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Abstract. Learned image compression methods have represented the
potential to outperform the traditional image compression methods in
recent times. However, current learned image compression methods uti-
lize the same spatial resolution for latent variables, which contains some
redundancies. By representing different frequency latent variables with
different spatial resolutions, the spatial redundancy is reduced, which
improves the R-D performance. Based on the recently introduced gener-
alized octave convolutions, which factorize latent variables into different
frequency components, an enhanced multi-frequency learned image com-
pression method is introduced. In this paper, we incorporate the channel
attention module into multi-frequency learned image compression net-
work to improve the performance of adaptive code word assignment. By
using the attention module to capture the global correlation of latent
variables, complex parts of the image such as textures and boundaries
can be better reconstructed. Besides, an enhancement module on decoder
side is utilized to generate gains. Our method shows the great visual
appearance and achieves a better grade on the MS-SSIM distortion met-
rics at low bit rates than other standard codecs and learning-based image
compression methods.

Keywords: Learned image compression · Multi-frequency image
coding · Channel attention · Decoder enhancement

1 Introduction

In the 5G era, smart terminals will see a new round of explosive growth, in
which image data growth being particularly prominent. It becomes important
to obtain satisfactorily compressed images based on limited hardware resources.
Instead of saving the original RGB data, a lossy version of the image is stored
that is as close as possible to the original in terms of visual experience. Tra-
ditional image compression methods [6,21,23,26,30] are usually composed of
transform, quantization, and entropy coding, which rely on manual optimiza-
tion of each module. However, hand-crafted tuning of each module may not lead
to an overall performance improvement, which may limit their performance. In
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the meanwhile, learned image compression methods [1–5,8,9,12,13,15,16,18–
20,24,25,27–29] has attracted more and more attention. The advanced learning-
based image compression methods have achieved superior performance over tra-
ditional methods(i.e. BPG [6]).

The lossy image compression methods are commonly improved in two ways:
designing more efficient transformations and building more refined probabilistic
statistical models of latent variables. It is experimentally demonstrated that the
GDN layer can effectively Gaussianize the local joint statistical information of
natural images, thus achieving local independence to a certain extent. However,
latent variables are usually expressed by feature maps with no differentiation
in spatial resolution, where exits some spatial redundancies. This indicates that
better R-D performance can be achieved by feature maps with spatial resolution,
which reduce the spatial redundancy. In [7], octave convolutions are utilized to
decompose the latent variables into high-frequency and low-frequency factors .
In [3], the generalized octave convolutions are proposed to accommodate image
compression applications.

For the entropy modeling, in [4], the latent representations are modeled as
independently identically distribution across space and channels, then in [5], the
entropy model is conditional Gaussian scale mixture(GSM) and codes are mod-
eled as conditionally independent given the hyper-prior. Most recent learned
image compression techniques utilize the context-adaptive entropy method,
which combines the super-priority and autoregressive models [20].

In this paper, the idea of multiple spatial frequencies is adopted, based on
generalized octave convolution, a multi-frequency channel attention module is
introduced to improve coding performance. Besides, the enhancement module is
introduced on decoder side to enhance compression. Better image compression
performance especially at a low bit rate is obtained when compared with recently
advanced image compression methods.

The contributions of this paper are generalized as follows:

• We combine the channel attention technique with multi-frequency potential
representations to improve coding performance.

• We apply an enhancement module on the decoder side for further compression
enhancement.

• The proposed framework obtains better image compression performance at a
low bit rate compared to other recently advanced methods [3,6,8,20].

2 Related Works

Many image compression methods have been developed and some standards
have been successfully established over the past decades, such as JPEG [30],
JPEG2000 [23], and BPG [6]. But these existing methods rely on hand-crafted
modules, which include transform, quantization, and entropy coding such as
Huffman encoder. Recently, the internal prediction technique which is firstly
used in video compression has also been utilized for image compression. For
example, as the recently advanced technique compared with other manually
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designed techniques, the BPG [6] standard is based on the video compression
standard HEVC/H.265 [26], which adopts the prediction-transform technique to
reduce the spatial redundancy.

In learned image compression methods, some works design efficient network
structures to extract more compact latent variables and rebuild high-quality
images from compressed features. For example, [13,28,29] utilize recurrent net-
works to compress the residual signal progressively, and achieve scalable cod-
ing with binary representation in each recurrence. Although recurrent models
can handle variable bit rates compression naturally, they usually take more
time for encoding and decoding because the network is executed multiple times.
[1,4,5,15,16,19,27] utilize full convolutional networks, which are trained under
rate-distortion constraints, with a trade-off between bit rate and reconstruction
quality. Since each trained model corresponds to a Lagrangian coefficient λ which
controls balance, multiple models should be trained to fit the needs of variable
bit rates.

Some works establish a probability model for effective entropy coding, the
modeled objects of the entropy model are divided into binary code streams and
latent variables. The binary code stream is the output of the encoder, and the
bitstream allocation is guided directly by modeling the binary code stream with
an entropy model. The latent variables are the output of the analysis transform,
which is generally a real number representation. The difference between binary
code streams and latent variables is that binary code streams are the final output
of the encoder, while the latent variables need to be quantized and entropy coded
to obtain the bitstream which is the final output of the encoder. By modeling the
entropy of the latent variables and adding end-to-end optimization, facilitates
the coding network to generate a tightly compressed representation.

Based on the binary code streams, Toderici et al. [29] added an entropy
model in subsequent work and used PixelRNN [22] to estimate the probability
distribution of all symbols to be encoded based on the encoded symbols. Because
there exist spatial redundancies in natural images, predicting the probability or
coding residuals of the current target based on the context can improve the
image compression performance. In addition to using contextual information to
guide the encoding of the current target, Covell et al. [9] used a mask based
on RNN to guide the symbol assignment, which allows compression system to
adaptively change the number of bits transmitted based on the local content.
Li et al. [16] used Convolutional Neural Networks (CNNs) to learn importance
maps and constructed masks to indicate the length of binary codes.

Based on the latent variables, Balle [4] approximates the actual probability
distribution of the symbols using a segmented linear model, with the latent
variables first undergoing a GDN transformation that greatly reduces the spatial
redundancy between pixels to achieve a factorized probability model of the latent
variables; Agustsson [1] estimates the probability distribution of the symbols
by their histograms; Theis [27] uses Laplace smoothing histograms to better
estimate the probability distributions. All these models focus on learning the
distribution of the representation without considering adaptivity, in other words,



192 L. He et al.

once the entropy model is trained, the parameters of the trained model are
fixed for any input during testing. There exit large spatial dependencies in the
quantified latent variables. The standard approach to modeling dependencies
among a set of target variables is to introduce hidden variables, conditioned on
the assumption that the target variables are independent. Balle [5] proposed a
hyper-prior entropy model that introduces an additional set of random variables
to capture spatial dependencies. Minnen [20] added masked convolution as a
contextual model for autoregression to more fully exploit the domain relevance of
the predicted pixels. Lee [15] used two types of contextual models to estimate the
Gaussian distribution for each latent variable. Cheng [8] models the distribution
of latent variables as a discrete Gaussian mixture model(GMM) and adds a
simplified version of the Attention module, which enables the learning model
to focus more on complex regions. Liu [18] adds an enhancement module at
the decoder side. Hu [12] proposes a framework with a superior hierarchical
framework with multi-layer superiority representation. Some methods [2,24,25]
utilize generative models to learn the distribution of input signals and generalize
subjectively excellent reconstructed image at extremely low bit rates.

3 Proposed Method

3.1 Formulation of Multi-frequency Learned Compression Models

The architecture of the whole scheme discussed in this paper is shown in Fig. 1.
Inspired by recent advances in learned image compression [4,5,20], an autoen-
coder style network is performed. Specifically, the generalized octave convolu-
tions [3] shown in Fig. 2 are utilized to reduce spatial redundancy which improves
the R-D performance. The entire framework consists of five main modules, which
are encoder network, decoder network, hyper encoder network, hyper decoder
network, and parameter estimator network.

The encoder network transforms the original image x into the correspond-
ing latent variables y. Since the generalized octave convolutions are utilized, the
latent variables are decomposed into high-frequency (HF) and low-frequency
(LF) factors(denoted by yH and yL), where the lower frequency corresponds
to low spatial resolution. The internal structure of generalized octave convolu-
tion and the corresponding transposed structure is shown in Fig. 2. To further
reduce spatial redundancy, channel attention modules are applied separately on
yH and yL, then yH

at and yL
at are obtained. The latent variables yH

at and yL
at

will be quantized to ỹH
at and ỹL

at. The next part is the arithmetic encoder and
arithmetic decoder, where is considered as lossless entropy coding. Then the
quantized latent variables ỹH and ỹL were fed to the decoder network to obtain
the reconstructed image x̃. In this paper, the quantization strategy is the same
as [4].

The hyper encoder, hyper decoder, and params estimator modules are uti-
lized for estimation of the distribution of latent variables. Since the image com-
pression methods aim to obtain a reconstructed image at a given bit rate,
an accurate entropy model which estimates the bit rate is critical. The whole
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pipeline is like [20], based on the latent variables, a context model and a hyper
auto-encoder are combined to exploit the probabilistic structure. The context
model is a kind of autoregressive model for latent variables with different reso-
lutions, which corrects the prediction based on the previous content. The results
of the context model are denoted as φH and φL. The hyper encoder module is
utilized to represent side information efficiently and encode side information into
latent variables. The results of the hyper autoencoder are denoted as ψH and ψL.
Since the generalized octave convolution is utilized in hyper autoencoder, we get
high and low frequency latent variables zH and zL. Channel attention modules
are applied separately on zH and zL. Similar to previous operations, zH

at and
zL
at are quantized into z̃H and z̃L, then sent by arithmetic coding. The statisti-

cal model of ỹH and ỹL is assumed to be conditional Gaussian entropy model
[20]. To estimate the means and standard deviations of conditional Gaussian
distributions for each latent variables, the params estimator module utilize the
outputs of both context model (φH ,φL) and hyper decoder(ψH , ψL) for better
performance.

The learned image compression network is optimized by trade-off between
code rate and distortion. Rate (R) is the estimated number of consumed bits
after arithmetic encoding, while distortion (D) is loss of reconstructed images.
We utilize a Lagrange multiplier λ as the trade-off parameter. The loss function
is written as:

L = R + λD

= RH + RL + λd(x, x̃)
(1)

where RH and RL are seperately the rates of high-frequency and low-frequency
latent variables, which can be defined as:

RH = H(ỹH) + H(z̃H)

= E(−log2(pỹH |z̃H (ỹH |z̃H))) + E[−log2(pz̃H (z̃H))]

RL = H(ỹL) + H(z̃L)

= E(−log2(pỹL|z̃L(ỹL|z̃L))) + E[−log2(pz̃L(z̃L))]

(2)

the pỹH |z̃H and pỹL|z̃L are respectively the conditional Gaussian entropy model
for high-frequency and low-frequency latent variables. Besides, the mean and
scale parameters μH

i , σH
i , μL

i and σL
i are obtained by params estimator module

fpe
H and fpe

L. Then the distribution of the latent variables can be formulated
as:

pỹH |z̃H (ỹH |z̃H) =
∏

i

(N (μH
i , σ2

i
H

) ∗ U(−1
2
,
1
2
))(ỹH

i )

pỹL|z̃L(ỹL|z̃L) =
∏

i

(N (μL
i , σ2

i
L
) ∗ U(−1

2
,
1
2
))(ỹL

i )
(3)

the pz̃H and pz̃L are supposed to be independent and identically dis-
tributed(i.i.d), and a non-parametric factorized model is utilized [4]. Then the
distribution of the latent variables can be formulated as:
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pz̃H |ΘH (z̃H |ΘH) =
∏

j

(pz̃H
i |ΘH

j
(ΘH

j ) ∗ U(−1
2
,
1
2
))(z̃H

j )

pz̃L|ΘL(z̃L|ΘL) =
∏

j

(pz̃L
i |ΘL

j
(ΘL

j ) ∗ U(−1
2
,
1
2
))(z̃L

j )
(4)

where ΘH and ΘL denote the parameter vectors.

Fig. 1. The overall framework of the proposed learned image compression method.
H-AT and L-AT: attention modules for HF and LF latent variables. H-AE and
H-AD: arithmetic encoder and decoder for HF latent variables. L-AE and L-AD:
arithmetic encoder and decoder for LF latent variables. H-CM and L-CM: context
models for HF and LF latent variables, composed of one 5 * 5 masked convolution layer.
Q: quantization [4]

(a) GoConv. XH , XL: input HF and LF
feature maps; Y H , Y L: output HF and
LF feature maps

(b) GoTConv. Ỹ H , Ỹ L: input HF and
LF feature maps; X̃H , X̃L: output HF
and LF feature maps

Fig. 2. Architecture of the generalized octave convolution (GoConv) and transposed-
convolution(GoTconv) [3]. GDN: the activation layer [4]; f: regular convolution; f↓2:
regular convolution with stride 2; g: regular transposed convolution; g↑2: regular trans-
posed convolution with stride 2.
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3.2 Channel Attention Scheme

Some works have utilized spatial attention mechanisms to reduce spatial redun-
dancy [8,18]. Inspired by [11], a channel attention model is proposed to focus on
channels of outstanding local importance, and then reduce spatial redundancy.
The structure of the channel attention module for latent variable with different
spatial resolutions is shown in Fig. 3. By using the attention module to capture
the global correlation of latent variables, complex parts of the image such as
textures and boundariescan be better reconstructed.

For a feature map X ∈ Rh×w×c, first, a global average pooling is utilized to
achieve statistical channel importance t ∈ Rc:

tc =
1

h × w

h∑

i=1

w∑

j=1

xc(i, j) (5)

where xc(i, j) is the value at the (x, y) position in c − th channel of feature map
X. Then, several non-linear transforms are utilized to capture the channel-wise
relationship, which can be denoted as:

s = σ(F2δ(F1t)) (6)

where F2 and F1 are the fully connected layers, δ is the ReLU activation function,
σ is the sigmoid function. Finally, by rescaling the feature map X with s and
adding the residual operation, a feature map with channel attention applied is
obtained.

Fig. 3. Channel attention module on both HF and LF feature map. FC: fully connected
layer. r is chosen to be 16.

3.3 Decoder-Side Enhancement

To further enhance the quality of the reconstructed images, an enhancement
module at the decoder side is introduced. Influenced by image super-resolution
solutions [17], we utilize the residual block to further improve image quality.

It has been experimentally proved that the residual blocks also work in super-
resolution problems. But the original ResNet was originally proposed to solve



196 L. He et al.

problems such as classification and detection. Since the batch normalization layer
consumes the same size of memory as the convolutional layer before it, after
removing this step of operation, we can stack more network layers or make more
features extracted per layer, thus getting better performance. In each residual
block, a constant scaling layer is placed after the final convolutional layer. These
blocks greatly stabilize the training process when a large number of filters are
used. The structure of the decoder-side enhancement module is shown in Fig. 4.

First, to expand the channel dimensions from 3 to 32, a convolutional layer is
utilized. Then, three enhancement blocks are applied, each contains three resid-
ual blocks where remove the batch normalization operation to keep details and
save computational resources. Finally, a convolution layer is applied to transfer
channel dimension to 3 and apply the residual operation to get the reconstructed
image.

Fig. 4. Enhancement module on the decoder side. RB: the residual block

4 Experiment Results

A partial subset of ImageNet [10] is selected for training, which contains 6080 pic-
tures in total. The size of the images is first randomly cropped into 256× 256 × 3
patches. Pixel values are normalized from (0,255) to (0,1). The standard Kodak
dataset [14] is utilized for testing, which contains 24 high-quality uncompressed
PNG images.

4.1 Parameter Description

In the encoder module(Fig. 1), output channel size M = 192, the sizes of HF
and LF latent variables (yH and yL) are respectively 16×16×96 and 8×8×96.
The ratio of LF is 0.5, which means that half of the latent representations are
assumed to be LF part. All modules are jointly trained over 100 epochs with
Adam solver, with the batch size set as 16 and the learning rate fixed at 0.001.
The trade-off parameter λ takes values from the range [0.0005,0.1].
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4.2 Results Evaluation

The compression capability of the proposed framework is compared with
the traditional image compression methods including JPEG2000 [23], WebP,
BPG(4:2:0) [6], and also recently advanced learning-based image compression
methods [3,5,8,20]. We utilize MS-SSIM as the evaluation indicators, which is
more consistent with human eye visual perception than other evaluation metrics
like PSNR and SSIM. The comparison result on the Kodak dataset is shown in
Fig. 5, which is an average result over 24 images. The R-D curve is plotted based
on multiple bpp points, which are corresponding to different bit rates. Several
models are trained with different values of λ to achieve different bit rates.

As shown in Fig. 5, the proposed scheme outperforms the standard codecs
and most advanced methods at the low bit rates(bpp < 0.25). Compared with
the recently advanced standard codecs, such as BPG (4:2:0) [6], the proposed
method achieves better performance at each bit rate. Some visual examples for
visualization details is shown in Fig. 6 and Fig. 7. As seen in the example, at
a low bit rate, our method behaves the best compared to the others, the high-
frequency details like eyelashes and curly hair are clearly expressed. While the
image reconstructed by JPEG [30] faces the problems of artifacts. In particular,
our method has a higher MS-SSIM score at the low bpp points compared to
original framework based on GoConve [3] and Balle’s method [5].

Fig. 5. Kodak comparison results.
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(a) original image (b) 0.945/0.111bpp (c) 0.939/0.112bpp

(d) 0.712/0.095bpp (e) 0.927/0.144bpp (f) 0.933/0.106bpp

Fig. 6. Visualization of partial reconstructed kodim04 from Kodak dataset, our pro-
posed method (b), GoConv2020 (c), JPEG (d), Balle et al. 2018 (e), and Cheng2020-
anchor (f). We take MS-SSIM as the metrics.

(a) original image (b) 0.974/0.114bpp (c) 0.966/0.112bpp

(d) 0.836/0.122bpp (e) 0.969/0.179bpp (f) 0.972/0.142bpp

Fig. 7. Visualization of partial reconstructed kodim07 from Kodak dataset, our
proposed method (b), GoConv2020 (c), JPEG (d), Balle et al. (2018) (e), and
Cheng2020-anchor (f). We take MS-SSIM as the metrics.
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5 Conclusion

We propose an enhanced multi-frequency learned image compression framework
in this paper. Using the generalized octave convolution, the latent variables are
divided into high-frequency and low-frequency components, while the high fre-
quency part is represented by a higher spatial resolution. The channel attention
modules for high-frequency and low-frequency latent variables are proposed to
further reduce spatial redundancy. Finally, an enhancement module on decoder
side is utilized to further enhance performance. The whole framework is trained
end to end and achieves better performance at a low bite rate compared with
recently advanced methods.
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