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Abstract. The cost of a fitness evaluation is often cited as one of the
weaknesses of Search-Based Software Engineering: to obtain a single final
solution, a meta-heuristic search algorithm has to evaluate the fitness
of many interim solutions. Recently, a sampling-based approach called
SWAY has been introduced as a new baseline that can compete with
state-of-the-art search algorithms with significantly fewer fitness eval-
uations. However, SWAY has been introduced and evaluated only in
numeric and Boolean decision spaces. This paper extends SWAY to per-
mutation decision space. We start by presenting the theoretical formula-
tion of the permutation decision space and the distance function required
by SWAY, and subsequently present a proof-of-concept study of Test
Case Prioritisation (TCP) problem using our permutative SWAY. The
results show that our embedding works well for permutative decision
spaces, producing results that are comparable to those generated by the
additional greedy algorithm, one of the most widely used algorithms for
TCP.
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1 Introduction

Search Based Software Engineering (SBSE) formulates software engineering
problems as metaheuristic optimisations and applies various search tech-
niques [10]. These search techniques typically navigate the decision (or solution)
space guided by a fitness function that maps a solution in the decision space to
one or more values in the fitness (or objective) space. The mapping is achieved
by dynamically evaluating the decision against the actual problem instance and
measuring the fitness. The dynamic and concrete nature of fitness evaluation
allows us to search for properties that cannot be easily measured otherwise: for
example, Search Based Software Testing has successfully applied to find test
inputs that satisfy non-functional test requirements such as increased memory
consumption [13] or worst case execution time [16].
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However, such dynamic and concrete nature of fitness evaluation is accompa-
nied by the cost of the actual execution. Given the wide adoption of population
based optimisation algorithms such as genetic algorithm, the cost of fitness eval-
uation poses a serious threat not only to practical applications of SBSE but also
to research and experimental use of these techniques.

Recently, a new type of search algorithm based on random sampling, called
SWAY, has been introduced [2]. Suppose we are optimising an objective variable
by searching for a decision variable. The fitness evaluation can be formulated as:

o = fitness(d)

where d ∈ D is the decision variable and o ∈ O is the objective variable. Chen
et al. empirically showed that, in many cases of SBSE formulations, there exists
a close association between D and O [2]. SWAY exploits this by recursively
clustering, and searching for, possible candidate solutions in the decision space
rather than in the objective space. By doing so, it admits a logarithmic time
complexity in terms of fitness evaluations. Such scalability, along with its sim-
plicity, qualifies SWAY as a baseline optimizer [21]. However, the current form
of SWAY is limited to decision spaces that are either numerical or Boolean. The
aim of this paper is to extend SWAY to permutative decision space.

The technical contributions of this paper are as follows:

– We present a formulation of SWAY in permutative decision spaces. Instead of
coarse-grained grouping followed by the use of binary SWAY (as suggested by
authors of SWAY), we present a novel Euclidean embedding of permutations
that can be used with continuous SWAY.1

– We conduct a proof-of-concept evaluation of SWAY in a permutative decision
space with instances of Test Case Prioritisation problems. The results show
the feasibility of our embedding.

The rest of the paper is organised as follows. Section 2 introduces the original
SWAY, proposes our novel Euclidean embedding of permutative decision spaces,
and introduces the adaptation of SWAY to the proposed embedding. Section 3
describes the settings of the case study of the application of SWAY to Test Case
Prioritisation problem, whose results are presented in Sect. 4. Section 5 discusses
the related work, and Sect. 6 concludes.

2 SWAY for Permutative Decision Spaces

This section first introduces the basic SWAY algorithm, and subsequently
presents the design of our embedding scheme for permutation decision variables.

1 Here, embedding for a permutative decision space simply refers to a mapping of
each permutation to some Euclidean space that is structure-preserving (as in “node
embedding” in machine learning). In the following sections, we shall describe which
structure to preserve.
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2.1 The Original SWAY

SWAY [2,3] is an effective random sampling algorithm that can be used as a
baseline for more sophisticated search algorithms. Algorithm 1 shows the pseu-
docode of the original, continuous SWAY. At its core, SWAY simply seeks to
choose a cluster of solutions that are superior to others. If the clustering is per-
formed based on the solution phenotype, SWAY would have to spend a lot of
fitness evaluations. Instead, SWAY exploits the fact that, in many SBSE prob-
lems, there exists a close association between the genotype (i.e., decision) and
the phenotype (i.e., objective) spaces [3], and recursively clusters the solutions
in the genotype space using FastMap heuristic [9] (implemented in Split), only
evaluating the representatives of each cluster.

Algorithm 1: Continuous SWAY with its subroutine Split
1 Given: inner product 〈·, ·, 〉 and its induced norm 〈‖·‖〉, objective

computing function obj : D → O, ordering on O �
2 Hyperparameters: enough
3 Function contSWAY(candidates):
4 if |candidates| < enough then
5 return candidates
6 else
7 [west, westItems], [east, eastItems] ←− Split(candidates)
8 Δ1,Δ2 ←− ∅, ∅
9 if obj(east) � obj(west) then

10 Δ1 ←− contSWAY(westItems)
11 end
12 if obj(west) � obj(east) then
13 Δ2 ←− contSWAY(eastItems)
14 end
15 return Δ1 ∪ Δ2

16 end
17 End Function
18 Function Split(candidates):
19 rand ←− randomly selected candidate from candidates
20 east ←− argmaxx∈candidates‖x − rand‖
21 west ←− argmaxx∈candidates‖x − east‖
22 for x ∈ candidates do
23 xd ←− 〈east−west,x−west〉

‖east−west‖
24 end
25 Sort candidates by xd

26 eastItems ←− first half of candidates
27 westItems ←− second half of candidates
28 return [west, westItems], [east, eastItems]
29 End Function
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For problem with continuous numerical genotypes, the FastMap heuristic
that is based on cosine rules and Euclidean distance works well (Line 22 of
Algorithm 1); for binary decision spaces, SWAY adopts a radial coordinate
system. Finally, for non-binary discrete decision spaces, Chen et al. propose
coarse-grained binary groupings of such solutions fed into the binary version of
SWAY [2,3]. However, even with sufficient domain knowledge, certain decision
spaces may not allow an easy and intuitive coarse-grained grouping that would
enable us to use binary SWAY. For example, it is not clear what coarse-grained
groupings can be used in a permutative decision space without knowing which
ordering is better than others.

We propose a formulation of SWAY for permutative decision spaces that uses
the continuous SWAY. Our intuition is that we can use the continuous SWAY
as long as we can embed permutations into an alternative vector form in such a
way that the Euclidean distance between embedding vectors is closely correlated
with Kendall τ distance, i.e., the combinatorial distance between permutations
(i.e., the number of pairwise disagreement between two permutations). Note that
the use of continuous SWAY, which depends on the cosine rule and Euclidean
space, forces us to use Euclidean embedding.

The remainder of this section investigates such an embedding of the set of
all possible permutations, denoted as Sn. To the best of our knowledge, Sn

cannot be endowed with an easy-to-be-implemented inner product, or even a
well-defined one. Thus, we need to embed Sn into a simple inner vector space.

2.2 Preliminaries

This section provides an overview of the necessary mathematical concepts. Let
us start with a basic definition:

Definition 1. A permutation of [n] := {1, 2, . . . , n} is a bijection from [n] to
itself. Denote Sn as the set of all possible permutations of [n].2 Especially, let
i = (1, . . . , n) ∈ Sn be the identity permutation. Moreover, depending on the
context, π ∈ Sn may be regarded as a vector in R

n.

Unlike a p-dimensional space R
p, which has a natural metric endowed from

its Euclidean norm3, defining the distance between two permutations in an anal-
ogous manner is not trivial. First, let us start with the “natural” definition of
metric on Sn (much discussion has been taken from Deza and Deza [4]):

Definition 2. Given a connected4 graph G = (V,E), its path metric is a
metric on V , defined as the length of a shortest path connecting x, y ∈ V .

Definition 3. Given a finite set X and a finite set O of unary editing operations
on X, the editing metric on X is the path metric of the graph G(X,O) whose
vertices are X and whose edge set is {{x, y} | ∃o ∈ O : y = o(x)}. (If X = Sn,
then it is also called permutation metric).
2 Sn with composition operation forms the symmetric group of order n.
3 For x = (xi) ∈ R

p, its Euclidean norm is defined as ‖x‖ :=
(∑p

i=1 x2
i

)1/2
.

4 G = (V, E) is connected if for every x, y ∈ V , there exists a path from x to y.
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Since we are dealing with the decision space of permutations, it would be
reasonable to assume that the objective value of candidate solutions is heavily
dependent on the relative orderings in the permutations. Consider an example
in TCP: a test case tf has high fault detection capability and, consequently, con-
tribute to higher APFD if executed early on. Swapping tf with the next adjacent
test case will delay the fault detection only a little, when compared to swapping
tf with the last test case in the ordering. The distance in relative ordering can be
reflected by counting the number of switches of two adjacent elements required
to move from one permutation to another, formalized as follows:

Definition 4. The swap distance (also known as Kendall τ distance in sta-
tistical ranking theory) of π, π′ ∈ Sn, denoted as dK(π, π′), is the editing metric
on Sn with O being the set of all possible swaps i.e. it is the minimum number
of swaps required to go from π to π′.

Proposition 1. dK : Sn × Sn → R≥0 is indeed a permutation metric.

The following proposition provides a very intuitive way of computing the
swap distance5:

Proposition 2. Given π, π′ ∈ Sn, dK(π, π′) is precisely the number of relative
inversions between them i.e. number of pairs (i, j), 1 ≤ i < j ≤ n with (πi −
πj)(π′

i − π′
j) < 0.

All in all, we want an Euclidean embedding scheme with the following prop-
erty: embeddings of two permutations are close together if the swap distance
between them is small, and vice versa.

Remark 1. One may ask why not stop now and just use the swap distance in
SWAY. However, continuous SWAY [2,3] is designed to be used for Euclidean
space, only; specifically, the usage of Euclidean distance is crucial for splitting
the candidates via cosine rule, which is not applicable for other metrics.

2.3 Consideration of Naive Embedding

The most trivial Euclidean embedding of permutations would be to take a per-
mutation π of n items directly as a vector in R

n, as mentioned in Definition 1.
More formally, it can be defined as follows:

Definition 5. For fixed n, the permutahedron, denoted as Πn−1, is defined
as the convex hull of the set Vn = {(π(1), . . . , π(n)) | π ∈ Sn}, which can be
thought of as the “direct” embedding of Sn onto R

n.

Based on the study of permutahedron in combinatorics [18], we can derive
the following propositions about Πn−1.6

5 This proposition indicates a O(n log n) algorithm based on sorting. Apart from our
consideration, a more efficient algorithm has been proposed; see [1].

6 Refer to [19,24] for the full proofs and more detailed discussions on related topics.
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Proposition 3. Πn−1 is a simple (n − 1)-dimensional polytope with Vn as its
set of vertices.

Proposition 4. Two vertices of Πn−1 are adjacent iff they differ by a swap,
when considered as permutations.

(a) Kendall τ vs. �2 (b) Kendall τ vs. Spearman ρ

Fig. 1. Scatter plots showing correlations between swap distance and different embed-
ding distances

Simplicity and convexity of the underlying polytope, shown in Proposition 3,
ensures that the Split function in Algorithm 1 does not show any unexpected
behaviour. What is more interesting is Proposition 4, which seems to suggest a
positive correlation between the �2-distance7 and the swap distance, dK . How-
ever, empirical evidence shows that such correlation either does not exist, or is
very weak if it does, rendering the naive and trivial embedding inapplicable. In
Fig. 1a, the x-axis is the Euclidean distance between two random permutations,
π, π′ ∈ Sn, embedded naively using the permutahedron (i.e., ‖π−π′‖2), whereas
the y-axis is the swap distance (i.e., dK(π, π′)). No strong positive correlation
can be observed. Consequently, we are forced to consider another embedding
scheme.

2.4 Motivations for Rank Based Embedding

We start with the following crucial observation: Sn is in bijection with the set of
all possible linear orders on [n], denoted as Ln. By dealing with the linear orders
instead of permutations, we can leverage several useful results from statistical
ranking theory. To start, let us first define such bijection [15]:

7 For simplicity, let us refer to the distance of the embedded permutations as the
�2-distance of the permutations.



32 J. Lee et al.

Definition 6. Let L ∈ Ln.

1. The rank function of L is the function rL : [n] → [n], defined as

rL(x) = 1 + |{y ∈ [n] : yLx}|

2. The position permutation associated with L is π = (π1 π2 · · · πn) ∈ Sn

with rL(πi) = i for i ∈ [n].
3. The rank permutation associated with L is π = (π1 π2 · · · πn) ∈ Sn with

πi = rL(i) for i ∈ [n].

Definition 7. Let π = (π1 π2 · · · πn) ∈ Sn. Then the linear order L ∈ Ln asso-
ciated with π is defined as π1Lπ2L · · · Lπn. Let r(π) denote the rank permutation
associated with above-defined L, considered as a Euclidean vector.

We provide a simple example for the concept of rank permutation:

Example 1. Consider π = (2 3 4 1 6 5) ∈ S6. Then the linear order <′ on [n]
induced by π′ is given as 2 <′ 3 <′ 4 <′ 1 <′ 6 <′ 5. Under <′, 1 is the 4th
ranking element, 2 is the 1st ranking element, and so on. Putting the ranks
altogether gives r(π) = (4 1 2 3 6 5).

Above definition motivates another “distance” between two permutations,
which can be formally defined as follows:

Definition 8. Spearman ρ distance of π, π′ ∈ Sn, denoted as dS(π, π′), is
precisely the Euclidean distance between r(π) and r(π′), considering them as
vectors (vertices of Πn−1 in R

n)

Proposition 5. dS : Sn × Sn → R≥0 is indeed a permutation metric.

Our embedding scheme is based on the following non-trivial results by Mon-
jardet [15]. Here, dG(·, ·) is a function from Sn×Sn to R≥0 that is combinatorially
well-defined.

Theorem 1 (Monjardet, 1998 [15]).

d2S(π, π′) = ndK(π, π′) − dG(π, π′) ∀π, π′ ∈ Sn (1)

Equation 1 implies that if the effect of dG is insignificant with respect to d2S
and ndK , then there is a positive correlation between dS and dk. To see this,
we perform similar experiment as the one with the naive embedding; we sample
sufficient number of pairs of permutations, and for each sampled (π, π′) ∈ Sn×Sn

we plot a scatter plot of dS(π, π′)2 vs. dK(π, π′), shown in Fig. 1b. Observe
how there is an almost linear relationship between the two quantities, which is
precisely what we need.

Based on previous discussions, we propose the following Euclidean embedding
scheme of Sn (note how r is a bijection from Πn−1 to itself):

π ∈ Sn ⇐⇒ r(π) ∈ Πn−1 ⊂ R
n
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3 Preliminary Evaluation: Test Case Prioritisation (TCP)

We consider Test Case Prioritisation (TCP) problem [22] as the subject of our
proof-of-concept, preliminary evaluation of our embedding scheme. Intuitively,
the goal of TCP is to find the optimal ordering of the test cases such that “early
fault detection” is maximized, which can be defined as follows [17]:

Definition 9 (Test Case Prioritisation (TCP)). Given a test suite, T , the
set of permutations of T , PT , and a function from PT to R, f : PT → R, find
T ′ ∈ PT such that (∀T ′′) (T ′′ ∈ PT ) (T ′′ �= T ′) [f(T ′) ≥ f(T ′′)].

The ideal choice of f would be the function that measures the real fault
detection rate of the given ordering. In reality, such measurement is not available
before the entire test suite is executed, forcing us to use surrogates such as
structural coverage [17,22]. We focus on the coverage-based approach.

3.1 Performance Metrics

We consider two metrics, Average Percentage of Statement Coverage (APSC)
and Average Percentage of Fault Detection (APFD) [17], to evaluate the order-
ings produced by SWAY. Let T be an ordered test suite. APSC measures the
rate of coverage achieved, and can be formally defined as follows:

APSC(T ) = 1 − TS1 + · · · + TSm

nm
+

1
2n

(2)

where TSi is the index of the first test case that covers statement i, n is the
number of test cases in the test suite, and m is the number of statements in
the program. Note that it is possible to compute APSC using coverage of each
test case measured from the previous version of the System Under Test (SUT).
APFD, in comparison, measures the actual rate of fault detection a posteriori,
because information about fault detection is only available after all test cases
have been executed. It is defined as follows:

APFD(T ) = 1 − TF1 + · · · + TFm

nm
+

1
2n

(3)

where TFi is the index of the first test case that covers fault i, n is the number
of test cases in the test suite, and m is the number of faults in the program.

3.2 Baseline Approaches

Currently there exists no alternative way of applying SWAY to permutative
decision spaces: since ours is the first embedding for such decision spaces, we do
not have a direct baseline approaches to compare against. Instead, we simply
investigate the feasibility of our embedding by applying it to TCP.

As a basic sanity check of its results, we compare the results from permutative
SWAY to those obtained by additional greedy algorithm, which has been widely
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used in the regression testing literature [8,14,23]. Our aim is not to evaluate
SWAY itself for TCP problem: a proper evaluation of the efficiency of SWAY
would require careful parameter tuning for the sampling size as well as suffi-
ciently optimized implementation. As a proof-of-concept evaluation, we simply
check whether our permutative SWAY can produce comparable results to the
additional greedy algorithm, and leave the direct comparison between SWAY
and other population based optimisation algorithms for future work.

3.3 SWAY for TCP

We make the following changes to the original SWAY to adapt it to the proposed
embedding of permutations. Our implementation is available from our GitHub
repository.8

Initial Sampling. For even a medium sized problem, using the entire Sn is
infeasible due to the excessive memory required for storing and doing various
operations on n! permutations. To avoid this issue, we initialize the population
(i.e., samples) by generating random permutations from Sn using Fisher-Yates
shuffle9, which outputs uniformly distributed permutations [6].

Given a set of all test cases, T = {t1, . . . , tn}, it can be observed that each
permutation of [n] corresponds to a unique ordering of T , giving us a direct
problem-specific interpretation: the decision space of TCP is precisely Sn. The
objective score that we are optimizing for is APSC with respect to the already-
known execution information of each test case. Typically, this is calculated using
the previous version of the SUT.

Stopping Population. Stopping population is a user-defined threshold: SWAY
stops once the size of the population falls below that threshold. For multi-
objective problems, it is natural to set the stopping population to be high [2,3],
since diversity is one of the important quality metrics for such problems [20].
However, if the fitness evaluation is sufficiently expensive for a single objective
problem, it would be natural to use SWAY for single objective problems as well.

Suppose that we initially have N candidate solutions as input to SWAY,
and set the stopping population as N0. SWAY will compare all remaining N0

candidates after stopping. Subsequently, the number of fitness evaluations would
be O(log N + N0). Note that if N0 = O(log N), then the number of required
fitness evaluations will simply be O(log N). We set the stopping population for
TCP to be five which is small enough to satisfy such a condition. Out of the five
solutions, we choose the one with the highest APSC, and report its APFD.

8 https://github.com/chanijung/sway-perm.
9 This is implemented by random.shuffle function in Python.

https://github.com/chanijung/sway-perm
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Table 1. Linux utilities

Name SLOC |T | Description

flex 3,453–4,008 21 Lexer generator

gzip 3,195–3,443 193 Data compression utility

grep 1.744–2,018 211 Pattern matching engine

sed 3,729 36 Stream text editor

3.4 Benchmarks

All four Unix utilities we use with our empirical evaluation were obtained from
the SIR repository [5]: flex, gzip, grep, and sed. Table 1 contains the details
of these subject programs and their test suites10. The test cases are built to
exercise each parameter as well as to achieve coverage, and artificial faults have
been injected for the evaluation of regression testing techniques. We consider
four versions of flex, three versions of grep, two versions of gzip, and a single
version of sed.

3.5 Research Questions

We structure our preliminary evaluation of SWAY for permutation decision space
around the following research questions:

1. RQ1. Effectiveness: How well SWAY performs compared to the greedy
prioritisation for TCP?

2. RQ2. Sensitivity: How sensitive is SWAY to the initial population?

As mentioned in Sect. 3.2, we only consider the additional greedy algorithm
as our competitor since it is simple to implement, and it shows comparable per-
formance with the other search-based algorithms. In addition, for sanity check,
we also consider a random algorithm, which just outputs a random permutation.
However, note that the objective of our study is to show the feasibility of our
embedding of permutations, and not to present a novel TCP approach.

Each algorithm was executed with a fixed test suite for each program. SWAY
and random algorithm were repeated 30 times in order to account for their
randomness. For SWAY, the initial population of the candidate permutations
was fixed as 219 for all of the programs.11

10 Test suites v0.cov.universe, v0.tsl.universe, v0.cov.universe.esc, and
v0 2.universe.single have been used for flex, gzip, grep, and sed, respectively.
Individual test cases that resulted in segmentation fault in our test environment have
been filtered out, resulting in smaller test suites than those reported in SIR. Please
note that this does not interfere with the feasibility evaluation of our embedding.

11 This was the maximum feasible value allowed by our available resource.
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4 Results

This section presents the results of our preliminary evaluation.

4.1 RQ1: How Well Does Our Approach Perform?

Figures 2a and 2b show the resulting error bar plots of APSC and APFD for the
studied subjects. The observable trend is that greedy and SWAY achieve similar
APSC values, but SWAY can sometimes outperform greedy, especially for some
of the Linux utility runs.
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Fig. 2. Error bar plots for Linux Utils (RQ1)

To compare the results of greedy and SWAY more precisely, we apply Mann-
Whitney U test [11], a non-parametric test for comparing two statistically inde-
pendent groups. The null hypothesis, H0, is that, for X and Y randomly selected
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from each group, Pr[X ≥ Y ] = Pr[X ≤ Y ]. For each APSC and APFD, we set
the alternative hypothesis H1 as that SWAY performs better than greedy. Table 2
contains the results: statistically significant results are typeset in bold.

Table 2. Mann-Whitney U test of APSC and APFD between SWAY and Greedy

Name pAPSC pAPFD Name pAPSC pAPFD

flex-v2 1.00 0.89 grep-v3 1.00 0.97

flex-v3 1.00 0.00 grep-v4 1.00 0.32

flex-v4 1.00 0.02 gzip-v2 1.00 0.97

flex-v5 1.00 1.00 gzip-v5 1.00 1.00

grep-v2 1.00 0.00 sed-v3 1.00 1.00
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(a) APSC vs size of initial population
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(b) APFD vs size of initial population

Fig. 3. Boxplots for RQ2. Here, log is treated as binary log i.e. log2.

The results show that greedy outperforms SWAY on APSC in general, which
is to be expected since greedy directly (and deterministically) maximizes APSC.
However SWAY and greedy algorithm are more at par in terms of APFD: for
some programs, SWAY outperforms greedy with statistically significant p-values.
Note that, given that the aim of SWAY is to provide an efficient baseline based on
random sampling, our aim here is not to consistently outperform greedy. Based
on these results, we answer RQ1 that SWAY can produce comparable results
to those of the additional greedy algorithm when applied to the TCP problem
using the proposed embedding.
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4.2 RQ2: Sensitivity of SWAY to Initial Sample Size

We perform the sensitivity analysis only using sed, due to the large number of
candidate samples required for the sensitivity analysis. We vary the size of the
initial population from 23 up to 219, doubling the size at each step. For each
size, we run SWAY 30 times to cater for the randomness in sampling.

Figures 3a and 3b show the resulting bar plots of APSC and APFD, respec-
tively. Both APSC and APFD show monotonically increasing trends as the size
of the initial population increases: the correlation is stronger with APSC. We
posit that this trend is to be expected since, intuitively, greater initial population
implies that the search space being covered by SWAY is greater. However, also
note that after certain threshold population, increasing it does not seem to have
a significant effect on APFD. Consequently, we answer RQ2 that, above certain
size, SWAY is not overtly sensitive to the size of the initial population.

While we do not compare SWAY with other population based Evolutionary
Algorithms (EAs) in this work, the initial results from sed suggest that SWAY
can be a viable baseline for TCP against EAs. For example, Epitropakis et al. [8]
configures MOEAs with the budget of 25,000 fitness evaluations for SIR Linux
utilities, of which sed belongs. Figures 3a and 3b indicate that SWAY can achieve
stable performance when given a similar number of fitness evaluations.

4.3 Threats to Validity

We depend on widely used coverage profiling tool, GNU gcov, to minimise any
threat to internal validity in the process of coverage collection. Compared to
a Boolean decision space whose size grows exponentially as 2n, the size of a
permutation decision space grows super-exponentially as n!, where n is the size
of the considered test suite. Using Stirling’s approximation12, it can be easily
seen that even with SWAY, we still need O(n log n) fitness evaluations when
using all possible permutations. Given the size of the studied test suites, it is
possible that the observed performance of SWAY has been severely affected
by our chosen range of initial populations, posing a threat to external validity.
Further studies are needed to explore scalability of SWAY for permutation, as
well as other combinatorial decision spaces. Both APSC and APFD are widely
studied and used evaluation metrics for the TCP problem, which minimises the
threat to construct validity of our study.

5 Related Work

A baseline optimiser is an optimiser that is simple, widely and publicly available,
fast, offer comparable performance to the SOTA methods, and computationally
inexpensive [21]. It is beneficial to have a baseline optimizer for an optimisation
problem because it provides a floor performance values to it. This helps the

12 n! ∼ √
2πn

(
n
e

)n
.
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developers to rule out the optimizers with lower performance. SWAY satisfies all
such criteria [2,3], which motivates us to extend it to additional decision spaces.

We compare SWAY to coverage based greedy prioritisation due to the avail-
ability of coverage data as well as the ease of implementing the additional greedy
algorithm. However, there are numerous TCP techniques that are not focused on
early increase of coverage only. For example, history based prioritisation [7,12]
aims to execute the least recently executed test cases first. As a preliminary
evaluation, we also focus on single objective TCP for the sake of simplicity.
However, Multi Objective Evolutionary Algorithms (MOEAs) have been suc-
cessfully applied to TCP with multiple objectives [8]. We leave the evaluation of
multi-objective formulation of SWAY for TCP for future work.

While the primary intended use of SWAY is a baseline and not an efficient
search algorithm in itself, the efficiency of SWAY can be improved by adopting
optimised fitness evaluation. For example, SWAY can benefit from the coverage
compaction [8] like any other TCP technique, as the compaction can make each
fitness evaluation faster.

6 Conclusions and Future Work

This paper presents a novel embedding of the permutations into the Euclidean
space, allowing us to directly use (continuous) SWAY without any additional
modifications. We base our embedding on well-established fields of combinatorics
and statistical ranking theory, and show that our embedding scheme is suitable
for the framework of SWAY. A proof-of-concept evaluation of our embedding,
applied to TCP using continuous SWAY, shows that it can successfully mea-
sure the distance between solutions in permutative decision spaces, enabling
SWAY to be applied to such spaces. For future work, we will focus on improving
the scalability of SWAY in permutation decision space by applying (non)linear
dimensionality reduction techniques after our embedding.
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