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Abstract. We propose a new method of learning descriptors for con-
structing classifiers of functional data. These descriptors are moments of
a curve derivative, but their learning is based solely on samples of the
curve itself. Furthermore, the derivative itself is not directly estimated.
This is possible due to the trick of using simultaneously two different
bases of a functional space.

The advantage of extracting features from the derivative instead of
from a curve itself is in raising their sensitivities to a shape of a curve.
As expected, this may result in better classification accuracy. The sim-
ulation experiments that are based on an augmented real data support
this claim, but it is not unconditional. Namely, noticeable improvements
can be obtained when an appropriate classifier is selected.
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1 Introduction

In recent several years, one can observe a growing interest of researchers to ana-
lyze and classify functional data (see monographs and survey papers cited in the
next section). Clearly, important contributions in this direction are much earlier
(see, e.g., [1,10] for reviews on classifying electrocardiogram (ECG) signals and
[3,7] for electroencephalogram (EEG) signals classification and features selection
[4,5] as well as [2] for the survey on the analysis of electromyography signals).

The renewed interest has its origin in growing possibilities of acquiring large
number of samples from new sensors and storing them on cloud databases. An
example of this kind is provided at the end of the paper, where curves from
accelerometers are classified. Their distinctive feature is that they are repetitive,
but in a stochastic sense, i.e., their underlying probability distributions remain
the same for each class, although they are unknown. As the result, curves differ
more by shape than by amplitudes. Therefore, our aim is to derive descriptors of
curves that are based on curves’ derivatives, without having an access to them
directly.
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The paper is organized as follows. In the next section, we justify using curve
descriptors that are based on moments of its derivative instead of the curve
itself. The main result of this section is the derivation of a relationship between
these two kinds of moments. This relationship is crucial for Sect. 3 to construct
an algorithm for learning the derivative descriptor, without having access to
samples of the derivative curve. In Sect. 3 also an interplay between learning
these descriptors and learning a classifier is described. Finally, in Sect. 4, the
extensive results of testing the proposed approach on an augmented real data
are summarized. They aimed to investigate an influence of a classifier on possible
improvements of the classification accuracy.

2 Descriptors Based on the Derivative Moments

Our derivations are based on the notion of square root velocity (SRV) of differ-
entiable functions X(t), Y(t), t ∈ [0, T ] that can be interpreted as signals, curves
etc., defined on a finite time interval of the length T > 0. For those t ∈ [0, T ] for
which the derivative X′(t) is not zero, the SRV of X, denoted further as q(X, t)
is defined as follows

q(X, t) =
X′(t)

√|X′(t)| , t ∈ [0, T ] (1)

or, equivalently,
q(X, t) = sgn(X′(t))

√
|X′(t)|. (2)

From (1) it is clear that the SRV description of X is invariant in a scale and a
vertical position, i.e., for any c > 0 and any β ∈ R:

q(cX, t) = q(X, t), q(β + X, t) = q(X, t), t ∈ [0, T ]. (3)

Let X′ and Y′ be square-integrable on [0, T ], X′, Y′ ∈ L2(0, T ). Then, from
(2) we immediately obtain:

∫ T

0

q4(X − Y, t) dt =
∫ T

0

[X′(t) − Y′(t)]2 dt. (4)

Strictly speaking, the squared right hand side of (4) is not a distance measure,
since X − Y that differ by a constant yield zero in (4).

However, this expression suggests that the derivatives of X, Y, . . . can be
useful in classifying curves in a shape-sensitive way. In particular, moments of
X′, Y′, . . . with respect to a selected basis in L2(0, T ) are worthwhile candidates
for descriptors of X, Y, . . . when one attempts to classify them. We shall follow
this line of reasoning.
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2.1 Modeling Random Curves

The main difficulty is in learning such descriptors from samples of X, Y, . . .
instead of X′, Y′, . . . that are frequently not directly available. In this respect we
shall follow [13,14], where the approach to nonparametric estimation of deriva-
tives from noisy observations of X(t) can be found. However, we emphasise that
in our case X(t) is a random element of L2(0, T ), which implies a different model
of random errors than the one used in [13]. Furthermore, the estimation of X′

is only an intermediate step, since our goal is to learn the moments of X′ with
respect to a selected orthonormal basis.

We refer the reader to [6,8,9,16,19] for more details on shape-sensitive
description of random curves.

Let vk(t), t ∈ [0, T ], k = 1, 2, . . . be a selected orthogonal and complete
sequence in L2(0, T ) with elements that are also normalized to 1 with respect
to the standard norm ||vk||2 =< vk, vk >, where < X, Y >=

∫ T

0
X(t)Y(t) dt.

Then, X ∈ L2(0, T ) has the representation:

X(t) =
K∑

k=1

ak vk(t) + RK(t) , t ∈ [0, T ], (5)

where

RK(t)
def
=

∞∑

k=(K+1)

βk vk(t) (6)

and the coefficients are given by ak =< X, vk >, k = 1, 2, . . . , K, βk =<
X, vk >, k = (K + 1), (K + 2), . . ., while the convergence is understood the L2

norm sense.
Collections of coefficients ak’s and βk’s are both random, but they play dif-

ferent roles in our derivations. Namely, ak’s are regarded as descriptors that are
informative for curves classification, while βk’s are interpreted as coefficients of
non-informative error RK .

Denote by E the expectation with respect to ak’s and βk’s. Although their
distributions are not known, the following assumptions are made:

E[βk] = 0, E[βk βj ] = 0, k �= j k, j = (K + 1), (K + 2), . . . , (7)

γ(K)
def
= E||RK ||2 → 0, as K → ∞, (8)

E(a2
k) < ∞, E(ak βl) = 0, k = 1, 2 . . . ,K, l = (K + 1), (K + 2), . . . (9)

Assumption (8) implicitly imposes constraints on the variability of the residual
curve RK(t), t ∈ [0, T ] for large K.
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For simplicity, 1 ≤ K ≤ ∞ is assumed to be fixed and known. In practice, one
should select K so as to minimize an estimate of the classification error plus a
penalty term for too complicated model, such as in the AIC, BIC etc. criterions.

2.2 The Relationship Between Descriptors of a Curve and Its
Derivative

In the next section, we provide details of learning moments of X′ from equidistant
observations of X only. Here, we outline a general idea. If vk’s are differentiable
and the series (5) and (6) is term-by-term differentiable, then,

X′(t) =
K∑

k=1

ak v′
k(t) + R′

K(t), t ∈ [0, T ], (10)

On the other hand, for wk, k = 1, 2, . . . being an orthonormal and complete
sequence in L2(0, T ), X′ ∈ L2(0, T ) has the representation

X′(t) =
K∑

k=1

bk wk(t) + rK(t), bk = <X′, wk> (11)

rK(t) =
∞∑

k=(K+1

ηk wk(t), ηk = <X′, wk>, k = (K + 1). . . . (12)

For sufficiently large K, according to (8), we approximate X′ in (10) by the first
summand, which yields, after substituting it into (11),

bk =
K∑

j=1

aj <wk, v′
j>, k = 1, 2, . . . , K. (13)

Observe that these formulas are exact, if <wk, R′
K >= 0, k = 1, 2, . . ., but this

is not postulated here.
Summarizing, moments bk’s of X′ with respect to basis wk’s can be expressed

as linear combinations of moments ak’s that are estimable from observations of
X itself, assuming that for each k = 1, 2, . . . , K

at least one <wk, v′
j> �= 0, j = 1, 2, . . . , K. (14)

Additionally, elements <wk, v′
j> of K × K transformation matrix, say B, are

either known or they can be approximated to any desired accuracy by quadrature
formulas.
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3 Learning Classifiers Based on Curves’ Derivative
Descriptors

Suppose, for simplicity of formulas only, that random curves like X are drawn
from two classes, labelled by I and II, that are formed as follows: firstly, vector
ā

def
= [a1, a2, . . . , aK ]tr is drawn from a cumulative distribution function (c.d.f.),

which is either FI or FII . These c.d.f.’s are not known. We do not impose any
special restrictions on them, except for the existence of the second moments of
ak’s and (9). In this way, a large class of classification problems for informative
part of X can be stated. The second step in modeling X is to draw βk’s. Their
distributions are also unknown and only conditions (7), (8) and (9) are assumed
to hold. Finally, X is formed according to (5) and (6). Thus, X may come from
class I or II, depending whether ā was according to c.d.f. FI or FII . The existence
of a priori probabilities 0 < pI < 1, 0 < pII < 1, pI + pII = 1 that X is from
class I or II is postulated, but they are unknown. Their estimation by fractions
in the learning sequence is a simple task, unless an essential class imbalance does
not appear, which is excluded in this paper.

3.1 Learning Sequence

A learning sequence that we have at our disposal is of the form:

LN
def
= {(x̄(1), j1), (x̄(2), j2), . . . , (x̄(N), jN )}, (15)

where jn ∈ {I, II} are correct class labels (provided by an expert), while x̄(n)

are equidistant, in [0, T ], samples from curves X(n), taken at time instants ti,
i = 1, 2, . . . , m, n = 1, 2, . . . , N . Samples forming x̄(n)’s have the following
form:

x
(n)
i = X(n)(ti) = v̄tr(ti) ā(n) + RK(ti), i = 1, 2, . . . , m, (16)

where ā(n) are drawn either according to FJ or FII , while

v̄tr(t)
def
= [v1(t), v2(t), . . . vK(t)]. (17)

Analogously, new X to be classified is represented only by x̄ with elements

xi = X(ti) = v̄tr(ti) ā + RK(ti), i = 1, 2, . . . , m, (18)

Problem Formulation. Using learning sequence LN , derive a classifier that clas-
sifies X, represented only by x̄, to class I or II. This classifier should be shape
sensitive in the sense that, for a preselected orthonormal and complete sequence
wk’s, the classifier decision is based on learning descriptors bk =< X′, wk >,
k = 1, 2, . . . , K, which are directly not available.
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Fig. 1. Examples of curves to be classified

Fig. 2. Descriptors of curves to be classified, stacked together, and displayed as images.
Upper panel – classic DCT descriptors, lower panel – descriptors based on learning
derivatives.

3.2 Learning Descriptors

Model of observations (18) and (16) suggest that for estimating primary descrip-
tors ā and ā(n)’s one may use the method of minimizing the least squares error
(LSE) in the nonparametric setting with deterministic regressors ti’s (see [12]).
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However, in this case the ordinary (unweighted) LSE approach is not recom-
mended, since RK(ti)’s are correlated for moderate K.

Thus, ā is estimated in more classic way as

ˆ̄a = Δm

m∑

i=1

xi v̄(ti) = Δm V̄ x̄, Δm
def
= T/m, (19)

where V̄ is K × m matrix composed of the columns: v̄(ti)’s. It is not difficult to
show that ˆ̄a is asymptotically (as m → ∞) unbised for ā. It is more tedious to
bound the variances of ˆ̄ak’s by ζ(K)/m2, where ζ(K) > 0 depends on K in a
polynomial way.

Transforming samples of the learning curves in the same way as in (19), we
obtain the learning sequence, denoted as AN , composed of the classic descriptors:

AN = {(ˆ̄a(n), jn), n = 1, 2, . . . , N}, ˆ̄a(n) = Δm V̄ x̄(n), (20)

where jn’s are joined at the original order.
Using the plug-in idea and (13), we can learn derivative-sensitive descriptors

as follows:

b̂k =
K∑

j=1

âj <wk, v′
j>, k = 1, 2, . . . , K (21)

and they are also asymptotically unbised and with finite variances that can be
reduced faster sampling (m larger).

Transforming the Learning Sequence. Elements of LN are transformed into
descriptors in the same way as in (21), providing learning sequence BN , say,
of the form:

BN = {(ˆ̄b(n), jn), n = 1, 2, . . . , N}, ˆ̄b(n) = Δm B V̄ x̄(n), (22)

while labels jn’s are rewritten from LN , accordingly.
Summarizing, original learning sequence LN , with usually long sequences of

samples x̄(n), was transformed into learning sequence BN with descriptors for
derivatives. Furthermore, this transformation is linear in x̄(n), which allows for
speeding up computations.

At this stage, it suffices to select a proper classifier, to learn and test it using
BN and to apply it for newly coming sample x̄, after transforming it to ˆ̄b =
Δm B V̄ x̄. For brevity, the obtained classifier will be denoted as CLname[BN ; x̄]
or CLname[AN ; x̄], when the learning is based on standard descriptors, for the
sake of comparisons. For example, the support vector machine (SVM) classifier
that was trained on BN is denoted as SV M [BN ; x̄] and its output is I or II class
label.

As we shall see in the next section, this obvious route of building a classifier
may lead to moderate or essential improvements of the classification accuracy,
depending on the choice of a classifier.
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4 Testing and Comparisons on Augmented Acceleration
Data

Operators’ cabins of large working machines are frequently subject to relatively
high, repetitive accelerations. Benchmark data of this kind are freely available
from [17], while in [18] their detailed description is provided.

The benchmark consists from N = 43 learning curves, each containing m =
1K samples (see Fig. 1, where examples of curves are shown, after a low-pass
filtering). Labels, either I or II, were attached to each curve, corresponding to
lighter or heavier working conditions. Notice that curves in Fig. 1 differ mainly
by shape rather than in amplitude.

As orthogonal systems in L2(0, T ), we have selected the cosine series as vk’s
and the sine series as wk’s. Descriptors ˆ̄a(n)’s were computed according to (20)
for K = 16. For illustration purposes, these N = 43 vectors were stacked into
43 × 16 matrix that is displayed in Fig. 2 – upper panel (dark places correspond
to lower values of the descriptors).

Descriptors of derivatives ˆ̄b(n)’s were computed according to (22). They are
analogously visualized in Fig. 2 – lower panel. By a visual inspection of these
two panels, we conclude that the variability of ˆ̄b(n)’s is much larger than ˆ̄a(n)’s.
Thus, one may hope that the classification accuracy will also be larger.

Data Augmentation. Unfortunately, the learning sequence of the length N = 43
is far too short for learning and comparisons. Therefore, we augmented the
original data as follows: each estimated ˆ̄a(n)’s was repeated 1000 by adding to
it the Gaussian perturbations with zero mean and dispersions 0.02 and keeping
the same label. This augmentation corresponds to about 11% perturbations
amplitudes. Notice that it suffices to add perturbations to ˆ̄a(n)’s, instead adding
them to original samples, since ˆ̄a(n)’s depend on them linearly. In this way, we
have obtained the augmented learning sequence ANe

of the length Ne = 43000.
Each descriptor from this sequence was transformed by (22), which led to the
augmented learning sequence of the derivatives descriptors BNe

.
The next step was to learn the logistic regression classifier twice in order to

obtain: LogR(ANe
; x̄) and LogR(BNe

; x̄) and their characteristics, such as accu-
racy, precision, recall etc. These characteristics are collected as pairs, separated
by |, in the LogR column in Table 1.

In the same way, the following classifiers were learned and validated:

LogR – the logistic regression classifier,
SVM – the support vector machine,
DecT – the decision tree classifier,
gbTr – the gradient boosted trees,
RFor – the random forests classifier,
5NN – the 5 nearest neighbors classifier.

The results are summarized in Table 1. Notice that the result on the left hand
side in each cell of this table is intentionally the same as in [15], for the sake of
comparisons.
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Table 1. An account on testing the popular classifiers when the cosine moments (the
left result) and the shape sensitive descriptors (the right result) are used for learning
them. Abbreviations: Cohen – the Cohen κ coefficient, MCC – the Matthews Correla-
tion Coefficient. For the abbreviations of the classifiers’ names – see the text.

Classifier LogR SVM DecT gbTr RFor 5NN

Accuracy 0.91|0.97 0.94|0.96 0.84|0.86 0.92|0.90 0.91|0.92 0.90|0.92

Cohen 0.76|0.91 0.82|0.88 0.60|0.65 0.77|0.72 0.72|0.77 0.70|0.73

MCC 0.76|0.91 0.82|0.88 0.61|0.66 0.77|0.72 0.72|0.78 0.71|0.75

Precision 0.96|0.99 0.94|0.95 0.93|0.95 0.94|0.93 0.92|0.93 0.90|0.90

Recall 0.92|0.97 0.98|0.99 0.86|0.87 0.96|0.94 0.96|0.98 0.98|0.99

Specificity 0.88|0.95 0.80|0.83 0.60|0.85 0.79|0.77 0.72|0.75 0.65|0.65

F1 score 0.94|0.98 0.96|0.97 0.89|0.91 0.95|0.94 0.94|0.95 0.94|0.95

The analysis of this table leads to the following conclusions:

– when the LogR classifier is used together with descriptors based on derivatives
bk’s, it provides a noticeable increase of the accuracy and other indicators (the
Cohen and MCC) in comparison to applying the LogR classifier to classic
descriptors ak’s,

– also the SVM classifier performs better on bk’s than on ak’s, but the improve-
ments are less spectacular,

– only slight improvements, but pertaining all of the indicators, are visible when
the decision trees, random forests and 5 NN classifiers are applied,

– somewhat unexpectedly to the authors, the gradient boosted trees classifier
provided a slightly worse results when applied to bk’s descriptors, in other
words, the gbTr was not able to take advantages from the derivative based
descriptors.

5 Conclusions

The new way of learning descriptors of functional data is proposed and investi-
gated from the view-point of the classification accuracy. Its essence is in learning
descriptors of a curve derivative, without estimating it directly. Extensive simula-
tions indicate that using these descriptors one may expect a better classification
accuracy, but the improvement is essential when simultaneously an appropriate
classifier of these descriptors is used. In the case study of accelerometer data,
the proper choice was the logistic regression classifier, followed by the SVM.

The results are promising, but further efforts are necessary to reveal an influ-
ence of a kind of functional data on the choice of the classifier.

One of possible directions of generalizations of the proposed approach is to
allow curves having derivatives with a finite number of jumps. Before learning
their descriptors, it would be necessary to smooth samples in a jump-preserving
way, as it was proposed in [11].
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18. Wiȩckowski, J., Rafajlowicz, W., Moczko, P., Rafajlowicz, E.: Data from vibra-
tion measurement in a bucket wheel excavator operator’s cabin with the aim of
vibrations damping. Data Brief, 106836 (2021)

19. Xie, W., Chkrebtii, O., Kurtek, S.: Visualization and outlier detection for multi-
variate elastic curve data. IEEE Trans. Visual. Comput. Graph. 26(11), 3353–3364
(2020). https://doi.org/10.1109/TVCG.2019.2921541

https://doi.org/10.1109/49.126990
http://dx.doi.org/10.17632/htddgv2p3b.1
http://dx.doi.org/10.17632/htddgv2p3b.1
https://doi.org/10.1109/TVCG.2019.2921541

	Learning Shape Sensitive Descriptors for Classifying Functional Data
	1 Introduction
	2 Descriptors Based on the Derivative Moments
	2.1 Modeling Random Curves
	2.2 The Relationship Between Descriptors of a Curve and Its Derivative

	3 Learning Classifiers Based on Curves' Derivative Descriptors
	3.1 Learning Sequence
	3.2 Learning Descriptors

	4 Testing and Comparisons on Augmented Acceleration Data
	5 Conclusions
	References




