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Abstract. Recent image inpainting works have shown promising results
thanks to great advances of generative adversarial networks (GANs).
However, these methods would still generate distorted structures or
blurry textures for the situation of large missing area, which is mainly
due to the inherent difficulty to train GANs. In this paper, we propose a
novel multi-level discriminator (MLD) and wavelet loss (WT) to improve
the learning of image inpainting generators. Our method does not change
the structure of generator and only works in the training phase, which
thus can be easily embedded into sophisticated inpainting networks and
would not increase the inference time. Specifically, MLD divides the
mask into multiple subregions and then imposes an independent dis-
criminator to each subregion. It essentially increases the distribution
overlap between the real images and generated images. Consequently,
MLD improves the optimization of GANs by providing more effective
gradients to generators. In addition, WT builds a reconstruction loss in
the frequency domain, which can facilitate the training of image inpaint-
ing networks as a regularization term. Consequently, WT can enforce
the generated contents to be more consistent and sharper than the tra-
ditional pixel-wise reconstruction loss. We integrate WLD and WT into
off-the-shelf image inpainting networks, and conduct extensive experi-
ments on CelebA-HQ, Paris StreetView, and Places2. The results well
demonstrate the effectiveness of the proposed method, which achieves
state-of-the-art performance and generates higher-quality images than
the baselines.
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1 Introduction

For image inpainting, it is unnecessary to require the generated image to be
exactly same as the groundtruth image, but the generated content to fill the hole
is expected to be natural and consistent with the surrounding content. Gener-
ative Adversarial Network (GAN) [7] is an excellent generative model and has
shown powerful ability to generate natural and high-quality images. Therefore,
a lot of works [9,11,19,20,24] introduce GAN to the image inpainting task. Typ-
ically, the networks in these methods consist of two main components, namely,
generator and discriminator. Most of the methods [9,19,20,24] focus on how
to construct a better generator, and rarely concern the design of discriminator.
According to the structure of generators, we can divide these methods into two
broad categories: one-stage model and two-stage model. The one-stage methods
adopt one encoder-decoder as a generator, e.g., CE [19] and GMCNN [20]. They
usually cannot work well for complex images (such as the Places2 dataset [27])
due to limited capacity to express complicated patterns of image contents. Differ-
ently, the two-stage models, e.g., EdgeConnect (EC) [9] and HighFill [23], employ
two encoder-decoder networks to generate natural results. However, either one-
stage or two-stage models still would suffer from serious artifacts, especially for
the images with large missing area, as shown in Fig. 1.

GMCNN-O GTGMCNN

HighFillECInput

Fig. 1. Inpainting results of different methods.
*-O means that our proposed method is applied.
It can be seen that the current methods have great
difficulties in the case of large area missing. On the
contrary, our method can handle this situation well.

According to [2], an impor-
tant reason why large-area
missing images is difficult to
repair is that the distribu-
tion of generated images and
the distribution of real images
are difficult to overlap, which
leads to optimization difficul-
ties. We will explain it in
detail in Sect. 3.1. In addi-
tion, the pixel-wise �1 or �2
loss can not capture high-
frequency information, which
can easily produce blurred
results. Based on the above
two issues, we mainly focus on how to better learn a generator, i.e., design-
ing an method to more effectively train image inpainting networks. Our method
is only involved in the training phase and thus would not increase the time of
forward inference.

In this paper, we propose a new discriminator and loss function to address the
aforementioned challenges of image inpainting. First, we propose a multi-level
discriminator (MLD) to increase the overlap between the generated and real
distributions so that the generator can be more effectively trained. MLD parti-
tions the missing regions into multiple parts, and then we separately build the
adversarial loss for each of them. Consequently, a discriminator for larger missing
area is decomposed into multiple sub-discriminators with smaller missing area.
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Second, we propose to use wavelet coefficients to represent image contents and
then wavelet loss (WT) to enforce the content consistency between the generated
image and raw image. Different from the �1 and �2 loss, WT is to compute the
reconstruction loss in the frequency domain, in which each component represents
the information of regions rather than pixels. For example, the low-frequency
component can describe the global topology information and the high-frequency
one can describe the local texture details [10]. Note that our proposed method
in this work are orthogonal to existing image inpainting generators, and thus
can be integrated into off-the-shelf networks. Particularly, we would investigate
the combinations with GMCNN [20] and CA [24] in this paper due to their good
performance. To our best knowledge, this work is the first attempt to handle
the large-hole problem of image inpainting from the perspective of distribution
overlap.

We experimentally evaluate the proposed method on three benchmark
datasets: CelebA-HQ [13], Paris StreetView [4], and Places2 [27]. The results
well demonstrate the effectiveness of our proposed method, which can produce
much higher-quality images than the corresponding baseline.

The main contributions of this work are summarized as follows:

– We propose a multi-level discriminator, which increases the overlap between
the generated and real distributions and thus can aid the generator networks
to be more effectively trained.

– We propose wavelet loss for image inpainting networks to improve the con-
straints of content consistency. As a result, the artifact and blur of generated
images can be greatly alleviated.

– We integrate the proposed method into representative inpainting networks,
and experimentally show the effectiveness of our method on different types
of images.

2 Related Work

2.1 Image Inpainting

There are two broad types of approaches in previous works, i.e., traditional
matching methods [3,17] and deep convolutional neural network (DCNN)
based methods [9,11,16,19–22,25,26]. Traditional image inpainting methods
like [3,5,6] work well for the images with small holes and consistent textures.
However, these methods [5,6,14] are generally time-consuming due to iteratively
searching for the most similar patch in surrounding areas. In sharp contrast, the
DCNN-based method can better capture high-level information of images and
efficiently synthesize images in an end-to-end manner. Wang et al. [20] proposed a
Generative Multi-column Convolutional Neural Network (GMCNN) to capture
different levels of information to generate more plausible synthesized content.
CA [24] takes a coarse-to-fine structure with contextual attention module for
image inpainting. Particularly, contextual attention can borrow the information
from distant spatial location and thus overcomes the limitation of convolutional
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Fig. 2. Illustration of our proposed method. For an encoder-decoder image inpainting
network, multi-level discriminator and wavelet loss are appended to the outputs of
network to guide the training of generator. Here the global and local versions are used.

layers that only integrate local information. More recently, EdgeConnect (EC) [9]
further improves the quality of generated images by a two-stage model, in which
an edge generator is inserted before image completion network. However, these
methods still suffer from serious artifacts, especially for the situation of large
missing area. The work most similar to ours is PGN [25]. It proposes to progres-
sively complete the masked area from edge to center, where multiple generators
are introduced to take charge of generating different areas. Evidently, PGN would
involve large memory consumption and high computational complexity, so even
an image of 256 × 256 size is difficult to process. Our method only needs an
additional discriminator during the training phase, so it does not increase the
burden of memory too much.

2.2 Adversarial Training

Essentially, GAN acts as a min-max two-player game, which utilizes the adver-
sarial loss to train the generator gθ and the discriminator D alternatively [7].
Here the discriminator D is targeted to distinguish the generated images Ig and
real images Ir, and the generator gθ is targeted to produce an image Ig from
a latent code z or a corrupted image Ic, to cheat the discriminator D. In prac-
tice, the training of GANs contains two main steps. The first one is to fix the
generator gθ and train a discriminator D with maximizing

LD(Ir, Ig) = Ex∼Pr
[log D(x)] + Ex∼Pg

[log(1 − D(x))]. (1)
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The second one is to fix the discriminator D and train a generator gθ with
minimizing

Lg(Ig) = Egθ(x)∼Pg
[log(1 − D(gθ(x))]. (2)

Here Pr and Pg represent the distributions of the real images and generated
images, respectively. Ideally, after iterative training, the distributions of gener-
ated images and real images would be nearly same. However, GANs still face
huge challenge in generating high-resolution images due to unstable training
procedure [13]. A similar issue actually exists for image inpainting with large
missing area [20], which consequently will generate sharp artifacts. In this work,
we particularly propose a multi-level discriminator and wavelet loss to alleviate
the unstable optimization of GANs and meanwhile capture local details.

3 Our Approach

In this work, we propose a novel multi-level discriminator and wavelet loss to
facilitate the training of generator networks from two different perspectives.
MLD is to improve the stability of adversarial training by increasing the dis-
tribution overlap between generated and real images, and the WT loss is to
improve the regularization of content consistency and generator optimization by
constructing a reconstruction loss in frequency domain. Figure 2 illustrates the
overall architecture of our proposed method. Note that MLD and WT are only
employed in the training phase and thus do not increase the inference time.

3.1 Multi-level Discriminator

(a) Input ( ) 1 (c) 1+ ( ) 1+ (e) GT

Fig. 3. Visual comparison of different loss func-
tions to guide the learning of generator, where
GMCNN is particularly used as the base model.
L1 and La represent the �1 loss and the global and
local adversarial loss, respectively. Lmld

a denotes
our proposed MLD adversarial loss. Compared to
a small area missing, a large area missing is more
likely to lead to sharp artifacts and MLD can
make the generated images more natural.

Before elaborating on MLD, we
first briefly explain the underly-
ing reason of GANs to produce
artifacts for image inpainting
with large missing area. Accord-
ing to [2], when the generator gθ

is fixed, the optimal discrimina-
tor is

D∗(x) =
Pr(x)

Pr(x) + Pg(x)
. (3)

As proven in [2], if Pg and Pr

have no overlap (i.e., are too
easy to tell apart), the optimal
discriminator D∗ cannot pro-
vide effective gradients to guide
the optimization of the genera-
tor gθ. Here we provide a brief
explanation. We define U = {x : Pr(x) > 0}, Ū = {x : Pr(x) = 0},
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V = {x : Pg(x) > 0}, and V̄ = {x : Pg(x) = 0}. Then D∗ can be redefined
as

D∗(x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1, forx ∈ U ∩ V̄ ,

0, forx ∈ Ū ,

Pr(x)
Pr(x) + Pg(x)

, forx ∈ U ∩ V.

(4)

If Pg and Pr have no overlap, which means U ∩V = ∅, D∗ would equal to either
1 or 0. Obviously, the gradient ∇xD∗(x) would always be zero. According to the
chain rule, we have

∇θLg = ∇DLg · ∇gθ(x)D
∗(gθ(x)) · ∇θgθ(x) = 0. (5)

That is, the discriminator D∗ cannot provide effective gradients to guide the
optimization of the generator gθ. Thus Pg and Pr need have enough overlap so
that the generator can be effectively optimized.

For image inpainting, the difference of the generated image Ig and corre-
sponding real image Ir is exactly the missing region represented by a mask.
When the missing area is larger, therefore, it is difficult to effectively learn a
generator since the gradients provided by the discriminator would have more
or less random direction [2,18]. As a result, the generated images often present
some artifacts, as shown in Fig. 3(c). In this work, we exploit the information
of original images to improve the optimization of generators. The key idea is to
increase the overlap of Pr and Pg by reducing the differential area between the
generated image Ig and real image Ir. To be specific, we propose a multi-level
discriminator, which decomposes the missing regions of an image into multiple
parts and then separately imposes a discriminator for each part. Consequently,
compared with the original discriminator over the whole missing regions, one sin-
gle discriminator in MLD would possess an increased overlap between generated
and real distributions due to smaller missing area to handle. Figure 3(d) shows
the effect of MLD, which usually can generate more natural images, especially
for the case of large missing area.

Fig. 4. Illustration of the MLD masks for different
shapes. Here two levels are particularly used.

Formally, assume the gener-
ated image Ig corresponds to
the real image Ir, and the miss-
ing mask is M . We divide the
masked region into K subre-
gions (e.g., from border to cen-
ter), as shown in Fig. 4. Then we
build one discriminator for each
subregion, i.e., K discriminators would be constructed. Considering the com-
putational complexity and inpainting performance, K = 2 is particularly used
throughout our experiments. For such a setting, we define two virtual synthesized
images Īc and Īb as

Īc = Mc � Ig + (1 − Mc) � Ir, (6)

Īb = Mb � Ig + (1 − Mb) � Ir, (7)
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where Mc is the central mask (we set its area as a quarter of that of the original
mask M in our implementation), Mb is the border mask with M = Mb ∨ Mc,
and � denotes the spatially element-wise multiplication. Note that the division
from border to center is particularly used for simplicity and we can also adopt
other division strategy.

Evidently, the area of different regions between Īc(Īb) and Ir is smaller than
that between Ig and Ir, implying that the distributions of Ir and Īc(Īb) have
a larger overlap than that of Ig and Ir. We use Īc and Īb to replace Ig in the
traditional adversarial loss separately. Then we can build a two-level discrimina-
tor. The adversarial loss functions become Lmld

D and Lmld
g for discriminator and

generator, i.e.,
Lmld

D = LD(Ir, Īb) + LD(Ir, Īc), (8)

Lmld
g = Lg(Ir, Īb) + Lg(Ir, Īc). (9)

To better understand our proposed MLD, here we particularly compare MLD
and GLD (Global and Local discriminator). The main difference is that GLD
uses different discriminators to focus on multiple images with different scales,
while MLD uses different discriminators to focus on multiple regions of the same
image with different overlaps. To be specific, GLD targets to utilize multi-scale
background contents, while MLD targets to increase the overlap of the distribu-
tions between generated and real images. From the perspective of implementa-
tion, GLD operates on the background regions to construct multi-scale contents,
while MLD operates on the missing regions to construct different synthesized
images. Therefore, GLD cannot alleviate the optimization difficulties caused by
non-overlapping distributions. It often causes sharp artifacts in the case of large
areas, as shown in Fig. 3(c). However, MLD can greatly alleviate this problem,
as shown in Fig. 3(d). In addition, due to the existence of local discriminator,
GLD is not applicable for irregular masks. But our MLD can still work well for
such masks, as shown in Fig. 4.

3.2 Wavelet Loss

Wavelet transform can extract multi-frequency signals of images [1,10,15], and
thus can model the consistency for different details. Here we introduce wavelet
transform into image inpainting networks to explicitly model high frequency
components, and it is shown in our experiments to work well in preventing
image blurring. Note that we do not change the discriminator which still works
in image space, and our proposed WT serves as a reconstruction loss to guide the
optimization of generator together with adversarial loss. In our implementation,
we particularly adopt the Harr wavelet for the sake of simplicity.

Formally, given an image I, wavelet transform decomposes it with L
levels, and each level l consists of four types of coefficients with C =
{C1, C2, C3, C4} [10]. Then we define the wavelet loss as

Lwt =
L∑

l=1

∑

m∈C

∥
∥w̄l

m − wl
m

∥
∥
1
, (10)
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where w̄l
m and wl

m represent the wavelet transform coefficients of the m-th com-
ponent in the l-th level for the completed image and raw one, respectively.

4 Experiments

In this section, we evaluate the proposed method on three challenging datasets,
including CelebA-HQ faces [13], Paris StreetView [4], and Places2 [27]. In partic-
ular, we adopt the one-stage model GMCNN [20] and two-stage model CA [24]
as the baseline networks due to their excellent image inpainting performance.
We directly add the WT and MLD modules to CA and GMCNN, resulting in

Table 1. Performance comparison of different methods on the Places2 dataset. Here ↓
means the lower is better, and ↑ means the higher is better. ∗ represents our retrained
model.

Thin Irregular Thick Irregular Center

Method 30–40% 40–50% 30–50% 50–70% Rectangle

PSNR↑ HighFill [23] 25.839 24.337 22.488 21.198 17.142

CA [24] – – – 18.145

EC [9] 26.565 25.046 23.707 22.428 19.069

GMCNN [20] 26.732 25.294 21.869 20.656 –

CA∗ [24] – – – 17.974

CA-O – – – – 18.931

GMCNN∗ [20] 26.665 24.793 22.291 20.751 17.998

GMCNN-O 27.146 25.569 23.679 22.503 18.877

SSIM↑ HighFill [23] 0.877 0.835 0.802 0.740 0.459

CA [24] – – – – 0.537

EC [9] 0.883 0.847 0.824 0.771 0.548

GMCNN [20] 0.891 0.860 0.813 0.764 –

CA∗ [24] – – – 0.523

CA-O – – – – 0.553

GMCNN∗ [20] 0.889 0.851 0.820 0.771 0.549

GMCNN-O 0.895 0.863 0.835 0.791 0.578

FID↓ HighFill [23] 12.802 19.224 27.525 47.526 22.845

CA [24] – – – – 7.696

EC [9] 7.190 11.402 13.994 24.227 9.288

GMCNN [20] 5.476 8.409 16.509 27.885 –

CA∗ [24] – – – 9.149

CA-O – – – – 8.231

GMCNN∗ [20] 5.293 9.087 18.336 33.918 8.958

GMCNN-O 5.122 7.872 11.703 18.560 8.011
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GMCNN-O and CA-O. Both GMCNN and CA use the global and local discrim-
inators for the rectangular masks, and correspondingly we replace them with
the global-MLD and local-MLD. CA does not support the irregular masks due
to using local discriminator, while GMCNN supports the irregular masks by
adopting PatchGAN [12] as discriminator. Hence we conduct the experiments
on the irregular masks only using GMCNN. For the irregular masks, we use a
16 × 16 kernel to corrode the masks to produce the Mb and Mc, as shown in
Fig. 4. For comparison and fairness, in all experiments, we keep the loss function
of the original method unchanged.

4.1 Experimental Settings

4.2 Performance Evaluation

Thin mask Thick mask 

Fig. 5. Compared to the thick masks, the center
of the thin masks is closer to the existing regions.

In this section, we evaluate our
proposed method by comparing
with five representative base-
line methods, including High-
Fill [23], GMCNN [20], EC [9]
and CA [24]. For fair compari-
son, we retrain the baseline CA
and GMCNN using our data
besides testing the models provided by authors. The retrained models are marked
by ∗ in the experimental results.

GMCNN-O GTGMCNNHighFillECInput

CA-O GTCAHighFillECInput

Fig. 6. Example inpainting results of different methods on Places2 with the rectangle
masks.
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GMCNN-O GTGMCNNInput EC

Fig. 7. Performance of different combinations of
MLD and wavelet loss.

Quantitative Comparison.
We measure the quality of
inpainting results using the fol-
lowing metrics: peak signal-
to-noise ratio (PSNR), struc-
tural similarity index (SSIM),
and Frchet Inception Distance
(FID) [8]. For PSNR and SSIM,
higher values indicate better
performance, while for FID, the
lower the better. For Places2, 10, 000 images randomly selected from the valida-
tion set for test. For Paris StreetView and CelebA-HQ, we follow GMCNN [20]
to construct test set.

In order to comprehensively evaluate various methods, we test on both the
rectangular masks and irregular masks. All images are resized to 256 × 256. For
the rectangular masks, all masked holes are placed at the center of images with
the size of 128×128. For the irregular masks, as shown in Fig. 5, we use the thin
masks and thick masks separately. For the thin mask, the hole-to-image ratio
ranges from 0.3 to 0.5. For the thick mask, the hole-to-image ratio ranges from
0.3 to 0.7.

Table 1 gives the results of different methods on the Places2 dataset, where
PSNR and SSIM are computed on the hole regions for the rectangular masks
and on the whole images for the irregular masks. From the results, we have the
following observations. First, compared with the baseline GMCNN* and CA*
using the same data, our GMCNN-O and CA-O can bring significant perfor-
mance improvement, especially for the thick masks. Because in this case, the
problem of non-overlapping distribution is more serious, and it can better reflect
the advantages of our method. Second, GMCNN-O achieves better performance
than the current state-of-the-art methods including two-stage method EC and
HighFill for almost all settings of irregular masks, which shows the ability of our
method to boost the advanced methods. In particular, HighFill [23] is a good
method to recover the image with large-missing area. However, the key for High-
Fill to reduce artifacts is that on the reduced image (256 × 256), the missing
area is small enough to be easily repaired. Finally, a super-resolution module
can be used to obtain a inpaited image of the original size. Therefore, it requires
that the proportion of the missing area on the original image cannot be large
(generally not more than 25%), otherwise the reduced missing area will still be
large, resulting in artifacts, as shown in Fig. 6.

Qualitative Comparison. For the image inpainting task, there is no a com-
prehensive metric that can accurately measure the quality of completed images.
Here we qualitatively compare our model with the baselines. Figure 6, Fig. 7
give some examples of different methods with different image masks. It can be
seen that most of existing methods usually suffer from discontinuous structure
and mutant color (black or white). Our proposed method can effectively reduce
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the artifacts and improve the quality of the generated images. For more results,
please refer to the supplementary material.

4.3 Ablation Study

Input Base Base-WT Base-MLD Base-OGT

CA
 

G
M

CN
N

 

PSNR: 17.974 
SSIM: 0.523
FID: 9.149

PSNR: 18.714 
SSIM: 0.541
FID: 8.340

PSNR: 18.490 
SSIM: 0.541
FID: 8.374

PSNR: 18.931
SSIM: 0.553
FID: 8.231

PSNR: 17.998 
SSIM: 0.549
FID: 8.958

PSNR: 18.130 
SSIM: 0. 556
FID: 9.113

PSNR: 18.515 
SSIM: 0.569
FID: 8.091

PSNR: 18.877
SSIM: 0.578
FID: 8.011

Fig. 8. Performance of different combinations of MLD and wavelet loss.

In this section, we investigate the effects of the main components of our proposed
methods. Since the rectangle masks with a large hole are very challenging, we
particularly use such masks with a size of 128 × 128 to conduct ablation exper-
iments. We use the metrics PSNR, SSIM, and FID to quantitatively compare
different methods. All the metrics are reported on the test set. For convenience,
we put the SSIM, PSNR, and FID together with the example generated images.
For fair comparison, we use retrained CA* and GMCNN* as the baseline. In the
case of no ambiguity, we omit ∗ here.

Effect of MLD and Wavelet Loss. Here we evaluate the effect of our pro-
posed MLD and wavelet loss by comparing their combinations with the baseline
GMCNN and CA. To be specific, we separately impose MLD and wavelet loss
to the baselines (denoted by *-MLD and *-WT respectively), and then use both
of them (denoted by *-O). Particularly, we use the Place2 dataset due to its
challenge. Figure 8 provides the results for different models. It can be seen that
MLD and wavelet loss both contribute to the performance of image inpainting.
In particular, GMCNN may produce some black and red regions, wavelet loss can
provide more details, and MLD can make the images more natural. Finally, the
combination of our proposed MLD and WT performs best, which can generate
high-quality images.

Number of MLD Levels. Here we set the level of MLD K from {1, 2, 3, 4} to
analysis the impact of different MLD levels. We adopt CA with the rectangle
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masks as the baseline model and CelebA-HQ is used for evaluation. Figure 9
give the results of different MLD levels. Compared with the original CA (i.e.,
K = 1), the MLD can significantly increase the quantity of generated images.
Considering the computational complexity, we particularly adopt K = 2 in our
experiments that actually can produce satisfactory results.

Input

PSNR: 19.253 

SSIM: 0.780

FID: 8.464

PSNR: 19.940 

SSIM: 0.784

FID: 8.162

PSNR: 19.985

SSIM: 0.795

FID: 9.401

PSNR: 19.859 

SSIM: 0.797

FID: 10.026

Fig. 9. Results of different MLD levels on CelebA-
HQ.

Level of Wavelet Trans-
form. In this section, we ana-
lyze the impact of each wavelet
decomposition level. Here w/o
WT represents the baseline
model without wavelet loss, w/o
WT-n represents the baseline
model which uses 3 wavelet lev-
els but removes the results of
the n-th level, and WT-all rep-
resents the baseline model with
all the 3 wavelet decomposition levels. Figure 10 gives the results of different
settings on CelebA-HQ. It can be seen that each wavelet level contributes to the
quality of inpainting results.

5 Conclusion

PSNR: 19.253 

SSIM: 0.780

FID: 8.464

PSNR: 20.518 

SSIM: 0.802

FID: 9.539

PSNR: 20.470

SSIM: 0.792

FID: 10.080

PSNR: 20.634

SSIM: 0.801

FID: 9.991

PSNR: 20.741

SSIM: 0.811

FID: 9.326

GTInput

w/o WT-3w/o WT-2

w/o WT-1w/o WT

WT-all

Fig. 10. Results of removing single wavelet level
on CelebA-HQ.

In this paper, we proposed two
novel techniques to improve the
training of GANs for image
inpainting, namely multi-level
discriminator. Specifically, MLD
can improve the stability of net-
work training by increasing the
distribution overlap between
the generated images and real
images. WT can achieve a good
trade-off between the sharpness and naturalness of generated images by exploit-
ing the frequency-domain information as the reconstruction loss. We experimen-
tally verified the effectiveness of the proposed MLD and WT, which can generate
high-quality images for both the rectangle and irregular masks.
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