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Abstract. In this paper, we propose a non-local network routing (NNR)
approach for perceptual image super-resolution. Unlike conventional
methods which generate visually-faked textures due to exiting hand-
designed losses, our approach aims to globally optimize both procedures
of learning an optimal perceptual loss and routing a spatial-adaptive net-
work architecture in a unified reinforcement learning framework. To this
end, we introduce a reward function to teach our objective to pay more
attention on the visual quality of the super-resolved image. Moreover,
we carefully design an offset operation inside the neural architecture
search space, which typically deforms the receptive field on boundary
refinement in a non-local manner. Experimentally, our proposed method
surpasses the perceptual performance over state-of-the-art methods on
several widely-evaluated benchmark datasets.

Keywords: Image super-resolution · Neural architecture search ·
Deep learning · Reinforcement learning

1 Introduction

Single image super-resolution aims to recover a high-resolution (HR) image
(Fig. 1(a)) for a given low-resolution (LR) image (Fig. 1(b)), which plays a key
role in image enhancement [8,12,29]. Although numerous image super-resolution
approaches have been proposed recently [4,9–11,25], the performance still remains
unsatisfied in practice. This is because the high-frequency information from the
high-resolution image is excessively missing when it degrades due to extreme illu-
mination conditions, motion blur, etc. Hence, this motivates us to develop a robust
super-resolution approach to particularly recover the high-frequency information
and enhance the visual quality for the super-resolved static images.
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Fig. 1. Image super-resolution results of different methods. The distortion-based
method SRCNN [4] generates blurred textures. The perceptual-based methods includ-
ing ESRGAN [25], TPSR [10] generate unnatural artifacts. Our method achieves to
recover sharper boundary and finer textures visually compared with others.

Based on different types of optimization losses, the image super-resolution
methods can be roughly divided into distortion-based [11,22,31] and perceptual-
based [9,10,21,25]. Specifically, the distortion-based methods aim to generate
high PSNR images which typically minimize the discrepancy between the super-
resolved images and the ground truth images in a pixel-wise manner. One major
issue in these methods is that the pixel-level reconstruction loss likely results in
blurred textures, ignoring the high-frequency details (Fig. 1(c)). To address this
issue, the perceptual-based methods have been proposed to improve the visual
quality of the super-resolved images. For example, Wang et al. [25] developed
a ESRGAN method, the generative models typically use perceptual loss and
adversarial loss to improve the perceptual quality. However, these methods likely
generate fake textures and unnatural artifacts when recovering super-resolved
images (Fig. 1(d),(e)). The underlying reason is that the discriminator likely
produces bias supervision signal during the optimization process, which hardly
captures texture details accurately. Moreover, the existing loss functions (e.g.,
perceptual loss [7], pixel-wise MSE loss) are hand-crafted which provide local
perceptual supervision signals.

Besides a well-defined perceptual objective function, making full use of the
self-similarity information in the image itself is also effective on improving the
perceptual quality [18]. For example, Yang et al. [27] proposed to explicitly trans-
fer similar high-frequency features from a given reference image, so that the pro-
duced textures are more reasonable rather than the conventional fake ones. How-
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ever, the performance of this method is semantically sensitive to the reference,
which degrades seriously when the irrelevant reference images are given. Besides,
the local features are in fixed-location neighborhoods, which cannot adapt the
spatial relevant textures. To fully exploit the global cues of the input image itself,
we introduce an offset learning strategy, which takes in the non-local informa-
tion by utilizing the self-similarity of the inputs. By doing this, we use feature
similarity to propagate between non-local pixels to explore high-frequency infor-
mation (such as edges). In parallel, it reduces the geometric distortions produced
by GAN-based methods [9,25].

In this work, we argue to jointly optimize both procedures of learning an opti-
mal perceptual loss function and searching a reliable network architecture, which
can further improve the perceptual quality of the super-resolved images (Fig. 1
(f)). To achieve this, we propose a non-local network routing (NNR) method for
perceptual image super-resolution. Specifically, we leverage the neural architec-
ture search which optimizes using reinforcement-based algorithm. To improve
the visual quality of the super-resolved images, we develop a learnable reward
to optimize an optimal perceptual loss for image super-resolution. Moreover,
we design an offset learning strategy to adaptively capture spatial boundary
information in a non-local manner. Extensive experiments on the widely-used
datasets demonstrate the effectiveness of the proposed method quantitatively
and qualitatively.

2 Related Work

Single Image Super-Resolution. Low-resolution images are affected by many
degradation factors during the imaging process, such as motion blur, noise and
downsampling. Shallow single image super-resolution approaches can be roughly
divided into two categories: interpolation-based [13,15], reconstruction-based [6,
19]. Interpolation-based methods recover high-resolution images by interpolation
algorithm. For example, bicubic interpolation. However, these methods usually
undergo accuracy shortcomings. To address this limitation, reconstruction-based
methods have been proposed to adopt prior knowledge to restrict the possible
solution space, which can restore sharp details. Nevertheless, these methods are
usually time-consuming.

Recent years have witnessed that deep learning networks have been applied to
address the nonlinear issue in image super-resolution [4,9,16,18,25], which learns
a set of nonlinear mapping from low-resolution to high-resolution image in an
end-to-end manner. The distortion-based methods aim to improve the fidelity of
images which typically minimize the mean square error between the predicted
pixel and the ground-truth pixel. For example, Dong et al. [4] proposed SRCNN,
which is the first work that applies deep learning for image super-resolution.
Mao et al. [16] proposed to use encoder-decoder design to super-resolve the
image. Although these methods have achieved the promising performance, one
major issue is that the pixel-wise loss results in smooth images due to a lack
of high-frequency details. To address this issue, perceptual-based methods have
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been proposed to improve the visual quality. For example, SRGAN [9] used an
adversarial loss to restore the high-frequency details for perceptual satisfaction.
However, the generative models likely produce geometric distortion textures.
Besides, the hand-designed perceptual loss are not optimal for image percep-
tual evaluation and efficient training. To address these problems, our proposed
method optimizes the procedures of learning an optimal perceptual objective
function.

Neural Architecture Search. Recent trends have been seen that neural
architecture search(NAS) [33] is gradually introduced to many computer vision
applications. The coarse-grained tasks include image classification [20], object
detection [34]. The fine-grained tasks include semantic segmentation [14], image
super-resolution [3,10]. Auto-deeplab [14] proposed to search the network level
structure in addition to the cell level structure, which aims to search the outer
network structure automatically for semantic segmentation. Ulyanov et al. [23]
argued that the structure of networks can be used as a structured image prior.
Hence, Chen et al. [3] proposed to search for neural architectures which can
capture stronger structured image priors for image restoration tasks. However,
these methods mainly focus on searching for a network architecture and ignoring
the image visual quality. Lee et al. [10] incorporated the NAS algorithm with
GAN-based image super-resolution to improve the quality of perception while
considering the computation cost. However, this method cannot fully exploit
the global cues of image itself. To fully exploit the global cues of the input
image itself, we exploit an offset learning strategy based on the self-similarity of
images. Then we add the offset operation to the search space to further search for
the perceptual-based super-resolution network. Besides, the GAN-based super-
resolution method may likely produce fake textures duo to the unstable train-
ing. Thus our approach propose to optimize the perceptual loss function and
perceptual-based super-resolution network simultaneously.

3 Methodology

In image super-resolution, we aim to restore a high-resolution image denoted by
ISR based on the given low-resolution input denoted by ILR. As demonstrated
in Fig. 2, we develop a non-local network routing method. Technically, we lever-
age reinforcement learning algorithms and incorporate neural architecture search
with the image super-resolution task. Furthermore, we design a learnable per-
ceptual reward as loss function to produce optimal supervision signal for efficient
training. Besides, we develop a search space by introducing spatial-adaptive off-
set operation, which aims to reason a reliable network for perceptual image
super-resolution.

3.1 Non-local Network Routing

Although traditional perceptual-based methods can significantly improve the
perceptual quality of the super-resolved images, it will produce inconsistent arti-
facts and false textures. Moreover, the hand-designed perceptual loss function
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Fig. 2. Overall framework of our NNR method. We design a reward (LPIPS) and
exploit neural architecture search algorithm (reinforcement learning-based with LSTM
controller) beyond a search space. The offset operation is deployed in the search space
to seek for a reliable network architecture.

is easy to fall into local optima and cannot be considered as a strong supervi-
sion signal to train the optimal super-resolution network. To address this, we
introduce NAS into image super-resolution task. The search algorithm is mainly
based on reinforcement learning, which incorporates with LSTM as the con-
troller. The action a specifies the generation of a neural network architecture.
The state s is defined by a set of observed network architecture. We design a
learnable reward (LPIPS) to jointly optimize both procedures of learning an
optimal perceptual loss and routing a reliable super-resolution network archi-
tecture denoted by ω. The LPIPS reward function is designed to measure the
image patch similarity from feature space, which is defined as follows:

r(st, at) = −lLPIPS (1)

Specifically, we define the LPIPS function [30] by the following equation:

lLPIPS =
∑

l

1
HlWl

∑

h,w

‖wl � (ÎSRl − ÎHR
l )‖2, (2)

where ÎSRl , ÎHR
l ∈ R

Hl×Wl×Cl is the feature from l layers of the pre-trained
network. wl ∈ R

Cl is used to scale the channel-wise activations .
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The traditional PSNR is the distortion based metric, which is insufficient for
estimating the visual quality of images. This is because the pixel-wise restraint
results in over-smoothed results without sufficient high-frequency details. How-
ever, the LPIPS is a perceptual-based metric to measure the image patch simi-
larity from feature space. It is mentioned in [30] that the perceptual similarity
measurement of two images is more consistent with human judgment than PSNR.
Therefore, we use the LPIPS as the perceptual reward to optimize an optimal
perceptual loss.

Aside from learning an optimal perceptual loss function, we introduce an
offset learning strategy to fully exploit the global cues of the input image itself.
Moreover, the non-local feature representation is also effective on improving the
perceptual quality of the super-resolved images. We explore the boundary infor-
mation by the self-similarity of images. The captured high-frequency information
such as spatial textures and edges reinforces the visual quality. In this way, the
boundary information further resolves the geometric distortion. The offset strat-
egy can be written as follows:

y(p0) =
∑

pn∈R

w(pn) · x(p0 + pn + �pn), (3)

where x is the input, y is the output feature map, and pn enumerates the location
in a regular grid R respectively. {�pn|n = 1, ..., N} is the learnable offsets and
the sampling performs on the offset locations pn + �pn.

To automatically search for a network architecture with promising perceptual
performance, we design to plug the offset operation inside the search space. The
offset operation adaptively learns a set of offsets from the input image itself.
Then our search space is developed to perform micro-cell approach and the
normal cell can be regarded as a feature extractor. In our approach, we aim
to obtain high-frequency feature representation which is crucial for perceptual
image super-resolution. As a result, our model focuses on selecting for the best
architecture of the normal cell. We show the candidate operation Op normal of
the normal cell search subspace as follows:

Op normal = {Offset,
Dilated Conv (k, n) with k = 3, 5,
Separable Conv (k, n) with k <= 3, 5,
Residual Channel Attention Block(RCAB),
Identity}

For the normal cell, the search space is composed by the offset operation [32]
and other several commonly used candidate operations including 3 × 3 and 5 ×
5 dilated convolution, 3 × 3 and 5 × 5 separable convolution, residual channel
attention block [31] and skip connection.

The upsampling cell is used to recover images with higher spatial resolution.
We develop a search space with several upsampling operations. The candidate
operation Op upsampling of upsampling search subspace can be expressed as
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Algorithm 1: NNR
Input: Training set: (ILR

i ,IHR
i )N1

i=1 with N1 samples,
Validation set: (ILR

i ,IHR
i )N2

i=1 with N2 samples. Inter = 300.
Output: NNR model

1 Require: learning rate η, sharing parameters ω, controller parameters θ
2 //Initialize ω and θ
3 for i = 1 to Inter do
4 for each training sample i = 1, ...N1 do
5 //Sampling a group of network architectures;
6 //training ω on training sample
7 Sampling s ∼ π(s, θ );
8 Compute ltotal (s, ω ) via (4)
9 ω ← ω-η �ω ltotal (s, ω )

10 end
11 for each validation sample j = 1, ...N2 do
12 //training controller parameters θ
13 //compute LPIPS reward on validation samples
14 Sampling s ∼ π(s, θ );
15 θ←θ+ ηr(s) �θlogπ(s; θ )

16 end

17 end

Op upsampling = {Pixel Shuffle Layer,
Deconvolution Layer
Nearest-neighbor Interpolation
Bilinear interpolation}

3.2 Model Learning

For our optimization, we specify a small scale of epochs and higher batch size as
the proxy task. In detail, we first leverage the proxy task to search the optimal
architecture. Then we exploit the weight sharing strategy, which uses the weights
of step t to initialize the model at step t + 1. We evaluate the searched network
architecture by computing the LPIPS reward between the ground truth image
and the super-resolved image. With the learnable perceptual reward, we exploit
the policy gradient [26] to train the LSTM controller. Based on the learned
policy π(·), we obtain the best-performing network architectures and the optimal
reward loss function simultaneously. Finally, we apply the full task to retrain the
acquired best-performing super-resolution network architecture from scratch. We
also use the LPIPS loss to train the searched super-resolution network. The
previous works [2] mentioned that only using perceptual quality to constrain the
network may produce undesirable artifacts. Hence, we incorporate �1 loss in our
final optimization. The overall loss of training the searched network architecture
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can be expressed as follows:

ltotal = α
1
N

N∑

i=1

|ISRi − IHR
i | + βlLPIPS, (4)

where α and β are the trade-off weights and N is the total number of images
respectively. Specifically, we specified the parameters α=0.8 and β=0.2 of our
model.

Algorithm 1 details the training procedure of our NNR.

4 Experiments

4.1 Evaluation Dataset and Metric

In our experiments, we used the DIV2K dataset as the training data, and the
commonly-used SR benchmarks, namely Set5 [1], Set14 [28], BSD100 [17] and
Urban100 [5] as the testing datasets. All experiments were performed with a
scale factor 4x between low-resolution and high-resolution images. For data aug-
mentation, we used horizontal flip, verticle flip and rotation randomly.

We evaluated the trained model under the learned perceptual image patch
similarity (LPIPS) and the peak signal-to-noise ratio (PSNR). Accordingly, we
used LPIPS to measure the perceptual quality of the super-resolved images,
where the lower the LPIPS value indicates better image visual quality. The PSNR
is distortion-based measures that pays more attention to the fidelity of images.
Obviously, the higher the PSNR value and the smaller the image distortion.
Following the standard settings in [10], we evaluated PSNR and LPIPS on the
Y channel and RGB image respectively.

4.2 Implementation Details

Our model was built based on the popular accelerated deep learning toolbox
PyTorch1. We conducted all experiments on a NVIDIA Tesla V100 GPU with 300
epochs for searching network architectures and 300 epochs for training networks.
The batch-size was set to 16. The ADAM optimizer was for searching and SGD
for training. Moreover, we use sample entropy regularization for robust and fast
convergence in our NAS controller.

4.3 Derived Architecture

Figure 3 shows the normal cell and upsampling cell searched via our method
respectively. As the figure shows, each cell contains four intermediate nodes and
every node has two operations from previous nodes. For each cell, the nodes
represent the feature map, and the edge is the searched operation. It can be
concluded that the cell structure selection is controlled by our proposed reward,
which achieves the highest reward during the optimization iterations.
1 https://github.com/pytorch/pytorch.

https://github.com/pytorch/pytorch
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Table 1. Quantitative results of our method on different datasets including Set5, Set14,
BSD100, and Urban100. Note that higher is better for PSNR, lower is better for LPIPS.
Our method achieves compelling performance especially under the perceptual LPIPS
metric.

Model Set5
PSNR/LPIPS

Set14
PSNR/LPIPS

BSD100
PSNR/LPIPS

Urban100
PSNR/LPIPS

Bicubic 28.420/0.341 26.100/0.439 25.961/0.525 23.145/0.473

SRGAN [9] 29.168/0.088 26.171/0.166 25.459/0.198 24.397/0.155

ESRGAN [25] 30.454/0.075 26.276/0.133 25.317/0.161 24.360/0.123

SFTGAN [24] 29.930/0.089 26.223/0.148 25.505/0.177 24.013/0.143

NatSR [21] 30.991/0.094 27.514/0.176 26.445/0.211 25.464/0.150

TPSR [10] 29.600/0.076 26.880/0.110 26.230/0.116 24.120/0.141

Baseline 30.866/0.078 27.747/0.109 26.941/0.129 24.839/0.125

w/Reward 31.477/0.070 28.072/0.102 27.170/0.123 25.344/0.109

NNR (Ours) 31.427/0.065 28.074/0.095 27.183/0.117 25.248/0.108

Fig. 3. Resulting routing of our NNR

4.4 Comparison with State-of-the-Art Methods

Quantitative Comparison. We compared our approach with folds of state-
of-the-art perceptual driven super-resolution methods. In Table 1, we reported
the PSNR, LPIPS on Set5, Set14, BSD100 and Urban100 under the evalua-
tion setting. From the results, we made two-fold conclusion: (1) Our proposed
learnable perceptual reward can capture sufficient high-frequency details which
improves the visual quality of the super-resolved images. We also used the per-
ceptual reward to route a reliable super-resolution network. In this manner,
our method provides optimal supervision for texture recovery and trains the
super-resolution network efficiently. However, the traditional perceptual loss is
handcrafted which may be local for capturing high-frequency information. Mean-
while, the hand-designed super-resolution network architecture is redundant for
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Fig. 4. Visualized results of our NNR versus conventional super-resolution approaches.

recovering visual quality. (2) Benefiting from the offset operation, our method
can capture non-local similar feature representation and further improve the
visual quality of the super-resolved images. Since the Urban100 dataset contains
more building structure images, we observe that our NNR method generalizes
better and gives performance gain 0.015 in LPIPS on the dataset. Unfortunately,
some methods such as NatSR [21] and TPSR [10] which enforce local features,
likely resulting in the inability to obtain global information. Thus, the LPIPS
performance of these methods is poor than us. In addition, we figure out that
our NNR achieves competitive performance on PSNR and better performance
on LPIPS especially on the perceptual dimension.

Besides, we performed ablation study to validate the effectiveness for differ-
ent components of our NNR method. Specifically, we only applied PSNR as the
reward to search the super-resolution network as Baseline model. We first val-
idated the importance of the designed learnable perceptual reward, which only
used the LPIPS reward to constrain the network training in w/ Reward model.
Then we added the offest operation to the search space based on the w/ Reward
model, which further validates the effectiveness of the offset learning strategy.
Table 1. presents the quantitative comparison of our ablation study.

We see that w/Reward has a significant improvement compared with Baseline
model, which demonstrates the effectiveness of the learnable perceptual reward.
The reason lies on that the optimal loss function efficiently dominates the optimal
super-resolution network routing. Furthermore, our NNR method also indicates
improvements especially on LPIPS performance over w/ Reward. With this, the
offset operation adaptively captures the relevant features from complex images,
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especially the spatial textures and edges. In summary, our results clarify the
effectiveness integrated with both the learnable perceptual reward and offset
learning strategy.

Qualitative Comparison. Finally, we compared our NNR method with other
methods qualitatively. The traditional perceptual-based super-resolution meth-
ods produce inconsistent fake textures duo to bias supervision signals. As shown
in Fig. 4, our method is more realistic than others. For example, for the stone
statue’s head, the compared methods are accompanied with unpleasant artifacts,
while our method generates sharper textures. This is mainly due to the optimal
perceptual loss and reliable super-resolution network architecture. Besides, the
offset learning strategy achieves the non-local edge information, which reduces
the geometric distortion and enhances the discriminability of the boundary and
texture information.

5 Conclusion

In this paper, we have proposed a non-local network routing (NNR) method for
perceptual image super-resolution. We have designed a learnbale reward to select
a reliable super-resolution network architecture with an offset learning strategy.
Quantitative and qualitative results have shown the effectiveness of our NNR.
Differential convolutions in frequency domain with NAS is a desirable direction.

Acknowledgement. This work was supported in part by the National Science Foun-
dation of China under Grant 61806104 and 62076142, in part by the West Light Talent
Program of the Chinese Academy of Sciences under Grant XAB2018AW05, and in part
by the Youth Science and Technology Talents Enrollment Projects of Ningxia under
Grant TJGC2018028.

References

1. Bevilacqua, M., Roumy, A., Guillemot, C., Alberi-Morel, M.: Low-complexity
single-image super-resolution based on nonnegative neighbor embedding. In:
BMVC, pp. 1–10 (2012)

2. Chen, R., Xie, Y., Luo, X., Qu, Y., Li, C.: Joint-attention discriminator for accurate
super-resolution via adversarial training. In: ACM MM, pp. 711–719 (2019)

3. Chen, Y., Gao, C., Robb, E., Huang, J.: NAS-DIP: learning deep image prior with
neural architecture search. ECCV. 12363, 442–459 (2020)

4. Dong, C., Loy, C.C., He, K., Tang, X.: Learning a deep convolutional network for
image super-resolution. In: ECCV, vol. 8692, pp. 184–199 (2014)

5. Huang, J., Singh, A., Ahuja, N.: Single image super-resolution from transformed
self-exemplars. In: CVPR, pp. 5197–5206 (2015)

6. Irani, M., Peleg, S.: Improving resolution by image registration. Graph. Models
Image Process. 53(3), 231–239 (1991)

7. Johnson, J., Alahi, A., Fei-Fei, L.: Perceptual losses for real-time style transfer and
super-resolution. In: ECCV, vol. 9906, pp. 694–711 (2016)



Non-local Network Routing for Perceptual Image Super-Resolution 175

8. Kouame, D., Ploquin, M.: Super-resolution in medical imaging: an illustrative app-
roach through ultrasound. In: ISBI, pp. 249–252 (2009)

9. Ledig, C., et al.: Photo-realistic single image super-resolution using a generative
adversarial network. In: CVPR, pp. 105–114 (2017)

10. Lee, R., Dudziak, L., Abdelfattah, M.S., Venieris, S.I., Kim, H., Wen, H., Lane,
N.D.: Journey towards tiny perceptual super-resolution. In: ECCV, vol. 12371, pp.
85–102 (2020)

11. Lim, B., Son, S., Kim, H., Nah, S., Lee, K.M.: Enhanced deep residual networks
for single image super-resolution. In: CVPRW, pp. 1132–1140 (2017)

12. Lin, F., Fookes, C., Chandran, V., Sridharan, S.: Super-resolved faces for improved
face recognition from surveillance video. In: Lee, S.-W., Li, S.Z. (eds.) ICB 2007.
LNCS, vol. 4642, pp. 1–10. Springer, Heidelberg (2007). https://doi.org/10.1007/
978-3-540-74549-5 1

13. Lin, T., RoyChowdhury, A., Maji, S.: Bilinear CNN models for fine-grained visual
recognition. In: ICCV (2015)

14. Liu, C., et al.: Auto-deeplab: hierarchical neural architecture search for semantic
image segmentation. In: CVPR, pp. 82–92 (2019)

15. Loop, C.T., Schaefer, S.: Approximating catmull-clark subdivision surfaces with
bicubic patches. ACM Trans. Graph. 27(1), 8:1–8:11 (2008)

16. Mao, X., Shen, C., Yang, Y.: Image restoration using very deep convolutional
encoder-decoder networks with symmetric skip connections. In: NIPS, pp. 2802–
2810 (2016)

17. Martin, D.R., Fowlkes, C.C., Tal, D., Malik, J.: A database of human segmented
natural images and its application to evaluating segmentation algorithms and mea-
suring ecological statistics. In: ICCV, pp. 416–425 (2001)

18. Mei, Y., Fan, Y., Zhou, Y., Huang, L., Huang, T.S., Shi, H.: Image super-resolution
with cross-scale non-local attention and exhaustive self-exemplars mining. In:
CVPR, pp. 5689–5698 (2020)

19. Patti, A.J., Sezan, M.I., Tekalp, A.M.: Superresolution video reconstruction with
arbitrary sampling lattices and nonzero aperture time. IEEE Trans. Image Process.
6(8), 1064–1076 (1997)

20. Real, E., Moore, S., Selle, A., Saxena, S., Suematsu, Y.L., Tan, J., Le, Q.V.,
Kurakin, A.: Large-scale evolution of image classifiers. In: ICML, vol. 70, pp. 2902–
2911 (2017)

21. Soh, J.W., Park, G.Y., Jo, J., Cho, N.I.: Natural and realistic single image super-
resolution with explicit natural manifold discrimination. In: CVPR, pp. 8122–8131
(2019)

22. Tong, T., Li, G., Liu, X., Gao, Q.: Image super-resolution using dense skip con-
nections. In: ICCV, pp. 4809–4817 (2017)

23. Ulyanov, D., Vedaldi, A., Lempitsky, V.S.: Deep image prior. In: CVPR (2018)
24. Wang, X., Yu, K., Dong, C., Loy, C.C.: Recovering realistic texture in image super-

resolution by deep spatial feature transform. In: CVPR, pp. 606–615 (2018)
25. Wang, X., et al.: SRGAN: enhanced super-resolution generative adversarial net-

works. In: ECCVW, vol. 11133, pp. 63–79 (2018)
26. Williams, R.J.: Simple statistical gradient-following algorithms for connectionist

reinforcement learning. Mach. Learn. 8, 229–256 (1992)
27. Yang, F., Yang, H., Fu, J., Lu, H., Guo, B.: Learning texture transformer network

for image super-resolution. In: CVPR, pp. 5790–5799 (2020)
28. Zeyde, R., Elad, M., Protter, M.: On single image scale-up using sparse-

representations. Curves Surf. 6920, 711–730 (2010)

https://doi.org/10.1007/978-3-540-74549-5_1
https://doi.org/10.1007/978-3-540-74549-5_1


176 Z. Ji et al.

29. Zhang, L., Zhang, H., Shen, H., Li, P.: A super-resolution reconstruction algorithm
for surveillance images. Sig. Process. 90(3), 848–859 (2010)

30. Zhang, R., Isola, P., Efros, A.A., Shechtman, E., Wang, O.: The unreasonable
effectiveness of deep features as a perceptual metric. In: CVPR, pp. 586–595 (2018)

31. Zhang, Y., Li, K., Li, K., Wang, L., Zhong, B., Fu, Y.: Image super-resolution using
very deep residual channel attention networks. In: ECCV, vol. 11211, pp. 294–310
(2018)

32. Zhu, X., Hu, H., Lin, S., Dai, J.: Deformable convnets V2: more deformable, better
results. In: CVPR, pp. 9308–9316 (2019)

33. Zoph, B., Le, Q.V.: Neural architecture search with reinforcement learning. In:
ICLR (2017)

34. Zoph, B., Vasudevan, V., Shlens, J., Le, Q.V.: Learning transferable architectures
for scalable image recognition. In: CVPR, pp. 8697–8710 (2018)


	Non-local Network Routing for Perceptual Image Super-Resolution
	1 Introduction
	2 Related Work
	3 Methodology
	3.1 Non-local Network Routing
	3.2 Model Learning

	4 Experiments
	4.1 Evaluation Dataset and Metric
	4.2 Implementation Details
	4.3 Derived Architecture
	4.4 Comparison with State-of-the-Art Methods

	5 Conclusion
	References




