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Abstract. Great efforts have been made by researchers for achieving
robustness against adversarial examples. However, most of them are con-
fined to image classifiers and only focus on the tiny global adversarial
perturbation across the image. In this paper, we are the first to study the
robustness of detectors against vanishing adversarial patch, a physically
realizable attack method that performs vanishing attacks on detectors.
Based on the principle that vanishing patches destroy the objectness fea-
ture of attacked images, we propose objectness regularization (OR) to
defend against them. By enhancing the objectness of the whole image
as well as increasing the objectness discrepancy between the foreground
object and the background, our method dramatically improves the detec-
tors’ robustness against vanishing adversarial patches. Compared with
other defense strategies, our method is more efficient but robust to adap-
tive attacks. Another benefit brought by our method is the improvement
of recall on hard samples. Experimental results demonstrate that our
method can generalize to adversarial patches of different strengths. We
reduce the vanishing rate (VR) on YOLOv3 and YOLOv4 under the
vanishing attack by 49% and 41% respectively, which is state-of-the-art.

Keywords: Adversarial defense · Vanishing patch · Object detection ·
Objectness regularization

1 Introduction

Deep neural networks (DNNs) have achieved remarkable success on object detec-
tion [10,19,23] and fueled the development of many applications. However, DNNs
are found to be easily fooled by adversarial examples [21]. In the computer vision
field, adversarial examples are maliciously crafted images that aim at misleading
the predictions of DNNs. Typically, for an input image x and a model F (.), the
goal of adversarial attacks is to find the adversarial example x′ which satisfies
Eq. (1), where Δ is a metric to measure the difference between x and x′. In most
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of studies [17,24,29], Δ is the p-norm (p = 2 or ∞) metric, and the perturbation
is restricted to be within the p-norm ball of radius ε, which means the adversarial
perturbation is imperceptible to humans.

F (x) �= F (x′) ∧ Δ(x, x′) < ε (1)

Object detection is wildly used in many security critical areas like
autonomous driving and medical diagnosis. Hence the robustness of deep detec-
tors has attracted great attention. Many attack methods [20,22,30] have been
proposed to study the robustness of detectors. DAG [26] misleads the classifi-
cation of all the bounding boxes, while RAP [14] also includes regression loss
in attacks. TOG [8] designs different objectness loss functions to conduct three
types of adversarial attacks. However, detectors are wildly used in the real world
while attacks with global tiny perturbations are not realizable in the physical
world. Among those physically realizable attacks, adversarial patches [4,6,12,16]
are the most common attacks which misleading networks with localized image
patches. Like what shows in Fig. 1, localized adversarial patches can mislead the
object detector to detect nothing. Attackers can implement those patches in the
real world and poses real threats to detectors [6,13,30]. So we pay attention to
the physically realizable adversarial patch in this work.

Fig. 1. Illustration of our objectness regularization method. The objectness regular-
ization module is inserted into the detector. We regenerate adversarial patch for the
model with objectness regularization.



254 J. Bao et al.

Defenses against adversarial patches, such as LGS [18] and DW [11], are
designed originally for classifiers. Besides, those strategies are proved to be easily
circumvented [7] by exploiting BPDA [1] to approximate gradients. By contrast,
much less work has been done to improve the adversarial robustness of detectors.
It has proven to be an effective way for classifiers to achieve robustness by adver-
sarial training (AT) [17]. AT continuously generates adversarial examples and
optimizes the model on these samples in the training phase. By such min-max
optimizations, AT can achieve a classifier with a very smooth decision boundary,
thus it’s more difficult for a benign example to cross the decision boundary with
only an imperceptible perturbation. Therefore, AT is extremely time-consuming
and usually serves as a trade-off between clean accuracy and adversarial robust-
ness [29]. However, when applying to object detectors, AT can even cause a
25.8 mAP drop on clean images [28], which is far from satisfactory. AT methods
are robust to adaptive attacks [1] but only effective to adversarial perturbations
of small l2 or l∞ norm, which is inappropriate for defending against physically
realizable perturbations (often have large l∞ norm and small l0 norm).

The vanishing attack [2,8] is the most frequently used adversarial attack on
detectors that allowing the object to evade detection. This type of attack is
harmful for it is natural-style [25,27] but can be catastrophic to security-critical
systems like automatic driving [6,30]. And the adversarial patch that performing
vanishing attacks poses security concerns for the employment of detectors in the
real world. Hence we shine a light on the robustness of detectors against vanishing
adversarial patches in this paper.

Our contributions are as follows:

– To the best of our knowledge, we are the first to bridge the gap of detec-
tion robustness against adversarial patches. We develop vanishing adversarial
patch to judge the robustness.

– We propose objectness regularization, a simple yet effective method for
achieving robustness against vanishing adversarial patches, with a proper
trade-off between clean performance and adversarial robustness.

– Our method is efficient and robust to adaptive attacks. We reduce the van-
ishing rate (VR) on YOLOv3 [10] and YOLOv4 [3] under the adaptive attack
by 49% and 41% respectively.

2 Method

In this section, we first revisit the vanishing adversarial patch method in Sect. 2.1.
Then we introduce our objectness regularization method in Sect. 2.2.

2.1 Vanishing Adversarial Patch

For an input image x, the object detector outputs bounding box predictions
b(x) and classification predictions c(x). The objectness scores of bounding boxes
are denoted as o(x), representing the confidence of containing objects. In some
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detectors [3,10], objectness is directly defined. While in detectors of other struc-
tures [19,23], objectness can be represented by the sum of all foreground object
probabilities. Objectness plays an import role in distinguishing the foreground
objects and the background. So it is often attacked by vanishing attacks [8].

The most import aspects of the vanishing patch are the positions of patches
and the vanishing loss function. We choose the positions of patches in an empiri-
cal way for attack efficiency. The center of objects are proven to be good choices
for vanishing attacks in TOG [8] and SAA [2], so we add vanishing patches at the
centers of corresponding objects. Specifically, for an input image x, we get the
detection result F (x) and choose patch locations using bounding box positions
in F (x). Since it is difficult to optimize the l0 perturbation directly, we exploit
a predefined location mask m with bool values to restrict the adversarial per-
turbation positions. The adversarial example x′ is then denoted as Eq. (2). Here
x′ denotes the image with perturbation, � is the element-wise multiplication
operator and p is the vanishing patch we want to get.

x′ = x � (1 − m) + p � m (2)

We optimize patch p using stochastic gradient descent (SGD) with properly
designed loss function and step length. The loss function we employ here is as
what exactly used in SAA [2] as Eq. (3). Here o(x′) is the objectness predictions
of x′ and the loss function erases all the predictions with a high objectness. The
step length of adversarial attack is fixed in most of cases [5,9,17]. However, we
find exponential decay step length will create more powerful adversarial examples
under the same attack budgets (e.g. iterations, time). So we use both fixed step
length and decay step length attacks to evaluate the adversarial robustness.

loss = max(o(x′)) (3)

Like many other works [17,24,29], we consider the attack budgets in evaluat-
ing the robustness of detectors. In this work, we use three indicators to indicate
the attack strength, the total pixels of patches (l0 norm), the maximum iteration
numbers (resource constraints), and the step length (optimization strategy).

2.2 Objectness Regularization

The vanishing adversarial patch in the previous Sect. 2.1 is an objectness gra-
dient based attack. To erase objects in detections, vanishing attacks have to
fool the objectness of the victim object. In a clean image, foreground objects
often have much higher objectness than the background. However, the vanish-
ing patch changes this situation. Compared to clean images, adversarial images
with vanishing patches often have much lower objectness. Like what shows in
Fig. 2(b), the highest value of objectness feature map is far less than 0, and is far
less than 0.1 even after the sigmoid activation. We conclude the impacts of the
vanishing patch as follows. First, the vanishing patch reduces the whole object-
ness of the image. Second, the vanishing patch compresses the objectness to a
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Fig. 2. The objectness distribution of an adversarial image. (a) is an image with van-
ishing patches and (b) is the objectness distribution of the image. (c) is the sigmoid
function. We mark the objectness of the object and the background with blue arrows
in (c).

small range, where the discrepancy between the foreground and the background
becomes smaller.

To defend against such vanishing attacks, we have to boost the objectness of
the image. However, there are two problems we have to solve. First, we should
consider the robustness to adaptive attacks. That is, when attackers know our
defense strategy and regenerate adversarial examples for attacks, our defense
method should be still effective. Second, since the discrepancy between the fore-
ground and the background is smaller, it is of vital importance to avoid too
many false predictions when boosting the objectness of the whole image. To
solve these problems, we design an objectness boosting function with the post-
process parameter of the detector included (to defend adaptive attacks). Before
the final classification and regression, we apply our objectness boosting func-
tion to correct the objectness feature, like what shows in Fig. 1. We describe the
function design in the following.

The basic idea of our method is to make it more difficult for attackers to
reduce the objectness of foreground objects. We observe that the foreground
object still remains a slightly higher objectness than the background due to
the feature discrimination, though the vanishing patch reduces the objectness
of the whole victim image to a large scale. So we boost the objectness of the
whole image as well as increase the discrepancy between the foreground and the
background. We denote the objectness feature of an image x as fobj(x), and the
objectness feature after regularization can be formulated by Eq. (4).

f ′
obj(x) = r ∗ S(fobj(x)) + b (4)

Here r serves as a range control, b is a necessary balancing bias and S(.)
denotes the boosting function which has the form of Eq. (5).

S(t) =
1

1 + e−t
(5)
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We choose the boosting function S(.) as the sigmoid function. The sigmoid
function can map the objectness feature to the range of 0 and 1 while maintaining
the internal relative numerical size relationship in it. The object attacked by the
vanishing patch has low objectness but is often slightly higher than that of the
background. We choose the sigmoid function for it also increases the objectness
discrepancy between the attacked object and the background when boosting the
objectness. As can be seen from Fig. 2, the objectness of the attacked object
and that of the background are in different segments of the sigmoid function
(indicates with blue arrows). In our method, higher objectness results in a greater
gain due to the attacked image typically has all values of objectness feature
lower than 0. Therefore, we increase the objectness of the foreground object
and avoiding too high objectness of the background. That is, our method can
enhance object detection under vanishing adversarial attacks without generating
too many unreasonable bounding boxes.

The regularization parameters r and b are closely related to the objectness
threshold τ . The τ is used in the post process of the detector to erase redundant
bounding boxes. We argue that a larger tangent slope in the sigmoid function
corresponding to τ is supposed to have a smaller range r. So we define r as
the reciprocal of the sigmoid derivative. Due to the convenience of sigmoid
derivative calculation, we can easily get r as Eq. (6). We introduce a constant
product factor 1/4 into Eq. (6) to avoid too high objectness.

r =
1

4τ(1 − τ)
(6)

The b is an essential bias that control the lowest prediction objectness. We
must ensure that the lowest objectness after regularization is high enough for
achieving robustness against adaptive adversarial attacks. However, considering
the time consumption of post-process, the lowest objectness after regularization
should not be higher than S−1(τ) (otherwise there will be too many redundant
bounding boxes with prediction objectness higher than threshold τ). Therefore
we design the b as Eq. (7), where S−1(.) is the inverse function of the sigmoid
function and ε is a small constant to filter redundant bounding boxes with rel-
ative low objectness. We choose the value of ε quite empirically and will study
the effect of it in Sect. 3.

b = S−1(τ) − ε = ln(
τ

1 − τ
) − ε (7)

3 Experiment

In this section, we evaluate the proposed objectness regularization (OR) method.
Both standard object detection and adversarial object detection are investigated.

3.1 Experimental Setup

We introduce our experimental setup in this section. For standard object detec-
tion and adversarial object detection, we use different settings accordingly.
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Datasets. For standard object detection, we evaluate the performance of detec-
tors on COCO2014 [15] validation set. However, many tiny objects are contained
in COCO dataset and will be covered by patches directly. For a fair judgment, we
generate adversarial examples on 1000 images chosen from the COCO dataset.
All the objects in the chosen 1000 images are large enough to not be covered by
patches directly.

Models. We evaluate our method on YOLOv3 [10] and YOLOv4 [3] that are
both pre-trained on COCO2014 [15]. The input size of both detectors is 416 * 416
pixels in our experiments. The performances of detectors on clean images are
evaluated on COCO validation set with the objectness threshold of 0.001 for
non-max suppression (NMS). While the objectness threshold τ of detectors is
set to be the most frequently used 0.5 in all our robustness evaluations.

Patches. The method in Sect. 2.1 is exploited to generate adversarial patches.
We evaluate our defense method under patches with different strengths. The
attacks are strong enough that the iteration number of patches is set to be at
least 100. We generate adversarial patches for every single image independently.
And we evaluate our method under defense aware adversarial patches. That is, we
regenerate vanishing patches for models equipped with objectness regularization.

Metrics. The mAP is chosen to demonstrate the performance on clean images.
For convenience, we use mAP-50 in experiments. While the vanishing rate (VR)
is introduced to demonstrate the performance under vanishing attacks. The lower
the VR, the better robustness of detectors against vanishing patches. The VR is
calculated as Eq. (8), where B(x) and B(x′) denote the prediction of the clean
image x and the adversarial image x′ severally. The IOU(.) is a function that
calculates the reasonable detections in B(x′) where B(x) serves as the ground
truth result.

V R = 1 − IOU(B(x), B(x′))
B(x)

(8)

3.2 Experimental Result

The performance of detectors on clean images and adversarial images is reported
in this section.

Resilience to Adaptive Attacks. We investigate the VR of detectors under
attacks with different strengths. We exploit adversarial patches of various sizes
(2500, 3000, and 3500 total pixels respectively) to attack detectors. For each
size of the patch, we design three iteration number budgets (100, 200, and 255
respectively) for robustness evaluation. A constant update step of 1/255 is used
in all attacks of 100 and 200 iterations. While a decaying update step with initial
update step 8/255, decay rate 1/2 and decay point at 30, 90, 190 is employed in
all attacks of 255 iterations.

The VR on YOLOv3 and YOLOv4 under attacks with different budgets are
presented in Table 1. The hyper-parameter ε in experiments of Table 1 is 0.01
for YOLOv3 and 0.05 for YOLOv4. From Table 1, adversarial patches using
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Table 1. The VR on YOLOv3 and YOLOv4 (with and without OR defense) under
attacks of different strengths. Attacks to defense models are all adaptive attacks in this
table.

Patch pixels Attack iters YOLOv3 YOLOv3 OR YOLOv4 YOLOv4 OR

2500 100 34.5% 20.4% (↓ 14.1%) 28.3% 25.4% (↓ 2.9%)

200 48.1% 22.1% (↓ 26.0%) 37.5% 27.6% (↓ 9.9%)

255 79.7% 31.5% (↓ 48.2%) 59.5% 32.0% (↓ 27.5%)

3000 100 41.3% 21.9% (↓ 19.4%) 34.4% 26.5% (↓ 7.9%)

200 56.2% 23.9% (↓ 32.3%) 45.7% 29.0% (↓ 16.7%)

255 85.2% 37.4% (↓ 47.8%) 70.1% 34.5% (↓ 35.6%)

3500 100 48.8% 23.1% (↓ 25.7%) 38.3% 27.3% (↓ 11.0%)

200 64.4% 26.0% (↓ 38.4%) 52.5% 30.0% (↓ 22.5%)

255 91.0% 42.2% (↓ 48.8%) 78.3% 37.0% (↓ 41.3%)

strategies of SAA greatly increase the VR on the two detectors, with even 91%
and 78% of objects evade detection. Our method reduces the VR on YOLOv3 and
YOLOv4 by 48.8% and 41.3% respectively under the strongest attack in Table 1.
As also can be seen from Table 1, the OR method is particularly effective against
strong adversarial attacks, which is more representative of the real robustness of
models.

Fig. 3. Detection results on a clean image. left : detection results of YOLOv3, right :
detection results of YOLOv3 OR.

Effects on Clean Images. Our method changes the original objectness for
achieving detection robustness. However, the method only causes a decrease
of 2.67 mAP on clean images in YOLOv3, as demonstrated in Table 2. The
performance of YOLOv4 on clean images only has a slight drop from 56.74 mAP
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to 56.45 mAP. Despite the comprehensive performance drop on clean images,
our method improves the recall of weak-feature objects significantly. It can be
observed from Table 2 that the recall of tiny objects like spoon and baseball
glove has an increase of over 5% when using OR. The recall of the refrigerator
even reaches 96.3% with our method. As demonstrated in Fig. 3, our method is
helpful to detect small objects like donuts and hard samples like the dining-table
and the cup.

Table 2. The recall of some COCO dataset categories in YOLOv3 with and without
OR.

Category YOLOv3 (54.30 mAP) YOLOv3 OR (51.63 mAP)

Stop sign 88.1% 90.5%(↑ 2.4%)

Baseball glove 67.6% 72.7%(↑ 5.1%)

Spoon 62.5% 71.1%(↑ 8.6%)

Banana 70.9% 76.6%(↑ 5.7%)

Refrigerator 90.7% 96.3%(↑ 5.6%)

Ablation Study. The effects of the hyper-parameter ε are presented in Table 3.
The adversarial attack used in Table 3 has a strength of pixel 3000 and iteration
number 255. It’s obvious that a smaller ε typically results in a better performance
on adversarial images and a slightly worse performance on clean images, at the
expense of inference speed. The negative values of ε are abandoned by us in
experiments due to the explosion of inference time. We choose ε as 0.01 for
balance in most of the experiments.

Table 3. The effects of ε on clean mAP (mAP on clean images of COCO validation
set), VR, and inference time per image (test on GTX 2080 Ti) in YOLOv3 OR.

ε Clean mAP VR (%) Time (ms)

0.3 50.32 76.2 23.6

0.1 51.69 58.3 23.9

0.01 51.63 37.4 27.0

0.001 51.63 28.9 41.8

0.0001 51.63 27.4 96.0

4 Conclusion

In this paper, we propose a defense method called objectness regularization (OR)
against vanishing adversarial patch attacks. The sigmoid function is chosen to
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enhance the image objectness as well as increase the objectness discrepancy
between the foreground object and the background. Our method is efficient (com-
pared to adversarial training methods) but effective against adaptive adversarial
attacks. The experimental results on YOLOv3 and YOLOv4 demonstrate that
OR can generalize to attacks of different strengths. This method significantly
improves the recall of hard samples on clean images with only little mAP degra-
dation. We will further generalize our method to detectors of other structures
and adjust it to resist different types of adversarial attacks.
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22. Thys, S., Van Ranst, W., Goedemé, T.: Fooling automated surveillance cameras:
adversarial patches to attack person detection. In: Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition Workshops (2019)

23. Tian, Z., Shen, C., Chen, H., He, T.: FCOS: fully convolutional one-stage object
detection. In: Proceedings of the IEEE/CVF International Conference on Com-
puter Vision, pp. 9627–9636 (2019)

24. Wu, D., Xia, S.T., Wang, Y.: Adversarial weight perturbation helps robust gener-
alization. Advances in Neural Information Processing Systems 33 (2020)

25. Wu, Z., Lim, S.-N., Davis, L.S., Goldstein, T.: Making an invisibility cloak: real
world adversarial attacks on object detectors. In: Vedaldi, A., Bischof, H., Brox,
T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12349, pp. 1–17. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-58548-8 1

26. Xie, C., Wang, J., Zhang, Z., Zhou, Y., Xie, L., Yuille, A.: Adversarial exam-
ples for semantic segmentation and object detection. In: Proceedings of the IEEE
International Conference on Computer Vision, pp. 1369–1378 (2017)

27. Xu, K., et al.: Adversarial T-shirt! Evading person detectors in a physical world.
In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol.
12350, pp. 665–681. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
58558-7 39

28. Zhang, H., Wang, J.: Towards adversarially robust object detection. In: Proceed-
ings of the IEEE International Conference on Computer Vision, pp. 421–430 (2019)

29. Zhang, H., Yu, Y., Jiao, J., Xing, E., El Ghaoui, L., Jordan, M.: Theoretically
principled trade-off between robustness and accuracy. In: International Conference
on Machine Learning, pp. 7472–7482. PMLR (2019)

30. Zhao, Y., Zhu, H., Liang, R., Shen, Q., Zhang, S., Chen, K.: Seeing isn’t believing:
towards more robust adversarial attack against real world object detectors. In: Pro-
ceedings of the 2019 ACM SIGSAC Conference on Computer and Communications
Security, pp. 1989–2004 (2019)

https://doi.org/10.1007/978-3-319-10602-1_48
http://arxiv.org/abs/1312.6199
https://doi.org/10.1007/978-3-030-58548-8_1
https://doi.org/10.1007/978-3-030-58558-7_39
https://doi.org/10.1007/978-3-030-58558-7_39

	Improving Adversarial Robustness of Detector via Objectness Regularization
	1 Introduction
	2 Method
	2.1 Vanishing Adversarial Patch
	2.2 Objectness Regularization

	3 Experiment
	3.1 Experimental Setup
	3.2 Experimental Result

	4 Conclusion
	References




