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Abstract. Anomaly detection is a binary classification task, which is to judge
whether the input image contains an anomaly or not and the difficulty is that only
normal samples are available at training. Due to this unsupervised nature, the
classic supervised classification methods will fail. Knowledge distillation-based
methods for unsupervised anomaly detection have recently drawn attention as it
has shown the outstanding performance. In this paper, we present a novel knowl-
edge distillation-based approach for anomaly detection (RKDAD). We propose
to use the “distillation” of the “FSP matrix” from adjacent layers of a teacher
network, pre-trained on ImageNet, into a student network which has the same
structure as the teacher network to solve the anomaly detection problem, we show
that the “FSP matrix” are more discriminative features for normal and abnormal
samples than other traditional features like the latent vectors in autoencoders. The
“FSP matrix” is defined as the inner product between features from two layers
and we detect anomalies using the discrepancy between teacher’s and student’s
corresponding “FSP matrix”. To the best of our knowledge, it is the first work to
use the relation-based knowledge distillation framework to solve the unsupervised
anomaly detection task. We show that our method can achieve competitive results
compared to the state-of-the-art methods on MNIST, F-MNIST and surpass the
state-of-the-art results on the object images in MVTecAD.
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1 Introduction

Anomaly detection (AD) is a binary classification problem and it has been approached
in a one-class learning setting, i.e., the task of AD is to identity abnormal samples during
testing while only normal samples are available at training. It has been an increasingly
important and demanding task in many domains of computer vision, like in the field of
visual industrial inspection [1, 2], the anomalies are rare events so it is usually required
that we only train machine learning models on normal product images and detect abnor-
mal images during inference. Moreover, anomaly detection is widely used in health
monitoring [3], video surveillance [4] and other fields.

In recent years, a lot of studies havebeendone to improve the performanceof anomaly
detection [5–13] in images. Among them, some methods especially the methods based
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on deep learning have achieved great success. Most methods [5–7] model the normal
data abstraction by extracting discriminative latent features, which are used to deter-
mine whether the input is normal or abnormal. Some others [8] detect anomalies using
per-pixel reconstruction errors or by evaluating the density obtained from the model’s
probability distribution. Some recent studies [5, 6] have shown that the knowledge dis-
tillation framework is effective for anomaly detection tasks. The main idea is to use a
student network to distill knowledge from a pre-trained expert teacher network, i.e., to
make the feature maps of certain layers of the two networks as equal as possible for
the same input at training and anomalies are detected when the feature maps of certain
layers of the two networks are very different at testing.

In this paper, we present a novel knowledge distillation-based approach (RKDAD)
for anomaly detection.We use the “FSPmatrix” as the distilled knowledge instead of the
direct activation values of critical layers, the “FSPmatrix” is defined as the inner product
between features from two layers, i.e., the Gram matrix between two feature maps. By
minimizing the L2 distance between the teacher’s and the student’s “FSP matrix” at
training, the student network can learn the flow process of the normal sample features in
the teacher network. We detect anomalies using the discrepancy between teacher’s and
student’s corresponding “FSP matrix” at testing.

2 Related Work

Many previous studies have explored the anomaly detection tasks for images. In this
section, we will provide a brief overview of the related works on anomaly detection
tasks for images. We mainly introduce methods based on Convolutional Autoencoders
(CAE), Generative Adversarial Networks (GAN) and methods based on knowledge
distillation (KD).

2.1 CAE-Based Methods

The methods based on AE mainly use the idea that by learning the latent features of the
normal samples, the reconstruction of abnormal inputs is not as precise as the normal
ones, which results in larger reconstruction errors for abnormal samples, i.e., training
on the normal data, the AE is expected to produce higher reconstruction error for the
abnormal inputs than the normal ones and the reconstruction error can be defined as the
L2 distance between the input and the reconstructed image. Abati et al. [7] proposed
LSA [7] to train an autoregressive model at its latent space to better learn the normal
latent features. MemAE [8] proposed the memory module to force the reconstructed
image to look like the normal image, this mechanism increases the reconstruction error
of abnormal images. CAVGA [9] proposed an attention-guided convolution adversarial
variational autoencoder, which combines VAE with GAN to learn normal attention and
abnormal attention in an end-to-end manner.

2.2 GAN-Based Methods

GAN-based methods attempt to find a specific latent feature space by training on normal
samples. Then during testing, anomalies are detected based on the reconstruction or the
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feature error. AnoGAN [10] is the first research to use GAN for anomaly detection. Its
main idea is to let the generator learn the distribution of normal images through adver-
sarial training. When testing, the L1 distance between the generated image and the input
image and the feature error will be combined to detect anomalies. GANomaly [11] pro-
posed the Encoder1-Decoder-Encoder2 architecture with a discriminator. What is used
to detect anomalies is not the difference between the input image and the reconstructed
image but the difference between the features of the two encoders. Skip-GANomaly [12]
improves the generator part and uses the U-net [13] architecture that is with stronger
reconstruction capabilities.

2.3 KD-Based Methods

Recently, KD-basedmethods for anomaly detection have drawn attention as it has shown
the outstanding performance. Bergmann et al. [5] proposed Uniformed Students [5]
which is the first anomaly detection method based on knowledge distillation. In this
method, several student networks are trained to regress the output of a descriptive teacher
network that was pretrained on a large dataset. Anomalies are detected when the outputs
of the student networks differ from that of the teacher network, and the intrinsic uncer-
tainty in the student networks is used as an additional scoring function that indicates
anomalies. Salehi et al. [6] proposed to use the “distillation” of features at various layers
of the pre-trained teacher network into a simpler student network to tackle anomaly
detection problem. The Uniformed Students solely utilizes the last layer activation val-
ues in distillation, the second method mentioned above shows that considering multiple
layers’ activation values leads to better exploiting the teacher network’s knowledge and
more distinctive discrepancy. However, the methods mentioned above only consider the
direct activation values as the knowledge of distillation without considering the rela-
tions between layers, which is more representative of the essential characteristics of the
normal samples.

3 Method

In this section, we will first introduce the details of the gram matrix and show how to
use the Gram matrix to define the “FSP matrix”. Then, we will introduce our approach
to use the “FSP matrix” from two adjacent layers as the “distilled knowledge” to solve
unsupervised anomaly detection tasks.

3.1 Gram Matrix and the “FSP Matrix”

As Eq. (1) shows, the matrix composed of the inner product of any k vectors in n-
dimensional Euclidean space is defined as the Gram matrix of the k vectors. Obviously,
Gram matrix of k vectors is a symmetric matrix. Gram matrix is often used in style
transfer tasks, specifically, the feature map of the content image in a certain layer will
be flattened into a one-dimensional feature vector according to the channel, and then a
gram matrix composed of C vectors can be obtained, C is the number of channels in the
feature map. Use the same operation to calculate the Gram matrix of the style image,
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then minimize the distance of the Gram matrix of the two images. The Gram matrix is
used to measure the difference in the style of two images. If the distance between the
Gram matrix of the feature vectors of the two images is very small, it can be determined
that the styles of the two images are similar. Essentially, the Grammatrix can be regarded
as the eccentric covariance matrix between feature vectors, i.e., the diagonal elements
reflect the information of the different feature vectors themselves, that is, the intensity
information of the feature vectors, and the off-diagonal elements provide correlation
information between different feature vectors.

�(α1, α2, . . . , αk) =

⎛
⎜⎜⎝

(α1, α1)(α1, α2) . . . (α1, αk)

(α2, α1)(α2, α2) . . . (α2, αk)

. . . . . . . . . . . .

(αk , α1)(αk , α2) . . . (αk , αk)

⎞
⎟⎟⎠ (1)

The “FSP matrix” [14] proposed by Yim [14] et al. As Fig. 1 shows, the FSP matrix
is generated by the features from two layers instead of being generated by the feature
map of a single layer like the standard Gram matrix. By computing the inner product
which represents the direction, to generate the FSP matrix, the flow between two layers
can be represented by the FSP matrix.

Fig. 1. The generation process of FSP matrix between different layers.

The calculation process of the FSP matrix is shown in Eq. (2), where F1 and F2 are
two feature maps from different layers, h and w are the height and width of the feature
map respectively, i and j are the channel indexes of the two feature maps, x and W are
the input image and network parameters. It can be seen from Eq. (2) that the premise
of calculating the FSP matrix is that the height and width of the two feature maps are
equal.

FSPi,j(x;W ) =
h∑

s=1

w∑
t=1

F1
s,t,i(x;W )×F2

s,t,j(x;W )

h×w (2)

By letting the student network learn the flow of normal samples’ knowledge in the
teacher network during training, if the input is normal sample during testing, the flow
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of the teacher and the student network will be similar, while for the abnormal input, the
flow will be very different.

3.2 The Proposed Approach

Given a training datasetDtrain = {x1, . . . , xn} containing only normal images, we train a
student network with the help of a pre-trained teacher network, and the teacher network
remains the same throughout the training process. Given a test dataset Dtest , we utilize
the discrepancy of the “FSP matrix” between the teacher and the student network to
detect anomalies during the test, therefore, the student network must be trained to mimic
the behavior of the teacher network, i.e., the student network should learn the “FSP
matrix” of the teacher network during training. Earlier KD-based works for anomaly
detection such as [5], which strive to teach just the activation values of the final layer
of the teacher to the student, and in [6] they encourage the student to learn the teacher’s
knowledge on normal samples through conforming its intermediate representations in
a number of critical layers to the teacher’s representations. Because the feature maps
of different layers of the neural network correspond to different levels of abstraction,
mimicking different layers leads to a more thorough understanding of normal data than
using only the final layer. In the methods mentioned above, the knowledge taught by the
teacher to the student is the direct activation values of the critical layers, considering
that a real teacher teaches a student the flow for how to solve a problem, in [14], Yim
et al. proposed to define high-level distilled knowledge as the flow for solving a problem.
Because the Gram matrix can be generated by computing the inner product of feature
vectors, it contains the directionality between features, the flow can be represented by
using Gram matrix consisting of the inner products between features from two layers.
As Fig. 1 shows, the Gram matrix across layers is defined as the “FSP matrix”, i.e., the
“relational knowledge” in our approach RKDAD, which is the higher-level knowledge
for the normal images than the activation values of critical layers. We encourage the
student to learn this higher-level knowledge of the teacher when training with normal
image samples, during the test, if the input is an abnormal image the “FSP matrix” of
the teacher network and the student network will be very different. Compared with the
activation values of critical layers, the “FSP matrix” is more difficult to learn but it is
also more discriminative for normal and abnormal samples.

In what follows, we refer to the “FSP matrix” between the i-th and the (i + 1)-th
layers in the networks as Fi,i+1, and the “FSP matrix” between the two adjacent layers
of the teacher network as Ft

i,i+1 and the student’s one as F
s
i,i+1. The feature maps of the

i-th layer and the (i + 1)-th layer should have the same resolution. The lost function of
our approach can be defined as Eq. (3)

LFSP = 1
N

N∑
i=1

λi ×
∣∣∣
∣∣∣Ft

i,i+1 − Fs
i,i+1

∣∣∣
∣∣∣2
2

(3)

where N represents the number of all convolutional layers in the network (The
convolutional layer refers to amodule with a convolution operator, an activation function
and an optional pooling operation), and λi is used to control the number of “FSP matrix”
in the loss function, i.e., when λi is equal to 0, the two adjacent convolutional layers
starting from the i-th convolutional layer are not used.
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Fig. 2. Complete architecture of our proposed method. The student network shares the same
structure with the teacher network pre-trained on a large dataset and learns the “FSP matrix”
between two adjacent layers on normal data from the teacher. The discrepancy of their “FSP
matrix” is formulated by a loss function and used to detect anomalies test time.

It should be noted that the teacher network and the student network share the same
network architecture, While the teacher network should be deep and wide enough to
learn all necessary features to perform well on a large-scale dataset, like ImageNet [15],
and the teacher network should be pre-trained on a large-scale dataset. The goal of the
student is to acquire the teacher’s knowledge of “FSP matrix” of the normal data.

Anomaly Detection: To detect anomalous images, each image inDtest is fed to both the
teacher and the student network, i.e., we need two forward passes for anomaly detection.
LFSP , the loss function of RKDAD, is also the final anomaly score. As the student only
learned the knowledge of “FSP matrix” of the normal data from the teacher, when the
input is an abnormal sample, the “FSP matrix” of the teacher and the student will be
very different, the anomaly score can be thresholded for anomaly detection.

4 Experiments

In this section, we have done extensive experiments to verify the effectiveness of our
method. We will first introduce the implementation details of our approach, and then we
introduce the datasets used. At last, we will show the anomaly detection results on the
datasets introduced. Specially, we report an average result sampled every 10 consecutive
epochs instead of reporting the maximum achieved result in many methods. The average
result is a better measure of a model’s performance.

4.1 Implementation Details

VGG [16] has shown outstanding performance on classification tasks. In our approach,
we choose the VGG-16 pre-trained on ImageNet as the teacher network, and a randomly
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initialized VGG-16 as the student network. Of course, there are many other excellent
network structures that can be used.However, it is required that the featuremap resolution
of some adjacent layers in the network structure used is the same, so that the FSP matrix
can be calculated. Similar to [6], we avoid using bias terms in the student network. The
model architecture of our approach is described in Fig. 2. We add 7 pairs of FSP matrix
to the loss function in total, the loss function is also the anomaly score that is ultimately
used to detect anomalies.

In all experiments, we use Adam [17] for optimization. The learning rate is set to
be 0.001 and the batch size is 64. We only use normal images which are fed to both the
teacher and the student network, and the parameterweights of the teacher network remain
unchanged while that of the student network are updated during the training process,
i.e., there are only forward propagation in the teacher network, and both forward and
back propagation in the student network. Because the FSP matrix is more difficult to
learn during the training process than the direct activation value of feature maps for the
student network, it is required to train many epochs, such as 1000 or more.

Fig. 3. Object (cable, toothbrush, capsule) and texture (wood, grid, leather) images inMVTecAD
[2]. The images in the upper row are normal samples and the ones in the lower row are abnormal
samples.

4.2 Datasets

We verified the effectiveness of our method on three datasets as follows.

MNIST [18]: a handwritten digit images dataset, which consists of 60k training and
10k test 28 × 28 Gy-scale images, includes numbers 0 to 9.

Fashion-MNIST [19]: a more complex image dataset proposed to replace MNIST,
which covers images of 70 k different products in 10 categories, such as T-shirt, dress
and coat etc.

MVTecAD [2]: a dataset dedicated to anomaly detection with more than 5 k images,
which includes 5 categories of texture images and 10 categories of object images. For
each category, the dataset train contains only normal images, and the test sets contain a
variety of abnormal images and some normal images. In our experiment, the images will
be scaled to the size 128 × 128. Some object and texture samples are shown in Fig. 3.
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Note that for MNIST and Fashion-MNIST, we regard one class as normal and others
as anomaly at training while at testing the whole test set is used. For MVTecAD, the
datasets train and test are used.

4.3 Results

We use the area under the receiver operating characteristic curve (AUROC) for eval-
uation. The results are shown in Table 1, 2 for MNIST, Fashion-MNIST and Table3,
4, 5 for MVTecAD. Note that the AUROC values in the tables are the average of 10
consecutive epochs, not the maximum value. We have compared our method with many
approaches, and the Tables show that our method can achieve competitive results with
to state-of-the-art method on the datasets we used.

The Results on MNIST and Fashion-MNIST. As Table 1 and Table 2 show, our
method RKDAD can achieve competitive results on mnist and fashion-mnist compared
to the state-of-the-art methods with using only the sum of l2 distances of the “FSP
matrix” as the loss function and the anomaly score, which verifies the effectiveness of
our relation-based knowledge distillation framework for anomaly detection task.

Table 1. AUROC in % on MNIST.

Method 0 1 2 3 4 5 6 7 8 9 Mean

ARAE [20] 99.8 99.9 96.0 97.2 97.0 97.4 99.5 96.9 92.4 98.5 97.5

OCSVM [21] 99.5 99.9 92.6 93.6 96.7 95.5 98.7 96.6 90.3 96.2 96.0

AnoGAN [10] 96.6 99.2 85.0 88.7 89.4 88.3 94.7 93.5 84.9 92.4 91.3

DSVDD [22] 98.0 99.7 91.7 91.9 94.9 88.5 98.3 94.6 93.9 96.5 94.8

CapsNetpp [23] 99.8 99.0 98.4 97.6 93.5 97.0 94.2 98.7 99.3 99.0 97.7

OCGAN [24] 99.8 99.9 94.2 96.3 97.5 98.0 99.1 98.1 93.9 98.1 97.5

LSA [7] 99.3 99.9 95.9 96.6 95.6 96.4 99.4 98.0 95.3 98.1 97.5

CAVGA [9] 99.4 99.7 98.9 98.3 97.7 96.8 98.8 98.6 98.8 99.1 98.6

U-Std [5] 99.9 99.9 99.0 99.3 99.2 99.3 99.7 99.5 98.6 99.1 99.35

Mul-KD [6] 99.8 99.8 97.8 98.7 98.4 98.2 99.4 98.4 98.4 98.1 98.71

OURS 99.91 99.96 98.74 99.41 98.32 98.18 99.12 98.97 97.99 98.34 98.89

The Results on MVTecAD. Note that Table 3 shows the AUROC results of 10 cate-
gories of object images in MVTecAD, and it can be seen that the performance of the
proposed approach RKDAD can surpass other methods to obtain the state-of-the-art
results. Table 4 shows the results of 5 categories of texture images and Table 5 shows the
average performance across all categories inMVTecAD. It can be seen from Table 4 that
our method is not very good for the texture images but it still exceeds the performance
of many methods. Table 5 shows that the performance of our method on MVTecAD is
second only to the state-of-the-art method, and is significantly better than other methods.
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Table 2. AUROC in % on Fashion-MNIST.

Method 0 1 2 3 4 5 6 7 8 9 Mean

ARAE
[20]

93.7 99.1 91.1 94.4 92.3 91.4 83.6 98.9 93.9 97.9 93.6

OCSVM
[21]

91.9 99.0 89.4 94.2 90.7 91.8 83.3 98.8 90.3 98.2 92.8

DAGMM
[25]

30.3 31.1 47.5 48.1 49.9 41.3 42.0 37.4 51.8 37.8 41.7

DSEBM
[26]

89.1 56.0 86.1 90.3 88.4 85.9 78.2 98.1 86.5 96.7 85.5

DSVDD
[22]

98.2 90.3 90.7 94.2 89.4 91.8 83.4 98.8 91.9 99.0 92.8

LSA [7] 91.6 98.3 87.8 92.3 89.7 90.7 84.1 97.7 91.0 98.4 92.2

Mul-KD
[6]

92.5 99.2 92.5 93.8 92.9 98.2 84.9 99.0 94.3 97.5 94.5

OURS 90.72 99.35 90.79 94.91 91.84 94.78 85.81 99.16 90.57 96.14 93.41

All experimental results show that although themodel architecture ofRKDAD is very
simple, it still achieves excellent results, which proves that the proposed relation-based
knowledge distillation framework for anomaly detection has great potential.

Table 3. AUROC in % on object images in MVTecAD. We surpass the SOTA method.

Method Bottle Hazelnut Capsule Metal
Nut

Pill Cable Transistor Toothbrush Screw Zipper Mean

AVID
[27]

88 86 85 63 86 64 58 73 66 84 75.3

AESSIM
[28]

88 54 61 54 60 61 52 74 51 80 63.5

AEL2
[28]

80 88 62 73 62 56 71 98 69 80 73.9

AnoGAN
[10]

69 50 58 50 62 53 67 57 35 59 56.0

LSA [7] 86 80 71 67 85 61 50 89 75 88 75.2

CAVGA
[9]

89 84 83 67 88 63 73 91 77 87 80.2

DSVDD
[22]

86 71 69 75 77 71 65 70 64 74 72.2

VAE-grad
[29]

86 74 86 78 80 56 70 89 71 67 75.7

(continued)
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Table 3. (continued)

Method Bottle Hazelnut Capsule Metal
Nut

Pill Cable Transistor Toothbrush Screw Zipper Mean

GT [30] 74.29 33.32 67.79 82.37 65.16 84.70 79.79 94.00 44.58 87.44 71.34

Mul-KD
[6]

99.39 98.37 80.46 73.58 82.70 89.19 85.55 92.17 83.31 93.24 87.80

OURS 99.05 96.82 73.08 82.79 78.70 92.71 87.75 88.33 94.67 89.97 88.39

Table 4. AUROC in % on texture images in MVTecAD.

Method Leather Wood Carpet Tile Grid Mean

AVID [27] 58 83 73 66 59 67.8

AESSIM [28] 46 83 67 52 69 63.4

AEL2 [28] 44 74 50 77 78 64.6

AnoGAN [10] 52 68 49 51 51 54.2

LSA [7] 70 75 74 70 54 68.6

CAVGA [9] 71 85 73 70 75 74.8

DSVDD [22] 73 87 54 81 59 70.8

VAE-grad [29] 71 89 67 81 83 78.2

GT [30] 82.51 48.24 45.90 53.86 61.91 58.49

Mul-KD [6] 73.58 94.29 79.25 91.57 78.01 83.34

OURS 60.90 92.37 77.71 78.79 66.42 75.24

Table 5. Mean AUROC in % on MVTecAD.

Method AVID AESSIM AEL2 AnoGAN LSA CAVGA DSVDD VAE-grad GT Mul-KD OURS

Mean 73 63 71 55 73 78 72 77 67.06 87.87 84.00

5 Conclusion

In this paper, we have presented a novel knowledge distillation-based approach for
anomaly detection (RKDAD).Wehave further explored the possibility of anomaly detec-
tion using the “relational knowledge” between different layers when the knowledge of
normal samples flows in the network, and we show that using the “distillation” of the
“FSP matrix” from adjacent layers of a teacher network, pre-trained on ImageNet, into a
student network which has the same structure as the teacher network, and then using the
discrepancy between teacher’s and student’s corresponding “FSP matrix” at testing can
achieve competitive results compared to the state-of-the-art methods. We have verified
the effectiveness of our method on many datasets. In this paper, we only consider the
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“FSP matrix” from adjacent layers as the “relational knowledge”, more forms of “re-
lational knowledge” can be explored to improve the performance of anomaly detection
task in the future.
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