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Abstract. Secret handshake, as a fundamental privacy-preserving prim-
itive, allows members in the same organization to anonymously authen-
ticate each other. Since its proposal in 2003, numerous schemes have
been presented in terms of various security, efficiency, and functionality.
Unfortunately, all of the contemporary designs are based on number the-
oretic assumptions and will be fragile in the setting of quantum computa-
tions. In this paper, we fill this gap by presenting the first lattice-based
secret handshake scheme with reusable credentials. More precisely, we
utilize the verifier-local revocation techniques for member secession, such
that users’ credentials support reusability rather than one-time usage. To
build an interactive authentication protocol, we subtly modify a Stern-
type zero-knowledge argument by use of a key exchange protocol, which
enables users to negotiate a session key for further communication. The
security of our scheme relies on the Short Integer Solution (SIS) and
Learning With Errors (LWE) assumptions.

Keywords: Secret handshake · Lattice cryptography ·
Zero-knowledge · Privacy-preserving · Mutual authentication

1 Introduction

Secret Handshake Scheme, firstly introduced by Balfanz et al. [5], is designed
for realizing mutually anonymous authentication. In secret handshakes, potential
users form different groups and one will reveal his/her affiliation to another if and
only if both of them belong to the same organization. Thus the interactive pro-
tocol run between users from different groups will leak nothing about their iden-
tities and affiliations. Moreover, members keep responsible for the handshakes
they execute since a tracing algorithm will identify them should the need occurs.
Following the initial work in [5], many secret handshake schemes have been pro-
posed based on different cryptography techniques. Some of them used one-time
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pseudonyms in their constructions [7,14,26,29,33]. Whereas, a more efficient
design for unlinkability is to use reusable credentials. For better efficiency, Xu
and Yung [30] presented the first such scheme with somewhat weaker unlinkabil-
ity. Ateniese et al. [4] proposed an improved unlinkable secret handshake scheme
secure in the standard model. Subsequently, Jarecki and Liu [15] proposed a prac-
tical unlinkable secret handshake scheme achieving both traceability and revoca-
tion with reusable certificates. From then on, many unlinkable secret handshake
schemes achieving more requirements were proposed [13,17,25,28]. Some practi-
cal applications of secret handshakes in social networks were also exploited, such
as online dating, anonymous services of e-commerce and e-healthcare [12].

Since the integrated systems offering authentication interface always main-
tain high staff turnover, one desirable functionality of secret handshake is the
support for membership revocation, i.e., users can leave or be revoked from the
group. Early attempts to capture this property need the whole system to be re-
initialized (including group public keys and users’ secret keys), which obviously
bring unsuitable workloads to all involved parties. Another flexible approach,
verifier-local revocation (VLR), is formalized by Boneh and Shacham [6] and
allows revoking a group member in a simpler manner. It only requires the corre-
sponding verifiers to download an updatable revocation list. Jarecki and Liu [15]
first employed a VLR group signature to design a secret handshake. Although
their construction shows a heuristic relation between the VLR group signature
and secret handshake, the aforementioned scheme employed an additional tech-
nique, i.e., a private Conditional Oblivious Transfer for relations on discrete
logarithm representations. Besides, as pointed out in [27], their scheme only
provided a generic construction and may be too complicated to be implemented.
The above unsatisfactory situation encourages us to design a more compact
scheme with flexible user management.

In addition, nearly all the known secret handshake schemes are designed on
the hardness of factoring integers or the discrete logarithm problem. These con-
structions will be insecure once quantum computers become a reality. To our best
knowledge, the only known post-quantum secret handshake scheme was proposed
by Zhang et al. [32] using one-time pseudonyms from coding theory. However,
we observe that due to improper adaptation of Stern’s identification system,
challenges used in their scheme are independent of the commitments generated
from user’s secrets. Therefore an adversary, who has no valid group credential,
can always utilize simulated zero-knowledge proof to forge an authentication
code, so as to conduct a successful handshake. As for other post-quantum candi-
dates, lattice-based cryptography is considered to be very promising and enjoys
provable security under worst-case hardness assumptions. Further, we observe
that group signature, another privacy-preserving primitive analogous to secret
handshake, has made some inspiring breakthroughs in lattice theory [18,19,21].
Thus, it is worthwhile to explore the area of lattice-based secret handshakes. To
fill this deficiency, we may need some adaptive and insightful ideas.

Our Contributions and Techniques. Inspired by the VLR group signa-
ture [18], we introduce the first lattice-based secret handshake scheme with
reusable credentials.
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Consider the system having N = 2� members for each group, user’s identity
ID is represented by a binary index d ∈ {0, 1}�. To generate a reusable group
credential, the identity is embedded into the user’s secret key usk := x ∈ Z

(2�+1)m

by setting xd[k]
k := 0m for k ∈ [�]. Indeed, x is a β-bounded solution to the ISIS

instance determined by the Bonsai signature, holding that A ·x = u, where A =
[A0|A0

1|A1
1| . . . |A0

� |A1
� |] specifies the structure of a Bonsai tree. Furthermore,

user’s revocation token (urt) is constructed via the root element of A and x,
i.e., urt := A0 · x0, according to VLR feature. The above realization guarantees
the secrecy of user’s credential, such that it can be reusable instead of one-time
usage for one handshake.

The major difficulty we have overcome lies in how to modify the zero-
knowledge argument to fit our handshake protocol. Generally, a Stern-like
zero-knowledge argument system has three components: three commitments
cmt = (c1, c2, c3), a challenge ch = H0(cmt, ·) ∈ {1, 2, 3} and a response rsp,
which is used to recover and verify 2 of 3 commitments according to the value
of ch (e.g., check (c2, c3) for ch = 1). Since a secret handshake scheme is a
mutual anonymous authentication protocol, we need to cut off the function-
ality of directly verifying the generated argument for the receiver. Therefore,
instead of sending cmt, we dispatch a partial commitment value cmt, con-
sisting of 1/3 of commitments that can not be checked by the corresponding
response (e.g., cmt = c1 for ch = 1). Next, we change the challenge ch as
ch := ch ⊕ m, where m is a hidden message utilized to conduct an LWE-based
key exchange [8]. After the above adjustment, both participants can first cal-
culate the reserved 2/3 of commitments1 via received responses rsp, and then
recover the original cmt combining cmt. Further, they can retrieve the hidden
message m := ch⊕H0(cmt, ·) to produce a session key K. In the end, a message
authentication code V = H2(K‖m, ·) is used to determine the result (0 or 1) of
a handshake. In this way, we also fix the flaw of Zhang et al.’s scheme [32]. We
elaborate more details on this strategy in algorithm Handshake of our scheme.

To summarize, by employing the setting of VLR, our scheme supports
reusable credentials and it only requires active users to download the published
revocation token list for group updates. The whole revocation tokens will serve
as a tracing secret key kept by group authority. Besides, we mask a secret mes-
sage with a modified Stern-type zero-knowledge argument [18], which ensures
that the interactive handshake protocol can negotiate a session key for both
participants and also prevents the attack of detection.

Organization. The remainder of this paper is organized as follows. In Sect. 2,
we recall our preliminaries including some lattice techniques and the underlying
argument system. Model and security requirements of secret handshakes are
reviewed in Sect. 3. In Sect. 4, we describe our secret handshake scheme. The
security and performance analysis are depicted in Sect. 5.

1 Note that they can not verify these commitments since they do not have the original
ones.
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2 Preliminaries

Notations. Vectors will be denoted in bold lower-case letters and matrices will
be denoted in bold upper-case letters. We assume that all vectors are column
vectors. Let ‖·‖ and ‖·‖∞ denote the Euclidean norm (�2) and infinity norm (�∞)
of a vector respectively. The concatenation of vectors x ∈ R

m and y ∈ R
k is

denoted by (x‖y), and the concatenation of matrices A ∈ R
n×m and B ∈ R

n×k

is denoted by [A|B]. For a positive integer n, let [n] denote the set {1, . . . , n}.
If S is a finite set, y

$← S means that y is chosen uniformly at random from S.
For a ∈ R, use log a and exp(a) to denote the logarithm and the power of a with
base 2 and e, respectively.

2.1 Background on Lattices

Let n,m, q ∈ Z
+ with q > 2. For A ∈ Z

n×m
q , define two lattices as Λ⊥(A) =

{x ∈ Z
m | A · x = 0 mod q} and Λu(A) = {x ∈ Z

m | A · x = u mod q}.

Gaussians over Lattices. For any positive real σ and n-dimensional lattice Λ,
the n-dimensional Gaussian function and the discrete Gaussian distribution over
Λ are defined as: ∀x ∈ R

n, ρσ(x) = exp(−π‖x‖2/σ2); ∀x ∈ Λ,DΛ,ρ(x) =
ρσ(x)
ρσ(Λ) .

Lemma 1 ([9]). Let n and q ≥ 2 be integers. Let m ≥ 2n log q, and σ ≥
ω(

√
logm).

1. For all but a 2q−n fraction of all A ∈ Z
n×m
q , for x ←↩ DZm,σ, the distribu-

tion of u = A · x mod q is statistically close to uniform over Z
n
q .

2. For β = 	σ · logm
, and x ←↩ DZm,σ, Pr[‖x‖∞ > β] is negligible.

Computational Lattice Problems. The following are the definitions and
hardness results of SIS, ISIS (�∞ norm) and LWE, which will be used in this
work.

Definition 1 ([1,9]). The SIS∞
n,m,q,β and ISIS∞

n,m,q,β with parameters (n,m, q, β)
are as follows: Given a uniformly random matrix A ∈ Z

n×m
q , and a uniformly

random vector u ∈ Z
n
q ,

• SIS∞
n,m,q,β: to find a non-zero vector x ∈ Λ⊥(A) such that ‖x‖∞ ≤ β.

• ISIS∞
n,m,q,β: to find a vector x ∈ Λu(A) such that ‖x‖∞ ≤ β.

The hardness of the SIS and ISIS problems is given by a worst-case to average-
case reduction from standard lattice problems, such as SIVP.

Definition 2 ([23]). Let n,m ≥ 1, q ≥ 2, and let χ be a probability distribution
over Z. For s ∈ Z

n
q , let As,χ be the distribution obtained by sampling a $← Z

n
q

and e ←↩ χ, and outputting the pair (a,a� · s + e) ∈ Z
n
q × Zq. The LWEn,q,χ

problem is to distinguish m samples from As,χ (let s $← Z
n
q ) and m samples

chosen according to the uniform distribution over Z
n
q × Zq.
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If q is a prime power, β ≥ √
nO(log n), γ = ˜O(nq/β), and χ is a β-bounded

distribution (i.e., χ = DZm,σ), LWEn,q,χ problem is as least as hard as SIVPγ .

Lattice Algorithms. The following facts describe two fundamental tools in
lattice-based cryptography: the trapdoor generation and the preimage sampling
algorithms. We use them to generate group/user keys in our scheme.

Lemma 2 ([2,3,20]). Given integers n ≥ 1, q ≥ 2, and m ≥ 2n log q. There
is a PPT algorithm GenTrap(n,m, q) that outputs a matrix A ∈ Z

n×m
q and a

trapdoor RA, such that A is statistically close to uniform in Z
n×m
q and RA is

a basis for Λ⊥(A). Moreover, for any vector u ∈ Z
n
q and σ = ω(

√
n log q log n),

there is a PPT algorithm SamplePre(RA,A,u, σ) that outputs x ∈ Λu(A) from
a distribution that is with negligible distance from DΛu(A),σ.

2.2 Zero-Knowledge Arguments of Knowledge

In a zero-knowledge argument of knowledge (ZKAoK) system, a prover proves
his/her possession of some witness for an NP relation to a verifier, without
revealing any additional information. Generally, a secure ZKAoK must satisfy
three requirements: completeness, proof of knowledge and zero knowledge [10].

In [18], Langlois et al. proposed a Stern-type ZKAoK over lattices for the
following relation:

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

d = d[1] . . . d[�] ∈ {0, 1}�, e ∈ Z
m;

x1−d[k]
k = 0m, ∀k ∈ [�], x = (x0‖x0

1‖x1
1‖ . . .‖x0

�‖x1
�) ∈ Z

(2�+1)m;
A · x = u mod q, ‖x‖∞ ≤ β;
W · (A0 · x0) + e = w mod q, ‖e‖∞ ≤ β,

(1)

where the tuple (d,x, e) is the secret witness and (A,W,u,w) is the public
input. The above protocol has perfect completeness, soundness error 2/3 with
a statistical simulator, and an efficient knowledge extractor. Further, by use of
Fiat-Shamir heuristic, it can be transformed into an NIZKAoK termed as a triple

Π = ({cmtk}t
k=1, {chk}t

k=1, {rspk}t
k=1), (2)

where cmtk =
〈

cmtk(1), cmtk(2), cmtk(3)
〉

for k ∈ [t] and {chk}t
k=1 =

H0(A,W,u,w, {cmtk}t
k=1) ∈ {1, 2, 3}t. We utilize this protocol as an underly-

ing building block and refer readers to [18, Sec. 4] for a more detailed description.
Security of the aforementioned ZKAoK is under the hardness assumption of SIS.

3 Model and Security Properties of Secret Handshake

In this section, we review the model and security definitions for a secret hand-
shake scheme (SHS). An SHS involves several entities: a group authority GA that
manages members’ enrollment and revocation, as well as tracing users’ malicious
behaviors, and s set of users who are potential group members. Based on the
previous definitions in [5,7], an SHS consists of the following algorithms:
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– Setup: On input security parameter λ, this algorithm generates the public
parameters par, which is common to all subsequently established groups.

– CreateGroup: It is a key generation algorithm executed by GA to create a
group G. On input par, this algorithm outputs group public key and secret
key (gpk, gsk).

– AddMember: It is a two-party algorithm run by GA, which certifies a user to
become a legitimate group member. After verifying the user’s real identity,
GA issues the user’s group credential Cred (including group identity ID).

– Handshake: This algorithm is a mutual authentication protocol between two
active members (A,B). It outputs 1 and produces a session key for both
parties if and only if A and B belong to the same group.

– TraceMember: It is a polynomial time algorithm executed by GA. When a
transcript T of a secret handshake between user A and B is submitted, GA
outputs the identities of user A and B via secret key gsk.

– RemoveMember: It is a polynomial time algorithm authorized by GA. Taking
the current credential revocation list (CRL) and the target user’s credential
as input, it outputs an up-to-date list CRL to revoke an active member.

As considered in [4,5], an SHS must satisfy some security requirements: com-
pleteness, impersonator resistance, detector resistance, unlinkability. They are
stated via the corresponding experiments below, respectively. Use CoU and CoG
to denote the corruption list of users and groups, respectively. The involved
oracles are listed as follows:

KeyP(par): this oracle simulates to create a new group and returns gpk to A.
AddM(U,G): this oracle adds a puppet user U to the chosen group G. Then it

returns the user’s credential Cred to A and adds ID to corruption list Cor,
which is initialized as ∅.

CorU(ID,G): this oracle returns user’s Cred whose identity in group G is ID to
A, then it adds (ID,G) to list CoU.

KeyG(par): this oracle returns secret key gsk of some group G and adds G to
CoG, implying that G is under the control of A.

HS(ID): this oracle simulates a two-party handshake by generating the interactive
transcripts. In particular, the adversary can request the hash functions and
valid NIZKAoK used in algorithm Handshake on any random witness.

Trace(T): this oracle returns the identities of users involved in the handshake
transcript T. Note that this oracle is only allowed to be queried for transcripts
that are not generated from the game between A and the challenger.

Completeness makes sure that the secret handshake protocol always outputs 1
when the interactive participants belong to the same group, and that algorithm
TraceMember can always identify the involved users.

Impersonator resistance demands that an adversary, who attempts to imper-
sonate a legitimate member of an uncorrupted group, can only succeed with a
negligible probability.
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Definition 3. Impersonator resistance is achieved if, for any PPT adversary,
the following experiment returns 1 with negligible probability.

Experiment: ExpIR
A(λ)

par ← Setup(λ), CoG, CoU := ∅.
(gpk) ← AKeyP(par).
Return 0 if gpk is not well-formed.
(ID∗, G∗) ← AAddM,CorU,KeyG,HS,Trace(gpk).
Return 1 if Handshake(A, ID∗) = 1 ∧ G∗ /∈ CoG ∧ ( ·, G∗) /∈ CoU.

Detector resistance requires that an adversary will only succeed with a neg-
ligible probability when he activates a handshake protocol with an honest user
to identify his/her affiliation. Namely, it’s infeasible to detect a user’s affiliation
without the corresponding group secret key.

Definition 4. Detector resistance is achieved if, for any PPT adversary, the
absolute difference of probability of outputting 1 between experiment ExpDR−1

A
and ExpDR−0

A is negligible.
Experiment: ExpDR−b

A (λ)

par ← Setup(λ), CoG, CoU := ∅.
(gpk) ← AKeyP(par).
Return 0 if gpk is not well-formed.
(ID∗, G∗) ← AAddM,CorU,KeyG,HS,Trace(gpk), holding G∗ /∈ CoG ∧ ( ·, G∗) /∈

CoU.
if b = 0 : Handshake(A, ID∗);
if b = 1 : Handshake(A, IDr). IDr is an arbitrary active user (not ID∗).
b∗ ← AAddM,CorU(¬{ID∗,IDr}),KeyG(¬{G∗,Gr}),HS,Trace(gpk).
Return 1 if b∗ = b else return 0.

Unlinkability ensures that no adversary can distinguish whether two executions
of secret handshake protocol involve the same honest and active user with a non-
negligible probability.

Definition 5. Unlinkability is achieved if, for any PPT adversary, the abso-
lute difference of probability of outputting 1 between experiment ExpUnlink−1

A and
ExpUnlink−0

A is negligible.
Experiment: ExpUnlink−b

A (λ)

par ← Setup(λ), CoG, CoU := ∅.
(gpk) ← AKeyP(par).
Return 0 if gpk is not well-formed.
(ID0, G0, ID1, G1) ← AAddM,CorU,KeyG,HS,Trace(gpk),
holding that Gi /∈ CoG ∧ (IDi, Gi) /∈ Cor ∪ CRL for i ∈ {0, 1}.
if b = 0 : Handshake(A, ID0), Handshake(A, ID0);
if b = 1 : Handshake(A, ID0), Handshake(A, ID1).
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b∗ ← AAddM,CorU(¬{ID0,ID1}),KeyG(¬{G0,G1}),HS,Trace(gpk).
Return 1 if b∗ = b else return 0.

4 Our Lattice-Based Secret Handshake Scheme

In this section, we describe how to, relying on the technique of VLR, modify and
apply the Stern-like ZKAoK [18] to construct a lattice-based SHS with reusable
credentials, which satisfies the security requirements in Sect. 3. As the setting
in [18], we assume that the group of our scheme has a maximum number of
members N . Procedures for building our scheme are depicted as follows.

– Setup: Given a security parameter λ, this algorithm specifies the following:
– A maximum number of group members N = 2� = poly(λ).
– Dimension n = O(λ), prime modulus q = ω(n2 log n) and matrix dimen-

sion m ≥ 2n log q.
– Matrix dimensions m1 = poly(n), integer modulus q1 ≤ 2poly(n), and an

integer θ ≥ 2λ/(nm1) for the session key exchange.
– Gaussian parameter σ = ω(

√
n log q log n) and integer norm bound β =

	σ · logm
.
– A β-bounded distribution χ = DZm,σ for the LWE function.
– Discrete Gaussian distribution χ1 over Z with standard deviation σ1 >

√

2n/π.
– A random matrix K ∈ Z

n×m1
q1 .

– An injective map F : Z
n×m1
q1 → {1, 2, 3}t, where t = ω(log n) is the

number of argument repetitions. F−1 is the inverse of F .
– Two random oracles: H0 : {0, 1}∗ → {1, 2, 3}t and H1 : {0, 1}∗ → Z

m×n
q .

A secure hash function H2 : {0, 1}∗ → Z
n
q .

The algorithm outputs global public parameters

par = (N, �, n, q,m,m1, q1, θ, σ, β, χ, χ1, σ1,K, F, F−1, t,H0,H1,H2).

– CreateGroup: GA takes par as input to create a group G. GA works as follows:
– Run GenTrap(n,m, q) to get A0 ∈ Z

n×m and trapdoor R.
– Sample u $← Z

n
q , and Ab

i
$← Z

n×m for all b ∈ {0, 1} and i ∈ [�]. Then
define the matrix

A = [A0|A0
1|A1

1| . . . |A0
� |A1

� ] ∈ Z
n×(2�+1)m
q . (3)

– For group user with index d ∈ [N ], let d[1] . . . d[l] ∈ {0, 1}� denote the
binary representation of d, and do the following:

– Sample vectors xd[1]
1 , . . . ,xd[�]

� ←↩ DZm,σ, and then compute z =
∑�−1

i=1 A
d[i]
i · xd[i]

i mod q. Run SamplePre(R,A0,u − z, σ) to get x0 ∈
Z

m. Let x1−d[1]
1 , . . . ,x1−d[�]

� be zero-vectors 0m, and define x(d) =
(x0‖x0

1‖x1
1‖ . . .‖x0

�‖x1
�) ∈ Z

(2�+1)m. If ‖x(d)‖∞ > β with negligible
probability then repeat this step.
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– Set the user secret key as usk[d] = x(d), and the revocation token as
urt[d] = A0 · x0 ∈ Z

n
q .

Finally GA sets the group public and secret key as gpk = (A,u), gsk =
(R, {usk[d], urt[d]}N

d=1), respectively. Then GA builds users’ identities ID =
{d}N

d=1, revocation list CRL = {∅} and member list L = {∅}.

– AddMember: When a user U wants to join the group G, GA chooses a spare
du as user’s IDu and issues U ’s credential as Credu = (IDu, usk[du], urt[du]).
Then GA sends Credu to the user and adds (U, IDu) to L.

– Handshake: Suppose a member A from group G1 with gpk1 = (A,u1), Creda =
(da, uska, urta), credential revocation list CRL1, and another member B from
group G2 with gpk2 = (B,u2), Credb = (db, uskb, urtb), credential revocation
list CRL2, engage in a handshake protocol.
1. A → B : (PROOFa)

(a) A samples a private key Sa ←↩ χ(Zn3×m1
q1 ) and a small noise Ea ←↩

χ(Zn3×m1
q1 ). Then A computes Ca = K · Sa +Ea ∈ Z

n3×m1
q1 .

(b) A samples ea ←↩ χm and ρa
$← {0, 1}n. Then A computes Wa =

H1(A,u1,K, ρa) ∈ Z
m×n
q and wa = Wa · urta + ea mod q.

(c) A repeats t times the underlying ZKAoK protocol [18, Sec. 4.1] with
public parameter (A,u1,Wa,wa) and witness (da, uska, ea), then
makes it non-interactive with the Fiat-Shamir heuristic as a triple
Πa = ({cmtka}t

k=1, cha, {rspk
a}t

k=1), where

cha = ({chk
a}t

k=1) = H0(A,u1,Wa,wa, {cmtka}t
k=1) ⊕ F (Ca). (4)

(d) Denote the commitment values which will not be checked as cmta =
(cmt

1
a, . . . , cmt

t
a). Namely, A sets

cmt
k
a =

⎧

⎪

⎨

⎪

⎩

〈

cmtka(1)
〉

, chk
a = 1;

〈

cmtka(2)
〉

, chk
a = 2;

〈

cmtka(3)
〉

, chk
a = 3.

(5)

(e) A sets PROOFa = (cmta, cha, {rspk
a}t

k=1, ρa,wa) and sends it to B.
2. B → A : (PROOFb, Vb)

(a) B sets W′
a = H1(B,u2,K, ρa). Then for each vi ∈ CRL2, B com-

putes e′
i = wa−W′

a·vi. If there exists an index i such that ‖e′
i‖∞ ≤ β,

B sends A a random pair (PROOFb, Vb) and aborts.
(b) B samples his ephemeral key Sb ←↩ χ(Zm1×n3

q1 ) and a small noise
Eb ←↩ χ(Zm1×n3

q1 ). Then B computes Cb = K · Sb +Eb ∈ Z
m1×n3
q1 .

(c) B computes the checked value cmt∗a = (cmt∗1a , . . . , cmt∗t
a ) for k ∈ [t]

from corresponding rspk
a and chk

a. Namely, B computes

cmt∗k
a =

⎧

⎪

⎨

⎪

⎩

〈

cmt∗k
a (2), cmt∗k

a (3)
〉

, chk
a = 1;

〈

cmt∗k
a (1), cmt∗k

a (3)
〉

, chk
a = 2;

〈

cmt∗k
a (1), cmt∗k

a (2)
〉

, chk
a = 3.

(6)

Details of the above calculations are depicted in [18, Sec. 4.1].
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(d) By proper concatenations and rearrangements of cmt∗a and cmta
according to cha, B recovers the original commitments cmt′a (e.g.,
set cmt′ka = (cmt∗k

a (2), cmt
k
a, cmt∗k

a (3)) if chk
a = 2). Then B retrieves

the hidden message C′
a = F−1(cha ⊕ H0(B,u2,W′

a,wa, cmt′a)).
(e) B computes wb = Wb · urt[db] + eb mod q, where ρb

$← {0, 1}n,
Wb = H1(B,u2,K, ρb) and eb ←↩ χm.

(f) Similarly with public input (B,u2,Wb,wb) and witness (db, usk[db],
eb), B runs the underlying ZKAoK to get a triple Πb =
({cmtkb}t

k=1, chb, {rspk
b }t

k=1), where

chb = ({chk
b }t

k=1) = H0(B,u2,Wb,wb, {cmtkb }t
k=1) ⊕ F (C�

b ). (7)

(g) B also sets each element of cmtb = (cmt
1
b , . . . , cmt

t
a) as

cmt
k
b =

⎧

⎪

⎨

⎪

⎩

〈

cmtkb (1)
〉

, chk
b = 1;

〈

cmtkb (2)
〉

, chk
b = 2;

〈

cmtkb (3)
〉

, chk
b = 3.

(8)

(h) B samples another noise Ẽb ←↩ χ(Zm1×m1
q1 ) and computes an auxiliary

matrix Vb = Sb ·C′
a+Ẽb. Then B generates the reconciliation matrix

M ∈ Z
m1×m1
2 holds that

M[i, j] = � 2θ+1

q1
· Vb[i, j] � mod 2, ∀ i, j ∈ [m1], (9)

where each entry of Vb is viewed as an integer in [−q1/2, q1/2 − 1]2.
(i) B generates the shared session key Kb ∈ Z

m1×m1
2θ by rounding the θ

most significant bits from each entry of Vb, i.e., the (i, j)-th entry of
Kb is:

Kb[i, j] = � 2θ

q1
· Vb[i, j] 
 mod 2θ, (10)

where entries of Vb are also viewed as integers in [−q1/2, q1/2 − 1].
(j) B sets PROOFb = (cmtb, chb, {rspk

b }t
k=1, ρb,wb,M) and authentication

code Vb = H2(Kb‖Cb‖0). Then he sends (PROOFb, Vb) to A.

Remark 1. There is one pivotal modification of the above interactive algorithm:
the transported tuple PROOFa is a partial NIZKAoK compared with the original
one generated in [18]. Namely, B can recover 2/3 part (cmt′a) of the whole com-
mitments cmta from cha and rspa, yet the validity of cmt′a cannot be verified
since he only received the rest 1/3 contents (cmta). In this way, the only infor-
mation B can get is the retrieved message C′

a. Therefore, B is unable to detect
which group A belongs to in this flow, and has to symmetrically send his proof
(masking his message Cb) of group credential to A. This strategy also fix the
flaw of Zhang et al.’s scheme [32].
2 This can be done by setting Vb[i, j]

′ = Vb[i, j]− αq1 where α = 1 if Vb[i, j] > q1
2
− 1

and α = 0 otherwise.
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3. A → B : (Va)
(a) A sets W′

b = H1(A,u1,K, ρb). Then for each vj ∈ CRL1, A computes
e′

j = wb − W′
b · vj . If there exist an index j such that ‖e′

j‖∞ ≤ β, A

chooses a random value Va
$← {0, 1}q1 , outputs 0 and aborts.

(b) A also computes the checked value cmt∗b = (cmt∗1b , . . . , cmt∗t
b ) for k ∈ [t]

from corresponding rspk
a and chk

a as follows:

cmt∗k
b =

⎧

⎪

⎨

⎪

⎩

〈

cmt∗k
b (2), cmt∗k

b (3)
〉

, chk
b = 1;

〈

cmt∗k
b (1), cmt∗k

b (3)
〉

, chk
b = 2;

〈

cmt∗k
b (1), cmt∗k

b (2)
〉

, chk
b = 3.

(11)

Then with identical operations A recovers the original cmt′b and computes
the masked matrix C′�

b = F−1(chb ⊕ H0(A,u1,W′
b,wb, cmt′b)).

(c) A computes an assistant matrix Va = C′
b · Sa. Next, she extracts the

shared session key Ka ∈ Z
m1×m1
2θ from Va via a reconciliation technique,

i.e., using the check field M to apply the rounding. The (i, j)-th entry of
Ka is:

Ka[i, j] = � 2θ

q1
· Va[i, j] +

1
4

· (2M[i, j] − 1) 
 mod 2θ, (12)

where each entry of Vb is also viewed as an integer in [−q1/2, q1/2 − 1].
(d) A verifies that Vb

?= H(Ka‖C′
b‖0). If so, A outputs 1 and sends Va =

H2(Ka‖Ca‖1) to B. Otherwise, A outputs 0 and responds a random Va.
(e) B verifies Va through a similar equation Va

?= H(Kb‖C′
a‖1). B outputs

1 if the equation holds, else he outputs 0.

– TraceMember: When a dispute happens, firstly GA will retrieve the handshake
transcripts of A and B. Then for d ∈ [N ], GA computes ed = w − W · urt[d]
and outputs the first index d∗ such that ‖ed∗‖∞ ≤ β, otherwise outputs ⊥
indicating that the involved participant is a malicious outsider.

– RemoveMember: GA maintains and updates the information of CRL and L
after tracing a malicious group member or receiving a logout request. To
remove a member U from group G, GA first looks up and removes the mem-
ber’s UserSecret = (U, IDu) from L. Then GA adds urt[du] to CRL, and dis-
tributes the updated list CRL to every other group members via an authen-
ticated anonymous channel.

5 Security and Performance Analysis of the Scheme

5.1 Security

Completeness: We first demonstrate that the scheme is complete with
overwhelming probability if both active users belong to the same group
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(gpk1 = gpk2), based on the perfect completeness of the underlying Stern-like
protocol.

Note that the interactive message PROOF generated by an honest and active
user is always valid, i.e., the receiver can rightly recover the original commit-
ments holding that cmt′ = cmt. Thus, such a receiver can always retrieve the
hidden matrix C′ equals to C. In this way, it can be deduced from [8, A.1.4]
that Ka �= Kb with negligible probability. Therefore, both authentication codes
(Va and Vb) would be successfully verified, and consequently the handshake pro-
tocol outputs 1 for A and B. Moreover, the tracing algorithm TraceMember will
get ed∗ = w − W · urt[d∗] = e∗ for d∗ = da or db, where e∗ is sampled from a
β-bounded distribution such that ‖e∗‖∞ ≤ β holds with overwhelming proba-
bility. So both users can always be traced when disputes happen.

Privacy : We now prove that our scheme satisfies the privacy requirements listed
in Sect. 3 through Theorems 1–3 below, for which some proofs are deferred to
Appendix 1.

Theorem 1. In the random oracle model, impersonator resistance holds for our
scheme under the SIS assumption.

Theorem 2. In the random oracle model, detector resistance holds for our
scheme under the LWE assumption.

Theorem 3. In the random oracle model, unlinkability holds for our scheme
under the LWE assumption.

Proof. The proof is similar to that of Theorem 2. Based on the security of utilized
ZK protocol and the LWEn,q,χ assumption, we can build a sequence of games to
argue that |Pr[ExpUnlink−1

A = 1] − Pr[ExpUnlink−0
A = 1]| = negl(λ).

5.2 Performance

From Theorem1, 2 and 3 we know that our scheme’s provable security depends
on the LWEn,q,χ and SIS∞

n,(�+1)·m,q,2β (implying SIS2
n,(�+1)·m,q,2β

√
(�+1)·m)

assumptions. Recently Yang et al. [31] gave a concrete technique to estimate
and derive parameters for hardness theorems over lattices. They examine the
root Hermite factor (RHF) and summarize the required RHF for these problems
as follows:

RHF =

⎧

⎨

⎩

exp( log2 β
4n log q ), for SIS2n,m,q,β ;

exp(
log2 σ·√2π

5.31q

4n log q ), for LWEn,q,χ.
(13)

We adopt this method and set RHF as 1.0048 to achieve an 80-bit security.
In this way, we get n = 471 from the above equations. Then we set

(q,m, σ, β,m1, q1, θ, σ1) = (1961767, 19654, 296, 389, 6, 213, 4, 2309),

according to the asymptotic bounds of these scheme parameters. To make sound-
ness error of the ZK protocol negligible, we set repetitions t = 137. Besides, we
set N = 219 for efficient group management.
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– Communication Cost: In Addmember, GA sends Credu to the user, where
IDu = du is a binary string of size �, (usk[du], urt[du]) comprises an element
of Z(2�+1)m holding ‖usk[du]‖∞ ≤ β and an element of Zn

q , respectively. So
the communication cost in this step is less than � + (� + 1)m log β + n log q
bits ≈579 KB. In Handshake, each member finally needs to transmit a pair
(PROOF, V) in two rounds. PROOF comprises partial commitments cmt with
bit-size tn log q, a challenge value ch having 2t bits, t responses rsp with no
more than 3tm log β(4�+4+ 2(�+1) log q) bits and an LWE function output
w ∈ Z

m
q , so the total length is about 7.79 GB (user B sends an extra matrix

M ∈ Z
m1·m1
2 having bit-size 36). The authentication code V has length n log q

bits. Thus, the communication cost in Handshake for each participant is about
7.8 GB.

– Computational Cost: In CreateGroup, GA generates all the potential users’
credentials, the main computation cost here is the polynomial-time algorithms
GenTrap and SamplePre which can be pre-computed. In Handshake, the main
operations here are the multiplications of matrices and vectors in O(n2) and
a polynomial-time commitment scheme COM [16] used in ZK protocol, whose
runtime is on the order of milliseconds using libraries like GMP [11] and
NTL [24]. Thus the computational cost of Handshake is considered to be very
small. While the step of revocation check runs in the size of list CRL, as it
seems unavoidable for the setting of VLR.

6 Conclusion

This paper aims to propose the first secret handshake scheme from lattices, which
supports reusable credentials and membership revocation. With some subtle
modifications, we transform a Stern-like ZKAoK system into a mutual authen-
tication protocol. It’s intriguing to consider whether this design is a generic
framework, e.g., can apply to other types of ZKAoK like Fiat-Shamir with abort
ones [21,31]. To achieve traceability and unlinkability with ease, we utilize the
VLR structure to generate revocation tokens with group identities encoded in a
Bonsai tree. We believe that, our construction - while not being entirely novel -
would certainly help to exploit the area of post-quantum secret handshakes. One
interesting future work is to build secret handshakes supporting more function-
alities such as backward unlinkability or full dynamicity through more efficient
lattice-based techniques.
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dation of China (No. 61972429) and Guangdong Basic and Applied Basic Research
Foundation (No. 2019A1515011797) and the Opening Project of Guangdong Provin-
cial Key Laboratory of Information Security Technology (2020B1212060078-09).
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Appendix 1. Impersonator Resistance (Proof of
Theorem1)

Proof. Suppose that A succeeds in experiment ExpIR
A with non-negligible advan-

tage ε. Then we can build a PPT algorithm F that solves SIS∞
n,(l+1)·m,q,2β prob-

lem with non-negligible probability.
Given an SIS instance C = [C0|C1| . . . |C�] ∈ Z

n×(�+1)m
q , the goal of F is to

find a non-zero vector y ∈ Z
(�+1)·m such that C ·y = 0 mod q and ‖y‖∞ ≤ 2β.

Toward this goal, F first generates the public parameters par as we do in Setup,
and proceeds as described in experiment ExpIR

A . Note that F can consistently
answer all the oracle queries made by A. In particular, F randomly picks i ∈ [qG]
where qG is the number of queries to oracle KeyP, then it performs the following
steps at the i-th query to oracle KeyP to bulid a group G(i):

– Sample vector z = (x0|x1| . . . |x�) ∈ Z
(�+1)·m from DZ(�+1)·m,σ. If ‖z‖∞ > β,

repeat the sampling. Otherwise, compute u = C · z mod q.
– Get � pairs {(Fi,Ri)}i∈[�] by invoking algorithm GenTrap(n,m, q) for � times.

– Choose a target identity d∗ $← {0, 1}�, and define A = [A0|A0
1|A1

1| . . .
|A0

� |A1
� ] ∈ Z

n×(2�+1)m
q by setting A0 = C0, A

d∗[i]
i = Ci and A1−d∗[i]

i = Fi

for i ∈ [�].
– Define the secret key and revocation token of member d∗ as follows:

i: usk[d∗] = (x0‖x0
1‖x1

1‖ . . .‖x0
�‖x1

�) ∈ Z
(2�+1)m, where x0 = z0, x

d∗[i]
i = zi

and x1−d∗[i]
i = 0m for all i ∈ [�].

ii: urt[d∗] = A0 · x0 mod q ∈ Z
n
q .

– For member’s identity d �= d∗, generate its secret key and revocation token
as follows:
1. Since d �= d∗, there exists an index p being the first index of LTR-order

such that d[p] �= d∗[p]. Then it holds that Ad[p]
p = A1−d∗[p]

p = Fp.
2. Sample � vectors x0,x

d[1]
1 , . . . ,xd[p−1]

p−1 ,xd[p+1]
p+1 , . . . ,xd[�]

� ←↩ DZm,σ, and set
s(d) = u − (A0 · x0 +

∑

i∈[�],i 	=b(A
d[i]
i · xd[i]

i )) mod q.

3. Sample xd[p]
p ←↩ SamplePre(Rp,Fp, s(d), σ).

4. Set x(d) = (x0‖x0
1‖x1

1‖ . . .‖x0
�‖x1

�) ∈ Z
(2�+1)m, where x1−d[i]

i = 0m for all
i ∈ [�]. Repeat the sampling if ‖x(d)‖∞ > β. Otherwise, let usk[d] = x(d)

and urt[d] = A0 · x0 mod q.
– Set gpk = (A,u), gsk = (Ri, grt), and usk = {usk[k]}N

k=1. Note that, by
construction, the distribution of (gpk, grt, usk) is statistically close to that of
the real scheme, and the choice of d∗ is hidden from the adversary.

Eventually, A wins with its output PROOF∗ = (cmt
∗
, ch∗, {rsp∗

k}t
k=1, ρ

∗,w∗).
Since the involved user outputs 1 after a handshake with A, we know that he
must have retrieved the right hidden matrix C∗. This fact also means that the
recovered commitments cmt′∗ is equal to the original one cmt∗. Now it can be
deduced that the NIZKAoK (cmt∗, ch∗, {rsp∗

k}t
k=1) is a valid one generated by A

via the underlying ZK protocol. Then we can argue that A must have queried
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H0 on input (A,u,W∗,w∗, cmt∗) (denoted as η∗), as otherwise, the probability
that ch∗ = H0(η∗) is at most 3−t. Thus, with probability at least ε − 3−t, there
exists some κ∗ ≤ qH such that the κ∗-th hash query involves the tuple η∗, where
qH is the number of queries to random oracle H0.

To employ the Improved Forking Lemma [22], F reinvokes A polynomial
times with the same random tape and input as in the original run, until the
κ∗ query, that is, from the κ∗ query onwards, F answers A with fresh and
independent values ρκ∗ , . . . , ρqH

$← {1, 2, 3}t. By the aforementioned Forking
Lemma, with probability ≥ 1

2 , F obtains 3-fork {ρ1κ∗ , ρ2κ∗ , ρ3κ∗} involving the
same tuple η∗ after less than 32 · qH/(ε − 3−t) executions of A. Then we have
{ρ1κ∗(i), ρ2κ∗(i), ρ3κ∗(i)} = {1, 2, 3} for some i ∈ [t] with probability 1 − (79 )

t.
Having such index i, F can parse the 3 forgeries from the fork branches to
obtain 3 valid responses (rsp∗

i (1), rsp
∗
i (2), rsp

∗
i (3)) w.r.t. 3 different challenges

for the same commitment cmt∗i . By Theorem 1 in [18], we can extract vectors
x = (x0‖x0

1‖x1
1‖ . . .‖x0

�‖x1
�) ∈ Z

(2�+1)m and e∗ ∈ Z
m such that:

1. ‖x‖∞ ≤ β, the following � blocks are zero-blocks 0m: x1−d[1]
1 , . . . ,x1−d[�]

� for
some d ∈ {0, 1}�;

2. A · x = u mod q;
3. ‖e′‖∞ ≤ β and w∗ = W∗ · (A0 · x0) + e∗ mod q.

Now we consider two cases:

• If G∗ is not created at the i-th query to oracle KeyP or d �= d∗, which happens
with probability at most N ·qG−1

N ·qG
, then algorithm F fails and aborts.

• If d = d∗ belongs to G(i), set x∗ = (x0‖xd[1]
1 ‖ . . .‖xd[�]

� ) ∈ Z
(�+1)m. Then by

construction it holds that C·x∗ = A·x = u mod q. Furthermore, experiment
ExpIR

A ensures that A has never requested the user secret key usk[d∗], so that
z is unknown to A. In this case, because z has large min-entropy given u (see
Lemma 1), we have x∗ �= z with overwhelming probability.

Now let y = x∗ − z, then we get the following facts: i) y �= 0; ii) C · y = 0
mod q; iii) ‖y‖∞ ≤ ‖x∗‖∞ + ‖z‖∞ ≤ β + β = 2β. So F finally outputs the
vector y, which is a solution to the related SIS∞

n,(l+1)·m,q,2β problem.

In summary, the probability that F does not abort and solve the
SIS∞

n,(l+1)·m,q,2β assumption is larger than (1 − ( 79 )
t)/2(N · qG). This concludes

the proof.

Appendix 2. Detector Resistance (Proof of Theorem2)

Proof. We define a sequence of hybrid games where the first is ExpDR−0
A and

the last is ExpDR−1
A . Then we prove that these games are indistinguishable. For

i-th game, denote the output of A by Ri. The concrete games are described as
follows.
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Game 0: This is exactly the original game ExpDR−0
A .

Game 1: This game is the same as Game 0 except that it generates a simu-
lated proof for the interactive handshake between A and the chosen user ID∗,
via running the simulator of the underlying argument for every repetition, and
then generates the corresponding challenge via oracle H0. Since the hidden
vector C is also generated randomly by an LWE function, the view of adver-
sary A is statistically indistinguishable between Game 1 and Game 2 by zero-
knowledge property of underlying ZK protocol. So Pr[R1 = 1] ≈ Pr[R2 = 1].
Game 2: This game is the same as Game 1 with only one modification:
for token embedding, we compute the LWE function using a random nonce
s instead of the revocation token urt[ID∗], namely, w = W · s + e∗ mod q

where s $← Z
n
q . Recall that the token urt[ID∗] = A0 · x0 is statistically close

to uniform over Z
n
q . In this way, we have Pr[R2 = 1] ≈ Pr[R1 = 1].

Game 3: This game follows Game 2 with one change: we make w uniformly
sampled from Z

m
q . Note that in the previous game, W is uniformly random

over Zm×n
q , so the pair (W,w) is a valid LWEn,q,χ instance and its distribution

is computationally close to the uniform distribution over Z
m×n
q × Z

m
q . Thus,

it holds that Pr[R3 = 1] − Pr[R2 = 1] = negl(λ).
Game 4: This game switches back to use a random nonce to produce w, and
this LWE function is for an arbitrary user IDr, i.e., w = W · s + er mod q.
Since er ←↩ χm is β-bounded, the output PROOF is computationally close to
that in Game 3. Hence we have Pr[R4 = 1] − Pr[R3 = 1] = negl(λ).
Game 5: In this game, we generate w with another user’s revocation token
urt[IDr], namely, w = W · urt[IDr] + er mod q. Since urt[IDr] is statistically
close to uniform over Z

n
q , this change makes no difference to the view of A.

Therefore, it holds that Pr[R5 = 1] ≈ Pr[R4 = 1].
Game 6: This game is exactly the experiment ExpDR−1

A . We generate the real
argument for the handshake between A and IDr, the transcript is statistically
indistinguishable from that of Game 5 by the zero-knowledge property of the
utilized ZKAoK. In this way, we have Pr[R6 = 1] ≈ Pr[R5 = 1].

Combining the above analysis, we have that |Pr[ExpDR−1
A = 1] −

Pr[ExpDR−0
A = 1]| = negl(λ). This concludes the proof.
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