
A New Genetic Improvement Operator Based on
Frequency Analysis for Genetic Algorithms
Applied to Job Shop Scheduling Problem

Monique Simplicio Viana1(B) , Rodrigo Colnago Contreras2 ,
and Orides Morandin Junior1

1 Federal University of São Carlos, São Carlos, Brazil
{monique.viana,orides}@ufscar.br

2 University of São Paulo, São Carlos, Brazil
contreras@usp.br

Abstract. Many researchers today are using meta-heuristics to treat the class of
problems known in the literature as Job Shop Scheduling Problem (JSSP) due to
its complexity since it consists of combinatorial problems and it is an NP-Hard
computational problem. JSSPs are a resource allocation issue and, to solve its
instances, meta-heuristics as Genetic Algorithm (GA) are widely used. Although
the GAs present good results in the literature, it is very common for these methods
that they are stagnant in solutions that are local optima during their iterations
and that have difficulty in adequately exploring the search space. To circumvent
these situations, we propose in this work the use of an operator specialized in
conducting the GA population to a good exploration: the Genetic Improvement
based on Frequency Analysis (GIFA). GIFA makes it possible to manipulate the
genetic material of individuals by adding characteristics that are believed to be
important, with the proposal of directing some individuals who are lost in the
search space to a more favorable subspace without breaking the diversity of the
population. The proposed GIFA is evaluated considering two different situations
in well-established benchmarks in the specialized JSSP literature and proved to
be competitive and robust compared to the methods that represent the state of the
art.

Keywords: Evolutionary Algorithm · Genetic Algorithm · Genetic
improvement · Job Shop Scheduling Problem · Combinatorial optimization

1 Introduction

Combinatorial optimization problems (COPs) consist of situations in which it is neces-
sary to determine, through permutations of elements of a finite set, the configuration of
parameters that is more advantageous [26]. Due to its high degree of applicability, many
researchers have been using COPs in different contexts. As an example, applications in
the logistics [29], vehicle routing [15], railway transport control [22], among other cur-
rent problems [10]. In particular, one of the most addressed COPs in the literature is
production scheduling [27], which, according to Groover [12], is part of the Production
c© Springer Nature Switzerland AG 2021

L. Rutkowski et al. (Eds.): ICAISC 2021, LNAI 12854, pp. 434–450, 2021.
https://doi.org/10.1007/978-3-030-87986-0_39

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-87986-0_39&domain=pdf
http://orcid.org/0000-0002-2960-8293
http://orcid.org/0000-0003-4003-7791
http://orcid.org/0000-0001-5588-100X
https://doi.org/10.1007/978-3-030-87986-0_39


A New Genetic Improvement Operator Based on Frequency Analysis for GA to JSSP 435

Planning and Control activities and is responsible for determining the design of opera-
tions that will be carried out, such as: the environment in which products are processed,
what resources are used and what is the start and end time for each production order.

Academic research and the development of solution methodologies have focused on
a limited number of classic production scheduling problems, one of the most researched
is the variation known as Job Shop Scheduling Problem (JSSP) [14], in which a finite
set of jobs must be processed by a finite set of machines. In this category of problems,
the objective is usually to determine a configuration in the order of processing of a
set of jobs, or tasks, to minimize, for example, the time of using resources [39]. In
this case, several performance measures are useful to evaluate how satisfactory a given
configuration is for a JSSP, with makespan [38], which corresponds to the total time
needed to finish the production of a set of jobs, one of the most used.

Belonging to the well-known class of problems NP-Hard, JSSP presents itself as a
computational challenge, since it is not a trivial task to develop an approach to deter-
mine exact solutions that represent a configuration with an adequate performance mea-
sure, within a reasonable time, even considering small and moderate cases [35]. From
this need, algorithms that present approximate results in a feasible computational time
were developed and applied to JSSP. The main methods used are those composed of
meta-heuristics [23], mainly by the Evolutionary Algorithm (EA) known as Genetic
Algorithm (GA) [21,24,31–33]. Even so, the JSSP consists of a class of problems that
remain open [6] and with many instances still unsolved in the well-known benchmarks
of the area [9]. This is because the existing methods do not have the necessary efficiency
to guarantee their practical use.

More specifically, it is possible to highlight some disadvantages in the use of GA in
solving COPs [4,8]. In detail, it is common for this set of techniques that they become
stagnant [30], during their iterations, in solutions that are local minimums, which con-
figures the phenomenon known as premature convergence [41]. Also, GAs may require
high computational time [20] to obtain good solutions to this type of problem. There-
fore, for complex problems, GA needs to be assimilated to specific problem routines to
make the approach effective. Hybridization can be a deeply effective way to improve the
performance of these techniques. The most common form of hybridization is the addi-
tion of GAs to local search strategies and the incorporation of domain-specific knowl-
edge in the search process [28]. In the latter, there are genetic improvement operators
through manipulations in specific genes on a chromosome. These have as main objec-
tive to provide to individuals who are not able to stand out in a population the reinforce-
ment coming from one or more individuals who have been successful in the adaptation
process. In other words, these operators direct the worst individuals in a population to
areas known to be good in the search space.

The authors do Amaral and Hruschka JR [2,3] present an operator in this line of rea-
soning, entitled transgenic operator and that simulates the process of genetic improve-
ment. To conduct such a procedure, in one of the stages of the GA, the population of
the same is replicated to four parallel sub-populations and, in each of these four popu-
lations, the best individuals transfer up to 4 genes, based on historical information, to
selected individuals. Then, only the best individuals among the four sub-populations
remains. Viana, Morandin Junior and Contreras [33] proposed an adaptation of the



436 M. S. Viana et al.

transgenic operator do Amaral and Hruschka JR [3] to solve a JSSP with GA. The
authors propose the identification of relevance in the genes used in the transgenic pro-
cess through a pre-processing process. However, such preprocessing is computationally
time-consuming and may not be viable in large JSSPs.

In this work, we propose a new population guidance operator for GAs: the Genetic
Improvement based on Frequency Analysis (GIFA) Operator. Our method consists of
a new way to determine the genetic relevance based on the frequency analysis of the
genes of individuals who have good fitness values in the population. We also propose
the construction of a representative individual that represents this group of good indi-
viduals and that it is used in the process of genetic manipulation to guide the worst
individuals towards good solutions and, possibly, that these become positive highlights
in the population.

This work is divided into five sections. Specifically, in Sect. 2, we describe the JSSP
basis. We present, in Sect. 3, the details about the proposed GIFA operator and the
requirements that an GA needs to satisfy to use it. Experimental results on different
GAs using GIFA and the advancement in the state of the art of JSSPs are presented in
Sect. 4. The work is finished in Sect. 5 with conclusions about the developments carried
out and future projections for improving the method and possible applications.

2 Formulation of Job Shop Scheduling Problem

We can define JSSP as a COP that has a set of N jobs that must be processed on a
set of M machines. Also, each job has a script that determines the order in which it
must pass through the machines for its process to be completed. Each job processing
per machine represents an operation and the objective of a JSSP can be interpreted as
being the challenge of determining the optimal sequencing of operations with one or
more performance measures as a guide. The components of this problem follow some
restrictions [39]:

– Each job can be processed on a single machine at a time;
– Each machine can process only one job at a time;
– Operations are considered non-preemptive, i.e., cannot be interrupted,
– Configuration times are included in processing times and are independent of

sequencing decisions.

In this work, we adopted makespan (MKS) as a performance measure. The MKS is
the total time that a JSSP instance takes to complete the processing of a set of jobs on a
set of machines taking into account a given operation sequence.

Mathematically, let’s assume the following components of a JSSP:

– J = {J1,J2, ...,JN} is the set of jobs;
– M = {m1,m2, ...,mM} is the set of machines;
– O = (O1,O2, ...,ON·M) is a operation sequence that sets the priority order for pro-

cessing the set of jobs in the set of machines
– Ti(O) represents the time taken by the job Ji to be processed by all machines in its

script according to the operation sequence defined in O.



A New Genetic Improvement Operator Based on Frequency Analysis for GA to JSSP 437

Then, according to [7], the MKS can be defined as the total time that all jobs take
to be processed according to a given operation sequence, as presented in Eq. (1).

MKS = max
i

Ti(O). (1)

3 A New Genetic Improvement Operator Based on Frequency
Analysis for GA Applied to JSSP

In this section, we will present in detail how the proposed method works. We will spec-
ify the idea of determining genetic relevance by analyzing the frequency of genes that
represent good characteristics in individuals with adequate fitness values in the popula-
tion and, with that, we intend to obtain innovation with the following three topics:

– A new strategy for defining genetic relevance in GAs chromosomes;
– A new genetic improvement operator that is versatile and can be used in GAs varia-

tions,
– Improving the state of the art of JSSP benchmark results.

3.1 Genetic Representation

Our operator was developed to operate in all GA-like methods with minor modifica-
tions. In the meantime, we are going to conduct its fundamentation on a specific encod-
ing. In this case, we will use the “coding by operation order” [5]. In this representation
[32], the feasible space of a JSSP instance defined by N jobs and M machines is formed
by chromosomes c ∈ N

N·M , such that exactly M coordinates of c are equal to i (repre-
senting the job index i), for every i ∈ {1,2, ...,N}.

This encoding determines in chromosome the operation priority with respect to
machine allocation. For example [31], let’s assume c = (2,1,2,2,1,1) as being a feasi-
ble solution in a JSSP instance with dimension 2×3 (N = 2 and M = 3). Thus, accord-
ing to the operations defined in c, the following actions must be carried out in parallel
or if the previous action has already been done.:

– 1st) Job 2 must be processed by the 1st machine of its script.
– 2nd) Job 1 must be processed by the 1st machine of its script.
– 3rd) Job 2 must be processed by the 2nd machine of its script.
– 4th) Job 2 must be processed by the 3rd machine of its script.
– 5th) Job 1 must be processed by the 2nd machine of its script.
– 6th) Job 1 must be processed by the 3rd machine of its script.

3.2 Fitness Function

The encoding used makes it natural to define the fitness function of the problem as the
makespan of a JSSP instance given according to the stipulated operation sequence. That
is, the fitness function [33] used is given according to Eq. (2):

F : O −→ R

O �−→ F(O) := max
i

Ti(O), (2)



438 M. S. Viana et al.

in which O is the set of all possible operation sequences for the defined JSSP instance.
In this way, for this fitness function, the MKS of the JSSP instance is calculated

according to a given operation sequence, then the meta-heuristic must look for an oper-
ation sequence in which the MKS is as small as possible and, consequently, the set of
jobs must be processed by the set of machines taking the shortest possible time.

3.3 Proposed Genetic Improvement Based on Frequency Analysis Operator

In this work, we propose a new genetic improvement operator for evolutionary algo-
rithms: the GIFA operator. The operator is based on a frequency analysis matrix cal-
culated during the iterations of each GA. GIFA aims to calculate which genes on a
chromosome can direct individuals with poor fitness values to better solutions and bet-
ter search spaces. GIFA has two main stages: the first being defined by the making of
the representative individual, that is, an individual that is determined by the configura-
tion of the most frequent genes in the best individuals in the population; and the second
stage consists of the use of the representative individual in the transgenic process, that
is, the genetic manipulation through the insertion of specific genes of the representative
individual in genes of the worst individuals in the population. Below, we present these
steps in detail.

Stage 1: Composition of the Representative Individual. Initially, a portion of the
population that presents the best fitness values is selected. Specifically, we select NTop

individuals who are considered good examples of solutions in the population. Then, for
each index job i, a frequency vector �vi ∈ R

N·M is associated, in which the number of
its occurrences is stored in each coordinate where the product i appears exactly at the
position of this coordinate on the chromosomes selected for comparison. In Fig. 1, an
example of the calculation of the frequency vectors�vi is presented when considering 4
individuals c1,c2,c3, and c4 with the best values of fitness in a 3 × 2 dimension JSSP
instance.

Once the vector�vi has been made for every job index i, a chromosome whose coor-
dinates are determined by the job with the highest frequency in this coordinate is defined
as a representative individual. That is, each gene (coordinate) of the representative indi-
vidual is defined as the job index that is most present in this coordinate in the best indi-
viduals in the population. It is also possible to establish an order of genetic relevance
according to the frequency vectors�vi. That is, it is possible to define which genes of the
representative individual are more suitable to be transferred in the process of genetic
improvement. Such relevance is also defined according to the frequency that the prod-
ucts present in each coordinate of the best individuals so that the genes that present the
same job in many good individuals can categorize a “trend” that leads to good fitness
values. Therefore, these genes must be considered to be relevant, since they describe a
positive characteristic in several individuals that stand out in the population. Mathemat-
ically, the representative individual and its genetic relevance are made according to the
following procedure:



A New Genetic Improvement Operator Based on Frequency Analysis for GA to JSSP 439

Fig. 1. Calculating the frequency vectors (�vi) of the three jobs in each coordinate of the four best
chromosomes in the population.

1. Let c be the representative individual and w a vector that designates a score for each
of its coordinates, initially null. In the following items, the coordinates of c and w
are made.

2. We define I1 as being argmax
i

{�vi,1}. That is, I1 is the index of the job that has the

highest frequency in the first coordinate of the exemplary individuals. Therefore, the
first coordinate of the representative individual is defined as I1. Mathematically,

c1 := I1.

In addition, a w1 score defined as the maximum frequency shown in the first coordi-
nate of the best individuals is associated with the first coordinate of c. That is,

w1 := max
i

{�vi,1} =�vI1,1.

3. Assign the value 2 to j.
4. We define I j as being argmax

i
{�vi, j}, that is, I j is the most frequent product index in

the j coordinate in the NTop individuals. However, in order to guarantee the feasibil-
ity of the representative individual, it is necessary to establish two more restrictions:
4.1 If the product I j is not in M coordinates of c, then it is defined as I j the j-th

coordinate of the representative individual. That is,

c j := I j.

In this case, the respective score is associated with the j -th coordinate of the
representative individual as the maximum possible value presented in the j -th
coordinate of the best individuals. That is,

w j := max
i

{�vi, j} =�vIj , j.



440 M. S. Viana et al.

4.2 Otherwise, to guarantee the feasibility of c, the frequencies of the index job I j

are disregarded, since it is already arranged in M coordinates of c and, therefore,
does not can occupy any more of its coordinates. To do so, we must cancel its
respective frequency vector, that is,

�vIj :=�0.

To make a new attempt, we must return to item 4.
5. If j �= N ·M then j := j+1 and we must return to item 4. Otherwise, the procedure

is finished and we have the representative individual pair and its respective genetic
score (c,w).

Note that it is not necessary to project the representative individual in the feasible space
of the problem since due to its construction and the item 4 above, it is already feasible.
In Fig. 2, an example of the calculation of the representative individual (c) and the
relevance of its genes (w) in a JSSP instance of dimension 4×3 is presented, taking as
best individuals the NTop = 5 individuals with the lowest fitness values available in the
population.

Fig. 2. Computation of the representative individual (c) and its genetic relevance (w).

Stage 2: Use of the Representative Individual in Genetic Improvement. Once the
representative individual and the relevance of each of its genes have been calculated,
then it is proposed that its most relevant genes be transferred to the worst individuals in



A New Genetic Improvement Operator Based on Frequency Analysis for GA to JSSP 441

the population, thus simulating a mechanism for genetic improvement, or transgenics.
For this, we take PWorst := {x1,x2, . . . ,xNWorst} as the set of the worst NWorst individu-
als in a population. Subsequently, the most significant, or most relevant, NGenes genes
of the representative individual are transferred to all individuals in the PWorst maintain-
ing their original positions. This procedure can generate infeasible solutions. Thus, it
is necessary to conduct a correction, or projection, process on the individuals result-
ing from this operation. For this, we carry out the projection through the Hamming
distance [37] modifying only the genes that were not received from the representa-
tive individual. In this way, the individuals generated in this procedure are projected
on the feasible set of the problem, giving rise to the genetically improved individuals
PImproved = {x̂1, x̂2, . . . , x̂NWorst}.

It is also necessary to establish how many genes will be transferred from the rep-
resentative individual to the individuals of PWorst. For this, we will follow a procedure
similar to that of Viana, Morandin Junior, and Contreras [33], which empirically deter-
mine that the adequate amount of genes used in the genetic improvement process is
given by the root of the number of coordinates of the chromosome. Thus, the process
remains advantageous and does not cause early convergence in the population. Thus, in
this work, NGenes is defined as round

(√
N ·M

)
. In Fig. 3, an example of the determina-

tion of the most significant genes of a representative individual c when it is given the
scores of his genes w while addressing a JSSP with dimension 4×3.

Fig. 3. Determination of the most significant genes of a representative individual.

Assuming NWorst = 3 and PWorst = {x1,x2,x3} as the set of the worst 3 individuals
in a population, the improvement process is shown in Fig. 4 genetic that transfers the
NGenes best genes from the representative individual c of Fig. 4 to all individuals in the
set PWorst.

The genetic improvement procedure must be performed after the standard operators
of the GA, or the GA-like method used, and right after the generation of a new popu-
lation. Thus, the set PWorst must be formed by individuals from the new population of
the method. Besides, after the application of the genetic improvement, the evaluation
of improvement or worsening of the affected individuals is made, so that the genetic



442 M. S. Viana et al.

Fig. 4. Genetic improvement proposed. The genes highlighted on a black background are the most
relevant, while the genes highlighted with the red sectioned circle are those that need correction.

changes made will only be saved in individuals who have obtained an improvement
in fitness. That is, only individuals who have gained an advantage in the process of
genetic improvement will be substituted in the population; the other individuals should
be discarded and replaced by new individuals generated randomly.

3.4 Scheme of Use for Proposed Operators: Algorithm Structure

The proposed genetic improvement strategy was developed to be as versatile as possible
in the sense that it can be attached to any GA-like method. Thus, the proposed operator
must be used after the execution of the original operators of the method considered in
order to guide solutions that were not able to stand out through the traditional strategies
defined in the method. In other words, to use the proposed operator in a given GA-like
method, we must obey the following steps:

1. Define the initial parameters and specifics of the chosen GA-like method.
2. Execute the operators that make up the GA-like method. These being, for example,

the operators of crossover, mutation, local search, creation of new population, etc.
3. At the end of an iteration involving the traditional operators of the selected GA-like

method, we will make a sub-population PWorst with the worst NWorst individuals in
the current population.

4. At the same time, we will select the best NTop individuals in the population to make
up the representative individual.



A New Genetic Improvement Operator Based on Frequency Analysis for GA to JSSP 443

5. Build the representative individual using the strategy described in Stage 1 of the
Sect. 3.3.

6. Determine a relevance scale to the genes of the representative individual.
7. Conduct the genetic improvement of the PWorst individuals using the most relevant

NGenes genes of the representative individual.
8. Replace in the current population of the method all individuals who obtained an

improvement in the fitness value in the process of genetic improvement and return
in the execution of the original operators of the considered GA-like method. Those
who have not improved should be replaced by new individuals randomly generated
according to Levy’s exponential distribution, following the procedure of Al-Obaidi
and Hussein [1].

In Fig. 5, we present a flowchart that illustrates the sequence of steps of the proposed
genetic improvement process.

Fig. 5. Flow chart of our proposed Genetic Improvement operator for Genetic Algorithm.

4 Implementation and Experimental Results

4.1 Experimental Environment

For the conduction of the experiments, we considered two different situations: in the
first, we evaluated the impact that the proposed operator causes on five GA-like meth-
ods, all of which were obtained using the framework of Viana, Morandin Junior and



444 M. S. Viana et al.

Contreras [32], in three JSSP instances of varying complexity; in the second, we com-
pare with recent methods in the literature the ability of the proposed operator to look for
good solutions in 43 instances of JSSP that make up the area benchmark, with 3 from
Fisher and Thompson (FT) [11] and 40 from Lawrence (LA) [19]. In detail, in this sec-
ond situation, we consider relevant and recent methods which deal with the JSSP with
the same specific instances and, when existing, presented in papers published in the
last three years. In all, we consider for comparison the following methods: mXLSGA
[32], NGPSO [40], SSS [13], GA-CPG-GT [18], DWPA [34], GWO [16], IPB-GA [17]
and aLSGA [4]. The proposed algorithm is coded in MATLAB and we performed the
evaluations on a computer with 2.4 GHz Intel(R) Core i7 CPU and 16 GB of RAM.

4.2 Results and Comparison with Other Algorithms

For the first testing situation, we will consider five variations of the Viana, Morandin
Junior and Contreras [32] framework: a basic GA (GA), GA with Search Area Adapta-
tion (GSA) [36], GA with Local Search (LSGA) [25], GA with Elite Local Search and
agent adjustment (aLSGA) [4], and GA with multi-crossover and massive local search
(mXLSGA) [32]. In each of these versions, we added the proposed genetic enhance-
ment operator, GIFA, and conducted our evaluations on three JSSP instances: FT 06,
with a dimension of 6 × 6, and the best-known solution (BKS) equal to 55; LA 01,
with a dimension of 10 × 5, and BKS equal to 666; and LA 16, with a dimension of
10 × 10, and BKS equal to 945. Thus, each GA-like method considered has a version
with the proposed operator, represented by the acronym GIFA together with its stan-
dard acronym. Our main purpose in this situation is to evaluate the impact of using
GIFA in each of the GA-like methods, so we kept the best possible configuration of
each of the methods available in the original works, with the exception that everyone
had 100 individuals in their populations and run for 100 generations. In addition, we
added to each of them the configuration referring to GIFA, which is defined as follows:
NTop = NWorst = 10. In this case, the best value, the worst value, the mean, and the stan-
dard deviation (SD) of the makespan values calculated at 35 independent executions of
each method on the three JSSP instances considered are presented in Table 1.

Looking at Table 1, we noticed that the operator made all methods more stable,
reducing the magnitude of the worst makespan value found, the mean and standard
deviation of all of them in all situations where it was possible to have improvement.
However, in the most complex instance, the LA 16, our operator was able to improve
the best makespan value only in the case of the aLSGA technique. This serves as an
indication that the proposed operator brings a considerable increase in the stability of
the method, but the ability to explore the search space still has a strong dependence on
the original technique used. This is because our GIFA guides the population towards
guiding individuals with bad makespan values in regions where individuals with good
fitness values are known to increase local exploration and, therefore, find good solu-
tions, but it is up to the base technique to indicate good search regions.

Thus, the second situation considered should serve as an experiment in this sense,
so that we can evaluate the ability of the proposed operator to increase the search and
exploration power of a given technique. For this, we will add the proposed GIFA oper-
ator in a technique already known to be effective in finding good solutions in the JSSP



A New Genetic Improvement Operator Based on Frequency Analysis for GA to JSSP 445

Table 1. GA-like methods statistics for 35 executions of each method.

Instance Method Best Worst Average SD

FT 06 GA 55 57 55.45 0.85

GIFA-GA 55 56 55.14 0.21

GSA 55 55 55 0

GIFA-GSA 55 55 55 0

LSGA 55 59 57.68 1.43

GIFA-LSGA 55 56 55.84 0.73

aLSGA 55 55 55 0

GIFA-aLSGA 55 55 55 0

mXLSGA 55 55 55 0

GIFA-mXLSGA 55 55 55 0

LA 01 GA 666 712 679.02 9.98

GIFA-GA 666 678 669.37 5.17

GSA 666 715 677.8 13.61

GIFA-GSA 666 687 672.34 7.43

LSGA 666 726 697 16.65

GIFA-LSGA 666 707 688.67 15.59

aLSGA 666 666 666 0

GIFA-aLSGA 666 666 666 0

mXLSGA 666 666 666 0

GIFA-mXLSGA 666 666 666 0

LA 16 GA 982 1100 1045.6 26.40

GIFA-GA 982 1061 1022.89 20.51

GSA 994 1110 1046.77 26.37

GIFA-GSA 994 1021 1017.38 15.49

LSGA 1016 1148 1084.25 32.27

GIFA-LSGA 1016 1077 1037.11 26.62

aLSGA 959 985 980.51 4.48

GIFA-aLSGA 956 982 975.12 2.36

mXLSGA 945 982 972.25 13.30

GIFA-mXLSGA 945 979 959.93 6.37

instances that make up the benchmark today: the mXLSGA [32]. In this case, we will
evaluate GIFA-mXLSGA at 40 instances LA and 3 FT instances. In Table 2, we pre-
sented the results derived from 10 independent executions of our method on the LA
and FT instance tests. The columns indicate, respectively, the instance that was tested,
the instance size (number of Jobs × number of Machines), the optimal solution of each
instance, the results achieved by each method considering all the executions (best solu-



446 M. S. Viana et al.

tion found and error percentage (Eq. (3)), and the mean of the error with respect to each
benchmark (MErr).

E% = 100× Best−BKS
BKS

, (3)

in which E% is the relative error, “BKS” is the best known Solution and “Best” is the
best value obtained by executing the algorithm 10 times for each instance.

Analyzing Table 2, we can verify that the GIFA operator was able to improve
the search capability of the mXLSGA method. Specifically, considering only the LA
instances, the use of the proposed operator was able to reduce the magnitude of the
average relative error by 0.12, which corresponds to a reduction of 19.67% of its value.
In other words, the GIFA operator made the mXLSGA method able to find the best-
known makespan in 72.5% of LA instances, obtaining an average relative error of 0.49,
the lowest of all methods. Concerning FT instances, the proposed GIFA operator did
not compromise the search capability of mXLSGA, causing the best-known solutions
to be found in all instances. In summary, we can highlight some points when analyzing
the results referring to Table 2:

– There was no worsening of the results in any instance with the use of the proposed
operator;

– The GIFA-mXLSGA method obtained the lowest E%;
– The proposed operator made mXLSGA able to find the BKS in the LA 22 instance,
– The proposed operator improved the results of mXLSGA by 7 LA instances.

With the results of the two situations considered, we note that the proposed method
is effective in increasing the stability and efficiency of finding good solutions for GA-
like methods.

5 Conclusion

The objective of this work was to develop a new GA-like method operator to min-
imize the makespan in JSSP instances. The proposed technique was a new genetic
improvement operator based on a new frequency analysis strategy to detect relevance
in genes, titled GIFA operator. To evaluate the proposed approach, experiments were
conducted in 43 JSSP instances of varying complexity. The instances used were FT
[11] and LA [19]. The results obtained were compared with other approaches in related
works: mXLSGA [32], NGPSO [40], SSS [13], GA-CPG-GT [18], DWPA [34], GWO
[16], IPB-GA [17] and aLSGA [4].

We evaluate the potential of the proposed operator in two analysis situations. In
the first, we involved the use of GIFA in five different GA-like methods, which were
simulated by the framework of Viana, Morandin Junior and Contreras [32], and in all
cases, the operator increased the stability of the technique considered improving the
mean and standard deviation of the solutions found in three instances of JSSP. In the
second, the performance of the GIFA used in the mXLSGA [32] was compared with
methods that make up the state of the art in the specialized literature and we note that
the use of the proposed operator was effective in increasing the search capacity of the



A New Genetic Improvement Operator Based on Frequency Analysis for GA to JSSP 447

Table 2. Comparison of computational results between mXLSGA and other algorithms. The
symbol “-” means “no evaluated in that instance”.

Instance Size BKS GIFA-mXLSGA mXLSGA NGPSO SSS GA-CPG-GT DWPA GWO IPB-GA aLSGA

Best E% Best E% Best E% Best E% Best E% Best E% Best E% Best E% Best E%

LA01 10×5 666 666 0.00 666 0.00 666 0.00 666 0.00 666 0.00 666 0.00 666 0.00 666 0.00 666 0.00

LA02 10×5 655 655 0.00 655 0.00 655 0.00 655 0.00 655 0.00 655 0.00 655 0.00 655 0.00 655 0.00

LA03 10×5 597 597 0.00 597 0.00 597 0.00 597 0.00 597 0.00 614 2.84 597 0.00 599 0.33 606 1.50

LA04 10×5 590 590 0.00 590 0.00 590 0.00 590 0.00 590 0.00 598 1.35 590 0.00 590 0.00 593 0.50

LA05 10×5 593 593 0.00 593 0.00 593 0.00 593 0.00 593 0.00 593 0.00 593 0.00 593 0.00 593 0.00

LA06 15×5 926 926 0.00 926 0.00 926 0.00 926 0.00 926 0.00 926 0.00 926 0.00 926 0.00 926 0.00

LA07 15×5 890 890 0.00 890 0.00 890 0.00 890 0.00 890 0.00 890 0.00 890 0.00 890 0.00 890 0.00

LA08 15×5 863 863 0.00 863 0.00 863 0.00 863 0.00 863 0.00 863 0.00 863 0.00 863 0.00 863 0.00

LA09 15×5 951 951 0.00 951 0.00 951 0.00 951 0.00 951 0.00 951 0.00 951 0.00 951 0.00 951 0.00

LA10 15×5 958 958 0.00 958 0.00 958 0.00 958 0.00 958 0.00 958 0.00 958 0.00 958 0.00 958 0.00

LA11 20×5 1222 1222 0.00 1222 0.00 1222 0.00 1222 0.00 1222 0.00 1222 0.00 1222 0.00 1222 0.00 1222 0.00

LA12 20×5 1039 1039 0.00 1039 0.00 1039 0.00 – – 1039 0.00 1039 0.00 1039 0.00 1039 0.00 1039 0.00

LA13 20×5 1150 1150 0.00 1150 0.00 1150 0.00 – – 1150 0.00 1150 0.00 1150 0.00 1150 0.00 1150 0.00

LA14 20×5 1292 1292 0.00 1292 0.00 1292 0.00 – – 1292 0.00 1292 0.00 1292 0.00 1292 0.00 1292 0.00

LA15 20×5 1207 1207 0.00 1207 0.00 1207 0.00 – – 1207 0.00 1273 5.46 1207 0.00 1207 0.00 1207 0.00

LA16 10×10 945 945 0.00 945 0.00 945 0.00 947 0.21 946 0.10 993 5.07 956 1.16 946 0.10 946 0.10

LA17 10×10 784 784 0.00 784 0.00 794 1.27 – – 784 0.00 793 1.14 790 0.76 784 0.00 784 0.00

LA18 10×10 848 848 0.00 848 0.00 848 0.00 – – 848 0.00 861 1.53 859 1.29 853 0.58 848 0.00

LA19 10×10 842 842 0.00 842 0.00 842 0.00 – – 842 0.00 888 5.46 845 0.35 866 2.85 852 1.18

LA20 10×10 902 902 0.00 902 0.00 908 0.66 – – 907 0.55 934 3.54 937 3.88 913 1.21 907 0.55

LA21 15×10 1046 1052 0.57 1059 1.24 1183 13.09 1076 2.86 1090 4.20 1105 5.64 1090 4.20 1081 3.34 1068 2.10

LA22 15×10 927 927 0.00 935 0.86 927 0.00 – – 954 2.91 989 6.68 970 4.63 970 4.63 956 3.12

LA23 15×10 1032 1032 0.00 1032 0.00 1032 0.00 – – 1032 0.00 1051 1.84 1032 0.00 1032 0.00 1032 0.00

LA24 15×10 935 940 0.53 946 1.17 968 3.52 – – 974 4.17 988 5.66 982 5.02 1002 7.16 966 3.31

LA25 15×10 977 984 0.71 986 0.92 977 0.00 – – 999 2.25 1039 6.34 1008 3.17 1023 4.70 1002 2.55

LA26 20×10 1218 1218 0.00 1218 0.00 1218 0.00 – – 1237 1.55 1303 6.97 1239 1.72 1273 4.51 1223 0.41

LA27 20×10 1235 1261 2.10 1269 2.75 1394 12.87 1256 1.70 1313 6.31 1346 8.98 1290 4.45 1317 6.63 1281 3.72

LA28 20×10 1216 1239 1.89 1239 1.89 1216 0.00 – – 1280 5.26 1291 6.16 1263 3.86 1288 5.92 1245 2.38

LA29 20×10 1152 1190 3.29 1201 4.25 1280 11.11 – – 1247 8.24 1275 10.67 1244 7.98 1233 7.03 1230 6.77

LA30 20×10 1355 1355 0.00 1355 0.00 1355 0.00 – – 1367 0.88 1389 2.50 1355 0.00 1377 1.62 1355 0.00

LA31 30×10 1784 1784 0.00 1784 0.00 1784 0.00 1784 0.00 1784 0.00 1784 0.00 1784 0.00 1784 0.00 1784 0.00

LA32 30×10 1850 1850 0.00 1850 0.00 1850 0.00 – – 1850 0.00 1850 0.00 1850 0.00 1851 0.05 1850 0.00

LA33 30×10 1719 1719 0.00 1719 0.00 1719 0.00 – – 1719 0.00 1719 0.00 1719 0.00 1719 0.00 1719 0.00

LA34 30×10 1721 1721 0.00 1721 0.00 1721 0.00 – – 1725 0.23 1788 3.89 1721 0.00 1749 1.62 1721 0.00

LA35 30×10 1888 1888 0.00 1888 0.00 1888 0.00 – – 1888 0.00 1947 3.125 1888 0.00 1888 0.00 1888 0.00

LA36 15×15 1268 1295 2.12 1295 2.12 1408 11.04 1304 2.83 1308 3.15 1388 9.46 1311 3.39 1334 5.20 – –

LA37 15×15 1397 1407 0.71 1415 1.28 1515 8.44 – – 1489 6.58 1486 6.37 – – 1467 5.01 – –

LA38 15×15 1196 1246 4.18 1246 4.18 1196 0.00 – – 1275 6.60 1339 11.95 – – 1278 6.85 – –

LA39 15×15 1233 1258 2.02 1258 2.02 1662 34.79 – – 1290 4.62 1334 8.19 – – 1296 5.10 – –

LA40 15×15 1222 1243 1.71 1243 1.71 1222 0.00 1252 2.45 1252 2.45 1347 10.22 – – 1284 5.07 – –

MErr 0.49 0.61 2.42 0.59 1.50 3.52 1.27 1.99 0.80

FT06 6×6 55 55 0.00 55 0.00 55 0.00 55 0.00 55 0.00 – – 55 0.00 55 0.00 55 0.00

FT10 10×10 930 930 0.00 930 0.00 930 0.00 936 0.64 935 0.53 – – 940 1.07 960 3.22 930 0.00

FT20 20×5 1165 1165 0.00 1165 0.00 1210 3.86 1165 0.00 1180 1.28 – – 1178 1.11 1192 2.31 1165 0.00

MErr 0.00 0.00 1.28 0.21 0.60 – 0.73 1.84 0.00

mXLSGA, since GIFA-mXLSGA was the method with the lowest average relative error
among all the techniques considered. Thus, we conclude that the proposed operator



448 M. S. Viana et al.

was able to achieve the stipulated objective since it statistically directed the GA-like
methods evaluated for search spaces with better solutions.

In future works, we will make use of deep learning techniques to detect rele-
vance during GAs iterations through reinforcement learning approaches, which should
make the methodology more robust and accurate. Also, we will add assessments about
processing time measurements and expand the methodology to a greater number of
instances and benchmarks.

Acknowledgments. This study was financed in part by the “Coordenação de Aperfeiçoamento
de Pessoal de Nı́vel Superior - Brasil” (CAPES) - Finance Code 001, and by the Brazilian
National Council for Scientific and Technological Development, process #381991/2020-2.

References

1. Al-Obaidi, A.T.S., Hussein, S.A.: Two improved cuckoo search algorithms for solving the
flexible job-shop scheduling problem. Int. J. Percept. Cogn. Comput. 2(2), 25–31 (2016)

2. do Amaral, L.R., Hruschka, E.R.: Transgenic, an operator for evolutionary algorithms. In:
2011 IEEE Congress of Evolutionary Computation (CEC), pp. 1308–1314. IEEE (2011)

3. do Amaral, L.R., Hruschka Jr, E.R.: Transgenic: an evolutionary algorithm operator. Neuro-
computing 127, 104–113 (2014)

4. Asadzadeh, L.: A local search genetic algorithm for the job shop scheduling problem with
intelligent agents. Comput. Ind. Eng 85, 376–383 (2015)

5. Bierwirth, C., Mattfeld, D.C., Kopfer, H.: On permutation representations for scheduling
problems. In: Voigt, H.-M., Ebeling, W., Rechenberg, I., Schwefel, H.-P. (eds.) PPSN 1996.
LNCS, vol. 1141, pp. 310–318. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-
61723-X 995

6. Çaliş, B., Bulkan, S.: A research survey: review of AI solution strategies of job shop schedul-
ing problem. J. Intell. Manuf 26(5), 961–973 (2015)

7. Chaudhry, I.A., Khan, A.A.: A research survey: review of flexible job shop scheduling tech-
niques. Int. Trans. Oper. Res. 23(3), 551–591 (2016)

8. Contreras, R.C., Morandin Junior, O., Viana, M.S.: A new local search adaptive genetic
algorithm for the pseudo-coloring problem. In: Tan, Y., Shi, Y., Tuba, M. (eds.) ICSI 2020.
LNCS, vol. 12145, pp. 349–361. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
53956-6 31

9. Demirkol, E., Mehta, S., Uzsoy, R.: Benchmarks for shop scheduling problems. Eur. J. Oper.
Res. 109(1), 137–141 (1998)

10. Ehrgott, M., Gandibleux, X.: Multiobjective combinatorial optimization–theory, methodol-
ogy, and applications. In: Multiple Criteria Optimization: State of the Art Annotated Biblio-
graphic Surveys, pp. 369–444. Springer, Heidelberg (2003). https://doi.org/10.1007/0-306-
48107-3 8

11. Fisher, C., Thompson, G.: Probabilistic learning combinations of local job-shop scheduling
rules. In: Industrial Scheduling pp. 225–251 (1963)

12. Groover, M.P.: Fundamentals of Modern Manufacturing: Materials Processes, and Systems.
John Wiley & Sons, Hoboken (2007)

13. Hamzadayı, A., Baykasoğlu, A., Akpınar, Ş: Solving combinatorial optimization problems
with single seekers society algorithm. Knowl.-Based Syst. 201, 106036 (2020)

14. Hart, E., Ross, P., Corne, D.: Evolutionary scheduling: a review. Genetic Program. Evol.
Mach. 6(2), 191–220 (2005)

https://doi.org/10.1007/3-540-61723-X_995
https://doi.org/10.1007/3-540-61723-X_995
https://doi.org/10.1007/978-3-030-53956-6_31
https://doi.org/10.1007/978-3-030-53956-6_31
https://doi.org/10.1007/0-306-48107-3_8
https://doi.org/10.1007/0-306-48107-3_8


A New Genetic Improvement Operator Based on Frequency Analysis for GA to JSSP 449

15. James, J., Yu, W., Gu, J.: Online vehicle routing with neural combinatorial optimization and
deep reinforcement learning. IEEE Trans. Intell. Transp. Syst 20(10), 3806–3817 (2019)

16. Jiang, T., Zhang, C.: Application of grey wolf optimization for solving combinatorial prob-
lems: job shop and flexible job shop scheduling cases. IEEE Access 6, 26231–26240 (2018)

17. Jorapur, V.S., Puranik, V.S., Deshpande, A.S., Sharma, M.: A promising initial population
based genetic algorithm for job shop scheduling problem. J. Softw. Eng. Appl 9(05), 208
(2016)

18. Kurdi, M.: An effective genetic algorithm with a critical-path-guided giffler and thompson
crossover operator for job shop scheduling problem. Int. J. Intell. Syst. Appl. Eng 7(1), 13–18
(2019)

19. Lawrence, S.: Resouce constrained project scheduling: an experimental investigation of
heuristic scheduling techniques (supplement). Carnegie-Mellon University, Graduate School
of Industrial Administration (1984)

20. Li, X., Gao, L.: An effective hybrid genetic algorithm and tabu search for flexible job shop
scheduling problem. Int. J. Prod. Econ. 174, 93–110 (2016)

21. Lu, Y., Huang, Z., Cao, L.: Hybrid immune genetic algorithm with neighborhood search
operator for the job shop scheduling problem. In: IOP Conference Series: Earth and Envi-
ronmental Science, vol. 474, 052093 (2020)

22. Matyukhin, V., Shabunin, A., Kuznetsov, N., Takmazian, A.: Rail transport control by combi-
natorial optimization approach. In: 2017 IEEE 11th International Conference on Application
of Information and Communication Technologies (AICT), pp. 1–4. IEEE (2017)

23. Mhasawade, S., Bewoor, L.: A survey of hybrid metaheuristics to minimize makespan of job
shop scheduling problem. In: 2017 International Conference on Energy, Communication,
Data Analytics and Soft Computing (ICECDS), pp. 1957–1960. IEEE (2017)

24. Milovsevic, M., Lukic, D., Durdev, M., Vukman, J., Antic, A.: Genetic algorithms in inte-
grated process planning and scheduling-a state of the art review. Proc. Manuf. Syst. 11(2),
83–88 (2016)

25. Ombuki, B.M., Ventresca, M.: Local search genetic algorithms for the job shop scheduling
problem. Appl. Intell. 21(1), 99–109 (2004)

26. Pardalos, P.M., Du, D.-Z., Graham, R.L. (eds.): Handbook of Combinatorial Optimization.
Springer, New York (2013). https://doi.org/10.1007/978-1-4419-7997-1

27. Parente, M., Figueira, G., Amorim, P., Marques, A.: Production scheduling in the context of
industry 4.0: review and trends. Int. J. Prod. Res. 58, 1–31 (2020)

28. Sastry, K., Goldberg, D., Kendall, G.: Genetic algorithms. In: Burke, E.K., Kendall, G. (eds.)
Search Methodologies, pp. 97–125. Springer, Heidelberg (2005). https://doi.org/10.1007/0-
387-28356-0 4

29. Sbihi, A., Eglese, R.W.: Combinatorial optimization and green logistics. Ann. Oper. Res.
175(1), 159–175 (2010)

30. Viana, M.S., Morandin Junior, O., Contreras, R.C.: An improved local search genetic algo-
rithm with a new mapped adaptive operator applied to pseudo-coloring problem. Symmetry
12(10), 1684 (2020)

31. Viana, M.S., Junior, O.M., Contreras, R.C.: An improved local search genetic algorithm
with multi-crossover for job shop scheduling problem. In: Rutkowski, L., Scherer, R., Kory-
tkowski, M., Pedrycz, W., Tadeusiewicz, R., Zurada, J.M. (eds.) ICAISC 2020. LNCS
(LNAI), vol. 12415, pp. 464–479. Springer, Cham (2020). https://doi.org/10.1007/978-3-
030-61401-0 43

32. Viana, M.S., Morandin Junior, O., Contreras, R.C.: A modified genetic algorithm with local
search strategies and multi-crossover operator for job shop scheduling problem. Sensors 20,
5440 (2020). https://doi.org/10.3390/s20185440

https://doi.org/10.1007/978-1-4419-7997-1
https://doi.org/10.1007/0-387-28356-0_4
https://doi.org/10.1007/0-387-28356-0_4
https://doi.org/10.1007/978-3-030-61401-0_43
https://doi.org/10.1007/978-3-030-61401-0_43
https://doi.org/10.3390/s20185440


450 M. S. Viana et al.

33. Viana, M.S., Morandin Junior, O., Contreras, R.C.: Transgenic genetic algorithm to minimize
the makespan in the job shop scheduling problem. In: Proceedings of the 12th International
Conference on Agents and Artificial Intelligence, vol. 2: ICAART, pp. 463–474. INSTICC,
SciTePress (2020). https://doi.org/10.5220/0008937004630474

34. Wang, F., Tian, Y., Wang, X.: A discrete wolf pack algorithm for job shop scheduling prob-
lem. In: 2019 5th International Conference on Control, Automation and Robotics (ICCAR),
pp. 581–585. IEEE (2019)

35. Wang, L., Cai, J.C., Li, M.: An adaptive multi-population genetic algorithm for job-shop
scheduling problem. Adv. Manuf. 4(2), 142–149 (2016)

36. Watanabe, M., Ida, K., Gen, M.: A genetic algorithm with modified crossover operator and
search area adaptation for the job-shop scheduling problem. Comput. Ind. Eng. 48(4), 743–
752 (2005)

37. Wegner, P.: A technique for counting ones in a binary computer. Commun. ACM 3(5), 322
(1960). https://doi.org/10.1145/367236.367286

38. Wu, Z., Sun, S., Yu, S.: Optimizing makespan and stability risks in job shop scheduling.
Comput. Oper. Res. 122, 104963 (2020)

39. Xhafa, F., Abraham, A.: Metaheuristics for scheduling in industrial and manufacturing appli-
cations, vol. 128. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78985-7

40. Yu, H., Gao, Y., Wang, L., Meng, J.: A hybrid particle swarm optimization algorithm
enhanced with nonlinear inertial weight and gaussian mutation for job shop scheduling prob-
lems. Mathematics 8(8) (2020). https://doi.org/10.3390/math8081355

41. Zang, W., Ren, L., Zhang, W., Liu, X.: A cloud model based DNA genetic algorithm for
numerical optimization problems. Future Gener. Comput. Syst. 81, 465–477 (2018)

https://doi.org/10.5220/0008937004630474
https://doi.org/10.1145/367236.367286
https://doi.org/10.1007/978-3-540-78985-7
https://doi.org/10.3390/math8081355

	A New Genetic Improvement Operator Based on Frequency Analysis for Genetic Algorithms Applied to Job Shop Scheduling Problem
	1 Introduction
	2 Formulation of Job Shop Scheduling Problem
	3 A New Genetic Improvement Operator Based on Frequency Analysis for GA Applied to JSSP
	3.1 Genetic Representation
	3.2 Fitness Function
	3.3 Proposed Genetic Improvement Based on Frequency Analysis Operator
	3.4 Scheme of Use for Proposed Operators: Algorithm Structure

	4 Implementation and Experimental Results
	4.1 Experimental Environment
	4.2 Results and Comparison with Other Algorithms

	5 Conclusion
	References




