−αi
i (a

α j
j a

α j+1
j+1 · · ·a

αs
s )aαi

i

=∗ (a
α j−1
j−1 a

z j
j a

z j+1
j+1 · · ·a

zs
s ) · (a

g j
j a

g j+1
j+1 · · ·a

gs
s )

=∗∗ a
α j−1
j−1 a

f ′j
j a

f ′j+1
j+1 · · ·a

f ′s
s ,

where =∗ follows from (2.17) and the inductive step (2.19), =∗∗ follows from the
inductive step (2.18), and, for t = j, j+1, . . . ,s,

f ′t = zt +gt +poly(g j,g j+1, . . . ,gt−1) = αt +poly(αi;α j−1, . . . ,αt−1).

This proves (2.22) and hence (2.15).
Finally, in order to prove (2.16) we proceed by induction on m. For m = 1 we

have hi = αi for i = 1,2, . . . ,s, and the base of the induction is established. Suppose
that (2.16) holds. Then

(aα1
1 aα2

2 · · ·a
αs
s )m+1 = (aα1

1 aα2
2 · · ·a

αs
s ) · (aα1

1 aα2
2 · · ·a

αs
s )m

=∗ (a
α1
1 aα2

2 · · ·a
αs
s ) · (ah1

1 ah2
2 · · ·a

hs
s )

=∗∗ (a
f1
1 a f2

2 · · ·a
fs
s )

where, in =∗ we used the inductive step and in =∗∗ we applied (2.15), and

fi = αi +hi +poly(α1,α2 . . . ,αi−1,h1,h2, . . . ,hi−1)

= αi +mαi +poly(α1,α2 . . . ,αi−1,h1,h2, . . . ,hi−1)

= (m+1)αi +poly(α1,α2 . . . ,αi−1).

This shows (2.16) and completes the proof. �

End of the proof of Malcev’s theorem (Theorem 2.20). We are now in a position to
complete the proof of Malcev’s theorem. Recall that t1, t2 . . . , ts ∈ F are defined by
ti(x) = γi, for every x = aη1

1 aη2
2 · · ·a

ηs
s ∈ G, so that

x = at1(x)
1 at2(x)

2 · · ·ats(x)
s .

Fix g = aα1
1 aα2

2 · · ·aαs
s ∈ G. From (2.15) we then deduce

gti(x) = ti(gx)

= ti(x)+αi +poly(α1,α2 . . . ,αi−1; t1(x), t2(x), . . . , ti−1(x))

= ti(x)+poly(α1,α2 . . . ,αi−1,αi; t1(x), t2(x), . . . , ti−1(x)).
(2.25)
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Let t = tβ1
1 tβ2

2 · · · t
βs
s ∈ F with βi ≥ 0 for all i = 1,2, . . . ,s. From (2.25) we deduce

that

gtβi
i = tβi

i +
βi−1

∑
k=0

poly(α1,α2 . . . ,αi−1,αi; t1, t2, . . . , ti−1)tk
i (2.26)

We equip the set of all s-tuples (β1,β2, . . . ,βs) ∈ Ns with the right-lexicographic
order. This is defined by induction on s by setting (η1,η2, . . . ,ηs)< (β1,β2, . . . ,βs)
if either ηs < βs or ηs = βs and (η1,η2, . . . ,ηs−1)< (β1,β2, . . . ,βs−1). From (2.26)
we deduce

gt = g(tβ1
1 tβ2

2 · · · t
βs
s )

= (gt1)β1(gt2)β2 · · ·(gts)βs

= tβ1
1 tβ2

2 · · · t
βs
s + ∑

η1,η2,...,ηs

cη1,η2,...,ηst
η1
1 tη2

2 · · · t
ηs
s ,

equivalently
(g− idF)t = ∑

η1,η2,...,ηs

cη1,η2,...,ηst
η1
1 tη2

2 · · · t
ηs
s ,

where cη1,η2,...,ηs ∈Q and the sum runs over all s-tuples

(η1,η2, . . . ,ηs)< (β1,β2, . . . ,βs).

Since there are at most n :=maxi(βi)
s s-tuples (η1,η2, . . . ,ηs) preceding the tu-

ple (β1,β2, . . . ,βs) in the given order, it is clear that

(g− idF)
nt = 0.

This shows that G acts unipotently on the G-module V =QGt1 + · · ·+QGts (which
is a submodule of theQ-span of the monomials tα1

1 tα2
2 · · · tαs

s , αi≥ 0). Note that since
G is nilpotent, from Lemma 2.30 we deduce that V is finite-dimensional.

By using Lemma 2.25 we can find a homomorphism G→UT(n,Q) (with respect
to some suitable basis in V ), where n :=dimQV . It only remains to check that this
map is injective. Suppose that g ∈ G is mapped into the identity In. Then ti(gx) =
ti(x) for all x ∈ G and i = 1,2, . . . ,s. But this in turn implies gx = x so that g = 1G.

It follows that this map G ↪→ UT(n,Q) in an injection, completing the proof of
Malcev’s theorem. �

2.7 Finitely Generated Nilpotent Groups with Torsion

We now study the torsion of finitely generated nilpotent groups.
The following lemma does not hold, in general, for non-nilpotent groups (think

about the commutator subgroup of the free group F2 of rank 2).

Lemma 2.32. Every subgroup of a finitely generated nilpotent group is finitely gen-
erated.
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Proof. Let G be a finitely generated nilpotent group and let G = N1 ≥ N2 ≥ ·· · ≥
Ns ≥ Ns+1 = {1G} be a normal series with Ni/Ni+1 cyclic for i = 1,2, . . . ,s (cf.
Corollary 2.29). Let us show that every subgroup H ≤ G is generated by at most
s elements. We proceed by induction on s. If s = 1 then G itself is cyclic and the
statement is obvious. Suppose the statement holds for all groups with a normal series
with cyclic quotients and of length ≤ s− 1. As the group G/N2 is cyclic, so is its
subgroup HN2/N2. The latter is isomorphic to H/(H∩N2), which is therefore cyclic
as well. On the other hand, H ∩N2 is a subgroup of N2 so that, by induction, it
is generated by at most s− 1 elements. It follows that H is generated by at most
1+(s−1) = s elements. �

Definition 2.33. We say that a class C of groups has the Burnside property if it is
closed under taking quotients and whenever a group G in C is generated by finitely
many torsion elements it is finite.

The following lemma, combined with Proposition 2.9, shows that the class of nilpo-
tent groups has the Burnside property.

Lemma 2.34. Let G be a nilpotent group. Suppose that G contains a finite generat-
ing subset consisting of torsion elements. Then G is finite.

Proof. Let X ⊆ G be a finite generating subset consisting of torsion elements, and
let (γi)

c
i=1 be the lower central series of G. We prove the statement by induction

on the nilpotency class c of G. If c = 1 then G is abelian and G = ∑x∈X 〈x〉. Since
the elements x ∈ X are torsion, we have |〈x〉| < ∞ and therefore G is finite (in fact
|G| ≤∏x∈X |〈x〉|).

Suppose that the statement holds for all finitely generated nilpotent groups of
nilpotency class ≤ c− 1 and let G have nilpotency class c. Consider the abelian
subgroup γc−1. It follows from Proposition 2.28 that γc−1 is generated by the com-
mutators [x1,x2, . . . ,xc−1], with xi ∈ X (in particular, it is finitely generated (cf. the
previous lemma)). It follows from Lemma 2.26 that the map

γc−2/γc−1× γ1/γ2→ γc−1/γc ∼= γc−1

is bilinear, so that for all k ∈ N,

[x1,x2, . . . ,xc−2,xc−1]
k = [x1,x2, . . . ,xc−2,xk

c−1].

This shows that the commutators [x1,x2, . . . ,xc−1] are torsion elements, so that,
by the first part of the proof, γc−1 is finite. The quotient group G/γc−1 is nilpotent
of class≤ c−1 and it is generated by the torsion elements xγc−1, with x ∈ X . By the
inductive hypothesis, it is finite. It follows that G is finite as well. �

Remark 2.35. The previous result is not true for non-nilpotent groups. For instance,
the modular group SL(2,Z)/{±I2} is isomorphic to the free product (Z/2Z) ∗
(Z/3Z), i.e. it is generated by an element of order 2 and one of order 3, without
any further relations between them. Therefore it is infinite.

Proposition 2.36. Let G be a nilpotent group and suppose that a,b ∈ G are torsion
elements. Then ab is torsion.
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Proof. The nilpotent subgroup 〈a,b〉 ≤G is finite by the previous lemma. It follows
that its subgroup 〈ab〉 is finite as well. �

Recalling that the order of a group element is invariant under conjugation, from
the above proposition one immediately deduces:

Corollary 2.37. Let G be a nilpotent group. Then Gtor :={a ∈ G : a is torsion} is a
normal subgroup of G. Moreover, if G is finitely generated, then Gtor is finite. �

Definition 2.38. Let P be a property of groups. One says that a group G is virtually
P if there exists a subgroup H ≤ G with [G : H]< ∞ such that H satisfies P .

We will give two proofs of the following lemma, which is due to Poincaré.

Lemma 2.39 (Poincaré). Let G be an arbitrary group. Let H ≤G with [G : H]< ∞.
Then there exists an N ≤ H with [G : N]< ∞ and NEG.

First proof. Let T be a set of representatives for the left cosets of H in G so that
G = tt∈T Ht. Thus, for every g ∈ G there exist unique elements h ∈ H and t ∈ T
such that g = ht (and therefore g−1 = t−1h−1). In particular,

Hg = g−1Hg = t−1h−1Hht = t−1Ht = Ht .

Hence the subgroup N :=
⋂

g∈G Hg ≤ G equals
⋂

t∈T Ht , it is clearly normal and is
contained in H. Now if K,L ≤ G, then [G : K ∩L] ≤ [G : K][G : L] (exercise). This
shows that [G : N]≤ [G : H][G:H]. �

Second proof. For every x ∈G, the map ϕ(x) : G/H→G/H given by Hg 7→Hgx is
a permutation of cosets. Moreover, the map x 7→ ϕ(x) is a homomorphism ϕ : G→
Sym(G/H) (exercise). Then the subgroup N :=ker(ϕ)≤G is normal and contained
in H since it fixes the coset H. Finally, we have [G : N] = |ϕ(G)| ≤ |Sym(G/H)|=
[G : H]! < ∞. �

Remark 2.40. The second proof yields a better upper bound on the index of N in G.

The following lemma will be useful.

Lemma 2.41. Let C be a class of groups with the Burnside property. Let G in C
be finitely generated and let H ≤ G be a subgroup of finite index [G : H]< ∞. Then
there exists a characteristic subgroup K ≤ G of finite index in G which is contained
in H.

Proof. By the Poincaré Lemma we know that there exists a normal subgroup N of
G of finite index m := [G : N] which is contained in H. Let π : G→ G/N denote
the canonical homomorphism. For every g ∈ G we have π(gm) = π(g)m = 1G/N ;
equivalently, gm ∈ N. Consider the subgroup K of G generated by the set {gm : g ∈
G}. Clearly K ≤ N ≤H, and K is characteristic. By the assumption on C , G/K is in
C . Moreover, it is finitely generated and torsion (xm = 1G/K for all x∈G/K), hence,
again by the assumption on C , we have that [G : K] = |G/K| is finite. �
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Lemma 2.42. Let G be a finitely generated nilpotent group. Then G is virtually
torsion-free. In fact one can find a characteristic subgroup N ≤ G of finite index in
G and such that N is torsion-free.

Proof. Let G=N1≥ ·· · ≥Ns≥Ns+1 = {1G} be a normal series with Ni/Ni+1 cyclic
generated by the element aiNi+1 for i = 1,2, . . . ,s (cf. Corollary 2.29). We proceed
by induction on s. If s = 1 then G is cyclic and the statement is obvious.

Suppose that we have proved the statement for all finitely generated nilpotent
groups with such a normal series of length≤ s−1. Recall that, by Lemma 2.32, in a
finitely generated nilpotent group, all subgroups are finitely generated. By induction,
we can find a subgroup H of finite index in N2, such that H is torsion-free and, in
addition, H is characteristic in N2. We distinguish two cases:

Case 1: if the index [G : N2] of N2 in G is finite, then the index [G : H] of H in G
is also finite. By Lemma 2.41 we can find a subgroup N of H which is characteristic
and of finite index in G. Since N is contained in H, it is clearly torsion-free.

Case 2: otherwise, G/N2 is isomorphic to an infinite cyclic group. Recall that
G/N2 is generated by a1N2, where a1 ∈ G\N2.

Let K be the subgroup generated by a1 and H in G. Notice that K = 〈a1,H〉 =
ti∈Zai

1H. In fact, Ha1 = a1(a−1
1 Ha1) = a1H, since H is characteristic in N2, and

the conjugation by a1 induces an automorphism of N2, because it is normal in G.
(Notice that the normality of H in N2 would not suffice, since the above mentioned
automorphism is not an inner automorphism of N2, as a1 /∈ N2).

We have G = ∪i∈Zai
1N2 = ∪i∈Z ∪t∈T ai

1Ht where T is a (finite) set of represen-
tatives for the left cosets of H in N2. It follows that G =

⋃
t∈T Kt, so in particular K

has finite index [G : K]≤ |T | in G.
Now, for every h∈H and i∈Z, the element ai

1h cannot be torsion. Indeed, on the
one hand we cannot have i = 0 since H was torsion-free. On the other hand, if i 6= 0,
from a−1

1 Ha1 =H, we would find an element h′ ∈H such that 1G = (ai
1h)m = ai·m

1 h′.
But this would give aim

1 = 1 and h′ = 1. The first equality contradicts the fact that
G/N2 = 〈a1N2〉 is infinite cyclic. It follows that K is also torsion-free.

By Lemma 2.41, we can find a subgroup N in K which is both characteristic and
of finite index in G. Since N is contained in K, it is also torsion-free. �

The proof of the following lemma is left as an exercise.

Lemma 2.43. Let G be a group and let H be a finite index subgroup of G. If H
embeds into GL(m,Z) for some m≥ 1, then G embeds into GL(n,Z) for some n≥m.

Corollary 2.44 (Linearity of finitely-generated nilpotent groups). Every finitely
generated nilpotent group is linear; in fact, it is embeddable into GL(m,Z) for some
m≥ 1.

Proof. By Lemma 2.43 any finite extension of a subgroup of UT(n,Z) can be em-
bedded into GL(m,Z) for some m ≥ n. Then the statement follows from Lemma
2.42 combined with Malcev’s theorem (Theorem 2.20). �
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2.8 Notes

The identities in Lemma 2.1 are named after Philip Hall. Formula (5) therein, called
the Hall–Witt identity, is named also after Ernst Witt.

The term “nilpotent” was coined by Benjamin Peirce in the context of his work
on the classification of algebras: given a ring R, an element x ∈ R is called nilpotent
if there exists some positive integer n (in which case the minimal one is called the
nilpotency degree of x) such that xn = 0.

Nilpotent groups are then given this name because the “adjoint action” of any
element is nilpotent: for a nilpotent group G of nilpotency class n and any el-
ement g ∈ G, the map adg ∈ End(G) defined by setting adg(x) :=[g,x] (where
[g,x] :=g−1x−1gx is the commutator of g and x) is nilpotent. The above property
is not, however, equivalent to nilpotency: groups for which the adjoint maps adg,
g ∈ G, are nilpotent of degree n, are called n-Engel groups, and need not be nilpo-
tent in general. They are proven to be nilpotent if they have finite order, and are
conjectured to be nilpotent as long as they are finitely generated. Abelian groups are
precisely those groups for which the adjoint action is not just nilpotent but trivial
(1-Engel groups).

In the class of finite groups the following remarkable result holds: every finite p-
group is nilpotent, where a group G is called a p-group, p a prime number, provided
that the order of any element g∈G is a power of p. Conversely, every finite nilpotent
group is a direct product of p-groups (for various primes p).

In the setting of semigroups, a notion of nilpotency was introduced and developed
by Malcev in [229]. A semigroup is said to be nilpotent (of class ≤ n) provided
that it satisfies the verbal identity Xn = Yn, where the words Xn and Yn are defined
inductively as follows: X0 = x, Y0 = y, Xn = Xn−1unYn−1, and Yn = Yn−1unXn−1,
where x,y and u1,u2, . . . ,un are variables. A group is nilpotent as a semigroup in the
above sense if and only if it is nilpotent in the usual group-theoretical sense. Further
significant investigations in this direction are due to Gérard Lallement [208].

Recall that a Lie group G is a smooth manifold with a group structure whose
product and inverse operations are smooth.

A lattice in a Lie group G is a discrete subgroup G ⊆ G such that the quo-
tient G/G is compact. Every lattice in a simply-connected nilpotent Lie group G is
finitely generated, torsion-free, and nilpotent (cf. [286]).

Malcev proved that, conversely, if G is a finitely-generated torsion-free nilpotent
group, then G is isomorphic to a lattice of a simply-connected nilpotent Lie group.
Such a Lie group, denoted GR, is unique up to isomorphism and is called the Malcev
completion of G. We present a description of GR. Let (γi(G))i≥1 denote the lower
central series of G. Suppose that G is nilpotent of class c, so that γc(G) 6= {1G} and
γc+1(G) = {1G}. Note that even if G is torsion-free, it may happen that the quotients
γi(G)/γi+1(G) have torsion. The isolator of a subgroup H of G, denoted

√
H, is the

set √
H :={x ∈ G : xk ∈ H for some integer k ≥ 1}.

The sequence (Gi)i≥1, where Gi :=
√

γi(G) for i≥ 1, is a central series with Gi/Gi+1
(finitely generated and) torsion-free: there exist integers ki ≥ 1 such that Gi/Gi+1 ∼=
Zki for all i = 1,2, . . . ,c. The quantity k :=∑

c
i=1 ki is called the Hirsch number of G.
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As a consequence, we can find a generating subset

{a1,1,a1,2, . . . ,a1,k1 ,a2,1,a2,2, . . . ,a2,k2 , . . . ,ac,1,ac,2, . . . ,ac,kc} (2.27)

of G such that Gi is generated by ai,1,ai,2, . . . ,ai,ki and Gi+1 for all i = 1,2, . . . ,c.
One refers to (2.27) as a Malcev basis for G. An element g ∈ G can therefore be
uniquely expressed as a product

g = a
z1,1
1,1 a

z1,2
1,2 · · ·a

z1,k1
1,k1

a
z2,1
2,1 a

z2,2
2,2 · · ·a

z2,k2
2,k2
· · ·azc,1

c,1 a
zc,2
c,2 . . .a

zc,kc
c,kc

with zi, j ∈ Z, 1≤ j ≤ ki, 1≤ i≤ c. This way, we may identify g with the vector

z :=(z1,1,z1,2, . . . ,z1,k1 ,z2,1,z2,2, . . . ,z2,k2 , . . . ,zc,1,zc,2, . . . ,zc,kc) ∈ Z
k

and we shall write g = g(z). Malcev then proved the following (cf. Lemma 2.31):

(1) there exists a polynomial function µ : Zk×Zk→ Zk satisfying

g(x) ·g(y) = g(µ(x,y)) (2.28)

for all x,y ∈ Zk;
(2) for any homomorphism α : G→G there exists a polynomial function µα : Zk→

Zk satisfying
α(g(x)) = g(µα(x)) (2.29)

for all x ∈ Zk.

The polynomials µ and µα have rational coefficients (in fact in Z[ 1
p1
, 1

p2
, . . . , 1

ps
],

where p1, p2, . . . , ps are the primes appearing in the denominators of the coefficients
in the Hausdorff–Baker–Campbell formula) but attain integer values at Zk.

We may now define GQ (resp. GR) as the set of all formal products

g(q) :=a
q1,1
1,1 a

q1,2
1,2 · · ·a

q1,k1
1,k1

a
q2,1
2,1 a

q2,2
2,2 · · ·a

q2,k2
2,k2
· · ·aqc,1

c,1 a
qc,2
c,2 . . .a

qc,kc
c,kc

,

where q :=(q1,1,q1,2, . . . ,q1,k1 ,q2,1,q2,2, . . . ,q2,k2 , . . . ,qc,1,qc,2, . . . ,qc,kc)∈Qk (resp.
Rk), and equip it with the product defined by (2.28) in terms of the same poly-
nomials as for G. The group GQ (resp. GR) is called the Malcev radical (resp.
Malcev completion) of G and is torsion-free nilpotent. Moreover, GQ is radica-
ble, i.e. for every h ∈ GQ and integer k ≥ 1 there exists (unique, by torsion-
freeness) g ∈ GQ such that gk = h. Moreover, we have the following character-
ization: GQ = {g ∈ GR : ∃n ≥ 1 s.t. gn ∈ G}. Finally, GR is a nilpotent simply-
connected Lie group and G is a lattice.

We have the following:
Every homomorphism α : G→G extends to a unique homomorphism αQ : GQ→

GQ (resp. a continuous homomorphism αR : GR→GR) to the Malcev radical (resp.
Malcev completion) of G. In fact, such an extension is obtained by means of the same
polynomial function µα as in (2.29).

This was proved by Malcev for automorphisms and was extended by Peter Wal-
ters in [347, Lemma 1] to homomorphisms.
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Note that multiplication in a simply connected nilpotent Lie group G is defined
by polynomials whose coefficients are referred to as the structural coefficients of
G. If the structural coefficients are rational, then the Malcev completion may be
reversed and G admits a lattice (whose Malcev completion is isomorphic to G).

For example, the Malcev completion of Zn is Rn. Similarly, the Malcev comple-
tion of the group UT(n,Z) of upper unitriangular matrices with integer coefficients
is the group UT(n,R) of upper unitriangular matrices with real coefficients.

Lemma 2.31 as well as the theory of Malcev completion were presented by Mal-
cev in [225]. Theorem 2.20 was proved by Malcev in [226].

Lemma 2.23 was proved by Issai Schur in 1905 [304].

2.9 Exercises

Exercise 2.1. Let G be a group and H,K ≤G be two subgroups. Show that [H,K]⊆
K (resp. [H,K] ⊆ H) if K (resp. H) is normal in G and that [H,K] is normal (resp.
characteristic) in G if H and K are both normal (resp. characteristic) in G.

Exercise 2.2. Fill in the details of the proof of the three subgroups lemma (Lemma
2.2).

Exercise 2.3. Let (γk(G))k≥1 be the lower central series of a group G. Show that
γk(G) is characteristic (and therefore normal) in G and that γk+1(G)⊆ γk(G) for all
k.

Exercise 2.4. Show that the set UT(n,R) consisting of all n×n upper unitriangular
matrices with coefficients in a unital commutative ring R forms a group with the
usual multiplication of matrices.

Exercise 2.5. Show that the k-th term γk(UT(n,R)) of the lower central series of
UT(n,R) consists of all upper unitriangular matrices M = ‖xi j‖1≤i, j≤n satisfying
xi j = 0 provided 1 ≤ j− i ≤ k, and that, in particular, γn(UT(n,R)) = {In} but
γn−1(UT(n,R)) 6= {In}.

Exercise 2.6. Prove the identity (2.7), and fill in the details of Example 2.15.

Exercise 2.7. Prove the identity (2.8), and fill in the details of Example 2.16.

Exercise 2.8. Show that [B(2,Z),UT(2,Z)] = UT(2,2Z).

Exercise 2.9. Let G be a nilpotent group of class c with upper central series
(Zk(G))k≥0 and let H :=G/Z1(G). Show that Zi(H) = Zi+1(G)/Z1(G) for all i =
1,2, . . . ,c−1.

Exercise 2.10. Prove that the representation (2.14) is unique.

Exercise 2.11. Let K,L ≤ G be two subgroups of finite index in G. Show that
[G : K∩L]≤ [G : K][G : L].
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Exercise 2.12. For every x ∈ G, let ϕ(x) be the map G/H → G/H given by Hg 7→
Hgx. Show that the map x 7→ ϕ(x) is a homomorphism ϕ : G→ Sym(G/H).

Exercise 2.13. Let G be a finitely generated nilpotent group and let Gtor denote its
(finite normal) subgroup of torsion elements (cf. Corollary 2.37). Show that G/Gtor
is torsion-free (nilpotent).

Exercise 2.14. Show that any finite extension of a subgroup of UT(n,Z) is in
GL(m,Z), where m may be larger than n.



Chapter 3
Residual Finiteness and the Zassenhaus
Filtration

In this chapter we present an important construction which provides a link be-
tween groups and Lie rings. We define the Zassenhaus filtration and the notion of a
residually-p (resp. residually-finite, resp. Hopfian) group. In general, given a prop-
erty (or a class) P of groups, one says that a group G is residually-P provided the
following holds: given any element g ∈ G \ {1G}, there exists a group H satisfy-
ing property (or in the class) P and a group homomorphism ϕ : G→ H such that
g /∈ ker(ϕ). A group G is Hopfian if every surjective endomorphism ψ : G→ G is
injective (and therefore an automorphism). We then prove Malcev’s theorem (ev-
ery finitely generated residually finite group is Hopfian (Theorem 3.12)) and the
Malcev–Baumslag theorem (the automorphism group of a finitely generated residu-
ally finite group is itself residually finite (Theorem 3.13)). We then show that every
finitely generated free group F is residually finite and Hopfian as well as its auto-
morphism group Aut(F) (Corollary 3.15).

3.1 The Lie Ring of a Group

Definition 3.1. A Lie ring is a nonassociative ring with an anticommutative multi-
plication (the bracket) satisfying the Jacobi identity. In other words, a Lie ring is an
Abelian group L with an operation

L×L −→ L
(x,y) 7→ [x,y]

satisfying the following properties:

• [x+ y,z] = [x,z]+ [y,z] and [x,y+ z] = [x,y]+ [x,z] for all x,y,z ∈ L (bilinearity);
• [x, [y,z]]+ [y, [z,x]]+ [z, [x,y]] = 0 for all x,y,z ∈ L (Jacobi’s identity);
• [x,x] = 0 for all x ∈ L (anticommutativity).

The element [x,y] is called the commutator of x,y ∈ L.

Notice that the last axiom gives [x+ y,x+ y] = 0, which implies [x,y] = −[y,x]
for x,y ∈ L, whence the terminology for the corresponding axiom. Conversely, if L

49© Springer Nature Switzerland AG 2021
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is 2-divisible, that is, the map x 7→ x2 is a group isomorphism, then [x,x] =−[x,x]⇒
2[x,x] = 0⇒ [x,x] = 0, for all x ∈ L.

For instance, given an associative ring R, we can make it into a Lie ring by defin-
ing a bracket by setting [r,s] :=rs− sr for all r,s ∈ R (exercise).

Let G be a group with a central series G = G1 ≥G2 ≥ ·· · . Recall that, by defini-
tion, we have [Gi,G j]⊆ Gi+ j for all i, j ≥ 1.

We set
Li :=Gi/Gi+1 and L(G) :=

⊕
i≥1

Li.

Then L(G) is a Lie ring with addition supplied by extending linearly the group
operation in each homogeneous part

aiGi+1 +biGi+1 :=aibiGi+1

for all ai,bi ∈ Gi, and the bracket operation given by

[aiGi+1,b jG j+1] :=[ai,b j]Gi+ j+1

for all ai ∈ Gi and b j ∈ G j, i, j ≥ 1.
Note that the centrality of the series ensures that the commutator gives to the

bracket operation the appropriate Lie theoretic properties: the anticommutativity of
the bracket corresponds to the relation [a,a] = 1G for all a∈G, and Jacobi’s identity
corresponds to Hall’s identity (Lemma 2.1.(6)): in fact we can ignore the conjuga-
tions in Hall’s identity since if gi ∈ Gi and x ∈ G, then gx

i Gi+1 = gi[gi,x]Gi+1 =
giGi+1.

3.2 The Zassenhaus Filtration

Let G be a group and let K be a field. The group algebra of G with coefficients
in K is the free vector space KG over K with the algebra structure defined by the
multiplication in the group. In other words, KG is the set consisting of all finite
formal sums

∑
g∈G

αgg, αg ∈K,

with the operations defined as follows: the sum(
∑

g∈G
αgg

)
+

(
∑

g∈G
βgg

)
= ∑

g∈G
(αg +βg)g,

the multiplication by a scalar c ∈K

c

(
∑

g∈G
αgg

)
= ∑

g∈G
(cαg)g,
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and the product (
∑

g∈G
αgg

)(
∑

h∈G
βhh

)
= ∑

g,h,k∈G
k=gh

αgβhk.

It is an (exercise) to show that the associative and distributive properties of the above
operations are satisfied, making indeed KG into a K-algebra.

Definition 3.2. The augmentation (or fundamental) ideal of the group algebra KG
is the ideal ω = ω(KG)⊆KG defined by

ω :=

{
∑

g∈G
αgg : ∑

g∈G
αg = 0

}
.

In other words, denoting by ε : KG→K the augmentation map defined by

ε

(
∑

g∈G
αgg

)
:= ∑

g∈G
αg,

we have that ε is an algebra homomorphism and ω = ker(ε) (exercise). Note that
ω is therefore a two-sided ideal in KG. It is generated by the differences g− g′

of group elements. Furthermore it is also generated by the differences g− 1G for
g 6= 1G, which constitute a basis for ω as a vector space over K.

The proof of the following proposition is left as an exercise.

Proposition 3.3. Let G be a finite p-group (i.e., every element of G has order a
power of p), and let K be a field of characteristic p > 0 (for instance, K= Z/pZ).
Then ω(KG) is a nilpotent ideal.

Let now R be a ring with identity 1 :=1R and let I ⊆ R be an ideal. We denote by
G :=G(1+ I) the set consisting of all invertible elements of 1+ I ⊆ R.

Note that this is a group. Indeed, let 1+a∈G and 1+b∈G with a,b∈ I. We have
(1+a)(1+b) = 1+(a+b+ab) where a+b+ab ∈ I and the product of invertible
elements of R is invertible: this shows that G is closed under the multiplication.
Moreover, if x = (1+a)−1 ∈ R, then, setting b :=x−1 we have x = 1+b and from
1 = x(1+a) = (1+b)(1+a) = 1+(b+a+ba) we deduce that b+a+ba = 0, so
that b =−(a+ba) ∈ I. This shows that x ∈ 1+ I and therefore x ∈G. It follows that
G is also closed under taking inverses, and it is therefore a group.

Definition 3.4. For i = 1,2, . . . , we set

Gi :=G(1+ω(KG)i)∩G = {g ∈ G : g = 1 mod ω(KG)i}.

The series G = G1 ≥ G2 ≥ ·· · is called the Zassenhaus filtration.

Lemma 3.5. The series
(
G(1+ I j)

)
j≥1 is central.

Proof. We need to show that
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[G(1+ Ii),G(1+ I j)]⊆ G(1+ Ii+ j) for all i, j ≥ 1. (3.1)

Let i, j ≥ 1. Let x ∈ G(1+ Ii) and y ∈ G(1+ I j), say x = 1+ a with a ∈ Ii, and
y = 1+b with b ∈ I j. From

yx− xy = (1+b)(1+a)− (1+a)(1+b) = ba−ab ∈ Ii+ j

we deduce that

1− [x,y] = 1− x−1y−1xy = x−1y−1(yx− xy) ∈ Ii+ j.

This proves (3.1). �

Remark 3.6. Let K be a field of characteristic p > 0, and let G = G1 ≥ G2 ≥ ·· ·
be the Zassenhaus filtration. Consider the Lie ring L(G) =

⊕
i≥1 Li, where Li =

(Gi/Gi+1). Then for every i≥ 1 we have p ·Li = {0} in L(G).
Indeed, let i ≥ 1 and x ∈ Gi, say x = 1+ a with a ∈ ω(KG)i. Since K has char-

acteristic p, we have

xp = (1+a)p = 1+ap ∈ 1+ω(KG)pi ⊆ 1+ω(KG)i+1.

This shows that xp ∈ Gi+1.

3.3 Residually-p and Residually Finite Groups

Definition 3.7. Let G be an arbitrary group. We say that a family (ϕ j : G→ G j) j∈J
of group homomorphisms approximates G if

⋂
j∈J ker(ϕ j) = {1G} (equivalently, if

for every x,y ∈ G with x 6= y there exists a j ∈ J such that ϕ j(x) 6= ϕ j(y)).
We say that G is residually finite if there exists an approximating family of group

homomorphisms (ϕ j : G→ G j) j∈J with G j finite for all j ∈ J. Note that G is resid-
ually finite if and only if ⋂

HCG
[G:H]<∞

H = {1G}.

This is equivalent to saying that given any g ∈ G, g 6= 1G, there exists a finite group
H and a group homomorphism ϕ : G→ H such that ϕ(g) 6= 1H .

Given a prime p, we say that G is residually-p if there exists an approximating
family of group homomorphisms (ϕ j : G→ G j) j∈J with G j a finite p-group for all
j ∈ J. Note that G is residually-p if and only if⋂

HCG
[G:H]=pk, k∈N

H = {1G}.

This is equivalent to saying that given g∈G with g 6= 1G there exists a finite p-group
H and a group homomorphism ϕ : G→ H such that ϕ(g) 6= 1H .
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Remark 3.8. Note that every residually-p group is residually finite, but there exist
residually finite groups which are not residually-p. Consider, for instance the groups
G1 = Z/2Z×Z/3Z and G2 = Z×Z/2Z×Z/3Z. We have that G1 and G2 are both
residually finite (indeed G1 is even finite, while G2 is a finite product of residually
finite groups) but they are not residually-p for any prime p.

Proposition 3.9. Every subgroup of a residually finite (resp. residually-p) group is
residually finite (resp. residually-p).

Proof. Let G be a residually finite (resp. residually-p) group and let H be a sub-
group. Let h ∈ H such that h 6= 1G. As G is residually finite (resp. residually-p), we
can find a finite group (resp. a finite p-group) K and a homomorphism ϕ : G→ K
such that ϕ(h) 6= 1K . If ψ : H → K denotes the restriction of ϕ to H, we have
ψ(h) = ϕ(h) 6= 1K . Consequently, H is itself residually finite (resp. residually-p).�

Proposition 3.10. Let G be a finitely generated group, and let (Gi)i≥1 denote its
Zassenhaus filtration with respect to a field K of characteristic p > 0. Then G is
residually-p if and only if

⋂
i≥1 Gi = {1G}.

Proof. Suppose first that
⋂

i≥1 Gi = {1G}.
Let x∈G, and write x = 1+a, where a∈ω(KG). SinceK has characteristic p >

0, we have xpk
= (1+a)pk

= 1+apk
for all k≥ 1. Hence, given i≥ 1, for k such that

pk ≥ i, since apk ∈ω(KG)pk
, we have xpk

= 1+apk ∈ 1+ω(KG)pk ⊆ 1+ω(KG)i,
showing that G/Gi is a p-group.

Notice also that by Lemma 3.5 the Zassenhaus filtration (Gi)i≥1 is central, there-
fore the groups G/Gi are finitely generated nilpotent groups. Since they are also
torsion, by Lemma 2.34 the groups G/Gi are finite. Hence they are all finite p-
groups.

Then the fact that G is residually-p follows from the assumption
⋂

i≥1 Gi = {1G}
and the fact that each G/Gi is a finite p-group for every i (exercise).

Suppose now that G is residually-p, i.e.⋂
HCG

[G:H]=pk, k∈N

H = {1G}. (3.2)

Let H ⊆ G be a normal subgroup of index [G : H] = pk for some k ∈ N. Denote
by ϕ : G→ G/H =: G̃ the canonical homomorphism. Observe that ϕ extends to a
surjective homomorphism of K-algebras ϕ̃ :KG→KG̃.

Since G̃ is a finite p-group, by Proposition 3.3 ω(KG̃)∼= ω(K(G/H)) is a nilpo-
tent ideal of KG̃ (in fact ω(KG̃)pk

= {0}).
If g = 1G + x ∈ Gi, so that x ∈ ω(KG)i, then ϕ(g) = ϕ̃(1G + x) = 1G̃ + ϕ̃(x) ∈

1G̃ +ω(KG̃)i, since ϕ̃(ω(KG)i)⊆ ω(KG̃)i. It is now clear that Gi ⊆ kerϕ = H for
all i≥ pk. By (3.2), this shows that

⋂
i≥1 Gi = {1G}. �
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3.4 The Theorems of Malcev and G. Baumslag

Let G be a group. We denote by Aut(G) the automorphism group of G, that is, the
group of all bijective homomorphisms α : G→ G.

Definition 3.11. A group G is called Hopfian provided that every surjective homo-
morphism α : G→ G is injective (and therefore α ∈ Aut(G)).

Theorem 3.12 (Malcev). Every finitely generated residually finite group is Hop-
fian.

Proof. Let G be a finitely generated residually finite group and suppose that α : G→
G is a surjective homomorphism. We want to show that α is injective. Let g ∈ G \
{1G}. Since G is residually finite, we can find a finite group F and a homomorphism
ρ : G→ F such that

ρ(g) 6= 1F . (3.3)

Consider the set Hom(G,F) consisting of all group homomorphisms ϕ : G→ F and
let Ψ : Hom(G,F)→ Hom(G,F) denote the map defined by

Ψ(ϕ) :=ϕ ◦α (3.4)

for all ϕ ∈ Hom(G,F). Since α is surjective, it is an exercise to deduce that Ψ is
injective. Moreover, since G is finitely generated and F is finite, it is an exercise to
deduce that Hom(G,F) is finite. It follows that Ψ is surjective. As a consequence,
we can find ϕ0 ∈ Hom(G,F) such that ϕ0 ◦α =Ψ(ϕ0) equals ρ . Keeping in mind
(3.3), we thus have ϕ0(α(g)) = ρ(g) 6= 1F , so that, necessarily, α(g) 6= 1G. This
shows that ker(α) = {1G}. �

Theorem 3.13 (Malcev, G. Baumslag). Let G be a finitely generated residually
finite group. Then the automorphism group Aut(G) is residually finite.

Proof. Let α ∈Aut(G)\{idG} and choose g0 ∈G such that α(g0) 6= g0. Since G is
residually finite, we can find a finite group F and a homomorphism ρ ∈Hom(G,F)
such that ρ(α(g0)g−1

0 ) 6= 1F , equivalently,

α(g0)g−1
0 /∈ ker(ρ). (3.5)

Let
N :=

⋂
ϕ∈Hom(G,F)

ker(ϕ)EG. (3.6)

and observe (exercise) that since (cf. the proof of Theorem 3.12) Hom(G,F) is
finite, N has finite index in G. It follows that G/N and therefore Aut(G/N) are finite
groups. It is an exercise to show that if β ∈ Aut(G) then β (N) = N so that the map
Φ : Aut(G)→ Aut(G/N) given by

Φ(β )(gN) = β (g)N (3.7)

for all β ∈Aut(G) and g∈G, is well defined and a group homomorphism. By virtue
of (3.5) we have α(g0)g−1

0 /∈ N, equivalently,
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Φ(α)(g0N) = α(g0)N 6= g0N.

This shows that Φ(α) 6= idG/N = 1Aut(G/N). We deduce that Aut(G) is residually
finite. �

3.5 Residual Finiteness of Free Groups

Theorem 3.14. Let F be a finitely or countably generated free group. We denote by
(γi(F))i≥1 its lower central series, and by (Gi(F))i≥1 its Zassenhaus filtration. Then

(1)
⋂

i≥1 γi(F) = {1F},
(2)

⋂
i≥1 Gi(F) = {1F}.

In particular, F is residually finite.

Proof. We denote by Fm the free group on m free generators, for 2 ≤ m ≤ ∞. By
virtue of Proposition 3.9 it is sufficient to prove the statement for F = F2, since, by
Corollary 1.18, F2 contains a subgroup isomorphic to Fm for all 2≤ m≤ ∞.

As in Example 1.19 we can show that, for every prime p, the matrices
(

1 p
0 1

)
and

(
1 0
p 1

)
generate a group isomorphic to F2.

In particular, we have F2 ⊆ GL(2,Z), so KF2 ⊆ M2(Z) and, in fact, F2 =
G1(F2)⊆ G(1+ pM2(Z)). More generally, Gi(F2)⊆ G(1+M2(piZ)).

The groups G(1 + piM2(Z)) = G(1 + M2(piZ)) for i ≥ 1 are called the p-
congruence subgroups of GL(2,Z).

Now clearly
⋂

i≥1 G(1+ piM2(Z)) = {I2} and this shows (2).
It follows from Lemma 3.5 that (Gi(F2))i≥1 is a central series. Therefore, by

Lemma 2.7, γi(F2)⊆ Gi(F2) for all i≥ 1, and hence (1) follows from (2). �

From Theorem 3.14, Theorem 3.12, and Theorem 3.13 we immediately deduce
the following:

Corollary 3.15. Let F be a finitely generated free group. Then F is Hopfian and
Aut(F) is residually finite. �

3.6 Notes

The Jacobi identity in Definition 3.1 is named after Carl Gustav Jakob Jacobi. The
Zassenhaus filtration was introduced by Hans Zassenhaus in 1939 [360]. For a sur-
vey and applications of the Zassenhaus filtration see the recent survey by Misha
Ershov [106]. For a “canonical” text we refer to [93, Chapters 11 and 12].

Recall that a group G is linear (see Chapter 8) if there exist an integer n≥ 1 and
a field K such that G is isomorphic to a subgroup of GL(n,K). By a fundamental
theorem of Malcev [224], every finitely generated linear group is residually finite.
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Residual finiteness of free groups was firstly established by Friedrich W. Levi [213].
As F2, the free group of rank 2, and therefore all finitely generated free groups are
linear (cf. Example 1.19 based on Klein’s ping-pong lemma (Theorem 1.17)), one
may deduce residual finiteness of finitely generated free groups from their linearity
and the Malcev theorem we alluded to above. Besides the proof we present here (cf.
Theorem 3.14), we also refer to Exercise 3.10. There are other proofs of the residual
finiteness of free groups in [293] and [223].

The fact that every finitely generated residually finite group is Hopfian (Theorem
3.12) is due to Malcev [224]. The term Hopfian comes from Heinz Hopf who, in
1932, motivated by topological investigations, asked whether or not every finitely
generated group satisfies the Hopfian property.

It may be shown that the Baumslag–Solitar group BS(2,3) (named after Gilbert
Baumslag and Donald Solitar) which is given by the finite presentation 〈a,b :
ba2b−1 = a3〉 is not Hopfian (see [22], [223], [218]). As a consequence, the group
BS(2,3) is not residually finite by Theorem 3.12.

Residual finiteness of the automorphism group of a finitely generated residually
finite group (Theorem 3.13) was proved by G. Baumslag in [21]. (It was previously
shown by A.I. Malcev [224] that every finitely generated residually finite semigroup
has a residually finite monoid of endomorphisms.)

3.7 Exercises

Exercise 3.1. Given an associative ring R, define the bracket as [r,s] :=rs− sr for
all r,s ∈ R. Show that R with this bracket is a Lie ring.

Exercise 3.2. Prove Proposition 3.3.

Exercise 3.3. Let K be a field of characteristic p > 0, and let G = G1 ≥ g2 ≥ ·· · be
the Zassenhaus filtration. Then Gk is generated by the commutators [gi1 ,gi2 , . . . ,gis ]

p`

such that gi j ∈ G for all j, and s · p` ≥ k.

Exercise 3.4. Fill in the details of the proof of Proposition 3.10.

Exercise 3.5. Let G be a finitely generated group and F a finite group. Show that
the set Hom(G,F) of all group homomorphisms ϕ : G→ F is finite.

Exercise 3.6. Show that the map Ψ : Hom(G,F)→ Hom(G,F) given by (3.4) is
injective.

Exercise 3.7. Show that the normal subgroup NEG defined in (3.6) has finite index
in G.

Exercise 3.8. Let Φ : Aut(G)→ Aut(G/N) be the map given by (3.7).

(1) Show that Φ is well defined;
(2) show that Φ is a group homomorphism.
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Exercise 3.9. Show (without using Theorem 3.14) that the additive group Z is resid-
ually finite.

Exercise 3.10. (1) Show that the group GL(n,Z) is residually finite for every n≥ 1.
(2) Deduce that the free group on two generators is residually finite.

Exercise 3.11. Let P be a class (or property) of groups. Suppose that P is closed
under finite direct products (i.e., if G1,G2 satisfy P so does their direct product
G1×G2). Let G be a group. Show that G is residually-P if and only if given any
finite nonempty subset F ⊆G there exists a finite index normal subgroup N /G such
that the canonical quotient map ϕ : G→ G/N is injective on F (that is, ϕ( f1) =
ϕ( f2) implies f1 = f2, for all f1, f2 ∈ F).

Exercise 3.12. Let G be a group. Show that G is residually finite if and only if
the following condition is satisfied: for every nonempty finite subset F ⊆ G there
exists a finite index subgroup H ≤ H such that (hF)h∈H is a disjoint family (i.e.
hF ∩ kF =∅ for all distinct h,k ∈ H).

Exercise 3.13. A group G is termed divisible provided that for each g ∈G and each
integer n≥ 1 there exists an h ∈ G such that hn = g.

(1) Show that the additive groups Q,R, and C are divisible.
(2) Show that if G is a divisible group and F is a finite group then there are no

nontrivial group homomorphisms φ : G→ F .
(3) Deduce that any divisible group is not residually finite.

Exercise 3.14. Let G be a group and denote by N the intersection of all finite index
subgroups of G (this is called the residual subgroup of G).

(1) Show that N equals the intersection of all finite index normal subgroups of G.
(2) Show that N is a normal subgroup of G.
(3) Show that N is residually finite if and only if N = {1G}.

Exercise 3.15. Show that every virtually residually finite group is residually finite.

Exercise 3.16. (1) Let (Gi)i∈I be a family of residually finite groups. Show that the
direct product ∏i∈I Gi is residually finite.

(2) Deduce that if (Gi)i∈I is a family of residually finite groups, then the direct sum⊕
i∈I Gi is residually finite.

(3) Deduce that any finitely generated abelian group is residually finite.
(4) Show that a group G is residually finite if and only if there exists a family (Fi)i∈I

of finite groups such that G is isomorphic to a subgroup of ∏i∈I Fi.

Exercise 3.17. A projective systems of groups consists of the following data: (i) a
directed set I; (ii) a family (Gi)i∈I of groups; (iii) for each pair i, j ∈ I such that i≤ j,
a group homomorphism ϕi j : G j→ Gi satisfying the following conditions:

ϕii = IdGi (the identity map on Gi) for all i ∈ I

ϕi j ◦ϕ jk = ϕik for all i, j,k ∈ I such that i≤ j ≤ k.
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Given a projective system (Gi,ϕi j) of groups, set P = ∏i∈I Gi. The subgroup

G :={(gi) ∈ P : ϕi j(g j) = gi for all i, j ∈ I such that i≤ j}

is called the projective limit of the projective system (Gi,ϕi j).
A group G is called profinite if it is the limit of a projective system of finite

groups.

(1) Show that the projective limit of a projective system of residually finite groups
is itself residually finite.

(2) Deduce that every profinite group is residually finite.
(3) Let p be a prime number. Given integers 0≤ m≤ n let ϕnm : Z/pmZ→ Z/pnZ

denote the reduction modulo pn. Show that ((Z/pnZ),ϕnm) is a projective sys-
tem of groups (here I = N). The corresponding projective limit, denoted by Zp,
is called the group of p-adic integers.

Exercise 3.18. Let R be a ring and suppose that R is finitely generated as a Z-
module. Show that the group GL(n,R) is residually finite for all n≥ 1.

Exercise 3.19. (1) Show that an infinite simple group is not residually finite.
(2) Deduce that Sym0(N), the group of finitary permutations of N, is not residually

finite.
(3) Deduce that the subgroup G1 of Sym(Z) generated by the translation T : n 7→

n+ 1 and the transposition S = (0 1) is a finitely generated group which is not
residually finite.

Exercise 3.20. Show that if S is a finite simple group, then the wreath product
G :=S oZ is a Hopfian group.



Chapter 4
Solvable Groups

A group G is solvable if it admits a sequence of subgroups {1G} = G0 ≤ G1 ≤
·· · ≤ Gn = G such that Gi−1 is normal in Gi and the corresponding quotient group
Gi/Gi−1 is Abelian, for i= 1,2, . . . ,n. Equivalently, G is solvable if its derived series
G = G[0] ≥G[1] ≥G[2] ≥ ·· · , where G[i] is the commutator subgroup [G[i−1],G[i−1]],
i= 1,2, . . ., eventually reaches the trivial subgroup {1G} of G. Every nilpotent group
is solvable, but there are solvable groups that are not nilpotent. The groups UT(n,R)
and B(n,R) of upper unitriangular and upper triangular n× n matrices with coeffi-
cients in a commutative ring R (with 2 ∈ R invertible) are solvable: in Section 4.2
we compute their derived series. The main result of this chapter is Malcev’s theorem
(Theorem 4.16) stating that a finitely generated solvable linear group G≤GL(n,K),
with K an algebraically closed field, admits a finite index subgroup H ≤G which is
triangularizable, that is, there exists an x ∈ GL(n,K) such that x−1Hx≤ B(n,K).

4.1 Solvable Groups: Definitions and Relations with Nilpotent
Groups

Definition 4.1. Given a group G, its derived series (G[k])k≥0 is the descending series
recursively defined by setting

G[0] :=G

and
G[n+1] :=

[
G[n],G[n]

]
for n ≥ 0. G is said to be solvable if there exists an integer n such that G[n] = {1}.
The minimal such n is called the solvability class of G.

Notice that the groups G[i] are characteristic, and the quotients G[i]/G[i+1] are
abelian.

By induction on n it is easy to see that G[n]⊆ γ2n(G) (exercise), where (γk(G))k≥1
denotes the lower central series of G (cf. Definition 2.3). From this we deduce the
following:
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Proposition 4.2. Every nilpotent group is solvable. �

The converse is false:

Example 4.3. (a) Let R be a commutative ring such that 2 ∈ R is invertible, and let
n be a positive integer. Notice (see Section 2.4) that B(n,R)[1] = [B(n,R),B(n,R)]⊆
UT(n,R) and hence, by the previous proposition, B(n,R)[k]⊆ γ2k−1(UT(n,R)) for all
k≥ 1. Since UT(n,R) is nilpotent, it follows that B(n,R) is solvable. But (see again
Section 2.4) Zk(B(n,R)) = Z1(B(n,R)) = Z(B(n,R)) = R×In for all k ≥ 1, where
(Z(G)k)k≥0 denotes the upper central series of a group G (cf. Definition 2.10) and
R× is the group of the invertible elements of R. Hence B(n,R) is not nilpotent.

(b) For the symmetric group G :=S3 on 3 elements, G[1] = 〈(1,2,3)〉, hence G is
clearly solvable. But Z(G) = {1}, hence G is not nilpotent.

The proof of the following proposition is left as an exercise.

Proposition 4.4. The class of solvable groups is closed under the operations of tak-
ing subgroups, quotients, and extensions. In particular, given an exact sequence
{1}→ N→G→G/N→{1} of solvable groups, the length of the derived series of
G does not exceed the sum of the lengths of the derived series of N and of G/N.

One the other hand, the class of nilpotent groups is not closed under extensions
as the following examples show:

Example 4.5. (a) Let R be a commutative ring such that 2 ∈ R is invertible, and let
G :=B(n,R) and H :=UT(n,R)EG. We have that both H and G/H ∼= (R×)n are
nilpotent (note that G/H is even abelian), but we just saw that G is not (cf. Example
4.3.(a)).

(b) For G :=S3 the symmetric group on 3 elements and H :=〈(1,2,3)〉EG, both
H and G/H ∼= Z/2Z are nilpotent (note that Z/2Z is even abelian), but G is not (cf.
Example 4.3.(b)).

Definition 4.6. Let G and H be two groups. A (right) action of G on H is a map
ϕ : H×G→ H such that ϕ(·,g) ∈ Aut(H) for all g ∈ G and such that ϕ(h,g1g2) =
ϕ(ϕ(h,g1),g2) for all g1,g2 ∈ G and h ∈ H.

Another way of saying this is that the map g 7→ ϕ(·,g) is an antihomomorphism
from G to Aut(H).

Remark 4.7. Notice that we are requiring that the elements of the group G act as
automorphisms of the group H, and not simply as elements of Sym(H).

When the action ϕ is understood we simply write hg instead of ϕ(h,g) so that
we have hg1g2 = (hg1)g2 , for all g,g1,g2 ∈ G and h ∈ H.

As an example, if NEG is a normal subgroup of G, and H is any subgroup of G,
then for every f ∈ N and h ∈ H we have that ϕ( f ,h) := f h = h−1 f h belongs to N.
Then the map ϕ : N×H→ N is an action of H on N. It is called the H-conjugation
on N.
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Definition 4.8. If G acts on H we define a product on the set G×H by setting

(g1,h1) · (g2,h2) :=(g1g2,h
g2
1 h2), (4.1)

for all g1,g2 ∈ G and h1,h2 ∈ H. This product endows the set G×H with a group
structure (exercise). It is called the semi-direct product of G and H and it is denoted
by Gnϕ H (or simply by GnH, when the action ϕ is understood).

By identifying H and {1G}×H (resp. G and G×{1H}), (cf. Exercise 4.3.(c)),
we have that HEGnH and G ≤ GnH. However, in general, G is not normal in
GnH, as the following example shows.

Example 4.9. Let H :=〈(1,2,3)〉E S3 and G :=〈(1,2)〉 ≤ S3, and consider the G-
conjugation on H. Then GnH ∼= S3 via the isomorphism given by (1G,(1,2,3)) 7→
(1,2,3) and ((1,2),1H) 7→ (1,2). Here G is not normal in GnH.

In all the examples of solvable groups that we have seen so far, the commutator
subgroup was in fact nilpotent. To see that this need not be the case, we introduce
an important group-theoretical construction.

Definition 4.10. Let A and B be two groups. We set

Fun(B,A) :=AB = { f : B→ A}

and
fun(B,A) :={ f ∈ Fun(B,A) : supp( f ) is finite},

where supp( f ) :={b ∈ B : f (b) 6= 1A}. Notice that

Fun(B,A) = ∏
b∈B

A and fun(B,A) =
⊕
b∈B

A.

Then B acts on Fun(B,A) (resp. fun(B,A)) by f b(b′) := f (bb′), for all b,b′ ∈ B and
f ∈ Fun(B,A) (resp. f ∈ fun(B,A)).

We call
AwrB = A oB :=Bn fun(B,A)

the wreath product of A and B, and

AwrB = AoB :=BnFun(B,A)

the complete wreath product of A and B.

Proposition 4.11. Let G and H be two groups. Suppose that G and H are solvable
(resp. finitely generated) and that G acts on H. Then GnH is solvable (resp. finitely
generated).

Proof. This follows from Proposition 4.4 (resp. Proposition 1.12) after observing
that we have a short exact sequence {1}→ H→ GnH→ G→{1}. �

Corollary 4.12. Let A and B be two groups. Suppose that A and B are solvable.
Then AoB is solvable. In particular, A oB is also solvable.
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Proof. If A is solvable, then G :=Fun(B,A) = AB is solvable (exercise). Thus
AoB = BnG is solvable by Proposition 4.11. Since A oB is a subgroup of AoB, from
Proposition 4.4 and the first part of the proof we then deduce that A oB is solvable
as well. �

Proposition 4.13. Let A and B be two groups. Suppose that A and B are finitely
generated. Then A oB is also finitely generated.

Proof. Let SA ⊆ A and SB ⊆ B be two finite generating subsets for A and B. Con-
sider the maps fa ∈ fun(B,A), a∈ A, defined by fa(b) :=a if b = 1B and fa(b) :=1A

otherwise. Then given a ∈ A and b ∈ B the map ( fa)
b−1 ∈ fun(B,A) satisfies

( fa)
b−1

(b′) = fa(b−1b′) = a if b′ = b and ( fa)
b−1

(b′) = 1A otherwise. From this
we easily deduce that SB∪{ fa : a ∈ SA} is a (finite) generating subset of A oB. �

Remark 4.14. Note that, unless either B is finite (so that AoB=A oB) and A is finitely
generated, or A is trivial (so that AoB = B) and B is finitely generated, the group AoB
is never finitely generated.

The following proposition will be useful.

Proposition 4.15. Let A and B be two groups. If A is not nilpotent and B 6= {1B},
then fun(B,A)∩ [A oB,A oB] is not nilpotent. In particular, the commutator subgroup
[A oB,A oB] of A oB is not nilpotent either.

Proof. Let b ∈ B\{1B} and consider the map

ϕb : fun(B,A)∩ [A oB,A oB]→ A

given by ϕb( f ) = f (b) for all f ∈ fun(B,A)∩ [A oB,A oB]. Observe that ϕb is a ho-
momorphism.

Claim. The homomorphism ϕb is surjective.
For a ∈ A, let fa : B→ A be defined as fa(b) :=a (recall that b ∈ B \ {1B}),

fa(1B) :=a−1 and fa(x) :=1A for all other x ∈ B. We want to show that fa ∈
fun(B,A)∩ [A oB,A oB], so that ϕb( fa) = a, and we are done.

Clearly fa ∈ fun(B,A). To see that fa ∈ [A oB,A oB], consider the element f ∈
fun(B,A) defined by f (b) :=a, and f (x) :=1A for x 6= b. Then f b(x) = f (bx) equals
a if x = 1B, and f b(x) = 1A otherwise. Hence

[ f−1,b](x)= ( f b−1 f−1b)(x)= ( f ( f b)−1)(x)= f (x)( f b(x))−1 =


a if x = b;
a−1 if x = 1B;
1A otherwise.

So fa = [ f−1,b] ∈ [A oB,A oB], as we wanted. This completes the proof of the claim.

Since A is not nilpotent and the class of nilpotent groups is closed under
the operation of taking quotients (cf. Proposition 2.9), it follows that fun(B,A)∩
[A oB,A oB] is not nilpotent either. Moreover, since the class of nilpotent groups is
closed under the operation of taking subgroups (cf. Proposition 2.9), we deduce that
[A oB,A oB] is not nilpotent. �
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Let A be a finite solvable group which is not nilpotent. For example, A = B(n,K),
where K is a finite field of characteristic p 6= 2, or A = (Z/3Z) o (Z/2Z) (exercise).
Let B = Z/2Z. Then G = A oB is a solvable group whose commutator is not nilpo-
tent.

4.2 Two Important Examples: UT(n,R) and B(n,R)

In this section we continue our study of two important examples: the groups
UT(n,R) and B(n,R), where R is a commutative ring such that 2 ∈ R is invertible.
In particular, we compute their derived series.

Let (G[i])i≥0 be the derived series of UT(n,R). We want to show that G[i] = G2i

for all i≥ 1, where (G j) j≥1 is the lower central series of UT(n,R), that we computed
in Section 2.4.

We have already seen the inclusions G[i] ⊆G2i . We need to show the other inclu-
sions G[i] ⊇ G2i .

We introduce some notation: for j = 1,2, . . . ,n− 1 we denote by N(n)
j the n× n

matrix with 1 in the positions (i, i+ j) for i = 1,2, . . . ,n− j and 0 elsewhere. Then
observe that for m > a ≥ 1, [I(m)+N(m)

a , I(m)+E(m)
a+1,m] = I(m)+E(m)

1,m . In particular
for m ≥ 3 we can use this observation and block diagonal matrices with one block
equal to I(m)+N(m)

a or I(m)+E(m)
a+1,m and the others equal to 1, to show the inclusions

G[i] ⊇ G2i .
For example, in Section 2.4, we already used this observation in the case a = 1

and 3≤ m≤ n to show that G[1] ⊇ [UT(n,R),UT(n,R)] = G2.
This computation in particular shows that the class of solvability of UT(n,R) is

dlog2 ne, where for x ∈ R, dxe indicates the minimal integer ≥ x.

Notice that the derived series of B(n,R) is just the one of UT(n,R) shifted by
one, since we already observed that [B(n,R),B(n,R)] = UT(n,R). In particular, the
class of solvability of B(n,R) is dlog2 ne+1.

4.3 Statement of Malcev’s Theorem on Solvable Groups

The main goal of this chapter is to prove the following theorem, which is due to
Malcev.

Theorem 4.16 (Malcev). Let K be an algebraically closed field, and let G ⊆
GL(n,K) be a finitely generated solvable group. Then there exists an H EG of
finite index which is triangularizable, i.e. there exists an x ∈ GL(n,K) such that
x−1Hx⊆ B(n,K). Also, there exists a function f : N→ N such that [G : H]≤ f (n),
i.e. the index has a uniform upper bound which depends only on n, and not on G nor
on K.
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Remark 4.17. Notice that Malcev’s theorem is “tight”: let G be a finite solvable
group, with [G,G] not nilpotent (we saw examples of such groups in Section 4.1).
Let K be an arbitrary field and let n = |G|. Then G ↪→ GL(n,K): this is be-
cause the map g 7→ Rg, where Rg is the right multiplication by g ∈ G, from G to
GL(KG) ∼= GL(n,K) is an embedding. But its image is not triangularizable, since
[B(n,K),B(n,K)] is not nilpotent (cf. Example 4.3.(a)).

Notice that in the context of Lie algebras we have the following (cf. [180, Chapter
2, Theorem 4.1 and Corollary A]):

Theorem 4.18 (Lie). Let L ⊆ Mn(K) be a solvable Lie algebra of n× n matrices,
where K is an algebraically closed field of characteristic 0. Then there exists an
x ∈ GL(n,K) such that x−1Lx⊆ B(n,K).

Thus, for Lie algebras we can triangularize the whole algebra, but this fails to
hold in the group setting.

4.4 Wedderburn Theory

We recall some basic results of Wedderburn theory. For more details, the reader is
referred to [181, Chapter IX].

We start with the structural results.
Let K be a field and let A be a finite-dimensional associative K-algebra. One

says that A is nilpotent if there exists an n ≥ 1 such that An = AA · · ·A︸ ︷︷ ︸
n

= {0} (here

of course A is not unital).

Example 4.19. LetK be a field and let n≥ 2. A matrix ‖ai j‖n
i, j=1 in Mn(K) is called

strictly upper triangular provided that ai j = 0 for all i, j = 1,2, . . . ,n such that j≤ i.
Then the algebra A consisting of all strictly upper triangular n× n matrices with
coefficients in K is nilpotent.

The following theorem of Wedderburn is fundamental. A proof can be found in
[181, Chapter IX].

Recall that a division algebra D over a field K is a K-algebra such that every
nonzero element is invertible.

Theorem 4.20 (Wedderburn). Let A be a finite-dimensionalK-algebra. Then there
exists a nilpotent ideal NEA, r ∈ N, positive integers ni, and division algebras Di,
i = 1,2, . . . ,r, such that

A/N ∼= Mn1(D1)⊕Mn2(D2)⊕·· ·⊕Mnr(Dr).

Theorem 4.21. Let K be an algebraically closed field and let D be a finite-dimens-
ional division K-algebra. Then D =K.
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Proof. The inclusion K ⊆ D is obvious. To show the converse, let x ∈ D. Then
spanK{1,x,x2,x3, . . .} ⊆ D is finite-dimensional over K, so we may assume that it
equals spanK{1,x,x2,x3, . . . ,xr−1} for some r≥ 1. Therefore, we can find constants
a0,a1, . . . ,ar−1 ∈ K such that xr = a0 + a1x+ a2x2 + · · ·+ ar−1xr−1. Denoting by
P(t) the monic polynomial tr − ar−1tr−1− ·· · − a1t − a0 we thus have P(x) = 0.
Since K is algebraically closed, we can find α1,α2, . . . ,αr ∈ K such that P(t) =
(t−α1)(t−α2) · · ·(t−αr). Since D is a division algebra and therefore has no zero-
divisors, we deduce that x = α j ∈K for some 1≤ j≤ n. This shows that D⊆K and
the equality follows. �

As a consequence, in Wedderburn’s theorem (Theorem 4.20), if K is alge-
braically closed, then all the Di’s will be equal to K.

We now look at the module theory.

Definition 4.22. Let A be a unital associative algebra. Let V be a left A-module
(briefly, a module) which is unital, i.e. 1A · v = v for all v ∈ V . One says that V is
irreducible if it contains no nontrivial proper submodules. V is said to be completely
reducible if one of the following equivalent conditions (exercise) holds:

(1) for every submodule V ′ ≤ V there exists a submodule V ′′ ≤ V such that V =
V ′⊕V ′′ (every submodule is complemented);

(2) V is a direct sum of irreducible submodules;
(3) V is sum of irreducible submodules.

The proof of the following proposition is left as an exercise.

Proposition 4.23. Let A be a unital associative algebra. Then the following holds.

(1) A homomorphic image of a completely reducible module is completely reducible.
(2) A submodule of a completely reducible module is completely reducible.
(3) If V = ∑i Vi is a submodule and each of the Vi’s is completely reducible, then so

is V .

Definition 4.24. Let A be a finite-dimensional algebra over a field K. The radical
of A, denoted by N(A), is the maximal nilpotent ideal of A. If N(A) = {0}, then the
algebra A is said to be semisimple.

Remark 4.25. Observe that if N1 and N2 are two nilpotent ideals of A, then their sum
N :=N1+N2 (which is trivially an ideal) is nilpotent as well. For, if n1 (resp. n2) is a
positive integer such that (N1)

n1 = {0} (resp. (N2)
n2 = {0}), then for n :=n1+n2 we

have Nn = {0} by the binomial expansion identity. So, given any family (Ni)i∈I of
(nilpotent) ideals, there exist i1, i2, . . . , ik ∈ I such that ∑i∈I Ni = Ni1 +Ni2 + · · ·+Nik .

This shows that the radical N(A) equals the sum of all nilpotent ideals of A,
proving that it is well defined and unique.

We observe also that for ϕ ∈ Aut(A), we have N(A)ϕ = N(A).
Notice that by Wedderburn’s theorem (Theorem 4.20) a semisimple K-algebra

A is a direct sum of full matrix algebras over division algebras. Moreover, for K
algebraically closed, the division algebras are all equal to K.
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Example 4.26. Let D be a division algebra over a field K. Also let n be a positive
integer, and fix 1 ≤ i ≤ n. In Mn(D) we consider the subset M of matrices of the

form

 ∗

0
... 0
∗

, i.e. the set of all matrices whose nonzero entries only occur in the

i-th column. This is an irreducible module over Mn(D) (exercise).

The following proposition is easily derived from the previous example (exercise).

Proposition 4.27. Let A be a semisimple algebra. Then A, viewed as a module over
itself, is completely reducible.

Theorem 4.28. If A is a semisimple finite-dimensional algebra, then every A-module
is completely reducible.

Proof. Let V be an A-module. Clearly V = ∑06=v∈V Av. Now Av is a homomorphic
image of A, viewed as a module over itself, under the map a 7→ av for a ∈ A and
v ∈ V . It follows from Proposition 4.27 and Proposition 4.23 that V is completely
reducible. �

Proposition 4.29. Let V be a finite-dimensional vector space over K, and let A ⊆
EndK(V ) be a subalgebra. Then V as a left A-module is completely reducible if and
only if A is semisimple.

Proof. If A is semisimple, then it follows from Theorem 4.28 that V is completely
reducible.

Conversely, suppose that V is completely reducible. Consider the radical ideal
N :=N(A) and suppose, by contradiction, that it is not trivial. Let s ∈ N, s ≥ 2 be
such that NsV = {0} but Ns−1V 6= {0}. By hypothesis, the submodule NV of V is
complemented, i.e. there exists a submodule V ′ ≤ V such that V = NV ⊕V ′. Now
NV ′ ⊆ NV ∩V ′ = {0}. Therefore Ns−1V = Ns−1(NV ⊕V ′) = {0}, a contradiction.
Hence N = {0}, i.e. A is semisimple. �

We are interested in the following application of Wedderburn theory.

Theorem 4.30 (Clifford). Let G be a group and let H EG. Let V be a finite-
dimensional completely reducible module over G. Then V is a completely reducible
module over H.

Proof. Since we are interested only in the image ofKG in EndK(V ), we can assume
KG⊆ EndK(V ), so thatKG is semisimple by Proposition 4.29. Let N :=N(KH) be
the radical of the subalgebra KH of KG. To prove our statement, by Theorem 4.28,
it suffices to show that N is trivial.

Suppose by contradiction that N 6= {0}. Also let s be a positive integer such that
Ns = {0}. Observe that N is not an ideal of KG in general, but N′ :=(KG)N(KG)
is. Let us show that

G(NG)sG = GNGNG · · ·NG︸ ︷︷ ︸
N appears s times

= {0}. (4.2)
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This implies (N′)s = {0}, that is, N′ would be a nilpotent ideal ofKG, contradicting
the semisimplicity of KG. To prove (4.2) we show that G(NG)tG ⊆ GNt for all
t ∈N. We proceed by induction on t. For t = 0 we have G(NG)0G=G2⊆G=GN0.
Suppose that the statement is true for an integer t ≥ 0 and let us show it for t + 1.
We have

G(NG)t+1G = GN
(
G(NG)tG

)
⊆ GN(GNt)⊆ GNNt = GNt+1,

where the last inclusion comes from the normality of N: g1ng2 = g1g2ng2 ∈ GN for
all g1,g2 ∈G and n ∈ N. Taking t = s and recalling that Ns = {0}, we deduce (4.2).

�

4.5 Proof of Malcev’s Theorem on Solvable Groups

We are now ready to start the proof of Malcev’s theorem.
Suppose, by contradiction, that the theorem is not true. Let n be the minimal in-

teger for which there is a counterexample, namely a subgroup G⊆ GL(n,K) which
admits no triangularizable normal subgroup of finite index.

Claim. We can assume that G acts irreducibly on V :=Kn (we are identifying
GL(n,K) with GL(Kn)).

If G does not act irreducibly on V , consider a sequence of submodules

{0}=V0 ≤V1 ≤ ·· · ≤Vr =V,

such that G acts irreducibly on the quotients Vi+1/Vi for i = 0,1, . . . ,r− 1. Since
dimK(Vi+1/Vi) � n, for each i there exists a finite index normal subgroup HiEG
which is triangularizable. More precisely, we can find vectors vi+1

1 ,vi+1
2 , . . . ,vi+1

di+1
∈

Vi+1 such that di+1 = dim(Vi+1/Vi) and Vi+1 =⊕
di+1
j=1 (Kvi+1

j +Vi) satisfying, for all
h ∈ Hi 

hvi+1
1 ∈Kvi+1

1 +Vi

hvi+1
2 ∈Kvi+1

2 +Kvi+1
1 +Vi

...
hvi+1

di+1
∈Kvi+1

di+1
+Kvi+1

di+1−1 + · · ·+Kvi+1
1 +Vi.

But then the intersection H = ∩r
i=1Hi is a finite index normal subgroup of G,

which is triangularizable: the basis which triangularizes it is {vi+1
j : 1≤ j≤ di+1,0≤

i≤ r−1}. This finishes the proof of the claim.

Hence, from now on we assume that G acts irreducibly on V .
The following remark will be useful.

Remark 4.31. If H is any normal subgroup of finite index of G and G acts irre-
ducibly on V , then H also acts irreducibly on V .
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To see this, suppose by contradiction that this is not the case and let V ′ ≤ V
be a nontrivial proper H-submodule. Now V , being G-irreducible, is completely
reducible for G and therefore, by Clifford’s theorem (Theorem 4.30), it is completely
reducible for H as well. Thus, we can find an H-submodule V ′′ ≤ V such that V =
V ′⊕V ′′. Proceeding in this way, since dimK(V ′) and dimK(V ′′) are both strictly less
than dimK(V ), by applying the same argument in the proof of the above claim, we
get a (finite index normal) subgroup H̃ of H which acts irreducibly. But then H acts
irreducibly, since it contains H̃: a contradiction.

The key idea is in the following lemma.

Lemma 4.32. Let H EG, and suppose that [H,H] is virtually scalar. Then H is
virtually scalar.

Proof that Lemma 4.32 implies Malcev’s theorem (Theorem 4.16). Consider the
derived series G = G[0] ≥ G[1] ≥ ·· · ≥ G[r] ≥ {1G}. Let s be maximal such that
H :=G[s] is not virtually scalar. Then G[s+1] = [H,H] is virtually scalar, and the
lemma implies that H = G[s] is virtually scalar: a contradiction.

Hence G is virtually scalar (and therefore virtually triangularizable), but this con-
tradicts the way we chose G. �

Proof of Lemma 4.32. We start with the following observation.

Claim. H is virtually triangularizable.
Suppose not. Then H is again a counterexample with the same n as for G. Hence

we can take G :=H, and assume that [G,G] is virtually scalar. Let Z denote a scalar
subgroup of finite index in [G,G] and choose a set T of representatives for the right
cosets of Z in [G,G] so that [G,G] = ∪t∈T tZ.

Fix a ∈ [G,G]. For every g ∈ G we find unique elements t = t(a,g) ∈ T and
z = z(a,g) ∈ Z such that ag = a[a,g] = atz. For z ∈ Z, let µz ∈K\{0} be the unique
coefficient such that z = µz idV .

Since we are assuming K is algebraically closed, we can fix an eigenvalue λ ∈
K\{0} of a. Notice that for any g ∈ G the eigenvalues of a and ag are the same. So
we can find v ∈V (which depends on g) such that µz(at)v = (atz)v = agv = λv. So
λ/µz is an eigenvalue of at. But, since T is finite, as g varies in G we have finitely
many at’s, and hence finitely many possibilities for the quantity µz. Therefore z
assumes only finitely many values. It follows that aG :={ag | g ∈ G} is finite.

Since G acts on aG by conjugation, we have a homomorphism G→ Sym(aG),
whose kernel Pa is the centralizer of aG, and clearly [G : Pa] < ∞. It follows that
the centralizer P of [G,G] in G equals the intersection ∩t∈T Pt and therefore it is of
finite index in G, since T is finite. Moreover [P, [G,G]] = {1G}, which implies, in
particular, that [P, [P,P]] = {1G}. Hence P is nilpotent. Since G is finitely generated
and P is of finite index in G, P is also finitely generated. Therefore by Lemma 2.42
and Theorem 2.20, P is virtually triangularizable. It follows that G is also virtually
triangularizable. This ends the proof of the claim.

Let U denote a finite index normal subgroup of H which is triangularizable.
Consider [U,U ]EU EH EG. By three applications of Clifford’s theorem (The-
orem 4.30), since G acts irreducibly, and hence completely reducibly, we deduce
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that [U,U ] also acts completely reducibly. But, up to a change of basis, [U,U ] ⊆
UT(n,K). It is an exercise to show that any subgroup of UT(n,K) that acts com-
pletely reducibly must be trivial. Hence [U,U ] = {1G}, i.e. U is abelian. It follows
that H is virtually abelian.

We need another lemma.

Lemma 4.33. Let G be a group and suppose that it contains an abelian normal
subgroup H of finite index. Then G contains an abelian characteristic subgroup A
of finite index.

Proof. Let T be a set of representatives for the left cosets of H in G so that G =
tt∈T Ht and such that 1G ∈ T . Also let H̃ denote the (characteristic) subgroup of
G generated by {ϕ(H) : ϕ ∈ Aut(G)} and let us set A := Z(H̃). Note that A is
abelian. Moreover, since the center of a characteristic group is characteristic, A is
characteristic as well. It remains to show that it is of finite index in G. We first
claim that there exists a T ′ ⊆ T such that H̃ = tt ′∈T ′Ht ′. First observe that since
idG ∈Aut(G) gives idG(H) = H, we have H ≤ H̃. Observe that if ϕ(H)⊆H for all
ϕ ∈ Aut(G), then H̃ = H and we take T ′ = {1G}. On the other hand, if there exist
h′ ∈ H and ϕ ′ ∈ Aut(G) such that ϕ ′(h′) /∈ H, then there exist unique h ∈ H and
t ′ ∈ T \ {1G} such that ϕ ′(h′) = ht ′. Since h ∈ H ⊆ H̃, it follows that t ′ ∈ H̃ and
therefore Ht ′ ⊆ H̃. This proves the claim.

Note that |T ′| ≤ |T |= [G : H]< ∞.
It follows from the preceding argument that we can find ϕt ′ ∈ Aut(G), t ′ ∈ T ′

such that H̃ is generated by {ϕt ′(H) : t ′ ∈ T ′}. Now, since H is abelian, we have that
the subgroups ϕt ′(H) are abelian for all t ′ ∈ T ′. As a consequence,

⋂
t ′∈T ′ ϕt ′(H)⊆

Z(H̃) = A and we have

[G : A]≤ [G :
⋂

t ′∈T ′
ϕt ′(H)]≤ |G : H||T ′| < ∞

(note that [G : ϕ(H)] = [G : H] for all ϕ ∈ Aut(G)). �

Applying Lemma 4.33 to our H we find an Abelian subgroup A ⊆ H which is
characteristic and of finite index in H, and hence normal in G. We want to show that
H ′ is in fact scalar, concluding the proof of Lemma 4.32.

Notice that since G acts irreducibly and A is Abelian, we have that A is diagonal-
izable (exercise).

Let h ∈ A and let us show that h is a scalar. For every g ∈ G, we have that
hg = g−1hg has the same eigenvalues of h. Since A is normal in G, hG :={hg : g∈G}
is contained in A. Moreover, |hG| < ∞ since hG consists of diagonal matrices with
the same eigenvalues. Now G acts on hG by conjugation and this yields a homomor-
phism G→ Sym(hG). If we denote by P the kernel of this homomorphism (P is just
the centralizer of hG), then clearly [G : P] < ∞. It follows from Remark 4.31 that
P acts irreducibly on V . Since A is abelian, h ∈ P. From the fact that each element
of P fixes in particular h, we deduce that h is indeed in Z(P). Then Schur’s lemma
(Lemma 2.23) implies that h is a scalar. This shows that A is scalar, and hence H is
virtually scalar, completing the proof of the Lemma 4.32. �

The proof of Malcev’s theorem (Theorem 4.16) is complete.
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4.6 Notes

The term “solvable” is related to the attempt to find a formula for the roots of a
polynomial

p(x) = anxn +an−1xn−1 + · · ·+a1x+a0 ∈ C[x]

involving the operations of addition, subtraction, multiplication, division, and root
extractions, in terms of the coefficients a0,a1, . . . ,an. If the roots of p(x) can be
obtained by a formula of this kind, one says that the polynomial equation p(x) = 0
is solvable by radicals.

For instance, quadratic (n= 2) polynomial equations are solvable by radicals: the
two roots are expressed by the well-known formula

x± =
−a1±

√
a2

1−4a2a0

2a2
.

Solvability of the cubic (n = 3) and quartic (n = 4) polynomial equations by rad-
icals goes back to 15th–16th century mathematicians Scipione del Ferro, Gerolamo
Cardano, Niccolò Tartaglia, Rafael Bombelli, and Lodovico Ferrari. In contrast, the
Abel–Ruffini theorem (named after Paolo Ruffini, who made an incomplete proof in
1799, and Niels Henrik Abel, who provided a proof in 1824) states that the general
polynomial equations of degree five or higher are not solvable by radicals. Nowa-
days, there is an elegant proof of this fundamental result, based on Galois theory
(Evariste Galois, in the early 19th Century, used permutation groups to describe
how the various roots of a given polynomial equation are related to each other. The
modern approach, developed by Richard Dedekind, Leopold Kronecker, and Emil
Artin, among others, involves the study of automorphism groups of field exten-
sions). Recall that the Fundamental Theorem of Algebra states that every polyno-
mial p(x) ∈ C[x] of degree n ≥ 0 has exactly n roots in C (each counted with its
own multiplicity). Denote by F ⊆C the smallest field containing all the coefficients
a0,a1, . . . ,an of a given polynomial p(x) ∈C[x]. Let E ⊆C denote the smallest field
containing F and the roots of p(x): this is called the splitting field of the polyno-
mial p(x). Let Aut(E) denote the group of all (field) automorphisms of E and by
Gal(E,F) = {α ∈ Aut(E) : α( f ) = f for all f ∈ F} the subgroup of Aut(E) fixing
(element-wise) all elements in F (this is called the Galois group of the extension
F ⊆ E, or of the polynomial p(x)).

The inverse Galois problem, posed in the early 19th century and still unsolved,
asks whether or not every finite group appears as the Galois group of some Galois
extension of the rational numbers Q . More generally, given a finite group G and a
field F , one may ask whether or not there is a Galois extension field E such that the
Galois group Gal(E,F) is isomorphic to G: if the answer is positive, one says that
G is realizable over F . A consistent and reasonably complete survey of the inverse
Galois problem is the monograph by Gunter Malle and Heinrich Berndt Matzat
[230]. For the original case F =Q, we refer to Serre’s Bourbaki seminar [312]. We
only mention that it is easy to show that, in this case, the answer is positive for
G abelian; Igor R. Shafarevich [313] has extended this result for G solvable. For
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non-solvable groups, we mention that there exists a method (see [181, Exercise 14,
Section 4, Chapter V]) for constructing a polynomial p(x) ∈Q[x] with Galois group
Sn = Sym({1,2, . . . ,n}), the symmetric group of degree n, for n > 3 (it is based on
the fact that for any finite field F and any integer n ≥ 1 there exists an irreducible
polynomial of degree n in F [x], see, e.g., [181, Corollary 5.9, Chapter V]).

Returning back to our discussion on the solvability of polynomial equations, Ga-
lois proved (essentially) the following remarkable result:

A polynomial equation p(x) = 0 is solvable by radicals if and only if the Galois
group of p(x) is solvable.

As a consequence, while all polynomial equations of degree n ≤ 4 are solvable
by radicals, not all polynomial equations of degree n ≥ 5 are solvable by radicals,
since the symmetric group Sn is not solvable for n≥ 5.

The celebrated Feit–Thompson theorem, proved by Walter Feit and John Thomp-
son [110], states that every finite group of odd order is solvable.

Theorem 4.16 was proved by Anatoly I. Malcev in [227] (see also [228]).
Theorem 4.20 was proved by Joseph Wedderburn in [349] in 1908. This result

was generalized by Emil Artin to (Artinian) semisimple rings in [7] in 1927.
Theorem 4.30 is due to William Kingdon Clifford.

4.7 Exercises

Exercise 4.1. Let G be a group. Let (G[k])k≥0 and (γk(G))k≥1 denote the derived and
the lower central series of G, respectively. Show (by induction) that G[k] ⊆ γ2k(G)
for all integers k ≥ 0.

Exercise 4.2. Prove Proposition 4.4.

Exercise 4.3. Let G and H be two groups and suppose that G acts on H.
(a) Show that with the multiplication defined in (4.1) the set G×H forms a group

with neutral element (1G,1H).
(b) Show that (g,h)−1 = (g−1,(hg−1

)−1 for all g ∈ G and h ∈ H.
(c) Show that the map H 3 h 7→ (1G,h)∈GnH (resp. G3 g 7→ (g,1H)∈GnH)

is an injective homomorphism.
(d) Using the identification of G and H with G×{1H} and {1G}×H respectively,

provided by (c), show that if G and H are generated by the subsets XG and XH
respectively, then X = XH

⋃
XG generates GnH.

(e) Deduce from (d) that if G and H are finitely generated so is GnH.
(f) Show that we have the short exact sequence

{1}→ H→ GnH→ G→{1}.
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Exercise 4.4. (a) Let A be a solvable group and I an index set. Show that AI =∏i∈I A
is solvable.

(b) Let (Ai)i∈I be a family of solvable groups. Show that, in general, if I is infinite,
then ∏i∈I Ai is not solvable.

Exercise 4.5. Show that the group (Z/3Z) o (Z/2Z) is solvable, but not nilpotent.

Exercise 4.6. Show that the conditions (i), (ii) and (iii) in Definition 4.22 are equiv-
alent.

Exercise 4.7. Prove Proposition 4.23.

Exercise 4.8. Let D be a division ring over a fieldK. Also let n be a positive integer,
and fix 1 ≤ i ≤ n. In Mn(D) we consider the subset M of matrices of the form ∗

0
... 0
∗

, i.e. the set of all matrices whose nonzero entries only occur in the i-th

column. Show that this is an irreducible module over Mn(D).

Exercise 4.9. Show that any subgroup of UT(n,K) that acts completely reducibly
must be trivial.

Exercise 4.10. Let K be an algebraically closed field. Suppose that G ⊆ GL(n,K)
acts irreducibly and A⊆ G is an abelian normal subgroup. Show that A is diagonal-
izable.



Chapter 5
Polycyclic Groups

A group G is called polycyclic (resp. polycyclic-by-finite, resp. poly-infinite-cyclic)
if it admits a subnormal series, that is, a sequence of subgroups {1G}= H0 ≤ H1 ≤
H2 ≤ ·· · ≤ Hn = G such that Hi is normal in Hi+1, with Hi+1/Hi a (finite or in-
finite) cyclic (resp. (infinite) cyclic or finite, resp. infinite cyclic) group for each
0≤ i≤ n−1. Clearly, every polycyclic group is solvable. It follows from Corollary
2.29 that every finitely generated nilpotent group is polycyclic. In Section 5.2 we
define the Hirsch number of a polycyclic group (the number of infinite factors in
its subnormal series) and show that is well defined (Lemma 5.14). In the following
sections we prove Malcev’s theorem on polycyclic groups (every finitely generated
solvable linear group over the integers is polycyclic, cf. Theorem 5.16), the main
result of this chapter, as well as Malcev’s theorem on polycyclic-by-finite groups
(Theorem 5.21). Finally, in the last section we prove the Auslander–Swan theorem
(Theorem 5.22) which constitutes a converse to Malcev’s theorem on polycyclic
groups.

5.1 Polycyclic, Polycyclic-by-Finite, and Poly-Infinite-Cyclic
Groups

Definition 5.1. Let G be a group.
We say that a series

G = Hs ≥ Hs−1 ≥ ·· · ≥ H1 ≥ H0 = {1G} (5.1)

of subgroups of G is subnormal if HiEHi+1 for all i = 1,2, . . . ,s−1. The quotients
Hi+1/Hi are called the factors of the series.

If P is a property groups, we say that G is poly-P if there exists a subnormal
series as in (5.1) whose factors Hi+1/Hi have the property P .

Hence, G is polycyclic if there exists a subnormal series in G whose factors are
cyclic groups.
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Example 5.2. (1) Every finite solvable group is polycyclic (exercise);
(2) Every finitely generated nilpotent group is polycyclic (cf. Corollary 2.29).

Remark 5.3. Observe that every polycyclic group is solvable (exercise). The con-
verse is not always true. Before showing an example, we introduce a slightly wider
class of groups, which shares many properties with the class of polycyclic groups.

Definition 5.4. A group is polycyclic-by-finite if there exists a subnormal series
whose factors are cyclic or finite.

It is clear from the definition that every polycyclic group is polycyclic-by-finite.
The following result will be widely used in the sequel.

Proposition 5.5. Let G be polycyclic-by-finite (e.g. polycyclic) group. Then every
subgroup of G is finitely generated.

Proof. Let
G = Hs ≥ Hs−1 ≥ ·· · ≥ H1 ≥ H0 = {1G}

be a subnormal series of G whose factors are cyclic or finite. First observe that the
terms Hi, i = 1,2, . . . ,s−1, are polycyclic-by-finite as well. Let H be a subgroup of
G. We prove that H is finitely generated by induction on s. For s = 0 we have H =
H0 = {1G} and there is nothing to prove. By induction we have that H∩Hs−1≤Hs−1
is finitely generated. Now G/Hs−1 =Hs/Hs−1 is either Z or finite; in both cases, it is
finitely generated. It follows that H/(H ∩Hs−1) ∼= HHs−1/Hs−1 ≤ Hs/Hs−1 is also
finitely generated. Since in the exact sequence

{1}→ H ∩Hs−1→ H→ H/(H ∩Hs−1)→{1}

the lateral terms are finitely generated, we deduce from Proposition 1.12.(2) that the
middle term H is finitely generated as well. �

Example 5.6. Let G :=Z oZ= Zn
⊕

j∈ZZ. This is finitely generated (cf. Proposi-
tion 4.13) and solvable (cf. Proposition 4.12). Now [G,G] ⊇

⊕
j∈ZZ, and

⊕
j∈ZZ

is a subgroup which is not finitely generated. Thus G is a solvable group which is
not polycyclic (by Proposition 5.5).

We think of polycyclic groups as the “good” solvable groups.
The proof of the following proposition is left as an exercise.

Proposition 5.7. Let G be a polycyclic (resp. polycyclic-by-finite) group. Then its
subgroups, homomorphic images, or extensions by polycyclic (resp. polycyclic-by-
finite) groups, are polycyclic (resp. polycyclic-by-finite) as well.

Remark 5.8. As we shall see later (cf. Theorem 6.12) the class of polycyclic-by-
finite groups has the following property (called the Burnside property, see Chapter
6): if G is a finitely generated polycyclic-by-finite torsion group, then G is finite.

According to our definition, a group is poly-infinite-cyclic if it admits a subnor-
mal series whose factors are all infinite cyclic (i.e. isomorphic to Z).
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Remark 5.9. Notice that every poly-infinite-cyclic group is both polycyclic and tor-
sion free. However the converse is not true: for instance the group

G̃ :=〈x,y,z | xz = x−1, yz = y−1, [x,y] = z4〉

provides a counterexample. In fact, if a group G is poly-infinite-cyclic, then G/[G,G]
must be infinite: consider a subnormal series G = Hs ≥ Hs−1 ≥ ·· · whose factors
are infinite cyclic; then G/Hs−1 ∼= Z, hence [G,G] ≤ Hs−1, so that |G/[G,G]| ≥
|G/Hs−1|=∞. But notice that [x,z] = x−2, [y,z] = y−2 and [x,y] = z4 so that G̃/[G̃, G̃]
is a polycyclic group generated by finitely many torsion elements, hence it is finite
by Remark 5.8. This shows that G̃ cannot be poly-infinite-cyclic.

On the other hand we have the subnormal series

G̃≥ 〈x,y,z2〉 ≥ 〈x,z2〉 ≥ 〈x〉 ≥ {1G̃}.

In fact z2 is in the center of G. Now the first quotient has order two, while the other
ones are isomorphic to Z (exercise). Moreover, G is torsion free: in fact any element
of G raised to the power two is in 〈x,y,z2〉, which is torsion free.

To see that x and y have infinite order, just quotient by the normal closure of z2,
and observe that the resulting quotient is isomorphic to Z2nZ/2Z.

The proof of the following proposition is left as an exercise.

Proposition 5.10. Let G be a poly-infinite-cyclic group. Then every subgroup of G
is poly-infinite-cyclic.

The following lemma will be useful in the sequel.

Lemma 5.11. Let G be an infinite polycyclic-by-finite group. Then there exists a
normal subgroup H of finite index in G which is poly-infinite-cyclic.

Proof. Let
G = Hs ≥ Hs−1 ≥ ·· · ≥ H1 ≥ H0 = {1G}

be a subnormal series of G whose factors are cyclic or finite. Observe that the terms
Hi are also polycyclic-by-finite for i = 1,2, . . .s− 1. We proceed by induction on
s. For s = 1 we have G = H1 ∼= H1/H0 ∼= Z, since G is infinite. Thus G itself is
poly-infinite-cyclic. By induction on s, suppose that the statement is true for Hs−1.

Thus, if Hs−1 is infinite, we can find NEHs−1 with [Hs−1 : N] < ∞ and N poly-
infinite-cyclic, that is, admitting a subnormal series N = Nr ≥ Nr−1 ≥ ·· · ≥ N1 ≥
N0 = {1G} with Ni+1/Ni ∼= Z for i = 0,1, . . . ,r−1.

If Hs−1 is finite, we set N :={1G}.
We distinguish two cases:
Case 1 : [G : Hs−1] < ∞. In this case Hs−1 must be infinite. By Lemma 2.41, we

can find a characteristic subgroup H of Hs−1 (and therefore normal in G) such that
H ⊆ N and [Hs−1,H] < ∞ (and therefore [G : H] < ∞). Since N is poly-infinite-
cyclic, from Proposition 5.10 we deduce that H is poly-infinite-cyclic as well, and
this concludes the proof in this case.

Case 2 : [G : Hs−1] = ∞. In this case, we necessarily have G/Hs−1 ∼= Z. Let a ∈
G\Hs−1 such that G/Hs−1 = 〈aHs−1〉.
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Then we set H̃ :=〈N,a〉. We claim that this is poly-infinite-cyclic. In fact we have

H̃ ≥ N = Nr ≥ ·· · ≥ N1 ≥ {1}.

Now a is not torsion modulo N: in fact it is not torsion even modulo Hs−1 and
N ⊆ Hs−1. So H̃/N ∼= Z. First we check that [G : H̃]< ∞. Let Hs−1 = ∪n

i=1giN and
G = ∪ j∈ZHs−1a j. Then

G =
⋃
j∈Z

Hs−1a j =
n⋃

i=1

⋃
j∈Z

giNa j ⊆
n⋃

i=1

giH̃,

hence [G : H̃]< ∞.
In general, H̃ may not be normal in G. But by Poincaré’s lemma (Lemma 2.39)

we have a normal subgroup HEG such that H ≤ H̃ and [G : H]< ∞. Also, H is still
poly-infinite-cyclic by Proposition 5.10.

This concludes the proof of the theorem. �

5.2 The Hirsch Number

Definition 5.12. If G is polycyclic, we define the Hirsch number of G as the number
of infinite factors in any subnormal series of G with cyclic factors.

To see that the Hirsch number is well defined, we need one more definition and
a lemma.

Definition 5.13. Let G be a group and

G = An ≥ An−1 ≥ ·· · ≥ A1 ≥ A0 = {1G} (5.2)

and
G = Bm ≥ Bm−1 ≥ ·· · ≥ B1 ≥ B0 = {1G} (5.3)

two series of subgroups of G. We say that (5.3) is a refinement of (5.2) if every term
of the series (Ai)1≤i≤n occurs in the series (B j)1≤ j≤m.

We also say that (5.2) and (5.3) are similar if n = m and (Ai/Ai−1)1≤i≤n is a
rearrangement of (B j/B j−1)1≤ j≤n.

The following lemma clearly implies that the Hirsch number is well defined.

Lemma 5.14. Let G be a group. Then any two subnormal series of G have a similar
subnormal refinement.

Proof. Let
G = An ≥ An−1 ≥ ·· · ≥ A1 ≥ A0 = {1G}

and
G = Bm ≥ Bm−1 ≥ ·· · ≥ B1 ≥ B0 = {1G}

be two subnormal series of G.
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Remark 5.15. Let K,L ≤ G. Recall that L normalizes K if `−1K` ⊆ K for every
` ∈ L.

(a) Suppose that L normalizes K. Then `k = `k`−1` ∈ KL, hence LK and KLKL
are contained in KL, so that KL is a subgroup of G.

(b) Suppose that L1,L2 ≤ G and L = L1L2. Then L normalizes K if and only if
both L1 and L2 normalize K.

(c) If K ≤ L, we have that L normalizes K if and only if KEL.

For every i = 0,1, . . . ,n−1 we consider the series

Ai+1 =Ai(Bm∩Ai+1)≥Ai(Bm−1∩Ai+1)≥ ·· · ≥Ai(B1∩Ai+1)≥Ai(B0∩Ai+1)=Ai.

Note that since Ai+1DAi we have that (B j ∩Ai+1) normalizes Ai. Thus, by Remark
5.15.(a), all terms of the above series are indeed subgroups. Collecting together all
these series (as i varies) we obtain a series Σ of subgroups of G.

Similarly, for every j = 0,1, . . . ,m−1 we consider the series

B j+1 = B j(An∩B j+1)≥ B j(An−1∩B j+1)≥ ·· · ≥ B j(A0∩B j+1) = B j.

Collecting together all these series (as j varies) we obtain another series of sub-
groups of G which has the same length of Σ . We look at the factors.

Let us show that
Ai(B j+1∩Ai+1)DAi(B j ∩Ai+1).

First observe that (B j+1 ∩Ai+1) normalizes both Ai and B j ∩Ai+1. Also Ai nor-
malizes Ai(B j ∩Ai+1): indeed, since B j ∩Ai+1 normalizes Ai, we have

a−1
i (a′iai+1)ai = a−1

i (a′i(ai+1aia−1
i+1))ai+1 ∈ Ai(B j ∩Ai+1)

for all ai,a′i ∈Ai and ai+1 ∈B j∩Ai+1. This shows that Ai(B j+1∩Ai+1) normalizes its
subgroup Ai(B j∩Ai+1) and, by Remark 5.15.(c), this is equivalent to the statement.

Similarly, we have B j(Ai+1∩B j+1)DB j(Ai∩B j+1).
In order to complete the proof, we are only left to show that

Ai(B j+1∩Ai+1)

Ai(B j ∩Ai+1)
∼=

B j(Ai+1∩B j+1)

B j(Ai∩B j+1)
. (5.4)

Set A :=B j+1∩Ai+1 and H :=Ai(B j∩Ai+1). We have HA = Ai(B j+1∩Ai+1) and
H ∩A = Ai(B j ∩Ai+1)∩B j+1∩Ai+1. Let us show that

H ∩A = B j(Ai∩B j+1)∩ (Ai+1∩B j+1). (5.5)

Let ai ∈ Ai and b j ∈ B j ∩ Ai+1 with aib j ∈ B j+1 ∩ Ai+1. Then we have aib j =

b jb−1
j aib j ∈ B j(Ai ∩B j+1). Indeed, aib j ∈ B j+1, hence b−1

j aib j ∈ B j+1; also b j ∈
Ai+1, hence b−1

j aib j ∈ Ai. This shows that H ∩A ⊆ B j(Ai ∩B j+1)∩ (Ai+1 ∩B j+1).
The other inclusion is proved in a similar way, and (5.5) follows.

Symmetrically, set Ã :=Ai+1∩B j+1 (notice that Ã = A) and H̃ :=B j(Ai∩B j+1)

we have H̃Ã = B j(Ai+1∩B j+1) and (by the definitions)
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H̃ ∩ Ã = B j(Ai∩B j+1)∩Ai+1∩B j+1. (5.6)

We then deduce:

Ai(B j+1∩Ai+1)

Ai(B j ∩Ai+1)
=

HA
H

∼=
A

H ∩A

(by (5.5)) =
B j+1∩Ai+1

B j(Ai∩B j+1)∩Ai+1∩B j+1

(by (5.6)) =
Ã

H̃ ∩ Ã

∼=
H̃Ã

H̃

=
B j(Ai+1∩B j+1)

B j(Ai∩B j+1)
.

This shows (5.4) and completes the proof of the lemma. �

5.3 Malcev’s Theorem on Polycyclic Groups

The main theorem of this chapter is again due to Malcev.

Theorem 5.16 (Malcev). Let G ≤ GL(n,Z) be finitely generated and solvable.
Then G is polycyclic.

In Theorem 5.22 we will see that, conversely, every polycyclic group is embed-
dable in GL(n,Z).

Definition 5.17. A finite extension K of Q is called a field of algebraic numbers.
A number α ∈C is called an algebraic integer if there exists a monic polynomial

f (t) ∈ Z[t] such that f (α) = 0.

Remark 5.18. Suppose that K is a field of algebraic numbers and that α ∈ K is an
algebraic integer. Then ∑i≥0 α iZ⊆ K is a finitely generated abelian group which is
a subring.

For the proof of the following lemma we refer to [74, Section 4.9].

Lemma 5.19 (Dirichlet). If α and β are algebraic integers, then so are α±β and
αβ . The algebraic integers for a fixed field of algebraic numbers K form a subring
R. If α ∈K, then there exists an m∈Z such that mα ∈ R. Moreover, (R,+) is finitely
generated, and the multiplicative group of R is finitely generated as well.

Proof of Theorem 5.16. LetQ be the algebraic closure ofQ. Consider the inclusions
G≤GL(n,Z)≤GL(n,Q). By Theorem 4.16, G is virtually triangularizable overQ.
Let HEG be such that [G : H]< ∞ and H is triangularizable.
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By Proposition 5.7 it is sufficient to show that H is polycyclic, since we already
know that G/H, being finite and solvable (cf. Proposition 4.4), is polycyclic (cf.
Example 5.2).

Hence, without loss of generality, we can assume that G is triangularizable, that
is, up to conjugation, we have G⊆ B(n,Q). As G is finitely generated, we can find
a finite generating subset S ⊆ G. Let X ⊆ Q denote the (finite) set consisting of all
matrix entries of the elements in S. Let K be the extension ofQ generated by X , and
let R be the subring of algebraic integers of K. By Dirichlet’s lemma (Lemma 5.19),
there exists an integer m≥ 1 such that mX ⊆ R. Consider the matrix

x :=


1 0 0 . . . 0
0 m 0 . . . 0
0 0 m2 . . . 0
...

...
...

. . .
...

0 0 0 . . . mn−1

 .

Then x−1Gx ⊆ B(n,K) and above the diagonal all the coefficients are in R. By
the Cayley–Hamilton theorem the diagonal entries of each element g of x−1Gx ⊆
B(n,K) are roots of the characteristic polynomial pg(t) of g. Since pg(t) is invariant
under conjugation of g, and G was originally in GL(n,Z), we have that indeed pg(t)
has coefficients in Z. As a consequence, the diagonal entries of g are algebraic inte-
gers. This shows that x−1Gx⊆ B(n,R).

Claim. The group B(n,R) is polycyclic.
Consider the group epimorphism

B(n,R) =

R× R
. . .

0 R×

→
R× 0

. . .
0 R×


given by replacing by 0 all the entries out of the main diagonal. The image, being
abelian and finitely generated, is polycyclic (cf. Example 5.2), hence, by Proposition
5.7, it is enough to show that the kernel, which is UT(n,R), is polycyclic.

Recall (cf. Example 2.15) that for t = 1,2, . . . ,n− 1, the t-th term γt(UT(n,R))
of the lower central series is given by

γt(UT(n,R)) :={x = ‖xi, j‖i, j ∈ UT(n,R) : xi, j = 0 for 1≤ j− i≤ t−1}.

Each factor of the lower central series is a finitely generated (torsion-free) abelian
group and therefore, by Proposition 5.7, polycyclic. By applying again Proposition
5.7, we deduce that UT(n,R), being an iterated extension of polycyclic groups, is
polycyclic as well. This shows that the multiplicative group of B(n,R) is polycyclic
and finishes the proof of the claim.
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We are now in position to complete the proof of Malcev’s theorem. Indeed, since
we already showed that x−1Gx ⊆ B(n,R), by virtue of Proposition 5.7 and the last
claim we deduce that G itself is polycyclic, concluding the proof of the theorem. �

5.4 Malcev’s Theorem on Polycyclic-by-Finite Groups

We start with a useful lemma.

Lemma 5.20. If G is polycyclic-by-finite, then we have a normal series

G≥ Kt ≥ ·· · ≥ K1 ≥ K0 = {1G}

such that G/Kt is finite and each Ki/Ki−1 is free abelian.

Proof. Since G is polycyclic-by-finite, by Lemma 5.11 we can find a subnormal
series

G = Hs ≥ Hs−1 ≥ ·· · ≥ H1 ≥ H0 = {1G}

whose factors Hi/Hi−1 are infinite cyclic for i = 1,2, . . . ,s−1, and G/Hs−1 is finite.
Since the factors Hi/Hi−1, i = 1,2, . . . ,s− 1, are abelian, we have that Hs−1 is

solvable. Note that Hs−1 is also torsion-free. Let K1 denote the last but one term
of its derived series. It is abelian, torsion-free and finitely generated by Proposition
5.5, equivalently, it is free abelian. Moreover, K1 is characteristic in Hs−1, hence it
is normal in G.

Then we repeat this procedure with G replaced by G̃ :=G/K1 (which is still
polycyclic-by-finite by Proposition 5.7). We thus find a subnormal series

G̃ = H̃r ≥ H̃r−1 ≥ ·· · ≥ H̃1 ≥ H̃0 = {1G̃},

where r ≤ s, with H̃i/H̃i−1 infinite cyclic for i = 1,2, . . . ,r−1, and [G : H̃r−1]< ∞.
Let K̃1 denote the last but one term of the derived series of the solvable group H̃r−1.
As before, it is free abelian and we define the subgroup K2 ⊆ G by K̃1 = K2/K1.
Again K̃1 = K2/K1 is normal in G/K1, hence K2 is normal in G.

Continuing this way, we construct a chain of subgroups of G

{1G} ≤ K1 ≤ K2 ≤ ·· · ≤ G.

By construction each Ki is normal in G and the quotient Ki/Ki−1 is free abelian.
Clearly, the process stops in finitely many steps at some Kt which will be of finite
index in G, so that the resulting series is the one that we were looking for. �

Theorem 5.21 (Malcev). Let G be a polycyclic-by-finite group. Then G has a nor-
mal subgroup N ⊆ G such that N is torsion-free nilpotent, and G/N is abelian-by-
finite, i.e., there is an abelian normal subgroup of G/N of finite index.

Proof. By Lemma 5.20 we have a normal series

G≥ Kt ≥ ·· · ≥ K1 ≥ K0 = {1G}
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such that G/Kt is finite and each factor Ki/Ki−1 is free abelian, say of rank ni.
Consider the centralizer CKt (Ki/Ki−1) of the action of Kt on Ki/Ki−1 by conjuga-
tion. This gives an embedding of Kt/CKt (Ki/Ki−1) into Aut(Ki/Ki−1)∼=GL(ni,Z)⊆
GL(ni,C).

Notice that Kt is finitely generated, polycyclic and hence solvable. Therefore its
quotient Kt/CKt (Ki/Ki−1) ⊆ GL(ni,C) is also solvable and finitely generated. By
Malcev’s theorem on solvable linear groups (Theorem 4.16), Kt/CKt (Ki/Ki−1) has a
triangularizable normal subgroup of finite index, whose preimage Ti in Kt is normal
of finite index. Since in a suitable basis, Ti acts as a subgroup of B(n,C), then in the
same basis its commutator [Ti,Ti] acts as a subgroup of UT(n,C). Hence the action
of [Ti,Ti] stabilizes a series in Ki/Ki−1 of length ni, i.e., we can find a series

Ki/Ki−1 = Lni ≥ Lni−1 ≥ ·· · ≥ L1 ≥ L0 = {1}

such that for all x ∈ L j, t ∈ [Ti,Ti], and j = 1,2, . . . ,ni,

(xL j−1)
t = xL j−1, (5.7)

in particular Lt
j = L j.

Now T :=T1 ∩T2 ∩ ·· · ∩Tt ⊆ Kt is a torsion-free (since Kt is) normal subgroup
of Kt of finite index and its commutator H :=[T,T ] stabilizes a series in Kt .

Claim. H is nilpotent.
Let (Li)

m
i=0 be the series stabilized by H. Hence in particular L0 = {1} and Lm =

Kt . We will show that
[Li,γ j(H)]≤ Li− j (5.8)

for all i≥ 1 and j ≥ 1.
If we can prove this, then for i = j = m we have

γm+1(H) = [H,γm(H)]≤ [Kt ,γm(H)] = [Lm,γm(H)]≤ L0 = {1},

showing that H is nilpotent.
We prove (5.8) by induction on j. For j = 1, γ1(H) = H, and this is the definition

of stability (5.7): for x ∈ Li, ` ∈ Li−1 and t ∈ H, (x`)t = x˜̀for some ˜̀∈ Li−1, hence

˜̀= x−1(x`)t = x−1t−1x`t = (x−1t−1xt)t−1`t = [x, t]`t ,

therefore
[x, t] = ˜̀(`t)−1 ∈ Li−1.

Assume now that (5.8) is true for all i and some fixed j ≥ 1. Then we have

[[H,Li],γ j(H)]≤ [Li−1,γ j(H)]≤ Li− j−1

and
[[Li,γ j(H)],H]≤ [Li− j,H]≤ Li− j−1.
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Therefore from the three subgroups lemma (Lemma 2.2) and the normality of Li− j−1
in Kt we deduce

[γ j+1(H),Li] = [[γ j(H),H],Li]≤ Li− j−1,

as we wanted. This ends the proof the claim.

Hence H is torsion-free (since T is) and nilpotent. By Proposition 5.5, H is also
finitely generated, and it has finite index in Kt and therefore in G.

Using Poincaré’s lemma (Lemma 2.39), we can find a subgroup T̃ of T which
is normal in G and of finite index. Let us set N :=[T̃ , T̃ ] ⊆ [T,T ] = H. Now N is
nilpotent, torsion-free, finitely generated and normal in G (since T̃ is). Hence we
have T̃/NEG/N, [G/N : T̃/N] = [G : T̃ ]< ∞ and T̃/N is abelian.

This finishes the proof of the theorem. �

5.5 The Auslander–Swan Theorem

The goal of this section is to prove the following theorem which constitutes a con-
verse to Malcev’s theorem on polycyclic groups (Theorem 5.16).

Theorem 5.22 (Auslander, Swan). Let G be a polycyclic-by-finite group. Then G
embeds into GL(n,Z) for some n≥ 1.

Proof. By Malcev’s theorem (Theorem 5.21), we can find a normal subgroup N of
G which is torsion-free, nilpotent, and finitely generated, such that G/N is abelian-
by-finite. The last condition means that there exists a finite index subgroup T of G
such that N ⊆ T and T/N is (finitely generated) abelian. So we can also find a finite
index subgroup T̃ of T such that T̃/N is (finitely generated) free abelian.

Applying Lemma 2.43, it is enough to show that T̃ is linear. Hence, up to replac-
ing G by T̃ , from now on we can assume that G/N is free abelian.

We argue by induction on the rank of the free abelian group G/N. If this rank is
0, then G = N, and by Malcev’s theorem (Theorem 2.20) this is linear.

Suppose now that the rank r of G/N is greater than 0. Then we can choose a
normal subgroup H of G such that N ⊆ H, G/H ∼= Z, and H/N is free abelian of
rank r−1. Notice that in this case [H,G]⊆ [G,G]⊆ N.

By induction, there exists an embedding ι : H ↪→ GL(m,Z) for some integer
m ≥ 1. Let a ∈ G be such that G/H = 〈Ha〉 ∼= Z and observe that G = HA, where
A :=〈a〉 is infinite cyclic. We want to lift ι to an embedding of the whole group G
into GL(n,Z) for a suitable n ≥ m. We start by extending the homomorphism ι to
a homomorphism of rings ῑ : ZH → Mm(Z) (∼= Zm2

as Z-modules) in the obvious
way, and we call K ⊆ ZH the kernel of ῑ .

We define a right action of G on ZH as follows. Since G = HA, any element
g ∈ G can be uniquely expressed as g = hb with h ∈ H and b ∈ A. Then, given
x = ∑i αihi ∈ ZH and g = hb we set

x ·g = x ·hb :=(xh)b = ∑
i

αib−1hihb.
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In other words, H acts by right multiplication on ZH, while A acts by conjugation.
We would like G to act on the quotient ZH/K. If we could do so, then ZH/K

would be a G-module. Unfortunately, it is not clear whether K is globally A-invariant
so that the action of A passes to the quotient ZH/K or not. Hence we need to find a
different quotient of this ring.

We observe that if h ∈ H and b ∈ A then

h ·b = hb = h[h,b] = h+h([h,b]−1). (5.9)

Since [H,G]⊆ N, equation (5.9) shows that hb is equal to h modulo the left ideal
I of ZH generated by the elements x−1 where x ∈ N.

Notice that if h ∈ H, then using the normality of N we have h(x − 1) =

(xh−1 − 1)h ∈ I. Thus I is in fact a two sided ideal, and K + I is now preserved
by the action of A and hence of the whole G. Therefore ZH/(K + I) is a G-module.
But we want a G-module which is faithful as an H-module.

Hence for any k ≥ 1 we consider the ideal Ik: it is generated, as a left ideal, by
the products (x1−1)(x2−1) · · ·(xk−1), where xi ∈ N for all i = 1,2, . . . ,k. Since N
is unitriangularizable, these product vanish for k ≥ m. Therefore Im ⊆ K = ker(ι),
and so (K + I)m ⊆ K. Moreover, if b ∈ A, from (5.9) we deduce that

(K + I)m ·b = ((K + I)m)b = ((K + I)b)m ⊆ (K + I)m.

Thus (K+ I)m is a G-submodule of ZH. Hence ZH/(K+ I)m is a G-module, and
since (K + I)m ⊆ K, it is faithful as an H-module.

Consider then the quotient ZH/(K+I)m. We are left with two problems: we need
to check that this is finitely generated as a Z-module, and we need to take care of
the torsion.

Notice that ZH/(K+ I) is a quotient of ZH/K which is finitely generated as a Z-
module (indeed ZH/K ↪→Mm(Z) ∼= Zm2

). Hence ZH/(K + I) is finitely generated
as a Z-module. We need a lemma.

Lemma 5.23. Let G be a finitely generated group, and let I a two-sided ideal of ZG
such that ZG/I is finitely generated as a Z-module. Then I is a finitely generated
ideal and ZG/Ir is a finitely generated Z-module for all r ≥ 1.

Before proving it, we show how to conclude the proof of the Auslander–Swan
theorem assuming the lemma.

The lemma implies that the quotient V :=ZH/(K+ I)m is finitely generated as a
Z-module.

We are left with the problem of the torsion. Let T be the torsion part of V , say
T = J/(K+ I)m. Then T is fully invariant in V , i.e., it is invariant under all endomor-
phisms of V . Also, since ZH/K ↪→ Mm(Z) ∼= Zm2

, we have that ZH/K is torsion
free as a Z-module. Hence we necessarily have T = J/(K+ I)m ⊆K/(K+ I)m. Thus
U :=V/T ∼= ZH/J is a G-module (as it is a quotient of G-modules), and it is a free
Z-module of finite rank. Moreover, it is a faithful H-module since J ⊆ K and ZH/K
is H-faithful. However U is not necessarily faithful as a G-module.

To make it faithful, it is enough to add to it a free abelian group W of finite
rank on which A acts faithfully and H trivially (we can choose A itself acting by
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multiplication), i.e., consider U ⊕W . This yields a faithful ZG-module (exercise),
and the proof of the theorem is complete. �

Proof of Lemma 5.23. Let X ⊆ G be a finite and symmetric generating subset of
G. Let also u1 :=1,u2, . . . ,ut ∈ ZG generate ZG modulo I as a Z-module and let
M be the Z-submodule of ZG generated by the ui’s and X . Thus, I +M = ZG as
Z-modules.

Therefore, given m1 and m2 in M, we have m1m2 = x+m with x ∈ I and m ∈M.
In fact x = m1m2−m ∈M2 +M, so that indeed x ∈ I∩ (M+M2).

Let J be the ideal in ZG generated by I ∩ (M +M2). Notice that I ∩ (M +M2)
is a Z-submodule of the finitely generated Z-module M +M2, hence it is finitely
generated as well. This implies that J is finitely generated as an ideal.

Also J+M is, by construction, multiplicatively closed: in fact (J+M)(J+M)⊆
J2 +MJ + JM +M2 ⊆ J +M2 ⊆ J +M, where the last inclusion follows from the
fact that for m1,m2 ∈ M we have m1m2 = x + m ∈ I ∩ (M + M2) + M ⊆ J + M.
Moreover, J +M contains generators of G, hence, being multiplicatively closed, it
equals ZG. We deduce that ZG/J = (J +M)/J ∼= M/(J ∩M) is finitely generated
as a Z-module, since M is.

Note that, by construction, J ⊆ I. Now I/J is a Z-submodule of the finitely gen-
erated Z-module ZG/J, hence it is finitely generated as a Z-module as well.

All this implies that I is finitely generated as an ideal (because both J and I/J
are). This shows the first part of the statement of the lemma.

Let then v1,v2 . . . ,vs ∈ I denote some generators of I as an ideal. Then the finite
set {uiv juk : i,k = 1,2, . . . , t; j = 1,2, . . . ,s} ⊆ I generates I mod I2 as a Z-module
(recall that u1 = 1) (exercise).

Remark 5.24. A more conceptual way of seeing this is to observe that ZG/I acts
both on the left and on the right on I/I2, and the two actions commute, so that I/I2

is a bimodule over ZG/I, i.e., it is a (right) module over the ring

R :=(ZG/I)◦⊗ZZG/I.

Here with ⊗Z we denote the tensor product of Z-modules, and for a ring S, we
denote by S◦ the opposite ring, i.e., S◦ is equal to S as an abelian group, but the
product “∗” of two elements x and y is defined to be x∗y :=y ·x, where “·” indicates
the original product in S.

In fact, I/I2 is finitely generated as an R-module: just pick the generators of I as
an ideal. But since ZG/I is a finitely generated Z-module, R is finitely generated
too. So I/I2 is a finitely generated Z-module.

Since ZG/I ∼= (ZG/I2)/(I/I2), we have that ZG/I2 is an extension of finitely
generated Z-modules, hence it is a finitely generated Z-module as well.

By induction, we conclude that ZG/Ir is a finitely generated Z-module for every
integer r ≥ 1, completing the proof of the lemma. �
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5.6 Notes

The study of polycyclic groups was initiated by Kurt August Hirsch in 1938 in [175,
176], where, in particular, it is shown that a group G is polycyclic if and only if it is
solvable and each subgroup is finitely generated (G satisfies the maximal condition).
Theorem 5.16 (every solvable group isomorphic to a matrix group over the integers
is polycyclic) was proved by Anatoly I. Malcev in [228]. The theorem that every
polycyclic-by-finite group is isomorphic to a matrix group over the integers was
first proved by Louis Auslander [10] (the proof involves considerable knowledge of
the theory of Lie groups) and later by Richard G. Swan [324] (a purely algebraic
proof). It follows in particular that every polycyclic group is residually finite. This
last result is due to Hirsch [177] (see also [293, p. 154]). For a detailed study of
polycyclic groups we refer the interested reader to the book by Dan Segal [308] (see
also the two volumes book by Derek J.S. Robinson [292]).

5.7 Exercises

Exercise 5.1. Show that every finite solvable group is polycyclic.

Exercise 5.2. Show that every polycyclic group is solvable.

Exercise 5.3. Let G be a group. (a) Show that if G is polycyclic, then every sub-
group, homomorphic image, or extension by a polycyclic group of G is polycyclic.

(b) Show that if G is polycyclic-by-finite, then every subgroup, homomorphic
image or extension by a polycyclic group is polycyclic-by-finite.

(c) Show that if G is polycyclic of special type, then every subgroup of G is
polycyclic of special type.

Exercise 5.4. Show that the group G in the example considered in Remark 5.9, the
two quotients 〈x,y,z2〉/〈x,z2〉 and 〈x,z2〉/〈x〉 are both infinite cyclic.

Exercise 5.5. Show that every subgroup of a poly-infinite-cyclic group is poly-
infinite-cyclic.

Exercise 5.6. Show that the module U⊕W at the end of the proof of Theorem 5.22
is a faithful ZG-module.

Exercise 5.7. Show that the finite set {uiv juk : i,k = 1,2, . . . , t; j = 1,2, . . . ,s} ⊆ I in
the proof of Lemma 5.23 generates I mod I2 as a Z-module.



Chapter 6
The Burnside Problem

In this chapter we discuss some instances of the Burnside Problem. There are three
versions of this problem, the first one being the

General Burnside Problem: Is it true that if a group G is finitely generated and tor-
sion, then it is finite?

We discuss the General Burnside problem for locally finite groups (Section 6.2),
for polycyclic-by-finite and solvable groups (Section 6.3), as well as its bounded
version for linear groups (Section 6.4). Finally, in Section 6.5 we discuss the
Kurosh–Levitzky problem (on nil algebras) and explain the construction of Golod
and Shafarevich yielding a negative answer to the Kurosh–Levitzky problem and
therefore to the General Burnside Problem.

6.1 Formulation of the Burnside Problems

The General Burnside Problem, posed by William Burnside in 1902 [46] – one of
the oldest and most influential questions in group theory – asks whether or not a
finitely generated group in which every element has finite order is necessarily finite.

Problem 6.1 (General Burnside Problem). Is it true that if a group G is finitely
generated and torsion, then it is finite?

Sometimes, the word periodic is used instead of “torsion”. In order to approach
the study of the General Burnside Problem, we introduce the following useful no-
tion.

Definition 6.2 (Burnside property). A class C of groups satisfies the Burnside
property if for every torsion group G in C the following holds: every finitely gener-
ated subgroup of G is finite.

A weaker formulation of the General Burnside Problem is the following. First
recall that a group G is said to be periodic with bounded exponent, or just a group

87© Springer Nature Switzerland AG 2021
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with bounded exponent, if there exists an integer n ≥ 1 such that gn = 1G for all
g ∈ G.

Problem 6.3 (Bounded Burnside Problem). Is it true that if a group G is finitely
generated and of bounded exponent, then G is finite?

There is also a restricted version of the Burnside problem.

Problem 6.4 (Restricted Burnside Problem). Is it true that for every m,n ∈ N
there are finitely many (up to isomorphism) finite groups G with m generators and
of bounded exponent n?

6.2 Locally Finite Groups and the General Burnside Problem

Definition 6.5. Let P be a property of groups (e.g., being finite). We say that a
group G is locally P if every finitely generated subgroup of G satisfies P .

Example 6.6. Every abelian torsion group is locally finite. This immediately fol-
lows from the structure theorem of finitely generated abelian groups (see Corollary
1.30).

We can rephrase the General Burnside Problem in the following way.

Problem 6.7 (Reformulation of the General Burnside Problem). Is every torsion
group locally finite?

Notice that Lemma 2.34 says that the General Burnside Problem has a posi-
tive solution for nilpotent groups, equivalently, the class of nilpotent groups has the
Burnside property.

The class of locally finite groups is clearly closed under taking subgroups, ho-
momorphic images and finite direct products (exercise). Next we show that it is also
closed under extensions.

Lemma 6.8. Let G be a group. Let H ≤ G be a normal subgroup and suppose that
both H and G/H are locally finite. Then G is locally finite.

Proof. Let K ≤ G be a finitely generated subgroup of G. The image of K in G/H is
KH/H ∼= K/(K∩H), which is finite by assumption. Hence [K : K∩H]< ∞, which
implies that K ∩H is finitely generated (cf. Corollary 1.11). Hence K ∩H ≤ H is
finite by the assumption on H. We deduce that K is also finite. �

In fact, we can show that every group contains a largest locally finite subgroup.
Here, “largest” means that it contains all the other locally finite subgroups: this is
stronger than “maximal”. In order to do so, the following two propositions will be
useful.

Proposition 6.9. Let K,LEG, and let both K and L be locally finite. Then KL is
locally finite.
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Proof. KL/K ∼= L/(K∩L) is locally finite, hence KL is an extension of locally finite
groups (K and KL/K). Therefore, by the previous lemma, KL itself is locally finite.

�

Let I be a directed set, that is, a set equipped with an order � such that for every
i1, i2 ∈ I there exists an i∈ I with i1 � i and i2 � i. Let G be a group. A family (Hi)i∈I
of subgroups of G is said to be increasing if Hi ≤ H j for all i, j ∈ I such that i � j.
If in addition we have

⋃
i∈I Hi = G, then we say that the family (Hi)i∈I exhausts G.

Proposition 6.10. Let G be a group. Let (Hi)i∈I be an increasing and exhausting
family of subgroups of G. Suppose that Hi is locally finite for every i ∈ I. Then G
itself is locally finite.

Proof. Let X ⊆ G be a finite subset. Since (Hi)i∈I is increasing and exhausting, we
can find i = i(X) such that X ⊆ Hi. Since Hi is locally finite, it follows that the
subgroup generated by X is finite. This shows that G is locally finite. �

Corollary 6.11. Every group G contains a largest locally finite normal subgroup
L(G) such that G/L(G) does not contain nontrivial locally finite normal subgroups.

Proof. Let I denote the set of all locally finite normal subgroups of G. Equip I with
the order given by inclusion and observe that, by Proposition 6.9, it is a directed
set. It follows from Proposition 6.10 that the subgroup L(G) :=

⋃
H∈I H is locally

finite. Moreover, since conjugation by elements in G preserves local-finiteness of
subgroups, we have that L(G)EG. It is clear from the construction that every locally
finite normal subgroup of G is contained in L(G).

On the other hand, if H/L(G) ≤ G/L(G) is a locally finite normal subgroup,
then H ≤ G is locally finite by Lemma 6.8. But we have just seen that H must be
contained in L(G), hence H/L(G) is the trivial subgroup. �

6.3 The General Burnside Problem for Polycyclic-by-Finite and
Solvable Groups

The following theorem gives a positive solution to the General Burnside Problem
for polycyclic-by-finite and solvable groups.

Theorem 6.12 (General Burnside Problem for polycyclic-by-finite and solvable
groups). Let G be a torsion group. Then

(1) if G is solvable, then it is locally finite;
(2) if G is polycyclic-by-finite (e.g polycyclic), then it is finite.

Proof. If G is solvable, then consider its derived series. The quotients of this series
are abelian and torsion, and therefore locally finite (cf. Example 6.6). Then G is
locally finite by recursively applying Lemma 6.8.

If G is polycyclic-by-finite, consider any finite subnormal series with cyclic quo-
tients. Since G is torsion, these quotients are necessarily finite. Since extensions of
finite groups by finite groups are finite, it follows that G is finite. �
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6.4 The Bounded Burnside Problem for Linear Groups

This section is devoted to the proof of the following theorem, which is due to Burn-
side.

Theorem 6.13 (Bounded Burnside Problem for linear groups). Let G be a sub-
group of GL(n,K), where K is a field. Suppose that G is finitely generated and of
bounded exponent. Then G is finite.

Proof. Notice that ifK is the algebraic closure ofK, then G≤GL(n,K)≤GL(n,K).
Hence, without loss of generality, we can assume that K is algebraically closed.

We can also assume that G acts irreducibly on V = Kn. Indeed, we can always
find a chain of subspaces

{0} ≤V1 ≤V2 ≤ ·· · ≤Vs =V,

such that G acts irreducibly on each Vi/Vi−1, i = 1,2, . . . ,s (cf. the proof of the
first Claim in Section 4.5). Taking a basis for each factor, consider the basis of V
obtained by taking the union of these bases. Then, in this basis, G will be in block
upper triangular form:

g =


M1(g) ∗ · · · ∗

0 M2(g) · · · ∗
...

...
. . .

...
0 0 · · · Ms(g)

 ,

for every g ∈ G, where Mi(g) ∈ GL(Vi/Vi−1), i = 1,2, . . . ,s. Consider now the ho-
momorphism

g 7→ ϕ(g) :=


M1(g) 0 · · · 0

0 M2(g) · · · 0
...

...
. . .

...
0 0 · · · Ms(g)

 .

The kernel of this map consists of matrices of the form
In1 ∗ · · · ∗
0 In2 · · · ∗
...

...
. . .

...
0 0 · · · Ins


where Ini ∈ GL(ni,K) denotes the identity matrix and ni = dimK(Vi/Vi−1), i =
1,2, . . . ,s. Thus ker(ϕ), being a subgroup of UT(n,K), is a nilpotent group (cf. Ex-
ample 2.5.(b)). Since every nilpotent group is solvable, we deduce from Theorem
6.12 and the hypothesis that G is torsion, that ker(ϕ) is locally finite. On the other
hand, the image of ϕ is a finite direct product of linear groups acting irreducibly, by
construction. Hence if we know the result for G acting irreducibly, then ϕ(G), being
the finite direct product of locally finite groups, is locally finite by Lemma 6.8. We
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then deduce that G, being an extension of locally finite groups, is locally finite by
applying once more Lemma 6.8. Since G is finitely generated, it is in fact finite.

To finish the proof, we need some more Wedderburn theory (cf. Section 4.4).
Let A be an algebra, A ⊆ EndK(V ) with n :=dimKV < ∞ and suppose that A

acts irreducibly. Then A acts completely reducibly on V and therefore, by Proposi-
tion 4.29, its radical vanishes: N(A) = {0}. Then, since K is algebraically closed,
Wedderburn’s Theorem (Theorem 4.20) guarantees that A ∼= A/N(A) ∼= Mn1(K)⊕
·· · ⊕Mnr(K). Let us show that A is in fact simple, that is, that r = 1. Suppose,
by contradiction, that r ≥ 2. Let e1 denote the identity of Mn1(K) ⊆ A (here we
are identifying Mn1(K) with the corresponding ideal of A). Then e1V is a proper
A-submodule of V , contradicting the irreducibility of the action of A on V . Thus
A ∼= Ms(K) ⊆ EndK(V ) ∼= Mn(K). In particular, s ≤ n. Let us show that, in fact,
s = n, so that A = EndK(V )∼= Mn(K).

Choosing a suitable basis of V , we can assume that E1,1, the matrix that has 1 in
the (1,1) position and zero elsewhere, belongs to A. Since E1,1V 6= {0}, we can find
a vector v ∈ V such that E1,1v 6= 0. Now, AE11v is an A-submodule of V , therefore
AE1,1v = V , since V is A-irreducible. Moreover, AE1,1 is the set of matrices with
possibly nonzero entries only in the first column, i.e. of the form

∗ 0 · · · 0
∗ 0 · · · 0
...

...
. . .

...
∗ 0 · · · 0

 ∈Ms(K).

Now dimKV = dimK Ae11v≤ s, so that n≤ s. Hence n = s, and A = EndK(V ). We
just proved:

Theorem 6.14 (Wedderburn). LetK be an algebraically closed field and let V be a
finite-dimensional vector space overK. Suppose that A⊆ EndK(V ) acts irreducibly
on V . Then A = EndK(V ). �

Corollary 6.15 (Burnside). Let K be an algebraically closed field and let V be a
finite-dimensional vector space over K. If G⊆ GL(V ) and G acts irreducibly on V ,
then spanK(G) = EndK(V ). �

We now finish the proof of the Burnside Theorem for linear groups.
Recall that G ≤ GL(n,K), G is finitely generated and there exists a positive in-

teger d such that gd = 1 for all g ∈ G. Also, by the preceding arguments, we may
assume that G acts irreducibly. Then, by Corollary 6.15, G spans Mn(K). Hence
there exist g1,g2, . . . ,gn2 ∈ G which form a basis for Mn(K). Let g ∈ G. Observe
that since K is algebraically closed g is triangularizable, that is, g is similar to a
matrix of the form 

α1 ∗ · · · ∗
0 α2 · · · ∗
...

...
. . .

...
0 0 . . . αn
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where α1,α2, . . . ,αn ∈ K. Since gd = 1, we have αd
i = 1 for all i. It follows that

we have at most d possible values for each αi. This implies that, as g varies in G,
the distinct values of the traces tr(g) are at most dn. Hence the number of distinct
n2-tuples (tr(g1g), tr(g2g), . . . , tr(gn2g)) as g varies in G is at most (dn)n2

= dn3
.

Claim. Given g ∈G, the tuple (tr(g1g), tr(g2g), . . . , tr(gn2g)) determines g uniquely.
We first observe that the bilinear form f : Mn(K)×Mn(K) → K defined by

f (a,b) := tr(ab) for all a,b ∈Mn(K) satisfies the condition

f (ab,c) = f (a,bc)

for all a,b,c ∈ Mn(K). It follows that the set I = {a ∈ Mn(K) : f (a,b) = 0 for all
b ∈ Mn(K)} is an ideal of Mn(K). As the algebra Mn(K) is simple (exercise), we
have that I = {0}, equivalently, f is non-degenerate.

Let then g′,g′′ ∈G and suppose that tr(gig′) = tr(gig′′) for all i = 1,2, . . . ,n2. By
subtracting we get tr(gi(g′− g′′)) = 0 for i = 1, . . . ,n2. Since the gi’s span Mn(K),
this implies f (a,(g′− g′′)) = tr(a(g′− g′′)) = 0 for all a ∈ Mn(K). It follows that
g′−g′′ = 0 by the non-degeneracy of f . The claim follows.

All this shows that there are finitely many possibilities for g ∈ G. Hence G is
finite, and this finishes the proof of the Burnside theorem for linear groups. �

6.5 The Golod–Shafarevich Construction

In this section we describe the negative solution to the General Burnside Problem
provided by Golod and Shafarevich.

It turns out that their solution goes through the negative solution to a problem in
associative algebras strictly connected to the General Burnside Problem.

LetK be a field and let A be an associative algebra overK. For two subsets S and
T of such an algebra we set ST :=spanK{st | s ∈ S, t ∈ T}. For a positive integer n,
we denote by Sn the product SS · · ·S of S with itself n times: by associativity, this is
well defined.

Definition 6.16. An element a ∈ A is called nilpotent if there exists an integer n≥ 1
such that an = 0. We say that A is a nil algebra if every a ∈ A is nilpotent. We say
that A is nilpotent if there exists an integer n≥ 1 such that An = {0}.

Note that every nilpotent algebra is nil. Conversely, we have the following theo-
rem, whose proof is left as an exercise.

Theorem 6.17 (Wedderburn). A finite-dimensional nil algebra is nilpotent.

Remark 6.18. In fact, Wedderburn proved even more, namely that a finite-dimens-
ional algebra which admits a linear basis consisting of nilpotent elements is nilpo-
tent.

The following problem is related to the General Burnside Problem.
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Problem 6.19 (Kurosh–Levitzky). Let A be a finitely generated nil algebra. Does
this imply that A is nilpotent (and hence finite-dimensional)?

An algebra in which any finitely-generated subalgebra is nilpotent is called lo-
cally nilpotent. The following proposition is somewhat similar to Lemma 6.8. Its
proof is left as an exercise.

Proposition 6.20. Let A be a algebra. Let I ≤ A be an ideal and suppose that both
A/I and I are locally nilpotent. Then A is locally nilpotent.

So for any associative algebra A there exists a largest locally nilpotent ideal which
is called the Levitzky radical.

Remark 6.21. In analogy with the reformulation of the General Burnside Problem,
the Kurosh–Levitzky Problem asks whether nil and local nilpotence are equivalent
conditions.

The answer to the Kurosh–Levitzky Problem is negative. To see this, we fix some
notation.

Let K be a field. Denote by K〈x1,x2, . . . ,xn〉=K〈X〉 the free associative algebra
with coefficients in K freely generated by X = {x1,x2, . . . ,xn}. We simply call it the
free algebra generated by X .

Let R⊆K〈X〉 be any subset. We denote by (R) the (two-sided) ideal generated by
R, i.e. the set consisting of all finite sums ∑i airibi where ri ∈ R and ai,bi ∈ K〈X〉.
We then say that the algebra K〈X〉/(R) has the presentation 〈X | R〉 and that the
elements of X (resp. R) are the corresponding generators (resp. relators).

A unital algebra A is said to be graded if it has a direct sum decomposition into
K-subspaces

A = A0⊕A1⊕A2⊕·· ·=
⊕
i∈N

Ai (6.1)

where A0 :=K1A and AiA j ⊆ Ai+ j for all i, j = 0,1, . . . We say that the elements of
Ai are the homogeneous elements of degree i. An ideal I of a graded algebra A is said
to be homogeneous provided that for every element a ∈ I, the homogeneous parts
of a are also contained in I. If I is a homogeneous ideal of a graded algebra A, then
A/I is also a graded algebra, and it has decomposition

A/I =
⊕
i∈N

(Ai + I)/I.

Example 6.22. (1) Let X be a set. Then the free algebra K〈X〉 generated by X is
graded. Indeed, the homogeneous elements of degree i are the homogeneous (non-
commutative) polynomials of degree i together with the 0 polynomial.

(2) The algebra A :=K[x1, . . . ,xn] of (commutative) polynomials with coeffi-
cients in K is also graded. Here, the homogeneous elements of degree i are the
homogeneous (commutative) polynomials of degree i together with the 0 polyno-
mial.

Let A be a graded algebra as in (6.1) and suppose that dimK Ai < ∞ for all i. Then
the associated Hilbert series is the formal power series



94 6 The Burnside Problem

HA(t) :=∑
i≥0

dimK(Ai)t i.

Given two formal powers series ∑i≥0 ait i and ∑i≥0 bit i, we write

∑
i≥0

ait i �∑
i≥0

bit i

provided that ai ≤ bi for all i≥ 0, and define their product as

∑
k≥0

cktk :=

(
∑
i≥0

ait i

)(
∑
j≥0

b jt i

)

where
ck :=a0bk +a1bk−1 + · · ·+akb0

for all k ≥ 0.
Suppose that R⊆K〈X〉 is a subset consisting of homogeneous linearly indepen-

dent elements of degree ≥ 2, and let ri denote the number of elements of degree i in
R for all i≥ 2. We set

HR(t) :=r2t2 + r3t3 + · · · .

Then the ideal (R) generated by R is a graded ideal and the algebra A = 〈X |
R〉 :=K〈X〉/(R) is a graded algebra.

The following theorem constitutes the key ingredient of the Golod–Shafarevich
construction.

Theorem 6.23 (Golod–Shafarevich). With the above notation we have

HA(t)(1−nt +HR(t))� 1. (6.2)

Before proving the theorem, let us show how we can derive from it a negative
answer to the Kurosh–Levitzky Problem.

Suppose that we manage to find a real number 0 < t0 < 1 such that

(1) HR(t) converges at t0 and
(2) 1−nt0 +HR(t0)< 0.

Then HA(t) does not converge at t0. In fact if it converges, then necessarily HA(t0)≥
0, since t0 > 0, which, together with (2), contradicts (6.2). This implies that A is
infinite-dimensional: in fact for a finite-dimensional algebra A, the power series
HA(t) is a polynomial, which converges everywhere.

Remark 6.24. This argument can be used in several ways to conclude that an alge-
bra with a given presentation is infinite-dimensional.

For example, suppose that we are given a finite subset R ⊆ K〈X〉2 of quadratic
relators such that r := |R| < n2/4 (recall that n = |X |). Then for t = 2/n, one has
1−nt +HR(t) = 1−nt + rt2 < 0, and therefore the algebra A = 〈X | R〉 is infinite-
dimensional.
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Let K be countable, and observe that K〈X〉 is also countable. Denote by K0〈X〉
the ideal ofK〈X〉 consisting of all elements with 0 constant term and let a1,a2, . . . be
an enumeration of all the elements of K0〈X〉. Finally, recursively define R⊆K0〈X〉
as follows. Let R1 ⊆K0〈X〉 be the set of all homogeneous components of (a1)

2 and
let n2 ∈ N be greater than the degrees of all elements in R1.

Example 6.25. If a1 = x1+x2x3, then a2
1 = x2

1+x1x2x3+x2x3x1+x2x3x2x3, so R1 =
{x2

1,x1x2x3 + x2x3x1,x2x3x2x3}. Here we can take n2 ≥ 5.

Suppose we have defined Ri ⊆ K0〈X〉 and ni+1 ∈ N. Then we define Ri+1 ⊆
K0〈X〉 as the set of all homogeneous components of (a1)

2,(a2)
n2 , . . . ,(ai+1)

ni+1

and we choose ni+2 ∈ N greater than the degrees of all elements in Ri+1. Note that
Ri ⊆ Ri+1. We then set R :=

⋃
i≥1 Ri.

Remark 6.26. The choice of starting with a2
1 is made in order to ensure that all the

elements of R have degree at least 2 (recall that the ai’s have zero constant term).

Set
B :=K0〈X〉/(R).

We first notice that B is nil. Indeed, R contains all the homogeneous components
of (ai)

ni for all i ≥ 1, so that every element of B is nilpotent. Note that B is clearly
finitely generated, so in order to prove that B is a counterexample to the Kurosh–
Levitzky problem, we only need to show that it is infinite-dimensional.

Consider now the (graded) algebra A :=K〈X〉/(R) and observe that A∼=K1A⊕B
as vector spaces, so that B is infinite-dimensional if and only if A is. Now, to prove
that dimK A is infinite, it will be enough to show that there exists a t0 such that
1− nt0 +∑i≥2 rit i

0 < 0. Recall that ri is the number of homogeneous elements of
degree i in R. By construction, the ri’s are either 0 or 1, hence we can assume that
ri = 1 for all i, since ∑i≥2 rit i � ∑i≥2 t i.

Now 1−nt +∑i≥2 t i converges for all 0 < t < 1 and for these values of t we have

1−nt +∑
i≥2

t i = 1−nt +
t2

1− t
=

(n+1)t2− (n+1)t +1
1− t

.

Consider the inequality

(n+1)t2− (n+1)t +1
1− t

< 0. (6.3)

The discriminant of the quadratic polynomial at the numerator of (6.3) is positive
for n≥ 4 and, in this case, the corresponding roots are

α
± :=

n+1±
√
(n+1)2−4(n+1)
2(n+1)

.

Note that 0 < α− < α+ < 1 and that (6.3) is satisfied for every α− < t < α+. It
follows that we can find 0 < t0 < 1 such that 1−nt0 +HR(t0)< 0.

This completes the proof that A is infinite-dimensional over K, so that B is a
counterexample to the Kurosh–Levitzky problem.
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Proof of the Golod–Shafarevich theorem (Theorem 6.23). It is straightforward to
check the inequalities implicit in (6.2) for the constant term and the coefficient of
t. Indeed for the constant term it reduces to 1 ≥ 1, while for the coefficient of t, it
reduces to dimK A1−n = n−n≥ 0.

To check it for the other coefficients, we proceed as follows. Let K〈X〉 =⊕
i≥0K〈X〉i be the decomposition in homogeneous components, so that we have

dimKK〈X〉i = ni. Set I :=(R), and denote by I =
⊕

i≥2 Ii the decomposition of the
graded ideal I into homogeneous components (note that Ii = I ∩K〈X〉i for all i).
Also set ai :=dimK Ai and observe that we have dimK Ii = ni− ai. Moreover, set
Ri :=R∩K〈X〉i and ri = |Ri| for all i. For every i we choose a subspace Ãi such that
K〈X〉i = Ii⊕ Ãi, so that dimK Ãi = ai.

We clearly have I =K〈X〉R+ IX . It follows that

Is =
s

∑
i=2
K〈X〉s−iRi + Is−1X

for all s≥ 2. In fact, we have

Is =
s

∑
i=2

Ãs−iRi + Is−1X

for s≥ 2. To see this, it is enough to observe that Is−iRi ⊆ Is−1X for i≥ 2, so that

Is =
s

∑
i=2
K〈X〉s−iRi + Is−1X =

s

∑
i=2

(Is−i⊕ Ãs−i)Ri + Is−1X

=
s

∑
i=2

Ãs−iRi +
s

∑
i=2

Is−iRi + Is−1X =
s

∑
i=2

Ãs−iRi + Is−1X .

Hence, looking at the dimension over K of these subspaces, we deduce that

ns−as ≤
s

∑
i=2

as−iri +(ns−1−as−1)n,

that is,

as +
s

∑
i=2

as−iri−nas−1 ≥ 0.

It remains only to notice that, for s≥ 1, the coefficient of ts in HA(t)(1−nt+HR(t))
is exactly as−nas−1 +∑

s
i=2 as−iri. �

We are now going to use our counterexample to the Kurosh–Levitzky problem to
produce a counterexample to the General Burnside Problem.

Let K be a countable or finite field of characteristic ch(K) = p > 0. Consider the
algebra A that we just constructed. We have A = K1⊕B as vector spaces, where
1 = 1A is the unit of the algebra A, and B = K0〈X〉/(R) is an infinite dimensional
nil algebra. Consider the set A× of all invertible elements of A.
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Now for every b ∈ B, the element 1+ b ∈ A is invertible, and in fact has finite
order. Indeed, since B is nil, there exists an `≥ 1 such that bp` = 0; hence (1+b)p` =

1+bp` = 1 (here we are using ch(K) = p > 0). It follows that 1+B⊆ A×.
Let us denote again by xi the cosets xi+(R) in A≡K〈X〉/(R), where xi ∈X . Then

the elements 1+ xi, i = 1,2, . . . ,n are invertible and torsion. Consider the subgroup
G ⊆ 1+B ⊆ A× generated by {1+ x1,1+ x2, . . . ,1+ xn}. This is clearly a finitely
generated torsion group.

Theorem 6.27. G is infinite.

Proof. Suppose not and assume |G| = d. Then every element g of G can be ex-
pressed as

g = (1+ xi1)(1+ xi2) · · ·(1+ xir)

with r < d (we don’t need the inverses, since (1+ x j)
k j = 1 for some k j). Indeed,

suppose that g = (1+ x j1) · · ·(1+ x j`) with ` minimal and ` ≥ d. Then at least two
of the d +1 elements

1,1+ x j1 ,(1+ x j1)(1+ x j2), . . . ,(1+ x j1)(1+ x j2) · · ·(1+ x jd )

must be equal, say (1+ x j1)(1+ x j2) · · ·(1+ x jh) and (1+ x j1)(1+ x j2) · · ·(1+ x jk),
where 0≤ h < k ≤ d. But then

g = (1+ x j1)(1+ x j2) · · ·(1+ x jh)(1+ x jk+1)(1+ x jk+2) · · ·(1+ x j`)

is a product of h+(`−k)<` generators, contradicting the minimality of `. So `< d.
Let us show that the set of products {x j1x j2 · · ·x jr : 1 ≤ ji ≤ n,1 ≤ i ≤ r < d}

spans B. To do so, it is sufficient to prove that every word w = xi1xi2 · · ·xid of length
d is a linear combination of shorter words.

We have

(1+ xi1)(1+ xi2) · · ·(1+ xid ) = (1+ x j1)(1+ x j2) · · ·(1+ x jr)

with r < d as we have just shown. Keeping the factor xi1xi2 · · ·xid on the left-hand
side, and bringing everything else to the right-hand side, gives the desired expression
of w as a linear combination of shorter words.

It follows that dimK A = 1+dimK B≤ 1+(1+n+ · · ·+nd−1), contradicting the
fact that A is infinite-dimensional. Therefore G must be infinite. �

6.6 Notes

William Burnside [47] solved the Bounded Burnside Problem for linear groups. Issai
Schur [305] proved the General Burnside Problem for linear groups. The Bounded
Burnside Problem has been checked for exponent n = 2 (trivial: abelian groups),
n = 3 (Burnside [46]), n = 4 (Ivan N. Sanov [302]) and n = 6 (Marshall Hall [153]).



In 1964 Evgenii S. Golod and Igor R. Shafarevich [125] constructed a 2-
generated infinite p-group, thus providing a counterexample to the General Burnside
Problem.

In 1980 Rostislav I. Grigorchuk [129] constructed his renowned group of inter-
mediate growth which, among other most important properties, provides a negative
solution to the General Burnside Problem. See the Notes to Chapter 7 for more on
the Grigorchuk group.

In 1968 Pëtr S. Novikov and Sergei I. Adyan [258] found a counterexample to
the Bounded Burnside Problem for all odd exponents n≥ 4381.

In 1992 both Sergei V. Ivanov and Igor Lysënok announced a counterexample to
the Bounded Burnside Problem for all but finitely many exponents: Ivanov [188] for
n≥ 248 and Lysënok [220] for n≥ 8000.

In 1980 Alexander Yu. Olshanskii [260] constructed the so-called Tarski mon-
sters. A Tarski monster is an infinite group G such that every proper subgroup H of
G, other than the identity subgroup, is a cyclic group of order a fixed prime number
p. Such a group G is necessarily finitely generated. In fact it is clearly generated by
every two non-commuting elements. Then Olshanskii showed that there is a Tarski
p-group for every prime p > 1075.

In 1991 Efim I. Zelmanov [361, 362] gave a positive solution to the Restricted
Burnside Problem.

The Kurosh–Levitzky problem goes back to Alexander G. Kurosh [206] and
Jakob Levitzky [214] in the early 1940s.

For a comprehensive relatively recent account on the Burnside problem, we also
refer to Adyan’s survey [3].

6.7 Exercises

Exercise 6.1. Show that the class of locally finite groups is closed under taking
subgroups, homomorphic images, and finite direct products.

Exercise 6.2. Let K be a field. Show that the algebra Mn(K) is simple.

Exercise 6.3. Show that a finitely-dimensional algebra which admits a linear ba-
sis consisting of nilpotent elements is nilpotent. This proves Wedderburn theorem
(Theorem 6.17).

98 6 The Burnside Problem



Part II
Geometric Theory



Chapter 7
Finitely Generated Groups and their Growth
Functions

This chapter is devoted to the growth of finitely generated groups. The choice of a
finite symmetric generating subset X ⊆ G for a finitely generated group G defines
a word metric dX on the group and a labelled graph Cay(G,X), which is called the
Cayley graph of G with respect to X . The associated growth function bX (n) counts
the number of group elements in a ball of radius n with respect to the word metric.
We define a notion of equivalence for such growth functions and observe that the
growth functions of a given group G associated with different finite symmetric gen-
erating subsets are in the same equivalence class (Corollary 7.10). This equivalence
class, denoted by bG, is called the growth type of the group G. The important no-
tions of (sub-)polynomial, sub-exponential, and exponential growth are introduced
in Section 7.4. In the following sections we define the growth rate βX ∈ [1,+∞) of G
with respect to X and study the growth of subgroups and quotients. In Section 7.7 we
show that a group of linear growth is virtually infinite cyclic: this is Justin’s theorem
(Corollary 7.27). In Section 7.8 we study the growth of finitely generated nilpotent
groups: these have polynomial growth. We then present the Bass–Guivarc’h for-
mula for the corresponding degree of polynomial growth (Theorem 7.29). Finally,
in Section 7.9 we present the theorems of Milnor (Theorem 7.36) and Wolf (The-
orem 7.37) and deduce that finitely generated solvable groups of sub-exponential
growth are virtually nilpotent, and hence have polynomial growth (Corollary 7.41).

7.1 The Word Metric

Let G be a group. Recall that a subset X ⊆ G is said to generate G, and we
write 〈X〉 = G, provided that every element g ∈ G can be expressed as a product
of elements in X ∪ X−1, where X−1 = {x−1 : x ∈ X}, that is, there exist n ≥ 0,
x1,x2, . . . ,xn ∈ X and ε1,ε2, . . . ,εn ∈ {1,−1} such that

g = xε1
1 xε2

2 · · ·x
εn
n . (7.1)

A subset X ⊆ G is called symmetric if X = X−1, that is, if x−1 ∈ X for all x ∈ X .
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Moreover, one says that G is finitely generated if it admits a finite generating
subset. Note that if G is finitely generated then it admits a finite generating subset
which is symmetric.

Let G be a finitely generated group and let X be a finite symmetric generating
subset of G. The word length `X (g) of an element g ∈ G with respect to X is the
minimal integer n≥ 0 such that g can be expressed as a product of n elements in X ,
that is,

`X (g) :=min{n≥ 0 : g = x1x2 · · ·xn, xi ∈ X ,1≤ i≤ n}. (7.2)

Consider the map dX : G×G→ N defined by

dX (g,h) :=`X (g−1h) (7.3)

for all g,h ∈ G.
The proof of the following lemma is left as an exercise.

Lemma 7.1. The map dX is a left-invariant metric on G. In other words:

(i) dX (g,h) = 0 if and only if g = h;
(ii) dX (g,h) = dX (h,g) (symmetry);

(iii) dX (g,h)≤ dX (g,k)+dX (k,h) (triangular inequality);
(iv) dX (kg,kh) = dX (g,h) (invariance by left multiplication),

for all g,h,k ∈ G.

The metric dX is called the word metric on G associated with the finite symmetric
generating subset X .

As a consequence of the left-invariance of dX , for every k∈G the map Lk : G→G
defined by Lk(g) = kg for all g ∈G is an isometry of the metric space (G,dX ). Note
that the map L : G→ Isom(G,dX ), k 7→ Lk, where Isom(G,dX ) denotes the group of
all isometries of (G,dX ), is injective.

For g ∈ G and n ∈ N, we denote by

BX (g,n) :={h ∈ G : dX (g,h)≤ n}

the ball of radius n in G centered at the element g ∈ G with respect to X .
Note that BX (1G,n) = {h ∈G : `X (h)≤ n}= {x1x2 · · ·xm : xi ∈ X ,0≤m≤ n} so

that, in particular, BX (1G,0) = {1G}, and

BX (1G,0)⊆ BX (1G,1)⊆ BX (1G,2)⊆ ·· · (7.4)

Moreover, the map Lg induces, by restriction, an isometry from BX (1G,n) onto
BX (g,n) for all g∈G so that, in particular, |BX (1G,n)|= |BX (g,n)| for all n∈N and
g ∈ G.

For n ∈ N, we set bX (n) := |BX (1G,n)|. Observe that bX (0) = 1 and

bX (0)≤ bX (1)≤ bX (2)≤ ·· · , (7.5)

which immediately follows from (7.4).
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Also note that the group G is finite if and only if the sequence (BX (1G,n))n∈N
(resp. (bX (n))n∈N) eventually stabilizes, i.e., there exists an n0 ∈ N such that
BX (1G,n) = BX (1G,n0) (resp. bX (n) = bX (n0)) for all n≥ n0.

7.2 Cayley Graphs

In this section we rephrase in a more geometric and pictorial way the material pre-
sented in the previous section.

Let G be a finitely generated group and let X be a finite symmetric generating
subset of G.

Definition 7.2. The Cayley graph of G with respect to X is the X-labelled graph
Cay(G,X) = (V,E), where the set of vertices is V :=G and the set of (X-labelled)
edges is E :={(g,x,gx) : g ∈ G and x ∈ X} ⊆ G×X×G.

Let α (resp. ω , resp. λ ) denote the map E → V (resp. E → V , resp. E → X)
defined for all e = (g,x,h) ∈ E by α(e) :=g (resp. ω(e) :=h, resp. λ (e) :=x). We
then call α(e) (resp. ω(e), resp. λ (e)) the initial vertex (resp. the terminal vertex,
resp. the label) of e ∈ E.

Note that, since X is symmetric, the inversion map x 7→ x−1 is an involution on
X . Moreover, if e = (g,x,h) ∈ E (so that h = gx), then, since g = (gx)x−1 = hx−1,
we have that the inverse edge e−1 :=(h,x−1,g) also belongs to E. One then says that
the Cayley graph Cay(G,X) is edge-symmetric with respect to the inversion map on
X . We say that g,h ∈ G are neighbors, and we write g∼ h, provided there exists an
e ∈ E such that α(e) = g and ω(e) = h; since one always has ω(e) = α(e−1) and
α(e) = ω(e−1), it is clear that ∼ is a symmetric relation.

Moreover, Cay(G,X) is connected, that is, given g,h ∈ G there exists a finite
sequence π :=(ei)

n
i=1 of edges in E such that α(e1) = g, ω(ei) = α(ei+1) for

i = 1,2, . . . ,n− 1, and ω(en) = h; such a sequence π of edges is then called a
path connecting g to h and the integer `(π) :=n is called its length. Indeed, as X
generates G, we can find a nonnegative integer n and x1,x2, . . . ,xn ∈ X such that
g−1h = x1x2 · · ·xn. Then the path π = (e1,e2, . . . ,en), where

ei = (gx1x2 · · ·xi−1,xi,gx1x2 · · ·xi−1xi),

i = 1,2, . . . ,n, connects g to h = gx1x2 · · ·xn.
Also Cay(G,X) is regular, that is, for every g ∈G the number of h ∈G such that

g∼ h, is constant (does not depend on g). This number, which clearly equals |X |, is
called the degree of Cay(G,X).

Given two vertices g,h ∈V = G of the Cayley graph G :=Cay(G,X), we set

dG (g,h) :=min{`(π) : π a path connecting g to h}. (7.6)

A path π of minimal length connecting g to h, that is, such that `(π) = dG (g,h), is
called a geodesic path from g to h.
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We leave it as an exercise to show that the map dG : V ×V → N defines a metric
on V =G called the geodesic metric on G . In fact, we have the following proposition
whose proof is left as an exercise.

Proposition 7.3. Let G be a finitely generated group. Let X be a finite symmetric
generating subset of G. Then, the word distance of two group elements with respect
to X equals the geodesic distance of the same elements viewed as vertices in the
associated Cayley graph G = Cay(G,X). In other words,

dX (g,h) = dG (g,h) (7.7)

for all g,h ∈ G.

Example 7.4. We graphically represent Cayley graphs by connecting two neighbor-
ing vertices g,h∈G by a single directed arc e labelled by λ (e)∈ X (see Figure 7.1).
Thus, one should think of the inverse edge e−1 as the oppositely directed arc with
label λ (e−1) = λ (e)−1.

g gx

x

g gx

x−1

Fig. 7.1 The edges e = (g,x,gx) (with α(e) = g, ω(e) = gx, and λ (e) = x) and e−1 = (gx,x−1,g)
(with α(e) = gx, ω(e) = x, and λ (e−1) = x−1).

(a) Let G = Z and take X = {1,−1} as a finite symmetric generating subset of
G. Then the Cayley graph Cay(Z,X) is represented in Figure 7.2.

1 2 3 4
· · ·

0−1−2−3−4
· · ·

Fig. 7.2 The Cayley graph of G = Z for X = {1,−1}

(a’) Let G = Z and take X = {1,0,−1} as a finite symmetric generating subset
of G. Then the Cayley graph Cay(Z,X) is represented in Figure 7.3. Note that as
0 = 1Z ∈ X , we have a loop at each vertex in Cay(Z,X).

1 2 3 4
· · ·

0−1−2−3−4
· · ·

Fig. 7.3 The Cayley graph of G = Z for X = {1,0,−1}
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(a”) Let G=Z and X = {2,−2,3,−3}. Note that X generates G (exercise). Then,
the corresponding Cayley graph Cay(Z,X) is represented in Figure 7.4.

4 6

· · ·

22222222

2222222

3 3 3 3 3 3 3
3 3 3 3 3 3 3

531−1−3−5· · ·

· · ·20−2−4−6· · · · · ·

Fig. 7.4 The Cayley graph of G = Z for X = {2,−2,3,−3}.

(b) Let G = Z2 and consider the finite and symmetric generating subset X =
{(1,0),(−1,0),(0,1),(0,−1)}. Then, the corresponding Cayley graph Cay(Z2,X)
is represented in Figure 7.5.

(0,0) (1,0)

(0,1)

· · ·
...

· · ·...

· · ·
...

· · · ...

Fig. 7.5 The Cayley graph of G = Z2 for X = {(1,0),(−1,0),(0,1),(0,−1)}

(b’) Let G = Z2 and take

X = {(1,0),(−1,0),(0,1),(0,−1),(1,1),(−1,1),(1,−1),(−1,−1)}.

Then, the corresponding Cayley graph Cay(Z2,X) is as in Figure 7.6.
(c) Let G = Fk be the free group of rank k≥ 1. Let {a1,a2, . . . ,ak} be a free basis

and set X = {a1,a−1
1 ,a2,a−1

2 , . . . ,ak,a−1
k }. Then, the Cayley graph Cay(Fk,X) is a

regular tree of degree 2k (see Figure 7.7).
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(0,0) (1,0)

(0,1)

· · ·
...

· · ·...

· · ·
...

· · · ...

Fig. 7.6 The Cayley graph of G = Z2 for X = {(1,0), (−1,0), (0,1), (0,−1), (1,1), (−1,1),
(1,−1), (−1,−1)}

1

b

b−1

a−1
a

Fig. 7.7 The Cayley graph of G = F2 for X = {a,a−1,b,b−1}.
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7.3 Growth Functions

Let G be a finitely generated group and let X be a finite and symmetric generating
subset of G. The growth function of G relative to X is the function bX : N→ N
defined by

bX (n) = |BX (1G,n)|= |{g ∈ G : `X (g)≤ n}| (7.8)

for all n ∈ N.
Recall that bX (0) = |BX (1G,0)|= |{1G}|= 1 and that bX (n)≤ bX (n+1) for all

n ∈ N. Also, as the map (x1,x2, . . . ,xn) 7→ x1x2 · · ·xn is a surjection from
(X ∪{1G})×n onto BX (n), one has

bX (n)≤ |X ∪{1G}|n (7.9)

for all n≥ 2.

Example 7.5. (a) Let G = Z and consider the finite symmetric generating subset
X = {1,−1}. Then the ball BX (0,n) of radius n centered at the identity element 0
is the interval [−n,n] = {−n,−n+ 1, . . . ,−1,0,1, . . . ,n− 1,n}, see Figure 7.8. We
thus have bX (n) = 2n+1.

n+1 n+2 n+3 n+4 · · ·nn−1n−2n−3n−4· · ·

Fig. 7.8 The ball BX (n,2)⊂ Z with X = {1,−1}.

(b) Let G = Z2 and let X = {(1,0),(−1,0),(0,1),(0,−1)}. Then the ball of ra-
dius n centered at the identity element (0,0) is BX ((0,0),n) = {(i, j)∈G : |i|+ | j| ≤
n}, that is, the diagonal square with vertices (r,0),(−r,0),(0,−r),(0,r), see Figure
7.9. We have bX (n) = 1+∑

n
k=1 4k = 2n2 +2n+1.

(c) Let G = Z2 and consider now the new finite symmetric generating subset

X ′ = {(1,0),(−1,0),(0,1),(0,−1),(1,1),(−1,1),(1,−1),(−1,−1)}.

Then the ball of radius n centered at the identity element (0,0) is BX ′((0,0),n) =
{(i, j) ∈ G : |i| ≤ n, | j| ≤ n}, that is, the square [−r,r]× [−r,r], see Figure 7.10. We
have bX ′(n) = (2n+1)2 = 4n2 +4n+1.

(d) For G = Z×Z2 and X = {(1, 0̄),(−1, 0̄),(0, 1̄)} the ball of center (n, 0̄) and
radius 4 is shown in Figure 7.11.

(e) Let G = Fk be the free group of rank k≥ 2. Let {a1,a2, . . . ,ak} be a free basis
and set X = {a1,a−1

1 ,a2,a−1
2 , . . . ,ak,a−1

k }. Then the ball of radius r centered at the
element g ∈ G is the finite tree rooted at g of depth r (see Figure 7.12). We have

bX (n) = 1+2k
n−1

∑
j=0

(2k−1) j =
k(2k−1)n−1

k−1
.
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(a,b) (a+r,b)(a−r,b)

(a,b+r)

(a,b−r)

Fig. 7.9 The ball BX ((a,b),r)⊂ Z2 with X = {(1,0),(−1,0),(0,−1),(0,1)}.

(a,b)

Fig. 7.10 The ball BX ′ ((a,b),r) ⊂ Z2 with X ′ = {(1,0), (−1,0), (0,−1), (0,1), (1,1), (−1,1),
(1,−1), (−1,−1)}.
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(n+4, 0̄) · · ·

(n+3, 1̄) · · ·(n−3, 1̄)· · ·

(n, 0̄)(n−4, 0̄)· · ·

Fig. 7.11 The ball BX ((n, 0̄),4)⊂ Z×Z2 with X = {(1, 0̄),(−1, 0̄),(0, 1̄)}.

1

b

b−1

a−1
a

Fig. 7.12 The ball BX (a,2)⊂ F2 with X = {a,a−1b,b−1}.

7.4 Growth Types

Recall that two metrics d and d′ on a set Z are said to be Lipschitz-equivalent if
there exist constants c,C > 0 such that

cd(z1,z2)≤ d′(z1,z2)≤Cd(z1,z2)

for all z1,z2 ∈ Z.

Proposition 7.6. Let G be a finitely generated group and let X and X ′ be two finite
symmetric generating subsets of G. Then, there exist two real numbers c and C with
0 < c≤ 1≤C satisfying

cdX (g1,g2)≤ dX ′(g1,g2)≤CdX (g1,g2)

for all g1,g2 ∈ G. In particular, dX and dX ′ are Lipschitz-equivalent.
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Proof. Set C :=max{`X (x′) : x′ ∈ X ′}. If g ∈ G satisfies `X (g) = n then there exist
x1,x2, . . . ,xn ∈ X such that g = x1x2 · · ·xn. We then get

`X ′(g) = `X ′(x1x2 · · ·xn)≤
n

∑
i=1

`X ′(xi)≤Cn =C`X (g).

This shows that `X ′(g) ≤ C`X (g) for all g ∈ G. As a consequence, for all g,h ∈ G
we have that

dX ′(g,h) = `X ′(g
−1h)≤C`X (g−1h) =CdX (g,h).

Setting c :=1/max{`X ′(x) : x ∈ X} and exchanging the roles of X and X ′ in the
previous argument one shows that cdX (g,h) ≤ dX ′(g,h) for all g,h ∈ G. It follows
that dX and dX ′ are Lipschitz-equivalent. �

Definition 7.7. A non-decreasing function f : N→ [0,+∞) is called a growth func-
tion.

Let f , f ′ : N→ [0,+∞) be two growth functions. We say that f ′ dominates f , and
we write f � f ′, if there exists an integer c≥ 1 such that

f (n)≤ c f ′(cn) for all n≥ 1.

We say that f and f ′ are equivalent and we write f ∼ f ′ provided that f � f ′ and
f ′ � f .

The proof of the following proposition is left as an exercise.

Proposition 7.8. The following hold:

(i) � is reflexive and transitive;
(ii) ∼ is an equivalence relation;

(iii) let f1, f2, f ′1, f ′2 : N→ [0,+∞) be growth functions. Suppose that f1 ∼ f ′1, f2 ∼
f ′2 and that f1 � f2. Then f ′1 � f ′2.

Let f : N→ [0,+∞) be a growth function. We denote by [ f ] the ∼-equivalence
class of f and we refer to it as to the asymptotic behavior of f . By abuse of notation,
we shall also write [ f ] ∼ f (n). If f1 and f2 are two growth functions, we write
[ f1] � [ f2] if f1 � f2. This definition makes sense by virtue of Proposition 7.8.(iii).
Note that, this way, � becomes a partial ordering on the set of equivalence classes
of growth functions.

Example 7.9. (a) Let α and β be nonnegative real numbers. Then nα � nβ if and
only if α ≤ β , and nα ∼ nβ if and only if α = β .

(b) Let f : N→ [0,+∞) be a growth function. Suppose that f is a polynomial of
degree d for some d ≥ 0. Then one has f (n)∼ nd .

(c) Let a,b ∈ (1,+∞). Then
an ∼ bn. (7.10)

We leave this as an exercise. In particular, we have an ∼ exp(n) for all a ∈ (1,+∞).
(d) Let d ≥ 0 be an integer. Then nd � exp(n) and nd 6∼ exp(n) (exercise). As

a consequence, if f : N→ [0,+∞) is a growth function such that f (n) � nd , then
f � exp(n) and f 6∼ exp(n).
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Corollary 7.10. Let G be a finitely generated group and let X and X ′ be two finite
symmetric generating subsets of G. Then, the growth functions associated with X
and X ′ are equivalent, that is, bX ∼ bX ′ . Moreover, bX (n)� exp(n).

Proof. From Proposition 7.6, there exists a C ≥ 1 such that

`X ′(g) = dX ′(1G,g)≤CdX (1G,g) =C`X (g),

hence

BX (1G,n) = {g ∈ G : `X (g)≤ n} ⊆ {g ∈ G : `X ′(g)≤Cn}= BX ′(1G,Cn).

This shows that bX (n) ≤ bX ′(Cn) ≤CbX ′(Cn) for all n ≥ 1, yielding bX � bX ′ . By
symmetry, we also have bX ′ � bX , hence bX ∼ bX ′ .

The last statement follows from (7.9). �

Let G be a finitely generated group. By the previous corollary, all growth func-
tions associated with finite symmetric generating subsets of G are in the same equiv-
alence class, which is called the growth type of G. We denote it by bG.

One says that G has exponential (resp. sub-exponential) growth if bG(n)∼ exp(n)
(resp. bG(n) 6∼ exp(n)).

One says that G has sub-polynomial growth (resp. polynomial growth) if there
exists an integer d ≥ 0 such that bG(n)� nd (resp. bG(n)∼ nd).

Remark 7.11. In the literature, in relation to the growth of groups, one often finds
that no distinction is made between the notions of “sub-polynomial” and “polyno-
mial” growth. Although, a priori, the two notions are distinct (and, in fact, are not all
equivalent outside the setting of the growth of groups: this is the case, for instance,
for the growth of finitely-generated algebras, where the so-called Gelfand–Kirillov
dimension plays the role of the present polynomial degree of growth) it turns out, as
a consequence of a deep theorem of Gromov (Theorem 12.1; cf. Corollary 12.24)
that for finitely generated groups the two notions coincide. For this reason, in the
study of the growth of groups, one often directly refers to “polynomial growth” hav-
ing in mind “sub-polynomial growth”. However, for the sake of clarity, we shall try
to keep these two notions distinct.

The proof of the following proposition is left as an exercise.

Proposition 7.12. (1) Let b : N→ [0,+∞) be a growth function with b(0)> 0. Then
b∼ 1 if and only if b is bounded.

(2) Let G be a finitely generated group. Then bG ∼ 1 if and only if G is finite. As
a consequence, all finite groups have the same growth type.

(3) Let G be a finitely generated group. Then G is infinite if and only if n� bG(n).
(4) Every finitely generated group of sub-polynomial growth (in particular, of

polynomial growth) has sub-exponential growth.
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7.5 The Growth Rate

In this section we give an analytic characterization of the exponential growth. It
relies on the following classical result in undergraduate-level analysis.

Lemma 7.13 (Fekete [111]). Let (an)n≥1 be a sequence of positive real numbers
such that an+m ≤ anam for all n,m≥ 1. Then the limit

lim
n→∞

n
√

an

exists and equals infn≥1 n
√

an.

Proof. Fix an integer t ≥ 1. Then for all n ≥ 1 there exist qn,rn ∈ N such that n =
tqn + rn and 0≤ rn < t. Then

an ≤ atqnarn ≤ aqn
t arn

so that, taking the n-th roots, a1/n
n ≤ aqn/n

t a1/n
rn .

As 0≤ rn/n < t/n and limn→∞ t/n = 0, we have that limn→∞ rn/n = 0 and

lim
n→∞

qn

n
= lim

n→∞

(
1
t
− rn

tn

)
=

1
t
.

In particular, limn→∞ aqn/n
t a1/n

rn = a1/t
t . Thus,

limsup
n→∞

a1/n
n ≤ limsup

n→∞

aqn/n
t a1/n

rn = lim
n→∞

aqn/n
t a1/n

rn = a1/t
t .

As t was arbitrary, it follows that

limsup
n→∞

n
√

an ≤ inf
t≥1

t
√

at ≤ liminf
t→∞

t
√

at ,

completing the proof. �

Proposition 7.14. Let G be a finitely generated group and let X be a finite symmetric
generating subset of G. Then, the limit

βX := lim
n→∞

n
√

bX (n) (7.11)

exists and βX ∈ [1,+∞).

Proof. Clearly BX (1G,n+m)⊆ BX (1G,n)BX (1G,m) and therefore

bX (n+m) = |BX (1G,n+m)| ≤ |BX (1G,n)BX (1G,m)|
≤ |BX (1G,n)| · |BX (1G,m)|= bX (n)bX (m).

Thus, the sequence (bX (n))n≥1 satisfies the hypotheses of the previous lemma and
βX exists and is finite. As bX (n)≥ 1 for all n ∈ N we also have βX ≥ 1. �
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Definition 7.15. The number βX in (7.11) is called the growth rate of G with respect
to X .

The proof of the proposition is left as an exercise.

Proposition 7.16. Let G be a finitely generated group and let X be a finite symmetric
generating subset of G. Then βX > 1 (resp. βX = 1) if and only if G has exponential
(resp. sub-exponential) growth. In particular, the condition βX > 1 (resp. βX = 1) is
independent of X.

Note that if X1,X2 ⊆G are two finite symmetric generating subsets of G then βX1
may differ from βX2 . The above proposition states that either βX1 > 1 and βX2 > 1,
or βX1 = 1 = βX2 .

7.6 Growth of Subgroups and Quotients

In the following, in order to avoid confusion with the ambient group, given a finitely
generated group G and a finite generating subset X ⊆ G, we denote by bG

X = bX the
corresponding growth function.

Proposition 7.17. Let G be a finitely generated group and let H be a finitely gener-
ated subgroup of G. Then bH � bG.

Proof. Let XG (resp. XH ) be a finite symmetric generating subset of G (resp. H).
Then the set X :=XH ∪XG is a finite symmetric generating subset of G. As XH ⊆ X
we have BXH (1H ,n)⊆ BX (1G,n) and therefore bH

XH
(n)≤ bG

X (n) for all n ∈ N. Thus,
bH � bG. �

Corollary 7.18. Every finitely generated group which contains a finitely generated
subgroup of exponential growth (e.g. a subgroup isomorphic to the free group F2)
has exponential growth. �

Example 7.19. Consider the groups SL(n,Z) = {A ∈Mn(Z) : detA = 1}, n≥ 2. For
n = 2 it is straightforward to check that the matrices

x1 =

(
1 1
0 1

)
and x2 =

(
1 0
1 1

)
generate SL(2,Z). Moreover, it follows from Example 1.19 that SL(2,Z) contains a
subgroup isomorphic to the free group F2. Hence SL(2,Z) has exponential growth.
We leave it as an exercise to show that for n≥ 3 the group SL(n,Z) is also finitely
generated and of exponential growth.

We now show that finitely generated groups and their finite index subgroups
(which are finitely generated as well, by Corollary 1.11) have the same growth type.

Proposition 7.20. Let G be a finitely generated group and let H be a finite index
subgroup of G. Then bH = bG.
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Proof. From Proposition 7.17 we have that bH � bG.
Let now X be a finite symmetric generating subset of G and S ⊆ G a transversal

of H in G. It follows from Proposition 1.9 that the (finite) set Y = {sx(sx)−1 : s ∈
S, x ∈ X} is a generating subset of H. Since X is symmetric, it follows from (1.11)
in the proof of Proposition 1.9 that Y is symmetric as well.

Let then g ∈ BX (1G,n) and write g = x1x2 · · ·xn, where x1,x2, . . . ,xn ∈ X . As in
the proof of Proposition 1.9 we may find s0 = 1G,s1, . . . ,sn ∈ S such that

g = x1x2 · · ·xn

= (1Gx1s−1
1 )(s1x2s−1

2 ) · · ·(sn−2xn−1s−1
n−1)(sn−1xns−1

n )sn

= h1h2 · · ·hn−1hnsn,

where si+1 = sixi+1 so that hi :=si−1xis−1
i ∈ Y ⊆ H, for i = 0,1, . . . ,n− 1. It fol-

lows that BX (1G,n)⊆ BY (1H ,n)S so that, taking cardinalities, and setting c := |S|=
[G : H],

bG
X (n) = |BX (1G,n)| ≤ |BY (1H ,n)| · |S|= cbH

Y (n)≤ cbH
Y (cn)

This shows that bG � bH . It follows from the beginning of the proof that bG = bH .
�

Proposition 7.21. Let G be a finitely generated group and let N be a normal
subgroup of G. Then the quotient group G/N is finitely generated and one has
bG/N � bG. If in addition N is finite, then bG/N = bG.

Proof. Let X be a finite symmetric generating subset of G and let π : G→G/N de-
note the quotient homomorphism. Then X ′ :=π(X) is a finite symmetric generating
subset of G/N. Thus, for all n ∈ N one has (exercise)

BX ′(1G/N ,n) = π(BX (1G,n)) (7.12)

and therefore

bG/N
X ′ (n) = |BX ′(1G/N ,n)|= |π(BX (1G,n))| ≤ |BX (1G,n)|= bG

X (n).

This shows that bG/N � bG.
Suppose now that N is finite. Then the map π is |N|-to-one. Moreover, from

(7.12) we deduce that BX (1G,n) ⊆ π−1(BX ′(1G/N ,n)). Thus, setting c := |N| we
have

bG
X (n) = |BX (1G,n)| ≤ |π−1(BX ′(1G/N ,n))|

= c|BX ′(1G/N ,n)|= cbG/N
X ′ (n)≤ cbG/N

X ′ (cn).

This shows that bG � bG/N . From the first part of the statement it follows that
bG/N = bG. �

The proof of the following lemma is left as an exercise.
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Lemma 7.22. Let f1, f2, f ′1, f ′2 : N→ [0,+∞) be growth functions. Suppose that fi �
f ′i , i = 1,2. Then the products f1 f2, f ′1 f ′2 : N→ [0,∞) are also growth functions and
one has f1 f2 � f ′1 f ′2.

Given two growth functions f1 and f2 we set [ f1] · [ f2] :=[ f1 f2]. This is well
defined by virtue of Lemma 7.22.

The proof of the following proposition is left as an exercise.

Proposition 7.23. Let G1 and G2 be two finitely generated groups. Then the direct
product G1×G2 is also finitely generated and bG1×G2 = bG1bG2 .

From Example 7.5.(a) and Proposition 7.23 one immediately deduces the follow-
ing:

Corollary 7.24. bZ
d
(n)∼ nd . �

From the structure theorem of finitely generated abelian groups (Corollary 1.30),
Corollary 7.24 and Proposition 7.20 we deduce the following:

Corollary 7.25. Every finitely generated abelian group has polynomial growth. �

7.7 Groups of Linear Growth

Let G be a finitely generated group. One says that G has sub-linear growth (resp.
linear growth) provided that bG(n)� n (resp. bG(n)∼ n). In other words, let X be a
finite symmetric generating subset of G, then G has sub-linear growth if there exists
a constant c such that bX (n) ≤ cn for all n ≥ 1. Thus a group of sub-linear growth
has sub-polynomial (and therefore sub-exponential) growth.

It follows from Proposition 7.12.(2) that all finite groups have sub-linear growth.
Also, it follows from Example 7.5.(a) and Proposition 7.20 that Z and all finite
extensions of Z have linear growth. The main result of this section tells us that
there are no other examples of groups of sub-linear growth and, as a by-product,
for infinite finitely generated groups the notions of “sub-linear” and “linear” growth
coincide.

Theorem 7.26 (Justin). Every infinite finitely generated group of sub-linear growth
contains an element of infinite order.

Proof. Let G be a finitely generated group and let X = {x1,x2, . . . ,xr} be a finite
symmetric generating subset of G. Let also Y = {y1,y2, · · · ,yr} be a finite set (of
the same cardinality r of X). As in Section 1.1, we denote by Y ∗ the free monoid
generated by Y , with the empty word ε as a neutral element, and by `(w) the length
of a word w ∈ Y ∗.

Let then π : Y ∗ → G denote the monoid homomorphism defined by π(yi) :=xi
for all i = 1,2, . . . ,r. We equip Y ∗ with a total ordering � by lexicographically
extending the order ε � y1 � y2 � ·· · � yr on Y . We then recursively construct a
subset W ∈ Y ∗ by setting:



116 7 Finitely Generated Groups and their Growth Functions

• W1 :=Y ∪{ε}= {ε,y1,y2, · · · ,yr};
• assume that Wn has been obtained for n ≥ 1 and consists of words w of length

`(w)≤ n. Consider Y×(n+1) and, starting from the�-minimal element, remove all
those elements w such that there exists a w′ ∈Wn∪Y×(n+1) satisfying w′ ≺w and
π(w′) = π(w). Define Wn+1 as the union of Wn and the set of words in Y×(n+1)

that remain after this process has been completed;
• W :=

⋃
∞
n=1 Wn.

Let then Y ∞ :={ f : N→ Y} be the set of all infinite words on Y , and denote by
W∞ :={ f ∈ Y ∞ : f (1) f (2) · · · f (n) ∈W for all n ∈ N} the set of infinite words on Y
whose prefixes are all in W . We call the elements of W∞ chains.

We leave it as an exercise to check the following facts:

(1) every subword of a word in W belongs to W ;
(2) the map π induces a bijection between W and G such that `(w) = `X (π(w)) for

all w ∈W ;
(3) G is infinite if and only if W∞ is nonempty;
(4) if w ∈W∞ then w[h,k] :=w(h)w(h+ 1) · · ·w(k) ∈W for all h,k ∈ N such that

h≤ k.

Given f ∈ Y ∞ and h ∈ N, we denote by fh ∈ Y ∞ the shifted infinite word defined
by fh(k) = f (h+ k), for all k ∈ N. For all w ∈W∞ and h ∈ N, we have wh ∈W∞,
i.e. W∞ is shift-invariant. We then say that a chain w is periodic if there exist h ∈ N
(the preperiod) and k ∈ N\{0} (the period) such that wh = wh+k. In other words, a
periodic chain is a right-infinite word w of the form

(y0y1 · · ·yh−1) · (yhyh+1 · · ·yh+k−1) · (yhyh+1 · · ·yh+k−1) · . . . · (yhyh+1 · · ·yh+k−1) · . . . ,

where y0,y1, . . . ,yh+k−1 ∈ Y .
Suppose now that G has sub-linear growth and let c be a positive integer such

that bX (n)≤ cn for all n≥ 1.
Suppose that G is infinite. By (3) there exists a chain w ∈W∞. We claim that

indeed w is periodic. If not, for all h,k ∈ N with k ≥ 1, we have wh 6= wh+k, and
therefore there exists an M(h,k) ∈ N such that wh[0,m] 6= wh+k[0,m] for all m ≥
M(h,k).

Set M :=max{M(h,k) : 1≤ h+ k ≤ c+1} and, for n≥M, define

Wc(n) :={w j[0,m] : 1≤ j ≤ c+1, M ≤ m≤ n}.

By construction, the elements in Wc(n) are all distinct and by (4) they all belong to
Wn so that

bX (n) = |Wn| ≥ |Wc(n)|= (c+1)(n−M+1) ,

which, for large values of n, invalidates the definition of c.
Let then w be a periodic chain of period k and preperiod h. Let u :=wh[0,k−1]∈

Wk and set g :=π(u) ∈ G. Periodicity and (4) imply that for all integers m ≥ 1 we
have um = wh[0,km− 1] ∈Wkm so that, by (2), all the powers gm are distinct. We
deduce that g has infinite order, completing the proof of the theorem. �
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Corollary 7.27 (Justin). A finitely generated group of sub-linear growth is virtually
cyclic.

Proof. Let G be a finitely generated group of sub-linear growth. If G is finite, the
statement is obvious.

Suppose that G is infinite. By Theorem 7.26 there exist elements in G of infinite
order. Since G has sub-linear growth, we have that

(∗)given two elements g1,g2 ∈G of infinite order, there exist s, t ∈Z\{0} such that
gs

1 = gt
2,

otherwise the subgroup 〈g1,g2〉 would have at least quadratic growth (exercise): a
contradiction.

Let H denote the subgroup generated by all elements of infinite order: it is clearly
characteristic. Moreover, it is of finite index in G. Otherwise G/H would be again a
group of linear growth (cf. Proposition 7.21) and, by Theorem 7.26, it would contain
an element g2H of infinite order. Lifting g2H to an element g2 ∈G (which a fortiori
has infinite order), for any g1 ∈ H of infinite order we would have gs

1 6= gt
2 for all

s, t ∈ Z\{0}, contradicting (∗).
As [G : H] < ∞, the subgroup H is finitely generated, say by h1,h2, . . . ,hs

(we may suppose that these generators all have infinite order). By (∗) there exist
m1,m2, . . . ,ms ∈ Z and h ∈ H such that hm1

1 = hm2
2 = . . .= hmk

k = h. Note that h has
infinite order. Moreover, as h is centralized by all the hi’s, the subgroup 〈h〉 is nor-
mal in H and, by the same argument given before, of finite index in H. Thus Z∼= 〈h〉
has finite index also in G. This completes the proof. �

Remark 7.28. It follows from Justin’s theorem (Corollary 7.27) that a finitely gen-
erated group G of sub-linear growth is either finite or has (exactly) linear growth,
i.e., either bG ∼ 1 or bG(n) ∼ n. Thus, a sub-linear function such as

√
n cannot

occur as a growth type of a finitely generated group (cf. Remark 7.11). We shall
see later, as a consequence of Gromov’s theorem (Theorem 12.1) that, similarly,
a finitely generated group G of sub-polynomial growth has (exactly) polynomial
growth (Corollary 12.24).

7.8 The Growth of Nilpotent Groups and the Bass–Guivarc’h
Formula

The goal of this section is to prove that finitely generated nilpotent groups have
polynomial growth and present the Bass–Guivarc’h formula for the corresponding
degree of polynomial growth.

Theorem 7.29 (Bass–Guivarc’h). Let G be a finitely generated nilpotent group,
and let G = γ1(G) ≥ γ2(G) ≥ ·· · ≥ γc(G) ≥ γc+1(G) = {1G} be its lower central
series. Denote by ri the torsion-free rank of γi(G)/γi+1(G) and set d :=∑i iri. Then
one has

bG(n)∼ nd .

We will focus first on the upper bound.
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A first reduction

The first observation is that we can reduce ourselves to the torsion-free case. In
order to keep track of the ranks of the factors of the lower central series, rather than
passing to a finite index torsion-free subgroup of G (cf. Lemma 2.42), we will mod
out the torsion subgroup of G.

Recall that in a nilpotent group G all torsion elements form a subgroup Gtor,
which is finite if G is finitely generated (cf. Corollary 2.37).

For i = 1,2, . . . ,c+1, let us simply write γi in place of γi(G) and then denote by√
γi the set all elements of G which are torsion modulo γi, that is,

√
γi :={g ∈ G : ∃n≥ 1 such that gn ∈ γi}.

In other words,
√

γi is the preimage of the torsion subgroup
√

γi/γi of the nilpotent
group G/γi. Hence the

√
γi’s are clearly normal subgroups of G, and we have the

inclusions
G =
√

γ1 ≥
√

γ2 ≥ ·· · ≥
√

γc ≥
√

γc+1 =
√
{1}.

Note that
√
{1} = Gtor, the subgroup of torsion elements of G. Moreover, by

Corollary 2.37, the torsion subgroup
√

γi/γi of G/γi is finite, i.e. [
√

γi : γi]< ∞.
Let 1 ≤ i, j ≤ c + 1. We claim that [

√
γi,
√

γ j] ⊆
√

γi+ j. Let a ∈ √γi and b ∈√
γ j. Then we can find n,m ∈ N such that an ∈ γi and bm ∈ γ j. Now recall that

by virtue of Lemma 2.26 the map (γi/γi+1)× (γ j/γ j+1)→ γi+ j/γi+ j+1, defined by
(aiγi+1,b jγ j+1) 7→ [ai,b j]γi+ j+1 for all ai ∈ γi and b j ∈ γ j, is bilinear. We then have
[an,bm]γi+ j+1 = [a,b]nmγi+ j+1. As [an,bm] ∈ [γi,γ j]⊆ γi+ j, where the last inclusion
follows from centrality of the lower central series, we deduce that [a,b]nm ∈ γi+ j as
well. This shows that [a,b] ∈√γi+ j, and the claim is proved.

Now the quotient group G/
√
{1} = G/Gtor is torsion-free nilpotent, and has

the same growth of G by Proposition 7.21. Moreover, its series
(√

γi/
√
{1}
)c

i=1
is

central by virtue of the claim above, and the corresponding factors

√
γi/
√
{1}

√
γi+1/

√
{1}
∼=
√

γi/
√

γi+1

are torsion-free (since G/
√

γi+1 is torsion-free) and free-abelian of the same free-
abelian rank of γi/γi+1 (since [

√
γi/γi+1 : γi/γi+1] = [

√
γi : γi]< ∞).

Remark 7.30. Notice that it was not enough to observe that G has a normal sub-
group of finite index which is torsion free, since we don’t know, a priori, the ranks
of its lower central series. We actually needed to find an appropriate series, as we
did.

Thus, up to replacing G by G/
√
{1} if necessary, we can suppose that G is

torsion-free. Moreover, setting Gi :=
√

γi/
√
{1}, we have that the series

G = G1 ≥ G2 ≥ ·· · ≥ Gc ≥ {1}
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is central (that is, [Gi,G j] ⊆ Gi+ j), the factors Gi/Gi+1 are torsion-free abelian,
and rk(Gi/Gi+1) = ri. This is all we need to prove the upper bound in the Bass–
Guivarc’h formula.

An example: UT(m,Z)

The ideas behind the Bass–Guivarc’h formula are better understood by analyzing the
motivating example G :=UT(m,Z) of upper triangular m×m matrices with integer
coefficients. Note that for m = 3, the group UT(3,Z) is the so-called Heisenberg
group.

Let us fix m≥ 1.

Definition 7.31. A transvection is an m×m matrix of the form ti, j(a) := I(m) +

E(m)
i, j (a), where I(m) is the identity matrix of size m, and for fixed 1 ≤ i 6= j ≤ m,

E(m)
i, j (a) is the square matrix of size m with a ∈ Z in the (i, j)-th position, and 0

elsewhere.

Notice that ti, j(a)−1 = ti, j(−a) for all a ∈ Z.
Consider the finite symmetric generating subset X :={ti, j(±1) : j > i} of the

group G :=UT(m,Z).

Lemma 7.32. There exists a C > 0 such that every product of elements of X of length

≤ n is of the form

1 ai, j
. . .

0 1

 with |ai, j| ≤C ·n j−i.

Assuming the lemma, we count these words of length ≤ n. Since the matri-
ces have size m, looking at the upper diagonals (which have length m− 1,m−
2, . . . ,2,1), we have

bX (n) ≤ (2Cn+1)m−1 · (2Cn2 +1)m−2 · . . . · (2Cnm−1 +1) (7.13)

≤ C′n(m−1)+2(m−2)+···+(m−1),

where C′ is a constant. The last term is clearly a polynomial in n. Notice also that its
degree can be thought of as ∑

m
i=1 iri, where ri = m− i equals the rank of the factor

γi(UT(m,Z))/γi+1(UT(m,Z)) (see Section 2.4).

Proof of Lemma 7.32. We rename each element t j,k(±1) of X by x±1
i , and we set

x±1
i =: 1±ai (here on the right-hand side 1 denotes the identity matrix), where ai is

the matrix ±Em
j,k.

Consider the ring R = B(m,Z) of upper triangular matrices of size m and observe
that the ideal of strictly upper triangular matrices

I :=


 0 ∗

. . .
0 0
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is nilpotent as Im = {0}. Notice that the nilpotency class of the group UT(m,Z) is
m−1 (see Section 2.4).

Let M⊆R denote the (finite) set consisting of all products of the form ai1ai2 · · ·aik ,
where 1≤ k ≤ n, and set

c := max{|νi, j| : 1≤ i < j ≤ m,ν = ‖νi, j‖ ∈M}.

We then deduce an estimate for the (p,q)-entry of a product xi1xi2 · · ·xik , where
1 ≤ p < q ≤ m and 1 ≤ k ≤ n. The key observation is that if a j1a j2 · · ·a jr has a
nonzero (p,q)-entry, then necessarily r ≤ q− p: this is clear after looking at how
matrices multiply.

We have

xi1 xi2 · · ·xik = (1+ai1)(1+ai2) · · ·(1+aik)

= 1+(ai1 +ai2 + · · ·+aik)+
k

∑
j, j′=1
j< j′

ai j ai j′

+
k

∑
j, j′, j′′=1
j< j′< j′′

ai j ai j′ai j′′ + · · ·+ai1ai2 · · ·aik .

(7.14)

It follows that the absolute value |(xi1xi2 · · ·xik)p,q| of the (p,q)-entry in (7.14)
is bounded above by c times the number of all possible summands of monomials
ai j1

ai j2
· · ·ai j`

of length ` not exceeding q− p. In other words,

|(xi1xi2 · · ·xik)p,q| ≤ c
(

n+
(

n
2

)
+ · · ·+

(
n

q− p

))
≤C ·nq−p,

where C is a constant. �

This shows how to get the upper bound (cf. equation (7.13)) for the Bass–
Guivarc’h formula in the case G = UT(m,Z).

Recall that by Malcev’s theorem (Theorem 2.20) any finitely generated torsion
free nilpotent group is embeddable into UT(m,Z) for some m ≥ 1. Thus, from
Proposition 7.17 we immediately deduce the following:

Corollary 7.33. Every finitely generated nilpotent group has sub-polynomial growth.
�

However, we still don’t know if the growth is (exactly) polynomial, nor do we
know the corresponding degree of polynomial growth.
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The upper bound

Recall that we can assume that G has a series

G = G1 ≥ G2 ≥ ·· · ≥ Gc ≥ {1}

that is central (i.e. [Gi,G j] ⊆ Gi+ j), the factors Gi/Gi+1 are torsion-free abelian,
and rk(Gi/Gi+1) = ri := rk(γi(G)/γi+1(G)). For each i = 1,2, . . . ,c, let xi jGi+1,
j = 1,2, . . . ,ri, be free generators of Gi/Gi+1. Notice that with this choice the sub-
group G` is generated by the xi j’s with i≥ `, for all `= 1,2, . . . ,c. In particular, the
symmetric subset X :={x±1

i j : 1≤ i≤ c,1≤ j ≤ ri} generates G, and every element
g ∈ G can be uniquely written in the canonical form

g = xe11
11 xe12

12 · · ·x
e1r1
1r1
· · ·xec1

c1 · · ·x
ecrc
crc ,

where ei j ∈ Z for all i, j.
Given an element g ∈ G written as a word w in the elements of X of length

`X (g) = n, we describe a procedure to express g in its canonical form. We start by
looking at the occurrences of x±1

11 in w, from left to right. We want to move them
to the leftmost positions. In order to do this, for every y ∈ X , y 6= x±1

11 , we replace
iteratively every possible occurrence of yx±1

11 with x±1
11 y[y,x±1

11 ]. Notice that, after all
these replacements, the element g is expressed as a word w′ = xe11

11 w1, with e11 ∈ Z,
the number |e11| is than or equal to the number of occurrences of x±1

11 in w, and w1

is a word in X \{x±1
11 } and simple commutators of weight at least 2 in the elements

of X .

Example 7.34. Consider the word w = x11x21x11x−1
21 x12x−1

11 x22. Moving the occur-
rences of x±1

11 to the left, we get

x11x21x11x−1
21 x12x−1

11 x22 

 x11x11x21[x21,x11]x−1
21 x12x−1

11 x22

 x11x11x21[x21,x11]x−1
21 x−1

11 x12[x12,x−1
11 ]x22

 x11x11x21[x21,x11]x−1
11 x−1

21 [x
−1
21 ,x

−1
11 ]x12[x12,x−1

11 ]x22

 x11x11x21x−1
11 [x21,x11][x21,x11,x−1

11 ]x
−1
21 [x

−1
21 ,x

−1
11 ]x12[x12,x−1

11 ]x22

 x11x11x−1
11 x21[x21,x−1

11 ][x21,x11][x21,x11,x−1
11 ]x

−1
21 [x

−1
21 ,x

−1
11 ]x12[x12,x−1

11 ]x22.

Hence the word w has been rewritten as w′ = x11w1, where

w1 = x21[x21,x−1
11 ][x21,x11][x21,x11,x−1

11 ]x
−1
21 [x

−1
21 ,x

−1
11 ]x12[x12,x−1

11 ]x22.

Observe that every commutator occurring in w1 is an element of G2, hence we can
express it as a word in X \ {x±1

11 ,x
±1
12 , . . . ,x

±1
1r1
}. Therefore we can express w1 as a

word w′1 in X \{x±1
11 }.



122 7 Finitely Generated Groups and their Growth Functions

Now we can work on w′1, and repeat the same argument iteratively for all the
generators x12,x13, . . . ,x1r1 , . . . ,xcrc , proceeding in lexicographic order. Since Gc is
in the center of G, this procedure brings g to its canonical form in finitely many
steps.

Carefully estimating the number of operations of this procedure will provide us
with the upper bound that we are looking for.

Let Xi :={x±1
i j : 1 ≤ j ≤ ri} denote the set of generators of weight i, for i =

1,2, . . . ,c. Notice that X = ∪iXi. We also set

A :=sup{`X ([y1,y2, . . . ,ys]) : 1≤ s≤ c,yi ∈ X for all i}.

After moving all the elements of X1 occurring in w to the left, we will have
rewritten w as

xe11
11 xe12

12 · · ·x
e1r1
1r1

w(1),

where w(1) is expressed as a word in X \X1.
For each s = 2,3, . . . ,c, we want to estimate the number of generators of Xs oc-

curring in w(1).
Notice that, during our rewriting process, we will get commutators of the form

[x±1
i j ,y1, . . . ,yt ],

where y1,y2, . . . ,yt ∈ X1 and 0 ≤ t < c (for t = 0 these are simply the generators
x±1

i j ’s). Notice that these commutators are in Gi+t .
The crucial observation is that in our rewriting process, when moving each single

generator of X to the left, we get precisely one extra simple commutator of weight
i+1 from each simple commutator of weight i that gets passed by.

After moving all the elements of X1 to the left, in what remains on the right, there
are obviously at most n simple commutators of weight 1 (i.e. the generators in X);
by our observation above, since the simple commutators of weight 2 can only come
from an x1 j passing a simple commutator of weight 1, there are at most n ·n = n2 of
them; inductively, since again the simple commutators of weight i+1 can only come
from an x1 j passing a simple commutator of weight i, there are at most n ·ni = ni+1

of them.
Now each commutator has length at most A, hence the number of generators in

Xs occurring in w(1) is at most

An+An2 + · · ·+Ans ≤ cAns.

By induction, given k ∈ {1,2, . . . ,c− 1}, after moving all the elements of X1 ∪
X2∪·· ·∪Xk to the left, so that we have rewritten w as

xe11
11 · · ·x

ekrk
krk

w(k),

where w(k) is expressed as a word in X \ (X1 ∪X2 ∪ ·· · ∪Xk), we can assume that
there exists a constant B > 0 such that the number of elements of Xs occurring in
w(k) is bounded by Bns, for every s = k+1,k+2, . . . ,c.

After moving all the elements of Xk+1 to the left, we rewrite w as
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xe11
11 · · ·x

e(k+1)rk+1
(k+1)rk+1

w(k+1),

where w(k+1) is expressed as a word in X \(X1∪X2∪·· ·∪Xk+1). We want to estimate
the number of elements of Xs occurring in w(k+1) for s = k+2,k+3, . . . ,c. Arguing
as before, in the rewriting process we get simple commutators of the form

[x±1
i j ,y1, . . . ,yt ],

where y1,y2, . . . ,yt ∈ Xk+1, i ≥ k+ 1 and 0 ≤ t < c (for t = 0 these are simply the
generators x±1

i j ’s). Notice that these commutators are in Gi+t(k+1). Fixing i and t, by
the inductive hypothesis, the number of such commutators is bounded by

(Bni) · (Bnk+1)t = Bt+1ni+t(k+1).

Given p≥ k+1, varying i and t so that p = i+ t(k+1), we deduce that there are at
most

Bnp +B2np + · · ·+Bbp/(k+1)c+1np ≤ Bnp +B2np + · · ·+Bc+1np ≤ (c+1)Bc+1np

simple commutators of weight p. Therefore the number of elements of Xs occurring
in w(k+1) is bounded by

(c+1)ABc+1ns

for s = k+ 2,k+ 3, . . . ,c. So, by induction, we proved that there exists a constant
D > 0 such that the number of generators of weight s in the canonical form of w is
bounded by Dns for every s = 1,2, . . . ,c.

Finally, if the canonical form of w is

xe11
11 · · ·x

e1r1
1r1

xe21
21 · · ·x

e2r2
2r2
· · ·xec1

c1 · · ·x
ecrc
crc ,

then we showed that

ri

∑
j=1
|ei j| ≤ Dni for all i = 1,2, . . . ,c.

Now, in the abelian group Gi/Gi+1 ∼= Zri , we know that the number of distinct
elements of length at most m with respect to the canonical generators is a polynomial
fi(m) in m of degree ri. Hence the number of possible values of g of length `X (g)= n
is at most

c

∏
i=1

fi(Dni)≤Cnd

for a suitable constant C > 0, where d = ∑
c
i=1 iri. This completes the proof of the

upper bound.
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The lower bound

It remains to prove the lower bound for the Bass–Guivarc’h formula, which is due
to Wolf.

We need a lemma. Recall that G is a finitely generated nilpotent group of nilpo-
tency class c. Let also X be a finite symmetric generating subset of G.

Lemma 7.35. Let z :=[x1,x2, . . . ,xc], where xi ∈ X. Then there exists a constant B >

0 such that `X (zn)≤ Bn
1
c for all n ∈ N.

Proof. Recall (cf. Lemma 2.26) that the commutator yields a bilinear map

γi/γi+1× γ j/γ j+1→ γi+ j/γi+ j+1

defined by (aiγi+1,b jγ j+1) 7→ [ai,b j]γi+ j+1 for all ai ∈ γi and b j ∈ γ j. More generally,
the c-fold (left-normed) commutator gives a multilinear map

γ1/γ2× γ1/γ2×·· ·× γ1/γ2︸ ︷︷ ︸
c

→ γc

defined by (a1γ2,a2γ2, . . . ,acγ2) 7→ [a1,a2, . . . ,ac], for all a1,a2, . . . ,ac ∈ γ1 (we con-
sider only terms of the form γi/γi+1 with i = 1 because if i ≥ 2, the corresponding
image is always 0).

Observe that, since n≥ 1, there exists an integer m such that n≤mc≤ 2cn. Hence
there exist q,r ∈ N such that n = qmc−1 + r with 0≤ q≤ m and 0≤ r < mc−1.

For n = mc, by multilinearity, we have [x1,x2, . . . ,xc]
mc

= [xm
1 ,x

m
2 , . . . ,x

m
c ]. Thus

`X (zn) = `X (zmc
) = `X ([x1,x2, . . . ,xc]

mc
) = `X ([xm

1 ,x
m
2 , . . . ,x

m
c ])≤ 2c+1m = Bn

1
c ,

where B = 2c+1 is clearly independent of n.
If n < mc, we have n = qmc−1 + r with and 1≤ q < m and 0≤ r < mc−1.
Again by multilinearity we have

[x1,x2, . . . ,xc]
n = [x1, . . . ,xc]

qmc−1+r

= [[x1,x2, . . . ,xc−1]
mc−1

,xq
c ] · [[x1,x2, . . . ,xc−1]

r,xc].

By induction on c we have that in the group G/γc (which is nilpotent of class
c−1) the length of [x1,x2, . . . ,xc−1]

mc−1
modulo γc is bounded above by B1m, where

B1 > 0 is a constant independent of n. Also, since γc ⊆ Z(G) (and [az,b] = [a,b] if
z ∈ Z(G)), if y ∈ γc is such that

[x1, . . . ,xc−1]
mc−1

= [xm
1 , . . . ,x

m
c−1]y,

we have

`X ([[x1, . . . ,xc−1]
mc−1

,xq
c ]) = `X ([[xm

1 , . . . ,x
m
c−1]y,x

q
c ]) = `X ([[xm

1 , . . . ,x
m
c−1],x

q
c ]).
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Since `X (x
q
c) = q < m, we have that the length of [[x1, . . . ,xc−1]

mc−1
,xq

c ] is
bounded by a linear function of m, indeed

`X ([[x1, . . . ,xc−1]
mc−1

,xq
c ])≤ (2B1 +2)m.

For the other term [[x1,x2, . . . ,xc−1]
r,xc], we argue in the same way by induction on

c and deduce that the length of [x1,x2, . . . ,xc−1]
r modulo γc is bounded above by

B2r1/(c−1), where B2 is a constant independent of r. Since r < mc−1, this yields the
upper bound B2m. Arguing as before, the length of [[x1,x2, . . . ,xc−1]

r,xc] is bounded
above by 2B2m+2.

All together

`X (zn)≤ (2B1 +2+2B2)m+2 <C′m <Cn1/c,

where C′ = 2B1 +2+2B2 +2 and C = 2C′ are positive constants independent of n.
�

Consider now γc. It has free abelian rank rc and we have γc = 〈[x1,x2, . . . ,xc] :
xi ∈ X〉. So we can choose z1,z2, . . . ,zrc , where each zi is a c-fold (left-normed)
commutator of elements of X , and they generate a free abelian group of rank rc.

By induction on c, there exists a constant C′ > 0 such that G/γc contains at least
C′n∑

c−1
i=1 iri distinct elements of length ≤ n. Let W be a maximal set of words on X

of length≤ n, distinct modulo γc. Consider the products wzα1
1 zα2

2 · · ·z
αrc
rc with w ∈W

and 0 ≤ α j < nc. The number of such words is ≥ C′(n∑
c−1
i=1 i·ri)(nc)rc = C′n∑

c
i=1 i·ri .

By the previous lemma, their length is ≤ B′n for some constant B′ > 0. It follows
that bX (B′n) ≥C′nd , where d = ∑

c
i=1 iri. This gives bX (n) � nd as we wanted, and

finishes the proof of Theorem 7.29.

7.9 The Theorems of Milnor and Wolf

The goal of this section is to present the theorems of Milnor (Theorem 7.36) and
Wolf (Theorem 7.37) which together yield the fact that finitely generated solvable
group of sub-exponential growth are virtually nilpotent, and hence have polynomial
growth (Corollary 7.41).

Theorem 7.36 (Milnor). A finitely generated solvable group of sub-exponential
growth is polycyclic.

Proof. We claim that it suffices to show that [G,G] is finitely generated. In fact, if
this is the case, then [G,G] is of sub-exponential growth (by Proposition 7.17) and,
by induction on the derived length, it is polycyclic. On the other hand, the quotient
group G/[G,G] is finitely generated and abelian, hence polycyclic. Thus G, being
an extension of polycyclic groups, is itself polycyclic (cf. Proposition 5.7).

Let us then show that [G,G] is finitely generated. Since G/[G,G] is finitely gen-
erated and abelian, by virtue of the structure theorem for finitely generated abelian
groups (Corollary 1.30), we can find a series
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G≥ Hs ≥ ·· · ≥ H1 ≥ H0 = [G,G],

where [G : Hs] is finite and Hi/Hi−1 is infinite cyclic. Note that Hs is finitely gener-
ated, by virtue of Proposition 1.9. So the result will follow by an iterative application
of the following fact.

Claim. Let G be finitely generated of sub-exponential growth and suppose that H is
a normal subgroup of G such that G/H ∼= Z. Then H is finitely generated.

So let a ∈ G be such that G/H = 〈aH〉, and let X ⊆ G be a finite symmetric
generating subset of G, which we may also suppose to contain a (and therefore
a−1). For every x ∈ X we can find n∈Z and h∈H such that x = anh. It follows that,
up to replacing every element x 6= a±1 by the corresponding h, we may suppose that
X = {a±1,h±1

1 ,h±1
2 , . . . ,h±1

` } where hi ∈ H for all i = 1,2, . . . , `.
Let H(m) ⊆ H denote the subgroup generated by the elements a jh±1

i a− j with
i = 1,2, . . . , ` and j = 0,1, . . . ,m. Note that H(0) ⊆ H(1) ⊆ H(2) ⊆ . . . and set H+ =⋃

∞
m=0 H(m). Let us show that H+ is finitely generated by proving that H+ = H(m)

for some m ≥ 1. If not, for every m ≥ 0 we can find jm ∈ {1,2, . . . , `} such that
km :=amh jma−m ∈ H(m) \H(m−1). Now, for m ∈ N, consider the products

kε0
0 kε1

1 · · ·k
εm
m ,

where εi ∈ {0,1}. We have 2m+1 words of this type which represent distinct group
elements of length ≤ 3m+ 1 with respect to the generating subset X . Indeed the
maximal length is attained when εi = 1 for all i so that the corresponding element
is k0k1 · · ·km = h j0ah j1ah j2 · · ·ah jma−m (in the product of two consecutive terms
ki = aih jia

−i and ki+1 = ai+1h ji+1a−i−1 we have a cancellation between a−i and
ai+1).

This would yield bX (3m+1)≥ 2m+1 and therefore bG(n)� 2n contradicting the
hypothesis that G had sub-exponential growth.

As a consequence, we have H+ = H(m′) for some m′ ≥ 1 and H+ is finitely
generated. Similarly, exchanging the roles of a and a−1 we can show that the sub-
group H− =

⋃
∞
m=0 H(−m), where H(−m) is the subgroup of G generated by the el-

ements a− jh±1
i a j with i = 1,2, . . . , ` and j = 0,1, . . . ,m, is also finitely generated,

say H− = H(−m′′). It follows that H = 〈
⋃

∞
j=−∞ H( j)〉 = 〈

⋃m′
j=−m′′H

( j)〉 is finitely
generated as well. This ends the proof of the claim and the theorem follows. �

Theorem 7.37 (Wolf). Every polycyclic group of sub-exponential growth is virtu-
ally nilpotent.

Proof. Let G be a polycyclic group. By definition, we have a series

G = Hs ≥ Hs−1 ≥ ·· · ≥ H1 ≥ H0 = {1G},

where the quotients Hi/Hi−1 are all cyclic. By induction on the length of the series,
we assume the result for Hs−1. If [G : Hs−1] < ∞ we are done. Hence we may as-
sume that G/Hs−1 ∼= Z and we have a nilpotent normal subgroup Ñ ⊆ Hs−1 with
[Hs−1 : Ñ] < ∞. By applying the Poincaré lemma (cf. Lemma 2.39) we can find a
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subgroup N of Ñ which is characteristic in Hs−1 and such that [Hs−1 : N]< ∞. So N
is normal in G and nilpotent (by Proposition 2.9).

Let a ∈ G be such that G/Hs−1 = 〈aHs−1〉. Consider the subgroup 〈a,N〉: this
has finite index in G, since G =

⋃
i∈Z aiHs−1 and there exist h1,h2, . . . ,hk ∈ Hs−1,

k = [Hs−1 : N], such that Hs−1 = ∪k
j=1Nh j, so that

G =
⋃

i∈Z,1≤ j≤k

aiNh j = 〈a,N〉h1∪〈a,N〉h2∪·· ·∪ 〈a,N〉hk.

Clearly 〈a,N〉/N ∼= Z, since a has infinite order in G. So, up to replacing G by
〈a,N〉, we may reduce to the case where G has a normal nilpotent subgroup N such
that G/N ∼= Z. Let then x ∈ G be such that G/N = 〈xN〉, and consider the lower
central series of N:

N = N1 ≥ N2 ≥ ·· · ≥ Nm = {1G}.

Recall that the subgroups Ni are characteristic in N, hence normal in G. Also recall
(cf. Lemma 2.6) that the series is central so that, in particular,

[Ni,N]⊆ Ni+1 (7.15)

for all i. Moreover, if MEG and Ni ≤M ≤ Ni+1, then the series

N = N1 ≥ ·· · ≥ Ni ≥M ≥ Ni+1 ≥ ·· · ≥ Nm = {1G}

has still the property (7.15). Thus for each inclusion Ni ≥ Ni+1 we insert M so that
Ni ≥ M ≥ Ni+1 and M/Ni+1 is the torsion subgroup of the finitely generated (cf.
Lemma 2.32) abelian group Ni/Ni+1. Observe that since the torsion subgroup is
characteristic, M is characteristic in N. Continuing this way, we end up with a new
series (which by simplicity we denote in the same way)

N = N1 ≥ N2 ≥ ·· · ≥ Nm = {1G}

such that NiEG and Ni/Ni+1 is either finite or torsion free for all i. After possibly
inserting further intermediate subgroups in the above series, we may also assume
that such a series has the maximal number of infinite factors (which we will show
to be the Hirsch number).

Claim. Let x ∈ G be such that G/N = 〈xN〉. For each i = 1,2, . . . ,m there exists
k = k(i)≥ 1 such that xk centralizes Ni/Ni+1, i.e. [Ni,xk]⊆ Ni.

Assuming the claim we are in position to end the proof of the theorem: in fact
we can now find a k ≥ 1 (in fact k = ∏

s−1
i=1 k(i) would work) such that xk centralizes

all factors. Then N0 :=〈xk,N〉 is nilpotent: consider the series

N0 ≥ N1 ≥ N2 ≥ ·· · ≥ Nm = {1G}.

Notice that for all i = 1,2, ...m+1, we have γi(N0)⊆ Ni−1. Indeed, by induction,

γi+1(N0) = [N0,γi(N0)]⊆ [〈xk,N〉,Ni−1]⊆ [N,Ni−1]⊆ Ni.
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Moreover, N0 = 〈xk,N〉 is of finite index in G = 〈x,N〉.
Thus, in order to end the proof of the theorem we are only left to prove the claim.
If Ni/Ni+1 is finite, then x acts by permutations, hence xk acts as the identity for

some k. Hence we can assume that Ni/Ni+1 is torsion free.
Set V :=Q⊗Z (Ni/Ni+1). Let us show that x̂, the conjugation by x, acts irre-

ducibly on V . Indeed, suppose that there exists a nontrivial proper Q-subspace W ≤
V which is invariant under x̂. Then W ∩(Ni/Ni+1) 6= {0}: for, given (a1,a2, . . . ,an)∈
Qn, multiplying by the product of the denominators of the ai’s we obtain an element
in Zn, hence in Ni/Ni+1. Now W ∩ (Ni/Ni+1) is invariant under x̂ since NiEG. Let
M be the subgroup of G such that M/Ni+1 =W ∩ (Ni/Ni+1), and let us insert M in
the series: Ni ≥ M ≥ Ni+1. Now M is normal in G (recall that G = 〈x,N〉), so by
our assumptions on the series (N j)

m
j=1 one of the two quotients Ni/M and M/Ni+1

has to be finite. If Ni/M is finite, then there exists an n ≥ 1 such that nNi ⊆M and
hence nV ⊆W . But this implies V =W , a contradiction. On the other hand M/Ni+1
cannot be finite since we assumed Ni/Ni+1 to be torsion-free. This shows that x̂ acts
irreducibly on V .

Let now n ∈ N and v ∈ Ni/Ni+1 and let a ∈ Ni be such that v = aNi+1. Consider
the elements

aε0(ax)ε1 · · ·(axn−1
)εn−1

where εi ∈ {0,1}. There are 2n such words, and their lengths in the ax j
’s are ≤ n.

Since G has sub-exponential growth, we can argue as we did in the proof of Milnor’s
theorem and find two equal such words

aε0(ax)ε1 · · ·(axn−1
)εn−1 = aδ0(ax)δ1 · · ·(axn−1

)δn−1

where the vectors (ε0,ε1, . . . ,εn−1) and (δ0,δ1, . . . ,δn−1) are distinct. So, modulo
Ni+1, we have

ε0v+ ε1x̂(v)+ · · ·+ εn−1x̂n−1(v) = δ0v+δ1x̂(v)+ · · ·+δn−1x̂n−1(v).

Hence there exists a polynomial fv(t) = tn +αn−1tn−1 + · · ·+α0, α j ∈ {−1,0,1},
j = 0,1,2, . . . ,n−1, such that fv(x̂)v = 0: in fact, fv(t) is the difference ε0 + ε1t +
· · ·+ εn−1tn−1− (δ0 +δ1t + · · ·+δn−1tn−1).

Let Ni/Ni+1 = ⊕r
k=1vkZ, and consider f (t) :=∏

r
k=1 fvk(t). Then f (x̂)V = {0}.

Now v1,v2, . . . ,vr constitute a basis of C⊗Z (Ni/Ni+1) ∼= Cr, and, since x̂(vk) ∈
Ni/Ni+1 for all k = 1,2, . . . ,r, the conjugation operator x̂ has an integer matrix rep-
resentation with respect to this basis.

Lemma 7.38. x̂ does not have eigenvalues with absolute value ≥ 2.

Proof. Let v ∈V be an eigenvector of x̂ and let λ be the corresponding eigenvalue.
We already observed that fv(x̂)v = 0, hence fv(λ ) = 0. Suppose |λ | ≥ 2. Then, since
α j ∈ {−1,0,1} for all j,

|λ n| ≤ |αn−1λ
n−1 + · · ·+α1λ +α0| ≤ |λ |n−1 + · · ·+ |λ |+1 =

|λ |n−1
|λ |−1

� |λ |n,

a contradiction. �
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Lemma 7.39. Every eigenvalue of x̂ has absolute value 1.

Proof. Let λ be an eigenvalue of x̂. Since x̂ is invertible, λ 6= 0. If |λ | 6= 1, then
we can find k ∈ Z such that |λ |k ≥ 2. But then, setting y :=xk, we would have that
µ :=λ k is an eigenvalue of ŷ and |µ| ≥ 2, contradicting the previous lemma. �

Lemma 7.40. Every eigenvalue of x̂ is a root of 1.

Proof. x̂ corresponds to an integer r× r matrix, and its characteristic polynomial
px̂(t)∈Z[t] has degree r, say px̂(t) = tr+kr−1tr−1+ · · ·+k0. Since |λ |= 1, |ki| ≤Cr
where Cr > 0 is a constant depending on r but not on x: indeed each coefficient k j
is an elementary symmetric polynomial in the roots of px̂(t), which have absolute
value 1. Since the ki’s are all integers, there are finitely many such polynomials.
Hence there are finitely many possibilities for the eigenvalues of x̂k, for k ∈ Z. It
follows that if λ is an eigenvalue of x̂, then the set {λ k : k ∈ Z} is finite, i.e. λ is a
root of unity. �

It follows from the preceding lemma that we can find an integer k such that λ k = 1
for all eigenvalues λ of x̂. Thus x̂k can be expressed as the sum of the identity matrix
and a nilpotent matrix: x̂k = idV +T , with T r = 0 for some r≥ 0. Then TV $V , since
T r = 0, and TV is invariant with respect to x̂:

x̂TV = x̂(idV −x̂k)V = (idV −x̂k)x̂V = T x̂V ⊆ TV.

Since TV is invariant under x̂ and x̂ acts irreducibly on V , we necessarily have
T = 0, equivalently x̂k = idV . Thus x̂k centralizes Ni/Ni+1, as we wanted. This ends
the proof of the claim.

The proof of the theorem of Wolf is now completed.

We immediately deduce the following:

Corollary 7.41 (Milnor–Wolf). Every finitely generated solvable group of sub-
exponential growth is virtually nilpotent, and hence has polynomial growth. �

7.10 Notes

Cayley graphs are named after Arthur Cayley who, in a finite groups setting, first
considered such graphs in 1878 [57]. Max Dehn, in his unpublished lectures on
group theory from 1909–10, reintroduced Cayley graphs under the name “Gruppen-
bilder” (group diagrams) and therefore one also refers to them as “Dehn’s Gruppen-
bilder”, see Pierre de la Harpe’s survey [162, Section 4] and the references therein
for more historical information and interesting examples of Cayley graphs coming
from topology. As a generalization of a Cayley graph, given a finitely generated
group G, a finite symmetric generating subset X ⊆ G, and a subgroup H ≤ G, the
Schreier coset graph (or, simply, Schreier graph) Sch(G,H,X) = (V,E) is the X-
labelled graph whose set of vertices is V :=H\G :={Hg : g∈G}, the set of all right
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cosets of H in G, and the set of (X-labelled) edges is E :={(Hg,x,Hgx) : g ∈G and
x ∈ X} ⊆ (H\G)×X× (H\G). Schreier graphs are named after Otto Schreier who,
in his 1928 paper [303], used the term “Nebengruppenbilder” (subgroup diagrams).

The notion of growth of a finitely generated group arose in group theory in rela-
tion to volume growth in Riemannian manifolds in the 1950s. This line of study was
initiated by Vadim A. Efremovich [103] and Albert S. Schwarz [307] in the USSR
and, slightly later and completely independently, by John Milnor [237] and Joseph
A. Wolf [357] in the USA. In [237] Milnor proved that fundamental groups of closed
Riemannian manifolds with negative sectional curvature have exponential growth.
Wolf [357] proved that a polycyclic group has sub-exponential growth if it contains
a nilpotent subgroup of finite index (Theorem 7.37). Then, Milnor [238] proved
that every finitely generated non-polycyclic solvable group has exponential growth
(Theorem 7.36). Combining the above two results we then have that finitely gener-
ated solvable groups of sub-exponential growth have polynomial growth (Corollary
7.41). Finally, in 1972 Yves Guivarc’h [145] and independently Hyman Bass [19]
and Brian Hartley [164] (with different proofs) computed the exact order of poly-
nomial growth (we refer to [158, page 201] for more information on the history and
prehistory of these results).

The results of Milnor and Bass–Guivarc’h–Hartley imply that a finitely gener-
ated solvable group has either polynomial or exponential growth. It was shown by
Jacques Tits [333] (see Chapter 8) that every finitely generated linear group either
is virtually solvable or contains a free subgroup of rank two. This last result, which
is known as the Tits alternative for linear groups, together with the results of Milnor
and Wolf, implies that every finitely generated linear group has either polynomial
growth or exponential growth.

The problem of the characterization of finitely generated groups with (sub-) poly-
nomial growth originally conjectured by Milnor [239] was solved by Gromov [138]
who proved that a finitely generated group of polynomial growth contains a nilpo-
tent subgroup of finite index (see Chapter 12).

It follows from Gromov’s theorem (Theorem 12.1), the above mentioned result
of Bass–Guivarc’h (Theorem 7.29), and Proposition 7.20 that a group G of sub-
polynomial growth has, in fact, (exactly) polynomial growth: its growth function
bX (n) (relative to some, equivalently, any symmetric generating subset X ⊆ G) is
equivalent to a polynomial.

Corollary 7.27 is due to Jacques Justin [192]. In [95], Lou van den Dries and Alex
Wilkie gave the following bound on the index of a cyclic subgroup in an infinite
group G of linear growth: let X ⊂ G be a finite symmetric generating subset and
suppose that there exists an integer m≥ 1 such that bX (m)−bX (m−1)≤ m. Then
G has an infinite cyclic subgroup of index not exceeding m4/2.

In 1980, Rostislav I. Grigorchuk [129] constructed what is now called the Grig-
orchuk group (also known as the first Grigorchuk group) yielding a new example of a
finitely generated infinite periodic group (other than the Golod–Shafarevich groups,
see Section 6.5), thus providing another counterexample to the general Burnside
problem (cf. Chapter 6). Explicitly the Grigorchuk group G can be described as fol-
lows. Let Σ = {0,1} and denote by Σ ∗ the monoid consisting of all words over Σ

(ε denotes the empty word). Then G is the subgroup of Sym(Σ ∗), the permutation
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group of Σ ∗, generated by the elements a,b,c,d ∈ Sym(Σ ∗) recursively defined by
setting

• a(ε) :=ε and a(0w) :=1w, a(1w) :=0w
• b(ε) :=ε and b(0w) :=0a(w), b(1w) :=1c(w)
• c(ε) :=ε and c(0w) :=0a(w), c(1w) :=1d(w)
• d(ε) :=ε and d(0w) :=0w, d(1w) :=1b(w)

for all w ∈ Σ ∗. Later, in 1984, Grigorchuk [131] proved that his group has in-
termediate growth (this was announced by Grigorchuk in 1983 [130]), thus pro-
viding a positive answer to the Milnor problem, posed by Milnor in 1968, about
the existence of finitely generated groups of intermediate growth. More precisely,
in [131] Grigorchuk proved, among other things, that his group G is such that
exp(
√

n) � bG(n) � exp(ns), where s = log32(31) ≈ 0.991. A sharp asymptotic
was recently obtained by Anna Erschler and Tianyi Zheng [105] who proved that
bG(n)∼ exp(nα0+o(1)), where α0 := log2/ logλ0 ≈ 0.7674, where λ0 is the positive
root of the polynomial x3− x2−2x−4.

For more on the Grigorchuk group we refer to [158, 133, 59].
The theory of growth of groups has continued to develop and present interest-

ing and remarkable results. For instance, the following solves a problem posed by
Gromov. Let G be a finitely generated group. Recall that one says that G is of ex-
ponential growth if for some (equivalently any) finite symmetric generating sub-
set X ⊂ G, the growth rate βX ∈ [1,+∞) (cf. Definition 7.15) satisfies βX > 1 (cf.
Proposition 7.16). One says that G has uniformly exponential growth if infX βX > 1,
where the infimum is taken over all finite symmetric generating subsets X of G. In
1981 Gromov asked whether groups of exponential growth necessarily have uni-
formly exponential growth. Positive answers were given for wide classes of groups
including: free groups, and, more generally, hyperbolic groups (a result by Malik
Koubi [203]), linear groups (a result by Alex Eskin, Shahar Mozes, and Hee Oh
[108, 109]), Golod–Shafarevich groups from Section 6.5 (as observed by Laurent
Bartholdi and Grigorchuk [18], see [160, Section 5]), one-relator groups (a result
by Grigorchuk and Pierre de la Harpe [134]): see the research-expository paper
by de la Harpe [160]. Eventually, John S. Wilson [351] gave a negative answer to
Gromov’s question: by using certain permutational wreath products involving the
alternating group A31, he constructed a group G with nonabelian free subgroups (so
that it has exponential growth) and admitting generating subsets Xn (consisting of
two elements, one of order 2 and the other of order 3) such that limn→∞ βXn = 1.
The construction by Laurent Bartholdi [15] is, according to the author, “somewhat
shorter and more specific” than Wilson’s example.

Among the most recent results we mention the following. For a hyperbolic group
(see Section 11.16), the set of growth rates (relative to all (finite) symmetric gener-
ating subsets) is well-ordered. Moreover, given a positive real number, there are at
most finitely many – up to the action of the automorphism group of the given hyper-
bolic group – (finite) symmetric generating sets with this real number as a growth
rate. This is due to Koji Fujiwara and Zlil Sela [120].

A parallel branch of asymptotic group theory is that of subgroup growth, started
as early as 1891, in a paper by Adolf Hurwitz, who wanted to count the number of
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covering spaces of surfaces by counting the subgroups of finite index in the funda-
mental group of the surface. Let G be a finitely generated group. It follows from
a well-known result by Marshall Hall [152] that G contains only a finite number
of subgroups of index n. In fact, Hall also gave an explicit recurrence formula for
computing the number of subgroups of index n in a free group of finite rank r. Thus,
for each integer n define an = an(G) (resp. mn = mn(G), resp. sn = sn(G)) to be the
number of subgroups (resp. maximal subgroups, resp. normal subgroups) of index
n in G. Then, subgroup growth studies these functions, their interplay, and the char-
acterization of group-theoretical properties in terms of these functions. The 2003
monograph [217] by Alex Lubotzky and Dan Segal is entirely devoted to subgroup
growth, yet another active area of current research.

Another variant of growth in groups is conjugacy growth. Given a finitely gen-
erated group G together with a finite symmetric generating subset X , one denotes
by γX

c (n) the number of conjugacy classes of G intersecting the ball BG
X (n) of ra-

dius n in G (with respect to X). The function γX
c is called the conjugacy growth

function of G with respect to X . The study of conjugacy growth functions was moti-
vated by counting closed geodesics (up to free homotopy) on complete Riemannian
manifolds. Suppose that M is a complete Riemannian manifold admitting a negative
upper bound for the sectional curvature. Then there is only one closed geodesic in
each free homotopy class. Grigorii Margulis [232], improving on a result by Yakov
Sinai [317], proved that for compact manifolds of pinched negative curvature and
exponential volume growth exp(ht), h> 0, the number of primitive closed geodesics
of period not exceeding t is approximately exp(ht)/ht. From the group theoretical
point of view, this implies that the number of primitive conjugacy classes intersect-
ing the ball of radius n in the Cayley graph of π1(M), the fundamental group of M,
(with respect to some finite symmetric generating subset) is ≈ exp(hn)/hn. Conju-
gacy growth is always dominated by group growth, but there are groups for which
these two notions of growth dramatically differ, as shown by Sergei Ivanov, who
constructed finitely generated groups of exponential growth having a finite num-
ber of conjugacy classes (see [261]). However, exponential growth should imply
exponential conjugacy growth for “ordinary” finitely generated groups. This was
shown to be true for hyperbolic groups by Michel Coornaert and Gerhard Knieper
in [80], where an upper bound for the growth rate of primitive conjugacy classes in
torsion-free hyperbolic groups is given, for solvable groups by Emmanuel Breuil-
lard and Yves de Cornulier [36], and for linear groups by Breuillard, de Cornulier,
Lubotzky, and Chen Meiri [37]. In the research-expository paper [144] by Victor
Guba and Mark Sapir, estimates for the conjugacy growth of several interesting
classes of finitely generated groups, including Baumslag–Solitar groups, the Heisen-
berg group, and diagram groups are provided. Also, several conjectures, examples,
and statements showing that in “normal” cases, groups of exponential growth also
have exponential conjugacy growth functions, are provided.

The interested reader my find several other results related to the growth of groups
in the very informative and delightful monograph [231] by Avinoam Mann.

We end this historical survey by quoting the recent note [163] by Pierre de la
Harpe, where one may find an interesting discussion on a few articles showing that,
before 1968 (the year of publication of the papers by Milnor [237] and Wolf [357])
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and at least retrospectively, the notion of growth has already played a significant
role in various subjects in Mathematics.

7.11 Exercises

Exercise 7.1. Prove Lemma 7.1.

Exercise 7.2. Show that the map dG : V ×V → N defined by (7.6) is a metric on V .

Exercise 7.3. Let G = Z. Show that X = {2,−2,3,−3} generates G.
More generally, find the conditions for a finite symmetric subset Y ⊆ Z to generate
G.

Exercise 7.4. Prove Proposition 7.3.

Exercise 7.5. Prove Proposition 7.8.

Exercise 7.6. Let a,b ∈ (1,+∞). Show that an ∼ bn.

Exercise 7.7. Let d ≥ 0 be an integer. Show that nd � exp(n) and nd 6∼ exp(n).

Exercise 7.8. Prove Proposition 7.12.

Exercise 7.9. Prove Proposition 7.16.

Exercise 7.10. Use Proposition 7.16 to give an alternative prove of the fact that
every finitely generated group of polynomial growth has sub-exponential growth
(cf. Proposition 7.12.(4)).

Exercise 7.11. Let G be a finitely generated group and let X ⊂ G be a finite sym-
metric generating subset. Suppose that there exists an integer m ≥ 1 such that
bX (m)≤ m. Show that G is finite (in fact |G| ≤ bX (m)).

Exercise 7.12. Prove the statement of Example 7.19 for n≥ 3.

Exercise 7.13. Two groups G1 and G2 are said to be commensurable if there exist
finite index subgroups H1 ⊆ G1 and H2 ⊆ G2 such that H1 and H2 are isomorphic.
Show that if G1 and G2 are commensurable groups and G2 is finitely generated, then
G1 is finitely generated, and one has bG1 = bG2 .

Exercise 7.14. Prove Formula (7.12).

Exercise 7.15. Prove Lemma 7.22.

Exercise 7.16. Prove Proposition 7.23.

Exercise 7.17. With the notation from the proof of Theorem 7.26, prove the follow-
ing:

(1) every subword of a word in W belongs to W ;
(2) π induces a bijection between W and G and `(w) = `X (π(w)) for all w ∈W ;
(3) G is infinite if and only if W∞ is non empty;
(4) if w ∈W∞ then w[h,k] :=w(h)w(h+1) · · ·w(k) ∈Wk−h+1.

Exercise 7.18. Suppose that a finitely generated group G has linear growth and that
g1,g2 ∈ G have infinite order. Then there exist s, t ∈ Z\{0} such that gs

1 = gt
2.



Chapter 8
Hyperbolic Plane Geometry and the Tits
Alternative

This chapter, partially based on the expository paper by Pierre de la Harpe [158],
is an introduction to the following deep result due to Jacques Tits [333], originally
conjectured by Bass and Jean-Pierre Serre:

Theorem 8.1 (Tits alternative). A finitely generated linear group Γ over a field K
of characteristic 0 either is virtually solvable, that is, it contains a solvable subgroup
of finite index, or it contains a nonabelian free subgroup.

Recall that a linear group over a field K is a group which admits a faithful finite-
dimensional representation over K, equivalently, a group isomorphic to a subgroup
of GL(n,K) for some n. If Γ is a finitely generated subgroup of GL(n,K), and
S⊂Γ is a finite generating subset, then, denoting byK0 the subfield ofK generated
by the entries of the elements in S, one has that Γ ≤ GL(n,K0). If K is of charac-
teristic zero, then, K0 is a finitely generated extension of Q, and hence there exists
an embedding of K0 in C. One may thus assume that Γ lies in GL(n,C). As a con-
sequence, it is sufficient to prove the theorem for K = C, in fact for K = R, since
GL(n,C) is a subgroup of GL(2n,R). We thus have the following reformulation of
Theorem 8.1:

Theorem 8.2 (Tits alternative (reformulated)). Let n be a positive integer and let
Γ be a finitely generated subgroup of GL(n,R). Then either Γ is virtually solvable
or Γ contains a nonabelian free subgroup.

Actually, this apparent simplification is misleading, because the proof does in-
deed require fields other than C or R. In fact, the proof has two important ingre-
dients, namely, Klein’s Ping-Pong lemma (Theorem 1.17) and the theory of affine
algebraic groups over various fields (not necessarily algebraically closed, not nec-
essarily subfields of C).

Here, to give a taste of some of the ideas underlying the proof of the Tits alter-
native, we limit ourselves to prove a special case of the theorem (namely n = 2 in
Theorem 8.2), for which only the first ingredient is essentially sufficient together
with some basic notions of geometry of the hyperbolic plane and its isometries.
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Springer Monographs in Mathematics, https://doi.org/10.1007/978-3-030-88109-2_8
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8.1 Möbius Transformations

Recall that a Möbius transformation is a rational function of one complex variable
z of the form

f (z) =
az+b
cz+d

(8.1)

where the coefficients a,b,c,d ∈ C satisfy ad−bc 6= 0.
If Ĉ = C∪{∞} denotes the one-point compactification of the complex plane C

(also called the extended complex plane, or Riemann sphere), so that ∞ is the point
at infinity, then (8.1) extends to a map f : Ĉ→ Ĉ as follows:

• if c 6= 0,

f
(
−d
c

)
:=∞ and f (∞) :=

a
c

• if c = 0,
f (∞) :=∞.

Thus, any Möbius transformation yields a bijective holomorphic function from
the extended complex plane to itself.

The set of all Möbius transformations forms a group under composition, called
the Möbius group. It can be shown that the Möbius group is isomorphic to the pro-
jective linear group PGL(2,C). This group can be given the structure of a complex
manifold (turning it into a complex Lie group) in such a way that composition and
inversion are holomorphic maps. It is isomorphic to the automorphism group of the
extended complex plane.

Given a circle C0 in the complex plane C, with center z0 ∈ C and radius r > 0,
the inverse of a point z ∈ C with respect to C0 is the point z′ ∈ C lying on the ray
from z0 through z such that |z− z0| · |z′− z0| = r2. The map z 7→ z′ is called circle
inversion with reference circle C0 (see Figure 8.1).

It is an exercise to check that circle inversion (with respect to C0) maps z′ back
to z, that is, the map z 7→ z′ is involutive. Extending circle inversion to the extended
complex plane, one has that z0 7→ ∞ and ∞ 7→ z0.

It follows from the definition that the inversion of any point inside the reference
circle must lie outside it, and vice versa, with the center and the point at infinity
switching positions, whilst any point on the circle is a fixed-point: in other words,
the nearer z to the center, the further away its inverse z′, and vice versa.

When C0 = {z ∈C : |z|= 1} is the unit circle, we simply call the circle inversion
with respect to C0 inversion: clearly, it is given by z 7→ z/|z|2.

Example 8.3. We present simple Möbius transformations and show that every
Möbius transformation is a composition of these.

• f (z) = z+b (a = d = 1 and d = 0): this is a translation (by b);
• f (z) = az (a 6= 0, d = 1, and b = c = 0):

if a ∈ R this is a homothety (of factor a);
if a ∈ C with |a|= 1, say a = eiθ , with θ ∈ [0,2π), it is a rotation (of angle θ );
in general, writing a = |a|eiθ , it is a composition of a rotation (by angle θ ) and a
homothety (of factor |a|);
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10

z

z′

1
2

2

Fig. 8.1 Inversion: the circle inversion z 7→ z′ with reference circle C0 = {z ∈ C : |z|= 1}.

• f (z) = 1/z (a = d = 0 and b = c = 1): this is an inversion and reflection with
respect to the real axis.

Suppose c 6= 0. Then setting

• f1(z) :=z+d/c (translation by d/c);
• f2(z) :=1/z (inversion and reflection with respect to the real axis);
• f3(a) :=

(
(bc−ad)/c2

)
z (composition of a rotation and a homothety);

• f4(z) :=z+a/c (translation by a/c),

it is an exercise to show that

az+b
cz+d

= f4 ◦ f3 ◦ f2 ◦ f1(z). (8.2)

From the decomposition (8.2), we see that Möbius transformations carry over
all nontrivial properties of circle inversion. For example, the preservation of angles
is reduced to proving that circle inversion preserves angles since the other types of
transformations are dilation and isometries (translation, reflection, rotation), which
trivially preserve angles. We leave the details as an exercise.

The cross-ratio of a 4-uple (z1,z2,z3,z4) of distinct points in C is defined as

(z1,z2;z3,z4) :=
(z3− z1)(z4− z2)

(z3− z2)(z4− z1)
. (8.3)

This notion can be extended to the case when one of the points is ∞ ∈ Ĉ. For
instance, if z1 = ∞, one has
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(∞,z2;z3,z4) :=
(z3−∞)(z4− z2)

(z3− z2)(z4−∞)
=

(z4− z2)

(z3− z2)
.

It is an exercise to check that Möbius transformations preserve cross-ratios, that is,

( f (z1), f (z2); f (z3), f (z4)) = (z1,z2;z3,z4)

for any Möbius transformation f : Ĉ→ Ĉ and all distinct points z1,z2,z3,z4 ∈ Ĉ.
A generalized circle is either a circle or a line, the latter being considered as a

circle through ∞, the point at infinity. It is an exercise to check that Möbius transfor-
mations map generalized circles to generalized circles. Note, however, that a Möbius
transformation does not necessarily map circles to circles and lines to lines: it can
mix the two.

8.2 Hyperbolic (Plane) Geometry

In order to understand the nature of hyperbolic geometry and its motivations we
start with some historical background. Near the beginning of the first book of the
Elements, Euclid gives five postulates (axioms) for plane geometry. The last one,
known as the parallel axiom, states that through a given point outside a given line
there passes a unique line which does not intersect the given line.

It was a long standing problem to determine whether or not the last axiom was
independent of the first ones. The main investigations were due to Janos Bolyai,
Carl Friedrich Gauss, and Nicolaj I. Lobachevsky who eventually showed that the
fifth postulate is indeed independent of the others, in the sense that there exists a
plane, the hyperbolic plane, which satisfies the first four axioms but not the parallel
axiom.

In the following, we present two equivalent models of the hyperbolic plane,
namely, the Lobachevsky–Poincaré half-plane and the Poincaré disc.

8.3 The Lobachevsky–Poincaré Half-Plane

The upper half-plane is the set

X :=R×R>0 ≡ {z = x+ iy ∈ C : y > 0}

of complex numbers with positive imaginary part. The real axis

`∞ :=R×{0} ≡ {z = x+ iy ∈ C : y = 0}

is called the boundary line.
The hyperbolic distance of two points z1 = x1+ iy1 and z2 = x2+ iy2 in X is given

by
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d(z1,z2) = arcosh
(

1+
(x2− x1)

2 +(y2− y1)
2

2y1y2

)
. (8.4)

Some special cases can be simplified:
(i) if z1 and z2 lie on a vertical line, say z1 = x+ y1 and z2 = x+ y2, then (exercise)

d(z1,z2) =

∣∣∣∣ln y1

y2

∣∣∣∣= | ln(y2)− ln(y1)|;

(ii) if z1 = x1 + iy and z2 = x2 + iy, then (exercise)

d(z1,z2) = arsinh
(
|x2− x1|

2y

)
;

(iii) if z1 and z2 do not lie on a vertical line, then they lie on a unique semicircle `
with center in the boundary line. This uniquely determines two points z∞

1 and z∞
2 in

the boundary line (in other words {z∞
1 ,z

∞
2 } :=`∩ `∞). Arranging the four points in

cyclic order (on `), say z1,z2,z∞
2 ,z

∞
1 , see Figure 8.2,

z∞
1

z1 `

z2

z∞
2

`∞

Fig. 8.2 The four points z1,z2,z∞
2 ,z

∞
1 on `.

the hyperbolic distance between z1 and z2 is then given in terms of the cross-ratio of
Euclidean distances (exercise):

d(z1,z2) := log
(
|z1− z∞

2 | · |z2− z∞
1 |

|z1− z∞
1 | · |z2− z∞

2 |

)
. (8.5)

A path from z1 to z2, for z1,z2 ∈ X , is a differentiable map γ : [0,1]→ X ⊂ R2

such that γ(0) = z1 and γ(1) = z2. Writing γ(t) = (x(t),y(t)), the length L(γ) of a
path is

L(γ) :=
∫ 1

0

|γ ′(t)|
y(t)

dt.

It is an exercise to show that the hyperbolic distance between z1 and z2 equals the
infimum of the lengths of all paths from z1 to z2, in formulæ,

d(z1,z2) = inf {L(γ) : γ a path from z1 to z2}.

A geodesic path, or simply, a geodesic, is a path γ such that L(γ) = d(γ(0),γ(1)).
The geodesics, also called hyperbolic lines, are traces of Euclidean half-circles (with
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centers in the boundary line) and Euclidean lines which orthogonally intersect the
boundary line (see Figure 8.3).

`∞

Fig. 8.3 Geodesics in the hyperbolic half-plane.

8.4 Isometries of the Lobachevsky–Poincaré Half-Plane

Recall that GL(2,R) is the group of 2-by-2 matrices g =

(
a b
c d

)
with real coeffi-

cients which are invertible (that is, det(g) = ad−bc 6= 0). We denote by GL+(2,R)
the index-two subgroup consisting of all elements in GL(2,R) with positive deter-
minant. The complement GL−(2,R) :=GL(2,R)\GL+(2,R) is the nontrivial coset
of GL+(2,R) in GL(2,R). We define an action of GL(2,R) on X as follows.

Given g :=
(

a b
c d

)
∈ GL(2,R) and z = x+ iy ∈ X , we set

gz :=
az+b
cz+d

if g ∈ GL+(2,R) (8.6)

and
gz :=

az+b
cz+d

if g ∈ GL−(2,R), (8.7)

where z = x− iy.
Thus, any g∈GL(2,R) yields either a Möbius transformation (if g∈GL+(2,R))

or the composition of the conjugation map z 7→ z and a Möbius transformation (if
g ∈ GL−(2,R)).

It is an exercise to show that gz ∈ X for all g ∈ GL(2,R) and z ∈ X , and that the
map (g,z) 7→ gz defines an action of GL(2,R) on X .

We leave it as an exercise to check that the center Z = Z(GL(2,R)) of GL(2,R)
consists exactly of the nonzero multiples of the identity matrix I, that is, Z =R∗I =
{kI : k ∈ R∗}. Note that if k ∈ R∗ and g ∈ GL±(2,R) then kg ∈ GL±(2,R) and
(kg)z = gz for all z ∈ X . As a consequence, setting PGL(2,R) :=GL(2,R)/R∗I,
called the projective real linear group, and denoting by [g] ∈ PGL(2,R) the class of
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g =

(
a b
c d

)
∈ GL(2,R) mod R∗I, the quantity

[g]z :=gz

is well defined for all z ∈ X , yielding an action of PGL(2,R) on X . In the following,
unless explicitly indicated, in order to avoid a heavy notation, we shall simply write
g in place of [g] and make no distinction between g ∈ GL(2,R) or g ∈ PGL(2,R).

As usual, we denote by Isom(X) the isometry group of (X ,d).
It is an exercise to check that

d(gz1,gz2) = d(z1,z2)

for all g ∈ GL(2,R) (resp. g ∈ PGL(2,R)) and z1,z2 ∈ X . In other words, GL(2,R)
(resp. PGL(2,R)) acts by isometries on X .

Example 8.4. Here we list some basic examples of isometries of X : every other
isometry can be expressed as a suitable composition of these.

(1) For s ∈R, the translation by s is given by the matrix Ts :=
(

1 s
0 1

)
∈GL+(2,R),

so that
Tsz = z+ s = (x+ s)+ iy

for all z = x+ iy ∈ X .

(2) For λ > 0, the dilation by λ is given by the matrix Dλ :=
(

λ 0
0 1

)
∈ GL+(2,R),

so that
Dλ z = λ z = λx+ iλy

for all z = x+ iy ∈ X .
(3) Given a hyperbolic line ` in X , the reflection about ` is the unique nontrivial

isometry of X which fixes all points in `. For example:

(3.1) The reflection about the y-axis is given by the matrix r :=
(
−1 0
0 1

)
∈

GL−(2,R), so that
rz =−z =−x+ iy

for all z = x+ iy ∈ X . By conjugating r by the translation Ts, one obtains
the reflection about the axis x = s. Note that such a reflection is given by a
matrix in GL−(2,R).

(3.2) The reflection about the unit circle is given by the matrix R :=
(

0 1
1 0

)
∈

GL−(2,R), so that

Rz =
1
z
=

z
|z|2

=
x+ iy

x2 + y2

for all z = x+ iy ∈ X . By suitably conjugating R by a dilation and a trans-
lation, one obtains the reflection about any circle with center in `∞. Note
that such a reflection is given by a matrix in GL−(2,R).
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(4) The composition of the reflections about two intersecting hyperbolic lines in
X is called a rotation. It can be shown (cf. Example 8.14 below) that the ro-
tation about the point i ∈ X of angle θ ∈ [0,2π) corresponds to the matrix
ρθ ∈ GL+(2,R) given by

ρθ :=
(

cos(θ/2) sin(θ/2)
−sin(θ/2) cos(θ/2)

)
.

Clearly, any other rotation is conjugate to ρθ for a suitable θ ∈ [0,2π) and there-
fore corresponds to a matrix in GL+(2,R).

Let ` be a hyperbolic line in X . A pair (z1,z2) of distinct points in ` defines an
orientation of the line by declaring that z1 is met before z2 when traveling along
`. Clearly, the symmetric pair (z2,z1) gives the only other possible orientation. The
line ` divides X into two connected components and we denote by X+

` (resp. X−` )
the one on the right (resp. left) of a traveler along ` in the direction given by the
orientation (see Figure 8.4).

z1

z2

`

X−`

X+
`

Fig. 8.4 The line ` divides X into two connected components X+
` and X−` .

Definition 8.5 (Orientation-preserving isometry). Let ϕ be an isometry of X . We
say that ϕ is orientation-preserving if given a pair (z1,z2) of distinct points in X and
denoting by ` the hyperbolic line through z1 and z2, oriented by the pair, one has

ϕ(X+
` ) = X+

ϕ(`)

where the hyperbolic line ϕ(`) is orientated by the pair (ϕ(z1),ϕ(z2)) (see Figure
8.5).

We leave it as an exercise to check that the definition above does not depend
on the chosen pair (z1,z2) of distinct points in X . For instance, translations, dila-
tions, and rotations are orientation-preserving, while reflections are not. We leave
it as an exercise to show that orientation-preserving isometries form an index-two
subgroup, denoted by Isom+(X), in Isom(X).
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zz1

z2

X+
`

X−`
`

ϕ−→ ϕ(z)
ϕ(z1)

ϕ(z2)

ϕ(`)
ϕ(X+

` )ϕ(X−` )

Fig. 8.5 The isometry ϕ : X → X , satisfying ϕ(X+
` ) = X+

ϕ(`)
, is orientation-preserving.

Theorem 8.6. Any orientation-preserving isometry of X is either a translation, a
dilation, or a rotation, or some composition of these. As a consequence, Isom+(X)∼=
PSL(2,R).

Any isometry of X is either a translation, a dilation, a rotation, or a reflection, or
some composition of these. As a consequence, Isom(X)∼= PGL(2,R).

Sketch of the proof. Let φ ∈ Isom(X). Let also P1,P2,P∈ X be distinct points, where
P does not lie in the hyperbolic line ` through P1 and P2.

We claim that φ is uniquely determined by the values φ(P1), φ(P2), and φ(P).
Suppose that φ(P1) = P1 and φ(P2) = P2. Observe that all points in ` are fixed by
φ . Denote by P̀ ∈ ` the unique point such that d(P, P̀ ) = d(P, `). Let P′ ∈ X \ {P}
be the unique point such that d(P′, P̀ ) = d(P′, `). Since φ(P̀ ) = P̀ , we have two
possibilities: either φ(P) = P (and φ(P′) = P′) or φ(P) = P′ and φ(P′) = P. By
continuity, the same holds for every point Q in the connected component of X \ `
containing P. In the first case φ is the identity map and in the second case φ is the
reflection about `. This proves the claim if φ(P1) = P1 and φ(P2) = P2. The general
case is handled as follows: if φ1,φ2 ∈ Isom(X) attain the same values on P1,P2 and
P, then φ :=φ1 ◦ φ

−1
2 fixes P1,P2 and P and by the previous case, φ must be the

identity. This proves the claim.
Let us show that φ can be expressed as a suitable composition of a translation, a

dilation, a reflection, and a rotation. Clearly there exists a composition of a dilation
and a translation φ1(z) = az+ b with a,b ∈ R and a > 0 such that φ1(P1) = φ(P1).
Now there exists a rotation φ2 centered at φ(P1) such that (φ2 ◦ φ1)(P2) = φ(P2).
Therefore ψ :=φ ◦ φ

−1
1 ◦ φ

−1
2 ∈ Isom(X) fixes both P1 and P2. By the argument

above, ψ is either the identity or the reflection about `.
We leave it as an exercise to show that the matrices Ts, s ∈ R, Dλ , λ > 0, and

the rotations ρθ , θ ∈ [0,2π), generate the group GL+(2,R) so that [Ts], s ∈R, [Dλ ],
λ > 0, and [ρθ ], θ ∈ [0,2π), generate PSL(2,R)). This shows that Isom+(X) ∼=
PSL(2,R).

The reflection φ about the y-axis, corresponding to the matrix r ∈GL−(2,R) has
order 2. Thus, on the one hand,

Isom(X) = Isom+(X)o{1,φ} ∼= Isom+(X)oZ/2Z

and, on the other hand,

GL(2,R) = GL+(2,R)o{I,r} ∼= GL+(2,R)oZ/2Z

so that
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PGL(2,R)∼= PSL(2,R)o{[I], [r]} ∼= PSL(2,R)oZ/2Z.

We deduce that Isom(X)∼= PGL(2,R). �

Let ∞ be a new symbol called the ideal point. We denote by ∂X the boundary of
X defined as the union of the boundary line and the ideal point:

∂X :=`∞∪{∞} ≡ {z = x+ iy ∈ C : y = 0}∪{∞}.

Then X :=X ∪∂X is the closed upper half-plane. Topologically, X is the one-point
compactification of {z = x+ iy ∈ C : y≥ 0}.

It is an exercise to show that every isometry φ ∈ Isom(X) extends to a unique
homeomorphism of the closed upper half-plane.

8.5 The Poincaré Disc

Let
D :={z ∈ C : |z|< 1} ≡ {(x,y) ∈ R2 : x2 + y2 < 1}

denote the open unit disc in the complex plane C. We shall refer to it as to the
Poincaré disc. Its boundary is the circle

∂D :={(x,y) ∈ R2 : x2 + y2 = 1}.

We equip D with a distance, called the hyperbolic distance, by setting for two points
z1 = x1 + iy1 and z2 = x2 + iy2 in D

d(z1,z2) :=arcosh

(
1+2

(x2− x1)
2 +(y2− y1)

2(
1− x2

1− x2
2

)(
1− y2

1− y2
2

)) . (8.8)

Equivalently, given z1 and z2 in D either they lie on the same diameter, say ` or,
they lie on a (unique) Euclidean circle, say `, orthogonally intersecting the boundary
∂D. In either case, z1 and z2 uniquely determine two points z∞

1 and z∞
2 in the bound-

ary ∂D (in other words {z∞
1 ,z

∞
2 } :=`∩∂D). Arranging the four points in cyclic order

(on `), say z1,z2,z∞
2 ,z

∞
1 , see Figure 8.6,

the hyperbolic distance between z1 and z2 is then given in terms of the cross-ratio of
Euclidean distances as in (8.5) (exercise).

The following special cases can be simplified:
(i) if z1 and z2 lie on the same radius so that, by using polar coordinates, z1 = r1eiθ

and z2 = r2eiθ , with 0≤ r2 < r1 < 1 then (exercise)

d(z1,z2) = ln
(

1+ r1

1− r1
· 1− r2

1+ r2

)
= 2(arctanhr1− arctanhr2) ,

where arctanh is the inverse hyperbolic function of the hyperbolic tangent;
(ii) in particular, when one of the two points is the origin, we have (exercise)
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z∞
1

z1

`

z2

z∞
2

Fig. 8.6 The four points z1,z2,z∞
2 ,z

∞
1 on `.

d(z,0) = ln
(

1+ r
1− r

)
= 2arctanhr.

The geodesics, also called hyperbolic lines, are traces of Euclidean circles and
Euclidean lines which orthogonally intersect the boundary ∂D (see Figure 8.7).

∂D

Fig. 8.7 Geodesics in the Poincaré disc.

8.6 Isometries of the Poincaré Disc

We denote by U(1,1) the group of 2-by-2 complex matrices of the form(
u v
v u

)
such that uu− vv 6= 0. It is an exercise to show that U(1,1) is indeed a group:
it is called the pseudo-unitary group. We denote by U+(1,1) the index-two sub-
group consisting of all elements in U(1,1) with uu− vv > 0. The complement
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U−(1,1) :=U(1,1)\U+(1,1) is the nontrivial coset of U+(1,1) in U(1,1). We de-
fine an action of U(1,1) on D as follows.

Given g =

(
u v
v u

)
∈ U(1,1) and z ∈ D we set

gz :=
uz+ v
vz+u

if g ∈ U+(1,1)

and
gz :=

u+ vz
v+uz

if g ∈ U−(1,1).

Thus, any g ∈ U(1,1) yields either a Möbius transformation (if g ∈ U+(1,1))
or the composition of the conjugation map z 7→ z and a Möbius transformation (if
g ∈ U−(1,1)).

It is an exercise to show that gz ∈ D for all g ∈ U(1,1) and z ∈ D, and that the
map (g,z) 7→ gz defines an action of U(1,1) on D.

It is an exercise to show that the center Z(U(1,1)) of U(1,1) consists exactly of
the nonzero real multiples of the identity matrix, that is, Z(U(1,1)) = {aI : a ∈
R∗}. Note that Z(U(1,1)) ≤ U+(1,1) and that if g ∈ U(1,1) and a ∈ R∗ then
(ag)z = gz for all z ∈ D. As a consequence, there is an action of the quotient
group PU(1,1) :=U(1,1)/Z(U(1,1)), called the projective pseudo-unitary group.
Also, we denote by SU(1,1) the subgroup of U+(1,1) consisting of all matrices

g =

(
u v
v u

)
such that uu− vv = 1. This is called the special pseudo-unitary group.

Finally, we denote by PSU(1,1) :=U+(1,1)/Z(U+(1,1)) ∼= SU(1,1)/{I,−I} the
projective special pseudo-unitary group.

It is an exercise to check that

d(gz1,gz2) = d(z1,z2)

for all g ∈ U(1,1) and z1,z2 ∈ D. In other words, g ∈ Isom(D) for all g ∈ U(1,1)
(resp. in PU(1,1)), so that U(1,1) (resp. PU(1,1)) acts by isometries on D.

Example 8.7. Here we list some basic examples of isometries of D (cf. Example
8.14). For more examples, see Example 8.16 and Example 8.17.

(1) For θ ∈ [0,2π), the rotation by angle θ is given by the matrix

Rθ :=
(

eiθ/2 0
0 e−iθ/2

)
∈ U+(1,1),

so that
Rθ z = eiθ z

for all z ∈ D.
(2) Given a diameter `, the reflection about ` is the unique nontrivial isometry of D

which fixes all points in `. For example:
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(2.1) the reflection about the x-axis corresponds to the matrix rx :=
(

0 1
1 0

)
∈

U−(1,1) so that
rxz = z

for all z ∈ D, as expected.

(2.2) the reflection about the y-axis corresponds to the matrix ry :=
(

0 i
−i 0

)
∈

U−(1,1) so that
rxz =−z

for all z ∈ D, as expected.
(2.3) the reflection about the line x = y corresponds to the matrix

rx,y :=
(

0 eiπ/4

e−iπ/4 0

)
∈ U−(1,1)

so that
rx,yz = iz

for all z ∈ D, as expected.

The definition of an orientation-preserving isometry of X given in Definition 8.5
holds verbatim for isometries of D. We are now in a position to state the follow-
ing result describing the groups Isom(D) and Isom+(D) of all isometries (resp. all
orientation-preserving isometries of D): the proof will be given in the next section.

Theorem 8.8. Isom(D)∼= PU(1,1) and Isom+(D)∼= PSU(1,1).

Finally note (exercise) that every g ∈ Isom(D) uniquely extends to a homeomor-
phism of the closed unit disc

D :=D∪∂D = {z ∈ C : |z| ≤ 1}= {(x,y) ∈ R2 : x2 + y2 ≤ 1}.

8.7 The Cayley Transform and the Definition of H

Definition 8.9. The Cayley transform is the Möbius transformation

f (z) :=
z− i
z+ i

.

Like every Möbius transformation, the Cayley transform extends to a homeomor-
phism f : Ĉ→ Ĉ of the extended complex plane. It is an easy exercise to check that
(see Figure 8.8)

(i) f (∞) = 1
(ii) f (1) =−i

(iii) f (−1) = i
(iv) f (i) = 0
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(v) f (−i) = ∞

(vi) f (0) =−1.

Since Möbius transformations permute the generalized circles in the complex
plane, it follows from (i)–(iii) that f maps the real line onto the unit circle. Fur-
thermore, by (iv) and continuity of f , the upper half-plane is mapped onto the unit
disc.

i f−→

0

f (i) f (∞)f (0)

Fig. 8.8 The Cayley transform.

In fact, we have the following:

Theorem 8.10. The Cayley transform yields an isometry of the Lobachevsky–Poin-
caré half-plane (X ,d) onto the Poincaré disc (D,d).

Proof. The Cayley transform yields a bijection from the closed upper half-plane
X = X ∪∂X onto the closed unit disc D = D∪∂D mapping ∂X onto ∂D and there-
fore X onto D. We leave it as an exercise, by using (8.4) and (8.8), to check that the
Cayley transform indeed yields an isometry (X ,d)→ (D,d). �

It is an exercise to check that the map(
u v
v u

)
7→
(

a+d b+ c
c−b a−d

)
for all u = a+ ib and v = c+ id, with a,b,c,d ∈R, yields an isomorphism of U(1,1)
(resp. U+(1,1)) onto GL(2,R) (resp. GL+(2,R)). As a consequence, the following
isomorphisms hold:

PU(1,1)∼= PGL(2,R) and PSU(1,1)∼= PSL(2,R). (8.9)

Proof of Theorem 8.8. This follows immediately from Theorem 8.10, yielding
Isom(D)∼= Isom(X) (resp. Isom+(D)∼= Isom+(X)), Theorem 8.6, and (8.9). �

We denote by H the isometry class of the Lobachevsky–Poincaré half-plane and
the Poincaré disc, and call it the hyperbolic plane. We then denote by ∂H the bound-
ary of the hyperbolic plane.

From Theorem 8.6 and Theorem 8.8 we immediately deduce the following:

Theorem 8.11. The group Isom(H) (resp. Isom+(H)) of all isometries (respectively
orientation-preserving isometries) of H is isomorphic to PGL(2,R) ∼= PU(1,1)
(resp. PSL(2,R)∼= PSU(1,1)). �
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8.8 Classification of the Orientation-Preserving Isometries of H

Definition 8.12. Let g∈ Isom+(H) be an orientation-preserving isometry ofH. One
says that g is:

• elliptic if there is some point in H fixed by g;
• parabolic if in ∂H there is exactly one point fixed by g;
• hyperbolic if in ∂H there are exactly two points fixed by g.

Remark 8.13. It is clear that the elliptic (resp. parabolic, resp. hyperbolic) type of
an orientation-preserving isometry of H is invariant under conjugation by elements
in Isom(H).

It is an exercise to check that an orientation-preserving isometry of H is hyper-
bolic if and only if there is a line in H invariant by g on which g has no fixed-points
(namely, the unique line connecting the two fixed-points of g in ∂H).

It follows from the proof of Theorem 8.6 that if an orientation-preserving isom-
etry g of H has two fixed-points in H, then g is the identity. As a consequence, the
point in H fixed by a nontrivial elliptic isometry is unique.

Example 8.14 (Elliptic isometry). In the Poincaré disc model D ofH, the counter-
clockwise rotation RD

θ
(0) around the origin of angle θ ∈ [0,2π), given by the map

z 7→ eiθ z, and corresponding to the matrix
(

eiθ/2 0
0 e−iθ/2

)
∈ SU(1,1), fixes the ori-

gin and therefore is an elliptic isometry. Note that for θ = π , the rotation RD
π (0) is

given by the map z 7→ −z with corresponding matrix
(

i 0
0 −i

)
∈ SU(1,1).

Conjugating RD
θ
(0) by the Cayley transform, one obtains the rotation RX

θ
(i) of

center i of angle θ in the Lobachevsky–Poincaré half-plane model X of H. We
leave it as an exercise to check that for θ ∈ [0,2π) the corresponding matrix is(

cos(θ/2) sin(θ/2)
−sin(θ/2) cos(θ/2)

)
∈ GL+(2,R). Note that for θ = π , the rotation RX

π (i) is

expressed by the matrix
(

0 1
−1 0

)
∈ GL+(2,R) and therefore it is given by the map

z 7→ −z−1.
It follows from the proof of Theorem 8.6 that every elliptic isometry of X (resp.

of D) is conjugate to a rotation RD
θ
(0) around the origin (resp. RX

θ
(i) around i) of

angle θ ∈ [0,2π), and therefore it is a rotation around its fixed-point.

Remark 8.15. The counterclockwise rotations RD
θ
(0) (resp. RX

θ
(i)) around the ori-

gin 0 ∈ D (resp. i ∈ X) act transitively on the boundary ∂D (resp. ∂X).

Example 8.16 (Parabolic isometry). In the Lobachevsky–Poincaré half-plane
model X of H, given b ∈ R∗, the translation T X

b by b, given by the map z 7→ z+b,

and corresponding to the matrix
(

1 b
0 1

)
∈ SL(2,R), fixes only the point ∞∈ ∂X and

therefore is a parabolic isometry.
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It follows from the isomorphism Isom+(X) ∼= PSL(2,R) (cf. Theorem 8.6) that
the only orientation-preserving isometries fixing ∞ ∈ ∂X are the T X

b s. By using Re-
mark 8.15, we deduce that every parabolic isometry of X is conjugate to a translation
T X

b for some b ∈ R∗.
Conjugating T X

b by the Cayley transform f , one obtains the translation T D
b in the

Poincaré model D of H. We leave it as an exercise to check that the corresponding

matrix is
(

2+ ib −ib
ib 2− ib

)
∈ U+(1,1). Note that the only fixed-point in ∂D is 1 =

f (∞). As above, every parabolic isometry of D is conjugate to a translation T D
b for

some b ∈ R∗.

Example 8.17 (Hyperbolic isometry). In the Lobachevsky–Poincaré half-plane
model X of H, given 0 < λ 6= 1 the dilation DX

λ
, given by the map z 7→ λ z, and

corresponding to the matrix
(

λ 0
0 1

)
∈ GL+(2,R), fixes only the points 0 and ∞ in

∂X and therefore is a hyperbolic isometry. Using the fact that translations T X
b , b∈R,

act transitively on the boundary line `∞ (exercise) one can show (exercise) that every
hyperbolic isometry of X is conjugate to a dilation DX

λ
for some 0 < λ 6= 1.

Conjugating DX
λ

by the Cayley transform f , one obtains the dilation DD
λ

in the
Poincaré model D of H. We leave it as an exercise to check that the corresponding

matrix is
(

λ +1 λ −1
λ −1 λ +1

)
∈U+(1,1). Note that the only fixed-points in ∂D are−1=

f (0) and 1 = f (∞). As above, every hyperbolic isometry of D is conjugate to a
dilation DD

λ
for some 0 < λ 6= 1.

Theorem 8.18. Elliptic, parabolic, and hyperbolic isometries define a partition of
Isom+(H) into three disjoint classes.

Proof. We first check that the three classes do not overlap.
Let g∈ Isom+(H). Suppose first that g is hyperbolic and let ` denote the invariant

line. Since g has two fixed-points in ∂H it is not parabolic. But g is not elliptic either,
because if P∈Hwas fixed by g, then the foot P̀ ∈ ` of the perpendicular from P to `
would also be fixed (exercise), and the line ` itself should be pointwise fixed (recall
that g is orientation-preserving), contradicting the definition of hyperbolicity.

Suppose now that g is at the same time elliptic, with fixed-point P ∈ H, and
parabolic with fixed-point Q ∈ ∂H. Then the line `P,Q from P to Q should be in-
variant. Thus, if Q′ is the other point in `∩ ∂H, then g should also fix Q′ ∈ ∂H,
contradicting the definition of parabolicity.

This shows that the three classes are disjoint.
In order to prove that they exhaust the whole of Isom+(H), we need the following

celebrated theorem of Luitzen Egbertus Jan Brouwer (see [44]):

Theorem 8.19 (Brouwer fixed-point theorem). Let Bn ⊆ Rn denote the n-dim-
ensional closed unit ball. Then every continuous map f : Bn→ Bn has a fixed-point.

Let g∈ Isom(H). By Theorem 8.19 applied to B2 ≡D∼=H and f = g, we deduce
that g has at least one fixed-point P in H. If P ∈H, then g is elliptic. If P ∈ ∂H and
it is unique with this property, then g is parabolic. Otherwise, if P′ ∈ ∂H is another
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fixed-point in the boundary, then the line `= `P,P′ is g-invariant, and g is hyperbolic.
The proof of Theorem 8.18 is complete. �

8.9 Characterizations of Orientation-Preserving Isometries of H

Given g ∈ Isom+(H), by Theorem 8.11 there exists a unique m(g) ∈ PSL(2,R)
which represents g. Let M(g) ∈ SL(2,R) such that m(g) = [M(g)]. Such a matrix
M(g) is uniquely defined up to sign: if M′ ∈ SL(2,R) satisfies m(g) = [M′], then
M′ =±M(g). We then set τ(g) := | tr(M(g))|. Thus, τ(g) equals the absolute value
of the trace of a determinant-one matrix corresponding to g. Note that this definition
is independent of the model X or D forH and of the choice of the matrix (exercise).

The proof of the following proposition is left as an exercise.

Proposition 8.20 (Characterization of elliptic isometries). Let g ∈ Isom+(H).
Then the following conditions are equivalent:

(a) there exists a P ∈H such that g(P) = P, i.e., g is elliptic;
(b) infP∈H d(P,g(P)) = 0 and the infimum is attained;
(c) g = IdH or τ(g)< 2.

Proposition 8.21 (Characterization of parabolic isometries). Let g ∈ Isom+(H).
Then the following conditions are equivalent:

(a) there exists a unique P ∈ ∂H such that g(P) = P, i.e., g is parabolic;
(b) infP∈H d(P,g(P)) = 0 and the infimum is not attained;
(c) τ(g) = 2.

Moreover, if one of the above conditions is satisfied, denoting by P ∈ ∂H the unique
fixed-point in H∪∂H the following holds. For every neighborhood U ⊆ ∂H of P in
∂H and every compact subset K ⊂ ∂H \ {P}, there exists an n0 = n0(g;U,K) ∈ N
such that gn(K)⊆U for all n ∈ Z such that |n| ≥ n0.

Proof. Given x ∈ ∂X , the rotation RX
θ

by θ = θ(x) :=arcsin(2x/(1+ x2)) (cf. Ex-
ample 8.14) maps x to ∞ ∈ ∂X (exercise). Thus, given a parabolic isometry of X
fixing x ∈ ∂X , conjugation by RX

θ(x) yields a parabolic isometry of X fixing ∞. We
leave it as an exercise to check (by looking at the expressions (8.6) and (8.7)) that
the only isometries of X only fixing ∞ on ∂X are indeed the translations T X

b with
b ∈R∗. It follows that every parabolic isometry of H is conjugate to a translation of
H. It is also clear that τ(T X

b ) = 2 for all b ∈ R.
In the Lobachevsky–Poincaré model X ofH, given a neighborhood U of ∞∈ ∂X ,

we can find M ≥ 0 such that U ⊃ UM :={z ∈ X : |z| > M} ∪ {∞}. Also, given a
compact subset K ⊂ ∂X \ {∞}, there exists an m ∈ R such that K ⊆ {z = x+ iy ∈
C : |x| ≤m,y = 0}, and setting n0 :=(M+m)/|b| one has that (T X

b )n(K)⊆U for all
n ∈ Z such that |n| ≥ n0. �
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Proposition 8.22 (Characterization of hyperbolic isometries). Let g∈ Isom+(H).
Then the following conditions are equivalent:

(a) there exists two distinct points P+ and P− in ∂H such that g(P±) = P±, i.e., g is
hyperbolic;

(b) there exists a line `⊆H which is g-invariant and fixed-point-free;
(c) infP∈H d(P,g(P))> 0 (the infimum is attained on the invariant line `);
(d) τ(g)> 2.

Moreover, if one of the above conditions is satisfied, then, up to exchanging P+ and
P−, the following holds: for every neighborhood U− ⊆ ∂H of P− (resp. U+ ⊆ ∂H of
P+) in ∂H and every compact subset K− ⊆ ∂H\{P+} (resp. K+ ⊆ ∂H\{P−}) there
exists an n0 ∈ N such that gn(K−)⊆U− for all integers n > n0 (resp. gn(K+)⊆U+

for all integers n <−n0).

Proof. We leave the equivalences (a)–(d) as an exercise. Just note that in the
Lobachevsky–Poincaré model X of H, the dilation g = DX

λ
, 0 < λ 6= 1, satisfies

d(P,g(P)) = | lnλ | for all P ∈ ` = {iy : y > 0}. To prove the dynamical characteri-
zation of hyperbolicity, we again use the Lobachevsky–Poincaré model X of H and
consider a dilation g = DX

λ
, with say λ > 1. In this case P− = ∞ and P+ = 0. A

neighborhood of P− in ∂X contains UR :={x+ iy : |x| > R,y = 0}∪{∞} for some
R > 0 and a neighborhood of P+ in ∂X contains Uε ′ :={x+ iy : |x|< ε ′,y = 0}∪{0}
for some ε ′ > 0. Also any compact subset in ∂X \ {P+} (resp. in ∂X \ {P−})
is contained in Kε :={x + iy : ε < |x|,y = 0} ∪ {∞} for some ε > 0 (resp. in
KR′ :={x+ iy : |x|< R′,y = 0}∪{0} for some R′ > 0). We leave it as an exercise to
check that any n0 > max{logλ (R/ε), logλ (R

′/ε ′)} has the required properties. �

Remark 8.23. Suppose that g ∈ Isom+(H) is hyperbolic. Then the invariant line is
unique. For, suppose that `,`′ are two distinct invariant lines. If `∩ `′ 6=∅, then the
(unique) point P ∈ H such that `∩ `′ = {P} would be fixed by g, and g would be
elliptic (contradicting Theorem 8.18). If `∩ `′ = ∅ and ` and `′ have no common
point in ∂H, then there exists a unique line `⊥ perpendicular to both of them. Note
that `⊥ is g-invariant. We deduce that the (unique) point P in `∩ `⊥ is fixed by g,
and again g would be elliptic (contradicting Theorem 8.18). Finally, suppose that
`∩ `′ = ∅ and ` and `′ have a common point P in ∂H. Let ρ > 0 and denote by
Cρ the set of points in H at distance ρ from `. It is an exercise to show that Cρ is
g-invariant and Cρ ∩ `′ 6=∅. We deduce that the (unique) point P in Cρ ∩ `′ is fixed
by g, again a contradiction.

8.10 The Tits Alternative for GL(2,R)

Proposition 8.24. Let g,h∈ Isom+(H)\{1} and suppose that they have no common
fixed-points in H∪∂H. Then the group Γ :=〈g,h〉 contains a subgroup isomorphic
to a nonabelian free group, up to the following two exceptional cases:
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(i) g2 = h2 = 1;
(ii) (up to exchanging g and h) g2 = 1, h is hyperbolic, and g exchanges the two

fixed-points of h in ∂H.

In these cases, Γ is isomorphic to the infinite dihedral group D∞ (which is solvable).

Proof. The proof consists of a case-by-case analysis.

Case 1. One element, say g, is parabolic with fixed-point P1 ∈ ∂H. Set g1 :=g. Then,
the element g2 :=hg1h−1 is also parabolic and its fixed-point in ∂H is P2 :=h(P1)
which is distinct from P1 by our hypotheses on g and h. Let K1 (resp. K2) be a com-
pact neighborhood of P1 (resp. P2) in ∂H with K1∩K2 =∅. Then, by the dynamical
description of parabolicity (cf. Proposition 8.21) there exists a positive integer n0
such that gn

1(K2)⊆ K1 and gn
2(K1)⊆ K2 for all n ∈ Z with |n| ≥ n0. It follows from

Klein’s ping-pong lemma (Theorem 1.17) that gn0
1 and gn0

2 generate a free subgroup
in Γ .

Case 2. Both g and h are hyperbolic. Let P+ and P− (resp. Q+ and Q−) be the
fixed-points of g (resp. of h) in ∂H. Note that, by our assumptions on g and h, these
points are distinct. Let then K+ and K− (resp. H+ and H−) be pairwise disjoint
compact neighborhoods of P+ and P− (resp. of Q+ and Q−) in ∂H. Then, setting
K :=K+∪K− (resp. H :=H+∪H−) we get a compact neighborhood of both P+ and
P− (resp. of Q+ and Q−) in ∂H such that K∩H =∅. By the dynamical description
of hyperbolicity (cf. Proposition 8.22), there exists an n0 ∈N such that gn(H)⊆ K−
and g−n(H) ⊆ K+ (resp. hn(K) ⊆ H− and h−n(K) ⊆ H+) for all n ≥ n0. In other
words, for |n| ≥ n0, gn(H) ⊆ K and hn(K) ⊆ H. Then, as in Case 1, from Klein’s
ping-pong lemma we deduce that gn0 and hn0 generate a free subgroup in Γ .

Case 3. One of the elements, say h, is hyperbolic with fixed-points P,Q in ∂H, and
g does not exchange them. Note that g(Q) 6= Q and g(P) 6= P, by our assumptions
on g and h. If g(P) 6= Q and g(Q) 6= P, then h and ghg−1 have no common fixed-
points in ∂H and therefore we are as in Case 2. If not, say g(P) = Q. By assumption,
g(Q) 6= P.

If g2(Q) 6= P, then h and g2hg−2 have no common fixed-points in ∂H and there-
fore we are again in Case 2.

Thus we may assume that g2(Q) = P. Consider the isometries h′ :=g−1hg and

h′′ :=ghg−1hgh−1g−1 ≡ hgh−1g−1
.

These are both hyperbolic with fixed-points in ∂H given by R :=g−1(P) = g(Q)
and g−1(Q) = P, and ghg−1(Q) = Q and S :=ghg−1(P), respectively. We already
know that P,Q and R are distinct.

We claim that S is distinct from P,Q, and R.
Since the only fixed-points in ∂H of h are P and Q, we have h(R) 6= R, so that

S = ghg−1(P) = gh(R) 6= g(R) = P. Clearly, S = ghg−1(P) 6= ghg−1(Q) = Q, since
P 6= Q and ghg−1 is injective. Finally, since R = g(Q) 6= Q = h−1(Q), we have
h(R) 6= Q and thus S = gh(R) 6= g(Q) = R.
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Consequently, h′ and h′′ are again as in Case 2.

Case 4. Both g and h are elliptic with g2 6= 1. Note that k :=hgh−1 6= g, since g and
h have no common fixed-points.

Claim: There exists a P ∈ ∂D such that k(P) = g(P).

In order to prove the Claim, we recall some notions and results from the basic
theory of Dynamical Systems (for details, we refer, for instance, to [195, Chapter
11] and [42, Chapter 7]). We denote by S1 :={z ∈C : |z|= 1} the unit circle and by
p : R→ S1 the universal covering map given by p(x) = e2πix for all x ∈ R. Given
an orientation-preserving homeomorphism f : S1→ S1, a continuous map f̃ : R→
R such that p ◦ f̃ = f ◦ p is called a lifting of f . It is an exercise to show that
such liftings exist and, moreover, they are uniquely determined by the value f̃ (0).
In fact, for two liftings f̃1 and f̃2 of f there exists an n = n( f̃1, f̃2) ∈ Z such that
f̃1(x)− f̃2(x) = n for all x ∈ R.

Theorem 8.25 (Poincaré). Let f : S1 → S1 be an orientation-preserving homeo-
morphism of the circle and let f̃ : R→R be the lifting such that 0≤ f̃ (0)< 1. Then
the limit

ρ( f ) := lim
n→∞

f̃ n(x)− x
n

(8.10)

exists and is independent of x ∈ R.
Moreover, if g : S1→ S1 is a homeomorphism, then ρ(g−1 f g) = ρ( f ).

The number ρ( f ) defined by (8.10) is called the rotation number of f .
For example, it is an exercise to show that if RD

θ
is the rotation by angle

θ ∈ [0,2π) around the origin in D yielding, by continuity, an orientation-preserving
homeomorphism fθ of S1 ≡ ∂D, then

ρ( fθ ) =
θ

2π
. (8.11)

It is an exercise to show that

min
x∈R

(
f̃ (x)− x

)
≤ ρ( f )≤max

x∈R

(
f̃ (x)− x

)
. (8.12)

We are now in a position to give a proof of the claim. Using the Poincaré disc
model D of H, and modulo a conjugation within Isom+(D), one may assume that
g = rα is the rotation around the origin O of the disc D by some angle α ∈ (0,π)∪
(π,2π). Moreover, k = hgh−1 induces an orientation-preserving homeomorphism
k : : S1→ S1 with rotation number ρ(k) = ρ(hgh−1) = ρ(g) = α/(2π), cf. (8.11).
By (8.12), there exists an x ∈ R such that k̃(x)− x = α/(2π), where k̃ : R→ R is
the lifting of k such that k̃(0) ∈ [0,1). Setting P :=π(x) ∈ ∂D, we have

k(P) = k(p(x)) = p(k̃(x)) = p(x+α/(2π)) = p(x)p(α/(2π)) = eiα P = g(P).
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This shows that there exists a P ∈ ∂D such that k(P) = g(P). The claim follows.

By the claim, the element g′ :=g−1k = g−1hgh−1 has a fixed-point P in ∂H. Let
us show that h and g′ have no common fixed-points inH∪∂H. Suppose Q∈H∪∂H
is fixed by both h and g′. We leave it as an exercise to check that g−1(Q) is fixed
by h. If Q ∈ ∂H, then g−1(Q) ∈ ∂H, contradicting the hypothesis that h is elliptic.
If Q ∈H, then g−1(Q) ∈H and either Q = g−1(Q), that is, g(Q) = Q and this is not
possible because h and g have no common fixed-points, or Q 6= g−1(Q) so that h has
two fixed-points in H. This is not possible either since h 6= 1.

Now, if the g′-fixed-point P∈ ∂H is unique, then g′ is parabolic, and one reduces
to Case 1 (with g replaced by g′). Otherwise, g′ is hyperbolic and we denote by Q
the other element in ∂H such that g′(Q) = Q. If h does not exchange P and Q, then
we reduce to Case 3 (with g replaced by h and h replaced by g′). We are only left
with the following:

Exceptional case (i). If g2 = h2 = 1, then both g and h are elliptic. Since g and h
have no common fixed-point, gh cannot be elliptic (exercise) and therefore it gener-
ates an infinite cyclic subgroup of index 2 in Γ . Thus Γ is isomorphic to the infinite
dihedral group D∞ (and therefore it is solvable).

Exceptional case (ii). If h is hyperbolic and g exchanges the fixed-points of h, then
ghg−1 = h−1. Since g2 = 1 we also have (gh)2 = 1. Moreover (exercise) g and gh
have no common fixed-points in ∂H, so that Γ = 〈g,h〉= 〈g,gh〉 is as in the excep-
tional case (i).

The proof of Proposition 8.24 is complete. �

Lemma 8.26. Let g,h ∈ Isom+(H) and suppose that they have a common fixed-
point in H∪∂H. Then the subgroup Γ generated by a and b is solvable.

Proof. Let P ∈ H∪ ∂H denote the common fixed-point of g and h. If P ∈ H then
both g and h are elliptic, in fact rotations around P (cf. Example 8.14). It is then
clear that Γ is Abelian and therefore solvable. If P ∈ ∂H, then, up to conjugation,
we can suppose that P = ∞ ∈ ∂X . The stabilizer of ∞ is isomorphic to the group

Γ0 ≤ PSL(2,R) consisting of all [g] with g =

(
a b
0 d

)
in SL(2,R) (exercise). Thus

Γ0 is isomorphic to a quotient of the subgroup B(2,R)∩ SL(2,R) of B(2,R) (cf.
Example 4.3.(a)). By Proposition 4.4, Γ0 and therefore its subgroup Γ are solvable.
The proof of Lemma 8.26 is complete. �

Theorem 8.27 (The Tits alternative for GL(2,R)). A subgroup of GL(2,R) which
is not solvable contains a nonabelian free subgroup.

Proof. We start by showing that a subgroup Γ of Isom+(H) which is not solvable
contains a nonabelian free subgroup. Suppose first that Γ contains a parabolic isom-
etry, say g. Let P ∈ ∂H denote the (unique) fixed-point of g and let ΓP denote the
stabilizer of P in Isom+(H). Since ΓP is solvable (cf. the proof of Lemma 8.26), by
Proposition 4.4 and our assumptions, Γ 6⊆ ΓP. If h ∈ Γ \ΓP, then g and h satisfy the
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hypotheses of Proposition 8.24 and therefore, by Case 1 therein, 〈g,h〉 ≤Γ contains
a nonabelian free subgroup.

Suppose now that Γ contains a hyperbolic isometry, say h, and denote by
Fix(h)⊂ ∂H the set of its fixed-points. Let g∈Γ \{h} and suppose that it is also hy-
perbolic, and denote by Fix(g)⊂ ∂H the set of its fixed-points. If Fix(h)∩Fix(g) =
∅, then by Proposition 8.24 〈g,h〉 ≤ Γ contains a nonabelian free subgroup. Sup-
pose now that Fix(h)∩Fix(g) = {P}. We observe that in this case g and h do not
commute, that is, their commutator [g,h] is nontrivial. Up to conjugation, we can
suppose that P = ∞ ∈ ∂X so that the action of g (resp. of h) is given by a matrix
in B(2,R)∩SL(2,R). It follows that [g,h] is represented by a nontrivial matrix in
UT(2,R) (cf. Example 4.3.(a)). Thus [g,h] is parabolic and one reduces to the pre-
vious case.

Suppose now that Fix(h) = Fix(g) for all hyperbolic isometries g ∈ Γ . As a con-
sequence, the subgroup Γhyp generated by all hyperbolic elements in Γ is Abelian
and therefore solvable. Thus, by our assumptions, Γhyp does not exhaust the whole of
Γ and therefore there exist nonhyperbolic isometries in Γ . By virtue of the first case
above, we are only left to consider the case when Γ \Γhyp consists only of elliptic el-
ements. Let g∈Γ \Γhyp and suppose that it is elliptic. If g does not exchange the two
elements in Fix(h), then it follows from Proposition 8.24 that 〈g,h〉 ≤ Γ contains a
nonabelian free subgroup. Otherwise, all g ∈ Γ \Γhyp are elliptic and exchange the
two elements in Fix(h): the product of two distinct such elements fixes the elements
in Fix(h) and therefore belongs to Γhyp. Thus [Γ : Γhyp] = 2 and Γ would be solvable,
contradicting our assumptions.

Finally, suppose that Γ is elliptic. If Fix(g) = Fix(h) for all g,h ∈ Γ (resp.
g2 = 1 for all g ∈ Γ ) then Γ is Abelian and therefore solvable, contradicting our
assumptions. Thus we can find g,h ∈ Γ such that g2 6= 1 and Fix(g) 6= Fix(h). Then
〈g,h〉 ≤ Γ contains a nonabelian free subgroup by Proposition 8.24.

This proves the Tits alternative for PSL(2,R)∼= Isom+(H).
Suppose now that Γ̃ ≤ PGL(2,R) is not solvable. Set Γ :=Γ̃ ∩PSL(2,R). Since

[PGL(2,R) : PSL(2,R)] = 2, either Γ = Γ̃ or [Γ̃ : Γ ] = 2. In either case, Γ is not
solvable (exercise). By the Tits alternative for PSL(2,R), we deduce that Γ and
therefore Γ̃ contain a nonabelian free subgroup. This proves the Tits alternative for
PGL(2,R).

Finally, suppose that Γ ≤ GL(2,R) is not solvable. Denote by π : GL(2,R)→
PGL(2,R) the quotient map and set Γ̃ :=π(Γ ) ≤ PGL(2,R). We claim that Γ̃ is
not solvable. Otherwise, as Γ̃ = (Γ R∗I)/R∗I ∼= Γ /(Γ ∩R∗I), from exactness of

1→ Γ ∩R∗I→ Γ → Γ /(Γ ∩R∗I)→ 1

and Proposition 4.4 we get solvability of Γ , contradicting our assumptions. By
virtue of the Tits alternative for PGL(2,R), we deduce that Γ̃ contains a nonabelian
free subgroup F . It is clear that π−1(F)≤ Γ contains a free subgroup as well. This
proves the Tits alternative for GL(2,R). �
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8.11 Growth of Finitely Generated Linear Groups

From the Tits alternative theorem (Theorem 8.1) and the Milnor–Wolf theorem
(Corollary 7.41) we deduce the following:

Corollary 8.28 (Growth of finitely generated linear groups). Let G be a finitely
generated linear group. Then the growth of G is either exponential or polynomial.
In the latter case, G is virtually nilpotent. �

As a consequence of the above corollary, a finitely generated group of interme-
diate growth (e.g., the Grigorchuk group) cannot be linear.

8.12 Notes

Möbius transformations are named after August Ferdinand Möbius; they are also
variously called homographies, homographic transformations, linear fractional trans-
formations, bilinear transformations, or fractional linear transformations. The Möbius
group is isomorphic to the projective linear group PGL(2,C) (the group of all pro-
jective transformations of the complex projective line Ĉ).

The Tits alternative theorem was proved by Jacques Tits in [333]. Its original
proof consists in looking at the Zariski closure of theK-linear group G in GL(n,K).
If it is solvable, then the group is solvable. Otherwise, one looks at the image of
G in the Levi component. If it is noncompact then a ping-pong argument yields a
nonabelian free subgroup. If it is compact then, either all eigenvalues of elements in
the image of G are roots of unity and then the image is finite, otherwise one applies
again the ping-pong strategy yielding nonabelian free subgroups. For a complete
and comprehensive proof of the Tits alternative, a part the original paper [333] by
Tits, we refer to the monograph [96] by Cornelia Druţu and Misha Kapovich as well
as to the notes [334] by Matthew C.H. Tointon.

In geometric group theory, a group G is said to satisfy the Tits alternative if for
every subgroup H of G either H is virtually solvable or H contains a nonabelian free
subgroup (in some versions of the definition, this condition is only required to be
satisfied for all finitely generated subgroups of G).

Examples of groups satisfying the Tits alternative which are either not linear, or
at least not known to be linear, are, without intending to be exhaustive:

- hyperbolic groups [139, 8.2.F] (see also [122, Chapter 8]);
- mapping class groups [186], [139], [157], [300], [264], [234];
- Out(Fn) :=Aut(Fn)/ Inn(Fn) the group of outer automorphisms of the free group

Fn [28, 29];
- fundamental groups of certain 3-manifolds [269];
- certain groups of birational transformations of algebraic surfaces [49];
- one-relator groups [194, Theorem 3].

Examples of groups not satisfying the Tits alternative are:
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- automorphism groups of locally finite trees; e.g., the Grigorchuk group [130]
and the Gupta–Sidki groups [148] (see also [248] by Claudio Nebbia and [271]
by Isabelle Pays and Alain Valette, for a variant of the Tits alternative (involv-
ing amenability) in this context and, more generally, for fixed-point properties
versus existence of free groups in groups of homeomorphisms acting on metric
spaces (and on their end compactification) see [353] and the reference therein,
by Wolfgang Woess);

- the Richard Thompson group F [48];
- most big mapping class groups [211], and [6] where the Grigorchuk group is

used;
- the group Aut(ΣZ) of all automorphisms (i.e., invertible cellular automata [59,

215]) of a full shift (over a finite alphabet Σ and the group Z) [301] by Ville Salo.

Also, the original result has been improved by quantifying the depth in G of the
free subgroup with respect to some fixed generating set S of G. Emmanuel Breuillard
proved that there exists a universal function N(d) such that for any finite subset
S ⊆ GL(d,K) either the group G generated by S is virtually solvable or there exist
two words a,b on S of S-length less than N(d) which generate a non-abelian free
group (see [34, 35]), and previous quantifications in this direction [38, 109]).

Similar forms of quantification of the Tits Alternative for Gromov hyperbolic
groups were proved by Thomas Delzant [92], by Malik Koubi [203] (for Gromov
hyperbolic groups with torsion), and by Goulnara Arzhantsheva and Igor Lysënok
[8] (for subgroups of a given hyperbolic group), for a constant N depending however
always on the group G under consideration.

A weaker form of the alternative, generally easier to establish, the weak Tits alter-
native, asks for the existence of free subsemigroups in G instead of free subgroups,
provided that G is not virtually solvable. Notice that, in this weaker form, the Tits
alternative is no longer a dichotomy for linear groups, since it is well known that
there exist solvable groups of GL(n,R) which also contain free semigroups (and
actually, any finitely generated solvable group which is not virtually nilpotent con-
tains a free semigroup on two generators [295]). It remains a dichotomy for those
classes of groups for which virtual solvability implies sub-exponential growth, e.g.
hyperbolic groups, groups acting geometrically on CAT(0)-spaces, etc. Quantitative
results on the weak Tits alternative can be found in [72].

Note that, in order to prove Gromov’s theorem (Theorem 12.1), the weak form
of the Tits alternative suffices. We thank Mark Sapir for pointing this out to us.



Chapter 9
Topological Groups, Lie Groups, and Hilbert’s
Fifth Problem

This chapter is mainly expositive. We review the notions of a topological group and,
in particular, of a locally compact group, also presenting a few examples. The latter
admit a left-invariant regular Borel measure, called a Haar measure (Theorem 9.10):
we present a complete (and self-contained) proof of this result in Section 9.3. We
then briefly discuss locally compact Abelian groups and the celebrated Pontryagin
duality. In the last sections we briefly review the notion of a Lie group, Hilbert’s
fifth problem and its solutions: in particular, we focus on the Theorem of Gleason
and Montgomery–Zippin (Theorem 9.17) which will play a significant role in the
proof of Gromov’s theorem (Theorem 12.1) in Section 12.3.

9.1 Topological Groups

A topological group is a group G together with a Hausdorff topology on G such that
both the product map and the inverse map are continuous functions with respect to
the given topology.

Definition 9.1. Let G be a group that is also a Hausdorff topological space. Suppose
that the topology on G is compatible with the group operations, that is, the product
G×G→ G,(g,h) 7→ gh (here G×G is equipped with the product topology) and
the inversion G→ G,g 7→ g−1 are continuous maps. Then the group G is called a
topological group and the topology is called a group topology.

Note that a topology on a group G is Hausdorff if and only if the trivial subgroup
{1G} ≤G is closed (exercise). Moreover, the product map is continuous if and only
if for any g,h ∈ G and any neighborhood W of gh in G, there exist neighborhoods
U of g and V of h in G such that U ·V :={uv : u ∈U,v ∈ V} ⊆W . Similarly, the
inversion map is continuous if and only if for any g ∈G and any neighborhood V of
g−1 in G, there exists a neighborhood U of g in G such that U−1 :={u−1 : u ∈U} ⊆
V . Now, in order to show that a topology is compatible with the group operations, it
suffices to check that the map G×G→ G,(g,h) 7→ gh−1 is continuous. Explicitly,
this means that for any g,h ∈ G and any neighborhood W of gh−1 in G, there exist
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neighborhoods U of g and V of h in G such that U ·V−1 :={uv−1 : u ∈U,v ∈V} ⊆
W .

A homomorphism of topological groups is a continuous group homomorphism
G→ H. This way, topological groups, together with their homomorphisms, form a
category.

An isomorphism of topological groups is a group isomorphism that is also a
homeomorphism of the underlying topological spaces. Note that this condition is
stronger than simply requiring a continuous group isomorphism: indeed, its inverse
must also be continuous. There are examples of topological groups that are isomor-
phic as ordinary groups but not as topological groups. For instance, any non-discrete
topological group is also a topological group when considered with the discrete
topology: then the underlying groups are the same, however, as topological groups,
they are not isomorphic.

Example 9.2. (a) Every group can be trivially made into a topological group by
equipping it with the discrete topology. Such groups are then called discrete groups.
In this sense, the theory of discrete topological groups reduces to that of ordinary
groups. The indiscrete topology (i.e. the trivial topology) also makes every group
into a topological group.

(b) An Abelian topological group is a topological group such that the group op-
eration is commutative. The additive group of real numbers (R,+) with the usual
Euclidean topology is an Abelian topological group. More generally, Rn is also an
Abelian topological group under addition. In fact, every topological vector space V
forms (with respect to vector addition) an Abelian topological group. Some other ex-
amples of Abelian topological groups include the circle group S1 :={z∈C : |z|= 1}
(equipped with multiplication) which is isomorphic to T :=R/Z (equipped with ad-
dition mod 1 and the quotient topology), and, more generally, the n-torus Tn for any
natural number n≥ 1.

(c) The classical groups contain important examples of non-Abelian topologi-
cal groups. For instance, the general linear group GL(n,R) of all invertible n-by-n
matrices with real entries can be viewed as a topological group with the topology
defined by viewing it as a subspace of Rn2

. Another classical group is the orthogo-
nal group O(n), the group of all linear isometries Rn→ Rn. The orthogonal group
is compact as a topological space. These classical groups are Lie groups, meaning
that they are smooth manifolds in such a way that the group operations are smooth,
not just continuous. See Section 9.5 for more on this.

(d) An example of a topological group that is not a Lie group is the additive group
(Q,+) of rational numbers, with the topology inherited from R. This is a countable
space, and it does not have the discrete topology.

(e) Another important example, from number theory, is the group Zp of p-adic
integers (here p is a prime number). It can be defined as the inverse limit of the
finite groups Z/pnZ as n→∞. This is a compact group (in fact, it is homeomorphic
to the Cantor set), but it differs from (real) Lie groups in that it is totally discon-
nected. The group Zp is a pro-finite group: it is isomorphic to a subgroup of the
product ∏n≥1Z/pnZ with the prodiscrete topology (i.e., it is induced by the prod-
uct topology, where the finite groups Z/Zpn are given the discrete topology). More
generally, there is a theory of p-adic Lie groups, including compact groups such as
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GL(n,Zp) as well as locally compact groups such as GL(n,Qp), where Qp is the
locally compact field of p-adic numbers (see, for instance [290]).

(e) A solenoid is a compact connected Abelian topological group obtained as
the inverse limit of an inverse system of topological groups and continuous homo-
morphisms (Si, fi)i∈N, where Si :=S1 and fi : Si+1 → Si is the map that uniformly
wraps ni ≥ 2 times Si+1 around Si, for all i ∈ N. In the simple case when ni = n for
all i ∈ N, one then has fi(z) = zn for all z ∈ Si. These were introduced by Leopold
Vietoris for n = 2 [343] and by van Dantzig for an arbitrary n [87]. In the theory of
hyperbolic dynamical systems, such solenoids arise as one-dimensional expanding
attractors, also called Smale–Williams attractors [320], named after Stephen Smale
and Robert F. Williams

(f) Some topological groups can be viewed as infinite-dimensional Lie groups.
For example, a topological vector space, such as a Banach space or a Hilbert
space, is an Abelian topological group under addition. Also, in every unital infinite-
dimensional Banach algebra, the set of invertible elements forms a (non-Abelian)
topological group under multiplication: this is the case, for example, for the group
of invertible bounded operators on an infinite-dimensional Hilbert space.

Let H be a subgroup of a topological group G. Then H is itself a topological
group when equipped with the subspace topology. If H is open in G, then it is also
closed in G, since the complement of H is the open set given by the union of the
open cosets gH with g ∈ G \H. Also, the closure H of H is also a subgroup of G;
if, in addition, H is normal in G, then H is normal in G.

The set of left cosets G/H with the quotient topology is called a homogeneous
space for G: it is Hausdorff if and only if H is closed in G. The quotient map
π : G→ G/H is always open. For example, for a positive integer n, the n-sphere
Sn :={(x1,x2, . . . ,xn+1) ∈Rn+1 : ∑

n+1
i=1 x2

i = 1} is a homogeneous space for the rota-
tion group SO(n+1) :={g∈O(n+1) : det(g) = 1} and its subgroup SO(n), viewed
as the stabilizer of (1,0,0, . . . ,0) ∈ Rn+1, so that Sn = SO(n+1)/SO(n). If H is a
closed normal subgroup of G, then the quotient group G/H becomes itself a topo-
logical group when given the quotient topology. For example, as mentioned above,
the quotient group R/Z is isomorphic to the circle group S1.

In any topological group G, the connected component containing 1G (this is
called the identity component) is a closed normal subgroup. If C is the identity com-
ponent and g∈G, then the left coset gC is the connected component of G containing
g. So, the collection of all left (or right) cosets of C in G is equal to the collection of
all connected components of G. As a consequence, the quotient group G/C is totally
disconnected.

We end this section with the Birkhoff–Kakutani theorem (named after Garrett
Birkhoff and Shizuo Kakutani) which characterizes metrizable topological groups
(recall that in our setting, topological groups are, by definition, Hausdorff spaces).

Theorem 9.3 (Birkhoff–Kakutani). Let G be a topological group. The following
conditions are equivalent:

• G is first-countable, that is, there exists a countable base of neighborhoods for
1G;

• G is metrizable (as a topological space);
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• there exists a left-invariant metric on G that induces the given topology on G.

Recall that a metric d : G×G→ [0,+∞) on a group G is called left-invariant if
left multiplication by g, that is, the map h 7→ gh, is an isometry.

9.2 Locally Compact Groups

A locally compact group is a topological group for which the underlying topology
is locally compact. Locally compact groups are important because many examples
of groups that arise throughout mathematics and physics are locally compact. More-
over such groups have a natural measure called the Haar measure: this allows one
to define integrals of Borel measurable functions on the group and to generalize
classical analysis notions such as the Fourier transform and Lp spaces.

Definition 9.4. A topological group G is called locally compact provided it is lo-
cally compact as a topological space, that is, every element g ∈G admits a compact
neighborhood.

Recall that in a topological space X , a neighborhood of a point x ∈ X is a subset
V ⊂ X containing an open set U such that x ∈ U . Also recall that in this book a
topological group is, by definition, Hausdorff. Thus, in a locally compact group G
any element g ∈ G in fact admits a base of compact neighborhoods.

Example 9.5. (a) Every compact topological group is, trivially, locally compact. In
particular, the circle group S1 :={z ∈ C : |z|= 1} under multiplication is compact.

(b) The additive groups Rn (and in particular R) are locally compact as a conse-
quence of the Heine–Borel theorem (a subset X ⊂ Rn is compact if and only if it is
closed and bounded). More generally, Lie groups, which are locally Euclidean, are
all locally compact groups (see Section 9.5).

(c) All discrete topological groups are locally compact. A discrete topological
group is compact if and only if it is finite.

(d) The additive group of a Hausdorff topological vector space V is locally com-
pact if and only if V is finite-dimensional.

(e) All open (resp. closed) subgroups of a locally compact group are locally com-
pact in the subspace topology.

(f) The additive group (Q,+) of rational numbers is not locally compact if given
the relative topology as a subset of the real numbers. It is locally compact if given
the discrete topology.

(e) The additive topological group (Qp,+) of p-adic numbers is locally compact
for any prime number p. In fact, it is homeomorphic to the Cantor set minus one
point.

By homogeneity, local compactness for a topological group G need only be
checked at the identity element 1G. That is, a topological group G is locally com-
pact if and only if the identity element 1G admits a compact neighborhood. Indeed,
if V ⊂ G is such a compact neighborhood of 1G, then gV ⊂ G serves as a compact
neighborhood of g, for any g ∈ G.
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A subgroup of a locally compact group is locally compact if and only if it is
closed. Every quotient G/N of a locally compact group G by a closed normal sub-
group N ≤G is locally compact. The product of a family of locally compact groups
is locally compact if and only if all but a finite number of factors are actually com-
pact.

Every locally compact group which is second-countable is metrizable as a topo-
logical group (cf. Theorem 9.3) and complete.

Below, we present a few preliminary technical results on locally compact groups,
of some interest on their own, which we shall need later.

Lemma 9.6. Let G be a locally compact group. Then the following holds.

(1) Let V be a symmetric neighborhood of 1G. Then V ∞ :=
⋃

n≥1 V n is a clopen
subgroup of G.

(2) Let A ⊆ G. Then the closure of A equals A =
⋂

V AV , where V ranges over all
symmetric neighborhoods of 1G.

(3) Let K ⊆ U ⊂ G with K compact and U open. Then there exists a symmetric
neighborhood V of 1G such that KV ∪V K ⊆U.

Proof. (1) First observe that since 1G ∈V , one has V ⊆V 2 ⊆ ·· · ⊆V n ⊆V n+1 ⊆ ·· · .
Also, since V =V−1 one has (V n)−1 =V n, that is, the V ns are also symmetric. Thus,
given g,h ∈V ∞, we can find m,n ∈ N such that g ∈V m and h ∈V n. We deduce that
gh−1 ∈ V m+n ⊂ V ∞. This shows that V ∞ is a subgroup. It is open since if g ∈ V ∞

then gV is an open neighborhood of g in G and gV ⊆V ∞V =V ∞. Moreover, for any
g ∈G the right coset V ∞g is homeomorphic to V ∞ and therefore is open. We deduce
that V ∞ = G\

⋃
g∈G\V ∞ V ∞g is also closed.

(2) Let g ∈ A and let V be a symmetric neighborhood of 1G. Then gV is a neigh-
borhood of g and gV ∩A 6= ∅. Let h ∈ gV ∩A so that there exists a v ∈ V such
that g = hv−1 ∈ AV−1 = AV . This shows that A ⊆

⋂
V AV . Conversely, suppose that

g ∈ AV , for every symmetric neighborhood V of 1G. This means that for every such
V one has gV ∩A = gV−1 ∩A 6= ∅. As (gV )V , where V ranges over all symmetric
neighborhoods of 1G, is a base of neighborhoods of g, this shows that g ∈ A.

(3) The set O :={(g,h) : gh ∈U}∩{(g,h) : hg ∈U} ⊆ G×G is open in G×G
and (1G,u),(u,1G) ∈ O for all u ∈ U (exercise). As a consequence, given h ∈ K,
there exist neighborhoods Vh of 1G and Wh of h such that Vh×Wh ⊆ O. As K ⊂U ,
the family (Wh)h∈K covers K. Since K is, by our assumptions, compact, we can
find h1,h2, . . . ,hn ∈ K such that

⋃n
i=1 Whi ⊇ K. Let V be a symmetric neighborhood

contained in
⋂n

i=1 Vhi . Now, if g ∈ V and h ∈ K, say h ∈Whi , we have (g,h) ∈ V ×
Whi ⊂Vhi ×Whi ⊆ O. We deduce that gh,hg ∈U . This shows that KV ∪V K ⊆U . �

Definition 9.7. Let G be a group. Given g ∈G we denote by λ (g) : CG→CG (resp.
ρ(g) : CG→ CG) the linear map defined by setting

[λ (g) f ](h) := f (g−1h) (resp. [ρ(g) f ](h) := f (hg))

for all f ∈ CG and h ∈ G. This is called the left (resp. right) translation by g.
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Lemma 9.8. Let G be a locally compact group. Let f : G → C be a continuous
function with compact support. Then, given ε > 0 there exists a neighborhood V of
1G such that if g,h ∈ G satisfy g−1h ∈V , then

|[λ (g) f ](k)− [λ (h) f ](k)|< ε

for all k ∈ G.

Proof. We first observe that λ (g−1)(λ (g) f −λ (h) f ) = f − λ (g−1h) f (exercise).
Thus, it suffices to show that if g′ :=g−1h belongs to a suitable neighborhood V of
1G, then | f (k)− f ((g′)−1k)|= | f (k)− [λ (g′) f ](k)|< ε for all k ∈ G.

Let K :=supp( f ) and let U be a compact and symmetric neighborhood of 1G. The
set {(g,h) : | f (h)− f (g−1h)|< ε}⊆G×G is open (exercise) and contains (1,h) for
all h∈H. As a consequence, for each h∈G we can find neighborhoods Vh of 1G and
Wh of h such that (1,h)∈Vh×Wh ⊆ {(g,h) : | f (h)− f (g−1h)|< ε}. As (Wh)h∈UK is
an open cover of UK and UK is compact (exercise), we can find h1,h2 . . .hn ∈UK
such that

⋃n
i=1 Whi ⊇UK. Then V :=

(⋂n
i=1 Vhi

)
∩U is an open neighborhood of 1G.

Let us show that V is indeed the sought neighborhood. Suppose that g′ ∈ V and
k ∈G. If k ∈UK, say k ∈Whi , then (g′,k) ∈Vhi×Whi ⊂ {(g,h) : | f (h)− f (g−1h)|<
ε}, and we have | f (h)− f ((g′)−1h)| < ε , as required. If k /∈UK, then on the one
hand, since K ⊆UK we have k /∈ K = supp( f ) so that f (k) = 0, and on the other
hand, recalling that g ∈ V ⊆U , we have (g′)−1k /∈ K = supp( f ), f ((g′)−1k) = 0.
We deduce that | f (k)− f ((g′)−1k)|= 0 < ε . �

In the following we denote by Cc(G) (resp. C0(G)) the space of all continuous
functions f : G→C with compact support (which vanish at infinity: limg→∞ f (g) =
0. This means that for all ε > 0 there exists a compact subset K ⊂ G such that
| f (g)| < ε for all g ∈ G \K). Note that Cc(G) ⊆ C0(G). We define the sup-norm
‖ · ‖∞ on C0(G) by setting

‖ f‖∞ :=sup
g∈G
| f (g)|. (9.1)

It follows from the preceding lemma that, given f ∈Cc(G) the map g 7→ λ (g) f is a
continuous function. It is easy to see (exercise) that Cc(G) is dense in C0(G) in the
norm ‖ · ‖∞. We deduce that given f ∈C0(G), the map g 7→ λ (g) f is a continuous
function for all g ∈ G.

9.3 The Haar Measure

Let G be a locally compact topological group. Recall that a σ -algebra of subsets
of G is a collection Σ of subsets of G such that: (i) G ∈ Σ , (ii) Σ is closed under
complementation (if S ∈ Σ then (G\S) ∈ Σ ), and (iii) Σ is closed under countable
unions (if (Sn)n∈N is a sequence of subsets Sn ∈ Σ , then (

⋃
n∈N Sn) ∈ Σ ). Note that

a σ -algebra also includes the empty subset (∅ ∈ Σ ) and it is closed under countable
intersections (if (Sn)n∈N is a sequence of subsets Sn ∈ Σ , then (

⋂
n∈N Sn) ∈ Σ ).

The σ -algebra B(G) generated by (that is, the smallest σ -algebra of subsets of
G containing) all open subsets of G is called the Borel algebra and its elements
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are called the Borel sets of G. Given g ∈ G and a subset S ⊆ G, the left and right
translates of S by g are the sets gS :={gs : s∈ S} and Sg :={sg : s∈ S}, respectively.
The Borel algebra B(G) is clearly invariant under left and right translates.

Definition 9.9. A Borel measure on G is a map µ : B(G)→ [0,+∞)∪{+∞} such
that

• µ(∅) = 0 (null empty set condition);
• µ (

⋃
n∈N Sn) = ∑n∈N µ(Sn) for any countable sequence (Sn)n∈N of pairwise dis-

joint (Si∩S j =∅ for all i 6= j) Borel sets of G (countable additivity).

Let µ be a Borel measure on G. One says that µ is:

- nontrivial provided that there exists an S ∈B(G) such that µ(S)> 0;
- locally compact provided that it is finite on compact sets (µ(K) < ∞ for every

compact subset K ⊂ G);
- outer regular on Borel sets if µ(S) = inf{µ(U) : S ⊂ U, U open} for all S ∈
B(G);

- inner regular on open sets if µ(U) = sup{µ(K) : K ⊂U, K compact} for all
U ⊂ G open;

- left- (resp. right-) invariant if µ(gS) = µ(S) (resp. µ(Sg) = µ(S) for all Borel
subsets S⊂ G and all g ∈ G.

We are now in a position to state Haar’s Theorem (named after Alfred Haar).

Theorem 9.10 (Haar). Let G be a locally compact group. Then there is, up to a
positive multiplicative constant, a unique nontrivial Borel measure µ on G satisfying
the following properties:

• µ is left-invariant;
• µ is locally compact;
• µ is outer regular on Borel sets;
• µ is inner regular on open sets.

Such a measure on G is called a left Haar measure.

It can be shown that a left Haar measure satisfies that µ(U) > 0 for every
nonempty open subset U ⊂ G. Moreover, if G is compact then µ(G) is finite, so
we can uniquely specify a left Haar measure on G by adding the normalization con-
dition µ(G) = 1; in this case µ is also right-invariant. Locally compact groups for
which the left Haar measures are also right-invariant (and therefore are bi-invariant)
are called unimodular: this is the case, besides the compact case we alluded to
above, for Abelian groups (e.g., the additive group (R,+), where the Haar measures
are nothing but positive multiples of the Lebesgue measure), and for discrete groups
(here the Haar measures are positive multiples of the counting measure: µ(g) = 1
for all g ∈G). Other examples of unimodular groups include semisimple Lie groups
and connected nilpotent Lie groups. An example of a non-unimodular group is the
Affine group

Aff(R) :=
{(

a b
0 1

)
: a,b ∈ R,a 6= 0

}
≤ GL(2,R),
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the group of affine transformations of the real line (a solvable Lie group) given by
x 7→ ax+b for all x ∈ R.

Haar established Theorem 9.10 in the special case of second countable locally
compact groups in 1933 [149]. Existence and uniqueness (up to scaling) of a left
Haar measure in full generality was first proven (by using the axiom of choice)
by André Weil [348]. Henri Cartan gave a proof (which establishes existence and
uniqueness simultaneously) which avoided the axiom of choice [53].

The remainder of this section is devoted to the proof of Theorem 9.10. Our ex-
position is based on the notes [113] by Alessandro Figà-Talamanca. By virtue of
the Riesz–Markov–Kakutani representation theorem, instead of directly defining the
measure (the Haar measure), we shall prove the existence of an integral on the space
Cc(G) of all compactly supported complex functions on G, that is, of a nontrivial
continuous linear map (a functional) I : Cc(G)→ C such that

(i) I( f )≥ 0 if f ∈Cc(G) is nonnegative ( f (g)≥ 0 for all g ∈ G);
(ii) I(λ (g) f ) = I( f ) for all f ∈Cc(G) and g ∈ G.
Moreover, we shall show that if J : Cc(G)→ C is another nontrivial continuous

linear map satisfying (i) and (ii), then there exists a constant k > 0 such that J( f ) =
kI( f ) for all f ∈Cc(G).

We denote by C+
c (G) the set of all nonnegative functions in Cc(G). Given f1, f2 ∈

C+
c (G) we set

( f1; f2) := inf
c
{

n

∑
j=1

c j : ∃g1, . . . ,gn ∈ G s.t. f1(g)≤
n

∑
j=1

c j[λ (g j) f2](g),∀g ∈ G}

where the infimum is take over all c = (c1,c2, . . . ,cn) ∈ Rn
+, n ∈ N. Note that such

linear combinations of translates exist since supp( f1) is compact and there exists an
open subset U ⊆ G and δ > 0 such that f2(g)≥ δ for all g ∈U (exercise).

The number ( f1; f2) satisfies the following properties:

(1) ( f1; f2)> 0;
(2) (λ (g) f1; f2) = ( f1; f2) for all g ∈ G;
(3) ( f1 + f ′1; f2)≤ ( f1; f2)+( f ′1; f2);
(4) (c f1; f2) = c( f1; f2) for all constants c > 0;
(5) ( f1; f2)≤ ( f ′1; f2) if f1 ≤ f ′1;
(6) ( f1; f3)≤ ( f1; f2)( f2; f3),

for all f1, f ′1, f2, f3 ∈ C+
c (G). We leave the proof of properties (1)–(5) as an easy

exercise. Let us show (6). Suppose that f1 ≤ ∑
n
j=1 c j[λ (g j) f2] (respectively f2 ≤

∑
m
i=1 di[λ (hi) f3] for suitable (c1,g1), . . . ,(cn,gn) ∈ C×G (respectively (d1,h1), . . . ,

(dm,hm) ∈ C×G). Then,

f1 ≤
n

∑
j=1

m

∑
i=1

c jdiλ (g jhi) f3.

This shows that ( f1; f3)≤ ( f1; f2)( f2; f3).
Let us now fix, once and for all, a nontrivial element f0 ∈ C+

c (G) and, for φ ∈
C+

c (G) define Iφ : C+
c (G)→ R by setting
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Iφ ( f ) :=
( f ;φ)

( f0;φ)
(9.2)

for all f ∈C+
c (G). Note that, by property (1), ( f0;φ) 6= 0. It is easy to verify (exer-

cise) that Iφ satisfies the following properties:

(1’) Iφ ( f )> 0;
(2’) Iφ (λ (g) f ) = Iφ ( f ) for all g ∈ G;
(3’) Iφ ( f1 + f2)≤ Iφ ( f1)+ Iφ ( f2);
(4’) Iφ (c f ) = cIφ ( f ) for all constants c > 0;
(5’) Iφ ( f1)≤ Iφ ( f2) if f1 ≤ f2.

Claim 1. Let f1, f2 ∈C+
c (G) and ε > 0. Then there exists a neighborhood V of 1G

such that
Iφ ( f1)+ Iφ ( f2)< Iφ ( f1)+ Iφ ( f2)+ ε,

for all φ ∈C+
c (G) vanishing in G\V .

Let u ∈C+
c (G) such that u(t) = 1 for all t ∈ supp( f1+ f2). Let δ ,η > 0 such that

2η( f1 + f2; f0)+δ (1+2η)(u; f0)< ε. (9.3)

Set f = fδ := f1 + f2 + δu ∈ C+
c (G). Also set h1 = h1,δ := f1/ f (resp. h2 =

h2,δ := f2/ f ) with the convention that if fi(t) = 0, then hi(t) = 0, i = 1,2. Then
h1,h2 ∈C+

c (G) and we can find a symmetric neighborhood V =Vδ ,η of 1G such that
|h1(g)−h1(g′)| ≤ η and |h2(g)−h2(g′)| ≤ η for all g,g′ ∈ G such that g−1g′ ∈V .
Suppose now that φ ∈C+

c (G) vanishes in G\V and let c = (c1,c2, . . . ,cn) ∈Rn
+ and

g1,g2, . . . ,gn ∈ G such that f (g)≤ ∑
n
j=1 c j[λ (g j)]φ(g) for all g ∈ G.

Observe that [λ (g j)φ ](g) 6= 0 implies g−1
j g∈V and thus |hi(g)−hi(g j)|< η , for

i = 1,2. We deduce

fi(g) = f (g)hi(g)≤
n

∑
j=1

c jhi(g)[λ (g j)ϕ](g)

≤
n

∑
j=1

c j (hi(g j)+η)ϕ(g−1
j g)

for all i = 1,2, and g ∈ G, that is, ( fi;φ)≤ ∑
n
j=1 c j(hi(g j)+η). As a consequence,

( f1;φ)+( f2;φ)≤
n

∑
j=1

c j (h1(g j)+h1(g j)+2η) =
n

∑
j=1

c j(1+2η).

Taking the inf over all c = (c1,c2, . . . ,cn) ∈ Rn
+ and g1,g2, . . . ,gn ∈ G, we deduce

Iφ ( f1)+ Iφ ( f2)≤ (1+2η)Iφ ( f )≤ (1+2η)(Iφ ( f1 + f2)+δ Iφ (u)).

It follows from (9.3) that Iφ ( f1)+ Iφ ( f2) ≤ Iφ ( f1 + f2)+ ε . This ends the proof of
the claim.
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Consider now the compact space

S := ∏
f∈C+

c (G)

[1/( f0; f ), ( f ; f0)]

and observe that by virtue of (6), one has Iφ ( f ) ∈ [1/( f0; f ), ( f ; f0)]. As a conse-
quence, Iφ ≡

(
Iφ ( f )

)
f∈C+

c (G)
∈ S. For a neighborhood V of 1G set

CV :={Iφ : φ ∈C+
c (G) vanishing in G\V} ⊆ S.

Observe that (CV )V is a family of closed subsets of S with the finite intersec-
tion property. Indeed, if V1,V2, . . . ,Vn are neighborhoods of 1G, then V :=V1 ∩
V2 ∩ ·· · ∩Vn is a neighborhood of 1G and CV1 ∩CV2 ∩ ·· · ∩CVn = CV 6= ∅. By
compactness of S, there exists an I ∈

⋂
V CV . Note that I : C+

c (G)→ R+ and, in
fact, I( f ) ∈ [1/( f0; f ), ( f ; f0)] for all f ∈ C+

c (G). Moreover, given any (arbitrar-
ily small) neighborhood V of 1G, any functions f1, f2, . . . , fn ∈ C+

c (G), and ε > 0,
there exists a φ ∈ C+

c (G) vanishing in G \V such that |Iφ ( fi)− I( fi)| < ε for
all i = 1,2, . . . ,n. It follows that I satisfies properties (1’)–(5’) and, in addition,
I( f1 + f2) = I( f1)+ I( f2). We extend I : Cc(G)→ R by setting

I( f1− f2) := I( f1)+ I( f2)

for all f1, f2 ∈C+
c (G): this is well defined (exercise). By linearity, we indeed extend

I to a linear functional on the space of all complex compactly-supported functions
on G. This proves the existence of the left-invariant integral. We are only left to
show uniqueness up to positive multiplicative constants. This is immediately de-
duced from the following:

Claim 2. Let J be another linear functional on the space of all complex compactly-
supported functions on G. Then

I( f1)

J( f1)
=

I( f2)

J( f2)
(9.4)

for all f1, f2 ∈C+
c (G).

Let f1, f2 ∈ C+
c (G). Let K ⊆ G be a compact subset containing the support of

f1. Let U ⊆G be an open subset such that U is compact and contains K. Finally, let
u∈C+

c (G) such that u(g) = 1 for all g∈U . Fix ε > 0. Then we can find a symmetric
neighborhood V of 1G such that V K∪KV ⊂U and, moreover, | f1(hg)− f1(gk)|< ε

for h,k ∈V and g ∈ G (exercise). Then, if h ∈V , one has f1(gh) = f1(gh)u(g) and
f1(hg) = f1(hg)u(g) for all g ∈ G (exercise). Let now φ ∈C+

c (G) and suppose that
φ is symmetric (φ(g−1) = φ(g) for all g ∈ G). By Fubini’s theorem we have

I(φ)J( f1) = Iφ (Jg(φ(h) f1(g))) = Ih(Jg(φ(h) f1(hg))) = Jg(Ih(φ(h) f1(hg))),

where Jg (resp. Ih) denote integration with respect to the variable g (resp. h). Anal-
ogously, since φ(h−1g) = φ(g−1h),
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I( f1)J(φ) = Jg(Ih(φ(h−1g) f1(h))) = Jg(Ih(φ(g−1h) f1(h))) = Jg(Ih(φ(h) f1(gh))).

As a consequence,

|I(φ)J( f1)− I( f1)J(φ)| ≤ Jg(Ih(φ(h)| f1(hg)− f1(gh)|))
≤ εJg(Ih(φ(h)u(g))) = εI(φ)J(u).

Analogously, choosing a suitable function v ∈C+
c (G) such that u(g) = 1 for all

g in a neighborhood of supp( f2), we obtain, with the same function φ ,

|I(φ)J( f2)− I( f2)J(φ)| ≤ εI(φ)J(v).

We deduce that∣∣∣∣J( f1)

I( f1)
− J(φ)

I(φ)

∣∣∣∣≤ ε
J(u)
I( f1)

and
∣∣∣∣J( f2)

I( f2)
− J(φ)

I(φ)

∣∣∣∣≤ ε
J(v)
I( f2)

and therefore ∣∣∣∣J( f1)

I( f1)
− J( f2)

I( f2)

∣∣∣∣≤ ε

(
J(u)
I( f1)

+
J(v)
I( f2)

)
.

Since ε > 0 was arbitrary, (9.4) follows.
The claim is proved and the proof of Theorem 9.10 is complete.

9.4 Locally Compact Abelian Groups and Pontryagin Duality

Recall that a topological group G is called locally compact if the underlying topo-
logical space is locally compact (and Hausdorff). The topological group G is called
Abelian if the underlying group is Abelian. Examples of locally compact Abelian
groups include:

• finite abelian groups (with the discrete topology),
• the additive group (Z,+) of the integers, or, more generally, (Zd ,+) (with the

discrete topology, but also with any metric as a finitely generated group),
• the additive group (R,+) of real numbers, or, more generally, (Rd ,+) (with the

discrete topology, but also with the usual Euclidean metric),
• the additive group (Q,+) of rational numbers (with the discrete topology),
• the circle group T= R/Z∼= S1 (with its usual metric topology),
• the additive group (Zp,+) of p-adic integers (with the usual p-adic topology,

induced by the non-Archimedean norm ‖ · ‖p),
• the additive group (Qp,+) of p-adic numbers (with the usual p-adic topology,

induced by the non-Archimedean norm ‖ · ‖p).

Definition 9.11. Let G be a locally compact Abelian group. A character of G is a
continuous homomorphism χ : G→ T of G to the circle group (the latter equipped
with the usual metric topology). The set Ĝ :=Hom(G,T) consisting of all charac-
ters of G equipped with pointwise multiplication and the compact-open topology is
called the dual group or Pontryagin dual of G.
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Pointwise multiplication is defined as follows: given χ1,χ2 ∈ Ĝ one defines
χ1χ2 : G→ T by setting (χ1χ2)(g) :=χ1(g)χ2(g) ∈ T for all g ∈ G. Then one eas-
ily checks that χ1χ2 ∈ Ĝ, and that all group axioms are satisfied. In particular, the
trivial character χ0 ∈ Ĝ, defined by setting χ0(g) = 1 for all g ∈ G, is the identity
element 1Ĝ of Ĝ, and, for any element χ ∈ Ĝ, the inverse χ−1 ∈ Ĝ is defined by
setting χ−1(g) :=χ(g)−1 = χ(g) for all g ∈ G.

Moreover, the compact-open topology is the topology given by uniform conver-
gence on compact sets, viewing Ĝ as a subset of the space of all continuous functions
from G to T.

Theorem 9.12. Let G be a locally compact Abelian group. Then Ĝ is a locally com-
pact Abelian group. Moreover, if G is a compact (resp. discrete) group then Ĝ is a
discrete (resp. compact) group.

For example we have:

• the dual F̂ of any finite abelian group F (with the discrete topology) is isomorphic
with the group F itself;

• the dual Ẑ of the additive group (Z,+) of the integers (with the discrete topology,
but also with any metric as a finitely generated group) is isomorphic to the circle
group T. More generally, the dual Ẑd of Zd is isomorphic to the d-dimensional
torus Td ;

• the dual T̂ of the circle group T (with its usual metric topology) is isomorphic
to the additive group (Z,+) of the integers. More generally, the dual T̂d of the
d-dimensional torus Td is isomorphic to the additive group (Zd ,+);

• the dual R̂ of the additive group (R,+) of real numbers (with the usual Euclidean
metric) is isomorphic to (R,+) itself. More generally, the dual R̂d of (Rd ,+) is
isomorphic to (Rd ,+).

• the dual Q̂ of the additive group (Q,+) of rational numbers (with the discrete
topology) is isomorphic to the quotientAQ/Q, whereAQ is the Abelian group (in
fact a commutative ring) of rational adèles. This is based on the famous theorem
of Ostrowski, stating that every nontrivial evaluation on the rational numbers Q
is equivalent to either the usual real absolute value or a p-adic absolute value
[265]. See [23, 77] for a gentle and clear exposition of this duality result;

• the dual Ẑp of the additive group (Zp,+) of p-adic integers (with the induced
p-adic topology, which is induced by an ultrametric) is isomorphic to the Prüfer
p-group Z(p∞) :=Z[p−1]/Z (equivalently, to the quotient group Qp/Zp);

• the dual Q̂/Z of the quotient group Q/Z (equipped with the discrete topology)
is isomorphic to the product ∏pZp (which can be regarded as the profinite-
completion of Z). See, e.g., [23];

• the dual Q̂p of the additive group (Qp,+) of p-adic numbers (with the usual
p-adic topology) is isomorphic to (Qp,+) itself. See, e.g., [23].

Let G be a locally compact Abelian group. The dual group ̂̂G of the dual group

Ĝ of G is called the bi-dual of G. The evaluation map evG : G→ ̂̂G is defined by
setting
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evG(g)(χ) :=χ(g)

for all g ∈ G and χ ∈ Ĝ.
We are now in a position to state the Pontryagin duality theorem (see [244] for a

nice and comprehensive treatment).

Theorem 9.13 (Pontryagin). Let G be a locally compact Abelian group. Then the

evaluation map evG : G→ ̂̂G establishes a canonical isomorphism (of locally com-

pact topological groups) of G onto its bi-dual ̂̂G.

The above result is a generalization of the canonical isomorphism between a
finite-dimensional vector space V and its double dual V ∗∗ (recall that the additive
group (V,+) is an Abelian group). Note that any finite-dimensional vector space
V is isomorphic to its dual V ∗, but there is no canonical isomorphism. The same
situation occurs when G is a finite Abelian group: then, as we mentioned above,
G∼= Ĝ, but this isomorphism is not canonical.

Pontryagin duality has a clear categorical formulation. Let LCA denote the cate-
gory of locally compact abelian groups and continuous group homomorphisms. The
dual group construction of G 7→ Ĝ is a contravariant functor LCA→ LCA. In par-

ticular, the double dual functor G 7→ ̂̂G is covariant. Pontryagin duality can therefore
be stated as follows: the natural transformation between the identity functor on LCA
and the double dual functor is an isomorphism.

9.5 Lie Groups

In order to give the definition of a Lie group, we first review the notion of a smooth
manifold.

Definition 9.14 (Smooth manifold). Let d ∈ N. A d-dimensional topological man-
ifold is a Hausdorff topological space M which is locally Euclidean, that is, every
point in M has a neighborhood which is homeomorphic to (an open subset of) Rd .

A smooth atlas on a d-dimensional topological manifold M is a family (φα : Uα→
Vα)α∈A of homeomorphisms, where (Uα)α∈A is an open cover of M and Vα ⊂ Rd

are open for all α ∈ A such that, for all α,β ∈ A the map

φβ ◦φ
−1
α |φα (Uα∩Uβ )

: φα(Uα ∩Uβ )→ φβ (Uα ∩Uβ )

is smooth, that is, it is infinitely differentiable.
Two smooth atlases on M are said to be equivalent if their union is a smooth

atlas. An equivalence class of smooth atlases is called a smooth structure on M.
A smooth manifold is a topological manifold equipped with a smooth structure.
Given two smooth manifolds M and M′, a map Ψ : M→M′ is smooth if the maps

φ
′
α ◦Ψ ◦φ

−1
β

: φβ (Uβ ∩Ψ
−1(U ′α))→ φ

′
α(Ψ(Uβ )∩U ′α)
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are smooth for all α ∈ A and β ∈ B, where (φβ : Uβ → Vβ )β∈B (resp. (φ ′α : U ′α →
V ′α)α∈A) is a smooth atlas on M (resp. on M′).

Smooth manifolds together with smooth maps form a category.

Cartesian product of two manifolds.

Definition 9.15 (Lie group). A Lie group is a group which is a smooth manifold
such that the product G×G→ G,(g,h) 7→ gh (here G×G is equipped with the
natural product smooth structure) and the inversion G→ G,g 7→ g−1 are smooth
maps.

Given two Lie groups G and G′ a group homomorphism Ψ : G→G which is also
a smooth map is called a Lie homomorphism.

Lie groups together with Lie homomorphisms form a category.

As every smooth map is continuous and Rd is locally compact, we have that
every Lie group is a locally compact topological group.

Example 9.16. (a) Any group G equipped with the discrete topology is a Lie group
(it is a 0-dimensional manifold).

(b) For any integer n ≥ 1, (Rn,+) is a Lie group (with the smooth structure given
by the atlas (idRn : Rn→ Rn) consisting of one single chart).

(c) For any integer n≥ 1, (Tn,+), the nth-dimensional torus, can be given the struc-
ture of a Lie group with underlying smooth manifold of dimension n (exercise).

(d) For any integer n≥ 1, the general linear group GL(n,R) consisting of invertible
n×n matrices, can be given the structure of a Lie group with underlying smooth
manifold of dimension n2 (exercise).

(e) For any integer n≥ 1, the special orthogonal group SO(n,R) consisting of n×n
orthogonal matrices with determinant one, can be given the structure of a Lie
group with underlying smooth manifold of dimension n(n−1)/2 (exercise).

(f) For any integer n ≥ 1, the special linear group SL(n,R) consisting of n× n
matrices with determinant one, can be given the structure of a Lie group with
underlying smooth manifold of dimension n2−1 (exercise).

(g) For any integer n≥ 1, the projective general linear group (resp. projective spe-
cial linear group)

PGL(n,R)∼= GL(n,R)/R∗I (resp. PSL(n,R) = SL(n,R)/{±I})

can be given the structure of a Lie group with underlying smooth manifold of
dimension n2−1 (exercise).

(h) The real Heisenberg group UT(3,R) consisting of all 3×3 upper unitriangular
matrices with real coefficients can be given the structure of a Lie group with
underlying smooth manifold of dimension 3 (exercise).

(i) For any integer n ≥ 1, the affine group Aff(n,R) :=RnoGL(n,R), where the
natural action of GL(n,R) on Rn is matrix multiplication of a vector, can be
given the structure of a Lie group with underlying smooth manifold of dimen-
sion n2 +n (exercise). Note that any element of Aff(n,R) can be represented in
(n+1)× (n+1) matrix form (

M v
0 1

)
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with M ∈ GL(n,R) and v ∈ Rn a column vector.
(j) The Cartesian product of two Lie groups is a Lie group (exercise).
(k) Any topologically closed subgroup of a Lie group is a Lie group. This is known

as the Closed subgroup theorem or Cartan’s theorem.
(l) The quotient of a Lie group by a closed normal subgroup is a Lie group (exer-

cise).
(m) The universal cover of a connected Lie group is a Lie group. For example, the

group R is the universal cover of T. In fact, any covering of a differentiable
manifold is also a differentiable manifold, but in the case of the universal cover,
one indeed has a group structure (compatible with its other structures).

9.6 Hilbert’s Fifth Problem

Hilbert’s fifth problem entitled “Lie’s concept of a continuous group of transforma-
tions without the assumptions of the differentiability of the functions defining of
the group” is one of the twenty-three mathematical problems presented by David
Hilbert [172] at the Paris conference of the International Congress of Mathemati-
cians in 1900.

Roughly speaking, it asks whether, in the definition of a Lie group, the smooth-
ness condition is redundant, that is, if replacing “differentiable manifold” by “topo-
logical manifold” can yield new examples. The answer to this question turned out to
be negative: in 1952, Andrew Mattei Gleason, Deane Montgomery and Leo Zippin
showed that if G is a topological manifold with continuous group operations, then
there exists exactly one differentiable (in fact analytic) structure on G which turns it
into a Lie group.

As remarked above, every Lie group is a (locally compact) topological group.
The converse is clearly false: an example is provided, for instance, by the infinite-
dimensional torus TN = (R/Z)N equipped with the product topology. This is a
compact (and therefore locally compact) topological group which is not locally Eu-
clidean and therefore is not a Lie group.

We are interested in the following application of the solution of Hilbert’s fifth
problem.

Theorem 9.17 (Gleason and Montgomery–Zippin). Let X be a finite-dimensional,
locally compact, connected and locally connected, homogeneous metric space. Then
Isom(X), the group of isometries of X, can be given the structure of a Lie group with
finitely many components.

As an illustration of the above result, we observe that the Lie group SO(n,R), the
special orthogonal group of degree n, is the group of orientation-preserving isome-
tries ofRn fixing the origin. Thus, it is a subgroup of the isometry group Isom(Rn) of
Rn equipped with its natural Euclidean structure. Similarly, the projective real linear
group PGL(2,R) (resp. the projective special linear group PSL(2,R)) is the group
Isom(H) (resp. Isom+(H)) of all isometries (resp. orientation-preserving isome-
tries) of H, the hyperbolic plane (cf. Theorem 8.11).
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The interested reader may find a much richer discussion on the structure theory
of locally compact groups and related topics connected to Hilbert’s fifth problem in
Tao’s monograph [327] which indeed constitutes a beautiful and accessible account
of all these fascinating topics as well as of recent important developments (such as
additive combinatorics [329] and the theory of approximate groups [335]).

9.7 Exercises

Exercise 9.1. Show that every open subgroup of a topological group is closed (and
therefore clopen).

Exercise 9.2. Let G be a locally compact group.

(i) Show that the map g 7→ g−1 is a homeomorphism of G onto G.
(ii) Fix g0 ∈G. Show that the maps g 7→ gg0 and g 7→ g0g are homeomorphisms of

G onto G.
(iii) Show that every neighborhood V of g ∈ G is of the form V = gU (resp. V =

Ug), where U is a neighborhood of 1G.
(iv) Show that if U is a neighborhood of 1G, so is U−1.
(v) Show that every neighborhood of 1G contains a symmetric neighborhood W of

1G.
(vi) Show that if K1,K2 ⊂ G are compact subsets, so is their product K1K2.

Exercise 9.3. Let G be a locally compact group. Show that G has a clopen subgroup
which is the union of a countable family of compact subsets.

Exercise 9.4. Let G be a group. Let λ (g) : CG→CG (resp. ρ(g) : CG→CG) be the
left (resp. right) translation by g ∈ G (cf. Definition 9.7). Show that:

(i) λ (g) (resp. ρ(g)) is linear for all g ∈ G.
(ii) λ (g1g2) = λ (g1)λ (g2) and ρ(g1g2) = ρ(g1)ρ(g2) for all g1,g2 ∈ G.

Exercise 9.5. Let G be a locally compact group. Show that Cc(G), the space of
all functions f : G→ C with compact support, is dense in C0(G), the space of all
functions f : G→ C vanishing at infinity, in the norm ‖ · ‖∞ defined by (9.1).

Exercise 9.6. Let G be a locally compact group. Use Lemma 9.8 and the preceding
exercise to show that given f ∈C0(G), the map g 7→ λ (g) f is a continuous function.

Exercise 9.7. Let G be a locally compact group. Let f1, f2 ∈C+
c (G). Show that the

set of c = (c1,c2, . . . ,cn) ∈ Cn, n ∈ N, such that there exists a linear combination
∑

n
j=1 c j[λ (g j) f2] of left-translates of f2 majorizing f1 is nonempty.

Hint. Use the fact that (i) supp( f1) is compact and (ii) there exists an open subset
U ⊆ G and δ > 0 such that f2(g)≥ δ for all g ∈U .

Exercise 9.8. Let G=(R,+). For any integer n≥ 1 let φn ∈C+
c (R) be the piecewise-

linear function defined by setting
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φn(t) :=


0 if t ∈ (−∞,−1/n]∪ [1/n,+∞)

2nt +2 if t ∈ [−1/n,−1/(2n)]
1 if t ∈ [−1/(2n),1/(2n)]
−2nt−2 if t ∈ [1/(2n),1/n]

for all t ∈ R. Let also f0 ∈ C+
c (R) satisfy

∫
∞

−∞
f0(t)dt = 1. Define Iφn as in (9.2).

Show that
lim
n→∞

Iφn( f ) =
∫

∞

−∞

f (t)dt

for all f ∈C+
c (R).



Chapter 10
Dimension Theory

In this chapter, we present an introduction to dimension theory. We based our ex-
position on Chapters II, III, IV, and VII of the monograph by Witold Hurewicz and
Henry Wallman [184], an authentic masterpiece in clarity and elegance of writing.
We closely followed this source, and our slight modifications, far from improving
anything, are only aimed at getting a more modern presentation, closer to the style
of our book.

The topological dimension we present here is often called inductive dimension
(to distinguish it from the equivalent notion of covering dimension: see the Notes)
and, as in the monograph by Hurewicz and Wallman, we limit ourselves to separable
metrizable spaces. We thus define topological dimension by first defining the 0-
dimensional spaces as those admitting a base of clopen subsets (Definition 10.3)
and then by inductively defining spaces of dimension ≤ n as those admitting a base
of open subsets whose boundaries have dimension ≤ n−1 and declaring a space to
be of dimension n if it is of dimension ≤ n but not of dimension ≤ n−1 (Definition
10.16).

One of the main nontrivial examples of a 0-dimensional space is provided by
the Cantor set, which we define and study in Section 10.1. 0-dimensional spaces
are defined and studied in Section 10.2. Then in Section 10.3 we define and study
spaces of dimension n. A characterization of n-dimensionality is given in terms of
“separation” of points and/or closed subsets by closed subsets of dimension n− 1
(cf. Theorem 10.9 and Theorem 10.33). The fact that the dimension of [0,1]n and
Rn is n is established in Section 10.4.

Finally, in Section 10.5 we define and study p-dimensional measure, p∈ [0,+∞),
and Hausdorff dimension. The Hausdorff dimension of [0,1]n andRn coincides with
the topological dimension n (Theorem 10.50). We also establish the result, important
for its role in the proof of Gromov’s theorem (see Chapter 12), that a space of finite
Hausdorff dimension is finite-dimensional (Corollary 10.47).

In this chapter, unless otherwise specified, all (topological) spaces are separable
and metrizable. For the convenience of the reader and the sake of completeness,
we review some basic properties satisfied by such spaces. Recall that a topological
space is separable if it admits a countable dense subset and it is metrizable if it
admits a metric inducing its topology. A separable and metrizable space X is:
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T. Ceccherini-Silberstein and M. D’Adderio, Topics in Groups and Geometry,
Springer Monographs in Mathematics, https://doi.org/10.1007/978-3-030-88109-2_10
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(SM-1) Hausdorff, i.e., any two distinct points P1 and P2 admit disjoint neighbor-
hoods, that is, there exist disjoint open subsets V1 and V2 such that P1 ∈V1
and P2 ∈V2 (exercise);

(SM-2) normal, i.e, for any two disjoint closed subsets C1 and C2 there exist disjoint
open subsets V1 and V2 such that C1 ⊆V1 and C2 ⊆V2 (exercise);

(SM-3) completely normal, i.e., every subspace is normal, (exercise). Moreover,
given two disjoint subsets X1 and X2, neither containing a cluster point of
the other, there exist disjoint open subsets W1 and W2 such that X1 ⊆W1 and
X2 ⊆W2 (exercise);

(SM-4) first countable, i.e., each point admits a countable neighbourhood base (ex-
ercise);

(SM-5) second countable, i.e., it admits a countable base (exercise).

10.1 The Cantor Set

In this section, as a prelude to the general theory of dimension, we present the Can-
tor set, which will serve as a fundamental example of a 0-dimensional space (cf.
Example 10.4.(c)) as well as a space of non-integral Hausdorff dimension (cf. The-
orem 10.51).

Given a,b ∈ R with a < b, the open interval (a+ (b− a)/3,b− (b− a)/3) is
called the open middle third of the interval [a,b].

Definition 10.1. The Cantor set is the set

K :=
⋂
j∈N

K j ⊆ [0,1]

where

K0 :=[0,1]
K1 :=[0,1/3]∪ [2/3,1]⊆ K0

K2 :=[0,1/9]∪ [2/9,1/3]∪ [2/3,7/9]∪ [8/9,1]⊆ K1,

and, more generally, K j+1 ⊆ K j is obtained by removing the open middle third of
each interval constituting K j. See Figure 10.1.

We have the following expressions of the Cantor set (exercise):

K =
∞⋂

m=1

3m−1−1⋂
k=0

([
0,

3k+1
3m

]
∪
[

3k+2
3m ,1

])
(10.1)

and

K = [0,1]\
∞⋃

m=1

3m−1−1⋃
k=0

(
3k+1

3m ,
3k+2

3m

)
. (10.2)
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[0,1]

...
...

...
...

K0

K1

K2

K3

Fig. 10.1 The construction of the Cantor set.

We summarize the properties of the Cantor set in the following:

Theorem 10.2. The Cantor set K is:

(1) compact;
(2) with empty interior (and therefore nowhere dense: a set is nowhere dense if its

closure has empty interior);
(3) homeomorphic to {0,1}N equipped with the prodiscrete topology;
(4) totally disconnected (i.e., the connected component of each point is a singleton);
(5) uncountable;
(6) perfect (i.e., a closed set with no isolated points);
(7) fractal (it is equal to two copies of itself, where each copy is shrunk by a factor

of 3 and translated).

Proof. (1) The sets Kn are closed in [0,1]. It follows that K is closed in [0,1] and
therefore it is compact.

(2) Let I be an interval such that I ⊂ K. As I is connected, for each n ∈ N the set
I must be contained in one of the connected components of Kn. But then, the length
`(I) of I cannot exceed the length 1/3n of such connected components of Kn for all
n ∈ N. It follows that `(I) = 0, that is, I is either the empty set or it is a singleton.
This shows that the interior of K is empty. Since K is closed, it is nowhere dense.

(3) Recall that any number z ∈ [0,1] can be expressed as

z = 0.x0x1x2 · · ·xnxn+1 · · · := ∑
n∈N

xn

3n+1 ,

where (xn)n∈N ∈ {0,1,2}N. The right-hand side is called the ternary expansion of
the number z. Unless z ∈ [0,1] is a triadic rational number, that is, z = m/3n with
m,n ∈ N such that 1 ≤ m ≤ 3n− 1, its ternary expansion is unique. For example
1/2 = 0.111 · · ·11 · · · . On the other hand, any triadic rational number admits two
ternary expansions, one whose terms are eventually 0 (this is called proper) and
one whose terms are eventually 2 (this is called improper). For example, 1/3 =
0.100 · · ·0 · · ·= 0.022 · · ·22 · · · .

Now, the set Kn consists of all numbers z ∈ [0,1] that admit a ternary expansion
0.x0x1x2 · · ·xixi+1 · · · such that xi ∈ {0,2} for all 0 ≤ i ≤ n− 1. We deduce that the
map ϕ : {0,1}N→ K defined by setting
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ϕ(x) := ∑
n∈N

2xn

3n+1 = 0.x0x1x2 · · ·xnxn+1 · · ·

for all x = (xn)n∈N ∈ {0,1}N, is well defined and a bijection of {0,1}N onto K.
Let us show that ϕ is continuous. Let x= (xn)n∈N ∈ {0,1}N. Let ε > 0. For m∈N

the set

Vm(x) :={y = (yn)n∈N ∈ {0,1}N : yn = xn for n = 0,1, . . . ,m}

is an open neighborhood of x in the prodiscrete topology of {0,1}N. If m ≥
log3(ε

−1) one has, for all y ∈Vm(x),

|ϕ(x)−ϕ(y)| ≤
∞

∑
n=m+1

2
3n+1 =

1
3m+1 < ε,

and continuity of ϕ follows. Since {0,1}N is compact by Tychonov’s theorem, we
deduce that, in fact, ϕ is a homeomorphism.

(4) Since {0,1}N is totally disconnected (exercise), we deduce from (3) that K is
totally disconnected as well.

(5) Since {0,1}N is uncountable (exercise: use the Cantor diagonal argument),
we deduce from (3) that K is uncountable as well.

(6) Let x ∈ {0,1}N. First observe that the sets Vm(x), m ∈ N, constitute a base
of (clopen) neighborhoods of x for the prodiscrete topology. Since each Vm(x) is
infinite, we deduce that x is not isolated, equivalently, {0,1} is perfect. It follows
from (3) that K is also perfect.

(7) This is obvious. �

10.2 0-Dimensional Spaces

Recall that, unless otherwise specified, all (topological) spaces are separable and
metrizable.

Definition 10.3. A nonempty space X has dimension 0, and we shall write dim(X)=
0, if it admits a base of the topology made up of clopen subsets.

A topological space (not necessarily separable nor metrizable) admitting a base
consisting of clopen subsets is called scattered. Thus, a separable metric space is
0-dimensional if and only if it is scattered.

It is clear that 0-dimensionality is a topological invariant.

Example 10.4. (a) Every nonempty finite or countable space is 0-dimensional. In-
deed, let (xn)n∈N be an enumeration of X . Let also x ∈ X and ε > 0, and set
U :=Bε(x), the open ball of radius ε centered at x. Then we can find ε ′ > 0 such
that ε ′ < ε and ε ′ 6= d(xn,x) for all n ∈ N. Then V :=Bε ′(x) satisfies ∂V = ∅, i.e.,
V is clopen, and V ⊆U .
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In particular, the set Q of rational numbers (with the topology induced by R) is
0-dimensional.

(b) The set I :=R \Q of irrational numbers (with the topology induced by R)
is 0-dimensional. Indeed, let x ∈I and let U be a neighborhood of x. Then we can
find p,q ∈Q such that p < x < q and V :=[p,q]∩I is a clopen neighborhood of x
satisfying V ⊆U .

More generally, the set I n ⊆ Rn of completely-irrational points in Rn is 0-
dimensional for all n≥ 1 (exercise).

(c) The Cantor set K (cf. Section 10.1) is 0-dimensional. Use Theorem 10.2.(3)
and observe that for each x ∈ {0,1}N the sets C(x;n) :={y ∈ {0,1}N : y(i) = x(i)
for i = 0,1, . . . ,n} constitute a base of clopen neighborhoods of x. We leave it as an
exercise to fill in the details. See also (d) or, more generally, Theorem 10.38.

(d) Any set X of real numbers with empty interior is 0-dimensional (exercise).
(e) The set (I ×Q)∪ (Q×I )⊆ R2 is 0-dimensional (exercise).
(f) The Hilbert cube is the space I∞ :=∏n≥1[0,1/n]. Then the space I∞

Q ⊆ I∞

consisting of points all of whose coordinates are rational is (uncountable and) 0-
dimensional. Indeed, let x = (xn)n≥1 ∈ I∞

Q and let U be a neighborhood of x in I∞
Q .

Then (exercise) we can find n0 ∈ N (large enough) and pi,qi ∈I , i = 1,2, . . . ,n0,
such that pi < xi < qi (and qi− pi small enough) such that V :={y = (yn)n≥1 ∈ I∞

Q :
pi < yi < qi, i = 1,2, . . . ,n0} is a neighborhood of x satisfying V ⊆U . Now if y is in
the boundary of V in I∞, then at least one of its first n0 coordinates must be irrational
(exercise). This shows that ∂V in I∞

Q is empty, that is, V is clopen in I∞
Q .

Similarly, the space I∞
I ⊆ I∞ consisting of points all of whose coordinates are

irrational is 0-dimensional (exercise).
(g) Let `2(N) :={(xn)n∈N : xn ∈ R,∑n∈N |xn|2 < ∞} denote the Hilbert space of

all square summable real sequences. The set X ⊆ `2(N) all of whose coordinates
are rational is (uncountable and) not 0-dimensional. Indeed, we now show that
any bounded neighborhood U in X of the origin (0)n∈N has a nonempty bound-
ary. Consider the subspace Y1 :={x ∈ X : x1 = x2 = · · · = 0} ⊆ X (this is homeo-
morphic to R). Then Y1 ∩U 6= ∅ and Y1 ∩ (X \U) 6= ∅. Thus we can find q1 ∈ Q
such that x1 :=(q1,0,0, . . .) is in U and d(x1,X \U) < 1. Similarly, by considering
the subspace Y2 :={x ∈ X : x1 = q1,x3 = x4 = · · · = 0} ⊆ X (this is again home-
omorphic to R), we find q2 ∈ Q such that x2 :=(q1,q2,0,0 . . .) belongs to U and
d(x2,X \U)< 1/2. Proceeding inductively, we determine a sequence (qn)n∈N in Q
and points xn :=(q1,q2, . . . ,qn,0,0, . . .) in U such that d(xn,X \U)< 1/n. Then the
point x :=(q1,q2, . . . ,qn,qn+1, . . .) is in X (exercise) and, moreover, is a boundary
point of U .

(h) The unit interval [0,1] and R with the usual Euclidean topology are not 0-
dimensional (exercise). In fact, as we expect and indeed we shall see (cf. Example
10.18.(a) and, more generally, Corollary 10.36), [0,1] and R are one-dimensional.

Proposition 10.5. A nonempty subset of a 0-dimensional space is 0-dimensional.

Proof. Let X be 0-dimensional and let X ′ ⊆ X be a nonempty subset. Let x ∈ X ′ and
let U ′ be a neighborhood of x in X ′. Then we can find a neighborhood U of x in
X ′ such that U ′ = U ∩X ′. Since dimX = 0, there exists a clopen V in X such that
x ∈V ⊆U . It then follows that V ′ :=V ∩X ′ is a clopen neighborhood of x such that
V ′ ⊆U ′. This shows that dim(X ′) = 0. �
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Definition 10.6. Let X be a separable metrizable space. Two (disjoint) subsets A1
and A2 are separated provided that there exist (cl)open subsets A′1 and A′2 in X such
that (i) A′1∪A′2 = X , (ii) A′1∩A′2 =∅, and (iii) Ai ⊆ A′i for i = 1,2.

By abuse of notation, we say that a point x ∈ X and a subset A⊆ X (resp. another
point y ∈ X) are separated provided the subsets {x} and A (resp. {x} and {y}) are
separated.

Remark 10.7. A1 and A2 are separated if and only if there exists a clopen subset
A′1 ⊆ X such that A1 ⊆ A′1 and A′1 ∩ A2 = ∅: indeed, one may take A′2 :=X \ A′1
(exercise).

Proposition 10.8. A nonempty space X is 0-dimensional if and only if any point
x ∈ X and any closed subset C ⊆ X not containing x can be separated.

Proof. Suppose first that X is 0-dimensional and let x ∈ X and C be a closed subset
of X such that x /∈C. Then the set U :=X \C is an open neighborhood of x. Since
dim(X) = 0, there exists a clopen V in X such that x ∈ V ⊆U . Since V ∩C = ∅, it
follows from Remark 10.7 that x and C are separated.

Conversely, suppose that any point x ∈ X and any closed subset of X not con-
taining x can be separated. Let U be an open neighborhood of x and set C :=X \U .
Then C is a closed subset of X . By our assumptions and Remark 10.7, there exists a
clopen subset V ⊆ X such that x ∈V and V ⊆U (since V ∩C =∅). This shows that
dim(X) = 0. �

It follows immediately from the above proposition that a nonempty space such
that any two disjoint closed subsets can be separated is 0-dimensional. It turns out
that the converse is also true:

Theorem 10.9. A nonempty space X is 0-dimensional if and only if any two disjoint
closed subsets can be separated.

Proof. As observed, we only need to show that 0-dimensionality is a sufficient con-
dition. So, let X be 0-dimensional and let C and K be two disjoint closed subsets
of X . Given any point x ∈ X we necessarily have that at least one of the conditions
x /∈C or x /∈K holds true. Since X is metrizable, and therefore normal (and therefore
regular), for every x ∈ X we can find a neighborhood Ux of x such that at least one
of the conditions Ux ∩C = ∅ or Ux ∩K = ∅ holds true. Since X is 0-dimensional,
we may suppose that Ux is clopen. Since X is separable and metrizable, it is second
countable (that is, it admits a countable base of open subsets). Thus we can find a
sequence (xn)n∈N such that

⋃
n∈NUxn = X . Let us set V0 :=Ux0 and, for n≥ 1,

Vn :=Uxn \
n⋃

i=1

Uxi .

We then have

(i)
⋃

n∈NVn = X ,
(ii) Vm∩Vn =∅ if m 6= n,
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(iii) Vn is open,
(iv) at least one of the conditions Vn∩C =∅ or Vn∩K =∅ holds true.

Let us set
C′ :=

⋃
Vn∩K=∅

Vn and K′ :=
⋃

Vn∩K 6=∅
Vn.

We then have X =C′∪K′ (by (i)), C′∩K′ =∅ (by (ii)), C′ and K′ are open (by (iii))
and in fact clopen by the two preceding properties, and C′ ∩K = ∅ = K′ ∩C (by
(iv)). The last condition implies that C ⊆C′ and K ⊆ K′. This shows that C and K
are separated. �

Corollary 10.10. A 0-dimensional space is totally disconnected. In particular, a
connected 0-dimensional space is a singleton.

Proof. The fact that a connected 0-dimensional space is a singleton follows imme-
diately from Proposition 10.8. That a 0-dimensional space is totally disconnected
follows from the previous fact and Proposition 10.5. �

It follows from Examples 10.4.(a), (b), and (g) that the disjoint union of two 0-
dimensional spaces may fail to be 0-dimensional. However we have the following:

Theorem 10.11. A space which is a countable union of 0-dimensional closed sub-
sets is 0-dimensional.

Proof. Let
X =

⋃
n≥1

Cn,

where each Cn is closed and 0-dimensional.
Let K and L be two disjoint closed subsets in X and let us show that they are

separated.
The sets K ∩C1 and L∩C1 are closed and disjoint subsets of C1. Since C1 is 0-

dimensional, it follows from Theorem 10.9 that there exist disjoint subsets A1 and
B1 of C1, closed in C1 (and therefore in X), such that K∩C1 ⊆ A1, L∩C1 ⊆ B1, and
A1∪B1 =C1. Now, the sets K∪A1 and L∪B1 are closed and disjoint in X . Since X
is normal, we can find open subsets G1,H1 ⊆ X such that K∪A1 ⊆G1, L∪B1 ⊆H1,
and G1 ∩H1 = ∅. Note that, in particular, C1 ⊂ G1 ∪H1, K ⊂ G1, and L ⊂ H1.
Repeating the above construction by replacing K, L, and C1 by G1, H1, and C2,
respectively, we obtain open subsets G2,H2 ⊆ X such that C2 ⊂ G2∪H2, G1 ⊂ G2,
H1 ⊂ H2, and G2 ∩H2 = ∅. By induction, we construct two sequences (Gn)n≥1
and (Hn)n≥1 of open sets in X for which Cn ⊂ Gn ∪Hn, Gn−1 ⊂ Gn, Hn−1 ⊂ Hn,
and Gn ∩Hn = ∅. Then the sets G :=

⋃
n≥1 Gn and H :=

⋃
n≥1 Hn are disjoint open

subsets of X such that G∪H = X and, moreover, K ⊂G and L⊂H. This shows that
K and L are separated. It follows from Proposition 10.8 that X is 0-dimensional. �

Example 10.12. Let m,n ∈ N, with 1≤ m≤ n and set

Rn
m :={x = (x1,x2, . . . ,xn) ∈ Rn : exactly m of the xis are in Q}. (10.3)

For each choice of i = (i1, i2, . . . , im), where 0 ≤ i1 < i2 < .. . < im ≤ n, and
of r = (r1,r2, . . . ,rm) ∈ Qm, we have an (n− m)-dimensional vector subspace
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Vi,r of Rn determined by the system of equations xik = rk, k = 1,2, . . . ,m. Then
Ci,r :={x = (x1,x2, . . . ,xn) ∈ Vi,r : x j /∈ Q for all j 6= ik,k = 1,2, . . . ,m} is congru-
ent to I n−m, the 0-dimensional subset of completely-irrational points in Rn−m (cf.
Example 10.4.(b)). Thus each Ci,r satisfies that dimCi,r = 0, it is closed in Rn

m and⋃
i,r Ci,r = Rn

m. Since this union is countable, we deduce from Theorem 10.11 that
dimRn

m = 0.

Lemma 10.13. Let X be a compact space. Let x ∈ X and let C ⊂ X be a closed sub-
set. Suppose that x and any c ∈C can be separated. Then x and C can be separated.

Note that under our assumptions x /∈C.

Proof. For each c∈C we can find disjoint clopen subsets Uc and Vc of X , with x∈Uc
and c ∈Vc. Note that (Vc)c∈C is a (cl)open cover of C. Since C is a closed subset of a
compact space, it is itself compact, and therefore we can find c1,c2, . . . ,cn ∈C such
that V :=

⋃n
i=1 Vc1 ⊇C. Setting U :=

⋂n
i=1 Uc1 , we have that x ∈U . Moreover, U and

V are both clopen. This shows that x and C are separated. �

Lemma 10.14. Let X be a compact space. Let x ∈ X and denote by M(x) the set of
all points of X which cannot be separated from x. Then M(x) is connected.

Proof. We first claim that M(x) is closed. Let y ∈ X \M(x). By the hypotheses, x
and y can be separated, that is, there exist disjoint clopen neighborhoods U and V
of x and y, respectively, such that U ∪V = X . As all elements in V can be separated
from x, we have that V ⊂ X \M(x). It follows that X \M(x) is open, and the claim
follows.

Suppose, by contradiction, that M(x) is disconnected, say we have a partition
M(x) =C∪K with C and K nonempty disjoint subsets in M(x). Since a point cannot
be separated from itself, we have x ∈ M(x). To fix our ideas, let us suppose that
x ∈ C. Since X is normal, we can find an open set U ⊂ X such that C ⊆ U and
U ∩K =∅. We have ∂U ∩M(x) = (U \U)∩ (C∪K) =∅, that is, every y ∈ ∂U is
separated from x. By Lemma 10.13, x and ∂U can be separated, that is, there exists
a clopen V not containing x such that ∂U ⊂ V . Note that since x ∈ C ⊂ U , then
x ∈W :=U \V =U \V . Moreover, W is clearly clopen and W ∩K = ∅. It follows
that x is separated from (all points of) K ⊂M(x), a contradiction. �

Theorem 10.15. Let X be a compact space. Then the following conditions are
equivalent.

(a) X is totally disconnected;
(b) any two distinct points in X can be separated;
(c) any point x ∈ X and any closed subset C⊂ X not containing x can be separated;
(d) any two disjoint closed subsets can be separated;
(e) X is 0-dimensional.

Proof. We already know that (e) ⇐⇒ (d) by Theorem 10.9 and (e) ⇐⇒ (c) by
Proposition 10.8: in both cases, compactness of X is not needed. The implications
(c)⇒ (b)⇒ (a) are obvious. (b)⇒ (c) follows from Lemma 10.13. Finally, suppose
(a). Let x ∈ X . We have that M(x) is connected by Lemma 10.14, and therefore,
since X is totally disconnected, M(x) = {x}. Thus x is the only point which cannot
be separated by itself. This shows that any two points in X can be separated, and (a)
⇒ (b) follows. �
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10.3 n-Dimensional Spaces

Definition 10.16. Let X be a separable metrizable space.

(i) dim(∅) :=−1 and dim(X)≥ 0 if X 6=∅;
(ii) X has dimension ≤ n, n ∈ N, if it admits a base of the topology made up of

open sets whose boundaries have dimension ≤ n−1;
(iii) dim(X) = n if X has dimension ≤ n but X has not dimension ≤ n−1;
(iv) dim(X) = ∞ if X has not dimension ≤ n for all n ∈ N.

Note that dim(X) ≤ n is equivalent to the following: every x ∈ X admits a base
of neighborhoods whose boundaries have dimension ≤ n−1.

For n = 0, we recover Definition 10.3.
It is also clear that n-dimensionality (resp. ∞-dimensionality) is a topological

invariant. Note that, however, it is not an invariant by continuous transformations:
the projection [0,1]2 3 (x,y) 7→ x ∈ [0,1] lowers the dimension, while the Peano
curve (cf. Exercise 10.13) which maps [0,1] continuously onto [0,1]2 raises the
dimension.

Proposition 10.17. Suppose that dim(X) = n, n∈N. Then for every−1≤m≤ n−1
there exists a subset Y ⊂ X satisfying dim(Y ) = m.

Proof. Since dim(X)> n−1, there exists a (basic) open set U0 such that dim(∂U0)=
n−1. Setting X0 :=X , and repeating the above argument, we determine a sequence

X =X0⊇U0⊇X1 :=∂U0⊇U1⊇X2⊇ ·· · ⊇Xn :=∂Un−1⊇Un⊇Xn+1 :=∂Un =∅,

where dim(Xk) = n− k for all k = 0,1, . . . ,n+1. �

Example 10.18. (a) [0,1], R, and (the boundary of) a polygon have dimension 1
(exercise).

(b) [0,1]n and Rn have dimension ≤ n (exercise). The proof that dim([0,1]n) =
dim(Rn) is exactly n is not trivial and will be given in the next section (cf. Corollary
10.36).

(c) The set X of points in `2(N) all of whose coordinates are rational is one-
dimensional. Indeed, we already know that dim(X) ≥ 1 (cf. Example 10.4.(g)).
Since the balls Bε :={x ∈ X : ‖x‖2 < ε}, ε > 0, constitute a base of neighbor-
hoods of 0 ∈ X , it suffices to show that dim(Bε) ≤ 1. Let ε < 1 and set S :={x ∈
`2(N) : ‖x‖2 = ε}. Note that Y :=S∩X = ∂Bε . Let us show that dim(Y ) = 0. Given
x = (xn)n≥1 ∈ `2(N) we set x′ :=

( xn
n

)
n≥1 ∈ `

2(N). Note that if x∈ S, then x′ belongs
to the Hilbert cube I∞. Thus the map x 7→ x′ yields an embedding ϕ : S→ I∞ (exer-
cise). In particular, ϕ(Y ) ⊂ I∞

Q . As dim(I∞
Q) = 0 (cf. Example 10.4.(f)), we deduce

from Proposition 10.5 that dim(Y ) = 0, as desired.

Proposition 10.19. A subset of an n-dimensional space has dimension ≤ n.

Proof. We proceed by induction on n. For n = −1 (resp. n = 0) the statement is
obvious (resp. follows from Proposition 10.5). Assume the statement is true for
n−1. Suppose dim(X) = n and let X ′ ⊂ X . Let x ∈ X ′ and let U ′ be a neighborhood
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of x′ in X ′. Then there exists a neighborhood U of x in X such that U ′ = U ∩X ′.
Since dim(X) ≤ n, there exists a neighborhood V of x in X such that V ⊂ U and
dim(∂ XV ) ≤ n− 1. Then V ′ :=V ∩X ′ is a neighborhood of x in X ′ and V ′ ⊂ U ′.
Setting B :=∂ XV =V \V and B′ :=∂ X ′V ′ = (V ′∩X ′)\V ′ = (V ′∩X ′)\V , one has
B′ ⊆ B∩X ′. Recalling that dim(B)≤ n−1, induction yields dim(B′)≤ n−1. �

Definition 10.20. Let X be a separable metrizable space. Suppose that A1,A2 and
B are mutually disjoint subsets of X . One says that B separates A1 and A2 in X
provided that there exist open sets U1,U2 ⊆ X such that A′i :=Ui∩(X \B) satisfy: (i)
A′1∪A′2 = X \B, (ii) A′1∩A′2 =∅, and (iii) Ai ⊆ A′i, i = 1,2 (see Figure 10.2).

X

A1

A′1

A2

A′2

B

Fig. 10.2 B separates A1 and A2 in X .

By abuse of notation, we say that a point x ∈ X and a subset A⊆ X (resp. another
point y ∈ X) are separated by B provided that the subsets {x} and A (resp. {x} and
{y}) are separated by B.

Note that if B = ∅, then Definition 10.20 reduces to Definition 10.6, that is, A1
and A2 are separated by ∅ if and only if they are separated.

The following generalizes Proposition 10.8.

Proposition 10.21. X has dimension ≤ n if and only if any point x ∈ X and any
closed subset C ⊆ X not containing x can be separated by a closed set of dimension
≤ n−1.

Proof. Suppose dim(X) ≤ n and let x ∈ X and let C ⊆ X be a closed subset not
containing x. The set U :=X \C is a neighborhood of x. Since X is metrizable, it
is regular, and therefore we can find a neighborhood V of x such that V ⊂U . Since
dim(X)≤ n, we can find another neighborhood W of x such that W ⊂V and B :=∂W
satisfies dim(B)≤ n−1. Moreover, B separates x and C (exercise).

Conversely, suppose that any point x ∈ X and any closed subset of X not contain-
ing x can be separated by a closed set of dimension≤ n−1. Let x∈ X and let U be a
neighborhood of x. Then C :=X \U is a closed subset not containing x, and, by our
assumptions, it may be separated from x by a closed set B of dimension ≤ n−1. In
other words, there exist open sets U1,U2 ⊆ X such that A′i :=Ui∩ (X \B) satisfy that
(i) A′1∪A′2 = X \B, (ii) A′1∩A′2 =∅, and (iii) x∈ A′1 and C⊂ A′2. Note that A′1 and A′2
are open. Now, A′1 is a neighborhood of x contained in X \C =U and its boundary
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∂A′1 is contained in B (exercise). Since dim(B)≤ n−1, it follows from Proposition
10.19 that dim(∂A′1)≤ n−1. Since x ∈ A′1 ⊂U , this shows that dim(X)≤ n−1. �

Proposition 10.22. Let X ′ be a subset of X. Then the following conditions are equiv-
alent:

(a) dim(X ′)≤ n;
(b) every x ∈ X ′ admits a base of neighborhoods in X whose boundaries have inter-

section with X ′ of dimension ≤ n−1.

Proof. Suppose (a) Let x∈X ′ and let U be a neighborhood of x in X . Then U ′ :=U∩
X ′ is a neighborhood of x in X ′. Since dim(X ′)≤ n, we can find a neighborhood V ′

of x in X ′ such that V ′ ⊂U ′ and dim(B′) ≤ n− 1, where B′ :=∂ X ′V ′ = (V ′ ∩X ′) \
V ′. Since every metric space is completely normal (i.e., every subspace is normal,
exercise: see [339]), we can find an open set W of X such that V ′ ⊂W ⊂ U and
W ∩ (X ′ \V ′) = ∅. Now ∂W ∩V ′ = ∅ = ∂W ∩ (X ′ \V ′). As a consequence, ∂W ∩
X ′ ⊆ B′ and therefore, by Proposition 10.19, it has dimension ≤ n− 1. This shows
(a)⇒ (b).

Conversely, suppose (b). Let x∈ X ′ and let U ′ be a neighborhood of x in X ′. Then
there exists a neighborhood U of x in X such that U ′ =U ∩X ′. By our assumptions
there exists a neighborhood V of x in X such that V ⊂U and dim(X ′∩∂V )≤ n−1.
Now V ′ :=V ∩X ′ is a neighborhood of x in X ′ and V ′⊂U ′. Setting B :=∂XV =V \V
and B′ :=∂X ′V ′ = (V ′ \V ′)∩X ′, we have B′ ⊂ B∩X ′. It follows from Proposition
10.19 that dim(B′)≤ n−1. This shows that dim(X ′)≤ n. This shows (b)⇒ (a). �

Corollary 10.23. Let A and B be two subsets of X. Then

dim(A∪B)≤ 1+dim(A)+dim(B). (10.4)

First note that (10.4) is optimal since, taking A = ∅ = B one has dim(A∪B) =
dim(∅) =−1 = 1+(−1)+(−1) = 1+dim(∅)+dim(∅) = 1+dim(A)+dim(B).

Proof of Corollary 10.23. We proceed by a double induction on the dimensions of
A and B. As remarked above, (10.4) holds true if dim(A) = −1 = dim(B). Assume
that dim(A) = m and dim(B) = n and that (10.4) holds whenever dim(A) ≤ m and
dim(B)≤ n−1, as well as whenever dim(A)≤m−1 and dim(B)≤ n. Let x∈ A∪B.
To fix our ideas, we suppose that x ∈ A. Let U be a neighborhood of x in X . By
Proposition 10.22, we can find an open set V such that x ∈ V ⊂ U and dim(A∩
∂V ) ≤ m−1. By Proposition 10.19, dim(B∩ ∂V ) ≤ dim(B) ≤ n. By the induction
hypotheses we have

dim((A∪B)∩∂V ) = dim((A∩∂V )∪ (B∩∂V ))

≤ 1+dim(A∩∂V )+dim(B∩∂V )

≤ 1+(m−1)+n = m+n.

Then Proposition 10.22 guarantees us that dim(A∪B)≤ 1+(m+n) = 1+dim(A)+
dim(B). �
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Corollary 10.24. The union of n+1 subsets of dimension ≤ 0 has dimension ≤ n.
�

Example 10.25. (a) Recall that the sets Q and I :=R\Q of rational and irrational
numbers are 0-dimensional (cf. Example 10.4.(a) and (b)). Their union is R, which
has dimension dim(R) = 1 (cf. Example 10.18.(a)).

(b) For 0≤ m≤ n let us set

Mn
m :={x = (x1,x2, . . . ,xn) ∈ Rn : at most m of the xi’s are in Q}

and
Nn

m :={x = (x1,x2, . . . ,xn) ∈ Rn : at least m of the xi’s are in Q}.

We clearly have Mn
m =

⋃m
i=0 Rn

i and Nn
m =

⋃n
i=m Rn

i , where the Rn
i ’s are as in (10.3).

Since dimRn
i = 0 for all i= 0,1, . . . ,n (cf. Example 10.12), it follows from Corollary

10.24 that dimMn
m ≤ m and dimNn

m ≤ n−m (in fact, as we shall see in Example
10.37, one has dimMn

m = m and dimNn
m = n−m).

The following is a generalization of Theorem 10.11.

Theorem 10.26. A space which is the countable union of closed subsets of dimen-
sion ≤ n has dimension ≤ n.

Proof. We proceed by induction on n. The statement is obvious for n = −1 and it
follows from Theorem 10.11 for n = 0. Suppose the statement holds for n−1. Re-
call from general topology that an Fσ is a countable union of closed sets.

Claim. Any set of dimension ≤ n is the union of an Fσ of dimension ≤ n−1 and a
subspace of dimension ≤ 0.

Let X be a space of dimension ≤ n. Since X is separable, we can find a count-
able base {Ui : i ∈ N} of open sets of X whose boundaries Bi :=∂Ui have dimen-
sion ≤ n− 1. By the inductive hypothesis, the Fσ set B :=

⋃
i∈N Bi has dimension

≤ n− 1. It is an exercise to show that dim(X \B) ≤ 0. Then the claim follows as
X = B∪ (X \B).

Let then X =
⋃

i∈NCi, with Ci closed and dim(Ci)≤ n for all i ∈ N. Set K0 :=C0
and, for i = 1,2, . . . define

Ki :=Ci \
⋃

j≤i−1

C j =Ci∩

(
X \

⋃
j≤i−1

C j

)
.

Observe that Ki is an Fσ in X : indeed, the intersection of a closed set with an Fσ is
also an Fσ , and moreover, in a metric space, any open set is an Fσ (exercise). We
then have (i) X =

⋃
i∈N Ki, (ii) Ki∩K j =∅ for i 6= j, (iii) each Ki is an Fσ , and (iv)

dim(Ki)≤ dim(Ci)≤ n (cf. Proposition 10.19).
By applying the claim to each Ki, we can find subsets Mi and Ni with dim(Mi)≤

n−1 and dim(Ni)≤ 0 such that Ki =Mi∪Ni. Setting M :=
⋃

i∈N Mi and N :=
⋃

i∈N Ni
we have X = M∪N. Now, each Mi is an Fσ in M: indeed Mi = Mi∩Ki = M∩Ki with
Ki an Fσ in X . Therefore, by the induction hypothesis, dim(M) ≤ n− 1. Similarly,
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each Ni is an Fσ in N and therefore dim(N) ≤ 0. As X = M ∪N, we deduce from
Corollary 10.23 that dim(X)≤ n, and the proof is complete. �

Corollary 10.27. Any set of dimension ≤ n, n ∈ N, is the union of a subspace of
dimension ≤ n−1 and a subspace of dimension ≤ 0.

Proof. This is the claim in the proof of the preceding theorem (recall that its proof
was subject to the inductive hypothesis for the proof (still incomplete) of the theo-
rem). �

From Corollary 10.24 and by repeated applications of Corollary 10.27 we deduce
(exercise):

Corollary 10.28. A space X is of dimension ≤ n, n ∈N, if and only if it is the union
of n+1 subspaces of dimension ≤ 0.

Moreover, if dim(X) = n and n1,n2 are integers ≥−1 such that n = 1+n1 +n2,
then there exist subspaces X1 and X2 of X such that dim(Xi) = ni, i = 1,2, and
X = X1∪X2. �

Theorem 10.29. Let A and B be two spaces and suppose that A 6=∅ or B 6=∅. Then
dim(A×B)≤ dim(A)+dim(B).

Proof. We proceed by a double induction on the dimensions of A and B. If either
A = ∅ or B = ∅ we have dim(A×B) = dim(∅) = −1 ≤ dim(A)+ dim(B), where
the last equality follows since exactly one of dim(A) and dim(B) equals −1 and the
other is ≥ 0.

Let m,n ≥ 0 and suppose that the statement is true whenever dim(A) ≤ m and
dim(B) ≤ n− 1 as well as dim(A) ≤ m and dim(B) ≤ n− 1. Let dim(A) = m and
dim(B) = n. Let x = (a,b)∈ A×B and suppose that W is a neighborhood of x in A×
B. Then, we can find neighborhoods U and V of a in A and b in B, respectively, such
that U×V ⊂W . Moreover, up to taking smaller neighborhoods U ′ ⊂U and V ′ ⊂V
of a and b, respectively, we may suppose that dim(∂U) ≤ m− 1 and dim(∂V ) ≤
n−1. We have (exercise)

∂ (U×V ) =
(
U×∂V

)
∪
(
∂U×V

)
,

where each of the two terms in the right-hand side is closed and, by the induc-
tion hypothesis, has dimension ≤ m+ n− 1. It follows from Theorem 10.26 that
dim(∂ (U ×V )) ≤ m + n− 1. This shows that dim(A× B) ≤ m + n = dim(A) +
dim(B). �

Corollary 10.30. Let A and B be two spaces and suppose that dim(B) = 0. Then
dim(A×B) = dim(A)+dim(B).

Proof. It follows from the preceding theorem that dim(A×B)≤ dim(A)+dim(B).
To show the reverse inequality observe that since B 6= ∅ there is an embedding
ϕ : A→ A×B. It follows from Proposition 10.19 that dim(A×B) ≥ dim(ϕ(A)) =
dim(A) = dim(A)+dim(B). �
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Lemma 10.31. Let C1 and C2 be two disjoint closed subsets of a space X and let
A ⊂ X be a 0-dimensional subset. Then there exists a closed set B ⊂ X separating
C1 and C2 such that A∩B =∅.

Proof. Since X is normal, we can find two open subsets U1 and U2 such that Ci ⊂Ui,
i = 1,2 and U1 ∩U2 = ∅. The sets U1 ∩A and U2 ∩A are closed and disjoint in A
and since dim(A) = 0, by Theorem 10.9 they can be separated in A. In other words,
there exist (cl)open disjoint subsets C′1 and C′2 in A such that U i ∩A ⊂C′i , i = 1,2,
and C′1∪C′2 = A. It is an exercise to show that the disjoint subsets B1 :=C1∪C′1 and
B2 :=C2 ∪C′2 satisfy B1 ∩B2 = ∅ = B1 ∩B2. By complete normality of X , we can
find an open subset W ⊂X such that B1⊆W and W ∩B=∅. Then B :=∂W =W \W
is a closed set separating C1 and C2 and it is disjoint from C′1∪C′2 = A. �

Theorem 10.32. Let X be a space and let A⊂ X be a subset of dimension≤ n. Then
any two disjoint closed subsets in X can be separated by a closed subset B such that
dim(A∩B)≤ n−1.

Proof. We proceed by induction on n. Suppose first that n = 0. Then either A = ∅
and the statement follows after taking B =∅, or dim(A) = 0, and then the statement
follows from Theorem 10.9. Suppose that n > 0. By Corollary 10.27 we can write
A = M ∪N with dim(M) ≤ n− 1 and dim(N) ≤ 0. By applying Lemma 10.31 to
N ⊆ A, we can find a closed subset B⊆ A⊆ X which separates the two given closed
subsets in X and such that N ∩B = ∅. Thus A∩B ⊂M and, by Proposition 10.19,
we have dim(A∩B)≤ dim(M)≤ n−1. �

The following is a generalization of Theorem 10.15.

Theorem 10.33. Let X be a compact space. Then the following conditions are
equivalent:

(a) any two distinct points in X can be separated by a closed set of dimension ≤
n−1;

(b) any point x ∈ X and any closed subset C ⊂ X not containing x can be separated
by a closed set of dimension ≤ n−1;

(c) any two disjoint closed sets can be separated by a closed set of dimension ≤
n−1;

(d) X has dimension ≤ n.

Proof. We already know that (b) ⇐⇒ (d) by Proposition 10.21 and moreover, the
implications (c) ⇒ (b) ⇒ (a) are obvious (in either case, compactness of X is not
needed). The implication (d)⇒ (c) follows from Theorem 10.32 (by taking A = X).

Finally, suppose (a). Let x ∈ X and let C⊂ X be a closed subset not containing x.
For each c ∈C we can find an open neighborhood Uc of c in X such that x /∈Uc and
dim(∂U)≤ n−1. Note that {Uc : c∈C} is an open cover of C. Since C is closed and
X is compact, C is also compact. As a consequence, we can find c1,c2, . . . ,ck ∈ C
such that C ⊆ U :=

⋃k
i=1 Uci . Then B :=∂U ⊆

⋃k
i=1 ∂Uci and therefore (since the

∂Uci ’s are closed) we deduce from Theorem 10.26 that dim(B) ≤ n− 1. As x /∈U ,
this shows that x is separated from C by the closed set B of dimension ≤ n−1. This
shows (a)⇒ (b). �
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10.4 The Dimension of Rn

Recall (cf. Example 10.18.(b) and the remark therein) that dim(Rn) ≤ n. In this
section we prove that dim(Rn)≥ n, so that, in fact, dim(Rn) = n.

We need the following result from Algebraic Topology and Fixed Point Theory:
we refer to [184, Chapter IV] as well as to [98, Theorem page 95] for the proof.
Recall that a topological space X is said to be contractible provided that there exist
a continuous function f : X × [0,1]→ X and x0 ∈ X such that f (·,0) = IdX and
f (·,1) = x0 (this condition may be rephrased by saying that the identity map IdX
is homotopic to a constant map). Also, given two spaces X and Y with Y ⊂ X , a
retraction of X onto Y is a continuous map r : X → Y such that r|Y = IdY .

We denote by

Sn :={x ∈ Rn+1 : d(x,0) = 1} (resp. Bn+1 :={x ∈ Rn+1 : d(x,0)≤ 1})

the n-sphere (resp. the closed (n+1)-ball), so that Sn = ∂Bn+1.

Theorem 10.34. , The following equivalent conditions hold true:

(a) The n-sphere Sn is not contractible.
(b) Every continuous map f : Bn+1→ Rn+1 satisfies (at least) one of the following

properties:

(i) f has a fixed-point (i.e., there exists an x ∈ Bn+1 ⊂ Rn+1 such that f (x) =
x);

(ii) there are x ∈ Sn and λ ∈ (0,1) such that x = λ f (x).

(c) Every continuous map f : Bn+1→ Bn+1 has at least one fixed-point.
(d) There exists no retraction r : Bn+1→ Sn.

Let In :={x = (x1,x2, . . . ,xn) ∈ Rn : |xi| ≤ 1, i = 1,2, . . . ,n} ⊂ Rn. Since In is
homeomorphic to In, the unit n-cube in Rn, we have that dim(In)≤ n (cf. Example
10.18.(b)). Also observe that In is homeomorphic to Bn the closed n-ball. For 1 ≤
i ≤ n we denote by Ci :={x ∈ In : xi = 1} and C′i :={x ∈ In : xi = −1} the pairs of
opposite faces of In.

Corollary 10.35. For 1 ≤ i ≤ n let Bi be a closed set separating Ci and C′i in In.
Then

n⋂
i=1

Bi 6=∅. (10.5)

Proof. Recall (cf. Definition 10.20) that by our hypothesis on Bi we can find subsets
Ui,U ′i ⊆ In, open in In \Bi (and therefore in In) such that (i) Ui ∪U ′i = In \Bi, (ii)
Ui∩U ′i =∅, and (iii) Ci ⊆Ui and C′i ⊆U ′i . For each x ∈ In, let v(x) denote the vector
whose ith component has the value ±d(x,Bi), the sign being + if x ∈U ′i and − if
x ∈Ui. Let us set f (x) :=x+v(x) for all x ∈ In (see Figure 10.3). It is an exercise to
check that f (x) ∈ In.

Moreover, the map f : In→ In is continuous (exercise). It follows from Theorem
10.34.(c) that there exists a fixed-point x0 ∈ In for f , that is, d(x0,Bi) = 0 for all
i = 1,2, . . . ,n. This means that x0 ∈

⋂n
i=1 Bi. �
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Fig. 10.3 Definition of f (x).

Corollary 10.36 (Dimension of Rn). We have dim In = dimRn = n.

Proof. We first show that dim In ≥ n. Suppose, by contradiction, that dim In ≤ n−1.
Then by Theorem 10.32 (with A = X) there exists a closed subset B1 ⊂ In separating
C1 and C′1 of dimension ≤ n− 2. Again by Theorem 10.32 (with A = B1) there
exists a closed subset B2 ⊆ In separating C2 and C′2 such that dim(B1∩B2)≤ n−3.
Iterating the argument, we get a finite sequence B1,B2, . . . ,Bi, . . . of closed subsets
Bi ⊆ In separating Ci and C′i such that dim(B1∩B2∩ ·· ·∩Bi)≤ n− i−1. For i = n
we get dim(B1 ∩B2 ∩ ·· · ∩Bn) = −1, that is,

⋂n
i=1 Bi = ∅, contradicting Corollary

10.35. This shows that dim In ≥ n. Since In ⊂Rn we deduce from Proposition 10.19
that dimRn ≥ n. It then follows from Example 10.18.(b) that dim In = dimRn = n.

�

Example 10.37. With the notation from Example 10.25.(b), we have dimMn
m = m

and dimNn
m = n−m. Indeed, we have Rn = Mn

m ∪Nn
m+1, with dimMn

m ≤ m and
dimNn

m+1≤ n−m−1. If at least one of the inequalities were strict, we would deduce
from Corollary 10.23 that dimRn < 1+m+(n−m−1) = n, a contradiction.

Theorem 10.38. Let N ⊆Rn. Then dim(N) = n if and only if N contains a nonempty
open subset.

Proof. We first observe that, by Proposition 10.19, dim(N)≤ n.
The condition is clearly sufficient: if N contains a nonempty open subset, then

there is a point x∈N and ε > 0 such that Bε(x)⊆N. Since Bε(x) is homeomorphic to
In, we deduce that dimBε(x) = dim In = n, so that dim(N)≥ n, again by Proposition
10.19.

Conversely, let us show that if M :=Rn \N is dense in Rn, then dimN ≤ n−1.
It is not restrictive to suppose that M is countable: indeed, M (being a subset of a

separable space) contains a countable dense subset A⊂M, and dim(Rn \A)≤ n−1
implies dim(Rn \M)≤ n−1, by Proposition 10.19.
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The statement clearly holds true if M :=Nn
n , the countable set of points of Rn all

of whose coordinates are rational (cf. Example 10.25). Then, N = Rn \M = Mn
n−1

has dimension n−1 (cf. Example 10.37).

Claim. Let A and B be two countable dense subsets of Rn. Then there exists a home-
omorphism ϕ : Rn→ Rn such that ϕ(A) = B.

We first introduce some notation. We say that (x1,x2) and (y1,y2) in Rn×Rn are
similarly placed if the vectors x1− x2 and y1− y2 are in the same n-dimensional
quadrant (that is, the signs of x1

i −x2
i and y1

i −y2
i are the same for all i = 1,2, . . . ,n).

Let then X = {x1,x2, . . .} and Y = {y1,y2, . . .} be two countable sets in Rn. Since X
and Y are countable, it is always possible to choose a coordinate system for Rn so
that the axes are in general position (that is, no parallel to a coordinate hyperplane
contains more than one point xi or one point y j). We then say that X and Y are
similarly placed if (xi1 ,xi2) and (yi1 ,yi2) are similarly placed for each index pair
(i1, i2). This ends the preliminaries.

Let a1,a2, . . . (resp. b1,b2, . . .) be an enumeration of A (resp. B). We induc-
tively rearrange the enumerations of A and B in a such way that the resulting se-
quences c1,c2, . . . and d1,d2, . . . are similarly placed. We start by setting c1 :=a1

and d1 :=b1. Then we take d2 :=b2 and c2 = ai2 , where i2 is the least integer i such
that (c1,ai) and (d1,d2) are similarly placed: note that such an i exists (in fact there
are infinitely many such) since A is dense in Rn. Suppose that we have constructed
c1,c2, . . . ,c2 j and d1,d2, . . . ,d2 j, for some integer j≥ 1, which are similarly placed.
We then set c2 j+1 to be the first ai 6= c1,c2, . . . ,c2 j and then set d2 j+1 to be the first
bk 6= d1,d2, . . . ,d2 j such that {c1,c2, . . . ,c2 j,c2 j+1} and {d1,d2, . . . ,d2 j,d2 j+1} are
similarly placed. Note that such a bk exists (in fact there are infinitely many such)
since B is dense in Rn. We then denote by d2 j+2 the first bk′ 6= d1,d2, . . . ,d2 j,d2 j+1

and choose c2 j+2 to be the first ai′ 6= c1,c2, . . . ,c2 j+1 such that {c1,c2, . . . ,c2 j+2}
and {d1,d2, . . . ,d2 j+2} are similarly placed. This completes the inductive step. It is
then clear that the resulting rearrangements are the ones we were looking for.

To complete the proof of the claim, we only need to show that the bijective map
ϕ : A→ B defined by setting ϕ(ci) = di for all i = 1,2, . . . extends to a (unique)
homeomorphism of Rn. Let x = (x1,x2, . . . ,xn) ∈ Rn \ A. Fix k ∈ {1,2, . . . ,n}.
We partition A into the two subsets Ak

− :={y = (y1,y2, . . . ,yn) ∈ A : yk ≤ xk}
and Ak

+ :={y = (y1,y2, . . . ,yn) ∈ A : yk > xk}. We then set Bk
− :=ϕ(Ak

−) and
Bk

+ :=ϕ(Ak
+), so that B = Bk

− tBk
+. Consider the projection of B on the k-th

coordinate K :={yk : y = (y1,y2, . . . ,yn) ∈ B} ⊂ R.
The partition B = Bk

− t Bk
+ induces a partition K = K− tK+. It is an exer-

cise to check that either every element of K− is equal or less than every element of
K+, or, vice versa, every element of K+ is equal or less than every element of K−.
Since K is dense in R, this Dedekind cut uniquely defines a separating real num-
ber, which we denote by zk. Repeating this argument for each k = 1,2, . . . ,n, this
defines z :=(z1,z2, . . . ,zn) ∈ Rn. It is an exercise to check that setting ϕ(x) :=z for
all x ∈ Rn \A yields a homeomorphism. This completes the proof of the claim.
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The proof of the theorem then immediately follows from the fact that the state-
ment holds true when M equals the countable set Nn

n (cf. the initial part of the proof),
from the claim, and topological invariance of dimension. �

10.5 Dimension and Measure

Definition 10.39. Let (X ,d) be a separable metric space and let p ∈ [0,+∞).
Let ε > 0. We say that a countable cover A = {Ai : i∈N} of X is an ε-cover of X

provided that each subset Ai ∈A has diameter δ (Ai) :=sup{d(x,y) : x,y∈ Ai} ≤ ε .
We then set

mε
p(X) := inf

A

∞

∑
i=1

δ (Ai)
p, (10.6)

where the infimum is taken over all ε-covers A = {Ai : i ∈N} of X . By convention,
we set δ (∅)0 :=0 and δ (X)0 :=1 if X is nonempty.

Then
mp(X) :=sup

ε>0
mε

p(X) (10.7)

is called the p-dimensional measure of X .

Remark 10.40. Let (X ,d), p∈ [0,+∞), and ε > 0 be as in Definition 10.39. We say
that a countable cover B = {Bi : i∈N} of X is an ε-b-cover of X provided that each
subset Bi ∈B is a closed ball of diameter δ (Bi)≤ ε . We then set

m̃ε
p(X) := inf

B

∞

∑
i=1

δ (Bi)
p,

where the infimum is taken over all ε-b-covers B = {Bi : i ∈ N} of X , and

m̃p(X) :=sup
ε>0

m̃ε
p(X). (10.8)

Given an ε-cover A = {Ai : i ∈ N} of X , it is an exercise to show that for each
i ∈ N there exists a closed ball Bi such that Ai ⊆ Bi and δ (Bi) = 2δ (Ai). It is clear
that B = {Bi : i ∈ N} is a 2ε-b-cover of X such that

∞

∑
i=1

δ (Bi)
p = 2p

∞

∑
i=1

δ (Ai)
p.

Since every 2ε-b-cover is a 2ε-cover, we deduce that

m2ε
p (X)≤ m̃2ε

p (X)≤ 2pmε
p(X)

so that
mp(X)≤ m̃p(X)≤ 2pmp(X). (10.9)
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Example 10.41. Let (X ,d) be a separable metric space.
(a) Suppose that p = 0. Then (i) m0(X) = 0 if and only if X =∅ (exercise); (ii)

m0(X) = n, n ∈ N, if and only if |X | = n (exercise); (iii) m0(X) = ∞ if and only if
X is infinite (exercise).

(b) Suppose that 0≤ p < q. Then mp(X)≥mq(X), so that if mp(X)< ∞ one also
has mq(X)< ∞ (exercise).

(c) Let X be the n-dimensional cube In. Then mn(X)< ∞ and mp(X) = 0 for all
p > n (exercise).

Proposition 10.42. Let C be a compact metric space and let p ∈ [0,+∞). Then
mp(X) = 0 if and only if given ε > 0 there exists a finite ε-cover A = {Ai : i =
1,2, . . . ,k} such that ∑

k
i=1 δ (Ai)

p < ε .

Proof. Suppose that mp(X) = 0 and let ε > 0. Then mε
p(X) = 0 and therefore there

exists an ε-cover A ′ = {A′i : i ∈ N} of X such that ∑
∞
i=1 δ (A′i)

p < ε/2. We may
enlarge each A′i to an open set Ai in a such a way that δ (Ai) < ε and δ (Ai)

p <
δ (A′i)

p + ε/2i+1 (exercise: recall that X is second countable). Since C is compact,
we can find k ∈ N such that A :={Ai : i = 1,2, . . . ,k} covers C. Note that A is an
ε-cover and ∑

k
i=1 δ (Ai)

p < ε .
The converse being obvious, this completes the proof. �

For the next result, we need some preliminaries from functional analysis.
Recall that a sequence ( f j) j∈N of measurable functions f j : I→ R, where I ⊆ R

is an interval, is said to converge in mean to a (measurable) function f : I→ R in I
provided that lim j→∞

∫
I | f j(t)− f (t)|dt = 0. The following is a classical result (cf.

[332, Section 12.5], [298, Exercise ], [40]).

Theorem 10.43. Suppose that a sequence ( f j) j∈N of measurable functions con-
verges in mean to f in I. Then there exists a subsequence ( jk)k∈N such that
limk→∞ f jk(t) = f (t) for almost all (with respect to Lebesgue measure) t ∈ I.

The next theorem relates n-dimensionality and the n-dimensional measure.

Theorem 10.44. Suppose that dim(X) = n. Then mn(X)> 0.

Proof. Keeping in mind Example 10.41.(b), the statement is equivalent (exercise) to
the implication: mn+1(X) = 0⇒ dim(X)≤ n. So, suppose that mn+1(X) = 0 and let
us show that dim(X)≤ n. Let x∈X and for r > 0 denote by Sr :={y∈X : d(x,y)= r}
the sphere of radius r centered at x.

Claim. mn(Sr) = 0 for almost all (with respect to Lebesgue measure) r ∈ (0,∞).
Let Y ⊂ X be a subset and set

r1 :=d(x,Y ) = inf{d(x,y) : y ∈ Y} and r2 :=sup{d(x,y) : y ∈ Y}.

It follows from the triangle inequality that r2− r1 ≤ δ (Y ). We then have∫
∞

0
δ (Sr ∩Y )ndr =

∫ r2

r1

δ (Sr ∩Y )ndr ≤ δ (Y )n
∫ r2

r1

dr ≤ δ (Y )n+1. (10.10)
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Since mn+1(X) = 0, we can find a family (A j) j∈N of 1
j+1 -covers of X such that

lim
j→∞

∞

∑
i=1

δ (Ai, j)
n+1 = 0.

Using (10.10), we deduce that

lim
j→∞

∞

∑
i=1

∫
∞

0
δ (Sr ∩Ai, j)

ndr = 0.

As each of the integrands is nonnegative, we may exchange integration and summa-
tion, obtaining

lim
j→∞

∫
∞

0

∞

∑
i=1

δ (Sr ∩Ai, j)
ndr = 0,

so that, in mean,

lim
j→∞

∞

∑
i=1

δ (Sr ∩Ai, j)
n = 0.

By Theorem 10.43 there exists a subsequence ( jk)k∈N such that

lim
k→∞

∞

∑
i=1

δ (Sr ∩Ai, jk)
n = 0 for almost all r,

and this shows that mn(Sr) = 0 for almost all r. This ends the proof of the claim.

To complete the proof of Theorem 10.44, we proceed by induction on n. Let
n = 0 and suppose that m1(X) = 0. Then, by the Claim, m0(Sr) = 0, equivalently
(cf. Example 10.41.(a)) Sr = ∅, for almost all r. Since the balls Br :={y ∈ X :
d(x,y) < r}, r > 0, constitute a base of neighborhoods of x and Sr = ∂Br, we de-
duce that dim(X) = 0. Now, suppose by induction that the implication mn(Z) = 0
⇒ dim(Z) ≤ n− 1 holds for all spaces Z. Suppose that mn+1(X) = 0. Then the
claim yields mn(Sr) = 0 for almost all r and, by the inductive hypothesis, we have
dim(∂Br) = dim(Sr)≤ n−1 for almost all r, and we deduce that dim(X)≤ n. �

Remark 10.45. From the proof of the above theorem we deduce that, in fact, if
mn+1(X) = 0, not only every point x ∈ X has arbitrarily small neighborhoods with
boundaries of dimension ≤ n− 1 (that is, dim(X) ≤ n), but indeed, for every point
x ∈ X , almost all spherical neighborhoods of x have boundaries of dimension ≤
n−1.

10.6 Hausdorff Dimension

Definition 10.46 (Hausdorff dimension). The Hausdorff dimension of a metric
space (X ,d) is the nonnegative number Hdim(X) defined by setting



10.6 Hausdorff Dimension 197

Hdim(X) :=sup{p≥ 0 : mp(X)> 0}.

It follows from Remark 10.40 (in particular, from (10.9)) that

Hdim(X) = sup{p≥ 0 : m̃p(X)> 0},

where m̃p(X) is as in (10.8). In other words, in the computation of the Hausdorff
dimension of a space X , we can limit ourselves to the use of ε-b-covers of X .

From the above definition and Theorem 10.44 we immediately have the follow-
ing.

Corollary 10.47. Let X be a metric space. Then

Hdim(X)≥ dim(X).

In particular, a metric space of finite Hausdorff dimension is finite-dimensional. �

Remark 10.48. Note that if Y1⊆Y2⊆X then Hdim(Y1)≤Hdim(Y2) since any cover
of Y2 is also a cover of Y1.

Proposition 10.49. Countable metric spaces have Hausdorff dimension 0.

Proof. Let X be a countable metric space and denote by x0,x1, . . . its elements. Let
p,ε > 0. For i = 0,1, . . . set

Bi :=B(xi,(ε/2i+2)
1
p /2).

Then (Bi)i∈N is a b-cover of X and ∑
∞
i=1 δ (Bi)

p = ∑
∞
i=0 ε/2i+2 = ε/2 < ε . This

shows that m̃p(X) = 0. Since p was arbitrary, we deduce that Hdim(X) = 0. �

Theorem 10.50. Hdim(Rn) = n.

Proof. Let X = Rn. We claim that it is enough to show that Hdim(B) = n, where
B is any ball of radius 1. Suppose that mp(B) = 0 for some p ≥ 0, and let ε > 0.
Let (Yj) j∈N denote an enumeration of the balls of radius 1 centered at the points
(x/2,y/2) with x,y ∈ Z. It is clear that (Yj) j∈N covers X . For j ∈ N we set
ε j = ε/2 j+1 and, in accordance with our hypothesis on p (so that mp(Yj) = 0
for all j ∈ N), we denote by (Bi, j)i∈N a sequence of balls covering Yj and such
that ∑i∈N δ (Bi, j)

p < ε j. Then the sequence (Bi, j)i, j∈N of balls covers X and satis-
fies ∑i, j∈N δ (Bi, j)

p < ∑ j∈N ε j = ε , thus showing that mp(X) = 0. This shows that
Hdim(X)≤Hdim(B). Since B⊆X the previous remark gives Hdim(B)≤Hdim(X),
and therefore Hdim(X) = Hdim(B). This proves the claim.

Recall that in X = Rn, the volume of any ball B(r) of radius r is given by

Vol(B(r)) = µrn, (10.11)

where µ = µ(n) is a constant (independent of r). In particular, Vol(B)=Vol(B(1))=
µ .

Let (Bi)i∈N be a cover of B by balls. Using (10.11) we have δ (Bi)
n = 2nVol(Bi)/µ

for all i ∈ N so that
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∑
i∈N

δ (Bi)
n =

2n

µ
∑
i∈N

Vol(Bi)≥
2n

µ
Vol(B) = 2n.

This shows that the LHS cannot be made arbitrarily small, thus showing that
mn(B)> 0.

On the other hand, for every integer N ≥ 1, let (ci(N))
(2N+1)n

i=1 be an enumeration
of the points

(i1/N, i2/N, . . . , in/N) ∈ Rn, i j ∈ Z such that |i j| ≤ N for all j = 1,2, . . . ,n.

For i = 1,2, . . . ,(2N +1)n set Bi(N) :=B(ci(N);3/(2N +1)). It is an exercise to
check that

B = B((0,0, . . . ,0);1)⊆
(2N+1)n⋃

i=1

Bi(N).

For every ε > 0 we have

(2N+1)n

∑
i=1

δ (Bi(N))n+ε = (2N +1)n · 6n+ε

(2N +1)n+ε
=

6n+ε

(2N +1)ε
→ 0

as N → ∞. This shows that mn+ε(B) = 0. As ε was arbitrary, this shows that
Hdim(B)≤ n. We conclude that Hdim(Rn) = Hdim(B) = n. �

Theorem 10.51 (Hausdorff dimension of the Cantor set). Hdim(K)= log2/ log3.

Proof. We start by observing that every set K j consists of 2 j intervals, each of length
3− j. Thus, since K0 ⊇ K1 ⊇ ·· · ⊇ K j ⊇ ·· · ⊇ K, the Cantor set may be covered, for
each j ∈N, by the finite 3− j-b-cover B j consisting of all 2 j balls B of K of diameter
δ (B) = 3− j.

Given p > 0 we have ∑B∈B j δ (B)p = 2 j3− jp. Thus, in particular,

∑
B∈B j

δ (B)log2/ log3 = 2 j3− jlog2/ log3 = 2 j2− j = 1. (10.12)

For ε > 0 we set pε := log(2+ ε)/ log3. We then have

∑
B∈B j

δ (B)pε = 2 j3− jpε = 2 j(2+ ε)− j =

(
2

2+ ε

) j

which tends to 0 as j→ ∞. This shows that Hdim(K)≤ log2/ log3.
To prove that Hdim(K)≥ log2/ log3, let us show that

∑
B∈B

δ (B)log2/ log3 ≥ 1 (10.13)

for all collections B of balls of K covering K.
Suppose, by contradiction, that there exists a collection B of balls of K covering

K such that (10.13) fails to hold. Then, expanding each ball B ∈B slightly in order
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to make it an open ball, we can still have the left-hand side of (10.13) strictly less
than 1. By compactness of K, we can then extract a finite subcover B′ of B which
then, a fortiori, satisfies ∑B∈B′ δ (B)log2/ log3 < 1. Moreover, up to replacing every
ball B in B′ with its closure, we may suppose that all balls in B′ are closed.

Let B ∈ B′ and denote by IB the smallest interval in [0,1] containing B (see
Figure 10.4). Note that δ (IB) = δ (B).

I

K

IB

B

Fig. 10.4 IB is the smallest interval in [0,1] containing B.

Let JB denote the largest (open) subinterval of IB contained in [0,1]\K. Finally,
let LB and RB denote the left and right components of IB\JB so that IB = LBtJBtRB.
Note that δ (LB),δ (RB)≤ δ (JB) so that, in particular, δ (JB)≥ 1

2 (δ (LB)+δ (RB)).
Using the concavity of the function f (x)= xlog2/ log3 and the fact that 3log2/ log3 =

2, we deduce

δ (B)log2/ log3 = δ (IB)
log2/ log3

= (δ (LB)+δ (JB)+δ (RB))
log2/ log3

≥
(

3
2
(δ (LB)+δ (RB))

)log2/ log3

= 3log2/ log3
(

1
2

δ (LB)+
1
2

δ (RB)

)log2/ log3

≥ 2
(

1
2

δ (LB)
log2/ log3 +

1
2

δ (RB)
log2/ log3

)
= δ (LB)

log2/ log3 +δ (RB)
log2/ log3

≥ δ (BL)
log2/ log3 +δ (BR)

log2/ log3,

where BL :=B∩LB and BR :=B∩RB.
It follows that the family

B′′ :=
(
B′ \{B}

)
∪{BL,BR}

still covers K and satisfies ∑A∈B′′ δ (A)log2/ log3 ≤ ∑A∈B′ δ (A)log2/ log3 < 1. Con-
tinuing this way, after a finite number of steps, we reach a covering B′′′ of K
consisting of balls all of the same diameter, say 3− j for a suitable j ∈ N. It fol-
lows that these are exactly the intervals constituting K j, that is, B′′′ = B j. From
(10.12) we then deduce 1 = ∑B∈B′′′ δ (B)log2/ log3 < 1, a contradiction. This shows
that Hdim(K)≥ log2/ log3. �
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10.7 Notes

According to Witold Hurewicz and Henry Wallman [184, Introduction], the first
precise and topologically invariant definition of dimension is due to Luitzen Egber-
tus Jan (Bertus) Brouwer [45] in 1913, based on a first intuition due to Poincaré
[282, 283]. The definition of dimension that we used here, namely the inductive di-
mension (cf. Definitions 10.3 and 10.16) is due to Karl Menger and Pavel Urysohn
who, in 1922, independently of each other and of Brouwer, rediscovered and im-
proved on Brouwer’s notion. Note that in 1911 Brouwer gave the first proof of the
fact that Rn and Rm are not homeomorphic if n 6= m. In his 1913 paper he intro-
duced the notion of “Dimensionsgrad”, an integer-valued topological invariant, and
showed that the “Dimensionsgrad” of Rn is n, thus yielding a new proof of his 1911
result we just alluded to.

Example 10.4.(f) is due to Paul Erdös [104]. Wacław Sierpiński [316] found an
example of a subset ofR2 which is totally disconnected but admitting distinct points
that cannot be separated (cf. conditions (a) and (b) in Theorem 10.15).

Proposition 10.17 cannot be extended to infinite-dimensional spaces, as shown,
under the continuum hypothesis, by Hurewicz [182].

The inequality dim(A×B) ≤ dim(A)+dim(B) in Theorem 10.29 may be strict,
as shown by taking A = B to be the 1-dimensional set X ⊆ `2(N) all of whose
coordinates are rational (cf. Example 10.18.(c)), which is clearly homeomorphic to
its own square X ×X . Recall that, however, equality holds if one of the two spaces
is 0-dimensional (cf. Corollary 10.30). An example due to Lev S. Pontryagin [285]
shows that the above inequality may be strict even if both A and B are compact.

James Dugundji, the author of the monograph [98], was a pupil of Hurewicz.
Theorem 10.34.(b) is due to Piers Bohl [30]. Theorem 10.34.(c) is the celebrated
Brouwer fixed-point theorem of Brouwer [44]. Theorem 10.34.(d), known as Borsuk
non-retraction theorem, is due to Karol Borsuk [31].

Corollary 10.36 was first proved by Brouwer [45].
The Peano curve (cf. Exercise 10.13), the first example of a space-filling curve,

was constructed by Giuseppe Peano in 1890 [272], motivated by an earlier counter-
intuitive result of Georg Cantor, namely, that the unit interval and the unit square
have the same cardinality. A year later, David Hilbert published in the same jour-
nal a variation of Peano’s construction [171]. A space-filling curve is often called a
Peano–Hilbert curve. Exercise 10.13 is inspired by the beautiful treatment in [150,
Chapter IV.2].

Theorem (Menger–Nöbeling). Let X be a space of dimension ≤ n for some n ∈ N.
Then X is homeomorphic to a subset of R2n+1.

Karl Menger proved the above theorem under the hypothesis of compactness of X
and dim(X)= 1 in [235] and in [236] for arbitrary (finite) dimensions. Georg August
Nöbeling proved the general statement (dropping the compactness assumption) in
[256] by combining Menger’s result with a result by Hurewicz [183] stating that
any space is a (topological) subspace of a compact space of the same dimension.
We refer to [184, Theorem V.2, Theorem V.3, and Theorem V.7] for a proof of
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these results. An example due to Antonio Flores [114] (see also [184, Example
V.3]) shows that it is not possible, in general, to imbed an n-dimensional space in
R2n, thus showing that 2n+1 in the Menger–Nöbeling theorem is optimal.

There is another approach, due to Henri Lebesgue [212], in terms of the (topo-
logical) covering dimension (also called the Čech–Lebesgue covering dimension).
Roughly speaking, Lebesgue observed that the square I2 = [0,1]× [0,1] can be cov-
ered by arbitrarily small “bricks” in such a way that no point in I2 is contained in
more than three of these bricks; moreover, if these bricks are sufficiently small, at
least three have a common point. He then extended the same argument to the n-cube
In, where the number of bricks becomes n+ 1, and conjectured that this number
n+1 cannot be reduced. The conjecture was proved by Brouwer in [45].

We now give the definition of topological covering dimension introduced by Ed-
uard Čech [68, 69, 70], heavily relying on Lebesgue’s work. This equivalent ap-
proach to dimension is presented, with extreme clarity and elegance, in Part I of
the monograph by Michel Coornaert [78], with the aim of developing the necessary
preparatory tools for the theory of mean topological dimension, a conjugacy invari-
ant of topological dynamical systems due to Gromov [142], which was used by Elon
Lindenstrauss and Benjy Weiss [216] to solve in the negative a long-standing open
problem on the embeddability of dynamical systems into shifts (see [78, Part II]).

Let X be a topological space. Recall that a cover of X is a family α = (Ai)i∈I of
subsets Ai ⊆ X such that

⋃
i∈I Ai = X . If Ai is open for all i ∈ I, one says that α is an

open cover of X . Given two covers α = (Ai)i∈I and β = (B j) j∈J , one says that β is
finer that α , and one writes α � β , if for every j ∈ J there exists an i ∈ I such that
B j ⊆ Ai.

Let α be a cover of X . The order of α is

ord(α) :=sup
x∈X

ordx(α),

where, for x ∈ X , ordx(α) :=−1+ |{i ∈ I : x ∈ Ai}| ∈N∪{+∞} is the order of α at
x, with the convention that if X =∅, then ord(α) =−1. If α is finite, we set

D(α) :=min
β

ord(β ),

where β runs over all finite open covers of X such that α � β . We are now in a
position to give the definition of Čech–Lebesgue covering dimension.

Definition (Topological covering dimension). Let X be a topological space. The
topological covering dimension of X is the quantity

dim(X) :=sup
α

D(α) ∈ {−1}∪N∪{+∞},

where α runs over all finite open covers of X .

The Lebesgue method, leading to the definition of covering dimension, coincides
with that of Brouwer, Menger, and Urysohn [44] (see [184, Chapter V]). Another
significant approach is due to Pavel Alexandroff [5] (cf. [184, Chapters VI and
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VII]). Another approach to the notion of dimension, from a purely algebraic and
combinatorial viewpoint, comes from homology theory. Once again, the homology-
dimension turns out to be the same as the topological dimension (see [184, Chapter
VIII]).

Intuitively, with the topological notion of one-dimensionality (resp. two-dim-
ensionality, resp. three-dimensionality) one associates the metrical notion of length,
or linear measure (resp. of area, or two-dimensional measure, resp. of volume, or
three-dimensional measure). For metric spaces this intuitive feeling was made pre-
cise by Edward Szpilrajn [325] who established the connections between topolog-
ical dimension and measure, in particular with the Hausdorff dimension such as
Theorem 10.47 (see [184, Chapter VII]).

For X ⊂R, the 1-dimensional measure of X coincides with Lebesgue outer mea-
sure. However, in general, for n ≥ 2, the n-measure of a set X ⊂ Rn may differ
numerically from its Lebesgue outer measure. However, the two measures are abso-
lutely continuous with respect to each other (cf. [184, Chapter VII, Section 1.(E)]).

The following result (cf. [184, Theorem VII.4]) provides an interesting refine-
ment of the Menger–Nöbeling theorem in terms of n-measure.

Theorem. Let X be a space of dimension≤ n for some n∈N. Then X is homeomor-
phic to a subset of R2n+1 of (n+1)-measure zero.

Hausdorff dimension was introduced by Felix Hausdorff in [167] in 1919. As we
have seen, (cf. Theorem 10.50) one has Hdim(Rn) = n for all n∈N. More generally,
it can be shown that, for sets of points that define a smooth shape or a shape that has
a small number of corners, the Hausdorff dimension is an integer agreeing with the
topological dimension. However, Hausdorff dimension may take non-integer values:
for instance, the Hausdorff dimension of the Cantor set K is Hdim(K) = log2/ log3
(cf. Theorem 10.51). Significant technical advances, allowing computation of the
Hausdorff dimensions of more general highly irregular or “rough” sets, were made
by Abram S. Besicovitch [25, 26].

Szpilrajn [325] (cf. [184, Theorem VII.5 and Chapter VII, Section 4]) proved
that given an arbitrary separable metric space X ,

dim(X) = inf
(Y,d)

Hdim(Y ),

where (Y,d) runs over all metric spaces homeomorphic to X .
In our treatment, we have only considered separable metric spaces. There are

spaces of a more general nature which proved to be very interesting from the di-
mension theory point of view (cf. [184, Appendix] for a discussion on a “general
dimension theory” and “dimension functions”). Part I of the monograph by Michel
Coornaert [78] is devoted to dimension theory in the covering-dimension approach
in a much more general setting than separable metric spaces. There are plenty of
fascinating examples providing counterintuitive results in this more general setting.
In the Notes to each of the chapters one may find a careful historical account on
these.
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10.8 Exercises

Exercise 10.1. Let X be a nonempty space. Show that dim(X) = 0 if and only if
the following holds: for every x ∈ X and every neighborhood U of x there exists a
neighborhood V of x such that V ⊆U and ∂V =∅.

Exercise 10.2. Show that the set Qn of rational points in Euclidean space Rn is 0-
dimensional for all n≥ 1.

Exercise 10.3. Let I∞ :=∏n≥1[0,1/n] be the Hilbert cube (cf. Example 10.4.(e)).
Observe that I∞ is contained in the real Hilbert space H :=`2(N) of square
summable real sequences and show that it is compact and contains no nonempty
open subsets of H .

Exercise 10.4. Let A and C be two 0-dimensional subsets of a space X . Suppose that
C is closed. Show that A∪C is 0-dimensional. Deduce that a 0-dimensional space
remains 0-dimensional after the adjunction of finitely many points. (Cf. Exercise
10.9).

Exercise 10.5. Let 0 ≤ m ≤ n and denote by X the set of points in Rn that have
exactly m coordinates in Q. Show that X is 0-dimensional.

Exercise 10.6. Let 0 ≤ m and denote by X the set of points in the Hilbert cube I∞

that have exactly m coordinates in Q. Show that X is 0-dimensional.

Exercise 10.7. The set X ⊆ `2(N) all of whose coordinates are rational is (uncount-
able and) not 0-dimensional (cf. Example 10.4.(f)). Show that any two distinct points
in X can be separated (cf. conditions (b) and (e) in Theorem 10.15).

Exercise 10.8. Recall that a topological (not necessarily separable nor metrizable)
space is scattered if it admits a base of clopen subsets.

(1) Show that every set equipped with the discrete topology is scattered;
(2) show that a connected space is scattered if and only if the topology is the trivial

one (only ∅ and the whole space are open);
(3) suppose that a space X is scattered and every point is closed. Show that X is

Hausdorff;
(4) show that every subspace of a scattered space is itself scattered;
(5) show that the product of scattered spaces is itself scattered;
(6) show that a subset of R is scattered if and only if it has empty interior.

Exercise 10.9. Let A and C be two subsets of a space X . Suppose that both dim(A),
dim(C)≤ n and that C is closed. Show that dim(A∪C)≤ n. Deduce that the dimen-
sion of a nonempty space cannot be increased by the adjunction of finitely many
points (cf. Exercise 10.4).

Exercise 10.10. Show that the unit circle S1 has Hausdorff dimension 1.

Exercise 10.11. Let M be an n-dimensional manifold (so that each point P ∈ M
admits a neighborhood homeomorphic to Rn). Show that dim(X) = n = Hdim(X).
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Exercise 10.12. Let X = {0,1}N. For q ∈ (0,1) define the function dq : X ×X →
[0,1] by setting

dq(x,y) :=

{
0 if x = y
2−n/q if x(i) = y(i) for i = 0,1, . . . ,n−1 and x(n) 6= y(n).

(a) Show that dq is a metric on X and that the topology it induces is the prodiscrete
topology.

(b) Show that mp(X ,dq) = 0 for p > q and deduce that Hdim(X ,dq)≤ q.
(c) Verify that dim(K) = infHdim(Y,d), where (Y,d) runs over all metric spaces

homeomorphic to the Cantor set K.

Exercise 10.13 (The Peano curve). Let ϕ : [0,1] → [0,1]× [0,1] be a continu-
ous function such that ϕ(0) = (0,0) and ϕ(1) = (1,0). Define a new function
F(φ) : [0,1]→ [0,1]× [0,1] by setting

F(φ) :=


1
2 (y(4t),x(4t)) if 0≤ t ≤ 1

4
1
2 (x(4t−1),1+ y(4t−1)) if 1

4 ≤ t ≤ 1
2

1
2 (1+ x(4t−2),1+ y(4t−2)) if 1

2 ≤ t ≤ 3
4

1
2 (2− y(4t−3),1− x(4t−3)) if 3

4 ≤ t ≤ 1,

where ϕ(t) = (x(t),y(t)), for all t ∈ [0,1].
(a) Show that F(φ) is continuous and F(φ)(0) = (0,0) and F(φ)(1) = (1,0).
(b) For any continuous function f : [0,1]→ [0,1]× [0,1], with f (t) = (x(t),y(t))

for all t ∈ [0,1], the nonnegative quantity

‖ f‖∞ :=sup{(x(t)2 + y(t)2)1/2 : t ∈ [0,1]}= max{(x(t)2 + y(t)2)1/2 : t ∈ [0,1]}

denotes the sup-norm of f . Show that if ψ : [0,1]→ [0,1]× [0,1] is another contin-
uous function such that ψ(0) = (0,0) and ψ(1) = (1,0), then (cf. Figure 10.5)

‖F(ϕ)−F(ψ)‖∞ ≤
1
2
‖ϕ−ψ‖∞.

Fig. 10.5 Two maps ϕ,ψ : [0,1]→ [0,1]× [0,1], F(ϕ), F(ψ), and F2(ϕ), F2(ψ).
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(c) Set ϕn :=Fn(ϕ) for all n ∈ N, so that ϕ0 :=ϕ and ϕ1 :=F(ϕ). Show that
the sequence (ϕn)n∈N is uniformly convergent, that is, there exists a function
ϕ∞ : [0,1]→ [0,1]× [0,1] (necessarily continuous and such that ϕ∞(0) = (0,0) and
ϕ∞(1) = (1,0)) such that

lim
n→∞
‖ϕn−ϕ∞‖∞ = 0.

(d) Show that ϕ∞([0,1]) = [0,1]× [0,1], that is, ϕ∞ (continuously) maps the in-
terval [0,1] onto the square [0,1]× [0,1].

(e) Can ϕ∞ be injective? Why?

Exercise 10.14. Show that the Hilbert space `2(N) has infinite Hausdorff dimen-
sion.



Chapter 11
Ultrafilters, Ultraproducts, Ultrapowers, and
Asymptotic Cones

This chapter is devoted to the study of filters and ultrafilters on the naturals and
ultraproducts and asymptotic cones of metric spaces. A filter on N is a nonempty
subset F of the set P(N) of all subsets of N such that: ∅ /∈F ;

⋂n
i=1 Ai ∈F for all

A1,A2, . . . ,An ∈F ; B ∈F for all B ⊇ A such that A ∈F . For example, the set of
all cofinite subsets of N is a filter, called the Fréchet filter (Example 11.2.(c)). Also,
if∅ 6= A0 ⊆N then the set of all subsets containing A0 is a filter, called the principal
filter based at A0 (Example 11.2.(b)). A filter which is maximal (with respect to set-
theoretical inclusion) is called an ultrafilter. If an ultrafilter is principal based, say,
at A0, then A0 is singleton. A non-principal ultrafilter is also called a free ultrafilter.
A characterization of free ultrafilters is given in Theorem 11.12; in particular, an
ultrafilter is free if and only if it contains the Fréchet filter (Corollary 11.13). Given
a metric space (X ,d) and a filter (in particular, an ultrafilter) F on N, a notion of
convergence for sequences (xn)n∈N in X along F is introduced and studied in Sec-
tion 11.4: a sequence that is convergent (to some limit x ∈ X) in the usual sense
also converges along any free ultrafilter to the same limit x (and vice versa). If X is
compact and ω is an ultrafilter then any sequence is convergent along ω (Theorem
11.19, a Bolzano–Weierstass type theorem). A characterization of compact metric
spaces in terms of ultrafilters is derived (Theorem 11.21). As a consequence, given
an ultrafilter ω on N, every bounded sequence x = (xn)n∈N of real numbers is con-
vergent along ω , moreover the map x 7→ limω xn is linear, continuous (i.e., bounded,
with respect to the norm ‖·‖∞ on the Banach space `∞(R)), and monotone (Theorem
11.22). The set βN of all ultrafilters on N can be given a topology making it into
a Hausdorff compact space and one has an injection N ↪→ βN (by setting n 7→ ωn,
the principal filter based at {n}) with dense image (Proposition 11.23 and Theorem
11.25): it is called the Stone–Čech compactification of N.

In Section 11.7 (resp. Section 11.8) we introduce and study the ultrapower (resp.
the ultraproduct) of a metric space (resp. of a sequence of pointed metric spaces).
The case where the metric space (resp. the sequence of metric spaces) is a metric
group (resp. a sequence of metric groups) such as the symmetric group equipped
with the Hamming distance or the unitary group equipped with the Hilbert–Schmidt
norm is of particular interest: the resulting construction of an ultrapower or ultra-
product is a metric group as well (Theorem 11.37). In Section 11.10 a similar con-
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struction is applied to define the ultrapower of a field, yielding a new field called an
ultrafield (Theorem 11.39). The ω-ultrapower GL(n,F)ω of the general linear group
GL(n,F) of all invertible n×n matrices with coefficients in a field F is canonically
isomorphic to the general linear group GL(n,Fω) of all invertible n× n matrices
with coefficients in the ω-ultrafield Fω (Theorem 11.40).

In Section 11.12 we define and study the asymptotic cone (Kω(X ,d),dω) of a
metric space (X ,d) relative to a free ultrafilter ω: it is just the ultraproduct of the
sequence (Xn,dn,x0

n) of pointed metric spaces, where Xn = X , dn(x,y) :=d(x,y)/n,
and x0

n :=x0 ∈ X is a fixed base point. In Section 11.13 we introduce the notions
of a quasi-isometry and of a bi-Lipschitz map between metric spaces as well as
the induced equivalences. We then show that given a finitely generated group G, the
bi-Lipschitz class of the asymptotic cone Kω(G,dS) is independent of the finite sym-
metric generating subset S⊂G (Corollary 11.49). In Section 11.14 we present some
properties of asymptotic cones (associated with a free ultrafilter): the asymptotic
cone of a complete metric space is complete (Theorem 11.51); the asymptotic cone
of a finitely generated group (with respect to a finite symmetric generating subset)
is homogeneous, arcwise connected (and therefore connected) and in fact geodesic,
locally arcwise connected (and therefore locally connected), and complete (Theo-
rem 11.52). In the subsequent section we describe some examples of asymptotic
cones (associated with a free ultrafilter ω on N): the asymptotic cone of a bounded
metric space reduces to a point (Proposition 11.54). The asymptotic cone Kω(Z,dS),
where S = {−1,1} ⊂ Z, is homeomorphic to (R,d), where d denotes the Euclidean
distance on R (i.e., d(x,y) = |x− y| for all x,y ∈ R) (Proposition 11.56). As the
asymptotic cone of a Cartesian product is naturally homeomorphic to the Cartesian
product of the asymptotic cones (Proposition 11.57), we deduce that the bi-Lipschitz
class of the asymptotic cone of Zn is the same as that of (Rn,dn), where dn is the
`1-distance (dn(x,y) = ∑

n
i=1 |xi− yi| for all x = (x1, . . . ,xn),y = (y1, . . . ,yn) ∈ Rn)

(Corollary 11.58).
The final part of the chapter is devoted to the introduction and study of hyperbolic

metric spaces. In Section 11.16 we define hyperbolicity, presenting a few equivalent
conditions (Proposition 11.63), and illustrate several examples. We remark that hy-
perbolicity is a quasi-isometry invariant (Theorem 11.67). In Section 11.17 we then
define R-trees (essentially, an R-tree is the same thing as a 0-hyperbolic metric
space, by virtue of Proposition 11.72) and characterize hyperbolic metric spaces in
terms of their asymptotic cones being R-trees (Theorem 11.75).

11.1 Filters

Let N= {0,1,2, . . .} be the set of naturals and denote by P(N) = {A : A⊆ N} the
set of all subsets of N.

Definition 11.1. A filter on N (briefly, a filter) is a nonempty set F ⊆P(N) satis-
fying the following conditions:
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(F1) ∅ /∈F ;
(F2) if A1,A2, . . . ,An ∈F , n≥ 1, then

⋂n
i=1 Ai ∈F ;

(F3) if A ∈F and A⊆ B⊆ N, then B ∈F .

Example 11.2. (a) F = {N} is clearly a filter.
(b) Let A0 ∈P(N). Then the set FA0 :={A ∈P(N) : A0 ⊆ A} is a filter. It is

called the principal filter based at A0. A filter F on N is said to be principal if there
exists an A0 ⊆ N such that F = FA0 .

(c) The set F = {A ∈P(N) :N\A is finite}, consisting of all cofinite subsets of
N, is a filter. It is called the Fréchet filter.

Definition 11.3. A base of a filter is a set B ⊆P(N) satisfying the following con-
ditions:

(B1) ∅ /∈B;
(B2) if B1,B2 ∈B, then there exists a B ∈B such that B⊆ B1∩B2.

It follows immediately from (B1)–(B2) and (F1)–(F3) that if B is a base of a
filter then the set

F = {A ∈P(N) : A contains an element of B}

is a filter. It is called the filter generated by B.

Definition 11.4. A subset Ω ⊆P(N) is said to be saturated provided that it has
the finite intersection property, that is, for any A1,A2, . . . ,An ∈ Ω , n ≥ 1, one has⋂n

i=1 Ai 6=∅.

Note that if Ω is saturated then ∅ /∈Ω .

Lemma 11.5. A nonempty subset Ω ⊆P(N) is embeddable in a filter if and only if
it is saturated.

Proof. Suppose that Ω is saturated. Then the set

B(Ω) :=

{
n⋂

i=1

Ai : A1,A2, . . . ,An ∈Ω ,n≥ 1

}
(11.1)

is a base of a filter. The filter generated by B(Ω) is

F (Ω) :={A ∈P(X) : ∃A1,A2, . . . ,An ∈Ω such that
n⋂

i=1

Ai ⊆ A} (11.2)

and one clearly has Ω ⊆F (Ω).
The converse follows immediately from (F1) and (F2). �

If Ω ⊆P(N) is saturated then we say that F (Ω) as in (11.2) is the filter gener-
ated by Ω .

Note that any filter F ⊆P(N) satisfies the following properties:
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(F4) if A⊆ N, then A and N\A cannot both belong to F ;
(F5) N ∈F .

Indeed, (F4) follows from (F1) and (F2) since A∩ (N \A) = ∅, and (F5) is an im-
mediate consequence of the fact that F 6=∅ and (F3).

11.2 Ultrafilters

Let F ⊆P(N) be a filter. Consider the set ΦF consisting of all filters containing
F . This is a nonempty set (as F ∈ ΦF ), partially ordered by inclusion. Let Φ =

(Fi)i∈I be a totally ordered subset of ΦF . We claim that F̃ :=∪i∈IFi is an upper
bound for Φ . We only have to show that F̃ belongs to ΦF . As ∅ /∈ Fi for all
i ∈ I we also have ∅ /∈ F̃ so that condition (F1) is satisfied. Suppose now that
A1,A2, . . . ,An ∈ F̃ . Then there exist i1, i2, . . . , in ∈ I such that A j ∈Fi j for all j =
1,2, . . . ,n. Let k ∈ I be such that k ≥ i1, i2, . . . , in. We then have A1,A2, . . . ,An ∈Fk

and therefore
⋂n

j=1 A j ∈Fk, by (F2). It follows that
⋂n

j=1 A j ∈ F̃ . This shows that

F satisfies condition (F2) as well. Finally, let A ∈ F̃ and B⊆N be such that A⊆ B.
Then there exists an i ∈ I such that A ∈Fi and therefore B ∈Fi, by (F3). It then
follows that B ∈ F̃ so that F̃ also satisfies condition (F3). Thus F̃ is a filter. It
is also clear that F̃ contains F . In other words, F̃ ∈ ΦF . This shows that ΦF is
inductive.

By Zorn’s lemma, ΦF contains a maximal element.

Definition 11.6. A maximal filter ω ⊆P(N) is called an ultrafilter.

As an immediate consequence of the above discussion and of Lemma 11.5, we
have the following.

Corollary 11.7. Every filter is contained in some ultrafilter. Moreover a nonempty
subset Ω ⊆P(N) is embeddable in an ultrafilter if (and only if) it is saturated. �

Theorem 11.8. Let ω ∈P(N) be a filter on X. Then the following conditions are
equivalent:

(a) ω is an ultrafilter;
(b) for every A ∈P(N) one has either A ∈ ω or (N\A) ∈ ω .

Proof. To prove (a)⇒ (b) assume that ω is an ultrafilter. Let A∈P(N) and suppose
that A′ :=(N \A) /∈ ω . Then, by virtue of Lemma 11.5 and the maximality of ω ,
the set ω ∪{A′} ⊆P(N) is not saturated. Therefore there exist A1,A2, . . . ,An ∈ ω

such that (
⋂n

i=1 Ai)∩A′ = ∅, equivalently,
⋂n

i=1 Ai ⊆ N \A′ = A. By (F2) we have⋂n
i=1 Ai ∈ ω and by (F3) this yields A ∈ ω .
Conversely, assume (b) and suppose by contradiction that ω is not maximal.

Then we can find a filter F properly containing ω . Let A ∈F \ω . By (b) one has
(N \A) ∈ ω ⊆F . Since A ∈F and (N \A) ∈F , this contradicts (F4). It follows
that ω is maximal, that is, ω is an ultrafilter. This shows (b)⇒ (a). �
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Example 11.9 (Principal ultrafilters). Let n0 ∈ N. Then the principal filter based
at the singleton {n0}, which we denote by ωn0 :=F{n0}, is an ultrafilter. Indeed if
ω is an ultrafilter containing ωn0 and we had A ∈ ω \ωn0 then necessarily A 63 n0.
Since {n0} ∈ ωn0 ⊆ ω and A∩{n0}=∅, by (F2) this would contradict (F1) for ω .
The element n0 is called the principal element of ωn0 and one says that ωn0 is the
principal ultrafilter based at n0. Conversely, suppose that A ⊆ N is a nonempty set
such that the principal filter FA is an ultrafilter. Then there exists an n0 ∈N such that
A = {n0}. Indeed if we had distinct elements n0,n1 ∈ A then necessarily {n0} 6∈FA
(since {n0} does not contain n1) and N\{n0} 6∈FA (since N\{n0} does not contain
n0) contradicting the fact that FA is an ultrafilter (cf. Theorem 11.8.(b)).

11.3 Free Ultrafilters

Definition 11.10. An ultrafilter which is not principal is called free (or nonprinci-
pal).

Lemma 11.11. Let ω be an ultrafilter onN. Let A1,A2, . . . ,An ∈P(N) and suppose
that A :=

⋃n
i=1 Ai ∈ ω . Then there exists 1≤ i≤ n such that Ai ∈ ω .

Proof. Suppose by contradiction that A′i :=N\Ai ∈ω for all i = 1,2, . . . ,n. Then by
(F2) we have N\A =

⋂n
i=1 A′i ∈ ω . Since A ∈ ω , this contradicts (F4). �

Theorem 11.12. Let ω be an ultrafilter. The following conditions are equivalent:

(a) ω is free;
(b) A /∈ ω for all finite subsets A⊆ N;
(c)
⋂

A∈ω A =∅.

Proof. Suppose that there exists a finite subset A = {a1,a2, . . . ,an} of N such that
A ∈ ω . As A = ∪n

i=1{ai}, by Lemma 11.11 there exists a (unique) 1 ≤ i ≤ n such
that {ai} ∈ ω . Hence, by (F3), ω ⊇F{ai}. By maximality of F{ai} we deduce that
ω = F{ai}, i.e., ω is principal. This shows (a)⇒ (b).

Assume now (b) and set B :=
⋂

A∈ω A. Let us show that B = ∅. If not, let b ∈ B.
By hypothesis we have {b} /∈ ω . It follows from Theorem 11.8 that N \ {b} ∈ ω .
Thus B, being the intersection of all subsets A ⊆ N which belong to ω , satisfies
B⊆ N\{b}. But this contradicts the fact that b ∈ B. This shows (b)⇒ (c).

Finally, suppose that ω is principal, say based at n0 ∈N. We then have
⋂

A∈ω A =
{n0} 6=∅. This shows (c)⇒ (a). �

Corollary 11.13. An ultrafilter is free if and only if it contains the Fréchet filter.

Proof. Let ω be an ultrafilter and let F denote the Fréchet filter (cf. Example
11.2.(c)). Suppose that ω is free. Then by virtue of Theorem 11.12.(b) and The-
orem 11.8.(b) we have (N\A) ∈ ω for all finite subsets A⊆ N, that is, F ⊆ ω .

Conversely, suppose that ω is principal so that there exists an n0 ∈ N such that
ω = ωn0 (cf. Example 11.9), in particular {n0} ∈ ω . It follows from (F4) that the
cofinite set N\{n0} does not belong to ω . Thus F 6⊆ ω . �
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Corollary 11.14. Free ultrafilters exist.

Proof. Consider the Fréchet filter F . By Corollary 11.7 there exists an ultrafilter ω

containing F . By Corollary 11.13 ω is free. �

11.4 Limits along Filters in Metric Spaces

Let (X ,d) be a metric space and let F ⊆P(N) be a filter.

Definition 11.15. A sequence (xn)n∈N of points in X is said to be convergent along
F provided there exists a point x ∈ X such that the following holds: for every ε > 0
one has {n ∈ N : d(xn,x)< ε} ∈F . If this is the case we say that x is a limit of the
sequence (xn)n∈N and we write

lim
F

xn = x

(we shall also write xn −→
F

x).

Remark 11.16. Let F ′ ⊆P(N) be another filter and suppose that F ⊆F ′. Then
every sequence (xn)n∈N of points in X which is convergent along F is also conver-
gent along F ′ and the two limits are the same, in formulæ

lim
F

xn = x =⇒ lim
F ′

xn = x.

Example 11.17. Let (xn)n∈N be a sequence of points in X and let x ∈ X .
(a) Let n0 ∈N and consider the principal ultrafilter ωn0 based at n0. Then one has

lim
ωn0

xn = x ⇐⇒ x = xn0 .

In particular, (xn)n∈N is always convergent along ωn0 .
(b) Suppose that (xn)n∈N is convergent to x in the usual sense, i.e. for every ε > 0

there exists an n(ε) ∈ N such that d(xn,x) < ε for all n ≥ n(ε). Then (xn)n∈N is
convergent to x along the Fréchet filter. It follows from Remark 11.16 and Corollary
11.13 that (xn)n∈N is convergent to x along every free ultrafilter.

(c) Conversely, suppose that (xn)n∈N is convergent to x along every free ultrafilter.
Let us show that limn→∞ xn = x (in the usual sense). If this is not the case, then we
can find ε0 > 0 such that for every n0 ∈ N there exists an n = n(n0)≥ n0 satisfying
d(xn,x) ≥ ε0. The set A :={n(n0) : n0 ∈ N} ⊆ N is clearly infinite. Now the set
Ω = {A \ {n} : n ∈ N} ⊆P(N) is saturated and by Corollary 11.7 there exists
an ultrafilter ω containing Ω . Note that ω is necessarily free. By (F3) A ∈ ω . On
the other hand {n ∈ N : d(xn,x) < ε0} ⊆ N \A. Hence by (F1) and (F2) {n ∈ N :
d(xn,x)< ε0} /∈ ω . It follows that xn 6→

ω

x, a contradiction.

Lemma 11.18. The limit of a converging sequence is unique.

Proof. Suppose that (xn)n∈N is a sequence of points in X converging along a filter
F both to the points x and y in X . Let ε > 0. Then the sets A :={n ∈ N : d(xn,x)<
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ε} and B :={n ∈ N : d(xn,y) < ε} both belong to F and therefore, by (F2), their
intersection is nonempty. By the triangular inequality (applied to x,y and xn with
n ∈ A∩B) we then have d(x,y)< 2ε . Since ε was arbitrary, we deduce that x = y.

�

Theorem 11.19. Let (X ,d) be a metric space and let ω ⊆P(N) be an ultrafilter.
Suppose that X is compact. Then every sequence (xn)n∈N of points in X converges
along ω .

By the Bolzano–Weierstass theorem, in the hypotheses of Theorem 11.19, we
can (only) deduce the existence of a subsequence (xnk)k∈N converging in the usual
sense, which, by Example 11.17.(b), will also converge along ω . Theorem 11.19
states that, for the convergence along ω of the original sequence, there is no need to
extract a subsequence. However, the proof of Theorem 11.19 is essentially the same
as that of the Bolzano–Weierstass theorem.

To emphasize the analogies with the Bolzano–Weierstrass theorem, before giving
the general proof of the above theorem, we present the special case of compact
intervals in R.

Proof of Theorem 11.19 (for compact intervals in R). We consider the special case
where X = [a,b]⊆ R and d(x,y) = |x− y| for all x,y ∈ X .

Set a0 :=a and b0 :=b and partition the interval C0 :=[a0,b0] into the two subin-
tervals A0 :=[a0,(a0 + b0)/2] and B0 :=[(a0 + b0)/2,b0]. Let also α0 :={n ∈ N :
xn ∈ A0} and β0 :={n ∈ N : xn ∈ B0}, so that γ0 :=N = α0 ∪ β0. By virtue of
Lemma 11.11 and (F4), at least one of the two subsets α0 and β0 belongs to ω .
We pick one that is in ω and call it γ1. We set C1 :=[a1,b1] where a1 :=a0 and
b1 :=(a0+b0)/2 if γ1 =α0, while a1 :=(a0+b0)/2 and b1 :=b0 if γ1 = β0. Let then
A1 :=[a1,(a1 + b1)/2] and B1 :=[(a1 + b1)/2,b1] and set α1 :={n ∈ N : xn ∈ A1}
and β1 :={n ∈ N : xn ∈ B1} so that γ1 = α1 ∪ β1. From Lemma 11.11 and (F4)
we again deduce that at least one of the two subsets α1 and β1 belongs to ω , we
pick one of them and call it γ2. Continuing in this way, we construct a sequence
C0 ⊇ C1 ⊇ ·· · of intervals with length `(Ci) = (b− a)2−i for all i ∈ N and a se-
quence γ0 ⊇ γ1 ⊇ γ2 ⊇ ·· · of elements in ω such that γi :={n ∈ N : xn ∈Ci} for all
i ∈ N. Let x denote the unique element in ∩i∈NCi (here we are using the compact-
ness of X = [a,b]). Let us show that (xn)n∈N converges to x along ω . Fix ε > 0.
Then we can find nε ∈ N such that (x− ε,x + ε) ⊇ Cnε

. It follows that the set
{n ∈ N : xn ∈ (x− ε,x + ε)} contains {n ∈ N : xn ∈ Cnε

} = γnε
∈ ω so that, by

(F3), {n ∈ N : d(xn,x)< ε}= {n ∈ N : xn ∈ (x− ε,x+ ε)} also belongs to ω . This
shows that limω xn = x. �

Proof of Theorem 11.19. For every x∈X and ε > 0 let B(x,ε)= {y∈X : d(x,y)< ε}
(resp. B(x,ε) = {y ∈ X : d(x,y) ≤ ε}) denote the open (resp. closed) ball of radius
ε centered at x.

We recursively construct a decreasing sequence (Xn)n∈N of compact subsets of X
such that diam(Xn)≤ 2−n+1 for all n ∈ N, and such that the sets An :={k ∈ N : xk ∈
Xn} for n ∈ N form a decreasing sequence of elements of ω , as follows.

We start by setting X0 :=X , so that A0 :=N, which is clearly in ω .
Suppose that we have constructed Xn and An with n≥ 0.
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Since Xn is compact, we can find finite Yn ⊆ Xn such that Xn ⊆∪y∈YnB(y,2−n−1).
Since An = ∪y∈Yn{k ∈N : xk ∈ B(y,2−n−1)∩Xn}, by Lemma 11.11 there exists yn ∈
Yn such that {k ∈ N : xk ∈ B(yn,2−n−1)∩Xn} ∈ ω . Hence we set

Xn+1 :=B(yn,2−n−1)∩Xn,

so that An+1 = {k ∈ N : xk ∈ B(yn,2−n−1)∩Xn} ∈ ω .
Clearly diam(Xn+1) ≤ 2−n and Xn+1 ⊆ Xn, so that Xn+1 is compact. Moreover

An+1 ⊆ An.
Let y be the unique element in

⋂
n∈N Xn, which exists by compactness of X and

is unique since diam(Xn)→ 0 as n→ ∞.
Fix ε > 0. Then we can find nε ∈ N such that B(y,ε) ⊇ Xnε

. It follows that the
set {n ∈ N : xn ∈ B(y,ε)} contains Anε

, which is an element of ω . So by (F3) also
{n ∈N : xn ∈ B(y,ε)} is in ω . Thus limω xn = y, and therefore (xn)n∈N is convergent
along the ultrafilter ω . �

Corollary 11.20. Let ω be an ultrafilter. Then every bounded sequence (xn)n∈N of
real numbers is convergent along ω and its limit is unique. �

Theorem 11.21. Let (X ,d) be a metric space. Then the following conditions are
equivalent

(a) X is compact;
(b) for every free ultrafilter ω one has that every sequence (xn)n∈N in X is conver-

gent along ω;
(c) there exists a free ultrafilter ω on N such that every sequence (xn)n∈N in X is

convergent along ω .

Proof. The implication (a) ⇒ (b) follows immediately from Theorem 11.19. The
implication (b) ⇒ (c) is trivial. To complete the proof, let us show (c) ⇒ (a) by
contradiction. Suppose X is not compact. Then either X is not totally bounded, that
is, there exists no ε > 0 such that X is covered by a finite collection of open balls of
radius ε , or X is not complete. In the first case, for every ε > 0 there exists an infinite
sequence (xn)n∈N in X such that d(xn,xm)≥ ε for all n 6= m. Suppose now that there
exists a free ultrafilter ω on which (xn)n∈N converges, and set x := limω xn. Then, by
the triangular inequality, there exists (at most) one n0 ∈N such that d(x,xn0)< ε/2.
This implies that either ∅ ∈ ω or {n0} ∈ ω , both contradicting the fact that ω is a
free ultrafilter.

Suppose instead that X is not complete, and let (xn)n∈N be a Cauchy sequence in
X which is not convergent in X . Let us show that if ω is a free ultrafilter on N then
(xn)n∈N does not converge along ω . Assume by contradiction that there exists an x∈
X such that limω xn = x. Thus for every t ∈ N the set At :={n ∈ N : d(xn,x)< 1/t}
is in ω , in particular it is infinite, since ω is free, and clearly At ⊇ At+1. Note that
if the decreasing sequence (At)t∈N eventually stabilizes then the sequence (xn)n∈N
admits a constant and therefore convergent subsequence in the usual sense. Being
Cauchy, it must also be convergent in X , a contradiction.

So there exists a sequence of natural numbers (tk)k∈N such that Atk ) Atk+1 for
all k ∈ N. Thus, if nk ∈ Atk \Atk+1 for all k ∈ N, then we have that the subsequence
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(xnk)k∈N converges (in the usual sense) to x. Again, since (xn)n∈N is Cauchy, this
means that (xn)n∈N itself converges to x ∈ X , a contradiction. �

The set `∞(R) consisting of all bounded real sequences has the natural structure
of a vector space over R in which addition and scalar multiplication are given by

(x+ y)n = xn + yn and (λx)n = λxn

for all x = (xn)n∈N and y = (yn)n∈N in `∞(R), and λ ∈ R. The map

x 7→ ‖x‖∞ :=sup
n∈N
|xn|

defines a norm on `∞(R). With this norm, `∞(R) becomes a real Banach space.
It follows from Corollary 11.20 that if ω is an ultrafilter then for every x =

(xn)n∈N ∈ `∞(R) there exists the limit

mω(x) := lim
ω

xn ∈ R (11.3)

in fact,
mω(x) ∈ [−‖x‖∞,‖x‖∞]. (11.4)

Theorem 11.22. Let ω be an ultrafilter. Then the map mω : `∞(R)→ R defined by
mω(x) := limω xn ∈ R is linear, continuous (i.e., bounded), and monotone. In other
words we have:

(i) limω(λx)n = λ limω xn;
(ii) limω(x+ y)n = limω xn + limω yn;

(iii) | limω xn| ≤ ‖x‖∞;
(iv) limω xn ≤ limω zn,

for all λ ∈ R and x,y,z ∈ `∞(R) with x≤ z (i.e. xn ≤ zn for all n ∈ N).

Proof. Let x = (xn)n∈N,y = (yn)n∈N,z = (zn)n∈N ∈ `∞(R). Let also ε > 0.
(i) Let λ ∈R. We have {n ∈N : |λxn−λmω(x)|< ε}= {n ∈N : |xn−mω(x)|<

ε/|λ |} ∈ ω , if λ 6= 0, and {n ∈ N : |λxn−λmω(x)| < ε} = N ∈ ω if λ = 0. This
shows that in either case mω(λx) = limω(λx)n = λ limω xn = λmω(x).

(ii) By virtue of the triangle inequality we have that the set

A :={n ∈ N : |(xn + yn)− (mω(x)+mω(y))|< ε}

contains

{n ∈ N : |xn−mω(x)|< ε/2}∩{n ∈ N : |yn−mω(y)|< ε/2}

so that A∈ω by virtue of (F3) and (F2). This shows that mω(x+y) = limω(x+y)n =
limω xn + limω yn = mω(x)+mω(y).

(iii) This follows immediately from (11.4).
(iv) Suppose x ≤ z, i.e. xn ≤ zn for all n ∈ N, and assume by contradiction that

mω(x)> mω(z). Take ε := 1
2 (mω(x)−mω(z)) and set Ax :={n ∈N : |xn−mω(x)|<
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ε} and Az :={n ∈ N : |zn −mω(z)| < ε}. Since mω(x) = limω xn (resp. mω(z) =
limω zn) we have that both Ax and Ay belong to ω . On the other hand, if n ∈ Ax∩Ay
we have

zn < mω(z)+ ε = mω(x)− ε < xn

so that our assumptions force Ax ∩Ay = ∅, contradicting (F2) and (F1). It follows
that mω(x) = limω xn ≤ limω zn = mω(z). �

11.5 The Stone–Čech Compactification

We denote by βN the set of all ultrafilters and by P∗(N) :=P(N)\{∅} the set of
all nonempty subsets of N.

The map
N → βN
n 7→ ωn

where ωn = {A⊆N : n∈ A} is the principal ultrafilter based at n (cf. Example 11.9),
is injective (exercise). In other words, we have an embedding

N ↪→ βN. (11.5)

Given a nonempty subset A⊆ N we denote by

V (A) = {ω ∈ βN : A ∈ ω}

the set of all ultrafilters containing A.
Recall that given a nonempty set X and B⊆P(X), the set of all arbitrary unions

of elements of B is a topology on X if and only if the following conditions hold:

(B1) X = ∪B∈BB;
(B2) for all B1,B2 in B and for each x ∈ B1 ∩B2 there exists a B3 ∈B such that

x ∈ B3 ⊆ B1∩B2.

In this case B is called a base for that topology.

Proposition 11.23. The collection

V :={V (A) : A ∈P∗(N)} (11.6)

constitutes a base for a topology on βN.

Proof. First of all, since N ∈ ω for every ω ∈ βN, we have V (N) = βN, so that
∪A∈P∗(N)V (A) = βN. This shows that (B1) is satisfied by V . Let now A,B⊆N and
suppose that V (A)∩V (B) 6=∅. Let then ω ∈V (A)∩V (B). Let us show that

ω ∈V (A∩B)⊆V (A)∩V (B). (11.7)

From our assumptions we deduce that ω contains both A and B, so that by (F2) ω

contains A∩B (note that this implies A∩B 6=∅ by (F1)), equivalently ω ∈V (A∩B).
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This shows the first inclusion in (11.7). Suppose now that ω ′ ∈ V (A∩B), that is,
A∩B ∈ ω ′. Since both A and B contain A∩B, it follows from (F3) that A,B ∈ ω ′,
equivalently ω ′ ∈ V (A)∩V (B). This shows the second inclusion in (11.7). Thus
(B2) is also satisfied. Hence V is a base. �

Remark 11.24. Note that in the proof of Proposition 11.23, since ω ∈V (A)∩V (B)
was arbitrary, we actually have V (A∩B) = V (A)∩V (B), and this condition itself
guarantees that V is a base for a topology on βN.

Theorem 11.25. Let T denote the topology on βN generated by the base V defined
in (11.6). Then the following properties hold.

(i) T induces the discrete topology on its subspace N (cf. (11.5));
(ii) T is Hausdorff;

(iii) (βN,T ) is compact;
(iv) N is T -dense in βN;
(v) for every map f : N→ X, where (X ,d) is a compact metric space, there exists

a unique continuous map f̃ : βN→ X extending f .

Proof. (i) Let n ∈ N and let ωn ∈ βN denote the principal ultrafilter based at n.
Observe that if ω ∈ βN contains {n} then, by maximality of ultrafilters, ω = ωn.
This shows that V ({n}) = {ωn}. As a consequence, the singleton {ωn} is open in
βN and therefore it is open in the subspace N.

(ii) Let ω,ω ′ ∈ βN and suppose that ω 6= ω ′. Then there exists an A ∈P∗(N)
such that A ∈ ω but A /∈ ω ′ (hence (N \A) ∈ ω ′). Then the sets V (A) and V (N \
A) constitute open neighborhoods of ω and ω ′, respectively. Moreover, they are
disjoint: if ω ∈V (A)∩V (N\A) then ω contains both A and its complement N\A,
contradicting (F4).

(iii) Let U be an open cover of βN and let us show that there exists a finite
subcover. Since V is a base of the topology,

U ′ :={V (A) : V (A)⊆V for some V ∈U } (11.8)

is also an open cover of βN. Let us show that U ′ admits a finite subcover. First
observe that the set A :={A∈P∗(N) : V (A)∈U ′} is a cover ofN. Indeed if n∈N
then we can find V ∈U containing ωn and if A∈P∗(N) is such that ωn ∈V (A)⊆V ,
so that A∈A , then necessarily n∈ A (in fact ωn ∈V (A)⇔ A∈ωn⇔ n∈ A). Let us
show that A admits a finite subcover. Suppose by contradiction that A admits no
finite subcover and observe (exercise) that this is equivalent to saying that the set

Ω :={N\A : A ∈A } ⊆P∗(N)

is saturated. By Corollary 11.7, we can then find an ultrafilter ω containing Ω .
This means that (N \A) ∈ ω , equivalently A /∈ ω , for all A ∈ A . This in turn may
be expressed by saying that ω /∈ V (A) for all A ∈ A , that is, ω /∈ ∪A∈A V (A) =
∪V ′∈U ′V ′, contradicting the fact that U ′ covers βN. We deduce that there exist
n ∈ N and A1,A2, . . . ,An ∈A such that A1∪A2∪·· ·∪An = N.

Let now ω ∈ βN. By virtue of Lemma 11.11 there exists 1 ≤ i ≤ n such that
Ai ∈ ω , equivalently ω ∈V (Ai). Thus
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V (A1)∪V (A2)∪·· ·∪V (An) = βN, (11.9)

showing that U ′ admits a finite subcover. To show that U itself admits a finite
subcover and therefore to end the proof, it suffices to observe that, by definition, for
every i = 1,2, . . . ,n there exists a Vi ∈ U such that V (Ai) ⊆ Vi so that, by (11.9),
V1∪V2∪·· ·∪Vn = βN.

(iv) Let U ∈ T be nonempty and let us show that there exists an n ∈ N such
that {ωn} ⊆ U . Since V is a base, we can find a nonempty subset A ⊆ N such
that V (A) ⊆ U . Taking any n ∈ A we have A ∈ ωn by (F3) and therefore {ωn} =
V ({n})⊆V (A)⊆U .

(v) For every ω ∈ βN let us set

f̃ (ω) := lim
ω

f (n). (11.10)

Note that (11.10) exists and is well defined since X is compact (cf. Lemma 11.18
and Theorem 11.19). Note that if n0 ∈ N then by Example 11.17.(a) we have

f̃ (ωn0) = lim
ωn0

f (n) = f (n0)

thus showing that f̃ extends f . We are only left to prove continuity of f̃ . Let ω ∈ βN
and set x0 := f̃ (ω) ∈ X . Let also ε > 0 and consider the open neighborhood B(x0,ε)
of x0. By definition of limit along ω , the set A :={n∈N : f (n)∈B(x0,ε/2)} belongs
to ω . Consider the basic open set V (A) ⊆ βN and observe that ω ∈ V (A). Given
ω ∈ V (A) we have A ∈ ω and therefore f̃ (ω) = limω f (n) ∈ B(x0,ε/2) ⊆ B(x0,ε)
(exercise: let (X ,d) be a metric space, and let (xn)n∈N be a sequence in X converging
along an ultrafilter ω . Suppose that there exists a ball B⊆ X such that {n ∈N : xn ∈
B} ∈ ω . Show that limω xn ∈ B.) This shows that f̃ (V (A)) ⊆ B(x0,ε). Thus the
continuity of the extension f̃ of f follows. Uniqueness of f̃ is left as an exercise. �

By Theorem 11.25.(iii) the topological space (βN,T ) is compact. It is called the
Stone–Čech compactification of N.

11.6 The Completion of a Metric Space

Let (X ,d) be a metric space.
Recall that a sequence (xn)n∈N in X is bounded provided it satisfies one of the

following equivalent (exercise) conditions:

(i) supn,m∈N d(xn,xm)< ∞;
(ii) there exists an x0 ∈ X such that supn∈N d(x0,xn)< ∞;

(iii) for every x0 ∈ X one has supn∈N d(x0,xn)< ∞.

Also recall that (X ,d) is said to be totally bounded provided that for every ε > 0,
there exists a finite collection of open balls in X of radius ε whose union contains X .
Clearly a totally bounded space is bounded (as the union of finitely many bounded
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sets is bounded), but the converse is not true in general. For example, an infinite set
equipped with the discrete metric is bounded but not totally bounded. On the other
hand, for (Rn,dn), where dn is the Euclidean distance, a subset (with the induced
distance) is totally bounded if and only if it is bounded.

We denote by `∞(X) = `∞(X ,d)⊆ XN the set of all bounded sequences in X . We
also denote by Cau(X) = Cau(X ,d)⊆ `∞(X) the set of all Cauchy sequences in X .

Given x = (xn)n∈N and y = (yn)n∈N in Cau(X) we write x ∼ y provided that
limn→∞ d(xn,yn) = 0. It is easy to see (exercise) that∼ is an equivalence relation on
Cau(X) and that, denoting by [x] :={y ∈ Cau(X) : y ∼ x} the equivalence class of
x ∈ Cau(X), the quantity

d̃([x], [y]) := lim
n→∞

d(xn,yn)

is well defined (note that the limit exists since (d(xn,yn))n∈N is a Cauchy sequence
inR (exercise) andR is complete) and yields a metric on the corresponding quotient
space X̃ :=Cau(X)/∼. The metric space (X̃ , d̃) is called the metric completion (or
Cauchy completion) of (X ,d).

The proof of the following proposition is left as an exercise.

Proposition 11.26. Let (X ,d) be a metric space and denote by (X̃ , d̃) its metric
completion. Then the following holds:

(i) the map x 7→ [(xn)n∈N], where xn = x for all n ∈ N, yields an isometric embed-
ding of X into X̃;

(ii) X is dense in X̃;
(iii) X is totally bounded if and only if X̃ is totally bounded.

Moreover, a subset of a complete metric space is totally bounded if and only if
it is pre-compact (exercise): for this reason one also calls a totally bounded metric
space pre-compact.

Proposition 11.27. Let (X ,d) be a metric space. Then the following conditions are
equivalent:

(a) (X ,d) isometrically embeds into a metric space (X̂ , d̂) in which every bounded
sequence converges along every free ultrafilter;

(b) every ball in X is totally bounded.

In this case, one may take X̂ = X̃ , the metric completion of X.

Proof. Suppose that every ball B in X is totally bounded. Then every ball B̃ in the
metric completion X̃ of X is totally bounded and therefore compact (cf. Proposition
11.26). Let x = (xn)n∈N be a bounded sequence in X̃ , then there exists a ball B̃ such
that xn ∈ B̃ for all n∈N. Then by virtue of Theorem 11.21 the sequence x converges
in B̃ (and therefore in X̃) along every free ultrafilter.

Conversely, suppose there exists a ball B in X which is not totally bounded, so that
there exists ε0 > 0 and a sequence (xn)n∈N contained in B, and therefore bounded,
such that

d(xn,xm)≥ ε0 for all distinct n,m ∈ N. (11.11)
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Let (X̂ , d̂) be a metric completion of X , so that we have an isometric embedding
X ↪→ X̂ . Then we may regard (xn)n∈N as a sequence in X̂ . It immediately follows
from (11.11) and the fact that d̂(x,y) = d(x,y) for all x,y ∈ X that (xn)n∈N does not
converge in X̂ along any free ultrafilter (exercise). �

11.7 Ultrapowers of Metric Spaces

Let (X ,d) be a metric space.
In view of Proposition 11.27, we cannot, in general, find a metric extension X̃

of X such that, for every bounded sequence (xn)n∈N in X there exists an ultralimit
limω xn in X̃ . The following construction, however, enables us to associate with any
bounded sequence in X an ideal new point which will be the limit (in the usual sense,
and therefore the ultralimit along any ultrafilter) in the case of a Cauchy sequence.

We equip the set `∞(X) consisting of all bounded sequences in X with the metric
d∞ defined by

d∞(x,y) :=sup
n∈N

d(xn,yn) (11.12)

for all x = (xn)n∈N and y = (yn)n∈N in `∞(X). Note that the quantity in (11.12) is
finite by virtue of the triangle inequality (exercise).

It can be shown that (`∞(X),d∞) is complete if and only if (X ,d) is complete
(exercise).

Let now ω be an ultrafilter. For x = (xn)n∈N and y = (yn)n∈N in `∞(X) we write

x∼ω y provided lim
ω

d(xn,yn) = 0. (11.13)

The relation ∼ω defined by (11.13) is an equivalence relation on `∞(X) (exer-
cise). We then denote by

[x]ω :={y ∈ `∞(X) : y∼ω x}

the equivalence class of x, and by Xω :=`∞(X)/ ∼ω the corresponding quotient
space. Also, the quantity

dω([x]ω , [y]ω) := lim
ω

d(xn,yn) (11.14)

is well defined: if x′ = (x′n)n∈N and y′ = (y′n)n∈N in `∞(X) satisfy x′ ∼ω x and
y′ ∼ω y, then limω d(xn,yn) = limω d(x′n,y

′
n) (exercise). Moreover, dω([x]ω , [y]ω) =

infx′∼ω x
y′∼ω y

d∞(x′,y′), and dω defines a metric on Xω (exercise).

Definition 11.28. The metric space (Xω ,dω) is called the ultrapower of (X ,d) with
respect to the ultrafilter ω .

It is easy to show that the map

ιω : X → Xω

x 7→ [(x,x, . . .)]ω



11.7 Ultrapowers of Metric Spaces 221

is an isometric embedding of (X ,d) into (Xω ,dω). Moreover, ιω is surjective if and
only if X is compact (exercise).

Remark 11.29. Suppose that the ultrafilter ω is principal. Then there is an element
n0 ∈N such that ω consists of all subsets ofN containing n0. Thus for all x=(xn)n∈N
and y = (yn)n∈N in `∞(X) we have x∼ω y if and only if xn0 = yn0 . This implies that
the map ιω is also surjective (given [x]ω ∈ Xω , we have [x]ω = ιω(xn0)). It follows
that the metric spaces Xω and X are canonically isometric.

Note that given a bounded sequence (xn)n∈N in X , the associated “ideal new
point” we alluded to above is nothing but [(xn)n∈N]ω ∈ Xω . Moreover, this will be
the limit in case of a Cauchy sequence, as the proof of the following theorem shows.

Theorem 11.30. Suppose that (X ,d) is a complete metric space. Then the ultra-
power (Xω ,dω) is also complete.

Proof. We start by showing the following useful result which we shall recursively
apply in the proof.

Claim. Let x,y ∈ Xω and let A > 0 be such that D :=dω(x,y) < A. Then we can
find (xn)n∈N and (yn)n∈N in `∞(X) such that x = [(xn)n∈N]ω , y = [(yn)n∈N]ω and
d(xn,yn)< A for all n ∈ N.

Indeed, let (xn)n∈N and (y′n)n∈N in `∞(X) be such that x = [(xn)n∈N]ω , y =
[(y′n)n∈N]ω and set S :={n ∈ N : d(xn,y′n) < A}. We claim that S ∈ ω . Indeed, if
ε :=(A−D)/2 we have, by definition, Sε :={n∈N : D−ε < d(xn,y′n)<D+ε}∈ω .
But since D+ ε < A we have Sε ⊆ {n ∈ N : d(xn,y′n) < D+ ε} ⊆ S so that by (F3)
we have S ∈ ω . Thus setting yn :=y′n for n ∈ S and yn :=xn for n /∈ S we have that
[(yn)n∈N]ω = y and d(xn,yn)< A holds for all n ∈ N. The claim follows.

Let now (xi)i∈N be a Cauchy sequence in Xω . Possibly disregarding a finite num-
ber of initial terms, it is not restrictive to suppose that dω(x j,xi)< 1 for all i, j ∈ N.
For all i ∈ N, by applying the claim with x = x1, y = xi and A = 1, we can find
(xi

n)n∈N ∈ `∞(X) such that xi = [(xi
n)n∈N]ω and d(x1

n,x
i
n) < 1 for all n ∈ N. By the

triangle inequality, we therefore have d(x j
n,xi

n)< 2 for all i, j,n ∈ N.
Let now ` be the first index ` > 1 such that dω(xi,x j) < 1/2 for all i, j ≥ `. By

applying the claim with x= x`, y= xi for i≥ `, and A= 1/2, we can suppose that the
sequences (xi

n)n∈N ∈ `∞(X) satisfy, in addition, d(x`n,x
i
n)< 1/2 for all i,n ∈ N such

that i ≥ ` (note that since in the process indicated by the claim we may have just
replaced some xi

n by x1
n, the inequalities from the previous paragraph remain true).

Again, by the triangle inequality, we therefore have d(x j
n,xi

n) < 1 for all i, j,n ∈ N
such that i, j ≥ `.

Continuing in this way, it is therefore possible to choose the sequences (xi
n)n∈N ∈

`∞(X), i ∈ N, in a such a way that for every ε > 0 there exists an `ε ∈ N such that

d(x j
n,x

i
n)< ε for all i, j,n ∈ N such that i, j ≥ `ε . (11.15)

Fix n ∈ N. It follows immediately from (11.15) that the sequence (xi
n)i∈N is

Cauchy in X . Since (X ,d) is complete, there exists xn := limi→∞ xi
n ∈ X .
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Consider the sequence x :=(xn)n∈N and let us show that x ∈ `∞(X) and [x]ω =
limi→∞ xi in Xω .

Fix ε > 0 and let `ε as above. Letting j→ ∞ in (11.15) we obtain

d(xn,xi
n)< ε for all i,n ∈ N such that i≥ `ε . (11.16)

In order to prove the first assertion, fix i ≥ `ε and let A > 0 be such that
d(x0,xi

n) < A for all n ∈ N. Then, using the triangle inequality, from (11.16) we
deduce d(x0,xn) ≤ d(x0,xi

n)+ d(xn,xi
n) < (A+ ε) for all n ∈ N, thus showing that

the sequence (xn)n∈N is in `∞(X).
On the other hand, still from (11.16) we deduce that

dω([x]ω ,xi) = lim
ω

d(xn,xi
n)< ε

for all i ≥ `ε . Since ε was arbitrary, this shows that [x]ω = limi→∞ xi. Thus the
Cauchy sequence (xi)i∈N converges. It follows that (Xω ,dω) is complete. �

11.8 Ultraproducts of Sequences of Pointed Metric Spaces

A pointed metric space is a triple (X ,x0,d) where (X ,d) is a metric space and x0 ∈X
is a fixed point, called a base point.

Let X = ((Xn,x0
n,dn))n∈N be a sequence of pointed metric spaces and let ω ∈ βN

be an ultrafilter.
Consider the set `∞(X) consisting of all sequences (xn)n∈N such that xn ∈ Xn

for all n ∈ N and d∞((xn)n∈N,(x0
n)n∈N) :=supn∈N dn(xn,x0

n) < ∞. For instance, if
(X ,x0,d) is a pointed metric space and (Xn,x0

n,dn) = (X ,x0,d) for all n ∈ N, then
we clearly have `∞(X) = `∞(X).

As in the previous section, with `∞(X) playing the role of `∞(X), we define an
equivalence relation ∼ω on `∞(X) and a distance function dω on

Xω :=`∞(X)/∼ω

as follows: for x = (xn)n∈N and y = (yn)n∈N in `∞(X), we write x ∼ω y provided
limω dn(xn,yn) = 0 and we set dω([x]ω , [y]ω) := limω dn(xn,yn), where [x]ω :={x′ ∈
`∞(X) : x′ ∼ω x} ∈ Xω is the ∼ω equivalence class of x.

Definition 11.31. The metric space (Xω ,dω) is called the ultraproduct of the se-
quence X = (Xn,x0

n,dn)n∈N of pointed metric spaces, with respect to the ultrafilter
ω .

Example 11.32. Let (X ,x0,d) be a pointed metric space and (Xn,x0
n,dn) = (X ,x0,d)

for all n ∈ N. It is clear that Xω coincides with Xω , the ultrapower of X .

Given a set X , recall that the discrete metric is the metric d∗ defined by d∗(x,y) =
0 if x = y and d∗(x,y) = 1 otherwise, for all x,y ∈ X . Note that `∞(X ,d∗) = XN.
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Example 11.33. Let (Xn)n∈N be a sequence of sets. Equip each Xn with the discrete
metric d∗n and pick a fixed point x0

n in each Xn. Observe that the sequence X =
((Xn,x0

n,d
∗
n))n∈N of pointed metric spaces has uniformly bounded diameter (≤ 1), so

clearly `∞(X) = ∏n∈N Xn. Moreover, given x = (xn)n∈N and y = (yn)n∈N in ∏n∈N Xn
we have x ∼ω y if and only if there exists an A ∈ ω such that xn = yn for all n ∈ A
(exercise). Moreover, d∗∞ (resp. d∗ω ) coincides with the discrete metric on ∏n∈N Xn
(resp. Xω ) (exercise).

11.9 Ultraproducts of Groups

Let G be a group and let d : G×G→ [0,+∞) be a metric on G. One says that the
metric d is left- (resp.right-) invariant provided that d(hg1,hg1) = d(g1,g2) (resp.
d(g1h,g1h) = d(g1,g2)) for all h,g1,g2 ∈ G; one then refers to the pair (G,d) as to
a left (resp. right) metric group. A metric d which is both left and right invariant is
termed bi-invariant and in this case one refers to (G,d) simply as a metric group.

Note that in a left or right metric group (G,d) one has

d(1G,g−1) = d(1G,g) (11.17)

for all g ∈ G, while if d is bi-invariant, then

d(g,h) = d(g−1,h−1) (11.18)

and
d(hg1h−1,hg2h−1) = d(g1,g2) (11.19)

for all g,h,g1,g2 ∈ G (exercise).

Example 11.34. (a) Let G be a finitely generated group and let S ⊆ G be a finite
generating subset. Then (G,dS) (cf. (7.3)) is a left metric group. In general, dS is not
right invariant
(b) Let G be any group and denote by d∗ the discrete metric. Then (G,d∗) is a metric
group (exercise).
(c) Let G = Sn denote the symmetric group on n letters: this is the group of all
permutations (= bijective self-maps) of a set X of cardinality n. Also denote by
dH

n : Sn×Sn→ [0,1] the (normalized) Hamming distance. This is defined by

dH
n (g,h) :=

n−|{x ∈ X : g(x) = h(x)}|
n

≡ |{x ∈ X : g(x) 6= h(x)}|
n

(11.20)

for all g,h ∈ Sn. Then (Sn,dH
n ) is a metric group (exercise).

(d) Let Un⊂Mn(C) denote the unitary group consisting of all n×n unitary matrices.
Recall that a matrix A ∈ Mn(C) is called unitary provided A∗A = I = AA∗, where
A∗ = AT is the conjugate-transpose (or adjoint) of A and I denotes the identity
matrix. The Hilbert–Schmidt norm of a matrix A = (ai, j)

n
i, j=1 ∈Mn(C) is defined as

the non-negative number
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‖A‖HS :=

√
n

∑
i, j=1
|ai, j|2.

For A,B ∈Un we set dHS
n (A,B) :=‖A−B‖HS. Then (Un,dHS

n ) is a metric group (ex-
ercise).
(e) Let F be a field and let GL(n,F)⊆Mn(F) denote the general linear group con-
sisting of all n×n invertible matrices with coefficients in F. The (normalized) rank
of a matrix A ∈Mn(F) is defined as the non-negative number

ρn(A) :=
dimcoker(A)

n
= 1− dimker(A)

n
.

For A,B ∈ Mn(F) we set dn(A,B) :=ρn(A− B). Then (GL(n,F),dn) is a metric
group. (exercise).

Given a metric group (G,d) we implicitly choose as a base point the identity
element 1G ∈ G.

Thus, given a sequence ((Gn,dn))n∈N of metric groups we use the notation G =
((Gn,1Gn ,dn))n∈N. Given an ultrafilter ω ∈ βN we may construct the ultraproduct
Gω along the lines of the previous section. In the following, we show that (Gω ,dω)
is a metric group.

We first observe that `∞(G) has a natural group structure defined as follows.
Given x = (xn)n∈N and y = (yn)n∈N in `∞(G) we define z :=xy ∈ `∞(G) by setting
zn = xnyn ∈ Gn for all n ∈ N. Indeed,

dn(zn,1Gn) = dn(xnyn,1Gn)

(by left invariance) = dn(yn,x−1
n )

(by the triangular inequality) ≤ dn(yn,1Gn)+dn(1Gn ,x
−1
n )

(by (11.17)) = dn(yn,1Gn)+dn(xn,1Gn),

thus showing that z ∈ `∞(G). Moreover, x−1 :=(x−1
n )n∈N is the inverse of x and

1:=(1Gn)n∈N is the neutral element.

Lemma 11.35. Let x,x′,y,y′ ∈ `∞(G). Then one has

x∼ω x′ and y∼ω y′ =⇒ xy∼ω x′y′ (11.21)

and
x∼ω y ⇒ x−1 ∼ω y−1. (11.22)

Consider the subset Nω ⊆ `∞(G) defined by

Nω :={x ∈ `∞(G) : x∼ω 1}.

The proof of the following proposition is left as an exercise.

Proposition 11.36. The set Nω is a normal subgroup of `∞(G).

Observe that, given x and y in `∞(G), one has
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xNω = yNω ⇐⇒ x∼ω y. (11.23)

Indeed, one has xNω = yNω if and only if xy−1 ∈Nω , that is, if and only if xy−1∼ω 1.
This is equivalent to x ∼ω y by (11.21). As a consequence, the ultraproduct Gω of
the sequence of metric groups (Gn,dn)n∈N is itself a group, called the ultraproduct
group, and one has

Gω = `∞(G)/Nω .

Moreover, the metric dω on Gω given by

dω(xNω ,yNω) := lim
ω

dn(xn,yn) (11.24)

for all x = (xn)n∈N and y = (yn)n∈N in `∞(G), is bi-invariant (exercise).
From the discussion above we deduce the following:

Theorem 11.37. Let G = ((Gn,1Gn ,dn))n∈N be a sequence of (pointed) metric
groups. Then the ultraproduct (Gω ,dω) is a metric group. �

Example 11.38. Let ω ∈ βN be an ultrafilter.
(a) Let G :=(Sn,1,dH

n )n∈N (cf. Example 11.34.(c)). It follows from Theorem 11.37
that the ultraproduct (Gω ,dω) is a metric group. It is called the universal sofic group.
(b) Let G :=(Un,1,dHS

n )n∈N (cf. Example 11.34.(d)). It follows from Theorem 11.37
that the ultraproduct (Gω ,dω) is a metric group. It is called the universal hyperlinear
group.
(c) Let G :=(GL(n,F), I,ρn)n∈N (cf. Example 11.34.(e)). It follows from Theorem
11.37 that the ultraproduct (Gω ,dω) is a metric group. It is called the universal
linearly-sofic group.

11.10 Ultrafields

Let F be a field and let A be a unital F-algebra.
Let A N :={(xn)n∈N : xn ∈A for all n ∈ N} denote the space of all sequences in

A . Given x = (xn)n∈N and y = (yn)n∈N in A N, and a ∈A , we define the elements
x+ y, xy, and ax in A N by setting

x+ y :=(xn + yn)n∈N, xy :=(xnyn)n∈N and ax = (axn)n∈N. (11.25)

It is easy to check (exercise) that, with the operations in (11.25), A N is a uni-
tal F-algebra. For example, FN is a unital commutative F-algebra. We denote by
0:=(0A )n∈N (resp. 1 :=(1A )n∈N) the corresponding zero (resp. unit) element.

Let now ω be an ultrafilter. As usual, given x = (xn)n∈N and y = (yn)n∈N in A N,
we write x ∼ω y provided that {n ∈ N : xn = yn} ∈ ω , and denote by [x]ω = {x′ ∈
A N : x′ ∼ω x} ⊆ A N the class of x with respect to the equivalence relation ∼ω .
Finally, denote by Aω :=A N/∼ω the corresponding ultrapower.

We set

[x]ω +[y]ω :=[x+ y]ω , [x]ω [y]ω :=[xy]ω and a[x]ω :=[ax]ω (11.26)
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for all x,y ∈ A N and a ∈ F. It is easy to check (exercise) that the operations in
(11.26) are well defined and that the ultrapower Aω :=A N/ ∼ω is then endowed
with the structure of a unital F-algebra with zero element [0]ω and unit element [1]ω .

Theorem 11.39. The ultrapower Fω :=FN/∼ω is a field.

Proof. We first observe that since the operations (11.26) are commutative in Fω , we
only need to show that every nonzero element in Fω is invertible. Let x = (xn)n∈N ∈
FN and suppose that [x]ω 6= [0]ω . This means that the set Ωx :={n ∈ N : xn 6= 0}
belongs to ω . Let then x′ = (x′n)n∈N ∈ FN be defined by x′n :=xn

−1 for n ∈ Ωx and
x′n :=1F otherwise. Since xnx′n = 1F for all n ∈Ωx ∈ ω , we deduce that [x]ω [x′]ω =
[1]ω , that is, [x′]ω is the inverse of [x]ω in Fω . It follows that Fω is a field. �

Note that A can be viewed as a subalgebra of Aω via the map x 7→ [(x)n∈N]ω ,
which is an injective algebra homomorphism from A into Aω . Moreover, if ω is
principal, then Aω

∼= A . The field Fω is called the ultrafield associated with F and
the ultrafilter ω . When F is the fieldR of real numbers, the ultraproductRω is called
the field of hyperreal numbers (also called nonstandard reals).

11.11 Ultrapowers of General Linear Groups

Let F be a field and let A be an F-algebra. Let also ω be an ultrafilter. For and inte-
ger k ≥ 1 we denote by Mk(A ) the F-algebra of all k× k matrices with coefficients
in A and by IMk(A ) = (δi, j1A )k

i, j=1 ∈Mk(A ) the identity matrix.
Consider the map Φ : Mk(F)N→Mk(FN) defined by

Φ ((An)n∈N) = ((an(i, j))n∈N)
k
i, j=1

where An = (an(i, j))k
i, j=1 ∈ Mk(F) for all n ∈ N. It is easy to see (exercise) that

Φ is a unital isomorphism of F-algebras and that the induced map Φ : Mk(F)ω →
Mk(Fω) defined by

Φ ([A]ω) = ([(an(i, j))n∈N]ω)
k
i, j=1

for all A = (An)n∈N ∈M(k,F)N is also a unital isomorphism of F-algebras. In other
words, we have

Mk(F)ω
∼= Mk(Fω). (11.27)

Let now GL(k,A ) ⊆ Mk(A ) denote the general linear group consisting of all
invertible k×k matrices with coefficients in A . We observe that since the ultrapower
construction preserves the inclusion, we have

GL(k,A )ω ⊆Mk(A )ω . (11.28)

Our next task is to show that the algebra isomorphism (11.27) restricts, by virtue
of the inclusion (11.28), to a group isomorphism

GL(k,F)ω
∼= GL(k,Fω). (11.29)
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Thus, let A = (An)n∈N ∈GL(k,F)N and denote by A−1 :=(A−1
n )n∈N ∈GL(k,F)N

the corresponding sequence of inverse matrices. We have

Φ ([A]ω)Φ
(
[A−1]ω

)
= Φ

(
[A]ω [A−1]ω

)
= Φ

(
[AA−1]ω

)
= ([(δi, j1F)n∈N]ω)

k
i, j=1

= (δi, j1Fω
)k

i, j=1

= IMk(Fω ).

This shows that Φ(GL(k,F)ω)⊆GL(k,Fω). In order to show the reverse inclusion,
let B = ([(bn(i, j))n∈N]ω)

k
i,k=1 ∈ GL(k,Fω). This means that there exists a matrix

C = ([(cn(i, j))n∈N]ω)
k
i, j=1 ∈GL(k,Fω) such that B C =C B= IM(k,Fω ). This implies

that the set Ω :={n ∈ N : ∑
n
h=1 bn(i,h)cn(h, j) = δi, j1F = ∑

n
`=1 cn(i, `)bn(`, j)} be-

longs to ω . It follows that for all n∈Ω , the matrix B′n :=(bn(i, j))k
i, j=1 ∈Mk(F) is in

fact invertible, that is, B′n ∈GL(k,F). Thus, if we denote by B = (Bn)n∈N ∈Mk(F)N
the sequence defined by Bn :=B′n for n ∈ Ω and Bn := IMk(F) otherwise, we have
B∈GL(k,F)N and, by construction, Φ([B]ω) = B. This shows that Φ(GL(k,F)ω) =
GL(k,Fω) and (11.29) follows.

We can rephrase this result as follows.

Theorem 11.40. Let F be a field, let k ≥ 1 an integer, and let ω be an ultrafilter.
Then the ultrapower GL(k,F)ω of the general linear group with coefficients in F is
canonically isomorphic to the general linear group GL(k,Fω) with coefficients in
the ultrafield Fω . �

Corollary 11.41. Let F be a field and let ω be an ultrafilter. Let also G=(Gn,dn)n∈N
be a sequence of metric groups which are F-linear of uniformly bounded rank
(i.e. there exists an integer k = k(G) ≥ 1 and an injective group homomorphism
ϕn : G→ GL(k,F) for every n ∈ N). Then the ultraproduct Gω is Fω -linear.

Proof. The product map ∏n∈N ϕn : Gω → GL(k,F)ω defined by(
∏
n∈N

ϕn

)
([g]ω) :=[(ϕn(gn))n∈N]ω

for all g = (gn)n∈N ∈ `∞(G) is well defined and injective (exercise). The statement
then follows from Theorem 11.40. �

11.12 Asymptotic Cones

Let (X ,d) be a metric space and fix a base point x0 ∈ X . Let also ω be a free
ultrafilter on N.
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Definition 11.42. A sequence x = (xn)n∈N in X is said to be moderate provided that
there exists a constant A = Ax > 0 such that

d(xn,x0)≤ An

for all n ∈ N, n≥ 1. We denote by M (X ,d) the set of all moderate sequences in X .

Note that if we change the basepoint, the set M (X ,d) of moderate sequences
remains the same (exercise).

Let x = (xn)n∈N and y = (yn)n∈N be two moderate sequences in (X ,d). Then by
the triangle inequality one has d(xn,yn)≤ d(xn,x0)+d(x0,yn)≤ (Ax +Ay)n. It fol-
lows that the sequence (d(xn,yn)/n)n≥1 is bounded. Then Corollary 11.20 ensures
that the limit

lim
ω

d(xn,yn)

n
exists in [0,+∞). We then write x ∼ω y provided that limω d(xn,yn)/n = 0. One
immediately checks that ∼ω is an equivalence relation on M (X ,d) (exercise). We
then denote by

Kω(X ,d) :=M (X ,d)/∼ω

the corresponding quotient space. Also, for x = (xn)n∈N ∈M (X ,d) we denote by
[x]ω = [(xn)n∈N]ω ∈Kω(X ,d) the corresponding equivalence class. Given [x]ω , [y]ω ∈
Kω(X ,d) one immediately checks that the nonnegative real number

dω([x]ω , [y]ω) := lim
ω

d(xn,yn)

n

is well defined, that is, it does not depend on the particular choice of the representa-
tives x,y ∈M (X ,d) of the classes [x]ω and [y]ω . Moreover,

dω : Kω(X ,d)×Kω(X ,d)→ [0,+∞)

is a distance function (exercise).

Definition 11.43. The metric space (Kω(X ,d),dω) is called the asymptotic cone of
the metric space (X ,d) relative to the free ultrafilter ω .

Example 11.44. Let (G,d) be a left metric group (for instance a group G gener-
ated by a finite symmetric subset S ⊆ G with the metric d = dS). We also choose
as basepoint the identity element 1G of G. We then equip M (G,d) with a group
structure given by pointwise multiplication: if g = (gn)n∈N and h = (hn)n∈N are
moderate sequences, then the sequence gh = (gnhn)n∈N is also moderate. Indeed by
the triangle inequality and left-invariance of the metric d we have d(gnhn,1G) ≤
d(hn,1G) + d(gn,1G) ≤ (Ag +Ah)n for all n ∈ N. It is clear that the constant se-
quence 1:=(1G)n∈N is the neutral element and that g−1 :=(g−1

n )n∈N ∈M (G,d) is
the inverse of g = (gn)n∈N ∈M (G,d). Let ω be an ultrafilter and set

Nω :={g = (gn)n∈N ∈M (G,d) : lim
ω

d(gn,1G)

n
= 0}.
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It is easy to see (exercise) that Nω is a subgroup of M (G,d) and that for g,g′,h,h′ ∈
M (G,d)

g∼ω g′ and h∼ω h′ implies gh∼ω g′h′. (11.30)

Moreover, g∼ω g′ if and only if gNω = g′Nω for all g,g′ ∈M (G,d). It follows that
we have a bijection between the asymptotic cone and the set of the right cosets of
Nω in M (G,d)

Kω(G,d)'M (G,d)/Nω .

If the metric d is bi-invariant, then the subgroup Nω is also normal and (Kω(G,d),dω)
is also a metric group (exercise).

Remark 11.45. Let (X ,d) be a metric space and fix a base point x0 ∈ X . Let
d0 :=d and for n ≥ 1 denote by dn the metric obtained by dividing d by n, that
is, dn(x,y) :=d(x,y)/n for all x,y ∈ X . It is clear that a sequence x = (xn)n∈N in X
is moderate if and only if supn∈N dn(xn,x0)< ∞. In other words, we have

M (X ,d) = `∞(X),

where X = ((Xn,dn,x0
n))n∈N, with Xn = X and x0

n = x0 for all n ∈ N. Let now ω be
an ultrafilter. It is clear that the equivalence relations ∼ω defined in M (X ,d) and
`∞(X) also coincide. It follows that the asymptotic cone is just the ultraproduct of
this sequence of pointed metric spaces:

Kω(X ,d) = Xω .

11.13 Asymptotic Cones and Quasi-Isometries

Definition 11.46. Let (X ,dX ) and (Y,dY ) be two metric spaces. A map Φ : X → Y
is called a quasi-isometry provided that there exist constants λ ≥ 1 and µ,ν ≥ 0,
called the parameters of Φ , such that the following conditions hold:

(Q1-1) for all x1,x2 ∈ X

1
λ

dX (x1,x2)−µ ≤ dY (Φ(x1),Φ(x2))≤ λdX (x1,x2)+µ;

(Q2-2) for every y ∈ Y there exists an x ∈ X such that

dY (Φ(x),y)≤ ν .

If such a quasi-isometry exists one then says that the metric space (X ,dX ) is quasi-
isometric to (Y,dY ). It is an exercise to show that this yields an equivalence relation.

When µ = 0, that is, if

1
λ

dX (x1,x2)≤ dY (Φ(x1),Φ(x2))≤ λdX (x1,x2)

for all x1,x2 ∈ X , then Φ is called a bi-Lipschitz mapping.
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Note that a surjective bi-Lipschitz mapping (that is, a quasi-isometry with pa-
rameters µ = 0 = ν) is a metric space homeomorphism (called a bi-Lipschitz home-
omorphism).

We leave the proof of the following proposition as an exercise.

Proposition 11.47. Let G be a finitely generated group, and H be a finite index
subgroup of G. Then G and H with any word metric are quasi-isometric.

Proposition 11.48. Let (X ,dX ) and (Y,dY ) be metric spaces and let ω be a free
ultrafilter on N. Then every quasi-isometry Φ : X→Y induces a bi-Lipschitz home-
omorphism

Φω : Kω(X ,dX )→ Kω(Y,dY ).

Proof. Let (λ ,µ,ν) be the parameters of Φ . Let x0 ∈ X be a base point of X and
choose y0 :=Φ(x0) to be the base point of Y . Let x :=(xn)n∈N be a moderate se-
quence in X . We have

dY (Φ(xn),Φ(x0))≤ λdX (xn,x0)+µ ≤ (λAx +µ)n

for all n ∈ N showing that (Φ(xn))n∈N is a moderate sequence in Y . Given another
moderate sequence x′ = (x′n)n∈N in X , we have

lim
ω

dY (Φ(xn),Φ(x′n))
n

≤ lim
ω

λdX (xn,x′n)+µ

n
= λdX ,ω([x]ω , [x′]ω).

We deduce that the map Φω : Kω(X ,dX )→ Kω(Y,dY ) given by

Φω([x]ω) :=[(Φ(xn))n∈N]ω

for all x = [(xn)n∈N] ∈ Kω(X ,dX ) is well defined and that

dY,ω(Φω([x]ω),Φω([x′]ω)≤ λdX ,ω([x]ω , [x′]ω)

for all x,x′ ∈ Kω(X ,dX ). This proves one half of the bi-Lipschitz condition for Φω .
The other half is proved similarly (exercise).

Let us show that Φω is surjective. Let y = (yn)n∈N be a moderate sequence in Y .
Then, for every n ∈ N we can find xn ∈ X such that dY (Φ(xn),yn)≤ ν . Let us show
that the sequence x :=(xn)n∈N in X is moderate. We have

dX (xn,x0)≤ λdY (Φ(xn),Φ(x0))

≤ λ
(
dY (Φ(xn),yn)+dY (yn,Φ(x0))

)
≤ λ (ν +Ayn)

≤ λ (ν +Ay)n.

Thus x ∈M (X ,dX ) and we have

dY,ω(Φω([x]ω), [y]ω) = lim
ω

dY (Φ(xn),yn)

n
≤ lim

ω

ν

n
= 0,

thus showing that Φω([x]ω) = [y]ω . �
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Corollary 11.49. Let G be a finitely generated group. Let S⊆G be a finite symmet-
ric generating subset. Then the bi-Lipschitz class of the asymptotic cone Kω(G,dS)
is independent of the generating subset S. �

For a finitely generated group G we denote by Kω(G) the bi-Lipschitz class of
the asymptotic cone Kω(G,dS), where S is any finite symmetric generating subset
of G.

Proposition 11.50. Let G be a finitely generated group and let H be a finite index
subgroup of G. Then Kω(G) = Kω(H).

Proof. This follows immediately from Proposition 11.48 after observing that G and
its finite index subgroup H (which is finitely generated by Corollary 1.11) are quasi-
isometric by Proposition 11.47. �

11.14 Properties of Asymptotic Cones

Before stating the main properties of the asymptotic cone of a finitely generated
group, we review a few concepts.

A metric space (X ,d) is called homogeneous provided that the group Isom(X) of
all isometries of X acts transitively on X : for all x,y∈ X there exists an α ∈ Isom(X)
such that α(x) = y. Also, (X ,d) is arcwise connected if for any x,y ∈ X there exists
a continuous map α : [0,1]→ X such that α(0) = x and α(1) = y; we shall call
such a map α a continuous path connecting x to y. Note that if (X ,d) is arcwise
connected then it is also connected. One also says that (X ,d) is locally connected
(resp. locally arcwise connected) provided that every x ∈ X admits connected (resp.
arcwise connected) neighboring balls of arbitrarily small radii. Note that local arc-
wise connectedness implies local connectedness. A geodesic in a metric space is an
isometric embedding f : [0,d]→ X : one then says that f connects the points f (0)
and f (d) in X . A metric space is called geodesic if every two points are connected
by a geodesic. Note that every geodesic metric space is arcwise connected.

Theorem 11.51. Let (X ,d) be a complete metric space and ω an ultrafilter. Then
the asymptotic cone (Kω(X ,d),dω) is complete.

Proof. The proof is essentially the same, but slightly more involved than the proof
of the analogous result for the ultrapower (Xω ,dω) (Theorem 11.30). We include
the detailed proof for the sake of completeness and the convenience of the reader.

Claim. Let h,k ∈ Kω(X ,d) and A > 0 be such that D :=dω(h,k)< A. Then we can
find (xn)n∈N and (yn)n∈N in M (X ,d) such that h = [(xn)n∈N]ω , k = [(yn)n∈N]ω and
d(xn,yn)< An for all n ∈ N.

The proof is, again, basically the same as the proof of the claim in Theorem
11.30. Indeed, let (xn)n∈N and (y′n)n∈N be in M (X ,d) such that h = [(xn)n∈N]ω ,
k = [(y′n)n∈N]ω and set S :={n∈N : d(xn,y′n)< An}. We claim that S ∈ω . Indeed, if
ε :=(A−D)/2 we have, by definition, Sε :={n∈N : D−ε < d(xn,y′n)/n<D+ε} ∈
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ω . But since D+ ε < A we have Sε ⊆ {n ∈ N : d(xn,y′n)/n < D+ ε} ⊆ S so that by
(F3) we have S ∈ ω . Thus setting yn :=y′n for n ∈ S and yn :=xn for n /∈ S we have
that [(yn)n∈N]ω = k and d(xn,yn)< An holds for all n ∈ N. This proves the claim.

Let now (ki)i∈N be a Cauchy sequence in Kω(X ,d). Possibly disregarding a finite
number of initial terms, it is not restrictive to suppose that dω(k j,ki) < 1 for all
i, j ∈N. For all i ∈N, by applying the previous claim with h = k1, k = ki and A = 1,
we can find (xi

n)n∈N ∈M (X ,d) such that ki = [(xi
n)n∈N]ω and d(x1

n,x
i
n) < n for all

n ∈ N. By the triangle inequality we therefore have d(x j
n,xi

n)< 2n for all i, j,n ∈ N.
Let now ` be the first index ` > 1 such that dω(ki,k j) < 1/2 for all i, j ≥ `. By

applying the claim with h = k`, k = ki for i ≥ `, and A = 1/2, we can suppose that
the sequences (xi

n)n∈N ∈M (X ,d) satisfy, in addition, d(x`n,x
i
n)< n/2 for all i,n∈N

such that i≥ ` (note that since in the process indicated by the claim we may have just
replaced some xi

n by x1
n, the inequalities from the previous paragraph remain true).

Again, by the triangle inequality we therefore have d(x j
n,xi

n) < n for all i, j,n ∈ N
such that i, j ≥ `.

Continuing in this way, it is therefore possible to choose the sequences (xi
n)n∈N ∈

M (X ,d), i ∈ N, in a such a way that for every ε ′ > 0 there exists an `ε ′ ∈ N such
that

d(x j
n,x

i
n)< ε

′n for all i, j,n ∈ N such that i, j ≥ `ε ′ . (11.31)

Fix n ∈N and let us show that the sequence (xi
n)i∈N is Cauchy. Indeed, let ε > 0.

Then if ε ′ :=ε/n and iε :=`ε ′ , from (11.31) we have d(xi
n,x

j
n) < ε for all i, j ≥ iε .

Since (X ,d) is complete, there exists xn := limi→∞ xi
n ∈ X .

Consider the sequence x :=(xn)n∈N and let us show that x ∈M (X ,d) and [x]ω =
limi→∞ ki.

Fix ε ′ > 0 and let `ε ′ as above. Letting j→ ∞ in (11.31) we obtain

d(xn,xi
n)< ε

′n for all i,n ∈ N such that i≥ `ε ′ . (11.32)

In order to prove the first assertion, fix a point x0 in X , fix i ≥ `ε ′ and let A > 0
be such that d(x0,xi

n) < An for all n ∈ N. Then, using the triangle inequality, from
(11.32) we deduce d(x0,xn) ≤ d(x0,xi

n)+ d(xn,xi
n) < (A+ ε ′)n for all n ∈ N, thus

showing that the sequence (xn)n∈N is moderate.
On the other hand, still from (11.32) we deduce that

dω([x]ω ,ki) = lim
ω

d(xn,xi
n)/n < ε

′

for all i ≥ `ε ′ . Since ε ′ was arbitrary, this shows that [x]ω = limi→∞ ki. Thus
the Cauchy sequence (ki)i∈N is converging. It follows that the asymptotic cone
(Kω(X ,d),dω) is complete. �

Theorem 11.52. Let G be a finitely generated group, let S⊆G be a finite symmetric
generating subset, and let ω be an ultrafilter. Then the associated asymptotic cone
Kω(G,dS) is:

(i) homogeneous;
(ii) arcwise connected (and therefore connected) and in fact geodesic;
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(iii) locally arcwise connected (and therefore locally connected);
(iv) complete.

Proof. Set K :=Kω(G,dS).
(i) Recall that for g∈G we denote by Lg : G→G the left-multiplication by g (cf.

Section 7.1). We can generalize this in the following way.
Let g = (gn)n∈N ∈ M (G,dS). Then, recalling that M (G,dS) is a group (cf.

Example 11.44) the map Lg : M (G,dS)→M (G,dS) is well defined. Explicitly,
Lg(g′) = (gng′n)n∈N, for all moderate sequences g′ = (g′n)n∈N ∈M (G,dS). It fol-
lows from (11.30) that if g′ = (g′n)n∈N ∼ω g′′ = (g′′n)n∈N then Lg(g′) ∼ω Lg(g′′).
Thus Lg induces a map Λg : K→ K defined by Λg([g′]ω) = [Lg(g′)]ω = [gg′]ω . Let
us show that Λg is an isometry: indeed,

dω(Λg([g′]ω),Λg([g′′]ω)) = dω([gg′]ω , [gg′′]ω)

= lim
ω

dS(gng′n,gng′′n)

= lim
ω

dS(g′n,g
′′
n)

= dω([g′]ω , [g′′]ω)

for all g′,g′′ ∈M (G,dS). It follows that Λg ∈ Isom(K) for all g ∈M (G,dS).
Let g = (gn)n∈N,g′ = (g′n)n∈N ∈M (G,dS) and consider the element h = g′g−1 ∈

M (G,dS). Then Λh([g]ω) = [g′]ω . This shows that K is homogeneous.
(ii) In order to show that K is arcwise connected, we need a simple technical

lemma which will also be useful in the sequel. Given a real number a we denote by
bac ∈ N the integer part of a, that is, the largest integer n≤ a.

Lemma 11.53. Let a,b ∈ R and suppose that a > b. Then

(a−b)−1≤ bac−bbc ≤ (a−b)+1. (11.33)

Proof. Let n∈N and ε ∈ [0,1) be such that a = b+n+ε . We have, on the one hand

bac= bb+n+ εc= bb+ εc+n≤ bbc+1+n

so that
bac−bbc ≤ n+1≤ (n+ ε)+1 = (a−b)+1. (11.34)

On the other hand

bac= bb+n+ εc ≥ bb+nc= bbc+n

so that

bac−bbc ≥ n≥ (n−1)+ ε = (n+ ε)−1 = (a−b)−1. (11.35)

From (11.34) and (11.35) one immediately deduces (11.33). �

Let then g = (gn)n∈N ∈M (G,dS) and let us show that there exists a continuous
path connecting 1K :=[(1G,1G, . . .)]ω to [g]ω in K. Set d :=dω(1K , [g]ω).
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Let also wn = xn,1xn,2 · · ·xn,rn , where xn, j ∈ S and rn = dS(1G,gn) = `S(gn), be a
minimal word representing gn for all n ∈ N.

For t ∈ [0,1] and any word w ∈ S∗ we denote by w(t) the prefix of w of length
bt`S(w)c. In other words, if w = x1x2 · · ·x` then w(t) = x1x2 · · ·xbt`c. Note that the
sequence (wn(t))n∈N is moderate, since dS(1G,wn(t))≤ dS(1G,wn) = dS(1G,gn) for
all n ∈ N, and (gn)n∈N is moderate. Let us set α(t) :=[(wn(t))n∈N]ω ∈ K.

It is clear that α(0) = 1K and α(1) = [g]ω . Moreover, for 0 ≤ t ≤ t ′ ≤ 1 and wn
as above, from (11.33) we deduce

(t ′− t)`S(wn)−1≤ `S(wn(t ′))− `S(wn(t))≤ (t ′− t)`S(wn)+1.

Dividing by n and taking the limit along ω , this gives

dω(α(t ′),α(t)) = lim
ω

dS(wn(t ′),wn(t))
n

= (t ′− t)d. (11.36)

Thus α is a continuous path connecting 1K to [g]ω . This shows that K is arcwise
connected.

By defining f : [0,d]→ K as f (t) :=α(t/d) for all t ∈ [0,d], equation (11.36)
implies that f is an isometric embedding. This shows that K is geodesic.

(iii) Note that in the above argument, one has dω(α(t),1K) ≤ dω([g]ω ,1K), for
all t ∈ [0,1]. Thus, the path connecting 1K to [g]ω entirely lies inside the ball of
radius r :=dω([g]ω ,1K) centered at 1K in K. As a consequence, each ball around 1K
is arcwise connected and therefore connected. By homogeneity, the same holds for
all balls in K. This shows that K is locally connected as well.

(iv) In order to show that K is complete, it suffices to observe that dS(g,h) ≥ 1
for all distinct g,h ∈ G, so (G,dS) is complete; then we can apply Theorem 11.51.

The proof of Theorem 11.52 is complete. �

11.15 Examples of Asymptotic Cones

Proposition 11.54. Let (X ,d) be a bounded metric space and let ω be a free ultra-
filter. Then Kω(X ,d) reduces to a point.

Proof. Denote by D the finite diameter diam(X) :=supx,y∈X d(x,y) of X . Observe
that, in this case, all sequences in X are moderate, that is M (X ,d) = XN. Moreover,
given x = (xn)n∈N and y = (yn)n∈N in M (X ,d) we clearly have limω d(xn,yn)/n≤
limω D/n = 0, yielding x ∼ω y, i.e. [x]ω = [y]ω . Thus Kω(X ,d) = M (X ,d)/ ∼ω

consists of a single class. �

Remark 11.55. Since any asymptotic cone is an arcwise connected metric space, as
soon as it has at least two distinct points it is uncountable (exercise).

Proposition 11.56. Let G =Z with any word metric. Then Kω(Z) is the bi-Lipschitz
class of R with the Euclidean distance.
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Proof. By Proposition 11.50, we can pick any finite symmetric generated subset of
Z with the respective word metric. For simplicity we choose S :={1,−1}, so that
dS(n,m) = |n−m| for all n,m ∈ Z. For x ∈ R we set

f (x) :=(bxnc)n∈N

and observe that |bxnc/n| ≤ |x|+1 for all n≥ 1, so that f (x) ∈M (Z,dS). Consider
the map F : R→ Kω(Z,dS) defined by setting F(x) :=[ f (x)]ω and let us show that
F is an isometric homeomorphism. Indeed, if x,y ∈ R, from (11.33) we deduce

|y− x|− 1
n
≤ |bync−bxnc|

n
≤ |y− x|+ 1

n
. (11.37)

Taking the ultralimit and observing that

dω(F(y),F(x)) = lim
ω

|bync−bxnc|
n

,

from (11.37) we deduce

dω(F(y),F(x)) = |y− x|.

This shows that F is an isometry, in particular F is injective. In order to show that F
is surjective, let (gn)n∈N ∈M (Z,dS). Then there exists an A> 0 such that |gn/n|<A
for all n≥ 1. Let us show that r := limω gn/n∈R satisfies F(r)= [(gn)n∈N]ω . Indeed
we have

dω(F(r), [(gn)n∈N]ω) = lim
ω

|brnc−gn|
n

(by (11.33)) ≤ lim
ω

(
|rn−gn|

n
+

1
n

)
= lim

ω

|rn−gn|
n

= lim
ω

∣∣∣r− gn

n

∣∣∣= 0.

As a consequence,
F(r) = [(gn)n∈N]ω

showing that F is also surjective. �

In order to analyze the asymptotic cone of the Cartesian product of two metric
spaces we introduce some notation. Let (X ,dX ) and (Y,dY ) be two metric spaces. We
define their Cartesian product as the metric space (X×Y,dX ×dY ) where d :=dX ×
dY is given by d((x1,y1),(x2,y2)) :=dX (x1,x2) + dY (y1,y2) for all x1,x2 ∈ X and
y1,y2 ∈ Y .

Proposition 11.57. Let (X ,dX ) and (Y,dY ) be two metric spaces. Let ω be an ultra-
filter. Then the asymptotic cone of the Cartesian product can be identified with the
Cartesian product of the asymptotic cones, in formulae
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(Kω(X×Y,dX ×dY ),dω)∼= (Kω(X ,dX )×Kω(Y,dY ),dX ,ω ×dY,ω).

Proof. Let M (resp. MX , resp. MY ) denote the set of all moderate sequences in X×
Y (resp. X , resp. Y ) and observe that we have a bijective map f : MX ×MY →M
given by f ((xn)n∈N,(yn)n∈N) = ((xn,yn))n∈N). Let x = (xn)n∈N,x′ = (x′n)n∈N ∈MX
and y = (yn)n∈N),y′ = (y′n)n∈N ∈MY . In the following we then identify (x,y) ∈
MX ×MY and f (x,y) ∈M . For simplicity of notation we also denote dX × dY by
d. We then have

lim
ω

d((xn,yn),(x′n,y
′
n))

n
= 0 ⇐⇒ dX (xn,x′n)

n
= 0 and

dY (yn,y′n)
n

= 0

equivalently,
(x,y)∼ω (x′,y′) ⇐⇒ x∼ω x′ and y∼ω y′.

As a consequence, f preserves ∼ω and induces a bijection

(MX/∼ω)× (MY/∼ω)→M /∼ω .

Moreover,

dω([(x,y)]ω , [(x′,y′)]ω) = lim
ω

d((xn,yn),(x′n,y
′
n))

n

= lim
ω

dX (xn,x′n)+dY (yn,y′n)
n

= lim
ω

dX (xn,x′n)
n

+ lim
ω

dY (yn,y′n)
n

= dX ,ω([x]ω , [x′]ω)+dY,ω([y]ω , [y′]ω)

and this shows that dω = dX ,ω ×dY,ω . �

For k ≥ 1 we denote by dk the metric on Rk defined by dk(r,s) :=∑
k
i=1 |ri− si|

for all r = (ri)
k
i=1 and s = (si)

k
i=1 ∈ Rk. This is the so-called `1 distance on Rk.

(Note that the bi-Lipschitz class of (Rk,dk) is the same as that of (Rk,d′k), where

d′k is the Euclidean distance, defined by setting d′k(r,s) :=
(
∑

k
i=1 |ri− si|2

)1/2
for all

r = (ri)
k
i=1 and s = (si)

k
i=1 ∈Rk.) From Proposition 11.56 and Proposition 11.57 we

deduce:

Corollary 11.58. Kω(Zk) is the bi-Lipschitz class of (Rk,dk). �

More generally, we have:

Corollary 11.59. Let G be a finitely generated abelian group. Then Kω(G) is the
bi-Lipschitz class of (Rk,dk), where k denotes the free abelian rank of G.

Proof. This follows from the classification of finitely generated abelian groups
(Corollary 1.30), Proposition 11.54, and Corollary 11.58. �

Corollary 11.60. The asymptotic cone Kω(Rk,dk) is bi-Lipschitz homeomorphic to
(Rk,dk).
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Proof. This follows from the fact that (Rk,dk) is quasi-isometric to (Zk,dk) com-
bined with Proposition 11.48 and Corollary 11.58. �

11.16 Hyperbolic Metric Spaces

Given a metric space (X ,d) and two points x,y∈X , an arc from x to y is a continuous
map f : [a,b]→ X , where a,b ∈ R, such that f (a) = x and f (b) = y. If, in addition,
f is an isometric embedding, that is, d( f (z), f (t)) = |z− t| for all z, t ∈ [a,b], such
an arc is called a geodesic segment. For a geodesic segment f from x to y we denote
by [x,y] = [x,y] f :={ f (c) : c ∈ [a,b]} its image in X .

Recall that a geodesic metric space is a metric space (X ,d) such that for all
x,y∈X there exists a geodesic segment f : [a,b]→X from x to y. Hence in particular
every geodesic metric space is arcwise-connected.

Let (X ,d) be a geodesic metric space. Given three points x,y,z ∈ X , we choose
for each pair of such points a geodesic segment, and we denote by [x,y], [y,z], and
[z,x] their images. Hence we call the set

∆(x,y,z) :=[x,y]∪ [y,z]∪ [z,x]⊆ X

a geodesic triangle with vertices x,y, and z.

Definition 11.61. Given a geodesic triangle ∆ = ∆(x,y,z), with x,y,z ∈ X , and a
δ ≥ 0, we say that ∆ is δ -thin if (see Figure 11.1)

d(s, [y,z]∪ [z,x])≤ δ for all s ∈ [x,y]

d(t, [z,x]∪ [x,y])≤ δ for all t ∈ [y,z]

d(u, [x,y]∪ [y,z])≤ δ for all u ∈ [z,x].
(11.38)

In other words, a geodesic triangle ∆ is δ -thin if each side of ∆ is contained in
the δ -neighborhood of the other two sides.

For instance, if T is a simplicial tree (see the next section for the definition of
a simplicial tree) and d is the geodesic distance, then every triangle ∆ in (T,d) is
0-thin (see Figure 11.2).

A tripod is a metric simplicial tree (see the next section for the definition of
a simplicial tree) with at most three edges and at most one vertex of degree ≥ 2.
Given three positive real numbers A,B,C ∈R there exists a unique tripod T (A,B,C)
up to isometries whose edges have length A,B,C (see Figure 11.3)

Given a nondegenerate geodesic triangle ∆ =∆(x,y,z), with x,y,z∈X , we define
T∆ to be the unique tripod T (A,B,C) such that A+B = d(x,y), A+C = d(x,z), and
B+C = d(y,z). We thus have A = (y | z)x, B = (x | z)y, and C = (x | y)z, where

(p | q)r :=
1
2
(d(p,r)+d(q,r)−d(p,q)) for all p,q,r ∈ X

is called the Gromov product of p and q relative to r. We denote by vx,vy,vz the
vertices of degree 1 of T∆ such that the distance between vp and vq in T∆ equals
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V

U

x

y

z

Fig. 11.1 The geodesic triangle ∆(x,y,z) is δ -thin: U :={p : d(p, [x,y]) ≤ δ} and V :={p :
d(p, [x,z])≤ δ} satisfy [y,z]⊆U ∪V .

z

x

y

Fig. 11.2 A 0-thin triangle in a simplicial tree: in this case, [y,z]⊆ [x,y]∪ [x,z].

A B

C

Fig. 11.3 A tripod T (A,B,C).
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d(p,q) for all p,q ∈ {x,y,z}, and by v∆ the vertex of degree ≥ 2 of T∆ . There is a
unique map f∆ : ∆ → T∆ such that f∆ (p) = vp for all p ∈ {x,y,z} and f∆ restricted
to each edge of ∆ is an isometry.

∆

x

y

z

f∆−→ vx

(y|z)x
(x|z)y

(x|y)zT∆

v∆

vz

vy

Fig. 11.4 The map f∆ : ∆ → T∆ .

Definition 11.62. Given a geodesic triangle ∆ = ∆(x,y,z), with x,y,z ∈ X , and a
δ ≥ 0, we say that ∆ is δ -slim if for all r ∈ T∆ and p,q∈ f−1

∆
(r) we have d(p,q)≤ δ .

Proposition 11.63. Let (X ,d) be a geodesic metric space. The following conditions
are equivalent:

(1) there exists a δ1 ≥ 0 such that every geodesic triangle in X is δ1-thin;
(2) there exists a δ2 ≥ 0 such that every geodesic triangle in X is δ2-slim;
(3) there exists a δ3 ≥ 0 such that for every x,y,z,w ∈ X we have

(x | z)w ≥min{(x | y)w,(y | z)w}−δ3;

(4) there exists a δ4 ≥ 0 such that for every x,y,z,w ∈ X we have

d(x,z)+d(y,w)≤max{d(x,y)+d(z,w),d(x,w)+d(y,z)}+δ4.

Proof. (1) ⇐⇒ (2). It is obvious that (2) implies (1) by taking δ1 = δ2. To show
the converse, we suppose that (1) holds, and we show that (2) holds with δ2 =
2δ1. Let ∆ = ∆(x,y,z) be a geodesic triangle in X with vertices x,y,z ∈ X , and let
f−1
∆

(v∆ ) = {ix, iy, iz} with ip ∈ [q,r] with {p,q,r} = {x,y,z}. By assumption, there
exists a u ∈ [x,y]∪ [x,z], say u ∈ [x,y] (otherwise the argument is the same), such
that d(ix,u)≤ δ1. Hence

d(y,u)−d(ix,y)≤ d(ix,u)≤ δ1.

Since d(ix,y) = d(iz,y) = (x | z)y, it follows that d(iz,y)≤ δ1, so that d(ix, iz)≤ 2δ1.
Similarly, we get d(ip, iq)≤ 2δ1 for any p,q ∈ {x,y,z}.

Now given u ∈ [y,z] with d(y,u) < d(y, ix) (otherwise take z instead of y), let
v ∈ [y,x] be such that d(y,u) = d(y,v), so that f∆ (u) = f∆ (v).
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We can find a point z′ on [y,z] such that ∆ ′ :=∆(x,y,z′) is such that f∆ ′(u) =
f∆ ′(v) = v∆ ′ (exercise). From the first part of the proof it follows that d(u,v)≤ 2δ1.
This shows that ∆ is 2δ1-thin.

(2) ⇐⇒ (3). Consider four points x,y,z,w ∈ X , and let

t :=min{(x | y)w,(y | z)w}.

We will show that (2) implies (x | z)w ≥ t−2δ2.
If t ≤ (x | z)w then the inequality is obvious. So we can assume t > (x | z)w. Hence

t > (x | z)w =
1
2
(d(x,w)+d(z,w)−d(x,z))

≥ 1
2
(d(x,w)+(d(x,w)−d(x,z))−d(x,z))

= d(x,w)−d(x,z),

therefore d(w,x)−t < d(x,z). Similarly, d(w,z)−t < d(x,z). So there exist x′′ ∈ [x,z]
with d(x,x′′) = d(x,w)− t and z′′ ∈ [x,z] with d(z,z′′) = d(z,w)− t. Moreover,

d(x,x′′) = d(x,x′) = d(w,x)− t < d(w,x)− (x | z)w = (w | z)x,

so f∆(w,x,z)(x′) = f∆(w,x,z)(x′′), therefore, by hypothesis, d(x′,x′′) ≤ δ2. Similarly
d(z′,z′′)≤ δ2. Therefore

d(x′′,z′′)≤ d(x′′,x′)+d(x′,z′)+d(z′,z′′)≤ d(x′,z′)+2δ2.

Since clearly (x | y)w≤ d(x,w), (x | y)w≤ d(y,w), (z | y)w≤ d(z,w) and (z | y)w≤
d(y,w), we have t ≤min{d(w,x),d(w,z),d(w,y)}. Therefore we can find x′ ∈ [w,x],
y′ ∈ [w,y], and z′ ∈ [w,z] such that d(w,x′) = d(w,y′) = d(w,z′) = t. Observe that
t = d(w,x′) = d(w,y′) ≤ (x | y)w, hence f∆(w,x,y)(x′) = f∆(w,x,y)(y′), and therefore,
by hypothesis, d(x′,y′) ≤ δ2. Similarly, t = d(w,z′) = d(w,y′) ≤ (z | y)w, hence
f∆(w,z,y)(z′) = f∆(w,z,y)(y′), and therefore d(z′,y′) ≤ δ2. We deduce that d(x′,z′) ≤
d(x′,y′)+d(y′,z′)≤ 2δ2.

All this implies

2δ2 ≥ d(x′,z′)

≥ d(x′′,z′′)−2δ2

≥ d(x,z)−d(x,x′′)−d(z,z′′)−2δ2

= d(x,z)−d(x,x′)−d(z,z′)−2δ2

= d(x,z)− (d(w,x)−d(w,x′))− (d(w,z)−d(w,z′))−2δ2

= (d(w,x′)+d(w,z′))− (d(x,w)+d(z,w)−d(x,z))−2δ2

= 2t−2(x | z)w−2δ2.

We conclude that (x | z)w ≥ t−2δ2.
Conversely, let ∆ = ∆(x,y,z), with x,y,z ∈ X , be a geodesic triangle, and let

u ∈ [x,y] and v ∈ [z,x] such that f∆ (u) = f∆ (v). We want to show that (3) implies (2)
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with δ2 = 4δ3, that is d(u,v) ≤ 4δ3. We know that t :=d(x,u) = d(x,v) ≤ (y | z)x,
and clearly (u | y)x = (v | z)x = t. By hypothesis

(u | v)x ≥min{(u | y)x,(y | v)x}−δ3

that is
(u | v)x ≥ (u | y)x−δ3 ≥ (u | y)x−2δ3

or
(u | v)x ≥ (y | v)x−δ3 ≥min{(y | z)x,(z | v)x}−2δ3

which implies

(u | v)x ≥min{(u | y)x,(y | z)x,(z | v)x}−2δ3 = t−2δ3.

As d(u,x) = d(v,x), we have

(u | v)x = t− 1
2

d(u,v),

so that
d(u,v) = 2t−2(u | v)x ≤ 2t−2(t−2δ3) = 4δ3.

(3) ⇐⇒ (4). Finally, for δ ≥ 0 we have

(x | z)w ≥min{(x | y)w,(y | z)w}−δ

⇔ [(x | z)w ≥ (x | y)w−δ ] or [(x | z)w ≥ (y | z)w−δ ]

⇔ [d(x,w)+d(z,w)−d(z,x)≥ d(x,w)+d(y,w)−d(y,x)−2δ ]

or [d(x,w)+d(z,w)−d(z,x)≥ d(y,w)+d(z,w)−d(z,y)−2δ ]

⇔ [d(z,w)+d(y,x)≥ d(y,w)+d(z,x)−2δ ]

or [d(x,w)+d(z,y)≥ d(y,w)+d(z,x)−2δ ]

⇔max{d(z,w)+d(y,x),d(x,w)+d(z,y)} ≥ d(y,w)+d(z,x)−2δ

⇔ d(y,w)+d(z,x)≤max{d(z,w)+d(y,x),d(x,w)+d(z,y)}+2δ ,

which shows that (3) implies (4) with δ4 = 2δ3 and (4) implies (3) with δ3 = δ4/2.
The proof of Proposition 11.63 is complete. �

Definition 11.64. Let (X ,d) be a geodesic metric space. We say that (X ,d) is δ -
hyperbolic if it satisfies the condition (1) in Proposition 11.63 with δ = δ1. We say
that (X ,d) is hyperbolic if it is δ -hyperbolic for some δ ≥ 0, and therefore if it
satisfies any of the equivalent conditions of Proposition 11.63.

Note that a δ -hyperbolic metric space is δ ′-hyperbolic for every δ ′ ≥ δ .

Remark 11.65. It follows from the proof of Proposition 11.63 that the following
conditions for a geodesic metric space (X ,d) are equivalent:

(1) X is 0-hyperbolic (i.e., every geodesic triangle in X is 0-thin);
(2) every geodesic triangle in X is 0-slim;
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(3) for every x,y,z,w ∈ X we have

(x | z)w ≥min{(x | y)w,(y | z)w};

(4) for every x,y,z,w ∈ X we have

d(x,z)+d(y,w)≤max{d(x,y)+d(z,w),d(x,w)+d(y,z)}.

Example 11.66. (a) Every bounded geodesic metric space (X ,d) is δ -hyperbolic
for δ :=diam(X) = sup{d(x,y) : x,y ∈ X}.

(b) The real line (R,d), where d is the Euclidean distance, is 0-hyperbolic (exer-
cise).

(c) Any simplicial tree (T,d) (see the next section for the definition of a simplicial
tree) is 0-hyperbolic (exercise).

(d) The hyperbolic plane (H,ds) (see Chapter 8 for the definition of the hyper-
bolic plane) is hyperbolic (in fact, 2-hyperbolic (exercise)).

(e) The real plane (R2,d2) with the Euclidean metric d2 is not hyperbolic
(exercise).

A proof of the following theorem can be found in [79, Theorème 2.2], [122,
Chapitre 5, Theorème 12], and [41, H. Theorem 1.9] (recall Definition 11.46).

Theorem 11.67. Hyperbolicity for geodesic metric spaces is a quasi-isometric in-
variant.

A connected graph G = (V,E) with its graph distance is embedded isometrically
into a (unique up to isometry) minimal geodesic metric space G , the same way as
(Z,d1) embeds into (R,d1), where d1 is, as usual, the Euclidean distance. (We shall
describe the construction of G in detail in the case where G is a tree, in the next
section). It is clear that G and G are quasi-isometric. Thus, by virtue of Theorem
11.67, it is meaningful to extend the notion of hyperbolicity to connected graphs
(equipped with their graph distance). This way, we can give the following:

Definition 11.68. Let G be a finitely generated group and let X ⊆ G be a finite and
symmetric generating subset. One says that G is hyperbolic provided the Cayley
graph Cay(G,X) with the graph distance (= dX ) is hyperbolic.

It follows from Proposition 11.47 and Theorem 11.67 that the above definition
is well posed, that is, it does not depend on the particular choice of the (finite)
generating subset X of G.

Example 11.69. (a) Every finite group is hyperbolic.
(b) The infinite cyclic group Z is hyperbolic. Note that if one takes X :={1,−1}

as a generating system, then (Z,dX ) is 0-hyperbolic, while for the generating system
X ′ :={2,−2,3,−3} then (Z,dX ′) is 1-hyperbolic (exercise). It follows from Propo-
sition 11.47 and Theorem 11.67 that every group which is virtually cyclic, e.g. the
infinite dihedral group D∞ = 〈a,b : a2,b2〉= 〈r,s : s2,srsr〉, is hyperbolic.

(c) More generally, the free group Fr of rank r ≥ 1 is 0-hyperbolic (exercise).
It follows from Proposition 11.47 and Theorem 11.67 that every group which is
virtually free, e.g. the modular group G :=〈a,b : a2,b3〉 ∼= SL(2,Z), is hyperbolic.
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(d) The surface group (i.e., the fundamental group of a closed orientable surface
Σg of genus g≥ 1)

G :=π1(Σg) =

〈
a1,b1,a2,b2, . . . ,ag,bg :

g

∏
i=1

[ai,bi]

〉

is hyperbolic exactly if g≥ 2.
(e) The free abelian group Zd of rank d ≥ 2 is not hyperbolic (exercise).

11.17 R-trees and Asymptotic Cones of Hyperbolic Metric
Spaces

A simple undirected graph is a pair G = (V,E), where V is a nonempty set of ver-
tices and E, called the set of edges, is a subset of the set

(V
2

)
of all 2-subsets of

V .
Let G = (V,E) be a simple undirected graph.
We say that two vertices u,v∈V are neighbors, and we write u∼ v, if {u,v} ∈ E.
An orientation in G is a function φ : E→V 2 such that φ({u,v})∈ {(u,v),(v,u)}.

In other words, we choose an order for each edge {u,v}. For an element e = (u,v) of
φ(E), we will use the notation e+ :=u and e− :=v. The elements of φ(E) are called
oriented edges.

G is said to be locally finite if for every v∈V the number k(v) := |{u∈V : u∼ v}|
of its neighbors is finite. If, in addition, k = k(u) = k(v) for all u,v ∈V , we say that
G is regular of degree k.

A finite (resp. infinite) path in G is a sequence π = (v0,v1, . . . ,vn) (resp. an
infinite sequence π = (v0,v1, . . .)) of vertices in V such that vi ∼ vi+1 for all
i = 0,1, . . .n−1 (resp. for all i ∈ N). Given a finite path π = (v0,v1, . . . ,vn) we call
`(π) :=n ∈ N the length of π and we say that π connects its initial vertex π− :=v0
and its terminal vertex π+ :=vn. A path of length 0 is called trivial. The graph G
is said to be connected if for every u,v ∈V there exists a path in G which connects
them. If this is the case, the minimal length of a path connecting u,v is called the
graph distance of the vertices u and v, denoted dG (u,v), and a path realizing this
minimum is called a geodesic path of G . It is easy to see (exercise) that the map
dG : V ×V → N is a distance function: it is called the graph metric on G . A path
π = (v0,v1, . . . ,vn) in G is said to be closed (resp. proper) if v0 = vn (resp. vi 6= vi+2
for all i = 0,1, . . . ,n−2).

A tree is a connected simple undirected graph with no nontrivial closed proper
paths. Observe that in a tree for every pair of vertices there exist a unique geodesic
path connecting them.

Let T = (V,E) be a tree.
We now associate with the “discrete” metric space (T ,dT ) a “continuous” met-

ric space (X(T ),d) in which V embeds isometrically, the same way as (Z,d1) em-
beds into (R,d1), where d1 is, as usual, the Euclidean distance.
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We fix a vertex w ∈ V and refer to it as to a base point. Then there is a natural
orientation φ = φw in T : given e = {u,v} ∈ E one sets φ({u,v}) = (u,v) if and only
if dT (u,w) < dT (v,w), and therefore d(v,w) = d(u,w)+ 1 (notice that we cannot
have dT (u,w) = dT (v,w) since T is a tree).

We also set X ′ :=V tte∈φ(E)Ie, where the Ie’s are disjoint copies of the unit
interval [0,1], and then identify the extreme points 0 and 1 of each interval Ie with the
vertices e− and e+ in V , respectively. We denote by X = X(T ) the corresponding
quotient space. Note that V embeds in X , and also Ie embeds in X for every e ∈ E.

Let x ∈ X . We say that x is extremal if there exists a vertex vx ∈ V (necessarily
unique) such that x is identified with vx. Otherwise, we say that x is internal. In this
case we denote by ex ∈ E the unique edge e such that x ∈ Ie.

Now let x ∈ X and e ∈ E such that x /∈ Ie. Then we denote by x(e) the element of
e which minimizes the graph distance from ex (which is unique since T is a tree).
So for example w(ex) = φ(ex)

+.
For x,y ∈ X we set

d(x,y) :=



dT (x,y) if x = vx and y = vy

dT (x(ey),x)+ |y− x(ey)| if x = vx, y is
internal and x /∈ ey

dT (y,y(ex))+ |x− y(ex)| if y = vy, x is
internal and y /∈ ex

dT (x(ey),y(ex))+ |y− x(ey)|+ |x− y(ex)| if both x and y are
internal and ex 6= ey

|x− y| if ex = ey,

where | · | is the Euclidean distance in Ie = [0,1] for all e ∈ E+. One easily shows
(exercise) that d : X ×X → [0,+∞) is a distance on X making (X(T ),d) into a
geodesic metric space. We call it the simplicial tree associated with the tree T .

Let x,y ∈ X . Up to exchanging x and y, only the following two cases may occur
(see Figure 11.5):

(1) there exists a v ∈ T such that [w,x]∩ [w,y] = [w,v]: then d(x,y) = d(x,v)+
d(v,y);

(2) x ∈ [w,y]: then d(x,y) = d(y,w)−d(x,w).
Moreover, if π = (w = v0,v1, . . . ,vn) (resp. π = (w = v0,v1, . . .)) is a finite (resp.

infinite) geodesic path in T starting at the base point, then setting ei = (vi,vi+1)
we have ei ∈ φ(E) and

⋃n
i=1 Iei (resp.

⋃
∞
i=1 Iei) is isometrically homeomorphic to

the interval [0,n] (resp. [0,+∞)). Analogously, given x ∈ X the arc [w,x] has length
d(w,φ(ex)

+)+ |x−φ(ex)
+|.

Definition 11.70. A real tree, or simply an R-tree, is a geodesic metric space (X ,d)
such that for all x,y ∈ X (i) there exists an arc from x to y whose image [x,y] is
uniquely determined and (ii) this arc can be chosen to be a geodesic segment.

Let (X ,d) be anR-tree. A point x∈X is called ordinary if X \{x} has exactly two
connected components. The points which are not ordinary are called singular. The
R-tree (X ,d) is said to be simplicial provided the set of singular points is discrete
and closed.
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v
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x
y

w

Fig. 11.5 On the left, case (1): there exists a v ∈ T such that [w,x]∩ [w,y] = [w,v] so that d(x,y) =
d(x,v)+d(v,y). On the right, case (2): x ∈ [w,y] so that d(x,y) = d(y,w)−d(x,w).

Condition (ii) means that, among all continuous maps f : [0,D]→ X such that
D = d(x,y) and f (0) = x and f (D) = y, there exists one (necessarily unique) which
is isometric.

Example 11.71. (1) The real line (R,d), where d is the Euclidean distance, is a real
tree.

(2) Let T be a tree. It is an exercise to show that the associated simplicial tree
(X(T ),d) is a simplicial real tree whose singular points are exactly the extremal
points.

Proposition 11.72. Let (X ,d) be a geodesic metric space. The following conditions
are equivalent.

(a) X is a real tree;
(b) X is 0-hyperbolic.

Proof. Suppose that X is a real tree. Recall that in this case given any two points
x,y ∈ X , there exists a geodesic arc from x to y which is unique. Let now x,y,z ∈ X ,
let s ∈ [z,y], and consider the (images of the) arcs [s,x], [s,y]∪ [y,x] and [s,z]∪ [z,x]
connecting s and x. By uniqueness of the arc we necessarily have [s,x] = [s,y]∪
[y,x] = [s,z]∪ [z,x]. This implies that s must belong to [y,x]∪ [z,x] and therefore
d(s, [y,x]∪ [z,x]) = 0. It follows that the geodesic triangle T (x,y,z) is 0-thin. There-
fore X is 0-hyperbolic.

Conversely, suppose that X is geodesic and 0-hyperbolic. Let x,y ∈ X . Suppose
that there exist two geodesic segments connecting them, say f : [0,D] → X and
f ′ : [0,D]→ X such that f (0) = f ′(0) = x and f (D) = f ′(D) = y, where D= d(x,y).
Let us denote by [x,y] (resp. [x,y]′) the image of f (resp. f ′). For every t ∈ (0,D) con-
sider the geodesic triangle T ( f (t),x,y) :=[ f (t),x]∪ [ f (t),y]∪ [x,y]′, where [ f (t),x]
is the image of the restriction of f to [0, t] and [ f (t),y] is the image of the restric-
tion of f to [t,D]. Since this is 0-thin, any point z ∈ [x,y]′ is at 0-distance from
[ f (t),x] ∪ [ f (t),y] = [x,y], equivalently z ∈ [x,y]. This shows that [x,y]′ ⊆ [x,y].
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By exchanging the roles of f and f ′ we deduce that [x,y] ⊆ [x,y]′. It follows that
[x,y] = [x,y]′. We deduce that X is a real tree. �

Theorem 11.73. Let T = (V,E) be a locally-finite infinite tree and let ω be a free
ultrafilter. Then the asymptotic cone Kω :=(Kω(V,dT ),dω) is isometrically home-
omorphic to the simplicial tree (X(T ),d) associated with T . In particular, Kω is
isometrically homeomorphic to a simplicial R-tree.

Proof. Let w ∈ V denote, as usual, a base-point. For v ∈ V we denote by [w,v] ⊆
X(T ) the geodesic segment connecting the base point with v, and by V+(v) = {u ∈
V : v ∈ [w,u]} the future cone based at v. Note that v ∈V+(v).

Recall that T is locally finite. So for v∈V we denote by v+(1),v+(2), . . . ,v+(k),
k :=k(v)− 1, the neighbors of v such that v+(i) ∈ V+(v) for i = 1,2, . . . ,k. In this
way, V+(v) = {v}

⋃(
tk

i=1V (v+(i))
)

(recall that T is a tree).
Let now v = (vn)n∈N be an unbounded moderate sequence in (V,dT ).
Set w0 :=w and consider the forward cones V+(w+

0 (i)), i = 1,2, . . . ,k(w)− 1.
Then there exists (here we are using that ω is free) 1≤ i1≤ k(w)−1 such that setting
w1 :=w+(i1) and V1 :={w0,w1}∪V+(w1) one has I1 :={n ∈ N : vn ∈V1} ∈ ω . For
n∈N\ I1 we set un :=w∈V1, and denote by u the moderate sequence obtained from
v by replacing vn by un for all n ∈ N\ I1. It is clear that [v]ω = [u]ω in Kω . Thus, up
to passing from v to u, we may suppose that vn ∈V1 for all n ∈N. Continuing in this
way, we construct an infinite geodesic path π = (w = w0,w1,w2 . . .) such that for
every m ∈ N we clearly have d(w,wm) = m and, up to changing the values of v on
the complement of a set in ω , we also have vn ∈ Vm :={w0,w1, . . . ,wm}∪V+(wm)
for all n,m∈N. We have shown that for every moderate sequence v in T we can find
an infinite geodesic π(v) in X(T ) and a moderate sequence v = (vn)n∈N in V such
that [v]ω = [v]ω and vn ∈ π(v) for all n ∈ N. We call v a geodesic-representative of
v. It is also clear that if v′ ∼ω v then π(v) = π(v′).

For every x ∈ X(T ) and α ∈ [0,1] we denote by αx ∈ X(T ) the unique element
in the geodesic segment [w,x]⊆ X(T ) such that d(w,αx) = αd(w,x). Note that, in
particular, αvn ∈ π(v) for all n ∈ N.

We then define F : Kω → X(T ) by setting F(1K) = w and, for v unbounded,

F([v]ω) = lim
ω

1
n

vn ∈ π(v).

Let us show that F is isometric. Let v and u be two moderate sequences and denote
by π(v) and π(u) (resp. v and u) their associated infinite geodesic in X(T ) (resp.
their geodesic-representatives in [v]ω and [u]ω , respectively). We distinguish two
cases.

(1) There exists a w′ ∈ V such that [w,F([v]ω)]∩ [w,F([u]ω)] = [w,w′]. We then
have

dω([v]ω , [u]ω) = lim
ω

dT (vn,un)

n

= lim
ω

dT (vn,w′)+dT (w′,un)

n
= d(F([v]ω),w′)+dX (w′,F([u]ω))
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= d(F([v]ω),F([u]ω)).

(2) Up to exchanging the roles of v and u we have F([v]ω) ∈ [w0,F([u]ω)]). Then

dω([v]ω , [u]ω) = lim
ω

dT (vn,un)

n

= lim
ω

dT (vn,w)−dT (un,w)
n

= d(F([v]ω),w)+d(F([u]ω),w)

= d(F([v]ω),F([u]ω)).

It follows that F is isometric. Let us show that F is also surjective.
For every v ∈ V we arbitrarily choose an infinite geodesic path π(v) =

(v0 = w,v1, . . . ,vm−1,vm = v,vm+1, . . .) (thus m = d(w,v)) and denote by π(v) =
t∞

i=0I(vi,vi+1) the corresponding infinite geodesic in X(T ). For x ∈ X(T ) we set
π(x) :=π(φ(ex)+). For any real α ≥ 0 we denote by αx the unique element in π(x)
such that d(w,αx) = αd(w,x) and set bxc :=φ(ex)

+ ∈V .
For x ∈ X(T ) we then set

v(x) = (vn(x))n∈N :=(bnxc)n∈N

and observe that

d(x,w)− 1
n
=

d(nx,w)−1
n

≤ dT (bnxc,w)
n

≤ d(nx,w)
n

= d(x,w) (11.39)

for all n≥ 1, so that in particular v(x)∈M (V,dT ), i.e. v(x) is a moderate sequence.
Moreover, π(v(x)) = π(x) and v(x)∼ω v(x). Finally from (11.39) we deduce

F([v(x)]ω) = lim
ω

1
n

vn(x) = lim
ω

1
n
bnxc= x.

This shows that F is also surjective. �

Corollary 11.74. The asymptotic cone of the free group Fn is isometrically homeo-
morphic to the regular simplicial tree of degree k = 2n. �

We conclude this section with the following theorem that provides a source of
examples of asymptotic cones (cf. Theorem 11.73).

Theorem 11.75. Let (X ,d) be a hyperbolic metric space, and let ω ∈ βN be a free
ultrafilter. Then the asymptotic cone Kω :=(Kω(X ,d),dω) is an R-tree.

Proof. Let δ ≥ 0 be such that property (4) of Proposition 11.63 is satisfied with
δ4 = δ . Let x = (xn)n∈N,y = (yn)n∈N,z = (zn)n∈N,w = (wn)n∈N ∈M (X ,d). For
each n ∈ N we have

d(xn,zn)+d(yn,wn)≤max{d(xn,yn)+d(zn,wn),d(xn,wn)+d(yn,zn)}+δ ,

so that
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dω([x]ω , [z]ω)+dω([y]ω , [w]ω)

= lim
ω

d(xn,zn)

n
+ lim

ω

d(yn,wn)

n

= lim
ω

(
d(xn,zn)

n
+

d(yn,wn)

n

)
≤ lim

ω

(
max

{
d(xn,yn)+d(zn,wn)

n
,

d(xn,wn)+d(yn,zn)

n

}
+

δ

n

)
= max

{
lim

ω

d(xn,yn)+d(zn,wn)

n
, lim

ω

d(xn,wn)+d(yn,zn)

n

}
= max{dω([x]ω , [y]ω)+dω([z]ω , [w]ω),dω([x]ω , [w]ω)+dω([y]ω , [z]ω)} .

By Remark 11.65, this shows that Kω is 0-hyperbolic, so that, by Proposition 11.72,
it is an R-tree. �

11.18 Notes

Filters were introduced by Henri Cartan in 1937 [51, 52] and subsequently used
by Bourbaki in their book Topologie Générale [32], as an alternative to the similar
notion of a net developed in 1922 by Eliakim Hastings Moore and Herman Lyle
Smith in [243].

The Fréchet filter, also called the cofinite filter, is named after Maurice René
Fréchet.

A classical monograph on the theory of ultrafilters is the one by William Wistar
Comfort and Stylianos Negrepontis [76].

The Stone–Čech compactification is a construction yielding a universal map from
a topological space X to a compact Hausdorff space βX , the largest, most general
compact Hausdorff space “generated” by X , in the sense that any continuous map
from X to a compact Hausdorff space factors through βX (in a unique way). If X
is a Tychonoff (i.e., completely regular Hausdorff) space, then the map from X to
its image in βX is a homeomorphism, so X can be thought of as a (dense) subspace
of βX ; every other compact Hausdorff space that densely contains X is a quotient
of βX . For general topological spaces X , the map from X to βX need not be in-
jective. A form of the axiom of choice is required to prove that every topological
space has a Stone–Čech compactification. The Stone–Čech compactification occurs
implicitly in a paper by Andrei N. Tychonoff [338] in (1930) and was given explic-
itly by Marshall Harvey Stone [323] and Eduard Čech [71] in 1937. For more on
the Stone–Čech compactification, we refer to the monograph by Neil Hindman and
Dona Strauss [174].

Hyperreal numbers were defined in the 1960s by Abraham Robinson [291] who
developed his nonstandard analysis theory. However, his definition, based on model
theory, is nonconstructive. Hyperreal numbers, aside from their use in nonstandard
analysis, have no necessary relationship to model theory or first order logic, al-
though they were discovered by the application of model theoretic techniques from
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logic. Hyperreal fields were in fact originally introduced by Edwin Hewitt [168] in
1948 by purely algebraic techniques, using an ultrapower construction.

The study of R-trees and their applications to different areas of geometry and
topology has been very intensive in the recent years (see [27] and the references
therein). In particular, as was pointed out by Misha Gromov, R-trees appear natu-
rally in the asymptotic geometry of hyperbolic metric spaces [139, 140]. The aim of
[100] is to present some explicit constructions (such as that of universal R-trees as
certain spaces of functions) related to this observation.

Theorem 11.75 is due to Gromov [140, Section 2.A]. The following converse
(ibidem) holds: Let (X ,d) be a geodesic metric space. If for every free ultrafilter ω

the asymptotic cone (Kω(X ,d),dω) is a real tree, then (X ,d) is hyperbolic.

11.19 Exercises

Exercise 11.1. Let F ⊆P(N) be the Fréchet filter and let S⊆ N be an infinite set.
Show that the set Ω :=F ∪{S} ⊆P(N) is saturated.

Exercise 11.2. Let B ⊆P(N) be a base of a filter (cf. Definition 11.3). Show that
the set F = {A ∈P(N) : A contains an element of B} is a filter.

Exercise 11.3. A finitely additive probability {0,1}-valued measure on N is a map
µ : P(N)→{0,1} such that

(M1) µ(N) = 1;
(M2) if A,B⊆ N and A∩B =∅, then µ(A∪B) = µ(A)+µ(B).

Prove that a finitely additive probability {0,1}-valued measure µ on N satisfies the
following properties:

(M3) µ(∅) = 0;
(M4) µ(A∪B) = µ(A)+µ(B)−µ(A∩B);
(M5) µ(A∪B)≤ µ(A)+µ(B);
(M6) A⊆ B⇒ µ(B\A) = µ(B)−µ(A);
(M7) A⊆ B⇒ µ(A)≤ µ(B),

for all A,B ∈P(N).

Exercise 11.4. With the notation of the previous exercise, prove the following:

(i) Let µ be a finitely additive probability {0,1}-valued measure on N. Then the
set ωµ :={A⊆N : µ(A) = 1} is an ultrafilter on N. If in addition µ(F) = 0 for
every finite subset F ⊆ N, then ωµ is non-principal;

(ii) conversely, given an ultrafilter ω on N, the map µω : P(N)→ {0,1} defined
by µω(A) = 1 if A ∈ ω and µω(A) = 0 otherwise, is a finitely additive proba-
bility {0,1}-valued measure on N. If in addition ω is free, then µω(F) = 0 for
every finite subset F ⊆ N;
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(iii) the maps µ 7→ ωµ and ω 7→ µω are inverse to each other and induce a bijective
correspondence between the set of all finitely additive probability {0,1}-valued
measures on N (resp. such that µω(F) = 0 for every finite subset F ⊆ N) and
the set of all ultrafilters (resp. free ultrafilters) on N.

Exercise 11.5. Recall (cf. Section 14.3) that if MP(N) (resp. M (N)) denotes the
set of all finitely additive probability measures (resp. of all means) on N, then there
exists a natural bijective map Φ : MP(N)→M (N). Let ω ⊆P(N) be an ultra-
filter and consider the map mω : `∞(N)→ R given by mω(x) :=x(ω) = limω xn (cf.
(11.3)).

(i) Show that mω ∈ `∞(N)′, the topological dual of `∞(N) (cf. Theorem 11.3);
(ii) show that, with the notation from the previous exercises, one has Φ−1(µω) =

mω .

Exercise 11.6. Show that the map n 7→ ωn, where ωn = {A ⊆ N : n ∈ A} is the
principal ultrafilter based at n, is an injective map from N into βN, the set of all
ultrafilters on N.

Exercise 11.7 (Theorem 11.25). Let A ⊆P∗(N) be a set of nonempty subsets of
N which covers N (i.e. ∪A∈A A = N). Show that A admits no finite subcover if and
only if the set Ω = {N\A : A ∈A } is saturated.

Exercise 11.8 (Theorem 11.25). Let (X ,d) be a metric space and ω an ultrafilter.
Let (xn)n∈N be a sequence in X converging along ω . Suppose that there exists a ball
B⊆ X such that {n ∈ N : xn ∈ B} ∈ ω . Show that limω xn ∈ B, the closure of B.

Exercise 11.9 (Theorem 11.25). Let f ,g : Y → X be two continuous mappings be-
tween topological spaces with X Hausdorff. Suppose there exists a dense subset
Z ⊆ Y such that f |Z = g|Z . Show that f = g.

Exercise 11.10. Let (xn)n∈N be a sequence in a metric space (X ,d). Show that the
following conditions are equivalent:

(a) supn,m∈N d(xn,xm)< ∞;
(b) there exists an x0 ∈ X such that supn∈N d(x0,xn)< ∞;
(c) for every x0 ∈ X one has supn∈N d(x0,xn)< ∞.

Exercise 11.11. Let (X ,d) be a metric space and denote by Cau(X) the set of all
Cauchy sequences in X . For x = (xn)n∈N and y = (yn)n∈N in Cau(X) set x ∼ y pro-
vided limn→∞ d(xn,yn) = 0.

(i) Show that ∼ is an equivalence relation on Cau(X);
(ii) show that, denoting by [x] :={y ∈ Cau(X) : y ∼ x} the equivalence class of

x ∈ Cau(X), the quantity d̃([x], [y]) := limn→∞ d(xn,yn) is well defined;
(iii) show that if (xn)n∈N and (yn)n∈N are in Cau(X), then (d(xn,yn))n∈N is a Cauchy

sequence in R.

Exercise 11.12 (Proposition 11.26). Let (X ,d) be a metric space and denote by
(X̃ , d̃) its metric completion. Show that the following holds:
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(i) the map x 7→ [(xn)n∈N], where xn = x for all n ∈ N, yields an isometric embed-
ding of X into X̃ ;

(ii) X is dense in X̃ ;
(iii) X is totally bounded if and only if X̃ is totally bounded.

Exercise 11.13. (i) Show that a subset of a complete metric space is totally
bounded if and only if it is pre-compact (i.e., its closure is compact).

(ii) Show that every compact metric space is totally bounded.
(iii) Show that a subset of the k-dimensional real space (Rk,d) with Euclidean dis-

tance is totally bounded if and only if it is bounded.
(iv) Show that the unit ball in a Hilbert space, or more generally in a Banach space,

is totally bounded if and only if the space has finite dimension.

Exercise 11.14 (Proposition 11.27). Let x = (xn)n∈N be a sequence in a metric
space (X ,d) and suppose that there exists an ε0 > 0 such that d(xn,xm) ≥ ε0 for
all distinct n,m ∈ N (note that X is not totally bounded). Show that (even if X is
complete) x does not converge in X along any free ultrafilter.

Exercise 11.15. Let (X ,d) be a metric space. Show that for all x = (xn)n∈N and
y = (yn)n∈N in `∞(X) the quantity d∞(x,y) :=supn∈N d(xn,yn) is finite.

Exercise 11.16. Let (X ,d) be a metric space. Show that (`∞(X),d∞) is complete if
and only if (X ,d) is complete.

Exercise 11.17. Let (X ,d) be a metric space and let ω be an ultrafilter. For x =
(xn)n∈N and y = (yn)n∈N in `∞(X) write x∼ω y provided limω d(xn,yn) = 0.

(i) Show that ∼ω is an equivalence relation on `∞(X);
(ii) show that if x′ = (x′n)n∈N and y′ = (y′n)n∈N in `∞(X) satisfy x′ ∼ω x and y′ ∼ω y,

then limω d(xn,yn) = limω d(x′n,y
′
n);

(iii) show that limω d(xn,yn) = infx′∼ω x,y′∼ω y d∞(x′,y′);
(iv) deduce that the quantity dω([x]ω , [y]ω) := limω d(xn,yn) is well defined.

Exercise 11.18. Let (X ,d) be a metric space and let ω be an ultrafilter. Denote by
(Xω ,dω) the corresponding metric ultrapower and by ιω : X → Xω the diagonal iso-
metric embedding. Show that ιω is surjective if and only if X is compact.

Exercise 11.19 (Example 11.33). Let (Xn)n∈N be a sequence of sets. Equip each Xn
with the discrete metric d∗n . Let ω be an ultrafilter.

(i) Let x = (xn)n∈N and y = (yn)n∈N in ∏n∈N Xn. Show that x ∼ω y (i.e. that
limω d∗n(xn,yn) = 0) if and only if there exists an A ∈ ω such that xn = yn for
all n ∈ A;

(ii) show that d∗∞ (resp. d∗ω ) coincides with the discrete metric on ∏n∈N Xn (resp.
Xω = (∏n∈N Xn)/∼ω ).

Exercise 11.20. Let (G,d) be a metric group (i.e. d is a bi-invariant metric). Show
that d(g,h) = d(g−1,h−1) and d(hg1h−1,hg2h−1) = d(g1,g2) for all g,h,g1,g2 ∈G.

Exercise 11.21. Let G be a group and let d∗ be the discrete metric on G. Show that
(G,d∗) is a metric group. In other words, show that the discrete metric d∗ on a group
G is bi-invariant.
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Exercise 11.22. Let Sn be the symmetric group on n letters, i.e. the group of all
bijective maps f : X→ X of a set X of cardinality n. For f ,g∈ Sn set dH

n (g,h) :=1−
|{x ∈ X : g(x) = h(x)}|/n for all g,h ∈ Sn. Show that the map dH

n : Sn× Sn → R
(called the (normalized) Hamming distance) is a bi-invariant distance function on
Sn so that (Sn,dH

n ) is a metric group.

Exercise 11.23. Let Mn(C) denote the complex vector space of all n× n complex
matrices. Denote by tr : Mn(C)→ C the trace and, for A = (ai, j)

n
i, j=1 ∈Mn(C) de-

note by A∗ :=(a j,i)
n
i, j=1 ∈Mn(C) the conjugate-transpose (or adjoint) of A.

(i) Show that tr(A∗A) = ∑
n
i, j=1 |ai, j|2 for all A = (ai, j)

n
i, j=1 ∈Mn(C).

(ii) Show that the Hilbert–Schmidt norm ‖·‖HS, defined by ‖A‖HS :=
√

tr(A∗A) =√
∑

n
i, j=1 |ai, j|2 for all A = (ai, j)

n
i, j=1 ∈ Mn(C), is a norm on Mn(C). In other

words, check that:

(1) ‖A‖HS ≥ 0 and ‖A‖HS = 0 if and only if A= 0, for all A∈Mn(C) (positivity
and non-degeneracy);

(2) ‖λA‖HS = |λ |‖A‖HS for all A ∈Mn(C) (homogeneity);
(3) ‖A+B‖HS ≤ ‖A‖HS +‖B‖HS for all A,B ∈Mn(C) (triangular inequality).

(iii) Deduce that the map dHS
n : Mn(C)×Mn(C) → R defined by dHS

n (A,B) =
‖A−B‖HS for all A,B ∈Mn(C) is a distance function on Mn(C).

(iv) A matrix A ∈ Mn(C) is unitary provided A∗A = I = AA∗. Denote by Un ⊆
Mn(C) the set consisting of all n×n unitary matrices. Show that the restriction
of dHS

n to the unitary group is bi-invariant, so that (Un,dHS
n ) is a metric group.

Exercise 11.24. Let F be a field and denote by Mn(F) (resp. GL(n,F)⊆Mn(F)) the
F-algebra (resp. the general linear group) of n×n matrices (resp. invertible matrices)
with coefficients in F. The (normalized) rank of a matrix A ∈ M(k,F) is the non-
negative number ρn(A) := dimcoker(A)

n = 1− dimker(A)
n .

(i) Show that the map ρn : Mn(F)→ {0,1/k,2/k, . . . ,1} satisfies the following
properties:

(1) ρn(A) = 1 if and only if A ∈ GL(n,F), in particular ρn(I) = 1;
(2) ρn(A) = 0 if and only if A = 0 (the zero matrix);
(3) ρn(A+B)≤ ρn(A)+ρn(B);
(4) ρn(AB)≤min{ρn(A),ρn(B)};
(5) ρn(CAD) = ρn(A).

for all A,B ∈Mn(F) and C,D ∈ GL(n,F).
(ii) Deduce that the map dn : Mn(F)×Mn(F)→R defined by dn(A,B) = ρn(A−B)

for all A,B ∈Mn(F) is a distance function on Mn(F).
(iii) Show that the restriction of dn to GL(n,F) is bi-invariant, so that (GL(n,F),ρn)

is a metric group.

Exercise 11.25. Let G=((Gn,1Gn ,dn))n∈N be a sequence of (pointed) metric groups.
Let also x,x′,y,y′ ∈ `∞(G).

(i) Show that x∼ω x′ and y∼ω y′ ⇒ xy∼ω x′y′ (cf. (11.21));
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(ii) show that x∼ω y ⇒ x−1 ∼ω y−1 (cf. (11.22));
(iii) show that the set Nω :={x ∈ `∞(G) : x ∼ω 1} is a normal subgroup of `∞(G)

(cf. Proposition 11.36);
(iv) show that the metric dω on Gω = `∞(G)/Nω given by (11.24) is bi-invariant.

Exercise 11.26. Let F be a field, let A be a unital F-algebra, and let ω be an ultra-
filter.

(i) For x = (xn)n∈N, y = (yn)n∈N in A N and a ∈A , define x+ y,xy and ax in A N

by setting x+y :=(xn +yn)n∈N, xy :=(xnyn)n∈N and ax = (axn)n∈N. Show that,
this way, A N is a unital F-algebra.

(ii) For x= (xn)n∈N, y= (yn)n∈N in A N set [x]ω +[y]ω :=[x+y]ω , [x]ω [y]ω :=[xy]ω
and a[x]ω :=[ax]ω in Aω = A N/ ∼ω . Show that these operations in Aω are
well defined and endow it with the structure of a unital F-algebra.

Exercise 11.27. Let F be a field and let ω be an ultrafilter. Show that the set
Iω :={x∈ FN : x∼ω 0} ⊆ FN is a maximal ideal in FN and that indeed Fω = FN/Iω .

Exercise 11.28. Let (F,�) be an ordered field (e.g. F=R) and let ω be an ultrafilter.
Recall that � is a total order such that (1) a � b implies a + c � b + c and (2)
0� a and 0� b imply 0� ab, for all a,b,c ∈ F. Show that the ultrafield Fω is also
orderable.

Exercise 11.29. Let F be a field and let A be an F-algebra. Let Φ : Mk(F)N →
Mk(FN) denote the map defined by

Φ ((An)n∈N) = ((an(i, j))n∈N)
k
i, j=1

where An = (an(i, j))k
i, j=1 ∈Mk(F) for all n ∈ N.

(i) Show that Φ is a unital isomorphism of F-algebras;
(ii) show that the induced map Φ : Mk(F)ω →Mk(Fω) defined by

Φ ([A]ω) = ([(an(i, j))n∈N]ω)
k
i, j=1

for all A = (An)n∈N ∈M(k,F)N is also a unital isomorphism of F-algebras.

Exercise 11.30. Let F be a field and let ω be an ultrafilter. Let also G = (Gn,dn)n∈N
be a sequence of metric groups. Suppose there exists an integer k = k(G) ≥ 1 and
an injective group homomorphism ϕn : G→ GL(k,F) for every n ∈ N. Show that
the product map ∏n∈N ϕn : Gω → GL(k,F)ω defined by(

∏
n∈N

ϕn

)
([g]ω) :=[(ϕn(gn))n∈N]ω

for all g = (gn)n∈N ∈ `∞(G) is well defined and injective.

Exercise 11.31. Let (X ,d) be a metric space. Show that the set M (X ,d) of moder-
ate sequence in X is independent of the base point.
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Exercise 11.32. Let (X ,d) be a metric space and ω an ultrafilter.

(i) Show that the relation∼ω in M (X ,d) defined by x∼ω y if limω d(xn,yn)/n−0
for all x = (xn)n∈N and y = (yn)n∈N in M (X ,d) is an equivalence relation;

(ii) consider Kω(X ,d) = M (X ,d)/ ∼ω and show that the map dω : Kω(X ,d)×
Kω(X ,d) → [0,+∞) defined by dω([x]ω , [y]ω) := limω

d(xn,yn)
n for all x =

(xn)n∈N and y = (yn)n∈N in M (X ,d) is well defined (where [x]ω ∈ Kω(X ,d) is
the ∼ω class of x).

Exercise 11.33. Let (G,d) be a metric group and ω an ultrafilter. Show that Nω :=
{g = (gn)n∈N ∈M (G,d) : limω

d(gn,1G)
n = 0} is a normal subgroup of M (G,d) and

that (Kω(G,d),dω) is a metric group.

Exercise 11.34. Show that quasi-isometry is an equivalence relation on metric
spaces.

Exercise 11.35 (Proposition 11.47). Let G be a finitely generated group, and H be
a finite index subgroup of G. Show that G and H with any word metric are quasi-
isometric.

Exercise 11.36 (Proposition 11.48). Complete the argument on the bi-Lipschitz
condition for the map Φω .

Exercise 11.37. Give an alternative proof of Proposition 11.54 using the notion of
quasi-isometries and Proposition 11.48.

Exercise 11.38. Let (X ,d) be a metric space and ω an ultrafilter. Show that if the
asymptotic cone Kω(X ,d) has more than two points then it is uncountable.

Exercise 11.39. Show that the modular group G :=C2 ∗C3 ∼= SL(2,Z) has a finite
index free subgroup (on two generators) of index 6.

Exercise 11.40. Construct a non-simplicial R-tree.

Exercise 11.41 (Claim in the proof of Lemma 12.7). Let (X ,d) be a metric space.
Let k0 ∈ X , r > 0 and ε ∈ (0,r). Suppose that BK(k0,2r) can be covered by finitely
many balls B(k1,ε),B(k2,ε), . . . ,B(km,ε) of radius ε > 0. Show that if X is not
arcwise connected (resp. arcwise connected but not geodesic) it might be the case
that the balls B(k1,r+ ε),B(k2,r+ ε), . . . ,B(km,r+ ε) fail to cover BK(1K ,3r).



Chapter 12
Gromov’s Theorem

In this chapter we prove the following theorem, which constitutes the core of the
book.

Theorem 12.1 (Gromov). A finitely generated group of sub-polynomial growth is
virtually nilpotent.

Recall (cf. Section 7.4) that a finitely generated group G is of sub-polynomial
growth if there exists an integer d ≥ 0 such that bG(n)� nd , where bG is the growth
type of G. It follows from Theorem 7.29 and Proposition 7.20 that a virtually nilpo-
tent group G is of (precise) polynomial growth, that is, there exists an integer d ≥ 0
such that bG(n) = nd (in fact d is expressed via the Bass–Guivarc’h formula). In
other words, as far as group growth is concerned, the notions of sub-polynomial
and polynomial growth coincide (cf. Remark 7.11). This is why, in the literature,
Gromov’s theorem (Theorem 12.1) is often stated by (apparently) limiting the hy-
potheses to “polynomial growth”.

In Section 11.14 we showed that the asymptotic cone Kω(G,dX ) associated with
a finitely generated group G, a finite symmetric generating subset X ⊆G, and a free
ultrafilter ω , is a metric space which is homogeneous, arcwise connected (and there-
fore connected) and in fact geodesic, locally arcwise connected (and therefore lo-
cally connected), and complete. We now show that if G is of sub-polynomial growth,
then with a suitable choice of ω ∈ βN, the asymptotic cone Kω(G,dX ) is also locally
compact (Section 12.1) and finite-dimensional, in fact dim(Kω(G,dX )) ≤ d + 1,
where d denotes a degree of sub-polynomial growth of G (Section 12.2).

It follows from the Gleason and Montgomery–Zippin theorem (Theorem 9.17)
that Isom(Kω(G,dX )), the group of isometries of Kω(G,dX ), can be given the struc-
ture of a Lie group with finitely many components, so that, in particular, it is a linear
group. Moreover, the Cayley action of G on itself naturally extends to an action, by
isometries, of G on the asymptotic cone Kω(G,dX ), thus yielding a group homo-
morphism ψ : G→ Isom(Kω(G,dX ))⊆ GL(k,C) for some k ∈ N. We then analyze
the different possibilities that may occur: Theorem 12.11 covers the case when the
image ψ(G) is infinite (this is the case, for instance, when ψ is injective). As G has
sub-exponential growth, so does ψ(G), and it follows from the Tits alternative that
the latter is virtually solvable. It then follows from the Milnor–Wolf theorem (Corol-
lary 7.41) that ψ(G) is virtually nilpotent. Finally, with suitable group-theoretical
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manipulations, we then derive that the group G itself is virtually nilpotent. If ψ(G)
is finite, we construct a homomorphism ϕ : N → GL(k,F), where now N ⊆ G is
a finite index subgroup of G, ϕ(N) is infinite, and F is an ultrafield (in fact the
ω-ultrapower of C, cf. Theorem 11.39). So we will again apply Theorem 12.11 to
conclude that N, and hence G, is virtually nilpotent. This will complete the proof of
Gromov’s theorem.

12.1 Asymptotic Cones of Groups of Sub-Polynomial Growth are
Locally Compact

From now on we suppose that G is a finitely generated group of sub-polynomial
growth of degree≤ d. We fix a finite symmetric generating subset X ⊆G. It follows
from our assumptions that we can find a constant C > 0 such that bX (n) ≤Cnd for
all n≥ 1.

Our first target is to find an appropriate free ultrafilter ω on N such that the
corresponding asymptotic cone is locally compact.

Recall that a metric space is locally compact if every point admits a compact
neighborhood.

In order to find the ultrafilter ω , let us prove the following:

Lemma 12.2. There are infinitely many n ∈ N such that

bX (2n)≤ bX (2i)2(n−i)(d+1) (12.1)

for all i≤ n.

Proof. Assume by contradiction that there exists an n0 > 1 such that for all n ≥ n0
there exists an i = i(n) < n satisfying bX (2n) > bX (2i)2(n−i)(d+1). We then choose
for every n≥ n0 a minimal such i.

We claim that, for every n ∈ N one has i = i(n) < n0. If i ≥ n0, then, by the
definition of n0, there exists a j < i such that bX (2i)> bX (2 j)2(i− j)(d+1) and hence

bX (2n)> bX (2i)2(n−i)(d+1) > bX (2 j)2(i− j)(d+1)2(n−i)(d+1) = bX (2 j)2(n− j)(d+1),

contradicting the minimality of i. This proves the claim.
Then for all n≥ n0 we have

bX (2n)> bX (2i)2(n−i)(d+1) > 2(n−i)(d+1) > 2(n−n0)(d+1).

Setting m :=2n ∈ N and C′ :=2−n0(d+1) we then have

bX (m)≥C′md+1. (12.2)

Since (12.2) holds for infinitely many m ∈N, this contradicts our assumption on the
sub-polynomial degree of growth of G. �
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Let us set

S :={2n : bX (2n)≤ b(2i)2(n−i)(d+1) for all i≤ n} ⊆ N (12.3)

and observe that, by Lemma 12.2, S is infinite.
We claim that there exists a free ultrafilter ω containing S. Indeed, denoting by

F the Fréchet filter on N the set Ω :=F ∪ {S} ⊂P(N) is saturated (exercise)
and therefore, by virtue of Corollary 11.7, it is embeddable into some ultrafilter
ω ∈ βN. Moreover, from Corollary 11.13 we deduce that ω , since it contains the
Fréchet filter, is free.

We thus fix a free ultrafilter ω containing S and denote by K :=Kω(G,dX ) the
associated asymptotic cone. We also denote by 1K ∈ K the class of the constant
sequence (1G)n∈N and by B :=BK(1K ,1) the ball of radius 1 in K centered at 1K .

Lemma 12.3. Suppose that B contains m pairwise non-intersecting balls of radius
2−p, where p is a positive integer. Then m≤ 2p(d+1).

Proof. Denote by B1,B2, . . . ,Bm these pairwise non-intersecting balls of radius 2−p

contained in B and let k1,k2, . . . ,km, denote their centers. Let xi :=(xi
n)n∈N be a mod-

erate sequence representing ki for i = 1,2, . . . ,m. It follows from our assumptions
and the triangle inequality that we can find a subset A∈ω such that, for all n∈A, the
G-balls BG(xi

n,n2−p), i = 1,2, . . . ,m, are pairwise non-intersecting and contained in
BG(1G,n).

As ω is a filter, we have A∩ S ∈ ω , in particular A∩ S 6= ∅. Thus we can find
n ∈ N such that 2n ∈ A∩S. Now, since 2n ∈ A, we have

bX (2n) = |BG(1G,2n)| ≥ m|BG(xi
2n ,2n−p)|= mbX (2n−p). (12.4)

Combining (12.4) and (12.1) with i :=n− p (note that i≤ n) we deduce mbX (2n−p)≤
bX (2n)≤ bX (2n−p)2p(d+1) and the statement follows. �

Proposition 12.4. Let p≥ 2 and suppose that B(p) =
(
BK(ki,2−p)

)m
i=1, m = m(p)

is a maximal system of non-intersecting balls of radius 2−p contained in B. Then the
system B∗(p) :=

(
BK(ki,2−p+2)

)m
i=1 (obtained by multiplying the radii by 4) covers

the closure of the ball BK(1K ,1/2), that is,

BK(1K ,1/2)⊆
m⋃

i=1

BK(ki,2−p+2).

Proof. We proceed by contradiction. If the statement does not hold, then we can
find k ∈ BK(1K ,1/2) \

⋃m
i=1 BK(ki,2−p+2). Since p ≥ 2, by virtue of the triangle

inequality we have both BK(k,2−p)⊆ B and

BK(k,2−p)∩

(
m⋃

i=1

BK(ki,2−p)

)
=∅,

contradicting the maximality of the family B(p). �
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Theorem 12.5. K is locally compact.

Proof. To show that K is locally compact, it is clearly enough, by homogeneity
(cf. Theorem 11.52.(i)), to show that the closure B0 of the ball BK(1K ,1/2) is se-
quentially compact, that is, that every sequence (ki)i∈N in B0 admits a convergent
subsequence.

Let then (ki)i∈N be a sequence in B0. Consider the cover B∗(3) of B0 by balls
of radius 1/2 as in Proposition 12.4. Then we can find one ball in B∗(3) whose
closure B1 contains ki for infinitely many i ∈ N. Thus we can extract a subsequence
(ki j) j∈N, with i0 > 0, which is entirely contained in B1. Consider now the cover
B∗(4) of B0 (and therefore of B0∩B1) by balls of radius 1/4. As before, we can find
one ball B2 in B∗(4) containing ki j for infinitely many j ∈N. Thus we can extract a
subsequence (ki jk )k∈N, with i j0 > i0, which is entirely contained in B2. Continuing
this way, we have that the “diagonal” subsequence k0,ki0 ,ki j0

, . . . (which is eventu-
ally contained in a ball of radius 2−p for every p ≥ 2) is a Cauchy sequence in K.
Since K is complete (by Theorem 11.52.(iv)), we conclude that this subsequence
converges. �

Remark 12.6. Let X :=`2(N) denote the Hilbert space consisting of all complex
sequences (an)n∈N such that ∑n∈N |an|2 < ∞ equipped with the scalar product
〈(an)n∈N,(bn)n∈N〉 :=∑n∈N anbn. Then setting

‖(an)n∈N‖ :=

(
∑

n∈N
|an|2

) 1
2

and d((an)n∈N,(bn)n∈N) :=‖(an−bn)n∈N‖

we have that (X ,d) is a complete metric space. For i ∈ N we denote by ei the se-
quence (ei,n)n∈N ∈ X defined by ei,n = 1 if n = i, and 0 otherwise and set xi =

1
2 ei.

If 0 :=(0)n∈N ∈ X is the constant zero-sequence we then have d(0,xi) = 1/2 and
therefore xi ∈ BX (0;1) for all i ∈ N. We also have d(xi,x j) =

1
2 d(ei,ej) =

√
2/2

for all distinct i, j ∈ N. Thus if p = 2, by virtue of the triangle inequality, the balls
BX (xi;2−p), i ∈ N, are pairwise non-intersecting. This shows that the conclusion
of Lemma 12.3 does not hold in (X ,d). Note that, indeed, (X ,d) is neither locally
compact (there is no convergent subsequence of the bounded sequence (xi)i∈N) nor
finite-dimensional (see Example 10.14).

12.2 Finite Dimension of Asymptotic Cones of Groups of
Sub-Polynomial Growth

Let G, X ⊆G, and ω be as in Section 12.1. Our next task is to show that the asymp-
totic cone K = Kω(G,dX ) has finite dimension.

Lemma 12.7. (1) For every R > 0 the ball BK(1K ,R) can be covered by finitely
many balls of radius 1/2.

(2) The whole K can be covered by countably many balls of radius 1/2.
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Proof. In order to show (1) we start by proving the following:

Claim. Let r > 0 and ε ∈ (0,r). Suppose that BK(1K ,2r) can be covered by finitely
many balls of radius ε . Then BK(1K ,3r) can be covered by finitely many balls of
radius ε .

Indeed if k1,k2 . . . ,km ∈ BK(1K ,2r) satisfy BK(1K ,2r) ⊆ ∪m
i=1BK(ki,ε), then,

since K is geodesic, by using the triangle inequality we deduce that BK(1K ,3r) ⊆
∪m

i=1BK(ki,r + ε). Hence, a fortiori, BK(1K ,3r) ⊆ ∪m
i=1BK(ki,2r). Now, by homo-

geneity of K, each of these balls of radius 2r can, in turn, be covered by finitely
many balls of radius ε . We deduce that BK(1K ,3r) itself can be covered by finitely
many balls of radius ε , and the claim follows.

Note (Exercise) that the above claim fails to hold, in general, if the ambient
metric space is not arcwise connected (resp. arcwise connected but not geodesic).

Let r0 :=1/4, so that BK(1K ,2r0) = BK(1K ,1/2), and ε :=1/8. Then the as-
sumptions of the Claim are satisfied by virtue of Proposition 12.4 (with p = 5), so
that BK(1K ,3r0) = BK(1K ,3/4) can be covered by finitely many balls of radius 1/8.
We continue to apply the claim recursively, so that BK(1K ,(3/2)i/2) can be covered
by finitely many balls of radius 1/8, hence a fortiori of radius 1/2, for all i ≥ 1.
Hence the same is true for BK(1K ,R) for any R > 0.

(2) Follows immediately from (1) after observing that K =
⋃

R∈N BK(1K ,R). �

Proposition 12.8. The asymptotic cone K = Kω(G,dX ) is separable.

Proof. By Lemma 12.7, K can be covered by countably many balls of radius 1/2.
Therefore, by homogeneity, it suffices to show that the ball BK(1K ,1/2) is sepa-
rable. By Proposition 12.4, for every p ∈ N, there exists a finite cover B∗(p) of
BK(1K ,1/2) by balls of radius 2−p+2. It is an exercise to check that the countable
set consisting of the centers c of the balls in ∪p∈NB∗(p), with c ∈ BK(1K ,1/2), is
dense in BK(1K ,1/2). �

Theorem 12.9. The asymptotic cone K = Kω(G,dX ) has finite Hausdorff dimen-
sion. In fact, Hdim(K) ≤ d + 1, where d is a degree of sub-polynomial growth of
G.

Proof. We claim that to prove the theorem it suffices to show that

Hdim(BK(1K ,1/2))≤ d +1. (12.5)

Indeed, by Lemma 12.7 we can find a sequence (ki)i∈N in K such that K ⊆⋃
∞
i=0 BK(ki,1/2). By homogeneity, if s > Hdim(BK(1K ,1/2)) then we have s >

Hdim(BK(ki,1/2)), for all i ∈ N.
Now fix ε > 0. For each i ∈ N we can find a countable cover Bi of BK(ki,1/2)

consisting of balls such that

∑
B∈Bi

r(B)s ≤ ε
1

2i+1 .
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It is then clear that B :=
⋃

i∈NBi is a countable cover of K consisting of balls such
that

∑
B∈B

r(B)s = ∑
i∈N

∑
B∈Bi

r(B)s ≤ ε ∑
i∈N

1
2i+1 = ε.

This shows that s > Hdim(K). The claim follows.
In order to prove (12.5), let δ ∈ (0,1] and let us first show that s = s(δ ) :=d +

1+δ > Hdim(BK(1K ,1/2)). Let ε > 0. Then we can find p ∈ N such that

p≥ 1
δ
(2d +2+2δ − log2(ε)). (12.6)

Consider the cover B∗(p) of BK(1K ,1/2) given by Proposition 12.4 and recall that
it consists of m≤ 2p(d+1) balls Bi of constant radius r(Bi) = 2−p+2. We then have

m

∑
i=1

r(Bi)
s ≤ 2p(d+1)2(−p+2)s = 2p(d+1)2(−p+2)(d+1+δ ) ≤ 22d+2+2δ−pδ < ε,

where the last inequality follows from (12.6).
By the claim, we have s(δ )≥Hdim(K), so that K has finite Hausdorff dimension.

In particular,
Hdim(K)≤ inf{s(δ ) : δ ∈ (0,1]}= d +1. �

Since every separable metrizable space of finite Hausdorff dimension is finite-
dimensional (Corollary 10.47), from Proposition 12.8 and Theorem 12.9 we imme-
diately deduce the following:

Corollary 12.10. The asymptotic cone K = Kω(G,dX ) has finite dimension. In fact,
dim(K)≤ d +1, where d denotes a degree of sub-polynomial growth of G. �

12.3 Proof of Gromov’s Theorem

We start with a general theorem.

Theorem 12.11. Let G be a finitely generated group of sub-polynomial growth, and
consider a homomorphism ψ : G→ GL(k,F), where k ∈ N and F is a field. If the
image ψ(G) is infinite, then G is virtually nilpotent.

Proof. Since G has sub-polynomial growth, the (finitely generated) group ψ(G)
cannot contain a noncommutative free subgroup (as this would imply that the growth
of G is exponential). Hence by Tits’ Alternative (cf. Chapter 8) ψ(G) must be vir-
tually solvable. Therefore, by the Milnor–Wolf results (cf. Theorem 7.36, Theorem
7.37, and Corollary 7.41) it must indeed be virtually nilpotent.

So by Lemma 2.42, ψ(G) is in fact virtually torsion-free nilpotent. Let then H̃ ≤
ψ(G) denote a characteristic torsion-free nilpotent subgroup of finite index in ψ(G).

We claim that we can find a surjective homomorphism H̃ → Z. Indeed, if r de-
notes the length of the upper central series of H̃, we have, by Lemma 2.19, that
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H̃/Zr−1(H̃) = Zr(H̃)/Zr−1(H̃) is free abelian, say isomorphic to Zm with m ∈ N,
m≥ 1 (here we are using that ψ(G) is infinite, so that also H̃ is infinite). Thus com-
posing the quotient map H̃ → H̃/Zr−1(H̃) ∼= Zm with the projection Zm→ Z onto
the first component, we obtain the required surjective homomorphism H̃→ Z.

Setting H :=ψ−1(H̃) we have that H is a finite index subgroup of G which maps
onto Z. Let ψ∗ : H→Z denote the corresponding surjective homomorphism and set

N :=ker(ψ∗)≤ H. (12.7)

Note that, since the growth of H is subexponential, it follows from the Claim in
the proof of Milnor’s theorem (Theorem 7.36) that N is finitely generated.

Lemma 12.12. Suppose that the sub-polynomial growth of H is of degree≤ d. Then
the sub-polynomial growth of N is of degree ≤ d−1.

Proof. Let Y ⊆ N be a finite symmetric generating subset and pick an element a ∈
H such that H/N = 〈aN〉 ∼= Z (equivalently, 〈ψ∗(a)〉 = ψ∗(H)). This way the set
Y ′ :=Y ∪{a,a−1} is a finite (symmetric) generating subset of H. We claim that

nbN
Y (n)≤ bH

Y ′(2n). (12.8)

In fact, if g1,g2, . . . ,gr are distinct elements in N such that `Y (gi) ≤ n for i =
1,2 . . . ,r, then the elements gia j ∈ H for i = 1,2 . . . ,r and j = 0,1 . . . ,n are also
distinct. Thus

nbN
Y (n)≤

∣∣tn
j=0BN

Y (n)a
j∣∣≤ |BH

Y ′(2n)| ≤ bH
Y ′(2n)

and the claim follows. Since H has sub-polynomial growth of degree ≤ d, from
(12.8) and our assumptions we deduce nbN

Y (n)≤ bH
Y ′(2n)� (2n)d ∼ nd so that

bN
Y (n)� nd−1.

This shows that N has sub-polynomial growth of degree ≤ d−1. �

Now, by induction on d, the group N is virtually nilpotent. Hence we can assume
that the following situation occurs:

G≥[G:H]<∞ HBN, with N virtually nilpotent and H/N ∼= Z.

So N contains a finite index subgroup N′ which is nilpotent and, by Poincaré’s
lemma (cf. Lemma 2.39), we may assume that N′ is characteristic in N, and hence
normal in H. Then H/N′ contains the finite normal subgroup N/N′ and the corre-
sponding factor is infinite cyclic: (H/N′)/(N/N′)∼= H/N ∼= Z.

Observe that H acts on N/N′ by setting (nN′)h = hnh−1N′ for all h ∈ H and
n ∈ N. We denote the kernel of this action by

C :={h ∈ H : (nN′)h = nN′ for all n ∈ N},

i.e. C/N′ = CH/N′(N/N′). Then we may regard H/C as a subgroup of Aut(N/N′).
Since [N : N′]< ∞, we deduce that H/C is finite.
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Lemma 12.13. C is virtually nilpotent.

Proof. We start with the following observations: (i) C/(C∩N) is infinite cyclic and
(ii) (C∩N)/N′ is finite abelian. Indeed, on the one hand we have C∩N 6=C, since
otherwise C ⊆ N contradicting the fact that H/C is finite and H/N is infinite cyclic,
so that {1} 6= C/(C∩N) ∼= CN/N ≤ H/N ∼= Z. On the other hand, (C∩N)/N′ is
finite (since N/N′ is finite) and abelian (since (C ∩N)/N′ = (C/N′)∩ (N/N′) =
Z(N/N′)).

Consider now the finite subnormal series C ≥ C∩N ≥ N′ ≥ {1}. From (i) and
(ii) and recalling that N′ is nilpotent (and therefore solvable) we deduce that C is
solvable, since (cf. Proposition 4.4) solvability is closed under group extensions
(recall that, however, nilpotency is not extension-closed (cf. Example 4.5)).

Moreover, C is finitely generated (since N′ is finitely generated, (C∩N)/N′ is
finite, and C/(C∩N) is infinite cyclic) and of sub-polynomial growth (since C ≤
H and H has sub-polynomial growth (cf. Proposition 7.17)). From the theorem of
Milnor–Wolf (Corollary 7.41) we then deduce that C is virtually nilpotent. �

Since
G≥[G:H]<∞ H ≥[H:C]<∞ C, with C virtually nilpotent

we deduce that G itself is virtually nilpotent.
This completes the proof of Theorem 12.11. �

The strategy now is to find such a homomorphism, in order to be able to apply
the theorem. We are going to achieve this by means of the asymptotic cone.

Let G be a finitely generated group of sub-polynomial growth, and let us fix a
finite symmetric generating subset X ⊆ G of G. Moreover, let ω be a free ultrafilter
as in Section 12.1, and denote by K :=Kω(G,dX ) the corresponding asymptotic
cone.

Given g ∈ G we still denote by g the constant (moderate) sequence (g,g,g, . . .).
With the notation from the proof of Theorem 11.52, we then consider the map

Λg : K→ K. Thus, if k = [(hn)n∈N]ω ∈ K we have Λg(k) = [(ghn)n∈N]ω . Recall that
Λg is an isometry, that is, dω(Λg(k),Λg(k′)) = dω(k,k′) for all k,k′ ∈ K. Moreover,
for all g1,g2 ∈G and k∈K one has Λg1g2(k)= [(g1g2hn)n∈N]ω =Λg1 [(g2hn)n∈N]ω =
Λg1(Λg2(k)) thus showing that Λg1g2 = Λg1Λg2 . It follows that the map

ψ : G→ Isom(K) (12.9)

defined by ψ(g) :=Λg is a group homomorphism. In other words, (12.9) defines an
action of G on K by isometries (note that, on the other hand, if Rg : K→ K, g ∈ G,
is defined by Rg(k) = [(hng)n∈N] for all k = [(hn)n∈N] ∈ K then the corresponding
action is trivial (exercise)).

As we have seen before, since G has sub-polynomial growth, the asymptotic
cone K is a finite-dimensional, locally compact, connected and locally connected,
homogeneous metric space, and therefore its group of isometries Isom(K) can be
given the structure of a Lie group with finitely many components, by the Gleason–
Montgomery–Zippin theorem (Theorem 9.17). In particular, Isom(K) is linear.
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This yields a homomorphism ψ : G→ Isom(K) ⊆ GL(k,C) for some k ∈ N. If
the image ψ(G) is infinite, then we can apply Theorem 12.11 to deduce that G is
virtually nilpotent.

The remainder of this section is devoted to dealing with the case where ψ(G)
is finite. In this case we will still be able to construct a homomorphism ϕ : N →
GL(k,F), where now N ⊆ G is a finite index subgroup of G, ϕ(N) is infinite, but F
is a field different from C.

More precisely, we will show that the image ϕ(N) in GL(k,F) contains an ele-
ment of infinite order (so that, in particular ϕ(N) is infinite). So we will again apply
Theorem 12.11 to conclude that N, and hence G, is virtually nilpotent, and this will
complete the proof of Gromov’s theorem.

We start by analyzing the action (12.9) of G on K. For this purpose we need to
introduce the following notions.

Definition 12.14. Let (M,d) be a metric space and m ∈M. Given α ∈ Isom(M) the
quantity

D(α,m) :=d(α(m),m)

is called the displacement of m by α .

Consider for instance the action of G on (G,dX ), defined by g 7→ Lg, where Lg is
the isometry given by left multiplication by g. Then for g,h ∈G we have D(Lg,h) =
dX (Lg(h),h) = dX (gh,h) = `X (h−1gh).

Definition 12.15. Let (M,d) be a metric space and fix a base-point m0 ∈ M. Let
α ∈ Isom(M). Then the map Dα : N→ N defined by

Dα(n) :=max{D(α,m) : m ∈M,d(m0,m)≤ n} (12.10)

is called the displacement function of α (relative to m0).

So, choosing 1G as a base-point, the left-multiplication gives

0≤
DLg(n)

n
=

max`X (h)≤n `X (h−1gh)
n

≤ 2n+ `X (g)
n

≤ 2+
`X (g)

n

for all g ∈ G and n ∈ N.

Lemma 12.16. Consider the action of G on (G,dX ) given by left-multiplication.
Then

N :=ker(ψ) =

{
g ∈ G : lim

ω

DLg(Rn)
n

= 0 for all R > 0
}
. (12.11)

Proof. Let g ∈ G and R > 0. Set h0 :=1G and, for every n ≥ 1 let hn ∈ BX (1G,Rn)
be such that DLg(Rn) = D(Lg,hn) = dX (Lg(hn),hn) = dX (ghn,hn). Observe that
the sequence (hn)n∈N is moderate (since `X (hn) ≤ Rn for all n ≥ 1). We then set
h :=[(hn)n∈N]ω ∈ K. Now if g ∈ N, we have ψ(g)(h) = h so that

lim
ω

DLg(Rn)
n

= lim
ω

D(Lg,hn)

n
= lim

ω

dX (ghn,hn)

n
= dω(ψ(g)(h),h) = 0.
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Conversely, suppose that limω DLg(Rn)/n = 0 for all R > 0. Pick k ∈ K and let
us show that ψ(g)(k) = k. Let (kn)n∈N be a moderate sequence in G representing
k. Then we can find a constant R > 0 such that `X (kn) ≤ Rn, equivalently, kn ∈
BX (1G,Rn), for all n≥ 1. We then have

0 ≤ dω(ψ(g)(k),k) = lim
ω

dX (gkn,kn)

n

= lim
ω

D(Lg,kn)

n
≤ lim

ω

DLg(Rn)
n

= 0

thus showing that ψ(g)k = k. �

In the following, given an element g ∈ G and a subgroup H ≤ G, we denote
by gH :={gh : h ∈ H} and CH(g) :={h ∈ H : gh = g} the conjugacy class and the
centralizer of g in H, respectively (recall that gh = h−1gh).

Lemma 12.17. Consider the action of G on (G,dX ) given by left-multiplication and
let 1G be the corresponding base-point. Let g ∈ G. Then the following conditions
are equivalent:

(a) the sequence (DLg(n))n∈N is bounded;
(b) |gG|< ∞;
(c) [G : CG(g)]< ∞.

Moreover, if one of the equivalent conditions above is satisfied then g ∈ N.

Proof. Suppose (DLg(n))n∈N is bounded and let D0 > 0 be a constant satisfy-
ing DLg(n) ≤ D0 for all n ∈ N. This implies that `X (h−1gh) = D(Lg,h) ≤ D0,
equivalently, h−1gh ∈ BX (1G,D0) for all h ∈ G. Thus |gG| ≤ |BX (1G,D0)|. This
shows (a) ⇒ (b). Conversely, suppose |gG| < ∞. Then we can find D0 > 0 such
that gG ⊆ BX (1G,D0), that is, h−1gh ∈ BX (1G,D0) for all h ∈ G. It follows that
D(g,h) = `X (h−1gh)≤ D0 for all h ∈ G, so that DLg(n)≤ D0 for all n ∈ N.

Let now x,y ∈ G. Then

gx = gy⇔ x−1gx = y−1gy⇔ g = xy−1gyx−1⇔ xy−1 ∈CG(g)⇔CG(g)x =CG(g)y.

This shows that |gG|= [G : CG(g)] and (b)⇔ (c) follows as well.
The remaining part of the statement immediately follows from Lemma 12.16. �

Lemma 12.18. Let H ⊆ G be a subgroup of finite index and g ∈ H. Then |gH | < ∞

if and only if |gG|< ∞.

Proof. Since gH ⊆ gG, we only have to show that |gH | < ∞ infers |gG| < ∞. Let
T be a complete system of representatives for the right cosets of H in G so that
G = ∪t∈T Ht. Since ght = (gh)t for all h ∈ H and t ∈ T , we have |gG| ≤ |T ||gH | =
[G : H]|gH |. �

We now denote by
∆(G) :={g ∈ G : |gG|< ∞}
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the subset of elements of G whose conjugacy class is finite. Let us show that ∆(G)
is a characteristic subgroup of G. If g1,g2 ∈ ∆(G), then by virtue of Lemma 12.17
we have that CG(g1) and CG(g2), and therefore their intersection CG(g1)∩CG(g2),
have finite index in G. Since CG(g−1

1 g2) ⊇ CG(g1)∩CG(g2) (note that CG(g−1
1 ) =

CG(g1)), this implies that CG(g−1
1 g2) is also of finite index, yielding, again by virtue

of Lemma 12.17, g−1
1 g2 ∈ ∆(G). This shows that ∆(G) is a subgroup of G. Finally,

if α ∈Aut(G) then |(α(g))G|= |(α(g))α(G)|= |α(gG)|= |gG|, since α is bijective.
This shows that ∆(G) is in fact characteristic in G.

Note that we may now reformulate Lemma 12.18 as follows. If H ⊆ G is a finite
index subgroup, then

∆(G)∩H = ∆(H). (12.12)

Lemma 12.19 (B.H. Neumann). Let G be a (not necessarily finitely generated)
group and suppose that

G =
r⋃

i=1

ni⋃
j=1

Higi, j, (12.13)

where Hi ⊆G is a subgroup and gi, j ∈G, for j = 1,2, . . . ,ni and i = 1,2, . . . ,r. Then
at least one of the Hi’s is of finite index.

In other words, a group cannot be a finite union of cosets of subgroups of infinite
index.

Proof. We prove the statement by induction on r, the number of involved subgroups.
For r = 1 this is obvious. In order to fix our ideas, suppose that [G : H1] = ∞. Then
we can find g ∈ G such that the coset H1g does not occur in the right-hand side of
(12.13); note that, however, H1g⊆∪r

i=2∪
ni
j=1 Higi, j. We deduce that H1 ⊆∪r

i=2∪
ni
j=1

Higi, jg−1 and therefore H1g1,k ⊆∪r
i=2∪

ni
j=1 Higi, jg−1g1,k for all k = 1,2, . . . ,n1. This

implies that in the right-hand side of (12.13) we may substitute each H1-coset by
some finite union of cosets of the remaining subgroups involved. Therefore G can
be expressed as a finite union of cosets of H2,H3, . . . ,Hr. By induction, there exists
2≤ i≤ r such that [G : Hi]< ∞. �

Remark 12.20. Fix a sequence (not necessarily moderate) u = (un)n∈N of elements
of G and, for every g ∈ G, set gu :=(u−1

n gun)n∈N. Suppose that for every genera-
tor xi ∈ X the sequence xu

i is moderate (on a large set of indices), then for every
g ∈ G, the sequence gu is also moderate (on a large set of indices). Indeed say
`X (u−1

n xiun) < Cin for all n ∈ Ai, where Ai ∈ ω , then if g = xi1xi2 · · ·xis we have
u−1

n gun = u−1
n xi1un ·u−1

n xi2un · . . . ·u−1
n xisun, yielding

`X (u−1
n gun)≤

s

∑
j=1

`X (u−1
n xi j un)≤Cn,

where C :=∑
s
j=1 Ci j for all n ∈ Ai1 ∩Ai2 ∩·· ·∩Ais ∈ ω .

Suppose ∆(G) = G. Then Lemma 12.17 gives, in particular, [G : CG(x)]< ∞ for
every generator x ∈ X of G so that the center Z(G) =

⋂
x∈X CG(x) is also of finite

index in G. This yields virtual (abelianness and therefore virtual) nilpotence of G,
and we are done.



266 12 Gromov’s Theorem

We thus assume that (i) ∆(G) ( G. We may also assume that (ii) ∆(N) ( N.
Otherwise, by the same argument as above, N would be virtually nilpotent. Since N
has finite index in G (ψ(G) is finite), also G would be virtually nilpotent.

Note that (ii) implies N 6⊆ ∆(G) (as ∆(G)∩N = ∆(N) by (12.12)).
Finally, let Y = {y1,y2, . . . ,yd} be a finite generating subset of N. We may assume

that Y ∩∆(N) =∅. Otherwise, fix an a ∈ N \∆(N) and add it to Y ; now, given any
yi ∈ ∆(N), we can replace it by ayi. Up to adding inverses, if necessary, we may also
assume that Y is symmetric.

Definition 12.21. Consider the asymptotic cone K with base-point 1K . Then

O(ε,R) :={α ∈ Isom(K) : Dα(R)< ε} (12.14)

where ε > 0 and R > 0, constitute a system of neighborhoods of the identity in
Isom(K) (and hence induce a topology on Isom(K)).

Lemma 12.22. For every ε > 0 and R≥ 1 we can find a sequence u = (un)n∈N in G
such that

(1) for every g ∈ N, the sequence gu is moderate;
(2) the map ϕ : N → Isom(K) defined by g 7→ Λgu is a homomorphism such that

there exists 1≤ i≤ d satisfying ϕ(yi) ∈ O(ε,R)\{IdK}.

Proof. Fix ε > 0 and R > 0.
Step 1: Fix n ≥ 1. We claim that there exists a zn ∈ N such that DLyzn

i
(Rn) > εn

for all i = 1,2, . . . ,d. Indeed, suppose the contrary, and, for every 1 ≤ i ≤ d and
s ∈ S :={aba−1 : a ∈ BX (1G,Rn), b ∈ BX (1G,εn)}, fix zi,s ∈ N (when there is at
least one of them) such that yzi,s

i = s. Then for every z ∈ N there exists i and a ∈
BX (1G,Rn) such that D(Lyz

i
,a)≤ εn. Now

D(Lyz
i
,a) = `X (a−1yz

i a)≤ εn,

yields a−1yz
i a ∈ BX (1G,εn), hence yz

i ∈ aBX (1G,εn)a−1 where a ∈ BX (1G,Rn).
Hence yz

i =: s ∈ S, so yz
i = yzi,s

i , showing that z ∈CN(yi)zi,s. It follows that

N =
d⋃

i=1

⋃
s∈S

CN(yi)zi,s.

Since S is clearly finite, by Neumann’s lemma (Lemma 12.19), one of the CN(yi)’s
is of finite index, yielding |yN

i |< ∞, equivalently yi ∈ ∆(N), contrary to our assump-
tions on Y .

Step 2: Given n ∈ N, let zn = yi1yi2 · · ·yir be the expression of the element zn ∈ N
provided by the previous step, and let xn be the shortest prefix of zn such that at least
for one generator yi we have DLyxn

i
(Rn)> εn. First observe that we may assume that

xn 6= 1, since for all i we have yi ∈ N and therefore by Lemma 12.16

lim
ω

DLyi
(Rn)

n
= 0.
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Now for any proper prefix wn of xn, by minimality of xn we have DLywn
i
(Rn)≤ εn

for all i. Suppose that xn = wnyµ (this is possible since xn 6= 1), where yµ ∈Y . Then
setting ` :=maxi `X (yi), for at least some i = i(n) we have

εn < DLyxn
i
(Rn) = max{dX (y

xn
i g,g) : `X (g)≤ Rn} (12.15)

≤ max{dX (y
wn
i yµ g,yµ g) : `X (g)≤ Rn} ≤ DLywn

i
(Rn+ `) (12.16)

while, for all i,

DLywn
i
(Rn+ `)≤ DLywn

i
(Rn)+2`≤ εn+2`. (12.17)

From (12.15) and (12.17), dividing by n we get, for some i = i(n),

ε <
DLyxn

i
(Rn)

n
≤ ε +

2`
n
.

Since ω is an ultrafilter, there exists an i such that {n∈N : i(n) = i} ∈ω (cf. Lemma
11.11). This yields

lim
ω

DLyxn
i
(Rn)

n
= ε. (12.18)

Step 3: We claim that for every g ∈ N, the sequence gu is moderate. By Remark
12.20, we need to check this only for the generators of N. Let 1≤ i≤ d and n ∈ N.
It follows from (12.17) that D(yxn

i ,Rn) ≤ εn+ 2`. Hence `X (y
xn
i ) = D(Lyxn

i
,1G) ≤

εn+2`, which is clearly sublinear in n, thus showing that (yxn
i )n∈N is moderate. This

completes the proof of (1).
Step 4: Condition (2) then follows from (12.18) since for the given i we then have

Dϕ(yi)(R) = lim
ω

DLyxn
i
(Rn)

n
= ε 6= 0

so that ϕ(yi) 6= IdK , while from Dϕ(yi)(R) = ε we deduce ϕ(i) ∈ O(2ε,R). �

In order to prove the following lemma, we need to introduce some notation. Let
k ≥ 1 be an integer. For v = (vi)

k
i=1 ∈ Ck (resp. A = (ai, j)

k
i, j=1 ∈ GL(k,C)) we set

‖v‖ :=max{‖vi| : i= 1,2, . . . ,k} (resp. ‖A‖=max{|ai, j| : i, j = 1,2, . . . ,k}. It is easy
to see (exercise) that ‖ · ‖ is a norm, in particular it satisfies ‖u+ v‖ ≤ ‖u‖+ ‖v‖
(resp. ‖A+B‖ ≤ ‖A‖+ ‖B‖) and ‖λv‖ = |λ | · ‖v‖ (resp. ‖λA‖ = |λ |·‖A‖) for all
u,v ∈ Ck (resp. A,B ∈ GL(k,C)) and λ ∈ C. Moreover (exercise) there exists a
constant C = C(k) ≥ 1 such that ‖Av‖ ≤ C‖A‖·‖v‖ (and therefore ‖AB‖ ≤ C‖A‖·
‖B‖) for all u ∈ Ck and A,B ∈ GL(k,C).

Given ε > 0 we denote by

Bk(I,ε) :={A ∈ GL(k,C) : ‖A− I‖< ε}

the ball of radius ε centered at the identity I in GL(k,C).
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Lemma 12.23. Let n,k ≥ 1 be two integers. Then there exists ε = ε(k,n) > 0 such
that An 6= I for all 1≤ n≤ n and all A ∈ Bk(I,ε)\{I}.

Proof. Let A ∈ GL(k,C). Then we have A = (A− I)+ I so that for all ` ∈ N

A` = ((A− I)+ I)` = I +
`

∑
i=1

(
`

i

)
(A− I)i.

Therefore, setting Bn :=∑
n−1
`=1 ∑

`
i=1
(`

i

)
(A− I)i for 1≤ n≤ n, we have

I +A+A2 + · · ·+An−1 = nI +
n−1

∑
`=1

`

∑
i=1

(
`

i

)
(A− I)i = nI +Bn.

Since limt→0 ∑
n
`=1 ∑

`
i=1
(`

i

)
Cit i = 0 we can find ε > 0 such that

n

∑
`=1

`

∑
i=1

(
`

i

)
Ci

ε
i ≤

n

∑
`=1

`

∑
i=1

(
`

i

)
Ci

ε
i ≤ 1

2C
.

Suppose that A ∈ Bk(I,ε)\{I}.
Since ‖A− I‖< ε , taking norms we have that

‖Bn‖ ≤
n

∑
`=1

`

∑
i=1

(
`

i

)
Ci‖A− I‖i ≤

n

∑
`=1

`

∑
i=1

(
`

i

)
Ci

ε
i ≤ 1

2C
. (12.19)

Moreover, since A 6= I we can find a vector v ∈ Ck such that w :=(I−A)v 6= 0.
Up to replacing v by v/‖w‖, if necessary, we may suppose that ‖w‖ = 1. We have
(nI +Bn)w = nw+Bnw and therefore

n = ‖nw‖= ‖(nI +Bn)w−Bnw‖
≤ ‖(nI +Bn)w‖+‖Bnw‖
≤ ‖(nI +Bn)w‖+C‖Bn‖·‖w‖

≤ ‖(nI +Bn)w‖+
1
2
.

We deduce that ‖(nI +Bn)w‖ ≥ (2n−1)/2 > 0. It follows that

(I−An)v = (I +A+A2 + · · ·+An−1)(I−A)v = (nI +Bn)w 6= 0

thus showing that I−An 6= 0, equivalently An 6= I, for all 1≤ n≤ n. �

We are now in a position to complete the proof of Gromov’s theorem.

End of proof of Gromov’s theorem (Theorem 12.1). Combining the two Lemmas
12.22 and 12.23, for every n ≥ 1 we can find a homomorphism ϕn : N → Isom(K)
and an i = i(n) such that ϕn(yi) has order > n.

Since ω is an ultrafilter, there exists an i0 such that {n ∈ N : i(n) = i0} ∈ ω .
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If ϕn(N) is infinite for some n, then by Theorem 12.11 we can conclude that N
is virtually nilpotent, and we are done. Hence we can assume that the images ϕn(N)
are finite for all n ∈ N. For g ∈ N set

ϕ(g) = [(ϕn(g)n∈N]ω ∈ GL(k,C)ω .

By virtue of (11.29) (cf. Theorem 11.40), this yields an injective homomorphism

ϕ : N→ GL(k,Cω)

which, by construction, maps yi0 into an element of infinite order. Thus ϕ(N) is
infinite and by Theorem 12.11 (with F = Cω ) we again conclude that N is virtually
nilpotent.

This completes the proof of Gromov’s theorem. �

As mentioned above (cf. Remark 7.11, from Gromov’s theorem we deduce that
in the context of growth of groups, the notions of sub-polynomial growth and poly-
nomial growth coincide:

Corollary 12.24. Every group of sub-polynomial growth has polynomial growth.

Proof. Let G be a group of sub-polynomial growth. By Gromov’s theorem (Theo-
rem 12.1), G is virtually nilpotent, that is, it has a finite-index nilpotent subgroup
H ≤G. By Proposition 7.20 we have bG = bH . Since the latter is polynomial (of de-
gree d given by the Bass–Guivarc’h formula, cf. Theorem 7.29) we deduce that the
former is also polynomial (of the same degree d). This shows that G is of (precise)
polynomial growth. �

12.4 Notes

Gromov’s theorem (Theorem 12.1), originally conjectured by John Milnor [239],
was proved by Misha Gromov in [138]. In his original proof, Gromov used a no-
tion of “limit of metric spaces”, with respect to what is now called the “Gromov–
Hausdorff” distance, which turned out to play a key role in the proof and that we
now briefly describe.

Let (Z,d) be a metric space. Given a subset X ⊆ Z and ε > 0, we denote by
Nε(X) :=

⋃
x∈X BZ(x,ε) the ε-neighborhood of X in Z, where BZ(z,ε) :={z′ ∈ Z :

d(z′,z)< ε} denotes the open ball of radius ε centered at z∈ Z. Given two nonempty
subsets X ,Y ⊆ Z set

Hd(X ,Y ) := inf{ε > 0 : Y ⊆ Nε(X) and X ⊆ Nε(Y )} ∈ [0,+∞)

(we adopt the usual convention that Hd(X ,Y ) = +∞ if there is no ε > 0 satisfying
the above containment conditions). Denoting by P0(Z) (resp. K0(Z)) the space of
all nonempty subsets (resp. nonempty closed bounded subsets) of Z, one has that
Hd is a generalized pseudometric (resp. a metric) on P0(Z) (resp. K0(Z)), called
the Hausdorff distance. If (Z,d) is compact, then (K0(Z),Hd) is compact as well.
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In general, given a (not necessarily compact) metric space X , we fix x0 ∈ X as a
base point and refer to (X ,x0) as the corresponding pointed metric space. Recall that
a metric space (X ,d) is proper if each closed ball (of finite radius) in X is compact.
Note that a proper metric space is locally compact, complete, and separable.

Let (X ,x0) and (Y,y0) be two pointed proper metric spaces. Denote by X∪̇Y the
set-theoretical disjoint union of X and Y . A metric d on X∪̇Y is termed admissible
provided that the restrictions of d to X and Y coincide with the original metrics, i.e.,
d|X×X = dX and d|Y×Y = dY . The following generalization of the Hausdorff distance
was introduced by David Edwards in 1975 (without base points) and is attributed to
Ofer Gabber by Gromov [138, Section 6]. See also [336], [185, 64], and, in the
setting of Riemannian geometry, [276]. Set

GH((X ,x0),(Y,y0)) := inf{ε > 0 : ∃ d admissible metric on X∪̇Y such that
d(x0,y0)< ε,BX (x0,1/ε)⊆ Nε(Y ), and BY (y0,1/ε)⊆ Nε(X)}.

One has GH((X ,x0),(Y,y0)) ≤ 1. It is also clear that GH((X ,x0),(X ,x0)) = 0 and
GH((X ,x0),(Y,y0)) =GH((Y,y0),(X ,x0)). Also, if (Z,z0) is another pointed proper
metric space and, moreover, GH((X ,x0),(Y,y0)) < 1/2 and GH((Y,y0),(Z,z0)) <
1/2, then

GH((X ,x0),(Z,z0))≤ GH((X ,x0),(Y,y0))+GH((Y,y0),(Z,z0)).

In other words, the function GH also satisfies the triangle inequality provided
that at least two of the three “distances” involved are small enough. Moreover,
GH((X ,x0),(Y,y0)) = 0 if and only if there exists an isometry f : X → Y such
that f (x0) = y0. Then, GH is a metric on the Gromov–Hausdorff space, the quo-
tient space of all pointed proper metric spaces modulo such base-point preserv-
ing isometries: it is called the Gromov–Hausdorff distance. In the following, by
abuse of language and notation, we shall not make a distinction between a pointed
proper metric space and its isometry class. A sequence

(
(X j,x j,0)

)
j∈N of pointed

proper metric spaces converges to the pointed proper metric space (Y,y0), and we
write lim j→∞(X j,x j,0) = (Y,y0), provided that lim j→+∞ GH((X j,x j,0),(Y,y0)) = 0.
If this is the case, the limit is unique (up to isometry). For more information on both
the Hausdorff and the Gromov–Hausdorff distances, we refer to the notes [337] by
Alexey Tuzhilin.

Suppose now that G is a finitely generated group and fix a finite symmet-
ric generating subset X ⊂ G. Define a sequence of pointed proper metric spaces
((Xn,xn,0))n∈N by setting, Xn :=G, dXn(g,h) :=dX (g,h)/n for all g,h ∈ Xn = G, and
xn,0 :=1G, for all n ∈ N. Then Gromov [138, Section 7] showed that if G has sub-
polynomial growth, one can find a convergent subsequence

(
(Xnk ,xnk,0)

)
k∈N such

that the limit (Y,y0) := limk→∞(Xnk ,xnk,0) satisfies the following properties:

• Y is proper (and therefore locally compact, separable, and complete),
• Y is homogeneous (that is, the isometry group Isom(Y ) acts transitively on Y ),
• Y is connected, locally connected, and geodesic;



12.5 Exercises 271

• Y is finite-dimensional (indeed, the Hausdorff dimension of Y (cf. Section 10.6)
satisfies Hdim(Y ) ≤ d + 1, where d is the degree of sub-polynomial growth of
G),

• G acts on Y by isometries.

Thus, Y enjoys the same properties as the asymptotic cone Kω(G,dX ) constructed
in Sections 12.1 and 12.2, and at this point, the completion of the original proof of
Gromov’s theorem in [138] is the same as we presented in Section 12.3.

The proof presented here is based on an approach, due to Laurentius Petrus
Dignus (Lou) van den Dries and Alex James Wilkie [94], which used methods
of nonstandard Analysis (ultrafilters, ultraproducts, ultrapowers, and asymptotic
cones) as presented in Chapter 11.

A recent, clear, and comprehensive treatment of Gromov’s theorem is presented
by Steven P. Lalley in his recent book [209].

More recently, new proofs of Gromov’s theorem, of a more “analytical flavor”,
have appeared. We mention, for instance, the proofs of Bruce Kleiner [201] (in terms
of suitable spaces of harmonic functions), Shalom–Tao [315] (a finitary version),
Breuillard–Green–Tao [39] and Ehud Hrushovsky [179] (both as applications of the
theory of the so-called approximate groups), and Narutaka Ozawa [266] (in terms
of reduced cohomology and Shalom’s property HFD [314]). The advantage of these
new proofs consists in the fact that they rely neither on the Gleason–Montgomery–
Zippin theorem (Theorem 9.17) nor on the Tits alternative (Theorem 8.1).

Lemma 12.19 is due to Bernhard H. Neumann [249].

12.5 Exercises

Exercise 12.1. Let (X ,dX ) and (Y,dY ) be two metric spaces. Suppose that there
exist isometric embeddings f : X → Y and g : Y → X .

(1) Show that there exists an isometry F : X → Y .
(2) Let x0 ∈ X and y0 ∈ Y . Suppose that, in addition, f (x0) = y0 and g(y0) = x0.

Show that the isometry F in (1) can be chosen such that F(x0) = y0.

Exercise 12.2 (The Hausdorff generalized pseudometric). Let (Z,d) be a metric
space. Denote by P0(Z) (resp. K0(Z)) the space of all nonempty subsets (resp.
nonempty closed bounded subsets) of Z. Given X ∈P0(Z) and ε > 0, denote by
Nε(X) :=

⋃
x∈X BZ(x,ε) the ε-neighborhood of X in Z, where BZ(z,ε) :={z′ ∈ Z :

d(z′,z)< ε} denotes the open ball of radius ε centered at x∈X . Given X ,Y ∈P0(Z)
set

Hd(X ,Y ) := inf{ε > 0 : Y ⊆ Nε(X) and X ⊆ Nε(Y )}.

In the following, when Z ⊆R we assume that d is the Euclidean distance: d(x,y) :=
|x− y| for all x,y ∈ Z.

(1) Show that if x,y ∈ Z, then setting X :={x} and Y :={y} one has Hd(X ,Y ) =
d(x,y). Deduce that the map z 7→ {z} is an isometric embedding of Z into K0(Z).

(2) Show that if Z :=R, X :={0}, and Y :=[0,+∞), then Hd(X ,Y ) =+∞ (though
X ⊆ Y ).
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(3) Show that if Z :=R, X :=(0,1), and Y :=[0,1], then Hd(X ,Y ) = 0 (though
X 6= Y ).

(4) Let X ,Y ∈ P0(Z). Given z ∈ Z set d(z,Y ) := inf{d(z,y) : y ∈ Y}. Then
set d(X ,Y ) :=sup{d(x,Y ) : x ∈ X}, d(X ,Y ) :=sup{d(y,X) : y ∈ Y}, and finally
d′(X ,Y ) :=max{d(X ,Y ),d(Y,X)}. Show that d′(X ,Y ) = d′(Y,X) = Hd(X ,Y ).

(5) Let Z :=R and set X :={1,3,6,7} and Y :={3,6}. Show that d(X ,Y ) = 2 but
d(Y,X) = 0. Deduce that d : K0(Z)×K0(Z)→ [0,+∞) may fail to be symmetric.

(6) Let X ,Y ∈P0(Z). Show that Hd(X ,Y ) = Hd(X ,Y ) = Hd(X ,Y ) = Hd(X ,Y ).
(7) Let X ,Y ∈P0(Z). Show that Hd(X ,Y ) = 0 if and only if X = Y .
(8) Show that Hd is a generalized pseudometric on P0(Z).

Exercise 12.3 (The Hausdorff distance). Let (Z,d) be a metric space. Let X ,Y ∈
P0(Z).

(1) Show that Hd is a metric on K0(Z) (called Hausdorff distance).
(2) Suppose that Z is compact (resp. complete). Show that (K (Z),Hd) is com-

pact (resp. complete) as well.
(3) Suppose that Z is compact. With the notation in Exercise 12.2.(4), show that

there exist x0 ∈ X and y0 ∈ Y such that

d(x0,y0) = d(X ,Y ) = d(Y,X) = d′(X ,Y ) = d′(Y,X) = Hd(X ,Y ).

Exercise 12.4 (Limits of sets). Let (Z,d) be a metric space. Given a sequence
(Xn)n∈N in P0(Z) we denote by

limsup
n→∞

Xn :=
⋂

n∈N

∞⋃
m=n

Xm

the metric upper limit of (Xn)n∈N.
(1) Show that

limsup
n→∞

Xn = {z ∈ Z : ∀ε > 0, |{n ∈ N : BZ(z,ε)∩Xn 6=∅}|= ∞}.

(2) Deduce that

limsup
n→∞

Xn = {z ∈ Z : ∃(aik)k∈N s.t. aik ∈ Aik and lim
k→∞

d(aik ,z) = 0}.

(3) Let Z :=(0,1) and set Xn = {1/n} for all n∈N. Show that limsupn→∞ Xn =∅.
(4) Set liminfn→∞ Xn = {z ∈ Z : ∀ε > 0, |{n ∈ N : BZ(z,ε)∩ Xn = ∅}| < ∞}.

This is called the metric lower limit of (Xn)n∈N. Observe that liminfn→∞ Xn ⊆
limsupn→∞ Xn. Also show that

liminf
n→∞

Xn = {z ∈ Z : ∃(an)n∈N s.t. an ∈ An and lim
n→∞

d(an,z) = 0}

and that it is closed in Z.
(5) Let (zn)n∈N be a sequence in Z and set Xn :={zn} for all n ∈N. Let also z ∈ Z

and set X :={z}. Show that limn→∞ Hd(Xn,X) = 0 if and only if limn→∞ d(zn,z) = 0
(cf. Exercise 12.2.(1)).
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(6) If liminfn→∞ Xn = limsupn→∞ Xn we denote this common value by limn→∞ Xn.
Let X ∈P0(Z) and suppose that limn→∞ Hd(Xn,X) = 0. Show that liminfn→∞ Xn =
limsupn→∞ Xn and X = limn→∞ Xn.

(7) Suppose that Z is compact. Show that a sequence (Xn)n∈N is convergent in
(K0(Z),Hd) if and only if liminfn→∞ Xn = limsupn→∞ Xn. Moreover, if this is the
case, if X ∈K0(Z) is the limit (that is, Hd(Xn,X)→ 0), show that X = limn→∞ Xn.

(8) Show that Z is compact (resp. complete) if and only if (K (Z),Hd) is compact
(resp. complete). Cf. Exercise 12.3.(2).

(9) Suppose that Z is compact. Show that Z is geodesic if and only if (K (Z),Hd)
is geodesic.

Exercise 12.5. Let (X ,dX ) and (Y,dY ) be two compact metric spaces and denote by
X∪̇Y their set-theoretical disjoint union. A metric d on X∪̇Y is termed admissible
provided that the restrictions of d to X and Y coincide with the original metrics, i.e.,
d|X×X = dX and d|Y×Y = dY . Set

H((X ,dX ),(Y,dY )) := inf
d

Hd(X ,Y ),

where d runs over all admissible metrics on X∪̇Y .
(1) Let (Z,d) be a metric space. Given X ,Y ∈ K (Z), set dX :=d|X×X and

dY :=d|Y×Y . Show that H((X ,dX ),(Y,dY ))≤ Hd(X ,Y ).
(2) Let Z :=[0,1] with the Euclidean distance. Set X :={0} and Y :={1}. Show

that H((X ,dX ),(Y,dY )) = 0.
(3) Deduce that, in general, for X ,Y ∈K (Z) the inequality H((X ,dX ),(Y,dY ))≤

Hd(X ,Y ) in (1) may be strict.

Exercise 12.6. A metric space (X ,d) is called proper if each closed ball (of finite ra-
dius) in X is compact. Show that a proper metric space is locally compact, complete,
and separable.

Exercise 12.7. Let (X ,x0) and (Y,y0) be two pointed proper metric spaces. For M >
0 set

• dM(x0,y0) :=M/2;
• dM(x,y) :=dX (x,x0)+d(x0,y0)+dY (y,y0) for all x ∈ X and y ∈ Y ;
• dM(x,x′) :=dX (x,x′) for all x,x′ ∈ X ;
• dM(y,y′) :=dY (y,y′) for all y,y′ ∈ Y .

(1) Show that dM : Z×Z→ [0,∞) is a distance on Z :=X∪̇Y which is admissible
and satisfies the conditions in the definition of GH((X ,x0),(Y,y0)).

(2) Deduce that GH((X ,x0),(Y,y0))≤ 1.

Exercise 12.8. Let (X ,x0) and (Y,y0) be two pointed proper metric spaces. Suppose
that there exists an isometry f : X → Y such that f (x0) = y0. For k > 0 set

dk(x,y) :=


dX (x,y) if x,y ∈ X
dY (x,y) if x,y ∈ Y
dX (x, f−1(y))+ k ≡ dY ( f (x),y)+ k if x ∈ X and y ∈ Y,



for all x,y ∈ Z :=X∪̇Y .
(1) Show that dk : Z × Z → [0,∞) is a distance on Z which is admissible and

satisfies the conditions in the definition of GH((X ,x0),(Y,y0)).
(2) Deduce that GH((X ,x0),(Y,y0)) = 0.

Exercise 12.9. Let (X ,x0) and (Y,y0) be two pointed metric spaces. Suppose that
GH((X ,x0),(Y,y0)) = 0. Show that there exists an isometry F : X → Y such that
F(x0) = y0.

Exercise 12.10. Let (X ,x0), (Y,y0), and (Z,z0) be pointed proper metric spaces.
Suppose that GH((X ,x0),(Y,y0))< 1/2 and GH((Y,y0),(Z,z0))< 1/2. Show that

GH((X ,x0),(Z,z0))≤ GH((X ,x0),(Y,y0))+GH((Y,y0),(Z,z0)).

Exercise 12.11. Let ((X j,x j)) j∈N be a convergent sequence of pointed proper metric
spaces. Suppose that the sequence (δ (X j)) j∈N of the diameters is unbounded. Show
that the pointed proper metric space (Y,y0) := lim j→∞(X j,x j) is not bounded.

Exercise 12.12. Let ((X j,x j)) j∈N be a convergent sequence of pointed proper metric
spaces. Suppose that there exist pointed proper metric spaces (Y,y0) and (Z,z0) such
that lim j→∞(X j,x j) = (Y,y0) and lim j→∞(X j,x j) = (Z,z0). Show that (Y,y0) and
(Z,z0) are isometric.

Exercise 12.13. Let G :=Z and X :={−1,1}. For an integer n ≥ 1 set Xn :=G,
dn(g,h) :=dX (g,h)/n = |g− h|/n for all g,h ∈ Xn = G, and xn,0 :=1G = 0. Show
that the sequence ((Xn,xn,0))n≥1 of pointed proper metric spaces is convergent and
that its limit (Y,y0) is isometric to the pointed proper metric space (R,0) with the
Euclidean distance (d(r,s) := |r− s| for all r,s ∈ R).
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Chapter 13
The Theorems of Polya and Varopoulos

In this chapter we study random walks on discrete groups. We start with the simple
random walks on Z and Z2 and show (Proposition 13.19) that they are recurrent,
that is, with probability one, the random walker returns (in fact, infinitely many
times) to the initial position. We then show that the simple random walk on Z3 (and
in fact on Zd for all integers d ≥ 3) is transient (Proposition 13.21), that is, with a
strictly positive probability, the random walker never returns back to the initial po-
sition. This is Pólya’s theorem (Theorem 13.47). We then move to the more general
setting of random walks on discrete groups and prove Nash-Williams’ criterion for
recurrence (Corollary 13.42) and the random walk alternative (Theorem 13.48): the
random walks on a group G are either all recurrent or all transient. In other words,
the property for a group of being recurrent (resp. transient) is intrinsic. The study of
random walks on groups culminates with Varopoulos’ theorem (cf. Theorem 13.22)
which characterizes recurrence and transience of finitely generated groups in terms
of their growth: a finitely generated group is recurrent if and only if it has at most
quadratic growth. Note that this last result heavily depends on Gromov’s theorem
(Theorem 12.1) on groups of polynomial growth (in particular on Corollary 12.24).

For all the basic notions in probability that we will not define, and for further
reading, we refer to the two monographs by Wolfgang Woess [355, 356] which,
together with the notes by Mauro Mariani [233], also served as a source for most of
the material presented in the present chapter.

13.1 The Simple Random Walk on Zd: Setting the Problem

Consider the simple random walk onZ. This means that a walker is in position x(t)∈
Z at time t ∈ N, with x(0) = 0, and moves one step to the left (x(t) 7→ x(t + 1) =
x(t)−1) or one step to the right (x(t) 7→ x(t +1) = x(t)+1) with equal probability
at each unit of discrete time t = 0,1,2, . . .

More generally, for any integer d ≥ 1, the simple random walk on Zd is given
by a walker that, starting at the origin (0,0, . . . ,0) ∈ Zd at time t = 0, moves
from the position x(t) = (x1,x2, . . . ,xi−1,xi,xi+1, . . . ,xd) at time t to the position

277© Springer Nature Switzerland AG 2021
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x(t +1) = (x1,x2, . . . ,xi−1,xi±1,xi+1, . . . ,xd) at time t +1 with probability 1/(2d)
for all 1≤ i≤ d at every unit of discrete time t = 0,1,2, . . .

A few natural questions arise: what is the expected number of times the walker
will return to the origin? What is the probability that the walker will return to the ori-
gin infinitely many times? What is the probability that the walker will move towards
infinity?

In order to settle these questions, let us introduce some notions and discuss some
general preliminary results.

13.2 Markov Chains

Definition 13.1. Let X be a set (finite or countable), called the state space. Let also
P = (p(x,y))x,y∈X be a stochastic matrix: this means that

p(x,y)≥ 0 for all x,y ∈ X (13.1)

and
∑
y∈X

p(x,y) = 1 for all x ∈ X . (13.2)

P is called the (one-step) transition probability matrix. Finally, let π : X→R be such
that π(x)≥ 0 for all x ∈ X and ∑x∈X π(x) = 1; this is called the initial distribution.
The triple (X ,P,π) is called a Markov chain.

A Markov chain (X ,P,π) models the following random evolution process on X
with discrete time (t ∈ N). At time t = 0 a random walker starts at x(0) = x0 ∈ X
with probability π(x0). If at time t = n he is in position x(n) = x ∈ X , then, with
probability p(x,y), he moves (performs a random step) at time t = n+1 to the new
position x(n+1) = y ∈ X .

To formalize this setting, let us denote by

Ω :=XN = {ω = (x0,x1,x2, . . .) : xn ∈ X for all n ∈ N} (13.3)

the space of trajectories (or of random paths) on X . Also, for fixed y0,y1, . . . ,ym ∈X ,
we denote by

C(y0,y1, . . . ,ym) :={ω = (x0,x1,x2, . . .) ∈Ω : xk = yk,0≤ k ≤ m} (13.4)

the cylinder with base the tuple (y0,y1, . . . ,ym) ∈ Xm+1 and we set

Pπ(C(y0,y1, . . . ,ym)) :=π(y0)p(y0,y1)p(y1,y2) · · · p(ym−1,ym). (13.5)

Using the well-known Kolmogorov extension theorem [356, Theorem 1.12], it can
be shown that if we denote by B⊆P(Ω) the σ -algebra generated by the collection
of all cylinders C(y0,y1, . . . ,ym), yk ∈ X , 1≤ k≤m, m∈N, then Pπ can be extended
uniquely to a probability measure Pπ : B→ [0,1] satisfying (13.5). Hence, the triple
(Ω ,B,Pπ) is a probability space.
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The projection maps Zn : Ω→X defined by Zn(ω) := xn, for all ω =(x0,x1, . . .)∈
Ω and n ∈ N, are X-valued random variables, i.e., measurable functions from
(Ω ,B) to (X ,P(X)), where P(X) denotes the σ -algebra of all subsets of X . In
this setting, Zn represents the random position of the walker at time n = 0,1,2, . . .

An event is a measurable subset A ⊆ Ω , i.e. A ∈B. For example, given x ∈ X ,
the event of being in x at time t = n, denoted [Zn = x] ∈B, is the subset

Z−1
n (x) = {(x0,x1, . . .) ∈Ω : xn = x}=

⋃
y0,y1,...,yn−1∈X

C(y0,y1, . . . ,yn−1,x) ∈B.

Notation 13.2. In general, we will denote the events with brackets, like [Zn = x].
Also, for the probability measure Pπ we will use the notation Pπ [Zn = x] instead
of Pπ([Zn = x]). Moreover, if A and B are two events, the joint probability Pπ(A∩
B) is denoted by Pπ(A,B), and analogously with the brackets, e.g. we will write
Pπ [Z0 = x,Z1 = y] for Pπ([Z0 = x]∩ [Z1 = y]).

Given events A and B with Pπ(B)> 0 we denote by

Pπ(A|B) :=
Pπ(A∩B)
Pπ(B)

the conditional probability of A given B. We have

Pπ [Z0 = x] = π(x) (13.6)

and, it is an exercise to show that, provided Pπ [Zn = x]> 0,

Pπ [Zn+1 = y|Zn = x] = p(x,y) (13.7)

for all n ∈ N. Note that by (13.7) the position Zn+1 at time n+ 1 only depends on
the position Zn at time n and not on the preceding positions Zn−1,Zn−2, . . . ,Z1,Z0.
In formulae,

Pπ [Zn+1 = y|Zn = x,Zn−1 = xn−1,Zn−2 = xn−2, . . . ,Z0 = x0] = Pπ [Zn+1 = y|Zn = x]
(13.8)

provided Pπ [Zn = x,Zn−1 = xn−1,Zn−2 = xn−2, . . . ,Z0 = x0]> 0. Condition (13.8) is
called the Markov property. Also, from (13.7) we have

Pπ [Zm+1 = y|Zm = x] = Pπ [Zn+1 = y|Zn = x] (13.9)

for every m,n ∈ N such that Pπ [Zm = x] > 0 and P[Zn = x] > 0: this property is
called time homogeneity.

Remark 13.3. Conversely, it is an exercise to check that given (Ω ,B,P;(Zn)n∈N),
with Ω = XN (cf. (13.3)), B ⊆P(Ω) a σ -algebra, P a probability measure defined
on B, and (Zn)n∈N a sequence of X-valued random variables satisfying conditions

P[Zn+1 = y|Zn = x,Zn−1 = xn−1,Zn−2 = xn−2, . . . ,Z0 = x0] = P[Zn+1 = y|Zn = x]

and
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P[Zm+1 = y|Zm = x] = P[Zn+1 = y|Zn = x]

for all x,y,xi ∈ X for all i, and all n,m ∈ N, we can associate with it a Markov chain
(X ,P,π) as follows: the initial distribution will be

π(x) :=P[Z0 = x],

(cf. (13.6)) for all x ∈ X ; moreover, for x ∈ X , if there exists an n ∈ N such that
P[Zn = x] > 0, then we denote by n(x) the minimal such value, otherwise we set
n(x) :=∞. Then the transition probabilities can be defined as

p(x,y) :=

{
P[Zn(x)+1 = y|Zn(x) = x] if n(x)< ∞

φ(y) otherwise

(cf. (13.7)) for all x,y ∈ X , where φ : X→ [0,1] is any map such that ∑y∈X φ(y) = 1.
Note that if n(x) < ∞ for all x ∈ X , then this Markov chain is clearly unique.

Notice that this condition is implied by irreducibility, an important property that we
will discuss in the sequel (see Section 13.3).

A function µ : X → [0,1] such that ∑x∈X µ(x) = 1 uniquely defines a probability
measure on X (that we continue to denote by µ) by setting µ(A) := ∑x∈A µ(x) for
every A ⊆ X . For this reason, with a slight abuse of language, one refers to µ as to
an atomic probability measure on X .

Thus, the initial distribution is an atomic measure. Sometimes, a point x0 ∈ X is
fixed and the initial distribution is the Dirac delta δx0 at x0, i.e. δx0(y) is equal to 1
if y = x0 and to 0 otherwise. In the sequel, when π = δx with x ∈ X , for simplicity
we shall write Px instead of Pδx .

Remark 13.4. Notice that given a Markov chain (X ,P,π), together with the proba-
bility measure Pπ , we can (and we will) consider also the probability measures Px
(coming from (X ,P,δx)) for all x ∈ X .

Moreover, when the initial distribution is understood, we shall denote the Markov
chain simply by (X ,P).

Given a Markov chain (X ,P), we denote by G = G (X ,P) = (X ,E) the directed
graph associated with (X ,P). Its vertex set is X , the state space of the Markov chain,
and its edge set E ⊆ X ×X is the set of pairs (x,y) ∈ X ×X such that p(x,y) 6= 0.
Note that G may have loops (i.e. edges of the form (x,x) with x∈X) but not multiple
(directed) edges.

For n ∈ N we set P0 := I = (δx,y)x,y∈X and, for n≥ 1, we denote by

Pn :=PPn−1 =
(

p(n)(x,y)
)

x,y∈X

the n-th power of the transition matrix P. It is an exercise to show that Pn is also a
stochastic matrix. Note that, in particular, we have

p(0)(x,y) =

{
1 if y = x
0 otherwise

and p(1)(x,y) = p(x,y),
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for all x,y ∈ X . Then

p(n+1)(x,y) = ∑
u∈X

p(x,u)p(n)(u,y) (13.10)

and, provided π(x)> 0,

p(n)(x,y) = Pπ [Zn = y | Z0 = x]. (13.11)

In other words, (13.11) expresses the probability that starting from state x one
arrives in state y in n random steps. Note that, by time homogeneity, we have

Pπ [Zk+n = y|Zk = x] = p(n)(x,y) (13.12)

(provided Pπ [Zk = x]> 0) for all k ∈ N.
A real random variable is a B-measurable function f : (Ω ,B)→ (R,B), where

R=R∪{−∞,+∞} and B is the σ -algebra of extended Borel sets of R of R. If the
integral of f with respect to the measure Pπ exists, then the quantity

e( f ) :=
∫

Ω

f (ω)dPπ(ω) ∈ R

is called the expected value (or expectation) of f .
For example, if f = α1C, where α ∈R, C =C(y0,y1, . . . ,ym) is the cylinder with

base (y0,y1, . . . ,ym) ∈ Xm, and 1C(y) equals 1 if y ∈C and 0 otherwise, then

e( f ) = αPπ(C(y0,y1, . . . ,ym)) = απ(y0)p(y0,y1)p(y1,y2) · · · p(ym−1,ym).

Suppose now that π = δx0 , where x0 ∈ X is fixed, and, for x ∈ X and n ∈N, consider
the real random variable vx

n : Ω →{0,1} ⊆ R defined by

vx
n(ω) = δx(Zn(ω))

for all ω ∈Ω . Thus, vx
n(ω) equals 1 if at time n the random walker, whose trajectory

is ω (with Z0(ω) = x0), is exactly in x, and 0 otherwise. We have

e(vx
n) =

∫
Ω

vx
n(ω)dPx0(ω)

= Px0

( ⋃
y1,y2,...,yn−1∈X

C(x0,y1,y2, . . . ,yn−1,x)

)
= ∑

y1,y2,...,yn−1∈X
Px0(C(x0,y1,y2, . . . ,yn−1,x))

(by (13.5)) = ∑
y1,y2,...,yn−1∈X

p(x0,y1)p(y1,y2) · · · p(yn−1,x)

= p(n)(x0,x).
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It follows that

vx :=
∞

∑
n=0

vx
n

is the real random variable representing the total number of times the random
walker, starting at x0, visits x. Thus the corresponding expected value is given by

e(vx) =
∞

∑
n=0

p(n)(x0,x). (13.13)

13.3 Irreducible Markov Chains

Definition 13.5. A Markov chain (X ,P,π) is called irreducible if for every x,y ∈ X
there exists an n = n(x,y) ∈ N\{0} such that p(n)(x,y)> 0.

Let (X ,P,π) be a Markov chain and denote by G = (X ,E) the associated directed
graph. Then (X ,P,π) is irreducible if and only if G is connected, that is, for every
pair (x,y) of vertices there exists a finite directed path connecting x to y (exercise).

The power series

G(x,y | z) :=
∞

∑
n=0

p(n)(x,y)zn (13.14)

where x,y∈ X , and z is an indeterminate, is called the Green function of the Markov
chain.

Proposition 13.6. Suppose that (X ,P,π) is irreducible and let t ∈ (0,∞). Then the
series G(x,y | t) either diverges for every x,y ∈ X, or converges for every x,y ∈ X.

Proof. Let x,y,x′,y′ ∈ X . Suppose that G(x,y | t) < ∞ and let us show that we also
have G(x′,y′ | t)< ∞.

By the irreducibility assumption, we can find h,k ∈N\{0} such that p(h)(x,x′)>
0 and p(k)(y′,y)> 0. Also

p(h+n+k)(x,y)≥ p(h)(x,x′)p(n)(x′,y′)p(k)(y′,y) (13.15)

for all n ∈ N. We then have

G(x,y | t) =
∞

∑
m=0

p(m)(x,y)tm

≥
∞

∑
m=h+k

p(m)(x,y)tm

=
∞

∑
n=0

p(h+k+n)(x,y)th+k+n

(by (13.15) and th+k+n > 0) ≥
∞

∑
n=0

th+ktn p(h)(x,x′)p(n)(x′,y′)p(k)(y′,y)
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= p(h)(x,x′)p(k)(y′,y)th+k
∞

∑
n=0

p(n)(x′,y′)tn

= p(h)(x,x′)p(k)(y′,y)th+kG(x′,y′ | t).

This shows that G(x′,y′ | t)< ∞. �

From now on, we will always assume that our Markov chains are irreducible.
For x,y ∈ X we set

G(x,y) :=G(x,y | 1) =
∞

∑
n=0

p(n)(x,y) ∈ [0,+∞]. (13.16)

Notice that this is the expected total number of times the random walker visits y
after visiting x.

Let x,y ∈ X . The real random variable

tx := inf{n≥ 1 : Zn = x}

is called a hitting time. Thus tx(ω) = n indicates that the random walker, whose
trajectory is ω , visits state x for the first time at time t = n.

The quantity
f (n)(x,y) :=Px[ty = n]

which represents the probability that the random walker, after visiting x, arrives in
y for the first time in n steps, is called a hitting probability. Note that f (0)(x,y) = 0
for all (possibly equal) x,y ∈ X .

We denote by

F(x,y | z) :=
∞

∑
n=0

f (n)(x,y)zn =
∞

∑
n=1

f (n)(x,y)zn (13.17)

the associated generating function.

Proposition 13.7. Suppose that the Markov chain (X ,P,π) is irreducible. Let x,y ∈
X be distinct elements. Then the following holds:

(1) G(x,y | z) = G(y,y | z)F(x,y | z);
(2) G(x,x | z) = 1+G(x,x | z)F(x,x | z);
(3) if t ∈ [0,+∞) is such that G(x,x | t)< ∞ and F(x,x | t)< 1 then

G(x,x | t) = 1
1−F(x,x | t)

. (13.18)

Proof. Let n ≥ 1. Suppose Z0 = x and Zn = y, and denote by k ∈ {1,2, . . . ,n} the
instant such that Zk = y and Z j 6= y for all 1 ≤ j ≤ k− 1, equivalently ty = k. Note
that the events

[ty = k] = [Zk = y,Z j 6= y for j = 1,2, . . . ,k−1],

where k = 1,2, . . ., are pairwise disjoint. Using the Markov property we can write
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p(n)(x,y) = Px[Zn = y]

=
n

∑
k=1
Px[Zn = y, ty = k]

=
n

∑
k=1
Px[Zn = y | ty = k]Px[ty = k]

=
n

∑
k=1
Px[Zn = y | Zk = y,Z j 6= y for j = 1,2, . . . ,k−1]Px[ty = k]

=
n

∑
k=1
Px[Zn = y | Zk = y]Px[ty = k]

=
n

∑
k=1

p(n−k)(y,y) f (k)(x,y).

Since f (0)(x,y) = 0, for n≥ 1 we deduce

p(n)(x,y) =
n

∑
k=0

p(n−k)(y,y) f (k)(x,y).

Summing up over n ∈ N, as p(0)(x,y) = δx(y), we have

G(x,y | z) =
∞

∑
n=0

p(n)(x,y)zn

= p(0)(x,y)+
∞

∑
n=1

p(n)(x,y)zn

= δx(y)+
∞

∑
n=1

n

∑
k=0

p(n−k)(y,y) f (k)(x,y)zn

= δx(y)+G(y,y | z)F(x,y | z).

This proves (1) and (2).
Suppose that t ∈ [0,+∞) is such that G(x,x | t)< ∞ and F(x,x | t)< 1. We need

a theorem, see [297, Theorem 3.5].

Theorem 13.8 (Mertens). Let (an)n∈N and (bn)n∈N be two real sequences. Suppose
that ∑

∞
n=0 an converges absolutely to A ∈ R and ∑

∞
n=0 bn converges to B ∈ R. Then

their Cauchy product
∞

∑
n=0

(
n

∑
k=0

an−kbk

)
converges to AB.

Applying the above theorem and (2) we deduce (13.18). �
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13.4 Recurrent and Transient Markov Chains

Definition 13.9. Let (X ,P,π) be a Markov chain. One says that a state x ∈ X is
recurrent provided

Px[∃n > 0 : Zn = x] = 1,

i.e. when, once x has been visited, the probability of returning to x is 1. Otherwise,
namely if Px[∃n > 0 : Zn = x]< 1, it is called transient.

Remark 13.10. Notice that the property of being recurrent or transient for a state
x ∈ X is independent of the initial distribution π .

Let (X ,P,π) be a Markov chain. For x,y ∈ X let us set

F(x,y) :=Px[∃n > 0 : Zn = y],

the probability of visiting y at least once after visiting x, and

H(x,y) :=Px[Zn = y for infinitely many n ∈ N],

the probability of visiting y infinitely many times after visiting x.
Notice that a state x ∈ X is recurrent if and only if F(x,x) = 1.
We also observe the following elementary facts.

F(x,y) :=Px[∃n > 0 : Zn = y] =
∞

∑
n=1
Px[ty = n] =

∞

∑
n=0

f (n)(x,y) = F(x,y | 1)

(recall that f (0)(x,y) = 0) for all x,y ∈ X .
Also, suppose that after visiting the state x ∈ X the random walker will return to

x with probability one (i.e. x is recurrent). Then it is intuitively clear that the random
walker will return to x infinitely many times (thus H(x,x) = 1).

Theorem 13.11 (Kolmogorov zero-one law for recurrence). Let (X ,P,π) be an
irreducible Markov chain. For x ∈ X the following conditions are equivalent:

(a) x is recurrent (i.e. F(x,x) = 1);
(b) G(x,x) = ∞;
(c) H(x,x) = 1;
(d) H(x,x)> 0.

As a consequence, x is transient if and only if H(x,x) = 0.

Proof. In order to prove the implication (a) ⇒ (b), we apply the following well-
known theorem, due to Niels Henrik Abel (see [297, Theorem 8.2]).

Theorem 13.12 (Abel). Let f (z) :=∑
∞
n=0 anzn be a power series converging for any

|z|< 1. If ∑
∞
n=0 an < ∞ then

lim
z→1−

f (z) =
∞

∑
n=0

an.
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By the theorem we have

F(x,x) = lim
t→1−

F(x,x | t).

If G(x,x)< ∞, then, again by Abel’s theorem,

G(x,x) = lim
t→1−

G(x,x | t).

Hence by Proposition 13.7.(3), we deduce

lim
t→1−

1
1−F(x,x | t)

= G(x,x)< ∞,

and therefore F(x,x)< 1. This shows (a)⇒ (b).
Conversely, suppose that F(x,x) < 1, and let R be the radius of convergence of

the power series G(x,x | z). We need the following theorem of Alfred Pringsheim,
see [173, Theorem 5.7.1] or [332, Theorem 7.21].

Theorem 13.13 (Pringsheim). Let f (z) :=∑
∞
n=0 anzn with an ≥ 0 and let R ∈

(0,+∞) be its radius of convergence. Then f (z) has a pole at R. In particular,

lim
z→R−

f (z) = +∞.

So, if R≤ 1, then by the theorem

lim
t→R−

G(x,x | t) = +∞.

On the other hand, by Proposition 13.7.(3),

lim
t→R−

G(x,x | t) = lim
t→R−

1
1−F(x,x | t)

≤ 1
1−F(x,x)

<+∞,

a contradiction. Hence R > 1, and therefore G(x,x) = G(x,x | 1) < ∞. This shows
that (b)⇒ (a).

For m≥ 1 let us set

H(m)(x,y) :=Px[∃0 < n1 < n2 < .. . < nm : Zn j = y for all j = 1,2, . . . ,m].

This expresses the probability that the random walker, after visiting x, will visit state
y at least m times. Then for x,y ∈ X we have H(1)(x,y) = F(x,y) and

H(x,y) = lim
m→∞

H(m)(x,y) (13.19)

(note that H(m)(x,y)≥ H(m+1)(x,y) for all m≥ 1). Moreover,
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H(m)(x,y)

=
∞

∑
k=1
Px[ty = k and ∃k = n1 < n2 < .. . < nm : Zn j = y for all j = 1,2, . . . ,m]

= ∑
k: f (k)(x,y)>0

f (k)(x,y)Px[∃k = n1 < n2 < .. . < nm : Zn j = y

for all j = 1,2, . . . ,m | Zk = y and Z j 6= y for j = 1,2, . . . ,k−1]

= ∑
k: f (k)(x,y)>0

f (k)(x,y)Py[∃0 < n2 < .. . < nm : Zn j = y for all j = 2, . . . ,m]

=
∞

∑
k=1

f (k)(x,y)H(m−1)(y,y)

= F(x,y)H(m−1)(y,y).

As a consequence,
H(m)(x,x) = F(x,x)m (13.20)

for all m≥ 1.
If F(x,x) = 1 then from (13.20) and (13.19) we deduce H(x,x) = 1, showing

(a) ⇒ (c). The implication (c) ⇒ (d) is trivial. Suppose now H(x,x) > 0. If we
had F(x,x) < 1 then from (13.20) and (13.19) we would deduce H(x,x) = 0, a
contradiction. This shows (d)⇒ (a), completing the proof. �

Corollary 13.14. Let (X ,P,π) be an irreducible Markov chain. Then either all the
states x∈ X are recurrent, in which case we call the Markov chain recurrent, or they
are all transient, in which case we call the Markov chain transient.

Proof. Let x,y ∈ X . Then, by Theorem 13.11, x is recurrent if and only if G(x,x) =
+∞. Now, by Proposition 13.6, G(x,x) = +∞ if and only if G(y,y) = +∞, hence,
again by Theorem 13.11, this holds if and only if y is recurrent. �

Remark 13.15. Notice that the property of being recurrent or transient for an irre-
ducible Markov chain is independent of the initial distribution.

13.5 Random Walks on Finitely Generated Groups

Let G be a finitely generated group and let Y ⊆ G be a finite symmetric generating
subset.

Definition 13.16. Let (G,P) = (G,P,π) be an irreducible Markov chain on G. We
say that (G,P) defines a random walk on G provided that the transition probabilities
satisfy the following properties:

(1) p(g,h) = p(h,g) for all g,h ∈ G (symmetry);
(2) p(g′g,g′h) = p(g,h) for all g′,g,h ∈ G (space homogeneity);
(3) ∑h∈G dY (g,h)2 p(g,h)< ∞ for all g ∈ G (finiteness of the second moment).
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Note that these conditions (in particular condition (3)) do not depend on the gen-
erating subset Y ⊆ G nor on the initial distribution (exercise).

Remark 13.17. Notice that, by space homogeneity (property (2)) and left invariance
of the metric dY , we have

∑
h∈G

dY (g,h)2 p(g,h) = ∑
h∈G

dY (g′,h)2 p(g′,h)

for all g,g′ ∈ G.

A Markov chain (G,P,π) that satisfies (1), (2), and the condition

p(g,h) = 0 whenever g−1h /∈ Y

for all g,h∈G, clearly also satisfies condition (3), and therefore it is a random walk.
Such a random walk is called nearest neighbor (with respect to Y ).

Example 13.18. The simple random walk on G with respect to the finite symmet-
ric generating subset Y is the nearest neighbor random walk (G,Q) = (G,Q,δ1G)
defined by

q(g,h) =

{
1
|Y | if g−1h ∈ Y

0 otherwise

for all g,h ∈ G. Note that (G,Q) is irreducible and satisfies conditions (1), (2) and
(3) (exercise). Also, the graph G = (G,E) associated with the Markov chain (G,Q)
is exactly the (directed) Cayley graph of G with respect to Y .

With a random walk (G,P) = (G,P,π) we associate an atomic probability mea-
sure µ on G obtained by setting

µ(g) := p(1G,g) (13.21)

for all g ∈G. From conditions (1), (2), and (3) in Definition 13.16 and irreducibility
of (G,P) we immediately deduce the following properties of the probability measure
µ:

(1’) µ(g) = µ(g−1) for all g ∈ G (symmetry);
(2’) supp(µ) generates G (irreducibility);
(3’) ∑h∈G dY (1G,g)2µ(g) = ∑h∈G `Y (g)2µ(g) < ∞ for all g ∈ G (finiteness of the

second moment).

Note that, in fact, condition (2’) can be reformulated as

(2”)
⋃

∞
n=0 supp(µ(n)) = G,

where µ(n) is the n-th convolution of µ , which is defined recursively by setting
µ(1) :=µ and µ(n)(g) :=∑h∈G µ(n−1)(gh−1)µ(h) = ∑h∈G µ(n−1)(h)µ(h−1g) for all
g∈G. It is an exercise to check that this is an atomic probability measure on G. Now
(2”) follows from the irreducibility of (G,P) and from the fact that p(n)(1G,g) =
µ(n)(g) for all g ∈ G (exercise). The measure associated with a nearest neighbor
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random walk is finitely supported: indeed supp(µ) ⊆ Y . In the case of the simple
random walk one has supp(µ) = Y and the associated measure is µ = 1

|Y |1Y .
Conversely, with a probability measure µ on G satisfying properties (1’), (2’),

and (3’) above we associate a random walk (G,P) on G by setting

p(g,h) :=µ(g−1h) (13.22)

for all g,h ∈ G. It is an exercise to show that (G,P) is irreducible and satisfies
conditions (1), (2), and (3) in Definition 13.16.

13.6 Recurrence of the Simple Random Walk on Z and Z2

We are now in a position to answer a question that we asked at the beginning of the
chapter. We start with d = 1,2.

Proposition 13.19 (Pólya). The simple random walks on Z and on Z2 are recur-
rent.

Proof. A finite random path, briefly a path, in Z is a sequence π = (x0,x1,x2, . . . ,xn)
where x0,x1, . . . ,xn ∈ Z, x0 = 0, and |xi+1− xi| = 1 for all i = 0,1, . . . ,n− 1. The
integer n is then called the length of the path π . Such a path is called closed provided
that xn = x0.

The number of paths of length n is clearly 2n for all n ∈ N.
Let us determine the number of closed paths of length n. Clearly if n is odd this

number is zero. Suppose that n is even, say n = 2m. Then each closed path has m
left steps and m right steps. Hence the total number of such closed path is

(2m
m

)
.

Hence the probability pn :=q(n)(0,0) of returning to the origin after n steps is
given by

pn =

{
1

22m

(2m
m

)
if n = 2m is even

0 otherwise.
(13.23)

Notation 13.20. Given two sequences (ak)k∈N and (bk)k∈N of positive numbers, we
set ak ∼ bk if limk→∞ ak/bk = 1, and ak � bk if limk→∞ ak/bk ≤ 1.

From Stirling’s formula (see [297, Theorem 8.22])

k!∼ kke−k
√

2πk (13.24)

we deduce

p2m ∼
1

22m
(2m)2me−2m

√
2π2m

m2me−2m2πm
=

1√
πm

. (13.25)

As ∑
∞
m=1

1√
m = ∞,

G(0,0) =
∞

∑
n=0

pn =
∞

∑
m=0

p2m = ∞.
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By virtue of Theorem 13.11, this means that the simple random walk on Z is recur-
rent.

Consider now the simple random walk on Z2. Thus the walker moves with equal
probability to either North, South, East, or West. The notion of path (resp. closed
path) is defined verbatim as in the one-dimensional case. The number of paths of
length n is now 4n. Let us determine the number of closed paths. As in the one-
dimensional case, there are no closed paths of odd length. On the other hand, if
π is a closed path of even length, say n = 2m, then clearly the number k of North
steps equals the number of South steps, and similarly the number m−k of East steps
equals the number of West steps. Hence the total number of closed paths of length
n = 2m is

m

∑
k=0

(
2m

k,k,m− k,m− k

)
=

m

∑
k=0

(2m)!
k!k!(m− k)!(m− k)!

=
m

∑
k=0

(2m)!
m!m!

m!m!
k!k!(m− k)!(m− k)!

=
m

∑
k=0

(
2m
m

)(
m
k

)2

=

(
2m
m

)2

,

where the last equality follows from the classical identity

m

∑
k=0

(
m
k

)2

=
m

∑
k=0

(
m
k

)(
m

m− k

)
=

(
2m
m

)
,

which has the following combinatorial interpretation: to choose m objects out of a
collection of m red objects and m blue ones, we first choose k red objects and then
m− k blue ones.

Hence the probability p′n :=q(n)((0,0),(0,0)) of returning to the origin after n
steps is

p′n =

 1
42m

(2m
m

)2
=
(

1
22m

(2m
m

))2
if n = 2m

0 otherwise.

Notice that p′n = (pn)
2, so that, by (13.25), we have p′2m ∼

1
πm , and, since ∑

∞
m=1

1
m =

+∞,

G((0,0),(0,0)) =
∞

∑
n=0

p′n =
∞

∑
m=0

p′2m = ∞.

By virtue of Theorem 13.11, this shows that the simple random walk on Z2 is also
recurrent. �



13.7 Transience of the Simple Random Walk on Z3 291

13.7 Transience of the Simple Random Walk on Z3

The situation is different in one more dimension:

Proposition 13.21 (Pólya). The simple random walk on Z3 is transient.

Proof. With the notation as in the proof of Proposition 13.19, we now have

p′′2m :=q(2m)((0,0,0),(0,0,0)) =
1

62m ∑
j,k≥0

j+k≤m

(2m)!
j! j!k!k!(m− j− k)!(m− j− k)!

=
1

22m

(
2m
m

)
∑

j,k≥0
j+k≤m

1
32m

(
m!

j!k!(m− j− k)!

)2

.

Using the simple fact that if a,b ∈ N and a < b, then a!b!≥ (a+1)!(b−1)!, we
obtain that, for all j,k ≥ 0 with j+ k ≤ m,

m!
j!k!(m− j− k)!

≤ m!⌊m
3

⌋
!
⌊m

3

⌋
!
⌊m

3

⌋
!
.

Consequently, observing that

∑
j,k≥0

j+k≤m

m!
j!k!(m− j− k)!

= (1+1+1)m = 3m,

we deduce

p′′2m ≤
1

22m

(
2m
m

)(
1

3m
m!

([m
3 ]!)

3

)
1

3m ∑
j,k≥0

j+k≤m

m!
j!k!(m− j− k)!

=
1

22m

(
2m
m

)(
1

3m
m!([m
3

]
!
)3

)

=
1

22m3m
(2m)!

m!(
[m

3

]
!)3

.

Stirling’s formula (cf. (13.24)) shows that

p′′2m �
√

2(√
2π

3

)3

m
3
2

hence, since ∑
∞
n=1

1

m
3
2
< ∞, one finally has

G((0,0,0),(0,0,0)) =
∞

∑
n=0

p′′n =
∞

∑
m=0

p′′2m < ∞.
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By virtue of Theorem 13.11, this shows that the simple random walk on Z3 is tran-
sient. �

13.8 Varopoulos’ Theorem and its Proof Strategy

The following theorem is the main result of this chapter.

Theorem 13.22 (Varopoulos). Let G be a finitely generated group, and suppose
that the simple random walk on G corresponding to some finite symmetric generat-
ing subset is recurrent. Then one of the following holds:

(i) G is finite, or
(ii) G has a subgroup of finite index isomorphic to Z, or

(iii) G has a subgroup of finite index isomorphic to Z2.

In order to settle the proof, we shall first introduce the notion of the network
associated with a Markov chain on G. We shall then present some recurrence cri-
teria and, in particular the one due to Crispin Nash-Williams. This will allow us to
show that the simple random walk on any group whose growth function is at most
quadratic is recurrent. On the other hand, if the growth of G is at least cubic, we
shall explicitly construct transient (in general not simple) random walks on G. But
then, making use of the notion of network, we shall prove that the recurrence of a
generic random walk on G is equivalent to the recurrence of the simple random walk
on G, so that the property of being recurrent is intrinsic to the group (i.e. it does not
depend on the particular random walk). Finally, using Gromov’s theorem (Theorem
12.1 and Corollary 12.24) in combination with the Bass–Guivarc’h formula (The-
orem 7.29), we have that the unique groups whose growth is at most quadratic are
indeed either finite or virtually isomorphic to Zd for d = 1,2, and that there are no
groups whose growth is more than quadratic and less than cubic. This will complete
the proof of Varopoulos’ theorem.

13.9 Reversible Markov Chains and Networks

Definition 13.23. A Markov chain (X ,P) = (X ,P,π) is called reversible if there
exists a function m : X → (0,∞), sometimes called an invariant measure, such that

m(x)p(x,y) = m(y)p(y,x) for all x,y ∈ X . (13.26)

If (X ,P) is reversible, then, for x,y ∈ X , the quantity

a(x,y) :=m(x)p(x,y) (= m(y)p(y,x) = a(y,x)) (13.27)

is called the conductance between x and y.
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Example 13.24. Let G be a finitely generated group, let Y ⊆ G be a finite and sym-
metric generating subset, and denote by (G,Q) the simple random walk on G asso-
ciated with Y . By symmetry, we have q(g,h) = q(h,g) for all g,h ∈ G. Thus (G,Q)
is reversible: one may take m(g) = 1 for all g ∈ G.

Remark 13.25. Notice that the directed graph (X ,E) associated with a reversible
Markov chain (X ,P) has the property that (x,y) ∈ E if and only if (y,x) ∈ E for
all x,y ∈ X . Hence we can consider the undirected graph, which we still denote
G = G (X ,P) = (X ,E), where now the elements of the edge set E are the multisets
{x,y}, with x,y ∈ X , such that p(x,y) 6= 0.

Let (X ,P,π) be a reversible Markov chain.
Notice that since

∑
y∈X

a(x,y) = ∑
y∈X

m(x)p(x,y) = m(x) ∑
y∈X

p(x,y) = m(x) ∈ (0,∞),

the transition matrix of any reversible Markov chain is uniquely determined by its
conductances. Indeed we have:

p(x,y) =
a(y,x)
m(x)

=
a(y,x)

∑z∈X a(x,z)
. (13.28)

For any undirected graph G = (X ,E) associated with a reversible Markov chain
(X ,P) we arbitrarily fix, once and for all, an orientation on the edge set E. This
means that for every edge e ∈ E we chose an initial vertex e+ ∈ X and a terminal
vertex e− ∈ X so that e = {e+,e−}.

Definition 13.26. The function r : E→ (0,+∞) defined by

r(e) :=
1

a(e+,e−)

(
=

1
a(e−,e+)

)
(13.29)

for all e ∈ E is called the resistance. The triple N = (X ,E,r) is called a network.

Note that in (13.29) a(e+,e−) = m(e+)p(e+,e−) 6= 0 because m(e+) > 0 and,
since e = {e+,e−} ∈ E, we also have p(e+,e−)> 0.

Again, the transition matrix of a reversible Markov chain uniquely determines its
associated network, and vice versa. In particular, we have

m(x) = ∑
e∈E

e+=x

1
r(e)

= ∑
e∈E

e−=x

1
r(e)


for all x ∈ X , and

p(e+,e−) =
1

m(e+)r(e)
(13.30)

for all e = {e+,e−} ∈ E. Equivalently, for all x,y ∈ X ,
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p(x,y) =

{
1

m(x)r({x,y}) if {x,y} ∈ E

0 otherwise.
(13.31)

Consider now the real Hilbert spaces

L2(X ,m) := { f ∈ RX : ∑
x∈X

m(x) f 2(x)< ∞}

and
L2(E,r) :={u ∈ RE : ∑

e∈E
r(e)u2(e)< ∞}

with inner products defined by

〈 f ,g〉X := ∑
x∈X

m(x) f (x)g(x)

for all f ,g ∈ L2(X ,m), and

〈u,v〉E := ∑
e∈E

r(e)u(e)v(e)

for all u,v ∈ L2(E,r), respectively.

Remark 13.27. Notice that, if f ,g ∈ L2(X ,m) (resp. u,v ∈ L2(E,r)), then the func-
tion x 7→ f (x)g(x) (resp. e 7→ u(e)v(e)) is in L1(X ,m) :={h∈RX : ∑x∈X m(x)|h(x)|<
∞} (resp. L1(E,r) :={w ∈ RE : ∑e∈E r(e)|w(e)|< ∞}).

The corresponding L2-norms are defined by ‖ f‖X :=
√
〈 f , f 〉X for all f ∈

L2(X ,m) and ‖u‖E :=
√
〈u,u〉E for all u ∈ L2(E,r).

Also consider the linear operator ∇ : RX → RE defined by

(∇ f )(e) :=
f (e+)− f (e−)

r(e)
(13.32)

for all f ∈RX and e ∈ E. It is called the nabla operator associated with the network
(X ,E,r).

We observe that ∇(L2(X ,m))⊆ L2(E,r): indeed, for f ∈ L2(X ,m), we have

〈∇ f ,∇ f 〉E = ∑
e∈E

( f (e+)− f (e−))2

r(e)

=
1
2 ∑

x,y∈X
m(x)p(x,y)( f (x)− f (y))2 (13.33)

≤ ∑
x,y∈X

m(x)p(x,y)( f (x)2 + f (y)2)

= 2‖ f‖2
X < ∞.

In particular, this shows that ‖∇|L2(X ,m)‖ ≤
√

2, so that ∇|L2(X ,m) is a bounded oper-
ator.
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For u ∈ RE consider the expression

(∇∗u)(x) :=
1

m(x)

 ∑
e∈E:
e+=x

u(e)− ∑
e∈E:
e−=x

u(e)

 . (13.34)

Remark 13.28. Suppose that the associated graph G is locally finite (i.e. for each
x ∈ X the number of edges e ∈ E for which e+ = x or e− = x is finite). Then (13.34)
is a finite sum (so that (∇∗u)(x) ∈ R) for every u ∈ RE and x ∈ X and therefore
defines a map ∇∗ : RE → RX .

We claim that for u∈L2(E,r) the sum in (13.34) is convergent (so that (∇∗u)(x)∈
R) for every x ∈ X and therefore defines a linear operator ∇∗ : L2(E,r)→ RX .

For x,y ∈ X let us set

δ̃x(y) =

{
1

m(x) if y = x

0 otherwise.

Note that δ̃x ∈ L2(X ,m) and that 〈 f , δ̃x〉X = f (x) for all f ∈ L2(X ,m). We remarked
above that ∇δ̃x ∈ L2(E,r).

Let u ∈ L2(E,r). We have

〈u,∇δ̃x〉E = ∑
e∈E

r(e)u(e)
(

∇δ̃x

)
(e)

= ∑
e∈E

r(e)u(e)

(
δ̃x(e+)− δ̃x(e−)

r(e)

)

=
1

m(x)

 ∑
e∈E:
e+=x

u(e)− ∑
e∈E:
e−=x

u(e)

 ,

where the last equality follows from Remark 13.27, which guarantees that the last
two sums are finite. This proves our claim.

Lemma 13.29. We have ∇∗(L2(E,r))⊆ L2(X ,m). Moreover,

〈∇ f ,u〉E = 〈 f ,∇∗u〉X (13.35)

for all f ∈ L2(X ,m) and u ∈ L2(E,r). In other words, the linear operator

∇
∗|L2(E,r) : L2(E,r)→ L2(X ,m)

is the adjoint of the nabla operator ∇|L2(X ,m) : L2(X ,m)→ L2(E,r).

Proof. For f ∈ L2(X ,m) and u ∈ RE with finite support we have
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〈∇ f ,u〉E = ∑
e∈E

r(e)(∇ f )(e)u(e)

= ∑
e∈E

r(e)
f (e+)− f (e−)

r(e)
u(e)

= ∑
e∈E

( f (e+)− f (e−))u(e)

= ∑
e∈E

f (e+)u(e)−∑
e∈E

f (e−)u(e)

= ∑
x∈X

f (x) ∑
e∈E

e+=x

u(e)−

∑
x∈X

f (x) ∑
e∈E

e−=x

u(e)


= ∑

x∈X
f (x)

 ∑
e∈E

e+=x

u(e)− ∑
e∈E

e−=x

u(e)



= ∑
x∈X

m(x) f (x)
1

m(x)

 ∑
e∈E

e+=x

u(e)− ∑
e∈E

e−=x

u(e)


= ∑

x∈X
m(x) f (x)(∇∗u)(x)

= 〈 f ,∇∗u〉X .

So ∇∗|L2(E,r) coincides with the adjoint of the nabla operator ∇|L2(X ,m) : L2(X ,m)→
L2(E,r) on the dense subspace of finitely supported functions on E. By continuity,
∇∗|L2(E,r) is indeed the adjoint of ∇|L2(X ,m). This proves all of our statements. �

Definition 13.30. Set

D(N ) :={ f ∈ RX : ∇ f ∈ L2(E,r)}.

For f ∈ D(N ) we define its Dirichlet seminorm as D( f ) :=〈∇ f ,∇ f 〉E . We fix an
element x0 ∈ X and equip D(N ) with the inner product 〈·, ·〉D defined by setting

〈 f ,g〉D = 〈∇ f ,∇g〉E + f (x0)g(x0) (13.36)

for all f ,g ∈D(N ). We denote by ‖ · ‖D the associated norm.

Note that L2(X ,m)⊆D(N ), and that

D( f ) = 〈∇ f ,∇ f 〉E

= ∑
e∈E

r(e)
(
( f (e+)− f (e−))

r(e)

)2

= ∑
e∈E

( f (e+)− f (e−))2

r(e)
(13.37)
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=
1
2 ∑

x,y∈X
( f (x)− f (y))2 m(x)p(x,y)

for all f ∈D(N ).

Lemma 13.31. The space D(N ) is a Hilbert space with respect to the inner prod-
uct 〈·, ·〉D. Moreover, convergence in D(N ) implies pointwise convergence.

Proof. Let f ∈ D(N ). For x ∈ X let π = (x0,x1, . . . ,xn = x) be a geodesic path
connecting x0 to x in X and set ei = {xi−1,xi} ∈ E for all i = 1,2, . . . ,n. We have

( f (x)− f (x0))
2 =

(
n

∑
i=1

f (xi)− f (xi−1)

)2

=

(
n

∑
i=1

f (xi)− f (xi−1)√
r(ei)

√
r(ei)

)2

(by Cauchy–Schwarz) ≤

(
n

∑
i=1

(
f (e+i )− f (e−i )

)2

r(ei)

)(
n

∑
i=1

r(ei)

)
(cf. (13.37)) ≤ D( f )c(x),

where c(x) :=max{1,∑n
i=1 r(ei)}. For all f ,g ∈D(N ), we deduce

| f (x)−g(x)|= | f (x)− f (x0)+ f (x0)−g(x)+g(x0)−g(x0)|
≤ |( f −g)(x)− ( f −g)(x0)|+ |( f −g)(x0)|

≤
√

c(x)D( f −g)+ |( f −g)(x0)|.
(13.38)

It then follows that convergence in D(N ) implies pointwise convergence: indeed
if ‖ f − g‖D is small, so are D( f − g) and |( f − g)(x0)| and therefore, by (13.38),
| f (x)−g(x)| is also small for all x ∈ X .

Let us show that D(N ) is complete. Suppose that ( fn)n∈N is a Cauchy sequence
in D(N ). Since

‖ fn− fm‖2
D = D( fn− fm)+( fn(x0)− fm(x0))

2

we immediately deduce that ( fn(x0))n∈N is a Cauchy sequence in R. On the other
hand, from (13.38) we deduce that the sequence ( fn(x))n∈N is a Cauchy sequence
in R for every x ∈ X \ {x0}. It follows that there exists an f∞ ∈ RX such that
limn→∞ fn(x) = f∞(x) for all x ∈ X .

Moreover, since D( fn− fm) = ‖∇ fn−∇ fm‖2
E , we have that (∇ fn)n∈N is a Cauchy

sequence in L2(E,r) and therefore it converges to an element u ∈ L2(E,r).
Since

|∇ f∞(e)−∇ fn(e)| ≤
1

r(e)

(
| f∞(e+)− fn(e+)|+ | f∞(e−)− fn(e+)|

)



298 13 The Theorems of Polya and Varopoulos

for all e ∈ E, we deduce that ∇ f∞ = u ∈ L2(E,r) and therefore f∞ ∈D(N ). Hence

‖ fn− f∞‖D = ‖∇( fn− f∞)‖2
E + |( fn− f∞)(x0)|2 = ‖∇ fn−u‖2

E + |( fn− f∞)(x0)|2→ 0

as n→ ∞. Thus the Cauchy sequence ( fn)n∈N is convergent to f∞ in D(N ). This
shows that D(N ) is complete. �

Proposition 13.32. Let f ∈D(N ). Then for every x ∈ X,

(∇∗∇ f )(x) = f (x)− [P f ](x), (13.39)

where
[P f ](x) := ∑

y∈X
p(x,y) f (y). (13.40)

Proof. Let x ∈ X . We have

(∇∗∇ f )(x) =
1

m(x)

 ∑
e∈E:
e+=x

∇ f (e)− ∑
e∈E:
e−=x

∇ f (e)


=

1
m(x)

 ∑
e∈E:
e+=x

f (e+)− f (e−)
r(e)

− ∑
e∈E:
e−=x

f (e+)− f (e−)
r(e)


= ∑

e∈E:
e+=x

f (e+)− f (e−)
m(e+)r(e)

− ∑
e∈E:
e−=x

f (e+)− f (e−)
m(e−)r(e)

(by (13.30)) = ∑
e∈E:
e+=x

( f (e+)− f (e−))p(e+,e−)− ∑
e∈E:
e−=x

( f (e+)− f (e−))p(e−,e+)

= ∑
e∈E:
e+=x

( f (x)− f (e−))p(x,e−)− ∑
e∈E:
e−=x

( f (e+)− f (x))p(x,e+)

= f (x)

 ∑
e∈E:
e+=x

p(x,e−)+ ∑
e∈E:
e−=x

p(x,e+)


−

 ∑
e∈E:
e+=x

p(x,e−) f (e−)+ ∑
e∈E:
e−=x

p(x,e+) f (e+)


= f (x) ∑

y∈X :
{x,y}∈E

p(x,y)− ∑
y∈X :
{x,y}∈E

p(x,y) f (y)

= f (x) ∑
y∈X

p(x,y)−∑
y∈X

p(x,y) f (y)

= f (x)− [P f ](x). �
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This proposition shows that the function P : D(N )→ L2(X ,m) defined for every
f ∈D(N ) by (13.40) is a well-defined linear operator.

Let f ∈ L2(X ,m). Then

‖P f‖2
X = ∑

x∈X
m(x)(P f (x))2

= ∑
x∈X

m(x) ∑
y,z∈X

p(x,y)p(x,z) f (y) f (z)

≤ 1
2 ∑

x∈X
m(x) ∑

y,z∈X
p(x,y)p(x,z)( f (y)2 + f (z)2)

=
1
2 ∑

x∈X
m(x) ∑

y∈X
p(x,y) f (y)2 +

1
2 ∑

x∈X
m(x) ∑

z∈X
p(x,z) f (z)2

= ∑
y∈X

∑
x∈X

m(y)p(y,x) f (y)2

= ∑
y∈X

m(y) f (y)2

= ‖ f‖2
X .

So P : L2(X ,m)→ L2(X ,m) is a bounded operator, with ‖P‖ ≤ 1. It is called the
Markov operator associated with the Markov chain (X ,P).

Let now `0(X) denote the subspace of RX consisting of all functions with finite
support and let D0(N ) denote its closure in D(N ).

Note that L2(X ,m)⊆D0(N ). Indeed, using (13.33), it is immediate to show that
there exists a constant C > 0 such that ‖ f‖D ≤C‖ f‖X for all f ∈ L2(X ,m).

For every subset A ⊆ X , we consider the matrix PA = (pA(x,y))x,y∈X , called the
transition probability remaining in A associated with P = (p(x,y))x,y∈X , defined by
setting

pA(x,y) := p(x,y)1A(x)1A(y) =

{
p(x,y) if both x,y ∈ A
0 otherwise

for all x,y ∈ X . Note that 0≤ pA(x,y)≤ p(x,y) for all x,y ∈ X with equality on the
right-hand side if and only if x,y both belong to A.

Then (PA)
n =: (p(n)A (x,y))x,y∈X is given by

p(n)A (x,y) = ∑
z∈A

pA(x,z)p(n−1)
A (z,y)

for all x,y ∈ X . Again, 0≤ p(n)A (x,y)≤ p(n)(x,y) for all x,y ∈ X . For n≥ 2, however
it may happen that p(n)A (x,y)< p(n)(x,y) even if both x,y belong to A.

We then denote by

GA(x,y | z) :=
∞

∑
n=0

p(n)A (x,y)zn

the associated Green function, and set GA(x,y) :=GA(x,y | 1) = ∑
∞
n=0 p(n)A (x,y).
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Lemma 13.33. Suppose that X is infinite and A⊆ X is finite. Then GA(x,y)< ∞ for
all x,y ∈ X.

Proof. For n≥ 1 we set

p(n)A (x,A) := ∑
y∈A

p(n)A (x,y)

for all x ∈ X , and
M(n)(A) :=max

x∈A
p(n)A (x,A).

Note that 0≤ p(n)A (x,A)≤ ∑y∈A p(n)(x,y)≤ ∑y∈X p(n)(x,y) = 1 for all x ∈ A so that
0≤M(n)(A)≤ 1. Moreover, for every h,k ≥ 1 we have

p(h+k)
A (x,A) = ∑

y,z∈A
p(h)A (x,z)p(k)A (z,y)≤ p(h)A (x,A)M(k)(A). (13.41)

Now, since X is infinite, A is finite, and P is irreducible, we can find x0 ∈ X \A
and for every x ∈ A there exists an nx ∈ N such that p(nx)(x,x0) > 0. It follows
that p(nx)(x,A) < 1. From (13.41) we deduce that, for every k ≥ 1, p(nx+k)(x,A) ≤
p(nx)

A (x,A)M(k)(A) < M(k)(A) ≤ 1. Thus, setting n0 :=max{nx : x ∈ A}, we have
α :=M(n0)(A)< 1. Now, for every n≥ n0 we can write n = kn0+ r where k≥ 1 and
0≤ r < n0. From (13.41) we then deduce

p(n)(x,A) = p(kn0+r)(x,A)≤ p((k−1)n0+r)(x,A)α ≤ ·· · ≤ p(r)(x,A)αk ≤ α
k.

As a consequence, the sum ∑
∞
n=0 p(n)A (x,y) converges exponentially, thus showing

that GA(x,y)< ∞. �

Suppose now that A is finite. Note that GA(x,y) = 0 if x and y do not both belong
to A. As a consequence, the function GA(·,x) is finitely supported for all x ∈ A. For
f ∈ RX we set

[GA f ](x) := ∑
y∈X

GA(x,y) f (y) = ∑
y∈A

GA(x,y) f (y) (13.42)

for all x ∈ X . Note that the above sum is finite, so that the quantity [GA f ](x) is
well defined, and that [GA f ](x) = 0 if x /∈ A. In particular, if f ∈ L2(X ,m) then
GA f ∈ L2(X ,m), so that GA : L2(X ,m)→ L2(X ,m) is a linear operator. Let us also
denote by IA : L2(X ,m)→ L2(X ,m) the operator defined by setting

[IA f ](x) =

{
f (x) if x ∈ A
0 otherwise

for all f ∈ L2(X ,m). Note that IA is the projection operator onto the space of func-
tions in L2(X ,m) which are supported in A.

Suppose now that f ∈ `0(X) is such that supp( f )⊆ A. Then we have
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〈∇ f ,∇GA(·,x)〉E = 〈 f ,(IA−PA)GA(·,x)〉X = m(x) f (x) (13.43)

for all x ∈ supp( f ). Indeed, for every x,y ∈ X we have

(IA−PA)GA(x,y) = (IA−PA)
∞

∑
n=0

p(n)A (x,y)

=
∞

∑
n=0

p(n)A (x,y)−
∞

∑
n=0

p(n+1)
A (x,y)

= p(0)A (x,y)

= δx,y.

Let B⊆ A be finite subsets of X and x ∈ A. We claim that

D(GB(·,x)−GA(·,x)) = m(x)(GA(x,x)−GB(x,x)) . (13.44)

Indeed, we have

D(GB(·,x)−GA(·,x)) = 〈∇(GB(·,x)−GA(·,x)),∇(GB(·,x)−GA(·,x))〉E
= 〈∇GB(·,x),∇GB(·,x)〉E + 〈∇GA(·,x),∇GA(·,x)〉E
−2〈∇GB(·,x),∇GA(·,x)〉E

(by (13.43) and B⊆ A) = m(x)GB(x,x)+m(x)GA(x,x)−2m(x)GB(x,x)

= m(x)(GA(x,x)−GB(x,x)) .

Lemma 13.34. Suppose that (X ,P) is transient. Then G(·,x) ∈ D0(N ) for all x ∈
X.

Proof. Let (An)n∈N be a sequence of finite subsets of X such that An ⊆ An+1 for
all n ∈ N and

⋃
n∈N An = X . Let x,y ∈ X . Observe that for every k ∈ N, we have

p(k)An
(x,y)→ p(k)(x,y) as n→ ∞. Using the monotone convergence theorem (since

GAn(x,y)≤ G(x,y) and the Markov chain is transient), we deduce that GAn(x,y)→
G(x,y) as n→∞. As a consequence of (13.44), (GAn(·,x))n∈N is a Cauchy sequence
in D0(N ). By virtue of Lemma 13.31 its limit in D0(N )⊆D(N ) equals G(·,x).
It follows that G(·,x) ∈D0(N ). �

13.10 Criteria for Recurrence

Let (X ,P) be an irreducible, reversible Markov chain with invariant measure m and
let N = (X ,E,r) be the associated network.

Definition 13.35. Let x0 ∈ X and i0 ∈ R. We say that a function u ∈ RE is a flow
from x0 with input i0 provided that

∇
∗u =− i0

m(x0)
δx0 .
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The associated energy is the positive (possibly infinite) quantity ∑e∈E r(e)u2(e).
Also, the quantity

cap(x0) := inf{D( f ) : f ∈ `0(X), f (x0) = 1}

is called the capacity of x0.

It follows from the above definitions that a flow u ∈ RE has finite energy if and
only if u ∈ L2(E,r): if this is the case, its energy is ‖u‖2

E .
Consider the Hilbert space D0(N ) with the norm ‖ ·‖D: recall that this is indeed

the closure of `0(X) in D(N ). Now the subset

Y :={ f ∈D0(N ) : f (x0) = 1} ⊆D0(N )

is convex and closed. Since in a Hilbert space any closed convex subset admits a
point with minimal norm, see [298, Theorem 4.10], there exists a function f ∈ Y

that minimizes ‖ · ‖D, and hence also D(·) =
√
‖ · ‖2

D−1. Therefore we have

cap(x0) = min{D( f ) : f ∈D0(N ), f (x0) = 1}. (13.45)

Theorem 13.36. Let (X ,P) be an irreducible reversible Markov chain. Then the
following conditions are equivalent:

(a) (X ,P) is transient;
(b) for every x0 ∈ X and i0 6= 0 there exists a finite energy flow u ∈ L2(E,r) from x0

with input i0;
(c) for every x0 ∈ X one has cap(x0)> 0;
(d) 1X 6∈D0(N ).

Proof. (a) ⇒ (b). Suppose (X ,P) is transient and let x0 ∈ X and i0 6= 0. Then, by
virtue of Lemma 13.34, G(·,x) ∈D0(N )⊆D(N ) so that ∇G(·,x) ∈ L2(E,r). We
claim that

u :=− i0
m(x0)

∇G(·,x)

is the required flow: indeed,

∇
∗u =− i0

m(x0)
∇
∗
∇G(·,x0) =−

i0
m(x0)

(I−P)G(·,x0) =−
i0

m(x0)
δx0 ,

where the second equality follows from Proposition 13.32, and the last one from the
equality

(I−P)G(·,x0) = ∑
n≥0

p(n)(·,x0)−∑
n≥0

p(n+1)(·,x0) = p(0)(·,x0) = δx0 .

(b)⇒ (c). Let x0 ∈ X , i0 =−1 and let u ∈ L2(E,r) be a (finite energy) flow from
x0 with input i0. Then, for f ∈ `0(X) such that f (x0) = 1, we have, recalling (13.35),

〈∇ f ,u〉E = 〈 f ,∇∗u〉X = 〈 f ,− i0
m(x0)

δx0〉X =−m(x0) f (x0)
i0

m(x0)
=−i0 = 1.
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Using Cauchy–Schwarz, it follows that 1 = 〈∇ f ,u〉2E ≤ D( f )〈u,u〉E so that

cap(x0) = inf{D( f ) : f ∈ `0(X) s.t. f (x0) = 1} ≥ 1
〈u,u〉E

> 0.

(c)⇔ (d). This follows immediately from the definition of capacity. Indeed, by
virtue of (13.45), we have cap(x0) = 0 if and only if there exists an f ∈ D0(N )
such that D( f ) = 0 and f (x0) = 1, equivalently, such that f = 1X (recall that (X ,P)
is irreducible).

(c) ⇒ (a). Let A be a finite subset of X and let x0 ∈ A. Consider the function
f := GA(·,x0)

GA(x0,x0)
(cf. Lemma 13.33). It is clear that f ∈ `0(X) and f (x0) = 1. By apply-

ing (13.43) with x replaced by x0 we obtain

cap(x0)≤ D( f ) = 〈∇ f ,∇ f 〉E =
m(x0)

GA(x0,x0)
.

We deduce GA(x0,x0) ≤ m(x0)
cap(x0)

for every finite subset A ⊆ X containing x0. Taking
a non-decreasing sequence (An)n∈N of finite subsets of X containing x and such
that

⋃
n∈N An = X and applying the monotone convergence theorem we deduce that

G(x0,x0)≤ m(x0)
cap(x0)

< ∞. Thus the Markov chain (X ,P) is transient. �

Corollary 13.37. Let (X ,P1) and (X ,P2) be two irreducible, reversible Markov
chains. Suppose there exists a δ > 0 such that

D1( f )≥ δD2( f ) (13.46)

for all f ∈ `0(X), where D1 and D2 denote the respective Dirichlet norms. Then if
(X ,P1) is recurrent, so is (X ,P2).

Proof. This follows from (c) in the previous theorem. �

Corollary 13.38. Let G be a finitely generated group and let (G,P1) and (G,P2) be
two irreducible random walks on G. Suppose there exists a δ > 0 such that

p1(g,h)≥ δ p2(g,h) (13.47)

for all g,h ∈ G. Then if (G,P1) is recurrent, so is (G,P2).

Proof. This follows from the previous corollary after observing that, by virtue of
(13.37) (here m = 1X ), we have that condition (13.47) implies condition (13.46). �

Example 13.39 (Nearest neighbor random walk on N). Consider an irreducible
Markov chain (N,P) where p(m,n) > 0 if and only if |m− n| = 1, m,n ∈ N. Note
that p(0,1) = 1 and that p(n,n− 1)+ p(n,n+ 1) = 1 for all n ≥ 1. This Markov
chain is reversible: indeed an invariant measure m : N→ (0,+∞) is given by setting
m(0) = 1 and

m(n) :=
p(0,1)p(1,2) · · · p(n−1,n)

p(n,n−1)p(n−1,n−2) · · · p(1,0)
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(note that m(n+1) = m(n) p(n,n+1)
p(n+1,n) ) for all n≥ 1.

The associated network is N (N,E,r) where E = {en : n ∈ N} with en =
{n,n+1} and

r(en) =
p(n,n−1)p(n−1,n−2) · · · p(1,0)

p(0,1)p(1,2) · · · p(n−1,n)p(n,n+1)

for all n ≥ 1. There is a unique flow from 0 with input i0 6= 0, namely the constant
u = i01E ∈ RE and whose energy is then

〈u,u〉E = 〈i01E , i01E〉E = i20
∞

∑
n=1

r(en). (13.48)

It follows from Theorem 13.36 that the Markov chain (N,P) is recurrent (resp. tran-
sient) if and only if the sum in (13.48) diverges (resp. converges).

Definition 13.40. Let (X ,P) be a reversible Markov chain, say with invariant mea-
sure m, and let N = (X ,E,r) denote the associated network. Let (Xi)i∈N be a parti-
tion of X made up of finite subsets (or, more generally, such that 1Xi ∈ D0(N ) for
all i ∈N). The associated shortened network N ′ = (N,E,r′) is defined by means of
the corresponding conductances

a′(i, j) :=

{
∑x∈Xi ∑y∈X j a(x,y) if i 6= j
0 otherwise.

Then the corresponding shortened Markov chain (N,P′) has transition probabilities

p′(i, j) =
a′(i, j)

m′i
=

a′(i, j)
∑k∈N a′(i,k)

for all i, j ∈ N.

Note that if (X ,P) is irreducible, so is (N,P′). Moreover, p′(i, i) = 0 and m′(i) =
∑ j∈N a′(i, j)≤ ∑x∈Xi ∑y∈X a(x,y) = ∑x∈Xi m(x)< ∞ for all i ∈ N.

Theorem 13.41. Let (X ,P) be a reversible Markov chain. Suppose that the short-
ened Markov chain (N,P′) (with respect to some partition of X into finite subsets)
is recurrent. Then (X ,P) is recurrent as well.

Proof. Let f : N→ R be in D(N ′) and let us define f : X → R by setting, f (x) =
f (i) if x ∈ Xi. Note that

1N = 1X . (13.49)

By virtue of (13.37) we then have

D( f ) =
1
2 ∑

x,y∈X

(
f (x)− f (y)

)2 a(x,y)

=
1
2 ∑

i, j∈N
∑

x∈Xi
y∈X j

(
f (x)− f (y)

)2 a(x,y)
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=
1
2 ∑

i, j∈N
( f (i)− f ( j))2

∑
x∈Xi
y∈X j

a(x,y)

=
1
2 ∑

i, j∈N
( f (i)− f ( j))2 a′(i, j)

= D′( f ).

This shows that f ∈ D(N ′) if and only if f ∈ D(N ) and in addition their corre-
sponding Dirichlet norms are equal:

D( f ) = D′( f ). (13.50)

Now, since 1Xi ∈ `0(X) we deduce that if f ∈ `0(N) then f = ∑i∈supp( f ) f (i)1Xi ∈
`0(X). If (N,P′) is recurrent, then by Theorem 13.36.(d) 1N ∈ D0(N

′) and we
can find a sequence ( fn)n∈N in `0(N) such that limn→∞ D′( fn− 1N) = 0. Consider
the sequence ( f n)n∈N in `0(X). Combining together (13.49) and (13.50) we deduce
that limn→∞ D( f n− 1X ) = 0. Thus 1X ∈ D0(N ) and, again by virtue of Theorem
13.36.(d), we deduce that (X ,P) is recurrent. �

From the preceding theorem we deduce the following recurrence criterion due to
Crispin Nash-Williams.

Corollary 13.42 (Nash-Williams’ recurrence criterion). Let (X ,P) be a reversible
Markov chain. Let (N,P′) be a shortened Markov chain such that a′(i, j) = 0 if
|i− j| ≥ 2. Suppose that

∞

∑
i=0

1
a′(i, i+1)

= ∞. (13.51)

Then (X ,P) is recurrent.

Proof. First observe that by our assumptions, (N,P′) is a nearest neighbor Markov
chain as in Example 13.39. Since the sum in (13.51) equals (13.48), from condition
(13.51) and Theorem 13.36.(b) we deduce that (N,P′) is recurrent. By virtue of the
preceding theorem, we have that the original Markov chain (X ,P) is also recurrent.

�

Example 13.43 (The shortened simple random walk on Z). Consider the simple
random walk (X ,Q) on X = Z. This is reversible (with m = 1X ) so that a(x,y) =
q(x,y) = 1

2 if |x− y| = 1 and 0 otherwise. Set Xn = {n,−n} so that Xn is finite, for
all n ∈ N, and note that X = tn∈NXn. Let (N,Q′) denote the associated shortened
Markov chain. We have

a′(i, j) = ∑
x∈Xi
y∈X j

a(x,y) =


1 if |i− j|= 1 and i j = 0
2 if |i− j|= 1 and i j 6= 0
0 otherwise

so that
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m′(i) = ∑
j∈N

a′(i, j) =


1 if i = 0
3 if i = 1
4 otherwise.

It follows that

q′(i, j) =
a′(i, j)
m′(i)

=



1 if i = 0 and j = 1
1
3 if i = 1 and j = 0
2
3 if i = 1 and j = 2
1
2 if |i− j|= 1 and i≥ 2
0 otherwise.

We have ∑
∞
i=0

1
a′(i,i+1) = 1+∑

∞
i=1

1
2 = +∞. Thus by Nash-Williams’ criterion we

recover the result established in Proposition 13.19, namely that the simple random
walk on Z is recurrent.

13.11 Growth and Recurrence

Recall that the group G = Zd has growth b(n) ∼ nd (cf. Example 7.5) so that the
following proposition covers the result established in Proposition 13.19, namely
that the simple random walk on Zd is recurrent for d = 1,2.

Proposition 13.44. Let G be a finitely generated group of at most quadratic growth.
Then the simple random walk on G is recurrent.

Proof. Let Y be a finite symmetric generating subset of G. Possibly removing 1G
from Y if necessary, we may suppose that Y does not contain the identity element of
G. Since the growth of G is at most quadratic, we can find n0 ∈ N and C > 0 so that
bY (n) ≤ Cn2 for all n ≥ n0. Let also Xn :={g ∈ G : `X (g) = n} denote the sphere
of radius n centered at the identity element 1G ∈ G. Note that Xn is a finite subset
of G (in fact |Xn|= bY (n)−bY (n−1)) and that G = tn∈NXn. Let (G,Q) denote the
simple random walk on G (so that a(x,xy) = q(x,xy) = 1

|Y | for all x ∈ G and y ∈ Y )
and let (N,Q′) denote the associated shortened Markov chain.

For k ∈ N we have

a′(k,k+1) = ∑
x∈Xk

x′∈Xk+1

a(x,x′)

= ∑
x∈Xk

x′∈Xk+1

p(x,x′)

≤ ∑
x∈Xk
y∈Y

p(x,xy)

=
1
|Y |
· |Y | · |Xk|
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= |Xk|
= bY (k)−bY (k−1).

For n≥ n0 we have

2n

∑
k=n+1

1
a′(k,k+1)

≥ n2

∑
2n
k=n+1 a′(k,k+1)

≥ n2

bY (2n)−bY (n)
≥ n2

bY (2n)
≥ 1

4C
,

where the first inequality follows from the convexity of the function ϕ(x) :=1/x for
x > 0: indeed, for n≥ 1 and x1,x2, . . . ,xn ∈ (0,+∞), we have

n
∑

n
i=1 xi

= ϕ

(
∑

n
i=1 xi

n

)
≤ ∑

n
i=1 ϕ(xi)

n
=

∑
n
i=1

1
xi

n
,

which is equivalent to
n

∑
i=1

1
xi
≥ n2

∑
n
i=1 xi

.

This shows that the series ∑
∞
k=0

1
a′(k,k+1) diverges. By virtue of Nash-Williams’

criterion (Corollary 13.42), we deduce that the simple random walk (G,Q) on G is
recurrent. �

13.12 Growth and Transience

We now turn to the case where G has at least cubic growth.

Lemma 13.45. Let µ be an atomic probability measure on a group G and suppose
that µ = µ1 +µ2 for some positive atomic measures µ1,µ2. Then

‖µ(n)‖∞ ≤ µ1(G)n +n‖µ2‖∞ (13.52)

for all n≥ 1, where ‖ν‖∞ = supg∈G ν(h).

Proof. We proceed by induction. For n = 1 inequality (13.52) follows from µ(g) =
µ1(g)+ µ2(g) ≤ µ1(G)+ ‖µ2‖∞, which holds for all g ∈ G. Assume (13.52). We
have

µ
(n+1)(g) = ∑

h∈G
(µ1(h)+µ2(h))µ

(n)(h−1g)

≤ ∑
h∈G

µ1(h)(µ1(G)n +n‖µ2‖∞)+ ∑
h∈G

µ2(h)µ(n)(h−1g)

≤ µ1(G)µ1(G)n +nµ1(G)‖µ2‖∞ +‖µ2‖∞ ∑
h∈G

µ
(n)(h−1g)

= µ1(G)n+1 +nµ(G)‖µ2‖∞ +‖µ2‖∞µ
(n)(G)

= µ1(G)n+1 +n‖µ2‖∞ +‖µ2‖∞
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= µ1(G)n+1 +(n+1)‖µ2‖∞

(recall that µ(n)(G) = 1 for all n≥ 1), proving the inductive step. �

For k ≥ 2 let us set

λk :=
1

k3 log2(k)
.

Note that

∑
k≥2

λk < ∑
k≥2

1
k3 <

∫
∞

1

1
x3 dx =

1
2

so that
λ1 :=1−∑

k≥2
λk >

1
2
.

Let now G be a finitely generated group and let Y ⊆ G be a finite symmetric
generating subset. For simplicity we write b(n) (resp. B(n)) instead of bY (n) (resp.
BY (n)) for all n ∈ N. If we set

µ(g) :=
∞

∑
n=1

λn

b(n)
1B(n)(g) (13.53)

for all g ∈ G, then we have

• µ(g)> 0 for all g ∈ G (equivalently supp(µ) = G);
• µ(g) = µ(g−1) for all g ∈ G (note that B(n)−1 = B(n));
• µ(G) = 1 (since ∑k≥1 λk = 1);
• the second moment of µ is finite:

∑
g∈G

`Y (g)2
µ(g) =

∞

∑
n=1

λn

b(n) ∑
g∈G

`Y (g)21B(n)(g)

≤
∞

∑
n=1

λn

b(n)
n2b(n)

=
∞

∑
n=1

λnn2

= λ1 +
∞

∑
n=2

1
n log2(n)

< ∞.

Thus µ satisfies the conditions in Definition 13.16 and defines a random walk on G.

Proposition 13.46. Suppose that G has at least cubic growth. Then the random walk
defined by the measure (13.53) on G is transient.

Proof. With the above notation, our hypothesis on the group reads as follows: there
exist n0 ∈ N and C > 0 such that

b(n)≥Cn3 (13.54)
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for all n≥ n0.
Let us set sm = ∑

∞
k=m λk for all m≥ 1.

Claim.
lim

m→∞
smm2 log2(m) =

1
2
.

To prove the claim, it is easy to check that∫
∞

m

dx
x3 log2(x)

≤ sm =
∞

∑
k=m

λk =
∞

∑
k=m

1
k3 log2(k)

≤
∫

∞

m−1

dx
x3 log2(x)

. (13.55)

Using integration by parts we have∫
∞

m

dx
x3 log2(x)

=−
∫

∞

m

(
− 2

x log3(x)

)(
− 1

2x2

)
dx+

[
− 1

2x2 log2(x)

]∞

m

=−
∫

∞

m

1
x3 log3(x)

dx+
1

2m2 log2(m)
.

Now ∫
∞

m

1
x3 log3(x)

dx≤ 1
log3(m)

∫
∞

m

1
x3 dx

=
1

log3(m)

1
2m2 ,

hence
lim

m→∞
m2 log2(m)

∫
∞

m

1
x3 log3(x)

dx = lim
m→∞

1
2log(m)

= 0.

As a consequence,

lim
m→∞

smm2 log2(m)≥ lim
m→∞

m2 log2(m)
∫

∞

m

dx
x3 log2(x)

=
1
2
.

The other inequality is proved in a similar way (exercise). The claim follows.

Using the claim, we have

sm ∼
mλm

2
=

1
2m2 log2(m)

. (13.56)

For m≥ 2 set

µ1,m :=
m−1

∑
k=1

λk

b(k)
1B(k) and µ2,m :=µ−µ1,m =

∞

∑
k=m

λk

b(k)
1B(k).

We thus have µ = µ1,m +µ2,m,
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µ1,m(G) =
m−1

∑
k=1

λk = 1− sm

and

‖µ2,m‖∞ =
∞

∑
k=m

λk

b(k)
≤ 1

b(m)

∞

∑
k=m

λk =
sm

b(m)
.

From Lemma 13.45 we deduce

p(n)(g,h) = µ
(n)(g−1h)≤ (1− sm)

n +n
sm

b(m)

for all n,m ∈ N, m ≥ 2 and g,h ∈ G. By virtue of (13.56) and (13.54) we can then
find constants c1,c2 > 0 such that

p(n)(g,h)≤
(

1− c1

m2 log2(m)

)n

+
c2n

b(m)m2 log2(m)

≤ exp
(
− c1n

m2 log2(m)

)
+

c3n
m5 log2(m)

for all n≥ n0, for all m≥ 2 and g,h ∈ G, where c3 :=c2/C. Taking m :=bn2/5c and
setting d1 :=c1

25
4 and d2 :=c3

25
4 we deduce

c1n
m2 log2(m)

∼ c1n
n4/5 log2(n2/5)

=
d1n1/5

log2(n)

and
c3n

m5 log2(m)
∼ c3n

n2 log2(n2/5)
=

d2

n log2(n)

so that

G(g,h) =
∞

∑
n=0

p(n)(g,h)�
∞

∑
n=0

exp

(
− d1n1/5

log2(n)

)
+d2

∞

∑
n=0

1
n log2(n)

< ∞.

Thus the random walk on G defined by µ is transient. �

Using Proposition 13.19, Proposition 13.21 and Proposition 13.46, we deduce
the following classical result (cf. Propositions 13.19 and 13.21).

Theorem 13.47 (Pólya). The simple random walk on Zd is recurrent for d = 1,2
and transient if d ≥ 3. �

13.13 The Random Walk Alternative

Theorem 13.48 (Random walk alternative). Let G be a finitely generated group.
Then the following conditions are equivalent:
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(a) there exists a recurrent random walk on G;
(b) the simple random walk on G with respect to every finite, symmetric generating

subset is recurrent;
(c) the simple random walk on G with respect to some finite, symmetric generating

subset is recurrent;
(d) every random walk on G is recurrent.

In other words, the random walks on G are either all recurrent or all transient.

Proof. Suppose first that there exists a recurrent random walk (G,P) on G and let
us show that the simple random walk on G with respect to any finite, symmetric
generating subset is also recurrent. Let then Y ⊆G be a finite symmetric generating
subset of G.

Set P := 1
2 (I+P). It is clear that (G,P) is a Markov chain. Let us show that (G,P)

is indeed a random walk on G. First of all we have p(g,h) = 1
2

(
δg,h + p(g,h)

)
=

1
2

(
δh,g + p(h,g)

)
= p(h,g) for all g,h∈G, and this proves symmetry. Also, observ-

ing that if g 6= h one has p(g,h) = 1
2 p(g,h) while if g = h then dY (g,h) = 0, we

have

∑
h∈G

dY (g,h)2 p(g,h) =
1
2 ∑

h∈G
dY (g,h)2 p(g,h)< ∞

showing that the second moment is finite. Finally,

p(g′g,g′h) =
1
2
(
δg′g,g′h + p(g′g,g′h)

)
=

1
2
(
δg,h + p(g,h)

)
= p(g,h)

for all g′,g,h ∈ G and also space homogeneity follows. We are only left with ir-
reducibility. Let g,h ∈ G. Since (G,P) is irreducible, we can find n ∈ N such that
p(n)(g,h)> 0. As a consequence, recalling that P≥ 1

2 P, we have

p(n)(g,h) = ∑
g1,g2,...gn−1∈G

p(g,g1)p(g1,g2) · · · p(gn−1,h)

≥ 1
2n ∑

g1,g2,...gn−1∈G
p(g,g1)p(g1,g2) · · · p(gn−1,h)

=
1
2n p(n)(g,h)> 0.

We deduce that (G,P) is irreducible, completing the argument showing that (G,P)
is a random walk.

Let us show that, in fact, (G,PK
) is a random walk on G for every integer K ≥ 1.

We only need to check for irreducibility and finiteness of the second moment. Let
g,h ∈ G and let n0 ≥ 1 such that p(n0)(g,h)> 0. Then

p(n0+1)(g,h)≥ p(g,g)p(n0)(g,h)≥ 1
2

p(n0)(g,h)> 0. (13.57)
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Thus since
(

p(K)
)(n)

= p(nK) for all n ≥ 1, as soon as nK ≥ n0 we must have(
p(K)

)(n)
(g,h)> 0. This shows that PK is irreducible. To show that the second mo-

ment is finite, we proceed by induction. For K = 1 this was shown above. Suppose
this holds for PK and let us show it for PK+1.

∑
h∈G

dY (g,h)2 p(K+1)(g,h) = ∑
h,h′∈G

dY (g,h)2 p(K)(g,h′)p(h′,h)

≤ ∑
h,h′∈G

(dY (g,h′)+dY (h′,h))2 p(K)(g,h′)p(h′,h)

≤ ∑
h,h′∈G

2(dY (g,h′)2 +dY (h′,h)2)p(K)(g,h′)p(h′,h)

= 2 ∑
h,h′∈G

dY (g,h′)2 p(K)(g,h′)p(h′,h)

+2 ∑
h,h′∈G

dY (h′,h)2 p(K)(g,h′)p(h′,h)

= 2 ∑
h′∈G

dY (g,h′)2 p(K)(g,h′)

+2 ∑
h′∈G

p(K)(g,h′) ∑
h∈G

dY (h′,h)2 p(h′,h)

(by Remark 13.17) = 2

[
∑

h′∈G
dY (g,h′)2 p(K)(g,h′)+ ∑

h∈G
dY (g,h)2 p(g,h)

]
< ∞.

Moreover, (G,P) is recurrent. Indeed, since

Pn
=

(
1
2
(I +P)

)n

=
1
2n

n

∑
j=0

(
n
j

)
P j

we have, for all g,h ∈ G,

GP(g,h) =
∞

∑
n=0

p(n)(g,h)

=
∞

∑
n=0

1
2n

n

∑
j=0

(
n
j

)
p( j)(g,h)

=
∞

∑
j=0

p( j)(g,h)
∞

∑
n= j

1
2n

(
n
j

)
= 2

∞

∑
j=0

p( j)(g,h)

= 2GP(g,h),

where the fourth equality follows from the elementary identity (exercise)
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∞

∑
n= j

1
2n

(
n
j

)
= 2 for all j ≥ 0. (13.58)

This shows that (G,P) is recurrent if and only if (G,P) is recurrent.
Let K ≥ 1. For every f ∈ `0(G) we have (by using (13.37) and recalling that

m = 1)

D
PK ( f ) =

1
2 ∑

g0,gK∈G
( f (g0)− f (gK))

2 pK(g0,gK)

=
1
2 ∑

g0,g1,...,gK∈G
( f (g0)− f (gK))

2 p(g0,g1)p(g1,g2) · · · p(gK−1,gK)

≤ K
2 ∑

g0,g1,...,gK∈G

K

∑
i=1

( f (gi)− f (gi−1))
2 p(g0,g1)p(g1,g2) · · · p(gK−1,gK)

(∗) = K
2

K

∑
i=1

∑
gi−1,gi∈G

( f (gi)− f (gi−1))
2 p(gi−1,gi)

=
K2

2
DP( f ),

where in the inequality we used Cauchy–Schwarz, (∗) follows since P is symmetric
and stochastic, and the last equality follows from (13.37). From Corollary 13.37 we
then deduce that recurrence of (G,P) implies recurrence of (G,PK

) for all K ≥ 1.
Since (G,P) is irreducible, for every generator y ∈ Y \{1G} we can find ky ∈ N

such that p(ky)(1,y) > 0. But then, with K0 :=max{ky : y ∈ Y \ {1G}} and d0 =

min{p(ky)(1,y) : y ∈ Y \{1G}}, from (13.57) we deduce

p(K0)(1,y)≥ d0

2K0
≥ d0

2K0 |Y |
=

d0

2K0
q(1,y) (13.59)

for all y ∈Y , where (G,Q) denotes, as usual, the simple random walk on G with re-
spect to the finite symmetric generating subset Y ⊆G. Since q(g,h)= q(1,g−1h)= 0
if (and only if) g−1h 6∈ Y , we deduce that

p(K0)(g,h)≥ d0

2K0
q(g,h) (13.60)

for all g,h ∈ G. By virtue of Corollary 13.38, we deduce that (G,Q) is recurrent.
This shows (a)⇒ (b).

The implication (b)⇒ (c) is trivial.
Suppose that there exists a finite symmetric generating subset Y ⊆G such that the

corresponding simple random walk (G,Q) is recurrent. Let us show that any other
random walk (G,P) is also recurrent. For all g,h ∈ G and e ∈ E (the edge set of the
Cayley graph C(G,Y )), we denote by Γ (g,h) (resp. Γe(g,h)) the set of all geodesics
connecting g and h (resp. and that, in addition, contain e). For every f ∈ `0(G) and
γ ∈ Γ (g,h), using Cauchy–Schwarz, we have
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( f (g)− f (h))2 =

(
|Y |∑

e∈γ

(∇Q f )(e)

)2

≤ |Y |2
(

∑
e∈γ

(∇Q f )2(e)

)
d(g,h)

yielding, by taking the average,

( f (g)− f (h))2 ≤ |Y |2

|Γ (g,h)| ∑
γ∈Γ (g,h)

∑
e∈γ

(∇Q f )2(e)d(g,h).

We deduce (by using (13.37) and recalling that m = 1X )

DP( f ) =
1
2 ∑

g,h∈G
( f (g)− f (h))2 p(g,h)

≤ |Y |
2

2 ∑
g,h∈G

1
|Γ (g,h)| ∑

γ∈Γ (g,h)
∑
e∈γ

(∇Q f )2(e)d(g,h)p(g,h)

=
|Y |2

2 ∑
g,h∈G

1
|Γ (g,h)| ∑e∈E

∑
γ∈Γe(g,h)

(∇Q f )2(e)d(g,h)p(g,h)

=
|Y |2

2 ∑
e∈E

(∇Q f )2(e)

(
∑

g,h∈G

1
|Γ (g,h)| ∑

γ∈Γe(g,h)
d(g,h)p(g,h)

)

=
|Y |2

2 ∑
e∈E

(∇Q f )2(e)ϕ(e),

where

ϕ(e) := ∑
g,h∈G

|Γe(g,h)|
|Γ (g,h)|

p(g,h)d(g,h).

Let us show that ϕ : E → R is bounded. If we denote by µ the measure on G asso-
ciated with the random walk (G,P) we have for all e ∈ E

ϕ(e) = ∑
g,h∈G

µ(g−1h)d(1,g−1h)
|Γe(1,g−1h)|
|Γ (1,g−1h)|

(setting k :=g−1h) = ∑
g,k∈G

µ(k)d(1,k)
|Γg−1e(1,k)|
|Γ (1,k)|

≤ 2 ∑
k∈G

µ(k)d(1,k) ∑
e′∈E

|Γe′(1,k)|
|Γ (1,k)|

.

Note that the factor “2” comes from the fact that if g ∈ Y is an involution (g2 = 1G)
then with e :={1G,g} ∈ E we have g−1e = ge = e.

Since

∑
e′∈E

|Γe′(1,k)|
|Γ (1,k)|

=
1

|Γ (1,k)| ∑
e′∈E

∑
γ∈Γe′ (1,k)

1
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=
1

|Γ (1,k)| ∑
γ∈Γ (1,k)

∑
e′∈γ

1

=
1

|Γ (1,k)| ∑
γ∈Γ (1,k)

d(1,k)

= d(1,k),

we deduce that for all e ∈ E,
ϕ(e)≤ 2Φ ,

where Φ :=∑k∈G µ(k)d(1,k)2 <∞ is the second moment of µ . We then have (recall
that rQ(e) = |Y | for all e ∈ E):

DP( f )≤ 2Φ |Y |
2
〈∇Q f ,∇Q f 〉E = Φ |Y |DQ( f ).

Thus, by virtue of Corollary 13.37, we deduce that the random walk (G,P) on G is
recurrent. This shows (c)⇒ (d).

Finally, the implication (d)⇒ (a) is again trivial. �

As a consequence of the previous theorem, we give the following:

Definition 13.49. A finitely generated group G is called recurrent if one of the
equivalent conditions of Theorem 13.48 holds.

13.14 Proof of Varopoulos’ Theorem

We are now in a position to present a proof of Varopoulos’ theorem.

Proof of Theorem 13.22 Let G be a finitely generated group and suppose that for
some finite symmetric generating subset the associated simple random walk is re-
current, in other words, G is recurrent. By virtue of Proposition 13.46 and Theorem
13.48, G cannot have at least cubic growth.

By Gromov’s theorem (Theorem 12.1), since G has polynomial growth, it con-
tains a torsion-free nilpotent subgroup N of finite index, whose growth is the same
as that of G. By the Bass–Guivarc’h formula (Theorem 7.29), such a subgroup N
has polynomial growth of degree d :=∑

c
i=1 ir(i), where c∈N denotes the nilpotency

class of N and r(i) is the free abelian rank of the i-th quotient in the lower central
series of N. By our assumptions, d is equal to either 0, 1, or 2. In the first case N is
trivial, and therefore G is finite. If d = 1 then N is isomorphic to Z. Finally, if d = 2,
then we necessarily have c = 1 and r(1) = 2, so that N is isomorphic to Z2.

This completes the proof of Varopoulos’ theorem. �

Remark 13.50. Note that for d ≥ 4 it is no longer the case that if G has polynomial
growth of degree d, then G is virtually isomorphic to Zd . For instance, for d = 4,
besides the possibility c = 1 with r(1) = 4, we may also have c = 2 with r(1) = 2
and r(2) = 1: indeed, this is the case for the Heisenberg group UT(3,Z).
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13.15 Notes

George Pólya [284] proved Theorem 13.47 (cf. Proposition 13.19 and Proposition
13.21) in 1921. In [112, Chapter 14, Section 7], it is shown that the probability of
returning to the initial position in the simple random walk on Z3 is about 0.35 and
the expected number of returns is approximately 0.53. This was the beginning of
the theory of random walks. The term random walk, however, was first introduced
by Karl Pearson [273] in 1905.

A locally compact group G is said to be recurrent if there is a Borel probabil-
ity measure µ on G whose support generates G and such that the random walk
determined by µ is recurrent. Kesten [198] raised the question: when is a group
recurrent, i.e., when does it admit a recurrent random walk? Richard M. Dudley
[97] had already proved in 1962 that an abelian group is recurrent if and only if it
has free-abelian rank at most two. Yves Guivarc’h, Michael Keane, and B. Roynette
[147] formulate a conjecture for general locally compact groups which resembles
Dudley’s result. A group G is said to be of polynomial growth of degree at most d
if for every compact neighborhood K of the identity there exists a constant C > 0
for which µ(Kn) ≤ Cnd for all n ∈ N, where µ is the Haar measure (cf. Section
9.3). Then the precise conjecture is that G is recurrent if and only if it is of polyno-
mial growth of degree at most two. Guivarc’h and Keane [146] eventually proved
this conjecture when G is a connected locally compact group (1975). For discrete
groups, the conjecture was settled by Nicholas Th. Varopoulos in [340] (cf. Theo-
rem 13.22) in 1986. More recently (2005), Chandiraraj Robinson Edward Raja [287]
showed that the conjecture also holds if G is a p-adic Lie group.

The Nash-Williams recurrence criterion (Corollary 13.42) is due to Crispin Nash-
Williams [247] who, improving on a previous result of Frederic Gordon Foster
[116], was the first to apply the electrical network techniques of Lord Rayleigh
to random walks.

The theory of random walks has been extended to graphs: we refer again to the
books by Wolfgang Woess [355, 356]. Another good reference for random walks on
graphs is the online book by David Aldous and James Allen Fill [4].

A recent, clear, and comprehensive treatment of Varopoulos’ theorem is pre-
sented by Steven P. Lalley in his recent book [209].

13.16 Exercises

Exercise 13.1. Let (X ,P,π) be a Markov chain and denote by (Ω ,B,Pπ) the asso-
ciated probability space. Show that for a random variable Zn : Ω → X and x,y ∈ X
one has

Pπ [Zn+1 = y|Zn = x] = p(x,y)

provided Pπ [Zn = x]> 0.

Exercise 13.2. Let P and Q be stochastic matrices of the same size. Show that PQ
is also stochastic. This implies that Pn is also stochastic for all n ∈ N.
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Exercise 13.3. Prove (13.11) and (13.12).

Exercise 13.4. Let (X ,P,π) be a Markov chain and denote by G = (X ,E) the asso-
ciated directed graph. Show that (X ,P,π) is irreducible if and only if G is connected,
that is, for every pair (x,y) of vertices there exists a finite directed path connecting
x to y.

Exercise 13.5. Show that conditions (1)–(3) in Definition 13.16 do not depend on
the generating subset Y ⊆ G nor on the initial distribution.

Exercise 13.6. Show that the simple random walk (cf. Example 13.18) satisfies con-
ditions (1)–(3) in Definition 13.16.

Exercise 13.7. Let µ be an atomic probabilistic measure on a group G. Show that
for every n ≥ 1, the n-th convolution measure µ(n) defined recursively by setting
µ(1) := µ and µ(n)(g) := ∑h∈G µ(n−1)(gh−1)µ(h) = ∑h∈G µ(n−1)(h)µ(h−1g) for all
g ∈ G is an atomic probability measure on G.

Exercise 13.8. Let (G,P) be a random walk on a finitely generated group G and
denote by µ the associated atomic probability measure (cf. (13.21)). Show that
p(n)(1G,g) = µ(n)(g) for all n≥ 1 and g ∈ G.

Exercise 13.9. Show that the random walk (G,P) on G defined by (13.22) is irre-
ducible and satisfies conditions (1)–(3) in Definition 13.16.

Exercise 13.10. (1) Show that the Dirichlet seminorm D(·) (cf. Definition 13.30)
satisfies the following conditions: (i) D( f ) ≥ 0, (ii) D(α f ) = |α|D( f ), and
D( f +g)≤ D( f )+D(g) for all f ,g ∈D(N ).

(2) Show that there exist nonzero elements f ∈D(N ) such that D( f ) = 0.
(3) Show that (13.36) defines an inner product in D(N ) (in particular, 〈 f , f 〉D > 0

for all nonzero f ∈D(N )).

Exercise 13.11. Show that the operator GA : L2(X ,m)→L2(X ,m) defined in (13.42)
satisfies the identity (IA−PA)GA = IA.

Exercise 13.12. Show that if a Markov chain (X ,P) is irreducible, so is any associ-
ated shortened Markov chain (N,P′) (with respect to some partition of X into finite
subsets, cf. Definition 13.40).

Exercise 13.13. (1) Prove (13.55).
(2) Show that

lim
m→∞

smm2 log2(m)≤ 1
2
.

Exercise 13.14. Prove the identity (13.58).

Exercise 13.15. Let G be a finitely generated group. Suppose that G is recurrent.
Show that every finitely generated subgroup H ⊆ G is also recurrent.

Exercise 13.16. Let G be a finitely generated group, and let H ⊆ G be a subgroup
of finite index. Show, without using Varopoulos’ theorem, that if H is recurrent then
so is G.



Chapter 14
Amenability, Isoperimetric Profiles, and Følner
Functions

This chapter is devoted to the study of amenable groups. Amenability plays an im-
portant role in many areas of mathematics such as harmonic and functional analysis,
representation theory, ergodic theory and dynamical systems, probability theory and
statistics, and geometric group theory. As residually finite groups, amenable groups
generalize finite groups. However, there are residually finite groups which are not
amenable, and there are amenable groups which are not residually finite.

John von Neumann defined an amenable group as a group admitting an invariant
finitely additive probability measure on the set of all of its subsets. Our definition
(equivalent to the original, cf. Theorem 14.21) is in terms of Følner sets: a group
G is amenable if for every finite subset X ⊆ G and every ε > 0 there exists a finite
subset Ω ⊂ G satisfying that |XΩ \Ω |< ε|Ω | (in other words, as one then says, Ω

is ε-invariant by left multiplication by elements in X).
The class of amenable groups contains in particular all finite groups, all abelian

groups and, more generally, all groups of subexponential growth (Proposition 14.6)
and all solvable groups (Corollary14.13). It is closed under the operations of taking:
subgroups, quotients, extensions, and inductive limits (Sect. 14.2). The free group
on two generators (and therefore any group containing a subgroup isomorphic to it)
is non-amenable (cf. Example 14.4).

Invariant finitely additive probability measures and paradoxical decompositions
are defined in Sect. 14.3. The Tarski–Følner theorem (Theorem 14.21) asserts that
existence of Følner sets, existence of invariant finitely additive probability measures,
and non-existence of paradoxical decompositions are three equivalent conditions for
a group.

In Section 14.5 (resp. Section 14.6) we define the notion of spectral radius of the
simple random walk on (resp. of cogrowth of) a finitely generated group with respect
to a finite symmetric generating subset and present the Kesten (resp. Grigorchuk
cogrowth) criterion for amenability of finitely generated groups.

In Section 14.7 we prove the Ornstein–Weiss lemma, an analogue of Fekete’s
lemma, for sub-additive right-invariant functions defined on the finite subsets of an
amenable group. This result is important in the theory of dynamical systems since it
makes it possible to define several numerical invariants such as topological entropy,
measure-theoretic entropy, and mean topological dimension.
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Springer Monographs in Mathematics, https://doi.org/10.1007/978-3-030-88109-2_14
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In Section 14.9 we introduce and study the Tarski number of a group. It can be
regarded as a “measure” of amenability or, rather, of non-amenability of groups. If
G is a non-amenable group, the complexity c(p) of a paradoxical decomposition p
of G is the number of pieces (subsets of G) involved in p. Then the integer τ(G) =
minc(p), where the minimum is taken over all paradoxical decompositions p of G,
is called the Tarski number of G. We show that a group G contains a non-abelian
free group if and only if τ(G) = 4 (Theorem 14.89).

In Section 14.10 we define and study the isoperimetric profile of a finitely gen-
erated group. Given a finitely generated group G together with a finite symmetric
generating subset X ⊆ G, the isoperimetric profile of G with respect to X is the
function I◦(n;G,X) = infΩ⊆G,|Ω |=n |XΩ \Ω | which measures the minimal size of
the X-boundary ∂X (Ω) :=XΩ \Ω when Ω varies among all finite subsets of G
with cardinality |Ω | = n ∈ N. The growth type of I◦(n;G,X) is independent of the
generating subset X (Lemma 14.93). In Proposition 14.94 it is shown that for a
finitely generated group nonamenability is equivalent to linear growth of the associ-
ated isoperimetric profile.

In Theorem 14.95 we establish a remarkable inequality that is due to Thierry
Coulhon and Laurent Saloff-Coste.

In Sections 14.11 and 14.12 we introduce and study the Følner function of a
finitely generated group. Given a finitely generated group G together with a finite
symmetric generating subset X ⊆G, the Følner function of G with respect to X is the
function F◦(n;G,X) which equals the minimal cardinality of a finite subset Ω ⊆ G
such that |∂X (Ω)| ≤ |Ω |/n. The growth type of F◦(n;G,X) is independent of the
generating subset X (Lemma 14.98): we denote by F◦(n;G) the corresponding class
of growth. Using the inequality of Coulhon and Saloff-Coste, we prove that for a
finitely generated group G one has F◦(n;G) � bG(n) (Theorem 14.100) and that
equality holds if G is nilpotent (Theorem 14.102).

14.1 Amenability of Groups: Definitions and Examples

Definition 14.1. Let G be a group. Given two finite subsets X and Ω of G, we define
the X-external boundary of Ω as

∂X (Ω) :=XΩ \Ω =
⋃
x∈X

(xΩ \Ω).

The group G is called amenable if for every finite subset X ⊆ G and every ε > 0
there exists a finite subset Ω ⊆ G such that

|∂X (Ω)|< ε|Ω |,

equivalently,
|Ω ∪XΩ |< (1+ ε)|Ω |.

Example 14.2. Every finite group G is amenable: for every X and ε choose Ω :=G.
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Example 14.3. The group Z is amenable: for every finite nonempty subset X ⊆ Z
and every ε > 0, let m :=max{|x| : x ∈ X} and set Ω :=[−n,n] ⊆ Z, where n ∈ N
satisfies 2m < ε(2n+1). Then XΩ ⊆ [−n−m,n+m], so that

|∂X (Ω)|= |Ω ∪XΩ |− |Ω | ≤ 2m < ε(2n+1) = ε|Ω |.

Example 14.4. The free group F2 on two generators x and y is not amenable. Indeed,
if we choose X = {x,y}, then for any finite subset Ω ⊆ F2 we have

|∂X (Ω)|= |Ω ∪XΩ |− |Ω | ≥ |Ω |. (14.1)

In fact, for a ∈ {x,y,x−1,y−1} let Ωa be the set of reduced words in Ω starting with
a. If the identity element of F2 is in Ω , then we include it in Ωx−1 .

Now, for Zx :=ΩxtΩytΩy−1 ⊆Ω , we have

xZx∩Ω ⊆Ωx and xZx∩Ωa =∅ for all a ∈ {y,x−1,y−1},

hence
|xZx \Ω |= |xZx \Ωx| ≥ |ΩytΩy−1 |.

Analogously, for Zy :=ΩxtΩytΩx−1 ⊆Ω , we have

|yZy \Ω | ≥ |ΩxtΩx−1 |.

So we have the disjoint union

Ω t (xZx \Ω)t (yZy \Ω)⊆Ω ∪XΩ ,

and therefore

|Ω ∪XΩ | ≥ |Ω t (xZx \Ω)t (yZy \Ω)| ≥ |Ω |+ |ΩytΩy−1 |+ |ΩxtΩx−1 |= 2|Ω |.

This proves (14.1).

A group G is termed locally amenable if every finitely generated subgroup of G
is amenable.

Proposition 14.5. Every locally amenable group is amenable.

Proof. This follows immediately from the definition of amenability, since given a
finite subset X ⊂ G and ε > 0, we can choose the finite subset Ω in the (amenable)
subgroup generated by X . �

The following proposition gives us more examples of amenable groups.

Proposition 14.6. Every group of subexponential growth is amenable.

Proof. Suppose that G is a non-amenable group. Then there exist a finite subset
X ⊆ G and ε > 0 such that, for any finite subset Ω ⊆ G, we have

|Ω ∪XΩ | ≥ (1+ ε)|Ω |.
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In particular, taking Ω :=
⋃m−1

r=0 X r, m≥ 1, we get

|
m⋃

r=0

X r|− |
m−1⋃
r=0

X r| ≥ ε|
m−1⋃
r=0

X r|,

which is the same as

bH
X (m)−bH

X (m−1)≥ εbH
X (m−1),

where H is the subgroup of G generated by X . This implies that bH
X (m) grows expo-

nentially, hence, by Proposition 7.17, G has exponential growth. �

Corollary 14.7. Every nilpotent group is amenable. In particular, every abelian
group is amenable.

Proof. Since by Proposition 2.9 every subgroup of a nilpotent group is nilpotent, by
Proposition 14.5, it is enough to show that every finitely generated nilpotent group
is amenable. But this follows from Proposition 14.6, since by Theorem 7.29 every
finitely generated nilpotent group has polynomial growth. �

14.2 Stability Properties of Amenable Groups

Given a group G and two finite subsets X and Ω of G, we set

δX (Ω) :={g ∈Ω : there exists an x ∈ X such that xg /∈Ω}. (14.2)

This is called the X-internal boundary of Ω .
Also, for every x ∈ X , we simply denote by ∂x(Ω) the {x}-external boundary

∂{x}(Ω) of Ω .
In the following proposition we state a few equivalent definitions of amenability.

Depending on the situation, one of them can be more useful than the others.

Proposition 14.8. Let G be a group. The following conditions are equivalent:

(a) G is amenable;
(b) for every finite subset X ⊆ G and every ε > 0 there exists a finite subset Ω ⊆ G

such that
|∂x(Ω)|< ε|Ω | for every x ∈ X ;

(c) for every finite subset X ⊆ G and every ε > 0 there exists a finite subset Ω ⊆ G
such that

|δX (Ω)|< ε|Ω |.

Proof. We start with an easy observation: if X1,X2,Ω ⊆ G are finite subsets of G,
then

|∂X1∪X2(Ω)| ≤ |∂X1(Ω)|+ |∂X2(Ω)|. (14.3)

In fact
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∂X1∪X2(Ω) = (X1∪X2)Ω \Ω ⊆ ((X1Ω)\Ω)∪ ((X2Ω)\Ω) = ∂X1(Ω)∪∂X2(Ω),

from which the inequality (14.3) follows.
Given two finite subsets X and Ω of our group G, from (14.3) we deduce

|∂X (Ω)| ≤ ∑
x∈X
|∂x(Ω)|,

from which it follows easily that (2) implies (1).
The implication (1) =⇒ (2) is immediate from the obvious inequality |∂x(Ω)| ≤

|∂X (Ω)| for every x ∈ X .
Every element g ∈ δX (Ω) gives rise (multiplying it on the left by the elements of

X) to at most |X | distinct elements in ∂X (Ω), hence

|∂X (Ω)| ≤ |X | · |δX (Ω)|, (14.4)

from which the implication (3) =⇒ (1) easily follows. Conversely, since every
element of δX (Ω) gives rise to at least one element of

⋃
x∈X ∂x(Ω), we have

|δX (Ω)| ≤ ∑
x∈X
|∂x(Ω)| ≤ |X |max

x∈X
|∂x(Ω)| ≤ |X | · |∂X (Ω)|.

Then the implication (1) =⇒ (3) follows as well. �

Theorem 14.9. Every subgroup of an amenable group is amenable.

Proof. Let G be an amenable group, and let H ⊆ G be a subgroup of G. Consider
the decomposition G = tiHgi of G into a disjoint union of right cosets.

Suppose that H is not amenable, so that there exist a finite subset X ⊆ H and
ε > 0 such that for every finite Ω ′ ⊆ H we have

|Ω ′∪XΩ
′| ≥ (1+ ε)|Ω ′|.

Let Ω ⊆ G be a finite subset. We have the decomposition Ω = tm
j=1Ω jgi j , for

some i1, i2, . . . , im, where Ω jgi j = Ω ∩Hgi j . Hence Ω j ⊆ H and XΩ j ⊆ H, for all
j = 1,2, . . . ,m. Then

|Ω ∪XΩ | =
∣∣tm

j=1
(
Ω jgi j ∪XΩ jgi j

)∣∣= ∣∣tm
j=1 (Ω j ∪XΩ j)gi j

∣∣
=

m

∑
j=1

∣∣(Ω j ∪XΩ j)gi j

∣∣= m

∑
j=1

∣∣Ω j ∪XΩ j
∣∣

(by the choice of X and ε) ≥
m

∑
j=1

(1+ ε)|Ω j|= (1+ ε)
m

∑
j=1
|Ω j|

= (1+ ε)
m

∑
j=1
|Ω jgi j |= (1+ ε)

∣∣tm
j=1Ω jgi j

∣∣
= (1+ ε)|Ω |,

contradicting the amenability of G. Hence H is amenable. �
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The following corollary is immediate (cf. Example 1.19).

Corollary 14.10. Every group containing a subgroup isomorphic to the free group
F2 is non-amenable. In particular, every non-abelian free group and every group
containing a subgroup isomorphic to SL(2,Z) (e.g. SL(n,Z),GL(n,Z),SL(n,R),
or GL(n,R) for n≥ 2) is also non-amenable. �

Theorem 14.11. Every quotient of an amenable group is amenable.

Proof. Let G′ be an amenable group and suppose that G is a quotient of G′. Let
X ⊆G be a finite subset and ε > 0. By Proposition 14.8, we need to show that there
exists a finite subset Ω ⊆ G such that

|δX (Ω)|< ε|Ω |. (14.5)

Denote by π : G′→G the canonical epimorphism and choose a finite subset X ′ ⊆G′

such that π(X ′) = X and |X ′|= |X |. Since G′ is amenable, we can find a finite subset
Ω ′ ⊆ G′ such that

|δX ′(Ω
′)|< ε|Ω ′|. (14.6)

Let n := |Ω ′| and, for all i = 1,2, . . . ,n, define the sets

Ωi = {g ∈ G : |π−1(g)∩Ω
′| ≥ i} ⊆ π(Ω ′)⊆ G. (14.7)

Note that
Ω1 = π(Ω ′)⊇Ω2 ⊇Ω3 ⊇ ·· · ⊇Ωn ⊇Ωn+1 =∅ (14.8)

and, moreover,

n

∑
i=1
|Ωi|=

n

∑
i=1

∑
g∈Ω1

χΩi(g) = ∑
g∈Ω1

n

∑
i=1

χΩi(g) = ∑
g∈Ω1

|π−1(g)∩Ω
′|= |Ω ′|. (14.9)

Claim 1. For 1≤ j ≤ `≤ i≤ n we have

δX (Ω j)∩δX (Ωi)⊆ δX (Ω`). (14.10)

Indeed, let g ∈ δX (Ω j)∩ δX (Ωi). Then, as g ∈ δX (Ω j), we have g ∈ Ω j ⊆ Ω`

(where the last inclusion follows from (14.8)) and, as g ∈ δX (Ωi), we can find k ∈ X
such that kg /∈Ωi, equivalently, kg∈G\Ωi ⊆G\Ω` (where the last inclusion again
follows from (14.8)), i.e. kg /∈Ω`. This shows that g∈ δX (Ω`) and the claim follows.

Set Ω :=∪n
t=1∂X (Ωt)⊆Ω . Let g ∈Ω . We define 1≤ jg ≤ ig ≤ n by setting

jg :=min{t : g ∈ δX (Ωt)} and ig :=max{t : g ∈ δX (Ωt)}.

Claim 2. For every g ∈Ω we have

|π−1(g)∩δX ′(Ω
′)| ≥ ig− jg +1. (14.11)

Indeed, let g ∈ Ω . As g ∈ δX (Ωig) we have g ∈ Ωig and we can find distinct
elements g′1,g

′
2, . . . ,g

′
ig ∈Ω ′ such that π(g′1) = π(g′2) = · · ·= π(g′ig) = g.
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On the other hand, since also g ∈ δX (Ω jg), we have g ∈ Ω jg and we can find
k ∈ X such that

kg /∈Ω jg . (14.12)

Let k′ ∈X ′ be such that π(k′)= k. Consider the distinct elements k′g′1,k
′g′2, . . . ,k

′g′ig ∈
k′Ω ′ ⊆ G′ and set

Ω
′(g; in) :={g′i : k′g′i ∈Ω

′,1≤ i≤ ig}

and
Ω
′(g;out) :={g′i : k′g′i /∈Ω

′,1≤ i≤ ig}.

Then if ` := |Ω ′(g; in)|, we have, by definition of the Ωi’s (cf. (14.7)), kg ∈ Ω` so
that, from (14.12) and (14.10), we deduce that `≤ jg−1. As a consequence,

|Ω ′(g;out)|= ig− `≥ ig− jg +1. (14.13)

Since in fact Ω ′(g;out) = π−1(g)∩δX ′(Ω
′), the claim follows from (14.13).

From the second claim we immediately deduce

|δX ′(Ω
′)|= |tg∈Ω1 π

−1(g)∩δX ′(Ω
′)| ≥ ∑

g∈Ω1

(ig− jg +1). (14.14)

On the other hand we have

n

∑
i=1
|δX (Ωi)|=

n

∑
i=1

∑
g∈Ω1

χδX (Ωi)(g)

= ∑
g∈Ω1

(
n

∑
i=1

χδX (Ωi)(g)

)

= ∑
g∈Ω1

ig

∑
i= jg

1

= ∑
g∈Ω1

(ig− jg +1).

(14.15)

From (14.14) and (14.15) we deduce

|δX ′(Ω
′)| ≥

n

∑
i=1
|δX (Ωi)|.

Let us show that there exists 1≤ h≤ n such that |Ωh| 6=∅ and |δX (Ωh)|< ε|Ωh|.
If not, we would have |δX (Ωi)|> ε|Ωi| for all i = 1,2, . . . ,n and therefore

|δX ′(Ω
′)| ≥

n

∑
i=1
|δX (Ωi)|> ε

n

∑
i=1
|Ωi|= ε|Ω ′|,
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where the last equality follows from (14.9), contradicting (14.6). Then (14.5) fol-
lows by taking Ω :=Ωh. �

Theorem 14.12. Every extension of an amenable group by an amenable group is
amenable.

Proof. Let G be a group. Let H ⊆G be a normal subgroup of G which is amenable,
and suppose that the quotient group G :=G/H is also amenable. We need to show
that G is amenable.

Let X be a finite subset of G and let ε > 0. By Proposition 14.8 it is enough to
show that there exists a finite subset Ω of G such that

|∂x(Ω)|< ε|Ω | for all x ∈ X .

Let π : G→ G be the canonical quotient homomorphism, and set X :=π(X) ⊆ G.
Since G is amenable, we can find a finite subset Ω 1 ⊆ G such that

|∂x(Ω 1)|<
ε

2
|Ω 1| for all x ∈ X .

Let Ω1 ⊆ G be such that π(Ω1) = Ω 1 and |Ω1|= |Ω 1|.
For x ∈ X , let x :=π(x) ∈ X . Observe that we always have (exercise)

∂x(Ω 1) = xΩ 1 \Ω 1 = π(xΩ1)\π(Ω1)⊆ π(xΩ1 \Ω1) = π(∂x(Ω1)).

We distinguish two cases.
Case 1: equality holds for all x ∈ X . Then π induces a bijection from ∂x(Ω1) to

∂x(Ω 1), so that
|∂x(Ω 1)|= |∂x(Ω1)|,

and therefore

|∂x(Ω1)|= |∂x(Ω 1)|<
ε

2
|Ω 1|< ε|Ω1| for all x ∈ X .

So we can take Ω :=Ω1.
Case 2: there exist x ∈ X and g ∈ ∂x(Ω1) such that π(g) ∈Ω 1. In this case, there

exist ω1,ω
′
1 ∈ Ω1 such that g = xω1, and π(g) = π(xω1) = π(ω ′1). Therefore, we

can find y ∈H such that xω1 = ω ′1y, so that y = (ω ′1)
−1xω1 ∈Ω

−1
1 XΩ1∩H. The set

Y :=Ω
−1
1 XΩ1∩H is a finite subset of H, and by the amenability of H, we can find

a finite subset Ω2 ⊆ H such that

|∂y(Ω2)|<
ε

2|Y |
|Ω2| for all y ∈ Y. (14.16)

Set Ω :=Ω1Ω2 ⊆ G. Observe that |Ω |= |Ω1| · |Ω2|.
Now for x ∈ X , let x :=π(x), and consider the two sets

∂
1
x (Ω) :={g ∈ ∂x(Ω) : π(g) ∈Ω 1}

and
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∂
2
x (Ω) :=∂x(Ω)\∂

1
x (Ω).

For g∈ ∂ 1
x (Ω), there exist ω1 ∈Ω1 and ω2 ∈Ω2 such that g= xω1ω2. As we already

observed, there exist ω ′1 ∈ Ω1 and y ∈ Y such that g = xω1ω2 = ω ′1yω2. Note that,
since g /∈Ω , we have yω2 /∈Ω2, therefore yω2 ∈ ∂y(Ω2). Then

|∂ 1
x (Ω)| ≤ |Ω1| ·

∣∣∣∣∣⋃
y∈Y

∂y(Ω2)

∣∣∣∣∣
(by (14.16))≤ |Ω1| ·

(
∑
y∈Y
|∂y(Ω2)|

)

< |Ω1| · |Y |
(

ε

2|Y |
|Ω2|

)
=

ε

2
|Ω1| · |Ω2|

=
ε

2
|Ω |.

For g ∈ ∂ 2
x (Ω), we have π(g) ∈ ∂x(Ω). Arguing as in Case 1, we have

|∂ 2
x (Ω)| ≤ |∂x(Ω 1)| · |Ω2|

<
ε

2
|Ω1| · |Ω2|

=
ε

2
|Ω |.

Finally,
|∂x(Ω)|= |∂ 1

x (Ω)|+ |∂ 2
x (Ω)| ≤ ε

2
|Ω |+ ε

2
|Ω |= ε|Ω |.

This proves the amenability of G. �

In particular, the semidirect product of two amenable groups is amenable.
The proof of the following corollary is left as an exercise.

Corollary 14.13. Every solvable group is amenable.

Corollary 14.14. Every virtually amenable group is amenable.

Proof. Let G be a virtually amenable group. Thus we can find a finite index sub-
group H ≤ G which is amenable. By Poincaré’s lemma (Lemma 2.39), we can find
a normal subgroup K ≤ H which is of finite index in G. By virtue of Theorem 14.9
(resp. Example 14.2) K (resp. the finite group G/K) is amenable. As G is the exten-
sion of K by G/K, we deduce from Theorem 14.12 that G is amenable. �

Theorem 14.15. Let G be a group. Suppose there exists a family (Gi)i∈I of amenable
subgroups of G such that G =

⋃
i∈I Gi and, for all i1, i2 ∈ I there exists an i ∈ I such

that Gi1 ∪Gi2 ⊆ Gi. Then G is amenable.

Proof. Let X ⊂G be a finite subset and ε > 0. For every x ∈ X we can find an ix ∈ I
such that x ∈ Gix . Let i ∈ I be such that

⋃
x∈X Gix ⊆ Gi. Then, since Gi is amenable
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and X ⊆ Gi, we can find a finite subset Ω of Gi (and therefore of G) such that
|∂X (Ω)|< |Ω |. This shows that G is amenable. �

Corollary 14.16. Let G be a group and suppose there exists a sequence (Gn)n∈N of
amenable subgroups which is exhausting, that is, G=

⋃
n∈N Gn, and non-decreasing,

that is, Gn ⊂ Gn+1 for all n ∈ N. Then G is amenable. �

14.3 Measures and Paradoxical Decompositions

Definition 14.17. Let G be a group. An invariant finitely additive probability mea-
sure on G is a function µ : P(G)→ [0,1] such that

1. µ(G) = 1;
2. µ(A∪B) = µ(A)+µ(B)−µ(A∩B) for all A,B⊆ G;
3. µ(gA) = µ(A) for all g ∈ G and A⊆ G.

Example 14.18. If G is a finite group, then the normalized counting measure µ ,
defined by setting µ(A) := |A|/|G| for all A ⊆ G, is an invariant finitely additive
probability measure on G.

Definition 14.19. A group G is called paradoxical if there exist nonempty subsets
Ai,B j ⊆ G and elements ai,b j ∈ G, for i = 1,2, . . . ,n and j = 1,2, . . . ,m, such that

G = tn
i=1Aittm

j=1B j (14.17)

and
G = tn

i=1aiAi = tm
j=1b jB j. (14.18)

One says that the expressions (14.17) and (14.18) constitute a paradoxical decom-
position of type (n,m) of the group G.

Example 14.20. Consider the free group F2 on two free generators x and y. For
a ∈ {x,x−1,y,y−1}, let Ωa denote the set of all reduced words in F2 starting with a.
Set A1 :=Ωx, A2 :=Ωx−1 , B1 :=Ωy∪{y−n : n = 0,1,2, . . .} and B2 :=Ωy−1 \{y−n :
n = 0,1,2, . . .}. Then it is an exercise to check that

F2 = A1tA2tB1tB2, (14.19)

and
F2 = A1t xA2 = B1t yB2. (14.20)

This shows that F2 is paradoxical.

Theorem 14.21 (Tarski–Følner). Let G be a finitely generated group. Then the
following conditions are equivalent:

(a) G is amenable;
(b) G admits an invariant finitely additive probability measure;
(c) G is not paradoxical.
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Proof. (a) =⇒ (b): suppose that G is amenable, and let X ⊆G be a finite symmetric
set of generators of G. Then, for every n ∈ N, n≥ 1, let Ωn ⊆ G a finite subset such
that

|∂BX (1G,n)(Ωn)|<
1
n
|Ωn|.

For every n≥ 1, let

µn(A) :=
|A∩Ωn|
|Ωn|

for all A⊆ G. Let ω be a free ultrafilter on N. By Corollary 11.20 we can set

µ(A) := lim
ω

µn(A)

for all A ⊆ G. We claim that µ : P(G) → [0,1] is an invariant finitely additive
probability measure on G. Indeed,

µ(G) = lim
ω

µn(G) = lim
ω

1 = 1,

and, for all A,B⊆ G,

µ(A∪B) = lim
ω

µn(A∪B)

= lim
ω
(µn(A)+µn(B)−µn(A∪B))

(cf. Theorem 11.22) = lim
ω

µn(A)+ lim
ω

µn(B)− lim
ω

µn(A∩B)

= µ(A)+µ(B)−µ(A∩B).

Moreover, let g ∈ G and A⊆ G. For n≥ `X (g) = `X (g−1), we have

|µn(gA)−µn(A)|=
∣∣∣∣ |gA∩Ωn|− |A∩Ωn|

|Ωn|

∣∣∣∣
=

∣∣∣∣ |A∩g−1Ωn|− |A∩Ωn|
|Ωn|

∣∣∣∣
=
|(g−1Ωn∩Ωn)∩A|

|Ωn|

≤
|∂g−1(Ωn)|
|Ωn|

≤
|∂BX (1G,n)(Ωn)|

|Ωn|
<

1
n
.

Therefore |µ(gA)−µ(A)| ≤ limω |µn(gA)−µn(A)|= 0, hence

µ(gA) = µ(A).

(b) =⇒ (c): let µ be an invariant finitely additive probability measure on G.
Suppose by contradiction that there exist nonempty subsets Ai,B j ⊆G and elements
a1,b j ∈ G for i = 1,2, . . . ,n and j = 1,2, . . . ,m such that
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G = tn
i=1Aittm

j=1B j

and
G = tn

i=1aiAi = tm
j=1b jB j.

But then

1 = µ(G) = µ
(
tn

i=1Aittm
j=1B j

)
=

n

∑
i=1

µ(Ai)+
m

∑
j=1

µ(B j)

=
n

∑
i=1

µ(aiAi)+
m

∑
j=1

µ(b jB j)

= µ (tn
i=1aiAi)+µ

(
tm

j=1b jB j
)

= µ(G)+µ(G) = 2,

a contradiction. Hence G is not paradoxical.
(c) =⇒ (a): suppose that G is not amenable, and let us show that it is paradoxical.

Since G is not amenable, there exist a finite subset X ⊆ G and ε > 0 such that for
every finite subset Ω ⊆ G we have

|∂X (Ω)| ≥ ε|Ω |,

equivalently
|Ω ∪XΩ | ≥ (1+ ε)|Ω |.

We can assume that 1G ∈ X , as

∂X (Ω) = XΩ \Ω = (Ω ∪XΩ)\Ω = ∂X∪{1G}(Ω).

Therefore
|XΩ | ≥ (1+ ε)|Ω |.

Replacing Ω by XΩ we get

|X2
Ω |= |X(XΩ)| ≥ (1+ ε)|XΩ | ≥ (1+ ε)2|Ω |.

Iterating, for all n≥ 1 we get

|Xn
Ω | ≥ (1+ ε)|Xn−1

Ω | ≥ (1+ ε)2|Xn−2
Ω | ≥ · · · ≥ (1+ ε)n|Ω |.

For n big enough, (1+ ε)n > 2, so that, by replacing X by Xn, we can assume that

|XΩ | ≥ 2|Ω |. (14.21)

Consider the bipartite graph G = (At B,E), where A and B are two disjoint
copies of G, and E ⊆ A×B consists of the edges (g,xg) with g ∈ G and x ∈ X . In
this graph, for every finite subset Ω ⊆ A, the set of neighbors of all elements in Ω is
precisely XΩ ⊆ B, and clearly XA = B. We can now apply the following theorem.
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Theorem 14.22 (Ph. Hall). Let G = (AtB,E) be a graph such that E ⊆ A×B.
For every Ω ⊆ A, let N (Ω) denote the set of neighbors of elements of Ω .

Suppose that for every finite subset Ω ⊆ A, the set N (Ω)⊆ B is finite,

|N (Ω)| ≥ 2|Ω | and N (A) = B.

Then there is a perfect (1,2)-matching in E, i.e. a function ϕ : B→ A such that
|ϕ−1(a)|= 2 for all a ∈ A, ϕ(B) = A, and {(a,b) : b ∈ ϕ−1(a)} ⊆ E.

Let then ϕ : B→ A be a perfect (1,2)-matching in E. For every a ∈ A, we fix
the notation ϕ−1(a) = {b′a,b′′a}, so that the sets B′ :={b′a : a ∈ A} ⊆ B and B′′ :=
{b′′a : a ∈ A} ⊆ B are such that B′ ∩B′′ = ∅ and BtB′ = B. For every x ∈ X , let
B′x :={b ∈ B′ : ϕ(b) = x−1b} and B′′x :={b ∈ B′′ : ϕ(b) = x−1b}. Also, let X ′ :={x ∈
X : B′x 6=∅} ⊆ X and X ′′ :={x ∈ X : B′′x 6=∅} ⊆ X . Then

G≡ B = ty∈X ′Byttz∈X ′′Bz

and
G≡ A = ty∈X ′y

−1By = tz∈X ′′z
−1Bz,

showing that G is paradoxical. �

14.4 Følner Nets and Følner Sequences

Proposition 14.23. Let G be a group. The following conditions are equivalent:

(a) G is amenable;
(b) for every finite set X ⊆ G and every ε > 0 there exists a finite nonempty set

Ω ⊆ G such that
|Ω \ xΩ |< ε|Ω | (14.22)

for all x ∈ X;
(c) there exists a net (Fj) j∈J of finite nonempty subsets of G such that

lim
j∈J

|Fj \gFj|
|Fj|

= 0 (14.23)

for all g ∈ G.

Proof. We first observe that if Ω ⊂ G is a finite set and x ∈ G, then one has |Ω | =
|xΩ | so that

|Ω \ xΩ |= |Ω |− |Ω ∩ xΩ |= |xΩ |− |Ω ∩ xΩ |= |xΩ \Ω |. (14.24)

Suppose (a) and let X ⊂ G be a finite set and ε > 0. Then we can find a finite
subset Ω ⊂ G such that |∂X (Ω)| < ε|Ω |. But then, using (14.24), for every x ∈ X
we have

|Ω \ xΩ |= |xΩ \Ω | ≤ |XΩ \Ω |= |∂X (Ω)|< ε|Ω |.
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This shows (a) =⇒ (b).
Suppose now that G satisfies condition (b). Let J denote the set of pairs (X ,ε),

where X is a finite subset of G and ε > 0. We equip J with a partial order ≤ defined
by

(X ,ε)≤ (X ′,ε ′) if (X ⊂ X ′ and ε ≥ ε
′).

Note that J is inductive, that is, every two elements in J admit both an upper and a
lower bound. Indeed, we clearly have

sup{(X ,ε),(X ′,ε ′)}= (X ∪X ′,min{ε,ε ′})

and
inf{(X ,ε),(X ′,ε ′)}= (X ∩X ′,max{ε,ε ′}).

As a consequence of condition (b), for every j = (X ,ε) ∈ J we can find a finite
nonempty subset Fj ⊂ G such that

|Fj \ xFj|
|Fj|

< ε for all x ∈ X . (14.25)

Let us now fix g ∈G and ε0 > 0 and set j0 :=({g},ε0) ∈ J. If j = (X ,ε) ∈ J is such
that j ≥ j0, that is, g ∈ X and ε ≤ ε0, then from (14.25) we deduce

|Fj \gFj|
|Fj|

< ε0. (14.26)

It follows that the net (Fj) j∈J satisfies (14.23). This shows that (b) implies (c).
Finally, suppose (c). Let X be a finite subset of G and ε > 0. From (14.23), for

every g ∈ G we can find an index j(g) ∈ J such that

|Fj \gFj|
|Fj|

<
ε

|X |

for all j≥ j(g). Since X is finite, we can find an index j0 ∈ J such that j0 ≥ j(x) for
all x ∈ X . Using (14.24), it follows that the finite set Ω :=Fj0 satisfies the condition

|xΩ \Ω |= |Ω \ xΩ |< ε

|X |
|Ω |

for all x ∈ X . We deduce that

|∂X (Ω)|= |XΩ \Ω |= |∪x∈X (xΩ \Ω)| ≤ ∑
x∈X
|xΩ \Ω |< ε|Ω |.

This shows that (c) implies (a). �

A net (Fj) j∈J of nonempty finite subsets of G satisfying (14.23) is called a Følner
net in (the amenable group) G.

The proof of the following corollary (along the lines of the proof of Proposition
14.23) is left as an exercise.
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Corollary 14.24. Suppose that G is countable. Then the following conditions are
equivalent:

(a) G is amenable;
(b) there exists a sequence (Fn)n∈N of finite nonempty subsets of G such that

lim
n∈N

|Fn \gFn|
|Fn|

= 0 (14.27)

for all g ∈ G.

A sequence (Fn)n∈N of nonempty finite subsets of G satisfying (14.27) is called
a Følner sequence in (the amenable group) G. It turns out (exercise) that, in fact, if
a Følner sequence exists, then the group G is necessarily countable.

14.5 Kesten’s Amenability Criterion

In the next three subsections we present Harry Kesten’s pioneering and fundamental
work on symmetric random walks on groups [196, 197]. In the present section,
we define the spectral radius ρ(G,Y ) of the simple random walk associated with a
finite symmetric generated subset Y of a finitely generated group G and show that
ρ(G,Y ) = 1 exactly when G is amenable (Theorem 14.26). Our exposition is also
based on [59, Section 6.12]. We keep the notation from Section 13.5.

Kesten’s Amenability Criterion for Finitely Generated Groups

Let G be a finitely generated group and let Y ⊂ G be a finite symmetric generating
subset.

Consider the simple random walk (G,Q) = (G,Q,δ1G) on G associated with Y
(cf. Example 13.18), that is, the nearest neighbor random walk defined by

q(g,h) =

{
1
|Y | if g−1h ∈ Y

0 otherwise

for all g,h ∈ G. As usual, we set

q(0)(g,h) = δg,h (14.28)

(where δg,h denotes the Kronecker symbol) and, for n≥ 1 we denote by

q(n)(1G,1G) = P[Zn = 1G|Z0 = 1G] = Pδ1G
[Zn = 1G]

the probability of returning to the identity element at the n-th step; here Qn =
(q(n)(g,h))g,h∈G is the n-th power of Q, the projection map Zn : GN → G is the
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random variable representing the random position of the walker at time n, and
P(A|B) denotes the conditional probability of event A given event B with proba-
bility P(B)> 0: in our case P[ · |Z0 = 1G] = Pδ1G

[ · ], since the random walk starts at
1G.

With the random walk (G,Q) we associate the atomic probability measure µ

on G obtained by setting (cf. (13.21)) µ(g) :=q(1G,g) for all g ∈ G. In the present
setting µ is nothing but the uniform probability distribution on the generating subset
Y :

µ :=
1
|Y |

1Y =
1
|Y | ∑y∈Y

δy.

Recall that µ(g) = µ(g−1) for all g ∈ G (i.e., µ is symmetric) and supp(µ) = Y .
We set µ(0) :=δ1G and denote by µ(n) the n-th convolution of µ , which is defined
recursively by setting

µ
(n+1)(g) := ∑

h∈G
µ
(n)(gh−1)µ(h) =

1
|Y | ∑y∈Y

µ
(n)(gy) (14.29)

for all g ∈ G. Note that, in fact

µ
(n)(g) = q(n)(1G,g) (14.30)

for all g ∈ G (exercise). We denote by

G(z) :=
∞

∑
n=0

q(n)(1G,1G)zn, (14.31)

where z is an indeterminate, the associated Green function (cf. (13.14)). We denote
by R its radius of convergence.

Definition 14.25. The number

ρ(G,Y ) := limsup
n→∞

n
√

q(n)(1G,1G) =
1
R

(14.32)

is called the spectral radius of the simple random walk on G relative to the symmet-
ric generating subset Y .

Note that the last equality in (14.32) is just a consequence of the Cauchy–
Hadamard theorem

We are now in a position to state the following characterization of finitely gener-
ated amenable groups.

Theorem 14.26 (Kesten’s amenability criterion for finitely generated groups).
Let G be a finitely generated group and let Y ⊂G be a symmetric generating subset.
Then G is amenable if and only if ρ(G,Y ) = 1.

In order to present a proof of Theorem 14.26, we review some basic concepts
and results in Functional Analysis. For more details we refer to the monographs by
Rudin [298, 299], Reed–Simon [288], and [59].
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Let G be a countable group. Consider the real Hilbert space

`2(G) = { f ∈ RG : ∑
g∈G
| f (g)|2 < ∞} (14.33)

consisting of all square-summable real functions on G, the inner product being de-
fined by setting

〈 f1, f2〉= ∑
g∈G

f1(g) f2(g)

for all f1, f2 ∈ `2(G). Then, the `2-norm of an element f ∈ `2(G) is given by ‖ f‖2 =√
〈 f , f 〉=

(
∑g∈G | f (g)|2

) 1
2 .

The (operator) norm of a linear map T : `2(G)→ `2(G) is defined by

‖T‖= sup
f∈`2(G)
‖ f‖2≤1

‖T f‖2 = sup
x∈`2(G)

f 6=0

‖T f‖2

‖ f‖2
.

Then, T is continuous if and only if ‖T‖< ∞. We denote by B(`2(G)) the space of
all continuous linear maps (also called bounded linear operators) T : `2(G)→ `2(G)
and by I : `2(G)→ `2(G) the identity map.

Let T ∈B(`2(G)). It follows from Riesz’ representation theorem that there exists
a unique operator T ∗ ∈ B(`2(G)), called the adjoint of T , such that 〈T f1, f2〉 =
〈 f1,T ∗ f2〉 for all f1, f2 ∈ `2(G). The map T 7→ T ∗ is a linear involution on B(`2(G))
(exercise). One then says that T is self-adjoint provided T = T ∗, that is, it satisfies
〈T f1, f2〉= 〈 f1,T f2〉 for all f1, f2 ∈ `2(G).

The operator norm satisfies the following properties: ‖aT‖ = |a| · ‖T‖, ‖T ∗‖ =
‖T‖, and ‖T1 +T2‖ ≤ ‖T1‖+‖T2‖ for all a ∈ R and T,T1,T2 ∈B(`2(G)).

Suppose that T ∈B(`2(G)) is self-adjoint. Then the set

σ(T ) := {λ ∈ R : (T −λ I) is not bijective}
= {λ ∈ R : (T −λ I) has no bounded inverse} ⊆ R

(14.34)

is called the spectrum of T . Then the spectrum σ(T ) is a compact set satisfying

σ(T )⊆ [−‖T‖,‖T‖ ] . (14.35)

The quantity
ρ(T ) := sup

λ∈σ(T )
|λ |= max

λ∈σ(T )
|λ | (14.36)

is called the spectral radius of T and one has (Gelfand formula)

ρ(T ) = ‖T‖= lim
n→∞
‖T n‖1/n. (14.37)

Given g ∈ G we denote by Tg : `2(G)→ `2(G) the linear map defined by setting
[Tg f ](h) = f (hg) for all f ∈ `2(G) and h ∈ G. For all f ∈ `2(G) we have
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‖Tg f‖2
2 = ∑

h∈G
|[Tg f ](h)|2

= ∑
h∈G
| f (hg)|2

(by setting k = hg) = ∑
k∈G
| f (k)|2

= ‖ f‖2
2

(that is, Tg is an isometry) so that

‖Tg‖= 1 (14.38)

and, in particular, Tg ∈B(`2(G)). Note that Tg is invertible with inverse (exercise)

(Tg)
∗ = Tg−1 . (14.39)

Then, returning back to the simple random walk on G associated with the sym-
metric generating subset Y ⊂G, we denote by MY : `2(G)→ `2(G) the map defined
by MY = 1

|Y | ∑y∈Y Ty. In other words,

[MY f ](g) =
1
|Y | ∑y∈Y

f (gy)

for all f ∈ `2(G) and g ∈ G. The map MY is called the Markov operator associated
with Y .

Proposition 14.27. The Markov operator MY is linear, continuous, and self-adjoint.
Moreover,

‖MY‖ ≤ 1. (14.40)

Proof. Since Ty ∈B(`2(G)) for all y ∈ Y , we deduce that MY ∈B(`2(G)). More-
over, using (14.39) and recalling that Y is symmetric (Y = Y−1) we have

MY
∗ =

(
1
|Y | ∑y∈Y

Ty

)∗
=

1
|Y | ∑y∈Y

Ty
∗ =

1
|Y | ∑y∈Y

Ty−1 =
1
|Y | ∑y∈Y

Ty = MY ,

showing that MY is self-adjoint. Finally, we have

‖MY‖= ‖
1
|Y | ∑y∈Y

Ty‖ ≤
1
|Y | ∑y∈Y

‖Ty‖= 1,

where the last equality follows from (14.38). �

Let g,h ∈ G and n≥ 0 and let us show that

〈Mn
Y δg,δh〉= q(n)(g,h). (14.41)

We claim that [Mn
Y δg](h) = q(n)(g,h). For n = 0 we have [M0

Y δg](h) = [Iδg](h) =
δg(h) = q(0)(g,h) (cf. (14.28)). Moreover,
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q(k,h) =

{
1
|Y | if h−1k ∈ Y

0 otherwise
=

1
|Y | ∑y∈Y

δy(h−1k) (14.42)

so that

[Mn+1
Y δg](h) = [MY (Mn

Y δg)](h)

=
1
|Y | ∑y∈Y

[Mn
Y δg](hy)

(by induction) =
1
|Y | ∑y∈Y

q(n)(g,hy)

(k = hy⇔ y = h−1k) =
1
|Y | ∑k∈G

∑
y∈Y

q(n)(g,k)δy(h−1k)

(by (14.42)) = ∑
k∈G

q(n)(g,k)q(k,h)

= q(n+1)(g,h),

proving the claim. Then (14.41) follows after observing that 〈x,δh〉 = x(h) for all
x ∈ `2(G) and h ∈ G. In particular,

〈Mn
Y δ1G ,δ1G〉= q(n)(1G,1G).

The following proposition is a particular case of Corollary 14.41 below. For its
proof, we thus refer to the proof of the latter.

Proposition 14.28. ρ(G,Y ) = ‖MY‖= ρ(MY ).

Proof of Theorem 14.26 Suppose that G is amenable and let us show that ρ(G,Y ) =
1. Note that by virtue of Proposition 14.28, it is equivalent to show that 1 ∈ σ(MY ).

Fix ε > 0. By Proposition 14.8 there exists a finite subset Ω ⊂ G such that

|∂y(Ω)|< ε2

2
|Ω | (14.43)

(Følner condition) for all y ∈ Y (recall that ∂y(Ω) = yΩ \Ω ).
Set f := 1√

|Ω |
1Ω−1 = 1√

|Ω | ∑g∈Ω−1 δg ∈ `2(G).

Lemma 14.29. For every y ∈ Y we have

‖ f −Ty f‖2 ≤ ε. (14.44)

Proof. Given two finite subsets A,B⊆ G we have:

‖1A−1B‖2
2 = ∑

g∈G
|1A(g)−1B(g)|2

= ∑
g∈G
|1A(g)−1B(g)|
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= ∑
g∈G:

1A(g)−1B(g)=1

|1A(g)−1B(g)|

+ ∑
g∈G:

1A(g)−1B(g)=−1

|1A(g)−1B(g)|

= ∑
g∈G

1A\B(g)+ ∑
g∈G

1B\A(g)

= |A\B|+ |B\A|.

Now observing that Ty1Ω−1 = 1Ω−1y−1 (exercise), taking A=Ω−1 and B=Ω−1y−1,
we deduce that

‖1Ω−1 −Ty1Ω−1‖2
2 = |Ω−1 \Ω

−1y−1|+ |Ω−1y−1 \Ω
−1|

= |Ω \ yΩ |+ |yΩ \Ω |
= 2|∂y(Ω)|.

After dividing by |Ω |, we have ‖ f −Ty f‖2
2 = 2 |∂y(Ω)|

|Ω | and (14.44) follows from
(14.43). �

We have

‖(I−MY ) f‖2 =

∥∥∥∥∥ f − 1
|Y | ∑y∈Y

Ty f

∥∥∥∥∥
2

=
1
|Y |

∥∥∥∥∥∑
y∈Y

( f −Ty f )

∥∥∥∥∥
2

≤ 1
|Y | ∑y∈Y

‖ f −Ty f‖2

(by (14.44)) ≤ 1
|Y | ∑y∈Y

ε

= ε.

Since ‖ f‖2 = 1, we deduce that I −MY has no bounded inverse, that is, 1 ∈
σ(MY ). This proves the implication: G amenable =⇒ ρ(G,Y ) = 1.

To prove the reverse implication, we need a lemma, characterizing amenability
of finitely generated groups.

Lemma 14.30. Let G be a finitely generated group and let Y ⊂ G be a finite and
symmetric generating subset. Then the following conditions are equivalent:

(a) G is amenable;
(b) for every ε > 0 there exists a finite nonempty subset Ω ⊂ G such that

|Ω \ yΩ |
|Ω |

< ε for all y ∈ Y. (14.45)
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Proof. The implication (a) =⇒ (b) is obvious. Conversely, suppose (b). It is not
restrictive to suppose that 1G ∈Y . Let then X ⊂G be a finite subset and ε ′ > 0. Since
Y generates G, we can find n∈N such that X ⊂Y n, so that, given x ∈ X , we can find
y1,y2, . . . ,yn ∈ Y such that x = y1y2 · · ·yn. Set ε :=ε ′/n and let Ω ⊂ G satisfying
(14.45). After observing that (i) g(A \B) = gA \ gB for all subsets A,B ⊂ G and
g ∈ G (exercise) and (ii) |A\B| ≤ |A\C|+ |C \B| for all finite subsets A,B,C ⊂ G
(exercise), we have

|Ω \ xΩ |= |Ω \ y1y2 · · ·ynΩ |
≤ |Ω \ y1Ω |+ |y1Ω \ y1y2Ω |+ |y1y2Ω \ y1y2y3Ω |

+ · · ·+ |y1y2 · · ·yn−1Ω \ y1y2 · · ·yn−1ynΩ | (by (ii))
= |Ω \ y1Ω |+ |Ω \ y2Ω |+ |Ω \ y3Ω |+ · · ·+ |Ω \ ynΩ | (by (i))
< nε|Ω |
≤ ε

′|Ω |,

equivalently, |∂x(Ω)|< ε ′|Ω | for all x ∈ X . It follows from Proposition 14.8 that G
is amenable. �

Suppose then that ρ(G,Y ) = 1, equivalently, 1 ∈ σ(MY ).
We claim that 1 ∈ σ(MY∪{1G}) if and only if 1 ∈ σ(MY ). Indeed, if 1G /∈ Y we

set α := |Y |
|Y |+1 . Note that 0 < α < 1 and that MY∪{1G} = (1−α)I +αMY . We then

have
I−MY∪{1G} = α(I−MY )

so that I−MY∪{1G} is bijective if and only if I−MY is bijective. This proves the
claim.

As a consequence, up to replacing Y by Y ∪{1G}, from now on we suppose that
1G ∈ Y .

Recall that the support of a function f ∈ RG is the set

supp( f ) :={g ∈ G : x(g) 6= 0}.

We denote by R[G] ⊂ RG the vector subspace consisting of all finitely supported
functions f : G→ R. Note that R[G] is a dense subspace in `2(G). We thus have

‖T‖= sup
f∈R[G]
‖ f‖2≤1

‖T f‖2 = sup
f∈R[G]

f 6=0

‖T f‖2

‖ f‖2
(14.46)

for all T ∈B(`2(G)). Moreover, for f ∈ R[G] we set

‖ f‖1 := ∑
g∈G
| f (g)|.

Note that for all f ∈ R[G] and g ∈ G one has Tg f ∈ R[G] (in fact supp(Tg f ) =
supp( f )g−1 (exercise), and therefore MY f ∈ R[G] (exercise)) and

‖Tg f‖1 = ‖ f‖1 (14.47)
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(exercise).
The following lemma gives a description of nonnegative finitely supported func-

tions on the group G.

Lemma 14.31. Let f ∈ R[G] such that f ≥ 0 and ‖ f‖1 = 1. Then there exist an
integer n ≥ 1, nonempty finite subsets Ai ⊂ G and real numbers λi > 0, for i =
1,2, . . . ,n, satisfying A1 ⊃ A2 ⊃ ·· · ⊃ An and λ1 +λ2 + · · ·+λn = 1 such that

f =
n

∑
i=1

λi
1Ai

|Ai|
. (14.48)

Proof. Let 0 < α1 < α2 < · · ·< αn denote the values taken by f . For each 1≤ i≤ n,
let us set

Ai = {g ∈ G : f (g)≥ αi}.

Clearly the sets Ai are nonempty finite subsets of G such that A1 ⊃ A2 ⊃ ·· · ⊃ An.
On the other hand, we have

f = α11A1 +(α2−α1)1A2 + · · ·+(αn−αn−1)1An

= λ1
1A1

|A1|
+λ2

1A2

|A2|
+ · · ·+λn

1An

|An|
,

by setting λ1 = α1|A1| and λi = (αi − αi−1)|Ai| for 2 ≤ i ≤ n. Thus λi > 0 for
1≤ i≤ n and

n

∑
i=1

λi = α1|A1|+(α2−α1)|A2|+ · · ·+(αn−αn−1)|An|

= α1(|A1|− |A2|)+α2(|A2|− |A3|)+ · · ·+αn|An|
= α1|A1 \A2|+α2|A2 \A3|+ · · ·+αn−1|An−1 \An|+αn|An|
= ∑

g∈G
f (g) = ‖ f‖1 = 1. �

We now start the search for a suitable function f ∈ R[G], depending on ε > 0,
for which one of the level-sets (in the sense of Lemma 14.31) will satisfy the Følner
condition (14.43).

Lemma 14.32. For every ε > 0 there exists an f ∈R[G] such that ‖ f‖2 = 1, f ≥ 0,
and

‖MY f‖2 ≥ 1− ε. (14.49)

Proof. It follows from the definition of ‖MY‖= 1 and the density of R[G] in `2(G)
(cf. (14.46)) that we can find f ∈ R[G] such that ‖ f‖2 = 1 and satisfies (14.49). We
claim that | f | also satisfies the same properties. First of all ‖| f |‖2 = ‖ f‖2 = 1. We
claim that

‖MY f‖2
2 ≤ ‖MY | f |‖2

2 . (14.50)
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Indeed,

‖MY f‖2
2 =

∥∥∥∥∥ 1
|Y | ∑y∈Y

Ty f

∥∥∥∥∥
2

2

= ∑
g∈G

(
1
|Y | ∑y∈Y

f (gy)

)2

≤ ∑
g∈G

(
1
|Y | ∑y∈Y

| f (gy)|

)2

=

∥∥∥∥∥ 1
|Y | ∑y∈Y

Ty| f |

∥∥∥∥∥
2

2

= ‖MY | f |‖2
2 .

This proves the claim and completes the proof of the lemma. �

In order to prove the following lemma we need a result from functional analysis
(we include the proof for the sake of completeness).

Proposition 14.33 (Uniform convexity of Hilbert spaces). For every ε > 0, there
exists a δ > 0 such that

‖ f1− f2‖2 > ε implies
∥∥∥∥ f1 + f2

2

∥∥∥∥< 1−δ

for all f1, f2 ∈ `2(G) with ‖ f1‖,‖ f2‖ ≤ 1.

Proof. Let f1, f2 ∈ `2(G) such that ‖ f1‖,‖ f2‖ ≤ 1. Then, we have∥∥∥∥ f1 + f2

2

∥∥∥∥2

+
1
4
‖ f1− f2‖2

=
1
4
(〈 f1 + f2, f1 + f2〉+ 〈 f1− f2, f1− f2〉)

=
1
4
(〈 f1, f2〉+ 〈 f2, f2〉+2〈 f1, f2〉+ 〈 f1, f1〉+ 〈 f2, f2〉−2〈 f1, f2〉)

=
1
4
(
2‖ f1‖2 +2‖ f2‖2)

≤ 1.

Therefore, ∥∥∥∥ f1 + f2

2

∥∥∥∥2

≤ 1− 1
4
‖ f1− f2‖2. (14.51)

Let now ε > 0 and set δ = 1− 1
2

√
4− ε2. Suppose that ‖ f1 − f2‖ > ε . This

implies 1− 1
4‖ f1− f2‖2 < 1− ε2

4 = (1− δ )2. From (14.51) we then deduce that
‖ f1+ f2

2 ‖< 1−δ . �
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Lemma 14.34. For every ε > 0 there exists an fε ∈R[G] such that fε ≥ 0, ‖ fε‖2 = 1
and

‖ fε −Ty fε‖2 ≤ ε for all y ∈ Y . (14.52)

Proof. Suppose that the statement fails to hold, that is, there exists an ε0 > 0 such
that for all f ∈ R[G], f ≥ 0, and ‖ f‖2 = 1, there exists a y0 ∈ Y such that ‖ f −
Ty0 f‖2 ≥ ε0. Since `2(G) is uniformly convex (cf. Proposition 14.33) there exists a
δ0 > 0 such that ∥∥∥∥ f +Ty0 f

2

∥∥∥∥
2
≤ 1−δ0 (14.53)

for all f ∈ R[G] such that ‖ f‖2 = 1 = ‖Ty0 f‖2. It then follows that

‖MY f‖2 =

∥∥∥∥∥ 1
|Y | ∑y∈Y

Ty f

∥∥∥∥∥
2

=

∥∥∥∥∥ 2
|Y |

(
f +Ty0 f

2

)
+

1
|Y | ∑

y∈Y\{1G,y0}
Ty f

∥∥∥∥∥
2

≤ 2
|Y |

∥∥∥∥ f +Ty0 f
2

∥∥∥∥
2
+

1
|Y | ∑

y∈Y\{1G,y0}
‖Ty f‖2

(by (14.53)) ≤ 2
|Y |

(1−δ0)+
1
|Y |

(|Y |−2)

= 1− 2δ0

|Y |

for all f ∈ R[G], such that ‖ f‖2 = 1 and f ≥ 0. This clearly contradicts Lemma
14.32. �

Let F := f ε

2|Y |
∈ R[G] as in Lemma (14.34). Thus ‖F‖2 = 1, and ‖F −TyF‖2 ≤

ε

2|Y | for all y ∈ Y . Setting f :=F2 ∈ R[G], we have ‖ f‖1 = 1, f ≥ 0, and we claim
that

‖ f −Ty f‖1 ≤
ε

|Y |
for all y ∈ Y . (14.54)

This results from the following general fact (recall (14.47)). For all F1,F2 ∈ `2(G)
such that F1,F2 ≥ 0 and ‖F1‖2 = ‖F2‖2 = 1:

‖F2
1 −F2

2 ‖1 = ∑
g∈G
|F2

1 (g)−F2
2 (g)|

= ∑
g∈G
|F1(g)−F2(g)| · |F1(g)+F2(g)|

= 〈|F1−F2|, |F1 +F2|〉
(by Cauchy–Schwarz) ≤ ‖F1−F2‖2 · ‖F1 +F2‖2

≤ ‖F1−F2‖2 · (‖F1‖2 +‖F2‖2)

= 2‖F1−F2‖2.
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By Lemma 14.31, there exist an integer n ≥ 1, nonempty finite subsets Ai ⊂
G and real numbers λi > 0, for i = 1,2, . . . ,n, satisfying A1 ⊃ A2 ⊃ ·· · ⊃ An and
λ1 +λ2 + · · ·+λn = 1, such that f = ∑

n
i=1 λi

1Ai
|Ai| .

Set ∆ = {1,2, . . . ,n} and consider the unique probability measure µ on ∆ such
that µ({i}) = λi for every i ∈ ∆ . Finally, for each g ∈ G, let ∆g denote the subset of
∆ defined by

∆g =

{
i ∈ ∆ :

|Ai \Aig|
|Ai|

≥ ε

}
. (14.55)

We need a lemma.

Lemma 14.35. With the same notation and hypotheses as in Lemma 14.31, we have

‖ f −Tg f‖1 =
n

∑
i=1

λi
2|Ai \Aig|
|Ai|

(14.56)

for every g ∈ G.

Proof. Keeping in mind that Tg1A = 1Ag−1 for all g ∈G and A⊂G, equality (14.48)
gives us

f −Tg f =
n

∑
i=1

λi
1Ai −Tg1Ai

|Ai|

=
n

∑
i=1

λi
1Ai −1Aig−1

|Ai|
.

As we observed before (cf. the proof of Lemma 14.29), the map 1Ai − 1Aig−1 takes
the value 1 at each point of Ai \Aig−1, the value −1 at each point of Aig−1 \Ai, and
the value 0 everywhere else. Let us set

B :=
⋃

1≤i≤n

(Ai \Aig−1) and C :=
⋃

1≤i≤n

(Aig−1 \Ai).

Note that the sets B and C are disjoint. Indeed, for all 1 ≤ i, j ≤ n, we have
(Ai \ Aig−1)∩ (A j \ A jg−1) = ∅ since either Ai ⊂ A j or A j ⊂ Ai (which implies
A jg−1 ⊂ Aig−1).

It follows that

‖ f −Tg f‖1 = ∑
a∈G
|( f −Tg f )(a)|

= ∑
a∈G

∣∣∣∣∣ n

∑
i=1

λi
(1Ai −1Aig−1)(a)

|Ai|

∣∣∣∣∣
= ∑

a∈B

∣∣∣∣∣ n

∑
i=1

λi
(1Ai −1Aig−1)(a)

|Ai|

∣∣∣∣∣+ ∑
a∈C

∣∣∣∣∣ n

∑
i=1

λi
(1Ai −1Aig−1)(a)

|Ai|

∣∣∣∣∣
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=
n

∑
i=1

λi
|Ai \Aig−1|
|Ai|

+
n

∑
i=1

λi
|Aig−1 \Ai|
|Ai|

=
n

∑
i=1

λi
|Aig\Ai|
|Ai|

+
n

∑
i=1

λi
|Ai \Aig|
|Ai|

=
n

∑
i=1

λi
2|Ai \Aig|
|Ai|

.

This completes the proof of Lemma 14.35. �

It follows from the above lemma and (14.55) that

‖ f −Tg f‖1 = ∑
i∈∆

λi
2|Ai \Aig|
|Ai|

≥ ∑
i∈∆g

λi
2|Ai \Aig|
|Ai|

≥ 2ε ∑
i∈∆g

λi

= 2εµ(∆g).

Therefore, we have

µ(∆g)≤
‖ f −Tg f‖1

2ε
for all g ∈ G.

By using (14.54), we deduce

µ(∆y)<
1
|Y |

for all y ∈ Y,

which implies

µ

(⋃
y∈Y

∆y

)
≤ ∑

y∈Y
µ(∆y)< 1.

Thus ⋃
y∈Y

∆y 6= ∆ .

This means that there is some i0 ∈ ∆ \∪y∈Y ∆y such that

|Ai0 \Ai0y|
|Ai0 |

< ε for all y ∈ Y.

Thus, in order to satisfy (14.45), we can take Ω :=A−1
i0

(recall that Y = Y−1).
This ends the proof of Theorem 14.26. �
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Kesten’s Amenability Criterion for Countable Groups

In this section we prove Kesten’s amenability criterion for countable (not necessar-
ily finitely generated) groups. We closely follow the presentation from the original
source [196], which is extremely clear.

Let G be a countable group. Let I be a countable (possibly finite) index set. We
say that a family A = (ai)i∈I of elements of G constitutes a generating system for
G if {ai : i ∈ I} generates G, that is, for every g ∈ G there exist i1, i2, . . . , ik ∈ I
and ε1,ε2, . . . ,εk ∈ {−1,1} such that g = aε1

i1
aε2

i2
· · ·aεk

ik
. If I is finite, we say that the

generating system A is finite.
Let A = (ai)i∈I be a generating system for G. Let also (pi)i∈I denote a family of

non-negative real numbers such that 2∑i∈I pi = 1: we shall call it a probability dis-
tribution on the generating system A. If pi > 0 for all i∈ I we say that the probability
distribution (pi)i∈I is strictly positive.

Consider the random walk on G in which every step consists of right multiplica-
tion by ai or its inverse a−1

i , each with probability pi. Warning: this does not mean
that pi is the total probability of multiplying on the right by the (unique) element
g ∈G such that g = ai in G. For instance, if ai = a j with i 6= j (resp. ai = a−1

i ), then
the total probability of multiplying by g = ai is at least pi + p j (resp. 2pi).

For g ∈ G we then denote by

pg = ∑
i∈I

ai=g

pi + ∑
i∈I

ai=g−1

pi (14.57)

the total probability of multiplying by g, so that

∑
g∈G

pg = 2∑
i∈I

pi = 1. (14.58)

This defines a random walk (G,P) = (G,P,δ1G) (cf. Definition 13.16) with one-
step transition probability matrix P = (p(g,h))g,h∈G given by

p(g,h) = pg−1h

(the probability that h is reached in one step from g in the random walk) for all
g,h ∈ G. It follows immediately from (14.57) that pg = pg−1 for all g ∈ G so that P
is symmetric, that is, p(g,h) = p(h,g) for all g,h ∈ G.

The following lemma was originally proved by Issai Schur in [306]. We thank
Florin Boca for providing us with the proof below.

Lemma 14.36. Let H be a real Hilbert space and let M : H → H be a self-
adjoint operator. Let (δi)i∈I be a Hilbert space basis for H and set mi, j :=〈δi,Mδ j〉
= 〈Mδi,δ j〉 for all i, j ∈ I. Then

‖M‖ ≤ sup
i∈I

∑
j∈I
|mi, j|. (14.59)

Proof. We first observe that since M is self-adjoint one has
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‖M‖= sup
‖h‖=1

|〈Mh,h〉|. (14.60)

Set
C :=sup

i∈N
∑
j∈I
|mi, j|= sup

j∈I
∑
i∈I
|mi, j|.

Let h ∈ H with ‖h‖ = 1 and write h = ∑ j∈I h jδ j, so that ∑ j∈I |h j|2 = 1 and Mh =

∑ j∈I (∑i∈I mi, jhi)δ j. We then have

|〈Mh,h〉|= |∑
j∈I

(
∑
i∈I

mi, jhi

)
h j|

≤∑
j∈I

∑
i∈I
|mi, j| · |hi| · |h j|

= ∑
j∈I

∑
i∈I
|mi, j|

1
2 |hi| · |mi, j|

1
2 |h j|

(by Cauchy–Schwarz) ≤∑
j∈I

(
∑
i∈I
|mi, j| · |hi|2

) 1
2

·

(
∑
i∈I
|mi, j|

) 1
2

|h j|

≤∑
j∈I

(
∑
i∈I
|mi, j| · |hi|2

) 1
2

·C
1
2 · |h j|

(by Cauchy–Schwarz) ≤C
1
2 ·

(
∑
j∈I

(
∑
i∈I
|mi, j| · |hi|2

)) 1
2

·

(
∑
j∈I
|h j|2

) 1
2

(since ‖h‖= 1) ≤C
1
2

(
∑
j∈I

∑
i∈I
|mi, j| · |hi|2

) 1
2

=C
1
2

(
∑
i∈I

(
∑
j∈I
|mi, j|

)
· |hi|2

) 1
2

≤C
1
2

(
∑
i∈I

C · |hi|2
) 1

2

=C
1
2 ·C

1
2 ·

(
∑
i∈I
|hi|2

) 1
2

(since ‖h‖= 1) =C.

From (14.60) we conclude that ‖M‖ ≤C. �

Proposition 14.37. The linear operator M = M(G,A,P) : `2(G)→ `2(G) defined
by

[M f ](g) = ∑
h∈G

p(g,h) f (h) (14.61)

for all f ∈ `2(G) is self-adjoint. Moreover,
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‖M‖ ≤ sup
g

∑
h∈G

p(g,h) = 1.

Proof. For g ∈ G we denote, as usual, by δg ∈ `2(G) the Dirac function based at g.
We have

mg,h :=〈δg,Mδh〉= ∑
k∈G

δg(k)[Mδh](k) = [Mδh](g) = ∑
t∈G

p(g, t)δh(t) = p(g,h).

Since P = (p(g,h))g,h∈G is symmetric, we have 〈δg,Mδh〉 = p(g,h) = p(h,g) =
〈δh,Mδg〉 = 〈Mδg,δh〉 so that M is self-adjoint. By applying Lemma 14.36 and
(14.58) we deduce that

‖M‖ ≤ sup
g

∑
h∈G

mg,h = sup
g

∑
h∈G

p(g,h) = 1. �

The operator M = M(G,A,P) ∈B(`2(G)) is called the Markov operator associ-
ated with the symmetric random walk on G defined by the probability distribution
(pi)i∈I on the generating system A.

Given g,h ∈ G we have seen that 〈δg,Mδh〉= p(g,h). More generally (exercise)
for n≥ 0

〈Mn
δg,δh〉= p(n)(g,h) (14.62)

for all g,h ∈ G, where we recall that Pn =
(

p(n)(g,h)
)

g,h∈G
denotes the n-th power

of P, so that (14.62) represents the probability that, starting at g, the random walker
arrives at h at the n-th step. As we have seen (see Section 13.5),

mn = mn(G,A,P) :=〈Mn
δg,δg〉= p(n)(g,g)

is independent of g ∈ G.

Remark 14.38. It is important to observe that the sequence
(

p(n)(1G,1G)
1
n

)
n∈N

may not converge. This is the case, for instance, for the simple random walk on
G with respect to a finite symmetric generating subset Y ⊂ G such that the cor-
responding Cayley graph CayY (G) is bipartite. Recall that a graph G = (V,E) is
termed bipartite if there is a partition V = AtB of the vertex set and E ⊆ A×B (in
other words, initial and terminal vertices of any edge lie either in A and B or in B
and A, respectively). The basic example of the simple random walk on Z (cf. Section
13.6) gives p(2n+1)(1G,1G) = 0 for all n ∈ N and limn→∞ p(2n)(1G,1G)

1
2n = 1 (see

(13.25)).

Here are some basic properties of the sequence
(

p(2n)(1G,1G)
)

n∈N
of probabil-

ities of returning back to 1G in even steps.

Lemma 14.39. The sequence
(

p(2n)(1G,1G)
)

n∈N
is non-increasing.

Moreover, p(2n)(1G,g)≤ p(2n)(1G,1G) for all g ∈ G.

Proof. Let n ∈ N. We have
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p(2(n+1))(1G,1G) = 〈M2n+2
δ1G ,δ1G〉

= 〈Mn
δ1G ,M

n+2
δ1G〉

≤ ‖Mn
δ1G‖ · ‖M

2Mn
δ1G‖

≤ ‖Mn
δ1G‖

2

= 〈Mn
δ1G ,M

n
δ1G〉

= p(2n)(1G,1G).

This shows the first statement. Moreover

p(2n)(1G,g) = 〈M2n
δ1G ,δg〉 ≤ ‖M2n

δ1G‖= 〈M
2n

δ1G ,δ1G〉= p(2n)(1G,1G).

This ends the proof of Lemma 14.39. �

The spectral radius of the Markov operator M, equivalently (as M is self-adjoint),
its norm ‖M‖ is called the spectral radius of the random walk (G,A,P) and it is
denoted by ρ(G,A,P).

Let E(dt) denote the resolution of the identity of M (a measure taking values into
projections in B(`2(G)). Then η(dt) :=〈E(dt)δ1G ,δ1G〉, called the spectral mea-
sure of M, is a probability measure on the interval [−1,1] such that, for all continu-
ous functions f : [0,1]→ R, one has (spectral theorem)

〈 f (M)δ1G ,δ1G〉=
∫ 1

−1
f (t)η(dt).

In particular,

〈Mn
δ1G ,δ1G〉=

∫ 1

−1
tn

η(dt) (14.63)

for all n≥ 0.

Theorem 14.40. Let ρ(G,A,P) denote the spectral radius of the random walk
(G,A,P). Then p(2n)(1G,1G)≤ ρ(G,A,P)2n for all n ∈ N and

lim
n→∞

p(2n)(1G,1G)
1
2n = ρ(G,A,P). (14.64)

Proof. The existence of the limit follows from Fekete’s lemma (Lemma 7.13). In-
deed, p(2(n+m))(1G,1G) ≥ p(2n)(1G,1G)p(2m)(1G,1G) since the probability of re-
turning back to 1G at time 2(n + m) = 2n + 2m is at least the probability of re-
turning back to 1G at time 2n and of returning back again to 1G at time 2n +
2m. Setting an := p(2n)(1G,1G)

−1 we thus have an+m ≤ anam, so that the limit

` := limn→∞ an
1
n = 1/ limn→∞ p(2n)(1G,1G)

1
n exists and equals infn≥1 an

1
n . We thus

have ρ := limn→∞ p(2n)(1G,1G)
1
2n = 1/

√
`, and ρ ≥ p(2n)(1G,1G)

1
2n , equivalently,

ρ2n ≥ p(2n)(1G,1G) for all n ∈ N.
In order to show that ρ = ρ(G,A,P), we observe that, by virtue of the spectral

theorem,
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(
p(2n)(1G,1G)

) 1
2n
=
(
〈Mn

δ1G ,δ1G〉
) 1

2n =

(∫ 1

−1
tn

η(dt)
) 1

2n

. (14.65)

We leave it as an exercise to show that, as n→ ∞, the RHS of (14.65) tends to
max{|t| : t ∈ σ(M)}= ρ(G,A,P). �

Corollary 14.41. Denoting by G(z) :=∑n∈N p(n)(1G,1G)zn the corresponding Green
function, and denoting by R its radius of convergence, we have

ρ(G,A,P) = ‖M‖= lim
n→∞

2n
√

p(2n)(1G,1G) = limsup
n→∞

n
√

p(n)(1G,1G) =
1
R
≤ 1.

(14.66)

Proof. This is just a combination and reformulation of (14.64) in the previous theo-
rem and Theorem 14.37. �

Lemma 14.42. Let H be a real Hilbert space. Let A,B ∈B(H ) and suppose that
they are self-adjoint. For ξ ∈ R, let us set

ρξ :=ρ(ξ A+(1−ξ )B),

where ρ denotes the spectral radius.
Then the real map ξ 7→ ρξ is a convex function.

Proof. For 0≤ η ≤ 1 and ξ1,ξ2 ∈ R we have

ρηξ1+(1−η)ξ2
= ρ((ηξ1 +(1−η)ξ2)A+(1− (ηξ1 +(1−η)ξ2))B)

= ρ(ηξ1A+(1−η)ξ2A+(1−ηξ1)B− (1−η)ξ2B)

= ρ ((ηξ1A+η(1−ξ1)B)+((1−η)ξ2A+(1−η)(1−ξ2)B))

= ‖(ηξ1A+η(1−ξ1)B)+((1−η)ξ2A+(1−η)(1−ξ2)B)‖
≤ ‖ηξ1A+η(1−ξ1)B‖+‖(1−η)ξ2A+(1−η)(1−ξ2)B)‖
= η‖ξ1A+(1−ξ1)B‖+(1−η)‖ξ2A+(1−ξ2)B)‖
= ηρ(ξ1A+(1−ξ1)B)+(1−η)ρ(ξ2A+(1−ξ2)B)

= ηρξ1
+(1−η)ρξ2

.

This completes the proof of Lemma 14.42 �

Suppose now that N C G is a normal subgroup of G and denote by G :=G/N
the corresponding quotient group. Then setting g :=gN ∈ G for all g ∈ G, we have
that A = A/N :=(ai)i∈I is a generating system for G. If (pi)i∈I is a probability dis-
tribution on A, then we regard it as a probability distribution on A in the obvious
way.

The total probability of multiplying by g ∈ G is given by (cf. (14.57))

pg = ∑
ai=g

pi + ∑
ai=g−1

pi ≥ pg.

This way, denoting the corresponding random walk by (G,P), where



350 14 Amenability, Isoperimetric Profiles, and Følner Functions

P = P/N :=
(

p(g,h)
)

g,h∈G ,

we have
p(n)(g,h)≤ p(n)(g,h)

for all g,h ∈ G and n ∈ N. In particular,

p(n)(1G,1G)≤ p(n)(1G,1G) = p(n)(1G,1G), (14.67)

which can be interpreted as follows: in the random walk on G, the probability of
returning back to 1G at the n-th step (given that one starts at 1G) is less than or equal
to the probability of reaching some element in N at the n-th step (given that one
starts at 1G).

Lemma 14.43. Let N be a normal subgroup of G and let A be a generating system
for G. Then ρ(G,A,P)≤ ρ(G,A,P).

Proof. Using (14.66) and (14.67) we have

ρ(G,A,P) = limsup
n→∞

n
√

p(n)(1G,1G)≤ limsup
n→∞

n
√

p(n)(1G,1G) = ρ(G,A,P).

This proves Lemma 14.43. �

Lemma 14.44. Let i0 be a new index (not contained in I) and set I′ :={i0}t I. Then
A′ = (a′i)i∈I′ , defined by a′i0 = 1G and a′i = ai for all i ∈ I, is a generating system for
G. Also, for ξ ∈ [0,1] denote by P′(ξ ) the probability distribution on A′ defined by
setting

p′i =

{
ξ/2 if i = i0
(1−ξ )pi otherwise

(14.68)

for all i ∈ I′. Then

ρ(G,A′,P′(ξ )) = ξ +(1−ξ )ρ(G,A,P). (14.69)

Proof. We have p′(g,g) = ξ +(1− ξ )p(g,g) and p′(g,h) = (1− ξ )p(g,h) for all
g,h ∈ G with g 6= h, that is,

M(G,A′,P′(ξ )) = ξ I +(1−ξ )M(G,A,P).

Let λ ∈ [−1,1]. We have

λ ∈ σ(M(G,A′,P′(ξ ))⇔ λ ∈ σ(ξ I +(1−ξ )M(G,A,P))

⇔ (ξ −λ )I +(1−ξ )M(G,A,P) is not bijective

⇔ (1−ξ )

(
ξ −λ

1−ξ
I +M(G,A,P)

)
is not bijective

⇔ ξ −λ

1−ξ
I +M(G,A,P) is not bijective
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⇔−ξ −λ

1−ξ
∈ σ(M(G,A,P))

⇔ λ −ξ ∈ (1−ξ )σ(M(G,A,P))

⇔ λ ∈ ξ +(1−ξ )σ(M(G,A,P)).

This shows that σ(M(G,A′,P′(ξ )) = ξ +(1−ξ )σ(M(G,A,P)) (a result which can
be immediately deduced once the reader is familiar with the continuous functional
calculus) so that

ρ(G,A′,P′(ξ )) = supσ(M(G,A′,P′(ξ )) = sup(ξ +(1−ξ )σ(M(G,A,P)))

= ξ +(1−ξ )ρ(G,A,P).

This proves Lemma 14.44. �

Lemma 14.45. Let H be a countable group, let B = (b j) j∈N be a generating system
for H, and let (q j) j∈N be a strict probability distribution on the generating system
B. Then for every ε > 0 there exists a kε ∈ N such that if (qk, j) j∈N, k ∈ N, is the
probability distribution on B defined by

qk, j =

{
q j
(
2∑i≤k qi

)−1 for j ≤ k
0 for j > k

(14.70)

then, for k ≥ kε ,
|ρ(H,B,Q)−ρ(H,B,Qk)| ≤ ε. (14.71)

Proof. For k ∈N let us set Mk :=M(H,B,Q)−M(H,B,Qk) ∈B(`2(H)). We claim
that, for every row, the sum of the absolute values of the entries of Mk in that row
tends to zero as k→ ∞. Indeed, setting t(k) :=∑i≤k 2qi we have that for every row
this sum is equal to

∑
i∈N

(2qi−2qk,i) = ∑
i≤k

(2qi−2qk,i)+∑
i>k

(2qi) = t(k)
(

1− 1
t(k)

)
+(1− t(k))

and the claim follows since limk→∞ t(k) = 1. Then (14.71) follows from Lemma
14.36 and (14.66). �

Note that if, for k ∈ N, we denote by Hk ≤ H the subgroup generated by the
elements b j, j≤ k, and by Bk :=(b j)

k
j=1 the corresponding finite generating system,

then, keeping in mind the notation in (14.70), we have

ρ(H,B,Qk) = ρ(Hk,Bk,Qk). (14.72)

Theorem 14.46. Let G and H ≤ G be two groups with generating systems A and
B and probability distributions P and Q, respectively. Denote by N the normal clo-
sure of H in G, that is, the smallest normal subgroup N C G such that H ≤ N, and
set G :=G/N. Denote then by A = A/N and P = P/N the corresponding generat-
ing system for G and probability distribution on A, respectively. Suppose that P is
strictly positive and that
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ρ(H,B,Q)< 1. (14.73)

Then
ρ(G,A,P)> ρ(G,A,P). (14.74)

Proof. We claim that we may restrict ourselves to the case where B is finite (and
therefore H is finitely generated). Indeed, if B is not finite, we can replace Q by
a probability distribution Qk such that ρ(Hk,Bk,Qk) < 1 (cf. Lemma 14.45 and
(14.72)), where Hk ≤ H denotes the subgroup generated by Bk. If Nk is the normal
closure of Hk in G, then Nk ≤ N and thus

G = G/N ∼=
G/Nk

N/Nk

so that, by virtue of Lemma 14.43, it would suffice to show that

ρ(G/Nk,A/Nk,P/Nk)> ρ(G,A,P).

This proves the claim. We thus assume that B = (b j) j∈J is finite. Fix ξ ∈ (0,1)
and let A′ and P′ = P′(ξ ) denote the generating system of G with the probability
distribution on A′ as in Lemma 14.44. It follows from Lemma 14.44 (exercise) that
inequality (14.74) is equivalent to

ρ(G,A′,P′)> ρ(G,A′,P′). (14.75)

Now, every b j ∈ B can be written (not necessarily in a unique way) in the form

aε1
i1

aε2
i2
· · ·a

ε` j
i` j

. For each j ∈ J, let us fix such a word, say w j, and set

` :=max
j∈J

`(w j) = max
j∈J

` j.

We also set

M`(G) :=
(
M(G,A′,P′)

)` and M`(G) :=
(
M(G,A′,P′)

)`
. (14.76)

Let us set K :=
⋃`

m=0
(
{0,1, . . . ,m}× I`−m×{−1,1}`−m

)
(here I is the index set

of A = (ai)i∈I) and denote by C = (ck)k∈K the generating system for G defined by
ck = 1m

Gaε1
i1

aε2
i2
· · ·aε`−m

i`−m
for k = (m; i1, i2, . . . , i`−m;ε1,ε2, . . . ,ε`−m) ∈ K. We define a

probability distribution (rk)k∈K on C by setting

rk =

(
`

m

)
ξ

m
`−m

∏
j=1

p′i j
for all k = (m; i1, i2, i`−m;ε1,ε2, . . . ,ε`−m) ∈ K. (14.77)

Now, ` consecutive steps in the random walk on G defined by P′ amount to right
multiplication by an element of C or its inverse, with probability assigned by R. We
thus have

M`(G) = M(G,C,R) and M`(G) = M(G,C,R). (14.78)
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As a consequence,

ρ(G,C,R) = ρ(G,A′,P′)` and ρ(G,C,R) = ρ(G,A′,P′)`

and we only need to show that

ρ(G,C,R)> ρ(G,C,R). (14.79)

The finite generating system C′ = (1
`−` j
G w j) j∈J is a subsystem of C and we define a

probability distribution S on C′ by setting

P[1`−` j
G w j | S] = P[b j | Q] = q j

for j = 1,2, . . . ,k, and
P[1m

Gaε1
i1

aε2
i2
· · ·aε`−m

i`−m
| S] = 0

for all 1m
Gaε1

i1
aε2

i2
· · ·aε`−m

i`−m
∈C\C′. Since P is a strictly positive distribution and ξ > 0,

we have P[c | R]> 0 for all c ∈C so that, setting

α :=
(

max
c∈C′

P[c | S]
P[c | R]

−1
)−1

,

one has
(1+α)P[c | R]−αP[c | S]≥ 0 (14.80)

for all c ∈C (equivalently, for all c ∈C′). For η ∈ [0,1] define the probability distri-
bution T (η) on C by setting

P[c | T (η)] :=(1−η)((1+α)P[c | R]−αP[c | S])+ηP[c | S]
= (1−η)(1+α)P[c | R]+ (η +α(1−η))P[c | S]

(14.81)

for all c ∈ C. Note that T (1) = S, so that the random walk defined by C and T (1)
on G is the same as the one defined by C and S, which, in turn, is the random walk
defined by B and Q on H, so that

ρ(G,C,T (1)) = ρ(G,C,S) = ρ(H,B,Q)< 1. (14.82)

Since H ≤ N, multiplication by an element in H amounts, in G = G/N, to multipli-
cation by the identity. Therefore (taking ξ = 1 in Lemma 14.44)

ρ(G,C,T (1)) = ρ(G,C,S) = 1, (14.83)

so that, by Lemma 14.44,

ρ(G,C,T (η))=ηρ(G,C,T (1))+(1−η)ρ(G,C,T (0))=η+(1−η)ρ(G,C,T (0)).
(14.84)

On the other hand, first applying Lemma 14.42, we have
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ρ(G,C,T (η))≤ (1−η)ρ(G,C,T (0))+ηρ(G,C,T (1))
(by (14.82)) < (1−η)ρ(G,C,T (0))+η

(by Lemma 14.43) ≤ (1−η)ρ(G,C,T (0))+η

(by (14.84)) = ρ(G,C,T (η)).

In particular, for η = α/(1+α) one has (1−η)(1+α) = 1 and η−α(1−η) = 0
so that (cf. the RHS of (14.81)) T (α/(1+α)) = R, and therefore

ρ(G,A′,P′)` = ρ(G,C,R) = ρ(G,C,T (α/(1+α)))

< ρ(G,C,T (α/(1+α))) = ρ(G,C,R) = ρ(G,A′,P′)`.

Thus ρ(G,A′,P′)< ρ(G,A′,P′), and this completes the proof. �

Actually, we can estimate the increase of the spectral radius:

ρ(G,C,R)−ρ(G,C,R) = ρ(G,C,T (α/(1+α)))−ρ(G,C,T (α/(1+α)))

≥ 1
1+α

(
ρ(G,C,T (0))−ρ(G,C,T (0))

)
+

α

1+α
(1−ρ(G,C,T (1)))

≥ α

1+α
(1−ρ(G,C,S))

=
α

1+α
(1−ρ(H,B,Q))

so that, using the formula x`− y` = (x− y)(x`−1 + x`−2y+ · · ·+ xy`−2 + y`−1) and
the fact that 0 < ρ(G,A,P),ρ(G,A′,P′)≤ 1, we have

ρ(G,A,P)−ρ(G,A,P) = ρ(G,A′,P′)−ρ(G,A′,P′)

≥ α

(1+ `)(1+α)
(1−ρ(H,B,Q)) .

Corollary 14.47. Suppose that the spectral radius of the symmetric random walk
on a group G defined by a strictly positive distribution P on a generating system A
equals 1 (i.e., ρ(G,A,P) = 1). Then the spectral radius of the symmetric random
walk on any subgroup H ≤ G defined by a positive distribution Q on a generating
system B also equals 1 (i.e., ρ(H,B,Q) = 1). In particular, if P̃ is any (not neces-
sarily strict) positive distribution on a generating system Ã for G, then the spectral
radius of the associated random walk also equals 1 (i.e., ρ(G, Ã, P̃) = 1).

Proof. Suppose that ρ(H,B,Q) < 1. Then, denoting by N the normal closure of
H in G and G :=G/N (resp. A, resp. P) the corresponding quotient group, (resp.
generating system, resp. positive distribution) we would have, by Theorem 14.46
and (14.66)

ρ(G,A,P)< ρ(G,A,P)≤ 1,

a contradiction.
Taking H = G, B = Ã, and Q = P̃, one then deduces that ρ(G, Ã, P̃) = 1. �
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As a consequence of Corollary 14.47, we shall write ρ(G) = 1 or ρ(G)< 1 with-
out further specification of the generating system and the corresponding probability
distribution. However, we stress the fact that ρ(G,A,P) = 1 implies ρ(G, Ã, P̃) = 1
only for P strictly positive. Thus, ρ(G) = 1 (resp. ρ(G) < 1) means the follow-
ing: there exists (resp. does not exist) a strictly positive distribution on A such that
ρ(G,A,P) = 1.

Theorem 14.48. Let G be a countable group, A a generating system, and P a (not
necessarily strict) positive distribution on A. Let N C G be a normal subgroup and
suppose that ρ(N) = 1. Then ρ(G,A,P) = ρ(G,A,P).

Proof. By Lemma 14.43 we have

ρ(G,A,P)≤ ρ(G,A,P). (14.85)

Let Z (resp. Z) denote the random variable corresponding to the random walk on G
(resp. G) defined by A and P (resp. A and P). Fix ε > 0. Then there exists an nε ∈N
such that

(M2n(G,A,P))1G,1G
= P[Z2n = 1G | Z0 = 1G]

= P[Z2n ∈ N | Z0 = 1G]

≥
(
(1− ε)ρ(G,A,P)

)2n

for all n≥ nε . Fix n≥ nε and, for b ∈ N (so that also b−1 ∈ N), let us set

2p(n)(b) :=P[Z2n = b±1 | Z0 = 1G and Z2n ∈ N]

=
P[Z2n = b±1 | Z0 = 1G]

P[Z2n ∈ N | Z0 = 1G]
.

Let B = (bk)k∈N be a family of elements in N such that for every b∈N there exists a
unique k = k(b) ∈N such that b equals bk or b−1

k . Then B is a generating system for

N and (p(n)k )k∈N, where p(n)k := p(n)(bk) for all k ∈N, is a strict probability distribu-

tion on B. Since ρ(N) = 1, from Corollary 14.47 we deduce that ρ(N,B,P(n)
N ) = 1,

where P(n)
N is the probability distribution on B given (p(n)k )k∈N. Denoting by Z(n)

the random variable corresponding to the random walk on N defined by B and P(n)
N ,

since ρ(N,B,P(n)
N ) = 1, there exists an mε ∈ N such that

P[Z(n)
2m = 1G | Z(n)

0 = 1G]≥ (1− ε)2m

for all m≥ mε . It is then clear that

P[Z(n)
2m = 1G |Z(n)

0 = 1G]

≤ P[Z2n·2m = 1G | Z0 = 1G and Z2n·i ∈ N for all 1≤ i≤ 2m]

=
P[Z2n·2m = 1G | Z0 = 1G]

P[Z2n·i ∈ N for all 1≤ i≤ 2m | Z0 = 1G]
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=
P[Z2n·2m = 1G | Z0 = 1G]

P[Z2n ∈ N | Z0 = 1G]2m ,

where the last equality follows from homogeneity (P[Zi ∈ N | Z0 = 1G] = P[Zi ∈ N |
Z0 ∈ N]).

Consequently,

(M2n·2m(G,A,P))1G,1G ≥
(
(1− ε)ρ(G,A,P)

)2n·2m
(1− ε)2m

and

((M2n·2m(G,A,P))1G,1G)
1

2m·2n ≥
((

(1− ε)ρ(G,A,P)
)2n·2m

) 1
2m·2n

(1− ε)
2m

2m·2n

= (1− ε)ρ(G,A,P)(1− ε)
1
2n

≥ (1− ε)2
ρ(G,A,P),

so that
ρ(G,A,P)≥ (1− ε)2

ρ(G,A,P).

As ε > 0 was arbitrary, we deduce that ρ(G,A,P)≥ ρ(G,A,P). This, together with
(14.85), yields ρ(G,A,P) = ρ(G,A,P). �

Corollary 14.49. Let G be a countable group, A a generating system, and P a strict
positive distribution on A. Let N CG be a normal subgroup and denote by G=G/N,
A and P the corresponding quotient group, the generating system and the positive
distribution, respectively. Then

ρ(G,A,P)> ρ(G,A,P) ⇐⇒ ρ(N)> 1. �

Lemma 14.50. Let G be a countable group and let A = (ai)i≥0 and (pi)i≥0 be a
generating system and a probability distribution on A, respectively. Suppose that for
every finitely generated subgroup H ≤ G one has ρ(H) = 1. Then, ρ(G,A,P) = 1.
In particular, ρ(G) = 1.

Proof. Let 0 < ε < 1. Then we can find a finite subset S⊂ G such that

∑
s∈S∪S−1

p(s)≥ 1− ε.

Let H ≤ G denote the subgroup generated by S and define r(x) = p(x)/∑h∈H p(h).
Then, by our assumptions we have

ρ(H,S,R) = 1. (14.86)

As in the proof of Lemma 14.45, we have

|ρ(G,A,P)−ρ(H,S,R)| ≤ 2ε

so that
1−2ε = ρ(H,S,R)−2ε ≤ ρ(G,A,P)≤ 1.
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As ε > 0 was arbitrary, the statement follows. �

Corollary 14.51 (Kesten’s amenability criterion for countable groups). Let G be
a countable group. Then ρ(G) = 1 if and only if G is amenable.

Proof. Suppose first that G is finitely generated. Let Y ⊂ G be a finite symmetric
generating subset. It follows from Theorem 14.26 that G is amenable if and only
if ρ(G,Y ) = 1. Since the uniform probability distribution Q on Y is strictly posi-
tive, keeping in mind Corollary 14.47, we can restate the above by saying that G is
amenable if and only if ρ(G) = 1. This proves the corollary for finitely generated
groups.

Suppose now that G is amenable. It follows from Theorem 14.9 that every
(finitely generated) subgroup H ≤ G is amenable so that, by the first part of the
proof ρ(H) = 1. But then Lemma 14.50 ensures that ρ(G) = 1.

Conversely, suppose that ρ(G) = 1. It follows from Corollary 14.47 that ρ(H) =
1 for every finitely generated subgroup H ≤ G. Thus, by the first part of the proof,
we have that every finitely generated subgroup of G is amenable. It then follows
from Proposition 14.5 that G is itself amenable. �

In view of the previous corollary, we may restate Corollary 14.49 as follows.

Corollary 14.52. Let G be a countable group, let A be a generating system, and let
P be a strict positive distribution on A. Let N CG be a normal subgroup and denote
by G = G/N (resp. A, resp. P) the corresponding quotient group (resp. generating
system, resp. positive distribution on A). Then

ρ(G,A,P) = ρ(G,A,P) ⇐⇒ N is amenable. �

Kesten’s Characterization of Free Groups

In this section we prove Kesten’s formula for the spectral radius of the simple ran-
dom walk on a finitely generated free group and Kesten’s spectral characterization
of finitely generated free groups. We again follow the presentation from the original
source [196], which is extremely clear. As a by-product, we derive another proof
of the Hopfianity of finitely generated free groups (from [66]), a result previously
established in Corollary 3.15.

Theorem 14.53 (Kesten’s characterization of free groups). Let G be a finitely
generated group. Let A = {a±1

1 ,a±1
2 , . . . ,a±1

k } ⊂ G be a symmetric generating sub-
set. Let Q denote the simple random walk on G associated with the generating sys-
tem A. Then G is a free group with free generators a1,a2, . . . ,ak if and only if

ρ(G,A,Q) =
2
√
|A|−1
|A|

=

√
2k−1

k
. (14.87)

Moreover, if this is the case, one has
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ρ(G,A,Q) = min
P

ρ(G,A,P), (14.88)

where P runs over all symmetric random walks associated with the generating sys-
tem A.

Proof. Let us first suppose that G is free and that {a1,a2, . . . ,ak} is a free basis. Set
p(n) :=P[Zn = 1G | Z0 = 1G], f (n) :=P[Zn = 1G | Z0 = 1G and Zt 6= 1G for 1 ≤ t ≤
n− 1}] (this is the probability of returning to 1G for the first time at the n-th step),
and denote by

g(t) :=G(1G,1G | t) =
∞

∑
n=0

p(n)tn and f (t) :=F(1G,1G | t) =
∞

∑
n=1

f (n)tn

the associated generating functions (cf. (13.14) and (13.17)). Then g(t) =
1/(1− f (t)) for all t ∈ [0,+∞) such that g(t) < ∞ and f (t) < 1 (cf. Proposition
13.7).

We recall some notation and facts from Chapter 1. We denote by A∗ the monoid
of all words with letters in A so that any w ∈ A∗ is of the form

w = aε1
i1

aε2
i2
· · ·aεn

in

with 1≤ i j ≤ k, ε j ∈ {−1,1}, j = 1,2, . . . ,n, and `(w) :=n≥ 0. Let us denote by An

the set of all words w ∈ A∗ of length `(w) = n. For 0 ≤ m ≤ n, the m-suffix of w is
the subword wm :=aε1

i1
aε2

i2
· · ·aεm

im ∈ Am. Also recall that, if there is no 1≤ j ≤ n−1
such that ai j = ai j+1 and ε j =−ε j+1, we say that w is reduced. Recall (cf. Theorem
1.4) that every w is equivalent in G to exactly one reduced word, denoted [w]. For
w ∈ A∗ we set `R(w) :=`([w]).

All this said, we have

f (n) =
|{w ∈ An : `R(w) = 0 and `R(wm)> 0 for all 1≤ m < n}|

(2k)n .

Obviously, f (n) = 0 for odd n.
Let n ≥ 0 be an integer. Consider now the grid Gn = {0,1, . . . ,n}×{0,1, . . . ,n}

(this can be viewed as a subset of the lattice points of the Euclidean plane). The
diagonal of Gn is the set ∆(Gn) :={(k,k) : 0 ≤ k ≤ n}. A Dyck path in Gn is a path
π(t) = (x(t),y(t)), t = 0,1, . . . ,2n, which starts in the lower left corner (π(0) =
(0,0)), finishes in the upper right corner (π(2n) = (n,n)), consists entirely of edges
pointing rightwards or upwards (π(t+1) equals either π(t)+(1,0) or π(t)+(0,1)),
and does not pass above the diagonal (y(t) ≤ x(t) for all t = 0,1, . . . ,2n). If π only
meets the diagonal ∆(G ) at the initial and final steps (i.e., y(t) < x(t) for all t =
1, . . . ,2n−1), we say that the Dyck path is strict.

The number of all Dyck paths in Gn is called the n-th Catalan number Cn (cf.
[322] or [294]).

Lemma 14.54. The Catalan number Cn of all Dyck paths in Gn is equal to 1
n+1

(2n
n

)
.

The number of all strict Dyck paths in Gn is equal to Cn−1.
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Proof. The second statement is clear: just remove the first and the last step of a strict
Dyck path in Gn, to get any Dyck path of length 2n−2.

To prove the formula for Cn, first observe that C0 =C1 = 1. Let C(x) :=∑n≥0 Cnxn

be the ordinary generating function of the sequence (Cn)n∈N. If we look at the first
time that a Dyck path of length 2n returns to the diagonal, we can decompose the
path into two Dyck paths, the first one, of length 2k going from (0,0) to (k,k), being
strict: there are Ck−1 of them as we already observed; the second one from (k,k) to
(n,n) is just any Dyck path of length 2n−2k, and there are Cn−k of them.

Hence we have found the recursion

Cn =
n

∑
k=1

Ck−1Cn−k for n≥ 1,

which leads to the functional equation for the ordinary generating function

C(x)−1 = xC(x)C(x).

Solving for C(x) we get

C(x) =
1−
√

1−4x
2x

(14.89)

(we take the root with the minus sign, otherwise we get negative coefficients).
This series starts as

C(x) = 1+ x+2x2 +5x3 +14x4 +42x5 +132x6 +429x7 +1430x8 + · · · .

Using the binomial theorem we get

C(x) =
1−
√

1−4x
2x

=− 1
2x ∑

n≥1

(
1/2

n

)
(−4)nxn =−1

2 ∑
n≥0

(
1/2

n+1

)
(−4)n+1xn,

hence

Cn =−
1
2

(
1/2

n+1

)
(−4)n+1

= (−1)n2n+12n 1
n+1

1
2

( 1
2 −1

)( 1
2 −2

)
· · ·
( 1

2 −n
)

n!

= (−1)n2n 1
n+1

1(1−2)(1−4) · · ·(1−2n)
n!

= 2n 1
n+1

∏
n
i=1(2i−1)

n!
=

1
n+1

∏
n
i=1 2i
n!

∏
n
i=1(2i−1)

n!

=
1

n+1

(
2n
n

)
.

This ends the proof of Lemma 14.54 �
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Then, with every word w ∈ A2n such that `R(w) = 0 we associate a Dyck path
πw defined as follows: for every letter of w (reading from left to right) we record
either a rightward or an upward step of length one. Let m≥ 0 and suppose we have
defined πw(t) for t = 0,1, . . .m. Then we set πw(m+ 1) = πw(m)+ (1,0) (i.e., we
record a rightward step) if `R(wm+1) = `R(wm)+1 and πw(m+1) = πw(m)+(0,1)
(i.e., we record an upward step) if `R(wm+1) = `R(wm)− 1. It is clear that a word
w ∈ A2n such that `R(w) = 0 satisfies that `R(wm)> 0 for all 1≤ m < n if and only
if the associated path πw is strict.

We now determine the number of words that are mapped onto a fixed strict Dyck
path. The first step is rightward and we have 2k distinct possibilities, corresponding
to the choice of aε1

i1
∈ A. If the m-th step is rightward with m > 0 then it corresponds

to 2k− 1 possibilities: if wm−1 = aε1
i1

aε2
i2
· · ·aεm−1

im−1
then we can choose aim 6= aim−1

and ε ∈ {−1,1} (this gives 2(m− 1) possibilities) or aim = aim−1 and εm 6= εm−1
(this giving one more possibility). The m-th step being upward corresponds to only
one possibility, namely to aεm

im = a−εm−1
im−1

. Since every Dyck path in Gn has exactly
n rightward and n upward steps, we conclude that for every strict Dyck path π

there are exactly 2k(2k− 1)n−1 words w ∈ A2n such that πw = π . From the above
combinatorial discussion, we deduce that

f (2n) =Cn−1
2k(2k−1)n−1

(2k)2n =Cn−1
1
2k

(
2k−1

4k2

)n−1

.

As a consequence,

f (t) =
∞

∑
m=1

f (m)tm =
∞

∑
n=1

f (2n)t2n

=
∞

∑
n=1

Cn−1
1
2k

(
2k−1

4k2

)n−1

t2n

=
1
2k

t2
∞

∑
n=1

Cn−1

(
2k−1

4k2 t2
)n−1

(using (14.89)) =
1
2k

t2
1−
√

1−4
(

2k−1
4k2 t2

)
2
(

2k−1
4k2 t2

)
=

k−
√

k2− (2k−1)t2

2k−1

and

g(t) =
1

1− f (t)
=

2k−1

k−1+
√

k2− (2k−1)t2

=

√
k2− (2k−1)t2− (k−1)

1− t2 .
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Now the smallest positive singularity of g(t) clearly occurs at t0 := k√
2k−1

. From
this, we immediately deduce (14.87).

Let now P be another symmetric probability distribution on A so that P[a±1
i |P] =

pi, i= 1,2, . . . ,k. For 0≤ ξ ≤ 1 consider the symmetric probability distribution P(ξ )
on A defined by

P[a±1
i | P(ξ )] =


ξ (p1 + p2) if i = 1
(1−ξ )(p1 + p2) if i = 2
pi otherwise

for all i = 1,2, . . . ,k. It follows from Lemma 14.42 that ρ(G,A,Q(ξ )) is a convex
function of ξ and, as long as a1 and a2 are exchangeable, ρ(G,A,Q(ξ )) is sym-
metric around ξ = 1/2. But a convex function on an interval I which is symmetric
around the midpoint of I attains its minimum at this midpoint. Repeatedly applying
this argument shows that the probability distribution P which assigns equal proba-
bilities to all generators (that is, P = Q) minimizes ρ(G,A,P) (as a function of P),
and (14.88) follows as well.

We now turn to the final part of the theorem, namely to showing that ρ(G,A,Q)=√
2k−1
k implies that G is free with {a1,a2, . . . ,ak} a free basis for G. Let H denote the

free group, freely generated by {c1,c2, . . . ,ck} and, setting C :={c±1
1 ,c±1

2 , . . . ,c±1
k },

denote by Q′ the probability distribution on C defined by P[c±1
i |Q′] = P[a

±1
i |Q] =

1/(2k) for all i = 1,2, . . . ,k.
By the universal property of free groups (cf. Definition 1.1), the map ci 7→ ai

extends to a unique epimorphism H → G. Denote by N C H its kernel, so that
G ∼= H/N. We claim that N = {1H} so that the above map is indeed an isomor-
phism (and {a1,a2, . . . ,ak} is therefore a free basis). If not, as N is free (by the
Nielsen–Schreier theorem (Theorem 1.15)) and therefore non-amenable (by Corol-
lary 14.10), we would have

√
2k−1

k
= ρ(G,A,P) = ρ(H,C,P′)> ρ(H,C,P′) =

√
2k−1

k
,

where the strict inequality follows from Corollary 14.52 and the last equality follows
from the first part of the proof, a contradiction. This completes the proof of Theorem
14.53 �

From the above proof we deduce the following fact (already established in Corol-
lary 3.15).

Corollary 14.55. A free group of finite rank is Hopfian.

Proof. Let G be a finitely generated free group. Let A be a free basis and consider the
simple random walk on G associated with the finite symmetric generating system
A∪A−1 ⊂G. Let ϕ : G→G be a surjective homomorphism. Denote by N :=ker(ϕ)
the kernel of ϕ and let us show that N = {1G}. Otherwise, (by the Nielsen–Schreier
theorem (Theorem 1.15)) N is a nontrivial free subgroup of G and therefore a non-
amenable group (by Corollary 14.10). Denote by G :=G/N ∼= G the corresponding
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quotient group, and observe that by our assumptions it is free, freely generated by
A = {a : a ∈ A}. Thus, (G,Q) is the simple random walk on G associated with
A∪ (A)−1. By applying Corollary 14.52 we would then have

√
2k−1

k
= ρ(G,A,Q)> ρ(G,A,Q) =

√
2k−1

k
,

a contradiction. �

14.6 Cogrowth and the Grigorchuk Criterion

The goal of this section is to prove the cogrowth criterion, which is due to Grig-
orchuk [128]. We will give here the (combinatorial) proof of Bartholdi [14].

Paths on Regular Graphs

Let G = (V,E) be an unoriented graph without loops and multiple edges, i.e. V is a
set of vertices, and E is a set of edges of V , i.e. a set of subsets of cardinality 2 of
V . The degree of a vertex v ∈V is the number deg(v) of edges incident to v, i.e. that
contain v. We say that the graph is locally finite if every vertex v has finite degree.
We say that the graph is d-regular, with d ∈ N, if every vertex has degree d.

For our purposes, we will think of our unoriented graph as having for each edge
e ∈ E a pair of oriented edges e and e: for every e ∈ E we fix a starting point
α(e) ∈ e and an ending point ω(e) ∈ e \ {α(e)}, and e will be the reverse of e,
i.e. the same edge with starting and ending points interchanged. Notice that in this
oriented situation the original degree deg(v) of a vertex v will correspond to its
outdegree, i.e. to the number of oriented edges e such that α(e) = v.

A path starting at a ∈ V and ending at b ∈ V is a sequence of oriented edges
π = (π1,π2, . . . ,πn) such that α(π1) = a, ω(πn) = b, and α(πi+1) = ω(πi) for all
i = 1,2, . . . ,n−1. The length of such a path π = (π1,π2, . . . ,πn) is `(π) :=n.

The backtrack of a path π = (π1,π2, · · · ,πn) is the number of i = 1,2, . . . ,n− 1
such that πi+1 = πi, denoted bt(π).

Given a,b ∈V , denote by [a,b] the set of all paths from a to b.
Given a locally finite graph G = (V,E), fix two (possibly equal) vertices a,b∈V ,

and consider the generating function

F(u, t) :=F[a,b](u, t) = ∑
π∈[a,b]

ubt(π)t`(π).

Notice that, because of the local finiteness, this is a well-defined formal power series
in t with coefficients polynomials in u.

The goal of this section is to prove the following theorem, which is due to Laurent
Bartholdi.
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Theorem 14.56. For a d-regular graph we have

F(u, t) =
1− (u−1)2t2

1− (u−1+d)(u−1)t2 ·F
(

1,
t

1− (u−1+d)(u−1)t2

)
. (14.90)

In order to prove the theorem, we will introduce some further notation.

It is convenient to consider a path π = (π1,π2, . . . ,πn) as a word in the al-
phabet E, and write π = π1π2 · · ·πn instead. Given two paths π = π1π2 · · ·πn and
π ′ = π ′1π ′2 · · ·π ′m such that ω(πn) = α(π ′1) we define a concatenation product
ππ ′ :=π1π2 · · ·πnπ ′1π ′2 · · ·π ′m giving a new path.

An even squiggle is a path of the form eeee · · ·ee, hence it has even length, pos-
sibly length 0. An odd squiggle is a path of the form eeee · · ·eee, hence it has odd
length.

Given a path π = π1π2 · · ·πn, a backtrack decomposition B = (s1,s2, . . . ,sk) of π

is a decomposition π = s1s2 · · ·sk where each si is a squiggle, odd or even.
The backtrack of a backtrack decomposition B = (s1,s2, . . . ,sk) of π is defined

to be

bt(B) :=
k

∑
i=1

bt(si) =
k

∑
i=1

(`(si)−1).

Given a path π , we call BT (π) the set of all the backtrack decompositions of π .
We start with a simple lemma.

Lemma 14.57. Given a path π and a variable u, we have

ubt(π) = ∑
B∈BT (π)

(u−1)bt(B).

Proof. Let π = π1π2 · · ·πn, and let m = bt(π). Let 1≤ i1 < i2 < · · ·< im ≤ n−1 be
the indices for which πi j+1 = πi j , and set C :={i1, i2, . . . , im}.

Observe that every subset D of C gives rise to a backtrack decomposition BD
of π in the following way: given the word π = π1π2 · · ·πn, cut after the letter πi if
and only if i ∈ D or i /∈ C. It is straightforward to see that the backtrack of such a
decomposition is |C|− |D|= m−|D|.

Example 14.58. Consider the graph G = (V,E) with V = {v1,v2,v3} and E =
{e, f ,g} with α(e) = ω(g) = v1, α( f ) = ω(e) = v2, and α(g) = ω( f ) = v3.
Consider the path π = e f gggggeeg f f ge from v1 to v2. In this case n = 14, and
C = {3,4,5,6,8,11}, so that m = bt(π) = 6. Now D = {4,5,11} ⊆ C gives the
backtrack decomposition BD = (e, f ,gg,g,gg,ee,g, f , f ,g,e). Indeed bt(BD) = m−
|D|= 6−3 = 3.

Conversely, any backtrack decomposition B = (s1,s2, . . . ,sk) of π gives rise to
such a subset of C: take the set of the indices in π of the rightmost letter of the si
that are also in C.

This establishes a bijection between subsets of C and backtrack decompositions
of π , therefore we have
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∑
B∈BT (π)

(u−1)bt(B) = ∑
D⊆C

(u−1)bt(BD)

=
m

∑
k=0

∑
D⊆C
|D|=k

(u−1)m−|D|

=
m

∑
k=0

(
m
k

)
(u−1)m−k

= (u−1+1)m

= um,

as we wanted. This proves Lemma 14.57 �

We are now ready to prove Theorem 14.56.

Proof of Theorem 14.56 Given a backtrack decomposition B of some path, we call
πB the path obtained from B by erasing all the even squiggles and replacing each
odd squiggle by its first oriented edge.

For every B ∈ BT (π), define b̃t(B) by setting b̃t(B) :=`(π)− `(πB).
Using the above lemma:

F(u, t) = ∑
π∈[a,b]

ubt(π)t`(π)

= ∑
π∈[a,b]

(
∑

B∈BT (π)
(u−1)bt(B)

)
t`(π)

= ∑
π∈[a,b]

(
∑

B∈BT (π)
(u−1)bt(B)t b̃t(B)

)
t`(πB)

= ∑
ρ∈[a,b]

(
∑

B∈BT (a,b):πB=ρ

(u−1)bt(B)t b̃t(B)

)
t`(ρ).

We want to compute the generating function ∑B∈BT (a,b):πB=ρ(u−1)bt(B)t b̃t(B) for
a given path ρ ∈ [a,b]. We need to enumerate all the backtrack decompositions B
such that πB = ρ = ρ1ρ2 · · ·ρn. These decompositions will necessarily be of the form

B = (β0,1,β0,2, . . . ,β0,t0 ,γ1,β1,1,β1,2, . . . ,β1,t1 ,γ2, . . . ,γn,βn,1,βn,2, . . . ,βn,tn)

with ti ≥ 0 for all i, where the γi are odd squiggles of the form γi = ρi(ρ iρi)
ki with

ki ≥ 0, and the βi, j are even squiggles of the form βi, j = (ei jei j)
ri j with ri j > 0, and

ei j ∈ E with α(ei j) = ω(ρi) (and α(e0 j) = a).
Notice that there are deg(ω(ρi)) possibilities for ei j (and deg(a) for e0 j).
Now the generating function for such B will be the product of the generating

functions for the γi and for the βi :=βi,1βi,2 · · ·βi,ti .
The generating function for a given γi is
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1+(u−1)2t2 +(u−1)4t4 +(u−1)6t6 + · · ·= 1
1− (u−1)2t2 .

The generating function for a given βi, j is

(u−1)t2 +(u−1)3t4 + · · ·= (u−1)t2

1− (u−1)2t2 ,

so that the generating function for βi is

1

1−∑e∈E:α(e)=ω(ρi)
(u−1)t2

1−(u−1)2t2

.

Using the hypothesis that the graph is d-regular, i.e. every vertex has degree d,
we get

1

1−∑e∈E:α(e)=ω(ρi)
(u−1)t2

1−(u−1)2t2

=
1

1−d
(

(u−1)t2

1−(u−1)2t2

)
=

1− (u−1)2t2

1− (u−1)2t2−d(u−1)t2

=
1− (u−1)2t2

1− (u−1+d)(u−1)t2 .

Therefore the generating function that we were looking for is

∑
B∈BT (a,b):πB=ρ

(u−1)bt(B)t b̃t(B)

=
1− (u−1)2t2

1− (u−1+d)(u−1)t2 ·
(

1
1− (u−1)2t2 ·

1− (u−1)2t2

1− (u−1+d)(u−1)t2

)`(ρ)

.

Using this identity we get

F(u, t)

= ∑
ρ∈[a,b]

(
∑

B∈BT (a,b):πB=ρ

(u−1)bt(B)t b̃t(B)

)
t`(ρ)

= ∑
ρ∈[a,b]

1− (u−1)2t2

1− (u−1+d)(u−1)t2 ·
(

1
1− (u−1)2t2 ·

1− (u−1)2t2

1− (u−1+d)(u−1)t2

)`(ρ)

t`(ρ)

=
1− (u−1)2t2

1− (u−1+d)(u−1)t2 ∑
ρ∈[a,b]

(
t

1− (u−1+d)(u−1)t2

)`(ρ)

=
1− (u−1)2t2

1− (u−1+d)(u−1)t2 ·F
(

1,
t

1− (u−1+d)(u−1)t2

)
,

as we wanted. This completes the proof of Theorem 14.56. �
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Now notice that

F(t) :=F(0, t) =
∞

∑
n=0

fntn

is the generating function of the number fn of paths of length n between a and b
with 0 backtrack, while

G(t) :=F(1, t) =
∞

∑
n=0

gntn

is the generating function of the number gn of paths of length n between a and b
(with no restrictions).

Specializing formula (14.90) at u = 0 we get the useful identity

F(t)
1− t2 =

1
1+(d−1)t2 ·G

(
t

1+(d−1)t2

)
. (14.91)

Cogrowth Criterion

Let G be a finitely generated group, and let A⊆ G be a finite symmetric generating
subset. For any subset R⊆ G, the cogrowth of R relative to (G,A) is

α(R;G,A) := limsup
n→∞

n
√

fn, (14.92)

where
fn := |{g ∈ R : `A(g) = n}|.

Theorem 14.59 (Grigorchuk). Let G be a finitely generated group, and let A ⊆
G be a finite symmetric generating subset with |A| ≥ 2. Consider the presentation
FA/N ∼=G of G, where FA is the free group on the free generators A. Let ρ :=ρ(G,A)
be the radius of convergence of the simple random walk (G,P) on G generated by
A, and let α :=α(N;FA,A) be the cogrowth of N in (FA,A). Then

ρ =


√
|A|−1
|A|

(
α√
|A|−1

+

√
|A|−1
α

)
if α ≥

√
|A|−1

2
√
|A|−1
|A| if α <

√
|A|−1

. (14.93)

Proof. Let d := |A|. The case d = 2 is quite straightforward: since A is symmetric
and generates the group, it leaves very few possibilities for G, i.e. G either is cyclic
or is generated by two elements of order 2. In both cases, the radius of convergence
of the simple random walk is clearly 1, which is what the formula prescribes in this
case.

So from now on we assume d ≥ 3. Consider the generating function F(t) =
∑n≥0 fntn, where fn is the number of paths of length n on the Cayley graph of (G,A)
starting and ending in 1G with no backtracking; and let G(t) = ∑n≥0 gntn, where
gn is the number of paths of length n on the Cayley graph of (G,A) starting and
ending in 1G (with no restrictions). It is clear from the definitions that F(t) has
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radius of convergence 1/α . Since our Cayley graph is d-regular, we clearly have
gn = dn p(n)(1G,1G), hence the radius of convergence of G(t) is 1/(dρ).

Recalling (14.91), i.e.

F(t) =
1− t2

1+(d−1)t2 ·G
(

t
1+(d−1)t2

)
, (14.94)

we will assume that

|t|< 1
α

and
∣∣∣∣ t
1+(d−1)t2

∣∣∣∣< 1
dρ

so that all the series involved converge absolutely, and this is an identity of functions.
Observe that, since the coefficients of F and G are positive, these functions are in-

creasing between 0 (included) and their respective smallest singularities (excluded).
Consider the function ϕ : R≥0 → R≥0 defined as ϕ(x) := 7→ x/(1+(d− 1)x2)

for all x ∈ R≥0 (which occurs on the right-hand side of (14.94)). For x < 1/
√

d−1
ϕ is increasing, and for t > 1/

√
d−1 it is decreasing; its maximum value is then

ϕ(1/
√

d−1) = 1/(2
√

d−1).
We are now ready to discuss the two cases.

• Let α ≥
√

d−1. In this case we have, in particular |t| < 1/α ≤ 1/
√

d−1. For
t going from 0 to the first singularity of F which is 1/α , by the monotonicity of
ϕ , we must have that ϕ(1/α) is the first singularity of the right-hand side, which
is then 1/(dρ) (the factor 1− t2 cannot cancel the singularity as 1/

√
d−1 < 1).

This gives ϕ(1/α) = 1/(dρ) which is equivalent to

ρ =

√
d−1
d

(
α√

d−1
+

√
d−1
α

)
as we wanted.

• Let α <
√

d−1, so that 1/
√

d−1 < 1/α . We again let t go from 0 to the first
singularity.
If 1/(dρ)< 1/(2

√
d−1), then ϕ(t) reaches the singularity of G before t reaches

1/α , which is a contradiction, as this is the smallest singularity of F .
If 1/(dρ) > 1/(2

√
d−1) (recall that 1/(2

√
d−1) is the maximum of ϕ), then

ϕ(t) never reaches the singularity of G, so in particular G(t) is derivable at ϕ(t)
for any t ≥ 0. Now let us look at what happens to the right-hand side of (14.94) as
t approaches 1/

√
d−1. As ϕ(t) attains its maximum, the derivative of G(ϕ(t))

is getting close to 0, while the other factor of the right-hand side of (14.94) is
decreasing, so its derivative is negative. But this implies that the derivative of the
right-hand side of (14.94) is negative at 1/

√
d−1, contradicting the fact that F

is increasing around that value.
So the only possibility left is 1/(dρ) = 1/(2

√
d−1), i.e. ρ = 2

√
d−1/d, as we

wanted. �
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14.7 The Ornstein–Weiss Lemma

In this section we prove the Ornstein–Weiss lemma, an analogue of Fekete’s
lemma for sub-additive right-invariant functions defined on the finite subsets of an
amenable group. In the theory of dynamical systems, this result is important in defin-
ing numerical invariants such as topological entropy, measure-theoretic entropy, and
mean topological dimension. Indeed, these invariants are obtained by taking limits
of quantities defined from a left-Følner net and one can deduce from the Ornstein–
Weiss lemma that the choice of the left-Følner net is actually irrelevant for actions
of amenable groups.

Fekete’s lemma ([111]; cf. Lemma 7.13) can be stated as follows (after setting
un := logan in Lemma 7.13). Given a subadditive sequence (un)n≥1 of real numbers
(i.e., such that um+n ≤ um +un for all m,n≥ 1) the sequence(un

n

)
n≥1

has a limit λ ∈ R∪{−∞} as n tends to infinity.
In order to state the Ornstein–Weiss result, let us first introduce some notation.
Let G be a group. We denote by Pfin(G) the set of all finite subsets of G. We say

that a real-valued function h : Pfin(G)→ R is sub-additive provided

h(A∪B)≤ h(A)+h(B) for all A,B ∈Pfin(G) (14.95)

and is right-sub-invariant (resp. right-invariant) if

h(Ag)≤ h(A) (resp. h(Ag) = h(A)) for all g ∈ G and A ∈Pfin(G). (14.96)

Remark 14.60. Note that the notions of right-invariance and right-sub-invariance
actually coincide. Indeed, if h is right-sub-invariant we have, for all g ∈ G and A ∈
Pfin(G)

h(A) = h(A(gg−1)) = h((Ag)g−1)≤ h(Ag)≤ h(A)

so that indeed h(A) = h(Ag).

Theorem 14.61. Let G be an amenable group. Let h : Pfin(G)→R be a real-valued
sub-additive and right-(sub)-invariant function. Then there exists a real number λ ≥

0, depending only on h, such that the net
(

h(Fi)

|Fi|

)
i∈I

converges to λ for every left-

Følner net (Fi)i∈I of G.

Boundaries and Isoperimetric Constants

In this subsection we review the concepts of relative boundaries of subsets from
Section 14.2 and introduce the relative isoperimetric constants for subsets. We then
derive a reformulation of the notion of amenability and of the Følner condition in
terms of these isoperimetric constants.
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Let G be a group. Let K and A be subsets of G.
The (right) K-interior of A is the set

IntK(A) :={g ∈ A : Kg⊂ A}

consisting of all the elements g in A such that the right-translate of K by g is entirely
contained in A.

Recall (cf. (14.2)) that the internal K-boundary of A is the set δK(A)⊂ A defined
by

δK(A) :=A\ IntK(A)≡ {g ∈ A : there exists k ∈ K such that kg /∈ A}.

Proposition 14.62. Let G be a group. Let K, A, and B be subsets of G, and let g ∈G
Then one has:

(i) δK(A) =
⋃

k∈K(A\ k−1A);
(ii) δK(A∪B)⊂ δK(A)∪δK(B);

(iii) δ (B\A)⊂
(
δK(B)∪

(⋃
k∈K k−1A

))
\A;

(iv) (IntK(A))g = IntK(Ag);
(v) (δK(A))g = δK(Ag).

Proof. (i) This is clear since g∈ δK(A) if and only if g∈ A and kg /∈ A, equivalently,
g /∈ k−1A, for some k ∈ K.

(ii) Let g ∈ δK(A∪B). This means that g ∈ A∪B and

Kg∩ (G\ (A∪B)) 6=∅.

Since G\ (A∪B) = (G\A)∩ (S\B), we deduce that g ∈ δK(A)∪δK(B).
(iii) Suppose that g ∈ δK(B\A). This means that g ∈ B\A and

Kg∩ (G\ (B\A)) 6=∅.

Since G\ (B\A) = (G\B)∪A, we deduce that if g /∈ δK(B), then Kg∩A 6=∅ and
hence g ∈

⋃
k∈K k−1A. As g /∈ A, inclusion (iii) immediately follows.

(iv) Suppose that h ∈ (IntK(A))g. This means that there exists an a ∈ IntK(A)
such that h = ag. Hence h ∈ Ag and Kh = K(ag) = (Ka)g ⊂ Ag since a ∈ IntK(A).
Thus h ∈ IntK(Ag). This gives the inclusion (IntK(A))g⊂ IntK(Ag).

Conversely, suppose now that h ∈ IntK(Ag). Then h ∈ Ag and Kh ⊂ Ag. Thus,
there exists an a ∈ A such that h = ag and (Ka)sg = K(ag) ⊂ Ag. This proves that
a ∈ IntK(A) so that h ∈ (IntK(A))g. Hence IntK(Ag) ⊂ (IntK(A))g. This completes
the proof of (iv).

(v) We have

(δK(A))g = (A\ IntK(A))g

= Ag\ (IntK(A))g

= Ag\ IntK(Ag) (by (v))
= δK(Ag).

This shows (vi). �
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Lemma 14.63. Let G be a group. Suppose that K and A are finite subsets of G. Then
one has

|δK(A)| ≤ ∑
k∈K
|kA\A| (14.97)

and
|kA\A| ≤ |δK(A)| for all k ∈ K. (14.98)

Proof. It follows from Proposition 14.62.(i) that

δK(A) =
⋃
k∈K

(A\ k−1A). (14.99)

This implies

|δK(A)|= |
⋃
k∈K

(A\ k−1A)| ≤ ∑
k∈K
|(A\ k−1A|= ∑

k∈K
|kA\A|.

As |A\ k−1A|= |kA\A| for all k ∈ K, this gives us (14.97).
On the other hand, given k ∈ K, we deduce from (14.99) that

(A\ k−1A)⊂ δK(A).

This implies
|kA\A|= |A\ k−1A| ≤ |δK(A)|,

which yields (14.98). �

Let A and K be subsets of G with A finite and nonempty. Then δK(A) is also finite
since δK(A)⊂ A. We define the isoperimetric constant of A with respect to K as

α(A,K) :=
|δK(A)|
|A|

.

Note that α(A,K) is rational and that one has 0≤ α(A,K)≤ 1.
The following is a reformulation of Proposition 14.8.

Proposition 14.64. Let G be a group. Then the following conditions are equivalent:

(a) G is amenable;
(b) for every finite subset K of G and every real number ε > 0, there exists a

nonempty finite subset F of G such that α(F,K)≤ ε .

Proof. Let F and K be finite subsets of G with F 6= ∅. From inequality (14.97)
of Lemma 14.63, we deduce that if |∂k(F)| = |kF \F | ≤ ε|F | for all k ∈ K, then
α(F,K) ≤ |K|ε . Conversely, inequality (14.98) implies that if α(F,K) ≤ ε then
|∂k(F)|= |kF \F | ≤ ε|F | for all k ∈ K.

The proof then follows from the equivalence (a)⇔ (b) in Proposition 14.8. �

Similarly, we have the following characterization of Følner nets in amenable
groups (cf. Proposition 14.23).
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Proposition 14.65. Let G be an amenable group. Let (Fi)i∈I be a net of nonempty
finite subsets of G. Then the following conditions are equivalent:

(a) (Fi)i∈I is a left-Følner net for G;
(b) for each finite subset K of G, one has limi α(Fi,K) = 0.

Proof. Let g ∈ G and take K = {g}. Then one has |Fi \ gFi|/|Fi| = |gFi \Fi|/|Fi| ≤
α(Fi,K) for all i ∈ I by (14.98). This shows that (b) implies (a).

Conversely, suppose that (Fi)i∈I is a left-Følner net for G. Let K be a finite
subset of G and let ε > 0. Then there exists an ik ∈ I such that |Fi \ kFi|/|Fi| =
|kFi \Fi|/|Fi| ≤ ε for all i ≥ ik. If j ∈ I is such that j ≥ ik for all k ∈ K, we deduce
that α(Fi,K) ≤ ε|K| for all i ≥ j by using (14.97). This shows that (a) implies (b).
�

Fillings

In this subsection we establish a filling theorem (Theorem 14.73) similar to [263,
Theorem 6 in Section I.2] which constitutes a key tool in the proof of Theorem
14.61.

Definition 14.66. Let X be a set and ε > 0 a real number. A family (A j) j∈J of finite
subsets of X is said to be ε-disjoint if there exists a family (B j) j∈J of pairwise
disjoint subsets of X such that B j ⊂ A j and |B j| ≥ (1− ε)|A j| for all j ∈ J.

Lemma 14.67. Let X be a set and (A j) j∈J a finite ε-disjoint family of finite subsets
of X. Then one has

(1− ε)∑
j∈J
|A j| ≤

∣∣∣∣∣⋃
j∈J

A j

∣∣∣∣∣ .
Proof. Since (A j) j∈J is ε-disjoint, there exists a family (B j) j∈J of pairwise disjoint
subsets of X such that B j ⊂ A j and |B j| ≥ (1− ε) |A j| for all j ∈ J. Thus, we have

(1− ε)∑
j∈J
|A j| ≤∑

j∈J
|B j|=

∣∣∣∣∣⋃
j∈J

B j

∣∣∣∣∣≤
∣∣∣∣∣⋃

j∈J

A j

∣∣∣∣∣ .
This proves Lemma 14.67. �

Lemma 14.68. Let G be a group. Let also K be a finite subset of G and 0 < ε < 1.
Suppose that (A j) j∈J is a finite ε-disjoint family of nonempty finite subsets of G.
Then one has

α

(⋃
j∈J

A j,K

)
≤ 1

1− ε
·max

j∈J
α(A j,K).

Proof. Let us set M :=max j∈J α(A j,K). It follows from Proposition 14.62.(ii) that



372 14 Amenability, Isoperimetric Profiles, and Følner Functions

δK

(⋃
j∈J

A j

)
⊂
⋃
j∈J

δK(A j).

Thus∣∣∣∣∣δK

(⋃
j∈J

A j

)∣∣∣∣∣≤
∣∣∣∣∣⋃

j∈J

δK(A j)

∣∣∣∣∣≤∑
j∈J
|δK(A j)|= ∑

j∈J
α(A j,K) · |A j| ≤M ∑

j∈J
|A j|.

As the family (A j) j∈J is ε-disjoint, we deduce from Lemma 14.67 that

α

(⋃
j∈J

A j,K

)
=

∣∣δK
(⋃

j∈J A j
)∣∣∣∣⋃

j∈J A j
∣∣ ≤ M

1− ε
.

This proves Lemma 14.68. �

Lemma 14.69. Let G be a group. Let K, A and Ω be finite subsets of G such that
∅ 6= A ⊂ Ω . Suppose that ε > 0 is a real number such that |Ω \A| ≥ ε|Ω |. Then
one has

α(Ω \A,K)≤ α(Ω ,K)+α(A,K) · |K|
ε

.

Proof. By Proposition 14.62.(iii), we have that

δK(Ω \A)⊂

(
δK(Ω)∪

(⋃
k∈K

k−1A

))
\A.

This implies

δK(Ω \A)⊂ δK(Ω)∪

(⋃
k∈K

(k−1A\A)

)
and hence

|δK(Ω \A)| ≤ |δK(Ω)|+ ∑
k∈K
|k−1A\A|= |δK(Ω)|+ ∑

k∈K
|kA\A|

= |δK(Ω)|+ |δK(A)| · |K|.
(14.100)

It follows that

α(Ω \A,K) =
|δK(Ω \A)|
|Ω \A|

≤ |δK(Ω)|+ |δK(A)| · |K|
|Ω \A|

(by (14.100))

=
α(Ω ,K)|Ω |+α(A,K) · |A| · |K|

|Ω \A|

≤ α(Ω ,K)|Ω |+α(A,K) · |A| · |K|
ε|Ω |

(since |Ω \A| ≥ ε|Ω |)

≤ α(Ω ,K)+α(A,K) · |K|
ε

(since |A| ≤ |Ω |).
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This proves Lemma 14.69. �

Lemma 14.70. Let G be a group. Let A and B be finite subsets of G. Then one has

∑
g∈G
|gA∩B|= |A| · |B|.

Proof. For E ⊂ G, we denote, as usual, by χE : G→ R the characteristic function
of E (defined by χE(g) = 1 if g ∈ E and χE(g) = 0 otherwise). We have

∑
g∈G
|Ag∩B|= ∑

g∈G
∑

g′∈G
χAg∩B(g′)

= ∑
g∈G

∑
g′∈G

χAg(g′)χB(g′)

= ∑
g∈G

∑
g′∈G

χA(g′g−1)χB(g′)

(setting g′′ :=g′g−1) ∑
g′′∈G

∑
g′∈G

χA(g′′)χB(g′)

= |A| · |B|.

This proves Lemma 14.70. �

Definition 14.71. Let G be a group. Let K and Ω be finite subsets of G. Given a real
number ε > 0, a finite subset P ⊂ G is called an (ε,K)-filling pattern for Ω if the
following conditions are satisfied:

(F1) P⊂ IntK(Ω);
(F2) the family (Kg)g∈P is ε-disjoint.

The following lemma will be used in the proof of Theorem 14.73. It can be
viewed as a kind of analogue of Euclidean division for integers.

Lemma 14.72 (Filling lemma). Let G be a group. Let Ω and K be nonempty finite
subsets of G. Then, for every ε ∈ (0,1], there exists an (ε,K)-filling pattern P for Ω

such that
|KP| ≥ ε(1−α(Ω ,K))|Ω |. (14.101)

Proof. Let P denote the set consisting of all (ε,K)-filling patterns for Ω . Observe
that P is not empty, since ∅ ∈P , and that every element of P , being contained
in IntK(Ω), has cardinality bounded above by | IntK(Ω)|. Choose a pattern P ∈P
with maximal cardinality. Let us show that (14.101) is satisfied. To slightly simplify
the notation, let us set

B :=KP =
⋃
g∈P

Kg.

Let us prove that
ε|Kg| ≤ |Kg∩B| for all g ∈ IntK(Ω). (14.102)

If g ∈ P, then Kg∩ B = Kg and (14.102) holds true since ε ≤ 1. Let now g ∈
IntK(Ω) \P and suppose, by contradiction, that |Kg∩B| < ε|Kg|. Then, we have
that
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|Kg\B|= |Kg|− |Kg∩B|> |Kg|− ε|Kg|= (1− ε)|Kg|,

which implies that P∪{g} is an (ε,K)-filling pattern for Ω . This contradicts the
maximality of the cardinality of P. This proves (14.102).

Finally, we obtain

ε|K| · | IntK(Ω)|= ∑
g∈IntK(Ω)

ε|K|

= ∑
g∈IntK(Ω)

ε|Kg| (since |K|= |Ks|)

≤ ∑
g∈IntK(Ω)

|Kg∩B| (by (14.102))

≤ ∑
g∈G
|Kg∩B|

= |K| · |B| (by Lemma 14.70),

which gives us
|KP|= |B| ≥ ε| IntK(Ω)|.

As
| IntK(Ω)|= |Ω |− |δK(Ω)|= (1−α(Ω ,K))|Ω |,

this yields (14.101). �

Theorem 14.73 (Filling theorem). Let G be a group and let ε ∈ (0,
1
2
]. Then there

exists an integer n0 = n0(ε) ≥ 1 such that for each integer n ≥ n0 the following
holds.

If (K j)1≤ j≤n is a finite sequence of nonempty finite subsets of G such that

α(Kk,K j)≤
ε2n

|K j|
for all 1≤ j < k ≤ n, (14.103)

and D is a nonempty finite subset of G such that

α(D,K j)≤ ε
2n for all 1≤ j ≤ n, (14.104)

then there exists a finite sequence (Pj)1≤ j≤n of finite subsets of G satisfying the
following conditions:

(T1) the set Pj is an (ε,K j)-filling pattern of D for every 1≤ j ≤ n;
(T2) the subsets K jPj ⊂ D, 1≤ j ≤ n, are pairwise disjoint;
(T3) the subset D′ ⊂ D defined by

D′ :=D\
⋃

1≤ j≤n

K jPj

has cardinality |D′| ≤ ε|D|.
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Proof. Fix ε ∈ (0, 1
2
] and a positive integer n. Let K j, 1≤ j≤ n, and D be nonempty

finite subsets of S satisfying conditions (14.103) and (14.104).
Let us first define, by induction, a finite process with at most n steps for con-

structing suitable finite subsets Pn,Pn−1, . . . ,P1 of G. We will see that these subsets
have the required properties when n is large enough, i.e., for n≥ n0 with n0 = n0(ε)
that will be made precise at the end of the proof.

Step 1. We set D0 :=D. By (14.104), we have

(H(1;a)) α(D0,K j)≤ ε2n for all 1≤ j ≤ n.

Using Lemma 14.72 with Ω = D0 = D and K = Kn, we can find a finite subset
Pn ⊂ G such that

(H(1;b)) Pn is an (ε,Kn)-filling pattern for D0

and
|KnPn| ≥ ε

(
1−α(D,Kn)

)
|D| ≥ ε(1− ε

2n)|D|. (14.105)

(H(1;c)) Setting
D1 := D0 \KnPn,

we deduce from (14.105) that

|D1| ≤ |D|
(
1− ε(1− ε

2n)
)
.

Step k. We continue this process by induction as follows. Suppose that the pro-
cess has been applied k times, with 1 ≤ k ≤ n− 1. It is assumed that the induction
hypotheses at step k are the following:

(H(k;a)) Dk−1 is a subset of D satisfying

α(Dk−1,K j)≤ (2k−1)ε2n−k+1 for all 1≤ j ≤ n− k+1;

(H(k;b)) Pn−k+1 ⊂ G is an (ε,Kn−k+1)-filling pattern for Dk−1;
(H(k;c)) setting

Dk :=Dk−1 \Kn−k+1Pn−k+1,

we have
|Dk| ≤ |D| ∏

0≤i≤k−1

(
1− ε

(
1− (2i+1)ε2n−i)) .

Note that these induction hypotheses are satisfied for k = 1 by Step 1.
Let us pass to Step k+1.

Step k+1. If |Dk| ≤ ε|Dk−1| and hence |Dk| ≤ ε|D|, then we take Pj = ∅ for all
1≤ j ≤ n− k and we stop the process.

Otherwise, we have |Dk|> ε|Dk−1|. Let us estimate from above, for all 1≤ j ≤
n− k, the isoperimetric constants α(Dk,K j).

Let 1≤ j ≤ n− k.
If Pn−k+1 =∅, then Dk = Dk−1 and therefore
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α(Dk,K j) = α(Dk−1,K j)

≤ (2k−1)ε2n−k+1 (by our induction hypothesis (H(k;a)))

≤ (2k+1)ε2n−k (since 0 < ε < 1).

Suppose now that Pn−k+1 6= ∅. Then we can apply Lemma 14.69 with Ω :=Dk−1
and A :=Kn−k+1Pn−k+1. This gives us

α(Dk,K j) = α(Dk−1 \Kn−k+1Pn−k+1,K j) (14.106)

≤ 1
ε
(α(Dk−1,K j)+ |K j|α(Kn−k+1Pn−k+1,K j)) .

Proposition 14.62.(v) and condition (14.103) imply that, for all g ∈ G,

α(Kn−k+1g,K j) = α(Kn−k+1,K j)≤
ε2n

|K j|
.

Since the family (Kn−k+1g)g∈Pn−k+1 is ε-disjoint, the preceding inequality together
with Lemma 14.68 give us

α(Kn−k+1Pn−k+1,K j) = α

 ⋃
g∈Pn−k+1

Kn−k+1g,K j

≤ ε2n

(1− ε)|K j|
.

From inequality (14.106) and the induction hypothesis (H(k;a)), we deduce that

α(Dk,K j)≤
(2k−1)ε2n−k+1

ε
+

ε2n

(1− ε) ε
≤ (2k+1)ε2n−k

(for the second inequality, observe that 1/(1− ε)≤ 2 since 0 < ε ≤ 1/2).
This shows (H(k+1;a)).
Using Lemma 14.72 with Ω :=Dk and K :=Kn−k, we can find a finite sub-

set Pn−k ⊂ G such that Pn−k is an (ε,Kn−k)-filling pattern for Dk, thus yielding
(H(k+1;b)), and satisfying

|Kn−kPn−k| ≥ ε
(
1−α(Dk,Kn−k)

)
|Dk| ≥ ε

(
1− (2k+1)ε2n−k)|Dk|. (14.107)

Setting
Dk+1 :=Dk \Kn−kPn−k,

we deduce from (14.107) that

|Dk+1| ≤ |Dk|
(
1− ε

(
1− (2k+1)ε2n−k)).

Together with the inequality of the induction hypothesis (H(k;c)), this yields

|Dk+1| ≤ |D| ∏
0≤i≤k

(
1− ε

(
1− (2i+1)ε2n−i)) .



14.7 The Ornstein–Weiss Lemma 377

Thus condition (H(k+1;c)) is also satisfied. This finishes the construction of Step
k+1 and proves the induction step.

Now, suppose that this process continues until Step n. Using (H(k;c)) for k = n,
we obtain

|Dn| ≤ |D| ∏
0≤i≤n−1

(
1− ε

(
1− (2i+1)ε2n−i)) . (14.108)

We will show that for n ≥ n0, with n0 = n0(ε) only depending on ε , we get |Dn| ≤
ε|D|.

As (2i+1)ε2n−i ≤ (2n+1)εn+1 for all 0 ≤ i ≤ n−1, from (14.108) we deduce
that

|Dn| ≤ |D|
(
1− ε(1− (2n+1)εn+1)

)n
. (14.109)

Since limr→+∞(2r+1)εr+1 = 0 and limr→+∞(1− ε

2 )
r = 0, both monotonically for

large r, we can find an integer n0 = n0(ε)≥ 1 such that for all r ≥ n0, we have both
(2r + 1)εr+1 ≤ 1

2 and (1− ε

2 )
r ≤ ε . Now, if n ≥ n0, using inequality (14.109) we

deduce
|Dn| ≤ |D|

(
1− ε

2

)n
≤ ε|D|.

This finishes the proof of the theorem. �

Proof of Theorem 14.61

Let G be an amenable group and let h : Pfin(G) → R be a sub-additive right-
invariant function on G.

First observe that by taking A = B in (14.95), we get h(A)≤ 2h(A) and hence

h(A)≥ 0 for all A ∈Pfin(G). (14.110)

From (14.96) we deduce that h({g}) = h({1G}g) = h({1G}) for all g ∈G. Using
(14.95) once more we then deduce that

h(A) = h

(⋃
g∈A

{g}

)
≤ ∑

g∈A
h({g}) = M|A| (14.111)

for all A ∈Pfin(G), where M :=h({1G}).
Let (Fi)i∈I be a left-Følner net for G. By Proposition 14.65, we have

lim
i

α(Fi,K) = 0 for every finite subset K ⊂ G. (14.112)

Consider the quantity

λ := liminf
i

h(Fi)

|Fi|
. (14.113)

Note that 0≤ λ ≤M by (14.110) and (14.111).
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Recall that one says that a finite sequence (K j)1≤ j≤n is extracted from the net
(Fi)i∈I if there are indices

i1 < i2 < · · ·< in

in I such that K j = Fi j for all 1≤ j ≤ n.
Let ε > 0 and let n be a positive integer. By (14.112) and (14.113), it is clear that

we can find, using induction on n, a finite sequence (K j)1≤ j≤n extracted from the
net (Fi)i∈I such that:

α(Kk,K j)≤
ε2n

|K j|
for all 1≤ j < k ≤ n

and
h(K j)

|K j|
≤ λ + ε for all 1≤ j ≤ n. (14.114)

Suppose now that 0 < ε ≤ 1
2

and that n≥ n0, where n0 = n0(ε) is as in Theorem
14.73.

Let D⊂G be a nonempty finite subset satisfying α(D,K j)≤ ε2n for all 1≤ j≤ n.
By Theorem 14.73, we can find a sequence (Pj)1≤ j≤n of finite subsets of G sat-

isfying the following conditions:

(T1) the set Pj is an (ε,K j)-filling pattern for D for every 1≤ j ≤ n;
(T2) the subsets K jPj ⊂ D, 1≤ j ≤ n, are pairwise disjoint;
(T3) the subset D′ ⊂ D defined by

D′ :=D\
⋃

1≤ j≤n

K jPj

has cardinality |D′| ≤ ε|D|.
We then have

D =
⋃

1≤ j≤n

K jPj ∪D′.

By applying the sub-additivity property (14.95) of h, it follows that

h(D)≤ ∑
1≤ j≤n

h(K jPj)+h(D′). (14.115)

As |D′| ≤ ε|D| by (T3), we deduce from (14.111) that

h(D′)≤Mε|D|. (14.116)

On the other hand, for all 1≤ j ≤ n, we have

h(K jPj) = h

⋃
g∈Pj

K jg


≤ ∑

g∈Pj

h(K jg) (by (14.95))
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≤ ∑
g∈Pj

h(K j) (by (14.96))

= ∑
g∈Pj

h(K j)

|K j|
|K jg| (since |K j|= |K jg|)

≤ (λ + ε) ∑
g∈Pj

|K jg| (by (14.114)).

As the family (K jg)g∈Pj is ε-disjoint by (T1), we then deduce from Lemma 14.67
that

h(K jPj)≤
λ + ε

1− ε

∣∣∣∣∣∣⋃g∈Pj

K jg

∣∣∣∣∣∣= λ + ε

1− ε
|K jPj|.

This implies

∑
1≤ j≤n

h(K jPj)≤
λ + ε

1− ε
∑

1≤ j≤n
|K jPj|

and hence

∑
1≤ j≤n

h(K jPj)≤
λ + ε

1− ε
|D|, (14.117)

since the sets K jPj, 1≤ j ≤ n, are pairwise disjoint subsets of D by (T2).
From (14.115), (14.116), and (14.117), we deduce that

h(D)

|D|
≤ λ + ε

1− ε
+Mε. (14.118)

By (14.112), we can find an i0 ∈ I such that, for all i≥ i0,

α(Fi,K j)≤ ε
2n for all 1≤ j ≤ n.

Hence, by replacing D by Fi for i≥ i0 in inequality (14.118), we obtain

h(Fi)

|Fi|
≤ λ + ε

1− ε
+Mε.

This implies

limsup
i

h(Fi)

|Fi|
≤ λ + ε

1− ε
+Mε.

Since the latter inequality is satisfied for all ε ∈ (0,
1
2
], taking the limit as ε tends to

0, we obtain

limsup
i

h(Fi)

|Fi|
≤ λ = liminf

i

h(Fi)

|Fi|
.

This shows that (14.113) is indeed a true limit.
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It only remains to show that λ = limi
h(Fi)

|Fi|
does not depend on the choice of the

left-Følner net (Fi)i∈I . So suppose that (G j) j∈J is another left-Følner net for G and

let ν = lim j
h(G j)

|G j|
.

Take disjoint copies I′ and J′ of the sets I and J, i.e., sets I′ and J′ with I∩ I′ =∅
and J ∩ J′ = ∅ together with bijective maps ϕ : I → I′ and ψ : J → J′. Consider
the set T = (I× J)∪ (I′× J′) with the partial ordering defined as follows. Given
t1, t2 ∈ T , we write t1 ≤ t2 if and only if there exist indices i1, i2 ∈ I and j1, j2 ∈ J
such that i1 ≤ i2, j1 ≤ j2, and

(t1 = (i1, j1) or t1 = (ϕ(i1),ψ( j1))) and (t2 = (i2, j2) or t2 = (ϕ(i2),ψ( j2))).

Observe that (T,≤) is a directed set since (I,≤) and (J,≤) are directed sets. Now
we define a net (Ht)t∈T of nonempty finite subsets of G by setting

Ht =

{
Fi if t = (i, j) ∈ I× J,
G j if t = (ϕ(i),ψ( j)) ∈ I′× J′.

Clearly (Ht)t∈T is a left-Følner net for G. By the first part of the proof, the net(
h(Ht)

|Ht |

)
t∈T

converges to some τ ≥ 0. Using the fact that for every t1 in T , there

exists a t2 in I× J (resp. in I′× J′) such that t1 ≤ t2, we conclude that τ = λ = ν .
This completes the proof of Theorem 14.61.

14.8 Applications of the Ornstein–Weiss Lemma to Ergodic
Theory and Dynamical Systems

In this subsection we show how, in the setting of Ergodic Theory and Dynamical
Systems, the Ornstein–Weiss lemma yields important numerical invariants such as
topological entropy, measure-theoretic entropy, and mean topological dimension.

Topological Entropy

This is based on the pioneering paper by Roy L. Adler, Alan G. Konheim, and M.H.
McAndrew [1].

Let X be a compact topological space.
An open cover of X is a family of open subsets of X whose union is X . Let

U = (U j) j∈J and V = (Vk)k∈K be two open covers of X . One says that V is finer
than U , and one writes V � U , if, for each k ∈ K, there exists a j ∈ J such that
Vk ⊂U j. One says that V is a subcover of U if K ⊂ J and Vk = Uk for all k ∈ K.
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One writes U ∼= V if {U j : j ∈ J} = {Vk : k ∈ K}, that is, if the open subsets of X
appearing in U and V are the same (as soon as we forget that they are indexed).

The join of U and V is the open cover U ∨ V of x defined by U ∨ V :=
(U j ∩Vk)( j,k)∈J×K . If f : X → X is a continuous map, the pullback of U by f is
the open cover f−1(U ) of X defined by f−1(U ) := ( f−1(U j)) j∈J .

Since X is compact, every open cover of X admits a finite subcover. Given an
open cover U of X , let N(U ) denote the smallest integer n≥ 0 such that U admits
a subcover of cardinality n.

The proof of the following lemma is easy and we leave it as an exercise (cf. [1]).

Lemma 14.74. Let X be a compact space. Let U = (U j) j∈J and V = (Vk)k∈K be
two open covers of X. Then one has

(i) N(U ∨V )≤ N(U )N(V );
(ii) if V �U then N(V )≥ N(U );

(iii) if U ∼= V then N(U ) = N(V );
(iv) if f : X → X is a continuous map then N( f−1(U ))≤ N(U ).

Now suppose that the compact space X is endowed with a continuous action of
a group S. This means that we are given a map G×X → X , (g,x) 7→ gx, satisfying
the following conditions:

(1) one has g1(g2x) = (g1g2)x for all g1,g2 ∈ G and x ∈ X ;
(2) 1Gx = x for all x ∈ X ;
(3) the map Tg : X → X defined by Tg(x) :=gx is continuous for all g ∈ G.

Let U be an open cover of X . Consider the map hU : Pfin(G)→ R defined by

hU (A) := logN(UA), (14.119)

where
UA :=

∨
g∈A

T−1
g (U ). (14.120)

(By convention, U∅ = {X} so that hU (∅) = 0.)

Proposition 14.75. Let X be a compact space equipped with a continuous action
of a group G and let U be an open cover of X. Then the map hU : Pfin(G)→ R
defined by (14.119) is non-decreasing, sub-additive, and right-invariant.

Proof. Let A and B be finite subsets of G.
If A ⊂ B, then UB is finer than UA. This implies N(UA) ≤ N(UB) by Lemma

14.74.(ii) and hence hU (A)≤ hU (B). This shows that hU is non-decreasing.
Suppose now that A and B are disjoint. Then we have UA∪B =UA∨UB and hence

N(UA∪B)≤ N(UA)N(UB). This implies hU (A∪B)≤ hU (A)+hU (B).
If A and B are arbitrary (not necessarily disjoint),

hU (A∪B) = hU ((A\B)∪B)

≤ hU (A\B)+hU (B) (since A\B and B are disjoint)
≤ hU (A)+hU (B) (since h is non-decreasing).
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This shows that hU is sub-additive.
To prove right-invariance, we first observe that, for every g ∈ G and any finite

subset A of G, we have

UAg =
∨

t∈Ag

T−1
t (U )

∼=
∨
a∈A

T−1
ag (U )

=
∨
a∈A

(Ta ◦Tg)
−1(U )

=
∨
a∈A

T−1
g (T−1

a (U ))

= T−1
g

(∨
a∈A

T−1
a (U )

)
= T−1

g (UA).

We then deduce that

hU (Ag) = logN(UAg) = logN(T−1
g (UA))≤ logN(UA) = hU (A)

by using assertions (iii) and (iv) in Lemma 14.74. This shows that hU is right-sub-
invariant. By Remark 14.60, we have that hU is indeed right-invariant. �

From Proposition 14.75 and Theorem 14.61, we deduce the following result.

Theorem 14.76. Let X be a compact space equipped with a continuous action of an
amenable group G and let U be an open cover of X. Then, for every left-Følner net
(Fi)i∈I of G, the limit

htop(X ,G;U ) := lim
i

hU (Fi)

|Fi|

exists and is finite. Moreover, htop(X ,G;U ) does not depend on the choice of the
left-Følner net (Fi)i∈I .

The quantity 0≤ htop(X ,G) ∈ [0,+∞)∪{+∞} defined by

htop(X ,G) :=sup
U

htop(X ,G;U ),

where U runs over all open covers of X , is the topological entropy of the dynamical
system (X ,G).

Mean Topological Dimension

This is based on the papers by Elon Lindenstrauss and Benjy Weiss [216], and Misha
Gromov [142]; see also the expositions in [81] and [78].
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Let X be a compact metrizable space.
Let U = (U j) j∈J be a finite open cover of X . The local order of U at a point x ∈

X is the integer ord(U ,x) :=1+m(U ,x), where m(U ,x) is the number of indices
j ∈ J such that x ∈U j. The order of U is the integer ord(U ) :=maxx∈X ord(U ,x).
Define the integer D(U ) by D(U ) :=minV ord(V ), where V runs over all finite
open covers of X such that V �U . Recall (cf. Notes to Chapter 10, [184]) that the
quantity 0≤ dim(X)≤+∞ defined by dim(X) :=supU D(U ), where U runs over
all finite open covers of X , is the topological dimension of X .

Lemma 14.77. Let X be a compact metrizable space. Let U = (U j) j∈J and V =
(Vk)k∈K be two finite open covers of X. Then one has

(i) D(U ∨V )≤ D(U )+D(V );
(ii) if V �U then D(V )≥ D(U );

(iii) if U ∼= V then D(U ) = D(V );
(iv) if f : X → X is a continuous map then D( f−1(U ))≤ D(U ).

Proof. See for example [216], [81], or [78]. �

Let X be a compact metrizable space equipped with a continuous action of a
group G. Let U be a finite open cover of X . Consider the function hdim

U : Pfin(G)→
R defined by

hdim
U (A) : D(UA), (14.121)

where UA is defined by (14.120).

Proposition 14.78. Let X be a compact metrizable space equipped with a contin-
uous action of a group G and let U be a finite open cover of X. Then the map
hdim

U : Pfin(G)→ R defined by (14.121) is non-decreasing, sub-additive, and right-
invariant.

Proof. Mutatis mutandis, the proof is the same as that of Proposition 14.75 with
Lemma 14.77 replacing Lemma 14.74. �

From Proposition 14.78 and Theorem 14.61, we deduce the following result.

Theorem 14.79. Let X be a compact metrizable space equipped with a continuous
action of an amenable group G and let U be a finite open cover of X. Then, for
every left-Følner net (Fi)i∈I of G, the limit

mdim(X ,G;U ) := lim
i

hdim
U (Fi)

|Fi|

exists and is finite. Moreover, mdim(X ,G;U ) does not depend on the choice of the
left-Følner net (Fi)i∈I .

The quantity mdim(X ,G) ∈ [0,+∞)∪{+∞} defined by

mdim(X ,G) :=sup
U

mdim(X ,G;U ),

where U runs over all finite open covers of X , is the mean topological dimension
of the dynamical system (X ,G).
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Measure-Theoretic Entropy

This is based on the pioneering papers by Andrei N. Kolmogorov [202] and Yakov
G. Sinai [317]; see also the book [195] by Anatole B. Katok and Boris Hasselblatt.

Let X = (X ,B, p) be a probability space.
A finite measurable partition of X is a finite family U = (U j) j∈J of pairwise

disjoint measurable subsets of X whose union is X (here, equalities for subsets of X
are understood to hold up to null-measure sets). The join operation ∨, as well as the
relations � and ∼=, can also be defined for finite measurable partitions. Moreover, if
T : X → X is a measurable map and U = (U j) j∈J is a finite measurable partition of
X , then T−1(U ) :=(T−1(U j)) j∈J is also a finite measurable partition of X .

If U = (U j) j∈J is a finite measurable partition of X , we define the real number
Hp(U )≥ 0 by

Hp(U ) :=−∑
j∈J

p(U j) log p(U j),

with the usual convention 0log0 = 0.
A measurable map T : X → X is said to be measure-preserving if p(T−1(B)) =

p(B) for all B ∈B.

Lemma 14.80. Let (X ,B, p) be a probability space. Let U = (U j) j∈J and V =
(Vk)k∈K be two finite measurable partitions of X. Then one has

(i) Hp(U ∨V )≤ Hp(U )+Hp(V );
(ii) if V �U then Hp(V )≥ Hp(U );

(iii) if U ∼= V then Hp(U ) = Hp(V );
(iv) if T : X → X is a measure-preserving map then Hp(T−1(U )) = Hp(U ).

Proof. See for example [195, Section 4.3]. �

Let (X ,B, p) be a probability space. Suppose that X is equipped with a measure-
preserving action of a group G, that is, a family of measure-preserving maps
Tg : X → X , g ∈ G, such that

Tg1 ◦Tg2 = Tg1g2 p-a.e.

for all g1,g2 ∈ G, and T1G = IdX .
Let U be a finite measurable partition of X . Consider the map hp

U : Pfin(G)→R
defined by

hp
U (A) :=Hp(UA), (14.122)

where UA is defined by (14.120).

Proposition 14.81. Let (X ,B, p) be a probability space equipped with a measure-
preserving action of a group G and let U be a finite measurable partition of X. Then
the map hp

U : Pfin(G)→R defined by (14.122) is non-decreasing, subadditive, and
right-invariant.

Proof. Mutatis mutandis, the proof is the same as that of Proposition 14.75 with
Lemma 14.80 replacing Lemma 14.74. �
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From Proposition 14.81 and Theorem 14.61, we deduce the following result.

Theorem 14.82. Let (X ,B, p) be a probability space equipped with a measure-
preserving action of an amenable group G and let U be a finite measurable partition
of X. Then, for every left-Følner net (Fi)i∈I of S, the limit

hKS(X , p,G;U ) := lim
i

hp
U (Fi)

|Fi|

exists and is finite. Moreover, hKS(X , p,G;U ) does not depend on the choice of the
left-Følner net (Fi)i∈I .

The quantity hKS(X , p,G) ∈ [0,+∞)∪{+∞} defined by

hKS(X , p,G) :=sup
U

hKS(X , p,G;U ),

where U runs over all finite measurable partitions of X , is the measure-theoretic
entropy, or Kolmogorov–Sinai entropy, of the measured dynamical system (X , p,G).

14.9 The Tarski Number

In this section we introduce and study the Tarski number of a group. It can be re-
garded as a “measure” of amenability or, rather, of non-amenability of groups.

Definition 14.83. Let G be a group. Suppose that G is paradoxical, so that it admits
a paradoxical decomposition (of type (n,m)) as in (14.17) and (14.17). The number
n+m, denoting the number of pieces involved in the paradoxical decomposition,
is called the complexity or the Tarski number of the paradoxical decomposition.
The infimum of all such Tarski numbers, taken over all the possible paradoxical
decompositions of G, is called the Tarski number of G and is denoted by τ(G). If G
is not paradoxical, we set τ(G) = ∞.

Remark 14.84. Let G be a group. Suppose that G admits a paradoxical decomposi-
tion of type (n,m). Then G also admits a paradoxical decomposition of type (m,n)
and, moreover, n,m ≥ 2 (and therefore their corresponding complexity is at least
4). As a consequence, τ(G) ≥ 4. Moreover, if G is finitely generated, by virtue of
Theorem 14.21 one has τ(G) = ∞ if and only if G is amenable.

Example 14.85. In Example 14.20 we presented a paradoxical decomposition of
type (2,2), and therefore of complexity 4, of the free group F2. It follows from
Remark 14.84 that τ(F2) = 4.

The following may be regarded as a quantitative version of Theorem 14.9.

Proposition 14.86. Let G be a group and H ≤ G a subgroup. Then τ(G)≤ τ(H).
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Proof. If H is not paradoxical, then τ(H) = ∞ and there is nothing to prove. Thus
we suppose that H is paradoxical. Let H = A1tA2t·· ·tAntB1tB2t·· ·tBm =
a1A1ta2A2t·· ·tanAn = b1B1tb2B2t·· ·tbmBm be a paradoxical decomposition
of H using τ(H) = n+m pieces. Let T ⊆ G be a right-transversal for H in G so
that G = tt∈T Ht. Let us set Ãi :=tt∈T Ait, for i = 1,2, . . . ,n, and B̃ j = tt∈T B jt,
j = 1,2, . . . ,m. Then we have G = Ã1t Ã2t ·· ·t Ãnt B̃1t B̃2t ·· ·t B̃m = a1Ã1t
a2Ã2t·· ·tanÃn = b1B̃1tb2B̃2t·· ·tbmB̃m is a paradoxical decomposition of type
(n,m) of G. This shows that τ(G)≤ n+m = τ(H). �

From Example 14.85, Example 1.19, Proposition 14.86, and Remark 14.84, we
immediately deduce:

Corollary 14.87. Let G be a group and suppose that it contains a subgroup iso-
morphic to the free group F2. Then G is paradoxical and τ(G) = 4. In particu-
lar, for all n ≥ 2, the free group Fn, the general linear group GL(n,C), and the
special linear group SL(n,C)) are paradoxical and their Tarski numbers satisfy
τ(Fn) = τ(GL(n,C)) = τ(SL(n,C)) = 4. �

The following may be regarded as a quantitative version of Theorem 14.11.

Proposition 14.88. Let G be a group and NEG a normal subgroup. Then τ(G) ≤
τ(G/N).

Proof. Let us denote by π : G→ G/N the canonical epimorphism. If G/N is not
paradoxical, then τ(G/N) = ∞ and there is nothing to prove. Thus we suppose that
G/N is paradoxical and let G/N = A1tA2t·· ·tAntB1tB2t·· ·tBm = a1A1t
a2A2 t ·· · t anAn = b1B1 t b2B2 t ·· · t bmBm be a paradoxical decomposition of
G/N using τ(H) = n+m pieces. Choose a section ϕ : G/N −→ G. Note that every
element g ∈ G is then uniquely expressed as a product g = ϕ(gN)n where gN ∈
G/N and n ∈ N; in particular G = ϕ(G/N)N. Let us set Ãi = π−1(Ai) = ϕ(Ai)N ⊆
G and ãi = ϕ(ai) ∈ G, for i = 1,2, . . . ,n (resp. B̃ j = π−1(B j) = φ(B j)N ⊆ G and
b̃ j = ϕ(bi) ∈G, for j = 1,2, . . . ,m). Observe that π−1(aiAi) = ϕ(ai)π

−1(Ai) = ãiÃi
and, similarly, π−1(b jB j) = b̃ jB̃ j so that we have the paradoxical decomposition
G = Ã1t Ã2t ·· ·t Ãnt B̃1t B̃2t ·· ·t B̃m = φ(g1)Ã1tφ(g2)Ã2t ·· ·tφ(gn)Ãn =
φ(h1)B̃1tφ(h2)B̃2t·· ·tφ(hm)B̃m. This shows that τ(G)≤ n+m = τ(G/N) �

Theorem 14.89 (Jónsson). Let G be a group. Then τ(G) = 4 if and only if G con-
tains F2.

Proof. Suppose that τ(G) = 4 and let

G = A1tA2tB1tB2 = a1A1ta2A2 = b1B1tb2B2

be a paradoxical decomposition of G using 4 pieces. Set g = a−1
1 a2 and h = b−1

1 b2.
Then

G = A1tA2tB1tB2 = A1tgA2 = B1thB2

and
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A1 = G\gA2 = gA1tgB1tgB2

A1 ⊃ gA1 ⊃ g2A1 ⊃ . . .⊃ gk−1A1 ⊃ gkB j (k ≥ 1 and j = 1,2)

A2 = G\g−1A1 = g−1A2tg−1B1tg−1B2

A2 ⊃ g−1A1 ⊃ g−2A1 ⊃ . . .⊃ g−k+1A1 ⊃ g−kB j (k ≥ 1 and j = 1,2).

Thus
gkB j ⊆ A1∪A2 and hkA j ⊆ B1∪B2

for all k ∈Z,k 6= 0, and j = 1,2. Observe that both g and h are non-torsion elements
(exercise) so that, by Klein’s Ping-Pong lemma (Theorem 1.17), they generate a free
subgroup of rank 2. The converse is the first statement in Corollary 14.87. �

Proposition 14.90. Let G be a paradoxical group. Then there exists a finitely gen-
erated subgroup H ⊆ G with τ(H) = τ(G).

Proof. Let G = A1tA2t·· ·tAntB1tB2t·· ·tBm = a1A1ta2A2t·· ·tanAn =
b1B1 t b2B2 t ·· · t bmBm be a paradoxical decomposition of G of complexity n+
m = τ(G). Denoting by H :=〈a1,a2, . . . ,an,b1,b2, . . . ,bm〉 the subgroup generated
by the elements involved in the paradoxical decomposition, one has (aiAi)∩H =
ai(Ai∩H) and an analogous relation for the b j’s and B j’s. Setting A′i = Ai∩H and
B′j =B j∩H one obtains the paradoxical decomposition H =A′1tA′2t·· ·tA′ntB′1t
B′2t·· ·tB′m = a1A′1ta2A′2t·· ·tanA′n = b1B′1tb1B′1t·· ·tbmB′m of complexity
n+m. We deduce that τ(H)≤ n+m = τ(G). The converse inequality now follows
from Proposition 14.86 �

Proposition 14.91. Let G be a torsion group. Then τ(G)≥ 6.

Proof. By virtue of Remark 14.84, it is enough to show that G cannot admit a para-
doxical decomposition of type (2,m) for any m≥ 2. Suppose by contradiction that

G = A1tA2tB1tB2t·· ·tBm = a1A1ta2A2 = b1B1tb2B2t·· ·tbmBm

is a paradoxical decomposition of G of type (2,m). Denoting by k the order of the
element g :=a−1

1 a2, one deduces, as in the proof of Theorem 14.89,

A1 ⊃ gA1 ⊃ gA2 ⊃ . . .⊃ gk−1A1 ⊃ gkB1 = B1,

which is clearly absurd. �

14.10 Isoperimetric Profiles of Groups

Definition 14.92. Given an infinite group G generated by a finite symmetric subset
X , we define the isoperimetric profile of G with respect to X as the function from N
onto itself given by

I◦(n;G,X) := inf
Ω⊆G:|Ω |=n

|∂X (Ω)|

for each n ∈ N.



388 14 Amenability, Isoperimetric Profiles, and Følner Functions

The following lemma shows that the asymptotic behavior of this function is indepen-
dent of the set of generators X . Hence this provides another asymptotic geometric
invariant of groups.

Lemma 14.93. Let X and X ′ be two finite generating symmetric subsets of an infi-
nite group G. Then I◦(n;G,X)∼ I◦(n;G,X ′).

Proof. We start with two easy observations.
If S,T,Ω ⊆ G are finite subsets of G, then

∂S∪T (Ω) = (S∪T )Ω \Ω ⊆ ((SΩ)\Ω)∪ ((T Ω)\Ω) = ∂S(Ω)∪∂T (Ω),

so that
|∂S∪T (Ω)| ≤ |∂S(Ω)|+ |∂T (Ω)|. (14.123)

Moreover,

∂ST (Ω) = (ST )Ω \Ω ⊆ (S(T Ω \Ω))∪ (SΩ \Ω) = S∂T (Ω)∪∂S(Ω),

so that
|∂ST (Ω)| ≤ |S| · |∂T (Ω)|+ |∂S(Ω)|. (14.124)

Now, since X is a generating subset, there exists an m≥ 1 such that X ′ ⊆∪m
i=0X i.

Hence, for a finite subset Ω ⊆ G, using (14.123) and inductively (14.124), we have

|∂X ′(Ω)| ≤ |∂∪m
i=0X i(Ω)|

≤
m

∑
i=0
|∂X i(Ω)|

≤
m

∑
i=1

i−1

∑
j=0
|X j| · |∂X (Ω)|

≤ m|X |m+1 · |∂X (Ω)|.

Since m does not depend on Ω , this gives I◦(n;G,X ′)� I◦(n;G,X).
Analogously, exchanging the roles of X and X ′, we get the other inequality, and

hence the result. �

As a consequence, when it does not create any confusion, for every finite generating
subset X ⊆ G we will denote I◦(n;G,X) also by I◦(n;G).

We want to stress here a few properties of this invariant. First of all notice that

|∂X (Ω)|=

∣∣∣∣∣⋃
x∈X

(xΩ \Ω)

∣∣∣∣∣≤ |X | · |Ω |,
hence we always have

I◦(n;G,X)� n, (14.125)

i.e. the isoperimetric profile of a group is a sublinear function. The following propo-
sition shows that the linearity of this invariant is equivalent to the nonamenability of
the group.
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Proposition 14.94. A finitely generated group G is nonamenable if and only if there
exists a finite symmetric generating subset X ⊆ G such that

I◦(n;G,X)∼ n.

Proof. If G is nonamenable then there exist X ⊆G finite and ε > 0 such that for any
finite subset Ω ⊆ G

|∂X (Ω)|= |Ω ∪XΩ |− |Ω | ≥ ε|Ω |.

Possibly enlarging X , we can assume that X is symmetric and generates G. Then we
have

I◦(n;G,X)� n,

that, together with (14.125), gives

I◦(n;G,X)∼ n.

If G is amenable, then for any finite subset X ⊆ G and any ε > 0 we can find a
finite subset Ω ⊆ G (depending on ε) such that

|∂X (Ω)|= |Ω ∪XΩ |− |Ω |< ε|Ω |,

and this prevents I◦(n;G,X)� n, as we wanted. �

In this sense the isoperimetric profile can be viewed as a measure of the amenability
of the group.

Looking at the definition, it becomes immediately clear that to compute the
isoperimetric profile, even for easy examples, it is quite hard to prove a lower bound.
The key result which lies at the heart of almost any computation of isoperimetric
profiles is the following remarkable inequality, which is due to Coulhon and Saloff-
Coste. We need a definition.

Let G be an infinite group generated by a finite symmetric subset X . For λ > 0,
define

Φ(λ ) :=min{n ∈ N : bG
X (n)> λ}. (14.126)

This is essentially the inverse function of the growth of G. The following proof is
due to Gromov.

Theorem 14.95 (Coulhon and Saloff-Coste). Let G be an infinite group, generated
by a finite symmetric subset X. Then for any finite nonempty subset Ω of G we have

|∂X (Ω)| ≥ |Ω |
2Φ(2|Ω |)

.

Proof. Observe that, by (14.123), if a,b ∈ G then

|∂ab(Ω)| ≤ |∂a(Ω)|+ |∂b(Ω)|.

Hence by induction, if ai ∈ G for i = 1, . . . ,n, then
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|∂a1a2···an(Ω)| ≤
n

∑
i=1
|∂ai(Ω)| ≤ n max

1≤i≤n
|∂ai(Ω)|.

This immediately implies that for any m≥ 1 and y ∈ BX (1G,m)

|∂y(Ω)| ≤ m max
x∈X
|∂x(Ω)|.

Therefore

|∂X (Ω)| ≥ max
x∈X
|∂x(Ω)| ≥ 1

m
1

bG
X (m)

∑
y∈BX (1G,m)

|∂y(Ω)|

=
1
m

1
bG

X (m)
∑

y∈BX (1G,m)

(|yΩ |− |yΩ ∩Ω |)

=
1
m

1
bG

X (m)

(
bG

X (m)|Ω |− ∑
y∈BX (1G,m)

|yΩ ∩Ω |

)
.

Lemma 14.96.
∑

y∈BX (1G,m)

|yΩ ∩Ω | ≤ |Ω |2.

Proof. We have

∑
y∈BX (1G,m)

|yΩ ∩Ω |= ∑
y∈BX (1G,m)

∑
x1∈Ω

∑
x2∈Ω

χ(yx1 = x2),

where χ(P) = 1 if the proposition P is true, χ(P) = 0 if P is false. By cancel-
lation property, the ordered pair (x1,x2) ∈ Ω ×Ω uniquely determines y such that
yx1 = x2, hence

∑
y∈BX (1G,m)

∑
x1∈Ω

∑
x2∈Ω

χ(yx1 = x2)≤ |Ω ×Ω |= |Ω |2.

The proof of Lemma 14.96 follows. �

By the lemma and taking m :=Φ(2|Ω |) = min{n ∈ N : bG
X (n)> 2|Ω |}, we get

|∂X (Ω)| ≥ 1
m

1
bG

X (m)

(
bG

X (m)|Ω |− ∑
y∈BX (1G,m)

|yΩ ∩Ω |

)

≥ 1
m

1
bG

X (m)

(
bG

X (m)|Ω |− |Ω |2
)

=
|Ω |
m

(
1− |Ω |

bG
X (m)

)
>
|Ω |
2m

=
|Ω |

2Φ(2|Ω |)
.

This completes the proof of Theorem 14.95. �
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Corollary 14.97. Let G be a finitely generated infinite group. Then

(1) if bG(n)� nd for some d ≥ 1, then I◦(n;G)� n(d−1)/d;
(2) if bG(n)∼ en, then I◦(n;G)� n/ logn.

Proof. Let X ⊆ G be a finite symmetric generating subset of G.
Suppose that bG

X (n) � nd for some d ≥ 1. So there exists a C > 0 such that
bG

X (n)≥Cnd for all n≥ 1. This implies that, for

k ≥
(

4n
C

) 1
d
,

we have
bG

X (k)≥Ckd ≥ 4n > 2n,

so that

Φ(2n) = min{m ∈ N : bG
X (m)> 2n} ≤

(
4n
C

) 1
d
.

By the Coulhon–Saloff-Coste inequality, for all n≥ 1, we have

I◦(n;G)≥ n
2Φ(2n)

≥
(

C
4n

) 1
d n

2
=

(
C

1
d

2(d+2)/d

)
n(d−1)/d ,

proving (1). The proof of (2) is analogous (exercise). �

14.11 Følner Functions

Let G be an infinite finitely generated amenable group. Let X ⊆ G be a finite sym-
metric generating subset of G. For every n ∈ N, n ≥ 1, we define F◦(n;G,X) to be
the minimal cardinality of a finite subset Ω ⊆ G such that

|∂X (Ω)| ≤ |Ω |
n

.

The function n 7→ F◦(n;G,X) is called the Følner function of G with respect to X .
The proof of the following lemma is analogous to that of Lemma 14.93 and we

leave it as an exercise.

Lemma 14.98. Let X and X ′ be two finite generating symmetric subsets of an infi-
nite group G. Then F◦(n;G,X)∼ F◦(n;G,X ′).

As a consequence, when it does not create any confusion, for every finite generating
subset X ⊆ G we will denote F◦(n;G,X) also by F◦(n;G).

We want to stress here a few properties of this invariant. Notice that, since G is
infinite, ∂X (Ω) 6= ∅ for all finite subsets Ω ⊆ G, we must have F◦(n;G,X) ≥ n for
all n≥ 1. Moreover, the function F◦(n;G,X) is non-decreasing (exercise).
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Proposition 14.99. Let G be a finitely generated amenable group, and let H ⊆G be
a finite normal subgroup of G. Then

F◦(n;G)� F◦(n;G/H).

Proof. The argument is a quantitative version of the proof of Theorem 14.12.
Let us recall the setting of that proof.
Let π : G→ G :=G/H be the canonical projection, let X ⊆ G be a finite gener-

ating subset of G, and set X :=π(X). Fix n ∈ N, and let Ω 1 ⊆ G be a finite subset
such that

|∂x(Ω 1)|<
1

2n
|Ω 1| for all x ∈ X .

This implies

|∂X (Ω 1)| ≤ ∑
x∈X

|∂x(Ω 1)| ≤
|X |
2n
|Ω 1|.

Let Ω1 ⊆ G be such that π(Ω1) = Ω 1 and |Ω1|= |Ω 1|.
In the proof of Theorem 14.12 we showed that there exists a finite subset Ω2 ⊆H

(possibly Ω2 = {1}, as in Case 1 therein) such that Ω :=Ω1Ω2 ⊆ G satisfies

|∂x(Ω)| ≤ 1
n
|Ω | for all x ∈ X .

Therefore

|∂X (Ω)| ≤ ∑
x∈X
|∂x(Ω)| ≤ |X |

n
|Ω |

and |Ω | ≤ |Ω1||Ω2| ≤ |Ω1||H|, as H is finite. Choosing a set Ω1 with |Ω1| =
F◦
(

2|X |
|X | n;G,X

)
, this shows that

F◦(n;G,X)≤ |H|F◦
(

2|X |
|X |

n;G,X
)
.

It follows that
F◦(n;G)� F◦(n;G/H).

The proof of Proposition 14.99 is complete. �

Proposition 14.100. Let G be an infinite finitely generated amenable group. Then

F◦(n;G)� bG(n).

Proof. Let X ⊆ G be a finite symmetric generating subset of G. Let Ω ⊆ G be a
finite subset such that

|∂X (Ω)| ≤ |Ω |
n

,

equivalently

n≤ |Ω |
|∂X (Ω)|

. (14.127)
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Notice that such a subset exists as G is amenable. By the Coulhon–Saloff-Coste
inequality, we have also

|∂X (Ω)| ≥ |Ω |
2Φ(2|Ω |)

,

where Φ is as in (14.126), equivalently

|Ω |
|∂X (Ω)|

≤ 2Φ(2|Ω |). (14.128)

Comparing (14.127) and (14.128), we get

Φ(2|Ω |)≥ n
2
>

n
3
,

so, by the definition of Φ , we deduce

bG
X

(n
3

)
≤ 2|Ω |.

Choosing Ω such that |Ω |= F◦(n;G,X), we get

F◦(n;G,X)≥ 1
2

bG
X

(n
3

)
,

so that F◦(n;G)� bG(n), as we wanted. �

Remark 14.101. Though there seems to be a strong relation (asymptotic inequality?
asymptotic equivalence?) between I◦(n;G) and n/F−1

◦ (n;G) for an infinite finitely
generated amenable group G, no result of this kind in full generality is known to the
authors.

For example, even the monotonicity of the isoperimetric profile of groups is not
known in general (notice that in geometry the isoperimetric profile is not always
monotone).

Of course more can be said under some mild assumption on these functions, but
unfortunately these assumptions cannot be easily checked before an actual compu-
tation.

14.12 Følner Functions of Groups of Polynomial Growth

Theorem 14.102. Let G be a finitely generated nilpotent group. Then

F◦(n;G)∼ bG(n).

Proof. By Proposition 14.100 we only need to prove

F◦(n;G)� bG(n).

Consider the lower central series of G
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G = γ1(G)≥ γ2(G)≥ ·· · ≥ γc(G)≥ γc+1(G) = {1G}.

By replacing G by G/Gtor, we can assume that G has a series

G = G1 ≥ G2 ≥ ·· · ≥ Gc ≥ {1}

that is central (i.e. [Gi,G j]⊆Gi+ j), the factors Gi/Gi+1 are torsion-free abelian, and
rk(Gi/Gi+1) = ri := rk(γi(G)/γi+1(G)). This reduction is justified in Section 7.8 for
the growth function bG(n), and it also works for the Følner function F◦(n;G) by
virtue of Proposition 14.99.

For each i = 1,2, . . . ,c, let xi jGi+1, j = 1,2, . . . ,ri, be free generators of Gi/Gi+1.
Notice that with this choice the subgroup G` is generated by the xi j’s with i≥ `, for
all `= 1,2, . . . ,c. In particular, the symmetric subset

X :={x±1
i j : 1≤ i≤ c,1≤ j ≤ ri}

generates G, and every element g ∈G can be uniquely written in the canonical form

g = xe11
11 xe12

12 · · ·x
e1r1
1r1
· · ·xec1

c1 · · ·x
ecrc
crc

=
r1

∏
j=1

x
e1 j
1 j ·

r2

∏
j=1

x
e2 j
2 j · · ·

rc

∏
j=1

x
ec j
c j

where ei j ∈ Z for all i, j. Given g in its canonical form, we set

Ei = Ei(g) :=
ri

∑
j=1
|ei j| for all i = 1,2, . . . ,c.

Let Xi :={x±1
i j : 1≤ j≤ ri} denote the set of generators of weight i, for i= 1,2, . . . ,c.

Notice that X = ∪iXi.
Given n ∈ N and C > 0, we define the finite subsets of G

Ωn,C :={g ∈ G : E1(g)≤ n and Ei(g)≤ ni +Cni−1 for all i = 2,3, . . . ,c}

and

ωn :={g ∈ G : E1(g)≤ n−1 and Ei(g)≤ ni for all i = 2,3, . . . ,c}.

Notice that ωn ⊆Ωn,C for all n.
We want to show that there is a constant C > 0 independent of n such that

δX (Ωn,C)∩ωn =∅. (14.129)

In this way, we will be able to bound from above |δX (Ωn,C)| with |Ωn,C| − |ωn|,
which in turn will give us the required bound on the Følner function.

In order to prove this, we need to show that there exists a constant C > 0 such
that, for every y ∈ X and g ∈ ωn, yg ∈ Ωn,C. So, as in the proof of the upper bound
in Bass’ formula (cf. Section 7.8), given g in canonical form, we need to put yg in
canonical form.
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Using the commutator relation yx = x[x,y−1]y, we start by rewriting

yg = y
r1

∏
j=1

x
e1 j
1 j ·

r2

∏
j=1

x
e2 j
2 j · · ·

rc

∏
j=1

x
ec j
c j

as
r1

∏
j=1

x
f1 j
1 j ·η1 ·

r2

∏
j=1

x
e2 j
2 j · · ·

rc

∏
j=1

x
ec j
c j ,

where f1 j ∈ Z for all j, and η1 is an element of G2.

Example 14.103. Let g = x2
11x−1

13 x2
22x−1

23 x31 and y = x24. Then

yg = x24x2
11x−1

13 x2
22x−1

23 x31 

 x11[x11,x−1
24 ]x24x11x−1

13 x2
22x−1

23 x31

 x11[x11,x−1
24 ]x11[x11,x−1

24 ]x24x−1
13 x2

22x−1
23 x31

 x11[x11,x−1
24 ]x11[x11,x−1

24 ]x
−1
13 [x

−1
13 ,x

−1
24 ]x24x2

22x−1
23 x31

 x2
11[x11, [x11,x−1

24 ]
−1][x11,x−1

24 ][x11,x−1
24 ]x

−1
13 [x

−1
13 ,x

−1
24 ]x24x2

22x−1
23 x31

 x2
11[x11, [x11,x−1

24 ]
−1][x11,x−1

24 ]x
−1
13 [x

−1
13 , [x11,x−1

24 ]
−1][x11,x−1

24 ]·
· [x−1

13 ,x
−1
24 ]x24x2

22x−1
23 x31

 x2
11[x11, [x11,x−1

24 ]
−1]x−1

13 [x
−1
13 , [x11,x−1

24 ]
−1][x11,x−1

24 ][x
−1
13 , [x11,x−1

24 ]
−1]·

· [x11,x−1
24 ][x

−1
13 ,x

−1
24 ]x24x2

22x−1
23 x31

 x2
11x−1

13 [x
−1
13 , [x11, [x11,x−1

24 ]
−1]−1][x11, [x11,x−1

24 ]
−1][x−1

13 , [x11,x−1
24 ]
−1]·

· [x11,x−1
24 ][x

−1
13 , [x11,x−1

24 ]
−1][x11,x−1

24 ][x
−1
13 ,x

−1
24 ]x24x2

22x−1
23 x31,

so yg = x2
11x−1

13 η1x2
22x−1

23 x31, where

η1 = [x−1
13 , [x11, [x11,x−1

24 ]
−1]−1][x11, [x11,x−1

24 ]
−1][x−1

13 , [x11,x−1
24 ]
−1][x11,x−1

24 ]·
· [x−1

13 , [x11,x−1
24 ]
−1][x11,x−1

24 ][x
−1
13 ,x

−1
24 ]x24.

Notice that, modulo the identity [a,b]−1 = [b,a], the element η1 is a product of
commutators of the form

[y1, [y2, [. . . , [yt−1,yt ] · · · ]]]

with yi ∈ X for all i, and possibly y.

Since η1 is in G2, we can express it as a word in the x±1
i j with i≥ 2.

Now we can iterate the previous process for every generator occurring in η1, and
rewrite

yg =
r1

∏
j=1

x
f1 j
1 j ·η1 ·

r2

∏
j=1

x
e2 j
2 j · · ·

rc

∏
j=1

x
ec j
c j

as



396 14 Amenability, Isoperimetric Profiles, and Følner Functions

r1

∏
j=1

x
f1 j
1 j ·

r2

∏
j=1

x
f2 j
2 j ·η2 ·

r3

∏
j=1

x
e3 j
3 j · · ·

rc

∏
j=1

x
ec j
c j ,

where f2 j ∈ Z for all j, and η2 is an element of G3. In general, for every s≥ 1, we
can rewrite yg as

r1

∏
j=1

x
f1 j
1 j ·

r2

∏
j=1

x
f2 j
2 j · · ·

rs

∏
j=1

x
fs j
s j ·ηs ·

rs+1

∏
j=1

x
es+1, j
s+1, j · · ·

rc

∏
j=1

x
ec j
c j ,

where fi j ∈ Z for all i and j, and ηs is an element of Gs+1, which therefore can be
expressed as a word in the x±1

i j with i≥ s+1.
Notice that, if we set Fi :=∑

ri
j=1 | fi j|, then Fi = Ei(yg) for all i = 1,2, . . . ,c. We

want to estimate the Fi.
Observe that in the rewriting process, ηs is a product of commutators of the form

[y1, [y2, [. . . , [yt−1,yt ] · · · ]]],

where yi ∈ X for all i, and possibly y.
Set

A :=sup{`X ([y1, [y2, [. . . , [yt−1,yt ] · · · ]]]) : 1≤ t ≤ c,yi ∈ X for all i}.

We want to estimate the number `(k,s) of generators of weight k in ηs.

Claim. For every k = 1,2, . . . ,c and s = 1,2, . . . ,c there exist polynomials H(k)
s ∈

R[t1, t2, . . . , ts] and a constant C > 0 independent of k and s such that

1. `(k,s)≤ H(k)
s (E1,E2, . . . ,Es), and

2. H(k)
s (n,n2, . . . ,ns)≤Cnk−1 for all n ∈ N\{0}.

We proceed by induction on s. Since there are finitely many values of s, in order
to check property (2) it will be enough to find a constant Cs > 0 for every s, and then
pick their maximum.

For s = 1, we set

H(k)
1 (t1) :=1+A

(
t + t2 + · · ·+ tk−1

)
.

Since for C1 :=1+ cA property (2) is satisfied, we check property (1). We already
observed that, other than possibly y, in η1 we will have factors of the form

[y1, [y2, [. . . , [yt−1,yt ] · · · ]]]

where yi ∈ X for all i. Notice that for every t ≥ 2 such a commutator must lie in Gt ,
hence it will be rewritten as a product of generators of weight ≥ t. Hence we need
to estimate the number of such commutators of length t for every t ≥ 2.

In the rewriting process (cf. Example 14.103), we moved some of the x±1
1 j (pos-

sibly all of them) to the left of y, and each of these exchanges produced exactly one
commutator of length 2. Then we had to move some of the x±1

1 j to the left of some of
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these commutators of length 2 that we just created, producing each time a commu-
tator of length 3. And so on. Since the number of x±1

1 j occurring in g is E1 = E1(g),
the number of commutators of length t occurring in η1 is at most Et−1

1 for every
t ≥ 2.

Summarizing, we get the estimate

`(k,1)≤ 1+AE1 +AE2
1 + · · ·+AEk−1

1 = H(k)
1 (E1).

This proves the base of the induction.
Now assume that we have found H(k)

j and C j > 0 for j = 1,2, . . . ,s−1 that satisfy
properties (1) and (2). Set

H(k)
s (t1, t2, . . . , ts) :=H(k)

s−1(t1, t2, . . . , ts−1)+Ats
k−s

∑
i=0

H(k−s−i)
s−1 (t1, t2, . . . , ts−1).

Since by induction for all n≥ 1

H(k)
s−1(n,n

2, . . . ,ns−1)≤Cs−1nk−1

and
H(k−s−i)

s−1 (n,n2, . . . ,ns−1)≤Cs−1nk−s−i−1 ≤Cs−1nk−s−1,

we have for all n≥ 1

H(k)
s (n,n2, . . . ,ns)≤Cs−1nk−1 +Ans

k−s

∑
i=0

Cs−1nk−s−1

≤Cs−1(1+ cA)nk−1.

Hence H(k)
s with Cs :=Cs−1(1+ cA) satisfies property (2). This shows that for the

constant C in the statement we can take

C :=(1+ cA)c.

In order to estimate `(k,s), we need to understand what happens in going from

r1

∏
j=1

x
f1 j
1 j ·

r2

∏
j=1

x
f2 j
2 j · · ·

rs−1

∏
j=1

x
fs−1, j
s−1, j ·

(
ηs−1 ·

rs

∏
j=1

x
es j
s j

)
·

rs+1

∏
j=1

x
es+1, j
s+1, j · · ·

rc

∏
j=1

x
ec j
c j

to
r1

∏
j=1

x
f1 j
1 j ·

r2

∏
j=1

x
f2 j
2 j · · ·

rs−1

∏
j=1

x
fs−1, j
s−1, j ·

(
rs

∏
j=1

x
fs j
s j ·ηs

)
·

rs+1

∏
j=1

x
es+1, j
s+1, j · · ·

rc

∏
j=1

x
ec j
c j .

Observe that, in the rewriting process, a generator of weight k in ηs either comes
from a generator of weight k in ηs−1, or from a commutator of the form [x±1

s, j ,z]
where z is a generator of weight ≤ k− s occurring in ηs−1. By induction, the
number of generators of the first kind, i.e. `(k,s− 1), is bounded from above by
H(k)

s−1(E1,E2, . . . ,Es−1). Again by induction, the number of generators of the latter
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kind is clearly bounded by

AEs

k−s

∑
i=0

`(k− s− i,s−1)≤ AEs

k−s

∑
i=0

H(k−s−i)
s−1 (E1,E2, . . . ,Es−1).

All this proves property (1), and concludes the proof of the claim.

From the claim we immediately get the following estimate for the Fk = Ek(yg):

Fk ≤ Ek +H(k)
k−1(E1,E2, . . . ,Ek−1). (14.130)

Indeed, it is enough to look at the process

ηk−1 ·
rk

∏
j=1

x
ek j
k j  

rk

∏
j=1

x
fk j
k j ·ηk,

where a generator of weight k on the right-hand side can come either from a x±1
k j

from the left-hand side, or from a generator of weight k in ηk−1.
Now if g ∈ ωn, i.e. E1(g)≤ n−1 and Ei(g)≤ ni for all i = 2,3, . . . ,c, then for all

y ∈ X , by (14.130), E1(yg) = F1 ≤ E1 +1≤ n and

Ei(yg) = Fi ≤ Ei +H(i)
i−1(E1,E2, . . . ,Ei−1)≤ ni +Cni−1,

where C > 0 is the constant of the Claim. In other words,

yg ∈Ωn,C for all y ∈ X .

This shows that
δX (Ωn,C)∩ωn =∅.

From now on we fix the constant C > 0 and we denote Ωn,C simply by Ωn.
Let Yi be the set of standard generators of Zri , i.e. Yi :={±e1,±e2, . . . ,±eri} ⊆

Zri , where the e j are the elements of the canonical basis, and set Pi(n) :=bZ
ri

Yi
(n).

Observe that asymptotically Pi(n)∼ nri . We have

|Ωn|= P1(n) ·
c

∏
i=2

Pi(ni +Cni−1) and |ωn|= P1(n−1) ·
c

∏
i=2

Pi(ni).

If we set fi(n) :=Pi(ni)/Pi(ni +Cni−1) for i = 2,3, . . . ,c, we have

|δX (Ωn)|
|Ωn|

≤ |Ωn|− |ωn|
|Ωn|

= 1− |ωn|
|Ωn|

= 1− P1(n−1)
P1(n)

c

∏
i=2

fi(n).
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We recall that given two functions f : N→ R and g : N→ R, one writes

f (n) = O(g(n))

if there exists a constant C > 0 and n0 ∈ N such that

| f (n)| ≤C|g(n)| for all n≥ n0.

Clearly
P1(n−1)

P1(n)
= 1+O

(
1
n

)
.

Since asymptotically

fi(n)'
niri

(ni +Cni−1)ri
=

1(
1+C ni−1

ni

)ri '
1

1+ riC 1
n

,

we have

fi(n) = 1+O
(

1
n

)
.

Therefore
c

∏
i=2

fi(n) = 1+O
(

1
n

)
,

and we finally deduce that

|δX (Ωn)|
|Ωn|

= O
(

1
n

)
,

that is, there exists a constant C′ > 0 and n0 ∈ N such that

|δX (Ωn)|
|Ωn|

≤C′
1
n

for all n≥ n0.

By (14.4), for n≥ n0 we have

|∂X (Ωn)|
|Ωn|

≤ |X | |δX (Ωn)|
|Ωn|

≤C′|X |1
n
.

Since clearly

|Ωn|= P1(n) ·
c

∏
i=2

Pi(ni +Cni−1) = O
(

n∑
c
i=1 iri

)
,

taking into account the monotonicity of the Følner function, all this shows that

F◦(n;G)� n∑
c
i=1 iri ∼ bG(n).

The proof of Theorem 14.102 is now complete. �



400 14 Amenability, Isoperimetric Profiles, and Følner Functions

Remark 14.104. Notice that our argument does NOT give a bound for the isoperi-
metric profile of G, i.e., given bG(n) ∼ nd , we cannot conclude that I◦(n;G) �
n(d−1)/d . Indeed, what we can deduce from the proof that we just gave is that
there exists a subsequence (nk)k∈N of the integers and a constant C > 0 such that
I◦(nk;G)≤Cn(d−1)/d

k for all k ∈N. But, since it is not known whether or not I◦(n;G)
is monotone (even asymptotically), we cannot say anything about the other values
of I◦(n;G).

14.13 Notes

The theory of amenable groups arose from the study of the axiomatic properties of
the Lebesgue integral and the discovery of the Hausdorff–Banach–Tarski paradox
at the beginning of the 20th century (see [161, 270, 346]). The original definition
of an amenable group, by the existence of an invariant finitely additive probabil-
ity measure, is due to John von Neumann in 1929 [251] under the German name
“messbar” (“measurable” in English). Von Neumann proved, in particular, that ev-
ery abelian group is amenable and that an amenable group cannot contain a sub-
group isomorphic to F2, the free group on two generators (cf. Example 14.4). More-
over, he showed that the class of amenable groups is closed under taking subgroups,
quotients, extensions, and direct limits (cf. Sect. 14.2). The term amenable was in-
troduced in the 1950s by Mahlon M. Day, in [88] (see also, [89, 90, 91]) who played
a central role in the development of the modern theory of amenable groups by using
means and applying techniques from functional analysis.

The class EG of elementary amenable groups, defined by Day [89], is the small-
est class of groups containing all finite groups and all Abelian groups, and closed
under the operations of taking subgroups, quotients, extensions, and direct unions.
Since finite groups and Abelian groups are amenable, and the class AG of all
amenable groups is closed under the above operations, every elementary amenable
group is amenable. As mentioned above, von Neumann [251] proved that a group
containing a nonamenable free subgroups is nonamenable (cf. Corollary 14.10).
Thus, denoting by NG the class of all groups which do not contain a nonabelian
free subgroup, we have the inclusions

EG⊆ AG⊆ NF.

The question of the equality AG = NF is sometimes referred to as to the von Neu-
mann conjecture though he never phrased such a conjecture: in fact he did not even
explicitly ask the question of whether or not a group not containing F2 is amenable
(though this can arguably be read between the lines of his paper [251]). Day asked
whether or not EG = AG: this is called Day’s problem (cf. [89]). Chou proved in
[73] that EG comes from finite groups and Abelian groups using group extensions
and direct unions only. He also proved that periodic groups in EG are locally finite.
Thus, as there are non-locally finite periodic groups (cf. Chapter 6), he deduced that
EG 6= NF.
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The Tits alternative (cf. Chapter 8) implies that any amenable linear group is
locally virtually solvable; hence, for linear groups, amenability and elementary
amenability coincide. However, the Grigorchuk group G (cf. the Notes to Chap-
ter 7) provides an example in AG \ EG, answering (negatively) the question of Day.
Later, Grigorchuk [132] gives a finitely presented example in AG \ EG groups. This
group G is constructed as an HNN-extension of its group G. Explicitly, G has the
presentation

〈a,c,d, t : a2 = c2 = d2 =(ad)4 =(adacac)4 = 1, t−1at = aca, t−1ct = dc, t−1dt = c〉.

For finitely generated linear groups, the von Neumann conjecture holds true by
virtue of the Tits alternative (cf. Chapter 8): every subgroup of GL(n,k) (with k
a field) either has a normal solvable subgroup of finite index (and therefore is
amenable) or contains the free group on two generators (cf. Chapter 8). Other
classes of groups for which non-amenability is equivalent to existence of non-
abelian free subgroups include: subgroups of Gromov-hyperbolic groups [139] (see
also [159, Chapter 8]), fundamental groups of closed Riemannian manifolds of non-
positive curvature [12], subgroups of the mapping class group [187], and the group
Out(F) :=Aut(F)/ Inn(F) of outer automorphisms of free groups [28, 29]. See also
the Notes to Chapter 8.

The von Neumann conjecture was disproved by Alexander Yu. Olshanskii in
1980 [260]. Using Grigorchuk’s cogrowth criterion (Theorem 14.59) he proved that
the Tarski monster groups (infinite simple finitely generated groups such that every
proper nontrivial subgroup is cyclic of order a fixed prime number), that he con-
structed a year earlier, are in NF \ AG. Slightly later, Sergei I. Adyan [2] produced
new such examples by showing (also using the Grigorchuk cogrowth criterion) that
the free Burnside groups

B(m,n) :=〈x1,x2, . . . ,xm : w(x1,x2, . . . ,xm)
n = 1〉

of rank m ≥ 2 and odd exponent n ≥ 665 are non-amenable (such groups are obvi-
ously in NF). In 2002 [262], in collaboration with Mark Sapir, Olshanskii found a
finitely presented example in NF \AG. A geometric method for constructing finitely
generated non-amenable periodic groups was described by Gromov in [139]. An-
other (easy) counterexample to the von Neumann conjecture was recently found by
Nicolas Monod in [241] .

Confirming a conjecture by Grigorchuk and Konstantin Medynets [136], amen-
able finitely generated infinite simple groups exist, as shown by Kate Juschenko and
Monod in [190]: this provides further examples of groups in AG \ EG.

There is also a more general notion of amenability for topological groups and for
their actions (see the classical monographs [127, 270], the more recent [82], and the
nice survey [135]).

The equivalence between Følner conditions and amenability was established by
Erling Følner in [115]. The proof was later simplified by Isaac Namioka in [246].

The concept of paradoxical decomposition goes back to Galileo [121] in 1638
who discovered and clearly explained that an infinite (countable) set can be mapped
injectively into a proper subset of itself (cf. [207, Introduction]; see also [58, Section
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4.3]). Exactly 250 years later, in 1888, Richard Dedekind realized that this property
characterizes the infinite sets and used it as the definition of infinity.

In a paper published in 1924, Stefan Banach and Alfred Tarski [13] gave a con-
struction of a paradoxical decomposition of any solid ball in 3-dimensional space,
by showing that there exists a decomposition of the ball into a finite number of dis-
joint subsets (in fact, 5 such subsets suffice), which can then be put back together in
a different way (just moving these pieces around and rotating them without chang-
ing their shape) to yield two identical copies of the original ball. This is called the
Banach–Tarski paradox. It is based on earlier work by Giuseppe Vitali concerning
the unit interval and on the paradoxical decompositions of the sphere by Felix Haus-
dorff [165, 166]. For this reason one also refers to it as to the Hausdorff–Banach–
Tarski paradox. See also [328].

The equivalence between amenability and the non-existence of a paradoxical de-
composition is due to Tarski (see [330], [331]). The proof we present here is based
on [62] (see also [59]), where the notions of complexity of a paradoxical decom-
position and of Tarski number of a group were introduced. There are other defini-
tions of Tarski numbers, see [107, Appendix A]. Theorem 14.89 (a group G has
Tarski number τ(G) = 4 if and only if G contains a subgroup isomorphic to the free
group of rank 2) was proved by Bjarni Jonsson, a student of Tarski in the 1940s.
In [62, 63] it was shown that for the free Burnside groups B(m,n) with m ≥ 2 and
n≥ 665 odd, one has 6≤ τ(B(m,n))≤ 14. The computations involve spectral anal-
ysis and Cheeger–Buser type isoperimetric inequalities (cf. Sect. 14.5) and Adyan’s
cogrowth estimates [2] for the free Burnside groups B(m,n) (cf. the Grigorchuk
formula 14.6). See also [86]. Since 1999, there has been some progress on the un-
derstanding of Tarski numbers. For example, there are 2-generated non-amenable
groups with arbitrarily large Tarski numbers, there are groups which we know have
Tarski number exactly 5, or 6, and every number τ ≥ 4 is the Tarski number of some
faithful transitive action of a finitely generated free group. See [267], [107], [123],
and [124].

Kesten’s fundamental work on symmetric random walks on groups giving rise to
his amenability criterion is in [196, 197]. M. Day [91] extended Kesten’s amenabil-
ity criterion to non-symmetric random walks. The associated Markov chain is then
determined by a probability density whose support generates the group. In this set-
ting, the associated Markov operator on `2(G) is no longer self-adjoint, in general.
The key ingredient of this new proof is the uniform convexity (uniform rotundity
in Day’s terminology) of Hilbert spaces (cf. Proposition 14.33) and more generally
of `p-spaces with p > 1 (note that in fact Day considers, more generally, Markov
operators on the Banach spaces `p(G), for p > 1). For more on this we refer to the
review [354] and the monograph [355], both by Wolfgang Woess.

The cogrowth criterion (Theorem 14.59), established by Grigorchuk in 1978
when he was still an undergraduate student, was published in [128]. Formula (14.93)
is called the Grigorchuk formula. Other proofs of the cogrowth criterion and the rel-
ative formula are due to Joel Cohen [75], Ryszard Szwarc [326], Woess [352], and
Sam Northshield who extended the cogrowth criterion to regular graphs [259].

A proof of Theorem 14.61, was previously established by Elon Lindenstrauss
and Benjy Weiss [216, Theorem 6.1] under the additional assumption that h is non-
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decreasing (h(A)≤ h(B) for all A,B ∈Pfin(G) such that A⊂ B). Their proof relies
on the machinery of quasi-tiles in amenable groups that was developed by Don-
ald Ornstein and Weiss in [263, Section I.2: Theorem 6]. An alternative proof was
given by Gromov [142, Section 1.3.1] (see [204] for a detailed exposition of Gro-
mov’s argument). Recently, a version of Theorem 14.61 for cancellative one-sided
amenable semigroups was given in [61] and our presentation is based on the ex-
position therein (see also [78]). Mean topological dimension turned out to be an
extremely useful tool in order to settle a long-standing question by Joseph Auslan-
der [9, Chapter 13] asking whether or not every minimal Z-space X is embeddable
as a subshift of [0,1]Z. After a partial positive answer (for dimX < ∞) by Allan Ja-
worski [189] in 1974, it was only in 2000 that Lindenstrauss and Weiss [216] could
provide examples of minimal systems with mdim(X ,Z)> 1, thus yielding a general
negative answer to Auslander’s question (note that mdim([0,1]Z,Z) = 1).

Interesting connections between group amenability and percolation on Cay-
ley graphs have been investigated by several authors including, but obviously
not limited to, Antoine Gournay, Juschenko, Tatiana Nagnibeda, and Igor Pak
[126, 191, 268]. We refer to the monograph [219] by Russell Lyons and Yuval Peres,
which provides a marvelous account of topics ranging from combinatorics, Markov
chains, geometric group theory, amenability, etc., as well as their inspiring relation-
ships.

There are several other characterizations of amenability. One is the extension of
the Markov–Kakutani fixed-point theorem to amenable groups (cf. [59, Theorem
4.10.1]) which is due to Day [90]. More recently, there has been one in the sym-
bolic dynamical setting, in terms of cellular automata: the Garden of Eden theorem
(originally proved by Moore and Myhill for Zd) holds exactly for amenable groups.
This is a combination of results by the first-named author, Antonio Machı̀ and Fabio
Scarabotti [65], and Bartholdi [16, 17]. See also the Appendix in [141] by Gromov,
the monograph [59], and the recent survey [60].

Isoperimetric profiles were introduced and studied by Gromov in [140]. Følner
functions were introduced and studied by Anatoly M. Vershik in [342].

The proof of the inequality of Thierry Coulhon and Laurent Saloff-Coste (Theo-
rem 14.95) that we presented is due to Gromov [143].

The proof of Theorem 14.102 that we presented is ours.
The following results are based on the inequality of Coulhon and Saloff-Coste

and on the results on the growth of groups that we have mentioned before (see
[279]).

Theorem. Let G be a finitely generated group. The following conditions are equiv-
alent:

(a) I◦(n;G)∼ n(d−1)/d where d ≥ 1 is an integer.
(b) The growth of G is polynomial of degree d, i.e., bG(n)∼ nd .

In a way, this theorem tells us that for groups of polynomial growth, growth and
isoperimetric profile provide the same amount of information. The next result shows
that these invariants are, however, not equivalent in general.
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Theorem. Let G be a finitely generated group. Suppose that G is virtually poly-
cyclic. Then

• I◦(n;G)∼ n(d−1)/d if and only if bG(n)∼ nd .
• I◦(n;G)∼ n/ logn if and only if G has exponential growth.

Hence, for example, a polycyclic group G of exponential growth and the free
group F2 on two generators have the same growth, but I◦(n;G) ∼ n/ logn, while
I◦(n;F2)∼ n.

The only part of the previous theorem that does not follow from previously
mentioned results is the upper bound for the exponential growth, which is due to
Christophe Pittet [278]. In fact, in [277] Pittet gave a proof of the upper bound for
the Følner function of a virtually polycyclic group G of exponential growth that is
similar in its spirit to our proof of Theorem 14.102 (i.e. it is combinatorial), prov-
ing in this way that F◦(n;G)∼ en (though he does not mention this explicitly in his
article).

In general, the isoperimetric profile of a group is believed to be a finer invariant
than growth, but there is no proof of this statement.

It is worth mentioning that there are many other examples of groups that have ex-
ponential growth, but nonlinear isoperimetric profile. For example the wreath prod-
ucts of a nontrivial finite group with Zd with d ≥ 2 have an isoperimetric profile
asymptotically strictly between n/ logn and n (the rate depending on d).

Algorithmic and computability aspects of amenable groups and their Følner func-
tions have been investigated by Matteo Cavaleri in his Ph.D. thesis [54] (see also
[55, 56]).

Finally, a study of isoperimetric profiles and Følner functions for associative al-
gebras has been initiated by the second named author in [84] and [85].

14.14 Exercises

Exercise 14.1. Let G be a group, H ⊆G a normal subgroup and π : G→G :=G/N
the canonical quotient homomorphism. Let Ω ⊆G and suppose that Ω1≤G satisfies
π(Ω1) = Ω and |Ω |= |Ω1|. Let also x ∈ X and set x := π(x) ∈ X . Show that

∂x(Ω 1) = xΩ 1 \Ω 1 = π(xΩ1)\π(Ω1)⊆ π(xΩ1 \Ω1) = π(∂x(Ω1)).

Exercise 14.2. Show that every solvable group is amenable (Corollary 14.13).

Exercise 14.3. Fill in the details in Example 14.20. In particular, prove (14.19) and
(14.20).

Exercise 14.4. Deduce that every locally amenable group is amenable (Proposition
14.5) from Theorem 14.15.

Exercise 14.5. [The Hall harem theorem on matchings] Let G = (AtB,E) be a
bipartite graph. For every Ω ⊆ A (resp. Ω ⊆ B), let N (Ω)⊂ B (resp. N (Ω)⊂ A)



denote the set of neighbors of elements of Ω . Suppose that G is locally finite, that
is, for every finite subset Ω ⊆ A (resp. Ω ⊆ B), the set N (Ω) is finite.

A left (resp. right) perfect matching for G is a subset M ⊆ E such that for each
a ∈ A (resp. b ∈ B), there exists a b ∈ B (resp. a ∈ A) such that (a,b) ∈M. A subset
M ⊆ E is a perfect matching if it is both a left-perfect and right-perfect matching.
Let k≥ 1 be an integer. A subset M⊆ E is a perfect (1,k)-matching if for each a∈ A
(resp. b ∈ B), there exist distinct b1,b2, . . . ,bk ∈ B (resp. a ∈ A) such that (a,bi) ∈M
for i = 1,2, . . . ,k (resp. (a,b) ∈M).

G satisfies the left (resp. right) Hall condition if |N (Ω)| ≥ |Ω | for all fi-
nite subsets Ω ⊆ A (resp. Ω ⊆ B). G satisfies the Hall (1,k)-harem condition if
|N (Ω)| ≥ k|Ω | for all finite subsets Ω ⊆ A (resp. |N (Ω)| ≥ 1

k |Ω | for all finite
subsets Ω ⊆ B).

(1) Show that G admits a left-perfect (resp. right-perfect) matching if and only if
it satisfies the left (resp. right) Hall condition.

(2) Show that G admits a perfect matching if and only if it satisfies both the left
and the right Hall conditions.

(3) Show that G admits a perfect (1,k)-matching if and only if it satisfies the Hall
(1,k)-harem condition (Hall harem theorem on matchings (Theorem 14.22)).

Exercise 14.6. Let G be a countable group. Prove that G is amenable if and only if
it admits a Følner sequence (Corollary 14.24).

Exercise 14.7. Let G be a group. Prove that if G admits a Følner sequence, then G
is countable.

Exercise 14.8. Let G be a countable amenable group. Show that G admits a Følner
sequence (Fn)n∈N (cf. Exercise 14.6) which is exhausting (G =

⋃
n∈N Fn) and non-

decreasing (Fn ⊆ Fn+1 for all n ∈ N).

Exercise 14.9. Show that the elements g and h in the proof Theorem 14.89 have
infinite order.

Exercise 14.10. Let G be a paradoxical group. Show that the type (m,n) of any
paradoxical decomposition p of G (as in (14.17)) satisfies m,n≥ 2, and deduce that
τ(p)≥ 4.

Exercise 14.11. Let G be a group and let H ≤ G be a subgroup. Suppose that H is
paradoxical. Show that G is paradoxical and that τ(G)≤ τ(H) (cf. Theorem 14.9).

Exercise 14.12. Let G be a group and let N EG be a normal subgroup. Suppose
that the quotient group G/N is paradoxical. Show that G is paradoxical and that
τ(G)≤ τ(G/N) (cf. Theorem 14.11).

Exercise 14.13. Prove (2) in Corollary 14.97.

Exercise 14.14. Let G be an infinite finitely generated amenable group and denote
by X ⊆ G a finite symmetric generating subset of G. Show that the Følner function
F◦(n;G,X) is non-decreasing.
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Solutions or Hints to Selected Exercises

Problems of Chapter 1

Solution 1.1. Let F1 and F2 be free groups based on the sets X1 and X2, respec-
tively. Suppose that there exists a bijective map α : X1 → X2. Let i1 : X1 → F1 and
i2 : X2→ F2 denote the inclusion maps. Then, by the universal property for F1, there
exists a unique homomorphism ϕ : F1 → F2 such that i2 ◦α = ϕ ◦ i1. By the uni-
versal property for F2, there exists a unique homomorphism ϕ ′ : F2→ F1 such that
i1 ◦α−1 = ϕ ′ ◦ i2. The maps IdF1 and ϕ ′ ◦ϕ are endomorphisms of F1 satisfying
IdF1 ◦i1 = i1 and (ϕ ′ ◦ϕ)◦ i1 = i1. By uniqueness, we must have IdF1 = ϕ ′ ◦ϕ . Sim-
ilarly, we get ϕ ◦ϕ ′ = IdF2 . This shows that ϕ and ϕ ′ are isomorphisms, one inverse
to the other. Hence the free groups F1 and F2 are isomorphic.

Solution 1.2. Let F be a free group based at X . Then F is generated by X . Indeed, let
H denote the subgroup of F generated by X . Consider the inclusion map i∗ : X→H
of X into H. Note that i∗(x) = i(x) for all x ∈ X , where i : X → F is the inclusion
map of X into F . By the universal property, there exists a unique homomorphism
φ : F→H such that i∗ = φ ◦ i. Consider now the inclusion map ρ : H→ F of H into
F . The homomorphisms IdF and ρ ◦φ satisfy IdF ◦i = ρ ◦φ ◦ i. By uniqueness, we
get IdF = ρ ◦φ . This implies that ρ is surjective, that is, H = F . This shows that X
generates F .

Solution 1.5. Let F be a free group and ψ : F → F ′ an isomorphism from F onto
a group F ′. Then F ′ is a free group as well. Indeed, let X be a free base for F , set
X ′ = ψ(X)⊂ F ′ and denote by i : X→ F and i′ = X ′→ F ′ the inclusion maps. Note
that i′ ◦ψ|X = ψ ◦ i. If f ′ : X ′ → G is a map from X ′ into a group G, then there
exists a unique homomorphism φ ′ : F ′→G such that f ′ = φ ′ ◦ i′, namely the homo-
morphism given by φ ′ = φ ◦ψ−1, where φ : F → G is the unique homomorphism
satisfying f = φ ◦ i, where f : X →G is defined by f = f ′ ◦ψ|X . This shows that F ′

is the free group based at X ′.

Solution 1.6. Let F be a free group with base X ⊂ F . Let Y ⊂ X and let K denote
the subgroup of F generated by Y . Then K is a free group with base Y . Indeed, de-
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note by j : Y → F the inclusion map and observe that j = i|Y , where i : X → F is
the inclusion map for X . Let G be a group, f : Y → G a map and let us show that
there exists a unique homomorphism φ : K → G satisfying f = φ ◦ j. Uniqueness
follows from the fact that Y generates K. Choose a map f ′ : X →G extending f . By
the universal property, there exists a unique homomorphism φ ′ : F → G such that
f ′ = φ ′ ◦ i. Then φ = φ ′|K : K→ G satisfies f = φ ◦ j. This proves that K is the free
group with base Y .

Hint 1.7. See [218, Corollary 1.5].

Solution 1.8. Consider the system S of representatives for F/H defined in the proof
of Lemma 1.14. Define the length of a coset Hg in F/H, denoted `(Hg), as the min-
imal length of a word in Hg. We construct a Schreier system S recursively on the
length of the cosets. Clearly, `(H) = |1|= 0 and we choose as a representative of H
the identity element 1. Let `≥ 1 and suppose that for each coset of length ≤ `−1 a
representative in S has already been selected. Consider a coset Hg of length ` and let
u ∈ Hg such that |u|= `. Then we can write u = vy, where v ∈ (X ∪X−1)∗ satisfies
|v| = `−1 and y ∈ X ∪X−1. Let v ∈ Hv be the representative in S already selected
and define u = vy. By (1.8) we have u∈Hg and, by recursion, all its prefixes belong
to S. This shows that S is a Schreier system.

Solution 1.9. Let A = {a,b}, then in A∗ the submonoid generated by a,ab and ba is
not free: a(ba) = (ab)a.

Solution 1.10. Let G = Z/2Z = {1G,a}, X = {a}, H = Z the (additive) group of
integers, and let f : X → Z be defined by f (a) = 1.

Solution 1.14. Let F be a free group of rank n and H = Z/mZ, the cyclic group of
order m. Then any map f : X→H such that f (X) contains a generator of H, extends
to a surjective group homomorphism ϕ : F → H. Then G :=ker(ϕ) ≤ F has index
[F : G] = |F/G|= |H|= m.

Solution 1.15.(ii). Denote by G the free group of rank 2, say freely generated by
a′ and b′. Consider the map f : {a,b,c} → G defined by f (a) = a′, f (b) = b′,
and f (c) = 1G. Then f (uniquely) extends to a surjective group homomorphism
ϕ : F → G whose kernel is ker(ϕ) = N.

Hint 1.19. See [159, Example 25.IIB] (cf. [159, Exercise 33.IIB]).

Hint 1.20. See [221, Theorem 4.17].
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Problems of Chapter 3

Hint 3.2. If |G|= pm, then (1−g)pm
= 1−gpm

= 1−1 = 0.

Hint 3.4. Since (Gi)i≥1 is central, G/Gi is nilpotent. Moreover, if pk ≥ i, then every
element of G/Gi has an order dividing pk, so G/Gi is a p-group (of finite exponent).
Since G is finitely generated, then G/Gi must be finite by Lemma 2.34.

Hint 3.10. (1) Let A = (ai j) ∈GL(n,Z) with A 6= In = 1GL(n,Z). Let m ∈N such that
|ai j| < m for all i, j = 1,2, . . . ,n. Show that the map φ : GL(n,Z)→ GL(n,Z/mZ)
given by reduction modulo m for each entry is a group homomorphism satisfying
φ(A) 6= 1GL(n,Z/mZ).
(2) Use Example 1.19 and the obvious inclusion SL(2,Z)⊂ GL(2,Z).

Hint 3.18. Just note that GL(n,R) is isomorphic to AutR(Rn), where Rn is viewed
as a left-module over R. Moreover, AutR(Rn) is a subgroup of AutZ(Rn) which is
residually finite by Exercise 3.16.(3) and by Theorem 3.13.

Hint 3.19. (2) Use the fact that the group Sym+
0 (N) of finite permutations of signa-

ture 1 (that is, that are an even product of transpositions) is an infinite simple group.
(4) Cf. [59, Lemma 2.6.4].

Hint 3.20. The group G is the semidirect product G = Hnψ Z, where H :=
⊕

i∈Z Hi
is the direct sum of a family (Hi)i∈Z of copies of the finite simple group S and
ψ : Z→Aut(H) is the group homomorphism associated with the shift action ofZ on
H. The subgroup H ≤G is the kernel of a surjective homomorphism ρ : G→ Z and
there is t ∈ ρ−1(1) such that tht−1 = ∑i∈Z hi−1 for all h = ∑i∈Z hi ∈H. In particular,
Hi = t−iH0t i, for every i ∈ Z. Every g ∈ G can be uniquely written in the form
g = tnh, where n = ρ(g) ∈ Z and h ∈ H.

Let φ : G→ G be a surjective group endomorphism of G.
(1) Observe that every element of H is torsion.
(2) Show that φ(H) = H.
(3) Show that ker(φ)⊂ H.
(4) For each i ∈ Z, consider the projection map πi : H → Hi and define the group
homomorphism ψi : H0→ Hi by setting ψi(h0) :=πi(φ(h0)) for all h0 ∈ H0. Show
that ψi is either the trivial homomorphism or an isomorphism.

Problems of Chapter 4

Hint 4.10. Take a common eigenvector, and act with G (or use Clifford’s theorem
(Theorem 4.30)).
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Problems of Chapter 5

Hint 5.6. H acts faithfully on W , A acts faithfully on U , and G = HA.

Problems of Chapter 7

Solution 7.1. Let g,h,k∈G. First observe that dX (g,h) = 0 if and only if g−1h= 1G,
that is, if and only if g = h. This shows (i). On the other hand, set m = `X (g−1h) =
dX (g,h). Then there exist x1,x2, . . . ,xm such that g−1h= x1x2 · · ·xm. We have h−1g=
(g−1h)−1 = x−1

m · · ·x−1
2 x−1

1 so that dX (h,g) = `X (h−1g)≤m= dX (g,h). By exchang-
ing the roles of g and h, we get dX (g,h)≤ dX (h,g) and therefore dX (g,h) = dX (h,g).
This shows that dX is symmetric. Set now s = `X (g−1k) and t = `X (k−1h) so
that there exist y1,y2 . . . ,ys and u1,u2, . . . ,ut in X such that g−1k = y1y2 · · ·ys and
k−1h = u1u2 · · ·ut . It is then clear that dX (g,h) = `X (g−1h) = `X ((g−1k)(k−1h)) =
`(y1y2 · · ·ysu1u2 · · ·ut) ≤ s+ t = `X (g−1k) + `X (k−1h) = dX (g,k) + dX (k,h). This
proves the triangle inequality. Finally, we have dX (kg,kh) = `X ((kg)−1kh) =
`X (g−1k−1kh) = `X (g−1h) = dX (g,h).

Solution 7.2. Let g,h,k ∈ V . It is clear that dG (g,h) = 0 if and only if g = h.
On the other hand, it follows from the edge-symmetry of G and the hint that
dG (g,h) = dG (h,g), which proves that dG is symmetric. Finally, let π1 be a geodesic
path connecting g to k and π2 a geodesic path connecting k to h. Then the composite
path π1π2 connects g to h and therefore

dG (g,h)≤ `(π1π2) = `(π1)+ `(π2) = dG (g,k)+dG (k,h).

This shows that dGG also satisfies the triangle inequality. Finally, if π = (ei)
n
i=1

is a geodesic path connecting g and h, then π ′ = (e′i)
n
i=1, where α(e′i) = kα(ei),

λ (e′i) = λ (ei), and ω(e′i) = kω(ei) for all i = 1,2, . . . ,n, is a geodesic path connect-
ing kg to kh. This shows dG (kg,kh) = dG (g,h) and left-invariance follows as well.

Solution 7.4. Let g,h ∈G. Suppose that dCX (G)(g,h) = n and let π = (e1,e2, . . . ,en)
be a geodesic path connecting g and h. Let λ (π) = (s1,s2, . . . ,sn) be the label of
π . It then follows that dX (g,h) = `X (g−1h) = `X (x1x2 · · ·xn) ≤ n = dCX (G)(g,h).
Conversely, suppose that dS(g,h) = m. Then we can find x′1,x

′
2, . . . ,x

′
m ∈ X such that

g−1h = x′1x′2 · · ·x′m. Then the path π ′ = (e′1,e
′
2, . . . ,e

′
m) where

e′i = (gx′1x′2 · · ·x′i−1,x
′
i,gx′1x′2 · · ·x′i−1x′i),

i = 1,2, . . . ,m, connects g to h = gx′1x′2 · · ·x′m. We deduce that dCX (G)(g,h)≤ `(π ′) =
m = dX (g,h). Hence n = m and (7.7) follows.

Solution 7.5. It is clear that � is reflexive. Let f1, f2, f3 : N→ [0,+∞) be growth
functions. Suppose that f1 � f2 and that f2 � f3. Let c1 and c2 be positive integers
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such that f1(n) ≤ c1 f2(c1n) and f2(n) ≤ c2 f3(c2n) for all n ≥ 1. Then, taking c =
c1c2 we have

f1(n)≤ c1 f2(c1n)≤ c1c2 f3(c2c1n) = c f3(cn)

for all n≥ 1. Thus f1 � f3. This conclude the proof of (i).
Property (ii) immediately follows from (i) and the definition of ∼.
Finally, suppose that f1, f2, f ′1, f ′2 satisfy the hypotheses of (iii). Then we have, in

particular, f ′1 � f1, f1 � f2 and f2 � f ′2. From (i) we deduce that f ′1 � f ′2.

Solution 7.6. Suppose for instance that a ≤ b. It is then trivial that an � bn. Con-
versely, setting c = [loga b] + 1 > 1 (here [ · ] denotes the integer part), one has
bn = (aloga b)n = a(loga b)n ≤ acn ≤ cacn for all n≥ 1, so that bn � an. We deduce that
an ∼ bn.

Solution 7.7. Since limn→∞
nd

exp(n) = 0, the sequence ( nd

exp(n) )n≥1 is bounded and we

can find an integer c ≥ 1 such that nd

exp(n) ≤ c for all n ≥ 1. It follows that nd ≤
cexp(n)≤ cexp(cn) for all n≥ 1 thus showing that nd � exp(n).

On the other hand, suppose by contradiction that exp(n)� nd . Then we can find
an integer c > 0 such that exp(n)≤ c(cn)d for all n≥ 1. But then exp(n)

nd ≤ cd+1 for

all n≥ 1, contradicting the fact that limn→∞
exp(n)

nd =+∞. Thus nd 6∼ exp(n).

Solution 7.8. (1) Suppose first that f is bounded. Then we can find an integer c≥ 1
such that f (n)≤ c for all n≥ 1. It follows that f (n)≤ c1(n)≤ c1(cn) for all n≥ 1.
Thus f � 1. On the other hand, setting c = [ 1

f (0) ]+1, we have 1(n) = 1≤ c f (0)≤
c f (n) ≤ c f (cn) for all n ≥ 1 so that 1 � f . This shows that f ∼ 1. Conversely,
suppose that f ∼ 1. Then f � 1 and we can find an integer c ≥ 1 such that f (n) ≤
c1(cn) = c for all n≥ 1. Thus f is bounded.

(2) Let X be a finite and symmetric generating subset of G. Suppose that bG(n)∼
bX (n) ∼ 1. From (1) above we deduce that fX is bounded, say by an integer c ≥ 1.
This shows that |G| ≤ c, thus showing that G is finite. Conversely, if G is finite, we
have bX (n) = |BX (n)| ≤ |G| for all n ≥ 1, that is, bX is bounded. Again from (1)
above we deduce that bG(n)∼ bX (n)∼ 1.

(3) Let X be a finite symmetric generating subset of G. Consider the inclusions
{1G}= BX (0)⊂ BX (1)⊂ BX (2)⊂ ·· · ⊂ BX (n)⊂ BX (n+1)⊂ ·· · and let us show,
by induction on n, that if BX (n0) = BX (n0 + 1) for some n0 ∈ N, then BX (n) =
BX (n0) for all n ≥ n0. Suppose that BX (n) = BX (n0) for some n ≥ n0 + 1. Then
for all g ∈ BX (n+ 1) there exist g′ ∈ BX (n) and x ∈ X such that g = g′x. By the
inductive hypothesis, g′ ∈ BX (n− 1) so that g = g′x ∈ BX (n− 1)X ⊂ BX (n). Since
BX (n) ⊂ BX (n+ 1), it follows that BX (n+ 1) = BX (n) = BX (n0). It follows that if
BX (n0) = BX (n0 + 1) for some n0 ∈ N, then we have G = BS(n0). Since, by our
assumptions, G is infinite, we deduce that all the inclusions BX (n)⊂ BX (n+1),n ∈
N, are strict. It follows that for all n∈N we have n≤ |BX (n)|= bX (n), thus showing
that n� bX (n)∼ bG(n).

The converse implication follows trivially from (2) and the observation that 1 6∼
n.
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(4) Let G be a finitely generated group. It follows from Example 7.9.(d) that if
bG(n)� nd for some integer d ≥ 0, then bG(n) 6∼ exp(n).

Solution 7.9. Suppose that bG(n)∼ exp(n). We then have exp(n)� bX so that there
exists an integer c≥ 1 such that en ≤ cbX (cn) for all n≥ 1. This implies

1 < c
√

e = lim
n→∞

cn
√

en ≤ lim
n→∞

cn
√

cbX (cn) = lim
n→∞

cn
√

c lim
n→∞

cn
√

bX (cn) = βX .

Conversely, suppose that βX > 1. By Lemma 7.13 we have n
√

bX (n) ≥ βX so that
bX (n) ≥ β n

X . It follows that exp(n) ∼ β n
X � bX (n). By Corollary 7.10 we have

bX (n)� exp(n) and therefore bG(n)∼ bX ∼ exp(n).

Solution 7.11. Keeping in mind that bX (0) = |{1G}|= 1 and that bX (n)≤ bX (n+1)
for all n ∈ N, the condition bX (m)≤ m implies the existence of some integer k with
0≤ k < m such that bX (k) = bX (k+1). Then bX (n) = bX (k) for all integers n≥ k.
This shows that |G|= bX (k) = bX (m).

Solution 7.12. Note that SL(n,Z) ↪→ SL(n+1,Z), n≥ 1, via the map A 7→
(

A 0
0 1

)
for all A ∈ SL(n,Z).

Solution 7.15. Since the product of non-decreasing functions is also non-decreasing,
it is clear that b1b2 and b′1b′2 are also growth functions. Let c1 and c2 be positive
integers such that b1(n) ≤ c1b′1(c1n) and b2(n) ≤ c2b′2(c2n) for all n ≥ 1. Taking
c := c1c2 we have

(b1b2)(n) = b1(n)b2(n)≤ c1b′1(c1n)c2b′2(c2n)≤ cb′1(cn)b′2(cn) = c(b′1b′2)(cn)

for all n≥ 1.

Solution 7.16. Let X1 and X2 be finite symmetric generating subsets of G1 and
G2, respectively. Then the set X = (X1×{1G2})∪ ({1G1}×X2) is a finite sym-
metric generating subset of G1 ×G2. Let (g1,g2) ∈ BG1×G2

X (n). Then there exist
x1,1,x2,1, . . . ,xk,1 ∈ X1 and x1,2,x2,2, . . . ,xh,2 ∈ X2, where h+ k ≤ n, such that

(g1,g2) = (x1,1,1G2)(x2,1,1G2) · · ·(xk,1,1G2) · (1G1 ,x1,2)(1G1 ,x2,2) · · ·(1G1 ,xh,2)

= (x1,1x2,1 · · ·xk,1,x1,2x2,2 · · ·xh,s).

Thus, BG1×G2
X (n)⊂ BG1

X1
(n)×BG2

X2
(n) and therefore bG1×G2

X (n)≤ bG1
X1
(n)bG2

X2
(n). This

shows that bG1×G2 � bG1bG2 .
On the other hand, if g1 ∈ BG1

X1
(n) and g2 ∈ BG2

X2
(n), then (g1,g2) ∈ BG1×G2

X (2n)

and one has bG1
X1
(n)bG2

X2
(n)≤ bG1×G2

X (2n)≤ 2bG1×G2
X (2n). This shows that bG1bG2 �

bG1×G2 . It follows that bG1×G2 = bG1bG2 .
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Problems of Chapter 9

Hint 9.1. Use Lemma 9.6.(1).

Problems of Chapter 11

Solution 11.9. Assume, by contradiction, that there exists a y ∈ Y such that f (y) 6=
g(y). Then we can find disjoint open neighborhoods V 3 f (y) and U 3 g(y). By
continuity of f and g, the preimages f−1(V ) and g−1(U) are open neighborhoods
of y ∈ Y . Since Z is dense in Y we can find z ∈ Z such that z ∈ f−1(V )∩ g−1(U).
Since f |Z = g|Z the elements f (z) ∈ V and g(z) ∈ U are equal, contradicting the
hypothesis that V ∩U =∅.

Hint 11.13. (i) For the necessary condition, argue as in the proof of the Bolzano–
Weierstrass theorem for bounded real sequences.

(iii) Use the Archimedean property.
(iv) For m ∈ N denote by e(n) ∈ `2(N) the sequence defined by em(n) = δm,n for

all n ∈ N. Show that d(e(n),e(m)) = ‖e(n)− e(m)‖2 =
√

2 for all m,n ∈ N.

Solution 11.18. Suppose X is compact. Let x = (xn)n∈N, x′ = (x′n)n∈N and y =
(yn)n∈N be elements in `∞(X). Suppose that x ∼ω x′ so that [x]ω = [x′]ω in Xω .
By compactness and the triangle inequality, the limits limω xn and limω x′n exist in
X (by Theorem 11.21) and are equal. Thus the map κω : Xω → X defined by

κω([x]ω) := lim
ω

xn

is well defined. Moreover,

dω([x]ω , [y]ω) = lim
ω

d(xn,yn) = d(lim
ω

xn, lim
ω

yn) = d(κω([x]ω),κω([y]ω)).

It follows that the map κω is an isometry and, in particular, it is injective. Moreover,
since the limit of any constant sequence is the constant value of the sequence, we
immediately have κω ◦ ιω = IdX so that, in particular, κω is also surjective.

Solution 11.28. For x = (xn)n∈N and y = (yn)n∈N in FN write [x]ω �ω [y]ω provided
{n ∈ N : xn � yn} ∈ ω . Show that �ω is a well defined total order on Fω making
(Fω ,�ω) an ordered field.

Hint 11.35. Keeping in mind Proposition 7.6, it is enough to check that the inclu-
sion map H→ G is a quasi-isometry.
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Hint 11.38. Use the fact that any asymptotic cone is an arcwise connected metric
space (cf. Theorem 11.52.(i)).

Problems of Chapter 12

Solution 12.7. In order to show that dM is a distance, we only need to check for
the triangle inequality. Let x,z,y ∈ X ∪Y ⊂ Z: we may assume, without loss of
generality, that x,z ∈ X and y ∈ Y . We then have

dM(x,y) = dX (x,x0)+dM(x0,y0)+dY (y,y0)

≤ (dX (x,z)+dX (z,x0))+dM(x0,y0)+dY (y,y0)

= dX (x,z)+(dX (z,x0)+dM(x0,y0)+dY (y,y0))

= dM(x,z)+dM(z,y).

Analogously,

dM(x,z) = dX (x,z)≤ dX (x,x0)+dX (x0,z)

≤ dX (x,x0)+dX (x0,z)+2dM(x0,y0)+2dY (y0,y)

= (dX (x,x0)+dM(x0,y0)+dY (y0,y))+(dX (z,x0)+dM(x0,y0)+dY (y0,y))

= dM(x,y)+dM(y,z).

This shows that dM is a distance on Z. The following picture represents this distance.

x0 y0• •

M
2

x

α

◦

y

β

◦

d(x,y) = α + M
2 +β = dX (x,x0)+d(x0,y0)+dY (y,y0).

X Y
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Let now ε = M+1. Clearly, dM(x0,y0) = M/2 < M+1 = ε . Moreover, for x ∈
BX (x0,1/ε) we have dM(x,y0)= dX (x,x0)+dM(x0,y0)≤ 1/ε+M/2< 1/(M+1)+
M/2 < M+1 = ε . Thus, BX (x0,1/ε)⊆ Nε(Y ). Analogously, BY (y0,1/ε)⊆ Nε(X).
This way, dM is an admissible distance on Z = X∪̇Y satisfying the conditions defin-
ing GH. It follows that GH((X ,x0),(Y,y0)) ≤ ε = M + 1. As M > 0 was arbitrary,
we deduce that GH((X ,x0),(Y,y0))≤ 1.

Solution 12.8. In order to show that dk is a distance, we only need to check for
the triangle inequality. Let x,z,y ∈ X ∪Y ⊂ Z: we may assume, without loss of
generality, that x,z ∈ X and y ∈ Y . We then have

dk(x,y) = dX (x, f−1(y))+ k

≤ dX (x,z)+dX (z, f−1(y))+ k

= dk(x,z)+dk(z,y).

Analogously,

dk(x,z)≤ dX (x, f−1(y))+dX ( f−1(y),z)

≤ dX (x, f−1(y))+ k+dX ( f−1(y),z)+ k

= dk(x,y)+dk(y,z).

This shows that dk is a distance on Z. The following picture represents this dis-
tance.

x0 y0• •
k

x

f−1(y) ◦

f (x)◦◦

y◦

α β

dk(x,y) = α + k = β + k = dX (x, f−1(x))+ k = dY ( f (x),y)+ k.

X Y

Note that dk(x0,y0) = k. Moreover, if x ∈ X and y := f (x) ∈Y then, for all k′ > k,
dk(x,y) = dk(x, f (x)) = dY ( f (x), f (x)) + k = k < k′. This shows that X ⊆ Nk′(Y )
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(analogously, Y ⊆ Nk′(X)) for all k′ > k. We deduce that GH((X ,x0),(Y,y0)) ≤ k.
As k ≥ 0 was arbitrary, we deduce that in fact GH((X ,x0),(Y,y0)) = 0.

Solution 12.9. As GH((X ,x0),(Y,y0)) = 0, for every integer k ≥ 1 there exists an
admissible metric dk on Z = X∪̇Y such that dk(x0,y0) < 1/k, BX (x0,k) ⊆ N1/k(Y )
and BY (y0,k)⊆ N1/k(X).

As X is separable, there exists a countable dense subset {ai : i ∈ N} in X . We
suppose that a0 = x0.

Fix i ∈ N and set k0 :=dX (ai,x0). For any integer k > k0 we have

ai ∈ BX (x0,k0)⊆ BX (x0,k)⊆ N1/k(Y ) =
⋃
y∈Y

BY (y,1/k).

Therefore, there exists a bi,k ∈ Y such that ai ∈ BY (bi,k,1/k), that is, dk(bi,k,ai) ≤
1/k. As

dY (bik ,y0)≤ dk(bik ,ai)+dX (ai,x0)+dk(x0,y0)≤
1
k
+ k0 +

1
k
≤ k0 +2 =: M,

the sequence (bi,k)k≥1 in Y is bounded. Since Y is locally compact, the ball BY (y0,M)
is compact and (bi,k)k≥1 admits a convergent subsequence. By abuse of notation, we
still denote it by (bi,k)k≥1, and set bi := limk yi,k ∈Y . Therefore, for each ε > 0 there
exists a k̄ε,i ∈ N such that dY (bi,bi,k) ≤ ε for all k ≥ k̄ε,i. Thus, for all i, j ∈ N, if
k ≥ k̄ :=max{k̄ε,i, k̄ε, j} and 1/k < ε , we have

dY (bi,b j)≤ dY (bi,bi,k)+dk(bi,k,ai)+dX (ai,a j)

+dk(a j,b j,k)+dY (b j,k,b j)≤ dX (ai,a j)+4ε.

Analogously, dX (ai,a j)≤ dY (bi,b j)+4ε . We deduce that

dY (bi,b j) = dX (ai,a j).

Setting f (ai) :=bi for all i ∈ N yields a unique isometric embedding f : X → Y .
Keeping in mind that a0 = x0 and for every k > k0 one has dk(x0,y0) < 1/k and

dk(b0,k,a0)≤ 1/k, we deduce that b0 = y0 so that f (x0) = y0.
Note that f may fail to be surjective! No problem: we repeat the same construc-

tion, by symmetry, obtaining an isometric embedding g : Y → X . Exercise 12.1 then
ensures the existence of an isometry F : X → Y such that F(x0) = y0.

Solution 12.10. Let GH((X ,x0),(Y,y0)) < ε1 < 1/2. Then we can find an ad-
missible metric d1 on X∪̇Y such that d1(x0,y0) < ε1, BX (x0,1/ε1) ⊆ Nε1(Y ), and
BY (y0,1/ε1)⊆ Nε1(X). Similarly, let GH((Y,y0),(Z,z0))< ε2 < 1/2. Then we can
find an admissible metric d2 on Y ∪̇Z such that d2(y0,z0) < ε2, BY (y0,1/ε2) ⊆
Nε2(Z), and BZ(z0,1/ε2)⊆ Nε2(Y ).

For x,y ∈ X∪̇Z we set
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d(x,z) :=


dX (x,z) if x,z ∈ X
dZ(x,z) if x,z ∈ Z
infy∈Y (d1(x,y)+d2(y,z)) if x ∈ X and z ∈ Z.

One easily shows that d satisfies the triangle inequality, so that d is an admissible
metric on X∪̇Z. We have

d(x0,z0)≤ d1(x0,y0)+d2(y0,z0)< ε1 + ε2.

Moreover, as 1/(ε1 + ε2)< 1/ε1, we have

BX (x0,1/(ε1 + ε2))⊆ BX (x0,1/ε1)⊆ Nε1(Y ),

so that, given x ∈ BX (x0,1/(ε1 + ε2)) there exists a y ∈ Y such that d1(x,y) < ε1.
Applying the triangle inequality and keeping in mind that ε1,ε2 < 1/2, we obtain

dY (y,y0)≤ d1(y,x)+dX (x,x0)+d1(x0,y0)

< ε1 +1/(ε1 + ε2)+ ε1 = 2ε1 +1/(ε1 + ε2)< 1/ε2.

This shows that y ∈ BY (y0,1/ε2) ⊆ Nε2(Z). Therefore there exists a z ∈ Z such
that d2(y,z)≤ ε2. In conclusion, we have proved that for each x∈BX (x0,1/(ε1 + ε2))
there exist y ∈ BY (y0,1/ε2) and z ∈ Z such that

d(x,z)≤ d1(x,y)+d2(y,z)< ε1 + ε2,

that is, BX (x0,1/(ε1 + ε2))⊆ Nε1+ε2(Z). The inclusion

BZ(z0,1/(ε1 + ε2))⊆ Nε1+ε2(X)

is verified in the same way.
In conclusion, the admissible metric d on X∪̇Z satisfies d(x0,y0) < ε1 + ε2,

BX (x0,1/(ε1 + ε2)) ⊆ Nε1+ε2(Z) and BZ(z0,1/(ε1 + ε2)) ⊆ Nε1+ε2(X). This shows
that GH((X ,x0),(Z,z0)) ≤ ε1 + ε2. Since ε1 and ε2 were arbitrary, we deduce that
GH((X ,x0),(Z,z0))≤ GH((X ,x0),(Y,y0))+GH((Y,y0),(Z,z0)).

Problems of Chapter 13

Hint 13.13.(2). Use the RHS inequality in (13.55) and, again, integration by parts.

Hint 13.14. Use induction on j ∈ N. Alternatively, use the identities
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∞

∑
n=0

n

∑
k=0

(
n
k

)
sktn =

∞

∑
n=0

(1+ s)ntn

=
1

1− (1+ s)t

=
1

(1− t)− st

=
1

(1− t)
· 1

1− s
( t

1−t

)
=

1
(1− t)

∞

∑
j=0

(
t

1− t

) j

s j

and deduce that
∞

∑
n=0

(
n
k

)
tn =

tk

(1− t)k+1 .

Finally, take t = 1
2 .

Problems of Chapter 14

Hint 14.4. Let (Gi)i∈I denote the family of all finitely generated subgroups of G. It
is then clear that the conditions of Theorem 14.15 are satisfied.

Hint 14.5. (1) The left Hall condition is clearly necessary. To show that it is also
sufficient, proceed as follows. Suppose first that A is finite and use induction on |A|
by distinguishing the following two cases:

(i) |N (Ω)| ≥ |Ω |+1 for all Ω ⊆ A;
(ii) there exists an Ω ′ ⊆ A such that |N (Ω ′)|= |Ω ′|.

When A is not finite, apply the Tychonov theorem to the compact set

K :=∏
a∈A

N ({a}).

(2) Use a Cantor–Bernstein type argument.
(3) The Hall (1,k)-harem condition is clearly necessary. To show that it is also

sufficient, proceed as follows. Let A1,A2, . . . ,Ak be k disjoint copies (clones) of
A with bijections φi : A → Ai for i = 1,2, . . . ,k, and define a locally finite bi-
partite graph G ′ = (A′ t B′,E ′) by setting A′ :=A1 t A2 t ·· · t Ak, B′ :=B, and
E ′ :={(φi(a),b) : (a,b) ∈ E, i = 1,2, . . . ,k}. Show that G admits a perfect (1,k)-
matching (resp. satisfies the Hall (1,k)-harem condition) if and only if G ′ admits a
perfect matching (resp. satisfies both the left and right Hall conditions). Then apply
(2) to G ′ and conclude.
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Hint 14.6. Let (An)n∈N be an increasing sequence of finite subsets of G such that⋃
n∈N An = G. Let J denote the (countable) set of pairs (An,

1
n ), n∈N, equipped with

the natural order, and repeat verbatim the proof of (b)⇒ (c) in the proof of Propo-
sition 14.23. The converse implication is obvious, since any sequence is a net.

Solution 14.7. Let (Fn)n∈N be a Følner sequence and set An :=FnF−1
n ⊆ G. Given

g ∈ G we can find n0 ∈ N such that |Fn \gFn| < |Fn|, for all n ≥ n0. This is equiva-
lent to saying that Fn∩gFn 6=∅, equivalently, g ∈ An, for all n≥ n0. This shows that
G =

⋃
n∈N An.

Hint 14.11. Let T ⊂G be a complete set of representatives for the right cosets of H
in G so that G = tt∈T Ht. Let ∅ 6= A′i,B

′
j ⊆ H and let ai,b j ∈ H for i = 1,2, . . . ,n

and j = 1,2, . . . ,m, such that H = tn
i=1A′ittm

j=1B′j and H = tn
i=1aiA′i = tm

j=1b jB′j.
Set Ai :=tt∈T A′it and B j :=tt∈T B′jt for i = 1,2, . . . ,n and j = 1,2, . . . ,m. Show that
G = tn

i=1Aittm
j=1B j and G = tn

i=1aiAi = tm
j=1b jB j.

Hint 14.12. Let π : G→ G/N denote the canonical quotient homomorphism. Let
∅ 6= A′i,B

′
j ⊆ G/N and let a′i,b

′
j ∈ G/N for i = 1,2, . . . ,n and j = 1,2, . . . ,m, such

that G/N =tn
i=1A′ittm

j=1B′j and G/N =tn
i=1a′iA

′
i =tm

j=1b′jB
′
j. Set Ai :=π−1(A′i)⊂

G, ai ∈ π−1(a′i) ∈ G, B j :=π−1(B′j) ⊂ G, and b j ∈ π−1(b′j) ∈ G for i = 1,2, . . . ,n
and j = 1,2, . . . ,m. Show that G = tn

i=1Aittm
j=1B j and G = tn

i=1aiAi = tm
j=1b jB j.



References

1. R.L. Adler, A.G. Konheim, and M.H. McAndrew, Topological entropy, Trans. Amer. Math.
Soc. 114 (1965), 309–319.

2. S.I. Adyan, Random walks on free periodic groups, Math. USSR-Izv. 21 (1983), 425–434.
3. S.I. Adyan, The Burnside problem and related topics, Russian Math. Surveys 65 (5) (2010)

805–855.
4. D. Aldous and J.A. Fill, Reversible Markov Chains and Random Walks on Graphs, https:

//www.stat.berkeley.edu/users/aldous/RWG/book.html
5. P. Alexandroff, Dimensionstheorie, Math. Ann. 106 (1932), 161–238.
6. D. Allcock, Most big mapping class groups fail the Tits Alternative, preprint (2020).
7. E. Artin, Zur Theorie der hyperkomplexen Zahlen, Abh. Hamburg 5 (1927), 251–260.
8. G.N. Arzhantseva and I.G. Lysenok, A lower bound on the growth of word hyperbolic groups,

Journal of the London Mathematical Society, 73 (1) (2006), 109–125.
9. J. Auslander, Minimal Flows and Their Extensions, North-Holland Mathematics Studies,
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32. N. Bourbaki, Éléments de mathématique. Topologie générale. Chapitres 1 à 4, Hermann,
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289. H. Reidemeister, Einführung in die kombinatorische Topologie Teubner, Leipzig 1932.
Reprinted by Chelsesa, New York 1950.

290. A.M. Robert, A course in p-adic analysis, Graduate Texts in Mathematics, 198. Springer-
Verlag, New York, 2000.

291. A. Robinson, Non-standard analysis. Reprint of the second (1974) edition. With a foreword
by Wilhelmus A.J. Luxemburg. Princeton Landmarks in Mathematics. Princeton University
Press, Princeton, NJ, 1996.

292. D.J.S. Robinson, Finiteness conditions and generalized soluble groups. Part 1 and 2. Ergeb-
nisse der Mathematik und ihrer Grenzgebiete, Band 62 und 63. Springer-Verlag, New York-
Berlin, 1972.

293. D.J.S. Robinson, A course in the theory of groups, Second edition, Graduate Texts in Math-
ematics 80, Springer-Verlag, New York, 1996.

294. S. Roman, An introduction to Catalan numbers. With a foreword by Richard Stanley. Com-
pact Textbooks in Mathematics. Birkhäuser/Springer, Cham, 2015.
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I∞ the Hilbert cube 181
I∞
Q the rational Hilbert cube 181

I∞
I the irrational Hilbert cube 181

Iφ ( f ) the map C+
c (G)→ R 166

I◦(n;G,X) the isoperimetric profile of the group G with respect to
X

387

IA the projection operator onto the space of functions
in L2(X ,m) supported in A 300

In, I(n), I the n×n identity matrix 25
In the space of points x = (xi)

n
i=1 in Rn s.t. |xi| ≤ 1 191

Isom+(D) the group of orientation-preserving isometries of the
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ry the reflection about the y-axis in the Poincaré disc 147
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R× the group of invertible elements of the ring R 29
R the extended set of real numbers R∪{−∞,+∞} 281
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Sym(X) the symmetric group of X 6
tx the hitting time real random variable 283
(T,d) a (simplicial) tree 242
Ts, T X

s the translation by s in the Lobachevsky–Poincaré
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U+(1,1) the subgroup of U(1,1) of all elements

with uu− vv > 0 145
U−(1,1) the coset U(1,1)\U+(1,1) 146
UT(n,R) the group of upper unitriangular n×n matrices

with coefficients in the ring R 25
X :=R×R>0 the upper half-plane 138
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half-plane, 139

proper — in a simple undirected
graph, 243

terminal vertex of a — in a simple
undirected graph, 243

trivial — in a simple undirected
graph, 243

p-dimensional measure, 194
Peano curve, 185, 200
Peano–Hilbert curve, 200
period of a chain, 116
periodic

— chain, 116
— group, 87

periodic— group, 87
permutation, 223
Ping-Pong lemma, 3, 13
Poincaré
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