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Abstract. Many light field image super-resolution networks are pro-
posed to directly aggregate the features of different low-resolution
sub-aperture images (SAIs) to reconstruct high-resolution sub-aperture
images. However, most of them ignore aligning different SAI’s features
before aggregation, which will generate sub-optimal light field image
super-resolution results. To handle this limitation, we design a mutual
attention mechanism to align the SAI’s features and propose a Light
Field Mutual Attention Guidance Network (LF-MAGNet) constructed
by multiple Mutual Attention Guidance blocks (MAGs) in a cascade
manner. MAG achieves the mutual attention mechanism between cen-
ter SAI and any surrounding SAI with two modules: the center atten-
tion guidance module (CAG) and the surrounding attention guidance
module (SAG). Specifically, CAG first aligns the center-SAI features
and any surrounding SAI features with the attention mechanism and
then guides the surrounding SAI feature to learn from the center-SAI
features, generating refined-surrounding SAI features. SAG aligns the
refined-surrounding SAI feature and the original surrounding SAI feature
and guides the refined surrounding SAI feature to learn from the origi-
nal surrounding SAI features, generating the final outputs of MAG. With
the help of MAG, LF-MAGNet can efficiently utilize different SAI fea-
tures and generate high-quality light field image super-resolution results.
Experiments are performed on commonly-used light field image super-
resolution benchmarks. Qualitative and quantitative results prove the
effectiveness of our LF-MAGNet.
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1 Introduction

Light field image super-resolution (LFSR) is a newly emerging computer vision
task which aims to enlarge the spatial resolution of sub-aperture images of light
field image. It is a basic technology for many applications, such as virtual real-
ity [5,29], depth sensing [15,16], 3D reconstruction [37,38] and so on.

Benefited from the development of deep learning, LFSR has achieved sig-
nificant progress recently. LFCNN [28] is the first LFSR network that employs
the bicubic interpolation to enlarge the sub-aperture images’ spatial size and
applies the convolution neural network to learn the angular information of LF
image. After that, many LFSR networks are proposed for efficiently utilizing the
spatial-angular information of LF images. For example, Yeung et al. [27] propose
a spatial-angular separable convolution to extract the spatial-angular features.
Wang et al. [21] formulate the different sub-aperture images into a macro-pixel
image and propose an LF-InterNet to process the generated macro-pixel image
to learn spatial-angle information for LFSR. Although they obtain promising
LFSR performance, the features of SAIs are not efficiently utilized due to lack
of feature alignment, resulting in sub-optimal results. Thus, we should align
different SAI’s features before the aggregation operation to improve the LFSR
performance.

Recently, visual attention mechanism has been successfully applied to many
computer vision tasks [2,4,12,20,25,32]. It can help the model to focus on more
task-relevant feature representations and suppress the irrelevant features. In this
paper, we want to use the visual attention mechanism to highlight the similar
feature representations of different SAIs for aligning features, and the aligned
features are subsequently processed for learning the complementary information
of different SAIs. Based on this motivation, we propose a Mutual Attention Guid-
ance Network (namely LF-MAGNet). Specifically, we propose a Mutual Atten-
tion Guidance block (MAG) to align the features of different SAIs. Each MAG
includes two modules: the Center Attention Guidance module (CAG) and the
Surrounding Attention Guidance module (SAG). Given two SAIs (i.e., the center
SAI (c-SAI) and its any surrounding SAI (s-SAI)), CAG first uses the attention
module to align the feature of c-SAI and s-SAI, and then extract the complemen-
tary information from them to guide the s-SAI feature learning and generate the
refined s-SAI feature. SAG uses the attention module to align the refined s-SAI
and s-SAI features and then extract the complementary information from them
to guide refined s-SAI feature learning. With the help of MAG, LF-MAGNet can
fully utilize all SAIs and suppress the irrelevant representations for final LFSR.
Extensive experiments are performed on five commonly-used LFSR benchmarks.
Compared with the other advanced LFSR models, LF-MAGNet achieves new
state-of-the-art results, which demonstrate the effectiveness of our model.
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To summarize, our contributions are two-fold:

– We propose a new Mutual Attention Guidance block (MAG) to efficiently
learn the complementary representations of different SAIs for final LFSR.

– Based on the proposed MAG block, we build an LF-MAGNet which achieves
new state-of-the-art results on five commonly-used LFSR benchmarks.

The rest of this paper is organized as follows. We will review the related works
in Sect. 2. Section 3 illustrates the details of our LF-MAGNet. Experiment and
implementation details are illustrated in Sect. 4. We give a conclusion of this
paper in Sect. 5.

2 Related Work

2.1 Light Field Image Super-Resolution

With the renaissance of deep learning, many CNN-based LFSR networks are
proposed in recent years. Early CNN-based methods can be mainly divided into
two categories: two-stage methods and one-stage methods. Two stages methods
usually enlarge the spatial size of sub-aperture images firstly and then learn
the LF angular information. For example, Yoon et al. [28] applied the bicubic
interpolation to enlarge the spatial size of sub-aperture Images and employ a
convolution neural network to reconstruct final LFSR results. Yuan et al. [30]
first applied the SISR network to super-resolved the sub-aperture images and
then used the designed epipolar plane image network to learn the LF structure
information. One-stage methods simultaneously learn the spatial and angular
information of LF images for LFSR. For instance, Yeung et al. [27] proposed a
spatial-angular separable convolution to learn the spatial-angular information of
LF images for LFSR. Recently, the research interests of LFSR are mainly about
how to utilize the different views of sub-aperture images for LFSR efficiently.
They employ part [23,31] or all [6,22] of Sub-Aperture Images to learn the com-
plementary information of each other for final LFSR. Although the above meth-
ods achieve satisfactory performance, the complementary information of differ-
ent sub-aperture images is not explicitly modeled to improve super-resolution
results. Different from the above methods, we propose a mutual attention guid-
ance mechanism to efficiently learn the similar representations of different sub-
aperture images to align features for improving the LFSR performance.

2.2 Visual Attention Mechanism

Visual attention mechanism aims to enhance the task-relevant feature represen-
tations of a network, and has been successfully applied to various computer vision
tasks, such as image or video classification [4,12,20,25], video object segmenta-
tion [11,33,35], human parsing [19,34,36], temporal action localization [18,26],
single image super-resolution [2,32] and so on. There are some representative
attention blocks among them. For example, Hu et al. [4] proposed a Squeeze-
and-Excitation block to enhance the feature representations of different channels.
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Woo et al. [12,25] modeled channel attention and spatial attention respectively
to highlight the task-relevant feature representations. Wang et al. [20] designed
a non-local block to extract the long-range context information for efficiently
suppressing the irrelevant features. There are few works to explore the visual
attention mechanism for LFSR. To this end, we propose a Mutual Attention
Guidance block to efficiently align the features of different sub-aperture images
for generating high-quality LF images.

3 Proposed Method

Following [21,22,31], we convert the input LF image from the RGB space to the
YCbCr space. Given an LF image, only the Y channel of the image is super-
resolved, and the bicubic interpolation is used to process the Cb and Cr channel
of the images. We don’t consider the channel dimension and denote the LF image
as a 4-D tensor L ∈ R

U×V ×H×W , where U and V stand for the LF angular
resolution, and H and W represent the spatial resolution of each SAI. Given
a low-resolution LF image Llr ∈ R

U×V ×H×W , LFSR aims to generate high-
resolution SAIs while maintaining the angular resolution of LF image unchanged.
We denote the LFSR result as Lsr ∈ R

U×V ×sH×sW , where s (s > 1) represents
the upsampling scale factor. In this paper, we only explore LFSR with the square
array distributed (i.e., U = V = A).

LF-MAGNet is illustrated in Fig. 1. It consists of three modules: Shallow
Feature Extraction Ffeat, Hierarchical Feature Extraction Fsa, and LF Image
Reconstruction Fup. Given a low resolution LF image Llr ∈ R

U×V ×H×W , the
feature process of LF-MAGNet is as follows:

Shallow Feature Extraction: F =Ffeat(Llr)∈R
A2×H×W , (1)

Hierarchical Feature Extraction: S=Fsa(F )∈R
A2×H×W , (2)

LF Image Reconstruction: Lsr =Fup(S)∈R
A×A×sH×sW . (3)

In the rest of this paper, we will introduce the Ffeat, Fsa and Fup in detail.

3.1 Shallow Feature Extraction

Residual learning has been successfully applied to single image super-resolution
and achieved promising progresses [9,32]. To obtain efficient feature represen-
tations of each SAI, we also construct Ffeat with multiple residual blocks for
learning efficient shallow feature representations. The structure of Ffeat is shown
in Fig. 1(b). It consists of four residual blocks in a cascaded way. Each residual
block is constructed with two 3×3 convolutions in a residual manner. We denote
the center SAI of the low-resolution LF image as Ic ∈ R

H×W , and the surround-
ing SAI of the low-resolution LF image as Iis ∈ R

H×W , where i ∈ [1, · · · , A2−1].
Thus, the low-resolution LF image can be denoted as Llr = {Ic, I1s , · · · , IA

2−1
s }.

We use the same Ffeat to separately process Ic and Iis, and obtain shallow feature
Fc and F i

s as follows:
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Fig. 1. Overview of LF-MAGNet. Given LR SAIs input, Shallow Feature Extraction
module first processes the input. Then, multiple MAG blocks process the extracted
feature to learn from each others. Finally, the output features are fed to LF Image
Reconstruction module to generate the final LFSR results.

Fc = Ffeat(Ic) ∈ R
C×H×W , F i

s = Ffeat(Iis) ∈ R
C×H×W , (4)

where C denotes the feature channel number. The shallow features can be
denoted as F = [Fc, F

1
s , · · · , FA2−1

s ], and [·, ·] represents the feature concate-
nate operation.

3.2 Mutual Attention Guidance

Shallow Feature Extraction module Ffeat extracts features F from input SAIs,
but it does not efficiently utilize the complementary information between dif-
ferent SAIs, which is important for the network to reconstruct the high-quality
LFSR image. The SAIs in an LF image share a similar appearance and vary
slightly due to the view disparity of LF structure. Thus, to efficiently obtain the
complementary information, we should first align different SAI’s features and
then aggregate them for LFSR. Inspired by the success of the visual attention
mechanism, we propose a hierarchical feature extraction module Fsa, which is
constructed with N mutual attention guidance blocks (MAGs), to process differ-
ent SAIs. The MAG block includes two modules: The Center Attention Guidance
module (CAG) and the Surrounding Attention Guidance module (SAG). Given
a center SAI feature Fc and the ith surrounding SAI feature F i

s , CAG obtains
the aligned feature Ai

CAG between Fc and F i
s , and use the Ai

CAG to guide the F i
s
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Fig. 2. illustration of MAG block. (a) Center attention guidance module. (b) Surround-
ing attention guidance module.

to learn the complementary information to generate the refined surrounding-SAI
feature F̂ i

s . While SAG learns the aligned feature Ai
SAG between the F̂ i

s and the
F i
s , and guide the F̂ i

s to learn the complementary representations from F i
s . The

above two attention guidance modules construct our proposed MAG, and the
detailed illustrations of each module are as follows. For simplicity, we take the
n-th MAG as an example.

Center Attention Guidance Module. The structure of CAG is illustrated
in Fig. 2(a). Given the center-SAI feature Fc and the ith surrounding feature
F i
s , we first use the spatial attention FSA, which is implemented with conv

1 × 1→ReLU→conv1 × 1→Sigmoid, to process the concatenated feature of Fc

and F i
s for extracting the complementary information between Fc and F i

s , and
obtain the aligned feature Ai

CAG as follows:

Ai
CAG = FSA([Fc, F

i
s ]). (5)

Then, the surrounding-SAI feature F i
s multiplies with Ai

CAG to receive the sup-
plementary information from Fc, and adds with the original feature F i

s to obtain
the refined surrounding-SAI feature F

i

s as follows:

F
i

s = (F i
s ⊗ Ai

CAG) ⊕ F i
s , (6)

where ⊗ denotes the element-wise multiplication, ⊕ represents the element-
wise summation. Finally, to further enhance the feature representations, the
refined surrounding-SAI feature F

i

s is further processed by the channel atten-
tion FCA which is implemented with Global Average Pooling (GAP)→conv
1 × 1→ReLU→conv1 × 1→Sigmoid as follows:

F̂ i
s = FCA(F

i

s) ⊗ F
i

s. (7)
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Both FSA and FCA adopt the same channel dimension reduction ratio r to
highlight the relevant representations. The effect of different settings of reduction
ratio r for final performance are explored in Sect. 4.2.

Surrounding Attention Guidance Module. CAG helps F i
s to align with Fc,

learn the complementary information from Fc and the feature representations of
the surrounding SAI F i

s are refined. However, CAG only considers the center-
SAI features while ignoring the surrounding SAI features, generating sub-optimal
results. We also need to utilize the surrounding SAI features to improve the final
LFSR performance. To this end, we propose a SAG module to guide the F i

s to
learn from the F̂ i

s . The structure of SAG is illustrated in Fig. 2(b). The whole
feature process is the same with CAG, and the major difference is that the input
of FSA. The detail processes of SAG are as follows:

Ai
SAG = FSA([F̂ i

s , F
i
s ]), (8)

˜F i
s = F̂ i

s ⊗ Ai
SAG ⊕ F̂ i

s , (9)

Ḟ i
s = FCA( ˜F i

s) ⊗ ˜F i
s . (10)

The refined center and surrounding SAI features construct the n-th MAG output
Sn = [Ḟ 1

s , · · · , Ḟn
s ], and different MAG outputs are concatenated to generate the

hierarchical spatial-angular features S = [S1, · · · , Sn] for LF image reconstruc-
tion.

3.3 LF Image Reconstruction

After getting the hierarchical features processed by the cascade MAGs, we need
to fuse and upsample the extracted features for LFSR. Thus, we propose an LF
Image Reconstruction module as illustrated in Fig. 1(d). It mainly consists of two
components: the feature fusion part and the feature upsampling part. Feature
fusion part is constructed by multiple lightweight residual feature distillation
blocks (RFDBs) [10], which are illustrated in Fig. 1(e). With the help of RFDB,
the feature fusion part can efficiently obtain the complementary information
of different SAIs with fewer network parameters and computational resources.
Afterward, the fused features are sent to 1 × 1 convolutions and PixelShuffle
layer to enlarge the spatial size of each SAI for LFSR.

4 Experiment

4.1 Dataset and Implementation Details

Following [22], we select five commonly-used LFSR datasets (i.e., EPFL [13],
HCInew [3], HCIold [24], INRIA [8], and STFgantry [17]) to train and evaluate
the performance of our LF-MAGNet on them. The angular resolution of LF
images from the above datasets are all 9 × 9. For the training stage, we crop



112 Z. Wang et al.

Table 1. Performance comparisons of different numbers of MAG in LF-MAGNet on
INRIA dataset for ×4 SR. MAG-n indicates the nth MAG block in LF-MAGNet.

MAG-1 MAG-2 MAG-3 MAG-4 MAG-5 PSNR SSIM

� 30.34 0.9418

� � 30.48 0.9429

� � � 30.88 0.9478

� � � � 30.94 0.9489

� � � � � 30.84 0.9480

64 × 64 patch from each SAI and use the bicubic interpolation to generate ×2 and
×4 LR patch. Random horizontal rotation, vertical rotation, and 90◦ rotation
are employed to augment the training data. Spatial and angular resolution all
needs to be processed simultaneously for maintaining the LF image structure.

We only process 5 × 5 angular resolution for ×2 and ×4 SR. LF-MAGNet
is optimized with L1 loss, and we select Adam to optimize the network. All
experiments are performed on a single NVIDIA RTX 2080Ti GPU card with the
Pytorch framework. The batch size is set to 8, and the initial learning rate is set
to 2 × 10−4. We train LF-MAGNet with a total of 50 epochs, and the learning
rate is decreased to half after every 15 epochs.

Following [21,22], we choose PSNR and SSIM to evaluate the LFSR perfor-
mance on the Y channel. To obtain the performance score of M scenes with
angular resolution A × A, we first calculate the performance score of each SAI.
Then, we average the performance score of A2 SAIs to get the performance score
of one scene. Finally, The performance score of M scenes are averaged to obtain
the final performance score.

4.2 Ablation Studies

Number of MAG. We explore the number of MAG from LF-MAGNet for
final LF-SR performance. The results are displayed in Table 1. We can see that
with the increase of the number of MAG, the LFSR performances are improved.
LF-MAGNet achieves the best result when N = 4. After that, the performance
is decreased when the number becomes large. The reason is that large network
parameters hinder the network optimization. Thus, we set N = 4 in our LF-
MAGNet.

Table 2. Performance comparisons of different attention guidance on INRIA dataset
for ×4 SR.

Variants PSNR SSIM

LF-MAGNet w/o CAG and SAG 30.61 0.9480

LF-MAGNet w/o CAG 30.72 0.9486

LF-MAGNet w/o SAG 30.79 0.9484

LF-MAGNet 30.94 0.9489
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Table 3. Performance comparisons of different reduction ratio r settings in MAG block
on INRIA dataset for ×4 SR.

r 1 2 4 8

LF-MAGNet 30.69 30.80 30.94 30.88

Table 4. Performance comparison of different methods for ×2 and ×4 SR. The best
and the second best results are marked with bold and italic.

Method Scale EPFL HCInew HCIold INRIA STFgantry

Bicubic ×2 29.50/0.9350 31.69/0.9335 37.46/0.9776 31.10/0.9563 30.82/0.9473

VDSR ×2 32.50/0.9599 34.37/0.9563 40.61/0.9867 34.43/0.9742 35.54/0.9790

EDSR ×2 33.09/0.9631 34.83/0.9594 41.01/0.9875 34.97/0.9765 36.29/0.9819

RCAN ×2 33.16/0.9635 34.98/0.9602 41.05/0.9875 35.01/0.9769 36.33/0.9825

LFBM5D ×2 31.15/0.9545 33.72/0.9548 39.62/0.9854 32.85/0.9695 33.55/0.9718

GB ×2 31.22/0.9591 35.25/0.9692 40.21/0.9879 32.76/0.9724 35.44/0.9835

resLF ×2 32.75/0.9672 36.07/0.9715 42.61/0.9922 34.57/0.9784 36.89/0.9873

LFSSR ×2 33.69/0.9748 36.86/0.9753 43.75/0.9939 35.27/0.9834 38.07/0.9902

LF-InterNet ×2 34.14/0.9761 37.28/0.9769 44.45/0.9945 35.80/0.9846 38.72/0.9916

LF-DFnet ×2 34.44/0.9766 37.44/0.9786 44.23/0.9943 36.36/0.9841 39.61/0.9935

LF-MAGNet ×2 34.44/0.9761 37.62/0.9783 44.62/0.9946 36.36/0.9846 39.66/0.9931

Bicubic ×4 25.14/0.8311 27.61/0.8507 32.42/0.9335 26.82/0.8860 25.93/0.8431

VDSR ×4 27.25/0.8782 29.31/0.8828 34.81/0.9518 29.19/0.9208 28.51/0.9012

EDSR ×4 27.84/0.8858 29.60/0.8874 35.18/0.9538 29.66/0.9259 28.70/0.9075

RCAN ×4 27.88/0.8863 29.63/0.8880 35.20/0.9540 29.76/0.9273 28.90/0.9110

LFBM5D ×4 26.61/0.8689 29.13/0.8823 34.23/0.9510 28.49/0.9137 28.30/0.9002

GB ×4 26.02/0.8628 28.92/0.8842 33.74/0.9497 27.73/0.9085 28.11/0.9014

resLF ×4 27.46/0.8899 29.92/0.9011 36.12/0.9651 29.64/0.9339 28.99/0.9214

LFSSR ×4 28.27/0.9080 30.72/0.9124 36.70/0.9690 30.31/0.9446 30.15/0.9385

LF-InterNet ×4 28.67/0.9143 30.98/0.9165 37.11/0.9715 30.64/0.9486 30.53/0.9426

LF-DFnet ×4 28.77/0.9165 31.23/0.9196 37.32/0.9718 30.83/0.9503 31.15/0.9494

LF-MAGNet ×4 29.03/0.9170 31.09/0.9162 37.40/0.9721 30.94/0.9489 30.71/0.9428

Ablation of LF-MAGNet Design. To explore the effectiveness of our MAG
block, we design three variants of LF-MAGNet, which are LF-MAGNet w/o CAG
and SAG, LF-MAGNet w/o CAG, and LF-MAGNet w/o SAG. The results are
presented in Table 2. Without the assistance of MAG, LF-MAGNet achieves the
lowest LFSR performance. Only CAG or SAG can improve the LFSR results,
but they don’t obtain the best results. LF-MAGNet with full implementation of
MAG achieves the best performance, which demonstrates the effectiveness of our
proposed mutual attention guidance mechanism. We also explore the reduction
ratio settings in each MAG block. The performance comparisons are displayed
in Table 3. We can see that LF-MAGNet achieves the best result when r = 4.
Thus, we select r = 4 in our final model.

4.3 Comparisons with the State-of-The-Arts

We compare our LF-MAGNet with other image super-resolution (SISR) meth-
ods, including single image super-resolution methods (i.e., VDSR [7], EDSR [9],
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Fig. 3. Visual results of different methods for (a) ×2 SR and (b) ×4 SR.

and RCAN [32]), and LFSR methods (i.e., LFBM5D [1] GB [14] LFSSR [27]
resLF [31] LF-InterNet [21] LF-DFNet [22]). We also select bicubic interpola-
tion as the baseline method for performance comparisons.

Table 4 reports the results on 5×5 LF images for ×2 and ×4 SR. We can see
that LF-MAGNet achieves new state-of-the-art results on all LFSR benchmarks.
Compared with SISR methods, LF-MAGNet achieves a significant performance
improvement by efficiently utilizing the complementary information from differ-
ent SAIs. Compared with the other LFSR methods, LF-MAGNet also outper-
forms them, demonstrating the effectiveness of our network.

Figure 3 present the qualitative results of different super-resolution methods.
We can see that LF-MAGNet outputs more clear LF images with abundant
textures and details compared with other methods, which further proves the
superiority of LF-MAGNet.
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5 Conclusion

In this paper, we propose a Mutual Attention Guidance Network (namely LF-
MAGNet) for LFSR. LF-MAGNet is mainly constructed by multiple MAGs,
which helps the center-SAI and surrounding SAIs of an LF image learn from
each other efficiently. Extensive experiments are performed on commonly-used
light filed image super-resolution benchmarks. Our LF-MAGNet achieves new
state-of-the-art results compared with other advanced light filed image super-
resolution networks.
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