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Abstract. In recent years, improving the visual quality of low-light
images has attracted tremendous attention. Most of the existing deep
learning approaches estimate the single illumination and then obtain the
enhanced result according to the Retinex theory. However, only esti-
mating the single illumination limits the solution space of the enhanced
result, causing the unideal performance, e.g., color distortion, details loss,
etc. To overcome the issues, we design a new Deep Multi-Illumination
Fusion (denoted as DMIF) network to effectively handle low-light image
enhancement. Specifically, we first construct an illumination estimation
module to generate multiple illuminations to enlarge the solution space.
We fuse these illuminations and aggregate their advantages by an illu-
mination fusion algorithm to produce a final illumination. Finally, the
enhanced result is obtained according to the Retinex theory. Plenty of
experiments are conducted to fully indicate our effectiveness and supe-
riority against other state-of-the-art methods.

Keywords: Low-light image enhancement · Image fusion · Deep
network

1 Introduction

As for many computer vision and multimedia applications, high visibility images
with clear targets are urgent. Limited to the adverse imaging conditions, the low-
quality images with low illumination are frequent and inevitable. In recent years,
there emerge many algorithms to enhance low-light images.

A common method is histogram equalization, which enlarges the dynamic
range and increases the image contrast, but its limitations are obvious and the
results tend to be over enhancement. Based on the Retinex theory [13], there
exists an assumption, i.e., the low-light image can be decomposed into two parts,
illumination and reflectance, where illumination represents the intensity of light
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Fig. 1. Visual comparison of low-light image enhancement.

exposure, reflectance denotes the physical properties of the object itself. This
model can be formulated as: S = I � R, where S denotes the low-light input
and “�” is the pixel-wise multiplication. I,R are illumination and reflectance,
respectively. Numerous approaches are currently aimed at removing or adjusting
the illumination map to reduce the impact of the illumination. Early attempts
include Single-scale Retinex [11] and Multi-scale Retinex [10]. Their results tend
to look unnatural, and over-exposure in some cases. In RRM [15], the proce-
dure of noises suppression was also considered in the designed model derived
from the Retinex theory. In LIME [7], the illumination was estimated by the
structure-aware prior and the reflectance was further obtained by utilizing the
Retinex theory. SRIE [5] and JIEP [2] built their model by defining the phys-
ical priors of different components, to simultaneously estimate the reflectance
and illumination. In [20], an enhancement algorithm for inhomogeneous illumi-
nation images was proposed, to balance the details and naturalness. Although
these traditional methods get better results in some cases, they are limited since
the regularization capacity. The reason is that the exact distribution of these
potential components (especially the illumination) is hard to certain by a simple
regularization constraint.

Recently, many approaches based on CNN have been proposed to solve low-
light image enhancement task. LightenNet [14] is an early method utilized CNN
to estimate the illumination from low-light image and remove it to obtain the
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Fig. 2. The overall flowchart of DMIF. The basic illumination I0 is predicted from
the low-light image by the illumination estimation module, I1, I2 and I3 are obtained
by different formulas, and their concatenation is used as the input of the illumination
fusion network to predict the final illumination. Finally, the final result is obtained
by dividing the input by the I′. Below the flowchart are the illumination estimation
networks, illumination fusion networks and residual blocks.

enhanced result. RetinexNet [21] estimated both illumination and reflectance in
a two-stage way that consists of decomposition and enhancement. However, this
work did not take into account the different effects of noise on different areas of
light. DeepUPE [19] increased network complexity, taking samples on a bilateral
grid and presenting multiple loss functions. However, it also estimated single
illumination which is lacked complementary information. Chen et al., solved the
extremely low light imaging problem by using the new data set to directly manip-
ulate the original sensor data [3]. Jiang et al., proposed Enlightening GAN [9],
which can be trained without low/normal light image pairs. In SSIENet [23]
the result of histogram equalization is used as reference, and the reflection and
illumination images are decomposed simultaneously. In [22], a deep recursive
band network (DRBN) is proposed to recover a linear band representation of an
enhanced normal-light image with paired low normal-light images.

In summary, most of existing methods only estimate the single illumination,
which limits its solution space to influence the enhanced performance. To set-
tle this issue, we in this paper design an end-to-end Deep Multi-Illumination
Fusion (DMIF) network. We provide a group of visual comparison in Fig. 1.
Obviously, The result of SSIENet shows excessive brightness while DeepUPE
produces color deviation. In contrast, our method addresses the color distortion
and non-uniform brightness, providing a more comfortable visual expression. In
brief, our contributions can be described as three-folds:

– We devote ourselves to estimate multiple illuminations to provide a larger
range of solution space for more effectively handling low-light image enhance-
ment.

– We design a deep multi-illumination fusion network to cater to our demands
of estimating multiple illuminations and fuse these outputs by a simple fusion
module.
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– Comprehensive and elaborate experiments are conducted to illustrate our
effectiveness and superiority against existing state-of-the-art approaches.

2 Deep Multi-Illumination Fusion

In this section, we clearly introduce our proposed algorithm (DMIF), including
network architecture and training loss functions. The flow chart is shown in
Fig. 2.

2.1 Network Structure

In fact, the issue of existing Retinex-based methods (maybe iterative algorithms,
maybe deep networks) lies in the inaccurate illumination estimation. This is to
say, we need to make sure that the illumination estimation module can gener-
ate an effective enough illumination map. Otherwise, the model inference based
on illumination brings about the deviates. Hence, we first carefully design the
illumination estimation module. In order to preserve more details in the illumi-
nation, we keep the resolution of the illumination map without down sampling.
Specifically, 16 residual blocks are applied which contains Convolutional layer
(Conv), Batch Normalization (BN), Rectified Linear Units (ReLU) and a skip
connection, and the kernel size of the Conv is 3 × 3, 64 channels. A sigmoid is
added at the end of the module to normalize the value. This module outputs a
basic illumination I0.

Subsequently, we generate multiple illumination with different meanings
to learn complementary information of the basic illumination. We empirically
explore three explicit forms. The following three models are calculated based
on I0: I1 = I0, I2 = 1 − I0, I3 = I1/γ

0 , where I1, I2 and I3 represent differ-
ent illumination maps. It is worth noting that these three formulas have three
characteristics: 1) they can normalize the illumination value to 0–1; 2) the curve
these formulas should be monotonous to preserve the differences local region;
3) they should be differentiable in the process of gradient backpropagation. To
be specific, we first preserve the basic illumination map. Moreover, we consider
the second formula. As we all know, low-light images have extremely low pixel
values. From this formula, we obtain the inverse illumination map, which looks
like the image with fog. What’s more, with this illumination, we can address the
problem of overexposure to a certain extent. The third formula is inspired by
the gamma correction, we utilize the third formula, and we set γ as 2.2. Gamma
correction is used for smooth extended dark details. To increase the nonlinearity
and contrast of illumination, we perform gamma correction on the illumination.
We find that the quality of the final illumination map could be improved by
fusing the gamma corrected illumination map.

In order to aggregate the above three illumination advantages, we integrate
and optimize illumination maps to generate the better illumination. The con-
catenation operation is utilized for integration. Then, we develop a network to
optimize the fusion result and further aggregate their advantages. As showed in
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Fig. 3. Comparison of illumination components and the enhanced results. The top row
is the estimated illumination, and the bottom row is the enhanced result. PSNR/SSIM
scores are reported below each image.

Fig. 2, we only use three residual blocks but still be able to predict the desired
results. the kernel size of the Conv is also 3 × 3, 64 channels. This module out-
puts a final illumination I′. It’s worth noting that, the pixel values of I′ are in
definitely ranges, {I′|Si ≤ I′

i ≤ 1, i = 1, ..., N}, thus preventing colors from going
beyond the range indicated.

2.2 Loss Function

Our loss function L contains two parts, i.e., the reconstruction loss Lrecon and
neighborhood loss Lnb formulated as:

L = Lrecon + λLnb. (1)

We empirically set λ = 0.5. Since we have low light/normal paired images, a
following reconstruction loss is defined:

Lrecon =
∑

i,j

‖R(i, j) − R̃(i, j)‖2, (2)

where R represents the final enhanced result, and R̃ is the ground truth, i and
j represent pixel position in x and y direction, respectively. Note that restoring an
illumination map from a single low-light image is a highly ill-posed problem, and
hence the final enhanced result, that is, the reflection map is unideal. Without the
guidance of the illumination ground truth, it is necessary to add additional loss
constraints on reflection map. Hence, inspired by EPS [4], we also put forward
a following neighborhood loss to explicitly encourage the network to learn the
local information:

Lnb =
∑

i,j

∑

(p,q)∈N (i,j)

‖(f(i, j) − f(p, q)‖1, (3)
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Fig. 4. Quantitative results of low-light image enhancement.

Input LightenNet DeepUPE DRBN SSIENet Ours

Fig. 5. More visual results. The first three lines are the results of MIT-Adobe FiveK
dataset, the last three lines are the results of LIME, MEF and NPE datasets.

where f(x, y) = R(x, y) − R̃(x, y) and Ni,j denotes the 5 × 5 neighborhood
centered at pixel (i, j). This term explicitly penalizes deviations in the gradient
domain and enhances the image contrast. We add this neighborhood term to the
weighted �1 loss since smoothing involves evident gradient changes. It also can
prevent color deviation and improve the generalization ability of the model.
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3 Experimental Results

3.1 Implementation Details

We utilize the MIT-Adobe FiveK dataset [1] as the training dataset with 5000
low/normal image pairs, each with five retouched images produced by different
experts (A/B/C/D/E). We follow previous methods [6,8,18] to use only the
output by Expert C, randomly select 500 images for testing, and train on the
remaining 4500 images. We randomly cropped the image to a small size of 48×48
and used the Adam optimizer to iterate at a rate of 500. The learning rate was
0.001 for the first 50 epoched and 0.0001 for the next. Our code is implemented
on a NVIDIA Titan X GPU based on tensorlfow.

3.2 Performance Evaluation

We compared our algorithm with advanced low-light enhancement methods
including LIME [7], JIEP [2], SRIE RRM [15], LightenNet [14], RetinexNet [21],
DeepUPE [19], SSIENet [23] and DRBN [22]. We evaluated them in five widely-
used datasets, including MIT-Adobe FiveK [1], LIME [7], MEF [16], NPE [20],
and VV1 datasets.

Results on MIT-Adobe FiveK Dataset. We first evaluate our approach
in this dataset including quantitative and qualitative results. We calculate the
PSNR and SSIM in 500 testing. As is shown in Fig. 4, obviously our approach
has the best PSNR/SSIM. To evaluate the performance of the illumination map,
we choose six representative methods for comparison. As is shown in Fig. 3,
LIME and SSIENet have the sensible issues, causing some details cannot be
recovered. In addition, Fig. 5 provides more visual comparisons with other better
performing methods, it is not difficult to find that these methods are deficient
in brightness and color restoration, but our method can address these problems
well. Our results have more comfortable brightness and saturation.

Results on Other Datasets. We directly test the trained model in other
datasets to verify the generalization ability of our method. Through quantitative
and qualitative comparison, it is found that our method also performs well in
other datasets. Then we show more visual comparisons in LIME, MEF and NPE
datasets, and the result is shown in Fig. 5, In these data sets, some methods
have similar problems. For example, SSIENet still has uneven brightness, and
DeepUPE’s results are significantly less bright in these datasets (Table 1).

1 https://sites.google.com/site/vonikakis/datasets.

https://sites.google.com/site/vonikakis/datasets
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Table 1. Quantitative comparison in terms of NIQE.

Methods LIME MEF VV NPE AVG

SRIE 4.0502 3.4513 3.0164 3.1845 3.4251

JIEP 3.7192 3.4351 2.9704 3.2415 3.3406

LIME 4.1291 3.7663 3.2012 3.6384 3.6844

RRM 4.8661 5.0626 3.8002 3.2473 4.2437

RetinexNet 4.5923 4.4104 4.0776 4.2126 4.3231

LightenNet 3.7312 3.3823 2.9524 3.3884 3.3631

DRBN 3.9645 4.0579 3.2036 2.8772 3.4839

SSIENet 4.8260 4.3510 4.2368 2.9609 4.0936

DeepUPE 3.9282 3.5342 3.0082 3.7977 3.5668

Ours 3.6124 3.3731 2.9530 2.6322 3.1430

I1 I2 I3 I′

S./I1 S./I2 S./I3 Output

Fig. 6. Visual comparison of different illumination maps and the corresponding
enhanced results.

3.3 Ablation Analysis

To analyze the effect of each illumination, we show the visual comparison of
different illumination in our designed network. In the Fig. 6, the first row shows
three illuminations and the fused illumination, and the second row shows the
corresponding enhancement results. This experiment reflects that the necessity
and effectiveness of our designed multiple illumination estimation module.

We also conduct the ablation study to verify our effectiveness about the
main components. According to the different combinations of the three formulas,
we consider four networks and evaluated their quantitative results in the MIT-
Adobe FiveK dataset. All the cases include “I1 + I2 + I3”, “I1 + I2”, “I1 + I3”,
and the original single illumination “I1”. For “I1”, since they only have single
illumination, we removed the illumination fusion algorithm. In the experiment,
we find that the result of “I1” is slightly brighter than that of “I1 + I2 + I3”,
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Table 2. Ablation study of different cases of our DMIF.

Methods I1 I1 + I2 I1 + I3 I1 + I2 + I3

PSNR 20.3170 21.0910 20.5995 21.9697

SSIM 0.8017 0.8210 0.8116 0.8315

Input RetinexNet DeepUPE DRBN SSIENet Ours

Fig. 7. Visual comparison of instance segmentation (Best viewed with zoom).

but the overall image quality is reduced. The results in Table 2 show that the
complete three models improve the enhancement.

3.4 Object Instance Segmentation

In order to further demonstrate our superiority, we directly apply our trained
models to enhance low-light images of some real-world scenes. We enhance the
low-light image in UFDD dataset [17] by utilizing our method without any fine-
tuning and then execute Mask-RCNN [12] to achieve the object instance seg-
mentation. We consider the segmentation results of the original low-light image
RetinexNet, DeepUPE, DRBN and SSIENet for comparison. The visual com-
parison is shown in Fig. 7. Obviously, the results of other methods have the
problems of unsatisfactory segmentation and inaccurate object detection, but
our proposed algorithm realizes a more superior performance with high accu-
racy, since it recovers more semantic information in the image.
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4 Conclusion

In this paper, we proposed a deep multi-illumination fusion network for low-light
enhancement. We applied different formulas and well-designed network to predict
multiple illumination with different meanings. We developed a fusion module to
fuse them, to overcome details loss and color deviation caused by using single
illumination. The low/normal image pairs and the proposed loss function are
used to train the whole network. Experimental results showed that our method
was superior to advanced low-light enhancement methods. In the future, we will
incorporate more illumination maps to further improve performance.
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