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Preface

The investigation of the role of mechanical and mechanochemical interactions in
cellular processes and tissue development is a rapidly growing research field in
life sciences and in biomedical engineering. Quantitative understanding of this
important area in the study of biological systems requires the development of
adequate mathematical models for the simulation of the evolution of these systems
in space and time. This calls for a multidisciplinary approach since expertise in
various fields is necessary.

Due to the necessity to describe the processes at different spatial and temporal
scales, numerous approaches are used in the modeling of biomaterials. Methods
of statistical physics may be employed at the subcellular or cellular level (e.g.,
in models of biomembranes or cellular interactions). When moving to the level of
organs, continuum mechanics may be a more suitable approach. A combination of
continuum and discrete approaches may be used, for instance, in the heart, which is
typically modeled as a viscoelastic material with active stress generated by chemical
interactions of actin and myosin molecules.

The objective of the present book, entitled Modeling Biomaterials and consist-
ing of six independent chapters, is at least twofold. On the one hand, each chapter
can be viewed as an introduction to a given field, where the reader is exposed
to various approaches to modeling different materials, such as living tissues. On
the other hand, each chapter has been written by active researchers with the goal
of connecting the basic foundations of their field with very recent advances and
open questions. The result is six chapters covering basic physical, biological, and
physiological concepts as well as further research perspectives from multiple points
of view.

It is our belief that the multidisciplinary nature of each chapter will stimulate
the interaction of researchers from various domains of science (including applied
mathematics, biophysics, mathematical biology, computational physiology, phar-
macology, and medicine), for whom the book will provide a helpful starting point,
particularly at the start of their research career in these interdisciplinary fields.
Thanks to the wide range of approaches that arise in models of living tissues, the
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vi Preface

book may also serve as a useful reference for experienced researchers working in
these fields.

While the first four chapters are universal in their approach and are not explicitly
related to a specific organ, Chaps. 5 and 6 survey the recent advances in models
of the cardiovascular system, including state-of-the-art clinical applications in
cardiovascular medicine.

The individual chapters (lecture notes) stem from the lecture courses presented
by the speakers of the international doctoral school “Modeling of Biomaterials,”
which took place in Kácov (Czech Republic), February 10–16, 2020. In several
cases, the speakers prepared their contributions with co-workers. The book consists
of the following chapters (the names of the speakers who were, at the same time,
the corresponding authors for a particular chapter, are typeset in boldface):

1. Oded Farago: A Beginner’s Short Guide to Membrane Biophysics
2. Georgios Misailidis, Jaroslav Ferenc, and Charisios D. Tsiairis: Self-

organization of Tissues Through Biochemical and Mechanical Signals
3. Michele Righi and Valentina Balbi: Foundations of Viscoelasticity and Applica-

tion to Soft Tissue Mechanics
4. Václav Klika: Modelling of Biomaterials as an Application of the Theory of

Mixtures
5. Renee Miller, David Marlevi, Will Zhang, Marc Hirschvogel, Myrianthi Had-

jicharalambous, Adela Capilnasiu, Maximilian Balmus, Sandra Hager, Javiera
Jilberto, Mia Bonini, Anna Wittgenstein, Yunus Ahmed, and David Nordsletten:
Modeling Biomechanics in the Healthy and Diseased Heart

6. Radomír Chabiniok, Katerina Škardová, Radek Galabov, Pavel Eichler, Maria
Gusseva, Jan Janoušek, Radek Fučík, Jaroslav Tintěra, Tomáš Oberhuber, and
Tarique Hussain: Translational Cardiovascular Modeling: Tetralogy of Fallot
and Modeling of Diseases

The delivered lectures and the chapters of this book focus on mechanical and
mechanochemical interactions in cellular processes and tissue development. The
topics ranged from molecular dynamics simulations of lipid membranes to phe-
nomenological continuum mechanics of tissue growth.

We wish to express our gratitude to all corresponding authors and their co-
workers for their effort in preparing their chapters in a way that is accessible to
nonspecialists, yet useful to the experts in the field.

The doctoral school was organized in the framework of the 4EU+ European Uni-
versity Alliance, which is formed by the Charles University, Heidelberg University,
Sorbonne University, and the Universities of Copenhagen, Milan, and Warsaw. The
school was also organized as an activity of the Nečas Center for Mathematical
Modeling. The event was sponsored by the Charles University’s 4EU+ project
“Modelling and Analysis in Biomaterials”, by the Czech Science Foundation project
No. 18-12719S and by the RSJ Financial Group. We thank the members of the

https://www2.karlin.mff.cuni.cz/biomaterials
http://ncmm.karlin.mff.cuni.cz/
https://www.rsj.com/en/
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scientific committee of the doctoral school, namely Radomír Chabiniok, Anna
Marciniak-Czochra, Michal Pavelka, Benoît Perthame, and Vít Průša, for their
significant help in establishing an interesting program covering different areas of
biophysics.

Last but not least, we would like to thank those who have helped with reading
and reviewing the individual chapters: Christoph Allolio, Anna-Marciniak Czochra,
Federica Cafario, Radomír Chabiniok, Alena Jarolímová, Moritz Mercker, Vít
Průša, Renee Miller, and Ondřej Souček. We also thank Hana Bílková, Martina
Kašparová, and Oldřich Ulrych for technical support concerning both the school
and this book.

Josef Málek
Endre Süli
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A Beginner’s Short Guide to Membrane
Biophysics

Oded Farago

Abstract This chapter provides a basic guide to the essentials of membrane
biophysics. The review consists of three parts: The first part focuses on physico-
chemical aspects of biomembranes. The origin of the hydrophobic attraction that
drives the self-assembly of lipids into large structures like membranes is explained,
and an overview of the thermodynamic properties of bilayer membranes is given.
The second part introduces the Helfrich model for the curvature elasticity of two-
dimensional manifolds. This is the most commonly used framework for studying the
mechanical properties of lipid membranes. The third part of the chapter is dedicated
to molecular simulations of membranes. The principles of molecular dynamics
simulations are explained, and the different modeling strategies for membranes,
ranging from atomistic to highly coarse-grained lattice-based models, are reviewed.
These different classes of models address membrane properties and processes across
a wide spectrum of lengths and time scales.

1 Introduction

A cell is the smallest unit of living organisms. The simplest organisms contain no
internal organelles (prokaryotes) and have only a single cell, e.g., bacteria. Plants
and animals are composed of millions of cells with complex substructures (eukary-
otes). Our body, for instance, has about 200 different types of cells and an overall
number of about 1014 cells. All cells have a cell membrane that defines the cell
boundary and separates between the internal cell cytoplasm and the external envi-
ronment. The membrane controls flow of materials into and out of the cell. Eukary-
otic cells also contain membrane-bound organelles like the nucleus, mitochondria,
and the endoplasmic reticulum. The cell’s compartmentalization into organelles
enables the separation of biological functions necessary for the life of organisms.

O. Farago (�)
Department of Biomedical Engineering, Ben-Gurion University of the Negev, Be’er Sheva, Israel
e-mail: ofarago@bgu.ac.il

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
J. Málek, E. Süli (eds.), Modeling Biomaterials, Nečas Center Series,
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2 O. Farago

Fig. 1 The main building blocks of membranes are lipids (right). Lipids self-assemble and form
bilayers composed of two sheets, where the hydrophilic head groups are facing the extracellular
and intracellular aqueous environments (center). Bilayers cannot leave “open edges” and, therefore,
close into spherical vesicles, also called liposomes (left). © 2017 Wiley Periodicals, Inc. Reprinted
from [1] with permission

The main building blocks of membranes are lipids, which are amphiphilic
molecules, i.e., molecules containing both hydrophilic (“water loving”) and
hydrophobic (“water hating”) parts. When lipids are dispersed in water, they
spontaneously form a bilayer membrane structure, as shown in Fig. 1. In this
arrangement, only the hydrophilic “head groups” of the lipids come into contact
with the aqueous environment, while their hydrophobic “tails” remain shielded. In
order to also avoid exposure of lipid tails at the edge of the bilayer, membranes bend
and close themselves, forming spherical vesicles (liposomes) whose dimensions
typically vary between tens of nanometers to a few micrometers (Fig. 1). In
computer simulations, planar bilayers can be stabilized and avoid closure by the
application of periodic boundary conditions.

Biological membranes are composed of many different types of lipids. Phospho-
lipids (lipids with a phosphate-containing head group) constitute the main lipid mass
of eukaryotic cell membranes. The cell membrane also includes other components
such as cholesterol (a lipid with a structure different from that of phospholipids),
proteins, and carbohydrates (sugars) attached to some of the proteins and lipids.
The compositions of the two layers (leaflets) of the membrane, the one facing the
extracellular environment and the other the cell cytoplasm, are different owing to
the action of specialized proteins. The compositional diversity and heterogeneity of
biological membranes are essential for their functions, but it also makes the investi-
gation of their physical properties extremely difficult. Physicists look for simplicity
and universality in nature, and they do so by analyzing minimal model systems
that, presumably, capture the most essential physical mechanisms governing the
investigated phenomena. It is therefore not surprising that much of the advance
in the field of membrane biophysics results from investigations of membranes and
vesicles composed of a small number of lipid species, often only a single component
and without any additional “inclusions” (which is a common biophysical term for
membrane proteins). Despite their simplicity, the behavior of these biomimetic
model systems is far from trivial and their studies have contributed to much of
our current understanding of the thermodynamic and mechanical properties of
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biological membranes. From a thermodynamic perspective, the fact that lipids in
water self-assemble spontaneously to form membranes and vesicles implies that
these structures represent an equilibrium state of the system with a minimal free
energy. Self-assembly can only occur if there is an attraction between the lipids
that reduces the enthalpy of the system and overcomes the entropic tendency of the
lipids to be uniformly distributed in the solvent. The attraction between the lipids
originates from the “hydrophobic effect” that, in fact, arises because of the repulsion
between the hydrophobic tails of the lipids and water. It plays an important role
not only in the self-assembly of membranes, but also in other biological process,
e.g., protein folding. In Sect. 2, we expand on the hydrophobic effect and other
important aspects of lipid dispersion in water. We will also discuss some of the
thermodynamics properties of biological membranes, e.g., their phase behavior.

Owing to their thinness (4–5 nm, twice the typical size of a lipid molecule) and
fluidity, bilayer membranes are flexible and can quite easily bend out of plane.
The ability of membranes to deform is important in many biological processes like
cell division (mitosis) and vesicular transport into and out of the cell (endo- and
exocytosis). Membrane deformations are often caused by forces that are applied
on the membrane by other cellular components, e.g., the filaments of the cell
cytoskeleton. In this context, it should also be noted that membranes exhibit natural
thermal fluctuations with non-negligible amplitudes. In contrast to the softness
of membranes with respect to bending deformability, their in-plane elasticity is
quite limited and resembles that of a dense liquid (little compressibility, no shear
rigidity). Thus, most of the focus in studies of mechanical properties of bilayer
membranes has been on their bending elasticity and its relevance to biology. The
most commonly used and widely accepted theoretical framework for membrane
bending elasticity is that of the Helfrich effective Hamiltonian. The Helfrich model
is a continuum theory describing the membrane as a two-dimensional manifold with
vanishing thickness embedded in a three-dimensional space. Continuum models are
very useful because they can be analyzed by different mathematical tools, which
may yield important theoretical predictions. Their utility relies on the concept of
separation of scales, namely the realization that knowledge of the detailed molecular
structure of physical systems is often not essential for the understanding of their
macroscopic properties. Instead of detailed molecular models, effective theories are
constructed that describe the behavior of the system at sufficiently large length and
time scales. In the continuum description, the properties of specific systems are
accounted for via the coefficients appearing in the model equations. In the case of the
Helfrich model, for instance, the bending energy is written as a quadratic function
in the local principal curvatures of the manifold. The model features a few elastic
parameters (bending modulus, Gaussian curvature modulus, spontaneous curvature)
whose values characterize bilayers with different lipid compositions. The Helfrich
model will be introduced and discussed in Sect. 3, which will be devoted to the
mechanical properties of bilayer membranes.

Biophysics is inherently a multi-scale discipline. It deals with systems that
are structurally complex with local intermolecular interactions that may trigger
collective phenomena and processes across a wide range of spatial and temporal
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scales. Obviously, this enormous complexity cannot be addressed by continuum
theories only; it requires also investigations of molecular models. In the last
three decades, computer simulations have become an essential tool for biophysical
research, and their importance continues to grow with the advent in commodity
computing power and the improvement in computer models and methods. These
models range from fully atomistic models, where water, lipids, and possibly
proteins are represented with each and every atom, up to highly coarse-grained
(CG) models where the lipids are represented as simple bead-spring short chains.
Some CG models do not even contain an aqueous solvent explicitly and, instead,
account for the hydrophobic effect via an effective attractive potential between the
hydrophobic beads of the CG lipids. Different classes of models address membrane
processes at different lengths and time scales. Atomistic models, for instance, allow
nowadays to simulate lipid patches consisting of the order of 1000 molecules on
time scales of several microseconds. CG simulations reach larger scales that depend
on the level of abstraction of the simulated models and on the available computer
resources. The topic of multi-scale modeling and simulations of membranes will be
discussed in Sect. 4. This section will also include an explanation on the method of
Molecular Dynamics (MD), where issues influencing the accuracy and efficiency
of the simulations will be discussed. The discussion is important since most of the
membrane simulations are nowadays conducted using open-source packages that
can easily go wrong and produce “bad” results if used incorrectly.

As the title suggests, this chapter aims to serve as an introductory guide for those
who have little to no knowledge in membrane biophysics. It is especially intended
for graduate students in mathematics, computer science, and engineering who look
for an introduction to the field in order to pursue further studies and research but
have minimal background in physical chemistry. The decision to cover certain topics
in this introductory review is obviously subjective; others may introduce the field
from a different perspective. In particular, I decided to focus on the material science
aspects of lipid membranes. The cell biology of membranes has been largely left
outside the discussion, and the reader is encouraged to acquaint oneself on this topic
from other sources, e.g., the book by Alberts et al. that many academic-level courses
on cell biology follow [2].

2 Thermodynamics

2.1 Everything in Biology Happens in Water

Water is present both outside and inside cells, and it makes up about 60% of the
weight of the human body. Everything in biology happens in water which is a very
unusual solvent. Its uniqueness lies in the fact that water, H2O, is probably among
the most polar molecules in nature. It has a single oxygen atom covalently bonded
to two hydrogens (see Fig. 2), but these bonds are very asymmetric and the electrons
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Fig. 2 A polar water molecule (left)-the oxygen and hydrogen sides are electronegative and -
positive, respectively. The polarity of the water molecules allows them to engage in up to 4
hydrogen bonds with their neighbors, thus forming a dynamic hydrogen bonding network (right)
that is the origin of many unusual properties of bulk water. Source: https://bodell.mtchs.org/
OnlineBio/BIOCD/text/chapter4/concept4.4.html

forming them are strongly pulled toward the oxygen. It is said that the oxygen side
of water is electronegative, i.e., behaves a bit like a partially negatively charged ion,
while the hydrogen is electropositive. The interaction between the electric dipoles of
polar molecules is generally attractive because the dipoles can orient themselves so
that the negative side of one dipole will be in close proximity with the positive side
of another. Dipole–dipole attractions between molecules with hydrogen (H) atoms
that are covalently bonded to electronegative atoms like oxygen (O) and nitrogen
(N) are common in biology and have a special name: hydrogen bonds. In bulk
water, the attraction is particularly strong because of the smallness, abundance, and
high polarity of the H2O molecules. Each water molecule can participate in up to
four hydrogen bonds with its neighbors, thus forming a network of hydrogen bonds
(Fig. 2).

Hydrogen bonds between H and O atoms of different water molecules are
much weaker than the O-H covalent bonds of the same molecule. The strength of
molecular bonding interactions is measured by the amount of energy required to
break them. The distinction between weak and strong bonds is made by comparing
their energy to the so-called thermal energy kBT , where kB = 1.38 × 10−23 J/K
(Joule per degree Kelvin) is Boltzmann’s constant, and T is the absolute temperature
measured in Kelvin. At the physiological temperature T = 310 K (= 37 ◦C), the
thermal energy kBT = 4.2 × 10−21 J. The thermal energy, or heat, is essentially
the kinetic energy of the randomly moving molecules [3]. More precisely, when a
system is in thermal equilibrium, the average kinetic energy per degree of freedom
is equal to kBT /2. The water molecule, for instance, has six degrees of freedom (3

https://bodell.mtchs.org/OnlineBio/BIOCD/text/chapter4/concept4.4.html
https://bodell.mtchs.org/OnlineBio/BIOCD/text/chapter4/concept4.4.html


6 O. Farago

translational and 3 rotational).1 If the bonding energy is much larger than kBT , then
the bond is strong because the atoms do not have enough kinetic energy to break
it. The typical energy of chemical covalent bonds is of the order of a few hundreds
of kBT , and their breakage (and formation) involves a chemical reaction [4]. In
contrast, the strength of hydrogen bonds is of the order of kBT , which means that
these are weak physical bonds that form and break continuously [5]. The hydrogen
bonding network of liquid water is highly dynamic and the molecules are free to
move. When water freezes, the molecules organize in a crystalline structure where
the orientation of the hydrogen bonds causes the molecules to push each other
further compared to the disordered liquid arrangement. Thus, the density of H2O
in the solid phase is lower than the liquid phase, which is why ice floats on water.
This is a very unusual property since solids are typically more densely packed and
heavier than the corresponding liquids.

The fact that ice is lighter than liquid water is only one of many unique properties
of water that are attributed to their hydrogen bonding network structure [7]. Water
boils at T = 100 ◦C, which is an incredibly high boiling temperature considering
its small molecular weight. For comparison, if we look at the sixth column of the
periodic table, we locate sulfur (S) one row below oxygen. Generally speaking, the
heavier the molecule the higher the boiling temperature of the material; therefore,
we expect H2S to have a higher boiling temperature than H2O, but the former boils
at a much lower temperature: T = −62 ◦C. The high boiling temperature is because
evaporation of liquid water requires a large amount of energy to break the hydrogen
bonding network. Another unique property of liquid water is its high heat capacity
(specific heat capacity at constant pressure, CP = 4.2 × 103 JK−1Kg−1). The heat
capacity is the amount of energy required to raise the temperature of a unit mass
of a substance by 1◦ (or the amount of energy released when it cools down by
1◦). That the heat capacity of water is high means that it takes a great deal of heat
to change the temperature of water. The water in our body keeps its temperature
highly regulated, and the water in the oceans prevents extreme temperature changes
on Earth compared to other planets. The heat capacity of water is high because much
of the heat absorbed by the water is used for the breaking of the hydrogen bonds,
and only part of it serves to raise the kinetic energy of the water molecules.

2.2 The Concepts of Hydrophobicity and Hydrophilicity

Water is an excellent solvent and, in fact, more materials dissolve in water than in
any other liquid (see chapter 30 in [5]). When a foreign molecule enters water,
it takes a volume that was previously occupied by other water molecules and,
therefore, locally modifies and even breaks the hydrogen bond network of the water.

1 Water also has three vibrational degrees of freedom, but they are irrelevant at room temperature
and become excited only at temperatures of several thousand degrees.



A Beginner’s Short Guide to Membrane Biophysics 7

The molecule will remain in the water only if its interaction with the water is
thermodynamically more favorable than the water–water interactions lost in this
process; otherwise, it will not be dissolved. Substances that dissolve easily in water
are “water-loving,” or hydrophilic substances, while those that do not dissolve in
water are “water-hating,” or hydrophobic.

Ions and polar molecules are generally hydrophilic. They create electric fields
that cause the water molecules around them to reorient in a manner that reduces
the overall free energy of the system. In contrast, oily molecules containing
hydrocarbon chains (chains of carbons and hydrogens, like the tails of the lipids
in Fig. 1) are hydrophobic. This is because carbon is an electroneutral element,
which means that the C-H bonds of the chain are non-polar. Therefore, they cannot
replace water molecules in forming hydrogen bonds with other water molecules.
The repulsion of hydrophobic materials from water is the origin of the “hydrophobic
effect” that refers to the effective attraction between a-polar hydrophobic groups [8].
It arises because the free energy penalty of dissolving an oily component in
water comes from the oil–water interface, where the hydrogen bonding network
is damaged. To reduce the area of contact, it is better for the hydrophobic chains to
segregate away from the water (despite the associated loss of translational entropy),
which means that they are effectively attracted to each other.

You can see the hydrophobic effect in action when you try to pour oil into
a glass of water and the oil, whose density is lower than the water, floats. In
this arrangement, the surface separating the oil and water molecules is minimal.
Thermodynamically, this effect can be described by a linear relationship between
the free energy, G, and the hydrophobic–hydrophilic surface area, A

G = γA, (1)

where γ is called the surface tension and has units of energy per unit area [9].
The values of the surface tension at water–oil interfaces typically vary from 0.2 to
0.5 J/m2.

2.3 Amphiphilic Molecules

Molecules with both hydrophilic and hydrophobic parts are called amphiphilic.
Cleaning detergents, for instance, contain amphiphilic molecules with one
hydrophobic chain that are commonly called “surface active agents,” or
surfactants [10]. When one tries to wash with water an oily dirt from a dish or
a cloth, the high oil–water surface tension prevents the water from sticking to the
dirt and removing it. Surfactants facilitate the attachment between the oil and water
because they have affinity to both: Their hydrophilic parts reside in water and the
hydrocarbon tails in oil. Thermodynamically, we say that they reduce the effective
oil–water surface tension and even eliminate it [11]. If we add surfactants to the
oil–water interface in the example above, many droplets of oil may be created and
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Fig. 3 Sketch of a micelle
formed by single-tail
surfactants

dispersed in water [12]. This is possible because the oil–water–surfactant surface
tension is vanishingly small, and there is no longer a free energy penalty associated
with the formation of structures with a large interfacial area.

When amphiphilic molecules are dispersed in water without oil, they need to hide
their hydrophobic parts from aqueous contact. Therefore, they self-assemble into
structures where only the hydrophilic parts are exposed to the water. As discussed
above, this spontaneous aggregation process can be understood as if it is driven by
a hydrophobic attraction between the hydrocarbon chains. Single chain amphiphilic
molecules have a conical shape assemble into micelles as shown in Fig. 3 [4]. Lipids,
with two tails, have more of a cylindrical shape, and so they aggregate into bilayers
(Fig. 1). In contrast to micelles, there is no limit to the number of lipids that can
cluster in a single bilayer. However, in order to also protect the lipids at the edge of
the bilayer, the bilayer must close to form a vesicle (liposome, Fig. 1). The critical
size above which this closure happens is dictated by a competition between the
curvature elasticity of the vesicle and the excess energy of the open edge of the
bilayer. We will return to this issue in the following Sect. 3, where we discuss the
elasticity of membranes and vesicles.

2.4 Membranes are Two-Dimensional Liquids

At physiological temperatures, biological membranes are found in a liquid-
crystalline state commonly referred to as the liquid-disordered phase. The term
“liquid” refers to the mobility of the lipids in the membrane plane, and “disordered”
refers to the state of their hydrophobic tails. Explicitly, the hydrocarbon tails of
the lipids are essentially short polymer chains. When they are disordered, they
switch between different molecular configurations (see Fig. 4, right). This means
that the disordered state has a high entropy, which is thermodynamically desirable.
The thermal motion reflecting the tendency to increase the entropy generates
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Fig. 4 A membrane undergoing a melting–freezing transition between the low-temperature “gel”
phase (left), where the lipid chains are ordered and tightly packed, and the “liquid disordered”
phase (right), where the chains are disordered and the lipids are free to diffuse. © 2009 Elsevier
Ltd. Reprinted from [6] with permission

collision repulsion between the chains. This entropic repulsion competes with the
hydrophobic effect that pulls the lipids closer to each other. If the hydrophobic
attraction wins, the tails would adopt a stretched “ordered” configuration that
would allow them to pack tightly. This is what happens in the “gel” phase of
the membrane, where the lipid tails become highly ordered (Fig. 4, left), and the
membrane “freezes,” i.e., the lipids lose their mobility and, instead, arrange in a
triangular fashion in the membrane plane. The transition between the gel (G) and
the liquid-disordered (LD) states is essentially a melting–freezing transition that
takes place at the transition temperature Tm [5]

Tm = HLD −HG

SLD − SG
, (2)

where S and H denote, respectively, the entropy and enthalpy (energy) of the
corresponding phases.

Biological membranes are mixtures of many different types of lipids, and their
melting–freezing temperature is dictated by their lipid composition. For instance,
typically each hydrocarbon chain of a lipid consists of 12–18 carbons. A greater
fraction of lipids with longer tails would generally increase Tm because the
hydrophobic attraction between the longer tails is stronger (i.e., HG in Eq. 2 is
lower). Another influential factor on Tm is the amount of saturated and unsaturated
lipids in the mixture. Lipids are said to be saturated if all the covalent bonds
connecting adjacent carbons along their tails are single covalent bonds, i.e., involve
the sharing of one pair of electrons. They are unsaturated if one or more of the
bonds is a double one (i.e., involving two pairs of electrons). Unsaturated lipids can
be further divided into trans and cis fatty acids. The former are rare in nature but
exist in industrial food and can be harmful to your health for reasons that are beyond
the scope of this monograph. Lipids with cis-unsaturated tail or tails, on the other
hand, have a very important physiological role. The cis double bond generates a
kink in the lipid, thus making it less amendable for tight packing. In other words,
the presence of unsaturated lipids increases the fluidity of the membrane and reduces
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Fig. 5 Cholesterol (red) is a small amphiphilic molecule inserting itself between the lipids of the
bilayer. It prefers the proximity of saturated lipids with ordered chains (blue) over unsaturated
disordered ones (black), thus forming liquid-ordered membrane domains, sometimes termed as
lipid “rafts”

Tm. Lipids with one saturated and one unsaturated tail are sometimes called “hybrid”
lipids [13].

2.5 Biological Membranes are Heterogeneous

Another regulator of membrane fluidity is cholesterol that is a small amphiphilic
molecule [14]. The smallness of the cholesterol molecules allows them to intercalate
between the lipids in the bilayer (Fig. 5). When added at high enough concentration
to a bilayer of saturated lipids, cholesterol induces the formation of a “liquid
ordered” phase, which is a kind of intermediate state between liquid-disordered and
gel phases. As the name suggests, this is (i) a liquid phase where the lipids undergo
lateral diffusion (albeit slower than in the liquid-disordered phase) and (ii) a state
where hydrocarbon chains are ordered and quite tightly packed, similarly to the
gel phase. These features of the liquid-ordered phase reflect the dual effect of the
cholesterol on the saturated lipid chains. In the liquid-disordered phase, the chains
are disordered, but in the presence of cholesterol they tend to adopt more ordered
configurations and, therefore, to pack more tightly. In the gel phase, on the other
hand, the cholesterol disrupts the chain ordering and packing.

When cholesterol is mixed with both saturated and unsaturated lipids, it tends to
associate with the former. At certain compositions, the ternary mixture would phase
separate into a liquid-ordered phase enriched in saturated lipids and cholesterol
and a liquid-disordered phase of mainly unsaturated lipids [15, 16]. The phase
behavior of mixtures of lipids and cholesterol and, in particular, the properties
of liquid-ordered domains have been in the limelight of biophysical research for
many years. This is because they are perceived as simple models for lipid rafts.
Lipid rafts in biological membranes are small (10–200 nm) liquid-ordered domains,
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enriched in saturated lipids (mainly sphingolipids), cholesterol, and often particular
proteins [17, 18]. Raft domains are highly dynamic and are believed to play a key
role in cellular processes such as signal transduction, cell adhesion, and membrane
trafficking.

Appearance of short-lived small domains is contradictory to the notion that
coexisting phases must be macroscopically separated in order to minimize the
interface between them and the associated energy per unit length (line tension) [19].
The formation of raft domains implies that the line tension separating them from the
embedding sea of liquid lipids is vanishingly small. Several non-exclusive mecha-
nisms have been proposed for this observation [20, 21]. For instance, rafts may be
transient fluctuations in the local composition. Since the physiological temperature
is close to the melting transition temperature of many biological membranes, these
fluctuations are indeed expected to be significant. Another possible reason for
the reduction in the line tension between liquid-ordered domains and the liquid-
disordered membrane is related to the abovementioned hybrid lipids. Such lipids
tend to reside at the line interface, with the saturated tail in the raft domain and the
unsaturated one in the surrounding lipid matrix. This mechanism resembles the way
surfactants reduce the oil–water surface tension (Sect. 2.3). Proteins, which may
attract certain lipids and repel other, may also facilitate inhomogeneous distribution
of the lipids and promote raft formation. We thus conclude that the compositional
complexity of biological membranes produces specialized domains on the cell
surface, which are crucial for many biological processes and functions. These are
typically studied using simpler biomimetic model systems containing only a small
number of components that, nevertheless, exhibit a complex phase behavior.

Another class of mechanisms proposed for the stabilization of small raft domains
is based on the concept of a coupling between the local membrane composition
and the curvature elasticity. The basic idea is that the bending stiffness of the
membrane is a function of the local composition of lipids and proteins. Under
certain circumstances, an inhomogeneous distribution of the lipids (i.e., formation
of different domains) may actually have a lower elastic curvature energy compared
to that of a uniform membrane with the same components. This takes us to the next
section in our beginner’s guide to biological membranes, where we will present the
elasticity theory of lipid membranes.

3 Elasticity

3.1 In-Plane Elasticity

Elasticity of isotropic two-dimensional surfaces is characterized by two elastic
moduli, the compression/stretching modulus K and the shear modulus μ [22].
The latter describes the resistance of a surface to planar shear deformations, i.e.,
deformations that change the shape of a flat surface without changing the overall
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area. For liquid surfaces like a lipid bilayer in the liquid-disordered phase, the shear
modulus vanishes because liquids (and gases) can flow and adopt to the change in
the shape of the “container” without any elastic response. The modulus K describes
the resistance of the surface to compression or stretching and is proportional to the
derivative of the two-dimensional elastic (mechanical) stress, τ , with respect to the
area A [23]

K = A0
∂τ

∂A
, (3)

where A0 is the unstretched area of the surface, i.e., the area for which τ = 0.
Assuming a small deformation (small strain), the elastic energy can be approximated
by a simple quadratic function

E = 1

2
K
(A− A0)

2

A0
, (4)

and the tension is

τ = ∂E

∂A
= K

(A− A0)

A0
. (5)

This is Hooke’s law for linear elastic materials, i.e., materials for which there is a
linear relationship between the stress τ and the strain ε = (A−A0)/A0 = �A/A0.
Equation 3 is readily derived from Eq. 5, although it should be noted that only for
linear elastic materials K is a constant. In the more general case, K is defined by
Eq. 3, and it is a function of the area, K = K(ε).

The stress–strain relationship of lipid bilayers has the form shown in Fig. 6 [24].
The relationship is linear over most of the range ε � 0.05, which is the strain
at which lipid bilayers typically rupture. However, at very low-strain values, the

Fig. 6 The stress as a
function of the strain of
various lipid vesicles.
© 1990, American Physical
Society. Reprinted from [24]
with permission
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tension grows exponentially with the strain, which is a very unusual behavior as
non-linear elasticity is usually associated with large deformations. The origin of
this unique elastic response is the fact that bilayer membranes are not perfectly
flat surfaces. They are thin sheets that also fluctuate in the normal (out-of-plane)
dimension. The area measured experimentally is the area projected onto the two-
dimensional membrane plane, Ap. For vesicles, this is the surface area of the
sphere obtained when the fluctuations in the radius are smoothed. The membrane
physical area is larger than the projected area. When stress is applied to stretch
the membrane, it first flattens the thermal undulations of the membrane without
changing its physical area. The response to the applied stress in this regime is of
entropic nature. Reducing the amplitude of the thermal undulations means that the
membrane achieves a smaller number of configurations and has a lower entropy,
i.e., a higher free energy, than the unstretched state. The exponential low-tension
regime in Fig. 6 characterizes this entropic elasticity. Only at higher values, after the
undulations have been ironed out, the physical area of the membrane increases and
linear elasticity is observed [23, 24].

The entropy associated with the membrane thermal out-of-plane undulations
is directly related to the bending elasticity of membranes. Generally speaking, it
is much easier (i.e., requires substantially less work) to bend a membrane than
to stretch it, and it is mainly for this reason that curvature deformations play
an important role in many biological processes. The reminder of this section
will, therefore, be dedicated to the curvature elasticity of membranes. Before we
continue, a final comment on the in-plane mechanical tension (stress) τ : There is
great confusion in the literature regarding the difference between τ and the surface
tension γ defined in Eq. 1 [25]. The mechanical tension describes the response of
a membrane with a fixed number of lipids to an area change causing a change
in the density of the lipids, i.e., a change in the average intermolecular distances
between them. In contrast, the surface tension is the free energy cost to increase
the surface between two fluids by a unit area. In this case, we do not stretch the
interface between the fluid materials but simply create more surface area by bringing
molecules from the bulk of the fluids to the boundary between them. At the interface,
the molecules of the different fluids can interact with each other via interactions that
are typically less favorable than the bulk interactions with molecules of the same
type. This is the reason, for instance, why droplets adopt a spherical shape that has
minimal surface area at a given volume. Unfortunately, in the membrane biophysics
literature, it has become common to refer to τ as the “surface tension.” Some of the
confusion in the literature arises because a fluctuating membrane has two areas: the
physical and the projected one. The correct definition of τ is not the one given in
Eq. 5 but the following one [26]

τ = ∂G

∂Ap
, (6)
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i.e., the derivative of the free energy (rather than energy) with respect to the
projected area (rather than the physical area).2 Differentiation in Eq. 6 is performed
when the number of lipids and temperature are held constant. Importantly, the free
energy includes both entropic and enthalpic (energetic) contributions, which means
that, in principle, Eq. 6 captures both the linear and exponential regimes in Fig. 6 for
the stress–strain relationship of bilayer membranes and vesicles.

3.2 Curvature Elasticity

Curvature elasticity describes the response of a body to bending deformation and is
the main factor controlling the shape of bilayer membranes and vesicles. To better
understand the formalism of curvature elasticity in membranes, let us first consider a
simpler example that is the bending elasticity of polymers. Polymers are long, chain-
like, molecules consisting of repeating units (monomers) that are covalently bonded
to each other. Polymer chains may adopt many different configurations, and if the
number of monomers is sufficiently large, the framework of equilibrium statistical
mechanics may be applied to describe their thermodynamic behavior, including
their bending elasticity. A fundamental principle of classical equilibrium statistical
mechanics is the notion that the thermal motion of the particles (the monomers in the
case of polymer chains) allows the system to sample the configuration phase space
and that the occurrence probability of the different states follows the Boltzmann
distribution law [3, 5]

pconfiguration = e−Econfiguration/kBT

Z
, (7)

where Econfiguration is the energy of the state, kBT is the thermal energy (see
Sect. 2.1), and Z is the normalizing partition function

Z =
∑

configurations

e−Econfiguration/kBT . (8)

The free energy of the system is related to the partition function via

G = −kBT lnZ. (9)

2 In contrast to Ap , the physical area A is not a thermodynamic variable that can be easily fixed. In
some theoretical studies [27], the term “surface tension” is used to describe a Lagrange multiplier
that fixes the average physical area.
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From the free energy, we can calculate the relationship between the end-to-end
extension of the polymer chain, Ree, and the applied force, f [28]

f = − ∂G

∂Ree
, (10)

which is analogous to Eq. 6 for lipid bilayers.3

At the most fundamental level, the energy of the polymer configurations is a
function of the spatial coordinates of the monomers and the molecular interactions
between them. Such energy functions are sometimes used in detailed molecular
simulations, but they are too complicated for statistical–mechanical analytical theo-
ries. Theoretical treatments, therefore, are often based on simpler phenomenological
energy functions. A simple continuum model describing the elastic behavior of
polymers is the worm-like chain model [23, 29]. In this model, the polymer is
depicted as a one-dimensional curve R(s) = [x(s), y(s), z(s)], where the coordinate
s runs along the curve from s = 0 to s = L, where L is the contour (arc) length of
the curve. Since there is a clear separation between the energy scales associated
with the stretching (stiff) and bending (soft) elastic responses, it is possible to
consider only the latter and assume that L is constant. In the case of homopolymers
(polymers with one type of monomers), the configuration with minimal elastic
energy is a straight line, while any curved configuration has a higher energy. Thus,
the coordinates playing the role analogous to the strain in elastic materials are the
local curvature

c(s) = d2R
ds2

, (11)

which, geometrically, is the inverse of the radius of the circle that locally approxi-
mates the curve (see Fig. 7). For a fairly stiff (semi-flexible) polymer, the curvature
is assumed to be small and, to a leading approximation, the elastic energy is
quadratic in c(s), i.e., proportional to c · c = c2. The local contribution to the
curvature elastic energy is κc2(s)/2, where κ is the bending modulus of the polymer.
The total curvature elastic energy is obtained by integrating the local contributions
over the contour length

E =
∫ L

0

1

2
κc2(s)ds. (12)

3 Equations 7–9 cannot obviously (and do not intend to) summarize the entire field of classical
statistical mechanics. They are only meant to demonstrate the basic idea that the free energy
of a thermodynamic system can be derived from the statistics of an ensemble of microscopic
(molecular) states of that system. This concept will be used in Sect. 3.4 where the statistical–
mechanical behavior of thermally fluctuating membranes will be discussed.
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Fig. 7 In the WLC model,
the polymer is presented as a
one-dimensional curve in a
three-dimensional space.
Each point along the curve is
characterized by a local
curvature, which is the
inverse of the radius of the
circle that locally
approximates the curve

Fig. 8 In the Helfrich model,
the membrane is presented as
a two-dimensional manifold
in a three-dimensional space.
Each point along the curve is
characterized by two
principal curvatures. © 2014
Elsevier B. V. Reprinted
from [31] with permission

3.3 Helfrich Hamiltonian for Membrane Elasticity

The curvature energy of a membrane can be expressed in a similar fashion to
Eq. 12. This is known as the Helfrich model of membrane curvature elasticity [30].
In this model, the membrane is represented as a two-dimensional Riemannian
manifold. At each point, the smooth surface has two principal curvatures, which are
the maximum and minimum curvatures of the curves obtained from intersections
between the surface and a normal plane at that point (see Fig. 8). The directions of
the planes along which the principal curvatures are found are orthogonal to each
other. Denoting the principal curvatures by c1 and c2, the local contribution to the
curvature elastic energy should be expressed as a power series in c1 and c2, and to
leading order (small curvature), it is given by a quadratic function in these variables.
Instead of the principal curvatures, we can use other related invariants with respect
to rigid translations and rotations of the surface, specifically, the mean curvature,
M = (c1 + c2)/2, and the Gaussian curvature K = c1c2. We also need to take
into account the fact that if the bilayer is asymmetric (i.e., if the two leaflets are not
identical and, for instance, contain different types of lipids at different compositions
and amounts), then it may spontaneously bend. This means that the configuration
with minimal elastic energy (ground state) may not be a flat one for which M = 0,
but a state with spontaneous curvature M = c0/2. Taking all together, we arrive at
the famous Helfrich Hamiltonian (energy functional) for the curvature elasticity that
reads
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E =
∫ [

1

2
κ (H − c0)

2 + κGK

]
dA, (13)

where H = 2M . This expression is analogous to Eq. 12 for the curvature elasticity
of linear polymers, with a few notable differences:

• The membrane has two local curvatures and, therefore, the quadratic form
Eq. 13 features two elastic moduli: κ-the bending modulus (rigidity), and
κG-the Gaussian curvature modulus.

• The membrane may have a spontaneous curvature H = c0.
• The integration in Eq. 13 is carried over the curved surface. Therefore, κ and κG

have units of energy, in contrast to the modulus in Eq. 12 that has a dimension of
energy times length.

3.4 Statistical Mechanics of Membrane Fluctuations

Lipid membranes are soft materials. Typical values of bending moduli κ of lipid
membranes are in the range of 10–50 kBT , which means that membranes exhibit
significant shape fluctuations (see chapter 6 in [23]). These so-called undulations
have relevance to many biological processes like endo- and exocytosis or, e.g.,
cellular adhesion [32]. In many cellular processes, membrane protrusions are
induced by forces that are generated by other biological components, for instance by
actin filaments of the cell cytoskeleton [33]. Lipid bilayers are also subject to strong
equilibrium thermal fluctuations arising from random collisions with their environ-
ment (“heat bath” in statistical–mechanical language). One of the most common
methods for measuring κ in experiments [34] and computer simulations [35] is to
record and analyze the spectrum of the membrane thermal undulations. In order
to understand how this “flicker analysis” works, we must look at the statistical
mechanics of the Helfrich model.

Let us consider a fluctuating surface whose elastic bending energy is given by
Eq. 13 that is subject to periodic boundary conditions. This is a common setup
in computer simulations of lipid membranes. Furthermore, we will consider a
symmetric bilayer with no spontaneous curvature and, therefore, set c0 = 0 in
Eq. 13. We now consider the Gauss–Bonnet theorem from differential geometry
that states that the integral over the Gaussian curvature term in Eq. 13 can be
written as a boundary term plus a topological constant (Euler characteristic) related
to the number of “holes” in the surface (0 for a sphere, 1 for a torus, 2 for an
eight-shaped pretzel, etc.). Therefore, as long as the surface of the bilayer does
not undergo a topological change (as, e.g., during exocytosis when a vesicle “buds
out” and detaches from the host membrane), the Gaussian curvature term in Eq. 13
has a constant value for all possible configurations and so has no influence on the
physics of the system. These considerations simplify the Helfrich Hamiltonian to
the following form:
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E =
∫ [

1

2
κH 2

]
dA. (14)

In Eq. 14, each configuration of the surface is described by the local total
curvature H . Alternatively, we can use the so-called Monge parametrization and
represent the surface via the height function h(x, y) with respect to a reference
surface of size Ap = L2, where L (−L/2 < x, y < L/2) is the linear length
of the simulation cell and Ap is the projected area of the bilayer. Note that in this
parametrization, we exclude strongly fluctuating configurations with “overhangs,”
which cannot be described by a well-defined function h(x, y). In the Monge
representation,

H = −∇ ·
(

∇h√
1 + |∇h|2

)
. (15)

For a weakly fluctuating surface, |∇h| � 1, this expression is well approximated
by

H � −∇2h, (16)

and with this form in Eq. 14, we arrive at

E =
∫ L/2

−L/2
dx

∫ L/2

−L/2
dy

1

2
κ
[
∇2h(x, y)

]2
, (17)

with the integration carried over the projected area Ap = L2 rather than the surface
area as in Eq. 14.4

Let us introduce the Fourier transform of h(x, y)

hq = 1

L2

∫
drh(r)e−iq·r, (18)

where r ≡ (x, y) denotes a coordinate on the projected plane of the surface,
and q = (2π/L)(nx, ny) is the wavevector of the Fourier mode (with nx, ny =
0,±1,±2, . . . being integers). Expressing h(r) as a Fourier series

h(r) = 1

2π

∞∑

n1=−∞

∞∑

n2=−∞
hqe

iq·r ≡ 1

2π

∑

q

hqe
iq·r (19)

4 Carrying the integration over the projected rather than the surface area generates an error of order
|∇h|2 in the calculated Helfrich energy. The approximation in Eq. 16 involves a correction of the
same order.
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and using this expression in Eq. 17 give

E = κ

2

(
1

2π

)2∑

q

∑

p

q2p2hqhp

∫
dr ei(q+p)·r = κ

2

(
L

2π

)2∑

q

q4|hq |2.

(20)

For the second equality in Eq. 20, we use: (i) The fact that the integral in Eq. 20
is equal to L2δq,−p, where δ is the Kronecker delta, and (ii) that hq and h−q are
complex conjugate of each other because h(r) is a real function.

The remarkable property of Eq. 20 is the fact that the curvature elastic energy is
now expressed as the sum of terms, each of which corresponds to exactly one Fourier
mode, without mode coupling. In a statistical–mechanical language, this means that
each Fourier mode is an independent degree of freedom. The contribution of a given
mode to E is quadratic in |hq | and looks like the energy of a harmonic oscillator

Eq = 1

2
kq |hq |2, (21)

with an effective spring constant kq = κ(L/2π)2q4. From the equipartition
theorem, it then follows that the average energy of the mode

〈
Eq
〉 =
〈

1

2
kq |hq |2

〉
=
∫∞
−∞ d|hq |

(
kq |hq |2/2

) [
exp
(−kq |hq |2/2kBT

)]
∫∞
−∞ d|hq |

[
exp
(−kq |hq |2/2kBT

)] = kBT

2
,

(22)
or

〈
|hq |2

〉
= kBT

kq
=
(

2π

L

)2
kBT

κq4
. (23)

From Eq. 23, we conclude that the typical amplitude of a mode with wavevector q,

i.e., wavelength λ = 2π/q, scales proportionally to 1/q2:
[〈|hq |2

〉]1/2 ∼ 1/q2 ∼ λ2.
The longer the wavelength, the larger the amplitude of the mode, which is expected
since there is less curvature is involved in the modes with large λ (small q).

As the wavevector is given by q = (2π/L)(nx, ny), where nx and ny are integers,
one may erroneously conclude that the membrane has infinitely many modes or
degrees of freedom. This is obviously wrong since the membrane is composed
of a finite number of lipids and the continuum description of the Helfrich model
is applicable only on length scales that are (much) larger than the characteristic
molecular size of the lipids. The question at which length scale the continuum model
breaks down has been resolved by large-scale simulations of computationally simple
and highly coarse-grained lipid models (see details in Sect. 4). These simulations
demonstrated that Eq. 23 provides a correct description of the fluctuation spectrum
down to the scales of small membrane parches consisting of about 10 lipids on each
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monolayer.5 The characteristic linear size of these patches, l, is of the order of a
few nanometers, and the summation in Eq. 20 should be terminated at a wavevector
ql ∝ 1/l. An operational way to determine the cut-off l of the continuum description
is as follows: In analytical calculations, it is common to replace the summation over
a discrete set of q values with an integral. Furthermore, although in principle the
integration should be carried over a square region in Fourier q-space, it is useful to
consider a circular region. Denoting by NDOF ∝ Nlipids ∝ (L/l)2 the number of
modes (i.e., degrees of freedom of the continuum surface), the replacement of the
sum with an integral is done as follows:

NDOF =
∑

q

1 →
(
L

2π

)2 ∫ q>

q<

2πqdq =
(
L

2π

)2

π
(
q2
> − q2

<

)
�
(
L

2π

)2

πq2
>,

(24)

where the last approximation in Eq. 24 is justified since the lower bound of the
integration (the smallest wavevector) q< = 2π/L is vanishingly small in the so-
called thermodynamic limit NDOF � 1. The upper bound on the integration is
therefore set at

q> =
√

4πNDOF

L
≡ 2π

l
. (25)

3.5 Membranes Under Tension and Confinement

As already mentioned in Sect. 3.1, the application of small tension tends to flatten
the membrane fluctuations. To quantify this effect, we must return to the Helfrich
Hamiltonian Eq. 14, which is written for a tensionless membrane, and add a term of
the form of Eq. 4 for the stretching elastic energy. The area of the surface is equal to
the projected area plus the excess area, which is “stored” in the height fluctuations,
A = Ap+δA. Since the tension reduces the amplitude of the height fluctuations, we
expect δA to exhibit small variations with respect to its mean value, which allows
us to replace the quadratic stretching energy with a linear approximation around

E = 1

2
K
(A− A0)

2

A0
� 1

2
K
(Ap − A0)

2

A0
+K

Ap − A0

A0
δA+ O

(
δA

Ap

)2

, (26)

5 The extrapolation of the simulated fluctuation data to the small q limit involves several technical
issues that influence the determined values of the bending modulus. It is also worthwhile to
mention the existence of alternative computational methods for determining κ . A comprehensive
and updated review with many references on these topics can be found in [36]. A computational
method to accelerate the slow relaxation of the small q (large wavelength) Fourier modes of
fluctuating membranes has been proposed in [37].
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where the first term is independent of δA and hence can be ignored in the fluctuation
analysis. Omitting this term in Eq. 26 and using Hooke’s law Eq. 5, we can also write
to linear order in �A that the stretching energy

E � τδA. (27)

To linear order in |∇h|2, the excess area is equal to

δA =
∫ L/2

−L/2
dx

∫ L/2

−L/2
dy

[√
1 + |∇h|2 − 1

]
�
∫ L/2

−L/2
dx

∫ L/2

−L/2
dy

1

2
|∇h|2 .

(28)

Using this expression in Eq. 27 and adding the tension term to the Helfrich
Hamiltonian Eq. 17, we arrive at

E =
∫ L/2

−L/2
dx

∫ L/2

−L/2
dy

1

2

{
κ
[
∇2h(x, y)

]2 + τ [∇h(x, y)]2
}
. (29)

It is easy to check that in Fourier space, this energy expression reads

E = 1

2

(
L

2π

)2∑

q

[
κq4 + τq2

]
|hq |2, (30)

and by using the equipartition theorem for this Hamiltonian, we find that

〈
|hq |2

〉
= kBT

kq
=
(

2π

L

)2
kBT

κq4 + τq2
. (31)

We thus see that a stretching tension τ > 0 lowers the amplitude of all the Fourier
modes w.r.t. the tensionless case τ = 0. The attenuation in the amplitude of the
modes is particularly significant when κq2 � τ , which means that the modes
that are mostly affected by the applied tension are the long-wavelength ones with
q � √

τ/κ . Conversely, modes with wavevector q � √
τ/κ experience a negligible

reduction in their amplitudes. We also notice from Eq. 31 that the membrane may
sustain a small negative (compression tension). Explicitly, according to Eq. 31,
the amplitude of the longest mode with wavevector q< = 2π/L diverges when
the tension drops below τ = −(4π2/L2)κ . Keep in mind that this is only an
estimation of the instability tension because Eq. 29 is an approximation assuming
small fluctuation amplitudes. One must also keep in mind that in writing Eq. 29, we
made the implicit assumption that κ is independent of τ , which may not be the case
especially under strong tension.

The cell membrane does not fluctuate freely. It is connected to the cell cytoskele-
ton (a network of filamentous proteins, mostly actin) and is also influenced by the
proximal presence of other cells (in tissues) and of the extracellular environment.
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These objects limit the membrane fluctuations in a manner that is hard to evaluate.
A simple way to model the fluctuations of a confined membrane is to introduce a
uniform harmonic potential

E =
∫ L/2

−L/2
dx

∫ L/2

−L/2
dy

1

2
γ h2. (32)

Adding this term to Eq. 29

E =
∫ L/2

−L/2
dx

∫ L/2

−L/2
dy

1

2

{
κ
[
∇2h(x, y)

]2 + τ [∇h(x, y)]2 + γ h(x, y)2
}
,

(33)

then switching to Fourier space

E = 1

2

(
L

2π

)2∑

q

[
κq4 + τq2 + γ

]
|hq |2, (34)

and then applying the equipartition theorem gives

〈
|hq |2

〉
= kBT

kq
=
(

2π

L

)2
kBT

κq4 + τq2 + γ
. (35)

Back to real space, the mean square amplitude of the confined membrane is equal to

〈
[h(r)]2

〉
=
(

1

2π

)2∑

q

〈
|hq |2

〉
= kBT

L2

∑

q

1

κq4 + τq2 + γ
. (36)

Replacing the sum with an integral (see Eqs. 24–25)

〈
[h(r)]2

〉
= kBT

2π

∫ q>

q<

q

κq4 + τq2 + γ
dq. (37)

Under confinement (γ > 0), the mean square amplitude is finite, and for a
strongly confined membrane (γ � τ/ l2):

〈
h2
〉 ∝ kBT /(γ l

2). In contrast, when
γ = 0, the mean square amplitude increases with the size of the membrane.
For a stressed membrane:

〈
h2
〉 ∝ (kBT /τ) ln(L/l), and in the absence of stress〈

h2
〉 ∝ L2(kBT /κ).
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3.6 Helfrich Free Energy

In the literature on membrane elasticity, a similar expression to the Helfrich energy
Eq. 13 is sometimes referred to the free energyG of membranes and vesicles. This is
not just a semantic change. Consider, for instance, the question posted at the end of
Sect. 2.3-why membranes close and form spherical vesicles. Thermodynamically,
this implies that the free energy of the closed vesicle is lower than that of the
open membrane. In principle, the free energy of both the open membrane and
vesicle (macrostates) can be calculated from their partition functions that involve
summations over all the relevant molecular configurations (microstates), see Eqs. 8–
9. In both cases, we can use the Helfrich Hamiltonian to describe the energy of each
and every configuration in the ensemble of microstates. The free energy is a function
of the average profile of the microstates, which can be regarded as the profile of the
macrostate. Obviously, the macrostate average profile is smoother than the profile of
the individual thermal configurations. For instance, in Sect. 3.4, we considered the
ensemble of configurations of a surface whose average profile is flat: 〈h(r)〉 = 0.
Similarly, a vesicle has an average profile of a sphere of radius R. The microstate
thermal configurations of the vesicle are given by R(�) = R + δR(�), where � is
the solid angle and 〈δR(�)〉 = 0. The statistical mechanics of Helfrich elasticity of
nearly spherical vesicles (δR � R) can be conveniently calculated by representing
the shape of the configurations as the sum of spherical harmonics, similarly to the
way that a Fourier space representation is used in the case of a planar membrane.

The considerations that lead to the form of the phenomenological Helfrich
Hamiltonian (see Sect. 3.3) are also applicable to the free energy expression. Thus,
similarly to Eq. 13, we write [12]

G =
∫ [

1

2
κ (H − c0)

2 + κGK

]
dA, (38)

whereG is now the Helfrich free energy. The curvatures and the integration in Eq. 38
are carried over the surface corresponding to the average profile of the bilayer. As in
the Helfrich Hamiltonian, the coefficients κ , κG, and c0 are referred to as the bending
modulus, Gaussian curvature modulus, and spontaneous curvature, respectively.
However, there is a fundamental difference between the Hamiltonian coefficients
and their free energy counterparts [38]. The former are material properties that
depend on the local (molecular) “reality” of the lipids, i.e., the interaction energy
between them and the entropy of their hydrophobic chains. The latter, on the other
hand, are thermodynamic quantities obtained by averaging over the ensemble of
microstates and, as such, are also influenced by the membrane thermal fluctuations
at all length scales.
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3.7 Edge Energy

So why does a flat membrane close itself and form a spherical vesicle? Using
Eq. 38 for the curvature free energy and assuming that the bilayer membrane is
symmetric (c0 = 0), we get that for a flat membrane (H = K = 0): G = 0. For
a spherical vesicle of radius R, we have that H = 2/R and K = 1/R2, and so
G = 4π(2κ + κG). Thus, as long as (2κ + κG) > 0 (which is indeed the case),
the flat configuration is supposedly more stable. There is however an important
difference between a spherical vesicle and a flat bilayer. The former is closed, while
the latter is open and has edges where the lipids are exposed to the solvent. Because
of the hydrophobic effect, the “edge lipids” would orient themselves in a manner
shown in Fig. 9, which provides partial protection from the aqueous contact. This
organization, resembling half a micelle, is not optimal since it is more suitable for
surfactants with a single hydrophobic tail (see Fig. 3 and the discussion on chain
packing in Sect. 2.3). Thus, some energy penalty associated with hydrophobic-water
contact remains, which is proportional to the number of lipids located at the end of
the flat bilayer. As this number is proportional to the perimeter of the flat bilayer, P ,
we can write that

Gedge = �P, (39)

where the coefficient � > 0 is called the line tension of the membrane and
has dimensions of energy per unit length (J/m). Adding the Helfrich bending
and the edge free energies, we see that while the free energy of the vesicle is
size independent, the free energy of the flat membranes grows linearly with the
perimeter of the bilayer. Typical values of � of lipid bilayers are in the range of
10−2 − 10−1 J/m, which means that practically the vesicle configuration is always
thermodynamically favorable over the open flat one.

Similar considerations can explain the opening of membrane pores (membrane
rupture) under applied tension. When a pore is formed, the effective area of the
membrane is reduced by an amount �A < 0 which is equal to the pore area. The
elastic free energy relieved by this process can be written in a form similar to Eq. 27
for the energy

G = τ�A. (40)

Fig. 9 The lipids residing at
the edge of a bilayer sheet
avoid contact with water by
changing their orientation
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This gain in free energy competes with the increase in the line tension energy,
Eq. 39, due to the lipids residing at the perimeter of the pore. Assuming a circular
hole (the shape with smallest circumference to area ratio) of radius r and adding the
two free energy contributions, we get [39, 40]

G = 2π�r − πτr2. (41)

This free energy expression has a parabolic shape with a maximum Gmax = π�2/τ

at r = τ/�. Small transient holes are constantly formed and disappear due to the
motion of the lipids. This is because the free energy increases in the presence of a
hole of radius r < rc. Conversely, a hole of radius r > rc will continue to grow
since the increase in size lowers the system free energy.6 Thus, a stable pore will
appear provided that the lipids have enough kinetic energy to allow the spontaneous
formation of a pore of critical radius r = rc. Statistically speaking, this is possible
if the free energy required for the opening of a pore of critical radius is of the order
of the thermal energy kBT . We therefore expect the membrane to rupture provided
that

Gmax = π�2

τ
� kBT , (42)

i.e., if the applied tension τ is of the order of �2/kBT . Taking the characteristic
values of � quoted in the previous paragraph, we conclude that the rupture tension
of bilayer membranes is of the order of 10−2 J/m2, which is indeed consistent with
the experimentally measured values [24].

4 Computer Simulations

Computer simulations are ubiquitous in many areas of science and engineering,
including in biophysics where they have been essential for the development of the
field. Their importance stems from the fact that biological systems are complex:
They include many different components that interact with each other, which
means that one can only gain limited insight into the behavior of these systems by
using simple analytical models. Contemporary research in membrane biophysics,
for instance, involves the investigations of increasingly complex membranes with
several different types of lipids, in addition to proteins and/or other components like
DNA molecules and polymers. Apart from the growing complexity of the systems

6 The pore will not grow indefinitely. The parabolic shape of the free energy Eq. 41 assumes a
linear dependence of G on the pore area, Eq. 40, but this form is only valid for holes that are much
smaller than the membrane area (but not too small to be considered as a local defect). For larger
holes, the quadratic form for the elastic stretch energy Eq. 4 must be taken into account, which
limits the size of the pore. See, e.g., [25].
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under investigation, there have been several other trends that contributed to the
rapid increase in the number of molecular simulation studies. One is obviously
the increase in computing power, which makes it possible to use regular PCs
for simulations that two decades ago could not have been carried even on the
most advanced computer clusters. Another important development is the growing
popularity of molecular dynamics simulation packages like NAMD, GROMACS,
AMBER, CHARMM, and LAMMPS. These packages, whose performances have
been constantly refined in recent years, allow researchers to conduct computer
simulations without the need to write their own code from scratch. This has led to an
explosion in the number of research groups conducting computer simulations, espe-
cially in the biochemistry community where computer simulations are increasingly
regarded as “computational experiments” with the computer screen serving as a
“molecular-resolution microscope” [41]. As the utilization of simulation suites does
not require great familiarity with molecular dynamics algorithms, I will dedicate
the first part of this section for a brief review of molecular simulation approaches,
highlighting also a few technical issues that are important for the reliability and
success of simulation studies.

In the second part of the section, I will discuss the different types of models
existing for biological membranes, reflecting the multi-scale nature of membrane
research. Biologists and biochemists, for instance, are mostly interested in processes
involving relatively few lipids, where the detailed information on the conformation
of the lipids (e.g., the bond angles of the hydrophobic tails, lipid tilt, local packing of
the lipids, etc.) is important. Obviously, the investigations of these aspects require
simulations where the lipids and other biological components are represented by
all-atom descriptions. These so-called atomistic simulations are computationally
expensive because each lipid consists of more than 150 atoms and, in addition, one
has to simulate a large number of H2O molecules [42]. Thus, despite the constant
progress in computing power, they are limited to small membrane patches consisting
of 100–1000 lipids with dimensions of about 10 nanometers. The time scales of
the simulated processes in atomistic membrane simulations do not typically exceed
those of a few microseconds. In order to overcome these limitations and investigate
processes and systems at larger spatial and temporal scales, one has to “coarse-
grain” the atomistic description [43]. This can be done, for instance, by grouping
several carbon atoms of the tails and their associated hydrogens into a single
“effective bead” or by replacing a water molecule by a single solvent particle. The
benefit of such a coarse-grained (CG) description in terms of the computational
toll is clear, but one must be aware that there is no guarantee that the CG model
reproduces correctly all the relevant features of the system. Biophysical studies that
do not aim to investigate specific lipids but rather explore more general properties
of membranes are often based on even more CG models where lipids are generically
represented as bead-spring chains of hydrophilic and hydrophobic spheres. In some
models, the solvent is not explicitly included in the simulation box and, instead,
effective potentials mimicking the hydrophobic attraction between the tails are used.
I will briefly review these different classes of models by considering a relatively
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simple example problem, which is the formation of liquid-ordered domains in
mixtures of saturated lipids and cholesterol.

4.1 Molecular Dynamics

Molecular Dynamics (MD) is a simulation method for tracking the movement of
interacting particles by numerically integrating their equations of motion [44]. The
name may be wrongly understood as if the main utility of the method is to generate
computational visualizations of non-equilibrium molecular processes. Actually, MD
is first and foremost a technique for sampling the configuration phase space of
molecular systems at thermodynamic equilibrium. By following the dynamics of the
particles, an ensemble of microscopic configurations of the equilibrium system is
generated from which quantities of interest can be calculated. The most thoroughly
simulated system is probably that of identical spherical particles interacting with
each other via the famous two-body Lennard–Jones (LJ) 6–12 potential

φLJ = 4ε

[(σ
r

)12 −
(σ
r

)6
]
. (43)

Here, σ is the diameter of the spherical particles, ε is the strength of the pair
potential, and r is the distance between the centers of the spheres. The LJ potential
is strongly repulsive at short distances r < σ , which represents the effect of
excluded volume, i.e., the fact that the particles cannot interpenetrate each other.
At long distances r � σ , the particles attract each other via a potential intended
to model van der Waals interactions. The potential vanishes when the particles are
far away from each other r → ∞ and achieves a minimum value φmin = −ε
at rmin = 21/6σ � 1.12σ , when the particles nearly touch other. The LJ system
serves as a paradigm for studying the thermodynamic transitions between the gas,
liquid, and solid phases of matter. If the simulations are conducted properly, they
provide quantitative information on the spatial distribution of particles, which is
distinctly different at the different phases. Moreover, thermodynamic quantities
such as the pressure, heat capacity, and compressibility, which are related to the
mean and variance of measurable quantities, can be computed from the ensemble of
configurations generated in the course of the MD simulations.

The most popular discrete-time integrator for MD simulations is the Verlet
algorithm [45] that runs as follows: Denoting, respectively, by {ri (t)} and {vi (t)}
the positions and velocities of the particles (i = 1, . . . , N ) at time t , the coordinates
after a small time step dt are obtained from a truncated Taylor expansion

ri (t + dt) = ri (t)+ vi (t)dt + fi
({rj (t)}

)

2m
dt2, (44)
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where m is the mass of the particle, and fi is the force acting on the particle at
time t that, in general, depends on the coordinates of all the particles. Once the
new positions are calculated, the new forces f

({rj (t + dt)}) at time t + dt can be
determined. Then the velocities at time t + dt are updated by

vi (t + dt) = vi (t)+ fi
({rj (t)}

)+ fi
({rj (t + dt)})

2m
dt. (45)

Equations 44–45 constitute the velocity Verlet algorithm.
Equation 44 is accurate to second order in dt , which means that the computed

trajectory deviates from the correct one. The deviations grow exponentially with
time because of the chaotic nature of the dynamics. It is, however, believed that at
long times the “incorrect” computed trajectory follows a true trajectory that simply
starts with different initial conditions. This “shadow trajectory” is as representative
as the original one and provides an appropriate ensemble of microscopic system
configurations. With the understanding that the purpose of MD is phase-space
sampling rather than the calculation of actual trajectories, it is easy to understand
why the simple and computationally efficient Verlet algorithm is favored over other,
higher order in dt , integrators. The most important feature of the Verlet algorithm is
the fact that the total energy of system is conserved over long time integration, i.e.,
it is bounded and does not drift at long times. This feature is directly related to the
fact that mapping defined by Eqs. 44–45 is symplectic7 and time reversible [44].

Speaking of energy conservation, the Verlet algorithm generates the so-called
microcanonical ensemble, namely a sequence of configurations of an isolated
system with a given energy, volume, and number of particles. The temperature of
the system can be evaluated from the average kinetic energy

〈
N∑

i=1

mv2
i

2

〉
= 3NkBT

2
. (46)

This approach is, however, problematic, and the reader is advised to avoid integra-
tion methods imposing Eq. 46 via “velocity rescaling” [46]. To understand why, we
must keep in mind that there are other ways to estimate the velocity of a particle.
For instance, we can define the half-step velocity

vi (t + dt/2) = ri (t + dt)− ri (t)
dt

, (47)

which can be used in the leap-frog Verlet method [47]

vi (t + dt/2) = vi (t − dt/2)+ fi
({rj (t)}

)

m
dt, (48)

7 The existence of a shadow trajectory also follows from this property.



A Beginner’s Short Guide to Membrane Biophysics 29

ri (t + dt) = ri (t)+ vi (t + dt/2)dt. (49)

This version of the algorithm yields exactly the same spatial trajectory {ri(t)} as the
original velocity Verlet formulation Eqs. 44–45. Thus, for the purpose of phase-
space sampling, both algorithms are identical. They only differ in the auxiliary
velocity variable that they use for the calculation of the position. Both Eqs. 45 and 47
are approximations of the actual velocity and may be subject to time-discretization
errors. Interestingly, it turns out that the latter provides the best estimation of the
temperature, when used in Eq. 46 [48].

4.2 Langevin Dynamics

In the canonical ensemble of statistical thermodynamics, the system is not thermally
isolated but rather exchanges heat with its environment (“heat bath”) in a manner
that fixes the temperature. In this ensemble, the occurrence probability of a
configuration is given by Boltzmann statistics Eq. 7. An MD algorithm that fixes
the temperature of a system is called a “thermostat.” There are basically two
types of thermostat algorithms-deterministic (Nosé–Hoover) [49, 50] and stochastic
(Langevin) (see [51], and references therein). Although these two approaches are
based on different statistical–mechanical ideas, they share an important feature.
They both involve the introduction of effective forces representing the coupling
between the system and the external heat bath. Moreover, in both approaches, these
additional forces (albeit different) depend on the velocities of the particles. This
raises significant algorithmic problems because the new forces cannot be treated
similarly to the physical Newtonian forces that appear in the Verlet equations 44–
45 and depend on the positions of the particles only. The difficulties to use
the Verlet algorithm with velocity-dependent forces may be handled with certain
approximations that come at a high price: Most of the existing numerical schemes,
both for deterministic and stochastic thermostats, tend to exhibit significant time-
discretization errors that grow rapidly with the integration time step dt [52]. This
leads to both reduction in the efficiency of the algorithms (since they must be
run with a small time step) and also creates uncertainty about the accuracy of the
simulation results.

A major development in the field of MD integrators is the introduction of
an improved Langevin thermostat algorithm by Grønbech-Jensen and Farago (G-
JF) [51]. The G-JF thermostat provides robust (i.e., insensitive to variations in the
time step) and accurate configurational sampling of the phase space with larger
time steps than other algorithms. Langevin thermostats are based on the idea that
the coupling to the heat bath can be sampled by considering the dynamics of each
particle in the system to be governed by Langevin equation [53]

mr̈ = f − αv + β(t). (50)
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Langevin Eq. 50 is a stochastic differential equation, i.e., an equation involving
a non-deterministic term. Specifically, the third term on the r.h.s. of Eq. 50 is a
Gaussian white noise, β = (β1, β2, β3), with zero mean and delta-function auto-
correlation

〈
βm(t)

〉 = 0 ; 〈βm(t)βn(t ′)〉 = 2kBT αδ(t − t ′)δm,n. (51)

Together with the second term on the r.h.s., which is a friction force −αv, where
α > 0 is the friction coefficient, they account for the coupling of the system
to the heat bath that sets the temperature. Notice the appearance of the friction
coefficient in Eq. 51 that defines the statistical properties of the stochastic noise.
This connection between the friction and noise is a manifestation of the famous
fluctuation–dissipation theorem and is required for achieving the equilibrium
Boltzmann distribution [54]. When the friction coefficient vanishes, we are left with
only the first term on the r.h.s. of Eq. 50, which is the physical deterministic force.
In this limit, Langevin equation simply becomes Newton’s second law of motion.

The G-JF discrete-time integrator for Langevin equation reads

ri (t + dt) = ri (t)+ b

[
vi (t)dt + fi (t)

2m
dt2 + βi (t + dt)

2m
dt

]
, (52)

vi (t + dt) = avi + 1

2m
[afi (t)+ fi (t + dt)] dt + b

m
βi (t + dt), (53)

where the (damping) coefficients of the algorithm are given by

a = 1 − αdt
2m

1 + αdt
2m

(54)

and

b = 1

1 + αdt
2m

(55)

(−1 < a ≤ 1, 0 < b ≤ 1).8 At each time step, 3N independent random Gaussian
numbers (RGNs) must be drawn for the noise terms in Eqs. 52–53:

βi (t + dt) = (RGN1
i ,RGN2

i ,RGN3
i ) (56)

(one RGN for each Cartesian coordinate of each particle). The RNGs have zero

mean,
〈
RGNn

i

〉 = 0, and variance
〈(

RGNn
i

)2〉 = 2kBT αdt .

8 The Langevin dynamics of a single free particle (f = 0) is underdamped at time scales dt � m/a

(a, b → 1) and overdamped for dt � m/a (a → −1, b → 0).
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As noted above, in the absence of friction and noise (α = 0), the Langevin
equation coincides with Newton’s second law of motion, and the G-JF algorithm
Eqs. 52 and 53 reduces to the velocity Verlet Eqs. 44 and 45, respectively. This is true
for essentially all existing Langevin integrators. But in contrast to other Langevin
thermostats (with the exception of the BAOAB algorithm of Leimkuhler and
Matthews [55]), the G-JF integrator provides accurate and robust configurational
sampling for essentially any time step that is below the stability limit of the
method dts .9 By “accurate configurational sampling,” we mean that the simulations
generate a sequence of configurations that follow Boltzmann’s distribution law
Eq. 7. “Robust” means that the simulated distribution function does not become
distorted when the integration time step is increased. This unfortunate property of
other integrators causes the measured values of thermodynamic quantities of interest
(e.g., the average and standard deviation of the potential energy of the system) to
vary with the time step, especially when dt approaches the stability limit dts [52].

Finally, we return to the discussion in the previous subsection on the velocity
variables and the assessment of the system’s temperature via Eq. 46. For constant
temperature Langevin simulations, the question is whether the average kinetic
energy is equal to the assigned temperature T . In the case of the G-JF Eqs. 52–
53, the answer is no, but this does not invalidate the method since the purpose of
the simulations is correct configurational, not kinetic, sampling. Nevertheless, it has
been recently shown that the G-JF method can be written in the form of a leap-
frog scheme, with half-step velocity variables that do satisfy Eq. 46 to a high degree
of accuracy. In fact, there is no single leap-frog version of the G-JF integrator, but
infinitely many ways to define the half-step velocity in a manner that yields the
correct the kinetic energy [48]. One convenient definition is

vi (t + dt/2) = ri (t + dt)− ri (t)√
bdt

. (57)

All the different leap-frog G-JF schemes produce exactly the same spatial tra-
jectory as the velocity Verlet G-JF equations and, therefore, provide accurate
configurational sampling of the canonical ensemble in addition to accurate kinetic
temperature. They all reduce to Eq. 47 when the friction coefficient vanishes.

4.3 Multi-Scale Simulations

We arrive at the final part of this chapter that deals with the multi-scale nature of
membrane biophysics and the different computational models addressing the wide

9 Any numerical integration scheme becomes unstable and fails to follow the continuous-time
trajectory when the integration time step becomes dts � ω−1

0 , where ω0 is the largest vibrational
frequency of the system (the resonance frequency of the strongest interaction term).
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range of relevant length and time scales. As already discussed at the introduction of
this chapter, multi-scale modeling and simulations is a huge topic in contemporary
material science [56]. In biophysics, it is relevant not only to membrane simulations,
but also to more complex systems including proteins and other biological compo-
nents [57]. This subsection does not attempt to provide a comprehensive review of
the topic, but simply to explain the concept of multi-scale simulations. As the whole
chapter focuses on bilayer membranes, we choose a fairly simple model system of
membranes consisting of DPPC lipids and cholesterol, as an example to demonstrate
multi-scale studies.

In Sect. 2.5, we dealt with lipid rafts that are liquid-ordered nano-scale domains
enriched in saturated lipids and cholesterol (Chol) that are present on the cell mem-
brane. Because of the compositional complexity of the plasma membrane and due
to experimental difficulties, the biophysics of such domains has been mainly studied
on simple model systems consisting of a small number of components. The simplest
model system featuring liquid-ordered domains is that of a binary mixture of Chol
and the saturated lipid DPPC. The phase diagram of DPPC/Chol mixtures, which is
shown in Fig. 10, was established theoretically [58] and experimentally [59] more
than 30 years ago. A pure DPPC membrane (without Chol) undergoes a first-
order melting transition at Tm � 314K from a gel to a liquid-disordered (Ld )
phase. At high Chol concentration (above Chol mole fraction of about 0.25), the
membrane is found in the liquid-ordered (Lo) phase. The interesting part of the
phase diagram is at intermediate Chol concentrations, especially above the melting
temperature, where coexistence between two liquid phases, Lo and Ld , is observed.
This two-phase region has attracted much attention because it resembles the picture
of liquid-ordered rafts in biological membranes (which are far more complex in
terms of their lipid composition and the fact that they also contain certain proteins)
and the surrounding sea of fluid lipids.

The biophysical mechanisms contributing to the formation of the domains
are still under debate, and it is clear that their understanding requires detailed
information about the structure of the liquid-ordered domains. This information
can be obtained from atomistic simulations where each atom in the system is

Fig. 10 The phase diagram
of mixtures of DPPC lipids
and cholesterol
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explicitly represented. The force fields in these simulations are empirical and
include summation over excluded volume interactions, bonded forces (chemical
bonds), bond angles, and non-bonded forces (van der Waals and electrostatic
forces) [60]. The currently available computing power makes it possible to conduct
atomistic simulations of lipid patches consisting of the order of 1000 amphiphilic
molecules on time scales of several microseconds, which is sufficient for equilibrat-
ing and sampling these systems at the investigated length scale. Figure 11 shows
snapshots from atomistic simulations of DPPC/Chol membranes performed with the
GROMACS package, demonstrating their utility as a “computational microscope”
with atomic resolution [61]. A word of caution should be made here that one must
always question the reliability of atomistic simulations since they are not based
on ab initio quantum mechanical calculations but rather on empirical force fields
that may need to be tuned in certain systems or may simply not work properly.
This warning is relevant to the specific example discussed herein, where many of
the simulations are performed in the proximity of phase boundaries. Close to phase
transitions, thermodynamic systems tend to be highly susceptible to variations in the
intermolecular interactions, which also highlight the importance of setting correctly
the temperature and pressure of the simulations.10 The most interesting observation
in the atomistic simulation results here is the distribution of lipids and Chol in the
Lo phase, which appears to be very heterogeneous. More specifically, the atomistic
simulation results show that the Lo domains consist of smaller gel-like hexagonally
packed clusters of lipid chains, surrounded by liquid domains of ordered chains
that are rich in Chol especially along the domain boundaries. Similar patterns of
“nano-structures within nano-domains” have been speculated based on experimental
neutron scattering data [63] that, in contrast to the simulations, do not provide direct
visualization of the investigated membranes.

The size of the simulated system in Fig. 11 is �20 nm, which is smaller than the
size of most liquid-ordered domains in the system. This means that the atomistic
simulations provide a glimpse into the internal structure of the Lo state, but they
cannot show their dynamics and morphologies on the whole membrane scales. In
order to see the larger-scale picture, we must employ CG models that are not based
on computationally expensive atomic-level descriptions. Many CG models have
been developed over the past twenty years for this purpose. Generally speaking, CG
models can be divided into two, very distinct, classes. One class includes models
attempting to mimic specific lipid systems. By far, the most popular model in this
class is the MARTINI force field [64]. The idea in these kinds of models is to group
several atoms into a “unified” particle. For instance, a water molecule of three atoms
can be represented by a single “water particle.” Similarly, in the hydrophobic tails

10 Many simulations are conducted in the isobaric–isothermal ensemble, which differ from the
canonical ensemble in that the pressure rather than the volume of the system is fixed. Algorithms
for fixing the pressure in MD simulations are called “barostats,” and they suffer from similar
implementation problems to thermostat algorithms. A relatively robust G-JF barostat algorithm,
which is based on concepts used for the derivation of the G-JF thermostat, has been presented
in [62].
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Fig. 11 Side and upper
views of a bilayer composed
of DPPC lipids and Chol,
taken from atomistic
simulations in the Ld + Lo
coexistence region of the
phase space. In the side view,
DPPC is shown in cyan and
lime, and Chol in white.
Water, ions, and lipid chain
hydrogens are omitted for
clarity. Red and blue boxes
highlight disordered and
ordered regions, respectively.
In the upper view, DPPC
chains and Chol are shown in
green and orange,
respectively. Here, one can
see that the Lo domain
consists of smaller gel-like
hexagonally packed clusters
of lipid chains. Reprinted
from [61]

of the lipids, a group of three carbon atoms and their associated hydrogens are
often represented by a single “hydrophobic unit.” Fig. 12 shows a snapshot from
CG MARTINI simulations of mixtures of Chol (red) with the hybrid POPC lipid
(yellow). The simulations were also carried with the GROMACS package for MD
simulations. The snapshot in Fig. 12 consists of about 6000 molecules and is in the
Ld phase, which explains why the distribution of Chol is relatively homogeneous.

In the previous paragraph, a comment was made that the results of atomistic
simulations should be taken with caution. This warning is even more relevant
to CG simulations because there is no systematic way to know which atoms
should be unified and what are the effective interactions between the CG particles.
This explains why sometimes MARTINI simulations exhibit inconsistencies with
atomistic simulations of similar system [66]. One particular problem is the chain
entropy, which is heavily involved in the phase transition but is not properly
represented when using a smaller number of effective beads.

The second class of CG models involves a higher degree of abstraction and is
termed generic, in the sense that they do not focus on specific lipids but rather
on the mechanisms and biophysical driving forces governing the thermodynamic
behavior of membranes. In these models, the lipids are typically described as short
chains (oligomers) of hydrophilic and hydrophobic beads, which are connected
to each other via spring-like potentials. Many generic membrane models are
implicit-solvent ones, where water is not included in the simulations, and, instead,
non-bonded attractive interactions between the hydrophobic beads that mimic the
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Fig. 12 A snapshot from MARTINI simulations of a bilayer consisting of POPC lipids (yellow)
and Chol (red) at molar fractions 0.6 and 0.4, respectively. The total number of amphiphilic
molecules in the system is ∼6000. © 2015, American Chemical Society. Reprinted from [65]
with permission

hydrophobic effect are introduced [67–70]. The advantage of these models is clear
considering that the majority of particles in membrane simulations with explicit
solvent are solvent particles. Another elegant way to reduce the computational load
is to introduce “phantom” solvent, where the solvent particles interact repulsively
with the hydrophobic particles, but do not interact with each other [71]. Using this
approach, Meinhardt and Schmid [72] simulated a very large membrane of 20,000
amphiphilic molecules (lipids and Chol), featuring both small and large Lo domains
(see Fig. 13). The distinction between small and large domains is possible because
of the large scale of the generic CG simulations. In the case of the large domains,
the side views of the simulated membranes show proliferation of line defects at the
boundaries between the Lo and Ld phases. In these defects, the lipids are tilted
with respect to the normal direction of the membrane plane, in a manner resembling
the ripple phase that sometimes emerge in one component lipid membranes near
the gel–liquid-disordered melting transition [73]. In the case of the small domains,
the simulations indicate that they may be stabilized due to the difference in the
spontaneous curvatures of the membrane monolayers in the Lo and Ld , which
generates tension that breaks large domains into smaller ones.

The computationally cheapest class of CG models, which offer the highest
degree of abstraction while still retaining some molecular character (i.e., excluding
continuum models), are lattice-based models. In lattice simulations, the membrane
is modeled as a lattice whose sites are occupied by points that represent the chains
of the lipids and the Chol molecules. The “chains” can move into empty sites or
exchange their places with other “chains,” but this is not done with MD algorithms
that only work for models where the particles move continuously in space. Lattice
models are discrete, and their simulations are performed with Monte Carlo (MC)
algorithms that move the points between the lattice sites in a manner ensuring proper
sampling of the configuration phase space [44]. While lattice models appear to be
a gross simplification of real molecular systems, they actually have an enormous
role in statistical physics. The gas–liquid condensation transition, for instance, has
been largely studied using the simple “lattice gas” model, where each molecule
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Fig. 13 Snapshots from generic CG simulations of a bilayer consisting of 20,000 amphiphilic
molecules. Lipids and Chol are plotted in green/yellow and dark blue/light blue, respectively.
© 2019, Royal Chemistry Society. Reprinted from [72] with permission

is represented by an occupied lattice site [74]. The transition is driven by short-
range attractive interactions between particles occupying nearest-neighbor sites. The
model is equivalent to the famous Ising model of magnetic materials, where on each
site there is a spin pointing either “up” or “down,” with a favorable interaction
energy between two nearest-neighbor spins with the same orientation [74]. It
is, therefore, not surprising that phase transitions and coexistence in lipid/Chol
mixtures have also been studied via this approach [19]. The attractiveness of
lattice simulations lies not only in their computational simplicity, but also in their
minimal nature that puts the focus on the essential physical factors and mechanisms
governing the thermodynamic behavior of complex systems. Figure 14a shows
a snapshot from recent lattice simulations of DPPC/Chol mixtures, showing Lo
domains floating in a Ld matrix. The lattice consists of almost 17,000 sites-
equivalent to a linear system size of a few tens of nanometers. In contrast to
MD where the time is measured in physical units (typical time steps in atomistic
membrane simulations, for instance, are of the order of a few femtoseconds),
in MC simulations, the time is measured in non-physical MC time units. An
MC time unit is usually defined as a sequence where each particle experiences
one (or a few) move attempts. MC times can be compared to physical ones by
measuring quantities such as the diffusion coefficient of the lipids and comparing
them to experimental data. Based on such an approach, we estimate that the lattice
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Fig. 14 (a) A snapshot from lattice simulations of DPPC/Chol mixtures in theLd+Lo coexistence
region of the phase space. The lattice size is of nearly 17,000 sites. Ordered and disordered lipid
chains, cholesterol, and empty sites (voids) are colored in green, blue, red, and white, respectively.
(b) Zoom-in view of the region marked by a black box in (a). Reprinted from [75]

simulations presented in Fig. 14a are performed on time scales of hundreds of
microseconds. On these macroscopic time scales, we can see the morphological
dynamics of the domains, including their formation and disappearance. In the
simulations, each site is occupied by either a saturated DPPC chain, a Chol molecule
(red), or be empty (white) representing a small area void. Each lipid chain can
be in one of two states-ordered (green) or disordered (blue). The model fully
explains the formation of Lo domains via the following interactions: The disordered
(d) state is entropically favored by a free energy Fd = −�dkBT compared to
the ordered (o) state, but two nearest-neighbor chains in the ordered state have
interaction free energy of Foo = −εoo representing the favorable packing of chains
in this state. This competition between the entropic and enthalpic contributions to
the free energy is responsible for the melting (gel to Ld ) transition of the DPPC
membrane. Cholesterol (c) interaction free energy with a nearest-neighbor ordered
chain is equal to Fco = −εco, where |εco| < |εoo|. This term reflects the “duality”
of the Chol, which tends to induce ordering of the chains but also disrupts their
efficient packing with each other. Importantly, the simulations are conducted on a
single planar lattice, which means that the observed domains are stabilized without
curvature-related effects. Curvature energy can be introduced into the model by
assigning, to each lattice site, an additional degree of freedom representing vertical
displacement, and considering a discretized Helfrich Hamiltonian [76].

The model simulations accurately reproduce the phase diagram of the system,
presented in Fig. 10. The most striking observation of the lattice simulations is
the local structure of the Lo phase revealed when one zooms into the simulation’s
snapshots (Fig. 14b). The distribution of lipids and Chol exhibits remarkable simi-
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larity to the distribution observed in atomistic simulations (upper view in Fig. 11).
Specifically, we see in Fig. 14b the gel-like hexagonal clusters that are surrounded
by Chol-rich regions at the interfaces with the Ld regions. This agreement with the
atomistic simulations lends credibility to the minimal biophysical picture underlined
by the lattice model. The multi-scale picture provided by the lattice simulations
presented here is unprecedented in terms of the wide range of length and time
scales. At the same time, the picture is also limited in the sense that, contrary to
atomistic and MARTINI simulations, it gives almost no information on the chain
configurations or structure of the domain interfaces. The message to take here is
the utility of the different modeling approaches, from the atomistic simulations
to the highly CG ones, and the importance of integrating them into a full, multi-
scale physical picture. This is a great challenge in many areas of material science,
including membrane biophysics.
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Self-Organization of Tissues Through
Biochemical and Mechanical Signals

Georgios Misailidis, Jaroslav Ferenc, and Charisios D. Tsiairis

Abstract Self-organization enables the emergence of patterns in systems without
the need of an external causal agent. Instead, the interactions and the properties of
the units that constitute the system secure their organization in time and space. At
the level of multicellular systems, the power of self-organization is prominent in
embryogenesis and has been central in the study of in vitro developing organotypic
cultures. We examine the self-organization of two multicellular systems, the
cnidarian Hydra and the presomitic mesoderm of mouse embryo. In both cases,
random aggregates of cells achieve spatial pattern around emergent organizers,
characterized by high levels of Wnt signaling. Mechanical signals are involved in
the process of both systems and they participate in a choreography that requires
cell activity coordination. This is especially relevant for the presomitic mesoderm
cells where synchronized gene expression is achieved. In both systems the ability
to achieve patterning is stemming from the way cells interact and communicate,
making possible the extraction of general rules that link biological with other self-
organizing systems.

1 Introduction

The presence of structure and order in natural systems poses the question of the
pattern’s origin. Very often the cause is attributed to an agent outside the system that
gets patterned. This agent does not have to be an external instructor, as blueprints,
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pre-patterns or a pre-calculated and finely orchestrated plan can be used. While an
explanation emerges, the question is then asked at a different level leading to an
infinite regress of causes or in some cases leads to closed circular cause and effect
chains reminiscent of a chicken-and-egg problem. Clearly, a form of an organizer
of the pattern, a type of a leader, can instruct the remaining elements of the system
to get patterned. However, this only leads to the question of how such an organizer
is selected. If it is determined by an external factor, the ultimate cause is outside
the system. An escape from these traps is offered by assigning the cause of the
patterns inside the organizing system and a self-contained explanatory narrative has
to trace the emergence of an organizer in the system itself. It is indeed possible to
achieve pattern in a system exclusively due to the properties and interactions of its
elements. Self-organization is a process in which a set of elements with well-defined
characteristics and some random arrangement interact, modify their properties, and
end up in a fixed configuration [1].

1.1 Self-Organization in Biological Systems

In biological systems, self-organization is observed at almost any organization
scale. In fact, the philosopher Kant has described life as self-organizing and self-
reproducing process [2]. Simple molecular systems generate patterns in space or in
time. When microtubules and dynein molecules are mixed under proper conditions,
microtubules are organized in asters, with all their minus ends collected together [3].
The circadian rhythm of cyanobacterium Synechococcus elongatus relies on the
periodic phosphorylation of KaiC protein. It has been shown that a mixture of KaiC
with KaiA and KaiB proteins, supplied with adenosine triphosphate, can recapitulate
the periodic phosphorylation of KaiC [4]. In this case, the 24 h period cycle in the
KaiC state is exclusively emerging as the result of the way the protein components
of the system interact. Complex patterns with traveling waves appear on lipid
membranes as the proteins MinD and MinE bind and unbind [5]. Normally, these
waves travel along the E. coli bacteria and localize the division plane in the middle
of the long axis. It has been shown that such spatiotemporal patterns can emerge
in artificial systems through the interaction of the proteins [6]. It is noteworthy
that these systems share similarities with chemical systems, where reactions and
diffusion of intermediate products lead to spatiotemporal patterns as the case of
Belousov-Zhabotinsky reaction shows [7].

At the level of organism populations, the concept of self-organization has been
successfully applied to understand the behavior of social insects [8]. The elaborate
termite nests emerge through self-organization from the local interactions between
individual termites, via pheromones, and mud properties [9]. Self-organization is
further a general phenomenon in social insects and ants encompassing multiple
aspects of the colony’s behavior, like foraging activity, coordinated defense, etc., and
which emerge from the interaction of individual members [10]. In other animals a
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characteristic self-organization pattern is seen during swarming and flocking. There
the behavior of individual is aligned with every other member of the group, so that
they manage to move en masse [11, 12]. Artificial robotic systems are able to achieve
swarming following the same principles as animals [13].

From the different levels of biological organization, we will focus on the one
of the cells, the units of life, and the way they get organized into tissues. Self-
organization of cellular systems is currently at the frontline, as the study of
organoids is increasing steadily [14]. Organoids are 3D cultures that recapitulate
the organization and physiology of organs. Very often the cells achieve the proper
tissue organization de novo, under uniform culture conditions, offering a clear case
of self-organization. The first such system to be described is the intestinal organoid
system [15]. It is noteworthy that these organoids, recapitulating the organization
unit of the gut, start from single cells. As each cell divides, the group arranges
around a hollow lumen which over time breaks its symmetry and a special type
of organizer cells emerge [16]. The way the symmetry is broken and the organizer
spontaneously emerges is under intense study [17]. It is, however, clear that the
communication and interaction between cells allows some to change their state
towards organizers of the ensuing pattern.

As organoids developed to resemble more and more organs, an interesting type
of self-organizing cultures emerged, attempting to recapitulate not the structural
and functional organization of an organ but of an entire organism. Gastruloids are
a new approach towards these directions, where undifferentiated embryonic cells are
aggregated and left to develop under proper culture conditions in order to establish
the main embryonic tissues [18]. In these systems the key step appears to be the
spontaneous emergence of a group of cells with the properties of an organizer. The
uniform clump of cells changes to an elongated shape when the cells on one pole of
the sphere change their identity and signal to the other cells initiating a domino
of events that resembles the embryogenesis event sequence. The organizer cells
express genes that are associated with the Wnt communication cascade [19].

As is the case with any self-organizing system, the center stage belongs to
the way the members of the group exchange information about their status and
how they update their status upon information reception. Variable signals that can
originate from random noise can trigger positive feedback loops when a specific
state is enhanced further through a chain of mediating events. Alternatively, negative
feedbacks can restrict a state or limit it to fewer members of the group. In this case,
a chain of events leads to an inhibition of the original trigger. While these can serve
as general principles, it is worth examining how they are materialized in the case of
cellular systems, as the exact realizations point to opportunities and limitations.

A cell’s state, its properties, reflects the exact proteins that it employs and the
amounts of these proteins. The part of the genome that is expressed in a cell
determines its fate. Thus, a cell state can be thought of as a position in the space
of gene expression. The enthusiasm over the single cell sequencing technologies
stems largely from their ability to place each cell in this space. Combined with
temporal information, it is now even possible to have trajectories of cell identity
changes in the gene expression space [20]. Under this lens, self-organization of cells
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is the spontaneous acquisition, through trajectories that may or may not be fixed,
of a precise constellation of cell identities enabling the functionality of the group.
It is important to point out that the events unfolding in the organization process
depend on the fact that cells in a group are never exactly equivalent. Moreover, they
communicate in a way that can nudge the information receivers towards specific
trajectories or differentiation paths.

The state of a cell is variable. Even cells of the same type are never identical. The
variability is driven by external but also internal factors. Each cell has an individual
microenvironment occupying a physical location not equivalent to any other. More
importantly, the internal biochemical workings in a cell are subject to noise and
randomness of processes with a discrete nature. When cells divide, the distribution
of molecules is random and thus cannot be expected to be exactly equal. This effect
becomes more pronounced for molecules that are in low abundance. The process
of gene transcription is also of a noisy nature. In fact, the promoter structure itself
facilitates gene expression variability between genetically identical cells [21]. Thus,
a population of cells is never uniform, and this variability can be further amplified
through communication between them.

Cells exchange information with a plethora of ways employing chemical,
electrical, and mechanical signals. The biochemical signals are usually proteins or
small molecules that are secreted or presented to the external environment of the
signaling cell. The signals’ properties, and the environment determine how far is the
physical distance that it can span. Diffusion is often at play and drives the signal
away from the source in a signaling gradient. Sometimes the signal impacts directly
the immediate neighbor, especially if it is bound or tethered to the membrane. On
the receiving end, the cell should have the proper detectors, which are the receptor
molecules on the cell surface. Very often, the arrival of the signal initiates a cascade
of events that, after the activation of different nodes, leads to transcription of genes
and the corresponding update of the cellular state. It may have been expected that
signals would be extremely numerous reflecting the different outcomes on cell
behavior. Surprisingly, a handful of biochemical signaling cascades are employed
throughout the biological world. Some of the most widely used ones that will
be a focus of further analysis are the Wnt, FGF, and Notch signaling cascades.
The evolution of these communication avenues parallels the evolution of complex
multicellular organization [22].

Signals can also have the form of electricity, through ions, or mechanical
forces. For example, epithelial sheets of cells maintain connectivity of the cells
via tight junctions. These contain pores constructed by multimers of the protein
connexin that enable the transport of small molecules and ions. The charged
ions can change the electric polarity of cell membranes and activate signaling
cascades inside the cells leading to gene transcription changes [23]. Forces of
mechanical nature are also transmitted within and between cells and are rendered
into gene expression changes. Cells are probing their environment’s stiffness and
sense whether they are surrounded by other cells, being pushed or pulled. The
intracellular cytoskeleton operates as an integrator of the mechanical forces [24].
One of the most common downstream mediators of mechanical signals is the protein
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Yap which, when phosphorylated, is not able to enter the cell nucleus and drive
gene expression. Yap phosphorylation is inhibited, for example, when cells are
stretched or encounter a stiff substrate, and this enables Yap to drive gene expression
in response to mechanical stimuli [25]. In all these cascades, there is always a
point where mechanical forces are transformed into biochemical events, mostly
by a conformational change caused in a protein due to mechanical changes. The
piezo cell membrane channels operate in this way as they are open upon mechanical
stretching of the membrane, enabling flow of ions and initiation of a biochemical
chain of events leading to the cell nucleus [26].

Since the communication cascades are not insulated, it is important to realize that
a significant crosstalk exists as pathways share nodes or modulate other signaling
cascades through feedback interactions. A case relevant for the subsequent analysis
is the protein β-catenin, important both for the Wnt signaling cascade and the ability
of cells to transmit forces with their neighbors through cytoskeletal links [27]. The
arrival of Wnt signals drives β-catenin to the nucleus, where it links transcription
factors to transcriptional activators, thus initiating transcription of Wnt signaling
target genes. At the same time, epithelial cells are connected through adherens
junctions where β-catenin participates as a glue linking the junction complexes with
actin filaments of the cytoskeleton [28]. Another example of a context-dependent
outcome of a signaling event is the proliferation response of cells upon EGF
stimulation, which is dependent on their density [29]. Thus, the effect of a signal
on a cell state does not only depend on the signal identity but also on the current
cellular state through a complex web of intra- and intercellular interactions.

Overall, the picture that emerges for the self-organization of cells into tissues
is one of a progressive cell state update based on the information received on the
state of the other cells. It is noteworthy that this mirrors theoretical exercises on
the behavior of units termed cellular automata [30]. Here, fixed positions on a 1D
or 2D grid can have a value, usually 0 or 1. In discrete time steps, each position’s
value is updated depending on the values in the neighborhood. Such simple systems
are able to reach self-organization into complex patterns at the level of the field,
following simple deterministic rules on the ways the values are updated [31]. One of
the most studied automata is termed “game of life” and in a 2D lattice each position
can take values of 0 or 1. At every time step a position maintains value 1 if there
are 2 or 3 neighboring positions with value 1. Otherwise, it switches to 0. A position
with 0 switches to 1 if 3 out of the 8 immediate neighboring positions are 1. Such
simple rules can generate patterns from initial randomness [32]. Importantly, these
approaches highlight the possibility of generating order following abstract rules that
may be materialized in various systems through different mechanisms. The essence
of these games captures the fundamental principles of group patterning that emerges
through cell interactions and updates of their genetic identity.

For the remaining of this chapter, we will focus on two multicellular systems
that manage to get organized. They can serve as case studies to demonstrate the
principles and the complexity in action. Cells of the simple cnidarian Hydra can be
assembled in a clump and get re-patterned into a new complete animal. The spatial
organization of the Hydra cells along a single main body axis requires the cells
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to break their symmetry and establish an organizer that orchestrates downstream
patterning events. The second system is separated from Hydra by 600 million years
of evolution and has to do with the way mammals and other vertebrates generate the
sequential pattern of bones that give them their name, the vertebrae. The embryonic
tissue that produces the segments later forming the vertebrae is patterned in space
and time and has the ability to self-organize when the cells are randomly mixed.
Organizers that are marked by high levels of Wnt signaling production emerge in
both systems.

2 The Hydra Model System

The freshwater cnidarian Hydra is an evolutionarily ancient organism with one
of the simplest body plans among multicellular animals [33]. Its body resembles
a tube with two ends that define the two poles of its single body axis (Fig. 1a).
The oral (upper) pole consists of a mouth opening (hypostome) surrounded by
tentacles, which the animal uses to catch prey. Once the prey has been digested
inside of the body cavity, the mouth also serves as the exit route for undigested
leftovers. The opposite site of the axis (aboral pole) consists of structures specialized
for attaching the animal to the substrate and is termed the foot and basal disc.
Two layers of epithelio-muscular tissues (ectoderm and endoderm, also known
as epidermis and gastrodermis), separated by a thin layer of extracellular matrix
(mesoglea), constitute the body wall [34]. Apart from the epithelia, the Hydra body
also contains a third cell lineage known as the interstitial cells (i-cells) [35], which
give rise to a variety of cells types, such as neurons, gland cells, germ cells, and the
stinging cells (nematocytes) used to paralyze prey. Even though capable of sexual
reproduction, these animals predominantly reproduce asexually by budding [36].
During this process, a miniature daughter Hydra forms perpendicular to the parental
body column and, once fully developed, detaches from the parent and continues
living freely. Interestingly, budding only happens in a spatially restricted region
adjacent to the foot, known as the budding zone. Unlike in more complex organisms,
the majority of Hydra cells are not terminally differentiated [37]. The whole body
has a high cell turnover, similar to quickly renewing mammalian epithelia (e.g. gut
or skin). Cells in the body column are constantly dividing and moving towards the
extremities, where they terminally differentiate, and eventually die and are replaced
by newly arriving cells. Thanks to such a big pool of stem-like cells, Hydra is
capable of extensive regeneration. This property was first noticed and investigated
by Abraham Trembley as early as in the eighteenth century, marking the dawn of
experimental biology [38, 39].

Transplantation of tissue pieces from one individual to another one is easy to
perform and allows altering the body architecture in a controlled manner. Such
manipulations served as a powerful tool to gain insights into the principles of
patterning, such as the first identification of a biological organizer, the hypostome of
Hydra [40]. This small group of cells around the mouth opening controls patterning
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Fig. 1 The Hydra model system and biochemical cues for its patterning. (a) The morphology of
Hydra body. Grafting experiments demonstrate head activation (b) and inhibition gradients (c)
(adapted from [42, 43]). The ability to generate an ectopic head is higher in grafts originating
closer to the oral pole (b), but the location of the graft within the host body influences the
ectopic head formation success. Positions closest to the host head have the highest inhibitory
potential, suggesting a head inhibition gradient (c). (d) An example of an ectopic head (arrowhead)
generated by Wnt3-primed tissue transplanted from another animal (fluorescently labelled in
green). (e) Schematic of the reaggregation experiments (adapted from [46, 47]) that demonstrated
the self-organizing capabilities of the body column cells. The tissue is mechanically dissociated and
the cells then reaggregated into a clump by centrifugation. After reestablishing the original tissue
layers, the resulting hollow spheroid will spontaneously break symmetry and regenerate a new
head. As shown in later work [48], localized expression of Wnt signaling ligands is the hallmark
of molecular symmetry breaking before any noticeable morphological changes. (f) Summarizing
the Gierer Meinhardt model with the equations adapted from [49] describe the spatiotemporal
changes of activator (a) and inhibitor (h) whose production rates are ρ, degradation rates μ, and
diffusion coefficients D. Both the activator and inhibitor peak in the organizer region (black dot)
with the activator prevailing there. However, in the body column, head inhibition prevails. Note
that if the animal is big enough, a second peak can occur (dotted lines), which would be the
basis for ectopic axis generation during budding. (g) A Wnt3-overexpressing animal with a typical
multiheaded phenotype. Even though Wnt3 is uniformly expressed at high levels throughout the
entire ectoderm, the head organizer program is still only activated in discrete areas (although
several of them). (h) Examples of gene expression profiles (max normalized) along the body axis.
Some genes (left) have a spatially narrow expression domain, such as WNT3 in the head, the
peroxidase PPOD1 in the foot, or the signaling factor FGF1 in tentacles. Other genes, such as SP5,
DKK, and GATA3, are expressed in a graded fashion (right). Data from [79]
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through biochemical signals. When it is transplanted into the body column of
another animal, it induces an ectopic head formation and thus generates an ectopic
body axis perpendicular to the recipient’s body. Importantly, the new head is
predominantly composed of the host cells, which respond to the presence of the
grafted organizing center [41]. Subsequent experimental work has also shown that
even transplanted pieces of the body column can sometimes form an ectopic head.
Interestingly, the ability to establish a new head when grafted is the strongest in
pieces originating close to the head and decays as a function of distance from it
(Fig. 1) [42]. Conversely, positions far away from the head in the host animal are
the most conducive for ectopic head formation, while next to an existing head the
probability of such event is negligible (Fig. 1c) [43]. Thus, both the head activation
and the head inhibition capacity of the body tissue peak close to the existing head
and decrease towards the aboral pole (Fig. 1b–d).

As mentioned above, Hydra can regenerate missing parts. Thanks to the stem-
like state of the majority of body cells, the regeneration process mostly relies on
cell specification and movement without the need for dedifferentiation or significant
proliferation and tissue growth (for a more detailed recent review of Hydra as
a regeneration model see [44]). When bisected in the middle, the upper half of
the animal will regenerate the missing foot at the injured site, while the lower
half will regenerate a head, producing two complete half-sized animals. Thus, the
missing organizer can also be established de novo under these conditions. Since
the regeneration of bigger body pieces preserves the original polarity, it has been
hypothesized that morphogenetic gradients spanning the entire body act as guides
for proper positioning of regenerating structures [45]. However, even very small
pieces (about 1/20) of the body are capable of regenerating a full animal, which
suggests that the entire body pattern can be reestablished de novo even without
the contribution of gradients. This prediction was indeed experimentally confirmed
by dissociating and reaggregating the body column cells [46, 47]. Cells in such
a reaggregate first sort into the two epithelial layers, while also transforming the
clump into a hollow spheroid. Spontaneous symmetry breaking then follows and
the spheroid establishes one or several new body axes (Fig. 1e). The number of
emerging heads depends on the size of the aggregate, suggesting an intrinsic spatial
scale of the patterning process [48]. Remarkably, Hydra cells rebuilt the animal
purely through self-organization without the addition of any external signals, which
is often required for similar biological models, such as organoids.

2.1 Biochemical Stimuli and Models of Patterning

Along with the experiments uncovering the foundations of Hydra patterning, a
theoretical framework developed by Alfred Gierer and Hans Meinhardt (GM model)
sought to formalize the observations into a coherent mechanism that would bridge
the results from different approaches using a reaction-diffusion system [49]. It
postulates two chemical morphogens (head activator and head inhibitor) produced
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by the organizer that diffuse into the body, generating gradients. The activator
is a less diffusive molecule, providing local activation and positive feedback,
while the inhibitor diffuses further away and generates long-range inhibition and
negative feedback (Fig. 1f). The activator increases both the production of itself
and the inhibitor, the inhibitor in turn reduces activator production. Based on other
experimental results [43], the two morphogens are also assumed to have different
stability (activator being more stable than the inhibitor). This simple framework
can successfully explain the homeostatic morphology of the animal. Moreover, the
inherent pattern length scale, dictated by the morphogen diffusion properties, would
also account for the dependence of the number of emerging heads on the size of
the reaggregate or the need for a freshly budded Hydra to grow first, before being
capable of budding itself. Additionally, the GM model introduces morphogen source
density, which is graded in the same way as a particular morphogen but less dynamic
than its concentration. This could correspond, for example, to the presence of certain
morphogen-induced cell states, which would form a positional identity gradient
persisting even after removing the morphogen source. Such a gradient could then
be responsible for maintaining the polarity during regeneration.

The elegance of the GM model and its ability to explain a wide range of
experimental observations have served as a catalyst for efforts trying to identify
the hypothesized morphogens. Even though many pioneering studies were looking
for the head activator in extracts of small peptides from the Hydra body [50, 51],
the most promising candidate turned out to be the Wnt3 protein [52]. This protein is
a secreted ligand of Wnt signaling—a conserved cell communication pathway that
originated along with the origins of multicellularity in animals [53]. Consistently,
Wnt signaling was found to be crucial for specifying the main body axis of
Hydra [54], as it does in most other multicellular animals [55]. Not only is the
Wnt3 gene expression specific to the organizer cells, but also marks the spots of
future heads in reaggregates before any morphological changes occur [48]. Wnt3
expression is also crucial for head regeneration [56] and, when ectopically induced,
leads to ectopic head formation [57].

Once Wnt3 was accepted to be the head activator, the search for head inhibitor
also concentrated on homologs of endogenous Wnt signaling inhibitors. The first
promising candidate was the Dkk protein, a competitive inhibitor of Wnt binding
to its receptor [58, 59]. While this small, secreted protein could act as a diffusible
morphogen, its expression pattern in the body does not correspond with the model
prediction because it peaks in the body column and not in the hypostome itself (see
example expression patterns of selected factors in Fig. 1h). Another, more recent,
candidate is the transcription factor Sp5, which inhibits the expression of Wnt3 yet,
at the same time, is positively regulated by it [60]. When Sp5 is downregulated
artificially, it phenocopies the Wnt3 activation phenotype of ectopic head formation.
It is also expressed in a graded manner along the body column with a peak in the
hypostome region; however, as a transcription factor, cannot diffuse between cells.
Moreover, although the ectopic head phenotypes of a homogenous Sp5 suppression
or Wnt3 activation clearly show their crucial role in head specification, they are not
consistent with the GM model. According to the theoretical predictions, only the
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diffusive properties of the morphogens, but not their concentrations, can influence
the pattern spacing [61]. Thus, despite decades of efforts, no molecules were found
that would precisely fit the bill of head activator and inhibitor as outlined in the
GM model. Conversely, any following theoretical work also now has to take into
account the uncovered parts of the molecular network underlying head formation.
Can these observations be reconciled with the original GM idea?

Perhaps the simplest way would be to consider the Wnt3/Sp5 feedback loop to
be downstream of the actual morphogens, which remain unknown. In this case,
the genetic network would function predominantly as a readout of the patterning
mechanism, possibly establishing the source density gradient. Alternatively, several
different modifications of the GM model try to accommodate the known molecular
players as a part of the patterning mechanism. For example, by adding additional
loops of slow- vs. fast-diffusing Wnt3 [62], having Wnt signaling control a compe-
tence gradient that decides which patterning centers will manifest as heads [63], or
separating Wnt signaling and its main mediator β-catenin into two interconnected
loops [64]. It would also be possible to consider a different realization of the long-
range inhibition, such as the activator-depleted substance model, briefly introduced
by Gierer and Meinhardt in their original work [49]. In this case, the axial pattern
of Dkk would make it a good candidate to be such a substrate. While all of
these models represent interesting conceptual developments, their assumptions and
predictions also require careful evaluation, focusing on experimental setups that
could distinguish between them. Yet another option would be abandoning the
biochemical GM model in favor of a different mechanism. One of the proposed
avenues are several mechano-chemical models, which either operate with local
mechanical properties, such as curvature [65], or include tissue mechanics as a
long-range factor, for example, taking tissue strain or stress into account [66].
Furthermore, recent experimental evidence indicates the presence of both of these
mechanical influences in the Hydra patterning mechanism, hinting that taking a step
beyond its purely biochemical understanding will be necessary.

2.2 Mechanical Stimuli During Patterning

A characteristic example highlighting the impact of mechanical properties is the
finding that the orientation and topology of supracellular actin fibers can influence
the organizer positioning in regenerating Hydra [67]. These structures are found
close to the mesogleal attachment of both epithelial layers and serve as a substitute
for specialized muscle cells. The actin cables in each cell within the same tissue
layer have a matching orientation, enabling a directional contraction of the entire
body wall. The ectodermal fibers run parallel to the body axis, while the endodermal
fibers are perpendicular to it, creating circular “muscles” used for expelling the
content of the body cavity. Importantly, the ectodermal fibers come together in aster-
like structures at the poles of the body axis (Fig. 2a). When a small piece of the
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Fig. 2 Tissue mechanics in Hydra patterning. (a) Phalloidin staining reveals the organization of
supracellular actin fibers in the head region of a Hydra. Ectodermal fibers (ec) run parallel to
the axis and coalesce in the mouth (asterisk). Endodermal fibers (en) run perpendicular to them.
(b) In rectangular pieces cut from the animal’s body axis, the actin filaments remain at least
partially intact and two poles with coalescing fibers are generated by tissue folding. They appear
to bias the organizer positioning [71]. However, rather than directing the organizer positioning
per se, the actin fiber network seems to modify the mechanical properties of the tissue, since the
organized actin network is not necessary for organizer emergence. Indeed, upon reaggregation actin
filaments begin to reappear in random conformations without global alignments (c). Symmetry
is nevertheless broken, and the fibers subsequently reorganize to coalesce at the site of the
new organizer (after [69]). Mechanical oscillations are evident during Hydra patterning as the
spheroid’s radius changes over time (d, black line). The oscillation pattern changes at the time
of symmetry breaking (red asterisk). Since these oscillations are osmotically driven, in higher
osmolarities (e.g. in media with added sucrose, NaCl, or sorbitol), the spheroid inflation slows
down proportionately to the osmolarity increase (d, blue line) [75]. (e) Spheroids are not able
to regenerate in isotonic medium where the mechanical input from oscillations is lacking, unless
Wnt3 is provided externally (after [79]). (f) Proposed framework for how mechanical cues act
during the regeneration of Hydra spheroids. In a freshly generated tissue spheroid, Wnt3 expression
is sustained through tissue stretching as a result of mechanical oscillations. Even though all cells
are being stretched and capable of differentiating to the organizer, the location of the organizer
can be specified through local bias of tissue mechanical properties and the signaling crosstalk with
the surrounding cells and, possibly, the developing foot organizer. Symmetry breaking happens
once a small group of cells with sufficiently high Wnt3 levels is established. Wnt3 expression then
becomes self-sustaining in these cells and the downstream organizer program is initiated
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body tissue is cut and let to regenerate, the actin cables can be partially retained
and, due to the way the tissue folds, generate similar poles in the spheroid. It has
been shown that the presence of this topological arrangement is often predictive of
the future organizer position [68]. However, previous experiments with spheroids
from reaggregated cells have shown that such topological defects are not required to
generate an organizer. On the contrary, when cells are dissociated the fibers quickly
dissolve and later start reappearing in random configurations in the regenerating
aggregate. However, the directional organization of fibers is not reestablished until
the organizer emerges, which then drives their alignment [69]. Thus, it appears
that, instead of acting as a driver of organizer formation or the memory of its
position, the actin fiber topology rather changes the local mechanical properties
of the tissue, making it more conducive for organizer formation. Consistently with
this idea, different other mechanical perturbations, such as localized suction, can
also bias the organizer position [70]. Thus, a picture of a dynamic mechano-
chemical interplay emerges from these experiments, where both types of signals
can serve as inputs of the patterning system. This is further evidenced by grafting
experiments where mechanical and chemical signals are made to conflict and the
system responds with a mixture of different outcomes, possibly reflecting the
variable strength of different cues and/or the way in which they are integrated by
the genetic network [71, 72]. Recent data also suggest a Wnt-driven feedback on
tissue mechanical properties [73].

As mentioned earlier, tissue mechanics can also act on a more global scale during
morphogenesis, such as when lumen expansion forces the surrounding tissue to
stretch [74]. Regenerating Hydra spheroids (both made from cut tissue pieces and
reaggregated cells) experience a very similar process [75]. Since Hydra is a fresh-
water animal, cells constantly have to compensate their osmolarity by excreting
surplus water entering them from the environment. In fully formed animals, this
water is excreted into the body cavity and removed from there by spontaneous
contractions [76]. Regenerating spheroids, however, lack a mouth. Pressure builds
up with an increasing volume of water excreted into the spheroid cavity, resulting
in spheroid expansion and, eventually, rupture when a threshold of tissue strength
is reached. Several such cycles are typically necessary before the spheroid breaks
symmetry, which leads to mechanical inflation and deflation oscillation (Fig. 2d).
One of the symmetry breaking hallmarks is the stabilization of the new mouth
opening [77]. This causes the oscillatory pattern to change as the mouth provides
a weak point through which the accumulated water can be released. Thus, the
spheroid inflates less before deflating, causing shortening of the oscillation period
and decrease of amplitude. Even though the oscillations were already suggested to
be important for regeneration early after they were described [77, 78], clear evidence
of their role and connection to the molecular players was missing. We have recently
shown that not only are the oscillations required for symmetry breaking but their
role is to sustain the expression of the key organizer-defining factor Wnt3 [79].
This is mediated by tissue stretching during the inflation period, which activates
Wnt3 transcription in a quantitative manner—if the spheroid inflation slows down,
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the Wnt3 levels drop. Conversely, supplying Wnt3 ectopically results in successful
regeneration without mechanical input (Fig. 2e). Thus, a mechanism emerges where
mechanical stretching can activate Wnt3 transcription in originally body tissue to
enable de novo organizer formation. Once a critical threshold has been reached, this
expression (and the organizer identity) can then sustain itself through a previously
described positive feedback loop [80]. Interestingly, we have also uncovered a link
of this system to the body morphogenetic gradients, since spheroids from tissue
originating close to a head typically require more time (and therefore more tissue
stretching) before successfully breaking symmetry.

Although the newest results provide convincing evidence about the involvement
of mechanical stimuli in Hydra patterning, several open questions still need to be
addressed. Especially, how are the mechanical cues perceived by cells, translated
to biochemical signals, and integrated with the other signaling cascades. Another
unclear point is how the cooperation of global and local mechanical signals achieves
the spatial positioning of the organizer. We speculate, based on the available
evidence, that the mechanical inhomogeneities (e.g. resulting from actin fiber
organization) could bias certain tissue areas to be more amenable or sensitive to
stretching, resulting in stronger Wnt activation in these spots. This could then
lead to a faster activation of the self-sustaining organizer program and, conversely,
its inhibition in the surrounding tissue (Fig. 2f). Ultimately, the challenge for
any patterning model involving mechano-chemical crosstalk will be to provide
a framework that could explain and unify all the results obtained by different
experimental approaches. Moreover, the foot might not only be a passive counterpart
of the head that forms on the opposite end of the axis. Even though relatively scarce,
experimental evidence suggests that it could function as an independent, yet linked,
organizing center [81, 82]. For example, approximately 50% of spheroids incapable
of head regeneration due to the lack of mechanical stimulation can still regenerate
a foot [79]. If indeed, the establishment of the two axial poles is largely independent,
an additional layer of complexity emerges, because of the need for their proper
spatial positioning in relation to each other.

Ultimately, the study of patterning and self-organization in Hydra will help us
uncover not only their specific realizations in this animal but general principles
applicable to other biological systems. The critical role of organizers first recognized
in Hydra and subsequently as a general feature of animal patterning can serve
as a good example [83, 84]. Similarly, the majority of signaling molecules are
shared among animals and often function in similar ways [85]. In the case of
Wnt, this is not only true for axis specification but also for diverse symmetry
breaking events where a group of cells assumes a different identity from the rest
of the tissue [53]. Moreover, the sensitivity of this pathway to a mechanical input
appears to be another unifying thread that runs through most processes that rely on
it [27, 86, 87]. Even though other pathways, such as the Notch [88], FGF [89], and
BMP [90] signaling, are much less studied in Hydra, the existing results indicate
their involvement in patterning and often a conserved mode of action. For example,
the Notch signaling controls for the coordinated upregulation of genes that leads to



56 G. Misailidis et al.

proper boundary formation and detachment of early buds [88]. Interestingly, it also
crosstalks with the head organizer and appears to play an important role in regulating
tentacle patterning [91]. The best known function of FGF signaling in Hydra is
controlling the cellular motility and shape changes associated with bud constriction
and detachment [92]. However, since some of its ligands are also expressed in other
body parts (Fig. 1), it might also have additional functions. Finally, it was recently
hypothesized that the BMP signaling might have a fate-specifying role in the foot
organizer, analogous to the role of Wnt signaling in the head organizer.

Even though the diversity of forms generated in animal morphogenesis is strik-
ing, it relies on a relatively restricted toolkit of underlying ancient processes, such
as tissue folding, cell migration, and luminogenesis [24, 93, 94]. For example, the
relationship between lumen expansion, tissue stretching, and cellular differentiation
seems to be important for processes as different as the blastocyst formation [95, 96],
inner ear morphogenesis [97] and the generation of lung alveoli [86]. Morphologi-
cally simple self-organizing systems amenable to experimental manipulations (such
as Hydra, PSM cultures, and organoids) are invaluable tools to help us understand
such principles. Eventually, the knowledge gained this way could be applied to more
complex systems where these principal components interact in convoluted ways,
with the hope of even being able to engineer them for practical applications.

3 The Presomitic Mesoderm

During early embryonic development, axial segmentation is an essential process
for sculpturing the body plan of a vertebrate. This process is driven by a transient
embryonic tissue called the presomitic mesoderm (PSM). The presomitic mesoderm
is a tissue that is derived from the primitive streak from 6.5 days post coitum (dpc)
on and is essential for the segmented anteroposterior axis of the embryo. It is the
far most posterior tissue of the body and the caudal part of paraxial mesoderm,
which flanks the neural tube. The functional output of the PSM is the generation
of the somites. The somites are blocks of epithelial tissue that are formed from the
periodic segmentation of the anterior part of the PSM [98]. While those structures
are added at the anterior, the PSM elongates as more cells are being added to the
posterior as a result of cell division. The somites appear sequentially in pairs and
each of them consists of three major parts—the sclerotome, the myotome, and the
dermatome [99]. Those components contribute to various tissues in later stages of
development. The sclerotome contributes to the vertebrae, ribs, and cartilage while
the myotome and dermatome add to musculature and the skin, respectively [100].
This physiological output is the result of the spatial and temporal organization of
the PSM, which comprises from molecular signaling gradients and rhythmic gene
expression, respectively [101]. The two are not to be considered as separate modules
but rather tightly interconnected components that shape the fate of each cell.
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3.1 Spatial Organization of the Presomitic Mesoderm

Spatially, the tissue is characterized by the presence of Wnt and Fibroblast Growth
Factor (FGF) signaling gradients that extend from posterior towards the anterior.
Retinoic acid (RA) is also distributed in an opposing graded manner [102]. The
formation of the Wnt signaling gradient is the result of the expression pattern of
Wnt3a, which peaks at the tail-bud, the most posterior part of the PSM. Without
the expression of Wnt3a, the development of the posterior axis of the embryo is
arrested [103, 104]. Binding of the Wnt3 protein to its receptor on the receiving
cell’s surface ignites the cascade of canonical Wnt signaling that causes the
stabilization of β-catenin. This key mediator is constantly targeted by a degradation
complex in the cytoplasm of the cells until Wnt signaling is activated. Upon the
presence of the activating ligand, β-catenin is stabilized and translocated to the
nucleus, where it promotes the regulation of expression of target genes [105]. Thus,
the expression pattern of Wnt3a is shaping a gradient of nuclear localization for β-
catenin from posterior to anterior [106]. The spatial point, where β-catenin levels are
the lowest, indicates an important cell fate transition domain. There, cells go through
mesenchymal to epithelial transition and begin expressing somite specific markers.
As somites are added at the anterior and PSM elongates at the posterior, this spatial
domain is gradually being displaced towards the posterior. This determination front
is directly controlled by Wnt signaling through β-catenin levels [106].

The FGF signaling gradient operates in parallel and similar to Wnt gradient [107]
and emerges from the increased level of expression of fgf8 at the very posterior part
of the PSM. The cells that are positioned there, are loaded with fgf8 mRNA and
this seems to be conserved across vertebrates. Fgf8 is gradually degraded towards
the anterior part of the tissue [108]. This distribution transforms into a signaling
gradient upon translation of FGF8 protein. When the FGF8 levels are increased
experimentally, the segmentation is heavily undermined with few to no segments
scored [107]. This, in combination with the high expression levels of fgf8 and Wnt3a
at the tail-bud while the tissue elongates, points out the importance of FGF and
Wnt in preserving the undifferentiated cell identity [107, 109]. Equivalently with the
case of the Wnt gradient, low FGF signaling levels coincide with the determination
front. It is clear that this apparent and dynamic spatial point is regulated by Wnt
and FGF gradients. Furthermore, upregulation of Wnt induces the extension of FGF
signaling, making evident the interplay between the two signaling pathways.

Cell state and behavior changes parallel to the molecular signaling gradients.
Notably, along the anteroposterior axis of the PSM, the cells exhibit different speed
of motion. Specifically, cells at the posterior of the PSM are highly motile and this
property is gradually decreasing towards the anterior [110]. In addition, adhesion is
also graded with the levels of adhesion proteins increasing as the cells are moving
towards the anterior [111]. It is evident that the molecular gradients of Wnt and
FGF generate cell identities that are characterized by different properties, such as
motility and adhesion, but also gene activity that is going to be discussed in the
next section. The extracellular signal-regulated kinase (ERK) and mitogen-activated
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protein kinase (MAPK) are the mediators of FGF signaling and their graded activity
has been linked to the differential motility along the PSM [112]. In addition to the
direct link with the determination front and the motility gradient, FGF signaling also
connects the spatial organization of the tissue with the temporal.

3.2 Temporal Organization of the Presomitic Mesoderm

The prominent periodic deposition of somites at the anterior PSM is accompanied
by periodic gene expression in the presomitic mesoderm. A milestone in the
field was the identification of c-hairy1, a gene that is expressed in the PSM
and its rhythmic expression matches the period of somite formation [113]. These
oscillatory dynamics appear as waves of expression that initiate at the posterior PSM
and sweep the tissue until they finally stop at the anterior. Each time such a wave
meets the determination front at the anterior PSM, the cells cease their oscillatory
gene expression. This observation was consistent with a previously proposed
model to explain somitogenesis, termed the “Clock and Wavefront” model [114].
In essence, the model describes a mechanism that transforms a temporal signal
into a spatial pattern by integrating the interaction of an expression wave with
the determination front (Fig. 3). As such, this model links the spatial module of
somitogenesis (molecular gradients) with the temporal (oscillatory gene activity).
Since the identification of c-hairy1, a large network of genes has been shown to be
expressed rhythmically. The vast majority of them are downstream targets of Wnt,
FGF, and Delta-Notch signaling pathways [115]. This finding intuitively raised the
question of how these oscillations are generated.

The quest to discover the mechanism that generates oscillations focused on Hes7,
a transcription factor that forms dimers and suppresses its own expression [116].
This ability to inhibit its own expression sequence is crucial, as an autoregulatory
negative feedback loop combined with delays is able to generate oscillations [117].
Lack of functional Hes7 leads to severely disrupted patterning. Removing non-
coding regions of the Hes7 mRNA caused the arrest of Hes7 oscillations and major
defects in somitogenesis [118]. It is a downstream target of Delta-Notch pathway
as well as of FGF and Wnt signaling [119, 120]. Together, those findings position
the negative feedback loop of Hes7 at the center of the mechanism that generates
oscillations in the PSM. The oscillations downstream of Wnt signaling are also
possibly generated via a specific negative feedback loop. Axin2 is a target gene
of Wnt signaling and negative regulator of the pathway [104]. It is part of the
destruction complex that targets β-catenin for degradation in the cytoplasm and
its periodic expression facilitates the periodic degradation of β-catenin and the
periodic activation of downstream target genes. While the mechanism that generates
oscillations in the PSM has been discovered and described in detail, their properties,
such as the period and amplitude, are still subject of research.

The oscillations themselves are dynamic as their characteristics change over
space and time. As cells are gradually pushed towards the anterior by the newly
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Fig. 3 The periodic formation of somites through a clock and wavefront mechanism. (a) The
presomitic mesoderm is located at the posterior end of the vertebrate embryo and generates
sequentially discrete structures at the anterior end of the tissue, the somites. (b) The tissue is
patterned along the anterior posterior axis, and a key aspect of this pattern are Wnt and Fgf
signaling gradients peaking at the posterior end. From this point waves of gene transcription
sweep the entire field and once the anterior flanked is reached a new somite pair is added in the
sequence. The transformation from a temporal clock into a spatially periodic pattern takes place
as the oscillating phase of the periodic gene transcription freezes once the determination front
(highlighted by a red line) is crossed. Snapshots of the traveling wave are presented in P1 to P3,
with the blue indicating the peak of the wave. Once the wave has reached the wavefront with P3, a
new wave starts with P1

added cells at the posterior, they slow down the pace of their oscillations. This
generates a gradient of periods along the PSM, where cells at the posterior oscillate
faster than cells at the anterior [102, 121]. Another important property of the
oscillations is the amplitude, the maximum displacement from the resting point. The
amplitude is gradually increasing along the PSM, following a similar trend with the
period [106]. The period and the amplitude gradients correlate with Wnt and FGF
that span the axis. Chemical perturbations of Wnt signaling have been reported to
alter the period [119, 122, 123]. The mechanism through which this is achieved is not
known. Upon genetic upregulation of Wnt signaling, the oscillations are sustained
with a low amplitude, suggesting that besides FGF, high Wnt is also correlated with
maintaining the undifferentiated cell identity [106]. Together, these findings propose
that the cells receive inputs from Wnt and FGF as they pass through their gradients
and adjust their oscillatory status accordingly.

3.3 Self-Organization of the Presomitic Mesoderm

A striking property of the cell of the PSM is the ability to self-organize. Spatiotem-
poral patterns emerged when the cells of the tissue are mechanically dissociated and
reaggregated [121]. Soon after their aggregation, cells are able to sort out and form
foci-like organizing centers. These foci appear to be distanced from each other by
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a rather constant length suggesting the establishment of an exclusion zone around
each other. On top, immunohistochemistry reveals high β-catenin levels in those
cells implying the de novo formation of the Wnt signaling gradient. Such organizing
centers are reminiscent of the ones in Hydra, but also in other self-organizing
systems, like gastruloids, or intestinal organoids. Tracking posterior PSM cells in
these aggregates showed that they end up at those centers. What could be the
mechanism that cells implement to form those centers? Is it an active or passive
cell sorting? In other systems, it has been demonstrated that differential adhesion
and motility between cells can have sorting outcomes [124]. Similar mechanism
could be driving the sorting that is observed in PSM aggregates. Nevertheless, it is
clear that the presence of a molecular gradient is important for the emergence of
spatial patterns during self-organization. In the case of PSM cells, this is evident on
the temporal domain as well.

Synchronous oscillations and waves of expression appear and propagate around
those organizing centers [121]. Quantification of the period of the oscillations shows
that it is graded. In that, cells at the center of the foci oscillate faster than those at
the periphery. If the composition of the aggregates is altered by including more
anterior PSM cells, the collective period is increasing. This suggests that there is
a mechanism through which cells are able to average the input periods. One possible
mechanism would be through molecular gradients. Wnt3a would be an appropriate
candidate since its levels are distributed through cell contacts [125]. Cell-to-cell
contacts are also essential for the synchronization of the oscillations upon these
cultures. When Delta-Notch signaling is chemically inhibited, oscillations continue
to occur but not waves [121]. Under those conditions, each cell carries on with
their oscillations but the synchrony between them is lost. This could imply that the
oscillatory activity that these cells exhibit is an intrinsic property.

Recent work has provided evidence that links the synchronized oscillatory
expression with mechanics. Specifically, the cells utilize a mechano-sensing molec-
ular machinery that allows them to switch from an oscillatory state to a non-
oscillatory state depending on the number of neighboring cells. This Yap-mediated
mechanical input can be described as a threshold regulator that controls the switch
from a quiescent state to an oscillatory and vice versa [126]. These exciting
findings open a new set of questions about the mechanism through which Yap and
mechanical cues are tuning the oscillations of Delta-Notch pathway. Additionally,
having in mind the pre-existing knowledge about the oscillations Wnt and FGF
pathways, it would be very interesting to see whether mechanics affect them as well
or the link is specific to Delta-Notch. In an aggregate comprising of many cells, the
individual oscillations get coordinated but the mechanism is unknown. So, how do
cells change their pace to stay tuned with their neighbors?

One way to approach this question is to observe the temporal patterns in the
PSM. As mentioned in the previous section, the gene activity oscillations are
displayed as traveling waves that originate from the posterior and sweep across the
A-P axis. The generation of such a pattern suggests the existence of a coupling
mechanism through which cells achieve local synchronization of their oscillations.
Cells that are in close proximity with each other are on the same phase on their
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oscillation cycle. Delta-Notch signaling, being a cell-to-cell signaling pathway, was
a strong candidate to regulate this property. Indeed, when Delta-Notch is disrupted
genetically or chemically, cells lose their local synchrony and waves are replaced by
uncoupled oscillations resulting in defective somite boundaries [127–129]. These
findings reveal the role of Delta-Notch signaling in being the coupling avenue in the
PSM.

Delta-Notch signaling is based on the interaction between a ligand presenting
cell (sender) and a receptor presenting cell (receiver) [130]. Thus, the information
flows from a sender to a receiver cell. Cis-inhibition between Delta and Notch
in a cell guarantees the prevalence of one signaling state—sender or receiver—
over the other, even when a cell expresses both the Notch receptor and the Delta
ligand [131]. In the PSM, Delta-like1 (Dll1) is the ligand and it binds with high
affinity to the Notch1 receptor. The expression of Dll1 as well as Notch1 is
oscillatory in the PSM [132]. The ligand-receptor interaction causes the release of
the Notch1 intracellular domain (NICD), which is translocated to the nucleus of the
receiving cell and activates target genes [133]. A general mathematical framework
that explains a broad spectrum of synchronization phenomena is the Kuramoto
model [134]. The model has also been applied in the presomitic mesoderm and
assumes that there is a constant bidirectional exchange of information between
oscillators [135]. During this exchange, all oscillators utilize the input to adjust their
pace until they finally reach a common phase. The oscillators that are ahead will
slow down and oscillators that are lagging will speed up (Fig. 4a). Eventually the
oscillators will converge to a common phase, a synchronization phase, that would
be a compromise between them and from that point on they will not deviate. In the
presomitic mesoderm Delta-Notch signaling is responsible for synchronization and
it is important to compare the assumptions of Kuramoto with the mode of action
of the pathway. During Delta-Notch interaction, the exchange of information is
unidirectional, from the Delta presenting cell towards the Notch. Additionally, the
PSM cells cannot exchange inputs constantly for two reasons. First, the signaling
state of each cell depends on which phase on the cycle it is. This means that if the
cell is Delta or Notch presenting, it will affect its signaling role. Lastly, the cells
are motile and they continuously change their immediate neighbors. Those PSM
specific properties suggest that there is a necessity for a model of synchronization
that accounts for them.

Recent efforts from our lab’s research have been focusing on constructing
a model that considers the mode of action of the Delta-Notch signaling and
incorporates prior and recent experimental findings. This proposed coupling mech-
anism is characterized by unidirectional and phase-gated communication between
cells [136]. The unidirectionality stems from the Delta-Notch mode of action.
In that, the information flows from the Delta to the Notch presenting oscillating
cell. This exchange is phase-gated because PSM cells alternate signaling fates as
they go through their oscillatory activity. There is a phase on the cycle where a
cell can “talk” and a phase where it can “listen.” This mechanism of information
flow, termed “walkie/talkie,” is compatible with two kinds of reaction responses.
Upon interaction, the signal-receiving cell will either break their pace or accelerate.
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Fig. 4 Comparison of two synchronization mechanisms. (a) The widely employed Kuramoto
mechanism assumes that two clocks that are out of phase communicate bidirectionally and
constantly. The clock that is ahead will decelerate while the one lagging behind will accelerate.
Eventually the two clocks will approach the same phase and will continue to cycle in synchrony.
(b) Alternatively, the information can be unidirectional and take place only when the clocks are
at specific phases. This “walkie/talkie” mechanism based on Notch signaling properties enables
a cell that expresses the Notch receptor to respond to a clock that expresses the Delta ligand.
The responding cell clock can then brake, enabling the other clock to reach its phase without any
alterations to its pace. From that point on the clocks will continue cycling in synchrony

Monitoring two PSM cell populations that interact with each other, revealed that
cells respond by transiently breaking their oscillations (Fig. 4b). Moreover, the
synchronization under “walkie/talkie” is fast and achieved within 3 cycles. This is in
accordance with experimental data demonstrating that PSM cells achieve synchrony
within the same time frame as discussed above. Lastly, the “walkie/talkie” coupling
predicts that the phase of synchronization—that is the phase on which the oscillators
achieve synchrony—falls around a specific part of the cycle. In contrast, under the
rules of Kuramoto any phase on the cycle could be the synchronization phase.
The respective quantification for the PSM cells revealed that the synchronization
phase is placed on a narrow window on the cycle. Together, those findings indicate
that despite the broad applicability and explanatory elegance of the Kuramoto
model, the peculiarities of the PSM cells do not fit within its capability. Instead,
these cells utilize a “walkie/talkie” coupling mechanism to achieve fast and robust
synchronization. Since its formulation and initial applications, the Kuramoto model
for PSM synchronization has been further developing over time. In those endeavors,
the focus has been given to incorporate delays [137]. The delays can be placed
in different aspects of the communication pathway and represent biochemical
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processes. The importance of delays in the temporal organization of oscillators
is intuitive and recently demonstrated. Lfng—downstream target and negative
regulator of the Delta-Notch pathway—was shown to be regulating a coupling
delay during synchronization in the PSM [138]. It is therefore evident that the
Kuramoto model with delay needs to be tested in the context of the PSM and
essentially compared with the “walkie/talkie” coupling mechanism. The challenge
with this implementation would be to incorporate mathematical parameters that are
biologically represented in the cell and account for feedback loops and biochemical
reactions that are known to take place within the cycling activity. Moreover, the
Kuramoto model needs to be adjusted beyond the addition of delays in order to
accommodate the specific unidirectional and phase-gated information exchange
forced by the Notch signaling dynamics.

4 Conclusions

The progress made in the understanding of how Hydra cells self-organize, and how
presomitic mesoderm cells interact to establish spatial and temporal patterns, enable
us to compare the two systems that are evolutionary positioned at the two ends of
multicellular organization spectrum. Hydra belongs to Cnidaria, one of the oldest
phyla of multicellular animals and the mouse PSM is a structure characteristic of
the distant subphylum Vertebrata. Despite the evolutionary distance, both systems
display self-organization properties with striking parallels. The interactions between
the cells lead to the emergence of organizer centers that are characterized by similar
gene expression profiles. The emergent organization axes, oral/aboral in Hydra and
anterior/posterior in the PSM, are considered homologous [139, 140]. In fact, they
describe the same main asymmetry emerging in the groups of cells. At the molecular
level one pole of this axis is marked in both cases by elevated Wnt signaling. This
pole is the oral end in Hydra and the posterior end in vertebrate PSM. Downstream
of the Wnt signaling, a common set of genes, that includes the transcription factors
brachyury and snail orchestrate the cell specification into organizers. Finally, beyond
Wnt signaling, other cascades that play role in setting up the pattern are FGF
signaling and Notch signaling. The transcription factor Hes, being central for the
PSM oscillatory dynamics, is also involved in the patterning of Hydra [88]. The
comparison between the two systems leaves also many open questions. How similar
is the mechanism of spatial patterning in the PSM self-organization assays to the
one in Hydra? It is difficult to reconcile this with a reaction-diffusion system, but
maybe a role for mechanics is a common ground. The finding that mechanical
stimuli are important for the ability of PSM cells to operate is important, while
the differential motility is likely involved in the sorting process. On the other
hand, it is unclear whether oscillatory dynamics are underlying the patterning
mechanism in Hydra. The gene network that connects Wnt3 and Sp5 expression
contains negative feedback loops, and it is potentially able to generate oscillatory
gene expression. Beyond that, recent examination of the spatiotemporal dynamics
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in human gastruloids has shown that Wnt signaling is propagating as a wave and this
aspect is critical for the downstream patterning events [141]. It has not been possible
to visualize the temporal dynamics of Wnt signaling in Hydra and it is likely that
exciting results will emerge from such an endeavor. Future research will indicate
which aspects of PSM and Hydra patterning will further converge while others
will diverge. Independent of the specific properties of the multicellular systems
that have been examined here in detail, it is clear that the careful investigation
of many of them can allow us to understand what rules of communication and
interaction between cells are widely employed by living systems. Beyond the fact
that Wnt signaling is operating in multiple cases of symmetry breaking, it will be
important to understand what is special about Wnt signaling. What are the types of
information that it conveys and how the information changes the behavior of the
receiving cells? It is possible that there are general rules that are materialized in
biological systems through the used cascades. The search of such rules for the self-
organization of multicellular systems is timely as extensive and high-throughput
biological experimentation has amassed quantitative data, offering tools for deeper
investigations and demanding a coherent theoretical framework in which they fit.
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99. Gossler A, Hrabě de Angelis M (1998) Somitogenesis. Curr Top Dev Biol 38:225–287

100. Barresi MJF, Gilbert SF (2019) Developmental biology. Sinauer Associates, Incorporated
101. Aulehla A, Pourquie O (2008) Oscillating signaling pathways during embryonic develop-

ment. Current Opinion in Cell Biology 20:632–637
102. Oates AC, Morelli LG, Ares S (2012) Patterning embryos with oscillations: structure, function

and dynamics of the vertebrate segmentation clock. Development 139:625–639
103. Greco TL, Takada S, Newhouse MM, McMahon JA, McMahon AP, Camper SA (1996)

Analysis of the vestigial tail mutation demonstrates that Wnt-3a gene dosage regulates mouse
axial development. Genes & Development 10:313–324

104. Aulehla A, Wehrle C, Brand-Saberi B, Kemler R, Gossler A, Kanzler B, et al. (2003) Wnt3a
plays a major role in the segmentation clock controlling somitogenesis. Developmental Cell
4:395–406

105. Niehrs C (2012) The complex world of WNT receptor signalling. Nat Rev Mol Cell Biol
13:767–779.

106. Aulehla A, Wiegraebe W, Baubet V, Wahl MB, Deng C, Taketo M, et al. (2008) A beta-catenin
gradient links the clock and wavefront systems in mouse embryo segmentation. Nat Cell Biol
10:186–193.

107. Dubrulle J, McGrew MJ, Pourquie O (2001) FGF signaling controls somite boundary
position and regulates segmentation clock control of spatiotemporal Hox gene activation. Cell
106:219–232

108. Dubrulle J, Pourquie O (2004) fgf8 mRNA decay establishes a gradient that couples axial
elongation to patterning in the vertebrate embryo. Nature 427:1–4

109. Takada S, Stark KL, Shea MJ, Vassileva G, McMahon JS, McMahon AP (1994) Wnt-3a
regulates somite and tailbud formation in the mouse embryo. Genes & Development 8:174–
189

110. Bé nazé raf B, Francois P, Baker RE, Denans N, Little CD, Pourquie O (2010) A random
cell motility gradient downstream of FGF controls elongation of an amniote embryo. Nature
466:248–252



Self-Organization of Tissues Through Biochemical and Mechanical Signals 69

111. Duband JL (1980) Adhesion molecules during somitogenesis in the avian embryo., J Cell
Biol 104:1–14

112. Delfini MC, Dubrulle J, Malapert P, Chal J, Pourquie O (2005) Control of the segmentation
process by graded MAPK ERK activation in the chick embryo. PNAS 102:1–6

113. Palmeirim I, Henrique D, Ish-Horowicz D, Pourquie O (1997) Avian hairy gene expression
identifies a molecular clock linked to vertebrate segmentation and somitogenesis. Cell
91:639–648

114. Cooke J, Zeeman EC (1976) A clock and wavefront model for control of the number of
repeated structures during animal morphogenesis. Journal of Theoretical Biology 58:455–476

115. Dequeant M-L, Glynn E, Gaudenz K, Wahl M, Chen J, Mushegian A, et al (2006) A complex
oscillating network of signaling genes underlies the mouse segmentation clock. Science
314:1595–1598

116. Bessho Y, Hirata H, Masamizu Y, Kageyama R (2003) Periodic repression by the bHLH factor
Hes7 is an essential mechanism for the somite segmentation clock. Genes & Development
17:1451–1456

117. Lewis J (2003) Autoinhibition with transcriptional delay: a simple mechanism for the
zebrafish somitogenesis oscillator. Current Biology 13:1398–1408

118. Niwa Y, Masamizu Y, Liu T, Nakayama R, Deng C-X, Kageyama R (2007) The initiation and
propagation of Hes7 oscillation are cooperatively regulated by Fgf and notch signaling in the
somite segmentation clock. Developmental Cell 13:298–304

119. González A, Manosalva I, Liu T, Kageyama R (2013) Control of Hes7 expression by Tbx6,
the Wnt Pathway and the Chemical Gsk3 Inhibitor LiCl in the Mouse Segmentation Clock.
PLoS ONE 8:e53323–8.

120. Anderson MJ, Magidson V, Kageyama R, Lewandoski M (2020) Fgf4 maintains Hes7 levels
critical for normal somite segmentation clock function. eLife. 9

121. Tsiairis CD, Aulehla A (2016) Self-organization of embryonic genetic oscillators into
spatiotemporal wave patterns. Cell 164:656–667

122. Gibb S, Zagorska A, Melton K, Tenin G, Vacca I, Trainor P, et al. (2009) Interfering with Wnt
signalling alters the periodicity of the segmentation clock. Developmental Biology 330:21–31

123. Bajard L, Morelli LG, Ares S, Pecreaux J, Julicher F, Oates AC (2014) Wnt-regulated
dynamics of positional information in zebrafish somitogenesis. Development 141:1381–1391

124. Beatrici CP, Brunnet LG (2011) Cell sorting based on motility differences. Phys Rev E Stat
Nonlin Soft Matter Phys 84:031927

125. Alexandre C, Baena-Lopez A, Vincent J-P (2013) Patterning and growth control by
membrane-tethered Wingless. Nature 505:180–185

126. Hubaud A, Regev I, Mahadevan L, Pourquie O (2017) Excitable dynamics and yap-dependent
mechanical cues drive the segmentation clock. Cell 171:668–682.e11.

127. Jiang YJ, Aerne BL, Smithers L, Haddon C, Ish-Horowicz D, Lewis J (2000) Notch signalling
and the synchronization of the somite segmentation clock. Nature 408:475–479

128. Okubo Y, Sugawara T, Abe-Koduka N, Kanno J, Kimura A, Saga Y (2012) Lfng regulates
the synchronized oscillation of the mouse segmentation clock via trans- repression of Notch
signalling. Nature Communications 3:1141–9

129. Riedel-Kruse IH, Muller C, Oates AC (2007) Synchrony dynamics during initiation, failure,
and rescue of the segmentation clock. Science 317:1911–1915

130. Artavanis-Tsakonas S, Rand MD, Lake RJ (1999) Notch signaling: cell fate control and signal
integration in development. Science 284:770–776

131. Sprinzak D, Lakhanpal A, LeBon L, Santat LA, Fontes ME, Anderson GA, et al (2010) Cis-
interactions between Notch and Delta generate mutually exclusive signalling states. Nature
465:86–90

132. Shimojo H, Isomura A, Ohtsuka T, Kori H, Miyachi H, Kageyama R (2016) Oscillatory
control of Delta-like1 in cell interactions regulates dynamic gene expression and tissue
morphogenesis. Genes & Development 30:102–116

133. Bray SJ (2006) Notch signalling: a simple pathway becomes complex. Nat Rev Mol Cell Biol
7:678–689



70 G. Misailidis et al.

134. Kuramoto Y (2012) Chemical oscillations, waves, and turbulence. Springer Science &
Business Media, Berlin, Heidelberg.

135. Strogatz SH (2000) From Kuramoto to Crawford: exploring the onset of synchronization in
populations of coupled oscillators. Physica D: Nonlinear Phenomena 143:1–20

136. Roth G, Misailidis G, Tsiairis CD (2020) Cellular synchronisation through unidirectional and
phase-gated signalling. bioRxiv 3:1–24

137. Wu H, Kang L, Liu Z, Dhamala M (2018) Exact explosive synchronization transitions in
Kuramoto oscillators with time-delayed coupling. Sci Rep 8:15521–8

138. Yoshioka-Kobayashi K, Matsumiya M, Niino Y, Isomura A, Kori H, Miyawaki A, et al (2020)
Coupling delay controls synchronized oscillation in the segmentation clock. Nature 580:119–
123

139. Petersen C P, Reddien P W (2009) Wnt signaling and the polarity of the primary body axis.
Cell 139:1056–1068

140. Rentzsch F, Guder C, Vocke D, Hobmayer B, Holstein T W (2007) An ancient chordin-like
gene in organizer formation of Hydra. PNAS 104:3249–3254

141. Chhabra S, Liu L, Goh R, Kong X, Warmflash A (2019) Dissecting the dynamics of signaling
events in the BMP, Wnt, and Nodal cascade during self-organized fate patterning in human
gastruloids. PLOS Biol 17:e3000498



Foundations of Viscoelasticity and
Application to Soft Tissue Mechanics

Michele Righi and Valentina Balbi

Abstract Soft tissues are complex media; they display a wide range of mechanical
properties such as anisotropy and non-linear stress-strain behaviour. They undergo
large deformations and they exhibit a time-dependent mechanical behaviour, i.e.
they are viscoelastic. In this chapter we review the foundations of the linear
viscoelastic theory and the theory of Quasi-Linear Viscoelasticity (QLV) in view
of developing new methods to estimate the viscoelastic properties of soft tissues
through model fitting. To this aim, we consider the simple torsion of a viscoelastic
Mooney-Rivlin material in two different testing scenarios: step-strain and ramp
tests. These tests are commonly performed to characterise the time-dependent
properties of soft tissues and allow to investigate their stress relaxation behaviour.
Moreover, commercial torsional rheometers measure both the torque and the normal
force, giving access to two sets of data. We show that for a step test, the linear and
the QLV models predict the same relaxation curves for the torque. However, when
the strain history is in the form of a ramp function, the non-linear terms appearing
in the QLV model affect the relaxation curve of the torque depending on the final
strain level and on the rising time of the ramp. Furthermore, our results show that
the relaxation curve of the normal force predicted by the QLV theory depends on
the level of strain both for a step and a ramp tests. To quantify the effect of the
non-linear terms, we evaluate the maximum and the equilibrium (as t→∞) values
of the relaxation curves. Our results provide useful guidelines to accurately fit QLV
models in view of estimating the viscoelastic properties of soft tissues.
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1 Introduction

Soft tissues, such as the brain, the skin, tendons and ligaments, are viscoelastic
materials, their mechanical behaviour is therefore time-dependent. Two typical
experiments that show the time-dependent nature of soft tissues consist in stress
relaxation and creep tests. In a stress relaxation test the tissue is suddenly stretched
and then held in position for a certain time while the resulting stress is measured.
Conversely, in a creep test, the load is applied to the tissue and the resulting
deformation is measured. For many soft tissues the stress relaxation curve has a
decaying exponential form. Stress relaxation has been observed in the brain [2, 3],
in ligaments and tendons [5, 6] and in the skin [15]. At the microscale, the physical
mechanisms behind stress relaxation differ from tissue to tissue. In tendons, for
example, it has been observed that crimping and un-crimping of the hierarchical
structures that build up the tissues, i.e. the individual collagen fibrils, are responsible
for the stress relaxation of the tissue [9]. In the skin, the interaction between collagen
and elastic fibres plays a crucial role in determining the time-dependent behaviour
of the tissue. When the tissue is deformed, the cross-links maintain the structure and
allow the elastic fibres to stretch and relax [10].

However, in practice there is no machine that can instantaneously deform a tissue.
A more realistic test is indeed a ramp test, where the tissue is deformed in a finite
time and then held in that position. The duration of the ramp phase is called rising
time t∗. When the rising time of the ramp is nearly zero, the ramp test can be well
approximated by a step-strain test. However, if t∗ is not small (compared to the
characteristic time constants of the material) modelling the ramp test as a step test
can introduce errors in the estimation of the viscoelastic parameters.

From the modelling viewpoint, the simplest constitutive theory that can be used
to describe the time-dependent behaviour of soft tissues is the linear viscoelastic
theory, where the stress is related to the strain by a time-dependent function which
in turn depends on the tissue’s viscoelastic parameters. Linear models are based on
three main assumptions:

1. the tissue remembers the past deformation history through a fading memory,
so that contributions to recent strain increments are more important than past
contributions. A typical form of the time-dependent parameters that satisfies this
assumption is a decaying exponential form;

2. according to the Boltzmann superposition principle, the total stress at the current
time t is given by the sum of all past stress contribution;

3. the deformation applied to the tissue is small.

In early times, linear models have been employed to predict the viscoelastic
behaviour of soft tissues. However, soon scientists have realised that these models
do not provide accurate predictions, mainly because in reality soft tissues undergo
large deformations. To overcome this limitation, Fung proposed what is now called
the Quasi-Linear Viscoelastic (QLV) theory, which is the simplest extension of the
linear theory to large deformations [8]. QLV models can capture stress relaxation
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and creep, the strain-rate dependent response and account for large deformations.
Moreover, the governing equations of the viscoelastic problem can be solved
analytically for the most common modes of deformations used in experiments (e.g.
tension, compression, equi-biaxial tension, simple shear and torsion). Therefore, the
constitutive parameters can be directly estimated through fitting of the experimental
data, by implementing a minimisation algorithm. Linear and QLV models have a
common limitation: being based on the linear superposition principle, they cannot
account for the coupling between different time-scales, which is a limitation, espe-
cially for tissues with hierarchical structures. Although more complex non-linear
models that account for this coupling have been proposed, they are numerically
costly when it comes to model fitting and material parameters estimation [16, 17].
Another class of non-linear models goes under the umbrella of internal variable or
rate-type models which have recently gained popularity among the biomechanical
community [12–14]. These models are based on thermodynamics foundations.
According to the multiplicative decomposition, the gradient of the deformation is
split into an elastic and a viscous part. The resulting stress is then split into the sum
of an elastic and a viscous term. The elastic stress is generally written with respect
to an elastic strain energy function. The viscous stress is written with respect to a
number of internal variables, whose evolution laws are dictated by the second law
of thermodynamics and motivated by the linear theory [18]. This approach has the
advantage of allowing an easy implementation of the constitutive model into finite
element codes. However, when it comes to model fitting, the resulting equations are
in implicit forms and need to be solved numerically, even for simple deformation
modes.

Finally, differential-type models formulate the time-dependent constitutive equa-
tion in terms of the derivatives of the right stretch tensor evaluated at the current time
[11]. Despite being computationally easy to implement, these models do not allow
for an explicit form with respect to the relaxation functions, therefore they are less
straightforward to fit with experimental data. We conclude this brief introductory
review by noting that viscoelasticity is not the only time-dependent property of
soft tissues. Rate-type effects, such as stiffening and softening as a results of cyclic
loading and unloading and ageing, are other common effects displayed by biological
tissues [29, 30].

In this chapter, we focus on viscoelasticity with the aim of providing useful
guidelines on model fitting and estimation of the viscoelastic parameters for linear
and QLV models. We consider two main experimental scenarios, the step-and-hold
test and the ramp-and-hold test for the torsion of a cylindrical tissue. These tests
are common experimental protocols used to investigate the viscoelastic properties
of soft tissues, in particular stress relaxation. In Sect. 2 we review the standard
linear viscoelastic theory and its rheological interpretation. In Sect. 3 we review
the QLV theory following the formulation proposed in [19]. In Sect. 4, we consider
the simple torsion of a cylindrical sample. This deformation can be performed with
commercially available rheometers which measure both the torque and the normal
force required to twist a cylindrical sample, giving access to two independent sets
of data. Torsion has been successfully used to characterise the elastic properties
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of the brain in large deformations [20] suggesting that the tissue behaves as a
Mooney-Rivlin material. The same behaviour was previously observed in simple
shear experiments [21]. In view of applications to brain mechanics, we therefore
solve the equilibrium equations for a viscoelastic material whose elastic stress obeys
a Mooney-Rivlin law and we calculate the expressions for the torque and the normal
force. In Sect. 5 we compare the predictions of the QLV model in the scenario of a
step-strain test and of a ramp test. We conclude the chapter by discussing our results
and by summarising the main findings.

2 Linear Viscoelastic Models

Linear viscoelastic constitutive models are formulated by introducing the time
dependency in the material parameters, a sort of fading memory which remembers
the strain history of the material up to the current configuration. Accordingly,
Hooke’s law σ = K : ε rewrites as follows:

σ (t) =
∫ t

−∞
K(t − τ) : dε(τ )

dτ
dτ , (1)

where σ is the stress tensor, ε is the infinitesimal strain tensor, and K(t) is called
the tensorial relaxation function and is a fourth-order tensor whose entries are the
time-dependent material parameters. The symbol : denotes the double contraction
between a fourth-order tensor Y and a second-order tensor Z such that (Y : Z)ab =
YabcdZcd .

Equation (1) is based on the Boltzmann superposition principle [22–24]. Accord-
ingly, the total stress at the current time t can be written as sum of past stress
contributions up to the time t . In a one-dimensional setting, for the generic
component σ we can then write σ = ∑

i �σi , as sketched in Fig. 1. Each �σi

is the stress response to the step increment �εi = dε
dt �ti and is governed by the

relaxation function kstep(t − ti ). Therefore, each stress increment can be written as
�σi = kstep(t − ti )�εi . By assuming that the strain history is continuous over time,
the sum can be converted into an integral over time. The stress component σ at time
t is then given by the following convolution integral:

σ(t) =
∫ t

−∞
kstep(t − τ)

dε(τ )

dτ
dτ , (2)

for a given deformation history ε(t).
Equation (1) is the tensorial version of Eq. (2). The components of the tensor

K(t) are the different relaxation functions of the tissue, i.e. the time-dependent
mechanical parameters. We will show in Sect. 2.1 that the tensor K(t) can be split
into its components according to a set of fourth-order bases. Thus, the resulting
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Fig. 1 Boltzmann
superposition principle: the
strain history ε is
approximated as sum of steps
�εi and the resulting total
stress response σ is the sum
of the stress responses �σi to
each step increment

constitutive equation can be written with respect to different sets of relaxation
functions according to the choice of bases.

From an experimental viewpoint, the choice of the bases might be dictated by
which mechanical properties we want to estimate. For instance, if we are interested
in estimating the time-dependent shear modulus we will perform a simple shear
test or a torsion test, whereas if we want to estimate the time-dependent Young’s
modulus we will perform a tensile test. Moreover, in order to be able to estimate
the components of K(t) we first have to specify their functional form with respect
to time. In Sect. 2.2 we will review a common form used in the biomechanics
community, i.e. the Prony series form. Furthermore, we will discuss two common
experimental protocols that are performed to estimate the components of K(t),
namely the step-strain and the ramp tests.

2.1 Bases Decomposition for the Tensor K(t)

In this section, we focus on the tensorial nature of the relaxation function K(t)

and we show that the constitutive equation (1) can be written with respect to
different sets of components of K(t), i.e. the time-dependent mechanical properties
of the tissue, according to different choices of fourth-order tensorial bases. To
simplify the analysis, in this chapter we restrict out attention to homogeneous
isotropic tissues. The mechanical behaviour of such tissues is fully described by
two independent mechanical parameters, e.g. the bulk and the shear modulus, κ(t)
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and μ(t), respectively, or the first Lamé parameter λ(t) and the shear modulus.
According to the elasticity theory, the elasticity tensor C for a homogeneous
isotropic material depends only on two independent elastic constants. Similarly,
the tensorial relaxation function K(t) for an isotropic material has two independent
components K1(t) and K2(t) with respect to two bases I1 and I2, respectively, such
that:

K(t) =
∑

n=1,2

Kn(t)In. (3)

A well-known form of the constitutive equation for a homogeneous isotropic and
compressible material follows by splitting the infinitesimal strain tensor ε into its
hydrostatic and deviatoric parts. The hydrostatic part is associated with volume
changes, whereas the deviatoric part is associated with the volume-preserving part
of the deformation. The following set of bases splits the strain tensor into its
hydrostatic and deviatoric parts:

I1abcd = 1

3
δabδcd and I2abcd = 1

2
(δacδbd + δadδbc)− 1

3
δabδcd . (4)

Accordingly, Eq. (1) takes the following form:

σ (t) =
∫ t

−∞
∑

n=1,2

Kn(t − τ)In : dε(τ )

dτ
dτ

=
∫ t

−∞
K1(t − τ)

dI1 : ε(τ )

dτ
dτ +

∫ t

−∞
K2(t − τ)

dI2 : ε(τ )

dτ
dτ

=
∫ t

−∞
K1(t−τ) d

dτ

(
1

3
tr (ε(τ )) I

)
dτ +

∫ t

−∞
K2(t−τ) d

dτ

(
ε(τ )−1

3
tr (ε(τ )) I

)
dτ

=
∫ t

−∞
κ(t − τ)

d

dτ
(tr (ε(τ )) I) dτ + 2

∫ t

−∞
μ(t − τ)

d

dτ
(dev (ε(τ ))) dτ ,

(5)
where δab is the Kronecker delta (δab = 1 if a = b and δab = 0 if a �= b), I is the
second-order identity tensor and dev ε = ε − 1

3 tr (ε) I is the deviatoric part of the
second-order tensor ε. The bases I1 and I2 defined in Eq. (5) act on a second-order
tensor by splitting the tensor into its spherical and deviatoric parts, respectively. The
associated material parameters κ(t) and μ(t) are the time-dependent bulk and shear
modulus, respectively.

For incompressible materials, i.e. materials that deform by keeping their volume
constant, the bulk modulus is much greater than the shear modulus (κ(t) � μ(t)

for ∀t). Moreover, the following assumptions are true: tr ε(t) → 0, κ(t) → ∞,∀t .
In these limits, Eq. (5) reduces to:

σ = −p(t)I + 2
∫ t

−∞
μ(t − τ)

d

dτ
(dev ε(τ )) dτ , (6)
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where we have introduced the Lagrange multiplier p(t):

− p(t) = lim
tr ε(t)→0

lim
κ(t)→∞

∫ t

−∞
κ(t − τ)

d

dτ
(tr ε(τ )) dτ . (7)

The scalar p(t) can be interpreted as a hydrostatic pressure and can be calculated by
solving the governing equations of motions for a continuum body, upon imposing
the boundary conditions. Note that the stress component −p(t)I represents a
workless reaction with respect to the kinematic constraint of the deformation field.
No dissipation is involved in the isochoric deformation of the body. Hence, for
materials that can be treated as incompressible, only the deviatoric part of the stress
exhibits a viscoelastic nature.

Similarly, by choosing the following bases:

J1abcd = δabδcd and J2abcd = 1

2
(δacδbd + δadδbc) , (8)

K(t) =∑n=1,2 An(t)Jn and Eq. (1) writes as follows:

σ (t) =
∫ t

−∞

∑

n=1,2

An(t − τ)Jn : dε(τ )

dτ
dτ = · · · =

=
∫ t

−∞
A1(t − τ)

d

dτ
(tr ε(τ )I) dτ +

∫ t

−∞
A2(t − τ)

d

dτ
(ε(τ )) dτ

=
∫ t

−∞
λ(t − τ)

d

dτ
(tr ε(τ )I) dτ + 2

∫ t

−∞
μ(t − τ)

d

dτ
(ε(τ )) dτ .

(9)

Now, we have A1(t) = λ(t), which is the time-dependent first Lamé parameter and
A2(t) = 2μ(t). Moreover, note that J1 = 3I1 and J2 = I2 − I1 and the following
link is true λ(t) = κ(t)− 2

3μ(t), ∀t . Clearly, Eqs. (5) and (9) are equivalent forms of
the constitutive equation (1) and predict the same stress response to a general strain
input ε(t). The choice of the bases and therefore the final form of the constitutive
model is usually dictated by what type of material properties we want to determine
and the type of experimental devices available for testing (e.g. tensile machines,
rheometers, bi-axial devices, etc.). In Sect. 3 we will use the bases decomposition of
Eq. (4) to write the constitutive equation for the QLV model. In the next section, we
focus on the mathematical form of the components of the tensor K(t).

2.2 Rheological Models for the Relaxation Function

In order to use the constitutive equation (1) for model fitting and parameter
estimations, a mathematical form for the components of the tensorial function K(t)
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has to be chosen. On the one hand, the form of the relaxation functions is restricted
by the following physical principles: positive strain energy and satisfaction of the
second law of thermodynamics. Imposing the energy density to be non-negative
during the tissue relaxation results in requiring the relaxation function to be positive
∀ t [7]. Furthermore, the second law of thermodynamics (dissipation inequality)
requires that the relaxation function decreases monotonically with time [7]. On the
other hand, any function that satisfies the physical constraints and replicates the
shape of the observed stress relaxation curve can be used. From the experimental
viewpoint, a classical experiment that can be done to determine the relaxation
curve is to apply a displacement to the tissue, then hold the tissue in position (i.e.
maintain a constant level of strain) for a certain time and measure the resulting stress
curve. For most soft tissues, the measured stress relaxation curve has a decaying
exponential behaviour [4–6].

The simplest form for the relaxation function that captures the exponential
decaying behaviour and satisfies the physical constraints is the so-called Prony
series. The Prony series has its origin in one-dimensional rheological models
[7, 8]. Such models are represented by an arrangement of linear springs and linear
dash-pots. The layout of such arrangements of elements provides the qualitative
behaviour of the system, e.g. solid-like or fluid-like behaviour, while the values
of the constants characterise the quantitative behaviour. In Fig. 2 we sketch the
generalised Maxwell scheme, which is used to model the viscoelastic response of
solid materials. The isolated spring k∞ represents the residual (long-term) elasticity
of the tissue.

One-dimensional rheological models can be described by a linear ordinary
differential equation in the variables σ (the stress) and ε (the strain). The stress
response σ of the system to a step-strain input ε provides the form of the relaxation
function kstep in (2). A convenient way to derive the response of rheological models,
especially when a large number of elements is involved, is to employ the Laplace
transform. The approach involves the following steps:

Fig. 2 Rheological models:
springs and dash-pots
arrangement of the
generalised Maxwell model.
The parameters ki are spring
constants (Pa) and ηi are
dash-pot constants (Pas), or
viscosities. σ is the stress
response of the system to the
applied strain ε
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1. Write the constitutive equations for all the elements in the system: σi = kiεi
for springs and σi = ηi ε̇i for dash-pots. Then write the equilibrium equations
σ =∑i σi for elements in parallel that experience the same strain and ε =∑i εi
for elements in series that experience the same stress.

2. By applying the Laplace transform to each equations at point 1, convert the
system of mixed differential and algebraic equations into a system of only
algebraic equations.

3. Apply a variable elimination procedure to the system derived at point 2. The
system has 3n+ 2 equations in 3n+ 3 unknowns, i.e. εi and σi . This reduces the
system to the single equation: σ̄ (s) = F(s)ε̄(s), where σ̄ and ε̄ are the Laplace
transforms of σ(t) and ε(t), respectively. F(s) is the transfer function in the
complex domain represented by the complex variable s.

4. By applying the inverse Laplace transform to the equation σ̄ (s) = F(s)ε̄(s),
obtain the constitutive equation in the time domain.

From point 3, the transfer function F(s) of the generalised Maxwell model in
Fig. 2 is given by:

F(s) = σ̄ (s)

ε̄(s)
= k∞ +

n∑

i=1

sηi

1 + sτi
, (10)

where the constants τi = ηi
ki

are called relaxation times of the model.
To calculate the response of a generalised Maxwell system to a step input, we

write the strain ε(t) = ε0H(t), where H(t) is the Heaviside function: H(t) = 1,
∀t ≥ 0 and H(t) = 0, ∀t < 0 and ε0 is the amplitude of the step. Then we calculate
the Laplace transform ε̄ and substitute the result into Eq. (10) obtaining:

σ̄ (s) =
(
k∞
s

+
n∑

i=1

ηi

1 + sτi

)
ε0. (11)

According to point 4, by transforming back into the time domain, we obtain the
stress response to a step-strain input with amplitude ε0:

σ(t) =
(
k∞ +

n∑

i=1

kie
− t
τi

)
ε0. (12)

From Eq. (12) we can then calculate the stress response to a step-strain input, i.e.
the relaxation function kstep(t), by dividing σ(t) by the amplitude of the step, as
follows:

kstep(t) = σ(t)

ε0
= k∞ +

n∑

i=1

kie
− t
τi . (13)
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Fig. 3 Stress response of the
generalised Maxwell model
to a step-strain input

The function (13) is called Prony series and is a sum of exponential terms, each
corresponding to a branch of the generalised Maxwell in Fig. 2. Note that the
relaxation function kstep(t) does not depend on the strain ε.

The constants k∞, ki and ηi can be determined by fitting Eq. (13) to the stress
relaxation curve experimentally measured from a step-strain test. The sample is
suddenly deformed up to the strain ε0 and held in position for a certain amount
of time. In the limit t → ∞ Eq. (12) recovers the elastic equilibrium stress
(σ∞ =k∞ε0) and the relaxation function in Eq. (13) reduces to the long-term elastic
modulus k∞:

k∞ = lim
t→∞ kstep(t). (14)

Experimentally, this limit is equivalent to a very slow ramp test, i.e. a quasi-static
test, where the final value of strain ε0 is attained as t→∞.

On the other hand, in the limit t → 0, Eq. (13) reduces to the instantaneous
elastic modulus k0:

k0 = kstep(0) = k∞ +
n∑

i=1

ki . (15)

The value in Eq. (15) corresponds to the maximum of the relaxation function, see
Fig. 3. Experimentally, this limit corresponds to the application of an instantaneous
strain, which is practically impossible to perform. The constants k0 and k∞ are
the elastic parameters of the constitutive model and describe the instantaneous and
long-term elastic behaviours of the tissue, respectively.

The viscous behaviour of the tissue is associated with the parameters ηi and τi .
To get some insights on the viscous parameters, we define the function:

k̃step(t) = kstep(t)− k∞ =
n∑

i=1

kie
− t
τi (16)
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and we integrate over the whole time spectrum:

η0 =
∫ ∞

0
k̃step(t) dt =

n∑

i=1

ηi. (17)

The value η0 has an important geometrical interpretation since it represents the area
between the curve kstep(t) and the asymptotic line k∞, see Fig. 3. The bigger the
area, the more viscous the material.

Moreover, we can compute the mean relaxation time Tc of the tissue as follows:

Tc =
∫∞

0 t k̃step(t) dt
∫∞

0 k̃step(t) dt
=
∑n

i=1 ηiτi∑n
i=1 ηi

. (18)

Geometrically, Tc represents the centroid of the shaded area below the relaxation
function kstep(t) and the asymptotic value k∞ and can be interpreted as the average
relaxation time.

Ramp Tests

Now, we recall that Eqs. (13–18) are valid for a strain input in the form of a step
function (i.e. ε(t) = H(t)ε0), where the strain value ε0 is attained instantaneously.
However, such experiment is not feasible in laboratory since that would require a
testing machine able to reach an infinite rate of deformation. Real tests are much
closer to a ramp test, where the strain ε0 is reached after a finite rising time t∗ > 0,
as shown in Fig. 4.

In view of providing an analytical expression for the relaxation curve to be
fitted with the experimental data, in this section we derive the stress response of
a generalised Maxwell system to a ramp input. The strain input for a ramp test takes
the following form:

ε(t) = ε0

t∗
t − ε0

t∗
(t − t∗)H(t − t∗), (19)

Fig. 4 Strain history for a
ramp-and-hold experiment.
The constant strain value ε0 is
reached at the end of the
loading phase (t = t∗), where
the strain increases at a
constant rate

0
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where H(t) is the Heaviside function. We can calculate the stress response to the
input in Eq. (19) by substituting Eqs. (13) and (19) into Eq. (2). We then obtain:

σ(t) = kramp(t)ε0, for t > t∗, (20)

where:

kramp(t) =
(
k∞ + 1

t∗
n∑

i=1

τikie
− t
τi

(
e
t∗
τi − 1

))
, for t > t∗. (21)

Note that by taking the limit for t → ∞ in Eq. (21), we recover the long-term elastic
modulus k∞. Similarly, the equilibrium stress as t → ∞ is given by σ∞ =k∞ε0 as
for the step test.

On the other hand, the stress response at t = t∗ is now affected by the previous
deformation history at t <t∗. To quantify the effect of the rising time of the ramp on
the instantaneous elastic and viscous response, we calculate the function k̃ramp(t):

k̃ramp(t) = kramp(t)− k∞ =
n∑

i=1

ki

νi
e
− t
τi

(
eνi − 1

)
, (22)

where νi = t∗/τi are the ratio between the rise time and the characteristic time
constants of the tissue τi . Note that by taking the limit t∗ → 0 (i.e. a step input),
Eq. (22) recovers Eq. (16):

lim
t∗→0

k̃ramp(t) = k̃step(t) =
n∑

i=1

kie
− t
τi . (23)

Moreover, we define the modified instantaneous elastic modulus k0ramp as the
function (22) evaluated at the end of the ramp phase, i.e. at t = t∗:

k0ramp = k̃ramp(t
∗) =

n∑

i=1

kiζi = k · ζ , with ζi = ν−1
i

(
1 − e−νi

)
. (24)

k and ζ are vectors with components ki and ζi , i = {1, . . . , n}, respectively. Since
0 ≤ νi < ∞, then the parameters ζi range between 0 < ζi ≤ 1. When νi = 0,
ζi = 1 and the ramp recovers the perfect step-strain input and the elastic modulus
in Eq. (24) reduces to the instantaneous modulus in Eq. (15).

We note that the elastic constants ki are intrinsic properties of the tissue, therefore
they do not depend on the testing procedure nor on the form of the strain history or
on the strain-rate at which the test is performed. On the other hand it is well-known
that the response of a viscoelastic material strongly depends on the strain-rate. The
coefficients ζi account for the strain-rate of the deformation process, i.e. for the fact
that the strain is applied to the tissue in a finite time t∗. The vector ζ allows to
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isolate the effect of the strain-rate from the constant elastic moduli k that describe
the material. Therefore, fitting stress relaxation data by using the relaxation function
of a step instead of the ramp will result in underestimating the elastic moduli. The
smaller the strain-rate (i.e. the greater t∗), the smaller k0ramp. In the limit of a quasi-
static deformation, only the infinite modulus k∞ is recoverable.

Similarly to Eq. (17) we can now compute the total viscosity of the material using
the modified function k̃ramp(t) in Eq. (22):

η0ramp =
∫ ∞

t∗
k̃ramp(t) dt =

n∑

i=1

ηiζi = η · ζ . (25)

Equation (25) highlights that the same set of coefficients ζi that link the elastic
moduli also link the viscous constants. Since for cases of practical interest 0 <

ζi < 1, it follows that η0ramp < η0. Therefore, neglecting the influence of the
deformation rate will result in underestimating the total viscosity of the material.
This is in agreement with the result k̃0ramp < k̃0, with k̃0 = k0 − k∞.

In conclusion, by fitting a stress relaxation curve obtained from a ramp test with
Eq. (13) we can obtain a correct estimation of the infinite modulus k∞, which is
strain-rate independent. However, the peak of the relaxation curve, which is related
to the instantaneous response of the tissue and therefore to its instantaneous elastic
modulus k0, depends on the strain-rate and it is given by Eq. (24). In particular, the
lower the strain-rate, the lower the peak. The area enclosed between the relaxation
function and its horizontal asymptote is related to the total viscosity of the material.
Since k∞ is not affected by the rate of deformation, k0ramp decreases with the area
represented by η0ramp.

These preliminary synthetic information (k∞, k0ramp, η0ramp) derived from
observation of the experimental relaxation function can be used as a starting point
of the fitting procedure to determine the constitutive parameters of the rheological
model (k∞, ki , τi).

3 QLV Model

The linear model in Eq. (1) predicts accurate results only in the small deformation
regime, i.e. when ε ≈ 0. However, it fails to accurately predict the stress response
when a tissue is subjected to a large deformation. To account for large deformations,
Fung originally proposed the theory of Quasi-Linear Viscoelasticity (QLV) [8],
which is the extension of the linear theory we reviewed in the previous section to the
large deformation regime. In this section we review the QLV theory, following [19]
to derive the constitutive equation for isotropic compressible and incompressible
soft tissues.

The QLV theory is based on the same assumptions of the linear theory, i.e. the
Boltzmann superposition principle and the assumption of fading memory. Moreover,
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Fung postulated that the total stress is separable into the product of a function
of time, i.e. the relaxation function, and a function of the deformation, i.e. the
elastic stress. The former accounts for the time-decaying relaxation of the stress
and the latter accounts for the non-linear elastic response of the tissue. In the QLV
formulation, the relation between the elastic stress and the strain is non-linear. To
write the constitutive equation for a QLV model, we start by rewriting the linear
model in Eq. (1) in the following equivalent form:

σ (t) =
∫ t

0
G(t − τ) : dσ e(τ )

dτ
dτ , (26)

where the tensor G(t) is now a fourth-order tensor whose components are non-
dimensional and such that Gn(0) = 1 for n = {1, 2}. We call G(t) the reduced
relaxation tensor. Note that in Eq. (26) we have assumed that the deformation history
starts at t = 0. The stress term σ e = K(0)ε is the linear elastic stress. Fung proposed
to replace the linear stress σ e by the corresponding instantaneous elastic stress in
large deformation and rewrite the constitutive equation (26) as follows:

�(t) =
∫ t

0
G(t − τ) : d�e(τ )

dτ
dτ . (27)

The tensor �(t) is the second Piola-Kirchhoff stress tensor and �e(t) is the elastic
second Piola-Kirchhoff stress tensor defined as follows:

�e = JF−1TeF−T. (28)

Te is the elastic Cauchy stress, F = I − ∇u = ∂x/∂X is the deformation gradient
associated with the large deformation x = χ(X), and J = det F. x and X are the
position vectors in the undeformed and deformed configurations, respectively. We
use the notation T to avoid confusion with the linear stress tensor σ . In the small
deformation regime the undeformed and deformed configurations coincide since
∇u ≈ 0 and F ≈ I and therefore the second Piola-Kirchhoff and the Cauchy stress
tensors also reduce to the same stress tensor.

Now, we can use the bases in Eq. (9) to split the tensor G of Eq. (27). We call the
associated components H(t) and D(t), respectively, and we rewrite Eq. (27) in the
following form:

�(t) =
∫ t

0
H(t − τ)

d�e
H(τ )

dτ
dτ +

∫ t

0
D(t − τ)

d�e
D(τ )

dτ
dτ . (29)

By following [19], we define:

�e
H = JF−1

(
1

3
tr(Te)I

)
F−T and �e

D = JF−1 (dev(Te)
)

F−T, (30)
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so that �e = �e
H + �e

D. Note that the relaxation functions H(t) and D(t)
are associated with the Piola transformations of the hydrostatic and deviatoric
parts of the Cauchy stress, �e

H and �e
D, respectively. Moreover, by comparing

Eqs. (26) and (27) we see that they are both written with respect to the same
tensorial relaxation function G(t). Therefore, the components H(t) and D(t) can
be determined by performing step-strain tests in the linear regime. Upon a closer
inspection of Eq. (5) we can also note that H(t) = κ(t)/κ0 and D(t) = μ(t)/μ0
are the non-dimensional version of the relaxation functions κ(t) and μ(t), where
μ0 = μ(0) and κ0 = κ(0) are the instantaneous elastic bulk and shear modulus,
respectively.

Finally, the Cauchy stress tensor follows from applying the transformation T =
J−1F�FT to Eq. (29) and is given by:

T(t) = J−1(t)F(t)
(∫ t

0
H(t − τ)

d�e
H(τ )

dτ
dτ +

∫ t

0
D(t − τ)

d�e
D(τ )

dτ
dτ

)
FT(t).

(31)

Equation (29) is the QLV form of the constitutive equation for an isotropic
compressible viscoelastic material. In the incompressible limit J → 1 and κ(t)→
κ0 →∞, ∀t , therefore Eq. (31) reduces to the following form:

T(t) = F(t)
(∫ t

0
D(t − τ)

d�e
D(τ )

dτ
dτ

)
FT(t)− p(t)I, (32)

where the Lagrange multiplier p(t) is given by:

p(t) = lim
k(t)→∞ lim

J→1

(
J−1(t)F(t)

(∫ t

0

κ(t − τ)

κ0

d�e
H(τ )

dτ
dτ

)
FT(t)

)
. (33)

Equation (32) is the QLV form of the constitutive equation for an isotropic
incompressible material.

In the next section we consider the simple torsion of a solid cylinder. We derive
the analytical expressions of the torque and the normal force required to twist the
cylinder, both in the linear and the large deformations regime. We then derive the
analytical expression for the relaxation curves of the torque and the normal force in
two experimental scenarios: the step-strain test and the ramp test.

4 Simple Torsion

In this section we consider the problem of simple torsion of a solid cylinder. We start
by defining the coordinates of the cylinder in the reference configuration B0 and in
the deformed configuration B(t) as {R,�,Z} and {r(t), θ(t), z(t)}, respectively.
We assume that the deformation starts at time t = 0 and take the reference
configuration as the initial configuration B0 =B(0). The displacement vectors X and
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x(t) in B0 and B(t), respectively, are defined with respect to the bases {ER,E�,EZ}
and {er , eθ , ez}, so that X = RER+�E�+ZEZ and x(t) = r(t)er+θ(t)eθ+z(t)ez.
The deformation can then be written as follows:

r(t) = R, θ(t) = �+ φ(t)Z, z(t) = Z, (34)

where φ(t) = α(t)/ l is the amount of twist experienced by the cylinder at time t ,
defined as the angle of rotation α(t) per unit length. l is the length of the cylinder
which remains constant at all times. The strain γ (r, t), a non-dimensional measure
of the deformation is:

γ (r, t) = rα(t)

l
= rφ(t). (35)

The deformation gradient F(r, t) = ∂x(t)
∂X

is given by:

F(r, t) =
⎛

⎝
1 0 0
0 1 r φ(t)
0 0 1

⎞

⎠ (36)

and the left Cauchy-Green tensor B(r, t) = F(r, t)F(r, t)T and its inverse are
given by:

B(r, t) =
⎛

⎝
1 0 0
0 1 + r2φ2(t) rφ(t)

0 rφ(t) 1

⎞

⎠ and B(r, t)−1 =
⎛

⎝
1 0 0
0 1 −rφ(t)
0 −rφ(t) 1 + r2φ2(t)

⎞

⎠ .

(37)

Note that the deformation gradient depends on the spatial variable r , i.e. the
deformation is non-homogeneous and the stress distribution will depend on the
radial position as well.

The principal stretches and the principal directions associated with the torsion
deformation are the eigenvalues and the eigenvectors of the tensor B, respectively.
Upon diagonalising B, we find that the principal stretches are given by:

λ1 = 1, λ2,3(r, t) =
√

1 + γ (r, t)

2

(
γ (r, t)±

√
γ 2(r, t)+ 4

)
. (38)

λ2 and λ3 are the greatest and the smallest stretch, respectively, and the associated
eigenvectors are the directions where λ2 and λ3 occur. Note that both λ2 and λ3
depend on the spatial variable r . Moreover, λ2 is maximum at the outer surface
r = ro. It is useful to define the strain γo(t) as the strain at the outer surface of the
cylinder at time t :
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(a)

2pro

l l

2pro
(b)

Fig. 5 Sketch of the lateral surface of a cylinder with length l and radius ro twisted with γo = 0.02
(a) and γo = 0.8 (b). The green arrow shows the principal direction associated with the maximum
stretch λ2 in Eq. (38). The dashed and the solid lines represent the undeformed and the deformed
cylinder, respectively

γo(t) = γ (ro, t) = roφ(t) (39)

so that:

max
r
λ2(r, t) = λ2(ro, t) =

√

1 + γo(t)

2

(
γo(t)+

√
γ 2
o (t)+ 4

)
. (40)

In Fig. 5 we show the principal direction (green arrow) associated with the
maximum stretch (i.e. λ2(ro, t)) on the external surface of the cylinder, when the
cylinder experiences a strain γo(t) = 0.02 (Fig. 5a) and γo(t) = 0.8 (Fig. 5b).
When γo(t) � 1, i.e. in the small deformation regime, the principal direction is
aligned with the diagonal of the rectangle and the maximum stretch λ2(ro, t) can be
approximated by the following expansion:

λ2(ro, t) = 1 + γo(t)

2
+ O(γ 2

o (t)), (41)

which recovers the relation between stretch λ used for large deformations and the
infinitesimal strain ε used in small deformations λ = ε + 1, with ε = γ /2.

However, Fig. 5b shows that in the large deformation regime, the principal
direction associated with the maximum stretch λ2(ro, t) is not aligned with the
diagonal and λ2(ro, t) is given by Eq. (40).

We can now write the governing equations for the simple torsion of a solid
cylinder. Assuming that the inertia is negligible, the equilibrium equations at any
time t > 0 are given by:
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{
divT(r, t) = 0

Trr (r, t) = 0 at r = ro,
(42)

where ro is the outer radius of the cylinder and the last equation follows from
imposing that the lateral surface of the cylinder is free of traction at any time t .
The operator div is the divergence operator (in cylindrical coordinates), see [25]
for details. In writing Eq. (42) we have implicitly neglected inertial forces. For a
discussion on the validity of this assumption we refer to [26, 27].

The Cauchy stress T(r, t) is given by the constitutive equation (32). Given the
form of the tensors F(r, t) and B(r, t) from Eqs. (36) and (37), the Cauchy stress
tensor will have components Trθ (r, t)=Tθr(r, t)=Trz(r, t)=Tzr(r, t)= 0, ∀t . The
remaining non-zero components are:

Trr (r, t) =
∫ t

0
D(t − τ)

∂

∂τ
�e

D11(r, τ ) dτ − p(r, θ, z, t),

Tθθ (r, t) =
∫ t

0
D(t − τ)

∂

∂τ
�e

D22(r, τ ) dτ + 2rφ(t)
∫ t

0
D(t − τ)

∂

∂τ
�e

D23(r, τ ) dτ

+ r2φ(t)2
∫ t

0
D(t − τ)

∂

∂τ
�e

D33(r, τ ) dτ − p(r, θ, z, t),

Tzz(r, t) =
∫ t

0
D(t − τ)

∂

∂τ
�e

D33(r, τ ) dτ − p(r, θ, z, t),

Tθz(r, t) =
∫ t

0
D(t − τ)

∂

∂τ
�e

D23(r, τ ) dτ + rφ(t)

∫ t

0
D(t − τ)

d

∂τ
�e

D33(r, τ ) dτ .

(43)
Therefore, the governing equations reduce to:

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

∂Trr (r, t)

∂r
+ Trr (r, t)− Tθθ (r, t)

r
= 0

∂Tθθ (r, t)

∂θ
= 0

∂Tzz(r, t)

∂z
= 0.

(44)

From the last two equations in Eqs. (44) we can conclude that the Lagrange
multiplier p only depends on the spatial variable r and at any time t the gov-
erning problem reduces to a single Ordinary Differential Equation (ODE) in the
argument r:

⎧
⎪⎨

⎪⎩

dTrr
dr

+ Trr − Tθθ

r
= 0

Trr = 0 at r = ro.

(45)
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Now, we restrict our attention to soft tissues whose elastic behaviour can be
considered hyperelastic. For such tissues a strain energy function W can be defined.
Here, we choose W in the form of the Mooney-Rivlin model:

W(I1, I2) = (
μ0

2
− c2)(I1 − 3)+ c2(I2 − 3), (46)

where I1 = tr B and I2 = 1/2
(
(tr B)2 − tr B2

)
are the first and second invariants of

the tensor B, respectively, μ0 is the infinitesimal shear modulus and c2 is the second
Mooney-Rivlin parameter. The Neo-Hookean model is recovered by setting c2 = 0.
The choice forW is motivated by many experimental observations on soft tissues. In
particular, it has been observed that the brain behaves as a Mooney-Rivlin material
in torsion [20] and in simple shear [21]. Moreover, the Mooney-Rivlin model has the
key feature of predicting a linear elastic response in torsion, i.e. the torque required
to twist the cylinder depends linearly on the strain. The elastic Cauchy stress Te for
an incompressible material is given by the following relation:

Te = 2W1B − 2W2B−1 − peI, (47)

where Wi = ∂W/∂Ii , i = {1, 2} and pe is the elastic Lagrange multiplier [25].
By combining Eqs. (46), (47) and (30) we can calculate the components of the
tensor �e

D:

�e
D11(r, t) = 1/3(4c2 − μ0)r

2φ2(t),

�e
D22(r, t) = −2/3(c2 + 2μ0)r

2φ2(t)− 1/3(2c2 + μ0)r
4φ4(t),

�e
D33(r, t) = −1/3(2c2 + μ0)r

2φ2(t),

�e
D23(r, t) = μ0rφ(t)+ 1/3(2c2 + μ0)r

3φ3(t).

(48)

By combining Eqs. (43) and (48) and substituting into Eq. (45) we obtain an ODE
for the variable p:

dp

dr
= r

3
(14c2 + μ0)

∫ t

0
D(t − τ)

d

dτ
φ2(τ )dτ + r3

3
(2c2 + μ0)

∫ t

0
D(t − τ)

d

dτ
φ4(τ ) dτ

− φ(t)

(
2rμ

∫ t

0
D(t − τ)

d

dτ
φ(τ) dτ + 2

3
r3(2c2 + μ)

∫ t

0
D(t − τ)

d

dτ
φ3(τ ) dτ

)

+ φ2(t)
r3

3
(2c2 + μ0)

∫ t

0
D(t − τ)

d

dτ
φ2(τ ) dτ (49)

with the initial condition:

p = r2
o

3
(4c2 − μ0)

∫ t

0
D(t − τ)

d

dτ
φ2(τ ) dτ at r = ro (50)
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whose solution is:

p = 1

6

(
(14c2 + μ0)r

2 − 3(2c2 + μ0)r
2
o

) ∫ t

0
D(t − τ)

d

dτ
φ2(τ ) dτ

+ 1

12
(2c2 + μ0)(r

4 − r4
o )

∫ t

0
D(t − τ)

d

dτ
φ4(τ ) dτ

−
(
μ0(r

2 − r2
o )

∫ t

0
D(t − τ)

d

dτ
φ(τ) dτ

+1

6
(2c2 + μ0)(r

4 − r4
o )

∫ t

0
D(t − τ)

d

dτ
φ3(τ ) dτ

)
φ(t)

+
(

1

12
(2c2 + μ0)(r

4 − r4
o )

∫ t

0
D(t − τ)

d

dτ
φ2(τ ) dτ

)
φ2(t).

(51)

Finally, the components of the stress T(r, t) can be obtained by substituting Eq. (51)
into Eqs. (43) to fully determine the final stress distribution in the cylinder.

The torque T (t) required to twist the cylinder can be computed as:

T (t) =
∫ 2π

0

∫ ro

0
Tθz(r, t)r

2 dr dθ , (52)

and the normal force N necessary to keep to cylinder length constant reads:

N(t) =
∫ 2π

0

∫ ro

0
Tzz(r, t)r dr dθ . (53)

The components Tθz(r, t) and Tzz(r, t) are given by Eqs. (43) upon substituting
Eqs. (48) and (51). The final expressions for the torque and the normal force read:

T (t) = π

2
μ0r

4
o

∫ t

0
D(t − τ)

d

dτ
φ(τ) dτ

+ π

9
(2c2 + μ0)r

6
o

(∫ t

0
D(t − τ)

d

dτ
φ3(τ ) dτ − φ(t)

∫ t

0
D(t − τ)

d

dτ
φ2(τ ) dτ

)

(54)
and

N(t) = −π

2
μ0r

4
oφ(t)

∫ t

0
D(t − τ)

d

dτ
φ(τ) dτ − π

4
(2c2 − μ0)r

4
o

∫ t

0
D(t − τ)

d

dτ
φ2(τ ) dτ

+ π

18
(2c2 + μ0)r

6
o

(∫ t

0
D(t − τ)

d

dτ
φ2(τ ) dτ

)
φ2(t)

− π

9
(2c2 + μ0)r

6
o

(∫ t

0
D(t − τ)

d

dτ
φ3(τ ) dτ

)
φ(t)

+ π

18
(2c2 + μ0)r

6
o

∫ t

0
D(t − τ)

d

dτ
φ4(τ ) dτ ,

(55)
respectively.
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Note that Eqs. (54) and (55) are written with respect to the twist φ(t) which is
a dimensional measure of the deformation. In view of comparing the predictions of
the QLV theory with those of the linear theory, it is useful to rewrite (54) and (55) in
terms of the strain γo(t), defined in Eq. (39), which is the strain at the outer surface of
the cylinder and is a non-dimensional measure of the deformation. Then, Eqs. (54)
and (55) rewrite as follows:

T (t)=π

2
r3
o

∫ t

0
μ(t−τ) d

dτ
γo(τ ) dτ

+π

9
(
2c2

μ0
+1)r3

o

(∫ t

0
μ(t−τ) d

dτ
γ 3
o (τ ) dτ −γo(t)

∫ t

0
μ(t−τ) d

dτ
γ 2
o (τ ) dτ

)

(56)
and

N(t)=−π

2
r2
oγo(t)

∫ t

0
μ(t−τ) d

dτ
γo(τ ) dτ −π

4
(
2c2

μ0
−1)r2

o

∫ t

0
μ(t−τ) d

dτ
γ 2
o (τ ) dτ

+ π

18
(
2c2

μ0
+ 1)r2

o

(∫ t

0
μ(t − τ)

d

dτ
γ 2
o (τ ) dτ

)
γ 2
o (t)

− π

9
(
2c2

μ0
+ 1)r2

o

(∫ t

0
μ(t − τ)

d

dτ
γ 3
o (τ ) dτ

)
γo(t)

+ π

18
(
2c2

μ0
+ 1)r2

o

∫ t

0
μ(t − τ)

d

dτ
γ 4
o (τ ) dτ ,

(57)
where we have used the connection D(t)=μ(t)/μ0.

In the next section we will use Eqs. (56) and (57) to calculate the predictions of
the QLV model in the experimental scenarios of a step-strain test and a ramp test.

5 Results

In view of predicting the relaxation behaviour of a tissue in simple torsion, we
consider two scenarios which are important from the experimental viewpoint: the
step-strain test and the ramp test. By using Eqs. (56) and (57), we then derive the
analytical expressions of the relaxation curves for the torque and the normal force.

5.1 Small Deformations

We start by considering the torsion of a cylindrical tissue in the small deformation
regime and we calculate the torque and the normal force predicted by the linear
viscoelastic theory presented in Sect. 2. We assume that the viscoelastic response of
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the tissue can be modelled as that of a generalised Maxwell model, i.e. a system of
spring and dash-pots arranged as shown in Fig. 2. For small deformations, the only
non-zero component of the infinitesimal strain tensor ε is εθz = γ (r, t)/2, thus it
follows that devε = ε and the constitutive equation (6) reduces to the following
equation:

σθz(r, t) =
∫ t

−∞
μ(t − τ)

d

dτ
γ (r, τ ) dτ . (58)

The governing equations (42) are automatically satisfied. Equation (58) is a one-
dimensional equation in the same form of Eq. (2), where μ(t) is now the relaxation
function. According to the formula Tlin = 2π

∫ ro
0 σθzr

2dr , the torque is then
given by:

Tlin(t) = π

2
r3
o

∫ t

−∞
μ(t − τ)

d

dτ
γo(τ ) dτ , (59)

where γo(t) is the shear evaluated at the outer radius ro, see Eq. (39). Note that
Eq. (59) is the linearised version of Eq. (56) for γo � 1.

Following Sect. 2.2, we can calculate the analytical expressions of the relaxation
curve for the torque in response to a step and a ramp input, respectively.

For the step-strain test, we consider the following form for the strain γo(t):

γo(t) = ro

l
α0H(t) = γo,0H(t), (60)

where γo,0 = ro
l
α0 is the amplitude of the step and H(t) is the Heaviside function

as defined in Sect. 2.2. By substituting Eq. (60) into Eq. (59) and upon integrating,
we obtain:

T lin(t) = 1

2
πr3

oμstep(t)γo,0, (61)

where the relaxation function μstep(t) is the following Prony series:

μstep(t) = 2T lin(t)

πr3
oγo,0

= μ∞ +
n∑

i=1

μie
− t
τi . (62)

The parameters μi in Eq. (62) are the shear moduli of the n branches of the
generalised Maxwell model, see Fig. 2, and τi = ηi

μi
are the associated relaxation

times. The instantaneous shear modulus is obtained by evaluating the maximum of
the relaxation function μstep(t) in t = 0, as follows:
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μ0 = μramp(0) = μ∞ +
n∑

i=1

μi. (63)

We now consider a strain history in the form of a ramp as follows:

γo(t) = γo,0

t∗
t − γo,0

t∗
(t − t∗)H(t − t∗), (64)

where t∗ is the rising time of the ramp. Substituting Eq. (64) into Eq. (59) and
computing the integral provides an analogous expression for the torque as Eq. (61).
The relaxation curve of the torque is now given by:

μramp(t) = 2T lin(t)

πr3
oγo,0

= μ∞ + 1

t∗
n∑

i=1

τiμie
− t
τi

(
e
t∗
τi − 1

)
, for t > t∗.

(65)

Equation (65) describes the relaxation curve of the torque in response to the ramp
function in Eq. (64). The right-hand side term in Eq. (65) is the response of the
generalised Maxwell system to a ramp input. Equations (62) and (65) can then
be used to estimate the viscoelastic parameters μi, μ∞, and τi by fitting the data
from a step test and a ramp test, respectively. The left-hand side of Eq. (65) can be
computed from the experimental data, i.e. the measured torque Tlin and the imposed
strain γo,0 and the radius of the sample ro. The right-hand side is the analytical
expression to be fitted in order to estimate the viscoelastic parameters.

Note that the expression on the right-hand side of Eq. (65) does not depend on
the amount of shear γo,0, therefore Eq. (65) will predict accurate results for those
tissues that display the same relaxation response when subjected to different levels
of strain. Moreover, we define the following non-dimensional function:

μ̃0ramp = μramp(t
∗)− μ∞
μ0

= 1

t∗
n∑

i=1

τiμi

μ0

(
1 − e

− t∗
τi

)
=

n∑

i=1

ν−1
i μi

μ0

(
1 − e−νi

)
,

(66)

which provides an estimate of the maximum value of the relaxation curve in
Eq. (65).

In the next section, we derive the corresponding expressions for the relaxation
curves of the torque and the normal force for the QLV model.

5.2 Large Deformations

In this section we derive the relaxation curves for the torque and the normal force
for a step test and a ramp test in the large deformation regime. We first address the
ramp test scenario and then by taking the limit case t∗ → 0 we consider the step
test scenario.
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5.2.1 Torque

To compute the analytical expression of the relaxation curve for the torque, we
substitute the strain history (64) and the relaxation function (62) into Eq. (56). Upon
integrating we obtain:

T (t, γo,0) = 1

2
πr3

o μ
QLV
ramp(t, γo,0) γo,0, for t > t∗, (67)

where:

μQLV
ramp(t, γo,0)=μramp(t)+2(1 + 2c2/μ0)

9t∗3

n∑

i=1

τiμie
− t
τi

(
− 2τi(t

∗+3τi)

+e t
∗
τi (t∗2−4t∗τi+6τ 2

i )
)
γ 2
o,0,

(68)

which is valid for t > t∗. Equation (68) shows that the relaxation curve for the
torque predicted by the QLV model is the sum of the relaxation function μramp(t) in
Eq. (65) and a term proportional to the square of the imposed strain γo,0. Therefore,
in the limit γo,0 � 1, i.e. small deformation regime, Eq. (68) recovers the result
in (65), which is the relaxation function predicted by the linear theory for a ramp
test.

A less straightforward comment is that the quadratic term in Eq. (68) arises as
a consequence of the time-dependent nature of the strain history. In other words,
if the tissue is deformed infinitely fast (as it is the case for a perfect step-strain),
Eq. (68) recovers the function μstep(t) in (62), without making the assumption of
small deformations! By taking the limit for t∗ → 0 in Eq. (68) we indeed obtain:

lim
t∗→0

μQLV
ramp(t, γo,0) = μ∞ +

n∑

i=1

μie
− t
τi = μstep(t), (69)

which is the relaxation curve predicted by the linear theory for a step test. Moreover,
opposite to the linear viscoelastic theory, the relaxation curve of the torque predicted
by the QLV model, i.e. μQLV

ramp(t, γo,0), depends on both the time and the level of
strain γo,0. This is in agreement with the original assumption made by Fung when
he first formulated the QLV theory [8].

With the aim of plotting the relaxation curve μQLV
ramp in Eq. (68), we now consider

a simplified version of the generalised Maxwell model with only one branch. This
layout is also called Standard Linear Solid model, and it is the simplest arrangement
of elements which is able to describe the behaviour of a viscoelastic solid. Note
that the QLV theory, despite taking into account large deformations, obeys the
superposition principle in time. Therefore, adding more branches to the generalised
Maxwell model will increase the accuracy of the model without producing mixed
higher order terms as, for example, in the multiple integral formulation [28]. We can



Foundations of Viscoelasticity and Application to Soft Tissue Mechanics 95

0 1 2 3 4 5
0.0

0.5

1.0

1.5

2.0

Fig. 6 Effect of the rising time t∗ on the relaxation curve μ
QLV
ramp(t, γo,0)/μ0 in Eq. (68). The

parameter ν1 = t∗/τ1 spans over {0, 0.2, 0.4, 0.6, 0.8, 1}. The following parameters have been
fixed: n = 1, τ1 = 1, μ1 = μ∞ = 1, c2/μ0 = 2/3 and the strain level γo,0 = 0.02

then set n = 1 in Eq. (68) without loss of generality. Furthermore, we set c2 = c1/2
according to the observed values of c1 and c2 for brain tissues [20].

In Fig. 6 we plot the relaxation curve μQLV
ramp(t, γo,0) in Eq. (68) for six different

ramp histories. To quantify the effect of the rising time on the profile of the
relaxation curve we vary the parameter ν1 = t∗/τ1. We note that Eq. (68) is valid
for t > t∗. Experimentally, the ramp phase (t < t∗) is the noisy part of the data and
cannot be used to perform the model fitting. Therefore, we plot the ramp phase of the
curves in Fig. 6 with dashed lines. The dashed lines can be obtained by integrating
Eq. (56) with the strain history (64) in the time interval 0 ≤ t < t∗.

From Fig. 6 we can conclude that the faster the ramp phase, the higher the peak
of the relaxation curve. However, the limiting value of the curves as t approaches
∞ is μ∞/μ0 and is not affected by the rising time t∗.

To quantify the effect of the strain level reached at the end of the ramp phase, in
Fig. 7 we plot Eq. (68) for different values of γo,0 at fixed ν1 = 0.5.

We now look at two limiting values of Eq. (68), namely the long-term equilibrium
and the instantaneous values of μQLV

ramp(t, γo,0). First, by taking the limit for t → ∞
we obtain:

lim
t→∞μQLV

ramp(t, γo,0) = μ∞. (70)

From Eq. (70) we observe that the equilibrium value of the relaxation curve of the
torque predicted by the QLV model is not affected by the quadratic terms in γo,0. In
other words, after an infinite time, i.e. at the equilibrium, the response of the tissue is
dominated by the long-term shear modulus μ∞. Therefore, time and its non-linear
effect through the quadratic terms in Eq. (68) have no influence on the long-term
modulus. This effect is also observable from the horizontal asymptotes of Figs. 6
and 7.
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Fig. 7 Effect of the final strain level γo,0 on the relaxation curveμQLV
ramp(t, γo,0)/μ0 in Eq. (68). The

strain γo,0 spans over {0.02, π/5, π/4, π/3, π/2, π}. The following parameters have been fixed:
n = 1, τ1 = 1, μ1 = μ∞ = 1, c2/μ0 = 2/3 and the parameter ν1 = t∗/τ1 = 0.5

Then, we look at the instantaneous value of the function μQLV
ramp(t, γo,0), defined

as μQLV
ramp(t

∗, γo,0). The point μQLV
ramp(t

∗, γo,0) is the maximum of the relaxation curve.
In the linear model of Eq. (62), the maximum of the relaxation curve (obtained
for a step-strain test) is equal to the instantaneous shear modulus μ0 in Eq. (63).
For a ramp test, the instantaneous response is related to the instantaneous modulus
through the formula in Eq. (24), where the elastic constants ki are replaced by μi
for i = {1, . . . , n}, respectively.

We can now investigate how the non-linear terms in Eq. (68) affect the instan-
taneous response of the torque. To quantify this effect, we compute the following
function:

μ̃
QLV
0ramp = μ

QLV
ramp(t

∗, γo,0)− μ∞
μ0

= ν−1
1

(
1−e−ν1

)+2

9
(1+2c2/μ0)ν

−3
1 e−ν1

(
eν1
(
ν2

1−4ν1+6
)

−2(ν1+3)
)
γ 2
o,0

(71)
where ν1 = t∗/τ1.

In Fig. 8, we plot Eq. (71) with respect to ν1 = t∗/τ1 and for different values of
γo,0. The parameter ν1 spans from 0 to 1, where the value 0 corresponds to perfect
step input (t∗ = 0) and the value 1 corresponds to a ramp input when the rising time
of the ramp is equal to the characteristic relaxation time of the tissue (t∗ = τ1).

The curves in Fig. 8 show that the higher γo,0, the higher is the peak of the
relaxation curve. For γo,0 = 0.02 (solid blue line), Eq. (71) recovers the relaxation
curve in Eq. (66). In the small deformation regime γo,0 � 1, the non-linear terms in
Eq. (71) are very small and as expected the predictions of the QLV model recover
those of the linear model.
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Fig. 8 Effect of the rising time t∗ and of the strain level γo,0 on the maximum of the relaxation
curve of the torque. The function in Eq. (71) is plotted with respect to ν1 = t∗/τ1 for different
values of strain γo,0 = {0.02, π/5, π/4, π/3, π/2, π}. The solid blue line is obtained from the
linear model, see Eq. (24) and does not depend on the level of strain

When t∗ → 0 (i.e. ν1 → 0), the ramp is infinitely fast and is very close
to be a step. In this limit Eq. (68) reduces to Eq. (62) and the linear and quasi-
linear viscoelastic theories predict the same results for any value of γo,0. This limit
corresponds to the point (0, 1) in Fig. 8.

The effect of the rising time t∗ (and therefore of the strain-rate if γo,0 is fixed)
on the relaxation curve is accounted by the parameter ν1: the slower the test, the
lower the peak of the experimental relaxation curve in Eq. (68) and the bigger is the
difference between the predictions of the linear and the QLV model.

When t∗ → ∞, i.e. for very slow (quasi-static) tests, μ̃QLV
0ramp → 0, which means

that only the quasi-static elastic properties of the material, i.e. μ∞, can be estimated.
This would correspond to a quasi-static experiment.

Moreover, from Fig. 8 we can quantify the influence of the quadratic term in
Eq. (71). For small values of ν1, the quadratic contribution is minimal even for large
values of strain. Its effect increases with both ν1 and γo,0, as expected.

Note that μ̃QLV
0ramp decreases as ν1 increases but increases with γo,0. These two

opposite effects can lead to an apparent compensation, i.e. constant value of μ̃QLV
0ramp,

when slow experiments are performed in the large deformation range.
Finally, we note that the second Mooney-Rivlin parameter c2 enters Eq. (68)

through the quadratic term γ 2
o,0 of the function μ

QLV
ramp(t, γo,0). As we highlighted

above, the quadratic term vanishes in both the limits t∗ → 0 (step-strain test) and
t → ∞ (elastic equilibrium). Therefore, it is difficult to determine the parameter
c2 from the torque data. The identification of c2 requires information on the normal
force.
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In conclusion, the relaxation curve of the torque allows us to estimate the
instantaneous and the long-term moduli μ0 and μ∞, respectively, the moduli μi
and the relaxation times τi from a step or a ramp test.

5.2.2 Normal Force

In this section we derive the analytical expression of the relaxation curve for the
normal force predicted by the QLV model. As in the previous section, we consider
both the ramp test and the step-strain test scenarios. Furthermore, we will show how
to use the normal force data measured from the two tests to estimate the second
Mooney-Rivlin parameter c2.

We recall that the only non-zero component of the infinitesimal strain tensor is
the shear component εθz. It follows that all three normal components of the Cauchy
stress tensor are zero, particularly σzz = 0,∀t . Therefore, in the small deformation
regime the linear theory predicts a zero normal force response for any strain history
input.

On the other hand, in the large deformation regime the QLV theory predicts a
non-zero normal force for an incompressible Mooney-Rivlin viscoelastic material
under torsion, see Eq. (57). By substituting the deformation history (64) into
Eq. (57), we calculate the relaxation curve for the normal force in response to a
ramp input. Upon integrating, we obtain:

N(t, γo,0) = − π

4
r2
o

(
(1 + 2c2/μ0) μ∞ + 2

n∑

i=1

μiν
−2
i e

− t
τi

(
2c2/μ0

(
eνi (νi − 1)+ 1

)+ eνi − νi − 1
)
)
γ 2
o,0

− π

9
(1 + 2c2/μ0) r

2
o

n∑

i=1

μiν
−4
i e

− t
τi

(
eνi
(
ν2
i − 6νi + 12

)
− ν2

i − 6νi − 12
)
γ 4
o,0,

(72)

which is valid for t > t∗ and where νi = t∗/τi . From Eq. (72) we observe that
the normal force N is given the sum of two terms proportional to γ 2

o,0 and γ 4
o,0,

respectively. Therefore, in the small deformation limit (γo,0 → 0) Eq. (72) recovers
the predictions of the linear theory, i.e.N=0,∀t . According to the definition in (13),
the relaxation function associated with the normal force is σzz(t, γo,0)/ε0, where
σzz(t, γo,0) = −N(t, γo,0)/(πr2

o ) and ε0 = γo,0/2, namely:

μN(t, γo,0) = −2N(t, γo,0)

πr2
oγo,0

. (73)
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In the limit t∗ → 0 (step-strain input), Eq. (73) reduces to:

lim
t∗→0

μN(t, γo,0) = γo,0

2

(
1 + 2

c2

μ0

)
μ(t), with μ(t) = μ∞ +

n∑

i=1

μie
− t
τi .

(74)
The factor γo,0/2 represents the dependence on the deformation, while the factor
(1 + 2c2/μ0)μ(t) represents the dependence on time, which is indeed strain-
independent. Thus, it follows that different relaxation curves obtained for different
values of the strain γo,0 do not overlap. The functional dependence of μN on the
strain γo,0 is dictated by the form of the elastic constitutive model. In this particular
case, the choice of a Mooney-Rivlin model yields a linear dependence on γo,0 in
Eq. (74). However, the relaxation curves display the same exponential decay in
time, which is dictated by the choice of the rheological model. For a generalised
Maxwell model, the decay is exponential according to the Prony series in Eq. (74).
If the experimental curves do not display the same decay in time, then the QLV
model will not fit the data accurately and more advanced/non-linear models should
be considered [1].

Since N(t) depends on the deformation through quadratic terms in γo,0 and the
aim here is to illustrate how the relaxation curve of the normal force is affected by
the level of deformation and the ramp phase, we choose to introduce the following
function:

fN(t, γo,0) = − 2N(t)

πr2
oγ

2
o,0

=1+2c2/μ0

2
μ∞+

n∑

i=1

μiν
−2
i
e
− t
τi
(
2c2/μ0

(
eνi (νi−1)+1

)+eνi−νi−1
)

+1+2c2/μ0
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n∑

i=1

μiν
−4
i
e
− t
τi

(
eνi
(
ν2
i −6νi+12

)
−ν2

i −6νi−12
)
γ 2
o,0,

(75)

which is valid for t > t∗. By taking the limit t → ∞, Eq. (75) reduces to:

fN∞ = lim
t→∞ fN(t, γo,0) = (1/2 + c2/μ0) μ∞. (76)

The limiting value in Eq. (76) explicitly depends on the second Mooney-Rivlin
coefficient c2. Therefore, experimentally we can determine c2 by performing a ramp
(or a step) test and by measuring the asymptotic value of the normal force curve as
t → ∞. We point out that the parameters c2 appears explicitly in the limiting value
(as t → ∞) of the normal force only (it does not appear in the asymptotic value
on the torque). This is a consequence of the fact that the vertical force is associated
with the change in area of the section of the cylinder. Furthermore, this is consistent
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Fig. 9 Effect of the rising time (a) and of the strain level (b) on the relaxation curve of the normal
force in Eq. (75). The following parameters are fixed: n = 1, τ1 = 1,μ1 = μ∞ = 1, c2/μ0 = 2/3.
In (a) we fix γo,0 = 0.02 and let ν1 spanning over {0, 0.2, 0.4, 0.6, 0.8, 1}. ν1 = 0 represents a
perfect step test and ν1 = 1 represents a ramp test with rising time t∗ = τ1. In (b) we fix ν1 = 1/2
and let γo,0 = {0.02, π/5, π/4, π/3, π/2, π}

with the fact that c2 is the parameter associated with the second invariant I2 of the
strain tensor B, which indeed accounts for the changes in the area of the material
due to the deformation.

Finally, to show the influence of the rising time t∗ and of the level of strain at the
end of the ramp γo,0 on the function fN , we plot fN/μ0 for different values of ν1
and γo,0 in Fig. 9a,b, respectively.

Figure 9b shows that the final level of strain reached at the end of the ramp has a
negligible effect on the relaxation curves of the normal force. However, for a fixed
strain level, the slower is the ramp, the lower is the peak of the relaxation curve,
similarly as we observed for the relaxation curves of the torque (Fig. 6).

In conclusion to fully characterise the viscoelastic behaviour of a soft tissue in
torsion (that obeys a Mooney-Rivlin hyperelastic law), according to the QLV theory,
we only need to perform a single step-strain test. This test can be performed by using
a rheometer that gives access to two sets of data, the torque and the normal force.
Moreover, as we showed in Figs. 8 and 9b, the level of strain does not affect the
relaxation curves of the torque and the normal force for a step test. Therefore, if the
rheometer can achieve high strain-rates and if we are only interested in estimating
μ0, μ∞, μi and τi (for instance, if the material is Neo-Hookean, i.e. c2 = 0), the
test can be performed in the small deformation regime and the parameters can be
estimated by fitting the torque data with Eq. (62). Otherwise, the test should be
modelled as a ramp test in the large deformation regime (see Sect. 5.2). In this case,
from the relaxation curve of the torque in Eq. (68) we can estimate the long-term
shear modulus μ∞ from the value of the data as t → ∞, according to Eq. (70). We
can obtain all the other moduli μi and the relaxation times τi by fitting the relaxation
curve in Eq. (68). Finally, we can estimate the parameter c2 from the value of the
normal force data as t → ∞, according to Eq. (76).



Foundations of Viscoelasticity and Application to Soft Tissue Mechanics 101

6 Conclusions

In this chapter we reviewed the foundations of linear viscoelasticity and the theory
of Quasi-Linear Viscoelasticity (QLV). With the aim of providing a fitting procedure
for the QLV model and estimating the viscoelastic properties of a soft tissue, we
considered the torsion of a soft solid cylinder and we wrote the governing equations
of the viscoelastic problem for a tissue that elastically behaves as a Mooney-
Rivlin material, such as the brain. We derived the analytical predictions of the
relaxation curves for the torque and the normal force necessary to twist a cylindrical
sample. We considered two experimental scenarios: the step test, where the tissue is
instantaneously deformed and held in position, and the ramp test, where the tissue
is deformed in a finite time and then held in position. These tests are commonly
performed to characterise the time-dependent properties of soft tissues and allow to
investigate their stress relaxation behaviour. We investigated the effect of the strain
level and rising time of the ramp on the relaxation curves of the torque and the
normal force. Our results show that in a step test, the linear and the QLV models
predict the same relaxation curves for the torque. However, when the strain input is
in the form of a ramp function, the non-linear terms appearing in the QLV model
affect the relaxation curve of the torque depending on the strain level attained at the
end of the loading phase (see Fig. 8). In particular, the higher is the strain level, the
higher is the maximum of the relaxation curve, whilst the equilibrium value remains
constant and unchanged.

The linear model predicts a zero normal force ∀t , whilst the QLV model predicts
a non-zero normal force that depends on γ 2

o,0 and γ 4
o,0. Our results show that the

relaxation curve of the normal force depends on the level of strain both for a step
test (see Eq. (74)) and a ramp test (see Eq. (73)). Although the contributions of the
non-linear terms are negligible for a Mooney-Rivlin material (see Fig. 9b), their
effect might be relevant for materials that obey a different elastic law (e.g. Fung,
Ogden, Gent, etc.).

Finally, our results provide useful guidelines to accurately fit QLV models in
view of estimating the viscoelastic properties of soft tissues. We showed how to
use the data from a ramp test in torsion (i.e. the relaxation curves of the torque
and the normal force) to estimate the constitutive parameters of a Mooney-Rivlin
viscoelastic tissue.
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Modelling of Biomaterials as an
Application of the Theory of Mixtures

Václav Klika

Abstract An overview of the mixture theory is provided while building upon
similarities with the classical single continuum theory. The mixture theory can be
formulated on different levels of description, in terms of different state variables.
The second law of thermodynamics is used as a fundamental constraint for obtaining
the constitutive relations, the closures. For this purpose, one can either use a
definition of entropy (Gibbs’ relation) or a definition of temperature, which is used
to identify the entropy production. We discuss the significance and role of coupling
in a model formulation and illustrate it using examples stemming from biology.

The theory is applied to the formulation of a biphasic model of cartilage. The
superiority of mixture theory over the single continuum framework is evident, but
there is a trade-off in terms of more parameters that need to be estimated and the
number of boundary conditions. In the latter, the difficulties are inherent to the
theory and remain an open problem. They are not derivable and require further
modelling, although there are situations where boundary conditions can be assessed.
Upscaling methods might provide answers in certain situations as well as a new idea
within GENERIC framework.

1 Introduction

This chapter is based on a series of lectures given at EMS School on Modeling
of Biomaterials, held in February 2020 in Kácov, Czech Republic, where multiple
approaches to mathematical modelling of biomaterials were presented. In particular,
this chapter provides an overview of a continuum mechanics approach while
focusing on the so-called mixture theory (theory of interacting continua), its
advantages, and shortcomings.
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This text intends to provide an overview of what such an approach and
framework have to offer. Hence, we start with the classical single continuum concept
of formulating thermodynamically consistent models while highlighting certain
aspects of the framework allowing us a better understanding of the next step, the
mixture theory. We pause on the significance of conserved quantities in the standard
models of continuum thermodynamics and how one can obtain constitutive relations
for simple problems (like Newtonian fluids). On the other hand, we mention the
difficulties that one faces when more details (structural or material) are necessary to
be added.

Consequently, we present an alternative to the formulation of complex single
continuum models: the theory of mixtures. It allows one to generalise some of the
concepts of the single continua straightforwardly, allowing one for a straightforward
description of complex phenomena within a rather simple framework. For example,
a rather complex viscoelastic response of a material can be obtained as an outcome
of two simple incompressible interacting continua—a solid with linear stress–strain
response and a Newtonian fluid. We discuss the essential novel feature that mixture
theory provides: the coupling phenomena, i.e., how one process can drive another
process against its “natural” direction (as, for example, in Maxwell–Stefan model).

We then proceed to apply the mixture theory to a two-constituent (also referred
to as a biphasic) model of cartilage and explore, in certain simplified settings,
its behaviour and richness of phenomena. Finally, the formulation of boundary
conditions for the mixture is identified as challenging and remains an open problem
for several decades now.

Theory of mixtures is a potent theory with wide applications not only in physical
but also biological disciplines. We hope that this text helps to share this view.

2 General Framework: Single Continuum

We start with a single continuum nonequilibrium thermodynamic framework not
only as a reminder but also as an illustration of the main concepts that perhaps might
be formulated from a different perspective than usual in classical texts [10, 20].

We denote with X the Lagrangian coordinates (coordinates in the reference
body configuration), x the Eulerian coordinates (coordinates in the actual body
configuration), while we assume that these two coordinates are linked with a smooth
enough map as is standard in the classical treatment of continuum mechanics. The
requirement for a smooth mapping xi = ξ i(t,X) between the configurations can be
removed (which might be relevant in biological applications) in a slightly different
treatment of nonequilibrium thermodynamics using the distortion matrix, where the
focus lies in the consistent transitions among levels of description (see “GENERIC”

thermodynamics below Sect. 3.2). Deformation gradient is then F iI = ∂ξ i

∂XI , usually

written as F iI = ∂xi

∂XI , while by velocity we mean vi(t, x) = ∂ξ i (t,X)
∂t

∣∣
X=ξ−1(t,x)

.
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Fig. 1 An arbitrary volume
with a discontinuity surface
�(t) of a quantity ψ

Note that sometimes a third configuration, called a natural configuration, is
added to account for a prestress (via accounting for an associated stress-free
state) or growth (to distinguish whether the deformation originates from growth
or stress). Typically, the concept of multiplicative decomposition is used to add
growth to the deformation, but it should be noted that it is not clear whether such
an approach is correct. To illustrate this, we remark that this decomposition into
two subsequent events means that the newly formed material cannot have different
material properties than the original material at that point. Thus, multiplicative
decomposition cannot be used in the case when the newly formed tissue is deposited
with a different stress than the already existing material, at a different velocity or
when ageing of the tissue is of relevance. Again, the distortion matrix might provide
an alternative, but this has not been shown yet.

Let us now consider a quantity ψ and an arbitrary volume of the body with a
potential discontinuity surface �(t) in the considered volume as shown in Fig. 1. A
general balance law (balancing possible sources and fluxes in a given volume) for
the volumetric property ψ of a system reads

d

dt

∫

V (t)

ψdV = −
∫

∂V (t)��(t)

ϕ · ndA+
∫

V (t)

σdV +
∫

�(t)

ψ̂
s
dA,

where n stands for outer normal; we denoted with ϕ the flux of the quantityψ , while
the volumetric source is σ and the source at the surface of discontinuity is ψ̂

s
. We

remark that the left-hand side could also in principle contain a surface density term
to reflect the surface phenomena.

Using Gauss and Reynolds transport theorem, noting that the velocity advects
fields

d

dt

∫

V (t)

ψdV =
∫

V (t)��(t)

(
Dψ

Dt
+ ψdivv

)
dV +

∫

�(t)

n · �(v − v�)⊗ ψ�dA,

where we introduced the so-called material derivative

D•
Dt

= ∂•
∂t

+ (v · ∇)•,

which tracks changes in a given material point and n · �•� denotes a jump of the
quantity in the brackets in the direction of the normal vector.

A local form of the balance law can be obtained as
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D

Dt
ψ + ψdivv = σ − divϕ in V (t)� �(t)

or
∂

∂t
ψ + div(ψ ⊗ v) = σ − divϕ in V (t)� �(t)

and n · �(v − v�)⊗ ψ − ϕ� = ψ̂s on �(t).

We shall simplify our exposition by disregarding discontinuities, while we shall
assume conservative external forces, f = −∇φ. The latter allows us to include
the effects of charge (and introduce the electrochemical potential) below, which is
frequently crucial in biological tissues.

If we now identify what are the sources σ and fluxes ϕ of a given quantity ψ , we
immediately obtain a governing equation for its evolution. In particular, the local
balance equation of mass is

∂ρ

∂t
= −div(ρv),

as the mass cannot be produced, only transported.
Similarly, what are the sources σ and fluxes ϕ of linear momentum? Volumetric

sources of linear momentum are the volumetric forces, while there is a flux of forces
inside the body, which we typically refer to as pressure tensor P (which is equal to
the minus Cauchy stress τ ; the name pressure tensor refers to the fact that pure
hydrostatic pressure corresponds to P = pI). Hence, the governing equation for
linear momentum is

∂ρv

∂t
= −div(ρv ⊗ v)− divPT + ρf .

One can proceed in the same manner to obtain the balance of energy, which is the
sum of kinetic, potential, and internal energy (we denote with ε the specific internal
energy):

∂

∂t

(
1

2
ρv2 + ρφ + ρε

)
= −div

(
ρv

(
1

2
v2 + ε + φ

))
− div

(
jq + PT · v

)
+ ρ

∂φ

∂t
,

where jq is the heat flux.
Have we included all conserved quantities? We have not employed the angular

momentum, but one can show that it translates into the requirement of the symmetry
of the pressure tensor P.

A closer look at the balance equations reveals that: (i) we have more unknowns
than equations, (ii) still some fundamental physical principles are missing—the
“thermodynamic” principles, i.e., the first and second laws of thermodynamics.
We use the second point to address the first, i.e., we shall use the second law
of thermodynamics to close the system of equations with thermodynamically
consistent constitutive laws. We remark that the first law of thermodynamics has
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been already used in the balance of energy, i.e., the balance of energy can be
reformulated into the more usual form of the first law [12].

When invoking the form of entropy balance (s is the specific entropy)

∂ρs

∂t
= −div(ρvs + j s)+ σs,

the second law of thermodynamics (reflecting a time arrow in the system’s
evolution) requires the entropy production to be non-negative, σs ≥ 0. In particular,
reversible processes do not raise entropy, σs = 0, and indeed entropy can be shown
to be closely related to the concept of irreversibility [51]. Further, the determination
of time arrow in a given system allows an assessment of stability: an equilibrium
corresponds to dS = 0, where the entropy reaches its maximum, i.e., d2S ≤ 0. In
addition, Prigogine showed that under certain assumptions (mainly that the system
is closed and the phenomenological coefficients are constants), a minimum entropy
production principle applies, resulting in the observation that even nonequilibrium
steady states are always stable in a linear regime. Recently, a more general approach
has been proposed, extending the analysis of stability even to open systems and
giving the “energy method” used to estimate its proper thermodynamic meaning
[7].

The evolution of entropy can be expressed in two forms. One is the balance
equation introduced above, while another form can be obtained by calculating the
time derivative from Gibbs’ definition of entropy. We will follow the latter avenue,
and hence, we have that T ds = dε+ pd(1/ρ), where p is the equilibrium pressure.
This expression is valid in equilibrium and follows from the assumption of having
entropy as a well-defined function of the state variables s = s(ρ, ε). If we further
adopt the concept of local equilibrium assumption, meaning that the system reaches
equilibrium within small enough elements, we can use this expression and extend
it into the nonequilibrium setting while considering it only locally valid. Hence, the
(local-in-space) time evolution of entropy is assumed to take the following form for
a small element of the material moving with the barycentric velocity v [12, Ch3.2]
(and see [40, Ch2.2] for further discussion of this point):

T
Ds

Dt
= Dε

Dt
+ p

D 1
ρ

Dt
.

By comparing these two forms, the entropy flux and production can be identified

σs = jq · ∇ 1

T
− 1

T
Pdis : ∇v ≥ 0,

where P = pI + Pdis (and we see that pI corresponds to the equilibrium pressure)
and the symbol: denotes the contraction in both indices.
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Alternatively to Gibbs’ definition of entropy, one may encounter a framework
(e.g., in the rational thermodynamics approach) where a definition of temperature
as a function of entropy and the state variables is assumed instead.

Entropy production should be objective in the sense that it is material frame
indifferent; otherwise, the entropy production condition would not be a sensible
constraint [6, 12, 42, 45]. As a special case, an invariance to Galilean transformation
has to be valid. Note that there is an interesting relation between conservation laws
and symmetries in the Hamiltonian evolution equations: not only that a conservation
law generates a symmetry, but one can assess directly its particular form. Note that
such observations together with Noether’s theorem identify an equivalence between
symmetry and conservation laws. For example, a conservation of energy leads to the
invariance to time translation; conservation of momentum leads to the invariance of
the fields to translations in space. If we know that in addition “Galilean booster”
is conserved, we automatically have invariance to Galilean transformation, see [54]
for more details. Hence, certain invariances are automatically satisfied within this
framework of conservation laws, hence adding yet another appeal to this procedure.

Note that both the Fourier law and Newtonian fluid constitutive law can be
obtained from the entropy production relation when assuming linear flux–force
relations. Consider, for example, an isothermal system. Then the entropy production
reads σs = − 1

T
Pdis : ∇v ≥ 0, from where we get the Newtonian fluid description

Pdis ∝ −∇v. Similarly, if we focus on phenomena without flow, v = 0, we get the
Fourier law of heat conduction jq ∝ ∇ 1

T
.

One can obtain more complex models via the same procedure but where typically
one considers more complex definitions of free energy or, equivalently, entropy
(e.g., being dependent on the gradient of the deformation gradient or its time
derivative).

Finally, the evolution equations determining the system’s behaviour can be
obtained by substituting the constitutive relations back into the balance equations.
This is how, for example, the Fourier heat law transforms into the classical parabolic
partial differential equation for the evolution of temperature.

To summarise, this standard derivation of the set of governing equations based
on conservation laws has an appeal. First principles (conservation laws and the
knowledge of sources and fluxes) are included. Is there some limitation in such
an approach? There is, as all these fields (mass, linear and angular momentum,
energy) are very particular—we can assess their conservation properties, we can
identify their sources and fluxes. Hence, if one is interested in a more complex
model, for example, with internal or structural variables, one can formulate balance
equations for these new quantities, but one cannot rely on an insight regarding the
identification of their sources and fluxes (and hence introducing further unknowns
into the evolution equations). Thus, in such situations, the added value of this
framework is limited and the internal or structural variables should not be introduced
unless they have a very clear physical meaning (this comment is, however, rather
general and is not limited to this framework; see for example [40] for discussion of
some of the variants of nonequilibrium thermodynamics).
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3 General Framework: Multiple Continua, Theory of
Mixtures

We shall formulate the theory of mixtures in an analogous way as in the preceding
section concerning a single continuum. Please see the classical texts, e.g., [6, 12,
13, 20], or the detailed lecture notes [41]. We remark that there are several variants
of the theory and certain open issues regarding the definitions of the whole mixture
quantities, both of which the interested reader can find in [25].

The concept stays indeed the same: the balance equations of relevant quantities
(state variables), Gibbs’ definition of entropy, and the balance of total entropy
identifying the fundamental entropy production inequality that, in turn, yields
constitutive relations.

We introduce the same concept of configurations as we did before but with the
distinction that we do so for n constituents labelled by α and with the assumption
that at every point of the mixture, each constituent is present. We may see the build-
up of the framework in layers as follows: first, we introduce kinematics (define
all necessary bodies and functions connecting them including the deformation
gradients); second, specify the state variables and formulate balance laws for them;
third, introduce entropy and identify the second law constraint via non-negative
entropy production; finally, constitutive theory satisfying the non-negative entropy
production condition.

Partial quantities, quantities related to each constituent α, will be indexed with

α as in the partial deformation gradient Fα = ∂ξ iα
∂XI

α
= ∂xiα

∂XI
α

or the partial velocity

viα(t, x) = ∂ξ iα(t,Xα)

∂t

∣∣
Xα=ξ−1

α (t,x)
.

A general balance law for a property of a system where we assume that there is
no surface of discontinuity reads

d

dt

∫

V (t)

ψαdV = −
∫

∂V (t)

ϕα · noutdA+
∫

V (t)

σαdV +
∫

V (t)

ψ̂αdV,

where ψ̂α is a volume source from different constituents β �= α and σα is the
remaining volume source. The partial material derivative is defined as

Dα•
Dt

= ∂•
∂t

+ (vα · ∇) • .

By employing Gauss and Reynolds transport theorem, a local form of the balance
law can be obtained

Dα

Dt
ψα + ψαdivvα = ψ̂α + σα − divϕα in V (t)

or
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∂

∂t
ψα + div(ψα ⊗ vα) = ψ̂α + σα − divϕα in V (t).

Let us consider the following state variables: partial densities ρα , barycentric
velocity v, total energy e, and total entropy s. Note that this choice is not unique and
in particular whether one considers all partial velocities vα or only the barycentric
velocity v (or other form of averaged velocity) is essential. Here we make the usual
choice [12, 25, 41, 53] as just described, being the easiest extension of a single
continuum description, while we demonstrate in the biphasic model below how
to proceed if we prefer to track the partial velocities. Note that it is not always
beneficial to include all details (consider as many state variables as possible) as
one faces the issue of parameter estimation. Hence, this is exactly the step where a
tight link between theory and experiment is necessary: are the chosen state variables
experimentally accessible? For example, if one cannot trace the individual partial
velocities, it can be recommended to include just the averaged velocity among the
state variables (although it might be beneficial to develop a more detailed theory,
see below).

Balance of mass depends on the choice of the state variables in the following
way: are vα among the state variables (experimentally available)?

If the answer to this question is positive, then the balance of mass reads

∂ρα

∂t
= −div(ραvα)+ ρ̂α.

On the other hand, if the answer to the above question is negative, then one
considers a single (here it is the barycentric) velocity only, and hence,

∂ρα

∂t
= −div(ραv + jDα)+ ρ̂α,

where v = ∑
α ραvα/ρ and jDα denote the diffusion fluxes. Note that these two

forms are, of course, the same: one derives the second form via jDα = ρα(vα − v)

but then abandons this relation as vα are inaccessible. Instead, one considers the
diffusion fluxes as unknowns while noting the constraint

∑
α jDα = 0.

The purpose of this distinction, of the choice of the velocity type state variables,
becomes apparent below when we discuss the boundary conditions. This remark
does not mean that if one cannot measure the partial velocities, one cannot formulate
a more detailed model that would include such quantities. On the contrary, such
models might reveal new phenomena and provide interpretations of the observed
system’s behaviour by estimating processes inside the mixture (on a different
level of description). The caveat is, however, that specifying appropriate boundary
conditions, say for the partial velocities or the related variables, will typically be not
clear.

The term ρ̂α represents the bulk production of ρα due to the interaction with other
constituents (for example, phase transition, chemical reactions) and hence adopts
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the form ρ̂α =∑m
i=1 νiαMirα , where νiα denote the stoichiometric coefficients, Mi

is the molar mass, and ri is the reaction rate of i-th reaction given in [molm−3s−1]
[6, 12]. The structure of the source term together with its relation to the conservation
of atoms (stoichiometry) translates into

∑

α

ρ̂α = 0,

as is very nicely described in [6]. Note that the total mass ρ =∑α ρα satisfies

∂ρ

∂t
= −div(ρv).

As mentioned above, we shall proceed with one velocity only, the barycentric
velocity v, but in the application below, the biphasic model, we shall concern
ourselves with keeping vα; hence, we list the balance of momentum in both its
forms as above with the balance of masses.

Balances of partial linear momenta (relevant when partial velocities are among
the state variables) are

∂ραvα

∂t
= −div(ραvα ⊗ vα)− divPαT + ραf α + p̂α, (1)

where the sum of all sources of momentum has to vanish
∑

α p̂α = 0, Pα represent
partial pressure tensors, and f α the volumetric forces acting on the α constituent.

If, however, there is only a single velocity (in our case the barycentric velocity)
considered among the state variables, the momentum balance reads

∂ρv

∂t
= −div(ρv ⊗ v)− divPT + ρf ,

where P and f are the total pressure tensor and total volumetric force. Note that
the balance equation for mixture quantities can take different forms based on the
weighting (barycentric velocity is obtained via mass fraction weighting). The choice
of barycentric velocity as the mixture velocity is reasonable (it is the velocity where
the sources and fluxes in its balance equations are clearly interpretable via the
balance of forces), but it is not clear whether it is the correct representation of what
is experimentally measured as a mixture velocity. The argument that the barycentric
velocity is a correct choice because then the balance equation for linear momentum
involving barycentric velocity is the same as for a single continuum does not seem
to be sufficient as the single continuum theory should be a special case of mixture
theory and not vice versa [25].

The balance of total mixture energy is linked to the balance of partial energies
(as a sum)
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∂

∂t

∑

α

(
1

2
ραv

2
α + ραεα + ραφα

)
= −div

(
∑

α

ραvα

(
1

2
v2
α + εα + φα

))
−

− div

(
jq +

∑

α

PαT · vα

)
+
∑

α

ρα
∂φα

∂t
,

where we assumed conservative forces f a = −∇φα , but the structural details of the
energy flux and source are of no use as they involve partial quantities that we do not
consider among the state variables and hence are inaccessible.

Hence, instead, we shall introduce all mixture quantities as barycentric, and then
the total mixture energy reads

∂

∂t

(
1

2
ρv2 + ρε + ρφ

)
= −div

(
ρ

(
1

2
v2 + ε + φ

)
v + P · v +

∑

α

φαjDα + jq

)
,

where the energy flux constitutes of the standard parts, the convective part and
flux due to the mechanical work exercised on the system, and of the new expected
contribution in mixture, the flux due to the diffusion in the force field. The remaining
flux is referred to as a heat flux jq with the yet undetermined quantities P, jDα , and
jq , which will be related to the state variables via constitutive relations.

Again we use Gibbs’ definition of entropy for a mixture composed of n

constituents T ds = dε + pd(1/ρ) − ∑n
α=1 μαd(ρα/ρ), where we defined the

chemical potential μα of the component α (as a partial specific Gibbs function,
i.e., energy per kilogram). When adopting the local equilibrium hypothesis, we may
calculate the time derivative of entropy as above using material time derivative

T
Ds

Dt
= Dε

Dt
+ p

D∂1/ρ

Dt
−
∑

α

μα
Dρα/ρ

Dt
,

and hence, the flux and source in the balance of entropy

∂ρs

∂t
= div(ρvs + j s)+ σs

can be identified as in the single continuum case. Note that we employ the second
law of thermodynamics in a local form (hence assuming its validity locally in
every continuum point) and for the total entropy of the system. One entropy entails
one temperature in the mixture, which might be a simplification too far in certain
applications. In such a case, it is necessary to consider partial entropies as state
variables.

When considering m chemical reactions with rates ri (in mol × m−3s−1) among
constituents of the mixture, the mass source terms can be rewritten as ρ̂α =∑m

i=1 νiαMαri , where νiα is the stoichiometric coefficient of the constituent α in the
i-th reaction and Mα is the molar mass. The entropy production then reads [12, 53]
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σs = jq ·∇ 1

T
−

n∑

α=1

jDα ·
(

∇μα

T
− f α

T
− p̂α

ραT

)
− 1

T
Pdis : ∇v+ 1

T

m∑

i=1

riAi ≥ 0,

(2)
where the affinity of a chemical reaction is defined as Ai = −∑α νiαMαμα and
P = pI+Pdis. Note that if the kinetic energy of diffusion is included in the internal
energy, then an analogous derivation of entropy production entails an additional

cause of reaction rates yielding a generalised affinity Agen
i = Ai −∑α νiαMα

u2
α

2
with diffusion velocity uα [53].

If we employ linear constitutive theory, i.e., assuming linear flux–force relations,
and neglect any coupling among forces, we recover Fourier’s heat law (focusing on
the first term), Fick’s diffusion law with the gradient of electrochemical potential as
a driving force, the constitutive relation for a Newtonian fluid, or the law of mass
action (the last term).

As an illustration, we briefly mention how the law of mass action is included in
the linear theory following from the obtained form of entropy production. Let us
consider chemical reactions (phase transitions, interaction networks)

∑

α

ν̄iαNα

k±i
�
∑

α

ν̄
′
iαNα, i = 1, .., s,

whereNα denotes the individual component, while noting that we explicitly denoted
the stoichiometric coefficients of substrates only as ν̄iα while those of products as
ν̄

′
iα . The law of mass action follows from the linear flux–force relation ri = kiAi ,

where the explicit form of chemical potential for dilute (ideal) mixtures is used,
while the proximity to a steady state is used to expand the thermodynamic force in
terms of the differences in concentrations from their equilibrium value [24]:

ri = k+i
n∏

α=1

(
ρα

Mα

)ν̄iα
− k−i

n∏

α=1

(
ρα

Mα

)ν̄′
iα

. (3)

Consequently, with this notation in mind, the change in the concentration of a
substance in time is

∂ρα

∂t
=
∑

i

(ν̄iα − ν̄
′
iα)Mαri,

where we disregarded transport (including the diffusion) for simplicity as we focus
on the law of mass action.

As a final note we remark that the typically mentioned drawback of Fick’s
and Fourier’s law of diffusion is the “infinite speed of information propagation”
meaning that a localised initial condition (or a perturbation) generates a non-zero
response arbitrarily far away. However, one can either use the Extended Irreversible
Thermodynamics framework [23] (where a flux is considered as an additional
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variable), where effectively a relaxation of the flux is introduced and the governing
equation becomes a telegraph equation, or keep the intrinsic non-linearity of the
force dependence on the state variables (and one can have a finite speed of front
propagation due to the non-linearity, a difference in ad- and de-sorption rates or
other “non-Fickian” phenomena, cf. [30]). Similarly, Souček et al. [61] showed
that if a given mixture can be equivalently described by a single continuum model,
certain restrictions of the structure of fluxes emerge. If this observation is applied to
diffusive flux, a similar generalisation of Fick’s law is achieved.

3.1 Coupling Phenomena, CIT

We saw how the classical physical laws of heat conduction or diffusion follow
from the nonequilibrium thermodynamic framework. The key addition, however,
lies in formulating more complex models involving the non-trivial interplays among
various thermodynamical forces in a thermodynamically consistent way (complying
with the second law). We can find requirements and motivation for such models
across disciplines including biology and physics. For example, consider the influ-
ence a temperature has almost on any process, the Maxwell–Stefan diffusion, the
Dufour and Soret effects [40], or the famous Turing instability [37, 46]. In biology
in particular, there has been a recent growing interest in mechanotransduction and
mechanical influence in general on biological and chemical processes [24, 34].
More generally, one can view all contributions to this book as motivations for
studying coupling phenomena (how to add together Darcy’s law and elasticity,
putting together fluid dynamics and viscoelasticity, etc).

We first pause on a recent addition to understanding the description of coupling
phenomena that comply with the linear nonequilibrium thermodynamic framework
(including the discussion of the celebrated Onsager–Casimir reciprocal relations [9,
29, 47, 48]), while we draw an illustration at the end where we illustrate the coupling
phenomena by including the effect of mechanical loading on chemical reactions.

3.1.1 Congruent Dependence of Phenomenological Coefficients on State
Variables

If we revisit the entropy production (2), we can note its bilinear structure

σs = JsXs + J v · Xv + J a · Xa + Jt : Xt,

where each term is a product of two terms of the same tensorial order (scalars, vec-
tors, antilinear vectors representing antisymmetric tensors, and symmetric tensors).

Linear nonequilibrium thermodynamics assumes linear flux–force relations as
closures
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Ji =
∑

j

LijXj ,

to satisfy the second law of thermodynamics, which is expressed as non-negativity
of local entropy production

σ =
∑

i

JiXi ≥ 0.

Let us first focus on a one-dimensional stationary case (steady state outside of an
equilibrium)

Ji = LijXj ,

where we further assume that the thermodynamic force is a gradient of a state
variable Xi = z′i with zi a state variable such that Ji are constant in space x.
These requirements are further discussed below, but note that one can take this as a
definition of state variables: conserved fluxes entail the existence of constant fluxes
in one-dimensional space, and then, via the bilinear form of entropy production, we
can assess the corresponding thermodynamic forces and, in turn, the state variables.

If we can argue that all but one force can vanish outside of equilibrium, we may
show that there is a shared dependency in the phenomenological matrix [32]. We
usually consider forces independent that correspond to this requirement, and it was
shown to be possible via the choice of boundary conditions sufficiently near to the
equilibrium [29]. In particular, for Xk = 0, ∀k �= j0, one has

J1/L1j0 = Xj0 = J2/L2j0 = . . . = Jn/Lnj0,

where Ji are constants. Hence, we have

Lij (z) = fj (z)gij (z1, . . . , zj−1, zj+1, . . . , zn), ∀i, j,

i.e., there is a shared dependence on the state variable zj in the whole j -th column
of the phenomenological matrix Lij .

On the other hand, one can identify exactly when the linear flux–force relations
allow all but one force to vanish outside of equilibrium: exactly when Lk,i0 share
the same functional dependency on zi0 for all k.

In addition, there is an interesting connection to the monotonic profiles of state
variables. If the state variables are analytic in the spatial variable, then they have to
be monotonic in the 1D space. Finally, via the monotonicity of all state variables,
one can show even stronger constraints on the phenomenological matrix: ∀i, Lij
share the same dependence on all zk [29].

The above observations that the phenomenological matrix has to share the
same functional dependence on the state variables in its columns if the forces are
independent were independent of the Onsager–Casimir reciprocal relations. What
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happens if they apply in a given system? The congruent dependence in columns
spreads throughout the matrix where the coupling is non-zero. Hence, the Onsager–
Casimir reciprocal relations yield even stronger functional constraints, being a
significant extension of the reciprocal relations: the phenomenological matrix has
to satisfy Lij (z) = f (z)L̄ij with L̄ij being a constant semi-definite matrix.

To illustrate the above finding, we include a particular experimental example
where these constrains were confirmed [32], water and proton transport in a Nafion
ionomer membrane. Transport of water and protons is considered, while the linear
force–flux relations were identified to be valid for the range ϕ ∈ (0, 0.2) of the
applied electric potential ϕ across a membrane electrode assembly. The measured
data suggest the same functional dependence of diagonal (Lpp) and cross (Lpw =
Lwp) coefficients on water concentration, see Fig. 2. In addition, Fig. 3 shows
that the functional dependence of proton conductivity Lpp and water conductivity
Lww (the two diagonal components of the phenomenological matrix) on water
concentration can be regarded equal. These observations together with conclusions
from the preceding figure indeed suggest that the proposed hypothesis holds
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Fig. 2 Experimental verification of the proposed hypothesis of the congruent dependence of
phenomenological coefficients on the state variables for a Nafion membrane electrode assembly.
The linear regime of the force–flux can be identified for the range ϕ ∈ (0, 0.2) of applied electric
potential ϕ across a membrane electrode assembly. Temperature and water activity at open circuit
is as noted on the graph. The measured data suggest the same functional dependence of diagonal
(Lpp) and cross (Lpw = Lwp) coefficients on water concentration. Reused with permission from
[32]
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Fig. 3 Further measurement supporting the experimental verification of the proposed congruent
dependence for a Nafion membrane electrode assembly. As data indicate (the double colon on
the y-axis is used to separate the two plotted quantities), the functional dependency of proton
conductivity Lpp and water conductivity Lww on water concentration can be regarded equal
(note that the shift in the logarithmic values corresponds to multiplication by a constant). These
observations together with conclusions from Fig. 2 suggest that the proposed hypothesis holds true
in the studied situation. Particularly, the whole matrix of phenomenological coefficients shares the
same functional dependence on water concentration. The inset graph in the upper right shows the
same data plotted as a function of water activity. Reused with permission from [32]

true in the studied situation. Particularly, the whole matrix of phenomenological
coefficients shares the same functional dependence on water concentration.

Let us end this section by a note about the generality of the result. We argue
that any model (not necessarily constrained to one dimension or the stationary state)
should directly reduce to a description of a steady process in a single dimension
without the need to redesign the model. In other words, the steady state in one
dimension should be contained in any model as a special case. Hence, the revealed
functional constraints should extend to the general model as well.

The significance of these observations can be summarised by the following two
points:

1. Non-trivial constraints for models that are expected to be valid in a linear
response theory
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Fig. 4 Left: A schematic of a mechanically triggered Belousov–Zhabotinsky oscillations, where
the bottom plot shows the response to increasing amounts of applied stress to the gel. Right: The
properties of the triggered oscillations in concentrations depend on the stress applied. Reused with
permission from [11]

2. A feedback for experiments (reduction of their number, compatibility of the
obtained results, assessment of whether the studied phenomena lie within the
linear response theory via monotonicity)

while we refer the reader to the original two studies for more details [29, 32].

3.1.2 Coupling Phenomena, an Example: Extended Law of Mass Action

We shall briefly illustrate the significance of coupling phenomena in a chosen
situation and how to propose models for such situations using the above framework.

Experiments in gels capable of sustaining Belousov–Zhabotinsky reactions
showed that a certain form of “revival” of chemical oscillations can be obtained
using mechanical actuation [11], see the left figure in Fig. 4. In addition, it was
observed that the frequency of the mechanical stimulus affects the frequency of
oscillations and the duration of the revival, see the right figure in Fig. 4.

If we recall the bilinear structure of entropy production (2) and the force driving
the chemical reactions is a scalar (affinity), we may write the general form of the
(linear) constitutive relation for a scalar flux (rate of chemical reaction) as

Js = LssXs + Lsv · Xv + Lsa · Xa + ◦
Lst(s) : ◦

Xt(s),

where each pair consists of quantities of the same tensorial order (the first
term corresponding to scalar quantities, the second to vectorial, the third to an

antisymmetric second-order tensor, and
◦
Lst(s) is a symmetric tensor with zero trace)

[24].
The rate of deformation tensor D from the continuum mechanics [20] is equal to

the symmetric velocity gradient
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Dij = 1

2

(
∂vi

∂xj
+ ∂vj

∂xi

)
= 1

2

(
(∇v)ij + (∇v)ji

)
,

and hence, its first invariant, the rate of volume variation D(1), is linked to the local
change in density

D(1) = tr (∇v) = div v = − 1

ρ

dρ

dt
.

The entropy production for a reactive system undergoing mechanical actuation
reads

T σs = −Pdis : ∇v +
s∑

i=1

riAi =

=
( s∑

i=1

riAi − 1

3
tr
(
Pdis

)
tr
(∇v

)) − (∇v
)
(a)

· (Pdis
)
(a)

− ◦
D : ( ◦

Pdis
)
(s)

≥ 0,

where the gradient of velocity ∇v was decomposed into a scaled unit tensor and a
symmetric and antisymmetric part with zero traces to separate the distinct tensorial
contributions [24, 40].

Hence, when taking into account the Curie principle stating that only the forces of
the same tensorial order can couple in an isotropic system [12], the rate of chemical
reaction (flux) is influenced by both scalar forces

ri = liiAi − livD(1),

rather than just the chemical activities. Expressing the affinity and chemical
potential for dilute mixtures leads to the classical law of mass action (3) when the
coupling is neglected, while we obtain an extended law of mass action (reflecting
the mechano–chemical coupling) [24, 31]

ri = liiAi − livD(1) = k+i
n∏

α=1

[Nα]νiα − k−i
n∏

α=1

[Nα]ν
′
iα − livD(1) . (4)

One can see that not only the local changes in the concentrations caused by
(dynamic, i.e., velocity type) mechanical actuation affect the reaction rates but also
exactly in what form.

One can easily see the link to the motivation above where mechanical actuation
caused a revival of depleted oscillations in Belousov–Zhabotinsky gels. In addition,
such extensions have direct implications in the modelling of biomaterials where the
mechanical properties of the materials are changing in time (typically due to the
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evolution of concentrations of certain constituents), and hence, via this mechano–
chemical coupling, we have a feedback loop driving the material adaptation.
Schematically, we may picture these ideas as C = C (ρα) = C

(
ρα(ri(D(1)))

)
.

3.2 Other Approaches

The mixture theory framework [12, 41], which is summarised above, provides
a robust way to propose a thermodynamically consistent model. However, this
framework is not the only framework available. Why should we be interested in
following other routes? We already mentioned that complex materials requiring state
variables beyond the mentioned one (for which we are able to identify the sources
and fluxes) are not well covered in this framework. In addition, the constitutive
theory is the part where there are different approaches to closures and in particular
for the theory of mixtures where fluid and solid constituents can appear at once. Our
subjective opinion is that it is essential to keep an open mind to other approaches and
techniques to overcome the difficulties and open problems in any of the frameworks.

We do not have an ambition to provide a review of the available continuum
theories. We rather provide a very brief and crude guidepost for some of the
flavours of the nonequilibrium thermodynamics framework, see [55] for a more
detailed discussion in this manner. Those include generalisations of what was
presented above, e.g., the extended irreversible thermodynamics [23], rational
extended thermodynamics [44], thermodynamically constrained averaging theory
[16].

Slightly alternative approaches include: Cosserat’s kinematic description where
each material point has its own microstructure [5]; a single balance, the energy
balance, is considered, while from certain invariance arguments one can as a
sequel obtain the remaining balance laws [17]; similarly one can use the variational
approach to obtain the balance laws [14].

Finally, there are also conceptually different approaches. For example, the so-
called symmetric hyperbolic thermodynamically consistent (SHTC) framework
adds a focus on the mathematical properties of the final governing equations guar-
anteeing their local in-time well-posedness while introducing new state variables
into the description and a different way of dissipation (but note that the theory
of mixtures is still under development there) [15, 44, 56]. As a final example, we
mention the GENERIC framework [19, 49, 52], which we briefly introduce below.

As its motivation is quite different conceptually, we motivate it first by the
amount of information one can get from considering the effect of time-reversal
transformation (velocity type variables are inverted, while time proceeds in the
negative direction) on the evolution equations [51, 52]. First note that the reversible
equation does not change under time-reversal transformation. Now, consider, for
example, the Navier–Stokes equation and the action of the time-reversal transfor-
mation on it while noting the link between the reversible and irreversible parts:
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even︷︸︸︷
∂ρv
∂t

=
even︷ ︸︸ ︷

−div(ρv ⊗ v)− ∇p︸ ︷︷ ︸
reversible

odd︷ ︸︸ ︷
+μ�v︸ ︷︷ ︸

irreversible

.

In one crude sentence, GENERIC framework provides systematic and more precise
observations about and study of the structure of evolution equations, which is based
on a collection of experimental observations and experiences about the evolution
of various systems. In addition, it is a natural setting for studying reductions and
extensions of models to different levels of description and in such a way that
they are consistent with experimentally accessible levels of description (including
the prominent example of equilibrium thermodynamics), see, e.g., [50, 52]. It is
built on the notion that entropy is a potential always linked to two levels of
description, which entails the possibility to identify new entropy on a different level
of description while providing an estimate for evolution connecting the two levels
[18, 33]. As a hallmark example, let us mention that kinetic theory can be naturally
connected to continuum theories in this way [52].

The fundamental observation is that the time-evolution equations can be written
in the form

dx

dt
= L

δE

δx
+M

δS

δx
,

where x are the independent state variables, E denotes the total energy, S entropy,
L, M are the linear operators, and δ/δx is the variational derivative. The dissipative
part is represented by the action of a linear operator on the entropy gradient
(Ginzburg–Landau evolution equation), while the reversible part corresponds to the
first term, the action of the operator L on the gradient of energy.

The observation that the two parts are characterised by reversibility and irre-
versibility is not immediate and was shown to be a consequence of the degeneracy
requirements

L
δS

δx
= 0, M

δE

δx
= 0,

by careful discussion of the time-reversal transformation [51].
Furthermore, if we introduce two brackets

{A,B} =
〈
δA

δx
,L

δB

δx

〉
, [A,B] =

〈
δA

δx
,M

δB

δx

〉
,

then the general properties of L and M are

1. Antisymmetry and Jacobi identity for {, }:

{A,B} = −{B,A} and {A, {B,C}} + {B, {C,A}} + {C, {A,B}} = 0
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2. Symmetry and non-negativity for [, ]:

[A,B] = [B,A] and [A,A] ≥ 0

The evolution equation for an arbitrary functional A of given state variables is

dA

dt
= {A,E} + [A, S],

while it holds dE/dt = 0, dS/dt ≥ 0.
Hence, there are four building blocks required for any GENERIC model: the

potentials E, S and the operators L, M . Of course, one has to identify the state
variables as a preceding step to these four building blocks.

Alternatively, one can use the dissipation potential formulation (which is a more
general case of the above)

[A,B] =
〈
δA

δx
,

δ�

δ(δB/δx)

〉
,

where�(0) = 0,� reaches its minimum at 0, and� is convex in the neighbourhood
of 0.

Evolution equation takes the form

dx

dt
= L

δE

δx
+ δ�

δ(δS/δx)
,

and a particular choice of ψ(z) = (1/2)〈z,Mz〉 yields the previous GENERIC
formulation.

Although the GENERIC framework might seem too abstract or not constrained
enough, it is a nonequilibrium thermodynamic framework that significantly con-
strains the reversible part of the evolution equations [40]. We add an example below,
where we demonstrate that this impression is only a semblance.

One can identify the possible extension of the abovementioned law of mass
action within the GENERIC framework. Without going into the details here (and
we refer the interested reader to [27]), a coupling between mechanical and chemical
thermodynamic forces was considered and its consequences on the law of mass
action identified. Surprisingly (using a very different framework to the classical
linear nonequilibrium theory described above), the effect of dynamic mechanical
state variables turned out to be the same as revealed before in Eq. (4), i.e., acting
as sources of mass. In addition, the even-parity (with respect to the time-reversal
transformation) state variables affect the reaction rate coefficients (in line with the
known effect of pressure).

One can use such extensions to study the observed revival of oscillations in
Belousov–Zhabotinsky reactions. One can show that this extended law of mass
action (taking into account the mechano–chemical coupling) when used for a gener-
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alisation of the reaction kinetics model yields the following theoretical predictions
[28]:

• Mechanotransduction is predicted to occur through volume change, but there are
more possibilities that were identified.

• An increase in static loading, e.g., in the pressure, is predicted to have a
stimulatory effect, whereas the increase in dynamic loading, e.g., in the rate of
volume change, is predicted to be stimulatory only up to a certain threshold.

• A physically consistent explanation why some Belousov–Zhabotinsky gels
require mechanical stimulation for a “revival” of oscillations.

• Indication of experimental setups enables both the validation of the non-linear
coupling and the mechanical effects on the Belousov–Zhabotinsky reaction.

3.3 Single or Multiple Continua: Which One to Choose?

We saw that the formulation of single and multiple continua models is very
similar in principle (balance laws, first principles, the first and second laws of
thermodynamics, constitutive theory, thermodynamically consistent models).

On the other hand, the single continuum framework and mixture theory differ in
many aspects including the number of state variables and parameters, and hence,
there is a trade-off in the necessary number of experiments and data for parameter
estimation (including the problem of overestimation).

Let us mention the famous Duncan–Toor experiment, see Fig. 5, where a surpris-
ing behaviour of diffusion was observed if the mixture is not seen in high enough
detail. A rather complicated “explanation” is then offered using a classical diffusion
model where the mixture is considered consisting of two diffusing components
(and hence there is a single independent driving force of diffusion), see Fig. 6. In
particular, one can observe various “regimes” of diffusion that are not found in
the classical Fickian description (termed “normal” diffusion in the figure) where
the diffusive flux occurs solely in the direction of the negative chemical potential
gradient.

Now compare this single continuum description with a multiple continua descrip-
tion, the Maxwell–Stefan model of diffusion, which is just the classical model of
diffusion but including coupling among all diffusion forces [38].

Imagine that the mixture consists of constituents that have very different heat
conductivity or dielectric permeability. Similarly as in the Duncan–Toor experiment
(or Fick vs. Maxwell–Stefan diffusion model), it is understandable that it would
be much easier to model such a mixture using the theory of mixtures rather than
trying to identify an implicit constitutive relation that would be able to capture the
complex response of the whole mixture to temperature variation. With the more
detailed description, it is straightforward to have insights into the cause and effect
relationship while allowing natural descriptions of the problems at hand.
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Fig. 5 Duncan–Toor experiment of a mixture of three constituents: hydrogen (1), nitrogen (2),
carbon dioxide (3). Initial composition in Bulb 1 is: x1 = 0, x2 = 0.509, x3 = 0.491, while in
Bulb 2 is: x1 = 0.501, x2 = 0.499, x3 = 0. The time evolution of concentrations is counter-
intuitive as the concentration of nitrogen does not follow the Fick’s law of diffusion. We shall
argue that this behaviour is a consequence of multiple constituents (requiring mixture theory) and
coupling phenomena. Reused with permission from [38]

Fig. 6 If a mixture is not seen in a high enough detail, the corresponding model might struggle
to offer understanding to the observed phenomena. For example, the Duncan-Toor experiment
with three gasses is difficult to explain using a standard binary diffusion theory entailing a
rather complicated explanation and requiring the introduction of “novel diffusive phenomena,”
as suggested in (b). On the other hand, if the mixture is recognised as a three-constituent mixture,
a standard diffusion model (a direct extension of the binary diffusion model as depicted in (a))
offers a clear description and interpretation. Reused with permission from [38]

Let us conclude with an explicit listing of the positives and negatives of the
mixture theory approach as opposed to the single continuum framework:

Advantage: Better insight into the cause and effect relationship (see, for example,
Biot model and compare it to the biphasic [36] and triphasic theory [39] models
of cartilage tissue)

Advantage: More realistic representation of a complex material
Advantage: Wider applicability
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Disadvantage: Acquirement of data for parameter fitting; the number of neces-
sary experiments

Disadvantage: Identification of plausible boundary conditions (a significant
drawback for a wider application of mixture theory, see below).

4 Application: Biphasic Model

We shall illustrate the above theory by the famous application—a model of cartilage
tissue [2, 26, 39, 43]. We shall introduce the biphasic model, which is the simplest
extension of the single continuum model, illustrating both the pros and cons of the
theory of mixtures. Note that this formulation follows [36] and see the references
therein for other variants of biphasic models. The poroelasticity theory is a particular
limit of the biphasic model.

We start with a crude overview of cartilage tissue to appreciate the suitability of
a biphasic model as opposed to a single continuum description. Cartilage consists
of an extracellular matrix and chondrocytes. The latter produce collagen and pro-
teoglycans and respond to both mechanical and chemical stimuli. The extracellular
matrix is mainly water (its content varies with depth 65–80%, age, disease), collagen
(the sticky tape of animal kingdom; 10–20%), and proteoglycans responsible for the
hydrophilic behaviour (and hence providing compressive strength), see Fig. 7.

Let us also mention the key observations (for our purposes) about the structure
of the cartilage. In the superficial zone, collagen fibres are parallel to the surface,
chondrocytes are flattened, and there is the highest concentration of collagen and
the lowest concentration of proteoglycans. In the middle zone, the fibre orientation
becomes random and chondrocytes are round. In the deep layer, fibres are perpen-
dicular to the surface and cross the tidemark, while there is the highest concentration
of proteoglycans. Finally, the tidemark separates the articular (uncalcified) cartilage
from the deeper calcified cartilage and represents a border between nutritional

Fig. 7 A cartoon of the hyaline cartilage structure. Note the spatial variation of its structure.
Reused with permission from [22]
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sources for chondrocytes—cartilage is avascular and hence nourished from either
synovial fluid or the subchondral bone.

As we shall employ certain simplifications below, we require quantitative data
related to mechanical loading to justify the simplifications. During physiological
loading of hyaline cartilage, its height is approximately 2 mm, while the stress
is in the range 1–5 MPa with a typical frequency of 1 Hz and rates smaller than
103 MPa/s. Cartilage undergoes a very slow adaptation, e.g., too much or little
exercise yields thinning and proteoglycan loss, an elastic deformation of the solid
part of the cartilage occurs during its compression accompanied by weeping and
lubrication.

From the modelling perspective, we shall view the cartilage structure as con-
sisting of two phases: solid (cartilage collagen meshwork) and fluid (interstitial
medium) with solid content cca 20%. The crucial effect of aggrecans (carrying
charge) is modelled via a swelling pressure due to the fixed charge density attached
to the solid phase rather than as a third phase.

We shall identify the bulk equations governing the cartilage behaviour. However,
we shall assume the following:

• Solid phase defines the cartilage geometry (the Lagrange coordinates X are
tracking solid).

• Incompressible phases.
• Saturation of the mixture, ϕf +ϕs = 1, where ϕα denotes the volume fraction of

the α phase.
• A three-dimensional rotationally symmetric problem, hence effectively one-

dimensional problem, as this complies with the experimental setup used for
parameter estimation and allows qualitative analysis of the final model.

• The state variables are the volume fraction ϕs , ϕf (replacing the partial densities
due to the assumption of incompressibility), solid displacement u = u(X, t) =
x(X, t) − X, fluid velocity vf (hence tracking both partial velocities), and the
Lagrange multiplier p corresponding to pressure (see below).

Note that incompressibility is a kinematic constraint, a constraint in the “first
layer” of continuum theory. This is the reason why p is not immediately inter-
pretable as pressure. In a single continuum, an arbitrary volume changes during the
deformation (i.e., deformation of a volume during the mapping from Lagrangian to
Eulerian frame) as

|v| = J |v0|,

where J = detF. Hence, the incompressibility in a single continuum can be
modelled via Lagrange multipliers or directly via reduction of state variables.

However, the incompressibility in mixtures requires a different treatment as can
be seen from the following argument. Let us introduce another partial density for a
clear exposition of this point. In multiple continua, the bulk density of constituent
α, ρα , is relative to the mixture volume (i.e., tissue volume in cartilage). The
true density ρTα of α is, on the other hand, expressed relative to its own volume,
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ρα = ϕαρ
T
α . If we further introduce a superscript R to denote the quantities in

the reference frame, we may express the requirement of incompressibility as ρRα is
constant in time.

With Fα
i,J = ∂χαi /∂X

α
J with Jacobian Jα = detFα , we have from the balance of

mass of components:

ϕαρ
T
α J

α = ϕRα ρ
TR
α = ϕRα ρ

T
α ,

as ραJα = ρRα . Therefore, the Jacobian of the partial deformation gradient in the
mixture

Jα = ϕRα /ϕα

is a measure of a change in the composition, not of incompressibility. However, as
ρRα are constants in an incompressible mixture, we may rewrite the mass balances
in terms of volume fractions (which then justifies our choice of state variables), see
[26] for more details.

Note that the saturation condition, ϕf + ϕs = 1, is natural in the cartilage
setting as tracking the fluid and solid constituents accounts for everything significant
volume-wise. However, this assumption might be quite restrictive in applications in
general and might require the introduction of another component of the mixture.

The partial mass balance (assuming non-reactive mixture, hence no source of
partial mass)

∂ρα

∂t
+

3∑

i=1

∂

∂xi

(
viαρα

)
= 0

can be rewritten as a solid mass balance

Jϕs = ϕ0
s ,

and a conservation of volume (by rewriting the sum of partial mass balances)

3∑

i=1

∂

∂xi

(
vif ϕf + visϕs

)
= 0,

due to incompressibility and saturation.
By comparing the magnitude of all terms in the linear momentum balance (1) and

using the physical dimensions of the problem including the typical fluid velocity
and strain rates [36], one can estimate that the dominant balance in the momentum
equation occurs within the divergence of the stress tensor, while the inertial terms
can be neglected. Hence, the partial momentum balance equations read
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0 =
3∑

i=1

∂

∂xj

(
τ ijα

)
+ p̂α,

where the partial sources satisfy p̂s = −p̂f = ϕsϕf γ (vs − vf ) + q̃ and γ is
a drag coefficient. The drag coefficient γ is yet unspecified, it can depend on the
state variables, but can be shown to satisfy γ ≥ 0. Note that the structure of
the momentum source terms, proportionality to ϕα , guarantees that the momentum
exchange naturally vanishes if any of the constituents vanishes.

A constitutive theory plausible for mixtures of solids and fluids, the Coleman–
Noll framework, yields [36] q̃ = p∇ϕf = −p∇ϕs, where p having the dimensions
of pressure is the Lagrange multiplier for the space-filling constraint, ϕf + ϕs = 1.
The idea of this theory is the same as we discussed above: the entropy production
inequality (or equivalently in terms of the free energy) is employed to obtain
plausible constitutive relations satisfying the second law of thermodynamics in any
time instant. The fluid contribution to entropy production is the same as we used
above, i.e., via Gibbs’ relation, while we would like to keep the entropy (or free
energy) of the solid general (so that we can specify it a posteriori). Therefore, we do
not use a particular form of Gibbs’ relation from the start but rather use the second
approach via a definition of temperature. This allows to specify the details of the
solid (like inner structure, inclusions, fibres) at later stages of the modelling.

Solid and fluid constitutive relations are standard (and follow from the same
Coleman–Noll framework):

τf = −ϕf pI + 2μDdis︸ ︷︷ ︸
τ̂f

,

τs = −ϕspI + 2

detF
F
∂ψ(C)
∂C

FT

︸ ︷︷ ︸
τ̂s

,

where we introduced the right Cauchy–Green tensor C = FT F.
Note that p is decomposed into both partial stresses τf and τs according to the

volume fraction, and hence, we similarly redefine the partial stresses to be weighed
by the volume fraction. Therefore, each constituent contribution to the total stress
is weighed by its volume fraction. Hence, the partial momentum balance equations
are

0 = ∂

∂xj

(
ϕατ

ij
α

)
+ p̂iα,

where

p̂s = −p̂f = ϕsϕf γ (vs − vf )+ q̃
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= ϕsϕf γ (vs − vf )− p∇ϕs
and

ϕατα = ϕα (−pI + τ̂α) .

In addition, from the scaling arguments, we may approximate τ̂f ≈ 0.
It is instructive to rewrite the partial momentum equations into another form,

using a relation for the whole tissue (where the momentum is conserved)

0 = ∇ · τtot = ∇ · (ϕf τf + ϕsτs
)
,

i.e.,

0 = − ∂p

∂xi
+ ∂

∂xj

(
ϕsτ̂

ij
s

)
= ∂τ

ij
tot

∂xj
,

while the momentum balance for fluid acquires Darcy’s form

0 = −ϕf ∂p
∂xi

− ϕsϕf γ (v
i
f − vis) = −γ ϕs

[
κ

μ

∂p

∂xi
+ ϕf (v

i
f − vis),

]
,

μ is the fluid viscosity, and κ = μϕf /(γ ϕs) permeability (note γ ≥ 0). Note that
permeability can be related to state variables, most frequently to volume fractions
reflecting the closing of pores.

4.1 Swelling Pressure and the Effect of Fixed Charge

The presence of ions in cartilage has a profound effect on cartilage tissue response
to loading. There are two types of charges—one is fixed to the solid phase, while
the other is dissolved in the joint synovial fluid. This setup allows for a gradual
increase of pressure within cartilage balancing the applied loading as the cartilage
is deformed. We shall now address this effect of charge in the cartilage model.

As aggrecans are fixed in space to the solid phase, we use solution volume-based
concentrations to express the concentration of fixed charge c̃F :

ϕf c̃
F J = ϕ0

f c̃
F
0 , c̃F = c̃F0

ϕ0
f

Jϕf
= c̃F0

1 − ϕ0
s

J − ϕ0
s

.

Donnan approximation of a swelling pressure for external bath ion concentration
c̃b reads
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pswell = RT

(√
(c̃F )2 + c̃2

b − c̃b

)

and hence relates the additional pressure to the fixed charge concentration and ion
concentration in the external bath. Note that

pswell → ∞ as ϕf → 0,

and hence, the compaction (closing of pores) is implicitly included in this treatment.
The question remains how to add the swelling pressure to the balance equations.

Swelling pressure is a bulk phenomenon, not just at the interface; hence, it should
appear in the bulk force balance, i.e., in the balance of linear momentum. Consid-
ering the swelling pressure as an external force (which exactly corresponds to the
addition of electrical forces to the chemical potential to obtain the electrochemical
potential via the bulk forces), it does not affect the Coleman–Noll procedure.

Swelling pressure induces an external force per unit volume −∇pswell in the
total momentum balance. In compliance with the definition of total mixture, we
distribute the corresponding force among phases via volume fractions ϕα:

0 = − ∂p

∂xi
− ∂

∂xi

(
pswell

)
+ ∂

∂xj

(
ϕsτ̂

ij
s

)
= ∂τ

ij
tot

∂xj
,

0 = κ

μ

(
∂p

∂xi
+ 1

ϕf

∂

∂xi

(
ϕf p

swell
))

+ ϕf (v
i
f − vis).

4.2 Initial and Boundary Conditions in 1D

It is instructive to write the one-dimensional model in Lagrange coordinates of the
solid to discuss the number and significance of the initial and boundary conditions.
In Lagrange coordinates, we have

0 = κ

μ

1

J

[
∂

∂X

(
p + pswell

)
+ pswell

∂

∂X
ln
(

1 − ϕ0
s /J

)]
+ (1 − ϕ0

s /J )(vf − vs),

0 = ∂

∂X

(
ϕ0
s

J
τ̂s − (p + pswell)

)
,

0 = ∂

∂X

(
vs + (1 − ϕ0

s /J )(vf − vs)
)
,

for three unknowns u (vs = ∂u
∂t

), vf , and p.
With an impermeable base (vf = 0 = vs) at X = 0, we have

0 = vs + (1 − ϕ0
s /J )(vf − vs),
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and hence, p and u decouple where the latter satisfies a second-order, non-linear
parabolic equation for u(X, t),

∂u

∂t
= κ

μ

1

J

[
∂

∂X

(
ϕs0J

−1τ̂ s (J )
)

+ pswell
∂

∂X
ln
(
1 − ϕs0/J

)]
,

where J = 1 + ∂u/∂X.
Now the number of required boundary conditions becomes clear. Two boundary

conditions for the displacement u are required, where one, u(X = 0, t) = 0, has
already been used. At the top, one can introduce a kinematic boundary condition
u(X = h0, t) = ∫

v∗, where v∗ denotes the specified velocity at the top of the
specimen, at X = h0. If we have instead a stress boundary condition (as in a creep
experiment), we have to apply a force balance at the interface instead noting that it
involves the state variable p.

Hence, a further boundary equation is required. Typically, this is the fluid free
draining yielding p|X=h0 = pext , where pext is the external pressure. Now the state
variable p can indeed be interpreted as a pressure.

Note that this biphasic model was derived without any assumption on the spatial
homogeneity of the initial profiles of volume fractions nor the fixed charge density.
Therefore, it is suitable to study the effects of this kind, which is exactly what has
been recently done for the cartilage tissue [36]. One can show that if there is any
heterogeneity present in the model, one cannot choose the initial solid deformation
at will but rather have to be computed. Such a situation is analogous to the presence
of a prestress in a material that prevents the material to relax to a deformation free
state. This observation, together with the details of the inclusion of the swelling
pressure, has a significant impact on the tissue response. Note that the redistribution
of fluid within the tissue is crucially dependent on the choice of permeability
coefficient and as a result affects the sharpness and movement of the draining front.

As a final remark, let us mention that there is no viscoelasticity in the solid, and
we considered the simplest model of a fluid, Newtonian fluid. Yet, the response
of the mixture as a whole shows complex viscoelastic responses that would be
very difficult, if not impossible, to obtain with a single continuum model (the
biphasic model captures a wide range of responses including the effect of ion
concentrations in the external bath or the effect of heterogeneity in the tissue). We
refer the interested reader to the original article [36] for further details including the
comparison of the model behaviour to experimental data.

5 Note on Boundary Conditions

We have seen in the previous sections that there is a well-developed framework
(actually several of them) for obtaining thermodynamically consistent bulk gov-
erning equations. However, the description of the problem at hand is not complete
without the specification of initial and boundary conditions as we saw in the biphasic
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model of cartilage. The increase of the level of detail in the bulk modelling entails
concomitant refinement in the boundary conditions. Although we see in the cartilage
example that one can come up with reasonable boundary conditions in certain
applications, there is no systematic way of obtaining them (one could, for example,
question the free draining boundary condition). This issue has been recognised
as the most significant drawback of the theory of mixtures preventing its wide
application.

First, let us mention that there are two different issues connected to the
boundaries but which are quite distinct. There are boundary phenomena that
represent processes occurring at the boundary, for example, chemical reactions at
the interface, apical growth, surface tension, and its dependence on state variables,
active surfaces. By the problem of boundary conditions, we mean to have a “well-
posed system,” the correct number, and type of boundary conditions for a given
problem.

For the description of the boundary phenomena, one can use the same framework
that we presented for the derivation of the bulk equations above. Consider, for
illustration, two single continua separated by an interface (a reactive boundary for
example). The idea is [1, 4, 62] to characterise the interface with a level set function.
Then, the balance laws (with a surface of discontinuity) yield balance laws in the two
parts of the domain and a jump (compatibility) condition as we saw above. Finally,
entropy production and constitutive theory proceed analogously as above, and only
the introduced interfacial phenomena will appear as additional terms. Similarly, one
can proceed with complex fluids, although the complexity of derivation quickly
increases, see, for example, the boundary phenomena in Korteweg type fluids [59].
One can quite straightforwardly extend this idea to reactive mixtures with a single
velocity, where bulk variables may act as source terms in the surface balance
equations, see [60].

Boundary conditions depend on the complexity of the model (level of descrip-
tion) and hence become a more pronounced problem in the theory of mixtures.
Consider, for example, the no-slip boundary condition vs. various models of slip.
At the microscale, the boundary condition is no-slip, but with the upscaling to
macroscale continuum, it might become more appropriate to replace the no-slip
condition with a slip (although still at a finer length scale we would observe that
the velocity does not slip at the boundary). As a typical problem with boundary
conditions, consider a boundary separating two different mixtures, for example,
a single and biphasic one. Are the boundary conditions derivable from some
principles?

5.1 Are BCs Derivable?

Despite the claims in the literature, e.g. [21], one cannot derive boundary conditions
in general for a mixture model. We shall illustrate this point with the simplest case, a
biphasic mixture of solid and fluid being in contact with a fluid or another biphasic
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Fig. 8 A cartoon of the
experimental findings about
the tangential component of
the velocity. Reused with
permission from [3]

mixture. As we considered above, solid defines the mixture boundary, and hence,
the continuity of solid velocity across the interface corresponds to the requirement
that the interface moves with the solid velocity at the interface. However, one can
show that, despite to what is claimed in the mentioned text, one cannot infer the
fluid velocity condition at the interface, in particular in the tangential direction.
The tangential velocity component is not constrained by the jump conditions at the
surface of the discontinuity. Similarly, one can show that the continuity of pressure
across the interface is not a plausible requirement [35].

This observation can be traced back in a way to the Beavers–Joseph experiment
who realised that the tangential flow above a porous medium is unrelated to the
tangential flow within the porous medium on the macroscale (while there is a
continuity on the microscale, cf. the discussion of no-slip boundary condition
above), see Fig. 8. As a result, they suggested an additional degree of freedom, a
constitutive relation for the tangential velocity at the boundary, which has to be
determined by an experiment. This condition bears their name, in the notation from
the figure reads [3]

du

dy

∣∣
y=0+ = β(uB −Q),

and was subsequently derived [58].
The problem of boundary conditions is indeed a significant one and has been

pointed out for quite some time [25, 57]. Although one can write down reasonable
boundary conditions (as we saw in the application to cartilage modelling above) in
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certain situations, a systematic approach is still missing. We are about to finish an
initial attempt in such a direction where we propose to use the “inverse” projection
using MaxEnt to estimate the least biased boundary conditions in a given system.
Note that this concept is based within the GENERIC framework illustrating the
need to be acquainted with the various flavours of the mixture theory as they are
complementary rather than competing.

Another useful route is via upscaling and homogenisation, which enables us to
identify the boundary conditions as the link between microscale and macroscale is
not lost. See, for example, the upscaled biphasic model [63] where the method of
multiple scales and boundary layer method was successfully used to upscale not
only the bulk but also the Nernst–Planck equations and the boundary conditions are
interpretable via their link to microscale variables.

6 Summary

We provided an overview of the theory of mixtures while building upon similarities
with the classical single continuum theory. The mixture theory can be formulated on
“different levels of description,” in terms of different state variables. In particular,
the choice whether one considers all partial velocities or a single averaged mixture
velocity is a key step in the formulation. The second law of thermodynamics is used
as a fundamental constraint for obtaining the constitutive relations, the closures. To
invoke the second law, one has to relate the entropy to the considered state variables.
To this end, one can either use directly a definition of entropy (e.g., Gibbs’ relation
together with the local equilibrium assumption), a definition of some of the related
potentials [8], or even a definition of temperature, which all allow a connection
between the entropy and the other state variables for which balance equations
are available. Via this relation, we may identify the entropy production that has
to be positive. This inequality can be satisfied by several different approaches,
called constitutive theories, and we commented on the most widely used, the linear
nonequilibrium thermodynamics. Finally, we discussed the significance and role of
coupling in the model formulation and illustrated it with several examples.

The superiority of mixture theory over the single continuum framework is self-
evident (and can be appreciated, for example, in the Duncan–Toor experiment), but
there is a trade-off in terms of more parameters that need to be estimated and the
number of boundary conditions. In the latter, difficulties are inherent to the theory
as no successful general resolution of this problem has been provided. They are not
derivable from first principles and require further (constitutive) modelling, although
there are situations where boundary conditions can be assessed. Upscaling methods
linking the microscale to macroscale parameters might be a partial way forward, but
this approach has its own limitations. Preliminary results suggest that there might
be a systematic approach via MaxEnt principle within the GENERIC framework.
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Abstract The hierarchical construction of the myocardium plays a pivotal role in
the biomechanics of the heart muscle and the resulting flow of blood. In disease,
the construction of the heart remodels, altering the structure of the tissue from
the subcellular level all the way to the whole organ. Elucidating the impact of
these fundamental alterations on the biomechanics of the heart presents challenges
to diagnosis, therapy planning, and treatment. Computational modeling provides
an innovative tool, enabling the simulation of complex biomechanics that capture
the complexity of tissue, its growth and remodeling, and the resulting blood flow.
In this chapter, we review the key ways that computational models can address
challenging biomechanical questions in the heart and how these tools can change
the way treatment is approached across a range of heart diseases.
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1 Introduction

The prevalence of cardiac and cardiovascular diseases has continuously increased
worldwide [27], making research into heart physiology and pathophysiology a
continued area of focus. Normal cardiac physiology depends on the anatomy,
structure, and function of the heart from the fundamental cellular building blocks to
the whole organ itself. Diseases of the heart manifest into changes that occur across
spatial scales, often altering the cells, extracellular matrix, local tissue structure,
and whole organ anatomy. These phenomena, working to remodel the heart, often
occur in an effort to maintain blood flow to the body—but can, in turn, result in
further exacerbation of disease. Understanding the influence of these changes on
biomechanical function of tissue and the evolution of remodeling itself are critical
goals that are important for understanding and treating heart disease.

Current research in diseases of the heart is diverse, with efforts in tissue engineer-
ing, medical imaging, devices, pharmaceuticals, and computational models looking
to provide new approaches for early and accurate diagnosis, development of new
therapies, and improvement of long-term treatment strategies. Across all targets,
computational models of cardiac biomechanics provide a unique tool. Accurate
cardiac models allow for rapid design and testing of potential cardiac therapies in
silico, avoiding or reducing animal experimentation. They allow for a controlled
setting in which to perturb individual factors (e.g., geometry, collagen content,
tissue properties, etc.) to investigate their impact on cardiac function. Additionally,
cardiac modeling provides quantitative measures, unavailable through imaging
alone, of cardiac function and behavior such as localized stresses. Computation
in combination with novel imaging methods provides the ability to create patient-
specific biomechanical models describing the mechanics of myocardium and blood
flow and providing a significant step toward personalized treatment planning.

In this chapter, we explore the biomechanical action of the heart, focusing on
how mathematics and computational models can be used to capture the essence of
cardiac function. Section 2 begins by providing an overview of the anatomy and
structure of the human heart and how these components influence physiological
function. Section 3 introduces the continuum mechanics framework used for
developing constitutive equations to describe the behavior of myocardial tissue,
incorporating tissue composition and structure from the preceding section. As an
adaptive organ under constant change, Sect. 4 introduces mathematical approaches
to describe growth and remodeling (G&R) of cardiac tissue. In Sect. 5, governing
principles of blood flow, hemodynamics, and modeling are reviewed. Finally, Sect. 6
presents four diverse pathologies and discusses how previously presented modeling
techniques have been applied to study disease and investigate treatments.
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2 Structure and Mechanical Function in the Heart

To provide a foundation for future sections detailing mechanical modeling
approaches of the tissue and blood flow in the heart, this section will explain
the anatomy and structure beginning at the organ level. Explanations of the primary
cell types and constituents that make up the extracellular matrix give further
understanding of the building blocks of heart tissue. The hierarchical structure
of muscle as well as collagen fibers will be described in order to better understand
their role in tissue behavior. Finally, this section will present the phases of the
cardiac cycle, relevant indices for measuring cardiac function, and mechanisms for
how the heart adapts to hemodynamic changes.

2.1 Organ Structure

A labelled diagram of the bisected heart is presented in Fig. 1, showing cardiac
anatomy from apex (lowermost point) to base (uppermost point). There are four
chambers in the heart—two muscular ventricles (left ventricle: LV, right ventricle:
RV) and two pliant atria (left atrium: LA, right atrium: RA). The heart can also
be divided into low-pressure (right) and high-pressure (left) units, separated by
the septum. The atria work primarily as reservoirs that pool blood and facilitate
ventricular filling, while the right and left ventricles pump blood out of the heart

Fig. 1 Image of a plastinated human heart (adapted with permission from Visible Heart Laborato-
ries, University of Minnesota/©Medtronic [1]) cut into two halves along the long axis illustrating
the primary structures, including the ventricles, atria, valves, and endocardial muscular structures
(e.g., trabeculae carneae). LV: left ventricle, RV: right ventricle, AV: aortic valve, PV: pulmonary
valve, TV: tricuspid valve, MV: mitral valve, LA: left atrium, RA: right atrium
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into the pulmonary and systemic vasculature, respectively. The tissue characteristics
of these chambers are tailored to facilitate their respective functions. For example,
because the left side of the heart needs to generate higher pressures for driving blood
through the entire body, the LV walls tend to be thicker [217]. In contrast, the RV
contains thinner walls with less compact, more trabeculated myocardium, capable
of filling under low pressures while providing sufficient pulmonary pressures.
Similarly, the walls of the LA are thicker than the RA due to higher pressures
generated, whereas the RA holds a greater volume of blood [460].

Separating the ventricles from atria and arterial outflows are four valves,
promoting unidirectional flow through the heart (mitral valve: MV, tricuspid valve:
TV, aortic valve: AV, pulmonary valve: PV). The atrioventricular valves (TV and
MV) are designed to open under low differential pressures and are reinforced by
papillary muscles (via the chordae tendineae) to avoid reverse flow when ventricles
contract [191]. Ventricular outflow tracts are opened and closed by semilunar valves
(PV and AV), which are thick, open under larger pressures and can withstand
significant pressure differences. All valves integrate into the heart through stiff, thin
annular rings that resist dilation.

The heart also has structures that control the electrical activation and, conse-
quently, the complex mechanical pattern of muscle contraction and relaxation. The
electrical signal starts at the sinoatrial (SA) node located in the RA and spreads
through both atrial chambers, triggering atrial contraction. During this process, the
signal travels to the atrioventricular (AV) node, located in the center of the four
chambers. The cells in this node—the only physiological electrical conduit for
atrioventricular coupling—have a slower conduction velocity that causes a delay
in the contraction of the ventricles with respect to the atria. Electrical activation
spreads in the ventricles first through the bundle of His in the interventricular septum
and further through the Purkinje fibers, triggering ventricular contraction [158, 177].

Blood flow to the heart tissues stems from the right and left coronary arteries
(RCA/LCA), supplying blood to right and left sides of the heart, respectively.
A vascular network, originating from these two main arteries, supplies blood to
the myocardium. The large arteries are located in the outer surface of the heart,
while smaller arteries penetrate the heart walls feeding coronary capillary beds.
Deoxygenated blood is returned to the RA through a network of veins that surround
the heart. The main path for venous blood return is by way of the coronary sinus
and the anterior cardiac veins.

2.2 Cells in the Heart

The heart is comprised of various cell types—depending on the specific region
of tissue—that maintain its structure and function, see [6, 286, 287, 389, 422]
for reviews. Myocardial muscle, the main structural component of the heart, is
comprised of cardiac myocytes, fibroblasts, and pacemaker cells that contribute to
muscle contraction, creation of an extracellular matrix, and electrical stimulation,
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respectively. While these constituents make up the majority of the tissue in the heart,
other cell types, serving specialized functions, will also be discussed briefly.

Myocytes are the primary source of contraction in the heart, providing the force
to eject blood through the heart chambers. The most abundant cell types (by volume)
in the myocardium, myocytes, are approximately cylindrical in shape, with a length
of 80µm–100µm and a diameter of 10µm–20µm. Most cardiomyocytes have
more than one nucleus [378] and, apart from the usual organelles of a cell (e.g.,
sacroplasmic reticulum, etc. [6]), contain numerous mitochondria (sources of energy
through adenosine triphosphate, ATP) and myofibrils (sources of contraction).
Myofibrils, a structural component unique to muscle cells, run along the length of
the myocyte, enable contraction, and give myocytes their striated appearance [341].
Myofibrils are comprised of sarcomeres arranged in series (see Fig. 2f). Within
the sarcomeres, the interaction between actin (thin) and myosin (thick) filaments
sliding relative to one another through crossbridge cycling is the primary mechanism
underpinning cardiac muscle contraction. Z disks delineate the beginning and
ending of each sarcomere and act as attachment points for thin actin filaments. Thick
filaments have heads that attach to thin filaments as illustrated in Fig. 2g.

Fibroblasts cells are the primary producer of connective tissue in the heart.
In contrast to myocytes, fibroblasts are flat and elongated cells and are the most
common cell type (by number) in the heart [47, 473]. Connective tissue, composed
of collagen fibers and other proteins, makes up the myocardial extracellular matrix
(ECM) [59, 455]. Fibroblasts not only express proteins for collagen assembly, but
are also involved in the degradation of the ECM [135]. These regulatory processes
can be triggered through a sensitivity to mechanical stresses and strains [59, 111]
as well as by gene expression [422]. In cardiovascular diseases, which result in
increased collagen deposition, changes in the phenotype of fibroblasts can be
observed, consistent with their role in remodeling processes [462].

As mentioned in Sect. 2.1, the electrical activation of the heart, which induces
contraction, is triggered in the SA node. More specifically, it is triggered by
specialized cardiomyocytes called pacemaker cells that automatically generate
electrical impulses [214]. Morphologically, pacemaker cells have fewer myofibrils,
which influence the striated organization as well as its contraction pattern. They
also have a larger surface area than typical myocytes. Other structures that make
up the electrical conduction system (e.g., Purkinje fibers, bundle of His) are formed
of secondary pacemaker cells, which have even fewer myofibrils when compared
to pacemaker cells found in the SA node [253]. More detailed information on
the mechanisms controlling the behavior of pacemaker cells can be found in
[243, 275, 338, 388].

Other cell types exist that carry out specialized functions in the heart. For
example, endothelial cells (EC) line the chambers of the heart as well as the major
vessels, creating a barrier between the blood and the chamber walls. They are also
constituents of the ECM [212, 422] and are associated with collagen synthesis and
remodeling processes [199]. ECs in the valves act as mechanotransducers, triggering
structural changes in response to mechanical strains [422]. Immune cells (e.g.,
macrophages, T-cells) are also present and respond to antigens/pathogens and are
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a part of the inflammatory processes. The heart is also innervated by different nerve
cells that act to modulate cardiac function through autonomic pathways [178, 286].
Efforts in cardiac tissue engineering have shown the importance of understanding
the structural and functional role of each cell type [339].

2.3 Myocardial Tissue Structure

The myocardium exhibits a hierarchical order, as shown in Fig. 2, ensuring the
orchestrated contraction of the heart [473]. Cardiomyocytes connect in series via
intercalated discs, which enable synchronized contraction, forming supracellular
myofibers. Furthermore, these fibers form fiber bundles that are interwoven with
capillaries and are embedded in the ECM (see Fig. 2c). The main structural
component of the ECM in cardiac tissue is collagen, playing an important role
in cardiac mechanics as a scaffolding for cells [135]. The most common types of
collagen molecules are high-strength type I (75 − 80%) and highly deformable type
III (10 − 20%) with varying amounts depending on the location and function within
in the heart [273].

Collagen fibers form the scaffold required to support the myofibers and cap-
illaries, maintaining their arrangement and distributing loads across the tissue.
Cardiac myocytes are embedded in a fine and flexible network of collagen fibers
connecting neighboring cells. This, dominantly type III collagen network, is called
endomysial collagen [135, 212, 273]. Perimysial collagen, on the other hand, groups
myocytes and capillaries into bundles called laminar sheets, which typically consist
of between four to six layers of myocytes. Perimysial collagen, interleaving laminar
sheets, forms the so-called cleavage planes (see Fig. 2b). Epimysial collagen,
consisting predominantly of type I collagen, forms a thick collagen layer around
the myocardium and is a connecting layer to the most superficial layers of the endo-
and epicardium [212].

The laminar structure of the myocardium confers a local orientation within the
tissue. Elongated myocytes are aligned end to end, forming muscle fibers. Muscle
fibers are then tethered together forming sheet structures that are bound together
through perimysial collagen layers. These local directions led to the definition
of three material orientations in the myocardium: fiber, sheet, and the resulting
orthogonal normal direction [99]. These local microstructural directions are often
assumed to be orthonormal and used to define a coordinate transformation from
global coordinates into the local microstructural coordinate frame.

On the tissue scale, the local orthotropy of myocardium is leveraged to create
global structures that enable efficient muscle contraction of the heart. Cardiac
fiber orientations can be described by a helical angle, measured with respect to
the circumferential direction. Early studies [464] revealed a transmural change
in helical angle from approximately −60◦ at the subepicardium to +60◦ at the
subendocardium. Detailed imaging of the microstructure, obtained using scanning
electron microscopy [274] and confocal microscopy [273], showed regular patterns
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Fig. 2 Illustration of multiscale cardiac structure. (a) Biventricular anatomy with fiber orientation,
(b) tissue block illustrating laminar structure, (c) local structural arrangement of myocytes,
capillaries, and ECM, (d) myocytes and capillaries in endomysial and perimysial collagen, (e)
myofiber cut to view internal structures, (f) myofibril illustrating individual components, (g)
sarcomere made of actin (thin) and myosin (thick) filaments, (h) bonds between multiple collagen
fibrils form collagen fibers, (i) collagen fibril formed from staggered collagen molecules, (j) three
amino polypeptide strands form a single collagen molecule. ((e) and (f) reproduced from Anatomy
and Physiology under Creative Commons Attribution License 4.0 from OpenStax. ©2016)
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of laminar sheets that were oriented in approximately the radial–tangential plane.
Recent advances in diffusion tensor magnetic resonance imaging (DTMRI) have
enabled for quantification of the myocardial fiber and sheet orientations in the
entire heart. Results from DTMRI in an excised human heart illustrated regional
differences in fiber orientations that varied depending on not only the transmural
location, but also the circumferential (anterior, lateral, posterior, septal) and lon-
gitudinal (base, mid, apex) positions [408]. The variation of sheet angles in the
myocardium was shown to have a transmural concave curvature that also changes
depending on the longitudinal location in the heart.

The microstructural orthotropy and assembly at the tissue level enable many of
the features of mechanical function observed in heart muscle. The prominent fiber
direction and transmural variation are largely responsible for torsion and long-axis
motion observed in the muscle. The presence of cleavage planes enables relative
translation between sheets, allowing for the heart wall to thicken significantly during
contraction [273, 274, 393]. Laminar deformation during contraction leading to the
thickening of the heart wall was described by Costa et al. [77], and further research
into shear strains within the myocardium highlights the correlation between sheet
angles and mechanics of the ventricle [10, 427]. Wall thickening and long-axis
shortening are the primary drivers of contraction within the heart chambers, yielding
the significant changes in volume between diastole and systole.

2.4 Whole-Heart Function and the Cardiac Cycle

2.4.1 Cardiac Cycle

The cardiac cycle can be broken down into four phases that describe the mechanical
and electrical events that occur with every heartbeat (see Fig. 3). The two phases of
contraction, isovolumetric and active contraction, are generally known as systole.
The two phases of filling, isovolumetric relaxation and diastolic filling, are known
as diastole. Systole and diastole generally describe the state of the ventricles, while
the phases of contraction for the atria are shifted in time. The following description
starts when the atrial pressures exceed the ventricular pressures:

� Diastolic filling is often described in three stages: early diastole, diastasis, and
atrial contraction. Early diastole occurs when the pressure difference between
the atria (high) and ventricles (low) causes the mitral and tricuspid valves to
open and blood to flow into the ventricles. As blood flows into the ventricles, the
volume and pressure in the ventricles begin to increase. Diastasis occurs during
mid diastole when the atrial blood flow in the ventricles decreases as a result
of the rising ventricular pressures. The final phase in diastolic filling is atrial
contraction, stimulated by the electrical impulse sent through the atria from the
SA node. Atrial systole increases intra-atrial pressure, forcing more blood into
the ventricles. As atrial contraction ends, decreasing atrial pressures cause both
the MV and TV to close, ending diastolic filling. The volume and pressure in
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the ventricles at the end of filling are known as end-diastolic volume (EDV) and
end-diastolic pressure (EDP), respectively.

� Isovolumetric contraction begins as signals from the atrioventricular node
spread through the Purkinje network and begin stimulating muscle contraction.
As activation spreads through the muscle, mechanical contraction of myocytes
across the heart yields continually increasing pressures in both ventricular
chambers. Both AV and PV remain closed owing to the higher systemic and
pulmonary pressures of the aorta and pulmonary trunk, respectively. The TV
and MV also remain closed, retaining their competence in part due to the
papillary muscles and chordae tendineae that act to prevent prolapse. As the name
implies, the volume of blood in the ventricles remains constant, while contraction
initiates.

� Active contraction initiates as the chamber pressure of both ventricles begins
to exceed systemic and pulmonary pressures, resulting in the opening of the AV
and PV. As ventricular contraction continues, myocytes shorten, walls thicken,
the long axis of the heart shortens, and the heart twists around the long axis.
During active contraction, the pressure in the ventricles is at their highest. While
active contraction is marked by the ejection of blood from ventricular chambers,
blood flow from the left and right pulmonary veins and venae cavae begins to
fill both atrial chambers. In mid systole, ventricular flow peaks and then slowly
declines as the heart reaches its maximal contractile state. The pressure in the
ventricles drops as blood continues to be ejected. Systole ends with a decline in
ventricular pressure and eventual closure of both aortic and pulmonary valves.
The volume and pressure in the ventricles at the end of contraction are known as
end-systolic volume (ESV) and end-systolic pressure (ESP), respectively.

� Isovolumetric relaxation denotes the period of relaxation in the ventricular
chambers, while chamber pressures fall below systemic and pulmonary pressures
yet remain larger than those in the atria. The volume of blood in the ventricles
remains constant throughout this phase, but the pressure in the ventricles
continually decreases as the myocardium relaxes. Atrial chambers continually
fill, increasing volume and chamber pressures due to passive stretch of the atrial
walls. Once the pressure in the ventricles drops below the pressure in the atria,
the MV and TV valves open, ending IVR and re-starting the cardiac cycle [373].

2.4.2 Cardiac Functional Metrics

There are various metrics used to describe and quantify cardiac function. One
measurement, the stroke volume (SV), is defined as the volume of blood pumped
by the ventricle with each contraction (SV = EDV - ESV) [447]. The ejection
fraction (EF) is the percentage of how much blood the ventricle pumps out with
each contraction as a fraction of the EDV, e.g., EF = SV/EDV x 100%. The EF
is an important marker of systolic function (healthy 55% > EF < 65%) [447]. In
some pathologies, such as hypertrophic cardiomyopathy, EF is normal but the SV is
depressed.
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Fig. 3 (a) The Wiggers diagram illustrates the LV and aortic pressures along with the ventricular
volume and a representative electrocardiogram. Each phase discussed in the text is delineated by
dashed lines, whereas diastole and systole are shown by solid lines. (b) An example pressure–
volume loop for the LV is shown, highlighting three functional metrics: SV, EDPVR, and ESPVR.
Valve opening and closing times are drawn in both figures as open circles. It should be noted that
these traces represent pressures and volumes in the LV. Analogous traces and curves can be drawn
for the RV and both atrial chambers

Stroke work (SW) is a metric that quantifies the work done by the ventricles to
eject a volume of blood for each contraction. It is represented as the area within the
pressure–volume loop (see Fig. 3b) but is often estimated as the product of SV and
mean systolic pressure during ejection. Cardiac output (CO) quantifies the volume
of blood being pumped by the heart per unit of time and is the product of heart
rate (HR) and SV. The slopes of the end-diastolic pressure–volume relationship
(EDPVR) and the end-systolic pressure–volume relationship (ESPVR) represent the
global compliance and contractility of the heart, respectively (see Fig. 3b) [239].

2.4.3 Cardiac Adaptation

The Frank–Starling mechanism is the ability of the heart to change its force of
contraction in response to changes in pressure and volume in order to preserve
the EF [217]. An increase in preload (e.g., elevated left ventricular EDV) results
in a greater force of contraction and an increased SV. An increase in afterload
(e.g., high systemic or pulmonary pressure) results in an increase in the force
generated by the heart to overcome downstream pressure [29]. This ability of heart
to adapt to alterations in pressure and volume is advantageous for exercise and short-
term hemodynamic changes but can be detrimental in chronic pathological states
of elevated pressure and/or volume. It can result in sustained alterations in force
generation, leading to tissue remodeling (hypertrophy) and ultimately heart failure
[447].
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3 Modeling Passive Cardiac Tissue Mechanics

Measuring the complex underlying structures of the heart at the micro- and macro-
level (Sect. 2) enables exploration of cardiac biomechanics through modeling. While
closed-form approaches for understanding muscular function of the heart (e.g.
Yin et al. [526]) can provide insights, modeling biomechanics through continuum
approaches such as using finite elasticity can provide a framework for numerical pre-
dictions that incorporate many of the hierarchical components of myocardial tissue
and structural components of the heart itself. Much of this complexity is embedded
through constitutive models, which provide a bridge between experimental data
on stress–strain responses and appropriate continuum mechanics representations.
While cardiac biomechanics has traditionally been described using hyperelastic
constitutive models, viscoelastic modeling approaches for myocardial tissue have
gained more recent attention. Combining insights from cardiac structure, continuum
approaches, constitutive models, and computational methods, it becomes possible to
explore the biomechanical world of the heart through modeling.

3.1 Continuum Mechanics

Continuum mechanics is founded on the concept that a material (be it fluid,
solid, or mixture) and its properties can be approximated by fields that are well
defined almost everywhere [139, 170, 299]. This is referred to as the continuum
assumption, which considers the scale at which discrete microstructural variations
appear to much smaller than the smallest scales of interest. This enables the
averaging of material characteristics, transforming the discrete nature of materials
into well-defined point-wise fields. Quantities such as mass, momentum, and
angular momentum can all be moved from the individual constituent molecules
to continuous fields over which we may apply limits and differential calculus.
Conservation laws can be derived to enable computational simulations of heart
tissue, detailing its movement, deformation (kinematics), and stress responses
(kinetics). In this section, these fundamental concepts will be briefly reviewed. For
more detailed overviews, refer to [45, 201, 364, 458].

3.1.1 Kinematics

To describe the motion of a continuum body in d-dimensional space, we define
the region occupied by the body at rest (the reference domain) as Ω0 ⊂ R

d (see
Fig. 4). Reference coordinates X ∈ Ω0 describe the undeformed position of material
particles within the body. In response to deformations, the material particles move
to the coordinates x ∈ Ω(t) (the physical or deformed domain) at some time t .
Assuming that the reference coordinates, X, and physical coordinates, x, are related
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Fig. 4 The mapping of local coordinates and applied forces from an initial reference configuration
(Ω0, with boundary Γ0, and the reference material coordinates Xi ), to a deformed physical
configuration (Ω , with boundary Γ , and the physical coordinates, xi ). The deformation gradient
tensor, F, describes the local change of any text vector dX to dx as the result of the applied
deformation. Illustrated in the domain is a differential volume, illustrating the mapping of forces
(reference, df0, and physical, df) along with normals (reference, N, and physical, n) and areas
(reference, dA, and physical, da)

by a continuous displacement field u(X, t), i.e., x(X, t) = u(X, t) + X, we can
define the Jacobian of the mapping, also known as the deformation gradient tensor,
as

F = ∂x
∂X

= ∇Xu + I, Fij = ∂ui

∂Xj

+ δij . (1)

F characterizes the local deformation at a material point, X, i.e., relating every
infinitesimal line segment emanating from X to its counterpart in Ω by a linear
transformation, dx = FdX [45, 201].1 The magnitude of dx can be computed as
‖dx‖2 = dXT CdX, where C = FT F is the right Cauchy–Green tensor. In a similar
way, we can express the magnitude of dX as ‖dX‖2 = dxT B−1dx, where B = FFT

is the left Cauchy–Green tensor. Both C and B are tensors providing information
about the local and directionally dependent stretch behavior of the material. Another
commonly used kinematic quantity is the Green–Lagrange strain E = 1

2 (C − I).

1 ∇ = ∑
i ei ∂/∂xi is the gradient operator in physical coordinates, ∇X = ∑

i ei ∂/∂Xi is the
gradient operator in the reference coordinates, and ei is the set of rectangular Cartesian unit vectors.
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The determinant J = det(F) quantifies the local change in volume, while the
local change in surface area is given by Nanson’s formula [364],

da n = JF−T dA N,

where N and n are the surface normal vectors in the reference and current
configuration, respectively (see Fig. 4).

For developing constitutive models, coordinate independence and rigid body
invariance are essential [364, 458]. The use of tensor invariants of the right Cauchy–
Green tensor, C, is often considered as these ensure objectivity. The principal
invariants are common, but derivatives that span the same space may also be used.
For example, Bonet et al. [45] introduced the following three invariants of the right
Cauchy–Green strain tensor for modeling isotropic materials:

I1 =
d∑

i=1

λi = tr(C) = C : I,

I2 =
d∑

i=1

λ2
i = tr(CCT ) = C : C,

I3 =
d∏

i=1

λi = det(C),

where λi , i = 1 . . . d, are the eigenvalues of C.2,3,4 To model anisotropy, additional
pseudo-invariants are introduced for directional dependence [200],

I4 = I(C, a, a), I5 = I(CᵀC, a, a), I8 = I(C, a,b), (2)

where a and b are the orientation vectors (e.g., the local direction of fibers or sheets)
and I(A, a,b) = A : sym(a ⊗ b).5,6

Many models consider splitting volumetric changes from distortional changes
within the material. In this case, isochoric definitions of the deformation gradient
(e.g., F̃ = J−1/dF) are commonly used with corresponding changes to stretch
tensors. In this case, the isochoric invariants become

2 I2 is related to the standard second invariant, IIC = λ1λ2 + λ1λ3 + λ2λ3, by I2 = I 2
1 − 2IIC.

3 The Frobenius product between tensors A,B ∈ R
d×d is defined as A : B =∑i

∑
j AijBij .

4 The trace operator on A ∈ R
d×d is defined as tr(A) =∑i Aii .

5 The dyadic product of vectors a,b ∈ R
d produces a tensor A ∈ R

d×d with components
Aij = [a ⊗ b]ij = aj bi .
6 The symmetric part of a tensor A ∈ R

d×d is defined as sym(A) ∈ R
d×d with components

[sym(A)]ij = 1
2 (Aij + Aji).
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Ĩ1 = J−2/dI1, Ĩ2 = J−4/dI2, Ĩ3 = 1. (3)

3.1.2 Kinetics

Stress is a tensor variable that enables quantification of the internal tractions (forces
per unit area). Cauchy postulates that a force on any surface that passes through
a point depends only on its unit normal n. Considering an infinitesimally small
representative volume element at a point with volume dΩ and surface area of da,
the traction on each face is given by t = df/da, where df is the part of the force
vector f that acts on the surface da (see Fig. 4c). Cauchy theorizes that the traction
on all planes passing through the point can be expressed as a linear combination of
three mutually orthogonal traction vectors. In other words, he proposed that there
exists a stress tensor, σ , such that the traction on a plane with normal n is given by

df
da

= t = σn.

This is also known as Cauchy’s stress theorem [359]. By definition, the Cauchy
stress, also known as the true stress, is defined on the current deformed configuration
(see Fig. 4).

While the Cauchy stress is defined relative to the physical domain, equivalent
forms can also be constructed on the reference domain (see Fig. 4). These are
known as the first and second Piola–Kirchhoff stresses (denoted PK1 and PK2,
respectively). PK1, denoted by P, satisfies that df

dA
= PN for all surfaces passing

through the point on the reference configuration with normal N and surface area dA.
This form of stress can be more convenient since N and dA are often more easily
measured at the beginning of experiments. Mathematically, PK1 can be related to
the Cauchy stress by

P = JσF−ᵀ, (4)

which can also be understood as the pullback of the Cauchy stress. If another
pullback operation is applied, we get the definition for PK2, i.e.,

S = JF−1σF−T . (5)

S, given by a force vector df0 = F−1df, is convenient to use for constitutive
modeling since it is entirely defined on the reference configuration dΩ0 (Fig. 4).

3.1.3 Conservation Laws

The conservation laws describe the physical variation of quantities (e.g., mass,
momentum, energy, charge) for which processes for transport, production, or
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destruction of the quantity are well defined. Typically, conservation laws are
formulated through control volume analysis, whereby the alterations in the amount
of a quantity over a unit of space-time are quantified and examined in the limit as the
unit of space-time tends to zero. Here, we present the conservation laws associated
with mass, linear and angular momentum:

� The Conservation of Mass states that the mass of a body in a closed system
can only be created or destroyed by known sources (or sinks). Thus, the mass
balance equation is given by

DρJ

Dt
= ρ̂J, (6)

which states that the rate of change in mass, ρJ , is equal to the rate of mass
being generated by a source ρ̂. Here, D

Dt = ∂
∂t

+ v · ∇ defines the Lagrangian
time derivative. For incompressible materials with constant density and no source
of growth, the remaining mass balance equation is equivalent to J −1 = 0,∀X ∈
Ω0.

� The Conservation of Linear Momentum states that the momentum of an iso-
lated body remains constant in the absence of external forces. The momentum
balance equation is given by

DρJv
Dt

= J∇ · (σ )+ ρJb, (7)

where the rate of change in momentum is dependent only on the divergence of
the Cauchy stress and the body force, b. The momentum balance can also be
projected to the reference domain, resulting in the form

Dρ0v
Dt

= ∇X · P + ρ0b, (8)

where ρ0 is the initial density at the material point.7,8

� The Conservation of Angular Momentum states that the angular momentum
of an isolated body remains constant in the absence of external forces. The
angular momentum balance equation is given by

x ×
[

D

Dt
(ρJv)− J∇ · (σ )− ρJb

]
= J

(E : σᵀ) ,

where E is the rank three Levi–Civita symbol, which is 1 if the indices are even,
−1 if the indices are odd, and 0 if the any index is repeated. The extra term E : σᵀ

7 Here, we assume ρ̂ = 0, ρ0 = ρJ by the conservation of mass.
8 ∇ and ∇X are related by ∇ = F−ᵀ∇X.
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is a consequence of the divergence theorem on
∫
Γ

x × (σn)dΓ , where Γ is the
boundary of dΩ . Given the conservation of linear momentum,

E : σᵀ = (σ32 − σ23; σ13 − σ31; σ21 − σ12;
)ᵀ = 0,

that is, the Cauchy stress tensor is symmetric, i.e., σ = σᵀ. Note from (5) and (4)
that S is also symmetric but FPᵀ �= PFᵀ in general.

3.2 Stress–Strain Behavior of Myocardial Tissues

The biomechanical rheology of the human heart is a critical component of cardiac
function. While its active properties lead to the contracture of the myocardium,
its passive properties play a key role in cardiac pathophysiology, such as diastolic
heart failure [539], heart failure with preserved ejection fraction (HFpEF) [438],
and myocardial infarction [72]. This has driven over 1.5 centuries of research into
characterizing the behavior of myocardium [43, 518].

Experimental studies in animals have shown that myocardial tissue exhibits
complex stress–strain behavior. Early studies noted the nonlinear stress–strain
response [390] of heart tissue is thought to reflect the progressive recruitment
of extracellular matrix collagen and large intracellular structural proteins that
resist strain. While initial studies were performed predominantly in papillary
muscle under uniaxial tension, testing on portions of the heart wall under biaxial
stretch [92, 465, 527] and shear [98, 100] highlighted the inherent anisotropic
response of tissue. Reflecting the hierarchical nature of heart tissue, stress response
to strain depends significantly on the orientation of the local microstructure.
Many studies examined effects in a variety of animals, including recent work in
bovine tissue [277]. However, recent works have also demonstrated the nonlinear
anisotropic response of myocardial in human tissues [452, 453] (see Fig. 5). Efforts
at developing constitutive relations largely paralleled available data, with early
descriptions focusing on transversely isotropic approximations [167, 209, 211, 465],
followed by orthotropic descriptions [76, 203, 427, 428].

Beyond nonlinearity and anisotropy, the viscoelasticity is also a common feature
of the stress–strain response of the heart (see Fig. 5). Early evidence of hysteresis
and nonlinear stress–strain relations was demonstrated in the canine papillary
muscle by Walker [495], with evidence later shown in whole organ experiments in
both feline [263] and tortoise [363] hearts. A comprehensive mechanical assessment
was later performed in the rabbit papillary muscle by Pinto and Fung [390], showing
stress relaxation, creep, hysteresis, and the frequency dependence of apparent
stiffness. While observed in nearly all data collected in the heart, fewer works have
been published that directly address these characteristics of passive myocardium.

While not the focus of this chapter, a key aspect to the biomechanics of heart
tissue is its active contractile response. Unlike the passive behavior of the heart
that undergoes slow variation in time due to growth and remodeling, the active
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Fig. 5 Illustration of rheological tests in myocardial tissues. (Top left) Recreation of biaxial test
data performed in canine myocardium under different frequencies [93]. (Top right) Recreation
of shear stress relaxation in human myocardium for different microstructural orientations [453].
(Bottom left) Recreation of cyclic shear stress tests in human myocardium for different
microstructural orientations [453]. (Bottom right) Recreation of cyclic shear stress tests in porcine
myocardium [100]

contraction of the heart is highly dynamic and dependent upon electrochemical
reactions taking place with each beating of the heart. Force generation in human
myocardium, due to contraction, has shown a strong dependence on strain [482] and
available calcium and ATP [172, 488]. However, while these effects are commonly
discussed, they remain only a prelude to the complex interdependent reaction
processes that drive contraction—including genetics, metabolic state, pH, protein
isoforms, and expression, among numerous others. Hunter, McCulloch and Ter
Keurs [213] provide an excellent overview of some of these key factors influencing
active contraction, and Chabiniok et al. [61] provide a review of modeling efforts.

3.3 Data-Model Integration

Experimental data acquisition, constitutive modeling, and parameter estimation are
closely linked, and their tight integration is crucial for the development of an
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accurate and predictive model. The main concepts involved are model-informed
experimental design, optimal design of experiments, and model refinement. Model-
informed experimental design involves a close examination of the constitutive
model in order to determine the types of experiments that are needed and how
they should be carried out. Examples of this include whether uniaxial, biaxial, or
triaxial experiments are necessary, what range of strains and combinations of stretch
ratios are needed, and whether non-mechanical studies are required to determine
microstructural information [256, 417, 533]. Optimal design of an experiment is
the analysis of how experimental data and the model form interact in affecting the
optimality of the resulting material parameters. Examples of this include computing
how the material parameter covariance changes for various combinations of experi-
mental data and model parameters used in parameter estimation and then computing
an optimality criterion for each to determine which combination yields the best
results [23, 277, 536]. Model refinement involves the adaptation of the constitutive
model form based on new knowledge gained from the experimental results and
optimal design of experiments. An example of this includes the addition of terms
and parameters to the constitutive model to improve the fit to the experimental data
and the elimination of material parameters with high parameter covariance that do
not impact the quality of the model fit. Often, it is necessary to iterate on these
concepts multiple times in order to improve our understanding of the underlying
physics of the material and develop the optimal constitutive models for predictive
simulations.

3.4 Hyperelastic Modeling Approaches

The relationship between the experimentally observed stresses and strains is
expressed through constitutive equations. Typically, a scalar-valued strain-energy
density, Ψ , is used to describe the stored internal energy resulting from material
deformations. The energy of the system must obey the second law of thermodynam-
ics that is expressed through the Clausius–Duhem inequality (21). For an isothermal
hyperelastic body, considering that all processes are reversible and thus there is no
energy dissipation,

S = 2
∂Ψ

∂C
, Sij = 2

∂Ψ

∂Cij
.

Therefore, the stress is, by definition, the gradient of the strain-energy function.
In order to use hyperelasticity to model the constitutive behavior of the

myocardium, some simplifying assumptions may be utilized for either experimental
or computational purposes. First, compressibility of the myocardium was observed
[24] as a result of intravascular blood flow [17]. In this case, isochoric invariants (3)
are needed in the definition of the constitutive equation, with a bulk term to model
the response to changes in volume [232]. However, most often, the incompressibility
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assumption is drawn, as it is considered that the myocardium is made primarily
of water. Second, as presented in Sect. 3.2, myocardium has been shown to be
organized into sheets with clear fiber (f ), sheet (s), and normal (n) directions.
As a result, constitutive models of myocardium generally describe the material as
anisotropic, utilizing the pseudo-invariants for anisotropy (2). Although numerous
studies have developed orthotropic models, another common assumption is to
model the material as transversely isotropic. There are three general approaches—
phenomenological, structural, and hybrid—for determining the form of Ψ that are
discussed in the following sections.

3.4.1 Phenomenological Models

Phenomenological models (e.g., [167, 210]) seek to establish a simple mathematical
relationship necessary to accurately predict stress within a reasonable range of kine-
matic strains. The mathematical relationships established typically utilize measures
of strain (e.g., invariants) along with material parameters to fit the phenomenological
model to some given data. Usually the logic of the model form is not structurally
based; rather it is determined by experience or trial and error. Due to their relative
simplicity, they are often computationally fast to solve and efficient to work with.
Numerous phenomenological constitutive equations exist that describe the passive
strain energy, a review of which can be found in [203].

One phenomenological model by Guccione et al. [166] describes the passive
behavior using a transversely isotropic Fung-type law,

Ψ = c

2

[
exp{Q}−1

]
, Q = bf E

2
ff +2bf s

(
E2
f s + E2

f n

)
+bn

(
E2
ss + E2

nn + 2E2
sn

)
,

where C, bf , bf s , and bn are the material parameters and Eff , . . . , Esn are the
components of the Green–Lagrange strain tensor in each respective direction, i.e.,
Eff = I(E,nf ,nf ), Ef s = I(E,nf ,ns), and so on.

The generalized Fung model is well known for its ability to match a wide range
of soft tissue responses. Although there are parameter restrictions for transverse
isotropy, the Guccione model is still flexible in the range of responses it is able
to model. In addition, with bf , bf s, bn > 0, strong ellipticity is established for
Q and thus Ψ for numerical stability. Having only four parameters and utilizing
a phenomenological form, this model is computationally efficient. However, the
myocardium is known to be orthotropic, and thus, this transversely isotropic
restriction may not be sufficient. Additionally, due to the removal of coupling terms
from the generalized Fung model form, the Guccione model cannot match the
shearing behavior of fibers in soft tissues [536].

Addressing some of these issues is the orthotropic model by Holzapfel et al.
[203], which takes into account the interaction between the fiber and sheet directions
observed in Dokos et al. [99],
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Ψ = a

2b
{e[b(I1−3)] − 1} + af

2bf
{e[bf (I4f−1)2+] − 1}+

as

2bs
{e[bs(I4s−1)2+] − 1} + af s

2bf s
{e[bf sI 2

8f s ] − 1},

where I4f = I(C,nf ,nf ), I4s = I(C,ns ,ns), I8f s = I(C,nf ,ns), see (2). The
I4 terms are responsible for the response of the fibers in the fiber (f ) and sheet
(s) directions, respectively, and I8 term is responsible for the interaction between
the f and s directions. The IC term is responsible for the isotropic behavior of the
extracellular matrix and the normal (n) direction. In general, since myocardial fibers
and sheets exhibit stiffening behavior in tension but not in compression, the model
relies on (·)+ of the invariants, returning 0 if the bracketed term is less than 0.

Phenomenological models are a popular choice due to their ease of imple-
mentation, efficiency in large-scale applications, and tunable material response.
However, phenomenological models are often loosely tied to the underlying tissue
microstructure, making the response to alterations within the material challenging
to predict. Additionally, phenomenological models tend to predict stresses poorly
when extrapolating to deformation outside of the range used to determine the model
parameters [469, 536]. In these instances, structural models provide an alternative
approach for describing the constitutive response of myocardium.

3.4.2 Structural Models

Unlike phenomenological models, structural models directly integrate structural
information into the constitutive model forms [256, 417, 533], e.g., distribution of
fiber orientations and distribution of collagen fiber crimping. These models draw
on the link between the biomechanical behavior and the tissue’s microstructure
to formulate the constitutive model form. One benefit of this type of constitutive
model is that it enables one to better understand the underlying mechanisms relating
to structure and function. They also exploit knowledge and experimental data of
the microstructure of materials to enhance predictive capabilities outside of typical
values of measured strain [533].

Structural models first divide the strain-energy function into parts corresponding
to the major microstructural components of the extracellular matrix, for example,
the ground matrix (Ψg), myofibers (Ψf ), and collagen (Ψc),

Ψ = Ψg(I1)+ Ψf (C)+ Ψc(C).

The ground matrix accounts for the response after removing the contributions of
the collagen and myofibers. The ground matrix is often assumed to be isotropic
(modeled with the first invariant I1) due to its low stiffness relative to the collagen
fibers. The response of single collagen fibers can be examined experimentally
[282, 283, 420, 421, 533] and modeled. Similarly, the overall collagen fiber archi-
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tecture, which includes the fiber orientations and fiber crimps, can also be examined
using imaging techniques such as second harmonic imaging [124, 188, 533] or
polarized spatial frequency-domain imaging [522]. Collagen fibers are known to
be undulated in their unstressed state and only provide stiffness when straightened.
The mechanical properties of individual myofibers are not easily determined, but
groups of myofibers sharing the same directions (fiber ensembles) can be examined
through modeling [22]. The orientations of myofibers, like collagen fibers, can
also be determined through imaging techniques such as diffusion tensor imaging
[30, 148, 399, 408, 431].

To homogenize the mechanical response from the fiber level to the tissue level,
the structure and behavioral information of collagen and myofibers are integrated
stochastically using probability density distribution functions extracted from imag-
ing data. From images, the resulting fiber orientation distribution, R(n(θ)), for the
collagen and myofibers, and the recruitment distribution, D(λs), corresponding to
the stretch, λs , needed to straighten a crimped collagen fiber are determined. Affine
deformation is typically assumed and has been shown to be accurate for collagen
fibers in common soft tissues [533]. The stretch of a fiber ensemble can be computed
using I4 (2), and as an example, the strain energy of myofibers can be given by

Ψf =
∫ π/2

−π/2
R(nf (θ))w(I4f )dθ,

where w(I4f ) is the constitutive model for the response of an ensemble of fibers,
and nf is the orientation of the fiber ensemble. Here, the mechanical response
of myocardium due to the myofibers is accounted for by all myofibers that are
under stretch. w(I4f ) is typically assumed to be 0 when I4f is negative. As
myofibers are stretched and rotated into frame, the stress of the tissue along
different directions increases and decreases. Essentially, this model form uses
the structural reorientation of myofibers as the tissue deforms to compute the
mechanical response of the tissue. As long as the assumptions for the mechanisms of
fiber-level deformations and the fiber ensemble models are accurate, this structural
model form is very robust in its predictive capability.

The structural model for collagen can be extended further due to available fiber
crimp information. Thus, a fiber-level model, wf , can be used instead of a fiber
ensemble-level one. Fiber-level models are typically linear in behavior [282, 283,
420, 421, 533] and thus are not prone to error from extrapolation. The response of a
collagen ensemble is similarly representative of all the collagen fibers under stretch.
This can be computed by integrating over D(λs). The stretch of a fiber ensemble
gradually recruits collagen fibers to bear stress; hence, it is called the recruitment
distribution. Thus, a typical collagen model typically has the form

Ψc =
∫

θ

R(nc)
∫ λc

λs=1
D(x)wf (λt )dλsdθ,
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where λc = √I(C,nc,nc) is the stretch of the collagen fiber ensemble, nc is the
direction of fiber ensemble, and λt = λc/λs is the true stretch of the collagen
fibers. As long as the mechanisms behind the reorientation and straightening of the
collagen fibers are accurate, the extrapolation of this structural model is equivalent
to the extrapolation of the linear collagen fiber model, which has been shown to
accurately predict behavior of dense collagenous soft tissues [533]. One recent
structural model of myocardium, developed using this full approach, integrated
full three-dimensional collagen and myofiber information and accounted for their
interactions [24].

While structural models provide a clearer representation of tissue with respect
to underlying tissue structure, making them easier to adapt with microstructural
changes, they can present challenges. The required experimental data, especially
microstructural data for non-homogenous specimens, may be difficult or impossible
to obtain with current technology. In addition, the integration of such data in the
model, by means of numerical integration over fiber distributions, often makes these
models computationally intractable in large simulations. Further, other complex-
ities, such as cross-linking or other interactions, are often neglected or difficult
to determine. As a consequence, hybrid approaches aim to bridge between the
phenomenological and structural worlds.

3.4.3 Hybrid Models

Hybrid approaches using structural tensors are one way to bridge the gap between
the computational efficiency of phenomenological models and structural data
integration [202]. One way to do this is by the introduction of a structural tensor
(H) describing the fiber orientation distribution (Γ (N)) in three dimensions:

H = 1

4π

∫

S

Γ (N)N ⊗ NdS, tr(H) = 1,

where S denotes the surface of a unit sphere. This allows a new invariant to be
defined from fiber orientation data as IH = H : C. Constitutive models using this
new invariant can have anisotropic characteristics that are closely correlated with its
structural model equivalent but avoid the use of numerical integration.

3.5 Viscoelastic Modeling Approaches

Classically, viscoelastic models are built on two fundamental elements, springs and
dashpots, which represent the elastic and viscous components, respectively. For
linear materials, these are the strain and strain-rate terms. For nonlinear materials, it
is often more convenient to use a hyperelastic PK2 model, Se, for the springs, and
the time derivative Ṡe for the dashpots. In cases where the form of the viscoelastic
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Fig. 6 (Top) Common viscoelastic models based on arrangements of spring, dashpot, and spring-
pot elements: (a) Maxwell, (b) Kelvin–Voigt, (c) Standard linear (Zener), (d) Generalized
Maxwell, (e) Fractional Kelvin–Voigt, (f) Fractional Maxwell. The linear spring, dashpot, and
spring-pot are defined in the lower row. (Bottom) Comparing the behavior of classical viscoelastic
models (Maxwell (red), Kelvin–Voigt (blue), and Zener (green)) and the fractional approach
(black) (g) at low frequency, (h) at high frequency, (i) in relaxation tests, and (j) in creep tests

behavior is significantly different from the hyperelastic part, the time derivative
of a separate model form ṠQ can be used to represent the dashpots. The simplest
combinations of these two elements form the Maxwell and Kelvin–Voigt models.
The Maxwell model is composed of a spring and dashpot in series (Fig. 6a),

S + a1Ṡ = b1ṠQ,

where a1 and b1 are the constants derived from the stiffness of the spring and
dashpot. The Maxwell model is particularly useful in modeling relaxation behavior
but is known to be unable to predict typical creep behavior [329]. Under constant
stress, materials usually exhibit a strain increase whose rate is decreasing. However,
this model displays a linear strain increase (constant rate).

The Kelvin–Voigt model is described by a spring and dashpot arranged in parallel
(see Fig. 6b),

S = Se + b1ṠQ. (9)
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The Kelvin–Voigt model has the advantage that it can model creep behavior, but
inherently, it cannot predict stress relaxation. Upon reaching the maximum stretch,
the instantaneous drop in velocity will result in an instantaneous drop in stress,
whereas an exponential decay is normally observed in soft tissues [52, 97, 225, 228,
395, 498].

The standard solid linear model, also known as the Zener model, combines two
springs and a dashpot. One possible arrangement is having a spring in series with
a Kelvin–Voigt configuration or in parallel with a Maxwell configuration, as shown
in Fig. 6c. In the Kelvin–Voigt configuration, the nonlinear Zener model becomes

S + a1Ṡ = Se + b1ṠQ. (10)

By having a more complex arrangement of rheological elements, both in series and
in parallel, the Zener model bypasses the issues encountered by the Maxwell and
Kelvin–Voigt models in creep and relaxation, respectively.

A further extension of this approach to multiple branches results in the general-
ized Maxwell model, as depicted in Fig. 6d. The benefit of having multiple branches
is that they allow for a more diverse rate response behavior within the model,
enabling a more tailored relaxation response [3, 425, 426]. For compactness, this
model is presented below in its integral form, as

S(t) = Se(t)+
t∫

0

n∑

k=1

bk exp{(s − t)/τk}ṠQ(s) ds.

Then, each branch is defined by the relaxation time τk and relaxation weight bk . The
generalized Maxwell model is the most comprehensive classical viscoelastic model,
providing flexibility in accounting for a spectrum of relaxation rates. However, this
generality comes at the added cost of an increased number of parameters that are
difficult to determine.

3.5.1 Fractional Viscoelasticity

One approach to extend classical viscoelastic models is to use fractional derivatives
in place of first-order derivatives. Fractional calculus began with the generalization
of integral and differential operators from the set of integers to the set of real
numbers (for reviews, see [296, 410]). Many different definitions for fractional
differential and integral operators of arbitrary order have been introduced [392],
with the Caputo definition being a popular choice for physics-based applications.
For an n-times differentiable function f and 0 < α ≤ n, the Caputo derivative is
defined as

Dα
t f = 1

Γ (�α� − α)

∫ t

0

f �α�(s)
(t − s)1+α−�α� ds,
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where �α� denotes the ceiling of α. It is common to consider only 0 ≤ α ≤ 1, since
the composition of the fractional derivative has the property thatDa

t D
b
t f = Da+b

t f .
Mathematically, if α = 0, then the behavior of a fractional derivative term converges
to that of a spring, whereas if α = 1, its behavior converges to that of a dashpot.
The intermediate values 0 < α < 1 represent the gradual transition of the
mechanical response from elastic to viscous. Due to having both the characteristics
of a spring and a dashpot, the rheological element it represents is sometimes
also called a spring-pot. The spectrum of relaxation behaviors possible from a
fractional derivative is advantageous for describing the multiscale structure of the
myocardium, as the spectrum of relaxation times from the different components
can be conveyed through a single parameter, α. Being able to reduce the complex
behavior of a viscoelastic model to a single parameter is both robust for parameter
estimation and more physically intuitive. Furthermore, this also allows the moduli
and characteristic time scales of the Prony terms to be easily pre-computed for
computational efficiency.

A fractional viscoelastic model can be assembled by starting with a classical
form, such as the Zener model, and replacing the time derivative with a fractional
derivative, i.e.,

Sve + a1D
αa
t Sve = b0Se + b1D

αb
t SQ.

Setting the fractional orders αa and αb to 1 recovers (10). Conversely, disregarding
the derivative on the left-hand side (i.e., setting a1 = 0) gives the fractional adaption
of the classical Kelvin–Voigt form (9), which is equivalent to an approximation to
the generalized Maxwell model [535]. The behavior of this model for an isotropic
nonlinear material is examined in Zhang et al. [534]. In comparison with classical
approaches, the fractional approach is able to match the response across a more
complete range of experiments. For example, the classical Maxwell (Red) is unable
to match the experimental behavior at low frequencies of loading (see Fig. 6g), while
the Kelvin–Voigt model (Blue) is unable to match the experimental behavior at high
frequencies of loading (see Fig. 6h). The fractional models have no problem in this
regard. In addition, none of the classical Maxwell, Kelvin–Voigt, and Zener models
can match the relaxation and creep behavior exhibited when constant strain and
stress are cycled on and off repeatedly (see Fig. 6i,j). These features make fractional
viscoelastic models appealing for use in complex biological tissues.

3.5.2 Cardiac Viscoelastic Models in the Literature

While viscoelastic response is clearly observed in cardiac tissue, the use of
viscoelastic models remains less common than the use of hyperelastic approaches.
This is due, in part, to the increased difficulty with implementation and practical
application. Loeffler and Sagawa [288] developed a 1D model based on the transient
response of cat papillary muscle. They found that the passive part needed at least five
linear elements in order to capture the behavior, and therefore, used the generalized
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Maxwell configuration with two branches. For a complete 3D definition, a passive
cardiac model was proposed by Huyghe et al. [215], who used an orthotropic,
exponential formulation for the elastic part and an isotropic quasi-linear formulation
for the viscoelastic portion. The 11-parameter model was fit to uniaxial, biaxial,
and relaxation data obtained from three previous studies. However, large variations
were observed in the viscoelastic parameters, potentially due to the quasi-linear
assumption.

In computational cardiac mechanics, viscosity was integrated into elastic and
poroelastic models through the addition of a linear dashpot element in either the
passive part alone [64] or both the passive and active components [65]. This captures
energy dissipation for simulation purposes. But, a single viscous element is unlikely
to represent typical relaxation data observed in rheological testing.

More recently, two groups devised a similar 3D orthotropic model for the passive
myocardium, considering multiple Maxwell branches. Both Cansız et al. [56] and
Gültekin et al. [169] modeled the elastic part as a sum of the underlying matrix,
fiber, sheet, and relative fiber-sheet shear contributions using exponential functions.
In the model proposed by Gültekin et al., the viscous contributions were defined for
the matrix, fiber, sheet, and fiber sheet as well using a first-order linear differential
equation, leading to 16 model parameters. By comparison, Cansız et al. defined
the viscous contributions in the fiber, sheet, and normal directions, employing a
quadratic function of the strain logarithm (resulting in 14 parameters). Both models
were suitable for capturing shear data in six deformation modes. Additionally,
the Gültekin et al. model was also validated against biaxial data. However, large
parameter variability was observed when the model was fit to shear data.

To date, fractional approaches have not yet been employed in modeling cardiac
mechanics in the literature. Therefore, the suitability of these models remains to be
investigated.

3.6 Applications of Cardiac Constitutive Modeling

Studying the biomechanical function of myocardium can enable a better understand-
ing of healthy and pathological states. Constitutive models presented in preceding
sections can be used to not only predict behavior, but also elucidate properties
and functional metrics. As discussed previously, there is a close correspondence
between the tissue microstructure and biomechanical behavior [483]. Studies
investigating how collagen orientation, angular dispersion, fiber stiffness, crimp
angle, and collagen density affect mechanical response [297, 491] have found
that the collagen structure and orientation are important determinants of passive
tissue response. A material model incorporating collagen shape parameters (i.e.,
elongation, flatness and anisotropy) was shown to accurately predict behavior
of cardiac tissue in a healthy and hypertensive heart [181]. Compressibility of
myocardium is another important mechanical property to be explored. Studies [320]
have shown experimental evidence for volume change in passive, excised porcine
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myocardium. Constitutive modeling can also be used to interrogate the source of
viscoelastic behavior in myocardium [216, 242, 332, 333, 439, 449, 450, 513, 529].
For example, a poroelastic description can be used to model the viscous properties
due to the flow of interstitial fluid through the extracellular matrix as a result
of mechanical deformation. However, Yang et al. [524], using an incompressible,
isotropic, poroelastic model, found that poroelasticity alone is insufficient to explain
hysteresis seen in passive cardiac muscle. On the other hand, Emery et al. [114]
found through modeling that non-elastic behavior of the myocardium is better
explained by murine (or plastic) effects than viscoelasticity, which could be due
to damage to elastic components.

The combination of appropriate constitutive models with accurate structure
and geometry can also lead to better insights into organ-level properties and
function. Non-invasive imaging, such as ultrasound, CT, and MRI, can be used to
determine patient-specific cardiac geometry, microstructural orientation [323, 463],
and deformation [126, 430]. Non-invasive imaging modalities that provide temporal
geometric information can also be used to obtain deformation in three dimensions
by utilizing geometric meshing and image-to-mesh information mapping through
rasterization [106, 134, 437, 442, 454, 478], which can be further improved in
accuracy through the addition of a constitutive model [377] and machine learn-
ing [517]. Patient-specific parameters of the constitutive model can be estimated
by minimizing the difference between modeled versus measured deformation
[19, 20, 174, 497, 499]. These and other studies have enabled the development of
modeling pipelines for assessment of patient-specific parameters in myocardium
[134, 144, 161, 330, 398, 481, 507, 537].

4 Tissue Growth and Remodeling

The heart muscle is constantly subjected to alterations in loading conditions: at rest,
during different degrees of exercise, or as a consequence of cardiovascular disease.
Sustained deviations from physiological conditions, e.g., chronically elevated blood
pressure or endurance exercise, can induce structural changes in myocardial tissue
and mass in order to retain homeostasis and meet the increased demand. These
changes are referred to as growth and remodeling (G&R).

Depending on the type of supraphysiological loading, the myocardium may
undergo different distinct patterns of G&R. Eccentric or concentric shape adap-
tations are prominent patterns of ventricular hypertrophy and often occur as a
consequence of volume or pressure overload [412]. In general, myocardial hyper-
trophy is considered to be an adaptive response and hence, in the beginning, can be
beneficial for myocyte regeneration and survival (e.g., “athlete’s heart” [120, 331]).
A persisting overload, however, favors apoptosis and fibrotic mass production,
both of which are maladaptive processes that impair the heart’s function and can
eventually lead to systolic or diastolic heart failure.
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Models that account for hypertrophic and tissue constituent changes are essential
when describing the mechanical function of the myocardium and the interplay of
tissue mechanics with changes in circulatory system hemodynamics. G&R models
can help to address the following key questions: What degree of deviation of physi-
ological loading conditions induces hypertrophy? When is hypertrophy beneficial
and at which stage does it become maladaptive? How does G&R contribute to
hemodynamics, blood pressure, tissue oxygenation, and myocardial regeneration?
What are some treatment strategies to trigger reverse G&R, or at least to reduce
maladaptive G&R progression?

In Sect. 4.1, common approaches for modeling of G&R in a continuum mechan-
ical setting are presented to give an overview of ideas, methodologies, advantages,
and possible disadvantages of these methods. Since the theory of kinematic growth
is widely used and builds upon early and fundamental continuum mechanical
approaches for inelastic material behavior, this theory is expanded upon in Sect. 4.2.
Thereafter, an overview of how G&R models are applied in the context of modeling
the diseased heart is given in Sect. 4.3 in order to demonstrate their capabilities as
well as highlight future potential avenues for research.

4.1 Modeling Approaches in G & R

Growth and remodeling (G&R) can be approached through a variety of theoretical
approaches. For more comprehensive reviews, the reader may refer to Ambrosi et
al. [9], Niestrawska et al. [358], or Lee et al. [268].

� The Theory of Kinematic Growth relies on a classical approach in continuum
mechanics for inelastic material behavior that was first introduced by Lee [265]
for modeling finite strain plasticity. The deformation gradient (1) at a time
instance t = s, F(s), that describes the kinematic pathway from a reference
to a deformed configuration is multiplicatively split into one part associated with
the inelastic deformation, Fg(s) (e.g., growth, plasticity, or damage), and one
part that describes the purely elastic behavior, Fe(s), cf. Fig. 7b. In the context of
growth in soft tissues, this methodology was first described by Rodriguez et al.
[406]. Due to its prominence and widespread application, especially in modeling
cardiac growth, we present the theory in detail in Sect. 4.2.

The theory benefits from its relative simplicity and straightforward incor-
poration into existing continuum mechanical analysis frameworks (also from
a computational perspective). However, the underlying assumptions are purely
kinematic and do not include effects of remodeling; hence, a change of tissue
constituents and their mechanical properties would have to be addressed by
making additional assumptions or alteration of material parameters.

� The Constrained Mixture Theory is a specialization of the general mixture
theory and makes assumptions as to how different tissues or cell constituents
evolve over time. These may be fibrillar collagen, muscle cells, or other
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Fig. 7 (a) In constrained mixture theory, a body is composed by n individual constituents, each
consisting of multiple mass increments that were deposited with a pre-stretch Fnpre(t) at different
times. The elastic pre-stretch depends on the individual stress-free natural configuration of each
constituent. All constituents undergo the same elastic deformation together, despite having been
deposited with different pre-stretches at different times. (b) In kinematic growth theory, the
deformation gradient F is multiplicatively split into an elastic part Fe and a part governing the
growth deformation Fg. The intermediate configuration may be incompatible if growth violates
restrictions imposed by boundary conditions or is inhomogeneous in general. (c) The homogenized
constrained mixture theory combines the kinematic growth and the constrained mixture approach
in such a way that the benefits from both are inherited [83]

constituents. Growth and remodeling processes are attributed to the replacement
or reorganization of existing constituents with new ones in order to maintain a
constant preferred state of (biomechanical) homeostasis. Changes in mechanical
or chemical stimuli with respect to a baseline state dictate the rates of constituent
turnover. New constituents are deposited at preferred stretches and are mechani-
cally constrained to comply with the other tissue constituents, see Fig. 7a.

The underlying mathematical theory was first introduced by Humphrey and
Rajagopal [208]. Figure 7a depicts the evolution of a continuous body over time
and sketches the deposition of new constituents with a defined pre-deformed
state at a certain time t characterized by Fnpre(t). The constrained mixture theory
can be viewed as a “true” G&R model due to its ability to incorporate new
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constituents with distinct mechanical properties into the growing (and adapting)
body. However, the theory requires accounting for past configurations, which
poses a high burden from a computational point of view. Therefore, the model
has mostly been used in the context of modeling arterial vessels with simplified
shapes [484].

� Structural Adaptation Theory Kinematic growth models lack a description
of the tissue constituent changes and only capture the volume changes and
consequences thereof (i.e., residual stresses). Microstructural reorientation that
depends on the growth process was first described by Arts et al. [14] with a
simplified mechanical left ventricle model and in subsequent studies [11, 13].
Kroon et al. [250] modeled adaptive reorientation of myofibers within the
framework proposed by Arts et al. by assuming that myofibers adapt their
orientation in order to minimize shear strain between fiber and cross-fiber
directions, with a subsequent study by Pluijmert et al. [391]. However, these
approaches are yet to be combined with kinematic growth models in order to
study the influence of volume change on myofiber reorientations. Further insights
into studies of myofiber adaptation may be found in the review by Bovendeerd et
al. [49].

� Fully Structural Approach Growth models based on the multiplicative split
of the deformation gradient that involves mass change require an open-system
approach for which the underlying motion is not necessarily bijective [81]. This
essentially means that no one-to-one mapping between a point in the reference
and one in the deformed configuration may be established (material points
may be absorbed or added). Lanir [257, 258] aimed at overcoming this issue
by proposing a structural approach in terms of a mechanistic micromechanical
G&R theory for fibrous tissues. Therein, tissue growth was modeled by fiber
turnover. Two features of this approach are shared with constrained mixture
models, that is, the evolving natural configuration of tissue constituents and the
rule of mixtures, in order to evaluate the global tissue response. However, the
main difference is that, in classical mixture theories, only remodeling of different
tissue constituents, but not the 3D structural network itself, is considered [258].

� Hybrid Approaches were recently developed, which inherit the benefits of
both kinematic growth and constrained mixture models. A model that combined
volumetric growth approaches (Sect. 4.1) with the constrained mixture model
was applied in the context of aortic remodeling [7]. A homogenized constrained
mixture approach was developed by Cyron et al. [83], which bypassed the need to
keep track of past configurations while still being able to account for influences
on a microstructural level, see Fig. 7c. It was successfully applied to model
anisotropic volumetric growth and remodeling of arteries in Braeu et al. [50].
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4.2 Kinematic Growth

Here, the theory of kinematic growth is discussed further due to its prevalence,
especially in modeling growth in the heart. A detailed discussion of continuum
mechanics of finite strain kinematic growth may be found in Menzel and Kuhl [325]
or Himpel et al. [190].

4.2.1 Finite Strain Kinematics of Growth

The deformation of a continuous body from a reference to a current configuration is
characterized by the deformation gradient tensor (1). Without loss of generality,
this deformation may be split into infinitely many parts associated with distinct
kinematic patterns that then can be superimposed in order to recover the full
deformation. An example is the well-known polar decomposition of the deformation
gradient [200]. Within the theory of finite strain plasticity, a multiplicative decom-
position of the deformation gradient was first employed by Lee [265], which was
adopted in various different approaches for modeling inelastic material behavior in
a finite strain continuum mechanical setting. Kinematic growth, first applied in the
context of soft elastic tissues by Rodriguez et al. [406], assumes that the deformation
gradient at a time instance t can be decomposed into an elastic part, denoted as Fe(t),
and an inelastic growth part, Fg(t):

F(t) = Fe(t)Fg(t). (11)

The geometric interpretation of (11) is depicted in Fig. 7b. A fictitious stress-
free intermediate configuration that solely entails the deformation due to growth
arises as a consequence of Fg acting on the reference state. This configuration, in
general, can be incompatible, which is indicated by the portion of grown matter
disjoint from the underlying body in Fig. 7b. Incompatibility can occur if growth is
inhomogeneous or if boundary conditions on the domain inhibit growth to occur.
This incompatibility is “restored” by Fe acting on the intermediate configuration in
such a way that balance equations of linear and angular momentum are fulfilled.

4.2.2 Balance Equations of Growth

In addition to classical continuum mechanics of elasticity presented in Sect. 3, the
balance equations of growth have to be considered in an open-system thermody-
namic framework due to the fact that the body’s mass may change during the growth
process. For an in-depth treatment of thermodynamics with focus on volumetric
growth, the reader is referred to Epstein and Maugin [116].

� Balance of Mass Consider a growth deformation gradient Fg acting on the
reference configuration yielding the incompatible intermediate state (Fig. 7b).
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Under the assumption that any mass increase due to growth happens entirely
throughout volume change, hence under density preservation, the change of mass
due to growth requires the mass density in the reference configuration, denoted
as ρ0, to change:

ρ̇0 = M0 + ∇X · M, (12)

where M0 is the mass source and M represents a mass flux with respect to
the reference configuration. Microscopically viewed, the mass source may be
associated to hypertrophy or proliferation of cells, while the flux term would
refer to cell migration.

Without loss of generality, we make the reasonable assumption that the mass
flux is constant in space, and assume ∇X · M = 0 in the following. If density is
preserved, the mass source can be expressed kinematically as

M0 = ρ0 trLg, (13)

where the growth velocity gradient is

Lg = ḞgFg−1
. (14)

� Balance of Linear Momentum The volume-specific balance of linear momen-
tum has to account for the mass change and hence the change of the reference
density due to growth. Therefore, (8) becomes

∇X · P + b̂X = ρ0v̇ + ρ̇0v. (15)

Under the assumption that growth happens on a significantly larger time scale
than the dynamics due to elastic deformation, the additional inertia term ρ̇0v
due to mass change may be neglected. Furthermore, if growth is analyzed in a
quasi-static setting, where any inertial forces vanish, (15) reduces to the standard
quasi-static balance of linear momentum:

∇X · P + b̂X = 0.

� Balance of Entropy For an open-system setting, the local form of the Clausius–
Duhem inequality for a constant absolute temperature θ can be stated as

D = P : Ḟ − Ψ̇ − θH ≥ 0. (16)
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Therein, the term H represents entropy sources or fluxes in order to satisfy
the second law of thermodynamics.9 Here, we assume the free energy Ψ to
depend on not only the deformation gradient, but also on the growth internal
variables, i.e., the growth tensor Fg, as well as the mass density in the reference
configuration:

Ψ = Ψ (F,Fg, ρ0). (17)

The time derivative of the free energy per unit volume (17) then reads

Ψ̇ = ∂Ψ

∂F
: Ḟ + ∂Ψ

∂Fg : Ḟg + ∂Ψ

∂ρ0
ρ̇0. (18)

The first term in (18) is the change in the free energy due to elastic deformation,
which will constitute the PK1 stress tensor. The second term in (18) represents a
change of the free energy owing to inelastic processes, i.e., growth. The third term
in (18) may be viewed as a change of the energetic state due to mass changes as a
consequence of growth or atrophy. By introducing the free energy per unit mass,
ψ = 1

ρ0
Ψ , and making use of the mass source (13), this term can be expressed

as

∂Ψ

∂ρ0
ρ̇0 = ψρ̇0 = ψρ0 trLg = Ψ trLg. (19)

Inserting (19) into (16) yields the Clausius–Duhem inequality in the form

D =
(

P − ∂Ψ (F)
∂F

)
: Ḟ + ∂Ψ

∂Fg : Ḟg − Ψ trLg − θH ≥ 0. (20)

Note that for a reversible (purely hyperelastic) mechanical problem without
growth, (12) vanishes and (17) becomes Ψ = Ψ (F). Hence, (20) reduces to the
equality

D =
(

P − ∂Ψ (F)
∂F

)
: Ḟ = 0. (21)

� Residual Stress States Residual stresses play a ubiquitous role in many contexts
of biological soft tissue and often are a consequence of spatially varying changes
in tissue constituents over time. In the framework of finite deformation kinematic
growth, residual stresses arise for any Fg that produces an incompatible fictitious
intermediate configuration Ωg (cf. Fig. 7). Therefore, the body in the current
configuration Ω(t) may be in mechanical equilibrium in the absence of external

9 In the most general from, H may consist of an entropy source H0 and entropy flux H of the form
H = H0 − ∇0 · H.
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forces and hence possess a reference configuration Ω res
0 that is not stress-free,

i.e., with residual stress Pres �= 0. This residual stress distribution has to
fulfill mechanical equilibrium, which can be stated with respect to the reference
configuration as

∇X · Pres = 0 in Ω res
0 , PresN = 0 on Γ res

0 . (22)

A direct consequence of (22) is that either Pres = 0 or that Pres is distributed
inhomogeneously within Ω res

0 . These inhomogeneous residual stress distributions
arise in many soft tissues, predominantly in arteries, where it is agreed upon that
they are primarily caused by mechanisms of growth and remodeling [138, 446].

4.2.3 Constitutive Equations for Growth

In order to close the system of equations, we have to specify constitutive equations
for the free energy and the evolution of growth internal variables. We assume (17)
to be of a hyperelastic form; hence, the constitutive relation for PK1 can be deduced
from the first term in (20). We want to restrict ourselves to the microstructural
concept of characterizing the evolution of growth and define a growth tensor Fg

that may take the general form

Fg = ϑ isoI + (1 − ϑani)a0 ⊗ a0, (23)

where ϑ iso and ϑani are the isotropic and anisotropic growth stretches, respectively,
and a0 describes a microstructural orientation unit vector in the reference configu-
ration. For simplicity, we want to exemplify the theory for purely isotropic growth
(ϑani = 0, ϑ iso ≡ ϑ). Hence, (23) reduces to

Fg = ϑI. (24)

For this case, the growth velocity gradient (14) reads

Lg = ϑ̇

ϑ
I,

and the mass source (13) becomes

M0 = 3ρ0
ϑ̇

ϑ
.

Conveniently, a growth evolution equation for the stretch ϑ is introduced of the
form

ϑ̇ = f (ϑ, a0,�
e,Fe, . . .), (25)
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which may depend on mechanical quantities like stresses (e.g., the Mandel stress,
�e) or strains, microstructural orientations, or other factors. A thermodynamically
motivated form of (25) for an isotropic growth tensor (24) may take the form

ϑ̇ = k(ϑ) tr�e,

where

k(ϑ) =
⎧
⎨

⎩

1
τ+

(
ϑmax−ϑ
ϑmax−1

)γ+
, tr�e ≥ 0,

1
τ−

(
ϑ−ϑmin
1−ϑmin

)γ−
, tr�e < 0,

(26)

with ϑmax > 1 and ϑmin < 1 to being limiting values that can be reached by growth
or atrophy, respectively. The parameters τ+, τ− denote time constants and γ+, γ−
nonlinearities controlling growth or atrophy, respectively [190].

4.3 Applications of G & R in the Heart

Patterns of growth and remodeling in the heart can drastically depend on the disease
and its manifestation over time. The atrophy and ballooning observed in ventricular
aneurysms vary significantly from the thickening of the heart muscle observed in
ventricular hypertrophy. Two common growth forms observed in the ventricles are
eccentric dilation and concentric wall thickening. Processes that drive G&R are
complex, be they neural, hormonal, genetic, or mechanical. Eccentric enlargement
(Fig. 8, left) is often associated with an overstretching of the myocytes as a
consequence of increased venous return (volume overload), while concentric hyper-
trophy (Fig. 8, right) is predominantly caused by sustained end-systolic ventricular
pressures (pressure overload) [369]. Sarcomerogenesis is the accepted mechanism
by which both of these adaptations occur [152]. Sarcomeres are added in series or
in parallel to the pre-aligned ones in such a way that the supraphysiological state
of loading is reduced [324, 326]. Approaches are presented for modeling eccentric
and concentric growth based on the framework of kinematic growth presented in
Sect. 4.2. Subsequently, cardiac remodeling approaches are introduced, which are
based on structural adaptation theories that take microstructural reorganization due
to mechanical stimuli into consideration. For an in-depth review of cardiac G&R,
the reader is referred to [269, 358].

� Eccentric growth can be observed in cardiovascular diseases where the heart
is exposed to a chronic increase in end-diastolic volume load. Hence, the
myocytes are elongated above a critical physiological stretch. Within the theory
of kinematic growth, the general form of the growth tensor (23) thus may be
adapted to account for growth only in the myofiber direction f0 (ϑ iso = 1,
ϑani ≡ ϑ):
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Fig. 8 Eccentric growth (left) applied to an idealized left ventricular geometry (center) results in
cavity dilation along with increased stroke volume and decreased contractility, as shown by the
changes in the PV loop and ESPVR curve. Concentric growth (right), however, results in wall
thickening and is often accompanied by an increase in ESP as well as global elastance, illustrated
by the steeper EDPVR curve

Fg = I + (ϑ − 1)f0 ⊗ f0.

Here, ϑ denotes the anisotropic growth of fibers, which is determined based
on a constitutive relationship governing the response of growth. Following the
example in (26), ϑ could be defined based on growth to a critical stretch, λ̂crit

myo,
i.e.,

ϑ̇ = k(ϑ)(λe
myo − λ̂crit

myo), where λe
myo = 1

ϑ

√
f0 · Cf0.

Examples of cardiovascular diseases that can cause a state of volume overload
are mitral or aortic valve regurgitation, meaning increased blood return to
the left ventricle [345]. Furthermore, tissue inflammation, viral infections, or
myocardial infarction can lead to increased end-diastolic volumes due to systolic
dysfunction. Eccentric hypertrophy is often accompanied by functional changes
including increased stroke volume and decreased contractility [31], as seen in the
PV loop and ESPVR curves in Fig. 8 (bottom left).

� Concentric growth is typically associated with pressure overload in the heart
and results in addition of sarcomeres in parallel to sustain higher pressures. The
general form of the tensor in (23) can be adapted to model growth in the cross-
fiber direction (ϑ iso ≡ ϑ , ϑani ≡ 1 − ϑ):
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Fg = ϑI + (1 − ϑ)f0 ⊗ f0.

As before, the growth driven by ϑ requires a constitutive form. Göktepe et al.
[159] used a hydrostatic stress measure to drive the material toward a stress-driven
equilibrium, Σ̂crit, i.e.,

ϑ̇ = k(ϑ)(Se : Ce − Σ̂crit).

Strain-driven growth laws that describe volume change in the transmural direction
were also used, cf. Kerckhoffs et al. [233].

Concentric growth often results from higher afterload such as the case in hearts
with aortic valve stenosis. Due to the reduced orifice size, higher pressures are
needed, above a critical threshold, to eject blood during systole [240]. Concentric
growth within the heart results in increased wall thickness, decreased cavity volume
as well as reduced global tissue compliance, as shown by the steeper EDPVR curve
(Fig. 8 bottom right).

Cardiomyopathies are often associated with both a change in volume as well
as a change in the myocardial microstructure. Building upon previous theories of
structural remodeling (presented in Sect. 4.1), Kuhl et al. [252] suggested that a
reorientation of the fibers is a natural consequence of altered loading states in
the tissue. By introducing a biomechanical stimulus, it was possible to model the
gradual realignment of fibers along the maximum principal strain direction by
minimizing the free energy stored in the system [251, 324, 326].

While current computational models of G&R have great capabilities of pro-
viding a mechanistic description of both tissue constituent and ventricular shape
adaptations in consequence of supraphysiological loading conditions, the gap to
tools serving as a basis for therapy and intervention planning is yet to be closed.
Advances in scientific models for treatment customization, however, are progressing
continuously, and model-data integration is key to their success. Data on volume-
overloaded porcine hearts, gathered over a period of 8 weeks, allowed model-based
correlation of alterations on cellular and organ scales, finding that only roughly
half of cardiac dilation is associated with cardiomyocyte lengthening [78, 384].
Therefore, other morphological changes play a crucial role in understanding heart
failure progression [385].

Growth laws integrated with models of the electrophysiological activity of the
heart offer further insights into mechanisms of cardiac hypertrophy due to failure
in the heart’s electrical conduction system, e.g., left bundle branch block [234],
demonstrating how these models may guide cardiac resynchronization therapy in
the future [15, 264]. Preliminary studies with growth models applied to infarcted
myocardium conceptually agree with clinical observations, indicating that surgical
intervention does not necessarily reduce G&R driving forces [241]. Further model
studies that may pave the way to clinical applications use reversible strain-driven
laws with a homeostatic equilibrium zone, showing how mass reduction (atrophy)
as a consequence of ventricular unloading occurs [267]. Multiscale models of G&R,
accounting for both mechanical and hormonal drivers, indicate that hormones are
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the predominant driver for growth in the case of transverse aortic constriction [119],
suggesting how surgical and drug interventional treatments may be guided.

5 Hemodynamics and Blood Flow Modeling in the Heart

Controlling and maintaining blood flow is a central feature of the heart, and
assessing the flow of blood—both inside the chambers as well as within the coronary
vessel tree—is paramount to understanding cardiac behavior and performance. In
fact, structural cardiopathologies will directly impact blood flow, and similarly,
modifications in flow can also trigger structural changes. Measurable hemodynamic
changes have even been postulated to occur before significant morphological
changes can be detected [382], highlighting the importance of cardiac hemodynam-
ics in clinical decision-making.

Cardiovascular diagnostics are also driven by hemodynamic assessment [402].
Peak flows and pressure drops are routinely evaluated by medical imaging [33, 154],
and catheter-based measurements of fractional flow reserves (FFR) or regional
pressure variations are key in percutaneous coronary intervention [276]. However,
these tools are merely observational and have limited abilities in providing causal
explanations of measured behavior, or predicting future outcomes. Measurement
tools are also limited in spatiotemporal coverage, and fine-scale hemodynamic
features cannot be appreciated in detailed resolution. In these instances, cardiac
flow modeling can help elucidate observed behavior, be used to guide diagnostic and
interventional strategies, and even be utilized to predict how proposed modifications
will impact hemodynamic behavior. The following section outlines the fundamental
principles of cardiac flow modeling, provides examples of approaches and require-
ments, and outlines specifics on fluid–structure interaction (FSI) modeling.

5.1 Kinetics of Blood Flow

The equations of motion governing a fluid are the same as those presented for tissues
in Sect. 3.1.3. However, fluids are predominantly posed in the Eulerian or arbitrary
Lagrangian–Eulerian (ALE) reference frame on a domain that does not necessarily
correspond to the Lagrangian motion of the fluid itself (see Fig. 9). An Eulerian
reference frame requires that all fields are described with respect to a fixed spatial
position, i.e., x, rather than tracking the particle motion with respect to the reference
configuration (e.g., Lagrangian reference frame). The conservation laws in the two
frames are related through the well-known material time derivative expansion. For
some scalar or vector material property, denoted by m, this expansion takes the
form:
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Fig. 9 Representation of the Eulerian, Lagrangian, and ALE reference frames. (Left) A set of
points in a plane cutting through the LV chamber are selected to represent the reference space.
(Right) The same set of points are tracked based on the definition of spatial mapping that
characterizes each frame. Thus in the case of the Eulerian description the points remain fixed and
can exit the problem domain depending on the motion of boundary. In the Lagrangian description,
the points follow the motion of fluid as clearly shown by the two vortexes in the upper part of the
chamber. In the case of ALE, the mapping is based on the results of an artificial motion propagation
problem

Dm
Dt

= ∂m
∂t

+ ∂x(X, t)
∂t

· ∇m = ∂m
∂t

+ v · ∇m, (27)

where v = ∂x/∂t is the material velocity, and the spatial conservation law

DJ

Dt
= J∇ · v, (28)

which holds for any mapping of space (where J and F are well defined). Arriving at
equations for a fluid requires transforming temporal derivatives to their appropriate
Eulerian equivalents. Considering mass in (6) as well as (27) and (28), the temporal
derivative can be transformed into

DρJ

Dt
= J

Dρ

Dt
+ ρ

DJ

Dt
= J

(
∂ρ

∂t
+ v · ∇ρ

)
+ ρJ∇ · v = J

(
∂ρ

∂t
+ ∇ · (ρv)

)
,

reducing (6) to the Eulerian conservation of mass equation

∂ρ

∂t
+ ∇ · (ρv) = ρ̂. (29)

Similarly, considering the momentum balance in (7) as well as (27) and (28), the
temporal derivative can be transformed using procedure as before, i.e.,
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DρvJ
Dt

= J

(
∂ρv
∂t

+ v · ∇(ρv)
)

+ ρvJ∇ · v = J

(
∂ρv
∂t

+ ∇ · (ρvv)
)
,

yielding the Eulerian conservation of momentum

∂ρv
∂t

+ ∇ · (ρvv) = ∇ · σ + ρb. (30)

Assuming the fluid density, ρ, is a spatiotemporal constant and no sources of mass
are present (i.e., ρ̂ = 0), the conservation equations (29) and (30) reduce to the
typical Navier–Stokes equations,

ρ
∂v
∂t

+ ρv · ∇v − ∇ · σ = ρb, (31a)

∇ · v = 0. (31b)

While appropriate for many cardiovascular applications, the Eulerian form is less
commonly applied in the heart where the moving cardiac chambers favor the ALE
reference frame. ALE can be seen as a generalization of the Lagrangian and Eulerian
frames, in the sense that it allows us to pose the problem on a dynamic domain
without having to explicitly follow the material deformation. In order to arrive at
the ALE form of the Navier–Stokes equations, let Λ be a reference domain, not
necessarily coinciding to the material reference domain (which may be unknown),
and let λ : Λ × [0, T ] → Ω be a bijective mapping that relates the reference
domain to the spatiotemporal domain of the fluid problem. Similar to the material
time derivative expansion (27), we can now define an ALE time derivative with
respect to Λ in the form:

∂m
∂t

∣∣∣∣
x̂

= ∂m
∂t

+ ∂x(x̂, t)
∂t

· ∇m = ∂m
∂t

+ ∂λ(x̂, t)
∂t

· ∇m

= ∂m
∂t

+ v̂ · ∇m, (32)

where x̂ ∈ Λ is a fixed coordinate in the reference domain and v̂ denotes the
domain velocity. Using (32), we can construct the non-conservative form of the
ALE Navier–Stokes equations [132],

ρ
∂v
∂t

∣∣∣∣
x̂

+ ρ(v − v̂) · ∇v − ∇ · σ = ρb, (33a)

∇ · v = 0. (33b)
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5.1.1 Constitutive Behavior of Blood

As with tissues, the equations governing fluid flow require some constitutive
equation defining the relationship between stress, σ , and kinematics. To understand
how blood constitutive models are defined, a brief review of both blood constitutive
properties and circulatory physiology is necessary. Human blood is composed of
plasma and cells in suspension. Plasma is an aqueous solution that is formed of
approximately 90% water, as well as proteins and other solutes. Red blood cells
account for the majority of the cell content of blood and approximately 37–49%
of the blood volume (also known as the hematocrit concentration). This colloidal
suspension of red blood cells introduces complex rheology, particularly throughout
the cardiovascular system where flow moves through domains ranging from a few
centimeters in the heart and great vessels to a few micrometers in the capillary beds.
Similarly, flow characteristics change drastically, from velocities of up to 150–175
cm/s in the aorta, down to 0.5–1 mm/s in the capillaries.

Similar to tissue mechanics, continuum approximations can be employed to
describe the molecular and particulate behavior of blood by means of continuous
fields representing bulk properties. However, as the scale at which blood flow occurs
varies by several orders of magnitude, the scale of material property homogenization
must be adjusted accordingly. In practice, this translates to different continuum
assumptions depending on the application. At the large-scale level, such as flow
through the heart, a single-phase assumption is generally employed. At the level of
capillaries, however, the interactions between individual red blood cells as well as
between red blood cells and vessel walls may need to be accounted for through a
two-phase continuum approach.

The rheological properties of blood have been studied extensively [73, 140, 456],
driven both by evidence connecting property changes to diseases (e.g., myocardial
infarction [222, 301] and arterial hypertension [394]) and by the need to predict
and assess the performance of new technologies (e.g., implantable devices and
numerical models). The devices used in rheological studies can be classified based
on the scale at which properties are being measured as either macro- or microscale
device. Of the former, we mention mechanical devices (e.g., tube viscometers,
capillary viscometers, falling ball viscometers for the measurement of shear viscos-
ity, and Couette-type rheometers for the quantification of yield stress) and optical
devices [175, 343]. Alternatively, microfluidic [371] and micro-rheology [84]
devices have been developed as miniaturized alternatives to macroscale devices and
for characterization of red blood cell mechanical properties, respectively. Much of
our understanding of the rheological properties of blood is owed to the seminal
work of Chien et al. [68, 69] on shear thinning and the influence of hematocrit on
blood viscosity; Cokelet et al. [74] and Merrill et al. [328] on identification and
measurement of yield stress; as well as Fahraeus and Lindqvist [121, 122] on the
dependence of hematocrit and apparent viscosity on the size of capillary diameter.
A list of some of the main properties of blood can be found in Table 1.

In light of the studies mentioned above, the macroscopic continuum approxima-
tion used to describe the mechanics of the blood is that of a non-Newtonian fluid,
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Table 1 List of main phenomena and rheological properties displayed by blood

Name Description

Fåhraeus effect Decrease in hematocrit in conjunction with a decrease in
capillary vessel radius.

Fåhraeus–Lindqvist effect
Migration of red blood cells away from the capillary
wall.

Apparent viscosity decreases with smaller capillary radii.

Shear thinning
Apparent viscosity decreases when increasing shear rate.

Viscosity plateaus for shear rates exceeding 100 s−1,
such that blood behaves as a Newtonian fluid.

Hematocrit dependence Blood viscosity increases with the concentration of red
blood cells.

Yield stress For a vanishing shear rate, blood behaves like an elastic
material.

Thixotropy
Viscosity reduction with time when subjected to constant
stress.

Linked to the aggregation and disruption of erythrocyte
structures.

Viscoelasticity Storage modulus is measurable in small amplitude oscil-
latory flow experiments.

which displays a nonlinear relationship between shear rate and strain. Consequently,
several different constitutive laws have been proposed to characterize blood’s
stress–strain relationship with limited success at fitting existing experimental
data: Carreau [70], Casson [140], Walburn–Schneck [493], power law [70], and
generalized power law [28], to mention a few. Despite this, the size and Reynolds
number of cardiac blood flow [512] make the Newtonian approximation a common
approach for modeling blood flow in the heart, i.e.,

σ = μ(∇v + ∇vT )− pI,

where μ is the viscosity constant.

5.1.2 Artificial Domain Problem

The introduction of an arbitrary domain motion raises the question of how to define
such motion. For most cardiac applications, the answer to this question is provided
by defining an artificial domain problem. In short, this is an inverse problem based
on a constitutive law, which takes as an input the prescribed boundary motion
and gives as an output a mapping of a domain that satisfies the criteria defined
in the preceding section. While the choice of a constitutive law is not based on
any physical consideration, in practice, one must consider both solution existence
and potential violation of the bijectivity requirement in the discrete setting. For this
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reason, different approaches have been proposed to try to mitigate this, including
diffusion [187] and elastic solid problems [223, 459].

5.2 Hemodynamic Modeling in the Heart

Based on the fundamental principles outlined in Sect. 5.1, cardiac hemodynamics
can be modeled in a variety of different ways, with modeling decisions influenced
by available input data, computational resources, and by the clinical problem at
hand. For cardiovascular flow, a variety of techniques have been utilized ranging
from reduced-order 0D and 1D models to 3D or multiscale models. The following
section reviews a few of these different approaches and requirements for cardiac
hemodynamic modeling.

5.2.1 Cardiovascular Modeling Approaches

The earliest attempts to model cardiac blood flow were done using reduced-order
models, where either the entirety or a part of the cardiovascular system was modeled
using electrical circuit descriptors, known as 0D models [443]. In 0D models,
global cardiac hemodynamics can be modeled in direct conjunction with the rest
of the circulatory system, without inclusion of spatial dimensionality (Fig. 10a).
Instead, 0D models assume uniform distribution of volume, pressure, and flow in
any regional model compartment. As such, they provide direct feedback of global
change as a function of regional modifications [37, 235]. The Windkessel model
[477] is a simple, but effective example where pressure and flow are related to
resistance and capacitance of a vessel. Extensions abound [54, 255, 409, 511] with
the most complex being the Guyton model [171, 177] where a larger network is
used to describe the equilibrium state between hemodynamic output and electrolyte
regulation (among other regulatory mechanisms). More recently, the CircAdapt [12]
model has been used in a wide range of clinical applications. Through 0D models,
the global behavior of the complex cardiovascular system can be reduced to an effi-
cient, easily modifiable model that can capture flow and pressure behavior through
cardiovascular compartments. However, 0D models do not provide information on
regional behavior within a compartment, which may be critical for assessing disease
or the effect of devices.

Increasing model complexity while limiting computational costs, 1D models
represent cardiovascular arterial segments using vessel centerlines and the 1D
Navier–Stokes equations (Fig. 10b) [131, 401]. 1D models can reveal the pressure
and flow changes along the full length of a vessel, being used to understand
phenomena such as pulse wave transmissions through the arterial network [492].
However, in the case of cardiac modeling, 1D models are seldom used in isolation.
Instead, they are more often used in conjunction with either a regional 0D or 3D
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Fig. 10 Illustration of different modeling approaches in cardiac flow modeling. (a) 0D modeling,
using electrical circuits as an analogue for the cardiovascular system. (b) 1D modeling, extending
the reduced-order 0D model by allowing change in flow and pressure over the length of pre-
described segments (adapted with permission [179]). (c) 3D modeling, isolating a portion of
the heart and solving the Navier–Stokes equations to generate detailed insights into regional
hemodynamic behavior. (d) Multiscale modeling, combining the aforementioned approaches,
iteratively updating the boundary conditions of a 3D model by means of coupled reduced-order
models
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model. Specifically, the 1D model is used to represent the remaining parts of the
cardiovascular system, not included in the regional model [133, 221]. In principle,
1D models are equally effective as 0D models when it comes to computational
efficiency; however, they exhibit the same drawbacks associated with their difficulty
in capturing more detailed hemodynamics.

In some instances, situations exist where resolution of local flow in fine detail
is needed in order to understand physiological behavior: elucidating regional flow
patterns in and around a stenosed valve, quantifying local flow changes in a
stented coronary artery, etc. [67, 194]. In these cases, detailed hemodynamics
can be simulated using 3D models and the full Navier–Stokes equations (31a)–
(31b), see Fig. 10c. For cardiac computational fluid dynamics (CFD), significant
efforts are put into defining the problem at hand, with geometries extracted
from medical image data and boundary conditions derived from invasive or non-
invasive measurements. The computational demands associated with 3D modeling
however mean that isolated cardiac entities are usually modeled, either in the
form of single-chamber analysis [88, 414, 424], or using combined atrioventricular
models [259]. Cardiac CFD has also become increasingly effective in investigating
interventional outcomes, where optimal usage of left ventricular assist devices
[316, 317], transcatheter valve implants [506] and coronary stents [344] have all
been assessed in a 3D virtual environment.

A combination of any of the aforementioned approaches can also be used to
create a multiscale model (see Fig. 10d). Here, the efficiency and computational
simplicity of reduced-order models are used to describe general cardiovascular
behavior, with the output of these subsequently fed and coupled into a higher-fidelity
3D model in areas where a detailed solution is required. This has been successfully
employed specifically for cardiac modeling, where detailed intraventricular flow
behavior can be mapped while maintaining accuracy in describing surrounding
circulatory behavior [61, 192]. These models provide an attractive tool for evalu-
ating highly resolved hemodynamics; however, it is important to understand how
these models depend on the defined domains and chosen boundary conditions
[219, 289, 528].

5.2.2 Requirements for Cardiovascular Modeling

Often the various approaches with which to model cardiac flow are selected
by balancing the scientific question with the needs of the mathematical model.
Modeling choices depend on appropriate data—including geometry, motion, and
boundary conditions (see Fig. 11a). The following section reviews some fundamen-
tal considerations in cardiac flow modeling:

� Kinetics of Blood Flow in the Heart are largely influenced by the type of flows
commonly observed. In health, the majority of blood flow will include complex,
non-turbulent flow, with Reynolds numbers ranging up to 2000 under normal
healthy conditions [386]. In combination with the comparably large chambers
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Fig. 11 Illustration of modeling setup (left) and output visualization (right) of a multiscale model.
The model setup consists of a domain extracted from medical image data, isolating a specific
cardiac entity of interest (here the left ventricle), with boundary conditions defined as per a
reduced-order model. Output visualization then follows after completed simulation, where velocity
and pressure data—available at each nodal point—can be represented in the form of traced
particles, visualized streamlines, or pressure iso-contours, just to mention a few

experiencing flow at fairly high shear rates, a Newtonian description of blood
flow kinetics is typically valid. However, if assessing isovolumic or highly
regional flows—e.g., in the atrial appendage [404], around papillary muscles
[487], or in distal coronary sections [226]—non-Newtonian constitutive models
may be required (as per Sect. 5.1.1). Likewise, if attempting near-wall analysis,
the choice of rheological model can impact estimated wall shear behavior [103].
At even finer resolutions, microscale flow simulations may necessitate inclusion
of multiphase flow definitions, where different blood components are modeled as
separate entities within a transportable mass fluid [238, 525]. However, the use
of these simulations at large scales significantly increases computational demand.
Turbulent flow may be induced in the heart pathologies, such as valvular stenosis
[108, 461]. Turbulent flow models may be invoked if modeling high-turbulence
phenomena, using e.g., the Reynolds-averaged Navier–Stokes equations or large
eddy simulation formulations [129, 357].

� Defining the Dynamic Domain of the human heart is essential for cardiac flow,
providing the internal movement that drives blood flow. Early attempts were
made using simplified domains [25, 101], and more recent models now often
use non-invasive imaging data to define domain boundaries and segment cardiac
entities of interest. A variety of modalities have also been used to extract cardiac
geometries, each with its specific benefit. Echo-based imaging provides excellent
temporal information but lacks image quality [35], computed tomography offers
high spatial resolution but lacks temporal mapping [259, 487], and magnetic
resonance imaging [414] offers competitive soft tissue differentiation and direct
coupling to in vivo flow measurements yet lacks the ability to capture highly
transient anatomical events. In all instances, domain extraction is achieved by
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image-based segmentation, where a multitude of methods have been developed
ranging from threshold-based segmentation [266] to trained neural networks
identifying isolated cardiac chambers [471].

� Boundary Conditions are essential in order to describe and capture physio-
logical behavior not explicitly included in the model itself. For flow modeling,
boundary conditions usually involve a combination of prescribed wall motion
and inflow and outflow conditions. In the case of open-loop 3D models, boundary
conditions typically take the form of Dirichlet or traction conditions at defined
boundaries [311]. In its most basic form, zero pressure or zero traction is com-
monly employed for open-loop 3D cardiac modeling; however, their simplistic
nature limits their applicability [311]. The employment of Windkessel circuits is
instead typically used in order to capture the interactive relationship between
pressure and flow at defined boundaries. In different forms, the Windkessel
circuit has been extensively employed in 3D cardiac modeling [245, 502], yet
instances remain where even these approaches fail to appropriately capture
physiological behavior [38, 298].

Boundary conditions are also required at model walls, with motion derived
from imaging data. Commonly, no-slip (zero velocity) or no-penetration (normal
velocity equal to that of the wall) conditions are prescribed [354]. Since the heart
experiences fairly high degrees of geometrical change, the motion of the fluid
and the heart wall must be coupled. This can be achieved either by geometry-
prescribed methods (assuming that near-wall flow is exclusively governed by
forces imposed by the wall on the fluid) or by refined FSI approaches (see
Sect. 5.3).

� Valves, which ensure directed flow of blood through the heart chambers, present
a particular challenge in cardiac flow modeling. Their pronounced movements,
intruding structures, and contact with intraventricular surfaces mean that they
have significant impact on intracardiac blood flow patterns [348, 436]. At the
same time, their complex structure and fine motion make them equally difficult
to accurately characterize and define in a modeling setup. A range of modeling
approaches have been presented to account for the impact of valve motion on
cardiac hemodynamics. A basic approach is to model the valve as a binary orifice
opening (either completely opened, or completely closed), without any physical
valve leaflets [354, 414]. Advancing from this, time-dependent orifice openings
have also been used [236, 424], creating more realistic transition stages between
fully opened and fully closed configurations, while still neglecting the impact of
the actual leaflets on the resulting flow fields. To include leaflets while still avoid-
ing complete anatomical segmentation, simplified descriptors of intracardiac
leaflets have been used in 3D models (e.g., extruding thin-walled tubes into the
intracardiac space to resemble an open-valve configuration [259, 415]). Recently,
complete valve structures have been included into modeling setups making use
of high-resolution images to capture anatomical motion and morphology over
the cardiac cycle [35, 504]. Appreciating the complex interplay between the thin
valvular leaflets and the generated high-velocity flows, simulations using fluid–
structure interaction (FSI) have also been used in the field of 3D cardiac flow
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modeling, where high-fidelity image data is used to define appropriate anatomical
features [87, 176, 261, 356].

5.2.3 Quantifying Model Output

Regardless of the modeling approach, completed simulations are typically followed
by a data analysis step, where output is quantified into comparable metrics
either describing the assessed cardiovascular phenomena, or being coupled to
other clinically assessed data points (Fig. 11b). The heart also exhibits distinct
hemodynamic behavior that can be studied in detail using cardiac modeling:
intracardiac post-valvular vortices helping to redirect blood from filling to ejection
[383], intraventricular pressure gradients driving both systolic [381] and diastolic
flow [80], and regional modifications in residence time or intracardiac force patterns
indicative of pathology [16, 313].

For reduced-order models, output is generated as scalar outputs representing
flow or pressure over time and either through compartments or along 1D vessel
segments [443]. These entities may then be further processed to describe other
relevant clinical measures, including aortic pulse wave velocities (PWV) [315],
coronary fractional flow reserves (FFR) [44], or global wall shear stresses (WSS)
[63]. For higher-order modeling, simulation output is typically generated as 3D
velocity components and a scalar field at discrete spatial points. Quantification is
typically performed by extracting regional mean values [340], estimating global
maxima [149], or characterizing regions with velocity or pressure values above
a given threshold, all in order to reduce simulated output to comprehensible and
easily appreciated information. Generated velocity fields can also be utilized to
visualize streamline paths [53, 349], including the differentiation of intracardiac
flow components [88] and areas of flow stagnation [96], again attempting to
condense output to scalar descriptors. Importantly, modification of streamline
directions, intracardiac flow components, or excessive stagnation can all be linked to
pathological manifestations [117, 136, 470], underlining the importance of capturing
these entities through flow modeling studies.

Coupled clinical metrics can also be derived from 3D output including FFR
[472] or relative pressure [305]. 3D simulations also allow for quantification of
vorticity (curl of the velocity field), or other surrogate measures of vortex formation
(e.g., Lagrangian coherent structures [474] or Lambda2 (λ2) identification [112]).
For structural coupling, quantification of WSS or the oscillatory shear index has
also become central in many cardiac flow studies [244, 254, 335]. Regardless, the
output of any flow simulation is most effectively used when correlated or coupled
to conjunctive clinical phenomena.
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5.3 Fluid–Structure Interaction in the Heart

Many physiological processes cannot be described through either flow or solid
mechanics alone. Instead, instances exist where the interplay between the tissue
and hemodynamic states is fundamental to the functioning heart. Examples include
aortic stenosis (where LV outflow is impeded by structural changes in the aortic
valve), obstructive hypertrophic cardiomyopathy, and implantable devices (e.g.,
valves, assist devices). Here, fluid–structure interaction (FSI) modeling circumvents
the limitations of standalone models by coupling the two problems. Different FSI
methods achieve this by imposing various kinematic and kinetic constraints. In
practice, the challenges that these methods typically have to overcome are related to
the differences in constitutive behavior between blood and tissue.

For cardiac FSI, research has initially focused on the study of flow around the
valves, pioneered by McQueen and Peskin [322, 387]. These models, based on the
immersed boundary approach [386], modeled the tissue as a collection of 1D fibers
embedded in a fluid domain. Continued interest and technological advances have
led to a series of related studies focusing on both the mitral [62, 467] and tri-leaflet
valves [262]. To examine the importance of FSI in the characterization of valve
dynamics, Lau et al. [260] compared a purely structural model of the mitral valve
with an FSI-based one and found significant differences in the resulting closure
patterns, even in idealized rigid flow domain geometries. Other studies have also
been able to incorporate prescribed LV motion in order to more accurately capture
the flow patterns around the valves, for both mitral [163, 503] and aortic [459]
configurations. Focusing on the aortic arch region, Hsu et al. [205] were able to show
how including deformable walls into an FSI aortic valve model resulted in more
realistic representations of flow, as opposed to using rigid walls. A more advanced
version of this model was later used to analyze the effect of valve thickness [224],
showing how thinner designs can cause leaflet flutter, a phenomena associated with
blood damage and material fatigue.

A separate area of study has been that of coupling hemodynamics and myocardial
biomechanics. Watanabe et al. [501, 502] developed an idealized 3D model of the
left ventricle incorporating tissue, blood flow, and electrophysiology, capable of
simulating both passive filling and active contraction. In this chapter, a low-order
conforming approach was used to couple the fluid and solid problems, limiting the
resolution and accuracy of the results. Alternatively, Cheng et al. [66] presented
an approach where the solid was modeled as a hyperelastic shell, lacking the
anatomical details of Watanabe’s, but being better suited to resolve its constitutive
components. To account for differences in constitutive behavior between the two
phases, a non-conforming monolithic framework [360] was used to build patient-
specific models able to simulate both active and passive mechanics [361]. Later
adaptations of this model were used to study the effect of left ventricular assist
devices [316–318] as well as diastolic function in hypoplastic left heart patients [89,
486]. More recently, Gao et al. [143] demonstrated the feasibility of merging the LV
and mitral valve into a monolithic anatomically accurate FSI model.
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6 Applications of Biomechanical Modeling in the Heart

In previous sections, methods have been presented for modeling the hyperelasticity
and viscoelasticity of myocardial tissue (Sect. 3), growth and remodeling (Sect. 4),
and blood flow (Sect. 5). Cardiac pathologies often result in microstructural and
tissue-level changes, which impact material behavior, changing its hyper- and vis-
coelastic responses. Additionally, diseases can cause abnormal growth, on an organ
level or localized scale, as well as reorganization of cardiomyocytes. These tissue-
and organ-level changes can lead to alterations in cardiac hemodynamics, changing
blood flow patterns, for example. Therefore, with appropriate data measuring the
pathological changes, the previously proposed modeling methods can be used to
better understand the underlying mechanisms behind different pathologies.

In this section, four cardiac pathologies will be reviewed: dilated cardiomyopathy
(DCM), hypertrophic cardiomyopathy (HCM), aortic stenosis (AS), and myocardial
infarction (MI). They represent diseases with significantly different pathologi-
cal presentations, including increased preload (DCM), increased afterload (AS),
decreased global compliance (HCM), and decreased contractility (MI). Although
their primary characteristics are distinct, progression of each can lead to heart failure
and adverse outcomes. A brief overview of each disease is presented in Fig. 12.
These pathologies often have complex etiologies with more than one confounding
factor (e.g., obesity, diabetes, hypertension) contributing to its presentation and pro-
gression. Therefore, the disease’s phenotype in each patient is unique, complicating
diagnosis, prediction of its development as well as treatment planning. However,
data-informed models can provide mechanistic explanations to help clinicians
predict disease progression as well as test possible therapies in patient-specific in
silico settings.

6.1 Dilated Cardiomyopathy

Dilated cardiomyopathy (DCM) is a chronic cardiac disorder, predominantly char-
acterized by the enlargement of the cardiac chambers along with a general dete-
rioration in cardiac performance. Although originally considered a rare disease,
recent findings that showed that DCM has a familial substrate [142] enabled the
diagnosis of DCM in asymptomatic young patients, raising its incidence to 1 in 250
individuals [186]. DCM is considered a primary etiology for heart failure, while
sudden cardiac death and severe arrhythmias represent possible outcomes of the
disease, contributing to its high mortality rates (25% over 1 year and 50% over
5 years). Common risk factors include the male gender, advanced age as well as
drug and alcohol abuse. DCM is also a common outcome resulting from many
other diseases (e.g., coronary artery disease, hypertension, viral infections). Often,
no specific etiology can be determined (idiopathic DCM), although recent studies
have shown that up to 50% of idiopathic cases could be identified as familial DCM
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Fig. 12 Illustration of cardiac geometries (top row) and pressure–volume loops (second row) for
a healthy heart as well as four diverse cardiac pathologies covered in this section: dilated car-
diomyopathy (DCM), hypertrophic cardiomyopathy (HCM), aortic stenosis (AS), and myocardial
infarction (MI)

[142]. A wide variety of gene mutations have been linked to DCM, the most frequent
being a gene variant altering titin isoforms and impacting myocardial stiffness
[186]. Among more than 30 genes implicated in the development of familial DCM
are also genes encoding proteins of the sarcomere—also present in HCM cases—
and proteins relevant to ion channels and z disks that could alter myocardial
contraction. Due to the vast heterogeneity in genetic causes and the overall multi-
factorial development of the disease, identification of the underlying etiology—and
thus selection of appropriate treatment—constitutes a challenging task requiring an
improved understanding of DCM pathophysiology.

6.1.1 Pathological Changes

The main characteristic of DCM is the dilation of the LV, often accompanied with
enlargement of the right ventricle and of the atria. LV enlargement is reflected in
substantial increases in both the end-diastolic and end-systolic volumes. Changes
in volume along with impaired contractility result in a reduction in stroke volume.
While changes in wall thickness are moderate, a pronounced change is observed
in the shape of the heart, with the LV transitioning from elliptical to spherical.
These geometric changes are thought to occur progressively, as a result of sustained
chronic volume overload on the myocardial wall, e.g., increased venous return as a
consequence of ventricular impairment (myocardial infarction, viral inflammation,
coronary heart diseases). Interestingly, DCM can also result from sustained pressure
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Fig. 13 Long-axis MR images of a healthy (left) and a DCM (right) heart, where the disease
has caused the enlargement of both the left and right ventricles. DCM also induces alterations in
microstructure, as demonstrated by histology images. (©2019, Elsevier. Reprinted from [78] with
permission.) The cardiac sections, stained with wheat germ agglutinin that highlights the border
of individual cardiomyocytes (shown in black), show that DCM is associated with elongation of
cardiomyocytes

overload [412], as an end-stage pathology of hypertrophic remodeling [160].
Histologically, DCM is associated with interstitial fibrosis and degradation and
disruption of fibrillar collagen [21], while elongation of cardiomyocytes (see Fig. 13
insets) and their serial rearrangement are considered responsible for the observed
changes in LV size and shape [268].

Importantly, the anatomical remodeling observed in DCM hearts is associated
with marked alterations in heart function. The heart’s mechanical efficiency declines
substantially, as evidenced by ejection fraction as low as 20% [351]. Systolic
function is severely impaired, characterized by suppressed contractility [184], pro-
longed relaxation times, and ventricular conduction abnormalities [4]. Deterioration
in the heart’s systolic function is linked to severe disease outcomes, suggesting
the potential of systolic indices to assist in risk stratification of DCM patients.
Marked differences are also observed in DCM hemodynamics, with elevated end-
diastolic and end-systolic pressures. Reported abnormalities in LV filling due to low
intraventricular pressure gradients [530] might contribute to diastolic dysfunction,
while stronger and larger diastolic vortices might act as a potential compensatory
mechanism, facilitating blood transport without large pressure losses [39].

The decline in the heart’s efficiency is also reflected in myocardial wall motion.
Speckle tracking echocardiography [105] and tagged MRI studies revealed sig-
nificant reduction in radial, circumferential, and longitudinal strains in DCM
cases throughout the cardiac cycle. Notably, long-axis strain, established as a
reliable indicator of global LV function, has been shown to decrease in DCM
and correlate with a higher rate of cardiac events [403]. Substantial reduction was
also reported in torsion and torsional shear [71], with abnormal rotational patterns
observed compared to healthy individuals [435, 531]. Recent advances in DTMRI
demonstrated similar trends in the changes in fiber architecture through the cardiac
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cycle, whereby the steepening of helix angles observed in healthy hearts during
contraction was almost absent in DCM hearts [490]. A key finding in many studies
was the regional variability in displacements and strains in DCM hearts, with a more
severe decline in function observed in the septal LV wall compared to the lateral.
Mechanical dyssynchrony is also reported in DCM patients, a potential clinical
index associated with deteriorated LV systolic function [342].

6.1.2 Diagnosis and Therapies

DCM is commonly clinically diagnosed using imaging modalities such as echocar-
diography, cardiac MRI, or CT, as ECG is often remarkably normal in DCM cases.
Diagnostic criteria for DCM include an ejection fraction<0.45 and LV end-diastolic
volume or dimension larger than two standard deviations from normal values,
corrected for age and body surface area.

Numerous treatments have been suggested for DCM patients aimed at limiting
the development of the disease and treating heart failure symptoms. DCM interven-
tions start from lifestyle changes and extend to pharmacological therapies and sur-
gical procedures. DCM patients are typically administered angiotensin-converting
enzyme (ACE) inhibitors and beta-blockers, which have been shown to significantly
increase ejection fraction, lower end-systolic pressures, and reduce chamber size
in DCM patients [110]. Improvement in overall function was also observed with
administration of vasolidator drugs such as nitroprusside, by enabling lower end-
systolic and end-diastolic pressures [183]. Furthermore, positive inotropic agents
contribute to the prevention of cardiac dilation and severe cardiac events, by
increasing calcium sensitivity of myofilaments and enhancing cardiac contractility
[104]. Importantly, studies have highlighted the possibility for reverse LV remod-
eling through tailored pharmacological treatments with up to one-third of patients
showing substantial improvement in terms of chamber size and ejection fraction
[327].

In DCM cases where pharmacological options might not suffice, implantable
devices are often considered. Specifically, cardiac resynchronization therapy (CRT),
with pacing devices applied on either one or both ventricles, has drawn particular
attention as a means of synchronizing cardiac contraction and improving systolic
function. Large clinical trials with heart failure patients demonstrated the ability
of CRT to reduce mortality rates and hospital admissions, when used solely or
in combination with implantable cardioverter defibrillators (ICD) [429]. Studies
focusing on DCM patients have reported enhancement in cardiac contractile
function and amelioration of electrical dyssynchrony, especially with single-site
pacing in regions with the greatest conduction delay [229]. Comparisons of CRT
with pharmacological treatments involving positive inotropic agents suggest that
CRT can improve DCM prognosis at a low cardiac energy cost [351], whereas drug
therapies tend to increase energy expenditure in an already failing heart. Finally,
implantation of left ventricular assist devices (LVAD) may be suggested for end-
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stage DCM patients not responding to the aforementioned treatments or awaiting
heart transplantation [476].

6.1.3 Modeling Approaches

As DCM is intrinsically linked to the structural integrity of the heart muscle,
numerous modeling efforts focused on examining changes in tissue mechanics,
including material properties and stresses. Early works relied on bulk measures such
as pressure–volume loops to infer changes in chamber compliance and reductions
in ventricular stroke work in DCM [8]. Rough estimates of wall stresses (e.g., thick-
walled ellipsoid formulas) were employed to demonstrate elevated wall stress in
DCM hearts [8, 531], along with increased myocardial stiffness [48] and reductions
in regional work. Combined with heterogeneities in regional myocardial work [521],
modeling studies have identified cardiac mechanoenergetics as a major determi-
nant of the disease, with DCM hearts failing to satisfy the increased metabolic
demand [249]. Similar conclusions were also drawn by finite element models that
incorporated physiologically relevant material descriptions [370] and personalized
geometries from animal data [79]. Elevated stiffness in DCM patients was also
suggested by in vivo models focusing on reliable parameterization, which utilized
comprehensive kinematic data for stiffness quantification [173]. By incorporating
patient-specific anatomies, loading, and boundary conditions, such models were also
able to infer that DCM hearts need to generate higher active tension in order to drive
the cardiac cycle [18].

Mathematical models can also provide insights into the mechanisms underpin-
ning structural and functional changes accompanying DCM. For instance, models
have been used to assess dilation and changes in fiber architecture as potential
mechanisms for common DCM characteristics. By combining finite element mod-
eling with longitudinal imaging and cavity pressure data, the role of dilation as
a compensatory mechanism was investigated, revealing that initial dilation might
improve systolic function by altering tissue stiffness and chamber compliance [79].
Additionally, reduction in ejection fraction and abnormalities in ventricular twist
were found to be predominantly caused by damage in the myofibrils, rather than
by ventricular dilation [164]. Similar conclusions were drawn by a biomechanical
model utilizing DTMRI data, which inferred that the experimentally observed
steeper helix angle contributes to reduced ventricular torsion [490]. The study
used computational simulations to verify the data-derived conclusion of a minimal
change in helix angle during contraction in DCM, and to assess LV size and shape
as potential mechanisms for abnormalities in fiber orientation, reporting minimal
effects.
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6.1.4 Challenges and Future Directions

Challenges in modeling and treatment of DCM remain manifold as its pathophysi-
ology and related disorders are yet to be fully understood, be they associated to the
heart’s electrical activity [5], myosin gene mutations [141, 523], or deleterious neu-
rohormonal activation patterns [180]. Biomechanical models that have the ability
to reliably predict DCM disease progression are still in an early stage. While there
are numerous models that characterize the shape and volume changes of the typical
eccentrically enlarged left ventricle [151, 159, 233], the primary stimuli for DCM
development as well as its long-term progression still need further attention. For
example, multiscale continuum models, which examine the relationship between
the cavity volume and myocyte lengthening through sarcomerogenesis [78], could
deliver further insights into the link between micro- and macroscopic changes.

Modeling CRT treatment for heart failure patients by use of electrophysiological,
electromechanical, or hemodynamic models [264] has the potential to aid therapy
planning, yet still suffers from the difficulty of reliably estimating model parameters,
often requiring extensive amounts of patient data. Models that quantify the outcome
of an experimental left ventricle volume reduction surgery have confirmed the
potential hazards associated with this type of DCM treatment [500] but, in the future,
could help to design new surgical treatments that minimize risk.

Furthermore, ventricular assist devices (VADs), which are used in patients with
end-stage heart failure as a consequence of advanced DCM, are still a topic of
ongoing research. While the primary scope of these devices is bridge-to-transplant
solutions [400], improvements in device technology with reduction in adverse event
rates qualify VADs for destination therapy [115, 419, 433, 515]. The success of
novel biventricular assist devices, which can be applied minimally invasively, has
been shown in both animal experiments [220] as well as computational modeling
studies [193]. Patient-specific modeling, with personalized model parameters,
which combines electrophysiology, biomechanics, and hemodynamics [230], pose
a promising approach for designing therapies and tracking an individual’s disease
progression.

6.2 Hypertrophic Cardiomyopathy

Hypertrophic cardiomyopathy (HCM) is a chronic cardiac disease characterized
by an increase in wall thickness, myofiber disarray, and tissue fibrosis. HCM is
a primary etiology caused by an inherited autosomal-dominant genetic mutation.
Although previously thought to occur in every 1 out of 500 people, recent genetic
testing estimates that the genetic mutation is present in nearly 1 in 200 people
[434]. Many individuals with the mutation have no (genotype positive/phenotype
negative) or only mild complications. However, in phenotype positive individuals,
tissue hypertrophy and remodeling can lead to severe arrhythmias, heart failure, and,
in some cases, sudden cardiac death (SCD) [307]. Additionally, in some patients,
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severe asymmetrical hypertrophy in the septum along with systolic anterior motion
(SAM) of the mitral valve leaflet can lead to aortic outflow tract obstruction [309],
treated by septal myectomy or alcohol septal ablation along with mitral valve repair.
Due to the diverse presentation of the disease along with the potential severity of
outcomes, a better understanding of the disease progression is needed in order to
identify patients at a higher risk of severe outcomes [367], predict pathological
changes, and plan surgical treatments [520].

6.2.1 Pathological Changes

HCM is caused by genetic mutations that affect the assembly of sarcomeres,
the force-generating unit within cardiomyocytes. Concentric growth occurs, either
regionally or globally, as sarcomeres are deposited in parallel. Due to its progressive
nature, HCM can be classified into four stages. Non-hypertrophic HCM represents
the state when no hypertrophy can yet be observed. However, stage I shows existing
abnormalities, such as impaired relaxation in the left ventricle (LV) and a mild
degree of dilation in the right ventricle (RV). Additionally, in this phase, elevated
amounts of type I collagen have been observed [366]. Despite these modifications,
the cardiac function in stage I is within a normal range.

With increasing mass deposition in the LV, the disease transitions from stage I to
stage II. An increase in wall thickness can occur in any region but is most common
in the interventricular septum [302]. Diffuse hypertrophy can also occur in the RV
[310] and is correlated with RV dysfunction. Additionally, the myocyte orientation
changes and the parallel alignment of the fibers degrades over time [147] (Fig. 14

Fig. 14 Long-axis MR image of an HCM heart showing a hypertrophic septum, an elongated
anterior mitral valve (MV) leaflet, tending toward obstruction of the outflow tract, and a dilated
atrium. Insets show histology images of healthy and hypertrophic myocardial tissue (adapted
with permission from [516], Copyright (2005) National Academy of Sciences, U.S.A.) illustrating
the disarray observed in HCM hypertrophic myocardium with H&E staining. Blue: nucleus, red:
cytoplasma, varying red: collagen fibers and ECM
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insets). The Classic Phenotype defines stage II when wall thickening and fiber
disarray in the hypertrophic region are prevalent. In these regions, the heart tissue
exhibits hypercontraction in the systolic phase and shows impaired relaxation during
diastole [127]. Therefore, the LV ejection fraction is often >65% in the absence of
enhanced fibrotic tissue. Three quarters of HCM patients stabilize at this stage.

During Adverse Remodeling (stage III), the tissue undergoes structural modifica-
tions that lead to increased LV fibrosis, resulting in a deterioration of LV function
(50% < LVEF <65%). Through a combination of cardiac magnetic resonance
(CMR), late gadolinium enhancement (LGE), and post-contrast T1 imaging, it is
possible to link diffuse myocardial fibrosis in the hypertrophic region of the LV to
abnormal diastolic function [113]. Fibrosis in the LV myocardium can also result in
non-sustained LV tachycardia [445]. Besides remodeling in the LV, the LA may
also become dilated. Caused by the dysfunction and reduced EF, a part of this
subgroup continues into stage IV, or Overt Dysfunction. Here, the LV exhibits a
severe functional deterioration, which subsequently ends in heart failure. This stage
is associated with extreme degrees of fibrosis and pathologically reduced LVEF
<50% [302].

Up to two-thirds of all HCM patients experience obstruction of the aortic outflow
tract [290] due to (a) septal hypertrophy, which protrudes into the ventricular
cavity, (b) elongation of the anterior mitral valve leaflet, and (c) augmented anterior
motion of the papillary muscle attached to the elongated leaflet. Together, these
pathophysiological changes not only result in obstruction of the outflow tract, but
also mitral valve regurgitation, due to improper closure of the mitral valve leaflets
[440] (Fig. 14). Obstruction of flow through the aortic outflow tract is marked by an
increased pressure gradient across the valve. This increases the cardiac work needed
to maintain the stroke volume, in turn, leading to further remodeling and progressive
heart failure. Due to MV regurgitation, the left atrium becomes dilated and exhibits
high left-atrial pressures [366]. Therefore, atrial dilation is a common pathological
change in patients with later stages of HCM. Alongside MV regurgitation, LV
outflow tract obstruction (LVOTO), and atrial dilation, atrial fibrillation becomes
more common, characterized by dyssynchronous contraction of the atria [365].

6.2.2 Diagnosis and Therapies

Clinical diagnosis of HCM commonly involves an ECG, with different ECG abnor-
malities suggesting different pathological changes observed in HCM. Echocardio-
graphy is also commonly performed to identify myocardial sections with abnormal
thickness (>13 mm), while Doppler echocardiography is used to investigate the
presence of obstruction or SAM. Cardiac CT or MRI with LGE might also be
advised, to detect the extent of scar tissue and fibrosis.

Most first-line therapies for HCM patients include medications such as beta
or calcium channel blockers [162] that address hemodynamic changes. However,
for patients with interventricular hypertrophy along with severe outflow tract
obstruction, hypertrophied tissue is either treated through alcohol septal ablation or
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surgical excision of excess tissue in the septum through a myectomy. Alcohol septal
ablation is a nonsurgical treatment in which tissue is ablated in order to induce
necrosis. Scar tissue, thinner than the previously hypertrophic tissue, replaces the
dead tissue in the hypertrophic region [196]. Scar tissue in the ventricle causes
a reorganization of the electrical conductance, which can result in ventricular
tachycardias [321] or arrhythmias [362]. In the case of a septal myectomy, the
chest cavity is opened and hypertrophic tissue is excised from the affected region.
In patients with mitral valve regurgitation or SAM, additional surgical treatments
(e.g., papillary muscle relocation) are often needed, making concomitant myectomy
an appropriate option [153]. Adequate pre-surgical planning is necessary to ensure
that the procedure successfully removes an adequate amount of tissue to restore
systolic ejection [520]. In patients who are deemed to be at high risk of SCD due
to chronic tachycardia or arrhythmia, implantable cardioverter defibrillators (ICD)
are implanted. However, it has been shown that, in HCM patients, risk is often
overestimated and ICDs are implanted unnecessarily [368].

6.2.3 Modeling Approaches

Modeling studies have been used to provide a mechanistic understanding of the wide
range of pathological changes observed in HCM. Models have focused on studying
not only the changes in regional morphology of HCM ventricles, but also the local
myofiber disarray, and alterations in blood flow patterns and electrical propagation.

Increased wall thickness, myofiber disarray as well as shortened sarcomeres were
shown to each be necessary in order to accurately model altered strain patterns seen
experimentally in mouse hearts with septal hypertrophy [480]. Computational mod-
eling has also been applied to study blood flow patterns in the HCM LV, particularly
with outflow tract obstruction. Using CFD simulations, Su et al. [466] demonstrated
that, during both systolic contraction and diastolic filling, flow patterns in an HCM
heart were considerably different than in a healthy individual. For example, multiple
small vortices developed in the constricted HCM LV rather than two large vortices,
as seen in the healthy case. Additionally, studies of flow patterns pre- and post-
myectomy using FSI showed a reduction in pressure gradients across the aortic
valve as well as lower shear stresses exerted on the anterior mitral valve leaflet after
surgery [95, 206]. A parametric study that varied the degree of systolic anterior
motion of the mitral valve leaflet in a computational fluid dynamics model similarly
associated higher pressure gradients and wall shear stress as well as greater vorticity
in the ascending aorta with severity of obstruction [137]. Simulations of blood flow
in the constricted HCM cavity, represented as flow through a narrow tube, illustrated
that increased pressure gradients alone may not be synonymous with obstructive
HCM [380]. Therefore, wall shear stress and downstream vorticity may provide
better metrics by which to choose suitable candidates for myectomy, plan which
regions of tissue to remove, and measure success of the following surgery.

Due to the development of both ventricular tachycardia and arrhythmia, which
can lead to SCD, abnormal electrophysiological patterns pose a critical problem
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for HCM patients [308]. However, the mechanisms that contribute to pathological
conductance patterns are not well understood. An early computational modeling
study [505] proposed that increased wall thickness alone could not account for
the change in electrical conductivity but that the addition of myofiber disarray
was needed to generate the abnormal pattern in ventricular depolarization, typical
in HCM patients. However, more recent studies [294, 295] revealed that only
alterations in coupling between Purkinje fibers and surrounding myocardium, not
wall thickness, fiber disarray, or myocardial abnormalities, were able to explain the
alterations. Studies were also able to use machine learning models to separate HCM
patients into distinct phenotypes based on their ECG measurements alone [293].
Multiscale computational models illustrated that negative inotropic agents reduced
outflow tract gradients in HCM patients with LVOTO [75].

6.2.4 Challenges and Future Directions

Numerous challenges still remain in modeling HCM, in terms of examining kinetics
of the HCM heart, investigating blood flow in obstructed [380] and post-myectomy
cases as well as studying tissue growth and remodeling. In contrast to typical
growth modes such as eccentric and concentric growth discussed in (Sect. 4.3),
growth and remodeling in HCM demonstrate a more heterogeneous growth pattern,
adding complexity to the modeling problem. The main challenges for modeling
growth in HCM are to identify an accurate kinematic growth tensor based on the
microstructural changes as well as a sufficient growth evolution law that mimics
the same growth behavior as is observed in patients. Further information is needed
in order to understand the triggers for heterogeneous growth in HCM. Multiscale
models, as proposed by Cansiz and colleagues [55], which provide a bridge between
protein-level mutations, sarcomeric changes, and contractile function, may enable a
better understanding of the course of growth and remodeling in HCM.

Morphological differences alone may be a predictive factor for LVOTO in
HCM hearts. For example, mitral valve angles with respect to the long axis were
significantly different between HCM patients with and without obstruction [312],
suggesting that shape alone may be a predictive factor for future obstruction.
Although interesting, small sample sizes limit the power of this study. However,
a recent large-scale multi-center study of 2773 patients with HCM [247, 352] has
provided a rich set of data including imaging (short- and long-axis cine, T1 mapping,
LGE), ECG, and blood tests at multiple time points. This rich dataset will enable
similar shape and functional analyses for a large cohort, providing valuable insights
into cardiac morphology in HCM patients.

Further, personalized electromechanical models of HCM [2], including accurate
activation properties of the myocardium, are needed in order to effectively assess the
need for ICDs in individual HCM patients. Large-scale studies of patients’ pre- and
post-surgical intervention would aid the development of models of tissue mechanics
and blood flow of the ventricular septum and mitral valve. These models could
then assist clinicians in pre-surgical planning phases, when deciding how much and
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which tissue to remove in a surgical myectomy. Myectomy surgery has been shown
to be effective in reducing mortality in patients with obstructive HCM, yet is still
not widely used [520]. Evolution of surgical techniques for repair of concomitant
abnormalities, such as mitral valve leaflet SAM, may also be aided by modeling
studies. Finally, HCM, although often thought of as a disease of the left ventricle,
impacts the entire heart as seen by RV wall thickening [310], increased right-atrial
pressures [319], reduced RV systolic function [128] and left-atrial dilation [90].
Therefore, whole heart mechanical models of HCM should be developed in order to
account for and predict whole heart structural and functional behavior and changes.

6.3 Aortic Stenosis

Aortic stenosis (AS) is a common cardiac disease, characterized by the narrowing
of the aortic valve orifice, leading to obstruction of and increased pressure gradients
across the aortic valve. AS is the most common of all valvular disorders [397],
present in about 5% of the population at age 65, with prevalence increasing with
age [372]. This comparatively high prevalence is complicated by a predominantly
asymptomatic onset, followed by significant deterioration of cardiac function once
symptoms arise [411]. Deterioration is also aggravated by significant morbidity:
individuals with symptomatic AS have an annual mortality rate of around 25% [57]
and an average survival of 2–6 years after symptom onset [150, 411]. Thus, there
is an urgent need for improved risk stratification, and better understanding of what
drives disease progression.

6.3.1 Pathological Changes

The pathogenesis of AS varies between patients. However, three representative
disease categories have been recognized: calcific, congenital, and rheumatic AS.
Calcific AS is by far the most common form of AS, with calcific deposits forming
on the valve leaflets (see Fig. 15a1–b2). Being closely related to atherosclerosis
[396], calcific AS originates from local inflammation and altered hemodynamic
stresses [107]. Biomechanical and hemodynamic alterations also play distinct roles
in calcific AS, with modified shear stresses impacting the acceleration of valvular
sclerosis [107], and patterns of intravalvular stress being linked to local calcific
depositions [374]. Congenital AS is a less common form, manifested as either
narrowing of the valve orifice or LV outflow tract, or in the form of a bicuspid aortic
valve [231, 405]. Congenital AS anatomies give rise to flow patterns that have been
postulated as both driving disease [157], and triggering associated aortic disorders
[42, 204]. Rheumatic AS is the least frequently occurring form in the western
world, following the decreasing incidence of rheumatic fever [432]. Worldwide,
however, rheumatic AS is still a distinctive form of AS, with the development being
a direct consequence of infection, causing valvular damage and fusion of leaflet



Fig. 15 Characteristics and diagnostic entities representing a healthy (a) and calcified stenosed (b)
aortic valve. From the top: post-mortem tissue specimens, showing the smooth unaffected native
valve (a1) compared to the apparent calcium deposits in calcific AS (b1). Histopathological data
shows similar native trilaminar structure in the native valve (a2) compared to calcific nodules
present in calcific AS (b2). The affect on flow is also apparent in Doppler echocardiography
where native velocities (a3) are severely elevated in the stenosed case, and where calcium deposits
are detectable on CT short-axis views (b3). Similar effects on flow can be observed by means
of 4D Flow MRI with elevated post-stenotic velocities shown in the stenosed patient (a4) vs.
(b4). Similarly, high-fidelity MRI (using T1 mapping and late gadolinium enhancement (LGE)
sequences) showcases signs of myocardial fibrosis in AS compared to the native equivalent (a4)
vs. (b4). (©2016, Springer Nature. Adapted from [284] with permission)
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commissures [303]. Rheumatic AS is also frequently associated with conjunctive
aortic regurgitation, causing complex and combined pressure and overload on the
already congested left ventricle.

While pathogenesis differs between groups, the pathophysiology is similar over
the entire AS population. In general, complications are directly associated with
cardiac pressure overload and conjunctive hypertrophic developments. As valve area
decreases, the pressure gradient over the valve increases, requiring increased cardiac
work to maintain sufficient cardiac output [57]. Left ventricular hypertrophy is
here seen as a compensatory mechanism, suppressing increase in myocardial stress
caused by increasing intraventricular pressure [165]. As AS progresses, hypertrophy
can further add to congestive heart failure symptoms [207].

6.3.2 Diagnosis and Therapies

Being mainly asymptomatic, AS is usually detected in conjunction with other
diseases or during routine stethoscope auscultation (indicated by typical systolic
murmurs). Echocardiography represents the main diagnostic tool with which to
assess and classify obstructed flow [32], with assessment based on aortic valve
area (1 cm2 indicating severe AS), peak velocities (>4 m/s indicating severe AS),
and peak pressure drop (>40 mmHg indicating severe AS) [33] (see Fig. 15a3–
b3). In particular, the pressure drop provides direct quantification of the work
required to maintain systemic blood flow. In standard care, pressure drops are
derived by assessing peak velocities and utilizing the simplified Bernoulli equation
[182]. Albeit simple and effective in instances of severe obstruction, assumptions
made within its derivation, however, obstruct its usage as a general quantification
tool [34, 146]. Instead, the incorporation of higher-dimensional flow imaging
(e.g., 4D Flow MRI [304], ultrasound vector flow imaging [514]) allows for a
more complete fluid-mechanical description, and several novel methods have been
proposed for improved estimation of pressure drops in clinics [102, 109, 248, 305]
(see Fig. 15a4–b4). Gold standard treatment in cases of severe AS is aortic valve
replacement. Alternative surgical treatments also exist with varying performance
reported [85], however, still markedly improving outcomes compared to untreated
controls. Surgical valve replacement has thus moved beyond standard of care,
and challenges only remain in certain sub-cohorts. Most importantly, outcomes in
bicuspid valve patients remain unknown, where large clinical trial data remains to
be collected [218].

6.3.3 Modeling Approaches

With AS driven by, and severely impacting, the local hemodynamic state, cardiac
flow modeling has been extensively utilized to study AS. Similarly, with the highly
dynamic and flexible leaflets present at the site of high-velocity jets, AS has also
become a mainstay for FSI modeling within the cardiac domain.
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Early attempts to model AS were performed using reduced-order descriptions,
where the flow in and around the stenosis was described as a sequence of inertial
and loss terms coupled in series [353], or by using larger-scale connectors to
capture systemic cardiovascular behavior in the presence of AS [468]. Using these
simplified models, predictions of 1D flow and pressure could be achieved as a
function of stenosis severity. However, they did not address any details on how local
alterations in flow state might impact disease progression. Nevertheless, instead
of detailing local flow, contemporary reduced-order models have been effective in
understanding how AS affects other compartments of the cardiovascular system, or
how AS, in conjunction with other co-morbidities, impacts homeostatic perfusion.
Reduced-order models have been used to address the impairment of coronary flow
reserves in the presence of AS [145], to evaluate left ventricular workload in
concomitant AS and aortic coarctation [235], and to quantify the joint predictive
power of peak velocity, pressure drop, and anatomical assessment of the ventricular
domains in risk stratification of AS patients [36]. In an attempt to include the effect
of valve motion, tailor-made lumped parameter models have even been suggested
[346] to be incorporated in subsequent AS studies [375, 376].

The flow in and around the obstructed valve has also been studied using 3D
modeling. While early attempts were performed in simplified geometries [91] or
in idealized vessels without leaflet-like structures [278, 441], they carry limited
information regarding regional flow in AS. Using medical imaging as input,
patient-specific 3D models have also been employed to study several different AS-
related pathological scenarios. However, the dynamic movement of the leaflets still
complicates inclusion of detailed valvular structures and, in many instances, 3D
modeling of valvular disorders (including variations of AS) still utilizes statically
defined leaflets [423, 532]. In more contemporary studies, refined image-based
valve tracking has enabled the inclusion of anatomical valve leaflet motion into 3D
flow modeling, showing how valve leaflet inclusion significantly impacts derived
estimates of regional wall shear stresses, oscillatory flow, and turbulent kinetic
energy [509]. Similar image-driven simulations have also been performed for
bicuspid anatomies [46], again showing how leaflet inclusion significantly impacts
flow. For AS, Weese et al. used a combination of CT-based segmentation and
planimetry to create anatomically accurate valve models, showing how the measures
of geometric and effective orifice area correlate strongly with modeling-derived
pressure drops [504]. CT-based work has also been used to propose anatomical
surrogate metrics to quantify underlying pressure drops [194], and likewise, leaflet-
resolved 3D modeling has been used to elucidate apparent measurement differences
between different imaging modalities [336].

While 3D flow modeling provides insights into the hemodynamics of AS, these
models do not convey any information about structural integrity, nor do they capture
any interplay between hemodynamic alterations and structural modification. For
this, FSI modeling represents a viable alternative, and a variety of numerical
approaches have been used to study aortic valves including immersed boundary
methods [356], fictitious domain approaches [489], and overlapping domain tech-
niques [86]. Questions relating to AS have also been addressed: De Hart et al.
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showed how collagen fiber orientation optimizes intravalvular stress distribution
during ejection [87]; Halevi et al. illustrated how calcific deposits generate eccentric
flow jets and disturbed shear stress patterns, also implying that mechanical alter-
ations are more dominant in driving progressive AS growth as compared to flow
alterations [176]; Lavon et al. performed FSI assessment of bicuspid geometries
showing how a decreased opening angle of the non-fused cusp relates to higher max-
imal stresses, giving evidence as to why certain AS anatomies develop symptoms
earlier than others [261]. In an interesting multiscale FSI approach, Weinberg et al.
investigated drivers of progressive calcific AS, differentiating outcome as a function
of tricuspid versus bicuspid aortic valve patients [508]. Here, bicuspid geometries
generated greater leaflet flexure following more excessive jet formations but still
experienced similar cellular deformations as compared to their tricuspid counterpart
following fibrotic wrinkling on a cellular level. As such, the simulation supports the
hypothesis that differences in calcification patterns between tricuspid and bicuspid
patients are not driven by geometrical differences, but rather by underlying vascular
factors.

Lastly, AS surgical intervention has also been studied in a numerical setting,
both through image-based assessment pre/post-intervention as well as using means
of virtual implantation. As for primary AS, different modeling approaches have
been utilized to assess surgical intervention [185, 291, 300], with the most effective
descriptors possibly provided by FSI modeling [292]. These types of simulations
have also been suggested as a surgical planning tool to predict paravalvular leakage
[40] or valvular migration [306].

6.3.4 Challenges and Future Directions

While cardiac modeling has been used extensively to study AS, modeling challenges
remain in order to disentangle the impact of flow and biomechanics on progressive
disease. Additionally, the complexity of the disorder, involving large deformations
under high-flow conditions, means that computational hurdles remain. First, rapid
advancements in imaging and data-driven approaches should be incorporated into
AS modeling, using full-field flow imaging [304] to prescribe accurate boundary
conditions, or utilizing machine learning techniques to improve leaflet segmentation
[281] or allow for super-resolution approaches in the problem definition [125].

Second, technical aspects remain in the area of AS modeling. More effective
FSI descriptors, including enhanced parallelization schemes [195, 475], should
be explored in the AS field. Similarly, with severe AS generating post-stenotic
turbulence [108], incorporating turbulence modeling in the setting of AS should
also be attempted. Examples of such exist [155]. However, the field could benefit
from using contemporary or alternative effective turbulence descriptors [285, 457].

Other aspects of AS modeling could also be envisioned in the future. In
Sect. 6.3.3, a recent multiscale approach comparing tricuspid vs. bicuspid behavior
was noted, and similar approaches have also been applied to study the impact
of AS on global cardiovascular output [280] and to tailor predicted behavior of
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implantable aortic valve devices [451]. Pushing these multiscale approaches further,
incorporating how macroscopic obstruction could trigger microscopic remodeling,
or how microscopic endothelial activation could be initiated by concomitant global
cardiac pathologies could further help us understand underlying factors behind
progressive AS. Likewise, chronic pressure overload of the left ventricle caused by
the concomitant AS is also related to long-term cardiac growth and remodeling—
representing a separate focus area for future modeling endeavors (see Sect. 4 for
details). Lastly, including longitudinal data or even creating data-driven growth
models can also help models uncover driving factors behind progressing stenosis.

6.4 Myocardial Infarction

A myocardial infarction (MI), commonly known as a heart attack, is a result
of coronary heart disease (CHD). Although mortality due to CHD is decreasing
in developed countries, it remains the leading cause of death in Europe [355]
and gives rise to one out of every five deaths. An MI is caused by occlusion
of a coronary artery, causing loss of blood supply to downstream myocardial
tissue. A lack of oxygenated blood delivery to the heart muscle leads to tissue
necrosis, scar formation, and, eventually, cardiac remodeling. Vessel occlusion is
often caused by plaque formation in one of the major coronary arteries, caused by
hypercholesterolemia, and individuals who have previously been diagnosed with
hypertension are most at risk [407]. The infarct size, impacted by the location,
degree, and duration of the occlusion and subsequent ischemia, can have a large
effect on mortality [197]. In severe cases, the healthy and infarcted myocardium
undergo significant remodeling, which can lead to heart failure [444]. Therefore,
much research has been devoted to understanding, halting, and even reversing the
tissue and organ-level changes that occur as a result of an MI.

6.4.1 Pathological Changes

Immediately after occlusion, the heart undergoes microstructural changes that
initiate a cascade of remodeling processes [197]. The initial phase post-MI is known
as the acute phase, spanning the first minutes to hours after occlusion. In this time,
the lack of oxygen causes a disruption to the structural protein titin, an important
constituent of the sarcomere, involved in active force generation and the region,
which, without oxygen, becomes passive. During the acute phase, the infarct region
can become distended during systolic contraction, resulting in dyskinesia. Both end-
diastolic and end-systolic volumes are often elevated due to impaired contraction.
The region of myocardium between the infarct and remote healthy tissue is known as
the border zone (BZ), which is mechanically and electrically coupled to the infarct.
The second phase is known as necrosis that takes place over the proceeding hours
to a few days. At this time, inflammation of the affected tissue and necrosis, or cell
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death, occurs, causing infarcted tissue to lose its striations. Simultaneously, there is
a deterioration of the collagen network. This is also the stage post-MI when there is
the greatest risk of ventricular wall and chordae tendineae rupture [41].

During the subsequent fibrotic phase, spanning days to weeks after the infarction,
collagen is deposited in the infarct region. New collagen is composed primarily
of highly aligned type I fibers [198], oriented primarily within 30 degrees of
circumferential [130]. The increase in collagen causes infarct stiffness to increase,
subsequently leading to impaired filling (i.e., diastolic dysfunction). Systolic func-
tion is further impaired in this period due to the electrical and mechanical coupling
between the infarct region and the healthy adjacent tissue [479]. The final phase,
known as remodeling, lasts between weeks to years after infarction. During this
time, there is often general improvement in cardiac function as the heart stabilizes.
The infarct typically reduces in size [189], and infarct stiffness does not increase
further. Healthy tissue, however, undergoes hypertrophic remodeling to maintain
normal pump function and cavity dilation occurs [444] (Fig. 16).

Fig. 16 The top row illustrates an infarcted porcine heart using three different imaging modalities:
(a) contrast-enhanced T1 MR mapping, (b) late gadolinium-enhanced (LGE) MR imaging, and
(c) triphenyl tetrazolium chloride (TTC) stained histology. (a, b, c are reproduced from [82]
under Creative Commons Attribution License 4.0 from Springer Nature. ©2018.) The bottom row
illustrates models used to investigate (d) hydrogel injection therapy (©2014, Elsevier. Adapted
from [272] with permission.) and (e) the Coapsys restraint device (©2012, Elsevier. Adapted from
[58] with permission)
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6.4.2 Diagnosis and Therapies

The clinical diagnosis of the acute phase of MI is made through an ECG, whose
trace is impacted by the change in electrical signal coming from the infarcted region
of the heart [118]. The occurrence of an MI is also reflected in the levels of cardiac
troponin, a protein that is integral to the normal contraction of cardiac muscle tissue.
In this early stage, treatment of MI focuses on clearing the obstructed artery. It
has been shown that prompt reperfusion post-MI leads to lower mortality rates
[197]. The most common procedure to restore blood flow is through percutaneous
coronary intervention in which a catheter is inserted through a peripheral artery
(e.g., femoral or radial artery) into the occluded coronary artery. After which, a
balloon is inflated to open the blocked vessel. A stent may also be placed in the
coronary artery to prevent future re-occlusion [51]. This mechanical intervention
is accompanied by pharmacological therapy to reduce the formation of blood clots
and promote vasodilation in order to lower the systemic blood pressure. Post-MI,
CMR imaging is used to detect and quantify fibrosis using LGE or a T1 mapping
technique. Treatments that tackle the long-term remodeling post-MI have been
developed in recent years. Hydrogel injection into the infarct region of the heart
has been proposed as a therapy that aims to restore wall thickness and reduces
the stress in the myocardium. This method has proven to reduce infarct size and
preserve cardiac function [538]. Another approach is the use of mechanical devices
that restrain the heart to decrease LV dilation and potentially limit the infarct zone
expansion. This is a promising technique, and many approaches have appeared in
the past years to optimize the use of these devices by adding mechanical anisotropy,
biological or electrical functionality, and adaptability of the restraint [350, 485].

6.4.3 Modeling Approaches

Computational modeling has been used to investigate pathological growth and
remodeling at various stages post-infarction. An acute-phase study of infarct tissue
developed a model of wall thinning, driven by cell death and collagen degradation,
which were mediated by the local oxygen concentration, defined by a diffusion
problem[418]. Naim et al. [347] used a similar oxygen diffusion model coupled
with a model of electrical activation to study the formation of the BZ. The study
illustrated that, after MI, the BZ continues to develop and that the conductivity
within the BZ is heterogeneous. The process of scar formation and remodeling
post-MI was also studied by Rouillard and Holmes [413] by using a multiscale finite
element model that accounted for the process of tissue fibrosis. Their results suggest
the existence of a negative feedback between fibroblast alignment and the level of
anisotropy [130]. Stress-driven tissue growth post-MI in the border zone and remote
regions was also modeled on a patient-specific geometry, illustrating heterogeneous
growth patterns [241], demonstrating the importance of geometry on predicting
growth and remodeling. A patient-specific MI geometry was also employed in an
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electromechanical growth model, which was able to accurately depict long-term
changes in PV loops for different levels of stiffness in the infarct region [271].

Numerous modeling studies have also aimed to estimate personalized passive and
active parameters in the infarcted heart. Although global passive stiffness parame-
ters may be indicative of overall cardiac function and able to differentiate infarcted
from non-infarcted hearts [123], tissue properties differ between the infarcted
myocardium, healthy tissue, and the border zone due to relative collagen content
[60, 270, 337, 494]. In personalized models, the scarred region was found to be
more than 20 times stiffer than the remote healthy tissue [494]. Similar conclusions
were drawn by estimating a larger number of parameters [270], whereby an increase
was reported for ground, fiber, and transverse stiffness in the infarct region when
compared to healthy tissue. Balaban et al. illustrated the feasibility of estimating
four spatially heterogeneous material parameters in the entire infarcted LV [26],
rather than estimating homogeneous parameters for each region of interest. Another
study has suggested that there may exist an optimal infarct stiffness that limits
dilation but does not impede contraction of healthy tissue [491]. In addition to
altered passive parameters, personalized active tension and myocardial contractility
parameters, estimated in both the acute (2 days post-MI) and remodeling (6 months
post-MI) phases, highlighted increased contractility required after 6 months [144].
For a comprehensive review of biomechanical modeling studies in MI, see [279].

In addition to modeling the regional stiffness of the infarcted ventricle, biome-
chanical models are also widely used to test potential therapies in silico. For
example, hydrogel injection therapy has been shown to limit strain in the infarct
region, reducing infarct expansion, and decrease stress in the healthy tissue, limiting
long-term remodeling in the healthy and border zone regions [416]. Hydrogel
within the tissue has been modeled in simplified form as either a bulk injection,
homogeneous striations [246, 334], or spherical inclusions [237]; however, the
injectate was also modeled as a realistic distribution measured directly from
histology images [448]. In each of these computational studies, the addition of a
non-contractile material that increases average wall thickness and material stiffness
resulted in overall reduction wall strain in the infarct as well as reduction in fiber
stress in the healthy region. The degree of impact was dependent on the volume,
properties, and location of the injectate (e.g., [496, 510]). Computational studies into
hydrogel as a potential post-infarct therapy to limit remodeling complement animal
studies that have illustrated similar benefits [227]. Modeling studies have also been
used to test restraint devices aimed at limiting dyskinesia and the increase in strain
often seen in the infarct region [168, 379]. However, preliminary results have shown
modest improvements in limiting dilation with no improvement of systolic function
[485].

6.4.4 Challenges and Future Directions

Although biomechanical studies investigating subject-specific parameters in the
infarcted myocardium may give a glimpse into the pathological changes occurring,
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they are limited in sample size and have utilized diverse material models and
methods to estimate material parameters. Personalized modeling along with the
use of structurally informed constitutive models such as [181, 491] could provide
further insights into collagen deposition and tissue remodeling within the infarct
and healthy regions. Similarly, advancements in imaging techniques, such as in
vivo diffusion tensor imaging, allow for quantification of fiber orientations in the
entire heart, including the infarct region [519], which can be incorporated into
more accurate biomechanical models. Dempsey et al. [94] proposed a method
for stratifying MI patients based on the stage post-MI by using a neural network
trained on a synthetic set of stress–strain curves over time generated from a
composite model of infarcted myocardium. Advancements in imaging capabilities
in conjunction with novel machine learning methods can enable robust tools for
clinically assessing infarct characteristics.

Computational studies of injection therapy have provided valuable information
complementing animal studies. However, to date, these studies have not incor-
porated models of the tissue’s inflammatory processes as well as the material
degradation, both of which play an important role in deciding the optimal time
of injection [314]. Additionally, future computational models investigating post-MI
therapies could be incorporated along with growth models to predict not only acute
changes in tissue stress and strain, but also ensuing growth and remodeling. Further,
regeneration of viable myocardium in the infarct region through the use of stem cells
is beginning to show promise [156]. Accurate computational models of cell growth
in infarcted tissue could be a valuable complement to current animal studies.

7 Conclusions

The delivery of blood to the body and lungs depends on the effective mechanical
contraction of the myocardium. This function relies on the hierarchical construction
of the myocardium, beginning with the fundamental contractile unit (the sarcomere)
and spanning all the way to the structure of the whole organ itself. In turn,
pathologies of the heart often afflict the heart at multiple levels of this structural
and functional hierarchy, resulting in complex, evolving disease characteristics
that, in many cases, remain poorly understood. The biomechanical function of
tissue, the behavior of blood, and the adaptability of the muscle tap into the rich
continuum mechanics theory that enables predictive models of many aspects of
heart function. Utilizing this theory through computational modeling provides an
important framework for addressing challenging biomechanical questions that get
at the heart of how we understand and treat disease.
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Abstract Translational cardiovascular modeling (TCM) combines clinical data
with physiologically and biophysically based models of the heart, vessels, or circula-
tion while aiming to contribute to diagnosis or optimal clinical management. Models
of heart mechanics and electromechanical models are applicable when assessing
ventricular function, contributing to the planning of optimal intervention. During
a perioperative period or acute exacerbation of heart failure, close to real-time
running models can be coupled with signals monitoring cardiovascular physiology.
Blood flow assessed by combining phase-contrast magnetic resonance imaging with
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flow models can contribute to the decision about a possible intervention, e.g., on
heart valves or large vessels. Furthermore, advanced imaging and image processing
constrained by biophysical models allows for the study of distinct patterns, which
could contribute to early detection or mapping a disease progress. In this chapter, we
demonstrate the applicability of some TCM methods on tetralogy of Fallot (TOF)—
the most common cyanotic congenital heart disease. A number of already existing
modeling techniques can be applied on the cohort of TOF. Likewise, some novel
techniques developed specifically for the group of TOF patients could serve in some
other pathologies. This whole approach leads to an acronym TOFMOD, standing
for Tetralogy of Fallot and Modeling of Diseases.

1 Introduction

Translational cardiovascular modeling (TCM) plays a crucial role in extending high-
fidelity engineering models into real-life clinical applications. It represents a novel
multidisciplinary approach, which brings the opportunity to address clinical prob-
lems not sufficiently solved by current techniques and contributes into advancing
healthcare of pathologies involving cardiovascular system. As reviewed in [1], the
components of TCM are: (1) physiologically and biophysically based models of
the heart, flow in vessels or circulation; (2) acquisition and processing pipelines for
clinical data; (3) means of creation of personalized models (i.e., model–data fusion);
and (4) translation of patient-specific modeling into patient care, contributing to
diagnosis or optimal clinical management.

We will present TCM through the application into one particular disease named
tetralogy of Fallot (TOF). TOF is a disease, for which several TCM techniques
can be combined: for instance, assessment of myocardial functional state can
be performed by employing models of heart mechanics; planning of cardiac
resynchronization therapy can be assisted by using electromechanical heart models;
advanced imaging and image processing constrained by biophysical models allow to
study distinct patterns in TOF patients; and assessment of narrowing of a pulmonary
artery branch and possible indication for an intervention (e.g., stenting) can be
facilitated by using large vessel flow models. This chapter presents some of these
techniques.

1.1 Tetralogy of Fallot

Tetralogy of Fallot is a common congenital heart disease. It accounts for 7–10%
of all congenital heart diseases. If untreated, it would lead to death in infancy.
During the embryologic phase, the aorticopulmonary septum (dividing the cardiac
outflow channel into aortic and pulmonary outflows [2]) is deviated anteriorly
causing the two outflow arteries—pulmonary artery (PA) and aorta (from the right
and left ventricle, respectively)—to be of different size (narrower PA and wider
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Fig. 1 Schematics of normal anatomy of heart and large vessels and of tetralogy of Fallot. (a)
Normal heart. (b) Tetralogy of Fallot (TOF). (c) Complete surgical repair (rTOF)

proximal aorta). As depicted in Fig. 1b, this causes (1) narrowing of the right
ventricular outflow tract (RVOT) and PA; (2) the aorta overriding both left and right
ventricular outflow tracts (therefore, blood from both ventricles can enter the aorta);
(3) ventricular septal defect (VSD); and (4) hypertrophy of the right ventricle (RV),
which compensates the RV working against high afterload (due to the stenosed
RVOT). Additionally, TOF patients often suffer from other associated defects, out
of which stenosis of a branch of the PA (left or right pulmonary artery, LPA, RPA)
is common. Mixing of oxygenated and deoxygenated blood entering the aorta from
the LV and RV, respectively, causes a typical bluish color of the skin, the so-called
cyanosis, and TOF represents the most common cyanotic congenital heart disease.
The four classical symptoms of this blue baby syndrome (la maladie bleue) were
described by the French physician Etienne-Louis Arthur Fallot in 1888 [3].

Complete surgical repair of TOF (rTOF) is usually performed during the first
year of life. It consists of repairing the VSD and increasing the size of the RVOT
and PA, as depicted in Fig. 1c. The correction of the PA stenosis (causing the initial
pressure RV overload and RV hypertrophy), often made by using a transannular
patch, typically disrupts the function of the pulmonary valve and causes a pulmonary
regurgitation (PR), i.e., “leaking pulmonary valve.” RV is then chronically volume
overloaded. Moreover, even after the repair of tetralogy of Fallot, some rTOF
patients suffer from a residual stenosis of the RV outflow tract (RVOT). This even-
tually leads to a combined RV volume and pressure overload. The chronic volume
overload causes RV remodeling in the sense of RV dilatation, and the chronic
pressure overload leads to the hypertrophy of the RV myocardium [4]. The hearts of
rTOF patients often have electrical activation abnormalities either as a consequence
of the surgical repair or developed in the remodeled heart. The right bundle branch
block (RBBB)—i.e., a block in the main electrical conduction pathway, which
normally allows a rapid transmission of electrical activation throughout RV [5]—
is common. It causes a dyssynchrony in the activation and contraction (a delayed
activation and contraction of the RV free wall), which decreases cardiac efficiency
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[6]. Malignant ventricular arrhythmias (e.g., ventricular fibrillation) lead to sudden
cardiac death and are the most common cause of death after the repair of TOF [7].

To avoid uncontrolled RV remodeling and even to allow the RV to reverse
remodel back to normal size, the patients undergo later in life a pulmonary
valve replacement (PVR). PVR would ideally be performed as late as possible
(intervention needs to be repeated throughout life as the lifespan of the implanted
valve is 5–10 years [8]) but before irreversible changes of the myocardium or before
a significant electrophysiology event takes place [9–11]. The optimal timing is
crucial both for the initial PVR and for the subsequent replacements of the implanted
valve [12, 13].

Additionally to the RV-related issues, rTOF patients are known to suffer from
LV failure earlier than in normal population. The reason for the LV involvement in
TOF, which is classically considered as a “right heart disease,” is not entirely clear.
Both mechanical (e.g., dyssynchrony in contraction) and humoral factors (which can
lead, e.g., to an increased tissue stiffness of both ventricles [14]) may be involved,
and modeling has the potential to shed light on some of them.

While the complete surgical repair increases the life expectancy from a few years
to many decades up to normal life expectancy [15], the rTOF patients must undergo
regular follow-up exams and their clinical management is still facing limits, for
example, in:

1. Optimal timing of PVR
2. Optimal indication and timing of stenting of a stenosed branch pulmonary artery
3. Optimal management of electrophysiological (EP) disorders, including atrial

arrhythmias, ventricular arrhythmias, and prevention of sudden cardiac death
4. Preventing left- and right-sided heart failure

These items represent some of the challenges of current clinical care. In the
next sections, we demonstrate some paths in which TCM can contribute to clinical
management of rTOF patients. In Sect. 2 we show how can TCM be applied during
assessing ventricular function either at regular follow-up exams when detailed
clinical data are available (Sects. 2.1 and 2.2) or in a perioperative period or acute
exacerbation of heart failure while coupling fast running models with continuously
acquired signals monitoring cardiovascular physiology at operation theatre or inten-
sive care unit (ICU; Sect. 2.3). Section 2.4 demonstrates some paths of including the
models in the assessment of a long-term cardiac performance. Section 3 presents
the pulmonary right ventricular resynchronization in congenital heart diseases, as
for rTOF. Physiological and physical knowledge, the so-called model a priori, can
be incorporated into advanced imaging and image processing techniques. Section 4
presents some examples in which model-constrained image processing allows to
study some distinct patterns of TOF. Those could represent initial signs of early-
stage heart failure or be associated with a disease progress. Section 5 shows the
steps toward coupling flow models with clinical data to overcome some physical
limits of the imaging techniques. Section 6 further discusses various aspects of
the clinical modeling for rTOF patients and shows some connections between this
particular congenital heart disease and models for general population and acquired
heart diseases. Section 7 concludes this chapter.
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2 Ventricular Mechanics and Its Biomechanical Modeling

Coupling image data with biophysical models allows to estimate the biophysical
properties of the heart and vascular system. Such quantities are not directly
measurable from the image and pressure data but are accessible via constitutive
relations and equilibrium equations (see reviews [1, 16] and references therein).
Moreover, the physical character predisposes the biophysical models to predictivity.
In this section, we provide a more detailed look on some of these techniques, which
can be applied in rTOF patients.

2.1 Assessment of Right Ventricular Mechanics in rTOF
Patients

In Sect. 1.1 we explained that rTOF patients suffer from a chronic PR or RVOT
obstruction, leading to a volume or pressure overload of their RV. The patients
undergo PVR, and the procedure needs to be repeated approximately every 10
years. It is, therefore, of utmost interest to predict when the pathological remodeling
of RV is approaching an irreversible state and suggest to perform the intervention
immediately, or defer it and suggest a suitable timing for the next follow-up exam.

While the current works and clinical guidelines focus on the direct measures
taken from image data (typically ventricular volumes and transvalvular flow,
performed by imaging techniques), the underlying mechanism of the chronically
overloaded tissue undergoing pathological remodeling is unknown.

Gusseva et al. hypothesized in [17] that accessing directly mechanical properties
of the heart in rTOF patients will provide additional metrics, which may better
stratify the PVR responders versus non-responders. A biomechanical model of
single heart cavity developed by Caruel et al. [18] was used. The preload was
imposed from the measured pressure data in diastole. The heart model was
connected to a Windkessel model of circulatory system (lumped-parameter model
representing the circulation by a combination of resistive and capacitive elements
in the analogy to electrical circuit [19]). The schematics of the model is shown in
Fig. 2a. The geometry and kinematics of the ventricle are reduced to a sphere with
the inner radius R and wall thickness d. The constitutive mechanical laws were
preserved as in the full 3D heart model described in [20] and [21]. The model was
adjusted into a patient-specific regime. This allowed to plot RV pressure–volume
(PV) loops for every patient pre-/post-PVR (see example in Fig. 2b). In addition,
the patient-specific models allowed to access the parameter of RV contractility, i.e.,
the active stress developed in each sarcomere unit.

The myocardial contractilities prior to and after PVR for 20 patients included
in study [17] are plotted in Fig. 3a and the estimate of RV stroke work (an area
encompassed within the PV loop) in Fig. 3b. Thanks to the valvular component
(a system of diodes with forward and backward resistance, RRVOT
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Fig. 2 Schematics of the heart model coupled to the circulation system (a) and an example of
model-derived pressure–volume loops prior to and after pulmonary valve replacement (PVR) (b).
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Fig. 3 Study estimating contractility and stroke work of right ventricles in 20 patients with
repaired tetralogy of Fallot prior to (colored circles) and after pulmonary valve replacement (empty
circles). PR: pulmonary regurgitation; RV: right ventricle; RVOTO: RV outflow tract obstruction.
(a) Model-accessed contractility of RV. (b) RV stroke work

respectively, see Fig. 2a), the model allowed to study an independent effect of PR
and RVOT obstruction on ventricular mechanics. Light blue and purple circles
in Fig. 3 demonstrate pre- and post-PVR contractility (stroke work) for patients
with predominantly high PR and RVOT obstruction, respectively. Figure 3 shows a
systematic trend of a decrease of RV contractility and stroke work observed imme-
diately after deploying the valve. The lower inotropic (contractility) level would be
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more favorable with respect to the energy need of the myocardium, while the heart
would be still providing an adequate cardiac output into the circulation (in fact,
even 20–50% higher than during the chronic PR, which is in line with experimental
data by Lurz et al. [22]). Moreover, the pre-PVR models revealed lower levels of
contractility (and stroke work) in patients with predominant PR, suggesting that
ventricles are likely to adapt better to a long-term exposure to valvular regurgitation
than to RVOT obstruction, which is also discussed in the study [17].

This example shows that biomechanical modeling has the potential to contribute
to personalized intervention by enhancing the ability to predict RV performance
after PVR. This represents a way to baseline and track the RV performance over time
and allows for clinicians to make more informed decisions about PVR in patients
with rTOF.

2.2 Early-Stage Heart Failure Assessment

Heart failure (HF) is the syndrome in which the heart is not able to pump a sufficient
amount of blood to cover the metabolic needs of tissues. The HF patients suffer
from symptoms such as shortness of breath, cough, palpitations, or dizziness. Early-
stage HF is characterized by HF symptoms present only under more than ordinary
physical activity (class I–II according to the New York Heart Association [NYHA];
see Table 1). The assessment of early-stage HF, therefore, requests performing a
clinical exam under physical exercise.

A decrease in exercise tolerance in rTOF patients is frequent. There are a number
of possible causes: extracardiac (such as an increased RV afterload, e.g., due to the
RVOT obstruction, branch pulmonary artery stenosis, pulmonary pathology, etc.),
or intracardiac (e.g., limitation of myocardial perfusion or of chronotropic response)
[23]. The extra- and intracardiac causes can be combined, as, e.g., in the chronically
increased afterload, requiring the ventricle to develop a higher active stress, i.e.,
to work chronically on a higher inotropic (contractility) level [5]. As presented in
Sect. 2.1, accessing the tissue contractility requests employing a biophysical model
of heart. Quantifying the contractility at rest and during physical exercise (which can
be replaced by a pharmacological stress test) allows to assess the so-called contrac-
tile reserve (i.e., the level to which the contractility can increase in a given patient).

Table 1 New York Heart Association classification for the heart failure (NYHA)

Class Objective assessment

I Patient with cardiac disease but without any limitations in physical activity

II Comfortable at rest, ordinary physical activity results in fatigue, palpitations,

dyspnea, or anginal pain

III Comfortable at rest, but less than ordinary physical activity results in fatigue,

palpitations, dyspnea, or anginal pain

IV Symptoms of HF may be present even at rest



248 R. Chabiniok et al.

In [24], Ruijsink et al. performed a quantification of pharmacological stress
exams in a group of patients born with a single ventricle. Their ventricles were
surgically adjusted to serve as a pump for systemic and pulmonary circulations con-
nected in series, by redirecting the main systemic veins (superior and inferior venae
cavae) directly into the pulmonary arteries (the so-called total cavo-pulmonary
connection known as the Fontan circulation [25]). Exercise intolerance is a relatively
common early symptom of the failure of the single ventricle, and conventional
methods used in clinics such as echocardiography or magnetic resonance imaging
(MRI) are often unable to define the actual causes of the onset of the failure.
Simultaneous cardiac catheterization with MRI at rest and under pharmacological
stress (simulating the exercise) has great potential to distinguish the actual cause
of the intolerance. However, the complex physiology of the Fontan circulation and
large inter-individual variations make it difficult to obtain direct conclusions from
these investigations, even though having such rich datasets.

Employing a combined cardiac and circulatory model (similarly to Sect. 2.1)
allowed for an enhanced diagnostic assessment of pathophysiological exercise
responses in patients with Fontan circulation. Figure 4 reveals that the myocardial
contractility values in Fontan patients were normal at rest. There was a good
contractile reserve in most patients. The increase of contractility in three patients
(marked as FP 7, 8, 9 and CC 1, we recall Fig. 4) was, however, limited. The
low contractile reserve in these patients could be the cause of their early-stage
HF. Good correlations of model-derived myocardial contractilities and periphery
vascular resistance with their measured clinical surrogates depicted in Fig. 5 validate
the modeling framework.

The work by Ruijsink et al. [24] demonstrates that modeling can provide valuable
additional information to the current diagnostic assessment of Fontan patients.
This work paves the way for the translation of the model-accessed myocardial
contractility and contractile reserve into other cohorts of patients, such as rTOF.

Fig. 4 Estimated contractilities at rest and under Dobutamine test in 9 Fontan patients (FP) and 2
biventricular control cases (CC)
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Fig. 5 Model estimated quantities versus measurements. Left: Model-derived distal Windkessel
resistance (Rd ) versus measured vascular resistance at rest. Right: Model estimated contractility
versus measured ventricular max dp/dt (i.e., the usual clinical surrogate of myocardial contractil-
ity). Figure used from [24] under the Creative Commons Attribution (CC BY) license

2.3 Model-Augmented Monitoring During the Perioperative
Period or in the ICU

Real-time (or close to real-time) biomechanical models allow for coupling with
monitoring data during general anesthesia (GA) or in the ICU. Direct analysis of the
arterial pressure or cardiac output may be challenging in complex clinical situations.
Patient-specific biomechanical modeling allows to simulate ventricular PV loops
and obtain functional indicators of the cardiovascular system, e.g., resistance of the
circulatory system or myocardial contractility, evolving throughout GA or during
the stay at ICU.

In [26], Le Gall et al. described a proof-of-concept study of applying biomechan-
ical models to augment hemodynamic physiological monitoring. Patient-specific
biomechanical models of heart and vasculature were created for 45 patients under-
going GA. While aortic pressure and flow were used to set up the patient-specific
models, those then allowed for a quantitative assessment of heart function in each
individual patient. The validation was conducted on a group of 4 patients, who
underwent a combined MRI and pressure catheter procedure. Figure 6a compares
the PV loop generated by the model with the measured ventricular pressure and
volume and demonstrates validation of the approach. Figure 6b shows the model-
derived PV loop of a patient under GA during hypotension and how the PV loop
changed after administering the vasoactive drug norepinephrine, and Fig. 7 shows
the quantitative changes of physiology accessed thanks to modeling.

Work [26] by Le Gall et al. demonstrates the application of biophysical models
built for individual patients to estimate PV loops and cardiovascular functional
indicators using data, which are available during GA. Moreover, the predictive
capability of the biophysical models representing the cardiovascular system of
individual patients builds the foundations for a pro-active use in optimal clinical
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Fig. 6 Cardiac modeling coupled with monitoring signals. Figure used from [26] under the
Creative Commons Attribution (CC BY) license. (a) Validation PV loops. (b) PV loop at
hypotension vs. after administering vasoactive drug norepinephrine

Fig. 7 Boxplots of model parameters and the results of the simulation. Normotensive patients are
in green; hypotensive patients before and after administering norepinephrine are in blue and red
color, respectively. * p < 0.05; ** p < 0.01; *** p < 0.001. Figure used from [26] under the
Creative Commons Attribution (CC BY) license
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Fig. 8 (a) Example of left ventricular PV loops in a selected patient with multisystem inflamma-
tory syndrome in children (MIS-C) at acute stage and during the recovery. (b) Progressive recovery
of myocardial contractility after MIS-C

handling of complex situations (e.g., assistance in clinical management of septic
shock).

Both increasing the insight in pathophysiology and proposing a possible ther-
apeutic intervention could be helpful in newly discovered diseases. For instance,
there is currently a limited knowledge about Multisystem Inflammatory Syndrome
in Children (MIS-C) known also as Pediatric Inflammatory Multisystem Syndrome-
temporally associated with SARS-CoV-2 (PIMS-TS). It is a serious condition,
which is associated to the SARS-Cov-2 virus and appearing typically 2–4 weeks
after the exposure to the coronavirus, while the COVID-19 disease may pass only
with mild symptoms [27, 28]. Model-augmented cardiovascular monitoring could
be of a direct benefit in this life-threatening condition during the acute stage
at ICU and also during the long-term clinical follow-up of patients. Both were
demonstrated in a study by Waugh et al. [29]; see Fig. 8. The patient-specific
models of 8 patients allowed to access the cardiovascular physiology of MIS-C
patients at ICU to distinguish between the cardiac and vascular components of their
cardiovascular shock state. In addition, the study demonstrated cardiac recovery 2–4
weeks after discharge from ICU, supporting the optimistic scenario that the heart is
fully recovering within a month.

2.4 Assessment of a Long-Term Cardiac Performance

An assessment of a long-term cardiac performance has been studied within a
kinematic growth theory framework as originally proposed by Rodriguez et al. [30],
and later employed in the heart by Kroon et al. [31], and others [4, 32–34]. The
growth and remodeling of the cardiac tissue is modeled as alterations in shape and
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size of the ventricular chamber in response to stress and/or strain-based stimuli.
The model hypothesizes that concentric growth (thickening of the myocardial wall)
occurs due to the stress-based stimuli (e.g., pressure overload) and eccentric growth
due to the strain-based stimuli (volume overload). A number of studies have applied
kinematic growth laws on the finite element anatomical models of ventricles to
study the chronic changes of ventricular morphology in response to simulated aortic
stenosis and mitral valve regurgitation (Kerckhoffs et al. [34]), or in response to
simulated diastolic and systolic heart failure (Genet et al. [4]). In both studies
model-predicted chronic changes in wall thickness, chamber size, and geometry
were in agreement with experimental data. Lee et al. [35] used the kinematic growth
concept to study the reversible growth (reverse remodeling) in human left ventricle.
The simulated response of end-diastolic pressure–volume relationship to unloading
qualitatively reproduced experimental and clinical observations. To date, kinematic
growth theory is capable of predicting the consequence of growth on organ
morphology while is limited in predicting tissue-level mechanical properties (e.g.,
myocardial contractility or stiffness) and microstructural changes (e.g., apposition
of collagen fibers). Hybrid modeling approaches linking tissue-level turnover events
with an evolving organ morphology could be a way to better understand the
mechanics of growth and remodeling in physiological and pathological conditions.
For example, microstructurally oriented models such as constrained mixture theory
originally designed to capture mass turnover events in individual constituents of
the mixture (e.g., solid tissue) [36, 37], if applied to the heart, could potentially
describe, e.g., deposition or apposition of myofilaments or collagen in hypertensive
ventricles. In the field of vascular modeling a number of attempts to combine a
constrained mixture theory with kinematic growth have shown promising results in
modeling the effect of elastin and collagen degradation on the development of thick-
walled aortic aneurysms [38, 39]. Patient-specific modeling approach presented in
Sects. 2.1–2.3 could evaluate current state tissue-level mechanical properties, and if
combined with kinematic growth framework (or with a hybrid of kinematic growth
and mixture theory), it has a potential to become an invaluable therapeutic tool in
predicting long-term effects of therapies, e.g., response to PVR, and in predicting
the optimal timing for interventions, including for complex surgeries.

3 Pulmonary Right Ventricular Resynchronization in
Congenital Heart Disease

RV dysfunction and occasional failure are associated with a number of congenital
heart lesions, most predominantly but not limited to rTOF. They are attributed to
several factors including myocardial fibrosis due to preoperative hypoxemia and
pressure overload, surgical scar, and long-term post-repair volume overload caused
by pulmonary regurgitation and frequently associated with RBBB [40]. RBBB is
also the most frequent cause of electromechanical dyssynchrony in congenital heart
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disease. In rTOF patients, RV electromechanical dyssynchrony resembles the classic
dyssynchrony pattern incorporating an early septal contraction with RV free wall
pre-stretch followed by late free wall contraction and septal rebound stretch. It has
been associated with a decreased RV ejection fraction, mechanical inefficiency,
and impaired exercise capacity [41, 42]. The dyssynchrony is hypothesized to
play a significant role in the progress of RV dysfunction. A recently published
study using computer modeling showed that the extent of negative influence of RV
dyssynchrony may be greater than previously thought and may even overweight
the pulmonary regurgitation during exercise [43]. A relief of RV volume overload
by PVR is thought to reverse the pathological RV remodeling occurring due to
the pulmonary regurgitation in rTOF patients. However, a decreased probability
of reverse remodeling has been reported in patients with high RV end-diastolic
and end-systolic volumes, low RV ejection fraction, and those with a wide QRS
complex (≥160 ms) [44]. Thus, PVR alone may not lead to the normalization of RV
performance.

Cardiac resynchronization therapy (CRT) has so far been used to treat dyssyn-
chrony in the failing systemic (left) ventricle. Robust clinical data demonstrate
a favorable CRT effect on acute hemodynamics, reverse cardiac remodeling,
functional capacity, and patient survival. Limited evidence suggests a similar CRT
effect in children and patients with congenital heart disease [45]. Clinical reports on
subpulmonary RV resynchronization (RV-CRT) are scarce, however. In this section
we briefly review the current experience with RV-CRT in patients with congenital
heart disease.

3.1 Temporary RV-CRT

Published data show that acute RV-CRT through either RV or biventricular pacing
improves short-term hemodynamics both in children and adults with congenital
heart disease and RBBB. RV-CRT has been successfully used to treat RV dysfunc-
tion in acute postoperative setting [46]. Pacing is applied by temporary epicardial
leads placed by a surgeon on the right atrium and the late activated free wall of
the right ventricle. RV resynchronization is achieved by atrial-triggered RV free
wall pacing in complete fusion with spontaneous ventricular activation to obtain a
maximal QRS duration shortening. Specific attention is paid to a complete abolition
of the broad S wave in standard lead I. The aim is to resynchronize electrically
as well as mechanically the septum and RV free wall. A commercially available
external dual-chamber pacemaker may be used. Temporary RV-CRT performed in
this way carried a significant short-term improvement of hemodynamics in children
early after surgery for TOF and may be a useful non-pharmacologic adjunct to
the management of hemodynamically compromised patients. The resynchronization
effect was maximized when pacing from the area of the latest RV activation. In
another study, the temporary RV-CRT brought multiple positive effects on RV
mechanics, synchrony, and contraction efficiency [47].
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3.2 Permanent RV-CRT

The use of permanent RV-CRT to treat RV dysfunction associated with RBBB seems
to be the next logical step. Unfortunately, published evidence is limited. In the first
well-documented report on permanent RV-CRT in a patient late after the repair of
TOF [48], both right and left ventricular function improved significantly within 6
months accompanied by an improvement in the NYHA class as well as exercise
capacity. Data on a small series of congenital heart disease patients undergoing RV-
CRT has been presented at the Heart Rhythm conference in 2018 [49], confirming
multiple positive mid-term resynchronization effects on the RV systolic function,
electromechanical synchrony, and contraction efficiency.

3.3 Toward Electromechanical Modeling for RV-CRT

Cardiac modeling was employed in several projects predicting the effect of CRT on
the failing LV [50, 51]. Pilot modeling study [52] demonstrates that pacing has the
potential to significantly decrease valvular regurgitation also in other pathologies—
e.g., severe tricuspid regurgitation. Similar models are likely to be used in rTOF
patients [43].

RV-CRT seems to be a valuable method to treat both acute and chronic
subpulmonary right ventricular dysfunction and failure associated with RBBB in
patients with congenital heart disease. Further studies are needed to better define
its role in long-term RV failure management. Cardiac electromechanical models
represent a great potential in optimization of this treatment.

4 Model-Constrained Image Processing

One of the key image processing tasks in the field of medical imaging is image
registration. It is defined as the process of aligning two or more images of the same
scene. It is used to deal with misalignment caused by different time of acquisition,
different scaling, or different acquisition techniques. Aligning series of images taken
at different times is often the first step in any subsequent analysis. However, the
analysis of the detected misalignment itself might bear useful information. This
applies specifically in cardiac applications, where both aspects of image registration
are utilized. First, aligning a given series of the cardiac images allows for the
estimation of local tissue specification that is encoded in the image series. Second,
it is used to extract the motion of the moving organ from the image series. Features
of interest, such as time evolution of volume and torsion, are obtained by the
subsequent analysis of the detected motion.
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Most image registration methods consist of defining a measure of misalignment
and its minimization. The registration methods can be divided into several groups
based on what is taken into account in the evaluation of misalignment [53]. These
groups are: landmark-based methods, segmentation-based methods, and voxel-
based methods. In the landmark-based registration methods the alignment of two
images is evaluated based on the alignment of a finite set of voxels, the so-called
landmarks, detected on both images. The landmarks can be detected automatically
or manually, as in [54], where a landmark-based registration method is used for
brain MR images. In the segmentation-based methods the alignment of images is
evaluated based on the alignment of objects segmented in both images. In [55], B-
spline method was used to register segmented left ventricle contours. Finally, in the
voxel-based methods, the alignment is evaluated based on all voxels of the images.
An optical flow method is a representative of this category. In [56], the optical flow
method incorporating the image intensity constancy and gradient orientation was
used for registration of multimodal images.

Mathematically speaking, image registration is an ill-posed problem and is,
therefore, often formulated as a variational problem, which typically contains a
data similarity term and a regularization term. The appropriate choice of the data
similarity term is especially important when registering images obtained by different
modalities or if the voxel intensity evolves in time. In such cases, the similarity
cannot be evaluated based on the image intensity and more complex similarity terms
are needed. Similarity terms based on correlation [57] or terms utilizing mutual
information [58] are often employed. The regularization term deals with the ill-
posedness of the problem. Moreover, it can be used to prevent non-physiological
motion of the object. In advanced methods, the regularization term can incorporate
physiological and physical knowledge of the processed object in the form of “model
a priori knowledge.”

In this section, we show some examples of both aspects of image registration:
the extraction of motion indicators and estimation of the tissue characteristics
indicators. In Sect. 4.1, we discuss the data similarity term used for registration
of MOLLI MRI data (Modified Look-Locker inversion recovery, [59]), which are
used to estimate the tissue T1 relaxation time (tissue characterization obtained by
magnetic resonance related, e.g., to assess myocardial fibrosis). In Sect. 4.2 we
show the incorporation of a mechanical model into the regularization term. Another
approach of constructing the data similarity term using directly a model of imaging
technique is discussed in Sect. 4.3. The final parts represent the crucial steps in
patient-specific modeling: In Sect. 4.4 we briefly describe the problem of the fusion
of clinical data and a complex biophysical model and in Sect. 4.5 we show some
directions of employing machine learning and artificial intelligence.
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4.1 Assessment of T1 Relaxation Time from MOLLI MRI
Sequence

In this section we show the approach proposed in [60] for the registration of MOLLI
MR image series. The MOLLI sequence is used for pixel-wise estimation of the
tissue characteristics of T1 relaxation time. In the case of suboptimal breath-holding,
image registration is needed in order to compute reliable T1 relaxation times. This
holds especially for the points adjacent to the epicardial and endocardial surfaces of
the myocardium, where the misalignment may significantly corrupt the computation
of the T1 relaxation time.

The evolution of image intensity and large changes in image contrast are
the factors that make the registration of the image series acquired by MOLLI
challenging. In order to deal with this characteristic of the sequence, a special
data similarity term was proposed by Škardová et al. in [60], based on evaluating
signed distance of image voxels from segmented surfaces. The method requires the
segmentation of epicardial and endocardial surfaces of the myocardium. The data
similarity term is then based on the assumption:

φ(x(t), t) = const ∀t ∈ (0, T ),

where φ(x(t), t) represents the signed distance of point x from the segmented con-
tours of the myocardium. That is, the distance of each point from the myocardium
contour was assumed to remain the same over time. This formulation allows for the
use of the voxel-based registration methods and excludes the effects of non-constant
image intensity. Since the displacement caused by suboptimal breath-holding is
independent of the frame ordering, all source images can be registered with the
target image independently. Three images from the MOLLI series with segmented
myocardium are shown in Fig. 9. The source images S1 and S2 are shown in
Figs. 9a,b, while the target image T in Fig. 9c. The result of registration using this
method is depicted in Fig. 10.

4.2 Motion Extraction from Image Data Using Mechanical
Model Constraints

A detailed extraction of motion pattern from functional cine cardiovascular MR
images (see Fig. 11) has been a challenging problem since longtime. In MRI, a
special magnetic saturation pulse can be applied. The tissue can be saturated in a
regular pattern (typically in the form of lines or grids), with which the material
points of the myocardium can be followed. The technique is known as SPAMM
(SPAtial Modulation of Magnetization [61]) or as tagged MRI. The periodic
character of the tag lines allows to use the so-called Harmonic Phase (HARP) [62]
or Sine-Wave Modeling (SinMod) [63] analyses. Recently, an improved Harmonic
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Fig. 9 Segmented epicardial and endocardial contours of myocardium of left ventricle. (a) Source
image S1. (b) Source image S2. (c) Target image T

Fig. 10 Source images of
Fig. 9a,b registered to target
image in Fig. 9c. (a)
Transformed source image
S1. (b) Transformed source
image S2

Phase analysis method was introduced by Mella et al. under the name HARP-I [64].
HARP-I has a superior efficiency to the standard HARP or SinMod methods, as was
demonstrated in [64]. However, it relies on acquiring the tagged MR images, which
is practically difficult to do in every patient due to lengthening of the MR exam.

Genet et al. [65] described a novel motion tracking based on image registration
while imposing mechanical constraint of equilibrated gap regularization—the so-
called equilibrated warping.1 It has been shown not only to successfully track the
motion in the tagged MR images but also to extract global torsion in standard cine
MR images [66]. The LV torsion in rTOF patients was previously studied; however,
poor reproducibility was observed when using standard clinical commercial soft-
ware [67]. In [68], Castellanos et al. successfully employed the equilibrated warping
in rTOF patients. In this work, the authors aimed to demonstrate that assessing the
LV torsion in a robust and reproducible way has the potential to contribute to an
earlier detection of heart failure.

1 The implementation is available at https://gitlab.inria.fr/mgenet/dolfin_dic.
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Fig. 11 Short axis views of cine MRI and tagged MRI. (a) Cine MRI: end-diastolic image. (b)
Cine MRI: end-systolic image. (c) Tagged MRI: end-diastolic image. (d) Tagged MRI: end-systolic
image

4.3 Motion Extraction from Image Data Using Model
of Imaging Modality

In this section we discuss extracting motion from medical image series by using a
model of the imaging modality. In [69], such an approach is employed to register
2D tagged MR images. This method uses a geometrical model of the segmented
object that is to be registered and also the imaging model. For each setting of the
geometrical model, the imaging model can be used to generate synthetic images.
We look for the mapping that best matches the synthetic and acquired images.

The imaging model used by Škardová et al. in [69] includes the 2D tagging
and artifacts caused by a limited image spatial resolution. The image registration
is regularized by the equilibrated warping, as described in [65, 66]. We remark that
the proposed method could be applied also for other medical imaging modalities.
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More effects could be considered, including complex artifacts given by the imaging
method, e.g., if a very high acceleration of data acquisition is used. An efficient pro-
cessing of such data has the potential to reduce the overall scanning time. This could
substantially assist in some challenging MR acquisition such as cardiovascular MRI
exam during physiological exercise [70].

4.4 Model–Data Fusion

Advanced image processing constrained by a model gives an opportunity for a fast
and reliable extraction of motion from image data. This is important in stratifying
patients (e.g., as presented in Sect. 4.2). Moreover, the acquired and processed
data can be incorporated into truly biophysical models in the sense of the third
component of TCM (as listed in the introductory Sect. 1)—data–model fusion. The
topic of assimilating clinical data into a complex biophysical model was reviewed
by Chapelle et al. in [71]. The correction of model by data leads to increasing the
patient-specificity of the models, as presented, e.g., in [72, 73]. The biophysical
character then allows to estimate some clinically relevant parameters, contributing to
a detailed description of physiology state. The parameters obtained, thanks to fusing
a model with data, are represented, for instance, by passive tissue stiffness [74–76]
or contractility [77–79] for the heart tissue. For large vessels, Young’s modulus or
relative pressures were estimated in [80–82], to give some examples. Such model-
accessed parameters are expected to be included in clinical studies of a larger scale
in the near future.

4.5 Data-Driven Strategies for Image Analysis

Recently, with an increasing availability of large amounts of medical image data,
data-driven approaches have become more frequently used in multiple classes of
medical image analysis. As examples can serve pattern recognition, segmentation,
and registration. The data-driven methods learn patterns directly from image data;
therefore, in principle, no mathematical model is needed. In practice, data-driven
methods can be used alone or in combination with a mathematical model, if a model
with an appropriate level of detail and expressiveness is available.

However, with the purely data-driven methods, problems with robustness and
interpretability (which are key qualities in many medical applications) might
arise. This could occur mainly for deep learning methods—neural networks with
tens or even over hundreds of layers. Both approaches—model-based and data-
driven—are compared in [83] in terms of robustness, accuracy, interpretability, and
explainability.

As was mentioned in the beginning of Sect. 4, the model-based image registra-
tion methods usually incorporate a data similarity term and regularization terms.
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Recently, data-driven methods for learning transformation parameters by minimiz-
ing traditional cost functions using neural networks have been presented. These
methods can be divided into two groups: supervised—for which a set of registered
images with known transformation parameters is available—and unsupervised—
for which transformation parameters are learned directly from input image data.
The supervised methods include, for example, a Spatial Pyramid Network (SPyNet)
[84] and a convolutional neural network (CNN)-based method for optical flow
estimation. Similarly to traditional optical flow method, SPyNet incorporates spatial
resolution pyramid to bypass estimating large displacements. In [85] CNN-based
method for multimodal registration of T1- and T2-weighted MR images of brain
was presented. The unsupervised methods based on CNN include [86], used for
registration of brain MR images or [87] used for cardiac MR images.

Similarly, in image segmentation the data-driven methods learn the information
about the shape and intensity distribution of a segmented object from the image data.
Even early approaches using simple voxel-wise intensity features, for example, the
support vector machine (SVM)-based method [88] and k-nearest neighbor classifier
[89], were successfully used for brain segmentation. In classical machine learning
approaches, the most effective methods are based on decision forests [90], which
allow to incorporate larger feature vectors, as they perform feature selection and
learning at the same time. Today, most of the successful segmentation methods are
based on neural networks, specifically CNNs [91].

5 Large Vessel Flow Modeling

Phase-contrast magnetic resonance imaging (PC-MRI) [92] is used to assess the
level of valvular stenosis or regurgitation [93]. PC-MRI is based on the fact that the
phase shift of the MR signal after applying a bipolar gradient is linearly proportional
to the velocity of the moving spins in the image. The linearity of the phase shift
is valid only under the assumption of laminar flow, and the measured flow is
underestimated if the level of turbulence is above a certain level [94]. There exist
research MR sequences specifically designed for turbulent flow (see, e.g., [95–97]).
However, they are currently not a part of standard clinical MR packages and cannot
be, therefore, routinely used. Furthermore, they would substantially lengthen the
MR exam, which would complicate their clinical deployment.

To reduce the limitations of standard PC-MRI, the imaging method can be
coupled with a biophysical model of flow, in the sense of Sect. 4.4. The model can
lead to a correction of data, e.g., of the underestimation of velocity in turbulent flow
mentioned above. While some parts of the vessel geometry may be inaccessible
to imaging, due to, e.g., the presence of vascular stents as illustrated in Fig. 12, the
computational flow dynamics (CFD) model constrained by the data measured before
and after the stent has the potential to contribute to detecting the possible re-stenosis
of the stented vessel segment.



Translational Cardiovascular Modeling: Tetralogy of Fallot and Modeling of Diseases 261

Fig. 12 Illustration of clinical PC-MRI examination of the bifurcation of abdominal aorta. Due to
the presence of stents, the aortic bifurcation cannot be directly assessed. A CFD simulation has the
potential to provide crucial information missing in the clinical assessment. Ao: Aorta; il-R: right
common iliac artery; il-L: left common iliac artery

5.1 Phantom Experiment

Prior to clinical usage of a numerical model of flow in vessels, it should be validated
on representative problems using in vivo or in vitro data [98]. In vivo data often
suffer from beat-to-beat flow changes, limited signal-to-noise ratio, and motion
artifacts [99]. In vitro experiments, however, can be controlled in several ways.
They provide valuable information firstly for the validation of a CFD model and
secondly for a successful coupling of the model with PC-MRI data. The CFD
and experimental data can be compared using common statistical methods applied
on quantities of interest, e.g., mean flow perpendicular to a centerline at various
locations along the vessel, or flow ratio between two or more branches of the vessel
tree [100]. Prior to comparison, experimental data may be used to fine-tune the CFD
model parameters, such as fluid density and viscosity [100]. It can also facilitate in
setting a boundary condition, e.g., whether a simple mean flow is sufficient as an
input and output condition or whether a more elaborate flow profile is needed. Or,
similarly, whether a zero outlet pressure provides sufficient results as opposed to
a more precise estimate, such as 1D in silico pressure model [100, 101]. In the
following paragraphs, we provide some practical aspects of in vitro experimenting.

First, a flow rate close to the physiological regime should be achieved. A special
care must be taken to utilize a stable pump that does not experience a decrease
in power when subjected to an increasing resistance. The sources of resistance are
hydrostatic pressure (caused by the vertical arrangement of the pump and MRI table)
and the resistance of the circulatory system (causing a pressure loss). To minimize
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the friction of fluid in the circulation, a hose of a large diameter and a minimum
possible length should be used. This is limited by the amount of fluid available and
the necessity of placing the pump outside the magnetic field of the MR scanner. Any
connecting parts of the system or devices, such as a flow meter, also tend to add a
resistance. Inevitable internal friction in the fluid itself is another factor influencing
the pump performance.

PC-MR images may suffer from low velocity-to-noise ratio. This statistical error
of velocity can be minimized by prolonged scan times. Such an approach would be
often non-feasible in vivo. Not only precision but also the accuracy is a challenge
of in vitro measurement especially with smaller vessels, as they are prone to partial
volume effect. This artifact is reduced by selecting the material of phantom which
provides a similar signal intensity as the fluid [102].

Another advantage of in vitro experiments is the precise knowledge of geometry.
Phantoms can be created from a 3D printed model using suitable silicon-based
material [103]. The geometry of the model can then be described analytically or
obtained by using a more precise imaging modality, such as computed tomography.

Initial validation phases of a flow model can be conducted by using simplified
in vitro experiments. For instance, it may be sufficient to consider constant flow
through a rigid pipe with a valve-shaped orifice (narrowing) while using clean water
as a medium. Such example is illustrated in Fig. 13 and was used in the study
by Fučík et al. [104]. The shapes of phantom valves represent three degrees of
valvular stenosis (mild, moderate, and severe). Hessenthaler et al. presented in [105]

Fig. 13 Illustration of vertical cross section through experimental phantom and acrylic plates
mimicking the mild (Mild-VS), moderate (Mod-VS), and severe (Sev-VS) stenoses. All dimen-
sions are in mm. The red region � represents the domain of the computational simulations in 3D
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a phantom with non-rigid walls suitable for assessing the computational models
including fluid–structure interaction. Finally, various numerical benchmarks (e.g.,
[106]) can be used to evaluate the implementation issues of models.

For validation of more complex flow models, the initial experiment can be further
modified. For instance, a pulsating flow pump can be used or the water medium can
be replaced with some blood-like fluid. There exist commercially available blood-
mimicking fluids suitable for the use in MRI. Their price may, however, be an
obstacle. Several substitutes were proposed. In [107] Campo-Deaño et al. explore
the properties of xanthan gum to mimic the shear-thinning behavior and of glycerin
and sucrose to mimic the elasticity. These alternatives are cheap and easy to prepare.
However, they are less convenient to work with, as they are difficult to rinse off in
the case of leak and they also deteriorate with time.

5.2 Computational Fluid Dynamic Model

Applications of CFD in cardiovascular medicine can be found, e.g., in the treatment
and diagnosis of aortic or cerebral aneurysm [108], aortic coarctation [109], vessel
or valvular stenosis [110, 111], valvular regurgitation [112], or a description of the
aortic arch flow [113]. The CFD is usually coupled with PC-MRI [114], where the
measurement serves as the source of initial and boundary conditions for the CFD.
Classical CFD methods (such as the finite volume or finite element methods) are
widely used methods and were applied in the cardiovascular problems using, for
example, commercial ANSYS engineering software [115] or open-source software
OpenFOAM [116]. The main disadvantage of these classical CFD methods is their
substantial computational cost (for reasonable spatial and temporal resolutions),
which is a key obstacle for their application during medical examinations.

The lattice Boltzmann method (LBM) [117] can be considered as a modern
alternative to the classical numerical methods. The main advantage of LBM is
the accuracy and local nature, which allows the massive parallel implementation
on computational clusters, including those with modern graphic accelerator units
(GPUs), and clusters of GPUs. LBM has been already used in a wide range of
computational problems. In [118], Fučík et al. showed the capability of LBM to
simulate fluid flow in complex fluid domains such as aortic vessels with stenosis.

In [104], Fučík et al. address the issue of underestimating the backflow by PC-
MRI. The 3D geometry was given by the geometry of the phantom with three
levels of stenosis; see Fig. 13. The inlet boundary condition was given by the
flow measured prior to the stenosed region. By comparing the PC-MRI measured
backflow with the simulation, excellent agreement between LBM and PC-MRI
results of both forward and backward flow for mild and moderate stenosis was
observed, as depicted in Fig. 14. However, a large discrepancy occurred in the
case of the severe stenosis, as can be seen in Fig. 15. This observation can be
explained by the decrease in signal caused by the turbulence-induced accumulation
of spins with different encoded phases in one voxel during the readout period. The
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Fig. 14 Simulated backward flow for mild (left) and moderate stenosis (1.5T and 3T MRI
systems) confronted with the simulation by lattice Boltzmann method. The solid vertical line
represents the valve position. Each color corresponds to the flow rate on the inlet given by the
measurement ranging from physiological at rest (green) to accelerated flow (black) representing,
e.g., high exercise stress

Fig. 15 Simulated backward flow for severe stenosis (1.5T and 3T MRI systems) confronted with
the simulation by lattice Boltzmann method. The solid vertical line represents the valve position.
Each color corresponds to the flow rate on the inlet given by the measurement ranging from
physiological at rest (green) to accelerated flow (black) representing, e.g., high exercise stress

presented work is an essential initial step toward combining measured data by PC-
MRI with CFD model suitable for the use in clinical workflow, allowing to enhance
the interpretation of measured data by a biophysical model.

The appropriate CFD model should reflect the correct physical properties of the
fluid in the vessels. Thus, Škardová et al. investigated in [119] three fluid models
for the blood flow through a stenotic vessel. Two models approximated blood as
a Newtonian fluid with different fluid kinematic viscosity. The third one used the
Carreau–Yasuda model [120], which is designed for capturing the non-Newtonian
behavior of blood.
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The simulations based on the non-Newtonian model in three different aorta
geometries with gradually increasing severities of stenosis showed that the severity
of stenosis has a non-negligible impact on fluid viscosity. Nevertheless, the fluc-
tuation of viscosity was small in all simulations. Thus, based on the numerical
simulations, the Newtonian approach can be applied to the fluid simulations in the
geometries of large vessels, however, with a careful choice of the Newtonian fluid
viscosity. Phantom experiments (e.g., as described in Sect. 5.1) with various types of
fluid will be the next step to shed light into the most appropriate constitutive model
of blood in vessels.

6 Discussion

This chapter primarily dealt with TCM applied in congenital heart diseases. It
focused on tetralogy of Fallot after complete surgical repair (rTOF). TOF may be a
relatively rare disease; however, the regular follow-up exams of patients represent a
significant cost for the healthcare system. Furthermore, the acquired data throughout
the evolution of cardiovascular remodeling provide an opportunity to address some
important clinical questions of TOF using cardiovascular models.

Sections 2–5 addressed some common issues in rTOF patients. Each topic is
typically advanced by one or a few research groups. However, in a given individual
patient, the optimal management may require several of these approaches (as well
as some additional ones) to be put together—one of the challenges of successful
clinical application of cardiovascular modeling nowadays.

While TOF represents one particular disease, a number of already existing
modeling techniques can be applied to the cohort of TOF. On the contrary, the
novel techniques developed specifically in the group of TOF patients could be useful
for other pathologies as well. Indeed, each challenge solved in the TOF cohort has
its counterparts in a much larger group of acquired heart diseases. This is in line
with the TOFMOD acronym—Tetralogy of Fallot and Modeling of Diseases—as is
depicted in the schematics in Fig. 16. For instance:

1. Knowledge obtained from the optimization of PVR could possibly be translated
into a much larger cohort of the left-heart valve (aortic and mitral) pathologies
[121].

2. Optimal timing of intervention on pulmonary artery could contribute in opti-
mizing the management of pathologies affecting the aorta, head and neck aortic
branches, or, e.g., in the interventions for ischemic disease of lower extremities.

3. Biomechanical modeling has shown to be feasible in the planning and optimiza-
tion of cardiac resynchronization therapy (CRT) for failing LV in acquired heart
disease [50, 51]. This can be a starting point for the translation of CRT modeling
into the TOF cohort, for whom the therapy is focused on the right ventricle (RV-
CRT) [47].

4. Thanks to regular follow-up of rTOF patients in cardiology clinic, the failing
LV or RV might be diagnosed and treated in its early stage. The diagnosis and
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Fig. 16 Tetralogy of Fallot and Modeling of Diseases (TOFMOD) scheme

management of an early-stage HF could then serve also for the cohort of the
acquired heart diseases, in order to shift the management of their heart failure
into earlier stages. This has the potential to improve the current 5-year survival
rate of HF being around 45% [122].

This chapter demonstrated the potential of the biomechanical modeling
approaches to assist in data handling and inform about a disease’s progress. To
ensure reliable predictions, the rigorous assessment of the credibility of the model
must be included in the workflow. Namely, the quantification of the model’s ability
to explain the underlying mechanism must be performed in terms of verification of
the numerical method, validation of the biophysical assumptions of the model (a
degree to which the model is capable to represent the reality, usually performed with
a measured dataset), and uncertainty quantification [123]—a subject of the recent
research within the cardiac modeling community. When personalizing the models
(the so-called data–model coupling), the clinical data serving as input for the model
are subject to measurement errors. Therefore, in order to correctly interpret the
model-derived predictions, it is of paramount importance to understand and quantify
the sensitivity of the model outputs to the noisy input data signals. For example,
the study of Eck et al. [124] demonstrated the efficiency of stochastic mathematical
solutions, namely the polynomial chaos method (for details, see [125]), to quantify
the uncertainty of the parameters of one-dimensional patient-specific blood flow
model.

The uttermost goal of precision medicine is to minimize uncertainties in the
patient management workflow. The creation of “digital twins” or “avatars” of the
patients [126] and their subsequent holistic translation into clinical practice could
be optimized via synergistic approach of combining physics-based and statistical
models. These two approaches could counterbalance limitations present in either of
them. For example, a physics-based model can be used when a solid understanding
of the biophysical system and the validation data are available (e.g., prediction of
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immediate adaptation of tissue contractility in response to PVR [17]). However,
should the underlying biophysical mechanism be poorly understood (e.g., long-
term tissue remodeling) or being too complex to be described by the model, a
statistical approach may still be capable of identifying some predictive relations
(e.g., statistical shape modeling to predict RV remodeling [127] or characterizing
RV–LV interactions [128] in rTOF patients). The synergistic approach was used
in the recent work by Regazzoni et al. [129] to explain an unknown long-term
dynamics of the aortic flow in hypertensive conditions. A mechanical model of large
vessel flow (capturing the short-term phenomena) was combined with data-driven
modeling approach (machine learning) to explain the long-term phenomena.

7 Conclusion

Applying modeling methods in clinic is a very recent research topic with a
number of associated challenges. First, a relevant clinical question, which can be
addressed by modeling, must be defined. Second, the model including suitable
components and of an adequate complexity must be selected. Third, data have to
be obtainable, allowing for model personalization. When turning a model into the
patient-specific setup, the physical and physiological character of the models allows
them to estimate quantities that are hard (or even impossible) to measure in vivo
while maintaining clinical relevance. In addition, the predictive capabilities of such
models allow to assess the action of certain therapeutic effects in silico. Both have
the potential to contribute to the optimal clinical management of patients. Clinical
problems requesting to employ novel techniques typically represent rather large
challenges. Combining various multidisciplinary approaches in a collaborative way
has the potential to advance the clinical management and can be helpful for patients.
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