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Abstract. Coseismic Landslides (COLA) are one of the most widespread and
destructive hazards to result from earthquakes inmountainous environments. They
are always associated with almost instantaneous slope collapse and spreading,
posing significant hazards to human lives and lifeline facilities worldwide. Current
methods to identify COLA immediately after an earthquake using optical imagery
are too slow to effectively inform emergency response activities. Their realistic
prediction is crucial for the design of key infrastructure and to protect human
lives in seismically active regions. Forecasting their severity could be extremely
beneficial for the effective treatment of disastrous consequences. The goal of this
research is to propose a hybrid model that takes into consideration only three of
the most affordable factors to acquire, the Slope of the active areas, the Aspect
and the Geological Form. Determination of their correlation could predict the
severity of COLA phenomena. The dataset used in this research, comprises of 421
records for year 2003 and 767 for 2015 from the Greek island of Lefkada. The
introduced hybrid model employs Fuzzy c-Means, Ensemble Adaptive Boosting
and Ensemble Subspace k-Nearest Neighbor algorithms. The model managed to
successfully classify the Coseismic Landslides according to their severity. The
performance was high especially for the classes of major severity.

Keywords: Forecasting landslides · Fuzzy c-Means · T-norms ·
k-Nearest-Neighbors · Ensemble Subspace k-NN · Adaptive Boosting ·
Ensemble AdaBoost

1 Introduction

Landslides occur in a variety of environments, characterized by either steep or gentle
slope gradients, frommountain ranges to coastal cliffs or even underwater. Gravity is the
primary driving force for a landslide to occur, but there are other factors affecting slope
stability that produce specific conditions, which make a slope prone to failure. In many
cases, the landslide is triggered by a specific event, such as a heavy rainfall, an earthquake,
a slope cut to build a road and many others. Earthquake-induced landslides are one of
the most catastrophic effects of earthquakes, as evidenced by many historic events over
the past decades, especially in countries with high seismicity [1]. As a few examples,
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the 1994 Northridge earthquake triggered more than 11,000 landslides. In the 2008
Wenchuan earthquake in China, the Tangjiashan landslide with over 20.37 million m3

mass movement, blocked the main river channel and formed a landslide dam, putting
millions of people downstream at risk. According to Jibson et al. [18], there are cases
that the consequences of landslides, triggered by an earthquake, have a massive impact
in human lives and facilities. The correlation of the pattern of COLA with geological
and topographical variables i.e. lithology, slope angle and slope aspect with the volume
of landslides has been investigated by several researchers. The density of the mapped
landslide concentration is normally associated with the seismic shaking magnitude. In
particular, it was shown that landslide frequencies are higher in areas of highest Peak
Ground Acceleration (PGA) and that landslide density decays with the epicentral or fault
distance [2, 20, 25].

The pinpoint of the areas that are most vulnerable in Coseismic Landslides is vital
in order to take actions in time and reduce the risk in those areas. Realistic prediction
of COLA is crucial for the design of key infrastructure and to protect human lives in
seismically active regions. Among many existing methods for landslide assessment,
the Newmark sliding mass model has been extensively utilized to estimate earthquake-
induced displacements in slopes, earth dams and landfills since the 1960s. As technology
develops, new methods and techniques were proposed for assessing the degree of dan-
ger within an area. Such, instruments are satellite imagery and Geographic Information
System technology (GIS), especially using statistical analyses of geo-environmental
and seismologic factors into GIS software [29]. In particular, the characteristics of the
land sliding area is statistically related to control factors such as topographic, geologic
and seismic parameters e.g. slope angle, slope aspect, curvature, lithology, PGA, seis-
mic intensity distribution and distance from the seismic fault or epicenter [27]. These
correlations can provide crucial information that can be used for seismic landslide haz-
ard analysis and planning mitigation measures for prone earthquake-induced landslides
regions [6, 7, 18]. Coupling effect between topography and soil amplification, leads to
complex wave propagation patterns due to scattering and diffracting of waves within the
low velocity near surface layers. These ground motion effects have significant impact on
COLA assessment, but only limited efforts have considered them in empirical models.
There is a clear need to develop innovative numerical schemes to address the above
challenges.

In existing literature, there is a lack of models that can predict the severity of Coseis-
mic Landslides using only the slope angle, slope aspect and the geological form of a
specific area. This work represents an extended version of the previous research of the
authors [31]. It is very common, to use more features for the forecasting, which derive
from the use of expensive equipment. Thus, it is essential for the deployment of a model,
that it is not based on large financial funds and be equally effective. Being able to predict
the severity of an upcoming landslide after an earthquake, it could be extremely bene-
ficial for the effective treatment of disastrous consequences. The development of such
a model, could assist risk management organizations, public agencies and stakeholders,
or even governments, to apply a better distribution of the staff and financial resources
to each area, for the confrontation of potential corollaries, or even develop appropriate
mitigation plans, increasing the resilience of the community.
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The statistical analysis of geo-environmental and seismologic factors is performed by
bivariate and multivariate approaches. The purpose of this study is the recommendation
of a hybrid algorithm, which could find the association of three main factors of COLA,
(slope, aspect and geological form), with their severity. The proposed hybrid model uses
Fuzzy c-Means clustering [3, 12], Ensemble Adaptive Boosting (ENAB) and Ensemble
Subspace k-Nearest Neighbor (ES_k-NN) classifiers [10, 15]. The existing literature,
like [23, 32] does not exploit the combination of the above algorithms. Current methods
identify COLA after an earthquake, consider optical imagery. They are too slow to
effectively inform emergency response activities. There is a need for a fast and flexible
model to consider more affordable factors. All current approaches are using crisp values
for the determination of involved features. This could lead to misclassification of COLA
for values close to the borderline.

2 Area of Research

Lefkada, is a Greek island in the Ionian Sea on the west coast of Greece, connected to the
mainland by a long causeway and floating bridge. Lefkada measures 35 km from north
to south, and 15 km from east to west. The area of the island is about 302 km2, the area
of the municipality (including the islands Kalamos, Kastos and several smaller islets) is
333.58 km2. The basic geological forms for of the island are: a) A carbonate sequence of
the Ionian zone. b) Limestone of Paxos (Apulia) zone restricted in the SW peninsula of
the island. c) Few outcrops of ionian flysch (turbidites) and Miocene marls-sandstones
mainly in the northern part of the island [9]. The geological Zones of “Ioanian” and
“Paxos” are separated by a bountary which is located in the NW-SE direction of the
region and projects onshore Southcentral Lefkada, near “Hortata” Village, in the form
of a burried thrust fault by scree and late Quaternary deposits [28]. Pleistocene and
especially Holocene coastal deposits are sprawling in the Nothern edge of Lefkada,
where its capital is located, in the valley of “Vassiliki” and in the Coast “Nydri”. Due
to its location in the Ioanian sea and to its complex crustal deformation resulting from
the subduction of the African Plate towards NE and to the Apulian platform continental
collision further to the Northwest, Lefkada is one of the most tectonically active areas in
the European continent [14, 16]. The principal active tectonic structure is 140 km long
dextral strike-slip Cephalonia-Lefkada transform fault CTF [24]. It has a GPS slip-rate
bracketed between 10 and 25 mm/yr. Most of the slope failure cases have been reported
on the western part of the island, which owes its deep morphology to this offshore CTF
and its onshore sub-parallel fault; the “Athani-Dragano” fault [9]. The latter is a NNE-
SSW striking fault, forming a narrow elongated continental basin, precicely depicted in
the region’s morphology and indicated on satellite images and aerial photos.

There is thorough and detailed record about at least 23 events, with crucial impact on
the ground of Lefkada [26]. A first conclusion drawn by the events is that earthquakes
occur in pairs (twin ore cluster events) with time period of occurrence ranging between
2 months and 5 years e.g. 1612–1613 (16 months); 1625–1630 (5 years); 1722–1723
(10 months); 1767–1769 (2 years); 1783–1783 (2 months, possible aftershock); 1867–
1869 (2 years); 1914–1915 (2 months); 1948–1948 (2 months). Therefore, it is of great
importance to pinpoint the location of Coseismic Landslides since it will be useful in
order to reduce the hazards and increase the resilience at the island.
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2.1 Coseismic Landslides at the Island of Lefkada

The most recent and well examined earthquakes are those of 2003 and 2015. The penul-
timate earthquake caused massive slope failures at the western part of the island. The
amount of the debris material that arose was remarkably larger than the one of 2015.
Numerous landslides occurred on thewhole island and especially in the northwestern and
central area, on both natural and cut slopes, as well as, on downstream road embankment
slopes. Among the most indicative rock falls with diameters up to 4m, were observed
along the 6 km long road of “Tsoukalades-Agios Nikitas” which is within the epicen-
tral area, and are accompanied by gravel, small rock and soil slides [26]. The frequent
occurrence of this failures led to the closure of the road network which lasted for more
than two years. The reported rock falls followed the trace of a 300 m high morphological
scarp, and especially a 10–40 m high artificial slope [26].

Regarding the 2015 earthquake, the dominant geological effects were related to slope
failures i.e. rock falls and slides, and shallow and deep seated landslides on both natural
and cut slopes [28]. These failures were documented on the western part of the island,
while the most densely concentration of these phenomena was reported on the coastal
zone from “Porto Katsiki” to “Egremnoi-Gialos” beach and along the 6 km long coastal
road of “Tsoukalades-Agios Nikitas” [28]. Shallow landslides and rock slides were
mainly generated in areaswhere the clasticmaterial covered the bedrock, and particularly
in places where the rock mass was heavily jointed. Deep seated landslides were mainly
documented at the area of “Egremnoi” [29]. At this area, deep seated landslides were
reported, and large amount of debrismaterialmoved downslope inducing severe damages
to the road network and to residential houses. The debris consists of coarse-grained size
material with large diameter gravels and few boulders.

In order to investigate the earthquake-induced landslide density, event-based inven-
tories were developed by taking into account aerial and satellite imagery in Google
Earth in order to enrich and update existing landslide datasets, previously compiled for
the two earthquakes [27]. Google Earth imagery of June 12, 2003 and December 19,
2005 was used for mapping 2003 earthquake landslides, and November 15, 2013 and
April 15, 2016 for 2015 earthquake. Landslide activity along the western part of Lefkada
is considered as minimal between major earthquakes, as observed on multi-date satel-
lite imagery and confirmed by local residents. The short period between each satellite
imagery pair (2–3 years) is believed to include only the COLA, with very few if any
at all landslides triggered by other factors. In total, 301 and 596 coseismic landslides
were mapped for the 2003 and 2015 earthquakes. For the extraction of morphological
and terrain parameters of the compiled landslide datasets, a detailed Digital Elevation
Model (DEM) with spatial resolution of 5 m was used. The 5 m DEM was obtained
from Hellenic Cadastre and it was extracted from aerial imagery stereo-pairs, having a
vertical accuracy of 4 m [29].

Having completed the polygon-based inventories, a statistical analysis of landslide
distribution took place. In total, 596 and 301 landslides were identified covering (planar
area) 1.29 km2 and 1.6 km2 for the 2015 and 2003 events. These planar-oriented areas
are obtained as projected measurements. The minimum and maximum landslide areas
were 40.4 m2 and 42,940 m2 for the 2015 earthquake, while for the penultimate event
the relevant values were 129.8 m2 and 98,300 m2 [29]. The minimum and maximum
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landslide areas for 2015 in an area of 1.78 km2, were 51.30 m2 and 58.330 m2. They
were found by considering the DEM for the delineation of the landslide area. The values
for the 2003 earthquake were 140.9 m2 and 148.469 m2 in an area of 2.28 km2 [29].

3 Dataset Pre-processing

Five features were related to COLA, 4 of which were numeric (Planar Area, Average
Slope, Area, Average Aspect, Id) and 1 was nominal (Geologic Form). Given the fact that
there are several landslides with 2 or more geological forms, the Coseismic Landslides
were reassigned. This resulted in 421 instances for 2003 and 767 for 2015. For both
years, the features are the same. Thus, the same data preprocessing was applied for
both datasets. Nonetheless, in the 2003 COLA, two additional geological forms were
observed, compared to ones of 2015. The data preprocessing for these two years was
done independently. This resulted in an overall evaluation of the proposed algorithm, that
proves its consistency and efficiency regardless the year. For data handling, 3 steps were
followed. The 1st was related to the manual processing of the Average Slope, Average
Aspect and Geological Forms. The 2nd and 3rd steps were performed by developing
novel code inMatlab R2019a.

It was observed during the experiments that there are some variations in landslides
that have the same severity but appear to have quite different slopes. For this reason,
the natural logarithm function ln(x) was applied on the values of the slopes in order
to smooth out any spikes. Regarding the average aspect, the initial elaboration was to
transform it from nominal to numeric in a scale from 1 to 8, according to Fig. 1.

Fig. 1. Aspect and corresponding degrees

Nonetheless, it was considered more efficient to separate the landslides that have
aspect 10° from the ones that have 350° (Fig. 1b). For this purpose, for each landslide
the actual aspect in degrees was used.
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3.1 Labeling Geological Forms

The Geological form feature was transformed to numeric, in a scale from 1 to 20 for
2003, from 1 to 18 for 2015. Table 1 presents the numeric labels for each Form.

Table 1. Geological form types for 2003 and 2015

Geological Form  al  C Ci Cs Csd E J1 J1d Jar Jc 
Form Label 2003 1 2 3 4 5 6 7 8 9 10 
Geological Form Jm Js M Mb Pc Qc Qp Qt Tc Tg 
Form Label 2003 11 12 13 14 15 16 17 18 19 20 

Geological Form 2015 al C Ci Cs E J1 J1d Jar Jc 

Form Label 2015 1 2 3 4 5 6 7 8 9 

Geological Form 2015 Jm Js M Mb Pc Qc Qp Qt Tg 

Form Label 2015 10 11 12 13 14 15 16 17 18 

al: alluvial; C, Jm, Jc, Jar, J1: limestones of Ionian; Ci, Cs: limestones of Paxos; Csd limestones;
E: limestones Eocene; Js: limestone of Paxos; J1d: dolomites; M, Mb: Miocene sandstones;
Pc: Pliocene conglomerate; Qc, Qp, Qt: Quaternary sediments; Tc: limestones and dolomites of
Triassic; Tg:evaporites.

3.2 Fuzzy C-Means Clustering of Landslides

After applying a statistical analysis of the datasets, it was pinpointed that some values
of the area and the planar area, had high standard deviation and a non-representative
mean value. FCM is the fuzzy equivalent of the “hard” clustering algorithm. It has been
employed, due to the fact that it allows an individual to be partially classified into more
than one cluster, with different degrees of membership. It was performed on the features
Area and Planar Area, to provide the labels required for the development of the hybrid
machine learningmodel [3, 4, 12]. The process of fuzzy partitioning is performed through
a repetitious optimization of the objective function 1 with the update of membership uij
and the cluster centers cj (function 2):

Jm =
N∑

i=1

C∑

j=1

umij
∥∥xi − cj

∥∥2,1 ≤ m < ∞ (1)

uij = 1
C∑

k=1

(‖xi−cj‖
‖xi−ck‖

) 2
m−1

, cj =

N∑
i=1

umij · xi
N∑
i=1

umij

(2)
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where m is the fuzzifier (determining the level of cluster fuzziness), uij is the degree of
membership of xi in the cluster j, xi is the ith of d-dimensional measured data, cj is the
d-dimension center of the cluster, ||*|| is any norm expressing the similarity between any
measured data and the center. The final condition for stopping the iterations is when

maxij
{∣∣∣u(k+1)

ij − ukij

∣∣∣
}

< ε, where ε is a termination criterion between 0 and 1, and k

indicates the iteration steps [21, 22].
This paragraph presents the hyperparameters and their values. The corresponding

membership degrees uij for large m values are small, which implies clusters with smaller
bounties. The maxIterations (assigned the default value 100) is the maximum number
of optimization iterations and minImprovement (assigned the default value 0.00001) is
the minimum improvement in the Objective function (OBJ) per iteration. The value of
m was chosen (after trial and error) to be equal to 2.

The developed FCM.m script in Maltab, transfers the content of the data files into
Matlab Tables for further processing and applies the FCM. The FCM.m script creates
the clusters of the COLA according to their severity and assigns the labels. The number
of clusters was chosen to be 6. The Linguistic of the respective clusters is a combination
of the 3 potential states (Low Medium, High) of the Planar area and Area (Tables 2 and
3).

Table 2. Clusters with their corresponding labels (planar area, area)

Clus-
ter# 1 2 3 4 5 6 

Lin-
guistic Low, Low Low, Me-

dium 
Medium, 
Medium 

Medium, 
High High, High Extreme, 

Extreme 

Table 3. Respective landslides for each cluster for 2003 and 2015

Clusters 1 2 3 4 5 6 Total Instances 
2015 448 183 74 35 22 5 767 
2003 238 100 44 27 7 5 421 

The FCM.m script is presented in the form of natural language, in Algorithm 1.

Algorithm 1. The FCM.m Matlab script 
Inputs: 421 incidents of 2003 and 767 incidents of 2015 exported from *.xlsx files. 

Step 1: Read and convert each *.xlsx file to a Matlab table. 

Step 2: For each Table the column Id was used to retrieve distinct Landslides.2 new tables constructed 

Step 3: For each new table Planar Area and Area column is chosen

Step 4: FCM algorithm is applied. Centers of clusters and MEVs of each observation are calculated. 

Step 5: Each instance is classified in the cluster on which the MEV is the highest. 

Step 6: Clusters pass to the original data. Clusters are plotted in Figss 2a and 2b
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Fig. 2. Clusters for original data for 2003 (2a) and 2015 (2b) respectively.

3.3 Fuzzy Clustering with FCM Algorithm and T-Norm

Some instances had similar membership values (MEV) for two clusters, thus the need
to create new clusters has proved imperative. Landslides with MEV (to their dominant
class) below a certain threshold, were re-sorted. Thus, each factor was assigned a weight
[5, 33] based on Eq. (3) that implements a fuzzy conjunction f (μi,wi) between many
fuzzy sets. Each MEV µi is assigned a weight wi.

μS(xi) = Agg(f (μA(xi),w1), f (μA(xi),w2), . . . , f (μA(xi),wn)) (3)

i = 1, 2,…, k. Function f is defined as follows: f (a,w) = a
1
w , a is the MEV [13, 33].

The Hamacher T-Norm was used as an Aggregation function.

A ∩ B = μA(x) + μB(x) − 2μA(x)μB(x)

[1 − μA(x) + μB(x)] (4)

The script T-Norm_Clustering.m was deployed in Matlab, to apply the FCM
with the Hammacher fuzzy conjunction. It is presented in natural language form in
Algorithm 2.

Algorithm 2. The T-Norm_Clustering.m Matlab Script 
Inputs: All membership degrees of each observation for 2003 and 2015. 

Part 1: Step 1: Threshold is defined at 0.7 

Step 2: Weights definition. The weight of the highest MEV is 4, for the 2nd highest is 2, and 0 for the rest 

Part 2: Step 1: If a MEV to a cluster is higher than 0.7 the incident belongs to this cluster.                         
Step 2: If a MEV is under 0.7 the incident belongs to a new cluster for which the MEV is calculated 
            by Eq. (3), (4) and (5). 

The T-Norm_Clustering.m script developed new clusters between the already exist-
ing ones, for both 2003 and 2015. Four new clusters were created for 2003 and 5 for
2015. If a cluster was created between clusters 4 and 5, then its name would be 4.5.
The result of clustering with FCM and Hammacher is presented in Fig. 3a and b. The
T-Norm optimized the classification of each instance according to its severity. Table 4,
presents the exact number of instances that correspond to each cluster.
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Fig. 3. Clusters for original data for 2003 (3a) and 2015 (3b) after applying T-Norm

Table 4. Total landslides of each cluster for 2003 and 2015 after T-Norm

Clusters 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 Total In-
stances 

2015 417 52 145 27 56 25 18 7 15 2 3 767 
2003 222 27 84 9 37 5 22 4 6 0 5 421 

4 Classification Methodology

Following the clustering of Coseismic Landslides using the features “planar area” and
“area”, a classification based on 3 factors was performed. The three independent vari-
ables used for the classification are Average Slope, Average Aspect andGeological Form
of landslides, which was labeled as indicated in Table 1. The cluster obtained by the
FCM with Hammacher Aggregation, is the target variable.

A total of 25 classification algorithms were employed: Fine Tree, Medium Tree,
Coarse Tree, Linear Discriminant, Quadratic Discriminant, Linear SVM, Quadratic
SVM, Cubic SVM, Fine Gaussian SVM, Medium Gaussian SVM, Coarse Gaussian
SVM, Cosine KNN, Coarse KNN, Cubic KNN,Weighted KNN, Fine KNN,MediumKNN,
GaussianNaive Bayes, Kernel Naïve Bayes, Boosted Trees, Bagged Trees, SubspaceDis-
criminant, Subspace KNN, RUSBoost Trees, Ensemble Adaptive Boosting. The one with
the highest performance was the Ensemble Adaptive Boosting Algorithm (AdaBoost).
AdaBoost, has proved to be very efficient for all classes except the first three (clusters 1,
1.5, and 2). Thus, if an observation was classified in the first 3 clusters, another algorithm
was applied in order to classify it more accurately. The best algorithm for this approach,
was the Ensemble Subspace k-NN (Fig. 4).

4.1 Ensemble AdaBoost

It makes predictions based on a number of different models. By combining individual
models, it tends to be less biased and less data sensitive. Ensemble AdaBoost works
especially well with decision trees. It is the most popular boosting technique, developed
for classification. It learns from previous mistakes, e.g. misclassification data points, by
increasing their weights. The learner with higher weight has more influence on the final
decision.
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Fig. 4. The hybrid classification model

4.2 Ensemble Subspace k- Nearest-Neighbors (Ensemble Subspace k-NN)

The k-nearest neighbors (k-NN) is a lazy and non-parametric Learning algorithm [8].
It is a traditional classification rule, which assigns the label of a test sample with

the majority label of its k nearest neighbors, from the training set. Given a set X of n
points and a distance function, k-NN search finds the k closest points to a query point
or a set of them [17]. Dunami [11] first introduced a weighted voting method, called the
distance-weighted (DW) k-nearest neighbor rule (Wk-NN). In this approach, the closer
one neighbor is, the greater the weight that corresponds to it, using the DW function.

The neighbor farthest from all the others corresponds to a weight of 0, while the
one closest to the observation corresponds to a weight of 1. All neighbors in the middle
area get corresponding values between 0 and 1. The most common and most consistent
ensemble method for k-NN is the Ensemble Subspace k-NN and related works using this
algorithm can be found in [10, 15, 17]. Tuning of the hyperparameters was done based on
a combination of 10-fold Cross Validation and Grid Search. According to the literature,
this combination is one of the most widely strategies used in machine learning.

This was a multiclass classification case, so the “One Versus All” Strategy [19, 30]
was used for the evaluation. Table 5 shows the 5 performance indices that were used.

Table 5. Indices used for the evaluation of the multi-class classification

Index Abbreviation Calculation

Sensitivity

(also known as true positive rate or recall)

SNS SNS =TP/(TP +FN)

Specificity,

(also known as true negative rate)

SPC SPC = TN/(TN +FP)

Accuracy ACC ACC = (TP + TN)/(TP + FP + FN +
TN)

F1 score F1 F1 =2*TP/(2*TP + FP + FN)
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5 Experimental Results

The experiments were performed in Matlab R2019a. The initial range of the AdaBoost
hyperparameters is the following:Maximum number of splits (MNS) takes values in the
interval [10, 500], whereas the range interval of the parameterNumber of learners (NLE)
is [1,800] and the respective one for the Learning Rate (LR) is [0.001, 1]. The optimal
hyperparameters values found were 175, 88, 1, 10, for the MNS, NLE and LR and the
number of Grid Divisions respectively. The Learner Typewas a “Decision Tree” and the
Optimizer employed was Grid Search. The Ensemble AdaBoost achieved an accuracy
of 64% and 68% for 2003 and 2015. The following Tables 6 and 7 are the confusion
matrices of the above optimal algorithm for 2015 and 2003, whereas Fig. 5a and b are
the ROC curves for the respective years. Tables 8 and 9 present the values of all the
performance indices for AdaBoost.

It is obvious that AdaBoost successfully classifies all the landslides that belong to
Cl2.5 and above. This this significant, as the algorithm can indicate with high accuracy,
COLA that would be the most disastrous. Prediction of the first 3 clusters, requires more
attention.

Table 6. Confusion Matrix for the Ensemble AdaBoost for 2015

Tr
ue

 C
la

ss
 

Class Cl1 Cl1.5 Cl2 Cl2.5 Cl3 Cl3.5 Cl4 Cl4.5 Cl5 Cl5.5 Cl6
Cl1 300 42 75 0 0 0 0 0 0 0 0 
Cl1.5 21 20 10 0 0 1 0 0 0 0 0 
Cl2 51 9 72 2 9 0 0 0 2 0 0 
Cl2.5 1 1 6 18 1 0 0 0 0 0 0 
Cl3 1 0 8 0 45 1 1 0 0 0 0 
Cl3.5 1 0 1 0 0 22 0 0 0 0 0 
Cl4 0 0 0 0 0 0 18 0 0 0 0 
Cl4.5 0 0 0 0 0 0 0 7 0 0 0 
Cl5 0 0 0 0 0 0 0 0 15 0 0 
Cl5.5 0 0 0 0 0 0 0 0 0 2 0 
Cl6 0 0 0 0 0 0 0 0 0 0 3 

The Ensemble k-NN was employed. Tuning of hyperparameters was applied with
the combination of 10-fold cross validation and grid search. The initial range for the
hyperparameters of the Ensemble k-NN are:Maximum number of splits takes values in
[10, 500], the parameter Number of learners in [1,800] the Learning Rate in [0.001, 1]
and Subspace Dimension takes values in [2, 10]. The optimal hyperparameters values
found were 20, 30, 0.1, 3, 10, for the MNS, NLE, LR, Subspace Dimension and the
number of Grid Divisions respectively. The Distance Metric was a “Euclidean” and
the Optimizer employed was Grid Search. The Ensemble Subspace k-NN achieved an
accuracy equal to 70.07% and 72.88% for 2003 and 2015. The Confusion Matrix for
each year is presented in Tables 10 and 11 and the corresponding ROC Curves in Fig. 6a
and b.
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Table 7. Confusion matrix for the Ensemble AdaBoost for 2003

Class Cl1 Cl1.5 Cl2 Cl2.5 Cl3 Cl3.5 Cl4 Cl4.5 Cl5 Cl6
Cl1 151 40 27 4 1 0 0 0 0 0 
Cl1.5 10 7 7 1 1 1 0 0 0 0 
Cl2 32 11 28 7 2 3 0 0 0 0 
Cl2.5 0 1 1 7 0 0 0 0 0 0 
Cl3 0 1 0 0 32 0 2 1 1 0 
Cl3.5 0 0 0 0 0 5 0 0 0 0 
Cl4 0 0 0 0 0 0 22 0 0 0 
Cl4.5 0 0 0 0 0 0 0 4 0 0 
Cl5 0 0 0 0 0 0 0 0 6 0 
Cl6 0 0 0 0 0 0 0 0 0 5 

Fig. 5. ROC Curves for 2015 (5a) and 2003 (5b)

Table 8. Classification performance indices for the Ensemble AdaBoost (2015)

Index Cl1 Cl1.5 Cl2 Cl2.5 Cl3 Cl3.5 Cl4 Cl4.5 Cl5 Cl6 Cl6
SNS 0.71 0.38 0.49 0.66 0.80 0.91 1 1 1 1 1 
SPC 0.74 0.90 0.81 0.99 0.97 0.99 0.99 1 0.99 1 1 
ACC 0.73 0.86 0.75 0.97 0.96 0.99 0.99 1 0.99 1 1 
PREC 0.80 0.27 0.41 0.90 0.81 0.91 0.94 1 0.88 1 1 

F1 0.75 0.32 0.45 0.76 0.81 0.91 0.97 1 0.93 1 1 

Table 9. Classification performance indices for the Ensemble AdaBoost (2003)

Index Cl1 Cl1.5 Cl2 Cl2.5 Cl3 Cl3.5 Cl4 Cl4.5 Cl5 Cl6

SNS 0.67 0.25 0.33 0.77 0.86 1 1 1 1 1 
SPC 0.73 0.83 0.87 0.95 0.98 0.98 0.99 0.99 0.99 1 
ACC 0.70 0.78 0.74 0.95 0.96 0.98 0.99 0.99 0.99 1 
PREC 0.789 0.11 0.44 0.36 0.88 0.55 0.91 0.80 0.85 1 

F1 0.72 0.16 0.38 0.50 0.87 0.71 0.95 0.88 0.92 1 
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Table 10. Confusion matrix for ensemble subspace k-NN algorithm for 2015

Class Cl1 Cl1.5 Cl2 Cl2.5 Cl3 Cl3.5 Cl4 Cl4.5 Cl5 Cl5.5 Cl6
Cl1 326 26 65 0 0 0 0 0 0 0 0 
Cl1.5 21 21 9 0 0 1 0 0 0 0 0 
Cl2 46 4 82 2 9 0 0 0 2 0 0 
Cl2.5 1 1 6 18 1 0 0 0 0 0 0 
Cl3 1 0 8 0 45 1 1 0 0 0 0 
Cl3.5 1 0 1 0 0 22 0 0 0 0 0 
Cl4 0 0 0 0 0 0 18 0 0 0 0 
Cl4.5 0 0 0 0 0 0 0 7 0 0 0 
Cl5 0 0 0 0 0 0 0 0 15 0 0 
Cl5.5 0 0 0 0 0 0 0 0 0 2 0 
Cl6 0 0 0 0 0 0 0 0 0 0 3 

Table 11. Confusion matrix for ensemble subspace k-NN algorithm for 2003

Class Cl1 Cl1.5 Cl2 Cl2.5 Cl3 Cl3.5 Cl4 Cl4.5 Cl5 Cl6
Cl1 161 36 21 4 1 0 0 0 0 0 
Cl1.5 7 12 5 1 1 1 0 0 0 0 
Cl2 28 6 38 7 2 3 0 0 0 0 
Cl2.5 0 1 1 7 0 0 0 0 0 0 
Cl3 0 1 0 0 32 0 2 1 1 0 
Cl3.5 0 0 0 0 0 5 0 0 0 0 
Cl4 0 0 0 0 0 0 22 0 0 0 
Cl4.5 0 0 0 0 0 0 0 4 0 0 
Cl5 0 0 0 0 0 0 0 0 6 0 
Cl6 0 0 0 0 0 0 0 0 0 5 

Tables 12 and 13, present the values of the performance indices for the above optimal
algorithm. After applying and the Ensemble k-NN algorithm, a significant increase of
overall accuracy and indexes was observed. The accuracy was 70% and 72% for 2003
and 2015 respectively.

Fig. 6. ROC curve for ensemble subspace k-NN for 2015 (6a) and for 2003 (6b)
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Table 12. Classification performance indices of ensemble subspace k-NN (2015)

Index Cl1 Cl1.5 Cl2 Cl2.5 Cl3 Cl3.5 Cl4 Cl4.5 Cl5 Cl6 Cl6

SNS 0.78 0.40 0.56 0.66 0.80 0.91 1 1 1 1 1 
SPC 0.76 0.94 0.84 0.99 0.98 0.99 0.99 1 0.99 1 1 
ACC 0.77 0.90 0.78 0.98 0.96 0.99 0.99 1 0.99 1 1 
PREC 0.82 0.40 0.47 0.90 0.81 0.91 0.94 1 0.88 1 1 

F1 0.80 0.40 0.51 0.76 0.81 0.91 0.97 1 0.93 1 1 

Table 13. Classification performance indices of Ensemble Subspace k-NN (2003)

Index Cl1 Cl1.5 Cl2 Cl2.5 Cl3 Cl3.5 Cl4 Cl4.5 Cl5 Cl6

SNS 0.724 0.44 0.45 0.77 0.86 1 1 1 1 1 
SPC 0.78 0.86 0.90 0.95 0.98 0.98 0.99 0.99 0.99 1 
ACC 0.75 0.83 0.80 0.95 0.97 0.98 0.99 0.99 0.99 1 
PREC 0.821 0.21 0.58 0.36 0.88 0.55 0.91 0.80 0.85 1 

F1 0.763 0.28 0.51 0.50 0.87 0.71 0.95 0.88 0.92 1 

6 Discussion and Conclusion

At first glance, the efficiency of the model is high but not optimal. We must consider that
this modeling effort has achieved to effectively classify the severity of the complicated
Coseismic Landslides phenomenon, using only 3 independent variables. From this point
of view, the performance is reliable, and it has a certain level of novelty, as to the best
of our knowledge, there does not exist another approach with similar accuracy in the
literature. It is a pioneer research, employing state of the art Hybrid Machine Learning
algorithms in Geomechanics. Indices, especially the accuracy and F1 score, indicate
a very flexible model that can predict the most severe landslides and can handle the
landslides that are not so dangerous. The results of 2003 and 2015 are similar, which
means that the algorithm is consistent and that it can generalize (not case dependent).
The performance of the algorithm for 2015 is better, because of the more contemporary
equipment used for the extraction of features. This research addresses one of the most
crucial natural hazards. It is of essential importance to urban planning and to the func-
tioning of societies. Future research will focus on predicting the timeframe and the area
of a landslide after an earthquake.
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