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Abstract. High cost of training time caused by multi-step adversarial
example generation is a major challenge in adversarial training. Pre-
vious methods try to reduce the computational burden of adversarial
training using single-step adversarial example generation schemes, which
can effectively improve the efficiency but also introduce the problem of
“catastrophic overfitting”, where the robust accuracy against Fast Gra-
dient Sign Method (FGSM) can achieve nearby 100% whereas the robust
accuracy against Projected Gradient Descent (PGD) suddenly drops to
0% over a single epoch. To address this issue, we focus on single-step
adversarial training scheme in this paper and propose a novel Fast Gradi-
ent Sign Method with PGD Regularization (FGSMPR) to boost the effi-
ciency of adversarial training without catastrophic overfitting. Our core
observation is that single-step adversarial training can not simultane-
ously learn robust internal representations of FGSM and PGD adversar-
ial examples. Therefore, we design a PGD regularization term to encour-
age similar embeddings of FGSM and PGD adversarial examples. The
experiments demonstrate that our proposed method can train a robust
deep network for L∞-perturbations with FGSM adversarial training and
reduce the gap to multi-step adversarial training.
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1 Introduction

Deep learning has shown outstanding success in near all machine learning fields.
However, it has been proved that deep neural networks are vulnerable to adver-
sarial examples, i.e., small disturbances to the input signal, which are usually
invisible to the human eyes, are enough to induce large changes in model out-
put [17]. This phenomenon has aroused people’s concerns about the safety of
deep learning in the adversarial environment, where malicious attackers may
significantly degrade the robustness of deep learning based applications. To mit-
igate the harm caused by the adversarial examples, numerous defensive methods
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Fig. 1. (CIFAR-10) Visualization of the FGSM and PGD robustness of the model
trained with FAST-FGSM AT (dashed), FGSMPR AT (solid). All statistics are evalu-
ated against FGSM attacks and 50 steps PGD attacks with 10 random restarts on the
test dataset. FAST-FGSM AT occurs catastrophic overfitting at 180 epochs, charac-
terized by a sudden drop of PGD robustness and a rapid increase of FGSM robustness.
FGSMPR AT (ours) does not suffer from catastrophic overfitting and maintains stable
robustness during the whole training process.

including pre-processing based [6], modified networks based [3] and detection
based [13] have been proposed. Among these methods, adversarial training [12]
is one of the most powerful approaches for robust defense against adversarial
attacks since [2] a set of purportedly robust defenses by the adaptive attack.

Adversarial Training (AT) aims to augment each small batch of training data
with adversarial examples for learning a robust model. It is generally considered
to be more expensive than traditional training because it is necessary to con-
struct adversarial examples through first-order methods such as projection gra-
dient descent (PGD). To combat the increased computational overhead of PGD
AT, a recent line of work focused on improving the efficiency of AT. [20] pro-
posed to perform multi-step PGD adversarial attacks by chopping off redundant
computations during backpropagation when computing adversarial examples to
obtain additional speedup. [15] proposed a variant of K steps PGD AT with
a single-step Fast Gradient Sign Method (FGSM) AT overhead, called “FREE
AT”, which can update model weights as well as input perturbations simulta-
neously by using a single backpropagation in a way that is less expensive than
PGD AT overheads. Inspired by [15,19] found that previously non-robustness
FGSM AT, with a random initialization, could reach similar robustness to PGD
AT, called “FAST-FGSM AT”. However, FGSM-based AT suffers from catas-
trophic overfitting where the robustness against PGD attacks increases in the
early stage of training, but suddenly drops to 0 over a single epoch, as shown
in Fig. 1. Several methods have been proposed to prevent the overfitting of AT
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[1,11,18,19]. However, these methods are either computationally inefficient or
decrease the robustness accuracy.

In this paper, we first analyze the reason why FGSM AT suffers catastrophic
overfitting in the training process. We observe that FGSM AT is prone to learn
spurious functions that excessively fit the FGSM adversarial data distribution
but have undefined behavior off the FGSM adversarial data manifold. Then we
discuss the difference behind the logits output between the FGSM and PGD
adversarial examples in the model trained with FGSM AT and PGD AT, where
we show that the logits become significantly different when the FGSM AT trained
model suffers from overfitting, while the robust model trained with PGD AT
remains stable. We additionally provide for this case an experimental analysis
that helps to explain why the FGSM AT trained model generates vastly dif-
ferent logit outputs for single-step and multi-step adversarial examples when
catastrophic overfitting occurs. Finally, we propose a novel Fast Gradient Sign
Method with PGD regularization (FGSMPR), in which a PGD regularization
item is utilized to prompt the model to learn logits that are a function of the truly
robust features in the image and ignore the spurious features, thus preventing
catastrophic overfitting, as shown in Fig. 1.

The contribution of this paper is summarized as follows:

– We analyze the reason why FGSM AT suffers from catastrophic overfitting
and demonstrate that the logit distribution of the FGSM AT trained model
evaluated against FGSM and PGD adversarial examples have significant dif-
ference when suffering from catastrophic overfitting.

– We propose a Fast Gradient Sign Method with PGD regularization
(FGSMPR), which can effectively prevent FGSM AT from catastrophic over-
fitting by explicitly minimizing the difference in the logit of the model against
FGSM and PGD adversarial examples.

– The extensive experiments show that the FGSMPR can learn a robust model
comparable to PGD AT with low computational overhead while in relief of
catastrophic overfitting. Specially, the FGSMPR takes only 30 min to train a
CIFAR-10 model with 46% robustness against 50 steps PGD attacks.

2 Related Work

2.1 Adversarial Training

Previous work [12] formalized the training of adversarial robust model into the
following non-convex non-concave min-max robust optimization problem:

min
θ

E(x,y)∼D[max
δ∈S

L(θ, x + δ, y)]. (1)

The parameter θ of the network is learned by Eq. 1 on the example (x, y) ∼ D,
where D is the data generating distribution. S denotes the region within the
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Fig. 2. (CIFAR-10) Visualization of the FGSM and PGD accuracy/loss of the model
trained with FGSM AT, FAST-FGSM AT, PGD-7 AT and tested against FGSM adver-
sarial attacks and 50 steps PGD attack with 10 random restarts during the training
process. All results are averaged over three independent runs. FGSM AT and FAST-
FGSM AT occurs catastrophic overfitting around 30 and 180 epochs, respectively,
characterized by a sudden drop in PGD accuracy and FGSM loss and a rapid increase
in PGD loss and FGSM accuracy.

ε perturbation range under the �∞ threat model for each example, i.e., S = {δ :
‖δ‖∞ ≤ ε}, which is usually chosen so that it contains only visually imperceptible
perturbations. The procedure for AT is to use adversarial attacks to approximate
the internal maximization over S.

FGSM AT. One of the earliest versions of AT used the FGSM attack to find
adversarial examples x′ to approximate the internal maximization, formalized
as follows [5]:

x′ = x + ε · sign(∇xL(θ, x, y)). (2)

FGSM AT is cheap since it only relies on computing the gradient once. However,
the FGSM AT is easily defeated by multi-step adversarial attacks.

PGD AT. PGD attacks [12] used multi-step gradient projection descent to
approximate the inner maximization, which is more accurate than FGSM but
computationally expensive, formalized as follows:

xt+1 = Πx+S
(
xt + α sign (∇xL(θ, x, y))

)
, (3)

where x0 initialized as the clean input x, Π refers to the projection operator,
which ensures projecting the adversarial examples back to the ball within the
radius ε of the clean data point. The number of iterations K in the PGD attacks
(PGD-K) determines the strength of the attack and the computational cost.
Further, N random restarts are usually employed to verify robustness under
strong attacks (PGD-K-N).
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2.2 Single-Step Adversarial Training

FREE AT [15], a single-step training method that generates adversarial exam-
ples while updating network weights, is quite similar to FGSM AT. By deeply
analyzing the differences between FREE AT and FGSM AT, [19] found that an
important property of FREE AT is that the perturbation of the previous sign
of gradient is used as the initial perturbation of the next iteration. Based on
this observation, [19] proposed a FAST-FGSM AT with almost the same robust-
ness as the PGD AT, but the spent time close to the normal training by adding
non-zero initialization perturbations to FGSM AT and further combining some
standard techniques [14,16] to accelerate the training. However, FAST-FGSM
AT suffers from catastrophic overfitting, where the robustness for PGD adver-
sarial examples suddenly drop to 0% over a single epoch.

A recent line of work foucs on addressing the catastrophic overfitting prob-
lem in single-step AT. [19] used the early stopping method to stop training the
model when the model robustness decreases beyond a threshold. [18] introduced
dropout layers after each non-linear layer of the model and further decay its
dropout probability as the training progresses. [11] monitored the FGSM AT
process and performed PGD AT with a few batches to help the FGSM model
recover its robustness when the robustness decreases beyond a threshold. [1] pro-
posed the Gradient Alignment (GradAlign) regularization item that maximizes
the gradient alignment based on the connection between FAST-FGSM AT over-
fitting and local linearization of the model as a way to prevent the occurrence of
catastrophic overfitting. Although these methods provide a better understand-
ing of catastrophic overfitting prevention, but still cannot essentially explain the
problem of catastrophic overfitting. Moreover, these methods can improve the
robustness of single-step AT models to some extent, but sacrifice a large amount
of computational overhead and lose the efficient advantage of single-step AT,
even up to the training time of multi-step AT.

3 Proposed Approach

3.1 Observation

To investigate catastrophic overfitting, we begin by recording the robust accuracy
of FGSM AT on CIFAR-10 [9]. We evaluate the robust accuracy of the model
against 50 steps PGD attacks with 10 random restarts (PGD-50-10) for step
size α = 2/255 and maximum perturbation ε = 8/255. Figure 2 visualizes the
accuracy and loss of the FGSM AT trained, FAST-FGSM AT trained, and PGD-
7 AT trained model and evaluated against FGSM and PGD-50-10 attack during
the training phase. As we can see, when FGSM AT and FAST-FGSM AT occur
catastrophic overfitting around 30 and 180 epochs respectively, the robustness
against PGD-50-10 attack of the model trained with FGSM AT and FAST-
FGSM AT begin to drop suddenly, whereas the accuracy against FGSM increases
rapidly. However, for the robust PGD-7 AT, the accuracy and loss of the model
tend to stabilize after a certain number of epochs.
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We maintain that the reason the models trained using FGSM AT suffer from
catastrophic overfitting is that it is prone to learn spurious functions that fit
the FGSM data distribution but have undefined behavior off the FGSM data
manifold. Therefore, the FGSM AT is highly susceptible to overfitting due to
a single-step adversarial perturbation, resulting in a sudden drop in the PGD
robustness of the model, while the FGSM accuracy increases instantaneously.
To study the differences in the performance of the models trained with FGSM
AT and PGD-7 AT for evaluating at the FGSM and PGD adversarial examples,
we utilize a distance function L to measure the difference between the output
of the model evaluated at single-step and multi-step adversarial attacks. For a
model that take inputs x and output logits f(x), we have:

L(f(xfgsm), f(xpgd)), (4)

where xfgsm and xpgd are adversarial examples crafted by FGSM and PGD-7,
respectively. Here, we choose L2 for L. For a well-generalized and robustness
model, we assume that the logit f(xfgsm) and f(xpgd) of the model evaluated
at FGSM and PGD adversarial examples should be as similar as possible, i.e.,
||f(xfgsm) − f(xpgd)||2 should be very small.

To demonstrate our intuition, we firstly train several CIFAR-10 models using
FGSM AT and PGD-7 for 200 epochs. For each model, we compute the differ-
ence between the output of the model evaluated at FGSM and PGD-7 adversar-
ial examples by using Eq. 4, and performed data processing using a logarithmic
function to visualize the differences more clearly, as shown in Fig. 3. In Fig. 3
(b), it can be observed that there is no significant difference in the logits from
FGSM and PGD adversarial examples during the early phase of training, which
matches our intuition. Once catastrophic overfitting occurs, the gap between
the logit of the model evaluated at single-step and multi-step adversarial attacks
are increasing rapidly around 30 and 180 epochs respectively, which is consis-
tent with PGD loss. In contrast, the PGD-7 AT does not suffer catastrophic
overfitting and the difference of the logit of the model is keeping stable. This
phenomenon will also appear on the simple MNIST dataset [10], but it is not as
clear as CIFAR-10, as shown in Fig. 3(a).

3.2 PGD Regularization

Based on the analysis in Sect. 3.1, the only FGSM adversarial loss is not enough
for the model to learn the robust features of both single-step and multi-step
adversarial examples. To solve this problem, inspired by [8], we use the logit
pairing to encourage the model to learn robust internal representation of FGSM
and PGD adversarial examples so that the logit outputs f(xfgsm) and f(xpgd) of
the model for FGSM and PGD adversarial examples to be as similar as possible:

λ
1
m

m∑

i=1

L(f(xfgsm
i ; θ), f(xpgd

i ; θ)), (5)
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(a) MNIST (b) CIFAR-10

Fig. 3. Visualization of the L2 distance of logit of the FGSM AT trained, FAST-
FGSM AT trained, PGD-7 AT trained model and evaluated against FGSM and PGD
adversarial attack. (a) In MNIST, when the model is not robust, the difference in
L2 distance starts to fluctuate, while PGD AT is relatively smooth. (b) In CIFAR10,
FGSM AT and FAST-FGSM AT occurs catastrophic overfitting around 30 and 180
epochs, respectively, and is characterized by a rapid increase of L2 distance.

where L is L2 norm; xfgsm
i and xpgd

i are adversarial examples crafted by FGSM
and PGD attacks, respectively; λ is a hyparameter to balance FGSM loss
and PGD regularization item. Combining with the proposed regularization, the
FGSM AT can learn a robustness model comparable with PGD-7 AT, as vali-
dated in Sect. 4.

We hold that PGD regularization works well because it provides an addi-
tional prior that regularizes the model toward a more accurate understanding
of adversarial examples. If we train the model with only the single-step FGSM
adversarial loss, it is prone to learn spurious functions that excessively fit the
FGSM adversarial data distribution but have undefined behavior off the FGSM
data manifold (e.g., multi-step adversarial examples). PGD regularization forces
the explanations of the FGSM adversarial example and multi-step adversarial
example to be similar. This is essentially a prior encouraging the model to learn
logits that are a function of the truly significant features in the image and ignore
the spurious features.

3.3 Training Route

The overall training procedure of the FGSMPR AT is summarized in
Algorithm 1. We first perform FGSM adversarial attack to generate FGSM
adversarial examples xfgsm

i and compute FGSM AT loss fgsm loss using cross-
entropy. Then, we perform PGD adversarial attack for m examples, from a batch
of natural examples, to generate m PGD adversarial examples. After generat-
ing FGSM and PGD adversarial examples, the regularization loss reg loss of m
FGSM and PGD adversarial examples are calculated using Eq. 5 and used as
part of the total loss total loss. Finally, the parameter θ of the model is updated
using a proper optimizer (e.g., stochastic gradient descent). The hyperparameter
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Algorithm 1: FGSMPR AT
Input : Training data (X, Y ), perturbation bound ε, learning rate γ,

hyparameter α, λ.
Output: Trained model f(·) with parameter θ

1 for epoch = 1 ... Nepoch do
2 for i = 1 ... B do
3 // Perform FGSM adversarial attack

4 xfgsm
i = xi + α · sign(∇δ�(fθ(xi), yi))

5 fgsm loss = J(fθ, xfgsm
i , yi)

6 // Perform PGD adversarial attack
7 for k = 1 ... K do
8 δ = δ + α · sign(∇δ�(fθ(xi + δ), yi))
9 δ = max(min(δ, ε), −ε))

10 end for

11 xpgd
i = xi + δ

12 reg loss = λ 1
m

∑m
j=1 L(f(xfgsm

i,j ; θ), f(xpgd
i,j ; θ))

13 total loss = fgsm loss + reg loss
14 Update model parameter θ based on total loss

15 end for

16 end for
17 return f(·).

λ shall be properly chosen to balance FGSM loss fgsm loss and PGD regular-
ization reg loss item. In practice, we take α = ε/K, K = 3 and m = 1. In other
words, we only pick a single example from a batch for generating a PGD-3 adver-
sarial example, which is then used for regularization to encourage the model to
learn similar logit output. The experiments show that a single PGD adversarial
example for regularization is enough to learn a robustness model.

4 Experiments

In this section, we demonstrate that the proposed FGSMPR is robust against
strong PGD attacks. All experiments are run on a single RTX 2070, in which
we use half-precision computation recommended in [19] to speed up the training
of CIFAR-10 model, which was incorporated with the Apes amp package at the
O1 optimization level for all CIFAR-10 experiments.

Attacks: We attack all models using PGD attacks with K iterations and 10
random restarts on both cross-entropy loss (PGD-K-10) and the Carlini-Wagner
loss (CW-K-10) [4]. All PGD attacks used at evaluation for MNIST [10] are run
with 10 random restarts for 20/40 iterations. All PGD attacks used at evaluation
for CIFAR-10 [9] are run with 10 random restarts for 20/50 steps.

Perturbation: For MNIST, we set the maximum perturbation ε to 0.3 and the
PGD step size α to 0.1. For CIFAR-10, we set the maximum perturbation ε to
8/255 and the PGD step size α to 2/255.
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Table 1. Validation accuracy (%) and robustness of MNIST models trained with
FGSM AT, FAST-FGSM AT, GradAlign AT, FREE AT, PGD-40 AT, FGSMPR AT
without early stopping and the corresponding training time. All statistics are evaluated
against PGD/CW attacks with 20/40 iterations and 10 random restarts for α = 0.1,
ε = 0.3 over three independent runs. The bold indicates the best performance except
for PGD-40 AT.

Method Standard

accuracy

PGD-20-10 PGD-40-10 CW-20-10 CW-40-10 Training time

(s)

FGSM AT 97.53 ± 0.39 39.31 ± 20.68 12.45 ± 12.15 40.14 ± 20.64 13.46 ± 12.89 481.03 ± 0.81

FAST-FGSM

AT

98.52 ± 0.34 42.60 ± 12.47 11.19 ± 6.52 43.41± 12.55 11.85 ± 7.26 491.24 ± 1.71

GradAlign AT 99.05 ± 0.03 91.42 ± 0.57 75.94 ± 3.23 91.23 ± 0.51 75.86 ± 3.16 633.96 ± 3.55

FREE AT 98.49 ± 0.05 92.90 ± 0.20 90.06 ± 0.36 92.70 ± 0.15 89.85 ± 0.32 175.45 ± 1.99

PGD-40 AT 99.16 ± 0.03 94.72 ± 0.08 92.52 ± 0.14 94.75 ± 0.03 92.65 ± 0.10 3652.39 ± 1.00

FGSMPR AT

(ours)

98.35 ± 0.09 93.77 ± 0.32 90.83 ± 0.49 93.65 ± 0.26 90.56 ± 0.55 626.57 ± 1.68

Table 2. Validation accuracy (%) and robustness of CIFAR-10 models trained with
FGSM AT, FAST-FGSM AT, GradAlign AT, FREE AT, PGD-7 AT, FGSMPR AT
without early stopping and the corresponding training time. All statistics are evaluated
against PGD/CW attacks with 20/50 iterations and 10 random restarts for α = 2/255,
ε = 8/255 over three independent runs. The bold indicates the best performance except
for PGD-7 AT.

Method Standard

accuracy

PGD-20-10 PGD-50-10 CW-20-10 CW-50-10 Training time

(m)

FGSM AT 88.51 ± 1.27 0.01 ± 0.17 0.00 ± 0.00 0.01 ± 0.11 0.00 ± 0.00 119.04 ± 0.41

FAST-FGSM

AT

90.33 ± 0.42 0.92 ± 0.49 0.32 ± 0.25 0.52 ± 0.30 00.17 ± 0.08 123.81 ± 0.18

GradAlign AT 82.82 ± 0.13 32.94 ± 0.83 32.50 ± 0.80 32.94 ± 0.83 32.52 ± 0.81 486.20 ± 0.67

FREE AT 82.32 ± 0.12 46.97 ± 0.05 46.07 ± 0.82 45.77 ± 0.23 45.64 ± 0.24 61.94 ± 0.15

PGD-7 AT 84.75 ± 0.87 48.33 ± 0.62 47.99 ± 0.66 47.80 ± 0.31 47.59 ± 0.38 493.41 ± 0.04

FGSMPR AT

(ours)

83.31 ± 0.40 47.59 ± 0.51 47.19 ± 0.42 46.98 ± 0.18 46.79 ± 0.20 211.65 ± 0.61

Comparisions: We compare the performance of our proposed method
(FGSMPR) with FGSM: standard FGSM AT [5]; FAST-FGSM AT: FGSM AT
with a random initialization [19]; FREE AT: recently proposed single-step AT
method [15]; GradAlign AT: recently proposed method solving catastrophic over-
fitting [1]; PGD-K AT: AT with a K iterations PGD attack [12].

Evaluation: We demonstrate that the performance of models against PGD-K-
10/CW-K-10 adversarial attacks under white-box settings. For all experiments,
the mean and standard deviation over three independent runs are reported.

4.1 Results on MNIST

First, we conduct a study to demonstrate that our proposed approach is highly
working in MNIST benchmark dataset [10]. We train models for MNIST dataset
with the same architecture used by [19], using FGSM AT, FAST-FGSM AT,
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Fig. 4. Visualization of the accuracy of the CIFAR-10 model trained for FGSM AT,
FAST-FGSM AT, GradAlign AT, FREE AT, PGD-7 AT, and FGSMPR AT. All the
statistics are tested against 50 steps PGD attacks with 10 random restarts for α =
2/255, ε = 8/255. Catastrophic overfitting for the FGSM and FAST-FGSM AT occur
around 30 and 180 epochs, respectively, and is characterized by a sudden drop in the
PGD accuracy.

FREE AT, PGD-40 AT, FGSMPR AT. Except that the AT free replays each
batch of m = 8 for a total of 7 epochs, all other models are trained for 50 epochs.
For the proposed method, we set the hyparameter λ, K and m to (0.1, 3, 1).
The experimental results are provided in Table 1. It can be observed that our
proposed FGSMPR AT is more robust against both PGD and CW attacks on the
MNIST dataset than the GradAlign AT and FREE AT, and is second only to the
PGD AT model with a small difference. In the course of testing the robustness
of FAST-FGSM AT on the MNIST dataset, we found an interesting problem
where increasing the number of MNIST training epochs to 50 also resulted in
catastrophic overfitting, although this phenomenon was previously found only
in CIFAR-10. Besides, the GradAlign AT [1] can keep the model from suffering
catastrophic overfitting to some extent, but it is far inferior to other comparison
methods in defending against the higher iteration adversarial attacks.

4.2 Results on CIFAR-10

To verify whether AT scheme suffers from catastrophic overfitting, we train
200 epoch for all CIFAR-10 models using the Preact ResNet-18 [7] architecture
without early stopping, especially the FREE AT replays each batch m = 8
times for a total of 25 epochs as recommend in [15]. For the FGSMPR, we set
the hyparameter λ, K and m to (0.5, 3, 1). The experimental results are provided
in Table 2. It can be observed that FGSMPR AT is quite similar to PGD-7 AT
while our training time is half of PGD-7 AT. To demonstrate that the proposed
FGSMPR does not suffer from catastrophic overfitting, we takes 211 min to
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Fig. 5. Accuracy of the model trained for FGSM AT, FAST-FGSM AT, GradAlign
AT, FREE AT, PGD-7 AT and FGSMPR AT with early stopping. All the statistics
are evaluated against 50 steps PGD attacks with 10 random restarts for different l∞-
perturbation ε.

train a CIFAR-10 model for 200 epochs, which is longer than time for FREE
AT. However, our method was able to achieve 46% robustness by training 30
epochs in only 30 min, which is half less than FREE AT. Further, we visualize
the robustness of the training process of different AT method and tested against
a 10 random restart PGD-50 attack, as shown in Fig. 4. It can be observed that
the robustness of the FGSMPR against PGD has steadily increased, which is
only 0.8% behind PGD-7 AT and does not suffer from catastrophic overfitting
even when trained to 200 epochs. Instead, FAST-FGSM AT started to have a
trend similar to PGD AT, but there is a sharp drop in robustness around 180
epochs when occuring catastrophic overfitting. The GradAlign AT was proposed
to prevent the FGSM AT from catastrophic overfitting, but the accuracy still
dropped by more than 10% and took more than two times longer compared to
our FGSMPR AT. Besides, we also test the model’s robustness under different
l∞ perturbation where all models are trained with early stopping. In the case
of larger l∞ perturbations, FGSMPR AT is essentially indistinguishable from
PGD-7 AT, and even slightly better than PGD-7 AT, as shown in Fig. 5.

5 Conclusion

In this paper, we analyze and address the catastrophic overfitting in FGSM
AT. We empirically show that FGSM AT is prone to learn spurious functions
that fit the FGSM adversarial data distribution but have undefined behavior
off the FGSM data manifold. We therefore exploit the difference behind the
logits between the FGSM and PGD adversarial examples in the model trained
with FGSM AT and PGD AT, where the logit becomes significantly different
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when FGSM AT suffers from overfitting, while PGD AT remains stable. Based
on these observations, we propose a novel FGSMPR AT, where a PGD regu-
larization term is used to encourage the model to learn similar embeddings of
FGSM and PGD adversarial examples. The extensive experiments show that the
FGSMPR can effectively keep FGSM AT from catastrophic overfitting with a
low computational cost.
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