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Abstract Soft tissues are complex media; they display a wide range of mechanical
properties such as anisotropy and non-linear stress-strain behaviour. They undergo
large deformations and they exhibit a time-dependent mechanical behaviour, i.e.
they are viscoelastic. In this chapter we review the foundations of the linear
viscoelastic theory and the theory of Quasi-Linear Viscoelasticity (QLV) in view
of developing new methods to estimate the viscoelastic properties of soft tissues
through model fitting. To this aim, we consider the simple torsion of a viscoelastic
Mooney-Rivlin material in two different testing scenarios: step-strain and ramp
tests. These tests are commonly performed to characterise the time-dependent
properties of soft tissues and allow to investigate their stress relaxation behaviour.
Moreover, commercial torsional rheometers measure both the torque and the normal
force, giving access to two sets of data. We show that for a step test, the linear and
the QLV models predict the same relaxation curves for the torque. However, when
the strain history is in the form of a ramp function, the non-linear terms appearing
in the QLV model affect the relaxation curve of the torque depending on the final
strain level and on the rising time of the ramp. Furthermore, our results show that
the relaxation curve of the normal force predicted by the QLV theory depends on
the level of strain both for a step and a ramp tests. To quantify the effect of the
non-linear terms, we evaluate the maximum and the equilibrium (as t →∞) values
of the relaxation curves. Our results provide useful guidelines to accurately fit QLV
models in view of estimating the viscoelastic properties of soft tissues.
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1 Introduction

Soft tissues, such as the brain, the skin, tendons and ligaments, are viscoelastic
materials, their mechanical behaviour is therefore time-dependent. Two typical
experiments that show the time-dependent nature of soft tissues consist in stress
relaxation and creep tests. In a stress relaxation test the tissue is suddenly stretched
and then held in position for a certain time while the resulting stress is measured.
Conversely, in a creep test, the load is applied to the tissue and the resulting
deformation is measured. For many soft tissues the stress relaxation curve has a
decaying exponential form. Stress relaxation has been observed in the brain [2, 3],
in ligaments and tendons [5, 6] and in the skin [15]. At the microscale, the physical
mechanisms behind stress relaxation differ from tissue to tissue. In tendons, for
example, it has been observed that crimping and un-crimping of the hierarchical
structures that build up the tissues, i.e. the individual collagen fibrils, are responsible
for the stress relaxation of the tissue [9]. In the skin, the interaction between collagen
and elastic fibres plays a crucial role in determining the time-dependent behaviour
of the tissue. When the tissue is deformed, the cross-links maintain the structure and
allow the elastic fibres to stretch and relax [10].

However, in practice there is no machine that can instantaneously deform a tissue.
A more realistic test is indeed a ramp test, where the tissue is deformed in a finite
time and then held in that position. The duration of the ramp phase is called rising
time t∗. When the rising time of the ramp is nearly zero, the ramp test can be well
approximated by a step-strain test. However, if t∗ is not small (compared to the
characteristic time constants of the material) modelling the ramp test as a step test
can introduce errors in the estimation of the viscoelastic parameters.

From the modelling viewpoint, the simplest constitutive theory that can be used
to describe the time-dependent behaviour of soft tissues is the linear viscoelastic
theory, where the stress is related to the strain by a time-dependent function which
in turn depends on the tissue’s viscoelastic parameters. Linear models are based on
three main assumptions:

1. the tissue remembers the past deformation history through a fading memory,
so that contributions to recent strain increments are more important than past
contributions. A typical form of the time-dependent parameters that satisfies this
assumption is a decaying exponential form;

2. according to the Boltzmann superposition principle, the total stress at the current
time t is given by the sum of all past stress contribution;

3. the deformation applied to the tissue is small.

In early times, linear models have been employed to predict the viscoelastic
behaviour of soft tissues. However, soon scientists have realised that these models
do not provide accurate predictions, mainly because in reality soft tissues undergo
large deformations. To overcome this limitation, Fung proposed what is now called
the Quasi-Linear Viscoelastic (QLV) theory, which is the simplest extension of the
linear theory to large deformations [8]. QLV models can capture stress relaxation
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and creep, the strain-rate dependent response and account for large deformations.
Moreover, the governing equations of the viscoelastic problem can be solved
analytically for the most common modes of deformations used in experiments (e.g.
tension, compression, equi-biaxial tension, simple shear and torsion). Therefore, the
constitutive parameters can be directly estimated through fitting of the experimental
data, by implementing a minimisation algorithm. Linear and QLV models have a
common limitation: being based on the linear superposition principle, they cannot
account for the coupling between different time-scales, which is a limitation, espe-
cially for tissues with hierarchical structures. Although more complex non-linear
models that account for this coupling have been proposed, they are numerically
costly when it comes to model fitting and material parameters estimation [16, 17].
Another class of non-linear models goes under the umbrella of internal variable or
rate-type models which have recently gained popularity among the biomechanical
community [12–14]. These models are based on thermodynamics foundations.
According to the multiplicative decomposition, the gradient of the deformation is
split into an elastic and a viscous part. The resulting stress is then split into the sum
of an elastic and a viscous term. The elastic stress is generally written with respect
to an elastic strain energy function. The viscous stress is written with respect to a
number of internal variables, whose evolution laws are dictated by the second law
of thermodynamics and motivated by the linear theory [18]. This approach has the
advantage of allowing an easy implementation of the constitutive model into finite
element codes. However, when it comes to model fitting, the resulting equations are
in implicit forms and need to be solved numerically, even for simple deformation
modes.

Finally, differential-type models formulate the time-dependent constitutive equa-
tion in terms of the derivatives of the right stretch tensor evaluated at the current time
[11]. Despite being computationally easy to implement, these models do not allow
for an explicit form with respect to the relaxation functions, therefore they are less
straightforward to fit with experimental data. We conclude this brief introductory
review by noting that viscoelasticity is not the only time-dependent property of
soft tissues. Rate-type effects, such as stiffening and softening as a results of cyclic
loading and unloading and ageing, are other common effects displayed by biological
tissues [29, 30].

In this chapter, we focus on viscoelasticity with the aim of providing useful
guidelines on model fitting and estimation of the viscoelastic parameters for linear
and QLV models. We consider two main experimental scenarios, the step-and-hold
test and the ramp-and-hold test for the torsion of a cylindrical tissue. These tests
are common experimental protocols used to investigate the viscoelastic properties
of soft tissues, in particular stress relaxation. In Sect. 2 we review the standard
linear viscoelastic theory and its rheological interpretation. In Sect. 3 we review
the QLV theory following the formulation proposed in [19]. In Sect. 4, we consider
the simple torsion of a cylindrical sample. This deformation can be performed with
commercially available rheometers which measure both the torque and the normal
force required to twist a cylindrical sample, giving access to two independent sets
of data. Torsion has been successfully used to characterise the elastic properties
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of the brain in large deformations [20] suggesting that the tissue behaves as a
Mooney-Rivlin material. The same behaviour was previously observed in simple
shear experiments [21]. In view of applications to brain mechanics, we therefore
solve the equilibrium equations for a viscoelastic material whose elastic stress obeys
a Mooney-Rivlin law and we calculate the expressions for the torque and the normal
force. In Sect. 5 we compare the predictions of the QLV model in the scenario of a
step-strain test and of a ramp test. We conclude the chapter by discussing our results
and by summarising the main findings.

2 Linear Viscoelastic Models

Linear viscoelastic constitutive models are formulated by introducing the time
dependency in the material parameters, a sort of fading memory which remembers
the strain history of the material up to the current configuration. Accordingly,
Hooke’s law σ = K : ε rewrites as follows:

σ (t) =
∫ t

−∞
K(t − τ) : dε(τ )

dτ
dτ , (1)

where σ is the stress tensor, ε is the infinitesimal strain tensor, and K(t) is called
the tensorial relaxation function and is a fourth-order tensor whose entries are the
time-dependent material parameters. The symbol : denotes the double contraction
between a fourth-order tensor Y and a second-order tensor Z such that (Y :Z)ab =
YabcdZcd .

Equation (1) is based on the Boltzmann superposition principle [22–24]. Accord-
ingly, the total stress at the current time t can be written as sum of past stress
contributions up to the time t . In a one-dimensional setting, for the generic
component σ we can then write σ = ∑

i �σi , as sketched in Fig. 1. Each �σi

is the stress response to the step increment �εi = dε
dt �ti and is governed by the

relaxation function kstep(t − ti ). Therefore, each stress increment can be written as
�σi = kstep(t − ti )�εi . By assuming that the strain history is continuous over time,
the sum can be converted into an integral over time. The stress component σ at time
t is then given by the following convolution integral:

σ(t) =
∫ t

−∞
kstep(t − τ)

dε(τ )

dτ
dτ , (2)

for a given deformation history ε(t).
Equation (1) is the tensorial version of Eq. (2). The components of the tensor

K(t) are the different relaxation functions of the tissue, i.e. the time-dependent
mechanical parameters. We will show in Sect. 2.1 that the tensor K(t) can be split
into its components according to a set of fourth-order bases. Thus, the resulting
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Fig. 1 Boltzmann
superposition principle: the
strain history ε is
approximated as sum of steps
�εi and the resulting total
stress response σ is the sum
of the stress responses �σi to
each step increment

constitutive equation can be written with respect to different sets of relaxation
functions according to the choice of bases.

From an experimental viewpoint, the choice of the bases might be dictated by
which mechanical properties we want to estimate. For instance, if we are interested
in estimating the time-dependent shear modulus we will perform a simple shear
test or a torsion test, whereas if we want to estimate the time-dependent Young’s
modulus we will perform a tensile test. Moreover, in order to be able to estimate
the components of K(t) we first have to specify their functional form with respect
to time. In Sect. 2.2 we will review a common form used in the biomechanics
community, i.e. the Prony series form. Furthermore, we will discuss two common
experimental protocols that are performed to estimate the components of K(t),
namely the step-strain and the ramp tests.

2.1 Bases Decomposition for the Tensor K(t)

In this section, we focus on the tensorial nature of the relaxation function K(t)

and we show that the constitutive equation (1) can be written with respect to
different sets of components of K(t), i.e. the time-dependent mechanical properties
of the tissue, according to different choices of fourth-order tensorial bases. To
simplify the analysis, in this chapter we restrict out attention to homogeneous
isotropic tissues. The mechanical behaviour of such tissues is fully described by
two independent mechanical parameters, e.g. the bulk and the shear modulus, κ(t)
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and μ(t), respectively, or the first Lamé parameter λ(t) and the shear modulus.
According to the elasticity theory, the elasticity tensor C for a homogeneous
isotropic material depends only on two independent elastic constants. Similarly,
the tensorial relaxation function K(t) for an isotropic material has two independent
components K1(t) and K2(t) with respect to two bases I1 and I2, respectively, such
that:

K(t) =
∑

n=1,2

Kn(t)In. (3)

A well-known form of the constitutive equation for a homogeneous isotropic and
compressible material follows by splitting the infinitesimal strain tensor ε into its
hydrostatic and deviatoric parts. The hydrostatic part is associated with volume
changes, whereas the deviatoric part is associated with the volume-preserving part
of the deformation. The following set of bases splits the strain tensor into its
hydrostatic and deviatoric parts:

I1abcd = 1

3
δabδcd and I2abcd = 1

2
(δacδbd + δadδbc) − 1

3
δabδcd . (4)

Accordingly, Eq. (1) takes the following form:

σ (t) =
∫ t

−∞
∑

n=1,2

Kn(t − τ)In : dε(τ )

dτ
dτ

=
∫ t

−∞
K1(t − τ)

dI1 : ε(τ )

dτ
dτ +

∫ t

−∞
K2(t − τ)

dI2 : ε(τ )

dτ
dτ

=
∫ t

−∞
K1(t−τ)

d

dτ

(
1

3
tr (ε(τ )) I

)
dτ +

∫ t

−∞
K2(t−τ)

d

dτ

(
ε(τ )−1

3
tr (ε(τ )) I

)
dτ

=
∫ t

−∞
κ(t − τ)

d

dτ
(tr (ε(τ )) I) dτ + 2

∫ t

−∞
μ(t − τ)

d

dτ
(dev (ε(τ ))) dτ ,

(5)
where δab is the Kronecker delta (δab = 1 if a = b and δab = 0 if a �= b), I is the
second-order identity tensor and dev ε = ε − 1

3 tr (ε) I is the deviatoric part of the
second-order tensor ε. The bases I1 and I2 defined in Eq. (5) act on a second-order
tensor by splitting the tensor into its spherical and deviatoric parts, respectively. The
associated material parameters κ(t) and μ(t) are the time-dependent bulk and shear
modulus, respectively.

For incompressible materials, i.e. materials that deform by keeping their volume
constant, the bulk modulus is much greater than the shear modulus (κ(t) � μ(t)

for ∀t). Moreover, the following assumptions are true: tr ε(t) → 0, κ(t) → ∞,∀t .
In these limits, Eq. (5) reduces to:

σ = −p(t)I + 2
∫ t

−∞
μ(t − τ)

d

dτ
(dev ε(τ )) dτ , (6)
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where we have introduced the Lagrange multiplier p(t):

− p(t) = lim
tr ε(t)→0

lim
κ(t)→∞

∫ t

−∞
κ(t − τ)

d

dτ
(tr ε(τ )) dτ . (7)

The scalar p(t) can be interpreted as a hydrostatic pressure and can be calculated by
solving the governing equations of motions for a continuum body, upon imposing
the boundary conditions. Note that the stress component −p(t)I represents a
workless reaction with respect to the kinematic constraint of the deformation field.
No dissipation is involved in the isochoric deformation of the body. Hence, for
materials that can be treated as incompressible, only the deviatoric part of the stress
exhibits a viscoelastic nature.

Similarly, by choosing the following bases:

J1abcd = δabδcd and J2abcd = 1

2
(δacδbd + δadδbc) , (8)

K(t) = ∑
n=1,2 An(t)Jn and Eq. (1) writes as follows:

σ (t) =
∫ t

−∞

∑
n=1,2

An(t − τ)Jn : dε(τ )

dτ
dτ = · · · =

=
∫ t

−∞
A1(t − τ)

d

dτ
(tr ε(τ )I) dτ +

∫ t

−∞
A2(t − τ)

d

dτ
(ε(τ )) dτ

=
∫ t

−∞
λ(t − τ)

d

dτ
(tr ε(τ )I) dτ + 2

∫ t

−∞
μ(t − τ)

d

dτ
(ε(τ )) dτ .

(9)

Now, we have A1(t) = λ(t), which is the time-dependent first Lamé parameter and
A2(t) = 2μ(t). Moreover, note that J1 = 3I1 and J2 = I2 − I1 and the following
link is true λ(t) = κ(t)− 2

3μ(t), ∀t . Clearly, Eqs. (5) and (9) are equivalent forms of
the constitutive equation (1) and predict the same stress response to a general strain
input ε(t). The choice of the bases and therefore the final form of the constitutive
model is usually dictated by what type of material properties we want to determine
and the type of experimental devices available for testing (e.g. tensile machines,
rheometers, bi-axial devices, etc.). In Sect. 3 we will use the bases decomposition of
Eq. (4) to write the constitutive equation for the QLV model. In the next section, we
focus on the mathematical form of the components of the tensor K(t).

2.2 Rheological Models for the Relaxation Function

In order to use the constitutive equation (1) for model fitting and parameter
estimations, a mathematical form for the components of the tensorial function K(t)
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has to be chosen. On the one hand, the form of the relaxation functions is restricted
by the following physical principles: positive strain energy and satisfaction of the
second law of thermodynamics. Imposing the energy density to be non-negative
during the tissue relaxation results in requiring the relaxation function to be positive
∀ t [7]. Furthermore, the second law of thermodynamics (dissipation inequality)
requires that the relaxation function decreases monotonically with time [7]. On the
other hand, any function that satisfies the physical constraints and replicates the
shape of the observed stress relaxation curve can be used. From the experimental
viewpoint, a classical experiment that can be done to determine the relaxation
curve is to apply a displacement to the tissue, then hold the tissue in position (i.e.
maintain a constant level of strain) for a certain time and measure the resulting stress
curve. For most soft tissues, the measured stress relaxation curve has a decaying
exponential behaviour [4–6].

The simplest form for the relaxation function that captures the exponential
decaying behaviour and satisfies the physical constraints is the so-called Prony
series. The Prony series has its origin in one-dimensional rheological models
[7, 8]. Such models are represented by an arrangement of linear springs and linear
dash-pots. The layout of such arrangements of elements provides the qualitative
behaviour of the system, e.g. solid-like or fluid-like behaviour, while the values
of the constants characterise the quantitative behaviour. In Fig. 2 we sketch the
generalised Maxwell scheme, which is used to model the viscoelastic response of
solid materials. The isolated spring k∞ represents the residual (long-term) elasticity
of the tissue.

One-dimensional rheological models can be described by a linear ordinary
differential equation in the variables σ (the stress) and ε (the strain). The stress
response σ of the system to a step-strain input ε provides the form of the relaxation
function kstep in (2). A convenient way to derive the response of rheological models,
especially when a large number of elements is involved, is to employ the Laplace
transform. The approach involves the following steps:

Fig. 2 Rheological models:
springs and dash-pots
arrangement of the
generalised Maxwell model.
The parameters ki are spring
constants (Pa) and ηi are
dash-pot constants (Pas), or
viscosities. σ is the stress
response of the system to the
applied strain ε
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1. Write the constitutive equations for all the elements in the system: σi = kiεi

for springs and σi = ηi ε̇i for dash-pots. Then write the equilibrium equations
σ = ∑

i σi for elements in parallel that experience the same strain and ε = ∑
i εi

for elements in series that experience the same stress.
2. By applying the Laplace transform to each equations at point 1, convert the

system of mixed differential and algebraic equations into a system of only
algebraic equations.

3. Apply a variable elimination procedure to the system derived at point 2. The
system has 3n + 2 equations in 3n + 3 unknowns, i.e. εi and σi . This reduces the
system to the single equation: σ̄ (s) = F(s)ε̄(s), where σ̄ and ε̄ are the Laplace
transforms of σ(t) and ε(t), respectively. F(s) is the transfer function in the
complex domain represented by the complex variable s.

4. By applying the inverse Laplace transform to the equation σ̄ (s) = F(s)ε̄(s),
obtain the constitutive equation in the time domain.

From point 3, the transfer function F(s) of the generalised Maxwell model in
Fig. 2 is given by:

F(s) = σ̄ (s)

ε̄(s)
= k∞ +

n∑
i=1

sηi

1 + sτi

, (10)

where the constants τi = ηi

ki
are called relaxation times of the model.

To calculate the response of a generalised Maxwell system to a step input, we
write the strain ε(t) = ε0H(t), where H(t) is the Heaviside function: H(t) = 1,
∀t ≥ 0 and H(t) = 0, ∀t < 0 and ε0 is the amplitude of the step. Then we calculate
the Laplace transform ε̄ and substitute the result into Eq. (10) obtaining:

σ̄ (s) =
(

k∞
s

+
n∑

i=1

ηi

1 + sτi

)
ε0. (11)

According to point 4, by transforming back into the time domain, we obtain the
stress response to a step-strain input with amplitude ε0:

σ(t) =
(

k∞ +
n∑

i=1

kie
− t

τi

)
ε0. (12)

From Eq. (12) we can then calculate the stress response to a step-strain input, i.e.
the relaxation function kstep(t), by dividing σ(t) by the amplitude of the step, as
follows:

kstep(t) = σ(t)

ε0
= k∞ +

n∑
i=1

kie
− t

τi . (13)
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Fig. 3 Stress response of the
generalised Maxwell model
to a step-strain input

The function (13) is called Prony series and is a sum of exponential terms, each
corresponding to a branch of the generalised Maxwell in Fig. 2. Note that the
relaxation function kstep(t) does not depend on the strain ε.

The constants k∞, ki and ηi can be determined by fitting Eq. (13) to the stress
relaxation curve experimentally measured from a step-strain test. The sample is
suddenly deformed up to the strain ε0 and held in position for a certain amount
of time. In the limit t → ∞ Eq. (12) recovers the elastic equilibrium stress
(σ∞ =k∞ε0) and the relaxation function in Eq. (13) reduces to the long-term elastic
modulus k∞:

k∞ = lim
t→∞ kstep(t). (14)

Experimentally, this limit is equivalent to a very slow ramp test, i.e. a quasi-static
test, where the final value of strain ε0 is attained as t →∞.

On the other hand, in the limit t → 0, Eq. (13) reduces to the instantaneous
elastic modulus k0:

k0 = kstep(0) = k∞ +
n∑

i=1

ki . (15)

The value in Eq. (15) corresponds to the maximum of the relaxation function, see
Fig. 3. Experimentally, this limit corresponds to the application of an instantaneous
strain, which is practically impossible to perform. The constants k0 and k∞ are
the elastic parameters of the constitutive model and describe the instantaneous and
long-term elastic behaviours of the tissue, respectively.

The viscous behaviour of the tissue is associated with the parameters ηi and τi .
To get some insights on the viscous parameters, we define the function:

k̃step(t) = kstep(t) − k∞ =
n∑

i=1

kie
− t

τi (16)
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and we integrate over the whole time spectrum:

η0 =
∫ ∞

0
k̃step(t) dt =

n∑
i=1

ηi. (17)

The value η0 has an important geometrical interpretation since it represents the area
between the curve kstep(t) and the asymptotic line k∞, see Fig. 3. The bigger the
area, the more viscous the material.

Moreover, we can compute the mean relaxation time Tc of the tissue as follows:

Tc =
∫ ∞
0 t k̃step(t) dt∫ ∞
0 k̃step(t) dt

=
∑n

i=1 ηiτi∑n
i=1 ηi

. (18)

Geometrically, Tc represents the centroid of the shaded area below the relaxation
function kstep(t) and the asymptotic value k∞ and can be interpreted as the average
relaxation time.

Ramp Tests

Now, we recall that Eqs. (13–18) are valid for a strain input in the form of a step
function (i.e. ε(t) = H(t)ε0), where the strain value ε0 is attained instantaneously.
However, such experiment is not feasible in laboratory since that would require a
testing machine able to reach an infinite rate of deformation. Real tests are much
closer to a ramp test, where the strain ε0 is reached after a finite rising time t∗ > 0,
as shown in Fig. 4.

In view of providing an analytical expression for the relaxation curve to be
fitted with the experimental data, in this section we derive the stress response of
a generalised Maxwell system to a ramp input. The strain input for a ramp test takes
the following form:

ε(t) = ε0

t∗
t − ε0

t∗
(t − t∗)H(t − t∗), (19)

Fig. 4 Strain history for a
ramp-and-hold experiment.
The constant strain value ε0 is
reached at the end of the
loading phase (t = t∗), where
the strain increases at a
constant rate

0
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where H(t) is the Heaviside function. We can calculate the stress response to the
input in Eq. (19) by substituting Eqs. (13) and (19) into Eq. (2). We then obtain:

σ(t) = kramp(t)ε0, for t > t∗, (20)

where:

kramp(t) =
(

k∞ + 1

t∗
n∑

i=1

τikie
− t

τi

(
e

t∗
τi − 1

))
, for t > t∗. (21)

Note that by taking the limit for t → ∞ in Eq. (21), we recover the long-term elastic
modulus k∞. Similarly, the equilibrium stress as t → ∞ is given by σ∞ =k∞ε0 as
for the step test.

On the other hand, the stress response at t = t∗ is now affected by the previous
deformation history at t <t∗. To quantify the effect of the rising time of the ramp on
the instantaneous elastic and viscous response, we calculate the function k̃ramp(t):

k̃ramp(t) = kramp(t) − k∞ =
n∑

i=1

ki

νi

e
− t

τi

(
eνi − 1

)
, (22)

where νi = t∗/τi are the ratio between the rise time and the characteristic time
constants of the tissue τi . Note that by taking the limit t∗ → 0 (i.e. a step input),
Eq. (22) recovers Eq. (16):

lim
t∗→0

k̃ramp(t) = k̃step(t) =
n∑

i=1

kie
− t

τi . (23)

Moreover, we define the modified instantaneous elastic modulus k0ramp as the
function (22) evaluated at the end of the ramp phase, i.e. at t = t∗:

k0ramp = k̃ramp(t
∗) =

n∑
i=1

kiζi = k · ζ , with ζi = ν−1
i

(
1 − e−νi

)
. (24)

k and ζ are vectors with components ki and ζi , i = {1, . . . , n}, respectively. Since
0 ≤ νi < ∞, then the parameters ζi range between 0 < ζi ≤ 1. When νi = 0,
ζi = 1 and the ramp recovers the perfect step-strain input and the elastic modulus
in Eq. (24) reduces to the instantaneous modulus in Eq. (15).

We note that the elastic constants ki are intrinsic properties of the tissue, therefore
they do not depend on the testing procedure nor on the form of the strain history or
on the strain-rate at which the test is performed. On the other hand it is well-known
that the response of a viscoelastic material strongly depends on the strain-rate. The
coefficients ζi account for the strain-rate of the deformation process, i.e. for the fact
that the strain is applied to the tissue in a finite time t∗. The vector ζ allows to
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isolate the effect of the strain-rate from the constant elastic moduli k that describe
the material. Therefore, fitting stress relaxation data by using the relaxation function
of a step instead of the ramp will result in underestimating the elastic moduli. The
smaller the strain-rate (i.e. the greater t∗), the smaller k0ramp. In the limit of a quasi-
static deformation, only the infinite modulus k∞ is recoverable.

Similarly to Eq. (17) we can now compute the total viscosity of the material using
the modified function k̃ramp(t) in Eq. (22):

η0ramp =
∫ ∞

t∗
k̃ramp(t) dt =

n∑
i=1

ηiζi = η · ζ . (25)

Equation (25) highlights that the same set of coefficients ζi that link the elastic
moduli also link the viscous constants. Since for cases of practical interest 0 <

ζi < 1, it follows that η0ramp < η0. Therefore, neglecting the influence of the
deformation rate will result in underestimating the total viscosity of the material.
This is in agreement with the result k̃0ramp < k̃0, with k̃0 = k0 − k∞.

In conclusion, by fitting a stress relaxation curve obtained from a ramp test with
Eq. (13) we can obtain a correct estimation of the infinite modulus k∞, which is
strain-rate independent. However, the peak of the relaxation curve, which is related
to the instantaneous response of the tissue and therefore to its instantaneous elastic
modulus k0, depends on the strain-rate and it is given by Eq. (24). In particular, the
lower the strain-rate, the lower the peak. The area enclosed between the relaxation
function and its horizontal asymptote is related to the total viscosity of the material.
Since k∞ is not affected by the rate of deformation, k0ramp decreases with the area
represented by η0ramp.

These preliminary synthetic information (k∞, k0ramp, η0ramp) derived from
observation of the experimental relaxation function can be used as a starting point
of the fitting procedure to determine the constitutive parameters of the rheological
model (k∞, ki , τi).

3 QLV Model

The linear model in Eq. (1) predicts accurate results only in the small deformation
regime, i.e. when ε ≈ 0. However, it fails to accurately predict the stress response
when a tissue is subjected to a large deformation. To account for large deformations,
Fung originally proposed the theory of Quasi-Linear Viscoelasticity (QLV) [8],
which is the extension of the linear theory we reviewed in the previous section to the
large deformation regime. In this section we review the QLV theory, following [19]
to derive the constitutive equation for isotropic compressible and incompressible
soft tissues.

The QLV theory is based on the same assumptions of the linear theory, i.e. the
Boltzmann superposition principle and the assumption of fading memory. Moreover,
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Fung postulated that the total stress is separable into the product of a function
of time, i.e. the relaxation function, and a function of the deformation, i.e. the
elastic stress. The former accounts for the time-decaying relaxation of the stress
and the latter accounts for the non-linear elastic response of the tissue. In the QLV
formulation, the relation between the elastic stress and the strain is non-linear. To
write the constitutive equation for a QLV model, we start by rewriting the linear
model in Eq. (1) in the following equivalent form:

σ (t) =
∫ t

0
G(t − τ) : dσ

e(τ )

dτ
dτ , (26)

where the tensor G(t) is now a fourth-order tensor whose components are non-
dimensional and such that Gn(0) = 1 for n = {1, 2}. We call G(t) the reduced
relaxation tensor. Note that in Eq. (26) we have assumed that the deformation history
starts at t = 0. The stress term σ e = K(0)ε is the linear elastic stress. Fung proposed
to replace the linear stress σ e by the corresponding instantaneous elastic stress in
large deformation and rewrite the constitutive equation (26) as follows:

�(t) =
∫ t

0
G(t − τ) : d�

e(τ )

dτ
dτ . (27)

The tensor �(t) is the second Piola-Kirchhoff stress tensor and �e(t) is the elastic
second Piola-Kirchhoff stress tensor defined as follows:

�e = JF−1TeF−T. (28)

Te is the elastic Cauchy stress, F = I − ∇u = ∂x/∂X is the deformation gradient
associated with the large deformation x = χ(X), and J = detF. x and X are the
position vectors in the undeformed and deformed configurations, respectively. We
use the notation T to avoid confusion with the linear stress tensor σ . In the small
deformation regime the undeformed and deformed configurations coincide since
∇u ≈ 0 and F ≈ I and therefore the second Piola-Kirchhoff and the Cauchy stress
tensors also reduce to the same stress tensor.

Now, we can use the bases in Eq. (9) to split the tensor G of Eq. (27). We call the
associated components H(t) and D(t), respectively, and we rewrite Eq. (27) in the
following form:

�(t) =
∫ t

0
H(t − τ)

d�e
H(τ )

dτ
dτ +

∫ t

0
D(t − τ)

d�e
D(τ )

dτ
dτ . (29)

By following [19], we define:

�e
H = JF−1

(
1

3
tr(Te)I

)
F−T and �e

D = JF−1 (
dev(Te)

)
F−T, (30)
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so that �e = �e
H + �e

D. Note that the relaxation functions H(t) and D(t)

are associated with the Piola transformations of the hydrostatic and deviatoric
parts of the Cauchy stress, �e

H and �e
D, respectively. Moreover, by comparing

Eqs. (26) and (27) we see that they are both written with respect to the same
tensorial relaxation function G(t). Therefore, the components H(t) and D(t) can
be determined by performing step-strain tests in the linear regime. Upon a closer
inspection of Eq. (5) we can also note that H(t) = κ(t)/κ0 and D(t) = μ(t)/μ0
are the non-dimensional version of the relaxation functions κ(t) and μ(t), where
μ0 = μ(0) and κ0 = κ(0) are the instantaneous elastic bulk and shear modulus,
respectively.

Finally, the Cauchy stress tensor follows from applying the transformation T =
J−1F�FT to Eq. (29) and is given by:

T(t) = J−1(t)F(t)

(∫ t

0
H(t − τ)

d�e
H(τ )

dτ
dτ +

∫ t

0
D(t − τ)

d�e
D(τ )

dτ
dτ

)
FT(t).

(31)

Equation (29) is the QLV form of the constitutive equation for an isotropic
compressible viscoelastic material. In the incompressible limit J → 1 and κ(t) →
κ0→∞, ∀t , therefore Eq. (31) reduces to the following form:

T(t) = F(t)

(∫ t

0
D(t − τ)

d�e
D(τ )

dτ
dτ

)
FT(t) − p(t)I, (32)

where the Lagrange multiplier p(t) is given by:

p(t) = lim
k(t)→∞ lim

J→1

(
J−1(t)F(t)

(∫ t

0

κ(t − τ)

κ0

d�e
H(τ )

dτ
dτ

)
FT(t)

)
. (33)

Equation (32) is the QLV form of the constitutive equation for an isotropic
incompressible material.

In the next section we consider the simple torsion of a solid cylinder. We derive
the analytical expressions of the torque and the normal force required to twist the
cylinder, both in the linear and the large deformations regime. We then derive the
analytical expression for the relaxation curves of the torque and the normal force in
two experimental scenarios: the step-strain test and the ramp test.

4 Simple Torsion

In this section we consider the problem of simple torsion of a solid cylinder. We start
by defining the coordinates of the cylinder in the reference configuration B0 and in
the deformed configuration B(t) as {R,�,Z} and {r(t), θ(t), z(t)}, respectively.
We assume that the deformation starts at time t = 0 and take the reference
configuration as the initial configurationB0=B(0). The displacement vectorsX and
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x(t) inB0 andB(t), respectively, are defined with respect to the bases {ER,E�,EZ}
and {er , eθ , ez}, so thatX = RER+�E�+ZEZ and x(t) = r(t)er+θ(t)eθ +z(t)ez.
The deformation can then be written as follows:

r(t) = R, θ(t) = � + φ(t)Z, z(t) = Z, (34)

where φ(t) = α(t)/ l is the amount of twist experienced by the cylinder at time t ,
defined as the angle of rotation α(t) per unit length. l is the length of the cylinder
which remains constant at all times. The strain γ (r, t), a non-dimensional measure
of the deformation is:

γ (r, t) = rα(t)

l
= rφ(t). (35)

The deformation gradient F(r, t) = ∂x(t)
∂X

is given by:

F(r, t) =
⎛
⎝1 0 0
0 1 r φ(t)

0 0 1

⎞
⎠ (36)

and the left Cauchy-Green tensor B(r, t) = F(r, t)F(r, t)T and its inverse are
given by:

B(r, t) =
⎛
⎝ 1 0 0
0 1 + r2φ2(t) rφ(t)

0 rφ(t) 1

⎞
⎠ and B(r, t)−1 =

⎛
⎝ 1 0 0
0 1 −rφ(t)

0 −rφ(t) 1 + r2φ2(t)

⎞
⎠ .

(37)

Note that the deformation gradient depends on the spatial variable r , i.e. the
deformation is non-homogeneous and the stress distribution will depend on the
radial position as well.

The principal stretches and the principal directions associated with the torsion
deformation are the eigenvalues and the eigenvectors of the tensor B, respectively.
Upon diagonalising B, we find that the principal stretches are given by:

λ1 = 1, λ2,3(r, t) =
√
1 + γ (r, t)

2

(
γ (r, t) ±

√
γ 2(r, t) + 4

)
. (38)

λ2 and λ3 are the greatest and the smallest stretch, respectively, and the associated
eigenvectors are the directions where λ2 and λ3 occur. Note that both λ2 and λ3
depend on the spatial variable r . Moreover, λ2 is maximum at the outer surface
r = ro. It is useful to define the strain γo(t) as the strain at the outer surface of the
cylinder at time t :
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(a)

2pro

l l

2pro
(b)

Fig. 5 Sketch of the lateral surface of a cylinder with length l and radius ro twisted with γo = 0.02
(a) and γo = 0.8 (b). The green arrow shows the principal direction associated with the maximum
stretch λ2 in Eq. (38). The dashed and the solid lines represent the undeformed and the deformed
cylinder, respectively

γo(t) = γ (ro, t) = roφ(t) (39)

so that:

max
r

λ2(r, t) = λ2(ro, t) =
√
1 + γo(t)

2

(
γo(t) +

√
γ 2
o (t) + 4

)
. (40)

In Fig. 5 we show the principal direction (green arrow) associated with the
maximum stretch (i.e. λ2(ro, t)) on the external surface of the cylinder, when the
cylinder experiences a strain γo(t) = 0.02 (Fig. 5a) and γo(t) = 0.8 (Fig. 5b).
When γo(t) � 1, i.e. in the small deformation regime, the principal direction is
aligned with the diagonal of the rectangle and the maximum stretch λ2(ro, t) can be
approximated by the following expansion:

λ2(ro, t) = 1 + γo(t)

2
+ O(γ 2

o (t)), (41)

which recovers the relation between stretch λ used for large deformations and the
infinitesimal strain ε used in small deformations λ = ε + 1, with ε = γ /2.

However, Fig. 5b shows that in the large deformation regime, the principal
direction associated with the maximum stretch λ2(ro, t) is not aligned with the
diagonal and λ2(ro, t) is given by Eq. (40).

We can now write the governing equations for the simple torsion of a solid
cylinder. Assuming that the inertia is negligible, the equilibrium equations at any
time t > 0 are given by:
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{
divT(r, t) = 0

Trr (r, t) = 0 at r = ro,
(42)

where ro is the outer radius of the cylinder and the last equation follows from
imposing that the lateral surface of the cylinder is free of traction at any time t .
The operator div is the divergence operator (in cylindrical coordinates), see [25]
for details. In writing Eq. (42) we have implicitly neglected inertial forces. For a
discussion on the validity of this assumption we refer to [26, 27].

The Cauchy stress T(r, t) is given by the constitutive equation (32). Given the
form of the tensors F(r, t) and B(r, t) from Eqs. (36) and (37), the Cauchy stress
tensor will have components Trθ (r, t)=Tθr(r, t)=Trz(r, t)=Tzr(r, t)=0, ∀t . The
remaining non-zero components are:

Trr (r, t) =
∫ t

0
D(t − τ)

∂

∂τ
�e

D11(r, τ ) dτ − p(r, θ, z, t),

Tθθ (r, t) =
∫ t

0
D(t − τ)

∂

∂τ
�e

D22(r, τ ) dτ + 2rφ(t)

∫ t

0
D(t − τ)

∂

∂τ
�e

D23(r, τ ) dτ

+ r2φ(t)2
∫ t

0
D(t − τ)

∂

∂τ
�e

D33(r, τ ) dτ − p(r, θ, z, t),

Tzz(r, t) =
∫ t

0
D(t − τ)

∂

∂τ
�e

D33(r, τ ) dτ − p(r, θ, z, t),

Tθz(r, t) =
∫ t

0
D(t − τ)

∂

∂τ
�e

D23(r, τ ) dτ + rφ(t)

∫ t

0
D(t − τ)

d

∂τ
�e

D33(r, τ ) dτ .

(43)
Therefore, the governing equations reduce to:

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∂Trr (r, t)

∂r
+ Trr (r, t) − Tθθ (r, t)

r
= 0

∂Tθθ (r, t)

∂θ
= 0

∂Tzz(r, t)

∂z
= 0.

(44)

From the last two equations in Eqs. (44) we can conclude that the Lagrange
multiplier p only depends on the spatial variable r and at any time t the gov-
erning problem reduces to a single Ordinary Differential Equation (ODE) in the
argument r:

⎧⎪⎨
⎪⎩

dTrr

dr
+ Trr − Tθθ

r
= 0

Trr = 0 at r = ro.

(45)
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Now, we restrict our attention to soft tissues whose elastic behaviour can be
considered hyperelastic. For such tissues a strain energy function W can be defined.
Here, we choose W in the form of the Mooney-Rivlin model:

W(I1, I2) = (
μ0

2
− c2)(I1 − 3) + c2(I2 − 3), (46)

where I1 = tr B and I2 = 1/2
(
(tr B)2 − tr B2

)
are the first and second invariants of

the tensor B, respectively, μ0 is the infinitesimal shear modulus and c2 is the second
Mooney-Rivlin parameter. The Neo-Hookean model is recovered by setting c2 = 0.
The choice forW is motivated by many experimental observations on soft tissues. In
particular, it has been observed that the brain behaves as a Mooney-Rivlin material
in torsion [20] and in simple shear [21]. Moreover, the Mooney-Rivlin model has the
key feature of predicting a linear elastic response in torsion, i.e. the torque required
to twist the cylinder depends linearly on the strain. The elastic Cauchy stress Te for
an incompressible material is given by the following relation:

Te = 2W1B − 2W2B−1 − peI, (47)

where Wi = ∂W/∂Ii , i = {1, 2} and pe is the elastic Lagrange multiplier [25].
By combining Eqs. (46), (47) and (30) we can calculate the components of the
tensor �e

D:

�e
D11(r, t) = 1/3(4c2 − μ0)r

2φ2(t),

�e
D22(r, t) = −2/3(c2 + 2μ0)r

2φ2(t) − 1/3(2c2 + μ0)r
4φ4(t),

�e
D33(r, t) = −1/3(2c2 + μ0)r

2φ2(t),

�e
D23(r, t) = μ0rφ(t) + 1/3(2c2 + μ0)r

3φ3(t).

(48)

By combining Eqs. (43) and (48) and substituting into Eq. (45) we obtain an ODE
for the variable p:

dp

dr
= r

3
(14c2 + μ0)

∫ t

0
D(t − τ)

d

dτ
φ2(τ )dτ + r3

3
(2c2 + μ0)

∫ t

0
D(t − τ)

d

dτ
φ4(τ ) dτ

− φ(t)

(
2rμ

∫ t

0
D(t − τ)

d

dτ
φ(τ) dτ + 2

3
r3(2c2 + μ)

∫ t

0
D(t − τ)

d

dτ
φ3(τ ) dτ

)

+ φ2(t)
r3

3
(2c2 + μ0)

∫ t

0
D(t − τ)

d

dτ
φ2(τ ) dτ (49)

with the initial condition:

p = r2o

3
(4c2 − μ0)

∫ t

0
D(t − τ)

d

dτ
φ2(τ ) dτ at r = ro (50)
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whose solution is:

p = 1

6

(
(14c2 + μ0)r

2 − 3(2c2 + μ0)r
2
o

) ∫ t

0
D(t − τ)

d

dτ
φ2(τ ) dτ

+ 1

12
(2c2 + μ0)(r

4 − r4o )

∫ t

0
D(t − τ)

d

dτ
φ4(τ ) dτ

−
(

μ0(r
2 − r2o )

∫ t

0
D(t − τ)

d

dτ
φ(τ) dτ

+1

6
(2c2 + μ0)(r

4 − r4o )

∫ t

0
D(t − τ)

d

dτ
φ3(τ ) dτ

)
φ(t)

+
(

1

12
(2c2 + μ0)(r

4 − r4o )

∫ t

0
D(t − τ)

d

dτ
φ2(τ ) dτ

)
φ2(t).

(51)

Finally, the components of the stress T(r, t) can be obtained by substituting Eq. (51)
into Eqs. (43) to fully determine the final stress distribution in the cylinder.

The torque T (t) required to twist the cylinder can be computed as:

T (t) =
∫ 2π

0

∫ ro

0
Tθz(r, t)r

2 dr dθ , (52)

and the normal force N necessary to keep to cylinder length constant reads:

N(t) =
∫ 2π

0

∫ ro

0
Tzz(r, t)r dr dθ . (53)

The components Tθz(r, t) and Tzz(r, t) are given by Eqs. (43) upon substituting
Eqs. (48) and (51). The final expressions for the torque and the normal force read:

T (t) = π

2
μ0r

4
o

∫ t

0
D(t − τ)

d

dτ
φ(τ) dτ

+ π

9
(2c2 + μ0)r

6
o

(∫ t

0
D(t − τ)

d

dτ
φ3(τ ) dτ − φ(t)

∫ t

0
D(t − τ)

d

dτ
φ2(τ ) dτ

)

(54)
and

N(t) = −π

2
μ0r

4
oφ(t)

∫ t

0
D(t − τ)

d

dτ
φ(τ) dτ − π

4
(2c2 − μ0)r

4
o

∫ t

0
D(t − τ)

d

dτ
φ2(τ ) dτ

+ π

18
(2c2 + μ0)r

6
o

(∫ t

0
D(t − τ)

d

dτ
φ2(τ ) dτ

)
φ2(t)

− π

9
(2c2 + μ0)r

6
o

(∫ t

0
D(t − τ)

d

dτ
φ3(τ ) dτ

)
φ(t)

+ π

18
(2c2 + μ0)r

6
o

∫ t

0
D(t − τ)

d

dτ
φ4(τ ) dτ ,

(55)
respectively.
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Note that Eqs. (54) and (55) are written with respect to the twist φ(t) which is
a dimensional measure of the deformation. In view of comparing the predictions of
the QLV theory with those of the linear theory, it is useful to rewrite (54) and (55) in
terms of the strain γo(t), defined in Eq. (39), which is the strain at the outer surface of
the cylinder and is a non-dimensional measure of the deformation. Then, Eqs. (54)
and (55) rewrite as follows:

T (t)=π

2
r3o

∫ t

0
μ(t−τ)

d

dτ
γo(τ ) dτ

+π

9
(
2c2
μ0

+1)r3o

(∫ t

0
μ(t−τ)

d

dτ
γ 3
o (τ ) dτ −γo(t)

∫ t

0
μ(t−τ)

d

dτ
γ 2
o (τ ) dτ

)

(56)
and

N(t)=−π

2
r2oγo(t)

∫ t

0
μ(t−τ)

d

dτ
γo(τ ) dτ −π

4
(
2c2
μ0

−1)r2o

∫ t

0
μ(t−τ)

d

dτ
γ 2
o (τ ) dτ

+ π

18
(
2c2
μ0

+ 1)r2o

(∫ t

0
μ(t − τ)

d

dτ
γ 2
o (τ ) dτ

)
γ 2
o (t)

− π

9
(
2c2
μ0

+ 1)r2o

(∫ t

0
μ(t − τ)

d

dτ
γ 3
o (τ ) dτ

)
γo(t)

+ π

18
(
2c2
μ0

+ 1)r2o

∫ t

0
μ(t − τ)

d

dτ
γ 4
o (τ ) dτ ,

(57)
where we have used the connection D(t)=μ(t)/μ0.

In the next section we will use Eqs. (56) and (57) to calculate the predictions of
the QLV model in the experimental scenarios of a step-strain test and a ramp test.

5 Results

In view of predicting the relaxation behaviour of a tissue in simple torsion, we
consider two scenarios which are important from the experimental viewpoint: the
step-strain test and the ramp test. By using Eqs. (56) and (57), we then derive the
analytical expressions of the relaxation curves for the torque and the normal force.

5.1 Small Deformations

We start by considering the torsion of a cylindrical tissue in the small deformation
regime and we calculate the torque and the normal force predicted by the linear
viscoelastic theory presented in Sect. 2. We assume that the viscoelastic response of
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the tissue can be modelled as that of a generalised Maxwell model, i.e. a system of
spring and dash-pots arranged as shown in Fig. 2. For small deformations, the only
non-zero component of the infinitesimal strain tensor ε is εθz = γ (r, t)/2, thus it
follows that devε = ε and the constitutive equation (6) reduces to the following
equation:

σθz(r, t) =
∫ t

−∞
μ(t − τ)

d

dτ
γ (r, τ ) dτ . (58)

The governing equations (42) are automatically satisfied. Equation (58) is a one-
dimensional equation in the same form of Eq. (2), where μ(t) is now the relaxation
function. According to the formula Tlin = 2π

∫ ro
0 σθzr

2dr , the torque is then
given by:

Tlin(t) = π

2
r3o

∫ t

−∞
μ(t − τ)

d

dτ
γo(τ ) dτ , (59)

where γo(t) is the shear evaluated at the outer radius ro, see Eq. (39). Note that
Eq. (59) is the linearised version of Eq. (56) for γo � 1.

Following Sect. 2.2, we can calculate the analytical expressions of the relaxation
curve for the torque in response to a step and a ramp input, respectively.

For the step-strain test, we consider the following form for the strain γo(t):

γo(t) = ro

l
α0H(t) = γo,0H(t), (60)

where γo,0 = ro
l
α0 is the amplitude of the step and H(t) is the Heaviside function

as defined in Sect. 2.2. By substituting Eq. (60) into Eq. (59) and upon integrating,
we obtain:

T lin(t) = 1

2
πr3oμstep(t)γo,0, (61)

where the relaxation function μstep(t) is the following Prony series:

μstep(t) = 2T lin(t)

πr3oγo,0
= μ∞ +

n∑
i=1

μie
− t

τi . (62)

The parameters μi in Eq. (62) are the shear moduli of the n branches of the
generalised Maxwell model, see Fig. 2, and τi = ηi

μi
are the associated relaxation

times. The instantaneous shear modulus is obtained by evaluating the maximum of
the relaxation function μstep(t) in t = 0, as follows:
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μ0 = μramp(0) = μ∞ +
n∑

i=1

μi. (63)

We now consider a strain history in the form of a ramp as follows:

γo(t) = γo,0

t∗
t − γo,0

t∗
(t − t∗)H(t − t∗), (64)

where t∗ is the rising time of the ramp. Substituting Eq. (64) into Eq. (59) and
computing the integral provides an analogous expression for the torque as Eq. (61).
The relaxation curve of the torque is now given by:

μramp(t) = 2T lin(t)

πr3oγo,0
= μ∞ + 1

t∗
n∑

i=1

τiμie
− t

τi

(
e

t∗
τi − 1

)
, for t > t∗.

(65)

Equation (65) describes the relaxation curve of the torque in response to the ramp
function in Eq. (64). The right-hand side term in Eq. (65) is the response of the
generalised Maxwell system to a ramp input. Equations (62) and (65) can then
be used to estimate the viscoelastic parameters μi, μ∞, and τi by fitting the data
from a step test and a ramp test, respectively. The left-hand side of Eq. (65) can be
computed from the experimental data, i.e. the measured torque Tlin and the imposed
strain γo,0 and the radius of the sample ro. The right-hand side is the analytical
expression to be fitted in order to estimate the viscoelastic parameters.

Note that the expression on the right-hand side of Eq. (65) does not depend on
the amount of shear γo,0, therefore Eq. (65) will predict accurate results for those
tissues that display the same relaxation response when subjected to different levels
of strain. Moreover, we define the following non-dimensional function:

μ̃0ramp = μramp(t
∗) − μ∞
μ0

= 1

t∗
n∑

i=1

τiμi

μ0

(
1 − e

− t∗
τi

)
=

n∑
i=1

ν−1
i μi

μ0

(
1 − e−νi

)
,

(66)

which provides an estimate of the maximum value of the relaxation curve in
Eq. (65).

In the next section, we derive the corresponding expressions for the relaxation
curves of the torque and the normal force for the QLV model.

5.2 Large Deformations

In this section we derive the relaxation curves for the torque and the normal force
for a step test and a ramp test in the large deformation regime. We first address the
ramp test scenario and then by taking the limit case t∗ → 0 we consider the step
test scenario.
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5.2.1 Torque

To compute the analytical expression of the relaxation curve for the torque, we
substitute the strain history (64) and the relaxation function (62) into Eq. (56). Upon
integrating we obtain:

T (t, γo,0) = 1

2
πr3o μQLV

ramp(t, γo,0) γo,0, for t > t∗, (67)

where:

μQLV
ramp(t, γo,0)=μramp(t)+2(1 + 2c2/μ0)

9t∗3
n∑

i=1

τiμie
− t

τi

(
− 2τi(t

∗+3τi)

+e
t∗
τi (t∗2−4t∗τi+6τ 2i )

)
γ 2
o,0,

(68)

which is valid for t > t∗. Equation (68) shows that the relaxation curve for the
torque predicted by the QLV model is the sum of the relaxation function μramp(t) in
Eq. (65) and a term proportional to the square of the imposed strain γo,0. Therefore,
in the limit γo,0 � 1, i.e. small deformation regime, Eq. (68) recovers the result
in (65), which is the relaxation function predicted by the linear theory for a ramp
test.

A less straightforward comment is that the quadratic term in Eq. (68) arises as
a consequence of the time-dependent nature of the strain history. In other words,
if the tissue is deformed infinitely fast (as it is the case for a perfect step-strain),
Eq. (68) recovers the function μstep(t) in (62), without making the assumption of
small deformations! By taking the limit for t∗ → 0 in Eq. (68) we indeed obtain:

lim
t∗→0

μQLV
ramp(t, γo,0) = μ∞ +

n∑
i=1

μie
− t

τi = μstep(t), (69)

which is the relaxation curve predicted by the linear theory for a step test. Moreover,
opposite to the linear viscoelastic theory, the relaxation curve of the torque predicted
by the QLV model, i.e. μ

QLV
ramp(t, γo,0), depends on both the time and the level of

strain γo,0. This is in agreement with the original assumption made by Fung when
he first formulated the QLV theory [8].

With the aim of plotting the relaxation curve μ
QLV
ramp in Eq. (68), we now consider

a simplified version of the generalised Maxwell model with only one branch. This
layout is also called Standard Linear Solid model, and it is the simplest arrangement
of elements which is able to describe the behaviour of a viscoelastic solid. Note
that the QLV theory, despite taking into account large deformations, obeys the
superposition principle in time. Therefore, adding more branches to the generalised
Maxwell model will increase the accuracy of the model without producing mixed
higher order terms as, for example, in the multiple integral formulation [28]. We can
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Fig. 6 Effect of the rising time t∗ on the relaxation curve μ
QLV
ramp(t, γo,0)/μ0 in Eq. (68). The

parameter ν1 = t∗/τ1 spans over {0, 0.2, 0.4, 0.6, 0.8, 1}. The following parameters have been
fixed: n = 1, τ1 = 1, μ1 = μ∞ = 1, c2/μ0 = 2/3 and the strain level γo,0 = 0.02

then set n = 1 in Eq. (68) without loss of generality. Furthermore, we set c2 = c1/2
according to the observed values of c1 and c2 for brain tissues [20].

In Fig. 6 we plot the relaxation curve μ
QLV
ramp(t, γo,0) in Eq. (68) for six different

ramp histories. To quantify the effect of the rising time on the profile of the
relaxation curve we vary the parameter ν1 = t∗/τ1. We note that Eq. (68) is valid
for t > t∗. Experimentally, the ramp phase (t < t∗) is the noisy part of the data and
cannot be used to perform the model fitting. Therefore, we plot the ramp phase of the
curves in Fig. 6 with dashed lines. The dashed lines can be obtained by integrating
Eq. (56) with the strain history (64) in the time interval 0 ≤ t < t∗.

From Fig. 6 we can conclude that the faster the ramp phase, the higher the peak
of the relaxation curve. However, the limiting value of the curves as t approaches
∞ is μ∞/μ0 and is not affected by the rising time t∗.

To quantify the effect of the strain level reached at the end of the ramp phase, in
Fig. 7 we plot Eq. (68) for different values of γo,0 at fixed ν1 = 0.5.

We now look at two limiting values of Eq. (68), namely the long-term equilibrium
and the instantaneous values of μ

QLV
ramp(t, γo,0). First, by taking the limit for t → ∞

we obtain:

lim
t→∞ μQLV

ramp(t, γo,0) = μ∞. (70)

From Eq. (70) we observe that the equilibrium value of the relaxation curve of the
torque predicted by the QLV model is not affected by the quadratic terms in γo,0. In
other words, after an infinite time, i.e. at the equilibrium, the response of the tissue is
dominated by the long-term shear modulus μ∞. Therefore, time and its non-linear
effect through the quadratic terms in Eq. (68) have no influence on the long-term
modulus. This effect is also observable from the horizontal asymptotes of Figs. 6
and 7.
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Fig. 7 Effect of the final strain level γo,0 on the relaxation curveμ
QLV
ramp(t, γo,0)/μ0 in Eq. (68). The

strain γo,0 spans over {0.02, π/5, π/4, π/3, π/2, π}. The following parameters have been fixed:
n = 1, τ1 = 1, μ1 = μ∞ = 1, c2/μ0 = 2/3 and the parameter ν1 = t∗/τ1 = 0.5

Then, we look at the instantaneous value of the function μ
QLV
ramp(t, γo,0), defined

as μ
QLV
ramp(t

∗, γo,0). The point μ
QLV
ramp(t

∗, γo,0) is the maximum of the relaxation curve.
In the linear model of Eq. (62), the maximum of the relaxation curve (obtained
for a step-strain test) is equal to the instantaneous shear modulus μ0 in Eq. (63).
For a ramp test, the instantaneous response is related to the instantaneous modulus
through the formula in Eq. (24), where the elastic constants ki are replaced by μi

for i = {1, . . . , n}, respectively.
We can now investigate how the non-linear terms in Eq. (68) affect the instan-

taneous response of the torque. To quantify this effect, we compute the following
function:

μ̃
QLV
0ramp = μ

QLV
ramp(t

∗, γo,0) − μ∞
μ0

= ν−1
1

(
1−e−ν1

)+2

9
(1+2c2/μ0)ν

−3
1 e−ν1

(
eν1

(
ν21−4ν1+6

)
−2(ν1+3)

)
γ 2
o,0

(71)
where ν1 = t∗/τ1.

In Fig. 8, we plot Eq. (71) with respect to ν1 = t∗/τ1 and for different values of
γo,0. The parameter ν1 spans from 0 to 1, where the value 0 corresponds to perfect
step input (t∗ = 0) and the value 1 corresponds to a ramp input when the rising time
of the ramp is equal to the characteristic relaxation time of the tissue (t∗ = τ1).

The curves in Fig. 8 show that the higher γo,0, the higher is the peak of the
relaxation curve. For γo,0 = 0.02 (solid blue line), Eq. (71) recovers the relaxation
curve in Eq. (66). In the small deformation regime γo,0 � 1, the non-linear terms in
Eq. (71) are very small and as expected the predictions of the QLV model recover
those of the linear model.
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Fig. 8 Effect of the rising time t∗ and of the strain level γo,0 on the maximum of the relaxation
curve of the torque. The function in Eq. (71) is plotted with respect to ν1 = t∗/τ1 for different
values of strain γo,0 = {0.02, π/5, π/4, π/3, π/2, π}. The solid blue line is obtained from the
linear model, see Eq. (24) and does not depend on the level of strain

When t∗ → 0 (i.e. ν1 → 0), the ramp is infinitely fast and is very close
to be a step. In this limit Eq. (68) reduces to Eq. (62) and the linear and quasi-
linear viscoelastic theories predict the same results for any value of γo,0. This limit
corresponds to the point (0, 1) in Fig. 8.

The effect of the rising time t∗ (and therefore of the strain-rate if γo,0 is fixed)
on the relaxation curve is accounted by the parameter ν1: the slower the test, the
lower the peak of the experimental relaxation curve in Eq. (68) and the bigger is the
difference between the predictions of the linear and the QLV model.

When t∗ → ∞, i.e. for very slow (quasi-static) tests, μ̃QLV
0ramp → 0, which means

that only the quasi-static elastic properties of the material, i.e. μ∞, can be estimated.
This would correspond to a quasi-static experiment.

Moreover, from Fig. 8 we can quantify the influence of the quadratic term in
Eq. (71). For small values of ν1, the quadratic contribution is minimal even for large
values of strain. Its effect increases with both ν1 and γo,0, as expected.

Note that μ̃
QLV
0ramp decreases as ν1 increases but increases with γo,0. These two

opposite effects can lead to an apparent compensation, i.e. constant value of μ̃
QLV
0ramp,

when slow experiments are performed in the large deformation range.
Finally, we note that the second Mooney-Rivlin parameter c2 enters Eq. (68)

through the quadratic term γ 2
o,0 of the function μ

QLV
ramp(t, γo,0). As we highlighted

above, the quadratic term vanishes in both the limits t∗ → 0 (step-strain test) and
t → ∞ (elastic equilibrium). Therefore, it is difficult to determine the parameter
c2 from the torque data. The identification of c2 requires information on the normal
force.
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In conclusion, the relaxation curve of the torque allows us to estimate the
instantaneous and the long-term moduli μ0 and μ∞, respectively, the moduli μi

and the relaxation times τi from a step or a ramp test.

5.2.2 Normal Force

In this section we derive the analytical expression of the relaxation curve for the
normal force predicted by the QLV model. As in the previous section, we consider
both the ramp test and the step-strain test scenarios. Furthermore, we will show how
to use the normal force data measured from the two tests to estimate the second
Mooney-Rivlin parameter c2.

We recall that the only non-zero component of the infinitesimal strain tensor is
the shear component εθz. It follows that all three normal components of the Cauchy
stress tensor are zero, particularly σzz = 0,∀t . Therefore, in the small deformation
regime the linear theory predicts a zero normal force response for any strain history
input.

On the other hand, in the large deformation regime the QLV theory predicts a
non-zero normal force for an incompressible Mooney-Rivlin viscoelastic material
under torsion, see Eq. (57). By substituting the deformation history (64) into
Eq. (57), we calculate the relaxation curve for the normal force in response to a
ramp input. Upon integrating, we obtain:

N(t, γo,0) = − π

4
r2o

(
(1 + 2c2/μ0) μ∞ + 2

n∑
i=1

μiν
−2
i e

− t
τi

(
2c2/μ0

(
eνi (νi − 1) + 1

) + eνi − νi − 1
))

γ 2
o,0

− π

9
(1 + 2c2/μ0) r2o

n∑
i=1

μiν
−4
i e

− t
τi

(
eνi

(
ν2i − 6νi + 12

)
− ν2i − 6νi − 12

)
γ 4
o,0,

(72)

which is valid for t > t∗ and where νi = t∗/τi . From Eq. (72) we observe that
the normal force N is given the sum of two terms proportional to γ 2

o,0 and γ 4
o,0,

respectively. Therefore, in the small deformation limit (γo,0 → 0) Eq. (72) recovers
the predictions of the linear theory, i.e.N =0,∀t . According to the definition in (13),
the relaxation function associated with the normal force is σzz(t, γo,0)/ε0, where
σzz(t, γo,0) = −N(t, γo,0)/(πr2o ) and ε0 = γo,0/2, namely:

μN(t, γo,0) = −2N(t, γo,0)

πr2oγo,0
. (73)
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In the limit t∗ → 0 (step-strain input), Eq. (73) reduces to:

lim
t∗→0

μN(t, γo,0) = γo,0

2

(
1 + 2

c2

μ0

)
μ(t), with μ(t) = μ∞ +

n∑
i=1

μie
− t

τi .

(74)
The factor γo,0/2 represents the dependence on the deformation, while the factor
(1 + 2c2/μ0)μ(t) represents the dependence on time, which is indeed strain-
independent. Thus, it follows that different relaxation curves obtained for different
values of the strain γo,0 do not overlap. The functional dependence of μN on the
strain γo,0 is dictated by the form of the elastic constitutive model. In this particular
case, the choice of a Mooney-Rivlin model yields a linear dependence on γo,0 in
Eq. (74). However, the relaxation curves display the same exponential decay in
time, which is dictated by the choice of the rheological model. For a generalised
Maxwell model, the decay is exponential according to the Prony series in Eq. (74).
If the experimental curves do not display the same decay in time, then the QLV
model will not fit the data accurately and more advanced/non-linear models should
be considered [1].

Since N(t) depends on the deformation through quadratic terms in γo,0 and the
aim here is to illustrate how the relaxation curve of the normal force is affected by
the level of deformation and the ramp phase, we choose to introduce the following
function:

fN(t, γo,0) = − 2N(t)

πr2oγ 2
o,0

=1+2c2/μ0

2
μ∞+

n∑
i=1

μiν
−2
i

e
− t

τi
(
2c2/μ0

(
eνi (νi−1) +1

) +eνi −νi−1
)

+1+2c2/μ0

9

n∑
i=1

μiν
−4
i

e
− t

τi

(
eνi

(
ν2i −6νi+12

)
−ν2i −6νi−12

)
γ 2
o,0,

(75)

which is valid for t > t∗. By taking the limit t → ∞, Eq. (75) reduces to:

fN∞ = lim
t→∞ fN(t, γo,0) = (1/2 + c2/μ0) μ∞. (76)

The limiting value in Eq. (76) explicitly depends on the second Mooney-Rivlin
coefficient c2. Therefore, experimentally we can determine c2 by performing a ramp
(or a step) test and by measuring the asymptotic value of the normal force curve as
t → ∞. We point out that the parameters c2 appears explicitly in the limiting value
(as t → ∞) of the normal force only (it does not appear in the asymptotic value
on the torque). This is a consequence of the fact that the vertical force is associated
with the change in area of the section of the cylinder. Furthermore, this is consistent
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Fig. 9 Effect of the rising time (a) and of the strain level (b) on the relaxation curve of the normal
force in Eq. (75). The following parameters are fixed: n = 1, τ1 = 1,μ1 = μ∞ = 1, c2/μ0 = 2/3.
In (a) we fix γo,0 = 0.02 and let ν1 spanning over {0, 0.2, 0.4, 0.6, 0.8, 1}. ν1 = 0 represents a
perfect step test and ν1 = 1 represents a ramp test with rising time t∗ = τ1. In (b) we fix ν1 = 1/2
and let γo,0 = {0.02, π/5, π/4, π/3, π/2, π}

with the fact that c2 is the parameter associated with the second invariant I2 of the
strain tensor B, which indeed accounts for the changes in the area of the material
due to the deformation.

Finally, to show the influence of the rising time t∗ and of the level of strain at the
end of the ramp γo,0 on the function fN , we plot fN/μ0 for different values of ν1
and γo,0 in Fig. 9a,b, respectively.

Figure 9b shows that the final level of strain reached at the end of the ramp has a
negligible effect on the relaxation curves of the normal force. However, for a fixed
strain level, the slower is the ramp, the lower is the peak of the relaxation curve,
similarly as we observed for the relaxation curves of the torque (Fig. 6).

In conclusion to fully characterise the viscoelastic behaviour of a soft tissue in
torsion (that obeys a Mooney-Rivlin hyperelastic law), according to the QLV theory,
we only need to perform a single step-strain test. This test can be performed by using
a rheometer that gives access to two sets of data, the torque and the normal force.
Moreover, as we showed in Figs. 8 and 9b, the level of strain does not affect the
relaxation curves of the torque and the normal force for a step test. Therefore, if the
rheometer can achieve high strain-rates and if we are only interested in estimating
μ0, μ∞, μi and τi (for instance, if the material is Neo-Hookean, i.e. c2 = 0), the
test can be performed in the small deformation regime and the parameters can be
estimated by fitting the torque data with Eq. (62). Otherwise, the test should be
modelled as a ramp test in the large deformation regime (see Sect. 5.2). In this case,
from the relaxation curve of the torque in Eq. (68) we can estimate the long-term
shear modulus μ∞ from the value of the data as t → ∞, according to Eq. (70). We
can obtain all the other moduli μi and the relaxation times τi by fitting the relaxation
curve in Eq. (68). Finally, we can estimate the parameter c2 from the value of the
normal force data as t → ∞, according to Eq. (76).
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6 Conclusions

In this chapter we reviewed the foundations of linear viscoelasticity and the theory
of Quasi-Linear Viscoelasticity (QLV). With the aim of providing a fitting procedure
for the QLV model and estimating the viscoelastic properties of a soft tissue, we
considered the torsion of a soft solid cylinder and we wrote the governing equations
of the viscoelastic problem for a tissue that elastically behaves as a Mooney-
Rivlin material, such as the brain. We derived the analytical predictions of the
relaxation curves for the torque and the normal force necessary to twist a cylindrical
sample. We considered two experimental scenarios: the step test, where the tissue is
instantaneously deformed and held in position, and the ramp test, where the tissue
is deformed in a finite time and then held in position. These tests are commonly
performed to characterise the time-dependent properties of soft tissues and allow to
investigate their stress relaxation behaviour. We investigated the effect of the strain
level and rising time of the ramp on the relaxation curves of the torque and the
normal force. Our results show that in a step test, the linear and the QLV models
predict the same relaxation curves for the torque. However, when the strain input is
in the form of a ramp function, the non-linear terms appearing in the QLV model
affect the relaxation curve of the torque depending on the strain level attained at the
end of the loading phase (see Fig. 8). In particular, the higher is the strain level, the
higher is the maximum of the relaxation curve, whilst the equilibrium value remains
constant and unchanged.

The linear model predicts a zero normal force ∀t , whilst the QLV model predicts
a non-zero normal force that depends on γ 2

o,0 and γ 4
o,0. Our results show that the

relaxation curve of the normal force depends on the level of strain both for a step
test (see Eq. (74)) and a ramp test (see Eq. (73)). Although the contributions of the
non-linear terms are negligible for a Mooney-Rivlin material (see Fig. 9b), their
effect might be relevant for materials that obey a different elastic law (e.g. Fung,
Ogden, Gent, etc.).

Finally, our results provide useful guidelines to accurately fit QLV models in
view of estimating the viscoelastic properties of soft tissues. We showed how to
use the data from a ramp test in torsion (i.e. the relaxation curves of the torque
and the normal force) to estimate the constitutive parameters of a Mooney-Rivlin
viscoelastic tissue.
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