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Abstract. Recently, underwater image enhancement has attracted
broad attention due to its potential in ocean exploitation. Unfortunately,
limited to the hand-crafted subjective ground truth for matching low-
quality underwater images, existing techniques are less robust for some
unseen scenarios and may be unfriendly to semantic-related vision tasks.
To handle these issues, we aim at introducing the high-level seman-
tic features extracted from a pre-trained classification network into the
image enhancement task for improving robustness and semantic-sensitive
potency. To be specific, we design an encoder-aggregation-decoder archi-
tecture for enhancement, in which a context aggregation residual block is
tailored to improve the representational capacity of the original encoder-
decoder. Then we introduce a multi-scale feature transformation mod-
ule that transforms the extracted multi-scale semantic-level features, to
improve the robustness and endow the semantic-sensitive property for
the encoder-aggregation-decoder network. In addition, during the train-
ing phase, the pre-trained classification network is fixed to avoid intro-
ducing training costs. Extensive experiments demonstrate the superior-
ity of our method against other state-of-the-art methods. We also apply
our method into the salient object detection task to reveal our excellent
semantic-sensitive ability.

Keywords: Underwater image enhancement · Semantic feature ·
Context aggregation network · Feature transformation module

1 Introduction

Underwater images often suffer from severe color casting and contrast decreasing
caused by light absorption and scattering. This degradation not only disturbs
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Fig. 1. Underwater image enhancement results and the corresponding saliency maps
predicted by a salient object detection method F3Net [26] on USOD dataset [13].
Obviously, our method performs better than other state-of-the-art methods, especially
without noise or artifact. The superior salient object detection result further reveals
semantic-sensitive property of the proposed method in high-level vision tasks.

visual quality of images but also has negative impact on visual tasks, e.g., salient
object detection and instance segmentation. Moreover, it is hard for submarine
robotic explorers equipped with visual system to autonomously explore under-
water environment. Therefore, underwater image enhancement has drawn much
attention in recent years.

Underwater image enhancement aims to generate clear and natural images
against several degradations (e.g., color cast, low contrast and even detail loss).
The existing image underwater enhancement methods can be roughly divided
into three categories: non-physical model-based methods, physical model-based
methods and data-driven methods. In early enhancement methods, some are
directly used to enhance underwater images regardless of underwater imaging
model. [12,28] enhanced image contrast by expanding the dynamic range of the
image histogram. [6,24] corrected color cast based on color assumption of nat-
ural images. To enhance contrast and correct color cast simultaneously, Ancuti
et al. [1] proposed a fusion-based method to fuse several kinds of enhancement
images. From the perspective of underwater physical imaging model, underwater
image enhancement is regarded as an inverse problem. As He et al. [10] pro-
posed Dark Channel Prior (DCP) which achieved an outstanding performance
in single image dehazing, several DCP variants [2,9] were proposed by explor-
ing different underwater prior. However, these methods might be restricted with
some assumptions and simple physical imaging model. When the assumption
and prior are less adaptive to unseen scene, these methods may generate severe
artifacts, as shown in Fig. 1(b).

With the success of deep learning in various vision tasks [4,18,20,21] some
learning-based underwater image enhancement methods are proposed. Wang
et al. [25] proposed UIE-Net, which is composed of two branches to estimate
attenuation coefficient and transmission map respectively. Li et al. [15] directly
reconstructed the clear latent natural images from inputs instead of estimating
the parameters of underwater imaging model. Recently, some methods [14,17]
adopted the generative and discriminative mechanism to improve the capability
of network.
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However, existing methods for underwater image enhancement still suffer
from color distortion and unclear background details in some unknown scenar-
ios, and these algorithms may be adverse to the high-level vision tasks. To settle
these issues, we propose a semantic-driven context aggregation network that
utilizes multi-scale semantic features to guide detail restoration and color cor-
rection. As shown in Fig. 1, our method realizes a stronger adaptation on the
unknown scenario and performs a better semantic-sensitive property than other
state-of-the-art methods. To be specific, we first build an encoder-aggregation-
decoder enhancement network to establish the map between underwater low-
quality observations and high-quality images. Then we introduce an encoder-
type classification network that has been pre-trained on ImageNet [3], to provide
semantic cues for better enhancement. We further construct a multi-scale feature
transformation module to convert semantic features to the desired features of
the enhanced network. Concretely, our main contributions can be concluded as
the following three-folds:

– We successfully incorporate semantic information into a context aggregation
enhancement network for underwater image enhancement to achieve robust-
ness towards unknown scenarios and be friendly to semantic-level vision tasks.

– We construct a multi-scale feature transformation module to extract and
convert effective semantic cues from the pre-trained classification network to
assist in enhancing the low-quality underwater images.

– Extensive experiments demonstrate that our method is superior to other
advanced algorithms. Moreover, the application on salienct object detection
further reveals our semantic-sensitive property.

2 Method

The overall architecture of our proposed method is shown in Fig. 2. In this
section, we begin with describing the overall architecture in Sect. 2.1, then intro-
duce the semantic feature extractor in Sect. 2.2, the proposed multi-scale feature
transformation module in Sect. 2.3, and finally the context aggregation enhance-
ment network and the loss function in Sect. 2.4.

2.1 The Overall Architecture

Semantic information extracted from high-level network has potential to facil-
itate underwater image enhancement with more accurate and robust predic-
tions. Thus, we propose a semantic-driven context aggregation network for
underwater image enhancement, as illustrated in Fig. 2. Our whole architec-
ture includes a semantic feature extractor, a multi-scale feature transformation
module, and a context aggregation enhancement network. Specifically, we adopt
a general VGG16 classification network to extract the semantic features, then
the extracted multi-scale semantic features with abundant information are fed
into the enhancement network through the multi-scale feature transformation
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Fig. 2. Overview of the proposed semantic-driven context aggregation network for
underwater image enhancement. Our network is composed of three basic modules.
a) Semantic feature extractor, which consists of a pre-trained VGG16 classification
network to extract semantic features. b) Multi-scale feature transformation module,
which is used to concentrate on beneficial semantic features to guide underwater image
enhancement. c) Context aggregation enhancement network, which integrates semantic
features and enhancement features to generate clear and natural underwater images.

module. The feature transformation blocks process the affluent features in an
attentive way, which benefit the enhancement network in restoring details and
correcting color casts for underwater images.

2.2 Semantic Feature Extractor

A common perception is that the shallower features from backbone network of
high-level task consider texture and local information, while the deeper features
focus more on semantic and global information. This motivates us to explore the
ability of multi-scale semantic features. Specifically, we extract features of the
first four scales (denoted as Fn, n ∈ [1, 4]) from a VGG16 network pre-trained
on ImageNet [3]. To avoid information loss caused by pooling operation, we
select features before pooling layers of each stage. The abundant use of guidance
information from multi-scale features allows us to better handle the challenges
in low-quality underwater images. Besides, in order to avoid introducing the
training costs, semantic feature extractor is fixed during training phase.

2.3 Multi-scale Feature Transformation Module

With the extracted multi-scale semantic features, we aim at incorporating the
abundant semantic information into the enhancement network. A straightfor-
ward method is directly combining semantic features with the features in the
enhancement network, e.g., addition or concatenation. However, this may ignore
the distinguishability of semantic features and introduce redundant information
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into the enhancement network. Inspired by the attention mechanism in [11], we
propose a feature transformation block (FTB) to attentively select and incorpo-
rate the key prior for the enhancement network. We first adopt a 1×1 convolution
block to match the channel dimensions of features, then exploit the inter-channel
dependences and reweight the importance of each channel to highlight the vital
information and suppress the unnecessary ones. The process can be formulated
as the following equation:

Fn
o = S(MLP (Avgpool(Conv1×1(Fn)))) � Fn, n = 1, 2, 3, 4 (1)

where Conv1×1(·) denotes a convolution block consisting of 1× 1 Conv, BN and
PReLU. Avgpool(·) and MLP (·) denote global average pooling and multilayer
perceptron respectively, and S(·) denotes a sigmoid function. � is pixel-wise
multiplication, and Fn

o is the output of feature transformation block.
Through the multi-scale feature transformation module, we can suppress and

balance the comprehensive information to guide the enhancement network to
achieve finer predictions. The extensive experiments in Sect. 3.3 also demonstrate
the effectiveness of our proposed FTB.

2.4 Context Aggregation Enhancement Network and Loss Function

For the enhancement network, we employ an encoder-aggregation-decoder net-
work. On the one hand, in the encoder part, the multi-scale semantic features
are attentively incorporated into the corresponding level through FTB. On the
other hand, with the goal of extracting global contextual information from the
combined features, we adopt Context Aggregation Residual Block (CARB) to
further enlarge the respective field following [4]. Finally, the comprehensive and
attentive features are fed into the decoder to generate clearer and more natural
predictions for underwater images.

In order to apply an appropriate loss function, there are two key factors
needed to be considered. First, the widely-used L2 loss usually leads to over-
smoothed results. Thus, we choose to adopt L1 loss function as a pixel-wise
objective function. Second, considering that pixel-wise loss function is not sen-
sitive to image structure characteristics (e.g., luminance, contrast), we simulta-
neously adopt MS-SSIM [27] to guide the network to focus on image structure
information. As a result, the overall loss function can be formulated as

Ltotal = λL1 + (1 − λ)LMS−SSIM , (2)

where λ is a balance parameter. In our experiment, λ was empirically set as 0.2.

3 Experiments

In this section, we first introduce the adopted datasets and implementation
details. Next we comprehensively compare the performance of our approach with
other state-of-the-art methods. We also perform ablation experiments to analyze
the effect of main components in our proposed network. Finally, we evaluate our
method in the application of underwater salient object detection.
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Table 1. Quantitative evaluation on two underwater benchmark datasets. The best
two results are shown in red and blue fonts, respectively.

Dataset Metric EUIVF TSA UDCP UWCNN Water-Net F-GAN Ours

UIEB PSNR ↑ 18.300 14.119 12.320 14.891 19.492 18.300 21.611

SSIM ↑ 0.824 0.631 0.539 0.733 0.850 0.812 0.894

UIQM ↑ 2.757 1.996 1.772 2.428 2.307 2.740 2.893

NIQE ↓ 4.049 4.166 4.304 4.488 4.485 4.393 3.923

TM ↑ 1.120 0.747 0.640 0.439 0.912 0.789 1.184

UCCS UIQM↑ 3.073 2.512 2.098 2.536 3.150 2.982 2.983

NIQE↓ 4.542 4.842 5.131 4.411 5.696 4.543 3.574

TM ↑ 0.598 0.432 0.086 0.173 0.527 0.326 0.613

3.1 Experimental Setup

Datasets. To evaluate the performance and generalization ability of our model,
we conduct experiments on two underwater benchmark datasets: Underwater
Image Enhancement Benchmark (UIEB) [16] and Underwater Color Cast Set
(UCCS) [19]. The UIEB dataset includes 890 raw underwater images with cor-
responding high-quality reference images. The UCCS dataset contains 300 real
underwater no-reference images in blue, green and blue-green tones. In order
to achieve a fair comparison, we randomly selected 712 paired images from 890
paired images on UIEB as the training set. The remaining 178 paired images on
UIBE and the UCCS dataset are used for testing.

Implementation Details. We implemented our network using Pytorch tool-
box on a PC with an NVIDIA GTX 1070 GPU. The training images were all
uniformly resized to 640×480 and then randomly cropped into patches with the
size of 256×256. During the training phase, we used the ADAM optimizer and
set the parameter β1 and β2 as 0.9 and 0.999, respectively. The initial learning
rate was set as 5e−4 and decreased by 20% every 10k iterations.

Evaluation Metrics. To comprehensively evaluate the performance of var-
ious underwater image enhancement methods, we adopt five evaluation met-
rics, including two widely-used evaluation metrics for data with reference, i.e.,
Peak Signal to Noise Ratio (PSNR) and Structure Similarity Index Measure
(SSIM); and three reference-free metrics, i.e., Naturalness Image Quality Evalu-
ator (NIQE) [22], Underwater Image Quality Measure (UIQM) [23], and Twice-
Mixing (TM) [8].



Semantic-Driven Context Aggregation Network 35

Input EUIVF TSA UWCNN

Water-Net F-GAN Ours Reference

Input EUIVF TSA UWCNN

Water-Net F-GAN Ours Reference

Fig. 3. Visual results of our method and top-ranking methods on UIBE dataset.

3.2 Comparison with the State-of-the-Arts

To fully evaluate the performance of our method, we compare our method with
other six state-of-the-art underwater image enhancement methods. There are
three conventional methods, i.e., EUIVF [1], TSA [7] and UDCP [5], and three
learning-based methods, i.e., UWCNN [15], Water-Net [16] and F-GAN [14].

Quantitative Evaluation. Table 1 shows the validation results of all the com-
peting methods on the UIEB dataset and the UCCS dataset. It is noted that
our method outperforms other advanced methods in terms of all the evalua-
tion metrics across the two datasets except the Top-3 UIQM on UCCS dataset.
Specially, our method respectively boosts the PSNR and SSIM by 10.87% and
5.17%, compared to the suboptimal method Water-Net on the UIEB dataset.
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Fig. 4. Visual results of our method and top-ranking methods on UCCS dataset.

Qualitative Evaluation. From a more intuitive view, we visualize some repre-
sentative results generated from our method and other top-ranking approaches
across UIBE and UCCS datasets in Figs. 3 and 4, respectively. It can be eas-
ily seen from Fig. 3 that our method can simultaneously restore clearer details
of the background and more natural color. Moreover, we can observe from the
visual results in Fig. 4 that our method achieves more visually pleasing results
on UCCS dataset. For instance, other methods have trouble in restoring natural
images (e.g., the reddish color of row 1, column 4, and the yellowish color of
row 2, column 1 in Fig. 4), while our results are closer to the real scenarios with
lighter color casts.

3.3 Ablation Study

In this section, we conduct ablation studies to validate the effectiveness of the
key components proposed by our method.

Effectiveness of Semantic Features and FTB. First, we apply the encoder-
aggregation-decoder network as our baseline (denoted as “M1” in Table 2). For
the sake of investigating the effectiveness of introducing semantic features into
the underwater image enhancement task, we directly concatenate the seman-
tic features from the pre-trained VGG16 network and the enhancement features
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Table 2. Ablation study of our method on UIEB dataset. “w/” means with the cor-
responding experimental setting. The best result is shown in bold font.

Method Baseline w/F1, F2 w/F3, F4 w/FTB PSNR/SSIM

M1 � 20.519/0.883

M2 � � � 20.846/0.887

M3 � � � 21.014/0.884

M4 � � � 21.056/0.887

Ours � � � � 21.611/0.894

Input M1 M2

M3 M4 Ours

Fig. 5. Visual results of ablation study on UIEB dataset.

(denoted as “M2”). The comparison results of “M1” and “M2” in Table 2 demon-
strate that directly introducing semantic features can bring 0.33dB performance
gains towards PSNR on the UIEB dataset. Moreover, we further employ our pro-
posed FTB to attentively extract and transmit the semantic features (denoted
as “Ours”). We can see from the comparison results of “M2” and “Ours” that
after applying the proposed FTB, our network obtains consistent performance
gains (e.g., 0.76dB towards PSNR). In addition, the corresponding visual results
shown in Fig. 5 also demonstrate that our FTB is beneficial for color correction
and detail restoration.

Effectiveness of Multi-scale Features. In order to further study the effective-
ness of multi-scale semantic features, we carefully divide the multi-scale features
into two groups and specified a series of experimental settings, i.e., the shallower
group (denoted as “M3”) with the 1st scale and the 2nd scale features, and the
deeper group (denoted as “M4”) with the 3th scale and the 4th scale features.
The comparison results of “M3”, “M4” and “Ours” in Table 2 indicate that the
incorporation of deeper-scale features and shallower-scale features both obtain
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Table 3. Application of the top-ranking image enhancement methods and ours to the
saliency detection task evaluated on USOD dataset. The best result is shown in bold
font.

Method F-measure↑ S-measure↑ MAE↓
Original F3Net 0.837 0.822 0.085

+ EUIVF 0.850 0.833 0.081

+ Water-Net 0.852 0.833 0.080

+ F-GAN 0.851 0.830 0.082

+ Ours 0.860 0.843 0.078

Input EUIVF Water-Net

F-GAN Ours Groud truth

Fig. 6. Visualization of the application of the top-ranking image enhancement meth-
ods and ours to the saliency detection task evaluated on the USOD dataset. The
corresponding enhanced images are shown in the upper right corner.

much performance gains. And when the multi-scale features are fully incorpo-
rated, we achieve the best results. Besides, the visual comparisons shown in Fig. 5
also present the consistent performance.

3.4 Application on Salient Object Detection

To further verify the effectiveness and applicability of our proposed network, we
also apply our method to the underwater salient object detection task. Specifi-
cally, we first adopt the pre-trained salient object detection network F3Net [26]
and evaluate it on an underwater salient object detection dataset (USOD) [13]
(denoted as “Original input” in Table 3). We employ several top-ranking image
enhancement networks and our proposed network to conduct image enhancement
on the inputs and made saliency predictions through the F3Net. The quantitative
results of the predicted saliency maps are tabulated in Table 3. It is obvious that
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our method shows performance gains against other image enhancement methods.
Meanwhile, we can note that after applying our method, the images achieve finer
details and more natural colors, and further facilitate F3Net to predict saliency
maps with superior consistence and improved robustness in Fig. 6.

4 Conclusion

In this paper, we presented a semantic-driven context aggregation network to
cooperatively guide detail restoration and color correcting. Multi-scale seman-
tic features extracted from a pre-trained VGG16 network are fused into the
encoder-aggregation-decoder architecture to explore the ability of semantic fea-
tures. We further proposed a multi-scale feature transformation module which
attentively concentrates on the key priors and suppresses the unhelpful ones.
Moreover, experimental results conducted on two real datasets demonstrate that
our method outperforms the state-of-the-art methods. Additionally, our method
can also help salient object detection to achieve better performance.
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