
Una-May O’Reilly
Xavier Devroey (Eds.)

LN
CS

 1
29

14

Search-Based 
Software Engineering
13th International Symposium, SSBSE 2021
Bari, Italy, October 11–12, 2021
Proceedings



Lecture Notes in Computer Science 12914

Founding Editors

Gerhard Goos
Karlsruhe Institute of Technology, Karlsruhe, Germany

Juris Hartmanis
Cornell University, Ithaca, NY, USA

Editorial Board Members

Elisa Bertino
Purdue University, West Lafayette, IN, USA

Wen Gao
Peking University, Beijing, China

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Gerhard Woeginger
RWTH Aachen, Aachen, Germany

Moti Yung
Columbia University, New York, NY, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0001-8816-2693


More information about this subseries at http://www.springer.com/series/7408

http://www.springer.com/series/7408


Una-May O’Reilly • Xavier Devroey (Eds.)

Search-Based
Software Engineering
13th International Symposium, SSBSE 2021
Bari, Italy, October 11–12, 2021
Proceedings

123



Editors
Una-May O’Reilly
Massachusetts Institute of Technology
Cambridge, MA, USA

Xavier Devroey
Delft University of Technology
Delft, The Netherlands

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-88105-4 ISBN 978-3-030-88106-1 (eBook)
https://doi.org/10.1007/978-3-030-88106-1

LNCS Sublibrary: SL2 – Programming and Software Engineering

© Springer Nature Switzerland AG 2021
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0002-0831-7606
https://doi.org/10.1007/978-3-030-88106-1


Message from the General Chairs

Welcome to the 13th Symposium on Search-Based Software Engineering (SSBSE
2021). SSBSE is a premium venue dedicated to the discussion of novel ideas and
applications of search-based software engineering, a research area focused on the
formulation of software engineering problems as search problems. A wealth of engi-
neering challenges can leverage the application of automated approaches and opti-
mization techniques from AI and machine learning research.

This year, SSBSE was again organized as a virtual conference due to travel
restrictions imposed by the COVID-19 pandemic. We would like to thank the members
of the Organizing Committee for their effort in making the virtual event a success. We
thank the track chairs for their great work in creating an exciting conference program:
Una-May O’Reilly and Xavier Devroey (Research track), Tim Menzies (Journal First
track), Ruchika Malhotra and Bruno Lima (New Ideas and Emerging Results track),
Venera Arnaoudova and Gabriele Bavota (Replications and Negative Results track),
and Gregory Gay and René Just (Challenge track). We thank Wesley K. G. Assunção,
our publication chair, for their remarkable effort in coordinating the proceedings. We
thank Marios Fokaefs for their support in organizing the virtual event. Last but not
least, we thank our publicity chairs, Rebecca Moussa and Fiorella Zampetti, for their
job in advertising SSBSE through mailing lists and social media, and Luigi Quaranta
for setting up our website.

Finally, we would like to thank the University of Bari and Polytechnique Montreal
and our sponsor Facebook for the generous support to SSBSE 2021 and the forth-
coming 2022 installment.

Looking forward to seeing you all online!

August 2021 Giuliano Antoniol
Nicole Novielli



Message from the Program Chairs

On behalf of the SSBSE 2021 Program Committee, it is our pleasure to present the
proceedings of the 13th International Symposium on Search-Based Software
Engineering.

The field of Search-Based Software Engineering (SBSE) has grown tremendously in
the last few years, with research covering a wide range of topics in the intersection of
software engineering and search algorithms. As in the previous years, and despite the
deep impact of the COVID-19 pandemic which has been going on for over a year now,
SSBSE 2021 continues to bring together the international SBSE community to present
innovations, discuss new ideas, and celebrate progress in the field. This year we
received 21 papers in total across four tracks: 14 full research papers, 3 challenge
solutions, and 4 replications and negative results (RENE) papers. We would like to
thank the authors for their submissions, and issue our appreciation for their efforts in
advancing the SBSE field.

The success of SSBSE depends completely on the effort, talent, and energy of
researchers in the field of search-based software engineering who have written and
submitted papers on a variety of topics. Following a strict review process, where each
submission received three reviews, we accepted 11 papers: 7 papers in the research
track, 2 papers in the RENE track, and 2 papers in the challenge solutions track. The
Program Committee members and external reviewers, who have invested significant
time in assessing multiple papers, and who hold and maintain a high standard of quality
for this conference, also deserve our appreciation. Their dedicated work and support
makes this symposium possible and results in a stronger community.

In addition to a program full of research talks, SSBSE 2021 attendees had the
opportunity to learn more about search-based system testing with EvoMaster in a
tutorial given by Andrea Arcuri, Professor at Kristiania University College, Norway.
Finally, SSBSE 2021 featured two outstanding keynotes from Aldeida Aleti, Associate
Professor at Monash University, Australia, and Massimiliano Di Penta, Full Professor
at the University of Sannio, Italy. We thank them for accepting our invitation and for
their insightful talks!

We hope you enjoy the work contained in this volume and you can apply it to your
own work. We are proud of the program assembled this year, and are thankful for the
opportunity to present these proceedings to the SBSE research community.

July 2021 Una-May O’Reilly
Xavier Devroey
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SSBSE’21 Tutorial: Search-Based System
Testing with EvoMaster (Tutorial Paper)1

Andrea Arcuri1,2

1 Kristiania University College, Norway
2 Oslo Metropolitan University, Norway
andrea.arcuri@kristiania.no

Abstract. In this tutorial, I will show how to use the open-source EVOMASTER

tool to generate system-level test cases for different web services (e.g., RESTful
APIs written in Java). The generated test cases can then be used to enable
different kinds of research endeavors. I will also give an overview of the source
code and architecture of EVOMASTER, to help researchers that need to extend it
for their research work.

Keywords: REST API Testing � SBST � Fuzzing

1 Overview

EVOMASTER [1, 2] is an open-source tool [8], under development since 2016. It is
currently hosted on GitHub2, with releases stored on Zenodo as well (e.g., [9]).

EVOMASTER aims at system-level test case generation for web and enterprise
applications, using evolutionary techniques, such as the MIO algorithm [3]. It currently
targets REST APIs [4], but can be extended for other domains (e.g., support for
GraphQL APIs is in beta-version at the time of this writing). EVOMASTER supports both
white-box and black-box testing [5]. Black-box testing is more general, and can be
applied on any API regardless of the programming language they are written in.
However, it lacks the advanced search-based heuristics like testability transformations
[7] that can be used in the white-box version, as well as analyzing all interactions with
SQL databases to improve the test generation even further [6].

The white-box testing is currently aimed at APIs running on the JVM, like the ones
written in Java and Kotlin, where code-level search-based heuristics (e.g., the branch
distance) are computed via bytecode instrumentation (which is fully automated).
Furthermore, support for NodeJS (e.g., JavaScript) and .Net (e.g., C#) are currently
under development.

EVOMASTER is divided in two main components: a core and a driver. The core is
written in Kotlin, and it contains the implementations of different search algorithms

1 This work is supported by the Research Council of Norway (project on Evolutionary Enterprise
Testing, grant agreement No 274385).
2 https://github.com/EMResearch/EvoMaster

https://orcid.org/0000-0003-0799-2930
https://github.com/EMResearch/EvoMaster


(e.g., MIO [3]), and all the code to evaluate the fitness function via HTTP calls toward
the system under test (SUT). It also includes the code to output the evolved test cases in
different formats, such as JUnit in either Java or Kotlin, Jest for JavaScript and XUnit
for C#. The core is released as an executable jar file, where we provide as well installers
for the main operating systems3 (e.g., MSI for Windows). On the other hand, the driver
is responsible to start/stop/reset the SUT, as well as doing all the instrumentations
needed to compute code-level search-based heuristics. For SUTs running on the JVM,
the driver is written in Java, and released on Maven Central4.

The core and the driver will run on two separated processes, where the driver
exposes its functionality via a REST API. This architectural decision was purposely
made to be able to support further programming languages, besides the original Java
(e.g., JavaScript and C#).

This tutorial at SSBSE’21 is aimed mainly at researchers, and not practitioners in
industry. The goal of this tutorial is to show how to use EVOMASTER to generate test
cases for REST APIs, which could be used in different research contexts. I will also go
through and discuss some of the source-code of EVOMASTER, for researchers that want
to extend it to investigate different research questions.

References

1. Arcuri, A.: RESTful API automated test case generation. In: IEEE International Conference
on Software Quality, Reliability and Security (QRS), pp. 9–20. IEEE (2017)

2. Arcuri, A.: EvoMaster: evolutionary multi-context automated system test generation. In: IEEE
International Conference on Software Testing, Verification and Validation (ICST), pp. 394–
397. IEEE (2018)

3. Arcuri, A.: Test suite generation with the Many Independent Objective (MIO) algorithm.
Information and Software Technology. 104, 195–206 (2018)

4. Arcuri, A.: RESTful API automated test case generation with EvoMaster. ACM Trans. Softw.
Eng. Methodol. (TOSEM) 28(1), 3 (2019)

5. Arcuri, A.: Automated black-and white-box testing of restful apis with EvoMaster. IEEE
Softw. 38(3), 72–78 (2020)

6. Arcuri, A., Galeotti, J.P.: Handling sql databases in automated system test generation. ACM
Trans. Softw. Eng. Methodol. (TOSEM) 29(4), 1–31 (2020)

7. Arcuri, A., Galeotti, J.P.: Testability transformations for existing APIs. In: 2020 IEEE 13th
International Conference on Software Testing, Validation and Verification (ICST), pp. 153–
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generation tool. J. Open Source Softw. 6(57), 2153 (2021)

9. Arcuri, A., Galeotti, J.P., Marculescu, B., Zhang, M., Belhadi, A., Golmohammadi, A.:
EvoMaster: A Search-Based System Test Generation Tool (Jun 2021). \DOIurl{https://doi.
org/10.5281/zenodo.4896807}

3 https://github.com/EMResearch/EvoMaster/releases
4 https://search.maven.org/artifact/org.evomaster/evomaster
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On the Effectiveness of SBSE Techniques

Through Instance Space Analysis

Aldeida Aleti(B)

Faculty of Information Technology, Monash University, Melbourne, Australia
aldeida.aleti@monash.edu

Abstract. Search-Based Software Engineering is now a mature area
with numerous techniques developed to tackle some of the most challeng-
ing software engineering problems, from requirements to design, testing,
fault localisation, and automated program repair. SBSE techniques have
shown promising results, giving us hope that one day it will be possible
for the tedious and labour intensive parts of software development to be
completely automated, or at least semi-automated. In this talk, I will
focus on the problem of objective performance evaluation of SBSE tech-
niques. To this end, I will introduce Instance Space Analysis (ISA), which
is an approach to identify features of SBSE problems that explain why
a particular instance is difficult for an SBSE technique. ISA can be used
to examine the diversity and quality of the benchmark datasets used by
most researchers, and analyse the strengths and weaknesses of existing
SBSE techniques. The instance space is constructed to reveal areas of
hard and easy problems, and enables the strengths and weaknesses of
the different SBSE techniques to be identified. I will present on how ISA
enabled us to identify the strengths and weaknesses of SBSE techniques
in two areas: Search-Based Software Testing and Automated Program
Repair. Finally, I will end my talk with potential future directions of the
objective assessment of SBSE techniques.

Keywords: Search-based software engineering · Instance space
analysis

1 Instance Space Analysis for SBSE

Instance Space Analysis (ISA) has two main goals:

– to help designers of SBSE techniques (SBSET) gain insight into why some
techniques are more or less suited to solve certain SBSE problems, thus devis-
ing new and better techniques that address any challenging areas, and

– to help software developers select the most effective SBSET for their software
system.

ISA provides a way for objective assessment of the effectiveness of SBSE tech-
niques. It has been applied to Search-Based Software Testing [5,6], Search-Based

c© Springer Nature Switzerland AG 2021
U.-M. O’Reilly and X. Devroey (Eds.): SSBSE 2021, LNCS 12914, pp. 3–6, 2021.
https://doi.org/10.1007/978-3-030-88106-1_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-88106-1_1&domain=pdf
https://doi.org/10.1007/978-3-030-88106-1_1


4 A. Aleti

Program Repair [1], machine learning [3], and optimisation [7]. The concept of
instance space analysis was first introduced by Smith-Miles in her seminal work
looking at the strengths and weaknesses of optimisation problems [7]. Under-
standing the effectiveness of an SBSE technique is critical for selecting the most
suitable technique for a particular SBSE problem, thus avoiding trial and error
application of SBSE techniques.

An overview of the ISA for SBSE is presented in Fig. 1. It starts with a set
of problems p ∈ P and a portfolio of SBSE techniques t ∈ T . For example,
P can be a set of buggy programs and T can be a portfolio of Search-Based
Program Repair techniques. The performance of each Search-Based Software
Engineering Technique (SBSET) is measured for each problem instance as y(t, p).
For example, y can indicate whether a plausible patch has been found for a
program p by the Search-Based Program Repair Technique t. The first step of
ISA is to identify the significant features of problem instances (f(p) ∈ F ) that
have an impact on how easy or hard they are for a particular SBSET. A feature
can be the complexity of code, as measured by code-based complexity metrics.
An example is the coupling between object classes, which is a count of the number
of other classes to which the current class is coupled [2]. In Search-Based Program
Repair, features may include those that are related to the prediction of source
code transformations on buggy code [10] and detection of incorrect patches [9].

Next, ISA constructs the footprints (g(f(P ))) ∈ R2 which indicate the area
of strength for each SBSET. Finally, ISA applies machine learning techniques
on the most significant features to learn a model that can be used for SBSET
selection for future application.

p ∈ P
problem instances

f(p) ∈ F
Significant features

g(f(p)) ∈ R2

SBSET footprints

t ∈ T
SBSE techniques

y(t, p) ∈ Y
SBSET performance

A(f(p), y(t, p)) ∈ T
SBSET selection

Fig. 1. An overview of instance space analysis for analysing the effectiveness of SBSE
techqniques.

The features included in the feature space (F) should be diverse and predic-
tive of the performance of at least one algorithm. Hence, their selection requires
careful consideration. They are domain specific and thus developing F requires
significant domain knowledge. Features should be highly correlated with algo-
rithm performance, not highly correlated with other features, and cheaper to
compute compared to the runtime of the algorithm. Features should also be
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capable of explaining the similarities and differences between instances, and
should be interpretable by humans [3,4].

The portfolio of SBSE Techniques is constructed by selecting a set of meth-
ods, each one with its unique biases, capable of solving the given problem. The
more diverse the SBSETs, the higher the chance of finding the most suitable
SBSET for a given instance.

The SBSET performance space Y includes the measures to report the perfor-
mance of the SBSETs when solving the problem instances. Common performance
measures for automated testing are coverage, length/size of the test suite and
mutation score [8]. For Search Based Program Repair, a common measure is
whether the techique produced a plausaible patch for a buggy program [1].

A critical step of ISA is identifying features of problem instances instances
f(p) ∈ F that have an impact on the effectiveness of SBSE techniques. Features
are problem dependent and must be chosen such that the varying complexities
of the buggy program instances are exposed, any known structural properties of
the software systems are captured, and any known advantages and limitations
of the different SBSETs are related to features.

Fig. 2. SBSET footprint.

ISA applies a Genetic Algorithm to select the set of features which result in
an instance space – as defined by the 2-dimensional projection of the subset of
features through Principal Component Analysis – with problem instances that
show similar performance of SBSETs closer to each other in this 2D space (as
shown in Fig. 2). The best subset of features is the one that can best discriminate
between easy and hard buggy program instances for SBSE techniques. The sub-
set of features that have large coefficients and therefore contribute significantly
to the variance of each Principal Component (PC), will be identified as the sig-
nificant features. Rather than reporting algorithm performance averaged across
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a chosen set of problem instances, ISA reports the SBSET’s footprint, which is
the performance of a technique generalised across a diverse set of instances.

In the final step, ISA applies Machine Learning to predict the most effective
SBSET for solving a particular SBSE problem. ISA uses the most significant
features as an input to learn the relationship between the instance features and
SBSET performance. A variety of machine learning algorithms can be used for
this purpose, such as decision trees, or support vector machines for binary labels
(effective/ineffective), or statistical prediction methods, such as regression algo-
rithms or neural networks for continuous labels (e.g., time complexity of the
approach). Previous work has reported Random Forest Classifier as the best
performing method for Search-Based Program Repair [1], and Decisin Tree for
Search-Based Software Testing [5].

References
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Generating Failing Test Suites
for Quantum Programs With Search

Xinyi Wang1(B) , Paolo Arcaini2 , Tao Yue1,3 , and Shaukat Ali3

1 Nanjing University of Aeronautics and Astronautics, Nanjing, China
wangxinyi125@nuaa.edu.cn

2 National Institute of Informatics, Tokyo, Japan
3 Simula Research Laboratory, Fornebu, Norway

Abstract. Testing quantum programs requires systematic, automated,
and intelligent methods due to their inherent complexity, such as their
superposition and entanglement. To this end, we present a search-based
approach, called Quantum Search-Based Testing (QuSBT), for automati-
cally generating test suites of a given size depending on available testing
budget, with the aim of maximizing the number of failing test cases in
the test suite. QuSBT consists of definitions of the problem encoding, fail-
ure types, test assessment with statistical tests, fitness function, and test
case generation with a Genetic Algorithm (GA). To empirically evaluate
QuSBT, we compared it with Random Search (RS) by testing six quan-
tum programs. We assessed the effectiveness of QuSBT and RS with 30
carefully designed faulty versions of the six quantum programs. Results
show that QuSBT provides a viable solution for testing quantum pro-
grams, and achieved a significant improvement over RS in 87% of the
faulty programs, and no significant difference in the rest of 13% of the
faulty programs.

Keywords: Quantum programs · Software testing · Genetic
algorithms

1 Introduction

Testing quantum programs is essential for developing correct and reliable quan-
tum applications. However, testing quantum programs is challenging due to
their unique characteristics, as compared to classical programs, such as super-
position and entanglement [11]. Thus, there is a need for the development of
systematic, automated, and intelligent methods to find failures in quantum pro-
grams [11]. Such testing works have started to emerge, focusing on, e.g., coverage
criteria [2], property-based testing [7], fuzz testing [12], and runtime assertions
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(e.g., Proq [9]). In contrast to existing works, we propose an approach to auto-
matically generate test suites of given sizes with search algorithms, which are
dependent on available testing budgets, with the aim of maximizing the num-
ber of failing test cases in a test suite. We call our approach Quantum Search-
Based Testing (QuSBT), where the generation of test suites is encoded as a search
problem. We also identify two types of failures, devise statistical test-based test
assessment criteria, and define the number of repetitions that are considered suf-
ficient for test executions, by considering the inherent uncertainty of quantum
programs.

QuSBT employs a Genetic Algorithm (GA) as its search strategy. To assess
the cost-effectiveness of QuSBT, we compared it with Random Search (RS), the
comparison baseline. We selected six quantum programs as the subject systems
of the evaluation, and created 30 faulty versions of the programs (i.e., 30 bench-
marks) to assess the cost-effectiveness of GA and RS in terms of finding test
suites of given sizes and maximizing the number of failing tests. Results show
that QuSBT performed significantly better than RS for testing 87% of the faulty
programs, and there were no significant differences for the rest of 13% of the
faulty programs.

Paper Structure. Section 2 reviews the related work. Section 3 presents the
background. Section 4 introduces definitions necessary for formalizing the QuSBT
approach, which is discussed in detail in Sect. 5. Sections 6 and 7 present our
empirical evaluation. Then, Sect. 8 identifies threats that may affect the validity
of QuSBT, and Sect. 9 concludes the paper.

2 Related Work

Ali et al. [2] proposed Quito – consisting of three coverage criteria defined on
inputs and outputs of quantum programs, and two types of test oracles. Pass-
ing and failing of test suites were judged with one-sample Wilcoxon signed rank
test, and mutation analysis was used to assess the effectiveness of coverage cri-
teria. Results indicate that the least expensive coverage criterion, i.e., the input
coverage, can manage to achieve high mutation scores, and the input-output
coverage criterion (the most expensive one) could not increase mutation scores
for most cases. As also acknowledged by the authors, the coverage criteria do
not scale when handling quantum programs with more qubits, thus requiring
the development of efficient quantum testing approaches such as QuSBT.

Huang and Martonosi [8] proposed a statistical assertion approach for finding
bugs. They identified six bug types and their corresponding assertions. The chi-
square test was used to test the hypothesis on the distributions of measurements,
and determine a contingency coefficient with the confidence level of 95%. The
approach tested three quantum programs followed by identifying bugs and their
types in the programs.

Zhou and Byrd [10] proposed to enable runtime assertions, inspired by the
quantum error correction, by introducing additional qubits to obtain information
of qubits under test, without disrupting the execution of the program under test.
The proposed approach was verified on a quantum simulator. Along the same
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lines, Li et al. [9] proposed Proq, a projection-based runtime assertion scheme
for testing and debugging quantum software. Proq only needs to check the sat-
isfaction of a projection (i.e., a closed subspace of the state space) on a small
number of projection measurements, instead of repeated program executions.
Proq defines several assertion transformation techniques to ensure the feasibility
of executing assertions on quantum computers. Proq was compared with other
two assertion mechanisms [8,10] and it showed stronger expressive power, more
flexible assertion location, fewer executions, and lower implementation overhead.
When comparing with QuSBT, 1) Proq is a white-box, whereas QuSBT is black-
box; 2) Proq requires the definition of projections and implements them as asser-
tions, which requires expertise and effort, while QuSBT does not need to change
the quantum program under test to include assertions; thereby reducing cost;
and 3) Same as QuSBT, Proq also requires repeatedly executing assertions for a
sufficiently large number of times in order to achieve the confidence level of 95%.

QSharpCheck [7] tests Q# programs. The paper presents a test property
specification language for defining the number of tests to generate, statistical
confidence level, the number of measurements, and experiments for obtaining
data to perform statistical tests. Moreover, QSharpCheck defines property-based
test case generation, execution and analysis, and five types of assertions. It was
evaluated with two quantum programs, via mutation analysis. In comparison,
we focus on finding the maximum number of failing test cases in test suites with
a GA based on two types of failures.

QuanFuzz [12] focuses on increasing the branch coverage with a GA. It out-
performed a random generator in terms of the effectiveness of triggering sensitive
branches, and achieved a higher branch coverage than the traditional test input
generation method. We, instead, focus on finding failing test suites based on two
types of test oracles, whereas QuanFuzz focuses on searching inputs to cover
branches. Thus, the search problems of QuanFuzz are different.

3 Background

Quantum programs operate on quantum bits (qubits). Similarly as in classical
computers, a qubit can take value 0 or 1. However, in addition, a state of a qubit
is described with its amplitude (α), which is a complex number and defines two
elements: a magnitude and a phase. The magnitude indicates the probability of
a quantum program being in a particular state, while the phase shows the angle
of this complex number in polar form (it ranges from 0 to 2π radians). Taking a
three-qubits quantum program as an example, we can represent all the possible
states of the program in the Dirac notation:

α0 |000〉 + α1 |001〉 + α2 |010〉 + α3 |011〉 + α4 |100〉 + α5 |101〉 + α6 |110〉 + α7 |111〉
α0, . . . , α7 are the amplitudes associated to the eight program states. Note that
each state is simply a permutation of the three qubits. The magnitude of a state,
representing the probability of the program being in the state, is the square of the
absolute value of its amplitude (α) (e.g., for |100〉, its magnitude is |α4|2). Note
that the sum of the magnitudes of all the states is equal to 1, i.e.,

∑7
i=0 |αi|2 = 1.
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Fig. 1. Swap test – Qiskit code Fig. 2. Swap test – circuit diagram

Figure 1 shows a three-qubits program (Swap Test [6]) in the Qiskit frame-
work [13] in Python. Its equivalent circuit is shown in Fig. 2, which also shows
which line number of the code matches to which part of the circuit. It compares
two qubits: input1 and input2. If they are equal in terms of their states, then the
value of the measure qubit (i.e., output) becomes 1 (as it is initialized as 0 by
default) with the 100% probability; otherwise, the probability decreases when the
two inputs are increasingly different. Lines 2 and 3 initialize the two input qubits
(i.e., input1 and input2 ) that are to be compared. Line 4 initializes one output
qubit (output) which is the condition qubit for controlling the swap gate. Line 5
initializes a classical register (outputc1 ) that stores the result of the comparison.
Finally, Line 6 creates the quantum circuit. After the initialization (Lines 2–6), the
state of the program will be 000 with amplitude of 1 (i.e., probability of 100%). In
this execution of the program, we will compare input1 initialized as 0 (by default)
and input2 initialized as 0 (by default). Line 9 applies the HAD gate [6] on output
to put it in superposition. As a result, the state of the program will be 000 and
100 with amplitudes 0.707 (the 50% probability). Note that the output qubit is
both 0 and 1 in this state of the program, whereas the other two qubits remain
the same as initialized. Line 10 applies the CSWAP gate to swap the two input
qubits (i.e., input1 and input2 ). The swap only happens if the control qubit (i.e.,
output) has a value 1. Line 11 applies the second HAD gate on the output qubit.
Due to the reversibility of the gates in quantum computing, another application of
the HAD gate leads the program to its original state, i.e., 000. Line 12 applies the
NOT gate to the output qubit. As a result, the state in which the output qubit was
0 will become 1. Line 13 reads the output qubit and stores it in a classical register
outputc1. The final state of the program is 1.

4 Definitions

Definition 1 (Inputs and outputs). Let Q be the set of qubits of the quan-
tum program QP. A subset of qubits I ⊆ Q defines the input, and a subset
O ⊆ Q identifies the output.1 We define DI = B|I| as the input values, and
DO = B|O| as the output values.
1 Note that I and O do not need to be disjoint, i.e., an input qubit can also be

an output qubit. Moreover, there could also be qubits that are neither inputs nor
outputs, i.e., I ∪ O ⊆ Q.
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In the following, we will consider input and output values in their decimal
representation. Note that input and output values are non-negative integers, i.e.,
DI = {0, . . . , 2|I| − 1}, and DO = {0, . . . , 2|O| − 1}.

Definition 2 (Quantum program). A quantum program QP can then be
defined as a function QP : DI → 2DO .

Definition 2 shows that a quantum program, given the same input value,
can return different output values. For each input, the possible output values
occur by following a certain probability distribution. The program specification
specifies the expected probabilities of occurrence of the output values.

Definition 3 (Program specification). Given a quantum program QP : DI

→ 2DO , we identify with PS the program specification, i.e., the expected behavior
of the program. For a given input assignment i ∈ DI , the program specification
states the expected probabilities of occurrence of all the output values o ∈ DO,
i.e.,:

PS(i) = [p0, . . . , p|DO|−1]

where ph is the expected probability (with 0 ≤ ph ≤ 1) that, given the input
value i, the value h is returned as output. It holds

∑|DO|−1
h=0 ph = 1. We introduce

the following notation for selecting probabilities that are different from 0, i.e.,
those of the outputs that can occur according to the program specification:

PSNZ (i) = [p ∈ PS(i) | p �= 0] = [pj1 , . . . , pjk ] with j1, . . . , jk ∈ DO

We further write PS(i, h) = ph to specify the expected probability of occurrence
of output value h for input value i.

Note that, for some programs, the specifications of the expected outputs may
not exist, and thus our approach would not be applicable.

5 Quantum Search-Based Testing (QuSBT)

We first give definitions of failure, test, and test assessment for quantum pro-
grams in Sect. 5.1, and then propose a test generation approach in Sect. 5.2.

5.1 Failures Types, Test, and Test Assessment

Any testing approach (also for classical programs) tries to trigger failures of the
program under test, to reveal the presence of faults. Therefore, we need to define
what a failure is in a quantum program. In this work, we target two types of
failures:

– Unexpected Output Failure (uof ): the program, for a given input i, returns
an output o that is not expected according to the program specification PS,
i.e., PS(i, o) = 0;
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– Wrong Output Distribution Failure (wodf ): the program, for multiple exe-
cutions of a given input i, returns output values that follow a probability
distribution significantly deviating from the one specified by the program
specification.

We propose definitions of test and test assessment to reveal these types of
failures. Moreover, the non-deterministic nature of quantum programs requires
that a given input is executed multiple times. Therefore, we define a test input
as follows.

Definition 4 (Test input). A test input is a pair 〈i, n〉, being i an assignment
to qubits (i.e., i ∈ DI), and n the number of times that program QP must be
executed with i.

Definition 5 (Test execution and test result). Given a test input 〈i, n〉 for
a quantum program QP, the test execution consists in running QP n times with
input i. We identify with res(〈i, n〉,QP) = [QP(i), . . . ,QP(i)] = [o1, . . . , on] the
test result, where oj is the output value of the jth execution of the program.

Test Assessment. To check whether a test passes or fails, we need to check
whether at least one of the two types of failures (i.e., uof or wodf ) occurred.

To check uof , it is enough to check if some produced output is unexpected,
i.e.,

failuof:=(∃oj ∈ res(〈i, n〉,QP) : PS(i, oj) = 0)

If a failure of type uof is detected (i.e., failuof is true), the assessment for wodf
is not performed2, because we can already assess that the test is not passing.
Otherwise, it is performed as described in the following.

Checking wodf requires to check if the frequency distribution of the measured
output values follows the expected distribution. We check this by doing a good-
ness of fit test with the Pearson’s chi-square test [1]. The test checks whether the
observed frequencies of the values of the categorical variable follow the expected
distribution. In our setting, the categorical values are the possible output values
of the quantum program QP for a given input i, i.e., those having their expected
probabilities being non-zero, and the expected distribution is given by the pro-
gram specification (i.e., PSNZ (i) in Definition 3). Concretely, given a test input
〈i, n〉 and its test result res(〈i, n〉,QP) = [o1, . . . , on], we apply the chi-square
test as follows:

– from the program specification, we retrieve the expected probabilities of the
outputs that can occur given the input i, i.e., PSNZ (i) = [pj1 , . . . , pjk ], with
j1, . . . , jk ∈ DO (see Definition 3); j1, . . . , jk are the categorical values of the
test;

2 In this case, we directly set failwodf (see Eq. 1 later) to false.
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– then, from the test result, we collect, in [cj1 , . . . , cjk ], the number of occur-
rences of each possible output j1, . . . , jk, where cjh = |{o ∈ res(〈i, n〉,QP) |
o = jh}|.3 This is the one-dimensional contingency table of the chi-square
test; and

– finally, we apply the chi-square test, that takes in input the contingency
table [cj1 , . . . , cjk ] and the expected occurrence probabilities [pj1 , . . . , pjk ],
and checks whether the recorded occurrences follow the expected probability
distribution.

The null hypothesis is that there is no statistical significant difference. If the
p-value is less than a given significance level α (α = 0.01 in our experiments),
we can reject the null hypothesis and claim that there is a statistical significant
difference. In our case, this means that a wrong output distribution failure wodf
occurred, which can be detected with the following predicate:

failwodf := (p-value < α) (1)

Note that the chi-square test requires to have at least two categories. There-
fore, the assessment for wodf cannot be done when there is only one possible
output for a given input (i.e., |PSNZ (i)| = 1).4 However, in this case, checking
uof is enough. Indeed, if the program QP is not faulty for uof , it means that
it always produces the unique output expected from the program specification
and, so, also wodf is satisfied.

To conclude, the test is considered failed if one of the two failures is observed.
So, we introduce a predicate recording the result of the test assessment as follows:

fail := failuof ∨ failwodf

Remark 1. Note that the absence of a failure for an input i does not guarantee
that the program behaves correctly for i. For uof , it could be that other addi-
tional executions would show a wrong output. For wodf , instead, the significance
level of the test specifies the confidence on the absence of the fault. The argument
is a little bit different for the case that the test fails. If failuof = true, we are
sure that the program is faulty, because an output that should be never returned
has been returned. Instead, if failwodf = true, it could still be that, with more
executions, the observed frequencies of the output values would better align with
the expected probability distribution specified in the program specification. In
this case, the lower the p-value, the higher the confidence on the result.

Definition of the Number of Repetitions. Definitions 4 and 5 say that a
test must specify the number of times n that the input i must be executed for
3 Note that the assessment for wodf is done only if the assessment for uof did not

reveal any failure. If this is the case, it is guaranteed that the program returned
outputs only from j1, . . . , jk, i.e., those having their expected probabilities being
non-zero. Therefore, it is guaranteed that each returned output is considered in one
of the counts cj1 , . . . , cjk .

4 Note that a quantum program can still be deterministic for some given inputs.
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its assessment. It is well recognized that selecting such a number is difficult [9],
and most approaches do not specify it nor provide a rationale for the selection of
a particular number (e.g., [8]). Intuitively, the higher the number of repetitions,
the better, as this gives a higher confidence on the result of the test assessment.
However, a too high number of repetitions makes the assessment of tests infea-
sible, in particular when multiple tests must be assessed (as, for example, in a
test generation approach as the one proposed in this paper).

In QuSBT, we select a number of repetitions that is sufficient to have a rea-
sonable confidence on the result of the test assessment, but also makes the test
assessment feasible to compute. We start observing that not all the inputs need
the same number of repetitions: inputs for which a program specification spec-
ifies few possible output values, require fewer repetitions than those having a
lot of possible outputs. Consider the case in which input i1 has two possible
outputs, while input i2 has four possible outputs. Then, more repetitions are
needed for input i2 than for i1, as we need to provide comparable evidence for
each of the possible outputs. On the basis of this intuition, we define a function
that, given an input i, specifies the required number of repetitions:

numRepetitions(i) = |PSNZ (i)| × 100

So, the number of repetitions n of the test input i is proportional to the number
of possible output values that, according to the program specification, can be
obtained by executing the program with i (see Definition 3).

5.2 Test Case Generation

For a given program QP, QuSBT generates a test suite of M tests, being M an
approach’s parameter. It uses a GA, where search variables x = [x1, . . . , xM ] are
integer variables, each one representing an input for QP taken from DI . QuSBT
finds an assignment v = [v1, . . . , vM ] for the M tests, such that as many of
them as possible fail the program. Fitness is computed as follows. For each test
assignment vj of the jth test:

– We identify the required number of repetitions nj , as described in Sect. 5.1;
– We execute QP nj times with the input vj , obtaining the result res(〈vj , nj〉,

QP);
– The result is assessed (see Sect. 5.1). We identify with failj the assessment

result.

Let ta = [fail1, . . . , failM ] be the assessments of all the M tests. The fitness
function that we want to maximize is given by the number of failed tests, i.e.,

f(v) = |{failj ∈ ta | faili = true}| (2)

Selection of the Number of Tests. QuSBT requires to select the number of
tests M to be added in each searched test suite. Users can specify M , e.g.,
based on available budgets. However, selecting a value M without considering
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the program under test might not be a good practice. So, we propose to select M
as the percentage β of the number of possible inputs DI of the quantum program,
i.e., M = �β · |DI |�. The user must then select the percentage β, rather than the
absolute number M .

6 Experimental Design

We describe the experimental design to evaluate QuSBT in terms of research
questions, benchmark programs, experimental settings, evaluation metrics, and
statistical tests employed to answer the research questions. The used benchmarks
and all the experimental results are available online5.

Research Questions (RQs). We evaluate QuSBT using the following RQs:

– RQ1: Does QuSBT (which is GA-based) perform better than Random Search
(RS)? RQ1 assesses whether GA can identify test inputs that contribute to
failures, as compared to RS.

– RQ2: How does QuSBT perform on the benchmark programs? RQ2 assesses
the variability on the final results, and how fast the GA converges to better
solutions.

Benchmarks Programs. We selected six programs with different characteris-
tics (see Table 1): (i) cryptography programs: Bernstein-Vazirani (BV) and Simon
(SM) algorithms; (ii) QRAM (QR) implements an algorithm to access and manip-
ulate quantum random access memory, and invQFT (IQ) implements inverse
quantum Fourier transform; (iii) mathematical operations in superposition, i.e.,
Add Squared (AS); (iv) conditional execution in superposition, i.e., Conditional
Execution (CE).

Considering that there are no common known metrics available in the liter-
ature for characterizing quantum programs, we here propose to use the number
of input qubits, the number of gates, and the circuit depth as the characteri-
zation metrics. The number of input qubits (i.e., |I|) intuitively characterizes
the dimension of the input space (as in classical programs). Since we want to
evaluate our approach with relatively complex programs, we selected four pro-
grams having 10 input qubits. Moreover, we selected two programs with a lower
number of input qubits (i.e., QR and SM) to check whether the proposed approach
is also advantageous on less complex programs.

The other two metrics, i.e., the number of gates and circuit depth, instead, to
a certain extent, characterize the complexity of the program logic. The number
of gates is the number of individual operators (e.g., HAD, NOT), while the
circuit depth is given by the length of the longest sequence of quantum gates
(the output of a gate used as the input of another gate determines a unit of
the length). As shown in Table 1, IQ has the largest number of gates, BV has the
least circuit depth, and AS has the longest circuit depth. We are aware that these

5 https://github.com/Simula-COMPLEX/qusbt/.

https://github.com/Simula-COMPLEX/qusbt/
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Table 1. Benchmark programs (Legend. AI: right after the inputs, MP: middle of the
program, BR: right before reading the output)

Program |I| # gates depth Faulty versions (benchmarks)

AS 10 41 38 AS1: AI, CNOT added; AS2: AI, SWAP added;
AS3: BR, CNOT added; AS4: BR, CSWAP added;
AS5: MP, CNOT added

BV 10 30 3 BV1: AI, CNOT added; BV2: AI, SWAP added;
BV3: AI, CCNOT added; BV4: BR, CNOT added;
BV5: BR, CSWAP added

CE 10 25 20 CE1: AI, CNOT added; CE2: AI, SWAP added;
CE3: AI, CSWAP added; CE4: BR, NOT added;
CE5: BR, HAD added

IQ 10 60 56 IQ1: AI, CHAD added; IQ2: MP, CHAD added;
IQ3: MP, replace H as CHAD; IQ4: AI, CHAD
added; IQ5: MP, CHAD added

QR 9 15 12 QR1: MP, CCPhase added; QR2: MP, CHAD
added; QR3: MP, CNOT added; QR4: AI, SWAP
added; QR5: BR, CSWAP added

SM 7 56 5 SM1: AI, SWAP added; SM2: AI, CCNOT added;
SM3: BR, CNOT added; SM4: BR, CSWAP added;
SM5: BR, HAD added

metrics are coarse-grained, and in the future we plan to define and employ more
fine-grained metrics.

For our selected programs, we derived the program specification (see Def-
initions 3) to assess the passing or failing of tests. For each correct program,
we produced five faulty versions of it by introducing different types of faults at
different locations of the circuit. These 30 faulty programs are the benchmarks
that we test in our experiments, which are described in details in Table 1. The
benchmark name (e.g., AS1) recalls the original correct program acting as the
program specification (e.g., AS). The table also reports the location where a fault
has been injected (i.e., right after the inputs, middle of the program, or right
before reading the output). A short description is also provided for each bench-
mark program to tell which kind of gates were added. For instance, a CNOT
gate is added right after the input to the original program to produce AS1.

Experimental Settings. We use Qiskit 0.23.2 [13] to write quantum programs
in Python. It also provides a simulator for executing quantum programs, which
we used for each evaluation of a given input i (i.e., QP(i)).

We adopted GA from the jMetalPy 1.5.5 framework [5], and used the default
settings of jMetalPy: the binary tournament selection of parents, the integer
SBX crossover (the crossover rate = 0.9), the polynomial mutation operation
being equal to the reciprocal of the number of variables. The population size is
set as 10, and the termination condition is the maximum number of generations
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which is set as 50. As the baseline comparison, we also implemented a Random
Search (RS) version of the approach from jMetalPy. RS has been given the same
number of fitness evaluations as GA, i.e., 500. Note that there is no existing
baseline with which we can compare QuSBT.

Search variables x = [x1, . . . , xM ] (see Sect. 5.2) of QuSBT represent the input
values of the tests (i.e., the values i of tests; see Definition 4) of the searched
test suite. So, the search interval of each variable is given by the set of possible
input values DI of the program; since inputs of a quantum program are non-
negative integers (see Sect. 4), the search space is defined as xk ∈ [0, |DI | − 1]
for k = 1, . . . ,M .

QuSBT requires to select, as parameter, the number of tests M of each gen-
erated test suite. This can be selected as percentage β of the size of the input
domain of the program (see Sect. 5.2). We here use β = 5%; this results in having
M=50 for programs with 10 qubits (and so 1024 input values), M = 26 for the
program with 9 qubits (and so 512 input values), and M = 7 for the program
with 7 qubits (and so 128 input values).6

For the fitness evaluation, assessing whether a test passes or fails requires
to perform the Pearson Chi-square test for checking failures of type wodf (see
Sect. 5.1). To this aim, we adopt rpy2 3.4.2, a Python interface to the R frame-
work. We use α = 0.01 as the significance level in the Chi-square test (see Eq. 1).
Notice that correct inputs may still provide distributions slightly different from
the expected ones (due to the limited number of repetitions); therefore, to be
more confident on the failure of an input, we use the value 0.01 for the Chi-square
test, instead of 0.05 or a higher confidence level.

Experiments have been executed on the Amazon Elastic Compute Cloud,
using instances with a 2.9 GHz Intel Xeon CPU and 3.75 GB of RAM. To con-
sider the randomness in search algorithms, each experiment (i.e., the execution
of QuSBT for a given benchmark using either GA or RS) has been executed
30 times, as suggested by guidelines to conduct experiments with randomized
algorithms [3].

Evaluation Metrics and Statistical Tests. In order to evaluate the quality
of the results of the search algorithms (GA and RS), we directly use the fitness
function defined in Eq. 2 as the evaluation metric, which counts the number of
failing tests in a test suite (i.e., an individual of the search). We call it the Number
of Failed Tests metric (NFT). The NFT of GA is given by the best individual of
the last generation, while the NFT of RS is given by the best of all the generated
individuals.

To answer RQ1, we selected the Mann-Whitney U test as the statistical test
and the Vargha and Delaney’s Â12 statistics as effect size measure based on
the guidelines [3]. Namely, given a benchmark program, we run the generation
approach 30 times with GA and 30 times with RS. The Mann-Whitney U test
(with the significance level of 0.05) is used to compare the 30 NFT values obtained
by GA and the 30 NFT values of RS. The null hypothesis is that there is no
6 Note that we manually approximated the value of programs with 1024 inputs values.

Indeed, the correct number of tests would be �0.05 · 1024� = 52.
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Table 2. Comparison between GA and RS (≡: there is no statistically significant
difference between GA and RS. ✓: GA is statistically significantly better.)

AS1 AS2 AS3 AS4 AS5 BV1 BV2 BV3 BV4 BV5 CE1 CE2 CE3 CE4 CE5 IQ1 IQ2 IQ3 IQ4 IQ5 QR1 QR2 QR3 QR4 QR5 SM1 SM2 SM3 SM4 SM5

✓ ✓ ✓ ≡ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ≡ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ≡ ≡ ✓ ✓ ✓

statistical difference between GA and RS. If the null hypothesis is not rejected,
then we consider GA and RS equivalent. Otherwise, if the null hypothesis is
rejected, we apply the Â12 statistics. If Â12 is 0.5, then it means that the results
are obtained by chance. If Â12 is greater than 0.5, then GA has a higher chance
to achieve a better performance than RS, and vice versa if Â12 is less than 0.5.

7 Results and Discussions

7.1 Results and Analyses

RQ1. To assess the usefulness of using a search algorithm, in our case GA,
we compared it with RS. For each experiment (i.e., the test generation for a
benchmark program), we executed 30 runs with GA and 30 runs with RS. We
selected the Number of Failing Tests NFT as the evaluation metric (see Sect. 6).
Then, we compared 30 values of GA and 30 values of RS, with the Mann-
Whitney U test and the Â12 statistics as described in Sect. 6. Comparison results
are summarized in Table 2.

We observe that in 26 out of 30 cases, GA is significantly better than RS. This
shows that GA is able to identify failing inputs in individuals. By considering
the different types of the benchmarks, (see Table 1), we notice the differences in
results. For some programs such as BV, CE, and QR, GA consistently performed
significantly better than RS. In other programs such as AS and IQ, instead, in
one out of the five cases, there are no differences between GA and RS. Note
that, even for a simple program such as SM (for which we need to generate only 7
tests), GA is still better in three out of the five cases. This means that the task
of selecting qubit values leading to failures is a difficult task also for programs
with small numbers of input qubits such as those of SM (with 7 input qubits),
and this further motivates the need for a search-based approach.

RQ2. Figure 3 reports, for all the benchmarks, the quality of the final results in
all the 30 runs, in terms of the evaluation metric NFT, which counts the number
of failing tests in the returned test suite (see Sect. 6). In almost all the cases of
the four groups of the most complex benchmarks (i.e., Figs. 3a–3d) for which we
built test suites of 50 tests, the variability of the final results across the runs
is high. Moreover, in these four complex benchmarks, the search was almost
always not able to find all 50 failing tests. Similar results can be found in QR
(i.e., Fig. 3e), for which we built test suites of 26 tests, the search cannot always
find 26 failing tests. This could be due to the fact that there are not so many
failing tests, or the search was not given enough time.
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Fig. 3. Final results (# of failing tests in the final test suite) of GA across the 30 runs

These observations tell us that a dedicated and large-scale empirical study is
needed to investigate whether such a large variability and inability to find, e.g.,
50 or 26 failing tests, is due to the randomness of the search (which perhaps
can be mitigated with a better fitness function), is specific to fault character-
istics (such as their types and seeding locations (Table 1)) or characteristics of
quantum programs under test such as their circuit depth and numbers of gates.

For the benchmark programs of SM (Fig. 3f), instead, the required test suite
size is much smaller (i.e., 7). Among its five SM benchmarks, for two of them (i.e.,
SM1 and SM5), the search found, in all 30 runs, 7 failing inputs, showing that the
task is relatively easy. On the other hand, for the other three SM benchmarks,
the search found less than 7 failing inputs (as low as 3 failing inputs).

We now want to assess how fast the test generation approach optimizes its
objective (i.e., the maximization of the number of failing tests in a test suite).
Figures 4a–4f show, for each group of the benchmark programs, how the fitness
(see Eq. 2) of the best individual in the population increases over generations.
The reported plots are the averages across the 30 runs. First of all, we observe
that, for all the benchmark programs, the first generation already finds some
failing inputs. The number of discovered failing inputs in the first generation is
positively correlated to the total number of failing inputs in the input space.
Moreover, the number of identified failing inputs varies across the benchmark
programs and depends on the types of faults and their locations in the benchmark
programs (e.g., seeding a CSWAP gate right after the input or a HAD gate right
before reading the output, see Table 1). Note that sometimes finding some failing
inputs in a faulty circuit is not difficult, since RS can also do it. However, the
maximization of the number of the failing tests is not trivial, as already evidenced
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Fig. 4. Results – evolution of the fitness values over generations

by the observations reported for answering RQ1: GA is better than RS in finding
more failing tests for most of the benchmark programs.

By observing the trends, we notice that they are increasing with different
degrees of improvements. Three benchmarks of BV (i.e., BV1, BV2, and BV4,
Fig. 4b) reach the point of almost discovering all the 50 failing tests in the
final generation. SM1 and SM5 even reach a plateau after around 10 generations.
Instead, all the other 25 benchmarks do not achieve high scores on detecting
failing tests, possibly implying that further improvements would be still possible
with additional generations.

For benchmarks of BV (see Fig. 4b), the increment in the fitness function is
faster than the other benchmarks (those that must generate 50 tests). This does
not necessarily mean that the problem is easy; indeed, for all the BV benchmarks,
GA is better than RS (see Table 2). Instead, we believe that each fault of the
BV benchmarks can be captured by a single well-defined pattern of input qubit
values. So, once a pattern is discovered by the search, it is successfully migrated
in new failing tests. We believe that, in other benchmarks, there is no such
a single pattern of failing qubit values and, so, the search has more problems
in finding new failing tests. As future work, we plan to perform an extensive
investigation of how different types of in failing inputs, and how these failing
inputs relate to each other (i.e., if they share some failing qubit values or not).

7.2 Discussion

The faults seeded in the quantum programs used for the evaluation can have
different complexity (see Table 1). For instance, introducing a CNOT gate as



Generating Failing Test Suites for Quantum Programs with Search 23

a fault requires that the CNOT gate is applied to two qubits, which is intu-
itively considered more complex than introducing a HAD gate (operating on
one qubit). However, seeding a fault to a critical location might significantly
change the logic of the circuit. For instance, seeding a NOT gate right before
reading the output might completely reverse the output of a circuit, which may
make the observation of failures easy and then generate a program for which it
is easy to generate failing tests. In Table 1, we classify the fault seeding loca-
tions into three categories: right after the inputs, middle of the program, and
right before reading the output. This classification is coarse-grained, and a bet-
ter mechanism is required to characterize fault seeding locations. So, we need
larger-scale experiments, designed based on well understanding of faults charac-
teristics, their relations to test inputs, and characteristics of quantum programs
under tests. Consequently, more comprehensive test strategies will be proposed
in the future. Nevertheless, considering that quantum software testing is an
emerging area, QuSBT contributes to building a body of knowledge in this area.

In this paper, we limit the scope of our study to identifying as many failing
tests as possible. To assess passing and failing of a test, we defined two types
of failures: uof and wodf , both of which do not consider the phase changes of
qubits. Therefore, QuSBT currently can not reveal faults that only change the
phases of output qubits, but not their occurrence probabilities.

The test input assessment requires to specify the number of repetitions (see
Sect. 5.1). Note that, to the best of our knowledge, there is no existing criterion
on how such a value should be set. So, our proposed mechanism provides a
baseline for future research.

Even though our evaluation is performed on Qiskit in Python, QuSBT is gen-
eral as it can be applied to other quantum platforms and quantum programming
languages. In this paper, we performed all the experiments on the quantum com-
puter simulator provided with Qiskit without simulating hardware faults. Thus,
QuSBT needs to be extended in the future to deal with potential hardware faults
in real quantum computers.

8 Threats to Validity

External Validity. We experimented only with six quantum programs and 30
(faulty) benchmark programs; thus, our results can be generalized to only quan-
tum programs of similar characteristics. More experiments with varying char-
acteristics of quantum programs are needed to generalize the results. Another
threat is related to the selection of faults that were introduced in the quan-
tum programs to create faulty benchmark programs. We chose a set of arbitrary
faults, which could potentially affect our results. However, currently, there does
not exist any bug repository for quantum programs that we could use to seed
realistic faults in quantum programs.

Internal Validity. We choose GA’s default parameter settings. Different GA
settings may produce different results that could potentially affect our results.
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However, the evidence has shown that even default settings of GA provide good
results in search-based testing of classical software [4]. To assess the passing and
failing of tests with wodf , we used the Pearson’s Chi-square test. Other tests
may be relevant; however, the Chi-square test has been used for this purpose in
existing related literature [7,8].

Conclusion Validity. Since GA and RS have inherent randomness, we repeated
experiments 30 times for each faulty program to ensure that the results weren’t
obtained by chance. Followed by this, we compared the results of GA with RS
with statistical tests according to the well-established guides in search-based
software engineering [3].

9 Conclusion and Future Work

We presented a search-based approach for testing quantum programs that uses a
Genetic Algorithm (GA) and employs a fitness function to search for test suites
of a given size, containing as many failing tests as possible. We assessed the
effectiveness of our approach as compared with Random Search (RS) with 30
faulty benchmark quantum programs. The results showed that GA significantly
outperformed RS for 87% of the faulty quantum programs, whereas for the rest,
there were no significant differences.

Our future work includes experimenting with more algorithms and quantum
programs and running them on quantum computers (e.g., by IBM). Moreover,
we will perform analyses, e.g., studying the search space of solutions and the
effect of search operators on the effectiveness of QuSBT. Finally, we will devise
systematic methods to create realistic faulty quantum programs and publish a
public repository.
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Abstract. The cost of a fitness evaluation is often cited as one of the
weaknesses of Search-Based Software Engineering: to obtain a single final
solution, a meta-heuristic search algorithm has to evaluate the fitness
of many interim solutions. Recently, a sampling-based approach called
SWAY has been introduced as a new baseline that can compete with
state-of-the-art search algorithms with significantly fewer fitness eval-
uations. However, SWAY has been introduced and evaluated only in
numeric and Boolean decision spaces. This paper extends SWAY to per-
mutation decision space. We start by presenting the theoretical formula-
tion of the permutation decision space and the distance function required
by SWAY, and subsequently present a proof-of-concept study of Test
Case Prioritisation (TCP) problem using our permutative SWAY. The
results show that our embedding works well for permutative decision
spaces, producing results that are comparable to those generated by the
additional greedy algorithm, one of the most widely used algorithms for
TCP.

Keywords: SWAY · Permutations · TCP

1 Introduction

Search Based Software Engineering (SBSE) formulates software engineering
problems as metaheuristic optimisations and applies various search tech-
niques [10]. These search techniques typically navigate the decision (or solution)
space guided by a fitness function that maps a solution in the decision space to
one or more values in the fitness (or objective) space. The mapping is achieved
by dynamically evaluating the decision against the actual problem instance and
measuring the fitness. The dynamic and concrete nature of fitness evaluation
allows us to search for properties that cannot be easily measured otherwise: for
example, Search Based Software Testing has successfully applied to find test
inputs that satisfy non-functional test requirements such as increased memory
consumption [13] or worst case execution time [16].
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However, such dynamic and concrete nature of fitness evaluation is accompa-
nied by the cost of the actual execution. Given the wide adoption of population
based optimisation algorithms such as genetic algorithm, the cost of fitness eval-
uation poses a serious threat not only to practical applications of SBSE but also
to research and experimental use of these techniques.

Recently, a new type of search algorithm based on random sampling, called
SWAY, has been introduced [2]. Suppose we are optimising an objective variable
by searching for a decision variable. The fitness evaluation can be formulated as:

o = fitness(d)

where d ∈ D is the decision variable and o ∈ O is the objective variable. Chen
et al. empirically showed that, in many cases of SBSE formulations, there exists
a close association between D and O [2]. SWAY exploits this by recursively
clustering, and searching for, possible candidate solutions in the decision space
rather than in the objective space. By doing so, it admits a logarithmic time
complexity in terms of fitness evaluations. Such scalability, along with its sim-
plicity, qualifies SWAY as a baseline optimizer [21]. However, the current form
of SWAY is limited to decision spaces that are either numerical or Boolean. The
aim of this paper is to extend SWAY to permutative decision space.

The technical contributions of this paper are as follows:

– We present a formulation of SWAY in permutative decision spaces. Instead of
coarse-grained grouping followed by the use of binary SWAY (as suggested by
authors of SWAY), we present a novel Euclidean embedding of permutations
that can be used with continuous SWAY.1

– We conduct a proof-of-concept evaluation of SWAY in a permutative decision
space with instances of Test Case Prioritisation problems. The results show
the feasibility of our embedding.

The rest of the paper is organised as follows. Section 2 introduces the original
SWAY, proposes our novel Euclidean embedding of permutative decision spaces,
and introduces the adaptation of SWAY to the proposed embedding. Section 3
describes the settings of the case study of the application of SWAY to Test Case
Prioritisation problem, whose results are presented in Sect. 4. Section 5 discusses
the related work, and Sect. 6 concludes.

2 SWAY for Permutative Decision Spaces

This section first introduces the basic SWAY algorithm, and subsequently
presents the design of our embedding scheme for permutation decision variables.

1 Here, embedding for a permutative decision space simply refers to a mapping of
each permutation to some Euclidean space that is structure-preserving (as in “node
embedding” in machine learning). In the following sections, we shall describe which
structure to preserve.
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2.1 The Original SWAY

SWAY [2,3] is an effective random sampling algorithm that can be used as a
baseline for more sophisticated search algorithms. Algorithm 1 shows the pseu-
docode of the original, continuous SWAY. At its core, SWAY simply seeks to
choose a cluster of solutions that are superior to others. If the clustering is per-
formed based on the solution phenotype, SWAY would have to spend a lot of
fitness evaluations. Instead, SWAY exploits the fact that, in many SBSE prob-
lems, there exists a close association between the genotype (i.e., decision) and
the phenotype (i.e., objective) spaces [3], and recursively clusters the solutions
in the genotype space using FastMap heuristic [9] (implemented in Split), only
evaluating the representatives of each cluster.

Algorithm 1: Continuous SWAY with its subroutine Split
1 Given: inner product 〈·, ·, 〉 and its induced norm 〈‖·‖〉, objective

computing function obj : D → O, ordering on O �
2 Hyperparameters: enough
3 Function contSWAY(candidates):
4 if |candidates| < enough then
5 return candidates
6 else
7 [west, westItems], [east, eastItems] ←− Split(candidates)
8 Δ1,Δ2 ←− ∅, ∅
9 if obj(east) � obj(west) then

10 Δ1 ←− contSWAY(westItems)
11 end
12 if obj(west) � obj(east) then
13 Δ2 ←− contSWAY(eastItems)
14 end
15 return Δ1 ∪ Δ2

16 end
17 End Function
18 Function Split(candidates):
19 rand ←− randomly selected candidate from candidates
20 east ←− argmaxx∈candidates‖x − rand‖
21 west ←− argmaxx∈candidates‖x − east‖
22 for x ∈ candidates do
23 xd ←− 〈east−west,x−west〉

‖east−west‖
24 end
25 Sort candidates by xd

26 eastItems ←− first half of candidates
27 westItems ←− second half of candidates
28 return [west, westItems], [east, eastItems]
29 End Function
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For problem with continuous numerical genotypes, the FastMap heuristic
that is based on cosine rules and Euclidean distance works well (Line 22 of
Algorithm 1); for binary decision spaces, SWAY adopts a radial coordinate
system. Finally, for non-binary discrete decision spaces, Chen et al. propose
coarse-grained binary groupings of such solutions fed into the binary version of
SWAY [2,3]. However, even with sufficient domain knowledge, certain decision
spaces may not allow an easy and intuitive coarse-grained grouping that would
enable us to use binary SWAY. For example, it is not clear what coarse-grained
groupings can be used in a permutative decision space without knowing which
ordering is better than others.

We propose a formulation of SWAY for permutative decision spaces that uses
the continuous SWAY. Our intuition is that we can use the continuous SWAY
as long as we can embed permutations into an alternative vector form in such a
way that the Euclidean distance between embedding vectors is closely correlated
with Kendall τ distance, i.e., the combinatorial distance between permutations
(i.e., the number of pairwise disagreement between two permutations). Note that
the use of continuous SWAY, which depends on the cosine rule and Euclidean
space, forces us to use Euclidean embedding.

The remainder of this section investigates such an embedding of the set of
all possible permutations, denoted as Sn. To the best of our knowledge, Sn

cannot be endowed with an easy-to-be-implemented inner product, or even a
well-defined one. Thus, we need to embed Sn into a simple inner vector space.

2.2 Preliminaries

This section provides an overview of the necessary mathematical concepts. Let
us start with a basic definition:

Definition 1. A permutation of [n] := {1, 2, . . . , n} is a bijection from [n] to
itself. Denote Sn as the set of all possible permutations of [n].2 Especially, let
i = (1, . . . , n) ∈ Sn be the identity permutation. Moreover, depending on the
context, π ∈ Sn may be regarded as a vector in R

n.

Unlike a p-dimensional space R
p, which has a natural metric endowed from

its Euclidean norm3, defining the distance between two permutations in an anal-
ogous manner is not trivial. First, let us start with the “natural” definition of
metric on Sn (much discussion has been taken from Deza and Deza [4]):

Definition 2. Given a connected4 graph G = (V,E), its path metric is a
metric on V , defined as the length of a shortest path connecting x, y ∈ V .

Definition 3. Given a finite set X and a finite set O of unary editing operations
on X, the editing metric on X is the path metric of the graph G(X,O) whose
vertices are X and whose edge set is {{x, y} | ∃o ∈ O : y = o(x)}. (If X = Sn,
then it is also called permutation metric).
2 Sn with composition operation forms the symmetric group of order n.
3 For x = (xi) ∈ R

p, its Euclidean norm is defined as ‖x‖ :=
(∑p

i=1 x2
i

)1/2
.

4 G = (V, E) is connected if for every x, y ∈ V , there exists a path from x to y.
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Since we are dealing with the decision space of permutations, it would be
reasonable to assume that the objective value of candidate solutions is heavily
dependent on the relative orderings in the permutations. Consider an example
in TCP: a test case tf has high fault detection capability and, consequently, con-
tribute to higher APFD if executed early on. Swapping tf with the next adjacent
test case will delay the fault detection only a little, when compared to swapping
tf with the last test case in the ordering. The distance in relative ordering can be
reflected by counting the number of switches of two adjacent elements required
to move from one permutation to another, formalized as follows:

Definition 4. The swap distance (also known as Kendall τ distance in sta-
tistical ranking theory) of π, π′ ∈ Sn, denoted as dK(π, π′), is the editing metric
on Sn with O being the set of all possible swaps i.e. it is the minimum number
of swaps required to go from π to π′.

Proposition 1. dK : Sn × Sn → R≥0 is indeed a permutation metric.

The following proposition provides a very intuitive way of computing the
swap distance5:

Proposition 2. Given π, π′ ∈ Sn, dK(π, π′) is precisely the number of relative
inversions between them i.e. number of pairs (i, j), 1 ≤ i < j ≤ n with (πi −
πj)(π′

i − π′
j) < 0.

All in all, we want an Euclidean embedding scheme with the following prop-
erty: embeddings of two permutations are close together if the swap distance
between them is small, and vice versa.

Remark 1. One may ask why not stop now and just use the swap distance in
SWAY. However, continuous SWAY [2,3] is designed to be used for Euclidean
space, only; specifically, the usage of Euclidean distance is crucial for splitting
the candidates via cosine rule, which is not applicable for other metrics.

2.3 Consideration of Naive Embedding

The most trivial Euclidean embedding of permutations would be to take a per-
mutation π of n items directly as a vector in R

n, as mentioned in Definition 1.
More formally, it can be defined as follows:

Definition 5. For fixed n, the permutahedron, denoted as Πn−1, is defined
as the convex hull of the set Vn = {(π(1), . . . , π(n)) | π ∈ Sn}, which can be
thought of as the “direct” embedding of Sn onto R

n.

Based on the study of permutahedron in combinatorics [18], we can derive
the following propositions about Πn−1.6

5 This proposition indicates a O(n log n) algorithm based on sorting. Apart from our
consideration, a more efficient algorithm has been proposed; see [1].

6 Refer to [19,24] for the full proofs and more detailed discussions on related topics.
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Proposition 3. Πn−1 is a simple (n − 1)-dimensional polytope with Vn as its
set of vertices.

Proposition 4. Two vertices of Πn−1 are adjacent iff they differ by a swap,
when considered as permutations.

(a) Kendall τ vs. �2 (b) Kendall τ vs. Spearman ρ

Fig. 1. Scatter plots showing correlations between swap distance and different embed-
ding distances

Simplicity and convexity of the underlying polytope, shown in Proposition 3,
ensures that the Split function in Algorithm 1 does not show any unexpected
behaviour. What is more interesting is Proposition 4, which seems to suggest a
positive correlation between the �2-distance7 and the swap distance, dK . How-
ever, empirical evidence shows that such correlation either does not exist, or is
very weak if it does, rendering the naive and trivial embedding inapplicable. In
Fig. 1a, the x-axis is the Euclidean distance between two random permutations,
π, π′ ∈ Sn, embedded naively using the permutahedron (i.e., ‖π−π′‖2), whereas
the y-axis is the swap distance (i.e., dK(π, π′)). No strong positive correlation
can be observed. Consequently, we are forced to consider another embedding
scheme.

2.4 Motivations for Rank Based Embedding

We start with the following crucial observation: Sn is in bijection with the set of
all possible linear orders on [n], denoted as Ln. By dealing with the linear orders
instead of permutations, we can leverage several useful results from statistical
ranking theory. To start, let us first define such bijection [15]:

7 For simplicity, let us refer to the distance of the embedded permutations as the
�2-distance of the permutations.
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Definition 6. Let L ∈ Ln.

1. The rank function of L is the function rL : [n] → [n], defined as

rL(x) = 1 + |{y ∈ [n] : yLx}|
2. The position permutation associated with L is π = (π1 π2 · · · πn) ∈ Sn

with rL(πi) = i for i ∈ [n].
3. The rank permutation associated with L is π = (π1 π2 · · · πn) ∈ Sn with

πi = rL(i) for i ∈ [n].

Definition 7. Let π = (π1 π2 · · · πn) ∈ Sn. Then the linear order L ∈ Ln asso-
ciated with π is defined as π1Lπ2L · · · Lπn. Let r(π) denote the rank permutation
associated with above-defined L, considered as a Euclidean vector.

We provide a simple example for the concept of rank permutation:

Example 1. Consider π = (2 3 4 1 6 5) ∈ S6. Then the linear order <′ on [n]
induced by π′ is given as 2 <′ 3 <′ 4 <′ 1 <′ 6 <′ 5. Under <′, 1 is the 4th
ranking element, 2 is the 1st ranking element, and so on. Putting the ranks
altogether gives r(π) = (4 1 2 3 6 5).

Above definition motivates another “distance” between two permutations,
which can be formally defined as follows:

Definition 8. Spearman ρ distance of π, π′ ∈ Sn, denoted as dS(π, π′), is
precisely the Euclidean distance between r(π) and r(π′), considering them as
vectors (vertices of Πn−1 in R

n)

Proposition 5. dS : Sn × Sn → R≥0 is indeed a permutation metric.

Our embedding scheme is based on the following non-trivial results by Mon-
jardet [15]. Here, dG(·, ·) is a function from Sn×Sn to R≥0 that is combinatorially
well-defined.

Theorem 1 (Monjardet, 1998 [15]).

d2S(π, π′) = ndK(π, π′) − dG(π, π′) ∀π, π′ ∈ Sn (1)

Equation 1 implies that if the effect of dG is insignificant with respect to d2S
and ndK , then there is a positive correlation between dS and dk. To see this,
we perform similar experiment as the one with the naive embedding; we sample
sufficient number of pairs of permutations, and for each sampled (π, π′) ∈ Sn×Sn

we plot a scatter plot of dS(π, π′)2 vs. dK(π, π′), shown in Fig. 1b. Observe
how there is an almost linear relationship between the two quantities, which is
precisely what we need.

Based on previous discussions, we propose the following Euclidean embedding
scheme of Sn (note how r is a bijection from Πn−1 to itself):

π ∈ Sn ⇐⇒ r(π) ∈ Πn−1 ⊂ R
n
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3 Preliminary Evaluation: Test Case Prioritisation (TCP)

We consider Test Case Prioritisation (TCP) problem [22] as the subject of our
proof-of-concept, preliminary evaluation of our embedding scheme. Intuitively,
the goal of TCP is to find the optimal ordering of the test cases such that “early
fault detection” is maximized, which can be defined as follows [17]:

Definition 9 (Test Case Prioritisation (TCP)). Given a test suite, T , the
set of permutations of T , PT , and a function from PT to R, f : PT → R, find
T ′ ∈ PT such that (∀T ′′) (T ′′ ∈ PT ) (T ′′ �= T ′) [f(T ′) ≥ f(T ′′)].

The ideal choice of f would be the function that measures the real fault
detection rate of the given ordering. In reality, such measurement is not available
before the entire test suite is executed, forcing us to use surrogates such as
structural coverage [17,22]. We focus on the coverage-based approach.

3.1 Performance Metrics

We consider two metrics, Average Percentage of Statement Coverage (APSC)
and Average Percentage of Fault Detection (APFD) [17], to evaluate the order-
ings produced by SWAY. Let T be an ordered test suite. APSC measures the
rate of coverage achieved, and can be formally defined as follows:

APSC(T ) = 1 − TS1 + · · · + TSm

nm
+

1
2n

(2)

where TSi is the index of the first test case that covers statement i, n is the
number of test cases in the test suite, and m is the number of statements in
the program. Note that it is possible to compute APSC using coverage of each
test case measured from the previous version of the System Under Test (SUT).
APFD, in comparison, measures the actual rate of fault detection a posteriori,
because information about fault detection is only available after all test cases
have been executed. It is defined as follows:

APFD(T ) = 1 − TF1 + · · · + TFm

nm
+

1
2n

(3)

where TFi is the index of the first test case that covers fault i, n is the number
of test cases in the test suite, and m is the number of faults in the program.

3.2 Baseline Approaches

Currently there exists no alternative way of applying SWAY to permutative
decision spaces: since ours is the first embedding for such decision spaces, we do
not have a direct baseline approaches to compare against. Instead, we simply
investigate the feasibility of our embedding by applying it to TCP.

As a basic sanity check of its results, we compare the results from permutative
SWAY to those obtained by additional greedy algorithm, which has been widely
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used in the regression testing literature [8,14,23]. Our aim is not to evaluate
SWAY itself for TCP problem: a proper evaluation of the efficiency of SWAY
would require careful parameter tuning for the sampling size as well as suffi-
ciently optimized implementation. As a proof-of-concept evaluation, we simply
check whether our permutative SWAY can produce comparable results to the
additional greedy algorithm, and leave the direct comparison between SWAY
and other population based optimisation algorithms for future work.

3.3 SWAY for TCP

We make the following changes to the original SWAY to adapt it to the proposed
embedding of permutations. Our implementation is available from our GitHub
repository.8

Initial Sampling. For even a medium sized problem, using the entire Sn is
infeasible due to the excessive memory required for storing and doing various
operations on n! permutations. To avoid this issue, we initialize the population
(i.e., samples) by generating random permutations from Sn using Fisher-Yates
shuffle9, which outputs uniformly distributed permutations [6].

Given a set of all test cases, T = {t1, . . . , tn}, it can be observed that each
permutation of [n] corresponds to a unique ordering of T , giving us a direct
problem-specific interpretation: the decision space of TCP is precisely Sn. The
objective score that we are optimizing for is APSC with respect to the already-
known execution information of each test case. Typically, this is calculated using
the previous version of the SUT.

Stopping Population. Stopping population is a user-defined threshold: SWAY
stops once the size of the population falls below that threshold. For multi-
objective problems, it is natural to set the stopping population to be high [2,3],
since diversity is one of the important quality metrics for such problems [20].
However, if the fitness evaluation is sufficiently expensive for a single objective
problem, it would be natural to use SWAY for single objective problems as well.

Suppose that we initially have N candidate solutions as input to SWAY,
and set the stopping population as N0. SWAY will compare all remaining N0

candidates after stopping. Subsequently, the number of fitness evaluations would
be O(log N + N0). Note that if N0 = O(log N), then the number of required
fitness evaluations will simply be O(log N). We set the stopping population for
TCP to be five which is small enough to satisfy such a condition. Out of the five
solutions, we choose the one with the highest APSC, and report its APFD.

8 https://github.com/chanijung/sway-perm.
9 This is implemented by random.shuffle function in Python.

https://github.com/chanijung/sway-perm
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Table 1. Linux utilities

Name SLOC |T | Description

flex 3,453–4,008 21 Lexer generator

gzip 3,195–3,443 193 Data compression utility

grep 1.744–2,018 211 Pattern matching engine

sed 3,729 36 Stream text editor

3.4 Benchmarks

All four Unix utilities we use with our empirical evaluation were obtained from
the SIR repository [5]: flex, gzip, grep, and sed. Table 1 contains the details
of these subject programs and their test suites10. The test cases are built to
exercise each parameter as well as to achieve coverage, and artificial faults have
been injected for the evaluation of regression testing techniques. We consider
four versions of flex, three versions of grep, two versions of gzip, and a single
version of sed.

3.5 Research Questions

We structure our preliminary evaluation of SWAY for permutation decision space
around the following research questions:

1. RQ1. Effectiveness: How well SWAY performs compared to the greedy
prioritisation for TCP?

2. RQ2. Sensitivity: How sensitive is SWAY to the initial population?

As mentioned in Sect. 3.2, we only consider the additional greedy algorithm
as our competitor since it is simple to implement, and it shows comparable per-
formance with the other search-based algorithms. In addition, for sanity check,
we also consider a random algorithm, which just outputs a random permutation.
However, note that the objective of our study is to show the feasibility of our
embedding of permutations, and not to present a novel TCP approach.

Each algorithm was executed with a fixed test suite for each program. SWAY
and random algorithm were repeated 30 times in order to account for their
randomness. For SWAY, the initial population of the candidate permutations
was fixed as 219 for all of the programs.11

10 Test suites v0.cov.universe, v0.tsl.universe, v0.cov.universe.esc, and
v0 2.universe.single have been used for flex, gzip, grep, and sed, respectively.
Individual test cases that resulted in segmentation fault in our test environment have
been filtered out, resulting in smaller test suites than those reported in SIR. Please
note that this does not interfere with the feasibility evaluation of our embedding.

11 This was the maximum feasible value allowed by our available resource.
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4 Results

This section presents the results of our preliminary evaluation.

4.1 RQ1: How Well Does Our Approach Perform?

Figures 2a and 2b show the resulting error bar plots of APSC and APFD for the
studied subjects. The observable trend is that greedy and SWAY achieve similar
APSC values, but SWAY can sometimes outperform greedy, especially for some
of the Linux utility runs.
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Fig. 2. Error bar plots for Linux Utils (RQ1)

To compare the results of greedy and SWAY more precisely, we apply Mann-
Whitney U test [11], a non-parametric test for comparing two statistically inde-
pendent groups. The null hypothesis, H0, is that, for X and Y randomly selected
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from each group, Pr[X ≥ Y ] = Pr[X ≤ Y ]. For each APSC and APFD, we set
the alternative hypothesis H1 as that SWAY performs better than greedy. Table 2
contains the results: statistically significant results are typeset in bold.

Table 2. Mann-Whitney U test of APSC and APFD between SWAY and Greedy

Name pAPSC pAPFD Name pAPSC pAPFD

flex-v2 1.00 0.89 grep-v3 1.00 0.97

flex-v3 1.00 0.00 grep-v4 1.00 0.32

flex-v4 1.00 0.02 gzip-v2 1.00 0.97

flex-v5 1.00 1.00 gzip-v5 1.00 1.00

grep-v2 1.00 0.00 sed-v3 1.00 1.00
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Fig. 3. Boxplots for RQ2. Here, log is treated as binary log i.e. log2.

The results show that greedy outperforms SWAY on APSC in general, which
is to be expected since greedy directly (and deterministically) maximizes APSC.
However SWAY and greedy algorithm are more at par in terms of APFD: for
some programs, SWAY outperforms greedy with statistically significant p-values.
Note that, given that the aim of SWAY is to provide an efficient baseline based on
random sampling, our aim here is not to consistently outperform greedy. Based
on these results, we answer RQ1 that SWAY can produce comparable results
to those of the additional greedy algorithm when applied to the TCP problem
using the proposed embedding.
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4.2 RQ2: Sensitivity of SWAY to Initial Sample Size

We perform the sensitivity analysis only using sed, due to the large number of
candidate samples required for the sensitivity analysis. We vary the size of the
initial population from 23 up to 219, doubling the size at each step. For each
size, we run SWAY 30 times to cater for the randomness in sampling.

Figures 3a and 3b show the resulting bar plots of APSC and APFD, respec-
tively. Both APSC and APFD show monotonically increasing trends as the size
of the initial population increases: the correlation is stronger with APSC. We
posit that this trend is to be expected since, intuitively, greater initial population
implies that the search space being covered by SWAY is greater. However, also
note that after certain threshold population, increasing it does not seem to have
a significant effect on APFD. Consequently, we answer RQ2 that, above certain
size, SWAY is not overtly sensitive to the size of the initial population.

While we do not compare SWAY with other population based Evolutionary
Algorithms (EAs) in this work, the initial results from sed suggest that SWAY
can be a viable baseline for TCP against EAs. For example, Epitropakis et al. [8]
configures MOEAs with the budget of 25,000 fitness evaluations for SIR Linux
utilities, of which sed belongs. Figures 3a and 3b indicate that SWAY can achieve
stable performance when given a similar number of fitness evaluations.

4.3 Threats to Validity

We depend on widely used coverage profiling tool, GNU gcov, to minimise any
threat to internal validity in the process of coverage collection. Compared to
a Boolean decision space whose size grows exponentially as 2n, the size of a
permutation decision space grows super-exponentially as n!, where n is the size
of the considered test suite. Using Stirling’s approximation12, it can be easily
seen that even with SWAY, we still need O(n log n) fitness evaluations when
using all possible permutations. Given the size of the studied test suites, it is
possible that the observed performance of SWAY has been severely affected
by our chosen range of initial populations, posing a threat to external validity.
Further studies are needed to explore scalability of SWAY for permutation, as
well as other combinatorial decision spaces. Both APSC and APFD are widely
studied and used evaluation metrics for the TCP problem, which minimises the
threat to construct validity of our study.

5 Related Work

A baseline optimiser is an optimiser that is simple, widely and publicly available,
fast, offer comparable performance to the SOTA methods, and computationally
inexpensive [21]. It is beneficial to have a baseline optimizer for an optimisation
problem because it provides a floor performance values to it. This helps the

12 n! ∼ √
2πn

(
n
e

)n
.
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developers to rule out the optimizers with lower performance. SWAY satisfies all
such criteria [2,3], which motivates us to extend it to additional decision spaces.

We compare SWAY to coverage based greedy prioritisation due to the avail-
ability of coverage data as well as the ease of implementing the additional greedy
algorithm. However, there are numerous TCP techniques that are not focused on
early increase of coverage only. For example, history based prioritisation [7,12]
aims to execute the least recently executed test cases first. As a preliminary
evaluation, we also focus on single objective TCP for the sake of simplicity.
However, Multi Objective Evolutionary Algorithms (MOEAs) have been suc-
cessfully applied to TCP with multiple objectives [8]. We leave the evaluation of
multi-objective formulation of SWAY for TCP for future work.

While the primary intended use of SWAY is a baseline and not an efficient
search algorithm in itself, the efficiency of SWAY can be improved by adopting
optimised fitness evaluation. For example, SWAY can benefit from the coverage
compaction [8] like any other TCP technique, as the compaction can make each
fitness evaluation faster.

6 Conclusions and Future Work

This paper presents a novel embedding of the permutations into the Euclidean
space, allowing us to directly use (continuous) SWAY without any additional
modifications. We base our embedding on well-established fields of combinatorics
and statistical ranking theory, and show that our embedding scheme is suitable
for the framework of SWAY. A proof-of-concept evaluation of our embedding,
applied to TCP using continuous SWAY, shows that it can successfully mea-
sure the distance between solutions in permutative decision spaces, enabling
SWAY to be applied to such spaces. For future work, we will focus on improving
the scalability of SWAY in permutation decision space by applying (non)linear
dimensionality reduction techniques after our embedding.
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Abstract. Violating the safety of autonomous driving systems (ADSs)
could lead to fatal accidents. ADSs are complex, constantly-evolving and
software-intensive systems. Testing an individual ADS is challenging and
expensive on its own, and consequently testing its multiple versions (due
to evolution) becomes much more costly. Thus, it is needed to develop
approaches for selecting and prioritizing tests for newer versions of ADSs
based on historical test execution data of their previous versions. To this
end, we propose a multi-objective search-based approach for Selection
and Prioritization of tEst sCenarios for auTonomous dRiving systEms
(SPECTRE) to test newer versions of an ADS based on four optimization
objectives, e.g., demand of a test scenario put on an ADS. We experi-
mented with five commonly used multi-objective evolutionary algorithms
and used a repository of 60,000 test scenarios. Among all the algorithms,
IBEA achieved the best performance for solving all the optimization
problems of varying complexity.

Keywords: Test optimization · Multi-objective search · Autonomous
driving

1 Introduction

Autonomous Driving Systems (ADSs) are safety-critical systems, thus requir-
ing a high degree of dependability. Testing ADSs provides confidence that such
systems are dependable; however, due to their complex implementation and the
mandate to deal with complex environment, testing ADSs is challenging [3].
Moreover, in practice, ADSs evolve, e.g., because of introducing a new function-
ality and updating an existing one. Thus, testing ADSs, in general, is costly,
especially considering that their new versions need to be tested continuously.
Thus, it is important to optimize tests for ADSs. Motivated by this, we propose
a search-based approach for Selection and Prioritization of tEst sCenarios for
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auTonomous dRiving systEms (SPECTRE) to test a new version of an ADS
from existing test scenarios designed for its previous versions.

Figure 1 shows SPECTRE’s overview. SPECTRE relies on test scenario exe-
cution results from a previous version of an ADS to prioritize test scenarios
to be executed on its newer version. In contrast, the existing works on Search-
based Testing (SBT) of ADSs (e.g. [4,5,10]) focus on generating test scenarios
for testing ADSs.

Fig. 1. SPECTRE – overview

In SPECTRE, each scenario is
characterized with a set of prop-
erties of the ego vehicle with the
ADS under test deployed (e.g.,
acceleration, speed) and its envi-
ronment (e.g., weather, number
of obstacles). The simulation of
each test scenario leads to output
four key values (Execution Results
in Fig. 1): (1) whether a collision
occurred with the scenario, (2) col-
lision probability associated with
the scenario, (3) the extent of
demand on the ADS put by the scenario, and (4) diversity of the scenario as
compared to the others. Based on these attributes, we define four optimization
objectives.

To solve our optimization problem, we implemented SPECTRE with five
Multi-Objective Evolutionary Algorithms (MOEAs): NSGA-II, NSGA-III, IBEA,
SPEA2 and MOCell. Random Search (RS) was used for sanity check. To evaluate
SPECTRE, we employed a repository with 60,000 test scenarios and their execu-
tion results, Baidu Apollo1 as the software under test, together with the LGSVL
simulator2. Results showed that IBEA performed the best in terms of producing
quality solutions for all the optimization problems of varying complexity.

The paper is organized as follows: Sect. 2 formulates the search problem and
Sect. 3 presents the evaluation, followed by experiment results in Sect. 4. Section 5
is the related work and Sect. 6 concludes the paper.

2 Problem Representation and Objective Function

2.1 Problem Representation

Given a set of test scenarios SS = {S1, S2...Sns}, with ns being the total size of
SS, SPECTRE selects a subset of test scenarios from SS and prioritize them to
construct a new test suite to test a new version of the ADS. A scenario S ∈ SS is
characterized with a list of properties (e.g., speed of the ego vehicle, weather of
the environment): {p1, p2, p3...pnp}, where np is the total number of properties.

1 https://apollo.auto/.
2 https://www.svlsimulator.com/.

https://apollo.auto/
https://www.svlsimulator.com/
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Basic Concepts. Based on historical execution results of test scenarios, in
our context, each scenario S is attached with values of the attributes below.
Notice that values of these attributes are extracted from execution results of
test scenarios, which are different from properties characterizing test scenarios.

Attribute-1 (Collision (COL)) is a Boolean attribute telling if a scenario
S led the ADS collide with obstacles. With COL, we classify all scenarios into
either Collision Scenarios (SCOL) or Non-Collision Scenarios (SNCOL).

Attribute-2 (Collision Probability (CPT) measures how close the ADS is
to collide with obstacles in a scenario S. We use current distance (CD) and safety
distance (SD) [7] to measure CPT as:

CPT =

⎧
⎨

⎩

SD − CD

SD
, CD <SD

0.0, else
(1)

where, SD is a function of accelerations and velocities of the ego vehicle and
an obstacle: FSD(aego, aobstacle, vego, vobstacle); CD is a function of positions of
the ego vehicle and an obstacle: FCD(Posego, Posobstacle). Notice that, based on
Equation (1), the greater the degree of the current distance violation, the higher
the collision probability. Based on CPT, a scenario S is defined as Potential
Collision Scenario (SPCOL) if CPT ∈ (0, 1), implying that when driving in S
with CPT ∈ (0, 1), the ego vehicle has a chance to collide with obstacles.

Attribute-3 (Demand (DEM)). Inspired by [8], we use the concept of demand
to measure how much difficulty the generated scenarios put the ego vehicle in,
based on their np properties. Concretely, each scenario property (e.g., the speed)
has a corresponding demand value. For example, considering that when facing
the same or a similar environment, a higher speed of the ego vehicle would possi-
bly result in a higher demand. For instance, the speed ranges from 0 to 80 km per
hour when driving on an urban road, and its demand can be classified into four
categories (based on the level of risk that the vehicle will drive from SFMTA3):
0, 1, 3, and 4 for the Zero, Slow, Moderate, and Fast speed, respectively. Sim-
ilarly, demand values for property rain can be: 0, 1, 2, and 3, representing no
rain, light, moderate or heavy rain, respectively.

Furthermore, we consider test scenarios with demand values of one of its
properties equal or greater than the medium value, i.e., (MaxD − MinD)/2
as high demand values, where, MaxD and MinD denote the maximum and
minimum demands of one property. For instance, for property rain (i.e.,
medium = (3 − 0)/2), Moderate (2) or Heavy (3) rain can be considered as high
demand. When combining the np properties of a scenario together, its DEM is
defined as the number of high demand properties, taking an integer values in [0,
np]. Based on DEM , a scenario is defined as High Demand Scenario (SHighD)
if more than half of its properties are high demand properties.

Attribute-4 (Diversity (DIV)). Considering that values of different proper-
ties (e.g., speed and throttle) of a scenario S are not comparable, we first apply
the normalization function [11] below to ensure all the values fall into [0, 1].
3 https://www.sfmta.com.

https://www.sfmta.com
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nor(F (x)) =
F (x) − Fmin

Fmax − Fmin
(2)

Based on the definition of scenarios, first, we define the diversity of the kth

property in two scenarios Si, Sj as below:

PDIVk = nor(|pik − pjk|), (3)

where, pik and pjk are the kth property values of Si and Sj , respectively. Then
we compute the scenario diversity SDIV of two scenarios Si, Sj as below:

SDIVi,j =
∑np

k=0 PDIVk

np
. (4)

where np is the number of property used to define scenarios. DIV of a scenario
Si is then calculated as:

DIV =
ns∑

j=0

SDIVi,j , j �= i. (5)

where ns is the total number of scenarios in the test scenario set SS . Let
test suite TS be a set of prioritized test scenarios TS = {S1, S2, S3...Snts}
selected from SS, where nts is the size TS, a search budget given by users.
PS = {TS1, TS2, TS3...TSnps} (with nps being its size) is the entire search space
of all possible solutions, i.e., the set of permutations of the ordering of all the
scenarios from SS. So, if we want to select and prioritize nts scenarios, the size of
the search space nps is: nps = Ants

ns = ns∗(ns−1)∗(ns−2)∗...∗(ns−nts+1). The
search space nps will exponentially increase with the growth of ns and exhaus-
tively exploring the entire search space is practically infeasible. Thus, search
algorithms can be applied to find optimal solutions within a given budget.

Given TS = {S1, S2, S3...Snts}, a prioritization solution X =
{x1, x2, ..., xnts} is a particular permutation of TS, where xi (0 ≤ xi ≤ nts − 1)
denotes the unique position of test scenario Si. Note that the value of xi is
unique and ranges from 0 to nts − 1. If xi = j, Si is the (j + 1)th scenario in the
sequence. A smaller value of xi means a preceding position in the sequence X,
that is, 0 means the first position while nts − 1 indicates the last position of a
test scenario.

Optimization Problem. Given a set of test scenarios SS = {S1, S2...Sns} and
a desired budget nts (nts ≤ ns), find solution TSk ∈ PS with a particular per-
mutation Xkp = {xkp

1 , xkp
2 , xkp

3 ...xkp
nts}, where TSk includes nts scenarios selected

and prioritized from SS that satisfy:

(1) ∀TSi ∈ PS : #STSi

COL ≤ #STSk

COL, telling that TSk has the maximum number
of collision scenarios.

(2) ∀TSi ∈ PS : #STSi

PCOL ≤ #STSk

PCOL, implying that TSk has the maximum
number of potential collision scenarios.

(3) ∀TSi ∈ PS : #STSi

HighD ≤ #STSk

HighD, which denotes that TSk has the maxi-
mum number of highly demand scenarios.
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(4) ∀TSi ∈ PS : DIV (TSk) ≥ DIV (TSj), which indicates that TSk has the
most diverse scenarios.

(5) ∀(xi < xj(xi, xj ∈ Xkp ∧ i �= j)) :

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

COLXkp(xj) ≤ COLXk(xi) ∧
CPTXkp(xj) ≤ CPTXk(xi) ∧

DEMXkp(xj) ≤ DEMXk(xi) ∧
DIV Xkp(xj) ≤ DIV Xk(xi)

which

means values of the four attributes of the scenarios in TSk will descend.

2.2 Objective Functions

Based on the definitions in Sects. 2.1, we formally define the objectives.
Objectives 1 to 4 are for selecting NTS test scenarios that maximize these

objectives, whereas objective 5 is devised to prioritize the selected test scenarios.

Objective 1. Number of Collision Scenarios (NSCOL) is the number of
Collision Scenarios SCOL in TSk which led the ego vehicle to collide.

NSTSk

COL = Count(SCOL), (6)

Objective 2. Number of Potential Collision Scenarios (NSPCOL) counts
the number of Potential Collision Scenarios (SPCOL) (Sect. 2.1):

NSTSk

PCOL = Count(SPCOL) (7)

Objective 3. Number of High Demand Scenarios (NSHighD) is the num-
ber of High Demand Scenarios SHighD defined in Sect. 2.1:

NSTSk

HighD = Count(SHighD) (8)

Objective 4. Test Solution Diversity (TSDIV ) measures the differences of
each pair of scenarios (calculated with Eq. 4) in TSk as:

TSDIVTSk
=

∑nts−1
i=0

∑nts
j=i+1 SDIVi,j

nts
(9)

Objective 5. Attribute Prioritization (APrio) differentiates scenarios based
on positions of attribute values. In Eq. 11, nts−xi

nts indicates that a value of
an attribute (e.g., COL) in a preceding position has a higher contribution to
APrio. When putting equal weights to each attribute, we can obtain one value:
APrioTSk

(Eq. 10), telling that the objective function tries to permute scenar-
ios with higher collision, collision probability, demand and diversity in the front
positions of the permutation sequence as early as possible.

APrioTSk
= ω1 ∗ APriocol + ω2 ∗ APriocpt + ω3 ∗ APriodem + ω4 ∗ APriodiv;

(ω1 = ω2 = ω3 = ω4 = 0.25)
(10)
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APriocol =
∑nts

i=1 ∗nts−xi

nts ∗ COLi

nts
;APriocpt =

∑nts
i=1 ∗nts−xi

nts ∗ CPTi

nts
;

APriodem =
∑nts

i=1 ∗nts−xi

nts ∗ DEMi

nts
;APriodiv =

∑nts
i=1 ∗nts−xi

nts ∗ DIVi

nts

(11)

3 Empirical Evaluation

3.1 DataSet

Test Scenarios. A test scenario for ADSs, in our experiment, is defined with 19
properties; 5 of them are about the ego vehicle (e.g., acceleration and speed) and
the other 14 properties describe the environment (e.g., pedestrians, weather). To
produce the dataset, we employed the Baidu Apollo Open Platform 5.0 as the
ADS under test and integrated it with the LGSVL simulator. We chose the San
Francisco map for scenarios collecting because it has a large number of different
types of roads such as one-way roads, two-way roads and cross walks.

Collecting Data. The test scenarios in the dataset were automatically collected
when we were testing Apollo 5.0 with a machine learning based environment con-
figuration generation strategy. We executed the strategy, together with LGSVL
for nearly 1000 times on four different roads of the San Francisco map loaded
in LGSVL. In the end, we managed to collect the dataset of 90K test scenarios,
each of which is characterized with the 19 properties.

Processing Data. First, we removed duplicated test scenarios from the original
dataset, to reduce unnecessary effort for prioritization In the end, we obtained
a dataset containing 60K scenarios. To save time on calculating diversity during
the execution of the MOEAs, we further calculated all the pair-wise comparison
diversity values of the test scenarios in advance, i.e., SDIV.

Labelling Test Scenarios with Their Attributes. After data collecting and
pre-processing, for each test scenario, we calculated four values for each of the
four attributes (Sect. 2.1). The labeled dataset was then fed to SPECTRE for
selection and prioritization. The replication package is available at Github4.

3.2 Research Questions (RQs)

RQ1: How do the selected MOEAs compare to each other in terms of solving
our optimization problem?

RQ2: How the selected MOEAs compare to each other when solving optimiza-
tion problems of various search budgets?

RQ3: How does the search budget affect the effectiveness of the selected
MOEAs?

RQ4: How is the time performance of the selected MOEAs?
4 https://github.com/ssbse2021/SPECTRE.

https://github.com/ssbse2021/SPECTRE
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3.3 Experiment Design and Evaluation Metrics

To answer RQs, we integrated SPECTRE with five commonly used MOEAs:
NSGA-II, NSGA-III, IBEA, SPEA2 and MOCell for solving different Search-
Based Software Engineering (SBSE) problems (e.g., test selection [19], test min-
imization [21], requirements prioritization [20]). Among them, NSGA-II and
SPEA2 were chosen because a large number of works studied them and have
proven to be effective for solving SBSE problems [16]; MOCell is an effective
Pareto-based MOEA used in [16]; NSGA-III aims to handle many-objective (i.e.,
3 to 15) optimization problems; and IBEA represents Indicator-based evolution-
ary algorithms. For IBEA, we employed the Iε+-indicator [22]. As recommended
in [2], RS was used for sanity check. We used the default parameter settings
of MOEAs from jMetal [9], except for NSGA-III’s population size, which was
changed to 100 from the default size of 92 to be consistent with the other MOEAs.
All parameter settings are presented in SPECTRE’s online repository.

SPECTRE is configured to select test scenarios with eight NTS settings,
where NTS is the number of test scenarios to be selected from the dataset,
ranging from 1,000 to 8,000 with an increment of 1,000. We executed SPECTRE
for 30 times for each MOEA and with each NTS.

Based on the published guide [1], we used the Inverted Generational Distance
(IGD) quality indicator. IGD computes the distance of the solutions of the Pareto
front from those of the reference Pareto front to assess the performance of the
MOEAs. Thus, a smaller IGD value indicates a better performance. For each
NTS, a reference Pareto front is computed by merging all the Pareto fronts from
all the 30 runs of all the MOEAs and RS.

3.4 Statistical Tests

Based on the guidelines in [2], we selected statistical tests with the significance
level of 0.05. First, we applied the Kolmogorov-Smirnov test to test if the sam-
ples are normally distributed. Results tell that they are not normally distributed.
Then, we used the non-parametric Kruskal-Wallis rank test to compare the sam-
ples. Results reveal a significant difference among them. Thus, we performed
the Mann-Whitney U test for pairwise comparisons, and used the Vargha and
Delaney effect size to calculate Â12. Given metric χ, Â12 was used to compare
the probability of yielding higher values of χ for algorithms AlgA and AlgB.
If Â12 is 0.5, then the results were obtained by chance. If Â12 is greater than
0.5, then AlgA has a higher chance to achieve a better performance than AlgB
in terms of χ, and vice versa. The Mann-Whitney U test returns p-values to
check if the difference between AlgA and AlgB is significant. We also adjusted
all p-values with the Bonferroni Correction to avoid type I errors.

To study the correlation between IGD and NTS, we performed the Spear-
man’s rank correlation (ρ) test. The ρ value ranges from −1.0 to 1.0, i.e., there is
a positive correlation if ρ is close to 1.0 and a negative correlation when ρ closes
to −1.0. If ρ closes to 0 then there is no correlation between IGD and NTS. We
also reported the significance of the correlation using p-value, i.e., a p-value less
than 0.05 tells that the correlation is statistically significant.
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4 Results and Analyses

To check if the problem is complex, we compared the selected MOEAs with
RS. Results show that all the MOEAs performed significantly better than RS in
terms of IGD for all the NTSs. Thus, for answering our RQs, we didn’t include
RS. Detailed results can be found in SPECTRE’s online repository.

4.1 Results of RQ1

0.4

0.5

0.6

0.7

IG
D

IBEA NSGA-II NSGA-III MOCell SPEA2

Fig. 2. Descriptive statistics of IGD when
combining all NTS results – RQ1

Results for RQ1, comparing each
MOEA with the others in terms
of p-values and Â12, are reported
in Table 1. For IBEA, when com-
paring with the other MOEAs, all
the p-values are less than 0.05 and
Â12 < 0.5, thus suggesting that
IBEA is significantly better than
the other MOEAs. NSGA-II is sig-
nificantly better than MOCell, but
significantly worst than NSGA-III,
SPEA2, and IBEA. NSGA-III is
significantly better than MOCell
and NSGA-II, whereas significantly
worst than IBEA. MOCell was sig-
nificantly worst than the rest. We
can then rank the MOEAs as: IBEA, NSGA-III/SPEA2, NSGA-II, and MOCell.

Figure 2 better illustrates the results, especially the variance of 30 IGD values
produced by each MOEA in its 30 runs. From the figure, we see that MOCell
performed the worst and also produced results with the largest variance. The
variances of IGD values of the other four MOEAs are smaller and comparable.

We therefore recommend using IBEA for solving our search problem.

Table 1. Results for comparing MOEAs when combining all NTS results – RQ1

Metric IBEA vs. NSGA-II vs. NSGA-III vs. MOCell vs.

NSGA-II NSGA-III MOCell SPEA2 NSGA-III MOCell SPEA2 MOCell SPEA2 SPEA2

Â12 0.121 0.287 0.008 0.207 0.754 0.044 0.678 0.009 0.399 0.973

p-value <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 0.183 <0.05
∗A bold Â12 < 0.5 with a p− value < 0.05 implies that the upper algorithm is significantly better than

the bottom one, whereas Â12 > 0.5 with p − value < 0.05 means vice versa. A p − value > 0.5 means

no significant differences.

4.2 Results of RQ2

Table 2 reports pair-wise comparisons of MOEAs with respect to IGD. Among
all the MOEAs, MOCell achieved the worst performance for all NTSs. For
NTS ∈ {1000, 3000}: IBEA achieved the best performance, followed by NSGA-
III; NSGA-III significantly outperformed SPEA2 and SPEA2 was significantly
better than NSGA-II. For NTS ∈ {2000, 4000, 6000, 7000}, IBEA significantly
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outperformed the others and NSGA-III achieved the second best. No signifi-
cant difference was observed between SPEA2 and NSGA-II. For NTS = 5000,
IBEA performed the best. Both NSGA-III and SPEA2 were significantly better
than NSGA-II and there was no significant difference between NSGA-III and
SPEA2. For NTS = 8000, both IBEA and NSGA-III achieved the best, and
there was no significant difference between them, and no significance difference
was observed between SPEA2 and NSGA-II. Table 3 better organizes the results
of the pair-wise comparisons of the MOEAs for each NTS.

Table 2. Results of comparing MOEAs for each NTS – RQ2

NTSIBEA vs. NSGA-II vs. NSGA-III vs. MOCell vs.

NSGA-II NSGA-III MOCell SPEA2 NSGA-III MOCell SPEA2 MOCell SPEA2 SPEA2

1000.027/<.05.249/<.05.009/<.05.098/<.05.834/<.05.032/<.05.653/<.05.018/<.05.289/<.05.972/<.05

2000.040/<.05.239/<.05.013/<.05.052/<.05.826/<.05.121/<.05.629/.08 .039/<.05.227/<.05.922/<.05

3000.044/<.05.258/<.05.007/<.05.062/<.05.904/<.05.128/<.05.707/<.05.016/<.05.182/<.05.943/<.05

4000.061/<.05.271/<.05.029/<.05.096/<.05.851/<.05.177/<.05.578/.304 .071/<.05.210/<.05.858/<.05

5000.068/<.05.206/<.05.002/<.05.146/<.05.770/<.05.036/<.05.707/<.05.009/<.05.410/.234 .984/<.05

6000.038/<.05.258/<.05.014/<.05.088/<.05.826/<.05.116/<.05.599/.191 .046/<.05.267/<.05.898/<.05

7000.100/<.05.257/<.05.004/<.05.116/<.05.769/<.05.044/<.05.559/.438 .023/<.05.264/<.05.963/<.05

8000.144/<.05.359/.061 .001/<.05.204/<.05.808/<.05.060/<.05.636/.072 .003/<.05.289/<.05.976/<.05
∗The value before/is Â12 and after is p-value. A bold Â12 < 0.5 with a p − value < 0.05 implies that the
upper algorithm is significantly better than the bottom one, whereas Â12 > 0.5 with p − value < 0.05 means
vice versa. A p − value > 0.5 means no significant differences.

Table 3. Ranking of MOEAs for each NTS value – RQ2

NTS Ranking NTS Ranking NTS Ranking NTS Ranking

1000 I, N-III, S, N-II, M 2000 I, N-III, S/N-II, M 3000 I, N-III, S, N-II, M 4000 I, N-III, S/N-II, M

5000 I, N-III/S, N-II, M 6000 I, N-III, S/N-II, M 7000 I, N-III, S/N-II, M 8000 I/N-III, S/N-II, M
∗I: IBEA, N: NSGA; S: SPEA2. M: MOCell; a/means two MOEAs have the same ranking.

The variance of 30 IGD values for each MOEA corresponding to its 30 runs
for each NTS value are reported in Fig. 3. For almost all the NTSs, MOCell is
the worst with the large variances. For the other MOEAs, we can observe smaller
variances and they are comparable for most of NTS values. This observation is
consistent with the results we obtained for RQ1.

4.3 Results of RQ3

Table 4. Results of the Spearman’s rank corre-
lation test – RQ3
Metric MOSA

IBEA NSGA-II NSGA-III MOCell SPEA2

ρ 0.936 0.933 0.930 0.713 0.930

p-value <0.05 <0.05 <0.05 <0.05 <0.05

RQ3 aims to study how the
increasing number of NTSs affects
the performance of each MOEA.
To this end, we plot the average of
30 IGD values for NTS in Fig. 4.
From the figure, we can observe
that along with the increase of the
NTS, the IDG values of all the
MOEAs increase as well. Recall that a lower value of IGD means a better quality
of solutions. This suggests that when the NTS is increasing, it affects the quality



50 C. Lu et al.

IB
E
A

N
S
G
A
-I
I

N
S
G
A
-I
II

M
O
C
e
ll

S
P
E
A
2

0.0

0.2

0.4

IG
D

(a) nts: 1000

IB
E
A

N
S
G
A
-I
I

N
S
G
A
-I
II

M
O
C
e
ll

S
P
E
A
2

0.2

0.3

0.4

0.5

0.6

(b) nts: 2000

IB
E
A

N
S
G
A
-I
I

N
S
G
A
-I
II

M
O
C
e
ll

S
P
E
A
2

0.4

0.5

0.6

(c) nts: 3000

IB
E
A

N
S
G
A
-I
I

N
S
G
A
-I
II

M
O
C
e
ll

S
P
E
A
2

0.4

0.5

0.6

(d) nts: 4000

IB
E
A

N
S
G
A
-I
I

N
S
G
A
-I
II

M
O
C
e
ll

S
P
E
A
2

0.4

0.5

0.6

0.7

IG
D

(e) nts: 5000

IB
E
A

N
S
G
A
-I
I

N
S
G
A
-I
II

M
O
C
e
ll

S
P
E
A
2

0.5

0.6

0.7

(f) nts: 6000

IB
E
A

N
S
G
A
-I
I

N
S
G
A
-I
II

M
O
C
e
ll

S
P
E
A
2

0.50

0.55

0.60

0.65

0.70

(g) nts: 7000
IB

E
A

N
S
G
A
-I
I

N
S
G
A
-I
II

M
O
C
e
ll

S
P
E
A
2

0.50

0.55

0.60

0.65

0.70

(h) nts: 8000

Fig. 3. Descriptive statistics of IGD in terms of various NTS – RQ2

of solutions produced by each MOEA. This is because an optimization problem
with a larger NTS has a larger search space (Sect. 2); therefore, the problem is
more challenging to solve.
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Fig. 4. Results of IGD of various MOEAs when
increasing NST – RQ3

We further studied the sta-
tistical significance of this pat-
tern with the Spearman’s rank
correlation (ρ) test. Results are
shown in Table 4, from which
we can see that all the ρ val-
ues are near 1.0, except for
MOCell. This tells that there
is a near perfect positive corre-
lation between IGD and NTS.
For MOCell, the ρ value is
0.713, indicating a strong posi-
tive correlation. In addition, all
p-values are less than 0.05, sug-
gesting that this positive corre-
lation is statistically significant.
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These results suggest that the ability of the MOEAs producing high-quality
solutions significantly decreases with the increase of NTS. One reason could be
that with while increasing NTS, the optimization problem is getting more com-
plex, and hence MOEAs need more generations to find good quality solutions.
This aspect needs to be assessed with additional experiments in the future.

4.4 Results of RQ4

Table 5. Average running time of each MOEA (Time Unit:
Minute) – RQ4
MOSA NTS

1000 2000 3000 4000 5000 6000 7000 8000

IBEA 17.58 32.09 47.05 62.42 77.03 98.61 110.15 126.01

NSGA-II 16.19 30.89 46.14 61.87 76.82 97.35 108.92 122.09

NSGA-III 16.21 31.04 46.34 61.41 77.12 97.39 109.19 125.16

MOCell 17.36 33.01 49.77 66.52 82.22 106.89 118.56 136.68

SPEA2 16.81 31.10 46.23 61.81 77.73 97.93 111.35 126.14

Random 14.82 28.56 42.98 56.27 72.14 91.51 102.79 117.68

Table 5 shows that a
MOEA needs nearly
17 to 137 min to solve
the optimization prob-
lems of different com-
plexity (i.e., NTS).
When looking at each
NTS value, we can
see that there aren’t
much time differences
among the studied MOEAs that practically matter. For example, the best per-
formed algorithm, i.e., IBEA, for the NTS of 8000, took 126 min, which is only
approximately 8 min more than RS (with the best time performance). Practi-
cally, such minor time difference doesn’t matter. Moreover, since SPECTRE is
executed offline, it is not critical to select a MOEA in terms of its time perfor-
mance and we care more about the quality of produced solutions. In summary,
the time performance of SPECTRE is acceptable in practice, as, e.g., IBEA
spending 17.6 min on selecting and prioritizing 1,000 out of 60,000 test scenarios.

4.5 Overall Discussion

Research Implications. Based on the evaluation results, we recommend IBEA
for SPECTRE as IBEA achieves the best performance among all the selected
MOEAs (RQ1 and RQ2). When looking into the performance of the selected
MOEAs along with the increase in NTS, IGD values of all the MOEAs increase.
This tells that when increasing NTS, the search space increases as well, hence
possibly requiring more generations or evaluations to explore good solutions.
Moreover, we observed that running time (RQ4) increases with the increase of
NTS because of the increased search space and the cost of calculating all the five
objectives. For example, as shown in Table 5, for IBEA, selecting 8000 scenarios
(126.01 mins) takes about 7 times the running time of selecting 1000 scenarios
(17.58 mins). Thus, improving SPECTRE’s scalability is one of our future works.

SPECTRE can also be extended to address other optimization problems in
testing ADSs, for instance, considering the uncertainty aspect of the attributes
of test scenarios. The current implementation of SPECTRE has four attributes,
among which CPT (Sect. 2.1) is naturally an uncertain factor. In the future,
we can develop solutions by taking into account the uncertain nature of these
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attributes. Moreover, SPECTRE can be easily extended by introducing new
optimization objectives of newly introduced attributes.

Practical Implications. In practice, testing a new version of an ADS with
all existing test scenarios is costly due to limited time-wise and monetary-wise
resources. Hence, it is important to have an approach like SPECTRE for cost-
effectively construct a new test suite by benefiting from prior knowledge on
the cost-effectiveness of already executed test scenarios. SPECTRE requires an
organization to construct and maintain a test scenario repository for test opti-
mization (like the one described in Sect. 2.1). This requirement is reasonable as
a lot of organizations always have their test management tools (e.g., Bugzilla).

SPECTRE selects and prioritizes a subset of test scenarios out of all available
ones based on their attributes (Sect. 2.1) to avoid arbitrary decisions of intuition
and experience. Without SPECTRE, the selection and prioritization process may
mainly rely on managers’ experience and domain expertise.

4.6 Threats to Validity

We employed quality indicator IGD to assess the performance of the MOEAs,
which is comparable among the selected MOEAs. The total number of evalu-
ations (i.e., 30,000) was used as the stopping criterion for all the MOEAs. We
used the same cost measure, i.e., NTS, and repeated the experiments with a
given NTS. Regarding parameter settings of the MOEAs, we however mostly
used the default parameter settings of the MOEAs from [9], which have shown
good results for various SBSE problems [3].

We followed a rigorous statistical procedure to analyze the collected data.
Thirty independent runs of each MOEA were performed based on existing guide-
lines to deal with MOEA’s randomness [2]. We chose appropriate tests, i.e., the
Mann-Whitney U test with the Bonferroni Correction and Â12 to assess effect
based on the established guideline from [2]. We choose an appropriate quality
indicator (i.e., IGD) based on the guideline from [1]. Generalization of the results
is a key issue with all experiments. Our experiments were conducted with one
dataset of 60,000 test scenarios, which is sufficiently large. Nonetheless, addi-
tional datasets are needed for future investigation.

5 Related Work

Search-Based Testing (SBT) of ADSs. Ben Abdessalem et al. [4] used
NSGA-II and surrogate models to identify most critical behaviors of Advanced
Driver Assistance Systems (ADASs) used in ADSs within limited computation
resources. They experimented with an industrial ADAS and results show that
their approach can automatically identify test cases indicating critical ADAS
behaviors with higher quality compared to random search, especially under
resource sensitive situations. Another related work combines multi-objective
search and decision tree classification models, i.e., NSGAII-DT [5]. This approach
tests vision-based control systems of ADSs to find critical scenarios quickly and
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accurately. NSGAII-DT was compared with NSGA-II on an industrial ADS, and
the results shows that NSGAII-DT significantly outperforms NSGA-II in terms
of generating more distinct and critical test scenarios.

FITEST [6] is an SBT approach for detecting feature interaction failures in
autonomous driving. FITEST has a combination of traditional coverage based
heuristics and novel heuristics specifically proposed for revealing feature interac-
tion failures. They evaluated FITEST using two versions of an industrial ADS.
Results show that FITEST is effective in terms of identifying more feature inter-
action failures than approaches with coverage-based and failure-based test objec-
tives. Gambi et al. [10] addressed challenges of simulation-based testing by com-
bining procedural road generation and genetic algorithms to generate virtual
roads, by utilizing procedural content generation, for testing ADSs. Their eval-
uation on two different ADSs shows that the proposed method can generate
effective virtual road networks, which can lead car departures from lanes. Li et
al. [12] proposed AV-FUZZER which combines genetic algorithms with a local
fuzzer to increase the ability of generating AV safety violation scenarios. The
approach was evaluated on Baidu Apollo and was proven to be able to find
safety violations in a short time.

All the above-mentioned related research focus on generating test scenarios
for an ADS, but none of them study the reuse of test scenarios obtained from
previous versions of the ADS and used for testing its new version. We, instead,
focus on reusing existing test scenarios by selecting and prioritizing them from
a repository of test scenarios that have been executed for testing old versions of
an ADS, with multi-objective search.

Search-Based Test Case Prioritization (TCP). TCP approaches consider
various prioritization criteria such as fault detection rate, time cost estimates,
and code coverage. Search-based techniques have been widely used in addressing
TCP problems. For instance, in [13], Li et al. described five algorithms for the
sequencing problem in test case prioritization for regression testing, defined a
fitness function with three objectives, and prioritized test cases with hill climbing
and GAs. To study TCP problems with limited budget, many works have been
proposed. For instance, Singh et al. [17] used ant colony optimization to prioritize
test cases under limited time and cost constrains, with the goal to maximum the
number of faults to cover and minimum time cost. Wang et al. [18] proposed a
multi-objective search-based prioritization approach, aiming at prioritizing test
cases with limited test resources and time budget, with one cost measure on
test execution time and three effectiveness measures on prioritization density,
test resources usage and fault detection capability. TCP approaches focusing
on the fault detection capability also attracted much attention. For instance,
Pradhan et al. [15] proposed a multi-objective approach to prioritize test cases
with the high coverage of configurations, test APIs, statuses, and high fault
detection capability as quickly as possible. Moreover, Luo et al. [14] conducted
an empirical study to evaluate the performance of a TCP approach in terms of
its fault detection efficiency.
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Though, our aim is similar to these works, i.e., test prioritization for regres-
sion testing, we focus on prioritization on test scenario prioritization for ADSs,
which is not much studied in the literature.

6 Conclusion and Future Work

This paper presented a multi-objective search approach for test scenario selec-
tion and prioritization for autonomous driving systems (ADSs) with the ultimate
aim of decreasing the testing cost of newer versions of ADSs based on historical
test data collected for testing their previous versions. The approach integrated
five multi-objective evolutionary algorithms (MOEAs), i.e., NSGA-II, NSGA-
III, IBEA, SPEA2, and MOCell. To evaluate our approach with the selected
MOEAs, we experimented with one large-scale dataset collected from testing an
open-source ADS. The dataset is of 60,000 test scenarios. Our evaluation results
showed that IBEA performed the best in terms of producing high quality solu-
tions, and therefore is recommended for addressing our optimization problem.

In the future, we will test other ADSs to assess SPECTRE’s performance
and scalability. Moreover, attribute values associated with each scenario are
required to be continuously updated due to continuous testing of newer versions
of ADSs. Thus, we will provide a framework for automatically updating these
values together with an online repository. We will also perform parameter tuning
for MOEAs and study their effect on the performance of our approach.
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Abstract. Computer game technology is increasingly more complex
and applied in a wide variety of domains, beyond entertainment, such
as training and educational scenarios. Testing games is a difficult task
requiring a lot of manual effort since the interaction space in the game is
very fine grained and requires a certain level of intelligence that cannot
be easily automated. This makes testing a costly activity in the overall
development of games.

This paper presents a model-based formulation of game play testing
in such a way that search-based testing can be applied for test gener-
ation. An abstraction of the desired game behaviour is captured in an
extended finite state machine (EFSM) and search-based algorithms are
used to derive abstract tests from the model, which are then concretised
into action sequences that are executed on the game under test.

The approach is implemented in a prototype tool EvoMBT. We carried
out experiments on a 3D game to assess the suitability of the approach
in general, and search-based test generation in particular. We applied
5 search algorithms for test generation on three different models of the
game. Results show that search algorithms are able to achieve reasonable
coverage on models: between 75% and 100% for the small and medium
sized models, and between 29% and 56% for the bigger model. Mutation
analysis shows that on the actual game application tests kill up to 99%
of mutants. Tests have also revealed previously unknown faults.

Keywords: Game play testing · Search-based testing · Model-based
testing

1 Introduction

A common approach to test a computer game is by play testing it, where human
users are deployed to play the game in order to find flaws, usability issues,
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and to give feedback on the game user experience. This process is expensive,
so introducing automation could greatly reduce the cost. Unfortunately, so far
there is not much automated testing technology available for computer games.
A handful that exist are tailored for specific games (and not publicly available).

Computer games also come in a great variety of genres such as action, adven-
ture, puzzle, strategy, building, etc. [1]. The difference between genres (or even
within the same genre) is large, e.g. an action game is usually a fast moving
event driven system but the story is linear, while an adventure game is much
less event driven, but the story is often complex. While such variety is good to
keep users entertained, it certainly does not help in developing an automated
testing approach that would work for all, or at least most, game genres.

This paper presents model-based approach for automated play testing of
computer games, relying on search-based testing for generating tests. Outside
the Game domain, model-based testing (MBT) [12] has long been known as a
versatile testing approach. Similarly, search-based testing (SBT) [9] has proven
effective for generating tests, in particular when the search space is large and
exact methods are not applicable. This paper aims to formulate game play testing
in such a way that SBT can be applied for automated test generation.

We present an approach for modelling game behaviour using extended finite
state machines (EFSMs) in such a way that the tester can model the desired
aspect of the game behaviour. Once the model is defined, SBT is applied for test
generation from the model, following a typical MBT cycle.

The approach is implemented in a prototype tool EvoMBT which allows the
generation of abstract tests from EFSM models by applying search-based algo-
rithms. Empirical evaluation is carried out by applying EvoMBT on a 3D game
called Lab Recruits. The concretisation and execution of abstract tests on Lab
Recruits is implemented by means of an agent-based API of Lab Recruits.
Results show that the proposed application of SBT and MBT are effective in
achieving reasonable levels of coverage on the model and exposing faults.

The main contributions of this work are:

1. an approach combining SBT and MBT for automated game play testing
2. a tool EvoMBT for generation of tests from an EFSM model, allowing experi-

mentation with existing search algorithms
3. publicly available artifacts (tool, models, data) that enable reproducibility of

results and facilitate further research.

The rest of the paper is organised as follows: Sect. 2 presents the running
example used throughout the paper. Section 3 discusses issues in modelling games
and presents definitions used in the rest of the paper. Section 4 introduces the
testing problem and Sect. 5 presents our proposed search-based test generation
approach. Experimental results are presented in Sect. 6 and related work is dis-
cussed in Sect. 7. Section 8 concludes, and outlines future work.
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Fig. 1. Level buttonDoors1 in Lab Recruits.

2 Running Example

This section introduces Lab Recruits1, a 3D game developed for experimenting
with intelligent agents. The application allows the definition of mazes, a set of
rooms connected by doors. Each door is opened by one or more buttons, and
each button activates one or more doors. The goal is to find the path to reach
a certain room by opening doors in the right order. The game can be played by
both humans and artificial agents [10]. Lab Recruits levels are defined as csv
(comma-separated value) human-readable files allowing researchers to specify
their tests of variable complexity.

As a running example, Fig. 1 shows a level of the Lab Recruits game named
buttonDoors1. The level features three doors, door1, door2, and door3, and four
buttons, b0, b1, b2, and b3. Door door1 is activated by buttons b1, b2, and b3,
while door2 and door3 are connected only to b2. Note that b0 is not connected,
therefore pressing it has not effect in the game. Agent agent1 aims to reach the
room marked with a star, and therefore to open door3. A possible path requires
agent1 to press b1 to open door1 and then b2 to open door3. Since b2 also acts
on door1, at this point agent1 cannot reach door3, but need to traverse door2
and press b3 to open door1. Now, agent1 walks through door1 and door3,
finally reaching the star room. Even if the layout of the level is simple, the path
to reach the final room is not trivial and it is not trivial for automated play
testing.

3 Modelling Games

Computer games are stateful systems, and hence using state-based models to
model them is natural. They are also very complex systems, so abstraction will
1 https://github.com/iv4xr-project/labrecruits.

https://github.com/iv4xr-project/labrecruits
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have to be applied, but not to the degree that we lose control and observability
of the system. Plain finite state machines (FSM) or labelled transition systems
are in most cases either cumbersome or insufficient, and we will need to use, for
instance, EFSM that allow variables and assignments to be superimposed over
a finite state model. The running example presented in Sect. 2 with buttons and
doors whose states change dynamically can be modelled with a plain FSM, but
its size would be quite large; whereas an EFSM model would be much more
succinct and easy to understand.

Unlike other types of systems, modelling a computer game has an additional
challenge due to the presence of the ‘world’ where the game is played on. E.g.
the Lab Recruits game in Sect. 2 is played in a virtual lab building as its ‘world’.
A world imposes certain constraints. Triggering a state might require a certain
interactable to be interacted with, but a test agent can only do that if the
interactable is physically reachable from its current position. If there is a wall
between them, this is obviously problematic. So in terms of modelling, such
physical constraints need to be taken into account as well. That is, a transition
in the model should be translatable to a concrete sequence of actions by the
agent, that are also physically possible. The same goes with observation. When
the model requires that a certain condition should be checked, e.g. as an invariant
to check, or as the guarding condition of a transition, it implies that the agent
should be able to observe the condition. In the game setup this is not always
given. A wall might be blocking the agent’s sight, and hence the agent might
first need to move itself to a spot where it can observe the said condition. In
terms of modelling, this means that introducing guards and invariants in the
model implies that there should exist a feasible way for the agent to actually
observe them.

In the next subsection, we present the EFSM notation we adopt in the rest
of the paper, and introduce the modelling of Lab Recruits (see Sect. 2) which
takes into consideration the issues mentioned above regarding the modelling of
games for testing purposes.

3.1 EFSM Notation

An FSM models the behaviour of a system as a finite set of states connected by
transitions, where a transition could be fired by an input and returns an output.
EFSMs [4] introduce data information into FSM behavioral representation. An
EFSM has an internal memory, a set of variables, to store data and extends FSM
transitions with guards and update transformations. Guards specify whether a
transition can be performed according to the values of the variables stored in
the memory. Updates allow changing variable values as a result of a transition.
In this paper we adopt the following definition of EFSM.
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Definition 1 (EFSM). An EFSM E is a 7-tuple (S, I,O,D, F, U, T ), where

– S is a set of states
– I is s set of input symbols and O is a set of output symbols
– D̄ : D1 × . . . × Dn is an n-dimensional space.
– F is a set of enabling functions fi : D̄ → {0, 1}
– U is a set of update transformations ui : D̄ → D̄
– T : S × F × I → S × U × O is a transition relation.

Symbol x̄ = (x1, . . . , xn) indicates an element of D1×. . .×Dn. Given states s1, s2,
input i, output o, f ∈ F , and u ∈ U , (s1, f, i) → (s2, u, o) denotes T (s1, f, i) =
(s2, u, o). Given a vector variables x̄ ∈ D̄ at s1, the notation specifies a transition
from s1 to s2, triggered by the input i, and provided f(x̄) = 1. The transition
produces the output o, and updates x̄ to u(x̄).

A finite path P over an EFSM E = (S, I,O,D, F, U, T ) is a finite sequence
of transitions t0 . . . tn ∈ T . A configuration of E is a pair state s ∈ S and vector
variables x̄ ∈ D. A feasible path over E from a configuration (s0, x̄) is a path
t0 . . . tn such that the enabling function of t0 is 1 for x̄ and for each i ∈ [1, n],
fi(ui−1(x̄i−1)) = 1 with fi enabling function of ti, ui−1 update function on ti−1,
and xi−1 vector variables at i − 1.

EFSM Model for Lab Recruits. A model for Lab Recruits captures the
essential features of the game while abstracting away from details that are not of
interest to the tester. For instance, to check the consistency of the button-door
connections in the game, a candidate model could consider only buttons and
doors and the actions the player can perform: move from a door to a button
or to another door, walk trough a door, and toggle a button. Such a model for
buttonDoors1 in Fig. 1 could be EFSM LR1 = (S, I,O,D, F, U, T ) in Fig. 2. The
set of states S are buttons and doors. For each door door , d p and d m model
the two sides of door . The n-dimensional space D records door status with
D = {0, 1} × {0, 1} × {0, 1}, where xi control door i. The EFSM in Fig. 2 has
three types of transitions: solid edges for free travel, when the agent can move
from one entity to the other without traversing a door; this type of transition
has empty enabling and update functions. Dotted transitions model guarded
movements that happen when the agent walks through a door; the enabling
function check the status of the corresponding variable, while update function is
empty. Dashed self loop transitions are for toggle actions, i.e., the agent presses
the button; the update function changes the status of the doors connected to
the pressed button. Note that the concept of ‘transitions’ here also incorporates
‘world travel’. That is, a transition in the model is guaranteed to be physically
possible in the Lab Recruits world, and furthermore the guards guarding the
transitions can be physically checked as well (through some concretisation that
guides the agent to observe them, achieved via automated navigation in the
underlying testing framework [11]). Input set I = {travel, toggle} defines the
actions an agent can perform, i.e., move (travel) or press a button (toggle).
Output set O is empty.
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Fig. 2. EFSM model of buttonDoors1 in Fig. 1

The game starts with the agent near b0 and with all the doors closed, there-
fore x̄ = (0, 0, 0). A feasible path to reach star room in Fig. 1 has to include
transition 16 (t16, for short), and therefore opening door3. The agent1 starts
going to b1 (t30) and pressing it (t23). Update transformation changes x̄ to
(1, 0, 0), i.e., door1 is open. Then, agent1 goes to d1m (t24) and walks through
door1 reaching d1p (t20). Enabling function of t20 is 1, as x1 = 1. After that,
agent1 goes to b2 (t13) and presses it (t9), changing x̄ to (0, 1, 1), so door1 is
closed, while door2 and door3 are open. At this point, the agent goes to door2
(t8), crosses it (t5), reaches b3 (t3), and toggles it (t1). Button b3 opens door1
so that x̄ = (1, 1, 1), i.e., all the doors are open. Now, agent1 can reach star room
following, for instance, t1, t4, t6, t14, t21, and t16. This gives an example of a
feasible path from the initial position of the agent to the star room mimicking
the steps an agent has to perform.

We also implemented a random level generator for Lab Recruits for exper-
imental purposes. The generator builds on the observation that the EFSM of a
Lab Recruits level has a specific structure. First, a room is represented by the
set of buttons it contains. Given the total number of buttons n buttons in a level
and the mean mean buttons number of buttons in a room, the algorithm extracts
random integers from a Poisson distribution with mean mean buttons, until all
buttons are used. For instance, given n buttons = 10 and mean buttons = 2, the
generated sequence 2, 3, 2, 1, 2 corresponds to the number of buttons in a level
with 5 rooms. Then, given the number of doors n doors, we randomly connect
two rooms until all doors are used. The algorithm guarantees that there are not
unconnected rooms. Given a room, the corresponding EFSM model has a state
for each button and door side, and all the states are connected by a free travel
Each button has a self loop with update function that represents button-door
connections. Finally, the models corresponding to linked rooms are connected
by guarded travel transition, where the enabling function checks the status of
the door. The generated EFSM can be transformed into the corresponding csv
file level and opened on Lab Recruits.
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4 Problem Definition

The play testing problem involves finding a sequence of actions that achieve a
desired goal in the game. Given the model of the system under test (SUT), the
play testing problem could be represented as a coverage problem on the model.
Testing a specific play action in the game (corresponding to a transition T in the
model) is equivalent to finding a prefix play that would reach the source state of
T , and subsequently a suffix play to verify the effect of T . Hence, generating a test
suite from the model that would cover all transitions corresponds to exercising
the corresponding game play actions in the SUT. Stronger coverage criteria, such
as k-transition coverage and path coverage, represent more rigorous interactions
of game play actions.

5 Test Generation

Our proposed approach follows the generic model-based test generation approach
where the SUT is abstracted into a model which is then used to generate abstract
tests. The abstract tests are then concretised into concrete tests that can be
executed on the SUT.

The goal of the work presented in this paper is to investigate the feasibil-
ity of applying the model-based approach by incorporating search-based test
generation for the test generation phase.

The abstraction phase, where the model of the SUT is built, typically involves
human involvement as it requires a good understanding of the behaviour of the
SUT. In our experiments, we have used models which were crafted manually as
well as randomly generated ones. However, the test generation approach pre-
sented here is independent of how the model is generated, as long as it is as
described in Sect. 3.1. The concretisation and execution phases are specific to
the SUT and could be implemented in different ways, depending on the nature
of the SUT. For our experiments we have built automated transformers from
abstract tests to concrete tests, and adopted an agent-based API provided by
the SUT for executing the tests. For a different SUT, different concretisation
(and execution) mechanisms are needed, however the generation of abstract tests
remains the same, as long as the model of the SUT is provided.

In the remainder of this section, we present the search-based test generation
approach for deriving abstract tests from the model of the SUT.

5.1 Search-Based Test Generation

Test generation from models could be driven by different goals. In this paper
we outline a search-based approach that can be applied to find test suits that
satisfy a desired model coverage criterion, e.g., transition coverage. We present
the various ingredients needed for applying a search algorithm for test generation,
including individual representation, search operators, and fitness function.
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Individual Representation. Given an EFSM, we represent an individual as
a path (sequence of transitions), starting from the initial state of the model (see
Sect. 3.1). Individuals can be of different length, up to a pre-defined maximum.
For our running example (see Fig. 2), I1 = 〈t27, t28, t18, t21〉 represents an exam-
ple of an individual. Note that paths in the model may or may not be feasible,
hence an individual, as generated initially, is not guaranteed to be feasible.

Search Operators. With individuals represented as paths in the model, differ-
ent operators could be implemented. Here we describe crossover and mutation
operators that we used in our experiments. Clearly, other operators could be
implemented and experimented with.

Crossover: one possible way of implementing crossover is to adopt a straightfor-
ward application of single point relative crossover. Given two individuals, a com-
mon state is chosen at random and the tails of the two individuals are swapped.
For our running example, if I1 = 〈t30, t26, t16, t11〉 and I2 = 〈t29, t21, t17, t25〉,
crossover at state d3m results in offspring O1 = 〈t30, t26, t17, t25〉 and O2 =
〈t29, t21, t16, t11〉.

Mutation: we propose three mutation operators, applied with equal probability:

1) insert self transition: insert a self transition on a randomly chosen state of
the model, if such a transition is allowed

2) delete self transition: remove a self transition at random
3) delete a transition: remove a transition at random.

Fitness Function. Given an EFSM model and a given coverage criterion, the
fitness function should guide the search towards covering all coverage targets.
However, since the individual may not be feasible, the fitness function should
also guide the search towards turning the individual into a feasible one. As a
result, the fitness function has two components: 1) related to path feasibility,
and 2) related to the search target. A high level algorithm of the fitness function
we adopted is shown in Algorithm 1. To calculate the fitness of an individual
with respect to a coverage target, first the individual is executed on the model
and the execution trace as well as the outcome of the execution are returned (line
6 in Algorithm 1). If the individual is a feasible path, then the algorithm checks
to see if the current target is present in the individual. If present (line 9) then
target is covered, otherwise, the fitness value should estimate the distance from
satisfying the target. In this case, we opt for a simple heuristic, i.e., penalising the
individual by a predefined constant value (PENALTY1 ). Other heuristics could
be applied here as well. If however the individual happens to be infeasible (line
14 in Algorithm 1, this means that a transition guard in the path represented
by the individual has failed. In this case, we compute the approach level and
branch distance for the path (lines 15 and 16). Approach level is computed as
the number of transitions in the path yet to be traversed. Branch distance is
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Algorithm 1. Fitness function
1: Input
2: I individual
3: T target
4: Output
5: f fitness value
6: trace, feasible ←− executeOnModel(I)
7: if feasible then � individual I represents a feasible path in the model
8: al feasiblity, bd feasiblity ←− 0
9: if T ∈ I then
10: al target, bd target ←− 0
11: else
12: al target, bd target ←− PENALTY1 � even if I eventually turns feasible, T remains

uncovered, but at least I is feasible
13: end if
14: else if not feasible then � individual I represents an infeasible path
15: al feasiblity ←− length(I) − passdTransitions
16: bd feasiblity ←− computeBranchDistance(trace)
17: if T ∈ I then
18: al target, bd target ←− 0 � fitness takes the value of feasiblity fitness
19: else
20: al target, bd target ←− PENALTY2 � even if I turns feasible, T remains uncovered
21: end if
22: end if
23: f feasiblity = al feasibility + normalise(bd feasibility)
24: f target = al target + normalize(bd target)
25: f = f feasibility + f target

computed based on the guard expression of the failing transition, as typically
done in code-based testing [9]. We then check whether the individual contains
the current target (line 17). If yes, no penalty is applied, otherwise, a penalty
is applied (PENALTY2 � PENALTY1 ). Finally, the algorithm computes the
feasibility fitness and target fitness values, and sums them up to find the fitness
value of the individual (lines 23–25).

Search Algorithms. Once the individual encoding, search operators, and fit-
ness function are defined, existing search algorithms could be applied to generate
tests. In practice though, the corresponding machinery for implementing the test
generation is needed. We have implemented a prototype tool EvoMBT that uses
EvoSuite [5] as a library. EvoMBT implements all the model related parts, includ-
ing the operators discussed above. It implements EvoSuite’s interfaces in such a
way that search algorithms already implemented in EvoSuite can be used out-
of-the-box. Details are discussed in Sect. 6.

6 Evaluation

In this section we present the experiment we carried out in order to get insight
into the feasibility of the proposed test generation approach combining search
based algorithms with model based testing.
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6.1 Prototype: EvoMBT

EvoMBT provides an implementation of the EFSM used in this paper and the
necessary machinery for generating/executing tests from/on the model, com-
pute fitness values, and collect coverage. EvoMBT uses search algorithms imple-
mented in EvoSuite [5] (i.e., EvoSuite is used as a library). EvoMBT currently
implements state and transition coverage criteria, relative point crossover, and a
number of mutation operators. At the moment, several search algorithm found
in EvoSuite can be used with EvoMBT without any modification. For the pur-
pose of experimentation, EvoMBT also implements mutation operations on the
Lab Recruits application, and enables concretisation and execution of gener-
ated tests on Lab Recruits (both mutated and original). It generates different
reports that enable analysis of results as well as debugging of eventual faults.
EvoMBT is publicly available in Github: https://github.com/iv4xr-project/iv4xr-
mbt. We also provide an executable jar with all the necessary resources, and
additional plots that could not fit in the paper, here: https://doi.org/10.5281/
zenodo.4768470.

6.2 Models of the System Under Test

We use three different models of Lab Recruits: i) buttonDoors1: the run-
ning example (see Sect. 2) with 10 states and 30 transitions, ii) randomMedium:
randomly generated model as described in Sect. 3.1 with n doors = 8 and
n buttons = 10 having 26 states and 116 transitions, and iii) randomLarge:
randomly generated with n doors = 15 and n buttons = 20 having 50 states
and 194 transitions.

6.3 Experiment Setup

Experiments are aimed at assessing: feasibility of search-based algorithms for
generating abstract test sequences from the model, practicality of abstract tests
for execution on the actual system under test, and fault finding potential of the
generated tests. Consequently we formulate the following research questions to
guide our experimental evaluation:

RQ1 - Suitability of SBT how suitable are search based algorithms for test
generation from the models?

RQ1.1 - Model coverage how much of the models are covered by the
test generation algorithms?

RQ2 - Test execution are the model-based tests feasible in terms of execu-
tion on the actual application?
RQ3 - Fault finding what is the fault finding potential of the tests generated
from the models?

For RQ1, we report on the search algorithms we used for test generation
and the coverage they achieved on the models (RQ1.1). For this purpose we use

https://github.com/iv4xr-project/iv4xr-mbt
https://github.com/iv4xr-project/iv4xr-mbt
https://doi.org/10.5281/zenodo.4768470
https://doi.org/10.5281/zenodo.4768470
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Fig. 3. Coverage achieved by the search algorithms for the three models

transition coverage criterion, computed as the ratio of covered transitions to the
total number of transitions in the model. For RQ2, we measure the test execution
time on the Lab Recruits application. For RQ3, we measure the mutation score
of the tests on mutants injected into the Lab Recruits application. Mutation
score is computed as the ratio of killed mutants to the total number of mutants
generated.

Experimental Settings. For the search algorithms, we kept the default values in
EvoSuite. For search budget, we use 300 s, collecting statistical data every 10 s.
Experiments were run on computers with Intel Core i7 processors with 8 cores
@2.80 GHz and 8 GB memory, running Ubuntu Linux.

Experiment Procedure. For RQ1.1 we run each algorithm on a given model 20
times, to account for the random nature of the algorithms. Hence, we performed
5 algorithms × 3 (models) × 20 (repetitions) = 300 runs for a total of 300 ×
300 (seconds) = 90000 s (25 h). For RQ2, we report test execution times on the
Lab Recruits application for all test suites generated. For RQ3, we report the
mutation scores for all algorithms generated on buttonDoors1, randomMedium,
and randomLarge.

6.4 Results

Suitability of SBT (RQ1). The first set of results are related to the suitability
of search based testing for the generation of tests from models. We have applied
5 different search algorithms: MONOTONIC GA, MOSA, NSGAII, SPEA2,
STEADY STATE GA for the generation of tests from the models. Figure 3 shows
the coverage achieved by each algorithm on the three models of Lab Recruits.

As can be seen from Fig. 3, the algorithms achieve different levels of coverage
on the three models. On the running example (buttonDoors1), which is the least
complex of the three with 30 transitions in total, all algorithms achieve high
levels of coverage with MOSA achieving 100%. On the randomMedium model
which has 116 transitions, MOSA still achieves full coverage, while the other
algorithms achieve less than for the smaller model. On the largest of the three,
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Fig. 4. Coverage achieved on randomLarge by the search algorithms over time

Table 1. Test execution time on Lab Recruits (in minutes), the tests are organized
into 20 test suites for each algorithm

Model Algorithm Tests Passed Failed Time (avg per test)

buttonDoors1 STEADY STATE 237 220 17 36 (0.15)

NSGAII 222 195 27 34.2 (0.15)

MONOTONIC 239 205 34 29.5 (0.12)

SPEA2 227 204 23 28.4 (0.13)

MOSA 400 380 20 36.1 (0.09)

randomMedium STEADY STATE 436 391 45 661.3 (1.52)

NSGAII 614 502 112 1176 (1.92)

MONOTONIC 564 495 69 1324.5 (2.35)

SPEA2 594 527 67 1104.8 (1.86)

MOSA 919 833 86 1362.2 (1.48)

randomLarge STEADY STATE 249 31 218 243.2 (0.98)

NSGAII 401 22 379 412.8 (1.03)

MONOTONIC 466 25 441 613.8 (1.32)

SPEA2 307 31 276 267.4 (0.87)

MOSA 546 28 518 430.1 (0.79)

which has 194 transitions, the coverage achieved by the algorithms decreases
with MOSA achieving 59% median coverage while the others achieve below 37%.
Given the size of the model, the results could potentially improve if search budget
is increased. As can be seen in Fig. 4, the trend shows that the coverage is likely
to increase with increased search budget.

We answer RQ1 positively: different search algorithms could be applied for
test generation from models, achieving reasonable levels of transition coverage.

Test Execution (RQ2). We measured the time it takes to execute the gen-
erated tests on the actual Lab Recruits application. The abstract tests are
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Table 2. Mutation analysis results

Model Mutants Algorithm Suits Tests Mutantion score
(avg. per suite)

buttonDoors1 5 STEADY STATE 20 220 0.46

NSGAII 20 196 0.41

MONOTONIC 20 204 0.34

SPEA2 20 204 0.37

MOSA 20 377 0.59

randomMedium 8 STEADY STATE 20 386 0.83

NSGAII 20 506 0.80

MONOTONIC 20 487 0.79

SPEA2 20 508 0.92

MOSA 20 850 0.98

randomLarge 24 STEADY STATE 20 32 0.08

NSGAII 20 20 0.03

MONOTONIC 20 25 0.11

SPEA2 20 31 0.08

MOSA 20 29 0.12

concretised for automated execution on Lab Recruits via its agent based API.
The execution of tests on Lab Recruits involves the player (driven by the test
agent) actually interacting with the game environment (e.g., going from one
room to another, pressing buttons, etc.). Hence, the execution of tests is time
taking.

As can be seen from Table 1, test execution on Lab Recruits is rather time
taking. Hence, if the test generation were to be done directly on Lab Recruits,
it would have taken an extremely long period of time. To give an idea, on
buttonDoors1, MOSA performed, on average, 54848 fitness evaluations (i.e.,
executed abstract tests on the model). Executing that many tests directly on
Lab Recruits would take several days.

For RQ2, overall the model based approach for test generation combined with
search algorithms gives an efficient means for generating tests for such systems
as Lab Recruits where test execution is slow.

Fault Finding (RQ3). With RQ3, we assess the fault finding potential of
the generated tests. We created mutants in the Lab Recruits application in
which the association between buttons and doors is changed, i.e., a link between
a button and a door is removed. We created a number of mutants and exe-
cuted the generated test suites on each mutant. Given that the tests may not
all run successfully on the original application (see Table 1, ‘Failed’ column), we
executed only the passing tests on the mutants, and calculated the mutation
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score. The results, presented in Table 2, show that the generated tests are effec-
tive in detecting the injected faults. It is worth noting that the mutation scores
for buttonDoors1 and randomLarge are low because several tests failed when
executed on the original Lab Recruits application (see Sect. 6.4), reducing the
coverage of the tests. These test failures are due to bugs in Lab Recruits and
the agent based API. In particular, in Lab Recruits, under certain circum-
stances, pressing a button fails to open a door controlled by it. On the agent
API, we found instances where the agent gets stuck while navigating the game
world, which is not supposed to happen. All faults have been reported to the
developers of Lab Recruits.

Concerning RQ3, experimental results show that generated tests are effective
in detecting injected faults and revealing actual bugs in the application under test.

7 Related Work

Although SBT has been successful for various types of software, its application
in computer games has not been much studied. Directly using a search algorithm
to search for test sequences without any model has not been attempted, as far we
as know. The search space is far too large for such an approach to work. Instead,
existing works tend to employ search algorithms for optimizing learning-based
automated agents. For example Holmg̊ard et al. [6] uses Monte Carlo Search
Tree (MCTS) based agents to replace human play testers. A genetic algorithm
is used to evolve MCTS’ selection policy towards a desired play style. The case
study is small; a game played in a 10× 20 grid. It is unclear if the approach
would scale to bigger games.

There were very few studies, as far as we could find, on the use of MBT for
testing computer games, e.g. [2,7,13]. Ariyurek et al. [2] use a scenario graph for
generating abstract test sequences. Such a graph is essentially an FSM whose
states are decorated with a set of predicates that abstractly describe the state of
a game under test. MCTS is used to search for the concrete sequence of actions
that implement the steps in an abstract test sequence. The case studies are
however small scale games, played in a grid not larger than 10 × 11; it is not clear
if MCTS would scale to a larger search space. To deal with larger game worlds
Prasetya et al. investigate the use of navigation mesh as a model [11] of the game
world under test, subjected to their agent-based automated testing framework
iv4XR/aplib [10]. The idea is taken from pathplanning, where the walkable areas
of a physical or virtual world is divided into a finite set of connected shapes (e.g.
triangles). This reduces the initially infinite search space into a finite graph which
is then used as a model to guide agents’ navigation, e.g. using A*.

Iftikhar et al. [7] use UML state machine, which is an EFSM, to model an
open source variant of the Super Mario game. The study does not however fully
explore the implication of using extended FSMs. For generating tests, an N+
strategy is used [3], that is aimed at covering all transitions and round trips. This
strategy is not strong enough to handle an EFSM with complex constellations of
conditions. It essentially unrolls the FSM into a tree where along any full path
in the tree no node is repeating, except if it is the last node.
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Outside the game domain, search-based algorithms are used for generating
tests from EFSMs. Many of the works are focused on finding valid paths from the
models and eventually covering predefined goals (e.g., [8]). Our work is aimed
at exploring the feasibility of SBT for automated play testing via modelling.
In this regard, existing works on SBT from EFSMs are complementary with
ours, and could eventually be experimented with in EvoMBT so as to increase the
effectiveness and efficiency of test generation. For instance, the fitness function of
Kalaji et al. [8] could be implemented in EvoMBT in order to assess its feasibility
for the play testing use case.

8 Conclusion and Future Work

We have presented an approach for automated game play testing by employing
the combined application of search-based and model-based testing. The main
objective of the work presented is exploratory in nature where we tried to assess
the suitability of search-based testing for automated game play testing. Game
play behavior is abstracted into an EFSM model and search-based algorithms
are used to generate abstract tests, which are then converted into concrete tests
that can be executed on the game. Experimental results are promising where a
number of search algorithms were experimented with and achieved reasonable
model coverage, mutation score, and exposed real bugs in the game under test.

The current work makes a number of choices with respect to heuristics used
for test generation, such as fitness function and search operators. There are
different alternatives that could be implemented and experimented with as part
of future work.
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Abstract. State-of-the-art search-based approaches for test case gener-
ation work at test case level, where tests are represented as sequences of
statements. These approaches make use of genetic operators (i.e., muta-
tion and crossover) that create test variants by adding, altering, and
removing statements from existing tests. While this encoding schema has
been shown to be very effective for many-objective test case generation,
the standard crossover operator (single-point) only alters the structure
of the test cases but not the input data. In this paper, we argue that
changing both the test case structure and the input data is necessary
to increase the genetic variation and improve the search process. Hence,
we propose a hybrid multi-level crossover (HMX ) operator that com-
bines the traditional test-level crossover with data-level recombination.
The former evolves and alters the test case structures, while the latter
evolves the input data using numeric and string-based recombinational
operators. We evaluate our new crossover operator by performing an
empirical study on more than 100 classes selected from open-source Java
libraries for numerical operations and string manipulation. We compare
HMX with the single-point crossover that is used in EvoSuite w.r.t.
structural coverage and fault detection capability. Our results show that
HMX achieves a statistically significant increase in 30% of the classes
up to 19% in structural coverage compared to the single-point crossover.
Moreover, the fault detection capability improved up to 12% measured
using strong mutation score.

Keywords: Search-based software testing · Test case generation ·
Crossover operator · Empirical software engineering

1 Introduction

Genetic operators are a fundamental component of evolutionary search-based
test case generation algorithms. These operators create variation in the test
cases to help the search process explore new possible paths. The main genetic
operators are mutation, which makes changes to a single test case, and crossover,
which exchanges information between two test cases.

Over the years, related work has used three types of encoding schemata
to represent test cases for search algorithms, namely data-level, test case-level,
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and test suite-level. These schemata typically implement genetic operators at
the same level as the encoding. For example, the crossover operator at the data-
level exchanges data between two input vectors [12]. The test case-level crossover
exchanges statements between two parent test cases [19]. Lastly, the test suite-
level crossover swaps test cases within two test suites [10]. Recent studies have
shown that the test case-level schema combined with many-objective (MO)
search is the most effective at generating test cases with high coverage [6,15].

The current many-objective approaches use the single-point crossover to
recombine groups of statements within test cases. Test cases consist of both test
structures (method sequences) and test data [19]. Hence, the crossover operator
only changes the test structure and simply copies over the corresponding input
data. Therefore, input data has to be altered by the mutation operator, usually
with a small probability.

In this paper, we argue that better genetic variation can be obtained by
designing a crossover operator that alters the structure of the test cases and also
the input data by creating new data that is in the neighborhood of the parents’
data. To validate this hypothesis, we propose a new operator, called Hybrid
Multi-level Crossover (HMX ), that combines different crossover operators on
multiple levels. We implement HMX within EvoSuite [10], the state-of-the-art
unit-test generation tool for Java.

To evaluate the effectiveness of our operator, we performed an empirical study
where we compare HMX with the single-point crossover used in EvoSuite, a
state-of-the-art test case generation tool for Java, w.r.t. structural coverage and
fault detection capability. To this aim, we build a benchmark with 116 classes
from the Apache Commons and Lucene Stemmer projects, which include classes
for numerical operations and string manipulation.

Our results show that HMX achieves higher structural coverage for ∼30% of
the classes in the benchmark. On average, HMX , covered 6.4% and 7.2% more
branches and lines than our baseline, respectively (with a max improvement
of 19.1% and 19.4%). Additionally, the proposed operator improved the fault
detection capability in ∼25% of the classes with an average improvement of 3.9%
(max. 14%) and 2.1% (max. 12.1%) for weak and strong mutation, respectively.

In summary, we make the following contributions:

1. A novel crossover that works at both test case and input data-level to increase
genetic variation in the search process. The data-level recombination combines
multiple different techniques depending on the data type.

2. An open-source implementation of our operator in EvoSuite.
3. A full replication package containing the results and the analysis scripts [13].

The outline for the remainder of this paper is as follows. Section 2 explains the
fundamental concepts used in the paper. Section 3 introduces our new crossover
operator, called HMX , and breaks down how it works. Section 4 sets out our
research questions and describes the setup of our empirical study. Section 5
details our results and highlights our findings. Section 6 discusses the threats
to validity and Sect. 7 draws conclusions and identifies possible directions for
future work.
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2 Background and Related Work

Search-Based Unit Test Generation. Prior studies introduced search-based
software test generation (SBST) approaches utilizing meta-heuristics (e.g.,
genetic algorithm) to automate test generation for different testing levels [12],
such as unit [10], integration [9], and system-level testing [3]. Search-based unit-
test generation is one of the widely studied topics in this field, where a search
process generates tests fulfilling various criteria (e.g., structural coverage, muta-
tion score) for a given class under test (CUT). Studies have shown that these
techniques are effective at achieving high code coverage [6,16] and fault detec-
tion [1].

Single-Objective Unit Test Generation. Single-objective techniques specify
one or more fitness functions to guide the search process towards covering the
search targets according to the desired criteria. Rojas et al. [18] proposed an
approach that aggregates all of the fitness functions for each criterion using a
weighted sum scalarization and performs a single-objective optimization to gen-
erate tests. Additionally, Gay [11] empirically showed that combining different
criteria in a single-objective leads to detect more faults compared to using each
criterion separately.

Dynamic Many-Objective Sorting Algorithm (DynaMOSA). In con-
trast with single-objective unit test generation, Panichella et al. have proposed a
many-objective evolutionary-based approach, called DynaMOSA [15]. This app-
roach considers each coverage targets from multiple criteria as an independent
search objective. DynaMOSA utilizes the hierarchy of dependencies between dif-
ferent coverage targets (e.g., line, branch, mutants) to select the search objectives
during the search dynamically. Moreover, recent work [17] introduced a multi-
criteria variant of DynaMOSA that extends the idea of dynamic selection of
the targets, based on an enhanced hierarchical dependency analysis. This recent
study showed that this multi-criteria variant outperforms single-objective search-
based unit test generation w.r.t. structural and mutation coverage and, therefore,
can achieve a higher fault detection rate. These results have also been confirmed
independently by Campos et al. [6]. Consequently, DynaMOSA is currently used
as the default algorithm in EvoSuite.

Crossover Operator. Like any other evolutionary-based algorithms, all vari-
ations of DynaMOSA need crossover and mutation operators for evolving the
individuals in the current population to generate the next population. Since
DynaMOSA encodes tests at a test case-level, the mutation operator alters
statements in a selected test case according to a given mutation probability.
This search algorithm uses the single-point crossover to recombine two selected
individuals (parents) into new tests (offspring) for the next generation. This
crossover operator randomly selects two positions in the selected parents and
split them into two parts. Then, it remerges each part with the opposing part
from the other parent. A more detailed explanation of this operator is available
in Sect. 3.
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Algorithm 1: HMX : hybrid multi-level crossover
Input: Two parent test cases P1 and P2

Output: Two offspring test cases O1 and O2

1 begin
2 O1, O2 ← SINGLE-POINT-CROSSOVER(P1, P2)

// Constructor data store

3 C1 ← Map<signature, constructor[ ]> // For P1

4 C2 ← Map<signature, constructor[ ]> // For P2

// Method data store

5 M1 ← Map<signature, method[ ]> // For P1

6 M2 ← Map<signature, method[ ]> // For P2

7 forall the (S1, S2), in S1 ∈ O1 and S2 ∈ O2 do
8 if SIGNATURE(S1) == SIGNATURE(S2) then
9 if S1 is constructor then

10 C1[SIGNATURE(S1)].add(S1)
11 C2[SIGNATURE(S2)].add(S2)

12 else if S1 is method then
13 M1[SIGNATURE(S1)].add(S1)
14 M2[SIGNATURE(S2)].add(S2)

15 foreach SIG ∈ C1.keys ∪ C2.keys do
// choose random constructor with same signature

16 S1 ← random.choice(C1[SIG])
17 S2 ← random.choice(C2[SIG])
18 O1, O2 ← DATA-CROSSOVER(O1, O2, PARAMS(S1), PARAMS(S2))

19 foreach SIG ∈ M1.keys ∪ M2.keys do
// choose random method with same signature

20 S1 ← random.choice(M1[SIG])
21 S2 ← random.choice(M2[SIG])
22 O1, O2 ← DATA-CROSSOVER(O1, O2, PARAMS(S1), PARAMS(S2))

23 return O1, O2

While the single-point crossover brings diversity to the structure of the gen-
erated test cases, it does not work at the data-level (i.e., crossover between the
test inputs). Hence, this study introduces a hybrid multi-level crossover, called
HMX , for the state-of-the-art in search-based unit test generation.

3 Approach

This section details our new crossover operator, called Hybrid Multi-level
Crossover (HMX ). This operator combines the traditional single-point test case-
level crossover with multiple data-level crossovers.

Algorithm 1 outlines the pseudo-code of our crossover operator. HMX first
performs the traditional single-point crossover at line 2. The single-point
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crossover is chosen for the test case-level operator as previous studies have shown
that it is effective in producing a variation in the population over time [19]. It is
also the default crossover operator used in the state-of-the-art test case genera-
tion tool EvoSuite [19]. This operator takes two parent test cases as input and
selects a random point among the statements within the parents test cases. The
parents are then split at this point, and their resulting parts are then recombined
with its opposing part of the other parent to produce two new offspring test cases.
Since these offspring test cases use a random crossover point, they might con-
tain incomplete sequences of statements (e.g., missing variable definition) and,
therefore, will not compile. To make the crossover more effective, these broken
references are fixed by introducing new random variable definitions that match
the type of the broken reference [10]. Lines 3–22 contain the selection logic of the
data-level crossover. Unlike the test case-level crossover, the data-level crossover
can not be applied to every combination of input data. Performing the crossover
on input data with different types (e.g., strings and numbers) would not produce
any meaningful output as there is no logical way to combine these dissimilar
types. Furthermore, we should not perform a crossover on two identical data
types from different methods. If the data-level crossover would be applied to
parameters of the same type that belong to different methods, it could produce
offspring that are farther from the desired objective than the original. Hence, the
algorithm has to select which combinations of input data are compatible. HMX
achieves this by selecting compatible functions (i.e., constructors and methods
calls) and applying the crossover pairwise to the function’s parameters.

In lines 3–6, two pairs of maps are created that store the compatible functions
for each parent for both constructors and methods. Each map stores a list of
functions that share the same signature; The signature is the key of the map,
and the functions are the values. The signature of the function is a string derived
from the class name, function name, parameters types, and return type using
the following format:

CLASS NAME|FUNCTION NAME(PARAM1 TYPE, PARAM2 TYPE, ...)RETURN TYPE

In lines 7–14, HMX loops over all combinations of statements S1 and S2 in
the offspring produced by the single-point crossover. For each combination, it
checks if the signatures of the two functions match (line 8). If both statements
are either constructors or methods, they are stored in their corresponding map
with the signature as a key in lines 10–11 and 13–14, respectively. Note that if the
test case contains constructor or method calls for other classes than the CUT,
these are also considered by the selection of compatible functions. For example,
additional objects (e.g., strings, lists) might be needed as an input argument to
one of the CUT’s functions.

When all possible matching functions have been found, the operator loops
through the signatures of the two function types separately in lines 15–18 and
19–22. For each signature, HMX selects a random function instance matching the
signature from each parent. The operator then performs the data-level crossover
on the parameters of these two randomly selected functions in lines 18 and 22.
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For each signature in the map, HMX only selects one function instance per
parent to proceed with the genetic recombination.

The data-level recombination pairwise traverses the parameters of the two
compatible functions selected in lines 16–17 (for constructors) and 20–21 (for
methods). For each pair of parameters, Algorithm 1 checks their types and deter-
mines if they are numbers or strings, the two supported types of HMX . If the
two parameters are numbers (i.e., byte, short, int, long, float, double, boolean,
and char), the operator applies the Simulated Binary Crossover (SBX), which is
described in Sect. 3.1. If the parameters are strings, it applies the string crossover
described in Sect. 3.2. Lastly, in line 23, HMX returns the produced offspring.

Listing 1.1. Parent 1

1 @Test

2 public void test1 () {

3 Fraction f0 = new Fraction(2, 3);

4 Fraction f1 = new Fraction(2, -1);

5 f0.divideBy(f1);

6 f0.add(Fraction.ZERO);

7 }

Listing 1.2. Parent 2

1 @Test

2 public void test2 () {

3 Fraction f0 = new Fraction(3, 1);

4 Fraction f1 = new Fraction(1, 3);

5 f0.add(f1);

6 f0.pow (2.0);

7 }

To provide a practical example, let us consider the two parent test cases
in Listings 1.1 and 1.2. Both parent 1 and parent 2 contain two invocations
of the Fraction constructor. Since these constructors share the same signa-
ture: Fraction|<init>(int, int)Fraction; they are compatible. Similarly,
the method add of the Fraction class is present in both parents, with the same
signature: Fraction|add(Fraction)V; and are compatible, as well. In contrast,
for example, method divideBy, in parent 1, and method add, in parent 2, are
not compatible since their signatures are different.

3.1 Simulated Binary Crossover

The Simulated Binary Crossover (SBX) is a recombination operator commonly
used in numerical problems with numerical decision variables and fixed-length
chromosomes. It has been shown that Evolutionary Algorithms (EAs) that use
this crossover operator produce better results compared to traditional numerical
crossover operators [8]. The equation below outlines the algorithm of SBX :
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u = randu (1)

β =

⎧
⎪⎨

⎪⎩

2 · u1/(ηc+1) if u < 0.5
1 if u = 0.5

0.5
1.0−u

1/(ηc+1) if u > 0.5

(2)

b = randb (3)

v =

{
((v1 − v2) · 0.5) − (β · 0.5 · |v1 − v2|) if b = true

((v1 − v2) · 0.5) + (β · 0.5 · |v1 − v2|) if b = false
(4)

where v (Eq. (4)) is the new value of parameter v1, v1 is the original value of
the parameter, and v2 is the value of the opposing parameter (the correspond-
ing parameter from the matched function). ηc is the distribution index and it
measures how close the new values should be to original values (proximity). For
HMX , this variable is set to 2.5 as this is within the recommended range [2;5] [8].
SBX first creates a random uniform variable u (Eq. (1)), which is used to select
one of three strategies for β. This scaling variable β (Eq. (2)), is used to scale an
offset. This offset is either subtracted or added depending on the random boolean
variable b. In general, SBX generates new values centered around the original
parents, either in between the parents’ values (contracting) or outside this range
(expending) depending on the value of u. The algorithm is performed on both
matching parameters, and the resulting new values are used as a replacement of
the original values.

As an example, consider the two compatible constructors Fraction(2,3)
(line 3 in Listing 1.1) and Fraction(1,3) (line 4 in Listing 1.2). The SBX recom-
bination operator is applied for the following pairwise combinations: (2, 1) and
(3, 3). To calculate the new value of the first element of the first pair, v1 = 2 and
v2 = 1. Similarly, the second element can be calculated by switching the values
of v1 and v2. The same procedure can be applied to calculate the new values of
the second pair.

3.2 String Crossover

The single-point string crossover is used to exchange information between two
string parameters of matching functions [12]. By recombining parts of each
string, it makes it possible for promising substrings to collect together. The
operator achieves this by picking two random numbers, 0 ≤ xi < length(x) and
0 ≤ yi < length(y) for both strings, respectively. It then recombines the two
strings by concatenating the substrings in the following way: x = x[: xi] || y[yi :]
and y = y[: yi] || x[xi :].

For example, given the following string x = “lorem” and y = “ipsum” and
the random variables xi = 1 and yi = 3, the new values will be: x = “lom” and
y = “ipsurem”.
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Table 1. Projects in our empirical study. # indicates the number of CUTs. cc indicates
the cyclomatic complexity of CUTs. cc indicates the standard deviation. min and max

indicate the minimum and maximum value of the metric, respectively. Also, str-par and
nr-par are the average number of string and number input parameters for the selected
CUTs.

Project # CCN String parameter Number parameter

cc σ min max str-par σ min max nr-par σ min max

CLI 4 1.7 0.9 3.0 1.1 14.5 14.2 34.0 4.0 8.5 13.7 29.0 1.0

Geometry 13 1.8 0.4 2.5 1.2 3.4 5.5 21.0 1.0 10.2 6.7 21.0 1.0

Lang 34 3.0 1.6 7.4 1.1 17.4 36.7 209.0 1.0 26.6 48.3 249.0 1.0

Logging 1 3.0 - 3.0 3.0 6.0 - 6.0 6.0 3.0 - 3.0 3.0

Math 27 2.9 1.6 7.7 1.1 2.5 1.8 9.0 1.0 10.0 10.5 45.0 1.0

Numbers 5 2.8 1.1 4.5 1.6 1.4 0.9 3.0 1.0 31.6 33.5 89.0 4.0

RNG 4 3.3 1.4 5.0 1.7 2.2 2.5 6.0 1.0 2.0 1.4 4.0 1.0

Stemmer 16 1.0 0.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

4 Empirical Study

To assess the impact of HMX on search-based unit test generation, we perform
an empirical evaluation to answer the following research questions:

RQ1 To what extent does HMX improve structural coverage compared to the
single-point crossover?

RQ2 How does HMX impact the fault-detection capability of the generated
tests?

Benchmark. For this study, we selected the CUTs from the Apache Commons
and Snowball Stemmer libraries. The former is a commonly-used project
containing reusable Java components for several applications1. The latter is a
well-known library for stemming strings, which is part of the Apache Lucene2.
As described in Sect. 3, HMX brings more advantages for search-based test gen-
eration in projects that utilize strings and numbers. Hence, to show the effect
of this new crossover operator, we selected 100 classes from 9 components in
Apache Commons that have numeric and string input data: (i) Math a library
of lightweight, self-contained mathematics and statistics components; (ii) Num-
bers includes utilities for working with complex numbers; (iii) Geometry pro-
vides utilities for geometric processing; (iv) RNG a library of Java implementa-
tions of pseudo-random generators; (v) Statistics a project containing tools for
statistics; (vi) CLI an API processing and validating a command line interface;
(vii) Text a library focused on algorithms working on strings; (viii) Lang con-
tains extra functionality for classes in java.lang; and (ix) Logging an adapter
allowing configurable bridging to other logging systems.
1 https://commons.apache.org.
2 https://github.com/weavejester/snowball-stemmer.

https://commons.apache.org
https://github.com/weavejester/snowball-stemmer
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In addition, we added the main 16 classes in Snowball Stemmer to the
benchmark, as these focus on string manipulation and were previously used in
former search-based unit test generation studies [14].

Due to the large number of classes in the selected Apache Commons com-
ponents, we used CK [2], a tool that calculates the method-level and class-level
code metrics in Java projects using static analysis. We collect the Cyclomatic
Complexity (CC) and type of input parameters for each method in the selected
9 components. Using the collected information, we filter out the classes that do
not have methods accepting strings or numbers (integer, double, long, or float)
as input parameters. Then, we sort the remaining classes according to their
average CC and pick the top 100 cases for our benchmark. Table 1 reports CC,
number of string, and number arguments for each project used in this study. By
doing a preliminary run of EvoSuite on the 116 selected classes, we noticed
that this tool fails to start the search process in 9 of the CUTs. These failures
stem from an issue in the underlying test generation tool EvoSuite. The tool
fails to gather a critical statistic (i.e., TOTAL GOALS) for these runs in both
the baseline and HMX . We also encountered 4 classes that did not produce any
coverage for both the baseline and our approach. Consequently, we filtered out
these classes from the experiment and performed the final evaluation on 103
remaining classes.

Implementation. We implemented HMX in EvoSuite [10], which is the state-
of-the-art tool for search-based unit test generation in Java. By default, this tool
uses the single-point crossover for test generation. We have defined a new param-
eter multi level crossover to enable HMX . Our Implementation is openly
available as an artifact [13].

Preliminary Study. We performed a preliminary study to see how the probabil-
ity of applying our data-level crossover influences the result. The single-point test
case-level crossover is applied with a predefined probability. We experimented
with how often the data-level crossover should be applied whenever the test case-
level crossover was applied. From the probabilities we tried (i.e., 0.25, 0.50, 0.75,
1.00), we found out that always applying the data-level crossover when the test
case-level crossover produced the best results according to statistical analysis.

Parameter Settings. We run each search process with EvoSuite’s default
parameter values. As confirmed by prior studies [5], despite the impact of param-
eter tuning on the search performance, the default parameters provide acceptable
results. Hence, we run each search process with a two-minute search budget and
set the population size to 50 individuals. Moreover, we use mutation with a prob-
ability of 1/n (n = length of the generated test). For both crossover operators
that we used in this study (single-point crossover for the baseline and our novel
HMX ), the crossover probability is 0.75. For the Simulated Binary Crossover
(SBX), we used the distribution index ηc = 2.5 [8]. The search algorithm is the
multi-criteria DynaMOSA [17], which is the default one in EvoSuite v1.1.0.

Experimental Protocol. We apply both default EvoSuite with single-point
crossover and EvoSuite + HMX to each of the selected CUTs in the benchmark.
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Fig. 1. Boxplot of structural coverage comparing HMX to the baseline SPX. The
diamond point indicates the mean coverage of the benchmark.

To address the random nature of search-based test generation tools, we repeat
each execution 100 times, with a different random seed, for a total number of 23
200 independent executions. We run our evaluation on a system with an AMD
EPYCTM 7H12 using 240 cores running at 2.6 GHz. With each execution taking
5 min on average (i.e., search, minimalization, and assertion generation), the
total running time is 80.6 days of sequential execution.

For our analysis, we report the average (median) results across the 100
repeated runs. To determine if the results (i.e., structural code coverage and
fault detection capability) of the two crossover operator are statistically signifi-
cant, we use the unpaired Wilcoxon rank-sum test [7] with a threshold of 0.05.
The Wilcoxon test is a non-parametric statistical test that determines if two
data distributions are significantly different. Additionally, we use the Vargha-
Delaney statistic [20] to measure the magnitude of the result, which determines
how large the difference between the two operators is.

5 Results

This section discusses the results of our study with the aim of answering the
research questions formulated in Sect. 4. All differences in results in this section
are presented in absolute differences (percentage points).

5.1 Result for RQ1: Structural Coverage

Figure 1 shows the structural coverage achieved by our approach, HMX , com-
pared to the baseline, SPX, on the benchmark. In particular, Fig. 1a shows
branch coverage and Fig. 1b shows line coverage. The boxplots show the median,
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Table 2. Statistical results of HMX vs. SPX on structural coverage. #Win indicates
the number of times that HMX is statistically better than SPX. #Lose indicates
the opposite. #No diff. indicates that there is no statistical difference. Negl., Small,
Medium, and Large denote the Â12 effect size.

Metric
#Win #Lose

#No diff.
Negl. Small Medium Large Negl. Small Medium Large

Branch 2 5 3 22 0 1 0 0 70
Line 3 1 3 19 0 1 0 0 76

quartiles, variability in the results, and the outliers for all classes together. The
diamond point indicates the mean of the results.

Figure 1a and Fig. 1b show that, on average, HMX has higher 1st quartile,
median, mean, and 3rd quartile values than the baseline, SPX, for both test
metrics. On average, HMX improves the branch coverage by +2.0% and the
line coverage by +1.9%. The largest differences are visible for the lower whisker
and for the first quartile (25th percentile). In particular, the differences for the
lower whisker are around +20% branch and line coverage when using HMX ; the
improvements in the first quartile are around +10% and +8% for branch and line
coverage, respectively. These results indicate that HMX improves both line and
branch coverage for some of the CUTs in our benchmark. Finally, as we can see in
both of the plots in Fig. 1, the variation in the results for HMX , measured by the
Interquartile Range (IQR), is smaller than for SPX. This observation shows that
HMX helps EvoSuite to generate tests with a more stable structural coverage.

Table 2 shows the results of the statistical comparison between HMX and
the baseline, SPX, based on a p-value ≤ 0.05. #Win indicates the number of
times that HMX has a statistically significant improvement over SPX. #Equal
indicates the number of times that there is no statistical difference in the results
between the two operators; #Lose indicates the number of times that HMX has
statistically worse results than SPX. The #Win and #Lose columns also include
the magnitude of the difference through the Â12 effect size, classified in Small,
Medium, Large, and Negligible.

From Table 2, we can see that HMX has a statistically significant non-
negligible improvement in 30 and 23 classes for branch and line coverage, respec-
tively. For the branch coverage metric, HMX improves with a large magnitude
for 22 classes, medium for 3 classes, and small for 5 classes. For line coverage,
HMX improves with a large magnitude for 19 classes, medium for 3 classes,
and small for 1 class. HMX only loses in one case in comparison to the base-
line for both branch and line coverage: StrSubstitutor from the Lang project.
However, in this case, the effect size is small (magnitude).

For branch coverage, we observe a maximum increase in coverage of +19.1%
for the finnishStemmer class from the Stemmer project. For line coverage, the
class with the maximum increase in coverage is hungarianStemmer (also from
Stemmer) with an average improvement of +19.4%. Compared to the baseline,
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Fig. 2. Boxplot of structural coverage comparing HMX to the baseline SPX.

Table 3. Statistical results of HMX vs. SPX for fault-detection capability.

Metric
#Win #Lose

#No diff.
Negl. Small Medium Large Negl. Small Medium Large

Weak mutation 3 3 3 21 0 1 0 0 72
Strong mutation 0 8 0 15 0 3 0 0 77

all classes in the Snowball Stemmer string manipulation library improve
based on branch and line coverage with an average improvement of +11.4% and
+11.0%, respectively. For the Apache Commons library, HMX significantly
improves the branch and line coverage in 16 (9 string-related and 7 number-
related) and 10 (6 string-related and 4 number-related) classes, respectively.

In summary, the proposed HMX crossover operator achieves significantly
higher (∼30% of the cases) or equal structural code coverage for unit test
case generation compared to the baseline SPX.

5.2 Result for RQ2: Fault Detection Capability

Figure 2 shows the fault detection capability of HMX compared to SPX mea-
sured through the mutation score. Figure 2a shows the weak mutation score and
Fig. 2b shows the strong mutation score. The boxplots show the median, quar-
tiles, variability in the results, and the outliers for all classes in the benchmark
together. The diamond point indicates the mean of the results. From Fig. 2a,
we can see that, on average, HMX improves the weak mutation score by +1.2%
compared to SPX. However, from Fig. 2b we can see that overall, the strong
mutation scores only show marginal improvements (+0.5%).

Table 3 shows the statistical comparison between HMX and SPX, based on
a p-value ≤ 0.05. Similarly to Table 2, #Win indicates the number of times that
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HMX has a statistically significant improvement over SPX, #Equal indicates the
number of times that there is no statistical difference in the results of the two
operators, and #Lose indicates the number of times that HMX has statistically
worse results than SPX. The #Win and #Lose columns additionally also indi-
cate the magnitude of the difference through the Â12 effect size. From Table 3,
we can see that HMX has a statistically significant non-negligible improvement
in 27 and 23 cases for weak and strong mutation, respectively. For weak muta-
tion, HMX improves with a large magnitude for 21 classes, medium for 3 classes,
and small for 3 classes. For strong mutation, HMX improves with a large mag-
nitude for 15 classes and a small magnitude for 8 classes. HMX performes
worse in one case (Fraction from the Lang project) for weak mutation and
three cases (AdaptiveStepsizeFieldIntegrator and MultistepIntegrator
from the Math project, and SphericalCoordinates from the Geometry project)
for strong mutation, all with a small effect size.

We observe a maximum increase in weak mutation score of +14.0% for
the hungarianStemmer class (Stemmer) and +12.2% for the ExtendedMessage
Format class (Text) on strong mutation score. Among the classes that improve
on weak and strong mutation score, 27 and 20, respectively, also improve w.r.t.
branch coverage. Interestingly, four classes among both mutation scores improve
w.r.t. mutation score without improving the structural coverage.

In summary, HMX achieves significantly higher (∼25% of the cases) or
equal fault detection capability compared to SPX and is outperformed in
one and three classes for weak and strong mutation, respectively.

6 Threats to Validity

This section discusses the potential threats to the validity of our study.

Construct Validity: Threats to construct validity stem from how well the
chosen evaluation metrics measure the intended purpose of the study. Our study
relies on well-established evaluation metrics in software testing to compare the
proposed hybrid multi-level crossover with the current state-of-the-art, namely
structural coverage (i.e., branch and line) and fault detection capability (i.e.,
weak and strong mutation). As the stopping condition of the search process, we
used a time-based budget rather than a budget based on the number of test
evaluations or generations. A time-based budget provides a fairer measure since
the two crossover operators have a different overhead and execution time and
might otherwise provide an unfair advantage to our operator.

Internal Validity: Threats to internal validity stem from the influence of other
factors onto our results. The only difference between the two approaches in our
study is the crossover operator. Therefore, any improvement or diminishment in
the results must be attributed to the difference in the two crossover operators.
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External Validity: Threats to external validity stem from the generalizability
of our study. We selected 116 classes from popular open-source projects based
on their cyclomatic complexity and type of input parameters to create a rep-
resentative benchmark. These classes have previously been used in the related
literature on test case generation [14,15].

Conclusion Validity: Threats to conclusion validity stem from the deduction
of the conclusion from the results. To minimize the risk of the randomized nature
of EAs, we performed 100 iterations of the experiment in our study with dif-
ferent random seeds. We have followed the recommended guidelines for running
empirical experiments with randomized algorithms using sound statistical analy-
sis as recommend in the literature [4]. We used the unpaired Wilcoxon rank-sum
test and the Vargha-Delaney Â12 effect size to determine the significance and
magnitude of our results.

7 Conclusions and Future Work

In this paper, we have proposed a novel crossover operator, called HMX , that
combines different crossover operators on both a test case-level and a data-level
for generating unit-level test cases. By implementing such a hybrid multi-level
crossover operator, we can create genetic variation in not only the test statements
but also the test data. We implemented HMX in EvoSuite, a state-of-the-art
Java unit test case generation tool. Our approach was evaluated on a benchmark
of 116 classes from two popular open-source projects. The results show that HMX
significantly improves the structural coverage and fault detection capability of
the generated test cases compared to the standard crossover operator used in
EvoSuite (i.e., single-point). Based on these promising results, there are multi-
ple potential directions for future work to explore. In this paper, we detailed the
crossover operator for two types of primitive test data inputs (i.e., numbers and
strings). In future work, we are planning to extend this with additional operators
for arrays, lists, and maps. Additionally, we want to experiment with alterna-
tive crossover operators for numbers (e.g., parent-centric crossover, arithmetic
crossover) and strings (e.g., multi-point crossover).
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Abstract. Test Case Selection (TCS) aims to select a subset of the test
suite to run for regression testing. The selection is typically based on past
coverage and execution cost data. Researchers have successfully used
multi-objective evolutionary algorithms (MOEAs), such as NSGA-II and
its variants, to solve this problem. These MOEAs use traditional crossover
operators to create new candidate solutions through genetic recombina-
tion. Recent studies in numerical optimization have shown that better
recombinations can be made using machine learning, in particular link-
age learning. Inspired by these recent advances in this field, we propose
a new variant of NSGA-II, called L2-NSGA, that uses linkage learning to
optimize test case selection. In particular, we use an unsupervised clus-
tering algorithm to infer promising patterns among the solutions (subset
of test suites). Then, these patterns are used in the next iterations of
L2-NSGA to create solutions that preserve these inferred patterns. Our
results show that our customizations make NSGA-II more effective for
test case selection. The test suite sub-sets generated by L2-NSGA are less
expensive and detect more faults than those generated by MOEAs used in
the literature for regression testing.

Keywords: Regression testing · Test case selection · Multi-objective
optimization · Search-based software engineering

1 Introduction

Software testing is one of the main phases in the software development life cycle.
Developers write test cases for newly developed functionalities and maintain and
update the existing test base. Regression testing aims to assess that changes to
the production code do not affect the behavior of unchanged parts [27]. Ide-
ally, regression testing can be tackled by running the entire test suite within a
DevOps pipeline [24]. However, this strategy becomes unfeasible for very large
systems in terms of resources (e.g., build servers) and time. For this reason,
researchers in the software engineering community proposed various techniques
to reduce the cost of regression testing by removing redundant tests (test suite
minimization [20]); or sorting the test cases with the goal of detecting regression
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faults earlier (test case prioritization [19]); or selecting fewer tests to run (test
case selection [2]).

Multi-objective Evolutionary Algorithms (MOEAs) (and NSGA-II in partic-
ular) have been successfully used in the literature to produce Pareto efficient
subsets of the test suites w.r.t. different testing criteria [27–29]. MOEAs that rely
on Pareto ranking and problem decompositions have been shown to achieve good
performance also compared to greedy algorithms and local solvers [29]. Further
studies tailored the individual elements of MOEAs for test case selection, such as
the initialization phase (e.g., [14,21,30]) and selection operators [17].

One limitation for classic MOEAs (including NSGA-II) is that new solutions are
generated using fully randomized recombination (crossover) operators [22,26].
For example, the single-point and the multi-point crossovers randomly cut the
chromosomes and exchange the genetic materials between two parent solutions,
potentially breaking “promising” patterns. The latest advances in the evolu-
tionary computation literature showed that a more effective search could be
performed by identifying and preserving linkage structures, i.e., groups of genes
(problem variables) that should be replicated altogether into the offspring. Link-
age learning [26] is a broad umbrella of methods to infer linkage structures and
exploit this knowledge within more “competent” variation operators [16].

While linkage learning has been shown to be effective for single-objective
numerical problems [16,22,26], we argue that it can also have huge potential for
multi-objective test case selection. In this context, a solution is a binary vec-
tor where each bit i indicates whether the i-th test case is selected or not for
regression testing. MOEAs can generate partial solutions that contain promising
patterns, i.e., groups of test cases (bits) that together allow achieving high cover-
age with minimal execution cost. Hence, detecting and preserving these patterns
(group of bits) using linkage learning can improve overall the search process.

This paper introduces L2-NSGA, a variant of NSGA-II that integrates key
elements of linkage learning for the test case selection problem. In particular,
L2-NSGA uses Agglomerative Hierarchical Clustering (AHC) to identify linkage
structures in the non-dominated solutions produced by NSGA-II in every other
generation. These structures (patterns) are groups of bits (subsets of test suites)
that are found to be statistically frequent within the non-dominated solutions
according to the AHC algorithm. Then, L2-NSGA uses a novel crossover operator
that stochastically selects and replicates some of the inferred structures into
new individuals. Given the multi-objective nature of regression testing, L2-NSGA
optimizes all testing criteria simultaneously by using the fast non-dominated
sorting algorithm and the crowding distance defined by Deb et al. for NSGA-II [3].

We conduct an empirical study on four software systems with multiple ver-
sions and regression faults. We analyze the quality and fault detection capabil-
ity of the solutions produced by L2-NSGA. We compare its performance against
NSGA-II, which is the most widely-employed MOEA in the regression testing
literature (e.g., [14,21,28,30]). Our results suggest that the sub-test suites pro-
duced by L2-NSGA achieve higher coverage while incurring lower execution costs
than the baseline (RQ1). Furthermore, the solutions created by L2-NSGA detect
more regression faults than the solutions produced by NSGA-II (RQ2).
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2 Background and Related Work

Three main approaches have been proposed in the literature to reduce the cost of
regression testing [27]: test suite minimization [20], test case prioritization [19],
and test case selection (TCS) [2]. Test case minimization aims to reduce the size
of the test suite (number of test cases) by removing test cases that are redundant
according to the chosen test criteria. Test case prioritization prioritizes (sorts)
the test cases with the goal of running the fault-detecting tests earlier. Finally,
TCS aims to select a subset of the original test suite taking into account test
software changes and balancing cost (e.g., execution time and resource usage)
and test quality (e.g., branch coverage). Given the conflicting nature of test
quality and test resources, TCS is inherently a multi-objective problem [29] and,
therefore, addressed using multi-objective evolutionary algorithms (MOEAs).

A common practice to decide which tests to select consists of using test
quality metrics (or adequacy criteria) as surrogates for fault detection capability.
These quality metrics reflect different aspects that software testers might be
interested in maximizing, such as running test cases that exercise most of the
production code as possible (code coverage [27,29,30]) or test cases that cover
certain requirements first (requirement coverage [30]).

Yoo and Harman [29] introduced the first explicit formulation of TCS using
a multi-objective paradigm. Given a program P , its new version P ′, and a test
suite T , the goal is to find Pareto efficient subset of test suites T ′ ⊆ T that
correspond to optimal trade-offs among the different testing criteria to optimize.

Let Q = {Q1, . . . , Qm} be the set of quality metrics to maximize; and let C be
the cost metric to minimize, the multi-objective TCS problem can be formulated
using the following formula:

min Ω(T ′) = [C(T ′),−Q1(T ′), . . . ,−Q1(T ′)] (1)

where T ′ ⊆ T ; Qi(T ) denotes the quality value of T ′ based on the metric Qi;
and C(T ′) is the cost of the sub-set T ′.

Solutions to the TCS are encoded as binary chromosomes, where the i-th
binary element (or gene) is set to 1 if the test case ti ∈ T is selected; 0 otherwise.
A solution Tx ⊆ T is said to dominate another solution Ty ⊆ T (denoted by
Tx � Ty), if Tx is better than or equal to Ty for all test objectives, and there is
at least one objective (e.g., test cost) in which Tx ⊆ T is strictly better than Ty.
A solution T ∗ is Pareto optimal if there exists no other solution Tx ⊆ T such that
Tx � T ∗. The set of all Pareto optimal solutions (subsets of T ) is called Pareto
optimal set, and the corresponding objective vectors form the Pareto front. The
goal of multi-objective TCS is to find Pareto optimal (or efficient) subsets of the
test suite T to run for regression testing.

Yoo and Harman [29] introduced multi-objective variants of the greedy algo-
rithms for the set cover problem. They also assessed the performances of MOEAs,
and NSGA-II in particular. Epitropakis et al. [4] empirically showed that MOEAs
produce more effective solutions (i.e., detect more regression faults) than greedy
approaches. Yoo et al. [32] successfully applied MOEAs to reduce the cost of
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regression testing within Google’s test environment. We observe that the most
commonly used MOEAs for TCS is NSGA-II (e.g., [12,29–31]).

2.1 Linkage Learning

Evolutionary Algorithm (EAs) with simple variation operators have been shown
to perform poorly for combinatorial problems with a high number of variable
problems [8,11]. This is because the effectiveness of EAs strongly depends on
their ability to mix and preserve good partial solutions [10]. Prior studies pro-
posed more effective variation operators (i.e., crossover and mutation) that
exploit linkage information to improve the scalability of EAs [15,18]. Linkage
information can be inferred using different techniques, such as Bayesian Net-
work [16], Dependency Structure Matrix [33], and hierarchical clustering [22,23].

Gene-pool Optimal Mixing Evolutionary Algorithm (GOMEA) is one of the lat-
est linkage-based evolutionary algorithm. GOMEA uses hierarchical clustering to
learn linkage tree structures and uses the linkage information to create new solu-
tions. In particular, GOMEA uses gene optimal mixing to improve existing solutions
iteratively using local search and evaluating partial solutions. In each generation,
GOMEA infers the linkage tree using the UPGMA algorithm [23]. UPGMA is a
bottom-up approach that clusters genes (problem variables) based on their sim-
ilarities. The similarity is computed using the normalized mutual information.
The result of UPGMA is a linkage structure, called Family Of Subsets (FOS). A
FOS is a set {F 0, F 1, . . . , F |F |−1} where each F i is a subset of the gene indexes.
For example, the set F i = {1, 2, 3} indicates that the genes at index 1, 2, and
3 are linked together and should be considered a unique “block”. The family of
subsets (FOS) is a tree that contains N leaf nodes and N − 1 internal node,
where N is the number of variable problems. The leaf nodes correspond individ-
ual variable problems (univariate subsets), while the internal nodes merge the
child nodes into larger subsets.

Given the FOS, GOMEA creates new solution by iteratively applying each sub-
set (linkage structure) into a parent individual and accepting only changes that
strictly improve the fitness function. In other words, GOMEA applies an exhaustive
local search on the linkage structures. Although GOMEA is very effective at achiev-
ing better convergence for problems with large numbers of decision variables, it
is not designed for multi-objective problems such as TCS. In our context, we have
multiple conflicting objectives (testing criteria) that must be optimized simulta-
neously. Another limitation of GOMEA is that it uses a computationally expensive
local search heuristic to try all possible linkage structures through many fitness
evaluations.

3 Approach

In this paper, we introduce a variant of NSGA-II that incorporates key elements
of GOMEA, hereafter referred to as L2-NSGA. Algorithm 1 outlines the pseudo
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Algorithm 1: L2-NSGA
1 begin
2 P ←− INITIAL-POPULATION()
3 while not (end condition) do
4 FOS ←− INFER-MODEL(P , 2)

5 P ′ ←− ∅
6 forall the i in 1..|P | do
7 Parent ←− TOURNAMENT-SELECTION(P )
8 Donor ←− TOURNAMENT-SELECTION(P )
9 Child ←− L2-CROSSOVER(Parent, Donor, FOS)

10 Child ←− MUTATE(Child)

11 P ′ ←− P ′ ⋃ {Child}
12 R ←− P ′ ⋃

P
13 F ←− FAST-NONDOMINATED-SORT(R)
14 P ←− ∅
15 d ←− 1
16 while | P | + | Fd |≤ M do
17 CROWDING-DISTANCE-ASSIGNMENT(Fd)
18 P ←− P

⋃
Fd

19 d ←− d + 1

20 SORT-BY-CROWDING-DISTANCE(Fd)
21 P ←− P

⋃
Fd[1 : (M− | P |)]

22 return F1

code of L2-NSGA. The algorithm starts with an initial pool of random solu-
tions, i.e., random subsets of test suites (line 2). The population then evolves
through subsequent generations to find nearby non-dominated solutions (loop
in 3–24). In line 4, the algorithm infers the linkage structures from the best
individuals in the population P using UPGMA. The structures (FOS) are only
inferred every other iteration to reduce the overhead of the inference process.
To produce the population for the next generation, L2-NSGA first creates new
individuals, using the L2-CROSSOVER, which uses the model inferred in line 4.
We describe the crossover operator in detail in Sect. 3.1. In particular, the binary
tournament selection is applied to select two individuals from the population:
one parent (line 7) and one donor (line 8). In lines 9–10, the child solution is cre-
ated by applying our new crossover operator (Sect. 3.1) and the bit-flip mutation
operator. Once the offspring population P ′ is obtained, L2-NSGA uses the fast
non-dominated sorting algorithm and crowding distance from NSGA-II to form
the population for the next generation (elitism).

In line 13, the parent (P ) and the offspring (P ′) populations are combined
into one single pool R. The solutions in R are ranked in subsequent non-
dominated fronts using the fast non-dominated sorting algorithm by Deb et
al. [3]. The solutions in the first front F1 ⊆ R are not dominated by any other
solution in P ; the solutions in the second front F2 are dominated by the solutions
in F1 ⊂ R but do not dominate one another; and so on.

The loop between lines 17 and 21 adds as many individuals to the next
generation as possible, based on their non-dominance ranks, until reaching the
population size. L2-NSGA first selects the non-dominated solutions from F1; if the
number of selected solutions is lower than the population size, the loop selects the
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non-dominated solutions from F2, etc. The loop ends when adding the solutions
of the current front Fd exceeds the maximum population size (the condition in
line 17). In the latter case, the algorithm selects the remaining solutions from the
front Fd according to the descending order of crowding distance in lines 22–23.

Notice that the binary tournament selection selects parent and donor solu-
tions using the concept of Pareto optimality, which leads to selecting individuals
with better (lower) dominance ranks. Further, the crowding distance increases
the selection probability for the more diverse individuals within the same non-
dominance front. The main loop in lines 3–24 terminates when the maximum
number of generations is reached.

3.1 Linkage-Based Crossover

Given one parent solution and one donor solution, our goal is to copy genes
from the donor to the parent using the linkage structures (FOS). Let FOS =
{F 0, . . . , Fn} be the family of subsets produced the UPGMA on the population
P . The new solution Child is obtained by cloning the parent solution and repli-
cating K randomly selected subsets F j ∈ FOS from the donor solution. More
formally, let FOSK ⊂ FOS be the set of K subsets randomly chosen from FOS;
the new solution Child is formed as follows:

Child[i] =
{
Parent[i] i /∈ one of the sets in FOSK

Donor[i] i ∈ one of the sets in FOSK
(2)

where Child[i] is the i-th gene of the child solution; Parent[i] is the i-th gene
the parent solution; and Donor[i] is the i-th gene of the donor solutions.

The donor genes are replicated into the child altogether without applying the
computationally expensive local search of GOMEA. Another important difference
compared to GOMEA is that L2-NSGA always accepts the child solutions; parents
and offsprings are selected for the next generation based on their dominance
ranks and crowding distance values (lines 17–23 in Algorithm1). Instead, GOMEA
iteratively accepts partial changes only if they do not worsen the current single
fitness value. Recall that GOMEA is a single-objective search algorithm.

In our preliminary experiments, we assessed different K values for the number
of FOS to copy into the parent. We obtained good results for the systems used
in our empirical study when setting K equal to 50 % of the linkage structures.

3.2 Similarity Function for Linkage Learning

UPGMA is a bottom-up iterative algorithm for hierarchical clustering, and it
is used in both GOMEA and L2-NSGA to infer linkage tree structures. UPGMA
requires to choose a distance function d to compute the linkage tree, i.e., to
decide which subsets to merge in each iteration. Various distance functions can
be used, such as the mutual information [9], [23], hamming distance, and the
correlation coefficient. L2-NSGA uses the hamming distance as it the classical
distance function for binary vectors (i.e., solution in our case) and has a much
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Table 1. Programs used in the study.

Program Versions LOC # Tests Fault type Language

bash {v1, v2, v3} 44,991 – 46,294 1,061 Seeded C
flex {v1, v2, v3} 9,484 – 10,243 567 Seeded C
grep {v1, v2, v3} 9,400 – 10,066 806 Seeded C
sed {v1, v2, v3} 5,488 – 7,082 360 Seeded C

lower computational complexity. The hamming distance between two problem
variables X and Y corresponds to the number of substitutions to apply to X to
obtain Y . The computational complexity of the hamming distance is O(N ×M),
with N being the population size, and M being the length of the chromosomes.

4 Empirical Study

We formulated the following research questions:

RQ1 To what extent does L2-NSGA produce better Pareto efficient solutions com-
pared to NSGA-II?

RQ2 What is the cost-effectiveness of the solution produced by L2-NSGA vs.
NSGA-II?

In particular, we assess the performance of L2-NSGA by comparing it with
NSGA-II (the baseline). NSGA-II, which is the most frequently used MOEAs in
regression testing [4,14,21,29,30]. NSGA-II is also a logical baseline since our
approach extends it with linkage learning. RQ1 aims to assess to what extent
L2-NSGA produces better solutions (subsets of test suites) than NSGA-II with
regards to given test adequacy and cost criteria. RQ2 aims to understand how
many faults can be detected by the solutions produced by the two MOEAs. This
research question reflects practitioners’ needs, interested in reducing the cost of
regression testing without reducing the number of detected regression faults.

Benchmark. Our empirical study includes multiple versions of four real-world
programs written in C: bash, flex, grep, and sed. Table 1 summarizes the main
characteristics (e.g., test suite size and version) of the programs in our bench-
mark. These programs are selected from the Software-artifact Infrastructure
Repository (SIR) [6]. The four programs correspond to the well-known UNIX
utilities obtained from the GNU website and are the largest programs written in
C available in SIR. SIR provides multiple subsequent versions of the programs
and their test suites. The test suite size varies from 360 to 1061 test cases, which
have been created by applying both white-box (statement coverage) and black-
box (category partition) test adequacy criteria [6]. SIR also includes faulty ver-
sions of these programs with seeded (artificial) faults. Similar to what has been
done in the literature (e.g., [29]), we considered non-trivial seeded faults that
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only few tests can detect. It is worth noting that these UNIX utilities have been
widely used in the related literature on regression testing (e.g., [4,7,29,30]).

Test Objectives. In our study, we considered three test criteria, which corre-
sponds to the three objectives to optimize. In particular, we considered statement
coverage (to maximize), branch coverage (to maximize), and execution cost (to
minimize). For each available test case T , we stored the code branches and state-
ments that T covers using gcov, which is a coverage tool from the C compiler in
GNU. To have a reliable measure of test execution time, we counted the num-
ber of instructions executed by each test case T by using the gcov tool. This
methodology of measuring the test execution cost has been widely used in the
related literature to avoid biased measurements due to both the hardware and
software environments used to run the test suites [29,30].

Experimental Protocol. We run the two MOEAs 20 times (each) to address
their randomized nature. In each run, we stored the non-dominated front and
the corresponding optimal solution set produce at the end of the search budget,
i.e., when reaching the maximum number of evaluated solutions.

To answer RQ1, we need to compare the non-dominated fronts produced
by the MOEAs with regard to the optimal (true) Pareto front. Since the TCS
problem is NP-complete [5], it is not possible to compute the true Pareto front
in polynomial time for the programs in our benchmark. Hence, we build the so-
called reference front [29,30] that combines the best parts of the non-dominated
fronts produced by both NSGA-II and L2-NSGA across all 20 runs. More precisely,
let {F1, . . . , Fk} be all non-dominated fronts produced by L2-NSGA and NSGA-II;
the reference front R is built as follows:

R ⊆
k⋃

i=1

Fi,∀p1 ∈ R, p2 ∈ R : p2 ≺ p1 (3)

Given the reference front R, we then used the inverted generational distance
(IGD) and the hypervolume (HV) as the quality indicators [34]. IGD measures
both proximity of the non-dominated fronts produced by MOEAs to R as well
as the solution diversity [34]. Therefore, smaller IGD values are preferable. In
contrast, HV measures the area/volume that is dominated by a non-dominated
front. Hence, larger HV values are preferable.

To answer RQ2, we analyze the fault detection capabilities of the subset of
test suites produced by L2-NSGA and NSGA-II. To this aim, we analyze the num-
ber of regression faults that can be detected by each solution (sub-suite) in a
given non-dominated front Fi. Hence, a non-dominated front Fi produced by
a MOEA corresponds to a set of points with different cost values and differ-
ent number of detected faults (cost-effective front). Non-dominated fronts that
detects more faults with lower execution cost are preferable.

To quantify the cost-effectiveness into a single scalar value, we used the
normalized Area Under the Curve (AUC) delimited by the cost-effective front
(ICE metric). This metric has been used to measure the average-fault detection
capability of a non-dominated front for multi-objective TCS approaches [14]. ICE
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ranges within the interval [0; 1]. ICE = 1 corresponds to the ideal (utopia) case
where the front Fi detects all faults independently on the number of selected
tests. ICE = 0 indicates the worst-case scenario where no faults are detected.
Hence, larger ICE values are better.

To assess the significance of the differences among L2-NSGA and NSGA-II,
we use the Wilcoxon rank-sum test with the threshold α=0.05. A significant
p-value indicates that L2-NSGA achieves better performance metric compared to
NSGA-II across 20 runs. We further complement our statistical analysis with the
Vargha-Delaney statistic (Â12) to measure the effect size of the results. Â12 > 0.5
indicates a positive effect size for L2-NSGA.

Parameter Setting. For our experiments, we used the same parameter values
used in the literature [29,30]. In particular, both NSGA-II and L2-NSGA use a
population size of 100 solutions; and the bit-flip mutation operator with proba-
bility pm = 1/n, with n being the test suite size (i.e., chromosome length). For
the recombination operators, NSGA-II uses the scattered crossover [14] with the
probability pc = 0.8. Instead, L2-NSGA uses the L2-CROSSOVER presented in
Sect. 3 with the probability pc = 0.8 as well. For both NSGA-II and L2-NSGA, we
use the binary tournament selection. Finally, we used the stopping condition of
20 000 fitness evaluations, or equivalently 200 generations.

Implementation. We implemented L2-NSGA in Python using thepymoo
library [1]. We use the implementation of linkage leaning and hierarchical clus-
tering available in SciPy. The source code of L2-NSGA is publicly available as an
artifact [13]. In our implementation, we pre-processed coverage data using the
lossless compaction algorithm by Epitropakis et al. [4]. This algorithm has been
proved to reduce the fitness evaluation cost drastically.

5 Results

In this section, we discuss the results achieved for each research question sepa-
rately. Section 6 elaborates on the potential threats to the validity of our study.

Results for RQ1. Table 2 reports the median and IQR (interquartile range) of
the IGD and HV values achieved by L2-NSGA and NSGA-II. The IGD metric has
been computed using the reference front built as described in the study design.
We observe that L2-NSGA achieves smaller (better) IGD values than the baseline.
This means that the subset of test suites produced by L2-NSGA are much closer to
the reference front and more well-distributed compared to NSGA-II. We further
observe that the HV scores achieved by L2-NSGA are always larger than those
obtained with NSGA-II. This means that the non-dominated fronts produced
by our approach are closer to the reference fronts (IGD) and dominate a larger
portion of the objective space (HV).

To provide a graphical interpretation of the results, Fig. 1 depicts the non-
dominated fronts produced by the two MOEAs for sed version v1 when using two
different numbers of generations. For the sake of this analysis, we selected the
front achieving the median IGD value across the 20 independent runs. Figure 1a
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Table 2. Median IGD and HV values (with IQR) achieved by the L2-NSGA and
NSGA-II. Best performance is highlighted in grey color.

System Version
IGD HV

NSGA-II L2-NSGA NSGA-II L2-NSGA

bash v1 0.1987 (0.0192) 0.1046 (0.0224) 0.4165 (0.0276) 0.6418 (0.0483)

v2 0.2059 (0.0238) 0.1136 (0.0201) 0.6223 (0.0215) 0.7710 (0.04242)

v3 0.2839 (0.0333) 0.1221 (0.0300) 0.3638 (0.0252) 0.6110 (0.0435)

flex v1 0.0300 (0.0068) 0.0265 (0.0058) 0.9924 (0.0014) 0.9937 (0.0016)

v2 0.0324 (0.0144) 0.0230 (0.0086) 0.9810 (0.0038) 0.9853 (0.0060)

v3 0.0519 (0.0333) 0.0350 (0.0159) 0.9808 (0.0053) 0.9857 (0.0028)

grep v1 0.1872 (0.0881) 0.0995 (0.0467) 0.4623 (0.0908) 0.6327 (0.0983)

v2 0.1702 (0.0573) 0.1301 (0.0865) 0.5246 (0.0782) 0.5991 (0.1575)

v3 0.1920 (0.0835) 0.1428 (0.0389) 0.4310 (0.0851) 0.5540 (0.0968)

sed v1 0.1123 (0.0834) 0.0544 (0.0570) 0.8863 (0.06489) 0.9580 (0.0552)

v2 0.0546 (0.0141) 0.0158 (0.0258) 0.9508 (0.0393) 0.9900 (0.0209)

v3 0.0752 (0.0617) 0.0253 (0.0143) 0.8919 (0.0805) 0.9761 (0.0433)

shows the front produced by the two MOEAs after 100 generations. L2-NSGA pro-
duced a better distributed front compared to NSGA-II. Besides, the solutions by
L2-NSGA dominate all the solutions produced by the baseline. This means that
developers can choose sub-suites from L2-NSGA that yield the same or larger
coverage but incur a much smaller test execution cost. Figure 1b shows the front
produced by the two MOEAs for the same system, but after 200 generations. Also
in this case, L2-NSGA produced a better distributed front than NSGA-II.

Table 3 reports the statistical test results, namely the p-value of the Wilcoxon
rank-sum test and the Â12 statistic. According to these tests, the differences
between the two MOEAs are statistically significant (p-value < 0.01) for all sys-
tems and all versions. The only exception to this rule is flex v1 for which the
p-value is only marginally significant when considering the IGD metric. The
effect size is always large for HV. These results suggest that L2-NSGA achieves
better results independently of the size of the project and the test suites.

Results for RQ2. Table 4 reports the median and IQR of the ICE values
achieved by L2-NSGA and NSGA-II. Recall that ICE measures the average num-
ber regression faults detected by MOEAs at different execution cost intervals (see
Sect. 4 for more details). We observe that L2-NSGA achieves better (larger) ICE

values than NSGA-II in 10 out of 12 comparisons. Our approach achieves bet-
ter results for all versions of bash, grep, and sed. The difference ranges from
+19p.p. (percentage points) for bash v3 to +0.10p.p. for flex v3. Instead, for
flex v1 and v2, the two approaches provide almost identical ICE scores.

According to the Wilcoxon rank-sum tests and the Vargha-Delaney statistic
(results also reported in Table 4), L2-NSGA statistically outperforms the baseline
w.r.t. cost-effectiveness in all versions of bash, grep, and sed with a large effect
size. For flex, the statistical significance only holds for version v3 with a large
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Fig. 1. Fronts produced by L2-NSGA and NSGA-II for sed version v1

Table 3. Results of the statistical tests

System Version
IGD HV

p-value Â12 p-value Â12

bash v1 <0.01 1.00 (large) <0.01 1.00 (large)
v2 <0.01 1.00 (large) <0.01 1.00 (large)
v3 <0.01 1.00 (large) <0.01 1.00 (large)

flex v1 0.06 0.64 (small) <0.01 0.77 (large)
v2 0.04 0.66 (small) <0.01 0.80 (large)
v3 <0.01 0.72 (med.) <0.01 0.85 (large)

grep v1 <0.01 0.88 (large) <0.01 0.94 (large)
v2 <0.01 0.76 (large) <0.01 0.805 (large)
v3 <0.01 0.81 (large) <0.01 0.95 (large)

sed v1 <0.01 0.76 (large) <0.01 0.83 (large)
v2 <0.01 0.91 (large) <0.01 0.92 (large)
v3 <0.01 0.87 (large) <0.01 0.91 (large)

effect size. Lastly, there is no statistical difference between the two MOEAs for
versions v1 and v2 (negligible effect size).

Running Time Analysis. Compared to NSGA-II, our approach applies linkage
learning every two generations. The inference is based on UPGMA, which is a
known fast algorithm for clustering. Nevertheless, this algorithm adds some extra
overhead to the search process. Hence, it is important to quantify such overhead
for practical purposes. To this aim, Fig. 2 reports the execution time spent by
each algorithm to perform 200 generations on each program and independent
run. The execution time was measured using a machine with Intel Core i7 pro-
cessor running at 2.40GHz with 16GB RAM.

From Fig. 2, we observe that L2-NSGA is, on average, 30 % slower than
NSGA-II for all programs (and versions) in our benchmark. For the two smallest
programs (i.e., flex and sed) the differences are between + 1 s and + 2s. Hence,
the differences are very negligible in practice. A larger overhead is noticeable for
bash and grep, which have the largest test suites. For the former system, the dif-
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Table 4. Cost-effective results. Best performance is highlighted in grey color.

System Version
NSGA-II L2-NSGA Stat. Analysis

ICE IQR ICE IQR p-value Â12

bash

v1 0.6857 0.0171 0.8566 0.0395 <0.01 1.00 (large)

v2 0.5711 0.0586 0.7031 0.0981 <0.01 0.98 (large)

v3 0.6760 0.0770 0.8559 0.0677 <0.01 0.96 (large)

flex

v1 0.6718 0.0476 0.6721 0.0478 0.31 0.55 (negl.)

v2 0.5243 0.0008 0.5244 0.0248 0.51 0.50 (negl.)

v3 0.6809 0.0018 0.6827 0.0009 <0.01 0.89 (large)

grep

v1 0.3725 0.0323 0.43031 0.0586 <0.01 0.83 (large)

v2 0.3474 0.0325 0.4260 0.0452 <0.01 0.92 (large)

v3 0.1370 0.0088 0.2052 0.0214 <0.01 1.00 (large)

sed

v1 0.7552 0.0214 0.7760 0.0178 <0.01 0.85 (large)

v2 0.9275 0.0350 0.9414 0.0340 <0.01 0.74 (large)

v3 0.9476 0.0416 0.9894 0.0204 <0.01 0.91 (large)
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Fig. 2. Execution Time (in seconds) of NSGA-II and L2-NSGA

ferences in running time between L2-NSGA and NSGA-II are between +10 s and
+15 s. For the latter, our approach requires between +5 s and +6 s compared
to the baseline. However, we can conclude that a difference of a few seconds are
very negligible in a practical setting.

Lastly, we note that running NSGA-II for longer will not improve its results
(IGD, HV, and ICE). For example, running NSGA-II on bash v1 for 600 gener-
ations (for 80 s on average) leads to HV= 0.35 (compared to 0.42 of L2-NSGA in
Table 2 with 200 generations) and an ICE = 0.69 (compared to 0.86 of L2-NSGA
in Table 4 with 200 generations). These are the median values achieved over 20
independent runs.
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6 Threats to Validity

The threats to construct validity are related to the metrics we used to assess
the MOEAs. In our study, we used the inverted generation distance (IGD) and
the hyper-volume (HV) to answer our RQ1. These metrics are well-established
quality indicators for multi-objective algorithms [34]. This is also in line with
the guidelines by Wang et al. [25] that recommended using IGD for problems
(like TCS) with no known reference points beforehand. We combined the non-
dominated fronts produced by all MOEAs and across all runs to build the reference
front. This is a standard practice in regression testing [14,21,29,30,32]. Another
potential threat is related to the test quality and cost metrics we optimize with
the MOEAs. To collect the coverage and test execution cost data, we relied on the
gcov profiling tool as done in the literature [4,30].

Threats to internal validity are related to the random nature of MOEAs and
the L2-CROSSOVER operator. To address this threat, we run each MOEA 20
times on each program version. Then, we analyze the median results and rely
on non-parametric statistical tests (i.e., Wilcoxon test and the Vargha-Delaney
statistics) to draw our conclusions.

Threats to external validity regard the generalizability of our results. We
selected four medium to large size software systems written in C. These systems
are well-known UNIX utilities from the SIR dataset [6] and have been widely used
in prior studies in regression testing [14,21,28,30]. Furthermore, we considered
three different versions of each program in the benchmark. Replicating our study
with more programs, further releases, and more MOEAs is part of our future plan.

7 Conclusions and Future Work

In this paper, we have introduced a novel approach, called L2-NSGA, for multi-
objective test case selection (TCS). L2-NSGA extends NSGA-II by incorporat-
ing linkage learning methods. Inspired by the latest advances in evolutionary
computation, our approach replaces the fully-randomized crossover operator of
NSGA-II with a new operator (L2-CROSSOVER) that identifies, preserves, and
replicates patterns of genes (bits) that characterize the fittest solutions in a given
population. These patterns (also called linkage structures) are inferred through
agglomerative hierarchical clustering and UPGMA in particular.

We evaluated L2-NSGA on four real-world programs with large test suites
and multiple versions. Our results showed that L2-NSGA produces better non-
dominated fronts than its predecessor NSGA-II (the baseline), widely used in the
literature. Furthermore, the test suites created with L2-NSGA can detect more
regression faults than the solutions produced by the baseline.

As future work, we plan to consider alternative clustering algorithms to learn
the linkage structures and different stochastic approaches for selecting the genes
to replicate into new solutions during recombination. We aim to assess the use-
fulness of L2-NSGA for other regression testing techniques, such as test case pri-
oritization. Finally, we would like to combine linkage learning with other MOEAs
widely used in search-based software testing.
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Abstract. Nowadays, many companies use RESTful web services to
develop their enterprise applications. These web services typically inter-
act with databases. In REST, resource handling is a fundamental con-
cept, where resources are manipulated by exposing HTTP endpoints. Rd-
MIO* is an evolutionary algorithm which is specialized in test generation
for such kind of services, i.e., RESTful APIs, via manipulating resources
in various ways using HTTP actions (e.g., GET and POST). In this paper,
we further extended Rd-MIO* by employing SQL commands to manip-
ulate the resources for test generation, directly into the databases. We
implemented our novel technique as an extension of the EvoMaster
tool. To evaluate our approach, we selected Rd-MIO* as a baseline tech-
nique and conducted an empirical study with five open source REST
APIs. Results showed that our approach clearly outperforms the base-
line over all of the five case studies.

Keywords: White-box test generation · SQL · REST API Testing ·
SBST

1 Introduction

REST is widely applied in developing web enterprise systems for providing ser-
vices over the network, e.g., Google Drive1 and Azure2. This kind of web services
typically need communications over the network (e.g., with clients and external
services), and interact with databases. Due to these interactions, it is challenging
to test these systems, especially for system-level test case generation.

In REST, there exists a set of endpoints (e.g., POST and GET), which are
exposed for providing services over HTTP. Dealing with resources is a fundamen-
tal concept, where the exposed endpoints enable manipulating these resources.
Rd-MIO* [14,15] is a search-based testing approach which is developed by
1 https://developers.google.com/drive/api/v3/reference.
2 https://docs.microsoft.com/en-us/rest/api/azure/.
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handling resources for white-box test generations particularly for RESTful APIs.
The approach defines a set of templates to structure HTTP calls in a test in terms
of resources, and developed a set of novel strategies to sample and mutate the
tests with such templates.

In this paper, we extended Rd-MIO* by employing Structured Query Lan-
guage (SQL) to enhance resource handling, i.e., enable adding resources to be
performed into database directly, and utilizing existing resources for the actions
to be tested. We integrated our approach into EvoMaster [2] open-source
tool, and conducted an empirical study with five open-source case studies (one
artificial and four real-world). Results show that tests generated by our novel
approach are capable of achieving on average 45.0% (up to 65.5%) line coverage
and 20.5% (up to 27.3%) branch coverage, among the five case studies. Com-
pared to the existing Rd-MIO* using the default setting, our novel approach
demonstrates consistent and clear improvements on all of the five case studies.
Relative improvements are up to 26.0% for target coverage, up to 26.2% for line
coverage, 20.3% for branch coverage, and 40.6% for fault detection.

The rest of the paper is organized as: Background and Related work are
described in Sect. 2. The proposed approach is presented in Sect. 3, followed by
an empirical study on it (Sect. 4). We discuss the threats to validity in Sect. 5,
and conclude the paper in Sect. 6.

2 Background and Related Work

2.1 Resource and Dependency Based MIO (Rd-MIO*)

The Many Independent Objective (MIO) [3] algorithm is an evolutionary algo-
rithm inspired by the (1+1) Evolutionary Algorithm which only contains sam-
pling and mutation. MIO is designed for generating system-level white-box tests,
and Rd-MIO* [14,15] is an extension of it by handling test generation with an
explicit consideration of resources and their dependencies in RESTful APIs. In
Rd-MIO*, based on HTTP semantics, ten templates of structuring actions on
manipulating resources in a test were developed [15], as follows:

T1. GET is to retrieve resource(s);
T2. PATCH is to partially update a resource which is likely nonexistent;
T3. DELETE it to delete a resource which is likely nonexistent;
T4. PUT is to replace a resource which is likely nonexistent;
T5. POST is to create a resource;
T6. POST/PUT-POST is to create a resource which likely exists;
T7. POST/PUT-GET is to retrieve a resource which likely exists;
T8. POST/PUT-PUT is to replace a resource which likely exists;
T9. POST/PUT-PATCH is to partially update a resource which likely exists;

T10. POST/PUT-DELETE is to delete a resource which likely exists.

Thus, a sequence of actions following the template can be regarded as a resource-
handling with a specific purpose, and a test can be regarded as a sequence of such
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handlings. In addition, each of such templates has a property indicating that it is
either independent (i.e., T1–T4) or possibly-dependent (i.e., T5–T10). With such
definitions, an individual is defined as a sequence of resource-handlings which
perform a sequence of actions (e.g., HTTP calls) on the resources. Moreover,
Zhang et al. [15] defined resource-based sampling and resource-based mutation
for producing and evolving the individual with such structure, i.e., resource-
handlings. To investigate dependencies in REST APIs, Rd-MIO* is integrated
with resource dependency heuristic handling, which is capable of identifying pos-
sible dependencies during the search [15]. Then the sampling and mutation in
Rd-MIO* can further employ such identified dependencies to produce new indi-
viduals. In this paper, we extended the individual and resource-handling with
direct SQL commands for enhancing such resource-based handling.

2.2 SQL Handling in EvoMaster

SQL is a widely used language for managing data in databases. To track all
interactions with the database, in EvoMaster, SQL commands monitoring is
implemented which is capable of tracing all executed SQL commands for access-
ing the SQL database of the SUT during the search [6]. Thus, when executing
actions to be performed on a resource, we can know what tables are accessed
with SQL. In Rd-MIO*, dependencies between resources and tables are also col-
lected for identifying possible dependencies among the resources. For instance,
if the same table is accessed by manipulations on resource A and resource B,
then there might exist a dependency between A and B. For REST APIs, if a
HTTP action triggers an access to tables, it is likely that the table is related to
the resources to be manipulated. In addition, EvoMaster is integrated with a
Domain Specific Language (DSL) (developed by [6]) which enables direct data
insertions with SQL from the generated JUnit tests. With such existing support,
we can employ SQL for manipulating the resources throughout the search.

2.3 REST API Testing

With a wide application of REST, there exists an increase research effort in test
methods for REST APIs. To test RESTful API services, many methods [7–10,12,
13] have been developed with OpenAPI, which is a machine-readable schema that
describes how to create requests for the services. The existing EvoMaster we
extended in this work also uses such schemas to produce tests. In [7], Atlidakis et
al. developed RESTler for generating a sequence of requests to test REST APIs.
The sequence is decided by an inference on dependencies among the endpoints
based on the OpenAPI (at the beginning) and an analysis on runtime responses.
Godefroid et al. [9] also employs the OpenAPI schema to generate test data for
REST APIs using fuzzing techniques. In [10], the schema is applied for studying
differences among different versions of RESTful API services with differential
testing technique. However, most of the approaches on REST APIs are in the
context of black-box testing [8,13].
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To our best knowledge, the only approaches for handling white-box test gen-
eration for REST APIs are from our work on EvoMaster [3,4,6,15]. In this
paper, we extended the approach which is for handling test generation with
resource-based methods (as described in Sect. 2.1) on EvoMaster, and further
selected the approach as our baseline in the empirical study.

3 Resource Handling with SQL

Resource-based technique (i.e., Rd-MIO*) has demonstrated its effectiveness in
white-box test generation for RESTful APIs [15]. In Rd-MIO*, the resource-
handling is based on the templates which only rely on HTTP actions. However,
it might not be always feasible to apply HTTP calls on manipulating resources,
e.g., the dependent resources might require different levels of authorizations, or
the creation of the resource is not clearly defined in the schema. In these cases,
the state of the resources can not be changed with the Rd-MIO* templates
during search, and that could limit the effectiveness of resource-based techniques
for maximizing code coverage and faults finding in the context of white-box
testing. To manipulate such states, instead of using HTTP actions, it is also
applicable to directly modify data in the database, if any is used. In addition,
this is typically true in RESTful web services which interact with databases for
persisting resources.

Considering an example, where a REST API which interacts with a database
has two resources, foo (with POST and GET) and bar (only with GET). foo is
required to refer to an existing bar, but there does not exist a clear creation
action for bar in the schema as shown in Fig. 1. In this case, without an existing
bar, this issue limits the achievable line coverage on all of the endpoints. However,

1 "/foo/{id}": {
2 "get": {..},
3 "post": {
4 "parameters": [
5 {
6 "name": "id",
7 "in": "path",
8 "required": true ,
9 "type": "integer",

10 "format": "int32"
11 },{
12 "name": "barId",
13 "in": "query",
14 "required": true ,
15 "type": "string"
16 }],
17 "responses": {
18 "200": {..},"201": {..},"401": {..},"403": {..},"404": {..}
19 },
20 "deprecated": false
21 }
22 },
23 "/bar/{id}": {
24 "get": {..}
25 }

Fig. 1. Snippet code of a schema with OpenAPI
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Table 1. Resource-based sampling templates with SQL commands

# Template Description Independent?

11 SQL-POST To create an existing resource No

12 SQL-GET To retrieve an existing resource No

13 SQL-PUT To replace an existing resource No

14 SQL-PATCH(-PATCH) To (partially) update an existing resource No

15 SQL-DELETE To delete an existing resource No

Note that SQL refers to INSERT and SELECT commands, and the template is only applicable
to the resources which has identified possibly-related tables.

based on the SQL commands monitoring (see Sect. 2.2), the accessed table can
be known when executing GET on bar. Thus, we could possibly add a resource
for the bar by using INSERT on the accessed tables.

To enable the application of SQL in resource-handling, we firstly extend
the templates by involving SQL to manipulate resources. Based on semantics of
HTTP actions, we further develop five templates with SQL (as shown in Table 1).
The templates share similar testing purposes on the endpoints of the SUT with
T6–T10 templates in Rd-MIO* (see Sect. 2.1). However, we extend them for
resource preparation by using SQL (i.e., SELECT and INSERT) commands. As
the resource handled by the proposed templates is possible to have an impact
to following actions in the test, then we identify them as possibly-dependent
templates, i.e., the independent property is False in Table 1. With SQL, SELECT
can be applied to the situation whereby there exist resources in the SUT (e.g.,
seeded data), then endpoints can be tested with such existing resources, i.e.,
link the endpoints with existing ones. For INSERT, it is to create new resources
directly into the database, then further employ the newly created ones to test the
endpoints. In addition, we also provide a further extension for T6–T10 templates
with SQL, e.g., an extension would be SQL-POST/PUT-GET for T7 that is
applicable when the POST/PUT cannot function properly to create required
resources. For instance, to test a retrieve operation of an existing foo, it requires
a preparation of the foo resource. But POST foo could not be created due to lack
of dependent resources, i.e., bar. In this case, we can either employ SQL-GET
instead of POST-GET or create the bar for the POST. Such dependency could
be identified with dependency handling in Rd-MIO* [15]. Here, we can employ

A Test

SQL-GET /bar/{id}SQL-POST-GET /foo/{id}

Individual

Resources

SQL/REST Actions

GET /foo/5

POST /foo/5/barId=4

INSERT BAR (4, ...)

GET /bar/42

INSERT BAR(42, ...)

Fig. 2. An example to illustrate a representation of resource-based individual with SQL
handling
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such information for resource creation with SQL. Figure 2 illustrates a test with
a representation of resource-based individual employing the proposed templates.
The test comprises two resource handlings: one is to retrieve an existing foo with
an extended POST-GET template, and the other is to retrieve an existing bar
with SQL-GET template.

To ensure that SQL actions and REST actions perform on the same resource,
we need to further handle value binding among the actions during sampling.
The binding is implemented based on name matching using the Trigram Algo-
rithm [11] (which has been applied in [15]) for calculating a degree of similarity
between a column name of a table and a gene name in REST actions. Note that
for a SQL action, its genes are typically flatten, while for a REST action, its
genes might be structured (e.g., when representing JSON body payloads). In
this case, we need to go through every genes in the REST action in order to find
the most matched one (but the similarity degree must be more than 0.6 [15]),
then bind the SQL gene and the REST gene. The SQL gene and the REST gene
might have different types, e.g., a id of a resource might be Long in SQL but
String in the REST action. In this case, we handle a type conversion for genes
to be bound with different types. The binding direction depends on the type of
the SQL, i.e., we bind the rest gene based on when SQL is SELECT, and bind the
SQL gene based on the REST gene when SQL is INSERT. For a resource han-
dling, values on the binding genes might be modified, then we need to further
synchronize such binding genes after the mutation. Notice, genes for a SELECT
and REST genes binding with SELECT are not mutable. Based on such bind-
ing, SQL actions and REST actions could be restrained for performing on the
same resource, as shown in Fig. 2, e.g., barId is bound with id of the INSERT
on the table BAR, and so when one is mutated, then the value of the other is
automatically updated.

4 Empirical Study

To assess our novel proposed approach, we have carried out an empirical study
which aims at answering two research questions:

RQ1: How does resource-based MIO with SQL perform? Among the different
settings, which one performs best?

RQ2: How much improvement does our approach achieve compared to the exist-
ing work in terms of code coverage and fault detection?

4.1 Experiment Setup

In these experiments, we employed five REST APIs from an existing bench-
mark3 that were previously used in conducting empirical studies on RESTful
API testing approaches [4–6,14]. All of the APIs are open-source Java/Kotlin
projects that interact with a database. Table 2 reports descriptive statistics of
the case studies with the number of classes (#Classes), lines of codes (LOCs),
3 https://github.com/EMResearch/EMB.

https://github.com/EMResearch/EMB
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Table 2. Descriptive statistics of the case studies

Name #Classes LOCs #Endpoints Resource #R
(#Indep.)

Database
(#Tables,
#Columns)

rest-news 10 718 7 4 (1) (1, 5)

catwatch 69 5442 13 13 (11) (5, 45)

features-service 23 2347 18 11 (1) (6, 20)

proxyprint 68 7534 74 56 (26) (15, 92)

scout-api 75 7479 49 21 (2) (14, 70)

Total 245 23520 161 105 (41) (41, 232)

#R: a number of resources; #Indep: a number of independent resources out of #R

number of endpoints (#Endpoints), number of resources (#R), number of inde-
pendent resources (#Indep) out of #R, number of tables (#Tables) and number
of columns (#Columns). Regarding the case studies, rest-news is an artificial
API which was applied in a university course of enterprise development, and the
remaining four (i.e., catwatch, features-service, proxyprint, scout-api) are real
open-source projects searched from GitHub (https://github.com/).

We implemented our approach (denoted as Rd-MIO*sql) by extending Rd-
MIO* in EvoMaster with SQL handling on the resources. To assess its perfor-
mance, we firstly studied the probability of employing SQL to handle resources
with three settings, i.e., Psql ∈ {0.1, 0.3, 0.5}. Note that, in the context of REST
API testing, the endpoints should have a higher priority to be involved in a
test. Therefore, we set the maximum value of the setting as 0.5, i.e., SQL and
POST/PUT have an (at most) equal probability to be involved in a resource-
handling for preparing resources. Then we selected Rd-MIO* with its best con-
figuration [15] as the baseline technique to compare with. The performance of
the techniques are compared with three coverage metrics: the number of covered
targets (#Targets), line coverage (%Lines) and branch coverage (%Branches).
#Targets is a coverage criterion used in EvoMaster for test generation which
comprises status code coverage, code coverage and fault finding (i.e., the aggre-
gation of all other coverage criteria). More details about the target coverage can
be found in [3]. %Lines and %Branches are metrics typically used in evaluating
white-box testing techniques. To compare with the baseline, we also employ
the number of potential faults (#Faults) as a metric for fault detection. In
these experiments, considering the stochastic nature of the search algorithm,
we repeated our experiments 30 times, following common guidelines on conduct-
ing SBSE experiments [1]. All of the techniques were executed with the same
search budget (i.e., 100k HTTP calls), on the same machine.

4.2 Experiment Results

Results for RQ1. In Table 3, we report the average #Targets, %Lines and
%Branches achieved by our approach combined with all settings (i.e., Psql =

https://github.com/
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{0.1, 0.3, 0.5}) for all of the case studies. Results show that our approach enables
covering on average 45.0% (up to 65.5%) of lines and 20.5%(up to 27.3%) of
branches among the five case studies.

Table 3. Average #Targets, %Lines, %Branches obtained by Rd-MIO*sql.

SUT #Targets %Lines %Branches

rest-news 341.44 52.9% 27.3%

catwatch 1238.01 33.1% 17.8%

features-service 723.02 65.5% 21.2%

proxyprint 2522.48 32.7% 14.5%

scout-api 1967.17 40.8% 21.9%

Average 45.0% 20.5%

Table 4 represents further results for each of the settings with a rank among
the settings. The setting with the maximum value (i.e., Psql = 0.5) achieves
the best results on rest-news, proxyprint, scout-api. This might indicate that, in
these case studies, there might exist some difficulties by using endpoints (i.e.,
POST or PUT) to create resources. Thus, a relatively higher probability (such as
0.5) of applying SQL has a high chance to obtain better results. Compared with
features-service and catwatch, the preference on applying SQL is relatively lower,
i.e., 0.1 for features-service and 0.3 for catwatch. In total, based on average rank
among the case studies, we selected 0.5 (i.e., 50%) as the default configuration
for Psql.

RQ1: Among the five REST APIs, our approach is capable of automatically
generating tests that cover 45.0% of lines (up to 65.5%) and 20.5% of
branches (up to 27.3%) on average. We recommend to apply SQL for

handling resource with a 50% probability.

Table 4. Average #Targets, %Lines, %Branches by different configurations of Psql ∈
{0.1, 0.3, 0.5}. We also report ranks of the configurations for each SUT (value 1 indi-
cates the best), and p-value and χ2 of the Friedman test based on the ranks.

SUT #Targets %Lines %Branches

0.1 0.3 0.5 0.1 0.3 0.5 0.1 0.3 0.5

rest-news 337.29(3) 342.08(2) 345.20(1) 52.6%(3) 53.0%(2) 53.3%(1) 26.7%(3) 27.4%(2) 27.9%(1)

catwatch 1240.03(2) 1241.00(1) 1233.15(3) 33.1%(2) 33.2%(1) 33.0%(3) 17.8%(2) 17.9%(1) 17.6%(3)

features-service 724.34(1) 723.65(2) 721.09(3) 65.7%(1) 65.6%(2) 65.4%(3) 21.4%(1) 21.1%(2) 21.0%(3)

proxyprint 2520.97(2) 2509.59(3) 2536.91(1) 32.7%(2) 32.6%(3) 32.9%(1) 14.4%(2) 14.3%(3) 14.7%(1)

scout-api 1955.09(3) 1966.76(2) 1979.67(1) 40.6%(3) 40.8%(2) 41.1%(1) 21.6%(3) 22.0%(2) 22.2%(1)

Average Rank 2.20 2.00 1.80 2.20 2.00 1.80 2.20 2.00 1.80

Friedman Test (0.400, 0.819) (0.400, 0.819) (0.400, 0.819)
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Results for RQ2. To compare with the baseline technique, Table 5 reports
the average of #Targets, %Lines, %Branches and #Faults, and their results
of pair comparison analysis by Mann-Whitney-Wilcoxon U-tests (p-value) and
Vargha-Delaney effect sizes (Âxy). For coverage metrics, based on the average
results, our approach performs consistently better than the baseline for all of
the metrics. Regarding the pair comparison results, in four out of the five case
studies (i.e., rest-news, catwatch features-service and proxyprint), our approach
achieves clearly significant improvement which can be demonstrated by the low
p-value (i.e., < 0.01) and the high effect size (i.e., > 0.86). For scout-api, there
exists modest improvement, and the improvements on #Targets and %Lines are
statistically significant (i.e., p-value < 0.05 and Âxy > 0.5).

To assess the fault detection by our approach, we also report the number of
“potential” faults (#Faults) detected by our proposed approach and the baseline
in Table 5. Note that faults can be detected with the HTTP status code (i.e.,
500 in RESTful APIs). Regarding the #Faults metric, our approach achieves
significant improvements over all of the case studies.

In Fig. 3, we also analyze the average number of covered targets (i.e., a metric
combined several coverage metrics) using line plots over time, i.e., at every 5%
of the used budget, during the search. Based on these results, for all of the case
studies, our approach shows a clear margin throughout the search compared
with the baseline. This demonstrates the advantage of our approach on both
exploration and exploitation phases with SBST on RESTful APIs.

Table 5. Results by comparing with the baseline technique

A(Base) B(Rd-MIO*sql)

SUT Metrics A B hatAba p-value relative(b−a)/a

rest-news #Targets 273.91 345.20 1.00 <0.01 +26.0%

%Lines 42.2% 53.3% 1.00 <0.01 +26.2%

%Branches 23.2% 27.9% 1.00 <0.01 +20.3%

#Faults 4.72 6.63 1.00 <0.01 +40.6%

catwatch #Targets 1055.03 1233.15 1.00 <0.01 +16.9%

%Lines 27.4% 33.0% 1.00 <0.01 +20.5%

%Branches 14.8% 17.6% 1.00 <0.01 +19.1%

#Faults 16.70 20.76 0.97 <0.01 +24.3%

features-service #Targets 707.52 721.09 0.94 <0.01 +1.9%

%Lines 64.3% 65.4% 0.86 <0.01 +1.7%

%Branches 18.5% 21.0% 0.95 <0.01 +14.0%

#Faults 37.55 39.57 0.92 <0.01 +5.4%

proxyprint #Targets 2342.90 2536.91 0.89 <0.01 +8.3%

%Lines 30.7% 32.9% 0.86 <0.01 +7.3%

%Branches 13.5% 14.7% 0.92 <0.01 +9.1%

#Faults 90.19 100.74 0.99 <0.01 +11.7%

scout-api #Targets 1944.03 1979.67 0.69 0.003 +1.8%

%Lines 40.4% 41.1% 0.68 0.004 +1.7%

%Branches 21.9% 22.2% 0.61 0.069 +1.4%

#Faults 111.47 113.42 0.71 <0.01 +1.8%
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Thus, we can conclude that

RQ2: Rd-MIO* enhanced with our SQL handling (with a 50% probability of
its application) consistently outperforms the baseline technique in all of the
five REST APIs in terms of target coverage, line coverage, branch coverage

and fault detection.

Discussion. Regarding the coverage improvement on the case studies, we found
that our approach is the most effective to rest-news. By checking this case study,
we found that there exist some difficulties when creating news resource with
POST endpoint, because a news need to refer to a valid country specified with
String, i.e., one of pre-defined list restored in a textual file (i.e., .txt). With
the search, it is difficult to get a valid String within the limited budget, espe-
cially when there exist many objectives to be optimized in our context. Since
the news resource cannot be created, it would have an impact on testing related
actions on this resource, e.g., GET, UPDATE. For instance, Fig. 4 shows a snip-
pet code of the GET endpoint (see NewsRestApi.kt5) on this resource (i.e.,
GET /news/{id}) with coverage information achieved by tests generated by our
approach (i.e., all lines are covered). Note that lines with green color indicate
the line covered by tests. Regarding the line coverage on this endpoint, we found
that the line 161 is not solved by tests generated by the baseline (denoted with
× in the figure) with 100k search budget, and a precondition to reach the line
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catwatch features−service proxyprint
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Fig. 3. Average covered targets (y-axis) with Base and Rd-MIO*sql throughout the
search, reported at 5% intervals of the used budget allocated for the search (x-axis).
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Fig. 4. An example of coverage of GET /news/{id} endpoint in rest-news achieved by
our technique

Fig. 5. A test automatically generated by our approach which is able to cover the lines
159 and 161 in Fig. 4

is related to an existing news resource with the specified id. However, with the
proposed approach, the problem can be easily addressed by directly inserting
a news resource, despite that the country might not be valid (as the check is
carried out only when a new country entry is created). A test to handle the
problem is shown in Fig. 5.

Regarding catwatch case study, it also obtains a noticeable improvement
with our approach. As its statistics shown in Table 2, 11 out of 13 endpoints are
independent, i.e., GET actions. The remaining two are endpoints such as /import
and /export that do not refer to any specific resources. Thus, it is unlikely to
manipulate the resources in this REST API (e.g., language, contributor) using
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HTTP actions with the default Rd-MIO*. An alternative solution such as SQL
handling would show its effectiveness to this situation. For instance, regarding
LanguageService.java related to language resource, the line coverage by Rd-
MIO* and Rd-MIO*sql are 56.2% vs. 96.9%. Due to space limitation, complete
coverage report can be found with a link4 that are conducted by Intellij coverage
report5.

Regarding features-service, most of the resources have a reference to a POST
action for their creation. In addition, its schema clearly shows their hierarchi-
cal relationships among the resources, which further makes required resources
complete (i.e., prepare corresponding ancestor’s resources) with a high proba-
bility. This could explain the modest improvement and the effectiveness with a
relatively low (Psql = 0.1) application probability (as shown in Table 4) on this
case study. However, our approach still demonstrates its effectiveness compared
with the baseline, i.e., the significant improvement shown for all of the metrics.
This indicates that SQL handling is possibly required for resource handling for
testing REST API despite that POST/PUT endpoints for the resources have
been clearly defined.

Regarding proxyprint, there exist various resources (i.e., 56 #R in Table 2)
and their relationships are not clearly identified with the schema. For instance,
POST /request/accept/{id} is to accept a request to add a new printshop,
and the request can be registered via POST /request/register. POST uses to
create a resource, and its dependent resources if exist are typically specified with
a hierarchical form, e.g., /products/{productName}/features/{featureName}
and /products/{productName} in features-service. But in this case, the depen-
dency between the two endpoints are not obvious with their URIs, (i.e.,
/request/register and /request/accept) that might limit an effective-
ness of HTTP actions on manipulating such resources. However, for POST
/request/accept/{id}, the accessed table can be identified (as described
in Sect. 2.2) that allow SQL to prepare such resource for the POST. The
effectiveness of our approaches can be shown with 95.2% line coverage on
RegisterRequestController.java (See footnote 3) for handling the request,
compared with 35.7% by Rd-MIO*. In addition, in this case study, there
exists an endpoint /admin/seed for initializing data into the service (see
AdminController.java (See footnote 3)). To test the system, we seed such
data by requesting the endpoint before each test as shown in Fig. 6a. An effec-
tive test to POST /request/accept/{id} (shown in Fig. 6b) is just employed
such seeded data, i.e., id=2 at line 6 refers to a seeded request (see line 119 in
AdminController.java (See footnote 3)).

Regarding scout-api, its schema is similar with features-service, i.e., resources
are connected and have a POST for its creations. By further identifying the
source code, we found that there exist some difficulties in handling media file
resources. For instance, POST /v1/media files is to “Add a media file to the
system. Specify URL of media file or use ‘data URI’ to upload base64-encoded
file”. Currently, it is not effective to generate such data with the search, i.e., a

4 https://doi.org/10.5281/zenodo.5059928.
5 https://www.jetbrains.com/help/idea/code-coverage.html.

https://doi.org/10.5281/zenodo.5059928
https://www.jetbrains.com/help/idea/code-coverage.html
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Fig. 6. A test automatically generated by our approach which employs the existing
data for preparing a resource for /request/accept/{id}

valid URI referring to a media file (e.g., image). But we could employ SQL to add
data into the database for making the resource exists. Besides, in this case study,
most of data retrieves are implemented with a query parameter named attrs
which indicates “The attributes to include in the response. Comma-separated
list”. However, with 100k HTTP calls, currently EvoMaster cannot handle
such constraints (e.g., specified with textual language) properly. This might be
a reason for the modest improvements on this case study, but they are still
statistically significant.

Significant improvements on fault detection could be a result of such improve-
ment on coverage. Thus, by carefully analyzing results on the five case studies,
we summarize that:
Our proposed technique significantly enhances the handling on resources which
is capable of generating more effective tests against REST APIs, particularly

effective on the SUTs whose creation actions are restricted or unclear.

5 Threats to Validity

Conclusion Validity. Our applied technique is in the context of search-based test-
ing. To handle its randomness nature, we repeated our experiments 30 times,
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which is recommended by standard guidelines [1] in search-based software engi-
neering for conducting experiments. To properly draw the conclusions based on
the results, we employed a set of statistical tools, i.e., Friedman test (p-value
and χ2) for variance analysis of performances of different settings among case
studies, Mann-Whitney U-test (p-value) and Vargha-Delaney (Â12) for reporting
comparison results with the baseline technique.

Construct Validity. In these experiments, outputs are obtained from search-
based techniques. To avoid any potential bias in such outputs, we first used
the same stopping criterion (i.e., 100k HTTP calls) for baseline and proposed
techniques. In addition, all the experiments were executed on the same machine
for further dealing with this validity threat.

Internal Validity. The approach is implemented on the EvoMaster tool that
is open-source, and the experiments were conducted with case studies which are
available online as well. We cannot guarantee that our implementation is free of
bugs, but the implementation and experiments can be examined by anyone, as
we made them open-source (www.evomaster.org).

External Validity. The approach was evaluated with five REST APIs which
interact with SQL databases, taken from a benchmark for REST API testing.
More case studies would help to generalize results of our approach. REST is
widely applied in industry, however, most of them are not open-source, which
limits our experiments with more case studies.

6 Conclusions and Future Work

Testing REST APIs is challenging, especially for system-level test generation,
due to their possible complex interactions with SQL databases. In REST,
exposed endpoints are typically defined based on resources and actions that
can be performed on them. Thus, via the endpoints, manipulating resources
with different states can help obtaining better code coverage in the context of
white-box testing. Rd-MIO* is such approach for automatically generating tests
using search-based techniques. In this paper, we further extended it by enhancing
the resource manipulation with direct SQL handling. We implemented our app-
roach in the EvoMaster open-source tool, and conducted an empirical study
with five open-source case studies. Experimental results show that our approach
significantly outperforms the existing Rd-MIO*, in terms of code coverage and
fault detection. Our novel technique demonstrates its advantages on all of the
five case studies, particularly on the SUTs whose creation actions are restricted
or too complex.

In future, we plan to 1) conduct more studies with various types of databases,
and 2) investigate solutions for handling constraints specified with textual lan-
guage. For more information, visit our webpage at www.evomaster.org.
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Abstract. EvoSuite is a state-of-the-art search-based software testing
tool for Java programs and many researchers have applied EvoSuite to
achieve high test coverage. However, due to high complexity of object-
oriented programs, EvoSuite still suffers several limitations in terms of
test coverage achievement. In this paper, to improve the effectiveness of
EvoSuite by analyzing EvoSuite’s limitations, we conducted an empirical
study to identify the limitations of EvoSuite on the most recent SBST
2020 Tool Competition benchmark that consists of 70 classes selected
from real-world Java projects. We have manually classified the branches
of the target programs that EvoSuite could not cover and reported cor-
responding limitations of EvoSuite with concrete examples.

Keywords: Empirical study · EvoSuite · SBST tool competition

1 Introduction

Automated test case generation has been a prominent research topic for the past
decade [2,5,7–9]. Among several automated test generation techniques, search-
based software testing attracts researchers for its high scalability and high test
coverage. EvoSuite [5] is a state-of-the-art search-based software testing tool
for Java programs and many researchers have used EvoSuite to detect faults in
real-world industrial cases [1,13] and achieve high test coverage [6,12].

In this paper, to improve the effectiveness (i.e., test coverage achievement)
of EvoSuite by analyzing the EvoSuite’s limitations, we conducted an empirical
study by applying EvoSuite to the SBST 2020 Tool Competition [4] benchmark
(calling it the SBST 2020 benchmark).1 We replicated the contest setting used by
1 SBST 2020 Tool Competition benchmark was the latest available dataset in the

annual SBST Tool Competition series by the time we performed this study. The
SBST 2020 benchmark consists of 70 classes selected from real-world open-source
Java projects. The contest infrastructure for replicating the SBST competition series
is available at https://github.com/JUnitContest/JUGE.
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Table 1. Target subjects & EvoSuite’s achieved coverage

Subject #Classes #Branches Br. Coverage (%)

Total Mean Median Stdev Mean Stdev

FESCAR 20 490 24.5 11 27.3 66.9 42.9

GUAVA 20 926 46.3 19 61.5 67.5 32.4

PDFBOX 20 1,070 53.5 24 75.6 54.7 36.1

SPOON 10 1,072 107.2 45 12.9 28.0 24.5

EvoSuite during the competition to obtain its coverage report. From the report,
we manually analyzed each branch that EvoSuite could not cover and grouped
them into a few categories.

There have been several attempts to study the limitations of EvoSuite in
previous works, such as categorizing the kinds of hard-to-detect faults [1] and
bad quality tests [11]. To the best of our knowledge, this is the first attempt
to identify the limitations of EvoSuite exclusively for categorizing reasons of
not-covered branches in the SBST 2020 benchmark. Compared with the original
EvoSuite’s post-mortem report [10], this paper shows a clearer picture of the
challenges of EvoSuite on the SBST 2020 benchmark by reporting the limitations
with concrete examples. The main contributions of this paper are as follows:

1. We performed an empirical study by applying EvoSuite to the recent SBST
2020 benchmark, from which we identified several limitations that EvoSuite
struggles with.

2. We extensively analyzed the branches that EvoSuite could not cover in the
benchmark and classified the corresponding reasons for those branches, which
have not been done previously by other empirical study papers.

The remaining sections are organized as follows: Sect. 2 describes the study
questions and the empirical study setup. Section 3 reports the answers to the
study questions. Finally, Sect. 4 concludes this paper with future work.

2 Empirical Study Setup

2.1 Benchmark Overview

The SBST 2020 Tool Competition [4] benchmark contains 70 different classes
selected from the following four real-world open-source projects:

– FESCAR: an open-source distributed transaction library to support trans-
actions in microservice.

– GUAVA: a common Java library developed by Google which provides col-
lection classes.

– PDFBOX: a PDF processing library which provides PDF manipulation util-
ities, such as text extraction, splitting, merging, and document signing.

– SPOON: a library for Java source code analysis and transformation.
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Fig. 1. EvoSuite’s achieved branch coverage per class. Each data point represents the
average score of EvoSuite’s achieved branch coverage in a class of the respective subject.

Table 1 describes the benchmark subjects and the branch coverage on each
subject achieved by EvoSuite following the analysis procedure (see Sect. 2.2). For
example, FESCAR (see the second row of the table) has 20 classes that contain
total 490 branches and EvoSuite achieved 66.9% branch coverage on FESCAR
on average in the experiment. Note that the benchmark does not provide any
detail of fault existence in the target classes, so fault detection is beyond the
scope of our study.

Figure 1 shows the scatter plot of class coverage on each subject. For exam-
ple, GUAVA has four classes on which EvoSuite achieved around 60% branch
coverage (see the four data points in the middle part of the GUAVA graph) and
six classes on which EvoSuite achieved 100% branch coverage (see the rightmost
six data points in the GUAVA graph).

2.2 Analysis Procedure

The experiments were conducted on one machine equipped with octa-core AMD
Ryzen 7 1700 (up to 3.7 GHz) and 16 GB RAM, running a 64-bit version of
Ubuntu 16.04. We used OpenJDK v1.8.0 for the Java SE and Maven v3.3.9
for the project build tool. We used the official Docker infrastructure in the version
with commit hash 2ed9d22. Except the post-processing part2, we followed the
EvoSuite’s contest configurations to use EvoSuite’s default configurations. Three
minutes was set for the time budget, consisting 50% for the search and 50% for
other remaining part. JaCoCo was used to measure the branch coverage, and
by which we generated coverage report (using HTML format) to analyze the

2 For this independent replication study, we disabled the test suite minimization step
to reduce the risk of coverage loss caused by unintended test case reduction.
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Table 2. Reasons/limitations of the not-covered branches

Category Description Mnemonic

1 Construction problem

1A Construction failure EvoSuite failed to construct CUT (Class Under Test) C-CF

1B Complex construction CUT can be instantiated, but in non-trivial ways C-CC

2 OO-related problem

2A Private access on method A method protected by private keyword O-PAM

2B Inheritance instantiation A method needs particular subclasses as argument O-IIP

2C Class<?> as an argument A branch condition checks on special Class<?> type O-CLA

2D Inner class method invocation A method is only callable through its inner classes O-ICM

3 Large search space problem

3A Incomprehensive method testing A method with simple arguments, but left untested L-IMT

3B Specific value in iterable/stream Needs specific values in byte/string/input stream L-ISV

3C Key-value store pattern Uses a dictionary (e.g., java.util.Map) L-KVS

3D Obj. state in an argument An argument state needs to be further modified L-OSA

3E Obj. state in invoking object An object state needs to be further modified L-OSI

4 Other problem

4A File system access A method performs operations on file system FSA

4B JVM’s System.getProperty call A method checks on env. variable stored in JVM JSC

4C Branch unreachable Unfeasible branches by program executions UBR

Listing 1.1. Example of reached but not covered branch

L1:void f(int x,int y) {
L2: ...
L3: if ( x>0 ) { /* br1 */
L4: } else { /* br2 */
L5: if ( y>0 ) { /* br3 */}}}

not-covered branches. To limit the random variance, we performed six repeated
experiment runs on each subject. We counted a branch b as not-covered if b was
not covered by any of the six experiment runs.

Note that we investigated the reached but not covered branches only. For
Listing 1.1, with an input (x,y)=(1,1) for f(), the branch br1 in L3 is reached
and covered, br2 in L4 is reached but not covered, and br3 in L5 is not reached
(and, thus, not covered). In other words, we did not analyze the branches that
were not reached by any test input because the reason for not covering such
unreached branches can be complex to classify. For example, the reason of why
br3 was not covered with (x,y)=(1,1) does not only depend on L5, but its all
predecessor conditions such as L2 and so on. We could hypothesize that the br3
coverage failure was caused by “argument x was always >0” (the same cause as
failure in br2), but it may not be true because another input where (x,y)=(0,0)
would neither make br3 to be covered.

From now on, we use the term not-covered to represent reached but not
covered branches in this paper. We manually analyzed total 359 not-covered
branches in the SBST 2020 benchmark. The raw data is accessible through
https://bit.ly/evoStudySSBSE2021RENE.

https://bit.ly/evoStudySSBSE2021RENE
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2.3 Study Questions

After manually analyzing reached but not covered branches by EvoSuite, we clas-
sified the limitations of EvoSuite on the SBST 2020 benchmark into four groups
(i.e., construction problem, OO-related problem, large search space problem, and
other problem) of the 14 categories as shown in Table 2. For the empirical study,
we made the following four study questions:

SQ 1. Object Construction Problem. How much do the object construction
problems impact EvoSuite’s branch coverage?

SQ 2. OO-related Problem. How much do the OO-related problems impact
EvoSuite’s branch coverage?

SQ 3. Large Search Space Problem. How much do the large search space
problems impact EvoSuite’s branch coverage?

SQ 4. Other Problem. How much do the environment-related problem and
unreachable branches impact EvoSuite’s branch coverage?

Second, we tried to identify common major limitations of EvoSuite on the
SBST 2020 benchmark. The term common is used on the limitations that are
observed on all four target subjects of the benchmark. Such common problems
are particularly interesting because they may be general limitations that apply
to not only SBST 2020 benchmark but also other programs. We define common
and major limitations as follows:

– A category becomes a common problem if its occurrences can be found across
all four subjects in the benchmark.

– A category becomes a major problem (in one subject) if it appears in at least
25% of the classes with not-covered branches (i.e., classes with <100% branch
coverage).

SQ 5. Common Major Problems. By running EvoSuite on the SBST 2020
Tool Competition benchmark, is there any common major problem found across
all target subjects?

3 Empirical Study Results

Figure 2 shows the distribution of the limitation categories of the branches that
EvoSuite could not cover (see Table 2). For example, the 11 branches of FES-
CAR and the 20 branches of GUAVA were not covered by EvoSuite due to the
construction failure (C-CF) and the complex construction (C-CC) respectively
(see the bar of light blue color (FESCAR) and the bar of green color (GUAVA)
of the two leftmost bars (C-CF and C-CC) in Fig. 2).
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Fig. 2. Distribution of the limitation categories of not-covered branches

3.1 SQ1: Object Construction Problem

1A Construction Failure (C-CF). The C-CF category indicates that Evo-
Suite fails to instantiate an instance of CUT (class under test). Several interesting
causes of C-CF in the benchmark are as follows:

1. Constructor needs complex arguments:
For example, consider a constructor3 of PDVisibleSignDesigner (PDFBOX-
130) shown in Listing 1.2. The constructor needs: (1) a PDDocument-typed
document with p pages (p > 0); (2) an InputStream-typed imageStream
transformed from any valid BufferedImage; and (3) an integer page where
page ∈ (0, p]. Violating any of the constraints (e.g., page = 0, null
imageStream or empty InputStream such as returned by new ByteArray
InputStream(new byte[5])) would result an exception raised during the
execution. Due to these constraints, we found EvoSuite could not construct
a PDVisibleSignDesigner instance during the runs.
Another example is FilteredEntryMultimap (GUAVA-47), where its construc-
tor needs a Predicate-typed instance. We found in eight out of 12 test cases
where EvoSuite used a BloomFilter instance as an argument of a Predicate-
typed instance, in which six out of the eight test cases failed (i.e., raising
exceptions) during the BloomFilter construction. This indicates that gener-
ating a valid Predicate instance is highly complex for EvoSuite. We observed
that such failures in constructing BloomFilter induced failure constructions

3 We observed that other six PDVisibleSignDesigner constructors have a similar
construction failure problem as described in this paper.
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Listing 1.2. Construction failure in PDFBOX-130

L1: public PDVisibleSignDesigner (PDDocument document ,

L2: InputStream imageStream , int page) throws IOException {

L3: readImageStream (imageStream);

L4: calculatePageSize (document , page); }

of FilteredEntryMultimap, which causes testing could not reach any other
member methods that needs at least one FilteredEntryMultimap instance
as target object.

2. Dependency on another C-CF class:
For example, the constructor of FilteredMultimapValues (GUAVA-240) needs
a FilteredMultimap-typed argument. Every subclass of FilteredMultimap
needs a Predicate instance (a complex object as described above), causing
EvoSuite to fail at constructing a FilteredMultimapValues instance. As a
result, all seven related member methods were not covered.

3. Accessibility conflict on constructor’s arguments:
For example, the constructor of PDTrueTypeFontEmbedder (PDFBOX-235)
receives a TrueTypeFont-typed instance as a parameter. EvoSuite could
not generate a PDTrueTypeFontEmbedder instance since TrueTypeFont is
package-private and located in a different package.

4. Missing class from the classloader:
The classloader could not find a constructor parameter type (e.g., FESCAR-6,
FESCAR-8, FESCAR-15, FESCAR-41, SPOON-155), which induced an exception
(i.e., NoClassDefFoundError).4

1B Complex Construction (C-CC). Compared to the C-CF category where
object creation entirely fails, this C-CC category applies to the CUTs with suc-
cessful instantiation, but of only simple objects. Several interesting causes of
C-CC in the benchmark are as follows:

1. Implicit object construction convention:
For example, the only way to construct ImmutableEnumSet (GUAVA-206) is
by invoking the static factory method asImmutable as shown in Listing 1.3.
However, asImmutable may not generate a ImmutableEnumSet instance (but
ImmutableSet-typed instead) if the given set argument’s size is ≤1 (L3–
L5). To mitigate this case, EvoSuite should infer how to obtain the cor-
rect ImmutableEnumSet instance by invoking asImmutable with an EnumSet
instance of >1 elements (L6).

2. Dependency to other unknown class:
Another example is Graphs (GUAVA-22), whose methods perform graph oper-
ations (e.g., transposing, finding reachable nodes) on Graph instances. For
this case, we found EvoSuite generated method call sequences using empty
Graph instances. That is because the standard construction (i.e., through

4 We suspect that these limitations were caused by a bug in EvoSuite since those
missing classes had been correctly placed in the same directory and package as the
CUT.
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Listing 1.3. Complex construction problem in GUAVA-206

L1: static ImmutableSet asImmutable(EnumSet set) {

L2: switch (set.size()) {

L3: case 0: return ImmutableSet.of();

L4: case 1: return ImmutableSet.of(

L5: Iterables.getOnlyElement(set));

L6: default: return new ImmutableEnumSet(set); } }

Listing 1.4. Inheritance instantiation problem in SPOON-105

L1: // To cover: pass a CtCatch instance to the first argument

L2: SourcePosition buildPositionCtElement (CtElement e, ...) {

L3: if (e instanceof CtCatch) { // then branch was not covered

L4: return SourcePosition.NOPOSITION;

L5: } ... }

available constructors) produces empty Graph objects by default. To con-
struct more diverse Graph objects (e.g., adding nodes/edges, cyclic/acyclic,
directed/undirected), EvoSuite has to use a builder class. Since the relation-
ship between the builder class and CUT to construct more complex Graph
instances is unknown to EvoSuite, EvoSuite failed to cover branches relevant
to diverse Graph instances.

3.2 SQ2: OO-Related Problem

2A Private Access on Method (O-PAM)

We observed that 42 methods (from 13 different classes) could not be tested
due to the private access issue. For example, almost 50% (nine out of 20) of the
PositionBuilder’s (SPOON-105) private methods were not covered.

2B Inheritance Instantiation Problem (O-IIP)

The O-IIP category is mostly encountered in the form of inheritance-checking
conditions, caused by the instanceof operator in Java. An example of O-IIP
category is shown in Listing 1.4. In the example, the return statement at L4
was not covered because EvoSuite could not satisfy the condition at L3. For
example, SPOON suffered from O-IIP severely (i.e., 23 branches in five out of
the ten SPOON classes were affected).

2C Class<?> as a Method Argument (O-CLA)

Java provides java.lang.Class to represent any class or interface in the appli-
cation, which is commonly utilized by the factory classes. Having a Class<?>
parameter enlarges the search space because all classes in the classpath become
candidates for the method’s arguments. For example, DefaultCoreFactory
(SPOON-65) creates a CtElement instance based on the supplied argument klass,
as shown in Listing 1.5. We found that EvoSuite failed to cover any of the 83 (=
3 + 80) then branches that can be taken if the corresponding equality checking
branch passes (e.g., L2, L4, L6).
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Listing 1.5. Class<?> as method argument in SPOON-65

L1: public CtElement create(Class <? extends CtElement > klass) {

L2: if (klass.equals(CtAnnotationFieldAccess .class))

L3: return createAnnotationFieldAccess ();

L4: if (klass.equals(CtArrayRead.class))

L5: return createArrayRead ();

L6: if (klass.equals(CtArrayWrite.class))

L7: return createArrayWrite ();

L8: /* ... 80 more similar if -statments */ }

Listing 1.6. Inner class method invocation requirement in GUAVA-102

L1: // To cover: use NodeIterator ’s remove API

L2: public class LinkedListMultimap <K, V> {

L3: private void removeNode(Node <K, V> node) {

L4: if (node.previous != null) { /* not covered */ } ... }

L5: ...

L6: // NodeIterator is an inner class of LinkedListMultimap

L7: private class NodeIterator {

L8: public void remove () { ...

L9: removeNode(current);

L10: ... }

L11: } ... }

2D Inner Class Method Invocation Requirement (O-ICM)
Although inner classes are located inside the CUT, EvoSuite did not generate
a method call sequence using methods from the inner classes. However, some
of the CUT’s methods can only be invocable though the inner classes of the
CUT.5 Listing 1.6 shows an example of O-ICM category in LinkedListMultimap
(GUAVA-102). In LinkedListMultimap, a private method removeNode (L3) was
never invoked because it was invocable only through the remove API (L8) of
LinkedListMultimap’s iterator inner classes, such as NodeIterator (L7). Our
coverage report showed that although EvoSuite had constructed NodeIterator
instances (e.g., by generating valueIterator call), no further method invocation
was performed on the resulted iterator instances. Therefore, removeNode was not
covered.

3.3 SQ3: Large Search Space Problem

3A Incomprehensive Method Testing (L-IMT)
For example, EvoSuite did not generate a call sequence for a member method
createSerializedForm in SparseImmutableTable (GUAVA-129), although the
method is declared as public and takes no argument. We observed L-IMT also
occurred in the caching pattern, whose example is shown in Listing 1.7. This
is a common pattern to prevent multiple creations of expensive objects (L5)
5 We guess that EvoSuite may consider that generating method call sequences using

the methods of the CUT’s inner classes would not increase the coverage of CUT
since the CUT’s inner classes are separate classes from the CUT.
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Listing 1.7. Caching pattern inside class in GUAVA-212

L1: // To cover: invoke toString () twice.
L2: public String toString () {
L3: String result = toString;
L4: if (result == null) {
L5: result = computeToString ();
L6: toString = result;
L7: } // The else branch was not covered
L8: return result; }

by keeping previously-created reference in the class’ field (L6). Through this
pattern, the next invocation of toString does not invoke computeToString
if the result has been stored in the toString member field. The benchmark
contains several methods adopting this caching pattern, such as in MediaType
(GUAVA-212), Graphs (GUAVA-22), and PDType3Font (PDFBOX-265). EvoSuite
rarely performed repeated invocations on such methods, which left the else
branches (L4 in Listing 1.7) not covered.

3B Specific Value in Iterable/Stream (L-ISV)

The L-ISV category requires some specific input byte sequences to satisfy the
branch condition. Several L-ISV examples are as follows:

– The decode of JPXFilter (PDFBOX-220) needs a valid JPEG2000-formatted
InputStream as an argument. The decode calls another method readJPX,
where readJPX will throw an IOException if the given InputStream in the
method argument is not JPEG2000-formatted. In this case, EvoSuite failed
to supply the valid InputStream, leaving other seven branches in readJPX
method not reached.

– The getEndOfComment of PositionBuilder (SPOON-105) needs a char[]
buffer as an argument. The method searches the end-of-comment token (i.e.,
’*/’) in the char[] buffer. EvoSuite failed to generate a valid test case to
cover the equality checking branch within the getEndOfComment method.

3C Key-Value Store Pattern (L-KVS)

The L-KVS category is related to the use of key-value data structure (e.g., Map)
in branch conditions. Such conditions increase the complexity as they require a
correct guess in three dimensions: key, value, and the key-value pair combination.
For example, consider Predictor (PDFBOX-117) as shown in Listing 1.8. In this
example, branch in L6 was not covered because decodeParams never had an
entry for key = COSName.PREDICTOR as requested at L5-L6. Note that, to put
an item to COSDictionary, EvoSuite has to select a key from 517 available
COSName. We found that L-KVS majorly impacted PDFBOX (i.e., 10 out of 20
classes (50%) suffered L-KVS as shown in Fig. 3)

3D Object State Problem in Argument (L-OSA)

The L-OSA category requires further alteration of the state of the object passed
as a method argument. L-OSA examples are as follows:
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Listing 1.8. Key-value store problem in PDFBOX-117

L1: // To cover: pass decodeParams argument containing entry

L2: // { key = COSName.PREDICTOR , value = COSNumber > 1 }

L3: static OutputStream wrapPredictor (OutputStream out ,

L4: COSDictionary decodeParams) {

L5: int predictor = decodeParams.getInt(COSName.PREDICTOR);

L6: if (predictor > 1) { /* not covered */ }

L7: else { return out; } }

Listing 1.9. Argument state problem in SPOON-169

L1: // To cover: invoke ctClass. setTypeMembers ()

L2: public <T> void visitCtClass(CtClass <T> ctClass) {

L3: addClassImport (ctClass.getReference ());

L4: for (CtTypeMember t : ctClass.getTypeMembers ()) {

L5: ... // This block was not covered

L6: } super.visitCtClass(ctClass); }

– The visitCtClass of ImportScannerImpl (SPOON-169):
As illustrated in Listing 1.9, the body statement in L5 was not covered because
getTypeMembers (L4) called only returned empty iterables. To cover the not-
covered branch, setTypeMembers invocation on ctClass argument was nec-
essary prior to the visitCtClass method call (to set the typeMembers field
of ctClass argument). However, EvoSuite did not invoke a such call.

– The setCount of TreeMultiset (GUAVA-39):
As illustrated in Listing 1.10, the setCount method has a then branch (L7)
which was not covered because EvoSuite did not pass an integer value greater
than 0 as an argument to setCount to satisfy the branch condition.

3E Object State Problem in Invoking Object (L-OSI)

The L-OSI category requires to alter the CUT’s object state further for not-
covered branches. Several L-OSI examples are as follows:

– The addClassImport of ImportScannerImpl (SPOON-169) as shown in List-
ing 1.11. The addClassImport has three if statements (L4, L5, L6) whose
conditions check whether the member field targetType is not equal to null.
All three conditions were not satisfied because the targetType field was never
got assigned to non-null value by EvoSuite. To assign the targetType field
with non-null value, EvoSuite should invoke the computeImports prior to
the addClassImport method call since the targetType initialization happens
only in the computeImport call.

– The isEmpty of LinkedListMultimap (GUAVA-102) checks whether the linked
list is empty by the head == null conditional expression. We found EvoSuite
applied only empty lists to the isEmpty method in all attempts, which caused
the negated branch of head == null (i.e., head != null) remain not cov-
ered.
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Listing 1.10. Argument state problem in GUAVA-39

L1: // To cover: argument newCount > 0

L2: public boolean setCount(@Nullable E element , int oldCount ,

L3: int newCount) { ...

L4: AvlNode <E> root = rootReference .get();

L5: if (root == null) {

L6: if (oldCount == 0) {

L7: if (newCount > 0) { /* not covered block */ }

L8: return true;

L9: } else { return false; } } ... }

Listing 1.11. Invoking object state problem in SPOON-169

L1: // To cover: invoke computeImports prior to addClassImport

L2: protected boolean addClassImport(CtTypeReference <?> ref) {

L3: ...

L4: if (targetType != null && ...) { /* not covered */ } ...

L5: if (targetType != null && ...) { /* not covered */ } ...

L6: if (targetType != null) { ... /* not covered */ } ... }

L7:

L8: public void computeImports(CtElement element) { ...

L9: targetType = ... /* targetType was set to non -null here */

L10: ... }

3.4 SQ4: Other Problem

4A File System Access (FSA)
The FSA category relates to attempts to access files in the file system. EvoSuite
already provides a Virtual File System (VFS) [3] to handle such file accesses
during testing. However, there are still cases where VFS itself is insufficient,
for example when the target program expects files with certain extension, file
format, or possibly existing OS-related files. Several FSA examples in the
benchmark are as follows:

– FileSystemFontProvider (PDFBOX-8) as shown in Listing 1.12. During its
construction, FileSystemFontProvider performs a scan (L3) for existing
font files in the file system. The test failed to find font files in the file system,
causing files (L1) and fonts (L3) became empty lists. Thus, the for loop
in L4 and other six branches within the same class became not covered.

– MavenLauncher (SPOON-32) requires to read a valid Maven’s pom.xml file,
whose path specified in its constructor’s argument. If a valid pom.xml file
does not exist in the file system, the execution will raise an SpoonException
so the test will not cover certain branches.

4B JVM’s System.getProperty Call (JSC)
JRE allows JVM to store values through System.setProperty. However, Evo-
Suite provides no mechanism to update those values. For an example of
FileSystemFontProvider (PDFBOX-8) in Listing 1.13, the program queried the
"pdfbox.fontcache" (L2) and "user.home" (L4) property. But the values of
path in L3 and L5 were always null since EvoSuite did not update those values.
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Listing 1.12. File system access in PDFBOX-8

L1: List <File > files = new ArrayList <File >();

L2: FontFileFinder fontFileFinder = new FontFileFinder ();

L3: List <URI > fonts = fontFileFinder.find();

L4: for (URI font : fonts) {

L5: files.add(new File(font)); // not covered

L6: } ...

Listing 1.13. JVM’s System.getProperty problem in PDFBOX-8

L1: private File getDiskCacheFile () {

L2: String path = System.getProperty("pdfbox.fontcache");

L3: if (path == null || ...) { // else was not covered

L4: path = System.getProperty("user.home");

L5: if (path == null || ...) { // else was not covered

L6: path = System.getProperty("java.io.tmpdir"); } }

L7: return new File(path , ".pdfbox.cache"); }

4C Branch Unreachable (UBR)

The UBR category captures all branches that are infeasible to cover by
any execution paths. We found that 33 not-covered branches belonged to
UBR, which corresponded to around 9% of the not-covered branches that
we manually analyzed. For an example in the Listing 1.14, getDeclaration
in CtLocalVariable- ReferenceImpl (SPOON-20) has a null-checking branch
(L3) on the return value of getFactory (L2). The getFactory (L5–L7) never
returns a null value, causing the then branch in L3 not to be covered.

3.5 SQ5: Common Major Problems

Figure 3 shows the distribution of the limitation categories (described in Table 2)
of the not-covered branches per subject in the SBST 2020 benchmark. Note that
Fig. 3 shows data aggregated per class (i.e., multiple branches with the same
category within the same class is counted as one) to find a common major
problem in SQ 5.

We found that EvoSuite has no common major problem across all four target
subjects. However, each subject has its own major problem (see the number of
the classes of each subject (Table 1) and Fig. 3). For example, the key-value store
pattern (L-KVS) was a major problem in PDFBOX only (i.e., 10 out of 20 classes
of PDFBOX suffered L-KVS. But, only one class of GUAVA (and SPOON)
suffered L-KVS and FESCAR had no class that suffered L-KVS). Similarly,
construction failure (C-CF) was a major problem in FESCAR only.
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Listing 1.14. Unreachable branch in SPOON-20

L1: public CtLocalVariable <T> getDeclaration () {

L2: final Factory factory = getFactory ();

L3: if (factory == null) { return null; /* not covered */ }

L4: ... }

L5: public Factory getFactory () {

L6: if (this.factory == null) { return DEFAULT_FACTORY ; }

L7: return factory; }

Fig. 3. Limitation category distribution aggregated per class

4 Conclusion and Future Work

To improve the effectiveness of EvoSuite by analyzing the EvoSuite’s limitations,
this paper presents the limitations of EvoSuite through an empirical study on the
latest SBST 2020 benchmark. Through the manual analysis of the 359 reached-
but-not-covered branches, we classified the four groups of the limitations of Evo-
Suite (i.e., construction problems, OO-related problems, large search space prob-
lems, and so on (Table 2)). We reported all observed limitations of EvoSuite on the
SBST 2020 benchmark with concrete examples so that researchers and practition-
ers can address such limitations more clearly. For future work, we plan to apply
EvoSuite to more target benchmarks and study the effect of allocating higher
search budget and using different fitness functions towards coverage attainment.
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Abstract. Responsiveness is one of the most important properties of
Android applications to both developers and users. Recent survey on
automated improvement of non-functional properties of Android appli-
cations shows there is a gap in the application of search-based tech-
niques to improve responsiveness. Therefore, we explore the use of genetic
improvement (GI) to achieve this task. We extend Gin, an open source
GI framework, to work with Android applications. Next, we apply GI to
four open source Android applications, measuring frame rate as proxy for
responsiveness. We find that while there are improvements to be found
in UI-implementing code (up to 43%), often applications’ test suites are
not strong enough to safely perform GI, leading to generation of many
invalid patches. We also apply GI to areas of code which have highest
test-suite coverage, but find no patches leading to consistent frame rate
reductions. This shows that although GI could be successful in improve-
ment of Android apps’ responsiveness, any such test-based technique is
currently hindered by availability of test suites covering UI elements.

Keywords: Genetic improvement · Search-based software
engineering · Responsiveness · Android · Mobile applications

1 Introduction

Responsiveness is one of the most important qualities of Android applications
to their users. Inukollu et al. found that 59% of users would give a bad review to
an unresponsive app [17]. Khalid et al. [19] found that unresponsiveness was one
of the most frequent reasons that users left bad reviews on mobile applications.
Lim et al. [23] found that unresponsiveness was to blame 1/3 of the times when
users abandoned applications.

Despite the importance of app responsiveness, there is not much research on
its automated improvement. Given that the first Android version appeared only
in 2008, the discrepancy between the number of approaches for software improve-
ment for desktop vs. mobile applications is, perhaps, unsurprising. Recently Hort
et al. [16] conducted a survey on Android performance optimization. It reveals
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that most approaches for responsiveness improvement focus on problem detec-
tion, rather than automated improvement. Among the most common techniques
in the second category are: offloading and refactoring. Offloading [29], how-
ever, requires external infrastructure, while refactoring-based approaches tend
to focus on very specific improvements, like introducing concurrency to long
running processes [9] or combining HTTP requests [22]. Although these trans-
formations could indeed help improve responsiveness, we believe that the search
space of mutations could be combined and extended. With increase of the space
of possible code refactorings, the search space for finding improvements will inad-
vertently increase. That’s why search-based approaches would be a good fit to
explore it. Notably, Hort et al. [16] do not report any search-based approaches
for automated responsiveness improvement. With this work we intend to fill this
gap.

In the desktop domain, Genetic Improvement (GI) has recently shown success
in improvement of various functional (e.g., bug fixing [3]) and non-functional
(e.g., runtime [21] or energy consumption [7]) properties. GI uses search-based
algorithms to navigate the space of patches to existing software. It uses a fitness
function that guides the search. Fitness could be based on test case failures, to
check whether the program behaves correctly, and/or other measure, such as
runtime to measure improvement of program’s execution time.

In order to apply GI to improvement of responsiveness, we must first define
the fitness function. Responsiveness, however, can be difficult to quantify. More-
over, measurements such as runtime are inherently noisy. Inspired by previous
work [14], we propose using the frame rate of an application as a metric for
responsiveness.

In this work we apply genetic improvement to improve Android app respon-
siveness. In particular, we extend an existing GI framework, Gin, to work on the
Android domain. Next, we use it to improve frame rate of four Android applica-
tions. We find improvement of up to 50%, though closer inspection reveals many
of the patches to be invalid, due to weak test suites—used as proxies for correct
program behaviour, as is common in GI work. Nevertheless, we found a valid
mutation that reduced frame rate by 43%. Subsequently, we apply GI on code
with high test-suite coverage. However, in this case, no consistent improvements
were found.

In summary, this work provides the following contributions:

– extension of an open source GI framework for the Android domain;
– first open source framework for automated frame rate reduction of Android

applications1;
– feasibility study for application of genetic improvement for the purpose of

automated improvement of Android app responsiveness.

Our results show that although GI could be successful in improvement of
Android apps’ responsiveness, any such test-based technique is currently hin-
dered by availability of test suites covering UI elements.

1 Available: https://github.com/AndroidGI/AndroidGI.

https://github.com/AndroidGI/AndroidGI
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The rest of the paper is divided as follows: Sect. 2 presents a short intro-
duction to genetic improvement; Sect. 3 outlines our proposed framework for
improving Android app responsiveness; Sect. 4 presents our methodology for the
empirical study; with results in Sect. 5; Sect. 6 notes threats to validity of our
work; Sect. 7 shows related work on automated improvement of responsiveness
of Android apps; while Sect. 8 concludes the paper.

2 Background

Genetic improvement uses automated search to improve existing software [27].
Typically it operates at the level of source code, though mutations to the binary,
assembly, and others have been tried. GI takes existing software, mutates it, gen-
erating sometimes thousands of software variants. Each variant is represented as
a list of edits to the original code. Typical mutations involve copying, deleting,
or replacing a code fragment, that being either a statement (most often), line
or other (e.g., a binary operator). The search space of the evolved programs is
navigated using a search strategy. Although historically genetic programming
has been used, recent work show that local search can be equally effective [6].
Although the technique is simple, it has already been incorporated in the indus-
try, during development process [13].

Work on Android software improvement using GI is scarce—so far only one
work on GI exists in the Android domain [7], in which ‘deep parameters’ (con-
stants not exposed to developers) were modified in order to find transformations
which reduce the energy consumption of an application. The framework, how-
ever, is not open source, and source code was re-factored so that the search was
conducted on an external file with parameters, causing upfront cost, and limiting
mutations that could be automatically applied.

In this work we investigate the power of more traditional GI to improve
another non-functional property of Android applications, namely their respon-
siveness.

3 Improvement of Android App Responsiveness Using GI

The main challenge of applying GI in the Android domain to improve responsive-
ness lies in defining and evaluating the fitness function. In the past, responsive-
ness has been measured using the execution time [12,20,28] of test cases. Whilst
this may capture responsiveness, it will be negatively impacted by long run-
ning background processes which do not impact the actual responsiveness of the
application. Gordon et al. [11] measured the “user-perceived latency” of interac-
tions with applications, which is the time between a user input the completion of
the action it triggers. This metric requires user scenarios to be manually defined,
including start and end points, and does not allow us to utilise developer defined
UI tests. However, we chose to use frame rate as a proxy for responsiveness, as
it is both easily measured and directly captures delays in updates to the UI. An
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Fig. 1. Genetic improvement framework for Android applications.

application whose frames are not rendered in a timely manner will be unrespon-
sive. Therefore, fixing these delays will result in a more responsive application.
We believe that frame rate, and thus responsiveness, can be improved through
source code transformations.

To measure an applications’ frame rate, we must exercise the application’s UI
on a device or emulator, so we cannot rely solely on local unit tests. This means
that applications must be packaged and installed on a device or emulator, which
is a costly process. It also removes our ability to use optimisation techniques
such as in-memory compilation.

Therefore, we propose the general framework shown in Fig. 1. The improve-
ment process takes place across two devices: desktop and an emulator or mobile
device. All communication between the desktop device is performed by the
Android debug bridge, running on the desktop device.

In the desktop environment, new patches are generated, through mutation
and selection (Stage 1), patches are applied, applications are built and packaged
(Stage 2). Finally, local unit tests are run to determine whether or not a patch
should be installed on the actual device (Stage 3). This step is important to vastly
increase GI efficiency, as it reduces the number of program variants that need
to be packaged and installed on a device or emulator, in order to measure their
fitness. Patched applications which pass unit testing are then installed (Stage
4). On the Android device, modified versions of the application are exercised by
the test package, and fitness measurements can be taken (Stage 5).
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This framework could be easily used to improve any non-functional property,
simply by specifying different measurement tools. It could also be extended to
automated program repair by removing the measurement of a non-functional
property and using the number of passing tests as the fitness function. Different
search algorithms and mutation operators could also be tried in Stage 1 of the
process. This framework also allows for parallelisation of the fitness evaluation
process, by connecting multiple devices or emulators, though careful measures
need to be taken to achieve reliable measurements (depending on the fitness
function of interest).

4 Methodology

In order to investigate the effectiveness of genetic improvement for the purpose of
improvement of Android app responsiveness, we set out to answer the following
research questions:

RQ1 How effectively can genetic improvement optimise the responsiveness of
Android applications?
This question will explore how well simple line-level modifications to
Android applications can improve their responsiveness and how easily we
can automatically find effective transformations.

RQ2 What type of source code changes are effective at decreasing frame rate in
Android applications?
The changes that we find to have the largest impact on frame rate could be
used to inform developers of ways in which they can improve the respon-
siveness of their apps. They could also be useful in inspiring future auto-
mated techniques for improving the responsiveness of Android applica-
tions.

RQ3 How expensive is it to improve the frame rate of Android applications using
genetic improvement?
This question will allow us to quantify whether it is worth it to run GI
in this manner. We will be able to present the balance of cost running vs
the improvement to allow developers to make an informed decision about
applying GI. We will also explore how the cost varies between applications
and what impacts the cost of running GI.

In order to answer our research questions we implemented the framework
presented in Fig. 1, and run it on a selection of Android applications.

4.1 Framework

We realise the abstract framework presented in Fig. 1 in the Gin GI tool [8].
We chose it as among non-functional property improvement GI tooling, Gin
is scalable to large real-world software and is optimised for Java—a popular
choice for Android software. We utilise the pre-existing functionality from Gin
which allows the generation and modification of source code files with line-level
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changes. We also use the existing local search algorithm from Gin. By default,
local search is run for 100 steps, at each step either copying, deleting or replacing
a randomly selected line of code. We elected to run it for 400 steps to try to
increase the chances of finding effective changes.

In order to run on Android and gather data for fitness evaluation, we have
modified the components which compile the projects being improved and run
their tests. We also added the functionality to install applications on Android
devices and measure their frame rendering statistics.

Fitness. There are a number of different metrics which can be used to measure
frame rate. They include the frames per second (FPS), average time taken to
render a frame, and the number of delayed frames. In order to measure the
frame rate of an application, we first need to run it, exercising its UI. We use UI
tests for this purpose and use the built-in dumpsys gfxinfo tool to gather various
measures. The tool gives detailed statistics about the render times of frames of
a particular process. These statistics include the number of janky frames (those
that take longer than 1/60th of a second to render), the median and, various
percentiles (50th, 75th, 90th, 95th, 99th) of frame render time are given. We ran
the whole test suite of our selected applications 100 times, measuring all these
metrics, and found that the 95th percentile of frame render time to be least
noisy, thus we use it as our frame rate measurement. Improving this metric will
mean that the largest delays in responsiveness have been fixed.

Testing. Patch evaluation consisted of running all test cases which covered
the area of code being modified to ensure that the functionality of the project
had been preserved. UI tests also had to be run to measure the frame rate
of the application. To improve efficiency of the GI process, we identify test
cases that cover the given class for improvement, using jacoco [2]. Next, we
use espresso [1] to identify UI tests. Finally, we split the UI tests into two,
based on 60% delayed frame rate measure. The reason for this split is two-
fold: first, running tests on the emulator or device is expensive, so we want to
avoid unnecessary runs; second, we want to have a held-out test suite to check
generalisability of improvements found. Therefore, for Stage 3 and Stage 5 of our
GI process presented in Fig. 1 we use UI tests causing largest frame delays (over
60% frame delays), as well as all non-UI tests covering a given class. If all tests
pass at Stage 3, we keep this program variant, and evaluate it’s improvement
in Stage 5, where each test is run 10 times, and median 95th percentile frame
render time recorded. Due to the measurement of frame rate sometimes missing
the test execution and not capturing the full execution of the test, small 3 s delays
were added to the end of each UI test. This allowed the frame rate measurement
to be consistently captured. Each performance test suite was then run until
200 frame measurements had been recorded. Before this the measurement could
experience noise, leading to false positive improvements. Once 200 frames have
been recorded we can see if the patch is in fact an improvement by comparing
the median proportion of delayed frames in each test to that of the current best
solution.
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Search. Before we used the default local search implemented in Gin, we con-
ducted a pre-study, to see if genetic programming (also implemented in Gin)
might have been a better choice. Local search showed more promising results
than GP as it was able to find optimised solutions faster. This is in line with
the findings of Blot et al. [6]. We performed 20 runs on each of the selected
classes in each of the projects. This allows us to collect a large amount of data
and be confident about the efficacy of our setup, despite the non-deterministic
nature of GI. We perform statistical tests on our results in order to quantify the
effectiveness of GI at finding improvements.

4.2 Validation

For each final patch from each GI run, we use all tests covering a given class
for validation purposes. We ran each 10 times and record median frame rate
improvement. This allowed us to run statistical test on the results and see which
patches offered significant improvements. The number of delayed frames was
measured in the same way as during the GI runs. We performed this evaluation
on a real device rather than an emulator, to ensure that improvements were valid
in a real-world environment and test for device overfitting. We also conducted
manual analysis of the patches to confirm their validity.

4.3 Benchmarks: Mobile Application Selection

We aim to improve real-world software and, therefore, choose to use real open
source applications. Since we are using the Gin improvement tool, our modi-
fications are limited to Java source code. Android applications may consist of
mixtures of Kotlin and Java source code, but only the part of the application
being modified needs to be written in Java. In our GI framework each patch
is validated using the test suite of the application. This limits us to improving
open source applications with areas of code which are well-tested. Moreover, we
need UI tests to measure frame rate. Therefore, a number of criteria had to be
met by applications used in this study:

– The application must be open source and at least partly written in Java.
– The application must be able to be compiled and deployed on an Android

Emulator.
– The application must have sufficient areas of code covered by a test suite (at

least one class with 40% line coverage).
– The application must contain at least one test that exercises it’s UI.
– The application must contain at least one non-trivial UI class.2

Checking these criteria for a given app is costly (particularly test coverage).
The application must be downloaded, compiled, installed and tested. The cov-
erage of the unit tests and the instrumented tests must be measured separately.
2 Based on manual judgement we decided to select applications with at least one UI

class with at least 100 lines of code.
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Fortunately, Pecorelli et al. [26] performed an analysis of all applications from
FDroid, documenting both the number of tests and the coverage of those tests.

In order to curate a set of applications to evaluate our approach on, we
checked applications analysed in [26] in descending order of line coverage. We
then discarded applications which were not written in Java, those that could not
be compiled, those whose tests could not be run successfully, and those which
were too small for meaningful improvement to be found. If an application was
not discarded, the areas of the application covered by its test suite had to be
checked.

The first step in this process was to remove flaky tests - for two reasons.
Firstly, the jacoco test coverage plugin [2] requires all tests to pass so flaky tests
could disrupt the coverage measurement. Secondly, flaky tests may produce false
negatives in patch validation. If a test fails due to flakiness, rather than due to
the applied patch, it will make valid patch appear invalid. Thus, they must be
excluded from the experiments and, therefore, should be excluded from coverage
measurements. In some cases, build files had to be modified to remove conflicting
dependencies or enable test coverage measurement. No source code was modified
in this process.

When running GI on a desktop application, automated test generation tools
such as EvoSuite [10], can be used to supplement test suites and increase code
coverage. Sadly there are limited tools available for automated test generation for
Android applications and none that can automatically generate regression tests
were found. We found 3 tools which could generate automatic UI test input,
however none worked on the recent versions of Android we ran our experiments
on. Even if they did work they generated no assertions so could not be used to
confirm patch validity. Therefore, the existing test suite of the application had
to be relied on to validate patches.

Due to the large cost of validating a suitable application and the rarity of
these applications, this process was repeated until 4 applications were found.
Beyond this point line coverage was less than 15% so it was unlikely that more
suitable applications would be found. Overall, we examined 192 applications,
and 188 were discarded.

Profiling. Next, we profile each application we want to improve to identify
code where changes influencing frame rate are most likely to be found. We thus
focused on the UI implementing classes, the activity, view, and fragment classes.
For each application we select the class which is most covered by the jankiest
UI tests, that has at least 100 lines of code. We added the second condition, as
classes with few lines of code are unlikely to hold improvements.

However, UI tests often contain very few assertions, relative to the amount
of code which they exercise, and unit test for UI classes are very uncommon.
Our proposed GI approach uses testing as a proxy for correctness. Because of
this, while targetting UI-related classes may find the strongest improvements, it
may also find invalid improvements due to the weaknesses of the test oracle.

Therefore, for each application, we select a class for improvement which is
best covered by the whole test suite, and covered by at least one UI test, so we
could measure frame rate usage.
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Table 1. The number of tests cases and % line coverage for each of the selected classes

App name Class name No. tests Line
Cov.(%)

AntennaPod PreferenceActivity (Exp1) 8 43

MainPreferencesFragment (Exp2) 37 68

Gnu Cash AccountsListFragment (Exp1) 11 64

GnuCashApplication (Exp2) 37 76

MicroPinner MainDialog (Exp1) 10 44

MainPresenterImpl (Exp2) 14 75

WikimediaCommons AboutActivity (Exp1) 9 45

RecentSearchesContentProvider (Exp2) 18 63

In order to identify covered classes we used the jacoco Android coverage
tool on each of the selected test cases Firstly, as jacoco only runs on whole
test suites, we added JUnit’s @Ignore decorators to all tests but the test case
being investigated. We then ran jacoco on the modified test suite and extracted
the coverage information, this process was repeated for each test. The classes
which were most commonly exercised were then manually analysed to check for
suitability, as described above.

Table 1 shows the final set of applications we found using our selection proce-
dure, including the classes we identified using our profiling procedure and their
test coverage.

4.4 Physical Setup

Our experiments were run on a research cluster, with 16 GB of RAM and an
Intel Xeon e5 CPU, with an emulator using Android version 7. The evaluation
of improvements was performed on a NOKIA 9 running Android version 10.

5 Results

Below we present the results of our experiments. In our first set of experiments
(Exp1) we ran GI 20 times on the class in each of the four projects which was
most covered by janky UI tests. In our second experiment, for each project,
(Exp2) we ran GI on the class with the highest line coverage, that was also
covered by at least one UI test.

5.1 RQ1: Improvements to Responsiveness

In order to answer RQ1, we present the improvement of frame rate before
and after our patches are applied. Improvement is presented as the percent-
age decrease in the 95th percentile of frame render time. We also performed
the Mann-Whitney U statistical test with the null hypothesis: “There is no
difference between the frame rate of the unpatched application and the patched
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Table 2. Improvements achieved in poorly tested UI classes

Project No. improvements
found

Max. % dec in 95th
per. render time

AntennaPod 0 0.0

Gnu Cache 1 11.11

MicroPinner 1 5.56

Wikimedia commons 8 50.00

Table 3. Improvements achieved in well tested classes

Project No. improvements
found

Max. % dec in 95th
per. render time

AntennaPod 0 0.00

Gnu Cache 0 0.00

MicroPinner 1 5.26

Wikimedia commons 0 0.00

application.” for each patch discovered. This is to determine whether or not the
improvements were statistically significant at the 95% confidence level. We treat
those improvements as which are not statistically significant as 0% improve-
ments. Tables 2 and 3 show our results.

We find that only 11 out of 160 of the GI runs performed found statistically
significant improvements and 8 of those were in one application. In the vast
majority of cases no improvements were found and the GI execution simply
returned an empty patch. In 7 cases in the first experiment, patches were found
which suggested improvements during search, however, validation resulted in
them being found not to offer statistically significant improvements.

We also measure the execution time and memory usage of the patches where
statistically significant improvements to frame rate were found, in order to quan-
tify the way frame rate improvements affect other metrics for responsiveness.
However, we find that where improvements are found, there is very little effect
on either memory consumption or execution time. These measurements are noisy
and may not be sensitive to the types of improvements which we found.

There is also the chance that the applications simply are not unresponsive
enough to find significant improvements. Visual observation of UI tests does show
noticeable improvements, though not significant. This shows that indeed frame
rate measurements we take are more sensitive to UI changes, and have real, albeit
small, impact. If tests were deliberately made to expose the unresponsive areas
of applications, we may have an even better chance of finding improvements.

5.2 RQ2: Types of Improvements

To understand the types of improvement which can improve the frame rate of
an application, we undertook a manual investigation of patches. We investigated
the edits of the patch which was found to offer the most improvement in each
project in order to find the most effective changes.
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(a) Times taken for experiments on UI
classes

(b) Times taken for experiments on well
covered classes

Fig. 2. Boxplots of the time taken for each run on each project in hours

One patch in particular offered significantly better improvements than any
other. A patch to the WikiMedia Commons application offered improvements
of 50% to frame render time. This patch contained 3 edits, 1 more than any
other patch found. 2 of these edits remove text from the screen, making the
whole patch invalid. However, one of the changes removes a line setting the
gravity of a drop down menu’s animation. Running this single change alone still
produces a 43% improvement to frame render time, showing that it is the most
important change. When deploying the modified version of the app we can see
that opening and closing the drop down menus is significantly smoother and
there is no obvious visual impairment to the animation. This improvement will
not have large effects on the execution time or memory consumption of the test
suite, however, it does make the application run more smoothly from a users
perspective, fixing a stuttering animation.

It is possible that there are other opportunities for this kind of change avail-
able. However, the majority of open source applications have no tests and those
that do have very poor coverage [26].

In the cases were improvements found turned out to be invalid, again the
classes being improved did not have adequate coverage and the test which did
cover were not very robust. Some patches removed lines of text which were meant
to be displayed or prevented a dialog box from being displayed. In some cases the
lines which were removed were covered but there were no assertions to check that
the text was being displayed correctly. Much stronger regression testing would
be needed to remove the risk of invalid patches being produced. This issue was
not found for the single improving patch produced for well-covered classes, only
on the UI classes with lower coverage.

5.3 RQ3: Cost of Improving Responsiveness

In order to answer RQ3, to evaluate the cost of improvement, we timed the
execution of each GI run. The results of this evaluation can be found in Fig. 2.
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The runs took between 2 and 16 h to complete. All of the experiments took a
total of 883 h of compute time.

The execution time varied greatly between projects and the runs on particular
projects. This variance comes from differing lengths of test suites and the number
of patches which could be built, and therefore tested, that were found. Trying to
target classes which are covered by small, fast test suites would help to reduce
the cost of GI.

Running tests on the emulator is very expensive, and almost certainly respon-
sible for the long runtimes. When analysing the Wikimedia commons setup used
for the About Activity class we find that running the unit test filter only requires
a median of 5 s over 10 runs. Whereas compiling, installing, and running the UI
tests once takes a median of 2 min and 12 s over 10 runs. When running GI on
Android in the future, it may be significantly faster to target properties that can
be measured exclusively using local tests, removing the need for an emulator or
real device.

6 Threats to Validity

There are a number of threats to the validity of this work. Below we present
these threats and the actions taken to mitigate them.

Noise in Measurements. Whilst the fitness measurement only showed a small
amount of noise when tested, these small deviations could still produce false
positives for improvements. In order to mitigate this threat, we conduct repeated
measurements and statistical tests on all improvements, in order to verify that
the improvements are real.

Stochastic Search. Using randomised search may result in us ‘getting lucky’,
and finding improvements that would not be likely to be found in subsequent
runs. In order to show how our approach works generally, we perform 20 runs
for each experimental setup (160 runs total).

Overfitting. As our patches are generated on a single emulator there is a chance
that they will not translate to other, real world hardware. In order to test this,
we validate all improvements that are found on a real device. Improvements may
also be overfitted to the set of tests used during fitness evaluations. To test for
this overfitting, a larger set of tests is used to validate the patches that are found,
checking if any of them fail, along with how much of an impact the improvements
have on other test cases.

7 Related Work

A recent survey [16] revealed several approaches for improving Android app
responsiveness.

Offloading is a popular technique for improving the responsiveness of applica-
tions [5,11,12,18,20,28]. When offloading, expensive computation is performed
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on an external server, saving both computational effort and energy usage on the
actual device. The main challenge of offloading is dynamically deciding what
should be offloaded. Offloading requires developers to create an external infras-
tructure, e.g., using cloud computing, to perform computation. This could be
complex and costly for developers. In this work, we propose finding purely local
changes to applications which do not require the set up of external hardware.

Pre-fetching is another technique used to improve responsiveness [4,15,30].
Online resources are asynchronously fetched before they are needed so that the
user does not have to wait for the request to be executed. Pre-fetching is limited
to improving a limited number of operations, and is not applicable to many
applications.

Local transformations for improving responsiveness of applications have also
been considered. Hecht et al. [14] tested the impact of repairing Android code
smells on frame rate. Lin et al. [24] developed a tool to automatically refactor
code into asynchronous tasks. Yijung et al. [25] automatically refactored ineffi-
cient local database writes for applications in order to improve responsiveness.

None of the discovered related work considers utilising a larger set of refac-
torings and using search-based approaches to navigate this space.

8 Conclusions and Future Work

In this work we present a genetic improvement approach for improvement of
responsiveness of Android applications. Even though we report negative results,
our research also revealed several avenues for future research.

Whilst genetic improvement is capable of finding improvements to the frame
rate of Android applications it is greatly limited by the number of and distribu-
tion of available tests. In order for genetic improvement to be applied successfully,
applications need more UI tests to allow janky areas of code to be exposed and
more unit testing of UI elements increasing the code coverage.

In future work we plan to extend the traditional set of operators with refac-
torings specialised for responsiveness. We also plan to expand our research to
investigate the power of GI to improve other properties of Android applications.
We also plan to use multi-objective search, as naturally improvements to respon-
siveness might negatively influence other software properties, such as memory
consumption. We would also aim to speed up GI for Android, if we can success-
fully find improvements using only local tests, we can avoid having to package
and install the application, greatly speeding up fitness evaluations. We believe
that despite current obstacles related to testing, future automated improvement
tooling for Android will benefit from search-based approaches, such as genetic
improvement.

Acknowledgements. This work was funded by the EPSRC fellowship EP/
P023991/1.
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Abstract. Defects4J has enabled numerous software testing and debug-
ging research work since its introduction. A large part of its contribution,
and the resulting popularity, lies in the clear separation and distillation
of the root cause of each individual test failure based on careful man-
ual analysis, which in turn allowed researchers to easily study individual
faults in isolation. However, in a realistic debugging scenario, multiple
faults can coexist and affect test results collectively. Study of automated
debugging techniques for these situations, such as failure clustering or
fault localisation for multiple faults, would significantly benefit from a
reliable benchmark of multiple, coexisting faults. We search for versions
of Defects4J subjects that contain multiple faults, by iteratively trans-
planting fault-revealing test cases across Defects4J versions. Out of 326
studied versions of Defects4J subjects, we report that over 95% (311 ver-
sions) actually contain from two to 24 faults. We hope that the extended,
multi-fault Defects4J can provide a platform for future research of testing
and debugging techniques for multi-fault programs.

Keywords: Software faults · Multiple faults · Bug database

1 Introduction

Defects4J [9] is one of the most popular real-world Java fault datasets in the
field of software engineering, with over 650 citations as of June 2021 since its
publication in 2014. Defects4J provides a number of software faults, along with a
clearly separated and isolated set of test cases that can reveal each fault, making
it easier for researchers to study individual faults in isolation. Due to both the
ease of use and the realism of the curated faults, it has been broadly adopted in
the empirical validation of numerous automated debugging work such as Fault
Localisation (FL) [2,13,17] and Automated Program Repair (APR) [4,11,15].

However, in realistic debugging scenarios, multiple faults can coexist in soft-
ware and affect the test results together. For example, a Continuous Integration
(CI) process of large-scale industry software can produce hundreds of failing
test cases that are caused by distinct root causes [7]. The isolation of individual
faults that made Defects4J compatible with the Single Fault Assumption (SFA)
ironically prevents it from being used to study the debugging of multiple faults.
c© Springer Nature Switzerland AG 2021
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According to a systematic literature review of multiple faults localisation [19],
the majority (33) of the 55 selected studies used only C faults for the evaluation.
Only ten studies are reported to consider Java programs, five out of which employ
Defects4J [12,14,18,20,21]. Only Zheng et al. [21] combined separate multiple
Defects4J faults; since the procedure of creating the multiple faults was manual,
only 46 have been created. The remaining work either concern multi-hunk faults,
i.e., a single fault that can only be fixed by changing multiple locations [16] and
consequently use Defects4J as it is [18,20], or actually concern neither multiple
faults nor multi-hunk faults [12,14]. Note that, in this paper, we use the term
multiple faults to denote the faults that can be fixed independently of each other.

Given the contributions to the automated debugging research made by
Defects4J under SFA, we believe that the study of automated multi-fault debug-
ging techniques [19], such as failure clustering [5,7,8] or fault localisation for
multiple faults [1,6,21], would significantly benefit from the construction of a
reliable dataset of realistic multi-fault Java programs. In this paper, we build a
real-world Java multi-fault dataset by extending Defects4J. Instead of artifi-
cially injecting mutation or manually grafting faults, we use iterative search to
systematically detect the existence of multiple faults in each version via fully
automated transplantation and execution of the fault-revealing test cases. We
report that 311 out of 326 studied faulty versions (95.4%) contain multiple faults,
ranging from two to 24. The result data and replication package are publicly
available1.

2 Proposed Approach

The faults in Defects4J are extracted from the actual development history of
various projects. Since every fault has a different life span [3,10], even a fault
that was recently fixed may have existed in the project for a long time. In this
work, we check if a specific fault N in version P of a Defects4J subject exists in
an older version P ′ containing another fault M . If N exists in P ′, we regard P ′ as
a multi fault program that includes both N and M . Note that we modify neither
P nor P ′: the check is performed by test transplantation, and therefore we only
reveal what already exists in P ′. The following sections present the motivating
example and our proposed method to search for multi-fault programs.

2.1 A Motivating Example

Listing 1.1 shows the fault Math-5 in Defects4J and its developer patch chang-
ing the return value from NaN to INF.2 This fault is revealed by the test case
testReciprocalZero (Listing 1.2) that checks if the return value is equal to INF.
Each Defects4J fault is similarly provided with a set of fault-revealing test cases
that reveals a single fault.

1 https://github.com/coinse/Defects4J-multifault.
2 http://program-repair.org/defects4j-dissection/#!/bug/Math/5.

https://github.com/coinse/Defects4J-multifault
http://program-repair.org/defects4j-dissection/#!/bug/Math/5
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1 --- a/src/main/java/org/apache/commons/math3/complex/Complex.java
2 +++ b/src/main/java/org/apache/commons/math3/complex/Complex.java
3 @@ -304,7 +304 ,7 @@ @@ public Complex reciprocal () {
4 if (real == 0.0 && imaginary == 0.0) {
5 - return NaN;
6 + return INF;
7 }

Listing 1.1. The developer patch for Math-5

1 public void testReciprocalZero () {
2 Assert.assertEquals(Complex.ZERO.reciprocal (), Complex.INF);
3 // Error message: junit.framework.AssertionFailedError: expected:<(NaN ,

NaN)> but was:<(Infinity , Infinity)>
4 }

Listing 1.2. The fault-revealing test case of Math-5

We note that, with few exceptions of recently added subjects and versions,
the majority of faulty versions in Defects4J are indexed chronologically based on
their revision dates, so that a lower ID refers to a more recently fixed fault: for
instance, Math-5 was fixed later than Math-6. Therefore, the faulty source code
version of Math-6 (referred to as Math-6b) may also contain the fault Math-5.
Listing 1.3 confirms that Math-5 does exist in Math-6b, but is simply not revealed
due to the absence of the fault-revealing test case, testReciprocalZero. When
transplanted to Math-6b, the test fails with the same error message as in Math-
5b, showing that Math-6b contains at least two faults, Math-5 and Math-6.

2.2 Searching for Multiple Fault Versions

Let BM be the Defects4J faulty source code version that corresponds to the
fault M .3 As shown in our motivating example, if a fault N is fixed after a fault
M , the fault N may already exist in BM . Consequently, to build a multi-fault
dataset, we check which faults exist in which preceding faulty versions.

Search Strategy. For each fault N in a project, we sequentially check whether
the fault exists in each previous faulty version BM , such that M.id > N.id, from
the latest version to the older version. The search stops once N is not revealed in
BM . For example, the fault Lang-3 is revealed in Lang-[4,16]b, but not in Lang-
17b. In this case, the search immediately stops and moves to the next iteration
with a new N (Lang-4). This is because if BM does not contain the fault N , it
is likely that versions older than BM do not include N either.

Existence Check. To determine the presence of a fault N in BM , we transplant
all fault-revealing tests of N to BM . We confirm that N exists in BM if and
only if (1) all target test class files to where test case methods are transplanted
exist in BM , (2) all transplanted test cases are successfully compiled and fail
against BM , and (3) the error messages in BM are the same as those in BN . If

3 defects4j checkout -p Math -v 6b -w <dir> checks out BMath−6 into <dir>.
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304 if (real == 0.0 && imaginary == 0.0) {
305 return NaN; // Math -5b
306 }

Listing 1.3. In Math-6b, Complex.java (line 305) contains the fault Math-5

(a) The number of faulty versions in De-
fects4J with each number of faults

(b) The sorted life span of faults in days
(average=154, standard deviation=246)

Fig. 1. The summary of search results

the fault-revealing test cases of the faults N and M overlap with each other, we
further execute the fault-revealing tests of N on the fixed version of M to ensure
that the overlapped test cases still fail due to N without the presence of M .

Building Multi-fault Subjects. When the above search is done, we obtain
the set of pairs E such that (N,M) ∈ E if and only if N exists in BM . For
every fault M in Defects4J, the set of found faults in BM , F (BM ), is defined as
F (BM ) = {M} ∪ {N |(N,M) ∈ E}. If |F (BM )| > 1, BM is a multi-fault subject.

2.3 Implementation Details

The process in Sect. 2.2 is dockerised and automated. We use javaparser4

to detect the line range of the target test methods during transplantation.
In the docker container, one can simply checkout to the multi-fault version
by invoking python3.6 checkout.py Math-1-2-3 -w /tmp/Math-1-2-3, after
which the same source code with Math-3b, augmented with the fault-revealing
test cases of Math-1 and Math-2, is checked out.

3 Results

Multiple Fault Subjects. Figure 1a shows how many faults are contained in
the faulty versions of five projects5. The x-axis shows the number of faults found
4 https://github.com/javaparser/javaparser.
5 Defects4J Bug IDs: Lang 1-65, Chart 1-26, Math 1-106, Time 1-27, and Closure

1-106. Note that Lang-2, Time-21, Closure-63 and -93 are excluded since they are
either no longer reproducible under Java 8 or the duplicate bugs.

https://github.com/javaparser/javaparser
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in each faulty version, and the y-axis shows the number of faulty versions. Out
of 326 faulty programs, 95.4% (=311/326) of them contain multiple faults (i.e.,
# found faults >1). Furthermore, 126 and 22 faulty versions have ≥10 and ≥20
faults, respectively. For example, Closure-90b contains 24 faults. Our repository
contains the full results of the found multi-fault versions.

Lifespan of Faults. To confirm whether lifespans of Defects4J faults vary
similarly to existing findings [3,10], we calculate the lifespan of each fault. Let
us define the lifespan of fault N as the number of days between the date of the
oldest previous faulty version where fault N is detected and the revision date
of N when the patch is applied. If there is no preceding version where the fault
N is revealed, the lifespan is zero. Figure 1b shows that lifespans of faults range
from 0 days up to longer than three years (e.g., Lang-41 has the lifespan of 1,187
days). The variance in lifespan suggests that the probability of having multiple
faults at any given time can be nontrivial.

4 Conclusion

The paper presents a multi-fault Java dataset based on Defects4J, for which
subjects with multiple real faults are constructed by transplanting tests without
modifying the source code. Exploiting the chronological indexing of Defects4J,
we propose a systematic search strategy to find co-existing faults that have not
yet been revealed by failing tests. The results show that 311 out of 326 versions
in Defects4J actually contain multiple faults. We hope that our extension of
Defects4J can aid future research on search-based automated debugging under
the existence of multiple faults.
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Abstract. Automated Program Repair (APR) strives to automatically
fix faulty software without human-intervention. Search-based APR iter-
atively generates possible patches for a buggy software, guided by the
execution of the patched program on a test suite (i.e., a set of test cases).
Search-based approaches have generally only used Boolean test case
results (i.e., pass or fail), but recently more fined-grained fitness evalua-
tions have been investigated with promising yet unsettled results. Using
the most recent extension of the very popular Defects4J bug dataset,
we conduct an empirical study using ARJA and ARJA-e, two state-of-
the-art search-based APR systems using a Boolean and a non-Boolean
fitness function, respectively. We aim to both extend previous results
using new bugs from Defects4J v2.0 and to settle whether refining the
fitness function helps fixing bugs present in large software.

In our experiments using 151 non-deprecated and not previously eval-
uated bugs from Defects4J v2.0, ARJA was able to find patches for 6.6%
( 10
151 ) of bugs, whereas ARJA-e found patches for 8% ( 12

151 ) of bugs. We
thus observe only a small advantage in using the refined fitness func-
tion. This contrasts with the previous work using Defects4J v1.0.1 where
ARJA was able to find adequate patches for 26.3% ( 59

224 ) of the bugs and
ARJA-e for 47.3% ( 106

224 ). These results may indicate a potential overfit-
ting of the tools towards the previous version of the Defects4J dataset.

Keywords: Search-based automated program repair · Empirical
study · Software engineering

1 Introduction

Automated Program Repair (APR) [6], as the name suggests, tries to automat-
ically derive software patches, in order to fix bugs with none (or little) human
intervention. Various approaches, based on symbolic execution, machine learning
and search-based algorithms, have been proposed for APR [2,6]. In this work we
focus on search-based APR.
c© Springer Nature Switzerland AG 2021
U.-M. O’Reilly and X. Devroey (Eds.): SSBSE 2021, LNCS 12914, pp. 159–165, 2021.
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http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-88106-1_12&domain=pdf
https://doi.org/10.1007/978-3-030-88106-1_12


160 G. Guizzo et al.

Given a buggy program and related test suite, search-based APR approaches
iteratively generate candidate patches by mutating the program. A fitness func-
tion compiles and tests each candidate patch to assess whether it produces
expected outputs for all inputs in the test suite. If the test suite passes, then it
is an indication that the generated patch was successful and it is deemed “ade-
quate”. This type of Boolean fitness function has been the approach most used so
far, and only recently a more fine-grained fitness evaluation (i.e., non-Boolean),
which uses not only the binary result of test cases but also their output in case
of a failure, has been proposed [1,12].

Yuan and Banzhaf [12] have been the first to propose a more refined fit-
ness function and included it in the ARJA-e tool. Their empirical evaluation,
conducted on 224 real-world Java bugs from Defects4J [3] v1.0.1, showed that
ARJA-e correctly fixed 39 bugs, achieving substantial performance improve-
ments over the more traditional search-based APR tools using fitness functions
based on Boolean test results. On the other hand, a more recent study conducted
by Bian et al. [1] did not reveal any major significant difference when comparing
the effectiveness and efficiency of such traditional vs. refined fitness functions.

In this challenge paper, we aim at unveiling whether there is indeed any
difference in using traditional vs. refined fitness functions. We use a corpus of
real-world software projects with potentially harder-to-fix bugs that has not
been used in previous studies. This corpus consists of 151 non-deprecated bugs
from 13 software programs from Defects4J v.2, which were not contained in
earlier versions of this dataset. We evaluate and compare two well-known state-
of-the-art search-based APR software: ARJA [11] and its extension, ARJA-e [12].
Both use Multi-Objective Evolutionary Algorithms (MOEAs) and differ in the
implemented fitness functions. While ARJA uses the more traditional fitness
function, based on number of failing test cases; ARJA-e uses the “smooth” non-
Boolean fitness to gradually guide the APR process towards a passing test suite.

Our results show that there is little benefit in using refined fitness functions,
with ARJA producing 10 patches vs. 12 produced by ARJA-e. Moreover, the fix
rates are much lower than those reported in the literature, pointing to overfitting
to the previous Defects4J dataset.

2 Background

A handful of approaches has been proposed to refine fitness functions in search-
based program repair, to not rely on just Boolean test case results. We present
all of them below.

ARJA-e. Unlike most other APR tools in the literature, ARJA, ARJA-e’s
predecessor, uses multi-objective optimisation search, considering both patch size
(f1) and weighted failure rate (f2). Whilst the patch size simply is the number
of edits in a given patch x, the weighted failure rate is defined by Eq. 1, with
Tpos and Tneg the sets of negative and positive sets and w ∈ [0, 1] the weight
parameter introducing bias against the latter.
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f2(x) =
|{t ∈ Tpos : x fails t}|

|Tpos| + w ∗ |{t ∈ Tneg : x fails t}|
|Tneg| (1)

ARJA-e further extends ARJA with a more fine-grained fitness function, given
by Eq. 2. Instead of simply counting the number of failed test cases, the error
ratio (h) of each executed test is calculated. This ratio is the mean assertion
distance (d(e)) of each assertion executed by the test (e ∈ E(x, t)) for a par-
ticular patch. A specific normalised distance metric is used for each type of
assertion, e.g., the Levenshtein distance for string objects, or absolute distance
for numbers.

f2(x) =

∑
t∈Tpos

h(x, t)

|Tpos| + w ∗
∑

t∈Tneg
h(x, t)

|Tpos| ; h(x, t) =

∑
e∈E(x,t) d(e)

|E(x, t)| (2)

2Phase. 2Phase’s [1] fitness function takes a hybrid approach between ARJA
and ARJA-e. When two patches produce differing numbers of passing and fail-
ing tests, the one with the least failing/most passing will be considered better.
Otherwise, the sum of their assertion distances on failing tests will determine
which patch is preferred.

GenProgNS. GenProgNS [10] is an implementation of GenProg [5] which
replaces fitness evaluation based on the number of passing tests with the novelty
of the solution. A Boolean vector b represents the outcome of each test case for a
particular variant. For test case i, bi is assigned 1 if the test case passes and 0 if
it fails. The Hamming distance of these vectors is then used to calculate novelty
and the most novel solutions are preferred. This approach prioritises exploration
of the large search space over exploitation of the improvements found so far.

Checkpoints. Checkpoints [9] implements a fitness function in which the values
of variables that are present in test cases are tracked throughout execution. These
variables’ values are compared with those from the original test executions of the
buggy program, and fitness is assigned based on their comparison. For failing test
cases on a particular variant, the variant is considered more fit if it maintains the
values of variables in tests which originally passed and changes variable values
in the tests which originally failed.

3 Experimental Design

In this work we want to answer the following question:

How effective is search-based APR if refined fitness functions are used
when compared with traditional fitness evaluation, which considers
only Boolean test case results?

With this in mind we focus on comparing effectiveness and efficiency of ARJA
and ARJA-e. ARJA is a mature tool and ARJA-e provides an extension with the
fitness function change, thus making fitness comparison fair for our purposes.
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Table 1. Detail of Dejects4J between v1.0.1, v2.0, and depreciated bugs.

Project # Bugs Project # Bugs

v1.0.1 v2.0 Dep. Total v1.0.1 v2.0 Dep. Total

Chart 26 0 0 26 JacksonDatabind 0 112 0 112

Cli 0 39 1 39 JacksonXml 0 6 0 6

Closure 131 43 2 174 Jsoup 0 93 0 93

Codec 0 18 0 18 JxPath 0 22 0 22

Collections 0 4 24 4 Lang 64 0 1 64

Compress 0 47 0 47 Math 106 0 0 106

Csv 0 16 0 16 Mockito 0 38 0 38

Gson 0 18 0 18 Time 26 0 1 26

JacksonCore 0 26 0 26

Total 391 444 29 835 ← ← ← ←

Dataset. Defects4J [3] is a prevalent and extremely widespread dataset of real
Java bugs. Recently Defects4J has been updated with many new bugs for which
very little is known in comparison. We use these new bugs to drive our inves-
tigation. To our knowledge, the new bugs introduced in Defects4J v2.0 have
only been tackled with non-search-based approaches [7,13]. Table 1 shows the
set of bugs in both versions Defects4J v1.0.1 and v2.0. Although there are
444 non-deprecated new bugs in the dataset, we ended up using a subset of
151 buggy project versions due to a few technical challenges. The list of all
bugs and results of our experiments can be found at https://figshare.com/s/
35ea3fd819e737ed806b.

Technical Challenges. ARJA has a few undocumented requirements. ARJA
is divided into two modules: the core module contains all the classes for the
execution of the algorithms and generation of patches; the external module is
used by the core module to instrument the code, run test cases, and capture
code coverage. The default location of the external module is hard-coded into
ARJA’s source code, thus executing the tool within a working directory different
from ARJA’s root directory results in failures. This can be fixed by providing
the path to the external module as an argument, but this is undocumented.
This problem is aggravated because ARJA neither fails/crashes when it does
not find the external project, nor does it output errors. Hence, it executes nor-
mally with missing functionalities, but the results seem to be successful with no
generated patches. The second and most crucial challenge regards the resource
files/scripts provided by Defects4J to checkout, compile, and to export metadata
of projects. The supporting scripts sometimes fail due to various reasons. For
example, we could not compile the Compress projects using Defects4J because
using Java 8 (required by Defects4J) in combination with the Maven and Ant
compilation scripts provided by Defects4J results in failures due to unsupported
compilation of Java 1.4 sources (version of the project). Other examples of fail-

https://figshare.com/s/35ea3fd819e737ed806b
https://figshare.com/s/35ea3fd819e737ed806b
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Fig. 1. Set of bugs with successful runs and repairs for ARJA and ARJA-e.

ures include: inclusion of nonexistent files and missing items in the classpaths,
missing configuration files during checkout, and failure to replace placeholders
(e.g. ${project.root.dir}) with actual paths. These problems can be fixed by man-
ually (and laboriously) inspecting each of the 444 subjects’ resource files. Finally,
even with working projects, correct set-ups, and correct metadata, ARJA some-
times failed to instrument the code, localise faults, or it simply hanged. The
151 projects used in this paper are the only ones we could execute without any
issues.

Experimental Setup. We used the latest commits of ARJA1 and ARJA-e2.
Both tools were run to completion using their default recommended configura-
tion without a specific time limit. Experiments were repeated ten times using
independent random seeds, using a Sun Grid Engine cluster running CentOS
Linux 7 nodes with Java v1.8.0 131, Perl v5.16, SVN v1.8.19, and Git v2.9.5.

4 Results and Discussion

Figure 1 shows the summary of our results. The solid circles represent bugs for
which the tools were able to successfully run, whereas the dashed lines represent
the subset of bugs for which the tools found test-suite adequate patches.

Our results show that ARJA is able to find adequate patches for 6.62% ( 10
151)

of the subjects, or 10 out of 138 of the bugs if we consider only successful runs.
ARJA-e is able to find adequate patches for 7.95% ( 12

151) of the subjects, or
12 out of 99 of the bugs if we consider only successful runs.

According to the original work of ARJA and ARJA-e using Defects4J v1.0.1,
the tools found adequate patches for 26.33% ( 59

224 ) and 47.32% (106224 ) of the bugs,
respectively. The dissimilarity between our findings and the results of previous
work [11,12] is striking: the differences between both tools is rather small (6.62%
vs 7.95%) when compared to the difference found in their original papers (26.33%
vs 47.32%). Furthermore, the low fixing rate suggests that the effectiveness of

1 https://github.com/yyxhdy/arja/tree/e7950328c05e3f7eb38e1af11efc31055af09d05.
2 https://github.com/yyxhdy/arja/tree/f24b777a7c53a390ff97ecfd66fbbdedd8f8b6b3.

https://github.com/yyxhdy/arja/tree/e7950328c05e3f7eb38e1af11efc31055af09d05
https://github.com/yyxhdy/arja/tree/f24b777a7c53a390ff97ecfd66fbbdedd8f8b6b3
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these tools can drop with the addition of unseen bugs, unveiling a possible over-
fitting (a known issue with APR tools [4,8]) to Defects4J v1.0.1, specially for
ARJA-e with a steeper drop. On the other hand, our discoveries are aligned with
the work of Bian et al. [1], who also found a negligible difference.

Finally, ARJA generated 6 383 patches, while ARJA-e a total of 8 703
patches. The medians were 97.5 and 63 per bug, respectively, meaning, in the
worst case scenario, an engineer would have to analyse over 60 patches per bug
to check for semantic correctness. This hinders the feasibility of both tools in
practice due to the great amount of manual effort needed.

5 Conclusions

Search-based APR has been successfully used to generate test-suite adequate
patches. The search over mutated program variants is guided by a fitness function
that usually only considers Boolean test case results. In order to improve it’s
effectiveness, more refined fitness functions were proposed, that take types of
failures into account. However, previous work is not unanimous on whether this
more sophisticated fitness function actually is more effective.

In this work we ran two state-of-the-art tools, ARJA and ARJA-e, that differ
in their fitness implementation, to compare whether the more refined fitness
version in ARJA-e indeed helps the search. We ran our experiments on the newly
added 151 bugs in the famous Defects4J set. Our results show that neither fitness
is significantly better than another. Moreover, we also reveal that the two ARJA
variants struggle to find test-suite adequate patches on the new dataset, having
found significantly more on older benchmarks.

Acknowledgments. Funded by ERC 741278 and EPSRC EP/P023991/1.
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