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Abstract. Previous methods of highlight removal in image processing
have exclusively addressed images taken in specific illumination envi-
ronments. However, most of these methods have limitations in natural
scenes and thus, introduce artifacts to nature images. In this work, we
propose a specular highlight removal method that is applicable to natu-
ral scene image. Firstly, we decompose the input image into a reflectance
image and an illumination image based on Retinex theory, and show
that the illumination image of natural scene is obviously different from
that of commonly used experimental scene. Then, the smooth features
of the input image are extracted to help estimate the specular reflec-
tion coefficient in chromaticity space. Finally, the space transformation
is used to calculate the specular components and the highlight removal
is achieved by subtracting the specular reflection component from the
original image. The experimental results show that our method outper-
forms most of existing methods on natural scene images, especially in
some challenging scenarios with saturated pixels and complex textures.

Keywords: Specular highlight removal · Natural scenes · Reflection
coefficient estimation

1 Introduction

Recovering a high quality image from a corrupted image [1–3] plays an essential
role in the follow-up visual tasks [4,5]. In these techniques, specular highlight
removal, which aims at separating the specular and diffuse components from the
corrupted image, is one of the key problems. To address this problem, early meth-
ods [6,7] use additional hardware outside the camera. However, these approaches
usually cause serious measurement distortion. Therefore, current research tends
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to remove highlights directly from a single image using an image processing
algorithm without the assistance of additional hardware. Typically, many works
have been developed from the dichromatic reflection model that retains scene
physical information for better results.

According to the physical properties of objects, the observed image intensity
I(p) at pixel p can be represented by a dichromatic reflection model, and then
can be decomposed into a diffuse reflection component D(p) representing object
surface information and a specular reflection component S(p) representing light
source information:

I(p) = D(p) + S(p) = md(p)Λ(p) + ms(p)Γ(p), (1)

where md(p) and ms(p) denote the corresponding diffuse and specular reflec-
tion coefficients that represent the reflection ability of the object at position p.
Λ(p) and Γ(p) denote the diffuse and specular chromaticity; the latter is usually
regarded as the illumination chromaticity of ambient light.

Currently, many existing specular highlight remove algorithms [8–12] are
derived from the artificial controlled experimental scenes, in which the back-
ground and specular highlight are usually unnatural. In contrast, the nature
scenes are captured under a non-controlled environment, where objects are
exposed to natural light. Therefore, the highlights usually emerge irregularly.
As a result, the performance of the aforementioned methods on nature scenes
dramatically decrease.

In this paper, in contrast to the aforementioned methods addressing artificial
experimental scenes, we take natural scenes as our research object and propose
a single natural scene image highlight removal method, focusing on the estimate
of specular reflection coefficients based on the accurately estimated illumination
chromaticity. The proposed method shows the different characteristics of high-
light areas in natural scene images and experimental scene images often used in
past methods. Our model provides the key smooth feature information, which is
used in the specular reflection coefficient estimation in chromaticity space after
normalization, and combines the intensity information with color information
to avoid color distortion, thus achieving highlight removal with the dichromatic
reflection model. The contributions of this paper are summarized as follows:

1. We propose a highlight removal method for natural scene image, which sepa-
rates the specular reflection by fully considering the distribution characteristic
of ambient light.

2. We explain the difference between the natural scene images and artificial
experimental scene images often used in past methods, and propose using
smooth feature information of nature scene images to estimate the specular
reflection coefficient matrix.

3. The proposed model achieves very competitive highlight removal results in
natural scenes. It greatly preserves the details and structural information of
the original image in some challenging scenarios containing complex textures
or saturated pixels.
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2 Related Works

Specular highlight removal is a challenging problem in low level vision task.
To tackle this problem, many methods have been proposed. Typically, Tan and
Ikeuchi [13] proposed a method of iterating the specular component until only the
diffuse component is left. They gave the concept of specular free (SF) images
for the first time. The SF image contains only the diffuse component and its
scene geometry is the same as the original image. By comparing pixel values of
the highlight area and the adjacent regions, the maximum value of the pixel is
converted to match the neighboring pixel values to achieve highlight removal.
Assuming that the camera is highly sensitive, Tan and Ikeuchi [14] further dis-
covered a method to separate the reflection components with a large number
of linear equations. However, the color of objects is also affected by the mate-
rial, roughness and texture. To address this problem, Shen et al. [15] proposed
modified specular free (MSF) images. They assumed that there were only two
types of pixels in MSF images, normal pixels and highlighted pixels, and then
calculated the reflection components of two types of pixels using chrominance.
The main disadvantage of the MSF image is that it suffers from hue-saturation
ambiguity which exists in many natural images.

Fig. 1. Single natural scene image highlight removal pipeline.

Recently, the dichromatic reflection model, which fully considers the physical
properties of the scene, has become the most widely used method. Klinker et al.
[16] found that the diffusion and specularity showed T-shaped distribution in the
RGB color space images and used them to remove highlights. However, it has
been proven that this T-shaped distribution is susceptible to noise in practical
applications and is prone to cause deformation in real images. Yang et al. [8,9]
proposed a fast bilateral filter for estimating the maximum diffuse chrominance
value in the local block of images, which caused the diffuse pixels to propagate
to the specular pixels. Shen and Zheng [10] proposed the concept of pixel inten-
sity ratio and constructed a pseudo-chrominance space to address the problem
of texture surface, classifying pixels into clusters and robustly estimating the



Single Image Specular Highlight Removal on Natural Scenes 81

intensity ratio of each cluster. Ren et al. [12] introduced a color-lines constraint
into the dichromatic reflection model, but it is limited to objects with dark or
impure color surfaces and accurate pixel clustering cannot be achieved. Jie et al.
[17] transformed reflection separation into a solution of a low-rank and sparse
matrix on the assumption that the highlight part is sparse in images. In [18], Fu
et al. proposed a specular highlight removal method for real-world images, but
it cannot achieve well result in large white specular highlight regions because
this method is based on the assumption that the specular highlight is sparse in
distribution and small in size.

More recently, some deep learning based methods have been proposed to
tackle this problem. Wu et al. [19] built a dataset in a controlled lab environ-
ment and proposed a specular highlight removal network. Fu et al. [20] pro-
posed a multi-task network that jointly performs specular highlight detection
and removal. These methods have achieved great performance in the man-made
datasets. However, deep learning based methods rely on the training data and
cannot achieve general performance in the natural scene images whose distribu-
tion are different from man-made images.

3 Proposed Method

In this work, we propose a single image highlight removal method for natural
scenes by estimating the specular reflection coefficients:

D = I − E(M(I),F(T(Ic)))Γ, (2)

where I represents a highlight image, Ic is the input image from different chan-
nels of I, Γ is the specular chromaticity, and D is the output diffuse image.
T (·) denotes the low-frequency information extraction based on image decom-
position. F (·) is the feature fusion function of all channels. M(·) represents the
space mapping from color space to chromaticity space. E(·) denotes the esti-
mation function of specular reflection coefficients. An overview of the proposed
method is shown in Fig. 1. First, we extract the smooth feature components of an
image by T (·). Simultaneously, considering the effect of colors, the decomposition
is implemented in the intensity and the three color channels. The information
from the four channels is normalized and combined with F (·) to estimate the
specular reflection coefficients by our derivation E(·). This process also uses the
transformed input image, which is generated by transforming the input image
into chromaticity space using M(·). Finally, highlight removal is achieved by
subtracting the specular reflection component from the original image I.

3.1 Scene Illumination Evaluation

To illustrate the difference between natural scene images and experimental scene
images with highlight areas, we focus on their light distribution characteristics.
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According to Retinex theory [21], a digital image can be represented as the prod-
uct of reflectance and illumination. The former represents the detailed informa-
tion of an image, and the latter represents the ambience light. It can be simply
written as:

Ic(x, y) = Rc(x, y) · Lc(x, y), (3)

where Ic(x, y) is the pixel intensity value at (x, y) and c represents color channel
R, G or B. Rc(x, y) and Lc(x, y) are the reflectance and illumination of channel
c, respectively. Gaussian filters are usually used to calculate Lc(x, y).

In Fig. 2, we present the illuminance histogram of Lc(x, y) for the experimen-
tal and natural images. The illuminance histogram counts the number of pixels
in each gray level. As shown in Fig. 2, the illumination distribution in the natural
scene is brighter than that in the experimental scene. The ground truth illumi-
nation should be natural and provide the best visual quality for the panorama.
Related study [22] has proofed that images with an average gray value of 128
are close to the best visual effects for humans. For the given images, the average
values of experimental and natural scenes are 24 and 103, respectively. For the
experimental scene, a large number of pixels in the captured images are in the
dark interval, and their neighboring pixels are mostly dark. This distribution is
usually nonexistent in natural lighting conditions.

3.2 Smooth Feature Extraction

We first start with the dichromatic reflection model presented in Eq. (1). We
denote I(p) = [Ir(p), Ig(p), Ib(p)]T as the intensity value of the image pixel at
p = [x, y]. md(p) and ms(p) are diffuse and specular reflection coefficients, respec-
tively, which are related to surface geometry. Λ(p) = [Λr(p),Λg(p),Λb(p)]T is the
diffuse chromaticity, and its value usually remains the same in a continuous sur-
face with the same color. Therefore, many studies estimate diffuse chromaticity
based on the assumption that it is piecewise constant. However, the surface
of the object is sometimes rough with irregularities in a nature scene, and the

Fig. 2. Illuminance histograms of images from different surroundings. (a) presents the
illuminance histogram of experimental scenes and (b) shows the illuminance histogram
of natural scenes.



Single Image Specular Highlight Removal on Natural Scenes 83

assumption is not suitable in all cases. By contrast, the illumination chromaticity
Γ(p) = [Γr(p),Γg(p),Γb(p)]T can be estimated accurately via the color constancy
algorithm in [23] or color-lines constraint in [12]. After normalization, the illu-
mination is a white color, i.e., Γr(p) = Γg(p) = Γb(p) = 1/3. Thus, we focus on
the estimate of the specular reflection coefficient ms(p).

In general, the observed image can be decomposed into two components: a
low-frequency component called illumination and a high-frequency detail compo-
nent called reflectance [24]. The former represents the ambient illumination and
the later represents the details of objects [21]. In addition, in the dichromatic
reflection model, the specular reflection component represents the information of
ambient illumination and the diffuse reflection component represents the infor-
mation of objects. Thus, the low-frequency information extracted from an image
can truly reflect the intensity of the specular reflection at each pixel. The low-
frequency information is the smooth feature. Moreover, the coefficient ms(p)
precisely encodes the position and intensity of the specular reflection. For the
low-frequency image at a certain position p, the larger the luminance value, the
stronger the specular reflection, which accurately represents the intensity of the
specular reflection. Therefore, we attempt to employ a low-frequency component
to estimate the specular reflection coefficient ms(p). At the same time, we do
not make any changes to the texture detail information.

To achieve accurate separation of the low- and high-frequency parts, we uti-
lize the method proposed in [25]. The process of image robust sparse decomposi-
tion is shown in Fig. 3. The robust sparse representation improves the robustness
to non-Gaussian noise. We first implement decomposition for the grayscale map.
It can be written as follows:

I = W + H and W = NZ, (4)

where I is an input image with highlight and N is the dictionary we construct,
which mainly contains the extracted luminance information. Z is a sparse coef-
ficient matrix in which very few element values are nonzero. NZ composes the
low-frequency intensity information image W. H is the error matrix, containing
edge and texture detail information. To construct a dictionary, we slide a small
patch with a fixed step on the input image to obtain image blocks. Then, after
vectorizing each block, all vectors form a vectorization matrix. Finally, the dic-
tionary N is obtained by normalizing the vectorization matrix. We set the size
of the patch to 1/10 of the image size through a large number of experiments.
For an image of size 150 × 150, the patch size is set to 15 × 15. Thus, the sparse
decomposition problem can be transformed into the following optimization prob-
lem with an equality constraint:

min
Z,H

‖Z‖0 + λ‖H‖2,0 s.t. I = NZ + H, (5)

in which ‖ · ‖0 denotes the l0 norm of the matrix Z, which counts the number of
nonzero entries in the matrix. ‖ ·‖2,0 denotes the l2 norm of the matrix H, which
describes sample specific error terms and outliers. The parameter λ is used to
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Fig. 3. The process of image robust sparse decomposition. The former denotes the
low-frequency area, and the latter denotes the high-frequency area, which is rescaled
for visualization.

balance the effect of different components. We can adjust the proportion of the
two components by changing λ. While λ is larger, matrix H has less texture
detail information, and more illuminance information is contained in matrix NZ.
The appropriate value of λ is discussed in our experiment section.

However, the l0 norm is highly nonconvex, and there is no efficient solution
available. To make the optimization tractable, we relax it via replacing ‖ · ‖0
with ‖ ·‖1 and ‖ ·‖2,0 with ‖ ·‖2,1, and Eq. (5) can be formulated as the following
convex optimization problem:

min
Z,H

‖Z‖1 + λ‖H‖2,1 s.t. I = NZ + H, (6)

where ‖·‖1 denotes the l1 norm of the matrix, which can be calculated as follows:

‖Z‖1 =
∑

k

∑
j
|Z(j, k)|

‖H‖2,1 =
∑

k

√∑
j
H(j, k)2,

(7)

where (j, k) denotes the position of an element in matrix Z and H. Many effi-
cient algorithms have been developed to solve this convex optimization prob-
lem, among which the linearized alternating direction method with the adaptive
penalty (LADMAP) [26,27] is widely used. Then Z and H can be obtained, and
W can be calculated by multiplying matrix N and Z.

3.3 Coefficient Estimation and Highlight Removal

We first decompose the grayscale map into the low-frequency part and the high-
frequency part. However, the grayscale map contains only luminance information
without any color information. It causes color distortion in the diffuse reflection
part after separation when we use only the luminance to estimate the specular
reflection coefficient ms(p). To preserve the original color of the input image,
robust sparse decomposition is implemented in three color channels: R, G, and
B. Then, the information of these channels is combined as the final low-frequency
component. At the same time, we assign weights to each W of the three color
channels to fully consider the contribution of different colors at each pixel, which
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benefits from that our estimation of the reflection coefficient is based on global
information. The weight can be calculated as:

ωc(p) =
Ic(p)

Ir(p) + Ig(p) + Ib(p)
, (8)

where c represents color channel R or G or B. The final W can be written as
follows:

W =
WU + ωR · WR + ωG · WG + ωB · WB

4
. (9)

where WU, WR, WG, WB denote the low-frequency information extracted in
grayscale and three color channels, respectively. For the final low-frequency inten-
sity image W at a certain position, the larger the value, the stronger the specular
reflection, and the larger the value of ms(p). However, it is difficult to determine
the specific interval of ms(p). Therefore, we use chromatic space to solve this
problem. Chromaticity is usually defined as the function of component C(p):

C(p) =
I(p)∑

c∈{r,g,b} Ic(p)
. (10)

Substituting (1) into (10), C(p) can be written as follows:

C(p) =
md(p)∑

c∈{r,g,b} Ic(p)
Λ(p) +

ms(p)∑
c∈{r,g,b} Ic(p)

Γ(p). (11)

Then, chromaticities Λ(p) and Γ(p) are normalized, i.e.,
∑

c∈{r,g,b} Λc(p) = 1
and

∑
c∈{r,g,b} Γc(p) = 1. After that, combining with Eq. (1), the sum of the

pixel intensities of the three channels can be expressed as:
∑

c∈{r,g,b} Ic(p) = md(p) + ms(p). (12)

As a result, chromaticity can be written as the following:

C(p) =
md(p)

md(p) + ms(p)
Λ(p) +

ms(p)
md(p) + ms(p)

Γ(p). (13)

This process can be deemed as normalizing the reflection coefficient to the [0, 1]
interval. ms(p) has strong relationship with the W. To simplify the estimation
of ms(p), we directly use W to approximate ms(p). Moreover, to avoid over
separation or incomplete separation of the specular reflection, the estimation is
written as:

ms(p)
md(p) + ms(p)

= α W, (14)

where α is an adjustable parameter, whose range is [0, 1]. In this work, we
empirically set the value of α to 0.6, and present the detailed discussion in
the experiment section. Thus, the specular reflection component S(p) can be
obtained with Eq. (12), (13) and (14). The image after highlight removal can be
obtained by subtracting the specular component from the original image.
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Fig. 4. Diffuse components of experimental scene images Masks and Fruits. (a) Input
highlight images, (b) ground truths, (c) results of [10], (d) results of [12], (e) results of
[17], (f) ours. (Color figure online)

Table 1. Quantitative comparison in terms of PSNR and SSIM for the images in Fig. 4

Image Method

PSNR SSIM

[10] [12] [17] Ours [10] [12] [17] Ours

Masks 33.9 30.0 34.4 34.5 0.941 0.913 0.955 0.968

Fruits 39.2 37.5 36.4 37.1 0.960 0.952 0.930 0.976

Table 2. Quantitative comparison in terms of PSNR and SSIM for the images from
SPEC database.

Image Method

PSNR SSIM

[9] [10] [12] Ours [9] [10] [12] Ours

Woodlego 20.3 19.0 21.3 25.9 0.508 0.463 0.472 0.601

V ase 13.5 14.6 14.9 26.0 0.053 0.134 0.114 0.550

Wire 15.2 16.7 17.2 24.2 0.142 0.246 0.288 0.701

Key 14.5 12.8 12.9 21.7 0.169 0.176 0.175 0.478

4 Experiments

In this section, we evaluate the highlight removal performance of our method
compared with currently effective methods. Following methods in [12,17], we
first use some commonly used laboratory images to perform quantitative com-
parisons. Then, some typical natural images, which include some challenging
scenarios with rough surfaces, saturated pixels, and complex textures, are used
to perform visual comparisons. Note that, real-world natural images have no
ground truth. Therefore, we do not provide the quantitative results. In addition,
the related state-of-the-art methods [1,18] do not release their codes. Therefore,
it is hard for us to provide the comparison results of these methods.
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4.1 Quantitative Comparison on Laboratory Images

We first show the separation results of experimental scene images under a black
background, which was often used in past methods. Figure 4 shows Masks with
pure and multicolored surfaces. The methods proposed in [10], [12], and [17] all
create new artifacts while removing highlights on the yellow region of the mask
on the left. The method in [12] makes the result darker due to over separation
of the specular component. In contrast, our method removes highlights better in
the yellow and blue regions that are closer to the ground truth. The captured
surface of our result looks smoother and more continuous, which is why our
method produces the highest PSNR and SSIM values as shown in Table 1. For
the Fruits image, our method does not achieve the best separation results but
produces the highest SSIM, which demonstrates our competitiveness compared
with other methods in that we retain the original structure of the image to the
greatest extent.

Fig. 5. Diffuse components of images close to natural scene Woodlego, V ase, Wire,
and Key. (a) Input highlight images, (b) ground truths, (c) results of [8], (d) results
of [10], (e) results of [12], (f) ours.

Moreover, we use the challenging images from the SPEC database to perform
quantitative and qualitative comparisons. These images are taken under ambient
light conditions created in the laboratory, which is closer to the natural scene
but somewhat extreme. As shown in Fig. 5, the methods of bilateral filtering [8]
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and intensity ratio [10] introduce a large number of black and white noise points
to the images during highlight removal, impairing the original image structure
even in a single-color surface. The color-lines constraint method [12] tends to
generate blur images because it is based on diffuse reflection pixel clustering. For
scenes with unclear color or some metal surfaces, it is difficult to cluster pixels
through only the chromaticity, and most of the image details are lost. In contrast,
our method achieves good results in all these scenarios. Specifically, the proposed
method can preserve the original structure and retain more edge details. For the
severely overexposed scenes, the proposed method can still remove the specular
highlight without introducing any artifacts and impairing image structure. For
these challenging scenes, the proposed method produces the highest PSNR and
SSIM values and is far better than other methods, as shown in Table 2.

4.2 Visual Effect Comparison on Natural Scene Images

Finally, we show the performance in natural scenes to further validate the supe-
riority of our method. These images are taken under natural illumination from
[12] and [17]. As ground truth results are unavailable, we provide a visual appear-
ance comparison in Fig. 6. The method in [17] always achieves better highlight
removal results than others. However, they are all inclined to degrade details
and introduce additional artifact noise as shown in the red boxs. As illustrated
in the first row of Fig. 6, the proposed method achieves more natural highlight
removal, and the words on the plate are the clearest. For multicolored surfaces
shown in the second row, our method produces pleasing visual result. The tran-
sition between highlight and nonhighlight regions is very natural, without the
blurry edge that exists in other methods. In the third row, we not only remove
highlights on the main object lock, but also on the background. The texture
details in the background are optimally recovered through our method. More-
over, as shown in the fourth row, compared with other methods, the leaves
recovered by the proposed method are more nature and colorful. In summary,
the proposed method can produce better highlight removal results for nature
scene images, which demonstrates its superiority.

4.3 Discussion of Important Parameters

The Effect of Balance Parameter λ. Parameter λ is used to balance the effect
of low-frequency and high-frequency components. When λ is larger, less high-
frequency information and more low-frequency information are separated. In
Fig. 7(a), we observe the trend of PSNR when λ changes. Generally, PSNR shows
an upward tendency with increasing λ, and there are few fluctuations between
them. When λ > 1.5, the PSNR values are slightly downward. Intuitively, when λ
is small, high-frequency is excessively separated, resulting in a lack of information
used for estimation; the image after separation is partially blurred. However,
when λ > 1.5, very few high-frequency parts are separated, and low-frequency
estimation does not preserve texture details very well. The maximum PSNR
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Fig. 6. Highlight removal results for natural scene image. (a) Input highlight images,
(b) results of [8], (c) results of [10], (d) results of [12], (e) results of [17], (f) ours. (Color
figure online)

=0.4 =0.5 =0.6 =0.7 =0.8
(a) The effect of balance parameter (b) The effect of adjustable parameterλ

Fig. 7. Discussion of important parameters

values appear in λ ∈ [1.1, 1.5]. In this work, λ is set to 1.4 and this value works
well for most of the highlight images.

The Effect of Adjustable Parameter α. Figure 7(b) shows the visual comparisons
of natural images with different α. Larger α makes the image darker, while
smaller α makes the specular reflection cannot be completely separated. When
α is 0.6, the proposed method achieves relatively better visual result. Although
α = 0.6 may not be very accurate, it has little impact on the final result.
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5 Conclusion

In this paper, we proposed an effective method for removing specular highlights
focusing on captured natural scene images. The background and the distribution
characteristics of ambient light are fully considered and the difference between
the natural scene and the experimental scene is explained. We first constructed
smooth feature images based on robust sparse decomposition. Then, we com-
bined the smooth feature information with three color channels’ information,
and assigned different weights according to the contributions of different colors
at each pixel to ensure that the color is not distorted. Finally, we converted the
image into the chromaticity space, where the normalized smooth feature can be
used as an accurate estimate of the specular reflection coefficient. Our method
achieved very pleasing highlight removal results in natural scene images. It can
preserve the original structure information and details of images. However, our
method could not detect subtle bright spots or recover information that has been
damaged by highlights, which will be addressed in future work.
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