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Abstract. This paper highlights the use of software agents in simulating
real world phenomena. A brief overview of different approaches and tools
for developing software agents and simulating real world phenomena are
given. One of the more recent tools was utilized in this paper to develop a
model of disease spread in a population of agents. Multiple factors affect
the longevity of a pathogen in a given population, one of which is the
deadliness of the disease whose impact is shown in this paper.
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1 Introduction

Software Agents, in the broadest sense, are programs which act on behalf of some-
one else. These agents are defined by their behaviour and their ability to act with
a degree of autonomy. The first mention of an idea resembling today’s under-
standing of software agents dates back to the seventies, when Hewitt described
his actor model [14]. These actors communicate through messages, and can mod-
ify only their own private state. If they intend to modify the states of other actors,
they must do that by sending messages, to which the target actor reacts to.

The majority of authors agree on some universal definitions [10], such as
they are based on the actor model, and that all software agents share common
properties [20,21] which include: Autonomy - they act on their own; Social ability
- agents usually interact with other agents; Reactivity - they are able to react
when prompted by other agents or when changes in the environment occur;
Proactiveness - agents are not only reactive, but they actively take action which
in most cases is goal-oriented, meaning they wish to achieve a specific goal.

Agents are capable of acting and reacting when confronted with other agents
and the environment they’re in. During the history of developing and using soft-
ware agents various programming languages and frameworks have been devel-
oped.
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Programming Languages for Agent Development - Commonly used pro-
gramming languages like Java, C, C++ and others all have their own tools and
frameworks for handling agents and multi-agent systems. On the other hand,
there exist various prototype languages which provide useful abstractions when
constructing agents and agent based systems. According to [10], these languages
can be classified into multiple groups based on their most relevant aspects regard-
ing agent modeling: Agent oriented programming (AOP) languages, Belief-desire-
intention languages (BDI) and Hybrid languages.

Agent Platforms - Various tools and platforms for developing agent systems
and agent modeling have been developed over the years. A large number of both
open source and commercial tools are available today, since agent based modeling
is a powerful tool researchers can benefit from. The authors in [16] split modern
agent frameworks into 2 main categories:

1. General purpose: open source; commercial
2. Special purpose: Cognitive, social and affective agents; Artificial intelligence
research; Modeling and simulation; Transport-related simulations

The advantage of general purpose platforms is their lack of domain focus,
which makes them flexible and allows for a wide range of uses. Because of
this, various widely used programming languages are used to implement them,
while some even have graphical user interfaces. Open source variants, such as
AgentScript [1], JADE [5,11], Mesa [15] and Repast [7] use general purpose pro-
gramming languages such as Java, C#, JavaScript and Python, while other like
JaCaMo [4] rely on specialized languages for agent modeling like AgentSpeak
[19] which is a BDI language. Commercial tools like AnyLogic [2] and Wolfram
SystemModeler [8] provide a large number of features and supporting software,
along with industrial strength simulations.

Special purpose platforms are designed to effectively handle specific problems.
By sacrificing flexibility, they provide tools and mechanisms designed for solving
specific problems. For modeling human behaviour the ACT-R [17] platform is
used while for modeling relationships between societies and their environments,
Cormas [3] is used. In artificial intelligence research, tools like MAgent [22] allow
for multiagent reinforcement learning while MADP [6] is used in research of
decision planing and learning in agent systems.

The goal of this paper is to illustrate how software agents can be applied
in modeling real-world systems, such as the spread of disease. Multiple factors
influence the longevity of a pathogen in a given population, which is shown in
experiments conducted during this research.

The rest of the paper is organised as follows. The second section covers work
done in the field of epidemic modeling. In the third section, a brief overview
of the Mesa agent modeling framework is given, along with the explanation of
the disease model constructed for the purpose of this experiment. Results of
the simulations are shown in Sect.4. Concluding remarks are given in the last
section.
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2 Related Work

Agent systems give the power to model behaviour of entities capable of making
decisions when interacting with their environment. It is possible to simulate
complex systems which include hundreds or thousands of agents. These models
can be simple or complex, depending on the domains and problems that are
planned to be solved by agent system. This is the reason that they find use in
both academic research and industry. Intensive use of agents can be found in
numerous domains like video games, transportation and logistics, power grids,
medicine and many other.

The authors in [12] acknowledge the use of agent systems in urban planning,
specifically in the field of road network planning. Existing systems model the
behaviour of drivers in normal conditions, with the goal to optimise traffic light
sequences among other things. However, these models fail to provide support
for modeling traffic in uncommon conditions, which can be caused by a wide
variety of events, such as natural disasters. The authors propose a new model,
which takes into account finer details of entities involved in traffic [12]. These
properties include car length and maximum speed, personality of drivers along
with road infrastructure. The decision of a single driver to leave his/her car
during a crisis event can have a huge impact on the entire system, blocking
hundreds of other cars. The authors propose a new model called MOSAIIC,
which takes into account these finer details while modeling traffic. The idea of
simulating and handling such complex systems in unpredictable situations can
be transferred to studying and simulating epidemiological outbreaks.

Agent systems also find their use in the field of medicine as well, more specif-
ically - epidemiology. The authors in [9] recognize the potential of applying
agent systems in helping to understand the dynamics of an epidemiological out-
break. By using the GAMA simulation development environment, a standard
SIR (Susceptible-Infected-Recovered) model where each agent can be either Sus-
ceptible, Infected or Recovered has been constructed. The agents are placed in
a continuous space, where each agent is a point in 2D space capable of moving
through the environment with traits as speed and direction defined.

The authors in [18] give a general overview of agent based systems, including
an explanation of their computational construction. They emphasize that it is
not imperative to include every single detail in modeling complex systems, as
technical limitations don’t allow this. However, it is suggested that adding as
much traits of the system as possible helps in recreating the real world system
which allows researchers to create precise models. The agent model depicted in
[18] is also focused on disease spread, relying on the standard SIR model which is
also used in [9]. The opposite to the approach shown in paper [9], in our approach
agents are placed in a grid space, where each cell in the grid represents a “room”
which multiple agents can share. This way, the disease can only spread between
agents located in the same cell. The simulation in [18] is conducted on a 20 x 20
grid, with each agent at a fixed position and the disease can only spread between
agents in adjacent cells of the grid. Our approach presented in the paper builds
upon the idea presented in [18] by allowing multiple agents to be located in the
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same cell, and also allowing agents to migrate to adjacent cells at each step of
the simulation.

As stated in [13], human mobility is one of the main factors which impact
how fast a disease can spread through a population. The authors mention recent
outbreaks such as SARS in 2003 and HIN1 in 2009. We are now experiencing
a similar situation with the current COVID-19 pandemic. Given enough data,
researcher can model the spread of disease on different levels (for example city
wide or even world wide). In [13], a demonstration was conducted by model-
ing the metropolitan area of Zurich, Switzerland. Since the population size is
roughly 1.5 million people, only 1% of the population (15 286 agents) was used
to model the spread of seasonal flu. The authors propose linking transport and
epidemiological modeling in order to simulate outbreaks of infectious diseases
more precisely. They also mention the fact that the results of the simulation
can vary depending on the number of parameters taken into account. Simpler
models only account for healthy, infected and recovered individuals, while other
parameters such as vaccination, immunity, gender, age etc. could help in giving
more accurate results.

In this paper a simulation of an epidemic is conducted. Agents are placed on a
grid, and are able to move between cells. Cells represent some shared space (e.g. a
room or building), and on this level infected agents have a chance of spreading the
disease to healthy agents. This chance increases if the healthy agent is exposed
to multiple infected agents occupying the same cell. Our simulation extends the
standard SIR model by including a new deceased state, which represents agents
who have succumbed to the disease.

3 Modeling the Spread of Disease

One of the main goals of this paper is to present how one could model a real world
problem using software agents. The topic of infectious diseases, more precisely
viruses, and how they spread is catching more attention with the spread of
COVID-19. The ongoing pandemic was also an inspiration for our model and
simulations. By understanding how viruses affect the human body and how they
spread, we can reduce their negative effect. The latter can be modeled using
software agents, as shown in [13].

As we briefly presented in previous parts of the paper there are still some
flexible, widely used programming languages, which support adequate utilization
of software agents in solving specific problems. In our experiments we will use
the Python-based Mesa framework.

Mesa Overview - Mesa is a recent open-source framework written in Python,
which gives users the ability to quickly construct agent models. These models can
then be easily visualized and analyzed using various other Python frameworks
and libraries. One useful tool which this framework has built in [15] is the data
collector which will be showcased in this paper.

The main concepts this framework revolves around are the Model and the
Agent. These core classes serve as the building blocks of any agent model. Mesa
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is highly modular [15], which means it doesn’t make any assumptions in the way
of how a model should operate and also provides multiple different schedulers
which are in charge of handling the activation of agents.

The agent is the main actor in a Mesa model. A class which extends the
mesa.Agent class needs to override it’s step method. A Mesa model defines the
passage of time as a series of steps, and by overriding this method in the Agent
class, we can define the behavior of an agent at each step of the simulation.

The model class models the entire system, which includes the agents and
their environment. The class which inherits the mesa.Model class serves as a
container for all other elements and global parameters which are used to run the
simulation.

The space component represents the space which is populated by agents
(Fig. 1). Multiple components are located in the mesa.space module, some of
which are:

— Continuous space - Agents are treated as points and they can have an arbi-
trary position.

— Grid - This is the base class for a square grid. Multiple other classes extend
the functionality of this one, like a grid realized as a torus.

— HexzGrid - Represents a hexagonal grid.

!
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|
|
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|
|

(a) A 10x10 grid space (b) A hexagonal grid space

Fig. 1. Examples of different Grid space components

Each space component provides functionality for selecting agents at specific
coordinates, along with iterating through neighbouring cells or finding neigh-
bouring agents within a certain radius. A type of grid space will be used in our
simulation.

Another core component is the scheduler, located in the mesa.time module.
Schedulers are components that we will use in our simulations, which control
when agents are to be activated and run their step methods. The activation
order can be crucial for the outcome of the entire system, so it is important to
choose the right one. Some of the predefined schedulers are:

— Base scheduler - Calls each agent’s step function in the order they were added.
— Random activation - Activates agents in a random order.
— Simultaneous activation - It simulates simultaneous activation of every agent.

Data collectors are a built in tool which enable users to collect multiple types
of data such as model/agent level data, along with tables.
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3.1 Definition of the Disease Model

In order to run a simulation and collect data, all of the components mentioned in
the previous section need to be put in use. The goal of our experiment is to model
disease spread among a population of agents. As stated in [13], one of the main
factors of disease spread is agent mobility. Hence, we need to define a space which
the agents can traverse in this model. For this purpose, a MultiGrid from the
mesa.space module will be used. In this paper, cells in the grid will be analogous
to rooms in a building, with agents being able to move between adjacent rooms
(cells). Agents in this case represent people moving around inside a building.
The reason behind using a MultiGrid is the possibility of having multiple agents
occupy a cell. Unlike the standard SIR model used in [9,18] where each agent
can either be susceptible, infected or recovered, we considered an additional state
- “deceased”, for agents which do not survive the infection. Accordingly, each
agent can be in one of four states:

1. Healthy - Healthy agents which are not carriers of said disease.

2. Infected - Infected agents are carriers of the disease.

3. Deceased - Such agents have succumbed to the disease which is being modeled
and no longer have the ability to move between cells and cannot infect further
agents.

4. Immune - Agents which have survived the initial infection, and are now
immune to the pathogen.

If an agent is infected, it has a chance of recovery or death. Once an agent
recovers, it becomes immune and can no longer be infected. These values are
defined globally, which means all agents are the same in terms of age, sex, immu-
nity etc. In order to obtain more accurate models, one could implement these
agent-level properties, but for this paper these factors haven’t been taken into
account. Infected agents also have the possibility of spreading the disease to
another healthy agent occupying the same cell. If a healthy agent is located
at a cell which is also occupied by infected agents, the chance of the infection
spreading to the new agent is calculated as in [18].

Pinpection|stateq s11 = Infected|state, s = Healthy] =1 — (1 —c)F (1)

The chance of an agent a to transition from a healthy state to an infected
state between steps s and s+1 of the simulation depends on the number of
infected agent k occupying the same cell. In this equation, ¢ represent the initial
chance of infection, which is a global parameter of the model.

At the end of each step, an agent also has the ability to migrate to a different
cell. The chance of this occurring is also configured globally. Each agent can
perform the following actions: transmit the disease; migrate to another cell. They
also have predefined global chances to: recover from the disease; pass away - if
this happens to an agent, it becomes inactive and performs no more actions
during the simulation.
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We used a random scheduler during modeling. To ensure the same results
each time the simulation is run, it is imperative to set the seed of the random
number generator to a fixed value.

A data collector was also used in order to collect data after each step in the
simulation. The following values were computed after each step:

1. The number of healthy agents in the entire grid. Immune agents will also be
included, since they have recovered from the disease.

2. The number of infected agents in the grid.

The number of deceased agents in the entire grid.

4. Multiple matrices containing the number of each type of agent according to
their health status per cell.

@

Finally, all of these components are aggregated in the DiseaseModel class
which extends the mesa.Model class. This class takes in multiple parameters for
defining the simulation:

— N - The number of agents in the system.

— Width - The width of the grid.

— Height - The height of the grid.

— Chance of death - The possibility of one succumbing to the disease.

— Chance of spread - The chance of the disease spreading from one infected
agent to a healthy one.

— Chance of the illness ending - The chance for an agent to reach the end of
the illness, either by recovering and becoming immune or by succumbing to
the disease.

— Chance of migration - The chance of an agent moving to an adjacent cell.

— Infected on start ratio - Defines the ratio of the entire population which will
be disease carriers at the start of the simulation.

4 Experimental Results

By utilising the model described in Sect. 3.1, one could model the impact of a
disease with different starting parameters. One key parameter is the chance of
death of the disease. Pathogens rely on the bodies of hosts they inhabit, where
they live and replicate at the expense of their victim. As all living things, their
goal is to live long enough to replicate their genetic material. By doing too much
harm to the bodies of their hosts and killing them off too soon, the pathogens
lower the chance they have to effectively replicate and spread themselves to other
hosts. As a result of them being to deadly (too harmful to their hosts), they have
a negative effect on themselves.

It is possible to simulate this using the model mentioned in Sect.3.1. Two
different simulations will be run, with common parameter setting being: number
of agents - 500, grid dimensions - 10 x 10, number of simulation steps - 100,
chance of spread - 4.7%, chance of the illness ending - 16.67%, chance of migration
- 50%, ratio of infected agents at the start of the simulation - 1%.
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The authors in [18] concluded in their simulations that the chance of spread
of 4.7% would yield a result of one infected agent infecting 1.6 healthy agents on
average. Hence, we will use this value in our simulations as well. Furthermore,
in [18] an agent carries the infection 3 to 6 steps in total. Similarly, with the
chance of the illness ending set to 16.67%, an agent in our simulation will stop
carrying the disease after 6 steps on average.

To see the effect the chance of death has on the population and on the spread
of the pathogen, two different simulations will be run with different values for
this parameter.

Lower Chance of Death - The first test conducted was with a lower chance
of death in comparison to the second test discussed in the rest of the section.
According to the World Health Organisation, as of April 2021 around 2.1%" of
confirmed COVID-19 cases ended in death. With a chance of death set to this
value, and 5 agents infected at start (1% of the entire population), the progress
of the disease can be seen in Fig. 2.

500 - T T T I —

400 |- .
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s 3001 —— Total infected
g Total healthy
S o200 |t Total deceased | |
<

100 - y

0 Ko, ey T o
0 20 40 60 80 100

Step number

Fig. 2. The timeline of the disease during the 100 simulated steps with a morality rate
of 2.1%

A slow but steady increase in the number of infected agents can be seen in
the first half of the simulation. The peak is measured at step 44, with 47 infected
agents at that time.

In Table1, the agent count for each state is shown at some key steps. The
pathogen persisted for the entirety of the simulation which lasted for 100 steps.
Key steps include step 39 which marked the first death from the disease, and
step 44 where the peak was reached.

! https://covid19.who.int/ - Official WHO worldwide COVID-19 statistics.
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Table 1. Agent count by their status at various steps

Step # | Infected # | Healthy # | Deceased #
0 5 495 0
5 12 488 0

10 5 495 0

15 11 489 0

20 12 488 0

30 25 475 0

39 40 459 1

40 42 457 1

44 47 452 1

50 39 459 2

99 4 493 3

(a) Step 39 - First death occurred. (b) Step 44 - The peak of infections.

Fig. 3. Infected agents at key steps

Figures 3a and 3b visualise the number of infected agents on the entire grid
at key steps.

Higher Chance of Death - This second simulation had a chance of death of
7%, which is more than 3 times greater than in the previous experiment.

When comparing Fig.4 to Fig. 2, it is possible to see that the peak of infec-
tions happens earlier, and is much lower than in the first experiment. The
pathogen acts too aggressively to it’s host, with a 7% chance of killing the
carrier, while only having a 4.7% chance of spreading. This makes it harder for
the disease to make it to another host, and thus prolong the existence of the
pathogen in the population. As noted in Table 2, the first death occurred earlier,
at step 14, and the peak of infections is at step 23. As a result of this higher
chance of death, the pathogen died out by step 50, with no more infected agents
present at that time.



150 M. Ili¢ and M. Ivanovié

U e e o e

400 - .
T
s 300F — Total infected
*E --- Total healthy
S o0F e Total deceased | |
<t

100 + n

0 oo o - ‘ ‘
0 20 40 60 80 100

Step number

Fig. 4. The timeline of the disease during the 100 simulated steps with a mortality
rate of 7%

Figures 5a and 5b visualise the number of infected agents on the entire grid
at key steps of the simulation with a chance of death set to 7%.

By looking at Figs. 6a and 6b, we can see what difference the change in the
chance of death made on the overall impact on the pathogen and population of
agents. The disease which had a lower chance of death managed to reach far more
agents in the population than it’s counterpart with the higher mortality rate. At
the end of the first experiment, 54.4% of agents are immune, but the pathogen

Table 2. Agent count by their status at various steps

Step # | Infected # | Healthy # | Deceased #
0 5 495 0
5 12 488 0

10 5 495 0

14 11 488 1

15 11 488 1

20 14 485 1

23 22 477 1

30 6 490 4

40 3 493 4

50 0 496 4
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(a) Step 14 - First death occurred. (b) Step 23 - Peak of infections.

Fig. 5. Infected agents at key steps.

Healthy 45% Deceased 0.8% Immune 14.8%
@ o 0
Immune 54.4% Healthy 84.4%
(a) State distribution for experiment 1. (b) State distribution for experiment 2.

Fig. 6. The distribution of healthy, immune and deceased agents at the end of both
simulations.

is still present in the population, while in the second experiment, only 14.8%
of all agents have become immune. Furthermore, the second pathogen failed to
survive the entirety of the simulation. It was eliminated from the population at
step 50.

5 Conclusion

Software agents are a powerful mechanism for simulating different processes in
a wide range of domains. Given enough information of some real-world system,
it is possible to simulate how it can evolve through time and how it will react to
different starting conditions and different events which could unfold. Even subtle
changes in starting parameters could give wildly different results. Systems such
as proposed in [13] which take into account the fine details can help researchers
get a better sense of the problems they face.
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The value and versatility of software agents is further bolstered by the number
of existing programming languages and tools which assist in working with them.
These tools can cover a wide variety of use, with some being general purpose
and others being more suited for specific fields of research.

In this paper a newer general purpose agent framework was utilised [15] in
modeling the spread of disease through a population of agents. Even with a fairly
simple model, it is possible to obtain interesting results. Further research of this
topic would include adding finer parameters to the agents, making each one of
them distinct in their behaviour, and looking into how their decision making
impacts the overall spread of a pathogen.
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