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Abstract. Binarization is a key step in document analysis and archiv-
ing. The state-of-the-art models for document image binarization are
variants of the encoder-and-decoder architecture, such as fully convolu-
tional network (FCN) and U-Net. Despite their success, they still suf-
fer from two challenges: (1) max-pooling or strided convolution reduces
the spatial resolution of the intermediate feature maps, which may
lead to information loss, and (2) interpolation or transposed convolu-
tion attempts to restore the feature maps to the desired spatial resolu-
tion, which may also result in pixelation. To overcome these two limita-
tions, we propose a fully dilated convolutional network, termed FD-Net,
using atrous convolutions instead of downsampling or upsampling oper-
ations. We have conducted extensive experiments on the recent DIBCO
(document image binarization competition) and H-DIBCO (handwrit-
ten document image binarization competition) benchmark datasets. The
experimental results show that our proposed FD-Net outperforms other
state-of-the-art techniques by a large margin. The source code and pre-
trained models are publicly available at https://github.com/beargolden/
FD-Net.

Keywords: Historical document image binarization · Document image
segmentation · Fully dilated convolutional network (FD-Net) · Dilated
convolution · Atrous convolution

1 Introduction

Document image binarization (also referred to as segmentation or thresholding)
aims to extract text pixels from complex document background, which plays an
important role in document analysis and recognition (DAR) systems. It converts
a color or grayscale image into a binary one, essentially reducing the information
contained within the image, and thus greatly reducing the disk storage capacity
as well as network transmission bandwidth. It is widely considered to be one of
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the most important pre-processing steps, and the performance of binarization
will directly affect the accuracy of subsequent tasks, such as page layout analysis,
machine-printed or handwritten character recognition. It also helps to resolve the
conflict between document conservation and cultural heritage.

(a) torn page (b) ink bleed through (c) text stroke fading

(d) page stain (e) library seal (f) text stroke changes

Fig. 1. Historical document image samples from recent DIBCO and H-DIBCO bench-
mark datasets

The thresholding of high-quality images is simple, but the binarization of
historical document images is quite challenging. The reason is that the latter
suffers from severe degradation, such as torn pages, ink bleed through, text stroke
fading, page stains, and artifacts, as shown in Fig. 1. In addition, variations in the
color, width, brightness, and connectivity of text strokes in degraded handwritten
manuscripts further increase the difficulty of binarization.

The state-of-the-art (SOTA) models for document image binarization are
variants of the encoder-and-decoder architecture, such as fully convolutional net-
work (FCN) [1] and U-Net [2]. These segmentation models have 3 key compo-
nents in common: an encoder, a decoder, and skip connections. In the encoder,
consecutive of convolutions and downsampling (e.g., max-pooling or strided con-
volution) are performed. This helps extract higher-level features, but reduces the
spatial resolution of intermediate feature maps, which may lead to information
loss. In the decoder, repeated combination of upsampling (e.g., bilinear interpo-
lation) and convolutions are conducted to restore feature maps to the desired
spatial resolution, which may also result in pixelation or texture smoothing.
Therefore, after each upsampling operation, feature maps with the same level
are merged by skip connections, which transfer localization information from the
encoder to the decoder. In addition, sampling operations like max-pooling and
bilinear interpolation are not learnable.

To overcome the aforementioned problems, we present FD-Net, a fully dilated
convolutional network for degraded historical document image binarization. The
proposed segmentation model removes all the downsampling and upsampling
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operations, and employs dilated convolutions (also known as atrous convolutions)
instead. Therefore, the proposed segmentation model contains only convolutional
and dilated convolutional layers, which are fully trainable. In this way, the spatial
resolutions of all the intermediate layers are identical, but without significantly
increasing the number of model parameters.

Our contributions are two folds. First, we propose a new paradigm that
replaces downsampling or upsampling operations with dilated convolutions. It
can achieve promising pixel-wise labeling results on various degraded historical
document images. Second, we investigate hybrid dilation rate settings to alleviate
the grid effect in dilated convolution.

The rest of this paper is organized as follows. Section 2 briefly reviews the
related work on document image binarization. Section 3 describes our proposed
fully dilated convolutional neural network in detail. The experimental results
and analysis are presented in Sect. 4, and Sect. 5 concludes the paper.

2 Related Work

Existing document image binarization methods can be classified as global thresh-
olding, local adaptive thresholding, and hybrid approaches [3].

The global thresholding method uses a single threshold to classify the pixels
of a document image into two classes, namely text and background. The Otsu’s
[4] method is one of the best known global thresholding techniques. It uses the
grayscale histogram of an image to select an optimal threshold that makes the
variance within each class as small as possible and the variance between the two
classes as large as possible. The Otsu’s method is fast but ineffective and has
poor noise immunity when dealing with low-quality images.

The local adaptive thresholding method can handle more complex cases,
and automatically computes local thresholds based on the grayscale distribution
within a neighborhood window around a pixel. The Niblack’s [5] method uses a
smoothing window mechanism, where the local threshold is determined by the
mean and standard deviation of the grayscale values within the window centered
at each pixel. This method is good at segmenting low-contrast text, but since
only local information is considered, it is more likely to treat background noise
as foreground text as well. The Sauvola’s [6] and Wolf’s [7] methods overcome
the drawbacks of Niblack’s counterpart. They are based on the assumption that
the gray value of text pixels is close to 0 and the gray value of background pixels
is close to 255. It makes the threshold smaller for background points with higher
gray values and the same standard deviation, thus filtering out some distracting
textures and noises in the background, but the binarization is still not effective
in the case of low contrast between the foreground and background.

Hybrid methods for the binarization of historical document images have also
been developed. Su et al. [8] present a document image binarization method
using local maximum and minimum (LMM). The document text is segmented
by constructing a contrast image and then detecting high-contrast pixels that
typically lie around text stroke boundaries and using local thresholds that are
estimated from the detected high-contrast pixels within a local neighborhood
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window. Jia et al. [9] propose a document image binarization method based
on structural symmetric pixels (SSPs), which are located at the edges of text
strokes and can be extracted from those with large gradient values and opposite
gradient directions. Finally, a multiple local threshold voting-based framework
is used to further determine whether each pixel belongs to the foreground or
background. The contrast or edge-based segmentation methods do not work
well for binarization of degraded images with complex document background,
e.g., low contrast, gradients, and smudges.

Howe [10] presents an energy-based segmentation method, which treats each
image pixel as a node in a connected graph, and then applies the max-flow/min-
cut algorithm to partition the connected graph into two regions to determine the
text and background pixels. Mesquita et al. [11], Kligler et al. [12], and Xiong
et al. [13,14] propose different document enhancement techniques, followed by
Howe’s binarization method, to provide guidance for text and background seg-
mentation, respectively. In addition, Chen et al. [15] and Xiong et al. [16] propose
the use of support vector machines (SVMs) for statistical learning-based segmen-
tation. Bhowmik et al. [17] introduce a document image binarization inspired by
game theory (GiB). However, the main drawback of these methods is that only
handcrafted features are employed to obtain segmentation results. Therefore, it
is difficult to design representative features for different applications, and hand-
crafted features work well for one type of image, but may fail on another.

Deep learning-based binarization of degraded document images is a hot topic
and trend of current research. Tensmeyer and Martinez [18] present a multi-scale
FCN architecture with pseudo F-measure loss. Zhou et al. [19] also explore a
multi-scale deep contextual convolutional neural network with densely connected
conditional random fields (CRFs) for semantic segmentation. Vo et al. [20] pro-
pose a supervised binarization method for historical document images based on
hierarchical deep supervised networks (DSNs). Calvo-Zaragoza and Gallego [21]
present a selectional auto-encoder (SAE) approach for document image binariza-
tion. Bezmaternykh et al. [22] present a historical document image binarization
method based on U-Net [2], a convolutional neural network originally designed
for biomedical image segmentation. Zhao et al. [23] consider binarization as an
image-to-image generation task and propose a method for historical document
image binarization using conditional generative adversarial networks (cGANs).
Peng et al. [24] propose a deep learning framework to infer the probabilities of
text regions by a multi-resolution attention-based model, and then fed into a
convolutional conditional random field (ConvCRF) to obtain the final binary
images. Xiong et al. [25] present an improved semantic segmentation model,
called DP-LinkNet, which adopts hybrid dilated convolution (HDC) and spatial
pyramid pooling (SPP) modules between the encoder and the decoder, for more
accurate binarization of degraded historical document images.

3 Proposed Network Architecture: FD-Net

The proposed fully dilated convolutional network model, referred to as FD-Net,
is shown in Fig. 2. As can be seen from the figure, it consists of 3 main compo-
nents, namely an encoder, a decoder, and skip connections. What distinguishes
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Fig. 2. The proposed FD-Net architecture

our proposed FD-Net from other SOTA models for document image binarization
is that the proposed model does not contain downsampling or upsampling layers.
The pooling operation or strided convolution reduces the spatial resolution of
intermediate feature maps, which may lead to internal data structure missing or
spatial hierarchical information loss; while the interpolation operation or strided
deconvolution attempts to restore the feature maps to the desired spatial resolu-
tion, which may also result in pixelation or checkerboard artifacts. In addition,
the pooling and interpolation operations are deterministic (a.k.a. not learnable
or trainable).

To overcome the above problems, an intuitive approach is to simply remove
those downsampling and upsampling layers from the model, but this will also
decrease the receptive field size and thus severely reduce the amount of context.
For instance, a stack of three 3 × 3 convolutional layers is equivalent to the
regularization of a 7×7 convolutional layer. That’s why pooling operations exist
for increasing the receptive field size, and upsampling for pixel-wise prediction.
Fortunately, dilated convolution can compensate for this deficiency, and it has
been proven to be effective in semantic segmentation [26]. For this reason, we
replace all the downsampling and upsampling layers with dilated convolutions.
Therefore, the spatial resolution of all the intermediate convolutional layers in
the proposed model is identical.

The encoder subnetwork comprises 4 consecutive convolutional blocks. Each
encoding block includes two 3 × 3 standard convolutional layers followed by a
3 × 3 dilated convolutional layer (the dilation rate settings will be discussed
in Subsect. 3.1). The number of channels or feature maps after each encoding
block is doubled, so that the network can effectively learn higher-level abstract
feature representations. The central block contains two 3 × 3 standard convolu-
tional layers, and connects the encoder and decoder. The decoder subnetwork,
similar to the encoder counterpart, also consists of 4 nearly symmetrical con-
volutional blocks. Each decoding block includes a 3 × 3 dilated convolutional
layer, a merge layer that concatenates the feature maps of the decoder with
those of the corresponding encoder by skip connections, and two 3 × 3 standard
convolutional layers. The number of feature maps before each decoding block is
halved. The ReLU (rectified linear unit) activation function is used in all the
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aforementioned convolutional layers. At the end, a 3 × 3 standard convolutional
layer with Sigmoid activation function is adopted to generate the resulting binary
image patches.

3.1 Hybrid Dilation Rate Settings

We introduce a simple hybrid dilation rate solution by setting different dilation
rates to avoid the gridding effect [27,28]. In addition, choosing an appropriate
dilation rate can effectively increase the receptive field size and also improve the
segmentation accuracy. The purpose of our hybrid dilation rate setting is to make
the final receptive field size of all the successive convolutions (including dilated
ones) completely cover a specific local neighborhood. The maximum distance M
between two non-zero kernel weights is defined as:

Mi ⇐ max[Mi+1 − 2ri,Mi+1 − 2(Mi+1 − ri), ri] (1)

with Mn = rn.
Instead of using the same dilation rates or those with a common factor rela-

tionship among all the convolutional layers, we set the dilation rates of the 3
layers in each encoding block to [1, 1, ri], where the values of ri used in the
4 encoding blocks are set to [2, 3, 5, 7], respectively. The dilation rates of the
decoder subnetwork are set in the reverse order of the corresponding encoder
subnetwork. Since spatial resolutions of all feature maps are the same, skip con-
nections are essentially merging the features with different receptive field sizes.

3.2 Implementation Details

Given a color antique document image, it is first converted to its grayscale coun-
terpart, then cropped to a patch size of 128 × 128 and fed into our proposed
FD-Net model. The output binary patches are seamlessly stitched together to
generate the resulting binary image.

We combine the Dice loss with the standard binary cross-entropy (BCE) loss.
Combining these two metrics allows for some diversity in the loss function, while
benefiting from the stability of the BCE. The overall loss function is defined as:

L = 1 − 2
∑N

n=1 ynŷn∑N
n=1 y2

n+
∑N

n=1 ŷ2
n

︸ ︷︷ ︸

LDice

− 1
N

∑N

n=1
[yn log ŷn + (1 − yn) log(1 − ŷn)]

︸ ︷︷ ︸

LBCE

(2)

where N is the number of image pixels, yn and ŷn are the ground truth (GT)
and predicted segmentation, respectively.

The Adam optimization algorithm is adopted in our deep learning model.
The initial learning rate defaults to 0.001, and the exponential decay rates for
the first and second moment estimates are set to 0.9 and 0.999, respectively. We
monitor the cost function values of the validation data, and if no improvement
is seen for 10 epochs, the learning rate is reduced to half. We also use an early
stop strategy once the learning stagnates for 20 consecutive epochs.
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We collect 50 degraded historical document images from the recognition and
enrichment of archival documents (READ) project1 as training data. The Bick-
ley Diary dataset is used for the ablation study, while the DIBCO and H-DIBCO
2009–2019 benchmark datasets are used as test data.

Table 1. Ablation study of FD-Net on the Bickley Diary dataset with varying dilation
rate settings (image patch size: 128 × 128, and batch size: 32)

Network

model

Dilation

rates

# of 1st

layer

channels

Validation

loss

Validation

accuracy

# of model

parameters

U-Net – 32 0.0577 0.9903 8,630,177

U-Net – 64 0.0541 0.9917 34,512,705

FD-Net 2,2,2,2 32 0.0600 0.9899 9,414,017

FD-Net 2,3,5,7 32 0.0514 0.9931 9,414,017

FD-Net 2,4,8,16 32 0.0524 0.9914 9,414,017

During the training and testing phases, the traditional color-to-gray method
is performed, with no other pre-processing or post-processing. Our implementa-
tion does not apply any data augmentation techniques either.

4 Experiments

4.1 Ablation Study

In this study, we use the Bickley Diary dataset to evaluate the impact of hybrid
dilation rates on the performance of our proposed FD-Net. It consists of 92 badly
degraded handwritten travel diary documents, 7 of which have GT images. We
crop these 7 historical document images into 1764 patches with corresponding
GT ones, 20% of which to be used as validation data.

The BCE-Dice loss and accuracy metrics are used to measure the perfor-
mance of our deep learning model. The loss is a sum of the errors made for each
sample in the training or validation set. The loss value implies how poorly or well
a model performs after each iteration of optimization, so higher loss is the worse
for any model. The accuracy is usually determined after the model parameters
and is calculated in the form of a percentage. It is a measure of how accurate
your model’s prediction is compared to the true data.

The experimental results of the ablation study are shown in Table 1. As can
be seen from the table, the segmentation performance of our proposed FD-Net
is basically similar to or even better than that of the vanilla U-Net architecture
with the same number of layers, but the number of parameters of our FD-Net
model is almost the same or much less than that of the U-Net. Among all the
compared models, the FD-Net with our proposed hybrid dilation rates performs
the best. The results of our ablation experiments suggest that the correct setting
of the dilated convolutions can not only help maintain the receptive field size,
but also further improve the segmentation accuracy.
1 https://read.transkribus.eu/.

https://read.transkribus.eu/
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4.2 More Segmentation Experiments

In this experiment, we use 10 document image binarization competition datasets
to evaluate the segmentation performance of our proposed FD-Net. The DIBCO
2009 [29], 2011 [30], 2013 [31], 2017 [32], 2019 [33] and H-DIBCO 2010 [34], 2012
[35], 2014 [36], 2016 [37], 2018 [38] benchmark datasets consist of 90 handwritten,
36 machine-printed, 10 Iliad papyri document images and their corresponding
GT images. The 10 datasets contain representative historical document degra-
dation, such as fragmented pages, ink bleed through, background texture, page
stains, text stroke fading, and artifacts.

Table 2. Performance evaluation results of our proposed method against SOTA tech-
niques on the 10 DIBCO and H-DIBCO test datasets

Method FM↑ (%) pFM (%) PSNR

(dB)

NRM (%) DRD MPM (‰)

Gallego’s SAE [21] 79.221 81.123 16.089 9.094 9.752 11.299

Bhowmik’s GiB [17] 83.159 87.716 16.722 8.954 8.818 7.221

Jia’s SSP [9] 85.046 87.245 17.911 5.923 9.744 9.503

Peng’s woConvCRF [24] 86.089 87.397 18.989 6.429 4.825 4.176

Zhao’s cGAN [23] 87.447 88.873 18.811 5.024 5.564 5.536

Vo’s DSN [20] 88.037 90.812 18.943 6.278 4.473 3.213

Bezmaternykh’s UNet [22] 89.290 90.534 21.319 5.577 3.286 1.651

Proposed FD-Net 95.254 96.648 22.836 3.224 1.219 0.201

We adopt evaluation metrics used in DIBCO and H-DIBCO competitions to
evaluate the performance of our proposed method. The evaluation metrics are
FM (F-measure), pFM (pseudo F-measure), PSNR (peak signal-to-noise ratio),
NRM (negative rate metric), DRD (distance reciprocal distortion metric), and
MPM (misclassification penalty metric). The first 2 metrics (FM and pFM)
reach the best value at 1 and the worst at 0. The PSNR measures how close a
binarized image to the GT image, and therefore, the higher the value, the better.
In contrast to the former 3 metrics, the binarization quality is better for lower
NRM, DRD, and MPM metrics. Due to space limitations, we omit definitions of
those evaluation metrics, but readers can refer to [30,33,34] for more details.

The proposed FD-Net is compared with Jia’s SSP [9], Bhowmik’s GiB [17],
Vo’s DSN [20], Gallego’s SAE [21], Bezmaternykh’s U-Net [22], Zhao’s cGAN
[23], and Peng’s attention-based[24] techniques on all the 10 DIBCO and H-
DIBCO datasets, and the evaluation results are listed in Table 2. It can be seen
from the table that all the evaluation measures of our proposed method achieve
the best results on all the 10 test datasets. Compared with Bezmaternykh’s U-
Net [22], the FM, pFM, PSNR, NRM, DRD, and MPM of our proposed method
are 5.963%, 6.115%, 1.516dB, 2.353%, 2.067 and 1.451‰better than those of the
second best technique, respectively. This also implies that our proposed FD-Net
architecture outperforms U-Net, and produces more accurate segmentation.

Figure 3 further displays the resulting binary images generated by different
techniques. From the figure we can see that Gallego’s SAE [21] tends to produce
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(a) Original (b) Gallego[21] (c)
Bhowmik[17]

(d) Jia[9] (e) Peng[24]

(f) Zhao[23] (g) Vo[20] (h)
Bezmaternykh[22]

(i) Proposed (j) GT

Fig. 3. Binarization results of all evaluation techniques for CATEGORY2 20 in DIBCO
2019 dataset

ghost text pixels in the true background region. Bhowmik’s GiB [17], Peng’s
attention-based segmentation (woConvCRF) [24], Zhao’s cGAN [23], and Vo’s
DSN [20] have difficulty in removing the edges of fragmented pages. Compared to
Jia’s SSP [9] and Bezmaternykh’s U-Net [22], our proposed FD-Net can produce
better visual quality by preserving most text strokes and eliminating possible
noise.
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5 Conclusion

In this paper, we present a fully dilated convolutional neural network, termed
FD-Net, for more accurate binarization of degraded historical document images.
The superior performance is attributed to its dilated convolutional architecture
and skip connection, which is designed to address two major challenges faced
by current segmentation models: (1) internal data structure missing or spatial
hierarchical information loss, and (2) max-pooling and interpolation operations
are not learnable or trainable. We conducted extensive experiments to evaluate
the performance of our proposed FD-Net on the recent DIBCO and H-DIBCO
benchmark datasets. Results show that the proposed method outperforms other
SOTA techniques by a large margin.
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