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Abstract. Deep neural networks (DNNs) have been recently found vul-
nerable to adversarial examples. Several previous works attempt to relate
the low-frequency or high-frequency parts of adversarial inputs with
the robustness of models. However, these studies lack comprehensive
experiments and thorough analyses and even yield contradictory results.
This work comprehensively explores the connection between the robust-
ness of models and properties of adversarial perturbations in the fre-
quency domain using six classic attack methods and three representative
datasets. We visualize the distribution of successful adversarial pertur-
bations using Discrete Fourier Transform and test the effectiveness of
different frequency bands of perturbations on reducing the accuracy of
classifiers through a proposed quantitative analysis. Experimental results
show that the characteristics of successful adversarial perturbations in
the frequency domain can vary from dataset to dataset, while their
intensities are greater in the effective frequency bands. We analyze the
obtained phenomena by combining principles of attacks and properties
of datasets and offer a complete view of adversarial examples from the
frequency domain perspective, which helps to explain the contradictory
parts of previous works and provides insights for future research.

Keywords: Adversarial examples · Model robustness · Frequency
analysis

1 Introduction

With the widespread deployment of deep learning systems in various fields, the
robustness of deep learning models has become of paramount importance. Deep
learning models are highly vulnerable to adversarial examples [19], which may
lead to serious security breaches and irreparable financial loss as they have been
integrated into various safety-critical systems, e.g., self-driving cars.

Adversarial examples, in the context of the image classification, look similar
to the original images while they have the ability to fool the model into pro-
ducing incorrect outputs with high confidence [5]. Numerous adversarial attack
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methods [1,13] and defense methods [10,25] have been proposed to improve the
effectiveness of attacks and enhance models’ robustness, respectively. Meanwhile,
the studies on understanding the intrinsic nature of adversarial examples have
attracted increasing attention with various theories, including Linearity hypoth-
esis [5], boundary tilting [20] and curvature of decision boundaries [12].

Recently, some studies attempt to understand the adversarial examples from
the perspective of the frequency domain. It is argued in [21] that the gener-
alization of convolutional neural networks (CNNs) can be related to how they
process the high-frequency information of images. Besides, the performance of
the attacks can be promoted by finding adversarial perturbations in specific fre-
quency bands [4,6,16]. However, a small number of attacks and a single dataset
are usually adopted in previous works, resulting in weak generalization and some
contradictory parts among proposed theories.

To address the limitations of existing works, we comprehensively analyze and
evaluate the adversarial examples in the frequency domain. Two categories of six
attack methods in total and three commonly used datasets are adopted in this
paper. We first visualize the distribution of frequency components of successful
adversarial perturbations, then we decompose them into signals of two frequen-
cies to explore which one plays a leading role in reducing the accuracy of the
model. We further propose an evaluation method to quantitatively compare the
differences between the distribution of successful perturbations and unsuccessful
ones within the effective frequency bands to figure out what leads to the different
effects of both perturbations. The bridge between the robustness of models and
the properties of adversarial perturbations in the frequency domain on different
datasets is built in this paper. Based on the observations and analyses, we draw
several important findings and provide insights for future research:

• Unlike previous works [22,23], in which they claim that successful adver-
sarial perturbations for naturally trained models concentrate more on the
high-frequency domain, our results suggest that the distribution of successful
adversarial perturbations can vary from dataset to dataset, so as the effec-
tiveness of different frequency bands of successful perturbations on misleading
models. As a result, it is not accurate to solely relate high-frequency com-
ponents of images with the target features of adversarial attacks. Besides,
filtering the fixed frequency bands of information of images cannot provide
universal defense.

• Previous studies [4,6] illustrate that constraining adversarial directions in
different frequency bands on ImageNet can obtain progress in improving the
effectiveness of attacks. However, the principles behind those results are not
provided systematically. Our findings and analyses show that both low- and
high-frequency components of successful adversarial perturbations on Ima-
geNet have a noticeable effect on reducing the model’s accuracy. Therefore,
performing adversarial attacks in specific frequency bands can be a reason-
able way to promote the performance of attacks on this dataset, explaining
the rationality of previous works.
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• Furthermore, we find the effective frequency bands for various attacks under
changeable constraints, within which the successful adversarial perturbations
can reduce the accuracy of the model rapidly. Through the proposed quan-
titative comparison between the intensities of the distribution of both suc-
cessful and unsuccessful perturbations, we conclude that within the effective
frequency bands, the distribution of successful perturbations has larger inten-
sity upon most occasions, thus misleading the model.

• We associate the characteristics of successful adversarial examples in the
frequency domain with the space occupied by the objects that belong to
the ground truth classes, which is a noticeable difference among the three
datasets. By exploiting the rules we found, it is possible to establish the
defensive measure from the perspective of the frequency domain by adopting
the properties of the datasets or usage scenarios as the prior information, but
providing high-performance universal defense is still a challenge.

2 Related Work

Various viewpoints have been introduced to understand the adversarial examples
and explore how they mislead the DNNs. Szegedy et al. [19] argued that those
adversarial examples were rarely observed in the test set due to the extremely
low probability, while they were actually dense and thus could be found in every
test case. Goodfellow et al. [5] illustrated that the infinitesimal changes to the
input of a simple linear model could accumulate to one large change to the output
due to the sufficient dimensionality. Moosavi-Dezfooli et al. [11] associated the
robustness of DNNs to the curvature of decision boundaries.

The counter-intuitive phenomenon brought by adversarial examples arouses
the discussion about the gap in the visual information processing between
humans and machines. Intuitively, human visual sensitivity for the different fre-
quency components of the images can be various. As a result, analyzing adversar-
ial examples from the frequency perspective provides a possible way to explore
the robustness of DNNs [22]. Wang et al. [21] found that the CNN could make
correct predictions using only high-frequency counterparts of images, which were
not perceivable to humans. They attempted to exploit the high-frequency compo-
nents of images to explain the trade-off between the accuracy and the robustness
of CNNs. Yin et al. [23] demonstrated that adversarial perturbations generated
towards a naturally trained model concentrated on the high-frequency domain,
while after adversarial training, those perturbations became more low-frequency.

In addition to exploring the distribution of target features of adversarial
attacks, several works focused on improving the strength of adversarial examples
by finding perturbations in different frequency bands. Guo et al. [6] illustrated that
adversarial directions might occur in high density in the low-frequency subspace of
images. Therefore, finding adversarial perturbations in the low-frequency domain
could result in improving the query efficiency of attacks. Besides, low-frequency
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perturbations were showed to be highly effective against defended models [16]. On
the other hand, performing universal attacks on middle and high frequency bands
could balance the fooling rates and perceptiveness [4].

In the literature related to analyzing adversarial examples in the frequency
domain, proposed views align well with the local empirical observations. How-
ever, these views can be contradictory to each other. Finding adversarial pertur-
bations in low-frequency [6] and high-frequency bands [4], as mentioned above,
are examples that are not consistent well with each other. Besides, a single
dataset and a small number of attack methods with limited norms of constraints
are used in previous works, which results in weak consistency of existing illus-
trations. Therefore, a comprehensive analysis of adversarial examples in the fre-
quency domain on multiple datasets and diverse attack methods with changeable
constraints are urgently required to address the limitations of existing works.

3 Methodology

We first define the basic notations used in this paper. F : x ∈ R
d×d → z ∈ R

k

is defined as a neural network which takes x as an input and outputs logits z,
where k is the number of classes. We denote the �p norm as ‖·‖p, and p ∈ {2,∞}
is considered in this paper. The image x that can be correctly classified as its
ground truth label y will be attacked to generate corresponding adversarial exam-
ple xadv. Let v = f(x) denote the Discrete Fourier Transform (DFT) of x and
f(·)−1 represent the inverse DFT (IDFT), where v ∈ C

d×d and v(i, j) represents
the value of v at position (i, j). Low-frequency components are shifted to the
center when we visualize the frequency spectra of adversarial perturbations.

3.1 Adversarial Attack Methods

We adopt untargeted white- and black-box attacks in this paper, due to targeted
attacks may make biases on obtained perturbations when targets are specified.
The principles of six used attacks are illustrated as follows:

FGSM Attack. Fast Gradient Sign Method (FGSM) [5] focuses on efficiently
generating adversarial examples. By using the gradients of the loss function
L(x, y;F), pixels of the original example are modified to increase the loss in a
single step. Formally, FGSM Attack can be expressed as:

xadv = clip{x + ε · sign(∇xL(x, y;F))}, (1)

where ε is the constraint that ensures the �∞ perturbation is small enough to be
undetectable, and the clip function forces xadv to be a legitimate image.



Rethinking Adversarial Examples Exploiting Frequency-Based Analysis 77

BIM Attack. Basic Iterative Method (BIM) [8] is an iterative variant of FGSM,
which follows the update rule:

xadv
0 = x, xadv

n+1 = project{xadv
n + α · sign(∇xL(xadv

n , y;F))}, (2)

where α is the step size, the number of iterations n is set to be min(ε+4, 1.25ε),
and the project function keeps xadv

n+1 residing in both �∞ ε-neighbourhood of the
original image x and the image value range.

PGD Attack. Compared with BIM, Projected Gradient Descent (PGD) [10]
has more iterations and performs random starts as the initialization to improve
the diversity. It is a strong first-order adversary that can be expressed as:

xadv
0 = clip(x + S), xadv

n+1 = project{xadv
n + α · sign(∇xL(xadv

n , y;F))}, (3)

where S ∈ R
d×d is the random vector which is chosen from the uniform distri-

bution of [−ε, ε], the clip function makes xadv
0 stay in the image value range, and

the project function keeps the generated adversarial example within in both �∞
ε-neighbourhood of the original image and the image value range.

DeepFool Attack. The aim of DeepFool Attack [13] is to compute a minimal
�2 perturbation for the target image. This method starts from the original image
and calculates the vector, leading the image to step over the decision boundary
of the approximated polyhedron iteratively.

CW Attack. The untargeted version of Carlini & Wagner (CW) Attack [2] uses
a new loss function to maximize the distance between the ground truth class y
and the most-likely class outside of y, which can be expressed as:

LCW (x, y;F) = max(F(x)(y) − max
i�=y

F(x)(i),−κ), (4)

where F(x)(t) represents the output logit of class t and κ encourages the solver
to find the adversarial example that decreases the original class’s prediction
probability with high confidence. The �2 perturbation δ is optimized as follows:

xadv = x + arg minδ{c · LCW (x + δ, y;F) + ‖δ‖22}, (5)

where c is a constant found by the binary search and an Adam optimizer can be
used to effectively solve this optimization problem.

Boundary Attack. Boundary Attack [1] starts with the image that is already
adversarial, which can be achieved by sampling each pixel of the initial image
from a uniform distribution. Furthermore, a random walk is performed to keep
the adversarial image in the adversarial region and decrease the distance towards
the clean image simultaneously. In this way, the minimal �2 perturbation is found.
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3.2 Frequency-Based Analysis Methods

Distribution of Adversarial Perturbations. Inspired by [23], we visualize
the distribution of successful adversarial perturbations in the frequency domain
to understand adversarial examples by adopting

vsec
dis =

∑ ∣∣f(xadv
sec − x)

∣∣
‖xadv

sec − x‖
/

numsec, (6)

where numsec is the number of adversarial examples than can mislead the target
model successfully. For the 3-channel input image, DFT and the norm calculation
will be performed in each channel separately.

Normalization is used to visualize the distribution of adversarial perturba-
tions produced by different attack methods under various constraints. Since dif-
ferent attack algorithms result in different successful adversarial examples on the
same dataset for the target model, the norms and numbers of perturbations are
considered in Eq. (6) to avoid the biases among the obtained distribution brought
by the differences in quantities and contents of different successful adversarial
perturbations.

Effectiveness of Different Frequency Bands of Adversarial Perturba-
tions. To explore how different frequency bands of successful adversarial per-
turbations influence the prediction results of models, we adopt

vl = Maskr
low(f(xadv

sec − x)), (7)

vh = Maskr
high(f(xadv

sec − x)), (8)

to preserve low-frequency components vl and high-frequency components vh of
the transformed perturbation respectively.

To be specific, Maskr
low and Maskr

high can be seen as the low-pass filter and
high-pass filter respectively to preserve the corresponding parts of the trans-
formed perturbations. Let (cn, cm) denote the centroid, and Maskr operation is
formally defined as:

Maskr
low(v(i, j)) =

{
v(i, j), ifd((i, j), (cn, cm)) ≤ r
0, otherwise ,

Maskr
high(v(i, j)) =

{
0, ifd((i, j), (cn, cm)) ≤ r
v(i, j), otherwise ,

(9)

where d(·) quantifies the distance between two positions, which is set as
Euclidean distance, and r is the predefined radius. Furthermore, successful adver-
sarial examples are reconstructed by performing IDFT on certain frequency
bands of perturbations and adding them to original images. Inputting those
reconstructed images to the model can help with figuring out which frequency
band of perturbations mainly results in reducing the accuracy. The process men-
tioned above can be expressed as:
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F(x + f−1(Maskr(f(xadv
sec − x)))). (10)

It should be noted that the DFT, mask operation and IDFT of 3-channel adver-
sarial perturbations is performed in each channel respectively, and then three
1-channel filtered perturbations are connected to be added to the original images.

Quantitative Analysis on Intensity. After verifying which frequency band
of perturbations makes main contributions to the false predictions of the net-
work, i.e. low-frequency band or high-frequency band, we attempt to figure out
the differences between the distribution of successful and unsuccessful adver-
sarial perturbations generated by various attacks within their concrete effective
frequency bands on three datasets.

At first, we illustrate the concept of the effective frequency band. As men-
tioned before, the clean images are added to the low- or high-frequency parts
of perturbations preserved by the predefined radius r to form the reconstructed
images. The area specified by the pair of radii (rh, rl) that leads to the accuracy
of the network against the reconstructed images drop rapidly from a high value
accrh

(e.g., 90%) to a relatively low value accrl
(e.g., 50%) is referred as the effec-

tive frequency band. It should be noted that when the low-frequency band of
information has the main effect on reducing the accuracy, rl > rh, while rl < rh

when high-frequency components mainly lead to the decrease of the accuracy.
The distribution of successful perturbations vsec

dis and the distribution of
unsuccessful ones vunsec

dis are obtained using the same way described in Eq. (6)
respectively. Then the values reside within the effective frequency band (rh, rl)
are preserved discretely in k areas. When the low-frequency components play a
leading role in reducing the accuracy, the preservation can be expressed as:

vsec,k
dis = Maskrl−k+1

low (vsec
dis ) − Maskrl−k

low (vsec
dis ),

vunsec,k
dis = Maskrl−k+1

low (vunsec
dis ) − Maskrl−k

low (vunsec
dis ),

(11)

where k = 1, 2, · · · , rl − rh. If high-frequency components of perturbations
mainly result in the false predictions, the preservation can be expressed as:

vsec,k
dis = Maskrl+k−1

high (vsec
dis ) − Maskrl+k

high (vsec
dis ),

vunsec,k
dis = Maskrl+k−1

high (vunsec
dis ) − Maskrl+k

high (vunsec
dis ),

(12)

where k = 1, 2, · · · , rh − rl.
We propose an evaluation method to compare the intensities of the distri-

bution of both successful and unsuccessful adversarial perturbations within the
effective frequency band. We first calculate the proportion of the pixels of the
successful perturbation distribution that have higher values in every discrete
area, and then allocate coefficients to these items according to the resulting
decrease of the accuracy. The evaluation method is formally defined as:
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score =
|rh−rl|∑

k=1

pk

qk
× Δacck

accrh
− accrl

, (13)

where pk is the number of positions where vsec,k
dis (i, j) > vunsec,k

dis (i, j) in the k-th
area, qk is the number of pixels in the k-th area, and Δacck is the decrease of
accuracy brought by the k-th area of perturbations. A higher score indicates
successful perturbations within effective frequency band have higher intensities.

4 Results and Analyses

4.1 Experimental Setup

Datasets. The MNIST database [9] contains a training set of 60000 examples
and a test set of 10000 examples, which are all 28 × 28 grey-scale images with
handwritten digits of numbers 0–9. There are 50000 training images and 10000
test images on CIFAR-10 [7], which are all 32 × 32 RGB images in 10 classes.
ILSVRC2012 [15] is a large dataset which chooses RGB images in 1000 classes
from ImageNet [3] dataset. A small subset of the validation set on ILSVRC2012
will be used in this paper, which is briefly referred to as ImageNet, and each
image is resized to 299 × 299 × 3 to be input to the network.

Models. For the MNIST classification task, we use two convolutional layers fol-
lowed by a fully connected hidden layer. Each convolutional layer is followed by a
2×2 max-pooling layer. WideResNet [24] is adopted for the CIFAR-10 classifica-
tion task. The architectures, selected hyper-parameters and training approaches
of both models are identical to [10]. We achieve 99.22% accuracy on MNIST,
and 93.81% accuracy on CIFAR-10. For the complex dataset ImageNet, we use
the pretrained Inception-v3 network [18] provided by Keras and it achieves 77.9
% top-1 accuracy and 93.7% top-5 accuracy.

Attacks. Six mainstream attack methods, which can be divided into two cate-
gories, are applied in this paper. The first one attempts to increase the loss to
mislead the model, i.e. FGSM, BIM, and PGD attacks. Perturbations generated
by this strategy are constrained in �∞-norm. The second one pursues minimal
perturbations, i.e. DeepFool, CW and Boundary attacks, which are �2-norm
and are calculated by using Foolbox [14]. Pixel values of images on MNIST and
CIFAR-10 are resized to [0, 1], while the ones on ImageNet are resized to [−1, 1]
according to the request of using the pre-trained model. Specific constraints cho-
sen for different attack methods and the numbers of used images on each dataset
are shown in Table 1.
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Table 1. Constraints and numbers of used images of attacks on each dataset.

Dataset Attack method Constraint Number of images

MNIST FGSM, BIM, PGD 0.1, 0.2, 0.3 10000

DeepFool, CW, Boundary 2 10000

CIFAR-10 FGSM, BIM, PGD 2/255, 4/255, 8/255 10000

DeepFool, CW, Boundary 0.5 1000

ImageNet FGSM, BIM, PGD 2/255, 4/255, 8/255 1000

DeepFool, CW, Boundary 3 500

4.2 Analysis on MNIST

Distribution of Adversarial Perturbations. As illustrated in Fig. 1(a) and
(b), we visualize the distribution of adversarial perturbations generated by var-
ious attacks under different constraints on MNIST in the frequency domain,
where the red represents higher intensity, while the blue means lower intensity.
It can be seen that adversarial perturbations generated by FGSM, BIM, and
PGD attacks all concentrate on the low-frequency domain. With the increase
of �∞-constraints, BIM, and PGD attacks concentrate more on a low-frequency
domain, which is implied by the extension of the deep red area in the centers
of the frequency spectra in Fig. 1(a). Nevertheless, the distribution of perturba-
tions generated by the FGSM attack changes very little, which may be because
FGSM is a one-step attack and the positions of attacked pixels hardly change.
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Fig. 1. The distribution of successful adversarial perturbations generated by FGSM,
BIM, and PGD attacks on MNIST is depicted in the leftmost image and the distribution
of the ones generated by DeepFool, CW and Boundary attacks is shown in the middle.
The rightmost image shows the decrease of accuracy brought by two frequency bands
of perturbations produced by FGSM, BIM, and PGD attacks on MNIST.

When it comes to DeepFool, CW, and Boundary attacks, we do not change
the constraints because they belong to the strategy that finds the minimal per-
turbations. The �2-constraint is set to guarantee the imperceptibility. It is shown
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in Fig. 1(b) that all the perturbations are low-frequency as well. Compared with
the other two attacks, the CW attack generates relatively more high-frequency
perturbations, because it tends to find the perturbations that modify the outlines
of digits instead of the images’ backgrounds.

Decrease of Accuracy. Low frequency and high frequency are two relative
concepts, and it is hard to specify a constant radius to separate images on each
dataset. As a result, we change the radius from zero to the maximum value to
separate the low- and high-frequency components of perturbations, and add the
filtered perturbations to the original images to obtain the decrease of accuracy
brought by those perturbations. Then we choose a proper radius according to
the size of the image to show experimental results. On MNIST, results obtained
when r = 8 are depicted in Fig. 1(c). It is shown that low-frequency components
mainly contribute to the decrease of accuracy while high-frequency components
have a subtle influence on launching successful attacks on MNIST, which is
consistent with distribution of adversarial perturbations shown in Fig. 1. The
degree of decrease of accuracy is proportional to the intensity of the attack.

The decrease of accuracy results from low- and high-frequency components
of DeepFool perturbations are 37.31% and 7.77% respectively. We can know that
low-frequency components still play a leading role in reducing the accuracy. An
exciting phenomenon emerges when we separate perturbations produced by CW
and Boundary attacks: neither low-frequency components nor high-frequency
components reduce the accuracy. In other words, adversarial perturbations of
both attacks are out of operation after the separation in the frequency domain.
This phenomenon also exists on the rest two datasets. It may be attributed to
that both attacks do not build the direct connections with the outputs of the
network w.r.t. to the inputs, and thus do not exploit the frequency informa-
tion learned by the network during training. Therefore, the obtained perturba-
tions cannot reflect the network’s sensitivity to the specific frequency bands of
perturbations.

Intensity Analysis. The effective frequency bands found for various attacks
under different constraints and calculated scores are shown in Table 2. There is a
lack of scores of BIM and PGD attacks under 0.3 and 8/255 l∞-norm constraints,
because fooling rates of both attacks under that conditions can be 100%.

On MNIST, accrh
is set to be 95%, and accrl

is set to be 65%. Table 2
illustrates that the pixels of successful perturbation distribution have higher
intensities within effective frequency bands, which can be seen as a reason that
those perturbations are equipped with the ability to mislead the model. While
for PGD attack constrained in 0.1 l∞-norm constraint, the score is less than 0.5,
and it may be attributed to the area divided by the rl does not strictly belong to
low-frequency area. Unsuccessful perturbations can attack the area other than
the low-frequency area harder, i.e., the image’s background.
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Table 2. The effective frequency bands and results of intensity comparison on three
datasets.

Dataset MNIST CIFAR-10 ImageNet

Attack Constraint rh rl Score Constraint rh rl Score Constraint rh rl Score

FGSM 0.1 3 7 0.69 2/255 19 15 0.72 2/255 13 31 0.48

0.2 4 7 0.72 4/255 19 15 0.72 4/255 11 25 0.61

0.3 3 6 0.54 8/255 20 16 0.80 8/255 9 21 0.60

BIM 0.1 5 10 0.50 2/255 18 15 0.70 2/255 18 40 0.41

0.2 4 6 0.77 4/255 19 16 0.56 4/255 17 35 0.48

PGD 0.1 5 10 0.36 2/255 18 15 0.65 2/255 19 41 0.45

0.2 4 6 0.52 4/255 19 16 0.53 4/255 19 38 0.49

DeepFool 2 4 7 0.54 0.5 20 16 0.89 3 48 105 0.57

4.3 Analysis on CIFAR-10

Distribution of Adversarial Perturbations. The properties of the distri-
bution of successful adversarial perturbations on CIFAR-10 are pretty different
from those on MNIST. As shown in Fig. 2(a), adversarial perturbations gener-
ated by FGSM, BIM, and PGD attacks mainly concentrate on high-frequency
domains. Compared with the distribution of perturbations produced by FGSM,
which still hardly changes when the predefined constraints enlarge, target fea-
tures attacked by BIM and PGD attacks gradually concentrate on the low-
frequency domain, leading to both center and margin of the frequency spectra
being high-value. This may be attributed to that both attacks find perturbations
iteratively, leading to the reduction of differences between adjacent pixels, and
the generated perturbations contain more low-frequency information. Besides,
the intensity of the central area of perturbation distribution produced by the
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Fig. 2. The distribution of successful adversarial perturbations generated by FGSM,
BIM, and PGD attacks on CIFAR-10 is depicted in the leftmost image and the distri-
bution of the ones generated by DeepFool, CW and Boundary attacks is shown in the
middle. The rightmost image shows the decrease of accuracy brought by two frequency
bands of perturbations produced by FGSM, BIM, and PGD attacks on CIFAR-10.



84 S. Han et al.

PGD is lower than the one produced by the BIM, which results from the noises
introduced by random initialization at the beginning of the PGD attack.

Adversarial perturbations generated by DeepFool, CW, and Boundary
attacks also exhibit high-frequency characteristics, which are shown in Fig. 2(b).
Compared with CW and Boundary attacks which mainly focus on attacking
high-frequency components, the DeepFool attack generates perturbations on
extremely low-frequency domains. The �2-norm of distortions caused by Deep-
Fool attacks are at least 3 times bigger than that caused by CW and Boundary,
which leaves that its perturbations contain more low-frequency information.

Decrease of Accuracy. Here we show the results when r = 10 is used to
filter the low- and high-frequency components of adversarial perturbations on
CIFAR-10. It can be seen from Fig. 2(c) that high-frequency parts of adversarial
perturbations have a superior effect on misleading the model. With the increase
of �∞-constraints of FGSM, BIM, and PGD attacks, the gap of effectiveness on
deceiving the model between low- and high-frequency components generated by
each attack is narrowed. When ε = 8/255, both frequency bands of perturbations
of each attack can reduce the accuracy by more that 50%.

Low- and high-frequency components of perturbations generated by the
DeepFool attack reduce the accuracy by 18.47% and 80.33%, respectively. While
it can be seen from Fig. 2(b) that the central spectrum of perturbations gen-
erated by DeepFool has an extremely high value, the effectiveness of the most
low-frequency components is minimal, which may because models are hardly sen-
sitive to the additive perturbations in lowest frequencies [23]. The experimental
results also imply this phenomenon that the accuracy remains above 99% until
radius r > 3 in most cases when the model is attacked by low-frequency parts
of adversarial perturbations added to the original images. The decrease of accu-
racy brought by high-frequency components of perturbations of CW attack is
5.85%, and the low-frequency components of which are out of operation. As for
Boundary attacks, the low- and high-frequency parts of perturbation produced
by these attacks are not effective anymore after separation, which is the same as
the experimental result on MNIST. We also adopt the VGG16 model [17] to con-
duct the same experiments to verify that whether the properties of adversarial
perturbations in the frequency domain are independent of model architectures.
Obtained results exhibit similar characteristics in both aspects and confirm the
generalization of illustrated characteristics furthermore.

Intensity Analysis. On CIFAR-10, accrh
and accrl

are set to be 90% and 50%
respectively. Evaluation results in Table 2 show that unsuccessful perturbation
distribution exhibits extremely lower intensity compared with the successful per-
turbation distribution in some cases. Successful perturbation distribution gets a
score of over 0.5 in every situation, which is assumed by us to be an explanation
for the failure of unsuccessful perturbations on cheating the model.
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4.4 Analysis on ImageNet

Distribution of Adversarial Perturbations. Figure 3(a) shows that the dis-
tribution of successful adversarial perturbations generated by FGSM, BIM, and
PGD attacks mainly concentrates on low-frequency domains, similar to that on
MNIST. However, compared with the BIM attack that constantly attacks low-
frequency components, the PGD attack gradually increases the intensity of the
attack on high-frequency components. In our experiments, besides more itera-
tion steps, PGD attack introduces the random initialization at the beginning
of the attack. To figure out which one is the main factor that leads to the dif-
ference mentioned above, we force both attacks to have the same numbers of
iterations under changeable constraints and obtain similar results, which implies
that the random initialization can be the reason for changing the distribution of
adversarial perturbations generated by the PGD attack.
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Fig. 3. The distribution of successful adversarial perturbations generated by FGSM,
BIM, and PGD attacks on ImageNet is depicted in the leftmost image and the distri-
bution of the ones generated by DeepFool, CW and Boundary attacks is shown in the
middle. The rightmost image shows the decrease of accuracy brought by two frequency
bands of perturbations produced by FGSM, BIM, and PGD attacks on ImageNet.

It is shown in Fig. 3(b) that DeepFool and CW attacks exhibit the prop-
erty of taking the low-frequency components as the target features. In contrast,
the adversarial perturbations produced by Boundary attack are uniformly dis-
tributed across the frequencies. After comparing the attacked and clean images,
we find that the Boundary attack modifies attacked pixels in each image to a sim-
ilar extent. However, the CW and DeepFool attacks mainly target at attacking
concrete objects of each image.

Decrease of Accuracy. Because the image’s resolution is large, we do not
change the radius continuously but choose several radii values to record the
decrease of accuracy instead. The experimental results obtained when r = 80
are depicted in Fig. 3(c). Low-frequency components are the main factors that
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reduce the accuracy of the model, while high-frequency components have an
obvious effect on misleading the model as well, which may be attributed to
that the accuracy of model on original images is not high enough, leaving the
model vulnerable to both frequencies of perturbations. The results explain the
fact that both of the works [4,6] promote the performance of attacks while find-
ing the adversarial examples in different frequency bands. With the increase of
constraints, the gap between the effectiveness of low- and high-frequency com-
ponents is narrowed, which is similar to the trend exhibiting on CIFAR-10.

Low-frequency components of perturbations produced by DeepFool reduce
the accuracy of the model by 36.50%. However, the high-frequency components
of perturbations result in a 13.87% decrease of accuracy, which is consistent with
the distribution of perturbations shown in Fig. 3(b). As to CW and Boundary
attacks, the perturbations are still out of operation after the separation.

Intensity Analysis. On ImageNet, accrh
and accrl

are set to be 90% and
50%, respectively. Unlike the experimental results on the other two datasets
that the intensities of successful perturbation distribution are visibly greater, a
large proportion of obtained scores are around 0.5. From Fig. 2(c) we can under-
stand that low-frequency components mainly cause the decrease of accuracy, but
the advantages of which are not that obvious. As a result, both successful and
unsuccessful perturbation distribution can have competitive intensities within
the effective frequency bands, which are restricted in the low-frequency bands
on ImageNet.

4.5 Discussion

For the successful adversarial perturbations produced by the attack strategy that
increases the loss to mislead the model, with the improvement of the constraints
of attacks, the distribution of perturbations generated by FGSM has no apparent
changes. Adversarial perturbations generated by BIM and PGD attacks gradu-
ally concentrate on the low-frequency domain during this procedure, while the
random initialization introduced by PGD attack may change this trend as the
proportion of the background in the image enlarges. For the successful adver-
sarial perturbations generated by the attack strategy that pursues the minimal
perturbations, because of the vast differences among the principles of attacks,
they do not have unified laws on three datasets while maintaining the same
concentration area with the ones generated by the first attack strategy.

We find that the high-frequency components of successful adversarial pertur-
bations have a minimal effect on MNIST. While on CIFAR-10, high-frequency
components play a leading role in fooling models. Both low- and high-frequency
components of successful perturbations on ImageNet can obviously affect mod-
els, and low-frequency ones have superior performance. Although the character-
istics of successful adversarial perturbations vary from dataset to dataset, the
evaluation results illustrate that they have larger attack intensities within dif-
ferent effective frequency bands compared with the unsuccessful ones in most
situations, which can be seen as the factor that misleads the model successfully.
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Since the distribution of successful adversarial perturbations varies from
dataset to dataset, we assume that it can be associated with how much space
the object occupies in the images. Attacking the objects in the images makes
pixel values of corresponding parts of perturbations change dramatically due to
the complex outlines and texture of objects, which means high-frequency infor-
mation will remain in the perturbations. The backgrounds in the images are
relatively smooth, and attacks tend to change backgrounds to a small extent to
remain imperceptible, which leaves low-frequency information.

Figure 4 illustrates three pairs of clean images and successfully attacked
images and visualizes the DFT of their perturbations. It is shown that, the
number is placed in the center of the image on MNIST and takes up less than a
quarter of space of the image. Consequently, there is more low-frequency infor-
mation in the perturbation. On CIFAR-10, the object takes up almost all the
space in the image, resulting in much high-frequency information in the per-
turbation. While on ImageNet, most of successfully attacked images have more
information of backgrounds rather than objects, thus leaving perturbations con-
centrating on the low-frequency domain. Such visualized analyses also validate
our hypothesis.

Fig. 4. The DFT of perturbations on MNIST, CIFAR-10 and ImageNet. In each 3 ×
1-image part, the first one is the clean image, the second one is the adversarial image,
and the last one is the DFT of corresponding adversarial perturbation.

Consequently, taking the properties of datasets or some specific usage scenar-
ios where the sizes of objects are relatively constant may enhance the robustness
of deep learning models from the perspective of the frequency domain. However,
the universal defense that achieves high accuracy on both adversarial and clean
images remains challenging.

5 Conclusion and Further Work

In this paper, six classic attack methods and three commonly used datasets are
adopted to comprehensively analyze and evaluate the adversarial examples in the
frequency domain. We explore the effectiveness of different frequency bands of
perturbations through a quantitative analysis. Our significant findings success-
fully explain the contradictory parts of previous works. Evaluation results show
that compared with the distribution of unsuccessful adversarial perturbations,
the distribution of successful ones exhibits higher intensity within the effective
frequency bands, providing an explanation for launching attacks successfully.
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Besides addressing the limitations of existing theories, we obtain a better under-
standing of adversarial examples from the frequency domain perspective and
provide an idea on enhancing the robustness of models by considering the fre-
quency properties of datasets in advance. Further work is required to conduct
analyses on adversarially trained models from the frequency domain perspective
and build efficient and effective defense by exploiting the frequency properties.
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