
On the Effectiveness of SBSE Techniques

Through Instance Space Analysis

Aldeida Aleti(B)

Faculty of Information Technology, Monash University, Melbourne, Australia
aldeida.aleti@monash.edu

Abstract. Search-Based Software Engineering is now a mature area
with numerous techniques developed to tackle some of the most challeng-
ing software engineering problems, from requirements to design, testing,
fault localisation, and automated program repair. SBSE techniques have
shown promising results, giving us hope that one day it will be possible
for the tedious and labour intensive parts of software development to be
completely automated, or at least semi-automated. In this talk, I will
focus on the problem of objective performance evaluation of SBSE tech-
niques. To this end, I will introduce Instance Space Analysis (ISA), which
is an approach to identify features of SBSE problems that explain why
a particular instance is difficult for an SBSE technique. ISA can be used
to examine the diversity and quality of the benchmark datasets used by
most researchers, and analyse the strengths and weaknesses of existing
SBSE techniques. The instance space is constructed to reveal areas of
hard and easy problems, and enables the strengths and weaknesses of
the different SBSE techniques to be identified. I will present on how ISA
enabled us to identify the strengths and weaknesses of SBSE techniques
in two areas: Search-Based Software Testing and Automated Program
Repair. Finally, I will end my talk with potential future directions of the
objective assessment of SBSE techniques.

Keywords: Search-based software engineering · Instance space
analysis

1 Instance Space Analysis for SBSE

Instance Space Analysis (ISA) has two main goals:

– to help designers of SBSE techniques (SBSET) gain insight into why some
techniques are more or less suited to solve certain SBSE problems, thus devis-
ing new and better techniques that address any challenging areas, and

– to help software developers select the most effective SBSET for their software
system.

ISA provides a way for objective assessment of the effectiveness of SBSE tech-
niques. It has been applied to Search-Based Software Testing [5,6], Search-Based

c© Springer Nature Switzerland AG 2021
U.-M. O’Reilly and X. Devroey (Eds.): SSBSE 2021, LNCS 12914, pp. 3–6, 2021.
https://doi.org/10.1007/978-3-030-88106-1_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-88106-1_1&domain=pdf
https://doi.org/10.1007/978-3-030-88106-1_1


4 A. Aleti

Program Repair [1], machine learning [3], and optimisation [7]. The concept of
instance space analysis was first introduced by Smith-Miles in her seminal work
looking at the strengths and weaknesses of optimisation problems [7]. Under-
standing the effectiveness of an SBSE technique is critical for selecting the most
suitable technique for a particular SBSE problem, thus avoiding trial and error
application of SBSE techniques.

An overview of the ISA for SBSE is presented in Fig. 1. It starts with a set
of problems p ∈ P and a portfolio of SBSE techniques t ∈ T . For example,
P can be a set of buggy programs and T can be a portfolio of Search-Based
Program Repair techniques. The performance of each Search-Based Software
Engineering Technique (SBSET) is measured for each problem instance as y(t, p).
For example, y can indicate whether a plausible patch has been found for a
program p by the Search-Based Program Repair Technique t. The first step of
ISA is to identify the significant features of problem instances (f(p) ∈ F ) that
have an impact on how easy or hard they are for a particular SBSET. A feature
can be the complexity of code, as measured by code-based complexity metrics.
An example is the coupling between object classes, which is a count of the number
of other classes to which the current class is coupled [2]. In Search-Based Program
Repair, features may include those that are related to the prediction of source
code transformations on buggy code [10] and detection of incorrect patches [9].

Next, ISA constructs the footprints (g(f(P ))) ∈ R2 which indicate the area
of strength for each SBSET. Finally, ISA applies machine learning techniques
on the most significant features to learn a model that can be used for SBSET
selection for future application.

p ∈ P
problem instances

f(p) ∈ F
Significant features

g(f(p)) ∈ R2

SBSET footprints

t ∈ T
SBSE techniques

y(t, p) ∈ Y
SBSET performance

A(f(p), y(t, p)) ∈ T
SBSET selection

Fig. 1. An overview of instance space analysis for analysing the effectiveness of SBSE
techqniques.

The features included in the feature space (F) should be diverse and predic-
tive of the performance of at least one algorithm. Hence, their selection requires
careful consideration. They are domain specific and thus developing F requires
significant domain knowledge. Features should be highly correlated with algo-
rithm performance, not highly correlated with other features, and cheaper to
compute compared to the runtime of the algorithm. Features should also be



On the Effectiveness of SBSE Techniques 5

capable of explaining the similarities and differences between instances, and
should be interpretable by humans [3,4].

The portfolio of SBSE Techniques is constructed by selecting a set of meth-
ods, each one with its unique biases, capable of solving the given problem. The
more diverse the SBSETs, the higher the chance of finding the most suitable
SBSET for a given instance.

The SBSET performance space Y includes the measures to report the perfor-
mance of the SBSETs when solving the problem instances. Common performance
measures for automated testing are coverage, length/size of the test suite and
mutation score [8]. For Search Based Program Repair, a common measure is
whether the techique produced a plausaible patch for a buggy program [1].

A critical step of ISA is identifying features of problem instances instances
f(p) ∈ F that have an impact on the effectiveness of SBSE techniques. Features
are problem dependent and must be chosen such that the varying complexities
of the buggy program instances are exposed, any known structural properties of
the software systems are captured, and any known advantages and limitations
of the different SBSETs are related to features.

Fig. 2. SBSET footprint.

ISA applies a Genetic Algorithm to select the set of features which result in
an instance space – as defined by the 2-dimensional projection of the subset of
features through Principal Component Analysis – with problem instances that
show similar performance of SBSETs closer to each other in this 2D space (as
shown in Fig. 2). The best subset of features is the one that can best discriminate
between easy and hard buggy program instances for SBSE techniques. The sub-
set of features that have large coefficients and therefore contribute significantly
to the variance of each Principal Component (PC), will be identified as the sig-
nificant features. Rather than reporting algorithm performance averaged across



6 A. Aleti

a chosen set of problem instances, ISA reports the SBSET’s footprint, which is
the performance of a technique generalised across a diverse set of instances.

In the final step, ISA applies Machine Learning to predict the most effective
SBSET for solving a particular SBSE problem. ISA uses the most significant
features as an input to learn the relationship between the instance features and
SBSET performance. A variety of machine learning algorithms can be used for
this purpose, such as decision trees, or support vector machines for binary labels
(effective/ineffective), or statistical prediction methods, such as regression algo-
rithms or neural networks for continuous labels (e.g., time complexity of the
approach). Previous work has reported Random Forest Classifier as the best
performing method for Search-Based Program Repair [1], and Decisin Tree for
Search-Based Software Testing [5].

References

1. Aleti, A., Martinez, M.: E-APR: mapping the effectiveness of automated program
repair techniques. Empir. Softw. Eng. 26(5), 1–30 (2021)

2. Chidamber, S.R., Kemerer, C.F.: A metrics suite for object oriented design. IEEE
Trans. Softw. Eng. 20(6), 476–493 (1994)

3. Muñoz, M.A., Villanova, L., Baatar, D., Smith-Miles, K.: Instance spaces for
machine learning classification. Mach. Learn. 107(1), 109–147 (2017). https://doi.
org/10.1007/s10994-017-5629-5

4. Muñoz, M.A., et al.: An instance space analysis of regression problems. ACM Trans.
Knowl. Discov. Data (TKDD) 15(2), 1–25 (2021)

5. Oliveira, C., Aleti, A., Grunske, L., Smith-Miles, K.: Mapping the effectiveness of
automated test suite generation techniques. IEEE Trans. Reliab. 67(3), 771–785
(2018)

6. Oliveira, C., Aleti, A., Li, Y.-F., Abdelrazek, M.: Footprints of fitness functions
in search-based software testing. In: Proceedings of the Genetic and Evolutionary
Computation Conference, pp. 1399–1407 (2019)

7. Smith-Miles, K., Tan, T.T.: Measuring algorithm footprints in instance space. In:
2012 IEEE Congress on Evolutionary Computation, pp. 1–8. IEEE (2012)

8. Tengeri, D., et al.: Relating code coverage, mutation score and test suite reducibility
to defect density. In: 2016 IEEE Ninth International Conference on Software Test-
ing, Verification and Validation Workshops (ICSTW), pp. 174–179. IEEE (2016)

9. Ye, H., Gu, J., Martinez, M., Durieux, T., Monperrus, M.: Automated classifica-
tion of overfitting patches with statically extracted code features. Technical report
1910.12057, arXiv (2019)

10. Yu, Z., Martinez, M., Bissyandé, T.F., Monperrus, M.: Learning the relation
between code features and code transforms with structured prediction. Technical
report 1907.09282, arXiv (2019)

https://doi.org/10.1007/s10994-017-5629-5
https://doi.org/10.1007/s10994-017-5629-5

	On the Effectiveness of SBSE Techniques
	1 Instance Space Analysis for SBSE
	References




