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Preface

This proceedings volume contains the papers presented at the 19th International
Conference on Unconventional Computation and Natural Computation (UCNC 2021)
held during October 18–22, 2021. Because of the continuing COVID-19 pandemic the
conference was organized as a hybrid event, with the physical meeting taking place at
the Aalto University campus in Espoo, Finland, and some talks presented online over
the Internet.

The UCNC conference series covers fundamental research into computation that
goes beyond the standard Turing model, including both computational models and
methods inspired by nature, and the computational characteristics of natural processes.
The conference scope encompasses, for instance, the following topics and areas:
programmable matter, material computing, molecular (DNA) computing, quantum
computing, optical computing, chaos computing, collision-based computing;
self-assembling and self-organizing systems, cellular automata, neural computation,
evolutionary computation, swarm computing, artificial life, artificial immune systems,
amorphous computing, membrane computing, physarum computing, super-Turing
computation, computational neuroscience, computational systems biology, synthetic
biology, and cellular (in vivo) computing.

The conference was established by Cristian S. Calude in Auckland, New Zealand, in
1998 as Unconventional Models of Computation (UMC). The second and third editions
of UMC were held in Brussels (2000) and in Kobe (2002). To explicitly recognize the
significance of experimental and applied work, and the inspiration from nature, the
conference first changed its name to UC (Unconventional Computation) in 2005, and
then to UCNC in 2012.

Since 2005 the meeting has been held annually: Seville (2005), York (2006),
Kingston (2007), Vienna (2008), Ponta Delgada (2009), Tokyo (2010), Turku (2011),
Orléans (2012), Milan (2013), London (2014), Auckland (2015), Manchester (2016),
Fayetteville (2017), Fontainebleau (2018), and Tokyo (2019). Preparations were made
for a 2020 meeting in Vienna, but due to the dramatic emergence of the COVID-19
pandemic this event had to be canceled.

Possibly due to the unusual circumstances, the submissions this year were down by
about a third from previous levels, with 17 qualified contributions from authors in 10
countries: Finland, Germany, Japan, Latvia, the Netherlands, Norway, Russia,
Thailand, UK, and USA. Each of the submissions was reviewed by three reviewers,
and based on these and consequent discussions, the Program Committee (PC) decided
to accept 12 papers for oral presentation.

In addition to the contributed presentations, the conference program included a
poster session, five plenary talks by Corentin Coulais (University of Amsterdam), Cody
Geary (Aarhus University), Mikko Möttönen (Aalto University), Andrew Phillips
(Microsoft Research Cambridge), and Damien Querlioz (CNRS, Université
Paris-Saclay). Furthermore, the conference hosted two collocated workshops:



Programmable Matter, organized by Christian Scheideler (Paderborn University) and
Matthew Patitz (University of Arkansas), and the Third International Workshop on
Theoretical and Experimental Material Computing (TEMC 2021), organized by Susan
Stepney (University of York).

We warmly thank all authors of the contributed papers and posters, the invited
speakers, the workshop organizers, and all the participants for making UCNC 2021 a
pleasant and productive meeting.

As the PC co-chairs, we would also like to express our gratitude to the members
of the PC and the external reviewers for reviewing the papers and participating in the
selection process to help maintain the high scientific standard of the UCNC conference
series. We owe a great thanks also to the EasyChair conference system, which is a
wonderfully helpful tool for managing the submission and review process.

For their kind professional assistance, we would like to thank producer Laura
Karvonen and controller Leila Koivisto from the Aalto University School of Science.
Partial financial support was provided by the Aalto Science Institute hosted by the
Aalto School of Science.

Finally, we wish to thank the editorial staff at Springer, and in particular Guido
Zosimo-Landolfo and Anna Kramer, for their detailed instructions and advice in the
process of publishing this volume.

August 2021 Irina Kostitsyna
Pekka Orponen
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Machine Materials

Corentin Coulais

University of Amsterdam, 1098 Amsterdam, XH, the Netherlands
coulais@uva.nl

Abstract. We will discuss how we can bridge the gap between material and
machine by introducing design guidelines for materials that can be programmed
to interact with their environment. We will discuss in particular how geometry,
topology and analogies between mechanics and condensed matter physics can
be leveraged to design metamaterials with complex and autonomous behaviors,
such as programmable shape-changes, rectification, locomotion, self-oscillations
and memory. We will argue that machine materials can open avenues for the
design of novel energy absorption devices and of a novel generation of dis-
tributed robots.

Keywords: Mechanical metamaterials � Active matter � Topological physics �
Robotic media

1 Introduction

Designing materials with advanced tasks and autonomous behavior is a tantalizing
scientific and technological challenge. For instance, can a material morph into an
arbitrarily complex shape? Can it locomote? Or can it store information and do basic
computation? We will in this talk exploit the realm of geometry and mechanics to
explore these questions. Machine materials are a versatile test bed at the table top to
explore the role of geometry, topology, frustration and activity on emergent phe-
nomena. They could also in the future provide cheaper and more sustainable materials
as well as dramatically change human-matter interactions.

2 Shape-Changing and Memory

The first type of machine materials we will talk about are shape-changing materials, i.e.
materials that can morph in controlled ways, see Fig. 1 for a few recent examples. The
design paradigms combine mappings between the deformation of the internal degrees
of freedom and spins with mechanical instabilities such as buckling. While in Fig. 1a,
the metamaterial exhibits a single complex shape-change, in Fig. 1b, the metamaterial
exhibits a sequence of steps and in Fig. 1c, the metamaterial can exhibit two distinct
shape-changes, depending on how fast it is compressed. We will also explain how to

https://orcid.org/0000-0002-3174-5836


leverage topological order and geometric frustration in similar systems to achieve
programmable mechanical memory.

3 Self-oscillations and Rectification

In a second part, we will introduce the concept of robotic media, which combines the
symmetry and the concept of emergence commonly used in condensed matter with the
capabilities of robotics. We will discuss how nonlinear work cycles naturally emerge in
such systems (Fig. 2a) and how we can use those to control how robotic media
locomote and collide with a substrate (Fig. 2bc). We further discuss how such behavior
is rooted in novel types of wave patterns that are rectified. We will further discuss how
these concepts can be married with topology to achieve robust emerging responses.

Fig. 1. Shape-changing metamaterials. (a) A cube displaying an on-demand texture upon compres-
sion. It has been designed using an analogy with spin systems [1]. (b) A metamaterial undergoing a
complex sequence of foldings under compression. It exploits a combination of buckling instability and
self-contact events [2]. (c) A multifunctional metamaterial that deforms in one mode upon fast com-
pression and in another mode upon slow compression. The deformations are highlighted by red and
blue ellipses overlayed on the pictures. The metamaterial has been designed using a combinatorial
approach [3].

Fig. 2. Robotic media. (a) Building block of robotic media: two vertices connected by linkages and
coupled asymmetrically. The building block can undergo a spontaneous limit cycle. (b) Locomotion
and collision of a robotic ring. (c) Picture of a hexagonal robotic lattice. Adapted from [4].

xii C. Coulais
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Programming RNA to Fold

Cody Geary

Interdisciplinary Nanoscience Center, Aarhus University, Denmark
geary@inano.au.dk

Living cells produce exquisitely detailed RNA nanostructures through a dynamic
folding process called cotranscriptional folding. This highly efficient simultaneous
assembly of many RNAs into functional structures resembles a manufacturing
assemblyline, with numerous RNA transcripts being continuously produced and folded
from each copy of the DNA template. Inspired by the architecture of RNAs in nature,
RNA origami are a new class of RNA structure that can be rapidly designed with
computers to be able fold cotranscriptionally into well defined nanostructures.
Understanding cotranscriptional folding of RNA will be the key to designing functional
RNA origami nanostructures that can be expressed and folded inside of living cells.
Functionalized RNA nanostructures may be the next big breakthrough in
nanomedicine.

In this talk I will share the latest breakthroughs in the field that have allowed us to
produce highly uniform structures up to 2,360nts long. Our new software called ROAD
automates the design of RNA origami sequences and also evaluates proposed structural
designs for their compatibility with cotranscriptional folding. ROAD enables protein
binding sites and fluorescent aptamers to be incorporated into the RNA origami
structures, greatly simplifying the process of designing functional RNA nanostructures.
ROAD has been validated by the production of over 40 different RNA structures that
have been extensively characterized by AFM and CryoEM. Algorithmic optimization
of the RNA sequence and the strand-path by ROAD appear to significantly improve the
yields of correctly folded RNA origami.

Fig. 1. The ROAD-supported RNA structure design and assembly pipeline.
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Superconducting Quantum Computers

Mikko Möttönen1,2

1 QCD Labs, QTF Centre of Excellence, Department of Applied Physics,
Aalto University, P.O. Box 13500, 00076 Aalto, Finland

mikko.mottonen@aalto.fi
https://www.aalto.

fi/en/department-of-applied-physics/quantum-computing-
and-devices-qcd

2 QTF Centre of Excellence, VTT Technical Research Centre of Finland Ltd,
P.O. Box 1000, 02044, Finland

Whereas the 20th century was miraculous in introducing the humankind a new and
exciting microscopic world, that of quantum physics, the 21st century will be perhaps
as amazing in demonstrating the use of quantum systems, controlled at the level of
single excitation quanta, in technological applications, namely, quantum technology.
Quantum computing is one of the most intriguing subfields of quantum technology
since it harnesses the exponentially large state space of the quantum computer to take
computational shortcuts in solving otherwise difficult mathematical problems.
Although several quantum algorithms that scale more favorably than their classical
counterparts are known, their requirements to provide advantage in problems of
practical value on a physical quantum computer still exceed the current state of the
quantum hardware. Thus still major work is to be carried out in improving both, the
quantum software and hardware. Here, I provide a tutorial to one of the most promising
approaches to implement the hardware, i.e., superconducting quantum computers. They
are built out of superconducting thin films fabricated using lithographic techniques on
semiconducting or insulating chips. At millikelvin temperatures, the circuits turn
superconducting and allow one to address the single excitation quanta of microwave
photons trapped into the system. These photon excitations, or the lack of them, con-
stitute the quantum bits, or qubits, that are at the heart of quantum computing.
Recently, quantum supremacy has been reported in superconducting quantum com-
puters, i.e., the quantum computer was able to solve a well-defined computational
problem faster than a classical supercomputer, but this computation was not found to
provide increased practical value. Nevertheless, the achievement of such a major
milestone seems promising for future practical applications of superconducting quan-
tum computers.

Keywords: Quantum computer � Superconducting circuit � cQED
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Computational Design of Nucleic Acid Circuits

Andrew Phillips

Microsoft Research, Cambridge CB1 0FB, UK
andrew.phillips@microsoft.com

Information processing circuits made of nucleic acids show great potential for enabling
a broad range of biotechnology applications, including smart probes for molecular
biology research, in vitro assembly of complex compounds, high-precision in vitro
diagnostics and, ultimately, computational therapeutics inside living cells. This tutorial
presents an introduction to nucleic acid circuits and to some of the computational
methods that underpin their design, simulation and analysis. The tutorial will include
the following topics, which we weave together using a simple running example of a
nucleic acid Join circuit:

– Theoretical underpinnings for the computational design of nucleic acid circuits and
examples of circuits implemented experimentally.

– Compilation of nucleic acid circuits to chemical reaction network models.
– A comparison of simulation and analysis methods for chemical reaction network

models of nucleic acid circuits: stochastic simulation, deterministic simulation,
linear noise approximation and probabilistic model-checking by integration of the
chemical master equation.

– Spatial simulations of nucleic acid circuits with diffusible species.
– Parameter inference and its application to nucleic acid circuit design.
– Nucleic acid circuit design abstractions: subdomains, user-defined reactions, a

hierarchy of compilation abstractions, just-in time compilation, unintended reac-
tions via leaks, circuits localized to DNA origami.

– The adaptation of logic programming to nucleic acid circuit design, by extending
standard logic programming with an equational theory of strands to express nucleic
acid molecular motifs.

– The use of logic programming to model circuits with complex topologies and with
DNA and RNA enzymes.

Throughout the tutorial, computational methods will be illustrated with simple
examples that can be executed online by attendees, and linked to practical examples of
nucleic acid circuits that have been implemented experimentally. We introduce these
methods using the Visual DSD system1, which allows a broad range of computational
nucleic acid circuits to be designed and analysed at the domain level. This runs in most
modern browsers, allowing attendees to try out the main examples from the tutorial,

1 https://classicdsd.azurewebsites.net/.
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which are built into the system. Although we illustrate the methods using Visual DSD
for convenience, the methods themselves are more broadly applicable. More generally,
we anticipate that languages and software for programming nucleic acid circuits will
accelerate the development of future biotechnology applications.

Computational Design of Nucleic Acid Circuits xvii



Achieving Energy-Efficient Artificial
Intelligence by Exploiting Imperfect

Nanodevices

Damien Querlioz

Université Paris-Saclay, CNRS, Centre de Nanosciences et de
Nanotechnologies, Palaiseau, France

damien.querlioz@c2n.upsaclay.fr

In recent years, artificial intelligence (AI) has made tremendous progress. The capa-
bilities of AI, however, come with a high price: a considerable energy consumption.
When performing AI, computers and graphics cards consume considerably more
energy for moving data between logic and memory units than for doing actual arith-
metic. Brains, by contrast, achieve superior energy efficiency by fusing logic and
memory entirely, performing a form of in-memory computing. Currently emerging
memory nanodevices such as (mem)resistive, phase change, and magnetic memories
give us an opportunity to achieve similar tight integration between logic and memory,
and increase the energy efficiency of AI. However, these nanodevices come with
important challenges due to their unreliable nature. In this talk, we will look at neu-
roscience inspiration to extract lessons on the design of in-memory computing systems
with unreliable devices. We will first study the reliance of brains on approximate
memory strategies, which can be reproduced for artificial intelligence. We will also
highlight that brains exploit the biophysics of their components to a much larger extent
than our electronic devices exploit the physics of their components [1].

We will then look at examples of systems exploiting nanotechnology in a way
inspired by these insights from the brain. We will give the example of a hardware
binarized neural network relying on resistive memory. Binarized neural networks are a
class of deep neural networks discovered in 2016, which can achieve state-of-the-art
performance with a highly reduced memory and logic footprint with regards to con-
ventional artificial intelligence approaches. Based on measurements on a hybrid CMOS
and resistive hafnium oxide memory chip exploiting a differential approach, we will see
that such systems can exploit the properties of emerging memories without the need for
error-correcting codes, and achieve extremely high energy efficiency [2]. Then, we will
present a second approach where the probabilistic nature of emerging memories,
instead of being mitigated, can be fully exploited to implement a type of probabilistic
learning. We show that the inherent variability in hafnium oxide memristors can nat-
urally implement the sampling step in the Metropolis-Hastings Markov Chain Monte
Carlo algorithm, and train experimentally an array of 16,384 memristors to recognize
images of cancerous tissues using this technique [3]. These results highlight the
importance of understanding and embracing the unreliable nature of emerging devices
in artificial intelligence designs.

https://orcid.org/0000-0002-0295-1008
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The Complexity of Multiple Handed
Self-assembly

David Caballero, Timothy Gomez(B), Robert Schweller, and Tim Wylie

University of Texas Rio Grande Valley, Edinburg, TX 78539-2999, USA
{david.caballero01,timothy.gomez01,robert.schweller,

timothy.wylie}@utrgv.edu

Abstract. In this paper we study complexities for the multiple-handed
tile self-assembly model, a generalization of the two-handed tile assem-
bly model in which assembly proceeds by repeatedly combining up to h
assemblies together into larger assemblies. We first show that there exist
shapes that are self-assembled with provably lower tile type complexities
given more hands: we construct a class of shapes Sk that requires Ω( k

h
)

tile types to self-assemble with h or fewer hands, and yet is self-assembled
in O(1) tile types with k hands. We further examine the complexity of
self-assembling the classic benchmark n×n square shape, and show how
this is self-assembled in O(1) tile types with O(n) hands. We next explore
the complexity of established verification problems. We show the prob-
lem of determining if a given assembly is produced by an h-handed system
is polynomial time solvable, whereas the problem of unique assembly ver-
ification is coNP-complete if the hand parameter h is encoded in unary,
and coNEXP-complete if h is encoded in binary.

1 Introduction

In this paper we investigate the complexity of fundamental problems related to
multiple handed self-assembly. The model is a tile self-assembly model where
system components are 4-sided Wang tiles, and self-assembly proceeds by tiles
combining non-deterministically, based on matching glue types, to build larger
assemblies. The most studied tile assembly models are the aTAM [26] where tiles
attach one-by-one to a growing seed assembly, and the 2HAM [6] where assem-
blies are produced by taking any two assemblies (one in each hand) and combin-
ing them to create a new producible assembly. Our focus here is a generalization
of the 2HAM, called the k-HAM, which allows groups of up to k assemblies (one
in each of up to k hands) to combine to create new stable assemblies. See [20] for
a general survey of tile self-assembly, and [27] for a survey of intrinsic simulation
in tile self-assembly, and [11,28] for an overview of algorithmic self-assembly and
recent experimental implementations in DNA.

This research was supported in part by National Science Foundation Grant CCF-
1817602.

c© Springer Nature Switzerland AG 2021
I. Kostitsyna and P. Orponen (Eds.): UCNC 2021, LNCS 12984, pp. 1–18, 2021.
https://doi.org/10.1007/978-3-030-87993-8_1
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2 D. Caballero et al.

Why Multiple Hands? The most fundamental version of self-assembly may be the
basic 2-handed model as the statistical likelihood of multiple pieces combining
within a short enough time to stabilize is small in many experimental models.
However, such productions happen in practice- often referred to as undesirable
spurious nucleation reactions [19]. At certain scales, it is useful to consider the
landscape of stable configurations, especially local minimum energy configura-
tions, even when reaching such configurations would require moving more than
two things into place simultaneously. Multiple handed self-assembly provides a
simple framework for exploring self-assembly phenomena that may have impacts
in these scenarios. Notably, multiple handed self-assembly may prove to be a use-
ful tool for designing robustness in self-assembly systems, e.g., designing a system
guaranteed to work even if the number of hands is increased up to some value k.
Applications of such robustness theory would be directly aided by understanding
fundamental complexities of self-assembly with multiple hands.

There are also classes of shapes that may not be built efficiently without mul-
tiple hands such as certain fractals that rely on multiple shapes coming together
simultaneously [8], and there are shapes that cannot be built as efficiently at
lower temperatures. Thus, given different experimental constraints, a reliance
on these interactions with fewer tiles at a lower temperature may be preferable.

Our Results. We provide many results that explore multiple handed assembly
from two angles: the complexity of fundamental problems, and complexity sep-
aration between the 2HAM and the h-HAM related to certain classes of shapes.
Results are shown compared to previous work in Tables 1 and 2 respectively.

The first set of results within this model involve exploring the complexity
of the computational problems of producibility, asking whether a given system
of tiles produces a given assembly, and the unique assembly verification (UAV)
problem asking whether a given tile system uniquely produces a given assembly
(i.e. all producible assemblies can continue to grow into the single provided target
assembly). We show that the producibility problem is solvable in polynomial
time, and that the UAV problem is coNP-complete if the parameter k (number
of hands) is encoded in unary, and coNEXP-complete if k is encoded in binary.
In particular, these hardness results hold for the standard 2D scenario with a
O(1)-bounded temperature parameter. In comparison, while the UAV problem
is known to be coNP-complete for both the 3D 2HAM [6] and the 2D 2HAM for
a non-constant bounded temperature [22], the complexity of UAV in the 2HAM
for 2D O(1)-bounded temperature is still open.

Our next set of results show that there exist shapes that can be built more
efficiently with more hands. We first provide a class of shapes, Sk, such that Sk

requires at least Ω( k
h ) unique tile types to be assembled for any system with at

most h hands, and yet is buildable in O(1) tile types with a k-handed system.
Next we consider the classic benchmark of an n×n square, and show this shape
can be built with O(1) tile types and O(n)-hands, which is provably fewer tile
types than needed with a O(1)-handed system for almost all integers n [21].

Related Work. The h-handed self-assembly model was introduced in [8] as a
generalization of the 2HAM, and was used to build a version of the Sierpinski
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Table 1. Tile complexity for n × n squares.

Model Tile complexity Thm.

aTAM/2HAM Θ( logn
log logn

) [21]

2HAM (high temperature) O(2log∗ n) [23]

kHAM Θ(1) Theorem 2

Table 2. Related and new results for verification problems. ∗Two results show coNP-
hardness of UAV in the 2HAM, one uses a step into the third dimension and the other
uses the temperature as part of the input.

Problem Hands Results Thm.

Producibility aTAM P [1]

Producibility 2 P [12]

Producibility k P Theorem 3

UAV aTAM P [1]

UAV 2 coNP-Complete∗ [6,22]

UAV k (Unary) coNP-Complete Corollary 2

UAV k (Binary) NEXPTIME-Complete Theorem 4

Triangle fractal. Earlier work compared 2-hands (2HAM) over a single hand
(aTAM) and showed a provable gap in tile complexity for building certain
shapes [6], coNP-completeness for the UAV problem in the 3D 2HAM with a
constant temperature [6] and coNP-completeness in 2D for non-constant tem-
perature [22], versus a polynomial time solution to UAV in the aTAM [1]. For
the case of the producibility problem, both the 2HAM and aTAM have poly-
nomial time solutions [1,12]. Later work considered Unique Shape Verification,
showing coNPNP-completeness for the 2HAM [24] and coNP-completeness for the
aTAM [2].

In [5], the authors show a separation in the number of tile types needed
to construct some shape between the deterministic aTAM (only one terminal
assembly) and the non-deterministic version of the model (allows for multiple
terminal assemblies all with the same shape).

Building infinite classes of shapes with a fixed size-O(1) set of tile types has
been explored in several self-assembly models. For example, [15,25] show how
a fixed tile set can be programmed to build general shapes by adjusting the
temperature of the system over a sequence of stages. Similarly, [9] builds general
shapes with a fixed set of tiles by mixing combinations of the tile set into different
bins over a sequence of stages. In [7], arbitrarily large squares are self-assembled
with a fixed tile set size by encoding the desired square width into the system
temperature. In [14], large shapes are self-assembled with a fixed tile set by
considering bonding functions between assemblies that require greater strength
to hold together larger assemblies. In [4,10,16,18], fixed tile sets are used to
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build general squares and shapes with high probability by encoding the desired
target shape into the relative concentrations of the tiles within the system.

2 Definitions

Tiles. A tile is a non-rotatable unit square with each edge labeled with a glue
from a set Σ. Each pair of glues g1, g2 ∈ Σ has a non-negative integer strength
str(g1, g2).

Configurations, Bond Graphs, and Stability. A configuration is a partial
function A : Z

2 → T for some set of tiles T , i.e. an arrangement of tiles on a
square grid. For a given configuration A, define the bond graph GA to be the
weighted grid graph in which each element of dom(A) is a vertex, and the weight
of the edge between a pair of tiles is equal to the strength of the coincident glue
pair. A configuration is said to be τ -stable for positive integer τ if every edge
cut of GA has strength at least τ , and is τ -unstable otherwise.

Assemblies. For a configuration A and vector �u = 〈ux, uy〉 with ux, uy ∈ Z
2,

A + �u denotes the configuration A ◦ f , where f(x, y) = (x + ux, y + uy). For
two configurations A and B, B is a translation of A, written B � A, provided
that B = A + �u for some vector �u. For a configuration A, the assembly of A
is the set Ã = {B : B � A}. An assembly Ã is a subassembly of an assembly
B̃, denoted Ã � B̃, provided that there exists an A ∈ Ã and B ∈ B̃ such that
A ⊆ B. An assembly is τ -stable provided the configurations it contains are τ -
stable. Assemblies Ã and B̃ are τ -combinable into an assembly C̃ provided there
exist A ∈ Ã, B ∈ B̃, and C ∈ C̃ such that A ∪ B = C, A ∩ B = ∅, and C̃
is τ -stable. Let the shape of an assembly A be the shape taken from the set of
points in dom(A).

Two-Handed Assembly. A Two-handed assembly system Γ = (T, τ) is an
ordered tuple where T is the tile set and τ is a positive integer parameter called
the temperature. For a system Γ , the set of producible assemblies P ′

Γ is defined
recursively as: 1) S ⊆ P ′

Γ . 2) If A,B ∈ P ′
Γ are τ -combinable into C, then C ∈ P ′

Γ .

k-Handed Assembly. The k-handed assembly model is a generalization of
two-handed assembly model. A k-handed assembly system Γ ′ = (T, k, τ) is an
ordered tuple where T is the tile set, k is the number of hands that can be
used to produce an assembly, and τ is a positive integer parameter called the
temperature. For a system Γ ′, the set of producible assemblies P ′

Γ ′ is defined
recursively as follows:

1. S ⊆ P ′
Γ ′ .

2. For 2 ≤ k′ ≤ k, if {A1, A2, . . . , Ak′} ⊂ P ′
Γ ′ are τ -combinable into C, then

C ∈ P ′
Γ ′ .

A producible assembly is terminal provided it is not τ -combinable with any
other producible assembly, and the set of all terminal assemblies of a system
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Γ is denoted PΓ . Intuitively, P ′
Γ represents the set of all possible assemblies

that can self-assemble from the initial set T , whereas PΓ represents only the set
of assemblies that cannot grow any further. The assemblies in PΓ are uniquely
produced iff for each x ∈ P ′

Γ there exists a corresponding y ∈ PΓ such that
x � y. Thus unique production implies that every producible assembly can be
repeatedly combined with others to form an assembly in PΓ .

Unique Production of Shapes and Assemblies. A system Γ uniquely
assembles an assembly A if the system uniquely produces set PΓ that contains
only the assembly A and no other assemblies. In other words all producible
assemblies can be combined to eventually form A. We say a system uniquely
assembles a shape S if the system uniquely produces set PΓ and for all B ∈ PΓ ,
B has the shape S.

k - 6
2

Fig. 1. Shape Sk is constructed by connecting width-3 loops of decreasing height start-
ing at k−6

2
. The base shape is highlighted by a red dotted box. Loops are shown in

light gray. The darker column of 3 tiles on the left row is the cap column. The rest of
the tiles are used to connect the loops. (Color figure online)

3 Shape Building

In this section we show a separation between systems with a differing number
of hands. We start by defining a shape Sk and then proving the lower bound on
the number of tiles needed to construct the shape in relation to the number of
hands used, which is used to prove the separation.

3.1 Separation

We define the shape Sk for all even numbers k ≥ 14 and for the smallest shape
with k = 11. The shape for a given k, Sk, is described in Fig. 1, and is built
recursively in a τ = 3 system. The smallest shape, S11, is highlighted in the
figure and is a 3 × 3 loop with an additional 3 tiles on its left side which we
will call the cap column. Sk is constructed by adding an additional height k−6

2
height loop on the left side of Sk−1 and connecting it with 3 tiles (darker tiles in
figure). Let minh(Sk) be the minimum number of tile types needed to uniquely
construct an assembly of shape Sk in an h-handed system.

Lemma 1. For any h-handed system Γ = (T, h, 3) that uniquely assembles the
shape Sk, |T | ≥ Ω( k

h )
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Proof. Since Γ uniquely assembles the shape Sk, each assembly in the set of
terminals P ′

Γ are of that shape. Consider the rightmost column of any assembly
A ∈ P ′

Γ , which we will call c, and let g be the number of strength < τ glues
between tiles in this column. c can be divided into g + 1 segments that are
connected using strength τ glues. Each segment is a producible assembly.

Since each of the segments have a strength τ (or greater) glue in between
each other they cannot attach to the other segments unless a loop is formed.
Let B be any producible assembly such that B is the subassembly of the shape
Sk, but does not contain c. Since our system has h hands we are able to attach
up to h − 1 segments to B in a single production step. Since the total length
of the column is k−6

2 , there must be a segment of length ≥ k−6
2(h−1) . In order to

build this segment, there must not be any repeated glues within that segment,
otherwise the system could produce an infinitely growing assembly. Therefore,
the number of tiles needed to construct this assembly is Ω( k

h ). ��

3.2 Upper Bound for Building Sk

The tile set TS is shown in Fig. 2a. Let the assembly Ak be an assembly of shape
Sk shown in Fig. 2b.

C1

C2

C3

N1 N2 N3

N4 N5

S1 S2 S3 S4

L1 R1

R2L2

(a)

Cap k - 6
2

(b)

Fig. 2. (a) Constant sized tile set to construct an assembly with shape Sk with k
hands. Larger rectangles represent glues of strength 2, while smaller rectangle represent
strength 1. (b) Assembly of shape Sk made from the tile set.

(a) (b) (c)

Fig. 3. (a) If one of these tiles are the bottom corner there will be a cut of strength
2 making the assembly not stable. (b) If the cap is on the assembly there does not
exist a cut and the assembly is stable. (c) These are the possible conflicting tiles when
attempting to construct a rogue assembly. The red line in each of these assemblies
separates the column c from the rest of the assembly. (Color figure online)
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Lemma 2. Any τ -stable assembly in the h-handed system Γ = (TS , h, 3) is a
subassembly of Ax for some x > h and must contain the Cap column.

Proof. Due to space constraints, we omit the proof and give the notes: 1) τ = 3
and every glue is strength 1 or 2, so any stable assembly must contain a loop
since any tile connected at only one point is not stable. 2) Only three tiles can be
the bottom left corner of the loop (Fig. 2a). 3) There is a cut for all tiles unless
the cap tile is present (Figs. 3a, 3b, and 3c). ��
Lemma 3. For all even k ≥ 12 there exists a k-handed self-assembly system
Γ = (T, k, 3) uniquely assembling an assembly of shape Sk using O(1) tile types.

Proof. Due to space constraints, this proof is not given, but we provide the tile
set T in Fig. 2a as part of the system Γ = (T, k, 3) that uniquely constructs the
assembly seen in Fig. 2b using k hands. ��
Theorem 1. For all even k ≥ 12 and h < k, there exists a shape Sk such
that minh(Sk) = Ω( k

h ) and mink(Sk) = O(1). For the special case of h = 2,
min2(Sk) = Ω(k).

Proof. From Lemma 1, in the 2HAM the lower bound for constructing an assem-
bly of shape Sk is Ω(k). From Lemma 3, the upper bound for uniquely construct-
ing the shape is O(1) (Fig. 4). ��

(a)

k - 6
2

k - 6
2

(b)

Fig. 4. (a) Using 11 hands, the base case of the assembly is built from single tiles.
Using this as a single assembly, the next loop can be built. (b) For all future loops,
they must be built by taking the previous sized assembly, the 5 tiles used to connect
the two columns, and enough column tiles to connect them. This means that 6 hands
are used to attach non-column tiles/assemblies and the remaining hands are used to
build the two columns resulting in a max height of k−6

2
.

3.3 Building Squares

In this section, we show that there exists a constant-sized tile set that can
uniquely assemble the shape of an n × n square, where n is based on the given
parameter specifying the number of hands of the system.

Theorem 2. There exists a tile set T , consisting of 72 tile types, such that for all
even integers n ≥ 10, the h-handed tile assembly system Γ = (T, h = n+1, τ = 3)
uniquely assembles an assembly A that has the shape of an n × n square.
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Proof. We prove by construction giving the tile set T (Fig. 5a). Solid lines rep-
resent unique strength-3 glues between the tiles. The tile set and final assembly
consist of three sections. The base assembly is a 6 × 6 square that connects the
other two sections. Both the horizontal and vertical sections build a staircase
shaped structure, similar to Sect. 3.1, where each “step” of the staircase consists
of a loop of tiles, and the largest buildable step is determined by the number of
hands. This construction does not have space in the loops though, which creates
rectangles increasing in size. We scale the size of the step by 2 and the vertical
section 2 tiles taller in order for the three sections to fit together.

The tiles in the horizontal section build a staircase shaped assembly with
increasing height. Attaching to the right, the tiles in the vertical section build a
rotated staircase shaped assembly of increasing width as it builds upwards. This
process continues until the addition of the next step requires more hands than
allowed (Fig. 6). The two staircase assemblies and base assembly fit together to
form a square shaped terminal assembly. An example is shown in Fig. 5b.

It is easily verifiable that in an h-handed system, an (h − 1) × (h − 1) square
is producible. The two staircase assemblies are built up from the base assembly
as shown in Fig. 6. The largest step of the horizontal assembly (blue) will be
h − 3, while the largest step of the vertical assembly (red) will be width h − 1.

The argument that this tile system uniquely produces A is similar to that of
Theorem 3. We focus on the horizontal section (blue) since the vertical section
functions identically. In this case, the placement of tiles is even more restricted
as the placement of the two repeating dominoes require each other to be stable
due to the strength-1 glue between them.

Vertical Section

H
orizontal S

ection

Base

(a) (b)

Fig. 5. (a) The tile set T that uniquely assembles an (h − 1) × (h − 1) square in an
h-handed system. Solid lines between tiles represent a unique strength-2 glue between
them. Small colored labels represent strength-1 glues, and large colored labels repre-
sent strength-2 glues. The glues in the vertical section are represented with the same
colors as the horizontal section, but are hatched to signify they are distinct from their
unhatched counterpart. The tiles boxed in red represent the section of each loop which
can be repeated to make a loop of an arbitrary size. (b) This assembly is uniquely built
in an 11-handed system. (Color figure online)
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1011
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(b)

Fig. 6. (a) Cuts showing the assembly is unstable if column 1 or 3 are not the leftmost
column in the horizontal section. The same cuts could larger in the assembly if there
were no tiles to their left. (b) Construction of the largest horizontal staircase step in a
13-handed system. Note the largest step in the vertical section would be 12 tiles wide.
(Color figure online)

A stable assembly must include the smallest step of the staircase. Figure 6a
shows an assembly built from the tiles in the horizontal section. If column 2
or 5 were the leftmost column of this assembly, the red and cyan cuts show the
resulting assembly is not stable, respectively. It is inherent that a stable assembly
built from these tiles is either attached to the base assembly, or to column 3.

In a similar argument to the previous construction, only a few conflicting tiles
exist that any rogue assembly may contain with the repeating dominoes, since
without them it is clearly a subassembly of A. By starting from a pair of adjacent
repeating dominoes, we work upwards and downwards, noting the possible tiles
that could be placed, and see that they must exist in the “loop” composed of all
the tiles of the horizontal section in order to be in a stable assembly. ��

4 h-Hand Producibility

Here we show that verifying producibility of an assembly is solvable in the h-
handed model in polynomial time. The proof is a modification of the proof of
2-handed producibility in [12] generalized to h-handed assembly. A partition of
a configuration C is a set of unique configurations C = {C1, C2, . . . , Cn} such
that

⋃h
i=1 Ci = A and for all i �= j, Ci

⋂
Cj = ∅. With regards to a partition of

an assembly A, we mean the partition of an arbitrary configuration C ∈ A.

Definition 1 (h-handed Assembly Tree). An h-Handed Assembly Tree for
a configuration C is a tree Υ where the root represents C, every other node
represents a configuration c ⊆ C, every parent node has at most h children, and
every parent node p has the characteristic that it’s children are τ -combinable in
an h-handed assembly step into p.

Lemma 4. For any h-handed system Γ = (T, h, τ) and partition C of assembly
A ∈ P ′

Γ , if ∀a ∈ C, a ∈ P ′
Γ then there exists a subset s of C such that 2 ≤ |s| ≤ h

and the elements of s are τ -combinable into an assembly B � A.
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Proof. Since A ∈ P ′
Γ , there must exist an h-handed assembly tree Υ . We utilize

a method from [12] to mark nodes in Υ to find a valid candidate assembly B.
The previous proof used a more generalized version of an assembly tree.

Label each leaf {x} in Υ with the unique element Ci ∈ C where x ∈ Ci. Then
iteratively, if all siblings have the same label, label the parent Ci as well. This
preserves the partition labels for each parent as long as it is a proper subset of
the partition.

Doing a breadth first search from the root looking at only unlabeled vertices,
we reach one of the 3 following cases,

1. The children have 2 ≤ b ≤ h distinct labels and there are b children.
2. The children have 2 ≤ b ≤ h − 1 distinct labels and there are 3 ≤ c ≤ h

children and c > b.
3. There are labeled and unlabeled children or all unlabeled children. We ignore

these nodes since there must exist nodes from either Case 1 or 2 if we follow
the unlabeled children since all leaves are labeled.

Case 1. This case shows that there must exist b partitions that neighbor each
other in the tree and can be brought together with b hands. There is a subtle
subcase that for the parent assembly node p, some number of the children could
be combined with fewer hands. However, a modification to the build path in this
way does not change p since it could be built from the single b-handed operation
or through multiple joins of less than b hands since each operation is joining
subsets of different partitions and p can still be formed as a stable assembly.

Case 2. Even though 3 ≤ c ≤ k hands are needed, some of the nodes have
the same label. Thus, the number of distinct partition subsets is 2 ≤ b ≤ h − 1.
Similar to Case 1, some of the children could be combined without assembling all
b children at once. Any stable combination of children represents another valid
h-handed assembly sub-tree for the parent node.

Let s′ be the set of configurations represented by the children of the found
node. For each element in s′ replace it with the element of C it was labeled
by (only once for each label) to form the set s. This replacement preserves the
ability for all the assemblies in s to be combinable. Since we know each element

Result: Given an h-handed assembly system Γ = (T, h, τ), and an assembly A,
is A producible by Γ?

/* Subassemblies of A as positions. Initially individual tiles. */

C ← {{v}|v ∈ dom(A)};
while |C| > 1 do

if ∃ 2 ≤ b ≤ h subassemblies in C (denoted Ci ∈ C with 1 ≤ i ≤ b) s. t.
∪1≤i≤bCi is stable then

C ← C \ {C1, . . . , Cb} ∪ {∪1≤i≤bCi}
else reject

accept;
Algorithm 1: The näıve method of verifying whether an assembly is pro-
ducible in an h-handed system.
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of s are producible, the assembly B is producible where the elements of s are
τ -combinable into B. ��
Theorem 3. The producibility problem for a system Γ = (T, h, τ) and assembly
A is solvable in O(|A|2h log |A|) time.

Proof. Algorithm 1 gives the näıve method for building the shape by combining
tiles from the shape whenever possible. We know from Lemma 4 that if the target
assembly A is producible, there must exist up to h subassemblies that may be
combined at each step.

The runtime is affected by the time required to find cycles in planar graphs.
In order for assemblies to be combined they must be adjacent. Any assembly
step that requires more than 2 hands must form a loop. Thus, the bottleneck is
checking for a cycle of size h in a planar graph, which varies based on h. We must
also check for cycles up to size h, so we might require h calls to this subroutine.
Let T be the time to find a cycle, then the runtime of Algorithm1 is O(Th|A|).

Arbitrary fixed length cycles in planar graphs with n nodes can be found
in O(n log n) time (with expected O(n) time), and for any h ≤ 6, the com-
plexity is O(n) [3,17]. Thus, for an unknown h, the runtime of Algorithm1 is
O(|A|2h log |A|) as the size of the graph is the size of the assembly.

We note that there is a O(n) algorithm to find any fixed subgraph H in
a planar graph, but it requires an extremely large constant that is generally
considered impractical even for small n [13]. Also in the special case of 2-handed
assembly the runtime of the algorithm shown in [12] runs in time O(n log2 n). ��

5 h-Hand Unique Assembly Verification

In this section we investigate the complexity of the problem of verifying an
assembly is uniquely assembled by a given h-HAM system. We consider two
different methods of encoding the number of hands in the system. We show that
the problem is coNEXP-complete and coNP-complete when the number of hands
is encoded in binary and unary, respectively. The problems are listed below. We
first show membership, then prove hardness with a reduction from k-ANTM .

Problem 1 (h-Ham-UAV). Input: An h-HAM system Γ = (T, h, τ) where the
integer h is encoded in binary, and an assembly A. Output: Does Γ unique
produce the assembly A?

Problem 2 (u-h-Ham-UAV). Input: An h-HAM system Γ = (T, h, τ), where
the integer h is encoded in unary, and an assembly A. Output: Does Γ unique
produce the assembly A?

5.1 Membership

The UAV problem is in the class coNEXP if the number of hands is specified
in binary, and in coNP if is specified in unary. For an instance of UAV (Γ =
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(T, h, τ), A), the instance is true if and only if the following 3 conditions are
true: 1) The target assembly A is producible, 2) there does not exist a terminal
assembly C � A, and 3) there does not exist a producible assembly B �� A.

Lemma 5. h-HAM-UAV ∈ coNEXP.

Proof. We provide a coNEXP algorithm for h-HAM-UAV that checks the above
three conditions. By Theorem 3, condition 1 can be decided in polynomial time.
Utilizing Lemma 4, we show that if condition 1 is true then condition 2 is true.
For some assembly C � A, consider any partition of the assembly A where C
is an element, and by repeatedly applying Lemma4, continue joining elements
of this partition until A is built. To do this, C must, at some point, attach to
another assembly. Therefore, C is not terminal.

The remaining task to decide the instance of UAV is to verify that there
does not exist a producible assembly B �� A. A coNEXP machine can do this
by nondeterministically attempting to build an assembly up to size h|A|. If any
branch builds some assembly B �� A, then the branch (and machine) will reject.
It suffices to check only up to this size, as an assembly of size > h|A| must
have been built from at least one assembly of size > |A|. That assembly itself
is not a subassembly of A, and therefore if it exists, then a different branch of
the computation will build it and reject. Since h is encoded in binary it takes
exponential time to build an assembly of size h|A|. ��
Corollary 1. u-h-HAM-UAV ∈ coNP.

Proof. The proof of this is the same algorithm provided in Lemma5. Since the
integer h is encoded in unary, nondeterministically building an assembly of up to
size h|A| takes polynomial time. ��

5.2 Hardness: Reduction from k-ANT M

To show coNEXP-hardness we reduce from the canonical complete problem for
NEXP, k-ANTM , which is the problem of deciding if there exists a computation
path of length ≤ k where a given nondeterministic Turing machine M accepts
when run on the empty tape. We first overview the construction, and then prove
correctness. The formal problem definitions follow.

Problem 3 (k-ANTM ). Input: A nondeterministic Turing machine M , and an
integer k encoded in binary. Output: Does there exist a computation path of
M accepting within k steps when run on an empty tape?

Problem 4 (u-k-ANTM ). Input: A nondeterministic Turing machine M , and
an integer k encoded in unary. Output: Does there exist a computation path of
M that accepts within k steps when run on an empty tape?

Given an instance of k-ANTM , we create an instance of h-Ham-UAV such
that the system is temperature-4, and the number of hands h is set to (2�log2(k)�+
3)·(k+�log2(k)�+4). The system always builds a specific target assembly. If and
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only if the answer to k-ANTM is yes, the system also produces a computation
assembly, an assembly that represents an accepting computation path of M
that is less than k steps. The computation assembly is not the target assembly,
making the answer to the UAV instance ‘no.’ We will walk through an example,
reducing from an instance (M,k = 4) and creating a temperature-4 system where
the number of hands is set to (4 + 3) · (4 + 2 + 4) = 70.

We first explain the case when the instance of k-ANTM is true, and therefore
the created instance of h-Ham-UAV is false. In this case, a computation assem-
bly is built. A computation assembly is composed of a binary counter section
and a Turing machine simulation section (Fig. 7c). Since there exists an accepting
computation path of less than or equal to 4 steps, then in one production step,
utilizing the large number of hands in the system, ≤70 tiles will come together
forming a tableau that represents a simulation of the computation path, as well
as a binary counter enforcing the simulation to maintain a certain tape width.

Binary Counter. We utilize known techniques, such as in [21], for implementing
a self-assembling binary counter where the construction has a size-O(log2 k) tile
set and bounds the counter such that it stops once it reaches 2�log2(k)�. For our
example instance (M,k = 4), the assembled binary counter is shown in Fig. 7a.
This assembly is one of two parts of the computation assembly, and is not stable
by itself at temperature 4. The binary counter counts from left to right, starting
at 0 and ending at 2�log2(k)�. The bottom row of light gray tiles represents the
least significant bit, while the top row represents the most significant bit. Each
row uses a distinct set of tiles, preventing unbounded growth. The majority
of the tiles (light gray) have a strength-1 glue on each side. Thus, these tiles
are adjacent to a tile on every side in order to be stable in the assembly. The
remaining border tiles (dark gray) are the only tiles that can be on the border of
a stable assembly due to their strength-2 glues. Every tile in the top row is not
connected to the rest with the required strength of 4. As depicted, the assembly
can only be stable in combination with an additional assembly above it.

Fig. 7. (a) Example binary counter that counts up to 4. Each type consists of its own
O(1)-sized set of tiles. Single ticks between tiles represent a strength-1 glue, double
ticks represent strength-2 glues. (b) Example Turing machine simulation. (c) The form
of a computation assembly. (Color figure online)
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Fig. 8. (a) One step in the simulation of a Turing machine. The bottom row represents
an initial valid Turing machine configuration. The tiles that can attach above this row
represent a valid transition to another valid configuration of the Turing machine. (b)
Simulation of nondeterministic transition rules. The glues on the south side of both
of the transition tiles (purple) are the same, allowing either to be placed above the
head tile (green). (c) Example target assembly. Solid lines represent unique strength-4
glues. Every tile type used in the TM simulation section and binary counter section
can attach in only one spot. (Color figure online)

Turing Machine Simulation. We also use known techniques for simulating Turing
machines in a self-assembly system [26]. An example of simulating one step is
shown in Fig. 8a. We use this method to simulate the computation paths of M .
Due to the nondeterministic nature of the model, we simulate nondeterministic
transition rules by simply having a different tile type for each possible transition
(Fig. 8b). For the instance (M,k = 4), an example assembly (not stable) that
represents an accepting computation path of M is shown in Fig. 7b. The system
created by the reduction also includes the tile set necessary to simulate M in
this manner. The set of tiles is disjoint from those used for the binary counter.
In the same way, this tile set has the inner tiles (light gray) that perform the
computation. These have a strength-1 glue on each side, and border tiles (dark
gray). The north border uses a constant number of distinct tile types to ensure
that the accept state of the Turing machine must be present in the row below it
in order for a stable assembly to be formed.

Production of Computation Assembly. The key question of this system is whether
the 70 hands can be utilized to bring together ≤70 of the described tiles to pro-
duce a computation assembly. In the case where the original instance k-ANTM

is true, the answer is ‘yes’. For the example provided, 28 hands can be used to
arrange the tiles of the binary counter section to form an assembly represent-
ing the counting from 0 to 4 (Fig. 7b). Above this, the remaining 42 hands can
arrange up to 42 tiles in the Turing machine simulation section in an arrange-
ment that represents an accepting computation path of at most 4 steps (Fig. 7b).
The arrangement of binary counter tiles and Turing machine simulation tiles can
form a stable assembly if attached to each other (Fig. 7c). Therefore the com-
putation assembly is a producible assembly in a 70-handed system. Note that a



The Complexity of Multiple Handed Self-assembly 15

computation assembly of size less than 70 can also be produced if there exists
an existing computation path strictly less than length 4.

Target Assembly. The target assembly for the h-HAM-UAV instance is an
assembly that acts as a “frame” that holds all the tiles previously described
(Fig. 8c). Each tile has a designated spot within this assembly that is specified by
the frame having the corresponding glues that uniquely identify the tile adjacent
to its designated position. Some consideration must be taken in the arrangement
of the tiles within this frame to ensure that some extraneous assembly is not built
within the frame. Since the tiles that compose the frame have strength-4 glues
between them, it is clear that this frame is always built. For every tile in the
binary counter section and Turing machine simulation section, there is one spot
in the frame that exactly complements its glues, so it is true that each of these
tiles can attach to the frame. Thus, the target assembly will always be produced.

5.3 Complexity

Given the membership and reduction overview in Sects. 5.1 and 5.2, respectively,
we show the following.

Theorem 4. h-HAM-UAV is complete for coNEXP.

Proof. Lemma 5 shows that h-HAM-UAV is in the class coNEXP. The reduction
shown is a polynomial time reduction from k-ANTM to h-HAM-UAV taking
an instance P = (M,k) to an instance P ′ = (Γ = (T, h, 4), A) where h =
(2�log2(k)� + 3) · (k + �log2(k)� + 4), and ¬P ⇐⇒ P ′. It was shown how a
true instance of P implies P ′ is false, through the production of a computation
assembly that will never grow into the target assembly.

We now show that the instance P being false implies that the created instance
of P ′ is true. It is clear the target assembly will be produced, but it must be
shown that no assembly that is not a subassembly of the target assembly is
produced. We first note that the border tiles can not come together alone to
form a hollow square. This is because at the points where the border tiles from
the binary counter section would meet those from the Turing machine simulation
section, there are strength-1 glues (red arrows in Figs. 7a and 7b), meaning the
hollow square is not a stable assembly.

From the provided tile types shown, in order to be stable the computation
assembly must be enclosed by border tiles (dark gray). Every other tile has only
strength-1 glues on every edge, and therefore if the tile were on the border, the
assembly would not be stable. Due to a unique glue (shown in green in Fig. 7a),
the right border of the binary counter can only be built if there is a 1 to the left
of it in the row representing the most significant bit. Therefore, in order to be
stable, the binary counter assembly must have counted up to 2�log2(k)�. Thus,
(2�log2(k)� + 3) · (�log2(k)� + 2) of the allotted hands must be used to “hold” the
binary counter in place (28 in our example).

This leaves the system with (2�log2(k)� + 3) · (k + 2) hands left, which can be
used to arrange the Turing machine simulation tiles in a way that can attach to
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the binary counter. Since only the border tiles of the binary counter assembly
attach to the border tiles of the simulation assembly, the simulation assembly
must be of the same width (2�log2(k)� + 3). Thus, it can be at most height k + 2.
Since one row has to be used for the top border, the simulation can only utilize
k − 1 rows, i.e., k steps. Due to another unique glue on the top border of the
simulation assembly (cyan in Fig. 7b), the tile BA can only be stable on an
assembly if the row below it contains a tile that represents the accept state.
Every tile in the Turing machine simulation section must have a matching glue
with all of its neighbors. Since every two adjacent rows in the Turing machine
simulation share matching glues, the glue encoding enforces that it is a valid
transition from one configuration of the Turing machine to another. Therefore,
starting from the initial configuration of M , if there does not exist a computation
path that accepts in ≤k steps, then there is no way to arrange the k +1 rows in
a way that is both stable and has the accept state present. Thus, if the instance
P is false, then the only terminal assembly of the created system is the target
assembly, so P ′ is true. ��
Corollary 2. u-h-HAM-UAV is complete for coNP.

Proof. Corollary 1 shows that u-h-HAM-UAV is in the class coNP. The problem
u-k-ANTM where the parameter k denoting the maximum allotted runtime is
encoded in unary is coNP-hard. An equivalent reduction which outputs the same
instance P ′ = (Γ = (T, h, 4), A) with the difference that h is encoded in unary
is a polynomial time reduction from u-k-ANTM to u-h-HAM-UAV. ��

6 Conclusion

In this paper, we analyzed for the first time two of the most fundamental self-
assembly questions in relation to the h-handed model: producibility and unique
assembly verification. We proved that producibility is polynomial and UAV is
coNP-complete when the number of hands is encoded in unary and coNEXP-
complete if it is encoded in binary. Further, we gave a class of shapes that show
the power of additional hands by having a provable separation in necessary tile
types between shapes. We also showed that with a constant number of tile types,
different sized squares are producible depending on the number of hands.
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Abstract. Inspired by the nonlinear dynamics of neural networks, new
unconventional computing hardware has emerged under the name of
physical reservoir computing. In this paradigm, an input-driven dynam-
ical system (the reservoir) is exploited and trained to perform computa-
tional tasks. Recent spintronic thin-film reservoirs show state-of-the-art
performances despite simplicity in their design. Here, we explore film
geometry and show that simple changes to film shape and input location
can lead to greater memory and improved performance across various
time-series tasks.

1 Introduction

Emerging in materio computing systems have the potential for extreme paral-
lelism, ultra-low power consumption, and robustness, making them ideal solu-
tions to challenges in artificial intelligence and robotics [32]. In materio com-
puting, in contrast to conventional computing, does not impose a computational
model upon the substrate. It performs embodied computation by directly exploit-
ing the natural dynamics of its material composition. This typically involves
some excitable media with observable nonlinear behaviour resulting from various
intrinsic physical processes. Example substrates include atomic switch networks,
skyrmion fabrics, dopant networks, and nanotube composites [6,11,22,25,26,29].

These novel material systems are typically trained or reconfigured through
heuristic search rather than explicitly “programmed” – many using the reservoir
computing framework [33] – to perform tasks such as classification, time-series
prediction, and pattern recognition.

In materio computing harnesses embodied computation, which implies mate-
rial structure and morphology play a pivotal role. Exploiting morphology pro-
vides additional degrees of freedom in design and could allow new material
behaviours to emerge, with the potential to fine tune and control the materials’
intrinsic dynamics.
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The morphology of in materio computers is an area that is largely unex-
plored. Penty and Tufte [28] have recently provided a glimpse into the potential of
manipulating material morphology for computation. They show that the geome-
tries and arrangement of large arrays of nanomagnets (artificial spin ice) can be
tuned to discover unique computational states and scalable mechanisms. How-
ever, more work is needed to understand how morphology can be fully exploited
to engineer desirable computational properties, and potentially optimised for
specific applications.

Here, we explore the basic geometry of thin film ferromagnets and how it
affects dynamical properties related to reservoir computing. Recent work with
these substrates show competitive performances to digital recurrent neural net-
works across different temporal tasks [8]. The materials used are continuous films
where edge effects appear to play an essential role in the computing properties.
For example, initial results show film (material reservoir) size affects performance
in a way counter to that seen in other reservoir systems, with different aspects
of dynamical behaviour changing as size changes.

Based on the assumption that edge effects appear to affect film dynamics, the
morphology of the material could provide another level of optimisation and con-
trol. Our hypothesis is that breaking the symmetry of the film can lead to more
desirable dynamical properties for certain tasks. Here, we test this hypothesis by
manipulating the geometry of the film, its size, and the location of inputs, and
evaluate what effect it has on the film’s intrinsic memory and task performance.

2 Reservoir Computing

Reservoir Computing (RC) [35] is a popular computational framework used to
harness and train a variety of input-driven dynamical systems. Reservoir com-
puters comprise several layers: the input, reservoir, readout and output layers.
At the input layer, a time-varying signal u is transformed through the input
mapping Win (typically random) to the next layer: the reservoir. The reservoir
layer consists of a black-box dynamical system that is perturbed by the inputs.
This layer projects the driving input into a high-dimensional spatial-temporal
state space x. The readout layer extracts the states x of the system and performs
a linear mapping Wout to the final output nodes y. Training occurs only at the
readout layer, typically using supervised learning, to find a mapping Wout that
reduces the error between target data yT and observed output data y [23].

The general state update equation for a discrete-time continuous-value reser-
voir system is as follows:

x̃(n) = σ(bWin[ubias;u(n)] + αWx(n − 1)) (1)

x(n) = (1 − a)x(n − 1) + ax̃(n) (2)

y(n) = Wout[ubias;u(n);x(n)] (3)

where x(n) is the system state at data point n, ubias is an input bias (usually
1), σ represents the reservoir (e.g., material) function, b is the input scaling, and
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α is the internal damping. W defines an intrinsic function of the system, for
example, network weights in an echo state network [23] that transform previous
system states. In a physical system, Wx is defined by properties of the material
such as its internal structure. The parameter a is the leak parameter; if a < 1,
this represents an intermediate leak filter that allows previous state values to
“leak” into current state values. Varying the parameter a can help match the
internal timescales of the system to the characteristic timescale of the task.

There are many variations of how to construct and train reservoirs, includ-
ing simplified topologies [10] and delay-line systems [3]. Different optimisation
techniques are also used, such as Bayesian optimisation and artificial evolu-
tion [2,5,9].

The generalisability of the RC framework and its transferable techniques is
currently driving an analogue computing revival. A sub-field of RC, referred to
as physical RC, harnesses the nonlinear properties of physical dynamical sys-
tems to perform machine learning. A variety of reservoir systems have been
proposed including optical, electronic, spintronic, quantum, and mechanical (see
review [33]).

Spintronic reservoirs in particular offer many desirable features for construct-
ing new computing systems, including intrinsic memory, nanometer-size, ultra
low-power consumption, high response frequencies (GHz–THz), and easy inte-
gration with current CMOS technologies [21,31,34]. Spintronic reservoirs exploit
the intrinsic spin of electrons and their associated magnetic moment. A variety
of magnetic behaviours have been exploited, including magnetic domain walls,
nonlinear oscillation and spin waves [15,16,29]. These reservoir systems are still
in early development, and work on scaling them efficiently is underway.

3 Magnetic Reservoir

The simulated physical reservoir system used in this work exploits the input-
driven spin dynamics of ferromagnetic thin films, following from previous
work [8]. The inherent volatility and nonlinear dynamics of precessing spins
provide a temporal-spatial embedding of different magnetic states to perform
computation [24]. Figure 1 outlines the basic reservoir representation and system
interface. The reservoir representation defines discrete ‘macro-cells’ containing
multiple spins, for the purpose of micromagnetic simulation and input-output
locations.

The thin film shape creates a highly structured crystal lattice. Driving sig-
nals (localised external magnetic fields) propagate through the lattice via the
intrinsic coupling between spins. The coupling of nearest neighbours is deter-
mined by physical and material properties of exchange, anisotropy, and dipole
fields. Exchange interactions dominate over short length-scales, meaning that
macro-cells have finite temporal and spatial correlations over the total sample
size.

The simulated film is divided into a grid of (5 nm)× (5 nm) macro-cells, where
each cell can be driven by a local time-varying magnetic field. The strength of
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Fig. 1. Magnetic platform: (a) Layout of reservoir system including input mapping
(Win), leak filter (Xf) and readout (Wout) layers. In simulation, atomistic detail is
coarse grained into macro-cells to model the film’s micro-magnetic behaviour. (b)
Possible implementation of a physical device, with film and interfacing. The film is
sandwiched between input and readout contacts, and is perturbed by current-driven,
localised, external magnetic fields. The state of the film is recorded using tunnelling
magnetoresistance.

the magnetic field is determined by the weighted input mapping Win, which is
connected to the data source and a bias. The magnetic field is induced by an
electrical current and applied in the film’s z-direction.

The film’s magnetic state is recorded via nano-contacts measuring the local
tunnelling magneto-resistance (TMR). The average magnetisation within each
macro-cell is represented by a state vector, used to perform training in the read-
out layer.

The atomistic simulator VAMPIRE [13] is used to simulate the system
dynamics. The system is simulated micro-magnetically where atomistic detail
is coarse grained into macro-cells. The energetics of the micromagnetic system
are described using a spin Hamiltonian neglecting non-magnetic contributions
and given by:

Heff = Happ + Hani + Hexc + Hdip (4)

where Happ is the applied field, Hani is the anisotropy field, Hexc is the intergran-
ular exchange, and Hdip is the dipole field. To model time-dependent behaviour,
the atomistic Landau-Lifshitz-Gilbert (LLG) equation is applied. Full details
about the physical model and simulation are given in [8].
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Fig. 2. Micromagnetic response to an input pulse in the z-direction with side and top-
down views. The input is applied to the centre cell of a 14 × 14 grid. The magnetic
state of the film is shown at short intervals after the pulse is applied at n = 10.

Here, we focus on thin films of cobalt (Co). Previous work [8] shows Co films
can exhibit a broad dynamical range and consistently perform well across dif-
ferent benchmark tasks compared to other ferromagnetic materials. Simulation
parameters describing the material properties such as exchange and anisotropy
for Co are given in [8].

To generate useful computational dynamics, the input frequency has to
closely match the internal timescales of the system, for example, the relax-
ation and precession of spins. The chosen input frequency of our system is
10 ps/100 GHz: each data sample n is applied and held for 10 ps. Previous exper-
iments show a 10 ps timescale provides suitable settling and response times to
exhibit useful dynamics for computation. However, it may be possible to operate
at slower speeds (1–5 GHz), and even quasi-statically.

In simulation, film thickness is set to approximate 2D films. Films are sim-
ulated at zero Kelvin in order to observe only pure magnetic behaviour. Higher
temperatures lead to thermal noise which typically degrades performance. In [8],
we show that some films can nevertheless perform competitively to digital reser-
voirs at temperatures up to 100K.

Here, the input mapping, readout layer and training are computed exter-
nally. This includes a filter layer Xf (n) that applies a simple one-step low pass
filter controlled by the leak rate parameter a (see [8] for details), providing an
additional parameter to match the timescales of the system and task.

Figure 2 demonstrates the film’s micromagnetic response to an input pulse
applied at its centre, after successive time intervals. When perturbed at time
n = 10, a propagating wave is initiated and travels outwards across the film
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until it either reaches an edge or dissipates. At the boundaries, waves experience
reflective effects, leading to damped reflected waves.

4 Benchmarks

To characterise the effect of breaking the material’s symmetry by changing geom-
etry and input location, we investigate memory capacity and three temporal
benchmark tasks.

Linear Memory Capacity. To solve temporal problems, a reservoir needs a
fading memory where the input driven reservoir must asymptotically wash out
information resulting from initial conditions and previous stimuli [18]. The linear
short-term memory capacity (MC) of a reservoir is one tool to characterise this
basic property. The measure is performed as a task where the input is drawn from
a random uniform distribution and injected into the reservoir. The readout is
then trained to recover previous inputs u(n − k) separated into k outputs where
k = 1, 2, 3 . . . , 2N ; N is typically the number of nodes or observable states.
Memory capacity is measured as how much variance of the delayed input can be
recovered by the trained reservoir outputs, summed over all delays:

MC =
2N∑

k=1

MCk =
2N∑

k=1

cov2(u(n − k), y(n))
σ2(u(n))σ2(y(n))

(5)

A total of 1,000 values are generated and split into: 500 training and 500 test.
The first 50 values of each sub-set are discarded as an initial washout period.

Nonlinear Channel Communication. The task replicates the equalisation of
a wireless communication channel, as described in [12,19,27,30]. The objective is
to recover the original symbol sequence d(n) which is modulated and transmitted
as q(n) and received as u(n) – a corrupted version of d(n). The reservoir is trained
and tasked to recover d(n − 2) when u(n) is presented at the input.

The data for this task is as follows: the original symbol sequence d(n) is
generated from a uniform random distribution of values d(n) ∈ {−3,−1,+1,+3}.
d(n) is transformed to create the transmitting signal q(n) through a filter:

q(n) = 0.08d(n + 2) − 0.12d(n + 1) + d(n) + 0.18d(n − 1)
− 0.1d(n − 2) + 0.091d(n − 3) − 0.05d(n − 4)
+ 0.04d(n − 5) + 0.03d(n − 6) + 0.01d(n − 7)

(6)
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To corrupt the signal, a nonlinear transformation is applied to q(n) to produce
the signal u(n):

u(n) = q(n) + 0.036q(n)2 − 0.011q(n)3 + v(n) (7)

where v(n) represents i.i.d. Gaussian noise with zero mean and adjusted in power
to yield signal-to-noise ratio of 28 dB. Following [30], the input u(n) signal is
shifted by +30.

The error is calculated using the Symbol Error Rate (SER) representing the
fraction of incorrect symbols. To calculate SER, an estimator d̂(n) replaces the
reservoir output y(n) with the closest discretised value {−3,−1,+1,+3}.

A total of 8,000 values are generated and split into: 2,000 training, 3,000
validation, and 3,000 test. The first 200 values of each sub-set are discarded as
an initial washout period.

NARMA-10. The NARMA (nonlinear autoregressive moving average) task [4]
evaluates a reservoir’s ability to model a 10-th order non-linear dynamical sys-
tem. The task contains both non-linearity and a long-term dependency created
by the 10-th order time-lag. The task is to predict the output y(n + 1) given by
Eq. (8) when supplied with u(n) from a uniform distribution of interval [0, 0.5].
For the 10-th order systems α = 0.3, β = 0.05, δ = 10 and γ = 0.1.

y(n + 1) = αy(n) + βy(n)

(
δ∑

i=0

y(n − i)

)
+ 1.5u(n − δ)u(n) + γ (8)

A total of 5,000 values are generated and split into: 3,000 training, 1,000
validation, and 1,000 test. The first 50 values of each sub-set are discarded as
an initial washout period.

IPIX Radar. The IPIX radar dataset is popular task in RC and has been
applied to various reservoir types in the literature [12,27,30,36].

IPIX radar is a noisy prediction task based on real-world data collected by the
McMaster University IPIX radar1. The target signal is sea clutter data recorded
as radar backscatter from an ocean surface under low sea state conditions. The
signal has two dimensions: the in-phase and in-quadrature outputs (I and Q)
of the radar demodulator. The task requires the successful prediction of both
dimensions, i.e. the task is a two-input, two-output problem.

The task is to predict 5 steps ahead y(n) = u(n + 5) when u(n) is presented
at the reservoir input.

Following [30], a total of 2,000 values are generated and split into: 800 train-
ing, 500 validation, and 700 test. The first 100 values of each sub-set are discarded
as an initial washout period.

1 Accessible from: http://soma.ece.mcmaster.ca/ipix/ (2021).

http://soma.ece.mcmaster.ca/ipix/
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5 Film Geometry

5.1 Experimental Setup

To explore basic film geometry, we investigate rectangular films with various
heights and widths. The objective is to break the input symmetry by varying
the distances between the input source and the edges by adjusting the shape.
Rectangular films have less symmetry than square films, and can be configured
in different ratios from square-like to a one dimensional (one macro-cell wide)
line or wire.

In addition, we also investigate what effect the height:width ratio has as the
number of cells increases from 36 (62) cells up to 196 (142). Previous work [8]
shows that gains in performance tail off as reservoir size increases. It is likely a
threshold in size exists where bulk material properties begin to dominate, as edge
effects are diminished or become negligible. Therefore, the richness produced by
reflections and interference dies off with the probability of interactions decreasing
as distance increases.

To compare fairly, films with different ratios must have equal areas, to main-
tain an equal number of cells. Access to more states can be beneficial to the
readout during training and skew comparisons. Height and width are adjusted
accordingly to maintain a specific number of cells, which in turn limits the num-
ber of ratios that can be tested.

To simplify experiments and exclude effects from multiple inputs, a single
input is applied to the film’s centre macro-cell. This input carries the task input
with a single adjustable input gain b (see Eq. 1). The readout and training has
access to all available cell states.

In the following experiments, cobalt reservoirs are configured using three
parameters with decimal values each taken from a random uniform distribution:
input scaling (−1 < b ≤ 1), intrinsic material damping (0.001 < α ≤ 1), and
leak rate (0 < a ≤ 1). From previous work [8], we know a low damping tends to
increase memory; input scaling can be tuned to improve memory further using
low values, or increase non-linearity with high values. Leak rate on the other
hand tends to vary depending on the task dynamics.

5.2 Effect of Height:Width Ratio on Memory Capacity

This experiment investigates what effect the height:width ratio has on mem-
ory. Applying the linear memory capacity measure (MC), multiple height:width
ratios are tested for each film size. To assess the overall effect, independent of
reservoir parameters and size, the same 250 random reservoir parameters (b, α
and a) are applied to every ratio and size.

Figure 3 shows that memory varies with respect to both size and ratio. In
terms of film size, the average and maximum memory capacities of small-to-
medium reservoirs is large compared to the bigger reservoir films. As the height:
width ratio decreases, (as films become elongated), the mean memory capacity
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Fig. 3. Memory capacity (MC) at various film sizes (number of cells) and different
ratios. Ratio (height:width) is given along the x-axis. Each box plot shows the MC
of 250 reservoirs, covering a range of parameter settings (input scaling, damping, leak
rate). The same 250 reservoir parameter sets are used for each size and ratio. The mean
and max MC are highlighted.

tends to increase relative to the default square (ratio of 1). This pattern is
consistent across all sizes, except for the largest reservoir with 196 cells.

This experiment highlights three key points: i) using a basic setup with ran-
dom parameters and a single input, the mean memory capacity tends to decrease
as size increases, ii) an elongated film increases memory capacity, and iii) above
a certain film size, memory capacity tends to plateau. Memory, however, is only
one factor that affects reservoir performance, and how much memory is required
depends on the task.

5.3 Effect of Height:Width Ratio on Task Performance

This experiment measures the effect film height:width ratio has on task perfor-
mance. To assess the overall effect, the same 250 random reservoir parameters
as above are reused and evaluated for each ratio. The task input is again trans-
formed into a single local magnetic field applied at the centre of the film.

Figure 4 shows performance on the NARMA-10, IPIX radar, and Nonlinear
channel communication (NCC) tasks. For each task, performance improves when
rectangular films are used. The films that tend to work best have a ratio of 0.25
or 0.44. These typically show a statistically significant decrease in the average
normalised mean square error (NMSE) or symbol error rate (SER), and produce
the lowest errors at each size. In general, a ratio that is too long and thin tends
to be detrimental to performance and increases error. This suggests increasing
memory capacity alone does not improve performance. However, other properties
such as nonlinearity of the films may have also changed which may now strongly
affect task performance.
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(a) NARMA-10
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(b) IPIX radar
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(c) Nonlinear channel communication (NCC)

Fig. 4. Task error at each size and ratio. Each box plot shows errors for 250 random
reservoirs. If box plot notches do not overlap, there is a 95% confidence that the medians
differ; we see that ratio has a significant effect on error. The mean is highlighted,
showing the error distribution is skewed towards smaller errors, i.e. smaller errors are
more common when parameters are chosen from a uniform random distribution. For
the NCC task, an SER = 10−5 is used to represent a zero error in order to plot error
logarithmically.

6 Breaking Input Symmetry

6.1 Experimental Setup

In this section, we investigate the effect of input location. An input that is
off-centre can be used to break the symmetry of a square film without having
to change film dimensions. To test this, we define four quadrants and apply a
single input towards the centre of each quadrant; all quadrants are tested on the
assumption that the film may not be symmetric in terms of magnetic behaviour
in all directions.
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(a) Cells: 10 x 10, Input:
centre

(b) Cells: 10 x 10, Input:
Q1

(c) Cells: 14 x 14, Input:
centre

(d) Cells: 14 x 14, Input:
Q1

Fig. 5. Visualisation of input symmetry using wave interference at two film sizes. A
sine wave is applied in the z -direction at the film centre (a and c) and in quadrant Q1
(b and d). The plot shows the summation of the absolute values in each cell (in the
z -direction) over 1000 time steps. Peaks and troughs outline underlying symmetry.

The objective here is to break the input symmetry by varying the distances
between the input source and the edges by moving the input, rather than by
adjusting the shape. In Fig. 5, we visualise the input symmetry of square films
by observing wave interference. To do this, we apply a sine wave and plot the
summation of the absolute values over time. This shows the corresponding wave
peaks and troughs produced by reflections at the edges. From this observation,
we see that the film’s behaviour to stimulus is roughly symmetric given the visual
symmetry in peaks and troughs; however, small deviations are present.

6.2 Effect of Input Location on Memory Capacity

This experiment to test input symmetry measures the effect input location has
on memory capacity. Figure 6 shows that an off-centre input significantly changes
the average memory capacity and tends to increase the maximum memory capac-
ity. As found previously, memory capacity reduces as film size increases. The
effect of changing input location is therefore more prominent at smaller film
sizes. The results suggest that moving the input looks qualitatively similar to
‘stretching’ the film.
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Fig. 6. Memory capacity (MC) when input location (x-axis) is moved into different
quadrants of the film. A total of 250 reservoirs are given in each box plot. The mean
and maximum MC are also provided.
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(b) IPIX radar

Fig. 7. Normalised mean squared error (NMSE) on NARMA-10 and IPIX Radar tasks
when the single driving input is applied to different quadrants (Q1–4). Each box plot
shows errors for 250 random reservoirs.

6.3 Effect of Input Location on Task Performance

This experiment evaluates task performance, and shows that the similarity to
‘stratching’ does not hold in this case. Figure 7 shows the average error is similar,
or worse, for the NARMA-10 task at different input locations, but improves for
the IPIX task.
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Fig. 8. Memory capacity (MC) when film geometry and input location are changed.
Square films (left, blue) are compared to rectangular films (right, purple) with a ratio of
0.25. Each input location tested is given along the x-axis, i.e. C = centre and quadrants
Q1–4. (Color figure online)

In summary, moving the input location alters the basic computational proper-
ties of the film, i.e. improving memory, but whether this translates into improved
performance depends on the task.

6.4 Effect of Geometry and Input Location on Memory Capacity

This experiment investigates the effect of varying both geometry and input loca-
tion on memory capacity. Altering each individually shows memory capacity can
increase. Now we test whether combining both can increase memory capacity
further.

The film height:width ratio is set to 0.25, and a single input is applied to a
quadrant. The same 250 random configurations from previous experiments are
used to assess memory capacity. Figure 8 compares the original memory capacity
results of the square film (left, blue) to the rectangular film (right, purple) at
different film sizes. When applying an off-centre input to the rectangular film,
the average memory capacity increases further. Therefore the same random con-
figurations tend to produce higher memory capacities. At the largest film size,
we also find more configurations with larger memory capacities than before.

In summary, moving the input location continues to increase memory capac-
ity when the geometry of the film is also changed. This suggests boundary effects
and distance to the edges strongly influence the dynamical response, particularly
for smaller reservoir films.

7 Conclusion

Harnessing physical processes such as wave propagation for computation in
excitable media could lead to many efficient novel computing platforms [1,7,
14,17,20]. Exploiting and controlling aspects of wave-like propagation such as



32 M. Dale et al.

speed, modulation and reflections, which are susceptible to the system’s mor-
phology, can produce interference patterns, phase distortions and signal delays
exploitable for information processing.

Here, we show that the dynamical properties of magnetic reservoir computing
films can be partially controlled using the film’s geometry. For example, creat-
ing long and narrow rectangular films increases memory capacity for a given
film area. Whether these changes correspond to improvements in task perfor-
mance largely depend on the task. However, in general, we find that rectangular
films with height:width ratios around 0.25 often show significant improvements.
We also find that breaking the symmetry of the film with respect to the input
position can lead to greater memory capacity, but again this does not lead to
universal improvements in task performances. These results suggest a strong
correlation between the dynamical response and boundary effects, and highlight
the requirement to match reservoir dynamics to the dynamics of task.

There are numerous other ways to manipulate and break the symmetry of
magnetic reservoir films, including multiple driving inputs, bias (static) inputs,
and various shapes with different lines of symmetry. In [8], artificial evolution
is used to decide the location, strength, and number of inputs and biases. This
results in further improvements in performance, for example, on the NARMA-10
task. Allowing evolution to manipulate the film’s geometry could lead to films
better tailored to specific tasks, and will be explored in future work.

The inherent spatial and temporal properties of the investigated system may
limit computation to a local area; this property could be a desirable feature
for large scale systems [17]. Reservoir scaling, both physically and in terms of
computing capabilities, could be achieved by combining many smaller mate-
rial systems, such as those investigated here, with different but complemen-
tary dynamics, rather than large monolithic reservoir systems. A drive towards
multi-reservoir computing architectures could significantly benefit this particular
reservoir system.

Acknowledgments. Thanks to Richard Evans and Sarah Jenkins for help with the
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Abstract. Recent research into analog computing has introduced new
notions of computing real numbers. Huang, Klinge, Lathrop, Li, and Lutz
defined a notion of computing real numbers in real-time with chemical
reaction networks (CRNs), introducing the classes RLCRN (the class of
all Lyapunov CRN-computable real numbers) and RRTCRN (the class of
all real-time CRN-computable numbers). In their paper, they show the
inclusion of the real algebraic numbers ALG ⊆ RLCRN ⊆ RRTCRN and
that ALG � RRTCRN but leave open where the inclusion is proper. In this
paper, we resolve this open problem and show ALG = RLCRN � RRTCRN.
However, their definition of real-time computation is fragile in the sense
that it is sensitive to perturbations in initial conditions. To resolve this
flaw, we further require a CRN to withstand these perturbations. In
doing so, we arrive at a discrete model of memory. This approach has
several benefits. First, a bounded CRN may compute values approxi-
mately in finite time. Second, a CRN can tolerate small perturbations of
its species’ concentrations. Third, taking a measurement of a CRN’s state
only requires precision proportional to the exactness of these approxima-
tions. Lastly, if a CRN requires only finite memory, this model and Turing
machines are equivalent under real-time simulations.

Keywords: Real time · Chemical reaction networks · Robustness ·
Analog computing

1 Introduction

Over the last few decades, many theories of molecular computing have emerged.
These theories help inform experimental research and help explore the bound-
aries of nanoscale computation. Some models of molecular programming are
structural, such as algorithmic self-assembly [8,9]; some models are amorphous,
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such as chemical reaction networks [4,15]; and some models combine these to
characterize more complex interactions [5,14]. Since molecular programming is
a relatively new field, many open problems exist concerning the computational
limits of these models.

Investigating the complexity of computing real numbers in computational
models has historically significant roots. In Turing’s famous 1936 paper [16], he
defined a real number to be computable if its “expression as a decimal is calcu-
lable with finite means.” Real numbers can also be classified according to how
efficiently they can be computed by a Turing machine. For example, rational
numbers are efficiently computable because their recurring decimal pattern can
be produced in real time—even by a finite automaton. More formally, a number
α ∈ R is real-time computable by a Turing machine if n bits of its fractional com-
ponent can be produced in O(n) time. Many transcendental numbers are known
to be real-time computable, but surprisingly, no irrational algebraic number is
known to be real-time computable. In fact, in 1965, Hartmanis and Stearns con-
jectured that if α ∈ R is real-time computable by a Turing machine, then it is
either rational or transcendental [10].

Recent research into analog computing introduced new notions of computing
real numbers. Bournez et al. introduced the notion of computing a real number
in the limit with a general purpose analog computer (GPAC) [1]. To compute
α ∈ R “in the limit,” a designated variable x(t) must satisfy limt→∞ x(t) = α.
Computing real numbers in this way has also been investigated in population
protocols [2] and chemical reaction networks (CRNs) [11]. Huang et al. defined
a number α ∈ R to be real-time computable by chemical reaction networks,
written α ∈ RRTCRN, if there exists a CRN with integral rate constants and
a designated species X such that, if all species concentrations are initialized
to zero, then x(t) converges to α exponentially quickly [12]. This means that
after n seconds, the concentration of X is within 2−n of α, so the CRN gains
one bit of accuracy every second. Huang et al. also required that all species
concentrations be bounded to avoid the so-called Zeno paradox of performing
an infinite amount of computation in finite time using a fast-growing catalyst
species [3]. When this restriction is lifted, the measure of time is no longer linear
but rather a function of arc length. In this sense, no power is lost via imposing
a boundedness requirement. Further, it eliminates the undesirable Zeno paradox
from the model.

A key aspect of Huang et al.’s definition of RRTCRN is the requirement that
the CRN be initialized to all zeros, prohibiting any encoding of α in the initial
condition of the CRN. The authors showed that e, π ∈ RRTCRN, leveraging
the fact that the initial condition is exact. However, these constructions fail if
their initial conditions are perturbed by any ε > 0. Huang et al. also defined a
subfield of RRTCRN they called Lyapunov CRN-computable real numbers, written
RLCRN. The definition of RLCRN is similar to RRTCRN except with the additional
constraint that the terminating state of the CRN must be an exponentially stable
equilibrium point. Since an exponentially stable equilibrium point is attracting,
any initial condition within its basin of attraction will converge exponentially



Robust Real-Time Computing with Chemical Reaction Networks 37

quickly to it. As a result, any α ∈ RLCRN can be computed even in the presence
of bounded perturbations to initial conditions. Huang et al. also proved that
ALG ⊆ RLCRN ⊆ RRTCRN where ALG is the set of algebraic real numbers. The
authors left as an open problem which of these inclusions is strict.

An additional consequence of computing a real number α “in the limit” with
CRNs is that recovering the bits of α is difficult. Even if we produce α exactly
in the concentration of a species X, we cannot read its individual bits without
an infinitely precise measurement device. Alternatively, if a CRN produced the
bits of α as a sequence of measurable memory states, then the bits can be read
even with imperfect measurements.

Another limitation of this method of computation is in implementation. The
concentration of a species in a solution containing a CRN is ultimately deter-
mined by the discrete, integral count of the species. This places a countable
limit on the number of “exact” values a concentration can achieve even when a
CRN is otherwise perfectly initialized and executed. In the mass action model,
we often wave away this issue precisely because we do not have an infinitely
precise measurement device. This does, however, somewhat obviate the point
of being able to calculate values precisely. In fact, previous results concerning
CRNs frequently abuse this hand waving to reach theorems that are true of the
mass action kinematics but not of the reality it models. Instead, a more rea-
sonable question to ask is what values can we calculate robustly, quickly, and
approximately.

In this paper, we show ALG = RLCRN � RRTCRN to resolve the open prob-
lem stated above. This fully characterizes what values we may compute robustly
and quickly; however, this definition of computation yet suffers from the inherent
flaws described above. To resolve this weakness of the model, we acknowledge
these limitations and loosen the definition of computation to accept approxi-
mate results. To do so, we only require that a CRN produces approximations of
numbers in the sense that an open interval around a concentration α is in an
equivalence class with α itself. This approach has three major benefits. First,
a bounded CRN may compute not only a single value in finite time but also
a sequence of values. Second, a CRN can tolerate small perturbations of its
species’ concentrations (and potentially other parameters). Third, taking a mea-
surement of a CRN’s state only requires precision proportional to the smallest
of these intervals.

If we then fix a collection of these intervals into collection of memory maps for
a CRN’s species and allow it to compute their corresponding memory states in
sequence, we obtain a discrete model characterizing a robust chemical computer.
Indeed, given, in this sense, a robust CRN and a memory map which fully
describes it, a Turing machine may simulate the CRN by maintaining a tape
for each of its species indicating what memory state that species is in. We show
that this simulation can be done in real-time for CRNs which use only a finite
amount of memory. Although we conjecture that CRNs which use an unbounded
amount of memory can also be simulated in real-time (which, if true, would unify
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the analog and discrete Hartmanis-Stearns Conjectures), finite memory suffices
for many real world applications.

The rest of the paper is organized as follows, with many proofs omitted for
brevity. Section 2 reviews some necessary preliminaries used in the remainder
of the paper. Section 3 resolves the open problem ALG = RLCRN � RRTCRN.
Section 4 characterizes CRNs in terms of a robust memory map. Lastly, Sect. 5
discusses the consequences of the proceeding sections.

2 Preliminaries

A Chemical Reaction Network (CRN), N , is a tuple N = (S,R), where S is a
finite number of species and R is a finite set of reactions on those species. In this
paper we investigate deterministic CRNs, i.e., CRNs under deterministic mass
action semantics that are modeled with systems of differential equations [6].
Given a deterministic CRN, let xi(t) denote the real-valued concentration of Xi

at time t for each species Xi ∈ S. Let x = (x1, . . . , xn) denote the state of N ,
where n = |S|. We write the rate of change of each xi as dxi

dt = fi(x1, . . . , xn)
and the rate of change of the entire system as dx

dt = fN = (f1, . . . , fn). Each
fi is a polynomial determined by N [6]. In this paper, rate constants for each
reaction in R are integral, and thus each fi ∈ Z[x1, . . . , xn]. Furthermore, the
initial concentrations of the species, given by an initial state x(0) = x0, along
with fN determine the unique behavior of N . Lastly, when fN (z) = 0, we call z
a fixed point.

The definition of real-time computable by a CRN used in this paper is given
by [11,12]. We repeat the definition here for convenience.

Definition 1. A real number α is real-time computable by CRNs if there exists
a CRN N = (S,R) and a species X ∈ S with the following properties:

1. ( Integrality.) All rate constants of R are positive integers.
2. (Boundedness.) The concentration xi(t) for each species in S is bounded by

a constant β for all time t ∈ [0,∞) when x0 = 0.
3. (Real-Time Convergence.) If N is initialized with x0 = 0, then for all times

t ≥ 1, |x(t) − |α|| < 2−t.

We denote the set of all real-time CRN-computable real numbers as RRTCRN.

Excluding the species that converges to α, the above definition places no restric-
tions on any species beyond that they be bounded. In many cases, this may be
undesirable. The next definition formalizes the notion of converging to a single
state, at which point the CRN can be considered finished.

Definition 2. An exponentially stable point of a CRN is a state z ∈ R
n
≥0 for

which there exists α, δ, C > 0 such that, if the CRN is initialized to a state x0
satisfying |z − x0| < δ, then for all times t ≥ 0, |z − x(t)| ≤ Ce−αt|z − x0|.
Definition 3. A real number α is Lyapunov-CRN computable if there exists a
CRN N = (S,R), a species Xi ∈ S, and a state z with z(Xi) = |α| that satisfies
the following properties:
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1. ( Integrality.) All rate constants of R are positive integers.
2. (Boundedness.) The concentration xi(t) for each species in S is bounded by

a constant β for all time t ∈ [0,∞) when x0 = 0.
3. (Exponential Stability.) z is an exponentially stable point.
4. (Convergence.) If N is initialized with x0 = 0, then lim

t→∞x(t) = z.

We denote the set of all Lyapunov-CRN computable real numbers as RLCRN.

Observation 4. If z is an exponentially stable point of a CRN, then it is a fixed
point of that CRN.

Note that the converse of Observation 4 is not true.
We use ALG to denote the set of real algebraic numbers of the rationals.

This is the set of real numbers which are the root of some polynomial f ∈ Q[x],
with rational coefficients.

3 Lyapunov Reals Are Algebraic

To investigate robustness issues in real-time computing, we first look at the
relationship between RLCRN and ALG and show that RLCRN = ALG. As a
consequence, a bounded CRN may only compute the algebraic numbers reli-
ably in the sense that they exist inside of a potential well. Since Huang et al.
proved that ALG � RRTCRN and ALG ⊆ RLCRN ⊆ RRTCRN [12], it suffices
to show that ALG = RLCRN to resolve that RLCRN � RRTCRN. We prove this
result in two parts. First, we show that every exponentially stable fixed point
is isolated. Second, we show that isolated fixed points necessarily have algebraic
components.

Let EN denote the set of exponentially stable points of a CRN, N , and let FN

denote the set of fixed points of N . Recall that fixed points are not necessarily
isolated (consider a CRN which does nothing once initialized), however, the set
of exponentially stable fixed points, EN , are isolated in FN (not just EN ).

Below are two supporting lemmas, as described above. The proofs are omitted
for brevity.

Lemma 5. If z is an exponentially stable point of a CRN, N , then z is isolated
in FN .

Lemma 6. If z is a fixed point of a CRN, N , that is isolated in FN , then the
components of z are in ALG.

Using these lemmas, it is now straightforward to prove the theorem.

Theorem 7. ALG = RLCRN

Proof. Let α ∈ RLCRN, and let N , Xi, and z be the CRN, designated species, and
exponentially stable point that testify to this. By definition, z is exponentially
stable; by Lemma 5, z is isolated in FN ; by Lemma 6, every component of z is
algebraic. Thus, z(Xi) = |α| is algebraic, and therefore α ∈ ALG. ��
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4 A Robust Notion of Memory in CRNs

In the previous section, we concerned ourselves with CRNs which are permitted
infinite precision to compute real values robustly in the limit. This excuses several
impossibilities for the elegance of its model at the expense of realism. In practice,
these CRNs would compute their intended values robustly in approximation and
would require only finite time.

In this section we explore the consequences of requiring a CRN to be robust
in this sense, that is that they compute values approximately in finite time. In
particular, we characterize the behavior of these robust CRNs in terms of these
approximations to arrive at a somewhat paradoxical discrete model of analog
computing.

Recall that boundedness is one of the three criteria for a real-time CRN. For
this section, we use the following definitions of boundedness.

Definition 8. A CRN N = (S,R) is β-bounded at x0 ∈ R
S
≥0 if, when initialized

to x0, there exists some β > 0 such that x < β for each X ∈ S. Moreover, N is
uniformly β-bounded on O ⊆ R

S
≥0 if there is some β > 0 for which N is bounded

on each x0 ∈ O by β.

Unless otherwise specified, a bounded CRN is initialized to the point at which
it is bounded. Similarly, a uniformly bounded CRN is initialized to a point at
which it is bounded (and is implicitly bounded at any initial point).

There are two natural ways by which a CRN may compute a number α. It may
either do so exactly when a species’ concentration becomes α or in the limit as per
Lyapunov-CRN computability, real-time computability, or some slower manner.
Both approaches, however, are imperfect. In the latter case, the concentration of
the species computing α either must always maintain a non-zero distance from
α after any finite time or, at best, suffers from the same limitation of computing
α exactly: the inability to remain at α. The following theorem and corollary
formalize this notion.

Theorem 9. Let N = (S,R) be a bounded CRN. For each species X ∈ S, x is
either constant or the set of times for which dx

dt = 0 is countable.

Corollary 10. Let N = (S,R) be a bounded CRN. Pick c ∈ R≥0. Then for
any non-constant species X ∈ S, the set of times t ∈ R≥0 where x(t) = c is
countable.

It is clear from Corollary 10 that computing an exact value with a CRN is,
if not impossible, then a less meaningful concept than one would prefer. This
is not inherently problematic as a model of computation. A CRN is capable of
computing any computable function in the limit [7].

In each of these models, however, there is the implicit assumption that a
CRN may be precisely constructed by which we mean each rate constant and
the initial concentration of each species is exactly as prescribed. In practice,
this is impractical, which leads us to a notion of robustness. A CRN, informally
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Fig. 1. In [13], Klinge, Lathrop, and Lutz provide a general CRN construction for
nondeterministic finite automata (NFAs). These NFAs utilize a dual rail system for
each state Z with z(t) ≈ 1 indicating that the NFA is in state Z at time t and z(t) ≈ 0
indicating the NFA is not in state Z while the complementary species Z has the opposite
meaning. Above, we graph the concentration of X and X as input changes and show
the approximation regions.

speaking, is “robust” if it can tolerate a small perturbation of its concentrations
(or rate constants) at any time without affecting its function. This is intuitively
a difficult task since changing any such condition clearly alters the solution to
the system of ODEs describing the CRN.

Exponentially stable points are a good example of robustness in the following
sense. If a CRN manages to get within an ε-ball of such a point z, it proceeds to
z in the limit without exception. Ideally, a robust CRN would transition from
exponentially stable point to exponentially stable point during its computation
with some outside force periodically driving it away from each stable equilibrium.

Exponential stability is a far stricter requirement than is necessary to com-
pute a number α, but it does illustrate an important point. If a CRN computes
α either in the limit or for longer than a countable set of times, there is always
a buffer zone around it which must necessarily be considered in an equivalence
class with α. In Fig. 1, this corresponds to the intervals labeled A, B, and C
which could be considered equivalence classes for 1, 1

2 , and 0 respectively. We
formalize this notion in the following theorems and definitions.

Theorem 11. Let N = (S,R) be a bounded CRN, and let X ∈ S be a non-
constant species. For any time t0 ∈ R≥0, there exists a δ > 0 such that for all
t ∈ (t0, t0+δ), x(t) 	= x(t0). Moreover, there exists an ε > 0 and a t ∈ (t0, t0+δ)
such that |x(t) − x(t0)| > ε.

In light of Theorem 11, we state a notion of computation useful (but alone
insufficient) for CRNs.

Definition 12. A CRN N = (S,R) (ε, d)-computes a real number α ∈ R≥0

if there is an X ∈ S and a time t0 ∈ R≥0 such that |x(t) − α| < ε for all
t ∈ (t0, t0 + d).

Less formally, a CRN (ε, d)-computes a real number α if it gets close enough
to it for a long enough time. To continue our earlier example, the correct choice
of ε and d make x(t) correctly compute 0 and 1 but never the garbage state 1

2
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in Fig. 1. This underscores that the particular choice of these two parameters is
critical for the CRN’s intended purpose. Indeed, a species X of a bounded CRN
so computes every element of the closure of its image for some single choice of
d for every ε and vice versa! The latter is obvious (pick ε to be larger than the
CRN’s bound), and we formally state the former.

Theorem 13. Let N = (S,R) be a bounded CRN, and let ε > 0. Then there
exists a d > 0 such that each X ∈ S (ε, d)-computes every element of cl(x(R≥0)).

The following definition resolves this ε, d conundrum described above by elim-
inating any overlap of (ε, d)-computed real numbers.

Definition 14. A CRN N = (S,R) unambiguously computes a set A ⊆ R≥0

if for each α ∈ A there exists a species X ∈ S which (εα, dα)-computes α for
some εα, dα > 0 and for each distinct α1, α2 ∈ A which X (εα1 , dα1)-computes
and (εα2 , dα2)-computes respectively, the intervals (α1 − εα1 , α1 + εα1) and (α2 −
εα2 , α2 + εα2) are disjoint.

This notion of unambiguous computation leads directly to a robust notion of
CRN memory, but we first state a motivating theorem behind its construction.

Theorem 15. No CRN can unambiguously compute a somewhere dense subset
D of R≥0 for any choice of εα, dα > 0 for each α ∈ D.

Theorem 15 shows that many natural encodings of countably infinite sets to
bounded intervals cannot be unambiguously computed by a CRN. An example
of such is given below where we encode 1 → .1, 2 → .01, 3 → .11, and so on.

Corollary 16. Let f : N → [0, 1] be the map

f(n) =
∞∑

i=0

(⌊
n

2i

⌋
mod 2

)
2−i−1.

No CRN can unambiguously compute the set f(N).

To avoid this problem, any encoding requires an open interval around each
value α the CRN must compute wherein the entire interval is considered to be
α. Moreover, a CRN can only have countably many such disjoint sets. In our
running example, Fig. 1 demonstrates three such intervals for each state species.
This leads to the following definition wherein we encode a collection of disjoint
open intervals to map to identifying natural numbers.

Definition 17. Let c ∈ R
+. A memory map is a map f : N → P([0, c]) satis-

fying the following conditions:

– f(0) = [0, b), where 0 < b ≤ c.
– ∀n ∈ Z

+, f(n) = (a, b), where a, b ∈ Q and 0 < a ≤ b ≤ c.
– ∀m,n ∈ N, if m 	= n, then f(n) and f(m) are disjoint.
– f(∞) = [0, c] \ ∪

n∈N

f(n) and is countable.
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Definition 18. The set of all memory maps on [0, c] is Mc. The order of f ∈
Mc, written ord(f), is the cardinality of the support of f over N.

Definition 19. The inverse memory map of f ∈ Mc is a map f← : [0, c] → N

such that for all r ∈ [0, c], r ∈ f(f←(r)).

In principle, a CRN cannot reasonably be initialized to any state more precise
than to an interval of a memory map. Indeed, the consequence of Corollary 10
is the well known fact that if a species ever has a non-zero concentration, it will
at almost every time t > 0, so no power is gained from being able to initialize a
species to 0.

Before proceeding, the definition of a memory map, it should be noted, is
descriptive of a CRN, not prescriptive. Any memory map can model any CRN,
but not all memory maps model any particular CRN well. For example, any
β-bounded CRN can be modeled by the uninteresting memory map that maps
every concentration less than β to 0. Similarly, a memory map with randomly
chosen intervals is both equally valid and equally ill-suited. We do not yet,
however, have all of the definitions necessary to describe what makes for a good
choice of memory map and so return to this topic later in this section.

Now equipped with a notion of memory, we must define the trajectory of a
species X through that memory (and a CRN’s trajectory in terms of its species’).
This is not inherently clear because a species X must pass over all intermedi-
ate memory locations when transitioning between two non-adjacent states. Even
if there are only finitely many such intermediary states, including them in the
trajectory provides no additional information. That X passes through them dur-
ing the transition is a direct consequence of x being continuous. In Fig. 1, for
example, we never want to include the B interval in our trajectory.

But since each memory state consists of an open interval, X must spend a
non-zero length of time inside of it. This brings us back to the definition of (ε, d)-
computability. If we require X to (ε, d)-compute the midpoint of the interval of a
memory state with ε being half of the interval’s width and d being an adjustable
parameter, we can arrive at a useful definition of trajectory. To fully formalize
this, however, we first have to develop a bit more notation.

Definition 20. Let N = (S,R) be a β-bounded CRN. For each X ∈ S, let
fX ∈ Mβ be a memory map. A species X ∈ S is in the memory state m ∈ N at
time t if x(t) ∈ fX(m). Similarly, N is in the memory state m ∈ N

S
at time t

if for each X ∈ S, X is in the memory state m(X).

Definition 21. Let N be a β-bounded CRN. For X ∈ S, let fX ∈ Mβ be a
memory map. X enters a memory state n ∈ N at time t0 if there exists an ε > 0
such that for all 0 < ε′ < ε, x(t0 − ε′) /∈ fX(n) and x(t0 + ε′) ∈ fX(n). Similarly,
X leaves n at time t1 if there exists an ε > 0 such that for all 0 < ε′ < ε,
x(t1 − ε′) ∈ fX(n) and x(t1 + ε′) /∈ fX(n). The state time of X in n (with no
intermediate states) is the difference t1 − t0.

There are a few consequences to the above definitions worth mentioning.
When a species is initialized to a memory state n, it leaves n without first
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having entered n. A species may also transition from n ∈ N to ∞ (or in other
words, it may touch the boundary of n) and then return to n, in which case
it does not leave or enter n. This is a desirable property as ∞ is not a useful
memory state except, perhaps, in the limit as t → ∞. Further, no species may
enter or leave the memory state ∞ by definition.

There remain a few edge cases in the above definitions. If a species never
entered a memory state n before it leaves n (i.e. it was initialized to n), then we
say it entered at time t = 0. In a similar vein, if a species never leaves a memory
state, we say it leaves at t = ∞ purely as a matter of notational convenience
(even if in the limit it transitions to the memory state ∞).

Lastly, we remark that sojourn time (arc length) is generally a better measure
of runtime for CRNs [3]. In the case of bounded CRNs, however, state time
suffices as it is always within a constant factor of sojourn time. This is because
each species concentration of a bounded CRN necessarily has a bounded rate of
change.

We now have the tools necessary to define the trajectory of a CRN. We first
give an informal description here with example and then rigorously define it (see
Definition 22). The trajectory of a β-bounded CRN N initialized to x0 is the
ordered sequence of memory states obtained as follows. Start from the initial
memory state n0. Each time one or more species enters a new memory state for
which its state time is at least d, append the new state of N to the sequence.
Continue indefinitely or until there are no further memory state changes.

This construction avoids the undesirability of recording in-between memory
states of other species as they transition to their next memory state. It also has
the added benefit of bringing into the trajectory a notion of a species staying
in a memory state for a long time. In a species trajectory, we merely record
where the species’s concentration goes to but not for how long it stays there.
In the memory trajectory of a full CRN, however, if a species’s memory state
only rarely changes, we can see that behavior in how infrequently it changes
in comparison to other species. For example, if one wishes to record a species’s
memory state at regular intervals, the simple solution is to set up a clock with
an appropriate period which has no interaction with the rest of the CRN except
to place itself into the memory trajectory as a timestamp.

To complete our running example, Fig. 1 has the following trajectory (for
the species X, X): (A,C)(C,A)(A,C)(C,A)(A,C). In this case, because the
construction of the CRN requires that x+x = 1, a symmetric choice of intervals
A and C across 1

2 causes X and X to always be in opposite states at all times.
Using this intuition, we now formally construct the definition of trajectory

as follows.

Definition 22. Let N = (S,R) be a β-bounded CRN at x0 ∈ R
S
≥0. For X ∈

S, let fX ∈ Mβ be a memory map. The memory trajectory of N when N is
initialized to x0 with delay d ∈ R

+, written traj(x0, d), is a sequence of N
S

defined by traj(x0, d)(n)(X) = mlast(X,x0,mn
next(x0, 0, d), d) where mlast and

mn
next are helper functions defined below.
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To define the helper functions in the above definition, let N = (S,R) be
a β-bounded CRN at x0 ∈ R

S
≥0. For X ∈ S, let fX ∈ Mβ be a memory

map. Let T (X,x0, d) be the set of times when X enters a memory state for
which its state time is at least d ∈ R

+ when N is initialized to x0, and define
T (x0, d) = ∪

X∈S
T (X,x0, d).

Next define mnext : R
S
≥0 × R≥0 × R

+ → R≥0 to be the function which, given
an initial state x0 of N , a time t ∈ R≥0, and a delay d > 0, selects the least
t0 ∈ T (x0, d) for which t0 > t.

First, by Corollary 10, f←
X = ∞ only when X is instantaneously between

memory states or if X is constant and initialized to such a value. Both are unde-
sirable system behavior easily avoided. mnext specifically excludes the former
from trajectories while the latter is a mere matter of initialization. Unless oth-
erwise specified, we never initialize a CRN to such a state even if it is a state
for which the CRN is bounded. Second, there is always a least element of each
T (x0, d) for mnext to select since a species X can be in at most two memory
states (leaving one for the other) per every d interval of time, which we formally
state below.

Lemma 23. Let N = (S,R) be a β-bounded CRN initialized to x0 ∈ R
S
≥0. Fix a

delay d ∈ R
+. Then for any d interval of time, N ’s memory trajectory contains

at most 2|S| memory states.

From this lemma, mnext is well defined. We extend its definition to a recursive
form as follows.

mn
next(x0, t, d) =

{
mn−1

next(x0,mnext(x0, t, d), d) n > 0
t n = 0

To finish formalizing the definition of memory trajectory, mlast : S × R
S
≥0 ×

R≥0 × R
+ → N is the function which, given a species X ∈ S, an initial state x0

of N , a time t ∈ R≥0, and a delay d > 0, returns the last memory state n ∈ N

for which species X enters n at a time t0 ≤ t when N is initialized to x0. More
intuitively, mlast remembers the current memory state of a species while it is
transitioning to another memory state.

We can at last now state what makes for a good memory map. The guiding
principle behind the choice of memory map is that a CRN in a memory state
should behave identically going forward regardless of what particular concentra-
tion each species has inside of it. In the spirit of Theorem 15, this then leads to
the following natural definition.

Definition 24. Let N = (S,R) be a uniformly β-bounded CRN and, for each
X ∈ S, a memory map fX ∈ Mβ. Fix a delay d ∈ R

+. N is memory determin-
istic (with respect to {fX}X∈S and delay d) if there is a function δ : N

S → N
S

such that if m ∈ N
S is a memory state in N ’s memory trajectory, then the next

memory state in N ’s memory trajectory (if one exists) is δ(m). When no such
memory state exists, δ(m) = m.
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It is important to note that the transition function δ described in the above
definition is relative to which memory state(s) the CRN it describes may be
initialized. The behavior of unreachable memory states are outside the scope
of the definition. With respect to any such memory state, δ’s behavior is unre-
stricted. In general, δ itself need not necessarily even be computable (although it
typically should be). For a well behaved CRN (one which admits many possible
initializations), however, δ must satisfy the definition for every valid initialization
simultaneously.

Before moving on, observe that all bounded CRNs are memory determinis-
tic for a choice of memory map. Recall that the memory map which maps all
concentrations to 0 is valid for every CRN. Similarly, each CRN modeled with
this memory map is memory deterministic with δ(m) = m. Otherwise put, a
good choice of memory map for a CRN requires not just that it be memory
deterministic but that it is also sufficiently refined to produce a useful model.

Now, unsurprisingly, the notion of a memory map bears a strong resemblance
to a Turing machine tape. We know that CRNs and Turing machines are equiva-
lent models [7]. The question remains, however, if one model can outperform the
other in some significant way. We can address this question in one direction by
providing a means for a Turing machine to simulate a CRN. In general, this is
a difficult task. With memory maps, this becomes easier. Since neither model is
allowed to speed up indefinitely, we may treat a single step of a Turing machine
as a constant length of time. Then we may define that a Turing machine simu-
lates a CRN N if it follows N ’s memory trajectory on its tape(s). Formally, we
have the following definitions.

Definition 25. Fix k ∈ Z
+. Let Λ = {(ωn , tn)}n∈N be a sequence of tuples in

(Z∗
2)

k × R≥0. A Turing machine with at least k tapes initialized to ω0 follows Λ
if there is a strictly increasing computable sequence {sn}n∈N of N such that for
each i ∈ Zk, the contents of tape Ti at step sn is ωn (i). Similarly, M real-time
follows Λ if there is a constant c > 0 such that each sn ≤ ctn

Definition 26. Let N = (S,R) be a (uniformly) β-bounded CRN and, for each
X ∈ S, let fX ∈ Mβ. Fix a delay d ∈ R

+. A Turing machine M follows N
according to {fX}X∈S with delay d if for each X ∈ S there exists a computable
injective map itoaX : N → Z

∗
2 such that M follows

Λ = {(itoa(traj(x0, d)(n)),mn
next(x0, 0, d))}n∈N

when initialized to x0 ∈ R
S
≥0 (for every initialization x0 ∈ R

S
≥0 for which N is

bounded), where itoa(traj(x0, d)(n))(X) = itoaX(traj(x0, d)(n)(X)) for X ∈ S
and n ∈ N. Similarly, M real-time follows N according to {fX}X∈S with delay
d if M real-time follows Λ when initialized to x0 ∈ R

S
≥0 (for every initialization

x0 ∈ R
S
≥0 for which N is bounded).

We can extend our running example to these definitions as follows. For the
itoa functions, interval A maps to 1, B maps to 10, and C maps to 0. Moreover,
since the CRN was constructed directly from a finite automaton, it only takes two



Robust Real-Time Computing with Chemical Reaction Networks 47

steps to compute each subsequent memory state and write it to the appropriate
tape. If follows trivially, then, that there is a Turing machine which real-time
follows the CRN.

More generally, since Turing machines and CRNs are equivalent models [7],
there is always a Turing machine that follows any CRN N . The more interesting
(and far more difficult) question is if there always exists a Turing machine M
and some choice of itoa functions for which M real-time follows N . Intuitively,
analog computing should be more efficient than discrete computing in some
respect. Indeed, were a CRN either unbounded or if it were allowed an unbounded
number of species, this is easy to show. To see why this is less certain for robust,
bounded CRNs, we need a few lemmas.

The natural first question to ask is how can a Turing machine can keep up
in real-time with a CRN from the definition of real-time following. A CRN,
after all, is allowed to change all of its species concentrations simultaneously
while a Turing machine, following the CRN’s memory trajectory and not directly
simulating the CRN, must keep all but one (except in the unlikely case where
two or more species change memory state at the exact same time) of its species-
tracking tapes effectively constant between memory trajectory transitions.

This is not a limitation since a species must linger in a memory state for a
minimum length of time. A CRN with n species and delay d can only experience
at most n memory states in every open interval of length d (see Lemma 23). This
is what makes a Turing machine M real-time following a CRN occur in real-time.
It follows that M can compute each of these state changes sequentially while only
requiring a constant factor of |S| more time in the worst case.

The remaining difficulty is to show that a bounded CRN cannot ‘cheat’ in
the sense that a Turing machine would require an infinite alphabet or an infinite
number of states or tapes to real-time follow it. We show this is the case when
each memory map has only finite order and the transitions between memory
states is memory deterministic.

Theorem 27. Let N = (S,R) be a uniformly β-bounded CRN, let fX ∈ Mβ for
each X ∈ S with ord(fX) < ∞, and let d ∈ R

+. If N is memory deterministic,
then there is a Turing machine which real-time follows N according to {fX}X∈S

with delay d.

Corollary 28. Let N = (S,R) be a uniformly β-bounded CRN, and let fX ∈
Mβ for each X ∈ S. Fix a delay d ∈ R

+. If N is memory deterministic and N ’s
memory trajectory is either finite or there exists a memory state which appears
at least twice in it, then there is a Turing machine which real-time follows N
according to {fX}X∈S with delay d.

5 Discussion

In this paper, we have shown that only the algebraic real numbers are computable
by CRNs using exponentially stable equilibria. Intuitively, this means that every
transcendental real number cannot be computed robustly by a CRN in the sense
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of Definition 3. This led us to explore in Sect. 4 what it means for a CRN to
compute robustly. We started from two notions of computation. First, a CRN
can compute a value exactly, which a non-constant CRN can achieve only for a
measure zero length of time. Second, a CRN may compute a value in the limit,
which has two problems of its own. A CRN never precisely achieves a value
computed in the limit. Moreover, we showed earlier in Theorem 7 that only the
algebraic numbers can be so computed reliably. Any non-algebraic number, if
the CRN is improperly initialized with any epsilon error, cannot be computed
in the limit.

These limitations led us to ask what happens when we require a CRN to
behave identically for a range of inputs rather than a single set of concentrations.
The result was the notion of a memory map, a strangely discrete model of an
analog implementation of computation. Arguably, under this model, a CRN’s
reactions correspond to transitions between states of a Turing machine while
species concentrations correspond to tape states.

This ultimately led to Theorem 27. In the more familiar terminology of the
discrete world, it tells us that a robust CRN is no more capable of executing a
NFA than a Turing machine is. This is perhaps unsurprising. The main advantage
a CRN has to leverage over a Turing machine is in its ability to rewrite its entire
tape with a new word of any length. With finite memory, this advantage is lost.

Notice, however, that Theorem 27 says nothing about the existence of a
robust CRN capable of simulating a NFA. For that, we turn to [13] for a CRN
with a more restrictive notion of robustness which nonetheless satisfies the defi-
nitions we derived here and Theorem 27. We briefly summarize this below as an
illustrative example.

Given a NFA M , a CRN N is constructed with two species, Xq and Xq, for
each state q of M . These species alternatively take concentrations close to 1 or
0 to represent M being in state q or not in state q respectively for Xq and vice
versa for Xq. The appropriate memory map for each of these species would be
to map 0 to an interval around 0, 1 to an interval around 1, and 2 to everything
in-between. The correct delay to choose for this CRN is the length of the clock
cycle (which also admits an identical memory map). For the input signal (which,
again, admits an identical memory map), we may assume that there is an external
CRN generating it which makes the N memory deterministic.

First, note that N is uniformly bounded on all of its valid inputs. Moreover, if
we apply Theorem 27 to the CRN described above, we obtain a Turing machine
which not only behaves identically but can be transformed back into the same
CRN [13]. As such, these are truly inverse statements. Moreover, the theorem
can be applied to more general cases as well.

Given a Turing machine M , Fages et al. construct a GPAC-generable function
(easily translated into the CRN world) that simulates M within bounded time
and tape space [7]. The input parameters for each bound can be adjusted, of
course, but once fixed, the resulting simulation permits a single memory map
model for all of its input configurations to which Corollary 28 applies. In a sense,
these, too, are inverse statements.
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Now the question becomes where to go from here. It is known that, given
an NFA, there is a robust CRN which simulates it in real-time [13]. Similarly,
we have provided a proof that, given a robust CRN with memory maps of only
finite order, there is a Turing machine which real-time follows it. In short, for
the regular languages, robust CRNs and Turing machines are fully equivalent
models with neither having an advantage over the other. We conjecture that
the same is true of an arbitrary robust CRN, that is given a robust CRN with
a memory deterministic collection of memory maps, there is a Turing machine
which real-time follows it. This, if true, has several important implications.

First, it’s known that CRNs and Turing machines can simulate each other
with a polynomial-time slowdown [3]. If this conjecture is true, even in a more
restricted form, it would eliminate the slowdown from a Turing machine simu-
lating a CRN.

Of perhaps more interest is the Hartmanis-Stearns Conjecture (HSC) [10].
Both Turing machines and robust CRNs are clearly capable of outputting the
digits of a rational number in real-time. For Turing machines, this means writing
to some output tape. For CRNs, this does not mean outputting a concentration
but rather raising a concentration high or low in a memory trajectory in the
appropriate sequence. In this manner, assuming our stated conjecture, then if
one could construct a robust CRN to output the digits of a nonrational algebraic
number, it would also resolve the HSC for Turing machines.
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4. Cappelletti, D., Ortiz-Muñoz, A., Anderson, D.F., Winfree, E.: Stochastic chemical
reaction networks for robustly approximating arbitrary probability distributions.
Theoret. Comput. Sci. 801, 64–95 (2020). https://doi.org/10.1016/j.tcs.2019.08.
013

5. Clamons, S., Qian, L., Winfree, E.: Programming and simulating chemical reaction
networks on a surface. J. R. Soc. Interface 17(166), 20190790 (2020). https://doi.
org/10.1098/rsif.2019.0790

6. Epstein, I.R., Pojman, J.A.: An Introduction to Nonlinear Chemical Dynamics:
Oscillations, Patterns, and Chaos. Oxford University Press, Waves (1998)

https://doi.org/10.1007/11750321_60
https://doi.org/10.1007/978-3-642-32589-2_23
https://doi.org/10.1007/978-3-642-32589-2_23
https://doi.org/10.1145/3127496
https://doi.org/10.1016/j.tcs.2019.08.013
https://doi.org/10.1016/j.tcs.2019.08.013
https://doi.org/10.1098/rsif.2019.0790
https://doi.org/10.1098/rsif.2019.0790


50 W. Fletcher et al.

7. Fages, F., Le Guludec, G., Bournez, O., Pouly, A.: Strong turing completeness
of continuous chemical reaction networks and compilation of mixed analog-digital
programs. In: Feret, J., Koeppl, H. (eds.) CMSB 2017. LNCS, vol. 10545, pp. 108–
127. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67471-1 7

8. Furcy, D., Summers, S.M., Wendlandt, C.: Self-assembly of and optimal encod-
ing within thin rectangles at temperature-1 in 3D. Theoret. Comput. Sci. (2021).
https://doi.org/10.1016/j.tcs.2021.02.001

9. Hader, D., Patitz, M.J.: Geometric tiles and powers and limitations of geometric
hindrance in self-assembly. Nat. Comput. 20(2), 243–258 (2021). https://doi.org/
10.1007/s11047-021-09846-2

10. Hartmanis, J., Stearns, R.E.: On the computational complexity of algorithms.
Trans. Am. Math. Soc. 117, 285–306 (1965). http://www.jstor.org/stable/1994208

11. Huang, X., Klinge, T.H., Lathrop, J.I.: Real-time equivalence of chemical reaction
networks and analog computers. In: Thachuk, C., Liu, Y. (eds.) DNA 2019. LNCS,
vol. 11648, pp. 37–53. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
26807-7 3

12. Huang, X., Klinge, T.H., Lathrop, J.I., Li, X., Lutz, J.H.: Real-time computability
of real numbers by chemical reaction networks. Nat. Comput. 18(1), 63–73 (2018).
https://doi.org/10.1007/s11047-018-9706-x

13. Klinge, T.H., Lathrop, J.I., Lutz, J.H.: Robust biomolecular finite automata. The-
oret. Comput. Sci. 816, 114–143 (2020). https://doi.org/10.1016/j.tcs.2020.01.008

14. Klinge, T.H., Lathrop, J.I., Moreno, S., Potter, H.D., Raman, N.K., Riley, M.R.:
ALCH: an imperative language for chemical reaction network-controlled tile assem-
bly. In: Geary, C., Patitz, M.J. (eds.) 26th International Conference on DNA Com-
puting and Molecular Programming (DNA 26). Leibniz International Proceedings
in Informatics (LIPIcs), vol. 174, pp. 6:1–6:22. Schloss Dagstuhl-Leibniz-Zentrum
für Informatik, Dagstuhl (2020). https://doi.org/10.4230/LIPIcs.DNA.2020.6

15. Severson, E.E., Haley, D., Doty, D.: Composable computation in discrete chemical
reaction networks. Distrib. Comput. (1), 1–25 (2020). https://doi.org/10.1007/
s00446-020-00378-z

16. Turing, A.M.: On computable numbers, with an application to the Entscheidungs
problem. Proc. Lond. Math. Society s2–42(1), 230–265 (1937). https://doi.org/
10.1112/plms/s2-42.1.230

https://doi.org/10.1007/978-3-319-67471-1_7
https://doi.org/10.1016/j.tcs.2021.02.001
https://doi.org/10.1007/s11047-021-09846-2
https://doi.org/10.1007/s11047-021-09846-2
http://www.jstor.org/stable/1994208
https://doi.org/10.1007/978-3-030-26807-7_3
https://doi.org/10.1007/978-3-030-26807-7_3
https://doi.org/10.1007/s11047-018-9706-x
https://doi.org/10.1016/j.tcs.2020.01.008
https://doi.org/10.4230/LIPIcs.DNA.2020.6
https://doi.org/10.1007/s00446-020-00378-z
https://doi.org/10.1007/s00446-020-00378-z
https://doi.org/10.1112/plms/s2-42.1.230
https://doi.org/10.1112/plms/s2-42.1.230


Zero-Knowledge Proof Protocol
for Cryptarithmetic Using Dihedral Cards

Raimu Isuzugawa1(B) , Daiki Miyahara1,2 , and Takaaki Mizuki1,2(B)

1 Tohoku University, Sendai, Japan
raimu.isuzugawa.q6@dc.tohoku.ac.jp, mizuki+lncs@tohoku.ac.jp

2 National Institute of Advanced Industrial Science and Technology (AIST),
Tokyo, Japan

Abstract. Cryptarithmetic, also known as Verbal Arithmetic or Word
Addition, is a popular pencil puzzle in which the aim is to deduce which
letter corresponds to which numeral, given a mathematical equation in
which each numeral (from 0 to 9) has been replaced with a unique letter.
The most famous instance of this puzzle is probably “SEND + MORE =
MONEY”, whose solution is “9567 + 1085 = 10652”, i.e., S = 9, E = 5,
N = 6, D = 7, M = 1, O = 0, R = 8, and Y = 2. In this study, we construct
a physical zero-knowledge proof protocol for a Cryptarithmetic puzzle:
That is, our protocol enables a prover who knows a solution to the puzzle
to convince a verifier that he/she knows the solution without revealing
any information about it. The proposed protocol uses a physical deck of
“dihedral cards,” which were developed by Shinagawa in 2019.

Keywords: Cryptarithmetic · Dihedral cards · Physical
zero-knowledge proof · Card-based cryptography

1 Introduction

Cryptarithmetic, also known as Verbal Arithmetic or Word Addition, is a
famous pencil puzzle: given an equation, such as “SEND + MORE = MONEY”
(Fig. 1(a)), where each numeral from 0 to 9 has been replaced with a unique
letter, one has to guess which letter corresponds to which numeral. The solution
to the aforementioned example is presented in Fig. 1(b): That is, the correspon-
dences are S �→ 9, E �→ 5, N �→ 6, D �→ 7, M �→ 1, O �→ 0, R �→ 8, and
Y �→ 2.

The rules for solving Cryptarithmetic puzzles are as follows.

1. Any letter (at every position) corresponds to the same numeral, and different
letters correspond to different numerals.

2. The most significant digit (letter) must not correspond to 0.
3. After all letters are replaced with their numerals, the resulting equation must

be mathematically correct.

In this paper, we shall construct a zero-knowledge proof protocol for
Cryptarithmetic. We begin by explaining what zero-knowledge proof protocols
for pencil puzzles are.
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(a) (b)

Fig. 1. A puzzle instance of Cryptarithmetic and its solution

1.1 Zero-Knowledge Proofs for Puzzles

Consider a situation in which there are two players: a prover P and a verifier V ;
the prover P knows a solution w to an instance x of a puzzle (such as Cryptarith-
metic and Sudoku1), whereas the verifier V does not know any solution to x. The
verifier V spent considerable time attempting to find a solution to x, but V was
unable to find it. Thus, V becomes skeptical and asks P to prove that there is a
solution to x. However, if P only shows the solution w to V , the puzzle instance
x will not be worth solving. A zero-knowledge proof protocol, whose concept was
first conceived in [6], can solve this dilemma: It enables P to convince V of the
existence of w without revealing any information about w (that only P knows),
satisfying the following three properties.

Completeness. If P knows w, then V is convinced of the existence of w.
Extractability. If P does not know w, then V is not convinced.
Zero-knowledge. V does not obtain any information about w.

In 2007, Gradwohl et al. [7,8] first constructed zero-knowledge proof pro-
tocols for Sudoku using physical daily-use objects such as a deck of playing
cards. Since then, many zero-knowledge proof protocols for pencil puzzles using
a deck of physical cards, which we call card-based ZKP protocols, have been pro-
posed, such as those for Akari [1], Hashiwokakero [27], Hitori [21], Juosan [14],
Kakuro [1,15], KenKen [1], Makaro [2], Masyu [10], Nonogram [3,22], Nori-
nori [4], Numberlink [24,25], Nurikabe [21], Ripple Effect [26], Slitherlink [10,11],
Sudoku [23,28,29], and Takuzu [1,14]. These physical zero-knowledge proof pro-
tocols do not depend on computers or programs; hence, it is relatively easy for
lay people to perform zero-knowledge proof and/or to understand its concept.

1.2 Our Contribution

It should be noted that all the pencil puzzles listed above are played with a
rectangular grid (consisting of many cells): That is, all the existing card-based
ZKP protocols have been designed to manipulate a grid with numbers and/or
symbols. By contrast, Cryptarithmetic, for which this study shall design a zero-
knowledge proof protocol, is played not with a grid but with an equation, as
already seen in Fig. 1. Therefore, another technique or treatment is required to
1 Sudoku is the most famous pencil puzzle, which has been published by NIKOLI Co.,

Ltd. (https://www.nikoli.co.jp/en/).

https://www.nikoli.co.jp/en/
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Fig. 2. Dihedral card of 2m-sided polygon for m = 4

construct a card-based ZKP protocol for Cryptarithmetic. Furthermore, while
most of the existing protocols use a deck of physical cards consisting of black
and red cards ♣ ♣ · · · ♥ ♥ · · · and/or number cards 1 2 3 · · · , these cards
are not suitable for computing an arithmetic addition; in particular, computing
a carry causes a heavy load (e.g., [17]). Therefore, we need to consider other
types of physical cards.

In this paper, we construct a zero-knowledge proof protocol for Cryptarith-
metic using dihedral cards, as illustrated in Fig. 2; these novel cards were pro-
posed by Shinagawa in 2019 [30,31]2. That is, using our proposed protocol, a
prover P who knows the solution to a given Cryptarithmetic puzzle can convince
a verifier V that P knows the solution without revealing any information about
it. As will be seen in Sects. 2 and 3, the dihedral cards are suitable for Cryptarith-
metic because they can efficiently compute an arithmetic addition with a carry
(compared with other regular polygon cards [32], or a normal deck of cards as
mentioned above). After we present our protocol in Sect. 3, we evaluate its per-
formance and demonstrate its correctness in Sect. 4. The paper is concluded in
Sect. 5.

Although Cryptarithmetic puzzles can have multiple solutions or can be an
equation whose left-hand side has more than two terms (for addition) [33–35],
we focus on Cryptarithmetic puzzles with the addition of exactly two terms such
that there is a unique solution (as shown in Fig. 1) throughout this paper. (We
will revisit this point in Sect. 5.)

Note that if we allow the base, denoted by k, in arithmetic to be arbi-
trary (aside from k = 10, i.e., decimal arithmetic), the decision problem for
Cryptarithmetic becomes NP-complete [5] (where k is not fixed). The compu-
tational complexity of Cryptarithmetic has been studied, including methods for
efficiently deriving solutions using genetic algorithm [13] and automata that
accept Cryptarithmetic problems for bases k ≤ 7 [19]. If we fix k, say k = 10 as
in this paper, then we can find a solution to a given Cryptarithmetic problem (if
any) by enumerating at most 10! assignments of numerals to the given letters.
However, pencil puzzles such as Cryptarithmetic are usually solved with a pen
and sheets of paper; hence, without the aid of a computer, 10! possibilities can-
not be enumerated by hands; thus, it is worthwhile to perform zero-knowledge
proofs even for puzzles in P.

2 Figures 2 to 11 were created based on the figures presented in [31].
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Fig. 3. How to represent integers using a dihedral card of m = 4

Fig. 4. How to represent integers using a dihedral card considering a carry

2 Preliminaries: Dihedral Cards [30,31]

In this section, we describe the dihedral cards proposed by Shinagawa [30,31],
operations on them, and some sub-protocols that will be used when constructing
our protocol in Sect. 3.

2.1 Dihedral Cards

A dihedral card is a regular polygon card marked with invisible ink. We use dihe-
dral cards, each of which is a regular 2m-sided polygon, to conduct computations
on a finite field Z/Zm = {0, 1, . . . ,m−1} for a positive integer m. Figure 2 shows
an example of a dihedral card of a 2m-sided polygon for m = 4, i.e., a regular
octagon card. The blue arrows and dots in Fig. 2 have been drawn using invisible
ink. Specifically, a symmetric bidirectional arrow is marked in the center, and m
dots corresponding to m consecutive vertices (among 2m ones) are marked. The
same pattern is drawn on the back of the card, i.e., every vertex marked with a
dot in the front also has a dot in the back.

The physical property of invisible ink guarantees that blue arrows and dots
are invisible to the naked eye, but they can be made visible by illuminating with
black light. Therefore, markings on a dihedral card can only be confirmed when
illuminated with black light.

Because dihedral cards have the shape of a regular 2m-sided polygon, we can
simply represent every integer from 0 to 2m−1 depending on the angle at which
the cards are placed, as shown in Fig. 3. However, in our proposed protocol, the
values from m to 2m − 1 are treated as the values from 0 to m − 1 with a carry,
as shown in Fig. 4. Given a 2m-sided polygon card having a value x ∈ Z/Z2m,
if we rotate it by cπ/m degrees for an integer c, its value is changed from x to
x + c mod 2m; we refer to this action as “rotating a card by a degree c.”

In addition to rotation, a dihedral card can be transformed by flipping it
face up or down based on a certain axis of rotation. In this study, we use three
axes, i.e., three flipping methods: Flip the card vertically, as shown in Fig. 5;
diagonally, as shown in Fig. 6; and horizontally, as shown in Fig. 7.
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Fig. 5. Flipping a card vertically

Fig. 6. Flipping a card diagonally

Remember that the value of a dihedral card can be revealed by illuminating
with black light. Next, we describe methods for partially revealing the values of a
dihedral card. That is, assume that, given a 2m-sided polygon card with a value
x ∈ Z/Z2m, we want to obtain the one-bit value p(x ≥ m) and/or the m-valued
x mod m. Here, we define p(x ≥ m) = 1 if x ≥ m, and p(x ≥ m) = 0 if x < m.
We call p(x ≥ m) the sign of the card, and x mod m the mod-m value of the
card. This can be achieved by covering areas that are not related to the value to
be observed; Fig. 8 and Fig. 9 illustrate how to reveal the sign and the mod-m
value of a card, respectively, using covers of special shapes. As can be verified
in Fig. 4, the sign of a card determines whether or not the digit has a carry, and
a dot mark at the point where the black light is irradiated, as shown in Fig. 8,
corresponds to this sign. On the other hand, the mod-m value can be obtained
by looking only at the arrow in the center illuminated by the black light because
its direction reveals the mod-m value only (without its possible carry). In Fig. 8
and Fig. 9, the sign p(x ≥ m) is 0, and the mod-m value is 1.

2.2 Shuffle Operations on Dihedral Cards

Here, considering a sequence of dihedral cards, we describe two shuffle operations.
Let a positive integer m be fixed, and denote by [[x]] a 2m-sided polygon card
with a value of x ∈ Z/Z2m. For a positive integer i, we define [i] = {1, 2, . . . , i}.
Given a sequence of � regular 2m-sided dihedral cards ([[x1]], [[x2]], . . . , [[x�]]), we
consider two types of shuffle, as follows.

Rotation Shuffle. A rotation shuffle with a set T ⊆ [�] rotates all cards
whose positions are in T by a uniformly distributed random number r ∈
Z/Z2m; that is, it shuffles all cards specified by T together. In this case, the

Fig. 7. Flipping a card horizontally
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Fig. 8. Opening the sign

Fig. 9. Opening the mod-m value

sequence of the cards ([[x1]], [[x2]], . . . , [[x�]]) becomes xi → xi + r (mod 2m)
when i ∈ T , and xi → xi when i /∈ T .
Two-sided Rotation Shuffle. A two-sided rotation shuffle is an operation
that randomly rotates all cards whose positions are in T ⊆ [�] by π. In this
case, the card sequence ([[x1]], [[x2]], . . . , [[x�]]) becomes xi → xi+rm (mod 2m)
when i ∈ T , and xi → xi when i /∈ T , where r is a random bit r ∈ {0, 1}.
This shuffle can be implemented using two clips to fix and rotate the cards,
as illustrated in Fig. 10.

2.3 Protocols with Dihedral Cards

In this subsection, we briefly introduce several basic protocols for computations
working on dihedral cards [30,31]; refer to [31] for details.

2.3.1 Initialization Protocol

The initialization protocol takes as input a card [[x]] such that x ∈ Z/Z2m and
initializes its value to 0: [[x]] ⇒ [[0]]. It proceeds as follows.

1. Apply a rotation shuffle to the card.
2. Illuminate the whole card with black light and let the opened value be x′ ∈

Z/Z2m.
3. Rotate the card by a degree −x′.

This protocol requires one shuffle.

Fig. 10. Implementation of two-sided rotation shuffle (� = 2)
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2.3.2 Addition Protocol

The addition protocol takes as input two cards [[x1]], [[x2]] such that x1, x2 ∈
Z/Z2m, and outputs the arithmetic addition of the two (and [[0]]):

([[x1]], [[x2]]) ⇒ ([[0]], [[x1 + x2 mod 2m]]).

It proceeds as follows.

1. Flip the left card vertically, as shown in Fig. 5, to obtain [[−x1]].
2. Apply a rotation shuffle to the sequence of two cards.
3. Illuminate the entire left card with black light. Let the opened value be x′ ∈

Z/Z2m.
4. Rotate the sequence of cards by a degree −x′.

This protocol also requires one shuffle.

2.3.3 Sign Normalization Protocol

The sign normalization protocol takes as input a card [[x]] such that x ∈ Z/Z2m

and changes its value to x mod m:

[[x]] ⇒ [[x mod m]].

It proceeds as follows.

1. Apply a two-sided rotation shuffle to the card.
2. Reveal the sign of the card (using the method illustrated in Fig. 8). Let s′ ∈

{0, 1} be the sign of the card.
3. Rotate the card by a degree s′m.

This protocol uses one shuffle.

2.3.4 Sign-to-Value Protocol

The sign-to-value protocol takes as input a card [[x]] such that x ∈ Z/Z2m (along
with card [[0]]), and outputs the sign of the card (and [[0]]):

([[x]], [[0]]) ⇒ ([[p(x ≥ m)]], [[0]]).

It proceeds as follows.

1. Apply a two-sided rotation shuffle to the sequence of two cards.
2. Reveal the sign of the left card. Let s1 ∈ {0, 1} be the revealed sign.
3. Rotate the right card by a degree s1m.
4. Apply the initialization protocol to the left card. We now have ([[0]], [[p(x ≥

m) · m]]).



58 R. Isuzugawa et al.

Fig. 11. Implementation of uniform random flipping

Fig. 12. Dihedral cards of regular 20-sided polygons

5. Consider a diagonal axis (as in Fig. 6) for the left card and a horizontal axis
(as shown in Fig. 7) for the right card. Then, the cards are randomly flipped
together based on these axes; to achieve this, after adjusting the degree of the
left card, fix the two cards together with two plates, as illustrated in Fig. 11,
and repeatedly rotate them quickly.

6. Reveal the sign of the right card. Let s2 ∈ {0, 1} be the revealed sign.
(a) If s2 = 0, output the current sequence.
(b) If s2 = 1, rotate the right card by a degree m, and then, flip the left card

diagonally (as shown in Fig. 6).

Three shuffles are required for the sign-to-value protocol.

3 Zero-Knowledge Proof Protocol for Cryptarithmetic

In this section, we construct a card-based zero-knowledge proof protocol for
Cryptarithmetic using dihedral cards, utilizing the basic sub-protocols intro-
duced in the previous section.

First, in Sect. 3.1, we propose a copy protocol for use in our proposed pro-
tocol. This copy protocol creates multiple dihedral cards with the same value
from one dihedral card without revealing any information about its value. We
then describe the procedure for our proposed protocol in Sect. 3.2. To deal with
decimal arithmetic in Cryptarithmetic, we set m = 10, i.e., our protocol uses
dihedral cards, each of whose shape is a regular 20-sided polygon, as illustrated
in Fig. 12.

In Sect. 4, we will evaluate the numbers of cards and shuffles required for
executing our proposed protocol and prove that our protocol satisfies the three
properties of the zero-knowledge proof.

3.1 How to Duplicate Commitment

Let us call a dihedral card with a value x ∈ Z/Z2m a commitment to x. We
present a copy protocol that duplicates a given commitment. As can be observed
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in Sect. 3.2, we use this copy protocol to duplicate a commitment to every i,
0 ≤ i ≤ 9, when setting up our proposed protocol.

Given a commitment [[x]], our copy protocol making � (≥ 2) copied commit-
ments proceeds as follows.

1. Place a sequence of � dihedral cards [[0]], all having a value of 0, next to the
given commitment to be copied.

2. Apply the addition protocol to the sequence of cards so that the value of
the given commitment is added to all the � cards, resulting in a sequence
of � commitments ([[x]], . . . , [[x]]). (Note that the addition protocol presented
in Sect. 2.3.2 takes only two cards as input, but one can easily extend it by
rotating the � + 1 cards together.)

In this protocol, the given commitment is duplicated by adding its value to
the desired number of dihedral cards that we want to obtain. Thus, it requires
� dihedral cards as well as a given commitment, and requires only one shuffle.

3.2 Procedure

In this subsection, we describe the procedure for our proposed protocol. Given
a Cryptarithmetic problem, our protocol enables a prover P who knows the
solution to the problem to convince a verifier V that P knows the solution
without revealing any information about the solution. It consists of four phases:
Setup, Adding least significant digits (half adder), Adding higher digits (full
adder), and Verification.

Setup. In this phase, dihedral cards corresponding to the solution are created.

1. Prepare a commitment to i for every i, 0 ≤ i ≤ 9, i.e., [[0]], . . . , [[9]]. The values
of the commitments should be disclosed so that V can be convinced that
every commitment corresponds to a distinct integer.

2. Prepare symbolic cards corresponding to the letters appearing in the puzzle
instance, as illustrated in Fig. 13; this example corresponds to the puzzle
shown in Fig. 1, i.e., we have eight cards with a letter S, E, N, D, M, O, R, or
Y on their front, along with two dummy cards with blank surfaces, where all
10 cards have indistinguishable backs. The letters on the front can be numbers
(as in the case of playing cards), but for the sake of clarity, we use symbolic
cards that have the same letters that appeared in the puzzle instance. If the
number of letters appearing in the puzzle is less than 10, dummy cards are
used for the missing letters, as in the example above.

3. Remember that only the prover P knows the solution, i.e., the one-to-one
correspondence between numerals and letters. The prover P takes all the
symbolic cards in his/her hand, and places them face-down below the 10
commitments (which were prepared in the first step), such that each pair of
a commitment and a symbolic card follows the one-to-one correspondence,
as illustrated in Fig. 14, where a dummy card is placed if there is no letter
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corresponding to that numeral. Because commitments to 3 and 4 do not
appear in the example solution, dummy cards with blank surfaces are placed
below them. Note that the face-down 10 symbolic cards have been placed
secretly by P without V knowing their order.

Fig. 13. Examples of symbolic cards

4. Fix the 10 pairs of commitments and symbolic cards (or dummy cards) using
envelopes or clips and then shuffle them by hand. This shuffling operation is
called a pile-scramble shuffle [9]. The shuffle is performed by P and/or V ;
they can repeat shuffling until both of them are satisfied.

5. Turn over all the symbolic cards to see the mapping from letters to commit-
ments. If the revealed card is a dummy card, the corresponding commitment
can be discarded after applying a rotation shuffle.

6. Remember that a puzzle instance has an equation where the left-hand side is
an addition of two sequences of letters; without loss of generality, we assume
that the number of letters in the second term on the left-hand side is greater
than or equal to that in the first term. Repeatedly execute the copy protocol
presented in Sect. 3.1 to ensure that we have a sufficient number of duplicated
commitments to accomplish the following: (i) for every letter in the first
term on the left-hand side of addition (in the puzzle instance), place one
commitment corresponding to that letter; (ii) for every letter in the second
term, place two commitments corresponding to that letter; and (iii) for every
letter on the right-hand side, place one commitment corresponding to that
letter. (The two commitments in (ii) will be used to obtain commitments to
both an addition result and a carry.)

Let us illustrate how to arrange commitments in Step 6 by considering the
puzzle problem shown in Fig. 1 as an example; note that “SEND” is the first
term on the left-hand side, “MORE” is the second term, and “MONEY” is the
right-hand side. Because letters M, O, R, and E (which constitute the second

Fig. 14. Example of correspondence between 10 dihedral cards and symbolic cards; P
places symbolic cards face-down
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Fig. 15. Example of commitment placement

term) appear twice, twice, once, and thrice, respectively, we apply the copy pro-
tocol to obtain three commitments corresponding to “M,” three commitments
corresponding to “O,” two commitments corresponding to “R,” and four com-
mitments corresponding to “E.” For the other letters, i.e., S, N, D, and Y, we
obtain as many commitments as appeared in the problem. After copying, we
place the obtained commitments at the corresponding positions on the board, as
illustrated in Fig. 15. Note that there should be two commitments corresponding
to each of letters M, O, R, and E in the figure. Recall that the blue arrows and
dots in Fig. 15 were drawn with invisible ink, and that V does not know any
values of the cards.

Addition of Least Significant Digits (Half Adder). In this phase, we compute the
addition of the two commitments corresponding to the least significant digits
placed in the Setup phase and output commitments to the result of addition
and carry (to the higher digits), i.e., we perform the half adder.

1. Utilizing the addition protocol introduced in Sect. 2.3.2, add the value of
the commitment corresponding to the least significant digit in the first term
(on the left-hand side) to the two commitments corresponding to the least
significant digit in the second term. (Recall that two commitments were placed
for every letter in the second term.) Therefore, P and V obtain two identical
commitments corresponding to the result of the addition.

2. Apply the sign-to-value protocol introduced in Sect. 2.3.4 to one of the two
commitments obtained in the previous step to obtain a commitment to the
carry to the higher digits.

3. Apply the sign normalization protocol introduced in Sect. 2.3.3 to the other
commitment, i.e., the one that was not used in the previous step. (Thanks to
this step, any commitment has a value between 0 and m − 1.)
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We do not explicitly use the carry protocol proposed by Shinagawa [30,31]
to obtain a commitment corresponding to a carry of addition, but we do employ
the same idea behind the protocol, i.e., combining the addition and sign-to-value
protocols.

Addition of Higher Digits (Full Adder). In this phase, we compute the addition
of commitments placed on higher digits in the Setup phase and a commitment
to a carry from the lower digits so that we obtain commitments to the addition
result and a carry, i.e., we perform the full adder. For every pair of higher digits
(on the left-hand side of the equation), we perform the following one by one.
That is, execute Steps 1 to 4 from the second lowest digit until the addition of
the most significant digit is completed.

1. Utilizing the addition protocol, add the commitment [[x]] in the first term (on
the right-hand side) to the two commitments [[y]], [[y]] in the second term to
obtain two commitments to the result of addition [[x + y]], [[x + y]].

2. Similarly, add the commitment to the carry [[c]] to the two commitments
obtained in Step 1 to obtain two commitments to the result of addition with
carry [[x + y + c]], [[x + y + c]].

3. Apply the sign normalization protocol to one of the two commitments
obtained in Step 2.

4. Apply the sign-to-value protocol to the other commitment to obtain a com-
mitment corresponding to a carry to the higher digit.

Verification. In this phase, we verify whether the rules of Cryptarithmetic are
satisfied using the commitments placed in the Setup phase and those obtained
in the addition phases.

1. The verifier V checks that every most significant digit is not equal to 0 by
partially illuminating the commitment with black light, as shown in Sect. 2.1.
This is possible because of the application of the sign normalization protocol
in the addition phase. If V finds a value of 0 (for at least one of them), then
V rejects it.

2. The verifier V checks that the result of addition is equal to the left-hand side:
Apply a rotation shuffle to every pair of commitments that should correspond
to the same letter, i.e., a commitment placed in the Setup phase and the one
obtained in the addition phase, and then reveal their values. If V finds a pair
with different values, then V rejects it.

4 Evaluation

In this section, we demonstrate that our protocol constructed in Sect. 3 works.
Specifically, in Sect. 4.1, we count the numbers of cards and shuffles required
for our proposed protocol. In Sect. 4.2, we show that our protocol is surely a
zero-knowledge proof protocol.
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Table 1. Number of cards and shuffles in the proposed protocol

Number of cards Number of shuffles

4d + 2 7d + 11

4.1 Numbers of Cards and Shuffles

In this subsection, we evaluate the performance of our proposed protocol, i.e.,
we count the numbers of required cards and shuffles.

Because the number of symbolic cards is fixed, i.e., it is always 10, we consider
only the number of dihedral cards. Regarding the number of shuffles, we consider
the worst case. For simplicity, a puzzle instance is assumed to be an equation in
which the two terms on the left-hand side have the same number of letters and
the right-hand side has one more than that, e.g., the puzzle shown in Fig. 1. We
denote the number of letters in the first term on the left-hand side by d. Note
that the second term also has d letters and the right-hand side has d + 1 letters;
hence, the total number of letters in the puzzle instance is 3d + 1.

Let us count the number of required dihedral cards. After the setup phase,
there are 4d+1 commitments (cards), and to produce such copied commitments,
one more card is required during the final copy. Therefore, the protocol uses 4d+2
cards.

Next, let us count the number of shuffles. For the setup, in addition to the pile-
scramble shuffle, the initialization protocol and the copy protocol use a shuffle
and they are executed at most 10 times in total. Thus, the total number of
shuffles in the setup is 11. To add the least significant digit, the addition, sign-
to-value, and sign normalization protocols are performed once each. Thus, the
total number of shuffles here is 5. For the addition of the higher digits, the
addition is performed twice, sign-to-value and sign normalization protocols are
performed once per digit, and the process is repeated for the number of digits
to be added. Thus, the total number of shuffles here is 6(d− 1). For verification,
the rotation shuffle is executed for the number of digits of the addition result.
Thus, the total number of shuffles in the verification is d+1. Therefore, the total
number of shuffles in the entire protocol is at most 7d + 11.

Table 1 shows the number of cards and the number of shuffles derived from
the foregoing discussion.

4.2 Proof

In this subsection, we verify that the proposed protocol described in Sect. 3.2
satisfies the zero-knowledge proof property.

Completeness. The verifier V verifies that the values of the 10 dihedral
cards are all different, from 0 to 9, in Step 1 of the Setup phase. Because the
same commitment is assigned to the same letter and different commitments
are assigned to different letters, V is convinced that the same numeral is



64 R. Isuzugawa et al.

assigned to the same letter and different numerals are assigned to different
letters. Furthermore, if the prover P knows the solution, P places the symbolic
card corresponding to each letter of the puzzle instance that satisfies the rules;
hence, V is convinced that the solution that P knows satisfies the rule in the
Verification phase.
Extractability. As mentioned above, the value of any commitment in the
Setup phase is between 0 and 9. If P gives a false input, i.e., a numeral that
does not match the solution for a certain letter, V will not be convinced
because the solution is assumed to be unique in this study and will output
an addition result that is different from the solution, meaning that the value
disclosed in Step 2 of the Verification phase will be different.
Zero-Knowledge. Because the commitments corresponding to the letters
are prepared using symbolic cards so that V does not know the correspon-
dence, V cannot see which numeral corresponds to which letter in the Setup
phase. In the Addition phases, the values of both input and output are not
disclosed, so that no information about the solution is leaked to V . In the
Verification phase, the values of the commitments are disclosed in Step 2, but
V cannot know the information about the original value due to the shuffle
operation.

5 Conclusion

In this paper, we proposed a card-based ZKP protocol for Cryptarithmetic using
dihedral cards. Our protocol was obtained by constructing copy, half-adder, and
full-adder protocols working on dihedral cards with the help of existing basic
sub-protocols.

Our future work includes improving the efficiency of the protocol. For exam-
ple, as shown in Fig. 1, when the number of letters on the right-hand side is
larger than that of each of the two terms on the left-hand side, the numeral
corresponding to the most significant digit on the right-hand side is automati-
cally determined to be 1. Therefore, the number of shuffles can be reduced by
disclosing the commitment to confirm whether it is 1, instead of a rotation shuf-
fle. It would also be interesting to measure the execution time of our protocol
in more detail, e.g., [16], or to adopt the “private permutation” model, which
allows players’ private actions, e.g., [12,18,20,36].

In actual examples [33–35], there are many Cryptarithmetic problems involv-
ing the addition of two inputs as well as the addition of three or more inputs.
Therefore, one of the tasks is to consider the application to the addition of three
or more inputs.
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Abstract. We consider the recognition problem of the Dyck Language
generalized for multiple types of brackets. We provide an algorithm with
quantum query complexity O(

√
n(log n)0.5k), where n is the length of

input and k is the maximal nesting depth of brackets. Additionally, we
show the lower bound for this problem which is Ω(

√
nck) for some con-

stant c.
Interestingly, classical algorithms solving the Dyck Language for mul-

tiple types of brackets substantially differ from the algorithm solving
the original Dyck language. At the same time, quantum algorithms
for solving both kinds of the Dyck language are of similar nature and
requirements.

Keywords: Dyck language · Regular language · Strings · Quantum
algorithms · Query complexity

1 Introduction

Quantum computing [2,3,19] is one of the hot topics in computer science of the
last decades. There are many problems where quantum algorithms outperform
the best known classical ones [13], and one of the most important performance
metrics in this regard is query complexity. We refer to [3] for a nice survey on
the quantum query complexity, and to [10,14–18] for the more recent progress.

Among other problems, quantum technologies can reduce the query com-
plexity of recognizing many formal languages [5]. In this paper we consider a
problem of recognizing whether an n-character string belongs to one important
regular language. Although this problem may seem too specific, we believe our
approach to model a variety of computational tasks that can be described by
regular languages.

Aaronson, Grier and Schaeffer [1] have recently shown that any regular lan-
guage L may have one of three possible quantum query complexities on inputs
of length n: Θ(1) if the language can be decided by looking at O(1) first or last
symbols of a word; Θ̃(

√
n) if the best way to decide L is Grover’s search (for

example, for the language consisting of all words containing at least one letter
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a); Θ(n) for languages in which one can embed counting modulo some number
p which has quantum query complexity Θ(n) (for example, the binary XOR
function).

s As shown in [1], a regular language being of complexity Õ(
√

n) (which
includes the first two cases of the list above) is equivalent to it being star-free.
Star-free languages are defined as the languages which have regular expressions
not containing the Kleene star (if it is allowed to use the complement operation).
Star-free languages are one of the most commonly studied subclasses of regular
languages and there are many equivalent characterizations of them.

One class of the star-free languages mentioned in [1] is the Dyck lan-
guages (with one type of brackets and with constant height k). To intro-
duce a brief intuition about these languages, we may mention that words “[
]” and “[ [ ] [ ] ]” belong to a Dyck language, while words “] [” and
“[ ] ] [ [ ]” do not. Formally, Dyck language with height k consists of all
words with balanced number of brackets such that in no prefix the number of
opening brackets exceeds the number of closing brackets by more than k; we
denote the problem of determining if an input of length n belongs to this lan-
guage by Dyckk,n. We note that such language of unbounded height (i.e. k = n

2 )
is a fundamental example of a context-free language that is not regular.

For this problem, Ambainis et al. [4] show that an exponential dependence of
the complexity on k is unavoidable. Namely, for the balanced brackets language
(i) there exists c > 1 such that, for all k ≤ log n, the quantum query complexity
is Ω(ck

√
n); (ii) if k = c log n for an appropriate constant c, then the quantum

query complexity is Ω(n1−ε).
Thus, the exponential dependence on k is unavoidable and distinguishing

sequences of balanced brackets of length n and depth log n is almost as hard as
distinguishing sequences of length n and arbitrary depth. Similar lower bounds
have recently been independently proven by Buhrman et al. [8]. Additionally,
Ambainis et al. [4] describe an explicit algorithm for the decision problem
Dyckk,n with O

(√
n(log n)0.5k

)
quantum queries. The algorithm also works for

arbitrary k, and outperforms the trivial upper bound of n when k = o
(

log n
log log n

)
.

This work generalizes Dyckk,n to the case of multiple types of brackets. For
example, such languages contain words like “[ ( ) ]” and do not contain words
like “[ ( ] )” (here square and round brackets are the two different types of
brackets). We denote the problem of determining if an input of length n belongs
to the Dyck language of height k and at most t types of brackets by Dyckk,n,t.
Obviously, Dyckk,n,1 = Dyckk,n.

We note that Dyckk,n and Dyckk,n,t for t > 1 are two substantially differ-
ent problems regarding classical (deterministic or randomized) calculations. The
former problem allows using a counter to keep the number of currently open
brackets and thus be content with the memory size of O(log k). In contrast, the
latter problem requires keeping all the sequence of currently open brackets in a
stack, which may take up to O(k) memory. While both problems are solvable in
linear time, there is an exponential gap in the memory usage.
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In this paper we provide a quantum algorithm for Dyckk,n,t with quantum
query complexity O(

√
n(log n)0.5k). We apply the known technique of solving

Dyckk,n, and then perform a more complex but slightly faster procedure to
check the type-matching of the brackets.

The structure of the paper is the following. Section 2 describes some conven-
tional notions for quantum computation. Section 3 provides the main algorithm
and the proofs, with the discussion on the complexity of the algorithm and on
the lower bounds given in Subsect. 3.3. In the final Sect. 4 we introduce several
attempts and wishes to make our techniques more general and our evaluations
more precise.

2 Preliminaries

2.1 Definitions

We use the following formalism throughout the paper. We assume an input
string to consist of brackets of t types for some positive integer t; each type is
represented by a pair of brackets – an opening and a closing one. Further, we
assume the brackets to be encoded by integers from 1 to 2t, where the opening
and the closing brackets of i-th type correspond to the numbers 2i − 1 and 2i
respectively.

We define two functions:

• Function Type : {1, . . . , 2t} → {1, . . . , t} returns the type of a bracket.
Type(x) = �x/2�.

• Function Open : {1, . . . , 2t} → {0, 1} returns 1 if the argument is an opening
bracket, or 0 if it is a closing bracket.
Open(x) = x mod 2.

For example, string S = “[ ( ) ]” could be encoded as “1, 3, 4, 2”. Then

Type(s1) = Type(s4) = 1 stand for the square brackets;
Type(s2) = Type(s3) = 2 – for the parentheses;
Open(s1) = Open(s2) = 1 – for the opening brackets; and
Open(s3) = Open(s4) = 0 – for the closing brackets.

We call a string S = (s1, . . . , sm) a well-balanced sequence of brackets if one
of the following holds:

1. S is empty;
2. S consists of two well-balanced subsequent substrings, i.e. S[1, i] and S[i +

1,m] are both well-balanced for some i (hereafter we denote by S[i, j] a sub-
string (si, . . . , sj) of a string S = (s1, . . . , sm));

3. S is a correctly embraced well-balanced sequence, i.e.
• S[2,m − 1] is a well-balanced sequence,
• Type(s1) = Type(sm),
• Open(s1) = 1 and Open(sm) = 0.
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Obviously, the set of all well-balanced sequences of brackets defines the Dyck

language.
We also introduce a metric for the balancedness of a substring. Let f be

a function which returns the difference between the numbers of opening and
closing brackets: f(S[l, r]) = #1(S[l, r]) − #0(S[l, r]). (Here #x(S[l, r]) denotes
the number of symbols sj , for l ≤ j ≤ r, such that Open(sj) = x). We define
a +k-substring (resp. −k-substring) as a substring whose balance is equal to k
(resp. equal to −k). A ±k-substring is a substring whose balance is equal to k
in absolute value.

We call a nonempty substring S[l, r] minimal if it does not contain a
nonempty substring S[l′, r′] such that (l, r) �= (l′, r′) and f(S[l′, r′]) = f(S[l, r]).
We call a nonempty substring S[l, r] prefix-minimal if it does not start with
S[l, r′] such that r′ < r and f(S[l, r′]) = f(S[l, r]). We define the height of a
substring S[l, r] as h(S[l, r]) = maxi∈{l,...,r} f(S[l, i]).

For example, string S = “[ ] ( )” is well-balanced, because it consists of
two well-balanced substrings “[ ]” and “( )”, which in turn both are correctly
embraced empty strings. Its substring S[1, 2] = “[ ]” is both minimal and prefix-
minimal, whereas its substring S[2, 4] = “] ( )” is neither minimal nor prefix-
minimal (since f(S[2, 2]) = f(S[2, 4]) = −1).

Finally, we define the problem Dyckk,n,t(S). Function Dyckk,n,t accepts
S = (s1, . . . , sn) as an input and

• returns 1 if S is a well-balanced sequence of brackets with at most t types of
brackets and with h(S) ≤ k;

• returns 0 otherwise.

2.2 Computational Model

To evaluate the complexity of a quantum algorithm, we use the standard form
of the quantum query model [3]. It is a generalization of the decision tree model
of classical computation that is commonly used to lower bound the amount of
time required for a computation.

Let g : D → {0, 1}, for some D ⊆ {0, 1}n, be an n-argument binary function
we wish to compute. We have an oracle access to the input x—it is implemented
by a specific unitary transformation usually defined as |i〉|z〉|w〉 → |i〉|z ⊕xi〉|w〉,
where the |i〉 register indicates the index of the variable we are querying, |z〉 is the
output register, and |w〉 is some auxiliary work-space. An algorithm in the query
model consists of alternating applications of arbitrary unitaries independent of
the input and the query unitary, and a measurement in the end. The smallest
number of queries for an algorithm that outputs g(x) with probability ≥ 2

3 on all
x is called the quantum query complexity of the function g and is denoted by
Q(g). If the error probability stays ≤ 1

3 for any input and output, the algorithm
is said to have two-side bounded error probability (as opposed to True- or
False-biased algorithms which are said to have one-side bounded error).

Throughout this paper, by the running time of an algorithm we mean a
number of queries to an oracle. In particular, we assume the oracle to process
queries Type and Open in constant time.
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More information on quantum computation and query model can be found
in [2,3,19].

To distinguish ordinary deterministic and randomized complexities from
the quantum complexity, they are traditionally called by one term classical
complexity.

3 Quantum Algorithm

Before introducing the algorithm for solving Dyckk,n,t(S), we mention the fol-
lowing result from [4], which will be used as important subroutine.

Lemma 1 ([4], Theorem 3). There exists a quantum algorithm that solves
Dyckk,n,1 in time O(

√
n(log n)0.5k). The algorithm has two-side bounded error

probability ε < 0.5.

The algorithm for solving Dyckk,n,t(S) generally consists of three main steps:
Step 1. Check whether there are at most t types of brackets, and return 0

if the number of types exceeds t. This part is discussed in Sect. 3.1.
Step 2. Uniformize S to just one type of brackets by considering a string

Y = (y1, . . . , yn) where yi = Open(si). Check whether Dyckk,n,1(Y ) = 1 by
using the algorithm from Lemma 1. If this is the case, then S is a well-balanced
sequence of brackets with their types ignored. Otherwise, S obviously is not well-
balanced and Dyckk,n,t(S) = 0. This step almost exactly repeats the algorithm
from [4].

Step 3. Check whether for any substring S[l, r] the following condition holds:
If Y [l, r] is a well-balanced sequence of brackets (with their types ignored) of
depth v and Y [l+1, r−1] is a well-balanced sequence of brackets of depth v −1,
then (i) Type(sl) = Type(sr); and (ii) S[l + 1, r − 1] is a well-balanced sequence
of brackets.

Step 3 should be considered as the main contribution of the paper, and we
describe it in detail in Sect. 3.2. By the definition of the problem, if S passes all
three checks, then Dyckk,n,t(S) = 1. The complexity of the problem is evaluated
in Sect. 3.3, and in Sect. 3.4 we summarize our approach to one formal listing.

3.1 Procedure for Step 1

Recall that by the assumption, all the brackets are encoded by integers from
1 to 2t. Hence it only remains to check whether S contains a bracket with
code c > 2t. This problem obviously can be solved by Grover’s algorithm [6,11]
for finding an argument j (if any) such that g(j) = 1, for an arbitrary function
g : {1, . . . , n} → {0, 1} implemented as a quantum oracle. To apply this technique
for solving Step 1, it is sufficient to consider the binary function g(j) which
returns 1 iff sj > 2t. Grover’s algorithm runs in time O(

√
n) and has error

probability at most 0.5; and so are the complexity and the error probability of
Step 1.
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The assumption on encoding of brackets could be relaxed by allowing to use
any distinct integer for each kind of bracket. Then the problem becomes more
complex: determine whether a sequence s1, . . . , sn contains at most 2t distinct
integers. The upper bound for its query complexity is O(

√
nt log t). We refer to

Sect. 4.1 for more details.

3.2 Procedure for Step 3

Assume that any 0-substring S[l′, r′] with h(S[l′, r]′) ≤ v − 1 is known to be a
well-balanced sequence of brackets. In this section we present a procedure that
checks whether, under this assumption, any 0-substring S[l, r] with h(S[l, r]) = v
is a well-balanced sequence of brackets.

We wish to implement a function CheckSubstr(S, v) which returns

• True if there exists a “wrong” (not well-balanced) sequence S[l, r] such that
h(S[l, r]) = v;

• False otherwise.

If we had CheckSubstr(S, v) implemented, then we could invoke it for each
v ∈ {1, . . . , k}. In case of all-False output, the function should return False

(“no wrong sequences”), otherwise True (“found a wrong sequence for at least
one height v ∈ {1, . . . , k}”).

We propose the following implementation of CheckSubstr(S, v).

The Case v = 1. We start with considering the case v = 1. Let a function g1 :
{1, . . . , n−1} → {0, 1} be such that g1(j) = 1 iff Open(sj) = 1, Open(sj+1) = 0,
and Type(sj) �= Type(sj+1). In other words, the function indicates sequentially
opening and closing brackets of different types.

We use Grover’s algorithm to search for an argument j ∈ {1, . . . , n} such that
g1(j) = 1. Hereafter we call this subroutine Grover(g1, 1, n), where g1 is the
function run by a quantum oracle in constant time, and 1 . . . n defines an interval
to search in. If Grover(g1, 1, n) finds such index j, then CheckSubstr(S, 1)
returns True, otherwise False.

Note that due to the complexity of Grover’s algorithm, the query complexity
of Grover(g1, 1, n) is O(

√
n), with the error probability at most 0.5.

The Case v > 1. This step allows assuming any 0-substring S[l′, r′] with
h(S[l′, r′]) = v−1 to be a well-balanced sequence of brackets. Under this assump-
tion, we show that the next property holds:

Lemma 2. If for an input string S, any 0-substring S[l′, r′] with h(S[l′, r′]) =
v−1 is a well-balanced sequence of brackets, then any prefix-minimal 0-substring
S[l, r] with h(S[l, r]) = v is such that S[l + 1, r − 1] is either empty or a well-
balanced sequence of brackets.
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Proof. According to the definition of a prefix-minimal 0-substring, we claim that
S[l, r] does not contain any shorter prefix 0-substring. In particular, it means
that Open(sl) = 1 and Open(sr) = 0. Therefore, h(S[l + 1, r − 1]) = v − 1, and
S[l+1, r−1] is a 0-substring. Due to the assumption of the lemma, S[l+1, r−1]
is a well-balanced sequence of brackets. �

Therefore, to complete checking whether the 0-substring S[l, r] with
h(S[l, r]) = v is a well-balanced sequence of brackets, it only remains to check
that Type(sl) = Type(sr).

Let us present a subroutine that searches for a 0-substring S[l, r] with
h(S[l, r]) = v such that Type(sl) �= Type(sr). If this subroutine finds nothing, it
means that any 0-substring S[l, r] with h(S[l, r]) = v is well-balanced.

We use the following property of prefix-minimal 0-substrings:

Lemma 3. For any prefix-minimal 0-substring S[l, r] with h(S[l, r]) = v, there
exist indices r′ and l′ such that

• l ≤ r′ < l′ ≤ r,
• S[l, r′] is a +v-substring,
• S[l′, r] is a −v-substring, and
• there are no ±v-substrings contained in S[r′ + 1, l′ − 1].

Proof. Assume that there is no such index r′ ∈ {l, . . . , r − 1} that S[l, r′] is a
+v-substring. Then we consider the index j = argmaxj∈{l+1,...,r} f(S[l, j]) and
note that h(S[l, r]) = v implies f(S[l, j]) = v, which contradicts the assumption.
We conclude the that the desired index r′ exists.

Now assume that there is no such index l′ ∈ {r′ + 1, . . . , r} that S[l′, r] is a
−v-substring. Recall that by the definition of a 0-substring, f(S[l, r]) = 0. At the
same time, f(S[l, r]) = f(S[l, r′]) + f(S[r′ + 1, r]) and f(S[l, r′]) = v. Therefore,
f(S[r′ + 1, r]) = f(S[l, r]) − f(S[l, r′]) = 0 − v = −v, which contradicts the
assumption. We conclude that both desired indices r′ and l′ exist.

Finally, assume sequence S[r′ + 1, l′ − 1] to contain a ±v-substring. Then we
consider the leftmost ±v-substring S[l′′, r′′], where r′ < l′′ ≤ r′′ < l′.

If S[l′′, r′′] is a +v-substring, i.e. f(S[l′′, r′′]) = v, then the minimality of l′′

implies f(S[r′ + 1, l′′ − 1]) > −v. Then,

f(S[l, r′′]) = f(S[l, r′]) + f(S[r′ + 1, l′′ − 1]) + f(S[l′′, r′′])
= v + f(S[r′ + 1, l′′ − 1]) + f(S[l′ + 1, l′′ − 1]) > v

contradicts the fact that h(S[l, r]) = maxj∈{l+1,r} f(S[l, j]) = v.
To finish the proof, it remains only to consider (the impossibility of) the case

where S[l′′, r′′] is a −v-substring, i.e. f(S[l′′, r′′]) = −v. In this case f(S[r′ +
1, l′′ − 1]) can be negative, zero, or positive.

• If f(S[r′ + 1, l′′ − 1]) < 0, then

f(S[l, r′′]) = f(S[l, r′]) + f(S[r′ + 1, l′′ − 1]) + f(S[l′′, r′′])
= v + f(S[r′ + 1, l′′ − 1]) − v = f(S[r′ + 1, l′′ − 1]) < 0.
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Therefore, there exists such index j that j < r′′ < r and f(S[l, j]) = 0, which
contradicts the prefix-minimality of the 0-substring S[l, r].

• If f(S[r′ + 1, l′′ − 1]) = 0, then
f(S[l, r′′]) = f(S[l, r′]) + f(S[r′ + 1, l′′ − 1]) + f(S[l′′, r′′]) = 0.
Therefore, f(S[l, r′′]) = 0 where r′′ < r, which contradicts the prefix-
minimality of the 0-substring S[l, r].

• If f(S[r′ + 1, l′′ − 1]) > 0, then
f(S[l, l′′ − 1]) = f(S[l, r′]) + f(S[r′ + 1, l′′ − 1]) = v + f(S[r′ + 1, l′′ − 1]) > v
contradicts the fact that h(S[l, r]) = maxj∈{l+1,r} f(S[l, j]) = v.

�
These lemmas allow to formulate the algorithm for searching for a not well-

balanced 0-substring, with its length limited to be at most d:

Step 1. Pick index b uniformly at random in {1, . . . , n}.
Step 2. Search for the leftmost ±v-substring with length at most d, in

S[b,min(n, b+d−1)]. If such substring S[ir, jr] was found, continue to Step 3.
Otherwise proceed to Step 4.

Step 3. Search for the rightmost ±v-substring with length at most d in S[max(ir−
d, 1), ir −1]. If such substring S[il, jl] was found, proceed to Step 6. Otherwise
stop and return False.

Step 4. Search for the rightmost ±v-substring with length at most d in S[max(b−
d+1, 1), b]. If such substring S[il, jl] was found, proceed to Step 5. Otherwise
stop and return False.

Step 5. Search for the leftmost ±v-substring with length at most d in S[jl +
1,min(n, jl + d)]. If such substring S[il, jl] was found, continue to Step 6.
Otherwise stop and return False.

Step 6. If f(S[il, jl]) > 0, f(S[ir, jr]) < 0 and Type(il) �= Type(jr), then return
the resulting substring S[il, jr]. Otherwise return False.

To search for the rightmost ±v-substring or for the leftmost ±v-substring of
length at most d in a segment, we use a subroutine from [4] with the following
property:

Lemma 4 ([4], Property 2). There is a quantum algorithm for searching for
the leftmost or for the rightmost ±v-substring of length at most d, in a substring
S[l, r]. The query complexity of the algorithm is O(

√
r − l(log(r − l))0.5(v−2)).

It returns (i, j, σ) such that S[i, j] is a ±v-substring and sign(f(S[i, j])) = σ. It
returns False if such substring does not exist.

Hereafter we call subroutines for the leftmost and for the rightmost ±v-
substring respectively Leftmost(S, l, r, v, d) and Rightmost(S, l, r, v, d). They
return a triple (i, j, σ), such that S[i, j] is the resulting substring and σ =
sign(f(S[i, j])). They return False if there are no such ±v-strings.

We formalize the algorithm in the code listing of Algorithm1 that implements
a subroutine which we have called CheckSubstrFixedLength(S, v, d):
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Algorithm 1. Implementation of CheckSubstrFixedLength(S, v, d) subrou-
tine, search for a not well-balanced 0-substring S[l, r] with height h(S[l, r]) = v
and length r − l + 1 ≤ d.

{1, . . . , n} R←− b � randomly pick b
ur = (ir, jr, σr) ← Leftmost(S, b, min(n, b + d − 1), v, d)
if ul �= False then

ul = (il, jl, σl) ← Rightmost(S, max(ir − d, 1), ir − 1, v, d)
else

ul = (il, jl, σl) ← Rightmost(S, max(b − d + 1, 1), b, v, d)
if ul �= False then

ur = (ir, jr, σr) ← Leftmost(S, jl + 1, (n, jl + d), v, d)
end if

end if
if ul �= False and ur �= False and σl = 1 and σr = −1 and Type(sil) �= Type(sjr )
then

return (il, jr)
else

return False

end if

Assume that some string S contains a not well-balanced 0-substring S[l, r]
with height h(S[l, r]) = v and length d. The probability of finding such substring
by this algorithm is equal to the probability of picking an index inside the sub-
string, and therefore can be estimated by Ω(d/n). By applying the Amplitude
amplification algorithm [7] for the randomized Algorithm1, we obtain an algo-
rithm with query complexity O(

√
n
d · √d(log d)0.5(v−2)) = O(

√
n(log d)0.5(v−2)).

Next, we search for d among the elements of set T = {20, 21, 22, . . . , 2�log2 n�}.
This can be done also by using Grover’s algorithm. The overall complexity of the
algorithm for finding a 0-substring S[l, r] with height h(S[l, r]) = v and arbitrary
length is O(

√
n(log n)0.5(v−1)). We note that Grover’s algorithm relies on an

oracle with a two-side bounded error, whereas it is hardly justified to assume
a quantum oracle which directly handles T to markup the appropriate lengths.
To address this issue, we use the modification of the algorithm presented in
[4,12] and thus obtain the implementation of CheckSubstr(S, v). We formulate
it in the listing of Algorithm 2 that uses Grover’s algorithm implementation
from [4,12] as a subroutine GroverWithProbabilisticOracle(g,D), where
g : D → {0, 1} is a function with its domain D being the search space. We assume
this subroutine to return the target argument if it finds any or False if it fails
(just like the standard implementation Grover(g,D) [6,11] used previously in
Step 1). We denote by gS,v : {0, . . . , �log2 n�} → {0, 1} a function such that
gS,v(u) = 1 iff CheckSubstrFixedLength(s, v, 2u) �= False.
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Algorithm 2. Implementation of CheckSubstr(S, v) subroutine, search for a
not well-balanced 0-substring S[l, r] with height h(S[l, r]) = v and any length.
gS,v(u) = 1 ⇐⇒ CheckSubstrFixedLength(s, v, 2u) �= False

u ← GroverWithProbabilisticOracle(gS,v, {0, . . . , �log2 n�})
if u = False then

return False

else
return CheckSubstrFixedLength(s, v, 2u) � either (l, r) or False

end if

Finally, we implement Step 3 in the code listing of Algorithm3.

Algorithm 3. Step3(S)
v ← 1
while v ≤ k do

if CheckSubstr(S, v) �= False then
return True

end if
v ← v + 1

end while
return False

Then the overall algorithm for the problem Dyckn,k,t combines the three
steps in the code listing of Algorithm 4.

Algorithm 4. Solving Dyckn,k,t

if Step1(S) = 1 and Dyckn,k(Y ) = 1 and Step3(S) = False then
return 1

else
return 0

end if

3.3 Query Complexity

In this section we estimate the query complexity of Dyckk,n,t and discuss prop-
erties of Algorithm 4.

Theorem 1. Algorithm4 for solving Dyckk,n,t, has query complexity
O(

√
n(log n)0.5k) and a constant two-side bounded error probability ε < 0.5.
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Proof. We start with the query complexity of the algorithm.
The complexity of Step 1 is obviously equal to the one of Grover’s algorithm,

i.e. to O(
√

n). Lemma 1 estimates the complexity of Step 2 as O(
√

n(log n)0.5k).
The complexity of Step 3 can be derived from the code listing of Algorithm3:

O(
∑k

v=1

√
n(log n)0.5(v−1)) = O(

√
n(log n)0.5(k−1)).

The overall complexity of Algorithm4 is
O(

√
n) + O(

√
n(log n)0.5k) + O(

√
n(log n)0.5(k−1)) = O(

√
n(log n)0.5k).

We continue the proof by considering the error probability of the algorithm.
Step 1 has error probability at most 0.5. Step 2 has constant error probability
ε0 < 0.5. Step 3 has error probability at most 1−(1−ε1)k for some constant ε1 <
0.5. As each error probability is constant, we can obtain the desired overall error
probability ε by exploiting the technique from [4], i.e. by a series of repetitive
calls of the algorithm. �

We finish our discussion with a couple of lower bounds of the query complex-
ity.

Theorem 2. There exists a constant c1 > 0 such that Q(Dyckc1�,n,t) =
Ω(2

�
2
√

n).

Proof. The similar bound holds for Q(Dyckc1�,n,1) [4, Theorem 6]. Ignoring the
types of the brackets makes Dyckc1�,n,t equivalent to Dyckc1�,n,1, therefore
Dyckc1�,n,t is at least as hard as Dyckc1�,n,1. �
Theorem 3. For any γ > 0, there exists a constant c2 > 0 such that

Q(Dyckc2 log n,n,t) = Ω(n1−γ).

Proof. The similar bound holds for Q(Dyckc2 log n,n,1) that was presented in [4,
Theorem 5]. Ignoring the types of the brackets makes Dyckc2 log n,n,t equivalent
to Dyckc2 log n,n,1, therefore Dyckc2 log n,n,t is at least as hard as Dyckc2 log n,n,1.

�

3.4 The Overall Algorithm

In this section we aim to provide a general picture of the proposed algorithm.
With this purpose, we compile all the fragments from above to one listing in
Algorithm 5. Although this could seem redundant, we believe it to be useful
for better comprehension, regardless of whether a reader was able to follow the
content of this paper up to this point.
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Algorithm 5. Overall algorithm for solving Dyckn,k,t

Input: A string S ∈ N
n.

Output: 1 if Dyckn,k,t(S) = 1 and 0 otherwise

� Step 1: O(
√

n) [11]
if Grover(g, {1, . . . , n}) �= False then � Search for a bracket code si > 2t

return 0
end if

� Step 2: O(
√

n(log n)0.5k) [4]
if Dyckn,k(Y ) �= 1 then � Check if S ∈ Dyckn,k with bracket types ignored

return 0
end if

� Step 3: O(
√

n(log n)0.5(k−1))
for v ← 1 to k do � Run CheckSubstr for each height up to k

u ← GroverWithProbabilisticOracle(gS,v, {0, . . . , �log2 n�}) � See [4, 12]
if u �= False then

if CheckSubstrFixedLength(s, v, 2u) �= False then � See Algorithm 1
return 1

end if
end if

end for

return 0

4 Future Work

4.1 Generalizing Step 1

The restriction for all the brackets to be encoded by positive integers up to 2t, is
quite significant for the proposed quantum algorithm. In contrast, formulation
of a more natural problem could assume arbitrary encoding of different kinds of
brackets. For example, a string could consist of brackets like “( )”, “[ ]”, “{ }”
in arbitrary encoding like ASCII, UTF-32, etc. Under these circumstances, one
still can distinguish the type of a certain bracket; and still can determine whether
a certain bracket is opening or closing; but one cannot anymore determine how
many different types of brackets occur in the string.

Formally speaking, the fragment “at most t types of brackets” from
our definition of Dyckk,n,t means |{Type(si) : 1 ≤ i ≤ n}| ≤ t rather than
maxi∈{1,...,n} Type(si) ≤ t which was assumed throughout the paper. Hereafter
we refer to such a more general formulation of the problem as Dyck

′
k,n,t. The

implementation of Step 1 from Sect. 3.1 is not suitable for solving Dyck
′
k,n,t,

whereas the rest of the algorithm does not depend on whether the codes of the
types of brackets are consecutive or not.

We note that in many cases this won’t be an issue, as the number of dif-
ferent types of brackets t typically is a small constant like 2, 3 or 4. However
the following problem could be of certain interest even if not connected with
Dyck

′
k,n,t:
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Problem 1. Given a string S of length n, and a limitation parameter t, determine
whether |{Type (si) : 1 ≤ i ≤ n}| ≤ t.

Note that Step 1 from Sect. 3.1 obviously reduces to Problem 1.
In the rest of this section we propose an algorithm for solving this problem

and thus generalize our solution to Dyck
′
k,n,t, i.e. to the case with arbitrarily

encoded sequences of brackets.
Let T be an integer such that 2T is an upper bound for the code of a bracket

in the input string (e.g. the size of the input alphabet). Let Type : {1, . . . , 2T} →
{1, . . . , t} be a function that returns the type of a bracket. Let q : {1, . . . , n} ×
{1, . . . , 2T + 1} → {0, . . . , 2T} be a function which returns

• q(i, r) = Type(i) if Type(i) < r; or
• q(i, r) = 0 otherwise.

We consider the following procedure:

Step 1 Compute y1 = max{q(i, 2T + 1), 1 ≤ i ≤ n} by using Dürr’s and Høyer’s
algorithm for finding the maximum [9]. Thus we compute the maximum
among all the codes of brackets.

Step 2 Compute y2 = max{q(i, y1), 1 ≤ i ≤ n} in the same manner, the second-
biggest code among all the codes of brackets.

. . . . . .
Step j Compute yj = max{q(i, yj−1), 1 ≤ i ≤ n}.

This procedure lasts until yj = 0, which means that there are no bracket
codes less than yj−1 and that there are exactly j − 1 different types of brackets
contained in string S. Then condition j − 1 ≤ t indicates whether Step 1 was
executed correctly. We formalize this idea in the code listing of Algorithm 6,
assuming subroutine QMax(q(∗, y1), 1, n) to implement the quantum algorithm
for maximum search [9].

Algorithm 6. Step 1 for solving Dyck
′
k,n,t

j ← 1
y1 ← QMax(q(∗, 2T + 1), 1, n)
while yj �= 0 do

if j > t then
return 0

end if
j ← j + 1
yj ← QMax(q(∗, yj−1), 1, n)

end while
return 1

Lemma 5. The query complexity of Algorithm6 is O(t
√

n log t), and the error
probability is some constant ε < 1.
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Proof. The expected query complexity of QMax(q(∗, yj−1), 1, n) is O(
√

n)
[9]. According to Markov’s inequality, also the exact query complexity of
QMax(q(∗, yj−1), 1, n) is O(

√
n). As the error probability of QMax is some

constant, repeating it 2 log2 t times results in the error probability O( 1
t2 ). �

If t = O(log n0.5(k−1)), then the query complexity of Algorithm6 (run at
Step 1) won’t exceed the complexity of Step 2, and the overall complexity of the
algorithm will remain the same.

Theorem 4. Algorithm4 with Step 1 implemented by Algorithm6, solves
Dyck

′
k,n,t. If t = O(log n0.5(k−1)), then the query complexity of this solution

is O(
√

n(log n)0.5k), and the two-side bounded error probability is ε < 0.5.

Proof. According to Lemma 5, the query complexity of Step 1
is O(

√
n log n0.5(k−1) log log n) = O(

√
n log n0.5k). Steps 2 and 3 are the same as

in Algorithm 4, with complexities resp. O(
√

n log n0.5k) and O(
√

n log n0.5(k−1))
proven as for Theorem 1. Thus the overall query complexity is

O(
√

n log n0.5k) + O(
√

n log n0.5k) + O(
√

n log n0.5(k−1)) = O(
√

n log n0.5k).
The estimation of the error probability is analogous to the one in the proof

of Theorem 1 �
We strongly believe that there exists a more efficient quantum algorithm for

solving Step 1 of Dyck
′
k,n,t, but for now we settle for the just proposed iterative

maximum search, and leave better approaches for the future work.

4.2 Property Testing

Researchers have an interest in recognizing the Dyck language (solving the prob-
lem Dyck) in the sense of property testing [20]. Imagine that we have a promise,
that either an input S belongs to the language, or the Hamming distance from
S to the language (i.e. to the closest word of the language) is at least ε ·n, where
ε < 1 is some positive constant and n is the length of an input. It remains an
open question, whether quantum computing can bring any speed-up for different
values of ε.

4.3 Tighter Bounds

This paper along with [4] demonstrates the upper bound O
(√

n · (√log n
)k

)

(Theorem 1) for the quantum query complexity and the lower bound Ω
(√

n · ck
)

(Theorem 2) for some constant c. There is a certain gap between these two
bounds, and reducing this gap is another open problem. Note that similar gap
also holds for Dyck language with one type of brackets [4].
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Abstract. We initiate the study of the verification power of Affine finite
automata (AfA) as a part of Arthur-Merlin (AM) proof systems. We
show that every unary language is verified by a real-valued AfA verifier.
Then, we focus on the verifiers restricted to have only integer-valued
or rational-valued transitions. We observe that rational-valued verifiers
can be simulated by integer-valued verifiers, and their protocols can be
simulated in nondeterministic polynomial time. We show that this upper
bound is tight by presenting an AfA verifier for NP-complete problem
SUBSETSUM. We also show that AfAs can verify certain non-affine and
non-stochastic unary languages.

Keywords: Affine automata · Interactive proof systems ·
Arthur-Merlin games · Unary languages · Subset-sum problem · NP

1 Introduction

Affine finite automata (AfAs) are quantum-like generalization of probabilistic
finite automata (PFAs) mimicking quantum interference and having the capa-
bility of “making measurement” based on �1-norm (called weighting). The com-
putation of an AfA is linear, but the weighting operators may be non-linear.

AfAs was formally defined in [7], and it was shown that they are more pow-
erful than PFAs and quantum finite automata (QFAs) in bounded error and
unbounded error settings, but their nondeterministic version is equivalent to non-
deterministic QFAs. Since then, AfAs and their different generalizations (e.g.,
OBDDs and counter automata) have been investigated in a series of work [14–
16,18,24,31,32,34].

In this paper, we consider AfAs as part of Arthur-Merlin (AM) proof sys-
tems and investigate their verification power. We show that every unary lan-
guage can be verified by a real-valued AfA verifier. Then, we focus on the veri-
fiers with integer-valued or rational-valued transitions. We show how to simulate

arXiv:2104.11192.

c© Springer Nature Switzerland AG 2021
I. Kostitsyna and P. Orponen (Eds.): UCNC 2021, LNCS 12984, pp. 84–100, 2021.
https://doi.org/10.1007/978-3-030-87993-8_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-87993-8_6&domain=pdf
http://orcid.org/0000-0002-2372-252X
http://arxiv.org/abs/2104.11192
https://doi.org/10.1007/978-3-030-87993-8_6


Affine Automata Verifiers 85

rational-valued verifiers by integer-valued ones and how to simulate their pro-
tocols in nondeterministic polynomial time. We present an AfA verifier for NP-
complete problem SUBSETSUM. We also show that AfAs can verify certain non-
affine and non-stochastic unary languages. In our protocols, we use similar veri-
fication strategies and encoding techniques previously used for two-way QFAs in
[29,33,37].

In the rest of this section, we review the previously known results on proba-
bilistic, quantum, and affine automata to give a snapshot of literature and so to
see where our new results are placed. The notations and definitions are given in
Sect. 2, our main result on unary languages is given in Sect. 3, and our results
on rational- or integer-valued AfAs are given in Sect. 4. We close the paper with
a summary. The omitted parts due to space constraints are available in [20].

1.1 The Computational Power of AfAs Compared to PFAs and
QFAs

We review the previously known results comparing AfAs with PFAs and QFAs.
The bounded error PFAs and QFAs recognize all and only regular languages

[2,22,23,26]. But bounded error AfAs can recognize some nonregular languages
such as UPAL = {anbn | n > 0} and PAL = {w ∈ {a, b}∗ | w = wr} [7]. Moreover,
AfAs can be very succinct compared to PFAs and QFAs [17,31,32,34], e.g., they
recognize a family of regular languages with bounded error by using only two
states, but the number of states of bounded error PFAs or QFAs cannot be
bounded for this family.

The class of languages recognized by PFAs with cutpoints is called stochastic
languages [26]. QFAs recognize all and only stochastic languages with cutpoints
[35,38]. Similar to bounded error case, AfAs are more powerful than both, and
they can recognize some nonstochastic languages [7]. On the other hand, in the
nondeterministic setting (when the cutpoint is fixed to zero), QFAs and AfAs
have the same computational power [7].

Regarding the limitations on the computational power of AfAs, we know that
[16,30,32,36]:

– (one-sided or two-sided) bounded error rational-valued and integer-valued
AfAs have the same computational power;

– one-sided bounded error rational-valued AfAs cannot recognize any nonreg-
ular unary language;

– algebraic-valued AfAs cannot recognize certain non-stochastic unary lan-
guages in L even with unbounded error (with cutpoints); and,

– the class of languages recognized by bounded error rational-valued AfAs is a
proper subset of L.

Here, L is a class of languages recognizable in logarithmic space.
One open problem is whether two-sided bounded error rational-valued AfAs

can recognize any nonregular unary language, and an untouched direction is the
computational capabilities of real-valued AfAs (i.e., all known results have been
given for rational- or interger-valued AfAs).
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1.2 The Verification Power of PFAs and QFAs

Interactive proof systems (IPSs) [12] with PFA verifiers [9] can verify some non-
regular languages such as TWIN = {wcw | w ∈ {a, b}∗} with bounded error [28].
The same result is valid for IPS with QFA verifiers communicating with the
prover classically1. IPSs are also called private-coin systems since a verifier can
hide its probabilistic decisions from the prover. In this way, the verifier can use
stronger verification strategies as a part of the protocol (between the verifier and
prover) since the prover may not guess the exact configuration of the verifier,
and so it may not easily mislead the verifier when it is not honest.

When the computation of a verifier is fully seen to the prover, the system
is called public-coin IPS or AM system [3,5]. AM system with PFA verifiers
[6] cannot recognize any nonregular languages with bounded error, and we do
not know whether AM systems with QFA verifiers can recognize any nonregular
language with bounded error.

When considering the known results for AfAs (Sect. 1.1), there are two nat-
ural questions about the verification power of AM systems with rational-valued
AfA verifiers:

1. whether we can go beyond L and, if so, how far, and,
2. whether some nonregular unary languages can be verified or not.

We answer both questions positively, and we obtain NP as the tight upper bound
for non-unary languages.

1.3 Two-Way PFAs and QFAs

As mentioned above, AfAs can recognize nonregular languages UPAL and PAL
with bounded error without interacting with any prover. Similar results can be
obtained for PFAs and QFAs when reading the input many times by using a
two-way head [1,10]. We review basic facts about bounded error two-way PFAs
and QFAs to have a better picture for our results on AfAs.

The language UPAL is recognized by bounded error two-way QFAs [1] in
polynomial expected time and as well as by two-way PFAs [10] but only in
exponential expected time [13].

The language PAL can be recognized by bounded error two-way QFAs in expo-
nential expected time [1], but it cannot be recognized in polynomial expected
time even if two-way QFAs are augmented with logarithmic amount of space
[27]. On the other hand, AM systems with two-way PFA verifiers cannot verify
PAL with bounded error even if augmented with logarithmic space [9]. Besides,
two-way bounded error PFAs can recognize only regular languages in polynomial
expected time [8], and it is open whether AM systems with two-way PFAs can
verify any nonregular languages in polynomial time.

1 When the proof system is fully quantum, we know little [25]: the restricted QFA
model defined in [22] can verify only regular languages with bounded error.
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Regarding unary languages, bounded error two-way PFAs cannot recognize
any nonregular language [19], and it is open whether any unary nonregular lan-
guage is verified by a bounded error AM system with two-way PFA verifier [6]. It
is also open whether bounded error two-way QFAs can recognize any nonregular
unary language.

The class of languages verified by AM systems with two-way rational-valued
PFA verifiers is a proper subset of P [5]. Therefore, the verification power of
AfAs can go beyond the verification power of two-way PFAs.

On the other hand, AM systems with two-way QFAs are very powerful
[29,33]. Two-way QFAs can verify every unary language in exponential expected
time, and so their verification power is equivalent to that of AfAs on unary
languages. On non-unary languages, rational-valued two-way QFAs can verify
every language in PSPACE and some NEXP-complete languages. Therefore, AM
systems with rational-valued AfAs are weaker than AM systems with rational-
valued two-way QFAs. Here we remark that AfA verifiers read the input once,
but two-way QFAs may run in exponential or double-exponential expected time.

2 Preliminaries

Throughout the paper, |·| refers to the �1-norm; Σ denotes the input alphabet not
containing symbols ¢ and $, respectively called the left and right end-markers; Σ̃
is the set Σ ∪ {¢,$}; Σ∗ denotes the set of all strings defined on the alphabet Σ
including the empty string denoted ε; and, for a given string w ∈ Σ∗, w̃ denotes
the string ¢w$. Moreover, for any string w, |w| is the length of w, |w|σ is the
number of occurrences of symbol σ in w, and, whenever |w| > 0, wi represents
the i-th symbol of w, where 1 ≤ i ≤ |w|. For an automaton M , fM (w) is the
accepting probability of M on the input w ∈ Σ∗.

A realtime automaton reads the given input symbol by symbol and from
left to right. On each symbol, a realtime automaton can stay a fixed amount of
steps. If there is no waiting steps, then it is called strict realtime. In this paper,
we focus only on the strict realtime models. For every given input w, it is fed
as w̃ so that the automaton can make pre-processing and post-processing while
reading symbols ¢and $, respectively.

An m-state affine system is represented by R
m, and affine state of this system

is represented by an m-dimensional vector: v = (α1 · · · αm)ᵀ ∈ R
m satisfying

that
∑m

j=1 αj = 1, where αj , similar to the amplitudes in quantum systems, is
the value of the system being in state ej .

We transform the affine system by applying affine operators to the vector
v. Any affine operator of this system is a linear operator represented by an
(m × m)-dimensional matrix:

A =

⎛

⎜
⎝

a1,1 · · · a1,m

...
. . .

...
am,1 · · · am,m

⎞

⎟
⎠ ∈ R

m×m
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satisfying that
∑m

j=1 aj,i = 1 for each column i (the column summation is 1).
When the operator A is applied to the affine state v, the new state is v′ = A · v.

To retrieve information from the affine system, similar to the measurement
operators of quantum system, we apply a weighting operator. When the affine
state v is weighted, the i-th state is observed with probability

|αi|
|v| =

|αi|
|α1| + · · · + |αm| .

If the system is restricted to have only the nonnegative real numbers, then
it turns out to be a probabilistic system.

2.1 Finite Automata with Deterministic and Affine States

Similar to finite automata with quantum and classical states (QCFA) [1], a
finite automaton with classical and affine states (ADfA) is an n-state determin-
istic finite automaton having an m-state affine register, where m,n > 0. (Even
though both affine and classical parts have finite states, we use lowercase “f” to
emphasize the nonlinearity of affine part.) Let S = {s1, . . . , sn} be the classical
deterministic states and let E = {e1, . . . , em} be the affine states, where ei is
the standard basis in R

m (all zeros but the i-th entry which is 1).
The computation is governed classically. During the computation, each tran-

sition of an ADfA has two parts: affine and classical parts.

1. Affine transition: For each pair of deterministic state and reading symbol, say
(s, σ), either an affine operator or a weighting operator is applied to the affine
register.

2. Classical transition can be two types:
(a) If an affine operator is applied, then the next classical state is determined

based on (s, σ).
(b) If a weighting operator is applied, then the next classical state is deter-

mined based on (s, σ, e), where e ∈ E is the measured affine state.

In this paper, we apply the weighting operator only after reading the whole
input, and so, we keep the formal definition of the models simpler: a single
transition updates both the classical and affine parts at the same time.

Formally, a ADfA M with n classical deterministic and m affine states is a
8-tuple

M = (S,E,Σ, δ, sI , eI , sa, Ea),

where

– S and E are the sets of states as specified above;
– δ is the transition function described below;
– sI ∈ S and eI ∈ E are the classical deterministic and affine initial states,

respectively; and,
– sa ∈ S is the deterministic accepting state;
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– Ea ⊆ E is the set of affine accepting state(s).

Let w ∈ Σ∗ be the given input of length l. The ADfA reads the input as w̃ =
¢w$ from left to right and symbol by symbol. The computation of M is traced
by a pair (s, v) called a configuration, where s ∈ S is the classic state, v ∈ R

m

is a vector of the affine configuration. At the beginning of the computation, M
is in (sI , v0), where the affine state v0 = eI .

The transition function is defined as δ : S × Σ̃ → S × R
m×m. Let (s, vj) be

the configuration of M after the j-th step and σ = w̃j+1 ∈ Σ̃. Then the new
configuration is (s′, vj+1), where δ(s, σ) = (s′, A) and vj+1 = Avj .

After reading $ symbol, if the final classical state is not sa, then the input
is rejected deterministically: fM (w) = 0. Otherwise, a weighting operator is
applied. The input is accepted if an affine accepting state is observed. We denote
the final state as vf = v|w̃|. Then, the accepting probability by the affine part is

fM (w) =

∑
ei∈Ea

|vf [i]|
|vf | ∈ [0, 1].

We remark that the ADfA M defined here can be exactly simulated by the
original model defined in [7] with (m · n) affine states.

2.2 Affine Automata Verifiers

In this paper, we study only Arthur-Merlin type of interactive proof systems
where the verifiers are affine automata. In [6], Arthur-Merlin systems with prob-
abilistic finite automata verifier are defined as an automata having both non-
deterministic and probabilistic states. We follow the same framework here. We
indeed give the ability of making nondeterministic transitions to ADfA models.
The reason of this admission is that the prover of AM system has an unrestricted
computational power and the whole access to the input. Thus, we can describe
the AM protocol as providing a certificate in a nondeterministic automaton.

A finite automaton with nondeterministic and affine states (ANfA) with n
classic nondeterministic and m affine states is formally an 8-tuple

N = (S,E,Σ, δ, sI , eI , sa, Ea),

where all elements are the same as ADfA except the transition function. For the
pair (s, σ) ∈ S × Σ̃, it can have one or more transitions:

δ(s, σ) → {(s′
1, A1), . . . , (s′

k, Ak)},

where each pair (s, σ) can have a different k > 0 value. When having more than
one transition, N picks each of them nondeterministically by creating a new
path. In this way, N forms a computation tree, where the root is the starting
configuration. Remark that the computation in each path is the same as that
of ADfAs and each path may have a different accepting probability. Each path
here refers to a different certificate.
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2.3 Language Recognition/Verification and Classes

A language L ⊆ Σ∗ is said to be recognized by an ADfA M with error bound
ε < 1

2 , if (i) for every w ∈ L, fM (w) ≥ 1−ε, and (ii) for every w /∈ L, fM (w) ≤ ε.
Shortly, we can also say that L is recognized by M with bounded error or L is
recognized by a bounded error ADfA.

A language L ⊆ Σ∗ is said to be verified by an ANfA V with error bound
ε < 1

2 , if (i) for every w ∈ L, there is a path on which fV (w) ≥ 1− ε, and (ii) for
every w /∈ L, fV (w) ≤ ε on each path. Shortly, we can also say that L is verified
by V with bounded error or L is verified by a bounded error ANfA.

We define AM(AfA) as the class of languages verifiable by bounded error
Arthur-Merlin system having realtime affine finite verifiers. Any language veri-
fiable by a bounded error ANfA is in this class, and we obtain all results in this
paper by ANfAs. Remark that the model of realtime affine finite verifiers is more
general model than ANfA as we can apply weighting operators more than once
and also process the outcomes classically.

If the verifier is a PFA, QFA, two-way PFA, or two-way QFA, then the
related class is AM(PFA), AM(QFA), AM(2PFA), or AM(2QCFA), respectively,
where 2QCFA is the two-way QFA model defined in [1].

The classes AMQ(·) or AMZ(·) denote the AM classes where the verifiers are
restricted to have rational-valued or integer-valued components, respectively.

Here is the list of standard complexity classes mentioned in the paper:

REG : regular languages

L : logarithmic space

P : polynomial time

NP : nondeterministic polynomial time

SPACE(n) : linear space

PSPACE : polynomial space

NEXP : nondeterministic exponential space

Lastly, for a given complexity class C, UnaryC denotes its unary version, and
as a special case, the set of all unary languages is called TALLY.

3 Verification of Every Unary Language

Let L ⊆ Σ∗ be an arbitrary unary language, where Σ = {a}. We define a real
number to encode the whole membership information of L as follows:

αL =
∞∑

i=0

bi

32i+1
=

b0
32

+
b1
322

+
b2
323

+ · · · ,
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where bi = 1 if ai ∈ L and bi = 0 if ai /∈ L. In binary form: bin(αL) =
0.0000b00000b1 · · · 0000bi · · · . Moreover, we define

αL[j] =
bj

32
+

bj+1

322
+

bj+2

323
+ · · · , where j ≥ 0.

We give a few basic facts about αL and αL[j], which we will use in our proofs.

1. For any αL[j], there is a unary language L
′
such that αL[j] = αL′ .

2. The values of αL and so αL[j] are bounded:

0 ≤ αL ≤ 1
31

and 0 ≤ αL[j] ≤ 1
31

.

3. The values of αL[j + 1] and αL[j] can be related:
– If bj = 0: αL[j + 1] = 32 · αL[j].
– If bj = 1: αL[j + 1] = 32 · αL[j] − 1.

By using αL, we design a bounded error ANfA for language L. The main
idea behind the protocol is that each bi is nondeterministically guessed and
the verification is done by subtracting the guessed bi and the actual value bi

encoded in αL. As long as the nondeterministic choices are correct, the result of
such subtractions will be zero. Otherwise, it will not be zero, based on which we
reject the input. The details are given in the proof below.

Theorem 1. Every unary language L ⊆ {a}∗ is verified by an ANfA V with
error bound 0.155.

Proof. The verifier V has two classical states and three affine states, where s2 is
the classical accepting state and e1 is the only affine accepting state. The initial
affine state is v0 = (1 0 0)ᵀ and initial classical state is s1.

Let w = al be the given input (l ≥ 0). Until reading $, V makes two non-
deterministic transitions for each w̃i (i ∈ {1, . . . , l + 1}): V guesses the value of
bi−1, say gi−1. If gi−1 = 0, then classical state is set to s1, and if gi−1 = 1, then
classical state is set to s2. The affine operators are described below.

On symbol ¢, a combination of two affine operators is applied. In the first
part, the affine state is set as

⎛

⎝
1

αL

−αL

⎞

⎠ =

⎛

⎝
1 0 0

αL 1 0
−αL 0 1

⎞

⎠

⎛

⎝
1
0
0

⎞

⎠ .

In the second part, the affine operator Ag0 is applied, where

A0 =

⎛

⎝
1 − 31 − 31
0 32 0
0 0 32

⎞

⎠ and A1 =

⎛

⎝
1 − 31 − 31

−1 32 0
1 0 32

⎞

⎠ .

On each symbol a, the second part for symbol ¢is repeated: the affine operator
Agi

is applied on the path where gi is picked.
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If b0 is guessed correctly, then affine state becomes
⎛

⎝
1

αL[1]
−αL[1]

⎞

⎠ = Ab0

⎛

⎝
1

αL[0]
−αL[0]

⎞

⎠ .

It is sufficient to check the value of the second entry of v. Let us denote it v[2].

– If b0 = 0, after applying A0, the value of v[2] becomes 32 · αL[0], which is
equal to αL[1].

– If b0 = 1, after applying A1, the value of v[2] becomes 32 · αL[0] − 1, which is
equal to αL[1].

Similarly, as long as the nondeterministic guesses are correct, the affine part
evolves as given below:

⎛

⎝
1

αL[1]
−αL[1]

⎞

⎠ 1st a−−−−→
⎛

⎝
1

αL[2]
−αL[2]

⎞

⎠ 2nd a−−−−−→ · · · lth a−−−−→
⎛

⎝
1

αL[l + 1]
−αL[l + 1]

⎞

⎠ .

Now, we examine the case in which at least one nondeterministic guess is wrong.
Assume that gi �= bi is the first wrong guess (for symbol w̃i+1). The value of v[2]
is αL[i] before this guess, and it becomes

1 + αL[i + 1] or αL[i + 1] − 1

after the guess. Thus, the absolute value of v[2] is bounded below by 1− 1
31 = 30

31 ,
which is at least 30 times greater than any αL[j]. If there is another symbol a to
be read, then the value of v[2] is multiplied by 32 followed by subtraction of 0
or −1. That means the integer part of the absolute of new value of v[2] becomes
greater than 30, and so the absolute value of v[2] is at least 900 times greater
than any αL[j]. For each new symbol of a, this factor (i.e., 30 and 900) will be
multiplied by at least 30.

On symbol $, V does not change the classical state and applies the following
operator to the affine state:

A$(k) =

⎛

⎝
1 1 − k 1 − k
0 k 0
0 0 k

⎞

⎠ ,

where k = 31
2
√
30

, which gives the minimum error when maximizing the accepting
probability for members and minimizing the same for the non-members.

If w ∈ L, the path following the correct nondeterministic guesses ends in
classical state s2 and affine state (1 k · αL[l + 1] − k · αL[l + 1])ᵀ. Remember
that 0 ≤ αL[l + 1] ≤ 1

31 . Thus, the input is accepted with probability

1
1 + 2kαL[l + 1]

≥ 1
1 + 2k

31

=
1

1 + 1√
30

=
√

30
1 +

√
30

= 1 − 1
1 +

√
30

> 0.845.
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If w /∈ L, then we have different cases. (1) If bl is guessed correctly (gl = 0),
then the input is rejected deterministically. (2) If each guess is correct except bl

(gl = 1), then affine state is
⎛

⎝
1

k(αL[l + 1] − 1)
−k(αL[l + 1] − 1)

⎞

⎠ ,

and so, the accepting probability is

1
1 + 2k(1 − αL[l + 1])

≤ 1
1 + 2k( 3031 )

=
1

1 +
√

30
< 0.155.

In other words, the rejecting probability is at least 1 − 0.155 = 0.845. (3) If the
guess gi for i < l is wrong, then, as we described above, the absolute values of
v[2] and v[3] are at least 30 times bigger than that of the case (2), and so is the
rejecting probability. 
�

When defining αL, the denominators can be some numbers greater than 32,
and, in this way we can obtain better error bounds, i.e., arbitrarily close to 0.

Corollary 1. Every unary language L ⊆ {a}∗ is verified by ANfAs with arbi-
trarily small error bounds.

4 AMZ(AfA)

Recently, it was shown [16] that any language recognized by a rational-valued
ADfA with error bound ε is recognized by an integer-valued ADfA with error
bound ε′, where 0 ≤ ε ≤ ε′ < 1

2 . The latter automaton is constructed by modi-
fying the components of the former automaton so that, on the same input, the
accepting probability of the latter one can differ insignificantly from the accept-
ing probability of the former one, i.e., the difference is at most ε′ − ε. Thus, if
the automaton is an ANfA, then on the same input, the accepting probabilities
for the same nondeterministic path will differ insignificantly, and so the error
bound increases but still less than 1

2 .

Theorem 2. AMQ(AfA) = AMZ(AfA).

It is known that AM(PFA) = REG [6]. We do not know whether AM(QFA) con-
tains any non-regular language. On the other hand, ADfAs can recognize some
non-regular ones with bounded error such as PAL requiring at least logarithmic
space for bounded error probabilistic computation [11]. A natural question is
whether AM(AfA) goes beyond L.

Theorem 3. AMQ(AfA) ⊆ NP ∩ SPACE(n).
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Proof. Let L ∈ AMQ(AfA) be a language. Then, there is an affine automaton
verifier V verifying L with error bound ε ∈ Q ∩ [0, 1

2 ).
The descriptions of V and the error bound are finite, which can be wired into

the description of Turing Machines (TMs). For any given input, the computation
on each path of V can be traced by vector and matrix multiplications. As the
length of each sequence is linear, all computation including weighting, calculating
the accepting probability, and comparing it with the error bound can be done
in polynomial time and linear space (i.e., the size of affine state vector is fixed,
the precision of each entry can be at most linear, and each new entry is a linear
combination of these entries).

In the case of nondeterministic TM simulation, the TM implements the non-
deterministic choices of V directly. In the case of linear-space TM simulation,
the TM uses a linear counter to check all nondeterministic strategies one-by-one.
Even though the overall simulation runs in exponential expected time, the space
usage can be bounded linearly. 
�

We show that integer-valued ANfAs can verify some NP-complete problems.
We use the following language version of the Knapsack Problem (Page 491 of
[21]): SUBSETSUM is the language of strings of the form S#B1# · · · #Bk, where

– S,B1, . . . , Bk ∈ {0, 1}∗ are binary numbers and
– there exists a subset of {B1, . . . , Bk} that adds up to precisely S: that is,

∃I ⊆ {1, . . . , k} such that S =
∑

i∈I Bi.

Remark that we do not use any negative integer, and it is still NP-complete.

Theorem 4. SUBSETSUM is verified by an integer-valued ANfA V (t) such that
every member is accepted with probability 1 and every non-member is accepted
with probability at most 1

2t+1 for some t ∈ Z
+.

Proof. Let w ∈ Σ∗, where Σ = {0, 1,#}. The verifier V (t), shortly V , classically
checks that w has at least one #. Otherwise, the input is rejected deterministi-
cally.

In the remaining part, we assume that w is of the form S#B1# · · · #Bk for
some k > 0. Remark that the binary value of empty string is zero (whenever
S = ε or any Bi = ε). The protocol has the following steps:

1. V starts with encoding S into the value of affine state e2.
2. V nodeterministically picks some Bi’s (1 ≤ i ≤ k). Such decision is made

when reading symbols #.
(a) If Bi is not picked, then affine state is not changed.
(b) Otherwise, V encodes Bi into the value of the affine state e3, and then,

it is subtracted from the value of e2 and the value of e3 is set to zero.
3. At the end of the computation, the decision is made based on the fact that

the value of e2 is zero for the members in at least one path and non-zero
integer for the non-members in each path. The error is decreased by using
certain tricks before the weighting operator.
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The affine part has four states {e1, . . . , e4} and e1 is the only accepting state.
The initial affine state is (1 0 0 0)ᵀ, and it does not change when reading ¢.
For encoding binary string, we use the technique described in [20]. The value of
S is encoded by using the affine operators {Aσ | σ ∈ {0, 1}}:

A0 =

⎛

⎜
⎜
⎝

1 0 0 0
0 2 0 0
0 0 1 0
0 −1 0 1

⎞

⎟
⎟
⎠ and A1 =

⎛

⎜
⎜
⎝

1 0 0 0
1 2 0 0
0 0 1 0

−1 −1 0 1

⎞

⎟
⎟
⎠ ,

where the value of e3 is not changed. The value of each picked Bi is encoded by
the affine operators {A′

σ | σ ∈ {0, 1}}:

A′
0 =

⎛

⎜
⎜
⎝

1 0 0 0
0 1 0 0
0 0 2 0
0 0 −1 1

⎞

⎟
⎟
⎠ and A′

1 =

⎛

⎜
⎜
⎝

1 0 0 0
0 1 0 0
1 0 2 0

−1 0 −1 1

⎞

⎟
⎟
⎠ ,

where the value of e2 is not changed. With the following operator, the value of
e3 is subtracted from the value of e2 and set to 0:

D =

⎛

⎜
⎜
⎝

1 0 0 0
0 1 −1 0
0 0 0 0
0 0 2 1

⎞

⎟
⎟
⎠ .

For a picked subset I ⊆ {1, . . . , k}, let SI =
∑

i∈I Bi. Before weighting
operator, for some t ∈ Z

+, we apply the following operator to decrease the error
bound for the non-members:

E(t) =

⎛

⎜
⎜
⎝

1 0 0 0
0 t 0 0
0 1 − t 1 1 − t
0 0 0 t

⎞

⎟
⎟
⎠ .

On the path where I is followed, just before applying E(t), the affine state
is

⎛

⎜
⎜
⎝

1
S − SI

0
SI − S

⎞

⎟
⎟
⎠ ,

which becomes
⎛

⎜
⎜
⎝

1
t(S − SI)

0
t(SI − S)

⎞

⎟
⎟
⎠
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after applying E(t). It is easy to see that if S = SI , then the final affine state
is (1 0 0 0)ᵀ and so the input is accepted with probability 1. If S �= SI , then
|S − SI | ∈ Z

+, and so the values of e2 and e4 are not zero and the accepting

probability can be at most
1

2t + 1
.

Therefore, if w ∈ SUBSETSUM, then there exists a subset I satisfying the
membership condition and it is picked on a path where the input is accepted with
probability 1. If w /∈ SUBSETSUM, there is no subset satisfying the membership

condition, and so the input is accepted with probability at most
1

2t + 1
in each

path. The error bound can be arbitrarily small when t → ∞. 
�
It is not known whether there is an NP-complete unary language: if there is

such a language, then P = NP [4]. Regarding the verification power of rational-
valued ANfAs, we use some non-stochastic unary languages (unary languages
that are not recognizable by any probabilistic finite automata with cutpoints).

For a given non-linear polynomial with nonnegative integer coefficients P (x),
the unary language UPOLY(P) = {aP (i) | i ∈ N} was shown to be not stochastic
[30]. Recently, it was shown that [16] this family of languages cannot be recog-
nized by algebraic-valued ADfAs even with cutpoints. We show that ANfAs can
verify any UPOLY(P) language with bounded error.

We start with a simpler case USQUARE, and then, based on it, we provide the
proof for general case.

Theorem 5. Language USQUARE is verified by an ANfA V (t) with any error
bound 1

2t+1 , where t ∈ Z
+.

Proof. We use the parameter t at the end of the proof, and we represent V (t)
shortly as V . The verifier V uses 4 affine states, and e1 is the single accepting
affine state. Let w = 0l be the given input. If w = ε, then it is accepted classically.
We assume that w �= ε in the rest of the proof.

The protocol of V is as follows: V nondeterministically picks a positive integer
j ≥ l and then checks whether j2 = l. If w ∈ USQUARE, then there exists such
j =

√
l and so this comparison is made successfully in one of the nondeterministic

paths. If w /∈ USQUARE, there is no such j and so there is no successful comparison
in any nondeterministic path.

The verifier follows (l + 1) different paths during its computation:

path0, path1, . . . , pathl,

where the main one is path0. We use the encoding techniques described in [20].
When reading the i-th symbol of w, path0 continues with path0 or creates pathi.

On path0, V is in the following affine states after reading wi and wl:

v0,i+1 =

⎛

⎜
⎜
⎝

1
i
i2

1

⎞

⎟
⎟
⎠ and v0,l+1 =

⎛

⎜
⎜
⎝

1
l
l2

1

⎞

⎟
⎟
⎠ ,
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respectively. After reading wi, V creates pathi, on which it is in the affine state

vi,i+1 =

⎛

⎜
⎜
⎝

1
i
i2

1

⎞

⎟
⎟
⎠ .

For the rest of the computation, V continues with counting the number of sym-
bols on v[2], which is the second entry of the vector v, but it does not change
the value of v[3] until reading $. The affine state on pathi (i > 0) after reading
wl is

vi,l+1 =

⎛

⎜
⎜
⎝

1
l
i2

1

⎞

⎟
⎟
⎠ .

On path0, the input is rejected classically. On pathi, after reading $, V enters
the classical accepting state, and it sets the affine state as

⎛

⎜
⎜
⎝

1
t(l − i2)
t(i2 − l)

0

⎞

⎟
⎟
⎠ .

If w ∈ L, then on path√
l, the final affine state is e1 and so w is accepted

with probability 1.
If w /∈ L, then on pathi, the absolute value of v[2] or v[3] is |t(l − i2)|, which

is at least t. Thus, the input is accepted with probability at most ε = 1
2t+1 ≤ 1

3 .
It is clear that ε → 0 when t → ∞. 
�
Theorem 6. Language UPOLY(P) is verified by an ANfA V (t) with any error
bound 1

2t+1 , where t ∈ Z
+.

Proof. The proof is identical to the proof of Theorem 5 after modify the encoding
part (we use the techniques described in [20]). First note that P (i) ≥ i since the
coefficients of P are nonnegative. So, for any 0l ∈ UPOLY(P), there exists j ≤ l
such that l = P (j). Second, on pathi, P (i) is calculated and then the verifier
checks whether P (i) = l or not.

If 0l is in UPOLY(P), then it is accepted with probability 1 in one of the
nondeterministic paths. If it is not in UPOLY(P), then the accepting probability
on any path can be at most 1

2t+1 . 
�

5 Summary

On unary languages, for the real-valued verifiers, we show that AfAs and 2QCFAs
have the same verification power: TALLY = UnaryAM(2QCFA) = UnaryAM(AfA),
where AfAs are realtime machines but 2QCFAs run in exponential expected time.
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On unary languages, for the rational-valued verifiers, we know that

UnaryREG = UnaryAMQ(PFA) ⊆ UnaryAMQ(QFA) ⊆ UnaryAM(QFA)
UnaryAMQ(2PFA) ⊆ UnaryAM(2PFA) ,

where it is open if the inclusions are strict, and we show that UPOLY(P) ∈
UnaryAMQ(AfA) and so we have UnaryREG � UnaryAMQ(AfA).

On non-unary languages, for the rational-valued verifiers, we give an upper
bound for AMQ(AfA), and so we have

AMQ(AfA) = AMZ(AfA) ⊆ NP ∩ SPACE(n) � AMQ(2QCFA),

where 2QCFAs run in double-exponential expected time. Our upper bound is
tight since we show that SUBSETSUM ∈ AMZ(AfA).
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Abstract. A string assembling system is a generative model that gener-
ates strings from copies out of a finite set of assembly units. The under-
lying mechanism is based on piecewise assembly of a double-stranded
sequence of symbols, where the upper and lower strand have to match.
So, the generative power of such systems is driven by the power of double-
strands. Here we compare the generative capacity of string assembling
systems with those of different variants of sticker systems. Though both
types of systems seem to be closely related, we show that their genera-
tive capacities are different. In particular, it turns out that the family of
languages generated by string assembling systems is incomparable with
several language families induced by sticker systems.

Moreover, we consider decidability questions for the family of languages
generated by string assembling systems and solve the remaining open case
of systems whose assembly units are 2-length-restricted. It is shown that
emptiness and several other questions are not even semi-decidable which
improves the previously undecidability results furthermore.

1 Introduction

The advent of investigations of devices and operations that are inspired by the
study of biological processes and the growing interest in nature-based prob-
lems modeled in formal systems, advises to examine the control mechanism of
complementary double strands, which leads back to the definition of the Post
Correspondence Problem [12].

Sticker systems are one approach to classify systems generating double
strands. They were introduced in [4] in their basic variant. Afterwards differ-
ent variants of sticker systems have been investigated [1,10,11]. A sticker system
basically consists of dominoes that can be seen as double-stranded molecules
and, thus, in connection with DNA it can be seen as a (possibly incomplete)
part of a DNA strand. A main restriction of sticker systems is that the upper
and the lower strand of the dominoes are glued together. Thus, if a double-
stranded domino is assembled to a double strand, a basic restriction is that
the length difference of the upper and the lower strand of the derived molecule
fits to the length difference of the upper and the lower strand of the domino.
This implies that applying only these kind of dominoes does not increase the

c© Springer Nature Switzerland AG 2021
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length difference of the two strands arbitrarily. Such so-called sticker systems
with bounded delay are at most as powerful as linear context-free grammars.
The property that dominoes with two strands cannot be chopped into two inde-
pendent strands seems to be a big restriction, since the arbitrary growing of
one strand increases the capacity of derivations. An inspiring definition is the
Post Correspondence Problem, where the two strings may be applied indepen-
dently to the appropriate sequences. There is a second property that limits the
generative capacity. Consider a sticker system S and a derivation of S where
both strands of a double-stranded sequence w have the same length. Then it is
possible to prolong w by every double-stranded sequence that can be generated
by S (possibly at two ends). There is no possibility to control, how and if the
further computation goes on.

String assembling systems are another possibility to use double-stranded
sequences to generate formal languages. They have been introduced in [7], where
connections to one-way two-head finite automata are shown. As for sticker sys-
tems, also two-way variants have been considered [6]. The impact of the model-
inherent control mechanisms is studied in [8].

In contrast to sticker systems, where dominoes are sticked together, the def-
inition of string assembling systems (SAS) is basically motivated by the mech-
anisms of the Post Correspondence Problem. The assembly units are pairs of
substrings that have to be connected to the upper and lower string generated so
far synchronously. In comparison to sticker systems, the substrings are not glued
together. This property enables the possibility to increase the length difference
between the two strands arbitrarily and, moreover, compare positions that are
an arbitrary long distance away from each other. Thus, it is possible to generate
non-context-free languages even if the string assembling systems are defined to
work one-way. Additionally, string assembling systems obey two further control
mechanisms. First, it is required that the first symbol of a substring that is to
be assembled has to match the last symbol of the strand to which it is con-
nected. One can imagine that both symbols are glued together, one at the top of
the other and, thus, just one appears in the final double strand. This property
enables more possibilities to give languages structure in contrast to instances
of the Post Correspondence Problem, where this property lacks. Second, it is
distinguished between assembly units that may appear at the beginning, during,
and at the end of the assembling process as for the notion of strictly locally
testable languages [9,13].

The paper is organized as follows. In the next section we present prelimi-
naries and introduce the systems we are interested in more formally. Examples
are given and the hierarchy of language families induced by sticker systems is
depicted in Fig. 2. Section 3 is devoted to compare the generative capacities of
sticker systems to several variants of sticker systems. In Sect. 4 we obtain the
non-semidecidability of emptiness, finiteness, infiniteness, equivalence, inclusion,
regularity, and context-freeness for string assembling systems whose units are 2-
length-restricted. Finally, we give some concluding remarks in Sect. 5.
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2 Preliminaries and Definitions

We write Σ∗ for the set of all words (strings) over the finite alphabet Σ. The
empty word is denoted by λ, and Σ+ = Σ∗ \ {λ}. The reversal of a word w is
denoted by wR and for the length of w we write |w|. Generally, for a singleton
set {a} we also simply write a. We use ⊆ for inclusions and ⊂ for strict inclusions.
In order to avoid technical overloading in writing, two languages L and L′ are
considered to be equal, if they differ at most by the empty word, that is, L\{λ} =
L′ \ {λ}.

String Assembling Systems. We are especially interested in how string assem-
bling systems can be used to describe languages. To this end, we consider arbi-
trary alphabets and do not restrict on the natural alphabet {A,G,C, T}. Clearly,
there are ways to encode an arbitrary alphabet in the natural alphabet.

A string assembling system (SAS) generates a double string. For the genera-
tion, the basic element is a unit. A unit u = (w1, w2) with w1, w2 ∈ Σ+ consists
of two strings over a given alphabet Σ. The first string w1 is connected to the
upper strand, while the second one w2 is connected to the lower one. They can
only be connected, (i) if the first symbol of w1 is equal to the last symbol of
the upper strand generated so far and, similarly, (ii) if the first symbol of w2 is
equal to the last symbol of the lower strand generated so far. In this case, the
first symbols of the unit and the last symbols of the double stranded sequence
generated so far are glued together on top of each other if the derived upper and
the lower strands match at each position.

Each generation has to begin with a unit out of the set of axioms. Afterwards
the derivation continues with units of a second set, the set of assembly units, and
it has to be finished by an ending unit. The generation is said to be valid if and
only if both strands are identical in each position when the derivation process
stops.

Formally, a string assembling system (SAS) is a system S = 〈Σ,A, T,E〉,
where Σ is a finite, nonempty set of symbols, A ⊂ Σ+ × Σ+ is the finite set of
axioms of the forms (uv, u) or (u, uv), where u ∈ Σ+ and v ∈ Σ∗, T ⊂ Σ+ ×Σ+

is the finite set of assembly units, and E ⊂ Σ+ × Σ+ is the finite set of ending
assembly units of the forms (vu, u) or (u, vu), where u ∈ Σ+ and v ∈ Σ∗.

The next definition formally says how the units are assembled.
Let S = 〈Σ,A, T,E〉 be an SAS. The derivation relation ⇒ is defined on

Σ+ × Σ+ by

1. (uv, u) ⇒ (uvx, uy) if
i) uv = ta, u = sb, and (ax, by) ∈ T ∪ E, for a, b ∈ Σ, x, y, s, t ∈ Σ∗, and
ii) vx = yz or vxz = y, for z ∈ Σ∗,

2. (u, uv) ⇒ (uy, uvx) if
i) uv = ta, u = sb, and (by, ax) ∈ T ∪ E, for a, b ∈ Σ, x, y, s, t ∈ Σ∗, and
ii) vx = yz or vxz = y, for z ∈ Σ∗.
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b

b y r a
a x

b y

Fig. 1. Example of assembling a unit (ax, by) at the right.

An illustration can be found in Fig. 1.
A derivation is said to be successful if it initially starts with an axiom from A,

continues with assembling units from T , and ends with assembling an ending unit
from E. The process stops when an ending assembly unit is added. The sets A, T ,
and E are not necessarily disjoint.

The language L(S) generated by S is defined to be the set

L(S) = {w ∈ Σ+ | (u, v) ⇒∗ (w,w) is a successful derivation },

with (u, v) ∈ A, where ⇒∗ refers to the reflexive, transitive closure of the deriva-
tion relation ⇒.

Example 1. The SAS S = 〈{a, b, c}, A, T,E〉 generates the non-context-free lan-
guage { anbncn | n ≥ 1 }, where

A = {(a, a)}, T = Ta ∪ Tb ∪ Tc, E = {(c, c)},

Ta = {(aa, a), (ab, a)}, Tb = {(bb, aa), (bc, ab)},

Tc = {(cc, bb), (c, bc), (c, cc)}.

The units in Ta are used to generate the prefixes anb. Initially, only the unit
(aa, a) is applicable repeatedly. Then only (ab, a) can be used to generate the
upper string anb and the lower string a. After that the unit (bb, aa) from Tb has
to be used exactly as many times as the unit (aa, a) has been applied before.
Then an application of unit (bc, ab) is the sole possibility. This generates the
upper strand anbnc and the lower strand anb. For the last part the units from
Tc are used. Similarly as before, repeated applications of (cc, bb) yield the upper
string anbncn and the lower string anbn. So, it remains to complete the c’s in
the lower string. This is done by the units (c, bc), which can be applied only
once, and (c, cc) which can be applied arbitrarily often. However, the derivation
is successful only if the number of c’s in the upper and lower strand match when
the sole unit from E is applied. �

Clearly, the construction of Example 1 can be extended to an arbitrary num-
ber of symbols.

Example 2. Let Σ be an alphabet not containing the symbols {$1, $2, $3}. The
SAS S = 〈Σ ∪ {$1, $2, $3}, A, T,E〉 generates the non-context-free language
{ $1w$2w$3 | w ∈ Σ+ }, where for x, y ∈ Σ,
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A = {($1, $1)}, T = T1 ∪ T2 ∪ T3, E = {($3, $3)},

T1 = {($1x, $1), (xy, $1), (x$2, $1)},

T2 = {($2x, $1x), (xy, xy), (x$3, x$2)},

T3 = {($3, $2x), ($3, xy), ($3, x$3)}.

Similar as in Example 1, the units from T1 are used to generate the upper strand
$1w$2 and the lower strand $1. Then units from T2 are assembled to generate the
upper strand $1w$2w$3 and the lower strand $1w$2. Finally, we obtain $1w$2w$3
as upper and lower strand by the units in T3. �

The construction of Example 2 can be extended to an arbitrary number of
copies of the word w.

Sticker Systems. Now let us turn to sticker systems. In their original definitions
also complete double strands are generated, where the projection on one of the
strands is the string language generated. However, inspired by DNA the symbols
at the same positions in the strands have to be in relation with respect to a given
symmetric (complementarity) relation on the underlying alphabet. So, in general,
the upper and lower strand of a generated double strand may be different. But it
has been shown in [5] that every string language generated by a sticker system is
generated by such a system with a one-to-one complementarity relation as well.
Since here we are interested in the generative capacity, we safely may assume that
the complementarity relation is always the identity to simplify the presentation.

Since general sticker systems generate double strands beginning with an
axiom by assembling fragments at both ends of the currently derived double
strand, we have to introduce some notation. Moreover, since in the literature
of sticker systems the double strands are written one at the top of each other,
we stick with this presentation, which also helps to distinguish between parts
belonging to string assembling systems and parts belonging to sticker systems.

For sticker systems, we consider only (fragments) of double strands where
either one or both strands are empty, or where there is a complete part with
sticky ends at the left and at the right. So, we denote the set of all complete

matching double strands over an alphabet Σ by D=
Σ and write

[
w
w

]
for the

element of D=
Σ with strands w ∈ Σ+. The sticky ends to the left and/or right of

an element of D=
Σ are substrings that do not have a matching part in the opposite

strand. They may appear at the upper or lower strand. For w ∈ Σ+, we write(
λ
w

)
,
(

w
λ

)
, and

(
λ
λ

)
for such incomplete double strands and denote their set

by EΣ . For easier writing, we sometimes simply write λ for
(

λ
λ

)
. The set of

complete or incomplete double strands with sticky ends to the left and/or right
having or not having a complete part is denoted by D�

Σ = EΣ ∪ EΣ · D=
Σ · EΣ .

The elements of D�
Σ are called dominoes.
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A sticker system is a triple S = 〈Σ,A,D〉, where Σ is a finite, nonempty set
of symbols, A ⊂ EΣ · D=

Σ · EΣ is a finite set of axioms, and D ⊂ D�
Σ × D�

Σ is a
finite set of pairs of dominoes over the alphabet Σ.

Let u ∈ D�
Σ be the double strand

(
l0
l1

)[
v
v

] (
r0
r1

)
with v ∈ Σ+ and at

least one sticky end from {l0, l1} and from {r0, r1} empty, respectively, and
(d0, d1) ∈ D be a pair of dominoes. A derivation step u ⇒ u′ by using the
domino pair (d0, d1) consists of assembling d0 at the left and d1 at the right of u.
Basically, assembling means to concatenate the upper substring of the domino
to the upper strand of u and the lower substring of the domino to the lower
strand of u without moving the strands against each other. This assembling
is possible only if the result of the concatenation is again a double stranded
sequence from D�

Σ . Otherwise the domino is not applicable to u. Exemplarily, we
present two possibilities of assembling dominoes formally. A complete treatment
can be found in [11].

So, assembling d0 =
(

l′0
l′1

) [
v′

v′

](
r′
0

r′
1

)
with v′ ∈ Σ+ and at least one sticky

end from {l′0, l
′
1} and one from {r′

0, r
′
1} being empty, at the left of u results in(

l′0
l′1

)[
v′r′

0l0v
v′r′

1l1v

] (
r0
r1

)
, if and only if r′

0l0 = r′
1l1.

Assembling d1 =
(

v′

λ

)
at the right of u results in

(
l0
l1

)[
vv′′

vv′′

](
r′
0

r′
1

)
, if and

only if v′′ = λ, r′
0 = r0v

′, and r′
1 = λ if r1 = λ, and v′′ = r1, r′

1 = λ if v′ = r1r
′
0

and r0 = λ, and v′′ = v′, r′
0 = λ if r1 = v′r′

1 and r0 = λ.
The language generated by S is defined to be

L(S) =
{

w ∈ Σ+ | u ⇒∗
[
w
w

]
, for some u ∈ A

}
.

Several important types of restricted sticker systems have been considered.
The maximal overhang of a double strand u ∈ D�

Σ is called the delay of u and it
is denoted by d(u). A derivation u1 ⇒ u2 ⇒ · · · ⇒ uk with u1 ∈ A and uk ∈ D=

Σ

is said to be of delay m, if the maximal length of overhang for every ui 1 ≤ i ≤ k
is at most m.

A sticker system S = (Σ,A,D) is one-sided if for each pair (d0, d1) ∈ D
either d0 = λ or d1 = λ, regular if for each pair (d0, d1) ∈ D we have d0 = λ,

and simple if for each pair (d0, d1) ∈ D we have d0, d1 ∈
(

Σ∗

λ

)
∪

(
λ

Σ∗

)
.

Following the notation in [11], we denote by ASL the family of languages
generated by general sticker systems, by OSL, RSL, and SSL the families of lan-
guages generated by one-sided, regular, and simple sticker systems, respectively,
and use the notation SOSL and SRSL for the languages families generated by
simple one-sided and simple regular systems. For all these families we distin-
guish between unrestricted derivations and derivations with bounded delay. So,
we add (n) or (b) to the notation to indicate non-restricted and bounded-delay
derivations (see Fig. 2 for the hierarchy of generated language families). Since
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being bounded delay is a property of derivations and not a structural property of
the sticker system, we have to clarify what bounded-delay means. We say that
a sticker system is of bounded delay, if for each word generated by the system
there exists a (possibly different) derivation of bounded delay.

ASL(n) = CSL

SSL(n) ASL(b) = LIN

SSL(b)
OSL(b) = OSL(n) =
RSL(b) = RSL(n) =
REG

SOSL(n) = SOSL(b)

SRSL(n) = SRSL(b)

Fig. 2. Hierarchy of language families generated by sticker systems. A single arrow
means strict inclusion. All families not connected by a path are incomparable.

3 Comparison of SAS with Sticker Systems

In this section, we compare the generative capacities of string assembling systems
with those of different types of sticker systems.

The weakest variant of sticker systems are simple regular sticker systems.
They generate a subregular family of languages. For example, the regular lan-
guage { anb | n ≥ 1 } cannot be generated by any of these systems.

Theorem 3. The family of languages SRSL(b) = SRSL(n) is a proper sub-
family of the family of languages generated by string assembling systems.

Proof. Let S = 〈Σ,A,D〉 be a simple regular sticker system. We construct a
string assembling system S′ = 〈Σ,A′, T ′, E′〉 such that L(S) = L(S′). There
are two main restrictions of regular simple sticker systems. First, dominoes can
be appended only on the right-hand side and, second, either the upper or the
lower strand of each domino is empty. Thus, we define for each axiom from A

of the form
(

λ
λ

)[
v
v

](
r0
r1

)
an axiom (vr0, vr1) ∈ A′. For every pair of dominoes
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(d0, d1) ∈ D, d0 =
(

λ
λ

)
and d1 =

(
r0
r1

)
with either r0 = λ or r1 = λ, we

define units (xr0, yr1) ∈ T ′, for every symbols x, y ∈ Σ. The set of ending units
is defined by (x, x) ∈ E′, for every x ∈ Σ. Since the derivation processes of S
and S′ are both defined to be one-way to the right and, further, for every domino
in D, units are defined in T ′ whose strings begin with arbitrary symbols, the
derivation processes of S and S′ coincide.

The construction shows that L(S) ⊆ L(S′). Since for every unit constructed
there is a unique domino in S, we have L(S′) ⊆ L(S) and, thus, L(S) = L(S′).

On the other hand, SAS are able to generate even non-context-free languages,
while simple regular sticker systems are a subset of the regular languages. Thus
the family of languages generated by simple regular sticker systems is a proper
subset of the family of languages generated by string assembling systems. ��

Climbing up the hierarchy of sticker languages by giving up the restriction
to have simple dominoes only, we obtain regular sticker systems. Relaxing fur-
thermore the restriction to be one-way to the right only, we obtain one-sided
sticker systems. However, both types are equally powerful and for every deriva-
tion there is a bounded-delay derivation. For the comparison with string assem-
bling systems this step of relaxing crosses the edge between strict inclusion and
incomparability.

Theorem 4. The family of languages OSL(b) = OSL(n) = RSL(b) = RSL(n)
and the family of languages generated by string assembling systems are incom-
parable.

Proof. Since OSL(n) coincides with the family of regular languages [11], one-
sided sticker systems can generate the language {a} ∪ { a2n | n ≥ 2 }, which
cannot be generated by any string assembling system [7].

Conversely, the language { $1w$2w$3 | w ∈ {a, b}+ } of Example 2 shows
that there are even non-context-free languages generated by string assembling
systems. Since these cannot belong to OSL(n), the theorem follows. ��

The following example is used to show that there is a language generated by
SAS that cannot be generated by any simple sticker system.

Example 5. The language aL+ ∪ aL+a∗$ ∪ a+$ ∪ {a}, where L is defined as
L = { an−1bncmam | m,n ≥ 1 }, is generated by the string assembling system
S = 〈Σ,A, T,E〉 with single axiom (a, a), set of ending units E = {(a, a), ($, $)},
and assembling units as follows.

1. (aa, a) ∈ T
2. (a$, a) ∈ T
3. ($, aa) ∈ T
4. ($, a$) ∈ T
5. (ab, a) ∈ T

6. (bb, aa) ∈ T
7. (bc, ab) ∈ T
8. (c, bb) ∈ T
9. (c, bc) ∈ T

10. (c, cc) ∈ T

11. (c, ca) ∈ T
12. (cc, aa) ∈ T
13. (ca, a) ∈ T
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The singleton {a} is generated by the axiom and the ending unit (a, a). The
units (1)–(4) are used to generate words of the form { an$ | n ≥ 1 }. To this
end, first unit (1) is iteratively applied which yields (an, a). Then, by applying
unit (2) one gets (an$, a), and the completion of the lower strand is initialized,
which is done by units (3) and (4). Clearly, it is not possible to apply any other
unit after unit (2).

The derivation of words of the form aL+ also starts with applications of
unit (1). Now with unit (5) one obtains (anb, a), and by units (6)–(9) we get
(anbnc, anbnc). Next, unit (10) prolongs the lower strand by cm, and units (11)–
(13) are used to derive (anbncma, anbncmam). After completing the upper strand
by unit (1), we have (anbncmam, anbncmam). Now the derivation process can
either stop with the ending unit (a, a) or can be repeated. �

Theorem 6. The families of languages SSL(b) and SSL(n) are incomparable
with the family of languages generated by string assembling systems.

Proof. The dominoes of simple sticker systems have either an empty upper
strand or an empty lower strand. We consider the language L′ = aL+∪aL+a∗$∪
a+$∪{a} with L = { an−1bncmam | m,n ≥ 1 } of Example 5, which is generated
by a string assembling system. In contrast to the assertion, assume that L′ is
generated by a simple sticker system S = 〈Σ,A,D〉.

An immediate observation for simple sticker systems is as follows. If there
is some derivation from a double strand u to v applying the pairs of dominoes
p1, p2, . . . , p�, where all dominoes contain unary strands over the same symbol,
then applying the same pairs of dominoes in any other order yields a derivation
from u to v as well.

First, we consider words from L′′ = { an$ | n ≥ 1 } ⊂ L′. In every derivation
of a word w ∈ L′′ at most two times a domino is assembled whose strands
are not of the form a∗. Since the number of axioms in A and the number of
dominoes in D is finite, there are at most two fixed pairs of dominoes q1 and q2
whose strands contain a $, and a fixed axiom d0 such that infinitely many words
from L′′ are generated by a derivation that applies d0, q1, q2, and further pairs
of dominoes whose strands are of the form a∗. We denote the set of these words
by L′′

d0,q1,q2
⊆ L′′.

Let {p1, p2, . . . , pm} be the set of all pairs of dominoes from D whose strands
are of the form a∗. For any word w ∈ L′′

d0,q1,q2
, we choose a derivation and

consider the multiplicities of applications of the pairs of dominoes pi. So, let
sw = (i1, i2, . . . , im), with 0 ≤ ij , for 1 ≤ j ≤ m, denote these multiplicities (for
the chosen derivation). Since L′′

d0,q1,q2
is infinite, there are at least two different

words w,w′ ∈ L′′
d0,q1,q2

such that sw = (i1, i2, . . . , im) and sw′ = (i1 + �1, i2 +
�2, . . . , im+�m), for 0 ≤ �j , 1 ≤ j ≤ m. Since d0, q1, and q2 are fixed, we conclude
that assembling �1 times p1, �2 times p2, . . . , and �m times pm adds complete
double strands with single strands of the form a∗ to the left and to the right of
the axiom. Moreover, at least one of these double strands is non-empty.

Now we come back to the language L′ and choose some word z = anbncmam ∈
aL ⊂ L′, with m,n long enough. Then the derivation of z can be extended by
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assembling �1 times p1, �2 times p2, . . . , and �m times pm. The result is again
a complete double strand and, thus, the generated word belongs to L′. But this
is a contradiction to the definition of L′, since it does not contain any word
an+k1bncmam+k2 with k1 + k2 ≥ 1. Therefore, L′ cannot be generated by any
simple sticker system.

On the other hand, the language {w$wR | w ∈ {a, b}∗ } is obviously generated
by a simple sticker system, but cannot be generated by any SAS [7]. ��

Next, we relax the restriction of simple dominoes and turn to general sticker
systems. It has been shown in [11] that the family of languages ASL(b) generated
by general sticker systems with derivations of bounded delay coincides with the
family of linear context-free languages (LIN).

Theorem 7. The family of languages ASL(b) is incomparable with the family
of languages generated by string assembling systems.

Proof. We have ASL(b) = LIN ⊃ REG. Since the family of languages generated
by string assembling systems and REG are incomparable, there is a language
generated by a general sticker system with bounded delay, that cannot be gen-
erated by any SAS (for example the language {a} ∪ { a2n | n ≥ 2 } [7]). On
the other hand, the language L = { anbncn | n ≥ 1 } of Example 1 shows that
there are non-context-free languages generated by SAS. So, the incomparability
follows. ��

The results above show that even if the concepts of sticker systems and string
assembling systems are similar, their computational power differs essentially.
But the next representation theorem shows that there are also deep connections
between both models.

Theorem 8. For any SAS S over an alphabet Σ, a sticker system Ŝ can effec-
tively be constructed over an alphabet Σ̂ such that there is an injective mapping
f : Σ∗ → Σ̂∗ and L(Ŝ) = {f(w)#w | w ∈ L(S)}.

4 Decidability

In this section we consider decidability questions for the family of language gen-
erated by string assembling systems. In [7] it has already been shown that the
questions of emptiness, finiteness, infiniteness, equivalence, inclusion, regularity,
and context-freeness are undecidable. The proof is by reduction of Post’s Corre-
spondence Problem (PCP). It is known that the PCP is still undecidable, if the
length of the words is limited to two [2]. Thus, the undecidability proof in [7]
requires the construction of SAS whose units are at least 3-length-restricted.
On the other hand, string assembling systems that are 1-length-restricted are
not productive and generate finite languages only. Clearly, in this case the men-
tioned problems are decidable. The decidability status of 2-length-restricted SAS
remained open, since for the PCP with words of length 1, emptiness is decid-
able. Here we solve the open status by showing that even for 2-length-restricted
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SAS all the aforementioned problems are undecidable. Furthermore, we can show
that they are not even semi-decidable. To this end, we turn to reductions from
one-sided Turing machine computations. The histories of Turing machine compu-
tations are encoded into strings, a technique introduced in [3]. Here we consider
deterministic Turing machines with one single one-sided tape and one single
read-write head.

Let M = 〈Q,Σ, T, q0, �,�, F, δ〉 be an one-sided Turing machine where Q
is the finite set of states, T is the finite set of tape symbols, Σ ⊂ T is the
set of input symbols, q0 is the initial state, � ∈ T \ Σ is the blank symbol,
� ∈ T \ Σ is the left endmarker, F ⊆ Q is the finite set of accepting states and
δ : Q × T → Q × (T ∪ {L,R}) is the transition function.

A configuration of M can be written as a string of the form �T ∗QT ∗ such
that �x1x2 · · · xiqxi+1 · · · xn is used to express that M is in state q, scanning
tape symbol xi, and x1x2 · · · xn is the (non-blank) tape inscription.

Without loss of generality and for technical reasons, we assume that the
Turing machines cannot print blanks, may not leave blank fields, make at least
one move, halt when entering an accepting state, and move their head to the
right on reading the endmarker. Whenever, the head is moved to the right of the
last symbol, a blank is appended to the tape inscription (that must be rewritten
in the next step).

For the construction of an SAS, we need an additional technical transfor-
mation of the representation of configurations. We combine the current state q
and the symbol x on its left to some metasymbol [x, q] and mark the sym-
bols on the right of the metasymbol. Thus, let f be a mapping such that
f(�x1x2 · · · xiqxi+1 · · · xn) = �x1x2 · · · xi−1[xi, q]x′

i+1 · · · x′
n, where q ∈ Q,

n ≥ i ≥ 1, and xj ∈ T , for 1 ≤ j ≤ n. The configuration representing the
empty word is encoded as f(�q) = [�, q].

Dependent on M we now define the language of valid computations. Let
#1,#2, $ /∈ T ∪ Q and wi ∈ �T ∗QT ∗, 0 ≤ i ≤ m, be configurations of M .
Then VALC(M) is defined to be the language of all words of the form

#1f(w0)$f(w1)$ · · · $f(wm)$#2,

where w0 is an initial configuration of the form �Σ∗q0, wm is an accepting
and, thus, halting configuration, and wi is the successor configuration of wi−1,
1 ≤ i ≤ m.

Theorem 9. Emptiness is not semidecidable for 2-length-restricted SAS.

Proof. Given a one-sided Turing machine M = 〈Q,Σ, T, q0, �,�, F, δ〉 we con-
struct a 2-length-restricted SAS Ŝ = 〈Σ̂, Â, T̂ , Ê〉 generating VALC(M) as fol-
lows. First, we define Tp = {x′ | x ∈ T }, Ts = { [a, q] | a ∈ T, q ∈ Q }, and set
Σ̂ = T ∪ Tp ∪ Ts ∪ {#1,#2, $}. The sole axiom is defined by the unit (#1,#1).
We continue with units that generate the upper strand of the first configuration.
For all a ∈ Σ and x ∈ Σ ∪ {�},
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1. (#1�,#1) ∈ T̂
2. (x[a, q0],#1) ∈ T̂
3. (xa,#1) ∈ T̂
4. (#1[�, q0],#1) ∈ T̂

5. ([x, q0]$,#1) ∈ T̂
6. ($�,#1�) ∈ T̂
7. ($�,#1[�, q0]) ∈ T̂ if δ(q0,�) =

(q′, R).

The units (1)–(3) can be used to continue after the derivation of the axiom.
Unit (4) covers the special case where the input word is empty. If unit (1) is
applied, the upper strand can be extended further by unit (3) to a double strand
of the form (#1w,#1), w ∈ �Σ∗. At some point the last symbol together with
the state is derived by unit (2). Unit (5) completes the upper strand of the first
block (#1w[a, q0]$,#1), while unit (6) and (7) realize the transition to the next
block.

From now on let x, y, a, b ∈ T be symbols, x′, y′, a′, b′ ∈ Tp be marked sym-
bols, and q, q′ ∈ Q be states. The basic units that generate stepwise the config-
urations of M are defined by

8. (xa, xa) ∈ T̂ 9. (x′a′, x′a′) ∈ T̂ 10. (a′$, a′$) ∈ T̂ .

All units (8)–(10) are used to copy the parts of the configuration that stay
unchanged.

Let δ(q, a) = (q′, b). Then the write operation of M is generated by

11. (x[b, q′], x[a, q]) ∈ T̂
12. ([b, q′]$, [a, q]$) ∈ T̂

13. ([b, q′]x′, [a, q]x′) ∈ T ′

14. ($[b, q′], $[a, q]) ∈ T̂ .

Let δ(q, a) = (q′, R). Then the move right operation without a new blank
symbol is generated by

15. (xa, x[a, q]) ∈ T̂
16. (a[x, q′], [a, q]x′) ∈ T̂

17. ([x, q′]a′, x′a′) ∈ T ′

18. ([x, q′]$, x′$) ∈ T̂ .

The upper strand is extended by a normal symbol, while the lower strand is
extended by a metasymbol symbol with unit (15). The next appropriate deriva-
tion step is unique, since now the last symbol of the upper strand is a normal
symbol while the last symbol in the lower strand is a metasymbol and unit (16)
is the single unit that can be applied. Afterwards, unit (17) is the sole possibility.
Unit (18) treats the special case when the next symbol is the last symbol of the
configuration.

The extension by a blank symbol is a further special case. In principle the
idea is the same as above. The only difference is that the blank symbol has to be
added in the metasymbol (unit (16)) and the need of the $ symbol afterwards
by units (19) and (20). Let δ(q, a) = (q′, R). Then
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19. (a[�, q′], [a, q]$) ∈ T̂ 20. ([�, q′]$, $) ∈ T̂ .

Furthermore we consider the move left operations. Let δ(q, y) = (q′, L). Then

21. (x[a, q′], xa) ∈ T̂
22. ([a, q′]y′, a[y, q]) ∈ T̂

23. (y′x′, [y, q]x′) ∈ T̂
24. (y′$, [y, q]$) ∈ T̂ .

Here the possibility of a nondeterministic choice is used. For the left move first
the state symbol is added to the upper strand by unit (21), while in the lower
strand a normal symbol is added. Then unit (22) adds a marked symbol in the
upper strand and the metasymbol in the lower strand. By units (23) and (24)
the connection to the rest of the marked strand is done.

The derivation of the last configuration is done by adding the special sym-
bol #2 at the end. This enables the completion of the lower strand. Note that
the construction is for accepting states only. Let qf ∈ F . Then

25. ($#2, $a) ∈ T̂
26. ($#2, $[a, qf ]) ∈ T̂

27. (#2, xa) ∈ T̂

28. (#2, x[a, qf ]) ∈ T̂

29. (#2, [a, qf ]x′) ∈ T̂

30. (#2, a
′x′) ∈ T̂

31. (#2, a
′$) ∈ T̂ ,

32. (#2, [a, qf ]$) ∈ T̂

33. (#2, $#2) ∈ T̂ .

The completion up to the state symbol is done by the units (25)–(28). After-
wards all symbols are marked by the units (29) and (30). The auxiliary sym-
bols $#2 are derived by the units (31)–(33). The sole ending unit is defined to
be (#2,#2) ∈ E.

The construction shows that we can effectively construct a 2-length-restricted
SAS Ŝ generating VALC(M) of an arbitrary given one-sided Turing machine M .
Clearly, L(M) is empty if and only if L(Ŝ) = VALC(M) is empty. Since empti-
ness is not semi-decidable for deterministic one-sided Turing machines, the the-
orem follows. ��

By standard techniques one can easily show that the problems finiteness,
infiniteness, equivalence, inclusion, regularity, and context-freeness are not semi-
decidable either.

Theorem 10. Finiteness, infiniteness, equivalence, inclusion, regularity, and
context-freeness are not semidecidable for 2-length-restricted SAS.

5 Conclusion

In this paper, we considered string assembling systems and compared their gen-
erative capacity with those of several variants of sticker systems. Although the
basic mechanisms of both types of systems seem to be closely related, their gen-
erative capacities differ essentially. While the copy language { $1w$2w$3 | w ∈
Σ+ } can be generated by some SAS, it has been shown that it is not generated
by the most variants of sticker systems. Conversely, many variants of the mirror
language {w | w ∈ {a, b}∗ and w = wR } are generated by variants of sticker
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systems (that can generate all linear context-free languages), but cannot be
generated by any SAS, since it cannot be accepted by any nondeterministic one-
way two-head finite automaton. So, sticker systems can handle mirrored inputs
while SAS cannot. It turned out that string assembling systems are incompara-
ble with most variants of sticker systems. An exception is the weakest type of
sticker system that may only assemble simple dominoes on the right-hand side.
Its generative capacity is strictly weaker than the generative capacity of string
assembling systems. However, there are two problems left open. It is known that
the strongest variant of sticker systems can generate all linear context-free lan-
guages and, thus, can generate a language that cannot be generated by string
assembling systems. But the converse is open. Candidate languages are the copy
language { $1w$2w$3 | w ∈ Σ+ } and { a$a2$a4$ . . . $a2i# | i > 1 }. We conjec-
ture that they are witnessing the incomparability also in this case. The second
open problem is the relation between string assembling systems and sticker sys-
tems that are one-sided but still restricted to simple dominoes.

Finally, we considered decidability questions for the family of language gen-
erated by string assembling systems. It was known before that the problems of
emptiness, finiteness, infiniteness, equivalence, inclusion, regularity, and context-
freeness are undecidable if the units of the string assembling systems have at least
length 3. Since 1-length-restricted string assembling systems are not productive
and generate finite languages only, the 2-length-restricted was open. Here we
solve the open status by showing that even for 2-length-restricted SAS all the
aforementioned problems are undecidable. Furthermore, we can show that they
are not even semi-decidable which improves the previously known results fur-
thermore.
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Abstract. In this paper, we investigate the power of systems in the
abstract Tile Assembly Model to self-assemble shapes having fractal
dimensions between 1 and 2. We introduce a concept of sparsity as a
tool for investigating such systems and demonstrate its utility by prov-
ing how it relates to fractal dimension.

1 Introduction

Algorithmic, tile-based self-assembly has been a very successful topic of research
with ramifications in nanoscience, medicine, computer science, etc. Ideas from
this field have been used to construct precise nanoscale structures utilizing the
dynamics of DNA base pairing to emulate devices such as binary counters and
logic gates [7,27]. Analysis of models such as the abstract Tile Assembly Model
(aTAM) and 2-Handed Assembly Model (2HAM) have demonstrated that tile-
based self-assembly is capable of universal computation and arbitrary shape
construction, among many other complex algorithmic tasks [2,4,6,24–26]. Addi-
tionally, these models have been shown to induce rich hierarchies similar to those
studied in computational complexity theory. Investigating the limits and capa-
bilities of these models therefore is an important academic effort both theoreti-
cally and practically. Because these models are inherently geometrical, requiring
that tiles occupy explicit locations in space, questions regarding the kinds of
shapes that can be constructed from tiles are of central importance. Fractals
are a particularly interesting class of shapes because of their inherently mathe-
matical definitions and recursive nature. Additionally, whereas familiar shapes
such as lines and squares occupy an integer value of spacial dimensions, frac-
tals can be assigned a non-integer fractal dimension which informally measures
how the area scales when considering larger and larger portions of the fractal.
Consequently, fractals, particularly a class of fractals called discrete self-similar
fractals (DSSFs), have been the topic of focus for numerous investigations in the
algorithmic tile-assembly literature.

When considering weak self-assembly, where some subset of tiles are allowed
to occupy the negative space of the desired shape, it has been demonstrated
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that large classes of fractal shapes can be constructed theoretically [14,15] and
even physically [23]. Strict self-assembly of fractals on the other hand, where
tiles can only occupy space belonging to the desired shape, is a more difficult
problem. In signal passing models wherein the attachment of tiles can affect
the structure of others nearby, it has been shown that all DSSFs, those fractals
that can be defined recursively bottom-up from a finite generator shape, can be
constructed [11,19]. In hierarchical models, where subassemblies of tiles can join
to form larger assemblies, it has been shown that some classes of fractals can be
assembled [3,10,12] while some cannot [2]. In the aTAM, the original model of
tile-assembly [26] wherein tiles attach one by one to a seed assembly, it has been
shown that many classes of fractals cannot be self-assembled [1,8,10,17].

The question of whether or not any discrete self-similar fractal (with non-
trivial dimension strictly between 1 and 2) can strictly self-assemble in the aTAM
has long been open. It has been shown that the Sierpinski triangle cannot strictly
self-assemble in the aTAM [17], the proof of which essentially boils down to a
counting argument. Additionally, it has been shown that weakening DSSFs to
their fibered [17,20] or laced versions [15,18], wherein spacing between stages
grows logarithmically rather than remaining constant or counters are embedded
in the holes of fractal stages, allows for strict self-assembly of large classes of
such fractals. (Interestingly, these fibered and laced versions have the same frac-
tal dimension as their originals.) It is generally conjectured that DSSFs cannot
strictly self-assemble in the aTAM. If this is the case, then informally, these
results seem to imply that the reason is because DSSFs are too sparse to allow
tiles to pass around the information necessary to distinguish between fractal
stages and has little to do with the fractal dimension of the shape itself. To inves-
tigate this idea, in this paper we formally introduce definitions of density and
sparsity which largely mirror the concept of natural density of sequences of natu-
ral numbers. We then prove some results regarding the relationship between spar-
sity and ζ-dimension, a notion of fractal dimension which is naturally applicable
to discrete shapes (see [5] for a thorough discussion regarding ζ-dimension). Fur-
thermore, we show that sparsity acts as a natural distinguishing feature between
DSSFs and their fibered/laced counterparts, whereas ζ-dimension does not, sug-
gesting that our definitions might be useful tools for investigating impossibility of
strict self-assembly of DSSFs in the aTAM. Finally, to provide further evidence,
though indirectly, that it is sparsity and not ζ-dimension which makes shapes
impossible to strictly self-assemble in the aTAM, we construct a universal aTAM
tileset, which is able to construct non-sparse shapes with any desired ζ-dimension
from a large class of possible values that includes all algebraic numbers.

2 Preliminaries

Here we provide some preliminary definitions and concepts that will be useful
for understanding our results. This paper is particularly concerned with shapes
that self-assemble in the abstract Tile Assembly Model (aTAM). Here we give
a brief informal overview of the aTAM and provide necessary definitions. For a
more formal treatment, see [17,24,26].
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2.1 The Abstract Tile Assembly Model

A tile type is a unit square whose 4 sides may each contain a glue. A glue consists
of a label (which is often represented by a finite string or color) and a positive
integer value called its strength. A tile is an instance of a tile type which can
be thought of as occupying a location in the integer lattice Z

2. Two adjacent
tiles are said to be bound or attached with strength s if their abutting glues
share the same label l and strength s. In this case, the abutting glues are said
to be matching. Informally an assembly is a collection of bound tiles and we
say that an assembly is τ -stable if each tile or subassembly is attached with at
least strength τ to the rest of the assembly. More formally we define an assembly
to be a partial function α : Z2 → T where T is a finite set of tile types. The
binding graph of an assembly α is the subgraph of the integer lattice graph whose
vertices correspond to the domain of α and edges represent bound glues between
tiles. An assembly is τ -stable if for every cut of its binding graph, the edges cut
correspond to glues whose strengths sum to at least τ .

Definition 1. A tile assembly system (TAS) is a triple T = (T, σ, τ) where

– T is a finite set of distinct tile types called the tileset,
– σ is a finite, τ -stable assembly called the seed assembly, and
– τ is a positive integer called the binding threshold.

Fig. 1. An illustration of tiles attaching to an assembly. The first tile attachment hap-
pens using a single strength 2 glue whereas the second takes advantage of cooperation,
using 2 strength 1 glues. Here it’s assumed that the binding threshold is 2.

aTAM Dynamics. Given a TAS T = (T, σ, τ), we say that assembly α′ is
producible from assembly α if α′ is identical to α with the addition of a single
tile from T and both are τ -stable. That is, α′ results from α by the attachment
of a single tile. The binding threshold τ limits the attachments to those whose
strength meets or exceeds τ . If for example τ = 1 then any pair of matching glues
would be sufficient for attachment of a tile to an assembly. If τ > 1 however, then
certain attachments might not be possible. A single strength 1 glue will not allow
a tile to attach in this case, but a single glue of strength τ will. Additionally, if
multiple glues on a single tile match with the assembly and their sum is at least
τ , then the tile can attach and this attachment is called cooperative. Cooperative
binding is sufficient and necessary for complex Turing complete behavior in the
aTAM (see Fig. 1 for an example).

An assembly sequence is a sequence of assemblies �α = {α0, α1, . . .}, which
may or may not be finite, such that each assembly is producible from the previous
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one. An assembly is called terminal if no other assemblies are producible from it.
An assembly α is a terminal assembly of T if there exists an assembly sequence
beginning with σ and ending with α, or in the case of an infinite assembly
sequence limiting to α.

Useful aTAM Gadgets. The definitions presented above informally describe
the aTAM and its dynamics. There are many more definitions and notational con-
ventions that are useful and often necessary when discussing the aTAM; however,
in this paper we will focus little on the details of aTAM constructions and instead
take advantage of commonly used gadgets in the aTAM. These gadgets have been
developed previously in the literature and our constructions will be described in
terms of these gadgets in much the same way that defining the behavior of a Tur-
ing machine is often done with pseudo-code rather than defining a large, complex
transition function. For more information regarding common aTAM gadgets and
constructions, refer to the aTAM article on self-assembly.net. The two gadgets we
will make particular use of are Turing machine gadgets and planters.

Fig. 2. An example Turing machine (left) and the corresponding Turing machine gad-
get (right) implemented in the aTAM with binding threshold 2. Each row represents
the configuration of the tape at consecutive time steps. Notice that the tiles corre-
sponding to the head attach in the corresponding locations along the tape in each row.
Special tiles along the far end of the tape cause it to grow each row so that there can
be an effectively infinite tape.

Turing Machine Gadgets. A Turing machine gadget simulates some fixed
Turing machine whose definition is encoded in the tileset. Each row of the Tur-
ing machine gadget corresponds to the tape at some time step. Since Turing
machine tapes are infinite, we define these gadgets so that the number of tiles
in each row grows when necessary to accommodate any number of tape cells the
Turing machine might need. The state and head position is passed along using
special glues and the transition function is embedded in the definitions of the
glues. For our purposes, we will require that the tiles that make up our Turing
machine gadget form a square and thus we require special tiles to grow and fill in
the remaining space after the Turing machine halts. While this is not typically
desired behavior of such gadgets, it is not difficult to implement. Illustrated in
Fig. 2 is an example Turing machine gadget. Detailed examples of such gadgets
can be found in [16,21], among many others.

http://self-assembly.net/wiki/index.php?title=Abstract_Tile_Assembly_Model_(aTAM)
http://www.self-assembly.net


120 D. Hader et al.

Planter Gadgets. Planters are gadgets which do little more than count in
binary, starting from some initial value. Each column of the counter encodes a
binary number in the glues of its tiles such that consecutive columns correspond
to consecutive numbers. The number of tiles in a column of the counter is equal to
the number of binary digits necessary to encode the specific number. Planters are
simply counters which, at certain values (often at powers of 2, when the counter
must expand by one bit), perform a rotation wherein a value is presented using
some glue encoding orthogonal to the direction of the counter’s increase. This
rotation can be done using tiles with more complex glues in such a way that
it occurs alongside the incrementing of the counter and requires no additional
space. Additionally, a planter is capable of keeping track of more than just its
counter value by having glues represent n-tuples of bits rather than just single
bits. These values can also be rotated. Detailed examples of such gadgets can be
found in [13,16], among many others.

2.2 Shapes and Fractals

A shape is a connected subset of Z
2. If a shape only contains finitely many

points, we call it a finite shape. We say that an aTAM system produces a shape
if it has some terminal assembly whose domain is that shape. A TAS uniquely
produces a shape if the domains of all terminal assemblies of that system are
that shape (this is equivalent to the notion of strict self-assembly, formalized in
[17] and not to be confused with the notion of a directed tile assembly system,
which was defined previously).

In this paper, we are concerned with fractal-like shapes and particularly
the fractal dimension of shapes. There are many quantities that characterize
fractal dimension and in well behaved instances these quantities often agree with
each other; however, some are better suited for describing the fractal nature of
certain classes of shapes than others. Because it has been traditionally used
when discussing fractal shapes produced by the aTAM, we use the ζ-dimension
as our notion of fractal dimension. Here we provide a basic definition that will be
useful for our purposes. For a more in-depth overview of ζ-dimension, equivalent
definitions, and related concepts please see [5].

ζ-Dimension. To facilitate with the definition of ζ-dimension and later in our
definitions regarding sparsity, we define the ball of radius r centered at �p as the
set of all points in Z

2 with Euclidean distance from �p no bigger than r. That is

Definition 2. For any r ∈ N and �p ∈ Z
2, the radius r ball centered at �p is

Br (�p) =def {�x ∈ Z
2 : ‖�x − �p‖ ≤ r}

Definition 3. Given a subset A ⊂ Z
2, the ζ-dimension of A, written Dimζ(A),

is defined as

Dimζ(A) =def lim sup
r→∞

log
∣
∣
∣A ∩ Br

(

�0
)∣
∣
∣

log r
.
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This definition is not the typical definition of ζ-dimension, but it is equiva-
lent [5]. Another equivalent definition for ζ-dimension that will be more useful
in some of our cases is

Dimζ(A) = lim sup
r→∞

log
∣
∣
∣A ∩ B2r

(

�0
)∣
∣
∣

r

where we consider balls of radius 2r rather than just r.

Fig. 3. The first 3 stages of the Sier-
pinski triangle DSSF.

Discrete Self-similar Fractals. Having
introduced ζ-dimension, we now define the
class of discrete self-similar fractals. Because
of their discrete nature, a consequence of
their bottom-up recursive definition, this
class of fractals is particularly suited to be
investigated with respect to the aTAM, which
is inherently confined to the integer lattice.

Definition 4. Let G = {g0, . . . , gk−1} be a non-empty, finite shape in N
2 satis-

fying the following where w is the largest x coordinate of a point in G and h is
the largest y coordinate:

– There exist two points (x0, y0), (x1, y1) ∈ G such that x0 = 0 and y1 = 0,
– There exist two points (x0, y0), (x1, y1) ∈ G such that x0 = 0, x1 = w and

y0 = y1,
– There exists two points (x0, y0), (x1, y1) ∈ G such that y0 = 0, y1 = h and

x0 = x1, and
– there exists at least one point (x, y) ∈ N

2 with 0 ≤ x ≤ w and 0 ≤ y ≤ h such
that (x, y) is not in G.

Define F0 = G and, for i > 0, define

Fi =
{

Fi−1 +
(

wi · x, hi · y
)

: (x, y) ∈ G
}

where a set of points S plus a point (x, y) refers to translation of each point in
S by the vector corresponding to (x, y). Each Fi is called a stage of the fractal.

F =
⋃

i∈N

Fi

is then called a discrete self-similar fractal with generator G.

Intuitively, discrete self-similar fractals can be thought of as being con-
structed by iteratively replacing each point in a stage by an entire copy of the
generator. The conditions for generators assure that the resulting DSSF is con-
nected and not degenerate (i.e. just a point, line, or full quadrant). (Several
examples can be found in [17,20]).
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3 Sparsity

In this section, we introduce the concept of sparsity and prove some results which
relate sparsity to ζ-dimension.

Definition 5. Given a shape A ⊂ Z
2, let

∂A(r) =def sup
�p∈Z2

|A ∩ Br (�p)|
|Br (�p)|

We call ∂A(r) the radius-r partial density of A. Additionally, if limr→∞ ∂A(r)
exists and equals d, then we say that A has density d.

Definition 6. A shape A whose density exists and equals 0 is called sparse.

3.1 Sparsity and ζ-Dimension

Here we show that for sparse shapes, if the radius r density can be bounded above
or below by a sufficiently well behaved function, then we can put a bound on its
ζ-dimension. Informally, this shows that ζ-dimension can be thought of in terms
of the rate at which the partial densities of a shape vanish as the radius increases.

Theorem 1. If ∂A(r) = O
(

r−k
)

, then Dimζ(A) ≤ 2 − k.

Proof. Let A be a shape such that ∂A(r) = O
(

r−k
)

, that is to say there exists
R and c such that for all r > R,

sup
�p∈Z2

|A ∩ Br (�p)|
|Br (�p)| ≤ cr−k.

Since �0 ∈ Z
2, this implies that

∣
∣
∣A ∩ Br

(

�0
)∣
∣
∣

∣
∣
∣Br

(

�0
)∣
∣
∣

≤ cr−k =⇒
∣
∣
∣A ∩ Br

(

�0
)∣
∣
∣ ≤ cr−k

∣
∣
∣Br

(

�0
)∣
∣
∣ ≤ c′r2−k

where c′ is some constant independent of r and R, since
∣
∣
∣Br

(

�0
)∣
∣
∣ = Θ

(

r2
)

. By
definition

Dimζ(A) = lim sup
r→∞

log
∣
∣
∣A ∩ Br

(

�0
)∣
∣
∣

log r
,

and thus

Dimζ(A) ≤ lim sup
r→∞

log
(

c′r2−k
)

log r
= lim sup

r→∞

log c′ + log
(

r2−k
)

log r
= 2 − k.
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Theorem 2. If ∂A(r) = Ω
(

r−k
)

, then Dimζ(A) ≥ 2 − k.

The proof for this theorem is nearly identical to the previous proof and the
following corollary follows immediately from both of these theorems.

Corollary 1. If ∂A(r) = Θ
(

r−k
)

, then Dimζ(A) = 2 − k.

3.2 Sparsity of Discrete Self-similar Fractals

We have just shown how the concept of sparsity is related to the concept of ζ-
dimension. Still, it is not immediately obvious that sparsity is a useful property
to consider. Here we prove 2 results which demonstrate the concept’s utility.

Fig. 4. The shapes Ai used to show that DSSFs are sparse, are infinitely repeating
grids of a single stage of a fractal Fi.

Theorem 3. Discrete self-similar fractals are sparse.

Proof. Let A be a DSSF generated by G and let w be the largest x coordinate of
a point in G, and h be the largest y coordinate. Additionally, let F0, F1, F2, . . . be
the stages of A, which are shapes themselves, and let A0, A1, A2, . . . be the shapes
consisting of the plane tiled by copies of F0, F1, F2, . . . respectively. These are
illustrated in Fig. 4. It’s not difficult to see that the density of Ai will be |G|i

(wh)i .
Since |G| < wh, these densities converge to 0 as we consider bigger and bigger
stages. Since A is a subset of each Ai, the density of A cannot be bigger than
the density of any Ai. Thus, since there is an Ai with density smaller than any
positive integer, A must have density 0. 	


Theorem 4. If A is a DSSF with generator G and if the largest x and y
coordinate of points in G are the same (i.e. G is bounded by a square), then
Dimζ(A) = log |G|

log s where s is the largest x and y coordinate of a point in G.

Proof. Let s be the largest x and y coordinate of a point in G and let g = |G|
s2 .

Consider what happens to ∂A(r) when r = si for any i ∈ N. At this scale, ∂A(r)
is largely determined by the ith stage of A. It’s certain that ∂A(r) ≥ gi since an
entire copy of the ith stage of A could fit inside a ball of radius r. Additionally
∂A(r) is no bigger than 9gi since the ball will always fit inside at most 9 copies
of the ith stage of the fractal arranged in a square. Therefore ∂A(r) = Θ

(

gi
)

when r = si.
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Let k = − logs(g). Then notice that if r = si,

r−k = s−ik = si logs(g) = gi

so since ∂A(r) = Θ
(

gi
)

, it must be the case that ∂A(r) = Θ(r−k) for r = si.
Additionally notice that for all r, ∂A(r) is monotonically decreasing since, as we
consider larger and larger radii, the numerator in the definition of ∂A(r) will
never increase by a number larger than the denominator. Given that ∂A(r) is
monotonically decreasing and since on a subsequence where r = si, ∂A(r) =
Θ

(

r−k
)

, it must be the case that for all r, ∂A(r) = Θ
(

r−k
)

. Therefore by
Corollary 1, Dimζ(A) must be 2 − k.

2 − k = 2 − logs(g) =
2 log(s) − log(g)

log(s)
=

log |G|
log s

	


Theorem 5. Any shape which is producible by an aTAM system which requires
standard1 counter gadgets that count arbitrarily far is not sparse.

Proof. Because counter gadgets have to increase in width to accommodate
increasing counter values, for any radius r, there will be some point �p inside
the counter gadget after some finite counter value such that Br(�p) fits entirely
within the tiles of the counter. This means that the partial densities for all radii
will be 1 and thus that the produced shape is not sparse. 	


In [17,20], systems were presented that are capable of self-assembling shapes
that approximate fractals with a technique called “fibering”, and in [15,18]
the fractal-approximation is “laced”. These approximations have the same gen-
eral shapes as their discrete self-similar fractal counterparts, and the same ζ-
dimensions. However, they also utilize standard counter gadgets so that Theo-
rem 5 shows that they are not sparse.

4 Arbitrary Fractal Dimension Construction

In this section, we show our main positive result, which is that it is possible
to uniquely self-assemble a shape whose ζ-dimension is equal to a pre-specified
algebraic number.

Theorem 6. There exists an aTAM tileset T such that, for all x ∈ R satisfying:

– 1 < x < 2, and
– there exists a deterministic Turing machine which halts in Θ

(

2
xn
4

)

steps given
input n encoded in binary,

1 Here a standard counter gadget refers to commonly used log-width counter gadgets.
It is unknown whether or not counter-like gadgets can be implemented in a sparse
way.
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Fig. 5. Illustration of the arbitrary fractal dimension construction. The planter at the
bottom propagates and rotates a Turing machine description and the width (number
of digits) of the counter (illustrated in gray along the planter) to be used as inputs
for Turing machine gadgets which grow upwards increasing in width to account for
additional space. Dark Gray tiles indicate filler tiles that “square up” each TM gadget
once it has finished its computation.

there exists a directed TAS Tx = (T, σx, 2) whose only terminal assembly has
ζ-dimension x.

To prove this theorem, given an x satisfying the above constraints with corre-
sponding Turing machine M , we describe the directed TAS Tx = (T, σx, 2) whose
terminal assembly has ζ-dimension x. Note that our construction only requires
that the seed σx depend on the value of x; the tileset T and the temperature
τ = 2 remain constant over all x so that T is universal for this class of systems.

4.1 Construction Description

Here we describe the construction at a high enough level that anyone familiar
with common tile-assembly gadgets would easily be able to work out the tile-
level details. This construction has 2 components illustrated in Fig. 5 which we
call the planter and the Turing machine array.

The Planter. The planter is a standard planter gadget used in many aTAM
constructions [13,16] and consists of a log-width counter gadget which, in addi-
tion to keeping track of a binary counter value, two other values are propagated
along the counter: the width (number of digits) of the counter and the description
of our Turing machine M . We will use the symbol ν to index the counter value
in each column of our planter and denote the counter width with λ(ν) = �log(ν)
(or just λ if ν is obvious in context) and the Turing machine description with μ.
The initial counter value ν0 and TM description μ are provided as input to our
TAS T in the form of the seed σx which acts as the first column of our planter.
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We choose ν0 so that it is large enough for all of the necessary arguments to be
made in the following proof, but the exact value is not important.

Each time the counter increases its width (when ν is a power of 2), special
tiles attach which rotate the values μ and λ(ν) northward. We call the columns
where this rotation occurs TM columns. These values are then used as input
to a Turing machine in the Turing machine array. This rotation along with the
propagation of a constant number of values in the planter occur using standard
gadgets in the aTAM and can be done using special glues inside the planter
construction so that the overall shape is that of a standard log-width counter.
Also note that the width of the planter increases to the south so that the north
side of the planter is always at the same y coordinate.

The Turing Machine Array. At each TM column, the values μ and λ are
rotated to the north and used as input for a standard Turing machine gadget.
This gadget is hard-coded to simulate the behavior of a fixed Turing machine
(independent of x). In our case we choose this fixed Turing machine to be a
deterministic universal Turing machine U which simulates the Turing machine
described by the input μ on the string encoding the input λ. For ease of analysis,
we choose U so that the amount of time it takes to simulate M induces a fixed
quadratic blowup in runtime2. That is, if on input w, M runs in time T (|w|),
then U on input (μ,w) runs in time Θ

(

T (|w|)2
)

.
There are many permutations of Turing machine gadgets used in all sorts of

aTAM constructions. For our purposes, we choose tiles so that the number of
rows and columns in the completed gadget are exactly equal to the number of
steps used by the Turing machine U on the given input, resulting in a square of
tiles. This is not hard to do using standard aTAM gadgets. Since we required
that M runs in time Θ

(

2xn/4
)

on input n encoded in binary and that U induces
a quadratic blowup in runtime, the side length of this square of tiles will be
Θ

(

2
xn
2

)

and the total number of tiles in each gadget will be Θ (2xn). Also note
that since x < 2 by definition, the side length of our Turing machine gadgets is
small enough that adjacent Turing machine gadgets will never collide supposing
that our initial counter value is chosen to be sufficiently large. For convenience
we also index the Turing machine gadgets by the value of their input so that Tλ

is the Turing machine gadget which received input value λ.

4.2 Proof of Correct Fractal Dimension

Here we show that the terminal assembly of Tx has fractal dimension x.

Proof. Let x be defined as above and let α be the terminal assembly of Tx and let
A be the shape of α. We can define A as the disjoint union of two shapes Ap and
At where Ap is the set of tile locations corresponding to tiles in the planter and At

2 There are universal Turing machines which induce asymptotically smaller runtime
blowups, but choosing one with a quadratic blow up makes analysis of the final
fractal dimension easier.
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is the set of tile locations corresponding to tiles in the Turing machine array. Since
A is the disjoint union of Ap and At, Dimζ(A) = max {Dimζ(Ap),Dimζ(At)} [5].
Therefore it suffices to compute the ζ-dimensions of these subsets. Additionally,
since ζ-dimension is invariant under any bi-Lipschitz transformation of Z

2 [5]
(which includes any constant translation), we can choose any orientation or
translation that is convenient.

Since by definition the planter takes the shape of a log-width counter gadget
initialized to some value, Ap is a subset of the shape, which we will call Ac,
of a log-width counter starting at value 1. Ac only has a constant number of
columns that Ap does not. We can choose to define Ac so that the value encoded
in a column of the counter plus 1 is the x coordinate of that column in Z

2 and
the one’s place row of the counter is at y coordinate 0. By this convention, the
width of the counter increases at x coordinates corresponding to a power of
2 plus 1 and it is not difficult to see that Ac ∩ B2r

(

�0
)

= Θ (r2r). Therefore

Dimζ(Ac) = lim supr→∞
log(Θ(r2r))

r = 1. Since Ap only differs by a constant
number of tile locations from Ac up to translation, Dimζ(Ap) = 1 as well.

Now we consider the Turing machine array. For convenience, we choose the
translation of At so that westernmost tiles in each Turing machine gadget square
are at the x coordinate equal to its input λ plus 1. This is simply a translation
and requires no scaling because the rotation of inputs into the Turing machine
gadgets occurred when the planter increased its counter width, which occurs
with identical spacing. Additionally, we choose our translation of At so that the
southernmost tiles in each gadget sit at y coordinate 0.

By this convention it is easy to see that the B2r

(

�0
)

will only contain tiles
from gadgets Tλ with λ < r. Additionally, while it may be the case that tiles from
Tr sit outside of B2r

(

�0
)

, since the corner of the square of tiles may extend past
the ball, this only occurs a finite number of times. This is because the side length
of the square is Θ

(

2
xn
2

)

where x < 2 and so the side length is asymptotically
smaller than Θ (2n) which is the spacing between adjacent gadgets. After some
finite number of gadgets, the side length will eventually be small enough to
completely fit inside of the corresponding ball.

Since gadget Tn has Θ (2nx) tiles, and a sum of a finite number of consecutive
powers of 2 is the next power of 2 minus 1, given that r is sufficiently large, it is
easy to see that

∣
∣
∣At ∩ B2r

(

�0
)∣
∣
∣ = Θ (2rx) .

Therefore

Dimζ(At) = lim sup
r→∞

log(Θ (2rx))
r

= x.

Since x > 1 by definition, this means that Dimζ (Ap ∪ At) = x which means
identically that Dimζ(A) = x. 	
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Corollary 2. The set of ζ-dimensions that satisfy the constraint of the previous
theorem includes all algebraic numbers.

This follows from the fact that the digits of algebraic numbers are computable
in polylogarithmic time [9]. Because of this we can define our Turing machine to
first compute the non-fractional digits of nx and then use that value as the num-
ber of bits for a counter. Our Turing machine will begin counting and then halt
once the counter reaches 2nx. Additionally, the converse of this corollary is not
true and the class of achievable fractal dimensions includes some transcendental
numbers as well since constants like π − 2 and e − 1 can be used.

5 Conclusion

In this paper, we investigated the extent to which tile assembly systems in the
aTAM are able to self-assemble shapes having fractal dimensions between 1 and
2. To that end, we first introduced a concept of sparsity, which we used as a
tool for investigating such systems, proving a relationship between it and the ζ
dimension of discrete self-similar fractals. Then, we gave a construction showing
that it is possible to uniquely self-assemble a shape whose ζ-dimension is equal
to a pre-specified algebraic number. Thus, we have presented some incremental
results towards the following conjecture (see also [20,22]): No non-trivial discrete
self-similar strictly self-assembles in the aTAM.

Acknowledgments. The authors would like to thank the three anonymous reviewers
whose comments helped improve the presentation and technical correctness of this
paper.
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Abstract. Ising machines have been attracting attention due to their
ability to use mixed discrete/continuous mechanisms to solve difficult
combinatorial optimization problems. We present BLIM, a novel Ising
machine scheme that uses latches (bistable elements) with controllable
gains as Ising spins. We show that networks of coupled latches have a
Lyapunov or “energy” function that matches the Ising Hamiltonian in
discrete operation, enabling them to function as Ising machines. This
result is established in a general coupled-element Ising machine frame-
work that is not limited to BLIM. Operating the latches periodically
in analog/continuous mode, during which bistability is removed, helps
the system traverse to better minima. CMOS realizations of BLIM have
desirable practical features; implementation in other physical domains is
an intriguing possibility.

1 Introduction

Over the last decade, hardware Ising machines have emerged as a promising
means to solve classically difficult (e.g., NP-complete) computational problems.
The premise of Ising machines is that specialized hardware implementing the
Ising computational model (see Sect. 2) can solve difficult combinatorial prob-
lems more effectively than classical algorithms (such as semidefinite program-
ming and simulated annealing [7,10]) run on digital computers. Ising machines
first came into prominence with the D-Wave quantum annealer [2,8] and the
Coherent Ising Machine (CIM) [14,18,19]. A D-Wave quantum annealer with
5000 spins is available commercially; CIM with 2000 spins has been success-
fully demonstrated at NTT Research Labs, with larger systems under active
development. Although they have established the field of Ising machines and
inspired follow-on technologies, D-Wave’s quantum annealer and CIM are phys-
ically large, expensive, and difficult to miniaturize or scale to larger problems.
A few years ago, we showed that networks of coupled oscillators can be designed
to function as Ising machines [3,15–17]. Such oscillator Ising machines (OIMs)
changed the technology landscape for Ising machines by bringing them within the
realm of miniaturizable CMOS electronics, with all the size, cost, speed, energy
efficiency, scalability and mass production benefits that accrue as a result.

We now present the Bistable Latch Ising Machine (BLIM), a new way to build
Ising machines that employs simple bistable elements, i.e., latches, a familiar
c© Springer Nature Switzerland AG 2021
I. Kostitsyna and P. Orponen (Eds.): UCNC 2021, LNCS 12984, pp. 131–148, 2021.
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and ubiquitous element in electronics.1 BLIM is enabled by a result (Sect. 3)
that establishes that networks of coupled latches have an “energy2 function”
that is naturally minimized, leading to good solutions of the Ising problem.
That latches can be used as substrates represents a broadening, both theoretical
and practical, of the Ising machine landscape, while enhancing the advantages
of miniaturizability/scalability, low cost, and mass production introduced by
OIM. Latches are simpler elements than oscillators, with basic versions requiring
only 4 CMOS transistors. Importantly, the formulation in which we prove our
main result is a general one, not limited to latches—it encompasses OIM and,
potentially, other types of Ising machines. Using this formulation to explore and
compare the operational mechanisms of BLIM and OIM may lead to progress
on a central question: how exactly do Ising machines work?

The remainder of the paper is organized as follows. In Sect. 2, we provide
background on Ising models, oscillator Ising machines and latches. In Sect. 3,
we set up a suitable system of equations for coupled latches, abstract them to
a generalized form, and prove our main result: that the system has a Lyapunov
function that matches a corresponding Ising Hamiltonian for high values of latch
gain. Illustrative examples are provided in Sect. 4.

2 Background
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(a) Schematic.
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Fig. 1. Back to back inverters implement a bistable latch.

2.1 The Ising Model

The Ising model is simply a weighted graph, i.e., a collection of nodes/vertices
and branches/edges between some pairs of nodes, with each branch having a
real-number weight. Each node (termed a “spin” in this context) is allowed to

1 BLIM is not limited to electronic latches; it can use latches from any domain, e.g.,
biochemical latches [5,6].

2 This “energy” is not obviously related to any concept of physical energy, which
latches, like all practical electronic elements, consume and dissipate as heat.
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take two values, either 1 or −1. Associated with this graph is an expression, the
Ising Hamiltonian, which multiplies the weight of each branch by the values
of the two spins it connects to, and sums over all branches, i.e.,

H = −1
2

N∑

i,j=1

Jij sisj , where Jij = Jji, Jii = 0, and si ∈ {−1, +1} (1)

are the N spins. Jij are the branch weights, also called coupling coefficients.
Owing to the Ising problem’s origins for modelling and explaining ferromag-
netism [4], Ising Hamiltonians are sometimes interpreted as an “energy” associ-
ated with a given configuration of the spins, although in recent computational
applications they usually have no connection with energy in physics. The “Ising
problem” is to find spin configurations with the minimum possible energy.

2.2 Latches

Voi=tanh(-k*Vi)
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C

(a) tanh + output resis-
tance/capacitance inverter model.
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Fig. 2. tanh() + output resistance/capacitance inverter model and corresponding latch
butterfly curves.

vi
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Rij

Fig. 3. Coupling between
latches i and j.

A fundamental element in electronics, the latch is
perhaps most easily understood as two back-to-back
inverters, as shown in Fig. 1(a), with each inverter
consisting of the 2-transistor circuit shown at the
right. Latches are ubiquitous in digital systems, in
which they are the basis for, e.g., registers and SRAM
(static random access memory); as such, they are
among the most compact and power-efficient ele-
ments in CMOS electronics.3 That they are bistable
becomes apparent when the I/O curves of both invert-
ers are depicted on the same axes to produce so-called
butterfly curves, shown in Fig. 1(b) (generated using
the Shichman-Hodges model [13] for the MOSFETs).

3 When not switching, CMOS consumes no power beyond leakage losses.
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The three intersections are the DC solutions (i.e., equilibria) of the circuit. The
intersection in the middle can be shown to be dynamically unstable,4 leaving
two stable solutions. The nature of the curves in Fig. 1(b), and the intersections
that lead to bistability, are the essential feature of any latch, be it electronic or
from any other domain (e.g., biological [5,6]).

For concreteness and ease of exposition, we abstract each inverter using a
tanh(·) voltage transfer characteristic5 followed by an output resistance and
load capacitor, as shown in Fig. 2(a). The voltage I/O characteristic is voi =
tanh(−kvi), where the parameter k > 0 controls the gain, or sharpness, of the
inverter characteristic. No current is drawn at the input; in the absence of loading
at the output, the output voltage vo = voi (at DC). The corresponding butterfly
curves, for k = 20, are shown in Fig. 2(b)—note their similarity to the ones in
Fig. 1(b) for CMOS inverters.

The capacitor in Fig. 2(a) introduces dynamics, resulting in the following
differential equation for a single inverter in the absence of additional load at vo:

C
dvo(t)

dt
=

tanh(−kvi(t)) − vo(t)
Ro

= − tanh(kvi(t)) + vo(t)
Ro

. (2)

To model a latch, i.e., two back-to-back inverters are connected as in Fig. 1(a).
(2) is repeated for the output of each inverter, resulting in

C
dvi1(t)

dt
= − tanh(kvi2(t)) + vi1(t)

Ro
, C

dvi2(t)
dt

= − tanh(kvi1(t)) + vi2(t)
Ro

, (3)

where the fact that the output of each inverter is the input of the other has been
used. If we simplify the latch’s dynamical representation by ignoring one of the
inverter capacitors (e.g., the one at the output of the first inverter vo1 = vi2; this
does not sacrifice any essential aspect of the latch’s operation), (3) simplifies to
the single differential equation

C
dv(t)
dt

= − tanh
( − k tanh(kv(t))

)
+ v(t)

Ro
=

tanh
(
k tanh(kv(t))

) − v(t)
Ro

, (4)

where v(t) � vi1(t). (4) is the starting point for establishing the key result
in Sect. 3, i.e., that interconnected systems of latches can function as Ising
machines.

3 Latch Ising Machines: A General Lyapunov
Formulation

We now set up a network of coupled latches. Each coupling is realized using a
resistor, as shown in Fig. 3. The coupling from the jth latch appears as an extra
term in (4) for the ith latch, whose equation becomes
4 i.e., any small perturbation (e.g., due to noise) from this solution will make the latch

settle to one of the other two solutions, at the top left and bottom right.
5 tanh() is merely a convenient analytical choice; any other smoothed step-like function

can be used instead.
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C
dvi(t)

dt
=

tanh
(
k tanh(kvi(t))

) − vi(t)
Ro

− vi − vj

Rij

= G tanh
(
k tanh(kvi(t))

) − Gvi(t) − Jij(vi − vj),
(5)

where G � 1
Ro

and Jij � 1
Rij

. For N latches, this becomes a system of N

differential equations:

dvi(t)
dt

=
1
C

⎡

⎣G tanh
(
k tanh(kvi(t))

) − Gvi(t) −
N∑

j=1

Jij(vi − vj)

⎤

⎦ ,

i = 1, · · · , N.

(6)

(6) can be written in a more general form, as

dvi(t)
dt

= f(vi; k) −
N∑

j=1

Jij g(vi, vj ; k), i = 1, · · · , N ; (7)

choosing

f(vi; k) =
G

C

(
tanh

(
k tanh(kvi)

) − vi

)
and g(vi, vj ; k) =

vi − vj

C
(8)

turns it into (6). The utility of (7) over (6) is its generality: coupled networks of
any kind of latch can be represented by appropriate choice of f(·; ·) and g(·, ·; ·).
Indeed, (7) is not limited to latch networks; e.g., OIM using the the Kuromoto
model with SHIL [15], for coupled oscillator systems, is also captured, by setting

f(Δφi;As) =
As

ω0
sin

(
2Δφi

)
and g(Δφi,Δφj ;As) = −Ac

ω0
sin

(
Δφi −Δφj

)
. (9)

The development in the remainder of this section does not use the specific form of
the tanh(·) latch model (6); instead, it uses the more general form of (7), thereby
being applicable to different latch models, as well as OIM and potentially other
manifestations of Ising machines. We prove two key results: 1) that there is
a Lyapunov function (11) for (7),6 and 2) that for high values of k, at which
latches exhibit bistability, the Lyapunov function matches the Ising Hamiltonian
(Theorem 2). In other words, the same underlying properties that enable coupled
oscillator systems to serve as Ising machines hold for coupled latch systems.

3.1 Lyapunov Function

As already noted, the coupling is assumed to be symmetric, with no “self cou-
pling”,7 i.e.,
6 The Lyapunov function is defined in terms of abstract functions z(·; ·) and h(·, ·; ·)

that are related to the functions f(·; ·) and g(·, ·; ·) in the generalized model (7).
The relations, captured abstractly as assumptions in Assumption 2, are illustrated
concretely for the tanh(·) latch model in Sect. 4.

7 This assumption is intrinsic to the Ising model, as already noted in (1).
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Assumption 1 (Coupling properties)

Jij = Jji, Jii = 0, i, j = 1, · · · , N. (10)

We now define a scalar function of the {vi} that we will show satisfies the
properties of a Lyapunov function. The functions z(·; ·) and h(·, ·; ·) used in
the definition are left abstract at this point; specific choices for BLIM will be
made in (39) and (41), later.

Definition 1 (Lyapunov function L(· · · )). Define

L(v1, · · · , vN ; k) � −
N∑

i=1

⎛

⎝z(vi; k) −
N∑

j=1

Jij h(vi, vj ; k)

⎞

⎠ . (11)

Denoting �v � [v1, · · · , vN ]T , we will also write this as L(�v; k). z(v; k) and
h(v1, v2; k) are continuous and differentiable functions with properties to be stated
later. Hence L(�v; k) is continuous and differentiable.

We now assume that z(·; ·) and h(·, ·; ·) in (11) satisfy the following properties
and relations to f(·; ·) and g(·, ·; ·). The first assumption (12) is essentially a
definition of z(·; ·), used in the Lyapunov function, in terms of the abstraction
f(·; ·) of the tanh(·) latch model, used in (7). The second assumption captures
the essential relation between the abstracted coupling function g(·, ·; ·) in (7),
and the corresponding function h(·, ·; ·) in the Lyapunov expression in (11). This
relation is required in order to show (in Theorem 1, below) that (11) is indeed
a Lyapunov function for (7).

Assumption 2 (Properties of z(·; ·) and h(·, ·; ·))
1. f(·) in (8) is the derivative of z(·) in (11):

f(vm; k) =
dz(vm; k)

dvm
, m = 1, · · · , N. (12)

2. h(·, ·) in (11) and g(·, ·) in (8) are related as:

g(vm, vj ; k) =
∂h(vm, vj ; k)

∂vm
+

∂h(vj , vm; k)
∂vm

. (13)

Theorem 1 ((11) is a Lyapunov Function). If (12) and (13) hold and if
the coupling is symmetric (10), then the function L(· · · ) defined in (11) is a
Lyapunov function for the system (7).

Proof. First, note that
dL

dt
=

N∑

m=1

∂L

∂vm

dvm

dt
. (14)
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Expand

∂L

∂vm
= −

[
dz(vm; k)

dvm
− ∂

∂vm

(
N∑

i,j=1

Jij h(vi, vj ; k)

)]

= −
[

dz(vm; k)

dvm
−

N∑
i,j=1

Jij

(
∂h(vi, vj ; k)

∂vi
δim +

∂h(vi, vj ; k)

∂vj
δjm

)]

= −
[

dz(vm; k)

dvm
−

N∑
i,j=1

Jij
∂h(vi, vj ; k)

∂vi
δim −

N∑
i,j=1

Jij
∂h(vi, vj ; k)

∂vj
δjm

]

= −
[

dz(vm; k)

dvm
−

N∑
j=1

Jmj
∂h(vm, vj ; k)

∂vm
−

N∑
i=1

Jim
∂h(vi, vm; k)

∂vm
)

]

= −
[

dz(vm; k)

dvm
−

N∑
j=1

Jmj
∂h(vm, vj ; k)

∂vm
−

N∑
j=1

Jjm
∂h(vj , vm; k)

∂vm

]

= −
[

dz(vm; k)

dvm
−

N∑
j=1

Jmj
∂h(vm, vj ; k)

∂vm
−

N∑
j=1

Jmj
∂h(vj , vm; k)

∂vm

]
(using (10))

= −
[

dz(vm; k)

dvm
−

N∑
j=1

Jmj

(
∂h(vm, vj ; k)

∂vm
+

∂h(vj , vm; k)

∂vm

)]
(15)

= −
[
f(vm; k) −

N∑
j=1

Jmj g(vm, vj ; k)

]
(using (12) and (13))

= −dvm
dt

(using (7)). (16)

Using (16), (14) becomes

dL

dt
= −

N∑

m=1

(
dvm

dt

)2

≤ 0, (17)

proving that L(· · · ) is non-increasing in t, hence constitutes a Lyapunov function
for (7). �

Lemma 1 (Stable equilibria and Lyapunov local minima are identical).
Any stable equilibrium of the generalized system (7) is a local minimum of the
generalized Lyapunov function (11); and vice versa.

Proof. Using (16), we can write (7) as

dvi

dt
= − ∂L

∂vi
, i = 1, · · · , N. (18)

Given any equilibrium point �v∗ � [v∗
1 , · · · , v∗

N ]T , i.e., dvi

dt = 0, ∀i. By (18), the
partial derivatives ∂L(�v∗)

∂vi
= 0, ∀i, i.e., the equilibrium point is a local extremum

(maximum/minimum/saddle/etc.. point) of L(· · · ).
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Suppose �v∗ is a stable equilibrium. This means that there exists some ball
B around �v∗, with radius greater than zero, such that if the system is perturbed
to any point �v∗ + δ�v ∈ B, the system’s dynamics will return it to �v∗. More
precisely, the projection of the derivative d(�v∗+δ�v(t))

dt onto the perturbation δ�v
should be negative, i.e.,

δ�vT d

dt
(�v∗ + δ�v) < 0, ∀ δ�v such that �v∗ + δ�v ∈ B. (19)

Using (18), (19) becomes

∂L

∂�v

∣∣∣∣
�v∗+δ�v︸ ︷︷ ︸

Jacobian of L w.r.t �v (row vector)

δ�v > 0, ∀ δ�v such that �v∗ + δ�v ∈ B. (20)

Since L(�v; k) is differentiable (Definition 1), we have

L(�v∗) � L(�v∗ + δ�v) − ∂L

∂�v

∣∣∣∣
�v∗+δ�v

δ�v ⇔ L(�v∗ + δ�v) − L(�v∗) � ∂L

∂�v

∣∣∣∣
�v∗+δ�v

δ�v, (21)

with equality as δ�v → �0. Using (20) in (21), we have L(�v∗ + δ�v) − L(�v∗) > 0
for all δ�v such that �v∗ + δ�v is in some ball B2 ⊂ B, proving that v∗ is a local
minimum of L(�v; k).

Moreover, every step of the above argument can be reversed, proving that any
local minimum of L(�v; k) is a stable equilibrium point of (7). �

3.2 Bistability Properties of the Generalized System;
Lyapunov–Ising-Hamiltonian Relation

First, we recall the (discrete) Ising Hamiltonian and establish a basic property.

Definition 2 (Discrete Ising Hamiltonian). Given N “spins” (binary vari-
ables with values ±1) {si} and a set of coupling weights Jij obeying (10), the
(discrete) Ising Hamiltonian of the system is

H(s1, · · · , sN ) � −1
2

N∑

i,j=1

Jij sisj . (22)

Denoting �s = [s1, · · · , sN ]T , this can also be written as H(�s).

Lemma 2 (Scaled/shifted Ising Hamiltonians preserve total order).
For any k1 > 0 and any k2, define a scaled/shifted version of the Ising Hamilto-
nian to be

H̃(�s) � k1H(�s) + k2. (23)

Then, for any �s1, �s2 such that H(�s1) ≤ H(�s2), H̃(�s1) ≤ H̃(�s2); and vice-versa.
This also implies that any local minimum of H(·) is a local minimum of H̃(·),
and vice versa.
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Proof. H̃(·) is strictly monotonic and invertible with respect to H(·), establishing
both directions of the first claim. The second claim follows from the first by
contradiction.

Next, we make an assumption about the bistability of f(·; k) when the gain k is
high.

Assumption 3 (Bistability of each latch). f(v; k) is bistable if k = K, for
some sufficiently large gain K > 0; i.e., for some v+, v−, with v+ > v−,

f(v+;K) = f(v−;K) = 0. (24)

Moreover,
df(v;K)

dv

∣∣∣∣
v=v+

< 0 and
df(v;K)

dv

∣∣∣∣
v=v−

< 0. (25)

These conditions ensure stable equilibria of dv
dt = f(v; K) (i.e., each equation of

the generalized system (7), in the absence of coupling) at v+ and v−. Moreover,
we assume that for each latch, v+ and v− are the only stable equilibria. This
implies that vi ∈ {v+, v−}, i = 1, ..., N represent all the stable equilibria of (7)
in the absence of coupling.

We now make assumptions on the values of the functions z(·; ·) and h(·, ·; ·)
at the bistable values v+ and v− when the gain is high. These assumptions are
abstracted from properties of the tanh(·) model (8).

Assumption 4 (Values for z({v+, v−}; K) and h({v+, v−}, {v+, v−}; K))

z(v+; K) = z(v−; K) = c3 (26)
h(v+, v+; K) = h(v−, v−; K) = c1, (27)
h(v+, v−; K) = h(v−, v+; K) = c2. (28)

for some values c1, c2 > c1 and c3.

We can now establish a relation between the generalized Lyapunov function
L(· · · ) in (7) and the Ising Hamiltonian (22).

Theorem 2 (The Lyapunov function equals a scaled/shifted Ising
Hamiltonian at nominal bistable values). For i = 1, · · · , N , if vi ∈
{v+, v−}, define a corresponding “spin” si to be

si =

{
1 if vi = v+,

−1 if vi = v−.
(29)

Denote �s � [s1, · · · , sN ]T and �vB � [v1, · · · , vN ]T . Then the generalized Lya-
punov function L(�vB ; K) equals a scaled/shifted version of the discrete Ising
Hamiltonian H(�s).
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Proof. We have (using (26))

L(�vB ; K) = −
N∑

i=1

⎛

⎝z(vi; K) −
N∑

j=1

Jij h(vi, vj ; K)

⎞

⎠

= −Nc3 +
N∑

i,j=1

Jij h(vi, vj ; K).

(30)

Defining

h̃(vi, vj) � 2h(vi, vj ; K) − (c1 + c2)
c2 − c1

⇔ h(vi, vj ; K) =
(c2 − c1)h̃(vi, vj) + (c1 + c2)

2
,

(31)

(30) becomes

L(�vB ; K) = −Nc3 +
1
2

N∑

i,j=1

Jij

[
(c2 − c1) h̃(vi, vj) + (c1 + c2)

]

= −Nc3 +
c1 + c2

2

⎛

⎝
N∑

i,j=1

Jij

⎞

⎠ +
c2 − c1

2

N∑

i,j=1

Jij h̃(vi, vj).

(32)

From definition (31), note that

h̃(v+, v+) = h̃(v−, v−) = −1, h̃(v+, v−) = h̃(v−, v+) = +1. (33)

Hence, since vi ∈ [v+, v−], we have

h̃(vi, vj) = −sisj . (34)

Using (34) in (32), we have

L(�vB ; K) = −Nc3 +
c1 + c2

2

⎛

⎝
N∑

i,j=1

Jij

⎞

⎠ − c2 − c1
2

N∑

i,j=1

Jij sisj

= −Nc3 +
c1 + c2

2

⎛

⎝
N∑

i,j=1

Jij

⎞

⎠

︸ ︷︷ ︸
k2

+ (c2 − c1)︸ ︷︷ ︸
k1>0

H(�s).
(35)

This is a scaled/shifted version of the Ising Hamiltonian (23). �
This immediately implies

Corollary 1 (Total order correspondence between Hamiltonian and
Lyapunov functions). For i = 1, · · · , N , let

�vA � [vA,1, · · · , vA,N ]T , �vB � [vB,1, · · · , vB,N ]T ,

with vA,i ∈ {v+, v−}, vB,i ∈ {v+, v−}.
(36)



Bistable Latch Ising Machines 141

Let �sA and �sB be the spin vectors (defined using (29)) corresponding to �vA and
�vB, respectively. If L(�vA; K) ≤ L(�vB ; K), then H(�sA) ≤ H(�sB); and vice versa.

Proof. Follows from Lemma 2 and Theorem 2.

As a result, any global minimum of one is also one of the other:

Corollary 2 (Hamiltonian and Lyapunov global minima correspond
under bistability). If �vA (36) is a global minimum of L(�v; K) over all �v with
components taking bistable values v+ or v−, then the corresponding spin vector
sA (29) is a global minimum of H(�s); and vice versa.

Proof. Follows from Corollary 1.

Even with coupling present in (7), we assume that each latch remains bistable,
with only small deviations from v+ and v−:

Assumption 5 (Bistability persists in the presence of coupling). In
the presence of coupling, the exact values v+ and v− (Assumption 3) no longer
represent stable equilibria for each latch, due to the perturbations introduced by
the coupling. If the coupling is small enough, each latch will still have stable
equilibria at some values vi+ and vi− which are small perturbations of v+ and
v−, respectively. This follows from the stability of the unperturbed equilibria.
We assume, more generally, that this is true whether or not the coupling is
small. More precisely, we assume that if k = K, then vi ∈ {vi+, vi−}, with
vi+ ∈ [v+ − ε, v+ + ε] and vi− ∈ [v− − ε, v− + ε], for some ε 	 v+ − v−,
∀i = 1, · · · , N capture all stable equilibrium points of (7).

Assumption 5 enables us to benefit from Theorem 2 at the actual equilibrium
points of (7):

Corollary 3 (Lyapunov function approximates a scaled/shifted Ising
Hamiltonian at bistable values). The Lyapunov function evaluated at
bistable equilibrium points in the presence of coupling (as given in Assumption 5)
approximates the scaled/shifted Ising Hamiltonian (35) at corresponding spin
values.

Proof. Follows from continuity of the Lyapunov function (11) in its arguments
v1, · · · , vN , and the fact that the bistable equilibrium points under coupling are
small perturbations (Assumption 5) of the nominal bistable equilibria of Theo-
rem 2.

Finally, note that the discrete Ising Hamiltonian (Definition 2) remains
unchanged when all spins are flipped, since each term sisj does not change. Cor-
respondingly, the Lyapunov function (11) remains unchanged if vi is “flipped”
from v+ to v−, and vice-versa (because of properties (26) to (28)). This implies
that the search space of all Boolean combinations can be reduced by half; one
spin can simply be set to either +1 or −1, and all combinations of the other
spins explored. Correspondingly, for one chosen i ∈ {1, · · · , N}, vi can be set to
either v+ or v−. We concretize this as
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Corollary 4. Let k = K and vi ∈ {v+, v−} for i ∈ 1, · · · , N . Then vN can be
fixed at v+ without loss of generality, i.e., every value of the Lyapunov function
(11) L(v1, · · · , vN ; K) that can be achieved without this restriction can also be
achieved with this restriction.

4 Illustrative Examples

We now specialize the above results for our simple latch model of Sect. 2.2 and
illustrate BLIM on fully-connected 3-spin graphs, as well as on G22, a 2000-spin,
sparsely connected, MAX-CUT benchmark.
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Fig. 4. Plots of f(), g(), z() and h() for C = G = 1.

First, we return to our tanh(·) latch model of (6) and devise a specific Lya-
punov function ((11)) for it. Recall that f(·; k) and g(·, ·; k) for this model are
given in (8). Choosing the high value of gain (at which each latch features two
stable states, see Assumption 3) to be

K � 5, (37)

we solve f(v; K) = 0 numerically to obtain8

v+ � 0.999909 � +1, v− � −0.999909 = −v+ � −1,

df

dv
(v+) = −0.999999 < 0,

df

dv
(v−) = −0.999999 < 0.

(38)

Hence Assumption 3 is satisfied.9 Assumption 5 can always be satisfied by mak-
ing the couplings small enough. Define

z(v; k) �
∫ v

0

f(x; k) dx. (39)

This obviously satisfies the requirement (12). Since f(v; k) is odd in v (i.e.,
f(−v; k) = −f(v; k), as is easily verified), it is easily shown that z(v; k) in (39)
is even, i.e.,

z(−v; k) = z(v; k). (40)
8 It is easy to show graphically that v+, v− and 0 are the only solutions of f(v, K) = 0.
9 The third solution, v = 0, is unstable: df

dv
(0) = 24 > 0.
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Hence the requirement (26) is satisfied. Now define

h(vi, vj ; k) � 1
2C

[
(vi − vj)2

2
− 1

]
. (41)

It is easily verified that h(vi, vj ; k) satisfies the requirement (13). The additional
requirements (27) and (28) are also satisfied, with

c1 = − 1
2C

, c2 =
1

2C
(2v2

+ − 1) � −c1 =
1

2C
> c1. (42)

Hence, using the definitions in (37) to (39) and (41) for K, v+, v−, z(v; k) and
h(vi, vj ; k), the coupled latch system (6) satisfies all the conditions needed for
Theorem 1, Theorem 2, and their implications Lemma 1, Corollary 1, Corollary 2
and Corollary 3 to be valid. To summarize:

1. the behaviour of a system of coupled latches (6), for any latch gain k, is
governed by a Lyapunov function which it minimizes locally to reach stable
equilibria;

2. when the gain is high enough to make each latch bistable (k = K), a
scaled/shifted version of the Lyapunov function closely approximates the sys-
tem’s discrete Ising Hamiltonian (Definition 2). This implies that if H(�sA) ≤
H(�sB) for any two spin states, the corresponding voltage states �vA and vB

obey L(�vA; K) ≤ L(�vA; K); and vice versa.10 Moreover, global minima of the
Ising Hamiltonian correspond to global minima of the Lyapunov function.

Plots of f(v; k), g(v1, v2; k), z(v; k) and h(v1, v2; k)—equations (8), (39)
evaluated numerically, and (41)—are shown in Fig. 4, for different values of the
latch gain k.

4.1 Fully-Connected 3-Spin Graphs with Weights of Equal
Magnitude

For insight, we explore BLIM on all fully-connected 3-spin graphs with weights
of equal magnitude. We choose 3-spin graphs because their Lyapunov functions
can be visualized completely in three dimensions.

A three-spin graph is a triangle, i.e., with three vertices and three edges with
weights J12, J23 and J13. The Ising Hamiltonian (Definition 2) is

H3(s1, s2, s3) � −1
2

(J12 s1s2 + J13 s2s3 + J23s1s3) , (43)

and the Lyapunov function becomes

L3(v1, v2, v3; k) � −z(v1; k) − z(v2; k) − z(v3; k) + 2
[
J12 h(v1, v2; k)

+ J23 h(v2, v3; k) + J13 h(v1, v3; k)
]
,

(44)

10 Recall that H(�·) is the Ising Hamiltonian and L(�· ; ·) the Lyapunov function.



144 J. Roychowdhury

1 2

3

1
40

1
40

1
40

(a) A. H1,1,1 = − 3
40
.

1 2

3

− 1
40

1
40

1
40

(b) B. H1,1,1 = − 1
40
.

1 2

3

− 1
40

− 1
40

1
40

(c) C. H1,-1,1 = − 3
40
.

1 2

3

− 1
40

− 1
40

− 1
40

(d) D. H-1,-1,1 = − 1
40
.

-3
-2

-2

-1

0

-1

L 3
(v

1
, v

2
, 1

)

10 6

-2

1

L
3
(v

1
,v

2
,1) for k=5, with J12=0.025, J23=0.025, J13=0.025, C=1e-07, G=0.1

2

v
2

-10

3

v
1

01 1
2 2

k=5
k=5: L

3
(1,1,1)=-2.16407e+06

k=5: L
3
(-1,-1,1)=-1.16407e+06

k=5: L
3
(1,-1,1)=-1.16407e+06

k=5: L
3
(-1,1,1)=-1.16407e+06

(e) Graph A, k = 5.

-2
2

-1

0

L 3
(v

1
, v

2
, 1

)
10 6

1

1

2

L
3
(v

1
,v

2
,1) for k=5, with J12=-0.025, J23=0.025, J13=0.025, C=1e-07, G=0.1

2

1

v
2

0

v
1

0-1 -1
-2 -2

k=5
k=5: L

3
(1,1,1)=-1.66407e+06

k=5: L
3
(-1,-1,1)=-664067

k=5: L
3
(1,-1,1)=-1.66407e+06

k=5: L
3
(-1,1,1)=-1.66407e+06

(f) Graph B, k = 5.

-4
2

-3

-2

1 2

10 6

L 3
(v

1
, v

2
, 1

)

-1

1

L
3
(v

1
,v

2
,1) for k=5, with J12=-0.025, J23=-0.025, J13=0.025, C=1e-07, G=0.1

v
2

0

0

v
1

0

1

-1 -1
-2 -2

k=5
k=5: L

3
(1,1,1)=-1.16407e+06

k=5: L
3
(-1,-1,1)=-1.16407e+06

k=5: L
3
(1,-1,1)=-2.16407e+06

k=5: L
3
(-1,1,1)=-1.16407e+06

(g) Graph C, k = 5.

-3
2

-2

1 2

-1

L 3
(v

1
, v

2
, 1

)

10 6

1

L
3
(v

1
,v

2
,1) for k=5, with J12=-0.025, J23=-0.025, J13=-0.025, C=1e-07, G=0.1

v
2

0

0

v
1

0

1

-1 -1
-2 -2

k=5
k=5: L

3
(1,1,1)=-664067

k=5: L
3
(-1,-1,1)=-1.66407e+06

k=5: L
3
(1,-1,1)=-1.66407e+06

k=5: L
3
(-1,1,1)=-1.66407e+06

(h) Graph D, k = 5.

-2
-2

-1

0

-1

L 3
(v

1
, v

2
, 1

)

10 6

1

-2

v
2

0

2

L
3
(v

1
,v

2
,1) for k=2, with J12=0.025, J23=0.025, J13=0.025, C=1e-07, G=0.1

-1

v
1

3

01
1

2 2

k=2
k=2: L

3
(1,1,1)=-1.61395e+06

k=2: L
3
(-1,-1,1)=-613953

k=2: L
3
(1,-1,1)=-613953

k=2: L
3
(-1,1,1)=-613953

(i) Graph A, k = 2.

-2
2

-1

0

1 2

10 6

L 3
(v

1
, v

2
, 1

)

1

1

L
3
(v

1
,v

2
,1) for k=2, with J12=-0.025, J23=0.025, J13=0.025, C=1e-07, G=0.1

v
2

0

2

v
1

0

3

-1 -1
-2 -2

k=2
k=2: L

3
(1,1,1)=-1.11395e+06

k=2: L
3
(-1,-1,1)=-113953

k=2: L
3
(1,-1,1)=-1.11395e+06

k=2: L
3
(-1,1,1)=-1.11395e+06

(j) Graph B, k = 2.

-3
2

-2

1 2

-1

10 6

L 3
(v

1
, v

2
, 1

)

1

L
3
(v

1
,v

2
,1) for k=2, with J12=-0.025, J23=-0.025, J13=0.025, C=1e-07, G=0.1

v
2

0

0

v
1

0

1

-1 -1
-2 -2

k=2
k=2: L

3
(1,1,1)=-613953

k=2: L
3
(-1,-1,1)=-613953

k=2: L
3
(1,-1,1)=-1.61395e+06

k=2: L
3
(-1,1,1)=-613953

(k) Graph C, k = 2.

-3
2

-2

1 2

-1

10 6

L 3
(v

1
, v

2
, 1

)

1

L
3
(v

1
,v

2
,1) for k=2, with J12=-0.025, J23=-0.025, J13=-0.025, C=1e-07, G=0.1

v
2

0

0

v
1

0

1

-1 -1
-2 -2

k=2
k=2: L

3
(1,1,1)=-113953

k=2: L
3
(-1,-1,1)=-1.11395e+06

k=2: L
3
(1,-1,1)=-1.11395e+06

k=2: L
3
(-1,1,1)=-1.11395e+06

(l) Graph D, k = 2.

-2-2
-2 -1

0

-1

v
1

0

L
3
(v

1
,v

2
,1) for k=1, with J12=0.025, J23=0.025, J13=0.025, C=1e-07, G=0.1

v
2

2

0

10 6

L 3
(v

1
, v

2
, 1

)

1

4

1
22

6

k=1
k=1: L

3
(1,1,1)=-427755

k=1: L
3
(-1,-1,1)=572245

k=1: L
3
(1,-1,1)=572245

k=1: L
3
(-1,1,1)=572245

(m) Graph A, k = 1.

-1

0

2

1

2

2

L 3
(v

1
, v

2
, 1

)

10 6

3

L
3
(v

1
,v

2
,1) for k=1, with J12=-0.025, J23=0.025, J13=0.025, C=1e-07, G=0.1

1

4

1

v
2

0

v
1

0
-1 -1

-2 -2

k=1
k=1: L

3
(1,1,1)=72244.6

k=1: L
3
(-1,-1,1)=1.07224e+06

k=1: L
3
(1,-1,1)=72244.6

k=1: L
3
(-1,1,1)=72244.6

(n) Graph B, k = 1.

-1

-0.5

2

0

0.5

1

10 6

L 3
(v

1
, v

2
, 1

)

1.5

2

2.5

1

L
3
(v

1
,v

2
,1) for k=1, with J12=-0.025, J23=-0.025, J13=0.025, C=1e-07, G=0.1

2

v
2

0 1

v
1

0-1 -1-2 -2

k=1
k=1: L

3
(1,1,1)=572245

k=1: L
3
(-1,-1,1)=572245

k=1: L
3
(1,-1,1)=-427755

k=1: L
3
(-1,1,1)=572245

(o) Graph C, k = 1.

2
1

L
3
(v

1
,v

2
,1) for k=1, with J12=-0.025, J23=-0.025, J13=-0.025, C=1e-07, G=0.1

-1

-0.5

2

0

0.5

1

10 6

L 3
(v

1
, v

2
, 1

)

v
1

1.5

0

2

1

2.5

v
2

0 -1-1 -2-2

k=1
k=1: L

3
(1,1,1)=1.07224e+06

k=1: L
3
(-1,-1,1)=72244.6

k=1: L
3
(1,-1,1)=72244.6

k=1: L
3
(-1,1,1)=72244.6

(p) Graph D, k = 1.

-2
-2

0

-1

2

L 3
(v

1
, v

2
, 1

)

10 6

4

v
2

0 -2

6

L
3
(v

1
,v

2
,1) for k=0.5, with J12=0.025, J23=0.025, J13=0.025, C=1e-07, G=0.1

-1

v
1

1

8

0
1

2 2

k=0.5
k=0.5: L

3
(1,1,1)=392943

k=0.5: L
3
(-1,-1,1)=1.39294e+06

k=0.5: L
3
(1,-1,1)=1.39294e+06

k=0.5: L
3
(-1,1,1)=1.39294e+06

(q) Graph A, k = 0.5.

0

1

2

2

3

4

10 6

L 3
(v

1
, v

2
, 1

)

2

5

6

L
3
(v

1
,v

2
,1) for k=0.5, with J12=-0.025, J23=0.025, J13=0.025, C=1e-07, G=0.1

1 10

v
2

0

v
1

-1 -12- 2-

k=0.5
k=0.5: L

3
(1,1,1)=892943

k=0.5: L
3
(-1,-1,1)=1.89294e+06

k=0.5: L
3
(1,-1,1)=892943

k=0.5: L
3
(-1,1,1)=892943

(r) Graph B, k = 0.5.

0
2

1

2

L 3
(v

1
, v

2
, 1

)

10 6

21

3

L
3
(v

1
,v

2
,1) for k=0.5, with J12=-0.025, J23=-0.025, J13=0.025, C=1e-07, G=0.1

4

1

v
2

0

v
1

0
-1 -1

-2 -2

k=0.5
k=0.5: L

3
(1,1,1)=1.39294e+06

k=0.5: L
3
(-1,-1,1)=1.39294e+06

k=0.5: L
3
(1,-1,1)=392943

k=0.5: L
3
(-1,1,1)=1.39294e+06

(s) Graph C, k = 0.5.

0
2

1

2

1 2

10 6

L 3
(v

1
, v

2
, 1

)

3

1

L
3
(v

1
,v

2
,1) for k=0.5, with J12=-0.025, J23=-0.025, J13=-0.025, C=1e-07, G=0.1

v
2

0

4

v
1

0

5

-1 -1
-2 -2

k=0.5
k=0.5: L

3
(1,1,1)=1.89294e+06

k=0.5: L
3
(-1,-1,1)=892943

k=0.5: L
3
(1,-1,1)=892943

k=0.5: L
3
(-1,1,1)=892943

(t) Graph D, k = 0.5.

-2
-2

0

-1

2

L 3
(v

1
, v

2
, 1

)

10 6

4

v
2

0

6

-2

L
3
(v

1
,v

2
,1) for k=0.1, with J12=0.025, J23=0.025, J13=0.025, C=1e-07, G=0.1

-11

v
1

8

0
12 2

k=0.1
k=0.1: L

3
(1,1,1)=735025

k=0.1: L
3
(-1,-1,1)=1.73503e+06

k=0.1: L
3
(1,-1,1)=1.73503e+06

k=0.1: L
3
(-1,1,1)=1.73503e+06

(u) Graph A, k = 0.1.

0

1

2

2

3

4

5

L 3
(v

1
, v

2
, 1

)

10 6

6

7

L
3
(v

1
,v

2
,1) for k=0.1, with J12=-0.025, J23=0.025, J13=0.025, C=1e-07, G=0.1

21 10

v
2

0
v

1

-1 -12- 2-

k=0.1
k=0.1: L

3
(1,1,1)=1.23503e+06

k=0.1: L
3
(-1,-1,1)=2.23503e+06

k=0.1: L
3
(1,-1,1)=1.23503e+06

k=0.1: L
3
(-1,1,1)=1.23503e+06

(v) Graph B, k = 0.1.

0
2

2

1

1 1

2

v
2

L 3
(v

1
, v

2
, 1

)

10 6

0

v
1

L
3
(v

1
,v

2
,1) for k=0.1, with J12=-0.025, J23=-0.025, J13=0.025, C=1e-07, G=0.1

3

0

4

-1 -1

5

-2 -2

k=0.1
k=0.1: L

3
(1,1,1)=1.73503e+06

k=0.1: L
3
(-1,-1,1)=1.73503e+06

k=0.1: L
3
(1,-1,1)=735025

k=0.1: L
3
(-1,1,1)=1.73503e+06

(w) Graph C, k = 0.1.

0
2

1

2

1 2

10 6

L 3
(v

1
, v

2
, 1

)

3

1

L
3
(v

1
,v

2
,1) for k=0.1, with J12=-0.025, J23=-0.025, J13=-0.025, C=1e-07, G=0.1

v
2

0

4

v
1

0

5

-1 -1
-2 -2

k=0.1
k=0.1: L

3
(1,1,1)=2.23503e+06

k=0.1: L
3
(-1,-1,1)=1.23503e+06

k=0.1: L
3
(1,-1,1)=1.23503e+06

k=0.1: L
3
(-1,1,1)=1.23503e+06

(x) Graph D, k = 0.1.

Fig. 5. L3(v1, v2, 1) for fully-connected 3-node graphs.

where f(·; k) and h(·, ·; k) are given by (39) and (41), and we have used the even
symmetry of h(·, ·; k). Also, applying Corollary 4, we set v3 = v+, which turns
(44) into

L3(v1, v2, v+; k) � −z(v1; k) − z(v2; k) − z(v+; k) + 2
[
J12 h(v1, v2; k)

+ J23 h(v2, v+; k) + J13 h(v1, v+; k)
]
,

(45)

Consider fully-connected graphs with edge weights ±Ac, where Ac is a coupling
strength parameter. There are only 4 unique fully-connected 3-node graphs of
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Fig. 6. Simulations of (7) and (4) with different initial conditions for fully-connected
3-node graphs.

this type, as shown in the top row11 of Fig. 5—other fully-connected graph possi-
bilities are congruent to one of these. Figure 5 depicts the Lyapunov functions for
all four fully-connected graphs—each column shows the Lyapunov functions for
various values of k for a particular graph. The points corresponding to discrete
Ising spins, i.e., v1, v2 = ±1, are marked with vertical lines and the Lyapunov
values at these points are noted in the legend. As expected, high values of k
feature multiple local minima, which coalesce as k is lowered below 1. For the
case of weights (− 1

40 ,− 1
40 ,− 1

40 ), where several points reach the global minimum,
the Lyapunov landscape for low k becomes more of a saddle region than a single
well-defined global minimum.

11 Each node represents an Ising spin; the weight of the edge between two nodes i and
j is Jij .
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The Lyapunov result above (Theorem 1) only guarantees settling to local
minima, for any fixed (unchanging with time) value of the gain k. However, we
have observed empirically that changing k from a high value to a low value and
back again (over time) enables the system to break out of higher local minima
and settle to lower ones. This is analogous to changing the amplitude of SYNC
periodically in OIM and achieves the same end, i.e., moving the system between
discrete (binarized) and continuous (analog) modes of operation. In OIM, sev-
eral such “ramps” of SYNC typically lead to excellent progress towards the
global minimum, and we have observed a similar phenomenon with BLIM when
k is ramped several times. Indeed, examining how the Hamiltonian changes as
ramping progresses reveals that improvements to the Hamiltonian occur predom-
inantly when the system is not binarized, but is operating in continuous/analog
mode, or is in transition between discrete and continuous modes.

Figure 6 shows results from simulating (7) and (8) for all fully-connected 3-
node graphs, with k changed from 5 to 0.1 and back to 5 over the simulation. v3
is fixed at +1; initial conditions for v1 and v2 are chosen to be different combina-
tions of positive and negative values (randomly generated) for each simulation.
Note that in every case, k ramping takes the system to a global minimum at
k = 5. The reason for this is apparent upon examining the region t ∼ [60, 120]μs,
when k = 0.1 and the system has a unique global Lyapunov minimum to which
it settles. Note that the values of v1 and v2 “lean towards” a k = 5 global min-
imum here, in every case. As a result, the system evolves quasi-statically to a
k = 5 global minimum as k is ramped back to 5.

4.2 G22 MAX-CUT Benchmark Problem

Fig. 7. BLIM on the 2000-spin Ising
benchmark problem G22 [1,12]: the Hamil-
tonian improves when k is low, i.e., the sys-
tem is in “analog mode”.

We also illustrate BLIM with sev-
eral cycles of k-ramping on the G22
Ising benchmark problem [1,12]. The
problem has N = 2000 nodes/spins,
sparsely interconnected (with ran-
domly generated ±1 weights) with
19,990 connections. Figure 7 shows the
progress of the Ising Hamiltonian as
BLIM runs on this problem, with k
ramped from 0.5 to 2 in a square wave
fashion about 6 times over the sim-
ulation. As can be seen, subsequent
cycles of k-ramping reduce the Hamil-
tonian; moreover, the reduction hap-
pens largely when k is low, i.e., the system is not binarized, but in analog
mode. As with OIM and other Ising machine schemes, the underlying mecha-
nism behind this is not well understood at this point but it is this feature, that
some deep analog mechanism is solving the originally discrete Ising problem,
that fundamentally separates Ising machines from hardware or software imple-
mentations of essentially discrete minimization methods [9,11].
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5 Conclusion

We have presented BLIM, an Ising machine scheme based on latches (bistable
elements) with controllable gains. Using a simple dynamical model that distills
the essence of a back-to-back inverter-based latch, we have set up equations
for coupled latch systems and shown that they can be generalized to a form
that also captures coupled oscillator networks when two functions are defined
appropriately. We have proved that under appropriate conditions, this general-
ized form has a Lyapunov function which becomes essentially identical to the
Ising Hamiltonian when the system is driven to binarized states, e.g., by making
latch gains high. This result implies that the system will settle naturally to local
minima of the Lyapunov function. Furthermore, varying the gains periodically is
seen to lead the system to lower minima. Our general formulation enables side-
by-side comparison of OIM, BLIM, and possibly other Ising machine schemes,
which may lead to progress in unravelling the mechanisms that underlie Ising
machines’ intriguing global minimization tendencies. BLIM retains an important
practical feature of OIM, i.e., that it can be implemented using miniaturisable
CMOS electronics; however, implementations in other physical domains, such as
(synthetic) biology, may also be of interest.

Acknowledgments. We thank Tianshi Wang, Nagendra Krishnapura, Yiannis Tsi-
vidis and Peter Kinget for discussions that motivated this work. Support from the US
National Science Foundation is gratefully acknowledged.
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Abstract. An undirected graph G is known to both the prover P and
the verifier V , but only P knows a subgraph H of G. Without revealing
any information about H, P wants to convince V that H is a connected
spanning subgraph of G, i.e. H is connected and contains all vertices
of G. In this paper, we propose an unconventional zero-knowledge proof
protocol using a physical deck of cards, which enables P to physically
show that H satisfies the condition without revealing it. We also show
applications of this protocol to verify solutions of three well-known NP-
complete problems: the Hamiltonian cycle problem, the maximum leaf
spanning tree problem, and a popular logic puzzle called Bridges.

Keywords: Zero-knowledge proof · Card-based cryptography ·
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1 Introduction

A zero-knowledge proof (ZKP) is an interactive protocol introduced by Gold-
wasser et al. [8], which enables a prover P to convince a verifier V that a state-
ment is correct without revealing any other information. A ZKP with perfect
completeness and soundness must satisfy the following three properties.

1. Perfect Completeness: If the statement is correct, then V always accepts.
2. Perfect Soundness: If the statement is incorrect, then V always rejects.
3. Zero-knowledge: During the verification, V gets no extra information other

than the correctness of the statement. Formally, there exists a probabilistic
polynomial time algorithm S (called a simulator), without an access to P
but with a black-box access to V , such that the outputs of S follow the same
probability distribution as the outputs of the actual protocol.

Goldreich et al. [7] proved that a computational ZKP exists for every NP
problem. Several recent results, however, instead considered an unconventional
way of constructing ZKPs by using physical objects such as a deck of cards and
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envelopes. The benefit of these physical protocols is that they allow external
observers to check that the prover truthfully executes the protocol (which is
often a challenging task for digital protocols). They also have didactic values
and can be used to teach the concept of ZKP to non-experts.

Consider a verification of the following condition. An undirected graph G is
known to both P and V , but only P knows a subgraph H of G. Without revealing
any information about H, P wants to convince V that H is a connected spanning
subgraph of G, i.e. H is connected and contains all vertices of G.

A ZKP to verify the connected spanning subgraph condition is important
because this condition is a part of many well-known NP-complete problems, such
as the Hamiltonian cycle problem, the maximum leaf spanning tree problem, and
a famous logic puzzle called Bridges. To verify solutions of these problems, P
needs to show that his/her solution satisfies the connected spanning subgraph
condition as well as some other conditions (which are relatively easier to show).

1.1 Related Work

Most of previous work in physical ZKPs aimed to verify a solution of popular
logic puzzles: Sudoku [9,20], Nonogram [4], Akari [2], Kakuro [2,14], KenKen [2],
Takuzu [2,13], Makaro [3], Norinori [5], Slitherlink [12], Juosan [13], Numberlink
[18], Suguru [17], Ripple Effect [19], Nurikabe [16], and Hitori [16].

The theoretical contribution of these protocols is that they employ novel
methods to physically verify specific functions. For example, a subprotocol in [3]
verifies that a number in a list is the largest one in that list without revealing
any value in the list, and a subprotocol in [9] verifies that a list is a permutation
of all given numbers without revealing their order.

Some of these protocols can verify graph theoretic problems. For example, a
protocol in [18] verifies a solution of the k vertex-disjoint paths problem, i.e. a
set of k vertex-disjoints paths joining each of the k given pairs of endpoints in a
graph. In a recent work, a subprotocol in [16] also verifies a condition related to
connectivity. However, their protocol only works in a grid graph and also deals
with a different condition from the one considered in this paper. (Their protocol
only verifies that the selected cells on a board are connected together, not as a
spanning subgraph of the whole board.)

1.2 Our Contribution

In this paper, we propose a physical card-based ZKP with perfect completeness
and soundness to verify that a subgraph H is a connected spanning subgraph of
an undirected graph G without revealing H.

We also show three possible applications of this protocol: verifying a Hamil-
tonian cycle in an undirected graph, verifying the existence of a spanning tree
with at least k leaves in an undirected graph, and verifying a solution of the
Bridges puzzle.
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2 Preliminaries

Each encoding card used in our protocol has either ♣ or ♥ on the front side. All
cards have indistinguishable back sides.

For 0 ≤ x < k, define Ek(x) to be a sequence of consecutive k cards, with all
of them being ♣ except the (x + 1)-th card from the left being ♥ , e.g. E3(0) is
♥ ♣ ♣ and E4(2) is ♣ ♣ ♥ ♣ . We use Ek(x) to encode an integer x in Z/kZ.
This encoding rule was introduced by Shinagawa et al. [22].

The cards in Ek(x) are arranged horizontally as defined above unless stated
otherwise. In some situations, however, we may arrange the cards vertically,
where the leftmost card becomes the topmost card and the rightmost card
becomes the bottommost card.

In an m × k matrix of cards, let Row i denote the i-th topmost row and
Column j denote the j-th leftmost column.

2.1 Pile-Shifting Shuffle

A pile-shifting shuffle on an m × k matrix shifts the columns of the matrix by a
random cyclic shift, i.e. shifts the columns cyclically to the right by r columns
for a uniformly random r ∈ Z/kZ unknown to all parties.

This protocol was developed by Shinagawa et al. [22]. It can be implemented
in real world by putting the cards in each column into an envelope and applying
several Hindu cuts to the sequence of envelopes [23].

2.2 Sequence Selection Protocol

Suppose we have k sequences A0, A1, ..., Ak−1, each encoding an integer in
Z/mZ, and a sequence B encoding an integer b in Z/kZ. We propose the following
sequence selection protocol, which allows us to select a sequence Ab (to be used
as an input in other protocols) without revealing b.

1. Construct the following (m + 2) × k matrix M (see Fig. 1).
(a) In Row 1, place a sequence Ek(0). In Row 2, place the sequence B.
(b) In each Column j = 1, 2, ..., k, place the sequence Aj−1 arranged vertically

from Row 3 to Row m + 2.
2. Apply the pile-shifting shuffle to M .
3. Turn over all cards in Row 2. Locate the position of a ♥ . Suppose it is at

Column j.
4. Select the sequence in Column j arranged vertically from Row 3 to Row m+2.

This is the sequence Ab as desired. Turn over all face-up cards.

After we are done using Ab in other protocols, we can put Ab back into M ,
apply the pile-shifting shuffle to M , then turn over all cards in Row 1 and shift
the columns of M cyclically such that the ♥ in Row 1 moves to Column 1. This
reverts the matrix back to its original position, so we can reuse the sequences
A0, A1, ..., Ak−1, and B.
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A0 A1
... Ak−1

? ? ... ?

...
...

...
...

? ? ... ?

? ? ... ?

? ? ... ? B

? ? ... ? Ek(0)

m + 2

...

4

3

2

1

Row

1 2 ... k

Column

Fig. 1. An (m + 2) × k matrix M constructed in Step 1

2.3 Enhanced Matrix

In addition to the encoding cards, we also use marking cards, each having a
positive integer on the front side. All cards have indistinguishable back sides.

Starting from an m× k matrix of face-down encoding cards, place face-down
marking cards 1 , 2 , ..., k from left to right on top of Row 1; this new row is
called Row 0. Then, place face-down marking cards 2 , 3 , ..., m from top to
bottom (starting at Row 2) to the left of Column 1; this new column is called
Column 0. We call this structure an m × k enhanced matrix (see Fig. 2).

? ? ? ? ?

? ? ? ? ?

? ? ? ? ?

? ? ? ? ?

1 2 3 4 5 (actually face-down)

4

3

2

(actually face-down)

4

3

2

1

0

Row

0 1 2 3 4 5

Column

Fig. 2. An example of a 4 × 5 enhanced matrix
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2.4 Double-Scramble Shuffle

In a double-scramble shuffle on an m × k enhanced matrix, first rearrange
Columns 1, 2, ..., k (including the marking cards in Row 0) by a uniformly ran-
dom permutation unknown to all parties (which can be implemented by putting
the cards in each column into an envelope and scrambling all envelopes together).
Then, leave Row 1 as it is and rearrange Rows 2, 3, ...,m (including the marking
cards in Column 0) by a uniformly random permutation unknown to all parties.
This protocol was developed by Ruangwises and Itoh [18].

2.5 Rearrangement Protocol

A rearrangement protocol reverts the rows and columns of an enhanced matrix
(after we perform double scramble shuffles) back to their original positions so
that we can reuse the cards without revealing them. This protocol was developed
by Ruangwises and Itoh [18], although slightly different protocols with the same
idea were also used in other previous work [3,10,11,19,20].

In the rearrangement protocol on an m × k enhanced matrix, first apply
the double-scramble shuffle to the matrix. Then, turn over all marking cards in
Row 0 and rearrange the columns such that each marking card with number i
will be in Column i. Analogously, turn over all marking cards in Column 0 and
rearrange Rows 2, 3, ...,m accordingly.

2.6 Neighbor Counting Protocol

Suppose we have an m × k matrix with each row encoding an integer in Z/kZ.
A neighbor counting protocol allows us to count the number of indices i ≥ 2
such that Row i encodes the same integer as Row 1, without revealing any other
information. This protocol was developed by Ruangwises and Itoh [18].

1. Place marking cards to make the matrix become an m × k enhanced matrix.
2. Apply the double-scramble shuffle.
3. Turn over all encoding cards in Row 1. Locate the position of a ♥ . Suppose

it is at Column j.
4. Turn over all encoding cards in Column j. Count the number of ♥ s besides

the one in Row 1. This is the number of indices that we want to know.
5. Turn over all face-up cards. Apply the rearrangement protocol.

3 Verifying an Undirected Path

In this section, we will explain a path verification protocol, which verifies the
existence of an undirected path between vertices s and t in an undirected graph
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G. It is a special case k = 1 of the protocol for the k vertex-disjoint paths
problem developed by Ruangwises and Itoh [18]1.

We call s and t terminal vertices, and other vertices non-terminal vertices.
We call a path (v1, v2, ..., v�) minimal if there are no neighboring vertices vi and
vj such that |i − j| > 1. Observe that given any path between s and t, one can
modify it to become a minimal one in linear time, so we can assume that P
knows a minimal path between s and t.

Let d be the maximum degree of a vertex in G. In linear time, we can color
the vertices of G with at most d + 1 colors such that there are no neighboring
vertices with the same color. This (d + 1)-coloring is known to all parties.

On each terminal vertex v, P publicly places a sequence Ed+2(0). On each
non-terminal vertex v with the x-th color, P secretly places a sequence Ed+2(0)
if v is on P ’s path, or a sequence Ed+2(x) if v is not on the path. Let A(v)
denote the sequence on each vertex v. Since the path is minimal, every non-
terminal cell on the path has exactly two neighbors with a sequence encoding
the same number as it (which is 0), while every terminal cell has exactly one
such neighbor. On the other hand, every non-terminal cell not on the path has
no neighbor with a sequence encoding the same number as it.

The idea is that, for every vertex v with the x-th color, P will add two
“artificial neighbors” of v, both having Ed+2(x) on it, and show that

1. every non-terminal vertex v (both on and not on the path) has exactly two
neighbors with a sequence encoding the same number as A(v), and

2. every terminal vertex v has exactly one neighbor with a sequence encoding
the same number as A(v).

Formally, to verify each non-terminal (resp. terminal) vertex v with the x-th
color and with degree dv, P performs the following steps.

1. Construct the following (dv + 3) × (d + 2) matrix M .
(a) In Row 1, place A(v).
(b) In each of the next dv rows, place A(v′) for each neighbor v′ of v.
(c) In each of the last two rows, place Ed+2(x).

2. Apply the neighbor counting protocol to M . V verifies that there are exactly
two rows (resp. one row) encoding the same integer as Row 1.

3. Put the sequences back to their corresponding vertices.

If every vertex in G passes the verification, then V accepts.

4 Verifying a Connected Spanning Subgraph

We get back to our main problem. Let v1, v2, ..., vn be the vertices in G. In
order to prove that H is a connected spanning subgraph of G, it is sufficient
1 Although the k vertex-disjoint paths problem is NP-complete when k is a part of

the input, the special case k = 1 in solvable in linear time. Hence, this protocol is
actually unnecessary since V can easily verifies existence of the path by him/herself
given G. However, we explain the details of this protocol in order to show its idea,
which will be modified and used in our main protocol in Sect. 4.
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to show that there is an undirected path between vi and vn in H for every
i = 1, 2, ..., n − 1.

Note that the path verification protocol in Sect. 3 verifies a path between s
and t in a graph G, where G is known to all parties. In this section, we will
modify that protocol so that it can verify a path between s and t in a subgraph
H of G, where H is known to only P . Then, P will perform the modified protocol
for n − 1 rounds, with s = vi and t = vn in each i-th round.

At the beginning, P secretly places a sequence B(e) on every edge e ∈ G to
indicate whether e ∈ H. (B(e) is E2(1) if e ∈ H and is E2(0) if e /∈ H.) By doing
this, the graph H is committed and cannot be changed later.

Let d be the maximum degree of a vertex in G. Like in the path verification
protocol, consider a (d + 1)-coloring, known to all parties, such that there are
no neighboring vertices with the same color.

On every vertex v, P publicly places a sequence A0(v), which is Ed+3(d+2).
A0(v) acts as a “blank sequence” guaranteed to be different from A1(v′) on any
vertex v′ during any round, which will be defined in the next step.

During each i-th round when P wants to show that there is a path in H
between s = vi and t = vn. First, P selects a minimal path between s and t
in H. On each terminal vertex v, P publicly places a sequence A1(v), which is
Ed+3(0). On each non-terminal vertex v with the x-th color, P secretly places a
sequence A1(v), which is Ed+3(0) if v is on the path and is Ed+3(x) if v is not on
the path. Note that unlike A0(v) which remains the same throughout the whole
protocol, A1(v) is changed in every round since it depends on the path selected
in each round.

The verification steps are similar to the path verification protocol, except
that in Step 1(b), P first applies the sequence selection protocol in Sect. 2.2 to
determine whether to choose A0(v′) or A1(v′) for each neighbor v′ of v, depending
on whether an edge e between v and v′ is in H or not. The idea is that if e ∈ H,
then v′ is still v’s neighbor in H, so P chooses a sequence A1(v′) and the rest
works the same way as in the path verification protocol. On the other hand, if
e /∈ H, then v′ is not v’s neighbor in H, so P chooses a sequence A0(v′) which
is guaranteed to be different from A1(v).

Formally, to verify each non-terminal (resp. terminal) vertex v with the x-th
color and with degree dv, P performs the following steps.

1. Construct the following (dv + 3) × (d + 3) matrix M .
(a) In Row 1, place A1(v).
(b) For each neighbor v′ of v, let e be an edge between v and v′, and let b be

a bit encoded by B(e). Apply the sequence selection protocol to choose a
sequence Ab(v′) and place it in the next row of M . Repeatedly perform
this for every neighbor of v to fill the next dv rows.

(c) In each of the last two rows of M , place Ed+3(x).
2. Apply the neighbor counting protocol to M . V verifies that there are exactly

two rows (resp. one row) encoding the same integer as Row 1.
3. Put the sequences back to their corresponding vertices.
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If every vertex in G passes the verification, then V accepts.
This protocol uses 2(d + 3)(2n + 2) + 2d + 2m encoding cards and 2d + 5

marking cards, where n and m are the numbers of vertices and edges of G,
respectively, and d is the maximum degree of a vertex in G. Therefore, the total
number of required cards is Θ(dn).

5 Proof of Correctness and Security

We will prove the perfect completeness, perfect soundness, and zero-knowledge
properties of our main protocol in Sect. 4.

Lemma 1 (Perfect completeness). If H is a connected spanning subgraph
of G, then V always accepts.

Proof. Suppose that H is a connected spanning subgraph of G, then there exists
a path between vi and vn in H for every i = 1, 2, ..., n − 1.

First, we will prove the correctness of the sequence selection protocol in
Sect. 2.2. Since B encodes the number b, when placing B in Row 2, the ♥ will
be at Column b + 1, the same column as the sequence Ab. After applying the
pile-shifting shuffle, they will still be at the same column, so the sequence we get
in Step 4 will be Ab.

Now consider the main protocol in each i-th round. In Step 1(b), P always
selects a sequence A1(v′) if e ∈ H and A0(v′) if e /∈ H. Since A0(v′) is Ed+3(d+2)
and thus is different from A1(v), adding A0(v′) to a new row of M does not
increase the number of rows encoding the same integer as Row 1. Therefore, the
result will remain the same even if in Step 1(b) P adds only the sequences on
the vertices such that e ∈ H, which is equivalent to solely applying the path
verification protocol in Sect. 3 to verify a path between vi and vn on H.

The perfect completeness property of the path verification protocol has been
proved in [18], so we can conclude that V always accepts. ��
Lemma 2 (Perfect soundness). If H is not a connected spanning subgraph
of G, then V always rejects.

Proof. Suppose that H is not a connected spanning subgraph of G, then there
exists an index i ∈ {1, 2, ..., n − 1} such that there is no path between vi and
vn in H. In Lemma 1, we have proved that the sequence selection protocol is
correct, and the i-th round of the main protocol is equivalent to applying the
path verification protocol to verify a path between vi and vn on H.

The perfect soundness property of the path verification protocol has been
proved in [18], so we can conclude that V always rejects. ��
Lemma 3 (Zero-knowledge). During the verification, V learns nothing
about H.

Proof. To prove the zero-knowledge property, it is sufficient to prove that all
distributions of the values that appear when the cards are turned face-up can
be simulated by a simulator S without knowing H.
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– In the sequence selection protocol:
• In Step 3, we turn over all cards in Row 2. This occurs right after a pile-

shifting shuffle is applied to M . Hence, the ♥ has an equal probability
to be at each of the k columns, so this step can be simulated by S.

– In the neighbor counting protocol:
• In Step 3, we turn over all encoding cards in Row 1. The order of Columns

1, 2, ..., k is uniformly distributed among all possible permutations due to
the double-scramble shuffle. Hence, the ♥ has an equal probability to be
at each of the k columns, so this step can be simulated by S.

• In Step 4, we turn over all encoding cards in Column j. Suppose there are
t ♥ s besides the one in Row 1 (t is now a public information). The order
of Rows 2, 3, ...,m is uniformly distributed among all possible permuta-
tions due to the double-scramble shuffle. Hence, all t ♥ s have an equal
probability to be at each of the

(
m−1

t

)
combinations of rows, so this step

can be simulated by S.

Therefore, we can conclude that V learns nothing about H. ��

6 Applications to NP-Complete Problems

6.1 Hamiltonian Cycle Problem

Given an undirected graph G, determining whether G has a Hamiltonian cycle
(a cycle that visits each vertex exactly once) is known to be NP-complete [6].
Suppose P knows a Hamiltonian cycle H of G and wants to convince V that G
has a Hamiltonian cycle without revealing any information about H.

To prove that H is a Hamiltonian cycle of G, it is sufficient to show that

1. H is a connected spanning subgraph of G, and
2. every vertex in H has degree 2.

At the beginning, P commits H by secretly placing a sequence B(e) on every
edge e ∈ G to indicate whether e ∈ H. (B(e) is E2(1) if e ∈ H and is E2(0) if
e /∈ H.) The first condition can be verified by the protocol in Sect. 4.

To verify the second condition, P first applies the copy protocol explained in
Appendix A.1 to make another copy of a sequence B(e) on every edge e. (Each of
the two copies will be used to verify each endpoint of e.) For each vertex v ∈ H,
P considers one (unused) copy of a sequence on every edge e incident to v and
selects only the leftmost card of it (which is ♣ if e ∈ H and is ♥ if e /∈ H).
Then, P scrambles all selected cards together and turns over all of them, and V
verifies that there are exactly two ♣ s among them (which means v has degree
2 in H). V accepts if the verification passes for every vertex in H. This protocol
also uses Θ(dn) cards.2

2 There is an alternative way to verify a Hamiltonian cycle: P publicly constructs
an n × n adjacency matrix M of G, then privately selects a permutation σ and
rearranges both the rows and columns of M by σ. Finally, P turns over all cards in
the form M(i, i + 1) and M(i, i − 1) to show that they are all 1s. This protocol is
simpler and more straightforward, but it requires Θ(n2) cards, which is significantly
greater than our protocol in sparse graphs.
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6.2 Maximum Leaf Spanning Tree Problem

Given an undirected graph G and an integer k, the decision version of the max-
imum leaf spanning tree problem asks whether G has a spanning tree with at
least k leaves (vertices with degree 1). This problem is also known to be NP-
complete [6]. Suppose P knows a spanning tree H of G with at least k leaves and
wants to convince V that the such tree exists without revealing any information
about H.

To prove that G has a spanning tree with at least k leaves, it is sufficient to
show that

1. H is a connected spanning subgraph of G, and
2. H has at least k leaves.

Note that it is not necessary to show that H itself is a tree. (Even if H itself is
not a tree, any spanning tree of H will also be a spanning tree of G, and every
leaf of H will still be a leaf of that tree, so G must have a spanning tree with at
least k leaves.)

P commits H by the same way as in the Hamiltonian cycle problem, and
uses the protocol in Sect. 4 to verify the first condition.

To verify the second condition, P makes an additional copy of every B(e)
like in the Hamiltonian cycle problem. For every vertex v, P selects only the
leftmost card of B(e) on every edge e incident to it, scramble these cards, and
puts them into an envelope. (If there are less than d cards, P publicly adds
more ♥ s until there are d cards before scrambling them.) Then, P scrambles all
envelopes together. Next, P picks an envelope, opens it and looks at the front
side of all cards inside (without V seeing the front side). If there is exactly one
♣ among them, P reveals all cards to let V verify that there is exactly one ♣
(which means the corresponding vertex is a leaf); otherwise, P does not reveal
the cards. P repeatedly does this for every envelope. V accepts if there are at
least k envelopes with exactly one ♣ . This protocol also uses Θ(dn) cards.

6.3 Bridges Puzzle

Bridges, or the Japanese name Hashiwokakero, is a logic puzzle created by a
Japanese company Nikoli, which also developed many other popular logic puzzles
including Sudoku, Kakuro, and Numberlink.

A Bridges puzzle consists of a rectangular grid of size p × q, with some
cells called islands containing an encircled positive number of at most 8. The
objective of this puzzle is to connect some pairs of islands by straight lines called
bridges that can only run horizontally or vertically. There can be at most two
bridges between each pair of islands, and the bridges must satisfy the following
conditions [15] (see Fig. 3).

1. Island condition: The number of bridges connected to each island must equal
to the number written on that island.

2. Noncrossing condition: Each bridge cannot cross islands or other bridges.
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Fig. 3. An example of a Bridges puzzle (left) and its solution (right)

3. Connecting condition: The bridges must connect all islands into a single
component.

Determining whether a given Bridges puzzle has a solution has been proved
to be NP-complete [1]. Suppose P knows a solution of the puzzle and wants to
convince V that it has a solution without revealing any information about the
solution.

Define a lip to be a line segment of a unit length on the Bridges grid that
either separates two adjacent cells or lies on the outer boundary of the grid.
For each lip �, let b(�) be the number of bridges crossing through � (including
bridges coming out of the island from � if � is a lip of an island cell). First, P
secretly places on � a sequence encoding b(�) in Z/3Z. Then, P publicly appends
six ♣ s to the end of the sequence to make it encode b(�) in Z/9Z (while ensuring
V that b(�) is at most 2). For each island cell c with a number n(c), P publicly
places a sequence encoding n(c) in Z/9Z on c.

For each cell c, let b(�1), b(�2), b(�3), b(�4) be the numbers encoded by
sequences on the top lip �1, the right lip �2, the bottom lip �3, and the left
lip �4 of c, respectively (see Fig. 4). The steps of verifying P ’s solution of the
puzzle are as follows.

c

�1

�2

�3

�4

Fig. 4. Positions of lips �1, �2, �3, �4 surrounding a cell c.

1. For each lip � located on the outer boundary of the Bridges grid, verify that
b(�) = 0 (no bridge goes beyond the grid), which can be shown by simply
revealing the sequence on �.
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2. For each island cell c with a number n(c), verify that b(�1) + b(�2) + b(�3) +
b(�4) ≡ n(c) (mod 9) (the island condition).

3. For each non-island cell c, verify that b(�1) ≡ b(�3) (mod 9) and b(�2) ≡ b(�4)
(mod 9) (the number of bridges passing through c is consistent), and also
that b(�1) · b(�2) ≡ 0 (mod 9) (the noncrossing condition).

Steps 2 and 3 can be performed by applying a combination of copy and arith-
metic protocols, which are explained in Appendix A, and the neighbor counting
protocol in Sect. 2.6 (on a 2 × 9 matrix to verify the congruence).

Finally, construct a public graph G with all islands being vertices of G, and
two islands having an edge in G if they are on the same row or column and
there is no island between them (i.e. one can construct a valid bridge between
them). Let H be a private subgraph of G such that two islands have an edge in
H if there is at least one bridge between them in P ’s solution. P performs the
following steps to commit H by placing a sequence B(e), which is either E2(0)
or E2(1), on every edge e ∈ G to indicate whether e ∈ H.

1. For each edge e ∈ G with endpoints u and v, consider any lip � in the Bridges
puzzle that lies between the two islands corresponding to u and v.

2. P picks the leftmost card on � and places it as a leftmost card of B(e) without
revealing it.

3. P shuffles the second and third leftmost cards on � and looks at the front side
of them (without V seeing the front side). Then, P selects a ♣ among them
and turns it over to reveal the front side to V . (If both cards are ♣ s, P can
select any of them; if only one card is a ♣ , P must select it.)

4. P places another unselected card in Step 3 as a rightmost card of B(e) without
revealing it.

Observe that if there are one or two bridges between u and v, then B(e) will
be E2(1); if there is no bridge between them, then B(e) will be E2(0). Hence,
these steps ensure that the subgraph H is compatible with P ’s solution of the
puzzle without revealing any information about it.

Verifying the connecting condition is equivalent to verifying that H is a
spanning subgraph of G, which can be done by the protocol in Sect. 4. In total,
this protocol uses Θ(pq) cards.

7 Future Work

We developed a physical card-based ZKP to verify the connected spanning sub-
graph condition, and showed applications of this protocol to verify solutions of
three well-known NP-complete problems: the Hamiltonian cycle problem, the
maximum leaf spanning tree problem, and the Bridges puzzle.

A possible future work is to explore methods to physically verify other NP-
complete graph theoretic problems as well as other popular logic puzzles.
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A Copy and Arithmetic Protocols

In this appendix, we explain the copy and arithmetic protocols that can be used
to verify problems in Sect. 6.

A.1 Copy Protocol

Given a sequence A encoding an integer a in Z/kZ, this protocol creates m
additional copies of A without revealing a. It was developed by Shinagawa et al.
[22].

1. Reverse the k−1 rightmost cards of A, i.e. move each (i+1)-th leftmost card
of A to become the i-th rightmost card for i = 1, 2, ..., k − 1. This modified
sequence, called A′, now encodes −a (mod k).

2. Construct a (m + 2) × k matrix M by placing the sequence A′ in Row 1 and
a sequence Ek(0) in each of Rows 2, 3, ...,m + 2.

3. Apply the pile-shifting shuffle to M . Note that Row 1 of M now encodes
−a + r (mod k), and other rows now encode r (mod k) for a uniformly
random r ∈ Z/kZ.

4. Turn over all cards in Row 1 of M . Locate the position of a ♥ . Suppose it is
at Column j.

5. Shift the columns of M cyclically to the left by j − 1 columns. Turn over all
face-up cards.

6. The sequences in Rows 2, 3, ...,m+2 of M now encode r− (−a+r) ≡ a (mod
k), so we now have m + 1 copies of A as desired.

A.2 Addition Protocol

Given sequences A and B encoding integers a and b in Z/kZ, respectively. This
protocol computes the sum a + b (mod k) without revealing a or b. It was
developed by Shinagawa et al. [22].

1. Reverse the k − 1 rightmost cards of A. This modified sequence, called A′,
now encodes −a (mod k).

2. Construct a 2 × k matrix M by placing A′ in Row 1 and B in Row 2.
3. Apply the pile-shifting shuffle to M . Note that Row 1 and Row 2 of M now

encode −a+r (mod k) and b+r (mod k), respectively, for a uniformly random
r ∈ Z/kZ.

4. Turn over all cards in Row 1 of M . Locate the position of a ♥ . Suppose it is
at Column j.

5. Shift the columns of M cyclically to the left by j − 1 columns. Turn over all
face-up cards.

6. The sequence in Row 2 of M now encodes (b + r) − (−a + r) ≡ a + b (mod k)
as desired.
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A.3 Multiplication Protocol

Given sequences A and B encoding integers a and b in Z/kZ, respectively, this
protocol computes the product a · b (mod k) without revealing a or b. It is
a generalization of a protocol of Shinagawa and Mizuki [21] to multiply two
integers in Z/3Z.

1. Repeatedly apply the copy protocol and the addition protocol to pro-
duce sequences A0, A1, A2, ..., Ak−1 encoding 0, a, 2a, ..., (k − 1)a (mod k),
respectively.

2. Apply the sequence selection protocol to select the sequence Ab encoding a · b
(mod k).
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Abstract. The Echo State Network reservoir computing model is used
in many applications. The original equations have a form of ‘instanta-
neous’ information flow. Here we suggest using a more physically realistic
form of the equations, which takes into account the time needed for infor-
mation to flow and to be processed. We demonstrate the effect of this
change on a timeseries task, sunspot prediction, on a dynamical system
emulation task, NARMA10, and on formulating ‘reservoir of reservoir’
equations.

1 Introduction

The Echo State Network (ESN) reservoir computer model, introduced in [9], has
found wide application. In particular, it is used as a computational model for in
materio reservoir computing. In its original form, it is a set of equations iterated
in time in simulation. In its in materio form, it is used to model computation in
real time physical devices. The original equations have a form of ‘instantaneous’
information flow, which becomes problematic when applied to physical devices.

Here we discuss the original form, suggest the use of a more physically realistic
form, and evaluate the performances of each in two benchmark tasks.

2 The ‘Instantaneous’ Equations

2.1 The Original Form of the Reservoir Equations

The formulation of the reservoir equation typically given in the literature (see for
example the original ESN formulation of [9, Eqs. 1, 2] and subsequent authors
such as [4, Eqs. 22.1, 22.2], [18, Eqs. 1, 2]) is (translated into the notation
used here):

x(t) = f(Wx(t − 1) + Wu u(t)) (1)

v(t) = Wv x(t) (2)
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Fig. 1. A ‘(state)space-time’ diagram, unfolding the recurrent structure, showing the
information flow through the reservoir components. The input scalar, state vector, and
output scalar state values are drawn on the horizontal axis; the discrete time steps
are drawn on the vertical axis, with time progressing downwards. States are labelled
with their discrete time values. The flow of information defined by Eqs. 1, 2 is shown
by arrows, labelled with the required processing of that information through weight
matrices and non-linear functions.

where x(t) is the state of the reservoir at time t, W is the reservoir weight
matrix, u(t) is the input at time t, Wu is the input weight matrix, f is a non-
linear function (typically the tanh function), v(t) is the output at time t, and
Wv is the (trained) output weight matrix1.

The equations define the state of the reservoir at current time t as a function
of its state at the previous time t − 1 and the current state of the input (Eq.
1), and the output at current time t as a function of the current state of the
reservoir (Eq. 2). This is the typical formulation seen in the recurrent neural
network literature in general, with an ‘unfolded’ time evolution as shown in
Fig. 1.

However, the reader used to time-discretised differential equations, to dif-
ference equations, or to iterated maps, will notice the unusual use of the same
time value on both sides of each of these equations. In those domains, the time-
evolution equation is more typically expressed as x(t+1) = φ(x(t), x(t−1), . . .).
That is, the value of x at the new time t + 1 is some function of values only at
earlier times, not at the same time as in Eqs. 1, 2. This difference in formulation
is the point examined in this paper.

2.2 The Issue: Apparent Instantaneous Information Flow

Equation 1 gives the state of the reservoir at time t in terms of the input value
also at time t, despite the fact that the input value first needs to be processed
through the input weight matrix Wu and the non-linear function f . Similarly,
Eq. 2 gives the output value of the reservoir at time t in terms of the state of

1 For simplicity, we assume that the input and output values are scalars, that the input
scaling and spectral radius factors are folded into the respective weight matrices Wu

and W, and that there are no output feedback or leakiness terms. These assumptions
do not affect the argument here, but do reduce notational clutter.
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Fig. 2. A real-time interpretation of the original ‘flat’ reservoir equation that conforms
to a non-instantaneous view. A time value ‘[t’ indicates a value sampled the beginning
of time unit t; a value ‘t]’ indicates a value sampled at the end of time unit t.

the reservoir also at time t, despite the fact that the state value first needs to
be processed through the output weight matrix Wv.

This can be illustrated using the (state)space-time diagram of Fig. 1. The
issue is the existence of horizontal information flow arrows from input to state,
and from state to output: this represents instantaneous information flow, which is
unphysical, even before the need for processing that information through various
weight matrices and non-linear functions is considered.

2.3 A Physically Reasonable Interpretation

It is possible to interpret the original formulation in a non-instantaneous manner,
by taking one particular real-time systems viewpoint, where continuous time is
divided into discrete time units as follows2.

In this real-time systems view, because u is an input, it is sampled at the
beginning of a time unit, whereas state x is sampled at the end of a time unit.
So Eq. 1 says that the state of the system at the end of time unit t, x(t), is some
function of the state at the end of time unit t− 1, x(t− 1), plus the effect of the
input at the beginning of time unit t, u(t). So the actual time when u and x are
sampled in order to calculate the update is in fact the same, because the end of
time unit t − 1 equals the beginning of time unit t. A similar argument can be
applied to the output v equation.

This interpretation is summarised in Fig. 2; Eqs. 1, 2 are interpreted as:

x(t]) = f(Wx(t − 1]) + Wu u([t)) (3)

v(t]) = Wvx([t) (4)

2 My thanks to David Griffin for suggesting this interpretation.
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Fig. 3. The information flow in the ‘deep ESN’ architecture of [7].

Although this interpretation is physically plausible, removing the suggestion
of instantaneous information flow and processing, it is hard to use mathemat-
ically when combining formulae and deriving results, because the symbol t in
the original denotes different physical times, that of [t and that of t], in different
contexts.

2.4 Pipelines of Reservoirs

As evidence that this potential interpretation is hard to use, or not even recog-
nised, consider the case of the ‘deepESN’ layered reservoir architecture described
in [7]. This architecture appears to be a pipeline of N reservoirs, the state of one
acting as the input of the next.

Translating to the notation used here, and ignoring a leakiness term, the N
layer model in [7, Eqs. 1, 2] is defined as:

x1(t) = f(W1x1(t − 1) + Wu u(t))

xi(t) = f(Wixi(t − 1) + Ŵi xi−1(t)) (5)

where xi is the state in layer i; Wi is the weight matrix in layer i; Ŵi the weight
matrix between layers i − 1 and i. (We ignore the output for this discussion.)
This has the same form as the single reservoir equation for each layer, with the
state of the previous layer, xi−1, playing the role of the input to layer i.

The information flow defined by these equations is shown in Fig. 3. Here we
see that the state of layer i at time t depends on the state of layer i − 1 also at
time t, and hence, propagating back, on the state of every prior layer and the
input at time t. This is instantaneous transmission of the input and all prior
layer states to layer N .

Despite superficial appearances, this is not a pipeline of reservoirs, but a
more complicated system. This arrangement cannot be explained with the timing
interpretation suggested above; instead, the instantaneous information transmis-
sion is a feature: “differently from the case of a standard ESN/RNN, the state
information transmission between consecutive layers in a DeepESN presents no
temporal delays” [6]. This setup is not just connecting the input to all layers
simultaneously; it is also connecting the current state of one layer instanta-
neously to the current state of the next layer, despite first needing to feed it
through weight matrix Ŵ and non-linear function f .



168 S. Stepney

Fig. 4. The information flow in the physical form of the reservoir equations. The infor-
mation flows only forwards (downwards) in time, with no instantaneous (horizontal)
flows. (We omit the weight matrix labels from now on).

It might be possible to simulate this setup, by executing each layer individ-
ually in sequence within a single ‘timestep’, although the meaning of ‘timestep’
is then somewhat diluted. However, it is difficult to see how this could be phys-
ically implemented without providing a form of clocking internal to a timestep;
this is, without providing finer grained timesteps. Additionally, this architecture
cannot be adapted to recurrent inter-reservoir connections, that is, to a general
‘reservoir of reservoirs’ architecture, as a layer would find its state at time t is
recurrently dependent on (a function of) its state at time t.

3 The ‘Physical’ Equations

3.1 Derived from Real-Time Interpretation

Consider the real-time interpretation of Fig. 2. We use the fact that the end
of the one time interval coincides with the start of the next, t] = [t + 1, and
substitute into Eqs. 3, 4, to get

x(t + 1) = f(Wx(t) + Wu u(t)) (6)

v(t + 1) = Wvx(t) (7)

where all the times refer to the same point of the time intervals. The information
flow is summarised in Fig. 4. These equations are physically realisable, in that
there is no instantaneous information flow, and also conform to the idea of
difference equations, where the new state is defined in terms of past states only.

Several authors do in fact use a form similar to Eq. 6; see, for example, [5,
Eq. 11], [12, Eq. 1], [14, Eqs. 1, 2], [16, p. 1165], [17, Eq. 2.1]. However, even
these authors use a form like Eq. 2 rather than Eq. 7 for the output term.

3.2 Derived from Discretising Time in ODEs

Consider the two ordinary differential equations ẋ = f(x, u), v̇ = g(x), which
describe a general open dynamical system where the state x evolves in time
dependent on the current state, the input u, and the state function f ; and where
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the output v evolves in time dependent on the current state and the output
function g.

Discretise time, using the Euler method. The state evolution equation
becomes:

x(t + δt) − x(t)
δt

= f(x(t), u(t)) (8)

Rearranging, putting δt = 1, and absorbing an x(t) term by defining a new
function f̂ , gives x(t + 1) = f̂(x(t), u(t)). This has the same functional form as
Eq. 6. In [11] there is a similar derivation of a leaky reservoir equation from an
ODE; the appearance of u(t) in the result, rather than the u(t + 1) needed to
match the form of Eq. 1, is described as due to “time indexing conventions”.

Similarly discretising the output evolution gives v(t + 1) = ĝ(x(t)). This has
the same functional form as Eq. 7. If the output evolution were not written as an
ODE, but as v(t) = g(x(t)), it would not need to be discretised, and so would not
result in two different times being involved. However, since some processing of
the current state is required (given by g) in order to observe it, it arguably makes
better physical sense to formulate the output as v(t + 1) = g(x(t)). Writing the
output evolution explicitly as an ODE allows the function g to be more readily
perceived as performing some action, requiring time.

3.3 Delay Line Reservoir Formulation

Appeltant et al. [1] investigate the use of the chaotic Mackey-Glass ODE [13,
Eq. 4b] as the non-linear component in a delay line reservoir computer. For this
purpose, they add an external input to the delayed feedback value, giving (in
the notation used here):

ẋ =
β(x(t − τ) + αu(t))

1 + (x(t − τ) + αu(t))n
− x(t) (9)

where τ is the time delay, and α, β, n are adjustable parameters. Time discretis-
ing this equation gives the functional form x(t + 1) = φ(x(t), x(t − τ), u(t)).

4 Consequences of Using the ‘Physical’ Equations

Using the physical reservoir equations (Eqs. 6, 7), rather than the original equa-
tions (Eqs. 1, 2), has two main consequences discussed here. Firstly, it changes
the measured performance of the reservoir (here discussed for time series tasks,
and for dynamical system emulation tasks). Secondly, it eases the modelling of
more complicated systems (here discussed for reservoirs of reservoirs).



170 S. Stepney

N ρ sparsity runs Twash Ttrain Ttest

sunspots 50 2 20% 50 320 500 2000
NARMA10 50 2 20% 50 100 500 2000

Fig. 5. Parameters for numerical experiments. N is the number of nodes in the reser-
voir; sparsity is the density of non-zero weights in W (uniformly distributed on [−1, 1]);
ρ is the spectral radius; runs is the number of reservoirs tested per configuration; Twash
is the number of timesteps in the initial washout period; Ttrain is the training period;
Ttest is the testing period.

4.1 NRMSE Evaluation Measure

We use the normalised root mean square error (NRMSE) to evaluate different
reservoir configurations. It is defined as [16, p. 1164]:

NRMSE =

√
〈(v̂t − vt)2〉

〈(v̂t − 〈v̂t〉)2〉 (10)

where v̂t is the desired target output at time t, vt is the actual output, and the
averages 〈·〉 are time averages.

The NRMSE does not depend on the scaling of the target v̂t. A perfect
fit has NRMSE = 0. A value of NRMSE = 1 can be achieved by setting the
reservoir output to a constant value equal to the time average of the target
output, vt = 〈v̂t〉 [11].

4.2 Time Series Prediction Task: Sunspots

In time series prediction, a reservoir is trained to predict the next (unseen) input
in a given time series. One typical benchmark for time series prediction is the
monthly sunspot count from 1749 to 1983, accessed from [3].

This sunspot dataset has 2820 entries. Here the data points are allocated
sequentially to the washout, training, and testing periods as given in Fig. 5, and
the values are normalised to lie in the range [0, 0.5].

The performance of reservoirs on the sunspot prediction benchmark is exam-
ined for two different configurations (Fig. 6). The key requirement for the pre-
diction task is that the target value v̂t is equal to the next input value (as
indicated by the information flowing ‘backwards in time’ in the target system.
The experimental parameters are shown in Fig. 5.

The ‘flat’ reservoir configuration (Fig. 6a) has to predict one timepoint into
the future: at time t the reservoir both sees input u(t) and provides output v(t)
that is the predictor of u(t + 1). However, the ‘physical’ configuration (Fig. 6b)
has to predict three timepoints into the future, due to the introduction of the
input and output delays: at time t the reservoir sees input u(t − 1) and provides
output v(t + 1) that is the predictor of u(t + 2). This suggests the physical
reservoir will not be able to perform as well as the flat reservoir, as it has a more
difficult task to perform.



Non-instantaneous Information Transfer 171

(a)

(b)

Fig. 6. Space-time diagrams of the reservoir equation (left) applied to the sunspot
prediction benchmark (right), for different configurations of each. (a) The ‘flat’ form
of the reservoir equation, where the input feeds instantaneously into the state and the
state into the output. (b) The ‘physical’ form of the reservoir equations, where there
are no instantaneous information flows.

The experimental results are shown in Fig. 7. As expected, the physical reser-
voir performs less well, although not disastrously so. (Alternatively, one might
say the ‘flat’ configuration performs better than physically possible).

4.3 Dynamical System Emulation Task: NARMA10

Given an open (driven) dynamical system, the task is to train a reservoir to
replicate its output (and hence emulate its dynamics) when driven with the
same input.

The NARMA benchmark family was introduced with NARMA10 [2, Eq. 86]:

y(t + 1) = 0.3y(t) + 0.05y(t)
9∑

i=0

y(t − i) + 1.5u(t − 9)u(t) + 0.1 (11)

The system has a single input u(t); the task is to emulate the dynamics of
this system and produce an output y(t + 1). For use as a benchmark, u(t) is
independent uniform noise in [0, 0.5] [2, p. 705].

The performance of reservoirs against the NARMA10 benchmark3 is exam-
ined for three different configurations (Fig. 8). The key requirement is that the
3 The related NARMA20 benchmark [15] is defined with a tanh saturation function, in

order to counteract its divergence. However, even NARMA10 used with the standard
parameters can diverge [10]. In the experiments here, each generated target sequence
is examined for divergence; a divergent sequence is discarded and a new sequence is
calculated from a new input stream.
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Fig. 7. Results for the two different reservoir configurations from Fig. 6 on the sunspot
task. Training and test results for: (a) the ‘flat’ model; (b) the ‘physical’ model.

inputs ut to both the reservoir and the NARMA10 system to be identical in
value and time. The experimental parameters are shown in Fig. 5.

In the ‘flat’ reservoir configuration (Fig. 8a) the reservoir output and
NARMA output are identified at time t, which implies that the reservoir is ‘see-
ing’ more input than is the NARMA system. Two ‘physical’ configurations are
investigated. In the physical configuration of Fig. 8b, identifying outputs means
that the reservoir is ‘seeing’ less input than is the NARMA system. So it would
be expected to have a worse performance than the previous case. In the physical
configuration of Fig. 8c, a corresponding output step, v̂(t + 1) = y(t), is added
to the NARMA system, allowing the reservoir and the NARMA system both to
have the same information flow structure.

The experimental results are shown in Fig. 9. As expected, the physical reser-
voir that can see less input (Fig. 8b, Fig. 9b) performs less well than the ‘flat’
reservoir (Fig. 8a, Fig. 9a). However, the case where the physical reservoir emu-
lates the target system adapted to have the same structure (Fig. 8c, Fig. 9c)
performs best of all. This indicates that the structure of the task, as well as the
structure of the reservoir, influences performance.

5 Further Formulations of the ‘Physical’ Equations

5.1 Incorporating Output Feedback

The full form of the equations from [9, Eqs. 1, 2] additionally include various
feedbacks and other information flows between inputs and outputs (translated
into the notation used here):

x(t + 1) = f(Wx(t) + Wu u(t + 1) + Wbackv(t)) (12)

v(t + 1) = fv(Wv(x(t + 1), u(t + 1), v(t))) (13)
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(a)

(b)

(c)

Fig. 8. Space-time diagrams of the reservoir equation (left) applied to the NARMA10
benchmark (right), for different configurations of each. (a) The ‘flat’ form of the reser-
voir equations. (b) The ‘physical’ form of the reservoir equations. (c) The physical
form of the reservoir equations where the reservoir and target system have the same
structure, achieved by adding an output v̂t term to the latter.

Fig. 9. Results for the three different reservoir configurations from Fig. 8 on the
NARMA10 task. Training and test results for: (a) the ‘flat’ model; (b) the ‘physi-
cal’ model; (c) the physical model also adding an output to the NARMA10 system.

where Wback is a feedback weight matrix, and fv is an output function. This has
information flow as shown in Fig. 10a. Altering this to a physical system, where
all information flows are forward in time, as shown in Fig. 10b, gives the physical
form of the full equations:
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(a) (b)

Fig. 10. The information flow in the full reservoir equations, with state equation flows
as solid arrows, output equation flows as dashed arrows: (a) the ‘flat’ equations of [9,
Eqs. 1, 2]; (b) the physical version with the same dependencies, but all flows forward
in time, as Eqs. 14, 15.

Fig. 11. The information flow in the physical reservoir pipeline architecture of Eq. 16.

x(t + 1) = f(Wx(t) + Wu u(t) + Wbackv(t)) (14)

v(t + 1) = fv(Wv(x(t), u(t), v(t))) (15)

5.2 Multi-reservoirs with ‘Physical’ Equations

We can rewrite Eq. 5 to describe a pipeline of reservoirs with physical timedelays
between the components as:

x1(t + 1) = f(W1x1(t) + Wu u(t))

xi(t + 1) = f(Wixi(t) + Ŵi xi−1(t)) (16)

This has information flow as shown in Fig. 11 (again, ignoring the output).
We can use this physical formulation with more general connectivities,

where sub-reservoir i may have (potentially recurrent) inputs from sub-reservoirs
j, k, . . .. If we assume that the weight matrices between unconnected reservoirs
are zero, we can write:

x1(t + 1) = f

⎛
⎝Wuu(t) +

∑
1<j

Ŵ1jxj(t) + W1x1(t)

⎞
⎠

xi(t + 1) = f

⎛
⎝∑

j �=i

Ŵijxj(t) + Wixi(t)

⎞
⎠ (17)
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where Ŵij is the weight matrix connecting sub-reservoirs i and j. If sub-
reservoirs are not directly, then that Ŵij = 0.

This setup is equivalent to the single physical reservoir equation, with a
weight matrix in block form: the diagonal blocks are the Wi, and off-diagonal
blocks are the (potentially less densely connected) Wij . Each component look
like a reservoir (with a complicated input term), and the entire system looks like
a reservoir. With the additional structure, we can adjust the various reservoir
parameters (such as leak rate and spectral radius) on a per sub-reservoir basis,
to tailor the system to be better suited to a range of more complex tasks. See
also [14, Eqs. 10, 11].

With is physical approach, the sub-reservoirs can be connected in a variety of
ways. Trained outputs can be added between components; connections between
components can incorporate delays (for example, [8]), and other more complex
configurations can be designed. The physical time components in the equations
allow delays and information propagation to be readily analysed.

6 Conclusions

The original reservoir equations (Eqs. 1, 2), as typically used in the literature,
are suitable for simulated single reservoir systems. However, their formulation
makes them hard to apply to physical devices where information flow and pro-
cessing takes time, and hard to manipulate mathematically to define cases where
reservoirs are coupled together.

Here we use a ‘physical’ form of the equations (Eqs. 6, 7), where all flows, both
from input to reservoir, and from reservoir to output, are explicitly forward in
time. This form is demonstrated to have a slightly degraded performance when
evaluated on a timeseries prediction task, but a potentially improved perfor-
mance when evaluated on a dynamical system emulation task, if the structure of
reservoir and task are matched. This demonstrates the importance of precisely
specifying exactly how the task is setup and performed: space-time diagrams
provide a clear visual way of doing so.

Additionally, the form of the physical equations makes is straightforward to
manipulate and combine definitions of sub-reservoirs, since the time variable t
denotes the same physical time wherever it appears.
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Abstract. The logical depth of a piece of data has served as a complexity
measure to describe the amount of “usefulness” and “non-randomness” of
information stored in the data itself, which is originated from Kolmogorov
complexity. This notion of logical depth has been further expanded to var-
ious models of computation in the past literature to accommodate the
needs for handling different computational circumstances. We focus on
streaming data and streaming algorithms. With the use of one-way (or
real-time) quantum finite-state automata equipped with write-once out-
put tapes (called transducers) for recovering the desired information from
the incoming compressed data sets, we introduce the notions of quantum
finite-state depth and shallowness to capture the usefulness of the stream-
ing data sets. We first layout a general setting of decompression of stream-
ing data and, using its fundamental properties, we then argue the existence
of deep and shallow data sets.

Keywords: Quantum finite-state automata · Quantum Kolmogorov
complexity · Logical depth · Data compression · Data decompression ·
Quantum finite-state deep · Quantum finite-state shallow

1 Background, Motivations, and Challenges

The cultivation of efficient compression/decompression procedures of large-scale
data sets has become an important subject in data science. Over the years, the
methodology of algorithmic data compression/decompression has been exten-
sively studied in computational complexity theory and information theory. The-
ory of algorithmic information, in particular, has arisen to clarify the minimum
amount of algorithmically compressable/decompressable information and it has
been widely applied to various other fields, such as physics, economy, mathe-
matics, etc. The reader refers to, e.g., a textbook [16] for more explanations. To
utilize underlying structures and patterns of available data sets, we first need
to unearth them from the data set using a reasonable amount of computational
resources (e.g., execution time, memory space, etc.). One technical challenge is
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to seek for good methods of compressing data for the benefit of simple, efficient
decompression procedures.

As a more concrete example, let us suppose that we have designed a piece of
a computer program to efficiently search for an exact solution of a certain com-
plicated real-life mathematical problem. If we have a chance to contact an exter-
nal expert programmer for additional supportive information to help us achieve
our task, what kind of data should we request? Should it be a random sequence,
which is highly unstructured, or the sequence composed of all 1s, which contains
high redundancy? Those two sequences are, nonetheless, not very useful for us in
solving the problem in practice. We rather want even a small piece of meaningful,
actually usable information on the desired solution so that we can effectively uti-
lize such “useful” information to enhance the overall performance of our program.
From a quantitative viewpoint, the random sequence and the sequence of all 1s
respectively have very high and very low Kolmogorov complexities [15]; however,
they turn out not to be useful in real-life practical applications. It is thus desir-
able for us to know how useful such information is and how much computational
resources are necessary to unearth the meaningful portion out of the information.
For this purpose, we need to quantitatively distinguish between useful data and
not-useful data.

We therefore value “deep” information that exhibits high usefulness by simply
dismissing both high randomness and high redundancy as “shallow” information.
Since deep information could embody multiple layers of meaningful structures
and patterns, we can unearth more useful information in general if we use more
computational resources. In short, the more computational resources (such as
time, space, etc.) we use, the more patterns we can discover. In contrast, shallow
data contain relatively simple structures and patterns from which we cannot gain
any more useful information even if we spend more execution time and memory
space. One important feature of Bennett’s logical depth notion is a fundamental
property (known as a slow growth law) that no procedure can efficiently trans-
form shallow information to deep information. The depth notion is therefore a
technical tool in distinguishing between underlying complicated structures and
simple structures hidden inside the given data. This notion considerably differs
from Shannon’s notion. In Shannon’s theory, random sequences are considered
to have a large amount of information, whereas Bennett’s logical depth treats
such random sequences less informative.

For the processing of off-line static data sets, a few variations of Bennett’s
depth notion have been proposed in the past literature for different complexity-
theoretic applications. Juedes, Lathrop, and Lutz [13], for example, discussed
the notion of computational depth and Antunes, Fortnow, van Melkebeek, and
Vinodchandran [1] studied various other computational depth notions. Lately,
Moser [17] also discussed polylog depth.

In this exposition, however, we are particularly interested in the compres-
sion/decompression of large streaming data coming incessantly through commu-
nication networks piece by piece. In processing such streaming data, a practi-
cal streaming algorithm needs to make a quick decision of what information
to output as the data continue coming in piece after piece. The processing of
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such data requires quite different algorithmic approaches from the ones toward
off-line static data sets on memory-loaded machines. For space-limited com-
pression/decompression of streaming data, one-way (or real-time) finite-state
automata have been widely acknowledged as a simple, practical model for imple-
menting streaming algorithms with little memory. Historically, the notion of finite-
state compressors/decompressors was introduced as early as in 1948 by Shan-
non [20] and later studied by Huffman [10] as well as Ziv and Lempel [28]. As
another variant of Bennett’s logical depth [3], Doty and Moser [8] used one-way
deterministic finite-state automata as a computational model of decompression
and introduced the notion of finite-state depth. Notice that Kolmogorov com-
plexity (and thus Bennett’s depth notion) relies on the existence of a univer-
sal Turing machine that can simulates all other Turing machines. Although no
“universal” finite automaton exist, we can easily circumvent this problem by col-
lectively considering all bounded-size finite-state automata. Lately, Jordon and
Moser [11,12] considered its further extension to one-way pushdown automata
and “Lempel-Ziv” algorithms [28]. Those automata-based formalisms of depth
concept in [8,11,12] are therefore quite different from the Turing-machine-based
formalism of [1,13,17].

It is quite natural to extend the notions of depth and shallowness of [8,11,12]
to other models of compression/decompression procedures. In this exposition,
we in particular intend to use one-way quantum finite-state automata and intro-
duce the notions of quantum finite-state depth and shallowness. The idea of
quantum-mechanical computation, nonetheless, dates back to the 1980s. Benioff
[2], Deutsch [6,7], Yao [27], and Bernstein and Vazirani [4] proposed the early
notions of quantum Turing machine and quantum circuit. See also [22]. Based on
such quantum-mechanical machines, various quantum Kolmogorov complexity
measures have been proposed in [5,9,21]. This exposition follows basic formal-
ism of [8,11,12] analogously to quantum Kolmogorov complexity. The detailed
definitions will follow in Sect. 2. In such a quantum setting, the major goal of
our study is to (1) explore basic features of deep/shallow strings and sequences
and (2) prove the existence of deep/shallow infinite sequences.

This work is merely an initial step toward a more exciting development of
quantum logical depth and shallowness. We hope that its full fledged research
will follow in the near future. See also Sect. 5 for a brief discussion.

2 Preparation: Basic Notions and Notation

2.1 Numbers, Sets, Languages, and Quantum States

We use the notations N, Z, and C to denote the sets of all natural numbers
(i.e., nonnegative integers), of all integers, and of all complex numbers. Given
a nonnegative constant e, the succinct notation C

≤e expresses the set {γ ∈
C : |γ| ≤ e}. Given a finite set S, |S| indicates the cardinality of S (i.e., the
total number of elements in S). For two functions f and g on N, we say that f
majorizes g (denoted f ≥ g) if f(n) ≥ g(n) holds for all n ∈ N. We informally say
that a property P (n) holds for almost all n ∈ N if there exists a number n0 ∈ N
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such that P (n) holds for all n ∈ N with n ≥ n0. The notation f + g denotes
the function h defined as h(x) = f(x) + g(x) for any input x. In particular, for
any constant function g(x) = c, we succinctly write f + c. All polynomials are
assumed to take nonnegative rational numbers. All logarithms are taken to the
base 2. We set log(1) x = log x and log(k+1) x = log(log(k) x) for any k ∈ N

+ and
for any positive real number x. We also define ilog(x) to be �log x� for x > 0
together with ilog(0) = 0.

We assume the reader’s familiarity with the basics of formal languages and
automata theory. In particular, λ denotes the empty string of length 0. For two
strings (or two sequences) x and y, x is a prefix of y (or equivalently, y is a suffix
of x), denoted x � y, if there is a string (or a sequence) z such that xz = y.
Given any alphabet Σ and any number n ∈ N, Σn (resp., Σ≤n) denotes the
set of all strings of length exactly n (resp., length at most n). We often identify
decision problems with their associated languages.

Mostly, we use {0, 1} as our alphabet. While the notation {0, 1}∗ denotes the
set of all (finite-length) binary strings, we write {0, 1}ω for the set of all infinite
binary sequences. Let s[i] denote the (i + 1)th symbol of s. It then follows that
s = s[0]s[1] · · · s[|s| − 1]. Given a sequence S, we use the notation S�n to denote
the initial segment of S, consisting only of the first n elements of S. We also
write s�n to the length-n prefix of a string s.

The reader’s familiarity is also assumed with the basic quantum information
and computation in, e.g., [14,18]. The notation ‖|φ〉‖ denotes the �2-norm of |φ〉,
i.e., ‖|φ〉‖ =

√〈φ|φ〉. For any index k ∈ N
+, Hk denotes a k-dimensional Hilbert

space1 and Hall is set to be
⋃

k≥1 Hk. A quantum bit (or a qubit) is a unit-
norm vector of H2. A unit (computational) basis of H2 is expressed as {|0〉, |1〉}.
Given a quantum state |φ〉 in a finite-dimensional Hilbert space, the notation
�(|φ〉) denotes the logarithm of the dimension of this space. For instance, any
vector |φ〉 in H2k has length �(|φ〉) = k.

2.2 One-Way Quantum Finite-State Transducers with Garbage
Tapes

As noted in Sect. 1, our purpose is to model “streaming algorithms” that receive
incoming streaming data, instantly process them, and produce the desired output
values. After the incoming data are read from the input tape, they should be
removed2 (or erased) from the input tape.

Finite-state transducers are one of the simplest algorithmic procedures to
transform strings to (possibly) different strings. A tape is called write-once if its
tape head never moves to the left and, whenever the tape head writes a non-
blank symbol, the tape head must move to the next blank cell. A core concept
of this exposition is quantum finite-state transducers equipped with garbage

1 It is possible to expand H2k to H≤2k = span{|x〉 | x ∈ {0, 1}≤k}, composed of basic
vectors of mixed lengths.

2 Unless we allow the 1qft to remove the read input data to a garbage tape, in the
definition of QFS-complexity given later, |φ〉 can be reduced to a classical string.
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tapes [24,26] (implicitly [23]). A garbage tape is a write-once tape onto which a
quantum finite-state transducer dumps unnecessary information. The use of such
a garbage tape is essential for quantum finite-state automata and, in particular,
it helps the automata postpone any intermediate measurement until the end of
their computation.

We use the following model of quantum finite-state transducers, which are used
to transform any quantum state into another one. A (one-way) quantum finite-
state transducer (or a 1qft, for short) T is a septuple (Q,Σ, {�,�}, Θ, Γ, δ, q0),
where Σ is an input alphabet, Θ is a garbage alphabet, and Γ is an output alphabet,
and q0 (∈ Q) is the initial (inner) state. The function δ is a quantum transition
function δ : Q×Σ̌×Q×Θ≤e×Γ≤e → C

≤1 for a constant e ∈ N
+, where Σ̌ = Σ∪

{�,�}. No halting state is needed because M ’s tape head must halt when reaching
the right endmarker �. Each output value of δ is called a transition amplitude or
simply an amplitude. Generally, we allow arbitrary complex amplitudes for 1qft’s.
For readability, we intentionally write δ(p, σ|q, θ, τ) instead of δ(p, σ, q, θ, τ). The
number e indicates the maximal length of string that can be written down on an
output tape as well as a garbage tape in a single step and this value e is called the
production size of T , denoted prod(T ).

The transducer T begins to scan the left endmarker � in the initial (inner)
state |q0〉 and then halts after processing the right endmarker �. All tape cells
are indexed by natural numbers. For the input tape, cell 0 contains � and cell
|x| + 1 contains � if x is an input string. The transducer T moves its input-tape
head in one direction from left to right whenever it scans a tape symbol. Such
a movement is also referred to as “real time.” Similarly, the two other heads of
garbage and output tapes move in one direction to the next blank cells whenever
they write non-blank symbols. A very important point is that, whenever M reads
an input symbol σ, M must erase σ (namely, replace σ by a designated blank
symbol B). This process can be carried out “unitarily” because of the existence
of the garbage and the output tapes. Assuming that T is in inner state p scanning
symbol σ, if we apply a transition of the form δ(p, σ|q, θ, τ) = α, then T changes
its inner state to q, writes θ on its garbage tape, and writes τ on its output
tape with amplitude α. In particular, when either θ = λ or τ = λ, we interpret
this step as a stationary move (or a λ-move) of T ; namely, T ’s tape head stays
still with writing no non-blank symbol. A configuration of M is a quadruple
(q, y, z, w), which indicates that M is in inner state q, scanning the first symbol
of the remaining input string y, the garbage tape consists of z, and the output
tape (except for the blank cells) contains w. A single application of δ changes one
configuration to another. When an input x is given, the initial configuration is
of the form (q0, x̃, λ, λ) and a final configuration has one of the forms (q, λ, z, w),
where x̃ = �x�. A series of configurations from an initial configuration to a
final configuration is a computation path if each intermediate configuration is
obtained from the previous one by a single application of δ. It is important to
remember that M is always assumed to behave as a unitary operator over the
Hilbert space of its configurations (which is called a configuration space).

A (projective) measurement in a computation basis B is a projection Π of
any given quantum state onto the Hilbert space spanned by all elements of
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B. After M halts with a quantum state |ξ〉, we perform a measurement and
obtain a classical string y with probability ‖〈ξ|y〉‖2, where 〈ξ|y〉 means the un-
normalized quantum state obtained from |ξ〉 after observing y. See [25] for its
formal treatment. We define the projective majority function τ as τ(|ξ〉) = y
iff ‖〈ξ|y〉‖2 > 1

2 , provided that such a string y exists. Notice that this string
y is uniquely determined. This y is called the projective majority string in |ξ〉.
For brevity, we say that, on input |φ〉 ∈ Hall, T outputs y with probability η if
T starting with |φ〉 given on the input tape with the two endmarkers produces
y on its output tape with probability η. Moreover, we denote by �opt(|ξ〉) the
length of output strings y observed in |ξ〉.

A “natural” complexity measure for a 1qft T is the state complexity of T ,
denoted state(T ), which is the number |Q| of all inner states. Another important
measure is the aforementioned production size of T .

For comparison, we also consider a deterministic analogue of 1qft’s.
A one-way deterministic finite-state transducer (or a 1dft) is of the form
(Q,Σ, {�,�}, Γ, δ, q0) with a map δ from Q × Σ̌ to Q × Γ≤e.

2.3 Description Sizes of 1dft’s and 1qft’s

Recall from Sect. 1 that there is no “universal” 1qft that can simulate any other
1qft. To circumvent the lack of universality, we instead consider a family of all
1qft’s of bounded “sizes” that can produce a target string x with high probability
from certain compressed quantum information |φ〉. Our intention is to define the
decompression complexity in Sect. 3.1. For our purpose, we need to properly
define the “size” of each 1qft.

We begin with an easy case of a 1dft T . Since T ’s behavior is completely
dictated by δ, we first express δ as a “table”, indexed by the elements in Q × Σ̌,
in which all entries are certain elements in Q × Γ≤e, where e is the production
size of T . The number of such tables is 2t for t = |Q||Σ̌|(log |Q||Γ≤e|), which
equals 4|Q|(log |Q|+ e+1). Since the table size depends on the state complexity
state(T ) and the production size e, we introduce the description size of T as
4|Q|(ilog|Q| + e + 1). The notation |T | is used to denote the description size of
T . For each constant k ∈ N

+, the notation DFST≤k expresses the set of all 1qft’s
T whose description size |T | is at most k. It follows that |DFST≤k| ≤ 2k+1.

As for 1qfa’s, an effective encoding of each 1qfa was given in [19,26] using a
quantum-circuit approximation scheme for its time-evolution operator. However,
we here do not want to rely on such a complicated scheme. In a similar way
to the case of 1dft’s, T ’s time-evolution operator3 can be indexed by two sets
Q × Σ̌ and Q × Θ≤e × Γ≤e. For each index (q, σ) ∈ Q × Σ̌, let us consider a
quantum state |q, σ〉⊗|ψq,σ〉 for |ψq,σ〉 =

∑
p,θ,τ δ(q, σ|p, θ, τ)|p, θ, τ〉. We further

set |ΨT 〉 =
⊗

q,σ |ψq,σ〉, where (q, σ) ranges over Q×Σ̌. This quantum state |ΨT 〉
clearly “describes” T and it has dimension 2t for t = |Q||Σ̌||Q||Θ≤e||Γ≤e|. Since

3 This unitary operator, which is naturally induced from δ, transforms a superposition
of configurations to another one.
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t equals 4|Q|2(e+1)2, we define the description size |T | of T to be 4|Q|2(e+1)2.
Similar to DFST≤k, QFST≤k is defined in terms of 1qft’s instead of 1dft’s.

3 Basic Definitions

3.1 Quantum Finite-State Compressors and Decompressors

The notion of quantum finite-state transducers is a natural extension of finite-
state transducers. In this exposition, we thus use 1qft’s to compress and decom-
press streaming data sets in a quantum-mechanical way. Note that, since a 1qft T
behaves in a quantum fashion, it can produce a superposition of different outputs.
For readability, we call a 1qft a QFS-compressor (resp., a QFS-decompressor) if
it is used to compress (resp., decompress) given data sets.

Fix our input alphabet Σ to be {0, 1}. Instead of considering the minimal
size of programs on a single “universal” Turing machine, we consider all possible
QFS-decompressors for defining an appropriate decompression complexity. Let
us introduce a key notion, QDCp

ε(x), which measures the minimal size of inputs
from which 1qft’s can produce target strings x with reasonably high probability.
Let ε ∈ [0, 1) be a fixed error bound. The (p, ε)-quantum-finite-state decom-
pression complexity4 (or the (p, ε)-QFSD-complexity) of a string x, denoted by
QDCp

ε(x), is defined as minT {QDCε(T : x) | T ∈ QFST≤p(|x|)}, where QDCε(T :
x) = min|φ〉,T {�(|φ〉) | |φ〉 ∈ Hall∧T (|φ〉) = |ξ〉∧�opt(|ξ〉) = |x|∧‖〈ξ|x〉‖2 ≥ 1−ε}.
Intuitively, a 1qft T of description size at most p(|x|) takes a compressed quan-
tum state |φ〉 in Hall as its input and transforms it to |ξ〉 whose outputs must be
close to |x〉. As before, when p(n) = k for a constant k ∈ N, we write QDCk

ε(x).
Since ε �= 1, for later use, when we only demand that ‖〈ξ|x〉‖2 > 0, we explicitly
write QDC1(T : x) and QDCp

1(x). Obviously, QDCk
ε(x) ≥ QDCk

1(x) holds for
any ε ∈ [0, 1). Since every step of T in QFST≤p(|x|) produces at most e = prod(T )
symbols, it follows that QDCp

ε(x) ≥ |x|
e .

As a quick example, let us consider a unique identity machine Mid, which is
a 1qft Mid that, on input z, produces z on its output tape. If k0 denotes the
description size of Mid, then we obtain QDCk0

0 (z) ≤ |z| for all z ∈ Σ∗.
A simple majority vote strategy is often taken to amplify the probability of

successfully producing the target string x. As shown below, such a strategy over,
say, 3 samplings may increase the QFST-complexity 3 folds.

The shuffled string of three given strings z1, z2, z3, denoted [z1, z2, z3], is
defined as follows. Let z1 = a1a2 · · · ak, z2 = b1b2 · · · bk, and z3 = c1c2 · · · ck. The
shuffled string [z1, z2, z3] is then set to be a1b1c1a2b2c2 · · · akbkck.

Lemma 1. Let ε ∈ [0, 1/2) and ε′ = ε2(3 − ε). There exists a constant c > 0
such that QDCp+c

ε′ (x) ≤ 3QDCp
ε(x) for any x.

4 Following Vitányi’s formulation [21], however, it is also possible to define QDCp(x) =
minT,|φ〉{�(|φ〉) + �−log ‖〈ξ|x〉‖2� : T ∈ QFST≤p(|x|), T (|φ〉) = |ξ〉 ∧ �opt(|ξ〉) = |x|}.
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Proof. Let k = QDCp
ε(x) and take T ∈ QFST≤p(|x|) and |φ〉, |ξ〉 ∈ Hall such

that T (|φ〉) = |ξ〉, �opt(|ξ〉) = |x|, and ‖〈ξ|x〉‖2 ≥ 1 − ε. Let |φ〉 =
∑

z:|z|=k αz|z〉
with

∑
z:|z|=k |αz|2 = 1. Consider |φ(3)〉 =

∑
z1,z2,z3

αz1αz2αz3 |[z1, z2, z3]〉.
We design a new 1qft M that reads [z1, z2, z3] in |φ(3)〉 and simulates T (ρ1),

T (ρ2), and T (ρ3) in parallel, where ρi is obtained by tracing out all zj for j �= i.
If at least two simulations reach accepting states, then M accepts; otherwise, M

rejects. The total error probability of M on |φ(3)〉 is at most
∑3

i=2

(
3
i

)
ε3−i(1−

‖〈ξi|x〉‖2)i ≤ ε2(3 − ε) = ε′. ��
A one-way reversible finite transducer (or a 1rft, for short) can be seen as

a special case of 1qft restricted to classical computation with no garbage tape
and no error. A function f : {0, 1}ω → {0, 1}ω is called RFS-computable if there
exist a 1rft T and a series {xn}n∈N such that, for all sequences S ∈ {0, 1}ω, (i)
T (S�n) = xn for any n ∈ N, (ii) limn→∞ |xn| = ∞, and (iii) xn � f(S) for any
n ∈ N. Note that, since T is one-way, |xn| ≤ |xn+1| immediately follows. For
readability, we succinctly write T (S) = f(S) if f is RFS-computable by T .

3.2 Quantum Finite-State Depth and Shallowness

Let us introduce the notion of quantum finite-state depth/shallowness in details.
We are more concerned with the difference between two values QDCp1

ε (x) and
QDCp2

ε (x) for two separate functions p1 and p2. For such functions p1 and p2,
assuming that p1 ≤ p2, we define the complexity measure QDp1,p2

ε (x) to be the
difference QDCp1

ε (x) − QDCp2
ε (x) for any x ∈ Σ∗.

The depth and shallow notions are more suited for an application to infinite
sequences than individual finite strings. We are thus more interested in infinite
sequences and their QFS-decompression complexity. Given an infinite sequence
S ∈ {0, 1}∞, we say that S is (μ, ε,G)-quantum-finite-state deep (or (μ, ε,G)-
QFS-deep) if, for any p ∈ G, there exists an appropriate function q ∈ G with
q ≥ p such that QDp,q

ε (S�n) ≥ μ(n) holds for almost all numbers n in N.
Furthermore, S is said to be (μ, ε,G)-quantum-finite-state shallow (or (μ, ε,G)-
QFS-shallow) if there exists a p ∈ G such that, for any function q ∈ G with
q ≥ p, QDp,q

ε (S�n) ≤ μ(n) holds for almost all n in N. Notice that the above
two notions, (μ, ε,G)-QFS-depth and (μ, ε,G)-QFS-shallowness, are not logically
opposite to each other. Given two sets M and G, we further say that S is
(M,G)-QFS-deep (resp., (M,G)-QFS-shallow) if there are elements μ ∈ M and
ε ∈ [0, 1/2) such that S is (μ, ε,G)-QFS-deep (resp., (μ, ε,G)-QFS-shallow).

As candidates of the aforementioned two sets M and G, we will consider the
following three sets of specific functions: lin = {p | p is a linear function}, log =
{f | f is a logarithmic function}, and const = {f | f is a constant function}.

In comparison, we also define a deterministic analogue of one-way quantum
finite-state depth and shallowness. With the use of 1dft’s, an FS analogue of
QDCp

ε(x) is formulated as follows. Let DDCp(x) = min{DDC(T : x) | T ∈
DFST≤p(|x|)}, where DDC(T : x) = min{|w| : T (w) = x}. Finally, we define the



Quantum Logical Depth and Shallowness of Streaming Data 185

one-way deterministic finite-state depth complexity as DDp1,p2(x) = DDCp1(x)−
DDCp2(x). When p is a constant function of the form p(n) = k for all n ∈ N, we
write DDCk(x) in place of DDCp(x).

Lemma 2. Let k and n be any two numbers in N
+. Assume that k ≤ n + 1 for

all n. There exists a string x ∈ Σn for which DDCk(x) ≥ n − k − 1.

Proof. Let μ(n) = max{DDc(x) | x ∈ Σn}. Consider a map from x in Γn

to (w, T ) in Σμ(n) × DFST≤k such that T (w) = x. By this map, we obtain
2n ≤ 2μ(n) ·2k+1. This is equivalent to n ≤ μ(n)+k+1. Therefore, it follows that
μ(n) ≥ n − k − 1. ��

The notion of (M,G)-DFS-depth is defined in a similar way to the (M,G)-
QFS-depth. This notion will be used in Proposition 15.

4 Major Contributions

4.1 Basic Properties of QFSD-Complexity

We start with studying fundamental properties of QFS-complexity. Berthiaume
et al. [5] claimed that the quantum Kolmogorov complexity of classical strings
coincides with the classical one modulo a certain constant.

Since, in our 1qft setting, quantum computation can simulate deterministic
computation with the help of garbage tapes, we obtain the following simple
relationship between DFS- and QFS-complexities.

Lemma 3. There exists a constant c > 0 such that, for any function p,
DDCp(x) ≥ QDCp+c

0 (x) holds for all strings x ∈ Σ∗.

Proof. Let k = DDCp(x) and take w ∈ Σ∗ and M ∈ DFST≤p(|x|) such that
M(w) = x and k = |w|. Since M is a 1dft, we can transform it to an “equivalent”
1qft, say, T that simulates M with probability 1 properly using a garbage tape.
Note that state(T ) = state(M) + O(1). Therefore, T is in QFST≤p(|x|)+c for a
certain constant c > 0. By the definition, it follows that T (|w〉) = |ξ〉, �opt(|ξ〉) =
|x|, and ‖〈ξ|x〉‖2 = 1. This implies that QDCp+c

0 (x) ≤ k. ��
In what follows, we naturally expand a classical string x used in the definition

of QDCp
ε(x) to a quantum state |ψ〉.

Theorem 4. Fix k,m, n ∈ N
+ with k + m + 2 < n. There exist a subspace V

of H2n of dimension 2n − 2k+m+2 and a string x ∈ Σn satisfying QDCk
1(|ψ〉) ≥

m + 1 for any |ψ〉 ∈ V .

Proof Sketch. For convenience, we write H≤2m for
⊕m

i=1 H2i . In this proof,
we view a description of 1qft in QFST≤k as a vector in H≤2k and view QFST≤k

as the Hilbert space spanned by all such vectors. Let Pk,m denote the Hilbert
space spanned by appropriate basis vectors of QFST≤k ⊗ H≤2m . The dimension
of Pk,m is 2k+1 · 2m+1 = 2k+m+2.
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We consider a map U defined by U(|T 〉|φ〉) = T (|φ〉). We define A as the set
of all vectors in H2n that are orthogonal to all vectors of the form U(|T 〉|φ〉) for
|T 〉|φ〉 ∈ Pk,m. Note that the dimension of U(|T 〉|φ〉) is 2n.

Finally, we choose the set V of all elements in H2n that are orthogonal to
all vectors in A. This set V has dimension 2n − 2k+m+2. It clearly follows that
QDCk

1(|ψ〉) ≥ m + 1 for all vectors |ψ〉 ∈ V . ��
Corollary 5. Let k ∈ N

+ and ε ∈ [0, 1/2). For any sufficiently large n, there
exists a string x ∈ Σn such that QDCk

ε(x) ≥ n − k − 2.

Proof. Let n be any sufficiently large integer. We set m = n − k − 3, which
satisfies k+m+2 < n. It follows by Theorem 4 that there exists a string x ∈ Σn

for which QDCk
ε(x) ≥ QDCk

1(x) ≥ m + 1 = n − k − 2. ��
Next, we show an invariance property of QFS-complexity under certain infor-

mation lossless operations. A weak form of the so-called slow growth law holds
for our notion of QFS-deep information.

Theorem 6. Let S be any sequence in {0, 1}ω and let f : {0, 1}ω → {0, 1}ω be a
RFS-computable. If f(S) is (M,G)-QFS-deep, then S is also (M,G)-QFS-deep.

To verify the theorem, we first prove the following general lemma. Let us
recall that τ(|ξ〉) denotes the projective majority string in |ξ〉.
Lemma 7. Let ε, ε′ ∈ [0, 1/2). Let M be a 1qft with error-probability at most ε′

and let N be a 1rft. Let p be any function on N. Assume that ε̃ ≥ ε + ε′ − εε′.

1. There exists a c > 0 such that QDCp
ε(x) ≥ QDCp+c

ε̃ (τ(M(x))) for any x.
2. There exists a c > 0 such that QDCp

ε(N(x)) ≥ QDCp+c
ε (x) for any x.

Proof Sketch. (1) Let M = (Q̂,Σ, {�,�}, Θ̂, Γ̂ , δ̂, q̂0) be given as in the
lemma and let y = τ(M(x)). Let m = QDCp

ε(x). Take |φ〉, |ξ〉 ∈ Hall and
T ∈ QFST≤p(|x|) such that �(|φ〉) = m, T (|φ〉) = |ξ〉, �opt(|ξ〉) = |x|, and
‖〈ξ|x〉‖2 ≥ 1 − ε. Assume that T has the form (QT , Σ, {�,�}, ΘT , ΓT , δT , q0,T ),
provided that QT ∩ Q̂ = ∅, ΘT ∩ Θ̂ = ∅, and ΓT ∩ Γ̂ = ∅.

We wish to define a new 1qft T ′ to produce y. Intuitively, on input |φ〉, we
run T on |φ〉 and, instead of writing symbols on the output tape, we feed them
to M and run it. This is possible because T outputs at most a fixed number
of symbols at each step and we can run M on these symbols incessantly. Let
|ξ〉 =

∑
z,w αzw|z〉|w〉, where z is the content of T ’s output tape and w is the

content of T ’s garbage tape together with an inner state. Since x is produced
by T with probability at least 1 − ε, M produces y with the probability at least
(1 − ε)(1 − ε′) ≥ 1 − (ε + ε′) + εε′, which is at least 1 − ε̃. Since state(M) is a
constant and state(T ′) ≤ state(T ) + state(M) + c for an appropriately chosen
constant c > 0, we obtain QDCp+c

ε̃ (y) ≤ �(|φ〉) = m.
(2) Let N be any 1rft. Assume that m = QDCp

ε(y) with y = N(x). Take
T ∈ QFST≤p(|x|) and |φ〉, |ξ〉 ∈ Hall such that �(|φ〉) = m, T (|φ〉) = |ξ〉,
�opt(|ξ〉) = |y|, and ‖〈ξ|y〉‖2 ≥ 1−ε. Since N is reversible, its transition between
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two consecutive configurations is reversible. Hence, there exists another 1rft N−1

satisfying N−1(y) = x. Thus, we first run T on |φ〉 and then feed an output of
T to N−1 symbol by symbol as soon as T writes symbols. This implies that
QDCp+c

ε (y) ≤ m for a certain constant c > 0. ��
We return to Theorem 6 and give its proof.

Proof of Theorem 6. Let M be a 1qfa that computes f and let S′ = f(S).
Since S′ is (M,G)-QFS-deep, for an appropriate μ ∈ M, the following holds:
for any p ∈ G, there exists a q ∈ G such that p <= q and QDp,q

ε (S′�n) =
QDCp

ε(S
′�n) − QDCq

ε(S
′�n) ≥ μ(n) for almost all n. By Lemma 7, we obtain

QDCp+c
ε (N(S�n)) ≤ QDCp

ε(S�n) and QDCq+c′
ε (S�n) ≤ QDCq

ε(N(S�n)). Thus,
it follows that QDp,q

ε (S�n) = QDCp
ε(S�n) − QDCq

ε(S�n) ≥ QDCp
ε(S�n) −

QDCq+c′
ε (N(S�n)) ≥ QDCp+c

ε (N(S�n)) − QDCq+c′
ε (S′�n) = QDCp′

ε (S′�n) −
QDCq′

ε (S′�n) ≥ μ(n), where p′ = p + c and q′ = q + c′. ��

4.2 Subadditivity and Monotonicity Properties

One important feature of classical Kolmogorov complexity is subadditivity prop-
erties. As shown in, e.g., [21], quantum Kolmogorov complexity fails to satisfy
a certain form of these properties. For the proof, we will use a technical tool
of b-pairing function. For each constant b ∈ N

+, we define the b-pairing func-
tion 〈·, ·〉b as follows. Given z1, z2 ∈ {0, 1}∗, let z1 = z11z12 · · · z1tz1,t+1 with
|z1i| = b and t = �|z1|/b� for all i ∈ [1, t]Z and |z1,t+1| < b. Moreover, let
z1,t+1 = z̄1z̄2 · · · z̄l with z̄i ∈ {0, 1} and l = |z1,t+1| for any i ∈ [l]. Finally,
we set 〈z1, z2〉b to be 0z110z120 · · · 0z1t10z̄10z̄20 · · · 0z̄l11z2. It then follows that
|〈z1, z2〉b| ≤ (1 + 1/b)|z1| + |z2| + b + 2.

Lemma 8. Let η ∈ (0, 1) and let ε < 1− 1/
√

2. Let p be any function on N and
assume that p(|x|)+p(|y|) ≤ p(|x|+ |y|) for any x and y. There exists a constant
c > 0 such that (1+η)QDCp

ε(x)+QDCp
ε(y) ≥ QDCp+c

ε′ (xy) for almost all x and
any y, where ε′ = ε(2 − ε).

Proof. We further expand the scope of the b-pairing function into vectors in
order to encode two quantum states |φ1〉 and |φ2〉 into a single quantum state.
Let |φ1〉 =

∑
z1:|z1|=k1

αz1 |z1〉 and |φ2〉 =
∑

z2:|z2|=k2
βz2 |z2〉. Given a number

η ∈ (0, 1), we set b = �2/η�. We then define the desired coding |[φ1, φ2]b〉 to
be

∑
z1,z2

αz1βz2 |z〉, where |z1| = k1, |z2| = k2, and z = 〈z1, z2〉b. Note that
�(|[φ1, φ2]b〉) ≤ (1 + 1/b)k1 + k2 + b + 2. In particular, when k1 ≥ b(b + 2), we
obtain �(|[φ1, φ2]b〉) ≤ (1 + 2/b)k1 + k2.

Let k1 = QDCp
ε(x) and k2 = QDCp

ε(y). Take |φ1〉, |φ2〉 ∈ Hall, T1 ∈
QFST≤p(|x|), and T2 ∈ QFST≤p(|y|) such that T1(|φ1〉) = |ξ1〉, T2(|φ2〉) = |ξ2〉,
�opt(|ξ1〉) = |x|, �opt(|ξ2〉) = |y|, ‖〈ξ1|x〉‖2 ≥ 1−ε, and ‖〈ξ2|y〉‖2 ≥ 1−ε. Assume
that k1 ≥ b(b + 2).
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We want to design a new 1qft T to produce 〈x, y〉 with high probability. We
set |φ〉 = |[φ1, φ2]b〉. It then follows that �(|φ〉) ≤ (1+ 2

b )|z1|+ |z2| ≤ (1+η)|z1|+
|z2| ≤ (1+η)k1+k2. On each input 〈z1, z2〉b in |φ〉, we run T1(z1) to produce x and
then run T2(z2) to output y. Note that state(T ) ≤ state(T1)+state(T2)+O(1) =
p(|x|)+ p(|y|)+O(1) ≤ p(|x|+ |y|)+O(1). In the end, T produces xy with error
probability at most (1− ε)2 = ε′. Finally, we take an appropriate constant c > 0
so that QDCp+c

ε′ (xy) ≤ �(|φ〉) ≤ (1 + η)k1 + k2. ��
The so-called monotonicity property holds for QFS-complexity.

Lemma 9. Let η ∈ (0, 1). Let p be any function. Given any x, there exists a
constant c > 0 such that (1 + η)QDCp

ε(xy) ≥ max{QDCp+c
ε (x),QDCp+c

ε (y)} for
any x and y.

Proof. Given a number η ∈ (0, 1), we set b = �1/η�. Let m = QDCp
ε(xy) and

take T ∈ QFST≤p(|xy|) and |φ〉, |ξ〉 ∈ Hall such that T (|φ〉) = |ξ〉, �opt(|ξ〉) = |xy|,
and ‖〈ξ|xy〉‖2 ≥ 1 − ε. Let |φ〉 =

∑
i αi|uivi〉 with

∑
i |αi|2 = 1, where vi is a

string that forces T (vi) to produce a quantum state |ξi〉 satisfying �opt(|ξi〉) = |y|.
We first show that (1 + η)m ≥ QDCp+c

ε (x) for an appropriate positive con-
stant c. We modify T so that it reads 〈ui, vi〉b, locates ui, runs T on ui, pro-
duces an output, and removes any other output related to vi onto a garbage
tape. We write T ′ for this modified T . Let |φ̃〉 =

∑
i αi|〈ui, vi〉b〉. Note that

�(|φ̃〉) ≤ (1 + η)m. Since T (|φ̃〉) = |ξ̃〉 and ‖〈ξ̃|x〉‖2 ≥ 1 − ε, we obtain
QDCp+c

ε (x) ≤ (1 + η)m, which implies the lemma. In a similar way, we can
show that (1 + η)m ≥ QDCp+c

ε (y). ��
One of the most distinguished features of quantum Kolmogorov complexity,

in comparison with the classical one, is the complexity of t-fold quantum states.
The quantum Kolmogorov complexity of multiple copies of a quantum state was
already discussed in [5,9,21]. Since our setting is quite different from theirs, it
is possible to prove Lemma 10.

Gács [9] introduced the notation of H(|ψ〉) for − log〈ψ|μ|ψ〉, where μ is the
quantum universal semi-density matrix, which is a density matrix but is allowed
to use operators with trace less than 1. A semimeasure is a nonnegative real
function m(·) satisfying

∑
x∈Σ∗ m(x) ≤ 1. Such an m is universal if, for any other

semi-computable semimeasure ν, there exists a constant c > 0 such that cν(x) ≤
m(x) for all x. Moreover, let K(w) denote the prefix Kolmogorov complexity of
w.

Lemma 10. Let ε ∈ [0, 1/2) and n, r ∈ N
+. There exists a constant c > 0 such

that, for any |ψ〉 ∈ H2n , if QDCk
ε(|ψ〉) ≤ r, then H(|ψ〉) ≤ r+K(r)+log 1

1−ε +c.

Proof Sketch. We loosely follow [9]. Let Pr denote the projection to H2r and
let |φ〉 ∈ H2r . Let Π denote the projection onto the output strings and define
Ψ |φ〉〈φ| = ΠρΠ†, where ρ = T |φ〉〈φ|. Assume that QDCk

ε(|ψ〉) ≤ r.
Let m(·) denote a universal semimeasure and consider the operator Λ =∑

i m(i)2−iPi. Note that σ = m(r)2−rT |φ〉〈φ| satisfies σ < cμ for a certain
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constant c > 0. Take an eigenvalue decomposition ρ =
∑

i pi|i〉〈i| with p1 ≥ 1−ε
and |〈1|ψ〉|2 ≥ 1 − 2ε since |〈ψ|ρ|ψ〉| ≥ 1 − ε, where p1 is the largest eigenvalue.
Since |φ〉〈φ| ≤ Pr, we obtain m(r)2−r|φ〉〈φ| ≤ Λ.

It then follows that H(|ψ〉) = − log〈ψ|μ|ψ〉 ≤ − log〈ψ|σ|ψ〉 + c′ =
− log(

∑
i m(r)2−rpi|〈i|ψ〉|2) + c′ ≤ − log(m(r)2−rp1 · ∑

i |〈i|ψ〉|2) + c′ =
− log m(r) + r − log(1 − ε) + c′ for a certain constant c′ > 0 because of∑

i |〈i|ψ〉|2 = 1. Since K(r) = − log m(r), the lemma follows. ��
Proposition 11. Let k, n ∈ N

+. Let ε ∈ [0, 1/2). There exists a constant c > 0

such that max{QDCp
ε(x

k) | x ∈ Σn} ≥ 1
2 log

(
k + 2n − 1

k

)
− c.

Proof. For convenience, let d =
(

k + 2n − 1
k

)
. Let ε ∈ [0, 1/2). By Lemma

10, it follows that H(z) ≤ QDCk
ε(z) + K(QDCk

ε(z)) + c ≤ 2QDCk
ε(z) + c for a

fixed constant c > 0 independent of z. Gács [9] proved that max{H(|ψ〉⊗m) |
|ψ〉 ∈ H2n} ≥ log

(
m + 2n − 1

m

)
. We then conclude that max{QDCp

ε(x
k) | x ∈

Σn} ≥ d
2 − c

2 . To derive the proposition, we rewrite c
2 as c. ��

Since
(

k + 2n − 1
k

)
≥ (2n − 1)k ≥ 2k(n−1), we obtain the following conse-

quence.

Corollary 12. There exists a constant c > 0 that satisfies the following: for any
k, n ∈ N

+, there exists a string x ∈ Σn for which QDCp
ε(x

k) ≥ kn
2 − k

2 − c.

4.3 Depth/Shallowness of Infinite Sequences

We first claim that infinite random sequences are shallow. More specifically,
letting k ∈ N

+, an infinite sequence S is called (logk, ε)-QFS-random if, for any
c > 0, there exists an index nc ∈ N

+ such that QDCc log n
ε (S�n) > n − logk n

holds for all n ≥ nc.

Lemma 13. Let k ∈ N
+. Any (logk, ε)-QFS-random infinite sequence is

(polylog, log)-QFS-shallow.

Proof. Let k ∈ N
+ and let S denote any (logk, ε)-QFS-random sequence in

{0, 1}ω. Let c′ denote any large positive constant. Note that, for any c > c′,
QDCc log n

ε (S�n) > n − logk n holds for almost all n. Since QDCc′ log n
ε (S�n) ≤

n, it follows that, for any c > c′, QDc′ log n,c log n
ε (S�n) = QDCc′ log n

ε (S�n) −
QDCc log n

ε (S�n) < n − (n − logk n) = logk n. ��
We next present the existence of infinite deep sequences. An underlying idea

of the subsequent proof comes from [8,11,12] but the proof heavily lies on Lem-
mas 8–9 and Corollary 12.

Theorem 14. There exists an infinite sequence that is (lin, const)-QFS-deep.
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Proof Sketch. Let ε′ = ε(2−ε) with ε, ε′ ∈ [0, 1/2). Let m0 = m1 = 0, m2 = 2,
and mj+1 = mj + 2mj for any j ≥ 2. Note that j ≤ log(3) mj for any j ≥ 6.
Next, we want to define Sj of length 2mj and the desired infinite sequence S
is then defined as S0S1S2S3 · · · . Choose k, r ∈ N

+ and a ∈ {0, 1} satisfying
j = 2k(1 + 2r) + a. Let d = 2mj−2k+4

. By Corollary 12, we take a string wk of
length 22

k+4
for which QDCk

ε(wd
k) ≥ d|wk|

2 − d
2 − c. We set Sj to be wd

k. Note
that |Sj | = d · |wk| = 2mj . Let n denote any integer with n ≥ 6 and let j denote
the largest integer in N

+ satisfying mj+1 ≤ n. This j then induces (k, r, a). Note
that 216 ≤ |wk| ≤ 216j ≤ log(3) n. We set x = S0S1 · · · Sj−1, y = Sj , and z

is the rest of S�n so that xyz = S�n. Note that |x| =
∑j−1

i=0 2mi = mj since
j ≥ 3. By choosing (l, r′) satisfying j + 1 = 2l(1 + 2r′) + (1 − a), let z = z1z2
so that z1 = wd′

l and |z2| < |wl| for an appropriate number d′ ∈ N
+. Note that

n = |xyz| = mj+1 + |z|. Since d′|wl| = n−mj+1, d′ ≤ n−mj+1
|wl| follows. Note that

216 ≤ |wl| ≤ 216(j+1).
It follows by Lemma 9 that QDCk

ε′(xyz) ≥ 1
1+η QDCk

ε′(y) ≥ 1
2 (d|wk|

2 − d
2 −c) ≥

n
4 (1 − 1

|wk| ) − c
2 since η ∈ (0, 1) and d ≤ n

|wk| . Recall from Sect. 3.1 that, for

the identity machine Mid with k0 = |Mid|, QDCk0
0 (u) ≤ |u| holds for any u.

Consider the following new 1qft Nk: on input u ∈ {0, 1}d, output wd
k by applying

δ(q0, σ|q0, σ, wk) = 1, where Q = {q0}, Γ = Θ = {0, 1}, and e = |wk|. Let k1 =
|Nk|. It then follows that QDCk1

0 (y) ≤ d ≤ n
|wk| . Similarly, we design Nl with

k2 = |Nl| and obtain QDCk2
0 (z1) ≤ d′ ≤ n−mj+1

|wl| . Let k′ = k0 + k1 + k2. We then

obtain QDCk′
ε (x) ≤ QDCk0

0 (x) ≤ mj ≤ log n and QDCk′
ε (z2) ≤ QDCk0

0 (z2) ≤
|wl| ≤ 216(j+1). Lemma 8 implies that QDCk′

ε′ (z1z2) ≤ (1 + η)QDCk′
ε′ (z1) +

QDCk′
ε (z2) ≤ 2d′ + |wl| < n

128 . Lemma 8 also implies that QDCk′
ε′ (xyz) ≤ (1 +

η)QDCk′
ε (x) + QDCk′

ε (yz) ≤ (1 + η)[QDCk′
ε (x) + QDCk′

ε (y)] + QDCk′
ε (z) ≤ n

64 .
Therefore, we conclude that QDk,k′

ε′ (S�n) = QDCk
ε′(xyz)−QDCk′

ε′ (xyz) ≥ n
4 (1−

1
|wk| ) − c

2 − n
64 ≥ n

8 . Thus, S is (lin, const)-QFS-deep. ��
The following statement suggests that quantum computation may be differ-

ent from deterministic computation. For the statement, we define the notion of
infinitely often (μ, ε,G)-quantum-finite-state deep (or io-(μ, ε,G)-QFS-deep) by
replacing “almost all n” in the definition of (μ, ε,G)-QFS-depth with “infinitely
many n.” The io-(M,G)-QFS-depth is defined similarly to the (M,G)-QFS-
depth.

Proposition 15. There exists an infinite sequence that is io-(lin, const)-QFS-
deep but not (lin, const)-DFS-deep.

Proof Sketch. The construction of the desired infinite sequence S is similar to
the one given in the proof of Theorem 14. To be more precise, we first choose the
same values mj . Let j ∈ N

+ be any number. If j is odd, then we choose a string
Sj of length 2mj to satisfy C(Sj) ≥ |Sj |, where C(x) denotes the unconditional
Kolmogorov complexity of x. Assume that j is even. Choose two numbers k, r ∈
N

+ satisfying j = 2k(1 + 2r). Let d = 2mj−2k+4
. Take wk of length 22

k+4
that
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satisfies QDCk
ε(wd

k) ≥ d|wk|
2 − d

2 − c. We then define Sj = wd
k. By a similar

argument used in the proof of Theorem 14, we can show that QDk,k′
ε (S�mj) ≥

c′mj for an appropriate constant c′ ∈ (0, 1). Thus, S is io-(lin, const)-QFS-deep.
Next, we argue that S is not (lin, const)-DFS-deep. The following argument is

essentially the same as [11]. Assume that S is (lin, const)-DFS-deep and consider
S�mj+1 for any odd j + 1. Note that, by considering Mid with k0 = |Mid|,
DDCk0(S�mj+1) ≤ |S�mj+1| = mj+1. By our assumption, there is a number
k′ ≥ k0 such that DDCk0(S�mj+1) − DDCk′

(S�mj+1) ≥ cmj+1 for a certain
constant c ∈ (0, 1). This implies that DDCk′

(S�mj+1) ≤ mj+1 − cmj+1 ≤ (1 −
c)mj+1. Take a 1dft M and a string w such that M(w) = S�mj+1 and |w| =
DDCk′

(S�mj+1). We then factorize w into xy so that M reads x and produces
S0S2 · · · Sj−1. Assume that, when M reads y starting in inner state q1 and ends
in inner state q2 by producing Sj . Note that |x| ≥ |S0S1···Sj−1|

k′ = mj

k′ since
k′ ≥ prod(M). It follows that |y| ≤ |w| − |x| ≤ (1 − c)mj+1 − mj

k′ ≤ (1 − c)2mj +
(1 − c − 1

k′ )mj ≤ (1 − c′)2mj for another constant c′ with 0 < c′ < c.
We then design a Turing machine’s “program” p that works as follows. On

input w′ = 〈q1, q2, y〉, p simulates M starting in state q1, reads y, and ends in
state q2. Clearly, p produces Sj . Note that |w| ≤ 2(|q1| + |q2|) + |y| ≤ |y| + 2k′ <
(1 − c′′)2mj for an appropriate constant c′′ with 0 < c′′ < 1 since |q1|, |q2| ≤ k′.
This implies that C(Sj) ≤ |w′| ≤ (1 − c′′)2mj = (1 − c′′)|Sj |. This contradicts
C(Sj) ≥ |Sj |. ��

5 A Brief Closing Discussion

Throughout this work, we have intended to expand the scope of Bennett’s
notion of logical depth and shallowness of binary static data to a realm of
quantum computing. In particular, this exposition has introduced the notions
of quantum finite-state (QFS) depth and shallowness, which are based on quan-
tum finite-state transducers, aiming at the comprehensive study on compres-
sion/decompression procedures of streaming data coming in incessantly through
a communication channel. It should be remarked that our QFS-depth notion
does not require the existence of universal machine. This may open a door to an
introduction of a similar depth notion to other models of computations despite
the lack of universality.

Nonetheless, we are still at an initial stage of the full fledged research on the
foundations and applications of practical variants of logical depth and shallow-
ness on the medium of quantum computing. Our future goal is to cultivate the
theoretical foundations and find various practical applications in different fields
of science and engineering.
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