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Abstract. Single-view 3D clothed human reconstruction is a challeng-
ing task, not only because of the need to infer the complex global topol-
ogy of human body but also due to the requirement to recover delicate
surface details. In this paper, a method named HEI-Human is proposed
to hybridize an explicit model and an implicit model for 3D clothed
human reconstruction. In the explicit model, the SMPL model is vox-
elized and then integrated into a 3D hourglass network to supervise
the global geometric aligned features extraction. In the implicit model,
2D aligned features are first extracted by a 2D hourglass network, and
then an implicit surface function is employed to construct the occupancy
field of human body using the hybrid 2D and 3D aligned features. As
the explicit model and implicit model are mutually beneficial, our HEI-
Human method not only generates reconstructions with plausible global
topology but also recovers rich and accurate surface details. The HEI-
Human is evaluated on the current largest publicly available dataset, and
the experimental results demonstrate that our method outperforms the
state-of-the-art methods including DeepHuman, PIFu, and GeoPIFu.
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1 Introduction

3D human reconstruction has attracted more and more attention in the field
of computer vision and computer graphics, since it has a wide range of poten-
tial applications such as virtual dressing [1] and game design [2]. To obtain
accurate reconstructed 3D human models, conventional methods usually employ
multi-view images [3] or stereo imaging sensors [4]. Recently, benefiting from the
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Fig. 1. 3D clothed human reconstruction results by our HEI-human method. Our
method not only generates 3D human models with plausible global topology but also
recovers rich and accurate surface details.

development of deep neural networks, promising progress [5–7] has been made
in reconstructing 3D human models from a single RGB image.

Technically, single-view 3D human reconstruction is a very challenging task.
To reconstruct satisfactory 3D human models, algorithms not only need to infer
the plausible 3D global topology of the articulated human body from a monoc-
ular 2D image that lacks depth information but also are required to recover
delicate surface details such as hairs and clothes wrinkles. Recent researches
have tried to address these two challenges using different methods, which can
be roughly divided into two categories: explicit methods and implicit methods.
Explicit methods such as DeepHuman [5] and Tex2Shape [15] usually represent
human body by a parametric model (e.g. SMPL [8]) and infer the 3D recon-
structions explicitly. Due to the geometrical prior provided by the parametric
model, explicit methods can infer the plausible 3D global topology of human
body. However, constrained by the low resolution of the parametric model, such
explicit methods often have difficulty in recovering surface details. Implicit meth-
ods like PIFu [6] and Geo-PIFu [7] employ implicit surface functions to estimate
dense occupancy fields for reconstructing 3D human meshes. Benefiting from
the dense sampling and interpolation strategies in the feature spaces, implicit
methods are able to recover rather richer surface details than explicit methods.
However, lacking of the guidance of global information, implicit methods tend
to produce unreasonable artifacts on the reconstructed models.

To infer the reasonable global topology of 3D human body from a single
RGB image while recovering rich surface details, in this paper, a method named
HEI-Human is proposed to hybridize an explicit model and an implicit model
for 3D clothed human reconstruction. In our explicit model, the SMPL model [8]
is voxelized and then integrated into a 3D hourglass network [9] to supervise the
3D geometric aligned features extraction. In our implicit model, the 2D aligned
features are first extracted by a 2D hourglass network and then an implicit sur-
face function is employed to construct the occupancy field of the reconstructed



HEI-Human: Single-View 3D Clothed Human Reconstruction 253

human body using the hybrid 2D and 3D aligned features queried from interpo-
lation feature spaces. The explicit model and implicit model in our HEI-human
method are mutually beneficial. On one hand, as the implicit model is supervised
by the topology prior provided by the explicit model, our method rarely produces
unreasonable artifacts; On the other hand, the implicit model not only guaran-
tees the recovery of surface details but also helps the explicit model to more
accurate geometric aligned features by producing detailed reconstructions. As a
result, our HEI-Human method not only generates reconstructions with plau-
sible global topology but also recovers abundant and accurate surface details
(As illustrated in Fig. 1). Experimental results on the DeepHuman dataset [5]
demonstrates that our HEI-Human method achieves the state-of-the-art perfor-
mance.

In summary, the main contributions of this paper are two-fold:
(1) We propose a framework to hybridize an explicit model and an implicit

model for reconstructing 3D clothed human from a single RGB image. By squeez-
ing the advantages of both the explicit model and the implicit model, this hybrid
framework has the ability to generate 3D human reconstructions with plausible
global topology and rich surface details.

(2) We design deep neural networks that mainly consist of 2D/3D hourglass
structures to implement the hybrid framework for 3D clothed human reconstruc-
tion. Although very simple loss functions are used, our HEI-human method out-
performs the current state-of-the-art methods including DeepHuman [5], PIFu
[6], and GeoPIFu [7], which employ much more delicate and complex losses.

2 Related Work

Parametric Model Based 3D Human Reconstruction. A parametric
model is an explicit model with three main representations: voxel, point cloud
or mesh [10]. A parametric human model is a statistic template trained from
many human models, which can be used to drive arbitrary human bodies with
a limited number of parameters. The parametric human model allows for super-
vision and normalization during the 3D human reconstruction process, prevent-
ing the reconstruction results from varying significantly in comparison with the
human model. Most parametric-based human reconstruction methods including
HMR [11], SPIN [12], DaNet [13], and GCMR [14] focus on human shape and
pose estimation. DeepHuman [5] uses the SMPL model to constrain the degrees
of freedom in the output space. After obtaining the voxel occupation field, the
surface normals and the computed depth values are employed to refine the details
of the model surface, but this method has little effect due to the storage limita-
tion. Tex2Shape [15] considers that the small resolution of the SMPL model can
affect the details of the reconstruction, and adds normal maps and vector dis-
placement maps to the SMPL model to enhance the details of the reconstruction.
HMR uses the pose and shape parameters of the SMPL model to transform the
3D reconstruction problem into a parametric regression problem of the model
but without surface reconstruction. What’s more, model-based reconstruction
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can also lead to 3D reconstruction failure when the SMPL model is registering
incorrectly [7].

Non-parametric Based 3D Human Reconstruction. Non-parametric
human reconstruction does not require the 3D model as a priori hypothesis
to obtain the 3D human model directly from a single RGB image. After the
emergence of the 3D reconstruction task, some methods (such as Bodynet [16],
TetraTSDF [17] and VRN [18]) reconstruct the 3D geometry of the human body
via volumetric regression. Volumetric regression is limited by the resolution,
which is a huge challenge for both network and memory of high-resolution vol-
umetric regression. Secondly, volumetric regression ignores the details of the
human surface. For solving these problems, the implicit function is taken into
account for the 3D reconstruction task. In the field of 3D human reconstruction,
the main work on implicit functions are PIFu [6], PIFuHD [19], ARCH [20],
Geo-PIFu [7], SiCloPe [21] etc. The sampling strategy of the implicit surface
function is an issue worth investigating. Dense and sparse sampling have a sig-
nificant impact on the reconstruction results. The optimal sampling parameters
by comparison experiments are given in PIFu. PIFuHD feeds higher resolution
color images to obtain high quality reconstructions. ARCH proposes an opacity-
aware distinguishable rendering in generating datasets to improve the implicit
function representations in arbitrary poses. Geo-PIFu converts image 2D fea-
tures to 3D latent features in feature extraction to constrain spatial degrees of
freedom. SiCloPe uses an implicit representation of 2D silhouettes to describe
complex human body. However, the implicit surface function lacks constraints
on the global features of the human body model, which can cause some errors.

3 Methodology

3.1 Overview

Our HEI-human method is implemented by deep neural networks. As illustrated
in Fig. 2, the networks are divided into two main parts: the explicit part (upper)
and the implicit part (bottom). Given an input image (I), our method feeds
it to both the explicit part and the implicit part. The explicit part starts from
the parametric SMPL model estimation and voxelization, then extracts latent
3D aligned features from the voxelized SMPL model (S̃) by a 3D Hourglass
network based encoder (V), and finally reconstructs a coarse result (Ŝ) by a 3D
convolutional network based decoder (D). The implicit part first extracts latent a
2D aligned features using a 2D Hourglass network (G), then feeds both the latent
2D and 3D aligned features into an implicit surface function (f) implemented
by a multi-layer perception (MLP) for constructing an occupancy field. The
occupancy field is constructed in a voxel-by-voxel manner. For each voxel in the
occupancy field, the latent 2D and 3D aligned features with respect to the voxel
are queried and hybridised to compute the probability of occupancy. Finally,
the 3D human mesh is reconstructed from the refined occupancy fields (

�

S) via
Marching Cubes [22].
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Fig. 2. Overview of our method. Our networks are divided into the explicit part (upper)
and the implicit part (bottom). The explicit part extracts latent 3D aligned features
from the voxelized SMPL model (S̃) by a 3D Hourglass based encoder (V). The implicit
part first extracts the latent 2D aligned features using a 2D Hourglass network (G), then
hybridises both the latent 2D and 3D aligned features into an implicit surface function
(f) to construct an occupancy field. Finally, the 3D human mesh is reconstructed from
the occupancy filed via Marching Cubes.

3.2 Explicit Model

In our explicit model, a 3D human body is represented by a voxelized SMPL
(Skinned Multi-Person Linear) [8]. The SMPL is a parametric model that rep-
resents a specific 3D human body by a shape vector α and a pose vector β:

T (α, β) = T + Bs(α) + Bp(β) (1)

S(α, β) = W (T (α, β), J(α), β, δ) (2)

where T is the mean model, Bs(·) is a blend shape function, Bp(·) is a pose-
dependent blend shape function, J(·) is a joint prediction function, and W (·, δ)
is a skinning function with blend weights δ. In the public available SMPL model
[8], T , Bs(·), Bp(·), J(·), and δ are given. The shape vector α and the pose vector
β are estimated using HMR [11] and SMPLify [23]. For the sake of integrating
the SMPL model into the deep learning network, the vertex-based SMPL model
(S) is voxelized into a voxel volume (S̃):

S̃ = H(S) (3)

where H(·) denotes the voxelization algorithm [5]. As illustrated in Fig. 2, the
voxelized SMPL model only generates a naked-like 3D human body with plau-
sible pose and body shape to the input image.

A deep neural network with an “encoder-decoder” reconstruct is designed to
reconstruct a clothed 3D human body (Ŝ) from the voxelized SMPL model (S̃)
explicitly:

Ŝ = Dϕ(Vμ(S̃)) (4)
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where V(·) and D(·) are respectively the encoder and decoder. The encoder V(·),
which is implemented by a 4-layer tandem 3D-Hourglass network with trainable
weights μ, is utilized to extract latent 3D aligned features. The decoder D(·)
consists of two 3D convolutions with weights ϕ. It should note that only the
latent 3D aligned features extracted by the encoder V are employed to infer
the finally fine reconstruction by the implicit model, which will described in
Subsect. 3.3. Although the decoder D also can generate a coarse result (i.e., Ŝ),
it is only used for training the encoder.

3.3 Implicit Model

In our implicit model, the surface of a 3D human mesh is represented implicitly
by the occupied/unoccupied decision boundary of a continuous occupancy field.
An occupancy mapping function f(·) is employed to map each 3D point p in the
occupancy field into an occupancy value o (o ∈ [0, 1]):

f(p) = o (5)

An occupancy value o > 0.5 indicates point p is inside the mesh, while o < 0.5
means point p is outside the mesh. Thereby, the surface of a 3D human mesh is
defined as a 0.5 level set of the continuous occupancy field.

Besides the input RGB image (I), the latent feature volume (V) produced
by the explicit model is also utilized to learn the occupancy mapping function
f(·). Thereupon, f(·) is formulated as:

fθ({Gω(I, Ẍ (π(p))m)k}m=1,···M
k=1,···K , {Vμ(

...
X (p)n)d}n=1,···N

d=1,···D , pz) = o (6)

where G(I, ·) is a feature extraction function that generates latent feature maps
from the input image I, K and k are respectively the number of channels and
the channel index of the feature map extracted by g, π(p) represents the weak
perspective transformation that projects the 3D query point p into the 2D feature
map plane, D and d are the number of channels and the channel index of the
latent feature volume (V), Ẍ and

...
X respectively denote the bi-linear and tri-

linear interpolation functions, (M,m) and (N,n) are respectively the numbers
and indexes of interpolations in the 2D and 3D feature spaces, and pz represents
the depth of p. Hence, our implicit occupancy mapping function with respect to
the query point p totally has (K×M)+(D×N)+1 input parameters, which fuse
the 2D latent features extracted from the input image, the 3D latent features
extracted by the explicit model, and the depth information of the query point.

As illustrated in Fig. 2, the functions Gω(I) and fθ(·) in Eq. (6) are respec-
tively implemented by a 2D hourglass network with weights ω and a MLP with
weight θ. Unlike the Geo-PIFu [7] that directly learns latent 2D and 3D aligned
features from the input image, our method integrates the latent 3D aligned fea-
tures learnt from the parametric SMPL model to regularize the implicit model.
As a consequence, our method not only recovers rich surface details but also
rarely produces unreasonable artifacts.
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3.4 Loss Functions

The explicit part of our network is trained using an extended cross-entropy loss
between the estimated voxel volume and ground-truth [24]:

Lv(S̈, Ṡ) = − 1
|Ṡ|

∑

x,y,z

γS̈x,y,z log Ṡx,y,z + (1 − γ)(1 − S̈x,y,z)(1 − log Ṡx,y,z) (7)

where S̈ is the voxel volume voxelized from the ground-truth 3D human mesh,
Ṡ ∈ {Ŝ,

�

S} is the estimated (coarse or fine) voxel volume, (x, y, z) are the voxel
indices for the width, height and depth axes, and γ is the weight to balance
the losses of occupied/unoccupied voxels. The implicit part of our network is
trained based on a set of query points randomly sampled from the occupancy
field. The mean square error loss is adopted to measure the errors between the
ground-truth and the predicted occupancy values:

Lp =
1

|P|
∑

p∈P
(op − ôp)

2 (8)

where P is the set of sampled query points for a training sample, |P| denotes
the number of sampled points, and op and ôp are respectively the ground-truth
and the predicted occupancy values of the query point p.

4 Experiments

4.1 Dataset and Protocol

Dataset. The proposed 3D human reconstruction method is extensively eval-
uated on the DeepHuman dataset [5], which contains 6,795 data items of 202
subjects with various body shapes, poses, and clothes. The raw data of Dee-
pHuman is captured by consumer-grade RGB-D cameras, and then processed
into 3D human data items by an improved DoubleFusion algorithm [4]. Conse-
quently, each data item in DeepHuman consists of a 3D textured surface mesh, a
RGB image, and an aliened SMPL model. In our experiments, the aliened SMPL
models are used.

Protocols. In our experiments, our method and the other competing 3D human
reconstruction methods are all trained on the 5,436 training data items in the
DeepHuman dataset, and evaluated on the rest 1,359 testing data items.

4.2 Training Details

A two-stage scheme is used to train our HEI-human model. At the first stage, the
explicit model is trained only with the Lv(S̈, Ŝ) loss for 10 epochs. At the second
stage, the whole network (explicit model + implicit model) is trained for another
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10 epochs using λLv(S̈,
�

S) + (1 − λ)Lq. The weight parameter γ in Eq. (7) is set
to 0.7, the number of sampled query points for each training sample in Eq. (8) is
set as 5,000, and the hyper-parameter λ is set to 0.5. For both the two training
stages, the RMSprop is adopted as the optimizer, the batch size is fixed to 8,
and the learning rate is set as 0.0001 at the beginning and decayed by a factor
of 10 after every 4 epochs. All the networks in our method are implemented by
PyTorch [25], and the whole training task takes about 7 days on a computer
with two NVIDIA GeForce 1080Ti GPUs.

4.3 Quantitative Results

Metrics. The Chamfer distance (εcd), point-to-surface distance (εpsd), cosine
distance (εcos), and L2-norm (εl2) are adopted as the metrics for evaluating
different 3D human reconstruction methods. The Chamfer distance and point-
to-surface distance focus more on the overall quality of model topology, while
the cosine distance and L2-norm tend to evaluate local surface details. For all
these four metrics, smaller values indicate better performance.

Table 1. Quantitative comparisons on the DeepHuman dataset.

Methods εcd εpsd εcos εl2

DeepHuman [5] 11.928 11.246 0.2088 0.4647

PIFu [6] 2.6004 4.0174 0.0949 0.3048

Geo-PIFu (coarse) [7] 2.2907 2.6260 0.0874 0.3175

Geo-PIFu [7] 1.7794 1.9548 0.0717 0.2649

HEI-Human (Ours) 0.1742 0.2297 0.0661 0.2540

Results and Comparisons. The proposed HEI-Human is compared against
three code available state-of-the-art 3D human reconstruction methods: the Dee-
pHuman [5], PIFu [6], and Geo-PIFu [7]. The quantitative results achieved by
these methods are presented in Table 1. In terms of global topology quality, our
method outperforms the second-best method Geo-PIFu [7] (an implicit method)
by a Chamfer distance (εcd) of 1.6052 and by a point-to-surface distance (εpsd)
of 1.4251; In terms of the local details, our method also surpasses Geo-PIFu by
a cosine distance of 0.0056 and by a L2-norm of 0.0109. Although our method
outperforms all the competing methods on the four metrics, it should be note
that it is even not a completely fair comparison. Our method is only trained for
20 (10+10) epochs with a small batch-size of 8 due to the restriction in exper-
imental condition, while all the three competing methods are trained for more
than 40 epochs with a larger batch-size (Geo-PIFu [7] is trained for 45 epochs
with a batch-size of 36).
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4.4 Qualitative Results

Figure 3 shows the qualitative reconstruction results produced by DeepHuman
[5], PIFu [6], Geo-PIFu [7], and our HEI-Human on the DeepHuman dataset. It
can been seen that DeepHuman recovers rather less local surface details than
the other three methods and generates “fattened” and “naked-like” human bod-
ies. Although PIFu and Geo-PIFu can generate surface details of clothes and
plausible global topology from the visible view, we can find many unreason-
able artifacts (marked in red circles) on their results from the invisible view.
Benefiting from the combination of the explicit voxelized SMPL model and the
implicit surface function representation, our method not only generates better
global topology from the views of both the visible and invisible sides but also
recovers richer surface details (such as hair and clothes winkles) than the com-
peting methods. However, the resolution of the 3D human model in the THuman
dataset is low, and the details of the face are blurred. In Fig. 3, the facial details
of all methods are not be recovered. 3D face reconstruction methods [26,27] can
be employed to solve this problem.

PIFu Geo-PIFu Ours Ground-truthDeepHumanPIFu Geo-PIFu Ours Ground-truthDeepHumanInput image

Visible-view Invisible-view

Fig. 3. Qualitative 3D human reconstruction results on the DeepHuman dataset.

4.5 Ablation Studies

To further explain the effect of the explicit model and the implicit model, we
conduct ablation studies. The implicit module (the bottom part in Fig. 2) and
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the explicit module (the upper part in Fig. 2) are respectively removed from our
method and the remained networks are trained and tested with the same data
and protocol described in Subsect. 4.1. Table 2 shows the results achieved by our
method with different module configurations. Obviously, the Chamfer distance
(εcd) and point-to-surface distance (εpsd) produced by our method significantly
increase after removing the explicit module, while the cosine distance (εcos) and
L2-norm (εl2) grow larger after removing the implicit module. These quantita-
tive changes have also been visually proved by the qualitative results illustrated
in Fig. 4. On one hand, some topology artifacts and distortions (such as the arms
and feet circled in red) can be found on the reconstructed human bodies from the
invisible view after removing the explicit module. On the other hand, most of the
local details on the surface of reconstructed 3D human bodies disappear after
removing the implicit module. It can be inferred from these ablation experimen-
tal results that the explicit module is beneficial to improve the global regularities
and the implicit module helps capture fine-scale surface details from the input
image. By combining the explicit and implicit modules, our hybrid method (i.e.,
HEI-human) not only generates reconstructions with plausible global topology
but also recovers abundant and accurate surface details.

Table 2. Quantitative results achieved by our method with different module configu-
rations on the DeepHuman dataset.

Modules εcd εpsd εcos εl2

Explicit + Implicit 0.1742 0.2297 0.0661 0.2540

Only implicit 2.6004 4.0174 0.0949 0.3048

Only explicit 0.6134 0.4997 0.0968 0.3211

Input image Only implicit Only explicit Implicit + explicitGround-truth Only implicit Only explicit Implicit + explicitGround-truth

Visible-view Invisible-view

Fig. 4. Qualitative results achieved by our method with different module configura-
tions.
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5 Conclusions

As an inherently ill-pose problem, 3D human reconstruction is challenging not
only because of the requirement to infer the complex global topology of human
body but also due to the need to recover surface details. In order to outcome
these challenges, a method named HEI-Human has been proposed to hybridize
an explicit model and an implicit model for 3D clothed human reconstruction.
Ablation studies have shown that the explicit model is beneficial for global topol-
ogy while the implicit model mainly takes charge of recovering the surface details.
As a consequence, our hybrid method recovers rich surface details and rarely pro-
duces unreasonable artifacts. Experimental results on the DeepHuman dataset
demonstrate that our HEI-human outperforms the current state-of-the-art meth-
ods including DeepHuman [5], PIFu [6], and GeoPIFu [7].
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