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Abstract. Capturing images in a low-light environment are usu-
ally bothered with problems such as serious noise, color degradation,
and images underexposure. Most of the low-light image enhancement
approaches cannot solve the problem of the loss of the details of the result
caused by noise. Inspired by the image inpainting task, we propose a
novel Noise-map Guided Inpainting Network (NGI-Net) that introduces
inpainting modules to restore missing information. Specifically, the algo-
rithm is divided into two stages. Stage I decomposes input images into
a reflection map, an illumination map, and a noise map inspired by the
Retinex theory. These maps are passed through Stage II to fine-tune
the color and details of the images based on a designed feature enhance
group and a selective kernel enhance module. Experiments on real-world
and synthesized datasets demonstrate the advantages and robustness of
our method. The source code of our method is public in https://github.
com/JaChouSSS/NGI-Net.

Keywords: Low-light image enhancement · Inpainting · Retinex
decomposition · Selective kernel enhance module

1 Introduction

Capturing images with poor illumination is an issue that people have been trying
to solve for a long time, which also widely exists in other tasks such as object
detection and video surveillance. Restoring visual information from such images

Z. Jiang—Student.
This work was supported in part by the National Key R&D Program of China under
Grant 2017YFB0202303, in part by the National Natural Science Foundation of China
under Grand 61602213 and 61772013.

c© Springer Nature Switzerland AG 2021
H. Ma et al. (Eds.): PRCV 2021, LNCS 13021, pp. 201–213, 2021.
https://doi.org/10.1007/978-3-030-88010-1_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-88010-1_17&domain=pdf
https://github.com/JaChouSSS/NGI-Net
https://github.com/JaChouSSS/NGI-Net
https://doi.org/10.1007/978-3-030-88010-1_17


202 Z. Jiang et al.

is hard due to insufficient detail information, numerous noise, color degradation,
low visibility, and low contrast.

For years, researchers have tried to handle the low-light image enhance-
ment task. Traditionally, the histogram-equalization-based methods [1] enhance
the images by expanding the dynamic range, but they ignore the distribution
of image brightness. Thus, not every region in the images can be effectively
improved. Retinex-based approaches [8,9,20] decompose images into reflec-
tion maps and illumination maps, but they tend to amplify noise and cause
blurry edges. Recently, there are Deep Learning algorithms trained on paired
data [15,26,29], unpaired data [7], and those in the zero-reference style [5].

However, the output images of these methods still have problems such as lack
of detail, color deviation, and residual noise.

In this paper, we propose a two-stage Noise Map Guided Inpainting Network
to enhance low-light images, and at the same time restore image details. To
recover detailed information in the extremely dark images, we need to know the
distribution of noise as guidance. Specifically, we use a decomposition network
as Stage I to decouple the input image, from which we obtain a reflection map
with preliminary restoration, as well as a noise map that contains the original
noise information. In Stage II, we designed a Feature Enhancement Module
(FEM) that extracts valid image features to recover the color and exposure of
the reflection map. Then we use the inpainting module to combined the reflection
map with the mask generated by the noise map to repair damaged image features.

The main contributions of this paper can be summarized as follows:

1) As far as we know, it is the first time that inpainting tasks are introduced
for low-light image enhancement. We also design the inpainting module to
recover missing information.

2) We decouple the low-light image enhancement problem into two subtasks
and designed a two-stage low-light image enhancement network. Stage I is
responsible for decomposing the images, while Stage II further enhances and
restores the outputs from Stage I.

3) We design the Feature Enhancement Module (FEM) and the selective kernel
enhance module for feature extraction and improvement.

2 Related Works

2.1 Low-Light Image Enhancement

Most of the early low-light image enhancement algorithms use histogram equal-
ization [1] to adjust the global brightness and contrast of the images. Retinex-
based algorithms decompose the images into reflection maps and illumination
maps. Single-Scale Retinex (SSR) [9] methods adjust the outputs by changing
single-scale Gaussian kernels, but they are prone to halo in highlight areas. To
mitigate this issue, Multi-Scale Retinex (MSR) [10] methods adopt multi-scale
Gaussian kernels. Multiscale Retinex With Color Restoration (MSRSR) [8] tack-
les color distortions by adding a non-linear restoration factor to MSR to adjust
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the numerical ratio of image channels. However, these methods have great lim-
itations, and it is difficult to recover complex scenes and images with strong
noise.

With the rapid development of deep learning in recent years, many data-
driven low-light image enhancement approaches have been raised. Lore et al. [15]
for the first time applied the deep learning method to image enhancement with
a deep encoder-decoder structure. Zhang et al. [29] adopted deep neural net-
works based on Retinex theory to reconstruct the reflection and illumination
maps respectively. Due to the scarce of paired image datasets, Jiang et al. [7]
proposed an unsupervised network that can be trained on unpaired data. Yang
et al. [26] proposed a semi-supervised learning framework and combined it with
adversarial learning to improve the perceptual quality of images in poor illu-
mination. Although these methods perform decently in some cases, it is still
challenging to solve the problem of information loss and color deviation during
recovering extremely dark images.

2.2 Image Inpainting

Traditional image inpainting techniques can be categorified into diffusion-based
and patch-based methods. Diffusion-based algorithms [2] propagate inward the
image content around the boundary to fill in the missing region. Patch-wise [3]
approaches search for the most suitable patch among undamaged regions and
fill in the missing one. But both of them cannot generate content with semantic
information.

Among DL-based approaches, Pathak et al. [19] proposed an encoder-decoder
framework and introduced Generative Adversarial Networks to assist the train-
ing process. Liu et al. [14] for the first time presented a Partial Convolution
and mask update mechanism for restoring irregular holes, which improved color
differences and artifacts. Yu et al. [27] proposed a Gated Convolution method
based on [14]. It makes the mask update learnable, strengthens the expressive
ability of the network, speeds up the training process, and improves model flex-
ibility. Nazeri et al. [18] integrated the edge generator and the image inpainting
network and introduced an image completion algorithm by using edge details as
prior knowledge. Inspired by previous works, we design the Inpainting Module
for detailed repairs.

3 Method

As illustrated in Fig. 1, our network is divided into two stages: the Decomposition
Stage and the Restoration Stage. The Decomposition Stage contains a reflection
branch, an illumination branch, and a noise generation branch. Among them,
both the reflection branch and the noise generation branch adopt the classic
encoding-decoding structure, with the noise generation branch(NB) composed
of residual blocks. Through this stage, an input image will be decomposed into
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Fig. 1. The pipeline of our NGI-Net model, which contains a Decomposition-Net and a
Restoration-Net. The Decomposition-Net contains a reflection branch, an illumination
branch, and a noise map generation branch. The Restoration-Net consists of feature
enhance groups (FEG) and an inpainting module. The reflection map and noise map
from Stage I will be fused with the original image for better restoration.

a reflection map, an illumination map, and a noise map, while masks will be
obtained.

The Restoration Stage is made of feature enhance groups and an inpainting
module. The FEG is used to make the most of feature information, which can
be broken down into sub-modules, named selective kernel enhance module. The
inpainting module aims to repair image features with the guidance of first-stage
outputs. We will further introduce our network in this section.

3.1 Stage I: Decomposition

In classic Retinex models, an image M is decomposed into the reflection map
R and the illumination map I. But they fail in low-light image enhancement
because of large amounts of noise. Thus, we adopt the robust Retinex [12] mech-
anism in the Decomposition Stage, which decomposes images M into reflection
map R, illumination map I, and noise map N :

M = R · I + N (1)

To make more effective use of feature information, the reflection branch (RB)
and illumination branch (IB) share the same encoder, which contains 3 convo-
lution layers. A max-pooling layer is added before each convolution to reduce
parameters. In the RB, a bilateral upsampling layer with factor 2 is added before
each decoder. Skip connections are adopted inside the RB, as well as between
the RB and IB with Sigmoid layer. The NB contains 2 convolution layers and 3
Res-blocks, with LeakyReLU as the activation function.
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We use the VGG [21] based perceptual loss [11] for calculating Lvgg to con-
strain the reconstruction error Lrec, where Ml and Mh represent the input image
and the ground-truth image. They can be decomposed into the reflection map
Rl, Rh, the illumination map Il, Ih, and the noise map Nl, Nh respectively.
‖·‖1 is the L1 loss. Further, the illumination map should be piece-wise smooth,
thus we adopt Lsmooth to minimize the error, where �x and �y represent first-
order derivative operators in the horizontal and vertical directions, and ε is a
non-negative minimal constant. Additionally, the SSIM loss Lssim measures the
structural similarity between two reflection maps. Since Nh does not exist by
default, we use a simple noise loss Lnoise. Finally, the loss function we use in
Stage I is denoted as LI .

LI = Lrec + 0.02Lsmooth + Lssim + 20Lnoise, (2)

where
⎧
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To obtain the mask corresponding to the noise map, we first convert the map
into grayscale, and then use the adaptive threshold [17] for binarization.

Fig. 2. The structure of the selective kernel enhances modules made of CNN and basic
SK modules. SKEM conducts convolution in 3 branches before passing them into SK
modules for fusion.

3.2 Stage II: Restoration

Output images from Stage I are bothered by color distortion and detail defi-
ciency, which is analyzed in Sect. 4.3. To handle such issues, we designed the
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Restoration Stage that consists of feature enhance groups and an inpainting
module and inputs the original input image with a corresponding reflection map.
A FEG consists of several sub-modules, named selective kernel enhance module.

Selective Kernel Enhance Module (SKEM). Inspired by previous works
on SK [13], we propose the selective kernel enhance modules that function as
the basic module to make up the FEG.

While human visual cortex neurons can change their receptive field according
to different stimulations [13], CNN simulates this adaptive process by selecting
and fusing multi-scale features. Such property is beneficial for the network to
expand receptive fields, while in the meantime strengthening feature expression
abilities.

As shown in Fig. 2, the input features first go through 1 convolution layer for
preliminary extraction, and then respectively go through 3 convolution branches
E1, E2, and E3 to obtain features of different scales, where E1 is composed
of a convolution layer and an activation function, E2 adds a max-pooling layer
before the convolution layer, and E3 adds 2 max-pooling layers to get broader
receptive fields. The dimension of output features from SK modules will not be
the same. Therefore, we perform channel dimensionality reduction and feature
up-sampling through transposed convolution and use the SKEM to fuse them
sequentially.

Fig. 3. The structure of our Inpainting Module in the encoder-decoder fashion. We
feed the binarized mask and feature maps as input. Gated convolution blocks between
the encoder and decoder are connected with skip connections. Nearest Neighbor Inter-
polation up-sampling layers are placed in the decoder.

Feature Enhance Group (FEG). The FEG is designed as a combination of
SKEM. For two reasons, we place FEGs on both the left and right sides of the IM:
i) to extract input features from Stage I in support of IM; ii) to further enhance
the output of IM. Specifically, the FEG is made of 4 SKEMs, where the first two
SKEMs output will be passed to the last one in terms of residual learning. It
helps stabilize the training process by merging low-level and high-level semantic
information.
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Inpainting Module (IM). Traditional convolution takes each pixel as valid,
which causes its failure in updating masks with empty regions. Partial convolu-
tion takes a step forward by treating input regions as “valid” or “invalid”, but
only updates the mask heuristically, which limits its flexibility and performance.
Gated convolution, however, can learn a dynamic feature selection mechanism
for each position of each channel in the feature map. We adopt Gated convolution
to update the mask, which can be described as:

Gatingy,x = ΣΣWg · I

Featurey,x = ΣΣWf · I

Oy,x = φ(Featurey,x) � σ(Gatingy,x)

(4)

where Wg and Wf represent two different kernels for updating masks and
computing input features respectively. σ is the sigmoid activation function, and
φ is the ELU activation function.

The structure of the inpainting module is illustrated in Fig. 3, which is con-
structed in a encoder-decoder fashion. The encoder is made of 4 Gated convo-
lution blocks. A Gated convolution with kernel-size 3 and stride 2 is adopted
in replacement of max-pooling layers, in order to make the most of information
from the mask. The decoder is constructed with another 3 different Gated con-
volution blocks with kernel-size 3 and stride 1. Before each decoder, we use the
up-sampling by nearest-neighbor interpolation.

Unlike ordinary masks, each point in the binarized mask is equivalent to a
small hole area surrounded with effective boundary information, since the noise
map is composed of discrete noise points and extremely small noise blocks. So
we add skip connections between encoders and the decoders to pass more infor-
mation for repairing these holes. The overall loss we use in Stage II is denoted
as:

LII = ‖F(Ml, Rl, S) − Mh‖1 + Lvgg(F(Ml, Rl, S),Mh) (5)

where F denotes the function of the Stage II network, S represent the noise
mask.

We use the same L1 loss as in Stage I to accelerate convergence and enhance
model robustness during training. We further adopt the VGG loss that strength-
ens the model’s ability on feature perception and detail restoration.

4 Experiment

We use the two datasets to train and test our network. The Low-Light paired
dataset (LOL [25]) contains 500 pairs of 400 × 600 low/high images from real
scenes, of which 485 pairs are used for training and the remaining 15 pairs are
used for validation. The synthesized SYN [25] dataset includes 1,000 pairs of
384 × 384 images, of which 950 pairs are used for training and the remaining 50
pairs are used for validation. We used data augmentation during training on the
Stage II network.
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Fig. 4. Qualitative comparison on the output images from the LOL dataset.

4.1 Implementation Details

The training images are randomly cropped and rotated. The batch size is set
to 10, the patch-size is set to 96 × 96. Stages I and II train 300 and 70 epochs
respectively. We use the ADAM optimizer, with the learning rate 1e–4 and the
cosine annealing learning rate scheduler [16]. Our training takes about 26 h on a
single RTX2080Ti GPU.

4.2 Results and Analysis

We evaluate the proposed NGI-Net network and make comparisons with three
traditional algorithms: Dong [4], NPE [22], LIME [6], and the state-of-the-art
deep-learning methods: GLAD [23], RetinexNet [24], KinD [29], KinD++ [28]
in terms of PSNR, SSIM. The quantitative results are shown in Table 1, where
ours w/o stage II represents the network with and without stage II and so as
to the following two lines. Our low-light enhancement model achieves the best
performance among the state-of-the-art methods, with the highest PSNR and
SSIM value.

In Fig. 4, we choose a few example images with severe noise and present
the restoring results. Obviously, traditional methods fail to remove the noise
very well, with some dark areas even remaining unimproved. DL-based methods
perform better. RetinexNet has enhanced the extremely dark areas, but with
serious noise. Noise also exists in outputs from GLAD, but the algorithm removes
some color distortion. Although KinD and KinD++ eliminate some noise, they
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Table 1. Experiment results on LOL and SYN dataset.

LOL Dataset SYN Dataset

PSNR SSIM PSNR SSIM

Dong [4] 16.72 0.4781 16.84 0.7711

NPE [22] 16.97 0.4835 16.47 0.7770

LIME [6] 14.22 0.5203 17.36 0.7868

GLAD [23] 19.72 0.6822 18.05 0.8195

RetinexNet [24] 16.57 0.3989 17.11 0.7617

KinD [29] 20.38 0.8240 18.30 0.8390

KinD++ [28] 21.80 0.8284 19.54 0.8419

Ours w/o stage II 15.68 0.7070 – –

Ours w/o VGG loss 22.79 0.8079 – –

Ours w/o inpainting 23.33 0.8319 – –

Ours 24.01 0.8377 26.01 0.9366

Fig. 5. Qualitative comparison on the output images from the SYN dataset.
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have different degrees of blurred boundaries and loss of details. In comparison,
our method is more stable that simultaneously removes noise and restores details
in extremely dark regions.

Figure 5 mainly illustrates some normal scenarios of low-light images. The
results show that traditional algorithms generally have problems such as under-
exposure and chromatic aberration. Among deep learning methods, GLAD and
RetinexNet generate the most serious color deviation, while KinD and Kind++
perform well on controlling exposure. Our method has good performances on
exposure and contrast at the same time, whose outputs are the most similar
to ground-truth. Furthermore, Table 1 demonstrate that our network performs
better on the LOL and SYN datasets in comparison to others.

4.3 Ablation Study

In this section, we make ablation experiments to evaluate the effectiveness of
the proposed components, including the two stage structure, the VGG loss, and
the inpainting module. The results of ablation experiments are summarized in
Table 1. By only using stage I, we build a baseline model, which achieves 15.68
dB on PSNR and 0.7070 on SSIM. When adding the stage II module, it achieves
an increase of 8.33 dB on PSNR and 0.1307 on SSIM, which means the stage
II could extract better features to refine the detail information lost in stage
I. The effectiveness of VGG loss and the inpainting module can be evaluated
by comparing the last three rows in Table 1. It achieves better performance
benefitting from the VGG loss and the inpainting process, which means the
reconstruction of the detail information is very important to the low-light image
enhancement task.

Fig. 6. Visual comparison of the ablation study.

Figure 6 shows the visual changes of the different model structures. For
example, Fig. 6(c) shows outputs from a model with/without Stage II that are
influenced by severe color deviation and blurry details. After adding Stage II,
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color deviations can be significantly restored and high-frequency details can
be enhanced. Figure 6(d) describes outputs from a network that is not trained
with/without VGG loss. Sample images are of poor color and quality if VGG
loss is not used. For example, the edges of the image become blurry and contain
amounts of noise. VGG loss helps to restore the details and colors of the image.
As mentioned earlier, the inpainting module is used to repair dark regions with
information hidden in the noise map. We simply remove inpainting module in
Stage II for comparisons. As shown in Fig. 6(e), texture details on the glove drop
significantly when the inpainting module is removed, which verifies IM’s effec-
tiveness. Moreover, the effectiveness of the feature enhancing group is justified
by comparing results from the absence of Stage II and the absence of inpainting
module.

5 Conclusion

In this paper, we propose a Noise-map Guided Inpainting Network (NGI-Net)
to restore visual information from low-light images. For the first time, we com-
bine the low-light image enhancement task with the inpainting technique, which
shows great potential and is more reasonable out of intuition. Our network has
two stages. Stage I decomposes input images into the reflection map, illumina-
tion map, and noise map. Then Stage II deals with color distortion and details
deficiency by feature enhancing and inpainting. The results demonstrate the
advantages of our methods based on real-world datasets quantitatively and qual-
itatively.

However, there are still some limitations to our works. The noise map still
cannot separate all the noise regions, which restrains the network’s capability
on detail restoration. In future works, we will focus on enhancing the semantic
information of dark regions of the image to design robust approaches for more
sophisticated low-light image enhancement tasks.
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