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Abstract. Synthesis of optimal business processes has practical applications in:
manufacturing, scheduling, process mining, agent planning, and parallel com-
puting. Block-structured models, in particular process trees, have certain advan-
tages compared with other approaches regarding correctness and robustness. In
this work we propose algorithms for the automated synthesis of optimal block-
structured processes and then we perform a sound analysis of their correctness
and complexity.
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1 Introduction

In process-centered applications (e.g. business and manufacturing, parallel computing,
planning and scheduling) a natural goal is to perform the activities related to the busi-
ness as quickly as possible. Based on domain-specific semantics, one can impose order-
ing constraints of the activities of a process. For example, if two activities are indepen-
dent and there are enough resources to be allocated to each of them, then those activities
can be scheduled for parallel execution. However, if an activity depends on the output
produced by another activity, then the first activity can be scheduled for execution only
after the completion of the second activity, i.e. their execution order is sequentially
constrained.

There is a rich literature on process modeling in theoretical and applied computer
science [13,18]. Here we focus on block-structured models, in particular process trees,
that are claimed to have certain advantages compared with other approaches [21].

A block-structured process is defined, informally, as a parallel or sequential com-
position of activities or other processes (we give a formal definition in Sect. 2). Each
activity has an estimated duration of execution. The duration of two processes P and
Q composed sequentially is d(P) + d(Q), where d(P) and d(Q) is the duration of the
process P and respectively, Q. Then, the duration of two processes P and Q composed
in parallel is max{d(P), d(Q)}, where d(P) and d(Q) is the duration of the process P and
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respectively, Q. In this paper, we study the following problem: given a directed acyclic
graph that specifies the ordering constraints on the activities, find a block structured
process of minimum duration that satisfies the ordering constraints.

Motivation. The results of our work can be used in the area of business process man-
agement (BPM) with application in project scheduling [12]. BPM is a broad and well-
established subject [7]. In this paper we focus on the specific problem of optimizing
block structured processes that capture flexible project schedules satisfying a given set
of activity precedence constraints [20].

In manufacturing there is interest for automated (i.e. using an algorithmic rather
than manual) synthesis of correct process models, according to process-specific criteria
like well-formedness, soundness and its variants (relaxed, weak and easy) [11]. Such
correctness criteria can be ensured by synthesizing block-structured processes.

A possible approach uses standard project scheduling [12] and then synthesizes a
block structured process from the schedule. However, this approach has drawbacks, as it
can lead to unstructured and overly constrained processes. Moreover, as shown in [19],
there are schedules that cannot be captured with a block structured process.

On the other hand, the block structured representation is a sort of template that satis-
fies problem constraints independently of activity durations, while a particular unstruc-
tured schedule does not always work if durations of activities unexpectedly change.
Actually this can happen in realistic scenarios. For example, poorly performed work
can increase duration of some activities. Moreover, activity durations are actually ran-
dom variables, so in many applications, like those involving manual work, the exact
value of the actual performance time depends on human performance and cannot be
estimated exactly. This shows that block structured processes have obvious advantages
over ordinary schedules. Therefore straightforward synthesis of block structured mod-
els is preferred and it can be based on ordering constraints [19,20] or on process min-
ing [2,3,15].

Our work is also relevant for multiprocessor scheduling in parallel computing. For
example, a new approach for parallel computing based on Series-Parallel Contention
modeling was proposed by the early work of [25]. According to this approach, the par-
allel algorithm and the underlying machine are described as a series-parallel structured
computation, similarly to a block-structured process.

Last but not least, block-structured processes are useful for developing sound intel-
ligent distributed applications (e.g. scientific workflows) using multi-agent systems and
concurrent plans, as proposed by Jason agent-oriented programming language [26].

Previous Work. Scheduling with ordering and resource constraints attracted computer
science researches in the areas of multiprocessor and project scheduling. According to
the early result of [24], scheduling with precedence constraints is NP-complete. More-
over, the problems of scheduling with precedence and resource constraints are included
into the standard catalogue [8] of NP-complete problems (problems SS9 and SS10).

While planning and scheduling are classical problems, synthesis of block-structured
processes from declarative specifications is a rather new problem that was only recently
approached using heuristic algorithms [19,20]. These graphs, originally called ordering
relation graphs, were first proposed and used to synthesize block-structured models in
the works by Polyvyanyy et al. [22,23].
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The SHAMASH knowledge-based approach for business process modeling and re-
engineering was proposed in [1]. SHAMASH is claimed to be useful for process simula-
tion and optimization (second goal is similar to ours). However, no evidence is provided,
the work being focused on tool presentation, rather than its algorithmic foundation.

The problem of using automated planning in BPM, in particular for the automated
design of template-based process models, was recently addressed by [16,17]. Although
this declarative approach guarantees correctness (understood as sound concurrency) and
reusability (focusing on process templates), process optimization is not addressed by
this approach. Nevertheless we claim that this is essential for business performance.

A considerable research effort was spent during the last decade for the synthesis of
business process models from event logs [3]. A special attention was given to assuring
the process correctness by focusing the Split Miner synthesis tool on producing block-
structured or deadlock-free processes [2]. While not explicitly focused on the synthesis
of optimal processes, experimental results revealed that the processes produced by Split
Miner achieved considerably faster execution times than state of-the-art methods.

A Greedy approach based on top down decomposition of the activity ordering graph
was proposed in [4]. The approach was experimentally evaluated using two heuristics:
hierarchical decomposition and critical path. An important result of [4] is that the hier-
archical decomposition process (the basis for evaluating the hierarchical decomposition
heuristic) satisfies the ordering constraints and it can be determined in polynomial time.

An exact solution based on declarative modeling using constraint logic program-
ming was proposed in [5,6]. However, the experimental evaluation revealed that this
approach is feasible in practice only for small-size problems.

Our Results. We give a thorough study of block-structured process synthesis with activ-
ity ordering constraints.

First, since there is no known polynomial time exact algorithm for this problem,
we study several variants in which the input graph is more restricted than an arbitrary
directed acyclic graph. More precisely, we introduce a polynomial time algorithm that
provides the optimum process (i.e. the one with the minimum duration) when the input
graph is a tree (Sect. 3), a tree plus one edge (Sect. 4) and when the graph is bipar-
tite (Sect. 5). The study of these particular cases is interesting from both practical and
theoretical perspective. These particular classes were considered in the scheduling with
precedence constraints setting by [14] (trees) and [10] (bipartite graphs) and, thus, these
classes of graphs are relevant. In Sect. 6 we present a dynamic programming algorithm
for solving the problem for general DAGs.

Beside the exact algorithms, we give polynomial time approximation algorithms
for the problem. Due to space restrictions some of the proofs are omitted. However, the
proofs, as well as some of our results are presented in the appendix (not included in the
13 pages version of the paper).

2 Preliminaries and Problem Definition

Let us consider a finite nonempty set Σ of activities. We focus on block structured pro-
cess models that are defined as algebraic terms formed using sequential (→) and parallel
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Fig. 1. From left to right: ordering graph G, process P1, process P2, and process P3

(‖) operators. The semantics of a process is defined as the set of admissible traces that
contain exactly one instance of each activity. Sequential composition is interpreted as
trace concatenation, while parallel composition is interpreted as trace interleaving.

Let supp(P) be the support set of process P, representing the activities occurring in
P. We denote activities of Σ with a, b, c, . . . and process terms with P,Q,R, . . . .

Block structured processes are represented as tree structured terms (or process trees)
defined as follows:

– If a ∈ Σ then a is a process such that supp(a) = {a}.
– If P and Q are processes such that supp(P) ∩ supp(Q) = ∅ then P → Q and P ‖ Q
are processes with supp(P→ Q) = supp(P ‖ Q) = supp(P) ∪ supp(Q).

The semantics of process P is given by its set of traces (language) L(P) as follows:
– L(a) = {a}
– L(P→ Q) = L(P)→ L(Q)
– L(P ‖ Q) = L(P) ‖ L(Q)

Observe that if P is a well-formed block-structured process then all its traces t ∈
L(P) have the same length |supp(P)|.

We can impose ordering constraints of the activities of a process, based on domain-
specific semantics. These constraints are specified using an activity ordering graph G =
〈Σ, E〉 [20] such that:
– Σ is the set of nodes representing activities.
– E ⊆ Σ ×Σ is the set of edges. Each edge represents an ordering constraint. If (u, v) ∈

E then in each acceptable schedule activity u must precede v.

Observe that for an activity ordering graph G = 〈Σ, E〉, set E defines a partial order-
ing relation on Σ, i.e. it is transitive and antisymmetric, so it cannot define cycles. In
standard project scheduling terminology, graph G is known as activity-on-node net-
work [12] and it is a directed acyclic graph (DAG hereafter).

Let G = 〈Σ, E〉 be an ordering graph and let t be a trace containing all the activities
of Σ with no repetition. Then t satisfies G, written as t |= G, if and only if trace t does
not contain activities ordered differently than G specifies.

The language L(G) of an ordering graph G is the set of all traces that satisfy G, i.e.
L(G) = {t | t |= G}.

Let P be a process and let G = 〈Σ, E〉 be an ordering graph. P satisfies G written as
P |= G, if and only if:
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– L(P) ⊆ L(G), i.e. each trace of P satisfies G, and
– supp(P) = Σ, i.e. all the activities of Σ occur in P.

Example 1. Figure 1 shows an ordering graph G, and three processes P1, P2 and P3.
The total number of possible traces for the set of activities Σ = {a, b, c} is 3! = 6.
Moreover, L(G) = {abc, acb, cab}. Observe also that L(P1) = {acb, cab} and L(P3) =
{cab, acb, abc} showing that P1 |= G and P3 |= G. However, as L(P2) = {cba, cab},
observe that L(P2) � L(G), so P2 �|= G.

The set of processes P such that P |= G is nonempty, as it contains at least one
sequential process defined by the topological sorting of G.

Each activity has an estimated duration of execution represented using function
d : Σ → R+. The duration of execution d(P) of a process P is defined as follows:

– If P = a then d(P) = d(a).
– d(P→ Q) = d(P) + d(Q).
– d(P ‖ Q) = max {d(P), d(Q)}.

The minimum duration of execution of a process that satisfies an ordering graph G,
denoted with dOPT (G), is: dOPT (G) = min

P|=G
{d(P)}

An optimal scheduling process that satisfies a given ordering graph G is a process
OPT with a minimum duration of execution, i.e.: OPT |= G, and d(OPT ) = dOPT (G).

There is a finite and nonempty set of processes that satisfy an ordering graph G, so
an optimal process trivially exists. Moreover, as there is an exponential number of can-
didate processes satisfying G, we postulate that the computation of the optimal process
is generally an intractable problem.

Problem 1. For an activity ordering graph G = (Σ, E), find a process of minimum dura-
tion of execution satisfying G.

In Subsect. 2.1 we define the hierarchical decomposition process, based on the hier-
archical decomposition of the precedence DAG, initially introduced by [4]. We show
that this process satisfies the problem constraints. The cost dHD of this process can be
computed in polynomial time. In Subsect. 2.2 we show a lower bound for the optimal
solution of Problem 1.

2.1 Hierarchical Decomposition Process

Let G = 〈Σ, E〉 be a precedence DAG.
– For each node v ∈ Σ we define the set I(v) of input neighbors of v as follows:

I(v) = {u ∈ Σ | (u, v) ∈ E}.
– For each node v ∈ Σ we define the level l(v) of v as a function l : v→ N recursively
constructed as follows:
• If I(v) = ∅ then l(v) = 1.
• If I(v) � ∅ then l(v) = 1 + max

u∈I(v)
{l(u)}.

– The height l(G) of graph G is defined as: l(G) = max
v∈V
{l(v)}
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– If l = l(G) ≥ 1 then the family of l sets {Σ1, Σ2, . . . , Σl} defined as Σi = {v | l(v) = i}
for all 1 ≤ i ≤ l is a partition of Σ. If Gi is the subgraph of G induced by Σi then the
family of graphs {G1,G2, . . . ,Gl} is known as the hierarchical decomposition of G.

Proposition 1. (Hierarchical Decomposition Process) Let G = 〈Σ, E〉 be an ordering
graph. The hierarchical decomposition process HD(G) associated to G is defined as:

– Pi = ‖v∈Σi v for all 1 ≤ i ≤ l.
– HD(G) = P1 → P2 → · · · → Pl.

Then HD(G) |= G.
Proof. Let t be a trace of process HD(G). This means that for all activities u and v of t
if u is before v in t then l(u) < l(v). So there is a path from u to v in G. It follows that
t |= G, i.e. t ∈ L(G). We conclude that L(HD(G)) ⊆ L(G) that completes the proof. ��

Observe that the duration of execution dHD(G) of HD(G) represents a non-trivial
upper bound of the duration of execution of the optimal scheduling process dOPT (G),
i.e. dHD(G) ≥ dOPT (G).

2.2 Critical Path

Observe that an activity u cannot start unless all the neighboring activities from the input
set I(u) are finished. This time point is denoted with start(u). Activity u that started at
start(u) will finish at time f inish(u) = start(u)+d(u). The values start(u) and f inish(u)
for each activity u ∈ V can be computed using the critical path method [9]:

– If I(u) = ∅ then start(u) = 0 and f inish(u) = d(u).
– If I(u) � ∅ then start(u) = max

v∈I(u)
{ f inish(v)} and f inish(u) = start(u) + d(u).

The maximum value of the finishing time of each activity, known as critical path
length, is a lower bound for the duration of execution of the optimal scheduling process.

Proposition 2. (Critical Path) Let G = 〈Σ, E〉 be an ordering graph and let dCP(G) be
its critical path length. Then dCP(G) is a lower bound of the duration of execution of
the optimal scheduling process dOPT (G), i.e. dOPT (G) ≥ dCP(G).
Proof. This result follows from the definition of the critical path. From OPT (G) |=
G it follows that OPT (G) executes sequentially the activities on the critical path so
dOPT (G) ≥ dCP(G). ��

3 An Exact Algorithm for Trees

In this section we show an exact algorithm for Problem 1, in the case when the activity
graph is a directed tree. We define a directed tree to be a directed graph, where the
root has indegree 0 and all the other nodes have indegree precisely 1. The algorithm
presented in this section works also if we define a tree as a directed graph where the
root has outdegree 0 and all other nodes have outdegree precisely 1.

The duration of the process returned by this algorithm is the longest path in the
tree, thus matching the lower bound for the optimum. The algorithm is recursive and is
presented in Algorithm 1.
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ALG(Tree T)
Let r be the root of T and T1, . . . ,Tk be the subtrees of r.
if k = 0 then

return r;
else

return r → (ALG(T1) ‖ · · · ‖ ALG(Tk));
end

Algorithm 1: Exact algorithm for a directed tree

Theorem 1. ALG(T ) returns the optimal solution for Problem 1 if T is a tree.

Proof. The duration of the process returned by the algorithm is the duration of the
longest path starting from the root. This is also a lower bound for the optimal solution
as presented in the previous sections. Thus, the theorem follows. ��

4 An Exact Algorithm for a Tree Augmented with an Edge

In this section we present an exact algorithm for Problem 1 in case when the activity
graph is a tree plus an extra edge.

Let r be the root of the tree. Let y ∈ Σ, be the only node that has indegree 2. Since
the activity graph G consists of a tree plus one edge, then we know that y is unique.
Then, let x1 and x2 be the two nodes such that (x1, y) and (x2, y) ∈ E. In order to process
the subtree rooted at y we have to process the activities x1 and x2.

We first explain a naive (and suboptimal) approach in order to gain intuition about
our final algorithm. First, remove fromG the subtrees rooted at x1 and x2, run the exact
Algorithm 1 for trees and then compose in parallel the subtrees rooted at x1 and x2. The
aforementioned approach may not produce the optimal process since, for example, the
path from the root ofG to x1 may have longer duration than the path to x2. Thus, before
processing x2, we may also process some part of the subtree of x1 which is not a subtree
of y. In turn, this subtree of x1 may reduce the duration of the last step, when we process
the subtrees of x1 and x2 in parallel.

We now present informally our algorithm ( the formal definition is given by Algo-
rithm 2). We first remove from the input graph the subgraph rooted at y. Then, let D1

be the duration of path from the root to x1 and D2 the duration of the path from the root
to x2. We select the largest subtree (with respect to the number of nodes) that generates
a process with the duration less than max(D1,D2). This process is composed sequen-
tially with the parallel composition of the remaining subtrees, including y (each of the
remaining subtrees are processed according to Sect. 3).

In order to prove the correctness of Algorithm 3, we show the following lemma.

Lemma 1. Consider an activity tree (i.e., an activity graph that is also a tree). Assume
that we have a fixed budget B and the goal is to process as many activities as possible
such that the duration of the process is at most B, and the constraints given by the
activity graphs are preserved. The maximum set of nodes that can be processed given
the budget B is unique and is obtained using Algorithm 3.
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Input: A graph G that consists of a tree T rooted at r plus one directed edge between two
nodes.

1. Let y the only node with indegree 2. Let Ty be the subtree rooted at y. Create the tree
T ′ from the input graph G, by removing the subtree Ty from G.

2. Let x1 and x2 be the two nodes such that (x1, y) and (x2, y) ∈ E.
3. Let D1 be the length of the path from the root to x1 and D2 the length of the path from

the root to x2.
4. Run Algorithm 3 on the tree T ′ and budget max(D1,D2). Let Pbudget be the process

returned by this algorithm.
5. Let T ′1,T

′
2, . . . ,T

′
k, be the subtrees of T

′ that are not yet processed after the run of
Algorithm 3. Let P(A) be the process returned by the exact algorithm on trees from
Section 3 on an input tree A.

6. The process returned by the algorithm is

Pbudget → (P(T ′1) || P(T ′2) || . . . || P(T ′k) || P(Ty))

Algorithm 2: Exact algorithm for a tree and an edge

Process(root r, budget B)
if d(r) > B then

return nil ;
else

Let r1, . . . , rk, be the roots of the subtrees of r for which Process(ri, B − d(r)) � nil ;
return r → ( Process(r1, B − d(r)) ‖ . . . ‖ Process(rk, B − d(r)) ) ;

end
Algorithm 3: Returns a process with maximum number of nodes in a tree given a
fixed budget

Theorem 2. Algorithm 2 returns the optimal process when the input graph is a tree
plus one edge.

Proof. In order to be able to process the activity y, and, therefore, the subtree of y,
any process needs a duration of at least max(D1,D2). Thus, we aim to create a process
with duration max(D1,D2) that uses as many nodes from the input graph G as possible
(except, of course, the node y and nodes from its subtree). We create such a process
using Algorithm 3 that takes as an input a budget and a tree and returns a process
containing the maximum numbers of the activities from the tree that can be processed
with the given budget. As we show in Lemma 1, there exists a unique set of nodes of
maximum size that can be processed in a tree with a given budget. Moreover, this set of
nodes, contains x1 and x2 and thus, we can process the rest of the subtrees. ��

5 An Exact Algorithm for Bipartite Graphs

We now introduce an exact algorithm for Problem 1 on bipartite graphs. We first present
a recursive definition of the optimal process and we prove its correctness. Then we show
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how this definition can be efficiently implemented by a top-down polynomial recursive
algorithm using memoization.

Let U denote leftmost nodes and V denote rightmost nodes such that (U,V) is a
partition of Σ. We sort nodes of U in non-decreasing order of their activity durations
u1, u2, . . . un. We denote with Ui = {u1 . . . ui}.

The idea is to consider two cases. If the undirected version of G is not connected
then the optimal process is a parallel composition of processes generated by the con-
nected components (the proof, not shown here, is not difficult). Otherwise, if the undi-
rected version of G is connected then the optimal process is defined as the best process
among a series of n processes Pi, 1 ≤ i ≤ n defined as:

Pi = (‖ij=1 u j)→ OPT (Σ \ Ui)

d(Pi) = d(ui) + dOPT (Σ \ Ui)
(1)

With this observation, the recursive definition of an optimal process is:

OPT (Σ) =

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

a if Σ = {a}
‖ki=1 OPT (Ci) if C1, . . . ,Ck, k ≥ 2 are

connected components of G
argminPi d(Pi) Pi defined by (1), otherwise

(2)

The duration of the optimal process can be defined as:

dOPT (Σ) =

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

d(a) if Σ = {a}
maxki=1 dOPT (Ci) if C1, . . . ,Ck, k ≥ 2 are

connected components of G
minni=1 d(Pi) Pi defined by (1), otherwise

(3)

Theorem 3. The process defined by recursive Eqs. (2) and (3) is the optimal process on bipartite
graphs.

In order to obtain a polynomial algorithm based on Eqs. (2) and (3), first observe that this
recursive process always generates a polynomial number of subsets of Σ. This result is stated by
the following lemma.

Lemma 2. Let us consider the recursive computational process determined by Eqs. (2) and (3).
This process always generates |U | + |V | subsets of Σ representing connected components.

Proof. Observe that generated subsets representing connected components can be captured as a
collection of trees with nodes labelled with subsets as follows. If G is connected then there is a
single tree with root Σ. Otherwise there is a collection of trees with roots labelled with connected
components of G. At each step we select for expansion one leaf of a tree labelled with set C that
contains at least one element of U and we label it with ui ∈ U of minimum i. The children of C
are connected components of graph with nodes C \ {ui}. The process ends when no such set C
can be selected. If a leaf node cannot be further expanded then it represents a singleton subset
{v} ⊆ V so we label it with v.

Finally we obtain a collection of trees such that each internal node is labelled with u ∈ U,
each external node is labelled with v ∈ V and each tree node has a unique label. So the number
of nodes representing the subsets generated by the process is |U | + |V |. ��
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OPT(dag G = 〈Σ = U ∪ V, E〉, durations d)
if Σ = {a} then

return (a, d[a]) ;
else if G has connected components C1, . . . ,Ck s.t. k ≥ 2 then

for each i = 1, k do
Opti ←− Completed(Ci) ;
if Opti = nil then

Opti ←− OPT (Ci, d) ;
Completed(Ci)←− Opti ;

end
return (‖ki=1 Opti.P,maxki=1 Opti.dP) ;

else
dP←− +∞ ;
for each i = 1, |U | do

(Q, dQ)←− OPT (Σ \ Ui, d) ;
dQ←− dQ + d[ui] ;
if dQ < dP then

P←−‖u∈Ui u→ Q ;
dP←− dQ

end
end
return (P, dP) ;

end
Algorithm 4: Recursive algorithm with memoization to compute the optimal process
for a bipartite graph

We are using approach i), resulting in Algorithm 4. The algorithm is using a collection
Completed for saving the subsets S ⊆ Σ representing connected components generated by
Eqs. (2) and (3) for which the optimal process P and its cost dP have been computed as pairs
(P, dP). If Completed(S ) = nil then the computation for S has not been done yet. Otherwise
Completed(S ) = (P, dP).

Theorem 4. Algorithm 4 runs in O(|U | · (|U | + |V |)2).
Proof. When OPT is invoked the first time for each connected component, the call generates at
most |U | calls on the third if branch. Each such call goes through connected components determi-
nation in the second if branch, thus taking at most |U |+ |V | steps. As there are |U |+ |V | connected
components it follows that the running time of Algorithm 4 is O(|U | · (|U | + |V |)2). ��

6 An Exact Dynamic Programming Algorithm for Arbitrary DAG

Let G = 〈Σ, E〉 be an ordering graph. If S ⊆ Σ is a nonempty set then GS is the sub-graph of
G induced by S . The space of sub-problems is represented by all optimal sub-processes defined
by nonempty subsets of Σ. A sub-process is optimal if it is either a singleton activity or it is
composed of two sub-optimal processes.
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We introduce arrays Cost and Proc indexed with nonempty subsets of Σ such that:

– Cost[S ] is the duration of the optimal sub-process with activities S ⊆ Σ
– Proc[S ] is the root of the optimal sub-process with activities S ⊆ Σ.
If S is a singleton then Cost[S ] and Proc[S ] are defined by Eq. 4.

Cost[{a}] = d(a)

Proc[{a}] = a
(4)

If |S | ≥ 2 then Cost[S ] and Proc[S ] are defined by Eq. 5.

C(S , ‖) = min
(X,Y)|=‖GS

max(Cost[X],Cost[Y])

(X‖,Y‖) = argmin
(X,Y)|=‖GS

max(Cost[X],Cost[Y])

C(S ,→) = min
(X,Y)|=→GS

Cost[X] +Cost[Y]

(X→, Y→) = argmin
(X,Y)|=→GS

Cost[X] +Cost[Y]

Proc[S ] = (X‖,Y‖, ‖) if C(S , ‖) ≤ C(S ,→)

Cost[S ] = C(S , ‖) if C(S , ‖) ≤ C(S ,→)

Proc[S ] = (X→,Y→,→) if C(S ,→) < C(S , ‖)
Cost[S ] = C(S ,→) if C(S ,→) < C(S , ‖)

(5)

A dynamic programming algorithm takes the ordering graph G and the array of activity dura-
tions d and computes matrices Cost and Proc following Eqs. 4 and 5. The optimal process can
then be builtusing the information saved in array Proc.

Proposition 3. If (ΣL, ΣR) |=‖ G then the undirected version of G is not connected, so it can be
partitioned into two or more connected components. So in this case if Σ1, . . . , Σk are its connected
components with k ≥ 2 then P = P1 ‖ · · · ‖ Pk.

According to the result of Proposition 3, the proposed dynamic programming algorithm
works as follows. We first compute the connected components of the undirected version of G.
If there are k ≥ 2 connected components then we will only consider the case when the optimal
process is a parallel composition. Otherwise we will only consider the case when the optimal
process is a sequential composition.

Let us now assume in what follows that the undirected version of G is connected so in this
case our optimal process is a sequential composition L → R. We are interested to characterize
sets ΣL and ΣR = Σ \ ΣL representing the alphabets of L and R.

Proposition 4. Let us assume that the undirected version of G is connected and let P = L → R
a process. Let H be the graph defined as the complement of the undirected version of G, i.e.
H = G. For each v ∈ Σ let us define Lower(v) = {u|(u, v) ∈ E or u = v}. Then P |= G if and only
if there exists a clique C ofH such that ΣL = ∪x∈CLower(x).

Note that Proposition 4 can be used to make explicit the step of exploring the pairs of subsets
(X,Y) such that (X,Y) |=→ GS .

Now, using decomposition results stated by Propositions 3 and 4, our proposed dynamic
programming approach is detailed by Algorithm 5.
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RefOptProc(dag G, durations d, matrix Cost, matrix Proc)
for a ∈ Σ do

Cost[{a}]←− d[a] ;
Proc[{a}]←− a ;

end
for i←− 2, |Σ | do

for each S ⊆ Σ s.t. |S | = i do
Let S 1, . . . , S k be connected components of GS if k ≥ 2 then

Cost[S ]←− maxki=1Cost[S i] ;
Proc[S ]←− (S 1, . . . , S k, ‖);

else
C→ ←− +∞ ;

for each clique C of GS do
X ←− ∪x∈CLower(x);
Y ←− S \ X ;
if Cost[X] +Cost[Y] < C→ then

C→ ←− Cost[X] +Cost[Y] ;
P→ ←− (X,Y,→) ;

end
end
Cost[S ]←− C→ ;
Proc[S ]←− P→;

end
end

end
Algorithm 5: Refined dynamic programming algorithm to compute the optimal pro-
cess and its cost

7 Conclusions and Future Works

In this paper we provided several algorithms for the block-structured activity ordering problem. A
natural open problem is to investigate the existence and design a polynomial time exact algorithm
for the problem on arbitrary graphs or to show that the problem is NP-hard. We conjecture that
the latter is true.
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