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Abstract. Existing deep learning-based video deraining techniques
have achieved remarkable processes. However, there exist some funda-
mental issues including plentiful engineering experiences for architec-
ture design and slow hardware-insensitive inference speed. To settle
these issues, we develop a highly efficient spatial-temporal aggregated
video deraining architecture, derived from the architecture search proce-
dure under a newly-defined flexible search space and latency-constrained
search strategy. To be specific, we establish an inter-frame aggregation
module to fully integrate temporal correlation according to a set divi-
sion perspective. Subsequently, we construct an intra-frame enhance-
ment module to eliminate the residual rain streaks by introducing rain
kernels that characterize the rain locations. A flexible search space
for defining architectures of these two modules is built to avert the
demand for expensive engineering skills. Further, we design a latency-
constrained differentiable search strategy to automatically discover a
hardware-sensitive high-efficient video deraining architecture. Extensive
experiments demonstrate that our method can obtain best performance
against other state-of-the-art methods.

Keywords: Latency-constrained neural architecture search ·
Spatial-temporal aggregation · Video deraining

1 Introduction

The degradation of rain streaks is a common imaging factor of severe weather,
which leads to the visual-unpleasant quality for human visual system and brings
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Fig. 1. Numerical performance, temporal consistency and inference speed comparisons
on the RainSynComplex25 [12]. We plotted our schemes (i.e., w/ and w/o latency ver-
sions) with other video deraining approaches including JORDER [28], SE [25], DIP [6],
MSCSC [9], ToFlow [26], SDUNet [27], FastDerain [7], SpacCNN [1] and J4RNet [12].
We can illustrate the superiority in the aspects of visual quality, temporal preservation
and inference speed.

occlusions with blurred objects for a series of high-level vision tasks. Therefore,
the extreme urgency of removing rain streaks accurately has been recognized
in recent years [13,18,19]. To recover the clear background from rain corrupted
observations, numerous methods have been proposed in past decades. We can
roughly divide these methods into single image deraining and video deraining.

Recently, single image deraining methods have attracted widespread atten-
tions. Extracting the video as successive frames, these methods can be applied
for the video deraining task. The basic formulation of rainy images can be con-
sidered as the superimposition of rain streaks and clear background. Based on
this principle, conventional model-based schemes were proposed to characterize
the rain streaks by exploiting inhere features. For instance, sparse coding meth-
ods [9] utilize the high frequency features to learn the rain streaks. A great pile
of prior-based methods construct prior knowledge measures such as low rank
representation [8], dictionary learning [5], guided filters [33] and Gaussian mix-
ture model [10] to restore the rain-free images. These model-driven methods
achieve comparable deraining performance. However, these schemes have high
computational burdens and are time-consuming. With the emergence of CNN-
based methods, plentiful handcrafted CNN architectures [14,15,17] have been
designed for single image deraining. For example, Yang et al. [28] proposed a
dilated convolution network to capture different properties of rain streaks. Fur-
thermore, attention mechanisms [24] are introduced for image deraining.

In contrast to the single-image deraining schemes, video sequences can pro-
vide more contextual compensation and more effective information to discover
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and eliminate rain streaks from temporal correlated frames. The classic meth-
ods exploited the intrinsic temporal and photometric characteristics of videos to
estimate rain streaks. For instance, the directional property of rain streaks [6],
the correlation between spatial and temporal information in local patches [2], the
shape and size of rain streaks [23] have been investigated widely. The inhere prior
knowledge are formulated by Gaussian mixture models, low-rank regularization,
sparse coding and tensor models to explore the property of rain streaks for rain
detection and removal. Lately, CNN-based schemes have achieved remarkable
performances to address the video deraining task. Specifically, a sparse coding
method with multi-scale convolution [9] is proposed. Recently, a semi-supervised
method [29] is proposed to construct a dynamic generator of rain streaks to
explore insightful characteristics of frames.

Different from aforementioned handcrafted architecture construction
schemes, Neural Architecture Search (NAS) methodology provides an insight-
ful viewpoint to discover the desired architecture automatically. Especially,
differentiable gradient-based schemes [11] utilize the continuous weight relax-
ation to composite a super-network, reducing the search time effectively. Vari-
ous gradient-based schemes are performed for low-level vision tasks. In details,
Zhang et al. [30] proposed a hierarchical search strategy with channel width
for image denosing using a series of primitive operators (e.g., 3×3 convolution).
Liu et al. [16] presented a collaborative search strategy by unrolling architecture
for image enhancement. However, the ignorance of exploring task characteristics
(e.g., degradation formation) creates limitations of the flexibility for address-
ing different scenarios. Actually, current CNN-based video deraining methods
produce clearer backgrounds since the relevant temporal information from con-
secutive frames can help the rain removal implicitly. However, there exist several
fundamental issues in these existing approaches. Firstly, the temporal correlated
information is leveraged as one part of black-box networks. Secondly, the net-
work architectures are based on manual design and relied on heuristic architec-
ture engineering, which needs abundant handcrafted experiences and dedicated
adjustment of hyper-meters (e.g., setting different convolution layers and connec-
tions). Last but not least, most of existing CNN methods for video deraining do
not consider the deployment on hardware, which have huge computation costs.

To mitigate the above issues, we first formulate the video deraining task via
investigating the temporal and spatial characteristics aggregation. In detail, we
analyze the inner relationships between consecutive frames from the perspective
of set division. Based on this principle, we propose an inter-frame aggregation
module to fully integrate temporal correlation explicitly for initial rain streak
estimation, that breaks down the black-box of temporal information utilization.
Furthermore, we construct an intra-frame enhancement module to further elimi-
nate the rain streaks and enhance the details, assisted by one group of learnable
rain kernels. Subsequently, we introduce the latency-constrained architecture
search strategy to discover the entire structure to avoid lots of manual labor for
designing networks. Targeting to establish different principled modules, we intro-
duce diverse operators to construct the specific search space. Constrained by the
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Fig. 2. Overview of main components in the proposed method. We first illustrate the
entire architecture that is comprised by the inter-frame aggregation module and intra-
frame enhancement module in the subfigure (a). We also illustrate the corresponding
search spaces and relaxation formulation. We then demonstrate the concrete details of
these operators and the latency constrained search in subfigure (b) and (c).

latency of hardware devices, we can obtain an effective architecture with fast
inference speed. The superiority of our method can be demonstrated in Fig. 1.
In brief, our contributions can be summarized as three-folds:

– Different from manually designed network-based video deraining schemes,
we propose a latency constrained search strategy and a flexible task-specific
search space to discover an efficient video deraining architecture.

– We fully explore the intrinsic characteristics of video deraining from the tem-
poral aggregation and spatial enhancement perspectives, to establish a search-
based spatial-temporal aggregated macro-structure.

– Comprehensive experiments compared with various state-of-the-art methods
on three benchmarks fully reveal the superiority of our method. A series of
evaluative experiments demonstrate the effectiveness of our scheme.

2 The Proposed Method

2.1 Spatial-Temporal Aggregated Architecture

Inter-Frame Aggregation Module. We first propose an Inter-Frame Aggre-
gation Module (IFAM) to estimate the major rain streaks by investigating the
explicit temporal information from set division perspective. In detail, the current
rainy frame (denoted as yt) can be considered as the union set based on back-
ground set (Φx) and rain set (Φr), i.e., Φyt

= Φxt
∪Φrt and Φxt

∩Φrt = ∅, where
Φ denotes the set of pixel locations. Leveraging aligned consecutive frames, we
can decouple the rain streaks into two parts, Φrt = (

∑
i,i �=t Φrt ∩ Φri) ∪ Φ̂rt

1.∑
i,i �=t Φrt ∩ Φri denotes the rain streaks that contain in the adjacent frames

and Φ̂rt denotes the unique rain streaks generated in current t-th frame or the

1 We leverage the latest optical flow method RAFT [22] to align the frames.
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Fig. 3. The average running time calculated on RainSynComplex25. “L” denotes the
latency constraint.

residual moved rain streaks. In other words, the rain streaks rt can be captured
by the shared regions in other frames and residue streaks in current frames.

The mentioned intrinsic principle motivates us to design one module for
capturing the main rain streaks by utilizing the concatenation of current frames
and the coarse rain streaks contained in yt −yt±i. In this paper, we only utilize
three-frames temporal information as the inputs. As shown in the subfigure (a)
of Fig. 2, we extract the rain streaks based on two parallel layers with NT blocks
and obtain the final streaks by the 3 × 3 convolution.

Intra-Frame Enhancement Module. Subsequently, the residue rain streaks
Φ̂ cannot be removed exactly based on the above formulation. Thus, we propose
an Intra-Frame Enhancement Module (IFEM) to perform single-frame deraining
and estimate the partial rain streaks. To enhance the spatial structure, we first
introduce the successive architecture with NS blocks. Then, aiming to focus on
the location of rain streaks, we introduce the convolutional dictionary learning
mechanism to learn a series of rain kernels (denoted as C). Based on this mecha-
nism, we can obtain the accurate locations and size of residual rain streaks with
obvious rain region, i.e., r̂t = C ⊗ rt. Then we concatenate r̂t and estimated
frame as the inputs. The whole module aims to learn the residue streaks.

2.2 Architecture Search

Flexible Search Space. Establishing a task-specific search space is the vital
component to perform architecture search. In contrast to adopting the primi-
tive operators (e.g., separable conv 3× 3) directly, which maybe not suitable for
video deraining tasks. Therefore we explore more effective operations to com-
posite our search space. Thus, we list the ten operators that are included in
the search space in following: 3 × 3 Deformable Convolution (i.e., 3-DeC) [4],
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3×3/5×5 Dilated Convolution with dilation rate of 2 (3-DC, 5-DC), 3×3/5×5
Residual Blocks (3-RB, 5-RB), 3×3/5×5 Dense Blocks (3-DB, 5-DB), Channel
Attention (CA) and Spatial Attention (SA). The structure details of some oper-
ators are shown in subfigure (b) of Fig. 2. Considering the different peculiarity of
blocks, we divide these operators into two sub search spaces for each module. In
detail, only deformable convolution, residual blocks and attention mechanisms
are constituted as the search space of IFAM, which have the better ability to
extract or align the features. For instance, deforamble convolution blocks are
used widely to represent the shared information across aligned frames. On the
other hand, the dilated convolution, residual blocks, dense blocks and atten-
tions are considered in the search of IFEM. These operators are widely used for
deraining tasks. Furthermore, we remove the pooling and skip connections from
the search space. In order to keep the fair comparison, each operation has three
layers of convolutions. Constructing this flexible search space, the performance
of searched architecture can be guaranteed.

Latency-Constrained Search. In order to speed up of the inference time on
diverse hardware scenarios, we introduce the hardware latency as a regularization
term, aiming to discover a architecture with low latency. The search process
based on the differentiable search framework [11] can be formulated as:

min
α

Lval(α;ω�) + λ(LAT (α))

s.t. ω∗ = arg min
ω

Ltrain(ω;α), (1)

where α and ω denote the architecture and network weights. The formulation
of super-net (i.e., continuous relaxation by α) is shown in the bottom row of
subfigure (a) in Fig. 2. More concretely, the LAT term can be obtained by the
weighted linear sum of operations:

LAT (α) =
∑

k

∑

i

αk
iLAT (opi), opi ∈ O, (2)

where we denote that αk
i is the i-th operation weight of k-th cell and O is the

search space. In this manuscript, we only calculate the inference time on GPU.

3 Experimental Results

3.1 Experiment Preparation

Datasets. We utilize three mainstream benchmarks to evaluate our method
with various state-of-the-arts. RainSynLight25, RainSynComplex25 are two syn-
thetic datasets, proposed in [12], used to simulate the light rain and heavy rain
scenarios of real world. NTURain datasets [1] includes the synthetic and real
rainy videos. Additionally, several real-world rainy videos are collected from
Youtube and mixkit2 websites for the evaluation.
2 https://www.youtube.com, https://mixkit.co.

https://www.youtube.com
https://mixkit.co
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Rain Frame SPANet FastDerain MSCSC J4RNet Ours

Fig. 4. Visual Comparison among various remarkable approaches on the NTU dataset.

Baselines and Metrics. We compare our method with competitive deraining
methods: three single frame deraining methods (JORDER [28], SE [25] and
SPANet [24]) and eight multi-frame methods (DIP [6], MSCSC [9], ToFlow [26],
SDUNet [27], FastDerain [7], SpacCNN [1] and J4RNet [12]). Two widely used
numerical metrics, Peak Signal-to-Noise Ratio (PSNR) and Structure Similarity
Index (SSIM) are calculated as the criterion terms. Several perceptual metrics
are also introduced: Visual Information Fidelity (VIF) [21], Feature SIMilarity
(FSIM) [31], Natural Image Quality Evaluator (NIQE) [20], Learned Perceptual
Image Patch Similarity (LPIPS) [32] and temporal LPIPS (tLPIPS) [3].

Search Configurations. We define the basic hyper-parameters empirically in
our search process. The supernet have only one IFAM and one IFEM. Each of
modules has four candidate layers (i.e., NT = NS = 4). We randomly selecte
ten video sequences from RainSynComplex25 to composite the dataset in search
phase. We divide it equally to be used for updating the network weights and
architecture weights. The loss term is composited by two parts, which is leveraged
for the training and validation:

L = LL1(xt,xgt) + LSSIM (xt,xgt) + γLL1(xa,xgt), (3)

where the first part composited by previous two term is to restraint the final
output xt. The last term is utilized to restraint the output xa of IFAM. We set
the γ as 0.1 in our search and training phase. We utilize SGD optimizer with
the cosine annealing strategy to perform the search with 150 epochs, where the
initial learning rate is 0.0005 and λ = 0.05. We only reserve the layers with the
maximum values in α. Derived from the search phase, we can obtain the final
architecture. IFAM consists of 5 × 5 residual block, deformable block, channel
attention and 3 × 3 residual block. IFEM consists of 3 × 3 dilated convolution,
3 × 3 residual block, 3 × 3 residual block and channel attention.

Training Configurations. We propose a stage-wise training strategy to train
our searched architecture, rather than adopting end-to-end training straightfor-
wardly. At the first stage, we first train the IFAM with 50 epochs, using L1
and SSIM losses to enforce for utilizing reasonable temporal information and
generating rain streaks exactly. Then at the second stage, we train the entire
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Rain Frame JORDER FastDerain MSCSC SDUNet Ours

Fig. 5. Visual Comparison among deraining schemes on the synthetic datasets.

architecture (including IFEM) end to end with 200 epochs. We leverage the sim-
ilar training losses of search phase to constrain the whole training process. Data
augmentation, such as the random flipping and shape changing are performed
in our training phase. We use Adam as the optimizer and set β1, β2 as 0.9, 0.999
respectively. Furthermore, we set the initial learning rate as 0.0005 and perform
the cosine annealing strategy to decay the learning rates. Our method is based
on the PyTorch framework and runs on a NVIDIA GTX1070 GPU.

3.2 Running Time Evaluation

Figure 3 reports the average running time of various multi-frame deraining meth-
ods, which were calculated on RainSynComplex25. In detail, we plot the con-
crete inference speed in Fig. 3 and make a bubble diagram (Fig. 1) to show the
performance and inference time simultaneously. Compared with deep learning
based methods, our approach significantly reduce the inference time. At the same
time, our method also can guarantee the best performance on the challenging
RainSynLight25. On the other hand, we can obtain faster inference time than
existing fastest multi-frame video deraining methods. Both two figures demon-
strated the superiority of our method, which obtain the comparable inference
time and remarkable performance improvement.

3.3 Quantitative Comparison

We compare our method with a series of remarkable deraining schemes on three
mainstream datasets in Table 1. We can observe the remarkable improvement to
previous schemes. It is worth noting that we only trained our models on Rain-
SynLight25 and RainSynComplex25 and used the model for light video rain-
ing to solve the NTURain dataset. Compared with S2VD, which is the latest
method training on NTURain, our method gain 0.69 dB in PSNR and 0.0057 in
SSIM on this dataset. Compared on RainSynLight25 and RainSynComplex25,
we can observe the consistent improvement than either single-frame deraining
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schemes, low-rank based methods or deep learning based multi-frame deraining
approaches. Furthermore, compared with multi-frame video deraining methods
(e.g., SDUNet and J4RNet), which utilizes the temporal information implicitly,
we can gain 4.47 dB and 5.46 dB improvements. That also verifies the effective-
ness of our proposed intra-frame aggregation.

Table 1. Quantitative comparison with a series of single image deraining and video
deraining methods on RainSynLight25, RainSynComplex25 and NTURain bench-
marks.

Methods RainSynLight25 RainSynComplex25 NTURain

PSNR SSIM PSNR SSIM PSNR SSIM

JORDER 31.0298 0.9142 19.9904 0.6085 33.3922 0.9410

SPANet 27.3924 0.8816 18.1857 0.5819 31.6594 0.9388

DIP 28.0723 0.8526 17.8974 0.5316 30.7583 0.8970

SE 25.4435 0.7550 18.8258 0.5897 25.4151 0.7548

MSCSC 24.4424 0.7310 16.5653 0.4810 26.1984 0.7630

ToFlow 32.3821 0.9208 25.3418 0.7695 35.1296 0.9636

FastDerain 29.2038 0.8745 24.7442 0.7434 29.5142 0.9303

SDUNet 29.8117 0.8803 25.7357 0.7594 26.5602 0.8604

SpacCNN 31.6704 0.8997 21.2634 0.5863 33.0235 0.9465

J4RNet 30.5339 0.9071 23.6075 0.7506 31.0203 0.9373

Ours 35.2668 0.9540 28.6975 0.8660 36.7337 0.9698

In Table 2, we also report the perceptual quality evaluation on the Rain-
SynComplex25 benchmark, using various perceptual metrics. VIF and FSIM are
two essential metrics to measure the perceptual quality for human visual system
by the low-level features and information fidelity. We can obtain the best results
on the both reference-based metrics. Our method has the smallest value under
the NIQE metric, which measures the distance to natural images. Moreover,
LPIPS and tLPIPS are constructed by the feature distances of AlexNet. tLPIPS

Table 2. Perceptual quality comparison and temporal consistency evaluation on the
RainSynComplex25 benchmark.

Methods VIF FSIM NIQE LPIPS tLPIPS

JORDER 0.242 0.738 5.270 0.407 0.199

SpacCNN 0.198 0.759 4.933 0.386 0.153

FastDeRain 0.335 0.861 8.708 0.454 0.155

J4RNet 0.275 0.824 3.804 0.274 0.137

Ours 0.485 0.915 3.181 0.188 0.066
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measures the inter-frame temporal loss. Similarly, the results verify the excellent
performance of our scheme for human visual system and temporal consistency.

Rain Frame SE FastDerain MSCSC J4RNet Ours

Fig. 6. Visual comparison on two real-world rainy videos.

Table 3. Ablation study on the RainSynComplex25. The underlined results are gen-
erated by the final configuration of this manuscript.

λ w/IFAM w/IFEM 3 frames 5 frames 7 frames PSNR Time (s)

0.05 ✓ ✓ ✓ ✗ ✗ 28.70 0.18

0.05 ✓ ✗ ✓ ✗ ✗ 27.46 0.12

0 ✓ ✓ ✓ ✗ ✗ 28.57 0.84

0.5 ✓ ✓ ✓ ✗ ✗ 25.17 0.15

0.05 ✓ ✓ ✗ ✓ ✗ 29.04 0.34

0.05 ✓ ✓ ✗ ✗ ✓ 26.23 0.76

3.4 Qualitative Comparison

We also carry out the qualitative experiment to evaluate the visual quality from
the subjective perspective. As for the synthesized videos, we conduct the visual
comparisons in Fig. 4 and Fig. 5. As shown in Fig. 4, one can see that our method
preserves more texture details (e.g., the streetlight and fences). Obviously, other
methods may consider the streetlight as rain streaks and eliminate it wrongly.
MSCSC introduces much blurred objects in the frame. Compared on the heavy
rainy video, shown in Fig. 5, our method removes the most of rain streaks and
keeps regionally consistent with rich details. We also collected two real world
rainy videos to evaluate the generation ability for challenging scenarios, which is
shown in Fig. 6. The result in the top row depicts the effectiveness of our method
to remove the long rain streaks. While other methods still remain the residue
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rain to some extent or are failed to remove this kind of rain streaks. As shown in
the last row, this frame also contains different types of rain streaks. Our method
can preserve the structure well and remove all types of rain streaks.

3.5 Ablation Study

The results of a series of ablation study are reported in Table 3. First, we verify
the role of proposed modules respectively. We can conclude that IFAM plays the
essential role to estimate the rain streaks and IFEM can remove the residual
rain streaks effectively. Moreover, with the increase of λ, the latency can be
reduced. However, we need to adjust λ carefully to improve performance and
reduce latency. Three-frame video deraining schemes obtain the best balance
between numerical results and inference time, which is shown in the first row.
Large frames cannot obtain the best numerical results. The possible reason is
that the fast movement of rain streaks cannot be captured entirely and the
temporal information cannot be utilized sufficiently in seven frames.

4 Conclusions

In this paper, we settled the video deraining by investigating the inhere char-
acteristics from temporal correlation and spatial structure perspectives. A novel
temporal and spatial aggregation architecture was proposed and constructed by
the automatic architecture search. Leveraging an efficient and compact search
space and coupling with the hardware constraint, the architecture can guarantee
outstanding performance for video deraining and fast inference time. Consistent
improvements of numerical and visual performances demonstrate the superiority
of our method against various state-of-the-art deraining schemes.
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