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Abstract. Automatic polyp detection during colonoscopy is beneficial
for reducing the risk of colorectal cancer. However, due to the various
shapes and sizes of polyps and the complex structures in the intestinal
cavity, some normal tissues may display features similar to actual polyps.
As a result, traditional object detection models are easily confused by
such suspected target regions and lead to false-positive detection. In
this work, we propose a multi-branch spatial attention mechanism based
on the one-stage object detection framework, YOLOv4. Our model is
further jointly optimized with a top likelihood and similarity to reduce
false positives caused by suspected target regions. A similarity loss is
further added to identify the suspected targets from real ones. We then
introduce a Cross Stage Partial Connection mechanism to reduce the
parameters. Our model is evaluated on the private colonic polyp dataset
and the public MICCAI 2015 grand challenge dataset including the CVC-
Clinic 2015 and Etis-Larib, both of the results show our model improves
performance by a large margin and with less computational cost.

Keywords: Polyp detection · Suspected target · Semi-supervised
learning

1 Introduction

Colorectal cancer is one of the most common malignancies of the digestive system
in the world. Most colorectal cancers originate from adenomatous polyp, and
colonoscopy is an important way to screen for colorectal cancer [1]. Colonoscopy-
based polyp detection is a key task in medical image computing. In recent years,
Deep learning detection models are widely used in polyp detection [2–4,8,16].
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However, influenced by the complex environment of the intestinal tract, bubbles,
lens reflection, residues, and shadows may display polyp-like features. Those
features can form the suspected target and confuse the model. See Fig. 1 below.

(a) (b) (c) (d)

Fig. 1. (a) Bubbles; (b) Lens reflection; (c) Residues; (d) Virtual shadow

Currently two-stage [2–4,6] and one-stage [5,8,16,23] models are the most
widely used models in object detection. Faster R-CNN [6] as the most widely
used two-stage object detection model, has been adopted in various polyp detec-
tion tasks. Mo et al. [2] provide the first evaluation for polyp detection using
Faster R-CNN framework, which provides a good trade-off between efficiency
and accuracy. Shin et al. [4] propose FP learning. They first trained a network
with polyp images and generated FP samples with additional normal videos.
Then retrained the network by adding back the generated FP samples. Sor-
napudi et al. [3] propose a modified region-based convolutional neural network
(R-CNN) by generating masks around polyp detected from still frames. One
stage model such as You only look once (YOLO) [5] is also widely used for
lesion detection with the advantage of its efficiency. Wang et al. [8] propose a
new anchor free polyp detector, which can achieve real-time performance. Liu et
al. [23] investigated the potential of the single shot detector (SSD) [18] frame-
work for detecting polyps in colonoscopy videos. Three different feature extrac-
tors, including ResNet50, VGG16, and InceptionV3 are assessed. Tian et al. [16]
propose a one-stage detection and classification approach for a new 5-class polyp
classification problem.

To deal with the suspected target regions, some mechanisms such as attention
mechanism (CBAM) [7] propose to make the model more focused on true target
regions. Recently, Xiao et al. [10] propose a new sampling method based on the
Faster R-CNN model to automatically learn features from the suspected target
regions directly and effectively reduce false positives. Guo et al. [24] propose a
method based on active learning to tackle false positives detected by the CADe
system. But both [24] and [4] methods add the FP samples to the training
set after finding the false-positive region to retrain the network, this process is
more complicated. We design a semi-supervised method to automatically learn
suspicious targets to solve this problem.

In addition, there are other methods to detect polyps. Tajbakhsh et al. [22]
is based on a hybrid context-shape approach, which utilizes context information
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to remove non-polyp structures and shape information to reliably localize polyps.
Tian et al. [25] integrate few-shot anomaly detection methods designed to perform
the detection of frames containing polyps from colonoscopy videos with a method
that rejects frames containing blurry images, feces and water jet sprays. Liu et
al. [26] propose a consolidated domain adaptive detection and localization frame-
work to bridge the domain gap between different colonosopic datasets effectively.

In this paper, we propose a novel one-stage polyp detection model based on
YOLOv4. Moreover, Our model is validated on both the private dataset and the
public dataset of the MICCAI 2015 challenge [11] including CVC-Clinic 2015
and Etis-Larib, brings significant performance improvements and outperform
most cutting-edge models. To summarize, our main contributions include: (i) A
multi-branched spatial attention mechanism (MSAM) is proposed to make the
model more focus on the polyp lesion regions. (ii) Design the Top likelihood loss
(Tloss) with a multi-scale sampling strategy to reduce false positives by learn-
ing from suspected regions from the background. (iii) Further propose Cosine
similarity loss (Csimloss) to improve the discrimination ability between positive
and negative images. (iv) A cross stage partial connection mechanism is further
introduced to make the model more efficient. (v) Finally, from the large amount
of experiments using the private and public datasets, we demonstrate that our
detection model shows improved detection performance compared with other
recent studies in the colonoscopy image datasets.

2 Methods

Our detailed model is shown in Fig. 2. The proposed framework consists of three
parts: (1) A multi-branch spatial attention mechanism (MSAM) is proposed to
make the model pay more attention to the polyp lesion regions (Sect. 2.1); (2)
Top likelihood loss and cosine similarity loss are designed to the one-stage model
for false-positive reduction (Sect. 2.2); (3) Cross Stage Partial Connection is
introduced to reduce model parameters through feature fusion (Sect. 2.3). During
training, the proposed model jointly optimizes positive and negative images. The
positive images are trained by the original loss function, the negative images are
trained with the top likelihood loss added. The pairs of positive and negative
images are further optimized by the cosine similarity loss.

2.1 Multi-branch Spatial Attention Mechanism

In order to make the model pay more attention to the polyp lesion regions
and eliminate the effect of background contents, inspired by the idea of spatial
attention mechanism (SAM) [7] which locates the most important information
on the feature map, we propose a multi-branch spatial attention mechanism
(MSAM). We put them in the three output positions of feature fusion, as shown
in C-M-Block in Fig. 2, MSAM is a concrete structure. There are three different
scales of feature maps for feature fusion, the receptive fields of the three scales
are targeted to different sizes of objects.
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Fig. 2. The architecture of the model. C-Block is the structure after adding cross stage
partial connection, and C-M-Block is the structure after adding cross stage partial con-
nection and multi-branch spatial attention mechanism (MSAM), the number represent
the convolution kernel size, setting k′ ∈ {5, 7, 9} in our model, They correspond to the
three scales in the model.

Given an input F , we compute the MSAM map As = σ
(∑

k′ fk′×k′
(F )

)
.

Where, fk′×k′
represents the convolution operation with the kernel size of k′ × k′,

and σ represents the sigmoid activation function. Setting k′ ∈ {5, 7, 9} in our
model, They correspond to the three scales in the model. The 9 × 9 convolution
kernel corresponds to the smaller receptive field, the 7 × 7 convolution kernel
corresponds to the middle scale receptive field, and the 5 × 5 convolution kernel
corresponds to the larger receptive field.

2.2 Top Likelihood and Similarity Loss

We design the top likelihood loss and cosine similarity loss to reduce false posi-
tives. The implementation details of the loss can be summarized in Fig. 3.

Top Likelihood Loss. When optimizing negative samples, since those images
do not have any annotation information, this means that all areas will be ran-
domly sampled with equal chance. As a result, the suspected target regions will
have a small chance to get trained since it usually only occupies a small portion
of the image. The prediction result may bias towards normal features, leading
to some false positive detection. To solve this problem, we design top likelihood
loss with multi-scale sampling strategy in a one-stage model. When dealing with
negative images, we use top likelihood loss and select the proposals with top
confidence scores.

Different from two-stage models, YOLOv4 directly generates object confi-
dence score, category probability, and border regression. When training negative
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Fig. 3. The illustration of the multi-scale top likelihood loss and cosine similarity loss
where the solid point represents the selected sample: (a) show top likelihood loss with
multi-scale sampling strategy, the K of each scale is set to 50. (b) In the same batch,
positive and negative samples of the same scale calculate cosine similarity loss.

images, we compute the confidence scores and select the top 50 anchor boxes
score negative anchor boxes on each scale (150 in total) to calculate the loss.
The boxes with high scores will be more likely to represent the suspected target
region, and as long as the boxes with high scores are minimized, all the boxes
would be optimized to be negative regions. This top likelihood loss is defined as:

Ltloss =
1

obj

∑
i∈ tops

Lobj (pi, p
∗
i = 0) (1)

Here, i represents the index of anchor in a batch, and pi represents the
predicted score of the i-th anchors. Lobj is the cross-entropy loss.

Cosine Similarity Loss. We further propose the cosine similarity loss to
improve the discrimination ability between positive and negative images. To
make our model trained sufficiently, we make use all of the pairs of positive and
negative images for computing the cosine similarity loss. Specifically, in each
batch, positive images and negative images are random. In order to fully learn
the characteristics between positive and negative images, we design a program
to let the positive and negative images in the same batch size calculate the
similarity loss between each other, and finally take the average. When the net-
work processes the positive images, we take the positive samples with top K
scores. Then, when the network processes negative images, we select the high-
est predicted K classification scores and pair them with positive ones. Assume
A positive images and B negative images within one batch, there are A × B
positive-negative pairs. The similarity loss is obtained by computing the cosine
similarity of K paired eigen-vectors and summing over the A × B pairs.
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Lcsimloss (X1,X2) =
1

A × B

AxB∑
j

[
1
K

K∑
i=1

csim
(
Xi

1,X
i
2

)
]

(2)

Where Xi
1,X

i
2 are the feature vectors from positive and negative images, csim

is cosine similarity loss, csim
(
Xi

1,X
i
2

)
= Xi

1·Xi
2

‖Xi
1‖‖i

2‖ =
∑n

i=1 Xi
1×Xi

2√∑n
i=1(Xi

1)
2×

√∑n
i=1(Xi

2)
2 .

2.3 Cross Stage Partial Connection

We further introduce the Cross Stage Partial Network (CSPNet) [13] in our
model. By dividing the gradient flow, CSPNet can make the gradient flow prop-
agate through different network paths, which can improve the reasoning speed.
As shown in Fig. 2, the feature fusion part includes five modules: three up-
sampling and two down-sampling. As shown in C-Block and C-M-Block in the
bottom right of Fig. 2, the Block represents the original connection, C-Block
and C-M-Block represents the connection after adding CSP. through the split
and merge strategy, the number of gradient paths can be doubled. Because of
the cross-stage strategy, which can alleviate the disadvantages caused by using
explicit feature map copy for concatenation. As shown in Table 1, the number of
parameters significantly decrease by adding such an operation.

3 Experiment

3.1 Datasets

In order to verify the effectiveness of the proposed method, we conduct experi-
ments on two datasets, the private colonic polyp dataset and the public dataset
including CVC-Clinic 2015 and Etis-Larib.

Private Polyp Dataset. A dataset of private colonic polyp dataset is collected
and labeled from the Colorectal and Anorectal Surgery Department of a local
hospital, which contains 175 patients with 1720 colon polyp images. The 1720
images are randomly divided into training and testing set with a ratio of 4:1. We
simulate the actual application scenes of colonoscopy and expand the dataset
accordingly, including the expansion of blur, brightness, deformation and so on,
finally expanding to 3582 images. The colon polyp images are combined with
1000 normal images without annotation information to build the training set.
The original image size is varied from 612× 524 to 1280× 720. And we resize all
the images to 512 × 512.

MICCAI 2015 Colonoscopy Polyp Automatic Detection Classification
Challenge. The challenge contains two datasets, the model is trained on CVC-
Clinic 2015 and evaluated on Etis-Larib. The CVC-Clinic 2015 dataset contains
612 standard well-defined images extracted from 29 different sequences. Each
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sequence consists of 6 to 26 frames and contains at least one polyp in a vari-
ety of viewing angles, distances and views. Each polyp is manually annotated
by a mask that accurately states its boundaries. The resolution is 384 × 288.
The Etis-Larib dataset contains 196 high-resolution images with a resolution of
1225 × 966, including 44 distinct polyps obtained from 34 sequences.

3.2 Evaluation and Results

Evaluation Criteria. We use the same evaluation metrics presented in the
MICCAI 2015 challenge to perform the fair evaluation of our polyp detector
performance.

Since the number of false negative in this particular medical application is
more harmful, we also calculate the F1 and F2 scores as follows. The evaluation
criteria are as follows:

Precision =
TP

TP + FP
Recall =

TP

TP + FN

F1 =
2 ∗ Precision ∗ Recall

Precision + Recall
F2 =

5 ∗ Precision ∗ Recall

4 ∗ Precision + Recall

(3)

where TP and FN denote the true positive and false negative patient cases. FP
represents the false positive patient cases.

Implementation Details. Our model uses the Pytorch framework and runs on
NVIDIA GeForce RTX 2080Ti GPU servers. We set the batch size to 8. During
training, we use the SGD optimization method, we also perform random angle
rotation and image scaling data for data augmentation. The training contains
2000 epochs with 574 iterations for each epoch, Normally the training process
starts with a high learning rate and then decreases every certain as the training
goes on. However, a large learning rate applies on a randomly initialized network
may cause instability for training. To solve this problem, we apply a smooth
cosine learning rate learner [12]. The learning rate αt is computed as αt =
1
2

(
1 + cos

(
tπ
T

))
α, where t represents the current epoch, T represents the epoch

and α represents initial learning rate.

Ablation Experiments on Private Dataset. In order to study the effect of
MSAM and the new loss function, we conduct ablation experiments on our pri-
vate dataset. As shown in Table 1, Compared to the YOLOv4 baseline, our pro-
posed MSAM increases the Recall by 4.5%, resulting in a score increase of F1 and
F2 by 2.2% and 4.0%, respectively. Adding the top likelihood loss only increases
the Precision by 4.4%, and combining top likelihood loss together increases both
Precision and Recall, leading to an increase of Precision by 2.9% and Recall by
3.1%. Finally, the model achieves the performance boosting over all the met-
rics when combining MSAM, Top likelihood and similarity loss, CSP module
together, leading to increases of Precision by 4.4%, Recall by 3.7%, F1 by 4.0%,
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(a) (b) (c) (d) (e) (f)

Fig. 4. (a) Origin image with ground truth label (solid line box); (b) Heatmap gener-
ated by the original YOLOv4; (c) Heatmap generated by YOLOv4+MSAM; (d) Origin
image with ground truth label (solid line box) and suspected target regions (dashed
line box); (e) Heatmap generated by YOLOv4+MSAM; (f) Heatmap generated by
YOLOv4+MSAM+Tloss (top likelihood loss);

and F2 by 3.8%. It is also worth noting that CSP makes the model more effi-
cient and leads decreases of FLOPs by 10.74% (8.66 to 7.73), and Parameters
by 15.7% (63.94 to 53.9).

We also show some visualization results of the heatmap (last feature map of
YOLOv4) for ablation comparison (shown in Fig. 4). The results demonstrate
that MSAM makes the model more focus on the ground truth areas, and the
top likelihood loss let the model better identify the suspected target regions and
pay less attention to such areas.

Table 1. The results on the private polyp datasets.

SAM MSAM Tloss Csimloss CSP Precision Recall F1 F2

YOLOv4 0.876 0.851 0.863 0.856

� 0.864 0.897 0.88 0.89

� 0.874 0.896 0.885 0.896

� 0.92 0.845 0.881 0.859

� 0.878 0.888 0.883 0.886

� 0.869 0.851 0.86 0.854

� � 0.905 0.882 0.894 0.887

� � 0.914 0.885 0.899 0.891

� � � 0.907 0.898 0.902 0.9

� � � � 0.92 0.888 0.903 0.894

Model
FLOPs (GMac) Params (M)

parameters

8.66 63.94

� � � 8.82 65.32

� � � � 7.73 53.9
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Results and Comparisons on the Public Dataset. The results on the
public dataset are shown in Table 2, we also test several previous models for the
MICCAI 2015 challenges. The results show that our method improves perfor-
mance on almost all metrics. Compare to the baseline, our proposed approach
achieves a great performance boosting, yielding an increase of Precision by 11.8%
(0.736 to 0.854), Recall by 7.5% (0.702 to 0.777), F1 by 9.5% (0.719 to 0.814),
F2 by 8.2% (0.709 to 0.791). It is worth noting that the depth of CSPDarknet53
backbone for YOLOv4 is almost the same as Resnet50. However, our proposed
approach even significantly outperforms the state-of-the-art model Sornapudi
et al. [3] with a backbone of Resnet101 and Liu et al. [23] with a backbone of
Inceptionv3. Comparison with Liu et al. [23], although it slightly decreases the
Recall by 2.6% (0.803 to 0.777), it increases Precision by 11.5% (0.739 to 0.854),
F1 by 4.6% (0.768 to 0.814), and F2 by 0.2% (0.789 to 0.791). We presented
the Frame Per Second (FPS) for each model. It shows that our one-stage model
is much faster than other models. It is 5.3 times faster than the Faster R-CNN
(37.2 vs 7), 11.6 times faster than Sornapudi et al. [3] (37.2 vs 3.2) and 1.2 times
faster than Liu et al. [23] (37.2 vs 32). Furthermore, The PR curve is plotted in
Fig. 5. Comparison with baseline, our proposed approach increases the AP by
5.1% (0.728 to 0.779).

Table 2. Results of the different modes on MICCAI 2015 challenge dataset.

Backbone Precision Recall F1 F2 FPS

OUS – 0.697 0.63 0.661 0.642 0.2

CUMED – 0.723 0.692 0.707 0.698 5

Faster RCNN [6] Resnet101 0.617 0.644 0.63 0.638 7

Zheng et al. [19] – 0.76 0.668 0.711 0.685 –

YOLOv3 [17] Darknet53 0.764 0.577 0.658 0.607 37

Qadir et al. [21] Resnet50 0.8 0.726 0.761 0.74 –

Sornapudi et al. [3] Resnet50 0.632 0.769 0.694 0.737 –

Sornapudi et al. [3] Resnet101 0.729 0.803 0.764 0.787 3.2

Jia et al. [20] Resnet50 0.639 0.817 0.717 0.774 –

Xu et al. [27] Darknet53 0.832 0.716 0.77 0.736 35

Liu et al. [23] Inceptionv3 0.739 0.803 0.768 0.789 32

Tian et al. [25] Resnet50 0.736 0.644 0.687 0.661 –

YOLOv4 CSPDarknet53 0.736 0.702 0.719 0.709 36.9

Proposed approach CSPDarknet53 0.854 0.777 0.814 0.791 37.2
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Fig. 5. Precision-Recall curves for all the methods. The performance of Proposed app-
roach is much better than the teams that attended the MICCAI challenge

4 Conclusions

In this paper, we propose an efficient and accurate object detection method to
detect colonoscopic polyps. We design a MSAM mechanism to make the model
pay more attention to the polyp lesion regions and eliminate the effect of back-
ground content. To make our network more efficient, we develop our method
based on a one-stage object detection model. Our model is further jointly opti-
mized with a top likelihood and similarity loss to reduce false positives caused by
suspected target regions. A Cross Stage Partial Connection mechanism is further
introduced to reduce the parameters. Our approach brings performance boost-
ing compare to the state-of-the-art methods, on both a private polyp detection
dataset and public MICCAI 2015 challenge dataset. In the future, we plan to
extend our model on more complex scenes, such as gastric polyp detection, lung
nodule detection, achieving accurate and real-time lesion detection.
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