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Abstract. We propose an improvement of the Self-Organizing Map
(SOM). In our version of SOM, the neighborhood widths of the Best
Matching Units (BMUs) are computed on the basis of the data density
and scattering in the input data space. The density and scattering are
expressed by the values of the inner-cluster variances, which are obtained
after the preliminary input data clustering. The experiments conducted
on the two real datasets evaluated the proposed approach on the basis
of a comparison with the three reference data visualization methods. By
reporting the superiority of our technique over the other tested algo-
rithms, we confirmed the effectiveness and accuracy of the introduced
solution.
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1 Introduction

The Self-Organizing Map (SOM) [3] is a type of an artificial neural network
architecture, however, at the same time, it may be recognized as a data visual-
ization technique. The term data visualization refers in our research to a linear
or non-linear projection from an original input high-dimensional space onto a
resulting output 2- or 3-dimensional data space. Consequently, any data visu-
alization formulated in the following way can be treated as a particular case of
a dimensionality reduction problem, where the output number of dimensions is
2 or 3, typically 2. The SOM technique generates a 2-dimensional map struc-
ture. The location of points in 2-dimensional grid aims to reflect the similarities
between the corresponding samples in an input multidimensional space. There-
fore, the SOM algorithm allows for visualization of relationships between samples
in multidimensional space.

1.1 Our Proposal

We propose an adaptive rule for the determination of the neighborhood widths of
the SOM’s BMUs during the SOM’s training. The rule is formulated on the basis
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of the preliminary data clustering in the input space. After forming of the input
data clusters, the inner-cluster variances for each of the generated clusters are
calculated and utilized afterward as a basis for the SOM’s BMUs’ neighborhood
widths computation.

In our method, the neighborhood widths are determined independently for
each BMU neuron in the SOM grid. The neighborhood of BMU is mathematically
described using the Gaussian kernel function, where the radius of the Gaussian
kernel is calculated as a result of initial data clustering in the input space. This
is achieved in this way that the inner-cluster variances for each of the input data
clusters are utilized as the basis for the radius of the Gaussian kernel.

2 Related Work

The SOM visualization technique has been extensively studied, and numerous
improvements and extensions have been developed, including the Growing Hier-
archical SOM (GHSOM) [12], the asymmetric SOM [4,7,10], and the adaptive
SOM [1,5,9,11,13], to name a few. Naturally, the adaptive SOM versions are of
particular interest for the purposes of our research.

An approach allowing to gain a control over the neurons’ neighborhood
widths in SOM delivered in the paper [13] is the magnification control approach.
The issue is thoroughly studied by the authors of [13], where the three learning
rule modifications for SOM are considered, namely, the localized learning, the
winner-relaxing learning, and the concave-convex learning. The one closest to
our research is the localized learning modification leading to inserting the local
learning step size in the SOM weights update formula, in this way, affecting the
SOM’s BMUs’ neighborhood widths. The local learning step size depends on
the stimulus density of the weight vectors (prototypes) of SOM. As it is noticed
in [13], a major drawback of the approach is that one has to estimate the gener-
ally unknown data distribution corresponding to the mentioned stimulus density,
which may lead to numerical instabilities of the control mechanism [13]. Such
a drawback does not concern the proposal of the present paper, because in our
method, there is no necessity of any data distribution estimation. The second
important difference between our technique and the localized learning is that
in our method, preliminary data clustering and the resulting inner-cluster vari-
ances refer to the input samples in the SOM input space, whereas in case of the
localized learning, the local learning step size is determined on the basis of the
stimulus density of the weight vectors of SOM, i.e., on the basis of the intrinsic
SOM structural information.

In the articles [9,11], an adaptive version of the SOM technique is introduced,
in which, the frequency information about the input dataset is employed in the
adaptive training process of SOM, i.e., in the adaptive form of the SOM’s update
formula. Strictly speaking, the frequency of occurrences of data samples in the
input data space is utilized as the basis for the SOM’s BMUs’ neighborhood
widths determination. The distinction between the approach from [9,11] and
our research is that in the present paper, the information on the density and
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scattering of the input data samples in the input data space is included in the
adaptive training process of SOM, whereas in the study from [9,11], the input
data samples’ frequencies of occurrences are taken into account, when SOM is
being trained, and its lattice is being constructed.

Finally, the paper [1] proposes a Local Adaptive Receptive Fields Self-
Organizing Map (LARFSOM). Local models are built by calculating between
the output associated with the winning node and the difference vector between
the input vector and the weight vector. These models are combined by using a
weighted sum to yield the final approximate value. The topology is adapted in a
self-organizing way, and the weight vectors are adjusted in a modified unsuper-
vised learning algorithm for supervised problems.

3 Traditional SOM Method

The SOM algorithm provides a non-linear mapping from an original input high-
dimensional data space onto a resulting output 2-dimensional map of neurons.

Besides the classical algorithmic description of the SOM method, which is
well-known in the existing literature (see, e.g., [3]), an additional mathematical
scaffolding has been presented in [4].

According to [4], the results obtained by the SOM method are equivalent to
the results delivered by minimizing the following error function with respect to
the prototypes wr and ws:
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where xi, i = 1, . . . , N is the ith input sample in high-dimensional input space,
N is the total number of input samples; wr, r = 1, . . . , M and ws, s = 1, . . . , M
are the prototypes of input samples in the grid (the different indeces r and s
are used in order to compute the sum of distances between neurons within the
SOM grid, including the values of the function hrs); M is the total number
of prototypes/neurons in the grid; hrs is a neighborhood function (e.g., the
Gaussian kernel) that transforms non-linearly the neuron distances (see [3] for
other choices of neighborhood functions); dEuc (·, ·) is the Euclidean distance;
and Vr is the Voronoi region corresponding to prototype wr.

The width of the kernel hrs is adapted in each iteration of the algorithm
using the rule proposed by [5], i.e.:

σ (t) = σm

(
σf

σm

) t
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, (2)
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where σm ≈ M
2 is typically assumed in the literature (e.g., in [3]), σf is the

parameter that determines the smoothing degree of the principal curve generated
by the SOM algorithm [5], and Niter is the total number of iterations during the
SOM training process.

4 A Novel Clustering-Based Adaptive SOM Method

The main proposal of this paper is a method for adaptive SOM training, which is
based on the preliminary data analysis, i.e., clustering of the input data samples
in the input data space. After the clustering process, one calculates the inner-
cluster variances for each of the generated clusters. These values represent the
density and scattering of the input data samples, which is, as we claim in our
research, the crucial information for the proper adaptation and adjustment of
the SOM’s lattice to the properties and characteristics of the input dataset.
Therefore, the inner-cluster variances are subsequently included in the SOM’s
exponential update formula (2) from the work [5], and consequently, these values
are employed in the SOM’s unsupervised training process. In our research, we
formulate an assertion that the introduced modification to (2) results in a higher
SOM’s performance and accuracy, and therefore, it can be recognized as the
traditional SOM’s enhancement.

The main idea behind the proposed method is the utilization of the informa-
tion about the data density and scattering in the input data space for improving
the training of SOM by making it adaptive and intelligent. This information is
included during the setting of the neighborhood widths of SOM’s BMUs’, in this
way, constituting a novel adaptive rule for the training of SOM, which is the
main contribution of our paper. The information about the data density and
scattering in the input data space is obtained from the measurements of the
inner-cluster variance possible to determine after a preliminary data clustering
in the input data space.

The entire proposal of the extension to the traditional NeRV method is pre-
sented completely and formally in Procedure 1.

Procedure 1. The clustering-based and density-preserving adaptive SOM
method proposed in current paper proceeds as follows:

Step 1. Perform a clustering of the analyzed dataset in the input high-
dimensional space.

Step 2. Compute the inner-cluster variance for each of the clusters according to
the following formula:

νk =
1

Nk

Nk∑

i=1

d (ck, xi) , (3)

where νk is the inner-cluster variance of the kth cluster, k = 1, . . . ,K;
K is the number of clusters; Nk is the number of data samples in the
kth cluster; d (·, ·) is a given suitable dissimilarity measure in the input
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high-dimensional space; ck is the centroid of the kth cluster; and xi are
the data samples in the input high-dimensional space.

Step 3. Assign the inner-cluster variances νk to each data sample in the input
space:

νi = νk , such that xi ∈ Ck , (4)

where νi is the inner-cluster variance of the ith data sample in the input
space, i = 1, . . . , N ; N is the total number of data samples in the input
space; Ck is the kth cluster in the input space, k = 1, . . . ,K; and the
rest of the notation has been explained previously in this paper.

Step 4. Include the inner-cluster variances νi in the exponential update for-
mula (2):

σi (νi, t) = (1 + νi) σm

(
σf

σm

) t
Niter

, (5)

where σi is the width of the Gaussian kernel used during the training of
SOM for the ith data sample in the input space and the BMU in the SOM
grid corresponding to that ith data sample.

Step 4. Minimize the error function (1) utilizing the novel form of the neighbor-
hood function hrs including the novel adaptive exponential update for-
mula (5) for σi (νi, t).

5 Experiments

In our experimental research, we aimed to verify the effectiveness of the app-
roach introduced in the current paper. All of the experiments have been carried
out in two phases, i.e., the input data visualization itself and the a posteriori
output data clustering, i.e., clustering of the visualized data, or in other words,
clustering of the data projected on the SOM grid. The data clustering within
the visualization space has been conducted using the weight vectors (prototypes)
attached to the neurons in the SOM grid. The results of the a posteriori SOM
projection clustering have served us as the basis of the comparisons between
the introduced technique and the three selected reference data visualization
methods.

The experiments have been conducted on real data in the two different
research fields: in the field of words visualization and clustering and in the field
of speakers visualization and clustering. The first part of the experimental study
has been carried out on the large dataset of high-dimensionality (Subsect. 5.3),
whereas the second part has been conducted on smaller dataset, but also of
high-dimensionality (Subsect. 5.4).

As a result, the scalability of our approach is presented, i.e., the ability
to effectively operate on datasets of significantly different size. Note that our
method does not increase essentially the computational complexity of the tradi-
tional SOM, and it adds only the computational demand of the initial cluster-
ing, which is run only once, and it is not repeated during the training of SOM.
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Hence, in case of the DBSCAN clustering algorithm, the complexity of the ini-
tial clustering is O (N log N), does not constraint the scalability property of our
technique.

As the reference methods in our empirical study, we have chosen the standard
SOM algorithm and the two modified versions of the conventional SOM, i.e., the
Time Adaptive SOM (TASOM) and the data visualization approach proposed
in [9,11], which will be called throughout this paper as the Frequency-Based
SOM (FBSOM).

In case of the speakers’ dataset, a graphical illustration of the generated
SOMs is provided, whereas in case of the “Bag of Words” dataset, no such
illustration is given, because of the high number of data samples in this dataset,
which would make such images unclear and unreadable.

5.1 Evaluation Criteria

As the basis of the comparisons between the investigated methods, i.e., as the
clustering evaluation criteria, we have used the accuracy rate [6,7] and the uncer-
tainty degree [4,7].

Hence, the following two evaluation criteria have been used:

1. Accuracy rate. This evaluation criterion determines the number of correctly
assigned samples divided by the total number of samples. Hence, for the entire
dataset, the accuracy rate is determined as follows:

q =
Nc

N
, (6)

where Nc is the number of correctly assigned samples, and N is the total
number of samples in the entire dataset.
The accuracy rate q assumes values in the interval 〈0, 1〉, and naturally, greater
values are preferred.

2. Uncertainty degree. This evaluation criterion determines the number of
overlapping samples divided by the total number of samples in a dataset. The
samples belonging to the overlapping area are determined on the basis of the
ratio of dissimilarities between them and the two nearest clusters centroids.
If this ratio is in the interval 〈0.9, 1.1〉, then the corresponding sample is said
to be in the overlapping area.
The uncertainty degree is determined as follows:

Ud =
No

N
, (7)

where No is the number of overlapping samples in the dataset, and N is the
total number of samples in the dataset.
The uncertainty degree assumes values in the interval 〈0, 1〉, and, smaller
values are desired.
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5.2 Experimental Setup

In our experimental research, we have utilized the DBSCAN clustering algo-
rithm, because of the important and significant advantages of the algorithm
from the point of view of our data analysis, i.e., the automatic clusters’ number
determination and the capability to handle the non-linearly separable data.

The output data a posteriori clustering in the SOM visualization space has
been conducted using the standard k-means clustering algorithm.

Each of the investigated methods has been run 50 times, because all of the
methods are non-deterministic, and by repeating their executions, we obtain
results, which may be recognized as more reliable. The randomness of the meth-
ods exists in both phases of our data analysis and processing, i.e., in the data
visualization and in the following data clustering.

The values of the accuracy rates and uncertainty degrees in Tables 1 and 2 are
computed as the arithmetic averages over all the executed runs of the evaluated
methods.

Feature extraction of the textual data investigated in the part of our empirical
study demonstrated in Subsect. 5.3 was carried out using the term frequency –
inverse document frequency (tf-idf ) approach.

Features of the speakers’ sound signals considered in Subsect. 5.4 have been
extracted using a method based on the Discrete Fourier Transform (DFT), which
is described in details in [8].

5.3 Words Visualization and Clustering

In the first part of our experimental research, we have utilized excerpts from the
“Bag of Words” dataset from the UCI Machine Learning Repository [2].

Our dataset consists of five text collections: Enron E-mail Collection, Neural
Information Processing Systems (NIPS) full papers, Daily KOS Blog Entries,
New York Times News Articles, PubMed Abstracts. The total number of ana-
lyzed words was approximately 10,868,000. On the visualizations generated by
the investigated methods, five clusters representing those five text collections in
the “Bag of Words” dataset were formed.

Experimental Results. The results of this part of our experiments are
reported in Table 1, where the accuracy rates and uncertainty degrees corre-
sponding to each of the evaluated methods are given.

Table 1. Accuracy rates and uncertainty degrees of the words visualization and
clustering.

q Ud

SOM & k-means 8,175,273/10,868,000 = 0.7522 2,459,195/10,868,000 = 0.2263

TASOM & k-means 8,389,009/10,868,000 = 0.7719 2,304,016/10,868,000 = 0.2120

FBSOM & k-means 9,183,460/10,868,000 = 0.8450 1,523,471/10,868,000 = 0.1402

Proposed SOM & k-means 9,262,276/10,868,000 = 0.8523 1,248,863/10,868,000 = 0.1149
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The results obtained in this part of our experiments have shown a superiority
of our approach over the other three data visualization algorithms considered as
the benchmark methods. The solution introduced in this paper produced the
highest value of the accuracy rate and the lowest value of the uncertainty degree
among all the investigated methods.

5.4 Speakers Visualization and Clustering

The speakers visualization and clustering experiment has been conducted on the
dataset of sound signals gathered independently by the author of this work.

In this part of our experiments, we considered four clusters representing four
speakers. Each speaker was represented by 40 speeches, i.e., sound signals (time
series). This kind of clustering can be regarded as the speaker recognition based
on the sound signals.

Four clusters representing four different speakers have been formed. Each
speaker has been represented by 40 10-s sound signals sampled with the 44.1
kHz frequency. Our dataset is composed of 160 sound signals. Feature extraction
was carried out according to the DFT-based algorithm, as it was written in
Subsect. 5.2. The dataset for the speakers visualization and clustering has been
collected autonomously be the author of this research.

Experimental Results. The results of this part of our experiments are
reported in Figs. 1a, 1b, 2a, 2b, and in Table 2, which has the same form as
Table 1 in Subsect. 5.3. Figures 1a, 1b, 2a, and 2b show the map structures of
four considered SOM versions. The points in the 2-dimensional space of these
SOM variants’ visualizations are the projections of the input data samples from
the input data space. In each of the figures, the clusters, generated in the out-
put data a posteriori clustering, are indicated and marked with different colors.
The colors are assigned to the clusters randomly, therefore, a given cluster may
have different colors assigned in different runs of the same algorithm. Hence,
the clusters themselves are important, and not their particular colors. Each of
Figs. 1a, 1b, 2a, and 2b presents SOM graphics for a single execution of a given
SOM version.

Table 2. Accuracy rates and uncertainty degrees of the speakers visualization and
clustering.

q Ud

SOM & k-means 134/160 = 0.8375 15/160 = 0.0938

TASOM & k-means 137/160 = 0.8563 16/160 = 0.1000

FBSOM & k-means 145/160 = 0.9063 10/160 = 0.0625

Proposed SOM & k-means 154/160 = 0.9625 5/160 = 0.0313
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SOM

(a) Conventional SOM method.

TASOM

(b) TASOM method.

Fig. 1. Results of speakers visualization and clustering using the conventional SOM
method and the TASOM method.

FBSOM

(a) FBSOM method.

Proposed SOM

(b) Proposed SOM method.

Fig. 2. Results of speakers visualization and clustering using the FBSOM method and
the proposed SOM method.

The outcome of the second part of our experiments verified and confirmed
the effectiveness and usefulness of our proposed method by indicating that it
outperforms all the other tested variants and improvements of SOM. The app-
roach developed in our work returned the higher accuracy rate than all the other
algorithms being a subject of evaluation, and furthermore, it allowed for obtain-
ing the lowest value of uncertainty degree, when compared to the reference data
visualization methods.
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6 Summary

In this paper, a novel version of SOM has been proposed. The novelty in our
extension to the traditional SOM was a concept of establishing a relationship
between the SOM’s BMUs’ neighborhood widths and the density and scattering
of the data in the input data space. In other words, the SOM’s BMUs’ neigh-
borhood widths have been determined on the basis of the information about
the data density and scattering in the input data space. Precisely speaking, the
density and scattering properties of the input data have been numerically rep-
resented and conveyed by the quantities of inner-cluster variances obtained as a
result of a preliminary input data clustering.
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V., Abraham, A., Woźniak, M., Graña, M., Cho, S.-B. (eds.) HAIS 2012. LNCS
(LNAI), vol. 7208, pp. 243–254. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-28942-2 22

9. Olszewski, D.: An improved adaptive self-organizing map. In: Rutkowski, L., Kory-
tkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.)
ICAISC 2014. LNCS (LNAI), vol. 8467, pp. 109–120. Springer, Cham (2014).
https://doi.org/10.1007/978-3-319-07173-2 11
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